
Introduction to Graphene-Based Nanomaterials

Graphene is one of the most intensively studied materials and has unusual electrical,
mechanical, and thermal properties which provide almost unlimited potential appli-
cations. This book provides an introduction to the electrical and transport properties
of graphene and other two-dimensional nanomaterials, covering abinitio to multiscale
methods. Updated from the first edition, this book contains added chapters on other two-
dimensional materials, spin-related phenomena, and an improved overview of Berry
phase effects. Other topics include powerful order-N electronic structure, transport
calculations, AC transport, and multiscale transport methodologies. Chapters are com-
plemented with concrete examples and case studies, questions and exercises, detailed
appendices, and computational codes. This book is a valuable resource for graduate
students and researchers working in physics, or materials science or engineering, who
are interested in the field of graphene-and two-dimensional nanomaterials.

Luis E. F. Foa Torres is a condensed matter physicist and Associate Professor of Physics
at the University of Chile. Previous positions include Research Scientist at the National
Council for Scientific and Technical Research (CONICET) in Argentina, and fellow
of the Alexander von Humboldt Foundation in Dresden, Germany. His research is
focused on quantum transport, two-dimensional materials, topological insulators, and
the physics of driven systems. He was awarded the International Centre for Theoretical
Physics (ICTP) Prize in 2018.

Stephan Roche is a Catalan Institution for Research and Advanced Studies (ICREA)
Research Professor working at the Catalan Institute of Nanoscience and
Nanotechnology (ICN2) and at the Barcelona Institute of Science and Technology
(BIST). He leads the Theoretical and Computational Nanoscience group which focuses
on the understanding of quantum transport phenomena from the molecular to the
mesoscopic scales with particular focus on spin dynamics in topological (and Dirac)
matter. In 2009, he was awarded the prestigious Friedrich Wilhelm Bessel Prize from
the Alexander von Humboldt Foundation (Germany). He serves as deputy leader of the
Spintronics Work Package in the Graphene Flagship consortium.

Jean-Christophe Charlier is Full Professor at the École Polytechnique de Louvain and
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Preface to the Second Edition

We are delighted to give a second birth to this book on the presentation of electronic and
transport properties of graphene-related materials five years after its first edition. Over
these years, research in the area of graphene and two-dimensional materials has evolved.
The changes are well reflected by the name of the 2017 Solvay Workshop dedicated
to this field: From physics of graphene to graphene for physics. Indeed today, rather
than studying graphene’s properties, we are using it mostly as a platform for unveiling
new physics. Furthermore, with each newly discovered two-dimensional material a
similar path emerges, from studying their properties to using them as a brave new
playground for exciting physics. At the same time, we are witnessing a very interesting
return to three-dimensional systems, this time based on the stacking of two-dimensional
structures which allows for more tailor-made properties.

In this new edition we decided to expand different aspects that were either missing
or too succint in the previous edition. This includes, the new family of two-dimensional
materials Berry phases and quantum Hall effects, and spintronics. We have reduced
a few chapters that did not age very well to make space for this more exciting new
material. As with the first edition we keep being committed to offering problems and
solutions through our website, besides those provided in the book.

Please do not hesitate to contact us if you have questions or comments. In this sense,
when choosing whom to contact it might be useful to keep in mind the distribution of
our contributions to the book, which take advantage of our complementary expertise:
Jean-Christophe wrote of the parts dealing with ab initio and new two-dimensional
materials (Chapters 1, 3, 10, Appendices A and B, and parts of Chapter 2 and
Appendix C), Stephan was in charge of spintronics, disorder effects, and transport
(Chapters 6, 8, Appendix D, and parts of Chapters 2, 4, 5, and 7), Luis took care of the
transport, quantum Hall effects, and AC transport parts (Chapters 4, 7, and 9 and parts
of Chapters 2, 5, and Appendix C).

We would like to thank again our colleagues and coworkers for their help and
inspiring our work. Besides those already acknowledged in our first preface, here we
would like to also thank those newcomers to our family: Matı́as Berdakin, David
Beljonne, Felix Casanova, Aurélie Champagne, José Chesta, Samuel Dechamps, José
Hugo Garcı́a, Rocı́o González, Benoı̂t Hackens, Hafid Khalfoun, Vı́ctor Manuel
Martı́nez Álvarez, Joaquı́n Medina, Viet-Hung Nguyen, Álvaro Núñez, Esteban
Rodrı́guez, Pierre Seneor, Christoph Stampfer, Benoı̂t Van Troeye, and Marc Vila.



xii Preface

We thank our home institutions for supporting our research, as well as the Alexander
von Humboldt Foundation (SR and LEFFT), the Abdus Salam International Centre for
Theoretical Physics (LEFFT), and the Francqui-Stichting Foundation of Belgium (JCC).
Finally, we are indebted to our respective wives (Sandra Rieger, Encarni Carrasco Perea,
and Mireille Toth-Budai) and our children (Hector and Gabriel Roche, and Ilona, Elise,
and Mathilde Charlier) for their warm enthusiasm and continuous support during all
these years of time-consuming work.

We hope that you find this second edition to be a useful companion for starting in this
field and perhaps even for your day-to-day research.

And we wish you an exciting journey in Flatland and beyond!



Preface to the First Edition

Once deemed impossible to exist in nature, graphene, the first truly two-dimensional
nanomaterial ever discovered, has rocketed to stardom since being first isolated in 2004
by Nobel Laureates Konstantin Novoselov and Andre K. Geim of the University of
Manchester. Graphene is a single layer of carbon atoms arranged in a flat honeycomb
lattice. Researchers in high energy physics, condensed matter physics, chemistry, biol-
ogy, and engineering, together with funding agencies and companies from diverse indus-
trial sectors, have all been captivated by graphene and related carbon-based materials
such as carbon nanotubes and graphene nanoribbons, owing to their fascinating physical
properties, potential applications, and market perspectives.

But what makes graphene so interesting? Basically, graphene has redefined the limits
of what a material can do: it boasts record thermal conductivity and the highest current
density at room temperature ever measured (a million times that of copper!); it is the
strongest material known (a hundred times stronger than steel!) yet is highly mechani-
cally flexible; it is the least permeable material known (not even helium atoms can pass
through it!); the best transparent conductive film; the thinnest material known; and the
list goes on.

A sheet of graphene can be quickly obtained by exfoliating graphite (the material that
the tip of your pencil is made of) using sticky tape. Graphene can readily be observed
and characterized using standard laboratory methods, and can be mass-produced either
by chemical vapor deposition (CVD) or by epitaxy on silicon carbide substrates. Driven
by these intriguing properties, graphene research is blossoming at an unprecedented
pace and marks the point of convergence of many fields. However, given this rapid
development, there is a scarcity of tutorial material to explain the basics of graphene
while describing the state of the art in the field. Such materials are needed to consolidate
the graphene research community and foster further progress.

The dearth of up-to-date textbooks on the electronic and transport properties of
graphene is especially dramatic: the last major work of reference in this area – written
by Riichiro Saito, Gene Dresselhaus, and Mildred Dresselhaus – was published in 1998.
Seeking to answer the prayers of many colleagues who have had to struggle in a nascent
field characterized by a huge body of research papers but very little introductory
material, we decided to write this book. It is the fruit of our collective research
experience, dating from the early days of research on graphene and related materials, up
through the past decade, when each of us developed different computational tools and
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theoretical approaches to understanding the complex electronic and transport properties
in realistic models of these materials.

We have written Introduction to Graphene-Based Nanomaterials: From Electronic
Structure to Quantum Transport for everyone doing (or wishing to do) research on
the electronic structure and transport properties of graphene-related systems. Assuming
basic knowledge of solid-state physics, this book offers a detailed introduction to some
of the most useful methods for simulating these properties. Furthermore, we have made
additional resources (computational codes, a forum, etc.) available to our readers at
cambridge.org/foatorres, and at the book website (introductiontographene.org), where
additional exercises as well as corrections to the book text (which will surely appear)
will be posted.

