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Fundamental constants
of nucleon-meson dynamics

O. BEDRIJ, W.I. FUSHCHYCH

3anpornoHoBaHO HOBUH (heHOMEHOJOTIUHMH MiAXiA AJ1sT OGUHC/IEHHS KOHCTAHT MPOTOHY Ta
HelTpoHy. B oCHOBY p0GOTH MOK/afeHO HecTaHAapTHY ifeto: crana [lnaHka A Ta wBHA-
KicTh “cBiTsia” (Me30HY) ¢ B HYKJIOH-ME30HHIH AUHAMMIL BiAMIHHI BiJl LIMX YK€ KOHCTaHT
B KBAHTOBil eJleKTPOAUHAMHILL.

In this paper, we are proposing an approach to calculate fundamental physical
constants that characterize nucleon-meson dynamics. The approach is based on the
referenced papers [1, 2], and on the premise that fundamental constants are reducible
to mathematical relations and operations, which can be used to predict, define and
calculate other fundamental “natural” unit systems (quanta).

At the present, we have, when compared to available data on quantum electrody-
namics (electron-photon dynamics), very limited experimental fundamental constant
data for the proton and the neutron. Such constants as the neutron or proton radius,
or the Rydberg constant are not adequately defined in nucleon-meson dynamics.

From experiment, we know the mass and the charge of proton and neutron. Other
physical characteristics such as nuclear magneton. Compton wavelength of the proton
and the neutron are derived quantities, that incorporate % and ¢ constants in the
relations. It is presently assumed in physics that electrodynamic constants of A and ¢
are applicable to characterization of nucleon-meson dynamics. Our calculations show
that constants h and ¢ for nucleon-meson dynamics are different from the same
constants in quantum electrodynamics. This is natural, because the electron emits
a photon, while the nucleon emits a meson.

We propose that standard formulas for fundamental characteristics of proton and
neutron can be modified to represent the nucleon-meson constants and not electrody-
namic constants. Below we show the proposed modifications (Definitions of Quantities
are shown in [2]):

Standard Proposed
Relationships  Relationships
Compton Wavelength of proton Ap = h/mpe Ap = Fpmipvp
Compton Wavelength of neutron A\, = h/mnc An = hn/mpun
Proton magneton wp = qh/2mpe  pp = gphp/2mpu,
Neutron magneton Un = qh/2mpc  pn = gnhin/2mpvn,
Proton radius rp = hparpmpvp, hp # R
Neutron radius Tn = BnQn/MpUn, hn R

where v, and v,, are velocities of mesons which are emitted by proton and neutron.
In our approach, we assume that:

JTonosiai AH Ykpaiuu, 1993, Ne 5, C. 62-64.
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1. The physical relationships between quantities are the same for all inertial frames
of reference.

2. The scale-symmetry is a fundamental concept in all of physics, including the
photon, electron, meson, proton, neutron, etc.: that is, the scale-invariance of the
physical relationships between quantities with respect to the scale group.

3. Physical quantities have a fundamental relationship to, an equilibrium frame of
reference and that the equilibrium frame of reference is scale invariant [2].

When we consider that the laws of physics are invariant in all inertial frames
of reference, and that the scale-symmetry is a fundamental aspect of physical re-
lationships and constants, constant values that deal with quantum electrodynamics
(constants that satisfy physical relationships for electron mass, photon, Compton
wavelength, etc., ([2] — Table 1), are not applicable for the proton or neutron, which
have different masses and hence, different scales of reference.

Earlier [2] we stated that:

1= (" g5%a5" - a2°)/ (P10 208 - %) ()
or,

1=Y'/KX, (2)
where

Y = (¢ 05205 - pL), )

VKX = (07 0 pf - p), @

(¢:)° =1, (¢;")° =1,

Q1/5G2,q3y- -+ Qs s D17, P27, G374 - . ., D are quantities,
L1, X, X3y v vy Tty 17, J2r, G375+ -+ 5 Jor are real numbers,
K is the slope for line Y/ = KX,
JyS,x,z2=1,23,....

We require that the equations (1) and (2) are scale invariant. That is the equa-
tions (1) and (2) are invariant with respect to the following transformations:

Q=g =aq, @—d¢=ap, ¢ —>d¢=ag, ..., (5)
p1— Py =api, p2—ph=aps, P —py=aps, ..., (6)

@

where “a” is a scale transformation parameter, and all physical quantities (g5 and p,)

have to be subjected to transformation. Hence, based on equations (1) and (2), it

follows that “1” is always invariant with respect to scale transformations (5) and (6).
Thus, electron, proton, and neutron constants are on the lines:

1=Y'/K.X, where K, is the slope for electron line, (7)
1=Y'/K,X, where K, is the slope for proton line, (8)

1=Y'/K,X, where K, is the slope for neutron line, (9)
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Table 1. Fundamental Constants of Proton Dynamics

Symbols Constants Relationships of Quantities
Vop 1,075827 - 10736 Vop =m/d
hyp 2,667688 - 10730 hy =W/f
My 1,672623 - 10%7 mp =F/Y
S, 1,440869 - 10722 Cp=q/V
L, 5,635247 - 107 '8 L,=0d/i
b 3,491143 - 107" »=F/H
Sp 1,024662 - 10712 S, =V/E
W, 2,162829 - 10~ '2 W, = Pt
Ap 4,435318 - 1071 Ap =v/f
agp 1,155117 - 1072 app = S/2)

1 1,000000 - 10° 1=GR
Roop 1,504171 - 10° Roop = '}, /S
D, 1,681364 - 107 D, =q/A
Vp 3,595937 - 107 V, =H/D
B, 3,325110 - 10° B,=E/v
H, 6,046079 - 10 H,=1i/S
E, 1,195689 - 10*7 E,=V/S
fo 8,107560 - 10'7 fo=W/h
Wy 3,509387 - 101° wp = ()2

Table 2. Fundamental Constants of Neutron Dynamics

Symbols Constants Relationships of Quantities
Von 1,077819 - 10736 Von = m/d
hn 2,671749 - 1073 hn =W/f
Mn 1,674929 - 1077 mn=F/Y
Ch 1,442489 - 10~ 22 Cn=q/V
L., 5,640249 - 10718 L, =¢/i
&n 3,493739 - 1071° ¢n =F/H
Sh 1,025295 - 10712 S, =V/E
W, 2,164127-10712 W, = Pt
An 4,437681 - 107 An =0/ f
Qfn 1,155214 - 1072 apn = 5/2

1 1,000000 - 10° 1=GR
Roon 1,503623 - 10° Roon = /s
D, 1,680739 - 107 D, =q/A
Va 3,594539 - 107 Vo =H/D
B, 3,323482 - 10° B, =E/v
H, 6,041484 - 104 H, =1i/S
E, 1,194639 - 10*7 E,=V/S
fn 8,100040 - 107 fo=W/h
Wn 3,505861 - 1017 wn = (a)Y/?

The equations (7)-(9) are straight lines in the X — Y’ plane that go through the
Absolute frame of reference of 1. Therefore, all electron, proton, and neutron constants
are located on straight lines that have fixed slopes of K., K, and K,,, and a common
hidden Absolute frame of reference of 10° or 1. Note, because the lines with slopes
K., K,, and K,, go through the center of equilibrium, it requires only one constant
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and the Absolute frame of reference of 1 to compute another set of constants for a new
particle.

We computed constants that characterize proton and neutron, by raising electrons
constant values ([2] — Table 1) to a power of the difference between the masses of
the proton (and neutron) and the electron [lnm,/m. = 0,89135 and Inm,,/Ilnm,. =
0,89133]. Some of the calculations are listed in the Tables 1 and 2.

1. Bedrij O., Fundamental constants in quantum electrodynamics, Dopovidi Ukrainian Academy of
Sciences, 1993, Ne 3, 40-45.

2. Bedrij O., Scale invariance, unifying principle order and sequence of physical quantities and funda-
mental constants, Dopovidi Ukrainian Academy of Sciences, 1993, Ne 4, 67-73.
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On maximal subalgebras of the rank n — 1
of the conformal algebra AC(1,n)

A.F. BARANNYK, W.I. FUSHCHYCH

[TpoBeneHo Kaacugikauio MakcuMabHUX miganredp panry n — 1 anrebpu AC(1,n), siki
Hasexatb anredpi AP(1,n).

Consider the multidimensional eikonal equation

ou \? ou \? ou 2
(o) ~ ()~ (ams) =2 0

where w = wu(z) is a scalar function of the variable z = (zo,z1,...,2n-1), n > 2.
In [1] it was established that the Lie algebra AC(1,n) of the group C(1,n) of the
Minkowski Ry, space with the metric 22 —2% —--- — 22, where z,, = u, is a maximal

algebra of the equation (1) invariance. The basis of the algebra AC(1,n) is formed by
such vector fields as:

Py =00, Jop=9""20,05— 92,00, D =—3%0,,
Ko = *2(9aﬁzﬁ)D - (gﬁ'Vxﬁ:C.y)(?a,

where goo = —g11 = - = —gnn = 1, gap = 0, when o # 3 (o, 8,7 =0,1,...,n).
The algebra AC(1,n) contains the Poincaré algebra AP(1,n) which is generated by
vector fields P,, J,s3 and the extended Poincaré algebra AP(1,n) = AP(1,n) B (D).

In order to reduce the equation (1) by subalgebras of the algebra AC(1,n), it
is necessary to describe all C(1,n)-nonequivalent subalgebras of this algebra. The
subalgebras K and K5 of the algebra AC(1,n) are called as C(1,n)-equivalent ones
if they have the same invariants with respect to C(1,n)-conjugation. Among C(1,n)-
equivalent algebras there exists one (maximal) subalgebra containing all the other
subalgebras. The maximal subalgebras K; and K» of the algebra AC(1,n) are equi-
valent if and only if K; and K5 are C(1,n)-conjugated.

The maximal subalgebras of the rank n of the algebra AP(1,n) with respect to
P(1,n)-conjugation are described in [2]. The maximal subalgebras of the rank n of
the algebra AP(1,n) with respect to P(1,n)-conjugation are described in [3, 4].
The present article is a continuation of researches which were realized in [3, 4].
The full classification of the maximal subalgebras of the rank n — 1 of the algebra
AC(1,n) which are contained in the algebra AP(1,n) has been carried out in the
present article. Ansatzes corresponding to these subalgebras reduce the equation (1)
to ordinary differential equations.

We will use the notations:

1
M =Py + P,, Tzi(Po—P,,,), Go=Jon —Jan, a=1,...,n—1,

AO[r,s] = (Jwp|a,b=1,...,8), r<s,

JTonosini AH Ykpaiuu, 1993, Ne 6, C. 38-41.
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AEr,s] = (Py,...,Ps)® AO|r,s], r <s,
AFEq[r,s] = (Gp,...,Gs) B AO[r,s], r<s.

If s > r then AO[r,s] =0, AE]r,s] = 0 by definition.
Let

O(r,s,7) =(Gr +vPy,...,Gs +vPs) & AO[r,s], r,seN, r<s, vyeR.
Let
Tyg=UD F,

where F' is the diagonal of AO[1,d] ® AO[d+ 1,2d] @ --- @ AO[(q — 1)d + 1, ¢d], and
U is the Abelian algebra which has the basis

Gi+mPr+MPy-nat1s - Ga+mnPa+ AP,
Gat1 +72Pay1 + A2 Py—1yas1, -+ Gaa +72P2a + APy,
Gg—2yd+1 T Vg-1Pq—2)a+1 + Ag—1Pq-1)a41, ---» Gg-1)a +

+ ’qulp(q—l)d + )\qflpqda

where 0 <y <7y < - <7yg—1, A1 >0, A2 >0, ..., Ag—1 > 0.

Results of the work [5] reduce the problem constructing invariants of any subalgeb-
ra of the algebra AP(1,n) to the problem of constructing invariants of the irreducible
subalgebras of the orthogonal algebra AO(k) for all & < n. The latter problem has
no solution in quadratures. Therefore, we shall restrict ourself considering of such
subalgebras of the algebra AP(1,n) which projections onto AO[1,n] are subdirect
sums on the algebras AO[r, s]. Moreover, to find real solutions of the equation (1) it
is necessary to exclude from consideration such subalgebras of the algebra AP(1,n)
which with respect to equivalence contain Py + P, or Py. Therefore we prove the
following theorems.

Theorem 1. Let L be the maximal subalgebra of the rank n — 1 of the algebra
AP(1,n). Then L is C(1,n)-conjugated with one of the following algebras:
1) L1 = AE[I,n — 1];

2) Ly =A0[l,m]|® AEim+1,n],m=1,...,n,n>2;

3) Ly = AE[1,m]|®@ AEim+1,n—1], m = 1 on—1,n>2;

4) Ly = AO[1,m| ® AEim +1,n— 1] @ <Jon> =1,....,n—1,n>3;

5) Ls = AO[0,m| @ AEm+1,n—1], m=2,...,n—1,n>3;

6) Lg = AO[0, m|®AO[m+1,q|®AE[q+1, n— 1] =2,...,n—1,g=m+1,...,n
n > 3;

7) Ly = <G1 + Py —Pn> @AE[Q,’I’L— 1], n > 2;

8) Lg = ®(do+1,d1,71)®- - - ®@P(dp—1+1,m, 1) DAE[m+1,n—1], m=1,...,n—1,
n > 3;

9) Lg = <J0n +P1> @AE[Z’H— 1}, n > 2;

10) L1g = (AE1[1,m]® (Jon + Prny1)) BAE[mMm+2,n—1], m=1,...,n—2,n > 3;

11) Ly = (J12+ Po) ® AE[3,n], n > 2.
Theorem 2. Let L be the maximal subalgebra of the rank n — 1 of the algebra
AP(1,n) which has a nonzero projection onto (D). Then L is C(1,n)-conjugated
with one of the following algebras:
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1) Ly = (A0[0,d]) ® AO[d + 1,m] ® AO[m + 1,q] ® AE[qg + 1,n]) B (D), d =
2,....,n—2,m=d+1,....n—2,g=m+1,....,.n—1,2n<d+q, n > 4

2) Ly = (AO[0,m]|®& AEm+1,n—2]) b (D+ap_1n), m=2,...,n—2,n >4,
a > 0;

3) Ly = (AO[1,m] ® AO[m + 1,q] ® AE[q + 1,n]) D (D), m = 2,...,n — 2,
g=m+2,....,n,2m < q, n > 2;

4) L4 = (AEl[l,m] D AE[er 1,n — 3]){) <Jn_27n_1 +CJOn,D +O[J()n>, m =
1,....n—3,n>4,¢>0,a>0;

5) Ls = (AO[1,m]® AO[m+1,q|®AE[q+1,n—1)) B (D, Jon), m=1,...,n—2,
g=m+1,....n—1,2m < q, n > 3;

6) Lg = AE[3,n — 1] D (Ji2 + cJon, D + aJyn), ¢ >0, a >0, n > 3;

7) L7 = (AEL[1,d]®AO[d+1,m|@AE[m+1,n—1]) & (D+alo,), d=1,...,n—2,
m=d+1,....n—1,n>3, a>0;
8) Ly = (AO[1,m]® AE[m+1,n—1])® (D+ado), m=1,...,n—1,n>2,

9) Ly = ((G1+2T)® AO[2, m|® AE[m+1,n—1]) B (2D—Jon), m=2,...,n—1,
n>3;

10) Lip = (AE1[1,d] @ AO[d + 1,m] ® AE[m + 1,n — 1)) (D + Jo, + M),
d=1,....n—2,m=d+1,...,n—1,n > 3;

11) L1y = (AO[l,m] @ AEfm +1,n—1])B (D+ Jon + M), m =1,...,n—1,
n > 2;

12) Ly = (AEl[l,m] D AE[m +1,n — 3])+D <Jn—2,n—1 +aM,D + Jo, + M>,
m=1,....n—=3,n>4, a >0

13) L13 = (AEl[l,m] D AE[m + 1,7’1 - 3])+D <Jn—2,n—1 + M,D + J0n>, m =
1,...,n—=3, n>4;

14) L14 = AE[3,H* 1]{) <J12 +OZM,D+ JOn +M>, n Z 3, « Z 0;

15) Lys = AE[3,n— 1] B (Ji1o+ M, D + Jo,), n < 3;

16) Lig = Taq® AE[dg+1,n—1]D (D — Jop), d> 2, n>5;

17) L17 = ((I)(do—Fl,dl,’}/l)@(I)(dl +17d2,’}/2)@' . '@‘I’(dt_l +1,dt,’yt)@AO[dt+
1,m]|® AE[m + 1,n —1]) B (D — Jon), where dg =0, 71 < y2 < -+ < Y, t > 1,
m=1,...,n—2,n>3;

18) Lig = (Fdﬂ D @(lo -+ 1,11,#1) > (p(ll + 1,lg,u2) D ---D q)(lt—l + 1,lt,ut) S>)
AE[l;+1,n—1]) B (D — Jon), where pg < o < -+ < g, t > 1, lo = dq.

Ly-Ly1 and Li;-Lig of the theorems 1 and 2 respectively and to carry out a
reduction of the equation (1). Consider, for example, the subalgebra Li7. The ansatz

u? = [—m + ] +Z% (3 +---xi)] o) -

o — T
i=1 0 m+’y

2

2
Tl T T 1

W =Ty — T,

corresponds to this subalgebra. This ansatz reduces the equation (1) to equation
pp — @ = 0. Using the solution of this equation we find the following solution of the
equation (1):

X

t
1
2 2 2
u’ = | —(zo + o] + 7<z +~-~+x_)
[ ( m] ;:1 pa—— SR d;

X (20— 2m+C)—x] 13— — k.
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Conditional symmetries of the equations
of mathematical physics

W.I. FUSHCHYCH

We briefly present the results of research in conditional symmetries of equations of
mathematical and theoretical physics: the Maxwell, D’Alembert, Schrodinger and KdV
equations, as well as the equations of heat conduction and acoustics. Exploiting condi-
tional symmetry, we construct a wide class of exact solutions of these equations, which
cannot be obtained by the classical method of Sophus Lie.

1. Introduction

The concept and terminology of conditional symmetry and conditional invariance
were introduced and developed in the series of articles [1-11] (see also Mathematical
Reviews for the years 1983-1993). Later, this concept was exploited by other authors
for the construction of solutions of various non-linear equations of mathematical phy-
sics. It turned out that nearly all the basic non-linear equations of mathematical
physics have non-trivial conditional symmetry [2, 9, 10].

We understand the conditional symmetry of an equation as being a symmetry (local
or non-local) of some non-trivial subset of its solution set (the formal definition of the
idea of conditional symmetry can be found in Appendix 4 of [2] and in the article [3]).
The general definition of conditional symmetry as the symmetry of a subset of the
set of solutions is non-constructive and requires further specification: the analytical
description of a condition (as an equation) on the solutions of the given equation,
which extend or alter the symmetry of the starting equation. Therefore, the basic
problem in the investigation of conditional symmetries is that of describing those
supplementary equations which increase or change the symmetry of the beginning
equation. This is very complex, non-linear problem in general (even in the case of
quite simple non-linear equations), which can often be significantly more complicated
than constructing solutions of the equation at hand. It is thus meaningful to talk of
the conditional symmetry of some class of equations.

Non-trivial conditional symmetries of a PDE (partial differential equation) allows
us to obtain in explicit form such solutions which can not be found by using the
symmetries of the whole set of solutions of the given PDE. Moreover, conditional
symmetries increase significantly the class of PDEs for which we can construct
ansatzes which reduce these equations to (systems of) ODEs (ordinary differential
equations). As a rule, the reduced equations one obtains from conditional symmetries
are significantly simpler than those found by reduction using symmetries of the full
set of solutions. This allows us to construct exact solutions of the reduced equations.

Looking back, we can say today, that many mathematicians, mechanicians and
physicists, such as Euler, D’Alembert, Poincaré, Volterra, Whittaker, Bateman, impli-
citly used conditional symmetries for the construction of exact solutions of the linear

in Proceedings of the International Workshop “Modern Group Analysis: Advanced Analytical and
Computational Methods in Mathematical Physics”, Editors N.H. Ibragimov, M. Torrisi, A. Valenti,
Dordrecht, Kluwer Academic Publishers, 1993, P. 231-239.
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wave equation. Some well-known solutions of this equation can not be obtained by
using only Lie symmetries of the full solution set.

2. Conditional symmetry of Maxwell's equation
We shall first consider the first pair of Maxwell’s equations

OFE oOH
E = rot .lq7 W = —rot E. (1)

The maximal invariance algebra (in the sense of Lie) of these equations is studied
in [2]. The basis elements of this algebra (9p, 0, Jap, D) are

0 0
60_W7 6(1_%’

D = z#0,, + const,

Jap = xaab - $b8a + Sab, @, b= 1,2,3, (2)

Sqb are 6 x 6 matrices realizing a representation of the group O(3). Thus the sys-
tem (1) is invariant under the four-dimensional translations 9,,, the rotations Ju; and
scale transformations D, but it is not invariant under the Lorentz boosts

Joa = xoaa - xaaO + S0a; X0 =1t, (3)

the matrices (sqq, Sqp) realizing a representation of the Lorentz group O(1, 3).

Theorem 1 ([2] 1983, [15] 1987). The system (1) is conditionally invariant under
the Lorentz boosts (3) if and only if the solutions of (1) satisfy the conditions

divE =0, divH =0. (4)

It is evident from this theorem, that the concept of conditional invariance of
a PDE is natural, and leads us, by purely group-theoretic means, to the fundamental,
overdetermined system of Maxwell’s equations.

3. Conditional symmetry of the wave equation
We now examine the non-linear D’Alembert equation

Ou = F(u), u=u(wg,1,2,3), ®)

F(u) being an arbitrary, smooth function. Equation (5) has conformal symmetry
C(1,3) if and only if F = \u?® or F = 0 (see for instance [8, 10]). This is the
maximal symmetry of all of the solution set of equation (5). For an arbitrary function,
(5) admits only the symmetry groups P(1,3).

Theorem 2 ([5], 1985). Equation (5), with F = 0 is conditionally invariant under
the infinite-dimensional algebra with basis elements

0 0
X :§“(x,u)% +77(:1:,u)%, (6)
§(x,u) = P(w)ah + M (w)a, + d* (w),  nlz,u) = n(u), (7)

where " (u), ¢ (u), d*(u), n(u) are arbitrary functions of u, if one imposes the
condition
Ou du
Ox,, Oxt

—0. (8)
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In this way, the eikonal equation (8), significantly increases the symmetry of the
starting equation (5). The system of equations (5), (8), with F' =0, is consistent.

Theorem 3 ([10, 15], 1988, 1989). The equation (5) is conditionally invariant
under the conformal group, if

3\
F= 9
T ©)
ou Ou
2T 10
Oz, Ozt ’ (10)
where \, ¢ are arbitrary constants. The operators of conformal symmetry are
feY 2 0
K, =2z,D — (zoz® —u )6—H’ w=0,1,2,3,
. (11)
D = Iﬂi + uﬂ
Oz ou’

Remark. [t is important to note, that the operators (11) differ principally from the
conformal operators for equation (5), when F' = 0 or F = \u®. In those cases, the
conformal operators are

. 0 0
_ o fey o
K, =2z,D—z.x p D==x pe (12)

The operators (11) are non-linear, whereas those in (12) are linear.

Thus the wave equation (5), (9), with non-linear condition (10), has a symmetry
possessed by neither the solution set for the linear equation, nor that for the nonlinear
equation.

4. Criteria for conditional symmetry
Let us consider some PDE

L(JC, U,(l), U(2)7 ceey U(n)) = O,

u(l) = (u07u17"'7un)7 u(2) = (u017u027'~’7unn)7 ey (13)
_ Ou B 0%u
U= g T Grngp

Definition 1 (S. Lie, 1884). Equation (13) is invariant with respect to the opera-
tor (6) if

X,L = AL, (14)

where X is the s-th prolongation of (6), and A = \(x,u) is an arbitrary function.

Let us denote by the symbol
Q:<Q17Q27"'5QT> (15)

some set of operators which does not belong to the invariance algebra (IA) of equa-
tion (13).
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Definition 2 ([2], 1987). Equation(13) is said to be conditionally invariant under
the operators Q from (15), if there exists a supplementary condition on the solutions
of (13) of the form

Ll(:n,u,u(l),...,u(n)) =0 (16)

such that (13) together with (16) is invariant under the Q.
Thus one has the following conditions

QsL = XL+ ALy, (17)
QsLy = XL + A3Ly (18)
or
QsLl 1o =0, QsLi| ,_, =0. (19)
L1 =0 L1 =0

An important class of supplementary conditions (16) is that for which the equation
Ly =0 is a quasi-linear equation of first order

Ly(z,u,ugy) = Qu =0, (20)

Q= () o+ () 5 @)
with y#, z being smooth functions. In this case, we shall say that (13) is Q-conditio-
nally invariant.

In this way, the problem of finding the conditional symmetry of (13) reduces to
the solution of the equations (17), (18). The conditions (16), (20) can be considered
as equations for the construction of ansatzes for the starting equation (13). The
problem of calculating the conditional symmetry is far more complicated than the
usual method of Lie for finding the symmetry of the full solution set. In the case
of conditional symmetries, the defining equations are, as a rule, non-linear equations
which can be solved in only some cases. Fortunately, for most of the equations of
non-linear mathematical physics, one can construct partial solutions of the defining
equations.

5. A list of equations with non-trivial conditional symmetry

Conditional symmetries began to be exploited only quite recently, and the first
publications appeared only in 1983 [1, 2]. Now, the number of articles in this are
is increasing rapidly with each year, and therefore it is difficult to give a complete
list (for 1992) of important equations of mathematical physics possessing conditional
symmetry. So I shall only give those equations which we have studied and which are
interested from our Kievan point of view. We have put in brackets the year(s) when
the conditional symmetry of the given equation was found. More detailed information
about ansatzes and solutions of the above equations are to be found in the original
articles, a list of which are given in [2, 9, 11].

Au(u? — 1),
Aud — 3u+ 2),
1w+ un = Fu) = AS“; ut2) (1988, 1990)

u(u® +1).
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2. dup+ Au+ F(|u|)u =0,
F(lul) = M |ul*" + Xofu| =4/, F(|u]) = A3 In(u*u), (1990)
A1, Ao, r arbitrary, real; Az arbitrary, complex.
3. wpo = ulu, ug = c(x,u, u))Au. (1987, 1988)
4. ugr — (F(’U,)’U,l)l — U22 — U333 — 0. (1990)
5. ug+ V(F(u)Vu) = 0. (1988)
6. wup+ F(u)u’f + 1111 = 0. (1991)
N
7. ug + (p(u)n + x—l(w(u))l = F(u),
ug + w1 + iul = \u?, (1992)
2I1
N
U + uuil + —uug = A\u + As.
Z1
1
8. wug+ (uV)u=—-Vp,
P ) (1992)
po+div(pu) =0, p=f(p), p=gp"
9. 419,V + F(P¥)¥ = 0. (1989)
10. (1 — uqu®™)0u + uu"u,, =0. (1989)

6. Conditional symmetry and exact solutions of KdV type equations
To illustrate the constructive nature of conditional symmetries, we shall examine
the equation

ug + F(u)ub +uyp =0,

(22)

where F'(u) is a smooth function, k # 0 is an arbitrary, real parameter. When F(u) =

u, k =1, equation (22) coincides with the standard KdV equation.

Theorem 4 ([11], 1991). Equation (22) is Q-conditionally invariant with respect to
the following operators

Q = x40 + H(x,u)dy

with r an arbitrary, real parameter, in the following cases

1.

2.

3.

Ak

—1/k
F(u) = Mu=R/k 4\ (=072 H(z,u) = <) ul/?:

2
F(u)= M Inw)™*  H(z,u) = (kr)"VF,

F(u) = (A arcsinu 4 Ag)(1 — u?)1=F)/2,
H(z,u) = (kA)~VR(1 4 u2)V/2

(23)

(24)

(25)

(26)
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4. F(u) = (Arsinh ™ u+ Ag)(1 4 u?)(A=R)/2,

H(z,u) = (kA)~ V(1 +u?)V/2 (27)
5. F(u) = \u, H(m,u) _ (k)\l)—l/k7 (28)

where r = 1/k, k # 0, \1, Ao are arbitrary, real parameters.

Exploiting the operator of conditional symmetry (23), one can construct ansatzes
for the solutions of equation (22), some of which I now exhibit.
The ansatz

2
T kdzo\ ~V*
() o)

gives the solution

khzo\ E _
u = <21'21 ( ;-750) +>\l’0 1/k)\2/)\1>

when F(u) is as in (24). The ansatz

2

U = exp ((p(xo) + (k/\lxo)il/kl‘l)

gives the solution

k(kX)=3/k 4 -
tm e <_(k1_)2xé a4 (ko) MRy — >‘2/)‘1>
when F'(u) is as in (25) with k # 2. The ansatz
u = sin (gp(xo) + (k)\lxo)_l/kxl)

gives the solution

k(kX)=3/% | _ _
u = sin (ﬁxé 3k Az, Vk (k)\lxo)_l/kml — )\2/)\1>

k—2
for k # 2.
Theorem 5 ([12], 1990). The equation
uor — (F(u)uy)y — ug2 —uzz =0 (29)

is invariant under under the infinite-dimensional algebra

X =a;(w)R;, 1=1,...,12 (30)
where a;(u) are arbitrary, smooth functions, if one adds to (29) the condition

upuy — F(u)ui —u3 —u3 = 0. (31)
The operators R; are given as follows:

Ru+1 = 6,“ pw=0,...,3, Rs=2x300 — 2203, Rg= 1201+ 21002,
R; = 301 + 22003, Rg= x“c?u,
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Rg = 200y + 22101 + 32205 + 31303 — 2?:&111;8“, Ry = F(U)l‘oal — au,
u

Ri1 = 2200 + 2(161 + F(u)l'())ag, Ris = 2300 + 2(%1 + F(u)xo)ag

7. Antireduction

In [10], we have begun work on antireduction. By the term antireduction of a
PDE we understand the finding of such ansatzes which transform the given PDE into
a system of equations for some (unknown, and to be found) functions. In this process,
the number of independent variables may remain the same, or be reduced (dimensional
reduction), but the number of dependent variables increases. As a rule, one usually
exploits the converse of this, that is, one reduces to a system with fewer dependent
variables (reduction of components). To illustrate the effectiveness of antireduction,
we consider the equation for short waves in gas dynamics

2U01 — 2(1’1 + ul)un + U + 2>\U1 =0. (32)
We impose the condition
{ullle/z} =0 (33)
1
on (32). The general solution of (33) is
u= 27" + 23e? + 219% + ¢ (34)

with ¢ = ¥ (z0,z2), i = 1,2, 3,4 being arbitrary functions. Using (34) as an ansatz,
equation is reduced to a system with two independent variables
9
P =0, =0, 93 =0, ¢y =)

1
Qo =" <3902+2—/\>7 05 = 203 — pa(1 — A).

b

(35)

Solving the system (35), we found exact solutions of the starting equation (32) [11].

The above results are only a sample of those already obtained. They illustrate the
very fruitful nature of conditional symmetry and conditional invariance, and I hope
that I have been able to demonstrate that there are new aspects to this concept which
are yet to be exploited fully.
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Invariants of one-parameter subgroups
of the conformal group C(1,n)

W.I. FUSHCHYCH, L.F. BARANNIK, V.I. LAGNO

HocnixkeHa cTpyKTypa iHBapiaHTiB OQHOT 3 OCHOBHMX TpyIl CUMeTpil MaTeMaTU4HOI ¢i3u-
ki — KoHdopmuoi rpynu C'(1,n) y npocropi Minkoscekoro R(1,n) mast n > 3. 3okpema,
noGynoBaHi NOBHI cucTeMM iHBapiaHTiB ogHomapamerpuuHux migrpyn rpynu C(1,n).

The conformal group C(1,n) of transformations in the Minkovsky space R(1,n)
takes the central place among the invariance Lie groups of mathematical physics [1].
Our interest in the functional invariants of one-parameter subgroups has been mo-
tivated by their application in finding solutions of diferential equations. In Ref. [2]
substitution (ansatz)

u(z) = f(z)p(w) +9(z) 4]

for construction of exact solutions of multi-dimensional equations is proposed. In
ansatz (1) the unknown function ¢(w) depends on the complete system of functional
invariants wy,ws,...,w, of the one-parameter subgroups of the invariance Lie group
of the given equation.

In this paper complete systems of functional invariants of one-parameter subgroups
of the conformal group C'(1,n) (n > 3) are obtained. It should be noted that analogous
problem for Poincaré groups P(1,n) and P(2,n) in Refs. [3] and [4] is determined.

It is known that to each local Lie group corresponds its Lie algebra, in particular,
to group C(1,n) corresponds Lie algebra AC(1,n). Generators P,, Joa, Jab, D, K
(o = 0,n, a,b = 1,n generate the basis of Lie algebra AC(1,n). We shall consider
the Lie algebra AC(1,n) as algebra of differential operators determined in the space
of scalar functions u(x) (x € R(1,n)):

0

Py =—-0, = 76.’[7 ) Jaﬂ = xaaﬂ - Iﬂaaa Lo = gaﬂxﬁa

«
Gap = (L, —1,...,—1) X 8ap, D=0, Ka=22aD + 50, (2)
(2 =%, =23 — 23 —...—122), o,B=0,n.

It should be noted that the Lie algebra AC(1,n) (2) is an invariance algebra of
many differential equations [1].

The function F(z) (x € R(1,n)) is the invariant of the on-parameter subgroups of
the group C(1,n) if and only if it is the solution of the differential equation

Lu=0, (3)

where L is the corresponding one-dimensional subalgebra of the Lie algebra AC(1,n)
(2) (see, for example, [5]).

Consequently, the problem of finding of invariants of one-parameter subgroups,
of the group C(1,n) is reduced to finding the system of functionally-independent

JTonosini AH Ykpaiuu, 1993, Ne 3, C. 45-48.
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solutions of equation (3). Such systems of functionally-independent solutions of equa-
tion (3) will be called complete systems of invariants (CSI) of the corresponding
one-dimensional subalgebras of the algebra AC(1,n).

Lie algebra AP(1,n) = (P, Jag|a = 0,n, B = 1,n) is subalgebra the algebra
AC(1,n). CSI of one-dimensional subalgebras of the algebra AP(1,n) are constructed
in [3]. Consequently, we shall describe CSI of the one-dimensional subalgebras of the
factor algebra AC(1,n)/AP(1,n).

One-dimensional subalgebras of the algebra AC(1,n)/AP(1,n) are such algebras
(3, 6]:

Li =D+ ado) (0<a<l); Ly={(D+ Jo,+ M);
L3 = (Xi +aD + BJo,) (> 32>0, a#0);
Ly = (Xi+a(D+ Jon + M)) (o > 0);

Ly = {Ji2+ BrJsa+ -+ Bz_1Jn—1,n + D)

(n=0(mod2), v>0,0< B << fBny <1);

Le=(S+4+T); L;=(S+T+ M),

Ls=(X;+a(S+T)) (a>0); Lg={(S+T+aZ) (a>0);

Lig=(X; +a(S+T)£ M) (a > 0);

L= (X +S+T+Gi+P); Lo = (X, +a(S+T)+52) (,8>0); Y
L1z = (Py+ Ko); L1y = (a(Po + Ko) + J12) (> 0);

Lis = (a(Po+ Ko) + Jia + B1J3a + - - + BsJost1,2542)

(>0, 0< 81 <...<0B:,<1; s=12,...,[(n—2)/2));

Lig = (a(Po+ Lo) + Jiz + v1J3a + -+ + YnzsJn—2n-1+ ’ynT—l(Kn —Py))
(@>0,0<m <+ <y 1)

Lyr = (Jiz + mdsa+ o+ Yot (K — Po)

O<y <+ < 4yna <),

where

Xy =opJig+andsg + -+ oy o1,
(or=1,0<as<---<ayift#1; t=1,2,...,[(n—1)/2]),
M = Py + Py, T:%(PO_Pn)v S:%(KO—'_KH)? G1:J01_J1n7

Z = Jon, — D. In algebras Lig and Li7 value n is an odd number.

Let y = y(x) = 29 + @, 2 = 2(x) = 20 — Tp, ha = ho(v) = 23, | + 23,
Yo = Pa(r) = arctg 22, Y = (z) =af + a3+ +ap .

Record L : fi(z), fa(x), ..., fs(x) designates that functions fi(x), fo(x),..., fs(z)
form CSI of the algebra L.

Theorem. Following functions are CSI of one-dimensional subalgebras of the algeb-
ra AC(1,n)/AP(1,n):

. —1l—« a—1 —1 —1 -1,
Ly: zx] s YT, TaTy o, TITL, ..y Tp_1Tq
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LQZ
Lg:

L4I

L62

L7Z

Lg:

Lg:

y—Inlz|, y — 2In|zy|, zoxy?t, x3ayt, ..., Tp_1ay

zaa:;t'_ﬁﬁ, yo‘acg;_oi, apy — aq In|Tae1], aps —agln|woriq], - .-,
apr — o ln |xop41), h1x2_152+1a hgl‘ii_l, ce, htxz_ta_l, 332t+2I2_ti.1,
x2t+3x§tﬁrl, ceey mn,lxgtﬁrl;

zx;j_l, y—2In|zoryq], apr —arln|xort|, aps —asln|zoiiq], ..,
aprIn|zops], hagliy, hoxoiin, oo sy haxsly, ooy hemySg,
x2t+2x2_t1+1, 372t+3372_t}+17 RN xn_lxgthl;

Inhy = 2vp1, Bilnhy —29p2, ..., Bz_1lnhy — 29pz Inhy — 2ypz,
aghy', hohi", ..., hshi', ..., hahi';

(1422272, y— 291+ 2271, woayh, waxyt, o0, zp12y
y+2arctgz — 2(14 22) "M, (1 + 22)x72, zoz]?,

:173351_1, RN xn_lzz:l_l;

y—z(1+22)7, (1+2)h", apr —ajarctgz, 23, 1h", hohi!,
h3h1_1, sy hth%, QoY1 — X1 P2, 3P1 — X1P3, ...,

QP1 — Q1Pr, To42Tor 1y T23Top1s - vy Tno1Toir

2ccarctg z + In(23 (1 + 22)71), 2ccarctg z + In(y + 29(1 + 22)71),
1‘2.1?1_1, .7331‘1_1, R mn_lxl_l;

ay £ 2arctg z — az(1 + 22) "1, ap; — ajarctg z, (1+ 22)h !,

23 hit, hohi', hahi', o, hehit, morio3 s TarksTaliys -,
xn—lxg_tip Qo1 — P2, G3P1 — A1P3, ..., OGP — Q1P

(1+ 2252, (21 +222)(1 4+ 22)7L, 9o — anarctg 2,

Y+ 2(z1 + z22)(1 + 22) " Larctg z — 290(1 + 22) 71,

arctg z — (22 — z21) (L + 22)7Y, hox3 2y, hazsly, -y he®yq,
$2t+2x§tﬂ_1, ajgtJrga?;th_l, ceey xn,lmgth_l;

2Barctg z + aln |y — zi(1 + 22) 71|, 2Barctgz + alnhy (1 + 22)71,
upy — @ arctg z, (ol — o, azPlr — a1P3, ..., QP — 1P,
hghl_l, hghl_l, ey hthl_l, x2t+2x2_tl+1, x2t+3x2_til, ey :cn_lxz_til;
(yz — b + Va7t zoxTt, zsalt, ..., zpal

2001 — arctg((yz — ¢ — 1)(220) ™), (yz — ¢ + D3,

hlxgl, ;v4m§17 xsxgl, ey xnxgl;

2001 — arctg((yz — ¥ —1)(2x0) ™), (yz — ¢+ 1)*hyY, Bigr — w2,
Bop1 — 3, -y Bsp1 — o1, hohi', hshi, ..., heyihi",
1‘§5+3h1_1, 'r28+4'r2_sl+37 'T28+5'T2_31+37 RS xnx;sl—&-i‘);

201 — arctg((yz — ¢ — 1)(2x0) 1),

2ynz1r —arctg((yz — v + 1)(22a) 1), ((y2 — ¥ — 1) + 4a3)(4h1) 71,
hohi', hshi's ..., hooi BT o1 — @2, Y201 — @3, oo

Vo831 — Pnri;

2yazripr —aretg((yz — ¥+ 1)(220) ), (y2 =¥ —D2g", ner — e,
Q21 = 3, -y Yazs 1 — @ns, hohT Y hghtt o by g,
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Values of numerical parameters are given in expression (4).
In order to prove the theorem it is sufficient to verify that each CSI satisfies the
equation (3).
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Hcc/ieoBaHus B MateMatiudeckod ¢usuke, Kues, Mu-t marematuku AH YCCP, 1981, 6-28.
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CucteMu HeJIiHIMHUX €BOJIIOLIAHUX PiBHIHDb
APYroro Nopsiiky, iHBapiaHTHi BiJHOCHO
anreopu lajnines Ta i1 po3mupeHb

B.I. @YL[HY, PM. YEPHITA

New classes of systems ol nonlinear evolution equations are constructed which are
invariant in regard to the Galilei algebra and its extentions (including operators of
scale and projective transformations). New nonlinear generalisation of the Schodinger
equation are proposed which retain Galilean symmetry of the linear equation.

Huxxue posrisparoTbcsl CUCTeMH HeJiHIMHHMX OBOBUMIPHHUX Napabo/idHHX PiBHSHb
BUTJIALY

Mot = AN 4 A2 4 BO AP = A%y 4 A%292) 4 BB (1)

ne Anm — A"m(ib(l),1#(2)7@1),1/1:%2)), B — B(")(lﬂ(l),w@),@1)7@2)) — IOBiJIbHI
KOMIIJIEKCHI abo mificHi (hyHKUii, HemepepBHO AM(epeHLiMoBaHi 3a BciMa 3MiHHHMH,
M € C g = azpa_i"')’ P = Blg—f), = %, Y™ = ™ (t,2) — mykani
KoMIlIeKcHi abo niiicHi ¢yHKUil, iHOeKcH n i m cKpisb HabyBalOTb 3Ha4yeHb 1, 2.

Cucrema piBHsHb (1) y3arasbHIOE NMPAKTUYHO BCi BifoMi ABOBHMIpHi CHCTEMM €BO-
JIOUiHHUX PiBHAHb OPYTOro MOPSAKY, AKUMHU OMUCYIOTbCS HAWPi3HOMAaHITHIilli MpoLecH
y disuni, ximii, 6iosorii (10CHTb 3ragaTH MPOLECH TenaoMaconepeHocy, GinbTpaiil 1Bo-
tasHoi pignHu, AMGy3il npu XiMiUHKX peakilisx, pyxy monyasuii B npupoai tomro) [1].

Y Bumagky kKommiekcHux dymxuiin ¢ = 1) = @) C = AV = A*?2 D =
A2 = A2t B = B = B*(2) | \| = \§ =i cucrema piBHsiHb (1) mepeTBOpOETLCS Ha
napy KOMIJIEKCHO CIPSI)KEHUX PiBHSAHb, 5IKi iHTeprnpeTyBaTHUMeMO SK KJac HeJliHiHHHUX
y3aranbHeHb piBHsiHHA Ulpeninrepa, a came:

iwt = C"/’ww + Dw;$ + B, (23)

(HHKUe KOMIJIEKCHO CrpsikeHi piBHsiHHsS (2b) ckpisb omyiieHo). OueBuaHO, LIO TPH
C =k e R, D= B = 0 piBusiaus (2a) mepeTBOPIOETbCS Ha KJaCH4He DPiBHIHHS
[lpeninrepa 3 HyJbOBUM MOTEHLiaJOM

Wy = kpee, 0FkeR. 3)

Ulnsxom BigmoBigHOro BUGOPY (hyHKuUii B(1, ¥*, 1, 1F) MoKHA omepKaTH HakpizHO-
MaHiTHiII HeJiHidHI y3arajbHeHHsi piBHsHHS (3), sKi 3ycTpidailoThcs B JiTepartypi
(2, 4].

Bimomo, wmio niniliHe piBHAHHS (3) iHBapiaHTHe BiTHOCHO Yy3arajbHeHOi ajreGpu
lanines AG5(1,1) 3 6asoBrmMu onepatopamu [3, 4]

Pt :ata Px :8057 (48)
JTonosini AH Ykpaiuu, 1993, Ne 8, C. 44-51.
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Go= 10, — 0 T = (0, 00,e), (4)

D = 2t0; + 20, + a(¥p0y + * Oy), (4¢)

II=tD —t?d —x—QJ _ ! (4d)
- t 4]€ ) a = 27

fe Oy = G, 0o = g, Oy = aw’ Oy~ =

Anrebpy, yTBOpeHy omnepaTopaMH (4a), (4b), nHasuBaroTh agarebporo [lasines
AG(1,1), a 1 poswnpeHHs 3a gonoMorow omnepartopa (4c) nosnaunmo AG;(1,1). Bin-
3HAYMMO, IO CHMeTpis 6araToBMMipHuMX cucTeM piBHsHb (1) mpu A™™ = A" (),
(), A2 = A?' = 0 pocaimxena B pobori [4]. IlpoTe mns MaTeMaTHYHOrO MO-
NIeIOBaHHSl JesKUX mnpoleciB HeobximHO BUMaraTd, mob6 Aiy # 0, A2l # 0 (nus.,
HalpHUKJazn, [2, 5]). 3 inmoro 60Ky, B OCTaHHI POKH 3aNpoNOHOBAHO OesiKi HeJiHiH-
ui piBusnHs Ulpeninrepa [6, 7], ski, 3rigHo 3 BHCHOBKaMH poGoTH [4], He 306epira-
I0Th TaJifelBCbKYy cuMeTpito JinifiHoro piBHsHHs (3). Lle migkpecnioe HeoOXimgHICTH
no6ynoBd cucTeM piBHsAHb Burasiny (1), iHBapiaHTHHX BiIHOCHO JaHIIOXKKa aJjredp
AG(1,1) C AG1(1,1) € AG»(1,1).

Posrasinemo anredpy lagines: 3 306paxenHsm (4a) i

Go =0, = ST In =MD + APy, (5)

Teopema 1. Cucmema weninitinux piensno (1) insapianmua 8ionocHo areebpu lani-
sest 3 306pascennsm (4a), (5) modi i mireku modi, KoAU 80HA MAE B8UEASLO

1) y sunadky A\ As # 0

=g (v - ) gt (v - 20

M) e e
M\ ?
W [ gy, (Yo
+P L Y+ < w(1)> ;
p® (i) ($)? v
(2 _ 217 1 _ Y=z 22 (2) _ \7z
Azt = VIE) <¢m »® )—i—g <¢’m e >+
@ [ r@ “(‘2)
+ P Y+ @ ;
de g™ = g™ (v,vy), f = f)(v,v,) — dosinbni pyrkryil,
v (1) (2)
o WDNA2 (2= A _ v x
v= ()W) y Uz = or <)‘ ¢(1 /\1¢(2) v
2) y sunadky A1 =0, Ao = A #0
(1) (2)y2
_11,,(1) 121/’_ (2) ( ) (1) £(1)
(7)

@\ ?
Mo = ”Zu P + g2 (W (‘f; )> +y® f(2)+<¢f2)> :
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de g™ = g (M, i), F = fO (D) D) — Gosiaoni dynryii

JloBeneHHs1 TeopeMH 1, sik i TeopeM 2, 3, TpyHTY€TbCs Ha KJacuuHii cxemi JIi, pe-
ajisaitis Kol JJ1st 3HaXO[KEHHSsI TaJiijieii-iHBapiaHTHUX CHCTeM HaBeneHa B pobori [8].
OcKiNbKY BUKJaIKH JOCUTb I'POMi3JIKi, MU 1X OMyCKAaEMO.

Hacuainok 1. B kaaci Heainitinux pisusane (2) arcebpy AG(1,1) (4a)—(4b) ainiiinoeo
pisuanns llpedineepa (3) 3b6epicarome mirvku maki:

L= g0 (- L2y g0 2 (w;m(ffz)w(ﬂ(dg) ) ®)

Yl =

92 o) = (Ul IVle). £ = (Ul V1) — dosiaoni it
a_.

Jlerko momitutH, mo pisasHEs (8) mpu g =1, ¢ =01 f = a||’, B € R
nepeTBOPIOEThCS Ha Bimome piBHsiHHA Lllpeninrepa 3i cTeneHeBow HesiHiHHICTIO, a mpu
g =0, g = —1, f = —4[y2|¢| 7% + alY|?, a € C — na piBusHHSA

Y |¥s]?

i 2

- v T+ -2 , 9

p = e el 20 ©
sIKe 3a CTPYKTYpOI Haranye piBHsiHHA [6, 7]

; _ 2 |¢x|2

Wy = c1ge + ap|p]” — cp Rt C. (10)

Binsnaunmo, mwo pisasHHA (10), Ha Binminy Bin (9), He iHBapiaHTHe BimHOCHO a/re6pu
[anisiest, OCKiJIbKM BOHO HE HaJIeXXHTh KJjacy (8).

Posrasinemo anre6pu AG1(1,1) i AG3(1,1), siki € poswupeHHsiMu anreGpu [anines
AG(1,1) (4a), (5), 3a momomoroi orneparopis
D =2t0; + 20, + I, (11a)

2
I = 28, + tzd, — %JA—ktIa, (11b)

ne I, = a1¢<1>a¢,<1> +a21/)(2)8¢<2>, a, € C (nns piBusuns peninrepa (3) oy = ag =

a, A\ = A\b = %). BusiBnsietscsl, mo kJaacudikamis cucTeM piBHSIHb, iHBapiaHTHHUX

BigHocHO anrebp AG1(1,1) i AGo(1,1), CyTTEBO 3aNeKUTh BiJ 3HaueHHs BM3HAYHHKA
[CSTNeY) " .

0= , IKUH, 30kpeMa, npu A\; = 0, Ay = A # 0 IOpiBHIOE Aag.

Al Ae

Teopema 2. Cucmema wHerinitnux pisnane (1) ineapianmrna 8i0HOCHO arcebpu
AG1(1,1) 3 6aszosumu onepamopamu (4a), (5), (1la) modi i mireku modi, Koiu
8OHA MQE 8uUeasn0
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1) y sunadky A1As #0

(1)y2 (1) (2)y2
(1) _ 11 (1)_(1) 12¢ (2)_(9& )

M\ ?
(1) 27 i
+w v s W + <¢(1)> )

haul® = 1A <w£§2 - (%1))2) + b2 (w@) we)" ) -

W e e

@)\ 2
@ [, 2772 z
+ v s W 4 <¢(2)> ,

de K™ = " (9), W) = W (9) — dosirvri ¢pynruil,

. 1) &)
0= ’UI’U3 ()\gw )\1 1/}(2 >

aKkujo 6 # 0 abo, akuo 6 =0 — suearnd

Alwlgl) _ hll (,(/)glw) _ ( gfl))2> +h12¢ (w@) _ ( (2))2> +

»® e e
M\ 2
2 (1
+y® 2w + (W)) 7

(1)y2 (2)\2
/\21/%( hmZu) <¢(1) - (12?(1)) ) + h*? (%&? - (1;(2)) ) +

@) 2
(2) (2)
+® w4 ( W)) ;
de h"™ = b (v), W) = W™ (v) — dosinvni ¢ynxuyii, (v, v, — dus. meopemy I).
2) y sunadky \1 =0, \a =X #0

0= hnw( +h12Z(2 <¢( ) _ (lfii)ﬁ) " (w(l))l—Q/alw(1)7

e e

(2)
+ @ ((1/)(1)) S 4 <¢(2 ) ) ,

(2)y2
)\%( _hzlw )¢(1 + h22 (1/)9%)—( v ) >+
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de h"™ = h"™(6p), W™ = WM(0y) — dosiavni pynkyii, Oy = ;1)(1/;(1))711_1,
akuwo a1 # 0 abo, akuo oy =0 — sueaad

0= h'tyll) thZ(Q <¢<2> (lf;;)))z) + W (W)L @),

e e

2 1)\2 2 11)(2) ’
F0 [ Pwe s ()]

de b = (D), W) = W) (1)) — dosirbui pynkyii.

/\wt( _h21¢ 1/13(5195)"' h22 <¢(2) ( (2)) >+

Hacainok 2. B kaaci Heainitinux pisusans (2) areebpy AG1(1,1) (4a)-(4b), (11a)
AiHitinoeo pisnsauns [lpedineepa (3) 3bepicaromeb mirvKu maxi:

LANRNGY _(%)2) @Y ( \ (¢;)2>
kﬁ’t h (zbw m +h > Vv, o +

<|¢|W+ (“;) ) ,

de h(") = p(m) (\w|w|w|%_1), W =W (|z/)|w|w|§_1> — 008in6Hi pynKyil, o = a =
ag — napamemp 8 onepamopi I, o # 0.

(12)

Teopema 3. Cucmema Herinitinux pienans (1) ineapianmHa 8i0HOCHO 1302aAbHEHOL
anreebpu Farines AG5(1,1) 3 6agosumu onepamopamu (4a), (5), (11) modi i mirvku
modi, KoAu 80HA MAE BUSASO

1) y sunadky AiAy #0

/\17/%(1) = pit (%&2 _ ! 501))2) A (hll +2a )w(l) (d’agc) _ (¢:§:2))2> +

@ @ @

A ) §)2 )
Agth?) = — 22 (p22 +202) 5 <T/’£§c) _W 1) + % () - (1/}(2)) i

de b = h"(0), W) = W) (0) — dosirvni ¢pynxuii (v, 0 — dus. meopemu I, 2),
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akuio § # 0 abo, akujo § =0 — sueasnd

(1) (1) (2)
A11/J§1):h11 <¢ggv)_( z )2> )‘;(hll—&-Za )¢1 <¢§:2m)_ (Y )2>+

) Y e )
MY\ 2
O | 2w
+ vy W+ (2/](1 ) ;
(1)y2 (2)y2
(2) )‘2 22 1/’) 7(:10) 22 (2)7(m)
@ .22 P ’
+ Y vy W + @ )
de K™ = " (v), W = W) (v) — dosinbni pynkyii;
2) y sunadky A1 =0, Ao = A #0
0 = Ayl 4 (p))1=2/eayy () (13a)
(2) 22¢ (1) . (2) (wm ) (2) (,,(D\=2/a1177(2)
M = 12 ) — 20002 (14 202) i+ 0P )W, (13b)

de h™™ = h" (), W™ = W) (0y) — dosirvri pynkyii (0g — Ous. meopemy 2),
aKkuio ay # 0 abo, axuo a; =0

0= D) + O D)W, (14)
@ 221/1 2 ( (2)) 2) (,,(1) 2
MY =h o) P — 20502 + (14 202) @ + 9@ ()W), (14b)

de b = b (), W) = W) (V) — dosirbmi ynkyii.

Bapro 3ayBaxuru, mwo miasi AGo(1,1)-inBapiantHux cucreM piBHsinb (13), (14) 3Ha-
YHO MpoCTillle BUPILIyeTbCs MUTAHHS 1X iHTerpyBaHHs. [lilicHo, 3aBAsiKM BimcyTHOCTI
wykanoi ¢yHkuii ¢(?) y nepmmx piBHAHHAX LMX CHCTeM, BOHM MepeTBOPIOIOTHCA Ha
3BUYAHHI nudepeHnianbHi piBHIHHS APYroro MopsaKy. 3arajbHUHA PO3B’S30K PiBHSIHHS
(14a) nas poeinmbaux dynxniit A, W) y nesBHOMY BHIIAMI 3amuMCyeThCs Tak:

/ [exp/W(l)/hndw(l)} dip® + ey = 2 4 b(2),

IpoinTerpyBaBmy 1i piBHAHHA i migctaBusmM sHaineni poss’asku ¥ (¢, z) B (13b)
i (14b), onmepKMMO PiBHSHHSA 115 3HAaxXomkeHHs (yHKUil (2, aki niHeapusyioTbes
samino ® = (1)) 71/292 a4 £ 0.
Takum unHoM, misi Bimwykauus (yHkuii ®(¢, ) B 060X BUMAagKax OLEPKYEMO Ji-
HillHe PiBHSAHHA BUIJISANY
0d 0?0

AL = 20

ot W*“I’F(t’l‘),
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IJ151 {HTerpyBaHHS SIKOTO MOXKHA BHOPAaTH TOH UM {HIUMH KJACHYHHH MeTOJ 3aJ/IeXKHO
BiJl KOHKPETHOTO 3Ha4eHHA (DyHKL i

22
(w(1))72/o¢1 <W(2) _ W(l)Zn) . ¥M(t,z) — posr’asok (13a),
F(t,z) = 22
(D)2 <W(2) - W(l)hll) J M (t,z) — posp’asok (l4a).

Hacninok 3. B kaaci neainitinux pisnsans (2) areebpy AGo(1,1) ainiiinoeo pieusmHs
Llpedineepa (3) 3bepicaioms mirvku maki pi@HAHHSA:

L= (e = ) e 2 (g, - L)

2
1% (%) ,
+¢ <|¢| v )
de h = h (||| 3), W =W ([¢].]0|™3) — Oosirvni pyrryii.

Y Bunanky h = 1, W = 0 piBasiHHs (15) mepexonuts y JiHiliHe piBHSHHSA (3), a pH
h =1 — y piBusinus [4, §]

i = ke + Y|Y|*W,
sKe B cBOIO yepry nmpu W = A1 + Xo|9|2[¥)| 3, A1, Ao € C 3Bomutbes no [10]
W = ktbog + MU+ Aot |9 [¢] (15')

3ayBaxkumo, o npu k = —1, \y = —1, Ay = —4 piBusnug (15') Binome B qitepaTypi
sk piBusHus Ekrayca [11], mpoTe, HacKijibku HaM Bizomo, HOCi HIXTO He BKa3yBaB Ha
TaKul (QakT:

(15)

Hacainok 4. Pignanns Exeayca ity +1ze +0 |0 +40[0||9|, = 0 s6epicac cumempiro
AiHitHo20 pisHanns [lpedineepa, mobmo areebpy 3 6asosumu onepamopamu (4).

Pasom 3 THM Kaac piBHAHb (15) MiCTUTB Take HeTpHBia/lbHe y3aralbHeHHs PiBHAHHSA
(3), mo 36epirae foro cumeTpiio, K

2 N\ 2
i, = —k%w;x + kv <<d$> + (?) ) ) (16)

3a3HauuMo, 10 B piBHsAHHI (16) moreHUian

(Y= ? <ﬂ>2_ 2 112 2
V(w) +gr) =2CE =~ el /1wl

— nificHa QyHKLif.
[pu h=0, W = —4 (|¢|$|w\_3)2 + a piBusiHHs (15) 3BOAMTBCS 10 PiBHSAHHS

w * 4 |wi€|2

v ST
PiBusuus (17) mopsin 3 (9), (10) soriuHo iHTeprpeTyBaTH siK HeJiHiiHi piBHsiHHS pe-
ninrepa. Ilpote Ha mporuBary piBHsiHHAM (9), (10), piBHsiHHA (17) moBHicTIO 36epirae
cumertpito, T06TO anredpy inBapiantHocti AGa(1,1) niniliHoro piBHsiHHSA (3).

1
Ewt =
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BusiBaisietbes, o BUCAioH, ofep:kaHi B TeopeMax 1, 2, 3, HEMOXKJHMBO TPUBiaJbHUM
YMHOM y3arajbHUTH Ha OaraToBUMipHMH Bunamok. [Ipo ue cBiguuTh

Teopema 4. B kaaci neainitinux (n + 1)-sumiprux esosroyitinux cucmenm
i = AR, 0,9 O, @) + AR, 63,6 O, p @yt

(18)
+B® W, 3 Wy @),
1 1

)
Oe k=12 90 = (a1, ), ¥ ® = ( W), o = e, ) =
gjf{;’;}b A’;fl, B*) — docmamnoo eradki gynkuii 6id 2(n + 1) apeymenmis, ineapi-
anmuumu 8ionocHo areebpu larines AG(1,n) [4] € miroku cucmemu 8ueasdy

(k) ), (k) (k) (k1)) (k1)
/\kw(k) Algk (Aw(k) _ Ya_ Ya >+ 2 A’OCkl <A¢(k1) 1/)a Ya >+

,(/}(k) '(/)(kl) ¢(k1)
+Akkﬁﬁ ¢(k)_M +
Pradm \ 0 (19)
n y®) kky 9V OV Pk _ Syt .
z/)(kl) 0x, Oxp ab VJJ(’“
k) (k)
+yp® B ¢ w“wf,f“ , kki=12 k#k,

de Altkz Akike B Gogineni gynkyii apeymenmis v = (p(V)A2(p@)=M g =
%;—;ﬂ. 3a indexkcamu a, b, wo nosmoproomocs, caid nidcymosysamu 6id 1 do n,

ko= 1,2.

Hacainok 5. ¥ sunadky, koiu cucmema pisuans (19) serse coboro napy KoMnieKcHo
CNPANCEHUX DIBHAHb, 00epHCYEMO KAAC HeAIHIUHUX y3acarvHeHb pisHanHs [lpedin-
eepa

i = a0 (g Vel L Vg (g V) | Yoty
VAN o gr 20
A9 07 (s = P ) LA )atw s (v - L5 )

aki 3bepiearomo areebpy AG(1,n) ainiiinoeo (n + 1)-eumiproco pieuauns Llpedin-
eepa.

Y piBusinnax (20) AY) j =1,2,3,4, B — noBinbHi GyHKUIT BiX ABOX apryMeHTIB
YY*, (YY) a (V" )a, (YY) = %. 3okpeMa, kJjaac piBHsHb (20) MicTHTh Taki
HeTpMBia/bHi y3aranbHeHHs piBHsHHA Ilpeninrepa, fKi He MalOTb aHAJOTIB y KJjaci

IBOBHMIpPHHX PiBHSAHB (2), sIK

ithe = KA + AYI[¥allo (wab - W”) ,

(G
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o Plalbls < %m)
= kA + ATy ,
W= B+ A gl P T

e = KAY + Aol (wab Sty 4 (wz:b - Btk )) ,

e inmekcH a,ar,b=1,2,...,n, [¥|?> = (Y*)e, \,a € C, k € R.
Cepen knacy piBHsHb (20) BHAa€TbCs BUAIMUTH MiIKAAC PiBHSAHb BHIJISALY

I 1 ) | R
v v o
|w|a|¢‘b %% ¢ * WQW
* Joparn [%” Ty T (1/’“” - w*b)] ’

sIKi 30epiraioTb cumerpito AGo(1,n) niniitHoro (n+ 1)-BumipHoro piBHsHHs [pexinre-
pa. B pipusinni (21) Ag, A i By — nosinbhi GyHKuil Big aprymenta [|q|1)].|v| =2~ 4™,
AKUH € nudepeHLiaJbHUM iHBapiaHTOM y3arasbHeHoi anre6pu [anines AGy(1,n) [4].
Hagenemo kinbka npuknanis AGo(1,n)-iHBapiaHTHUX y3araibHeHb piBHsiHHs Llpenin-
repa, siki He MalOTh aHAJOTIB Y KJaci IBOBUMIpHUX piBHsIHB (2), a came:

iy = kA + A% m‘z’)w,
b= g allthy oy LUalth e, 22)
Jlist M0GyH0BH piBHsHb (22) GYJI0 BUKODHCTAHO TOTOKHOCTI
o
ol = L)
so bt 8 (s VS5 L AP dulil,
o= 22 1 2 (= B8] = [lolbblulZs — 4(ullla?] 1o

Ha s3akiHueHHs Big3HauMMo, 110 HacAiiKH 1-3 MoxKHa onep:KaTH LIJISIXOM KOHCTPY-
toBaHHs piBHsHb (8), (12), (13) 3a momomorow audepeHuiasbHUX iHBapiaHTiB aaredp
AG(1,1), AG1(1,1), AG2(1,1), noBHu# HaGip sIKUX omucaHo B poGorti [9].
JeTanbHIIOMY pO3M/IALy HeSKUX KOHKPETHHX €BOJIOLIiHHMX CHCTEM, OTMHUCAHUX Y
Teopemax 1-3, y Bunanky aificaux dynkuiii (1), () Gyme npucesuena oxpema my-
6aikawis.
1. Xenpu [l., l'eomeTpuyeckass Teopusi MosyJHHeHHBIX MapaGonvueckKux ypaBHeHuil, M., Mup, 1985,
376 c.

2. Dodd R.K., Fordy A.P., Prolongation structures of complex quasi-polinomial evolution equations,
J. Phys. A: Math. Gen., 1984, 17, Ne 16, 3249-3266.

3. Niederer U., The maximal kinematical invariance group of the free Schrédinger equation, Helv.
Phys. Acta, 1972, 45, Ne 5, 808-816.
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YMoBHa cumeTpisi Ta HOBi 300paKeHHS
anareopu lajnines njsa HeJiHIMHUX PIBHIHDb
napa0oJiyHOTO THUITY

B.I. @YL[HY, B.l. YOITHK

An effective method for finding conditional symmetry operators is constructed for a class
of Galilei noninvariant parabolic equations. The obtained operators form a basis of the
Galilei algebra. The additional conditions, under which the extension of a symmetry is
possible, are obtained. For the equations under consideration, the anti-reduction is carri-
ed out and some exact solutions are found by using the conditional Galilei-invariance of
its differential consequences.

Jast knacy laninefi-HeinBapiaHrHUX piBHSIHB MapaboJiyHOrO THUIY 3aMpPONOHOBAHO KOH-
CTPYKTUBHHU MeTOJ 3HAXONKEHHS orepaTopiB YMOBHO{ cUMeTpii, iKi yTBOpPIOIOTb 6asnc
anre6pu anines. Onucani 1onaTKoBi yMOBH, NpPH SKHX MOXKJ/MBE PO3LIMPEHHS CHMETPil.
[TpoBeneHO aHTHPENYKLilO, a TAKOXK 3HalAeHi fesiKi TOUHi PO3B’A3KH PO3I/ISAYyBaHOroO He-
JiHiliHOTO PiBHAHHS, BUXOASYH 3 YMOBHOI raJjisneii-inBapiaHTHocTi Horo nudepeHiaJbHUX
HacJIiKiB.

Bceryn. B poGori [1] BKasaHo Ha Takuil mapamoKcasbHHE (QakT: cepel HesqiHIHHHX
PiBHAHb TEIJIONPOBiAHOCTI

uo + 9a(f1(z, uua) = fo(w,u), 1

e

ug = 0/0xg, x9 =t, Oy = 0/0xq, g = 0/0xq, T = (21,...,2,), a=1,n,

SKi LIMPOKO 3aCTOCOBYIOTHCS B Pi3HMX 00/1aCTAX MaTeMaTHKU Ta (i3WKH, HEMA€ »KOLHO-
ro piBHSIHHS, JJ1s1 IKOr0 0 BUKOHYBaBCS MPUHLMN BigHocHocTi [anines. 3 cumerpiitHol
TOYKH 30py lle 3HAYMTh, 110 piBHAHHA (1) Hi npu AKUX f1, fo Takux, 10 fi # const,
f2 # const omHouacHo, He nomyckae anrebpu lanines. AJie BUSBJSETbCA, 10 3 MHO-
JKHHY po3B’si3kiB piBHSAHHSA (1) MOXKHA BUIIJIMTH MiIMHOXHWHH, SIKi 3a/JHILAIOTHCS iH-
BapiaHTHUMHM TpU nepeTBopeHHAX [agines. TlpuponHbo moctae MUTAHHS 3HAXOMKEHHS
oux po3B’s3KiB. Lli migMHOXKUHH PO3B’SI3KiB MOXKHA 3HAXONUTH, BUKOPUCTOBYIOUH Olle-
paTopd yMOBHOT cUMeTpil piBHsIHHSA [2], a TakoxXK, K Gyie MoKa3aHo HHXKUe, OMepaTopH
YMOBHOI raJjisnel-iHBapiaHTHocTi Horo augepeHUiHHUX HACAioKIB.

IcHye KOHCTPYKTHBHHH MeTOH [Js 3HAXONKEHHS ornepaTopiB ()-yMOBHOI CHMeT-
pii [2]. OcHOBHHM HENOJIKOM LHMX OMEPATOPiB € Te, 1[0 BOHHM HE YTBOPIOIThH ajiredpu
JIi. B po6Gorax [3, 4] noGymoBaHo mesiki omepaTopu yMOBHOI CHUMeTpii AJisi PiBHSIHb TH-
ny (1), siki yTBOpOIOTH anre6py pasom 3 GasMCHUMH omeparopamu cumetpii JIi, 1boro
piBHSIHHS. 3ayBaxKMMO, 1[0 aJTOPUTMIYHOrO METOLY 3HAXOMKEHHS OIepaTopiB yMOBHOT
cuMertpii, fki yTBopioBanu 6 anre6py Jli, 1o uboro yacy He icHye.

YKkp. mMaT. XKypH., 1993, 45, Ne 10, C. 1433-1443.
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B nanifi poboti Ha npukaani HeniHiHHOTO PiBHSAHHS
(0o + waOg)h(x,u) — Au = F(u), (2)
Ie
hy #0, A=0?/0x,0x,, a=1,n,

7 — YHUCJIO NPOCTOPOBUX 3MiHHHX, 3alpPONOHOBAHO KOHCTPYKTHBHHHU METOJ 3Haxo[xKe-
HHA ajre6pu yMoBHOI iHBapiaHTHocTi. Llell MeTon I'pyHTyeTbCcsl Ha BUMO3i TOro, 1100
onepatopu cumetpii JIi piBHSIHHSI pa3om 3 omepaTopaMd YMOBHOT CHMeTPii yTBOpIOBaNH
6asuc anrebpu lanines. [lpuyomy posrisinaroTbest pisHi 306pakeHHs anredpu lasmises,
Kl fgomyckae piBHsHHs Ty (2). 3aBASKH [bOMY BIAETHCS OMHCATH AOLATKOBi YMOBH,
IIPYU AKUX MOXKJIMBi Taki pPO3LIMPEHHS CUMeTpil.

[Ipouec 3HaxomkeHHs anrebpd YMOBHOI iHBapiaHTHOCTi MU po3i6’eMo Ha Kijbka
eTaniB: MeplIuii eTan — BUIiJEeHHS 3 KJacy PiBHSIHb (2) piBHSHHS, [JIs1 SKOTO MOXKJIHBE
posiupeHHs cuMeTpil no anredpu lanines;; npyruil eTan — 3HaXOIKEHHS 300paKeHHS
anrebpu lanines, iHBapiaHTHiCTb BiAHOCHO SIKOTO MU 6yneMo BUMaraTd BiJ BHAiJIeHOTO
HaMU DiBHAHHSA; TPeTidl eTanm — 3HAXOIKEHHS YMOB, IIPU AKHUX Hallle PiBHAHHSA YMOBHO
rafninefi-inBapiaHTHe.

OueBugxo, 110 Halia po6oTa Oyle MaTH 3MICT JMllle y TOMY BUNAAKY, KOJU ofepxKa-
Ha MepeBH3HaYeHa cucTeMa piBHSAHb Oyie cyMicHowo. ¥ wil cTaTTi MUTaHHA CyMicHOCTI
MU OKPEMO [OCJifKyBaTH He OyneMo, aje HaBeleMO MNesiKi HeTpHBiajbHi PO3B’I3KH
OflepXKaHUX MepeBU3HAYEHUX CUCTEM.

1. InBapianTHicTh BiZHOCHO meperBopeHb Tumy lamines. Onwuiemo Bci aificHi
¢yHKUil h, F' Taki, npyu aKuX piBHsAHHA (2) iHBapiaHTHe BiIHOCHO OmepaTopiB

X, = f(mO)aa + g(wO)waau, Oy = a/auv (3)
SIKi MMOPOIKYIOTh TaKi CKiHYEHHi NepeTBOPEHHS:

To — Ty = Tg, Tq — Ty = Tq + Vo f(T0),

u—u = u+ (v, + (1/2)0% f(20))g(z0).

3ayBaxkuMo, 110 Li mepeTBOpeHHs NpH f(xg) = xo CHOiBNAgaoTb 3 NEePETBOPEHHIMH
Tanines.
3a ¢opmynamu Jli (nuB., Hanpuk/aan, [2]) 3HalizeMo Apyre MPOLOBXKEHHs Oleparo-

piB (3):

()2() =X+ (g'vq — fua)Ouy + gOu,, ne Ouy = 0/0uy, Ou, =90/0u,,

i momiemo HuM Ha piBHsHHS (2). B pesysbrari omepxkumMo Taki yMOBH:
huwgo + huaf =0, a=1n, (4)
— [P+ 29Ny + fhaa + gTaliau = 0, ()
9'huta +hag — F'gza = 0. (6)

JLnsi 3HaXOMKeHHsI PO3B’sI3Ky CUCTeMH piBHsIHb (4)—(6) po3rysiHEMO 1Ba TaKUX BHUMAL-
Ku: h, = const Ta h, # const.
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Bunanok 1: h,, = const. He 3meHuryioun 3aranpbHocTi, MOKHa MPUHHATH, 110 h, =
1. ¥ uboMmy Bumanky piBHsiHHS (4) BHUKOHyeTbCsi TOTOXHBO. Ockinbku h = h(u,x),
a QyHkuii f i g 3anexaTh TiIbKK Bil g TO piBHSAHHS (D) posmamaeThcs Ha Taki
piBHAHHA:

hao =B, [ —29=pf, BeR (7)
Hudepenuirooun piBHsHHES (6) MO u, ofepkyeMo yMoBY Ha F':

F'=0 & F=au+a;, {o,a1} CR, (8)
Bpaxosyiouu (7), (8), nicasi audepeHiioBatHs piBHsHHS (6) M0 x, MaEMo

Jd+(B—a)g=0 = g=exp{(a— B)zo}. 9)
[Tigcrasasitount (9) B (7), omepyemo ymoBy Ha f(zg):

I'=Bf = 2xexp{(a — B)zo}.

P03B’s130K OCTaHHBOrO PIBHSHHS 3HaXOOUThcsl y BunAnl f = A(xzg)exp{fBzo}, ne
A(zo) 3a10BO/bHSIE PIBHSAHHS

A" =2 exp{(a — B)z0}.
[HTerpyiouH Le piBHSIHHS, MaeMo

A={ « i)\Qﬂ eXp{(a - 26)330} + A npu o 7& Qﬁ)

2 xo+ A1 mpu o = 20.

OcTaTo4HO OfepXKYEMO

2
f=)a=23 exp{(a —20)xo} + A\ exp{Bxo} mpu « # 20, (10)
2z exp{fzo} + A1 exp{fzro} mpu o =20.
[TizcyMoBYIOUH TIOTIEpeHi Pe3ybTaTH, OfepPKYEMO, 110 PiBHSAHHS
Ug + Uglq + BTty — Au = au, o € R, (11)

Jonyckae onepatopu X,, 1o BusHauyawTbes (3), (9), (10) (BUKOPHCTOBYIOUH 3aMiHy
u=u' — aj/a, KOHCTaHTy oy B (8) MOXHA MPUPIBHATH A0 HYJIS).

3aysaxenHs 1. PiBusitns (11) npu § = /2 — 1 cniBnajae 3 piBHSHHIM PEHOPM-TPYIH
(RG) Bisnbcona [5, 6]. Cumerpist JIi uboro piBHsiHHS sHaBineHna B [7]. Ilinkpecanmo,
110 BUMANOK o = 23 He BUKOHYETbCS A5 piBHAHHA RG BinbcoHa.

2. Ilpu B = 0 piBusinns (11) 3amiHomO
u = Inwv, (12)
3BOJMTBHCA [0 HeJIiHIMHOrO piBHAHHS TeNJONpPOBiAHOCTI
vg — Av = avlnwv. (13)

CuMeTpiiiHi BIACTHBOCTI 11bOTO PiBHSIHHS AOCJiIXKeHi B poboTi [4]. dani My nokaxkemo,
o piBasiHHs (13) Moxke momyckaru wie onHe 300paxkeHHs anrebpu [adines.
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3HaiizeMo MakcuMaJbHy anre6py inBapianTHocti (MAI) piBHsAHHS (11).
Teopema 1. MAI pisuanus (11) 3adaemocs makum Habopom 6a3UCHUX ONepamopis:

1) Py = 0o, X((ll) =exp{fro}ds Jap = a0 — 200, M = exp{azo}dy,
@) 2 (14)
XY =exp{(a— Bz} ,6’8 + 2,0, npu « # 20;

2) PQ, thl) = exp{ﬁxo}aa, Jab7 M = exp{?ﬁxo}au, (15)
X = exp{fz0} {2200, + 40y} TpH o =203.

HoBenenHsi Teopemu npoBomuThest 3a cxemoro JIi [2]. Omeparopu xV x® omep-

XytoTbes i3 X, mpu A = 0 ta A; = 0 BignosigHo. bBasucHi onepatopu (14) 3anoBoJb-
HSAIOTb TakKi KOMyTaUilHi CNiBBiIHOLUEHHS:

[Po, X&) = BXY, [Py, M] = oM,

(2)
[PQ,X((IQ)] — cXa npu « 7é ﬁv «Q 7é 26a
0 mpu o =20,
1 1 1 2 2
Py, Ja ww&m—mwmexWﬁmkﬁbm
xM xP) = sm, (x5 ch] = 6 X — 5 X,
X(S2)7 ch] §abX(2 - 5acX
abs cd] — 5au]bd + 5bdjac - 5bc ad — 5ad<]b(,a ceR.

[
[
[
[J

3 uMx ChiBBiAHOILIEHb BHUIJIHMBAE, 110 Y KOXKHOMY 3 Bumaakis: 1) 8 = 0; 2) a = f;
3) a # B; a # 20; pisusauio (11) Bigmosinae inma anre6pa Jli. 2KogHa 3 unx anre6p
He € anre6poto [anines (npo anre6py lanines nus. [2, 8]).

s Bunanaky, Koau o = 23, oneparopu (15) 3a10BONBHSAIOTE CMiBBiHOILIEHHS

Po, XM =pxV, [Py, XP] = pXP +2XV, [Py, M] =23M,
P, 1 [XS’,MMJQ,MMX“ xM=xP, xP =0,

ch] = 6abX(2 - 6acX

[
[
[X(l) ] = dapM, [ ) ch] = 5abX(1) - 5acX(1 (16)
X4
[ ab cd] - 5ac<]bd + 5deac - 5bc<]ad - 5ad<]bc

3 (16) BunsuBae, wo npu S = 0 anrebpa, 110 MOPOAXKYeTbesi omepatopamu (15), 3a-
JIOBOJIbHSIE CTaHIAPTHI KOMyTaliiiHi cniBBigHOWeHHs1 anredpu [anines AG(1,n). Ane
el BUMAJOK He BUKJHKAe 3alliKaBJeHHs, OCKiJbKH mpu « = 23 = 0 piBHsiHHA (11)
saminowo (12) 3BomuTbesi 10 JiHifiHOTO piBHsIHHS TemonposinHocTi (13) (o = 0). Ha-
naji mpu « = 23 MH pO3NISAaTUMEMO TiNbKU BHMAMOK, Kosu 3 # 0. Y 11bOMy BUMALKY
3 (16) BunsinBae, o piBHsiHHs (11) TakoxX He momyckae ajnre6pu [anises.

Bunapgoxk 2: h, # const. [1js 1boro BUNaaky po3s’sizok cucteMu (4)-(6) 3agaetbes
TaK:

hy = di(u— A2?/2), he = Adiza(5Xz® —u) +do, F' =a, dp€R,
a dyukuii f i g i3 (3) MaOTh BULISAL

f=dexp{izo}, ¢g=Aexp{Azo}, deR.
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To6To piBHAHHS
ha(uo + ugtia) + haig — Au = au

iHBapiaHTHe BiIHOCHO MepeTBOpeHb THMY [ajises, wo nopomxkywTbes (3). Hamani mu
06MeXXUMOCsT po3risiioM piBHstHHS (11).

2. 3HaxomKeHHs MOTPIOHUX mpeacrasieHb anreopu laminesa. 3 kKomyTauiiHUX
criBBigHouenb s (14), (15) BUnIKBaEe, 1110 BCi omepaTopH, 3a BUHATKOM Py 3a10BOJIb-
HAITh KOMYyTalliiHi crniBBigHOIIeHHs anrebpu [anines. B poboti [4] nokasaHo, 1o s
anrebpu JIi piBasHHs (13) (dacTkoBHil Bumamok piBHsHHS (11)) MOXKHa BKasaTH TaKui
oneparop P, 1o

[P, XV = [P, M] = [P, Jup) =0, [P, XP] =1 XV, (17)
Jlerko 6auuTH, o npu BukoHaHH{ (17) omepatopu P, X((ll), X(SQ), M, Jup YTBOPIOIOTD
6asuc anre6pu lagines, sky mu nosHadatimemo AG™ (1,7n). Huxue MH y3araibHUMO
el pesyabraT ass piBHsiHHS (11) Ta BKa)keMo HOBe 300pakeHHst anrebpu [asines
AG(l)(l,n), 110 BM3HAYAE€ThCs CHIBBiAHOLIEHHSIMH, BinMinHuMH Big (17).

Bunapok 1. 3HaiinemMo siBHUE BUTJsI ornepaTopa P, Takoro, 110 BUKOHYIOThCS CIIiB-
BigHotenus (17). Ulykatumemo omnepatop P, y BUNISA

Pt :goao—’—faaa—’—nauv éll Zf”(sco,x,u), 77:77<.'I}0,£C7’U/), M:O,’I’L (18)

3 ymoBH [P, Xél)] = (0 omep:XMMO TaKi yMOBH Ha KoedillieHTHI QyHKLIil onepatopa P;:

B =&, =6 =n.=0, a#b. (19)

AHaJsioriuHo ofepKy€eMo Taki yMoBH Ha (yHKILIT £, 7:

550 = TN, €a = xagga §2 = 53 =0, (a - 6)501‘@ + ga — ToNu = 0; (20)
a TaKOoxXK

2exp{(a —2B)zo}((a — B)E° — 1) /(= 28) =1 mpu o # 2,

(21)
2(Bwg +1)E0 — 2204 =¢; mpu a =28, c; €R.

Posp’sizytoun ymoBu (19)—(21), 3Haxonumo iBHU#E BUrsia onepatopa Pj. /st BUMajaKkis,
KO o # 23 ta o = 203, el onepaTop MOXHA 3aMUCaTH y €IUHOMY BHUTJISAL:

Py = exp{(28 — a)x0}(9o + Brala + (ot + f(20))0u)- (22)

B peSyJ'[bTaTi MU OOBEJIKN TaKe TBEPIKEHHS.

Jlema 1. Onepamopu P, C(Ll), M, Juw, 52), wo maromo euersd (14), (22) npu
o # 26 ma (15), (22) npu a = 20, 3adaome 6asuc areebpu Farires AGM (1,n), wo
BUBHAHAEMbCS Komymayitinumu cnisgionouwiennamu (16), (17).

Bunanok 2. Hexait oneparop T’ Takuii, 110 BUKOHYIOTbCS
(7, X = [1,M] = [T, Ju] = 0, [T, X(V] = 1 X2 (23)

Jlerko mepekoHaTHcs, 10 NpU BUKOHaHHI (23) onepartopu T, Xél), Xf), M, Jup yTBO-

pPIOBaTUMYTh Gasuc anreSpu lanines, aky Mu Hagasi mosHauatumemo AG 3 (1,n).
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Oneparop 7" wykatumemo y Burasni (18). 3 (23) omepkuMo Taki yMOBH Ha (QyHKILIi
SN

Q=E=0=¢=0 ab, & =, (24)
a TaKOxXK

€6 = —co2exp{(a — B)zo}/(a —28), (a—pB)E" =¢;,

(a - B)xago + fa - 2%/(04 - 2ﬁ> — TNy =0, Oé§0 = TN, (25)

N = —coexp{(a — Bxo}tr, mpu « # 20,

Na = —C2Zq, 655050 + fo —x0€5 =0,
2550 = TNu; 550 — & = 2cawo, (26)
ﬁxa§0 + fa - 2xOna — TaMu = 0 npu o = Qﬁ

3 ymoB (24), (25) onepxyemo siBHuE Bursg T npu o # 2:

T = exp{(a — ﬁ)xo}(80+ (a0 — B)xa0q+ (au + (. — 25)2%2 + f1 (x0)> au) (27)

3 (24), (26) BumninBae

72

T = 2200 + (Bzo + 1) 202404 + < 1

+ 2B23u + f2($0)> Oy mpu a=208. (28)

Jlema 2. Onepamopu T, X{gl), M, Ju, X,§2), wo maroms suesnd (14), (21) npu

a # 268 ma (15), (28) npu o = 20, pearizyromo npedcmasrenns areebpu lairi-
aes AGP(1,n). Arcebpa AG? (1,n) sadaemocs Komymauyiiinumi cniesioHoUeHHS-
mu (16), (23).

3. ¥YmoBHa ragineii-iHBapiaHTHicTh piBHsIHHSA (11).
Bunanok 1. Bumararumemo inBapianTtHicts piBHsIHHS (11) BimHOCHO anre6pu [ani-
ness AG®)(1,n). Jlns 1boro nogieMo APYTUM MPONOBKEHHSM orepaTopa (22):
2 ,
Py =P +exp{(20 — a)xo}[{f" + (26 — a)(au + f) — f(20 — &) waua +
+ 2(a = Buo}uy + (@ = Bua}u, + (a — 28)uqalu,,)]

Ha piBHsAHHS (11). Onepxyemo:

@)
Pi{ug + ugtq + Bfrous — Au — au} = 2(a — 5) exp{ (20 — a)xo} x
X {ug + ugug + Brous — Au — au} + exp{ (26 — o)z} % (29)
x [aAu+2(8—a)f+ f'].
3 (29) Bunausae, wo npu o = 0, 26f + f' = 0 piBusinus (11) inBapianthe (y ceHci

JIi) Binnocno AGM(1,7n). Ane npu o = 0 pisusinns (11) saminoio (12) sBomuTbesa 10
JIiHiIHOTO PiBHSHHSA

vg + Bravg, — Av =0,
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CUMeTpist fIKoro HeckinuenHa [7]. Hamasni My 0OMeXHMMOCH PO3IJISIOM TaKHX «, 10
a#0.
(2)

[lopiemo P; Ha piBHSAHHSA

alAu+2(8—a)f + f =0. (30)
Onepxumo

(2)

Pradu+2(8—a)f + '} = 31)

= (a—20) exp{(a — 20)xo H{aAu+2(8 — o) f + f'},
AKWO (yHKUiS fo(x) 3a00BO/IbHSE PIBHSHHS:
"+ 48 =3a)f +2(a—B)f =0. (32)

3rigHo 3 KpuTepieM yMOBHOI iHBapiaHTHOCTi (muB., Hampukaan, [2, 3]), 3 (29), (31)
BUMJIMBaE, o piBHsAHHA (11) yMoBHO iHBapiaHTHe BimHOCHO omepatopa P (22), sKiio
f 3amoBosbHsie (32), TOOTO

f=crexp{(a = 20)zo} + cz exp{(a — B)zo}, (33)
npuyoMy nomnatkoBa ymoBa (30) 3 ypaxysaHHsM (33) Mae BULJISL
Au = ¢ exp{(a — 208)xo}. (34)

Teopema 2. Piswauns (11) ymosHo insapianmue 8i0HOCHO aneebpu [arires
AGM(1,n) = (Pt,X((ll),M, Jabs Xf)), de onepamop P, zadaemocs (22), (33), a one-
pamopu Xél), M, Ju, X maromo eucrsd (14) npu o # 206 ma (15) npu a = 20.
Jlodamkosa ymosa mae sueaso (34).

Jlisi noBefleHHSl TeopeMH HaM 3aJ/IMIIAETbCs MepeBipUTH iHBapiaHTHICTh HORATKOBI
yMoBH (34) BimHOCHO omepartopiB X((ll), M, Jup, XL(12). Jlerko mepekoHaTHCh, O Wi
orepaTopu € a6CoMIOTHUMH iHBapiaHTaMu 115 0boro piBHsAHHSA. Llel (akT minTBepmKye
CIIPaBeAJUBICTb TEOPEMHU.

ayBamenns 3. fKkio BUMaraTy 101aTKOBO iHBapiaHTHICTb BigHOCHO omnepaTtopa Py, TO
3 (34) BumsuBae ymoBa ¢; = 0. B poGori [4] snaiimeno MAI nepeBusHaueHoi cucremu
piBHsiHb (11), (34) npu B = ¢; = 0. 3arajabHUN PO3B’A30K i€l CUCTEMH Mae BHUIJISL

u = (do + dyzq — d*a™ ' exp{axg}) exp{azg},

ae

d? =dyd,, d,€R, a=Tn, p=0n

Bunanok 2. Bumaratumemo inBapianTHicTb piBHsiHHS (11) BimHOCHO anre6pu [aJi-
nes AG®)(1,n) npu a # 283. JIn9 1bOro MOAIEMO APYTHM MPOJOBXKEHHSM OMepaTo-
pa T (27) Ha piBusnHs (11). Onepxumo

(2)
T{up + iy + BTatq — Au — au} =
= exp{(a — B)zo}[B{uo + vatia + Brous — Au — au} + L],
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ae
Ly = Bugug + B(20 — @)zqug — (B — a)Au+
+ (8/4)(a = 2B)*x* = Bf1 + f1 — (n/2) (o — 28)*.

CnpaBensiuBa piBHICTb

Ty} = exp{(a — B)z0}[26L1 + Lo, (35)
NPUYOMY
Ly =a(B—a)Au+ f| = B +262f1 + (n/2)(e — 26)*(a + f). (36)

3 (35), (36) sumnnuBae, o piBusHsa Ly = 0 inBapiantHe (y cenci Jli) BigHOCHO omepa-
topa T JiHile y TaKUX BHUIAIKaX:

1) a=8, fi'=Bf+26°f + (n/2)(a—28)*(a+B) = 0; (37)
2) B=0, f”+af{=0. (38)

st Bunaaky (38) cnpasensiviBa TeopeMa.

Teopema 3. Pisnanns (11) npu o # 23 ma B = 0 ymosHo iHsapiaHmue 8i0HOCHO
arzebpu Tanires AGP (1,n) = (T, x¥ M, Jab,XéQ)>, de

T = exp{axo} (80 + ax,0, + (au + a2x£ + fl(x0)> (9u> , XV =29, (39)

Jab = 240y — 2400, M = expl{azo}dy, X = exp{azo}{(2/@)0 + za0u},
npuyomy 0o0amkosa ymosa mae 8u2iso

Ly =aAu+ f] — (n/2)a* =0, (40)

de pynkyis f1 3a0080abHs€ AinilHe pieHuanus (38).
[lpu fi = const pisuanns (11), (40) inBapianThi BimHOCHO anre6pu AG () (1,7)
(39), momosHeHoi onepaTopom Fjy.

Hacainok. Heainitine pigusnus menaonposionocmi (13) ymosno insapianmmue 8i0Ho-
CHO maKkux aarcedp:

1) AG®(1,n) = (T, X, M, Juy, XP),

de
1‘2
T = exp{axg} (80 + azq0q + <a Inv + Oézz + fi (x0)> v@v) ’
Jab = (Eaab - -Tbaa7 Pa = 80,3 M = eXp{OZ(EO}'UaU, (41)
X{gQ) = exp{axo}{(Z/a)aa + Jfa'Uay}
npu

fi =diexp{—axo} +d2, {di,d2} CR;

2) <AG(2)(17H),P0> npu fl = d27
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npuyomy 0o0amkosa ymosa mae 8u2aso
VAV — v4v,) — (a®n/2 4 dy exp{—axg} + d2)v? = 0. (42)

3ayBaxumo, mwo dopmysan (41), (42) omepxkytotbes BiamosigHo 3 (39), (40) sami-
Hoto (12).

3ayepamxennd 4. Mu gnoseau, wo y Bumanaky 1 piBHsiHHs (11) ymMoBHO iHBapiaHTHe
BifHOCHO omepatopa 7' mpu pomaTkosili ymoBi Ly = 0. Ajse mnpu LboMy piBHSHHS
Ly = 0 He pmomyckae omnepaTopiB xW, Tomy y Bunanky (37) piBusanHs (11) He €
YMOBHO iHBapiaHTHHM BigHOCHO anre6pu AG3)(1,n).

(2)
[Toniemo npyrum mpopoB:KeHHsIM T Ha piBHsiHHS Lo = 0, ne Lo BU3HaueHo B (36).

B pesysibraTi omepxumMo
L2} = expi(a — B0 (28 — a)La + Flao)],
ae
F(zo) = fi" + (= 20) " + B(48 — ) f1 + 26°(a — 28)* f1 + n(a — 26)*5°.

3Bifcu po6uMo BHCHOBOK, 1o piBHsHHS (11) mpu momatkoBux ymoBax Ly =0, Ly =0
Ta ymoBi Ha dyHkuito f1: F(zg) = 0, inBapianTHe BinHOCHO omepartopa T. Aue, K i y
punaaxy (37), pisusuus (11) mpu ubomy He nomyckae anreépu AG)(1,n).

Bunanok 3. Bumararumemo inBapiantHicts piBHsinust (11) BizHocHo asnre6pu [asni-
nes AG®)(1,n) npu a = 2. JIa9 1bOro MOAIEMO APYTHM MPOIOBKEHHSM OMepaTo-
pa T (28) Ha piBustHus (11). Onepxxumo:

(2)
T{up + gt + BTatqg — Au — au} =
= 2xo(Bxo — 1){uop + vqua + Brou, — Au — au} + Ly,
Ie
Ly = 265 /Au— 20 f> + f5 —n/2. (43)

CnpaBennuBe piBHAHHSA

(2)
THLLY = 22(f — 2815+ Bn).

3rigHo 3 KpUTepieM YMOBHOT iHBapiaHTHOCTI omepKyeMo, 1o piBHsHHS (11) mpu nonar-
KOBill YMOBi

Ly =2B23Au—28/fo+ f5 —n/2=0 (44)
iHBapiaHTHe BimHOCHO omepatopa T  (28), SKIO BUKOHYEThCS
3 —2Bfs+ pn=0. (45)
3arasbHHAN PO3B’SI30K OCTAHHBOTrO PiBHSIHHS 33Ja€TbCS TaK:

fa(zo) = dexp{2Bx0} + naxo/2+¢, deR, ceR
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Teopema 4. Piguanus (11) npu o = 20 ymosHo insapianmHe 8i0HOCHO arcebpu
Fanines AG®(1,n) = (T, XV, M, Jo, X2, 0e

112

T = x%@o + (Bxo — )xo,04 + ( 1

+ 2020 + nxo /2 + c) Ou, (46)

AKWo 8uronyemocs dodamrkosa ymosa 2x3Au — nxg — 2¢ = 0.
3ayBaxenHs 5. Oneparop T (46) npu 3 = ¢ = 0 cniBnagae 3 cTaHIAPTHUM Omepa-
TOPOM MPOEKTUBHUX mHepeTBopeHb [2]. ¥ ubomy Bunanky piBusuHs (11) inBapianTHe
BigHOCHO omepaTopa (46) y posyminni JIi.

Amnasorom onepartopa MaciTabHUX NepeTBOpeHb AJs piBHsHHSA (11) mpr o = 28 # 0
€ ormeparop

D = 200 + (20 + 1)2404 + (4810 + f5)0u. (47)

[TonisiBIIM IpyrUM MpOIOBXKeHHSIM omnepaTtopa (47) Ha piBHsHHS (11), 6ymeMo MaTH

(2)
D{ug + uqug + Brou, — Au— au} =
=2(2Bx0 — 1){uo + uatta + Proue — Au — au} + Ly,
Ie

Ly = 4BxgAu — 2Bf5 + f3 . (43)
2
Bukonyerbest piBHicts D{L1} = 2zo(f4’ — 26f4). TakuMm 4vHOM, MH NOKa3asH, 110
piBusinus (11), (48) mpu

1 —26f5 =0 (49)
inBapianTHe BimHOCHO omeparopa D uio Mae Burasn (47).

Teopema 5. Pisuanus (11) npu o = 23 ymosHo insapianmue 8iOHOCHO POSULUPEHOL
anreebpu Fanires AGP (1,n) = (T, Xél), M, Jap, X(gz), D), de onepamopu T i D 3ada-
tomocs (46), (47), npu sukonanri dodamxosux ymos (44), (45) ma ymosu mpemovoeo
nopsoky

0o(Au) = 0. (50)

it IoBelleHHST TEOpEMH J0CTAaTHbO TEPEBIPUTH, L0 MPH AH(epeHIioBaHHI MO X
nonatkoBa ymoBa (44) cniBmagatume 3 (48), (50), a ymoBa Ha dyHKkUi fo (45) BU3Ha-
yaTume ymoBy (49).

4. BucHOBKHU. 3 BUKOPHUCTAHHSIM 3alPONOHOBAHOTO METONY 3HAXOMKeHHS ajredp
YMOBHOI iHBapiaHTHOCTi MU AOCATVIM TAKUX Pe3yJsbTaTiB:

1) s HeniniitHoro piBHsHHs (11) sHaiineHo nBi pisHuxX anre6pu Tanines AG™M (1,n)
ta AGP)(1,n), sxi e ioro anre6pamu yMOBHO! iHBapiaHTHOCTi (nMB. Teopemu 2-4).
[Tpruomy KoxKHa 3 KX ajre6p AOMYCKAE MO ABa PisHUX 300paxkeHHs (geMu 1, 2);

2) 3HaleHO N0JaTKOBI YMOBH, MpH SKHX Hallle PiBHSIHHS YMOBHO raJjijefi-iHBapi-
antHe (nuB. (34), (40), (44), (50));

3) nmns penykuil piBHsHHA (11) MoxHa CcKopHcTaTHCs mifaire6paMu anredp
AGM(1,n) ta AGP(1,n), ockibku cTpyKTypa anre6p laiines HOCHTb 106pe BH-
BueHa [8];



YMoBHa cuMeTpist Ta HOBi 306paxkeHHs1 anrebpu [anines 41

4) po3B’sI3KH PiBHSHHS MOXKHA HETPUBiaJbHUM YHHOM PO3MHOXKYBATH MO OTepaTopax
YMOBHOT cHMeTpii IpU yMOBi, 110 1i PO3B’3KH 3aH0BOJILHAIOTH BiAMOBiAHI AOAATKOBI
YMOBH.

5. AHTHpenyKLisl HediHiiHOTO piBHAHHSA (11). PosrisiHeMo Takuil aH3anm:

u = o(T0) + Tapa(z0) + ° /40, (51)

e goﬂ(xo) — noBinbHi QyHKUIT Big g, 2% = x,24, a = 1,n. [licasa nigcranosku (51) B
piBHsiHs (11) omepxuMO

506 + Yapa — Qo — (TL/2>£C0 + ma(ﬁ@a + 90:1 +
+ Ya/To — pa) + 22(28 — ) /4xo = 0.
3 0CTaHHbOrO DiBHSIHHS MH MOXKeMO 3DOOHMTH TakMil BHCHOBOK: aH3all (5l) pemykye

piBusaHHs (11) nasa GyHkuil v Bix (n+1) sMiHHOT 2, PH o = 23 10 CHCTEMH 3BUYAHHHX

Ju(epeHIiaJbHUX PiBHAHD
W+ va/xo — Bpa =0,
Pat e /o — By (52)
©0 + Papa — 280 —n/2z0 = 0,

nast (n + 1) ¢yHxuii ¢, Big xo. To6To ansau (51) sxificHioe mpu o = 23 aHTHpenyK-
uito [9] piBusinus (11) mo cucremu (52), uo cknagaerbest i3 (n + 1) piBHSHE.

Cucrema piBHsiHb (52), Ha BiamiHy Bin piBHstHHA (11), Jerko iHTerpyetbcsi. 3arajb-
HUH PO3B’A30K cucteMHu (52) Mae BUIMAL

Yo = dg exp{fzo}/T0, o= exp{2Bzo}(nF(x0)/2 + d*/x0), (53)

ae

F(xg) = /(xo exp{28x}) tdxy, d*=dud,, do €R, a=T1,n.
[Tincranoska (53) B auzan (51) 3amae Ham GaraTomapaMeTpHyHy CiM’i0 po3B’sI3KiB He-
JiniiHoro piBHsiHHSA (11).

Anszan (51) mopomKyeTbcsi HAG0OPOM TaKUX OMepaTopiB:

Ga = 2200, + Ou,, uq = 0u/dz,. (54)

Hesoxanbhi onepatopu G, M0 3MiHHHX x, MOPOIXKYIOTb CTaHIApTHi MepeTBOPEHHS
Tanines x, — z, = xo +v4%0, A€ v, — IPYNOBi NapaMeTpu. AJse, K MU BHILEe JOBEJH,
piBasHHS (11) He momyckae UMX MepeTBopeHb (sK y posyminHi JIi, Taxk i B TepMmiHax
YMOBHOI iHBapiaHTHOCTI).

Ockinbku ansan (5H1), nobynoanuil mo omeparopax (54), penykye pisusuus (11),
TO BUHHKA€ MUTAHHS NP0 3B’S130K L[bOr0 PiBHSAHHS 3 HeJIOKAJbHUMHU onepatopamu laui-
Jest (54). CrpaBeiJiBa Taka Teopema.

Teopema 6. [ugeperyiarvni Hacrioku pieuanus (11) ymosHo ineapianmri 8i0HOCHO
HearokanbHux onepamopis G, (54), npuuomy dodamrosa ymosa mae suernd Gou = 0.

JloBeneHHs1 TeopeMHu NpoBefeMo A/ Bunaaky n = 1. IlponudepeHuioeMo piBHSH-
Hs (11) mo x1 Ta MPOBEAEMO y HbOMY HEJIOKA/JbHY 3aMiHy

. (55)
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OpnepxUMoO piBHSHHS

Vo + B Vi + 2V — VL 4+ (B — )V =0, (56)
Ie

Vi=VYzg,21), Vi =0V')0xe, VI!=0V'/0x;.
[Ticast BuKopucTanHs (55) onepatop (G; HabyBae BUIVIILY

G1 = 220901 + Oy1. (57)

Hitouu npyruM nponoBxeHHsM onepatopa G (57) Ha (56), omepxyemMo

(2)
G{Vy + BV + 2V — VL + (B — )V} =BGV mpu o = 26.

3rigHo 3 KpuTepieM ymoBHOI iHBapiaHTHOCTI [2, 3] piBHsHHS (56) ()-yMOBHO iHBapi-
aHTHe BimHOCHO omeparopa lamines (57) mpu a = 23. BpaxoBylouw, 110 MU TIpOBeJH
3aminy (55), mepeKoHaeMocsl y CHpaBefJIMBOCT TeopeMu 6 mpu n = 1.

[TigcymoBytoun momnepenHi pe3yjabTaTH, MH MOXEMO 3POOHUTH TaKWH BaXK/JIUBHH BHC-
HOBOK: 045 pedyKuyii ma 3HaX00MEeHH MOUHUX PO3B A3KI8 HeAIHIIHUX PIBHAHb 8AMNC-
AUBO 3HAMU CUMEMPIUHI 8AACMUBOCMI HE MINbKU CAMOCO PIBHAHHA, A U CUMEmpito
tioeo dugeperyiaroHux HACAIOKIB.
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CummeTpia Ta HeJiiBCbKa pegyKILis
HeJiHilHOTO piBHAHHSA Ilpeninrepa

B.I. ®¥YL[HY, B.I. YOIIHK

Onucani Heninifini piBHsAHHA Tuny lllpeninrepa, iHBapiaHTHI BiIHOCHO PO3LIMPEHUX TPyl
lanines. BuBueHa yMOBHa CUMeTpisi TaKUX piBHSIHb i MpoBefeHa iX peAyKllis, no6ynoBaHi
KJIaCH TOUYHHUX PO3B’AI3KIB.

1. Beryn. Posrasinemo HeqinifiHe piBHsHHS Ulpeninrepa
Ly(u) = Su — uF(u,u*) =0, 1)

ne S =i0/0xo+AA, xog =t, A =0%/0x3 +---+0%/022, i = —1, A € R, n — uncsio
[IPOCTOPOBUX 3MiHHHX.

Ak Bimomo, piBusinus (1) inBapiaHTHe BigHOocHO asre6pu Tamines AG(1,n) Ttomi i
TinbKY TOAI, KoK F' = F(uu*). basucui onepatopu anre6pu AG(1,n) MaioTbh BUNISAL

Py=090/0xg, P,=0/0xq, Jap=xaPp—xpPs, a,b=1n,

Q =1i(ud/0u —u*d/ou*), Gq=xoPs+ (1/2)\)z,Q. @

[Hmux npexcrasienb anre6pu laninest piBusinus (1) He momyckae. B [1] omwmcani Bei
HesiHilHi piBHsiHHSA Ty (1), iHBapiaHTHI BiIHOCHO TakKMX po3IIKpeHb anre6pu [asines
AG(1,n):

1) AG1(1,n) = (AG(1,n), D), 3)
Jle omepaTop MacIITaGHUX MepeTBOpeHb DD Mae BUIVISL

D=a2Py+x,P,+ kI, I=ud/0u+u*d/ou*), keTR;

2) AG3(1,n) = (AG:1(1,n), A), (4)
Jle onepaTop NMPOEKTHBHHX MepeTBOPeHb A Mae BUIMISL

A= 22Py + wox, Py + 22 (4N)71Q + gxof, x? =z,0,, a=1,n.

YzarasnbHena anre6pa lanines AGo(1,n), nonoBHeHa omepatopoM I, sIBASIETHCS Ma-
KCHMaJIbHOW anrebporo iHBapianTHocTi BisbHOro piBHsiHHs Llpeninrepa (1) (F = 0).

Onnak, B [1] He mocjimxkeHe Take BaXK/IMBE MUTAHHS: UM ICHYHIOTb DIBHSIHHS TH-
ny (1), sixi 6ysiu 6 iHBapiaHTHI BimHOCHO anre6pu (2) Ta iHIIKX ii PO3UIMPEHD?

Y nanili poGoTi naHO CTBepOHY BiANOBiAb Ha Le NMUTaHHA. 30KpeMa, NOBENEHO,
uo pisusiudst peninrepa 3 sorapudmiunor HediHifiHicTio wln(uu*) pomyckae nBa
pisHux posuupenHs anrebpu AG(1,n). Budyena ymoBHa cumetpis piBHsiHb THIy ().
[TokasaHo, wo pieusuus (1) 3 HeainiknicTio uln(uu*~1) 4+ uF (uu*) ymoBHO iHBapiaHT-
He BimHOCHO anreGpu [anisnes y HectaHoapTHOMY MpeACTaBJeHHi. 3ailicHeHa HeJiiBChbKa
penykiis Ta no6ynoBaHi KJacH TOUHHUX PO3B’S3KiB PO3IJISiAyBaHHUX PiBHSIHb.

YKkp. mMaT. XKypH., 1993, 45, Ne 4, C. 539-551.
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2. Cumetpis JIi piBaauaa (1). Indopmauis npo niiBebky cumerpito piBHsHHS (1)
MiCTHTBCS B HACTYIHHUX TBEPIKEHHSX.

Teopema 1 [1]. Pisnanusa (1) (F # 0) insapianmne gidnocro arecebp AG1(1,n) (3)
ma AGz(1,n) (4) modi i mireku modi, Koiu

F=Mul7* MNeC, |u=(uu)"/?

F = XJu/*", X eC,

8i0n08ioHO.

Teopema 2. Ceped pisusarv kiacy (1) mirvKu piBHAHHA 3 HEAIHILIHICMIO

F =3 ln(uu*), A3 eC, Ng=0b+iby (5)
insapianmue 8ioHocHo areebp [2]:

1) AGs(1,n) = (AG(1,n),B) npu by =0, ne B=1—2bxoQ; (6)

2) AG4(1,n) = (AG(1,n),C) npu by #0, )

je C = exp{?blxo}(f + Z(b/bl)Q)

3aypamxenud 1. Ilpu b = 0 pisusuua (1), (5) iHBapiaHTHe BigHOCHO aJjreGpu
AG4(1,n) = (AG(1,n),CM), ne

c® = exp{2b1xo}1. (8)

Oneparop CV) ogepxyerbest 3 (7) npu b = 0.
Teopema 3. Pigusnus (1) ineapianmmue 8i0HOCHO mMakux areebp:

1) Ay = (Py, Py, Jap,I), xoau F = F(uu*~1);

2) Ay = (Py, Py, Jup, OV, koau F = iby In(uu*~1) + Fy (uu*=1),

a onepamop CY) mae suersnd (8);

3) A3: <P07Pa7JabaQ(1)aG<(11)>a Oe

QW = exp(2020}Q, G = exp{280} (P + (5/N)a)Q, (9)
koau F = —ifln(uu*~1) + F(uu*), B€R;

4) Ay = (P, P, Juy, QW, GV, 1),

. (10)
koau F = —ifln(uu*~1), B€R, B #0;

5)  As = (Po, Pa, Jup, QU GV BT + 5,Q),
koau F = By In(uu*) —iBIn(uu*~t), 8,5 € R;

6) A6 = <P07Pa7JabaQ(l)th(ll)vC(l)>»
koau F =ibyIn(uu*) —ifIn(uu*~t), B,b; € R;

7) A7 = (Py, Py, Jap, I, DMV, DN =220Py + 2,P, +dQ, d € R, d #0,
koau F = Mg(uu*1)"1 N\ €C;
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8) As = (Py,P.,Jap, kI +dQ), k,deR, k+#0, d#0,
Koau F = F(uau*o‘*), a = ap —iag, kay + das = 0;
9) AQ = <P07Pa7JabaI7D(2)>7 D(2) = 2:'UO—PO +xaPa +kI+dQu k7d7é Oa
koau F = F(u®u** ) (uu*)"", a = —iay, kay 4+ das =0,
de k, d, a1, ag — dosirvni diticHi napamempu.
Hacaigok 1. 3 meopemu 2 suniusae, ujo piBHAHHA
iug + AMu = Az In(uu*)u, Az =0b+iby (11)

isapianmue 8i0HOCHO MAKUX CKIHUEHHUX NepemBopeHb:

To — T( = To, Tq — Ty =1, a=1,n,
a maxoxc:

1) u—u =exp{61(1 — 2ibxo)}u npu by = 0;

2) u—u = exp{f2exp{201x0(1 —i(b/b1)}}u npu by #0; (12)

3) u— u =exp{fsexp{2b1zo}}u npub#£0, by £0,
de 01, 05, 035 — epynosi napamempu.
Hacainok 2. 3 komymayitinux cnisgionowens ois onepamopa B: [B, Py = ¢1Q,
[B,P,] = [B,Jw) = [B,Q] = [B,G,] =0, ¢1 € R, ma onepamopa C: [C, Py] = c2C,
[C,P,] = [C,Ju] = [C,Q] = [C,G,] =0, c2 € R, sunausae, wo areebpu AG3(1,n)
ma AG4(1,n) pisni. Tobmo pisuauns lpedineepa 3 roeapugpminnoro Heainitinicmio
(5) donyckae dsa pisnux posuwiuperns areebpu larires AG(1,n).

3ayBaxkennsa 2. Pisusanusa (5) npu A3 € R (by = 0) cniBnagae 3 piBHsHHSM, 3a-
MPOMOHOBaHUM Yy po6oTi [3]. B wili po6oTi BKasani neperBopeHus (12) (3a BUHSATKOM
orneparopa B, mo ix mopomxkye). Lle piBHAHHS BHKOPHCTOBYETbCS B SIAepHiH (isuIi
JJIS. OMUCY HYKJOHIB Ta ajb(a-dyacTUHOK. Jloc/ifKeHHI0 UbOro piBHSAHHS MPUCBAYEH]
Takox pobotH [2, 4].

PiBHsIHHS
iug + AAu = —iBIn(uu*t) + Fy(uwu®), BER, (13)

IIMPOKO BUKOPHCTOBYETbCS B MaTeMaTH4HiM (isuLi i Horo HasMBamwTb (ha30BUM PiB-
usuusivm Ulpeninrepa [4, 5].

Hacainok 3. 3 komymauyitinux cnissionouiersv 0is arzebpu Az (9):
[Po, Pa] = [Po. Jup] = [Pa, QW] = [Jup, QU] = (G, G{V] = [P, B] = 0,
[P0, QW] = c1QW), [Py, GV = caGW, [Py, Joe] = da P = bac P,
(G o] = 605G — 6,.GSV, c1,c0 €R

sunausae, w0 6asucHi onepamopu yieci areebpu He ymsoproome arecebpu larires.
1 S .
Onepamopu c nopodicyrome maKi CKiH4eHHi nepemeaopeHHa:

To — Ty = To, Tq — T, = exp{26x0}0, + Tq,
u — u' = uexp{i[(8/2)\) exp{4Bz0}0 + exp{26xo}7.04]},

de 0, — epynosi napamempu, 0> = 0,0,.
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3. ¥YmoBHa cumetpis. PosrsnsiHeMo piBHSIHHSA KJaacy (1)
Li(u) = Su — uF(uu*) =0, (14)
inBapianTHe BigHOCHO anre6pu [aniness AG(1,n) (2). Binnosigs Ha nuTaHHsS OPO iCHY-

BaHHS orepaTopiB yMOBHOI cuMeTpii piBHsiHHS (14) BHUMJIKMBa€E 3 HACTYTHHX TEOPEM.

Teopema 4. Pisnanns (14) ymosro insapianmue 8i0HOCHO makux areebp:
1) Ay = (AG(1,n),Q®), QP = 2,P, — iln(uu*~1Q, akwo F = —F*, i suxo-
Hyemovca dodamKosa ymosa

Ly(u) = Alu| =0, |u| = (uu*)"/? (15)

2) Ayp = (A1, CWM), akwo F = ibyIn(uu*), by € R, CV mae sueand (8) i
sukonyemocs (15);

3) A = (AG(1,n),Q®), Q¥ = xqPy + 2,P, — (i/2) In(uu*~1)Q, akujo pynk-
yis F npuiimae Oiticni 3nauenns (mobmo F = F*) i sukonyemocs dodamkosa ymo-
sa (15);

4) A3 = (A12,B), akwo F = bln(uu*), b € R, onepamop B mae sueasnd (6) i
8uKoHyemocs dodamxosa ymosa (15);

5) Ayg = (AG(1,n),QW), QW = xoPy + (i/2) In(uu*~1)Q i sukonyromocs ymosu
F*=F, Ly(u) = Vo + A\V,V, =0, 2V = —iIn(uu*~1).

Teopema 5 [6]. Pisnanns (14) npu

F= 041|u|2’“71 + oz2|u|_27"717 r,ai, a0 €R, 7 #£0, (16)
YMOBHO iHBaApiaHmHe 8i0HOCHO onepamopa

Q®) = 2,P, 4+ rI —iln(uu*1)Q, (17)

akuo Ly(u) = Alu| — azlu|"=2/" =0, ag = ax\ ™.
Hacainok 4. Pisnsauns llpedineepa (14) 3 Herinitinicmro (16) ymosHo iHsapianmme
gionocro anrcebpu AGs(1,n) = (AG1(1,n),Q®)), akwo suxonyemsca odna 3 ymos:

a1 =0, r=k (18)
abo
Qg = 0, r=—k. (19)

Hacninok 5. Pisnanua (14), (16) ymosro insapianmmue 8ionocHo areebpu AGes(1,n)
= (AG5(1,n),Q®)) npu suxonanni odniei 3 ymos (18), (19) ma ymosu, wo k = —n/2.
Crpykrypa anre6pu AGg(1,n) BuBYeHa B poGorax [7, 8].

Hacainok 6. Onepamop Q) nopodacye maki ckinuenni nepemeopens:

To — (E6 = o, Laq l’:l = eXp(e)xaa

u — u' = exp(rf) exp{exp(20)} (uu*~1)?|ul,

0 — epynosuii napamemp.
Teopema 6. Pigranus (14) 3 Heainilinicmio

F=ioqlu]™  +aglu| MO faglu|~=A7" o, BreR, j=T,3,20)
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YMOBHO (HBapianmHe 8i0HOCHO onepamopa
Q® =220Py + (1 + B)zo Py + ifIn(uw"1)Q + 711, 1 #0,

akuo Alu| = oz4|u|1‘(1+5)7"71, g = a7 L
Hacaigok 7. Onepamop Q%) nopodwcye maxi cxkinuenni nepemeopenns:
xo — xy = exp(20)xo, x4, — ), = exp((1+ 5)0)z,,
u — 1’ = exp(rf) exp{exp(—236)} (uu*=1)/?|ul,
0 — epynosuil napamemp.
4. YmoBHa rajinei-iHBapiaHTHiICTb (pa3oBoro piBHsaHHA Illpeninrepa. 3 xomy-
TauilHUX chiBBigHOUIeHb s anredpu As (9) (muB. Hacaigok 3) BUIJIMBaeE, L0 BCi

oneparopu Liel aare6pd, 3a BHHATKOM omepatopa Fp, 3al0BOJbHAIOTb KOMyTaliliHi
cniBBinHOMeHHs anreGpu [anines [1].

Teepmxkenns. Sxuio onepamop Pél) mae sueand
Pyt = exp{=200}(Po — i In(uu”)Q), @1

mo onepamopu Pél), P,, Jub, Q(l), Ggl) ymseoproroms b6asuc aseebpu lanines, axy
nosuauamumeno AGM (1,n).

CrnpaBe/IUBICTh 11bOTO TBEPAKEHHS] BUIJIMBAE 3 KOMyTalliHUX CIiBBiIHOIIEHb IJIs1
orneparopa Pél):
PV, P =P, Jw) = [RY,Q@W1 =0, [PM,GW]=cP,, ceR.
Bumaratumemo inBapianTHicTh (hazoBoro piBHsHHS Llpeninrepa
Su +ifuln(uu*~1) =0 (22)

. 1 . .
BiZIHOCHO orepaTopa Pé ), PesysbTat chOpMY/II0EMO Y BUIISAAI TAKOT TEOPEMH.

Teopema 7. Dazose pisuanus lllpedineepa (22) ymosHo insapiarnmre 8i0HOCHO aA-
2ebpu Ay; = (AGW(1,n), Py, Q®, AW, T), de

Q® = z,P, — in(uu*1)Q,
AW = exp{2Bz0}(Po/B + 224 Py — iln(uu*~1)Q + (8/M)x?Q — nl),
AKUW,0 8UKOHAEMbCS 000aMKO8A YMOBA
Ly =Vo+AV,V, =28V =0, 2V =—iln(uwu*""), B#0. (23)
Onepamopu Pél), Q) nopodxcyrome maki ckinuenHi nepemeoperHs:

xo — xp = (28) 71 In(286; + exp{2Bx0}), x4 — !, = exp{fs}za,

" - 01 + exp(260) (202 + In((4i) " In(uu*~1)))
u — u = exp {215 exp { 2301 + exp(QBxO) }} ],

de 01, 0o — epynosi napamempu.
Hacainok 8. Ascebpa Ais isomoppra arcebpi ymosHOL iHBAPIAHMHOCMI 8iAbHO20
pisuanns Ilpedineepa [6]. To6mo onepamopu PY P, T Po, Q®¥, W), oW,
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AWM T peanisyromo nose npedcmasrenns areebpu AGg(1,n), donosneroi onepamo-
pom I.

HocainuMo cumetpiiini BnactuBocti piBHsiHHS (13) mpu nonmaTkoBiét ymoBi (23).

Teopema 8. Pigusanus (13) ymosro insapianmmue 8i0HoCHO makux areebp [arires:

1) Aig = (AGW(1,n), Py), akwo ¢yuxyis F(uu*) dilicna;

2) Air = (A1, DM, akwo F = \|u|=2/%, A,k € R, k # 0, de D) = Q) +
2P0 + kI,

3) A18 = <A177A(1)>, AKULO F = )\Q\u|4/", X ER, k= —n/2

Hodamkosa ymosa mae uernd (23).

Aunrebpa A;g isomopdua anredpi AGg(1l,n). Lle BUmInMBae 3 KOMyTaUidHUX CIiB-
BiZHOLIEHb /51 LKX anarebp [6-8].

Taxkum uyuHOM, nOBeneHO, mo (a3oBe piBHsiHHS LlpeniHrepa ymoBHO iHBapiaHTHe
BigHOCHO anrebpu [anines y HecTaHAapTHOMY MpeACTaBJEHHI.

CdopmyoeMo 1iie OIHY TeopeMy Mpo YMOBHY iHBapiaHTHiCcTh piBHsHHS (13).
Teopema 9. Pigusnus (13) ymosro insapianmue 8i0HOCHO maKux areebp:

1) Ay = (A3, Q@) akwo pynkuis iF (uu*) diticna;

2) Aoy = (AG,Q(2)>, akuo F = ibgIn(uu®), be € R, npu dodamxkosiii ymosi Ha
modyav @yukyii u (15).

5. IloBeneHHs1 TeopeM. [[oBHe NOBeleHHS HaBeIEeHUX TeOpeM NOCHUTb T'POMi3IKe,
TOMY MH BKaKeMO TiJIbKH OCHOBHi eTanu Horo, omyckawodu meTadi.

[Tosnaunmo yepes X noBinbHHUE omepatop 3 anre6pu iHBapianTHocTi piBHSHHS (1).
Jlast noBeneHHs1 TeopeM 1-3 HeoOXxigHO cKopucTaTUcs ajaroputmom JIi.

@)
1. TTobynyBatu 3a ¢opmynamu Jli npyre npomoBkeHHs X onepartopiB (OuB., Ha-
npukJan, [1]).

(2
2. TlonisiTv omepaTopamu Apyroro mpopoBxkeHHs X Ha mMHorosup (1) i sHalTH aH-

(epeHuianbHe piBHAHHS Aas QyHKUiT F'(u,u*). Po3B’s3aBIuM Lie piBHAHHSI, OLEPKUMO
SIBHUH BUIAL QYHKUIN F'(u,u™), npu kX piBHsAHHSA (1) Mae Ty 4d iHIWY cuMertpil.

Jas noseneHHs TeopeM 4-9 noTpi6HO BHKOPHUCTATH KpUTepil yMOBHOI iHBapiaHT-
HocTi. B posrisinyBaHoMy Bumaaky ueit Kputepiil mae Bursn [1, 6]

(2) (2)
XLi=guli+gi2le = X1 =0, (24)
Li=0
Lo=0
(2) (2)
XLy=goly+gaalo= XLo =0, (25)
Ly =0
Lo=0

Ie g11, g12, o1, goo — B3araji Kaxkyuu, neski ornepatopu. Poss’si3aBiuu cucremy (24),
(25), omepxkuMo yMOBM Ha w i u* MpHu ssKuX piBHsIHHSA (1) iHBapiaHTHe BiIHOCHO omepa-
Topa X.

HaBenemo noBeneHHs1 TeopeMH 5 1po YMOBHY iHBapiaHTHicTb piBHsAHHS (14) BinHOC-
Ho omepatopa Q1) = X

Jliroun omeparopom ()2() Ha MHoroBun Li(u), ofepKHUMO

@)
X Li(u) =2L1 — A\A|u|ju| ™ + 2F — r(uF, +u*F,-), (26)



Cummertpis Ta HeqiiBcbKa penykuis HediniliHoro piBHsiHHS Llpeninrepa 49

ne F, = 0F/0u, F,» = OF/0u*. Otxe,
Lo(u) = —4\Alul|u| ™t + 2F — r(uF, + u*F,-). (27)

2)
Iitoun onepatopoM X Ha MHOroBuI Lo(u), Onep:KUMO

)
XLy =—2Ly +4F — r*(uFy, + u* Fye + u?Fuy + 02 Fyeye + 2uu*Fuyr ). (28)

3 (26), (29) BunauBae, wo pisHaHHA (14) iHBapianTHe BimHocHO Q°) mMpu nonaTKoBik
yMmoBi Lo(u) = 0, npu yomy HeJiHidHicTb F'(|u|) NOBHHHA 3a/0BOJILHSTH YMOBY

AF — 12 (uF, + u* Fye + u*Fuy + *? Fyeys 4 2ut* Fy» ) = 0,
ne Fuy = 0°F/Ou?, Fyeys = 0*°F/0u*?, Fyy = 0*F/0udu*. Bci inwi Teopemu mpo
YMOBHY CHMETpil0 OBOAATbCS MO HaBeleHil cxeMi.

6. HeaiiBcbka penykuis piBHaHHeA (14). Bynemo wmykaTH po3B’s3KH UOTHPUBH-
mipHoro piBusinHs (14) 3 "eninifinictio (16) y Burasai [6]

u(z) = u(@o, x1, 2, 23) = f1(z)p1(w) exp{ife(z)p2(w)} (29)
[Mincrasusim (29) y piBusiuus (14), (16), omepxumo

Jrop1 + fro1,wo + 2M f1, f2, 0102 + Af1 fawawa (201, 02, + ©102,.,) +
+ 2 f1, fop1p2,Wa + 2A f1 f2, 1, P2wa + Af1A fap1po +
+ A1 fop192, Waa + 2Af1f2, 0102, wa = Im F,
AAf1p1 + Af101,Waa + Af191,,,WaWa + 2A f1,w0 — f1f2,p102 —
— f1fap102,w0 — M1f2, fo, 0105 — M1[303, Wawa —
=2\ f1fafo, 10202, wa = Re F(f11),

(30)

ae

fj# = ij/ax#, Pj., = &pj/@w, Wy = 8w/€)xw
w:(w17w27w3)7 M:0737 ]:1a2

Hiticui oyHkuii fi(x), fo(z) noBuHHi OyTH Tak Bu3HadeHi, o6 3 (30) BumIMBana
cucteMa piBHSHb misi QYHKUIE ¢1(w), @o(w), B SIKY BXOAATH TLMbKK 3MIHHI w =
(w1,wz,ws). Tomy dyHkuii fi, fa, wi, we, ws NOBHHHI 3aJ0BOJILHATH AESKY CHCTe-
My piBHSIHb, Ky OyneMO Ha3uBaTU ymosamu pedykyii. Binpl petanbHO NMPO MeTON
penykuii muB. [9]. OTxke, npobsiema penykuii doTnpuuMipHoro piBHsHHS (14), (16)
3BOIMTBLCS [0 PO3B’sI3aHHS CKJIANHO! CHCTEMH HeJiHIHHUX piBHSAHb (YMOB pemyKIii).
Tax, piBusiuus (14), (16) penykyerbest no cucremu 3P

0101 + 0201 + A30102 + N4 (20192 + p1$2) +

+ Ms0102 + 206 (D102 + p192) = 0,

O7p1 + Ogp1 + Ogpr = 042<,0§T_2)/T,

01002 + 01192 + A012¢03 + N01393 + 2M014p2¢0 = al@?/r7

Sbj = &pj/aw, SDJ = 82@j/8w27 ]: 1723
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Ko GyKHOil 61, ...,014 3200BOJNBHSIOTh TaKi YMOBH pemyKLii:

fio = B@)01 (@), Aw+2f 1 frowa = O() 2, fr, = h(x)ba(w),
fo= 001" 2f1,fon + 12 = h(@)05(w),  fowo = O (w) f7T
fifawawa = W(2)02(w),  fo, fou = O12W) [ f1, fowa = B(2)05(w), (31)
f2,Wawq = 913(W)f12/ra f1f2awa = M(2)b6(w),  fafo,wa = 914(W)f12/r’
Afy = o) FD7, wawa = (W) FT
ne h(x) — nosinpHa (yHKUis Bix x, QyHKUIT 01, ..., 014 3anexars Big w = w(x).
[oGynyBaTu 3araibHUH po3B’si30K yMOB penykuii (31), HameBHO, HEMOXKJIMBO, aje
3HaWUTH YaCTHHHI PO3B’SI3KU He TaK BaxKKo. [laji HaBeieMo NesiKi UacTHHHI PO3B’13KH
ymoB penykuil (31) i BinnosinHi penykoBani cuctemu 3P mis pyHKUi# ¢1(w), @2 (w).

1. ®yukuii f; = J;fl/z, fa = 2%, w = mo 3amoBoNBHAOTL cuctemy (31). Penykosana
cucrteMa 3J1P mae Burssn

4 3\
¢2 + 4>\§0§ + % = 07 Pr=\ 1> Qo 7& 0; )\Ckg > 0. (32)
3\ 4042

3arasbHUH PO3B’sI30K PiBHAHHS (32) 3a1aeThcsi BUPA3oM

/109 tg <C _ 4,/0[10&2

) npu ajag > 0,

V3 V3
2 Vo
. —V/—ajas npu o < 0, (33)
P2 /\\/§(1—cexp{—4\/§*1 70[10[2&)}) 102 1P 102
1
Do te npu a; = 0.

Takum uunom, dopmynn (29), (32), (33) BU3HAUAIOTH ONHONMAPAMETPUUHY CiM'I0 pO3-
B's13KiB HesiniliHoro piBusius lpeninrepa (14), (16). BuxopucroByiouu cumerpiio
AG(1,n) piBusiHus (14), 3a UuM po3B’ss3KOM MOxHa moOynyBaTH [1] GaraTomapamer-
pUUHY ciM’t0 po3B’si3KiB piBHsiHHSA (14), (16).

2. dyukUil fi = 1, fo = 23, w =2, 7 = 1, ay = 0 3a10BOBHAIOTL cHcTeMy (31).
PenykoBana cucrema 3[1P nasi 1 i oo Mae BUrasig

P14 6Ap102 =0, @2 +4Xp3 + a1} = 0. (34)

OcranHi ekBiBaJieHTHI cuctemi

0o = 7%@ t=Inp(w), i- %P — 6o exp(2t) = 0. (35)

B (35) 3pobumo 3aminy
2 =y(t). (36)
[pu uboMy crcreMa peayKoBaHUX piBHsIHb (34) HaGyBae BUISLY

1

.4
P9 = —6—)\\/33, v 3y - 12Xy exp(2t) = 0,
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3BiIKM MaeMO
1 4
p2=— VU Y= 18\ay exp(2t) + cexp §t , ¢ = const. (37)

3 cucremu (37) BUIIHBaE

exp (2t 2
Qg = — P (3 ) co + 18Xy exp (§t>,

6

3 2
t= 3 In (<\/2>\a1w + cl) e ) , a1 #0, c¢1,co = const.

18\

OcTaTouHO MaeMO Taki piBHSIHHS:

1
0y = _agp?m co + 18)\01190?/3

9 3/2
01 = ((\/QAalqucl) __o > , ¢1,Co = const.

18)\0[1

(38)

Takum uuHOM, MpH migcTaHoBUi 1, 2 3 (38) B (29) omepKyeMo TOUHHHE PO3B’sI30K
HesiniliHorO piBHsIHHSA (14), (16).

3. Mpu f1 = (x2)"/?, fo = x> = 2 + 23 + 23, w = 2¢ cHCcTeMa peayKOBaHUX
piBHSIHb HaGyBae BULJISLY

G1+10Ap102 = 0, @2 +4Ap3 + a1 =0,

KO g =0, 7 = 1.
Akuo ay # 0, r = —3/2, 1o anszau (29) penykye (14), (16) mo 3P

. 4041042 15\ 3/4
ANp? =0 === :
P2 HAAG F S » A (4a2>

4. Oyukuil fi = (2?2 +23)"/2, fo = 22 + 23, w = V2arctg(wa/x1) — To 3210BOMDL-
HstoTh cucteMy (31). CucTeMa peLyKOBaHUX PiBHSIHb MA€ BHUIJISIA:

2Xp1P2 + 4ANp1a — @1 + AN + 1) @102 = 0,
o (39)

NP2 — o+ ANP2 + a10Y " =0, 2@ — 121 — anpy T =

5. dynkuii fi = (27 + 23)7/2, fo = 22 + 23, w = (2F + 23) exp{2cvarctg(xa /1) —
V2x0}, a > 0, 3a10B0bHAOTL cucTeMy (31). PeykoBaHi piBHAHHSA MaloTh BUIJISL

2(1 + Otz)w2g01¢2 + 4(1 + a2)w2¢1¢2 + 4(4}()51@2 +

1
+ 15— 20{2 + 2r — ) wgbgcpl + (]_ —+ 27")4,01902 — 0’
( V22 (40)
4(1 + a)w? P2 + Swpows — V2wips + ANp3 + Otz(pf/r —0,
40&%}(,51901 — 4a2w¢% +4(1+ 042)w2<,b% 4147+ 042)&14/71(,01 _ a2¢§27r)/r —o.

3ayBaXKMMo, 110 CHCTEMH pelLyKoBaHHX PiBHSHb (39), (40) nepeBusnaueni. Tomy, npu-
PONHBO, BUHMKAE MUTaHHs cymicHocTi cucteM 3P (39), (40). das cucremu (39) mpu
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r = —1 MOXHa BKasaTH Taki KOHCTaHTH ¢ i co, 110 (1 = ¢1, @2 = ¢o. Toni ansan (29)
3aJaBaTHMe TOUHHH PO3B’SI30K CHCTEMH HesiHidHuX piBHsiHb (14), (16).
Jlnis 3HaXoKeHHs] PO3B’ sI3KiB HeJliHIHHOr0 piBHSIHHS

Su = ia1|u|_F1 + 042‘U|_2T71 (41)
(uacTkoBuil BuMamok piBHsAHHSA (14), (20)) ckopuctaemoch ansauom [10]

u= fi(z)p1(w) exp{i(f2(2)p2(w) + g(x))}. (42)

Bkaxemo pmesiki Habopu ¢yHKUiN f1(x), fo(x), g(x), w(z), AKi 3a10BOJIBHATUMY T
YMOBH penykuii piBHsHHA (41) Ta BimmoBiaHi penykoBaHi piBHSHHS.
6. Ha6ip oynkuiit f; = xf, fo = 25", g = 23/4\rg, w = Ty 3a10BOMbHSAE YMOBU
penykuii piBHsiHHS (41). BinnoBinHa cucTeMa penyKOBaHHX PiBHSIHb MAaTHMeE BHIJISII
Apra + (1 +1/2)p1 + 212 = gl V", (43)
AZ3 = o+ a0y T =0, $1=0.

[pu migcTaHOBII YaCTHHHOTO PO3B’sI3Ky cHCTeMH (43)

r+1\"" w+e\? r+1\
1= ;o #F0, pp= + g
o 4\ aq
B aHzall (42) omepKyeMo oqHOMApaMeTPHUHY CiM't0 PO3B’sI3KiB piBHsHHSA (41).

7. Tpu fi = afy, fo = 25", g = ¥3/4\x0, w = (x} + 23)"/? anzan (42) pemykye
piBHsiHHA (41) mo cuctemu 3[1P

Ap1$1 + AT o190 + 20P192 — Ap1¢e + 1 = 04190§T71)/Ta

Apz — 2+ azp] T =0, $1— g1 +w o =0.
8. Tpu f1 = xf, fo = 25", g = (23 + x3)/4\xg, w = x3 chcTeMa pelyKOBaHMX
piBHSHD Oyfle MaTH BUIIS]

Ap1@1 + 20160 + (1 + D)oy = gl D77,

A2 — 03 + oy /" =0, @ =0.

Hans penykuii piasHHsa (14) 3 HeqiHifHiCTIO, 110 3aM0BOJIbHSE YMOBYy F = —F™,
CKOPHUCTAEMOCH aH3aLOM
u = g1 (w) exp{i(f(x)pa(w) +g(x))}- (44)
ko Bunucaty BiAMOBiAHI yMOBH pelyKuUii, To ¢pyHKLIT
2 2
f= l —z%, g=0, w=ln(uu*"H)Y? —In(zy(z? + 22))
Ty

3a/I0BOJIbHATUMYTh 1i yMoBH. Cuctema 3P maTtumMe BUT/ISA
P2(1 —4Xp2) = 2(1 = 4Ap2),  202(2¢01 — ¢1) = F(e1)e1. (45)
Hans pisusuust Upeninrepa 3 sorapudmiuHow HeJiHiHHICTIO

F(uu®) = iby In(uu*), by € R, (46)
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YaCTHHHUE PO3B’sI30K CHCTEMU PiBHsHb (45)

1 1- —2Xb
P2 = 57 P1 = exp{ Cexil()l 1w> } ) bl 7& 07 ¢ = const,

npu miacTaHoBI B aH3all (44) 3amaBaTHMe TouHHE po3B’si3ok (14), (46).
9. Auzan (44), ne f = xgl, g = 0, w = x3, penykye piBHsHHS (14) 3 nilicHowo
HeJsiHiltHicTIo (F = F*) no 31P

P12+ 20102 =0, AP5— 2 =0, Ap1 = F(p1)p1. (47)

3 (47) BunamBae, 1o @ = ¢ (w + c2) "2, 3 = (W + c2)/4N)? pu F = (3/4)\|ul®.
10. Anzan (44), ne f = x5', g = 0, w = (23 + 23)'/2, penyxye pipusnus (14)
3 AidicHolo HedqiHikHicTiO 1o 3P

wp1Pe + 2wP1a — 192 =0, AP3 — 2 =0, A1 —w L1 = Fo1)epr.

7. Auzau s ¢asoeoro pisaguuag Hlpeninrepa. Po3s’ssku piBusiHHs (22) Gyne-
Mo wykatd y Bursni (29). Has sHaxomkeHHs siBHOrO BUrsiny (yHkuii fi(z), fo(z),
w(z), ckopucTaemoch THM, 110 (haszoBe piBHsHHA Lllpeninrepa ymoBHO iHBapiaHTHe Bif-
HOCHO anrebpu Ajs (nuB. Teopemy 7). HaBenemo nesiki mpuk/aany HesiiBCbKOT pelyKuil
piBusinas (22) mo cuctemu 3]1P.

1) o niganre6pi xoposmiprocti 1 (Q) + kI, .J,,) MoxkHa moSynysatu ausar (29),
Ie

fi= (@)%, fo=exp{2Bno}a?, w = exp{2Bz0}, (48)
SKUH penyKye ¢asoe piBHsiHHs Ulpeninrepa (22) no cucremu 3P

Bt + A2k +n)p1p2 = 0,

49
Bl + 202 =0, (k% +kn —2k)(x?)~! =0. 49

OueBHHO, IS CHCTeMa CyMicHa TifbKM Tomi, Kosu k = 0, Ta k+n — 2 = 0. 3arajbHuii
PO3B’SI30K CHUCTEMU PeAyKOBaHUX piBHAHL (49) Mae BUIIAL

p

N —(2k+n)B/2 __ B
o1 = c2(2Mw + 1) , P2 oy

C1,Co € R.

[lincranoBka @1, @2 B ausal (29), (48) nae Takuil po3B’s30K HeJiHIHHOrO piBHSH-
Hs (22):

u = (:132)16/202(01 + 2\ eXp{Qﬂxo})7(2k+n)ﬁ/2 exp {ix2 /BeXp{Qﬂxo} } ’

2 exp{28zo} + 1

ne k 3anoBosbHsie k(k +n —2) =0, n — 4UCJIO NPOCTOPOBUX 3MiHHHUX.
2) Anuszan (29), ne

fi= (xf+x§)k/2, fo= (a:%—#x%)exp{?ﬂxo}, w = arctg i—?—exp{Qﬂxo},(BO)

penykye piBHsHHS (22) mo cuctemu 3/1P

Ay o1+ 2Xp 5 — Bl + 2Ap192(1 + k) =0, (51a)
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Aph + 2Xp3 — Bh =0, (51b)
A — (51c)

3 piBusirHs (5lc) mpu k = 0 omepKyeMo w1 = ciw +cg, €1, 2 € R. 3aranbHa po3B’s30k
piBusHHSA (H1B) Mae BUIIAL po = 2):\&);&3 c3 € R. IlincraHoBKa 1UX 3HaueHb (YHKLiH
w1 1 @o B piBHSAHHA (5la) MPUBOOUTbL N0 TaKUX yMOB: 1) ¢o = c3 = 0, A = 24,
2) C3 = 202/61, A= 25 =1.

Takum uuHOM, 3arajibHHE PO3B’130K MepeBH3HAUeHOi cUcTeMu piBHsAHB (5la)—(5lc)
npu k = 0 npuiiMae Taki 3HayeHHs:

1. g1 =ciw, o= (4w)"! nmpu \=20;

1
npu A=28=1, ¢ #0.

2. = = —
p1 =ciw+c2, P2 o+ dcyjer

[TincTaHOBKa LKX 3HaueHb ¢1(w), p2(w) B aHzan (29), (50) 3agaBaTHMe TOUHUH PO3-
B’s130K (22).

OTxe, BUXOAA4YM 3 YMOBHOI iHBapiaHTHocTi ¢asoBoro piBHsiHHA Illpeninrepa Bix-
HOCHO anre6pu Ajs, MOXKHA NMPOBOIUTH HEJIiBCbKY DPEeNyKIil0 i 3HAXOAWTH TOYHI He-
TPUBiaJibHI PO3B’SI3KH L1bOTO HeJiHIHOTO PiBHSAHHS.

3ayBaxenHa 4. Cumerpilinum anasnorom ¢asosoro piBHsHHS Ulpeninrepa (22) nas
BUMAIKY, KoMK (PYHKLIisA v AilcHA, € Take HeJliHiHe PiBHSAHHSA TENJONPOBiAHOCTI

ug + AAu = Pulnu, N 0 €R.

B potorti [11] BkasaHo nomaTKOBY yMOBY, TpH SIKiH Iie PIiBHSHHS YMOBHO iHBapiaHTHe
BIIHOCHO ABOX pi3HUX MpeicTaB/eHb posiuupeHol anre6pu [anines AG:(1,n). 3aysa-
JKUMO, 1110 BIAEThCS 3HAUTH 3arajbHUN PO3B’I30K OJlep:KaHOI MepeBU3HAUEHOT CUCTEMU
piBHSAHb. BiH mMae Burasg

u = exp{ (e — A3~ a? exp{Bzo} + o)} exp{Bzo},

a? = au0,, a=1,n, o, €R.

(B uuToBaHill po60Ti BKa3aHO JKIIe YaCTKOBHE PO3B’SI30K NAHO! CHCTEMH.)

8. Po3pmineHHsa 3MiHHMX Ajs HeJiHiiHoro piBHaHHA (11). Posp’sisku rasined-
iHBapiaHTHUX piBHSAHB TUNY (14) OymeMo MIyKaTH y BUIJISAAI

U= f(:co,w)cpl(wl)ch(wQ), Wk = wk(xo,m), k=1,2. (52)

Omwuwemo Bei ¢pyHkuii F(uu*), f, wt, w? raki, mo6 ansan (52) 3BogMB piBHsiHHS (14)
JIO CUCTEMH piBHSAHb

@k(wka@ka@%awg) =0, k=12 (53)

Jie @ — HOBi KOMIJIEKCHO3Ha4YHi QYHKL{, KOXKHa 3 IKUX 3aJ1eKUTb BiJ ofHiei 3MiHHOT
Wwh, o = 0pi/0w", ol = 0%p[O(w)?.
[ligcraBastoun (52) B (14), onepxkyemo

{ *’;? +)\Aff} o { iwh +2)\J;fw§+)\Awk}+

/\€01%02 1 2 )\901@ k k
P1P2

F(ff* o107 p295)
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(TyT mo iHmekcax k, 110 TOBTOPIOIOTHCS, MPOBOAUTHLCS CYMyBaHHs). 3 OCTAHHLOTO PiB-
HsIHHSI BUIUIMBAE HACTYIHA TEOPEMA.

Teopema 10. /[1s moeo w06 ansay (52) 3600us pisnanns (14) do cucmemu pieHamo
(53), Heobxiono, w06 ynkyin F(uu*) 3adosorvrsra (5), a maxoxi 8UKOHYBAAUCS
YMOBU:

ifo+ AAf = XsfIn(ff*) = f(RN(w!) + R*(w?)),

Ja

54
iwg + 2)\7w§ + MWF = Gk(wk), w (54)

1,2 _ k k _ gk, k
aws =0, dwjw) = H"(w").

[Ipn BukonaHHi ymoB TeopeMu 10 piBHAHHA (14) pO3LIEMJIOETBCA HA TAKUX [1Ba
piBHAHHS:

RF(wF)pr, + GF (WP, + H* (WPl = Ason(orer),

Iie iHfeKc k mpuiimae 3HaueHHs k = 1,2.
PosrnsineMo BUMAamoK, KOJH

n=3, f=f(zo,x3), w"=uw"(zo, 1) (55)
i pyukuis f sapoBosbHsie piBHsinHs [lpeninrepa 3 morapudmivnoro Hedinifinictio (11).
Hacninok 9. Anzay (52), (55) posuwenaioe pisuanns (11) 0o cucmemu pigHsrby

G* (W) + HE (WPl = Asen(erer), (56)
de wk sadosonvrsroms cucmemy

iwf + AP = GF (W), Mofwr = HYWY), k=12
Jlas wacmkosoeo eunadky w* = xj, cucmema (56) s6odumocs do pisuane A} =
Aspr(Prer), Az = b+ iby.
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Symmetry analysis and ansatzes
for the Schrodinger equations
with the logarithmic nonlinearity

W.I. FUSHCHYCH, V.I. CHOPYK

Symmetry properties of the Schrodinger equations with the nonlinearity uIn(uu™) are
investigated. It is shown that these equations are invariant with respect to various
extensions of the Galilei algebra AG(1,n). The conditional symmetry of these nonlinear
Schrédinger equations are investigated. Lie, non-Lie dimensional reduction and reduction
by number of dependent variables carried out. The exact solutions of these equations
are constructed.

1. Introduction. Let us consider the Schodinger equations with the logarithmic

nonlinearity:

Su=buln(uu*), beR 1)
and

Su = (A +ir)uln(uu®), Ay #0, (2)

where S = ia—i + A\, g =t, A = %, a=1,n, \,\; € R, n is the number of
space variables.

For the case when b is a real constant the equation (1) is equivalent to the equation
suggested by I. Bialynicki-Birula and J. Mycielski [1]. The equation (1) is investigated
by many authors using different methods (see e.q. [2, 3]). For this case the equation
of continuity:

9P | divi—o,

0o 3)
= (wu"), J=(h,J in)y  Ja = —iA u*au—uau* a=1,n

P = ) J=U1,925---50n)s Ja = al’a axa ) — 4

is satisfied.
For the case when As # 0 the equation of continuity (3) is not satisfied and the
formula:

o

+divg = Aaplnp
al'()

can be considered instead of condition (3).
For the equation (2) the conditions:

Op . 0
= Ja —Ta =Y
8560‘7 + oxy »=0
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where Ty is the stress tensor, a,b = 1, n, are not satisfied (in contrast with the case
of the equation (1) [1]).

It will be shown further, that symmetry properties of the equations (1) and (2) are
essentially different.

2. Lie symmetry. It is well-known that the equations (1), (2) are invariant under
the Galilei algebra AG(1,n) generates by operators:

P(]:i, P, = 0 y Jap =z Py — xp Py,
83?0 axa
) g . (4)

However, it appears that the Lie symmetry of the Schrodinger equations with loga-
rithmic nonlinearity are not exhausted by the algebra (4).

Theorem 1. The equation (1) is invariant with respect to the algebra:

AG3(1an) = <AG(1,TL),B>, (5)
where B =1 — 2bxoQ, I = u% + “*a—z*-
Theorem 2. The equation (2) is invariant with respect to the algebra:

AG4(1,n) = (AG(1,n),C), (6)

where C' = exp{2X2z0} (I — i—;Q), when Ay # 0.

The above theorems can be proved using the Lie algorithm [4, 5].
The operator C' generates the following finite transformations [6]:

To — Xy = Tg, Ta — Th = Ta,
A 7
u— u' = exp {9 <1 - z)\—1> exp(?)\gxo)} u, @
2

where 6 is a group parameter.
Under transformations (7), the equation (2) becomes:

exp {—9 (1 - z%) exp(2)\2x0)} [Su’ — (A1 + ido)u In(w/u')].

2

This shows that the equation (2) is invariant with respect to the operator C.
Note 1. Solutions of the equation (1) can be generated by means of transformations [1]:

To — XY = To, Ta — Ty =2Ta, u—u =exp{0(1— 2ibxg)}u

which are generated by the operator B.
From the commutation relations for the operator C

[C, Ro] =diC,  [C,Pa] = [C,Jap] = [C,Q] = [C,Ga] =0
and for the operator B

[B, Po] = d2Q,  [B, Pu] = [B, Ju] = [B,Q] = [B,Ga] =0, di,dy €R
it follows that the algebras AG3(1,n) and AG4(1,n) differ.
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3. Lie reduction by number of independent variables. In this paper we sys-
tematically use symmetry properties of equations (1) and (2) to find their exact
solutions. The method of finding exact solutions of differential equations is based on
Lie’s ideas of invariant solutions and it is described in full detail in [4, 5].

In this section we describe the some ansatzes of codimension 1 and 2

u = f(zo,®)p(w1,w2) exp{g(wo, z) + p(w1,wa)},

where the functions f, g and new variables w; = w;(xo,x) are determined by means
of operators of subalgebras of AG3(1,n) and AG4(1,n).

Let us consider some subalgebras of AG3(1,n), which reduce the equation (1) to
system of differential equations with one and two independent variables.

1) (B4+aPy, Jap), a # 0. The ansatz and corresponding systems of reduced equati-
ons has the form:

_ o b o,
u-exp{a}p(w)exp{z{ axo—l—go(w)]}, a#0, a€eR, (8)
where w = (x?)'/2, 22 =2 + --- 4+ 22 and

1 n—1
Pt 209 + App + )\Pst =0,
Mo+ An —Dw™lp — App? = 2bpln p,

where p= 20, o =92 5= 08 5= 0¢
2) <B+04P0,J12+ﬁp3> a, 750 Oéﬁ R

u:exp{%}p(wl,wg)exp{i {—gxg—i—go(wl,wg)]}, a#0, aeR, (9

where

Ty
2 21/2 2 3
wy = (22 4+ 22)2,  wy = arctg =2 — =

Z1 B

The system of reduced equations has the form (for the case n = 3)

a”lp 420101 + 2002 (Wi 2 + B7%) + Appnn +
+ Appas(wi? 4+ 572) + /\pwflwl =0,
Ap11 + Ap2a(wi? + B72) + Apwi ' — Appt + pos(wi® + B7%) = 2bpInp.

3) The ansatz

T | zox b 3
U= exp{go}p(wl,wg) exp {z [ (;1 — ax% — GT +ap(w1,w2)}} (10)

when n = 3 reduces equation (1) to the system:

2Xp1901 + 2Xp202 + @ p 4+ Ap(ws Lo + 11 + p22) =0,

—1 2 2 —1 (11)
Ap11+ Ap2z + Awy p2 — Ap(pT + ¢3) = 2bpInp — (2Aa) ™ pwy,
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where
\ 2
wlz%—xl, WQ—(I§+.CC§)1/2, OZ#O,
0 0
_ 0Op ¥ —19

Solving the system of reduced equations (11) one can following partial solution of the
equation (1)

2
U = exp o +@—d‘1’xa+cl+
8\ab «
9 (12)
S Lo v 2 @ a a
+z[ o ax0+ 5 zsr:a—&—dgaca—i—c%},

where d¢,c;,a € R, k=1,2,3, a =1,n and d{ satisfy the following conditions:

1 1 1
d%d® = ——— d°d% = —— . d%d% = ———
T -V T S D VO
a ja ¢ a ja b a ja 1
d2d2 = 4)\2a dgdg = _X, d3d3 = m — 2b01.

It is easy to see that the exact solution (12) of the nonlinear equation (1) is
non-analytical by b.

Note 2. The ansatzes (7)-(9) follows from the fact that the equation (1) is invariant
to the operator B.

Let us adduce some examples of reduction of equation (2).

Example 1. (C + aPs, J12). The ansatz

1
u = exp {— eXp(2)\2x0)a:3} p(wr,ws) X
a
\ (13)
cexp{i |- exp@iseo)as + olonwn)| | a0,
2

where wy = xg, wo = (27 4+ 22)'/2 reduces equation (2) (when n = 3) to the system:

P14 20p200 + Ap(wy ' p2 + p22) = 2Xapnp,
a”2Xexp(dhawr) (1 — AIAF2)p + Apoa + Awy L2 — pp1 — A3 = 21 plnp.

Example 2. The ansatz

u = exp { 2)\12a exp(2/\2m0)} p(w) exp {z {— 22;\% exp(2Xex) + tp(w)] } ,  (14)

where w = (2?)'/2 reduces (2) when Xy # 0 to the system of ODE:

M+ An—Dw™lp + App? = 2\1plnp.
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Example 3. The ansatz

u = exp {arctg 2 exp(2)\2x0)} plwi,ws) X
. (15)
X e i /\1e (2X\axp) arct m2+m§+~~~+x%+ (w1, wa)
Xp{i|—ex 4= "7
P Ao pl2A2Z0 g o Dz P w1, W2 )

where w; = xg, wy = (27 + x3)'/? reduces the equation (2) (when n > 2) to the
system:

A _ _ n—2
p1+2A eXp(4Azw1)A—1pw2 ® 4+ wipaps + 2Xpwy 2 + Apipas + 2o P =
2 1

= 2X2plnp,
Aexp(4howr)wy 2p(1 — ATAS?) 4+ 2Xp2 (1 + w3 h) — po1 — App3 = 2A1pIn p.
Example 4. The ansatz

u = exp(exp(2Xaxo)x1p(xo) X

A r34+ -+ a2 (16)
X exp {Z L\—;xl exp(2Xaxo) + 24)\4% + @(xo)] } ,

reduces the equation (2) when Ay # 0 to the system:

-1
H— 2 - 4 + B2 oxpl
P — 2MA )\ “pexp(4raxp) 570 Agpln p, (17)

© = Aexp(4razg) + /\/\1/\2_1 exp(2X229) — 2A1 In p.

The system of equations (17) by means of the change of variables p = exp ¢ is
reduced to a linear system of ODE which has the general solution of the form

AA n—1
b= )\—21 exp(4axg) — exp(2A220) (dl + 5 F(2>\2)) , di €ER,
2
A 2)2 A
p = @ exp(4>\2$o) (1 — A_%l) + 2—;2()\ + le) exp(2)\2x0) + (18)

+Ai(n—1) / F(2X2) exp(2Xaz0)de,

where

dSL'()

F9) = /exp(—Gxo)—.
T
The substitution of (18) into the ansatz (16) gives the following solution of the equa-
tion (2) when Ay Z0 forn =1
A
u=exp1 (x1 — d1) exp(2Aazg) + 5Vl exp(4Xezg) +
3

T+ 20000d A AAZ — 2AN2
+1 [(2/\% — /\2z1) exp(2X2x0) + T exp(2X2z9)| ¢ -

Note 3. The ansatzes (13)-(16) are obtained from the fact that the equation (2) is
invariant with respect to the algebra AG4(1,n) (as distinct from the equation (1)).
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4. Component-wise reduction. The reduction by number of dependent variables
of the equations (1), (2) is possible because of invariance these equations respectively
to the operators B and C.

1) For reduction of the equation (1) by operator B it is necessary to change or
variables:

W = F(zo,x) —i(4bxo) ' In(u/u*), V =In|u| —i(4bzo) " In(u/u*), (19)

where F' is a some real function.
Then the change of variables (19) is constructed, the equation (1) has the form:

Fo — Wo + Vo + 4X\bxo(Fy — Wo + Vo) (W, + Fi) + 2Xbzo (AW — AF) = 0,
AMFo —Wo+ Vo) (Fo — Wo+ Vo) + M(AF — AW + AV) —
— 2bxg(Wy — Fy) — 4\ 22 (W, — F,) (W, — E,) = 2bV,

OF _ oW _ oV __9
where FM_— W 81 ’V - Bzv ’A 0x,0Tq
— 0
B = 5%.

The reduction of the equation (1) by operator B is equivalent to the condition
W =0.
Thus, we can find the solutions of the equation (1) in the form:
u = exp{V (zo, z) + (1 — 2ibzo) F(z0, @)}, (20)
where functions V and F' satisfy the system:

Fo+ Vo —4X\bxo(Fy 4 Vo) Fy — 2XbxoAF = 0,

and the operator B has the form

MEy + Vo) (Fo 4+ Vo) + MAF + V) 4 2bxo(Fy — 2\bxoF F,) =0 @
Case 1. The functions V and F satisfy the conditions:

F = fi(zo), V= fa(wo) +ow), w=w(x) (22)
Substitution of the expression (22) into (21) yields the ODE

(& + ¢00 (@) + $02(w) = 260", (23)
where

wawe = 01 (w), Aw = ba(w), (24)
and

f1202—01x61, fgzclxal, c1,co € R. (25)

Note 4. The necessary conditions of compatibility and the general solution of system
(24) construct in papers [7, 8].

For the partially case w = a,2q4, gy = 1, aq € R, a = 1,n, the equation (23)
has the form:

@+ P2 =202 L. (26)
This equation by means of change of variables

¢* = ®(p)
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is reduced to a linear equation:
() + 20(p) = 4bA L.

The last equation can be easily integrated and the result is as follows:

~1/2
/ [g@ + cexp(—2¢) — 3 dp = (262" DY 2dw, ceR. (27)
When ¢ =0 we get from (27) the following solution of (26):
b 5 1
gp—ﬁ(w—i—c;),) +t5 cz €R. (28)

Summarizing results (20), (22), (25), (28) we write down the exact solution of equati-
on (1):
b 9 1 .
U = expq o (QaZa +¢3)" + o + - — 2ib(coxg — 1) ¢,
2A 2
where ¢; € R, i =1,2,3, aga, = 1.
Case 2. V =0 and F satisfy the overdetermined system:
FO — 4Ab(130FaFa - 2)\bl’0AF = 07
AE, Fy + AAF + 2bzgFy — 4\b?22F, F, = 0.

For this case the ansatz (2) has the form:
u = exp{l — 2ibxy) F(zo, )} (29)

Consequence. The ansatz (29) gives the solutions of the equation (1) if the real
function F satisfy:

Fi — MNF,F, =0, F,+MNAF=0, t=uz (30)

The system (30) have non-trivial symmetry properties:
Theorem 3. The overdetermined system (30) is invariant with respect to the exten-
ded Galilei algebra having basis elements:
0 0
at’ IF’
GV = FP, —z,(2\0)"'P,, DW = 2t9, 4+ x,P,.

Pt = 2‘:::I;(Q), Pa7 Jab7 Pn+1 =

Note 5. The operator Ggl) generates the transformation:
t—t' =t — (2\b) 10,y — (4N0) 7102,z — T} = mp,
Ty — =24+ 60,F, F— F =F,

where 0, is a group parameter.

2) For reduction of the equation (2) (A; # 0) by operator C' it is necessary to
change of variables:

1
W = F(xg,x,w), w= 5 exp(—2Xa0)(In [u| — (2iA1) "' Ao In(u/u*)),
(31)
1
V=XMInul - ZE)\Q In(u/u").
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Substituting (31) for the partially case F, =1 into the equation (2) we get:

(201)~1Vi — exp(2hazo) (Fo — Wo) + 2A[(20) "1V, —
—exp(2X270) (Fy — Wo)((2X2) 71V, + A1 (A2) L exp(2Xam0) (Fy — Wo)] +
+(200) " TAJAV + 20, exp(2haw0)(AF — AW)] — (A1)~ AaV = 0,

A[(2A1) 71V, — exp(2Xaz0) (Fa — W) (2M1) 71V, — exp(2Xamo) (F, — Wa)] +
+ A[(201) LAV — exp(2X070) (AF — AW)] — (2X) 71 [Vo +
+ 21 exp(2X270) (Fo — Wo)] — A(4A3) [V + 201 exp(2Xaxo) (Fy — W,)] X
X [Va + 2Xa exp(2Xazg) (Fy — W,)] =V =0,

and the operator C' has the form:

0
C=——. 32
Eli (32)
From (31), (32) follows that the solutions of the equation (2) (with A1, Ay # 0) we
can find in the form:
u=exp{(2\A2) "'V (X2 +iA) — (A1) ' Fexp(2hozo) (A2 — idg) },
where the real functions V' and F satisfy the system:

(2)\1)_1‘/0 — eXp(Q)\g.’lﬁo)F() + 2)\[(2/\1)_1Va — eXp<2)\2$0)(Fa - (2)\2>_1Va> +
+ )\1()\2)71 eXp(Q/\Q.To)Fa} +
+ (2X2) TIA[AV 4 2X1 exp(2X020)AF] — (A1) AoV = 0,

33
/\[(2)\1)_1‘/:1 — eXp(Q)\on)Fa] + )\[(2)\1)_1AV — eXp(Q/\Ql‘o)AF — ( )
— (2)\2)71 [% =+ 2)\1 eXp(Q)\Q.CCo)Fo} —
— AAX3) 7V, + 20 exp(2Xaz0) FL]? — V = 0.
Case I: V = 0. For this case the ansatz
u = exp {— (A1) Fexp(2Xaz0) (A2 — iA1) }
reduces the equation (2) when A; # 0 to the system:
Fy+ )\)\1()\2)_1AF =0,
Fo+ /\)\1()\2)_1 exp(2/\23:0)FaFa =0.
Case 2: F = 0. For this case the ansatz
U = exp {(2)\1)\2)_1‘/()\2 + ’L)\l)}
reduces the equation (2) with A; # 0 to the overdetermined system:
Vo + )\(/\2)71‘/&‘/(1 + /\)\1(/\2)71AV -2V =0, (34)

VO + )\()\% - )‘%)(2>‘1>\2)71Vava - )\>\2(>\1)71AV + 2)\2V =0.
For the partially case A\f = A3 the system (34) has the form:
Vo +A2XA2) VLV, =0, Vo + AV F2X,V =0,
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and for the partially case 3\? = A2 this system has the form:
Vo +A2X) VoV — XV =0, V3V TAAV =0.

5. Conditional symmetry. The symmetry of the equations (1), (2) can be extended
essentially, if we put a certain additional condition on its solutions (see [4, 9, 10]).
As to Schrédinger equations with the logarithmic nonlinearity one of such additional
conditions is vanishing of the interior potential [11] that is equivalent to the following
condition:

Alul =0, |u| = (uu*)/2 (35)

Theorem 4. The equation (1) is conditionally invariant with respect to the following
algebras:

1) AG5(17’I’L) - <AGS<1an)aQ1>7
where
Ql - Z’OP[) + xaPa - %IH(UU*_l)Q

with additional condition (35);
2) AG5(17 TL) = <AG(13 n)7 Q2>7
where the operator Qs is of the form [9]:

Qs = % In(uu*~HQ + zo Py

if the module of the function u satisfies the condition
AA|u| = 2b|u|In |ul. (36)
Note 6. The operator (); generates the following finite transformations:
ro — xh = 0120, Tq— T, =b01xe, u—u = |u|(uuT)/20
and the operator 2 generates the following transformations:
xo — Ty = Ooxg, Tq — Th = T4, u— u = |u|(uu*t)H22,

where 6, and 5 are group parameters.
Theorem 5. The equation (2) is conditional invariant with respect to the algebra:

AG7(1,71) - <AG4(1,TL),Q3>,
where
Q3 = Ql - QQ = xaPa - iln(uu*il)Qv

and the operator C is of the form C = exp(2X\axo)l. The additional condition has
the form (34).
Note 7. The operator ()3 generates the transformations:

Ty — Th =0, Tq— Ty =01, u—u =ul(u )5 a=Tn
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The following theorems can be proved by means of conditional invariance algori-
thm (see e.g. [5, 10]).

So we can see that the additional conditions (34) and (35) expand the symmetry
of the equations (1), (2).

6. Applications: non-Lie reduction. In this section we consider some non-Lie
ansatzes for the equations (1), (2) which cannot, be obtained by means of classical
Lie approach. The examples of non-Lie reduction of the Schrédinger equations with
degree nonlinearity are adduced in [12, 13].

1) The ansatz

U= :ﬂgp(wl,wg) exp{ilagz, — 4bxo ln g + 2o (w1, ws)l},
wlzﬂ, wgzﬂ, 0, €R, a=1n
T2 i)

(37)

reduces the equation (1) to the system:

2p —w1p1 — w2p2 + 2Ap101 + 2Ap2ip2 + Ap(p11 + p22) = 0,
p11+ p22 =0, (38)
/\ap% —|—)\g0% — w11 —waps =4b — daga, —2blnp, a=3,...,n, a5 €R.
2) The ansatz
2

| =
U= x%p(wl,wg) exp {z {4/\;0 — 4bxgInzg + xogo(wl,wg)] } , (39)

where

T T3 x% + a:%
w)p = — —arctg —, wy=-—"———"
Zo T2 Zo

reduces the equation (1) (when n = 3) to the system:

2p — wip1(1 + wy?) — waps + papa + pwaps + pp11(1l + wy %) + ppas = 0,
011(1 + w2_2) + w%ng + wop2 =0, (40)
M1 4wy )93 + Ap3 — wop + ¢ — 4b + 2bInp = 0.

3) The ansatz

[ a2
U= x%p(wl,wg) exp {Z {4)\; —4bzglnxg + xoga(wl,wg)] } ,
0

. 25 (41)
w1 = —, Wy = —
Zo Zo
reduces the equation (1) to the system (when n = 3):
1
2p — wip1 — waps + 2Ap11 + 2Ap2pa + 3P + 2Xp(p11 + @22) = 0,
p11+ p22 =0, (42)

Ap? + Ap3 — wipr — wapa + @ — 4b+ 2blnp = 0.

Note 8. The ansatzes (37), (39), (41) are obtained as a consequence of conditional
invariance of the equation (1) respect to the algebra AG5(1,n).
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4) The ansatz

"= exp {2 eXp(Q)\gxo)} p(w) exp {z [exp (%) go(w)] } , )
w= @) en {2}, a0,

reduces equation (2) with Ay =0, A2 # 0 to the system ODE:

pp+pp+ (n— 1w pp +a twp = 2XapInp,
p+(n—1wp=0, (44)
Aap? —wp + 29 = 0.

The systems of reduced equations (38), (40), (42), (44) are overdetermined.
Therefore it is necessary to consider their compatibility.
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Symmetry and exact solutions
of multidimensional nonlinear
Fokker—Planck equation

W.I. FUSHCHYCH, V.I. CHOPYK, V.P. CHERKASENKO

Posrasinaetbes Heqinifine piBusHHs Pokkepa—Ilnanka. 3a paxyHOK HaKJaJaHHsS Ha Koe-
¢inientn ¢yHKuUii HesniHiAHOI NOAATKOBOT YMOBH BJaJOCh 3HAYHO PO3LLUUPUTH CHMETPil0
piBusiHH Dokkepa-Ilnanka. JlocnikeHO YMOBHY CHMeTpiio, MPOBeNEHO peaykiiio Ta
3HAUEHO JesiKi TOUHI PO3B’3KH LIbOTO PiBHSIHHS.

1. Let us consider equation

1 n
(A - g F(p), 1
Zax kP) +2l§18 Birp) + F(p) )]
where p(t,%), & = (z1,...,2n), Ar(t,Z), Bi(t,Z), F(p) are smooth real functions.

If F(p) =0, (1) coincides with classical linear Fokker—Planck equation (FPE), which
finds broad application in the theory of Markov processes. In this case [1] p is the
conditional probability density, A= (A1, Ay, ... A,) is a drift velocity vector, B; are
elements of diffusion matrix B(t, %) = || Bix ||} 1=

In the cases, when (1) (for F(p) = 0) is equivalent to the linear heat equation, it
is possible to use effectively group-theoretical analysis methods to construct solutions
of the linear FPE [2]. In other cases equation (1) for fixed Ay and By, as a rule, has
no nontrivial symmetry. Thus, it is impossible to apply to it symmetry methods [3].

In [4] a new interpretation for the equations like (1) was proposed, it opens
wide possibilities for application of group-theoretical methods. The idea consists in
complementing (1) with equations for coefficient functions Ay and B;j. That is we add
to (1) some system of equations for Ay and B, (1) turns out then to be a nonlinear
system (even if F'(p) = 0). Such an extended system, as we show, can have a nontrivial
symmetry which is used to construct exact solutions of equation (1).

Therefore our paper is based on the idea of nonlinear extension of equation (1).

2. We require the components of the vector A to satisly conditions having the
form of Euler’s equation for the ideal liquid

0dy 4 Oy

ot +Ala—xl:Fk(P)- (2)

For the potential flow when A = (;9—(’0 Fy, = 6F1(”) , and B;, = D% (D = const > 0)
T

equations (1) and (2) can be written as

D
Po + PaPa + pAp — 5Ap= F(p), (3)

JTonosiai AH Ykpaiuu, 1993, Ne 2, C. 32-42.
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1
o + 59011(»0(1 = Fl(ﬂ)v (4)

where pg = (%)o' 290 =t, po = 887“”, a = 1,n. Thus we tend to investigate symmetry

properties and to construct families of solutions for (3), (4).
3. We assume D to be nonvanishing.

Theorem 1. Equation (3) for D > 0 is invariant under the following algebras:
1) Ay = (Py, Jap, X4, Y, P,), where

0 0

Py=— Pa:—; Ja: aP_ Paa ab :L )
Chlr oz, b= To Py — Tp {a,b} n
, 0 0
Xa = ga(0)Pa + 94 (70)Ta5—, Y = h(xo)

dp 9’
(94, h are arbitrary smooth functions) for an arbitrary F(p);
2) Ay = (A4, D), where the operator of scale transformations D has the form

2
D:2$OPO+Z‘GPG_EI7

where I = pa%, for F = \p**L, k #£0;
3) As = (As, A), where the operator of projective transformations A has the form

z2 0

A=22P JP, o I FOF — )\ 241
Toto + xow + 5 9 nxol, if P 7
where £2 = % + 23 + - + 22;

4) Ay = (A1, S), where

gf/(xo)f

1 1 5 0
S = f(xo)Po + §f/($0)$apa + Zf”(iUOWQ@
(f is an arbitrary smooth function), if F = 0;
5) As = (A1, Cy), where

Co = exp{Axo}l, if F=Alnp.

Proof of this and following theorems can be made using Lie’s algorithm (see, e.g.
[5, 6]).
Remark 1. Algebra A4 coincides with As, if we require condition f”/ = 0 to be
satisfied.
Remark 2. In the case D = 0 equation (1) turns into Liouville’s equation. The
question on the symmetry of (4) (if ' = 0) then can be answered by the following
theorem [7].
Theorem 2. Equation (4) with D = F = 0 is invariant under infinitely-dimensional
algebra which is generated by the operator

X =2f1(x0) Py + f1(x0)zaPs + f2(xo) {xapa + 290%} +

3—3*2 a n 6
F UL+ T gy = T} TPt Bl T+l
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where f1"(xo) + f5(x0) =0, cap = —Cpa, {d,car} TR, fi(xo), fa(xo), f3a(zo), a =
1,4, fi(zo) are an arbitrary smooth functions. Operators X, lead to the following
finite transformations:

. 1 .
x; = Zq + ga(70)0, =9+ Ga(T0)Tab + 59(1(5”0).%(1‘0)927

/ ! ! b
p' = p, xy = xo, T, = xp, Where G, = dm , 0 is a group parameter.

4. Let us now require the condition (4) on ¢ to be satisfied.

Theorem 3. The system of equations (3), (4) for D # 0 and arbitrary F, Fy is
invariant under the algebra
1) AG(1,n) = (Py, Py, Jup, Ga, Q), where G4 = 20Py +2,Q, Q = 2 Pp and additio-
nally is invariant under the following algebras:
2) AG1(1,n) = (AG(1,n), D), if F = )\pkH Fy=XM\iph, k#0;
3) AGQ(LTL) <AG1(1 n) >, lfF )\p,,-l-l F1 )\1p77'
4) AG3(1,n) = (AG;1(1,n), B), where the operator B has the form B = I+X120Q,
lf F1 = )\1111[), F:O,
5) AGu(1,n) = (AG(1,n),C), where C' = exp{izo} (X Q+1), if F = \plnp,
Fl = Alll’lp, )\3’&0,
6) AG5(1,n) = (AGy(1,n),I), if F = Fy = 0, where \; are arbitrary real
constants, 1 =1, 2.
Remark 3. Operator C' with A; = 0 coincides with Cp.

Remark 4. In the case D = 0 the system (3), (4) is employed in quanturn mechanics
and is called there “the classical approximation of the Schrédinger equations” [8]. Its
symmetry was investigated in [7].

5. Conditional symmetry. The system (3), (4) has conditional symmetry. The
condition which allows to enlarge symmetry of this system has the form

Ap = Fy(p). ®)
Then the system of equations (3), (4), (5) is equivalent to the following system:

po + patpa + pAp = F(p),

1
o0+ 5%aPa = Fi(p), (6)
Ap = F»(p).

Theorem 4. The system of equations (6) for arbitrary F, Fy, F» is invariant under
the algebra AG(1,n) and additionally under the following algebras:

1) AGg(1,n) = (AG(1,n),Q1), where Q1 = xo Py + 2¢Q if F is arbitrary and
Fl = F2 =0

2) AG7(1,n) = (AG(1,n),Q2), where Qs = x0Py — pQ [or an arbitrary Fy and
F=F=0;

3) AGs(1,n) = (AG(1,n), Q1 + Q2) for an arbitrary Fy and F = F, = 0;

4) AGy(1,n) = (AG1(1,n),Qs), where the operator Q3 has the form: Qs =
TaPa+20Q — 21, if F=0, Fy = \p ¥, F, =0, k#0;

5) AGlo(l,n) = <AG1(177’L),Q2>, lf F = Fl = 0, FQ = )\ka+1, k 7£ 0,’

6) AGn(l,n) = <AG1(17H),Q1>, Lf F = Akarl) F1 = F2 = O, k 7é O,'
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7) AGlg(l,’l’L) = (AG(l,n),Q3>, lf F=0 F, = )\1p_k, Fy = /\pk+1, k 75 0;

8) AG13(1,n) = (AG1(1,n),Q,), where the operator Q4 has the form: Q4 =
20Po —pQ — 21, if F=\p' %", F1—>\1p Fy=0, k #0;

) AGl(]. TL) lf F = )\pk+1 F1 = )\1p F2 )\2ﬂk+1 k # 0

10) AG14(1,n) = (AG(1,n),Q3 + mQy), m € R, if F = Ap
Fg = )\ka+1, k 75 O

11) AGo(1,n), if F=Ap 5, Fy = Api, Fy =Xgpn;

24n

mk+2

, Fyo= ApmEE

].2) AG15(1,71) = <AG2(].,’I’L)7Q1> lf F = )\Qp n F1 FQ = 0
13) AGlﬁ(l,n) = <AG2( y ),Q2>, lfF = Fl = O, F2 )\2p2tn ,
14) AG17(1,H) = <AG2(1,TL),Q1 —|—Q2>, lf Fy = )\1/)", F=F=0;
15) AGls(l,’fl) = <AG2(1,TL),Q1,Q2>, lf F = Fl = FQ = O,’
6) AGlg(l,’n) = <AG8(].,TL)7B>, Lf F = F2 = 0 F1 = )\1 lnp,
)

7) AG4(1,n) = (AG(1, n)7C’> if F=MXplnp, F, =0;
18) AGQo(l,n) = <AG6(1 n) > lf F = )\plnp, F1 F2 = 0, A 7& 0.
Remark 5. It follows from the commutation equalities that some of above mentioned
algebras coincide (for instance, AG(1,n) and AG12(1,n), AG7(1,n) and AG15(1,n)).
6. Reduction of the system (3), (4). Using the operators mentioned in Theo-
rems 3 and 4 we have constructed ansatzes and have obtained corresponding reduced
systems of equations. Some of them are adduced below (for the case of three spatial

variables, n = 3):
1) Ansatz p = exp {22} ®(wy,ws), a €R, a # 0,

)\1 xs Tox x?
2 To 01 _To _ (=2
2a 0 302 o +g(wlvw2)a wl*E*xla WZ*(‘% ) )

reduces (3), (4), if F =0, F} = A\ 1np to the following system:

=

D, _
5(&12 Loy, + $99) =0,

dg o
b, =—, i=1,2.
&ui’ E)wi ‘

2 _
<a + 911 +922> D+ g1 Py + gows o 4+

g +95=And+ %wl, where ¢; =
2) Ansatz p = exp {22} ®(w), w = (ZD)z, a#£0
©= %x% + g(w), with F=0, Fy =X\ Inp
reduces (3), (4) to the system:

2 -1 D -1
<+n g’+g”>c1>+g’<1>’+ (@”Jrn@’) =0,
o w 2 w

d do
(¢')2 =2\ In®, where ¢/ = 22

-2 P =
dw’ dw

3) FZO, F1 :Allnp,
i) I3

2:170 1
= — @ 2 — to — — —
p exp{ o } (w,ws), w1 = (z?+22)2, wy = arctg . 5
A

w= %ﬂ?g +g(wi,w2), {a, B} #0,
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2 _ _ _ _ _
<a + grwy Jrgn) P+ g1 @1 + g2Pa(wi >+ B72) + g ®(wi® + 872 +
D _ _ _
+ 5 (Pu+oy 'y + Pop(wy 2+ 577)) =
_ _ A
g+ =5 ne.
4) Ansatz

p=on {2 exphan) | Bloa). 9 =2u(a), (e} 20, a€R

reduces (3), (4), if F = Aplnp, F; =0, to the following system:

2)
"+ L m® =0,

g =0, D#0.
5) Ansatz p = exp{2x; exp(Azg) }P(x0),
by 2 + 2
0= Tlxl exp{\zo} + I22x 2+ g(x0), A#0

reduces (3), (4), if F = Aplnp, F; = A\ Inp, to the system ODE:

o+ 2x61<1) +2 (D + % exp> exp{2\xo}® = AP In P,
/\2
+ W eXp{Q)\.%‘()} = )\1 In ®.

6) Ansatz p = exp { Zzzexp(Azg) } (wy,w2), {o, A} #0, a €R,

A 1
o= 71 exp{ zo}as + g(wi,wa), w1 =1xp, wo= (3 + x%)é,

reduces (3), (4), if F = Aplnp, F1 = A1 Inp, to the following system:

A D
D + goPs + (w2192 + r.; exp{Q)\wl}) D+ ?<®22 + wy 'Py) = AP In @,

M
2222
7) F=Xplnp, F1 =)\ 1np,

201 +95 =M In® — exp{2\w; }.

T
p = exp {QafCtg x_z exp()\xg)} B(wi,wa), w1 =0, wa=(a}+a3)3,
1

Y = — X Zp)arc —_t — 4 w1, W 7£
Y p 0 g T 2$0 g\wi,wsz), )

2 D
b, + w;Z (92 + (D + Tl> exp{2)\w1}) D+ goPs + 5(1)22 +
D —1
+ 50.)2 (I)Q + QQQ(I) =APIn (I),

)\ 2
201 +95 =M In® — (ng exp{)\wl}>
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8) F = Xplnp, F1 = A1 1np,

1
—
8
[\v]
S~—
=

2 A
p=ep{ om0 Bl = L ep(han) + () w
-1 D -1
Jo + <g” n "—g’> d <<I>” —@’) — A,
w 2 w
()2 =M\ Ind.

9) Ansatz p = ®(w), p = xoxz — 2 +g( ), w=1x3— %2) for arbitrary F(p), Fi(p)
reduces (3), (4) to the following system

D
g/¢/+g//¢+ 5@// — F(@),
(9')° + 2w = F1 ().

10) p = (w1, w2), p = 2:v +g(w1,w2) w1 = Tg, Wy = (x%—kx%)%, F(p), Fi(p) are

arbitrary functions,

0

D
—(Pa2 +wy ' @2) = F(®) — w; ' D,

Dy + goP2 + P(g22 +wy 'g2) + 5

g1+ g5 = Fi(®).

1) p = ®w), ¢ = g(w) — 20 — V2arctg 22, w = (23 + 23)2, F(p), Fi(p) are
arbitrary functions,

g +w )+ ¢"D + g(@” +wTle) = F(),
(¢)% = 2F (®).
12) p = ®(x0). ¢ = 2 + g(0),
P’ +CU_1® = F(¢))7
(g') = Fl(q))a
13) p = ®(x3), v = g(x3) — 20,
¥ i " D "
2+ (¢)2 = 2F,(®).

2 2
14) Ansatz p = 27" ®(w), @:M+g( ), wherew M ,0< k<2,

2’1‘0

1 <1<3—kreduces (3), (4), if F =X p“= , F} = \p~ =, to the system ODE:

(k4+m)® + &' (2wg’ — w) + ®(lg" + 2wg”) + D(IP" + 2wd") =
(9)° =g = Nw o,
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15) Ansatz p = 23®(wi;ws), w1 = i—l wy =2, p= 2M1 20 Inzo+axz+rog(wr, ws),
«a € R reduces system (6), if ' = 0 F1 =)\ lnp to the following system:
o2
201 + 9 —wig1 — w292 + - = A1ln @,
D11 + Pop =0, Q)
20 — w1 Py — wWaPs + g1 P71 + G2 P2 + (911 + g22)P = 0.

16) F:O, Fli)\lhlp, FQZO,

2
.’,U

p = 23®(wi,ws), <P=—2 + MizoInzg + zog(wi, wa),
zg

! 3 1
Wy = — —arctg —, wy =g (3 +123)2,
Lo L2

1 _ A
A1 +9—w2g2+§95(1+¢022)+g§ = 711H<I%

@11(1 + w;Z) =+ (I)ngg + (I)QWQ = O, (8)
3P — (.UQ(I)Q + w1(1 + w2_2)<1)1 + gg©2 + 911(1 + w2_2)<1> + (922 + wggg)@ =0.

17) Ansatz p = 23 ®(w1,wa), w1 = $2, wp = 32, p = % + Az Inzo + zog(wr, wa)
reduces system (6), if F# =0, F; = A1 Inp, to the following system:
1 A
567 +93) =5 @,
D1y + P22 =0, ©)
30+ g1 Py + g2P2 + (911 + g22)P — w1 Py — we Py = 0.

Al +9g—wigr — waga +

18) Ansatz p = exp{exp(Azg) Inz1}P(wi,ws), ¢ = 210 + 22g(wi,ws), w1 = T,
wp = £2 — 2% reduces system (6), if F'= Aplnp, F1 =0, to the system:

201 + 2waga(wit = 2) + g% + g5 (1 + wi +w3) =0,
1 1
exp(Awy )P + 5@22(1 + w% + w%) + —wa®o(1 — dexp(Awr)) +

2

+ 2P exp(2Awy) = 0, (10)
Oy + Do (wy ! — dwag) + g<I>(2 +4dexp(Awr)) — 2(1 + exp(Awq ) )wag2 P +

4 (g22® + g2®2) (1 + w? + w3) + w;'® = AP In .

19) Ansatz p = exp {2 exp(Azg) } (w), o # 0,

_ 2z RISt To

w—exp{a}g(w), w= (& )2exp{ a}’ F=Xplnp, F;=0
reduces (6) to the system ODE:
d'g "= \0Ind,
- 1

"+ g =, (11)
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Remark 6. Systems of reduced equations (7)-(11) are overdetermined.

7. Exact solutions of nonlinear Fokker—Planck equations. Below we list some
exact solutions of the FPEs in case of three spatial variables.

1) Equation (1) has a solution p=a73 il A4 =2 F(p)= —6Dp3;

xo’

_3 Tk 9 5
2) p=(i+a)™ Av=_5 Flp)=—3Dps;
3) p=ay? A=t Ay="2 Ay=0, F(p)=-3Dp%
Zo o
_ Tk
9 p=ay’, Av=8"T Flp) = -Dp’s
5) p=(”)7% Av=E F(p)=-3Dp};
0
6) p=(aF+ad) A =22 Ay="2 A3=0, F=-2Dp"
i) i)
2 A 9 2
7)) p=-exp axo—k—(ciﬁx) , {a,A\,D}#0, a€eR,
A o1 o1 2
Ak——D(ciﬁ(xQ)é)xk(ajz) 3, anp, ceR;
2 2 0 2
8) p:exp{—xo—l—ﬁy(wl)—&—Dz(wg)}, Ak:%(pk, =,
A 5Ty, wor
¥ =55 %0 5 o T (w1) + z(w2),
g 2 21
u;l:%fxl, we = (x5 +23)2,

D 2 \?
where z = — <03 + Dw2> and y can be determined implicitly via relations

24 2 \* D2
+D (—y + —wl) 4+ —1In
«Q

D Ao D

24 2 \* D
A(—y—i——wl) :I:—‘:c—)\wl, {\, a} # 0;
o o

2 2 0
9) p:exp{ﬁy(wl)—&—ﬁz(wg)}, Ak:a—fk, F=0,

3 2

X
¢ = T3 — 30 +y(wr) + 2(w2), w1 =a3— 2

2
10) p:exp{§ - (3—|—2)\)lnx0—|—20},
0

1
wy = (27 +23)%;

Ap=X2"% 4+ 25 ceRr, F=o;
Zo

11) p=exp{(2z3 —23)*}, Ay = (z0 +1)6°%,
F= p(2\/§ln% p—4Dlnp — 2D);

2
12) p=exp {—xg exp(Azo) - eXP()\on)‘I’,\(ﬂﬁo)} . acR
«

Alzﬂ, A2:E7 143:07 F:)\plnp,
i) Xo
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and ®_(xp) can be determined via relation:
exp(vyx
By ao) = [ SO gy (12)
Zo
13) p=exp {2 exp(Azg) arctg 2 exp()\xo)@_A(xo)} ,
Ty
A= 4,=220 A3=0, F(p)=Mplnp,
i) Xo
where ®_y(z0) is determined in (12);
c D
14) p=-exp {2951 exp(Axg) — exp(Azg)P_x(zg) — 2 (ﬁ - X) exp(2)\:vo)} ,
A1: gexp()\xo), AQZ %, A3:07 F:)‘plnp7 CGR; )\7&07
zo
D
15) p=-exp {29&1 exp(Axg) — 2exp(Azg)P_x (o) — 2(% - X)exp(Q)\xo)} ,
A= Eexp()\xo), Ay = Q, Az = E, F=MXplnp; X\#0;
A To ZTo
2
16) p— 2 expOrao) 22 [ct2(—2ay) (ha) £0
p = exp { 3 exp(Azo c D3 , ,Q ,

A, =0, F=XMplnp, {c,a}CR
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On nonlinear representation
of the conformal algebra AC(2,2)

W.I. FUSHCHYCH, V.I. LAGNO, R.Z. ZHDANOV

OpnepxaHo BUYEPIHUH OMKC HeeKBIBaJIEHTHHX NpefcTaB/eHb anreGpu [lyankape AP(2,2)
ta KoH(opmHoOT anrebpu AC(2,2) y Kjaaci oudepeHLialbHUX OMEpaTopiB MepLIOro IMo-
psinKy. BeraHoBreHo, 110 iCHYIOTb JMIe [Ba HeeKBiBa/JeHTHUX MpeACTaBJeHHs ajredpu
AP(2,2) onHe 3 sikuX € HeqiHifHUM. Lle npeacTaBieHHs NONYCKAE PO3LIMPEHHS 10 Mpej-
cTaBsieHHsl OBHOT KOH(opMHOT anrebpu AC(2,2). PosrisHyTo nesiki ysaranbHeHHs.

The central problem to be solved in the framework of the classical Lie approach to
the partial differential equation (PDE) study

F(x,u,gt,g,...) =0 (1)

is the construction of its maximal symmetry group. But the inverse problem of sym-
metry analysis of PDE-description of equations invariant under given transformation
group is not of less importance. For example, relativistic field theory motion equations
have to satisfy the Lorentz—Poincaré—Einstein relativity principle. It means that consi-
dered equations must int under the Poincaré group P(1,3). Consequently, to study re-
lativistically-invariant equations one has to study representations of the group P(1,3)
(see e.g. [1]).

There exists vast literature on the representations of the generalized Poincaré
groups P(n,m), n,m € N but only a few papers are devoted to nonlinear representati-
ons [2, 3].

In the present paper we adduce results on description of unequivalent representa-
tions of the generalized Poincaré group P(2,2) and its extention — conformal group
C(2,2) acting as transformation groups in the space V = M (2,2) x R}, where M (2,2)
is the Minkowski space with the metric tensor

1, a=f=1,2
Gap = _]-7 Ol:ﬁ:3,4;
0, a#p.

Lie algebra of the above conformal transformation group (called conformal algebra
AC(2,2)) has the basis elements of the form

. d 9
Q:Zfa(ﬂfau)% +ﬂ(xau)% (2)
a=1 a

that satisfy the following commutational relations:

[Poupﬁ]zov [Pav‘]ﬁW]:g@ﬁP"/_ga’YPm
[Japs Jv8) = GasIpy + 9syJas — GavIs — 985Sy (3)
[DaJaﬁ] =0, [PavD] = Py, [KOHJBW] :gaﬁKV_gava

JTonosiai AH Ykpaiuu, 1993, Ne 9, C. 44-47.



On nonlinear representation of the conformal algebra AC(2,2) 77

[PavKB] ZQ(QQED_JaB)v [DvKa} :Kaa [Ka;KB] =0.

Here o, 3,7,6 =1, 4.
Let us note that operators P,, Jg, form generalized Poincaré algebra AP(2,2)
which is a subalgebra of the conformal algebra.

Definition 1. Set of operators P,, Jg,, D, K, of the form (2) satisfying the commu-
tational relations (3) is called a representation of the conformal algebra AC(2,2).

Definition 2. Representation of the algebra AC(2,2) is called linear if coefficients of
its basis operators (2) satisfy the conditions

o =&al(z), 1 =a(z)u. (4)
If conditions (4) are not satisfied, representation is called nonlinear.

It is well-known that commutational relations are not altered by the change of
variables

z, = fo(z,u), o' =g(z,u). (5)

That is why two representations { Py, Jg,, D, Ko} and {P,,, Jj., D', K|}, are called
equivalent provided they are connected by the relations (5).

Theorem 1. There exist only two unequivalent representations of the Poincaré
algebra AP(2,2):

1. Py =0, Jpy= 985250y — gv57503, (6)

2. P,=0,, Ji2=—2201+ 2105+ Oy,
Jig = 1301 + £103 + cos ud,,
J14 = 2401 + 1104 — €sinud,,
Jog = w302 + 1103 + sin ud,,,
Jog = 2400 + x204 + € cOsS Uy,
J3g = £403 — 1304 + €0, &= =*1.

Here 0, = 0/0z4, 0, = 0/0u; «,B,7v,0 = 1,4, the summation over the repeated
indices from I to 4 is understood.

Because of the lack of the space we adduce only a sketch of the proof.

Since operators P,, a = 1,4 commute, there exists a change of variables (5)
reducing these to the form P, — P,, a = 1,4 [4]. From the commutational relations
[Py J3y] = 9gapPy — gayPps it follows that operators Js, are of the form Jg, =
935850y — Gr52503+E 3,5 (1) Os +1py (1) 0y, Where €55, 73, are some smooth functions,
8,7v,0 =1,4.

Substituting the obtained result into the third equality from (3) we get a system
of nonlinear ordinary differential equations. On solving it we arrive at the formulae
(6), (7).

Thus, there exists up to the equivalence relation (5) only one nonlinear represen-
tation of the algebra AP(2,2). Applying the Lie method one can prove that the only
first-order PDE admitting algebra (7) is the eikonal equation

2 2 2 2
Uy, + Uy, — Uz, — U, =0.
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Using results of subalgebraic analysis of the algebra AP(2,2) obtained in [5], one
can construct broad classes of exact solutions of the nonlinear PDE (8) by symmetry
reduction procedure.

Theorem 2. There exist only three unequivalent representations of the conformal
algebra AC(2,2):
1. P., Jgy areof the form (6),
D =2,0, + @(u)aua (8)
Ko = 29ap23D — (9572575)Oars

2. P,, Js, are of the form (6),
D = 2,04 + u0,, (9)
Ko =2g0p28D — (98y232y)0a £ u20,,

3. P., Js, areof the form (7), D = x,0a,
Ky =221D — (ggyxpxy)01 + 2(x2 + T3 COSU — X4 SINU)D,,
Ko =2x9D — (gy232,)02 + 2(—2x1 + 23 sinu + ex4 cos u) 0y, (10)
K3 = —2x3D — (gpyxp2~)03 + 2(ex4 — 1 cOSU — T Sin )0y,
Ky = 224D — (g3y232~)04 + 2(—ex3 + cx1 sinu — ex2 cOs u)0,.

Representation of the form (9) is realized on the set of solutions of the nonlinear
wave equation

JapUzals = )\us, A e R!

under p(u) = —3u.

As shown in [6] the system of nonlinear PDE
gaﬁu;rawg - i3u_3, gaﬁuwumg ==+1

is invariant under the conformal algebra having basis operators (10).

A detailed study of the second-order PDE admitting conformal the algebra with
basis operators (7), (11) will be the topic of our future papers.

In conclusion, we adduce some generalizations of the above assertions.

Theorem 3. An arbitrary representation of the generalized Poincaré AP(n,m) with
max{n, m} > 3 in the class of the operators (2) is equivalent to the standard repre-
sentation

Po =0a, Jpy = Gpsrs0y — §r67s0, (11)
where op is the metric tensor of the pseudo-Euclidean space M(n,m), «,3,7,6 =
1,2,3,...,n+m.

Consequently, only the algebras AP(1,1) [2], AP(1,2), AP(2,1) [3] and AP(2,2)
have the nonlinear representation.

Theorem 4. An arbitrary representation of the conformal group C(n,m) with
max{n,m} > 3 is equivalent either to (9) or to (10) (where one must replace
tensor gag by Gap).
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HeJsiokanbHble aH3albl U pelleHUs
HeJVUHEUHOU CHUCTEeMbl YpPaBHEHUU
TENMJONMPOBOAHOCTHU

B.H. ®YLIHY, HH. CEPOB, T.K. AMEPOB

HenvHeliHasi cucTeMa TeNIONPOBOAHOCTH HEJIOKAJIBHOH MOACTAHOBKOH CBe/leHa K CKaJsip-
HOMY HeJIMHEHHOMY YpaBHEHHIO TeMJONpOBOAHOCTH. JIMeBcKas W yCJOBHas WHBapHaH-
THOCTb CKaJ’IHpHOl"O ypaBHeHI/IH HUCIIOJIb30BaHa [OJid HAaXO0XKIeHHWHA HeJIOKaJbHbIX aH3alleB,
KOTOpble PeIyLHPYIOT HCXOAHYIO CHCTEMY K CHCTeMaM OObIKHOBEHHBIX AH(depeHIHaNb-
HBbIX ypaBHeHUH

PaccmoTpuM cucTeMy HeJTMHEHHBIX ypaBHEHHH

up = f(v)ui1,

Vo = U11,

0]

rie u = u(z), v = v(x), * = (vg,21) € R%, vy = O/dxg, up = Ou/dzg, uyy =
0?u/0x3, KoTopasi 4acTO BCTpedaeTcs B TEOPHH TeriomMacconepeHoca. HesokanbHast
3aMeHa

u=wy, V=wi (2)
cBonut cuctemy (1) K ofHOMY ypaBHEHHIO

woo = f(w11)wiio- (3)
[Tpounterpuposas (3) no xg, 6ymeMm UMeTh

wo = F(w11), (4)

rie F' — nepBooOpasHas pyHkuud f. [IBaxkasl nponuddepeHurposas (4) 1o xy, moJay-
qUM

woo1 = O1(f (wi1)wi1r). (5)
[locnie 3ameHB!

wiy =2 (6)
UMeeM ypaBHeHHe

20 = 01(f(2)21). (7)

Takum o6pasom, cuctema ypaBHeHu# (1) cBesach K HeJHHEHHOMY ypaBHEHHIO AHBGY-
sun (7).

Ykp. mMaT. XkypH., 1993, 45, Ne 2, C. 293-302.
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JlueBckasi cuMMeTpust ypaBHeHHs1 (7) ucyepmbiBatoile uaydeHa JI.B. OBcsHHHKO-
BeiM [1], a ycioBHasi cummerpusi (7) uccaenoBana B [2, 3]. B Hacrosilueit cratbe mpu-
BelIeHbl JIMEBCKHE aH3allbl, peiylupyioiine ypaBHeHHe (7) K 0ObIKHOBEHHBIM Hudde-
penuuanbHbiM ypaBHeHusiMm (OLY). Ilyrem npeoGpasoBaHMsl JIHEBCKHUX H HEKOTOPBIX
HeJIMeBCKUX aH3alleB, MOCpencTBOM 3aMeH (2) u (6), omucaHbl HeJOKaJbHBEIE aH3Allbl,
penyuupytomne cucremy (1) x cucreme O1Y. [TocTpoeHbl ceMelCTBa TOUHBIX PelleHUH
cuctembl (1).

C ucrnosb30BaHKUEM JIMEBCKOH CUMMETPHHU TIOJNYUYEHBl CJeyIolle He9KBUBAJEeHTHbIE
aHsalpl 15 ypaBHeHus (7).

A. f(z) — npousBoJibHas ryagKas QyHKUUS:

3/4/ 2 2\—3 Marctg ZL
xy (21 + )72, w=xeerMB T,
3

z=pw), w=mzay? "
z=p(Ww), w=XoTo+ A\1T1.
B. f(z) =e*
z=pW)+2+A Hnz, w=z2);
z=pW)+ A"z, w=mz+ Nnzg;
z=p(w)—Inzy, w=uwx; 9
z=pWw)+2nz, w=mze;
z=p(w)+Inz;, w=umx.
C. f(z) = z*, k — npousBo/ibHAs MOCTOSIHHASA, OTJMYHAS OT HYJS:
2= p)zg P =z,
2= W)y ", w=a1+ A\ Inag; w0
2= p(w)e” 0, w = g,er;
2= et w=mo
I f(z) = 2743
2 =)@+ M) 72, w =
2= pw)n ", w=ap;
2= p(w)(a] + 042)73/27 w = zo + Aarctg %%
z=p(w)(z} —a®) ™2, w=1x¢+ \Arth %;
z= <P(w)x1_3, w = A\xo + xl_l; a
z=p(w)ed o, = zqer;
p(w)

z= 90(‘“)330/4(95% - 042)_%, w = xger Arth T

z = go(w)mgﬂlx;:s’ w=Alnazo+ $f1§

z= @(w)x§(>‘+%)7 -y

roe A\p = const, A\; = const, A\g = const # 0, a = const # 0. HexkoTopeie u3 aH3sa-
ueB (8)-(11) mocpenctBom mpeobpasoBanuil (6) u (2) npeobpasyroTcsi B HeJIOKAJbHBIE
aHsaubl gas cucrembl (1).
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A. f(v) — npousBosbHas riankas GyHKLUHUS:

1) u= ¢ (w) — 2! (W) + 219 (@) + ¢ (0),

2
v=¢lw), w=azy

A
2) u=364w) + 2103 (w0) + ¢*(w0),
1

v=0¢w), w=Nzo+ M\71;

3) u= wl(QxO)ﬁ +a1¢” (20) + ¢° (x0),
v = ' (20).
B. f(v) = e

4) = =252 o (W) + A RN W) + 9P (o) + P (w0),

v=02+AHnr + @ (w), w=mz2;
5) u=Ap'(w)zy! + (o)1 + ¢ (o),

v=m A+ o (w), w=z1+ Anwg;

1
6) u=—z—a7+z19(x0) + ¢*(20),
2.130

v=—1Inzg+ o' (x1);

7)) u=—2Xe 2 00l (W) + AzjeAo¢ ( )+ 2192 (x0) + ©3(20),

v=2Inz + @ (w), w=xe

2
22
8) u= 71S01($0) + 219 (w0) + ©*(w0) + ¢ (20),

v=1Inz; + ¢! (xg).

C. f =v*, k — npoussosbHas nocrosuuas (k # 0):
£+1)

9) u(]i(Z/\Jrl) 2)\>

A A—1.
5 PTG 4 a0 (o) + 93(wo),

— Al
y, W =T1T;

(2>\+1)
() 01w +
+ 2 /\

= 2)\+1 .
v =ay F Pl (w)

1
10) w=a; MM~ (—Egal(w) + Aaﬁ(w)) +219%(x0) + ¢° (20),

v= xal/kgb(w), w=x1 + Anxg;

1 _ _
1) u=—2a; 7N @) + (@0 + 0¥ (xo),

v = mal/k¢1(x1);

1
12) u= -2\ (E + 1) eAMA/R)+Dzo 1 () 4

+ )\xle—)\((Q/k)-i-l)xo(’bl(w) +$1<P2(l'0) + 903(1'0)7

—2X .1 Az
v=e"F P (w), w=xz1e0

13) u=—p(xo)Inzy + 210%(70) + ¢3(20),

v =o' (zo)ry? k=-1
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14) u= @ wo)[w1Inzy — 1] + 0 (20)21 + ©3(20),
v =o' (xo)2yt, k=-2
) k2 242k
15) u= @l(xo)(

x k
2+ k)(2+2k)

v= apl(xo)xf/k, k#0;—1;-2.

+ £C1<P2(330) + <P3(900)7

L. f(v) = v/
1 .
16) w= p(x% + )\2)1/2<p(x0) + 219° (w0) + ¢*(w0),
v = (2] +N) 320! (20);
17) u=-A"2(2? = A\)Y2p(z0) + 219%(0) + 3 (20),
v = (2} = A) 732! (0);

1 .
18) u= Ewl(xo) + 219%(20) + ¢*(20),

v = a7’ (w0);

19) u = —42"2! (20) + 219% (20) + % (o),

v = x1_3/2s01($0);
2
Ty .
20) u= ?1901(300) + 219%(20) + ¢*(20),
v = p'(20);

21)  u = Az1pt(w) + 210%(20) + ¢3(20),

v=273p (W), w=Arg+ m—l;

A
22) u= _567%%‘?’1@) + Az1e2%00Y (W) + 192 (20) + 0 (20),
:Q%Am0¢1(w)7 w = IT1€
23)  w=z10(20) + ¢°(20),
v =" (x1);

_ 3
2) =y |Jo ) 4 A0 )] + o1 (an) + (oo

Azo.
)

1
v:x3/4$1—3¢1(w), w:)\lnmoer_l;
1

A 3 _Aa_1 A_1
25) u(+>x02 1ol (w) + Avrag 1N (w) + 2197 (w0) + ©*(20),

(M +3) ..
v=af M), v =

_ 3 .
26) =" |21 0)+ 01 0)] + Plao)an + o)
v:xg/4gb1(w), w=Alnzy+ xy;
§ -1/4 1 2 3
zo e (1) + 19" (w0) + ©°(20),

4 0
v =gl (z1)zd*,

27) u=
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rae A\g = const, \; = const, A\g = const # 0; ¢!, ¢?, ¢> — mpoussosbHBIE TIaA-
ke QyHKuMH; O (w) = dpl/dw, $'(w) = d?¢'/dw?. BoimucanHble Bbillle HENHMEBCKHE
ansausl penyuupyor (1) x caenyioupm cucremam OIY:

1) W)~ 100" () + 3 )P ) + e +er =0,
¢ (x0) = crmy 2,
O3 (o) = oy '
2) i—gsol(w) @) AF (@) + erw e =0
©* (o) = Mica,
¢’3($0) Aocizo + c2;
3) 951(1'0) = 07
% () =0,
5 (20) = F((20))¢" (z0);
4) 222X + Dt (w) — (322 + Nwt (w) + N2w?pt (w) —

BV e A IR (W) +cqw+c2 =0,

5) MPHw) — Aot ( )) = Ae? @OHENG (W) 4 crw+ ¢ = 0,

gb?’(xo) = CQIO_Q + Anxgp?(x0);

6) 2 L4 e¥ (”1)—1—013:1—&—02—0
()02(:1;0> = Clxa2,

@ (x0) = oy %
7) 4X20Y (W) — 3N 2wt (w) + A2 (W) — Ae? D BL(W) + crw + ¢ = 0,
¢ (w9) = cre™ A"
@3 (o) = cze A",
8) @'(w0) =0,
@ (20) = €' ! (o)
>3 (9) = 0;

9) z %(2/\4—1)—2)\) (—%(2)\4—1)—2/\—1) ot (w) —
-\ (km +1)+3x+ 1) wp(w) + MW@l (w) —

1 e
S [_E@)\ ¢ w) + )\W@I(w)] +aw+c =0,
¢2(x0) = Clx(;%(2/\+1)*)\72

1
) —Ll(2A+1)—21—2
%03(5”0) = cazy " )
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10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

< )

Hw
Anxop?(zg) =
4,03(350) = C2;

1/1 1
- <_ + 1) (pl(l'l) + E(¢1(W))k+1 +c1x1 +c2 = 0,

) - ( 1) @) + %) -

w) + APt (w ))—&—clw—i—cQ:Q

?rl)—'

—C1,

k\ k
xél/k)+2gb2(xo) =c,
x5 M2 o) = ea;

42 (E + 1)2 ol (w) — (% + 3))\2w¢1(w> + A2¢(w) —

P @F (<280 8 @) +awta =0

¢?(z0) = 016_’\(E+1)z°7

@ (20) = cpe” M EF1)o0,

@' (w0) =0,

¢*(w0) =0,

@*(xz0) = @' (o) (0)] 7%

@' (z0) =0,

@*(z0) = @' (wo)[" (w0)] 73,
@*(x0) = 0;

¢ o) T ~ P e o)
@* () = 0,

@3 (o) = 0;

P) g a3 (a0,
@* () = 0,

@3 (o) = 0;

—A723 (o) = [ (w0)] =3¢ (wo),
¢*(w0) =0,

@*(x0) = 0;

¢ (w0) =0,

¢*(z0) = [@* (o)) ™3¢ (z0)
@3 (w0) = 0;

—4 (z0) = 0" (w0)] = /3" (o)
@*(xo) =0,

@*(w0) = 0;
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20)
21) Aot (w) — )\[gbl(w)}_‘l/?’gél(w) +ciw+c =0,

22) /\w'sﬁl(w)[g‘bl(w)]_zl/g + —)\[c,bl(w)]_l/s _ /\2w2¢1(w) _

©*(

ol
23) sz(ffo

&> (

2) — D) + 2P (w) + A (W) — (@)

+ciw+co =0,

ao/ @3 (x0) = 1,

g/ [3%(20) — Anaog® (z0)] = o

A3 A1 A ..
25) <§ — Z) (5 + Z) gol(w) + §wg01(w) + )\Zngol(w) +
3 3\ ..
(32 +]) BN - Ml ) e =0,
(()A/Q)—(5/4)
—(A/2)—(5/4).
0 )

@*(w0) = cr
@3 (w0) = co

%) gt (W) + 20N () + N (W) — B | 28 (w) + N W) +

16

+ciw+co =0,
. —5/4
@ (20) = crg ',

@3 (xg) = 62.1385/4 + Anzop?(x0);

. - 1
27) (@M (z)] V3 + et (21) + a2 =0,

4
. 3
ay/ * @2 (z0) = 1
. 3
ay/ @3 (x0) = 1

The ¢, Co — TPOU3BOJIbHBIE TIOCTOSTHHBIE.

Ecau npouHTerpupoBaTh NprBeleHHbIe Bblllle YPaBHEHUS U MOICTABUTb UX pelleHUs
B COOTBETCTBYIOIIHE aH3allbl, TO MONyUUM peliieHus cuctembl (1). [IprBenem HekoTOpBIE
13 HUX:

c
A u= 51:17% + c3xy + / flerxo + c2)dxo + ca, v = crao+ c2;



HenoxkanbHble aH3albl U peuieHuda HEJIMHEHHOH CHCTEeMBI ypaBHEHI/Iﬁ

87

b.

1 2 C1 —1
U=—-—x]+21 | —— +c3 | —Ccaxy +C4,
Lo

22
v=—Inzrg+1In (—71 —C1T1 —62> ;

2
U= %(clxo +a) + 1 (€102 4eg) + ey,

v=1Inx + crzo + C3;

u=—cylnxy + ez — (120 + 02)71 + ¢4,
v = (c1mo + 62)331_2, k=-1;
u=-cilziInz; —21] + 21[—(C10 + C2) 7L + 3] + ¢4,
v = (c1mo + cz)xl_l, k=-2;
_1_4

1 (24 Kk)(2 + 2k) F 242k

“_k+1< ST R Tyt hoee e,
_1_9
(2+ k)(2 + 2k) k 2

= | A" T k -1, -2

v |: Zo k(k+1) +Cl ':Cla #Oa ) )

u = (22 + N2)V23(=4X%20 4 ¢1) "4 + oy + c3,
v = (22 4+ N\)732(—4N2xg + c1)?/4

u=—3(z? - )\2)1/2(4)\2300 +co) M+ a1c0 4 c3,
v = (22 — N)732(4N2x0 + c1)?/4

C
uw= ﬁ + @1 [=3(c1mo + 2) T + es] + e,
1

v = xfB(cle + ¢2);

u= —x}/248(169c0 +e1) VA Fxieo + e,
v = :E1_3/2(16x0 +c1)3%

u = —3x3(—8xg + c1) "V + wyco + cs,
v=(—8xg+ 01)3/4;

u =121 + C2,

v=o¢z1), ¢' — mpoussosbHas riaakas QyHKIUS;

u = 3,@51/4(1/901 —cry —ca) + ml[—301x61/4 +oeq] + [—302@61/4 + cs],
_ 3/4 —3/2

V= (—1‘1 )7

rae ¢; = const, i = 1, 5.
B pa6ore [2] nnst ypaBHeHusi (7) mpuBeneHbl YCJOBHO HHBapUaHTHBIE aH3allbl,

HCIIOJb3ysl KOTOPble, MOXKHO MOCTPOUTb HeJIOKaJbHble aH3albl mis cuctemsl (1). Tlpu-

BeleM [Ba TaKMX aH3ala [Js caydas, Korga f(v) = Aev.
[To anszauam nns ypaBHenus (7):

a)
6)

> = Infp(zo) — 1) + In(p(z0) + 1) — In(2Az0);
z =2In(p(xo) + x1) — In(—2Ax0)

HaxoOMM aH3alpl Ajs1 cucTeMbl (1):

a)

u= @ (p! —21)In(p" —z1) + (¢' +21) In(p" + 1) + ¢'] -

(12)
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2

~ g H 167 (w0) + 9% (ao),
v=1In(p* — 1) + In(p* + 21) — In 2\,
rie ¢! = p!(z0); (13)
2
. T
6) u=2p"(x1+¢")In(z1 +¢") —1] — == + 210° + ©%,

21’0
v=2In(x; + ') — In(—2Az0),

KoTopbie penyuupyior cucremy (1) kK caenyromum cucremam OJLY:
12

22 1,2 ~3__(<P)_

90 xO ) 90 2$3 )

(1)
233(2)

S
.
I
\.O
Y
I

6) ¢'=0, ¢*=p'ay? =

Pemrs penynupoBaHHble CHCTEMBI, 110 GopmynaM (13) HaliieM TOUHBIE pelleHHs CHCTe-
mbl (1):

2 2
c] +x7 c1
a) u=-————+aicztezt+ —ai,
2x To
0
cf —at
v=1 ;
2)\%‘0
2 2
Il Cl Cl
6) u=—-—+|cc—— |21 — — +c3,
2.’E0 Zo 21’0

v=2In(z; + ¢1) — In(—2Axg).

HTaK, NpuBeAEHHbIE Pe3YyJbTaTbl 'OBOPAT O TOM, UTO HeJIMHeHHble YPpaBHEHHUA obJia-
AT CKPBITbIMH HEJIOKaJbHbIMH CUMMETPHAMH, KOTOPble K HACTOALIeMY BPEMEHH CO-
BEPIIEHHO HE U3YYE€Hbl U HE HUCIOJb30BaHbl AJA UX UHTErPUPOBAHHUA.

1. Oscsinnukos JI.B., I'pynnosble cBoiicTBa ypaBHEHHS! HeJNMHEHHOH TemonpoBogHocTH, Joxkiade AH
CCCP, Cep. A, 1959, 125, Ne 3, 492-495.

2. ®yummy B.U., Cepos H.U., Amepos T.K., YcioBHast HHBapHAHTHOCTb HEJIMHEHHOTO yPABHEHHUS TEIJIO-
nposogHoctH, Joka. AH YCCP, Cep. A, 1990, Ne 11, 15-18.

3. @ywnu B.M., lrenens B.M., Cepos H.M., CuMMeTpHIHbII aHAIN3 ¥ TOYHbIE PEIeHHs] HeMHHEHHbIX
ypaBHeHHH MarteMaThHueckodl ¢uanku, Kues, Hayk. nymka, 1989, 336 c.
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The conditional invariance and exact
solutions of the nonlinear diffusion equation

W.I. FUSHCYCH, N.I. SEROV, L.A. TULUPOVA

HccenenoBana ycioBHasi HHBADUAHTHOCTb HeJIMHEHHOrO ypaBHeHusi nuddysuu. Oneparo-
PBI YCJIOBHOH MHBapUaHTHOCTH HMCIOJb30BaHbl IJIS1 TOCTPOEHHUS aH3aLEB, PeLyLHUPYIOLINX
JaHHOe ypaBHeHHe K OObIKHOBEHHBIM nH(depeHINaNbHBIM ypaBHeHUsAM. HalineHsl Heko-
TOpble TOYHbIE pelIeHHs] UCXOJHOIO ypaBHEHHUS.

Let us consider the nonlinear diffusion equation
H(u)uo +upn = F(u), (1)

where u = u(z) € Ry, = (z9,21) € Ra, up = 597“0, Uy = H(u) and F(u) are

8%u
ox?’
arbitrary smooth functions.

Usually the equation (1) is investigated in the equivalent form

up + 01 (f(u)ur) = g(u). (2)

In this way, for example, in papers [1, 2] Lie invariance of this equation was investi-
gated.

The present paper is a continuation of the works [3, 4], where the @-conditional
invariance of the equation (1) was studied when H(u) = 1 and H(u) = u~!, F(u) = 0.
In this paper Q-conditional invariance of the equation (1) is studied when H(u) and
F(u) are arbitrary functions. Using obtained operators of (-conditional invariance
exact solutions of the given equation are found.

Let

Q = A(z,u)dp + B(z,u)0; + C(x,u)dy, (3)

where A, B, C are smooth functions, be a differential operator of the first order,
acting on the manifold (z,u) € Rs.
The following theorem is proved analogously, as in [5].

Theorem 1. The equation (1) is Q-conditionally invariant under the operator (3), if
the functions A, B, C satisfy the following conditions:

Case 1. A=1.
Buu = 07 Ouu = 2(Blu + HBBu)a
3B,F = 2(Cyy + HB,C) — (HBy + By + 2HBB; + H,BC), (4)

CF, - (C, —2B))F = HCy + C11 + 2HCB; + H,C?
Case 2. A=0, B=1.

CF, — C,F = HCy + Cy1 + 2CChyy + C?Clyy + %C(F - C, —CC,). (5)

JTonosiai AH Ykpaiuu, 1993, Ne 4, C. 37-40.
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In formulae (4), (5) and everywhere below a subscript means differentiation with
respect to corresponding argument.

Theorem 2. The equation (1) is Q-conditionally invariant under the operator
Q = 0o + udy + C(u)dy, (6)

if it has form
A A
<3>\1 + f) Ug + U1 = <2/\1 + ;2) P3(u), (7)

where P3(u) = A\u® -+ ogu?+\3u-+ Ny is arbitrary third-order polynomial of u, M\ are
arbitrary constants, k = 1,4. In this case C(u) = P3(u).

Proof. Substituting B = u, C = C(u) into (4), we have
Cyy =2uH, F = %(QH —uH,)C, uH,, +2H,=0.

Whence it appears that
)\2 /\2
H:3/\1+Z7 C=P3(u), F = 2)\1—5-; Pg(u),
The theorem is proved.

We use the operator (6) for finding solutions of the equation (7). The ansatz
obtained with the help of the operator (6) has the form

udu du
“‘/ RN Y ©

The ansatz (8) reduces the equation (7) to the ordinary differential equation (ODE)
¢+ P3(¢) = 0. 9)

Integration of the equation (9) depends on a form of the roots of the polynomial Ps.
There are seven essentially different cases. We give one example of each case.

1) Py(w)=(u—10  (p-w)?=2w,
Tr1 — X0
o — %(.’El — $0)2,

2) P3(u)=(u+1)(u—1)% th(p—w)—1=

u=1+

1
Y +w

Y

(xo—ﬁ—xl—ﬁ—ﬁ)u—l
T = th(
To+x1+ =g —u
3) Ps(u) = (u—2)(u?—1), exp3(p—w)—3exp(p+w)+2=0,
__exp3(x1 —x) +3exp(z1 +30) — 4
exp 3(r1 — o) — 3exp(z1 + xo) + 2’

xTo — x1);
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4)  Ps(u) = (u—1)(u® +2u +2),
3cos(2¢ — 2w) + 4sin(2¢ — 2w) + 5 = 2exp(—4y — 6w),
exp(—3zo — 21) + 3sin(xo — 1) — cos(wg — 1)
- exp(—3xo — 2x1) + 2sin(zg — 1) — cos(xg — 1)’
5 P3(u)=(u—-1)2, ¢=w+hw, u=1+exp(rs—z);

hzo —

6) Py(u)=u?’—1, ¢=Inchuw, y= 0PI
sh xg

7) Py(u)=u*+1, ¢=Incosw, u:_CObe+epr1.

sin xg
Theorem 3. The equation
wo +uu; = Mu+ Ag, (A, A2 = const) (10)
is Q-conditionally invariant under the operator
Q=0ay+ xilal + (At + A2)dy. (11)

Proof. If we find a prolongation of the operator (11) and act on the equation (10),
then we have

. 2 3 A
Q(UO+UU11—)\1U—)\2): (—Z—ﬂ+2)\1+—2) X
xy T u
X(U0+UU11—)\1U—/\2)— (-2——+>\1+—> X
i X u

X (uo—l—%—)\lu—)\g),
1

QS = aS + fQu,
The theorem is proved.
The ansatz
2

Mot do = (), W= oz — b (12)

obtained with the help of the operator (11) reduces the equation (10) to the following
ODE

%= 0. (13)

Solving the equation (13) and using the ansatz (12), we find the solution of the
equation (10):

2
At + Ay = Mo {CI (“ — Aawo — Al%) + 62} ' (14)
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Now we give some more results on the @-conditional invariance of the equation (1).
The results are written in the following order — an equation (1), a corresponded
operator, an ansatz, a reduced equation, a solution of the equation (1).

1) ()\1u2 + )\g)uo +uip = /\2“3, Q= )\21‘%80 + 31101 + 3U6u,

A NS
u=x1YpWw), w=1x0-— %95%7 )\1<P290+§2<P=)\39037

2)  (Aru® + Ao)ug + ury = Azu® + 2u,
Q = A2(1 4+ cos2x1)0y — 3sin2x101 + 6udy, u = ctgzio(w),

3 A
w=—xp+Insinzy, @—36+2p+ 3—14,02gb = As¢3,
/\2 )\2
3
3) (A1u2 + )\Q)UO +ui; = )\3’LL3 — 2u, Q = )\260 + 3th.’£181 — h2—u8u,
cn Ty

3 A
u=cthzip(w), w= gyl Inshzy, ¢+3p+2p+ 3)\—1<p2<,b = A3¢°,
2 2

4) e ug + upp = e,

e ¢ e +2
a) Q =x101 — 20y, u=p(xo) —2Inz, e¥9p+2=¢€?, u=In P
1
b)Q:31+tg%8u, u:go(xo)fﬂncos%, e‘”ngri:e*”,
elo+l
u=In—2=,
cos® 5
1
C)Q=51+thﬂ5u, u:go(xo)—anch%, e“’gb—izew,
evo _ L
u:lnigf,
cos® 5
5)  Auug + uy = \u?,
1 1,
a)Q:80+<u+)\—x%>3u, u:)\—xf—keocp(xl),

21¢ =621 — 1)p =0,
b) Q =0y — (u— %W(xﬁ) Oy, U= l

)\W—Fezo(p(l‘l)r p=Wep,

1
u= XW(:rl) + e N\ (xy),

where W(z) is the Weierstrass function, A(z) is the Lame function.

1. OscsinnukoB JI.B., I'pynnoBoit ananus puddepennuansibix ypasHenuid, M., Hayka, 1978, 400 c.

2. Hoponuuusin B.A., Kusasesa M.B., Ceuiesckuit C.P., I'pynmnoBble cBOHCTBa ypaBHEHH TeIJIONPOBO-
[IHOCTH C HCTOYHHKOM B ABYMEPHOM M TpexMepHOM caydyasx, Jugpgepenu. ypasnenus, 1983, 19,
Ne 7, 1215-1224.

3. @ymwmu B.Y., YenoBHasi cHMMeTpusi ypaBHEHUH HeJMHEHHON MaTeMaTH4ecKod (H3UKH, Ykp. mam.
acypu., 1991, 43, Ne 11, 1456-1470.

4. ®ymuu B.I., CepoB M.I., YMoBHa iHBapiaHTHICTb i TOUHI PO3B’I3KH HeJI{HIHHOrO PiBHSAHHS aKyCTHKH,
Hon. AH YPCP, Cep. A, 1988, Ne 1, 28-32.

5. Cepos H.M., YcnoBHasi HHBapUAHTHOCTb W TOYHbIE peLIEHHs HEJIHHEHHOro ypaBHEHHs TeIJIONpPOBO-
IHOCTH, ¥kp. mam. xypu., 1990, 42, Ne 10, 1370-1376.
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A new conformal-invariant non-linear spinor
equation

W. FUSHCHYCH, W. SHTELEN, P. BASARAB-HORWATH

We propose a new model for a spinor particle, based on a non-linear Dirac equation.
We invoke group invariance and use symmetry reduction in order to obtain a multi-
parameter family of exact solutions of the proposed equation.

1. Introduction

Since the discovery of the electron, many people have proposed and discussed the
hypothesis that the mass of the electron is generated by an electromagnetic field,
which the electron produces itself, so that the electron can be thought of as localized
electromagnetic energy. In other words, this means that the electron is described by
a non-linear dynamical system (see, for instance [1, 2] for these ideas). We propose
a realization of this old and interesting physical idea in the framework of the classical
theory of spinor fields. For the electron, we propose the following Lorentz-invariant
spinor equation

(i'ya—m(u,v,\I/\I/,ij”))\I/ =0, (1.1)
where
’Ya:'y#alm /1‘207172’3

and the * are the Dirac matrices

10 0 o
0 _ a _ —
0 _<0 -1 )7 Y _(O_a 0 )7 a_1a2a37

where the o% are the 2 x 2 Pauli matrices

0 1 0 —i
1_ 2 _ 3
fe) =0T

1 1 -
’U/:—iFHVFHV, ’U:—ZFHVFHV,

I
N\
O =
\
HO
N—

where F* is an antisymmetric tensor and
DuFH =3v, 9, F™ =0

with
~ 1
ELV = Eap,uaﬂFaﬁ

and €, is the antisymmetric Kronecker symbol.

Preprint LiTH-MAT-R-93-05, Department of Mathematics, Linkdping University, Sweden, 8 p.
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The electromagnetic field which the electron itself produces satisfies Maxwell’s
equations:

0, F" = jur with jr=ely" V¥, (1.2)

where e is the charge of the electron.

We can interpret (1.1) as follows: the mass, m, of an electron is generated by the
electromagnetic field F#¥, and its own spinor field W. In the usual Dirac equation,
m is a parameter which does not depend on the electromagnetic and spinor fields.
Equation (1.1), in contrast to the standard Dirac equation, is a complicated non-linear
equation, and as a result one has the following problem: how does one find at least
some non-trivial solutions of such an equation?

For the case of m depending only on the spinor field, some classes of exact
solutions of (1.1) have been found [5, 6, 10, 11]. In order to construct solutions of
(1.1), (1.2), we first examine the symmetries of this system, and then we give some
families of exact solutions. The system (1.1), (1.2) is non-linear even for m = const,
and can be thought of as a first modification of the Dirac equation in our approach.

2. Symmetries B
In the spinor equation (1.1), (1.2), we shall consider the fields F*¥, ¥, ¥ as
independent, and we shall look for symmetry operators of that system in the form

9 w9 =0

X =g+ g, G, e

e gFmy’

where the coefficients are functions of x, ¥, ¥, F# In finding these symmetry
operators, we use the method of Lie [4, 8, 9]. Indeed, after a painstaking calculation,
we obtain the following:

Theorem 1. The maximal point symmetry algebra of the system of (1.1), (1.2), with
m = const, has as basis the following vector fields:

0 ., O vy O

O, =0/0z", Ju =x,0,—2,0,+ (0,V)" 507 + F* paFVP _FvP T L(2.1)

0 0
= e HY
D=u* BN +F SR (2.2)
0

P =pr 2.

S (2.3)

where 9,P* =0, 9,P*" =0 and

1
= —— ® v
o = =707

Remark 1. The operator D generates scale transformations in the space of the fi-
eld variables ¥, F'*”, not in Minkowski space R(1,3). The operators (0., J.., D),
generate the extended Poincaré algebra [4].

If we assume dependence of the mass on the Lorentz-invariant quantities u, v,
defined in (1.1), (1.2), we retain invariance under the Poincaré group, but not always
under the extended Poincaré group. In fact, we have the following result:
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Theorem 2. The system (1.1), (1.2), where m is a function of the invariants u, v
defined in (2.1), (2.2), is invariant under the algebra generated by (1.3), (1.4) if and
only if

m:{m(g)7 u # 0,

m =const, u=0

Remark 2. Theorem 2 implies that there exists a wide class of non-linear systems
of the form (1.1), (1.2), which are invariant with respect to the extended Poincaré
algebra. This is so when we assume that the mass depends only on the electromagnetic
field.

3. Conformally invariant equations
In this paragraph, we shall describe equations of the form (1.1), (1.2), which are
invariant under the conformal group, under the assumption that the mass has the
following dependence on the fields:

m = AMF(u,v) + Ao (TW)F (3.1)
The conformal group, C(1,3) is well-known (see for instance [4], [5]). It consists
of the Poincaré group together with the following non-linear transformations:

2
; Tu —CuT

xl, = - , (3.2)
V'(2) = (1 = (ve) (ya)) ¥ (), (3.3)
F, (') = 02 Fy, + 20{2°[(2(ca) = 1)(cuFpy — ¢ Fpu) —

- cz(ac#Fﬁ,, — 2, Fgu)) + cxaFoar — v Fop — (3.4)

— xz(c#Fw — e Fop)] + 2(cuzy — c,,:v#)Falgcax'H}7

), = ez, (3.5)
V() = e 300 (x), (3.6)
F/feu(xl) = 6_29F;wa (37)

where the primes denote transformed quantities, 6 and ¢,, are arbitrary real constants,
cxr = c ¥, 2= cuct, 22 = T,z

Applying Lie’'s method for calculating symmetry operators, one can prove the
following result:

Theorem 3. The system of equations (1.1), (1.2), with mass given by (3.1), is invari-
ant under the conformal group if and only if k = % and

uiF(%), u #£ 0,

1
v4

Fi(u,v) = (3.8)

3 uzO?

where F' is an arbitrary, smooth function.
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One can easily verify that (1.1), (1.2), with mass defined by (3.1), is indeed invari-
ant under the scale transformations (2.4)-(2.6). Substituting these into the equations
yields

[i70 — A\ Fy (e~ %0u, e=%v) — \pe? 1 =30 (W) F| T = 0,
9, P = Ui, 9, Fm =0.

The condition of invariance then gives
e Fi(e*u, e %) = Fy(u,v), 6(1—3k)=0

which immediately implies k& = % and, differentiating with respect to 6, that Fy
satisfies the equation

The general solution of this equation is easily shown to be that given by (3.8).
Conformal invariance follows by using the transformations

VU — oUW, u— otu, v— oo

Remark 3. Requiring conformal invariance narrows quite considerably the class
of admissible systems (1.1), (1.2). Fixing the function F (%), we obtain different
conformally-invariant equations for a spinor particle.

4. Exact solutions
We shall construct a class of exact solutions for the simplest conformally-invariant
system (1.1), (1.2), namely for the case F =1, so that our system becomes

(i70 — Mut — Ay (IW)3) T =0,

_ - 4.1
O, FH = eU~yHU 0, FH = (.

We shall look for solutions of this system by the method of reduction [4], that is we
reduce the system of partial differential equations to systems of ordinary differential
equations. For these, we use the following ansatzes [4, 5, 6, 7, 10, 11]:

U(z) = pw), FH(x) = f(w), (4.2)

where p(w) is a four-component vector, f#¥(w) an antisymmetric tensor, w = Sz,
with 3 a constant vector satisfying 3% = 1. Substituting (4.2) into (4.1), we obtain
the reduced system of ordinary differential equations

i(18)¢ — (Mz7 + Aa(pp)3) =0,
Bufrv = e@ytp, Bof* =0

with z = —1fu, f* and the dot denotes differentiation with respect to the argu-

ment w. Since f* is anisymmetric, it follows that ﬁuﬁl,f‘“’ = 0, so that the second
equation in (4.3) yields ¢(y/3)¢ = 0. Using the relation

(4.3)

Y A = 29"
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and the fact that 3 is chosen so that 3% = 1, it is easy to show that (v3)(v8) = 1.
Multiplying the first equation of (4.3) on the left by @(~v3) we then obtain

¢ = 0.
We therefore find that ¢ satisfies

pp = const, @(vB)p = 0. (4.4)
These equations imply that we should look for solutions ¢ in the form

¢ = exp(i(v8)g(w))X, (4.5)

where g(w) is a function we must find and y is a constant vector which satisfies
x(vB8)x = 0. Since (y3)? = 1, it follows that

¢ = [cos(g(w)) — i(vB) sin(g(w))]x; (4.6)
Py = at cos(2g(w)) + ¢ sin(2¢g(w)), (4.7)
ol =xy'x, = %X[(vﬁ)m“]x- (4.8)

Clearly, a8 = 0. Equation (4.3) together with (4.6), (4.7), (4.8), can be written as

g =Mz + Xa(¥X)7,

B, f#% = e(a* cos(2g) + * sin(2g)), (4.9)
6.f" =0
We now seek solutions of (4.9) of the form
9lw) = i, , (4.10)
f* =el(a!B” — o’ p*) sin(2kw) — (MY — ¢’ ") cos(2kw)],
where k, € are constants. Without loss of generality, we assume o? = ¢? = —1, since

we have %2 =1, a8 = Bc = ac = 0. With these conventions, (4.9) and (4.10) give

I€=>\1\/g+/\2()zx)%, e = 2¢K. (4.11)

Let us now consider solutions of (4.11). The first case is when A; # 0, A = 0. Then

% )\2 %
s<2§1> : n<621> . (4.12)

The second case is Ay = 0, Ay # 0, which gives

e

K= A(Xx)?, 6= —" . (4.13)
2X2(x)?
Finally, when A1 # 0, A2 # 0 equation (4.12) becomes the cubic equation
Py +q=0, £=—, (4.14)

2K
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where
eX? A3y

y=vi={-tevari-E-va q=91- M

In this way we obtain exact solutions of the system (4.1), (4.2) in the following form
Y(x) = exp(—ik(YB)w)x, w =Pz, (4.15)
P = i[(a“ﬂ” —a¥f")sin(2kw) — (*BY — ¢’ B*) cos(2kw))], (4.16)

)

o' =xrx, = oxl(v), v x

=1, o*=c=-1, af=ac=pfc=0.

For conformally invariant solutions of (4.1) we exploit the ansatzes [6, 7]

W) = el vt o,
o _ @) 2mfan () — o (W) (41
P = 2 (22)3 :

Combining (4.1) and (4.17) yields the system of ordinary differential equations

—i(v8)% = MzT + (@) 3,

Bufrr = —e@yiep, (4.18)
N
6uf =0
with z = —%fw,f’“’, which is formally similar to (4.3). Using this fact, we can write
down the following solutions of (4.1), (4.17):
yx . Bx
U(z) = WGXP(W(W@WM w = 22 (4.19)
FH = _° { [ﬁ“a” - pra’) +2(atz” — afat)w +
2k (22)?
(654 . v v
+ 2;(3:‘%” - x”ﬂ”)] sin(2kw) + [(C“ﬁ — B + (4.20)

+ 2w(xhc” — a¥et) — 2;—2(x“ﬁ” - x”ﬂ”)] cos(2mu)},
where

_ T _
o =xyx, = oxI8) I
2=1, a*=c=-1, af=ac=LFc=0.
The solutions found show that the system (1.1), (1.2) is consistent, at least in
certain cases of the mass function. Furthermore, we can calculate the mass corres-

ponding to these solutions:

1 - 1 K
m= \jut + A2(¢¢)3 = F
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5. Conclusion

We have shown that there exists a consistent non-linear dynamical model for
a classical spinor particle, in which the mass is generated by an electromagnetic
field and a spinor field, which the particle itself creates. The proposed model (3.1)
is conformally-invariant, as is the class of solutions we obtain, For these solutions,
we have also found an explicit form for the Lorentz-invariant mass. The question of
quantizing the model (3.1) will be taken up in future papers.
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Generation of solutions for nonlinear
equations via the Euler—Amperé
transformation

W.I. FUSHCHYCH, V.A. TYCHYNIN

3a joroMmoro0 KOHTaKTHOro mnepetBopeHHs Eftnepa—Ammepa omep:kano (opmyan pos-
MHOXKeHHs1 po3B’si3kiB. [To6ynosano knacu JPYII apyroro nopsaky, ski inBapianThi Bia-
HOCHO LIbOTO IePEeTBOPEHHS.

The invariance of DE under a nonlocal transformation of variables allows us to
generate its solutions from the known ones. The reducing of a nonlinear PDE to
a linear equation makes it possible to construct for it the formula of a nonlinear
superposition of solutions. In the present paper the solutions generating formulae
are obtained via the Euler-Amperé contact transformation. Classes of Euler—-Amperé
invariant PDEs are constructed. The efficiency of the obtained formulae is illustrated
in several of examples.

1. Nonlocal invariance and the solutions generating formula. Let us consider the
Euler—Amperé transformation in the space R(1,n—1) of n independent variables [1, 2]:

U = YqVq — V, Zo = Yo, Lq = Vg,

- 1
—ﬁ, a,b=1,n—-1, d=det(vg)#0, pv=1n-—1. ()

The first and second order derivatives are changing as

Up = —V0, Ua = Ya,

Voo = —detfl(vab) det(vyy), Uupa = —dez’Fl(Uab)v%aba(Ucd)7 (2)

Uay = —det ™ (Vea)aap(Vea) (a,b,c,d =T,n — 1).
Hereafter the summation over repeated Greek indices is understood in the space
R(1,n—1) with the metric g, = diag (1, —1,...,—1) and over repeated Latin indices
it is understood in the space R(0,n — 1) with the metric g, = diag(1,1,...,1),
Uy = Ot = %, det(uapr) = aoo(Uab). aro(Uun), Gap(ucq) are the cofactors to

N v

the elements wuy, and wugyp respectively, A\,o0 =0,n — 1.
Following expressions are absolute differential invariants of order < 2 with respect
to (1) due to its involutivity:

Pz0), fTarua), [ (x0,—u0), f3(u,T0uq —u),
FA(ug0, —det ™ (uap) det(u)),  F2(Uoa, —det ™ (uap)uop@pa (ted)), (3)
f6 (uab’ _detil (ucd)aab(ucd))~

JTonosiai AH Ykpaiuu, 1993, Ne 7, C. 40-45.
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Here f° is an arbitrary smooth function, and f*, k = 1,6 are arbitrary smooth and
symmetric on arguments functions:

fk(gc,z) = fk(zvx)'

Let us construct by means of the expressions (3) the absolutely invariant under
transformation (1) second order PDE

F{f7}) =0 (o=0,6). (4)
F(-) is an arbitrary smooth function. Such equations are contained in the class (4):
Uy — Uglig + 22 =0, 22 = zoxq; (5.1)
Mg — Au — det ™ (ueq) Slid (ueq) = 0; (5.2)
Ugy — detfl(ucd) det(uy,) = 0; (5.3)
Xetg — det™ (teq) + (—1)™ " det ™™ ™ (tteq) detfaqs (1uea)] = 0; (5.4)
M3+ p(ae)ugug + pluc)z® = 0; (5.5)
Mgt + o(ue)ugu + p(zc)a? = 0 (5.6)
Mg — @(xe, u) A — det ™ (teq) @ (e, Tattq — u) - Slid (ueq) = 0. (5.7)

One can continue this list of equations (5) in the obvious manner. A is the Laplacian,

. def
Slid (ucd) = gabaab(ucd)a
o(x, z) is an arbitrary smooth function, A is an arbitrary parameter, m, h are real
numbers.
1
Let (u)(xo,z) be a known partial solution of Eq. (4). For constructing new solution

(121)(330,95) of this Eq. (4) we rewrite the formula (1) in parametric form, replacing x,

1 1
for parameters 7%, a = 1,n — 1. Substitute (u)(aso,r), (u) o(zo,7) to (1). So, as a result,
we obtain the formula
2 1 1 1
(u)(xo,x) =7 (u) oo, 7) — (U)<$Q,T) =T1%, — (u)(.T(),T),

1 .
Ty = (u)a(xo,T), a=1,n—1.

(6)

Here © = (21,72,...,2n_1), 7 = (7}, 72,...,7""1). The formula (6) allows us to
construct efficiently the new solutions of nonlinear equations (5) by resolving the last
system (6) with respect to parameters .

Example 1. Let us consider the equation
UgU11 — U?l +1=0, (7)
which is invariant under the transformation (1). The function

(1)
u(wg,21) = p(w), w =T+ 12
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is a solution of Eq. (7), when ¢ satisfies the first order ODE

q+2(kp) I (kp)2 + 1+ 4kw + ¢ =0,
qun‘k(p—\/ kp)? + ‘—ln‘kzap—&-\/ k(p)2+1‘.

Here k£ = %ao, a1 = 1, a3 = 1, ap, ¢ are arbitrary constants. In this case the
generating of new solutions is realized according to the formulae

(8)

(124)(360,961) =7 -pw)—pWw), z1=0¥W), w=2kryg+T. 9)

From the second equation of the system (9) we get
7= [¢] N (x1) — 2kao.
Here [¢]7!(z) is the inverse function to ¢(x). Note, that
[P 7 (@) =w,  @(w) = @(w) = @([¢] " (21)) = 1.
Then from the first equation of the system (9) we obtain

2
( )(950,331) =721+ @(2kxo + 7). (10)

Here ¢(2kxo + 7) is a solution of ODE (8) of argument 2kxq + 7. Due to equality

1
x1 = (u)(:co,T) = ¢(2kxo + 7) we get 7 from the correlation (8)

r= {g 4 2(karr) "t/ (ke )? + 1+ 2k + (4K) ! }
=1 ’kxl v (kxq1)? ’ ln’kxl—l—\/ (kxq1)? ’

Thus, the solution u(xg,x1) is determined by the parametric system of equations

(11)

@ (o, 21) = o (~a = 2(ke) VIR T 1 - () ) -

— 1 {g + 2(kxy) "/ (kx1)? + 1 + 2kxg + (4k) 7!
q+2kQ) (k)2 +1+4kw +c; =0, ©=pw). (13)

Example 2. The equation

(12)

W—/

(up — Ayu)(urrugz — u12) Apyu=0 (14)

is (1)-invariant, when the condition ujjuse — u%, # 0 is satisfied. The partial solution
of Eq. (13) is

(1)
v =Inr? r?=23 42l

1
Let us replace z,, a = 1,2 in (u) for parameters 7¢

1
(’U,) — lnpz, p2 — (7_1)2 + (7_2)2.
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and substitute this result into to the formula (6). We obtain

2
(u)(xo,:cl,xg) =2—-Inp? x,=27%2 a=12. (15)

Let us express 71, 72 through x;, x5 from the last two conditions of the system (15)
T =2x,07% a=1,2. (16)

Substituting 7 from (16) into the first equation of the system (15), we get the soluti-

(2)
on w:

2
(u) =2(1 -1n2) +In7r2.

2. Nonlocal linearization and nonlinear superposition formula. Let us apply the
transformation (1) to a general second order linear PDE

b (Yo, Y)vpw + 0" (Yo, y)vu + (Yo, y)v + c(yo, y) = 0. (17)

Y= (Y1,Y2, -, Yn—1), O* = b"*, b b, ¢ are arbitrary smooth functions of yg, y. As
a result we get the nonlinear equation

{69 (g, u )det(u,w) — 209 (g, u )UObaba (Ueq) +

+ b“b(xm u)aap(tica) } det ™ ! (uea) + 0% (o, u) - o + (18)
+ ba(an l)xa - b(an %)[xaua - u] - C(‘r(b 1{) = 0.

Here U= (ur,ug,...,up—1), a,b = 1,n—1. Eq. (18) possesses the solutions super-

position property, which arises from the superposition of solutions of the linear equa-
tion (17)

(3) 1) 2)
V' (Yo,y) = v (Yo,y) + V (Yo, y)-

k 3
Let (u), k = 1,2 be known solutions of Eq. (18) and (u)(xmx) be a new solution of the
3 1 2
same equation. Let us express (u) through (u) and (u). Making use of Euler—Amperé
transformation (1), we get

3 3 3 1 2 1 2
Do) = yato = ¥ = il 400 - V-7,
ra= b= W+ 8, w0 = e

(19)

1 2 1 2
One can express (v) and (1}) via (u) and u) accordingly, where x are replaced for

parameters 7 = (71,72, ..., 7771 in the first and § = (0*,0%,...,60""1) in the second
ones:
k) (k) (k k k 1
(U) = (T)a (u)a - (U), k= 13 2; Yo = To T Oﬂ (T) =T (20)
k) (k) (k k k
Yo = (u)a((T)O, ( ))7 (72_) 0, (U)a (k)
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Substituting the relations (20) into (19) we obtain the solutions superposition formula
for Eq. (18)

@ (2o, 2) = W (20, 7) + @ (w0, 2 — 1), Walwo, ™) = Walz0,0), 0=a—r(1)

Here the second equation of the system (19) is used essentially x, = 7%+ 6° for elimi-
2 2

nating parameters 6 in the formula (21) and the designation (u)a(xo, 0) = (U)ga (x0,0)

is adopted as well.

Example 3. Let us use as initial partial solutions

1 1 2 2
(U)(xo,xl) =Zo — —ﬁ, (U)(afo,ﬂh) =k[l+z — xo]%7 k= —gﬁ

2
of the Euler—Amperé-linearizable equation
uouir +1=0, wuyp #0. (22)

1 2
Replacing the argument x; for parameter 7 in (u) and for parameter § = x; — 7 in (u)

and making use of the formula (21), we obtain a new solution of Eq. (22)

3 2

(u)(gco,xl) =x9—h— g\/ih%, h=2+x1 — 2o+ /2(x1 — x0) + 3. (23)
Example 4. The nonlinear heat conduction equation

ug det(uqp) + Agyu = 0,

A(Q) = 5‘% + 8%, det(uab) 7é 0

admits the linearization under the transformation (1) to the equation

(24)

vy — A(g)v =0.
This Eq. (24) possesses the partial solution in parametric form

1
(u)(xo,:cl,xg) =07 r? + 20020070, 1 =ad 42l (25)

x1(87x]) = +0 exp{—0*r?(8zox?) '}
Let the second solution of Eq. (24) take the form

2
(U)($0,5017$2) = af — 3. (26)

3
Making use of the formula (21) we obtain the new solution (u):

1
(a)(xo,xl,@) =0z, —0)2 (ml - 59) (r? + 62 — 22,0) +

1 1 1.\’
+ 22007 (21 — 20 ) + =07 — 2%(x, — 0)72 (331 - 59) ., (27)

2 4
1 (r? + 0% — 2210)
2 —_ — — —_ 2—
8y <x1 20) +0 exp{ 0 Tro(z, — 072 ,

0 is the parameter to be eliminated.

1. T'ypca E., [aTerpyBanHs piBHSIHb 3 YaCTMHHHUMH NOXiTHUMH mnepiuoro nopsiaky, Kuis, Pax. mk., 1941,
415 c.

2. @yumu B.U., Teiuunun B.A., 2Knanos P.3., HesokanbHas nuHeapusalysi 1 TOUHbIE PeLIeHHs] HEKO-
TopeIX ypaBHeHn#H Momxxa—-Amnepa, [lupaka, [Tpenpunt Ne 85.88, Kues, Mucturyr marematnku AH
YCCP, 1985, 28 c.
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Hodograph transformations and generating of
solutions for nonlinear differential equations

W.I. FUSHCHYCH, V.A. TYCHYNIN

[TeperBopennst rogorpada onHiel ckansipHoi pynkuii B R(1,1) ta R(1,3), a Takoxk ABOX
ckansipuux ¢yHkuid B R(1,1) BuKOopuCTaHi HJisi PO3BMHOXKEHHsSI PO3B’SI3KiB HesiHIHHHX
piBHSIHb; N0oOyNOBaHi KJjacK roporpag-iHBapiaHTHUX pPiBHSIHb APYroro MopsiaKy.

The results of using the hodograph transformations for solution of applied problems
are well-known. One can find them for example in [1, 2, 3]. We note also the paper [4],
in which a number of invariants for hodograph transformation as well as hodograph-
invariant equations were constructed.

1. Hodograph-invariant and -linearizable equations in R(1,1). Let us consi-
der the hodograph transformation for one scalar function (M = 1) of two independent
variables © = (zg, 1), n = 2:

U(CU) =Y, To=1"Yo, IT1= U(y)v

ov (1)
6 = = 8 = — 0 = .
Ul v o #0, y=(vo,y1)

Differential prolongations of the transformation (1) generate such expressions for the
first and second order derivatives:

-1 -1

Uy =7y, Ug= —VoVy , (2)
_ -3 _ -3

upp = —vy “v11, U0 = —vy  (V1v10 — Vov11), 3)
_ —37,,2 2

Upp = —Vp [Uovu — 2vgv1v10 + % Uoo]~

It is clear that (1) is an involutory transformation. This allows to write a set of
differential expressions of order < 2, which are absolutely invariant under the trans-
formation (1):

fowo), o), fluurt),  fPluo,—uoui’),  fHuir, —upuir),

[ (u1o, —uf3(u1u10 —ugui1)),  fO(uoo, —UIS[U%UU — 2uguqu1p + uiugo)).

(4)

Here fO is an arbitrary smooth function, f?, i = 1,6 are arbitrary functions symmetric
on arguments, i.e. fi(z,2) = fi(z,). So, the second order PDE invariant under the
transformation (1) has the form

F({f"}):()? {fa}:{f07flv-"7f6}7 o=0,6, ()

F' is an arbitrary smooth function.
Such well-known equations are contained in the class (5):

1. u3 —u? —1=0 — the eikonal equation; (6)

Tonosini AH Ykpaiuu, 1993, Ne 10, C. 52-58.
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2. upy — ugo[uguiy — 2uguiuip + ujuge] = 0 — the Born-Infeld equation; (7)
3. wgour — uy =0 — the Monge—Amperé equation; (8)
4. up = f(uy)ury, f(ur) = f(uy )uy? — the nonlinear heat equation [5]. (9)
Particularly, such equation as
up —uy 'y =0 (10)
is contained in the last class (9).
Let (zli)(xo,ml) be a known solution of Eq. (5). To construct a new solution

2
(u)(ato,xl) let us write the first solution replacing in it an argument x; for parameter

T (11)(1:0,7') and substitute it to the hodograph transformation formula (1). So, we
obtain the solutions generating formula for Eq. (5).

(a)(xo,xl) =7, T = (llt)(xo,r). (11)

Let us now describe some class of (1)-linearizable equations. Making use of for-
mulae (1) to transform general linear second order PDE

bﬂy(y)vuV + b“(y)vu + b(y)’l} + C(y) = Oa y = (y07 yl)? ,U/v v = Oa 1) (12)
we obtain
b9 (2, u)uf?’(u%uu — 2uguiuio + udug) —
— 20 (20, u)uy® (ururo — wout1) + b (zo, u)uy ury + (13)
+ 00 (0, w)uy ug + b (o, w)uyt — bzo, u)rr — c(20,u) = 0.
b*¥, b, ¢ are arbitrary smooth functions, b'® = b°1. Summation over repeated indices
is understood in the space R(1,1) with the metric g,, = diag(1,—1). The repeated
use of this transformation to Eq. (12) turn us again to the Eq. (11).

For any equation of the class (12) the principle of nonlinear superposition is sati-
sfied
(3) (1) (1) (2)
u (zg, 1) = U (x9,7), U (mg,71) = U (T, 71 — T), (14)

k 3
Here (u)(:vo,xl), k = 1,2 are known solutions of Eq. (12), (u)(x(hm) is a new solution
of this equation. Parameter 7 must be eliminated due to second equality of the sys-
tem (13). For example, such equations important for applications are contained in this
class (12):

Ug — ul_zun =0, wouir —uruip =0,

udui — 2uguiug + uugo =0, wup — c(zo, u)u; = 0.
Let us consider now an example of constructing new solutions from two known ones
by means of solutions superposition formula (13).
Example 1. A nonlinear heat equation

—2
Up — Uy U1 = 0
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is reduced to the linear equation
Vg — V11 = O (15)
Therefore, the formula (13) is true for (14). The functions

1 2
(u) =z, (u) =+Vx1 — 2x9 (16)

are both partial solutions of Eq. (14). We construct a new solution (131) of this Eq. (14)
via (QIL) and (122. It has the form

3 1 1
(U)(xo,l“l) =3 + 1 + 1 — 20, (17)

2. Hodograph-invariant and -linearizable equations in R(1,3). The hodo-
graph transformation of a scalar function w(z) of four independent variables x =
(zo,x1,x2,x3) has the form

v(z) =y, z1=v(y), ze=vyp, 6=0,2,3. (18)

Prolongation formulae for (18) are obtained via calculations [6, 7]:

ur =o', ug=—vy v, up = —vg o,

—3 -3
u1p = —vy > (viv1g — vev11), Vgo = —v; > (Vivgg — 2vgv1v19 + VFVIL), (19)
Ugy = 7?)1_3[”01(’[)11}97 — UyV19) — Vg (V1V1y — VyU11)].

Here 6,y = 0,2,3, 8 # ~. Making use of involutivity of the transformation (18) we
list for it a such set of absolute differential invariant expressions of order < 2:

f0($07x27x3) fl(xl7u)7 f2(u17u1_1)7 fg(u97_u1_1u9)7
fAurn, —upBunn),  f5(uig, —uy ®(urug — upuny)),

FO(ugg, —uy®(uugy — 2uruguig + uduir)).
(

f7 UGy, —UT [u1 (U1Uye — UyU1g) — Up (U1 ULy — UyU11)]).

(20)

There is no summation over 6 here, as before, f° is an arbitrary smooth function, f7,
j = 1,7 are arbitrary symmetric.
An equation invariant under transformation (18) has the form

F{f) =0 (A=0,7). (21)

The solutions generating formula has the same form as (10)

2 1
(U)($0,$17x2,$3) =T, Ty = (U)(.’EO,T, .1?2,.%'3). (22)

2
Here (&)(x) is a known solution of Eq. (21), (u)(:c) is its new solution. The following
well-known equations are contained in this class (21):
1. u?—wusus—1=0, a=1,3, the eikonal equation;
2. (1—-wu”)0u—u'u’u,, =0, p,v=0,3, the Born-Infeld equation [8];
3. det(uu,) =0 the Monge-Amperé equation.
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Here summation over repeated indices is understood in the space R(1,3) with the
metric g, = diag (1,-1,—1,—1).

Ou = GIL(?”U = Upp — U11 — U22 — U33
is the d’Alembert operator,
Uty = U3 + us + uj +ul = (Vu)?.

The class of hodograph-linearizable equations in R(1, 3) is constructed analogously
as above. Making use of transformation (18) for linear equation (11), written in
R(1,3), we get

bt (s, u)u1_3u11 + %9 (x5, u)ul_?’(u%ugg — 2uquguip + uiui1) +
+ b7 (x5, u)ufs[m(uluw — uyU10) — Ug(Ur U1y — Uyu11)] + (23)

+ bl(xg,u)uflug —blxs,u)z1 — c(z5,u) =0, x5 = (x0,22,x3).

Here 6,0 = 0,2,3 and summation over 6 is understood in the space R(1,2) with
metric gg, = diag (1, -1, —1).
Note, that multidimensional nonlinear heat equation

Uy — uf2(1 + u% + u%)uu — Ugg — U3z + 2u;1(uQu12 + uguyz) =0 (24)

reduces due to transformation (18) to linear equation vy = Agv, where Az =
0? + 03 + 03 is the Laplace operator.
So, the solutions superposition formula for the equations (23) and (24) is

(3) (1)
U($07$1,$2,9€3) = U(ﬂfoaﬂfEQ,xs), (25)

(1)

(2)
u (xﬂv’rv iEQ,iL’g) =

U($0,£C1 7T,$2,£L’3). (26)

Example 2. Let partial solutions of Eq. (24)

(1) ry—co (2 9 2
U =xg—To — 3 —In ;U= Zc%(m—qf—x%—x%
C1

3
be initial for generating a new solution (u). Then this new solution of Eq. (24) is
determined via (25), (26) by the equality
(3) (3)
w?(z) + a3+ 23 = 03[1;1 —co—crexp{ag—xa —x3— U (Jc)}] , @)
9
c3 = ch, Co = C4 + C2.

Thus, the formula (27) gives us a new solution of Eq. (24) in the implicite form.

3. Hodograph-invariant and -linearizable systems of PDE in R(1,1). Let
us consider two functions w*(xg,x1), p = 0,1 of independent variables zg, ;. The
hodograph transformation in this case, as is known [2], has the form

uo(x07x1) = Yo, ul(‘r(%xl) = Y1, xozvo(yo’y1)7 T :Ul(y07y1)7

0

28
§=ulud —udud £0, 6 =ovlvd —vio £ 0. (28)
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The first and second order derevatives are changing as
up =01, wuy=—0""toy, wl =01, wh=5""tof, (29)
ujy = =072 - [(v9)?(vhvly — vgvir) + (v9)* (vgvgo — v3vge) —
— 20vg (ugviy — Uov%o)]
ugo = —0* 7% - [(vg)?(vgviy — vgviy + (v1)*(vgvo — vovdo) —
— 2vhvi (vguy — Vv,
uto = 072 - [vdvg (vp vl — voviy) +vivi (vhugy — vgvgy) —
— (vgviy — vivig) (vivg + vgoy)], (30)
ufy = =" 3[(v)*(vYviy — vivgy) + (0])?(Vuge — vivgo) —
— 20{vg (vPviy — vivdy)l,
Ugo = *5*73[(1’5)2(”(1]7}%1 vivgy) + (U%)Q(”?Uoo Uivgo) -
— 2uiwg (vivy — vivdy)l,
= —0**ugug (vjvi; — viv;) + vivi (vivge — vivgy) —

— (Wuig — viviy) (vivg + vgo?)].

Let us now construct the absolute differential invariants with respect to (28)-(30) of

order < 2. Making use of involutivity of this transformation we get

flapu), p=0,1, fuli,ou)), p#v, pv=01,
there is no summation over repeated indices here,

Plut, =6k, p#v, wuv=0,1;

FHuiy, =072 [(ud)? (ugvdy — uguiy) + (u})? (ugudy — ugugo) —
— 2uQuf(uguly — uguiy))),

F5(ugo, =672 - [(ug)? (ugudy — uduiy) + (ui)?(ugudy — ugugy) —
— 2ugui (ugvy — uguig)l),

fO(uig, =67 - [ugug(ugu?y — uguiy) + wdui (ubugy — ugugy —
— (uguy — uguio)(ujug + ugul)l),

STy, =673 [(wd)? (uugy — uiuly) + (uf)?(ufugy — ujugy) —

— 2ufuf(ufuiy — uiuly)l),

£3(ugo, =02 [(ug)? (ufugy — ujuly) + (ug)?(wQugy — ugugy) —
- 2“1“0(“?“ U%U(l)o)])

F (o, =072 [udug(ufuiy — ujudy) + ufui(ufugy — uiugy) —
— (uugg — uguly) (ujug + ugul)]).

All functions f*, k = 1,9 are arbitrary smooth and symmetric.

(31)

So, we now are able to construct the hodograph-invariant system of second order

PDEs

F{f*) =0, k=19, o=12,...,N.

(32)



110 W.I. Fushchych, V.A. Tychynin

) 2), @), . .
We construct a new solution v = (u® w?') of system (32) via known solution

1 1 1
% — ((u)o, (u)l) according to the formula

V=7, 2= (33)

Here x = (zg,21), 7 = (7°,71), 7# are parameters to be eliminated out of system (33).

Example 3. Let us consider the simplest hodograph-invariant system of first order
PDE

ué—u?:O, u%—ugzo. (34)
It is easily to verify, that pair of functions

1 1
Qo = 2xo1 + C, W - 2+ a2

is the solution of system (34). Making use of formula (33) one obtain the new solution
of this system

1
2

2 1

(u)l = iﬁ {1:1 + /2% + (2o — 0)2] ,

(2) a: (%)

2 Tg—cC

W0 = +22 {xj: x2+$—02}

\/Q 1 1 ( 0 )

Let us consider the linear system of first order PDEs

by (y)vy, + 07 (y)v” + ¢ (y) = 0. (36)
Here bZV, b°%, ¢ are arbitrary smooth functions of y = (yo,y1), summation over
repeated indices is understood in the space with metric g;, = diag(1,1). This
system (36) under transformation (28) reduces into system of nonlinear PDEs

b0 (u)6~tut — bSO (u)dtud — b3 (u)dtuf + 37)

+ b9 () uf + 670 (w)xo + b7 (u)w1 + 7 (u) = 0.
The solutions superposition formula for the system (37) has the form
3 1 1 2
W (g, m) = W0, 7), W00, 1) = W0y — 02y — 1), (38)

3 1 1 2
(g, 20) = W0 ), W0, ) = W — 70, — 7).

0 0

Making use of designations u = (u°,ul), x = (zg,21), 7 = (79, 71), one can rewrite

the formula (38) in another way:

V) =D, W) =D@-r. (38a)

Example 4. It is obviously, that two pairs of functions

1 1 1 1
. 3%, P = (22! ng — 1,
(39)

2 1 (2)
(u) = x5! [561 + ml} . P = (2 x0) e
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give two partial solutions of the system

Uuo —+ uuy —+ 4)\2pp1 = 0,

40
po +u1p+upy =0. (40)

3) (3)
Let us apply the formula (38) to construct a new solution (u), p via (39). Finally we
get

(3) (3) _ (3) 1

U 2(zo, 1) — (o — 2 U (20, 21)) "% — zo U (20, 21) + 21 + 3G = 0,
1

(3) _ (3) (3) 1 2

P (zg,21) = (2N) Y (2o, 21) — u2(m0,x1)—x1—§cl
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New conditionally invariant solutions
for non-linear d’Alembert equation

W.I. FUSHCHYCH, I.A. YEGORCHENKO

We describe all ansatzes of a specific form that reduce the non-linear d’Alembert equa-
tion. In this way we obtain some new solutions of the equation with a polynomial
non-linearity.

1. Introduction. Let us consider a non-linear d’Alembert equation of the form
Ou = Mk, (1)

where u = u(xo, x1, 2, x3) is a real function; k # 1, A are parameters,

Ou= o — =5 — ——5 — —.
“ Ozt Oz  Ox%  0x3
Equation (1) is invariant under the Poincaré algebra AP(1,3)® D with the follo-
wing basis operators:

o, Oay  Joa = 2004 + 2a0o,  Jab = TaOp — Tp0a,
2 (2)
D =200y + 404 + ——udy,
1-k

when k is arbitrary, k # 1. Here a,b = 1,2,3, and we imply summation over the
repeated indices from 1 to 3. We shall not consider here the special case k& = 3 when
equation (1) is invariant under the conformal algebra.

All similarity solutions for equation (1) are adduced in [I, 2]. The similarity
ansatzes corresponding to three-dimensional subalgebras of the algebra (2) have the
form

u= f(z)pWw), (©)

where f(z) is some function, w = w(x) is a new invariant variable.

In this paper we try to search for a wider class of solutions than similar ones
by means of the ansatz (3). Some ansatzes of this form were described in [3]. An
example of such ansatz is

u= (22" 2p(ax), (4)

where 2% = 22 — 2,24, 08 — aga, = 0.
The substitution (3) reduces equation (1) to an ordinary differential equation of the
functions f and w satisfy the following set of equations:

Of = f*S(w),

2y + FO) = FFTW),  wyon = R(w) . ®

Preprint LiTH-MAT-R-93-07, Department of Mathematics, Linkdping University, Sweden, 9 p. (revised
version).
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Here f, = %, the summation over the repeated Greek indices is as follows:
fuwy = fowo — fawe, ¢ = 1,2,3; S, T, R are some [unctions; T" and R do not
vanish simultaneously.

Further we shall consider the system (5) for the case w,w, = 0.

2. New ansatzes for the d’Alembert equation (1). We succeeded to find all
solutions of the system (5) for w = ax, @ = 0. In this case the system (5) reduces

to the equations
of = fkS(ax), 2f,a, = fFT(az).
Its solutions have the following form:
f=[hw, Bz, yz) + o) (6)

where the parameters «y, B, vu, 0, satisly the relations af = ay = 2 =py=0,
ad=—fp2=—-2=1.

 _ L(B2)(w + By) + 2B3(B) (v2) + (y2)*(w + By) @
2 (w+ B1)(w+ By) — B2 ’
_ (Bx)?
=% B 3)
h = Bij L

Here Bj, Bs, Bs are some constants. If By = By, B3 = 0 we get an ansatz that is
equivalent to (4).

3. Operators of conditional symmetry for equation (1). The notion of conditi-
onal symmetry had been defined in [2, 4-6]. This approach enabled to construct wide
classes of exact solutions for nonlinear partial differential equations of mathematical
physics (see [2, 4-6, 8]). In this paper we do not search specially for operators of
conditional symmetry but for ansatzes of the form (3) explicitly.

The following statement describes the operators of conditional invariance corres-
ponding to ansatzes of the form (3) with w = az, a® = 0, f being of the form (6), (7).

Theorem 1. Equation (1) with the additional conditions
L, = fﬁuuu - ﬁ,ufuu =0,
Ly = f’muu - 'Yufuu =0, (10)
Ly =26,u,(1—k)— fF"lu=0
is invariant under operators:
Q1= T(x)(fﬂ#ax,u - ﬂufuuau) =0,
Q2 = r(x)(f%tamu - 'Yufuuau =0, (11)
Q3 = r(z)(20,0z, — ﬁfk_luau =0,
where r(x) is an arbitrary non-zero function, f satisfies the equations
1
Jubp = mfk, Of = f*S(w), (12)

where S is some function.
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The above theorem can be proved by means of the Lie algorithm (see e.g. [7]).
Note 1. The same ansatzes may also be obtained from the Lie symmetry operators.

4. Exact solutions of equation (1). The ansatz (3) with w = ax, a® =0, f of the
form (6), (7) reduces equation (1) to the following ordinary differential equation:

2
Sﬁlm +S(w)e = A", (13)

S(w) being of the form

1 w+B1+B2

S(w):_1—k(w+31)(w+32)—B§’

Equation (13) for arbitrary constants By, Ba, B3, k # 1 can be solved in quadratures:
1— k)2 L, TF
0=0 {M /G(w)dew} : (14)

where 0 = (w + B1)(w + Ba) — B3.
Substituting (14) into (3) with f of the form (6), (7), we can obtain a class of
solutions for the non-linear d’Alembert equation (1).

5. Compatibility and solutions of the system (5) with w,w, = 0. In this case

R(w) =0, so T(w) must not vanish. We can take T'(w) = 12 and obtain the system

fuon + /0w = 1o 5 Bf = f5() (15)

If Ow = 0, then from the first equation of (15)

f = [hlw.6",6%) +6%)] 77 (16)
where 6, 62, #° are functions on z,

%0; = 0293 = -1,

G}qu = 92‘% = 95162 = 9;93 =0, (17)

193 _
0,05 =1.
With the substitution (16) the second equation (15) reduces to the form
Bgrgr + Pyage = S(w), 20, — 2, — B2, = 0. (18)

The compatibility and solutions of the system of Laplace and Hamilton-Jacobi
equations were considered in detail in [8]. The system (18) is compatible iff

S(w) = P where o =0.
p
If we take for the solutions of the system (17)

0! = Bz, 0*=~zx, 6°=0r,

where 3,,, v, 0,, are parameters satisfying (6), we shall get the solutions (6), (7)-(9)
of the system (15).
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Note 2. A system similar to (15) arose in [8] while searching for ansatzes of the form
u = exp(if(x))e(w) for a nonlinear Schrédinger equation 2iu; + ugq — uF (Jul) = 0.
It is known [9] that complex n-dimensional non-linear d’Alembert equation can be
reduced by similarity methods to (n — 1)-dimensional Schrédinger equation.

Note 3. The ansatz (3), (6), (7) can be used to get solutions also for complex non-
linear d’Alembert equation, the function ¢ being complex-valued.

For the equation

Ou = /\u(uu*)%7

we get the reduced equation

/ E—1

20" — %@ =M1 -k)(pp*) =,

where p = (w+ By)(w + Bs) — B3.
From the reduced equation we can find ¢:

1
A1 — k)2 1 ]TF
e =/p [% /p%dw} exp o,

where o is an arbitrary constant.
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Anti-reduction of the nonlinear wave
equation

W.I. FUSHCHYCH, R.Z. ZHDANOV

Mu 3anponoHyBasu KOHCTPYKTUBHUEH MeTOJ 3Be/leHHsl PiBHSIHHSI 3 YACTMHHUMH NOXiJHH-
MH 10 JeKiNbKOX PiBHSHb 3 MEHIUMM YHCJIOM He3a/eXHHUX 3MiHHHMX. 3aCTOCyBaBIIH LeH
niaxix po 6araToBHMipHOro HesiHIHHOrO XBHJIBOBOTO PiBHSIHHS, MH TOOYAyBasld HHU3KY
NPUHIIUIIOBO HOBUX aH3alliB, fKi peLyKYIOTb HOro 10 ABOX 3BHYaHHUX AH(epeHLialbHUX
PiBHSIHbD.

The wide class of solutions of the multi-dimensional wave equation
Ou = Ugyey — Agu = F(u) (1)
can be obtained by means of the following ansatz [1-3]:

u=p(w), (2)

where ¢ is an arbitrary smooth function and w = w(x) is the absolute invariant of
some three-dimensional subgroup of the Poincaré group P(1,3). As a result, one
gets ordinary differential equation (ODE) for a function ¢(w). That is why, the term
“reduction” is used: a number of dependent and independent variables is decreased.

On the other hand, there are examples of ansatzes reducing one nonlinear partial
differential equation (PDE) to two or even to three equations [4]. Such procedure
leads to an increase of the number of dependent variables and is called an “anti-
reduction” [4].

In the present paper we suggest a regular approach to the anti-reduction of the
nonlinear differential equation (1).

Consider the ansatz

u(z) = f(z, p1(w1), p2(w2), ..., N (wN)) (3)

and the following ordinary differential equations:
%ZRz(W“%a%); Z:]-va (4)

where f, R; are smooth enough functions, w; = w;(z) € C*(R",R'), i = 1,N. I
substitution of (3) into Eq. (1) with subsequent exclusion of the second derivatives ¢,
i =1, N according to (4) yields an identity with respect to variables %, ¢;, i = 1, N
then we say that the anti-reduction of nonlinear PDE (1) to N ODE takes place.

In fact, the above definition contains an algorithm of the anti-reduction. We are
going to realize it, provided N = 2.

Theorem. The equation (1) with a logarithmic nonlinearity

Ou=Aulnu, XecR! (5)

JTonosiai AH Ykpaiuu, 1993, Ne 11, C. 37-41.
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is the only nonlinear wave equation belonging to the class of PDE (1) that admits
anti-reduction to two second-order ODE and that is more the ansatz (2) has the
form

u(z) = a(w)p1(wi)pa(wa), (6)

where a(x), wi(x), wa(x) are smooth functions satisfying the system of PDE

1) wlzuw2z“ = 07

2) aDw; + 203,wie, =0, i=1,2, )
3) Wiz, Wiz, = Qi(w;), i=1,2,

4) Oa = Alna.

3
Here Q; are arbitrary smooth functions, hy,ge, = haoGze — 2 hey9e,-
a=1

Omitting intermidiate computations, we adduce main steps of the proof.
Substituting (3) with N = 2 into Eq. (1), we get

2
fac“:cu + Z{f«m (Qbi("-)iacuW'L';zH + sz'Dwi) + fapiaplv(;b?wixuwixu + 2f<pixuwiafu<)0i} +
1=1

+ 2f o100 P1P2W12, w2, = F(f(7, 01, 02)).

Replacing ¢; by R;(wi, p:, ;) and splitting the obtained equality with respect to
b1, P2, We have

N}

R; = A;(wi, )7 + Bi(wi, 0)¢i + Ci(wi, 1), =1,

Wiz, Wz, foirpo = 0.

9

Since the equality f, ,, = 0 leads to the case Fy, = 0, we can put f, ,, #0
whence w1, w2., = 0.
By force of the above facts we get
1) f@igoi + Aif% =0, = m,
2) fs&i (Biwixuwiw“ + Dwi) + Zf%w“wm =0,

2
(8)
3) fl‘“a‘,’“ + Z Cifapiwix“wir“ = F(f),
i=1
4) Wiz, wae, = 0.

From the first two equations of the system (8) it follows that
f = Hi(w1,p1)Ha (w2, p2)a(z) + b(z),

where H;, a(x), b(x) are arbitrary smooth functions.
By redefining functions ; : ¢; — @i H;(wi, @), i = 1,2, we may choose

f=a(@)p1(w)p2(w2) + b(x), 9)

whence A; = A, = 0.
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From the Eq. 2 of the system (8) by force of (9) it follows that B; = B;(w;),
i = 1,2. Consequently, by redefining functions w;

w; = @; = Wi(w), i=12,
we may choose By = By = 0. As a result, the system (8) is read
1) Wiz, W2z, = 07
2) alw; +20,,wiz, =0, i=1,2,
3)  (Da)p1pe + Ob + alCr (w1, p1)P2wis, Wiz, +
+ Ca(wz, p2)p1w2g,waz,] = Fapipz +b).

(10)

The only thing left is to split Eq. 3 from (10) with respect to variables @1, @s.
Dividing Eq. 3 into 192 and differentiating it with respect to variables ;2 we get
{(p102) ' [F(apip2 + b) — Ob}y,, = 0, whence

, od®F  dF

a‘r"— —ax— + F=0b, =102, w=ax+b. (11)
dw? dw
Differentiation of (11) with respect to z yields
d*F  d*F

— 4+ —= =0.
ar dw3 * dw?
Since we are interested in a nonlinear case, the inequality F # 0 holds. Hence, it
follows that

or
F(F) =-w+b.

Differentiating the above equality with respect to w we obtain nonlinear ODE for
F(w): F F—2(F)? = 0, which general solution reads F(w) = aj ?(ajw+ az) In(ajw+
9) + azw + oy and what is more b = —asa;* (without loss of generality we may put
b= g = 0)

In the above formulae oy, as, a3, a4 are arbitrary real constants, a; # 0.

Substitution of the expression for F’

F=Mwlhw+ \w+ A3 (12)

into Eq. 3 from the system (10) yields

Wiz, Wiz, = Qi(wi)7 i=1,2,
Cs = )\IQ;I(wi)SOi Ing;, i=1,2,
Oa = Malna + Asa, A3 =0.
Since in Eq. (12) A # 0, we can rescale the function w — kw in such a way that
F(w) takes the form F = A\jwlnw. The theorem is proved.

Note. A classical example of the anti-reduction of mathematical physics equations is
the procedure of separation of variables. But the method of separation of variables can
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be effectively applied to linear second-order PDEs only, whereas the anti-reduction
procedure is evidently applicable to nonlinear differential equations.

Thus each solution of the system (7) after being substituted into ansatz (6) reduces
the nonlinear PDE (5) to two second-order QDEs

Qi(wi)gi = Apilngp;, i=1,2.
Let us write down some particular solutions of Egs. (7) under a = 1.

wy =In(z — 23), ws =In(a]+ 23);

w; =In(2d — 22), wy = z1;
wi; = x0, we = In(x?+ 13);
=In(z? +23), wa = x3;
w1 = To, W2 = T1;

(2 2 2\—1)2 — e
wi = (2% — 2} —23)7V2, w=x3;

R A e
€
S

2, .2 2\—1/2.
wi =xg, wy=(}+a3+ad)"V?

8. w1 =1xycoswy + Tesinw + wo, ws = x1SiNw; — Tgcoswi + ws.

In the above formulae wy, wo, ws are arbitrary smooth functions on xg + z3.

Let us emphasize that the above ansatzes can not be obtained within the frame-
work of the classical Lie approach (see, e.g. [5, 6]), because the maximal symmetry
group admitted by Eq. (5) is the Poincaré group P(1,3) [2] and the general form of
Poincaré-invariant ansatz is given by the formula (2).
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On the new approach to variable separation
in the wave equation with potential
W.I. FUSHCHYCH, R.Z. ZHDANOV, I.V. REVENKO

[TporoHyeTbcsl KOHCTPYKTUBHUE MiAXin A0 PO3B’si3aHHSI NpoOJeM PO3AiJeHHS] 3MiHHHX
ISl IBOMiPHOTO XBHUJIBOBOTO PiBHSIHHSA Ut — Uge = V(m)u Y paMkax LbOro migxomy
OMHCaHi yci MOTeHLiasH, IO AOMYCKalTbh, PO3MiNeHHS 3MiHHHMX i BKasaHi BiANOBiAHI
CUCTEMH KOOpAHHAT.