Graphene and related materials pertain to a larger family that encompasses all
kinds of two-dimensional materials, from boron nitride lattices, to transition-metal
dichalcogenides (MoS2, WS2), to the silicon analogue of graphene, silicene, a recently
discovered zero-gap semiconductor. Researchers are beginning to explore the third
dimension by shuffling two-dimensional materials and by fabricating three-dimensional
heterostructures (BN/graphene, BN/MoS2/graphene, etc.) with unprecedented
properties.

Interestingly, low-energy excitations in two-dimensional graphene (and in one-
dimensional metallic carbon nanotubes), known as massless Dirac fermions, also
develop at the surface of topological insulators (such as Bi2 Se3, Bi2Te3, etc.), which
are bulk insulators. Topological insulators thus share commonalities with graphene, such
as Berry’s phase-driven quantum phenomena (Klein tunneling, weak antilocalization,
etc.), and exhibit other features such as spin-momentum locking that offer different
and ground-breaking perspectives for spintronics. Therefore, we believe that our
presentation of the fundamentals of electronic and transport properties in graphene
and related materials should prove useful to a growing community of scientists, as
they touch on advanced concepts in condensed matter physics, materials science, and
nanoscience and nanotechnology.

The book starts with an introduction to the electronic structures and basic concepts
in transport in low-dimensional materials, and then proceeds to describe the specific
transport phenomena unique to graphene-related materials. Transport concepts are then
presented through simple disorder models, which in some cases enable comparison with
analytical treatments. Additionally, the development of multiscale quantum transport
methodologies (either within the Landauer–Büttiker or Kubo–Greenwood formalisms)
is introduced in a straightforward way, showing the various options for tackling defects
and impurities in graphene materials with more structural and chemical complexity:
from combined ab initio with tight-binding models to transport calculations fully based
on first principles. To facilitate reading, the essential technical aspects concerning the
formalism of Green functions, as well as transport implementation and order-N transport
schemes are described in dedicated appendices.

This book encompasses years of scientific research, research that has enabled us
to establish certain foundations in the field, a work made possible by the efforts of

http://cambridge.org/foatorres
http://introductiontographene.org


Preface xv

collaborators, including many postdoctoral and doctoral students. We are particu-
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Dal Lago, Xavier Declerck, Simon Dubois, Nicolas-Guillermo Ferrer Sanchez, Lucas
Ingaramo, Gabriela Lacconi, Sylvain Latil, Nicolas Leconte, Aurélien Lherbier, Ale-
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Dinh Van Tuan, François Varchon, Wu Li, Zeila Zanolli, and Bing Zheng.

We would also like to express our sincere gratitude to the following inspiring
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Ando, Marcelo Apel, Adrian Bachtold, Carlos Balseiro, Florian Banhart, Robert Baptist,
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1 Introduction to Carbon-Based
Nanostructures

Carbon is a truly unique chemical element. It can form a broad variety of architectures
in all dimensions, both at the macroscopic and nanoscopic scales. During the last
20+ years, brave new forms of carbon have been unveiled. The family of carbon-based
materials now extends from C60 to carbon nanotubes, and from old diamond and
graphite to graphene. The properties of the new members of this carbon family are so
impressive that they may even redefine our era. This chapter provides a brief overview
of these carbon structures.

1.1 Carbon Structures and Hybridizations

Carbon is one of the most versatile elements in the periodic table in terms of the number
of compounds created from it, mainly due to the types of bonds it may form (single, dou-
ble, and triple bonds) and the number of different atoms it can join in bonding. When we
look at its ground state (lowest energy) electronic configuration (1s22s22p2), carbon is
found to possess two core electrons (1s) that are not available for chemical bonding and
four valence electrons (2s and 2p) that can participate in bond formation (Fig. 1.1(a)).
Since two unpaired 2p electrons are present, carbon should normally form only two
bonds in its ground state.

However, carbon should maximize the number of bonds formed because chemical
bond formation will induce a decrease of system energy. Consequently, carbon will
rearrange the configuration of the valence electrons. Such a rearrangement process
is called hybridization, where only 2s and 2p electrons are affected. Indeed, one 2s
electron will be promoted into an empty 2p orbital, thus forming an excited state
(Fig. 1.1(b)). Carbon will thus hybridize from this excited state, being able to form at
most four bonds.

One possible hybridization scheme consists in mixing the four atomic orbitals (one
2s orbital + three 2p orbitals), leading to the formation of four sp3 hybrid orbitals,
each filled with only one electron (Fig. 1.1(c)). In order to minimize repulsion, these
four hybrid orbitals optimize their position in space, leading to a tetrahedral geometry
where four σ bonds are formed with carbon neighbors, each at an angle of 109.5◦ to
each other. Methane (CH4) is the typical molecule that satisfies this specific bonding
arrangement. Diamond is the three-dimensional carbon allotropic form where the
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Figure 1.1 Electronic configurations of carbon: (a) ground state; (b) excited state; (c) sp3

hybridization; (d) sp2 hybridization; and (e) sp hybridization.

atoms are arranged in a variation of the face-centered cubic crystal structure called a
diamond lattice (Fig. 1.2(a)). In diamond, all carbon atoms are in the sp3 hybridization
and are connected by σ bonds (due to the overlapping between two hybrid orbitals,
each containing one electron) to four nearest neighbors with a bond length of 1.56 Å.
Diamond (from the ancient Greek αδαμασ – adámas “unbreakable”) is renowned as
a material with extreme mechanical properties originating from the strong sp3 covalent
bonding between its atoms. In particular, diamond exhibits one of the highest hardness
values, has an extremely high thermal conductivity, is an electrical insulator with a
bandgap of ∼5.5 eV, and is transparent to visible light (Hemstreet et al. 1970).

Another possible hybridization scheme consists in mixing three atomic orbitals
among the four (one 2s orbital + two 2p orbitals), leading to the formation of three
sp2 hybrid orbitals, each filled with only one electron (Fig. 1.1(d)). Again, the three
sp2 hybrid orbitals will arrange themselves in order to be as far apart as possible,
leading to a trigonal planar geometry where the angle between each orbital is 120◦.
The remaining p-type orbital will not mix and will be perpendicular to this plane. In
such a configuration, the three sp2 hybrid orbitals will form σ bonds with the three
nearest neighbors and the side-by-side overlap of the unmixed pure p orbitals will form
π bonds between the carbon atoms, accounting for the carbon–carbon double bond.
Ethylene (C2H4) and aromatic molecules like benzene (C6H6) are typical examples of
sp2 hybridization.

Graphite is a three-dimensional crystal made of stacked layers consisting of sp2

hybridized carbon atoms (Fig. 1.2(b)); each carbon atom is connected to another three
making an angle of 120◦ with a bond length of 1.42 Å. This anisotropic structure
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(a) Diamond (sp3) (b) Graphite (sp2) (c) Carbyne (sp)

Polyyne chain

Cumulene chain

Figure 1.2 Carbon structures exhibiting different hybridizations: (a) diamond (sp3); (b) graphite
(sp2); and (c) carbyne (sp).

clearly illustrates the presence of strong σ covalent bonds between carbon atoms in
the plane, while the π bonds provide the weak interaction between adjacent layers in
the graphitic structure. Graphite (from the ancient Greek γραφω – graphó “to write”)
is well known for its use in pencils because of its ability to mark surfaces as a writing
material, due to nearly perfect cleavage between basal planes related to the anisotropy
of bonding. Under standard conditions (ordinary temperatures and pressures), the stable
form of carbon is graphite. Unlike diamond, graphite is a popular lubricant, an electrical
(semi-metal) and thermal conductor, and reflects visible light. Natural graphite occurs in
two crystal structures: Bernal (hexagonal) (Bernal 1924) and rhombohedral (Lipson &
Stokes 1942) structures that are characterized by different stackings of the basal planes,
. . .ABABAB . . . and . . .ABCABC . . ., respectively. The hexagonal and rhombohedal
structures belong to the P63/mmc (D4

6h) and R3̄m (D5
3d) space groups, respectively.

Samples usually contain no more than 5–15% rhombohedral structure intermixed with
Bernal form, and sometimes, disordered graphite (Lipson & Stokes 1942). These disor-
dered graphitic forms, such as pregraphitic carbon or turbostratic graphite, are mainly
composed of randomly oriented basal carbon sheets. However, pure graphite crystals
can be found naturally and can also be artificially synthesized by thermolytic processes,
such as the production of highly oriented pyrolytic graphite (HOPG) (Moore 1974).