A problem of variable separation (VS) in the wave equation
Uggzo — Uz T V(Il)u =0 (1)

as considered in [1-3], consists of two problems. The first one is to describe all
functions V' (z1) providing VS in (1) in, at least, two inequivalent coordinate systems.
The second one is to describe all coordinate-systems such that equation (1) admits
VS for a given potential V(x1). Surprisingly enough, the both problems are not
completely solved yet.

Our approach to the problem of VS in the wave equation (1) is based on the idea
of its reduction to two ordinary differential equations

G = Aj(wi, \) @i + Bi(wi, )i, i=1,2 (2)
with the use of ansatz of special structure [4-6]

u = A(zo, z1)p1 (w1 (0, 21))p2(wa (o, 1)) (3)

In the formulas (2), (3) Ai, As, Bi, By, A, wi, wo are sufficiently smooth real
functions, A € R! is some parameter, no summation over 4 is carried out.

The formulas of the form (3) can be found in the classical works Euler, d’Alembert,
Batemen and by some other contemporary mathematicians (see, for example, the
review by Koornwinder [7]).

Definition. We say, that equation (1) admits VS in the coordinates wi, wo if substi-
tution of the ansatz (3) into (1) with subsequent exclusion of the second derivatives,
p1, Y2 according to formulas (2) turns it into zero identically with respect to the
variables o1, 2, p1, P2, A

Substituting ansatz (3) into differential equation (1), expressing functions @; in
terms of ¢;, ¢;, i = 1,2 and splitting the obtained expression with respect to the
independent variables $1¢9, V102, P1H2, Y12 We get the following system of nonli-
near partial differential equations:

1) ADwy + 2Aajuw1Iu + AAlwlx#wlmu =0,

) ADwy + 24, wozr + AAowoy, wazn = 0,

) OA+ A(Biwig,Wign + Bowog,woen) + AV (21) = 0,
)

Wiz, wazr = 0.

[\

(4)

w

4

JTonosiai AH Ykpaiuu, 1993, Ne 1, C. 27-32.
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Hereafter, the summation over the repeated Greek indices is under-stood in the
Minkovski space M (1,1) with a metric tensor g, = diag (1, —1).

Thus to describe all potentials V(x1) and coordinate systems wy, wy providing VS
in (1) one has to solve nonlinear system (4). At first glance such an approach seems
to have poor prospects: to solve linear equation (1) it is necessary to integrate rather
complicated system of nonlinear partial differential equations (4). But system (4) is
overdetermined one. This fact has enabled us to construct its general solution in
explicit form. Let us emphasize that the same is true when reducing nonlinear wave
equation to the ordinary differential equation [5, 6] .

[t is not difficult to show that from the forth equation of system (4) it follows that

(Wiz, Wien ) (War, Wazn) 7# 0. )
Differentiating equations 1), 2) from (4) and using (5) we have
Ay = Ay = 0.

Consequently, the relation BjyBax # 0 holds. Differentiating equation (3) with
respect to A, we get

Biywig,wige + Bawag, wogn =0

or
Bix _ wag,wagn

Bo Wie, Wign
Differentiating the above equality with respect to A\, we obtain

Bixxn  Baxx
= . 6
By Boy (6)

Since function B; depends on the variable w; and the functions w;, wy are inde-
pendent, it follows from (6) that

Bia = #(\)Bix, i=1,2.
Integration of the above ordinary differential equations yields
B; = AN fi(wi) + gi(wi), i=1,2.
After redefining the parameter A\, we have
B; = Mi(wi) + gi(wi), i=1,2. (7)

Substituting (7) into equation (3) and splitting the obtained equality with respect
to A, we come to the following partial differential equations:
3a) 0A+ A(glwlmuwlmu + 9201233“0]233#) + V(:cl)A =0,
3b) flwlwuwlx“ + f2w2zuw2xu =0.

8)

Before integrating overdetermined system of nonlinear equations (4), (8), make an
important remark. It is evident, that the ansatz structure does not change with the
transformation of the form

A— Ahl(wl)hg(WQ), w; — fbl(wi), 1= 1, 2. (9)
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That is why, solutions of system (4), (8) connected by relations (9) are considered
as equivalent.

Making the change (9) in equations 1), 2), 3b) by the appropriate, choice of
functions h;, ®; one can obtain f; = fo =1, A; = Ay = 0. Consequently, functions
w1, wy satisfy the equations

Wig,wozr =0, Wiz, Wige + wag, wage = 0.
whence

(w1 £ wo)x, (w1 £ ws)z, = 0.
Integrating the above equations we get

wi = f(&) +9(n), w2=f(&)—gn), (10)

where f, g are arbitrary smooth functions, £ = 3(z1 + x0), n = §(x1 — x0).

Substitution of the formulas (10) into equations 1), 2) from (4) yields the following
equations for a function A(zg,z1)

(InA)z, =0, (InA),, =0,

whence A = 1.

At last, substituting the obtained results into the equation 3b) from (8) we come to
a conclusion that the problem of integration of system (4), (8) is reduced to solution
of the functional-differential equation

Vi) = lon(f +9) = lf - 9 52 (1)
And what is more, solution with separated variables (3) reads
u=1(f(&) +9m)e2(f(&) — g(n)). (12)
To integrate (11) it is convenient to make the hodograph transformation
§=P(f), n=R() (13)
with P # 0, R # 0, equation (11) taking the form
9(f +9) = 92(f = 9) = P(NR(9) R(9)V (P + R). (14)

Evidently, equality (14) is equivalent to the following relation:
(9F = RPN R(V(P+R)] =0

or

(PR— RP)V +3PR(P - R)V + PR(P* - R*)V =0. (15)
Without going into details of integration of equation (15) we give the final results.
Theorem 1. The general solution of (15) is given by one of the following formulas:

1. V. =V(x1) isan arbitrary function, R=P = «;
2. V=m(z+C)p*=aP+p8, R:=aR+~;
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3. V=m(x1+C)"2, P=F(f), R=dG(yg),
F? = aF* 4 BF3 + yF2 + §F + p, (16)

G? = aG* — BG? +7G? — 6G + p;
4. V=msin"?(z; +C), P =arctgF(f), R =arctgG(g),
where F, G are determined by (16);
5. V=msh %(z; +C), P=arthF(f), R=arthG(g),
where F, G are determined by (16);
6. V=mch ?*(z;+C), P=arctgF(f), R=arthG(g),
where F, G are determined by (16);

7. V. =mexp(—azx), P2 = ae?P + Bef +, R?2 = ae?B + el + p;

8.  V =cos %(z1 + C)[m1 + masin(z; + C)],

P2 = a%sin2P + 32, R2? =a2sin2R + (%
9. V =ch ?(z1 + C)[my + mysh(z; + O)],

P2 = ash2P + Bch2P — 2, R2?2=ash2R — 3ch2R —~2;
10. V =sh %(z; + C)[m1 + mach(z, + C)],

P2 = qsh2P + (ch2P —~2, R2=—ash2R+ 3ch2R —~?;

11. V=miexpCizi + moexp2Cz;, P=aP?+ 3, R=aR2+0;

12. V=my+mo(x1+C)2, P2=aP?2+p3P+~, R?=aR?>—[(R+~;

13. V=m, P2=ozP2—|—61P—|—’yl, R2:aR2—|—ﬁgR+’yg.

Here o, (i, vi, 0, p, m, m1, ma, C are arbitrary real constants.

Thus, Theorem 1 gives the complete solution of the problem of VS in wave equa-

tion (1).

Note 1. Equation (1) with potentials V' = msin 2z, V=mch?z, V= msh 2z
is reduced to equation (1) with the potential V' = max;? by the changes of variables

1 1
E(yl + yo) = arctg Q(xl =+ x9),
1 1
i(yl + yo) = arcth 5(:131 + x9),

1 1
5(% + yo) = arctg 5(:1:1 + x9),

1

1
5(3/1 — yo) = arcth 5(3;1 — ).

Note 2. Equation (1) with the potential V' = mexpCz; is reduced to the Klein-

Gordon-Fock equation Ou 4+ mu = 0 with the change of variables

1 C
§(y1 +y0) =C lexp 5(901 + o).
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It is evident that the equation (1) admits VS in Cartesian coordinates w; = zy,
we = x1 under arbitrary function V(z1). That is why the most interesting potentials
are such that there exist new coordinate systems providing VS. From the Theorem 1
and Notes 1, 2 it follows that equations (1) admitting VS in, at least, two inequivalent
coordinate systems, are locally equivalent to one of the following wave equations

Ou + mu = 0,

Ou + mziu = 0,

Ou + m:vl_Qu =0,

Ou + (mq + mgxl_2)u =0,

Ou + (my + mgsinxy) cos™

Ou + (my + mgshxy) ch™? z1u =0,

Ou + (my + mg chay) sh™? z1u =0,
(

8. Du+ (mq +maee*)e™u=0.

17
2$1U:O, ( )

NS Gt W

A detailed analysis of the coordinate systems providing VS in equation (17) will
be carried out in our future work.

In conclusion, we note that the equation (1) is intimately connected with the wave
equation

Uit — Oz(x)vrac =0. (18)

This connection is given by the formula

o(t,z) = /Cla)u (t,/cdé)) (19)

Applying the Theorem 1 and the formula (19) it is not difficult to carry out VS in
partial differential equation (18).
Besides, Lorentz-invariant wave equation

Uyoyo — Uyryn T U(yg - y%)u =0 (20)

can also be reduced to the form (1), where U(t) = £V(Int) by the change of
variables

121/2 321/2

Yo =e chzg, y1=e sh zg.

That is why, one can at once, point out all potentials U = U(7), 7 = 22 — 2% providing

VS in the wave equation (20):

U=mr—tInt, U=mrYIn7)"2, U=m7t +mer 1(ln7)"2,

U=mr~l, U=7"1(my+masinln7)(coslnt)"2
U=r71"Y(mi +mgshlnt)(chlnt)"2

U=71"Ymy+mochin7)(shin7)"2, U =my + moar.
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Orthogonal and non-orthogonal separation
of variables in the wave equation

Ut — Uge + V()u =0

R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

We develop a direct approach to the separation of variables in partial differential equa-
tions. Within the framework of this approach, the problem of the separation of vari-
ables in the wave equation with time-independent potential reduces to solving an over-
determined system of nonlinear differential equations. We have succeeded in constructing
its general solution and, as a result, all potentials V(z) permitting variable separation
have been found. For each of them we have constructed all inequivalent coordinate
systems providing separability of the equation under study. It should be noted that the
above approach yields both orthogonal and non-orthogonal systems of coordinates.

1. Introduction
Separation of variables (SV) in two- and three-dimensional Laplace, Helmholtz,
d’Alembert and Klein-Gordon-Fock equations has been carried out in classical works
by Bocher [1], Darboux [2], Eisenhart [3], Stepvanov [4], Olevsky [5], and Kalnins
and Miller (see [6] and references therein). Nevertheless, a complete solution to the
problem of sv in a two-dimensional wave equation with time-independent potential

(O+ V(2)u = uy — Uge + V(z)u=0 1)

has not been obtained yet. In (1) u = u(t,z) € C*(R? RY), V(z) € C(R',R!).

Equations belonging to the class (1) are widely used in modern mathematical
physics and can be related to other important linear and nonlinear partial differential
equations (PDE). First, we mention the Lorentz-invariant wave equation

Uyoyo — Uyrys + U (Y5 — yi)u = 0. (2)
The above equation can be reduced to the form (1) with the change of variables [7]
t = exp(y1/2) coshyo, = exp(y1/2)sinhyo
and what is more, potentials V(7), U(7) are connected by the following relation:
U(r) = (47)7 'V (7).
Another related equation is the hyperbolic type equation
Vagwy — € (1) V212, = 0 3)

that is widely used in various areas of mathematical physics.
Equation (3) is reduced to the form (1) by the change of variables

ut.2) = o)) o(anan). t=0, 2= [lefor)] o

J. Phys. A: Math. Gen., 1993, 26, P. 5959-5972.
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and what is more
V(x) = —c(1)[c"?(x1)], 4)

where z = [[e(z1)] " dxy.
The third related equation is the nonlinear wave equation

Wit — [ 2 (W)W, ], = 0. ()
By substitution W = R, equation (5) is reduced to the form
Ry — ¢ *(Ry) Ry = 0.
Applying to the above equation the Legendre transformation

o =R, 1 =Ry, Vg =1t Uy =z, v=tRi+2R; — R,

we obtain (3). Consequently, the method of SV in the linear equation (1) makes it
possible to construct exact solutions of the nonlinear wave equation (5).
Let us also mention the Euler—Poisson-Darboux equation

Vgt — Vg — & 0y +m2z 20 =0 (6)
that is reduced to an equation of the form (1)
Ugy — Uy + (M? — 1/4)z %0 =0

by the change of dependent variable v(t,z) = z~/2u(t, z).
For the solution of (1) with separated variables wy (¢, z), wa(t, x), we use the ansatz

u(t,z) = Q(t, z)p1(w1)p2(w2) (7)

which reduces PDE (1) to two ordinary differential equations (ODE) for functions
P11, P2.

There exist three possibilities for SV in (1). The first is to separate it into two
second-order ODE. The second possibility is to separate (1) into first-order and second-
order ODE, and the third possibility is to separate (1) into two first-order ODE. In
the present paper we shall investigate in detail the first two possibilities. The third
possibility requires special separate consideration and will be the topic of future
publications.

Consider the following ODE:

G = Aj(wi, \)@i + Bi(wi, N,  1=1,2, (3)

where A;, B; € C?(R! x A,R!) are some unknown functions, A € A C R! is a real
parameter (separation constant).

Definition 1 [7, 8]. Equation (I) separates into two ODE if substitution of the
ansatz (7) into (1) with subsequent exclusion of the second derivatives (1, (o
according to (8) yields an identity with respect to the variables ¢;, p;, \ (considered
as independent).

On the basis of the above definition one can formulate a constructive procedure of
SV in (1), suggested for the first time in [7]. At the first step, one has to substitute
expression (7) into (1) and to express the second derivatives ¢, ¢o via functions ¢;, ¢;
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according to (8). At the second step, the equality obtained is split with respect to the
independent variables ¢;, ¢;, A\. As a result, one obtains an over-determinated system
of partial differential equations for functions @, w; and wy with undefined coefficients.
The general solution of this system gives rise to all systems of coordinates providing
separability of (1).
Definition 2. Equation (1) separates into first- and second-order ODE
¢1 = A(wi, A1,
P2 = Bi(w2, \)p2 + Ba(w2, )2
if substitution of the ansatz (7) into (1) with subsequent exclusion of derivatives

$1, P2 according to (9) yields an identity with respect to the variables p1, Yo, pa,
A (considered as independent).

9)

Let us emphasize that the above approach to SV in (1) has much in common with
the non-Lie method of reduction of nonlinear PDE suggested in [9-11]. It is also
important to note that the idea to represent solutions of linear differential equations in
the “separated” form (7) goes as far as the classical works by Fourier and Euler (for
a modern exposition of the problem of SV, see Miller [12] and Koornwinder [13]).

2. Orthogonal separation of variables in equation (1)
It is evident that (1) admits SV in Cartesian coordinates wi; = ¢, wy = x under
arbitrary V =V (x).
Detinition 3. Equation (1) admits non-trivial SV if there exist at least one coordi-
nate system wi(t,x), wa(t,x) different from the Cartesian system providing its
separability.
Next, if one makes in (1) the following transformations:

t— Cit, x— Cix,

10

t—t, z—ox+Cy, C;eR! 10
then the class of equations (1) transforms into itself and what is more

V(@) = V'(a) = C}V(Cra), (10)

V(z) = V'(z) =V (z+ Cy).

That is why potentials V(z) and V'(z), connected by one of the above relations,
are considered as equivalent ones.

When separating variables in (1) one has to solve an intermediate problem of
description of all inequivalent potentials such that the equation admits non-trivial
SV (classification problem). The next step is to obtain a complete description of the
coordinate systems providing SV in (1) with these potentials.

First, we adduce the principal results on separation of (1) into two second-order
ODE and then give an outline of the proof of the corresponding theorems.

Theorem 1. Equation (1) admits non-trivial SV in the sense of Definition 1 iff the
function V(x) is given, up to equivalence relations (10a), by one of the following
formulae:

(1) V =ma;

(2) V=ma"?%
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V =msin 2 z;

=~

=2
V =msinh™ " z;

V = mecosh™? z;

D Ot

V =mexpux;

EN|

(11)

)

)

)

)

)V =cos2x(mq + maysinz);
)V =cosh™2z(m; + mysinhz);
)V =sinh~2z(m; + my cosh z);
10) V =mjexpx + mgexp 2x;
11) V =my +moz~%

12) V =m.

e e N e N e e e

Here m, my, mqy are arbitrary real parameters, ms # 0.

Note 1. Equation (1) having the potential (6) from (11) is transformed with the change
of variables [7]

2’ = exp(z/2) cosht, t = exp(x/2)sinht

into (1) with V(z) = m.
Note 2. Equations (1) having the potentials (3), (4), (5) from (11) are transformed
into (1) with V(z) = ma~2 by means of changes of variables [7]

2/ =tané +tann, ' =tanf — tann,
z' = tanh & + tanhn, ¢ =tanh& — tanhn,
' = coth& + tanhn, ¢ = coth{ — tanh.

Hereafter ¢ = 1(z +1t), n = 4(x —t) are cone variables.

By virtue of the above remarks, the validity of the assertion follows from Theo-
rem 1.

Theorem 2. Provided equation (1) admits non-trivial SV in the sense of Definition I,
it is locally equivalent to one of the following equations:

(1) DOu+ mau =0

(2) Ou+ma2u = 0;

(3) DOu+ cos™2x(my + masinz)u = 0;

(4) DOu+ cosh™? z(my 4+ mgsinhz) = 0; (12)
(5) Ou + sinh™2 z(mq + ms coshz) = 0;

(6) Ou+expx(my +maexpx)u = 0;

(7)  Ou+ (mq +moz~2)u = 0;

(8) DOu+ mu=0.

Thus, there exist eight inequivalent types of equations of the form (1) admitting
non-trivial SV.

It is well known that there are 11 coordinate systems providing separability of the
Klein—Gordon—-Fock equation Ou + mu = 0 into two second-order ODE [6]. Besides
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that, in [14] it was established that the Euler—Poisson-Darboux equation (6), which
is equivalent to the second equation of (12), separates in nine coordinate systems.
That is why cases V(z) = m and V(z) = mz~2 are not considered here.

As is shown below, the general form of solution with separated variables of (12) is
as follows:

u(t,x) = wl(wl(t,x))gog(wg(t,x)), (13)
where ¢1(w1), p2(we) are arbitrary solutions of the separated ODE

and explicit forms of the functions w;(¢, ), g;(w;) are given below.

Theorem 3. Equation Ou + mzu = 0 separates in two coordinate systems

(1) wi=t wa=x g1 =0, go=mwy;
2) wi= @+ D)Vt (2 —DV2 wy = (@402 — (& — 1)1/, )
1 1,
g1 = —mep g2 = —mez.

Theorem 4. Equation Ou+sin~2 x(my +my cos x)u = 0 separates in four coordinate
systems

(1) wi=t wa=wz, ¢ =0, go=cos 2wa(my+ mosinws);

(2) { f } = arctansinh(w; + wy) + arctan sinh(w; — ws),

g1 = (M1 +ma)sinh ?wi, go = —(m1 — my) cosh™> wa;
3) {7\ 2 arctan SLELET@R) |y S0 Zw2)
t cn (wy + wa) cn (w — wa)

(16)

g1 = mq dn’w; en2wy sn— 2wy + mo [en=2w; — dn’w, en 2w,

g2 = mak* sn%ws cn?ws dn 2w, + mak?[cn?wy dn2wy — sn?wsl;

T k 1/2 k 1/2
4) { " } = arctan (k’) cn (w1 + wp) £ arctan (k’) en (wy — wa),

g1 =m [dn2w1 en2wy + k? sn?wi] + mao[(K)? en%w; + k2% enwy],

2

go = ml[dn2w2 en2wy + k2 sn?ws] + mao[(k')? ecn2ws + k2 cnws).

In the above formulae (16) k, k' = (1—k?)Y/? are the moduli of corresponding elliptic
Jacobi functions, and k is an arbitrary constant satisfying the inequality 0 < k < 1.

Theorem 5. Equation Ou + cosh™? x(m; + mg sinh z)u = 0 separates in four coordi-
nate systems

(1) wi=t, wa=x, ¢g1=0, go= cosh ™2 wa(my + ma sinh ws);

2) {;} — l(%)m cn (w1 + wa) (%/)1/2 en (w1 — wg)] :

g1 = my (k)2 dn"22w; + my cn 2wy dn?2wy,

+1In

go = my (k')? dn™22ws 4+ Mo cn 2ws dn " ?2ws;



Orthogonal and non-orthogonal separation of variables in the wave equation 131

(3)

(4)

Here k, k' =

1 1
{x} = —Insinh §(w1 + ws) :I:lncoshi(wl — wa),

t
g1 = cosh™?wy(my —mosinhw;), go = cosh™ wy(my — Mg sinh wy);
sn 5 (wy +w 1
{x}—ln4( ! 2) +In dn = (w1 + wa), (17)
t cn 2l 1wy +ws) 2
g1 = —m1k? snw; + k®mosnw; cnwy,
g2 = —m1k? sn?ws + k%2ma snws cnws.

(1—k>)'/2 are the moduli of corresponding elliptic functions, 0 < k < 1.

Theorem 6. Equation DOu + sinh™?x(m; + mgcoshx)u = 0 separates in eleven
coordinate systems:

(10)

t, wo==xz, g1 =0, g¢go= sinh ™2 wa(my + ma coshws);
} w1 +w2):|:lnl(w1—w2),
m2)w1 % ga= (m1 —|—m2)w2 ;
atc} lnsm (w1 —|—w2):l:1nsin%(w1 — wa),
Q)bln 201, g2 = (my +my)sin™ 2 wy;

i} = —Insinh = (w1 +w2):|:lnsinh%(w1 — wa),
1 = sinh™ wl(ml +mg)coshwy), go = sinh 2 wa(my — mq coshwa);
{i} —Incosh = (w1 + wa) j:lncosh%(wl — wa),
g1 = sinh™ wl(ml —mgcoshwy), ¢o= sinh ™2 wa(my — ma coshws);

1
= 1ntanh (w1 + wz) £ Intanh §(w1 — ws),

/—/H

(18)

g1 = cosh™ wl(ml —ma), go=— cosh™2 wa(my + ma);

T
t
2

g1 = cos™ wl(ml +ma), g2 =cos ?wa(m; —ma);

1
lntan (w1 + wz) £ Intan §(w1 — wa),

—

{ } = arctanh cn (wq + we) £ arctanh cn (w1 — wa),

(mq + mo) dn?w; en—2w; + (my — ma)k? sn’wy,

= (my —ma) dnwsy en2ws + (my + ma)k? sn?ws;

g2
{ f } = arctanh dn (w; 4+ ws) + arctanh dn (wy — ws),

g1 = (my + ma)k? enw; dn2%w; + (m — mg)k? sn?wy,

g2 = (m1 — ma)k? en’ws cn 2wy + (Mg + ma)k? sn2wy;

{ j } = arctanh sn (W + wy) £ arctanh sn (w; — wa),



132 R.Z. Zhdanov, 1.V. Revenko, W.I. Fushchych

g1 = (my +ma)sn2w; + (mg — ma)k? sn’wy,

2 2

g2 = (my + ma)k? cn?wy dn2wsy + (my — ma)k? dn®ws en=2ws;

(11) {x} ==+Incn(w; +w2) £ 1n cn (w1 — wa),
g1 = —mq SH72W1 — Mo CN W1 SI172(,L)17

go = —my sn_2w2 — Mg CN Wy SH_Q(UQ.

Here k are the moduli of corresponding elliptic functions, 0 < k < 1.

Theorem 7. Equation Ou + exp x(my + moexp x)u = 0 separates in six coordinate
systems:

(1) wi=t, we=z, ¢1=0, go=expwa(mi+mgexpws);

(2) {x} — —Incos(w; 4 ws) =+ Incos(wy — wy),

t
g1 = —2mq cos 2wy — %mz cos 4wy,
g2 = —2my cos 2wy — %mz cos 4ws;
(3) {f } = Insinh(w; + wy) £ Insinh(wy — ws),
g1 = —2my cosh 2w; — %mz cosh 4wy,
g2 = —2my cosh 2wy — %mg cosh 4ws;
(4) {? } = Incosh(wy + wa) £ Incosh(w; — ws), (19)
g1 = —2m cosh 2w — %mz cosh 4wy,
g2 = —2my cosh 2wy — %mz cosh 4ws;
(5) {:tv } = Incosh(w; + wy) = Insinh(w; — ws),
g1 = —2m sinh 2wy — %mz cosh 4wy,
g2 = —2m sinh 2wy — §m2 cosh 4ws;

(6) {f } = In(w + we) £ In(w1 — wa),
g1 = 2my + Qmef, gs = —2m1 + 2m2w§.
Theorem 8. Equation Ou+ (my +maex~2)u = 0 separates in six coordinate systems:
(1) wi=t, wa==z, ¢g1=0, ga=my —|—m2w2_2;

@ {7} = el + o) £ xplen - wn)

-2
g1 = 4mqexp2wi, ¢z = mocosh™ “ws;
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(3) { ”;f } = sin(w; + we) £ sin(wy — wa),
g1 = 2my cos 2wy + mo sin™2 w1, g2 = —2my cos 2wy + Mo cos ™2 wo;
(4) { f } = sinh(wy + ws) %+ sinh(wy — wa),

g1 = 2my sinh 2wy 4+ moy sinh ™2 w1,

go = —2my sinh 2wy — Mo sinh ™2 wo; (20)

(5) {f } = cosh(w; + ws) % cosh(w; — ws),

g1 = 2mg cosh 2w; — My cosh ™2 w1, go = 2mq cosh 2wy — My cosh ™2 wa;

T
(6) { + } = (OJ1 +(U2)2 + (wl —w2)2,
g1 = —16m1wf + mgwl_z, g = —16m1w§ + mng_Q.

We now give a sketch of the proof of the above assertions. Substituting ansatz (7)
into (1), expressing functions @; via functions ¢1, ¢; by means of equalities (8) and
splitting the equation obtained with respect to independent variables ¢;, ¢; we obtain
the following system of nonlinear PDE:

(1) QUw; + 2(Quwit — Quwiz) + QA;(wi, N)(wiy —wi,) =0, i=1,2  (21)
(2) 0Q+ Q[Bi(wi,\)(wi;, — wi,) + Ba(ws, A) (w3, — w3,)] + QV(z) =0; (22)
(3) witwar — wizway = 0. (23)

Here O = 92 — 02,

Thus, to separate variables in the linear PDE (1) one has to construct the general
solution of the system of nonlinear equations (21)—(23). The same assertion holds true
for any general linear differential equation, i.e. the problem of SV is an essentially
nonlinear one.

It is not difficult to become convinced of the fact that, from (23), it follows that

(W%t - W%x)(‘”%t - W%x) # 0. (24)
Differentiating (21) with respect to A and using (24) we obtain

Ay = Ay =0,
whence Biy By # 0. Differentiating (22) with respect to A, we have

BIA(W% - w%w) + B2>\(‘U§t - w%z) =0
or

% _ why —wi

X

2 2
Bax Wit — Wiy

Differentiation of the above equality with respect to A yields

BiyyBay — BiaBaxy =0
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or

Bix _ Baxx
B Boy

Since functions By = Bi(w1), Ba = Ba(w2) are independent, there exists a func-
tion s(A) such that

Bixx = #(A\)Bix, i=1,2.
Integrating the above differential equation with respect to A we obtain
Bi(wi) = AN fi(wi) + gi(wi), i=1,2,

where f;, g; are arbitrary smooth functions.
On redefining the parameter A — A()), we have

Bi(wi) = Afi(wi) + gi(wi)- (25)

Substitution of (25) into (22) with subsequent splitting with respect to A yields the
following equations:

0Q + Qg1 (wi, — wi,) + g2(wiy — wi,)] + V(2)Q =0, (26)
i (W%t - W%x) + f2(W§t - W%x) =0. (27)

Thus, system (21)-(23) is equivalent to the system of equations (21), (23), (26), (27).
Before integrating, we make a remark: it is evident that the structure of ansatz (7) is
not altered by transformation

Q — Q' = Qhi(wr)ha(w2), w; — w;=Ri(w;), =12, (28)

where h;, R; are smooth-enough functions. This is why solutions of the system under
study connected by relations (28) are considered to be equivalent.
Choosing the functions h;, R; in a proper way, we can put in (21) and (27)

fi=fa=1 A =A=0.
Consequently, functions wy, wo satisfy equations of the form
W1tWat — Wigwae = 0, W% —wi + w2, — w3 =0,
whence
(w1 £ w2)? — (w1 £wy)2 = 0.
Integrating the above equations, we obtain
wr =F(§)+Gn), w2=F()—Gn), (29)

where F,G C C?(R!,R!) are arbitrary functions, £ = (x +1)/2, n = (v —t)/2.
Substitution of (29) into (21) with A; = Ay = 0 yields the following equations:

(In®):=0, (InQ), =0,

whence @ = 1.
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Finally, substituting the results obtained into (26), we have

Vi) =l (F+ G) — a(F — G - (30)
Thus, the problem of integrating an over-determined system of nonlinear differen-
tial equations (21)-(23) is reduced to integration of the functional-differential equa-
tion (30).

Let us summarize the results obtained. The general form of solution of (1) with
separated variables is as follows

u=@(F(&) + G(n)p2(F (&) — Gn) (31)

where ; are arbitrary solutions of (14), functions F(§), G(n), g1(F + G), g2(F — G)
being determined by (30).
To integrate Eq. (31) we make the hodograph transformation

§=P(F), n=R(G), (32)
where P # 0, R #0.
After making the transformation (32), we obtain
91(F +G) = ga2(F — G) = P(F)R(G)V (P + R). (33)
Evidently, equation (33) is equivalent to the following equation:
(0% — 92)[P(F)R(G)V(P + R)] =0

or

(PPT'—RR HYY +3(P-R)V + (P> - RHV =0. (34)

Thus, to integrate (30) it is enough to construct all functions P(F), R(G), V(P + R)
satisfying (34) and to substitute them into (33).
In [8] we have proved the following assertion:

Lemma. The general solution of (34) determined up to transformation (10) is given
by one of the following formulae:

(1) V =V(x)is an arbitrary function, P=a, R=o;
(2) V =ma, P2=aP+f8, R2=aR+n~;

(3) V:mx_Q, P:Ql(F), R:QQ(G),

Qf = 0Q1 + BQF +1QF +0Q1 + p,

Q3 = aQ; — BQ3 + Q3 — 0Q2 + p;

(4) V=msinh 2z, P =arctanhQ;(F), R =tanQs(G)

(35)

and @1, Q2 are determined by (35);

(5) V =msinh 2z, P =arctanhQ(F), R = arctanhQs(G)
and @1, Q2 are determined by (35);

(6) V =mcosh™?z, P =arccothQ(F), R = arctanhQs(G)
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and @1, Q2 are determined by (35);

(7)  V=mexpuz,
P2 =qexp2P + fBexpP+7v, R?2=aexp2R+dexpR+ p;
(8) V =cos~2x(my +mysinz),
P2 = asin2P + Bcos2P + 7, R? = asin2R + B cos2R + 7;
(9) V= cosh™?z(my + mysinhx),
P2 = asinh 2P + Bcosh 2P + v, R? = asinh 2R — Bcosh 2R + v;
(10) V = sinh™22(my + my cosh x),
P2 = osinh 2P + B cosh2P + -, R? = —asinh 2R + Bcosh 2R + ~;
(11) V = (my +mgexpzx)expu,
P=-P*+8, R=-R>+p;
(12) V =my +moz~2,
P?2=aP?+ P +v, R?=aR?>-3R+7,
(13) V =m,
P2=aP24+ 3P+~ R2=aR2+R+p.

Here o, (3, 7, 9, p, m1, ma, m are arbitrary real parameters; xt =& +n= P+ R.

Theorems 1 and 2 are direct consequences of the above Lemma. To prove Theo-
rems 3-8 one has to integrate the ODE for P(F'), R(G) and substitute the expressions
obtained into formulae (32)

@)= P(F) = P((@r +@2)/2), (e —1)= R(C) = R((wr ~w)/2)
and into (33).

Thus, the problem of separation of the wave equation (1) into two second-order
differential equations is completely solved.

Since all coordinate systems w;, wo satisfy equation (23), we have orthogonal
separation of variables. To obtain non-orthogonal coordinate systems providing sepa-
rability of (1) one has to carry out SV following Definition 2.

3. Non-orthogonal separation of variables in equation (1)
Utilizing the SV procedure in (1) determined by Definition 2, we come to the
following assertions (corresponding computations are omitted).

Theorem 9. Equation (1) admits SV in the sense of Definition 2 iff it is locally-
equivalent to one of the following equations:

(1) Ou+ mu = 0;
(2) Ou+mar2u=0,

where m is an arbitrary real constant.
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Theorem 10. Equation Ou + mu = 0 separates in two coordinate systems

(1) w1:§7 w2=§+777
$1 = —Ap1, P2 = Ap2 + mps;
(2) wi=¢& we=In&+1nn,
¢1 = —dw; 'p1, @2 = A2 + mexp(ws)po.

Theorem 11. Equation Ou + max~2u = 0 separates in eight coordinate systems

(1) wi=¢& wa=E&+n,

$1=—Ap1, P2 = Apa + mw; 2 po;
(2) w1 =&, wo=arctanf + arctann,

o1 = - A1+ wd)p1, @2 = APy +msin™? wops;
(3) w1 =&, wq=arctanh¢ + arctanhm,

¢1=-A1-w}) o1, @2 =A@y +msinh ™% wapy;
(4) w1 =&, wy = arccoth& + arccoth,n,

o1 =M1 —w?) L1,  $a = Ay + msinh™2 wypy;
(5) w1 =¢&, wy=arctanh¢ + arctanhmn,

o1 = =M1 —w) Lo, @o = Apa —mcosh™ 2 wypy,
(6) w1 =€, we=arccoth& + arccothn,

¢1 =M1 —w?) o1, P2 = Aps — mcosh™? wagps;
(1) w1=¢ w=z(ne—Inn)

o1 = —A2w1)"ro1,  @o = Ao — mcosh™ 2 wys;
8) wi=¢ wr=¢&t+n7l

Q1= Awi o1, Ba = Apa + mwy 2.

In the above formulae X is a separation constant, & = 3(x +1t), n = 3(x —1).

As a direct check shows, the above coordinate systems do not satisfy (23). Conse-
quently, they are non-orthogonal.

4. Conclusion

Let us say a few words about the intrinsic characterization of SV in (1). It is
well known that the solution of the second-order linear PDE with separated variables
is a joint eigenfunction of mutually-commuting symmetry operators of the equation
under study (for more detail, see [13, 14]). Below, we construct the second-order
symmetry operator of (1) such that solution with separated variables is its eigenfunc-
tion and parameter X is an eigenvalue.

Making in (1) the change of variables (29), we obtain

Uwiwy — UYwowy = V(§ + U)[F(f)G(TI)]ilu

Provided (1) admits SV, by virtue of (33) there exist functions g1 (F+G), g2(F—GQG)
such that

V(E+nFEOGm)] ™" = g1(F +G) = g2(F — Q).
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Since F 4+ G = wy, F' — G = wo, equation (36) takes the form

Uwiwy — Uwowy = [gl (wl) - 92(w2)]u
or
2 2
Xu:o’ X:awl _awz _gl(w1)+g2(w2)

Clearly, the operators @Q; = 02, — gi(w;), ¢ = 1,2 commute with the operator X,
i.e. they are symmetry operators of (1) and, what is more, the relations

Qiu = Qip1(w1)p2(w2) = Ap1(w1)pa(w2) = Au, i=1,2

hold.

[t should be noted that V.N. Shapovalov carried out classification of potentials V' (z)
such that (1) admitted a non-trivial second-order symmetry operator [15] but he lost
cases (4) and (9) from Theorem 1.

It was shown by Osborne and Stuart [16] that the method of SV could be applied
to nonlinear PDE. In [8] we suggested a regular approach to SV in nonlinear par-
tial differential equations. In future publications we intend to apply this approach to
separate variables in the nonlinear wave equation wu; — uz, = F(u).
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Penykuyusi MHOrOMepHOro ypaBHEHUS
Janambepa K AByMepHBbIM ypaBHEHUSIM

A.@. BAPAHHHUK, JL.®. BAPAHHHK, B.H. YL[HY

We give a classification of the maximal subalgebras of rank n — 1 for the extended
Poincaré algebra AP(1,n), which is realized on the set of solutions of the d’Alembert
equation Ou + Au* = 0. These subalgebras are used for constructing the anzatses
reducing this equation to differential equations with two invariant variables.

[lpoBeneHa kJaacudikalis MakCHMaJbHUX Miganre6p paHry n — 1 posiiupeHol anre6pu
Iyankape AP(1,n), sika peanisyeThcsi Ha MHOXHHI PO3B's3KiB piBHAHHs [lanamGepa
Ou+Mu® = 0. Onepkani nifanre6py BUKOPHCTaHO A5 IOBYIOBH aH3AILiB, 110 PEAYKYIOTh
Le piBHAHHA 00 AMdepeHLiaJbHUX PiBHSAHb 3 ABOMa {HBapiaHTHUMH 3MiHHUMH.

1. Beegenue. B HacTosilell cTaTbe M3ydaeTcsi peAyKUHUs HEJHHEHHOTO ypaBHEHHs
Janamb6epa

Ou+ M =0 (1)
K [IBYMEPHBIM ypaBHeHHsIM. 3jech u = u(x) — cKanspHas (YHKLHsS MepeMeHHOH u =
(x0,21,...,%n), k — MPOU3BOJBHOE BELIECTBEHHOE UYKCJIO, OTJIHYHOE OT 1, a
. %u  0%u 0%u
U= — —= — 00 — ——,
2 2 2
Oxg  O0z3 0x?

B [1, 2] YCTaHOBJIEHO, YTO aareGpodl MHBapUAHTHOCTH ypaBHeHus (1) sBasercs ag-
re6pa Jlu AP(1,n) pacuupenno# rpynnet [lyankape P(1,n), 6asuc koTopoit 06pasyroT
TaKkhe BEKTOPHbIE MOJIS:

Joa = 2004 + xaam Jap = 2404 — xaab; Pp, = 8,Lu

D= —2"0, + - 1u8u,
rae
0 0
Oy = — 8u:_a 7b:17 EERAS 20717 )
"= Bz, au ° o "

D70 M03BO/ISIET HCMOMB30BaTh NofanreGpsl anre6ps AP(1,n) 115 NPOBeNeHHs pely-
KUK ypaBHeHHs (1) K AHdepeHUHANbHBIM yPaBHEHHSIM C MEHbBLIHM YHCJIOM IMepeMeH-
HBIX.

Eciu wi(z),...,wm(x),wms1(z,u) — MOJHAS CcHCTeMa HHBApUAHTOB HEKOTOPOH

nopanre6psl L anre6per AP(1,n), To aH3ar

Wint1 = (w1, .., Wm) (2)

YKkp. mMaT. XkypH., 1994, 46, Ne 6, C. 651-662.
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npeoOpasyer ypaBHeHue (1) B ypaBHEHHe, COMEPIKAIIEE TOMBKO (D, W1, ..., Wy, U MPOHU-
3BOJIHBIE OT Y [0 W1, .. ., Wy,. JHCJO M CBSI3aHO C PaHroM r ajredpbl L COOTHOLIEHHEM
m=n+1-—r.

Cnyua#t m = 1 uccnenosad B [1-6]. Cayyail m = 2 naa n < 3 paccmarpuBaJcs B
[1-3], a o/ mPOM3BOJIBLHOTO N TaKOe HCCJIeNOBaHHe C TpUBJEUEHHEM Monanredp ajre-
6psl JIu AP(1,n) rpynnsl [lyankape P(1,n) nposenero B [7]. IlosTomy nssi 3aBepiie-
HUSL U3YUEHHUs Caydasi m = 2 HeOOXOIMMO BHIIONHUTh PEAYKIHIO [0 TeM mopajirebpam
panra n — 1 anre6psl AP(1,71), KOTopble MMEIOT HEeHY/IeBYIO MPOeKIHo Ha (D).

B naHHO# cTaThe ¢ TOYHOCTBIO 10 P(1,7)-3KBUBAJEHTHOCTH HaiileHbl BCE MaKCH-
MaJ/IbHble MOfareGpsl paHra n — 1 anre6pel AP(1,n), UMeLIHe HEHYJIEBYIO MPOEKIHIO
Ha (D), nas KaXkIOH M3 HHUX MoCTpoeH aH3all (2), MoCcpeicTBOM KOTOPOTO MPOBe/eHa
penykuusi ypaBaenus (1) Kk audpepeHUInaTLHOMY YPaBHEHUIO C IBYMsI [IePEMEHHBIMH.

2. OcHoBHbIE 0003HAYEHUS I HEKOTOpPbIE 00LIMe 3aMeuaHus. Da3ucHble 3/1eMeH-
Thl anre6psl AP(1,n) CBSI3aHbl CIAYIOMMMHE KOMMYTALHOHHBIMH COOTHOLIEHHSIMH:

[Jas, Jvs) = GasJay + 9pyJas — GayJas — 9psJar-
[PQ7J57]:gaﬁP7—ga7Pﬁ, [Pavpﬁ]:()v [DvJaﬁ]:O’ [D’Pa]:Pa'

A€ goo :~ —g11 = = —Gnn = 1v Gap = 0 InpH o 7é 57 O‘7677a6 = 0717"'7n~ An-
reépa AP(1,n) comepxut anredpy Ilyankape AP(1,n), nopoxaenuyio J,z 1 P,, op-
toroHanbHyto anrebpy AO(n) = (Jup |a,b=1,...,n), NCEBIOOPTOrOHAJIBHYIO aaredpy

AO(1,n) = (Jagla, 08 = 0,1,...,n), KOMMyTaTUBHBIH ugean V = (P, P1,...,P,).
BaxHoii nonanredpoit anredput AP(1,n) sBasercs HopMaausatop N U30TPOIHOTNO Mpo-
crpanctea (Py + P,) B anre6pe AP(1,n). Herpyano mosyuutsb

N = <M,T,P1,...,Pnfl,Gl,...,Gn,1>—B (AO(TL— ].) D <D,J0n>),
rae

M=Py+ Py, T=(Po—P)/2 Gu=dJou—Jum, a=1,....n—1,
AO(n—1)= (Jawp|a,b=1,...,n—1).

Anre6pa 91 comepkUT pacIIHpeHHYI0 H30XPOHHYO anrebpy [annies
AG(0,n—1) = (M,Py,...,P,_1,G1,...,Gn1) D AO(n —1).
B pabore 6ynyT ucrosb30BaHb! ellle U TaKHe 0003HAYEHHS:

AO[r,s] = (Jap|a,b=1,...,8), 1 <s;

AEr,s] = (P....,Ps), ® AO(r,s), r <s;

AFEq[r,s] = (Gy...,Gs), B AO(r,s), r<s;

Vil,n -1 =(G1,...,Gpn-1), W[l,n—1]=(P1,...,Pu_1);

m — npoekrtupoBanue N Ha (D, Jy,,). Ecau s > r, 0, no onpenenenuio, AO[r, s] = 0,
AE]r,s] =0.

Jnst mpoBesienust penyKuuu ypapHenus (1) mo nopanre6pam anreGpel AP(l n) Heob-
XOJIUMO OMHCaTh MOfaAreGphl 3TOk areGphl ¢ TOUHOCTBIO 110 P(l 1)-9KBHUBaJIEHTHOCTH.
e nopanrebpel K, Ko anre6pol AP(l 7) HA3BIBAIOTCS P(l 1)-3KBUBAJEHTHBIMH,
ec/Ii ¢ TOYHOCTbIO 10 P(1,7)-COnpsiKEHHOCTH OHHM MMEIOT OfHH H Te JKe MHBapHaHTEL.
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Cpenu nopanre6p, UMEKIIHX OAHY U Ty 2Ke IOJHYI CUCTeMy WHBAPHAHTOB, CYLIECTBY-
eT ofiHa (MakcUMaJsbHas) nofanrebpa, Conepxallasi Bce ocranbHble Mofaaredpsl. bynem
HA3bIBaTh €e i-MaKCHMaJbHOH moma/iredpoii anredpsi AP(1,n). JlBe i-MaKkcHMabHbIe
nopanrebpel K1 u Ky anrebpnl Ap(l,n) 3KBUBAJIEHTHBEl TOTAA U TOJBLKO TOrAA, KO-
ria K, u Ky P(1,n)-conpsskensl. Takum 006pasoM, A/ HAXOXKJEHHS C TOUHOCTBIO
10 P(1,n)-ConpsixKeHHOCTH BCeX aH3aleB, peAyLUUpyoIHX ypasHenue (1) K audepen-
LHYaJbHbIM YPaBHEHHSIM C [BYMSI MHBAapUaHTHBIMU [1epPeMeHHbIMH, TpebyeTcs ONHCaTb
i-MaKCHMaJIbHble oganreGpel panra n — 1 anre6psr AP(1,n) ¢ Tounoctbio 10 P(1,n)-
COIPSI2KEHHOCTH.

Ilpu noxasaTesbCTBe H3JaraeMblX pe3y/bTaTOB HaM MOHALOOUTCS Cjledylollas JeM-
Ma.

Jemma 1. [Tycmo L — makcumarvras nodaicebpa arcebper AP(1,n), K; — no-
dasecebpa L. Toeda 8 L cywecmsyem nodareebpa Ko, ydosremsopsiowas maxum
ycaosuam:

1) Ky — i-makcumanvuas nodarzebpa areebpor AP(1,n);

2) K1 C Ko;

3) Ky u Ky umerom o0HU u me jice UHBAPUAHMbL.

Hoka3sareabcTBo. [lycTb wi, ..., ws — MONHAas CUCTEMa HHBAPHAHTOB Mopaare6pel K.
O6o3Hauum yepe3 Ky i-MakcHManbHy0 nopanredpy anreépst AP(1,n), nMeLlyio noJ-
HYIO CUCTEMY HHBAapHaHTOB wi,...,ws. JlokaxeM, 4yTo Ky C L. JleHCTBUTE/BHO, MYCTb

f — mpousBoJsbHBIE MHBapuaHT anrebpel L. Tak kak Ky C L, To f sBJasieTcss WHBapH-
aHTOM mopanre6pel K1 U B CHJYy TeopeMbl 00 YHHUBEPCAJbHOM HHBapHaHTe MOJydaeM
f = f(wi,...,ws). Tak Kak L — i-MakcuMasbHas noxanreGpa anre6pel AP(1,n), T0
oTcloma BbiTeKaeT, yto Ko C L. JlemMma gokasaHa.

W3 pesysnbTaToB, M3/M0KEHHBIX B M. 3 [7], cienyer, 4ToO 3agadya MOCTPOEHHsI HHBA-
PHAHTOB MPOM3BOJLHOH Mofaire6psl aare6psl AP(1,n) CBOAMTCH K 3ajade MOCTpOe-
HHsSI HHBAPUAHTOB HENMPHBOAUMBIX Mofanre6p oproroHanpHoit anre6psl AO(k) nss Beex
k < n. [locnenHsis ke 3ajada B oflieM cJaydae, BHIMMO, HepadpelldMa B KBaapary-
pax. B cBsi3au ¢ 3TUM OrpaHMYHUMCSI PACCMOTPEHHMEM TOJBKO TeX MOAajredp asreGpbl
AP(1,n), npoekuuu Kotopbix Ha AO(1,n) SBAAOTCS MOA MPSMBIMH CyMMaMH ajredp
Buna AO(r, s].

3. MakcumanabHble mnopaareGppl panra n — 1, He copmepxamue P, nun
Py + P,,. B caenyomux HuXKe JeMMax L o6o3HauaeT MakCHMaJbHYIO Tomafnredpy
anre6psl AP(1,7n), MMeIILyI0 HeHy/eBylo NPOeKIHo Ha (D) u He comepxauylo Py 1
Py+ P,.

Jlemma 2. Ecau npoexyus L, na AO(1,n) ne umeem & npocmparcmee V unsapuan-
mHbLX U30mMponHslLx nodnpocmparcms, mo L conpanena ¢ o0HoU us maxkux arzebp:

Ly = (AO[0,d] ® AO[d+ 1,m]|® AO[m + 1,q] ® AE[q + 1,n]) B (D),
d=2,....n—2, m=d+1,....n—2, g=m+1,...,n—1,
2n<d+q, n>4

Ly = (AO[0,m]® AE[m+1,n—2]) B (D + aJp_1n),

2,....n—2, n>4, a>0;

m cee
Lz = (AO[1,m] ® AOIm +1,q] ® AE[q+ 1,n]) B (D),
2,....n—2, g=m+2,....n, 2m < q, n > 2.

m
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JoxkasareabctBo. Ecim D € L to L = K+ (D), rne K — MakcuMmal/bHas IM0-
nanrebpa panra n — 2 anare6per AP(1,n), oTHocsmasics K kaaccy 0 U sIBASIIOLIASICS
pacuerisiemodt. OTciona Ha ocHoBaHHM TeopeMmbl 4 [7] mosyuaem, uyto L compsikeHa
¢ Ly nmu L. Ecnu D ¢ L, To B cuay jemMel 1 L = N (D + ady—14,), @ >0
rie N — makcuMasbHas rnopanrebpa panra n — 2 anredpet AP(1,n — 2). B cuny [4]
anre6pa N conpsikeHa ¢ AO[0,m] ® AE[m+1,n—2],2<m <n—2,n>4. Jleuma
JI0Ka3aHa.

Jlemma 3. Ecau L C N u w(L) = (D, Jon), mo L conpsscena ¢ 00HOU u3 maxux
anzebp:

Ly = (AE[LTTL] (&) AE[m +1,n— 3]) Eo) <Jn,—2,n—1 + cJon, D + Oée]0n>,
m=1,....n—3, n>4, ¢c>0, a >0;
(A0

m=1,....n—2, ¢g=m+1,....n—1, 2m < q, n > 3;

Le = AE[3,n—1] B (J12 + cJon, D+ aJopn), ¢>0, a >0, n <3.
HoxkasarenbctBo. CornacHo reopeme 1V.3.4 [6] anre6pa L compsikeHa ¢ ajireGpoi
(U1—|—U2) B F,roe Uy C V[l,’n—l],Ug C W[l,n—l], al'C AO(TL—I)EB<D,J()"> B
cuny jgemmel | L = K (D + Xy, Jo, + X2), tne X;,Xo € AO(n—1), a K —
MaKcUMa/bHasi nojanreGpa panra n — 3 anre6psl AG(0,n — 1). TlockonbKy asre-
6pa AE1[1,m]| B (Jon), uMetolias paur m + 1, compsikeHa ¢ nopanreGpoit anreGpsl
AOI[0,m + 1], He siBasiOLIeHcS B Hedl MakCHMaJbHOH, TO MO JemMe | mosydaeM, 4To
Xo # 0 npu Uy # 0. B atom ciyuae coriacHo mnpemsoxenuto 2 [6] anre6pa L co-
npsixkeHa ¢ Ly. Ecin U; = 0, TO Ha OCHOBaHHH 3TOTO Ke MpefioKeHUs 2 anrebpa L
comnpsikeHa ¢ Ls unu Lg. Jlemma nokasaHa.

Jlemma 4. [lycmov L C N, w(L) = (D + ado,) u L — pacujenisemas areebpa npu
a = +1. Toeda L conpascera ¢ 00Ol u3 makux arecebp:
L; = (AE[1,d]® AO[d+1,m] & AE[m + 1,n— 1)) B (D + aJo,),
d=1,....n—=2 m=d+1,....n—1, n>4, a>0;
Lg = (AO[1l,m|® AE[m + 1,n —1]) B (D + aJon),
1,....n—1, n>2, a>0;
Ly = ((G1 +2T) @ AO[2,m]| ® AE[m + 1,n —1]) B (2D — Jon),
m=2,....,n—1, n>3.

m =

HoxkaszareabctBo. Eciu o ¢ {0,+1,—1/2}, 10 B cuiy teopemer 1V.3.4 [6] anreGpa
L conpsixena ¢ anrebpoit (Uy + Usz)© F, rne Uy C V[1,n —1],Us C W[l,n — 1],
aF C AO(n—1) @& (D + aJy,). [lo nemme 1 L = Ko (D + aJo, + X), roe
X € AO(n—1), a K — makcuMa/bHas nofanreopa panra n—2 aareops AG(0,n—1).
CorstacHo Teopeme 1 [7] anrebpa K coBmagaeT ¢ TOYHOCTBIO IO COTPSIXKEHHOCTH C OfHOH
U3 anredp

AFE1[1,d) ® AO[d+1,m] ® AE[m + 1,n — 1],
1<d<n-2,d+1<m<n-1, n>3;
AO[l,m|® AEm+1,n—1], 1<m<n-1,n>2.

Tak kak [X, K] C K, to X npuHannexut npoekuun L Ha AO(n—1), a 3HauUT, MOXKHO
npeamnoJsarate, 4uto X = 0, U Mbl nosydaem anarebpsl Ly, Lg.
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[lycts o« = —1/2. Torna cornacio teopeme 1V.3.4 [6] anre6pa L compsixeHa ¢
anrebpoit (Uy + Us) 4 F, rne Uy C V[1,n — 1] + (T) (xak npoctpanctso), Us C
Wl,n — 1], a F sBasercsa noganrebpoi anrebpsl AO(n — 1) & (2D — Jo,,). Ecan
npoekuusi Uy Ha (T') paBHa O, To L coBnanaet ¢ Ly unu Lg. lomycTuM, 4TO NPOEKLHUs
Uy Ha (T') conagnaer ¢ (T'). Ecniu G1+2T, G5 € L, To L copepxut [G1+2T, Ga] = 2P,
[Py, G2] = M, 4TO IPOTHUBOPEUHT MPEATONOKeHHIO 0THOCHTenbHO L. OTciona BeITeKaet
Uy = (G1 +2T). Eciu Uy # 0, to no teopeme Butra Uy = (Ppy1,...,Py), n > 2, a
3HauuT, L compsikeHa ¢ anrebpoi Lg.

B cuny teopemsr 1V.3.4 [6] cayuau, Korna o« = +1 u L — pacuienasiemMasi aireépa,
He OTJIMYAlOTCs OT paccMoTpeHHoro caydas o € {0,+1,—1/2}. Jlemma nokasaHa.

Jlemma 5. [Tycmo L — nepacujenasemas nodareebpa areebpor M u w(L) = (D+Jop,).
Toeda L conpsascena ¢ 00HOU u3 maxkux arcebp:

Lig = (AE1[1,d) ® AO[d+ 1,m] ® AE[m + 1,n —1]) B (D + Jo, + M),
d=1,....n—2, m=d+1,...,n—1, n>3;

Ly; = (AO[1,m]® AE[m+ 1,n—1]) B (D + Jo, + M),

m=1,...,n—1, n>2;

(

L12 = AE1 l,m]EBAE[m—i—l,n—?)D—B <Jn727n71+aM,D+Jon+M>,
m=1,....n—3, n>4, a>0;
Lz = (AEL[1,m]® AE[m + 1,n = 3]) ® (Ju—2.mn-1+ M, D + Jon),

1
m=1,...,n—3, n >4

Ly =AE[3,n—1]® (Jia+aM,D+ Jo, + M), a>0, n>3;

L15:AE[33TL71]B <J12+M3D+J0n>a n23

HoxkasarenbctBo. CorsacHo Teopeme [V.3.4 [6] anrebpa L, compsixkeHa ¢ anreGpoi
U+ U)o F,tme Uy € V[I,n—1], Uy € W[l,n—1], a L C AO(n —1) @
(D + Jon, M). Jlerko y6enntbest, uto anredpsl (Ggj_1,Gaj, Goj—1,2;) 1 (G2j—1, G2;)
ABJIAI0TCS 3KBUBaseHTHBIMU. [Tostomy ecin D+ Jop, +YM +6Jp—2 p—1 € L1 6 # 0, 10
no semme 1 Uy C V[1,n—3] u Uy C W[l,n—3]. B atom cayuae Jp_o2pn—1+0M € L, a
cslefioBaTesbHO, anrebpa L, conpsixkena ¢ K B (Jp_apn_1+0M, D+ Jop,+vM), rne K
— MakcHMaJjbHas nopajredpa paHra n— 3 ajaredpsl AG(O, n—3). Herpyano nosmyuuts,
4TO C TOYHOCTBIO 10 compsikeHHOCTH K coBnanaer ¢ AE;[l,m] & AE[m + 1,n — 3],
1<m<n-—3n>4 wm AE[l,n — 3], n < 3, a notomy L compsixeHa ¢ OLHOH
u3 anreép Lj, j = 12,...,15. B ocraBmmuxca caydasix B cuay npenjoxenus 2 [7]
anrebpa L conpsixkena ¢ Lig unu Li;. Jlemma nokasana.

Jlnst BbIIeIeHUsT OCTABIIMXCS aare6p HaM HEOOXOMHUMBI JOMOJHHTE/bHbIE 0003HaYe-
Husi. Jlas 106bIX ABYX HaTypasbHBIX UHCET 7 U S, 1 < S, MOJIOKUM

o(r,s,7) = (Gr + 11 Pr,...,Gs +vPs) B AO[r,s], ~v€R.

[lycts, panee, 'y =U P F, rne F — puaronans B AO[1,d] @ AO[d+1,2d| @ --- &
AO[(q—1)d+1,qd], a U — xomMyTaTiBHas anrepa, uMerolias 6asuc

Gi+nPr+MPg-1yars -5 Ga+mnPa+ APy,
Gat1+72Pav1 + A2 Py—1yatts - - - Gaa +v2P2a + A1 Pya,
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Gg—2)d+1 T Yg—1Pg—2)d+1 + Ag—1Pg—1)ds1, - -
Gg-1)d + Vg-1P(g-1)a + Ag—1Fqa;
OS’)/l <y < < Yg-1, A1 > 0, )\2>0, ey >\q—1 > 0.

Jlemma 6. Ecau L — uepacwenaseman nodareebpa arcebpor N u (L) = (D — Jop),
mo L conpsanena ¢ areebpoii L', drs komopou w(L') = (D + Jo,), uau ¢ o0xoil u3
anzebp

Lig=Taq® AE[dg+1,n—1]) B (D — Jon), d=2, n>5;
L17 = ((I)(do + 17d1771) 52 (I)(dl + 17d2772) o...0 (I)(dt—l + ladtvpyt) @
® AO0[d; + 1,m]® AEIm + 1,n—1]) ® (D — Jon),

ededy =0, 1 << <yyt>l,m=1,...,n—2,n>3

Lig = (La,q @ ®(dg + 1,11, 1) © ®(l1 + 1,12, p12) © - - -
e @Ol + 1,1, ) ®AE[L + 1L,n — 1)) B (D — Jon),

ede g < pg < -+ < g, t >1, lg=dgq.

HoxkasareabcTBo. B cuny teopemsl [V.3.4 [6] anrebpa L, conpsixkena ¢ anre6poit U P
F,rne U C V[1,n—1]+W|[1,n—1] (kak npoctpanctso), a FF C AO(n—1)®&(D—Jo,,T),
npuueM ecad npoekuusi L, Ha (T') sBasercs HeHyneBo#, to [T,U] C U. Ilockosb-
Ky [T,Go] = 2P,, [Pa,Gy] = M uw M ¢ L, To B mocienHem cjiydae mpoekuus U
Ha V[l,n — 1] aBnsercs HyneBod. Ho rtorma mpumenum O]1,n|-aBTomMopdusm asre-
6pbl Aﬁ(l,n), cootBercTBylolKH Matpuue diag[—1,1,...,1], KoTopblii mpeoGpasyer
(—Jon, M). TloaTomy MoXKHO mpennosarate, uto npoekuusi L Ha (T') siBasieTcst HyJe-
BOH.

Cornacto semme 1 L = KB (D—Jo,+X), rie X € AO(n—1), a K — MakcuMaJib-
Hasl mopaJgrebpa paHra n — 2 anre6psl AC;’(O,n —1). Tlocnennee 06CTOSITENBLCTBO MO-
3BOJIsIET BOCIIO/Ib30BAThCS MepeyHeM TaKHUX Mofanredp, MpUBefeHHBIM B TeopeMe 1 [7].
YuursiBasi, uto [D — Jo,, K] C K, HETPYIHO MONYYHTh, YTO L, COMpsiKeHa C OQHOH U3
anredp Lig, L17, L1g. Jlemma nokasaHa.

Teopema. Maxcumarvroie nodareebpor parnea n — 1 areebpol A]s(l,n), umeroujue
Henyaesyio npoekyuio Ha (D) u we codepacaujue Py u Py + P,, ucuepnwvisaromcs
¢ mouxocmovto 00 P(l,n)—corzpﬂafcenuocmu areebpamu Ly, ..., Lis, onucanHvimu 8
semmax 2-6.

4. Penykuusa nmo mopairedpam, He copepxamum Py u Py + P,. [lonanre6pa
Lj, j=1,...,18, ©MeeT NOJIHYI0 CHCTeMy MHBAapHaHTOB BHAA w1 (), wa(x), uf(z)~ .
[TosToMy n/ist Kaxao# U3 aTHX momanre6p aHsall (2) ymo6HO MpeacTaBuTh B Buue [1, 2,
6]

u= f(z)p(w,ws), (3)
rie p — HeusBecTHast (yHKIHs. Jlerko BUAETD, YTO
Ou = o0f + 2p1(VfVwi) 4+ 2p2(VfVws) + f{p11(Vwi1 Vwy) + )
+ 2012(Vwi Vws) + 022(VwaVws) + 10wy + po0ws },
rape
P Py P Ay dp

YL = a—w%’ w1z = aCU1aWQ’ p22 = 8—w§’ L= 8w1’ $2 3w27
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Penykuuto ypaBHenus (1) ymoGHO MPOBOAMTH C HCMOJb3oBaHHeM (opmyabl (4), mo-
CKOJIbKY OHa CBOIMT HaxoxjeHHue [u K MeHee IPOMO3IKHUM BBIUKCJEHUSIM TPOU3BOIHBIX
oT ¢pyHKIHUH f, wi, wa.

PenyuupoBaHHOe ypaBHEHHe, COOTBETCTBYOIee aH3any (3), MeeT BUL

a1 (z)p11 + a12(x) 12 + a22(z)p22 + bi(x)p1 + ba2(z)p2 + c(z, ) = 0.

Huxe nns xaxpo# nomanrebpel Lj, j = 1,...,18 ykasbiBaeM COOTBeTCTBYIOLIHE el
QyHkuMH f, w1, wa, ai1, a12, a2, by, ba, c.
1. Anrebpa Lq:

(@) = (@54 + ) /0P,

QJ%*JJ%*'“*I?I x3+1+.+x72n
w1 = 2 2 Wy = 2 29
xm+1+...+xq xm+1+...+xq
aj] = 40)1(1 — wl), a1g = —8wiws, G = —4(.4)2(1 —|—w2),
2q —2m — (2q — 2m — 8)k
by =2(d+1)+ L= 1(_qk m=8k,.
2q —2m — (2q — 2m — 8)k
bg:?(d*m>+ 4 mn l(qk mn ) w2,
2(m —q) + (2¢g —2m — 4)k 5
= Ap”.
¢ =0E pAY
2. Anrebpa Lo:
fla) = (@i y +ap) /070,
2 2 2
_ 1 2 2 _2 t .Tn :xo—xl_"'_xm
w1 «a D(J}n_1+.’1§‘n) arc gxnfl’ w2 1’%,1"‘%% ’
a1l = 4(0[2 + 1), alg = 780&0)2, a99 = 4WQ(LL)2 - 1)7
8a 4(k+1) 4 &
b= b= om -2, = — AQ.
T T e Ry S L

3. Anrebpa Ls:

2 ...
R

2 2
xm+1+...+xq

Wwo = ,232 5 ayl = 40)%((4}2 — 1), a12 = 8&)%&)2,
0
8
a9 = 4&)5(&)2 — 1), b1 = — 1 flk + (6(4)1 — 2m)w1,
—2 2(m — 2)k
by = (6wa — 2 4 2m)we, c¢= m +2(m — 2) 0+ A",

(1-k)?
4. Anrebpa Ly:

fl@)=(xp 5+ a2 )R,
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wi = 2In(zo — x,) — (1 +a) In(zj_, + a5, _1) — 2carctg In-t1
Tn—2
2 2 2 2
Ty —T]— - — Th, — T, ) )
o= B an =4+ (140,
8(1+a
ais = 8[(1+ )wy — 1], a9y =4ws(ws — 1), b = %,
Ak + Dwy — (2m +4)(k — 1) .
b= = — Mgt
? k—1 ’ (k_l)z(p ®
5. Anrebpa Ls:
2 2 2 2
— (72 2\1/(1—k I i e a2 R R o
fl@) = (g =) 0, = Zogmgm, e =
apy = 4w (wy — 1), a1p =8wiwy, Gz = dwy(wy — 1),
4(k+1) 4(k +1) 4 X
b= — " —2 b= D) g _ 4 o
1 E_1 (%} m, 2 E—1 w2 q+2m, c (1_k)2<)0+ ©
6. Anrebpa Lg:
2 _ 2
= (22 4+ ¢2)1/(1=k) _ To— Ty
f((E) (1‘1 +£L’2) y Wi I%+l‘g’

wy = (1 +a)In(z? + 23) — 2In(xg — x,,) + 2carctg @,
T

a1 = 4(4)1(1 — wl), 19 = 8((4)1 — 1), 99 = —4[(1 + a)2 + CQ],

A(1+ k) 8(1+ a) 4 .
Y Gl 2P A . A S VP
e T —k 0 T aower
7. Anre6pa Ly:
I B I

flz)= ($3+1 +oeee fgn)l/(l_k)a w1 =

2 2 )
Typg Ty,

wo =2In(xg —z,) — (1 + @) ln(xfl_H 4. +x,2n), a11 = 4wy (1 — wq),
a1o = 8[1 — (1 + a)wlL a0 = —4(1 + 04)2,

b= 2(d+2) +2m — d— Ay + 2L

1-k’
_ng“@k, by=2(1+a)(m—d—2) +

8. Anrebpa Lg:

8(1+ «)
1—k °

fz) = (x2 . x2)1/(1—k) wy = xg — a3,
0 n ’ z%+...+x%n7

we =2In(xg —z,) — (1 + @) ln(x% 4+ xfn), a; = 4w%(1 —w1),
a2 = 8wy [1 — (1 + a)wl], a9 = —4(1 + 04)20.)1,

43—k 8
blzﬁ—&-@m—S)w%, by = —— +2(1+ a)(m+ 2)ws,
1—k 1—k
4

(1-k)
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9. Anrebpa Lg:

_ 2\1/(1—k (w0 — xn)? — day
f@)= (22 + - +a22)/0h), wl—(x§+._.+x%)1/2,
wy = 3[In(zg — 2,)? — 421] — 2In[6(x0 + 2,,) — 621 (x0 — 2,) — (0 — 4)?],

96 o — 144(1 — e*2) b (m—4)k—m

2
a;p =16+ wy, a2 = o 02 " e Py
48 4 72e%2 (6 —2m)k +2m — 2 &
by = 0O — G,
2 W2 ¢ 1-kz 777

10. Anrebpa Lig:

ai, +
fl@) = @2, + -+ a2)VOR) gy =T T T om

To — Tn
wy = 75— ;(;;a;wi ~ +1n(zg — x,), an = —4w?, a;p = —4w?,
agg = —4dwy, by =—1|2(m—d)+ % wi, by = 2dwy,

o 2(d—m)+2(m—d—2)k(p+/\@k'

(1—k)?
11. Asre6pa Lq1:

- a3+ al,
f@) =@+ 4 ap) VO o = H

Ty — T
wy =0+ T + In(xg — ), a1 = —dwi, a2 = —4wi, axn =dw,
4(=2 —m + mk) —2m + 2k(m — 2) &
b = b = 0 = )\ .
1 1_k wi, 2 ) & (1—k)2 <)0+ ¥
12. Asnrebpa Lqso:
22 4 22
fla) = (@ +af )0V, = e
Ty — Tp
2.2 .2 .2
Wo = o 11 Lm Tn + ln(a:o — a:n), aj] = 4&)%, a12 = 4&)%,
o — Tn
4(3 — k)wy 4 k
aze = —dwy, by = g by = —2mwy, c= m@*)\sﬁ :
13. Anre6pa Lis:
22 4 22
fl@) =@ gty V0P, =2
To — Tp
2.2 .2 2
Wo = IO ‘Tl l’m In + Zarctg In—l, ayp = —40}%7 aip = —4(4)%,
To — Tp Tn—2
4(=3+k) 4 k
= —dwy —4, b =—-—1- by =0 =P+ Ap".
a22 w2 ) 1 1_k Wi, 2 , C (1—]6)290—1_ '
14. Anrebpa Lg4:
_ a:% + :17%

(22 4 o2\1/(1—k)
f(z) = (21 + 23) . o — 2y’
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L2 2 2
wo = xo + Ty + In(zg — z,) + 2ccarctg —, a1 =4wi, a1z = 4wy,
Z1

4(3 — k) 4

ag =4(a® —wi), b= 5 “n by =0, C=m<ﬂ—)\<ﬁk~
15. Anrebpa Lqs:
2., .2
1/(-k). _ Ttz
Fla) = (@ +23) nin

T2 2 2
wo = X0 + T, + 2 arctg ot a;p = 4wy, aip = 4wy,
1

A(3 — k)wy 4

a22:4, b1: 1— & w1, bQZO7 Cc = (1_7]6)2()0—)\90"?

16. Anrebpa Lig:

-t /(1—F)
f(x) = {_(x0+x”)+zm(z(2i—l)d+l+'“+$z2d)} ,
i=1 " !

vyt +ug
{f(x)}/0=H

W1 =To — Tp, W2=

rae

—1
gy =5 v il
D D

q—1
a1 =0, aj;2=4, ax=4<{1+
i=1

g—1 9 g—1
i) — A2 2d
m—wl ‘”“*7 o kZ: e
i—1 wl +’V7. i— 1&]1 +72
17. Anrebpa L7:
1/(1—k
f(x):(l’3t+1++l'$n) / )7 W1 =20 — Tn,

—(zo +xn) + Z m( Gt T+l

.. 2
xdtJrl +- +xm
t

Z 4(d2 — difl) _ 2(m — dt) — 2(m — dl — 4)]@
w1 + i 1-k

, a1 =0, app =4,

Wo =

age =4ws, by =0, by= wa,
i=1

2(m —dy) —2(m — dy + 2)k &

= — A",

18. Aunrebpa Lqs:

g—1 1
f(z) = {Z 4@%71)%1 +otad)+

Xro — & 1
=1 Lo n T Vi
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t

1 1/(1—k)
+Zxo_7($i1+-~-+xi)—(wo—xn)} :
i=1

T + fr

yityit+otui
Fo)/a=%

W1 =Tg — Tp, W2=

rie
qg—1
AiT(i—1)d+j
= SR s =1
Yj « To — Tn + i (q=V)d+j> ]

q—1

+lz:: w1+%

1

a1 =0, ap=4, axn=

q— 1

— wa (w1 + 7 (lp = lr—1)wo
by = 2d + 2d A
’ " Z (w1 +7)? rzz:l w1 +

t

I, —1
k;wl+% 1szw1+ur

i=1

— Aot

5. Penyknusa nmo momanaredpam, comepxamum Py mmm Py + P,,. B Hacrosmem
MyHKTE NpoBeeM peaykiuio ypasHenus (1) K nuddepeHnHa bHbIM YPaBHEHHSM C IBY-
M5l MHBAapHAHTHBIMH TNIeDeMEHHBIMH, HCTOMB3Ys mofanredpsl aare6psr AP(1,n), comep-
xamue Py uau Py + P,.

Iycts L — HekoTopasi mojanre6pa anrepsl AP(1,n). Eciu Py € L, To mo6oe
peutenue u = u(x) ypaBHenus (1), HHBapHAHTHOE OTHOCHTEJBHO L, He 3aBUCHT OT Iy
H MIOTOMY SIBJISIETCSI DEIlleHHeM ypaBHEHHS

—Ou+ Muf =0 ®)
eBKJIUI0BOM TpocTpaHcTBe E,,, rae
0%u 32u
Ou = +- . 6
o2 ax% ©
YpaBHeHue (5) MHBAPMAHTHO OTHOCHTEJBbHO pACLIMpeHHOH anreGpsl EBkiuna AFE(n)
=(P1,..., Py, Ji2,...Ju_1n)® (D1), reHepaTopbl KOTOPOH UMEIOT BUA
2
P, =0,, Jup=xp0, —x,0,, Di1=—2%, +k T udy, a,b=1,...,n.
Ananornuso, eciu Py + P, € L, 1o Jq06oe pelueHde ypaBHeHHUsi (1), HHBapHaHTHO
OTHOCHTEJbHO L, UMeeT BUA u = u(Tg — Tp,X1,...,Ln_1) U [IOTOMY SIBJISETCS pelie-

HHMeM ypaBHeHHS (D) B €BKJMAOBOM IpocTpaHcTBe E,,_1. [ToaToMy B paccMaTprBaeMbIx
caydasix AJs peIyKUHMH ypaBHeHHsi (D), a 3HauuT, M ypaBHeHHs (1) K HBYMepHBIM
YPaBHEHHUSIM JIOCTATOYHO KJaCCH(ULUPOBATb MaKCHMaJbHble MOAAJreOphl paHra n — 2
anre6psl AE(n), UMelolHe HEHY/IeBYIO NPOeKIHIo Ha (D).

Teopema 2. Makcumanstvie nodarzebpo. panea n — 2 areebpo. AE(n) umeouyue
nenyresyo npoexyuio na (D), ucuepnoisaromes ¢ mourocmoio 0o E(n)-conpascen-
HOCmu caedyrouumy areedpami:

Lig = (AO[1,d] & AO[d +1,m] & AO[m +1,q] & AE[g+1,n]) & (D1)
d=1,....n—2, gq=d+1,...,n—1, m=q+1,...,n, n>3;
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Loy = (AO[1,m]| @ AE[m +1,n—2]) B (D1 + aJp_1n),
m=1,....n—2, n>3, a>0;
Loy =(K®AEm+1,n—2]) b (D1 +aJ),

d

ede K — duaeonary 6 AO[1,d] @ AO[d+ 1,2d], J = > Jaa+d, d = 2,...,[n/2],

m=2d+1,...,2[n/2], a > 0.
Jloka3aTebCTBO aHAJIOTUYHO [0KA3aTeJbCTBY TEOPeMBI 1.

[lopanre6pam Log, L2; COOTBETCTBYIOT CJeAYIOLIHMEe aH3allbl U pPeLyLUPOBAaHHbIE
ypaBHeHHS.

L.

a=1

Anre6pa Log:

$2+"'+$2
f@) =@+ +a)VOh = Tl
$m+1+...+xq
Tito e

22+ gg2 M =dwi(1 —w1), a2 =—8wiwy,
m—+1 q

Wwo =

29 —2m — (2¢ — 2m — 8)k

a9 = 74&)2(1 +WQ), b1 = 2(d+ ].) -+ 1—%& Wi,
2q — 2m — (2q — 2m — 8)k
by = 2(d —m) + L= 1(qk m=8k,,
2(m —q) + (2¢ — 2m — 4)k 5
= A®.
c (1—k)2 Y+ Ap
. Anrebpa Log:
f(x):(xfl_lerfL)l/(l*k), wlzaln(xi_1+xi)72arctg In ,
Tn—1
24 ... 2
Wwo = H, a1 = 4(@2 + ].), a12 = —80[(4)2, 22 = —4&)2(&)2 — 1),
8« 4(k+1) 4 &
b= —-r, by=—Zwy—2m—2 = ——0p— A"
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Q-symmetry generators and exact solutions
for nonlinear heat conduction

N. EULER, A. KOHLER, W.I. FUSHCHYCH

We investigate conditional invariance by considering @-symmetry generators of the
nonlinear heat equation du/dxo — A\0*u/dx7 = f(u), where X is a real constant and
f an arbitrary differentiable function. With the obtained @-generators we construct
exact solutions by the use of similarity ansatze and reductions to ordinary differential
equations. A generalization to m-space dimensions is performed.

1. Introduction

Most nonlinear partial differential equations are not integrable and cannot be
treated via the inverse scattering transform, nor its generalization. Such equations
are mostly treated by numerical methods. Interesting qualitative and quantitative
features are however often missed in this manner and it is of great value to be
able to obtain exact analytic solutions of nonintegrable equations. The application
of Lie transformation groups, whereby a transformation is obtained that leaves the
differential equation invariant, is useful in finding exact solutions (see [1-8]). If an
equation is invariant under some Lie transformation group, the equation is said to
have a symmetry. It is known that the integrability and the existence of symmetries
is connected. This was studied in connection with the Painlevé test (see [1-3]). Many
important nonintegrable partial differential equations have no significant symmetries.
In this article we consider conditional symmetries of partial differential equations as
introduced in [9-13]. We make use of these conditional symmetries to obtain exact
solutions. The following equation is studied:

ou 0%u

870_ 8—x%:f(u)’ 1)

where x( indicates time, A is a real constant, and f an arbitrary differentiable function.
For nonlinear functions f this equation plays an important role in nonlinear heat
transfer processes.

Before we consider conditional symmetries of (1), let us briefly describe the classi-
cal Lie approach and introduce our notation [1]. We are concerned with a partial

differential equation of order » with m + 1 independent variables (zg, 21, ...,zm) and
one field variable u, i.e. an equation of the form
Oy o"u
F T Uy = ————— ) =0, 2
(Z‘O’ 't Y 83?0 85(}]‘1 8:1:J,> ( )

where 0 < j; < jo < -+ < j. <m, j =0,...,m. The submanifold R" of the r-jet
bundle J"(M,1) is determined by the constrained equation

F(J:O,...7xm,u,u0,...,ujl...j,r,):O, (3)

Physica Scripta, 1994, 49, P. 518-524.
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where the dimension of the differential manifold M is m. A Lie transformation group
that leaves (3) invariant is generated by a Lie (point) symmetry generator Z, defined

by
Ui 0 0
Z:Z@(mo,...,mm,u)a?j+n(m0,...,xm,u)a—u. (4)

=0

Z, is the associated vertical form of (4) on J'(M,1), defined by

- 0
Zo=\n=2_&u | 5o (5)
7=0
where Z,|0 = Z|6. Here 0 is a differential 1-form, called the contact form on

JY(M, 1), defined by

0 =du— Z ujdx;
§=0

with js*6 = 0. Here js* denotes the pull-back map. Equation (3) is called invariant
under the prolonged Lie symmetry generator Z, if

Lz F=0, (6)

where = indicates the restriction to solutions of (3) and its prolongations. L denotes

the Lie derivative. Z; is found by prolonging the vertical generator Z, i.e.,

_ 0 & B} i Bl
Zy=Ur =Y DiU)5—+ -+ > Dj.;(U) e

ou =0 8’11,]‘ =0 aujl...j,,,
where
m
U=n- ijuJ =70
j=0

and D; is the total derivative operator. A similarity ansatz for (2) is obtained by
solving the linear partial differential equation

js*(Zv]0) =0, (7)

with Z, an associated vertical Lie symmetry generator for the equation. This ansatz
will reduce the dimension of (2) by one. The solution of the reduced equation is known
as a similarity solution of (2). Thus, the existence of a symmetry provides us with
a similarity ansatz and a possible exact solution can be calculated. The converse is
however not and true, i.e., any exact solution of a partial differential equation is not
associated with a symmetry of the equation. For such solutions one can introduce
conditional symmetries, i.e. symmetries that leave the equation invariant under some
additional condition.

2. Q-symmetry generators
Following [9-13] we give the definition for conditional invariance of (2).
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Definition. Equation (3) is called Q-conditionally invariant if
Lo, FZ0 ®)
under the condition

QVJ9 =0. 9)

Q is called the Q-symmetry generator and Q. the prolonged vertical Q-symmetry
generator.

Here = indicates the restriction to solution of F =0 and (9) together with their
prolongations. Q is considered in the form of a Lie symmetry generator.

Let us now study (1) by the used of the above definition. We are interested only
in nonlinear functions f. From the definition it follows that the Lie derivative (8), for
the equation

F=uy—Aupp — f(u)=0 (10)

under the condition

Qv]0 =n— ouo — Lrun =0, (11)
has to be studied. Let us consider the Q)-symmetry generator in the form
8 0 0
Q=c +§1( )8 o +77(U)%7 (12)

where ¢ is an arbitrary real constant. We can state the following

Theorem 1. The generator

0 9
is a Q-symmetry generator for (1) if an only if
) =) (-5 +ar) (14

where n is an arbitrary differentiate function of w and ki, c¢1 are arbitrary real
constants.

Proof. By applying the Lie derivative (8) and condition (9), with generator (13), we
obtain the following determining equations using computer algebra [15, 16]:

d?& d*¢ déi o
)\du =0, -3¢ Ad 51 +(3 f+2n)—§1+2 Ad 2517;

<3 aa, e 0O §1>_

and

d§13
w2 !

d§; df

R Lt I P N
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For ¢ # 0 the general solution of the above four equations gives only a linear function
f(w) = aju + ag, where ay and ay are arbitrary real constants. For ¢ = 0 the general
solution

fw =k, f) =00 (-3 50+ e).

follows. [ |
Consider the @)-symmetry generator in the form

Q= 6lu) g+ cp + ()5

where ¢ is an arbltrary constant. We can state the following

(15)

Theorem 2. The generator

Q—k— 0 +Ci—|—[ 2. <1u +k1U>— k3 —|—]€4}2 (16)

u + k1 Oxg ox 3 )\kg u—+ k1 ou
is a Q-symmetry generator for (1) if an only if
21
u) = -—, 17
f) =3¢ (1)
where
ko
b= R
and
2¢ (1 9
=5 (5“ +"““) —aiE e
Here ky, ..., ky are arbitrary real constants.

Proof. Applying the Lie derivative (8) and condition (9), with generator (15), the
determining equations are given by

c(3f& —2n) =0,
250 déo d&o dn 2 d&o d*n
——&on _2’\<du> N2 o+ 20— — Ao S& =
d& d&o
[t
and
dfo f fo — —f&ﬂ? =0.

For ¢ =0 only lmear functions f are obtained for the general solution of the above
system. If ¢ # 0, f follows from the first determining equation and the condition on 7
is in the form of a linear second order equation, namely
d? 2 d 2¢?
i/ )
du? w4k du )\k;2

The general solution, given in theorem 2, follows. [ |
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For the nonlinear equation
ou  O*u &
el S 18
dzg  Ox? s (18)
with a and k arbitrary real constants, and k& # 1, we can state the following
Theorem 3. The generator

+§1(3007961)i +04($0,96‘1)U2’ (19)

0
?= 5 o1 7

is a Q-symmetry generator for (18) if and only if the following conditions on & and
« are satisfied:

da O«

—— t—— =(k-1)a? 2

96, _ k+3 o«

Sa — U= Dag = == @
and

&, 1= k

The proof follows directly from the invariance condition (8) together with (9).
Note that the above condition on & reduces to the following third order ordinary
differential equation:

2 & d%G
=0
k—1 da T da?

which can be transformed to the Abel equation of the second kind

zy% +y + <7x+k;1) y+62° + (k—1)z=0
where

S _pe), PE) =€) c=mn(@), =y,

T dz

With other special ansédtze for &, & and n we obtain the following results for (1)
with A = —1.

Theorem 4. 1. The generator
0 0
Q_Q\/a:_oﬁ—acl+f(u)% (23)

is a Q-symmetry generator for (1) (A = —1), if and only if f satisfies the equation

a2 f

T3 =2 (24)
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The general solution of (24) is given by

d
T
\/ 4 hl f + kl
where ky and ky are integrating constants.
2. The generator

:’U,-f—]’%Q,

0 0
Q—l”la—xl‘Ff(U)% (25)
is a Q-symmetry generator for (1) (A= —1), if and only if f satisfies the equation
d* f df

The general solution of (26) is given by

F(w) = £/ (w — 1) exp(w) /F,

where w is obtained from

:t/\/icl_l(w — 1)~ lexp(w)dw = u + ks.

Here ki and ko are integrating constants.

The proof follows by applying the invariance condition (8) together with (9).

Let us make some remarks on Q)-symmetries. The determining equations for Q-
generators are nonlinear over-determined systems of differential equations. This is
in contrast to Lie symmetry generators where the determining equations are linear
differential equations. It is obvious that every Lie symmetry of an equation is also a
Q-symmetry but that the converse is not true, so that the above @Q-symmetries do not
generate Lie transformation groups that leave the equation invariant. If we multiply a
Q-symmetry (or Lie symmetry) of a particular equation by an arbitrary function, we
again find a @-symmetry for that equation.

3. Q-similarity solutions
Let us now make use of theorems 1 to 4 to construct exact solutions of (1). The
similarity ansatz is obtained by solving the linear partial differential equation

ou ou
is*(Q0) = &=— — —n=0. 27
7s*(QJ0) €050 T 19y, =0 (27)
We seek the general solution of (27) in the form

Y(xo, 71, u) = ¢{w[wo, 71, u(x0, 71)]},

where v is an arbitrary function of its arguments and ¢ is an arbitrary function of the
similarity variable w. We call solutions, obtained by @-symmetries, the @-similarity
solutions.

Let us consider the following cases:
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Case 1(a): Consider the equation

ou 0%u A
P exp(2u) + ka exp(u). %)
i i

This corresponds to n = exp(u) for the Q-symmetry given in theorem 1. By solving
(27) for the Q-symmetry

B
Q"“a ou

we obtain the similarity ansatz

+ exp(u) —

u=—In ((b(w) - %) and w = xo.

1

On insertion into (28) we obtain the reduced equation

do B
k=0, (29)

An exact solution of (28) is thus given by

u(zo,71) = —In (—% + koo + ks) )
1
where k1, ko, k3 are arbitrary real constants.
Case 1(b): Consider the equation

Ou 0%u
e ,\&C1 —(bsu® + bgu® + byu). (30)

This corresponds to 1 = agu® + aju for the Q-symmetry given in theorem 1 with
]{71 =1 and

/ /3)\b2 b
a1 = ——¢ b3 — 12[)1)\ az = f\

sz 2 [ [3m2
— 2 ~12b0 |
€1 3 b 3 ( bs 1 )

By solving (27) for the @-symmetry

0 3 0
Q= klﬁ—xl + (azu —|—a1u)%,

we obtain the similarity ansatz

u = Vi exp(arz1/€)\/1 — azd? (w) exp(2a121/¢) and  w = 0.

$(w)

The reduced equation is given by

a9 _ aic1¢ =0, (31)
dw
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with the general solution
6(w) = cexplarciw).
Here ¢ is an arbitrary real constant. An exact solution of (30) is thus given by

¢\/ay explay (z1 + c120)]

u= .
V1= azé®exp[2a;(z1 + c120)]

Case 2: Consider the equation

ou \ 0%y

a—xo — @ = —b3u3 — b2’U,2 + blu + bO' (32)
1

This corresponds to n(u) = qzu® + gau + ¢ for the Q-symmetry in theorem 2. Here
/ c b_l n \/§b§
\/ )\bg )\b V2 93 |-

The real constants by, bg, bs are related to the constants kq, ko, ks and k4 in the
Q-symmetry given in theorem 2 by the relations

bo c 2 bic 2cb2
by = 2 ko=oy/—, k=0, k4= + 7
Pon M3V s P L /20 9v2bsbs

biby | 263

by =
07 Bbs 212"

In terms of by and b3, & is given by

Cy/ 2b3
VA(Bbsu + by)

In order to solve (27) for the above given &, and n we must solve the equation

o(u) =

d?y dy
_ -0
a2 2y + q3q1y )
where
1d
=———(Iny).
u q3d€(ny)

¢ is the group parameter. Thus, there are three cases to be studied:
—4q1g3 =0, 5 —4q1g3 <0, ¢5 —4q1g3 > 0.
Case 2(a): Consider ¢ — 4q1q3 = 0, i.e.,

1 b2
by = —=-2.
! 3bs
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The similarity ansatz is given by

_ bafn — 4(w)] — 3v/2bsA 3b3

and w=x9 —

3bs[p(w) — 1] (Bubs + ba)?”
The reduced equation then takes the form
2¢ 1 [(do\®
PR (@) =0 (33)

which has the general solution

2 - -
P(w) = —3)\\/ —3—)\w +c1 + Ca.

Here ¢;, é; are arbitrary real constants. Solving for u, an exact solution of (32) takes
the form

6\/ 2b3)\(l‘1 — 52) — bg(l‘% — 252.%1 - 9)\251 + 6)\.%‘0 + é%)

“= 3b3(22 — 26211 — 9N281 + GAzp + 3)

Case 2(b): Consider ¢3 — 4q1q3 < 0, i.e.

b
by + @ < 0.

The similarity ansatz is then given by
" 16} 1 o

g3 tan{Bz1 — d(w)]/c} a5’

2 32 -1/2
.’L'0+3)\52 {|:1+_(Q3’LL+O{)2:| )
where

q2
a= 8= —\/4611613 - q.

The reduced equation takes the form

d*¢ o o
Aﬁ+Bd—+O(dw> =0, (34)

where
A = 6b3(81b1b35 + 108b3b3b3 + 54b3b3b3 + 12b1b5b3 + b3),
B = 9b1b3(81b1b3 + 135b3b3b3 + 90670303 + 30b1bSbs + 5b3) + 3b1°

and
1
= ——A.
¢ 3
The general solution of (34) is

p(w) = %\/garctan Vexp(2Bw/A) — C&, /A + &,
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where &, ¢ are arbitrary real constants. An implicit solution of (32) can then be
given in the form

A [B 2Bz 32 —EB/CABN o

N 14— _Z=

5 Carc an exp( 2 ) [ + (q;;u—l—oz)Q} P +
c

+ — arctan <—£> = x1 — Co.
B qsu

Case 2(c): Consider g3 — 4q1q1 > 0, i.e.
b2
by + == > 0.
1+ 305 >

The similarity ansatz is then given by

_ p(w) exp(A1 + A2)(q2 + VA) — dg3vVAby
12g3V/Abs — 2g3¢(w) exp(A1 + As)

and
2 — VA
b s ta VA R,
2uqz + g2 + VA
where
oV A b%q%)
= 0V —bagogs + 3bzqugs + 22 ),
1 cqs/2s < 24243 34143 3bs
A b
A= VA bas
& 2 2 3b3
and

2¢2 [ b2
A= (22 ).
A <3b3+1)

The reduced equation is given by

d2
de; —0 (35)

so that the two nontrivial exact solution of (32) take the form
u = [£2{65152v/252¢¢; exp[(3v/2S2x1b3 + S15220)/(251b3)] +
+ 35)0é2 exp(v/2S2w1b3 + S15270)/(S1b3)] +
+ 1852b3c? exp|(2v/25221/S1]} /2 +
+ 2V Aé2(by — /352) exp|(3v/2S5x1b3 + S1S220)/(251b3)] —
— 21/685b3¢(2b2 — \/353) exp[v/25211/51] —
— 2¢/Ab2éy exp[(v/2S2x1b3 + S1S210)/(251b3)] x

1
X 67[2 652[)306)(})[\/252371/51] + \/Xél X
3

X exp[(\/ 252$1b3 + S’ngxo)/(QSlbg)] —
— V&1 exp[(3v/28521b3 + S15210)/(251b3)] 71,
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where
Sy = /3\b3, Sy = 3bib3 + b3.
Note. The case A = —1 and f(u) = bsud + byu + by, i.e. the equation

du  Pu - 4 - -
a—;f) + 8—9;; = bau® + byu + by (36)
1

has been studied by Fushchych et al. [14]. This case can be obtained from theorem 2
by considering

c |2 c~ 2 c~ 2
ki1 =0 k=—1/~— ks = —=bos|=—, ks==b14/=—
1 ) 2 =3 b3’ 3 500 bs, 1 =50 b3’

0 3 /- 0 3 - ~ =0

= — 4+ A/23u— + = 3 .

@ Oxg + 2 b3u8x1 + 2(b3u thiut bo)@u
Case 3: Consider the equation

7] 0*u 3

From theorem 3, with oo = fo, it follows that

0 0 0
— 22 i —
= 1oz, 321 0z * 3“au'

Q

The similarity ansatz is then given by

1
u=z1W), w=x0— Eff?

so that the reduced equation takes the form

29
dw?

= 9a¢>. (38)

The general solution, in terms of an elliptic integral, is given by

/¢ dr 3 Ta(w + c2)
T 2 Balw
o Ve +7t 2 ’

so that a solution of (37) can be given in the form

u/xl d 1
T §\/Za <x0 — a2+ 02> .

0 Ve + T4 B 2 6
Case 4(a): From theorem 4.1 we obtain the implicit ansatz
df _ Z1
Tu (zo) + e
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for (1) where f satisfies (26) and A = —1. The reduced equation takes the following
form
do. 1
— 2=
dLU() 21‘0¢ 0 (39)

so that an exact solution of the nonlinear partial differential equation is

df I 4
- = —— + —x,.
du  /zg 3
Case 4(b): From theorem 4.2 we obtain the implicit ansatz
daf

Tu zi¢(zo) + 1

for (1) where f satisfies (26) and A = —1. The reduced equation takes the following
form
ﬁ—2¢+2¢2=o (40)
d.’to
so that an exact solution of the nonlinear partial differential ansatz equation is given
by
df x?

= 1
du 1+ ¢y exp(—2x0) +

4. Generalization to m + 1 dimensions
For a generalization for m space dimensions we consider the equations

ou
87330 + %Au fu), (42)

where a and n are real constants, f satisfies
d?f 0? 0?

Sy and a=2 4.4 0
a2 =0 ax%—i— +2x$n

f

An exact solution for (41) is found to be

B 203 - x
~ 3axg — (8- x)?’

where 8-« = ) f;x;, etc., with 3; arbitrary real constants.
j=1

This solution is obtained from the @-symmetries

0 0 3 0
Qj =2pj5— o + 3au6 + 3apJ s
where p? =an and j =1,...,m. This leads to the ansatz
2 1
Uu=———"—— w=-—— —2axg

dw)—2B8-x’ u?
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from which the reduced equation

Lo _ (o)’
dw?  \dw
follows. From the @Q-symmetry

0 0 0
Q; = aj(a-x)? a—onr?)a aza + 3au Pu

with @® =1 and j =1,...,m, the ansatz
u=a- xp(w), w:xo—é(a-w)Q

reduced (41) to the equation
&9
dw?

An exact solution for (41) is then given by

= 9ag>. (43)

u/le-@) gy 3 1
NG - (a-x)? :
/0 m 2\/_CL Zo 6(a IB) + c2
For (42) we obtain the Q-symmetries
= 2T+ (0)
Vj au7
where 42 = 2n and j = 1,...,m. This leads to the implicit ansatz
af ~-x
% - \/% + ¢($0),
and the reduces equation
do
—+ ——-2=0. 44
d.’to + 2£E0 ( )

An exact solution of (42) is then given by

ﬁ_wﬁ(m)
du /T 3o

5. Concluding remarks
From the above results it is clear that the study of @-symmetries provides a
useful method for obtaining exact solutions for nonlinear partial differential equations.
Note that all the reduced equations: (31), (33)—(35), (38)—(40), (43), (44) that were
obtained by @Q-symmetry reductions are integrable and we were able to solve these
reduced equations in general.
Generalized Q-symmetries, in the form of Q-Bicklund symmetries, defined by

0
QB:g(x()a"'axm7u7u07"'7uj1qu)%7 (45)
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can be considered for eq. (2). Here ¢ > r. This will extend the number of exact
solutions for (2). We could find no @-Bécklund symmetry for eq. (1) with nonlinear f.
In [1, 17] an example is given to demonstrate the method by which one can obtain
exact solutions with Lie-Backlund generators. Note that, in the case of Lie-Backlund
or Q-Backlund symmetries for (2), one can, in general, not find the general solution
of the equation

Jjs*(@p10) =0. (46)
This is due to the fact that (46) is usually more complicated, in that it has a higher
order of derivatives and of nonlinearity, than (2). By, however, considering linear
combinations of symmetries in the contraction (46), one can combine (2) and (46) to
eliminate some derivatives or non-linearities (see [1, 17]).

In the study of conditional symmetries one can consider additional differential
equations as conditions for (2), and then study the symmetry properties of the combi-
ned two equations. However, one then has to consider the compatibility problem
between (2) and the additional equation. This approach was studied, and exact soluti-
ons were obtained, for the multi-dimensional d’Alembert equation [18, 19] and some
nonlinear equations of acoustics [20].
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l'aninen-iHBapiaHTHI cUCTEMH

HeJiHIMHUX piBHAHb THNY 'aminbroHa—dko6i
Ta peakuii-gudysii

B.I. ®YI[HY, P.M. HEPHITA

All systems of (n + 1)-dimensional evolutional second-order equations invariant under
chain of algebras AG(1,n), AG1(1,n), AG2(1,n) are described. The obtained results
are illustrated by the examples of reaction-diffusion equations and Hamilton-Jacobi type
systems.

1. Bigomo, uio cucrema (n + 1)-BuMipHUX piBHsHb Huy3il (TemnonpoBigHOCTI)

MU = AU, (l.a)

AV = AU, (1.b)
ne U(t,xz), V(t,x) — wykani gidicui ¢yukuii, Uy = %—[tj, Vi = %—‘t/, = (Z1,...,%n),
inBapiaHTHa BigHOCHO y3arasbHeHOi anre6pu [anines AGo(1,n) 3 6asomw

Pt:ata Pa:aa; (23)

1
Q)n Ga :tpa - iraQ)\a Jab :xapbfxbpaa (Qb)
D =2tP; + 24Py + I, (2.0)

|z

2
II=¢t2P + te, P, — TQA +tly, o =— (2.d)

n
5"

Y cniBBinHommenHAx (2) i ckpisb nani I, = arUdy+asVay, Qx = MUIy+AVoy,
oy = %, oy = aiv’ O = %, 0, = 8%“, o, A; € R, a 3a ingekcamu a i b, w0
TNIOBTOPIOIOThCS, MependadaeTbes cyMyBaHusa Bin 1 go n; & =1,2.

Aunrebpa yTtBopeHa omepatopaMu (2a)—(2b) HasuBaeTbcs anrebpoto lamines, a ii
pO3LIMPEHHS 3a A0MOMOrow omeparopa (2¢) mosnauumo AG:(1,n).

OueBuaHO, 110 ONWHUYHI onepaTopH @y i I, € NiHIHHO 3a/1€XKHUMH JIHLIE Y BUMAAKY
5= | @
A1 A2
npeacraBgedb anre6p AGi(1,n) ta AGo(1,n) mpu § = 0 i & # 0, yoro He GyJo
y BHNAfKy OQHOro piBHSIHHs nudysii (iHBapiaHTHiCTH HesiHiHOrO piBHAHHS AUGY3ii
BifIHOCHO HHU3KH minanre6p anre6pu AGy(1,n) nocainxkena B [1]).

3asHaynMo, L0 y BHMIAAKY,KOIH cHcTeMa piBHsiHb (1) € mapor KOMIIEKCHO CIIpsi-
»keHux piBHsAHb Ulpropinrepa, To6To U = V*, A\ = A; = ¢, oneparopu @ i I, ninifiHo
HesanexHi. Lle npuBoauTh M0 TOrO, 110 HeJsiHiHHI y3aranbHeHHs piBHsHHS Ilpwomin-
repa, siki MoBHiCTIO 36epirarTh HOro cuMeTpiio [2], NPUHIKIOBO BiAPI3HAIOTHCS Bif
HeJIiHIHHUX y3arajbHeHb cHcTeMH piBHAHb nudysii (1) mpu 6 = 0.

= 0. ¥ 3B’A3KYy 3 LIUM OfepkKYyeMO [Ba BHUIAAKH TPHUHLUIIOBO Pi3HUX

Jonosini HAH VYxpaiuu, 1994, Ne 3, P. 31-37.
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PosrsisiHeMo cucTeMy MIOHaHMOXKJUBIIINX KBa3iMiHIHHUX y3arajbHeHb CUCTEMH PiB-
ussap (CP) mudysii (1) Burnsny

MUy = ApUab + CapVap + Bi, (3.2)
A2V;f - DabUab + EabVab + 327 (3b)

ne Agp, Caby Dap, Eqp, B1, Bo — noBinbHi nilicHi HenepepBHO nudepeHuifioBaHi (yH-
Kuii Big (2n + 2) sminnux U, V, Uy,...,U,, Vi,...,V,. lnoeken ¢ = 1,...,n Ta
b=1,...,n 6ina ¢yukui#t U i V osHavaloTb AudepeHLil0OBaHHS 3a T, Ta Tp.

CP (3) ysara/ibHioe pakTHYHO BCi BifOMi HeJIiHIHHI CHCTEMH €BOJIIOLIHHUX PiBHSHb
NepUIoro i APYroro MopsaKiB, SKMMH ONUCYIOTbCS HaHpi3HOMaHITHilIi mpouecH y ¢isu-
i, xiMii, 6ioJoril (ZOCHTH 3ralaT MPOLECH TerIoMaconepeHocy, ginbTpauil ABopasHoT
pimuHu, Audy3ii Mpy XiMiYHMX peakiuisX, IMHAMIKH pyXy momyasuid, Touwo) [3, 4].

Y npomoHoBaHill po6GOTi omucaHi BCi CHCTeMH €BOJIOLIMHUX piBHAHBL (3), AKi iH-
BapiaHTHI BigHOCHO saHLIOkKa anre6p AG(1l,n) C AGi(1,n) C AGs(1,n), Ta mpo-
imocTpoBaHo oznepxkaHi Bucainy Ha mpukaanax CP peakuii-mudysii Ta cucrtem Tumy
[aminbTona—Ko6i.

2. B anrebpy cumerpiii cucremu piBHsAHb Audysii (1) BxomsAth omepatopu G,
a =1,...,n, 9ki € nudepeniiHUM BHpaxKeHHSIM CIpPaBeIJIUBOCTi NMPUHLHUIY BigHO-
cuocti Taniness pist vux. Takox Bimomo [1], uro onepatopu [ajises ticHo mo’sizani 3
(yHIaMeHTaNbHUM PO3B’S3KOM PIiBHSIHHS AUQY3il. ¥ LbOMY 3B’SI3KYy JIOTiYHHUM BUILJISA-
[ae MOLIYK y KJiaci cucTeM piBHsIHB (3) rajiseli-iHBapiaHTHUX HeJMiHIHHUX y3arajbHeHb
cucremu (1).

Teopema 1. Cucmema Herinilinux pieuans (3) insapianmua 8i0HOCHO aseebpu [aii-
sest 3 npedcmasaennam (2a), (2b) modi i mirvku moodi, KOAU 80HA MAE 8USA0

MU = AU + U[AA(InU) + C1A(In V) + By] +
+ Uiy, [A2(InU) ap + Co(In V) ),

AoVi = AV + V[DiA(InU) + E{A(In V) + By] +
+ Vo [D2(InU)p + Ex(In V)],

(4)

e w, = 387“‘; = (MUl /U~ MV, /Vw, w=U"- V=2, (InU)y = %, (InV)ap =

52 (1 . . U . . .
%, a Ay, By, Ck, Dy, E, — Oosirvni ¢ynkyii 8i0 abcorromuux insapianmis

AG(L,n) wi 0 =waw,, k=1,2.

JloBeneHHs1 TeopeMH, SIK i HACTYNHHUX TEOpeM, I'PYHTYETbCS Ha KJAACHUHIH cxemi
JIi, peanizauisi sikoi mJisi 3HAXOMMKEHHs rajijiefi-iHBapiaHTHUX CHCTeM HaBemeHa B [5].
OcCKi/NbKY BUKJIaIKU JOCHTb I'POMI3JIKi, TO TyT BOHH OMYILEH].

3a3HauuMo, 10 y BUNAaAKy A1 = 0, TOOTO meplle piBHAHHS CUCTeMH (3) esiNmTHYHE,
abcomoTHi iHBapianTu anre6pu [asises 3HA4HO CHpOLLyIOThCA, a came w = U, 6 =
U U,.

[1pu no6ynosi CP Burasny (3) sxi Bosonitors AG1(1,n)- Ta AG3(1,n)-inBapiant-
HICTIO, CTPYKTypa TaKHX CHUCTEM CYTTEBO 3aJIeXKHTb BiJl BU3HAYHHKA §.

Teopema 2. Herinitina CP (3) insapianmma 8ionocHo areebpu AG1(1,n) 3 6azosumu
onepamopamu (2a)-(2c) modi i mirvku modi KOAU 80HA MAE BUEALO
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1. Bunadok § # 0

AMU; = AU + U[A;1 (0)A(InU) + Az(0)A(In V) + w=2/0 By ()] +
+ Uw?/ 0 20,w3[C1(0)(InU), b+02()(1nx/)ab},
XaVi = AV + V[D1(§)A(InU) + Da(A)A(In V) 4+ w29 By(8)] +
(1 (

(5)
+ Vw20, [ By (0) (In U)ap + Ea(8) (In V) ).
2. Bunadok § =0
MUy = AU + U[A (w)A(InU) + Az (w)A(In V) + wewa B1(w)] +
HU @) a + Cof) V)] o

)
AU = AV + V[Dy(w)A(InU) + Da(w)A(In V) + woweBa(w)] +
F V9 B () (I U ) ap + Bo(w)(In V) ),

WaqWay
de Ay, Bi, Ci, Dy, Ej — 008iaoni dpynkyii, k = 1,2, 0 = wawaw? 2 — abcoaro-
mHuti dugpeperyitinuil insapianm nepuloco nopaoky aseebpu (0us. meopemy 1).
Y Bunanky BupomKeHHs nepiuoro piBusHHs CP (3) B enintuune (A; = 0) abcontoTHi

inapiantn B cuctemax (5), (6) cnpouwtyntbes i 6 = U,UU2/ 2 mp 6§ £ 0, w = U
npu 6 = 0.

Teopema 3. ¥ kaaci CP (3) aneebpy insapianmuocmi AGo(1,n) pieuans (3) 36epi-
earomo milvKu makxi, AKi maroms 8ueiso
1. Bunadok 6 # 0

MUy = GAU + UAO) M A(InU) — MA(n V)] + Uw™2/° By (6) +
(- dl)% F Uw 20,0, C(0) Pa(In U )y — At (I V)as],

R . 7
MVi = oAV + VD) M A(InU) — MA(In V)] 4+ Vw29 By(0) + ™
VaVa — A
+ (1= o) =% + Vw2000 E(0) Ae(InU) gy — A (In V) 03]
2. Bunadok 6 =0
)\1Ut = OAllAU + UA( )[ QA(IH U) — )\1A(1n V)} + UwawaBl(w) +
U,U, o
(- )=t wa :b C@) Mo T )ap — A (In V)],
[e5] al 8
AV = G AV + VD(W)[/\QA(ID U) - )\1A(1n V)] + VwawaBg(w) + ®
A Waw
+ (1= dg) =" + wazl E(@)A2(InU)ap — M (InV)ap],

de A, By, By, C, D, E — 0Qosiavui ¢ynxuyii, &, = —2ag/n, k = 1,2 (o, — Ous.
onepamop 1,), a1 = 1,2,...,n.

MoxxHa MOMITHTH, 1O y BUOAAKy ag - as # 0 CP (7) i (8) snokanpHOWO 3aMiHOW0O
U—U*, V — V 3BonaTbCcs 10 CHUCTEM TaKoi XK CTPYKTYpH, ane 3 &y = 1, ToO6TO
G = —n/2. Bunagok oy = ag = 0 — ocobuauBuil | HUlle Oyae PO3TISHYTHH.
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Onepxani knacu AGo(1,n)-inBapiantaux CP (7) i (8) mictsith, 30Kpema, Taki He-

qiniini ysaranbuenus CP (1) sk

MU, = AU + e UA(Inw) + eoUw? 02 wawy, (Inw) g,

AV = AV + esVA(lnw) + e4Vw2/5*2wawb(ln Wapy, 0#0
Ta

MU = AU + etUA(Inw) + eaUwawaw™,

AoV = AV + e3VA(Inw) + egVwaww??, 6 =0,
Ie e1,e2,€e3,€4,01,02 €ER, (Inw)ep = Ao(InT)gp — M1 (In V) gp.

Y BUNagKy BUPOMXKEHHsSI MepLIOro piBHsIHHs cucteMu (3) B endimtudne (A\; = 0)
AG>(1,n)-inBapiautHuMy € tineku CP BUrIAny

0= A,(0)AU + Ay(9) - “g” Uap, + U2/*1 B, (9) +

+UC(h) [A(ln vy~ Yl gy V)ab} 0 = U,UU> ™72,
“re 9)
. 1% X U,U
AoV = 62V + - (Dl(G)AU + Dy(6 Ualel )
+ VU By(0) + (1 — dg)v aVa | VE(6) |[A(InV) — Ualh (InV)as|
V Uaanl
Ko § # 0 ta
U, U,
0= A (U)AU + As(U) 5 -Uap + UaUu B(U) +
+CU) |[A(InV) — M(ln‘/)ab ,
Ua,Uq,
oU (10)
AV = G AV +V (Dl(U)AU + Dz(U)#Uab> +
b VULULB(U) + (1 — d) Y2 4 vEW) {A(ln V) — Y% vyl

armo 6 = 0. Y dopmynax (9), (10) Ax, Bk, Dy, E, C — noinbHi GyHKUil, o =
—2ay/n.

B poGori [6] mokasaHo,uio interpyBanHs aoBumipuux CP surasny (9), (10) 3Bo-
JIUTbCA 10 {HTeTrpyBaHHS JiHIHHOrO piBHAHHA AUQY3ii 3 HKepesoM.

3ayBamxenHs 1. Onepxxani Buiie teopemu 1-3 crpaBensusi i ans sBunagky CP (3)
3 KOMILJIEKCHUMH (PYHKLisSIMH, TOMy BOHU € HeTPHUBiaJbHUM y3arajbHEHHSIM BUCJiMiB
po6oTH [6] Ha GaraTOBUMipHHE BHMAIOK.

3ayBaxeHnHd 2. J[1g 3anucy Bcix no6yoBaHUX BHILe TaJinel-inBapianTHrx CP MoxkHa
CKOPHCTATHCS TOTOKHOCTSMHU

Uab Uan Vab VaVb
InU)gp = — — ) = - .
(I 8)er = 7~ = 75 v Ve
Takuil 3anuc, oyeBuaHO, Oyfe KOPUCHHUM INpU (pisUYHOMY iHTepIpeTyBaHHI OflepKaAHHUX
CP.

(ln V)ab
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3. 3BepHeMO yBary Ha Te, 110 JoKaJjabHa 3aMiHa U = M(U), V= N(V), ne M, N
— poBinbHI pudepenuiiosani (yHkuii, 3Boauth Oyab-sky CP 3 cumerpieio AG(1,n),
AG1(1,n) un AGo(1,n) n0 J0KanbHO-eKBIiBaJEHTHOT CHCTEMH 3 TaKOW XK CHMeETpi€lo,
ajle 3 {HIIUM MpeACTaBJeHHsAM onepaTopiB @y i I, a came:

-1
QA_)\M<dM> i+)\2N<ﬂ> 9
U ) dU av) ov

-1
I,=a1M (dM) aA + agN (ﬂ> i
dUu dU dv oV

3okpema, y Bunagky M =expU, N = exp V onepxyemo

) P o . P B
=A—=+A I, =o1— +« 11
@ =Mgm T gy ou | Cov (1)

B ubomy Bunanky kjaac CP, inBapianTHuX BigHOocHO anre6pu AGo(1l,n) 3 npencras-
Jgennsm (2), (11), y sunaaxky 6 = 0 Mae BUIAL

MU = a1 AU + A( DN AAU — MAV) + U, U, + Goloa B (@) +
wa b

+ C((Z)) ()\QUab )\1Vab),
walwal (12)
AoVi = s AV + D(@) (A AU — MAV) + Vo Vi + ©aoa B2 (@) +
L W -
+ E(0)— " (AoUap — M V),
walwal

ne w = AU — MV, &, = AU, — M V,.
Y Bunagky ay =as =0, A=B=C=D=FE =0 CP (12) 3Boautbcsi 10 CHUCTEM
BUI/IALY (HUXKYe 3HAK OMYIIEHO)
>\1Ut = UaUa + Bl(w)wawa,

13
XV =V, V, + Bg(w)wawa, AL Ag # 0. (13)

CP (13) npuponHbo Ha3BaTH ysarajbHeHHsIM He3adernseHoi CP [aminbrona-$ko6i (I'-

A1[]1‘, = UaUaa

(14)
AoV, =V, V,.

Ha Biaminy Bin cumerpii omHoro pisusinas I'-$ [7, 8] sokasnbHa cumerpis CP
(14) suuepmyerbes anrebporo AGo(1,n) (2), (11) mpu a3 = ag = 0 3 10AATKOBUMHU
orneparopamu

Py =0y, Dy =—-t0;+Udy+ Voy. (15)
Takum yunom, CP (13) BHuepnyioThCcs BCi HesiHIAHI y3arajbHeHHS] BHIVISLY

MU =UU, + B(U,V,Uy,...,Up, V1,..., Vp),

(16)
MoVi =VoVa + Bo(U, V,Ur, ... . Un, Vi, Vi)

cucremu ['-4, ki 36epiratotb 11 cumerpito AGa(1,n).
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Y Bunagky B; = 0 cumetpiss CP (13) posmmproeTbes 3a JOMOMOTO0 OMepaTopis
Py =By 0y, v=X/(1+AD),
. A -
JL:—wHJmU+C§U—@”/Bw%yw
1
AmHajsoriuni mopmaTkoBi omepatopu 3'sIBJsIOTbCS B anredpi cumerpiit CP (13) i npu

NesKUX KOHKpeTHUX (yHKuigx BB # 0. 3okpema, mns By = —1/A? onepxyemo
AG2(1,n)-iHBapiaHTHY CHCTEMY

A1
U =-—=V,V, U Va,
t )\2 +)\
V= - )\QUUJr/\UV

3 IOoHaTKOBUMH omepatopaMu (19).

BusiBaisieTbesi, cepen HediHifiHUX y3araibHeHb cuctemu - (13) icuye CP 3 yui-
KaJbHUMH CHMETPiHHMMH BJaCTHBOCTAMH, a caMe, Npu By = By = —1/A\? (nuxue
A1=1, A=)

Teopema 4. Makcumarorna (8 posyminni JIi) areebpa insapianmnocmi CP

Ut = UaUaa
(17)
=-\U,U, +2U,V,
nopodxcyemocs 6a308UML ONEPAMOPAMU
Pt7 Paa Jab7 Q)\ :)\8U _8V7 X:W(AU_V)8V7
1
Ga:tpa_§$aQA7 D =2tP +z, Py,
H—tZ’Pth:cP—E GL—UP, — ta,P
- t ala 4 Ay a — a 2 alts (18)

|z
4
1
K, =x,tP — (2|x|2 + 2tU> P, + zoxp Py + 2,UQ,

Dy =2U8y + x4 P, 1L =U?0y +UxoPy — ——P;,

de W — OdosirvHa dugpepenyitiosana Pyrkyis.

3a3HauuMo, 110 HasiBHicTh B anreOpi inBapianTHocti CP (17) onmepatopa X 3 noBisb-
Howo yHKLiel0 W e NpUpOaHbOIO, OCKIJNbKH Ipyre PiBHSHHS CHCTEMH JliHilHe BifHOCHO
¢yuxuil V. 3nauHo uikasimum € Te, mo CP (17) MoxxHa BBa)KaTH y3arajbHeHHSM KJa-
cuyHoro piBHsiHHS -4 Ha BUNanok ABOX WyKaHUX QyHKUiH, amke omepaTopu (18) mpu
W = 1 nopomxKyTb Taky Xk anrebpy, mo H piBHsHHSA [-4. BBakaemo,uo e myxe
BaX/UBUH (aKT, OCKINbKH TpUBiajbHe y3arajbHeHHs 3ragaHoro piBHsiHus no CP (14)
He 36epirae cumertpito piBHsAHHS [-4.

4. PosrisiHeMo HeJiHiHHY cHCTeMY eBOJIIOUiHHUX PiBHAHb BUIVISALY

MU = AU + f(U, V),

19
AVi = AV + g(U, V), (19)
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ne f, g — noinpHi nudepenuiiioBani ¢yHkuii. Cucremu piBHAHBb peaknii andysii
Burasiny (21) B ocraHiil yac iHTEHCHBHO HOC/IIXKYIOTbCs (auB., Hanp. [3, 9]). dk Bu-
miuBae 3 teopeM 1-3, kiaac CP (19) MicTUTDb cHcTeMH 3 LIKPOKOI CUMETpien. 30Kpema,
iHBapiaHTHUMHU BigHOCHO anrebpu [anines 6ynyTb Bci CP piBHSHB BUrAALy

MU, = AU + Uf(w),

20
ANoVi=AV +Vg(w), w=Ur. V"7, (20)

Y Bunanky f = fw /%, g = Bow /%, B € R mMaTMMeMO iHBapiaHTHICTb BifHOCHO

anre6pu AG1(1,n). Hapewri npu § = (A1 — A2), 10610 a1 = o = —n/2, ofepxyemo
CP

MU = AU + U 27y =My

AVi = AV + BoUr V=M
ne v =4/n/(Aa — A1), M # Ao, Bk € R, sika 36epirae AG2(1,n) cumerpito ninilHof
CP (1).
3ayBaxenusa 3. [udysifina CP (18) npu \; = —\y = A 3aminow

U=Y+2 V=Y-2 Y=Ytz), Z=Ztz) @1

3BoauThes o CP

)4 P
A\ = AZ+ f(V, 2),

ot

0z

ot
inBapianTHiCTh K0T BimHOCHO saHmKKa anrebp AG(1,n) C AG1(1,n) C AGs(1,n)
3 ONMHHYHUM OIepaTopoM (@ = A (Ya% + Za%) OMUCYEThCS LIISIXOM 3aCTOCYBaHHS
saminu (21) no CP surnsiny (18) 3 BigmosigHO0 cHMeTpi€ro.

Ha 3akiHueHHs1 HaBefeMo Iie ONHY LiKaBy cucTeMy piBHsHb BUTsny (19), a came

AU, = AU + B U2V,

22
AVi=AV + 3U, B # P2, Br €R. (22)

MaxkcumanbHa anrebpa inBapiantHocti CP (22) € ysaranpHeHolo anre6poto [asgines 3
6a30BUMH ormepatopamu (2a), (2b) Ta

n B2
D =2tP, + 2o P, — 200y — (2 :
t+ T ||2U(9U <2+B1_ﬁ2)Q)\
A
H=tD—P, - 2 0, - 2 _y,..
A g g

Mix inmumM, cepen CP Buraspy (18) y Bumagky Ay = Ao = A He icuye AGa(1,n)-
iHBapiaHTHUX 3i cTaHmapTHUM mpencraBaeHHsM (2). IlpoektuBHu# omepatop (23) mo-
POIIKY€ TPYINy CKiHUEHHHX IepeTBOPEHb

t/:t/(l_pt)a x;:xa/(l_pt)v pGR,

U\ 244 Aplz|? U 5 P
(v ) =a-mrerden (25 ) a0 (1 ) 5= 525,

(23)
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1

Ap
ne marpuus A(t) = (1=p)(#2=01) | e piaroHanbha, a B MepeTBOPEHHSAX TeHEPO-

0 (1—pt)~2

BaHMX onepaTopom (2d) aHasoriuda matpuils aiaroHajabHa [5].
Hesiki knacu Tounux pose’sskis CP (22) omepkano B po6ori [10].
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CumetpiliHa pegyKIlis i JesiKi TOUHI PO3B’'A3KU
piBHAHHA MoHxka—Amnepa

B.I. ®YII[HY, B.M. ®EJJOPYYK, O.C. JIEHEOB

For the Monge-Amperé equation the ansatzes which reduce this equation to differential
equation with a less number of the independent variables have been constructed. Some
exact solutions of the equation under investigation have been found.

Y poGorax [l, 2] BHBUeHa cHMeTpisi i Ha OCHOBI creliaJbHUX aH3aliB M06yIOBaHi
KJIaCH TOUHMX PO3B’3KiB 6araToBUMipHOro piBHsHHS MoHka—-Amrepa.
Jlana po6ora npucBsiueHa BUBYEHHIO PiBHSIHHS BUIJISLY

det(uy,) =0, (1)

e u = u(z), x = (2o, 21,22,23) € Ry, vy = 8%2 5 MV = 0,1,2,3. Pesyabratu
po6it [1, 2] maiooTb 3MOry, 30Kpema, 3pOOMTH BHCHOBOK MO Te, II0 rpymna iHBapiaH-
tHocTi piBHsHHs (1) MicTHUTb sk migrpymy ysaraibHeny rpyny [lyankape P(1,4) —
rpyIy MOBOPOTIB Ta 3CYBiB M'iTUBUMipHOTO mpocTtopy MiHkoBcbKoro. lasi mocsimxkeH-
Hsl piBHsiHHs (1) BUKOpHCTaHO miarpynoBy cTpykTypy [3-7] rpynu P(1,4). Ha ocHosi
HecnpsikeHUX niarpyn rpymu P(1,4) noGynoBaHi aH3zauw, siki peaykywoTtb piBHsHHS (1)
Ja audepeHLialbHUX PiBHAHDb i3 MEHILIOK KiJBKICTIO He3aJeXXHUX 3MiHHHUX, IpOBeJeHa
BinnoBinHa cumetpiiiHa penykiisi. Ha ocHoBi po3B’si3kiB peiykoBaHUX piBHSIHb MOGY-
JIOBaHi AesiKi KJacH TOUHHX PO3B’si3KiB piBHAHHSA MoHxxa—Ammnepa.

Hukue Bunucani aHsauu, siki pefykytoTh piBHsHHsS (1) mo 3BHUaliHUX OudepeHLi-
anbHUX piBHsHb (3/1P), onepxkani 3[IP ta po3s’s3ku piBHsAHHA MoHxxa—AmMmnepa

1.1, w?=¢*(w)—23—23—23, w=umz ¢ =0,
u? = (c120 + ¢2)? — 22 — 23 — 3.

12, w? = —*w) +aj, w= (e} +ad+a}) =0,
u? = af — (cr(a? + 23 + 23)V? + )2

13 =P ra-ai-ad wom =0
u’ = af —af — a3 + (azs + )’

L4 w?=¢* (W) +af —a3, w=(af+23)/% ¢ =0,
u? = 23 — 23 + (c1 (23 + 23)V2 + ).

15, w=pl), w=(ad+adtad-ad)2, @ =0,
u? = cy(af + a3 +af —af)'? + e

JHonosini HAH VYkpainu, 1994, Ne 1, P. 47-54.
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¢
1.6. u? = p*(w) +af — a7 — a3, w:axg—i—ln(xo—i—u),

"0 — "o —¢? =0, u=kiexp (2953 + kz) +

9 1/2
+ [(kl exp (Exg + k2> + x0> — x% — mg] , k1,ka,c,a = const,
o

c,a0 > 0.

1.7. w?=—-p*(w)+at—23—2% w=a3+aln(zg+u), a>0,

1
~" == =0, u=kyexp (4 ko) £

9 1/2
+ [(kl exp (% + kg) — xo) — xf — x%} , ki,ko = const.

Anzauu (1.1)-(1.7) MoxxHa 3amucaTv y TakKOMY BHIISI:

h(u) = f(z)e(w) + g(x), (2)

ne h(u), f(z), g(x) — 3anauni ¢yskuii; p(w) — HeBimoma ¢yHKUis; w = w(z,u) —
onHOBUMIpHI iHBapianTh miarpyn rpynu P(1,4).

1
21 2mow=—pw)+ri+23-123, w=z+tu, -w —wp+e=0,

2
u=—x 1—&—l:I:L[(2$0—&—01)2—l—402($%—|—91:§—i—x%)]l/z—i .
ca 2co 2¢o
ax} 2 2 2
2.2 2——2wx0=g0(w)—x1—x2—x3+axo, w=x0+u, «o>0,
w
(2w + a)?¢" — 42w + a)yp’ —8p =0,
2(xo +u) + x3
2 2 _ 23 =
]+ x5 BT (xo+ u)zo 5
a
= (330 +u+t 5) (c1 + ca(wo + u)).
ax} 2 2 2
23 — +2wxg=—pWw)+z]+a5+a;+ary, w=x0+u o>0,
w
(2w — a)?¢" — 42w — a)y’ + 8p = 0,
2(x0 +u) — x3
2 2 _ 23 =
7+ x5 BT (xo+ u)zo 5

a
= (xo +u— 5) (c1 + ca(mo + u)).
24 2(w? —w)(w—1z0) +w(@? + 23 +22%) =20(w) + 22 + 23, w=u1z0+u,
w(w —1)%¢" — 2w(2w? — 3w + 1)¢’ + 2(3w? — 3w + 1)p = 0,

%—(1—(%—#@) [U(x0+u)+%+%] _

= (xg+u)(xo +u—1)(c1(zo + u) + c2).
2.5 2(w? +w)(w—=z0) +w(z] + 23 +23) =20(w) — (23 +23), w=20+u,
w(w +1)%2¢" — 2w(2w? + 3w + 1)@’ + 2(3w? + 3w + 1)p = 0,
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¥ 23
—(zo+u+1) u(xo—i—u)—i—?—i—?

(wo + u)a3
2
= (zg + u)(xo +u+ 1)(c1(xo + u) + c2).

Anzanu (2.1)-(2.5) 3anuiieMo TakMM YHHOM:

hw, z) = f(z)e(w) +g(2), 3)

e h(w,z), f(z), g(x) — 3amani ¢pyHKUil;, p(w) — HeBizoma GYyHKUIA;, w = w(x,u)
— opmHOBUMIpHi iHBapiantTu miarpyn rpynu P(1,4). Auszauu (2.1)-(2.5) pemykyioTb
piBHsiHHS Motxa-Awmnepa no ninifinux 31P.

Bunuumemo aHsauu, siki peaykywoTb piBHsAHHS (1) 10 IBOBUMIpHHUX IH (bepeHIiajb-
HUX PiBHSIHb 3 YAaCTHHHUMMU NOXiAHUMH, | BilNOBiAHI IM peAyKOBaHi piBHAHHS.

3.1

3.2

3.3

2_ .2 2 2 _ _ _
u? = *(wy,ws) + 2§ — x5, w1 =21, ws=1x, dete=0,

2
_ P11 pr2 _ 0% o
det = s ] = A A, 1, :172
4 P21 P22 i Ow;0w; J
U2 - @2(W1,WQ) - :C§7 w1 = T, Wy = (’Il +x )1/2
0
padetp =0, ¢; = 880, 1=1,2.
Wi
u? = —p?(wi,wa) + 27, wi = (af +a3)'/?,
Wy = T3 | arcsin L a>0, pwprdetp—pip) =0.

« Va2 + 22

Anzauu (3.1)—(3.3) moxHa sanucatd y Burasai (2), re w = w(z) = (w1 (z),wa(z)) —
IBOBUMIpHi iHBapianTu migrpyn rpymu P(1,4).

4.1

4.2

4.3

4.4

4.5

2z0w; = —p(wi,we) + 22 + 22, W =20 +u, wy =3,

wi det p + 2w1 a2 + 2(¢ — w11 ) P22 — @3 = 0.

2rowy = —@(wi,w) + 23, w1 =xo+u, wy= (3 +x3)"?
p2lwi det p + 2w1p2012 + 2(p — wWiP1) P2z — 3] = 0.

a T x3

— arch— — arcsin - = plwy,we) — =, wy = (951 + x%)1/2,
w w w1 w

a? 1
w2 = (x(z) - u2)1/2, prpzdet o + 2 39019011 39029022 -
wy
2

7;12573@’:07 a,peR, a,u>0.

L(2(&12 — pa3))Y? (s + 2wsy) — arcsin 2 _ p(wi,ws) — x0

32 o1 ’ ’
(zo +u)?

wi = (2} +23)'%, wy = pas + 5 )

prwloips - det o — wipipin — ptpapss +1=10, > 0.
1
5(2@ +23)(2(w2 — 23))Y? = p(wi,w2) — x0, w1 = (27 +23)V/2,

To +u 2
wo = T3 + %, w1(p2det o — p11) = 0.
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Anzanu (4.1)-(4.5) moxHa 3amucatd y Burasai (3), ne w = w(z,u) = (wi(x,u),
wo(x,u)) — inBapianTtu miarpyn rpynu P(1,4).

1
sin 22 = o(wi,ws) + = In(zo +u), w = (2?4 22)'/2,
w1 d
wy = (2 4+u? —22)Y?, d>0 ! 1<p1—i det ¢ —
3 o ’ dwy \ d w1
1 1 1
— ——a (312 — dwaprph + —p1 — —— | 11 —
dwo dws wiws

2 4 1
d 3
Poor ( Pr+ 2901+w1>9022+d P2 <<P1+ %>9012+

+ 5 Ll Loy 2 - =0
72 dwjws dwlwn 2 :1390 w%gpl dwfwg(pl 2wl )|

[HIi aH3auu peayKyooTh piBHsAHHS (1) 10 TPUBUMIipHUX HUdepeHIliaJbHHUX PiBHSHb
3 YACTHHHUMH TOXiIHUMH BUTJIALY

Adet ® = BlMll + BQMQQ + BgM33 + QB4M12 + QB5M13 + 2B6M23 + F)7

ne

P11 P12 P13

detp = |21 w22 @23 |, Mn = :222 izz ) = gi Z;i
©31 P32 ©33
82§0 Y11 P12 P21 P23

i ==, 1,7=1,2,3, M;s3= , =

i Ow;Ow, J BZ a1 @ P31 P33

M3 = Y21 P22 . My = P11 P12 ’
Y31 P32 Y31 P32

Burnsna koediuientis A, By, ..., Bg, P 3anexuTb BiJ po3risayBaHoro ansamy. Huxue
BUIUIIEMO aH3aUH i BiAMOBiAHI iM KoedillieHTH peLyKOBaHOrO PiBHSHHS.

51 u=¢(w,wa,ws), wi=xp, ws= (x1+x)1/2 w3 = T3,

)
A=y, B;i=0, i=1,....6, P=0, @ =2 i=1,23.
Ow;

3
52 u? = —¢*(wi,wo,ws) + 23, w1 =71, wo=m2, w3= a3,
A=1, B;=0, i=1,...,6, P=0.

Ansanum 5.1 1 5.2 MoxkHa 3anucary y BUrasai (2), ne w = w(z) = (wi(x),wa(z), ws(x))
— TpUBUMIpHI iHBapianTH nigrpyn rpymu P(1,4).

2
6.1 2zows = —p(wr,wa,ws) + x5, w1 =T, wWy==T9, ws=To+uU,

A=w3, Bi=By=0, Bsy=2wsps—¢), Byi=0; Bs=uwsp1,
Bg = —w3p2, P =0.

1 . X9 1 . X3
6.2 = arcsin — + = arcsin — = (w1, wy,ws), w = (2 +22)'/2,
(& w1 w1
2 2y1/2 2 2/ 2
wo = (x5 + u®) / , ws=uxy, A=wiw;(e‘wipr + dwaps),
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B1 = —w3(4e2w3wapdpa + 8wiwaprpa — 1),
By = —wi(4elwiwip1p3 + 2e2wiwaprp2 — 1), By = —de’wiwspipai3,

6.3

6.4

By = wiws(Pwipiwips + 4e2wiwiples + 1),

Bs = —4wiwi(e*wiwd + 1)pap3, Bs = e2wiwaprps(dwips + 1),

P = 2wip103p11 + 4wl papipan + (e2wie? + 2wip1 + dwi 3+
+2wop2) 033 — 2wy (€*wiQt + 1) @313 —
— 2wy (w33 + 1)p3pas — @3, e #0.

1
arcsin -2 — = arch 22 = o(wr,wo,ws), wy = (22 + )
w1 € w2

2,

wy = (25 —u”)"/?, ws=1m3, A=wiwi(wipr — e wra),

B = Wi (2wdwapds + 2wiwae? o1 + 1),

By = wi(ewiwi 193 — 2wiwapips + 1),

Bs = € wiwdpipap},  Ba=wiwa(wig] — 2wipl — Pwiwipivs + 1),
Bs = e2wiwi (wie? 4+ 1)paps, Bs = wiwz(e®w3w3 + 1)p1¢s,

P = wip193011 — €?wipapdan + (wied + 2wipr — 2wipd +

+ 2wapa) 33 — 2w1 (Wit + 1) @313 —

— 2wy (€®wiph + 1) s — 93, €>0.

arcsinﬂ—i—&:go(wl,wz,w?,), w1 = (95 +x )1/2
w1 EW2
we =T0+u, wsz=1x3—2r0(x0+u), €=,
Qw2 4w 2
A=14 <Qp1+<p3 (“)2)7 B, =—4 (2w2ap1g03+ 2 cplgog
1

)

2 2ws 4w3 1
By = —4 <2w2<p1g02<p3 + —<,01<,02 - —3901803 w—1</7§ - 2> )

le =

2w3 1
By = —8wip1p3, By=4 <2w2801<P2<P3 + w 2 09403 + <P1 + » ) )

=N

1 1
Bs = —8w§ <<p? + —2> cp%, Bg = 83 (—503 + —p1 - w§<,01902803> )
wy w1 w2

2 1
P = 8303, <2w3<p1<p§ + 2wap1 P23 + 07@1<p3 + w—1<p3> o1+

8w 2w 3 w3
+ 3 s03<p22 +4 B <p3 2903 +
1

PR R E—-
G A L

8ws 1
+ 2 @1@3 +4w3<P1<P3> 033 — 16ws < + 2 ) V312 — 16 ( —5Pap3+
1

2(4}3 2
+ 2 <P3+ + <P +—s01<p3 P3p13 —
1

2
— 16w; ( L3P T @?) P3p23 —

2w w3 5 2 1 )
-8 7 w23 + 90 - S0103 — Phps + —— | 03
1 wi 1@2
C

6.5 arch 2 = plw,ws, ws) — St wi= (a2 + 22)1/2,

w3
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6.6

6.7

1

x3 . X2 2 2\1/2
wg = — +arcsin ————, ws=(z5—u")’", ¢>0, a€R, a>0,
e’ Vi + a3
2
c 3 2c 9
A= —p1— —p3, Bi=¢ip3+ —5p1p203 + —5—p3,
w3 w1 w1 wiws

2 c2
By = p1p53¢3 + ¢, By =193 — 50103 + —,
w3 wiws
2
I ) 2 2
By = <w—%<p2 s 05 — pi2 + 6901) ®s3,
1 c c
Br— —— 2 _ 24 202 4 © 202
5 w§ ¥1 w%u%‘ﬂ P1¥3 w%@ P3
_ 2 1 2 C
B = | cp3 + w—gsﬂz — P23 — w_§ ©1,

1

2

1 1
_ 2 2 3 2 3
P = ;(wz —c) 11 — (w—;fsazwg T BLp s T g T

3
2c

2
wiw

1 3

1 2
3901@) P22 — —5 (2 — €)°P3p333 — —5 (2 — €) X
3 w W3

1

1 2 2 1 2\ 2 1 2 2
X (w_% - @3) P12 — w—i),(@ —c) (w—% - 903) Pap23 — m(@ — )73
1 2
—(z W — 1/2 _ , _
% <QW3 +$3> (2(ws — azxs)) o(wy,ws,ws)) — To,
wp = (22 + 22)?,  wy = arcsin 2 _ Tt ¢

x? + x5 a
To + U 2
w3 = axrsz + %, a>0, A= w%(wlapl + a2<p3),
2 2 3 w% 2
By =3, By =—-a’wipips, Bz= 2 By = —a"wipaps,
3

w w
Bs = Lyy, Bg=—o,

o o

3

2 1

w 2&)1
P= a—gnpwn + 00303038 + —5 P12 — —P3as — — 05

.. T3
arcsin — = p(w,ws,ws) — P w1 = (ﬁ + x%)

w3

To .
wy = — — arcsin
a

Lo 1/2
)

_ T2 1/2
2 27 9
VX1 + a3

wsy = (22 +u?) aeR, a>0,

1 1 1 1 D
A=—p3+—p1, Bi=—5—¢5+ 5010503 — 5010203 — P33,
w1 w3 Wwiws w1 w1
1 2
By = —(p2 — 1)%01903, By =—= — 50103 — 01905,
LL)1W3 Cl)g
By = sz - iw + 302 — 3 ) o3
w% 2 w% 1 1 ’
B _ 2 2 2 1 2 1
5 = —P1¥3 — W—§<P1 - w—%wzws - Fw%%@%
1 1,
Bg = w—§<P2 - w—gsﬁz% — @3 | ¥1,
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1 1 2 1
P=—(pa— 1’0111 + (w%@% + Y303+ — 0 +
w3 w} wiw? wi
2 1 2
+ Ftpl@z P22 + —3(@2 —1)203p3p33 — —(p2 —1) x
1 w3
x 12— 2 e3(er — 1) (6B + — ) 925 — ——s (2 — 1)263
T ) A :
1
6.8 - arcsm —= = p(wy,ws,ws) — @, wy = (23 + x%)l/Q,
c a
L 2 212
w ———arcsmi, w3 = (r3t+u s
2= T (23 )
1 1
0<e<l, aeR, a>0, A_—<p3+ <p1,
! 1 5
By = Podis ——5—5 + w_%@l@z@?) - w—%@wzs@z — ¢ips,
1 2

s — 55 P1P3 — P18,

By = —(ps—1 By=——
2 (802 ) 901@37 3 CQ(,Ulw?) 020.)3

1 1
By — -2 = 2 2
4 (w% P9 w% o + P1¥2 ®1 ] 3,
1 1 1
B5:_22__2__ 2 - ,
$1¥3 02w§ ¥1 w% P2$3 CQW%U}% P2

1 1 1
Bs=|—py— —— + 2 _ 52 , P=—_ _1)2 +
6 <02w§ P2 w2 P2¥P3 — P3| L1 23 (¢2 ) 1011

1 2 1 2

+ 3902@3"_ 2%02903"_ 3301 2 3901902 P22 +
ey

o? P2 @2@3@33 2 g P12

2, 1 1 )
S ~1 —1)%2.

o? ©3 (2 ) (Sﬁa w2 )%23 3w§, (902 )%¢3

Anzanu (6.1)-(6.8) moxna sanucatu y Burasani (3), ne w = w(z,u) = (wi(z,u),

wa(z,u),ws(x,u) — iHBapianTu nigrpyn rpynu P(1,4).
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Symmetry reduction and exact solutions
of the Navier—Stokes equations

W.I. FUSHCHYCH, R.O. POPOVYCH

Ansatzes for the Navier—Stokes field are described. These ansatzes reduce the Navier—
Stokes equations to system of differential equations in three, two, and one independent
variables. The large sets of exact solutions of the Navier—Stokes equations are
constructed.