The last possible hybridization consists in mixing two atomic orbitals (one 2s
orbital + one 2p orbital) of the four, leading to the formation of two sp hybrid orbitals,
each filled with only one electron (Fig. 1.1(e)). The geometry that results is linear with
an angle between the sp orbitals of 180◦. The two remaining p-type orbitals, which are
not mixed, are perpendicular to each other. In such a configuration, the two sp hybrid
orbitals will form σ bonds with the two nearest neighbors and the side-by-side overlap of
the two unmixed pure p orbitals will form π bonds between the carbon atoms, account-
ing for the carbon–carbon triple bond (which is thus composed of one σ bond and two π
bonds). Acetylene (H−C≡C−H) is the typical linear molecule that satisfies this specific
bonding arrangement. Carbon also has the ability to form one-dimensional chains, called
carbynes (Fig. 1.2(c)), that are traditionally classified as cumulene (monoatomic chains
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with double bonds, · · · =C=C= · · · ) or polyyne (dimerized chains with alternating
single and triple bonds, · · · −C≡C− · · · ). While sp2 and sp3 carbon-based structures
have been widely characterized, the synthesis of carbynes has been a challenge for
decades due to the high reactivity of chain ends and a strong tendency to interchain
crosslinking (Heimann et al. 1999). Linear carbon chains consisting of a few tens of
atoms were first synthesized via chemical methods (Cataldo 2005) by stabilizing the
chain ends with nonreactive terminal groups (Kavan & Kastner 1994; Lagow et al.
1995). However, these systems consist of a mixture of carbon and other chemical
elements, and the synthesis of carbynes in a pure carbon environment has only recently
been achieved via supersonic cluster beam deposition (Ravagnan et al. 2002, 2007)
and via electronic irradiation of a single graphite basal plane (graphene) inside a
transmission electron microscope (Jin et al. 2009; Meyer et al. 2008).

1.2 Carbon Nanostructures

Carbon nanomaterials also reveal a rich polymorphism of various allotropes exhibiting
each possible dimensionality: fullerene molecule (0D), nanotubes (1D), graphite
platelets and graphene ribbons (2D), and nano-diamond (3D) are selected examples
(Terrones et al. 2010). Because of this extraordinary versatility of nanomaterials
exhibiting different physical and chemical properties, carbon nanostructures are playing
an important role in nanoscience and nanotechnology.

Carbon nanoscience started with the discovery of C60 Buckminsterfullerene (Kroto
et al. 1985). This cage-like molecule of 7 Å diameter contains 60 carbons atoms laid
out on a sphere (Fig. 1.3(a)). The structure of the C60 Buckminsterfullerene consists of
a truncated icosahedron with 60 vertices and 32 faces (20 hexagons and 12 pentagons
where no pentagons share a vertex) with a carbon atom at the vertex of each polygon
and a bond along each polygon edge (Fig. 1.3(a)). Each carbon atom in the structure
is bonded covalently with three others (sp2+δ hybridization; δ is due to the curvature)
with an average bond length of 1.46 Å within the five-member rings (single bond)
and 1.4 Å for the bond connecting five-member rings (the bond fusing six-member
rings). The number of carbon atoms in each fullerene cage can vary. Indeed, fullerene
molecules are generally represented by the formula Cn, where n denotes the number of
carbon atoms present in the cage. Anyway, the C60 nano-soccer ball (or buckyball ) is the
most stable and well-characterized member of the fullerene family. The name of these
Cn molecules was derived from the name of the noted inventor and architect Buck-
minster Fuller since Cn resembles his trademark geodesic domes. The C60 molecule
is still dominating fullerene research and stimulating the creativity and imagination of
scientists, and has paved the way for a whole new chemistry and physics of nanocarbons
(Dresselhaus et al. 1996).

Soon after, in 1988, graphitic onions – of which the first electron microscope
images were reported by Sumio Iijima in 1980 (Harris 1999) – were suggested to
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Figure 1.3 Atomistic models of various sp2-like hybridized carbon nanostructures exhibiting
different dimensionalities, 0D, 1D, 2D, and 3D: (a) C60: Buckminsterfullerene; (b) nested giant
fullerenes or graphitic onions; (c) carbon nanotube; (d) nanocones or nanohorns; (e) nanotoroids;
(f) graphene surface; (g) 3D graphite crystal; (h) Haeckelite surface; (i) graphene nanoribbons;
(j) graphene clusters; (k) helicoidal carbon nanotube; (l) short carbon chains; (m) 3D Schwarzite
crystals; (n) carbon nanofoams (interconnected graphene surfaces with channels); (o) 3D
nanotube networks, and (p) nanoribbon 2D networks. Reproduced from Terrones et al. (2010)

be nested icosahedral fullerenes (C60@C240@C540@C960. . . ) (Kroto & McKay
1988) containing only pentagonal and hexagonal carbon rings (Fig. 1.3(b)). In 1992, the
reconstruction of polyhedral graphitic particles into almost spherical carbon onions
(nested giant fullerenes) was demonstrated by Daniel Ugarte (1992) using high-
energy electron irradiation inside a high-resolution transmission electron microscope
(HRTEM). By analogy, the formation of C60 has also been very recently observed in situ
by creating local defects in graphene upon electron irradiation in a HRTEM (Chuvilin
et al. 2010). These carbon onions are quasi-spherical nanoparticles consisting of
fullerene-like carbon layers enclosed by concentric graphitic shells, thus exhibiting
electronic and mechanical properties different from any other carbon nanostructures
due to their highly symmetric structure.

In 1976, the “ultimate” carbon fibers (later known as a multiwall carbon nanotubes),
produced by a modified chemical vapor deposition (CVD) method usually used to
produce conventional carbon fibers, were observed using TEM (Oberlin et al. 1976).
However, the emergence of carbon nanotubes (CNTs) really came in 1991 after
the C60 discovery. Indeed, “graphite microtubules,” multiwall nanotubes (MWNTs)
produced via an arc discharge between two graphite electrodes in an inert atmosphere
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(same method for producing fullerenes), were first characterized using HRTEM (Iijima
1991), thus confirming that their atomic structures consisted of nested graphene
nanotubes terminated by fullerene-like caps. A couple of years later, in 1993, single-
wall carbon nanotubes – SWNTs, Fig. 1.3(c) – were synthesized using the same carbon
arc technique in conjunction with metal catalysts (Bethune et al. 1993; Iijima &
Ichihashi 1993). CNTs are allotropic forms of carbon characterized by a long and
hollow cylindrical-shaped nanostructure with a length-to-diameter ratio that may reach
108 (Zheng et al. 2004), which is significantly larger than for any other one-dimensional
material. Carbon nanotubes are frequently considered as members of the fullerene
family, since their ends may be capped with a buckyball hemisphere. The cylinder walls
are formed by one-atom-thick sheets of carbon rolled up at specific and discrete chiral
angles. Both the nanotube diameter and this rolling angle lead to specific properties;
for example, a SWNT may behave as a metal or a semiconductor depending on its
geometry (Saito et al. 1998), as described in detail in Chapter 2. Due to long-range weak
interactions (van der Waals and π -stacking), individual nanotubes naturally align into
ropes or bundles (Thess et al. 1996). These carbon nanotubes exhibit unusual properties
which are extremely valuable for nanotechnology, electronics, mechanics, optics, and
other fields of materials science. In particular, owing to their extraordinary mechanical
properties, electrical and thermal conductivity, carbon nanotubes find applications as
additives (primarily carbon fiber) in composite materials, as for instance, in baseball
bats, golf clubs, or car parts (Dresselhaus et al. 2001).

After these consecutive discoveries of the fullerenes and carbon nanotubes, other
graphitic-like nanostructures were successfully produced, observed, and accurately
characterized using various experimental techniques. The topologies associated with
these new carbon nanostructures include nanocones (Fig. 1.3(d)) (Krishnan et al. 1997),
nanopeapods (Smith et al. 1998), nanohorns (Fig. 1.3(d)) (Iijima et al. 1999), and carbon
rings or toroids (Fig. 1.3(e)) (Liu et al. 1997).