1 Introduction

The Navier—Stokes equations (NSEs)

i+ (@- V)i — A+ Vp =0, LD

divi =0 '
which describe the motion of an incompressible viscous fluid are the basic equations
of modern hydrodynamics. In (1.1) and below @ = {u®(¢,#)} denotes the velocity
field of a fluid, p = p(t,Z) denotes the pressure, & = {x,}, O = 9/0t, Oy = 0/0xq,
V ={8,}, A = V-V is the Laplacian, the kinematic coefficient of viscosity and fluid
density are set equal to unity. Repead indices denote summation whereby we consider
the indices a, b to take on values in {1,2,3} and the indices i, j to take on values in
{1,2}.

The problem of finding exact solutions of non-linear equations (1.1) is an important
but rather complicated one. There are some ways to solve it. Considerable progress in
this field can be achieved by means of making use of a symmetry approach. Equations
(1.1) have non-trivial symmetry properties. It was known long ago [37, 2] that they
are invariant under the eleven-parametric extended Galilei group. Let us denote it by
G1(1,3). This group includes the Galilei group and scale transformations. The Lie
algebra AG1(1,3) of G1(1,3) is generated by the operators

POa J(va Da P(La Ga7
where
Py=0;, D=2t0;+ 1,0, — u"Oye — 2p0p,

Jap = aOp — 2p00 + u®0ys — uPOya, a # D,
Ga:taa+aua, Pa:aa.

Relatively recently it was found by means of the Lie method [8, 5, 26] that the
maximal Lie invariance algebra (MIA) of the NSEs (1.1) is the infinite-dimensional
algebra A(NS) with the basis elements

at, D7 Jab7 R(m)a Z(X)7 (12)

J. Nonlinear Math. Phys., 1994, 1, Ne 1, P. 75-113; Ne 2, P. 156-188.
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where
R(im) = R(mi(t)) = m®(t)0a + m{ (t)0ue — mi; (t)zady, (1.3)
Z(x) = Z(x(t)) = x(t)9p, (1.4)
m?® = m®(t) and x = x(¢) are arbitrary smooth functions of ¢ (degree of their

smoothness is discussed in Note A.1).

The algebra AG;(1,3) is a subalgebra of A(N.S). Indeed, setting m® = d,5, where
b is fixed, we obtain R(m) = 0y, and if m® = 04t then R(m) = Gp. Here dq4p is the
Kronecker symbol (6,5 =1 if a =b, d4 = 0 if a # b).

Operators (1.2) generate the following invariance transformations of system (1.1):

Oy a(t, @) = d(t +e,@), pt, @) =p(t+e, i)
(t

translations with respect to t),

Juw:  a(t, @) = Bat,BTE), pt,T)=pt,BTT)
(s

space rotations),

D: a(t, @) = efi(e®t, ec), p(t,T) = e*p(e*t, e )

(scale transformations), (1.5)

R(m) : a(t, @) = w(t, & — i) + me(t),
(these transformations include the space translations

and the Galilei transformations),

Z(x):  alt,@) =i, @), pt,7) =pt )+ x().

Here e € R, B = {Bu} € O(3), i.e. BBT = {64}, BT is the transposed matrix.
Besides continuous transformations (1.5) the NSEs admit discrete transformations
of the form

t=t, -i‘a:xana?éba Tp = —@p,

b

1.6
ﬁ:pv ﬂa:ua,a#bj ﬂbz*“a ( )

where b is fixed. Invariance under transformations (1.5) and (1.6) means that (ﬁ,ﬁ) is
a solution of (1.1) if (@,p) is a solution of (1.1).

A complete review of exact solutions found for the NSEs before 1963 is contained
n [1]. We should like also to mark more modern reviews [16, 7, 36] despite their
subjects slightly differ from subjects of our investigations. To find exact solutions
of (L.1), symmetry approach in explicit form was used in [2, 31, 32, 6, 20, 21, 4,
17, 15, 12, 10, 11, 30]. This article is a continuation and a extention of our works
[15, 12, 10, 11, 30]. In it we make symmetry reduction of the NSEs to systems
of PDEs in three and two independent variables and to systems of ODEs, using
subalgebraic structure of A(N.S). We investigate symmetry properties of the reduced
systems of PDEs and construct exact solutions of the reduced systems of ODEs when
it is possible. As a result, large classes of exact solutions of the NSEs are obtained.
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The reduction problem for the NSEs is to describe ansatzes of the form [9]:

ut = fOL D" (w) +g°(4,F),  p= [t Da(w) + ¢°(t, ) (1.7)

that reduce system (1.1) in four independent variables to systems of differential equati-
ons in the functions v* and ¢ depending on the variables w = {w,} (n =1, N), where
N takes on a fixed value from the set {1,2,3}. In formulas (1.7) f*, g%, f°, ¢°, and
wy, are smooth functions to be described. In such a general formulation the reducti-
on problem is too complex to solve. But using Lie symmetry, some ansatzes (1.7)
reducing the NSEs can be obtained. According to the Lie method, first a complete
set of A(NS)-inequivalent subalgebras of dimension M =4 — N is to be constructed.
For N =3, N =2, and N = 1 such sets are given in Subsections A.2, A.3, and
A 4, correspondingly. Knowing subalgebraic structure of A(N.S), one can find explicit
forms for the functions f%, ¢¢, f°, ¢°, and w, and obtain reduced systems in the
functions v* and ¢. This is made in Section 2 (N = 3), Section 3 (N = 2) and Secti-
on 4 (N = 1). Moreover, in Subsection 2.3 symmetry properties of all reduced systems
of PDEs in three independent variables are investigated, and in Subsection 4.3 exact
solutions of the reduced systems of ODEs are constructed. Symmetry properties and
exact solutions of some reduced systems of PDEs in two independent variables are
discussed in Sections 5 and 6. In Section 7 we make symmetry reduction of a some
reduced system of PDEs in three independent variables.

In conclusion of the section, for convenience, we give some abbreviations, notati-
ons, and default rules used in this article.

Abbreviations:
the NSEs: the Navier-Stokes equations

the MIA: the maximal Lie invariance algebra (of either a some equation or a some
system of equations)

a ODE: a ordinary differential equation

a PDE: a partial differential equation

Notations:

C*((to,t1),R): the set of infinite-differentiable functions from (¢o,¢1) into R, where
—00 <ty <t <+

C>((to,t1),R?): the set of infinite-differentiable vector-functions from (#o,t;) into
R3, where —oco <ty < t1 < 400

875 za/atv aa = a/aa:a7 aua :8/8u‘1y cee

Default rules:

Repead indices denote summation whereby we consider the indices a, b to take on
values in {1,2,3} and the indices 4, j to take on values in {1,2}.

All theorems on the MIAs of PDEs are proved by means of the standard Lie
algorithm.

Subscripts of functions denote differentiation.
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2 Reduction of the Navier—Stokes equations
to systems of PDEs in three independent variables

2.1 Ansatzes of codimension one

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs in three
independent variables. The ansatzes are constructed with the subalgebraic analysis of
A(NS) (see Subsection A.2) by means of the method discribed in Section B.

2

1. ul= \t|_1/2(v1 cosT —vsinT) + %xlt_l — st !,

u? = [t|7Y2 (v sinT 4+ v2 cos T) + Lot 4 semit T,

2.1
u? = [t|7V20% 4 Tagt T
p=t|"tq+ %%%727"2 + ét’zxaxa,
where
y1 = [t| V2 (z1 cosT + zosinT), yo = [t| V2 (—zysinT + 25 cosT),
ys = |t|Y%x3, x>0, T=xInlt].
Here and below  v® = v (y1,42,43), 4 = a(y1,y2,y3), 7 = (2] + 23)"/2.
2. u' =v'cosxt — v?sinxt — xxo,
u? = vl sin st + v? cos xt + 2z,
& — o, (2.2)
p=q+35°1%,
where
Y1 = X1 cos st + T sin xt, Yo = —xy sin st + xo cos xt,
ys = w3, x€{0;1}.
3. ul =xr~ ol —zor~ W2 4 2072,
u? = xor 1ol + xyr~t? 4+ zor—2
(2.3)

u? = v3 + n(t)r~tw? + n(t) arctan zo /2,
p=q— gna(t)(n(t)~'25 — 5772 + x(t) arctan zs /21,
where
yi=t, y2=r, yz=uax3—n(t)arctanzz/z1, n,x € C7((to,t1),R).

Note 2.1 The expression for the pressure p from ansatz (2.3) is indeterminate in the
points t € (to,t1) where n(t) = 0. If there are such points ¢, we will consider ansatz
(2.3) on the intervals (t7,t}) that are contained in the interval (¢o,¢1) and that satisfy
one of the conditions:

a) n(t) #0 Vite (g i)
b) nt)=0 Vte (t§,t7).

In the last case we consider 7 /n := 0.
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4 T = o'+ (- )" 4 (7 )L - B)e —

p=q— 3(m-m)" (- 7)y;)? = (- m) " (T - F) (7 - ) + (2.4)

where
y =i &, ys=t, ma €C™((to,t1),R?)
item=q i’ =i -at =0, |A'=1. (2.5)

Note 2.2 There exist vector-functions 7* which satisfy conditions (2.5). They can be
constructed in the following way: let us fix the vector-functions k* = k*(¢) such that
Eiom=k-k2=0, |k =1, and set

il = k! osw(t) smw() (2.6)
72 = R sinap(t) + F2 cos (). |

Then 7 - it ktl-k2—¢t=01f¢=f(/ztl'lp)dtv

2.2 Reduced systems
1-2. Substituting ansatzes (2.1) and (2.2) into the NSEs (1.1), we obtain reduced
systems of PDEs with the same general form
,Ua,vi - ,U;a +q1 + 71”2 = 07
v — w2, 4+ g — v =0,
v“va —v3, +q3=0,
= 72.
Hereafter subscripts 1, 2, and 3 of functions denote differentiation with respect to ¥,
y2, and ys, accordingly. The constants v; take the values
. vy =25, ’72:—% it t>0, v =2 w:% it t<o.

2. v =23 =0
For ansatzes (2.3) and (2.4) the reduced equations have the form

3. vj +vlvy+ vl — yilv2v2 - (7)22 + (1+n?y; )U:%s) — 2ny5 %03 + g2 =0,
v} +vlvi + 03 v3+y v ”2*(”22 (1+77 Yo )”33)+
+ 20y, 2vg + 295 202 — nyy q3+xy2 t=o,
3 4 uled + B0l ( 1+ ))_2 oy e? +
U] T U0 TV U2g n? Yo 7 )Us3 Yy U3 mys v
+ 2ny51(y51v2)2 + (147?93 %)gs — mun~tys — xnyz > =0,
y;lvl—i—v%—i—vg’ =0.

(2.8)

4. g+ i) - v;'] +ai +p'(ys)v® =0,
vg—i—vjv —v =0, (2.9)
vi +p ( ) - 07
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(2.10)

2.3 Symmetry of reduced systems

Let us study symmetry properties of systems (2.7), (2.8), and (2.9). All results of this
subsection are obtained by means of the standard Lie algorithm [28, 27]. First, let us
consider system (2.7).

Theorem 2.1 The MIA of system (2.7) is the algebra

a’) <aa7 alb J112> lf 71 7é O;
b) <8a78q7 ‘];b> if 11=0,%#0;
¢) (0a,0q, 3y, D1) if 11 =72=0.

Here JY = y,0p — ypOa + 020y — 0°0ya , D} = 4404 — v*0ya — 20,

Note 2.3 All Lie symmetry operators of (2.7) are induced by operators from A(NS):
The operators .J!, and Di are induced by Ju, and D. The operators ¢,9, (¢, = const)
and J, are induced by either

R(t|Y?(c1 cosT — easinT, ey sinT + cacos7,¢3)),  Z([t|7h),
where 7 = »1In|¢|, for ansats (2.1) or
R(cq cos st — co sin st, ¢y sin st + co cos xt, c3),  Z(1)

for ansatz (2.2), respectively. Therefore, Lie reductions of system (2.7) give only
solutions that can be obtained by reducing the NSEs with two- and three-dimensional
subalgebras of A(NS).

Let us continue to system (2.8). We denote A™2* as the MIA of (2.8). Studying
symmetry properties of (2.8), one has to consider the following cases:
A.n,x =0. Then

A = (91, D3, Ri(¥ (1)), Z (A1),
where
D} = 2y101 + 205 + y303 — v0pa — 2q0q,
Ri(¥(y1)) = 03 + 110y — ¥11y30y,  Z'(A(y1)) = A(y1)0,-

Here and below ¢ = ¢(y1) and A = A(y;) are arbitrary smooth functions of y; = t.

B. 7 =0, x Z0. In this case an extension of A™* exists for y = (Ciy1 + Co) 71,
where C,Cy = const. Let C; # 0. We can make C5 vanish by means of equivalence
transformation (A.6), i.e., x = Cyfl, where C' = const. Then

AT = (Dy, Ri(¥(y1)), Z' (My1)))-
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If Cy =0, x =C = const and
AP = (01, Ry (¥(y1)), Z (A(11)))-

For other values of , i.e., when x11x # x1X1,
AP = (R (¢p(y1)), Z (A1)

C. n # 0. By means of equivalence transformation (A.6) we make y = 0. In this
case an extension of A™?* exists for n = £|Cryr + C’2|1/2, where C7,Cy = const. Let
C1 # 0. We can make Cs vanish by means of equivalence transformation (A.6), i.e.,
n = C|y1|'/?, where C' = const. Then

A™ = (Dy, Ro(|y1['/?), Ra(Jn [V n [y ]), ZH (A1),
where Ro(¢(y1)) = 05 +¢10,3. If C1 =0, i.e., n = C = const,
AT = (DY, 83,5103 + Dps Z1 (A(y1)))-
For other values of 7, i.e., when (n?);; # 0,

A" = (Ry(n(y1)), Ra(n(y1) [(n(y1))~2dy1), Z*(AM(y1)))-

Note 2.4 In all cases considered above the Lie symmetry operators of (2.8) are
induced by operators from A(NS): The operators 0y, D3, and Z*(A(y;)) are induced
by 8¢, D, and Z(\(t)), respectively. The operator R(0,0,(t)) induces the operator

Ri(¢¥(y1)) for n = 0 and the operator Ro(¥(y1)) (if ¥11m — ¢¥m1 = 0) for n # 0.
Therefore, the Lie reduction of system (2.8) gives only solutions that can be obtained
by reducing the NSEs with two- and three-dimentional subalgebras of A(NS).

When n = x = 0, system (2.8) describes axially symmetric motion of a fluid and
can be transformed into a system of two equations for a stream function ¥! and a
function W? that are determined by

qlé = yQUlu \Ijé = _y2U37 \112 = 3121)2-

The transformed system was studied by L.V. Kapitanskiy [20, 21].
Consider system (2.9). Let us introduce the notations

t=uys, p=pt)=[pt)d,

R3(¢1(t)> 1/J2(t)) = Wayi + 0y — Vi 0y,

ZH () = A1)y, S = Dys — p*(t)yidy,

E(x(t)) = 2x0: + x1yi0y, + (Xueyi — x4v") 0y — (2x0q + 3 X114Y5Y;) Dy

J112 = y182 — y281 + Ulavz — U28v1.
Theorem 2.2 The MIA of(2.9) is the algebra

1) (R3(p'(t), ¥2(1), Z' (A1), S, E(x*(t)), EOC(E)), v°0ps, Jig),
where x' = e~ P [ePOdt and x* = e~ P if p' = 0;

2) (Rs(¥' (1), ¥*(1)), Z' (A1), S, E(x(t)) + 2a10° 00 + 2a2J15),
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where ay, ay, and as are fixed constants, x = e~ *®) (f e dt + ag,)7 if

ot = e%pp_%_a1 (C1 cos(az In p) — Cy sin(az In p)),
P’ = e%”p*%ﬂ“ (Cysin(az In p) + C; cos(az In p))
with p=p(t) =|[e’ Cy = const, (Cq,C2) # (0,0);

3) (Rs(¢'(1),0%(1), Z' (A1), S, B(x(1)) + 20100y + 2a2J1),
where ay and ay are fixed constants, x = e "), if
pl = e3P~ 1P (C} cos(azp) — Cosin(asp)),
p? = e3P=4P(Cy sin(agp) + Cp cos(asp))
with p = p(t) = [erDdt, Cy,Cy = const, (Cy,Cs) # (0,0);
4) (Rs(¥' (1), v*(1)), Z' (A1), S)

in all other cases.
Here ' = 9%(t), A\ = \(t) are arbitrary smooth function of t = ys.

Note 2.5 If functions p® are determined by (2.10), then e?®) = C|nmi(t)|, where C =
const, and the condition p* = 0 implies that 17 = |17(¢)|€, where € = const and |é¢] = 1.

Note 2.6 The vector-functions 7* from Note 2.2 are determined up to the transfor-
mation

it =it cosd — f%sind, 72 = ilsind + 72 cosd,
where & = const. Therefore, § can be chosen such that Cy = 0 (then Cy # 0).

Note 2.7 The operators Rs(¢)',92) + S and Z1()\) are induced by R(I) + Z(x) and
Z(N), respectively. Here [ = 't + o%m, 3 (7 - m) + 2¢°(7i - m) = a,

X = § (- am) T (07 - 7)) = § (b - TR+ 5 (L - T = 0.

If 77 = |mi|€, where € = const and |¢] = 1, the operator Ji, is induced by elJos +
€2J31 + €3J12.
For

m = B3e7"(Ba cos T, Basin T, ﬁl)T

with 7 = »t + & and 3, = const, where 37 + 32 = 1, the operator 0; + ».J12 induces
the operator 9y, — B12¢J{5 + ov39,s if the following vector-functions 7’ are chosen:

il = k! cos B17 + K2 sin B, @2 = — k! sin 17 + K2 cos (1T, (2.11)

where k' = (—sin7,cos7,0)7 and k2 = (81 cosT, By sinT, —B2)T.
For

i = Bt + Ba| "2 (Ba cos T, BasinT, B1)T
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with 7 = »In|t + 4] + 6 and B,,08s = const, where 37 + 35 = 1, the operator
D + 2840; + 23¢J12 induces the operator

D3 + 2840y, — 2012 ] + 200°0,s,

where D} = y;0,, + 2y30,, — v'0,i — 2qd,, if the vector-functions 7’ are chosen in
form (2.11). In all other cases the basis elements of the MIA of (2.9) are not induced
by operators from A(NS).

Note 2.8 The invariance algebras of systems of form (2.9) with different parameter-
functions p3 = p3(¢) and p3 = p3(¢) are similar . It suggests that there exists a local
transformation of variables which make p? vanish. So, let us transform variables in
the following way:

gi = yier?V | gy = [er®dt,

B = (o S (0)e 20, =, 212)

G =qe " + Gy ((0°(1)%) — 208 (1)) e+ D).
As a result, we obtain the system

Uy 4+ 090% — 0% 4 @i + ' (53)0° = 0,

o3 + v/} — 03, =0,

=0
for the functions 9% = 9%(¢1,92,9s) and ¢ = (91,72, ys). Here subscripts 1, 2, and

3 denote differentiation with respect to ¢, @2, and s, accordingly. Also p'(3) =
pi(t)efgp(t)l

3 Reduction of the Navier—Stokes equations
to systems of PDEs in two independent variables

3.1 Ansatzes of codimension two

In this subsection we give ansatzes that reduce the NSEs to systems of PDEs in two
independent variables. The ansatzes are constructed with the subalgebrical analysis of
A(NS) (see Subsection A.3) by means of the method discribed in Section B.

1. ul= (R (21 — sex2)w! — zow? + z1237 103),
u? = (rR)"1((z2 + sex1)w! + m1w? + 22237~ 10?), a1
u? = z3(rR)~tw! — R~1w?,
p=R%s,

where z; = arctanzy/x; — #In R, 20 = arctanr/x3, 3 > 0.
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Here and below w® = w®(21,2), s = s(21,2), r = (3 + 23)/2, R = (¢} + 23 +
x3)'/2, 5, ¢, o, u, and v are real constants.
2. b =tV (! — zow?) + St ey + a2,

u? = |t| 712 Y (2w + 2w?) + Tt wg 4 wor2,

(3.2)
ub = [t|7V20P + serTtw? 4 2t s,
p=t|"'s — 3772 + $t72R? + elt| ! arctan zo /21,
where z; = [t| =127, zp = [t| /%25 — scarctanay/x1, 32 >0, € > 0.
3. ul =rH(zw! — xow?) + 21772,
u? = r~Yzow! + 21w?) + 29772,
(3.3)

u? = w? + ser~tw?,

p=s— %7‘*2 + carctan zo/x1,

where z; =7, 20 = x3 — warctanag/xzq, 32 € {0;1}, e > 0if 2 =1 and € € {0;1} if
»x = 0.
4. u' = [tV (pw' + vw?) cos T — [t| 712w sinT 4
+vétlcosT + %t*1x1 — st o,
u? = [t| 72 (pwt + vw?)sinT + [t|7/2w? cos T +
+uét lsinT + %t71x2 + st 2y, (3.4)
w? = [tV (vt 4 pw®) + pétt + L,
p= ‘t|—18 _ %t_2£2 + %t—QRQ + %%2t—2r2 +
+ elt| 732 (vxy cos T + vag sinT + pxs),
where
21 = [t|7V2?(uay cos T + paosinT — vi3),
29 = |t|7/?(xy cos T — 21 sinT),
& =o(vrycosT +vaesinT 4 pxz) + 2scv(xg cos T — 1 8inT),
T=sxnlt], x>0, >0, v>0, p?+v:i=1, oe=0, &>0.
5. ul = [t|71 2w + sty
u? = [t 720?43t s, (3.5)
ud = [t]7 20 + (0 + )t tas, ‘

p=It|™'s — 0%t a3 + §t2R? 4 et 73/ ?xs,
where

21 = |t7V 221, 2o = |t| Y22, 0e=0, £>0.
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6. u' = (uw!+ vwd)cost —w?sint + v€cost — xa,

u? = (pw' + vw3)sint + w? cost + v€sint + z,

(3.6)
u? = (—vw' + pw?) + pé,
p=s—1+ 1r? + e(vay cost + vaasint + pas),
where
z1 = (pxy cost + pxosint — vag),
= (zg cost — x1 sint),
f o(vay cost + vgsint + uxs) + 2v(xg cost — xq sint),
w>0, v>0, p>+v2=1, o0e=0, &>0.
7. ul=w', w=w? W’ =wd+oxs,
(3.7)
p=5— %0 m§+6x3,
where
21 =121, 2=y, o0e=0, e€{0;1}.
8. ul =zw! —xr 2 (w? — x(t)),
u? = zow' + zyr 2 (w? — x(t)), (3.8)
u = (p(t)) " H(w? + py(t)x3 + € arctan xo/x1), ‘
p =5~ 5pu(t)(p(t) "3 + x(t) arctan za /a1,
where
z1=t, z2=r €€ {Oa 1}7 X P € Cm((t()?tl)’R)'
9. G=w+ AN B)mi — ANk - )k,
) (3.9)

3.2 Reduced systems
Substituting ansatzes (3.1)-(3.9) into the NSEs (1.1), we obtain the following systems
of reduced equations:

1. w?wi +wiwd — w'w? cot zp — (w)? — (w? + »w')?sin® 25 —
— (w3)? — ((5® +sin"? z0)wi; + wiy — sew] — 2w3 — 2w} —
1

— 2w1) sin z9 + w% coszg —whsin™! z9 — (25 + 55s1) sin? 2 =0,
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w2w? + wiw3 + w3 (w? + 2rw?) cot 2o —

—se((wh)? + (w?)? + (w? + sew?)?sin® 25) —

— ((3% + sin ™ zo)w}y + w3y + 3sw? + 23c(wi + rw] +w')) sinzy +

+ (2w} 4 2w? cot 2y — w? — 2cw!) sin ! 29 —

— (w3 4 250w} cos 29 + 225 8in? 23 + (1 + % sin? 23)s1 = 0, (3.10)
w?wi + wdwi — (w3)? cot 2o — (W? + sew!)? sin 25 cos 2y —

— ((3% +sin?
+ (2wt + w3 + w} + sw]) cos 2y + sy5in? 25 = 0,

wl +w? + w3 = 0.

Zo)wiy 4+ Wiy + sewi + 2w}) sin zp +

Hereafter numeration of the reduced systems corresponds to that of the ansatzes in
Subsection 3.1. Subscripts 1 and 2 denote differentiation with respect to the variables
z1 and zq, accordingly.
2-3. wlw] + wiw] — 27 ww? — (v} + (1+ xzzfQ)w%Q) -
— 2327 %wE + 51, = 0,

—1 —2
wlw? + wiwd + 27 'wlw? — (wi + (1 + 3227 %)wdy) +

+ 227 2wd + 227 2w? — szt sy +ezyt =0, (3.11)
wrwi + wiwi — 2%zf2w1w2 — (wzfl +(1+ }fzzfQ)wS’Q) +
+ 2e(zy w1 = 25727 w] + (14 527 )52 — ez = 0,

wl +wd + 27w + 4 =0,

where v = £+3/2 for ansatz (3.2) and v = 0 for ansatz (3.3). Here and below the
upper and lower sign in the symbols “+” and “F” are associated with ¢ > 0 and ¢ < 0,
respectively.

4-7. For ansatzes (3.4)-(3.7) the reduced equations can be written in the form

iyl 1 2 _
w'w; — w;; + 81+ agw” =0,

i
2

wiw? — w? 4 s5 — apw! + ocqwd =0,
SO ' (3.12)
wlwi —wj; + aaw” + as = 0,
wf = Q3
where the constants a,, (n =1,5), take on the values

4. oy ==E2v, az=F2xp, az=TF(0+3/2), ay==L0, as=c¢c.

5. a; =0, ag =0, as=F(0+3/2), as==0, as=c.

6. a1 =2v, g = =24, a3 = —o, a4 = 0, a5 = €.

7. ap =0, as =0, az = —o, ay = o, as = €.

. wl 4+ (w)? — 5 (w? — )P + zwl} — wh, - (3.13)
— 322w% + 22_152 =0, '
w? + zowrwd — wiy + 25 'wd =0, (3.14)
w3 + zowwd — wiy — 25 'wi + 25 2 (w? — x) =0, (3.15)
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2w + 20w} + p1/p = 0. (3.16)
9. Wy — AMlga + sok + A" L(@ - W)mi + 28 = 0, (3.17)
k- by = 0, (3.18)

where y; =t and
g=éet) =2272(m} - m2 —m' M)k x k+ A2k - ky — kyy - k).
Let us study symmetry properties of reduced systems (3.10) and (3.11).
Theorem 3.1 The MIA of (3.10) is given by the algebra (01).

Theorem 3.2 The MIA of (3.11) is given by the [ollowing algebras:

a) (09,05, D? = 2;0; — W Dpa — 250,) if Y= x=¢e=0;
b) (02,05) if (v,5¢)#(0,0,0).

All the Lie symmetry operators of systems (3.10) and (3.11) are induced by
elements of A(NS). So, for system (3.10) the operator 9y is induced by Jy2. For
system (3.11), when v = 0 (y = £3/2), the operators D?, 85, and 95 (92 and 9s)
are induced by D, R(0,0,1), and Z(1) (R(0,0,[t|~*/?) and Z(|t|~")), accordingly.
Therefore, the Lie reductions of systems (3.10) and (3.11) give only solutions that
can be obtained by reducing the NSEs with three-dimensional subalgebras of A(N.S)
immediately to ODEs.

Investigation of reduced systems (3.13)-(3.16), (3.17)-(3.18), and (3.12) is given
in Sections 5 and 6.

4 Reduction of the Navier—Stokes equations
to ordinary differential equations

4.1 Ansatzes of codimension three

By means of subalgebraic analysis of A(NS) (see Subsection A.3) and the method
described in Section B one can obtain the following ansatzes that reduce the NSEs to
ODEs:
1. ul=2,R72p! — 2o(Rr)~1¢? + zya3r 1 R72¢3,
u? = 2o R™2p! + 21 (Rr) " 1¢? + zoa3r 1 R72¢3,
ud = 23R 2p! —rR™2p3,
p=R"?h,

(4.1)

where w = arctanr/x3. Here and below ¢ = ¢%(w), h = h(w), r = (22 + 23)/2,
R = (2% + 23 +a3)'/%.
2wl =17 zip! —wap?),  u? =17 (! + 2197,

ud = 103

4.2
r e, p=r72h, (*2)
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where w = arctanza/z1 — > Inr, 3 > 0.

3. ut =m|t| et — mer 2% + Jant !,
2

<

= xolt| "t + 21202 + %xgt’l,
3= [t|712¢% + (0 + st~ + v|t|Y*t L arctan 2o /21,
p=It|th+ $t72R? — Lo%a3t 2 +

+ e1]t| 7t arctan zo /21 + 621‘3|t|_3/2,

<

N

where w = |t|_1/2r, vo=0,e00=0,1>0,v>0.

4. ul = 310" — 2or72¢2,
u? = IQQDI + x17’72<p2,

3:

U @3 + ox3 +varctanxg /21,

p=h-— %(7295% + ey arctan o /x1 + €223,
where w =1, vo =0, eg0 = 0, and for ¢ = 0 one of the conditions
v=1,62>0 v=0,¢e=1,2>0;, v=e1=0, g3 €{0;1}

is satisfied.
Two ansatzes are described better in the following way:
5. The expressions for u® and p are determined by (2.1), where

vl = a1 + asp® + byiw;,

2 _ 9
Ve = @* + byw,

3_ 1 3
V7 =agp’ — a1p” + b3;w;,

p=h+ criw; + cojww; + %dijwiwj.
In formulas (4.5) we use the following definitions:

w1 = a1y1 +a2y3, W2 =Y2, W =w3=0ay1 — A1Y3;

a; =const, a?+a3=1; ay=0il~ =0;

’}/1:—2%7’}/2:—% if t>0 and ’}/1:2%,’}/2:§ if t<O0.

2

bai, Bi, cij, and d;; are real constants that satisfy the equations

bi; = a1Bi, bz =aaB;, ¢ + azyibe =0,
b21Bi + bagbe; — y1a1B;i + d2; =0,

B1B; + Babai +y1a1B; + d1; = 0,

(B1 + ba2) (B2 4 a1y — ba1) = 0.

(4.3)

(4.4)

(4.5)

(4.6)

6. The expressions for u® and p have form (2.2), where v* and ¢ are determined

by (4.5), (4.6), and 71 = —23¢, 75 = 0.

Note 4.1 Formulas (4.5) and (4.6) determine an ansatz for system (2.7), where
equations (4.6) are the necessary and sufficient condition to reduce system (2.7)

by means of an ansatz of form (4.5).
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7. ul = plcoswsy/n® — p?sinasg/n® + 1101 (t) + 220%(2),
u? = plsinasg/n® + p? coswz/n® — x102(t) + 2201 (1),

u? = % 4+ 0} (n®) s, @7
p=nh—in5(®) 2} — Il (nin') 12,
where w = t,
n® € C>=((to,t1),R), n*#0, nin' #0, nin*—n'n? €{0;3},
0" = nin' ()=, 0% = (i — ') (i’ )
8. @=@+\"L(7e- T)me,
p=h— AL, - 2)(@ - 7) + LAY, ) @ D) - 3), (48)

A=Xt) = (m! xm?)-m3#0 Vte (ty,t1),
il =m? xm3, [ =m3xm!, @ =mxm2

4.2 Reduced systems

Substituting the ansatzes 1-8 into the NSEs (1.1), we obtain the following systems of
ODE in the functions ¢ and h:

L. S03<P3, — % — @Lw — cp&) cotw — 2h =0,
2

<p3<p3, + ango?’ cotw — gpfm — (,DE) cotw + <p2 sin"“w =0, (4.9)
PPl — pPp?cotw — @3, — ¢l cotw + P sinTrw — 2], + hy, =0, '
ot + @3 + 3 cotw = 0.
2. (9? —spY)ioy, — (L+3) 0y, — @lot — 0?9 — shy, —2h =0,
(9% = ")l — (L4 52) @l — 20002 + ¢,) + h = 0,
2 1,3 2y, 3 1,3 3 3 (4.10)
(p* =30 )y, — (L +3%) g, — @ 9° — @° — 2300, = 0,
02 — xpl, = 0.
3-4. ¢lot —w e +welyy, — gL, — 3wl gl +w T h, =0,
well — ¢, Fw TPl +e1 =0,
1,3 3 -2 2 3 1 3 (4.11)
W(p()ﬂw‘FO’l(p + rw P = Pow — W ¢w+52207
2<p1 —|—wg03) + 09 =0,
where
3. o1 =o0, o2 =(c+3) it t>0,
o1 = —0, oy =—(0+32) if ¢t<0.
4. 01 =09 =o0.
5-6. Pl — b, — e’ + e+ enw =0,
W32 — 2, — H2ip" + c12 + caow + y2a2p3 = 0, (4.12)

Wgwi - @i}w + 71&2@2 + h'w = 07

3
pr_aa
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where p11 = —B1, 12 = —Ba—ma1, fto1 = —bar+v1a1, pag = —bae, 0 = y1—B1—baa.
Ty + 000! + 0207 — (1) TP + () 2! =0,
@2 — 020" +0'0% + (1*) PPt + ()P =0,

3 (4.13)
o3 +nP(n?) e =0,
201 + 33"t =0.

8. G+ AL @b =0,
@ (17 - p)miy (4.14)

7ia g = 0.

4.3 Exact solutions of the reduced systems

1. Ansatz (4.1) and system (4.9) determine the class of solutions of the NSEs (1.1)
that are called the steady axially symmetric conically similar flows of a viscous fluid
in hydrodynamics. This class of solutions was studied in a number of works (for
example, see references in [16]). For ©? = 0 it was shown, by N.A. Slezkin [34], that
system (4.9) is reduced to a Riccati equation. The general solution of this equation
was expressed in terms of hypergeometric functions. Later similar calculations were
made by V.I. Yatseev [38] and H.B. Squire [35]. The particular case in the class of
solutions with ¢? = 0 is formed by the Landau jets [24]. For swirling flows, where
©? # 0, the order of system (4.9) can be reduced too. For example [33], an arbitrary
solution of (4.9) satisfies the equation

2

%% sin? w — sin w(P,, sin™! W)y + 2P, cot w + 2¢ = const,

where @ = (93 — 2¢3¢3)sin®w — p3 coswsinw, and the Yatseev results [38] are
completely extended to the case ? sinw = const.
2. System (4.10) implies that

©? = 2! + O,
h=3(1+ %)@l + (2% + 2 — 5C1)* + Co,
(1+ )L, + (42c — Cr)ol + ot + 4ot + (4.15)

+ (1 +32)~YC} +2C2) =0,

(1452, — (Cr = 25)0), + (1 + ¢1)p® = 0.
If > = 0, the solution determined by ansatz (4.10) and formulas (4.15) coincides with
the Hamel solution [18, 23]. In Section 6 we consider system (6.14) which is more

general than system (4.10).
3—-4. Let us integrate the last equation of system (4.11), i.e.,

S01 _ C’1w—2 _ %02. (4,16)

Taking into account the integration result, the other equations of system (4.11) can
be written in the form
hy = w 39?0 + C3w=3 — iogw,

02, — (C1+ Dw™! = Logw)p? =e1,
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o3, —((C1 —Nw™t — %agw)gpi —01¢% = vw 2% 4 e. (4.17)
Therefore,
h= [w3p??dw — L1C3w™2 — Lo3uw?, (4.18)

@2 = Co + Cs [ | O lem o d 1

4.19
+ep [w]Crtlem o2’ (f |w|701716%"2“’2dw>dw. (*.19)
If o1 =0, it follows that
P> = Cy+ Cs [ w|Or e~ 172" dw +
(4.20)

+ [ |w|Crtemdo2e? (f |w|~CrH1eio2e (g, +l/w_2<p2)dw>dw.

Let o1 # 0 (and, therefore, v = 0). Then, if o5 # 0, the general solution of equation
(4.17) is expressed in terms of Whittaker functions:

0% = |w|2C " lem 52 W (—gy05t + 101 — 3,104, Loaw?),
where W (s, u, ) is the general solution of the Whittaker equation
AT Wor = (12 — doer + 4 — 1)W. (4.21)

If oo = 0, the general solution of equation (4.16) is expressed in terms of Bessel
functions:

1
0* = wlF" Zy 0, (o) ?w),
where Z,(7) is the general solution of the Bessel equation
27 + 72 4+ (12 =12 Z = 0. (4.22)

Note 4.2 If o5 =0, all quadratures in formulas (4.18)-(4.20) are easily integrated.
For example,
Cy+ Csln|w| + %Ele it Cp =-2,
?=< Co+ 03%0.)2 + %51w2(1nw — %) it C,=0,
O+ C5(Ch +2) Hw|“H2 — Loy w? T Oy # —2,0.

5-6. Let 0 = 0. Then the last equation of system (4.12) implies that p* = Cy =
const. The other equations of system (4.12) can be written in the form

h=-maz [ ¢*(w)dw, (4.23)

Pow = Coply + pijp? = vii + voiw,
where Vi1 = C11, V21 = C21, V12 = C12 +’}/2a200, V99 = C23. System (423) is a linear
nonhomogeneous system of ODEs with constant coefficients. The form of its general
solution depends on the Jordan form of the matrix M = {y;;}. Now let us transform
the dependent variables

@' = 6ij¢]7



Symmetry reduction and exact solutions of the Navier—Stokes equations 197

where the constants e;; are determined by means of the system of linear algebraic
equations

eijfije = pijejn  (i,7,k =1,2)

with the condition det{e;;} # 0. Here M = {/i;; } is the real Jordan form of the matrix
M. The new unknown functions ' have to satisly the following system

bw — Cotl + it = i + aaw, (4.24)

where vi; = e;;015, v2; = e;ji;. Depending on the form of M, we consider the
following cases:

A. det M = 0 (this is equivalent to the condition det M =0 ).

i. M= <8 8), where € € {0;1}. Then

P? = O + C2e%% — Ly Ol w? — (D12 — 122C5 1) Oyt w,
Pl = C3 4 0 — Ling, Oy tw? — (i1 — 021 Cy 1)y tw +
+ 5(—%922007%13 - %(512 — 2522051)052w2 + (4.25)
+ (C1 + (D21 — 2022Cy 1) Cy?) Cp Hw — Cgco—lweCW)
for Cy # 0, and
P? = C1 + Cow + ¢paw® + L1202, | (4.26)

1/)1 =C5+ Cyw + %(1721 — 02)w3 + %(1711 — C1)LL)2 — ﬁﬁggaﬁ — ﬁﬂlgw
for CO =0.

1 0
0 0
formula (4.25) for Cy # 0 or by formula (4.26) for Cy = 0. The form of ¢! is given
by formula (4.28) (see below).

B. det M # 0 (this is equivalent to the condition det M # 0).

ii. M = ) , where 3¢ € R\{0}. Then the form of 1% is given either by

i M= ( 0 ) , where s; € R\{0}. Then

0
P = 1722%2_1w + (P12 — Col?22%2_1)%2_1 + C160% (W) + 02672 (w), (4.27)
Y = Doy tw + (D11 — Cotar ey oyt + C30M (W) + C10"2 (W), (4.28)
where

0 (w) = exp(2(Co — VD), 02() = exp(2(Co + VD))
il D; =02 —4s >0,

0 (w) = e2Cow cos(3v/—Diw), 02(w) = e2Cow sin(3v/—Diw)
it D; <0,

0 (w) = e%COw’ 072 (w) = wes Cow

it D;=0.
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! ) , where sc2 € R\{0}. Then the form of ¢? is given by formula
(4.27), and i
Yl = (111 — (D12 — Coliansey )sey ' — Coliiar — Daoscy )3ey ) 3ey ' +
+ (D1 — Danaey V) ey tw 4 03021 (W) 4 C462%(w) — Cin(w),
where
7 (w) = Dy 'w(20% (w) — Co6% (w)) it Dy #0,
3

nt(w) = éw262cﬂ“’ 7 (w) = jw e2Cov if Dy =0.

iii. M = < T ) , where »; € R, 35 # 0. Then

2 1

Pl = (5e56) T H(Da1201 + Dogseo)w + (3626) " H(D11361 + Drasen) —
— Co(536) 72 (021 (363 — #3) — D2a2301500) + Cr ' (w),

V2 = (5456) " (—Do1500 + Dogsar)w + (5656) " H(— 1300 + 12501 —
— Co(s5¢;) 2 (1/212%1%2 + D965 — %1)) + CL07"(w),

where n = 1,4,

v =/(C§ — 401)? + (4502)?,
B i
011( ) = 0%2(w) = exp((3Co — B1)w) cos Bow,
-0 (w) = 012(w) = exp((%C’o — ﬂl)w) sin Bow,
053 (w) = 0*4(w) = exp((%C’o + ﬁl)w) cos Bow,
6% (w) = —0M(w) = exp((3Co + fB1)w) sin Fow.
If o # 0, the last equation of system (4.12) implies that ¢ = ow (translating w,

the integration constant can be made to vanish). The other equations of system (4.12)
can be written in the form

h=—maz [ ¢*(w)dw — L0%w?,

, . , (4.29)
SDZJw —UWPZU +,Uij</7] = V15 + Vo;w ’

where V11 = €11, V91 = C21, V12 = C12, V23 = C22 + Y2020. The form of the general
solution of system (4.29) depends on the Jordan form of the matrix M = {y;;}. Now,
let us transform the dependent variables

o' = ey,

where the constants e;; are determined by means of the system of linear algebraic
equations

eijijh = pigese  (i:5,k =1,2)

with the condition det{e;;} # 0. Here M = {ji;;} is the real Jordan form of the
matrix M. The new unknown functions v have to satisfy the following system

w — WP+l = 1y + Dow, (4.30)
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where vy; = e;ji1, Vo; = ei;U2;. Depending on the form of M, we consider the
following cases:

A. det M = 0 (this is equivalent to the condition det M = 0).

i M= (8 g),where ¢ € {0;1}. Then

1/12 = Cl + Cz fe%"w2dw — 0'711722(,;) + 1;12 feéawz (f e*%”“’de)dw, (431)

Pl =Cs3+Cy fe%"“’zdw — o Dy w + fe%"“’z (f e 30w’ (011 — ssz)dw)dw.

ii. M = ( g 8 > Then the form of v? is given by formula (4.31), and

Pl = Csw + Cy (wfe%‘wzdw — a‘le%"“’z) +o oy +
+ oy (0w [ €27 N (W) dw — 379" N (w)),

where Al(w) = [ e 779% dw.

iii. M = < %01 8 > , where »; € R\{0;0}. Then 1?2 is determited by (4.31), and
the form of ! is given by (4.33) (see below).

B. det M # 0, det{fi;; — 0d;;} = 0 (this is equivalent to the conditions det M # 0,
det{yu;; — 0d;;} = 0; here ¢;; is the Kronecker symbol).

g

o € )
i. M= ( 0 o >,where5€{0,1}. Then

1

P2 = Ciw + Cy (wfei"“’zdw - a‘le%"wz) + o7 D1y + vspacelmm

12 102 4.32
+ 07 g (ow [€27% A (w)dw — €279 A (w)), (432)

P = Caw + C4(wfe%"‘”2dw — U_le%”wz) +o iy +
+ow [e279°)2(W)dw — €379 N2 (W) 4+ 0 (Fyw — e9?),

where A(w) = [e~ 209w, A2 (w) =0~} fe_%‘mz(ﬁm — &2 )dw

i. M = ng 2 ), where 51 € R\{0;0}. In this case ? is determined by

(4.32), and the form of +* is given by (4.33) (see below).
C. det M # 0, det{fi;; — 0d;;} # 0 (this is equivalent to the condition det M # 0,
det{p;; — 0d;;} # 0: here ¢;; is the Kronecker symbol).

i M= ( 0 > , where 3z; € R\{0;0}. Then
0 o)

wl = %1_11711 —+ (%1 — 0')_1521(4) —|— |(A)|_1/2€im})2 X

x (CsM (a0 + 4,4, Jow?) + CaM (S0t + 1,4, Jow?)),
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V2 =36 "o + (500 — 0)7152200 + |W|71/2eiw2 X

(4.34)
(C’l ( o0t 4 4, 4, 20w )—&—Cg ( %20_14—1,—% % wQ)),
where M (3, u,7) is the Whittaker function:
M(%,,U,,T) :T%Jr'uei%‘rlFl(%+N7%,2;u'+137_), (435)

and 1Fy(a,b,7) is the degenerate hypergeometric function defined by means of the
series:

+1)...(a+n—-1)7
1F1(‘””_1+Zb ;..Eb+n1))ﬁ’

n=1

b#£0,—-1,-2,....
ii. M = ( T ),Where »; € R, 39 #0. Then

9 Al
Pl = (s556) " avn + seiiz) + (o — 0)? 4 63) (501 — 0) 021 + 2202)w +
+ C1Renl(w) — Colmnt(w) + C3Re n?(w) — Cylmn?(w),
V2 = (5¢j5¢j) (=001 + s1012) +
+ ((5e1 — 0)% + 33) " H(—smaii01 + (501 — 0) 22w +
+ C1Imnt(w) + CoRe nt(w) + C3lmn?(w) + C4Re n?(w),

e

507,
1w

(%1 + %21) —|—
_ 1
_|_ 2 5

(%1 + %21)

ot

1
2
i ), i?=-1

iii. M = ( T)Z ; ), where s € R\{0;0}. Here the form of ¢? is given by

2
(4.34), and
¢1 = (1711 — 512%2_1)%2_1 + (1721 — DQQ(%Q - O') )(%2 - O')_l(.d +
+ |w| " 2ei0 (Cs@l(T) + Ca0*(1) — o710 (1) [710%(7)Ci6 (1)dr +

+ 07 0%(7) fT_lel(T)CiQi(T)dT),

where 7 = Jow?,

0 (1) = M (3507t +1,4,7), 0% 1) =M (30 ' +1 -1 7).
Note 4.3 The general solution of the equation
Yw — owth, — (n+ 1)op =0,

where n is an integer and n > 0, is determined by the formula

d" Low? Low? d" Low? -
o= (e )(C”CQ/e (5 >d°”>'
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Note 4.4 If function v satisfies the equation
¢ww - O'Wd)w + %7/) =0 (% # 70’)7
then [¢(w)dw = (34 o)~ (owp —,) + Ch.

7. The last equation of system (4.13) is the compatibility condition of the NSEs
(1.1) and ansatz (4.7). Integrating this equation, we obtain that

n* = Co(n'n")~", Co#0.

As @2 = —n2(n3)71p® = 20103, p3 = Csnin'. Then system (4.13) is reduced to the
equations

o5 = x (W) = x*(w)e?,

(4.36)
02 = X2 ()" + xH(w)¥?,

where x!' = —Cy2(n'n")? — 0" and x? = 62 — C3C; * (n'n')?. System (4.36) implies
that

= exp( [ x'(w)dw) (C1 cos( [ x*(w)dw) — Cysin( [ )f(w)du))),
= exp ([ x*(w)dw) (01 sin( [ x*(w)dw) + Cs cos( [ Xz(w)dw)).

8. Let us apply the trasformation generated by the operator R(k(t)), where

!

Fo = AN R)iy — 3,

to ansatz (4.8). As a result we obtain an ansatz of the same form, where the functi-
ons J and h are replaced by the new functions ¢ and h:

S okl VT
Il

@—Al(ﬁ *>
h—A"L(mg, -k

Let us make h vanish by means of the transformation generated by the operator
Z(—h(t)). Therefore, the functions ¢ and h can be considered to vanish. The equation
(1 - m¢) = 0 is the compatibility condition of ansatz (4.8) and the NSEs (1.1).

Note 4.5 The solutions of the NSEs obtained by means of ansatzes 5—8 are equivalent

to either solutions (5.1) or solutions (5.5).

5 Reduction of the Navier—Stokes equations
to linear systems of PDEs

Let us show that non-linear systems 8 and 9, from Subsection 3.2, are reduced to
linear systems of PDEs.
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5.1 Investigation of system (3.17)—(3.18)

Consider system 9 from Subsection 3.2, i.e., equations (3.17) and (3.18). Equation
(3.18) integrates with respect to 2z to the following expression:

—

k= 1h(t).

Here ¢ = 4¢(t) is an arbitrary smooth function of z; = ¢. Let us make the transfor-
mation from the symmetry group of the NSEs:

where Iy - i — -, = 0 and
ko (=AY Dmi + 2Nk Dky) + ¢ =0.

This transformation does not modify ansatz (3.9), but it makes the function (t)
vanish, i.e., k - w = 0. Therefore, without loss of generality we may assume, at once,
that & - @ = 0.

Let f! = fi(z1,22) = m’ . Since my, - m2 — m! - m% = 0, it follows that
my -m? —m!-m? = C = const. Let us multiply the scalar equation (3.17) by

and k. As a result we obtain the linear system of PDEs with variable coefficients in
the functions f* and s:

Fi—= My + CATH((m? - m2) fF — (m? - mh) f2) — 20072 ((k x k) -mt)z0 = 0,
So = 2AT2(71t Ky f 4+ N2 (kg - k — 2Ky - Ky) 2.
Consider two possible cases.

A. Let C = 0. Then there exist functions ¢g* = ¢*(r,w), where 7 = [ A(t)dt and
w = 29, such that ' = g% and g% — g/, = 0. Therefore,

il = A7 (gL (7, w) + g - B)itt — A7 (ky - Bk,
p=22"2(7 - k) gt (1, w) + A2 (kut - k — 2k - Ky )w? — (5.1)
= AT @) (7, - T) — A2 (R i) (- 7) (k- ),

Where i} -2 — i m? = 0, F = il x m2, 7t = m? x Focmt, A =[R2,
w=Fk-& 7= [A({t)dt, and g- — g = 0.

For example, if m = (n'(¢),0,0) and 7 = (0,7%(t),0) with n’(t) # 0, it follows that

ut = ()TN nten), w? = 02T Fnfae), ud = —('n?)(n'n?) e,
p=—3nt(n") "2t — Inf(n*) el +

+ (S0 Pl n?) - ((nan)tmln%—l)Q)xg,

where fi = fi(r,w), fi—fi, =0, 17= f )2dt, and w = nin?xs. If Mt =
o (0,00 o T (080 it A 2 0 st o Er ok b we sptam
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that
ut = (n'n’)” 1{77 (9o +nias) — 0 (1 (n) 2w +niws — nfws) }
w? = (n'n’)” 1{n2(gw + i) + 0t (0 () 2w + nfen — nias) }
ub = ()N (f +njas)
p=2(0")" (n'ng —nin?)(n'n) g+ gAT %
X {A Y(in® = 2mind)n'n’ = 2nPnin'n; — 2(0°)Pning)w? +
+ (%) ((nnd, = ') (e} = 28) = 20nkn? + m'nd)wrez) — winmPniad }.
Here f = f(r,w), fr = fow = 0, g = g(T,0), gr — gow = 0, 7 = [(n*)*n'n'dLt,

w=n3(n%ry —nlay), and X = (n®)%n ’nl.
Note 5.1 The equation
mb-m? —mt-m2 =0 (5.2)

can easily be solved in the following way: Let us fix arbitrary smooth vector-functions
m', 1 e C®((to,t1),R?) such that m!(t) # 0, I(t) # 0, and m*(t) - I(t) = 0 for all

t € (to,t1). Then the vector-function m? = m?(t) is taken in the form

W2(8) = p(t)yit + 1(8). (5.3)
Equation (5.2) implies

p(t) = [(r - @)~ () -1 —mt - 1)dt. (5.4)

B. Let C' # 0. By means of the transformation m’ — a;;m7, where a;; = const and
det{a;;} = C, we make C' = 1. Then we obtain the following solution of the NSEs
(1.1)

T=\ (911( Vgl (7, w) + 070 (t)w + i - T —
=2\~ <f-12t><9”<>i<w> L0 ()w?) + IA"2(kyy - K — 28, - By)w? — (5:)
A2k i) (7 Z

AN B) (g, - T) — (- F)(k - 7)

Here m} - m? —m! - m? = 1, k—mlx ﬁl—mQXE,ﬁQ:Exrﬁl,/\:|E|2,
w=~k-% 7= [At)dt, and g* — g’ = 0. (6"(t),6%(t)) (i = 1,2) are linearly
independent solutions of the system

0i + A1 (mt - m2)et — X mt - me? =0, (5.6)
and (6'°(t),02°(¢)) is a particular solution of the nonhomogeneous system

i+ ATt - m2)0t — ANt mb)e? = 2072 ((k x ky) - ). (5.7)

For example, if m! (ncosz/;,nsinz/J,O) and m? = (— nsimﬁmcosdz, 0), where
=n(t) #0 and ¥ = —% [(n)~2dt (therefore, mj - m* — m! - mi = 1), we obtain

ut =n~1(f! cosw = fAsing +mez — g0~ wa),

u? =t (fsing + f2cos )+ mws + 50 ),
ud = 7277t7]’1x3,

p = (nun — 3nme)n >

2 1 —1 1, —4
L3 — 5(77tt77 — N )T
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Here f' = fi(1,w), fi — fi, =0, 7= [(n)*dt, and w = (n)?xs.
Note 5.2 As in the case C' =0, the solutions of the equation

my-m? —mtom? =1 (5.8)
can be sought in form (5.3). As a result we obtain that

(t) = [t 720} - 1T —mt -1 — 1)dt. (5.9)

Note 5.3 System (5.6) can be reduced to a second-order homogeneous differential
equation either in 6%, i.e.,

(A|m1|*293) (G it 72), + i) 6t = 0 (5.10)
(then 62 = | [~(A0L + (" - @2)61)), or in 62, ie.,
(A|m2|*29§) + (= (R R |2), + % 2) 62 = 0 (5.11)

(then 0 = |m?|=2(=\0? + (m' - m?2)0?)). Under the notation of Note 5.1 equation
(5.10) has the form:

(T D8}, + [m!|~2(m; - T —m" - ;)6 = 0. (5.12)

The vector-functions /' and [ are chosen in such a way that one can find a fundamen-
tal set of solutions for equation (5.12). For example, let 7 x my # 0 Vt € (to,t1). Let
us introduce the notation 7 := m! and put I = n(t)m x My, where n € C((to,t1),R),
’I’}(t) # 0Vvte (to,tl). Then

m-l=0, my-l—m -l =0, m>=—([|m|=2dt)m +nm x i,
k=i x (1 x i), A= (n)2|m[2]m x w2,
2 = n|m|?m x my, 7@l = (f |m|*2dt)ﬁ2 + ()2 |m x 1| 2,
o1 (t) = f(n)—2|m X m|T2dt, 01 (t) =1 — 01 [|mi|2dt,
0'2(t) =1, ): —f|m| 2dt,
010(t) = 2[((( X 1)« Ty ) [ X 17|72 4 [ 7 | ) n T2 m < my| T2 dt,
620(t) = —010(¢) [ |m|2dt + 2 [ n~ 1 |m|~dt.
Consider the following cases: m x 1, = 0, i.e., m = x(t)@ where x(t) €

C*((to,t1), R), x(t) # 0 Vt € (to,t1), @ = const, and |@| = 1. Let us put
[{t) = n' (b +7* ()2,

where 7717772 € Cm((toatl)vR)’ (Ul(t)7772(t)) 7é (030) Vi e (t07t1)’ g:
a-b=0, and ¢=d x b. Then

o
b :17

m? = —(x [ x2dt)a + b +n%¢,  k =xn'é— yn2b,

A= (0%, w2 = ()2 +nfe), @it = ([ x2dt)a? + xnin'd,

911 _ f(nznz)—ldt’ 621 =1— 911 fX_2dta 812 — 1’ 022 — _ fX_tha
019 =2 [(min' —wPmy)x""('n")~"dt, 620 = =010 [x~2dt.
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Note 5.4 In formulas (5.1) and (5.5) solutions of the NSEs (1.1) are expressed in
terms of solutions of the decomposed system of two linear one-dimensional heat
equations (LOHEs) that have the form:

G = G- (5.13)

The Lie symmetry of the LOHE are known. Large sets of its exact solutions were
constructed [27, 3]. The @-conditional symmetries of LOHE were investigated in [14].
Moreover, being decomposed system (5.13) admits transformations of the form

(W) = Fl (1w, ¢l (1,w)), 7 =GYrw), o' =HYrw),
P W) = F*(r,w,0*(1,w)), 7"=G*(T,w), Ww'=H?(Tw),

where (G, H') # (G? H?), i.e. the independent variables can be transformed in
the functions g' and g2 in different ways. A similar statement is true for system
(5.19)-(5.20) (see below) if e = 0.

Note 5.5 [t can be proved that an arbitrary Navier—Stokes field (@, p), where

—

i = d(t,w) + (K (t) - D)1 (t)

with K IF € C((to,t1),R?), k' x k2 # 0, and w = (k* x k2) - Z, is equivalent to
either a solution from family (5.1) or a solution from family (5.5). The equivalence
transformation is generated by R(m) and Z(x).

5.2 Investigation of system (3.13)-(3.16)

Consider system 8 from Subsection 3.2, i.e., equations (3.13)-(3.16). Equation (3.16)
immediately gives

wl = —%ptp_l +(n-— 1)2’2 , (5.14)

where n = n(t) is an arbitrary smooth function of z; = ¢. Substituting (5.14) into
remaining equations (5.13)-(5.15), we get

g2 =3((pep e — 5(pep 1))z —may ' — (n— 1)%25° + (w? — X)?2, %, (5.15)
1

wi — w3y + (nz5 ' = Spip~22)w3 =0, (5.16)

wi — w3y + (nzy ' — Speprz2)wd +e(w? — x)z° = 0. (5.17)

Recall that p = p(t) and x = x(t) are arbitrary smooth functions of ¢; € € {0;1}.
After the change of the independent variables

T = [lp@®)ldt, == |p(t)]"/?2 (5.18)
in equations (5.16) and (5.17), we obtain a linear system of a simpler form:
w2 —w?, +7(1)z"w? =0, (5.19)

wy —wl, + (§(7) = 2)z 7wl + e(w? — x(1))27* =0, (5.20)
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where /(1) = n(t) and x(7) = x(¢). Equation (5.15) implies

)
q=7

((oep™")e = 3(pep™")?) 23 — meInzo] —

— 3 =1)%27 + [(w(r,2) = )(7))?25 *dz.
Formulas (5.14), (5.18)—(5.21), and ansatz (3.8) determine a solution of the NSEs
(L.1).

If € = 0 system (5.19)-(5.20) is decomposed and consists of two translational
linear equations of the general form

fT"’ﬁ(T)Z_lfz — [ =0, (5.22)

where 71 = 7 (] = 1 — 2) for equation (5.19) ((5.20)). Tilde over 7 is omitted below.
Let us investigate symmetry properties of equation (5.22) and construct some of its
exact solutions.

(5.21)

Theorem 5.1 The MIA of (5.22) is given by the following algebras
a) Ly =(f0y, g(r,2)0r) if n(r)+# const;

b) Ly = (0, D, 1L, fy, g(7,2)0;) if n(r) = const, n & {0;—2};
¢) Ly=(d-, D,1II, 0, + $nz"'f0y, G = 270, — (2 — nz"'7) 0y, fOy,
9(1,2)0r) if ne{0;-2}.

Here D = 270, + 20., Tl = 4720, + 4720, — (2*> + 2(1 — n)7)fds; g = g(7,2) is an
arbitrary solution of (5.22).

When 7 = 0, equation (5.22) is the heat equation, and, when n = —2, it is reduced
to the heat equation by means of the change f = zf.

For the case n = const equation (5.22) can be reduced by inequivalent one-
dimensional subalgebras of Ly. We construct the following solutions:

For the subalgebra (0. + af0;), where a € {—1;0;1}, it follows that

f=eT2"(C1Jdy(2) + C2Y,(2)) if a=-—1,
f=e2"(Ci1,(2) + CoK,(2)) i a=1,
f=C12"1 4+ Cy il a=0 and n# -1,
f=Cilnz+Cy if a=0 and n=-1.

Here J, and Y, are the Bessel functions of a real variable, whereas I, and K, are
the Bessel functions of an imaginary variable, and v = 1(n +1).

For the subalgebra (D + 2afd;), where a € R, it follows that
f=lrltem w2 OW (50— 1) —a, 5 (n +1),w)
with w = 122771 Here W (s, p,w) is the general solution of the Whittaker equation

40* Wy = (w0 — doew + 4p* — DW.

For the subalgebra (0. +II 4+ af0), where a € R, it follows that

=472 +1)i0D exp(—Tw + Laarctan 27)p(w)
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with w = 22(47% + 1)L, The function ¢ is a solution of the equation
dwpuw +2(1 = n)pw + (W —a)p = 0.

For example if a = 0, then ¢(w) = w# (ClJﬂ(%w) + CQY#(%W)>, where pp = 1(n+1).
Consider equation (5.22), where 5 is an arbitrary smooth function of 7.

Theorem 5.2 Equation (5.22) is Q-conditional invariant under the operators
Ql =0, + gl(Tv Z)az + (.92(7_’ Z)f + 93(T7 Z))af (523)
if and only if

gr —nz gl +nz72gt — gl +29lg" — 2Tt +2¢2 =0,

gk + gk — gk + 2919k =0, k=23, (5.24)
and

Q= 0. + B(r,z, 1)y (5.25)
if and only if

B, —nz"?B+n2"'B, - B,, —2BB.; — B*B;; = 0. (5.26)

An arbitrary operator of Q-conditional symmetry of equation (5.22) is equivalent to
either an operator of form (5.23) or an operator of form (5.25).

Theorem 5.2 is proved by means of the method described in [13].

Note 5.6 It can be shown (in a way analogous to one in [13]) that system (5.24) is
reduced to the decomposed linear system

frama = 2 =0 (5.27)
by means of the following non-local transformation

RNy ) -y
AP =12
P L2 - AL (5.28)
AN
=1 2+ g - g2 f
Equation (5.26) is reduced, by means of the change
B=-9,./%;, ®=o(1,2f)
and the hodograph transformation
Yo=7, Y1 =%, y2:q)7 \IJ:f7
to the following equation in the function ¥ = W(yg, y1, y2):

\I’Z/o + 77(90)91_1‘1’3;1 - \I'y1y1 =0.
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Therefore, unlike Lie symmetries @Q-conditional symmetries of (5.22) are more
extended for an arbitrary smooth function n = n(7). Thus, Theorem 5.2 implies that
equation (5.22) is Q-conditional invariant under the operators

0., X=0.+n—-12"9., G=2r+0C)d.— 2fo;

with C = const. Reducing equation (5.22) by means of the operator G, we obtain the
following solution:

f=Ca(22 =2 [(n(r) — 1)dr) + Ci. (5.29)

In generalizing this we can construct solutions of the form

N
f=Y TFr)*, (5.30)

where the coefficients 7% = T*(7) (k = 0, N) satisfy the system of ODEs:
F 2k 42)(n(r) =2k —1)T* =0, k=0,N—-1, TN =0. (5.31)

Equation (5.31) is easily integrated for arbitrary N € N. For example if N = 2, it
follows that

f = G =422/ (n(r) = B)dr+ 8 [((n(r) = 1) [ln(r) - B)dr Jar | +
+ 02{22 =2 [(n(r) - 1)d7’} +C1.

An explicit form for solution (5.30) with N =1 is given by (5.29).
Generalizing the solution

f=Coexp{—z%(47 +2C)~' + [(n(r) = 1)(27 + C)dr} (5.32)

obtained by means of reduction of (5.22) by the operator GG, we can construct solutions
of the general form

ZSk z(21 4+ C)~ ) X

(5.33)
x exp{—z (47 +20) + [(n(r) = )(@r + ) Ldr |,
where the coefficients S* = S¥(7) (k = 0, N) satisfy the system of ODEs:
SE 4+ (2k +2 -2k —1)(27 + C) 25k =0,
£ 2k + 2)(0(r) ~ 2%~ )27 +O) 630

k=0,N—-1, SN=o.
For example if N =1, then
f:{01< (21 +C)2 =2 [(n(r) = 1)(2r + C)~ 2d7)+00}><
X eXp{ 24r+20)7t + f )21+ C)~ 1d7}.

Here we do not present results for arbitrary NV as they are very cumbersome.
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Putting g2 = ¢ = 0 in system (5.24), we obtain one equation in the function g

g — gl +29lg" =2 =0

gr =127 g 2
It follows that g' = —g./g+ (n—1)/z, where g = g(7,2) is a solution of the equation

gr+ (1 —=2)27"g: — gz = 0. (5.35)
Q-conditional symmetry of (5.22) under the operator

Q=0-+(~g:/9+(n—1)/2)0. (5.36)

gives rise to the following

Theorem 5.3 I} g is a solution of equation (5.35) and
f(r,2) = [ 2'g(1,2")d" +
+ f—:(—) (ZOQZ(T/a ZO) - (77(7-/) — 1)9(7'/’ ZO)>d7—/,

where (10,20) is a fixed point, then f is a solution of equation (5.22).

(5.37)

Proof. Equation (5.35) implies

(29)r = (29 — (n — 1)g)-
Therefore, f, = zg9, fr =29, — (n—1)g and

ff+772_lfz—fzzZZgz—(U—l)g-ﬁ-??g—(Zg)z:O. QED

The converse of Theorem 5.3 is the following obvious
Theorem 5.4 If f is a solution of (5.22), the function
=z71f, (5.38)

satisfies (5.35).

Theorems 5.3 and 5.4 imply that, when n = 2n (n € Z), solutions of (5.22) can be
constructed from known solutions of the heat equation by means of applying either
formula (5.37) (for n > 0) or formula (5.38) (for n < 0) |n| times.

Let us investigate symmetry properties and construct some exact solutions of
system (5.19)-(5.20) for e =1, i.e., the system

wh —wl, +7(t)z  wl =0, (5.39)

w2 — w4+ (7(7) — 2)27 0 + (w' — (7)== 0. (5.40)

If (w',w?) is a solution of system (5.39)-(5.40), then (w!,w? + g) (where g =
g(7,2)) is also a solution of (5.39)-(5.40) if and only if the function g satisfies the
following equation

gr = gz + (0(7) = 2)27 g =0 (5.41)
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System (5.39)-(5.40), for some ¥ = x(7), has particular solutions of the form
N N-1
w!' = ZTk(T)ZQk, w? = S ()22,
k=0 k=0

where T°(7) = x(7). For example, if X(7) = —2C; [(7)(7) — 1)dr 4+ C5 and N = 1,
then

w' =Cy (22 =2 [(A(r) — 1)dr) + C2, w? = —C17.
Let x(r) = 0.

Theorem 5.5 The MIA of system (5.39)-(5.40) with x(r) = 0 is given by the
[ollowing algebras

a) {w'Oyi, WH(T,2)0y:) if N(T) # const;
b) (270, + 20,, Or, WOy, W (T,2)0yi) if 7(T) = const, A # 0;
¢) (270, + 20,, Or, w2z 0y2, WOy, WH(T,2)Dyi) if H=0.

Here (w*,w?) is an arbitrary solution of (5.39)-(5.40) with () = 0.

For the case x(7) = 0 and #(r) = const system (5.39)-(5.40) can be reduced
by inequivalent one-dimensional subalgebras of its MIA. We obtain the following
solutions:

For the subalgebra (9. ) it follows that

’wl = Cl lnz+Cg,
w? =100z —Inz)+ $Colnz + C3272 4+ Cy

wl = Clz2+027
w? = %C’lzZJr %Czln22+031nz+04

wl = Clzﬁ“ + 027
w? =1C1(N+ 1)1 + Co(f — 1) Inz 4+ C32171 + Cy

it & {-1;1}.
For the subalgebra (0, — w'd,,:) it follows that

wh=eTEIPl), Wt = TR OTUY),
where the functions 1! and 1?2 satisly the system
2Pl + 2l + (22 = 1 (1 + 1))t =0, (5.42)

2292, + 22 4 (22— 2(h — 1)?)y? = 29l (5.43)
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The general solution of system (5.42)-(5.43) can be expressed by quadratures in terms
of the Bessel functions of a real variable J,(z) and Y, (2):

Ut = Crdysa(2) + Co u+1( )
? = C3J,(2) + C1Y,(2) 2) [T, ()¢ (2)dz — 2T, (2) [ Y, (2)¢t(2)dz

with v = (5 — 1);
For the subalgebra (0, 4+ w'0,,) it follows that
wt :efzé(ﬁ+1)w1(z)7 w2 = %n 1)1/}2( )
where the functions ! and 1?2 satisfy the system
ML+l — (224 1+ 1)?) ! =0, (5.44)
2L+l = (4 1 (- 1)?)Y? = 2t (5.45)

The general solution of system (5.44)—(5.45) can be expressed by quadratures in terms
of the Bessel functions of an imaginary variable I,,(z) and K, (2):

P =C1l,41(2) + Co u+1( )
P? = O31,(2) + C4 K, (2 z) [1,(z 2)dz — 1,(2) [ K, (2)'(2)dz

with v = (5 — 1).
For the subalgebra (270, + 20, + aw'd,,:) it follows that

w = |r|%e 2w T VYl W),  w? = |7]%e 2 |w| T y2(w)

with w = 122771, where the functions ¢! and ¢? satisfy the system
102l = (w2 + (0= 107 = D)w+ 1+ 1)> = 1)L, (5.46)
dwy2, = <w2 +(a—3(7=3)w+3(H—-1)7- 1)¢2 + 2|w| /2yt (5.47)

The general solution of system (5.46)-(5.47) can be expressed by quadratures in terms
of the Whittaker functions.

6 Symmetry properties and exact solutions
of system (3.12)

As was mentioned in Section 3, ansatzes (3.4)-(3.7) reduce the NSEs (1.1) to the
systems of PDEs of a similar structure that have the general form (see (3.12)):

iyl 1 2 _
ww; — wi; + 51 + agw? =0,

wiw? — w? + 53 — agw! + aywd =0, (6.1)
% 3 3 3 — ’
wiw; — wy; + oqw” + as = 0,

wi_a37

where «;, (n =1,5) are real parameters.
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Setting o, = 0 (k =2,5) in (6.1), we obtain equations describing a plane convecti-
ve flow that is brought about by nonhomogeneous heating of boudaries [25]. In this
case w' are the coordinates of the flow velocity vector, w? is the flow temperature, s
is the pressure, the Grasshoff number X is equal to —«3, and the Prandtl number o is
equal to 1. Some similarity solutions of these equations were constructed in [22]. The
particular case of system (6.1) for «; = as = a4y = a5 = 0 and a3 = 1 was considered
in [31].

In this section we study symmetry properties of system (6.1) and construct large
sets of its exact solutions.

Theorem 6.1 The MIA of (6.1) is the algebra
1. Ey = (01, 02, 0s) if a1 #0, ay #0.

2. E5 = (01, 02, Os, Ous — a1220s) if a1 0, ay =0, (a1, as,a5) # (0,0,0).
3. Es3= (91, 0y, D5, Ops — 12905, D — 3w3dys) if a1 #0, ap =0, k=2,5.
4. Ey = {01, O, 05, J, (W + a5/aq)0ys) if a1 =0, ay #0.

5. E5 = (01, Oa, O0s, J, Oys) if a1 = aq =0, (az,a3) # (0,0), as # 0.

6. FEg= {01, 0o, 05, J, Ous, w30ys) if a1 =ays=as=0, (az,asz)# (0,0).
7. E;= (81, 0y, Os, J, Ous, D +2w30ys) if a5#0, oy =0, 1 =1,4.

8. Es= (01, 0y, O, J, Oys, D,w3dys) if ay =0, n=T1,5.

Here D = 2;0; — W'y — 2505, J = 2105 — 2001 + w2 — w2y, 8; = 0s,.

Note 6.1 The bases of the algebras Eg and Eg contain the operator w3d,,s that is not
induced by elements of A(NS).

Note 6.2 If oy # 0, the constant as can be made to vanish by means of local
transformation

3

0 = wd + a5/, §=s— arasa)z, (6.2)

where the independent variables and the functions w® are not transformed. Therefore,
we consider below that as = 0 if ay # 0.

Note 6.3 Making the non-local transformation

§=s+ ¥, (6.3)
where W) = w?, Wy = —w! (such a function ¥ exists in view of the last equation of
(6.1)), in system (6.1) with ag = 0, we obtain a system of form (6.1) with @3 = @ = 0.
In some cases (a1 # 0, ag = ag = a5 =0, ag #0; a3 = ag = a4 = 0, ag # 0)
transformation (6.3) allows the symmetry of (6.1) to be extended and non-Lie solutions
to be constructed. Moreover, it means that in the cases listed above system (6.1) is
invariant under the non-local transformation

ZA,Z_ — 6821‘, @ = e—ewz’ 1f}3 _ 665’(1}37 s = 6—258 + a2(6—26 _ 1)\117

where
0=-3 if ag=as=0a5=0, ai,as#0;
0=2 il ag=a3=a,=0, ag,a5#0;
0=0 if acy=az=as=a5=0, ay#0.
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Let us consider an ansatz of the form:

1_ 1 3
w = ayp — azp” + biwa,

w? = asp! + a1 + bawo,

6.4
w? = ©? + baws, (6-4)
s=nh + dlwg + dgwlwg + %dgwg,
where a% + a% =1, w=w) =a129 — asz1, Wy = a121 + aszoe, B,b,,d, = const,
bi:Bai, b- B+O[ :0,
3 2 (6.5)

d2 = OéQB — Oélb3a1, d3 = —B2 — 051[)3@2,

Here and below p®* = ¢p*(w) and h = h(w). Indeed, formulas (6.4) and (6.5) determine
a whole set of ansatzes for system (6.1). This set contains both Lie ansatzes, construc-
ted by means of subalgebras of the form

<a101 + ag0s + a3(8wa — a1z28s) + a485>, (6.6)

and non-Lie ansatzes. Equation (6.5) is the necessary and sufficient condition to
reduce (6.1) by means of an ansatz of form (6.3). As a result of reduction we obtain
the following system of ODEs:

O30l — ol + 117 + di + daw + 0p® = 0,
@302 — @2, + p2jp + a5 =0,

; ‘ (6.7)
020) — Phu + ho — 29! + a1a19? =0,
5031 =0,
where M1l = —B, Hi12 = —Q1a2, U21 = —b3, Moo = —Qy, 0 = Q'3 —B. lfo= 0, system

(6.7) implies that
¢% = Cy = const,
h=as [ o' (w)dw — ara1 [ ¢?*(w)dw,

and the functions ¢’ satisfy system (4.23), where v1; = d; +a2Cy, vo1 = da, V12 = as,
voy = 0. If o # 0, then ¢ = ow (translating w, the integration constant can be made
to vanish),

h=—30%w+ as [ o' (w)dw — aray [ ¢*(w)dw,

and the functions satisfy system (4.29), where 111 = dy, vo1 = da + a0, V12 = as,
Voo = 0.

Note 6.4 Step-by-step reduction of the NSEs (1.1) by means of ansatzes (3.4)-(3.7)
and (6.4) is equivalent to a particular case of immediate reduction of the NSEs (1.1)
to ODEs by means of ansatzes 5 and 6 from Subsection 4.1.
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Table 1. Complete sets of inequivalent one-dimensional subalgebras of the algebras
E; — Fg (a and a; (I = 1,4) are real constants)

Algebra Subalgebras Values of
parameters
Eq <a131 + ag0s + a333>, (&) a% + a% =1
B, | (@014 205+ a3(0ys — a12205)), ai +a3 =1,
<81 + CL485>, <6w3 - 0112285>, <8S> ay #0

(a101 + a20s + a3(0ys — 12205)), (01 + a40s) af + a5 =1,
E3 1Y1 202 3\Vw 1<22Us )/, s/ 0‘,36{—17071}’

(D = 3wPdys), (s — a1220s), (s) as € {—-1;1}

(J 4+ 0105 + agw?dys ), (D2 + 4105 + agw?dys),

E,
(w33 + a10s), (0s)

<J + alas + a2811)3>7 <62 + alas + a2aw3>a
(O3 + a105 >, < 0s)

Es

(J + 105 + agw3dys), (02 + a10s + agw?dys), 40

as )
FEg <J +a10s + a38w3>, <82 +a10s + a38w3>, as € {_1; 0; 1}
<w38w3 + a185>, <aw3 + a188>, <8S>

P 35 . , az € {—1;0;1},
B <D+CLJ+2’LU 8w3>, <J+alas+a2aw5>a a 6{_1;051}
(02 + a10s + a20y3), (Oys + a20s), (0s) ifay =0
D+aJ+ azw30ys), (E + aJ + a30ys),
B J 4 a105 + aqw®dys), (02 + a10s + agwdys), | a; € {—1;0;1},
8

J + 105 + a20y3), (02 + a10s + a20y3), as #0
w30y + a10s), (s + a10s), (s)

o~~~ —~
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Now let us choose such algebras, among the algebras from Table 1, that can be
used to reduce system (6.1) and do not belong to the set of algebras (6.6). By means
of the chosen algebras we construct ansatzes that are tabulated in the form of Table 2.

Table 2. Ansatzes reducing system (6.1) (r = (22 + 22)'/?)

N Values Algebra Invgnant Ansats
of «a variable
(e%] 750, ~ wl :T_2(2’1<,01—22(p2),
I ax=0, (D = 3w?0ys) w=arctan | w? =r72(200" + 210?),
k=25 wd =r73p3, s =r"2h
1_ 1 2 _ 2
a1 =0, [{02 + a105 + aw30ys), we=g, wh=en
2 a5 = 0’ asg #0 N w=a w? = pPet2?2,
s=h+ai12
wl = 210" — 207722,
ap =0, w? = 200" + 217722
3 J 0 0, = )
as =10 (T + @ +az w3> w=r w3:<,03+a2arctanz_?’
s=h+a arctani—?
w' = 219" — 2129,
4 arp =0, <J + (1185 + a2w38w3> w =7 w? = Zz(pl + er_2<,02,
as =0 a 0 if a4=0 - 3 _ 3 az arctanZ—Q
5 2 # 4 w3 = e r
s=h+a arctanz—f
as # 0, z wh =172 (210" — 290?)
~ w = arctan®2 — 1¥ 207 ),
5 (67 :& <D +aJ + 2w38w3) —a]anI w2 — T_2(22(p1 + 214,02),
l=1,4 w3 = 1203, 5 = r—2h
J @2, s=r
1_,.-2 1_ 2
a, =0 ~ w = arctan®2 — 52 ; :72521@1 + ?%;’
6 | (D +aJ + a10,3) = LT (e ),
n=1>5 —alnr w> =¢° +a;lnr,
s=r"2h
- 1_ ,.-2 1_ 2
7| an= 0, (D+aJ+ajw?dys), | w=arctanZ— w2 = 7‘72521‘P1 N 22902;,
7’?,21,5 a 0 —alnr wm=r z22p z2197),
17 wd =ru1p? s =1r"2h
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Substituting the ansatzes from Table 2 into system (6.1), we obtain the reduced
systems of ODEs in the functions ¢® and h:

L 0%0, — Puw — 91" — %% = 2h + a1’ sinw + 207 = 0,
<p2<p3 — @Zw + hy, — 2(,0; + a1 cosw =0,

, , (6.8)
©?pd — o2, —3plp? — 99 =0,
¢ =0.
2. ool —ol, +a?+h, =0,
1,2 _ 2 —a 1 +a :O7
Ol — @2, — ' +a 6.9)

ool — o2, + (a29® + oy — ad)p® =0,

1 _
Y, = as3.

3. welel — L, + et —w % —3wTlol + aew ™ + wTlhy, =0,
wpl e — @2, +w Pl — aw?el + a1 =0,
1.3 3 -2 2 -1 3 _
WYY, Pow + agw @ w Y, + a5 = 07
20 + wel = as.

(6.10)

4. welpl — oL, + ol —w T ? — 3w el + aw 2P+ wth, =0,

welp? — o2, + w2 — agw?e! + a1 =0,

M ~ ~ (6.11)
wel @l — @3, + asw™2p?0? —wTlE + (ay — a3w?)e? =0,
20! + wel = as.
5. (¢®—aph)pl — (1+a®)el, — o' — ©?p* —ah, —2h =0,
(> —ap" )l — (1 +a®)p2, — 2(apl + L) + hy =0 (6.12)
(©* —ap')pd — (1 +a?)pd, + 20" 0® — 40 + dap? + a5 =0, '
2 — apl, = 0.
6. (p*—apl)pl — (1 +a®)pl, —¢'e' — ©?p* —ah, —2h =0,
(9 —ap')pZ — (1 +a?)p, — 2(ap? + L) + hy =0, (6.13)
(9* —ap')pl, — (1 +a®)pl, + arp' =0, '
vl —ap, =0
7. (¢* —aph)el — (1+a®)el, —¢'e! — ©?p* —ah, —2h =0,
(p* —ap")p? — (1 +a*)p2, — 2(ap? + ¢l) + hy =0, 614
2 _ 1 3 _ 2 3 1,3 _ ,2 .3 3 _ ( : )
(p* —apt)p,, — (1 +a)pg, + a1 ¢® — ajp”® + 2aa1 ¢y, = 0,
92 — apy, = 0.

Numeration of reduced systems (6.8)—(6.14) corresponds to that of the ansatzes
in Table 2. Let us integrate systems (6.8)-(6.14) in such cases when it is possible.
Below, in this section, Cj = const (k = 1,6).
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1. We failed to integrate system (6.8) in the general case, but we managed to find
the following particular solutions:

a) ¢'=—6p(w+Cs, 5(4-2C1),Ch) -2,
W =p>=0, h=2p'+Cy;
b) ! = —6C22 1 p(e“1% + C3,0,C3) + 3C% — 2,
©? =501, ¢*=0,
h = —12C%e*1@ p(e“1 + (C5,0,Co) — 2 — 1307 — 2C
c) p'=0C1, ¢*=0Cy ¢*=0, h=-3(C}+C3).
Here @(T, 701, 52) is the Weierstrass function that satisfies the equation (see [19]):

(9r)? = 4% — 30190 — 305 (6.15)

2. If ag = 0, the last equation of (6.9) implies that o' = Cj. It follows from the
other equations of (6.9) that

0% = O3 + Cpe®1v — (alC’f1 — ag)w,

h = Cﬁ - CYQng - OéQOQCl_leclw + %012(0401_1 - 042)(4)2
if ¢y #0, and

¢? = C3 + Cow + 2a1w?,

h=Cg— asCiw — %0[202(4}2 — %agalw?’

if C1 = 0. The function 3 satisfies the equation
02— C1p3 + (a3 — ay — asp®)p® = 0. (6.16)
We solve equation (6.16) for the following cases:
A C2 = a1 — Oézcl =0
3O (Cyer' ™ g Cye i), >0,
p° = 6%01“’(04-5-05@), p =0,
e3¢ (Cy cos((—p) /2w) + Cs sin((—)/?w)), p1 <0,
where p = in — a3+ ag + axCs.
B. C1 =a; =0, CQ 75 0 ([19])
@ = Y27, 15(3(—axCs)/2¢3/?),

where ¢ = w + (Czag — a3 — ay)/(aaCs). Here Z,(7) is the general solution of the
Bessel equation (4.22).

C. Cl = 0, ay # 0 ([19])
03 = (w+ C’Qafl)*l/QW(u, i, (%alag)*l/z(w + Cgafl)Q),

where v = 3(2a1a2)7Y? (a3 — oy —a2C3+ 3a2C3a; ). Here W (3¢, 11, 7) is the general

solution of the Whittaker equation (4.21).
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D. C1 #0, Ca #0, a1 — axCy =0 ([19]):
(p?) _ B%CIWZV(201_1(—a202)1/26%C1w),

where v = C; ' (CF + 4(a + a2C5 — a%))l/Q. Here Z,(7) is the general solution of the
Bessel equation (4.22).

E. 01 7£ O, a; — 04201 7£ O, CQ =0 ([19])
@3 = 6201w51/2zl/3( (az(a:C7! 2))1/253/2),

where £ =w+ (a3 — 1C% — Csas — au) /(a2(a1C7 " — ). Here Z,(7) is the general
solution of the Bessel equation (4.22).

If a3 # 0, then ¢! = azw (translating w, the integration constant can be made to
vanish),

0? =C, + Cy fe%%“ﬂdw +a fe%%“’2 (f e_%%“’?dw)dw + aow,
h=0C5;— %(a% + ad)w? — asCiw — a0y (wfe%a3w2dw — agle%‘”“z) —
— aoaq (w i 308w (f e_%%“ﬂdw)dw — 0¢3_1e%a3“’2 J e~ 33w’ oy 4 ozglw),
and the function (? satisfies the equation
02— aswed + (a3 — ay — azp?)p® = 0. (6.17)
We managed to find a solution of (6.17) only for the case a; = Cy =0, i.e,,
> = ei"WzV(aéﬂ(w + 2az020357),v),

where v = da; ! (o + a2C1 — a3(ada;? +1)). Here V(r,v) is the general solution of
the Weber equation

4V, = (T2 +v)V. (6.18)
3. The general solution of system (6.10) has the form:

p' = Clw™? + a3, (6.19)

@* = Cy + C [wOHledose’ gy — Fagw? +

+ ay fwclJFle%aSUﬂ (fw7C17167%a3w2dw) dw, (620)

@3 =Cy+C5 [w! edonw’ q, +
+ [wOrleaae® (f wi=Cre=i0aw” (o5 4 azw’%f)dw)dw,
h=Cs— ga3w? — 1C3w™2 + [(P? () w™3dw — s [ W p?(w)dw. (6.21)

4. System (6.11) implies that the functions ¢’ and h are determined by (6.19)-
(6.21), and the function ¢ satisfies the equation

3o~ (Cr=1D)w '+ Lasw) @3 + (acw™2(az—¢?) — au)® = 0. (6.22)
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We managed to solve equation (6.22) in following cases:
A. C’gzal:O, 0437501
03 = wécl_leéw“’zW(%, 1, 1 0sw?),

where 3 = 1(2 — C1 — (dou + 2asa2)a5'), p = 2(C? — 4a} + 4axCy)Y/2. Here
W (5, u,7) is the general solution of the Whittaker equation (4.21).
Let a3 = 0, then

Co+Cslnw + i(al + 209 )w?, Ci = -2,
0 = Cg—i—%Cguﬂ—&—%alwg(lnw— %), C; =0,
CQ + 03(01 + 2)71wcl+2 — %Cfl(al - a201)w2, Cl 7& 0, —2.
B. 03 = ai —a201 =0:

w7, (ut?w), p# 0,
P =< w9 (Cow” 4 Cow™), n=0,v#0, (6.23)
w2 (C5 4 CgInw), pw=0,v=0,

where 1 = —ay, v = 3(C} — 4a3 + 4a2C5)'/%. Here and below Z,(7) is the general
solution of the Bessel equation (4.22).

C.C3=0, C; #0: ¢? is determined by (6.23), where
= %agCl_l(al —aCh) —ay, v=3(C}—4d3 + 4ayCy) /2.
D. C; = a; = 0: ¢? is determined by (6.23), where
W= —%CLQC?, —ay, v=(-a3+ a202)1/2.
E. C3 £0, Cy € {0; -2}, az(a; — a2Cy) — 2a4Cy = 0:
P = w7, (' t3),
where 11 = 2C3/%(Cy +2)73/2, v = (Cy + 2)~1(C? — 4a2 + 4a,C,) /2.
F.Cy =-2,C3 #0, az(ar + 2a2) + 4oy =0 ([19]):
o3 = w71§1/221/3(%0§/2§3/2)’
where ¢ = Inw + C5 (a3 — 20y — 1).
G.C;=2,C3<0, 1—a3+ayCs > 0:
9 =W (s, i, 3(—C5)'?w?),

where s = 1(—C3)7V/2(—day+a3 —200a2), p = $(1—a3+azCs)'/2. Here W (3¢, 1, 7)
is the general solution of the Whittaker equation (4.21).

5-7. Identical corollaries of system (6.12), (6.13), and (6.14) are the equations
©* = ap' + C1, (6.24)

h=a(l+a*)pl + (2+2a® — aCy)p' + Co, (6.25)
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(1+a?®)gl, + (4a — C)pl + o o + 4" + (14 a?)"H(CF +2Cy) = 0. (6.26)
We found the following solutions of (6.26):
AT (14a®)7HC? +20,) < 4:

/2

o' = (4— (1+a*)H(C] +2Cy)) 2. (6.27)

B. If C1 =4a:

4 (Cf+20y) 03) _9 (6.28)

L o —Y 1o, =2 EiTb2)
4 P\laxayz T 37 3112

Here and below @(7, 51, »2) is the Weierstrass function satisfying equation (6.15). If
Cy =2 —6a® and C3 = 0, a particular case of (6.28) is the function

o' = —6(1 + a?)w? — 2 (6.29)

(the constant Cjy is considered to vanish).

C. I 1 #4a, (1+a?)71(C? +2C3) — 4 = —9u*:
ol = —6p2e Xp(e ™t + C4,0,C3) + 3% — 2, (6.30)

where £ = (14 a?)™2pw, p = L(4a— C1)(1+a?)~/2. 1 C3 = 0, a paticular case of
(6.30) is the function

ol = —6p2e (e S+ Cy) "2 4+ 3u% — 2, (6.31)

where the constant C, is considered not to vanish.
The function 2 has to be found for systems (6.12), (6.13), and (6.14) individually.

5. The function ¢? satisfy the equation
(1+a®)p, — (C1+4a)p, — (20" — 4)¢° — a5 = 0.
If ¢! is determined by (6.27), we obtain

% = exp(%(l +a?)"HC + 4a)w) X

Cs exp(v'/2w) + Cg exp(—1v/?w), v>0
X ¢ Cscos((—v)2w) + Cssin((—v)/2w), v<0 p+
Cs + Cow, v=20

—a5(20" —4)7h, 201 —4#0
+{ —as(da+C1)tw, 20t —4=0, Ci+4a#0 },
las(14+a%)7'w? 201 —4=0, Ci+4a=0

where v = 1(1+a?)7%(Cy +4a)* — (14 a%) 71 (4 — 2¢").

6. In this case ¢? satisfy the equation

(1+a®)gl, — C19l = arp".
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Therefore,
@3 =Cs5 + Cexp((1+a?)"'Ciw) + a, O (fgo Ydw +
+exp((1+a?)'Cw) [exp(—(1+ a2)‘101w)g01(w)dw)
for C1 # 0, and
3 =Cs5+ Cow+ ar1(1 4 a*) Hw [ ¢ (w)dw — [ we! (w)dw)

for Cl =0.
7. The function @3 satisfy the equation

(1+ az)wiw —(C1 + 2a1a)goi + (a2 — a1pM)® = 0. (6.32)
A. If ¢! is determined by (6.27), it follows that

@3 =exp(2(14a*)~1(C + 2a1a)w) x

Cs exp(v/?w) + Cg exp(—v'/%w), v>0
Cs cos((—v)%w) + Cgsin((—v)?w), v <0
Cs + Cow, vr=20

where v = 1(1 + a?)7(C1 + 2a1a)? — (1 + a®) "' (af — ar1").
B. If C; = 4a, that is, ! is determined by (6.27), we obtain
o3 = exp(a(a1 +2)(1+ az)_lw)e(r),

where 7 = (1 + a?)~*/2w + C,. Here the function § = 6(7) is the general solution of
of the following Lame equation ([19]):

0rr + (6a1p(7) + af +2a; —a*(2+a1)*(1 +a®)71)0 =0
with the Weierstrass function

p(r) = p(T, %(4 —(1+a®)~Y(C? + 202)),03>.

Consider the particular case when Cy = 2 — 6a? and C3 = 0 additionally, i.e., !
can be given in form (6.29). Depending on the values of a and a;, we obtain the
following expression for ?:

Case 1. a; # —2, a; # 2a>:

o’ = ‘w|1/26:17p (a(2+al)w> Z, (((2 +a1)(ar — 2a2))1/2w> |

1+ a? 1+ a2

where v = (1 — 6a;)1/2.
Case 2. a1 = —2: ¢3 = Csw* + Cew™>
Case 3. a1 = 2a%:
Case 3.1. 4842 < 1: ¢® = |w|'/2e2* (C5w” + Cow™7), where o = 1
)

Case 3.2. 48a% = 1, that is, a = £5/3: ¢® = [w[Y/2(C5 + Cs lnw).

1 — 48a2.
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Case 3.3. 48a% > 1: ¢® = |w|'/2e2%(C5 cos(yInw) + Cgsin(yInw)), where

y = 1vVA8a? 1.
C. Let the conditions
Cy #4a, (14a®)7HC? 4+2Cy) — 4 = —9u*

be satisfied, that is, let ¢! be determined by (6.30). Transforming the variables in
equation (6.32) by the formulas:

@3 =771/2 exp(%(C'l + 2aa1)(1 + a2)*1w>0(7'),
7= exp(—p(l + a?) VW),
we obtain the following equation in the function 6 = 6(7):
720, + (6a17°p(T + C4,0,C3) + )0 = 0, (6.33)

where o = p72(af + 2a; — 3(1 + a?) 71 (C} + 2aa1)?) — 3a; + 1. If o = 0, equation
(6.33) is a Lame equation.

In the particular case when ¢! is determined by (6.31), equation (6.33) has the
form:

(7 + C1)?0-1 + (6a17° + o(7 + C1)?)0 = 0. (6.34)
By means of the following transformation of variables:

0 =el"le -1y (6), &=-Ci'r

where v1(v; — 1) + 0 = 0 and vo(ve — 1) + 6a; = 0, equation (6.34) is reduced to a
hypergeometric equation of the form (see [19]):

(€ — D)tpee + (2(v1 + 12)€ — 2v1)¢¢ + 2v1129) = 0.
If 0 =0, equation (6.34) implies that

(74 C4)?0,7 + 60,0 = 0.
Therefore,

0 = Cs|m + Cy|Y/?77 + Cg|r + Cy|/?H

L

1/2
24 k)

if a1 < where v = (1 — 6ay)

0 = |7+ Ca|*(C5 + CoIn | + C4)

1

51> and

if a; =
0=t + C’4|1/2(C5 cos(vIn |7 + Cy|) + Cgsin(vIn |7 + Cy4l))

if a1 > i, where v = (6a; — %)1/2.
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7 Exact solutions of system (2.9)

Among the reduced systems from Section 2, only particular cases of system (2.9) have
Lie symmetry operators that are not induced by elements from A(NS). Therefore,
Lie reductions of the other systems from Section 2 give only solutions that can be
obtained by means of reducing the NSEs with two- and three-dimensional subalgebras
of A(NS).

Here we consider system (2.9) with p? vanishing. As mentioned in Note 2.5, in
this case the vector-function 7 has the form m = n(¢)€, where € = const, |€] = 1, and
n =mn(t) = |m(t)] # 0. Without loss of generality we can assume that & = (0,0,1),
ie.,

For such vector i, conditions (2.5) are satisfied by the following vector 7’
=(1,0,0), 7*=(0,1,0).

Therefore, ansatz (2.4) and system (2.9) can be written, respectively, in the forms:

ul =0l w2 =12 ud= (77(2?))_1(1/3 + me(t)x3),

1 -1 (7.1)
p=q—3nut)(n(t)) =3,
where v = v(y1,y2,¥3), ¢ = q(y1, 2, ¥3), ¥i = @i, y3 =, and
vt—i—v]v —v ;4 =0,
v+ vJU;3 - vg’] =0, (7.2)
vi 4 p3 =0,

where p* = p?(t) = m. /1.

It was shown in Note 2.8 that there exists a local transformation which make p?
vanish. Therefore, we can consider system (7.2) only with p? vanishing and extend
the obtained results in the case p® # 0 by means of transformation (2.12). However it
will be sometimes convenient to investigate, at once, system (7.2) with an arbitrary
function p3.

The MIA of (7.2) with p* = 0 is given by the algebra

= <R3(d_))7 Zl()‘)v D?1>7 ata J1127 31,3, Uga1z3>

(see notations in Subsection 2.1). We construct complete sets of inequivalent one-
dimensional subalgebras of B and choose such algebras, among these subalgebras,
that can be used to reduce system (7.2) and do not lie in the linear span of the
operators R3(1), Z1()\), Jiy, i.e., the operators which are induced by operators from
A(NS) for arbitrary p3. As a result we obtain the following algebras (more exactly,
the following classes of algebras):

The one-dimentional subalgebras:

1. Bll = (D3 + 23¢J{y + 2yv30,s + 2(30,3), where v8 = 0.
2. = (0 + 3 Jiy + 7030, + BO,3), where v3 =0, » € {0;1}.
3. B3 = (Jly + 40308 + Z1(A(t))), where v # 0, A € C*((to,t1),R).
4. Bj = (R3(y(t)) +~v°0ys), where v #0,
Y(t) = (@' (1), ¥3(t) # (0,0) VE € (to,12), ¥ € C=((to, t1),R).
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The two-dimentional subalgebras:

L. Bf = (0; + 20,3, D3+ sJ{y +70°0ys + £10,3),
where 31 =0, (v —2)32 = 0.

2. B3 = (D} +2v1v30,5 + 2610,3, Jiy + 12030y + B20,s + Z1 (e|t|71)),
where 1161 =0, 7282 =0, 1182 — 12061 = 0.

3. B2 = (D} + 2x¢Jly + 271030, + 2010ys, R3(|t|7 T2 cos T, |t|7+/ 2 sinT) +
+Y2030ys + 20,5 + Z1(e|t|771)), where T = sIn |t
(11+0)B1 —7261=0, 072 =0, eo =0.

4. B} = (01 + 005 4 1043, Jiy + 12030ys + 20,5 + Z'(e)),
where y161 =0, 71282 =0, 7182 — 7251 = 0.

5. B2 = (0 + s Jiy + 110303 + 10,3, R3(e! cos st, e sin st) +
+ Z1(cet) 4+ 79v30,s + B20,3), where (1 + 0)B1 — Y281 = 0,
ov2 =0, ec =0.

6. Bf = (R3(¢") +7v°0ys, R3(¢?)), where 9" = ("' (1), 9™ () # (0,0)
Vie (t07t1), Wj € Coo((tmtl)aR)a 1/;15115 '1/;2 - 1/;1 ’(Z}?t =0, v#0.
Hereafter 1! - )2 := ¢p1iqp?,

Let us reduce system (7.2) to systems of PDEs in two independent variables. With

the algebras Bi-B} we can construct the following complete set of Lie ansatzes of
codimension 1 for system (7.2) with p? = 0:

2

Lo vt =[t7Y2(w! cos T — w?sinT) + Lyt — eyt~

v? = [t[72(wlsinT + w? cosT) + Syt + seyit Y,

7.3
v3 = [t w3 + Bln |t (7:3)
q=t|" s+ $(% + Ht =2,
where 7 = »1In|t|, v8 =0,
21 = [t| 72 (yy cos T + ya sinT), = [t| 7Y/ (—yysin T + y3 cos 7).
Here and below w® = w®(21, 22), s = s(zl,zQ) = (y? +y3)"/2.
2. v = w!' cos z2t — w?sin st — sxyo,
v? = w! sin st + w? cos st + sy, (7.4)
’U3 — 3e'yt +5t .
q=s+3 %27“2
where s € {0;1}, 758 =0,
Z1 = Y1 €08 st + yosin set, 29 = —yj sin st + ys cos .
3. vl = yirTtwd — yor 2w — yyor—2,
2 -1,.3 —2,1 —2
VT =yYor W + Yy Tw + r—e,
Y2 Y YY1 (7.5)

3 = e arctanyz /1 ,

q = s+ A(t) arctan yo /91,
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where 1 = t, 20 =1, 7é 0, N e Coo((to,tl),R).

4. 0= 9) (! + )P+ w0+ (- G — 20:)
v = w?exp(y(¥ - 6) (4 - ) (76)
g=s—-9) " (Pu-9) - 9) + %(7/’ V)2 (P ) (V- §)2,

Where 1 = t? z2 = (g g)a Y 7é Oa v = (’0171}2); Yy = (y17y2)7 W € Ooo((toatl)7R)a
= (*7/1271/’1)~
Substituting ansatzes (7.3) and (7.4) into system (7.2) with p?> = 0, we obtain a
reduced system of the form (6.1), where

a1 =0, ay=-1, az=-23% ay4=7, as=0F i t>0 and
a1 =0, ax=1, az3=2x% a=—v, as=-0 if t<0

for ansatz (7.3) and
a1 =0, ax=0, az=-23% aqs=7v, a3=0

for ansatz (7.4). System (6.1) is investigated in Section 6 in detail.

Because the form of ansatzes (7.3) is not changed after transformation (2.12), it is
convinient to substitute their into a system of form (7.2) with an arbitrary function p3.
As a result of substituting, we obtain the following reduced systems:

3. wi +wlwd — 2z (W' +7)° — (Wi + 25wl — 2 %w?) + 52 =0,

~1
wi + widwd —wly + 25wl + A =0,

w? + w?’w% w3y — 2y tw3 + 25 Pwlw? = 0, (7.7)
wi + 25w = —m /.
4. wi +wtwy — (P Plwgy =0,
wi +wiwd — (Y - p)wdy + (- )s2 + 2w + ) (- 0) (- P) T —
—2(th - V) (Y - ) TP + (20 - Py — - D) (U ) Lz = 0, (7.8)
wi +wPwi — (¢ - P)wdy + (- ) (w! + (- O) (Y - ) P az)w? =0,
wy +1¢/n =0

Unlike systems 8 and 9 from Subsection 3.2, systems (7.7) and (7.8) are not reduced
to linear systems of PDEs.
Let us investigate system (7.7). The last equation of (7.7) immediately gives
(w3 + 25 ')y = wiy + 25 'wd — 2w =0,

3 1

: (79)
wd = (x —1)z5 " — dnn~ Lz,

where x = x(t) is an arbitrary differentiable function of ¢ = z5. Then it follows from
the first equation of (7.7) that

5= [ 53"+ 7)dz — S0c- 17237 + 1 (/) = Sou/n)?) — xeln 2ol
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Substituting (7.9) into the remaining equations of (7.7), we get

w% — w%z + (Xz2_1 — %mn_le)w% +A=0,

Wt —udy + (202" = Smorta)ud +925 =0, o
By means of changing the independent variables

= [In®)ldt, == |n(t)|"/?2, (7.11)
system (7.10) can be transformed to a system of a simpler form:

A O A 71

w2 —w?, + (¢ - 2)z7'w? + vz 2wlw? = 0,

where 7(7) = n(t), X(7) = x(t), and A\(7) = A(¢).
If A(t) = —=2Cn(t)(x(t) — 1) for some fixed constant C, particular solutions of
(7.10) are functions

w' =Cn(t)z3, w? = f(21,22)exp(vC [n(t)dt),

where f is an arbitrary solution of the following equation

fi—fao+ ((x—2)2" — i~ tz) fo = 0. (7.13)

In the variables from (7.11), equation (7 13) has form (5.22) with 7(7) = x(t) — 2.
In the case A(t) = 8C(x( (t) [ n(t) — 3)dt (C' = const), particular

solutions of (7.10) are functlons

w' = C((n(t)*24 — 4z3n(t) [ n(®)(x(t) - 3)dt )

w? = f(z1,22) exp(5(7C) 20t )Zz +£( ),
where £(t) = —(yC)Y2 [ n(t)(x(t) — 3)dt + 4vC [ n(t)([ n(t) —3)dt)dt and f is
an arbitrary solution of the following equation

fi=fa2+ (x=2)z " = Gmnt +2(yC)V/2)z) f2 = 0. (7.14)

After the change of the independent variables

7= [In(t)|exp(4(yO)'/? [n(t)dt)dt, == [n(t)['/? exp(2(yC)'/? [n(t)dt) 2

in (7.14), we obtain equation (5.22) with 7(7) = x(¢) — 2 again.

Let us continue to system (7.8). The last equation of (7.8) integrates with respect to
2y to the following expression: w?® = —n;n =129 + x. Here x = x(¢) is an differentiable
function of z; = y3 = t. Let us make the transformation from the symmetry group

of (7.2):

0(t,g) = o(t, 5 =€) + &(1), 0° =% q(t,9) = q(t, 5 — &) — Eu(t) - g
where & -9 — &9y =0 a

§-0+x+nmm " (€-0) = [P 72(E-9) (e - 0) + | *(€-0) (0, - 0) = 0.
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Herealter |1)|2 = 4 -4). This transformation does not modify ansatz (7.6), but it makes

the function y vanish, i.e., w3 = —nm~'2,. Therefore, without loss of generality we

may assume, at once, that w? = 777”77122

Substituting the expression for w? in the other equations of (7.8), we obtain that

5= z§|¢|—2(<%¢3 e G e B ) B2 4 S — ()P 2) -

—2(¢p - )| 72 [w! (21, 22)d2a,
wi —mn~ " zawy — [Pws, =0, (7.15)
wi —mn~ zpws — [YPwdy + Y[ (20 - 0)[0] P2 + wh)w? = 0.
The change of the independent variables
= [(®)])dt, =z =n(t)z
reduces system (7.15) to the following form:
wl — = 0
w2 — —4 A_2 w? = (7.16)

where (1) = (1), 0(r) = 0(¢), () = n(t).
Particular solutions of (7.15) are the functions
w' = C1 + Con(t)zo + C3 (2 (n(t)22)* + [(n(t)[¥])%dt),
w? = f(t, z2) exp(€3(t)25 + €' (t)22 +€°( )

where (€2(t),&1(t),£%(¢)) is a particular solution of the system of ODEs:

& = 217 —APPP(ER)? + 3 Com?| 2 =0,
& =€ — AP + 2(v - O)[0 71 + Coymly| 72 = 0,
€0 — 20 2€2 — [P|2(€4)2 + 7 (Cy + Cs [(n(t)|])2dt) || 72 = 0,

and f is an arbitrary solution of the following equation

— [0 faz 4+ ((nen ™! + 4012€%) 20 + 20 2€Y) f2 = 0. (7.17)

Equation (7.17) is reduced by means of a local transformation of the independent
variables to the heat equation.

Consider the Lie reductions of system (7.2) to systems of ODEs. The second basis
operator of the each algebra B?, k = 1,5 induces, for the reduced system obtained
from system (7.2) by means of the first basis operator, either a Lie symmetry operator
from Table 2 or a operator giving a ansatz of form (6.4). Therefore, the Lie reduction
of system (7.2) with the algebras B? — B2 gives only solutions that can be constructed
for system (7.2) by means of reducing with the algebras B} and B3 to system (6.1).

With the algebra B? we obtain an ansatz and a reduced system of the following
forms:

@I

128NN DL o = en (0@ 0), 718)
A

I(T/Jtt y)(9 ),
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Where ¢a — ¢a(w)J h = h(w), w = t, \ = w11w22 _ w12w21 — ?Ll 3 él — 1;2 . §2’
0" = (%2, —y?), 0 = (—y'%,9'), and
G +ATHO - D) =0, §f + (YATHO - §) —PATE(0" - 01)) 9" = 0,
AL@ - 5) + et = 0,
Let us make the transformation from the symmetry group of system (7.2):
0(t,g) =0t g - +&, U5 =0 t7-E), (7 =st7-8) — &,
where
E+ATHO - i+ =0. (7.20)
It follows from (7.20) that &; = A=Y(0° - €)4},, i.e., 0}, - & — 0 - & = 0. Therefore, this
trasformation does not modify ansatz (7.18), but it makes the functions ¢ vanish.
And without loss of generality we may assume, at once, that ¢ = 0. Then

3 = Cexp(f(v)\*1|9|)2dt), C = const.

(7.19)

The last equation of system (7.19) is the compatibility condition of system (7.2) and
ansatz (7.18).

8 Conclusion

In this article we reduced the NSEs to systems of PDEs in three and two independent
variables and systems of ODEs by means of the Lie method. Then, we investigated
symmetry properties of the reduced systems of PDEs and made Lie reductions of
systems which admitted non-trivial symmetry operators, i.e., operators that are not
induced by operators from A(NS). Some of the systems in two independent variables
were reduced to linear systems of either two one-dimensional heat equations or two
translational equations. We also managed to find exact solutions for most of the
reduced systems of ODEs.

Now, let us give some remaining problems. Firstly, we failed, for the present, to
describe the non-Lie ansatzes of form (1.6) that reduce the NSEs. (These ansatzes
include, for example, the well-known ansatzes for the Karman swirling flows (see
bibliography in [16]). One can also consider non-local ansatzes for the Navier—Stokes
field, i.e., ansatzes containing derivatives of new unknown functions.

Second problem is to study non-Lie (i.e., non-local, conditional, and Q-conditional)
symmetries of the NSEs [13].

And finally, it would be interesting to investigate compatability and to construct
exact solutions of overdetermined systems that are obtained from the NSEs by means
of different additional conditions. Usually one uses the condition where the nonli-
nearity has a simple form, for example, the potential form (see review [36]), i.e.,
rot((@ - V)@) = 0 (the NS fields satisfying this condition is called the generalized
Beltrami flows). We managed to describe the general solution of the NSEs with the
additional condition where the convective terms vanish [29, 30]. But one can give
other conditions, for example,

Ai=0, i+ (@ -V)i=0,
and so on.
We will consider the problems above elsewhere.



Symmetry reduction and exact solutions of the Navier—Stokes equations 229

Appendix

A Inequivalent one-, two-, and three-dimensional
subalgebras of A(IN.S)

To find complete sets of inequivalent subalgebras of A(N.S), we use the method given,
for example, in [27, 28]. Let us describe it briefly.

1. We find the commutation relations between the basis elements of A(N.S).

2. For arbitrary basis elements V, W° of A(NS) and each e € R we calculate the
adjoint action

W(e) = Ad(eV)W° = Ad(exp(eV))W?°

of the element exp(¢V') from the one-parameter group generated by the operator V'
on WP, This calculation can be made in two ways: either by means of summing the
Lie series

2

005_ n oy — WO 4 0
zz:nV,W}va [VW] i

SV VWO + (A1)
where {VO, WO} = WO {v* WO} = [V,{V"~1, WO°}], or directly by means of solving
the initial value problem
dW (e)
de
3. We take a subalgebra of a general form with a fixed dimension. Taking into

account that the subalgebra is closed under the Lie bracket, we try to simplify it by
means of adjoint actions as much as possible.

= [V,W(e)], W(0)=WO (A.2)

A.1 The commutation relations and the adjoint representation
of the algebra A(INS)

Basis elements (1.2) of A(N.S) satisfy the following commutation relations:

Jig, Jaz] = —=Jz1,  [Jos, Ja1] = —Ji2,  [Js1, J12] = —Jas,
s Jap) = [D, Jap) = 0, [3t, D] = 20,
R(m)] = R(2tmy, — m),
)| = Z(2tx: + 2x),
R(), R(7)) = Z (g - 7 — - i), [Jap, R(7)] = R(7),
Jav: Z(X)] = [Z(x), R(m)] = [Z(x), Z(n)] = 0,

where m® =m®, Wb =—m®* Mm°=0,a#b#c#a.

(A.3)

Note A.1 Relations (A.3) imply that the set of operators (1.2) generates an algebra
when, for example, the parameter-functions m® and x belong to C°((to,t1),R)
(C§°((to,t1),R), A((to,t1),R)), i.e., the set of infinite-differentiable (infinite-differen-
tiable finite, real analytic) functions from (¢g,¢;) in R, where —oo < tg < t; < +o0.
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But the NSEs (1.1) admit operators (1.3) and (1.4) with parameter-functions of a less
degree of smoothness. Moreover, the minimal degree of their smoothness depends
on the smoothness that is demanded for the solutions of the NSEs (1.1). Thus, if
u® € C%((to,t1) x ,R) and p € C((to,t1) x Q,R), where Q is a domain in R?, then
it is sufficient that m® € C3((to,t1),R) and x € C((to,t1),R). Therefore, one can
consider the “pseudoalgebra” generated by operators (1.2). The prefix “pseudo-”" means
that in this set of operators the commutation operation is not determined for all pairs
of its elements, and the algebra axioms are satisfied only by elements, where they are
defined. It is better to indicate the functional classes that are sets of values for the
parameters m® and y in the notation of the algebra A(NN.S). But below, for simplicity,
we fix these classes, taking m®,x € C*((to,t1),R), and keep the notation of the
algebra generated by operators (1.2) in the form A(NS). However, all calculations
will be made in such a way that they can be translated for the case of a less degree
of smoothness.

Most of the adjoint actions are calculated simply as sums of their Lie series. Thus,

Ad(e0;)D = D +2¢0;, Ad(eD)d; = e~ %0,
d(=2(0)0 = 0 — £Z(x0),  AdZ())D = D — =Z(2tx, + 2%),
Ad(eR(m))0; = 0y — eR(1Thy) — 52 Z(1oy - Mgy — 170 - Mgy,
Ad(eR(m))D = D — eR(2t1; — 1) —

— 5522(2tmt My — 2000 - Mgy — 400 - Mgy,
Ad(eR(1))Jap = Jap — eR() + €2 Z(m®m}, — mfm"),
Ad(eR(m))R ( ) R() + €Z (g - i — 11 - ), Ad(eJap) R(17) = R(1),
Ad(eJap)Jeq = Jeqcose + [Jap, Jea] sine ((a,b) # (c,d) # (b, ))

>

(A.4)

where
me=mb, mb=-m* m°=0, a#b#c#a,
m? =mdcose + misine, m¢=m, a#b#c#a, dec{a;b}.

Four adjoint actions are better found by means of integrating a system of form (A.2).
As a result we obtain that
Ad(e0)Z(x(t)) = Z(x(t+¢)), Ad(eD)Z(x(t)) = Z(e? x(tezs)),
Ad(0))R(ni(t)) = R(mi(t +¢)), Ad(eD)R(ni(t)) = R(e™"ni(te*)).

Cases where adjoint actions coincide with the identical mapping are omitted.

(A.5)

Note A.2 If Z(x(t)) € A(NS)[C>((to,t1),R)] with —oo < ty or t; < 400, the
adjoint representation Ad(ed;) (Ad(eD)) gives an equivalence relation between the
operators Z(x(t)) and Z(x(t +¢)) (Z(x(t)) and Z(e*x(te®*))) that belong to the
different algebras

ANS)[C®((t, t1),R)] and A(NS)[C™((to — e,t1 — ), R)]
(A(NS)[C™((to,11),R)] and A(NS)[C®((toe=2, te2), R)])

respectively. An analogous statement is true for the operator R(m). Equivalence of
subalgebras in Theorems A.l and A.2 is also meant in this sense.
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Note A.3 Besides the adjoint representations of operators (1.2) we make use of di-
screte transformation (1.6) for classifying the subalgebras of A(NS),

To prove the theorem of this section, the following obvious lemma is used.

Lemma A.1 Let N € N.
A, If x € CN((to,t1),R), then 3n € CN((to,t1),R) : 2tn; +2n = x
B. If x€CN((to,t1),R), then 3n € CN((to,t1),R): 2tn; —n = x.
C. Ifm'ecCN((tg,t1),R) and a € R, then 31* € CN((to,t1),R) :
2t} — 1Y +al®> =mt, 2t12 — 12 —al' = m?.

A.2 One-dimensional subalgebras
Theorem A.1 A complete set of A(NS)-inequivalent one-dimensional subalgebras
of A(NS) is exhausted by the following algebras:

1. Al(x) = (D + 23¢J15), where 3 > 0.

2. Al(5) = (0 + »J12), where » € {0;1}.

3. Ai(n,x) = (Jiz + R(0,0,n(t)) + Z(x(t))) with smooth functions n and Y.
Algebras Ai(n,x) and AL(7, X) are equivalent if Je,6 € R, I\ € C>((to,t1),R):

i(t) = e n(t), x() =e*(x(t) + Aa(t)n(t) — AMt)me(t)), (A.6)
where t = te=2¢ + 4.

4. Aj(m,x) = (R(m(t)) + Z(x(t))) with smooth functions m and x: (m,x) #
(0,0). Algebras Al(m, x) and Al(r,X) are equivalent if 3e,6 € R, 3C £ 0, IB €
0(3), 3T € C=((ty, 1), R®):

-

1), (A7)

m(f) = Ce = Bi(t), X(E) = Ce2 (x(t) + L () - m(t) — 1 (2) -
where t = te™% + 6.
Proof. Consider an arbitrary one-dimensional subalgebra generated by
V =a1D + a0y + azJia + asJaz + asJz + R(m) + Z(x).

The coefficients a4 and a5 are omitted below since they always can be made to vanish
by means of the adjoint representations Ad(e;J12) and Ad(eaJ31).

If a1 # 0 we get @ = 1 by means of a change of basis. Next, step-by-step we
make ag, m, and x vanish by means of the adjoint representations Ad(—%agaflat),

Ad(R()), and Ad(Z(x)), where

I'e C=((to + ;agal—l,tl + 1a2a1_1) R3),
ne COO((tQ + agal ,tl + a2a1 1),R),

and l, 7 are solutions of the equations

[t
1

—

2tl;—f+a3afl(12,—ll,O)T:m, 2tny +2n = x + = (I ﬁ_i—l_’-rﬁtt)

[\
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with 7m(t) = ay 7t — Lasa; ") and x(t) = a7 'x(t — Lasa;"). Such I and 7 exist in
virtue of Lemma A.1. As a result we obtain the algebra Al (), where 25 = aza]'.
In case » < 0 additionally one has to apply transformation (1.6) with b= 1.

If a1 =0 and a2 # 0, we make a2 = 1 by means of a change of basis. Next, step-
by-step we make 77 and y vanish by means of the adjoint representations Ad(R(l))
and Ad(Z(x)), where I'e C*((to,t1),R3), n € C>=((to,t1),R), and
o (e = 1 g,

If a3 = 0 we obtain the algebra A(0) at once. If a3 # 0, using the adjoint repre-
sentation Ad(eD) and transformation (1.6) (in case of need), we obtain the algebra

a2l_1'5 + @3([2, _lla O)T = ’I’?L7 s = X +

AL(1).
If a3 = ag = 0 and a3 # 0, after a change of basis and applying the adjoint
representation Ad(R(—az'm? az'm',0)) we get the algebra Al(n,X), where n =

az'm?® and X = a3 'x + a3 *(m},;m? —m'm?). Equivalence relation (A.6) is generated

by the adjoint representations Ad(eD), Ad(60;), and Ad(R(0,0, ).
If a1 = az = a3 = 0, at once we get the algebra A}l(m,x). Equivalence relation

(A7) is generated by the adjoint representations Ad(eD), Ad(6d;), Ad(R(l)), and
Ad(EabJab).

A.3 Two-dimensional subalgebras
Theorem A.2 A complete set of A(NS)-inequivalent two-dimensional subalgebras
of A(NS) is exhausted by the following algebras:
1. A3(5) = (0y, D + »J12), where s > 0.
2. A3(s,¢) = (D, Jia + R(0,0, »|t|'/?) + Z(t™1)), where 5 >0, ¢ > 0.
3. A3(s¢,€) = (04, J12 + R(0,0,3) + Z(¢c)), where 3 € {0;1}, € > 0 if =1 and
e€{0;1} if »=0.
4. A¥o, 5, p,v,e) = (D + 23cia, R([t|7FY2(veosT, vsinT, p)) + Z(e[t|”™1)),
where 7 = xInlt], >0, u>0,v>0, u> +v?>=1,c0=0, and ¢ > 0.
5. A%(0,e) = (D, R(0,0,|t|7t'/2) + Z(e|t|”~")), where ed = 0 and & > 0.
6. A2 (0’ w, v €) = (0 + Jia, R(ve cost,ve’t sint, ue) + Z(cet)), where p > 0,
v>0 u2+1v2=1¢e0=0, and e > 0.
7. A%(0,€) = (O, R(0,0,e%) + Z(cet)), where o € {—1;0;1}, ea =0, and € > 0.
8. AZ(\ Y, p,9?) = (Jiz + R(0,0,\) + Z(4"), R(0,0,p) + Z(¢?)) with smooth
functions (of t) X, p, and ¢': (p,0*) # (0,0) and Aup — A\pye = 0. Algebras
A2\ L, p, %) and AZ(N\ WY, p,00?%) are equivalent if 3C; # 0, 3¢,6,05 € R,
30 € Cm((to,tl), R)
~( t) = ( (t) + Cap(t),  p(t) = Cre=*p(t),
PHE) = €2 (1 (1) + e (DA(E) — 0(E) et (t) +
] + Co(?(t) + 0u(t)p(t) — 0(t)pe(1))),
P2 (1) = Cre® (P2 (t) + 0u(t)p(t) — O(t)pr (1)),
where t = te™% + 6.

(A.8)
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9. Aj(m', x',m? x?) = (R(m! (1)) + Z(x' (1), R(m*()) + Z(x*(t))) with smooth
functions W' and x':

iy, -m? —m' g =0, rank((m', x"), (M2, %) = 2.
Algebras A3(mt, xt,m2,x?) and Az(ﬁz X, m2,%2) are equivalent if 3¢,5 € R,
E{Qij}i,jzl,Q : det{aij} 7& 0, dB € 0(3) dl e O (( ) Rd)

mz(f) = e*EaijBﬁij (t), ) (A9)

X (8) = €ai; (0 (8) + Lu(8) - 7 (8) = U{2) - 1713, (8)),
where T = te™% + 4.
10. A3(5¢c,0) = (D + sJ12, Z(|t|)), where >0, 0 €R.
11. A3 (o) = (0¢ + J1a, Z(e°")), where o € R.
12. A%, (0) = (04, Z(e°Y)), where o € {—1;0;1}.
The proof of Theorem A.2 is analogous to that of Theorem A.l. Let us take an

arbitrary two-dimensional subalgebra generated by two linearly independent operators
of the form

Vi=a'D 4 ab0; + ab i + alJas + akJs + R(mY) + Z(xY),

where af, = const (n = 1,5) and [V!,V?] € (V1 V?). Considering the different
possible cases we try to simplify V* by means of adjoint representation as much as
possible. Here we do not present the proof of Theorem A.2 as it is too cumbersome.

A.4 Three-dimensional subalgebras

We also constructed a complete set of A(NS)-inequivalent three-dimensional subal-
gebras. It contains 52 classes of algebras. By means of 22 classes from this set one
can obtain ansatzes of codimension three for the Navier—Stokes field. Here we only
give 8 superclasses that arise from unification of some of these classes:

1. A3 = (D, &y, Ji2).

2. A3 = (D + sJ12, 0, R(0,0,1)), where 3 > 0. Here and below s, o, 1, &2, p,
v, and a;; are real constants.

3. A3(o,v,e1,2) = (D, Ji2+v(R(0,0, [t|"/?In|t]) + Z(e2ft| "  In|t])) + Z(e1|t| 1),
R(0,0,[t|7FY/2) + Z(gq]t|7~1)), where vo =0, 1 >0, v > 0, and oey = 0.

4. A3(o,v,e1,e2) = (O, Jia+ Z(e1)+v(R(0,0,t)+ Z(e2t)), R(0,0, ")+ Z(e2€)),
where vo =0, oey =0, and, if o = 0, the constants v, 1, and e, satisfy one of the
following conditions:

v=162>0 v=0,e1=1,6>0; v=g1=0, g2 €{0;1}.
5. A3 (5, 7?1 ,m2,x1, x2) = (D + 25eJ12, R(mY) + Z(x1), R(M?) + Z(x?)), where
x>0, rank( nl m?2 ) 2,
tmy — At + s(m®2, —m™,0)T = a;;m,

txt + X' = a;x?, a;; = const,
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1 2 72

(a11—|—a22)(a21m1 mb + (age — ap)mt - m? — agom? - M2 +

+ 23¢(m*?m?! — m"m??)) = 0.

(A.10)

This superclass contains eight inequivalent classes of subalgebras that can be obtained
from it by means of a change of basis and the adjoint actions

Ad(6:D), Ad(6212), Ad(R(R)+ Z(n)),
(Ad(6D), Ad(eapJap), Ad(R(7) + Z(n)))

if 5 > 0 (3¢ = 0) respectively. Here the functions 7 and 7 satisfy the following
equations:

iy — %T_i + #(n?, —nt,0)T = b;m?,
e + 1 = bixs + 5t(ue - 7 — Tyg - W) + 7o - 7+ 3¢(n*nd, — ngn?).
6. AZ(se,m,m2, xt, x?) = (0 + »J12, R(MY) + Z(xY), R(M?) + Z(x?)), where
x € {0;1}, rank(m m?) = 2,

i2 i1 T y i i
mtf%(m ,—m',0)" = a,;m,  txg = aix,

and a,; are constants satisfying (A.10). This superclass contains eight inequivalent
classes of subalgebras that can be obtained from it by means of a change of basis and
the adjoint actions

Ad(6,0;), Ad(02J12), Ad(R(7) + Z(n)),
(Ad(6:0;), Ad(62D), Ad(eapJur), Ad(R(T) + Z(n)))

if 5c = 1 (3¢ = 0) respectively. Here the functions 7 and 7 satisfy the following
equations:

iy + s(n?, —nt,0)T = bymt,
e =biXi + 5 (nttt i — Ty - 71g) + se(nin?, — njn?).
7' A?(n17 7727 7737 X) = <J12 + R(07 0 773) R(n17 7727 0)7 R(_7727 7717 0)>’ Where
n* € C®((to,t1),R), nin* —n'ng, =0, n'n" #£0, n°#0.
Algebras A3(n',n% n3) and A3(7', 7%, 773) are equivalent if 35, € R, 354 # 0:
At (t) = 64(n'(t) cos 65 — n?(t) sin d3),
72(t) = 64(n'(t) sin 63 + n2(t) cos J3), (A.11)
3 (E) = e (1),
where ¢ = te=201 4 §,.
8. AZ(!,m2,m3) = (R(m'), R(M?), (M), where

m® € C*((to, 1), R?), rank(ml m?,m3) =3, mf-m®—m*md =0.

Algebras AZ(m!,m? m3) and A3( LM 7 T$L3) are equivalent if 36; € R?, 3B € O(3),
I{dap} : det{dab} # 0 such that
ma(f) = dap B’ (t), (A.12)

where ¢ = te=201 4 §,.
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B On construction of ansatzes for the Navier—Stokes
field by means of the Lie method

The general method for constructing a complete set of inequivalent Lie ansatzes of
a system of PDEs are well known and described, for example, in [27, 28]. However,
in some cases when the symmetry operators of the system have a special form, this
method can be modified [9]. Thus, in the case of the NSEs, coefficients of an arbitrary
operator

Q= goat + &0 + 1% Oue + noap
from A(NS) satisfy the following conditions:

=012, =2, n*=n®ta)u+nt71),

B.1
n° =0 (t, D)p +n(t, 7). 1)

(The coefficients &2, €9, n%, and 7° also satisfy stronger conditions than (B.1). For
example if Q € A(NS), then ¢° = ¢°(t), n®® = const, and so on. But conditions (B.1)
are sufficient to simplify the general method.) Therefore, ansatzes for the Navier—
Stokes field can be constructing in the following way:

1. We fix a M-dimensional subalgebra of A(NS) with the basis elements

Qm — §m08t + gmaaa 4 (nmabub + nmaO)aua + (nm()lp 4 7777100)8177 (BQ)
where M € {1;2;3}, m =1, M, and
rank{(£m07£m1’§m27£m3), m = 17M} =M. (BB)

To construct a complete set of inequivalent Lie ansatzes of codimension M for the
Navier-Stokes field, we have to use the set of M-dimensional subalgebras from Sec-
tion A. Condition (B.3) is neeeded for the existance of ansatzes connected with this
subalgebra.

2. We find the invariant independent variables w,, = w,(t,¥), n = 1, N, where
N =4 — M, as a set of functionally independent solutions of the following system:

L"w=Q"w=¢"0w+ ™ 0,w=0, m=1,M, (B.4)

where L™ = EmOat + gmaaal
3. We present the Navier—Stokes field in the form:

u® = fab(tvf)vb(a)) + ga(t’f), p= fo(taf)Q(w) + go(tvf)a (B5)

where v* and ¢ are new unknown functions of @ = {w,, n = 1,N}. Acting on
representation (B.5) with the operators Q™, we obtain the following equations on
functions £, g%, f9, and ¢°:

meab — nmacfcb’ nga — nmabgb + nman c= 17 3’

B.6
meO — 77m01f07 ngO — ,'7m0190 + anO_ ( )

If the set of functions £, f°, g%, and ¢° is a particular solution of (B.6) and satisfies
the conditions rank{(f, f2°, f3%), b =1,3} = 3 and f° # 0, formulas (B.5) give an
ansatz for the Navier—Stokes field.
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The ansatz connected with the fixed subalgebra is not determined in an unique
manner. Thus, if

&1 = (@), det{‘%”} £0,
_ O ) -t (B.7)
Fab(t, ®) = foo(t, B)F(@), §o(t, &) = g°(t, F) + fo°(t, F)G(@), '
fot,7) = O, D) FO (@), §O(t.2) = ¢°(t, ©) + fO(t, %)GO(w),

the formulas
ut = fo(t, D)D) + gt T), p=fO(t, ¥)q(@) + §°(t, F) (B.8)

give an ansatz which is equivalent to ansatz (B.5). The reduced system of PDEs
on the functions 9 and ¢ is obtained from the system on v® and ¢ by means of
a local transformation. Our problem is to find or “to guess”, at once, such an ansatz
that the corresponding reduced system has a simple and convenient form for our
investigation. Otherwise, we can obtain a very complicated reduced system which
will be not convenient for investigation and we can not simplify it.

Consider a simple example.

Let M =1 and let us give the algebra (0; + sJ12), where s € {0;1}. For this
algebra, the invariant independent variables y, = y,(t, Z) are functionally independent
solutions of the equation Ly = 0 (see (B.4)), where

L:= 8,5 + %(:clam — l'Qaml). (Bg)

There exists an infinite set of choices for the variables y,. For example, we can give
the following expressions for y,:

x
y1 = arctan =~ — xt, o = (23 + 23)V/?,

T2

Ys = I3.

However choosing y, in such a way, for s # 0 we obtain a reduced system which

”»

strongly differs from the “natural” reduced system for » = 0 (the NSEs for steady
flows of a viscous fluid in Cartesian coordinates). It is better to choose the following
variables y,:

Y1 = X1 Cos xt + Tosin xt, Yo = —xysinxt + xocosxt, Y3 = T3.

The vector-functions f? = (f1t, f2°, f30) b = 1,3, should be linearly independent
solutions of the system

Lflz_%f2a LfQZ%f17 Lf3:0

and the function f9 should satisfy the equation Lf° = 0 and the condition f0 #
0. Here the operator L is defined by (B.9). We give the following values of these
functions:

= (cos »t, sin »t, 0), f?= (— sin »t, cos t, 0), 3= (0,0,1), fO=1.
The functions g¢ and ¢° are solutions of the equations

Lg' = —xg®, Lg*=3xg', Lg’=0, Lg’=0.



Symmetry reduction and exact solutions of the Navier—Stokes equations 237

We can make, for example, g* and ¢° vanish. Then the corresponding ansatz has the
form:

1

ul =9t

2

cos »t — D2 sin »t, u? =o'

sin st + 02 cosst, ud =9>, p=4q, (B.10)

where 0% = 9%(y1, y2, y3) and ¢ = §(y1, y2,y3) are the new unknown functions. Substi-
tuting ansatz (B.10) into the NSEs, we obtain the following reduced system:

090y — Upg + Q1 + 22201 — 324103 — 20 = 0,

17“173 — ﬁga + Gs + %yy?% — %ylﬁg + 20! =0, (B.11)
008 — U3, + s + 2y203 — 2103 = 0, '
50 =0

Here subscripts 1,2, and 3 of functions in (B.11) denote differentiation with respect
to y1, yo, and y3 accordingly. System (B.11), having variable coefficients, can be
simplified by means of the local transformation

0t =0l =y, 0P =074y, =08 G=q+ 547 +43). (B.12)
Ansatz (B.10) and system (B.11) are transformed under (B.12) into ansatz (2.2) and
system (2.7), where

gl = —xxo, gP=x1, g5=0, ¢°=31x%(a}+23), (B.13)
1 = —2, and v, = 0. Therefore, we can give the values of g and ¢" from (B.13)
and obtain ansatz (2.2) and system (2.7) at once.

The above is a good example how a reduced system can be simplified by means of
modifying (complicating) an ansatz corresponding to it. Thus, system (2.7) is simpler
than system (B.11) and ansatz (2.2) is more complicated than ansatz (B.10).

Finally, let us make several short notes about constructing other ansatzes for the
Navier—Stokes field.

Ansatz corresponding to the algebra A}(1,x) (see Subsection A.2) can be cons-
tructed only for such ¢ that 7 (t) # 0. For these values of ¢, the parameter-function x
can be made to vanish by means of equivalence transformations (A.7).

Ansatz corresponding to the algebra AZ(\, !, p,?) (see Subsection A.3) can be
constructed only for such ¢ that p(¢) # 0. For these values of ¢, the parameter-function
2 can be made to vanish by means of equivalence transformations (A.8). Moreover,
it can be considered that A\;p — Ap; € {0;1}. The algebra obtained finally is denoted
by AZ(X, x,p,0).

Ansatz corresponding to the algebra AZ(m!, x*, m?, x?) (see Subsection A.3) can
be constructed only for such ¢ that rank(m!,m2) = 2. For these values of t, the
parameter-functions x* can be made to vanish by means of equivalence transforma-
tions (A.9).

The algebras A%,(s¢,0), A%,(0), and A%,(c) can not be used to construct ansatzes
by means of the Lie algorithm.

In view of equivalence transformation (A.11), the functions n’ in the algebra
A3(nt,n%,n?) (see Subsection A.4) can be considered to satisly the following conditi-
on:

nin? —ntn? € {0; 11}
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Ansatze of codimension one

for the Navier—Stokes field and reduction
of the Navier—Stokes equation

W.I. FUSHCHYCH, R.O. POPOVYCH, G.V. POPOVYCH

BuxopucroBytoun MakcuMmanbHy B ceHci JIi (HeckiHYeHHOBHMipHY) asrebpy iHBapiaHT-
HocTi piBHsAHb Har’e-Crokca, nmo6ynoBaHW{ TMOBHHE Habip HeeKBiBaJeHTHHX Ji€BCBKHUX
aH3aliB Kopo3MipHocTi onuH mis nois Hap’e—Croxca. 3 X 10MOMOro NpoBeieHo pe-
nykuito piBHsiHb Has’e—Ctokca mo cuctem [IPYII 3 Tpboma HesasieXXHUMHU 3MiHHHUMH.
BuBueHi cuMeTpifiHi BJIaCTHBOCTI peqyKOBaHHUX CHCTEM.