The fundamental building block in all these carbon nanostructures (except for sp3

nanodiamond) relies on the theoretical concept of the two-dimensional crystalline
allotrope of carbon called graphene (Fig. 1.3(f)). Indeed, graphene is the name given
to the ideally perfect infinite one-atom-thick planar sheet of sp2-bonded carbon atoms,
densely packed in a honeycomb crystal lattice (Boehm et al. 1962). This ideal two-
dimensional solid has thus been widely employed as a useful theoretical concept to
describe the properties of many carbon-based materials, including graphite (where a
large number of graphene sheets are stacked; see Fig. 1.3(g)) (Wallace 1947), nanotubes
(where graphene sheets are rolled up into nanometer-sized cylinders; see Fig. 1.3(c)),
large fullerenes (where graphene sheets, according to Euler’s theorem, contain at least
12 pentagons displaying a spherical shape; see Fig. 1.3(a–b)), and ribbons (where
graphene is cut into strips; see Fig. 1.3(i)) (Li et al. 2008). Actually, planar graphene
itself was presumed not to exist in the free state, being unstable with respect to the
formation of curved structures such as soot, fullerenes, and nanotubes. However, in
2004, graphene samples were synthesized either by mechanical exfoliation (repeated
peeling or micromechanical cleavage, known as the “scotch tape method”) of bulk
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graphite (highly oriented pyrolytic graphite) (Novoselov et al. 2004, 2005) or by
epitaxial growth through thermal decomposition of SiC (Berger et al. 2006). The
relatively easy production of graphene using the scotch tape method and the transfer
facility of a single atomic layer of carbon from the c-face of graphite to a substrate
suitable for the measurement of its electrical properties have led to a renewed interest
in what was considered to be a prototypical, yet theoretical, two-dimensional system.
Graphene displays unusual electronic properties arising from confinement of electrons
in two dimensions and peculiar geometrical symmetries. Indeed, old theoretical studies
of graphene (Wallace 1947) reveal that the specific linear electronic band dispersion
near the Brillouin zone corners (Dirac point) gives rise to electrons and holes that
propagate as if they were massless Dirac fermions, with a velocity of the order of a
few hundredths of the velocity of light. Charge excitations close to the Fermi level can
thus be formally described as massless relativistic particles obeying a Dirac equation,
whereas a new degree of freedom reflecting inherent symmetries (sublattice degeneracy)
appears in the electronic states: the pseudospin. Because of the resulting pseudospin
symmetry, electronic states turn out to be particularly insensitive to external sources of
elastic disorder (topological and electrostatic defects) and, as a result, charge mobilities
in graphene layers as large as 105 cm2 V−1 s−1 have been reported close to the Dirac
point (Novoselov et al. 2004). In addition, in suspended graphene, the minimum conduc-
tivity at the Dirac point approaches a universal (geometry independent) value of 4e2/h
at low temperature (Du et al. 2008). Low-temperature electron mobility approaching
2 × 105 cm2 V−1 s−1 has been measured for carrier density below 5 × 109 cm−2. Such
values cannot be attained in conventional semiconductors such as silicon or germanium.
In addition, graphene has been demonstrated to exhibit anomalous quantum transport
properties such as an integer quantum Hall effect (Novoselov et al. 2005; Zhang et al.
2005), and also one of the most exotic and counterintuitive consequences of quantum
electrodynamics: the unimpeded penetration of relativistic particles through high and
wide potential barriers, known as the Klein paradox (Katsnelson et al. 2006). These
discoveries have stirred a lot of interest in the scientific community as well as in the
international media. The excitement behind this discovery has two main driving forces:
basic science and technological implications (Geim & Novoselov 2007). Because of its
high electronic mobility, structural flexibility, and capability of being tuned from p-type
to n-type doping by the application of a gate voltage, graphene is considered a potential
breakthrough in terms of carbon-based nanoelectronics.

All these outstanding properties of the graphene sheet have heavily stimulated the
discovery of new, closely-related planar carbon-based nanostructures with sp2 hybridiza-
tion, such as bilayer graphene, trilayer graphene, few-layer graphene, and graphene
nanoribbons; these nanostructures that have subsequently emerged, each having novel
and unusual properties that are different from those of both graphene and graphite.
Whenever these structures exhibit . . .ABABAB . . . or . . .ABCABC . . . stackings, they
are considered as graphitic stacks. In fact, this distinction is made because it has been
demonstrated that the properties of graphene can be recovered in systems with several
sp2-hybridized carbon layers when stacking disorder is introduced.
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Theoretical works have also suggested the possibility of stable, flat sp2-hybridized
carbon sheets containing pentagons, heptagons, and hexagons, termed pentaheptites
(2D sheets containing heptagons and pentagons only) (Crespi et al. 1996) or Haeck-
elites (2D crystals containing pentagons, heptagons and/or hexagons, see Fig. 1.3(h))
(Terrones et al. 2000). These planar structures are intrinsically metallic and could exist
in damaged or irradiated graphene. However, further experiments are needed in order to
both produce and identify them successfully.

When infinite perfect graphene crystals become finite, borders and boundaries appear,
implying the presence of carbon atoms that exhibit a coordination below three at the
edges. Among these graphene-based nanostructures are nanoribbons (Fig. 1.3(i)) and
nanoclusters (Fig. 1.3(j)). In general, a graphene nanoribbon (GNR) is defined as a
1D sp2-hybridized carbon crystal with boundaries, which possesses a large aspect ratio
(Fig. 1.3(i)). Edge terminations could be armchair, or zigzag, or even a combination
of both. The graphene cluster concept arises when the dimensionality is lost and no
periodicity is present (Fig. 1.3(j)). Finally, long carbon chains either with alternating
single–triple or with double bonds (Fig. 1.2(c)) are also considered as a 1D nanosystem
as already briefly described in the previous section.

Finally, Schwarzites are hypothetical graphitic (sp2 hybridization) three-dimensional
crystals obtained by embedding non-hexagonal carbon rings (Fig. 1.3(m)), thus span-
ning two different space groups in which the most symmetrical cases belong to cubic
Bravais lattices (Terrones & Terrones 2003). These 3D carbon-based nanostructures
can be visualized as nanoporous carbon (Fig. 1.3(n)), exhibiting nanochannels. From
a theoretical point of view, these nanoporous carbon materials have been suggested
to have outstanding performance in the storage of hydrogen due to their large surface
area (Kowalczyk et al. 2007). Another type of 3D array of nanocarbons consists of nan-
otube networks (Fig. 1.3(o)), which have been predicted to exhibit outstanding mechan-
ical and electronic properties, besides having a large surface area (e.g., 3600 m2/g)
(Romo-Herrera et al. 2006). Interestingly, these types of random 3D nanotube net-
works have been produced using CVD approaches (Lepro et al. 2007) and further
theoretical and experimental studies are still required in order to achieve crystalline
3D networks.

The series of events described above and dedicated to the most important discoveries
in carbon nanoscience clearly demonstrate that carbon is a fascinating element and is
able to form various morphologies at the nanoscale, possessing different physicochemi-
cal properties, some of them yet unknown. In the following sections, we will concentrate
on novel one- and two-dimensional sp2-like carbon nanostructures. But before starting
your trip, we recommend that you read Guide to the Book below.

1.3 Guide to the Book

This book deals with the electronic and transport properties of some of the most
promising new forms of carbon ever introduced before. Chapter 2 starts by introducing
the electronic properties of both pristine and defected carbon nanostructures, and
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also overviews the salient electronic features under magnetic fields (Aharonov–Bohm
phenomenon and Landau levels). The emphasis is on tight-binding models, though
widely used effective low-energy models are also introduced. When possible, the
results are commented on in the light of ab initio simulations. Chapter 3 overviews the
electronic properties of the most important representatives of the 2D materials family
other than graphene (h-BN, TMDs, Phosphorene, Borophene, Silicene, Germanene,
Stanene, MXenes, . . . ), including also some review related to novel electronic and
optoelectronic properties in van der Waals heterostructures.

The rest of the book is mostly dedicated to the electronic transport properties of
graphene-related materials. Chapter 4 offers a general overview of the tools used later
on, namely, Landauer–Büttiker and Kubo–Greenwood formalisms, together with the
commonly used semiclassical Boltzmann transport equation, which presents severe
limitations for the exploration of the quantum transport at the Dirac point. Most
of the technical details (or tricks!) concerning the numerical implementations of
such transport methods are given in dedicated appendices. The first illustrations of
transport properties in disordered graphene materials are given in Chapter 5, with
a starting discussion concerning the limits of ballistic transport and the peculiar
Klein tunneling mechanism. The role of disorder is further discussed broadly in
Chapter 6 through the use of the legendary Anderson disorder model, which is
the first approach for studying the main transport length scales and conduction
regimes. Weak and strong localization phenomena (including weak antilocalization)
are presented and related to the nature of disorder (short- versus long-range potential).
Various forms of structural disorders are then studied including monovacancies, and
polycrystalline and amorphous graphene, showing how irregularities affect mean free
paths and localization lengths, eventually turning the materials to a strong Anderson
insulator.

Chapter 7 covers different aspects of Berry phases, magnetic field effects, and the
quantum Hall regime. The chapter ends with a presentation of Haldane’s model for a
quantum Hall effect without Landau levels. Chapter 8 gives an overview of spintronics
in two-dimensional materials. This chapter presents some debate and open issues, as
perceived by the authors, and these issues should generate a great amount of research
in the next decade. In particular, graphene spintronics offers fascinating possibilities of
revolutionary information processing using the spin degree of freedom. Progress toward
spin gating and spin manipulation, however, demands attention and effort in revisiting
the way spin diffusion and spin relaxation mechanisms are described in graphene, as
these are likely to genuinely differ from conventional relaxation effects described in
metals and small-gap semiconductors.

Chapter 9 gives a brief overview of quantum transport beyond DC conditions, Floquet
theory for time-periodic Hamiltonians, and a succinct review of the literature on AC
transport in carbon-based nanostructures. This is currently a very active field, which
connects to graphene photonics and plasmonics. Many developments are expected
within the next few years, and theoretical study certainly needs to be further extended.
The material provided here will be very useful for those researchers interested in the
field.
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Ab initio and multiscale transport methodologies are discussed in Chapter 10.
To achieve accurate transport calculations on very-large-size disordered systems, a
combination of ab initio approach and order-N transport algorithms is crucial. The
presentation will provide a simple description of various possible hybrid methodologies
for investigating the complex transport fingerprints of chemically or structurally
disordered carbon nanotubes of graphene-based materials. Some targeted functionalities
such as chemical sensing will then be discussed in detail for chemically functionalized
nanotubes. Sensing is often viewed as a major application for such low-dimensional
carbon-based materials. The possibilities but also limitations of these numerical
approaches are illustrated in this chapter.

Some of these chapters are essentially tutorials (Chapters 1–5, 7, and 9 and Appen-
dices A–D), offering enough material for introductory lectures at the master degree
level. Others are intended to give an overview of most foundational literature in the
respective fields or to shine some light on leading-edge research (Chapters 6, 8, and 10).
The choice of topics, presentation, and illustrations is unavoidably biased toward
the authors’ own experiences, and despite the attempts to properly acknowledge the
foundational papers, many citations are certainly missing. We will try to amend this in
later editions.

All chapters contain a very short list of suggested material for further reading. The
core tutorial chapters of this book contain lists of problems with varying levels of
difficulty. Many of them are computational exercises where a learning by doing spirit
is encouraged. Along this line, many solutions, additional exercises, and miscellaneous
material, as well as computational codes, are made available online at the website:

www.introductiontographene.org
www.cambridge.org/foatorres

The symbol on the right will indicate that additional material is available online. The
authors intend that an updated list of typos and errors will also be available there. This
will be the authors’ contact point with their ultimate inspiration for this enterprise: you
and your fellow readers.

Finally, the interdisciplinarity of the potential readers of this book makes it impossi-
ble (and probably pointless) to develop a book that all readers can read linearly from
beginning to end. This is why the authors suggest tailoring it to your own experience
and objectives. Before starting, it is recommended that you get your own Table of
Instructions from the authors’ website.

1.4 Further Reading

• Readers may enjoy the personal accounts given in Dresselhaus (2011) and Geim
(2011), where the flavor of the story behind the development of these materials is
given.

www.introductiontographene.org
www.cambridge.org/foatorres


2 Electronic Properties of
Carbon-Based Nanostructures

2.1 Introduction

As described in Chapter 1, the sp2 carbon-based family exhibits a great variety of
allotropes, from the low-dimensional fullerenes, nanotubes, and graphene ribbons
to two-dimensional monolayer graphene, or stacked graphene multilayers. Two-
dimensional monolayer graphene stands as the building block, since all the other forms
can be derived from it. Graphene nanoribbons can be seen as quasi-one-dimensional
structures, with one lateral dimension short enough to trigger quantum confinement
effects. Carbon nanotubes can be geometrically constructed by folding graphene
nanoribbons into cylinders, and graphite results from the stacking of a very large
number of weakly bonded graphene monolayers.

The isolation of a single graphene monolayer by mechanical exfoliation (repeated
peeling or micromechanical cleavage) starting from bulk graphite has been actually
quite a surprise, since it was previously believed to be thermodynamically unstable
(Novoselov et al. 2004; Novoselov, Jiang et al. 2005). At the same time, the route for
controlling the growth of graphene multilayers on top of silicon carbide by thermal
decomposition was reported, and this eventually led to fabrication of single graphene
monolayers of varying quality depending on the surface termination (silicon or carbon
termination) (Berger et al. 2006). Basic electronic properties of graphene actually
have been well known since the seminal work by Wallace in the late 1940s (Wallace
1947), such as the electron–hole symmetry of the band structure and the specific linear
electronic band dispersion near the Brillouin zone corners (Dirac point), but it was
after the discovery of carbon nanotubes by Iijima from NEC (Iijima 1991) that the
exploration of electronic properties of graphene-based materials was revisited. (For a
review, see Charlier et al. (2007).)

This chapter introduces the main electronic features of monolayer graphene and few-
layer graphene together with their low-dimensional versions (carbon nanotubes and
graphene nanoribbons). Section 2.2 starts with an overview of the electronic properties
of graphene described using a simple nearest-neighbor tight-binding model, together
with an extended derivation of the effective description of low-energy excitations as
massless Dirac fermions. The description beyond the linear approximation is then
discussed by introducing trigonal warping deformation or extending the tight-binding
model to third-nearest-neighbor coupling.
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This is followed by the improved description provided by first-principles calculations
within density functional theory (DFT) and beyond using many-body perturbation
theory within the GW approximation, which leads to a renormalized Fermi velocity
close to the Dirac point. Then we focus on the specificities of graphene nanoribbons
(GNRs), with a description of the formation of confinement-induced energy gaps which
increase linearly with reducing the lateral size. These GNR structures are shown
to share some commonalities with their folded versions, since carbon nanotubes
(CNTs) are often pictured as the geometrical result of rolling up a graphene ribbon.
Carbon nanotubes are found to be either metallic or semiconducting depending on
their helical symmetry. Metallic (armchair) nanotubes are actually the best existing
one-dimensional ballistic conductors, almost insensitive to the Peierls dimerization
mechanism, and exhibiting quantized conductance when appropriately connected
to metals such as palladium. The energy gaps in semiconducting tubes downscale
linearly with the tube diameter and eventually close for the limit of very large
diameter (in accordance with the zero-gap limit of a graphene monolayer). Finally,
note that there is currently great interest in analyzing the effects of chemical doping
and structural defects in graphene-based materials, given the possibility to tailor the
electronic properties and add novel functionalities to the related devices, to improve
or complement the silicon-based CMOS (complementary metal-oxide-semiconductor)
technologies.