Finding exact solutions of the Navier—Stokes equations (NSEs) for an incompres-
sible viscous fluid is an actual problem of mathematical physics and hydrodynamics.
There are some ways to solve this problem. One of them is a usage of symmetry
analysis [1-8]. In this article we construct a complete set of inequivalent ansatze of
codimension one for the Navier—Stokes field. Using them, we reduce the NSEs to
systems of partial differential equations in three independent variables and study their
symmetry properties.

It is known that the NSEs

i+ (- V)i—Ai+Vp=0, divi=0 (1)

are invariant under the infinite dimensional algebra A(NS) with basic elements
=0/0t, D =2t0; + 2,04 — u®Oya — 2p0p,

Jap = 40y — 0 + u®Oyp — uPOye, a # b, (2)

R(m(t)) = m®(t)0a + mi (t)Oue — mi(t)xalp,  Z(x(t)) = x(t)0p.
Here and from now on @ = @(t, &) = {u®} is the velocity field of a fluid, p = p(t, T)
the pressure, Z = {4}, 8 = 8/, 0y = 0/0x4, V = {8a}, A =V -V, m® = m(t),
x = x(t) are arbitrary smooth functions of ¢ (for example, from C°(( to,tl),R)),
a,b=1,3, i,j = 1,2, repetition of an index signifies a sum.

The set of operators (2) determines the maximal, in the sense of Lie, invariance
algebra of the NSEs [9-11].

Theorem 1. A complete set of A(NS)-inequivalent one-dimensional subalgebras of
A(NS) is exhausted by such algebras:

1) Ai(x) = (D +2sJy2), > 0;
2)  Al(s) = (0y + xJ12), x€{0;1};
3) Az(n,x) = (Jiz + R(0,0,1(t)) + Z(x(1))),
where algebras AL(n, x) and AL(7, X) are equivalent if Ie,5 €R, IN€ C>((tg,t1),R):
(7, ) (t) = (70, ¥ (x + A — i}\)) (te** +6); @)
JHonosini HAH VYxpaiuu, 1994, Ne 4, P. 37-44.

is
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4)  Aj(i,x) = (R(m) + Z(x)), (7, x) # (0,0),

where algebras AL(m, x) and AL(n,x) are equivalent if 3,6 € R, 3¢ # 0, IB €
0(3), dl e Om((to,tl),RS):

(T x)() = (ce~ B, ce® (x +1 -1 — 7 - 1)) (te* + 6). (4)

Theorem 1 is proved by the method described in [12, 13].

With the algebras A}-A} from theorem 1 and with the algebra A} (if some addi-
tional demands are satisfied) one can construct such a set of inequivalent ansétze of
codimension one for the Navier—Stokes field:

ZginT) + %xlfl — sttt

u? = [t|7V2 (vl sinT + v cos T) + 2aat Tt + sexqt T,
ud = [t|7V208 4 gt

p=tlg+ %t_Qxaxa + %%Zt_QTQ,

L oul =t~ Y2 (v' cosT —v

(®)

where

T=sxhnlt], r=(a? +x§)1/2, = |t|_1/2(x1 CoST + wosinT),

Yo = |t| Y2 (—xysinT + xacosT), w3 = [t| 7/ 2ws;

here and from now on v* = v*(y1,¥y2,¥3), ¢ = q(y1, Y2, y3), numeration of ansdtze
corresponds to that of algebras in theorem 1.

2. u! = v!cos st — v?

u? = v' sin st + v? cos ot + 2wy, (6)

1
u =0t p =gt gt

sin st — sxxo,

where y; = x1 cos »t + x5 8in st, yo = —xq Sin st + o COS xt, Y3 = x3.

3. wl =ar ol —zor % 4+ 202,

u? = xor— ol + zyr~t? + zor=2
ud =03 +n(t)r~1v? +9(t) arctg z2 /21,

p=q— i) (n(t)"'a3 — $r72 + x(t) arctg va /x4,

where y; = ¢, yo =1, y3 = x5 — n(t) arctg xo/x;1.

Remark 1. The expression for the pressure p from the ansatz (7) is indeterminate in
points ¢ € {tg,t1}, where n(t) = 0. If there are such points ¢, we will consider the
ansatz (7) in intervals (¢(j,¢7) that are contained by the interval (to,¢;) and for which
one from the conditions

a) Vte(tg,t7): n(t) #0;
b) n(t)=0in (t5,t7)
is satisfied. In the last case we consider that 7j/n := 0.

4. With the algebra Aj(m,x), an ansatz can be constructed only for such a t
wherefor m(t) # 0. If this condition is satisfied, it follows from (2) that the algebra
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AL (1, x) is equivalent to the algebra A}(7,0). An ansatz constructed with the algebra
AL (m,0) is
@ = v + (- 7)o+ (- 2) (7 - ) — g
p=q— 500 -m) (- @)y:)? - (7 - m) = (- B) (- T) + ®)
() 7 8) 2 (- 2P,
where y; = 7 - &, y3 = t,
i =ait), @-m=a-a?=0, |@=1, n'-@2=0. (9)

Remark 2. Vector-functions 7* satisfying conditions (9) exist. They can be construc-
ted in such a way: let us fix vector-functions k* = ki(¢) for which k% -m = k' - k? =
0,|k* =1 and set

it = k' costp(t) — K2 sin(t), @2 =k sint(t) + k> cos(t). (10)

Then il -2 = k' - k2 — = 0if [(k'-k?)dt.
Substituting the ansétze (5), (6) to the NSEs (1), we obtain reduced systems of
PDEs that have the same general form

v“vé—v;a—l—ql —l—'ylvz =0,
a, 2 2 1 __
vivi —vi, +q2 —v1v =0,
3
a

v®v

11
_U2a+q3207 ( )

Ug =72,
where the constant «;, takes the values

’}/1:—2%, ’YQ:_%, if t>0, 71 =2z, ’)/2:%, if t<0.
2. y1=-2x vy =0
For the ansétze (7), (8) reduced equations have the form
3. i +vlvl +0%vd — gy vPe? — [vdy + (14 77y5 *Jvgs + 2095 *v3] + g2 = 0,
v} + 00 + v50F + g5 oo — [v3, + (14 nPys *)vd; — 205 Pul] +
+2y5 207 —nyy tas + xys L =0,
v} + vlod + 0208 — [y + (14 0%y, *)vds] — 2025 *of + 2ijys 02 +
+20y5 (v 02 + (L4 0y 2)as — i~ ys — xnya 2 = 0,
yy "ol o+ = 0.
4. g+ o' — vk 4 g+ p'(ys)v® = 0,
vg’—i—vjv;’ —v?j =0, (13)

'U;: + p3(y3) = 07

(14)

A
.
\
A
=
<
w
~—
\
B
N
=~
3
S~—
L
P
3
L
=
AN
w
I
A
w
S
D
w
~—
I
Py
3
3
=
L
P
S
3
S~—
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Let us study symmetry properties of the systems (11)-(13). All following results
are obtained with the standard Lie algorithm [11, 12]. At first consider the sustem (11).

Theorem 2. The maximal, in the sense of Lie, invariance algebra of (11) is the
algebra

CL) <aa7 8117 J112> lf et 7é O;
b) <8avaq’ Jib> if =0, 7#0;
C) <8a78q7Jc1va1> if m1=7v=0.

Here
J;b = yaab - ybaa + Uaavb - Ubavaa D1 = yaaa — va&,a — 2q8q

All Lie symmetry operators of (11) are induced by operators from A(NS). Namely,
the operators J!,, D' are induced by Jup, D and the operators ¢,0, (cq = const), 9,
is done by

R(t|Y?(c1 cosT — e sinT, ¢y sinT 4 cacos7,¢3)),  Z(|t|7)
for the anzatz (5) and by
R(cq cos st — g sin st, ¢ sin set + co cos xt, c3),  Z(1)

for the anzatz (6) respectively. Therefore, Lie reduction of the system (11) gives only
solutions that can be obtained by reducing the NSEs with two- and three-dimensional
subalgebras of A(NS). Let us proceed to the system (12). Let A™** be the maximal,
in the sense of Lie, invariance algebra of (12). Studying symmetry properties of (12),
one has to consider the following cases.

A.n,x =0. Then

AP = (01, Dy, Ri($(y1)), Z" (A1),

where D} = 2y101 + Y202 + Y305 — v*0pa — 2q0y, Z (A (1)) = My1)0y, R1(¥(y1)) =
Y03 + 10,2 — Y11Y30,; here and from now on ¢ = ¥(y1), A = A(y1) are arbitrary
smooth functions of y; = t.

B. 7 =0, x # 0. In this case expansion of A™?* is for x = (C1y; + C2)~ !, where
C1,Cy = const. Let C; # 0. It can be done with the equivalence transformation (3)
so that the constant Cy will vanish, i.e. x = Cy~! where C = const. Then

AT =Dy, Ri($(y1)), 21 (Aw1)))-
If C; =0, x =C = const and
AT = (D1, Ri(4 (1)), 21 (A(y1)))-
For other values of y, i.e. when x11x # x1X1,

A = (Ry(¢(11)), ZH(A(y1)))-

C. n # 0. With the equivalence transformation (3), we do x = 0. In this case
expansion of A™2* is for n = +|Ciy; + Ca|'/2, where C1,Cy = const. Let C; # 0.
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It can be done with the equivalence transformation (3) so that the constant Cy will
vanish, i.e. 7 = Cly;|'/2, where C' = const. Then

AR = (D3, ZY (A1), Re([ya] '), Re(lya| V> n [y ])),
where Ro(¥(y1)) = Y05 + 110,3. If C1 =0, i.e. n = C' = const;
AR = (O, ZV(M(y1)), O3, 4103 + Dys).
For other values of 7, i.e. when (?)1; # 0,

AP = (7 (A1), Ra(n(y1)), Ra (n(yl)/(ﬁ(yl))2d91>>-

In all cases considered above, Lie symmetry operators of (12) are induced by
operators from A(NS). Namely, the operators 9y, Di, Z'(\(y1)) are induced by 9,
D, Z(A(t)) respectively. In case n = 0 the operator Ry(¢(y1)) and in case n # 0
the operator Ry (¢(y1)) where ¢ij — 17} = 0 are done by R(0,0,(t)). Therefore, Lie
reduction of the system (12) gives only solutions that can be obtained by reducing the
NSEs with two- and three-dimensional subalgebras of A(NS).

When 1 = x = 0 the system (12) describes axisymmetric motion of a fluid and can
be transformed into a system of two equations for a stream function ¥! and a function
U? that are determined by

qlé = yZUla \Ij% = _y2v37 \112 = y2/02'

The transformed system has been studied by L.V. Kapitanskiy [8].
Consider the system (13). Let us introduce the notations

t=ys, /3 = /p3(t>dt, R3(¢1(t)’ w2(t)) = Waz + Wam - W}yiﬁq,

ZHA®) = A1)Dq, S = s — p'(t)yiDy,

: 1
E(x(t)) = 2,0 + x2i0yi + (Xuryi — x¢0")0pi — <2th + §Xtttyjyj> g5
Jiy = y102 — Y201 + 0102 — v20,1.

Theorem 3. The maximal, in the sense of Lie, invariance algebra of (13) is the
algebra

1) (Ra(®'(t), ¥2(1)), Z* (A1), S, E(x' (1)), E(X*(t)), v*8ys, J1),
where x! = e P(®) fef’(t)dt, x2=e Pl if pt =p?> =0,
2) (Rs('(t), ¥2(1), ZH (A1), S, E(x(t)) + 2a10°Dys + 2a2.]15),

where ay, as, as are fixed constants, x = e ?® ([ e?Ddt + a3) if
(15)

where p(t) = | [ e’ Ddt + a3

, Cl, 02 = const, (Cl, Cg) 7é (0,0),’
3) (Rs(¥'(1),%(1), Z' (A1), S, E(x (1) + 2010° 0y + 2a2.J1),
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where ay, as are fixed constants, x = e—P(t) if

20(0=a12() (Cy cos(azp(t)) — Casin(azp(t))),

2P0=012(0)(Cy sin(azp(t)) + Ca cos(azp(t))),

where p(t) = [ePDdt, Cy,Cy = const, (C1,Ca) # (0,0);

4)  (Rz(w(t), ¥2(t)), Z1(A\(t)), S) in all other cases.

Here ¢" = 1'(t), A = \(t) are arbitrary smooth functions of t = ys.

Remark 3. If functions p® = p®(t) are determined by (14), ) = C|m(
t

C = const and it follows from the condition p' = p? = 0 that m = |m(
|€] =1, €= counst.

pt=e
p*=e

)|, where
|€, where

t
)
Remark 4. Vector-functions 7’ from remark 2 are determined up to the transforma-

tion

At =ftcosd —ilsind, 72 =mn'sind + 72 cosd,

where § = const. Therefore, choosing §, we can do so that Co = 0 (then Cy # 0).
The operators Rs(¢*,4?) + a8, Z1(\) are induced by R() + Z(x), Z()\) respec-
tively, where [ = ¢i7i* 4 3, wt (17 - 1) + 20 (7% - m) = o, x — 2(m - m) T (Y (1 -
)2 — LyPyi (1T - 7' + 30 (L - ') = 0,
It m = |m(¢ ) , |€] = 1, the operator J], is induced by e'Jaz +
eJs, + e3J1o. For
m:ﬂ?)egt(ﬂQCOSTaﬂZ SinTﬁﬁl)Ta ﬁ%+ﬁ§ = 1) T = %t+5a

the operator 0; + sJ12 induces the operator 9y, — BisJi2 + ov30,2 if such vector-
functions 7’ are chosen:

—!

it = k' cos OiT + k% sin b7, 7= —k'sin BT + k2 cos 061, (16)
where k! = (—sin7, cos7,0)7, k2 = (B cos 7, By sinT, —32) 7. For

7 =[]t + Ba|"T/2(Ba cos T, BosinT, B1)T, B+ 03 =1,

T =xln|t + B4| + 6,
the operator D + 2840; 4+ 2s¢J12 induces the operator

Dgl, + 2840y, — 2Bs¢J12 + 20030,

if vector-functions 7 are chosen in the form (15). In all other cases the basis elements
of the maximal, in the sense of Lie, invariance algebra of (13) are not induced by
operators from A(NS).

Remark 5. The invariance algebra of a system of the form (13) with a parameter-
function p* = p3(¢) is like one with a different parameter-function 5* = p3(¢). It
suggest an idea that there is a local transformation of variables with which one can
make p> to vanish. Indeed, let us transform variables in the way

g = yie2P W, g = / e”Ddt, ' = (vwéyﬁ(t)) e 2P 5 =0,

PR | , -
0= ae7 + Syl () - 25 D).
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As a result, we obtain the system

A+ W0+ G + 5 ()5 = 0,
7+ 0758 — 0% =0,
i =0,

for functions ©* = (41, %2, ¥3), ¢ = G(U1, 72, U3), Where pi(g3) = pi(t)e—%ﬁ(t), sub-
scripts 1, 2, 3 mean differentiation with respect to ¢, 2, §3 accordingly.
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Antireduction and exact solutions
of nonlinear heat equations

W.I. FUSHCHYCH, R.Z. ZHDANOV

We construct a number of ansatzes that reduce one-dimensional nonlinear heat equations
to systems of ordinary differential equations. Integrating these, we obtain new exact
solution of nonlinear heat equations with various nonlinearities.

By the term antireduction for a partial differential equation (PDE) we mean the
construction of an ansatz which transforms the PDE to a system of differential equati-
ons for several unknown differentiable functions. As a rule, such procedure reduces
the PDE under consideration to a system of PDE with fewer numbers of independent
variables and greater number of dependent variables [1-4].

Antireduction of the nonlinear acoustics equation

Uzgzy, = (Uzy UW)ay — Uzyzy — Usgay =0 1)
is carried out in the paper [2] with the use of the ansatz

1

u = §SU1901(9€0, To,x3) — 61‘%02(550,»’527933) + p3(wo, 2, 3). (2)

In [3] antireduction of the equation for short waves in gas dynamics
Qzomy — 2(221 + Upy YUzyzy + Uzpmy + 2AUz, =0 (3)
is carried out via the following ansatz:

/

u = z101 + 23ps + 27 205 + g, @i = pi(To, T2). (4)

Ansatzes (2), (4) reduce equations (1), (3) to system of PDE for three and four
functions, respectively.

In the present paper we adduce some new results on antireduction for the nonlinear
heat equations of the form

up = (a(u)um)m + F(u). (5)
The antireduction of equation (5) is performed by means of the ansatz
h(t, @, u,01(w), p2(w), ..., en(w)) =0 (6)

where w = w(t, z,u) is a new independent variable. Ansatz (6) reduces equation (5) to
a system of ordinary differential equations (ODE) for the unknown functions ¢;(w),
i=1,N.

J. Nonlinear Math. Phys., 1994, 1, Ne 1, P. 60-64.
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Below we list, without derivation, explicit forms of a(u) and F(u), such that
equation (5) admits an antireduction of the form (6). For each case the reduced ODE

are given.

1.

10.

a(u) = 0(u)f(u), F(u) = (/\1 + A2f(w)) (6(w)

O(u) = p1(t) + pa(t), = (A2 + ©3)p1 + )\17 @2 = (A2 + ¥3)p2;
a(u) = ub(u), F(u)= (>\1 + Aaf( )(o(u)) t

O(u) = p1(t) + pa2(t), = X1 + 053+ A1, P2 = Aopo;

au) = 6u),  Flu) = (Al + 2af(w)) (6(u))

O(u) = p1(t) + pa(t)x, V1 = Aap1 + A1, = Aa(po;

a(u) = F,  F(u) = \u+ dou'=F, oF = <p1(t) + oo (t)x + @3(t)2?,
©1 = 2Xp103 + Ak 03 + kXg, @2 = 2X(1 + 2k ) pops + kA,

@3 = 2M\(1 + 2k71)03 + kA os;

a(u) = Xe¥, F(u) = A + X2e™¥, €% = o1(t) + pa(t)z + @3(t)2?,

G1 =20 0103 + A1 + A2, P2 = 2Xp203 + A1z, 93 = 2X05 + A1ps;
a(u )*/\u’3/2 F(u ):/\1u+)\2u5/2,
w3 = 1 (t) + a(t)x + @3 (t)a? + pa(t)a?,
2 3 3
b1 = 2\ — AR — S — A
P1 P1¥3 3 P2 2 1¥1 52

. 2 3
P2 = —g)\§02903 + 6 o104 — §>\1§027

. 2 3 ; 3
Pz = —g)\éﬂg + 2Xp2p4 — §>\19037 Py = —5)\1504;
a(u) =1, F(u)=(a+Flnu)u, Inu=@(t)+ p2(t)z,
= 0Bp1+ 5+, P2 = apy;
a(u)=1, F(u)=(a+Blnu—~*(Inu)?)u, Inu=pi(t)+ @2(t)er”,
1= a+ fo1 =7l @2 =(B+7° —29%01)p2;
a(u) =1, F(u)=—u(l+mnu?)(a+B(nuw)~2),
In u —-1/2
/ (2@7 + 4ﬁ7’1/2 + gog(t)> dr =z + ¢1(t),
¢1 =0, ¢ =40 = 20py;
a(u) =1, F(u)=—-2(u®+ au®+ Bu),
(a) a=p=0
—1
u = (p1(t) + 2p2(t)z) (1 + p1(t)x + @a(t)x?) 7,
1 = —6p102, P2 = —63;

(0) 0?=45%0
-1
u= (=50 + (1-52) 2(0) (" + 1) + pa®)
a? a’
1 = *ZSQ —aps, Q2= 71902;
() a?>4p

= ((A+ B)p1 (e + (4 = B)pa(t)e ") x
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% (e—Ag; _’_(pl(t)eBx _i_spz(t)e—Bx)_l’
o 1

A:__ B==- 2_4 1/2
5 2(0< B)=,

(%-ﬁﬁ—gm%4m”ﬂwh

2
mz(i—w+%&—wWﬂm;

1

2
(d) o <4p

u = (1(t)(Acos Bx — Bsin Bx) + p3(t)(Asin Bz +
+ Bcos Bx)) (4% + ¢1(t) cos Bz + ¢ (t) sin Bx) -

. a2 «
$1= (7 - 3/3> 1 — 5(45 —a?)2p,,

) a? Q
P2 = (7 — 35) Y2 + 5(45 — a2,

In the above formulae § = 0(u) € C*(R!,R!) is an arbitrary function; A, A1, As,
«, B, v are arbitrary real constants; overdot means differentiation with respect to the

corresponding argument.

Most of above adduced system of ODE can be integrated. As a result, one obtains
a number of new exact solutions of the nonlinear heat equation (5). Detailed study of
reduced systems of ODE and construction of exact solutions of equation (5) will be a
topic of our future paper. Here we present some exact solutions of the nonlinear heat

equation
Up = Ugq + F ()

obtained with the help of ansatzes 7-10 which are listed above.
1) F(u) = (a+Bnu—~*nu)?)u,

(a) A=p%+4av*>0
-2

Al/2 2 1
u=0~C <cos t) YTt
2y
(b) A=-p%—4ay*>0
1/24\ 2 )
u=C <ch = t) eIt 4 % (ﬂ—i—Al/ch
2y
() A=p>+4ay*=0
2 1
=2 yztylt .
U—Ct 6’y v +ﬁ(ﬁt+2),
2) F(u) = —u(l+Inu?)(a+B(In u)~1/?),
(a) a#0
In u
/ (207 + 4872 4 Cem 20t 4 2ﬁ2a_1)_1/2d7'
(b) a=0

Inu
/ (457'1/2 + 4B2t)71/2d7— = x;

A%t
92 (ﬁ — AVtg T) ;

AY/2t
)

:[L‘;
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3) F(u) = —2u(u® + au + ),

(a) o®=4p 1
uz(l—%(m—at)) (x—at-i—Cexp (%(H%t))) ;
(b) a®>4p

w= ((A +B)Cyexp((A+ B)(x — at)) + (A — B)Cy x

x exp((A — B)(z — Oét))) (eXp(?)ﬂt) + Crexp((A+ B)(z — at)) +

(c) a?<4p3
u = ((«¢ACy — BCs) cos Bz — at) 4+ (AC, + BCh) x
x sin B(z — at)) (exp(Sﬂt — Az — at)) +

-1
+ Cy cos B(x — at) + Cysin B(x — at)) ,

__“ Lo o
A= X B—2(4ﬂ a”)He.
In the above formulae C, C1, Cy are arbitrary constants.

It is worth noting that the above solutions can not be obtained with the use of
the classical Lie symmetry reduction technique [6]. That is why they are essentially
new. Another impotant feature is that solutions 3(a) and 3(c) are soliton-like soluti-
ons. Consequently, nonlinear heat equation with cubic nonlinearity admits soliton-like
solutions.
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Conditional symmetry and anti-reduction
of nonlinear heat equation

W.I. FUSHCHYCH, R.Z. ZHDANOV

BBeneHo noHsATTS (Q-yMOBHO!I iHBapiaHTHOCTI AMepeHLianbHUX pPiBHSIHb BiIHOCHO Be-
kTopHUX noaiB Jli-Beknynna. Lle no3BosnI0 mpoBecTd peAyKIilo psny HediHIHHUX piB-
HsIHb TEIMJIONPOBIZHOCTI IO CHUCTEeM 3BHUYAMHUX OH(epeHLialbHUX DPiBHsHb (Haragaemo,
IO MIPH penyKIil 3 JOMOMOroilo BeKTOPHHX moJiB JIi B pe3ynbraTi omepKyeMo OfiHe peny-
KOBaHe piBHSIHHS).

The key idea making it possible to solve a linear heat equation
Ut = Ugy

by the method of separation of variables is reduction of it to two ordinary differential
equations (ODE) with the help of the special ansatz (see, e.g. [1, 2])

u(t, ) = R(t, z)p1(wi(t, z)pa(wa(t, x)).

Unfortunately, the method of separation of variables can not be applied to nonli-
near second-order partial differential equations. However, some progress is possible
if we apply the anti-reduction procedure. The main idea is the same with the one of
the method of separation of variables. Namely, we look for a solution of a nonlinear
differential equation using the special ansatz reducing it to several equations which
have a less number of independent variables [3]. With application to the nonlinear
heat equation

ur = la(u)uels + F(u) 1
it means that its solution is searched for (1) in the form

G(t7x,u,<p0(w),...7apN(w)) =0, (2)

where w = w(t, z) is a new independent variable, ¢g(w), p1(w),...,pn(w) are smooth
functions satisfying some system of ODE.

The principal difficulty of the anti-reduction procedure is the proper choice of
the ansatz (2). In the present paper we construct a number of ansatzes reducing
nonlinear heat equations of the form (1) to ODE. These ansatzes are obtained by
using @-conditional invariance of the equation under study with respect to some Lie—
Backlund vector field (the definition of @-conditional invariance with respect to the
Lie vector field was suggested in [4]).

Definition. We say that Eq. (1) is Q-conditionally invariant under the Lie-Bdcklund
vector field

0 0 0
—na—u+(Dm)a—m+(Dw)a—%+m (3)

JHonosini HAH VYxpaiuu, 1994, Ne 5, P. 40-43.

Q




252 W.I. Fushchych, R.Z. Zhdanov

if there exist such a finite-order differential operator
X =Ry+ R1D;+ RyD, + RgD? +

and the function R that the equality

Q(u — Aty — au — F) = X (uy — atge — au’ — F) + Ry (4)
holds.
In the above formulae (3), (4) Dy, D, are total differentiation operators and 7, R,
Ry, Ry, ..., are functions on ¢, x, u, Uz, Ugg, - . ..

Roughly speaking, Eq. (1) is @-conditionally invariant with respect to the vector
field (3) if the system

Eq. (1),
N(t, T, Uy Uy Uggry . .) =0

is invariant under the vector field (3) in a usual sense. That is why, to study @-
conditional invariance of Eq. (1) one can apply the standard infinitesimal algorithm [5].
But the system of determining equations for 7 is nonlinear (let us remind that in the
classical Lie approach determining equations are always linear).

We look for conditional symmetry operator (3) with

n=D7,(u), g(u)eC*R,R). (5)
Lemma. Eq. (1) is Q-conditionally invariant with respect to the Lie—Bdcklund vector

field (3), (5) if the functions a(u), F(u), g(u) are given by one of the following for-
mulae:

1) a(u) = 6(w)f(u), F(u) = (A +A2b(u)(@(w) ", g(u) = 6(u); (6a)
2) a(u) = ub(u), F(u)= (A +Ab(u)(@(w) ", g(u) = 6(u); (6b)
3) a(u) = 0(u), F(u) = (A + Xa0(w))(0(u) ™", g(u) = 0(u). (6¢)

In (6) M1, A2 are arbitrary constants, € C3(RY,RY) is an arbitrary function.

The proof of the lemma is rather tedious, therefore it is omitted. We restrict
ourselves by proving that Eq. (1) with a(u), F(u) from (6a)

ur = [B(w)b(u)us]s + (M + A28(w) (@)~ (7)

is Q-conditionally invariant with respect to the Lie-Backlund vector field (3) under

77—9( )umz+9( Juz
Consider an over- determined system

Uy = (Geuw)w + ()\1 + )\29.)9._1
N = Ougy + fuic = 0.
Introducing a new independent variable v = (u), we get

vt—ﬁ( )0(w)vge + V02 + A1 + Ao,
=0
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or, equivalently,

vy = uvg + A+ Agv,

8
Vgpe = 0. ®)
The Lie-Backlund vector field @ = (fug, + §u2) 2 + - - takes the form
~ 0 0 0
Q—vww%""vtwwa_vt'i_vwxa:a—vz""” (9)

Acting by the operator (9) on the first equation from (8) we get
Q(vy — vv? — A\ — M) = D (v — 002 — Ap — Aav) + (402 + 20044 ) Vs

Hence, it follows that system (9) is @-conditionally invariant under the Lie-
Bécklund vector field (9).

To construct solution invariant under the Lie—Backlund vector field (3), (5) one
has to solve an equation n = D2g(u) = 0. General solution of the above equation
reads

g(u) = o(t) + zp1(t), (10)

where g, 1 are arbitrary smooth functions. Replacing in (10) g(u) by 6(u) we get
ansatz for Eq. (7) invariant with respect to the Lie—Backlund vector field (3) with

0(u) = po(t) + z1 (). (11)
Substitution of (11) into Eq.(7) yields the system of two ODE for g (t), ¢1(t)

Go= A2+ ©1)po+ A1, p1= (Ao + ©7)en,
which general solution has the form

At AL g —-1/2 —2\at 1/2
=—— 4+ —(e"?" -1 arctg(e” “"2" — 1 ,
oo =30+ 52 ) & ) (12)

o1 = )\5/26/\2%1 _ 62>\2t)—1/2.

Substituting the obtained formulae into (11) we get the exact solution of the
nonlinear heat equation (7). Since the maximal in Lie’s sense invariance group of
Eq. (7) is the two-parameter group of translations with respect to ¢, z, solution (11),
(12) can not be obtained by the symmetry reduction procedure. Consequently, it is
essentially new.

In the same way we construct Q-conditionally invariant ansatzes for Egs. (5), (6b)
and (5), (6¢). They are of the form

0(u) = @o(t) + pr(t)z. (13)

Substituting (13) into the corresponding nonlinear equations we get the following
systems of ODE:

Qo = Aao + @7 + A1, @1 = dapp1
and

©o = Ao + A1, P1 = At
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Provided the functions a(u), F(u) take a more specific form, it is possible to
construct ansatzes reducing Eq. (1) to three, four and even five ODE. Corresponding
results are listed below

1) a(u) =P, Fu) = \u+ ul=F  ub =p(t) + @1 (t)z + @ (t)z?;
2) a(u) = Xe¥, F(u) =X+ Xe %, €% =p(t)+ ¢1(t)r + @a(t)z?;
3) a(u) = Au=3/2, F(u) = Mu+ Agu’/?,
w7 = o (t) + 1 (t)x + pa(t)a® + pa(t)a?;
4) a(u) = Y3, F(u) = Au+ Au™/3,
w3 = o (t) + p1(t)z + a(t)a? + @a(1)a® + pa(t)a.

(14)

(the formulae 4 from the above list were obtained by Galaktionov [6]).

Here A\, A1, A2 are arbitrary real constants; ¢o(t), ¢1(t), ..., wa(t) are arbitrary
smooth functions.

It is interesting to note that the cases 1, 2, 4 exhaust all possible nonlinearities
a(u) such that invariance group of Eq. (1) is wider than two-parameter translation
group [7].

Besides the above mentioned cases, we established that Eq. (1) with a(u) = 1,
F(u) = 2 (C5 + Cou — C3u?), C; € R is Q-conditionally invariant under the Lie-
Bicklund vector field (3) with n = g, — Cruu, — 5 (C3 4+ Cou — $CFu?). This fact
can also be used for antyreduction of the corresponding nonlinear heat equation.

In conclusion let us mention another important point. It is well-known that Eq. (1)
admits the Lie—Backlund vector field only if it is equivalent to the linear heat equation
or to the Burgers equation [8]. Consequently, the conception of conditional invariance
widens essentially our possibilities to use a non-Lie symmetry to solve nonlinear
partial differential equations.
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On linear and non-linear representations
of the generalized Poincaré groups
in the class of Lie vector fields

W.I. FUSHCHYCH, R.Z. ZHDANOV, V.I. LAHNO

We study representations of the generalized Poincaré group and its extensions in
the class of Lie vector fields acting in a space of m + m independent and one
dependent variables. We prove that an arbitrary representation of the group P(n,m)
with max{n,m} > 3 is equivalent to the standard one, while the conformal group
C(n,m) has non-trivial nonlinear representations. Besides that, we investigate in
detail representations of the Poincaré group P(2,2), extended Poincaré groups P(1,2),

P(2,2), and conformal groups C(1,2), C(2,2) and obtain their linear and nonlinear
representations.

1 Introduction

The central problem to be solved within the framework of the classical Lie approach
to investigation of the partial differential equation (PDE)

F(xau771i71217"-71;6):07 (1)

where symbol u denotes a set of k-th order derivatives of the function v = wu(x),

is to compute its maximal symmetry group. Sophus Lie developed the universal
infinitesimal algorithm which reduced the above problem to solving some linear over-
determined system of PDE (see, e.g. [1-3]). The said method enables us to solve
the inverse problem of symmetry analysis of differential equations — description
of equations invariant under given transformation group. This problem is of great
importance of mathematical and theoretical physics. For example, in relativistic field
theory motion equations have to obey the Lorentz—Poincaré—Einstein relativity prin-
ciple. It means that equations considered should be invariant under the Poincaré
group P(1,3). That is why, there exists a deep connection between the theory of
relativistically-invariant wave equations and representations of the Poincaré group
[4-6].

There exists a vast literature on representations of the generalized Poincaré group
P(n,m) [6], n,m € N but only a few papers are devoted to a study of nonlinear
representations. It should be noted that nonlinear representations of the Poincaré and
conformal groups often occur as realizations of symmetry groups of nonlinear PDE
such as eikonal, Born-Infeld and Monge—-Amperé equations (see [3] and references
therein). On sets of solutions of some nonlinear heat equations nonlinear represen-
tations of the Galilei group are realized [3]. So, nonlinear representations of the
transformations groups are intimately connected with nonlinear PDE, and systematic
study of these is of great importance.

J. Nonlinear Math. Phys., 1994, 1, Ne 3, P. 295-308.
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In the present paper we obtain the complete description of the Poincaré group
P(n,m) (called for bravity the Poincaré group) and of its extensions — the extended
Poincaré group P(n,m) and conformal group C(n,m) acting as Lie transformation
groups in the space R(n,m) x R!, where R(n,m) is the pseudo-Euclidean space with
the metric tensor

1, a=6=1,n,
JaB = -1, a=pB=n+1,n+m,
0, a#p.

The paper is organized as follows. In Section 2 we give all necessary notations and
definitions. In Section 3 we investigate representations of groups P(n,m), P(n,m),
C(n,m) with max{n,m} > 3 and prove, in particular, that each representation of
the Poincaré group P(n,m) with max{n,m} > 3 is equivalent to the standard li-
near representation. In Section 3 we study representations of the above groups with
max{n,m} < 3 and show that groups P(1,2), C(1,2), P(2,2), P(2,2), C(2,2) have
nontrivial nonlinear representations. It should be noted that nonlinear representati-

ons of the groups P(1,1), P(1,1), C(1,1) were constructed in [9] and of the group
P(1,2) — in [10].

2 Notations and definitions

Saying about a representation of the Poincaré group P(n,m) in the class of Lie
transformation groups we mean the transformation group

z), = fulz,u,a), p=Tn+m, o =g(xu,a), 2)

where a = {ay, N =1,2,...,n+m+ C2_, } are group parameters preserving the
quadratic form S(x) = gagzars. Here and below summation over the repeated indices
is understood.

It is common knowledge that a problem of description of inequivalent representa-
tions of the Lie transformation group (2) can be reduced to a study of inequivalent
representations of its Lie algebra [1, 2, 12].

Definition 1. Set of n+m +C2_,,
1,n + m of the form

Q = &u(w,u)0y + n(x, u)0y (3)
satisfying the commutational relations

[Pa,Pg]:O, [Pavpﬁ'y]:gaﬂpfyfga'ypﬂa
[Jaf% J/,LV] = gaVJﬁ;A + gﬁ/tJaV - gayJﬁu - g,@VJa;L

differential operators P, Jog = —jgar W, @, 0 =

(4)

is called a representation of the Poincaré algebra AP(n,m) in the class of Lie vector
fields.

In the above formulae

0 0

6”26'—%7 8u: 8_u’ [QlaQ2]:Q1Q2_Q2Q17 a,ﬁ,fy,,u,yzl,n—i—m.
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Definition 2. Set of 1+ n+m+ C2_, . differential operators P, Jog = —Jga, D
(a0, 6 =1,n+m) of the form (3) satisfying the commutational relations (4) and

[DaJaﬁ]:Oa [PavD]:Pa (a,ﬁzl,n—l—m) (5)

is called a representation of the extended Poincaré algebra Alg(n, m) in the class of
Lie vector fields.

Using the Lie theorem [1, 2] one can construct the (1+n+m+C3,,)-parameter
Lie transformation group corresponding to the Lie algebra {P,, J.3, D}. This trans-
formation group is called a representation of the extended Poincaré group P(n,m).
Definition 3. Set of 1+ 2(n+m)+C3_,, differential operators P,, Jog = —Jga, D,
K, (u,o,8 =1,n+m) of the form (3) satisfying the commutational relations (4),
(5) and

[KOHKﬁ] =0, [KOHJﬁ’Y] = gaﬂK’Y - ga'YKﬁ7

[PCHKB] = 2(gaﬁD - Ja6)7 [D,Ka} = K, ©

is called a representation of the conformal algebra AC(n,m) in the class of Lie
vector fields.

(1+2(n+m)+ C2,,,)-parameter transformation group corresponding to the Lie
algebra {P,, Jop, D, K,} is called a representation of the conformal group C(n,m).
Definition 4. Representation of the Lie transformation group (2) is called linear if
functions f,, g satisfy conditions f,, = fu.(x,a) (n=1,n+m), g = g(x,a)u. If these
conditions are not satisfied, representation is called nonlinear.

Definition 5. Representation of the Lie algebra in the class of Lie vector fields (3)
is called linear if coefficients of its basis elements satisfy the conditions

§o = fa(I), a=ln+m, n= 77(1')“7 (7)

otherwise it is called nonlinear.

Using the Lie equations [1, 2] it is easy to establish that if a Lie algebra has a
nonlinear representation, its Lie group also has a nonlinear representation and vice
versa.

Since commutational relations (4)—(6) are not altered by the change of variables

x/oz :Fa(xvu)a u' :G(x,u)v (8)

two representations { Py, Jag, D, Ko} and {P;,, J),5, D', K|, } are called equivalent pro-
vided they are connected by relations (8).

3 Representations of the algebras AP(n,m),
AP(n,m), AC(n,m) with max{n,m} > 3
Theorem 1. Arbitrary representation of the Poincaré algebra AP(n,m) with

max{n, m} > 3 in the class of Lie vector fields is equivalent to the standard repre-
sentation

Py =04, Jap = gary®~+08 — 934200 (o, =1,n+m). (9)
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Proof. By force of the fact that operators P, commute, there exists the change of
variables (8) reducing these to the form P, = d,, « = 1,n+m (a rather simple
proof of this assertion can be found in [1, 3]). Substituting operators P, = 0q, Jag =
Eapy (2, u)0y + Nap(x,uw)0, into relations [Py, Jgy| = gapPy — gayPs and equating
coefficients at the linearly-independent operators 9,, 9, we get a system of PDE for
unknown functions &3, Nag

§a,6w# = pa9vp — GupY9vas Napz, = 0, o,y p=1n+m,

whence

faﬂ'y = Tad~B — TEYGya + Faﬁ’y(u)v TNap = Gaﬁ(u)'

Here Fo3y = —Fgay, Gap = —Gpa are arbitrary smooth functions, o, 8,7 = 1,n +m.

Consider the third commutational relation from (4) under 1 < o, 5, pu,v < n,
0 = p. Equating coefficients at the operator 0,, we get the system of nonlinear
ordinary differential equations for G,,, (u)

Gow = GopGay — GpuGap (11a)

(no summation over ), where a dot means differentiation with respect to w.
Since (11a) holds under arbitrary «,3,v = 1,n, we can redenote subscripts in
order to obtain the following equations

G,Gl/ = G,chGay - GauGﬂa7 (llb)
Gaﬁ = Gozl/Guﬁ - GVﬁGaV (IIC)

(no summation over « and v).
Multiplying (11a) by Gau, (11b) by Gg,, (11c) by G and summing we get
2 2 2
GQM+G5M+G B:O’

«

whence Go, = Gy = Gag = 0.

Since «, (8, v are arbitrary indices satisfying the restriction 1 < «, 8, v < n, we
conclude that Gog =0 for all 0,8 =1,2,...,n.

Furthermore, from commutational relations for operators J,z, o, 8 = 1,n we get
the homogeneous system of linear algebraic equations for functions F,gz~(u), which
general solution reads

Faﬂ’y:Fa(u)gﬁ’Y*Fﬁ(u)ga'y’ Oé,ﬂ,"}/:].,n,

where F,(u) are arbitrary smooth functions.
Consequently, the most general form of operators P,, Jog with 1 < a,8 < n
satisfying (4) is equivalent to the following:

PM e (9/“ Jag = (l‘a + Fa(u))ag — (xg + Fg(u))@a

Making in the above operators the change of variables

e, =, +Fu(uw), p=1n, ay=za, A=n+Ln+tm, v =0

and omitting primes we arrive at the formulae (9) with 1 < «, 5 <n.
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Consider the commutator of operators Ju3, Joa under 1 <o, 8<n, n+1< A<
n—+m

[Jaﬁa JO/A] = [Iaaﬁ - xﬂaonga’yfr'yaA - gA’yl"yaa +

(12a)
+ FaAv(u)&y + GQA(u)ﬁu] = zAég — ;13[38,4.
On the other hand, by force of commutational relations (4) an equality
[Jas, Jaa]l = J3a (12b)

holds. Comparing right-hand sides of (12a) and (12b) we come to conclusion that
Foay = 0, Goa = 0. Consequently, operators Joa = —Jaq with @ = 1,n, A =
n+ 1,n + m have the form (9).

Analogously, computing the commutator of operators J,a, Jap under 1 < a <mn,
n+1< A B <n-+m and taking into account commutational relations (4) we get
Fapy =0, A,B =n+1,n+m, v = 1,n. Consequently, operators Jap are of the
form

Jap =204 — 2408+ Gap(u)dy, A,B= n+1,n+m.
At last, substituting the results obtained into commutational relations
[Jaa, JaB] = —JaB
(no summation over «), where a = 1,n, A,B=n+1,n+ m, we get
Gap=0, A B=n+1,n+m.

Thus, we have proved that there exists the change of variables (8) reducing an
arbitrary representation of the Poincaré algebra AP(n,m) with max{n,m} > 3 to the
standard representation (9). Theorem is proved.

Note 1. Poincaré algebra AP(n,m) contains as a subalgebra the Euclid algebra AFE(n)
with basis elements Py, Jug, o, 8 = 1,n. When proving the above theorem we have
established that arbitrary representations of the algebra AE(n) with n > 3 in the
class of Lie vector fields are equivalent to the standard representation

P, =0, Jap =208 — 2804, W a,B=1n.

Theorem 2. Arbitrary representation of the extended Poincaré algebra AP(n,m)
with max{n,m} > 3 in the class of Lie vector fields is equivalent to the following
representation:

Py =04, Jag = gay408 — g8yT~0a;, D = 0,04 + culy, (13)

where e =0,1; a, 3,7y =1,n+m.

Proof. From theorem 1 it follows that a representation of the Poincaré algebra
AP(n,m) = (P,, Jap) can always be reduced to the form (9). To find the explicit
form of the dilatation operator D = ¢, (x,w)d,, + n(z,u)d, we use the commutational
relations [P,, D] = P,. Equating coefficients at linearly-independent operators 9,,, .y,
we get

Euwa = 6[“17 Neo = 07

where 6, is a Kronecker symbol; u,a = 1,n + m.
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Integrating the above equations we have

€M=$M+FM(U), 7720(“),

where P,(u), G(u) are arbitrary smooth functions.

Using commutational relations [J,,, D] = 0 we arrive at the following equalities:

gu’yF'yau - gu'yF'yau =0 pr=I1Ln+m,

whence F, =0, vy =1,n+m.
Thus, the most general form of the operator D is the following:

D = 2,0, + G(u)0,.
Provided G(u) = 0, we get the formulae (13) under e = 0. If G(u) = 0, then after
making the change of variables

voman p=Tarm, = [(G)

we obtain the formulae (8) under € = 1. Theorem is proved.

Theorem 3. Arbitrary representation of the conformal algebra AC(n,m) with
max{n, m} > 3 in the class of Lie vector fields is equivalent to one of the following
representations:

1) operators P, Jog, D are given by (13), and operators K, have the form

K, = 2gaﬁxﬁD - (g;wx,uxu)aa; (14)

2) operators P, Jog, D are given by (13) with e =1, and operators K, have the
form

Ko =2gap28D — (gxpz, £ u2)8a. (15)

Proof. From theorem 2 it follows that the basis of the algebra AP(n,m) up to the
change of variables (8) can be chosen in the form (13).

From the commutational relations for operators P, = 0, and Kg = £g,,(z,u)0, +
ng(x,u)d, we get the following system of PDE:

Epuza = 29aTp — 2000Tu 08y + 2960 L0000, NBra = 2€98alU-

Integrating these we have

Eon = 295008y = Jar a0y + Fpu(u),  ng = 2expu+ Gp(u),

where Fg,,, g are arbitrary smooth functions, o, 8, 4, v = 1,n 4+ m.
Next, we make use of commutational relations [D, K,] = K,. Direct computation
shows that the following equalities hold

[D, K] = [0, + €udy, 29apr (2,0, + udy) — guv®ux,0q +

+ Fop(u)0s + Go(u)0u] = 2gaprs(x,0, + cudy,) —
— (9 2uxy)0a + (cuFopy — Fop)Os + (UG ay — Ga)Ou.
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Comparison of the right-hand sides of the above equalities yields the system of
PDE

2F,3 = euFupy, Ga=¢euGue, —Ga), o,f=1n+m. (16)

In the following, we will consider the cases ¢ = 0 and € = 1 separately.

Case 1, e = 0. Then it follows from (16) that F,,3 =0, G, =0, o, =1,n+m,
i.e. operators K, are given by (14) with ¢ = 0. It is not difficult to verify that the
rest of commutational relations (6) also holds.

Case 2, ¢ = 1. Integrating the equations (16) we get

Fog = C’aqu, Gy = Cou?,

where Cyg, C are arbitrary real constants.
Next, from the commutational relations for K, J,, it follows that

Cop =Cbop, Cqo=0,

where C' is an arbitrary constant, a, 8 = 1,n + m.
Thus, operators K, have the form

K, =29,,0,D — (gapTaxs)O, + C’u28u. (17)

Easy check shows that the operators (17) commute, whence it follows that all
commutational relations of the conformal algebra hold.

If in (17) C = 0, then we have the case (14) with e = 1. If C' # 0, then after
rescaling the dependent variable u' = u|c|'/? we obtain the operators (15). Theorem
is proved.

Note 2. Nonlinear representations of the conformal algebra given by (13) with e =1
and (15) are realized on the set of solutions of the eikonal equations [3, 14]

Juplz, Uy, 1 =0
and on the set of solutions of d’Alembert—eikonal system [15]

Gz, Uz, £1 =0, gz, 2, £ (n+m— Du™t=0.

Thus, the Poincaré group P(n,m) with max{n,m} > 3 has no truly nonlinear
representations. The only hope to obtain nonlinear representations of the Poincaré
group is to study the case when max{n,m} < 3.

4 Representations of the algebras AP (n,m),
AP(n,m), AC(n,m) with max{n, m} < 3

Representations of algebras AP(1,1), AP(1,1), AC(1,1) in the class of Lie vector
fields were completely described by Rideau and Winternitz [9]. They have established,
in particular, that the Poincaré algebra AP(1,1) has no nonequivalent representations
distinct from the standard one (9), while algebras AP(1,1), AC(1,1) admit nonlinear
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representations. In the paper [10] nonlinear representations of the Poincaré algebra
AP(1,2)
PM 28,“ Ji2 = 102 + 201 + Oy,

18
J13 = 301(93 + 1’3(91 + cosuau, J23 = 502(93 — 1’332 — Sinu@u, ( )

were constructed and besides that, it was proved that an arbitrary representation
of the algebra AP(1,2) in the class of Lie vector fields is equivalent either to the
standard representation or to (18).

In the paper [11] we have constructed nonlinear representations of the algebras
AP(2,2) and AC(2,2).
Theorem 4. Arbitrary representation of the Poincaré algebra AP(2,2) in the class
of Lie vector fields is equivalent to the following representation:

Py=0u, p= 1.4,

Jiog = 2102 — 2201 + 0y, Ji13 = 301 + 1103 + £ cosul,,

Jig = 401 + 1104 Fesinud,, Joz = 2305 + 1203 + €sinud,,
Jog = 400 + 1204 £ ecosudy,, J3q4 = 14035 — 2304 £ 0y,

(19)

where e =0, 1.

Proof. When, proving the theorem 1, we have established that the operators P,, J.s
can be reduced to the form

P,u, - a;m J/,Ll/ - guaxaau - guaxaa,u + Fuua(u)aa + Gul/(u)aua (193)

where F, o = —F, 0, G = —G,,, are arbitrary smooth functions; p, v, a = 1,4.

Consider the triplet of operators Jia, Ji3, Josz. From commutational relations (4)
we obtain the following system of nonlinear ordinary differential equations for functi-
ons G12, Glg, Gggi

G23 = G13G12 - G12G137 G13 = G12G23 - G23012a

. . (20)
Gi2 = G13G23 — Ga3Gh3,

(a dot means differentiations with respect to u).
Multiplying the first equation of the system (20) by Ga3, the second — by Gi3
and the third — by G12 and summing we get an equality

Gl = Gis + G (21)

In the following one has to consider cases G2 # 0 and G2 = 0 separately.
Case 1, G12 # 0. General solution of the algebraic equation (21) reads

Gi2 = f(u), Gi3= f(u)cosg(u), Gaz= f(u)sing(u), (22)

where f(u), g(u) are arbitrary smooth functions.
Substitution of (22) into (20) yields ¢f? = f. Since f(u) = gi2 # 0, the equality
g = f~! holds. Consequently, the general solution of the system (20) is of the form

1

Gia=¢"', Giz=¢ 'cosg, Ga=g"'

sin g,

where g = g(u) is an arbitrary smooth function.
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On making the change of variables
Ty =T, a=14, u =g(u),
which does not alter the structure of operators P,, J,, (19a), we reduce operators
Ji2, Jos, Jis to the form
Jiz = 102 — 2201 + Oy + Fiaa(u)da,
Jog = 230 + 2205 + (sin )0y + Faza(u)da, (23)
Jiz = 2301 + 105 + (cosu)d, + f‘lga(u)aa,
where Fiaa, Fasa, Fiza, o = 1,4 are arbitrary smooth functions.
Substitution of (23) into (4) yields the system of linear ordinary differentional
equations, which for general solution reads
Fioy =V+W, Fuap=W-V, Fi3=Q, Fis =Vcosu-Q,
ﬁ132 = W cos u, ﬁ133 = Qcosu -V, ﬁ231 = Vsinu, ﬁggg = Wsinu — Q,
13233 = Qsinu — W, ﬁ124 =R, ﬁ134 = Rcosu — C]sinu,
ﬁ234 = Rsinu + C4 cosu.

Here V, W, @, R are arbitrary smooth functions on w, Cy is an arbitrary constant.
The change of variables

y=x1 —V(u), xb=x0—W(u),
rh=13—Qu), ) =z4— [Ru)du, v =u

reduce operators Jyo, Jos, Ji3 to the form

Ji2 = 1102 — 1201 + Oy,
J13 = $381 + 1’183 — Cl sin u@u -+ cos u@u, (24)
Jog = 1302 + 1203 + C1 sinud,, + sinud,,
the rest of basis elements of the algebra AP(2,2) having the form (19a).
Computing commutational relations (4) for operators Jup; «,3 = 1,4 given by
formulae (19a) with p = 1,3, v = 4 and (24) we obtain system of equations for

unknown functions F,,a, G.,; o = 1,4; u = 1,3. General solution of the system
reads

Gy = :Fsinu, Goy = £ cos u, G34 = ﬁ:l, Ci = O,
Fiyn = Foyp = Fayz = Oy, Fa4ﬁ =0, a=p,
where C5 is an arbitrary constant.

Substituting the result obtain into the formulae (19a) and making the change of
variables

1 . I . [
Ty =T, a=13; ay=24+Cs U =u

we conclude that operators J,4, o = 1,3 are given by (19) with e = 1.

Case 2, G12 = 0. In this case from (21) it follows that G1o = G135 = Goz = 0.
Computing commutators of operators Jia, J14 and Jia, Jou we get G4 = Ga4. Next,
computing commutator of operators Ji3, Jo3 we came to conclusion that Gg4 = 0.
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Substitution of operators J,, from (19a) with G,,, = 0, p,v = 1,4 into commu-
tational relations (4) yields a homogenerous system of linear algebraic equations for
functions F},,o. Its general solution can be represented in the form

F,u,ua :F/L(u)gua _Fu(u)g;wm M, V,&x = 1747

where F),(u) are arbitrary smooth functions.
Consequently, operators (19a) take the form

b, = a/u Jag = ga'y(x'y + F’y(u))aﬁ - gﬂ’y(gjﬂ/ + Fw(u))aa.

Making in the above operators the change of variables x), = x,, + F),(u), p = 1,4,
u' = u we arrive at formulae (19) with e = 0. Theorem is proved.
Theorem 5. Arbitrary representations of the extended Poincaré algebra AJB(Z, 2) in
the class of Lie vector fields is equalent to one of the following representations:

1) P, Jop are of the form (19) with e =1, D = x,,0,,;

2) P,, Jag are of the form (19) with ¢ =0, D = 2,0, + €1u0y, €1 =0, 1.

Theorem 6. Arbitrary representation of the conformal algebra AC(2,2) in thew
class of Lie vector field is equivalent to one of the following representations:
1) P,, Jop are of the form (19) with € =0,
D =2,0, +c1ud,, €1 =01,
K, = 2gaﬁxﬁD - (guuxpxu)8a;

2) P,, Jap are of the form (19) with e =0,

D = 2,0, + u0y,
Ko =2gaprsD — (g, £+ u2)Oy;

3) P, Ju are of the form (19) with € =1,

D = 12,04,

Ky =221D — (guxpx,)0h + 2(x2 + 23 cosu F xasinu)d,,

Ko = 229D — (guvxp,)02 + 2(—x1 + x3sinu £ x4 cos u)0y,
K3 = —223D — (guvxux,)03 + 2(£24 + 21 cosu — xasinu)0,,
Ky = —224D — (9u0u2y)01 + 2(Fra £ 1 sinu F 2 cos u)0y,

where p, o, v =1,2,3,4.

Proofs of the theorems 5 and 6 are similar to the proofs of the theorems 2, 3 that
is why they are omitted.

In conclusion of the Section we adduce all nonequivalent representations of the
extended Poincaré algebra AP(1,2) [10]

1) P,, Jas are of the form (9),

D=2,0,+eud,, €=0,1,
2) P,, Jap are of the form (18),

D=z,0,
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and the conformal algebra AC(1,2) [10]
1) P,, Jas are of the form (9),

Dzzuau—kau&“ 5:Oa]~a
Ko =29apsD — (910 p®y)0a;

2) P,, Jap are of the form (9),

D = 2,0, + u0y,

Ko =2gap28D — (gjxpz, £ u?) 0y
3) P,, Jap are of the form (18),

D =x,0,,
Ky =221D — (guvx,x, )01 + 2(x2 + x3 cos u)dy,

Ky = —229D — (gu2u2,)02 + 2(—21 + 23 8inu)dy,
K3 = —223D — (gxux,)03 — 2(x1 cosu + xa sinu)0y.

Here p, o, B, v =1,2,3.

5 Conclusion

Thus, we have obtained the complete description of nonequivalent representations
of the generalized Poincaré group P(n,m) by operators of the form (3). This fact
makes a problem of constructing Poincaré-invariant equations of the form (1) purely
algorithmic. To obtain all nonequivalent Poincaré-invariant equations on the order IV,
one has to construct complete sets of functionally-independent differential invariants
of the order N for each nonequivalent representation [1, 2].

For example, each P(n,m)-invariant first-order PDE with max{n,m} > 3 can be
reduced by appropriate change of variables (2) to the eikonal equation

Uz, Uz, = F(u)v (25)

where F'(u) is an arbitrary smooth function.

Equation (26) with an arbitrary F(u) is invariant under the algebra AP(n,m)
having the basis elements (9). Provided F(u) = 0, n = m = 2, it admits also the
Poincaré algebra with the basis elements (19) [11].

Another interesting example is provided by P(1,n)-invariant PDE (n > 3). In [16]
a complete basis of functionally-independent differential invariants of the order 2 of
the algebra AP(1,n) with the basis elements (9) has been constructed. Since each
representation of the algebra AP(1,n) with n > 3 is equivalent to (9), the above
mentioned result gives the exhaustive description of Poincaré-invariant equations (1)
in the Minkowski space R(1,n).

It would be of interest to apply the technique developed in [15] to construct PDE
of the order higher than 1 which are invariant under the Poincaré algebra AP(2,2)
with the basis elements (19).

In the present papers we have studied representations of the Poincaré algebra in
spaces with one dependent variable. But no less important is to investigate nonlinear
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representations of the Poincaré algebra in spaces with more number of dependent
variables [17]. Linear representations of such a kind are realized on sets of solutions
of the complex d’Alembert, of Maxwell, and of Dirac equations. If nonlinear rep-
resentations in question would be obtained, one could construct principially new
Poincaré-invariant mathematical models for describing real physical processes.

We intend to study the above mentioned problems in our future publications.
Besides that, we will construct nonlinear representations of the Galilei group G(1,n),
which plays in Galilean relativistic quantum mechanics the same role as the Poincaré
group in relativistic field theory.

1. Ovsiannikov L.V., Group analysis of differential equations, New York, Academic Press, 1982.
2. Olver P., Applications of Lie group to differential equations, Berlin, Springer, 1986.

3. Fushchych W.I., Shtelen W.M., Serov N.I., Symmetry analysis and exact solutions of equations of
nonlinear mathematical physics, Dordrecht, Kluwer Academic Publ., 1993.

4. Wigner E., Unitary representations of the inhomogenerous Lorentz group, Ann. Math., 1939, 40,
149-204.

5. Gelfand .M., Minlos A., Shapiro Z.Ya., Representations of the rotation and Lorentz groups,
Moscow, Fizmatgiz, 1958.

6. Fushchych W.I., Nikitin A.G., Symmetry of equations of quantum mechanics, Moscow, Nauka,
1990; New York, Allerton Press, 1994.

7. Rideau G., An analytic nonlinear representation of the Poincaré group, Lett. Math. Phys., 1985, 9,
337-352.

8. Bertrand J., Rideau G., An analytic nonlinear representation of the Poincaré group: II. The case of
helicities +1/2, Lett. Math. Phys., 1985, 10, 325-331.

9. Rideau G., Winternitz P., Nonlinear equations invariant under the Poincaré, similitude and conformal
groups in two-dimensional space-time, J. Math. Phys., 1990, 31, 1095-1105.

10. Yehorchenko I.A., Nonlinear representation of the Poincaré algebra and invariant equations, in
Symmetry Analysis of Equations of Mathematical Physics, Kyiv, Institute of Mathematics, 1992,
62-66.

11. Fushchych W.I., Zhdanov R.Z., Lahno V.I., On nonlinear representation of the conformal algebra
AC(2,2), Dokl. AN Ukrainy, 1993, Ne 9, 44-47.

12. Fushchych W.I., Barannik L.F., Barannik A.F., Subgroup analysis of the Galilei and Poincaré groups
and reduction of nonlinear equations, Kyiv, Naukova Dumka, 1991.

13. Fushchych W.I., Zhdanov R.Z., Conditional symmetry and reduction of partial differential equations,
Ukr. Math. J., 1992, 44, 970-982.

14. Fushchych W.I., Shtelen W.M., The symmetry and some exact solutions of the relativistic eikonal
equation, Lett. Nuovo Cim., 1982, 34, 498-502.

15. Fushchych W.I., Zhdanov R.Z., Yehorchenko I.A., On the reduction of the nonlinear multi-dimen-
sional wave equations and compatibility of the d’Alembert-Hamilton system, J. Math. Anal. Appl.,
1991, 161, 352-360.

16. Fushchych W.I., Yehorchenko I.A., Second-order differential invariants of the rotation group O(n)
and of its extensions: E(n), P(1,n), Acta Appl. Math., 1992, 28, 69-92.

17. Fushchych W.., Tsyfra I.M., Boyko V.M., Nonlinear representations for Poincaré and Galilei
algebras and nonlinear equations for electromagnetic fields, J. Nonlinear Math. Phys., 1994, 1,
Ne 2, 210-221.



W.I. Fushchych, Scientific Works 2003, Vol. 5, 267-272.

Nonlocal ansatzes
for nonlinear wave equation

W.1. FUSHCHYCH, I.M. TSYFRA

3anpornoHoBaHO HeJIOKaJbHI aH3alM, 110 PeAyKYIOTb HeJiHifiHI XBU/bOBI DiBHSAHHS 10
CHCTEMH XBUJIbOBUX PiBHfIHb 3 MEHLIMM YHCJIOM He3aslexXHUX 3MiHHMX. [TokasaHo, w10 ui
aH3al¥ MOXXHa Oflep»KaTH, BUKOPUCTOBYIOUH OINEPaTOPH HeJIOKaJbHOI CUMeTpii piBHAHHSA.

1. In the present paper we suggest a nonlocal ansatz

ou

% :auV(xau)¢V(w)+hu(wvu)7 MaV:07172733 (1)
"

for reduction of the second order nonlinear differential equation

8%u ou
guy(x,u)m + F <x, u, @> =0 (2)

to the system of equations for some functions ¢, (w), w = (w1,w2,ws). The functions
auy(x,u), hy(z,u) are determined from the condition that the equation (2) is reduced
to the system of equations for ¢, (w) (for more detail about the reduction method see
(1, 2]).

To illustrate the efficiency of the ansatz (1) we consider two nonlinear two-dimen-
sional equations of type (2)

u12 = up F1(ug — u), (3)
ugo = Fa(u11), (4)
where wu,,, = Mf—g%, u, = 637““, Fy, Fy are smooth functions.
2. For equation (3) we shall search for ansatz (1) in the form
ou ou
_301(W)+h1($,u), _@2(u})+h2(ﬂf,u), (5)

dry dry
hi, ha, w has to be determined in the way that functions 1, o satisfy the system of
the ordinary differential equations with a new independent variable w [1, 2]. Substitu-

ting (5) into (3) and using the compatibility condition ui3 = ug;, we obtain

8h1 8h1 8(,01 Oow

. %(% + ha) + w0 025 (1 + h1)[pr + h1 — ],

8h2 8h2 &02 8&) o
8—m+%(¢1+h1)+m8—m1_((p1+h1)[<pl+hl_u]’ (6)
oh oh

8—36; + a—ulhg = hiFi[h1 + o1 — 1),

JHonosini HAH VYxpaiuu, 1994, Ne 10, P. 34-39.
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Oh dpy O

P2 = 8&1 8w = p1F1[h + 1 —u] = Ry (w),

oh oh

(“)9: 9 “2hy = hiFilhi + 1 — ], (7)
oh Oy O

P15y 2 4 8(22 aw = 1 Fi[h + o1 — u] = Ra(w),

where Ry(w), Ro(w) are unknown functions. System (7) is a condition on functions
hi, he, w(x1,x9) guaranteeing that system (6) depends on the w only, i.e., ansatz (5)
reduces partial differential equation to a system of ordinary differential equations for
functions ¢1 and ¢o. Hence, in order to describe ansatzes of type (5) it is necessary
to solve nonlinear system (7). Here, we get a particular solution of system (7) only,
namely

hl = u, h2 = F1 [@1(.’1?2)]’1% W = T9. (8)

It is easy to verify that solution (8) satisfies system (7) and in this case reduced
system (6) takes the form

palea) + 52 = or (@) Pl (w2)]. ©)

Having integrated the system

0 Bl (e)u+ or(e) Bl (@) — 228 (10)

o), D
= U Y1{Tr2), Oy Oz

61'1

one can obtain particular solutions of equation (3). The solution of equation (10) is
given by the formula

u = —p1(x2) + ce®1 T/ Fi(e1(22))dwz (11)

where ¢1(z2) is an arbitrary smooth function and C is an arbitrary constant.
3. Now we suggest the method of construction of ansatzes (1), based on a nonlocal
symmetry of the equation

0%u du Ou
=F — . 12
81'18{,62 <U, 89;‘1 ’ (9%2) ( )

We consider the first order system
Vo + Vi V2= F(xs, V!, V?), (13)

Vo + VEVE = F(as, V1, V?), (14)

corresponding to the equation (12), where V¥ = %‘; J T3 =u, pE =V
The problem of construction of all ansatzes from the class (1) for equation (12) is
equivalent to the problem of finding all operators of the @-conditional symmetry [,

2, 5].
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Theorem 1. The system (13), (14) is Q-conditionally invariant under the operators
Q1 = 0z,, Qo = 0, + 010y, + 1?0, if and only if the functions n', n* satisfy the
[ollowing equation

F
M, =0, my,=n, =02 =0, W=,
%
1 1 1 F F 2 (15)
/ /
Nay — M F = Fy +07 Fy, + Vva2 —n' i N2, V2.

The correctness of Theorem 1 is easily verified with the help of the infinitesimal
criterion of the Q-conditional invariance [l, 5]. Thus, arbitrary setting n'(xs, V')
as a function on z3, V! we get classes of nonlinearities F(z3, V! V?) with which
equation (12) admits operators {Q1,Q2}. In the case of equation (3) n', n? are as
follows: n' =1, n? = Fy(V! —a3), F = VIF (V! — x3). It should be noted that Q-
is not a prolongation of Lie operator, but it is the nonlocal symmetry operator of the
equation (12). Operators {Q1,Q2} lead to the ansatz (10).

Then we consider the equation

ugo = Fa(u11), (16)

where F5 is an arbitrary smooth function. Using the invariance of equation (16) under
the operators dzg, 0x1, Oy, ©10y, 20, We write it in the form of the following system

VP=V), V=V, VP=R(V?), (17)

where Upp = V Uo1r = V Uil = V2

Theorem 2. The system (17) is invariant with respect to the continuous group of
transformations with the infinitesimal operator

Q = goawo + 518931 (18)
if €9, & are a solution of the system of equations

09 _ o0 _og ok _
63:0763:1 76$076$1 -

ag® _ og! 2, 0 (19)
avi = gyot 2(V5) + ov?’
ot og° 5, 0&°
—F. .
ot ~ a2Vt g
The finite transformations
xh = x0 +al’, ) =z +att (20)

correspond to the operator (18). Formulae (18), (19) give the operator of the nonlocal
symmetry of equation (16). With the help of this operator, one can construct nonlocal
ansatzes reducing the equation (16) to the system of three ordinary differential equa-
tions for three unknown functions. The analogous procedure has been called an ati-
reduction in [6].

Furthermore, the finite transformations (20) can be used for generating new solu-
tions. The transformations (20) are more general than contact ones since £°, ¢! are
the functions on wgg, wo1, w11.
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For example, we shall take Fy(u11) = sinuqy. In this case one of the solutions of
system (19) is
c

&0 = §(Vl)2 —CcosV?+ D, ¢'=cVtsinV?+ DV, 21)
where C, D = const. We start from a solution of the equation v = &% — sinxy. Then
VO =sinzg, V=, V?=uz,. (22)

Using the transformations (20) we obtain the system
V0 =sin [mo +a (g(Vl)2 —CcosV? + D)} ,
Vl=x +a[CVsinV? + DV, (23)
Vi=zy+a [g(Vl)2 —CcosV?+ D] .
Thus, in order to find new solutions of equations (16) it is necessary to solve the
overdetermined but compatible system
Voo = sin {xo +a (g(um)2 — Ccosuyp + D)} ,
uo1 = 1 + afcuor sinugy + Dug], (24)

c
Ul = To +a b(um)z — Ccosuyr + D} .

The maximal local invariance group of equation (16) is the 7-parameter group. The
basic elements of the corresponding algebra are
Py :aibgv Py :axu Py :am szoazo +xlam1 +2u8u,
Q1 =210y, Q2 =120y, Q3=11720,.
It can be shown, that the system (24) has no solutions invariant under the operator
aoPo+ a1 P+ aePe+dD + B1Q1 + f2Q2 + B3Q3, where ap, a1, as, d, b1, B2, B3 are
arbitrary constants. Therefore, no solution of system (24) is invariant one for equation
(16).

Further, we consider the equation

[F(’U,)]l = U22. (26)

(25)

We write the equation (26) in the form of the system
Fu) =0y,, Uy, =0,,. (27)

Theorem 3. The system (27) is invariant with respect to the one-parameter Lie
group generated by an operator of the form
Q = —x10y, + 004, + u0, (28)
lf F= lnlu’
Operator (28) is a nonlocal symmetry operator of equation (26). We use It to
construct the nonlocal ansatz and exact solutions of the equation

<L> = U22. (29)
Inwu/,
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The ansatz

_f(0) _ T2

corresponds to operator (28), where f(60), ©(0) are unknown functions.
Substituting (30) into (27) we obtain the reduced system of ordinary differential
equations

0" +o=Inf, ['=0. (31)
The solution of system (31) has the form
02 02+2c 02 62

_ _ 2 2 _
o= 2ln ) 2+Cln(0 +2¢)4c1, f 2+c. (32)
Using the formula (30) and the substitution ﬁ = z we obtain the solution of the
equation
1 1
z1 + (—2ez 22> =0 (33)
< 2
namely
02
ez = 5 +c,
22 (34)
9 =

EnE2 — 2 4 Cn(02 +2¢) —Inay + o1

Formulae (34) give the solution of the nonlinear diffusion equation (33). In conclusion,
we emphasize that the finite transformations

oz
T 14az2’

/

) =e %z, Th=1x9+al, =z =0 (35)
can be used for the nonlocal generating of solutions of equation (33), since the system
(27) admits the operator (28) in Lie sense. In this case the formula of generating
solutions takes the form

/ —a
y Z(e7%1, 20 + ab)
1 —az(e %y, 20 + ab)’ (36)
where 6 is the solution of the system
Oy = —2, Leﬁ 0y, =2 (37)
xry T T (ZI)2 Y T2 T 9

Z' is the initial solution and 2" is the new solution of the equation (33), a is an

arbitrary constant.

Suggested approach can be effectively applied for the nonlocal generating of solu-
tions of equations which are invariant with respect to the group of contact transfor-
mations.
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Nonlinear representations for Poincaré
and Galilei algebras and nonlinear equations
for electromagnetic fields

W.I. FUSHCHYCH, IM. TSYFRA, V.M. BOYKO

We construct nonlinear representations of the Poincaré, Galilei, and conformal algebras
on a set of the vector-functions ¥ = (E, H). A nonlinear complex equation of Euler
type for the electromagnetic field is proposed. The invariance algebra of this equation
is found.

1. Introduction
It is well known that the linear representations of the Poincaré algebra AP(1,3)
and conformal algebra AC(1,3), with the basis elements

Pp :Z'gNVaV’ le :xHPV_xVPN—’_SIW’ (1)
D =x,P¥ — 2i, 2)
K, = 22,D — (2,2") Py + 22" Sy, 3)

is realized on the set of solutions of the Maxwell equations for the electromagnetic
field in vacuum (see e.g. [1, 2])

OF . OH .
E—I‘OtH, E——I‘OtE, (4)
divE =0, divH =0. (5)

Here S,,, realize the representation D(0,1) & D(1,0) of the Lorentz group.
Operators (1)-(3) satisfy the following commutation relations:

(P, Pl =0, [Py, Japl = i(gpals — gupPa), (6)
[Jags Juv] = i(95uTav + GavIau — andsy — govJan); (7)
[D,P,| = —iP,, [D,J.,]=0, (8)
(K, Pol = 1(2Jap = 29pa D), [Ky, Jap] = i(9Kp — gupKa), 9)
[K,,D] =—iK,, [K, K/J)=0, pvap=01,23. (10)

In this paper the nonlinear representations of the Poincaré, Galilei, and conformal
algebras for the electromagnetic field E, H are constructed. In particular, we prove
that the continuity equation for the electromagnetic field is not invariant under the
Lorentz group if the velocity of the electromagnetic field is taken in accordance with

J. Nonlinear Math. Phys., 1994, 1, Ne 2, P. 210-221.
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the Poynting definition. Conditional symmetry of the continuity equation is studied.
The complex Euler equation for the electromagnetic field is introduced. The symmetry
of this equation is investigated.

2. Formulation of the main results
The operators, realizing the nonlinear representations of the Poincaré algebras
AP(1,3) = (Py,Ju), APi(1,3) = (P,,Ju, D), and conformal algebra AC(1,3) =
(P, Juw, D, K ), have the structure

P, =0,,, (11)
Jp = 1,05, — 2105, + Ski, (12)
Jok = 00z, + 0z, + Sok, k,1=1,2,3, (13)
D =z,0,,, (14)
Ko = 2204, + w020y, + (Tp — onk)aEk — 2oH O, (15)

K; = 29710, + 217404, + |21 B — 2o(E'EX — H H®)| 0, +

16
+ [wp HY — 2o (H'E® + E'H*)] 0, (16)

where

Sk = EkaEl — ElaEk + HkaHz — I:ﬂach7

Sor = Ogr — (E*E' — H*HY0p — (E*H' + HFE)O 1.
The operators, realizing the nonlinear representations of the Galilei algebras
AGP®(1,3) = (P, Ju, G), AG)(1,3) = (P, Ju, G\P, D) have the form:

Py =0, Ju=xk0s — 210z, + Sk, (17)
G? = 140,, — (E*E' — H*HY0gm — (E*H' + H*E"op, (18)
D = 100y, + 2210y, + E¥0gk + H* g (19)

We see by direct verification that all represented operators satisfy the commutation
relations of the algebras AP(1,3), AC(1,3), AG(L,3).

3. Construction of nonlinear representations
In order to construct the nonlinear representations of Euclid-, Poincaré-, and Gali-
lei groups and their extensions the following idea was proposed in [2, 3]: to use
nonlinear equations invariant under these groups; it is necessary to find (point out,
guess) the equations, which admit symmetry operators having a nonlinear structure.
Such equation for the scalar field u(zg, x1, 22, 23) is the eikonal equation

u_ou

Ox,, OxH

=0, pu=0,1,23 (20)

which is invariant under the conformal algebra AC(1,3) with the nonlinear operator
K, [2, 3].
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The nonlinear Euler equation for an ideal fluid

6’Uk avk
_— _— = = 1
5 T P, 0, k=1,2,3 (21)

which is invariant under nonlinear representation of the AP(1,3) algebra, with basis
elements

P,u = a:z:w J = -Tk;aaw - ‘rlaﬂ?k + vka”l - Ulav’“’ (22)
Jok = 200 + 200z, + Op, — VKVIOy,, (23)

was proposed in [3] to construct the nonlinear representation for the vector field.
Note that equation (21) is also invariant with respect to the Galilei algebra AG(1,3)
with the basis elements

P/,L = a:vu7 Jkl = xka;vl - xlaxk + Ukavl - Ulavka Ga = xoaxa + ava~ (24)

As mentioned in [2, 3] both the Lorentz—Poincaré—Einstein and Galilean principles
of relativity are valid for system (21). We use the following nonlinear system of
equations [4]
OE* OE* OH* OH*
— +H— =0, —+E——=0 25
8:60 + 8!El ’ 61‘0 + 8xl ’ ( )
for constructing a nonlinear representation of the AP(1,3) and AG(1,3) algebras
for the electromagnetic field. To construct the basis elements of the AP(1,3) and

AG(1,3) algebras in explicit form we investigate the symmetry of system (25). We
search for the symmetry operators of equations (25) in the form:

X =&, +1'0g + B0, (26)
where ¢4 = ¢#(z, E, H), gt = n'(z, E, H), ' = g'(z, E, H).

Theorem 1. The maximal invariance algebra of system (25) in the class of operators
(26) is the 20-dimensional algebra, whose basis elements are given by the formulas

P, = 0x,, (27)
IOV = 2.0, — 2100, + E*0p — B'Oge + H* 0 — H' O, (28)
I = 2404, + 210y, + E*Opi + E'Op. + H 01 + H' O, (29)
G = 208,, + Ope + g, (30)
G? = 2,0,, — E°E*0pr — H*H 1., (31)
Dy = 200y, — E'0p — H'Op, (32)
Dy = 210y, + E'0p1 + H O, (33)
Dy = 250y, + E*0p2 + H?*0p, (34)

D3 = 9338363 + E36E3 + H33H3. (35)
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Prooi. To prove theorem 1 we use Lie’s algorithm. The condition of invariance of the
system L(E, H), i.e. (25), with respect to operator X has the form

=0, (36)

where
X =X +[Da(n') = EiDo(&7)|0p: + [Da(B') — HiDo(§7))0g1 ,

1
OE! OH!
El="  H =" 1=1,2,3; =0,1,2,3
« 8(Ea’ « 833'&7 » S @ Pt Rt

is the prolonged operator. From the invariance condition (36) we obtain the system of
equations which determine the coefficient functions &, n!, 3 of the operator (26):

=0, nh=0, BL=0, B,=0, &, =0, & =0, &y =0,
7 = —ENE + € + Bk — BOErE), (37)
B = —H*eQ + 6§ + He¢f — HOH" €Y,

where

BT 0x, 0T dxg’ SET T 9Ee ST 9z,0x,

Having found the general solution of system (37), we get the explicit form of all
the linear independent symmetry operators of system (25), which have the structure
(27)-(35). Operators of Lorentz rotations Jyi is given by the linear combination of

the Galilean operators G,(Cl) and G,(f):

Jor =G + G (38)

All the following statements, given here without proofs, can be proved in analogy
with the above-mentioned scheme.

4. The finite transformations and invariants
We present some finite transformations which are generated by the operators Jog:

Jo1: x9 — xy = xochby + x1shby,
1 — .13/1 =T Ch01 + x9 sh91, (39)

x2—>x'2:x2, .’[3—>.’Eé:l'3,

_Elchel + sh 6, H1€h91 + sh 6

Bt pt = L gt gt = T
- Elshf;, +cho,’ - H'shfy +cho,’
/ E? ’ H?
BPop - = g’ 40
- Elshf, +cho,’ - Hlsh@, +cho,’ (40)
[P R S R 177

Elshf; +ché;’ "~ H'shf; +ché;’
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The operators Jy2, Jo3 generate analogous transformations. 6; is the real group

parameter of the geometric Lorentz transformation. Operators G,(f) generate the
following transformations:

2
Gg): o — x( = xo + 121, TR — T} = T},

' E* ' HF
EF F¥ = — — Hf S HY = ———.
- 1+6,EY - 1+6,H!

Analogous transformations are generated by the operators G(Z), G? Operators G(,l)
g g y p 3 p k
generate the following transformations:
G(ll) D xg — Xy =To, X1 — Ty =x1+ 2061,
To — Th = X2, Tz — Th = T3,
E' - EY =F'+46,, H'— HY =H'+6,,
B2 E2' _ E2, E3 —>E3/ _ EB,
H?> - HY =H?, H®— HY = H®
The operators Gél), Ggl) generate analogous transformations.
It is easy to verify that

5 o\ 2
(1—EH>

(-#)-)

is invariant with respect to the nonlinear transformations of the Poincaré group which
are generated by representations (28), (38).
The invariant of the Galilei group which is generated by representations (28), (31)

has the form:
E2H?

o o\ 27
(£1)
whereas the Galilei group which is generated by representations (28), (30) has the
invariant

Is = (E — H) (43)

I = E*+41, H*#1 (41)

I, = (42)

5. Complex Euler equation for the electromagnetic field
Let us consider the system of equations

k k

O%* 0% —0, $F=E*yin", (44)

Oxg Oxy

The complex system (44) is equivalent to the real system of equations for E and H

k k k

OF +E18E _HlaH —o,

8:100 85[;1 axl (45)
k k k

OHT | pndE” | pdH” _,

O0xg ox; oy



278 W.I. Fushchych, [.M. Tsyira, V.M. Boyko

The following statement has been proved with the help of Lie’s algorithm.
Theorem 2. The maximal invariance algebra of the system (45) is the 24-dimensio-
nal Lie algebra whose basis elements are given by the formulas

P, =0,,,

Jlgll) = 23,03, — 10, + EkaEz ElaEk + H’“BHL HlaHk

I = 240, + 2100, + E*Opi + E'Op. + H* Ot + H'Oppr,

G = 200,, + Ope,

G = 2,05, — (E°E* — HOH*)0ga — (E°H* + H*E*)dy, (46)

Do = 200z, — E¥Opr — H* O,

D, = 2,0, + E*Oga + H*Oga  (no sum over a),

Ko = 2205, + 102105, + (1 — 20 EF)Ope — 2o H* Oy,

Ko = 207405, + 14040y, + [21,E% — 2o(E*EX — HOH*)|0ps +

+ [wxH® — 2o(HE* + E*H")|0y1.

The algebra, engendered by the operators (46), include the Galilei algebras
AGM(1,3), AG®(1,3) and Poincaré algebra AP(1,3), and conformal algebra
AC(1,3) as subalgebras. Operators fo) generate the linear geometrical transforma-
tions in R(1,3)

xo — z(, = o + 0z, (N0 sum over a), x; — w7, (47)

as well as the nonlinear transformations of the fields
E'+iH!

1+0,(E*+:1H®)
E'—iH!

140, (Fe —iHe)

E'+iH' — EY +iH" = (no sum over a),

(48)

E'—iH' - E' —iH" =
The invariant of the group G(®)(1,3) is

B2 — [H?) + 4(EH)®
(E? + iH?2)*

I, = ( (49)

Operators Jyi, generate the linear transformations in R(1,3)

xo — xy = xoch Oy + xosh by,
xp — ), = xpchby +xoshé,  (no sum over k), (50)
o —ay=ux, il#Ek,

as well as the nonlinear transformations of the fields

(E* 4+ iH")ch 6y + sh 6,

Er +iHFk sh 6, +Ch(9/9’

)
E* —iH*)ch 6y, +shoy
E* —ZHk) sh 6, +Ch(9/9.

EF +ig* = EN +igY =

(
EF —iH* & E¥ —iHF = E
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If | # k, then
, , E' +iH!
El -Hl El 'Hl _
Hul e B (B + iHF)sh 6y + ch 6’ .
E'—iH! 1)

E'—iH' - E" —iH" = (no sum over k).

(EF — iH")sh 6 + ch 6,
The invariant of group P(1,3) is
1-2 [(E? — H?) - Y(E? - B2 —2EH)?|
Is = 5 ., E*+H*#1. (52)
[1- (B2 + 1)

The operator Ky generates the following nonlinear transformations in R(1,3) and
linear transformations of the fields

;o L
xlljl_)x”_lfoo.f()7
Ek — Ek, = Ek + eo(xk — onk), (53)

H* — H¥ = H*(1 — 0yz).

The operators K, generate nonlinear transformations in both R(1,3) and of the fields

To— Th = —0 gyl =2
0 07 1 —g,0, ¢ @ 1 —x.0,
If k # a, then
o = R
g T —xa6,
/ / E*+iH?®
E*+iH* — E* +iH®* =
e B 11 Oufao(Ee +iH) — z4]’
E*—H®

E* —iH" - BY —iHY =

1+ 9a[x0(Ea — iHa) — Jfa] '
If k£ # a, then

EF +iH* +0,(E* +iH")xy,
L+ 0q[zo(E +iH®) — 4] (54)
B —iH" + 0,(E® — iH")xy,

EF gt - BY —igY = T 0.0 (B — i) — 7] (no sum over a).

EF 4 iHY & EY 4 iHN =

Note 1. Setting Y = aF + ibﬁ, where a, b are arbitrary functions of the invariants

E2, H2 EH, we obtain more general form of the equation (44). The equation
oxk oxk oo oy o
— +¥ == = F(EH,E? H*>x"
Oxo + ox; (EH, EZ, H)

is invariant only under some subalgebras of algebra (46) depending on the choice of
function F'.
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Note 2. If we analyse the symmetry of the following equations

0 0 0
9 gl g EF —
<8m0 + ox; + 89&;) 0,

(*)
0 0 0
— +E'— + H! HF =0;
(8%0 + &rl + a$l> 07
or
8Ek e ;0 &
Oro (E 0x; +H 8—xl> HY,
OH* L9 0N (%)
— =+ (E'—+H E”®
dzo ( ox; * 6‘:@) ’

we obtain concrete examples of nonlinear representations for the Poincaré and Galilei
algebras. This problem will be considered in a future paper.

6. Symmetry of the continuity equation and the Poynting vector
Let us consider the continuity equation for the electromagnetic field

L(E,H) = Op + div p7 = 0. (55)
0

Oz
According to the Poynting definition p and pv* have the forms

1 = -
pzi(EerHQ), po* = ey, E'H™. (56)

Theorem 3. The nonlinear system (55), (56) is not invariant under the Lorentz
algebra, with basis elements:

J = l‘kaml — xlf)zk + EkaEz — Elf)Ek + H’“(’?Hz — HlaHk,

57
Jor = o:kam + Ioamk + €kln(El(9Hn — HlaEn), k, l,n =1,2,3. ( )

To prove theorem 3 it is necessary to substitute p and pv*, from formulas (56),
to equation (55) and to apply Lie’s algorithm, i.e., it is necessary to verify that the
invariance condition

{MV (L(E,ﬁ)) ‘L:o =0 (58)

is not satisfied, where .J,, is the first prolongation of the operator J,,.
1

Theorem 4. The continuity equation (55), (56) is conditionally invariant with
respect to the operators J,,, given in (57) if and only if E, H satisfy the Maxwell
equation (4), (5).

Thus the continuity equation, which is the mathematical expression of the conser-
vation law of the electromagnetic field energy and impulse is not Lorentz-invariant if
E, H does not satisfy the Maxwell equation. A more detailed discussion on conditional
symmetries can be found in [1, 2].

The following statement can be proved in the case when

p=F°E,H) and pv*=F*E, H), (59)
where FO, F¥ are arbitrary smooth functions F° # 0, F* # 0.
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Theorem 5. The continuity equation (55), (59) is invariant with respect to the
classic geometrical Lorentz transformations if and only if

r(B) = 4, (60)

where r(B) is the rank of the Jacobi matrix of functions F*.

In conclusion we present some statements about the symmetry of the following
systems:

—— =rotH E.H), Z—=—rotE+ Fy(E H
o rot H + F1(E, H), o rot £ + F5(E, H), 61)
divE = R\ (E,H), divH = Ry(E, H),
d(RE) _ 0N .
o rot (RH), oy rot (NE), (62)

div (RE) =0, div(NH)=0.
Here
R=R(W,W,), N=NW,,W,), Wy=E?—H? W,=EH.
div (RE + NH) = 0. (63)

Theorem 6. The system of equations (61) is invariant under the Lorentz algebra
with the basis elements (57) if and only if

ﬁlzﬁgzo, Ry =Ry, =0.

Theorem 7. The system of equations (62) is invariant under the Lorentz algebra
(57) if R and N are arbitrary functions of the invariants Wy = E?—H?, Wy = EH.
Theorem 8. The equation (63) is invariant under the Lorentz algebra with the basis
elements (57) if and only if E, H satisfy the system of equations

O(RE + NH)
8$0

Thus it is established that, besides the generally recognized linear representation of
the Lorentz group discovered by Henry Poincaré in 1905 [5], there exists the nonlinear
representation constructed by using the nonlinear equations of hydrodynamical ty-
pe [4]. It is obvious that for instance the linear superposition principle does not hold
for a non-Maxwell electrodynamic theory based on the equation (25) or (45).

The nonlinear representations for the algebras AG(1,3), AP(1,2), AP(2,2),
AC(1,2), AC(2,2) for a scalar field have been considered in [6], AP(1,1) in [7],
and AP(1,2) in [8].

=rot (RH — NE).
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On the new approach to variable separation
in the two-dimensional Schrodinger equation

R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

Jlns nBoBuMipHoro piBHsaHHA Llpeninrepa 3 noteHuianoM, SKUi He 3a/eKUTb BiJ 4acoBoi
3MiHHO{, TOBHICTIO PO3B’s3aHO 3ajmauy Kiaacuikauil moTeHwiaiB, NPH KX BOHO JAOMY-
CKae poanineHHs 3MiHHHUX. Ly KOXKHOTO 3 MOTeHIia/iB OMHCAHO BCi CHCTEMH KOOpPIHHAT,
B SIKUX po3finoeTbes BignosinHe piBHsAHHA Hlpeninrepa.

There is a lot of papers devoted to separation of variables (SV) in the two-
dimensional Schrodinger equation

UL+ Uy gy + Ugo, = V(T1,22)u (1)

with some specific V(z1,22) (see, e.g. [1-3] and references therein). Saying about
the problem of SV in the Eq. (1), we imply two mutually connected problems. The
first one is to describe all functions V(x1,22) such that the equation (1) admits
separation of variables (classification problem). The second problem is to construct
for each function V(z1,x2) all coordinate systems making it possible to separate
corresponding Schrodinger equation.

As far as we know, the first problem has been solved provided V' = 0 [3] and
V= Ozzl_Q +,6’x2_2 [1] and the second one has not been considered in the literature at
all. We guess that a possible reason for this was absence of an adequate mathematical
technique to handle the classification problem. In the paper [4] we suggested a new
approach to SV in partial differential equations which enabled us to solve the problem
of SV in two-dimensional wave equation with time independent potential [4]. In the
present paper we give the complete solution of the problem of SV in the Schrodinger
equation (1) obtained within the framework of the above said approach.

Solution with separated variables is looked for in the form of the ansatz [4]

U= Q(t’f)@o(t)(pl(wl(tvf))‘PZ(w2(tvf))’ (2)

where ¢o(t), ©1(w1(t, T)), p2(wa(t, ¥)) are smooth functions satisfying ordinary diffe-
rential equations (ODE)

d

=L = Uslt, 00, M D),

d*pq dpa 3)
dw2 ) Waa@aaw;/\h)\Q 5 a:1,27

and @, wi, wo are functions to be determined from the requirement that ansatz (2)
reduces Eq. (1) to ODE, A;, A\, C R! are arbitrary parameters (separation constants).
It is important to emphasize that functions @, w1, wy do not depend on the parameters
A1, Ao

JHonosini HAH VYkpaiuu, 1994, Ne 11, P. 38-44.
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Because of the lack of space we have no possibility to adduce all necessary com-
putations. That is why, we shall restrict ourselves by pointing out main steps of
realization of the approach to SV suggested in [4].

First of all, we note that the substitution

w1 — WI1 =Q(w1), w2 — Wé =Q(ws), Q— Q = QY1 (w1)Pa(wa) (4)

does not alter the structure of relations (2), (3). That is why, we introduce the
following equivalence relation: (wy,ws, Q) is equivalent to (w},w), Q') provided (4)
holds with some g, 1,.

Substituting (2) into (1) with account of equalities (3) and splitting obtained rela-
tion with respect to independent variables ¢g, ¢4, Yaa, Aa, @ = 1,2 we conclude that
up to the equivalence relation (4) equations (3) take the form

d

% = (AMR1(t) + A2 Ra(t) + Ro(t)) o,

d?p,

Iw? = (AlBla(wa) + )\ZBQG(wa) + Boa(wa))@a

and what is more, functions wy, we, @ satisfy the over-determined system of nonlinear
partial differential equations

2
]-) Zwlrbwlrh = 07
b=1
2
2) Z[Bal (W1)wiz,wWaz, + Ba2(w2)waz,waz,| + Ra(t) =0, a=1,2,

b=1
2 2
3) 2 Z mewamb + Q <iwat + Zwambmb> = 07 a = 17 27 (5)
b=1 b=1
2
4) [Bo1 (w1)wie,waz, + Bo2(w2)wae,was, |Q + Qs +
b=1
2
+ Z szzb + Ro(t)Q - V(f)Q =0.

b=1

Thus, to solve the problem of SV for the linear Schrodinger equation it is necessary
to construct the general solution of the system of nonlinear equations (5). Roughly
speaking, to solve a linear equation one has to solve a system of nonlinear equations!
This is the reason why so far there is no complete description of all coordinate systems
providing separability of the four-dimensional d’Alembert equation.

But in the case involved we have succeeded in integration of nonlinear system (5)
for wy, we, Q. First, we have established that the general solution of equations 1-3
from (5) determined up to the equivalence relation (4) splits into four inequivalent
classes
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1
2) wi =g} +ad) +W(), wp=arctg T,

T2
. Iw
Q(.7) = exp |~ (a2 4 43)|
. L
3) a1 = §W(t)(wf —w3) +Wi(t), z2=W(t)wiws + Wa(t), )
. i W ) b ]
Q(t, &) = exp Zw[(ﬂfl — W) + (2 — Wo)“] + §(W1$1 + Waza) |,
4) z =W() Chw_l coswy + Wi(t), x2=W(t)shw;sinwy + Wa(t), _
= ERi7 ;. . 1
Q(t,Z) = exp iw[(l‘l — W1)? 4 (20 — W)?] + %(Wlﬂh + Wazs)

Here A, B, W, Wy, W5 are arbitrary smooth functions on ¢. Dot means differentiation
with respect to .

Substituting obtained expressions for @, wi, wy into the last equation from the
system (5) and splitting with respect to the variables z1, x5 we get explicit forms of
potentials V'(x1,22) and systems of nonlinear ODE for functions A(t), B(t), W(t),
Wi(t), Wa(t). We have suceeded in integrating these and in constructing all coordinate
systems providing SV in the initial equation (1). Complete list of these systems takes
two dozens of pages, so we are to restrict ourselves to adducing explicit forms of
potentials V'(z1, z2) such that the Schrédinger equation (1) admits SV.

1) V(@) =WVi(a?+22)+ Vs (%) (22 +22)7 Y
2

) V(o) =va (2) (4 ap

)
3) V(@) = [Vi(wr) + Va(w2))(wi +w3) ",
1
where z1 = §(wf —w?), Ty =wiwy;
4) V(&) =[Vi(w1) + Vg(wg)](sh2 w1y + sin? (4)2)71,
where x1 = chwy coswy, 9 = shwy sinws;
V(f) = V1($1) + ‘/2(.’132);
f) = k(E% + VQ({EQ);
= k2] + koxy? + Va(aa), ko # 0;
= ka2, k#0;

o g O Ut
= =

8 &8 &

—_
o

D N S N D A N i

AAAA/&\/‘\AAA
3

9) V(Z) = k12t + kox3, kiky #0;
k1a? + kox?,  kike £0;
11) V(%) = k1a? + ko2 + ksas 2, kiks # 0;
12) V(%) = k1a? + kowd + ks ? + kaay?,  ksks 0, k3 +k3 #0;
13 ) = kiay % + kowy %
0

14

In the above formulae Vj, V5 are arbitrary smooth functions, k, k1, ko, ks, k4 are
arbitrary real constants.
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Note 1. The Schrodinger equation with the potential

V(%) = k(2 +23) + W3 (?) (2 +23)"', k= const, (8)
2
is reduced to the Schréodinger equation with the potential
1( = ! xll /2 /12\—1
VIE) = Vi () @R+ o) ©)
2

by the change of variables
t'=a(t), & =p0t)x u =exp(ivt)i®+id(t)).

(explicit form of the functions «(t), B(t), v(t), 6(t) depends on the sign of the
parameter k in (8)). Since the above change of variables does not alter the structure
of ansatz (2), when classifying potentials V(x1,x2) providing separability of Eq. (1)
we consider potentials (7), (8) as equivalent.

Note 2. It is well-known (see, e.g. [5, 6]) that the general form of the invariance
group admitted by Eq. (1) is as follows:

— —

t' = f(t,0), 2, =gq(t,7,0), a=1,2, u =h(t7T0)u, (10)

where § = (61,6, ...,6,) are group parameters.
Since transformations (10) do not alter the structure of the ansatz (2), systems of
coordinates t', x}, x4 and t, x1, x4 are considered as equivalent.

Thus, there exist fourteen inequivalent types of the Schrédinger equations of the
form (1) admitting SV. Consequently, the classification problem for Eq. (1) is solved.

Next, we shall obtain all coordinate systems providing separability of the Schro-
dinger equation having the potential V' = k2% + ko3 (the harmonic oscillator type
equation). Explicit forms of the coordinate systems to be found depend essentially
on the signs of the parameters k;, ko. Here we consider the case, when k1 < 0,
ko > 0 (the cases k1 >0, ko > 0 and k; < 0, ky < 0 will be considered in a separate
publication). It means that Eq. (1) can be written in the form

1
WUt + Uz o, T Upgas + Z(a%f —b*r3)u =0, (11)
where a, b, are arbitrary real constants (the factor 1/4 is introduced for further
convenience).

We have proved above that to describe all coordinate systems ¢, wq, wo providing
separability of Eq. (11) one has to construct the general solution of system (5). The
general solution of equations 1-3 from (5) splits into four inequivalent classes listed
in (6).

Analysis shows that only solutions belonging to the first class can satisfy equati-
on 4 from (5). Substituting corresponding formulae for w;, ws, @ into equation 4
from (5) with V' = }(a?x} — b*z3) and splitting with respect to 1, z2 one gets

Boi(w1) = aqwi + aswi, Boa(ws) = Biws + faws,

N N 2
(%) — (%) —4d0q At —a® =0, (12a)
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. . . 2
(g) - <§> —46,B* +b* =0, (12b)

él — 2%01 — 2(20[191 + OZQ)A4 = 0, (12C)
Y \
0y — 2292 —2(26162 + B2)B* =0, (12d)

Here a1, as, (1, P2 are arbitrary real constants.

Integration of the system of nonlinear ODE (12a-d) is carried out in the Appendix.
Substitution of the formulae (A.4)-(A.9) into expressions 1 from (5) yields the comp-
lete list of coordinate systems providing separability of the Schrodinger equation (11).
These systems can be reduced to the canonical form if we use the Note 2. The
invariance group of Eq. (11) is generated by the following basis operators [6]:

Py=0;, I=ud,, M =iud,, P =chatd,, + %(ml sh at)udy,
b -

Py = cos b0y, — %(1‘2 sinbt)ud,, Gy =shatd,, + %(azl ch at)udy, (13)
b

Go = sinbt0,, + %(1’2 cos bt )ud,,.

Using the finite transformations generated by the infinitesimal operators (13) and
the Note 2 we may choose in the formulae (A.4)-(A.9) C3 = Cy = Dy =0, Cy =
Dy =1, D3 =Dy =0. As a result we come to the following assertion.

Theorem. The Schridinger equation (11) admits SV in 21 inequivalent coordinate
systems of the form
wWo = t7 w1 = wl(tvf)v Wy = w?(tvf)v (14)

where wy is given by one of the following formulae:

z1(sha(t+C))™' +a(sha(t+C))~2, zi(cha(t+C))* +a(cha(t+C))~2,
z1 exp(£a(t + O)) + aexp(+da(t + C)), z1(a+sh2a(t+ C))~Y/2, (15)
z1(a+ch2a(t+C))"Y2  zi(a+exp(£2a(t + C)))~ V2, x;

and wo is given by one of the following formulae:
To(sinbt) ™t + B(sinbt) "2, xo(8 4 sin2bt) V2, oz, (16)

In the above formulae C, o, B are arbitrary real parameters.

It is important to note that explicit form of the coordinate systems providing
separability of Eq. (11) depends essentially on the parameters a, b contained in the
potential V'(x1,z2). It means that in the free case (V' = 0) the Schrodinger equation
does not admit SV in such coordinate systems. Consequently, they are essentially
new.
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Appendix. Integration of nonlinear ODE (12a-d).
Evidently, equations (12a—d) can be rewritten in the following unified form:

. . N\ 2 .
<g> - (g) —ayt =k, i-Y:i(aztpyt =0 (A1)

Y Y Y
Provided k = —a? < 0, system (A.1) coincides with equations (12a,c) and under

k = b% > 0 — with equations (12b,d).
First of all, we note that the function z = z(¢) is determined up to addition of an
arbitrary constant. Really, the coordinate functions w, has the following structure:

We =YTgq+2, a=12.

But the coordinate system ¢, wi, we is equivalent to the coordinate system ¢,
wi + O, wy + Cy, C, € R, Hence, it follows that the function z(¢) is equivalent to
the function z(t) + C' with arbitrary real constant C. Consequently, provided « # 0,
we may choose in (A.1) 8 =0.

The case 1. a = 0. On making the change of variables in (A.1)

w= g, v="2 (A.2)
Y Y
we get
w=w?+k, U+kv=py (A.3)
First, we consider the case k = —a? < 0. Then the general solutions of the first

equation from (A.3) is given by the formulae w = —actha(t + C1), w = —atha(t +
C1), w = #a, C; € R, whence

y = Cosh™? alt+C1), y=0Cy ch™! a(t + Cy),

A4
y = exp[+a(t + C1)], Oy € R. A4

The second equation of system (A.3) is linear inhomogeneous ODE. Its general solu-
tion after being substituted into (A.2) yields:

4
z = (Cychat 4 Cyshat)sh™a(t + Cy) + % sh™2a(t + Cy),
4
z = (Cychat 4+ Cyshat)ch ™ a(t + Cy) + % ch2a(t+C)), (A.5)

z = (C3chat + Cyshat) exp[La(t + C1)] + ;% exp[t4a(t + C1)],
Cs,C4 € R

The case k = b? > 0 is treated in the analogous way, the general solution of (A.3)
being given by the formulae

y = Dysin~'b(t + D),

D (A.6)
ﬂ%; sin"2b(t + D),

z = (C3cosbt + Cysinbt)sin~' b(t + Dy) +
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The case 2. o« # 0, = 0. On making the change of variables in (A.1)

2
y=expw, v=-—
Y
we get
W —w?=k+aexpdw, P+ kv=0. (A.la)

The first ODE from (A.la) is reduced to the first-order linear ODE

1
Qp’(w) —p(w) =k + avexp 4w
to by the substitution w = (p(w))'/?, whence

p(w) = cexpdw +yexp2w — k, v € R

Equation @ = p(w) has a singular solution w = C' = const such that p(C) = 0. If
w # 0 then integrating equation w = p(w) and returning to the initial variable y, we

get
y(t) dr
=t+Ch.
/ T(art + 472 — k)1/2 o

Taking the integral in the left-hand side of the above equality we obtain the general
solution of the first ODE from (A.l). It is given by the following formulae:
under k = —a® <0

y = Cy(a +sh2a(t + C’l))_1/27 y = Co(a+ch2a(t + C’l))_l/z,

A7

y = C’Q(a+exp[:l:2a(t+01)])71/2, A1
under k=% >0

y = Dy + sin 2b(t + Dy)) /2, (A.8)

Here Cy, Co, Dy, D5 are arbitrary real constants.

Integrating the second ODE from (A.la) and returning to the initial variable z we
have

under k = —a® <0

z =y(t)(Csshat + Cychat) (A.9)
under k =b*>>0
z = y(t)(Ds cos bt + Dy sin bt)

where Cs, Cy4, D3, Dy are arbitrary real constants.
Thus, we have constructed the general solution of the system of nonlinear ODE
(A.1) which is given by formulae (A.5)-(A.9).
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Separation of variables
in the two-dimensional wave equation

with potential
R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

The paper is devoted to solution of a problem of separation of variables in the wave
equation us — ugz +V(z)u = 0. We give a complete classification of potentials V(x) for
which this equation admits a nontrivial separation of variables. Furthermore, we obtain
all coordinate systems that provide separability of the equation considered.

Jlana craTTs NMpUCBfUeHa PO3B’SI3aHHIO NMPOOJeMH PO3JiJeHHS 3MiHHHUX AJIS XBHJbOBOTO
DIBHSIHHSL Uyt — Uge + V(z)u = 0. Bxasaui Bci norenuianu V(x), fns skux paHe pis-
HSIHHS JIONyCKae HeTpuBiasbHe po3AiseHHs1 3MiHHUX. Kpim Toro, omepxaHi Bci cHcTeMH
KOOPJMHAT, B KMX PO3MIMIOEThCSA NOCHiNXKYBaHe PiBHAHHS.

1. Introduction. In this paper, we study the two-dimensional wave equation with
potential

(O 4 V(@) = usr — Uge + V(2)u =0, )]

where u = u(t,z) € C*(R%,R') and V(z) € C(RY,R!), by using the method of
separation of variables (SV). Equations belonging to class (1) are widely used in the
modern quantum physics and can be related to other linear and nonlinear equations
of mathematical physics (these relations will be discussed below, at the end of the
article). In particular, class (1) contains the d’Alembert equation (with V(z) = 0) and
the Klein—- Gordon-Fock equation (with V' (z) = m = const).

The separation of variables in two- and three-dimensional Laplace, Helmholtz,
d’Alembert, and Klein—-Gordon-Fock equations had been carried out in the classical
works by Bocher [1], Darboux [2], Eisenhart [3], Stepanov [4], Olevsky [5], and
Kalnins and Miller (see [6] and references therein). Nevertheless, a complete solution
of the problem of SV in equation (1) is not obtained yet.

When speaking about solution of equation (1) with separated variables wq, wo, we
mean the ansatz

u(t, z) = A(t, x)p1 (w1 (t, 7)) pa(wa(t, 7)) 2)
reducing (1) to two ordinary differential equations for the functions ¢;(w;)
Gi = Ai(wi, i + Bi(wi, Nwi, 1=1,2, (3)

In formulas (2) and (3), A, w;,ws C C3(R%,RY), A;, B; C C?(R! x A,R!) are some
unknown functions, A € A C R! is a real parameter (separation constant).
Definition 1. Equation (1) admits SV in the coordinates wi(t,z), wa(t,z) if the
substitution of ansatz (2) into (1) with subsequent exclusion of the second derivati-
ves p1, Yo according to (3) yields an identity with respect to the variables p;, p;, A
(considered as independent ones).

YKkp. MaT. XkypH., 1994, 46, Ne 10, P. 1343-1361.
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On the basis of the above definition, one can formulate the procedure of SV in
equation (1). At the first step; one has to substitute expression (2) into (1) and to
express the second derivatives ¢, ¢ via the functions ¢;, ¢; according to equati-
ons (3). At the second step, the obtained equality is splitted with respect to the
independent variables ¢;, ;. As a result, one gets an overdetermined system of par-
tial differential equations for the functions A, w;, we with undefined coefficients. The
general solution of this system gives rise to all systems of coordinates that provide
separability of equation (1).

Let us emphasize that the above approach to SV in equation (1) has much in
common with the non-Lie method of reduction of nonlinear differential equations
suggested in [7-9]. It is also important to note that the idea of representing solutions
of linear differential equations in the “separated” form (2) goes as far as to classical
works of Euler and Fourier (for a modern exposition of the problem of SV, see
Miller [6] and Koornwinder [10]).

The present paper is organized as follows: In the first section, we adduce principal
assertions about SV in equation (1). In the second section, the detailed proof of these
assertions is given. In the last section, we briefly discuss the obtained results.

2. List of principal results. It is evident that equation (1) admits SV in the
Cartesian coordinates wy = ¢, wy = « for an arbitrary V =V (z).

Definition 2. Equation (1) admits a nontrivial SV if there exists at least one coordi-
nate system wy = (t,x), wa(t,x), different from the Cartesian system, that provides
its separability.

Next, if, in equation (1), one makes the transformations
t—Cit, v—Cx, t—t, z—x+Cy C;eR!,
then the class of equations (1) transforms into itself and, moreover,

V(@) = V'(z) = G}V (Cra), W
V(z) = V'(z) =V (z+ Cy).
This is why the potentials V(z) and V'(z) connected by one of the above relations
are regarded as equivalent ones.

Theorem 1. Equation (1) admits a nontrivial SV iff the function V(z) is given up

to the equivalence relations (4) by one of the result formulas:
1) V=ma;

V =ma2;

V =msin 2 x;

V =msh™? x;

V =mch?ux; (5)

V =mexpu;
2

N

~N

V = cos™? z(my + masinz);
V = ch 2 2(my + myshx);

V =sh™?z(m; + mgchx);

AN N N N N N N /N
D D D DD O —
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(10) V = myexpx + mgexp 2z;
(11) V =my +moz~2;
(12) V=m.

Here, m, my, mo are arbitrary real parameters, ms # 0.

Note 1. Equation (1) with the potential V(z) = mexpz is transformed by the change
of variables [11]

x x
— exp§cht, t = exp§sht

into equation (1) with V(z) = m (i.e., into the Klein-Gordon—-Fock equation).

Note 2. Equations (1) with potentials 3, 4, 5 from (5) are transformed into equation (1)
with V(z) = ma~2 by the changes of variables [11]

o' =tgl+tgn, ' =tg{—tgm,
' =thé+thn, ' =thf—thn,
' =cthé+thy, ¢ =cthé—thn.

Here, £ = (z +t)/2, n = (x — t)/2 are cone variables.
In virtue of the above remarks, Theorem 1 implies the following assertion:

Theorem 2. Provided that equation (1) admits a nontrivial SV, it is locally equi-
valent to one of the following equations:

(1) DOu+ mau=0;

(2) Ou+maz2u = 0;

(3) Ou+ cos~2x(my + masinx)u = 0;

(4) Ou+ch ?z(my + myshz) =0; 6)
(5) Ou+sh™2z(my +mgchz) =0;

(6) Ou+ e*(my + mae*)u = 0;

(7)  Ou+ (mq +mex2)u = 0;

(8) Ou+ mu=0.

Thus, there exist eight inequivalent types of equations of the form (1) that admit
a nontrivial SV.

It is well known that there are eleven coordinate systems that provide separability
of the Klein-Gordon-Fock equation (O + m)u = 0 (see, e.g., [12]). This is why the
case V(x) = const is not considered here.

As is shown in Section 2, the general form of the solution of equations (6) with
separated variables is as follows:

u(t,z) = p1(wi(t, z))p2(w2(t, v)); (7)

here, ¢1(w1), @2(we) are arbitrary solutions of the separated ordinary differential (6)
here, equations

i = A+ gi(wi))pi, i=1,2, (8)

and the explicit form of the systems w;(t, z), g;(w;) is given below.
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Theorem 3. The equation Ou + mzxu = 0 separated in two coordinate systems

(1) wi=t wr=2z, g =0 g =mwsy

() wi=(@ 024 @02 wy= ()2~ (@ —1)'2, ©)
m m
o=, g = "

Theorem 4. The equation Ou + sin~?x(my + mgcosz)u = 0 is separated in four
coordinate systems

(1) wi=t, we=ux; ¢g1=0, go= sin 2 wa(my + ma cosws);
(2) {;‘f } = arctg sh(w; + ws) £ arctgsh(wy — wa),
g1 =(m1+mo)sh™wy, g2 =—(m1 —mz)ch > ws;

(3) {f } = arctg tn (wq + we) £ arctg tn (w1 — ws)

2 2

— — 2 —
wy sn 2wy + mafsn~2w; — dnw; cn

24], (10)
2

g1 =mq dn2w1 cn”

g2 = mik?* sn’ws enwodn 2wy + maok?[cn?wsy dn2wy — sn wal;

(4) {f} = arctg ((g) 1/20n (wy + wQ)> + arctg ((:/)1/2cn (wy — w2)> ,

g1 =m [dn2w1 en2wy + k? sn?wi] + mao[(K')? en2w; + k2% enwy],

g = my [dn2w2 en2wy + k2 sn?ws] + ma[(k')? ecn 2wy + k2 cnws).
In formulas (10), k, k' = /1 —k? are the moduli of the corresponding elliptic
Jacobi functions and k is an arbitrary constant satisfying the inequality 0 < k < 1.

Theorem 5. The equation Ou 4 ch™? z(m; + moshz)u = 0 is separated in four
coordinate systems

(1) wl—t wr=1x, ¢g1=0, go=-ch ?wy(my+mashuwy);

2) _<( v w1+w2>>¢1n<(%)1/2cn<w1—w2>>,

)? (dn 2 + myen 2wy (dn2wy) ™2,
92 = ( )2 (dn2w2) + ma en 2ws (dn2ws)~2;

)

1 1
(3) {j} = —lnshE(wl +wsy) £1nch §(w1 — wa),

g1 = ch?wi(my — mashwi), g2 = ch *wa(m1 — mashws);

1 1
(4) {f}lntng(wl +w2):|:1ndn§(w1 + wy). (1)
g1 = —mi1k?sn?w; + k®ma snw; cnwy,
g2 = —m1k? snws + k2ms snws cnws.

Here, k, k' =+/1—k? are the moduli of the corresponding elliptic functions, 0 < k < 1.
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Theorem 6. The equation Du + sh™2x(m; 4+ mochz)u = 0 is separated in

coordinate systems

(1)
(2)

(11)

Here, k is the modulus of the corresponding elliptic functions, 0 < k < 1.

wi=t, wy=x ¢ =0, go=sh 2wy(mq+machwy);
{;U} = —ln%(wl + wo) iln%(u}l — wa),
g1 = (m1—ma)wi?  go = (m1+ma)wy
f} = —Insin ;(wl + wo) ilnsin%(wl — ws),
g1 = (m1 —ma)sin 2wy, go = (Mg + ma)sin™? wo;
{j} = —lnsh%(wl + wo) :Flnsh%(wl — wa),
g1 = sh™2w, (m1 +machwy), g2 = sh72w2(m1 — machws);
{f} lnch (w1 —i—wg):Flnch%(wl—wg),

g1 =sh™ m(ml machwy), g2 = sh™2wy(my — machwsy);

t
g1 =ch™ wl(mz —my), g2 = —ch 2wy(my+my);

1
{f} 1ntg (w1 +w2) £1ntg §(w1 — ws),

g1 = cos le(ml +ma), g2 =cos 2wy(my —my);

1
{.’13} lnth wl +w2):|:lnth§(w1—w2),

{ } arthcn (w1 + we) £ arthen (w1 — we),

(mq + ma) dn?w; en2w; + (my — ma)k? sn?wy,

g2 = (m1 — my) dn’ws en~2ws + (my + ma)k? sn’ws;

{ fi } = arthdn (wy + ws) + arthdn (w1 — wo),

g1 = (mq + ma)k? enw; dn2w; + (m — mo)k?sn?wy,
g2 = (my — ma)k? enws cn 2wy + (Mg + ma)k? sn2ws;

t

g1 = (my +ma)sn~2w; + (mq — ma)k? sn’wy,

{m} = arthsn (wy + ws) + arthsn (w; — ws),

g2 = (my + ma)k? cn’wy dn2wsy + (my —ms) dn’ws cn2ws;
{f} = —1In cn(wy + we2) £ 1n en (wy — wa),
g1 = —my SH72wl — Mo CN W1 sn’2w1,

go = —my sn_2w2 — Mo CN Wa sn_2w2.

eleven

(12)

Theorem 7. The equation Ou + e(my + moe®)u = 0 is separated in six coordinate

systems

(1)

w1 = t, Wy =T, g1 = 0, g2 = er(ml + m2€w2);
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(2)

(6)

{x} = —Incos(w; + w2) F Incos(w; — wa),

t
g1 = —2my cos 2wy — % cos 4wy,
g2 = —2my cos 2wy — % cos dws;
{:tc } = Insh (w1 + wz) &+ Insh (w; — w2),
g1 = —2mqch2w; — %Ch dwy,
g2 = —2mqch 2wy — %ch 4dws;
{f } = Inch(w; + wa) £ Inch(w; — wa), (13)
g1 = —2mych2w; — %chélwl,
g2 = —2m;ch2wy; — %Ch dws;
{ i } = Inch(w; + ws) = Insh(w; — ws),
g1 = —2msh 2wy — %chzwl,
g2 = —2msh 2wy — %Ch dwa;

{f } = (Wi +ws) £ In(wr —wa),

g1 =2mg + 2m2w%, ge = 2my + 2m2w§.

Theorem 8. The equation Ou + (my + moz~2)u = 0 separated in six coordinate

systems

—2.
wi =t wyr=2z, g1=0, g2=m1+mowy";

{ ";f } = exp(w + w2) £ exp(w1 — wa),

g1 =4miexp2wi, g2 = mach wo;

)=

g1 = 2my cos 2wy + mo sin—? w1, g2 = —2m cos 2wa + Mo cos ™2 wy;

{ } h(wr + ws) £ sh(wr — ws), (14)

g1 = 2mysh2wq + mgsh72w1,

n(w; + we) £ sin(w; — wa),

= —2mlsh2w2 — mgsh w23

{ b= b + o) £ chn - ),

g1 = 2mych2w; — mgch_le, g = 2mich2wy — mgch_2w2;

{:;} = (w1 +w2)? + (w1 — wy)?,

g1 = —16m1w% + mgwa, go = —16m1w§ + mow, ©.
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It was established in [13] that the Euler—Poisson-Darboux equation
Vvtt - wa - x_lvw + m21‘_2v =0

is separated in nine coordinate systems. Since the above equation is reduced to the
equation g — Uz, + (m? —1/4)x=2u = 0 by the change of dependent variable v(t,z) =
=Y 2u(t, x), equation (1) with V(z) = Az~2 is also separated in nine coordinate
systems.

It has been understood not long ago [6, 14] that SV is intimately connected with
the symmetry properties of the equation under the study. Therefore, it is important
to investigate the symmetry of equation (1).

Clearly, equation (1) with an arbitrary V() is invariant under the two-dimensional
Lie algebra that has the basis elements @1 = J¢, Q2 = u0,,. Below, we adduce without
a proof the assertion which gives a complete description of the potentials V(z) that
provide an extension of the symmetry algebra admitted by equation (1).

Theorem 9. Equation (1) admits additional symmetry operators (i.e., operators not
belonging to the algebra (0;,ud,)) iff the potential V(x) is given by one of the
following formulas:

(1) V(z)=mexpux;
(2) V(x)=ma"2

(3) V(z) =msin™"x;
(4) V(z) =msh 2z
(5) V(z) =mch ?z;

with the additional symmetry operators having the form

Ga=ew{5t-0} 0. -0 Q=ew{-jtn}@ 0

(1)
(2) Q3 =20, +t9, Q1= (2*+12)0; + 2twdy;

(3) Q@3 =sintcoszd; +sinxcostd,, Q4 = —costcosxd; + sinxsintd,;
(4) Q3 =shtchzd, +shxchtd,, Q4= chtchzd, +shtshazd,;

(5) Q3 =shxzchtd, +shtchzd,, Q4 =shtshxzd;+ chtchad,;

) Q3 =0, Q4 =10+ x0;.

This theorem is proved by the standard Lie method (see, e.g., [15, 16]).

Corollary. If equation (1) admits additional symmetry operators, then it is locally
equivalent to one of the equations Ou + mu = 0 or Ou + maz~2u = 0.

Thus, separability of equations 1, 3-7 from (6) is not connected with their Lie
symmetry. To explain this fact one has to take into account the second-order (non-
Lie) symmetry operators of equation (1). This problem will be briefly discussed in the
last section.

3. Proof of Theorems 1-8. To prove the assertions listed in the previous section
one has to apply the above described procedure of SV to equation (1).

By substituting ansatz (2) into equation (1), expressing the functions ¢; in terms
of the functions ¢;, ¢;, with the help of equalities (3), and splitting the obtained
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equation with respect to independent variables ¢;, ¢;, we get the following system of
nonlinear partial differential equations:

1) AQw; + 2(Awi — Apwis) + AAr (w1, M) (W], — wi,) =0, (15)
2) ADw; + 2(Aywsy — Apway) + AAg(wo, \) (W3, — wi,) =0, (16)
3) OA+ A[Bi (w1, \)(wiy — wi,) + Ba(w?, N (wh; — wi,) + AV(z) =0,  (17)
4) wipwar — Wigwae, = 0. (18)

Here, O = 92 — 92.

Thus, to separate variables in the linear differential equation (1) one has to con-
struct a general solution of system of nonlinear partial differential equations (15)-
(18). The same assertion holds true for a general linear differential equation, i.e., the
problem of SV is essentially nonlinear. This is the reason why, even for the classical
d’Alembert equation Oqu = uy — Agu = 0, there is no complete description of all
coordinate systems that provide its separability [6].

It is not difficult to become convinced of that from (18). Since the functions wy,
wq are real, we have

(w%t - w%x)(wgt - w%r) 7& 0. (19)

Differentiating equations (15), (16) with respect to A and using (19), we get A1\ =
Agy =0.
Consequently, the relation By)Bsy # 0 holds. Differentiating with respect to A we
have
Bl/\(w%t - w%z) + BQ)\(wgt - wgz) =0

or Biy/Bay = —(w3, — w3,)/(w}, — w},). Diiferentiation of the above equality with
respect to A yields Byxan/Bix = Baxx/Bax. But the functions By = By(wy), Bs =
Bs(wq) are independent, whence it follows that there exists a function such that
Bixx = K(A\)Biy, i =1,2.

Integrating the above differential equation with respect to A, we get

Bi(wi) = AN fi(wi) + giwi), i=1,2,

where f;, g; are arbitrary smooth functions.
On redefining the parameter A — A()), we have

Bi(wi) = Afi(wi) + gi(wi), i=1,2, (20)

Substitution of (20) into (17) with a subsequent splitting with respect to A yields
the following equations:

OA + Algi(wr) (@i, — wiy) + g2(wa) (Wl —wi,) +V(2)A =0, (21)

filwn) (Wi, —wi,) + falws) (W), — w3,) = 0. (22)
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Thus, system (15)—(18) is equivalent to the system of equations (15), (16), (20)-
(22). Before integrating it, we make a remark. It is evident that the structure of
ansatz (2) is not changed by the transformation

A — A = Ahq(w1)ha(w2),

wi*)wrg:Ri(wi% i=1,2,

(23)

where h;, R; are some smooth functions.

This is why solutions of the system under the study, connected by relations (23),
are considered as equivalent ones.

By a proper choice of the functions h;, we can put R;, fi = fo =1 and A; = Ay =
0 in equations (15), (16), (22).

Consequently, the functions wq, wy satisfy equations of the form

2 2 2 2
wiwer — wigwae =0,  wip —wi, +wy —ws, =0,

2 _
o=

wi = f(§) +g(n), w2=f(&)—gn), (24)

where f,g C C?(R!,R!) are arbitrary functions, £ = (x +t)/2, n = (z —t)/2.
Substitution of (24) into equations (15), (16) with A; = Ay = 0 yields the following
equations for a function A = A(¢,z): InA); =0, (InA), =0, whence A =1.
At last, substituting the obtained results into equation (21), we have
df dg

V(z) =[9:1(f +9) — g2(f — 9)}675% (25)

whence (w; £ ws)? — (w1 +we)2 = 0. Integrating the above equations, we get

Thus, the problem of integration of the overdetermined system of nonlinear diffe-
rential equations (15)—(18) is reduced to the integration of the functional-differential
equation (25).

Let us sum up the obtained results. The general form of the solution of equation (1)
with separated variables is as follows:

ur = p1(f(&) + 9m)p2(f(§) — 9(n)); (26)

here, ; are arbitrary solutions of equations (8) and the functions f(£), g(n), g1(f+9),
g2(f — g), V(x) are determined by (25).
To integrate equation (25) we make the hodograph transformation

§=P(f), n=R(9), (27)

where P # 0, R # 0.
After making transformation (27), we get

9i(f +9) = 92(f — g9) = P(/)R(g)V (P + R). (28)
Evidently, equation (28) is equivalent to the equation
(9 = IP(HR()V(P+ R)] =0
or

(PP —RR YW +3(P—-R)V + (P>—R)V =0. (29)
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Thus, to integrate equation (25) it suffices to construct all functions P(f), R(g),

V(P + R) satisfying (29) and substitute them into equation (28).
Let us prove the following assertion.

Lemma. The general solution of equation (29), determined up to transforma-

tions (4), is given by the one of the following formulas:

(1) V =V(x)is an arbitrary function, P=a, R=q;
(2) V =maz, P2=aP+f, R:=aR+n:

(3) V=ma=% P=F(f), R=G(g),
F2 = qF* 4 BF3 + yF2 + §F + p,
G? = aG* — BG3 + G2 — 6G + p;

(4) V =msin %z, P=arctgF(f), R =arctgG(g),
and F, G are determined by (31);
(5) V=msh %z, P=arthF(f), R=arthG(g)
and F, G are determined by (31);
(6) V=mch %z, P=arcthF(f), R=arcthG(g)
and F, G are determined by (31);
(7) V=mexpu,
P2=qexp2P + fBexpP+v, R2=aexp2R+dexpR+ p;

(8) V =cos~?x(my + mgysinx),

P2 = asin2P 4 Bcos2P +~, R?2=asin2R+ Bcos2R + ;
(9) V =ch 2z(mq + mashz),

P2 = ash2P + fch2P +~, R%?=ash2R— Bch2R + ~;

(10) V =sh™2z(my + machz),
P2 = ash2P + Bch2P +~, R?2=—ash2R+ ch2R+~;

(11) V = (my +moexpx)expu,

P=-P+p R=-P"+p
(12) V =my + maz~2,

P2=aP24 3P+~ R?2=aR?-(R+~,
(13) V =m,

P2=aP24 3P+~ R2=aR2+R+p.

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Here o, (3, 7, 9, p, m1, ma, m are arbitrary real parameters; xt =& +n= P+ R.

Proof. Since the functions P, R in (29) are arbitrary, equation (29) is equivalent to

the following system of equations:

(HypprHp' = HoggHy "WV (H) +3(Hpp — Hyg)V(H)+ (H7 — Hg )V (H) = 0,(37)
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Hfg = 0; (38)

here, H = P(f) + R(g).
Taking differential consequences of equation (37), we have
Hyspp=HyppHppHpt + VV T (HyggHy VY — AHypppHy) +
+VV~Y(3H, H} — 5HysH?) + V V- (HZH? — H}),
Hgggq = HgggHggHg_l + VV_I(Hfffong - 4H999Hg) +
+VV=Y(3HsH2 — 5HyH2) + V V- (H}H2 — HY).

(39)

For system (39) to be compatible, it is necessary that relations Hysrrg = Hggggt =
0 hold. Differentiating the first equation in (39) with respect to ¢ and taking into
account relations (39), we get

(Hfffo_1 - HgggHg_l)(5V2V_2 —4VVTh + (Hyp — Hgq) x

X (BVVV 25V V )+ (H} —H)(VVV2—(VV~l))=0. (20)

Since equation (40) is a necessary compatibility condition for a system (39), one
has to supplement the system under study (equations (37), (38)) by equation (40). To
investigate the system of equations (37), (38), (40) it is necessary to consider several
inequivalent cases.

Case I. Let V.= 0, V # 0. Then equalities H;; = H,, = 2a, a = const hold.
Hence, we have

V=m(H+C)=m(z+C),
P(f)=af*+B, R(g)=ag’+v, B,yvCR,

i.e., we obtain t}}e potential listed in the lemma under number 2.
Case 2. Let V # 0 and let equation (40) be a consequence of equation (37). In this
case, the coefficients of V', V', V must be proportional

(BV2V=2 —4VV—1) = BVVV 2 -5V V- H(3V) ! =

=QVVVZ-yV (V)L

From the above equalities, we get a system of two ordinary differential equations
for a function V =V (H)

V=4vv-l —3viy—2, (41)

V=2VVVv Tl —avivl 451727V 2 (42)

But equation (42) is the differential consequence of equation (41). The general
solution of equation (41), determined up to equivalence relations (4), is given by one
of the following formulas [17]:

Vi=mH™ 2 Vy=msin 2H,

2 I _ , (43)
Vs =msh ™ “H, Vy,=mch “H, V;=mexpH,

i.e., we obtain potentials listed in the lemma under numbers 3-7.
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By substituting V = Vi = mH =2 into (37) and replacing H by P(f) + R(g), we
get
(P+R*PP'—RR ') —6(P+R)(P—R)+6(P>—R?=0. (44)
By differentiating (44) with respect to f and g, we obtain
(P+R)(P™' — hoR7Y) = 2(hy — ha),

where hy = PP~! and ho = RR™ .
Differentiation of the above equation with respect to f and g yields the following
relation:

(P~ Pt = (hyR™Y) ' R7L. (45)
Since the functions P(f), R(g) are independent, it follows from (45) that the
equalities
(P~Y)y =12aP, (heR™') =12aR. (46)
hold, where « is an arbitrary real parameter.
Integration of equations (46) yields
P =aP*+ C P34+ C3P% + C3P + Cy,
R? = aR*+ D1 R® + DyR? + D3R + Dy,
where C1,...,Cy4, D1q,...,Dy are arbitrary real constants. Substituting the above

result into the initial equation (44), we get restrictions on the choice of arbitrary
constants

Ci=-D1 =8, Co=Dy=v, C3=-D3=46, Cs=Dy=p.

Thus, we have obtained the potential listed in the lemma under number 3.

It is straightforward to verify that the equations obtained by the substitution of
functions V' = msin"2 H, V.= mch™? with H = P(f) + R(g) into (37) are reduced
to equation (44) by the following changes of variables:

P — arctg P, R — arctg R,
P —arthP, R — arthR,
P — arcth P, R — arcth R;
i.e., the potentials listed in the lemma under numbers 4-6 are obtained.
Equation (1) with the potential V' = mexp H is reduced to the Klein-Gordon-Fock
equation (see case 4 and Note 2 below).
Case 3. Let V # 0 and assume, in addition, that equation (41) does not hold.

In this case, we can exclude from equations (37), (40) the third derivatives of the
function H

Hff_Hgg"‘A(H)(H]%_Hg):Oa (47a)
where

A(H) = (V =2V VV L —4V2V 4 5VVAV2)(V —aVV VL 4 3V3V %)L,
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It follows from (47a)
Hypp = AHf(Hq2 - H]%) - 2HffoA’ Hggq = AH (Hf H2) 2H.q9HgAv

(we have used equation (38)).
By taking the first differential consequence of the above equations with account of
equation (38), we get

2A(Hyp — Hyg) + A(H7 — H}) = 0. (48)

Clearly, equations (47a) and (48) are consistent iff the function A(H) satisfies the
following ordinary differential equation:

A=2A4A,
the general solution of which is given by one of the formulas (up to scaling H — CH).

A=C, A=tg(H+C), A=—th(H+0O),
A=—cth(H+C), A=—-(H+C)™', CeR.

Next, we consider the above cases separately.
Case 3.1. A(H) = C, C # 0. In this case, equation (47a) takes the form

Pip— Ry + C(P; —R)) =0 (47b)
or
Pss+CP} =Ryy+CR. =3, BeR.
Finally, we get
Ppp=—CP}+ 3, Ryy=—CR2+p. (49)

Differentiating the first equation with respect to f, the second equation with
respect to g, and subtracting, we get

PrppPpt = PoggPyt = =2C(Prs — Ryg). (50)
Substituting (49), (50) into equation (37), we come to the equation for V =V (H),
V —3CV +2C°V =
the general solution of which reads
V =miexpCH +moexp2CH, mgy,my CRL. (51)

It is not difficult to check that function (51) satisfies equation (47b) provided that
A(H) = C. Consequently, if the potential is given by formula (51) (after rescaling
H — CH, we can choose C = 1), then the functions P(f), R(g) are determined by
equations (39).

Case 3.2. A =tg(H + C). Multiplying equation (47) by ctg (H 4+ C) and differen-
tiating the obtained expression with respect to f and g, we arrive at the equation

(Pfffpf_1 - nggpgl) — 2ctg (H + C)(Pys — Rgg) = 0. (52)
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After excluding the function ctg (H 4+ C) from (47) and (52), we get an equation
with separated variables

(‘fofpf1 - nggpgil) + Z(PJ% - Rﬁ) =0,
whence
PyppPrt +2PF =0, RyggR;' 4+ 2R = 0. (53)

In (53), 6 is an arbitrary real constant.
Substitution of formulas (52), (53) into equation (37) gives the equation for V' =
V(H),

V —3tg(H+C)V -2V =0
the general solution of which has the form [17]
V = cos 2(H + C)[my + masin(H + C)]. (54)

As a direct check shows, the function V(H) (54) satisfies equation (47b) with
A=tg(H+C).
Integrating equations (53), we get

Pf = Cysin2P + Cycos2P 4+, PJ = Dysin2R+ D cos2R + 7, (55)

where C;, D;, and v are arbitrary real constants.

Substitution of (55) into (47) with A = tg (H 4 C) yields the following restrictions
on the choice of the constants C;, D;: C1 = D1 = «, Co = Dy = (5.

Thus, provided that the function V' (H) is given by (44), the functions P(f), R(g)
are determined by equations (32).

Case 3.3. A= —th(H + C). In this case, one can obtain the following differential
consequence of equation (47):

PyjpP;t = PyggPy 't = 2cth (P + R+ C)(Pyy — Ryy). (56)
Excluding the function ctg (H + C) from equations (47), (56), we get the equation
Pfffpf_l*nggp_(;1 :2(P?*RZ),
whence
PyppPrt —2PF =0, RyggR;' — 2R, = 0. (57)

In (57), 6 is an arbitrary real constant.
Integration of equations (57) gives

Pf =Cysh2P + Cych2P +7, R, =Dish2R+ Dych2R +7, (58)

where C;, D;, and v are arbitrary real constants.
Substituting expressions (56), (57) into (37), we obtain an equation for V(H),

V +3th(H+C)V +2V =0,
the general solution of which has the form [17]

V =ch 2(H + C)(my + mash(H + C)), m; € RL, (59)
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It is not difficult to become convinced of the fact that function (59) satisfies
equation (47b) with A = —th (H + C).

At last, substituting (57) and (58) into (47), we get C1 = D1 = a, Cy = —Dy = 3.
Consequently, if the potential V(H) is given by formula (59), then functions P(f)
and R(g) are determined by equations (33).

Case 3.4. A= —cth (H + (). In this case, one can obtain the following differential
consequence of equation (47):

PiyiPit = RyggRy = 2th (P + R+ C)(Prf — Ryy). (60)
Using equations (37), (47), and (60), we get an equation for V(H),
V +3cth(H +C)V 42V =0,
the general solution of which has the form [17]
V =sh™2(H + C)(my +mych(H + C)), m; € R (61)

By direct computation, one can check that function (61) satisfies equation (47b)
with A = —cth (H + C).

Next, by eliminating the function th (H +C) from equations (47) and (60), we get
an equation with separated variables

Pfffpf—1 — Pygg Pt —2PF 4+ 2R2 =0,
whence
PPt —2P} =0, RggR,' — 2R = 0.

Here, 6 is an arbitrary real constant.

Integration of the above ordinary differential equations shows that the functions
P(f) and R(g) are determined by equations (58), where C;, D;, and ~ are arbitrary
real constants. Substituting (58) into equation (47), we have the following restrictions
on the choice of C;, D;:

C1:—D1:OZ7 02:D2:/8.

Thus, if the function V(H) is given by (61), then functions P(f) and R(g) are
determined by equations (34).

Case 3.5. A= —(H + C)~!. In this case, it follows from (47a) that the equality
Pffijil = RgygR, " holds. Hence, we get equations for P(f), R(g),

Prsp=0Pf, Rggq = aRg (62)

with arbitrary € R'. Moreover, the equation for V' (H) has the form V+3(H+C)V =
0, whence

V=m +m2(H+C)_27 m; GRl. (63)

It is not difficult to check that function (63) satisfies (47b) with A = —(H +C)~!.
Integration of equations (62) yields the following result:

P} =aP?+CiP+Cy, R} =aR’+DiR+ Dy, (64)

here «, C;, and D; are arbitrary real constants.
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Next, substituting (64) into (47), we get C1 = =Dy =3, C3 = Dy = .

Thus, if the potential V' is given by (63), then the functions P(f), R(g) are
determined by equations (36).

Case 4. V(H) = m = const. In this case, equation (37) reads PfffPfl =
RyggR; ", whence

Prry = 9Pf, Rygq = eRg’ (65)

where § € R! is an arbitrary constant.

Integrating (65), we get equations listed in the lemma under number 13.

Case 5. V(H) is an arbitrary function. In this case, the coefficients of V, V, V
in (37) must vanish. Consequently, the relations

Hfffo —quqH_ Hgy = Hyy, Hf H2

hold. Hence, we have Hy = a, H; = o, a € R'. The lemma is proved.

Theorems 1, 2 are direct consequences of the above lemma. To prove Theorems
3-8, one has to integrate ordinary differential equations (30), (32)-(36) and substitute
the obtained expressions into (27),

jer0 =P =P (L), Je-g =R =R (252),

and (28).

Integration of equations (30), (32)-(36) is carried out in a standard way [17, 18],
the obtained result depends essentially on relations between parameters «, 3, v, 9, p.
This procedure demands very cumbersome computations; this is why we omit details.

With the above remarks, the proof of Theorems 1-8 is completed.

4. Discussion. Let us say a few words about intrinsic characterization of SV in
equation (1). It is well known that the solution of a second-order partial differential
equation with separated variables is a joint eigenfunction of mutually commuting
second-order symmetry operators of the equation under study (for more details, see [6,
10, 14]). Below we construct, in an explicit form, a second-order symmetry operator
of equation (1) such that the solution with separated variables is its eigenfunction and
the parameter X is an eigenvalue.