2.2 Electronic Properties of Graphene

2.2.1 Tight-Binding Description of Graphene

In two-dimensional graphene, carbon atoms are periodically arranged in an infinite
honeycomb lattice (Fig. 2.1(a)). Such an atomic structure is defined by two types of
bonds within the sp2 hybridization, as described in Chapter 1. From the four valence
orbitals of the carbon atom (the 2s, 2px, 2py, and 2pz orbitals, where z is the direc-
tion perpendicular to the sheet), the (s, px, py) orbitals combine to form the inplane σ
(bonding or occupied) and σ ∗ (antibonding or unoccupied) orbitals. Such orbitals are
even with respect to the planar symmetry. The σ bonds are strongly covalent bonds
determining the energetic stability and the elastic properties of graphene (Fig. 2.1(a)).
The remaining pz orbital, pointing out of the graphene sheet as shown in Fig. 2.1(a),
is odd with respect to the planar symmetry and decoupled from the σ states. From the
lateral interaction with neighboring pz orbitals (called the ppπ interaction), localized π
(bonding) and π∗ (antibonding) orbitals are formed (Wallace 1947). Graphite consists
of a stack of many graphene layers. The unit cell in graphite can be primarily defined
using two graphene layers translated from each other by a C–C distance (acc = 1.42 Å).
The three-dimensional structure of graphite is maintained by the weak interlayer van der
Waals interaction between π bonds of adjacent layers which generate a weak but finite
out-of-plane delocalization (Charlier et al. 1994b).
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Figure 2.1 The carbon valence orbitals: (a) the three σ orbitals in graphene, and the π orbital
perpendicular to the sheet. The σ bonds in the carbon hexagonal network strongly connect the
carbon atoms and are responsible for the binding energy and the structural properties of the
graphene sheet. The π bonds are perpendicular to the surface of the sheet. The corresponding
bonding and antibonding σ bands are separated by a large energy gap of ∼12 eV; while (b) the
bonding and antibonding π states lie in the vicinity of the Fermi level (EF). Consequently, the σ
bonds are frequently neglected for prediction of the electronic properties of graphene around the
Fermi energy.

The bonding and antibonding σ bands are actually strongly separated in energy
(>12 eV at γ ), and therefore their contribution to electronic properties is commonly
disregarded (Fig. 2.1(b)). The two remaining π bands completely describe the low-
energy electronic excitations in both graphene (Wallace 1947) and graphite (Charlier
et al. 1991). The bonding π and antibonding π∗ orbitals produce valence and conduction
bands (Fig. 2.1(b)), which cross at the charge neutrality points (Fermi level of undoped
graphene) at vertices of the hexagonal Brillouin zone.

Carbon atoms in a graphene plane are located at the vertices of a hexagonal lattice.
This graphene network can be regarded as a triangular Bravais lattice with two atoms
per unit cell (A and B) and basis vectors (a1, a2):
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Note that a = √
3acc, where acc = 1.42 Å is the carbon–carbon distance in graphene. In

Fig. 2.2(a), A-type and B-type atoms are represented by full and empty dots respectively.
From this figure we see that each A- or B-type atom is surrounded by three atoms of the
opposite type.

Through the use of the condition ai · bj = 2πδij, the reciprocal lattice vectors (b1, b2)
can be obtained,
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Figure 2.2 (a) Showing the basis vectors a1 and a2 in the hexagonal network of graphene. This
network is a triangular Bravais lattice with a two-atom basis: A (full dots) and B (empty dots).
(b) The reciprocal lattice points corresponding to the triangular Bravais lattice (full dots) as well
as the associated basis vectors b1 and b2. The unit cell/Brillouin zone are shown shaded in gray
in (a) and (b). Highly symmetric points labeled with 
 (zone center), K+, K−, and M are also
indicated in (b).

with b = 4π/(3acc) = 4π/a
√

3. These vectors are shown in Fig. 2.2(b) together with
the first Brillouin zone (shaded gray). This hexagonal-shaped Brillouin zone1 is built
as the Wigner–Seitz cell of the reciprocal lattice. Out of its six corners, two of them
are inequivalent. (The others can be written as one of these two plus a reciprocal lattice
vector.) These two special points are denoted with K+ and K−. Another high symmetry
point is the one labeled with M in Fig. 2.2(b). They are given by

K+ = 4π
3a

(√
3

2
, −1

2

)
, K− = 4π

3a

(√
3

2
,

1
2

)
, M = 2π√

3a
(1, 0) . (2.3)

When the carbon atoms are placed onto the graphene hexagonal network (Fig. 2.2(a)),
the electronic wavefunctions from different atoms overlap. However, because of
symmetry, the overlap between the pz orbitals and the s or the px and py electrons is
strictly zero. Therefore, the pz electrons that form the π bonds in graphene can be treated
independently from the other valence electrons. Within this π -band approximation, the
A atom (or B atom) is uniquely defined by one orbital per atom site pz(r − rA) (or
pz(r − rB)).

To derive the electronic spectrum of the total Hamiltonian, the corresponding
Schrödinger equation has to be solved. According to Bloch’s theorem, the eigen-
functions evaluated at two given Bravais lattice points Ri and Rj differ from each other

1 Note that the hexagonal shape of the Brillouin zone is a consequence of the triangular Bravais lattice.
It is by no means connected with the two-atom basis, which does not enter into the definition of the
Brillouin zone.
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in just a phase factor, exp(ik · (Ri − Rj)). Because of the two-atom basis, the Bloch
ansatz for the eigenfunctions is a linear combination of Bloch sums2 on each sublattice:

�(k, r) = cA(k)p̃A
z (k, r) + cB(k)p̃B

z (k, r), (2.4)

where

p̃A
z (k, r) = 1√

Ncells

∑
j

eik·Rjpz(r − rA − Rj), (2.5)

p̃B
z (k, r) = 1√

Ncells

∑
j

eik·Rjpz(r − rB − Rj), (2.6)

where k is the electron wavevector, Ncells the number of unit cells in the graphene
sheet, and Rj is a Bravais lattice point. In the following, we will neglect the overlap
s = 〈pA

z |pB
z 〉 between neighboring pz orbitals. Then, the Bloch sums form an orthonor-

mal set:

〈p̃αz (k) | p̃βz (k′)〉 = δk,k′δα,β , (2.7)

where α,β = A, B. Using these orthogonality relations in the Schrödinger equation,
H�(k, r) = E�(k, r), one obtains a 2 × 2 eigenvalue problem,(

HAA(k) HAB(k)
HBA(k) HBB(k)

)(
cA(k)
cB(k)

)
= E(k)

(
cA(k)
cB(k)

)
. (2.8)

The matrix elements of the Hamiltonian are given by

HAA(k) = 1
Ncells

∑
i, j

eik·(Rj−Ri)〈pA,Ri
z | H | pA,Rj

z 〉, (2.9)

HAB(k) = 1
Ncells

∑
i, j

eik·(Rj−Ri)〈pA,Ri
z | H | pB,Rj

z 〉, (2.10)

with HAA = HBB and HAB = H∗
BA, and introducing the notation pA,τ

z = pz(r − rA − τ )
and pB,τ

z = pz(r−rB−τ ). After simple manipulations, and by restricting the interactions
to first-nearest-neighbors only, one gets:

HAB(k) = 〈pA,0
z |H|pB,0

z 〉 + e−ik·a1〈pA,0
z |H|pB,−a1

z 〉 + e−ik·a2〈pA,0
z |H|pB,−a2

z 〉
= −γ0α(k), (2.11)

where γ0 stands for the transfer integral between first neighbor π orbitals (typical values
for γ0 are 2.9–3.1 eV (Charlier et al. 1991; Dresselhaus et al. 2000)), and the function
α(k) is given by

α(k) = (1 + e−ik·a1 + e−ik·a2 ). (2.12)

2 Alternatively, one may proceed by writing the Hamiltonian and the eigenfunctions in matrix form, as
shown in the supplementary material on the authors’ website.
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Taking 〈pA,0
z |H|pA,0

z 〉 = 〈pB,0
z |H|pB,0

z 〉 = 0 as the energy reference, we can write
H(k) as

H(k) =
(

0 −γ0α(k)
−γ0α(k)∗ 0

)
. (2.13)

This 2×2 Hamiltonian is very appealing and may also be written in terms of Pauli matri-
ces as in Haldane (1988), thereby emphasizing the analogy with a spin Hamiltonian.3