Making the change of variables (24) in equation (1), we get

Uiy — Uiy = V(E+0)(F(€)d(n) . (66)

Provided that equation (1) admits SV, by virtue of equation (25), there exist
functions ¢1(f 4+ ¢) and g2(f — g) such that

VE+m(f(E)gm) " = g1(f +9) = 92(f — 9).
Since f 4 g =w; and f — g = wo, equation (66) takes the form
Usoywr — Uwawy = (g1(w1) — g2(w2))u
or

Xu=0 X-= 851 - 832 —g1(w1) + ga(w2).
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It is evident that the operators Q; = 63 — gi(wi), i = 1,2, commute with the
operator X, i.e., they are symmetry operators of equation (1) and, moreover, the
relations

Qiu = Qip1(w1)p2(w2) = Ap1(w1)p2(w2) = Au, i=1,2

hold.

Thus, each solution of equation (1) with separated variables is an eigenfunction of
some second-order symmetry operator admitted by equation (1).

Now, let us turn to partial differential equations related to equation (1). First, we
consider the wave equation

Ou + U(yg — y%)u =0. (67)

It occurs [11] that equation (67) is reduced to the form (1) by the change of
variables

1 1
t = exp (51/1) chyp, t=exp (§y1> shyo

and, moreover, the potentials V(7), U(7) are connected by the relation

1

T ar

U(r) V(7). (68)

Consequently, to obtain all potentials U(y? — y?) such that equation (67) ad-
mits a nontrivial SV, one has to substitute potentials V() listed in Theorem 2 into
formula (68). The solution with separated variables has the form (7), where

Y1 +yo = exp{P((w1 +w2)/2)},  y1 —yo = exp{R((w1 —w2)/2)}.

The explicit form of the functions P and R is given in Theorems 3-8.
Another related equation is the following equation of hyperbolic type

Vzomo — ’U$1$102(:C1) =0, (69)

which is widely used in various areas of mathematical physics (see, e.g. [19] and
references therein).
Equation (69) is reduced to the form (1) by the change of variables

u(t,x) = [c(xl)]fl/zv(xo,zl) t=x9, = /[c(xl)]fldzl,
and, moreover,

V(z) = —c**(a1)(c"?(21))"| (70)

o=/ c‘fib '
Thus, to describe all functions c¢(x;1) that provide separability of equation (69),
it suffices to integrate the ordinary differential equation (70). Let us show how to

reduce the nonlinear equation (70) to a linear one.
On making in (70) the change of the variable

(1) = ((z1)) 7,
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we get
e 3 .
V=30 + 2V )yt

The above equation with the change of the variable § = 2%(y) is reduced to the
form

zyy — V(y)z = 0. (71)
So, the general solution of the nonlinear equation (70) is given by the formula

o(z1) = 272 (y(21)), (72)

where z(y) is a general solution of the linear differential equation (71) and the function
y(z1) is determined by the quadrature

y(ll)
/ 27 3(r)dr =2, +C, CeRL (73)

Consequently, the problem of description of all functions ¢(x) such that equa-
tion (69) admits a nontrivial SV is reduced to the integration of the linear ordinary
differential equation (71), where V' is given by (6). Solutions with separated variables
have the form

v =v/c(x1)p1(wi(zo, 21))p2(wa(zo, 21)),

where the functions w;, are determined by the equalities

o [ ) r(252). o[ ) n(5),

and the explicit form of P and R is given in Theorems 3-8.

Let us also note that, by using the corollary of Theorem 9 and formulas (71)-(73),
it is not difficult to obtain the results of Bluman and Kumei [19]. In that paper, they
have pointed out all the functions ¢(z;) that provide the extension of the symmetry
group admitted by equation (69).

The third related equation is the nonlinear wave equation

Uy — [ 2(U)U,). = 0. (74)

By substitution U = V., equation (74) is reduced to the form
Vit — ¢ 2(Va) Vi = 0.
Applying the Legendre transformation
ro=Vy, 1 =Vs, Uy, =1t vy, =z, v+V=tVi+2V,,

we get equation (69). Consequently, the method of SV in the linear equation (1) makes
it possible to construct exact solutions of the nonlinear wave equation (74).

In conclusion, we suggest a possible generalization of the definition of SV in order
to take into consideration nonlinear partial differential equations,

U(x,u,gl,g,...,%):(), (75)
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where z = (xg,%1,...,%,—1) and the symbol lkt denotes the collection of k-th order

derivatives of the function u(x).
When speaking about a solution of equation (75) with separated variables w; =
wi(x,u), i = 1,n, we mean the ansatz

F(x7u7§01(w1)7"'7gpn(wn)) :07 (76)
which reduces equation (75) to n ordinary differential equations
(p'EN) :fl(wugplaw“a(pq, - >\) (77)
In the above formulas, w; € CN(R"“,Rl), fi are some sufficiently smooth func-
tions, and A = (A1,...,A,—1) are real parameters.

We say that equation (75) admits SV in the coordinates w;(z,u), i = 1,n, if the
substitution of ansatz (76) into (75) with subsequent elimination of the N-th order

derivatives @EN), i = 1,n, yields an identity with respect to the variables ¢;, ¢, ...,

apEN*l), i=1,n, X (considered as independent ones).

An application of the above approach to SV in nonlinear equations will be the topic
of our future publications.

Here, we present without derivation some results on separation of variables in
a two-dimensional nonlinear wave equation obtained with the use of the above descri-
bed approach.

We have succeeded in separating variables in the following PDE:

1) Osu = A\(chu+ (sh2u)arctge™) + Ag sh2u;

2) Osu = Ae* + /\26_2u;

3) Oou = Ar(shu — (sh2u) arctg e*) + Ao sh 2u;

4) Ogu = A\ (2 sinu + (sin 2u) In tg g) + Ao sin 2u;

5) Oou= Au+ Aulnu,

where A1 and Ay are arbitrary constants.
Below, we adduce ansatzes for u(z) which provide a separation of equations 1-5
and corresponding reduced ordinary differential equations.

1) u(z) =Intg(p1(zo) + ¢2(21)),
= Ccosdpy + Apy + By, 2 = Ccosdpy — Aps + Ba,

where C, A, By and By are arbitrary constants satisfying the relations A = X\;/2,
B1 — Bg = )\2/2;

2) u(z) =1In(p1(2o) + p2(21)),
¢ = 2408 + Bol + Cp1 + Dy, @3 = —2A03 + B — Cpa + Dy,
where A, B, C, Dy and D, are arbitrary constants satisfying relations A = Ay,
D2 - D1 = )\2/2;

3) u(x) =In th (i (o) + pa(z1)),
% CCh4Q01+AQD1+Bl, Cp%:CCh4¢2—A(p2+BQ,
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where C, A, By and B, are arbitrary constants satisfying the relations A = A\1/2,
By — By = A\y/2;

4)  u(z) = 2arctg exp(p1(zo) + p2(21)),
@2 = Csh2p; +2Ap; + 2By, 3 =Csh2py —2A¢ps + 2By,

where C, A, Bj, and Bs are arbitrary constants satisfying the relations A = Aq,
By — By = \y;

5) wu(x) = exp(p1(zo) + @2(z1)),
¢ = Cre 21 + Apy + By, ¢35 = Cae 292 — Apy + Bo,

where Cy, Cs, A, By, and By are arbitrary constants satisfying the relations A = Ay,
By — By = )Xy — \1.
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New solutions of the wave equation
by reduction to the heat equation

P. BASARAB-HORWATH, L. BARANNYK, W.I. FUSHCHYCH

In this article we make a new connection between the linear wave equation and the
linear heat equation. In this way we are able to construct new solutions of the linear
wave equation, using symmetries and conditional symmetries of the heat equation.

1. Introduction
The linear wave equation in (1 4 n)-dimensional timespace R(1,n)

Ou= —— — —— — oo — — = —m-u (1)

is fundamental to mathematical physics: it describes spinless mesons when n = 3,
and is the paradigm of a hyperbolic equation. Its symmetry properties are also known
[1, 2], and one has the following result concerning the Lie point symmetries of (1):

Proposition 1. The maximal Lie point symmetry algebra of equation (1) has basis
P,=0, [I=u0y,, Ju=12,0,—2,0, (2)
when m # 0 and

P,=0, I=u0y, Juw=2,0,—2,0u,

3
D =z+9,, K,=2z,D— 2%, —2x,ud, ®)

when m = 0, where

0 0 y
"o T g Th T I
g =diag(1,-1,...,-1), pvr=0,1,2,..., n.

The symmetries can be used to build ansatzes for exact solutions of (1), which then
reduce the equation to a partial differential equation with fewer independent variables
or even to an ordinary differential equation [l, 2]. These ansatzes and reductions
are based on a subalgebra analysis of parts of the symmetry algebra. The reduced
equations do not always have nice symmetry properties, so that a full analysis of the
resulting equations has not been carried out to this date. In this article we study
a reduction which, as far as we know, has not been done before, and which links up
solutions of the wave equation (1) in R(1,n) with those of the linear heat equation in
R(1,n—1). We consider equation (1) with real u: the complex case with nonlinearities
is studied in [3].

In [1, 2, 4], the reduction of the nonlinear wave equation

Ou = F(u) (1a)

J. Phys. A: Math. Gen., 1995, 28, P. 5291-5304.
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is considered and its reduction (to equations with a smaller number of independent
variables) is studied with respect to the following algebras: AP(1,n) = (P,,Ju.)
when F(u) is arbitrary; AP(1,n) = (P,, Ju,, D) when F(u) = Mu? with p an arbitrary
constant; AC(1,3) = (P,, J,u, D, K,,) when F(u) = Au®.

The linear equation (1), unlike the nonlinear one (la), admits a new symmetry
operator: I = ud, so that (1) is invariant under the algebras (P, J,,,I) for m # 0
and (P, Ju,I,D,K,) for m = 0. However, until now, reductions of (1) have been
based only on subalgebras of (P,,J,,) and (P,, J,.,D,K,). In this paper we take
the subalgebra (P, I) in both cases, it allows us to reduce the hyperbolic equation (1)
to the parabolic heat equation and, in this way, we are then able to exploit the
exact solutions of the heat equation to construct solutions of the wave equation. This
is the central result of our paper. It may at first sight seem rather strange that a
Poincaré-invariant equation is reducible (with an appropriate ansatz) to one that is
Galilei-invariant. However, it is known (see [5]) that the Galilei algebra can be found
within the Poincaré algebra, so that one may even expect the original equation to
‘contain’ a Galilei-invariant one.

2. Reduction to the heat equation
In this paper we limit ourselves to (1 + 3)-dimensional time-space R(1, 3), but the
generalization of our result to higher dimensions is obvious as the reduction remains
the same.
We now turn to the construction of the ansatz which reduces (1) to the heat
equation. Equation (1) is invariant under the operators P,, I and is therefore also
invariant under any constant linear combination of them:

M0, + ku0y,

where k, 7# are constants. This latter operator then gives us the following invariant-
surface condition

T, = ku
which gives the Lagrangian system

dry _ du

Ty ku
and it is not difficult to show that this, in turn, is equivalent to the Lagrangian system

dlez) _ du (4)

cT ku

for any constant four-vector ¢, with cx = c*x,, ¢v = c#7*. Choose now 7 so that

72 = T#7, = 0, namely 7 is light-like, and choose four-vectors 3, ¢, € so that

m2

% =6%=—1, 62=—ﬁ7 T8=76=00=0Pe=0c=0, Te=1. (5)

On choosing ¢ in (4) to be 7, 3, §, € we obtain the system

d(rz) d(Br) d(éx) d(ex) du
o 0 0 1  ku ©)
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The general integral of (6) is given by
U= ek(“)v(mc, Bz, dz), (7)

where v is a smooth function of its arguments (we assume that all our operations
are smooth, at least locally). Treating (7) as an ansatz for equation (1), we find,
on substituting (7) into (1), writing t = 7z, y1 = Bz, y2 = dx, performing some
elementary computations and using (5), that v satisfies the linear heat equation (we
have chosen k = % for convenience)

oo o o
ot oy oyd’

The Cauchy problem for equation (8) is well posed for ¢ > 0, and (8) has solutions
which are singular for ¢ = 0. This then leads to a similar problem for the wave
equation when 7z = 0, which is a characteristic (72 = 0), so that the initial-value
problem for (8) at ¢ = 0 is related to the initial-value problem of (1) on a characteristic.
This latter is known as Goursat’s problem, and has been studied in [12], to which we
refer the reader for more details.

The linear heat equation in (14 1) spacetime dimensions has been studied extensi-
vely: its symmetry properties [2, 6, 7] and its conditional symmetries (also known
as non-classical symmetries [6], @Q-conditional symmetries in [2]) are known. The
symmetry algebra of the linear heat equation in 1 + 2 timespace can be found in [7]
but for the sake of completeness, we give it in the following proposition.

Proposition 2. The maximal Lie point symmetry algebra of equation (8) is the
extended Galilei algebra AGs(1,2) with a basis given by the following vector fields

1 1
T = 0, P, =-0,y,, Gg=10,, — iyavﬁv, M = —§U8U,
Ji2 = ylayg - y2ay1> D= 2tat + ylayl + y2ay2 - 'Uava (9)

1
S = t26t + tylayl + ty23y2 o <t * 4 (y% + y§)> 00

Remark 1. We have not included the symmetry v — v + v;, where vy is an arbitrary
solution of (8).

If we had considered equation (1) in R(1,4), then we would have obtained the
linear heat equation in 1+ 3 dimensions with our reduction. Note also that there is
a Lie-algebraic reduction of (1) in R(1,4) to equation (1) in R(1,3), which amounts
to omitting dependency on one of the spatial variables. In this way, we are able to
use the wave equation in R(1,4) as a bridge in constructing solutions of the wave
equation in R(1,3) from those of the heat equation in 1+ 3 dimensions.

The invariance of equation (8) under the group Gz(1,2) which the above algebra
generates then allows us to obtain a nine-parameter family of exact solutions whenever
one solution is given.

The commutation relations of the algebra (9) are

P, Gy =6apM, [P1,J12] =P, [Pa,J12]=—P,
P..D] =Py, [PuS]=Ga, [PoT] =0, [M,X]=0Torall X € AG,(2),
Ga,Gp) =0, [D,Gy]=Gq, [T,Go]=PFa, [5,Gy)=0

[
[
[
[J12,T) = [J12,D] = [J12,8] =0, [T,D]=2T, [T,S]=D, [D,S]=28.
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Clearly, we see that the subalgebra (P,,G,, M), a = 1,2 is an ideal (maximal and
solvable, and therefore the radical of the algebra [8, 9]). Our algebra is seen to be the
semi-direct sum (J12, S, T, D) + (P,, Gy, M). In turn, we can verify that (S, T, D) is
a semi-simple Lie algebra which we can take as being a realization of ASL(2,R), the
Lie algebra of SL(2,R). To see this, we take X; = 1D, Xy = £(T—5), X5 = 3(T+5)
as a new basis, and obtain the commutation relations of SL(2,R):

(X1, Xo] = = X5, [Xo, X3] =Xy, [X3,Xi]=Xo.
Thus we obtain
<J12, S, T, D> = <J12> D <S7 T, D> = <J12> &5) ASL(ZR)

which is the Lie algebra of O(2) ® SL(2,R).
The elements of the group Gz(1,2) are considered as transformations of a space
with local coordinates (t,y1,y2,v) and points with these coordinates are mapped to
points (¥, y},y5,v"). The finite transformations defining this action are obtained by
solving the corresponding Lie equations. For the subalgebra (Ji3,S,T, D) = (J12, X1,
X, X3) we solve the Lie equations as follows:
dt’iO dyy 0 dyy o, dV

Jio 707

dipi ) dp = —Yo, dp =Y dipi
t'lp=0 =1, Yalp=0 = Ya» V'[p=0 =0
which gives the finite transformations

t'=t, yp=yicosp—yasinp, yp=yisinp+yscosp, v =wv.

Then we have the corresponding equations for X7, X5, X3

e’/2t +0 Y
. I V1 - vi/2 _ a
Xuo t=ent 0-ttevi/2 Ja=C Vo= oz
v = e /2y,
, tcoshvy + sinhvy , Ya
X2 . - B ) ya = . )
t sinh vy + cosh vy t sinh v + cosh vy
2 2\ o
) + y3) sinh vy
v’ = v(tsinh vy + coshs) ex (v1
( 2 2) eXP 4(tsinh vo 4 cosh 1)
X - t,_tcosngrsian ;o Ya
3 " cosvg —tsinvy’  °%  cosvs — tsinvs’

(¥3+y3) sinvg

;) .
v = 'U(COSV3 — tSan?,) exp (—m) .

Thus, we see that the action of the group generated by (Ji2,S,T, D) can be given
in the form

,_Gt+n  , _yiEcosp—ysesinp  , yisinp+yscosp
t=—— Y= y Yo =

b

kt+o’ Kt +o Kt+o
2, .2
+v3)
A k(Y1 2
v' = (kt + o)vexp ( H(nt+ o)

with (o6 —nmx = 1, and € = £1 corresponds to the possibility of space reflections
under which (8) is manifestly invariant (the group O(2) has two components). The
parameters ¢, 1, k, o correspond to the action of SL(2,R).
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Solving the Lie equations defined by each of the other infinitesimal generators
in (9), we obtain finite transformations such that (¢, y1,y2,v) — (t',v},y5,v") as
follows:

1 [ p?
/_— - = _Zt 1Y 5
v vexp( 2<2 +,uy)>

Pi: tI:ta y;:yl_)\za y_;:y] fOI'j?éi, UI:U?
1
t'=t, yi=vy;, v =vexp (—§0> )

3. Subalgebras and ansatzes

Having obtained and discussed the symmetry algebra of equation (8), we now pass
to listing the subalgebras of AG5(1,2) which are inequivalent up to conjugation by
G2(1,2), and giving the corresponding reduced equations. In those cases where it
is possible, we integrate these equations. The method of obtaining subalgebras up to
conjugation is described in [4, 10]; here we simply present our results. The reductions
we have obtained have been verified with MAPLE.

3.1. Reduction to ordinary differential equations by two-dimensional subal-
gebras. Here we list the subalgebras, with restrictions on any parameters entering
into the algebra, and then we give the corresponding ansatz and finally the differenti-
al equation which arises, with its solution. In all the cases, we can take the real
and imaginary parts of the solutions, as the reduced equations are linear. This is
understood when complex arguments appear.

3.1.1.

. 1
(Py, T+ aM) (a=0,+1): v=e%pWw), w=uy, <p—|—§oz90:0.

Integrating this reduced equation, we find the following cases

p=Ciw+Cy fora=0,

p =Chexp <%) + Csexp (—%) for a = —1,

gpolcos(%—kCg) for a = 1.

From these we obtain the following exact solutions of (8):

v=Clys + Cy for a =0,

v=e¢? (Cl exp (%) + Cy exp (—%)) for a = —1,
v=e 20} cos <31§ + Cg) fora=1

with C1, Cy being arbitrary constants.
3.1.2.

D+ 2a+1)M,T) (¢ €R): v= yl_(oH_S/z)ga((,u)7 w = 3—2,
1

(w2+1)¢+(5+2a)w¢+(;+a> (g+a)<p=o.
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For a = —2 we have
o =Ciw+ Cs.
If a = —32 then

¢ = Crarctanw + Cs.

For o # —32, -3 then

3
e =C1(1+ w2)_(0‘/2+3/4) cos <<§ + a) arctan w + 02) .
The exact solutions being:

5
v==Cys+Coyr, a=—

5)
3
U:C’larctan%qLCg, o=—_,
Y 2
3 3 5
UZCl(y%+y§)_(a/2+3/4)cos((54—&)arctan%—i-CQ) a;é_i,_a_
Y1

3.1.3.
2
(D+ (4a+1)M,P) (€R): v=t"TVpw), w= 31717
3
Lo+ 2+ w)p + <Z+a> o= 0.

If we make the transformation w — § = —% in this ODE, we obtain

1 1 1 3
Ep +<2£>90 <a+4>s00,

where ¢’ denotes differentiation with respect to £. The solutions of this equation are
given in terms of the Pochhammer—Barnes confluent hypergeometric function (see
for example Vol. 1, ch. 6 of [11])

oo

D(ajb;z) = Z ((Z;Z;
a)p =

n=0

with b # 0 and where ( ala+1)(a+2)---(a+n—1),n>1. We find then [I1]

1/2
31 1 1 53 1
QD—leb <Q+Z,§,—Zw>+02 (—Zw> <I>(a+1,§,—1w).

Thus we find the exact solution

2
_ —(a+3) §1_y_1
v=t Cr® (at Jig -3 ) +C
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which integrates to give the exact solution

Y2
v=Clt| Y% exp (—1) .

4t
3.1.5.
t* oyt 2
(P, T+ G1): v=exp T 2 plw), w=1t>—2y,
169 —wp = 0.

To treat this ODE, first write ¢ = \/wi(2) with z = w3/2/6. Then 1 satisfies
1 1
¢/l+_¢1_ 1+_ wzo
z 922

which is the equation for the Bessel function Ji,/3(iz) (these two are linearly
independent solutions) (see Vol. 2, section 7.2.2 of [11]). Consequently, we have

3t
v = (t2 — 2y1)1/2 exp (E — %) X

(29 3/2 (42 _ 9 3/2
01J1/3 (Z ( 6y1) +CoJ_yy3 —Z( 6y1)

as an exact solution of the heat equation.
3.1.6.

<J12+01D706(4ﬂ+2)M,T> (Oé>0, 6€R)7

B Y 1
v= (843 ¢). w=aarctan (L) + Jin ot +18).

Y2
(@ +1)p + 48 + 45%p = 0.

X

Integrating this equation, we obtain
o =Cw+Cy for =0

and

_ 2Pw 2aBw
@-Clexp(—1+a2>cos<—l+a2+02) for 5 #0.

These then give us the exact solutions

v=C {aarctan (31) + %m (y% + y%)] +Cy for =0,
2

v=C_C (y% + y%)ﬁexp (— 28w ) oS ( 20w + Cg) for B #0,

14+ a2 1+ a2

where

1
w = aarctan (y—l) +-In (y% + y%) .
Y2 2
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3.1.7.

(Ji2+2aM,D — (48 +2)M) (o >0, BER),

+
v=texp <a arctan y—l) pw), w= yl y2
Y

9. w2 042 6
“’”(‘”Z) (“T)

This equation gives

54 1 n 1)\ . n o? 16 _0

v 1T L)% 1?2 1w )P
[ts solutions can be given in terms of Whittaker functions W (k;m;z) (see Vol. 1,
ch. 6, pp. 248-251 of [11]) and one obtains

e—w/S

o= (-1 %)

and hence

h+1/2 2, 9
v:ﬁexp<_y1 "'yQ)QXp(aarctan&) ( (B+1/2) o yl +y2>
VAT s " :

3.1.8.

<J12+20¢M,T—‘rﬁM> (Oz>0,ﬁ:0,i1),

t
v = exp (a arctan 2% — 6—) ow), w=y+y3,
Y2

a? w
w2¢+w¢+<q+%>gp:0.

We have the following cases:

p=C1+Cslogw for a=p=0,
wzchOS(—%logW—i—Cz) for a0, B =0,

¢ = Jia <\/%}> for a >0, g#0.

Consequently, we have the following solutions of (8)
v=C1+Csrlog (¥ +y3) Tor a=p=0,

v = exp (a arctan y> C1 cos (77 log (y1 + y2) + Cg) for a #£0, =0,
2

v—exp(aarctanE%) JZ-D,( W) for a >0, B #0.
Y2
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3.1.9.
<J12+S+T+20[M,G1+P2> (QER),

12\ [y +t2)*  of
< p )<t2+1 fﬁfaarctant o(w),

. @+ (a+wip=0.

v = (t2 + 1)_1/2ex

_ y1 + ty2
241

This equation is known as the Weber equation. Its solutions are the real and imaginary
parts of the functions

D_a((1 +i)w),

where D,(z) are the Weber—-Hermite (parabolic cylinder) functions (Vol. 2, ch. 8,
section 8.2 of [11]). This gives the following exact solutions of (9):

- 1—¢2 ty2\° o2
v=(*+1) 1/2exp l( m )(yiz‘trll/z) —%—aarctant X

Y1 + tys
241

x Dz (i(1+z')

and the real and imaginary parts of this function give us exact solutions of the heat
equation (9).
3.1.10.

<J12+204M,S+T+25M> (aZO,QER),
y tW+3)

—1/2
v=(t?+1 e —(parctant 4+ aarctan — — w),
2 2 2
Yi + Y3 . 1. 1 B «
= — —+— 4+ — =0.
YT ey ‘p+w‘p+(16+4w+4w2 7

The solutions of this equation can be given in terms of Whittaker functions [11],
and we obtain the following exact solutions of the heat equation as a result:
vty + y%)]

exp |—(Farctant + aarctan — — ————=~
P { g y2  4(t2+1)

v= (2 +3) "

XW(ﬂa<9ﬂ/>>

8727 2(12+1)

In the above cases we have been able to describe exact solutions of (8) in terms
of elementary functions or confluent hypergeometric functions. Using the notation
introduced in equations (8) and (7), we are thus able to construct strikingly new
exact solutions of the linear wave equation (1).

3.2. Reduction to partial differential equations by one-dimensional subal-
gebras. Here we list the subalgebras, the relevant parameters, ansatzes and reduced
equations, without constructing their exact solutions. We use ¢ to denote the partial
derivative with respect to wy, and @92 means the second derivative with respect to wo,
and so on.
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3.2.1.

(Po) 1 v=opw,w), wi=t ws=y1, ©1=pa.

This is the heat equation in 1 + 1 spacetime dimensions. The symmetries and condi-
tional symmetries of the heat equation are well known. A discussion of these can be
found in [6] and in appendix 7 of [2].

3.2.2.

2
<G1+P2> : UV = exp <_%) SO(WDWQ)? wlzta W2 = Y1 +ty27

w2 1
1+ w? o — 22y — —— =0,
(1 +wi)p22 — 1 R

3.2.3.

at

(T+aM) (a=0,£1): UZGXP<—7)<P(W17W2), w1 =y, w2=1y2,

1
P11 + P22 + J0p = 0.

This equation is the Laplace equation for ae = 0. Solutions can be obtained by using
separation of variables.
3.2.4.

(T'+Gr): v=exp (- - —> plwi,ws), w1 =1t>=2y1, wy=ys,
1
411 + oo — Zwuo =0.
3.2.5.
(Ji2 + 2aM) (a > 0),
v = exp (a arctan£> o(wi,ws), wi=vyi+vy5, wr=t,
Y2
4?11 + dwrpr + wips + alp = 0.

3.2.6.
(Ji2+ T+ 2aM) (a€R),

v = exp(—at)p(wi,ws), w1 =ys+ys, ws="t+arctan 2,

Y2
4wiprr + Pag + dwi1pr — w1 + awrp = 0.
3.2.7.
(2 + 5D +a(28 - M) (a20, #21/2)
v =1t p(wi,ws), wi =logt+ aarctan z—;, wy = i jy?

a1 + 4w53022 — wapr + (dws + w%)cpg + Bwap = 0.
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3.2.8.

(D+ (da=2)M) (a>1/2): v=t"%(w1,w2), w1 = y?’ woy = ==,
dwrp11 + 4papar + (2 4+ wi)e1 + (2 + w2) 2 + ap = 0.

3.2.9.
(S+T +adis+28M) (a>0, B€R),

_ t 2 2
= (t2 + 1) 1/2 exp [—ﬂ arctant — 4(%27—:%2))} o(wi,ws)

2 2
+
w1 = Yi Ty w9 = arctan n + aarctant,

t2 +1 ’ yg
1 w1

dwrpn + o, P22 +4p1 — apa + (5 + Z) v =0.
1

3.2.10.
(S+T+2aM) (x€R),

2 )2 t(y: + v3)
v = (t + 1) exp [—a arctant — m o(wr,wa),
2 2
_ Y Y
w17t2+17 w27t2+17

w1 + w
4(4)1@11 +4WQ<)022 +2(p1 +2<p2+ <Oé+ ! 1 2> p= 0.

3.2.11.
(S+T+ Jia+a(G1+ P)) (a>0),

(1—) (1 +ty2)® i
(t2 + 1) 1/2 4 exp |: (2 4+ 1) — 4—1 <p(w1,w2),
w :y1+ty2 w :tyl—yz = «arctant
1 t2 +1 ) 2 t2 n 1 )

011 + P22 — (w1 — a)pa + W%%’ =0.

4. Some conditional symmetries of the 2 + 1 heat equation
In this section we give the conditional symmetries of equation (8). The delining
equations are nonlinear coupled partial differential equations, which we do not solve,
except in one case, leaving the others for consideration in a later publication. We have
the following result.

Proposition 3. Equation (8) is conditionally invariant under

0 0 0 0
x =09 L 2
ot T o T oy o
when the coefficients satisfy the followmg conditions:
(7’) 60:1: 763/2’ ;2:7517 n:AU+B7

where £, €2, A, B are functions of t, y1, y» and satisfy the system
& +28%¢, +24,, =0, & +28%¢; +24,, =0,
Ay = Aylyl + Ay2y2 2A£ By = Bylyl + Byzyz - 23552

Y27
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(@) =0, &=1: &, =¢€¢€,, n=Av+B,

where €2, A, B are functions of t, y1, y» and satisfy the system

€t2 - ?31?/1 - ?32?/2 + 2521 52 - 25214?/1 - 2A€§1 =0,
Ay = Ay, y, + Ay,y, + 244, — 24, ;1,

B, = Bylyl + Byzyz + 2BAy1 - 2By2£§1'
(i) @ =¢'=0, € =1: n=Av+B,

where A is a function of t, y2 only, and B is a function of t, y1, y2 and satisfy the
equations

A = Ay2y2 + QAAyw By = By,y, + Byay, + ZBAyz'

As is clear in the above three cases, the systems of equations involved are highly
nonlinear, and cannot be solved in general. However, the equation for the function A
in case (4i7) is recognized to be the Burgers equation. This equation can be linearized
by the Hopf-Cole transformation A = w,,/w, where w is a solution of the heat
equation w; = wy,,, (see for example [2]). The solutions obtained in this way can
then be used to build ansatzes first for the 2 4+ 1 heat equation (8) and then, in turn,
the linear wave equation (1), using the ansatz (7).

Ansatzes can also be obtained from the symmetry algebra of the Burgers equation.
Indeed, the symmetry algebra of the equation

Ay =Ay,y, +244,, (10)
is generated by the operators

O, Byyy 240, —0a, 200, + Y20y, — Ada,

Y2 (11)
120, + ty20,, — (tA + 3) da.
The operator (11) gives the ansatz
_ Ll (e
A= 2t+tw(t) (12)
which gives, on substituting into (10), the equation
U+ 20h =0

for v, where the dot denotes differentiation with respect to the variable w = ys/t.
This equation readily integrates to

b+vi=e
where ¢ is a constant. This gives us three cases:
e=0: P=t/(kt +y), (13)

where k is a constant;

c=da? a>0: w:a(texp (2?}2) —1)/(texp (2@;{/2) —|—1> (14)
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with [ # 0 a constant;

c=—-a? a>0: w:—atan(aQ—i—%). (15)

t
Substituting these into (12), one obtains exact solutions of (10). We use these exact
solutions for A together with theorem 3 (iii) (with B = 0) as follows. The equation (8)

is conditionally invariant under
Oy, + AvO, (16)

and this gives us an ansatz for v to be substituted into (8), and this, in turn, gives us
an exact solution of (8) which, when we combine it with (7), gives an exact solution
of (1). We list the results of these stages for each of the equations (13)-(15).

The ansatz for v from (13) is

v = (kt + y2) exp (—y3/4t) (t, 1),
where ®(t,y;) satisfies

3
Py =Dy y, — 5(13

and consequently we find that v is given by
v = (kt + y2) exp (—y3 /4t — 3t/2) ©(t, 1),

where W(t,y;) satisfies the (1 4 1)-dimensional heat equation.
The ansatz for v from (14) is

v=e"/" [lexp (—(y2 — 20)?/4t) + exp (—(y2 + 20)2/4t) ] B(t, 1),

where ®(t,y;) satisfies
1 a?
Py + (2_t - t_2> P = Dy,
and using this we eventually find that v is given by
1 —a
v = % [le“yz/t +e y2/t} exp (— (4a2 + y%) /4t) U(t,y1), (17)

where ¥(t,y;) satisfies the (1 4 1)-dimensional heat equation.
The ansatz for v from (15) is

v = coS (a2 + %) exp (—y3/4t) ®(t,y1),

where ®(t,y;) satisfies

1 a?
P, + (ﬂ — t_2> o=y,

so that we obtain

v = 1 cos (a2 + %) exp (— (4a2 + y%) /4t) U(t,y1), (18)

Vit

where W(t,y;) satisfies the (1 4 1)-dimensional heat equation.
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We can now combine equations (17)—(19) with equation (7) to obtain new solutions
of (1):

(ex) (62)%  3(rx)

u=lotra) + Goexp (50 - 82— 20 Y w((ra), (),

y L [lea<5z>/<m>+ ea(ém)/(m)}exp<@ N wﬁ((m,(gz))?

(r2) 2 A(ra)
u = ! cos [ a® a(0x) ex @ — M I "

where ¥(¢,z) is any solution of the (1 + 1)-dimensional heat equation.

One can, in principle, perform the same procedure for the other conditional
symmetry operators defined in theorem 3; however, it is first necessary to obtain
some exact solutions of the systems. These latter are quite nonlinear and require
further treatment, and we leave this to a future publication.

5. Conclusion

We have been able to give a new reduction of the linear wave equation in 1+ 3
timespace dimensions to a linear heat equation in 1 4 2 timespace dimensions, that
is, a reduction of a hyperbolic equation to a parabolic one. The further reductions of
this heat equation by two-dimensional subalgebras (inequivalent under the action of
G2(1,2)) to ordinary differential equations leads to exact solutions in terms of special
functions. These are of interest in their own right. Conditional symmetries can also
be used to obtain new exact solutions. Using these solutions of the heat equation, one
can construct new solutions of the linear wave equation. In concluding, we remark
that the complex nonlinear wave equation

O + F(|9],8,¥|0"[w|)¥ =0,

where F' is an arbitrary smooth function of its arguments and ¥ is a complex function,
can be reduced by the same ansatz as (7) (but with k imaginary) to a nonlinear
Schrodinger equation with the same nonlinearity. Some of these equations admit
soliton solutions. We report on these results in [3].
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Amplitude-phase representation for solutions
of nonlinear d’Alembert equations

P. BASARAB-HORWATH, N. EULER, M. EULER, W.I. FUSHCHYCH

We consider the nonlinear complex d’Alembert equation OU = F(|¥|)¥ with ¥
represented in terms of amplitude and phase, in (1 4 n)-dimensional Minkowski space.
We exploit a compatible d’Alembert-Hamilton system to construct new types of exact
solutions for some nonlinearities.

1. Introduction
Let us consider the general nonlinear complex d’Alembert equation in (1 + n)-
dimensional Minkowski space

O = F(|v)), 1

where F' is a smooth, real function of its argument, ¥ is a complex function of 1 +n
real variables, and

Equation (1) plays a fundamental role in classical and quantum field theories, and in
superfluidity and liquid crystal theory. Many exact solutions have been found using
Lie symmetry methods [6, 11, 12, 13, 8, 7], as well as with conditional symmetries [7].

In this paper we use the representation ¥ = ue', where v is the amplitude and
v is the phase (both real functions). On substituting this in (1), we find the following
system:

Ou — u(vyvy,) = uF(u), (2)
uOv + 2u,v, = 0. (3)
We use the notation

'LL#’U# - =

The system (2), (3) is obviously equivalent to the starting equation (1). However,
equations (2), (3) has the advantage that it gives us the possibility of making functio-
nal and differential connections between the amplitude and phase, which substantially
simplifies the problem of integrating equation (1). Moreover, in assuming the simplest
possible relations between the amplitude and phase, we are able to construct exact
solutions of (2), (3), and hence of (1).

We now seek solutions of (2), (3). We consider two cases: (i) the amplitude
as a function of the phase, u = g(v); (ii) the phase as a function of the amplitude,
v = g(u). This is reminiscent of the polar description of plane curves in geometry. The

J. Phys. A: Math. Gen., 1995, 28, P. 6193-6201.
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system (2), (3) then yields a pair of equations for the phase v in the first case and for
the amplitude u in the second case. There then arises the question of the compatibility
of the two equations obtained, and we solve it by exploiting the compatible system
AN
= — = 4
W= wa = A, @
where A = —1,0,1 and N =0,1,...,n. Exact solutions for the system (4) are given
in table 1 in section 2.
The system (4) is a particular case of the d’Alembert-Hamilton system

Ow = Fi(w), wyw, = Fy(w), ®)

The system (5) was studied by Smirnov and Sobolev in 1932, with w = w(xg, z1, 22)
and F; = F; = 0. Collins [2-4] studied (5) with w a function of three complex
variables, and obtained compatibility conditions for the functions F}(w), Fs(w). For
(1 + 3) and higher dimensional Minkowski space, (5) was studied by Fushchych and
co-workers [9, 10]: they obtained compatibility conditions for F;(w), Fa(w) and some
exact solutions.

Here, we exploit the results of Fushchych et. al [10], applying them to the
system (4). Moreover, the compatibility of (4) dictates the type of nonlinearity F(u)
which can appear in (1). This is the novelty of our approach to finding some exact
solutions of (1).

2. Solutions
2.1. u = g(v). We now assume that the amplitude is a function of the phase:
u = g(v). Inserting this assumption in (2), (3), we obtain

—299F (9)
\:‘ = - — F
! 99 — 29* — g2 1(v) ©)
2
9°F(g)
== “ - [ 7
nem gg — 292 — 92 Z(U) ( )

with ¢ = dg/dv.
We now deal with (6), (7) in two ways: (i) assume forms for Fy, F5 so as to make
equations (6), (7) compatible; (ii) transform equation (4) locally so as to agree with

(6), (7).

First, let us make the assumption

Fl(’l)):%, FQ('U):A

with N, A # 0. Then equations (6), (7) become a compatible system [10], and we also
find that g and F' must satisfy

L g -
9§ —2¢° —g* —=F(9) =0, —==N. 8)
5y (9) ;

From (8) it now follows that
N N
g(v) = ov N/, Fv)=-\+ )\3 (1 _ 7) o 4/NyA/N

where ¢ # 0 is an arbitrary real constant.
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With this, we have obtained the following:
Result 1. An exact solution of (1) with nonlinearity

F(O) = -\ + 0*4/ng (1 — ;V) ||/ N
is given by
U(z) = ov(x) N2 @)
where v(x) is a solution of the compatible system (4) for N, A # 0.

Our next step is to perform a local transformation of (4). We do this by setting
w = f(v) in (4) (with X\ # 0), with f a real, smooth function such that f # 0. With
this substitution, we obtain the system:

qo— AN _ M) 9)
F)fw) )
A
V0, = —-. 10
) 1o

The system (9), (10) is obviously compatible since it is the local transformation of
an already compatible system. However, it should be noted that this does not mean
that the exact solutions we obtain by using (9), (10) are equivalent to those obtained
from (8), since we have introduced some extra freedom via the function f.

We now equate the right-hand sides of (6), (7) with the right-hand sides of (9),
(10), respectively. A little algebraic manipulation gives us

) 1/2
()
g(v) = (fN(v)> ) (11)

where o is an arbitrary non-zero constant. Thus we have a differential relation between
f and g which we can integrate. For N =1 we obtain

1 v

s =cen (o [ ) 12)

and g has to satisfy the integro-differential equation

520~ st ew (5 [ @) Flo =0 (13)

Aot o2 '
For N # 1 we find
LN 1/(1-N)
s = (1 [ are) (11

C being an arbitrary real constant, and with the following condition on g:

1 1N [ IN/(1—N)
9§ —2¢° — 9> — Fgﬁ (7/ g>(&)d¢ + C) F(g) =0. (15)
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Our result is summarized in the following:
Result 2. (i) The function

U(z) = g(v(x)) expliv(z)]
is a solution of (1) whenever g is a solution of (13) and w(z) = f(v(x)) is a solution
of

A
Ow = — =A
w o’ wyWy,
with f given by (12).
(#4) The function

U(z) = g(v(x)) expliv(zr)]

is a solution of (1) whenever g is a solution of (15) and w(x) = f(v(z)) is a solution
of
AN

Ow=—, wyw, =\
w pWy

with f given by (14) for N # 1.

One may treat (13) and (15) in two ways: consider F' as given, and then attempt
to solve for g, or make an assumption about g and then find the corresponding F.
We take this second approach, and in doing so, we determine the function f which
appears in (12) and (14), which also relates (4) to the system (6), (7).

This is illustrated in the following example, where we take g as g(v) = v”. Then
we obtain after some elementary manipulation

w= f(v) = vt/

when N =1, g = —% In this case we find the corresponding nonlinear version of (1)
and an exact solution:

Aot (1 4/02 2y, 2
0 A Jo° _ 4(1—c?) /o —
o+ 22 (F07 — o v=o,

T ) I

where w is a solution of

A
Ow = — =\
W=, Wy

The solutions of this system are given in table 1. We can choose the nonlinearity
in the above wave equation by choosing o. For instance, for o2 = % we obtain the
equation

0w (2 2 (jop - L) w o (16)

3) C? 4 T

Equation (16) is of the type considered by Grundland and Tuczynski [12].
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For N =2, 3 = —1 we obtain the following wave equation and exact solution:
0w 4 |\1/\2+i|\1:|6 U =0 (17)
o8 Aot -
-
(€ —w@)o?]’

where w is a solution of the compatible system

w . WuW, =
w wem

U(z) = (C —w(z))o? exp [z (18)

and exact solutions of this system are given in table 1. Equation (17) is also of a type
considered by Grundland and Tuczynski [12]. Our exact solutions are new.
2.2. v = g(u). We now assume that the phase is a function of the amplitude:
v = g(u). On substituting this in equations (2), (3), we obtain
(u®g + 2ug) F(u)

U= G rag e - (19)

—u?F(u)
=" — = F(u). 20
UMUH ug+2g+u293 Q(U) ( )
Here g = dg/du.
We perform the same analysis as before. First, letting Fy(u) = AN/u, Fa(u) = A,
A # 0, we find (after some computation)

ouN+1 AN Aoy
“Niitor P =m -

g(u) =

Having determined g and the nonlinearity of the wave equation (19), we have the
following:

Result 3. An exact solution of (1) with nonlinearity
F([¥]) = AN|®| 72 — Aoy [0 2(V+2)

is given by

U(z) = Cu(z)exp ((N n 1;&)(1\41)) .

where A # 0 and C # 0 is an arbitrary real constant, and where u(x) is a solution of
the system (4).

Another way of dealing with (19), (20) is to transform (4) locally using the
transformation w = f(u) with f # 0, which gives us

AN Af(uw)
fw)f)  f3u)’

@1

(22)
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Then, equating the right-hand sides of (21), (22) with the right-hand sides of (19),
(20), we find (for A # 0, as before) that

ug(u) =o :
SN (u)
where o # 0 is an arbitrary real constant. Again we see that there are two cases to

consider: N =1 and N # 1.
For N =1 we obtain

s =com (5 [ % ac) (23)

with C an arbitrary real constant. The condition on g is

2 e (/52 ) F(u) =0, (24)

When N # 1, f is given by

o 1/(1-N)
r = (o= N2 [T etEa) (25)

with C an arbitrary real constant and with the following condition on g:

2N/(1—N)
3 dg) F(u) =0,

This reasoning can be summarized in the following:
Result 4. (i) The function

U(z) = u(z) exp(ig(u(z)))

is a solution of (1) whenever g is a solution of (24) and w(x) = f(u(z)) is a solution
of

uj + 2§ + 2 + =

oo g u
ug + 29 +u?g® + o2 (C

A

Ow = —, wyw, =\
w’ pWp

with f given by (23).
(#4) The function

V() = u(x) exp(ig(u(r)))

is a solution of (1) whenever g is a solution of (26) and w(x) = f(u(z)) is a solution
of

w WW, =
w '’ nem

with f given by (25) for N # 1.

We treat equations (24) and (26) relating g to the nonlinearity F' as before: we
assume a form for g and treat the equations as determining F. Taking g(u) = u?,
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we have the following examples of the wave equation, exact solution and relation
between u and w:

N =1, g#-2.
f+1 2 B
D\I/+—\IJ 2<1+ U2 ) exp | ——|U|?*2 | ¥ =0,
o (1 B EERaid
V() = u(x) expliu(a)’],
o(B+2) 1/(B+2)
( 3 l‘d) /
where w is a solution (listed in table 1) of the compatible system
A
Ow = — = \.
W= Wty =
N#LBA-
B N-1)8 2N/(N-1)
mhy 22 (14 P L g -2 _ W= DB g 542 U=
HAr <+ =) (0 o ;

() = u(e) expliu(z)’],

B o(B+2) . 1/(B+2)
- (Geme-w )

where w is a solution (listed in table 1) of the compatible system

AN
Ow=—, wuw, =A\.
w

If we choose 8 =—1, N =2, C =0, then we find that the wave equation is
OW 4+ Ao 22T =0 (26)

with the exact solution

\I/(x)—u(x)exp< (i )

u(x)

and
u(z) = ow(x),

where w solves

O _2/\ =\
w=—, wyw, =\
w’ weH

Equation (27) is of some interest: of all the possible nonlinearities F'(|¥]), the
nonlinearity F(|¥|) = |¥|? gives the widest possible symmetry group, admitting
the conformal group. Equation (27) (and indeed equation (1)) can be reduced to the
nonlinear Schrodinger equation in (1 + 2)-dimensional time-space (see [1]) with the
same nonlinearity. This equation also admits the widest possible symmetry group
for nonlinearities of the given type. It can be reduced to the (1 + 1)-dimensional
nonlinear Schrodinger equation with the same nonlinearity, and this equation has
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soliton solutions (the well known Zakharov-Shabat soliton). Using this soliton, we
can construct a new type of solution of the hyperbolic wave equation (27). Of course,
this does not imply that (27) has soliton solutions located in three-dimensional space.

3. Conclusion

We have demonstrated an approach which can give new exact solutions of some
nonlinear wave equations of the same type as (1). The novelty in our approach lies
in the fact that we exploit the compatibility conditions for the d’Alembert-Hamilton
system to dictate the type of nonlinearity and the exact solution(s). Moreover, some
of the equations we obtain appear to be of interest in physics, but we are unable to
make any statement about the physical nature of the exact solutions we obtain, as
our approach has not used any physical criteria to single out any type of solution.

Of course, this is not the only approach possible; we could, for instance, reduce (1)
to the Schrédinger equation (as in [1]) and then apply a similar method to this
new equation in the amplitude-phase representation. Also, it is possible to consider
a more general connection between the amplitude and phase, such as u = G(v,v,)
for some function G. This leads to a system involving the Born-Infeld equation,
which has a very wide symmetry group, and we obtain new exact solutions of (1).
This differential connection between amplitude and phase will of course be important
when we allow nonlinearities dependent on derivatives, such as F(|¥[, ¥ ¥,). We
will report on this work in a forthcoming paper.
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Planck’s constant is not constant
in different quantum phenomena

O. BEDRIJ, W.I. FUSHCHYCH

Bucynyta imes mpo Te, wmo crana Ilnanka h B Me3opuHamili icTOTHO BinpisHsAeTbCS
Bin crasoi [lnanka B esekTpopnHaMili. 3anpomnoHoBaHi piBHSHHS pyXy MJIS eJIeKTPOHa,
NPOTOHA i HEHTpOHa, B IKKUX cTaja [lnaHka mae pisHi 3HaueHHS.

At present, it is a generally accepted axiom that the Planck’s constant
h=6.626-10"%] s 1)

has the same meaning and value in electrodynamics, mesodynamics, quantum theory,
theory of quarks, gravidynamics, etc. Planck’s fundamental quantum hypothesis, put
forward for the explanation of the energy spectrum of black body radiation, is ad hoc
employed in all quantum physics.

In [1] we have suggested the following hypothesis: the fundamental value of
Planck’s constant h in mesodynamics is considerably different from (1). This assumpti-
on, for example, can be explained by the fact that in mesodynamics, not a photon but a
meson is emitted, which mass does not equal zero. There are no fundamental grounds
to assume that h in mesodynamics has to have the value of (1) [1-4].

In this short note we focus on the equation of motion for the fundamental particles
(e — electron, p — proton, n — neutron) based on the aforementioned hypothesis.
Schrodinger equations for electron, proton and neutron have the following form in our
approach:

O, he

1he Tk “om. — AV, + V. (2)P, (2)

z’h%— h?’ AV, + V, ¥ 3)
P ot omy p P¥Dps

2

zhn% = 2?;: AV, +V, ¥, (4)
0 0? 02

A= Tl‘% + W + == 022 3

where

he:h7 hp#h; h’n#hﬂ

he — Planck’s constant for electron (electrodynamics); 7, — Planck’s constant for
proton (mesodynamics); A, — Planck’s constant for neutron (mesodynamics).

JHonosini HAH VYxpaiuu, 1995, Ne 12, C. 26-27.
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The Ve, V,, V,, potentials are assumed to be depended on k., h, and h,, the wave
functions ¥, ¥, and ¥, as well as the coordinates of particles.

In addition, let us consider Poincaré invariant equations of motion for meson and
for e, p, n. As is known, the energy of an elementary particle is defined by formulae:

E® = cp; +mPct,  pl=pi+ 5+ pi, (5)
where m is the mass of a particle; ¢ is the velocity of light in vacuum; p, is

momentum. Formulae (5) give us the following Poincaré-invariant equations for
particles

2 d*u 2 2 2 4
Tgm = (— b, ¢ A+myc ) + Vyu, (6)
ihe o1 = { Zhe’YO’)/ka + mec ’YO} v, + ‘/e\:[le, (7)
ov 0
ity 75 = { =it g+ oo L0, 4 V0, ®
v, .
ZhnL = 7Zhn707ki + mnCQVO v, + Vn\I}nv (9)
ot oxy,

where W, ¥,, ¥, are four-component wave functions; u is a scalar wave function
for meson with mass m,; =, are 4 x 4 Dirac’s matrices. Equations (7), (8) and
(9) are Dirac’s equations with different Planck’s constants, Ve, = V. (¥, ¥, U,,, z,t),
Vo =Vp(¥e, ¥, Uy, 2, 1), Vi, = Vi (U, U, U, 2, ).

Consequently, to describe interactions between electron and proton, electron and
neutron, etc., it is necessary to use different values for R, f, and A, in equations
(6)-(9).

A phenomenological approach, proposed in [2-4] for determining fundamental
constants and based on a few known constants, gives us the following values [2, 3]:

he =6.626-1072*J -5, h, =2.612-10"%"J .5, h, =2.668-107%J-s.

Obviously, because h., h, and h,, enter most of quantum relationships, we must re-
view the standard theoretical schemes and possibly explore new physical experiments.
This fundamental challenge will take time. Our main objective is to show a new
possibility for description of interactions of particles which is related to a new value
of h.

According to [5, 6], formulae (5) can be used for nonlinear generalization of
equations of motion for elementary particles. Assume that in formulae (5) ¢ is not
constant but a function of field (or a functional with respect to fields)

ovvw 8\I'\I!>

dxi Az,

c=c (‘II\I/ (10)
Therefore, we can obtain from (10) a nonlinear equation of the type (6)-(8). This
assumption means that velocity of a signal is a function of field [5, 6) and not
a constant, as is presently accepted for the velocity of light in vacuum. The latter
statement is a cornerstone of modern quantum physics. We should like to emphasize
that here we have discussed a new glance on this fundamental point.
A more detailed development of these ideas will be published elsewhere.
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Ansatz '95

W.I. FUSHCHYCH

In this talk I am going to present a brief review of some key ideas and methods which
were given start and were developed in Kyiv, at the Institute of Mathematics of National
Academy of Sciences of Ukraine during recent years.

Plan of the talk

The simplest classification of equations.

What is ansatz? The problem of PDE reduction without symmetry.
Conditional symmetry. How can we expand symmetry of PDE?
Conditional symmmetry of Maxwell and Schrodinger systems.

Q-conditional symmetry of the nonlinear wave equation, which is not invariant with
respect to the Lorentz group.

Conditional symmetry of the Poincaré-invariant d’Alembert equation.
Conditional symmetry of the nonlinear heat equation.
Reduction and Antireduction.

Antireduction of the nonlinear acoustics equation.
Antireduction of the equation for short waves in gas dynamics.
Antireduction of nonlinear heat equation.

Nonlocal symmetry, new relativity principles.

Non-Lie symmetry of the Schrédinger equation.

Time is absolute in relativistic physics.

New equations of motions.

High-order parabolic equation in Quantum Mechanics.
Nonlinear generalization of the Maxwell equations.

Equations for fields with the spin 1/2.

How to extend symmetry of on equation with arbitrary coefficients?

1 Classification of equations

Every field of science must begin from some classification. We have today a lot of
classifications of differential equations: parabolic, hyperbolic, elliptic, ultrahyperbolic

J. Nonlinear Math. Phys., 1995, V.2, N 3-4, P. 216-235.
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etc. I believe that it is most appropriate for our Conference to divide all equations of

mathematics into two classes: B and B
// Newton
Eikonal

Hamilton

Euler

Heat

Monge-Ampere
| _— Born-Infeld

+—1— d’Alembert
\\

Maxwell
Navier-Stokes

Korteweg-de Vries

Boussinesq
/ Schrodinger
Dirac
/ Yang-Mills
72N

It is seen from the adduced picture that all fundamental equations of mathemati-
cal physics are united into one class B. From the point of view of existing now
classifications they belong to essentially different classes. Equations from the class B
have wide symmetry, and by this feature they are substantially different from other
equations of mathematics.

It is important to point out that there are close relations among these different
equations, which have not been investigated yet till now. For example, if we know
solutions of the heat equation, we can construct solutions for the wave (d’Alembert)
equation. By means of solutions of the Dirac equation, solutions of the Maxwell, heat,
Yang—Mills, and other equations [18] can be obtained.

2 Ansatz reduction of PDE without using symmetry

Let us consider a PDE
L(z,u,uqy, u2), .- umy) =0,
u=u(x), = (00,21,...,%n), u@)= (Uo,Us,U2,...,U), Uy

9%u

u(2) = (U007U01, .. 7unn); uul/ = 8$#81'V .
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Depending on the explicit form of L, equation (2.1) can belong to B or B. In
mathematical physics we often come across equations of the following type:

Lu = 0u — F(x,u,u() = 0. (2.2)

What can we say today about solutions of equations (2.1), (2.2)? The answer is
trivial: Nothing.

I equation (2.2) belongs to the class B and is invariant with respect to the Poincaré
group P(1,n), that is, a nonlinear function F'(z,w,u)) has the special form

ou 8u>

w, 28 9t
" Ox,, Ozt

F(z,u,upy) = F ( (2.3)

then for equation (2.2) we can construct some classes of exact solutions, study Pain-
levé properties, construct approximate solutions, study asymptotic properties, etc.

Definition 1. (W. Fushchych, 1981, 1983 [1, 2, 3]) We shall call a formula

u= f(z)p(w) + g(z), (2.4)
an ansatz for equation (2.2) if after substitution of (2.4) we get an equation for the
function ¢(w) which depends only on new variables w = (wi,ws,...,w,—1), Where

f(z), g(z) are given functions.

If (2.4) is an ansatz for (2.2), then the latter is reduced (the number of independent
variables decreases by one) to an equation for the function p(w).

Thus the problem of reduction of an equation reduces to description of three
functions (f(z),g(z),w) which leads to an equation for ¢(w) with less number of
variables.

We can display schematically the process of reduction for an 4-dimensional equati-
on in the following way:

Basic Equations

4 Dim 4 Dim
E3 ES
3 Dim { } 3 Dim
EQ E2
2 Dim { } 2 Dim
E1 El

lDim{ - - }lDim

ODE
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Ej3 is a set of three-dimensional equations, E5 is a set of two-dimensional equations,
E is a set of one-dimensional equations with the following inclusion E3 C Es C Ej.
That is, from one principal equation we obtain the whole set of ODE. Having
solved the ODE, we find exact solutions of a multidimensional equation.
Description of ansatzes of the form (2.4) for the nonlinear wave equation is an
extremely difficult nonlinear problem. In the simplest case, when we put f(z) = 1,
g(x) = 0 for the nonlinear Poincaré-invariant d’Alembert equation

Ou = F(u), (2.5)

the problem of reduction of (2.5) to ODE reduces to construction of solutions for the
following overdetermined system for w (Fushchych W., Serov M. 1983 [3])

Ow = Fy(w),

Ow Ow 0w\ ? 0w\ ? 0w\ ? ow \ 2 (2.6)
ZL () () o (E) - () =RWw).

Ox,, OxH 0xg 0x1 0xo oxy,

If w is a solution of the system (2.6), then the multidimensional equation (2.5) reduces
to ODE with variable coefficients

az(w)P(w) + a1 (w)p(w) + ao(W)p(w) Fp) =0 2.7)

A solution of equation (2.5) has the form

w(zo, ... Tn) = (W), w=w(Tg,T1,...,Tn), (2.8)

@ is a solution of equation (2.7).

Compatibility and general solutions of system (2.6) are described in detail in
papers of Zhdanov, Revenko, Yehorchenko, Fushchych (1987-1993, [4-6]). As we
see, without using explicitly the symmetry of equation (2.5), we can reduce a multi-
dimensional wave equation to ODE. It is obvious that all ansatzes and solutions, which
are constructed on the basis of the classical method by Sophus Lie, can be obtained
within the framework of our approach. The subgroup analysis of the Poincaré group
P(1,n) (Patera J., Winternitz P., Zassenhaus H., 1975-1983, [7, 8] Fedorchuk V.,
Barannyk A., Barannyk L., Fushchych W., 1985-1991 [9-11]) gives only a part of
possible ansatzes.

Note 1. P. Clarkson and M. Kruskal (1989 [12]) implemented the approach suggested
by us in 1981-1983 [1, 2, 3] for the one-dimensional Boussinesq equation and const-
ructed in explicit form ansatzes and solutions which cannot be obtained within the
framework of the classical S. Lie method. In the literature, this approach is often
called the “direct method of reduction”. I believe that it would be more consistent and
correct to call this method of construction of PDE solutions a method of ansatzes.

3 Conditional symmetry

The Lie symmetry, as known, is a local symmetry of the whole set of solutions.
The Lie algorithm enables us to define the invariance algebra for an arbitrary given
equation and to construct ansatzes.
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The term and the concept “conditional symmetry” was introduced and developed
in our papers (1983-1993, [2, 3, 13-18]). This extremely simple concept has appeared
to be efficient and enabled us to discover a nature of many ansatzes which could not
be obtained within the framework of the Lie method.

Conditional symmetry is the symmetry of subsets of equation’s solutions. Knowing
conditional symmetry of an equation, we can construct non-Lie ansatzes and soluti-
ons. It is more difficult to study conditional symmetry of a given equation than to
study its classical Lie symmetry. The difficulty is related to the fact that to find
conditional symmetry of an equation, it is necessary to solve nonlinear determining
equations.

During recent years, there are intensive studies in this promising direction, and
today we can make following general conclusion:

Corollary 1. Principal nonlinear equations of mathematical physics have conditional
symmetry.

Let us denote by the symbol
Q=(Q1,Q2,...,Qr) (3.1)

some set of operators which does not belong to the invariance algebra (IA) of equation
2.1).

Definition 2. (Fushchych W., Nikitin A., Shtelen W. and Serov M., 1987 [13, 14, 18],
Fushchych W. and Tsyira 1. (1987 [15])). Equation (2.1) is said to be conditionally

invariant under the operators Q from (3.1), if there exists a supplementary condition
on the solutions of (3.1) of the form

Ly(x,u,uey, ... Um)) =0 (3.2)

such that (3.1) together with (3.2) is invariant under Q.
Thus, one has the following criterion of conditional invariance [13, 15, 18]

QsL = XL+ ALy, (3.3)
QsL1 = XL + \3Lq, (3.4)
where A\g, A1, A2, A3 are some differential expressions, Qs is the s-th prolongation by
Lie.
Definition 3. We shall say that an equation is @-conditionally invariant if the additi-

onal equation Ly = 0 is a quasilinear equation of the first order

Ll(xauvu(l)) = QU = 07 (35)

Q= Eulir, W)+l u) s 3.6)

with 7 being a smooth function.

Thus, the problem of finding the conditional symmetry of a equation reduces to the
solution of equations (3.3), (3.4). As a rule, the determining equations for calculating
&, and 7 are nonlinear equations.

As is known, in the classical approach ¢, n satisiy a linear system of differential
equations which, because of being overdetermined, can be solved.
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3.1 Conditional symmetry of the Maxwell equations

The first equation where we had noticed conditional symmetry was the Maxwell
subsystem [13]

OE - OH o
a =rot H, W = —rot F. (37)

It is possible to prove by means the standard Lie method that the maximal invari-
ance algebra of system (3.7) is an 8-dimensional extended Euclid algebra AE;(4) with
basis elements:

0
Pp =1 s Jab = TaPp — ToPa + Sy, D= xﬂpﬂ, (3.8)
Oz,

where S, are 6 x 6 matrices, which realize a reduced representation of the Lie algebra
of the group SU(2).

Thus, system (3.7) is not invariant with respect to the Lorentz transformations,
which are generated by operators

Joa = xoPa - xaP() + S()aa (39)

(Sab, Soa) are matrices which realize a finite-dimensional representation of the Lie
algebra of the Lorentz group S(1,3).

Theorem 1. (Fushchych W. and Nikitin A. 1983 [13]). System (3.7) is conditionally
invariant under the Lorentz boosts (3.9) if and only if the solutions of (3.7) satisfy
the conditions

divE =0, divH =0. (3.10)

Thus, system (3.7) only together with equations (3.10) is invariant under the Lorentz
group.

Note 2. 90 years ago H. Lorentz (1904, April 23), H. Poincaré (1905, June 5, July 23),
A. Einstein (1905, June 30) discovered the theorem about invariance of the full
Maxwell system (3.7), (3.10) with respect to rotations in the four-dimensional pseudo-
Euclidean space-time. This theorem is a mathematical formulation of the fundamental
Lorentz-Poincaré-Einstein principle of relativity.

3.2 Conditional symmetry of linear Schrodinger systems

Let us consider the multicomponent system of disconnected Schrédinger equations:

P2
SU = (po——a> v,.=0, r=1,2,...,n,
2m

d 9 (3.11)
= a = — i :17273a

Po Z_ax()’ b Zaxa a

@:(@1,@27...7\1/71), \I/:\IJ(x():Lthg,xg).

It is evident that every separate Schrédinger equation (3.11) is invariant with
respect to a scalar representation of the group Gz(1,3), a full Galilei group.
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Let us consider a problem of existence of nontrivial vector, spinor, tensor represen-
tations of the full Galilei group, which are realized on the set of solutions of system
(3.11).

We demand system (3.11) be invariant with respect to the following linear repre-
sentations of the algebra AG»(1,3)

B 7]
Ph=i—, P,=—i M =i
" owy T oy T
1
Ja = ZTaPb — TpPa + Sa7 Sa = §€¢leSbC’ (312)

Go = 2oPa — TaPo + Ao, D =2x0P) — 21, P + Ao,

1
A=ux¢9D — w%Po + imxi — XaZa,

where matrices S,, Ag, A\, satisfy the commutation relations [29]

[Saa Sb] = Zéabcsca [)\(u Ab} = 07 [)‘Oa Sa] = 07

3.13
P\aSb] = Z‘sachca [/\Oa )\a] =1Ag- ( )

Theorem 2 (Fushchych and Shtelen, 1983, [19]). System of equations (3.11) is condi-
tional invariant under representation AGy(1,3) (3.12) if

1
()\0 - gz - EA;CP,C) v =0, (3.14)
(AT + A5+ A3 =0. (3.15)

3.3 (@Q-conditional symmetry of Lorentz noninvariant nonlinear
wave equation

Let us consider the following wave equation (Fushchych and Tsyira 1987, [15])

Lu=0u+ F(xﬂlt) =0 (3.16)
- )\0 2 ou 2 )\1 2 ou 2
rep=-(3) (o) () () +
)\2 2 ou 2 )\5 2 ou 2
<(5) @) +(2) (&) - =0
Ay are arbitrary parameters.

Equation (3.16) is invariant only with respect to scale transformations and trans-
lations:

(3.17)

/ ! !
xuﬂxuzebmu, U— U :e%u, uU—u =u-+c,

b is a real parameter.
Let us consider a Lorentz-invariant ansatz

u=pWw), w=z,a"=a1}—2?— i 23 (3.18)
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This ansatz, despite the fact that (3.16) is not invariant with respect to the Lorentz
group, reduces equation (3.16) to ODE

P dp o (do)®
R ok ) = 1
wos 2 + A (dw) 0 (3.19)

whose solutions are given by the functions

A=2F = AT = A3 =G
(W) = 2(=A)Y2 tan "t w(=A%)"Y2 for — A2 >0,

w@):—@%*ﬂm{%%%;i%} for — A2 < 0.

What is the reason of such reduction? From the classical point of view, ansatz (3.18)
must not reduce the Lorentz non-invariant equation (3.16) to ODE.

The reason of all this is the fact that equation (3.16) is conditionally invariant with
respect to the Lorentz group.
Theorem 3 (Fushchych and Tsyfra, 1987 [15]). Equation (3.16), (3.17) is conditio-
nally invariant with respect to the Lorentz group if the [ollowing six conditions are
added:

0 0

Jou=0, J,=x2,— —x,—
pv ) nv “w v )
Oz, Oz,

w,v=20,1,2,3. (3.20)

Thus, equation (3.16) together with the additional condition (3.20) is invariant
with respect to the Lorentz group. The condition (3.20) picks out the subset from the
whole set of solutions which is invariant with respect to the Lorentz group.

3.4 Conditionally conformal symmetry
of the Poincaré-invariant d’Alembert equation

Let us consider the nonlinear d’Alembert equation with an additional condition

Ou+ F(u) =0, (3.21)
Oou Ou

Theorem 4 (Fushchych, Zhdanov, Serov 1989 [18]). Equation (3.21) is conditionally
invariant under the conformal group if

F=3\u+c)™!, (3.23)
Ju Ou

where \, ¢ are arbitrary constants. The operators of conformal symmetry are

0

K, =2x,D — (xqx® — U2)8—#’
x

1=0,1,2,3 (3.25)
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0 0
= /’L—
D=x pyn + Uge (3.26)

Remark 3. Formulae (3.25), (3.26) give a nonlinear representation for the conformal
algebra AC(1,3).

An ansatz for the system
Ou=u"", Oudtu=1 (3.27)
has the form (Fushchych and Zhdanov, 1989 [4])
u® = (au2” + g1)* = (bu" + g2)?, (3.28)

where g1 = ¢1(0,2"), g2 = g2(8,2") are arbitrary smooth functions, a,, b,, 6, are
arbitrary complex parameters satisfying the condition

agat = =b,b =1, a, b =a,0" =0,0"=0,0"=0.

Remark 5. The problem of compatibility and construction of solutions of the d’Alem-
bert-Hamilton system are considered in detail in [5, 6].

3.5 Conditional symmetry of the nonlinear heat equation

Let us consider the equation
uo + V[f(u)Vu] =0, f(u) # const. (3.29)

Ovsyannikov L. (1962, [20]) carried out the complete classification of the one-
dimensional equation (3.29). Dorodnitsyn A., Knyaseva Z., Svirshchevskii S. (1983,
[21]) carried out group classification of the three-dimensional equation (3.29) From
the analysis of these results it follows.

Conclusion 1. (Fushchych 1983 [2]). Among equations of the class (3.29), there are
no nonlinear equations invariant with respect to Galilei transformations which are
generated by the operators

0

Go = 2004 + M(u)xa%,

(3.30)

M (u) is constant.

Theorem 5 (Fushchych, Serov, Chopyk 1988 [16]). The equation (3.29) is conditional
invariant under the Galilean operators (3.30) if

(Vu)? _
w0+ 5310 = % (3.31)
u

Conclusion 2. The nonlinear equation (3.29) with the additional condition (3.31) is
compatible with the Galilei relativity principle.
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Conclusion 3. If

fu) = ﬁuk, M(u) = k:nj 2u1_k, (3.33)
flu) = e, M(u) =1, (3.34)

where m, k are arbitrary constants, kn+2 # 0, then equation (3.29) is conditionally
invariant with respect to Galilei transformations.

Q-conditional symmetry of the one-dimensional equation
Ug — U1 = F(U)

was studied in detail (Fushchych and Serov, 1990, [22, 23]). Recently these results
were obtained by Clarkson P. and Mansfield E. (1994, [24]).

4 Reduction and antireduction

Under the term “reduction-antireduction”, we understand a decreasing of dimension
of an equation with respect to independent variables and increasing (antireduction)
by the number of dependent variables. That is we have simultaneously the process of
reduction (by the number of independent variables) and antireduction (increasing the
number of reduced systems with respect to the original equation) [25].

In the classical Lie approach as a rule the number of components of dependent
variables for reduced systems does not increase.

Example 1. Let us consider the nonlinear acoustics equation (Khokhlov—Zabolotskaja
equation)
uor — (uru)1 — ugz — uzz = 0, (4.1)
u=u(xy,x2,x3).

The ansatz (Fushchych and Myronyuk, 1991 [26])

1 1
u = gzlw(l)(wo,wz,ws) + 6$%<,0(2) (wo,wz,ws) + 90(3) (Wo,wz,ws), (4.2)

Wo = Zo, W2 =1=T2, W=I3

antireduces four-dimensional equation (4.1) to the system of coupled three-dimensional
equations for functions ™), () )
2, (1 2, (2
R a‘ﬂ():((p(z))Q
Ow3 w3 ’
2 921 G B <p(1)
Ow? ow3 Owg
2B 92pB) 1o @ lﬁga(l) 1

1 Liomyz g
Ow3 Ow? 37 7 3 duwo +9(¢ ) '

¢(2) =0, (4.3)

The formula (4.2) gives a non-Lie ansatz for equation (4.1).
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Example 2. Let us consider the equation for short waves in gas dynamics

2ugr — 2(221 + uy)urr + uge + 2 uy =0,

4.4
u=u(xg =t,x1,22). (44

The ansatz (Fushchych and Repeta 1991, [27])
u= xl‘P(l)(wmm) + 1’%90(2)(0)07%) + 32 B + oW, (4.5)

wo = To, W2 = T2

antireduces one three-dimensional scalar equation (4.4) to a system of two-dimensio-
nal equations for four functions

2,,(1) 2,,(2)
o =0, Lo TPy
Ow3 8w2 46
2,4 (€] (4.6)
0 (2 9 (1) 2 8<p
=7 @) D4 5=
Ow3 4 dwo

4.1 Antireduction and ansatzes for the nonlinear heat equation

Let us consider the nonlinear one-dimensional heat equation

ou 0 ou

E:%{()a }"’F() 4.7)
u 2u

! (4.8)

We consider an implicit ansatz

h(t, T, U, <,0(1)(u))7 @(2) (w)..., <p(N) (w)) =0, (4.9)

which reduces the two-dimensional equation (4.7) to the system of ODE for functi-
ons M ... o) We have constructed a quite long list of ansatzes which reduce
equation (4.7) to the system of ODE (Zhdanov R. and Fushchych W. 1994, [33]).

Example 3. If in (4.7)

a(u) = "2, F(u) = Au+ Au®?, (4.10)
then the ansatz [33] is as follows

w2 = o0 (1) + 6 (D + ¢ (Da? + oD (1), (.11)

. . 2 3 3
e = 22pM () — g)\((p@))? _ ,)\130(1) _ ,)\2,

5 ,\4p<2>¢(s> A /\190
3 (4.12)
o) = —gz\(w(B )% + 22p@ p*) — §A1<p

. 3
80(4) — _5/\14)0(4)
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Having solved the system of ODE (4.12), by formula (4.11) we construct exact soluti-

ons of the equation (4.7).
Example 4. If in (4.8)

={a+Bnu—~+*(Inu)’}u,
then the ansatz
Inu = M (t) + 7@ (1)
reduces (4.8) to the system of ODE

P =2+ Bl — 2 ()2,

(4.13)

(4.14)

(4.15)

It is possible to construct solutions of system (4.15) in the explicit form. Depending
on the sign of the quantity d = 3% + 4ay? we get the following solutions of the

nonlinear equation (4.8), (4.13).

Case4.1d>0

d/?t
u==c <CO§ 5 )

Case 4.2 d <0

-2

—2

d|V /% 1 dIt/2¢
u—c<ch| |2 > eXp(7$+72t)+W<ﬂ+|d|1/2th—| |2 )

Case4.3d=0

u=ct ?exp (yz +7*t) + (6t + 2).

2y 242t
Example 5. If in (4.7)

a(u) = P, F(u) = M\u+ dou' ™,
then the ansatz

W = oD (1) + o (0 + o9 (022
antireduces (4.7) to the system of ODE

oM = 2XpM B 4 AL~ (@)2 + kX,
o) = 20(1 + 2]@:—1)@(2)@(3) + kXp®),
¢ = 2X(1 4+ 2671 ()2 + kX p®.

d/?t
exp(’ya:+72t) 27 (ﬂ d1/2t 5 )

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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5 Non-Lie symmetry, new relativity principles

5.1 Non-Lie symmetry Schrodinger equation
Let us consider the Schrodinger equation
0 pl o
<28xo — 271) u(zo, &) = 0. (5.1)
It is well known that the maximal (in the Lie sense) invariance algebra (5.1) is

the full Galilei algebra AG2(1,3) = (Py, Pa, Jap, Ga, D, A)

0 0
Py=i—, P,=—i—1, a=12,3,
0 ! 8930 ’ Zal’o @
Jab = TaPb — ToPa, Ga = ToPa — MTa, (5.2)
1
D =2x0Py — xp Py, A=ux0D — x%PO + imxi
Operators G, generate the standard Galilei transformations:

t =t =exp{iGuv,}texp{—iGav,} = t, (5.3)

T — 1, = exp {iGpvp } T4 exp {—iGeve} = To + vt (5.4)
Let us put the following question: do symmetries which are not reduced for the
algebra (5.2) exhaust for equation (5.1)?

Answer: The Schrédinger equation (5.1) has additional symmetries (supersymmetries,
non-Lie, nonlocal) which are not reduced to the Galilei algebra AGo(1,3) [29].
One of results in this direction is the following:

Theorem 6. (Fushchych and Seheda 1977 [28]). The Schrédinger equation (5.1) is
invariant with respect to the Lorentz algebra AL(1,3)

Jab = TaqPb — ThPa> (55)
1
Joa = 5—(pGa+Gap), p=(p} +5+3)"% = (—14)"2. (5.6)

It is not difficult to check that the operators (Jup, JJo.) = AL(1,3) satisly the
commutation relations

[Jab7 JOC} = Z'(gowaO - gcha0)7 [JOa; JOb} = _iJab~

It is important to point out that Jy, are integral-differential symmetry operators and
generate nonlocal transformations

xq — 2l = exp {iJp Vi } T4 exp {—iJo.V.} # Galilei transform. (5.4), (5.7)
t —t' =exp{iJoaVa}texp {—iJopVi} = t. (5.8)

Hence the operators Jy, (5.6) generate new transformations which do not coincide
with the known Galilei and Lorentz transformation. Thus we have new relativity
principle. It is defined by formulae (5.7), (5.8).
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5.2 Time is absolute in relativistic physics

The four-component Dirac equation lies in the foundation of the modern quantum
mechanics

’Y;tp'ull’ = m‘l’(x07$1,$2,x3). (59)

Here ~y,, are 4 x 4 Dirac matrices.
Since the time of discovery of this equation it is known that (5.9) is invariant with
respect to the Poincaré algebra AP(1,3) = (P,, J.,) with the basis elements

.0
Fu= Cn

i
J,L(l.:}/) =TuPy — TPy + S,Lw, S;w = Z(’Y#’Yu - ")/y’}/ﬂ). (510)
Operators J,S,l,) generate the standard Lorentz transformations

t—t =exp {iJéi)Ua} texp {—iJopup}, (5.11)

Ty — T, = exp {iJé;)vb} Tq exp {—iJocve} - (5.12)

Hence, the fundamental statement follows that time ¢t € T'(1) and space Z € R(3) are
the single pseudo-Euclidean space-time with the metric

s =ak — 2t — a3 — a3 (5.13)
Let us put another question: Do there exist symmetries in equation (5.10) which

cannot be reduced to the algebra AP(1,3) (5.11)?

Answer: The Dirac equation (5.9) has a wide additional symmetry (supersymmetry,
non-Lie symmetry) which cannot be reduced to the algebra AP(1,3) (5.10) [13, 29].
I shall say here briefly about one of such symmetries.

Theorem 7. (Fushchych 1971, 1974 [30, 31]. The Dirac equation (5.9) is invariant
with respect to the following representation of the Poincaré algebra

P? = H = yovapa +7om, P = —i ai , a=1,23, (5.14)
1
J(Ei) = TaPb — ToPa + Saba Sab = Z(’ya’yb - ’Yb'ya); (515)
1
J(gi) = ZoPa — 5(xaH + Hl’a). (516)

Thus we have two different representations of the Poincaré algebra AP(1,3) (5.10)
and (5.14)-(5.16).
The representation (5.15) and (5.16) generates nonlocal transformations

Ty — Tl = exp{iJéi)vb}xa exp{iJ{?v.} # Lorentz transform, (5.17)
t—t = exp{iJég)vb}t exp{—iJé?Uc} =t. (5.18)

Thus, time does not change in relativistic physics. Time is absolute in relativistic
physics.



352 W.I. Fushchych

There are two nonequivalent possibilities (duality) for transformations of coordi-
nates and time: Lorentz transformation (5.11), (5.12) and non-Lorentz transformation
(5.17), (5.18).

The Maxwell and Klein—-Gordon-Fock equations are also invariant under nonlocal
transformations (5.17), (5.18) when time does not change. However energy and
momentum are transformed by the Lorentz law [31,32]. We have new relativity prin-
ciple (5.17), (5.18).

What is the reason of such a paradoxical statement? The reason is that the
operators Jéi) are non-Lie symmetry operators and the standard relation (S. Lie’s
theorems) between Lie groups and Lie algebras is broken.

So, physics is not equivalent to geometry and geometry is not physics. Physics is
Nature. Theoretical Physics is only a Model of Nature!

6 On some new motion equations

Some new motion equations are adduced in this section. These equations are generali-
zations of known classical equations. Symmetry of these equations has not been
investigated.

6.1 High order parabolic equation in quantum mechanics

The Schrodinger equation (5.1) is not the only equation compatible with the Galilei
relativity principle. A more general equation was suggested in [1, 2]

(A1S + X282 + -+ + X\, S™)u = Au,
2 (6.1)
S=po— 2o, §2=5.5 S"=5""15,
2m
A, A1, Ag, ..., A, are arbitrary parameters. Equation (6.1) as well as the classical
equation (5.1) is invariant with respect to the Galilei transformations but it is not
invariant with respect to scale and projective transformations.
A new equation for two particles (waves):

1
2
Pou1r = paul+‘/i(tax17x27'"a$67u17u2)7
2m1
L,
Potie = 5Pt 3U2 + Va(t, 21, @2, ..., 26, u1, uz),
2

Uy = ul(t,ﬂfl,xg,l‘g), Uy = uQ(t,x4,x5,x6), 1% and Vy are potentials.

6.2 Nonlinear generalization of Maxwell equations

Ii we assume that the light velocity is not constant [34], we can suggest some
generalizations of the Maxwell equations

%—? = rot {c(E?, H?, EH)H}, == = —rot{c(E? H? EH)E},

div {a(E?, H?, EH)E} = 0, div {b(E?, H*, EH)H} = 0,

(6.2)
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where a, b and ¢ are some functions of electromagnetic field;

E —, — — = = - 5 —, — — — — —
OF _ ot {¢(B* D* BD)B} +3j, 9D _ ot {c(E* H? EH)E} + 7,

ot or 9t (6.3)
OH 52 152 BRA 0B P2 172 B
rTe —rot {c¢(B*, D*, BD)D}, 5= —rot{c(E*, H*, FH)E},
MD + \0D = Fy(E? H? EH)E + Fy(E? H*>,EH)H, 6.4)
AsB + M\0OB = Ry (E%, H?, EH)E + Ry(E?, H2, EH)H, '
divD = p, divB =0, (6.5)

where Fi, Iy, Ry, Rs are functions of fields E and H, ¢ in equations (6.2), (6.3) can
be a function of (¢,Z), ¢ = ¢(t,Z), or depend on the gravity potential V, ¢ = C(V).
Nonlinear wave equations for £ and H have form

257 2 fj

%g‘gAE:& %g‘gﬁH:a (6.6)
or

92E S 0?H -

o2 (*E) =0, a2 A(*H) = 0; (6.7)
or

2 (1N - 2 (1

g () ~aF =0 g5 (f) -an=o o

with one of the conditions

(%) « (&)

1
2 —
2 (rot H)? + (rot E)?

c =

(6.9)

or
ac? oc?

or
802

cur— = NE*H? EH)F,p¢°, (6.11)
Oz,

Co is the four-velocity of the light (electromagnetic field), ¢ = c,c®.
Equations of hydrodynamical type for electromagnetic field have form

Vx (@x B} +b2 {V x @x M)}, (6.12)
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C is the three-velocity of the light, where a1, as, b1, b2, R1, R are functions of EQ,
H? EH.

Maxwell’s equations in a moving frame with the velocity can be generalized in
such forms

OF OF . OH OH
— + MU= + Aarot H = A3Up —— + A\grot B =
ot + AUk D —+ A2 1O 0, 8t + 3Uk8 o —+ Ay T0 0,
or
OF OH OH OF
A Ao rot H = — 4+ A Arot B =
o + 1v;€8 + A2 10 0, En + A3vg D + A4r0 0,

with the conditions %% + v G2 =

6.3 Equations for fields with the spin 1/2

Fields with the spin 1/2 are described, as a rule, by first-order equations, by the Dirac
equation. However, such fields can be also described by second-order equations. Some
of such equations are adduced below:

pup'V = FL(§p)V, gy ph ¥ = B(0); (6.13)
a0 = Ri(P)¥, (7, 0)p'T = Fo(¢e))¥; (6.14)
a0 = Fi() ¥, (43, 9)(ph¥) = F3(Py); (6.15)
PupV A+ Xy p U = F () ¥ (6.16)

PV = FL () ¥,  po¥ = {(¥70P) (WYyep)pr + mUyo U0,

6.4 How to extend symmetry of an equation
with arbitrary coefficients?

Let us consider the a second-order equation

0?u ou
w0 g O

Equation (6.17) with arbitrary fixed coefficients has only a trivial symmetry (x —
' =z, u — v = u). However, if we do not fix coefficient functions a,, (z),b,(x),
such an equation can have wide symmetry. E.g., il a,,, b, satisly the equations

ou Ou

+ F(u) = 0. (6.17)

O = — )
[ axu 8$V Fl (’LL) (6 18)
or
ou 0%u
Db - FQ( )6l' ’ Da’,ul’ = 8.13 ax FB(u)a (619)
I nOTy

then the nonlinear system (6.17), (6.18), (6.19) is invariant with respect to the Poin-
caré group P(1,3). Let us emphasize that here even if we put F; = 0, F; = 0,
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equations (6.17), (6.18), (6.19) are a nonlinear system of equations. With some parti-
cular functions F; and F, it is possible to construct ansatzes which reduce system
(6.17), (6.18), (6.19) to the system of ordinary differential equations.

So, considering (6.17) as a nonlinear equation with additional conditions for a,,,,
b,, we can construct the exact solution for eqation (6.17). The adduced idea about
extension of the symmetry of (6.17) can be used for construction of exact solutions
for motion equations in gravity theory.

The second example of equations which have wide symmetry is

02 Fg
’UH’UVW = 07 (620)
ov,
Vnpn = 0. (6.21)

If in (6.20) v, are fixed functions the equation, as a rule, has trivial symmetry.
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Galilei invariant nonlinear Schrodinger type

equations and their exact solutions

W.I. FUSHCHYCH

In this paper we describe wide classes of nonlinear Schrédinger-type PDEs which are
invariant under the Galilei group and its generalizations. We construct sets of ansatzes
for Galilei invariant equations, and exact classes solutions are found for some nonlinear

Schrddinger equations.

1. Introduction
Let us consider the following nonlinear equations

L1(¢7¢*) =SV _Fl(x?¢aw*)a
v 0 ;]

S = -, =1 = —1
Po 2m Po 8%0’ Pa araa

a=1,2,3,

" o 0%
Lo = potp + gap(wo, T, 10,0 )m

(G
U = Y(xo, 21, 22,23), Xo =1, le(x):{ai/]}’ ?*:{61/)*}’

where I, Fy, gqp are some smooth functions,

L3¢ = S¢—F3(¢7¢*7¢7¢*7¢71/J*)7
1 1 2 2

_ [ IO
f(m) - {(%caaxb } ’ 15 (z) = {&vac‘%cb } '

In the present paper we consider the following problems.

1)

Problem 1. Describe all nonlinear equations (1), (2) which are invariant with respect

to the Galilei group and its various generalizations.

Problem 2. Study the conditional symmetry of equation (1).

Problem 3. Construct classes of exact solutions for Galilei invariant equations.

The results of this talk have been obtained in collaboration with R. Cherniha,

V. Chopyk and M. Serov.

2. Galilei invariant quazilinear equations
Theorem 1 [1]. There are only three types of equations of the form (1)

S = AF([¢])v,

(©)

In Proceedings of the International Symposium on Mathematical Physics “Nonlinear, Deformed
and Irreversible Quantum Systems” (15-19 August, 1994, Clausthal, Germany), Editors H.-D. Doebner,
V.K. Dobrev and P. Nattermann, Singapore — New Jersey — London — Hong Kong, World Scientific, 1995,

P. 214-222.
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S =Ny[*, keR, (4)
S¢ =AY, n=1,2,3..., (5)
which are invariant, correspondingly, with respect to the following algebras:

AG(I,”):<P0,Pa,Jab,Ga,Q>7 a:1727"'7n?

0 0
Po=il =py, Puo=—io =pa,
0 Z@xo Po, Z@xa p (6)

a0
Jap = TaPb — ThPas Ga = ZT0oPa — mxan Q =1 (¢% - w a,l/}*) ;

AG(1,n) = (AG(1,n), D),

D = 220p0 — zupe — kI, KER, [=p +yr2 . (7)
= 2Z0Po aPa s y = o9 aw*7

AG(1,n) = (AG1(1,n),1I),

m n 8
II= I%po + XoxePo + 5932@ + 5330]7 ( )

A is arbitrary parameter, n is the number of space variables.

Note 1. If we put ¥ = 0 in (1) we obtain the standard linear Schrodinger equation
and its maximal invariance algebra is AG2(1,n).

Corollary 1. There is only one nonlinear equation in the class of Schrodinger equa-
tions (1)
pg _ 4/n
(o= 22) 0 = rtptirmo ©)
m

which has the same symmetry as the linear Schrbdinger equation.

Let us answer the following question: whether there exist other equations in
the class (1) invariant under the Galilei algebra AG(1,n) but not invariant under
operators D and II (7), (8).

The following theorem answers this question.

Theorem 2 [2]. There is only one equation of the form (1)

2
(=22 ) 0= amu)e, A=n+ix (10)
m

which is invariant with respect to the following algebras:
AG5(1,n) = (AG(1,n),B1), M #0, X =0, B;=1I-2\2Q;
AG4(2,n) = (AG(1,n), Ba), A3 #0, Bz =exp(2hao)(I +iMA; Q).
Note 2. The maximal invariance algebra of equation (10) with logarithmic nonlinearity
contains operators not admitted by the linear equation (1).
Corollary 2. Operators By, By generate the following transformations for i:
Y — " =exp{(1l — 2i\x0)01}¢  for Ay =0,
¥ — P = exp{fa[2z0A2(1 — iMA; )}, Ag #0,
Y — P =exp{fzexp(2\1z0) ¥, A1 #0, Ao #0,

where 01, 6, 03 are group parameters.
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The following equation is widely used for description of dissipative systems

0 = LA i)+ Fa( (1

Equation (11) is usually called the phase Schrédinger equation or the Schrédinger—
Langevin equation [4].

The main difference of equation (11) from equations (3), (4), (5), (10), (11) is that it
is not invariant with respect to the Galilei transformations. This equation does not the
standard Galilei relativity principle. However equation (11) has interesting symmetry
properties.

Theorem 3 [2]. The maximal invariance algebra of equation (11) is a 11-dimensional
Lie algebra

A= <P07Pa7 Javaz(zl)7Q>7

G = exp(2sa) (pa+ B'nn ) Q. Q1 = exp(200)C

Corollary 3. Operators el generate the transformations
To — TH = To, Tq — T = T4+ exp{28z0}0,, (12)
Y — 1) = exp{i[Bm exp(4820)0 + exp(2B20)r404)}, (13)

where 6% = 0,0,, 0, are group parameters.

So operators G((zl) as distinguished from the Galilei operators, generate nonlinear
transformations (12). In the first approximation by 8 (12) coincides with the Galilei
transformations. It is known that the Galilei transformations are of the form

/ /
To — Ty =T, Tg — Ty = Tq+ Toba,

P — ) =exp {im (55—}— %(g)zxo) } (). (14)
3. Galilei invariant nonlinear equations
with first order derivatives
Let us consider equations
S1/J:F(xﬂ/m/)*ﬂfﬂf*)- (15)

Theorem 4 [5]. There exist four classes of equations of the form (15) which are
invariant with respect to Galilei algebras:

AGi(L,n) . Sy = Fi(j9], (VIv))?)e; (16)
AGi(1,n) 0 S = [~ F By (|2 E (V)2 (17)
St = (VIe])? F3(|4]); (18)

AGo(1,n) 0 S = [Y|Y"Fy(|y| 72" (V])?). (19)
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Let us adduce some simplest Ga(1,3) invariant equations:

Stp = Ap|*/34p, (20)
201101y
Stp = Al mlﬁ- (21)

4. Conditional symmetry of the nonlinear Schrodinger equation
Let us consider some nonlinear differential equation of s-th order:

L(m,u),%},qé), 1) =0, (22)

1 designates the set of all s-th order derivatives.

Let us assume that equation (22) is invariant with respect to a certain Lie algebra
A=(Xy,Xs,...,X,), where X}, are basis vectors of the algebra A.
This means that the following conditions must be satisfied:

X.L = RL, (23)

where Xj, is the s-th prolongation of the operator X; € A, R = R(x,,1,...) is some
s 1

differential expression.
Let us consider a set of operators which do not belong to the invariance algebra
of equation (22)

Y:<Y17}/2a~"7}/;“>7 YkeA

Definition 1 [6, 7]. We shall say that equation (22) is conditionally invariant with
respect to the operators Y if there exists an additional condition

El(l‘vwv?v"'))zo (24)

on solutions of equation (22), such that equation (22) together with (24) is invariant
with respect to the set of operators Y. This means that the following conditions are
satisfied:

YiL = RoL + RiLy, YiL = RoL + R3L4,

where Ry, R1, Ra, R3 are some smooth functions, Yy is the s-th Lie prolongation of
the operator Y, € Y.

[t is evident that Definition 1 makes sense only if system (23), (24) is compatible.

The notion of conditional symmetry has turned out extremely efficient, and during
recent years it was established that d’Alembert, Schrodinger, Maxwell, heat, Boussi-
nesq equations possess nontrivial conditional symmetry. The problem of detailed
description of conditional symmetry for principal equations of mathematical physi-
cs remains open [6, 7].

Theorem 5 [2, 8]. Equation

p2
(mo-22) 0 = Pl (25)
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is conditionally invariant with respect to the operator

0 0
Y = Zapa + 7 (w% o w*) — (Y1) HQ, (26)
if
F=a[y”  +asl| ™", r#0 (27)
IN’l(u> = A|T/)| - a3|,(/}|(7’—2)/’r‘ = 07 az = la2ma r,ay, a2 S R. (28)

2

Corollary 4. Operator (26) generates the following finite transformations

To — Ty =Tg, Tq— T, =expl-z,, (29)

b — ¥ = exp(r) exp{exp(20) } (v () )2y, (30)

0 is the group parameter.

Formula (30) gives nonlinear transformations for the function .

So equation (25), (27) together with (28) admits an additional operator Y (26).
Equation (25) with the nonlinearity (27) without the additional condition (28) is not
invariant with respect to the operator (26).

Having the additional symmetry operator (26) we can construct new ansatzes.

5. Reduction and exact solutions of nonlinear equations
Let us consider the simplest equations (1), (2) which are invariant with respect to
algebra AG(1, 3):

% = A+ A, 31)
P —20lY] 01|
i = —a+ 2SS, (32)

We shall search for the solutions in the form [7]

= ft,De(w), w=(w,ws,ws), w,=wg(t,T). (33)

Definition 2. We shall say that the formula (33) is an ansatz for equations (31), (32)
if functions f(z), w1, we, ws have such structure that four-dimensional equations are
reduced to three-dimensional ones for the function ¢(w). Equations obtained for ¢(w)
depend only on w.

The problem of reduction in the general formulation is an extremely difficult
problem and it requires explicit description of functions f(x), wi, ws, w3 which
satisfy a nonlinear system of equations. We do not think that it is possible now to
construct the general solution of these equations. But in case of an equation having
rich symmetry properties the problem of reduction and description of f(z) and w can
be partially reduced to an algebraic problem of description of inequivalent subalgebras
of this equation [7].
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By means of subalgebraic structure of the algebra AG5(1,3) we have constructed
quite a large list of ansatzes which reduce four-dimensional equations (31), (32) to
three-dimensional ones. I adduce some of them.

Ansatzes for equations (31), (32).

L (x) = exp ( fj) p(w), (34)

T2
wy =1, w2:$1+$%, wsg = x3 — tarctan —.
€

The reduced equation
2 2
i(a—‘p+i+w3 6@) — 4w, 0 <1+w ) s + Mgl (35)
2

8w1 2w1 w1 8w3 8w ow 2

1
2
2
2. p=t>+1)"exp i i + 2ccarctant
4\ 1+¢2

(36)
T L
V142 V142 \/l—i—t?
The reduced equation
P Pp ¢ (20— W) 4
B S A A S st S Y Y A 1y 37
ow?  ou? 81032) 4 @+ Alp[Ye ) (37)
where « is an arbitrary real parameter
. 2t tro —
L= (24 1) iYL Tl
3 1;0 ( + ) GXp 4 1 + t2 + ﬂ t2 + 1 arctan (p(w)a (38)
w *MJrﬁarctant w _ 2t wa = 8
1 — t2+1 ) 2 — t2+17 3 — t2+1
The reduced equation
. 0 0 0 1
i g2 +w1—¢ 7’11}27@ =Ap+ - (2611)2 + W) + M| 3. (39)
own Owo owy

Having investigated symmetry of reduced equations which depend on three vari-
ables and then of ones depending on two variables we come finally to ordinary di-
fferential equations of the form

d? d
A(w) ZE + B(w) ZE + Clw)e + Mgl =0, (40)
where A(w), B(w), C(w) are second degree polynomials.

Having solved equations (40) we construct exact solutions of the four-dimensional
nonlinear Schrodinger equations (31) by means of the formulae (34), (36), (38).

Solutions of equation (32) constructed by means of ansatzes (34), (36), (38).

. exp(iapt)
t = A>0 0;
1/}( ,fL‘) {\/—_’YCOS(af)}3/27 > ) Qo < 9
. exp(iapt)
t,T) = A :
VD) = =g 2% w0
~ exp(iaot)
t,T) = A :
'(/J( ,SE) {Hch( )}3/27 <07 a0>0a
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ay, are arbitrary real parameters and what is more @@ = a® = %|aol, v = 3\/5a0.

One can see that all obtained solutions depend non-analytically on the parameter A
(constant of interaction).

The obtained three-dimensional partial solutions can be used for construction of
multi-parameter families of exact solutions. Really, as equation (31) is invariant with
respect to 13-parameter group G(1,3), that means the following.

If 41 (¢, Z) is a solution of equation (31), then functions

. i (.. Tx o
Yo (t, T) = exp 3 U.Z‘+T P1(t, T + ot),

- (41)
i 072 + 207 + U3t 3/2 t Tt
Y3(t, L) = exp { } (L= 0t)7" " 1—0t'1—0t

4 1—-6t

are also solutions of the same equation. ¥, 6 are real parameters.

6. Galilei invariant nonlinear equations
with second order derivatives
Now we formulate one result about the equations (1’) which are invariant under
AG2(1,n) (for more details, see [9]).

Theorem 6 [9]. The equations

_ 10y 0y - o1 00 Oy
sw—Ao{Aw v () ¢[A¢ (4") 8xa8za]}+

i/ Csuss O] O]
Al + gl SEL S
9% 1 O0Y O D*P* o1 OY" OY*
X{rsaaxb—w g 0zy T Y [axaax -7 axa_H
LI "

Ay = AO(w)v A= Al(w)’ Ap = Az(w) w= O0xg Oxg | |

are invariant under AGy(1,n) algebra. Ay, A1, As are arbitrary smooth functions.
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On new exact solutions
of the multidimensional nonlinear
d’Alembert equation

W.I. FUSHCHYCH, A.F. BARANNYK, YU.D. MOSKALENKO

On the present paper new classes of exact solutions of the nonlinear d’Alembert
equation in the space Ry, n > 2,

Ou+ Muf =0 (1
are built. Here Ou = U0 —ULL—" "~ Unn, Upyy = %au = u(x), T = (1'0,1‘1, oo axn);
w,v =0,1,...,n. Symmetry properties of equation (1) have been studied in papers

[1, 2] in which it was established that equation (1) is invariant under the extended
Poincaré algebra AP(1,n):

Joa = x()aa + xaa(h Jap = xbaa - xaaba P[L = a,u,a
S =—2"0, + %(% (a,b=1,...,n; u=0,1,...,n).

Using the subgroup structure of the group P(1,2) in papers [1, 2] some classes
of exact solutions of equation (1) in the space Ry were built. The analogous results
in the space R; 3 were obtained in [3, 4]. The generalization of results for the n-
dimensional case was considered in [5, 6]. In order to find exact solutions, symmetry
ansatzes reducing equation (1) to ordinary differential equations were applied in above
mentioned papers.

In the present paper in order to build exact solutions of equation (1), symmetry
ansatzes reducing equation (1) to equations of two invariant variables are used. We are
interested in these ansatzes because a reduced equation often has additional symmet-
ries. This fact permits to apply these ansatzes for finding new solutions of the present
equation. Let us cite as an example the ansatz v = u(zg — xpn,21,...,2,—1) Which
was considered in [6]. The corresponding reduced equation has the infinite group of
invariance. Note that this ansatz is built by one-dimensional subalgebra (Py + P,,).

In the present paper the series of ansatzes of such a kind as u = u(wy,ws), where
W) =T — T, wo = 33 — 23 — -+ — a2, 2 < m < n, is considered. These ansatzes
are built by the subalgebras AE;[1,m — 1] @ AE[m + 1,n|, where AE;[1,m — 1] =
<G17 s aGmfl» J127 RS J’ITL*Q,’H7.71>7 AE[m + 17”] = <Pm+1a AR an JnL+1,m+Za )
Jn-1n)s Ga = Joa — Jam, a =1,...,m—1, and if m = n we think AE[m + 1,n] = 0.
The ansatz u = u(wy,ws) reduces equation (1) to the equation

dwiuys + dwotusg + 2(m + 1)UQ + Auf = 0. (2)

Let us investigate symmetry of the equation (2).

JHonosini HAH VYxpainu, 1995, Ne 2, P. 33-37.
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Theorem 1. The maximal algebra of invariance of equation (2) in the case of k # 0,
mtl and m > 1 in the Lie sense is the 4-dimensional Lie algebra A(4) which is
generated by such operators:

o 19 s, 2 1,9
20wy k—1 0u’ 2T 0w, k-1 ou’
0 0 m—1 0 (m—-1)(k-1)

M = - I = N A S
“1 (wl Oow, +w28w2 2 u8u> | 2
Theorem 2. The maximal algebra of invariance of equation (2) in the case of
k=t and m > 1 in the sense of Lie is the 4-dimensional Lie algebra B(4) which
is generated by such operators:

0
Xl:W1a—w1 + w

— 1.

0 0 -1 0
Szwllnwla—wl +w21nw18—w2—mT(lnw1+1)ua—u,
Z—wy O, 0 om0

LM 0w, 2 Dy 2 ou’
0 m—1 0
2 w28w2 2 u@u’ 3= Ows

Let us consider two cases.

1. The case k # 241, Classify one-dimensional subalgebras of the algebra A(4)
with respect to G-conjugation, where G = exp A(4). Ansatzes, built by these sub-
algebras, reduce the equation (2) to ordinary differential equations. Note that the
operators of the algebra A(4) satisfy the following commutation relations: [X, Xo] =
0, [X1,X3] =0, [X1,M]=1IM, [X3, X3] = —X3, [X2, M] =0, [X3,M] =0.
Theorem 3. Let K be one-dimensional subalgebra of the algebra A(4). Then K is
conjugated with one of the following algebras: 1) K; = (X1 + aXs); 2) Ko = (X5);
3) Kg = <X1 + OéX3> (Oé = :l:l), 4) K4 = <X3>,' 5) K5 <M+ OéX2> (OL = O,ﬂ:l),
6) Ko = (M + aX3) (a==+1).

The following ansatzes correspond to the subalgebras Kj-Kg of the theorem 3:

a+1
. R _ —a—1,
Ki: u=w"rpWw), w=uww]*
1
. I v
Ko: u=uw,y
= W
K;: u=w "pw), w=-—"—alnw;
w1

p(w), w=uwy

Ky: u=¢W), w=uws;

K u:(w%wQ)ﬁw(w), w:gwfl—i—lnﬂ;
l w1
+gw_l
w1 l L

1—m
Ke: u=w;? ow), w= 2

These ansatzes reduce equation (2) to ordinary differential equations with an
unknown function ¢(w):

A(l - ak
K : —4aw§b+4(k_0{ Vo agh =0
4w 41
Ky: — p— AF = 0;
20 TR Y T et =0

4]
K —4dap + m¢+>\<,0k =0;
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Ky AP =0;

4o
1
K¢: —dap+ A \pF =0.

Ks: —dop+ @+ A" =0;

The equation corresponding to the subalgebra K, in case a = 0 has the solution

o ME-1)?
1-k __
LT

In consequence we obtain the following solution of equation (1)

ok A= 1

(w4 CO).

1 (w2 4+ Cwy). 3)
If a= k2—+l1 then the equation corresponding to the subalgebra K; assumes
Slw 4l &
TEr1Y Rrn PO

The particular solution of this equation is

1k _ Ak=1)%

1 2
¥ T (w2 + C)%.
Therefore, equation (1) has the following solution:
ME—1)2 [ 1 S
L (wg +wa<’“+1>> . (4)

Ifa= IU“TH) then the equation corresponding to the subalgebra K; assumes
—2U(k + 1)@ — 2(k + 2)¢ + A" = 0.
This equation has the solution
o1k A(k —1)?

1 k—1 2
= —u (wi _|_Cw2(k+1)) .

Therefore, equation (1) has the following solution

Ak —1)2 N kD42 k-1 ) 2
ulk = ( = ) {w22 +Cw12(k+1) w;(kﬂ)} ) (5)

The equations corresponding to the subalgebras K5 and Kg have such solutions:

R Ak —1)2 Ak —1)2

— 1 l 1,]{;:
(140w, ¢ 8a(k+1)

2
o (w+CO)°.

Therefore, equation (1) has the following solutions:

2
ulh = %mu +Cuwl), (6)

utF Ak — 1)2 -1 (

= "7 wo + &1 + Cw1>2 . (7)
Sa(k+1) ! !

l
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2. The case k = +1. The basis elements of the algebra B(4) satisfy the following
commutation relations: [S, Z1] = —Z1, [S, Z2] =0, [S, Z3] =0, [Z1, Z2] =0, [Z1,Z3] =
0, [Z2, Z3] = —Z;.
Theorem 4. Let L be one-dimensional subalgebra of the algebra B(4). Then L is
conjugated with one of the following algebras: 1) L1 = (Z1 + aZ3) (o = 0,£1);
2) Ly = (Z3); 3) Ly = (Z1 + aZs) (o = £1); 4) Ly = (Z3); 5) Ls = (S + aZs);
6) Lg = (S + aZs) (a = =£1).

The following ansatzes correspond to the subalgebras L;—Lg of theorem 4:

Li: u=wy? pw), w:wgwfd_lg
1—m
Ly: u=wy? pw), w=uws;
e w)
Ly: v=w? pw), w=——alnw;
w1
Ly: u=¢w), w=uwr;
—m In®
L5: u:(wllna+1w1)12 @(w)7 CL):M,
wo
1-m w2
Le: u=(wilnw) 2 pw), w=-——aln(lnw).
w1

These ansatzes reduce equation (2) to ordinary differential equations with an

unknown function ¢(w):

Li: —4aw®3 + 2a(m — 3)wp + ApmT = 0;

Ly: —2(m—1Dwep+ /\go% =0;

Ly: —dap+ /\cpz_i = 0;

Lyt Mgt =0;

Ls: —4aw@+2((m — 3)a+m — 1)w’d + Apn 1 = 0;

Le: —dap—2(m—1)p+ )\Qp% =0.

The equation corresponding to the subalgebra Ly has the solution

2 A
1-m —m — —— 1 .
© (m_l)z(nw—i—C)

Therefore, the equation (2) has the following solution

> A
S T ©®

The equation corresponding to the subalgebra L has the particular solution

2

spl—m P

~dam(m —1) (w+C)*

Therefore, equation (2) has the following solution

2 A

ul—m

e _ 2
4am(m — 1)w1 (U.)Q awil lnw1 + C’wl) . (9)
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In the case of an equation corresponding to the subalgebra Ls o = 0 or @ = =2
(m # 3) we obtain the equations:
+1 4(1 —m)

2m — 1w+ Mgt =0, —— But g ATt =0,
m_

w

The solutions of these equation are:

o S N S
pTm = (m_l)z(w +0C), ¢ = (m_1)2w .
Hence equation (2) has the following solutions:
2 A
ul-m = —mlﬂ(dl(w2+cwl)7 (10)
Ulfm = —WWQ IHW1. (11)

Using the groups of invariance of equations (1) and (2) we can duplicate the
solutions (3)—(11). In consequence we obtain multiparametric exact solutions of equa-
tion (1). Write out these solutions for equation (1) in the space R; 3 using the following
notations: a = (ag,a1,az2,a3), b = (bo,b1,b2,b3), ¢ = (co,c1,¢2,¢3), Yyu = x, +
(p, = O, 1, 2,3), a-b= aobo - a1b1 - a2b2 - a3b3, e==1.

Ak —1)2

D w=olyy)tely)t), o=Fa— bb=0
2) ' = o[y u)(1+ <) A+ alb ) ML (b))
BEYUER Vi .
J—m, bb—O, OZGR,
8) ' = o ([ 91+ ] +alb-y) S ()= )
YRRV .
J—m, bb—O, OZGR,
4) w T =oeb-y) Py -y) +e(by) T a:%,hbzo;
k=3 - 2
5) u' P =olly-y)+(a-y)?l+ed-y) =], U=%,
a-a=-1, a-b=0, b-b=0;
6) a{ v+ )1t e(by) T+
Falb-y) (e T}
Ak -2 _ _ .
o= 2(]{:73 a-a=-1, a-b=0, b-b=0, «€R;
) W= {4 @) eb-y) T+
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2
0:)\2((127_;))’ a-a=-1, a-b=0, b-b=0, acR;
8)  ulE=oe(b-y) Ty y)+ (@ y)? +elby) T
Ak —1)2

= . :—1 . = . = M
o =3k +1) a-a , a-b=0, b-b=0;

A
9) wl=-Z(-yhb-y), b-b=0, k=2

1
_ Ae _
10) u 1=—ﬂ(b-y) Ny -y)—el-y)nb-y))*, b-b=0, k=2
11) w2 =-AIn(b-y)[(y-y) + (a-y),
a-a=-1, a-b=0, b-b=0, k=3

X

12

(b-y) y-y)+(a-y)*—eb-y)?
b
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Symmetry classification
of the one-dimensional second order equation
of hydrodynamical type

W.I. FUSHCHYCH, V.M. BOYKO

The paper contains a symmetry classification of the one-dimensional second order equa-
tion of hydrodynamical type L(Lu) + ALu = F(u), where L = 0; + ud,. Some classes
of exact solutions of this equation are pointed out.

In [1, 2] the following generalized Navier—Stokes equation

MLT+ M L(LT) = F (0%) 7+ M Vp, (1)

was proposed, where

9
+vli + A3\, 1=1,2,3,

L & (9561

7= (vh, v 0?), vl = !¢, &), p=p(t, &), V is the gradient, A is the Laplace operator,
A1, A2, A3, A4 are arbitrary real parameters, F'(¢2) is an arbitrary differentiable
function.

In the one-dimensional scalar case, when A3 = 0, Ay = 0, equation (1) has the
form

MLu+ Ao L(Lu) = F(u), (2)

where v = u(t,x), L = 0 + u0y.
In the case when A2 = 0 and F'(u) = 0, equation (2) is known to describe the
simple wave

u = p(r —tu), 3)
where ¢ is an arbitrary function. Formula (3) gives the general solution of the equation

Gu + u@ =0

ot ox

If Ay # 0, then equation (2) can be rewritten in the form
L(Lu) + ALu = F(u), X = const. (4)
Equation (4), in expanded form, is written as follows

Pu o Pu Oudu  (Ou\® 0% du _ Ou
ot " otor " otor " "\ox) T

Preprint LiTH-MAT-R-95-19, Department of Mathematics, Linkoping University, Sweden, 11 p.
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This equation with arbitrary F(u) is evidently invariant under the two-dimensional
algebra of translations that is determined by the operators

POZata Plzar (5)

In the present paper we carry out a symmetry classification of the equation (4),
i.e., we describe functions F(u), with which the equation (4) admits more extensive
Lie algebras than the two-dimensional algebra of translations (5).

Symmetry classification
Symmetry classification of (4) is performed on the base of the Lie algorithm [3,
4, 5] in the class of first-order differential operators

X =&t )0 + & (t,x,u)0; +n(t,z, 1), (6)
Remark. In cases 1.4, 2.3, 2.4 we assume that

o8 _ o _

ou ' Ou
It is obvious, that the cases A = 0 and A # 0 will be essentially different for the
investigation of symmetries of the equation (4). If A # 0, then one can always set
A = 1 (there exists a change of variables). For this reason we consider the cases

A =0 and A =1 separately.
I. Let us consider equation (4), when A =0, i.e., the equation

0.

L(Lu) = F(u). (7)

Symmetry classification of (7) leads to five distinct cases.

Case 1.1. F(u) is an arbitrary continuously differentiable function. The maximal
invariance algebra in this case is the two-dimensional algebra (5).

Case 1.2. F(u) = aexp (bu), a,b = const, a # 0, b # 0. Without loss of generality
we can put b =1 (there exists a change of variables). The maximal invariance algebra
of the equation

L(Lu) = aexp (u) (8)
is a three-dimensional algebra, whose basis elements are given by the operators
P():at, P1 :ar7 Y:t8t+(z72t)61728u (9)

The finite transformations which are generated by the operator Y in (9) have the
form:

t —t=texp(0),
x — & = (x — 20t)exp (0),
u— U =u-—26.

Hereafter 6 is a real group parameter of the corresponding Lie group.
We note that Y in (9) can be represented as the linear combination of the dilatation
and Galilei operators

Y = (0, + 20y) — 2(td, + ,) = D — 2G.
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The operators D and G commute, thus the transformations corresponding to Y can
be interpreted as a composition of dilatation and Galilei transformations, i.e., as
a composition of dilatation on ¢ and x with a change of inertial system. On the other
hand, the operators (9) form a subalgebra of extended Galilei algebra, although the
extended Galilei algebra is not the invariance algebra of the equation (8). The same
results are valid for other cases of equation (4).

Case 1.3. F(u) = a(u + b)?, a,b,p = const, a # 0, p # 0, p # 1. The maximal
invariance algebra of the equation

L(Lu) = a(u + b)? (10)
is a three-dimensional algebra, whose basis elements are given by the operators
PO = 8ta Pl = a:w
B p—3 2b 2 (11)
Rt6t+<p_1:c p—l) p_l(u+b)3u.

The operator R generates the following finite transformations:

t —t=texp(d),
T — & =zexp (p;‘;’e> — btexp (6),
u— U= (u—i—b)exp(——H) —b.

If b # 0, then R can be again represented as a linear combination of dilatation and
Galilei operators.
Case 1.4. F(u) = au+b, a,b = const, a # 0. In consequence of a change of

variables one can always set a =1 or a = —1. Let us consider these cases.
a) The invariance algebra of the equation
L(Lu)=u+b (12)

is a seven-dimensional algebra, whose basis elements are given by the operators
Py=20y, P =0,
Y1 = (x+0bt)0, + (u+b)0u,
Y5 = cosh t0, + sinhtd,,
Y3 = sinh td, + coshtd,,,
Yy = coshtd; + (x + bt) sinh 0, + ((x + bt) cosht 4 bsinh ¢)0,,,
Y5 = sinh td; + (x + bt) cosh td,, + ((x + bt) sinh ¢t + bcosh t)d,,.

(13)

The operators Y1-Y3 generate the following finite transformations (because the trans-
formations for Y, and Y5 are cumbersome we omit their explicit form):

Yi: t—t=t,
x — & = (x+ bt)exp(f) — bt,
u— 4= (u+b)exp() — b.

Y5 : t—>f=t
r — & =x+ 0cosht,
u — % = u+ fsinht.
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Ys: t—t=t,
r — & =x+ 0sinht,
u— U =u+ 60 cosht.

The operator Y; in (13) can be again represented as a linear combination of the
dilatation and Galilei operators.
b) The invariance algebra of the equation

L(Lu) =—u+b (14)
is a seven-dimensional algebra, whose basis elements are given by the operators

Py=0;, P =0,

Ry = (x — bt)0y, + (u — b)0y,

Ry = costd, — sintd,,

R3 = sintd, + costo,,

Ry = —costdy + (x — bt) sintd,, + ((x — bt) cost — bsint)d,,

Rs =sintdy + (v — bt) costdy — ((x — bt) sint + bcost)d,.

(15)

The operators R;-Rs3 generate the following finite transformations (because the
transformations for R4 and R5 are cumbersome we omit their explicit form):

Ry t—>f:t,
x — T = (x — bt)exp(d) + bt,
u— = (u—>b)exp(d) +b.

Ry: t—t=t,
r — & =x+ 0cost,
u— U =u—0sint.

R3: t—t=t,
r— T =ux+0sint,
U — U = u-+ 0cost.

The operator R; in (15) can be again represented as a linear combination of dilatation
and Galilei operators.

Case 1.5. F'(u) = a, a = const. In the case a # 0 (there exists a change of
variables) without loss of generality we can admit that @ = 1. Thus we consider the
cases a = 0 and a = 1 separately.

a) The maximal invariance algebra of the equation

L(Lu) =0 (16)
is a ten-dimensional algebra, whose basis elements are given by the operators

Py=0y, P1=0,,

G =10, + 0y, D=10+x0,, Di=2x0,+ ud,,

1 1 1
A1 = §t28t + tfﬁax + x@u, A2 = §t28m + tc‘?u, A3 = u@t + §U281, (17)
Ay = (tu — )0 + %tuQGz + %u23u,

A5 = (t2u — 2tl‘) 675 + (%t2u2 _ 21}2) 8$ + (tu2 _ 23,‘1,[,) 8u
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We note, that subalgebras (P, P1,G) and (A;, —A2,G) in the representation (17)
define two different representations of the Galilei algebra AG(1,1) [3].

The finite transformations which are generated by the operators (17) have the form
(because the transformations for A4 and As are cumbersome we omit their explicit
form):

G: t—t=t,
r— T =x+0t,
u—uU=u-+0.

D: t—t=texp(h),
x — & =xexp(h),

U — U = U.
Dy: t—t=t,
x — T = zexp(h),
u— = uexp()
- 2t
A t—t= ,
S T
4x
xr — = 3
(2 - 6t)
. n 20
u—U=u )
2 — 0t
Ay t—t=t,

r—IT=x+ %Gtz,
u— U =u-+0t.
As: t—t=t+0u,
rT—IT=xz+ %91;2,
u— U =u.
b) The maximal invariance algebra of the equation
L(Lu) =1 (18)
is a ten-dimensional algebra, whose basis elements are given by the operators
Py=0y, P =0, G=10;+ 0y,
By =t0; + 320, + 2ud,, By = <x — lIf?’) Oy + (u — l752> Ou,

6 2

_ Ly 1 1 1, (19)
By =t 8t+(tx+12t)8z+<z+3t>8u, Ay = 170, +10,,

1 1 1 1
B, = 42 T2 44 43
4 (u 2t )8t+<2u 8t >8$+<tu 2t )8u,
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1. 1 1 1
Bs = (tu—x— -3 —tu? — —t?z — —1t°) 0,
12 12 54
+<2u +2tu tx 24t)8u,
1 1 1 1
Bg = | t?u — 2ta — =t* ) 8 —t?u? —22% — 3z — —t5) 0,
6(“x6>t+2“x3x72 +

2 L3 2 L s
—|—<tu 2xu+3tu t°x 12t>8u.
The algebra, generated by the operators (19), includes again two different Galilei
algebras (Py, P1,G) and (Bs, —As, G) as subalgebras.
The finite transformations which are generated by the operators (19) have the
form (because the transformations for By, By and Bg are cumbersome we omit their
explicit form):

By: t—1t=texp(h),
x — I = xexp(30),
u — U = uexp(20).

By: t—t=t,

T—T= (gc — ét3> exp(6) + %t?’,
u— = (u - 1t2> exp(0) + 1152.
2 2
- 2t
Bg T t—=t= m,
. 12z —283 4¢3
=T = 7+ 3
3(2-6t)°  3(2-—6¢)
_ 21 120 — 2% 122 +13
o u=u (2 — 0t)° +3t(2—9t) 6t

II. Let us consider equation (4) for A # 0. As it was noticed above, we can set
A = 1. Symmetry classification gives in this case four principally distinct cases.

Case 2.1. F(u) is an arbitrary continuously differentiable function. The maximal
invariance algebra of the equation

L(Lu) + Lu = F(u), (20)

is the two-dimensional algebra (5).

Case 2.2. F(u) = au® — 24, a = const, a # 0. The maximal invariance algebra of

9
the equation
L(Lu) 4+ Lu = au® — gu (21)

is a three-dimensional algebra, whose basis elements are given by the operators

Py=0;, PL=0,, Z=exp (%t) (@ — %u8u> . (22)
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The operator Z generates the following finite transformations:

N 1 0
t—t=-31 —t) — =
(o (530)-5)

r—I=ux,

U 1 19 1t
— u = - — — .
Uu—u=u gexp (3
Case 2.3. F(u) = au + b, a,b = const, a # 0. The invariance algebra of the
equation

L(Lu)+ Lu=au+b (23)

is a five-dimensional algebra, whose basis elements are given by the operators
b b
Py=0;, Py=0,, le(x+at)8x+<u+a)aua

and two other operators depending on constant a have the form
a)a=—;

oo () (0 30) . 2 (1) (i (1- 1))

b)a>—-1 a#0

Zy = exp(at) (0, + ady), Zs = exp(0t)(0, + BOu),

where

o=

“1—ViaF1 , —14++Aa+1
=
c)a< *i
Zg = exp(yt)(sin 6td, + (ysin 6t + 0 cos 6t)dy,),
Z7 = exp(7t)(cos 0td, + (v cos ot — §sindt)d,, ),
where
1 —(4a+1)

= —— 6:
7=y 2

The corresponding finite transformations have the form:

Zi: t—t=t,

Zy: t—t=t,
x — & =ux+ fexp(at),

u— U =u+ ab exp(at).
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Zy: t—i=t,
- 1
T — T =ux+ 0texp —§t ,

u=u+0|1 1t 1t
— U= — = —— .
(A u u 5 exp B

Zg: t—t=
x — x + Osin 6t exp(7t),

~

Y

u — @ =u+ 0(ysindt + 6 cos 0t) exp(yt).

Zy: t—t=t,
T — & = x + 0 cosdtexp(t),
u— 4= u+ 0(ycosdt — 0sin dt) exp(t).
Case 2.4. F(u) = a, a = const. The invariance algebra of the equation
L(Lu)+ Lu=a (24)
is a five-dimensional algebra, whose basis elements are given by the operators
-F)(]:atu Plzazv G:taz+au7

O, = (x - %t2> 8y + (u— at)dy, Qo = exp(—1)(0s — D).

The finite transformations for @1, Q> have the form:

(25)

Q1: t—t=t,
T—I= (az — th) exp(0) + %tQ,
u— 4= (u— at)exp(f) + at.

Q2 :

Construction of solutions
In the case when the equation (4) has the form

L(Lu) + ALu =a, a, A= const (26)
the change of variables
t=7, z=w+tur, u=u (27)

enable us to construct the general solution of (26). In consequence of the change of
variables (27) we obtain:

0 0
L a +’UJ% — 87-,
ou % Uy
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After the change of variables the equation (26) has the form

Ur Ur .
d; <1+Tuw)+)\<1+ruw>a' (28)

Integrating (28) one time, we get the linear nonhomogeneous partial differential
equation. Finding first integrals of the corresponding system of characteristic equa-
tions and doing the inverse change of variables we find the solutions of (26).

Remark. We notice that the solution of equation 14 7u, = 0 in variables (¢, z,u) is
x = f(t), where f(¢) is an arbitrary function. Thus (26) is equivalent to an ordinary
differential equation in this singular case.

Let us illustrate it on the example of equations (16). After the change of variables
(27), equation (16) is rewritten in the form:

Uy _
a, (HT%) =0. (29)

Integrating (29) we obtain

= g(w)v (30)

Ur
1+ Tu,,
where g(w) is an arbitrary function.

If gw) =0, then u, = 0 and we get the solution of type (3) (because, it is
obvious that the solution of equation Lu = 0 is a solution of (16)). When g(w) # 0,

in accordance with arbitrary choice of g(w) we can set g(w) = —2(dh(w)/dw)™".
Therefore (30) has the form
2T 2

U, = ———. 31

R T TR .

The system of characteristic equation for (31) is

dr _ h(w)dw b (w)du

1 27 —2 (32)
Hence, we obtain two first integrals:
™ —hw)=0C1, u+ / e = Cy. (33)
\/ h(w) + C1

Integrating (33) and expressing C; and Cy by (7,w,u) we find a solution of (30) in
the form

O (C1,Cs) =0, (34)

where ® is an arbitrary function. Performing in (34) the inverse change of variables
we get a solution of (16). For instance, we set h(w) = w. Then the expression

r—ut —t* = p(u + 2t), (35)

defines the class of implicit solutions of equation (16), where ¢ is an arbitrary function.
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The same results we can obtain for other cases of (26). If F(u) # const in (4)
then this method does not lead to solutions. Below we give some classes of solutions
of equations (26):

1. L(Lu) =0

1.1, z—ut+ %tQ = p(u — Ct);

12, utln(z —ut Ft) =t — (z — ut)?);

13, u+t<m¢>3¢<tz(1>;

t2(x —ut)? —1 x —ut)?
T — ut r — ut
14. u= — 2) dt;
U <p<exp(t2)> exp(tz)/eXp(t)dt’
2. L(Lu) =a
_ a3, Cpo_ _ 4 .
—ut+ it 4 ot —go(u ot Ct),

3. L(Lu)+ Lu=a

x—ut—C(t+1)exp(—t) + th = (u+ Cexp(—t) —at),
C = const, ¢ is an arbitrary function.

Thus, we have investigated the symmetry classifications of (4) and pointed out
all functions F'(u) under which the invariance algebra of (4) admits the extension.
The new representations which may have an interesting physical interpretation are
obtained. In the case F(u) = const we described the algorithm of construction of
the general solution of (4) and pointed out some solutions. The symmetry properties
of (4) can be used for a symmetry reduction and construction of the solutions and for
their generation by finite group transformations [3, 4, 5].
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Galilei-invariant nonlinear systems
of evolution equations

W.I. FUSHCHYCH, R.M. CHERNIHA

All systems of (n + 1)-dimensional quasilinear evolution second-order equations invari-
ant under chain of algebras AG(1,n) C AGi(1,n) C AG2(1,n) are described. The
results obtained are illustrated by the examples of the nonlinear Schrédinger equations,
Hamilton-Jacobi-type systems and of reaction-diffusion equations.

1. Introduction
The (n + 1)-dimensional diffusion (heat) system of equations

)\1Ut == AU,
AoV = AV,
where U = U(t,xz), V = V(t,z) are unknown differentiable real functions, U; =

oU/ot, V; = V/ot, x = (x1,...x,), A1, A2 € R, is known to be invariant under the
generalized Galilei algebra AG2(1,n) [1, 2]

Pt:ata Pa:aaa (28)

Qx=MU0y + \Voy, G,=tP,— %Qx, Jap = 2o Py — wp Py, (2b)

D =2tP, +x,P, + 1, (2¢)
2 Lo 1

II=t Pt+txaPa71|x| Qx+1l,, ak:fin. (2d)

In relations (2) and elsewhere hereinafter I, = a1 Udy + axV oy, Oy = 9/0U, 9y =
0/0V, 8y = 9/0t, 8, = 0/0x,, a € R, k =1,2 and a summation is assumed from 1
to n over repeated indices.

The algebra produced by the operators (2a), (2b) is called the Galilei algebra
AG(1,n), and its extension by using the operator (2c) will be refereed to as AG;(1,n)
(1, 2].

Clearly, the unit operators I, and @, are linearly dependent only in the case when
the determinant

[e5 R e%))

0= A Ao

=0.

As a result we obtain two essentially different representations of algebras AG:(1,n)
and AGo(1,n) for § = 0 and § # 0, in contrast to the case of a single diffusion
equation (the nonlinear diffusion equation invariant with respect of a set of AG2(1,n)
subalgebras was studied in [2, 3]).

J. Phys. A: Math. Gen., 1995, 28, P. 5569-5579; Preprint LiTH-MAT-R-95-18, Department of Mathe-
matics, Linkoping University, Sweden, 12 p.
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Note that in the case when the system (1) is a pair of complex conjugate Schro-

dinger equations, ie. U = V, A= )\1 = 4, the operators I, and @, are linearly
independent. This results in the fact that nonlinear generalizations of Schrédinger
equations, preserving its symmetry [1], differ essentiallyfrom nonlinear generaliza-
tions of the diffusion system (1) at 6 = 0.

Now consider a system of quasilinear generalizations of diffusion equations (1) of
the form

)\lUt = AabUab + Cabvab + Bl7

3
Al‘/;f = DabUab + EabVab + 327 ( )

Aabs Caby Dap, Egp, B1, B being arbitrary real or complex differentiable functions of
2n + 2 variables U, V,Uq,...,U,,Vi,...,V,. The indicesa=1,...,nand b=1,...,n
of functions U and V denote differentiating with respect to z, and z.

The system (3) generalizes practically all the known nonlinear systems of first-
and second-order evolution equations, describing various processes in physics, chemi-
stry and biology (heat and mass transfer, filtration of two-phase liquid, diffusion in
chemical reactions etc.) [4-7].

In the case of complex U = {;, Aap = £*7ab, Cap = Bab, B, = éz =B, A\ = ;\2 =1
the system (3) is transformed into a pair of complex conjugate equations. We treat
them as a class of nonlinear generalizations of Schrédinger equations, namely:

Z'th = AabUab + l*)ab (}ab + Bu (43)

—1 ljvt = Jzab [}ab + DabUab + é (4b)

(hereinafter complex conjugate equations (4b) are omitted).
For Awp = Doy = Dao = 0, a # b, Ase = —h equation (4a) is obviously
transformed into a Schrédinger equation with nonlinear potential B:

iU, + hAU = B. «)

By choice of the corresponding potential B = B(U, l}, Ui,...,U,, [}1, e (}n) a great
variety of Schrodinger equation generalizations, known from the literature (see e.g. [1,
2, 8,9, 10]) can be obtained.

In case of zero potential B a classical Schrodinger equation is obtained

iU, + hAU =0 (5)

invariant under AG5(1,n) algebra with the basic operators (2) [11], where
1 * *
Q,\:—E(Ué)U—U85), Ia:a(UaU—kUaﬁ). (6)

Note that the algebra AGy(1,n) in the case of the Schrédinger equations is called
the Schrédinger algebra [11].

In the present paper all the systems of evolution equations of the form (3), invari-
ant under the chain of algebras AG(1,n) C AGi(1,n) C AGs(1,n), are described.
The results obtained are illustrated by the examples of the nonlinear Schrédinger
equations, reaction-diffusion equations and Hamilton—Jacobi type systems.



Galilei-invariant nonlinear systems of evolution equations 383

2. Description of systems (3) with Galilean symmetry

The algebra of symmetries for the system of equations (1) contains the Galilei
operators G,, a = 1,...,n, being a mathematical expression of the Galilei relativistic
principle for equations (1). The Galilei operators are also known [3] to be closely
related with the fundamental solution of the diffusion equation. We recall that if some
system of PDEs is invariant with respect to the Galilei algebra or its extention, then it
gives a wide range of possibilities for the construction of multiparametric families of
exact solutions [1, 12, 22]. Moveover the Galilei operators and the projective operator
(2d) generate non-trivial formulae of multiplication of solutions. These formulae can
be used to convert stationary (time-independent) into non-stationary ones with a
different structure.

In view of this it seems reasonable to search for Galilei-invariant nonlinear
generalizations of system (1) in the class of system (3).

Theorem 1. The system of nonlinear equations (3) is invariant under the Galilei
algebra in the represention (2a), (2b) if and only if it has the form:

MU = AU +U[A 1 AInU + C1AlnV + By| +

+ UlAswawp(InU) gp + Cowqwp(In V) 4],

Vi =AV +V[DiAlnU + E;AlnV + Bo] +

+ V[Dgwawb(ln U)ab + ngawb(ln V)ab]7
where (InU)q = 0*InU/0x,0zp, (InV)gy = 02InV/0x,01p, AlnU = (InU)q; +
+ (In)pp, AINV = (InV)yy + -+ 0V )y, w = UV, w, = 0w/0x, =

MUy /U — MV, /V)w and Ay, By, Cx, Di, Ex, k = 1,2 are arbitrary functions of
absolute invariants of the AG(1,n) algebra w and 0 = waw,.

(7)

The proof of this and the following theorems is based on the classical Lie scheme,
which is realized in [3, 12] for obtaining the Galilei invariant equations. The detailed
cumbersome calculations are omitted.

Note that in case where A\; = 0, i.e. the first equation of system (3) being elliptical,
the absolute invariants of the Galilei algebra simplify considerebly: w = U, 6 = U,U,.

In case of systems of the form (3) being AG1(1,n)- and AG5(1,n)-invariant the
structure of such systems essentially depends on the determinant 4.

Theorem 2. The nonlinear system (3) is invariant with respect to algebra AG1(1,n)
with basic operators (2a)-(2c) if and only if it has the form:
(i) In case when 6 #0

MU; = AU 4+ U[AL(O)AInU + A3(0)AInV + w29 By (9)] +
+ Uw?/072[C1 (0)wews (In U) g + Co(0)waws (In V) a),
(0
)

AoV = AV 4+ VD1 (0)A T + Da()A IV + w2/ By(0)] + ®)
+ Vw52 [B () waws(InTU) b + Ea(8)waws(In V) gp).
(ii) In case when 6 =0
MU =AU 4+ U[A1(w)AlnV + As(w)AInV + wew, By (w)] +
+ U(Wayway )~ twawp[C1 (W) (InU) i + Co(w)(In V) gp], o

)
AV = AV + V[D1(w)AInU + Dy(w)AInV 4 wewe Ba(w)] +
+ V(Wa, Wa, ) " wawp[E1(w)(In U ) gp + Eo(w)(InU) 4],
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where Ay, By, Cy, Dy, Ex, k = 1,2 being arbitrary functions, 0 = waw,w?/°~2 and

w are the absolute first-order invariants of the algebra AG1(1,n), a1 =1,...,n (w,,
w see theorem ).

In the case when the first equation of system (3) degenerates into an elliptical
(A1 = 0) equation, the absolute invariants in systems (8) and (9) simplify and 6§ =
U U U?*1=2 for § #0, w=U for § = 0.

Theorem 3. The nonlinear system of equations (3) is invariant with respect to
algebra AG5(1,n) with basic operators (2) (au, ae are arbitrary constants) iff it has
the form:

(i) In case when § #0

MU = 61 AU + UA0)AAInU — M AIn V) 4+ Uw 2B, (0) +

+ (1 = 41 UoUya JU + U 5200w [Ma(In U )y — A1 (In V) 3] C(6),
AoVi = G AV + VD(0)(MAInU — \MAIn V) + Vw29 By(0) +

+ (1= a2)Va Vo /V 4+ Vw2020, Ao (In U) gy — A (In V) 0] E(6).

(10)

(ii) In case when 6 =0

MU = 61 AU + UA(w) (A AInU — MAIV) + Uwawe B (w) +

+ (1= &) UuUs JU + U(way wa, ) rwawp[Ma(InU) gp — A1 (In V)ab}C(we
Ao Vi = G AV + VD (w)(AeAInU — MAInV) + Vw,w, Ba(w) +

+ (1= a2)Vo Vo /V + V(wa,wa, ) " twawpMo(InU) gy — A1 (In V)43 E(w),

11)

where A, By, By, C, D, E being arbitrary functions, & = —2ag/n, k =1,2 (o, see
operator 1,).

It can be noticed that in case where ayas # 0 systems (10) and (11) can be reduced
by the local substitution U — U%, V — V% to the systems of the same structure,
but with & =1, i.e. a = —n/2. The specific case of ay = ay = 0 will be considered
in what following.

The classes of AG5(1,n)-invariant systems (10) and (11) thus obtained contain, in
particular, such genaralizations of equations (1) as (§ # 0)

MU = AU + e;UMeAInU — MAln V),
U = AV + €2V()\2A11’1U — AMAln V)

and (6 = 0)
-1 -1
U, = AU + e, 20V ) 00V
0z, 0z,
-1 —1
V}:AV—keQVa(UV )o(uv )’
Oz, Oz,

where e1,es € R.
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In the case where the first of equations (3) degenerates into an elliptical one
(A1 = 0), the AG2(1,n)-invariant systems of equations are simply
0= A1(0)AU + A3(0)(Ua,Us,) " UsUpUyp, + U2/ By (0) +
+UCO)AIMV — (Uy, Uy, ) UuUp(In V) o),

Ao Vi = Go AV + %Dl(é)AU + ng(é)(Uaanl)*anUbUab + (12)

+ (1= Go)VuVa/V + VU2 By() +
+VE@)AIV — (Ua,Ua,) ' UUs(In V) o)

if § #£ 0, and

0= A1 (U)AU + Ay (U)(Ua,Ua, )" UaUpUap + UaUa By (U) +
+ C(U)[ AV — (U, Uy, )" U Up(In V) 3],
AoVi = oAV + VD1 (U)AU + VDy(U)(UayUay)  UsUpUas + VUaUaBQ(USIJQ’r)
+ (1 = o)V, V)V +VEU) AV — (Uy,Us,) " U Up(In V) o],

if 6 = 0. In equations (12), (13) Ax, Bk, Di, E, C are arbitrary functions, 0 =
U, U U%/*172 G4 = —2asy/n. In [13] integration of two-dimensional systems of equati-
ons (12), (13) form was reduced to the integration of linear heat equation with a
source.

3. Galilei-invariant nonlinear generalizations of the Schrodinger equation

As noted above, a class of nonlinear generalization of Schrédinger equation (4)
is a specific case of evolution equations (3). On the basis of theorems 1, 2 and 3
this enables one to describe all quasilinear generalizations of Schrédinger equation
(5), which are invariant with respect to a chain of algebras AG(1,n) C AG1(1,n) C
AGQ(L’I’L)

Corollary 1. In the class of nonlinear equations of the form (4) algebra AG(1,n)
(2a),(2b) with Qy = —%(U@U— l} 8&) is admitted only for equations given by

iUy + hAU = U[A,AlnU + AyAln U +B] + )
+ U[As|Ua|U[y(InU)ap 4+ As|U|a|Up(In U)as),

where A; =0, j =1,2,3,4 and B are arbitrary complex functions of two arguments
\U| and |U|,|U|a; |U? =U (*] |U|, = 0|U|/0x,.
In case A; = 0 the class of equations (14) is reduced to an equation

iUy + hAU = UB(|U|, |U|a|U|a) (15)

obtained in [1, 12], whose specific case is a Schrodinger equation with power nonli-
nearity U|U|?, 3 = const.
By using the identities
Al U = (AJU? = 4|Ula|Ula) /U2,
Re (AU/U) + |VU?/|U)? = Aln |U| + |U|o|Ula /U,

Im (AUJU — UyU, JU?) = (AlnU — Aln {7)/2i
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it is easily to show that the class of the Galilei-invariant equations (14) contains the
equation
id
iUy + AU = %UA\U|2/|U|2 + Uldy(Re (AU/U) + [VU2/|U?) +
+doIm (AU /U — (VU/U)?) + d3(Re (VU/U)?) + |[VU?/|U|?)],

where VU = (0U/0xy,...,0U/0x,), d1,d2,ds € R, proposed in [9] from certain
physical considerations. By the way, a nonlinear generalization of the Schrodinger
equation [8]

iUy = (idy — h)AU +id U|VU|?/|U|?> + UB(|U)),

does not preserve Galilean symmetry of the linear Schrédinger equation. Instead it
would be appropriate to propose Galilei-invariant nonlinear equations of the class (14)

iU, = AU + (h—¢) U (VU)?/|U + UB(|U]),
and [13]
iU, = —hAU + cUA|U|?/|U|? + UB(|U|),

where c is arbitrary complex constant and B is an arbitrary complex function.