Section 2.2.2 derives in detail the consequences of the A/B bipartite lattice structure on
the (pseudo)-spinor symmetry of (four-component) electronic eigenstates. The energy
dispersion relations are easily obtained from the diagonalization of H(k) given by
Eq. (2.13):

E±(k) = ±γ0|α(k)| (2.14)

= ±γ0
√

3 + 2 cos(k · a1) + 2 cos(k · a2) + 2 cos(k · (a2 − a1)), (2.15)

which can be further expanded as

E±(kx, ky) = ±γ0

√
1 + 4 cos

√
3kxa
2

cos
kya
2

+ 4 cos2 kya
2

. (2.16)

The wavevectors k = (kx, ky) are chosen within the first hexagonal Brillouin zone (BZ).
Clearly, the zeros of α(k) correspond to the crossing of the bands with the + and −
signs. One can verify that α(k = K+) = α(k = K−) = 0, and therefore the crossings
occur at the points K+ and K−. Furthermore, with a single pz electron per atom in the
π–π∗ model (the three other s, px, py electrons fill the low-lying σ band), the (−) band
(negative energy branch) in Eq. (2.16) is fully occupied, while the (+) branch is empty,
at least for electrically neutral graphene. Thus, the Fermi level EF (or charge neutrality
point) is the zero-energy reference in Fig. 2.3 and the Fermi surface is composed of the
set of K+ and K− points. Graphene displays a metallic (zero-gap) character. However,
as the Fermi surface is of zero dimension (since it is reduced to a discrete and finite
set of points), the term semimetallic or zero-gap semiconductor is usually employed.
Expanding Eq. (2.16) for k in the vicinity of K+ (or K−), k = K+ + δk (k = K− +
δk), yields a linear dispersion for the π and π∗ bands near these six corners of the 2D
hexagonal Brillouin zone,

E±(δk) = ±h̄vF|δk|, (2.17)

3 Writing the Hamiltonian in terms of Pauli matrices allows us to also classify the terms according to their
symmetries. A particularly important one is electron–hole symmetry. The Hamiltonian is said to have
electron–hole symmetry if there is a transformation P , such that P†HP = −H. This guarantees that if
� is an eigenstate of H with a positive energy E (electron function), then P� is also an eigenstate with
energy −E (hole function) and the spectrum is symmetric with respect to E = 0. For a Hamiltonian as the
one here, a term proportional to σz (such as a staggering potential which breaks A–B symmetry) opens a
gap but preserves electron–hole symmetry.
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Figure 2.3 Graphene π and π∗ electronic bands. In this simple approach, the π and π∗ bands are
symmetric with respect to the valence and conduction bands. The linear dispersion relation close
to the K+ (light gray dots) and K− (black dots) points of the first 2D Brillouin zone gives rise to
the “Dirac cones” as shown on the right. Note that close to these cones kx and ky are used to
denote the shift from the corresponding K point.

where

vF =
√

3γ0a
2h̄

(2.18)

is the electronic group velocity. Graphene is thus highly peculiar for this linear energy–
momentum relation and electron–hole symmetry. The electronic properties in the vicin-
ity of these corners of the 2D Brillouin zone mimic those of massless Dirac fermions
(developed in Section 2.2.2) forming “Dirac cones” as illustrated in Fig. 2.3. The six
points where the Dirac cones touch are referred to as the Dirac points. The electronic
group velocities close to those points are quite high at ∼8.5 × 105 m/s, and within the
massless Dirac fermions analogy, represent an effective “speed of light.”

This simple orthogonal tight-binding model (Wallace 1947) yields π and π∗ zone-
center 
 energies, which are symmetric (±γ0) with respect to EF. In fact, the anti-
bonding (unoccupied) π∗ bands are located at a higher energy if the overlap integral
S is not set to zero (as illustrated in Fig. 2.1(b)). A better (but more complicated)
π−π∗ parameterization could lead to analogous results (Reich et al. 2002), as well
as more accurate first-principles calculations. In the following, after a presentation of
the effective massless Dirac fermion model, we comment on the effects beyond nearest-
neighbor interactions and the so-called trigonal warping correction.
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2.2.2 Effective Description Close to the Dirac Point and Massless Dirac Fermions

By expanding Eq. (2.13) for the Hamiltonian around K+ and K− (the two inequivalent
corners of the Brillouin zone) we get an approximation close to those points. To keep a
compact notation in what follows, k measures the deviations from those points. A linear
expansion then gives

HK+ = h̄vF

(
0 kx − iky

kx + iky 0

)
= vF(pxσx + pyσy), (2.19)

where px(y) = h̄kx(y) and the Pauli matrices are defined as usual:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.20)

The effective Hamiltonian can also be written in the more compact form:

HK+ = vFσ̂ · p, (2.21)

where σ̂ = (σx, σy, σz). For the inequivalent K point, the transposed Hamiltonian is
given as:

HK− = Ht
K+ . (2.22)

Substituting p by the corresponding operator p̂ = −ih̄∇̂ in Eq. (2.21) – this is equivalent
to the k · p or effective mass approximation (Ajiki 1993; DiVicenzo & Mele 1984) – a
form equivalent to the Dirac–Weyl Hamiltonian in two dimensions is obtained, which
in quantum electrodynamics follows from the Dirac equation by setting the rest mass
of the particle to zero. Therefore, the low-energy excitations mimic those of massless
Dirac particles of spin 1/2 (such as a massless neutrino), with velocity of light c, and
inherent chirality as explained below. However, in contrast to relativistic Dirac particles,
low-energy excitations of graphene have a Fermi velocity vF about 300 times smaller
than the light velocity, whereas the Pauli matrices appearing in the low-energy effective
description operate on the sublattice degrees of freedom instead of spin, hence the term
pseudospin. The low-energy quasiparticles in graphene are often referred to as massless
Dirac fermions.

One of the most interesting properties of the Dirac–Weyl equation is its helical or
chiral nature4 which is a direct consequence of the Hamiltonian being proportional to the
helicity operator, which here for the case of the Hamiltonian in Eq. (2.21) is defined as

ĥ = σ̂ · p
|p| . (2.23)

The quantity ĥ is essentially the projection of the sublattice pseudospin operator σ̂ on
the momentum direction. Interestingly, since ĥ commutes with the Hamiltonian, the
projection of the pseudospin is a well-defined conserved quantity, which can be either
positive or negative, corresponding to pseudospin and momentum being parallel or

4 For massless particles the terms Dirac equation and Weyl equation are used interchangeably.
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Figure 2.4 The two inequivalent Dirac cones at K+ and K− points of the first Brillouin zone,
together with direction of the pseudospin parallel or antiparallel to the momentum p of selected
energies in conduction and valence bands.

antiparallel to each other (see Fig. 2.4). At the K− point, the Hamiltonian is proportional
to σ̂ t · p and involves the left-handed Pauli matrices σ̂ t (in contrast to the right-handed
matrices σ̂ ). Therefore, one says that chirality is inverted when passing from K+ to K−
as represented in Fig. 2.4.

To explore this in more detail, let us rewrite once more the Hamiltonian as

Hξ (p) = vF|p|
(

0 e−iξθp

e+iξθp 0

)
, (2.24)

where px + ipy =
√

p2
x + p2

yeiθp , θp = arctan(py/px), and ξ can take the values ξ = +1
which corresponds to K+ and ξ = −1 which corresponds to K−. Then, one can verify
that this Hamiltonian is diagonalized by the unitary operator

Uξ = 1√
2

(−e−iξθp e−iξθp

1 1

)
. (2.25)

Indeed,

U†
ξ (p)Hξ (p)Uξ (p) = vF

(−|p| 0
0 |p|

)
= −vF|p|σz, (2.26)

which makes explicit the linear energy dispersion E±(p) = ±vF|p| and the electron–
hole symmetry.5 On the other hand, the eigenstates of Eq. (2.24) can be written as

|�ξ ,s〉 = 1√
2

(
1

se+iξθp

)
. (2.27)

The index s = ±1 is the band index (s = +1 for the conduction band and s = −1
for the valence band) and ξ the valley index as stated before (ξ = +1 (K+), ξ = −1
(K−)). Using this explicit form for the eigenstates, we can directly verify that they are

5 Also, by comparison with the relativistic expression, E(p) = ±
√

p2v2
F + m∗2c4 enforces a zero

effective mass.
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also eigenstates of the appropriate helicity operator (also called chirality operator) with
eigenvalues ±1.