Corollary 2. In the class of nonlinear equations of the form (4) algebra AG1(1,n)
(2a), (2b), (2¢), (6) is admitted only for equations given by
(i) In the case o # 0

iUy + hAU = U[DyAnU + DyAln U +[U|"2/*B] +

. (16)
+ U|UP*=2[D3|U|a|U|y(InU)gp + Da|Ula|U|p(I0 U)as),

where D;, j = 1,2,3,4 and B are arbitrary complex functions of the argument
U/ 21U a]Ul s
(ii) In the case o =0

iU, + hAU = U[D1 AU + DyAln U +|U||U].B] + )
+U(|Uay[Ula,) "M Ds|U o] ULy (10U )ap + Da|Ula|Ulo(In U)as],
where D; = D;(|U
[t is easily seen that the class of the AG;(1,n)-invariant equations (14) contains
the well-known nonlinear Schrédinger equation

), 3 =1,2,3,4 and B = B(|U|) are arbitrary complex functions.

iU; +hAU + cU|UI> =0 (18)
which in the case n = 1 is integrated by inverse scattering method [14]. Note that in
the case n = 2 equation (17) is invariant under the AGy(1,2) algebra [12, 15].

Corollary 3. Within the class of nonlinear equations of the form (4) algebra
AG2(1,n) (2), (6) for « = —n/2 of the linear Schridinger equation (5) is conserved
only for equations given by

iUy + hAU = UEL AW |U| + U|U|Y"B + U|U|™ "2 E3|U | |U (10 |U]) a5 (19)
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In equation (19) E1, E5 and B are arbitrary complex functions of the argument
\U|=4/"=2|U|,|U|a, which is an absolute invariant of the generalized Galilei algebra
AGQ(I, n)

If we consider a representation of AG5(1,n) algebra with basic operators (2), (6)
for a =0, a principally different class of quasilinear second-order equations, invariant
with respect to this algebra, namely

iUy + hU, U, /U =UE,(JU)AIn|U| + U|U|.|U|.B(|U]) +
+UE(|U)([Uay [U]ay) " U alUlp (I |U ) ap-

(20)

is obtained.

It is easily seen that within the class of equations (20) there is not a single linear
equation, the simplest one among them being Hamilton—Jacobi equation for a complex
function

iUy + hU,U, JU =0

which is reduced to a standard form

oW ow

Wy + AW W, =0, W,=—-—, W,=-—

Wer Oz, t ot

by a local substitution U = expW, W = W (t, z1,...,xy).
In case F4 = Es = 0 equation

iUy + hAU = U|U|Y"B (21)

is obtained from the class of equations (19) which had been obtained in [1, 12]. Note
that at B = ¢ = const equation (21) is transformed into an equation with fixed power
nonlinearity, studied in a series of papers (for n =1 [16, 17], n =2 [18] and n = 3 [I,
2,12, 19]). In [1, 12] multiparametric families of invariant solutions of equation (21)

of the form
, |Ua|U|a
'LUt + hAU = CUW

are also constructed and systematized.
Being written in the case of one spatial variable (n = 1), after simple transformati-
ons the class of equations (19) is given by

iUy + hUpy = UE (In|U|) e + U|U[*B, U=U(t,z), z =z, (22)

E; and B being arbitrary complex functions of the argument |U|=3|U|,.
Obviously, a specific case of equation (22) is given by

iUs + hUpy + tUU|* + cU|U||U|, =0 (23)

which at h = 1, ¢ = 1, ¢ = 4 is known as Eckhaus equation [20, 21]. Equation
(23) has been studied in detail for arbitrary constant values of ¢; and co in [22]. A
multidimensional generalization of equation (23), posessing AG2(1,n) symmetry, can
be proposed

iUy + hAU + ¢, UU Y™ + coU|U |72/ (U |U )2 = 0. (24)
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4. Galilei-invariant systems of Hamilton—Jacobi-type

It should be noted that the local substitution U = M(U), V = N(V), where
M, N are arbitrary differentiable functions, reduces any equation system with the
symmetry AG(1,n), AG1(1,n) or AG2(1,n) to a locally equivalent system with the
same symmetry, but with different representation of operators @ and I, namely

. dm\t dN\ !
QA_AlM(dU) 8U+A2N<df/> %
dm\ t dN\ !

In the particular case where M = exp(U), N = exp(V), we obtain
Qr = MOy + X0y, Lo = 10 + asdy,. (25)

In this case the class of equation systems, invariant with respect to AG2(1,n) algebra
in the representation (2), (25), at 6 = 0 is given by

MU = a1 AU + A(Q) M AU — MAV) + ©a@o By (&) +

+ UaUs + C(&) (@, @a, ) ™ @6 [NoTat — A1 Vo],

AaVi = Ga AV + D(@) (A AU — M AV) + Ga@a Ba (&) +

+ VaVa + E(0)(@ay @ay) ™ Dap AUt — A1 Vs,

(26)

where @ = MU — M\ V, We = /\gﬁa — )\117@ and A, By, By, C, D, E are arbitrary
differentiable functions.
In case where &1 = &2 =0, A=C = D = E = 0 the system of equations (26) is
reduced to the systems of the form (the symbols * being omitted below)
MU = U Uy 4 wowe Br(w),

27
)\1% = VaVa + wawaBg(w), Al)\g 7é 0 ( )

[t is natural to call system (27) a generalization of the noncoupled system of the
Hamilton-Jacobi (HJ) equations

MUy =UdUa,  MVe = VaVa. (28)

In contrast to the symmetry of a single HJ equation [2, 23], the local symmetry of
the system (28) is exhausted by AG2(1,n) algebra (2), (25) at a3 = as = 0 with
additional operators

Py =90y, Di=—t0;+ U0y +Viy. (29)
Thus, all the nonlinear generalizations of the form

)\lUt = UaUa +BI(U7KU1>~"5UH7‘/ia" '7Vn)7

(30)
>\1‘/t = VaVa + BQ(U7‘/7U13 N '7UTL;V17' . 7V7L)

of HJ system, preserving its symmetry AG2(1,n), are exhaused by system (27).

Among the non-linear generalizations of HJ system (27), a system of equations
with unique symmetry properties exists, namely for B; = 0, By = —1/(\2)? (in the
following A1 =1, A2 = \).
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Theorem 4. The maximal (in the sense of Lie) algebra of the invariance for the
system of equations

Ut = UaUaa

(31)
Vi = =AU U, +20,V,
is generated by the basic operators
Pta Pav Jaba Q)\ :)\aU_BV7 X:W8V7 Ga:tPa_ %ka
1
D =2tP, + 2,P,, Il =t*P, +tx,P, — 1\x|2Q>\,
Gl=UP, - %“Pt, Dy = 2UPy + 4P, (32)

1
I, = U*Py + Uz, P, — Z|x|2Pt,

1
K, = 2,tP; — (2tU + §x|2> P, + zoxp Py + 2,UQ\,

where W are an arbitrary differentiable function of \U — V.

Note that the presence of the operatorX including an arbitrary function W in the
invariance algebra for the system (31) is natural, since the second equation of the
system is linear with respect to the function V. Much more interesting is the fact
the system (31) can be considered as a generalization of classical HJ equation to the
case of two unknown functions, since for W = 1 the operators (32) generate the
same algebra as the HJ equation. We consider this fact to be very important, since a
trivial generalization of the above-mentioned equation to the system of (28) does not
preserve the symmetry of the HJ equation.

5. Galilei-invariant reaction-diffusion systems
Now consider a nonlinear system of evolution equations, given by

MUy = AU + f(U,V),

AQV;S - AV+9(U7V)7
where f, g are arbitrary differentiable functions. The systems of reaction-diffusion
equations (33) has been studied intensively of late (see, e.g., [4, 6, 7]). As follows
from theorems 1, 2 and 3, the class of systems (33) contains systems with broad
symmetry. In particular, all the systems of equations of the form

MUy = AU + U f(w), w=UrV"",

AV = AV 4+ Vyg(w)
will be invariant under the Galilei algebra AG(1,n).

Note 1. In the case, where Ay = Ay = A\, f = d;((U +V)/V)% — 1, g = do((U +
V)/V)4 — ds and do,dy,ds,d3 € R the system (34) is the particular case of the
conservation equations for normal and mutant cells [7, 24].

In case where f = fiw=2/%, g = Bow™2/% 5 # 0 (4 is defined in the introduction)
there will be invariance under the algebra AG;(1,n). Finally, for § = —n(As — A\1)/2,
i.e. a3 = as = —n/2, the system of equations

)\1Ut - AU + 51U1+)\2’7V7>\1’Y,
AVy = AV + BoVImM Ay

(33)

(34)

(35)
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is obtained (where v = 4/(n(A2 — A1), A2 # A1, Bk € R), preserving the AG5(1,n)-
symmetry of the linear system (1).

Note 2. For Ay = —)\; = X the diffusion system (33) is reduced by substitution
U=Y+Z7Z V=Y-Z Y=Y({x), Z=2Zx) (36)
to the system of equations

*>\th = AZ+f1(Y7Z)7
My =AY + (Y, Z),

whose invariance under the chain of algebras AG(1,n) C AG1(1,n) C AG2(1,n)
with the unit operator Qx = AY 9z + AZdy is described by the substitution (36)
being applied to the system of equations of the form (33) with the corresponding
symmetry.

It is interesting to consider system (33) in case where one of the equations
degenerates into an elliptical one. Without reducing generality we consider Ay = 0,
A1 = 1. Then according to the theorem 1, all systems of the form (33) for Ay = 0,
A1 = 1 and posessing AG(1,n) symmetry are given by

Uy =AU+ UF(V), (37a)
0=AV +g(V), (37b)

where f and g being arbitrary functions.

For the system (37) a clear physical treatment can be suggested. Namely, eqution
(37a) is the heat equation with spatial source of energy absorption (extraction) ¢ =
Uf(V), proportional to the temperature U, with an additional condition of elliptical
equation (37b) being imposed on proportionality coeficient f(V') (in particular we can
consider f(V) = V). Thus we have obtained a class of nonlinear heat equations with
an additional condition for the source that preserve Galilean symmetry of the linear
heat equation. This result is quite non-trivial, since it is well-known fact that among
nonlinear heat equations with a source

U, = AU + q(U)

not a single one is invariant with respect to Galilei algebra AG(1,n) [3]. As it is seen,
this “symmetry contradiction” between the linear and nonlinear heat equations can be
solved in two ways: either the source is supposed to depend explicitly on temperature
and independent variables t,x1,...,2, [3], or an additional condition equation (37b)
upon the source is imposed as above.

It should be noted that in case f = B3V g = B VI+2/%2 0 #£ ay, B € R
system (37) is invariant under AG;(1,n) algebra (2a)-(2c). If the system (37) has
the form

Uy = AU + UV, (38a)

0=AV + p,ViH/n, (38h)
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it is invariant under AG5(1,n) algebra with basic operators (2) for Ao = 0, A\; = 1,
i.e. heat equation (38a) with nonlinear condition (38b) for the source conserves all
the non-trivial Lie symmetry of the linear heat equation

= AU.

Note 3. If V is a fixed given function on independent variables ¢, z1, ..., z,, equation
(38a) can lose any symmetry.

In conclusion, the interesting system of the form (33) should be considered,
namely

AU, = AU + BU2VL,
AV, = AV + U, B1 # Ba.

Theorem 5. The maximal algebra of invariance for the system (39) is the generali-
zed Galilei algebra with the basic operators (2a), (2b) and

(39)

D =2tP, +x,P, — 2U0y — (n b )Q,\,
B — D2

A
——V9o
B — B2

By the way, among the systems of the form (33) in case where Ay = A\ = A there
is not an AG2(1,n)-invariant system in the standard representation (2). Note that the
system (39) can be considered as a particular case of the conservation equations for

normal and mutant cells [7, 24].
Some classes of exact solutions for the system (39) are obtained in [25].

1
I=—t’P,+tD — ZWQA —

Acknowledgements
The authors acknowledge financial support by DKNT of Ukraine (project No
11.3/42) and WIF by a Soros Grant.

1. Fushchych W.I., Cherniha R.M., Ukr. Math. J., 1989, 41, Ne 10, 1161-1167; Ne 12, 1456-1463.

2. Fushchych W., Shtelen W., Serov N., Symmetry analysis and exact solutions of equations of nonli-
near mathematical physics, Dordrecht, Kluwer Academic Publishers, 1993.

3. Fushchych W.I., Cherniha R.M., J. Phys. A, 1985, 18, 3491-3503.

4. Aris R., The theory of reaction and diffusion in permeable catalyst, Oxford, 1975.

5. Wilhelmsson H., Ukr. Phys. J, 1993, 38, Ne 1, 44-53; Physica Scripta, 1992, 46, 177-181.
6. Fife P.C., Mathematical aspects of reacting and diffusing systems, Berlin, Springer, 1979.
7. Murray J.D., Mathematical biology, Berlin, Springer, 1989.

8. Doebner H.-D., Goldin G.A., Phys. Lett. A, 1992, 162, 397-407.

9. Goldin G.A., Svetlichny G., J. Math. Phys., 1994, 35, 3322-3332.

10. Malomed B.A., Steflo L., J. Phys. A, 1991, 24, L1149-L1153.

11. Niederer U., Helv. Phys. Acta, 1972, 45, 808-816.

12. Fushchych W.I., Cherniha R.M., On exact solutions of two multidimensional nonlinear Schrédinger-
type equations, Preprint Ne 86.85, Kiev, Institute of Mathematics of Ukrainian Acad. Sci., 1986.

13. Fushchych W.I, Cherniha R.M., Proc. Ukr. Acad. Sci., 1993, Ne 8, 44-51.
14. Zakharov V., Shabat B., Zhurn. Eksper. Teor. Fiz. (JETP), 1971, 61, Ne 1, 118-134.
15. Fushchych W.I., Moskaliuk S.S., Lett. Nuovo Cimento, 1981, 31, Ne 16, 571-576.



392 W.I. Fushchych, R.M. Cherniha

16. Clarkson P.A., Cosgrove C.M., J. Phys. A, 1987, 20, 2003-2024.

17. Gagnon L., Winternitz P., J. Phys. A, 1988, 21, 1493-1511.

18. Gagnon L., J. Phys. A, 1992, 25, 2649-2667.

19. Fushchych W.I., Serov N.I., J. Phys. A, 1987, 20, L929-1L933.

20. Kundu A., J. Math. Phys., 1984, 25, 3433-3438.

21. Calogero F., De Lillo S., Inverse Problems, 1988, 4, L33-L37.

22. Cherniha R.M., Ukr. Phys. J., 1995, 40, N 4, 376-384.

23. Boyer C.P., Penafiel M.N., Nuovo Cimento B, 1976, 31, Ne 2, 195-210.
24. Sherratt J.A., Physica D, 1994, 70, 370-382.

25. Cherniha R.M., On exact solutions of a nonlinear diffusion-type system, in Symmetry Analysis and
Exact Solutions of Equations of Mathematical Physics, Kyiv, Institute of Mathematics of Ukrainian
Acad. Sci., 1988, 49-53.



W.I. Fushchych, Scientific Works 2003, Vol. 5, 393-401.

Symmetries and reductions
of nonlinear Schrodinger equations
of Doebner—Goldin type

W.I. FUSHCHYCH, V. CHOPYK, P. NATTERMANN, W. SCHERER

We compute symmetry algebras for nonlinear Schrédinger equations which contain an
imaginary nonlinearity as derived by Doebner and Goldin and certain real nonlinearities
not depending on the derivatives. In the three-dimensional case we find the maximal
symmetry algebras for equations of this type. Admitting other imaginary nonlinearities
does lead to similar symmetry algebras. These symmetries are used to obtain explicit
solutions of these equations by means of reduction.

1. Introduction

Recently, a new nonlinear Schrédinger equation as the evolution equation of a
quantum mechanical system on R™ has been derived from general principles by
Doebner and Goldin [1-4]. Their derivation is based on the representation theory
of the semidirect product of the group of diffeomorphisms with the smooth functi-
ons on R™ and results in the replacement of the usual continuity equation p = -vj
(where p = P and j = 52 (Vi) — Vi) associated with the linear Schrodinger
equation by the Fokker—Planck equation p = —6}4— dAp describing diffusion of the
probability density p. This Fokker—Planck equation for the probability density can be
derived from a nonlinear Schrodinger equation which has to be of the form

hd Ap

iy = <——A+V+ w+FWJ 1/)]) Y, 1)
where F' is assumed to be an arbitrary real functional. Doebner and Goldin proceeded
with the requirement that F[t,)] should have similar properties as the imaginary
nonlinear functional, and were thus led to a five parameter functional including deri-
vative terms [4]. Galilei-invariant nonlinear Schrédinger equations of type (1), where
d = 0 and F depends on the wave function and its first order derivatives, were
described by Fushchych and Cherniha [5].

On the other hand, equations similar to (1) have been considered in plasma phy-
sics [6] and for d = 0 and F[¢, 1] = ap it reduces to the usual nonlinear Schrédinger
equation which appears in many subfields of physics. It seems therefore worthwhile to
investigate the Lie symmetries for equations of this type and to use them to construct
solutions. This is what we shall do in this paper.

Obviously, we shall have to restrict the functional F' suitably since otherwise it
would be impossible to say anything at all about the symmetries of this equation.
Whereas the maximal Lie symmetry of the Doebner—Goldin equation has already
been calculated [7], we shall restrict our considerations in this paper to another class
of functional F' given by (sufficiently smooth) functions f of a single real variable:

Fly, ] = nf(p), (2)

Rep. on Math. Phys., 1995, 35, P. 129-138.
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which includes many physically interesting models [8, 9]. Although we leave the
framework set by Doebner and Goldin if f is not real, we will consider a slightly
morel general case of complex valued functions f since calculations are similar. For
d = 0 the Lie symmetry of this nonlinear Schrodinger equation has been discussed in
(10, 11, 12].

In Section 2 we will determine the maximal Lie symmetries of the nonlinear
Schrédinger equations (1) with functional of type (2). It turns out that the most
prominent cases, i.e. f(p) = p* and f(p) = In p, admit the largest symmetry algebras.)
Subalgebras of the maximal symmetry algebras will be used in Section 3 to reduce
equation (1) and find exact solutions. We close this paper with some further remarks)
on the equations and the solutions obtained.

2. Lie symmetry algebra
2.1. n < 3. First, we shall treat the physically most interesting case of three space
dimensions (n = 3) for which we will determine the maximal Lie symmetry algebra
of equation (1) with the complex valued functional (2). In order to do so, we write
in terms of an amplitude function R and a phase function S:

Y(Z,t) = R(Z,1)e"5 @D,

With the decomposition of f into the real and imaginary parts, f = u+iv, equation (1)
is thus equivalent to two real evolution equations:

= )2
OR+ N (RAS +2VR- 65) —d (AR + (V—R)> — Ru(R%) =0, (3)
2m R
i (2.0 AR N

Vector fields acting on the space of independent (x1,z9,23,t) and dependent (R,.S)
variables

X = fjag;j +70; + ¢8R + 0'85,

are generators of a Lie symmetry of the equations (3) and (4), if the coefficients
&, T, ¢, o satisfy the so-called determining equations. A detailed description of
the theory can be found in the monographs [10, 13, 14]. Since the procedure is
purely algorithmic, we use a Mathematica program [15] to obtain these equations.
This leads to 62 determining equations among which only two contain the real and
imaginary part of f. These two equations determine the functional F' of equation (1).
The integration of the 60 remaining equations yields the following coefficients of the
vector field X:

& = (21t + c2)zj + wjiz + vit + aj,
T = 2e1t? + 2cot + 2c3,
¢ =a(t)R, (5)

o= %(clfQ + vpa) + B(1),
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where ¢;, v; and a; are real constants, wj is an antisymmetric matrix with real
constant coefficients, and « and (§ are real functions of time. The two remaining
determining equations which contain the functions w and v thus read

1
o(t) R/ (R?) + (2e1t + co)u(R?) + 58'(t) = 0, (6)
1
a(t)R?v'(R?) + (2¢1t + c2)v(R?) — i(o/(t) +2ncy) = 0. (7)
For the cases m = 1,2 the resulting equations are exactly the same, with the

understanding that in equation (7) the dimension n has to be inserted. In order
to calculate the maximal symmetry, we solve the ordinary differential equation (7)
for @ and then (6) for 3, requiring that the resulting functions do not depend on R.
Neglecting the case of constant functions u = C' — which can be transformed to zero
by the map v —— e’“*1) — this leads to the following six possible cases.

1. For arbitrary functions w and v one has to require that their coefficients and the
inhomogeneous terms in equations (6) and (7) vanish, which leaves only the centrally
extended Galilei algebra g(n = 3) = (H, P}, Ji, G;,Q) with ten generators:

H = 8t, Pj = 8%., ij = ﬂijaxk - a:k{)xj,
8
G =10, + w05, Q=0s. @

2. A larger algebra is obtained if u and v are of the from
u(R?) = M R%*,  w(R?) = \,R%,

in which case equations (6) and (7) reduce to linear inhomogeneous equations in u
and v, respectively. Requiring the coefficients and the inhomogeneous term to vanish
allows the maximal Lie symmetry to contain an additional generator

1
D = 2t0; + 2,0, — %RaR, 9)
and this algebra (H, P}, J;;,G;,Q, D) has been named the Galilei similitude algeb-

ra [16]. D generates the dilations.
3. Calculations of the previous case show that the Lie symmetry has an extra

generator if k=1 = :
C = 120, + tay,dy, + %a‘c‘?as — ntROg, (10)

yielding the maximal Lie symmetry algebra of the free linear Schrédinger equa-
tion [17] (H, P, J;x,G;,Q, D, C) (Schrodinger algebra). The transformations genera-
ted by C are called projective or conformal transformations.

4. If w(R?) = A\ In(R?) and v = )3 is a constant, we obtain the maximal Lie
symmetry algebra (H, P}, J;1,G;,Q, D, B), where

B = ROgr — 2\t0s. (11)

Note that for nonvanishing A; the constant A3 can be transformed to zero by the map

w —_ 67A3t+i)\1>\3t2w‘
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5. If u(R?) = M\ In(R?) and v(R?) = Ay In(R?) + A3 with Xy # 0, equation (7)
leads to a simple differential equation for «(t) and equation (6) determines §(¢) up to
a constant. Hence, the maximal symmetry algebra is (H, P;, J;1,G;,Q, D, A), where

A =22t <R@R — Alas) . (12)
A2

6. Finally, if w and v vanish identically, the maximal Lie symmetry algebra is
(H, Pj, Jjr,G;,Q, D', I), the direct sum of the Schrédinger algebra (though with
a different representative D’ of the generator of dilations) with a one-dimensional
algebra generated by I, where

D' = 2t0; + 40y, , (13)
I = ROp. (14)

The invariance under I reflects real homogeneity of the equation (1); together with @
it generates complex rescalings of .

2.2. n > 3. In all cases the algebras remain symmetry algebras for arbitrary di-
mension n. We believe that they are still maximal, but we have no proof of maximality
for arbitrary n. The algebras of the cases 1-3 and 6 have been studied in [18], and
the finite transformations they generate are well known. The structure of the algebra
of case 4 was investigated in [12, 19, 20].

As for the generators B and A, they generate the following finite transformations:

Vi gl gPy(E ) = exple(l — i2X\1t))Y (&, 1),
Y gy, gl(Et) =exp (e (1 - Z%)) eM2hp(Z, 1),
2

3. Reduction and exact solutions

Using the operators of symmetry we will construct ansédtze reducing equation (1)
to a system of ordinary differential equations (ODEs). The algebras of the cases 1-3
and 6 are subalgebras of the maximal symmetry algebra of the linear Schrodinger
equation; their structure was studied in detail and corresponding ansitze are well
known. Thus we concentrate on the cases 4 and 5, and particularly on the reduction
by those subalgebras containing the “new” generators A and B. The solutions obtained
in this way might reflect the nonlinear structure of equation (1) with f(p) := (A1 +
iX2)In p +iA3. We consider mainly the case of three spatial variables, n = 3.

3.1. Case 4: f(p) :== A Inp+iX3; or u(R?) = A\ In(R?), v(R?) = X3

l. (B + G1,G2,Gs3). The ansatz

=2
Y(Z,t) = exp {% +g(t)+i [—2)\1x1 + ;n_hc% + h(t)] } (15)

reduces equation (1) to the system

dg  [2h\ 3\ 1 1

- _2) 1 9d=

dt ( m 2>t+ diz T,
dh _ _271/\% h1
d m 2m t2
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Having solved this system we find the solution

=2

mx )\1)\3,52_

(T, t) = tFexp {)\3254— (z1 — 2d) 4c1+1 [ 2\ + oF 1

D) Bl
— oM ktInt 4+ 2\ (kz—q - —1> t+4d)\ Int — — = +cz} }
m 2m t

where k := 2h’“ - 5 and ¢;, ¢ are real constants.

2. (B+ aH Ji2 + BP3), a € Ry, B € R. For A3 = 0, the ansatz

R t oA
P(F,t) = exp {a + g(wi,w2) +i [_Eth + h(wlwg)] } , (16)
with wy = (22 + 22)? and w, := arctan (fﬁ—j) — B3, reduces equation (1) to the
system

2

ﬁQ ﬁ
hi1 + hoo [ 1+ + — + 2g1h1 + 2g2ho + )
wi

~ 2md 2 2
(911 + 922 <1+6—2> +—1+29%+29%+29§ <1+ ﬁ_>) =
h w1 w1 wi

2m 1
W (A&‘a)

2 2
911+922< 6)4‘—4‘91"'92(1"’6)

wi wi

4m 2
_ mlg—h?—h%(l—i—%):’

h wi

where subscripts denote derivatives, i.e. g; := dg/dw1, etc.
3. (B4+aH + Gy, Jag), a € Ry, f € R. The ansatz

(@ 1) = exp {i T g(wr,wa) +i {Z_folt Sy h(wlwzﬂ } . a7
with wy : g— 21 and wy := (22 4+ 22)7 reduces equation (1) to the system
2g1h1 + 2g2ho + hay + hoo + @ - Q%l (911 + g22 + i—z - 2¢7 - 295) =
2 1
P (ea)
h? + h3 — 25;7;7;&11 —g11 — g22 — Zfzfgf*gng 4/\;ng:0.

For o = 1/A3, A3 # 0 and d # h/2m we have found the following partial solution of
this system:

( ) = mB o mha e hQ + (0" — dm>d"Jmf”
T2 = Shany T R —Am2d2 2 T B2 — dm2d? 16h%a2)}
2md

h(wi,w2) = Tf(whwz)
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The corresponding solution of equation (1) has then the form

- 3 mB> mp mhA 2, .2
t) = - -
V(& 1) = exp { ot Tyt T Tan T a1 T A
N h? (h? — 4m2d?)m3>
h? — Am?2d? 1632 \3

[ mp m? 3> MY, mB o, m2df
74 SRR L .
o [ha Tt <2h2a2)\1 a 3ha?’  Rar—1t "

2m2d)\1

4. (B+ aH, Jj), o € Ryo. The ansatz
— t . >\1 2
v =espd L gy vi |22 n)] (1)
where w := \/z% + 23 + 2%, reduces equation (1) to the system

2h  2dh _dgdh 2md (d%q 2dg dg\> 2m 1
At S T i il [t A AR, N (i == -
@ o Cdwdw h (dw2 T <dw> <>\3 > ’

d2g 2 dg dg\> [(dh\? 4m)\
w*aa*(a) ‘(%) Ty 970

[ts partial solution for the case o =1/\3 and d # hi/2m is

h o 3
9) = g <mm‘ * §h) ’
2m2d/\1
M) = o e
where ¢ is an arbitrary real constant. The corresponding solution of equation (1) has
then the form

Lo t h o 3
z/;(x,t) = exp {a + m <m)\1x + ih) +

. 2m2d)\1 -2 )\1 2
+1 {miﬂ — Et + C:| } .
3.2. Case 5: f(p) := (A +iXg)Inp; or u(R?) = A\ In(R?), v(R?) = \yIn(R?);

Ay # 0.
1. (A4 aPy,G2,G3), o € Ry. The ansatz

7+ ¢,

N L oxgt AL o m a3 + a3
(&, t) exp{ae x1+g(t) +1 a)\Qe x1 + 5h 1 + h(t)

reduces equation (1) to the system of ODEs

dg 11 (hxn "
Y ohgg= -+ — (DAL 9g) e
dt 29 i o <m)\2 + >e ’

dh h AN\ s
— = -9 — (1 - == 2t
dt g+ 2ma? ( )\g) c
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Having solved this system we obtain the following exact solution of equation (1):

= L oxst 2zt 1 hAs edhat
w(x,t):exp{ae 2Py + ce™? +2)\2a2 m/\2+2d 2 —

. . A m x +£C )\16 )\1
—Ei(—2Xot 2ot AL 2hot a2 3 ALY 2Xat 2 nnt

i( at)e +1 04/\26 $1+2h 7 )\26 e n(2Aqt) +
h ( A2 4md

AL .
- 37 _ 4ot 22 EBi(—2Xot 2ot
8ma?h, 2 h > RS Wl ’

where ¢ is a real constant and Ei(az) = [ %(M)dx Inx + ;:,k This solution
k=1
is non-analytical in A\, and for n =1 can be written in explicit form.

2. (A+ aJi2,G3), a € Ry, The ansatz

1
»(Z,t) = exp {—e”‘zt arctan ( ) + g(t,w) +
« X

A
1 {_a_;lez\zt arctan (il) + 7121_7.;3 +g(t, w)} }

where w = /2% + 23, reduces equations (1) to the system

ﬁe‘b\zti) _

h ha
— | Ah — + 2gohg —
g1+ ( 22+ + 292h2 W 2

2m
2 1
—d(922+—+292 4A2tr> 2X29 =0,
h g2 1 /\2 1
hi+ — (A3 — e eth2t — 2M\19 =0,
1+m(2 g22 w 453 aQ( /\2 2 + 2A19

3. (A4 aH, Jia + BP3), o € Ry, B € R. The ansatz

1 A
0(08) = exp { b 4 glnan) 41 |2 )| .

where w; = \/z? + 12, we = Sarctan (i—;) — x3, reduces equations (1) to the system

h 2 2
h11+—1+291h1+h22 <1+ﬂ>+h§ (1+ﬂ)
w1 w1

2md 2 2 4mA
5 (g11+ —|—291+922< +6—2)+g§ (1+ﬁ—2>>— 29207
w? w m

1
B B
911+£+Q%_h%+922<1+—2 +o5 (1+=5) -
w1 w? w?

2\ dmA
—h%(H%)— T;lg:o.

1

4. (A+ aPs, Jig), a € Ryg. The ansatz

1 . A1
—*t _ ~ 2Xat t AL
w(.’E, ) —eXp{ € x3—|-g( 70.))+'L |: )\2

e 2yq + ht, w)} } ,
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where w = \/z? + 22, reduces equations (1) to the system

h h A
a1 + h22 + 2 +292h2 - 21 64)\27& _
2m w a? g

2
—d (922 + i—2 + 295 + £€4A2t> —2X2g9 =0,

h g2 1 )\2
It~ (12— g — 2 g2 — = (1= 21 et fong—0.
1+2m( 292 0 a2< v e +2M\g=0

4. Conclusions

We have determined the maximal Lie symmetries of equation (1) with an F' of
the form F[i, %] := hf(p), and have found six different algebras containing among
others the centrally extended Galilei algebra, the Galilei similitude algebra, and the
Schrédinger algebra. Reduction and ansdtze for these algebras have been studied
previously.

New maximal symmetry algebras, due to the nonlinear character of the equation,
appear in the case f(p) = (A1 + iX2)In(p) (see cases 5 and 6 in Section 2.1). For
these cases we have obtained reduced equations for various subalgebras. The ansdtze
resulting from these reductions lead to differential equations which we have solved
explicitly in some cases and thus we have obtained explicit solutions of (1). Those
reduced equations, which we have not been able to solve explicitly, are still much more
suitable to numerical treatments than the original equation (1). The list of subalgebras
which we have used for reduction in the case of the new algebras is by no means
complete. In view of the successes of the reduction technique it seems warranted
to obtain a classification of their subalgebras. The non-Lie anzidtze for the nonlinear
Schrédinger equation were constructed by Fushchych and Chopyk [21].
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Symmetry reduction and exact solutions
of nonlinear biwave equations

W.I. FUSHCHYCH, O.V. ROMAN, R.Z. ZHDANOV

Symmetry analysis of a class of the biwave equations O?u = F(u) and of a system of
wave equations which is equivalent to it is performed. Reduction of the nonlinear biwave
equations by means of the Ansétze invariant under non-conjugated subalgebras of the
extended Poincaré algebra AP(1,1) and the conformal algebra AC(1,1) is carried out.
Some exact solutions of these equations are obtained.

1 Introduction

It was customary for the classical mathematical physics to use as the mathemati-
cal models for describing real physical processes linear partial differential equations
(PDE) of the order not higher than two. All fundamental equations of mathematical
physics such as the Laplace, heat, Klein-Gordon-Fock, Maxwell, Dirac, Schrodinger
equations are the first- or the second-order linear partial differential equations. But
now there are strong evidences that linear description is not satisfactory (especial-
ly it is the case in the quantum field theory [1]). That is why, it was attempted to
generalize the classical equations in a non-linear way in order to get more satisfactory
models. There exist different principles of the choice of such generalizations but up
to our mind the most natural and systematic is the symmetry selection principle.
A classical illustration is a group classification of nonlinear wave equations

Ou = F(u). (1)

Here and further O = 02/dz¢ — 8%/0zy — -+ — 0%/0x, is the d’Alembertian

in the (n 4 1)-dimensional pseudo-Euclidean space R(1,n) with the metric tensor
g = diag(1,—-1,...,-1), p,v = 0,n; x, = 2gu,; F(u) is an arbitrary smooth

function; uw = u(z) is a real function; the summation over the repeated indices from 0

to n is understood.
(n+1)(n+2)

With an arbitrary F(u) equation (1) is invariant under the 5 -parameter
Poincaré group P(1,n) having the following generators:
0 0 0 _
PL:77 JU/: " - Via ) :Oa . 2
! Oz, ! * oz, * Ox,, Hov " @

But equation (1) taken with an arbitrary nonlinearity F'(u) is too “general” to be
a reasonable mathematical model for describing a specific physical phenomena. To
specify a form of F'(u) symmetry properties of the linear wave equation are utilized.
It is well-known that PDE (1) with F(u) = 0 in addition to the Poincaré group
admits a one-parameter scale transformation group and a (n + 1)-parameter group of
special conformal transformations (see, e.g. [2]). Therefore, it is not but natural to

Preprint ASI-TPA/13/95, Arnold-Sommerfeld-Institute for Mathematical Physics, Germany, 1995, 14 p.
Reports on Math. Phys., 1996, 37, Ne 2, P. 267-281.
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postulate that those nonlinearities are admissible which preserve a symmetry of the
linear equation. It has been proved in [3] that there are only two functions F(u),
namely

F(u) = Mu+C)*,  F(u) = Nexp Cu, 3)

where C, k # 0 are arbitrary constants, such that Poincaré-invariant equation (1)
admits a one-parameter scale transformation group. Furthermore, it was known long
ago that the only equation of the form (1) admitting the conformal group C(1,n)

is the one with F(u) = AMu + C)%. Consequently, choosing from the whole set of
PDE (1) equations having the highest symmetry we get the ones with very specific
nonlinearities.

A procedure described above is called group or symmetry classification of PDE (1).
A method used is the classical infinitesimal Lie’s method. Given a representation of
a Lie transformation group (which is fixed by a requirement that this group should
be admitted by the linear wave equation), the problem of symmetry classification of
equations (1) is reduced to solving some linear over-determined system of PDE. This
system is called determining equations (for more detail, see [2, 5]).

But what is most important, the Lie’s method can be applied not only to classify
invariant equations but also to construct their explicit solutions by means of symmetry
reduction procedure. And one more important remark is that equations having broad
Lie symmetry often admit non-trivial conditional symmetry, which can be also used
to obtain their particular solutions [2].

In [6] the description has been suggested of different physical processes with the
help of nonlinear partial differential equations of high order, namely

Ju 8u>

T
" " dz,, Ozt

(4)

where 0! = O(0'"1), I € N; F(-,-) is an arbitrary smooth function.

The equations (4) were considered from different points of view in [2, 7, §],
where the pseudo-differential equations of type (4) were also studied (in this case [ is
fractional or negative).

Assuming [ = 1 and F = F(u) in (4) we obtain the standard nonlinear wave
equation (1), which describes a scalar spin-less uncharged particle in the quantum
field theory. Symmetry properties of the equation (1) were studied in [2, 3, 4] and
wide classes of its exact solutions with certain concrete values of the function F(u)
were obtained in [2, 3, 9, 10, 11].

In this paper we restrict ourselves to symmetry analysis of the biwave equation

0%u = F(u), (5)

which is one of the simplest equations of type (4) of the order higher than two (I = 2,
F = F(u)).
2 Symmetry classification of biwave equations

In order to carry out a symmetry classification of the equation (5) we shall establish
at first the maximal transformation group admitted by the equation (5), provided F'(u)
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is an arbitrary function. Next, we shall determine all the functions F(u) such that
the equation (5) admits a more extended symmetry.
Results of symmetry classification of the equation (5) are presented below.

Lemma 1 The maximal invariance group of the equation (5) with an arbitrary
function F(u) is the Poincaré group P(1,n) generated by the operators (2).

Theorem 1 Any equation of type (5) admitting a more extended invariance algebra
than the Poincaré algebra AP(1,n) is equivalent to one of the following PDE:

1. O%u = \u¥, M #0, kE#0,1; (6)
2. D2%u = AgeY, Ao # 0; (7)
3. 0%u = \su, A3 # 0; (8)
4. 0%y = 0. 9)

Here A1, Ao, A3, k are arbitrary constants.

Theorem 2 The symmetry of the equations (6)—(9) is described as follows:
1. (a) The maximal invariance group of the equation (6) when k # (n+5)/(n—3),
k # 0,1 is the extended Poincaré group P(1,n) generated by the operators (2) and

0 4 0

D=z,— + ——u—.
z“(‘?xu+1—ku8u

(10)

(b) The maximal invariance group of the equation (6) when k= (n+5)/(n—3),
n # 3 is the conformal group C(1,n) generated by the operators (2) and operators

0 3—n 0
DM — il
x”axu + 2 “ou (1)
K = 2,4 DM — (a:,,x”)i.
” Oz,

2. (a) The maximal invariance group of the equation (7) when n # 3 is the
extended Poincaré group P(1,n) generated by the operators (2) and

0 0

D®—, 2 42 12
T ox,  Ou (12)
(b) The maximal invariance group of the equation (7) when n = 3 is the
conformal group C(1,n) generated by the operators (2) and operators
0
2 2 v
K/S) =2:*D® — (2, )8—% (13)

3. The maximal invariance group of the equation (8) is generated by the opera-

tors (2) and
0 0
o T ow

where h(x) is an arbitrary solution of the equation (8).

Q = h(x)
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4. The maximal invariance group of the equation (9) is generated by the opera-

tors (2), (11) and
9 _ .2
ou’ ~ Yo

where q(x) is an arbitrary solution of the equation (9).

Q=q(x)

The proof of the Lemma 1 and the Theorems 1, 2 is carried out by means of the
infinitesimal algorithm of S. Lie [2, 5]. Since it requires very cumbersome computa-
tions, we adduce a general scheme of the proof only.

Within the framework of the Lie’s approach an infinitesimal operator of the equa-
tion (5) invariance group is looked for in the form

X = e (ou) 2 (s u) 2

e e (14)

The criterion of invariance of the equation (5) with respect to a group generated
by the operator (14) reads

X(O%u — F(u)) =0, (15)

4 D2u=F(u)
where X is the 4-th prolongation of the operator X.
Spli‘?ting the equation (15) with respect to the independent variables, we come to
the system of partial differential equations for functions £*(x,u) and n(x,u):
€ =0, Nuu=0, p=0,n,
&=¢. g=-¢, it ij=1n

16
@=gl= =g 1
20 = (3 —n)&0, v =0,n,
0% — nF'(u) + F(u)(n, — 4£) = 0. (17)

Besides, when n = 1, there are additional equations
Noow = 0, Mot = 0, (18)

that do not follow from the equations (16) and (17).

In the above formulae we use the notations ¢ = 0¢*/0x,, n, = On/0x, and so
on.

System (16) is one of the Killing equations in the Minkowski space-time. Its
general solution is well-known and can be represented in the following form:

& =22"x, " — xpatc” + byt + dxy + ay,

0= (3 — n)cay + p)u + (z), 19)

where ¢, by, = —b, d, a,, p are arbitrary constants, s(x) is an arbitrary smooth
function.

Substituting the expression (19) into the classifying equation (17) and splitting it
with respect to u we arrive at the statements of the Lemma 1 and the Theorems 1, 2
according to the form of F'(u).
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It follows from the assertions proved that the equation of type (4) is invariant
under the extended Poincaré group P(1,n) if and only if it is equivalent to one of the
equations (6), (7) or (9). Let us note that an analogous result was obtained for the
wave equation (1) in [3].

The following statement is also a consequence of the Theorems 1, 2 but because
of its importance we adduce it as a theorem.

Theorem 3 Equation (5) admits the conformal group C(1,n) if and only if it is
equivalent to the following:

1. 0%y = A9/ (=3) #+3; (20)
2.0%u = Age", n=3. (21)

Let us note that conformal invariance of the equation (20) has been first ascertai-
ned in [12] and that of equation (21) - in [2] by means of the Baker—Campbell-
Hausdorff formula. It is also worth noting that conformal invariance of the nonlinear
polyharmonic equations has been studied in [13], which enables constructing some
their exact solutions.

In conclusion of the Section let us emphasize an important property of the linear
biwave equation (9) with n = 3, which is a consequence of the Theorems 2, 3.

Corollary. There exist two inequivalent representations of the Lie algebra of the
conformal group C(1,3) on the solution set of the equation (9) [2, 6, §]:

— Juv,

1) _ 1) —
1. PM=p, JO) =1

0 0
DY =g T K =2z"DM — (va”) 5
1 1
2. PP =P, JI=Ju,
0 0 0
D@ =g, — + = K& =92:rD? _ (g, 2")——
x”@xu T o # v (@@ )6xu’

where the operators P,, J,, are determined in (2).

3 Symmetry classification of system of wave equations

Introducing a new variable v = Ou in (5) we get a system of partial differential
equations

Uu = v,

Ov = F(u), (22)

which is equivalent to the biwave equation (5).

Symmetry properties of the system (22) are investigated by analogy with the
previous Section. That is why, we restrict ourselves to formulating the corresponding
assertions omitting their proofs.

Lemma 2 The maximal invariance group of the system (22) with an arbitrary
function F(u) is the Poincaré group P(1,n) generated by the operators (2).
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Theorem 4 Any system of type (22) admitting a more extended invariance algebra
than the Poincaré algebra AP(1,n) is equivalent to one of the following:

1. Ou=w,
k (23)
DU:)\IU7 )‘l#ovk#ovlv
2. Ou=wv,
(24)
Uv = )\Q'U/, )‘2 # 0;
3. Ou=uv,
U= (25)
Ov = 0.

Theorem 5 The symmetry of the systems (23)—(25) is described in the following
way:

1. The maximal invariance group of the system (23) is the extended Poincaré
group P(1,n) generated by the operators (2) and

0 4

0 . 2(1+k) 0
oz, 1-k

1—k ‘ov

D=z, u%

2. The maximal invariance group of the system (24) is generated by the opera-
tors (2) and

0 0 0 0
Ql—U% +0%7 Qz—va +)\2U%7
0 0
Q3 = h1($)8—u + h2($)%,

where (hi(x), ho(x)) is an arbitrary solution of the system (24).
3. The maximal invariance group of the system (25) is generated by the opera-
tors (2) and

0 0 0 0
D—Z‘Ma—w#—FZU%, Q1—u% —‘F’U%,

0 0 0
Q2=U%, Q3=CI1($)% +Q2(30)%7

where (q1(x), q2(x)) is an arbitrary solution of the system (25).

It follows from the statements above that, unlike the biwave equations, the exten-
ded Poincaré group ﬁ(l,n) is the invariance group of the system (22) only in two
cases, namely, when the system (22) is equivalent to (23) or (25). Moreover, there are
no systems of the form (22) which are invariant under the conformal group. Therefore,
in the class of Lie operators, the invariance algebras of the biwave equations and the
corresponding systems of the wave equations are essentially different.
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4 Reduction and exact solutions
of the equation O%?u = \e%

As follows from the Theorem 2 the maximal invariance group of the equation (7) with
n =1 is the extended Poincaré group P(1,1) with the generators

0 0 0 0

0= Fro’ = ey Jo1 = xo O + 21 By’ (26)
0 0 0
() — po— — 4=
D ) B + 21 92, o (27)

To construct exact solutions of the above equation we shall make use of the
symmetry reduction procedure. A principal idea of the said procedure is a special
choice of a solution to be found. This choice is motivated by a representation of
symmetry group admitted. It is known that if an equation admits a Lie transformation
group having a symmetry operator

0 0

1%

(28)

then its solutions can be looked for in the form [2]:

u(@) = p(w) + g(x), (29)

where ¢(w) is an arbitrary smooth function, and what is more, functions w(z) and
g(x) are to satisfy the following conditions:

Ow dg(x)

% = 07 é‘ﬂ(x) 833” = 77(35)

()

To obtain all the P(1,1) non-conjugated Ansétze (29) we have to describe all the
inequivalent one-dimensional subalgebras of the Lie algebra 273(1, 1) spanned by the
operators (26) and (27) (see [2, 11]). In the paper we make use of a classification
adduced in [11]. Omitting cumbersome intermediate computations we give P(1,1)
non-conjugated Ansétze in the Table 1.

Table 1
N Algebra Invariant variable w Ansatz
1° D —Jn o + X1 u=p(w)—2In(zo — x1)
o 1+ a)In(z1 —z0)— 4
2°| D -1 = — 1
+ aJor, a # ~ (1= o) In(zo + 21) u = p(w) 1 n(zo + 1)

30 D— Joi+ Py In(zo —z1 +1/2)—

— 2({Eo + xl) ( )
4° Jo1 x5 — 7 u = p(w)
5° P, T u = p(w)
6° Py+ P, To — 1 u = p(w)
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Remark. Inequivalent subalgebras adduced in the Table 1 are constructed by taking
into account an obvious fact that equation (7) is invariant under transformations of
the form:

Ty — T, Ty — T1,

and (30)

!/
) — —xy; Ty — 0.

Substituting the Ansdtze obtained into the equation (7) we get the following
ordinary differential equations (ODE) for a function ¢(w):

1° 0= Xe?,
2 (a2~ 12 + 2P a(l - a?) - pD(1—a2) = exp (o + —o
16 a+1)’
A
30 4) _ ,B8) = 2
2 @ 646 )

10 o W2 4 458y 4 2@ = %e%
52 o) = xe?,
6° 0= \e¥.

Equation 5° has a particular solution

¢ =In (%(w—&—c)_zl), A >0,

that leads to the following exact solutions of the equation (7):

u=In <%(mo + 61)4> , A>0,
(31)

u=In (%(ml + 02)_4) ., A>0.

Here ¢, ¢1, co are arbitrary constants. This solutions are invariant under the
operators Py and P; accordingly.

In conclusion of the section let us note that the solutions (31) can be also obtained
by making use of the Ansatz in a Liouville form [2]:

24 (</91(W1)¢2(w2)>2
A (pr(wr) + pa(w2))*

u=1In , W1 =20+ T, Ww2=2To— T,

that reduces the equation (7) to one of the following systems:

1. @1:0, (,52:0;

; 203 . 243
2. <)01:ﬂ7 4102:&
$1 P2

Here ¢ and ¢ stand for the first and the second derivatives with respect to
a corresponding argument.
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Integrating the above systems we get the following exact solutions of the equa-
tion (7):

U (@)
w=n <T (azo + bxy + c)4> ’ (32)

where a, b, ¢ are arbitrary constants.
The solution (32) can be obtained from (31) by means of the final transformations
of the extended Poincaré group with generators (26) and (27).

5 Reduction and exact solutions
of the equation 0%u = Au*

It follows from the Theorel'n 2 that the equation (6) with n =1 is invariant under the
extended Poincaré group P(1,1) with generators (26) and

0 0 4 0
D—xoa—xo-l- 8 +—1—]€ EI (33)

If some equation admits a symmetry operator

0 0
X =€ (@) g g (34)

then its solutions can be looked for in the form [2]:

u(z) = f()p(w), (35)
provided functions w(z) and f(x) satisfy the following system:

&a) g =0 )T

oz,

= n(z)f(x). (36)

A complete list of ]3(17 1) non-conjugated Ansitze invariant under the inequivalent
one-dimensional subalgebras of the algebra P(1,1) is given in the Table 2.

Table 2
N Algebra Invariant variable w Ansatz
1° D —Jn To + 21 u = (zo — ml)ﬁg@(w)
2° | D4+adoi, a#-1| (xo—z1)(zo+ ar:l)g_ﬂ u = (zo + x1) =9 @FD p(w)

(xo+ 21 + 3)%

X exp (2(361 — xo))
4° Jo1 x5 — o} u = p(w)
5° Py 1 u=p(w)
6° P+ P T + a1 u= p(w)

3° D+ Jo1 + P u= exp(ﬁ(m — xo)) o(w)
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Let us note that similar Ansédtze for the nonlinear wave equation
Ou = \uF, (37)
were obtained in [3].
Substituting the Ansétze obtained into the equation (6) we get the following ODE
for a function p(w):
L+k o) A 4

10 -
1-kr2? ~ 327

3k+1
2° (a—1)2pMw? +2(a —1)(a+1)? ( T _Jrk + 2a) we® +
6a — 10 8 A
(a2 — 40 +3 @ _ A 12,k
+ (a a+3+——7p +(1k)2> 16(04—&- )",

k-1

5
30 (4),,2 2% =
pHwt + k:—

4k> A
o+ @ — A

(l_k_)QsD 6_4Q0 )

12 pWw? + 4By + 20 = %@’“,
5° o = ap",
6° \oF =0.
Equations 1°, 2°, 4° have particular solutions of the form:
1
64 (k + 1)2 k-1 2
— — E—1 k —1

and equation 5° has a particular solution of the form

S N

A (k - 1) " 3
which lead to the following solutions of the equation (6):
64 (k+1)2\* 2
u = (7(]9_1)4> (($O+Jf1 +Cl)($0—$1—|—02)) , k?é—l,
(B8R +3)BE+ 1)\ . o
U = ()\ (k—1)4 (zo + c3) , k#£—-1,-3, 3
(k+3)

(8 (k4 1)(k+3)Bk+ 1)\ . 1
’U,—()\ (k—1)4 ($1+C4) k, k# ]-7 37 37

where ¢1, ¢a, c3, ¢4 are arbitrary constants.
Note that equation (37) has analogous solutions (see e.g. [2]).

6 Reduction and exact solutions
of the equation 0%u = Au=3

It follows from the Theorems 2, 3 that the equation
0%y = M (38)
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with m =1 is invariant under the conformal group C(1,1) with generators (26) and

W= 10 P2
6]}0 8331 ou (39)
KW Z 2D _ (207-2 v —01.
,J/ axu7 ) b

By analogy with the preceding Section solutions of the equation (38) are looked
for in the form (35), where functions w(x) and f(z) are the solutions of the system
(36), and what is more, the operator (34) belongs to the invariance algebra of the
equation (38).

To obtain all the C(1,1) non-conjugated Ansdtze we use the one-dimensional
inequivalent subalgebras of the conformal algebra AC(1,1) adduced in [11].

Solving for each subalgebra equations (36) we arrive at the collection of C'(1,1)-
invariant Ansdtze which are presented in the Table 3.

Table 3.
N Algebra Invariant variable w Ansatz
1/2
(1) arctg(z1 — o)+ u= ((IO—I1)2 + 1) X
1° P+ K, te(z1 + 70) 1/2
+arctg(z1 + xo % ((3)0+3§'1)2 + 1) o(w)
1/2
2
90 | Po+ Kél) + a(Kfl) — P1)| (a—1)arctg(zo —x1)+ | ¥ = ((-’EO*xl) + 1) X
1/2
0<a<l +(a + 1)arctg(xz1 + xo) y ((wo+m1)2 11 o(w)
1/2
_ o 2
30 P0+Kél)+K1(1> _p o + 21 u= ((a:o z1) +1> X
xp(w) ”
o+ T1+ 7 2
4° 2P + KV + kW L1y Lreo—a u= ((mo—ml) +1> X
2 1—20+ 21 X@(w) 12
50 or, — KV _ g zo + 21+ u= ((xo —x1)% + 1) X
0 ! +arctg(zo — x1) ()
1/2
2
oo | Po+ K+ KV — Pi— | In(ao + 1)~ u= ((wo—wl) +1) x
B + D), §>0 |~ Parcta(zs — 7o) < (w0 +21) o)

We omit subalgebras not containing the conformal operator (39) since they were
considered in the preceding Section.

Substituting Ansétze obtained in the equation (38) we get the following reduced
ODE for a function ¢(w):

1° o® 4 25@ 4 o= A 3

TR
A
22 (0® = 1%pW +2(0” + 1) + o = o™
A

30 (2) — —3.

o = 2o

A

22 oW —p® = Z 75
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A
50 oWl = o™

A
6° 457%™ + (41— 5@ —p = T97%

The general solution of the equation 3° is of the form

2 A 1
o (1w + ¢2) . o= A Twe,
C1 1681 2

where ¢, ¢1, ¢o are arbitrary constants, ¢; # 0.
Hence we obtain the following exact solutions of the equation (38):

1 A\ 9 1/2 1/2
1. u::tﬁ o |(xo+x1+a2) —a1| ‘1:0—171+a3| ,
1 A 1/4
2 U:iﬁ <b1> |(ZZ7071‘1‘1’62)27bl|1/2|$0+x1+b3|1/2,
1 A 1/4
3. u::I:§ <0102> |(x071'1+03)2+01}1/2|(170+:171 +C4)2+02|1/2,

where a;, b;, ¢j, i =1,3, j = 1,4 are arbitrary constants.
Besides, the expression
u =N (zo — 21 + 1) (w0 + 71 + &)
(c1, o are arbitrary constants) was proved in the Section 4 to be the exact solution
of the equation (38).

Conclusion

Thus, we have shown that the symmetry selection principle is a natural way of classi-
fication of physically admissible nonlinear biwave equations. Requiring an invariance
with respect to the extended Poincaré group picks out very specific nonlinearities (3).
And the demand of a conformal invariance yields, in fact, a unique nonlinear PDE
(20), (21).

As equations obtained in this way admit broad Lie symmetry, one can apply the
symmetry reduction procedure to find their exact solutions. An important part of the
said procedure is a construction of special substitutions which reduce the equation
under study to PDE with less number of independent variables. Given a subgroup
classification of the equation under study, a procedure of construction of such substi-
tutions is entirely algorithmic. Of course, there is no guarantee that the reduced
equations can be solved explicitly. But our experience as well as a rich experience of
other groups engaged in the field of group-theoretical, symmetry analysis of nonlinear
partial differential equations evidence that it is almost always possible [2, 5, 14, 16].
The reason is that PDE obtained by means of reduction of some initial PDE admitting
broad Lie symmetry also possess a hereditary symmetry. Moreover, in some excepti-
onal cases this symmetry can be much more extensive than the one of the initial
equation. An example is given in [15], where it is established that some equations
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obtained by means of reduction of the nonlinear Poincaré-invariant Dirac equation
admit infinite-parameter symmetry groups. Since a maximal symmetry group of the
initial equation is the ten-parameter Poincaré group, this symmetry is essentially new.
The source of it is the conditional symmetry of the nonlinear Dirac equation [2, 15].

In the present paper we have applied the symmetry reduction procedure to reduce
to ODE the fourth-order nonlinear biwave equations of the form (5) having two
independent variables xg, x; and to construct its explicit solutions. A problem of
symmetry reduction of these equations has been completely solved in a sense that
any solution of PDE (5) invariant under a subgroup of the conformal group C(1,1)
(which is a most extensive group that can be admitted by equation of the form (5))
is equivalent to one of the Ansétze given in the Tables 1-3. And what is more, these
Ansédtze can be applied to reduce any two-dimensional PDE, provided it is invariant
under the Poincaré, extended Poincaré and conformal groups having the generators
(2), (10)-(13). But it does not mean that all possibilities to reduce PDE (5) to ODE
are exhausted. New reductions can be obtained by utilizing conditional symmetry
of the biwave equation in the way as it has been done for a number of nonlinear
mathematical physics equations in [2]. This problem is under investigation now.

An another interesting problem is to carry out symmetry reduction of the biwave
equation in the four-dimensional Minkowski space-time. This work is now in progress
and will be reported elsewhere.
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Symmetry and some exact solutions
of non-linear polywave equations

W.1. FUSHCHYCH, O.V. ROMAN, R.Z. ZHDANOV

We have studied the maximal symmetry group admitted by the non-linear polywave
equation O'uw = F(u). In particular, we establish that equation in question ad-
mits the conformal group C(1,n) if and only if F(u) = Xe*, n+1 = 2[ or
F(u) = 142D/ (n+1=2D 1y 4 1 £ 9] Symmetry reduction for the biwave equation
O%u = Au~? is carried out and some exact solutions are obtained.

Recently a number of works (see, e.g., [1, 2, 3]) have appeared pointing out the
possibility to choose linear and non-linear polywave equations

Olu = F(u) (1)

as possible mathematical models describing an uncharged scalar particle in quantum
field theory.

Here O =0(01), 1e N; O0=92 — 82 —---— 02 is d’Alembertian in (n + 1)-
dimensional pseudo-Euclidean space R(l n) ‘with metric tensor g = diag(1,—-1,...,

—1), p,v =0,n; F(u) is an arbitrary smooth function and v = u(x) is a real function
(the case I = 1, n = 1 has been studied earlier [4], that is why we put I +n > 2).
In the following, a summation over the repeated indices from 0 to n is understood,
rising and lowering of the vector indices is performed by means of the tensor g,,, i.e.
' = g1y,

But the fact that the non-linear partial differential equation (PDE) in question is
of high order makes the prospects of studying such a model rather obscure. Using
group properties of equation (1) seems to be the only way to get some non-trivial
information about the said equation and its solutions. It occurs that PDE (1) admits
wide symmetry group which, in fact, is the same as the one of the standard wave
equation

Ou = F(u). (2)

The main tool used is the infinitesimal Lie method (see, e.g., [5]). But an appli-
cation of it to study of symmetry properties of equation (1) is by itself a non-trivial
problem in the case { > 1. It should be emphasized that because of arbitrariness
of the order (I) and of the number of independent variables (n) one can not apply
symbolic manipulation programs [6, 7]. We have succeeded in constructing the maxi-
mal symmetry group admitted by equation (1) using the remarkable combinatorial
properties of the prolongation formulae.

Theorem 1. The maximal invariance group of PDE (1) with arbitrary smooth func-
tion F(u) is the Poincaré group P(1,n) generated by the operators

Py =0.,, Ju=2"0y, —2"0;,, pmv=0n. 3)

Europhys. Lett., 1995, 31, Ne 2, P. 75-79.
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It is established below that the equation of the type (1) admitting the group, which
is more extensive than the Poincaré group, is equivalent up to the change of variables
to one of the following equations:

L Ow=XM\uF, A #0, k#0,1; (4)
2. Oy = Age®, Ao # 0; ()
3.0 = \su, A3 # 05 (6)
4. Oy = 0. (7)

Here A1, A2, A3, k are arbitrary constants.

Maximal invariance groups of the equations (4)-(7) are described by the following
statements.
Theorem 2. Equation (4) has the following symmetry:

Case I. k#(n+14+2)/(n+1—2l), k #0,1. The maximal invariance group of
(4) is the extended Poincaré group ﬁ(l,n) generated by the operators (3) and

21
D = .’L’Ha;CM + ﬂuau
Case 2. k=(n+1+2l)/(n+1-2l), n+1+#2l. The maximal invariance group
of (4) is the conformal group C(1,n) generated by the operators (3) and operators

(20 —n—-1)

2
K =22#DW — (2,2")0,,, p,v=0,n.

DM = 20z, + U0y,

8)

Theorem 3. Equation (5) has the following symmetry:
Case 1. n # 21— 1. The maximal invariance group of (5) is the extended Poincaré
group P(1,n) generated by the operators (3) and

D® = 2,0, —210,. (9)

Case 2. n =2l — 1. The maximal invariance group of (5) is the conformal group
C(1,n) generated by the operators (3) and operators

2) _ 2 v — 0 n
KL ) =2z DA — (2,2")0z,, p,v=0,n. (10)

Theorem 4. The maximal invariance group of the equation (6) is generated by the
operators (3) and

Qoo = f($)au7 I= uauv

where f(x) is an arbitrary solution of PDE (6).

Theorem 5. The maximal invariance group of the equation (7) is generated by the
operators (3), (8) and

Qo = Q(x)au7 I = ud,,
where q(x) is an arbitrary solution of PDE (7).
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The proof of the Theorems 1-5 carried out by means of the infinitesimal algorithm
of S. Lie [5] requires very cumbersome computations. That is why, we omit it.
An important consequence of the Theorems 1-5 is the following statement.

Theorem 6. The non-linear PDE (1) is invariant under the conformal group C(1,n)
iff it is equivalent to the following

1.0 = )\luﬁﬂf%’ n+1+# 2l; (11)
2. Oy = Xoet, n+1=2L (12)

Remark 1. Conformal invariance of the equation (11) was first ascertained in [8]
and that of equation (12) was done in [3] by means of Baker—Campbell-Hausdorff
formulae.

Assuming [ =1 in (11) we obtain the well-known result [3]; that non-linear wave
equation (2) admits the conformal group if it is equivalent to the PDE

n+3
Ou = Au»-1 when n # 1.

Remark 2. When [ = 2 it follows from the Theorem 6 that in the four-dimensional
space R(1,3) there is only one C(1,3)-invariant equation

0%y = Ae®.

One of the important applications of the Lie groups in mathematical physics is
the finding exact solutions of non-linear PDE. To this end one has to construct so
called invariant solutions [2, 3, 5] which reduce PDE under study to equations with
less number of independent variables (in particular, to ordinary differential equations).
Integrating these one gets exact solutions of the initial PDE. A procedure described
is called symmetry (or group-theoretical) reduction of differential equations. Here
we perform symmetry reduction of the conformally-invariant biwave equation in the
two-dimensional space R(1,1):

02w = \u~3. (13)

Making use of inequivalent one-dimensional subalgebras of the conformal algebra
AC(1,1) [9] one can obtain the following C(1,1)-inequivalent Ansédtze which reduce
the equation (13) to ordinary differential equations. For each case the reduced equati-
ons are given:

1. u=¢pWw), w=z9 of wWw=u,
W =275
2. u=opw), w=zj-ai,
©Ww? 4+ 4p®w + 203 = 5\—6@*3;
3. u=(xo+ x1)1/2<p(w), w=x9— T1,
A
P =207
4 u=(zo+ xl)l/(aﬂ)w(w), w = (zo — x1)(z0 + $1)(a_1)/(a+1);
(@=2C2a—1) o A(a+1?

f p
)2 4 4,®) _AlatD)”
LA P N T A

, a>1;
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1
5. u=-exp(ro—z1)plw), w= (mo +x1+ 2) exp(—2(zo — 21)),

9 A
(4) 403 (2) — -3.
<pw+<p w+4<p 64<p ;

6. u=((wo—x1)?+1) /2<p(w), w=x0+ T1,
A .
2) _ -3,
P 1680 ;

7. u= ((1‘07"1)1) Jrl)l/2 (w), w=2ag+ x1 +arctan(xg — x1),
A
(4) 2 - 2 3.
e+ 16@ ;
1/2 1 ].+IE0—{E1
8. u=((zo—m)?+1 - NEE .
U ((xO fEl) + ) ( )ﬂ w $0+$1+2n1_x0+x1;

A
@ _ ,2 = 2 3.
¥ 16‘/7 ;

1/2 1/2
9. wu= ((mo —x1)2—|—1) / (m0+x1) / o(w),
w = In(zo + x1) — Barctan(zy — x9),
A
400 4+ (4= 81 —p = o7 B> 0;

10. uw= (((E()—$1)2+1)1/2(($(]+$1) +].) 1/2 ( ),
w = (y —1)arctan(zg — 1) + (v + 1) arctan(xzg + 1),

13

A
(72 = 1% +2(® + 1) + o = e 0 <L

Integration of the reduced equations gives rise to exact solutions of the non-linear
biwave equation (13). Here we present some exact solutions of this equation obtained
with the use of Ansétze 3 and 6:

= £ )\/4 (:vg — z%)l/Z,

1 A 1/4 2 1/2 1/2

u:i% o ’(Jco—xl) —cl‘ (o +21)7, (14)
1/ A\ M4

U:i§ (g) ((1‘0 _ml)z+1>1/2‘(x0+m1)2+62’1/2)

where ¢;, co are arbitrary constants.

Since the conformal group C(1,1) is a maximal symmetry group of equation (13),
formulae 1-10 give “maximal” information about its solutions which can be obtained
within the framework of the Lie approach. It means that any solution invariant under
a subgroup of the symmetry group of PDE (13) can be reduced by a transformation
from the group C(1,1) to one of the Ansdtze 1-10.

Acknowledgments. One of the authors (RZZ) is supported by the Alexander von
Humboldt Foundation.
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Symmetry properties, reduction and exact

solutions of biwave equations
W.I. FUSHCHYCH, R.Z. ZHDANOV, O.V. ROMAN

We have studied symmetry properties of the biwave equations O?u = F(u) and the
systems of wave equations which are equivalent to them. Reduction of the nonlinear
biwave equations with the use of subalgebras of the extended Poincaré algebra 213(17 1)
and the conformal algebra C'(1,1) was carried out. Some exact solutions of these equati-
ons were obtained.

It was suggested in [1] to describe different physical processes with the help of
nonlinear partial equations of high order, namely

Jou Ou
Oy = — ).
Y F(u, oz, (91'“) ()
Here and further O = §2?/0x¢ — 8% /0xy — -+ — 0% /0x,, is d’Alembertian in (n + 1)-

dimensional pseudo-Euclidean space R(1,n) with metric tensor g,, = diag(1,—1,...,
-1), p,v = 0,n; O = 0(0'1), 1 € N; x, = 2¥g,,; F(-,-) is an arbitrary smooth
function; u = u(z) is a real function; the summation over the repeated indices from 0
to n is understood.

Equations (1) were considered from different points of view in [2, 3, 4], where the
pseudodifferential equations of type (1) were also studied (in this case [ is fractional
or negative).

Assuming [ =1 and F' = F(u) in (1) we obtain the standard wave equation

Ou = F(u) (2)

which describes a scalar spinless uncharged particle in quantum field theory. Sym-
metry properties of equation (2) were studied in [4, 5, 6] and wide classes of its
exact solutions with certain concrete values of the function F(u) were obtained in
(4, 5,7, 8, 9].

In this paper we restrict ourselves by considering the biwave equation

0%y = F(u) (3)
which is one of the simplest equations of type (1) of high order (I =2, F = F(u)).

1 Symmetry classification of the biwave equation

In order to carry out a symmetry classification of equation (3) we shall establish
at first the maximal transformation group admitted by equation (3) provided F'(u)
is an arbitrary function. After that we shall determine all the functions F(u) when
equation (3) admits more extended symmetry.

Results of symmetry classification of equation (3) are cited in the following
statements.

Preprint LiTH-MAT-R-95-20, Department of Mathematics, Linkdping University, Sweden, 16 p.
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Lemma 1 The maximal invariance group of equation (3) with an arbitrary function
F(u) is the Poincaré group P(1,n) generated by the operators
0 0 0

PL:— JV:;L"U’ _l_y_
Y xy, M oz, ox,’

v =0,m. (4)

Theorem 1 All the equations of type (3) admitting more extended invariance algeb-
ra than the Poincaré algebra AP(1,n) are equivalent one of the following:

L D%u=X\u, A\ #£0, k#0,1; (®)
2. D%u = Xge¥, Ny #0; (6)
3. 0%u = \su, Mg #0; (7)
4. 0% = 0. ®)

Here A1, Ao, A3 are arbitrary constants.

Theorem 2 The symmetry of the equations (5)—(8) is described in the following
way:

1. (a) The maximal invariance group of equation (5) when k # (n+5)/(n —3),
k # 0,1 is the extended Poincaré group P(1,n) generated by the operators (4) and

0 4 0

D=z,—+ ——u—.
x”@x# + 1-— k;uﬁu

(b) The maximal invariance group of equation (5) when k = (n+5)/(n — 3),
n # 3 is the conformal group C(1,n) generated by the operators (4) and
0 3—n 0

DO — 4, 2
x“@xu—i_ 2 “au’

() M 9 ©

Kﬂ = QI‘HD — (Z‘y.’l} )a—x#

2. (a) The maximal invariance group of equation (6) when n # 3 is the extended
Poincaré group P(1,n) generated by the operators (4) and

0 0

D@, 2 4= 10

T ox,  Ou (10)

(b) The maximal invariance group of equation (6) when n = 3 is the conformal

group C(1,n) generated by the operators (4) and

0

2) 2 v
K/S) =22D®? — (2, )87%

(11)
3. The maximal invariance group of equation (7) is generated by the operators (4)
and

0 0
au T e

where h(x) is an arbitrary solution of equation (7).

Q = h(x)
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4. The maximal invariance group of equation (8) is generated by the operators
(4), (9) and
0 0
I Gy
ou’ “ou

where q(x) is an arbitrary solution of equation (8).

Q= q(x)

The proof of Lemma 1 and Theorems 1, 2 is carried out by means of the infinitesi-
mal algorithm of S. Lie [4, 10]. Since it requires very cumbersome computations we
only give a general scheme of the proof.

In the Lie approach the infinitesimal operator of equation (3) invariance group is
of the form

X = ,gu(x,u)i +n(x, u) i

e o (12)

The invariance criterion of equation (3) under group generated by the opera-
tors (12) is

X (0% — F(u)) =0, (13)

4 02u=F(u)
where )4( is the 4-th prolongation of the operator X.

Splitting equation (13) with respect to the independent variables, we come to the
system of partial differential equations for functions £#(z,u) and n(z,u):

=0, Nw=0, p=0n,

i g0 i gl £ ogi=1

fg 117 5] nzv 27&.]7 1, y 1y (14)
=& ==&,

2Ny = (3 —n)&yy, v =0,n,

0% — nF' (u) + F(u)(n. — 47) = 0. (15)

Besides, when n = 1, there are additional equations:

Noouw = 0, Mot = 0, (16)

that do not follow from equations (14) and (15).

In the above formulae we use the notations &8 = 9¢#/0x,, n, = On/dx, and so
on.

System (14) is a system of Killing equations. The general solution of equations
(14), (16) is of the form:

& =222, — a2t + byt +dey, + ay,

n= (3 —n)c'z, + p)u+ x(z), (17

where ¢, b,,, = —b,., d, a,, p are arbitrary constants, s(x) is an arbitrary smooth
function.

Substituting (17) into the classifying equation (15) and splitting it with respect
to u we obtain statements of Lemma 1 and Theorems 1, 2 according to the form
of F(u).
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It follows from the statements proved that the equation of type (1) is invariant
under the extended Poincaré group P(1,n) iff it is equivalent one of equations (5), (6)
or (8). Let us note that the analogous result was obtained for the wave equations (2)
in [5].

The following statement also is the consequence of the Theorems but since it is
important we adduce it as a Theorem.

Theorem 3 Equation (3) is invariant under the conformal group C(1,n) iff it is
equivalent to the following:

1. D%y = Ao/ (=3) oy £ 3. (18)
2. 0%y = Xoe”, n=3. (19)

Let us note that conformal invariance of equation (18) was first ascertained in [11]
and that of equation (19) was done in [4] by means of Baker—Campbell-Hausdorff
formulae.

In conclusion of the Section let us emphasize an important property of the linear
biwave equation (8), when n = 3, which is the consequence of Theorems 2 and 3.

Corollary There exist two nonequivalent representations of the Lie algebra of the
conformal group C(1,n) on the set of solutions of equation (8) [1, 3, 4/

1. P =P, JU =1,

DM — g, O KW Zuup® (g0
“83:/ . .
2. PISQ) = PH’ Jl(l?’) - J,ul/,
1o} 0 0
DO _ g K@ — oD@ _ Lz’
" D ta0 K x (zp2 )3%,

where the operators P,, J,, are determined in (4).

2 Symmetry classification of system
of wave equations

Introducing a new variable v = Ou in (3) we get the system of partial differential
equations

Uu = v, 2
Ov = F(u), (20)

which is equivalent to the biwave equation (3).

Symmetry properties of the system (20) are investigated by analogy with the
previous Section. So we only formulate statements analogous to the preceding ones
without proving them.

Lemma 2 The maximal invariance group of the system (20) with an arbitrary
function F(u) is the Poincaré group P(1,n) generated by the operators (4).
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Theorem 4 All the systems of type (20) admitting more extended invariance algebra
than the Poincaré algebra AP(1,n) are equivalent one of the following:

1. DOu=w,

k 1)
Ov = Au ) )‘1#07 k#()?lv
2. Ou=
U=, 22)
Ov = Aou, Ag #0;
3. Ou=uv,
O — (23)

Theorem 5 The symmetries of the systems (21)-(23) is described in the following
way:

1. The maximal invariance group of the system (21) is the extended Poincaré
group P(1,n) generated by the operators (4) and

) 4 9 21+k) 9

T, 1—k‘u6uJr 1—k ‘ov

2. The maximal invariance group of the system (22) is generated by the opera-
tors (4) and

0 0 0 0 0 0
Q1 = u% +U<9_v7 Qz = Ua—u +)\2U%, QS = hl(x)% +h2(x)%,

where (hi(x), ha(x)) is an arbitrary solution of the system (22).
3. The maximal invariance group of the system (23) is generated by the opera-
tors (4) and

0 0 0 0
D—IuaTH-f-QUa, Q]—ua—u—f—va,

0 0 0
QQZU%a Qszm(ﬂﬂ)% +Q2(w)£7

where (q1(x), q2(x)) is an arbitrary solution of the system (23).

It follows from the foregoing statements that unlike the biwave equations, the
extended Poincaré group ﬁ(l,n) is the invariance group of the system (20) only in
two cases, namely, when (20) is equivalent to (21) or (23). Moreover, the system
(20) is not invariant under the conformal group for any functions F'(u). Therefore,
in the class of Lie operators, the invariance algebras of the biwave equations and the
corresponding systems of wave equations are essentially different.

3 Reduction and exact solutions
of the equation O%u = \e*

As follows from Theorem 2 the maximal invariance group of the equation (6), when
n =1 is the extended Poincaré group P(1,1) with generators

9 P, = i Jop = xoi _ zli (24)

Po=—
07 Oy’ S 0x, Ozo’
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D® :xoai 4o — —4—. (25)

It is known that if an equation admits the symmetry operator

0 0
— () il
X =@ g+ @)y, (26)
then its solutions can be found in the form [4]:
u(z) = p(w) + g(). (27)

For the substitution (27) to be an ansatz for the equation with the symmetry
operator (26), the functions w(z) and g(x) are to satisfy the following conditions:

ow dg(x)
fﬂ(x)% =0, 5”(37)3—% = ().
To obtain all the P(1,1)-nonequivalent ansatzes (27) we have to describe all the
nonequivalent one-dimensional subalgebras of the Lie algebra ZI/D(I, 1) spanned by the
operators (24) and (25) (see [4, 9]). In the paper we make use of classification given
in [9] and omitting rather cumbersome computations we write }5(1, 1)-nonequivalent
ansatzes in Table 1.

Table 1.
N Algebra Invariant variables w Ansatz

1° D — Jn zo + 71 u=pw)—2In(zo — x1)
1+ a)In(z1 —zo)—

— (1 —a)ln(zo + 1)
In(zg —z1 +1/2)—

2° | D+ aJor, a# -1 In(zo + 1)

a+1

° D — P = —21 - 1/2
3 Jo1 + P — (a0 + 1) u = p(w) n(zo —x1 +1/2)
4° Jo1 2 — o2 u = p(w)
5° Py x1 u = p(w)
6° Py + P zo — a1 u=pW)

Remark. Inequivalent subalgebras listed in Table 1 are built by taking account of the
obvious fact that equation (6) is invariant under the transformations of the form:

g — o, xo — 71,
, and
Ty — —T1; T, — Zo.

(28)

Substituting ansatzes obtained in (6) we get the following equations for the functi-
on p(w):

1° 0= Xe?,
2 (a2~ 12 + 26Pa(l - a?) — ¢@(1 - a?) = xexp (p+ —o
16 a+1)’
A
o L@ _ B3 _ A e
3o meT =g
4o W2 440G W + 202 = %6‘”,

5° <p(4) = \e¥,
6° 0= \e”.
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Equation 5° has the partial solution

24
gp:hl (7((#“‘0)4), )\>07

that leads us to the following exact solutions of equation (6):

u=In <2—/\4($0+61)_4), A >0,
(29)

u=In <%((E1+CQ)4) , A>0.

Here ¢, ¢1, o are arbitrary constants. This solutions are invariant under the operators
Py and P, accordingly.

To finish the Section let us note that the solutions (29) can be obtained by making
use of the ansatz in Liouville form [4]:

24 (<P1(w1)¢2(w2))2
A (p1(wi) + pa(wa))*

’ (U1:£L'0+.T1, W2 =To — T1,

which reduces equation (6) to one of the following systems:

1. ¢1=0, @2=0;
2 22 . 2 =2
208,29
$1 P2
Here ¢ and ¢ mean the first derivative and the second one of the corresponding
argument.
Finding the general solution of the systems we get the following exact solutions
of equation (6):

(U (-
u=1n (A(+bx—|—)> ! (30)

where a, b, ¢ are arbitrary constants.
Solution (30) can be obtained from (29) by the transformations of the extended
Poincaré group with the generators (24) and (25).

2. p1=

4 Reduction and exact solutions
of the equation 0%u = \u*

It follows from Theorem 2 that when n = 1 the equation () is invariant under the
extended Poincaré group P(1,1) with the generators (24) and

0 0 4 0
D—xoa—xo-l-xla—m-&-mu%. (31)

If an equation admits the symmetry operator

0
X = 5“(30)87 +n(x)
w
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then its solutions can be found in the form [4]:

u(z) = f(2)p(w) (33)
provided functions w(z) and f(x) satisfy the following system:
ow of(x)
@) gy =0 @5, =) @), (34)

With an allowance for invariance of equation (5) under the changes of variables
(28) we write P(1,1)-nonequivalent ansatzes of the form (33) in Table 2.

Table 2.
N Algebra Invariant variables w Ansatz
1° D — Jn To + T1 u= (zo — wl)ﬁgp(w)
2° | D+ aJoi, a# -1 | (z0 —x1)(xo+x1)g_ﬂ U= (wo—&—:cl)(l*k;l(a“)gp(w)

(o + 1 + %)X

3 D+ Jo + By X exp <2(:v1 — x0)>

u= eXP(ﬁ(wl - $0)>90(w)

4° Jo1 xg — ai u = p(w)
5° Py T u=pw)
6° Py+ P To + 71 u = p(w)

Let us note that analogous ansatzes were obtained in [4] for the nonlinear wave
equation

Ou = \u”. (35)

Substituting the ansatzes obtained to equation (5) we get the following equations
for the function p(w):

L+k o) A 4

1-kr2” ~ 327
kE+1

2° (a—1)2pMw? +2(a —1)(a+1)? (31—+/€ + 2a) we® +

A 120k
=% " (A=h? TR

10

+2<a2—4a+3+

5k —1
3 eWe? + ﬁgo(3)w +

4k A
AR oAk
1-r2Y “ &’
12 pWu? + 4By + 20 = %@’“,
5° o = aph,
6° \pF =0.

Equations 1°, 2°, 4° have the partial solutions of the form:

(B 12\TT
o= (Stme) ke
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and equation 5° has the partial solution of the form

(8 )R E)EEED\FT L 4 a1
_<X (k—1)! ) G R

which lead us to the following solutions of equation (5):

uZ(%E:_‘_BA;)“(($o+x1+01)(3&0—x1+c2))k17 L,
8 (k+1)(k+3)(3k + 1)\ FT N .
U_<X( + )Eki1§i + )> ($0+C3)1—k, k#_17_3’_§7
(k+3)

8 (k+1)(k +3)(3k + 1)\ = 4 1

where ¢y, ¢o, c3, ¢4 are arbitrary constants.
Note that equation (35) has analogous solutions (see [4]).

5 Reduction and exact solutions
of the equation 0%y = Au~3

It follows from Theorems 2 and 3 that when n = 1 the equation
0%y = \u™? (36)

is invariant under the conformal group C(1,1) with the generators (24) and

DW Zxo—a -i-ﬂUl—a +ug7
dzo Oxy Oou (37)
KM = 9z0pM) (scl,ar”)i p, v =0,1.
u ox,’ ’ ’

By analogy with the previous Section solutions of equation (36) can be found in
the form (33) where functions w(z) and f(x) are the solutions of the system (34)
provided the operator (32) belongs to the invariance algebra of equation (36).

To obtain all the C(1,1)-nonequivalent ansatzes we use the one-dimensional
nonequivalent subalgebras of the conformal algebra AC(1,1) adduced in [9].

Omitting rather cumbersome computations and taking account of equation (36)
being invariant under the changes of variables (28) we write nonequivalent ansatzes
in Table 3.

We omit subalgebras not containing conformal the operator (37) since they were
considered in the previous Section.

Substituting ansatzes obtained in (36) we get the following equations for the
function p(w):

A
12 W +20® 4o = T

A
20 (a2 =1)20™ 4+ 2(a? + 1) 4+ p = 1—690‘3;
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Table 3.
N Algebra Invariant variables w Ansatz
1/2
° (1) arctg(z1 — o)+ U= ((-730*%1)2 + 1) X
1 Po+ Ko +arctg(z1 + xo) 2 1/2
L x((@o+a)? +1) " p(w)
1/2
oo | Pot K+ a(K{Y = Py)| (o Darctg(zo — @)+ | © (zo=an)?+ 1>1/2X
0<a<l +(a + 1)arctg(z1 + zo) y ((:voerl)z 1 o(w)
9 1/2
3| R+EP+EY-p w0 + 71 = (o —w)?+1) "x
Xp(w) )
Zo + 1+ _ !
40 2P1+Kél)+K£1) +11n1+x0_x1 u= ((xo—ax1) +1> x
2 1—20+ 21 ch(w) 12
50 op, KO _ W To + 1+ U= ((yco - x1)2 + 1) X
0 1 +arctg(zo — z1) (W)
1/2
o | P+ KL + KD — Pi— | In(ao + 21)- u= ((wo—w1)2+1) x
—B(Jor + DY), 5>0 — Barctg(x1 — o) X (ﬂco + ml)l )
A
30 (2) - - —3.
P 1680 ;
A
4° 4) _ (2 _ 2 3.
P 14 16('0 ;
500 ,@ 2 _ N -3
e 16('0 ;
6° 4570 + (4 - Fp® —p = 3975
The general solution of equation 3° is of the form
clw + ¢2)? A
¥ = + ( ! 2) + ) C1 7{ 07
C1 1661
1
o =14/ 5\/—/\w+c,
where ¢, ¢1, co are arbitrary constants.
Hence we obtain the following exact solutions of equation (36):
1A\ 1/2 1/2
1. UZ:IZE (a—1> |(xo+x1+a2)2—a1|/ \170—1?1+a3|/,
1 /AN 1/2 1/2
2. u::l:ﬁ (E) }($0—1‘1+b2)2—b1|/|{E0+$1+b3’/,
1/ A\ 1/2 1/2
3. u=dg <;> (w0 — 21 + ) + e1|?|(w0 + 21+ ca)® + 2|7,
1C2

where a;, b;, ¢j, i =1,3, j = 1,4 are arbitrary constants.
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Besides, the expression

u= :I:)\l/4|(x0 —x1+c1)(xo+ 21 + 02)|1/2
(c1, co are arbitrary constants) was proved in Section 4 to be the exact solution of
equation (36).

In conclusion let us note that we can obtain the same solutions using the following
ansatz

u=p1(w)p2(w2), wi=z0+x1, wer=x0— 2,

which reduces equation (36) to the system of ordinary differential equations for the
unknown functions ¢1(wq) and @o(ws), namely

. cC _3
Y1 = Z§01 )
\ (38)
. _3
Y2 = @@2 ’

where ¢ is an arbitrary constant.
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Symmetry reduction and exact solutions
of the Yang—Mills equations

V.I. LAHNO, R.Z. ZHDANOV, W.I. FUSHCHYCH

We present a detailed account of symmetry properties of SU(2) Yang—Mills equations.
Using a subgroup structure of the Poincaré group P(1,3) we have constructed all
P(1, 3)-inequivalent ansatzes for the Yang-Mills field which are invariant under the
three-dimensional subgroups of the Poincaré group. With the aid of these ansatzes
reduction of Yang-Mills equations to systems of ordinary differential equations is carried
out and wide families of their exact solutions are constructed.

1 Introduction

Since Newton’s and Euler’s works, exact solutions of differential equations describing
physical processes were highly estimated. Green, Lame, Liouville, Cayley, Donkin,
Stokes, Kirchhoff, Poincaré, Stieltjes, Forsyth, Volterra, Appel, Macdonald, Weber,
Bateman, Whittaker, Sommerfeld and many other famous researchers constructed
different classes of exact solutions of linear Laplace, d’Alembert, heat, and Maxwell
equations.

Nowadays, this constructive branch of mathematical physics is not so popular as
earlier. But if one wants to have some nontrivial information on solutions of basic
motion equations in quantum mechanics, field theory, gravitation theory, acoustics,
and hydrodynamics, then the more intensive research work should be carried out in
order to develop analytical methods of solution of partial differential equations (PDE).
And what is more, unlike the mathematical physics of the 19th century, modern
mathematical physics is essentially nonlinear. It means that all principal equations
of modern physics, biology and chemistry are nonlinear. This fact complicates very
much the problem of constructing their exact solutions (see, e.g. [1] and references
therein).

Up to now, we have comparatively few papers devoted to construction of exact so-
lutions of nonlinear multi-dimensional d’Alembert, Maxwell, Schrédinger, Dirac, Max-
well-Dirac, Yang—Mills equations. Whereas, a huge amount of papers and monographs
are devoted to construction of exact solutions of equations for gravitational field. It
is difficult even to estimate the number of papers and monographs, where the soliton
solutions of the one-dimensional nonlinear KdV, Schrédinger and Sine-Gordon equa-
tions are studied. We are sure that the above mentioned equations should deserve
much more attention of researchers in mathematical physics.

With the present paper we start a series of papers devoted to construction of new
classes of exact solutions of the classical Yang—Mills equations (YME) with the use of
their Lie and non-Lie symmetry. Here we study in detail symmetry reduction of YME
by Poincaré-invariant ansatzes and obtain wide families of its exact Poincaré-invariant
solutions.

J. Nonlinear Math. Phys., 1995, 2, Ne 1, P. 51-72.
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By the classical YME, we mean the following nonlinear system of twelve second-
order PDE:
9,0" A, — 08,4, +e[(0, A,) x A, —2(0,A,) x A, + (0"4,) x AY] +

) v 1.1
+e2A, x (A x A4,) =0. (L.1)

Here 0, = aT' u,v=0,3, e = const, A =4 u(Zo, 1, T2, x3) is the three-component
vector-potential of the Yang-Mills field (called for bravity, the Yang-Mills field).
Hereafter, the summation over the repeated indices u,v from O to 3 is understood.
Raising and lowering the vector indices is performed with the aid of the metric tensor

1, u=v=0,
Guv = _]-v w=v= 112a37
0, p#v

(i.e. 0" = g,,0,).

It should be said that there were several reviews devoted to classical solutions
of YME (see [2] and the literature cited there). But, in fact, symmetry properties of
YME were not used. The solutions were obtained with the help of ad hoc substitutions
suggested by Wu and Yang, Rosen, 't Hooft, Corrigan and Fairlie, Wilczek, Witten
(for more detail, see [2]).

The structure of our paper is as follows. In the second Section we give all
necessary information about symmetry properties of YME and about a solution
generation procedure by virtue of the finite transformations of the symmetry group
admitted by YME. In Section 3 we construct P(1,3)-inequivalent ansatzes for the
Yang—Mills field invariant under the three-parameter subgroups of the Poincaré
group. Section 4 is devoted to reduction of YME to systems of ordinary differential
equations (ODE). Integrating these in Section 5 we construct multi-parameter fami-
lies of exact solutions of YME. In Section 6 we consider some generalizations of
the solutions obtained and, in particular, construct the generalization of Coleman’s
solution.

2 Symmetry and solution generation
for the Yang—Mills equations

It was known long ago that YME are invariant with respect to the group C(1,3) ®
SU(2), where C(1,3) is the 15-parameter conformal group having the following
generators:

P, =0,,

Jap =205 — xﬂaa + A“aaAg — A“ﬁaAz,

D = "Euaﬂ - AzaAz,

K, =22"D — (z,2")0,, + 2A"" 1,040 — 2AZJ’JV(9AZ,

2.1)

and SU(2) is the infinite-parameter special unitary group with the following basis
generator:

@ = (abcALws(2) + e LO,w" () D ;. (2.2)
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In (2.1), (2.2) 6Aﬁ = %, w®(z) are arbitrary smooth functions, e4p. is the third-
order anti-symmetrical tens%r with €103 = 1. Hereafter, summation over the repeated
indices a, b, ¢ from 1 to 3 is understood.

But the fact that the group with generators (2.1), (2.2) is a maximal (in Lie’s
sense) invariance group admitted by YME was established only recently [3] with the
use of a symbolic computation technique. The only explanation for this situation is a
very cumbersome structure of the system of PDE (1.1). As a consequence, realization
of the Lie algorithm of finding the maximal invariance group admitted by YME
demands a huge amount of computations. This difficulty had been overcome with the
aid of computer facilities.

One of the remarkable possibilities provided by the fact that the considered equati-
on admits a nontrivial symmetry group gives the possibility of getting new solutions
from the known ones by the solution generation technique [1, 4]. This technique is
based on the following assertion.

Lemma. Let

I:t:fu(ﬂf7u,7'), /L:Oan_la

ul, = go(z,u,7), a=1,N,

a

where 7 = (11, 7a,...,7-) be the r-parameter invariance group of some system of
PDE and U,(x), a = 1, N be its particular solution. Then the N-component function
uq(x) determined by implicit formulae

Ua(f(l',u,T)) :ga(xvua’r), a:]-aij\f (23)

is also a solution of the same system of PDE.

To make use of the above assertion we need formulae for finite transformations
generated by infinitesimal operators (2.1), (2.2). We adduce these formulae following
[1, 2].

1. The group of translations (generator X = 7,P,)

r_ dr _ 4d
T, =z, + 7, A = A

2. The Lorentz group O(1,3)
a) the group of rotations (generator X = 7.J,)
xp=0, z.==xz., c#a, c#b,
xl, = x4co8T + TpSinT,
T} = TpCOST — Ty SinT,
Al = Ad, AY = Al c#a, c#D,
A = AdcosT + AlsinT,
A = Ad cosT — Adsin T,
b) the group of Lorentz transformations (generator X = 7.Jy,)
xh = xp cosh 7 + x4 sinh 7,
zl, = xocoshT + xgsinhr, z) =z, b#a,
Ad" = Ad cosh T + Adsinh 7,
AY = Alcosht + Adsinh 7, AY =Ad, b+#a.
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3. The group of scale transformations (generator X = 7D)

/I T dr __ d _—T1
r, =zue’, A= Aje .

4. The group of conformal transformations (generator X = 7, K*)

), = (T, — T,z )oH(z),

Az’ = [guo(x) +2(xuty — Ty + 2702 T, Ty — ToT T, Ty — TaTaa:Ma:y]Ad”.
5. The group of gauge transformations (generator X = Q)
T, =y,

. . w
Az’ = AZ cosw + 5dbCAb ncsinw + 2ndnbAZ sin? 3 +

+et dauw + - (8 n®) sinw + €gpe(0,n°)n°

In the above formulae o(z) = 1 — 7,2% + (7o7%)(252%), n® = n%(z) is a unit
vector determined by the equality w®(z) = w(z)n®(z), a =1, 3.

Using the Lemma it is not difficult to obtain formulae for generating solutions of
YME by the above transformation groups. We adduce them omitting derivation (see
also [3]).

1. The group of translations

Al(z) = up(z + 7).
2. The Lorentz group
AZ(.Z‘) = auug(aaz, bx,cx,dr) + buu‘li(aac, bx, cx,dr) +
+ cpud(az, bx, cx, dx) + dyul(ax, br, cx, dz).
3. The group of scale transformations
d T,d T
Al (z) = eTuy, (weT).
4. The group of conformal transformations
Aﬁ(m) = [glwafl(x) + 2072(1')(1'#7'1, — 2Ty + 2T x T, —
— 20T, Ty — TaT2u 2, ) Ju® ((z — T(202%))o 1 (z)).
5. The group of gauge transformations

Az (z) = “Z cosw + 5dbcuZnC sinw + Qndnbub sin? 5 +

1 1
+et §nd<9uw + 5(8Mnd) sinw + egpe (0,n")n¢

Here uﬁ(:c) is an arbitrary given solution of YME; Aﬁ(:c) is a new solution of YME;
T, T, are arbitrary parameters; a,, by, c,, d, are arbitrary parameters satisfying the
equalities

aygat = —b,b# = —c,ct = —d,d" =1,

a, b =a,ct =a,d* = b, =b,d" =c,d* = 0.

Besides that, we use the following designations: z + 7 = {z, + 7., = 0,3},
ar = a,r".

Thus, each particular solution of YME gives rise to a multi-parameter family of
exact solutions by virtue of the above solution generation formulae.
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3 Ansatzes for the Yang—Mills field

A key idea of the symmetry approach to the problem of reduction of PDE is a special
choice of the form of a solution. This choice is dictated by a structure of the symmetry
group admitted by the equation under study.

In the case involved, to reduce YME by N variables one has to construct ansatzes
for the Yang-Mills field Af,(z) invariant under N-dimensional subalgebras of the
algebra with the basis elements (2.1), (2.2) [1, 5]. Since we are looking for Poi-
ncaré-invariant ansatzes reducing YME to systems of ODE, N is equal to 3. Due to
invariance of YME under the Poincaré group P(1,3), it is enough to consider only
subalgebras which can not be transformed one into another by group transformati-
on, i.e. P(1,3)-inequivalent subalgebras. Complete description of P(1,3)-inequivalent
subalgebras of the Poincaré algebra was obtained in [6] (see also [7]).

According to the classical symmetry approach, to construct the ansatz invariant
under the invariance algebra having the basis elements

Xo = Eap(@, )0y + 15, (v, Dy, a =13, (3.1)

where A = {A% a=1,3,=0,3}, one has

1) to construct a complete system of functionally-independent invariants of the
operators (3.1) Q = {w;(z, A),i = 1,13};

2) to resolve relations

Fj(wi(z, A),...,wiz(z,A)) =0, j=1,13 (3.2)

with respect to the function Aj.
As a result, one gets the ansatz for the field Af(z) which reduces YME to the
system of twelve nonlinear ODE.

Note. Equalities (3.2) can be resolved with respect to A%, a = 1,3, u = 0,3 if the

condition

rank ||a (2, A)];

w

=3 (3.3)

alp,O

holds. If (3.3) does not hold, the above procedure leads to partially-invariant solu-
tions [5], which are not considered in the present paper.

In [1, 4] we established that the procedure of construction of invariant ansatzes
could be essentially simplified if coefficients of operators X, have the following
structure:

bap = Eapl@), M2y, = P25, () AS (3.4)

(i.e. basis elements of the invariance algebra realize the linear representation). In this
case, the invariant ansatz for the field Af(x) is searched for in the form

Aji(z) = Qi (2) By (w(@)). (3.5)

ab

Here B (w) are arbitrary smooth functions and w(x), Q%

of the system of PDE

(x) are particular solutions

Cape, =0, a=1,3,

3.6
(gal/ v paua) (.d = O m= 73a a7bad = 173 ( )
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Basis elements of the Poincaré algebra P,, J,3 from (2.1) evidently satisfy the
conditions (3.4) and besides the equalities

ﬂgu = pa;w(x)Azbn a,b=1,3, p=0,3 (3.7)

hold.

This fact permits further simplification of formulae (3.5), (3.6). Namely, the ansatz
for the Yang—Muills field invariant under the 3-dimensional subalgebra of the Poincaré
algebra with basis elements of the form (3.1), (3.7) should be looked for in the form

Al = Qu(z) By (w(x)), (3.8)

where B (w) are arbitrary smooth functions and w(x), Q. () are particular solutions
of the following system of PDE:

gauwx“ =0, a = 1u_37 (39)

£200aQuv — PapaQor =0, a=1,3, p,v=0,3. (3.10)

Thus, to obtain the complete description of P(1,3)-inequivalent ansatzes for the
field Af(z) invariant under 3-dimensional subalgebras of the Poincaré algebra, one
has to integrate the over-determined system of PDE (3.9), (3.10) for each P(1,3)-
inequivalent subalgebra. Let us note that compatibility of (3.9), (3.10) is guaranteed
by the fact that operators X3, Xo, X3 form a Lie algebra.

Consider, as an example, the procedure of constructing ansatz (3.8) invariant under
the subalgebra (Py, Ps, Jo3). In this case system (3.9) reads

We, =0, wg, =0, xowg, + 3wz, =0,

whence w = 23 — 23.

Next, we note that coefficients p1,., p2, of the operators P;, P» are equal to
zero, while coelficients ps,, form the following (4 x 4) matrix

000 1
a3, [0 0 00
Pauvlipv=0=10 0 0 0
100 0

(we designate this constant matrix by the symbol S).
With account of the above fact, equations (3.10) take the form

Ql‘l =0, Qrz =0, xOng + xSQmo - SQ =0, (311)

where @ = ”QW(I)HZ,V:O is a (4 x 4)-matrix.

From the first two equations of system (3.11) it follows that Q@ = Q(xo,z3). Since
S is a constant matrix, a solution of the third equation can be looked for in the form
(see, for example, [4])

Q = exp {f(zo,23)5}.
Substituting this expression into (3.11) we get

(o fos +23fz, —1)exp{fS} =0
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or, equivalently,

ZEOfxs + x3faco = la

whence f = In(xg + x3).
Consequently, a particular solution of equations (3.11) reads

Q = exp {In(xo + 23)S}.

Using an evident identity S = S we get the following equalities:

Q= (n) 7 (In(zo + z3))"S" =
n=0

= I+ S[n(zo +x3) + (3 (In(zo + 23))> + -] +
+8%[(2) " (In(zo + 23))% + (4) " (In(wo + 23))* + -] =
= I + Ssinh(In(zg + x3)) + S?(cosh(In(zg + z3)) — 1),

where I is a unit (4 x 4)-matrix.
Substitution of the obtained expressions for functions w(z), Q. (x) into (3.8) yi-
elds the ansatz for the Yang-Mills field Af(x) invariant under the algebra (Py, P, Jo3)

A§ = B (x% — 23) coshIn(zg + x3) + B (22 — x3) sinhIn(xg + x3),
A = B¢(23 — 23), A% = BY(a3 — 13), (3.12)

A% = B$(23 — x3) coshIn(zg + z3) + Bg (2% — %) sinh In(zg + x3).

Substituting (3.12) into YME we get a system of ODE for functions By;. If we will
succeed in constructing its general or particular solutions, then substituting it into
formulae (3.12) we get an exact solution of YME. But such a solution will have an
unpleasant feature: independent variables x,, will be included into it in asymmetrical
way. At the same time, in the initial equation (1.1) all independent variables are on
equal rights. To remove this defect one has to apply solution generation procedure
by transformations from the Lorentz group. As a result, we will obtain an ansatz for
the Yang—Mills field in the manifestly-covariant form with symmetrical dependence
on x,.

In the same way, we construct the rest of ansatzes invariant under three-dimen-
sional subalgebras of the Poincaré algebra. They are represented in the unified form

Al (z) = {(apa, — dydy) cosh Oy + (dya, — dyay,)sinh g +
+2(a, + d,)[(01 cos b3 + 02 8in 83)b,, + (02 cos b3 — 61 sinbs)c, +
+ (02 +02)e % (ay, +d,)] + (buc, — byc,,)sinfs —
— (eucy + buby,) cos 3 — 2% (01b,, + Oac,,)(ay, + dy,)} BY (w).

(3.13)

Here 6, u = 0,3, w are some functions whose explicit form is determined by the
choice of a subalgebra of the Poincaré algebra AP(1,3).
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Below, we adduce a complete list of 3-dimensional P(1,3)-inequivalent subalgebras
of the Poincaré algebra following [7]

Ly = (Py, P1, Ps); Ly = (P1, Py, P3);
L3 = (Py + Ps, P1, P); Ly = (Jo3 + aJia, P1, Po);
Ls = (Joz, Po + P3, P1); Le = (Joz + P1, Po, P3);
L7 = (Joz + P1, Py + Ps3, P); Lg = (J12 + aJos, Po, P3);
Lg = (Ji12 + Py, P1, P»); Lig = (Ji2 + P3, Py, Py);
Ly = (Jiza+ Py — P3, P, P»); Lis = (G, Py + P3, P> + aPy);
L3 = (G1 + P2, Py + Ps, P1); Ly = (G +P0—P3,P0+P37(P?174)
L5 =(Gy+ Py— P5,Py+ Ps5, P + aPs); Lig = (J12, Jos, Po + Ps);
L7 =(G1+ P2,G2 — P + aPy, Py + P3); Lig = (Jo3, G1, P2);
Lig = (G1, Joz, Po + P3); Ly = (G1, Jo3 + P, Py + P3);
L21 = (G1, Jos + P1 + aPs, Py + Ps); Loy = (G1,Ga, Joz + adra);

= (G1,Py + P3, P1); Loy = (J12, P1, Po);
L25 = (Jos, Po, P3); Log = (J12, J13, J23);
Loz = (Jo1, Joz, J12)-

Here G1 = JOi — Ji3 (’L = 1,2), a € R.

Ansatzes

p=0,3, wx

Lq:
Ly :
Ls :
Lg :
Lr:
Lg:

for the Yang-Mills field Af(z) are of the form (3.13), functions 6, (z),
) being determined by one of the following formulae:
0,=0, w=dr; Ly: 0,=0, w=ax; Lz: 0,=0w=kz;
0o =—Inlkz|, 61 =0,=0, 03=alnl|kz|, = (a ) — (dz)?%
Op=—Inlkx|, 61 =0,=05=0, w=cu;
O0p = —bx, 6, =0,=05=0, w=cz;
Oop=—bx, 6, =0=03=0, w=bx—In|kx|;
0o = aarctan(bz(cx)™t), 6 =60, =0,

2)7Y), w = (b2)? + (cx)’;

—azr, w =dx;

03 = — arctan(bx(c
bp=01=0>=0, 03
0p=0,=0,=0, 63=dr, w=az;

g =61 =05=0, 93:—%kx, w = ax — dx; (3.15)
1

6p=0, 6= §(b:r —acx)(kx)™t, Oy =03=0, w=ka;

0y =05, =05 =0, 91:%(:3:, w = kz;

Op=02=03=0, 6;

1
—ka, w = 4bx + (kx)?;

1
Op=02=05=0, 6, = fzkac, w = 4(abx — cx) + a(kr)?;

0o = —In|kx|, 61 =0,=0, 603=—arctan(bz(cz)™ '),
w = (bx)? + (cx)?;

1
0p=03=0, 6= 5(01‘ + (a + kx)bz) (1 + kx(a + kx)) 7
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0y = —%(bx —cxkx)(1 + ka(a + kx)) ™, w = kx;
Lig: 6p=—1Inlkz|, 6, = %bx(kx)_l, 6y =603 =0,
w = (ax)? — (bx)? — (dz)?;
Lig: 6p=—Inlkz|, 6,= %bm(kw)_l, 0 =03 =0,w = cx;
Log: 6p=—Inlkz|, 6, = %bm(kx)_l, O =603 =0, w=Inl|kz|— cx;
Loy : 6y =—1Inlkz|, 6, = %(bx —In |kz|)(kx)™t, 6y =03 =0,

w = aln kx| — cx;

—_

1
Los: 6p=—Inlkz|, 6= ibm(kx)_l, 0y = —cx(kz)™ !,
03 = alnlkz|, w= (ax)* - (bx)* — (cx)? — (dz)>.

NN

Here ax = a,2*, bx = byat, cx = ¢z, do = dyat, p=10,3, kz = ax + dz.
Note. Basis elements of subalgebras Log, Loy, Los, Log, Lo7 do not satisfy (3.3). That

is why, ansatzes invariant under these subalgebras are partially-invariant solutions
and are not considered here.

4 Reduction of the Yang—Mills equations

In order to reduce YME to ODE it is necessary to substitute ansatz (3.13) into (1.1)
and convolute the expression obtained with Q(x). As a result, we get a system of
twelve nonlinear ODE for functions B%(w) of the form

Ky BY + 1, BY + My BY + €gpun BY x BY + ehyn BY x BY + (@.1)
+¢e®B, x (B x B,) =0. .

Coefficients of the reduced ODE are given by the following formulae:

kuy = gur By — GuGy,  luy = gurFo + 25,4 — G H, — GHG’W

Myy = Ryy — Gun Yury = YuyGov + 9y G — 29,0 G, (4.2)

by = (1/2)(gurHy = g Hy) = Ty
where g, is a metric tensor of the Minkowski space R(1,3) and Fi, F>, G, ..., Ty
are functions on w determined by the relations

Fy = wp, wen, Fp=0w, Gu=Qapwz,, Hy=Qaua.,

Spv = Q2 QuvesWes, Ry = Q20Qu, (4.3)

Ty = QuQava; Qpy + Q) Qaya; Qpn + QF Qaua s Qs

Substituting functions @, (z) from (3.13), where 6,(x), w(z) are determined by
one of the formulae (3.15) into (4.2), (4.3) we obtain coefficients of the corresponding
systems of ODE (4.1)

Ly kyy = =guy — dudy, Ly = myy =0,

uvy = g,u'ydu + gll’yd/_L - 29,uvdfy» h,uu’y = 0;
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LQZ

Lgi

L4I

Lg:

Lgl

Kuy = Gpy = @y, luy = myy =0,
Gy = Guy O + Guy Oy = 2000, Py = 05
kuy = =kuky, Ly =muy =0, Guuy = guyko + Guykp — 29,0k,
Py~ = 0;
kpy = 4gunw — apay (w + 1)? — dydy (w — 1)% = (audy + ayd,,)(w? - 1),
by = Aguy + albucy — cuby)) — 2ky(ay — dy + kyw),  myuy =0,
Gy = €(Guy(ay — dy + kyw) + guy(ay, — dy + kyw) —
=29 (ay — dy + kyw)),

€
Py = 5[9#71% — Guvky] + ael(bucy — cuby)ky + (bycy — cyby)ky +

+ (bycu — cybu)kul;
kuy = =Guy = cucy,  luy = —€cuky,  myy =0,

€
vy = GuyCv + JuyCp — Zgwcw Py = §(gﬂ7kv = Guvky);

Kuy = —9uy — Cucw by =

My = —(auay = dudy),  Guvy = GuyCo + GoyCu = 29 ¢4,

by = —[(aud, dp)by + (avdy — aydy)by + (aydy — aud,y)by];
kuy = —9uvy — ( I u)( y = €ky)s luy = —2(audy — aydy),
My = —(apay — dydy),

Guvy = Gury (b — €ky) + oy (by — €kp) — 29,0 (by — €ky),
huwy = =[(apdy = avdy)by + (avdy — aydy )by + (aydy — audy)by]; (4.4)
uy = —4w(guy + cucy);  luy = =4(guy + cucy),

1
My = _E(Oﬂ(auaw — dudy) + buby),
Juvy = Qﬂ(gu'ycu + Gu~rCpu — 29,uucfy)a

1
Py = m(gmcu — GuvCy) + \/—(( vp)by +

+ (avdy = dyaqy)by + (aydy — apdy)by);

kuy = =9uy = dudy, - Ly =0,
My = buby + Cucys Guvy = Guvydy + guydy — 29 dy,
huvy = ay(bucy — cuby) + ap(bucy = cyby) + ay(bycy — cyby);

kuy = guy — apay, luy =0,

Myy = —(buby + ¢ucy)y  Guuy = Guyaw + Guyap — 2guasy,
Py = =[dy(bucy — cuby) + dy(bucy — cuby) + du(byey — cyby)l;
kuy = —(ap — du)(ay — dy), Ly = =2(bucy — cuby),  myuy =0,

uvy = g;ry(al/ —dy)+ gv'y(au - d#) - 29#V(a’v - d’Y)7

Py = 2[k (bucw — cuby) + ku(buey — cuby) + ki (bycy — cybu)];
1 o?

kuy = —kpky,  luy = _Ekukw Muy = _ﬁkuk’w

Guvy = Gurkv + Guyky — 29,0k,

1
h;w'y = %(gu'ykv - guuk’y) +
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L17 :

(kb = k) + (kb = kb )es + (kyby = kubs)e, )
kuy = =kpky, luy =0, mypy = —kyky,
Gy = Guvkv + Gk — 29k, hpwy = —((kuby — k',,b#)c,y +
+ (kuby = kybu )y + (kyby — kuby)ey);
kuy = =16(guy +buby),  Luy = myy = hyy = 0,
Guvy = 4 Gurbv + Gur by — 29,b7);
kuy = —16[(1 + a®)guy + (¢ — aby)(cy — aby)],
Ly = mypy = Iy =0,
Juvy = _4[gM’Y(CV —aby) + qu(cu - Oébp) - QQW(% — Oébn,)];
kuy = —4w(guy + €uy)y iy = —4(guny + cucy) — 2€ky e/,

1
My~y = _Ebub'ya uvy = 2\/6(9#701/ + GuyCu — zguuc’y)a

by = %[G(Q;wkv = guvky) + %(gwcv — GuvCy);
2w+«
w(w+ a) + 1k”k7’
My = =4k (L w(a +w) ™% Guuy = Guyku + gurky — 29,ky,
Py = %(0‘ +2w)(gurky — guvks) (1 + w(a +w)) ™t -
2(1 +w(w + @)~ ((kuby — kubu)ey + (kuby — kyby)e, +
+ (kyby = kpby)en);
Ky = dwgpuy — (kpw + ay — dy) (kyw + ay — dy),
luy = 69uy + 4audy — aydy) = 3ky(kpw +ap —dy),  mpuy = —kuky,
Guvy = e(g,w(k,,w +a, —d,)+ guw(kuw +ay, — du) -
= 29 (kyw + ay — dy)),
hyvy = e(g;wku - guuk’v);
Ky = =guy — cuCys  luy = 2€kycp,  myy = —kuky,
Guvy = GuyCv + GurCu = 200y, vy = €(gurky — guvky);
Ky = —Guy — (cu — k) (cy — €ky),  luy = 2ekycy — 2kuky,
My = —kyky,
Guvy = Guy(€ky — ¢v) + o (eky — ) = 29, (eky — cy),
Py = €(Gurky — Guvks);
Ky = —=guy — (cu — aekp)(cy — aeky), = 2(ekycy — akyky),
Myy = —kpky,
Guvy = —Gu~y(cv — ceky) — gy (cy — aeky) + 29, (¢ — aeky),
by = €(Guykv = guvky);
Fpy = Awgyry — (ap = dy + kpw)(ay — dy + kyw),
by = 429y + a(bucy — cuby) — apay + dydy — wkyky],

kuy = =kuky,  luy = —

My = =2k, k5,
uvy = E(gu"/(au - du + kuw) + gl/'y(au - dM + kuw) -
= 29 (ay — dy + kyw),

441
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3e
huuw = E(gp/yku - gqu“/) - Ea[k“/<bllcl’ - chV) +

+ ku(bycy = cuby) + ki (bycy — cyby)l;

where k,, = a, +d,, e =1 for ax +dr > 0 and e = —1 for az +dz < 0.

5 Exact solutions of the Yang—Mills equations

When applying the symmetry reduction procedure to the nonlinear Dirac equation,
we succeeded in constructing general solutions of a large part of reduced systems
of ODE. In the case involved we are not so lucky. Nevertheless, we obtain some
particular solutions of equations (4.2), (4.4).

The principal idea of our approach to integration of systems of ODE (4.2), (4.4)
is rather simple and quite natural. It is a reduction of these systems by the number
of components with the aid of ad hoc substitutions. Using this trick we construct
particular solutions of equations 1, 2, 5, 8, 14, 15, 16, 18, 19, 20, 21, 22 (« = 0).
Below we adduce substitutions for Eu(w) and corresponding equations.

1. é =a _01
f=(@+m)f=0, §+e(f*=h*g=0, h+e(f>—g*)h=0.

\
—~
g
+
=

=
DL
=
g
~
_|_
o
=
D
=
g
~

FHe(@+m)f =0, §+(fP+h%)g=0, h+e(f+g*)h=0.
é/t +bu€29(w)7 f.*6292f:0,§:0-

dwf +4f —e2g?f =0, 4dwj+4§5—w'g=0.

82. B, =a,éf(w)+d,érg(w)+ byezh(w),

" . o2 2ae
4wf+4f—Ef—ﬁgh—keQ(hQ—ng)f:O,

o? 2ce
w§ + g+wg+—ﬁfh+e(f h*)g =0, 5.1)
.. . 2
dwh + 4h — w h + 225 fg + (£ — g*)h = 0.
Ju

14.1. B, = a,é f(w) + duéag(w) + c,ésh(w),
16f — e2(h2 + g%)f =0, 16§+ e(f2 — h?)g =0,
16h + e2(f2 — g?)h = 0.
14.2. By = k& f(w) + cufag(w), 16f —e2g?f =0, =0.
15.1. By = a,é f(w) + duéag(w) + (1+ 6?) 7% (ac, + b)ésh(w),
1614+ a2)f —e2(h> +¢*)f =0, 16(14 a?)j+ eX(f2 —h2)g =0,
16(1 4+ a?)h + €2(f2 — g*)h = 0.
15.2. By, = k@ f(w) + (1+ a®) 7 (ac, + by)éag(w),

16(1+a*)f —€e’fg> =0, §=0.
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—

16. B, =k,é1f(w)+ b,é2g(w),

dwf +4f —e2g?f =0, 4dwi+4§—w lg=0.
18. éu = b,€1f(w) + cu€ag(w),

dwf+6f+e2g2f =0, 4w+ 6g+ e2f2g=0.
19. B, = k,é1 f(w) + buéag(w),

f-e2g?f=0, j=0o.

—

20. B, = kﬂé'lf(w) + bﬂé'gg(w),
f—e¥g?f=0, g=o.
21. B, = k& f(w) + b.éag(w),
f—e¥?f=0, §=o.
22. (a=0) B, = b,& f(w) + cuéag(w),
dwf +8f +e2g2f =0, 4dwij+8g+ e2f2g =0.

In the above formulae we use designations &5 = (1,0,0), & = (0,1,0), é5 =
(0,0,1).

Thus, combining symmetry reduction by the number of independent variables and
reduction by the number of dependent variables we reduce YME to rather simple ODE.
It is worth reminding that effectiveness of the widely used ansatz for the Yang—Mills
field suggested by t'Hooft et al [2] is closely connected with the fact that it reduces
the system of twelve PDE to one nonlinear wave equation.

Next, we will briefly consider a procedure of integration of equations (5.1).

Substitution f =0, g = h = u(w) reduces the system of ODE 1 from (5.1) to the
equation

i = e?u?, (5.2)

which is integrated in elliptic functions [8]. Besides that, ODE (5.2) has a solution
which is expressed in terms of elementary functions u = v/2(ew — C)~1, C € R%.

ODE 2 with f = g = h = u(w) reduces to the form i + 2e%u3 = 0.

This equation is also integrated in elliptic functions [8].

Integrating the second equation of system of ODE 5 we get g = Ciw + Cs,
C; € R If Oy # 0, then the constant Cy can be neglected, and we may put Cy = 0.
Provided Cy # 0, the first equation from system 5 reads

f—e*C?uw?f =o. (5.3)

A general solution of ODE (5.3) is given by formula f = wl/QZ%(%eCle).

Hereafter, we use the designation Z,(w) = C3J,(w) + C4Y, (w), where J,, Y, are
Bessel functions, C3, Cy4 are arbitrary constants.

In the case Cy = 0, Cs # 0 a general solution of the first equation from system 5
reads f = Cj3cosh Coew + Cy sinh Coew, where C3, Cy are arbitrary constants.

At last, provided C; = Co = 0, a general solution of the first equation from
system 5 has the form f = C3w + Cy, C3,Cy € RL.

A general solution of the second ODE from system 8.1 is of the form g = C1/w +
Co(y/w)™t, where Cy, Cy are arbitrary constants.
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Substituting the expression obtained into the first equation we get
4w f + dwf — e2(Crw + Co)%f = 0. (5.4)

Under C7,Cy # 0 a solution of ODE (5.4) is not known. In the remaining cases
its general solution reads

a) C1£0, Co=0 f=2 [%clw},
by Ci=0, Co#0 f=Cou = +Cuw 2,
C) 0120, 02:0 f:C’glnw+C'4.

Here C3, Cy are arbitrary constants.

We do not succeed in obtaining particular solutions of system 8.2. Equations 14.1
coincide with equations 1, if one changes e by 7. Similarly, equations 14.2 coincide
with equations 5, if one changes e by . Next, equations 15.1 coincide with equations 1
and equations 15.2 — with equations 5, if one replaces e by £(1 + a?)" 2,

System of ODE 16 coincides with system 8.1 and systems 19, 20, 21 - with
system 5. We did not succeed in integrating equations 18.

At last, system 22 (a = 0) with the substitution f = g = u(w) reduces to the form

2
wii + 20 + %u?’ -0 (5.5)

ODE (5.5) is Emden—Fowler equation and the function u = e~1w=2
cular solution.

Substituting the results obtained into corresponding formulae from (5.1) and then
into the ansatz (3.13), we get exact solutions of the nonlinear YME (1.1). Let us
note that solutions of systems of ODE 5, 8.1, 14.2, 15.2, 16, 19, 20, 21 satisfying the
condition g = 0 give rise to Abelian solutions of YME. We do not adduce them and
present only non-Abelian solutions of YME.

, Is its parti-

1. /YM = (aby, + E3¢,)V2(edz — N) 7L

Asn (ﬂe)\dz> dn (ﬂeAd;r)] [cn (ﬁe)\d:vﬂ _ ;
2 2 2

1

2. uw = (ggb# + é'gc#)

A, = (b, + &c,)\[en (edz)] ™

ﬂu = (€1b, + €rc,, + €zdy,) A en (edax);

- . _ 7 .
5. A, = éik,|kx]| 1\/0332% |:§€)\(C.%')2:| + éxby e
6. A, = & kylkz| '\ cosh(edex) 4+ Ag sinh(eAex)] + Exby);
7. /YM =1k, 2o [;e)\((bx)z + (c:z:)z)] + é(bycx — ¢, bx)X;

ex
2

8. A, =&k [M((bx)? + (cx)®)T + Ao ((b2)? + (cz)?)~
+ &y (bucx — ¢, br)A((br)? + (cx)?) 1

1+
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9. A, = [*2 (é(du — ky(kx)?) + %bﬂkzx) + é’3cM] Asn (%)\(41)90 + (km)2)> X

x dn (i/\(élba: + (kx) )> (cn (%)\(Zﬂ)x + (kx)2)>> ;

- 1
10. AM = |:€2 (g(d“ - ku(kl‘)Q) + ibuk‘l‘) + ggcuil X

X A [cn < \/8_)\<4b + (kx)? ))] ;

1 1
11. AM = |:€2 (g(d“ — k‘u(k‘l‘)z) + §buk‘l‘> + €3CP«:| X
x 4v/2(e(4bx + (kx)?) — A)*l;
12. A, = ék,\/4bx + (kx) 223 ( (4bx + (kx)?) >+é’20#)\(4bx+ (kz)?);

1

13. A, =éik, ()\1 cosh ( :(41)3; + (kx )2)> +
+ Az sinh ( eA (4bx + (kx) ))) + éreu;

- 1
14 A.U‘ = {52 (d'u — gk“(kx)Q — Qkax> =+

=

1
+é5 (acu +0b,+ §k‘ukx> (1+a?)”

[e)\ﬂ
X Asn 3

} « (5.6)

(4(abx — cx) + a(kz)?)(1 + oﬂ)—%] x

x dn [6)\8;/5(4@&% —cx) + a(kz)?)(1 + a2)_%] X

X {cn le)\f@(abx —cx) + alkz)?) (1 + aQ)_%] } ;

1 1
” {52 (du - gku(k;x)Q - §bukx> +

1
+ €3 (acu +0b,+ Qkukx> (1+ 042)%} X

1

15.

'S
|

—1
X {cn {%(4(0[&% —cx) + a(kz)?)(1 + oﬂ)i] } ;
- . 1 , 1
16. AN = 4 €2 dlt — gk’u(kl') — ibﬂka" +
+ &3 (acu + b, + %kﬂcx) (1+ oﬂ)—%} X

x 4v/2(1 + a2)% [e(4(abz — cx) + a(kr)?)] ™Y
17. /Tu = €1ku{\/4(osz —cx) + a(kz)? x
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

N

X

e\ _1
: <8(4(abx —ex) + alkz)?)2(1 + a?) ) }+
+é (acu +0b,+ %kﬂkac) M4(abx — cx) + a(kz)?)(1 + az)_%;
/_fu = é’lk‘u{)\l cosh [ /\(1 + )_%(4(abm —cx)+ a(ka:)Q)] +
+ Ag sinh [%(1 + oﬂ)‘% (4(abz — cx) + a(kx)2] }—i—

1
+é (acu +b,+ —k:uk:v> A1+ a2)_%;

e

/T = &1k, kx| "' Zo [ ((bc)? (cx)z)} + éx(bycx — ¢, bx) A
A

51ku\k93\71[h((b$) +(e2)?) 7 4+ No((b)? + (cx)?)
& (bucr — e, bx)M((bx)* + (cx)?) ™Y

kulke| "' ex Zs <—( x)2) + &(by, — kb (kx) ™) Aew;
/TM = &1k, |kx| " [\ cosh(Aecw) + Az sinh(Aecx)] + é2(by, — kuba(kz) 1)\

A(ln |kz| — cx)2> +

ex
2

1+

E}L = & kylkz| ™ /In kx| — cxZs (

+ & (b, — kyubz(kz) ") A (In |kz| — cx);
/_fu = €1k,| kx| [A1 cosh(Xe(In kx| — cx)) + A2 sinh(Ne(In [kz| — ez))] +
+ &(by, — kpbz(kx) )\

A, = &k, kx|~ /aln kx| — cxZs < 62/\ (aln|kz| — cx)Q) +

+ &(by — k(b — In [kx|) (kx) )Mo ln [kz| — cz);
ffu = &1k, kx|~ [\ cosh(Ne(aIn |kz| — cx)) +
+ Agsinh(Ae(aln kx| — cx))] + €2(by — Ky (bx — In |kz|) (kz) 1)\
A, = {& (b, — kuba(kx)™") + E(cy — kpcx(kz) ™) e (z,a") 7,
Ay = {& (b — kb (k) ™) + (e, — kpea(ka) ™)} f (),
wf +2f + (2f3/4) =0, w= z,xt = (az)? — (bz)? — (cx)? — (dz)?.

In the above formulae Z,(w) is the Bessel function; sn, dn, cn are Jacobi elliptic

functions having the modulus %; A, A1, Ag = const.

In the present paper we do not analyze in detail the obtained solution. We only note
that the solutions numbered by 27 is nothing more but the meron solution of YME [2].
In the Euclidean space meron and instanton solutions were obtained by Alfaro, Fubini,
Furlan [9] and Belavin, Polyakov, Schwartz, Tyupkin [10] with the use of the ansatz
suggested by 't Hooft [11], Corrigan and Fairlie [12] and Wilczek [13].

Another important point is that we can obtain new exact solutions of YME by
applying to solutions (5.6) the solution generation technique. We do not adduce
corresponding formulae because of their cumbersomity.
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6 Some generalizations

It was noticed in [14] that group-invariant solutions of nonlinear PDE could provide us
with rather general information about the structure of solutions of the equation under
study. Using this fact, we constructed in [4, 14] a number of new exact solutions
of the nonlinear Dirac equation which could not be obtained by symmetry reduction
procedure. We will demonstrate that the same idea will be effective for constructing
new solutions of YME.

Solutions of YME numbered by 7, 8, 19, 20 can be presented in the following
unified form:

/Yu = kué(kx, cx) + blté(km, cx), (6.1)

where kz = kya*, cx = c o, ky = a, +d,,.
Substituting the ansatz (6.1) into YME and splitting the equality obtained with
respect to linearly-independent four-vectors with components &, b,, c,, we get

1!

1. Cupyw, = 0,
2. CxCy =0, (6.2)
3. Ewlwl +eC_"w0 x C 4 e*C x (C_" X E) =0.

Here we use designations wg = kz, w; = cz.

A general solution of the first two equations from (6.2) is given by one of the
formulae

— —

L. C= f(wo),
1. C = (wy + vo(wo))flwo),

where vy, fare arbitrary smooth functions.
Consider the case C' = f(wp). Substituting this expression into the third equation
from (6.2) we have

Buyw, + €fuwo X f+Ef(fB) — 2 f2B =0. (6.3)
Since equations (6.3) do not contain derivatives of B with respect to wq, they can

be considered as a system of ODE with respect to the variable w;. Multiplying (6.3)
by f we arrive at the relation (Bf)u,w, = 0, whence

éf: 111(’&10)11)1 +U2(wo). (6.4)

In (6.4) vy, vo are arbitrary smooth enough functions.
With account of (6.4) system (6.3) reads

E,wlu,l — ezf_éé = efx f;uo — e (vywy + vz)f-

The above linear system of ODE is easily integrated. Its general solution is given
by the formula

B = g(wo) cosh e| flwy + h(wo) sinh e flwy +
+ e 172 g X F+ 1f172(0rwn +02) f,

where ¢, h are arbitrary smooth functions.

(6.5)
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Substituting (6.5) into (6.4) we get the following restrictions on the choice of the
functions g, h:

fg=0, fh=0. (6.6)

Thus, provided Cy,, = 0, a general solution of the system of ODE (6.3) is given
by the formulae (6.5), (6.6). Substituting (6.5) into the initial ansatz (6.1) we obtain
the following family of exact solutions of YME:

/Y# =k, {g(kx) coshe|flcz + h(kz) sinh e| flcz +
+ eI X+ (onko)en + ea(ka)) ) + b f

where f(kx) G(kx), h(kz), vi(kz), vo(kz) are arbitrary smooth functions satisfying

(6.6), f= 4L

The case € = (w1 + vo(wo))f(wo) is treated in analogous way. As a result, we
obtain the following family of exact solutions of YME:

4

i, - ku{mw(m))ﬁ k), (517l + wn(ha))?) +
+ h(kz)Ys <2€ Al(ca + vo(kx))2>] +
+ (vy(kx)ex + vg(kx))f—f— e*1|f_’|72f>< f} + by (cx + vo(kx))f,

where f(kz), §(kz), E(k:x) vo(kx), vi(kz), ve(kx) are arbitrary smooth functions
satisfying (6.6), Ji (w), Y1(w) are the Bessel functions.

Another effective ansatz for the Yang—-Mills field is obtained if one replaces in (6.1)
cx by bx

A, = k,B(kx,bx) + b,C(kz, bx). (6.7)
Substitution of (6.7) into YME yields the following system of PDE for B, C:
Bu,w, — Cuwgw, — €(B x Cuy, + 2By, x C+C x Cy,) +€2C x (C x B) = 0.(6.8)

We succeeded in integrating system (6.8), provided € = f(wo). Substituting the
result obtained into (6.7), we come to the following family of exact solutions of YME:

A, =k (G +1f171 % fox) cos(e| flbx) + (h+ |f] = h x fba)sin(e| flba) +
+ e YFI72 % F+ (v (kx)bx + va(kx)) f} + b, f,

where f(kz), g(kz), h(kx), vi(kz), vo(ka) are arbitrary smooth functions.
Besides that, we obtained the following class of exact solutions of YME:

ffu = kyé&1vo(kx)u?(bx) + by, Exu(ba),

where €1 = (1,0,0), € = (0,1,0); vo(kz) is an arbitrary smooth function; u(bz) is a
solution of the nonlinear ODE i = e?u®, which is integrated in elliptic functions.
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In conclusion of this Section we will obtain a generalization of the plane-wave
Coleman solution [15] ]

— —

A, = ku(f(kz)bx + g(kx)cx). (6.9)

It is not difficult to verify that (6.9) satisfy YME with arbitrary f g.
Evidently, solution (6.9) is a particular case of the ansatz
ffﬂ = kué(kzx, bx, cx). (6.10)
Substituting (6.10) into YME we get
Bu,w, + Buyw, =0, (6.11)

where w; = bz, wy = cz.
Integrating the Laplace equations (6.11) and substituting the result obtained into
(6.10) we have

— —

A, =k, (U(kz, bz + icx) + U(kx, bx — icz)).

—

Here U(kz,z) is an arbitrary analytical with respect to z function. Choosing U =
L(f(kz) — ig(kz))z we get Coleman solution (6.9).

7 Conclusion

Thus, starting from the invariance of YME under the Poincaré group we have obtained
wide families of its exact solutions including arbitrary functions. In our future papers
we intend to describe exact solutions of YME invariant under the extended Poincaré
group and conformal group.

Besides that, we will study exact solutions which correspond to the conditional
and non-local symmetries of the Yang—Mills equations (1.1)
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Conditional symmetry and new classical
solutions of the Yang—Mills equations

R.Z. ZHDANOV, W.I. FUSHCHYCH

We suggest an effective method for reducing the Yang—Mills equations to systems of
ordinary differential equations. With the use of this method we construct the extensive
families of new exact solutions of the Yang—Mills equations. Analysis of the solutions
thus obtained shows that they correspond to the conditional (non-classical) symmetry
of the equations under study.

1 Introduction

A majority of papers devoted to construction of explicit form of the exact solutions of
SU(2) Yang-Mills equations (YMEs)

0,0" A, — 0"0,A, + ¢((0,A,) x Ay —20,A,) x A, +

1
+(0"A,) x AY) +€*A, x (A" x A,) =0 M

are based on the ansidtze for the Yang-Mills field A,(x) suggested by Wu and
Yang, Rosen, 't Hooft, Corrigan and Fairlie, Wilczek, Witten (see [1] and references
therein). There were further developments for the self-dual YMEs (which form the
first-order system of nonlinear partial differential equations such that system (1) is its
differential consequence). Let us mention the Atiyah—Hitchin—Drinfeld—Manin method
for obtaining instanton solutions [2] and its generalization due to Nahm. However,
the solution set of the self-dual YMEs is only a subset of solutions of YMEs (1)
and the problem of construction of new non self-dual solutions of system (1) is, in
fact, completely open (see, also [1]). As the development of new approaches to the
construction of exact solutions of YMEs is a very interesting mathematical problem,
it may also be of importance for physics. The reason is that all famous mathematical
models of elementary particles such as solitons, instantons, merons are quite simply
particular solutions of some nonlinear partial differential equations.

A natural approach to construction of particular solutions of YMEs (1) is to utilize
their symmetry properties in the way as it is done in [9, 10, 16] (see, also [15],
where the reduction of the Euclidean self-dual YMEs is considered). The apparatus
of the theory of Lie transformation groups makes it possible to reduce system of
partial differential equations (PDEs) (1) to systems of nonlinear ordinary differential
equations (ODEs) by using special ansdtze (invariant solutions) [10, 18, 20]. If one
succeeds in constructing general or particular solutions of the said ODEs (which is
an extremely difficult problem), then on substituting the results in the corresponding
ansitze one gets exact solutions of the initial system of PDEs (1).

Another possibility of construction of exact solutions of YMEs is to use their condi-
tional (non-Lie) symmetry (for more details about conditional symmetry of equations
of mathematical physics, see [6, 8] and also [10, 12]) which has much in common with

J. Phys. A: Math. Gen., 1995, 28, P. 6253-6263.
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a “non-classical symmetry” of PDEs by Bluman and Cole [3] (see also [17, 19]) and
“direct method of reduction of PDEs” by Clarkson and Kruskal [4]. But the prospects
of a systematic and exhaustive study of conditional symmetry of system of twelve
second-order nonlinear PDEs (1) seem to be rather remote. It should be said that so
far there is no complete description of conditional symmetry of the nonlinear wave
equation even in the case of one space variable.

A principal idea of the method of ansdtze, as well as of the direct method of
reduction of PDEs, is a special choice of the class of functions to which a possible
solution should belong. Within the framework of the above methods, a solution of
system (1) is sought in the form

A, =H,(z,B,(w(z))), p=0,3,

where H,, are smooth functions chosen in such a way that substitution of the above
expressions into the Yang—Mills equations results in a system of ODEs for “new”
unknown vector-functions B,, of one variable w. However, the problem of reduction
of YMEs posed in this way seemed to be hopeless. Really, if we restrict ourselves to
the case of a linear dependence of the above ansatz on B,

A,(x) = Ry (2)B" (w), (2)

where B, (w) are new unknown vector-functions, w = w(z) is a new independent
variable, then a requirement of reduction of (1) to a system of ODEs by virtue of (2)
gives rise to a system of nonlinear PDEs for 17 unknown functions R,,, w. What is
more, the system obtained is no way simpler than the initial Yang—Mills equations (1).
It means that some additional information about the structure of the matrix function
R,,, should be input into the ansatz (2). This can be done in various ways. But the
most natural one is to use the information about the structure of solutions provided
by the Lie symmetry of the equation under study.

In [11] we suggest an effective approach to the study of conditional symmetry of
the nonlinear Dirac equation based on its Lie symmetry. We have observed that all
Poincaré-invariant ansatze for the Dirac field ¢ (x) can be represented in the unified
form by introducing several arbitrary elements (functions) wui(x),uz(x),...,un(x).
As a result, we get an ansatz for the field ¢)(z) which reduces the nonlinear Dirac
equation to system of ODEs provided functions u;(z) satisfy some compatible over-
determined system of nonlinear PDEs. After integrating it, we have obtained a number
of new ansdtze that cannot in principle be obtained within the framework of the
classical Lie approach.

In the present paper we will demonstrate that the same idea proves to be fruitful
for obtaining new (non-Lie) reductions of YMEs and for constructing new exact
solutions of system (1).

2 Reduction of YMEs

In the paper [16] we have obtained a complete list of P(1,3)-inequivalent ansitze
for the Yang-Mills field which are invariant under the three-parameter subgroups of
the Poincaré group P(1,3). Analyzing these ansédtze we come to conclusion that they
can be represented in the unified form (2), where B,(w) are new unknown vector
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functions, w = w(z) is a new independent variable and functions R, (x) are given by
the formulae

R,.(z) = (aya, — d,d,) cosh 0y + (a,d, — dya,) sinh 8y + 2(a, + d,,) ¥
X [(61 cos B3 + 05 sin 03)b,, + (02 cos 3 — Oy sinfs)c, +
+ (62 +03)e % (a, +d,)] — (cucy + bub,) cos b3 —
— (cuby — bucy)sinfs — 2¢—% (016, + b2c,)(ay + dy).

3)

In (3) 0,(x) are some smooth functions and what is more 6, = 6,(§,b,2", c z!),

a =12 ¢ = ika* = Laux" + dyat); ay, b, cu, d, are arbitrary constants
satisfying the following relations:
ayat = —b,b* = —c,ct = —d,d" =1,

a“bll‘ = aluc'u‘ = a’/tdﬂ = blu‘cli = b“dﬂ = C“du = O

Hereafter, summation over the repeated indices from O to 3 is understood. Rai-
sing and lowering of the indices is performed with the help of the tensor g,, =
diag(1,—1,-1,-1), e.g. R} = gapRpp.

A choice of the functions w(z), 6,(x) is determined by the requirement that
substitution of the ansatz (2) in the YMEs yields a system of ODEs for the vector
function B, (w).

By the direct check one can convince one self that the following assertion holds
true.

Lemma. Ansatz (2), (3) reduces YMEs (1) to system of ODEs iff the functions w(x),
0,.(x) satisfy the following system of PDEs:

Wa, Wen = Fi(w), (4a)
Ow = F3(w), (4b)
Ropwaz, = Gu(w), (4c)
Rapa, = Hu(w), (4d)
Ry Rovugwes = Quu(w), (4e)
REORay = S (), (4f)
R Rovas Ry + Ry Roney Roy + R Ropa s Rgy = Ty (), (4g)

where Fy\, Fs, G, ..., Ty are some smooth functions, p,v,v = 0,3. And what is

more, a reduced equation has the form
kyuy BY + 1y BY 4+ myuy BY + equyB” x BY + ¢h,,,B” x BY + )
+¢?’B, x (B” x B,) =0,

where
kuy = gy 1 — GGy,
iy = Gun Fo +2Q iy — Gy — G”GW’
Myuy = Spy — Gty (6)
Gy = YuyGo + 907G = 290G,

1
Py = §(QMHV = G Hy) = Ty
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Thus, to describe all ansétze of the form (2), (3) reducing the YMEs to a system
of ODEs one has to construct the general solution of the over-determined system of
PDEs (3), (4). Let us emphasize that system (3), (4) is compatible, since the ansitze
for the Yang-Mills field A, (z) invariant under the three-parameter subgroups of the
Poincaré group satisfy equations (3), (4) with some specific choice of the functions
Fi, Fy,..., Ty [16].

Integration of system of nonlinear PDEs (3), (4) demands a huge amount of
computations. That is why we present here only the principal idea of our approach to
solving the system (3), (4). When integrating it we use essentially the fact that the
general solution of system of equations (4a), (4b) is known [13]. With w(x) already
known we proceed to integration of linear PDEs (4c), (4d). Next, we substitute the
results obtained in the remaining equations (4) and get the final form of the functions
w(z), 0,(z).

Before presenting the results of integration of system of PDEs (3), (4) we make
a remark. As the direct check shows, the structure of the ansatz (2), (3) is not altered
by the change of variables

w—ow =T(W), 0y— 6)=>0 +Tpw),

01 — 607 = 01 + % (T (w) cos O + To(w) sin ),
b — 0 = 05 + % (To(w) cos 05 — Ty (w) sin b)),
05 — 05 = 05 + Ts(w),

(7)

where T'(w), T,,(w) are arbitrary smooth functions. That is why, solutions of system
(3), (4) connected by the relations (7) are considered as equivalent.

Integrating the system of PDEs within the above equivalence relations we obtain
the set of ansdtze containing the ones equivalent to the Poincaré-invariant ansitze.
We list below the corresponding expressions for the functions §,,, w:

0,=0, w=d-mz; (8a)
0,=0, w=a-xz; (8b)
0,=0, w=k- x (8c)

Op=—Inlk-z|, 01=0,=0, 03=alnlk-z,

w=(a-2)? = (d-2)% (59
0p=—Inlk-z|, 6=0=05=0, w=c-u; (8e)
Op=—-b-xz, 01 =0,=03=0, w=c-x; (8f)
bp=-b-z, 6=0=05=0, w=b-z—1Inlk-x; (8g)
0y = aarctan(b- z/c-x), 64 =02=0,

03 = —arctan(b-z/c-z), w=(b-2)?>+ (c-2)% (8h)
0p=01=0=0, O35=—a-z, w=d-uz; (81)

Op=60,=0,=0, O35=d-z, w=a-x; (8j)
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0p =01 =0,=0, 032—%/{-1', w=a-r—d-x; (8k)
1

0y =0, 91:§(b-x—ac-x)(k-x)_17 0 =03=0, w=k- (81)
1

0y =0, =05 =0, 01250-33, w=k-x; (8m)
1 2

O =16;=03=0, 01:—116-96, w=4b-z+ (k- x)% (8n)
1

Op = 03 = 03 =0, 01:—Zk-x, w=4(ab-z —c-z)+alk-z)% (80)

Goz—ln\k-xL 91292:07
_ _ 2 2. (8p)
03 = —arctan(b-z/c-x), w=(b-x)*+ (c-x)%

6y =063 =0, 91:%(ow—&—(a+k~x)b-x)(l+k~x(a+k~x))_1,
(89)
92:—%(b-m—oxk-m)(1+k~x(a+k~x))*l, w=k-x;

90:—ln\k~x|7 01:%b~x(k~x)*1, 92:93:0,

(8r)
w=(a-2)%>—(b-2)*—(d 2)%
1
6o = —1Inlk -z, 91=§b~x(k-x)_1, 0y =03=0, w=c-x; (8s)
b= —Inlk-a|, 01=~b-a(k-2)"", 0y=05=0
0 — n ']:7 1_2 T €T I 2—U3 =Y (8t)
w=hlk-z|—c- xz;
bo=—Inlk-x|, 0 *l(b —Inlk-2))(k-z)!
o=—Ilk-z[, 61=50b-w-Infkz x) (8u)
0o =0;=0, w=alnlk -z|—c-x;
0p = —In|k - z| R (k-2)~%, @ _1 (k-2)7!
o=—Ilk-a|, 6r=gzb-a(k-2)"", O=gc alk-2)", (8v)

O3 =alnlk-z|, w=(a-2)>=(b-2)*=(c-2)>—(d-2)?

where a - z stands for a,2" and « is an arbitrary real constant.

We do not consider reduction of YMEs with the help of the above ansétze, because
it is studied in a great detail in [16].

We concentrate on the cases when the new (non-Lie) ansétze are obtained. It
occurs that the procedure described gives rise to non-Lie ansitze provided the func-
tions w(x), 6,(x) within the equivalence relations (7) have the form

e,u = Q/L(gv buzya CDSCV), w = w(f, bufrya Cuxu)' (9)
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The list of inequivalent solutions of system of PDEs (3), (4) satisfying (9) is
exhausted by the following solutions:

1
0p=03=0, w=_-k-z, 60 =we(§)b-xz+ wi(&)c-x,

2 (10a)
O = wa(&)b - & + w3(§)c - x;
w=b-z+wi(§), 0=alc z+uws(f)),
1 (10b)
0, = —Zwa(g), a=12 6;=0,
0o =T(&), 03=wi(§), w=b -xcoswy+c-zsinw; + wy(§),
0, = (i(eeT +T)(b-2zsinw, —c-xcosw) + wg(f)) sinw; +
++i(w1(bozsinw1 fcmcoswl)fwg) cos wry, (10c)
1 .
Oy = — <Z(E€T +T)(b-xsinwy —c-xcoswy) + w;;(f)) coswi +
1
+ Z(wl(b-xsinwl —c-xcoswy) — u')g) sinwy;
0o =0, 03 =arctan([c-z+w2(&)][b-z+wi()]7),
1 1/2 (10d)

Oo = —71wa(€), a=12, w=([b-z+w(§]+[c-z+w6)])

Here o # 0 is an arbitrary constant, ¢ = +1, wqg, wi, we, ws are arbitrary smooth
functions on § = 3k -z, T =T(£) is a solution of the nonlinear ODE

(T +ceT)? +ui? = 2e*T, e R, (11)

where a dot over the symbol denotes differentiation with respect to &.
Substitution of the ansatz (2), where R, (x) are given by formulae (3), (10), in
the YMESs yields systems of nonlinear ODEs of the form (5), where

1
Ky = _Zkuk’w by = —(wo + w3)kpky,
Myy = —4 (wh + wi +wj + wi)kuky, — (o + 3)kyky,

1 12
Quuvy = §(gu7ku =+ gvvku - ZQHVk7)7 (122)

Py = (wo + w3)(gu7ku - guukv) +
+ 2(wy — wa) ((kuby — kuby) oy + (bucy — bucy)ky + (cuky — cuky)by);

kuy = =Guy = buby, Ly =0, myy = *az(auay - dud»y),
Quvy = Guybu + Gun by — 2gpuby (12b)
Py = a((a#dl, —aydy)ey + (ducy — duey)ay + (cpan — Cvau)dv)?
€ »
Ky = —Guy — buby, Ly = —§b“k,y, My = —Zkuk%

c (12¢)
Quvy = Guyby + Guybu — 29,00y, By = Z(guvku = Guvky);
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Kuy = =Gy = bubrys Ly = =07 gy +buby),  mpy = w0 %cucy,
1, (12d)
Gy = Gurybo + 9oy b = 20 bys Py = 9% (Gurvbu — Guvby).

3 Exact solutions of the nonlinear
Yang—Mills equations

The systems (5), (12) are systems of twelve nonlinear second-order ODEs with vari-
able coefficients. That is why there is a little hope to construct their general solutions.
But it is possible to obtain particular solutions of system (5) whose coefficients are
given by expressions (12b)-(12d).

Consider, as an example, system of ODEs (5) with coefficients given by the
expressions (12b). We seek its solutions in the form

Bu = kuelf(w) + bueQQ(w)7 fg 7é 07 (13)

where e; = (1,0,0), e2 = (0,1,0).
On substituting the expression (13) into the above mentioned system we get

ft(a?=eg)f =0, fi+2fg=0. (14)
The second ODE from (14) is easily integrated to give
g=M"2 XeR!, X#O. (15)

Substitution of the result obtained in the first ODE from (14) yields the Ermakov-
type equation for f(w)

FHoa’f—e2Nf3 =0,
which is integrated in elementary functions [14]
f=(a2C*+a?(C* - a2e?)\2)1/2 sin 2|ar|w) vz, (16)

Here C # 0 is an arbitrary constant.
Substituting (13), (15), (16) into the corresponding ansatz for A,(z) we get the
following class of exact solutions of YMEs (1):

A, = ek exp (—ac -z — aws)(a™2C? + a7 2(C* — a?e2A?)V/2 x

x sin2|a|(b- x + wl))l/2 +eM @ 2C? +a72(Ch — a2e2\2)1/2 %

- 1
x sin 2|a(b- z + wy)) ! <b“ + 2klﬂb1) .

In a similar way we have obtained five other classes of exact solutions of the
Yang-Mills equations
A, =ekye (b zcoswy + ¢ wsinwy +w2) /22y 4 ((ieN/2)(b -z coswy +
+c-xsinw; +w2)2) + ex) (b-zcoswy + ¢ xsinwy + wy) X
x (¢, coswy — by sinwy + 2k, [(1/4)(se” + T)(b- zsinw; —

—c-xcoswi) + wsl);
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A, = elk#e*T (C1 coshleA(b- zcoswy + ¢+ xsinwy + wa)] + Co sinh[eX X
X (b-xcoswy + ¢ xsinwy + wg)}) + 62)\(0# coswy — by, sinwy +

+ 2]?7#[(1/4)(56T + T)(b ~xsinwy —c¢-xcoswy) + wg]);

1/2

A, = elk‘ue_T(CQ(b ~rcoswy + ¢ xsinwy +wy)? + )\2620_2) +

+ eg)\(C2(b -xcoswy + ¢ rsinwy + w2)2 + AzezC*Q)flx
X (by coswy + ¢ sinwy — (1/2)ky, i (b- zsinwy — ¢ xcoswy) — wo]);
A, = ek, Zo((ieX/2)[(b-z+wi)* + (c- x4+ w2)?]) + eaA(cu(b- 4+ wy) —
—bu(c- x4+ ws) — (1/2)k, [ (c- x + wa) — wa(b- x4+ w1)]);
A, = ek, (Ci[(b-z+w)? + (¢ a4+ w2) 22+ Os[(b- o +wi)? +
+ (e @+ w2)?]7M) Fea\[(b- x4+ wi)? + (¢ +wa)?] 7 x
X (cu(b-x+w)) —by(cx+wa) — (1/2)ky [t (¢ -z + wa) —
—a(b-z 4+ wy))).
Here C1,C5,C # 0, X are arbitrary parameters; wy, ws, ws are arbitrary smooth

functions on £ = %k ~x; T =T(&) is a solution of ODE (11). In addition, we use the
following notations:

k-z=Fkux*, b-xz=>byz", c-z=cua",
Zs(w) = C’le(w) + CQY;(LL)), e = (1,0,0), €y = (0, 1,0),

where Jg, Yy are the Bessel functions.

Thus, we have obtained broad families of exact non-Abelian solutions of YMEs (1).
It can be verified by direct and rather involved computation that the solutions obtained
are not self-dual, i.e. that they do not satisfy self-dual YMEs.

4 Conclusion

Let us say a few words about symmetry interpretation of the ansitze (2), (3), (10).
Consider as an example, the ansatz determined by expressions (10a). As a direct
computation shows, generators of a three-parameter Lie group G leaving it invariant
are of the form

3
Q1 = kala, Q2 = bada — 2wo(kuby — kuby) + wa(kyucy — kucy)] Y | A0 pan,
, o=t (17)
Q3 = caOo — 2w (kuby — kuby) + ws(kucy — kyey)] Y | A0 pan.
a=1

Evidently, the system of PDEs (1) is invariant under the one-parameter group G ha-
ving the generator @);. But it is not invariant under the groups having the generators
Q2, Q3. Consider, as an example, the generator Q2. Acting by the second prolongation
of the operator Q2 (which is constructed in a standard way, see e.g. [18, 20]) on the
system of PDEs (1), after some tedious algebra we obtain the following equality:

Q2L, = Z(wo(k#b,, —kyby,) +wa(kye, — kuc#))L” +
2

18
—+ Q(U)O(k#by — kybp) + U.)Q(k#C,, — ]{II,C#))QlAV — ( )
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- 8#((10017,/ + wgcy)QlA” — k,,(’UJOQQAV + IUQQgAV)) —

- (wobu + w2C/L)8uQ1Ay - kp, (U)O(wobu + U)QCV) +
+ wa (w1by, + wBCv))QlAV + 6((wobu +wac, ) Q1 AY —
— k'l,(ongAV + nggAV)) X A/L + 2e(w0bl,A” -+ U)QC,,AV) X QlA/L —

— 2€kVAV X (ongAM + w2Q3AM) +eA, x (’wobu + w2CH)Q1AD —
— 6kpAy X ('UJOQQAV + IUQQgAV).

In the above expressions we use the designations

L,=0,0"A, —0"0,A, +¢e((0,A)) x A, —2(0,A,) x A, +
+ (0" A,) x AY) + %A, x (A" x A,),

Q1A = koo A,

Q2A, = b0, A, + 2(w0(kub,, — kyby) +wa(kuc, — k,,cu))A”,

Q3A, = a0, A, + Z(wl(kuby — kyby) +ws(kuc, — k,,cﬂ))A"

and by the symbol ()2 we denote the second prolongation of the operator Qs.
2

As underlined terms in (18) do not vanish on the set of solutions of YMEs,
system of PDEs (1) is not invariant under the Lie transformation group Gs having
the generator Q2. On the other hand, system

L,=0, Q.A,=0, a=1,23

is evidently invariant under the group Gs. The same assertion holds for the Lie
transformation group Gs having the generator Q3. Consequently, the YMEs are con-
ditionally-invariant with respect to the three-parameter Lie transformation group G =
G1 ® G2 ® G3. This means that solutions of the YMEs obtained with the help of the
ansatz invariant under the group with generators (17) can not be found by means of
the classical symmetry reduction procedure.

As rather tedious computations show, the ansdtze determined by the expressions
(10b)-(10d) also correspond to conditional symmetry of YMEs. Hence it follows, in
particular, that the YMEs should be included into the long list of mathematical and
theoretical physics equations possessing non-trivial conditional symmetry [7].

Another interesting observation is that specifying the arbitrary functions contained
in non-Lie ansdtze in an appropriate way, one can obtain some Lie ansitze. Really,
expressions (8c), (81), (8m), (8q) are particular cases of expressions (10a), expressions
(8a), (8e), (8f), (8g), (8n), (80), (8s), (8t), (8u) are particular cases of expressions
(10b), (10c) and expressions (8h), (8p) are particular cases of the expressions (10d).
So if we denote the invariant solutions of the Yang-Mills equations symbolically by
the dots in some space of solutions of system of PDEs (1), then some of them can be
connected by curves which are conditionally-invariant solutions! Thus, at the first the
distinct glance solutions are the particular cases of more general solutions. A similar
assertion holds for the nonlinear wave [13] and the Dirac [11] equations. On the other
hand, some invariant solutions (namely those determined by expressions (8b), (8d),
(8i), (8j), (8k), (8r), (8v)) can not be connected with other solutions by the curve
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which is a conditionally-invariant solution of the form (10). A possible explanation of
this fact is that there exist more general conditionally-invariant solutions of YMEs.

The above picture admits an analogy with a case when equation under study has
general solution. In that case, each two solutions can be connected by a curve which
is a solution of the equation. The only exceptions are the singular solutions which
are obtained by some asymptotic procedure. So one can guess that there exists such
collection of conditionally-invariant solutions of YMEs that the majority of invariant
solutions are their particular cases and the remaining ones are obtained from these by
an asymptotic procedure. However, this problem so far is completely open and needs
further investigation.

One last remark is that the procedure suggested yields also some well-known exact
solutions of YMEs. For example, the ansatz for the Yang-Mills field determined by
expressions (2), (3) and (8v) gives rise to the meron and instanton solutions of the
system (1), originally obtained with the help of the Ansatz suggested by 't Hooft [21],
Corrigan and Fairlie [5] and Wilczek [22] (for more details, see [16]).
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On non-Lie ansatzes and new exact solutions
of the classical Yang—Mills equations
R.Z. ZHDANOV, W.I. FUSHCHYCH

We suggest an effective method for reducing Yang—Mills equations to systems of ordi-
nary differential equations. With the use of this method, we construct wide families
of new exact solutions of the Yang-Mills equations. Analysis of the solutions obtained
shows that they correspond to conditional symmetry of the equations under study.

1 Introduction

The majority of papers devoted to construction of the explicit form of exact solutions
of the SU(2) Yang-Mills equations (YME)

—

0,0 A, — 919, A, + €[(8,A,) x A, —20,A,) x A, + ("4,) x A] + 0
+e?A, x (A" x A,) =0

is based on the ansatzes for the Yang-Mills field /Tu(x) suggested by Wu and Yang,

Rosen, 't Hooft, Corrigan and Fairlie, Wilczek, Witten (see [1] and references therein).

And what is more, the above ansatzes were obtained in a non-algorithmic way, i.e.,

there was no regular and systematic method for constructing such ansatzes.

Since one has only a few distinct exact solutions of YME, it is difficult to give
their reliable and self-consistent physical interpretation. That is why, the problem of
prime importance is the development of an effective regular approach for constructing
new exact solutions of the system of nonlinear partial differential equations (PDE) (1)
(see also [1]).

A natural approach to construction of particular solutions of YME (1) is to uti-
lize their symmetry properties in the way as it is done in [2-4, 13]. Apparatus
of the theory of Lie transformation groups makes it possible to reduce the system
of PDE (1) to systems of nonlinear ordinary differential equations (ODE) by using
special ansatzes (invariant solutions) [5, 6]. If one succeeds in constructing general
or particular solutions of the said ODE (which is extremely difficult problem), then
substituting results into the corresponding ansatzes, one gets exact solutions of the
initial system of PDE (1).

Another possibility of construction of exact solutions of YME is to use their condi-
tional (non-Lie) symmetry (for more details about conditional symmetry of equations
of mathematical physics, see [7, 8] and also [9]). But the prospects of a systematic
and exhaustive study of conditional symmetry of the system of twelve second-order
nonlinear PDE (1) seem to be rather obscure. It should be said that so far we have
no complete description of conditional symmetry of a nonlinear wave equation even
in the case of one space variable.

In [9] we suggested an effective approach to study of conditional symmetry of
the nonlinear Dirac equation based on its Lie symmetry. We have observed that all

J. Nonlinear Math. Phys., 1995, 2, Ne 2, P. 172-181.
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Poincaré-invariant ansatzes can be represented in the unified form by introducing
several arbitrary elements (functions) wy(x), us(x),...,un(z). As a result, we get an
ansatz for the Dirac field which reduces the nonlinear Dirac equation to a system
of ODE provided functions u;(x) satisfy some compatible over-determined system of
nonlinear PDE. After integrating it, we have obtained a number of new ansatzes that
cannot in principle be obtained within the framework of the classical Lie approach.

In the present paper we construct a number of new exact solutions of YME (1)
with the aid of the above described approach.

2 Reduction of YME

In the papers [2, 13] we adduce a complete list of P(1,3)-inequivalent ansatzes for the
Yang—-Mills field which are invariant under three-parameter subgroups of the Poincaré
group P(1,3). Analyzing these ansatzes, we come to the conclusion that they can be
represented in the following unified form:

A, () = Ry, (2)B" (w), (2)

where B, (w) are new unknown vector-functions, w = w(z) is a new independent
variable, functions R, (z) are given by
R, (z) = (aua, — d,d,) chby + (aud, — dya,) chby +
+ 2(a,d,)[(01 cos b3 + 02 8in ©3)b,, + (02 cos b3 — 61 sinbs)c, +
+ (02 4 603)e= % (a, + d,)] — (cucy + bub,) cos bz —
— (cuby — buc,)sinfs — 2e7% (010, + Oac,)(ay, + d,).

3)

In (3) 6,(x) are some smooth functions and what is more, 6, = 6,(§, b2*, c zt),

a =12 ¢ = ika" = J(auz" + dyat); au, by, cu, d, are arbitrary constants
satisfying the following relations:
agat = —b, b = —c, et = —d,d" =1,

o b wo— b b o
a,b* =a,ct = a,dt = b, = b,dt = c,dt = 0.

Hereafter, summation over the repeated indices from O to 3 is understood. Risi-
ng and lowering of the indices is performed with the help of the tensor g, =
diag (1, -1, -1, -1), i.e. R = gapRp,.

The choice of the functions w(z), 0,(x) is determined by the requirement that
substitution of the ansatz (2) into YME yields a system of ordinary differential equati-
ons for the vector function Eu(w).

By a direct check, one can become convinced of that the following assertion holds
true.

Lemma. Ansatz (2), (3) reduces YME (1) to a system of ODE if the functions w(x),
0,.(x) satisfy the system of PDE

L. wWe,wen = F1(w),
2. Ow= Fh(w),

3. Ropws, = Gpu(w),
4. Rapz, = H,(w),

(4)
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D. RzRauzﬁme = Q,ul/ (W),
6. RYORa, = Su(w),
7. RﬁRauzg Rﬁ’y + RSRa’Yrﬂ Rﬁ# + RgRaﬂfﬁ Rﬁ” = #V'Y(w)’

where Fy,Fs,G,, ..., Ty, are some smooth functions, p,v,y = 0,3. And what is
more, the reduced equation has the form

Ky BY + 1,y BY + myy BY + equ,BY x B +

Lo . Lo ()
+ ey BY x BY + €2B, x (B" x B,) =0,

where
kuy = guvFr — Gugy,
by = guvy B2 +2Quy — G Hy — GMG’Y’
My = Sy — GMH’W (6)
Quvy = Jury G + Gy G — 291G,
Py = %(QMHV = GuHy) = Ty

Thus, to describe all ansatzes of the form (2), (3) reducing YME to a system of
ODE, one has to construct the general solution of the over-determined system of PDE
(3), (4). Let us emphasize that system (3), (4) is compatible, since ansatzes invariant
under the Poincaré group satisfy equations (3), (4) with some specific choice of the
functions Fi, Fo, ..., Ty..

Integration of the system of nonlinear PDE (3), (4) demands a huge amount of
computations. That is why, we present here only the principal idea of our approach
to solving system (3), (4). When integrating it, we use essentially the fact that the
general solution of the system of equations 1, 2 from (4) is known [10]. With already
known w(zx), we proceed to integration of the linear PDE 3, 4 from (4). Next, we
substitute the results obtained into the remaining equations and get the final form of
the functions w(x), 0, (z).

Before presenting the results of integration of the system of PDE (3), (4), we
make a remark. As a direct check shows, the structure of the ansatzes (2), (7) is not
altered by the change of variables

w—ow =T(w), 0y— 0,=>0+THw),
01 — 0! =61 + % (T1(w) cos B3 + Ty (w) sin f3),
92 — 0; = 92 + 690 (TQ((.«J) COS 93 — Tl (w) sin 63)7
03 — 9& =03 + Tg(w),
where T'(w), T,,(w) are arbitrary smooth functions. That is why, solutions of system
(3), (4) connected by the relations (7) are considered as equivalent.
It occurs that new (non-Lie) ansatzes are obtained, if functions w(x), 6,(x) up to
the equivalence relations (7) have the form
0,=0,0¢&ba",cox”), p=0,3,

w = W(f, b,x", nyu),

(7)

®)

where £ = 1k,a”, ky, = a, + d,.
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The list of inequivalent solutions of the system of PDE (3), (4) satisfying (8) is
exhausted by the following solutions:

1.

1
00:93:0, w = ikulya

01 = wo(&)bpat + wi(&)cuzt, Oy = wa(§)bua + ws(&)c at;
w= by +wi(§), b =a(cua” +wsy(€)),

o= —jia(©), a=T2 ;=0

b =T(§), 03=wi(§),
w = bya* coswy + ¢ xt sinwy + wa(§),

1 . . .
6 = [Z(EeT +T)(byat sinwy — ¢yt cosw) + wg(f)} sinwy + (9)
w1 (byat sinwy — ¢t coswy) — wg] cos w,

1
7l
1 ]
0y = — [Z(EeT +T) (bt sinwy — ¢zt coswy) + wg(f)] coswi +
1
1 [ty (bya* sinwy — ¢, @t coswy) — ] sinwy;

o =0, 03 = arctg[(c z" + wa(€)) (bz" + wl(g))_l],

. —%M& a=1,2, w=[(bua" +wi(€)” + (cua® +wa(€))’]".

)
Il

Here o # 0, € are arbitrary constants, wg, w1, we, wz are arbitrary smooth functions
of £ = $kyat, T =T(€) is a solution of the nonlinear ODE

(T+56T)2—|—u')f =xe?T, xeRL (10)

Substitution of the ansatz (2), where R, () are given by formulae (3), (9), into
YME yields systems of nonlinear ODE of the form (5), where

1.

1
kﬂ"/ = _Zkukw l;w = —(wo + w3)kuk77
My = —4(wi + wi + w3 + w3k ky — (o + w3)k, k-,
1
Quuv~y = i(g,u’yku + gu'yku - QQ,uvk’y)a
Ry = (Wo + w3)(Gur kv — Guvky) +2 (w1 — w2) [(ku,by —kybu)ey +
+ (bucy = bucp)ky + (cuky — coky)by s
kuy = =guy = buby, Ly =0, myy = —aQ(auaW —dudy),
Quuvy = g,u'ybv + gu’yb,u - 29/_wb'ya
By = a[(a#dl, —aydy)ey + (ducy — dycp)ay + (C#avcvau)dvk

(11)

€ »
Ky = —Guy = buby,  luy = _ibukw Myy = _Zkﬂkw
£
4
Kuy = —Guy = bubrys  luy = =07 (Guy +buby), My = *‘*‘72‘3#‘3%

q;w’y = g,u'ybv + gu’yb,u - 2guub'ya huu’y = (gu'yku - g,uuk'y);

1 _
Quvy = Jurbv + Guyby — 29,00y, Bpny = 5‘*’ 1(9Mbu = Guvby)-
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3 Exact solutions of the nonlinear
Yang—Mills equations

Systems (5), (11) are systems of twelve nonlinear second-order ODE with variable
coefficients. That is why, there is a little hope to construct their general solutions.
But it is possible to obtain particular solutions of system (5), which coefficients are
given by the formulae 2-4 from (11).

Consider, as an example, the system of ODE (5) with coefficients given by the
formulae 2 from (11). We look for its solutions in the form

—

B, = kué1 f(w) + buéag(w), fg#0, (12)

where €; = (1,0,0), > = (0, 1,0).
Substituting the expression (12) into the above mentioned system, we get

fH(@®=e¢)f=0, fi+2fg=0. (13)
The second ODE from (13) is easily integrated
g=Xf"2 XeR', Xx#0. (14)

Substitution of the result obtained into the first ODE from (13) yields the Ermakov-
type equation for f(w)
fratf—e f =,
which is integrated in elementary functions [11]

1/2

f=la?C+a? (c* - 04262)\2)1/2 sin 2|ajw] (15)

Here C # 0 is an arbitrary constant. =
Substituting (12), (14), (15) into the corresponding ansatz for A, (z), we get the
following class of exact solutions of YME (1):

—

A, = ek, exp(—aca: - ozwg) [a_2C2 +a? (C’4 - a262)\2)1/2 X

x sin 2|a(bx + wl)]1/2 +EMa 20 +a72(C* — a?e?A?) x
- 1
x sin 2|a|(bz + w1)] ! (b# + 3 k#u'q) .

In a similar way, we have obtained five other classes of exact solutions of the
Yang—Mills equations

—

A
A, = é'lk#e_T (bx cos wi + cxsinw; + wg) 1/2Z1/4(%(bx coswy +
+ cxsinwi + w2)2) + éxA(bx coswy + cxsinwy + wg) X

1 )
X {Cu cos wy — b, sinwy + 2k, (Z (EBT + T) (bx sinwy — cx cos wl) + wg)};

A, =¢ k#e*T [C’l chel (bw cos wy + cx sinwq + wg) + CysheA (bx cos wy +

+ crsinwi + wg)} + é’g/\[Cﬂ coswy — by sinw; +

1 )
+ 2/<;M<Z(66T —|—T)(bmsinw1 — cx coswy) + wg)];
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1/2+

ffﬂ = é’lkue_T [02 (bx coswy + cx sinwy + w2)2 + /\2620_2}
+ A [C?(bz coswy + casinwy + wa)? + Ne*C 2] '
1
X {bu coswy + Oy sinw; — Ek” [wl(bxsinwl —cxcoswy) — mz] };
. e\
i, = akﬂzo(%

~ {cﬂ(bx +wy) — by (cx + ws) — %ku [wl(cx + wy) — wa(bx + w1)] };

[(bz + w1)? + (cz + w2)2]> + éx\ X

/TH = &1k [C1((bx + w1)® + (cx + wg)Q)GA/2 +

+ Co((br +w1)? + (cz + w2)2)76)‘/2 + EAN|[(br +w1)? + (cx + w2)2]71 x
1
X {cu(bx +wy) — by(cx +wy) — 5 ku [wl(cas + ws) — wa(bx + wl)] }

Here C1,C5,C # 0, e, X are arbitrary parameters; wi, we, ws are arbitrary smooth
functions of £ = %kx T =T(¢) is a solution of ODE (10).
Besides that, we use the following notations:

kx =k, br=bux”, cx=cuat,
Zs(w) = C’le(w) + 02}/3(0.)), €1 = (1,0,0), €y = (0, 1,0),

where Jg, Y, are Bessel functions. Thus, we have obtained the wide families of exact
non-Abelian solutions of YME (1).

In conclusion we say a few words about a symmetry interpretation of the ansatzes
(2), (7), (10). Let us consider, as an example, the ansatz determined by the formulae 1
from (9). As a direct computation shows, generators of the three-parameter Lie group
leaving it invariant are of the form

Ql = kaaav
3
= bn00 — kb, — k,b,) + R A% 20 pan,
Q2 {[wo( p u) + w2 (kyc G )] az::l } A (16)
3
Q3 = Caaoz - 2{ [wl (kubl/ - kl/bu) + w3(kucl/ - kllcu)] ZAaV}aA“/"~
a=1

Evidently, the system of PDE (1) is invariant under the one-parameter group having
the generator ;. But it is not invariant under the groups having the generators @2,
Q3. At the same time, the system of PDE

— — — —.

8,0" A, — "0, A, + e[(0,A4,) x A, —2(8,A4,) x A, + ("A,) x A] +
+ 24, x (A x 4,) =0,

Qo _‘u = k:aaaffﬂ = 6,

Q1 A, = bada Ay + 2[wo(kuby — kuby) +wa(kuc, — k)] AY =0,

QoA = cada Ay + 2[wi(kuby — kuby) +ws(kue, — kyc,)]AY =0

is invariant under the said group. Consequently, YME (1) are conditionally-invariant
under the Lie algebra (16). It means that the solutions of YME obtained with the help
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of the ansatz invariant under the group with the generators (16) can not be found by
the classical symmetry reduction procedure.

As rather tedious computations show, the ansatzes determined by the formulae
2-4 from (9) also correspond to conditional symmetry of YME. Hence it follows,
in particular, that YME should be included into the long list of mathematical and
theoretical physics equations possessing a nontrivial conditional symmetry [12].
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Symmetry and reduction
of nonlinear Dirac equations

R.Z. ZHDANOV, W.I. FUSHCHYCH

We present results of symmetry classification of the nonlinear Dirac equations with
respect to the conformal group C(1,3) and its principal subgroups. Next we briefly
consider the problem of classical and non-classical symmetry reduction and construction
of exact solutions for the nonlinear Poincaré-invariant Dirac equations. In particular,
a class of exact solutions is constructed which can not be in principle obtained within
the framework of the classical Lie approach.

The Dirac equation is a system of four complex partial differential equations of the
form

(i%xa:z:# - m)¢($) = 07 (1)

where ¢ = (x0, Z) is a four-component function-column, ~,, are 4 x 4 Dirac matrices

(I 0 (0 o,
,YO - 0 7] 9 'Ya - 700’ 0

and o, are usual 2 x 2 Pauli matrices.
In fact in the following we do not use an explicit representation of the Dirac
matrices, we use the commutational relations

I, p=v=0,
’yufYV—'—fYV’VM:QgMV =2¢-1, p=v=1,223,
0, p#v
only.
Nonlinear generalizations of the Dirac equation were suggested by Ivanenko [1]
[i’}//taxu —m—+ A(JW)W =0 (2)
and by Heisenberg [2]
(170, + X @yuya)y"valtp = 0. (3)

Here ¥ = (g, 5, —3, —%) is a four-component function-row, y4 = Yoy17273,
A = const.

The above equations can be obtained in a unified way within the framework of
symmetry approach. For the equation of the form

[Z”Yuaa:u + F(@JP)W =0 (4)

In Proceedings of the International Symposium on Mathematical Physics “Nonlinear, Deformed
and Irreversible Quantum Systems” (15-19 August, 1994, Clausthal, Germany), Editors H.-D. Doebner,
V.K. Dobrev and P. Nattermann, Singapore — New Jersey — London — Hong Kong, World Scientific, 1995,
P. 223-229.
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to be physically acceptable generalization of the linear Dirac equation (1) it must obey
the Einstein relativity principle. From mathematical point of view, it means that on
the set of solutions of Eq. (4) some representation of the Poincaré group P(1,3) is
to be realized. Consequently, one has to describe all the matrices F(1,v) such that
Eq. (4) is invariant under the Poincaré group. Furthermore, it is known that the
massless Dirac equation is invariant under the 15-parameter conformal group C(1,3).
Therefore it is of interest to describe nonlinear equations (4) admitting conformal
group. Such procedure is usually called symmetry or group-theoretical classification
of nonlinear equations (4).

First, we give the results of symmetry classification and then turn to the problem
of constructing exact solutions of the nonlinear Dirac equations (4).

Theorem 1. System of partial differential equations (4) is Poincaré invariant iff

F(,¢) = F1 (g, ¥yap) + Fo(ap, hyat)ya, ()

where Fy, Fy are arbitrary complex functions.

Theorem 2. System of PDE (4) is invariant under the extended Poincaré group
P(1,3) = P(1,3)k D(1), where D(1) is a one-parameter group of scale transforma-
tions generated by the following infinitesimal operator:

D=2,0,+k, keR' (6)
iff the matrix-function F (1)) is of the form (5), F; being determined by the formulae
Fy = (09) 2 Fi (09 /$ray), i=1,2, (7

with arbitrary complex functions F;.

Theorem 3. System of PDE (4) is invariant under the 15-parameter conformal group

C(1,3) = P(1,3) K(4), where K(4) is a 4-parameter group of special conformal
transformations which is generated by the following infinitesimal operators:

1
K, =2x,D — xz,x"0" + 5(%/%, — %)z, p=0,...,3, (8)

iff F(1,v) is of the form (5), (7) with k = 3/2. In formula (8) D is the operator (6)
with k =3/2, " = gz, O* = g0, p,v=0,...,3.

Proof of the Theorems 1-3 is carried out with the help of the infinitesimal Lie
algorithm [3, 4].

Thus, there exists rather narrow class of Poincaré invariant equations of the
form (4)

17,0z, + F1 (0, vya0) + Fa (Y1), hyatp)valyh = 0. 9)

To construct exact solutions of the nonlinear Dirac equation (9) we apply the
symmetry reduction technique.

The general idea of symmetry reduction of PDEs can be formulated in a very
simple and natural way. Since coefficients of Eq. (9) do not depend explicitly on the
variable zg, we can look for a particular solution which is also independent of xg

Y = p(x1,22,23). (10)
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After substituting (10) into Eq. (9) we get system of PDEs with three independent
variables

(17102, + 17205, + 1730z, + F1(00, 2740) + Fo (9@, pyap)vale = 0. (11)

But from the group-theoretical point of view independence of Eq. (9) of the va-
riable o means that this equation is invariant under the one-parameter group of
displacements with respect to zg

ry=z0+06, T'=7 ' =1 (12)

Similarly, (10) is a manifold in the space of variables x, ¢ invariant under the
group of displacements with respect to .

Thus, imposing on the solution to be found requirement of invariance with respect
to the one-parameter group (12) which is a subgroup of the invariance group of Eq. (9)
we reduce it by one independent variable.

Now we turn to the general case. Let Eq. (9) be invariant under the one-parameter
transformation group

:Eit = f,u(z79)7 IZJ/ = F(x70)¢7 (13)

where f, are some real functions and F' is a variable 4 x 4 matrix.
It is known, that there exists such change of variables

wu = wu(), = B(x)y, (14)

where B(z) is some invertible 4 x 4 matrix, that the group (13) in the space of
variables w,,, ¢ takes the form

wh=wo+0, J=a, ¢ =¢. (15)

Consequently, if we make in the initial equation (9) the change of variables (14),
then the equation obtained will be invariant under the one-parameter group of dis-
placements (15). Therefore, a substitution ¢ = ¢(w1,ws,ws) reduce it to a system of
PDEs with three independent variables wq, wa, ws.

In the initial variables the above said substitution reads

P(z) = Alz)p(wi(2), wa(x), ws(x)), (16)

where A(z) = B~ 1(z).

And what is more, substitution of the expression (16) into Eq. (9) reduce it to
a system of PDEs with three independent variables wq, we, ws.

In fact, we gave a sketch of the proof of the reduction theorem, which is of utmost
importance for applications of Lie transformation groups in mathematical physics.
Namely, solution invariant under the one-parameter subgroup of the invariance group
of the nonlinear Dirac equation reduce it to a system of PDEs with three independent
variables. Obviously, a solution invariant under a three-parameter subgroup of inva-
riance group reduce the nonlinear Dirac equation to a system of ordinary differential
equations (ODEs).

So each three-parameter subgroup of the Poincaré group P(1,3) gives rise to an
Ansatz

P(z) = Az)p(w (), (17)
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which reduces the nonlinear Dirac equation (9) to a system of ODEs for a function

p(w).
In practice it is more convenient to work with Lie algebras. Let the operators

Qa :galt(x)am“ +Tla(I)7 a = 17273 (18)

form a three-dimensional Lie algebra corresponding to a given three-parameter sub-
group G5 of the group P(1,3). Then a solution invariant with respect to the group
G35 has the form (18), where function w(z) and matrix function A(z) are determined
by the following equations:

L &ap(2)0p,w(r) =0, a=1,2,3,
2. (Cau(2)0z, +1ma(x))A(x) =0, a=1,2,3.

Classification of P(1,3)-inequivalent subalgebras of the Lie algebra of the Poincaré
group P(1,3) has been carried out in [5]. There are, in particular, 27 inequivalent
three-dimensional subalgebras. Solving for each of these system of PDEs (19) we
obtain 27 Ansétze reducing the nonlinear Dirac equation to systems of ODEs.

Consider, as an example, a subgroup which Lie algebra has the following basis
elements:

(19)

1
Q1= 02y, Q2=0y,, Q3=120, — 10, + 572

Ansatz corresponding to the above algebra has the form

1
P(x) = exp (—57172 arctan i—;) (22 + x3). (20)

Substituting the above Ansatz into Eq. (9) after some tedious transformations we
get a system of ODEs

d i

. Vo) _ _ _ _ _
Mg T v Y2000 + [Fi(pp, grap) + Fa(@p, §rap)va)e = 0.

For the nonlinear equation suggested by Ivanenko Fy = m + (gp) and F; = 0. In
such a case the above system is integrated. Substituting the result obtained into the
Ansatz (20) we get an exact solution of the nonlinear equation (2)

<. 1
P(z) = (x% + gg%)%XX_i exp (—57172 arctan z—;) exp (—m(sc% + mg)l/z) \,

where x an arbitrary constant four-component column.

Symmetry approach to construction of exact solutions of PDEs is so systematic and
algorithmic that one could get an impression that in this way all Ansdtze reducing
Eq. (9) to systems of ODEs can be obtained. Luckily, it is not so. The source of
principally new Ansétze is the conditional symmetry of Eq. (9).

To study conditional symmetry of PDEs one can apply Lie algorithm but the
problem is that the determining equations for coefficients of vector field admitted
are essentially nonlinear. This is a reason why more or less systematic results on
conditional symmetry of PDEs are obtained only for two-dimensional equations.

But we suggested a method making it possible to obtain rich information about
conditional symmetry of such a complex nonlinear model as Eq. (9).
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The principal idea is based on the following observation: all Ansdtze invariant
under three-parameter subgroups of the group P(1,3) can be represented in the
following unified form [6]:

Y(x) = exp ((1101(x) + 1202(2)) (0 +73)) ¥

x exp (0o (x)v0y3 + 03(x)y172) p(w(x)). e

Specifying the functions 6,(x), w(x) we get from (21) all Poincaré invariant Ansat-
ze mentioned above.

The idea is not to impose ad hoc conditions on the functions §,, w. The only
condition is a requirement that substitution of expression (21) into Eq. (9) yields
a system of ODEs for a four-component function ¢(w).

As a result, one gets a system of twelve nonlinear PDEs for five functions. From
the first sight it looks even more complicated than the initial Eq. (9). But the fact that
said system is strongly over-determined enabled us to construct its general solution.

In this way we have obtained not only all Poincaré invariant Ansétze (which is
quite predictable) but also six principally new classes of Ansdtze which correspond to
conditional symmetry of the equation under study.

We adduce, as an example, the following Ansatz

1 _
W(@) = exp (5 win + whr2) (0 +78) + O3 +93) 22 — 172) X

1 Y1 (22)

x (0 + 73)) exp ( — oM arctan y:)@(y% +95),

where y, = x4 + w,, a = 1,2, w, = wa(xo + x3) are arbitrary functions, C is an
arbitrary constant.

It is readily seen that provided C' = 0,w; = we = 0 formula (22) gives the Ansatz
(20) which has been obtained with the use of the invariance group of Eq. (9). This
example demonstrates that invariant solutions are very special cases of conditionally
invariant solutions.

[t is important to emphasize a principal difference between invariant and condi-
tionally-invariant Ansédtze. Ansatz (20) invariant under the three-parameter subgroup
of the Poincaré group can be used to reduce any Poincaré invariant system of PDE.
But conditionally-invariant Ansatz (22) can be used for Eq. (9) only. It means that
the last Ansatz contains more precise information about structure of solutions of the
equation under study.
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Reduction of the seli-dual Yang—Mills
equations. I. The Poincaré group

R.Z. ZHDANOV, V.I. LAHNO, W.I. FUSHCHYCH

We have obtained a complete description of ansatzes for the vector-potential of the
Yang-Mills field invariant under 3-parameter P(1, 3)-inequivalent subgroups of the Poi-
ncaré group. Using these, we carry out a reduction of the self-dual Yang-Mills equations
to system of ordinary differential equations.

Jlns BekTop-moTeHuiany nosas fura—Minsnca nobynoBaHo mMoBHUE Habip iHBapiaHTHUX
BixHocHO P(1,3)-HeekBiBasleHTHUX miarpyn rpynu [lyaHkape aH3aliB, 3 BUKOPHCTAHHAM
SKHMX [POBEJEHO PelyKLilo caMopya/lbHUX piBHAHb fHra-Misnca 1o cucreM 3BHYaMHHX
nudepeHLiaNbHUX PiBHSHB.

Classical SU(2) Yang-Mills equations form a system of twelve nonlinear second-
order partial differential equations (PDE) in the Minkowski space R(1,3). But one
can obtain an important subclass of solutions by considering the following first-order
system of PDE:

— 7 =
F/,LV = §Em/aﬁF 5’ (1)

where F,, = 9"A, — VA, + eA, x A, is a tensor of the Yang—Mills field; 8, =
9/0x,, €vap is the antisymmetric fourth-order tensor; p,v,a,3 = 0,3. Hereafter,
the summation over the repeated indices from 0 to 3 is understood, rising and
lowering of the tensor indices is carried out with the help of the metric tensor
g = diag (1,—1,—1,—1) of the Minkowski space.

Equations (1) are called self-dual Yang—Mills equations. They are very interesting
because of the fact that any solution of equations (1) automatically satisfies Yang—
Mills equations (see, e.g. [1]). Moreover, symmetry groups of the Yang—Mills and of
the self-dual Yang—Mills equations are the same. Maximal symmetry group admitted
by equations (1) is the conformal group C(1,3) supplemented by the gauge group
SU(2) [2].

In the present paper, we carry out a symmetry reduction of the self-dual Yang-
Mills equations (1) by using ansatzes for the vector-potential of the Yang-Mills
/Tﬂ(x) invariant under the three-parameter subgroups of the Poincaré group P(1,3) C
C(1,3).

[t is known that the problem of classification of inequivalent subgroups of a Lie
transformation group is equivalent to the one of classification of inequivalent sub-
algebras of the Lie algebra (see, e.g. [3, 4]). Complete description of P(1, 3)-inequiva-
lent three-dimensional subalgebras of the Poincaré algebra AP(1,3) had been obtained
in [3].

YKkp. mMaT. XKypH., 1995, 47, Ne 4, P. 456-462.
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To establish correspondence between the three-dimensional subalgebra of the
symmetry algebra of equations (1) having the basis elements

0
= Eap(, A)0, +;na#xA>aAb, a=1.3, 2)

where {A% a = 1,3, = 0,3}, and the ansatz for A'M(a:) reducing equations (1) to
a system of ordinary differential equations, one has:

(1) to construct a complete system of functionally-different invariants of the
operators (2) w = {w;(z, A),i =1,13};

(2) to resolve the relations

Fj(wi(z,A), ... ,wiz(z,A) =0, j=1,13 (3)

with respect to the functions Aj.
As proved in [5], the above procedure can be significantly simplified if coefficients
of operators (2) have the following structure:

bap = Eap(@), b, = ZRW (4)

The ansatz for A, can be searched for in the form

3

Ap(@) =) Qi (@) Bl (w(x)), ()

c=1

where BY(w) are arbitrary smooth and the functions w(z), /‘jl;(x) satisfy the system
of PDE

€ap(¥)wz, =0,

3
6
S (€000, — RYE)QS = 0. ©)

c=1

Here, §¢ is the Kronecker symbol, a,b,d = 1,3, a =0, 3.
On the set of solutions of equations (1), t owing representation of the Poincaré
algebra is realized:

0 _
pP,=0" Ju=z,P,—x,P, +Z( ”aAaV_ gaAa#>’ w,v=0,3.(7)

Consequently, relations (4) hold true. Moreover, expression for 773# has the form

= Rap ()AL

v

772;1, a, b= m7 n= 73' (8)

That is why formulae (5), (6) can be rewritten in a simpler way. Namely, an ansatz

for the vector-potential of the Yang—Mills field A(x) invariant under a subalgebra of
the algebra AP(1,3) with basis operators (7) should be searched for in the form

Aj(2) = Quv(z) B (w(z)), (9)
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where BZ(w) are arbitrary smooth functions and functions w(x), Q. (z) satisfy the
system of PDE

&l#(x)wm# =0,
€aa($)8o¢Quu - Raua(x)Qow =0,

where a = 1,3, u,v =0, 3.

Thus, to get a complete description of P(1,3)-inequivalent ansatzes invariant under
three-dimensional subalgebras of the Poincaré algebra, one has to integrate over-
determined system of PDE (10) for each subalgebra. Let us note that compatibility of
equations (10) is guaranteed by the fact that the operators X;, X5, X3 form a Lie
algebra.

Bellow, we adduce a complete list of C'(1, 3)-inequivalent three-dimensional subal-
gebras of the Poincaré algebra AP(1,3) following [4]:

(10)

= (P, P1, P), = (P, P2, Ps),

L3—<P0+P3,P1,P2>7 L4— (Jos + aJia, Pr, Pa),

= (Joz, Po + P3, P1), LG (Jos + Py, Po, P3),
L7* (Jog + P1, Po + P3, P1), = (J12 + aJos, Po, ),
Ly = (Ji2 + Py, P1, P»), L10=<J12+P37P1,P2>7
Ly = (Ji1o+ Py — P3, P, P), Lo = (Gy,Py+ P5, P> + aPy),
L3 = (Gy + P2, Py + Ps3, Py), L1y = (G + Py — P3,Py + P53, P»),
Lis =(G1+ Py — P3, P + P, Py + P3), Lig = (Ji2,Jo3, Po + P3),
Li7 =(Gy + P2,Go — Py + aPy, Py + Ps), Lis = (G1, Jos, P2),
Lig = (Jos, G1, Po + Ps), Loy = (Jo3 + P2,G1, Py + P3),
L21 = (G1,Joz + P1 + Py, Py + P3), Loy = (G1, G, Joz + aJi2),

= (G1, Py + P3, 1), Loy = (J12, P1, P2),
L25 = (Jos, Po, P3), Lag = (Jo1, Joz, J12),

Loy = (J12, J23, J13),

Here, G; = Jo; — J;i3 (Z = 1,2), a € R.
Let us consider, as an example, the procedure of construction of ansatz (9) invari-
ant under subalgebra Ly (a = 0). In this case, system (10) reads

Wy =Wz, =0, LWy, + Tawy, =0, (11a)
Qzl = QzQ =0, onr;; + xSQro - SQ =0, (llb)
where Q = [|Qu ()2, =0,

0 0 0
0 0 0
57000
1 00

1
0
0
0
The first integral of system (lla) has the form w = 23 — x3. Next, from first two

equations of system (11b), it follows that Q@ = Q(x¢, z3). Since S is a constant matrix,
solutions of the third equation from (I1b) can be looked for in the form (see, e.g. [6])

Q = exp{f(xzo,x3)S}.
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By substituting this expression into (11b), we get
(@0fag, 23 fzo — 1) exp{fS} =0,

where f = ln(ZEo + 1‘3).
Consequently, a particular solution of equations (lib) can be chosen in the following
way:

Q = exp{ln(zo + z3)S}.
By using evident identity S = S®, we obtain the equality
Q = I+ Ssh(In(zo + x3)) + S*(ch(In(zo + 23)) — 1), (12)

where T is a unit (4 x 4)-matrix.
_ By substituting the obtained expressions into formula (9), we get an ansatz for
A, (z) which is invariant under the algebra L,
Aj = Bfj(f — 25) ch(In(zo + x3)) + BS (2§ — 23) sh(In(wo + x3)),
A} = B (af — 23), A§ = Bg(g — 23), (13)
A4 = B3 (a3 — a3) ch(In(ad — 23)) + Bg(ad - «3) sh(ln(ad — 23)), a=T1.3.
The above ansatz has such an unpleasant feature as an asymmetric dependence
on independent variables x,. To remove this asymmetry, one has to use a solution

generation procedure [7]. As a result, we arrive at the following representation of the
Poincaré invariant ansatz for the vector-potential of the Yang—Mills field:

A, (z) = Quu(2)B¥ (W) = {(aay — dpud,) ch by + (dyay — dya,,)shy +
+ 2k, [(61 cos O3 + 02 sin 63)b, + (62 cos O3 — 61 sinb3)c, +
+ (0% + Qg)ky exp(—b6o)] + (bucy — byc,)sinbs — (c,c — buby,) cos O3 —
— 2(01b,, + O2c,)ky exp(—@o)]}é”(w).
Here, a,, by, cu, d,, are arbitrary constants satisfying the following equalities:
ay ot = —b,b" = —c,ct = —d, d" =1,
a,bt = a,ct = a,dt = b, = b,d" = c,dt =0,
ky = a, +d,, Qu, w are some fun@nals of & whose explicit form depends on the
choice of the algebra AP(1,3), u =0, 3. Below, we adduce a complete list of functions

Qu, 1 = 0,3, w co corresponding to three-dimensional subalgebras of the Poincaré
algebra (7).

Li: 6,=0, w=dz;
Ly: 0,=0, w=az;
Lz: 6,=0, w=az+dz;

Ly: 6p=—Injax+dz|, 61=02=0, 05=aln|ax+ dx|,
w = (az)? — (dr)?%

Ls: 6p=—Inlax+dz|, 61 =0=03=0, w=cz;

Lg: 0g=bx, 0,=0,=03=0, w=cxz;

L7: Op=bx, 01 =0=03=0, w=—bx+lnlax+ dx|;
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Ls: 6= aarctgbz(cz)™l], 61 =0,=0, 03=—arctg[bzr(cr)™}],
w = (bx)? + (cx)?%;

Ly: 6y=0,=0,=0, 03=—ax, w=dx;

Lig: 6g=0,=0,=0, 03=dr, w=ax

1
Lii: 6=0,=0,=0, 03=—§(dx+am), w = ax + dz;

1
Lis: 0g=0,=03=0, 0= 5(()33 —acz)(ar +dx)™t,  w=azr+ dr;

1
Liz: 0y=0,=05;=0, 9125090, w = azx + dx;

1
Liy: 6g=05=05=0, le—z(asc—i—dx), w = 4bx — (ax + dx)?;

1
Lis: 6y=0,=05=0, 01:—Z(ax+dx),

w = 4(abx — cx) — alax + dx)?;

Lig: 6p=—1Inlax +dz|, 6;=0,=0, 63=—arctglbz(cx) "],
w = (be)? + (co)?:

1 cx+ (a+azx+dx)bx

Li7: 6p=0, 6,=—
T 07" VT 91 4 (ax + da) (o + ax + dx)’

92%1+(§§;§i§?§1;{i)—|—d$)’ 93=0, w=az+ds
Lig: 6y = —1Inlaz + dz|, leéawbﬁ, b =03 =0,

w = (az)? — (b)? — (do)*
Lig: 6y =—In|az + dz|, 01:%%’ o =03=0, w=cux;
Lo : 6y =—1Inlaz + dz|, leéambﬁ’ b =03 =0,

w=cx + lnl|azx + dzx|;
1 —bx + In|az — dz|

Loy : 0p=—In|ax+dzx|, 6= 3 P , O =03=0,
w=czx+ aln|ax + dx|;
Loz : 6y = —1Inlaz + dz|, 012167327 QQZEL,
2axr — dx 2 ax — dx

03 = alnlax + dz|, w= (ax)?— (bx)* — (cz)? — (dz)>.

Here, ax = a,a#, bx = bya”, cx = ¢y at, de = d,at, p=0,3.
Note. Ansatzes invariant under subalgebras Log, Loy, Las, Log, Lor yield so-called

partially-invariant solutions (the term was introduced by L.V. Ovsyannikov [8]) which
cannot be represented in the form (13) and are not considered here.

Substitution of ansatzes (13), (14) into system of PDE (1) demands very cumberso-
me computations. This is why we omit these and adduce only the final result-system
of ordinary differential equations for B, (w).
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General form of the reduced system is the following:

- 1
Ty = 5‘3#&[3

TP uv=0,3, (14)
where
f,“, = G#(w)ﬁu — Gyﬁﬂ — HWW(QJ)B?V + egu x B,

and functions G, (w), H,~(w) are calculated according to the following formulae:

Gu(w) = Q/“’wzl/7
Hyy(w) = QQayas @y — Q) — Qanas Qpp-
In the above formulae, overdot means differentiation with respect to w.

Thus, the form of the reduced equations for functions B,(w) depends on the
explicit forms of functions G, (w), H,,~(w). Below, we adduce a list of these functions
corresponding to ansatzes (13), (14).

Ly: p=—dy, Hyy=0;
Ly: Gp=a,, Huy=0;
Ls: w=ky, Hy=0;
Ly: G,=c¢la, —d, + kuwl,

Q

Q

Hywy = —€[(apdy — duay)ky + a(ky (byey — ¢ybu) — ku(bycy — cyby))];
Ls: Gu=cu Huyy=—cland, —dyay)ky;
Le:  Gu=cu Huy = (apdy — aydy)by + (aydy — aydy)by;
L;: Gu=-b,+¢ck,, H,=—(apdy—ayd,)b, + (aydy — ayd,)by;
Lg : GH = QCH\/(;,
1
Hyy = ﬁ{(cubv — cvbu)by + of(dpay — audy)by — (dyay — aydy)bul};
Lo:  Gu=—du, Huy=—au(bycy = cyby) + ay(bucy = cuby);
Lio: Gu=au, Huy = (bucy —cuby)dy — (bucy — cuby)dy;
1
Lin: Gu=a,—dy, Huy= 5[(bucv — uby)by — (bucy — cuby)by];
L12 GIJ« = kl»’«’
1
Hyyy = ;{(k’ubv — kybu)by — af(kuby — kybu)ey — (kuby — kyby)eu] b
Liz: Gu=ky, Hypy= (kuby —kybu)e, — (kuey — kyby)ey;
1
Lis: Gu=dbuy  Hyus = 500k = bbby

Lis: G,=4(cy —aby,), Huy = =(buky, — bk, )ky;

1
2

1 1
Hypy = elaudy, — aydy)ky — ﬁkv - ﬁ(b/tcu = cubu)by;
L7 Gu = Ry,
1
H {2(byc, — bucy) by + (kucy — kuey)by +

ey = 1+ w(w+ a)
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+ (kyby — kuby)ey + (a4 w)(kuby — kuby )by +
+w(kucy — kvey)ey b
Lig: G,=c¢lkyw+a,—d,),
Hyy = e(kuby — kubyu)by + (apdy — kuby)ky s
Ly: Gu=cu, Huy=cel(kuby —kuby)by + (apdy, — and,)k,];
Ly : Gu=cu+eky, Huy=c¢ellapd, —ayd,)ky + (kuby, — k)b,
Ly o G =cy+eaky,
Hyy = el(apdy — avdy)ky + (kuby — kubyu)by — (Kuby — kuby)kyJ;
Ly : G, =clkyw+a, —d,),
Hypy = e{(kuby — kubu)by + (kucy — kuey)ey +
+ af(bucy — cubp)ky — (bucy — cuby] + (audy — avdy)ky}.

Here, k, = a, +d,, e =1 for ax +dx > 0 and e = —1 for ax 4 dx < 0.

Thus, using symmetry properties of the self-dual Yang—Mills equations and sub-
algebraic structure of the Poincaré algebra, we reduced system of PDE (1) to the
system of ordinary differential equations (15). Let us emphasize that system (15)
contains nine equations for twelve functions, which means that it is underdetermined.
This fact simplifies essentially finding its particular solutions.

If one constructs a solution of one of equations (15) (general or particular), then
substitution of the obtained result into the corresponding ansatz from (13). (14) yields
an exact solution of the nonlinear self-dual Yang—Mills equations (1). We intend to
study in detail the reduced system of ordinary differential equations (15) and construct
new classes of exact solutions of equations (1) but this will be a topic of our future
publication.
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On the new approach to variable separation
in the time-dependent Schrodinger equation
with two space dimensions

R.Z. ZHDANOV, 1.V. REVENKO, W.I. FUSHCHYCH

We suggest an effective approach to separation of variables in the Schrodinger equation
with two space variables. Using it we classify inequivalent potentials V(x1,z2) such that
the corresponding Schrédinger equations admit separation of variables. Besides that,
we carry out separation of variables in the Schrodinger equation with the anisotropic
harmonic oscillator potential V' = kix? 4 kex3 and obtain a complete list of coordinate
systems providing its separability. Most of these coordinate systems depend essentially
on the form of the potential and do not provide separation of variables in the free

Schrodinger equation (V' = 0).

1 Introduction

The problem of separation of variables (SV) in the two-dimensional Schrédinger
equation

WU + Ug 2y + Uggzy = V (21, 22)U (1)

as well as the most of classical problems of mathematical physics can be formulated
in a very simple way (but this simplicity does not, of course, imply an existence
of easy way to its solution). To separate variables in Eq. (1) one has to construct
such functions R(t, ), w1 (t, ), wa(t, ) that the Schrodinger equation (1) after being
rewritten in the new variables

Z0=1, 2z =wi(t,x), 22=uwst,x),

v(z0, 2) = R(t, x)u(t, ) (2)

separates into three ordinary differential equations (ODEs). From this point of view
the problem of SV in Eq. (1) is studied in [1-4].

But no less of an important problem is the one of description of potentials V' (x1,z2)
such that the Schrdodinger equation admits variable separation. That is why saying
about SV in Eq. (1) we imply two mutually connected problems. The first one is to
describe all such functions V' (z1,x2) that the corresponding Schrédinger equation (1)
can be separated into three ODEs in some coordinate system of the form (2) (classi-
fication problem). The second problem is to construct for each function V(zy,xs)
obtained in this way all coordinate systems (2) enabling us to carry out SV in Eq. (1).

Up to our knowledge, the second problem has been solved provided V = 0 [2,
3] and V = amf2 + ﬁx;z [1]. The first one was considered in a restricted sense
in [4]. Authors using symmetry approach to classification problem obtained some
potentials providing separability of Eq. (1) and carried out SV in the corresponding

J. Math. Phys., 1995, 36, Ne 10, P. 5506-5521.



Variable separation in the time-dependent Schrodinger equation 481

Schrédinger equation. But their results are far from being complete and systematic.
The necessary and sufficient conditions imposed on the potential V(zy,xz2) by the
requirement that the Schrodinger equation admits symmetry operators of an arbitrary
order are obtained in [5]. But so far there is no systematic and exhaustive description
of potentials V(z1,x2) providing SV in Eq. (1).

To be able to discuss the description of all potentials and all coordinate systems
making it possible to separate the Schrédinger equation one has to give a definition
of SV. One of the possible definitions of SV in partial differential equations (PDEs)
is proposed in our article [6]. It is based on the concept of Ansatz suggested by
Fushchych [7] and on ideas contained in the article by Koornwinder [8]. The said
definition is quite algorithmic in the sense that it contains a regular algorithm of
variable separation in partial differential equations which can be easily adapted to
handle both linear [6, 9] and nonlinear [10] PDEs. In the present article we apply the
said algorithm to solve the problem of SV in Eq. (1).

Consider the following system of ODEs:

d
Z% = Uo(t, po; A1, A2),

3)
*p1 dpr Py dpo (
dw% Ul wly@ladwly 1,12 | dw% 2 WQ’SDQ’dWQ7 1,12 |

where Uy, Uy, Us are some smooth functions of the corresponding arguments, A1, Ao C
R! are arbitrary parameters (separation constants) and what is more

au, 2 2

OAq

rank H =2 (4)

pn=0 a=1
(the last condition ensures essential dependence of the corresponding solution with
separated variables on A1, Ao, see [8]).

Definition 1. We say that Eq. (1) admits SV in the system of coordinates t, wi(t, x),
wa(t, &) if substitution of the Ansatz

u = Q(t’x)@o(t)@l (w1(t,.’13))<p2 (w2(t,$)) (5)

into Eq. (1) with subsequent exclusion of the derivatives dpy/dt, d*¢; /dw?, d*ps/dw?
according to Egqs. (3) yields an identity with respect to o, ©1, 2, dp1/dw,
d(pg/du)g, )\1, )\2.

Thus, according to the above definition to separate variables in Eq. (1) one has

(i) to substitute the expression (5) into (1),
(ii) to exclude derivatives dio/dt, 8-, d®p,/dw? with the help of Egs. (3),

’ Wa
(iii) to split the obtained equality with respect to the variables g, 1, @2, dp1/dwy,
dps /dwa, A1, A2 considered as independent.

As a result one gets some over-determined system of PDEs for the functions
Q(t,x), wi(t,x), wa(t,z). On solving it one obtains a complete description of all
coordinate systems and potentials providing SV in the Schrédinger equation. Natural-
ly, an expression complete description makes sense only within the framework of our
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definition. So if one uses a more general definition it may be possible to construct new
coordinate systems and potentials providing separability of Eq. (1). But all solutions
of the Schrédinger equation with separated variables known to us fit into the scheme
suggested by us and can be obtained in the above described way.

2 Classification of potentials V (x1, x3)

We do not adduce in full detail computations needed because they are very cumber-
some. We shall restrict ourselves to pointing out main steps of the realization of the
above suggested algorithm.

First of all we make a remark, which makes life a little bit easier. It is readily
seen that a substitution of the form

Q— Q =QV(w1)¥s(w2),

6
we = wh =0 (we), a=1,2, Ag— XN, =A.(M\,02), a=12, ©)

does not alter the structure of relations (3), (4), and (5). That is why, we can introduce
the following equivalence relation:

(Wlaw%Q) ~ (wivwéle)

provided Eq. (6) holds with some ¥,, Q,, A,.
Substituting Eq. (5) into Eq. (1) and excluding the derivatives dyg/dt, d*py/dw?,
d?py/dw3 with the use of equations (3) we get

i(Qepop1p2 + QUop1p2 + Quitpop1pe + Quarpopipz) + (AQ)pop1p2 +
+ 2Qz, Wiz, Po192 + 2Qu,waz, P12 + Q((Awr)porp2 +
+ (Aw2)pop192 + Wi, Wiz, PoU1p2 + War, waz, Po1Uz +
+ 2w, waz, PoP192) = VQpopi1pa,

where the summation over the repeated index a from 1 to 2 is understood. Hereafter
an overdot means differentiation with respect to a corresponding argument and A =
07 +03,.

Splitting the equality obtained with respect to independent variables ¢, o,
dpy/dwy, dps/dws, A1, Ao we conclude that ODEs (3) are linear and up to the
equivalence relation (6) can be written in the form

.dpo

i— = (MR + AaRa(t) + Ro(t)) 0,

d2

d:;l = (MBu1(w1) + A2 Bia(w1) + Boi (w1)) 1,
1

d2

d:)? = (M1 Ba1(w2) + A2 Baa(wa) + Boa(wz)) w2
2

and what is more, functions w1, wo, @ satisfy an over-determined system of nonlinear
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PDEs

(1) wizg,wae, =0,

(2) Bia(w1)wiz,wiz, + B2a(w2)waz,woz, + Ra(t) =0, a=1,2,

(3) 2Waz, Qu, + Qiwar + Awa), a=1,2, (7)

(4)  (Bo1(w1)wiz,wiz, + Boz2 (w1 )wag,was, )Q +iQr + AQ + Ro(t)Q —
—V(z1,22)Q = 0.

Thus, to solve the problem of SV for the linear Schrodinger equation it is necessary
to construct general solution of system of nonlinear PDEs (7). Roughly speaking, to
solve a linear equation one has to solve a system of nonlinear equations! This is the
reason why so far there is no complete description of all coordinate systems providing
separability of the four-dimensional wave equation [3].

But in the case involved we have succeeded in integrating system of nonlinear
PDEs (7). Our approach to integration of it is based on the following change of
variables (hodograph transformation)

20=1t, z1=2Z1(t,wi,w2), z2=2Zs(t,wi,ws), vI =21, Uy=Tg,

where zg, 21, 2o are new independent and vy, vy are new dependent variables corres-
pondingly.

Using the hodograph transformation determined above we have constructed the
general solution of Egs. (1)-(3) from Eq. (7). It is given up to the equivalence relation
(6) by one of the following formulas:

(1) w1 = A(t)xl + Wl(t), Wy = B(t).’tg + Wg(t),

i (A B i (W W
Q(t, @) = exp {_Z (Zﬁ + Eﬁ) =3 (71561 + FQQCQ) } ;

1
(2) w1 = 5 In(x? +23) + W(t), wy = arctan ﬂ,
)

) =em{ -t}

1 ®)
(3) xr1 = §W(t)(wf — w%) + W (t), To = W(t)wlwg + Wg(t),

Q(t,x) = exp {jl—W (1 = W1)? + (z2 — W)?) + %(Wlxl + ngg)} ;
(4) x1 =W(t)coshwy coswy + Wi(t), w2 =W(t)sinhw;sinws + Wa(t),

Q(t,x) = exp {% ((xl — W12+ (2o — WQ)Q) + %(Wlxl + Wga:g)} :
Here A, B, W, Wy, W5 are arbitrary smooth functions on t.

Substituting the obtained expressions for the functions @, w;, we into the last
equation from the system (7) and splitting with respect to variables z1, 22 we get
explicit forms of potentials V' (x1,25) and systems of nonlinear ODEs for unknown
functions A(t), B(t), W(t), Wi(t), W(t). We have succeeded in integrating these
and in constructing all coordinate systems providing SV in the initial equation (1).
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Here we consider in detail integration of the fourth equation of system (7) for the
case 2 from Eq. (8), since computations needed are not so lengthy as for other cases.

First, we make several important remarks which introduce an equivalence relation
on the set of potentials V(z1,x2).

Remark 1. The Schrédinger equation with the potential
V(J?l,l'g) = klxl + kgl‘z + k’s + Vl(]{/‘gml — k‘ll‘g), (9)

where k1, ko, k3 are constants, is transformed to the Schrédinger equation with the
potential

V'(2},25) = Vi(ka — k1)) (10)
by the following change of variables:

t'=t, « =x+1’k,

; 11
u = uexp {%(kf + kD 4 it (k2 + koxo) + ikgt} ) (1

[t is readily seen that the class of Ansitze (5) is transformed into itself by the
above change of variables. That is why, potentials (9) and (10) are considered as
equivalent.

Remark 2. The Schrodinger equation with the potential

V(zy,xo) = k(22 +22) + 1 (i—;) (22 + 237! (12)

with & = const is reduced to the Schrodinger equation with the potential
!/

V'(zy1,m0) = V3 (%) (22 +22)! (13)

2

by the change of variables
Y =ol) @ =B)m o =uesplint)(e +43) +5(1)},

where (a(t), B(t),~(t),0(t)) is an arbitrary solution of the system of ODEs
Y—dy? =k, B—4y3=0, a—p*=0, s+4y=0

such that 8 # 0.

Since the above change of variables does not alter the structure of the Ansatz (5),
when classifying potentials V(x1,z2) providing separability of the corresponding
Schrodinger equation, we consider potentials (12), (13) as equivalent.

Remark 3. It is well-known (see e.g. [11, 12]) that the general form of the invariance
group admitted by Eq. (1) is as follows

t'=F(t0), 2, =g,tx80), a=1,2 ' =h(tz 0u+U(zx),

a

where 0 = (01,0s,...,0,) are group parameters and U(t, x) is an arbitrary solution
of Eq. (1).
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The above transformations also do not alter the structure of the Ansatz (5). That
is why, systems of coordinates t, =, 4 and ¢, x1, x2 are considered as equivalent.

Now we turn to the integration of the fourth equation of system (7). Substituting
into it the expressions for the functions wy, we, @ given by formulas (2) from Eq. (8)
we get

Vi(er,22) = (Boi(w1) + Boa(ws)) exp{—2(w1 — W)} + i(v"v _ W) %
x exp{2(w; — W)} + Ro(t) — iW.

(14)

In the above equality By, Boz2, Ro(t), W (t) are unknown functions to be determi-
ned from the requirement that the right-hand side of (14) does not depend on ¢.
Differentiating Eq. (14) with respect to ¢ and taking into account the equalities

w1t = W, woy =0
we have
W exp{—2(w1 — W)} Bor + &(t) exp{2(wr — W)} + B(t) = 0, (15)

where a(t) = i(W —W?), B(t) = Ry —iW.

Cases W = 0 and W # 0 have to be considered separately.

Case 1. W = 0. In this case W = C' = const, Ry = 0. Since coordinate systems
w1, wo and wy + C1, wo + Cy are equivalent with arbitrary constants C7, Cs, choosing
Cy, = —C, Cy =0 we can put C' = 0. Hence it immediately follows that

1 T
V(zy,x2) = [301 <§ In(z? + x%)) + Boo <arctan a:_;ﬂ (22 +22)71,
where By, Bge are arbitrary functions. And what is more, the Schrédinger equa-
tion (1) with such potential separates only in one coordinate system
1

wy = = In(2? +23), wy = arctan . (16)
2 T2

Case 2. W # 0. Dividing Eq. (14) into W exp{—2(w; — W)} and differentiating the
equality obtained with respect to ¢ we get

eXp{4w1}% (a(W)_l exp{—4W}) + exp{2w1}% (B(W)_l exp{—2W}) =0,

whence
d 4
dt dt
Integration of the above ODEs yields the following result:

(a(W) "t exp{—4W}) =0, (BOW)~exp{—2W}) =0.
a=Crexp{dW} + Cy, [ =Csexp{2W} + Cy,

where C), = 1,4 are arbitrary real constants.
Inserting the result obtained into Eq. (15) we get an equation for By

By = —4C, exp{4dw: } — 2C; exp{2w1 },
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which general solution reads
By = —C exp{4w;1} — C5exp{2w; } + Cs.

In the above equality Cs is an arbitrary real constant.

Substituting the expressions for «, 8, Bo1 into Eq. (14) we have the explicit form
of the potential V' (z1,x2)

V(zy,x2) = [Bog <arctan ?) + 05] (22 + 22) 7 4 Co (22 + 22) + C4,
2

where Byo is an arbitrary function.

By force of the Remarks 1, 2 we can choose Cy; = Cy = 0. Furthermore, due to
arbitrariness of the function Byz we can put C5 = 0.

Thus, the case W # 0 leads to the following potential:

V(z1,72) = Boz (arctan %) (22 +22)7 L (17)
2

Substitution of the above expression into Eq. (14) yields second-order nonlinear
ODE for the function W = W (t)

W — W? = 4C) exp{4W}, (18)
while the function Ry is given by the formula
Ry = iW + Czexp{2W }.

Integration of ODE (18) is considered in detail in the Appendix A. Its general
solution has the form
under C7; # 0

W = —% In((at — b)*> —4C4) + %lna,
under C; =0
W =a—In(t+b).

Substituting obtained expressions for W into formulas (2) from (8) and taking into
account the Remark 3 we arrive at the conclusion that the Schrédinger equation (1)
with the potential (17) admits SV in two coordinate systems. One of them is the polar
coordinate system (16) and another one is the following:

wy = 11n(a;% +23) — lln(t2 +1), wq=arctan Y (19)
2 2 T2
Consequently, the case 2 from Eq. (8) gives rise to two classes of the separable
Schrodinger equations (1).
Cases 1, 3, 4 from Eq. (8) are considered in an analogous way but computations
involved are much more cumbersome. As a result, we obtain the following list of
inequivalent potentials V' (z1,x2) providing separability of the Schrédinger equation.
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(1) V(z1,22) = Vi(z1) + Va(2);
(a) V(21,22) = kya? + kox? + Va(x2), kg # 0;

(1) V(xy,w2) = k123 + koad + ka2 + kaag ?,  ksks #0,
k? + k3 #0, ki # ko

(i)  V(z1,22) = k1a} + ko2, kiks #£0;

(iil) V(x1,22) = kio7? 4 koxy %

(b) V(z1,22) = kya] + Va(z2);

(1) V(z1,22) = kya} + koad + kzzy 2, kiks #0, ky # ko
(11) V(Il,CEQ) = k’ll‘% + kgl‘%, klkg 7§ 0, kl 7é kg;
(111) V(Z‘1, 332) = k:lx% + k21‘2_2, k1 ;'é 0;

(@) V(@1,52) = Vi(a? +23) + Va(an f2) (03 + 23)
(a) V (@1, 22) = Va(@1 /x) (2] + 23) 71
(b) V (w1, 22) = ka(2f +23)""/%, k1 #0;
(3) V(x1,22) = (Vi(w1) + Va(ws))(w? + w3) 1, where w? — w3 = 211, wiwy = T9;
4) V(xzy,z2) = (Vi(w1) + Vg(wz))(sinh2 wy + sin? wy) ™!, where coshw; coswy = 1,
sinh wq sinwy = x9;
() V(z1,22) = 0.

In the above formulas Vi, V, are arbitrary smooth functions, ki, ko, k3, k4 are
arbitrary constants.

It should be emphasized that the above potentials are not inequivalent in a usual
sense. These potentials differ from each other by the fact that the coordinate systems
providing separability of the corresponding Schrddinger equations are different. As
an illustration, we give the Fig. 1, where r = (27 4+ 22)'/2 and by the symbol V),
7 = 1,4 we denote the potential given in the above list under the number j. Down
arrows in the Fig. | indicate specifications of the potential V(z1,z3) providing new
possibilities to separate the corresponding Schrédinger equation (1).

The Schrodinger equation (1) with arbitrary function V(z1,z2) (level 1 of the
Fig. 1) admits no separation of variables. Next, Eq. (1) with the “root” potentials
V@ (level 2), Vi, V, being arbitrary smooth functions, separates in the Cartesian
(7 = 1), polar (3 = 2), parabolic (y = 3) and elliptic (y = 4) coordinate systems,
correspondingly. Specifying the functions Vi, V5 (i.e. going down to the lower levels)
new possibilities to separate variables in the Schrédinger equation (1) arise. For
example, Eq. (1) with the potential V(w1 /x9)r~2, which is a particular case of the
potential V(?)| separates not only in the polar coordinate system (16) but also in
the coordinate systems (19). The Schrédinger equation with the Coulomb potential
kyr—!, which is a particular case of the potentials V), V(3) separates in two coordi-
nate systems (namely, in the polar and parabolic coordinate systems, see below the
Theorem 4). An another characteristic example is a transition from the potential V(!)
to the potential k22 4 Va(zz). The Schrédinger equation with the potential V(1) ad-
mits SV in the Cartesian coordinate system wy = ¢, w1 = x1, wes = x5 only, while the
one with the potential k22 + Va(x2) separates in seven (k; < 0) or in three (k; > 0)
coordinate systems.
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/

= &

e

ket +kaai? + Va(e) || ket +Va(e) | [ Va(E)r? b ]

kya? + kaxd + kaz? + kgzy” I l kix} + ka3 + kyz3? I

/ /iy

kot + ko ? ] l kyz® + kyzy? I kyzf + kpx} I kiz} + kpz? I

Figure 1.

A complete list of coordinate systems providing SV in the Schrodinger equations
with the above given potentials takes two dozen pages. Therefore, we restrict ourself
to considering the Schrédinger equation with anisotropic harmonic oscillator potential
V(x1,22) = k12?3 + ko3, ki # kg and Coulomb potential V(x1, x2) = ki (23 +23)~1/2.

3 Separation of variables in the Schrodinger
equation with the anisotropic harmonic
oscillator and the Coulomb potentials

Here we will obtain all coordinate systems providing separability of the Schrodinger
equation with the potential V (z1,z2) = k12? + kox3

WUt F Uy gy + Upgzy = (ky2? + koa2)u. (20)

In the following, we consider the case ky # ko, because otherwise Eq. (1) is
reduced to the free Schrédinger equation (see the Remark 2) which has been studied
in detail in [1-3].
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Explicit forms of the coordinate systems to be found depend essentially on the
signs of the parameters ki, k2. We consider in detail the case, when k1 < 0, k3 > 0
(the cases k1 > 0, ko > 0 and k1 < 0, ko < 0 are handled in an analogous way). It
means that Eq. (20) can be written in the form
%(aQﬁ —Vz2)u =0, (21
where a, b are arbitrary non-null real constants (the factor % is introduced for further
convenience).

As stated above to describe all coordinate systems ¢, wy(t, ), wa(t, ) providing
separability of Eq. (20) one has to construct the general solution of system (8) with
V(z1,x2) = —(a’x} — b*x3). The general solution of Eqs. (1)-(3) from Eq. (7) splits
into four inequivalent classes listed in Eq. (8). Analysis shows that only solutions
belonging to the first class can satisfy the fourth equation of (7).

Substituting the expressions for wi, we, @ given by the formulas (1) from (8) into
the equation 4 from (7) with V(z1,22) = —(a?x} — b%23) and splitting with respect
to z1, xo one gets

iUt + ul'll'l + ul‘zl‘z +

Boi(w1) = aqwi + aswi, Boa(ws) = frws + faws,

. . . 2
(;‘1‘) _ (ﬁ) A A 4 a® =0, (22)
B\ (B\
(E) — <§> —46,B* —v* = 0, (23)

él — 291% — 2(20[191 + O[Q)A4 = 0, (24)
. B ,
by — 20275 — 2(26102 + ) B* = 0. (25)

Here a1, as, (1, B2 are arbitrary real constants.

Integration of the system of nonlinear ODEs (22)-(25) is carried out in the
Appendix A. Substitution of the formulas (A.2), (A.4)-(A.6), (A.8)-(A.11) into the
corresponding expressions 1 from (8) yields a complete list of coordinate systems
providing separability of the Schrodinger equation (21). These systems can be trans-
formed to canonical form if we use the Remark 3.

The invariance group of Eq. (21) is generated by the following basis operators [11]:

Py=0:, I=udy, M =iudy, Qo =U(t,x)0,,

P, = coshatd,, + %(ml sinh at)ud,,

b
Py = cosbt0,, — %(:cg sin bt)ud,,, (26)
G = sinhatd,, + %(ml cosh at)ud,,

b
Gy = sinbt0,, + %(1'2 cos bt)ud,,

where U(t,x) is an arbitrary solution of Eq. (21).
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Using the finite transformations generated by the infinitesimal operators (26) and
the Remark 3 we can choose in the formulas (A.4)-(A.6), (A.8), (A.10), (A.11)
C3=Cy =Dy =0,D3 =Dy =0, Cy = Dy = 1. As a result, we come to the
following assertion.

Theorem 1. The Schridinger equation (21) admits SV in 21 inequivalent coordinate
systems of the form

wop =1, wi=uw (ta 113), W2 = WQ(ta w)a (27)

where wy is given by one of the formulas from the first and wy by one of the formulas
from the second column of the Table 1.

Table 1. Coordinate systems proving SV in Eq. (21).

w(t, @) wa(t, x)

z1 (sinha(t + C’))_l+oz(sinh a(t + C’))_2 zo(sinbt) ™! + B(sin bt) 2
z1(cosha(t + C)) “ta (cosha(t + C)) 2 2a(B + sin 2bt) 1/

x1 exp(tat) + « exp(+4at) X9

z1 (o + sinh 2a(t + C’))fl/2

1 (o + cosh 2a(t + C))_1/2

z1 (o + exp(+2at)) /2

1

Here C, «, (8 are arbitrary real constants.

There is no necessity to consider specially the case when in Eq. (20) k1 > 0,
ko < 0, since such an equation by the change of independent variables u(t, z1,2z2) —
u(t, 2, 21) is reduced to Eq. (21).

Below we adduce without proof the assertions describing coordinate systems provi-
diﬂg SV in Eq (20) with k1 <0, ko <0 and k; > 0, kg > 0.

Theorem 2. The Schridinger equation

1

WUy + Uz, oy + Upgas + Z(QQI% +b%2)u=0 (28)
with a® # 4b* admits SV in 49 inequivalent coordinate systems of the form (27),
where wy is given by one of the formulas from the first and wy by one of the formulas
from the second column of the Table 2. Provided a®> = 4b*> one more coordinate

system should be included into the above list, namely

wo=1t, wi—ws=21, wwy=s. (29)
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Table 2. Coordinate systems proving SV in Eq. (28).

wi(t, ) wo(t, @)

z1(sinha(t + C)) _1+a(sinh a(t+C)) 2 2o(sinhbt)~! + B(sinh bt) 2
21 (cosha(t + C))fl—koz (cosha(t + C))72 xo(coshbt) ™! + B(cosh bt) 2

x1 exp(+£at) + aexp(+4dat) xo exp(£bt) + B exp(L4bt)
x1 (a+sinh2a(t+0))_1/2 x2(f3 + sinh 2bt)~1/2
:rl(a+cosh2a(t+0))71/2 x2(f + cosh 2bt)~1/2
z1(a+ exp(j:2at))_1/2 z2(3 + exp(+2bt)) 172

T T2

Here C, «, (8 are arbitrary constants.

Table 3. Coordinate systems proving SV in Eq. (30).

wi(t, x) wa(t, )

z1 (sina(t + C))_1+a(sin a(t + C))_2 wo(sinbt) =1 + B(sin bt) 2
z1 (B + sin 2a(t + C))il/2 xo(f + sin 2bt) /2

€ T2

Here C, «a, (3 are arbitrary constants.

Theorem 3. The Schrodinger equation

1
WUy + Uz g + Uggzy — Z( 222 £ B%22)u =0 (30)
with a® # 4b* admits SV in 9 inequivalent coordinate systems of the form (27),
where wy is given by one of the formulas from the first and wy by one of the
formulas from the second column of the Table 3. Provided a® = 4b*, the above list
should be supplemented by the coordinate system (29).

Remark 4. If we consider Eq. (1) as an equation for a complex-valued function u of
three complex variables ¢, x1, xo, then the cases considered in the Theorems 1-3 are
equivalent. Really, replacing, when necessary, a with ia and b by ib we can always
reduce Eqgs. (21), (28) to the form (30). It means that coordinate systems presented
in the Tables 1, 2 are complex equivalent to those listed in the Table 3. But if u is
a complex-valued function of real variables ¢, x1, o it is not the case.

Theorem 4. The Schrédinger equation with the Coulomb potential
Ut 4 Uy zy + Uy — k1 (22 + 23) 720 =0

admits SV in two coordinate systems (16), (29).

[t is important to note that explicit forms of coordinate systems providing separabi-
lity of Egs. (21), (28), (30) depend essentially on the parameters a, b contained in
the potential V(z1,x2). It means that the free Schrodinger equation (V' = 0) does not
admit SV in such coordinate systems. Consequently, they are essentially new.
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4 Conclusion

In the present paper we have studied the case when the Schrédinger equation (1)
separates into one first-order and two second-order ODEs. It is not difficult to prove
that there are no functions Q(¢,x), w,(t,x), p = 0,1,2 such that the Ansatz

u = Q(t,x)po(wo(t, ®))e1 (wi(t, @) s (wa(t, x))

separates Eq. (1) into three second-order ODEs (see Appendix B). Nevertheless, there
exists a possibility for Eq. (1) to be separated into two first-order and one second-order
ODEs or into three first-order ODEs. This is a probable source of new potentials and
new coordinate systems providing separability of the Schrodinger equation. It should
be said that separation of the two-dimensional wave equation

Ut — Uz = V(2)u

into one first-order and one second-order ODEs gives no new potentials as compared
with separation of it into two second-order ODEs. But for some already known
potentials new coordinate system providing separability of the above equation are
obtained [9].

Let us briefly analyze a connection between separability of Eq. (1) and its symmet-
ry properties. It is well-known that each solution of the free Schrédinger equation with
separated variables is a common eigenfunction of two mutually commuting second-
order symmetry operators of the said equation [2, 3]. And what is more, separation
constants A1, Ay are eigenvalues of these symmetry operators.

We will establish that the same assertion holds for the Schrédinger equation (1).
Let us make in Eq. (1) the following change of variables:

u=Q(t,x)U (t,w (t,x),ws(t, )), (31)

where (Q,w1,ws) is an arbitrary solution of the system of PDEs (7).
Substituting the expression (31) into (1) and taking into account equations (7) we

get
Q(iUt + (lewl - BOl(wl)U)wlmawlxa + (waz - Bo2(w2)U)w2maw2ma) = 0~(32)

Resolving Egs. (2) from the system (7) with respect to wiz, wi,, and wa,, wae,, We
have

(R2(t)Ba1(w2) — Ry(t)Baz(w2)),

(R1(t)Bi2(w1) — Ra(t)B11(w1)),

Wiz, Wiz, =

S| = =

W2y, W2z, =

where 6 = By (w1)Baa(ws2) — Bi2(w1)Bai(ws) (6 # 0 by force of the condition (4)).
Substitution of the above equalities into Eq. (32) with subsequent division by
Q@ # 0 yields the following PDE:

t
U + Rl( )

(Bl2(wl)(Uw2wg - Bo2(w2)U) - 322(w2)(Uw1w1 - 301(w1)U)) +
(33)

Ral) (Ba1(w2) (U, — Bot(w1)U) = B1(w1) (Uusws, — Boz2(w2)U)) = 0.

)

+
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Thus, in the new coordinates t, wy, wo, U(t,wi,ws) Eq. (1) takes the form (33).
By direct (and very cumbersome) computation one can check that the following
second-order differential operators:

x =22 p o) - P 2, ),
Xy = —W((ﬁl — Boi(w1)) + w(@%g — Boz(w2)),
commute under arbitrary By,, Bap, a,b=1,2, i.e.
(X1, Xo] = X1X5 — X2 X1 = 0. (34)

After being rewritten in terms of the operators Xy, X5 Eq. (33) reads
(i0; — R1(t) X1 — Ry () X2)U = 0.
Since the relations
[i0, — R1(t) X1 — Ro(t) X2, X,] =0, a=1,2 (35)

hold, operators X;, X, are mutually commuting symmetry operators of Eq. (33).
Furthermore, solution of Eq. (33) with separated variables U = g (t)p1(w1)pa(ws)
satisfies the identities

X U=XU, a=12 (36)

Consequently, if we designate by Xj, X} the operators X;, X5 written in the
initial variables ¢, x, u, then we get from (34)—(36) the following equalities:

[i0p + O = V(2y,22), X,] =0, a=1,2,
(X1, X5 =0, Xiu=Xu, a=12.

where u = Q(t, )0 (t)¢1(w1)p2(w2).

It means that each solution with separated variables is a common eigenfunction of
two mutually commuting symmetry operators X|, X of the Schrédinger equation (1),
separation constants A;, Ay being their eigenvalues.

Detailed study of the said operators as well as analysis of separated ODEs for
functions ¢,, p = 0,2 (in the way as it is done for the free Schrédinger equation in
[2, 3]) is in progress and will be a topic of our future publications.
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Appendix A. Integration of nonlinear ODEs (22)-(25)

Evidently, equations (22)-(25) can be rewritten in the following unified form:

N .\ 2
(y> _ (E) —day* =k, i-2:Y —22az+ Byt =0. (AD)
Y y y
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Provided & = —a? < 0, system (A.l) coincides with Egs. (22), (24) and under
k=1b*>> 0 - with Egs. (23), (25).

First of all, we note that the function z = 2(t) is determined up to addition of an
arbitrary constant. Really, the coordinate functions w, have the following structure:

Weg =YTgq+2, a=12.

But the coordinate system ¢, w;, we is equivalent to the coordinate system ¢,
w1 + O, we + Co, C, € R, Hence it follows that the function z(t) is equivalent to
the function z(¢) + C' with arbitrary real constant C. Consequently, provided « # 0,
we can choose in (A.1) 3 =0.

The case 1. o = 0. On making in (A.1) the change of variables

w=yly, v=2z/y (A2)

we get
w=w?+k, U+ kv=2085 (A3)
First, we consider the case k = —a? < 0. Then the general solution of the first

equation from (A.3) is given by one of the formulas
w = —acotha(t +Cy), w=—atanha(t+Cy), w==a, C; R}
whence

y = Cosinh ta(t +Cy), y=Cycosh™a(t+Cy),

(A4)
y = Cyexp(+at), C, € R

The second equation of system (A.3) is a linear inhomogeneous ODE. Its general
solution after being substituted into (A.2) yields the following expression for z(¢):

4

(C5 cosh at + Cysinh at) sinh™* a(t 4+ Cy) + ﬁa(“;? sinh ™2 a(t + C)),

4
(C3 cosh at + Cysinh at) cosh ™ a(t + Cy) + ﬂa% cosh™ 2 a(t + Cy), (A3)

4
(C5 cosh at + Cy sinh at) exp(+at) + % exp(+4at), Cs3,Cy C R

The case k = b*> > 0 is treated in an analogous way, the general solution of (A.1)
being given by the formulas

y = Dysin~! b(t + D),
4 (A6)

D
2z = (D3 cosbt + Dysinbt)sin~ ' b(t + D;) + ﬁb22 sin~2b(t + D),

where Dy, Ds, D3, Dy are arbitrary real constants.
The case 2. « # 0, 8 = 0. On making in Eq. (A.1) the change of variables

y=expw, v=z/y
we have

W —w?=k+aexpdw, P+ kv=0. (A7)
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The first ODE from Eq. (A.7) is reduced to the first-order linear ODE

1 dp(w) _
2 dw —p(w) =k + aexpdw
by the substitution w = (p(w))'/?, whence

p(w) = aexpdw +yexp2w — k, € R

Equation w = (p(w))'/? has a singular solution w = C' = const such that p(C') = 0.
If w # 0, then integrating the equation w = p(w) and returning to the initial variable
Yy we get

y(t) dr
=t+C.
/ T(art + 472 — k)1/2 o

Taking the integral in the left-hand side of the above equality we obtain the general
solution of the first ODE from Eq. (A.1). It is given by the following formulas:
under k = —a® <0

y = Co(a + sinh 2a(t + Cl))il/Q,
Y= Cg(a+cosh2a(t+01))_1/2, (A8)
y=Co(a+ exp(:I:Qat))_l/Q7

under k=0>>0

y = Dy(a +sin2b(t + Dy))~/*. (A9)

Here Cy, Co, Dy, D5 are arbitrary real constants.

Integrating the second ODE from Eq. (A.7) and returning to the initial variable z
we have
under k = —a?2 <0

z = y(t)(Cs cosh at + Cy sinh at) (A10)

under k=% >0

z = y(t) (D3 cosbt + Dy sin bt), (A11)

where C3, Cy, D3, Dy are arbitrary real constants.
Thus, we have constructed the general solution of the system of nonlinear ODEs
(A.1) which is given by the formulas (A.5)-(A.11).

Appendix B. Separation of Eq. (1)
into three second-order ODEs

Suppose that there exists an Ansatz

u = Q(t, ) po(wo(t, x))p1 (wi(t, )2 (wa(t, ) (A12)
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which separates the Schrédinger equation into three second-order ODEs

d2g00 d(po d2<p1 ngl
U VDY =U /AL, A
dw% 0 (CUO’(PO; dLUQ, 1, 2) 5 dw% 1| Wi, ¥1, 1) 1,72 |

dw
d?py dps
:U —')\ A
dw% 2<w2a9025dw27 1, N2

(A13)

according to the Definition 1.
Substituting the Ansatz (A.12) into Eq. (1) and excluding the second derivatives
d*¢,/dw?, = 0,2 according to Eqs. (A.13) we get

i(Qipop1p2 + Quorpopipe + Quirpoprpz + Quarpopipe) + (AQ)pop1p2 +
+ 2Q¢, Woz, PoP1P2 + 2Q 2, Wiz, o192 + 2Qz, Wz, PoP1P2 +
+ Q((Awo)poprp2 + (Awr)pop1p2 + (Aws)pop1$2 + woz,wow, Uop1p2 +
+ Wiz, Wiz, PoU1p2 + Waz, waz, Po1Uz + 2wor, Wix, PoP1$2 +
+ 20, W2z, POP1P2 + 2Wig, Wz, PoP192) = V Qpop1pa.

Splitting the above equality with respect to ¢op1, Yop2, P1$2 we obtain the
equalities:

Woz, Wiz, = 07 Woz, W2z, = 07 Wiz, W2z, = 0. (A14)

Since the functions wy,, u = 0,2 are real-valued, equalities (A.14) mean that there
are three real two-component vectors which are mutually orthogonal. This is possible
only if one of them is a null-vector. Without loss of generality we may suppose that
(Woz, » Wozs) = (0,0), whence wy = f(t) ~t.

Consequently, Ansatz (A.12) necessarily takes the form (5). But Ansatz (5) can
not separate Eq. (1) into three second-order ODEs, since it contains no second-order
derivative with respect to ¢.

Thus, we have proved that the Schrodinger equation (1) is not separable into three
second-order ODEs.
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On the general solution of the d’Alembert
equation with a nonlinear eikonal constraint
and its applications

R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

We construct the general solutions of the system of nonlinear differential equations
Opu =0, upu! = 0 in the four- and five-dimensional complex pseudo-Euclidean spaces.
The results obtained are used to reduce the multi-dimensional nonlinear d’Alembert
equation O4u = F(u) to ordinary differential equations and to construct its new exact
solutions.

1 Introduction

Kaluza [1] was the first who put forward an idea of extension of the four-dimensional
Minkowski space in order to use it as a geometric basis for unification of the
electromagnetic and gravitational fields. Nowadays, Kaluza’s idea is well-known and
there are a lot of papers where further development and various generalizations of
this idea are obtained [2].

In [3-5] it was proposed to apply five-dimensional wave equations to describe
particles (fields) having variable spins and masses. Such physical interpretation of the
five-dimensional equations is based on the fact that the generalized Poincaré group
P(1,4) acting in the five-dimensional de Sitter space contains the Poincaré group
P(1,3) as a subgroup. It means that the mass and spin Casimir operators have conti-
nuous and discrete spectrum, respectively, in the space of irreducible representations
of the group P(1,4) [3-6].

The simplest P(1,4)-invariant scalar linear equation has the form

Osu + x?u =0, x = const, (1)

where Oj is the d’Alembert operator in the five-dimensional Minkowski space with
the signature (+,—,—, —, —).

The problem of construction of exact solutions of the above equation is, in fact,
completely open. One can obtain some its particular solutions applying the symmetry
reduction procedure or the method of separation of variables (both approaches use
essentially symmetry properties of the whole set of solutions of Eq. (1)). In the
present paper we suggest a method for construction of solutions of partial differential
equation (1) which utilizes implicitly the symmetry of a subset of the set of its
solutions. Namely, a special subset of its exact solutions obtained by imposing an
additional constraint

2 2 2 2 2 _
Upy — Uy, — Uy, — Uy, — Uy, =0,

which is the eikonal equation in the five-dimensional space, will be investigated.
As shown in [7, 8], the system obtained is compatible if and only if x = 0. We

J. Math. Phys., 1995, 36, Ne 12, P. 7109-7127.
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will construct general solutions of multi-dimensional systems of partial differential
equations (PDE)

Opu =0, wuuu’=0 (2)
in the four- and five-dimensional complex pseudo-Euclidean spaces.

In (2) u = u(xo,21,...,7,_1) € C?>(C",C'). Hereafter, the summation over the
repeated indices in the pseudo-Euclidean space M(1,n — 1) with the metric tensor
guw = diag (1,—1,...,—1) is understood, e.g. O, = §,0" = 93— 03 —---—0%_1, 0, =

—_——
n—1
0/0z,,.

[t occurs that solutions of system of PDE (2), being very interesting by itself, can
be used to reduce the nonlinear d’Alembert equation

Oqu= F(u), F(u)e C(R'R"Y), (3)

to ordinary differential equations, thus giving rise to families of principally new exact
solutions of (3). More precisely, we will establish that there exists a nonlinear map
from the set solutions of the system of PDE (2) into the set of solutions of the
nonlinear d’Alembert equation, such that each solution of (2) corresponds to a family
of exact solutions of Eq. (3) containing two arbitrary functions of one argument. It
will be shown that solutions of the nonlinear d’Alembert equation obtained in this
way can be related to its conditional symmetry.

The paper is organized as follows. In Section 2 we give assertions describing
the general solution of system of PDE (2) in the n-dimensional real and in the
four- and five-dimensional complex pseudo-Euclidean spaces. In Section 3 we prove
these assertions. Section 4 is devoted to discussion of the connection between exact
solutions of system (2) and the problem of reduction of the nonlinear d’Alembert
equation (3). In Section 5 we construct principally new exact solutions of Eq. (3).

2 Integration of the system (2):

the list of principal results
Below we adduce assertions giving general solutions of the system of PDE (2) with
arbitrary n € N provided u(z) € C?(R",R!), and with n = 4,5, provided u(z) €
c?(cn,Ch).
Theorem 1. Let u(x) be a sufficiently smooth real function of n real variables

Zo,---,Tn_1. Then, the general solution of the system of nonlinear PDE (2) is given
by the following formula:
Ay (u)x” + B(u) =0, (4)

where A, (u), B(u) are arbitrary real functions which satisfy the condition
A, (u)A¥ (u) = 0. (5)

Note 1. As far as we know, Jacobi, Smirnov and Sobolev were the first who obtained
the formulas (4), (5) with n = 3 [9, 10]. That is why, it is natural to call (4), (5)
the Jacoby—-Smirnov-Sobolev formulas (JSSF). Later on, in 1944 Yerugin generalized
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JSSF for the case n = 4 [11]. Recently, Collins [12] has proved that JSSF give the
general solution of system (2) for an arbitrary n € N. He applied rather complicated
differential geometry technique. Below we show that to integrate Egs. (2) it is quite
enough to make use of the classical methods of mathematical physics only.
Theorem 2. The general solution of the system of nonlinear PDE (2) in the class
of functions u = u(xg, 1,22, 23,74) € C*(C3,C) is given by one of the following
formulas:

(1) Au(r,u)a” + Cr(r,u) =0, (6)
where T = 7(u,x) is a complex function determined by the equation
BM(Ta u)xﬂ + 02(7-) u) = 07 (7)
and A,, B,,Cy,Cy € C?(C%,C") are arbitrary functions satisfying the conditions
A,
A A" = A,B" = B,B" =0, B”aa—‘ =0, (8)
T

and what is more,
OA 001 04, 00
or or ou ou
A = det #0; 9
u 0B, 00 0B, 0C,
B 2 gr R 2
or or ou ou

(2) Au(u)a! + Cr(u) =0, (10)
where A, (u), Cy(u) are arbitrary smooth functions satisfying the relations
A AP =0 (11)

(in the formulas (6)-(11) the index p takes the values 0,1,2,3,4).

Theorem 3. The general solution of the system of nonlinear PDE (2) in the class of
functions u = u(xg, x1,z2,23) € C?(C*, C') is given by the formulas (6)-(11), where
the index p is supposed to take the values 0,1,2,3.

Note 2. Investigating particular solutions of the Maxwell equations, Bateman [13]
arrived at the problem of integrating the d’Alembert equation dyu = 0 with an
additional nonlinear condition (the eikonal equation) w,,u,» = 0. He has obtained the
following class of exact solutions of the said system of PDE:

w(x) = cu(T)a! + cu(r), (12)
where 7 = 7(x) is a complex-valued function determined in implicit way

Cu(T)at + ¢é4(1) = 0, (13)
and ¢, (7), ca(7) are arbitrary smooth functions satisfying conditions

cuct = ¢, =0. (14)

(hereafter, a dot over a symbol means differentiation with respect to a corresponding
argument).

[t is not difficult to check that solutions (12)—(14) are complex (see the Lemma 1
below). An another class of complex solutions of the system (2) with n = 4 was
constructed by Yerugin [11]. But neither the Bateman’s formulas (12)-(14) nor the
Yerugin’s results give the general solution of the system (2) with n = 4.
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3 Proofs of Theorems 1-3

It is well-known that the maximal symmetry group admitted by equation (1) is finite-
dimensional (we neglect a trivial invariance with respect to an infinite-parameter
group u(z) — u(x) + U(x), where U(z) is an arbitrary solution of Eq. (1), which is
due to its linearity). But being restricted to a set of solutions of the eikonal equation
the set solutions of PDE (1) admits an infinite-dimensional symmetry group [14]! It
is this very fact that enables us to construct the general solution of (2).

Proof of the Theorem 1. Let us make in (2) the hodograph transformation
zo=u(x), z4=2x4, a=1n—-1 w(z)=uwx. (15)

Evidently, the transformation (15) is defined for all functions wu(x), such that
Uz, Z 0. But the system (2) with u,, = 0 takes the form

n—1

n—1
=0 2 =0
uzaza - bl uxa - 9y

a=1

a=1

whence u,, =0, a =1,n—1 or u(z) = const.

Consequently, the change of variables (9) is defined on the whole set of solutions
of the system (2) with the only exception u(z) = const.

Being rewritten in the new variables z, w(z) the system (2) takes the form

n—1 n—1
Z Wy, 2, =0, Z w?a =1 (16)
a=1 a=1
Differentiating the second equation with respect to z, z. we get
n—1
Z(wzazbzcwza + wzazbwzazc) =0.
a=1

Choosing in the above equality ¢ = b and summing up we have

n—1

E (W2 2y Way + Wayzy Wy z,) = 0,
a,b=1

whence, by force of (16),

> w?,, =0 (17)

Since u(z) is a real-valued function, it follows from (17) that an equality w,_,, =0
holds for all a,b =1,n — 1, whence

n—1

w(z) = aa(20)2a + a(20). (18)

a=1

In (18) ay,a € C%(RY,RY) are arbitrary functions.



General solution of the d’Alembert equation with a nonlinear eikonal constraint 501

Substituting (18) into the second equation of system (16), we have

n—1
Z a2 (z) = 1. (19)

Thus, the formulas (18), (19) give the general solution of the system of nonlinear
PDE (16). Rewriting (18), (19) in the initial variables x, u(x), we get

n—1 n—1

xTg = Z aq(u)z, + a(u), Z o2 (u) = 1. (20)
a=1 a=1

To represent the formulas (20) in a manifestly covariant form (4), (5) we redefine
the functions «a,(u) in the following way:

- Aa(u) alu) = — B(u)
aa(u)— Ao(u)7 ( ) Ao(u),

a=1,n-—1.

Substituting the above expressions into (20) we arrive at the formulas (4), (5).

Next, as u = const is contained in the class of functions u(x) determined by the
formulas (4), (5) under A, =0, u =0,n — 1, B(u) = u+const, JSSF (4), (5) give the
general solution of the system of the PDE (2) with an arbitrary n € N. The theorem
is proved.

Let us emphasize that the reasonings used above can be applied to the case of
a real-valued function w(z) only. If a solution of the system (2) is looked for in a class
of complex-valued functions u(x), then JSSF (4), (5) do not give its general solution
with n > 3. Each case n =4,5... requires a special consideration.

Proof of the Theorem 2. Case I: uy, # 0. In this case the hodograph transformation
(15) reducing the system (2) with n =5 to the form

4

4
szaza =0, Zw?a =1, w, #0 (21)
a=1

a=1

is defined.
The general solution of nonlinear complex Eqs. (21) was constructed in [15]. It is
given by one of the following formulas:

4
(1) U}(Z) = Zaa(Ta ZO)ZOL +’71(T7 ZO)) (22)
a=1
where 7 = 7(zg,...,24) is a function determined in implicit way
4
> Bal7,20)7a + 72(7, 20) = 0 (23)
a=1

and g, Ba, 71,72 € C2(C%,C!) are arbitrary smooth functions satisfying the relations

4 4

4 4
dai=1, Y =) p2=0, Zaa%%:o; (24)
a=1 a=1 a

a=1 =1
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4

(2) w(z) =Y aal20)za + 7 (20); (25)

a=1

where a4,y € C?(C!,C) are arbitrary functions satisfying the relation

4
Y az=1. (26)
a=1

Rewriting the formulas (23), (24) in the initial variables x, u(zx), we have

4
= Z o (T, u)xe + Y1(T, ), (27)

a=1
where 7 = 7(u, ) is a function determined in implicit way

4

> Balr,u)za +y2(r,u) =0, (28)

a=1

and the relations (24) hold
Evidently, the formulas (27), (28) are obtained from (6)-(8) with a particular
choice of functions A4, B, Ci, Cy

AO = 1, Aa = Qgq, 01 = —1,

(29)
BO = 07 Ba = 60,7 02 = =72,
where a =1, 4.
Next, by force of inequality w,, # 0 we get from (22)
4
Z(aazg + aCLTTZo)xa + Yz + Y17 Tz 7& 0. (30)
a=1

Differentiation of (23) with respect to 2 yields the following expression for 7,:

4 4 -1
= - <Z 5&.2053(1 + 7220> (Z ﬂar-ra + 727’)
a=1 a=1

Substitution of the above result into (30) yields the relation

) —1 Z QgzoLq + Yz Z Qarq + Yir

4
(Z ﬂa7$a + Y2r a41 o # 0.
o=t Z ﬁazoxa + V229 Z ﬁa‘rma + Yor
a=1 a=1

As the direct check shows, the above inequality is equivalent to (9) provided the
conditions (29) hold.

Now we turn to solutions of the system (21) of the form (25). Rewriting the
formulas (25), (26) in the initial variables x, u(x) we get

Zaa xa +71 ) ZO&Z(U) =1.
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Making in the equalities obtained the change a, = A,A;', a = 1,4, 3, =
—ClAgl, we arrive at the formulas (10), (11).

Thus, under u,, # 0 the general solution of the system (2) is contained in the
class of functions u(z) given by the formulas (6)-(9) or (10), (11).

Case 2: u,, =0, u # const. It is a common knowledge that the system of PDE
(2) is invariant under the generalized Poincaré group P(1,n — 1) (see, e.g. [16])

z), = Na” + A, u(2) = u(z),

where A,,, A, are arbitrary complex parameters satisfying the relations Ay, A%, =
Guv, 1, v = 0,n — 1. Hence, it follows that the transformation

u(z) — u(z") = u(Az") (31)

leaves the set of solutions of the system (2) invariant. Consequently, provided u(x) #
const we can always transform u to such a form that u,, # 0. Thus, in the case 2 the
general solution is also given by the formulas (6)—(11) within the transformation (31).

Case 3: w = const. Choosing in (10), (11) A, =0, p = 0,4, C; = u = const we
come to the conclusion that this solution is described by the formulas (6)-(11).

Thus, we have proved that, within a transformation from the group P(1,4) (31),
the general solution of the system of PDE (2) with n = 5 is given by the formulas
(6)-(11). But these formulas are represented in a manifestly covariant form and are
not altered with the transformation (31). Consequently, to complete the proof of the
theorem it is enough to demonstrate that each function u = u(z) determined by the
equalities (6)—(11) is a solution of the system of equations (2).

Differentiating the relations (6), (7) with respect to x,, we have

AP 1y (Apra” + Cir) + g, (Apur” + Cry) = 0,
BY 413 (Byr2” + Cor) 4 g, (Buuz” 4 Cay) = 0.
Resolving the above system of linear algebraic equations with respect to u,,, 7z,
we get

(B#(AVT$V + Ch—) — A#(BVTLL'V + 027-)),

Uzu =

(32)

=] =

Te, — (A,u,(ByuIV =+ Clu) — BM(Al,ul'V —+ C’Qu))’

2

>

where A # 0 by force of (9). Consequently,

U, Ugn = A2 (B/LB”(wa” +C1r)? = 2A,B*(A,-2" + C1.)(Byrz¥ + Cor) +
+ A/LA'“(BVTIV + 027—)2) =0.
Analogously, differentiating (32) with respect to x, and convoluting the expression

obtained with the metric tensor g, we get g""u,, ., = Osu = 0.
Next, differentiating (10) with respect to z,, we have

Ug, = —AH(AZ,JJV +C)7Y, p=0,4,

whence

Uz, = —(AFAY 4 AV AP)(Aqz® + C1) 724 AP AY (Agz® + C1) (Agz® + Cp) 72
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Consequently,

Uy, Ugn = AMA”(A,,.Z“” + C"l)’2 =0,
O5u = Uy, on = —2(A,AM)(A,z¥ + Cy) 72 +

+ A, Ar(A,zv + C)(Aya + C) 72 = 0.

The Theorem 2 is proved.

The Theorem 3 is a direct consequence of the Theorem 2. Really, solutions of the
system of PDE (2) with n = 4 are obtained from solutions of the system of PDE (2)
with n = 5 provided u,, = 0. Imposing on functions u(z) determined by the formulas
(6)-(11) a condition u,, = 0 we arrive at the following restrictions on the functions
Aﬂ, B#, Cl, CQI

Ay=0, By=0

the same as what was to be proved.

4 Applications: reduction of the nonlinear
d’Alembert equation

Following [8, 15, 16], we look for a solution of the nonlinear d’Alembert equation

O4w = F(w), FeCYRYRY) (33)
in the form
w = p(wy,ws), (34)

where w; = w;(z) € C*(R* R') are supposed to be functionally-independent. The
functions wy(z), wa(z) are determined by the requirement that the substitution of
(34) into (33) yields two-dimensional PDE for a function ¢ = ¢(wq,ws). As a result,
we obtain an over-determined system of PDE [16]

Ouwi = fi(wi,w2), Oaws = fo(wr,w2),

Wiz, Wizk = g1(W1,W2), wWag,Wazn = ga(wi,wa),

5 3 (35)
=2
i=1p=0

8wi

Wiz, Wozn = g3(wi,we), rank ’

)

Oz,
and besides, the function p(wr,ws) satisfies a two-dimensional PDE,

91Pwywy + 92Pwows + 29390401‘4/‘2 + fl‘pwl + f2§0w2 = F(QD) (36)

Consider the following problem: to describe all smooth real functions wy(x), wa(x)
such that the Ansatz (34) reduces Eq. (33) to an ordinary differential equation (ODE)
with respect to the variable w;. It means that one has to put coefficients g2, g3, fo
in (36) equal to zero. In other words, it is necessary to construct a general solution
of the system of nonlinear PDE

O4wi = fi(w1,wa), Wig,Wizr = g1(w1,ws),

Wig,wWagn =0, wognwag, =0, Owy =0.

(37)
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The above system includes Eqs. (2) as a subsystem. So, the d’Alembert-eikonal
system (2) arises in a natural way when solving the problem of reduction of Eq. (33)
to PDE having a smaller dimension (see, also [15, 17]).

With an appropriate choice of a function G(w;,ws) the change of variables

v=Gw,w), u=uws

reduces the system (37) to the form

O4v = f(u,v), Vg, Ven = A, (38)

Uy, Vgn =0, Uy, Upn =0, Ogu =0, (39)
Voo Ve Uoro Ui

rank || o TrTERTES | — 9 (40)
Uz Uy Uy U

where A is a real parameter taking the values —1, 0, 1.
Before formulating the principal assertion, we will prove an auxiliary lemma.

Lemma 1. Let a = (ag,a1,az2,a3), b = (b, b1,bs,b3) be four-vectors defined in the
real Minkowski space M(1,3). Suppose they satisfy the relations

3
a b =b,b" =0, > b2 0. (41)
pn=0
Then, an inequality a,a" < 0 holds.

Proof. It is known that any isotropic non-null vector b in the space M(1,3) can be
reduced to the form ¥ = («,,0,0), o # 0 by means of a transformation from the
group P(1,3). Substituting ¥ = («, «,0,0) into the first equality from (41), we get

alag —ay) =0 < ay = aj.

Consequently, the vector a’ has the following components: af, a, a}, af. That is
why, a),a"™ = af — a? —af — aff = —(af + a¥’) < 0. As the quadratic form a,a* is
invariant with respect to the group P(1,3), hence it follows that a,a" <O0.

Let us note that a,a” = 0 if and only if az = a3, i.e. aya* = 0 if and only if the
vectors a and b are parallel.

Theorem 4. Egs. (38)-(40) are compatible if and only if
A=—1, f=-N(v+h(u), (42)

where h € CY(RY,RY) is an arbitrary function, N =0,1,2,3.

Theorem 4. The general solution of the system of Eqs. (38)-(40) being determined
within a transformation from the group P(1,3) is given by the following formulas:

a) under f = —3(v+ h(u))_l, A=—1
(v +h(w)? = (—A, A") (At + B)? +
+ (—A, AY) 3 (P AL A, Ay + O)2, (43)
Azt + B = 0;
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b) under f = —2(v+ h(u))_l, A=—1
(v+h(w)® = (—4,A") M (Aua* + B)?, Azt +B=0, (44)

where A, = A,(u), B = B(u), C = C(u) are arbitrary smooth functions satisfying
the relations

A AP =0, ALAM 0, (45)

¢) under f=—(v+ h(u))fl, A=—1

(U + h(.]?o — .133))2 = (331 + 01(.130 — .133))2 =+ (.132 + 02(],‘0 — 373))2,

(46)
u = Co(xo — .Zg),
where Cy, C1, Co are arbitrary smooth functions;
d) under f =0, A= —1
(1) v=(—A,A")3/2emaBA A, Apes+C, A,at+ B =0, (47)

where A, = A,(u), B = B(u), C = C(u) are arbitrary smooth functions satisfying
the relations (45);

(2) v=ax1 cos(01 (zo — CE3)) + 29 sin(01 (zo — CE3)) + Ca(zg — z3),

u = Co(zo — 3), (48)

where Cy, C1, Co are arbitrary smooth functions.
In the above formulas (43), (47) we denote by €, the completely anti-symmet-
ric fourth-order tensor (the Levi-Civita tensor), i.e.

17 (/“L7 V7 a? 6) = CyCIG (O’ 17 273)7
EuvaB = _13 (/J/,I/,O[,ﬂ) = Cy(ﬂe (1703273)7

0, in the remaining cases.

Proof of the Theorems 4, 5. By force of (40) u # const. Consequently, within
a transformation from the group P(1,3) u,, # 0. That is why, one can apply to
Egs. (38)-(40) the hodograph transformation

zo =u(z), za=2z4, a=1,3, w(z)=z9, v=uv(20,2aq)

As a result, the system (38), (39) reads

3

3
nga =1, szaza =0, (49)
a=1

a=1
3
> wvw., =0, (50)
a=1
3 3
Youl = A D (Van, 205 v w0z m) = — (v, 20)- (51)
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As v(z) is a real-valued function, A < 0. Scaling, if necessary, the function v we
can put A=—1or A=0.

Case I: A= —1. As it is shown in the Section 2, the general solution of the system
(49) in the class of real-valued functions w(z) is given by the formulas (18), (19) with
n = 4. Substituting (18) into (50), we obtain a first-order linear PDE

3
Z aa(ZO)vza =0, (52)
a=1

whose general solution is represented in the form
v = v(20, p1,P2)- (53)

In (53),

3 -1/2 , 3
20, pL= (Za3> (Z da2a+d>7
, a:]._3/2 , a=1
P2 = <Z ai) Z 5abczaabdc
a=1

a,b,c=1

3
are the first integrals of Eq. (52) and what is more, > &2 # 0 (the case a, = const,
a=1
a = 1,3 will be treated separately), eqp. is the third-order anti-symmetric tensor with
€123 = 1.
Substitution the expression (53) into (51) yields the system of two PDE for
a function v = v(zo, p1, p2)

Upip1 T Vpapy T+ 2/)1711)P1 = _f(v7 20)7 (54)
vﬁl + viz =1. (55)

To get rid of an arbitrary element (function) f(v,2¢) from (54) we consider instead
of system (54), (55) its differential consequence

Upsy (Umpl + Vpypy + 2P1_1Up1)p1 — Upy (Umpl + Vpyps + 2p1_1Up1)p1 =0, (56)
vil + viz =1, (57)

that is obtained by differentiating the first equation with respect to p1, p2, multiplying
the expressions obtained by v,, and —v,,, respectively, and summing.
Further, we will consider the subcases v,,,, = 0 and v,,,, # 0 separately.
Subcase 1.A: v,,,, = 0. Then,

v = g1(20, p1)p2 + 92(20, p1), (58)

where g1, g2 € C?(R!,R!) are arbitrary functions.
Substituting (58) into (57) and splitting an equality obtained by the powers of po,
we have

91ipy — 07 g% + (92[)2)2 = 15
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whence
v=ap1 £V1-a?ps — h(z). (59)
Here oo € RY, h is an arbitrary smooth function.
Inserting (59) into (56) we get an algebraic equation ay/1— a2 = 0, whence
! :Fior’lajily., substitution of (59) into (54) yields the equation for f(v, zg)
2ap;" = —f (apy + V1= a2p2 — h(z0). ) - (60)
From Eq. (60) it follows that, under o = 0,
f=0, v==4ps—h(z) (61)
and under o« = &1,
f=-2(v+ h(zo))_l, v ==1p; — h(zp). (62)

Subcase 1.B: v,,,, # 0. In this case one can apply to Eqgs. (56), (57) the Euler-
Ampére transformation

0=y, P1=Y1, p2=GCGy, v+G=pays, v, =Gy, vy, = 1Yo,
Upaps = (Gyzyz)_la Vpips = —Gyrys (Gyzyz)_la (63)
Upipr = (Gl211?J2 - Gylylezyz)(Gyzyz)fl-

Here yo, y1, y2 are new independent variables, G = G(yo, y1, y2) is a new function.
Being rewritten in the new variables y, G(y) the Eq. (57), becomes linear

Gy, = £4/1 —y%,
whence
G:iyl \/1*y%+H(ZJ0,Z/2)a H€C2(R27R1)' (64)

Making in the Eq. (56) the change of variables (63) and inserting the expression
(64), we transform it as follows

2 _
(y2 —(1- y%)3/2Hy2y2) <3y2Hy2y2 + (y% - 1)Hyzy2y2) + 2y, 2y2Hy2y2 = 0.(65)
Splitting (65) by the powers of y; and integrating the equations obtained, we get

H = h1(yo)y2 + h2(yo)-

Substituting the above result into (64) and returning to the initial variables zg, p1,
p2, v(20, p1, p2) We obtain the general solution of the system of PDE (56), (57)

v+ ha(z0) = £([p2 — b1 (20)]> + p3) /2. (66)

At last, inserting (66) into the equation (54), we arrive at the conclusion that the
function f is determined by the formula (42) with N = 3.
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If a, = const, a = 1,3, then the equality af + a3 + a3 = 1 holds. Applying, if
necessary, a transformation from the group P(1,3) one can put a3 = as =0, asz =1,
ie.u= Co(l‘o — .’23), Co S CQ(Rl,R2).

As a consequence of Egs. (39) we get v = v(&, z1,23), where £ = xg — z3, and
what is more, Egs. (38) take the form

Uﬁl + ng =1, Vpyz +Vgse, = 7f(v,00(£>)' (67)

It is known [15, 18] that Egs. (67) are compatible if and only if f =0 or f =
—(v+h(uw)"t, ke CYRY,RY). And besides, the general solution of (67) is given by
the formulas (48) and (46), respectively.

Thus, we have completely investigated the case A = —1.

Case 2: A = 0. By force of the fact that the function v is a real one, it follows
from (51) that v = v(zp). Consequently, an equality v = v(u) holds that breaks the
condition (40) which means that under A = 0 the system (38)-(40) is incompatible.

Thus, we have proved that the system of nonlinear PDE (38)-(40) is compatible if
and only if the relations (42) hold and that its general solution is given by one of the
formulas (46), (48), (61), (62), and (66). To complete the proof, one has to rewrite
the expressions (61), (62), (66) in the manifestly covariant from (43), (44), (47).

Consider, as an example, the formula (62)

-1/2 3
v=+4p — (Za ) (Z Lalra(u) +o'z(u)> — h(u), (68)

the function u(x) being determined by the formula (20),

3
Zaa( w)x, + a(u) = xo, Za (69)
a=1

Let us make in (68), (69) a substitution a, = A, A", @ = —BAy", whence
A, (uw)z" + B(u) =0, A,A* =0,

3 —1/2
v==+ (Z(AaAgl — AaA0A52)2> X

a=1

3
(Z%A Agt — A ApAg?) + BAgA,? — BA ) h(u) =
a=1
3 . . . .
=+ (Z(A3A02 + AZAZAH — 2AaAaA0A03)‘1/2> X
a=1
X (Z Ta(AgAgt — AyAgAg?) + BAgA;? BA0> — h(u) =
a=1
. . . 2\ —1/2
- i( A AMAG? — A APAZATY 124, A“AOA’3) X
X ( AgN(z, A" + B) + Ay ZAO(qu‘HLB)) h(u) =

= F(— A, A2 (2, A+ B) - hw).



510 R.Z. Zhdanov, I.V. Revenko, W.I. Fushchych

The only thing left is to prove that A, A* < 0. Since A, A" = 0, the equality
AMA“ = 0 holds. Consequently, by force of the Lemma —AMA” > 0, and what is
more, the equality A#A“ = 0 holds if and only if A# = k(u)A,. General solution of
the above system of ordinary differential equations reads A, = l(u)0,, where I(u) is
an arbitrary function, 6, are arbitrary real parameters obeying the equality 6,0* = 0.

3
Hence it follows that o, = AaAa1 = Qaﬂgl = const, and the condition Y &2 # 0
a=1

does not hold. We come to the contradiction, whence it follows that AMA“ < 0.
Thus, we have obtained the formula (44). Derivation of the remaining formulas
from (43), (47) is carried out in the same way. The theorems are proved.
Substitution of the results obtained above into the formula (34) yields the following
collection of Ansidtze for the nonlinear d’Alembert equation (33):

(1) w(z) = @([(—AV(U)A”(u))_l (A u)z' + B(u) )

+ (-4 u) (e A () Ay () Aa(way + C(w) ]2 )
(2) wiw) = ¢ ((~ A (A" () > (Au(wa* + Bw),u) 0
(3) w(z) = ¢ ([ 21+ Ch(w0 — 23))° + (w2 + Calwo — 23))°]"% 20 — xg) :
(4) we) = ¢ (A, WA () ™" (@7 4, (w) A, (u) Aa(w)zs + C(w)), u) ;
(5) w(z) = ¢ cos 01 (xo — x3) + 22 sin C (xg — x3) + Colao — x3), 20 — 3).

Here B, C, Cy, Cy are arbitrary smooth functions of the corresponding arguments,
A, (u) are arbitrary smooth functions satisfying the condition A, A" = 0 and the
function v = u(x) is determined by JSSF (10) with Ci(u) = B(u), n = 4. Note
that arbitrary functions h contained in the functions v(x) (see above the formulas
(43), (44), (46)) are absorbed by the function ¢(v,u) at the expense of the second
argument.

Substitution of the expressions (70) into (33) gives the following equations for

¢ = o(u,v):

(1) pvo + %cpv = —F(y), (71)
(2) oo + %cpv = —F(y), (72)
(3) oo+ 100 = ~F(9), (73)
(4) oo = —F (), (74)
(5) pvo = —F(¢), (75)

Equations (4), (5) from (71)-(75) are known to be integrable in quadratures.
Therefore, any solution of the d’Alembert-eikonal system (2) corresponds to some
class of exact solutions of the nonlinear wave equation (33) that contains arbitrary
functions. Saying it in another way, the formulas (70) make it possible to construct
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wide families of exact solutions of the nonlinear PDE (33) using exact solutions of the
linear d’Alembert equation Oyu = 0 satisfying an additional constraint w,,u« = 0.

[t is interesting to compare our approach to the problem of reduction of Eq. (33)
with the classical Lie approach. Within the framework of the Lie approach functions
w1(z), wa(z) from (34) are looked for as invariants of the symmetry group of the
equation under study (in the case involved it is the Poincaré group P(1,3)). Since the
group P(1,3) is a finite-parameter group, its invariants cannot contain an arbitrary
function (a complete description of invariants of the group P(1,3) had been carried
out in [19]). Therefore, the Ansdtze (70) cannot, in principle, be obtained by means
of the Lie symmetry of the PDE (33).

All Ansitze listed in (70) correspond to a conditional invariance of the nonlinear
d’Alembert equation (33). It means that for each Ansatz from (70) there exist two
differential operators Q, = &4, (7)0:,, @ = 1,2 such that

Quw(z) = Qup(wi,ws) =0, a=1,2
and besides, the system of PDE
Ouw— F(w)=0, Quuw=0, a=1,2

is invariant in Lie’s sense under the one-parameter groups with the generators @1, Q-.
For example, the fourth Ansatz from (16) is invariant with respect to the operators:

Q1 = Au(u)0y, Q2 = Ay(u)d,. A direct computation shows that the following rela-
tions hold:

Qi(Ow) = —(A%, + B)1A*0,Qiw, i=1,2,
2
[Qla Q2] = 07

where @; stands for the second prolongation of the operator @;. Hence it follows
2

that the nonlinear d’Alembert equation (33) is conditionally-invariant under the two-
dimensional commutative Lie algebra having the basis elements @i, @2 (for more
details about conditional symmetry of PDE see [20, 21]). It should be said that the
notion of conditional symmetry of PDE is closely connected with the “non-classical
reduction” [22-24] and “direct reduction” [25] methods.

5 On the new exact solutions
of the nonlinear d’Alembert equation

According to [26], general solutions of Egs. (74), (75) are given by the following
quadrature:

—1/2

v+ D(u) = /O e (-2 /O " P(2)dz + C(u)) dr, (76)

where D(u),C(u) € C?(R!,R!) are arbitrary functions.

Substituting the expressions for w(z), v(z) given by the formulas (4), (5) from
(70) into (76) we obtain two classes of exact solutions of the nonlinear d’Alembert
equation (33) that contain several arbitrary functions of one variable.
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Equations (71) and (72) with F(¢) = A¢* are Emden-Fowler type equations. They
were investigated by many authors (see, e.g. [26]). In particular, it is known that the
equations

Py + 21}71@1} = —)\‘P57 (77)
Pov + 37}_190'0 = _)‘903 (78)

are integrated in quadratures. In the paper [27] it has been established that Egs. (77),
(78) possess a Painlevé property. This fact makes it possible to integrate these by
applying rather complicated technique. In [28] we have integrated Egs. (77), (78) using
a standard technique based on their Lie symmetry. Substituting the results obtained
into the corresponding Ansatze from (70) we get exact solutions of the nonlinear PDE
(33) with F(w) = Mw?, Aw®, which include an arbitrary solution of the system (2)
with n = 4. Consequently, we have constructed principally new exact solutions of the
nonlinear d’Alembert equation (33) depending on several arbitrary functions. Let us
stress that following the classical Lie symmetry reduction procedure one can not in
principle obtain solutions with arbitrary functions since the maximal symmetry group
of Eq. (33) is finite-dimensional (see, e.g. [16]).

Below we give new exact solutions of the nonlinear d’Alembert equation (33)
obtained with the use of the technique described above. We adduce only those ones
that can be written down explicitly

1. F(w) = \w?

(1) w(z) =

(] + a3 + a3 — x(z))q/zx

a\f
X tan {f I (C(u)(2f + a5 + 23 — x%))} ,

where A = —2a? < 0,

@) wle) = 2200) (1 £ C2u)(ad + o+ a3 a)

where \ = +a?;
2. F(w) = \w’®

(1) w(z) =a (2?23 — )~ 1/* {sin In(C(u) (2] + 23 — 23)~ 1/2) + 1}1/2 X

X {2 sinln(C(u)(2f + 3 — 25) /%) — 4}_1/2 ’

where A = a* > 0,

31/ 4 2 2 2\\—1/2
(2) w()= 70( u)(1£CHu)(2] +a3 —x3)) ",

where \ = +a2.

In the above formulas C'(u) is an arbitrary twice continuously differentiable functi-
on on
ToT1 £ To :c% + x% — x%

u(z) = 5 5 ,

T{ + x5

a # 0 is an arbitrary real parameter.
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6 Conclusion

The present paper demonstrates once more that possibilities to construct in explicit
form new exact solutions of the nonlinear d’Alembert equation (33) (as compared
with those obtainable by the standard symmetry reduction technique [16, 19, 27]) are
far from being exhausted. A source of new (non-Lie) reductions is the conditional
symmetry of Eq. (33).

Roughly speaking, a principal idea of the method of conditional symmetries is the
following: to be able to reduce given PDE it is enough to require an invariance of
a subset of its solutions with respect to some Lie transformation group. And what is
more, this subset is not obliged to coincide with the whole set. This specific subsets
can be chosen in different ways: one can fix in some way an Ansatz for a solution to
be found (the method of Ansétze [16, 17] or the direct reduction method [25]) or one
can impose an additional differential constraint (the method of non-classical [22-24]
or conditional symmetries [20, 21]). But all the above approaches have a common
feature: to find new (non-Lie) reduction of a given PDE one has to solve some
nonlinear over-determined system of differential equations. For example, to describe
Ansitze of the form (34) reducing Eq. (33) to ODE one has to integrate system of five
nonlinear PDE (37). This is a “price” to be paid for the new possibilities to reduce a
given nonlinear PDE to equations with less number of independent variables and to
construct its explicit solutions.

As mentioned in the Introduction, the Ansatz (34) can also be interpreted as a map
(more exactly, a family of maps) from the set of solutions of the linear d’Alembert
equation,

Oqu = 0 (79)

into the set of solutions of the nonlinear d’Alembert equation (33).

Really, we started with a subset of solutions of Eq. (79) which was chosen by
an additional eikonal constraint u,, u,. = 0. Then, we constructed the functions
v(z) and @(v,u) in such a way that the function w(z) determined by the equality
w = @(v(z),u(z)) satisfied the nonlinear d’Alembert equation (33) (see below the
Fig. 1).

There is an analogy between the map described above and Bicklund transforma-
tions of partial differential equations. System of PDE (38)—(40) and the Ansatz (34)
(level 2 of the Fig. 1) can be interpreted as a Béacklund transformation of a set of
solutions of linear PDE (level 1 of the Fig. 1) into a set of solutions of nonlinear
PDE (level 3). A principal difference is that a classical Bicklund transformation acts
on the whole spaces of solutions of equations under study and the above map acts
on subsets of solutions of the linear and nonlinear d’Alembert equations. It is known
that technique of linearization of PDE with the use of Bicklund transformations
can be effectively applied to two-dimensional equations only. The results obtained in
the present paper imply the following way of extension of applicability of Backlund
transformations: one should consider Backlund transformations connecting subsets of
solutions of linear and nonlinear equations. And these subsets may not coincide with
the whole sets of solutions.
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Linear d’Alembert equation
O4u=10

d’Alembert-eikonal system
O4u =0, uz,uzx =0

Ansatz
w = p(u(z), v(x))

/

Nonlinear d'Alembert equation
Oqw = F(w)

Figure 1.

As an illustration we consider the case when in (33) F(w) =0, i.e. the case when
the map constructed above transforms a subset of solutions of the linear d’Alembert
equation into another subset of solutions of the same equation. Integrating ODE (71)-
(75) we obtain explicit forms of functions ¢(v,u)

where f1, fo are arbitrary smooth enough functions. Consequently, we have the
following maps transforming subsets of solutions of the linear d’Alembert equation
(79) into another subsets of its solutions:

(1) u— fi(w)[(—A, () A" () " (Au(u)z* + B(w)” +

+ (A () A7 (1)) 72 (P A, () Ay (u) A (u)z s + C(u) ] T+ folu),
(2) u— fi(u) [(—A () A" ()" (Au () + B@)] ™ + fou),
(3) xo—z3u — fi(zo — x3) In[(z1 + C1(zo — xg))2 +
+ (w2 + Calo — 23))°) % + falwo — 23),
() u— (= A, (u) A" (u) " (B A, (u) A, (1) Ao (u)z 5 + C(u)),
(5) o —x3 — fi(zo — x3)(21 cos C1(xo — 23) +
+ z28in C(xg — x3) + Ca(xg — x3).

Note that in the cases 4, b function f5 is absorbed by arbitrary functions C, Cs.
And one more remark seems to be noteworthy. If one takes as a particular solution
of the system (2) the function u(z) = (zoz1 £ x2/2? + 22 — 23)/(2? + 23) and
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substitutes it into the first, second and fourth Ansdtze from (70), then the following
Ansitze are obtained:

24 2 _ .2
9 ToT1 £ Ton/x] + T5 — T§

(1) w(@) = | af+a3+ a3 - ag,

b
x2 + 13
2 2 2
ToT1 £ To/ X7+ 25 — X
(2) w(x)=¢ |} +a5 -3, |
Ty + 5
ToT1 £ T2/ + 23 — 23

4 =
() w(x) T2 L&D I%er%

Provided the above Ansdtze do not depend on the second argument, the usual Lie

Ansétze are obtained which are invariant under some subgroups of the Poincaré group

P(1,

3) [19]. Consequently, if we imagine invariant solutions as dots in a solution

space of the nonlinear d’Alembert equation, then through some of them one can
draw curves which are conditionally-invariant solutions. In this respect a number of
interesting questions arise, let us mention two of these:

(1) Is any invariant solution of the nonlinear d’Alembert equation (33) a particular

case of some more general conditionally-invariant solution?

(2) Does there exist such conditionally-invariant solution of Eq. (33) that all invari-

ant solutions of Eq. (33) are its particular cases? (saying about invariant soluti-

ons we mean solutions invariant under some subgroup of the symmetry group
of Eq. (33)).

An answer to the first question seems to be positive. A positive answer to the

second one would provide us with a concept of a “general invariant solution”. But so
far this problem is completely open and needs further investigation.
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