Around K+ (ξ = +1), the pseudospin of eigenstates in the conduction band is parallel
to the momentum and antiparallel for eigenstates in the valence band. The chirality
in this case is simply the band index. The property around K− (ξ = −1) is reversed
as illustrated in Fig. 2.4. This peculiarity has a strong influence in many of the most
intriguing properties of graphene. For example, for an electron to backscatter (i.e.,
changing p to −p) it needs to reverse its pseudospin. But as the pseudospin direction
is locked to that of momentum, backscattering is not possible if the Hamiltonian is
not perturbed by a term which flips the pseudospin. (This is also termed absence of
backscattering (Ando et al. 1998).)

Although we are dealing all the time with both valleys separately, it is important to
keep in mind that the full structure of the eigenstates is described by a four-component
spinor wavefunction, (|�K+,A〉, |�K+,B〉, |�K−,A〉, |�K−,B〉)t. The full Hamiltonian of
ideal graphene is given by

Ĥ = vF

⎛⎜⎜⎝
0 π† 0 0
π 0 0 0
0 0 0 π

0 0 π† 0

⎞⎟⎟⎠ , (2.28)

with π = px + ipy and π† = px − ipy. Although for this ideal case, the states at both k
points are decoupled, one should be aware that any perturbation which is not smooth at
the atomic scale (e.g., due to impurities) will couple them.

One notes that this peculiar electronic band structure of graphene yields a specific
behavior of the total density of states which can be written

ρ(E) =
∫ dkxdky

(2π )2 δ(E − εk) = 2|E|
(π h̄2v2

F)
, (2.29)

while the carrier density is given by

n(E) = sgn(E)(E2)
(π h̄2v2

F)
. (2.30)

2.2.3 Electronic Properties of Graphene beyond the Linear Approximation

The description of quasiparticles as massless Dirac fermions is accurate for low-energy
excitations. However, it may be necessary to refine the model by including the deforma-
tion of the electronic band structure, which is particularly important for higher energies
(trigonal warping). This can be captured by a development of the electronic dispersion
up to second order in momentum shift with respect to the K± points. Finally, in very
clean graphene, electron–electron interaction can induce some low-energy renormal-
ization of the electronic bands and wavepacket velocity. All these effects are briefly
reviewed in the following sections.
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Trigonal Warping Corrections
It is important to know that deviations from the linear dispersion of the energy bands
away from the Fermi level are designated as trigonal warping. Indeed, when expanding
the full band structure close to one of the Dirac points (k = K±+p/h̄ with p/h̄ � |K±|),
the energy dispersion is given by

E±(p) � ±vF|p| + O
[(

p
h̄K±

)2
]

, (2.31)

where p is the momentum measured relatively to the Dirac point and vF = √
3γ0a/2h̄,

the Fermi velocity. The expansion of the spectrum around the Dirac point up to the
second order in p, and including second-nearest-neighbor interaction (γ (2)

0 ) gives

E±(p) � 3γ (2)
0 ± vF|p| −

(
9γ (2)

0 a2

4
± 3γ0a2

8
sin(3θp)

)
|p|2, (2.32)

where θp = arctan(px/py) is the angle in momentum space. Note that the presence of
γ

(2)
0 shifts the position of the Dirac point in energy, thus breaking the electron–hole

symmetry. Consequently, up to order (p/h̄K±)2, the dispersion depends on the p direc-
tion in momentum space and has a threefold symmetry. This is the so-called trigonal
warping of the electronic spectrum (Ando et al. 1998; Dresselhaus & Dresselhaus 2002).
(See also Problem 2.10.)

Effects beyond Nearest Neighbors and Comparison with
First-Principles Calculations
Most tight-binding (TB) studies use a first-nearest-neighbors π–π∗ scheme to describe
graphene’s electronic properties. However, when compared to ab initio calculations, this
simplified TB approach predicts the electronic energies correctly in a limited energy
range. A better, but more complicated, π–π∗ parameterization has been proposed in the
literature for both graphene (Reich et al. 2002) and few-layer graphene (Grüneis et al.
2008).

When interactions are included up to the third-nearest-neighbors (3rd nn), the resul-
ting two centers third nearest-neighbors nn π–π∗ orthogonal TB model turns out to be
much more efficient (Lherbier et al. 2012), accurately describing first-principles results
over the entire Brillouin zone. In contrast to the 1st nn π–π∗ model, which produces a
totally symmetric band structure, the 3rd nn TB model recovers the asymmetry between
valence and conduction van Hove singularities, and the agreement with ab initio band
structures is quite satisfactory, as illustrated in Fig. 2.5. The 3rd nn parameters of the TB
model used to construct these band structures (Fig. 2.5) are only composed of a single
on-site energy term εpz and three hopping terms γ (1)

0 = γ0, γ (2)
0 , and γ (3)

0 corresponding
to 1st, 2nd, and 3rd nn interactions, respectively. The pristine graphene Hamiltonian
then reads as

H =
∑

i
εpz |φi〉〈φi| +

∑
i,〈j,k,l〉

(
γ

(1)
0 |φj〉〈φi| + γ (2)

0 |φk〉〈φi| + γ (3)
0 |φl〉〈φi| + h.c.

)
,

(2.33)



22 Electronic Properties of Carbon-Based Nanostructures

Figure 2.5 Electronic band structures and density of states (DOS) computed using the SIESTA
code with a double-ζ polarized (DZP) basis set (full lines) along K–
–M–K path for a 1 × 1
supercell (unit cell). The TB band structures for a first nearest-neighbors model (1nn, lines with
open circle symbols) and for a third nearest-neighbors model (3nn, lines with filled circle
symbols) are also plotted. Fermi energy is set to zero. (Adapted with permission from Lherbier
et al. (2012). Copyright (2012) by the American Physical Society)

with εpz = 0.6 eV, and γ (1)
0 = −3.1 eV, γ (2)

0 = 0.2 eV, and γ (3)
0 = −0.16 eV. The

sum on index i runs over all carbon pz orbitals. The sums over j, k, l indexes run over
all pz orbitals corresponding respectively to 1st, 2nd, and 3rd nearest neighbors of the
ith pz orbital. In Fig. 2.5, the TB band structure (lines with symbols) is superimposed
on the ab initio band structure (full lines). A good agreement is obtained, especially for
the valence bands. The conduction band side seems to be a little bit less accurate but
this is uniquely due to the inability of the pristine graphene TB model to reproduce the
conduction band along the K–M branch.

The ab initio electronic bands of graphene (Charlier et al. 2007) along the high-
symmetry M−
−K directions are presented in Fig. 2.6.6 Its space group (P3m) contains
a mirror symmetry plane, allowing symmetric σ and antisymmetric π states to be
distinguishable. In a 2D crystal, a parallel mirror symmetry operation separates the
eigenstates for the whole Brillouin zone, and not only along some high-symmetry axis.
The π and π∗ bands cross at the vertices of the hexagonal Brillouin zone (vertices
labeled by their momentum vector usually denoted by K+ and K− as mentioned above).
Ab initio calculations confirm that the π and π∗ bands are quasilinear (linear very
close to K+ or K− and near the Fermi energy), in contrast with the quadratic energy–
momentum relation obeyed by electrons at band edges in conventional semiconductors.
When several interacting graphene planes are stacked as in few-layer graphite (nGLs)
or in the perfect graphite crystal, the former antisymmetric π bands are split owing to

6 Note that in plots like the one in Fig. 2.6, the dispersion does not depend on the K point (K+ or K−)
selected for the path in the Brillouin zone (horizontal axis in that figure). Therefore, it is usual to call this
point generically K. Notwithstanding, one must remember that pseudospin is different on each valley.
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Figure 2.6 Electronic band structure of graphene. The bonding σ and the antibonding σ∗ bands
are separated by a large energy gap. The bonding π (highest valence band) and the antibonding
π∗ (lowest conduction band) cross at the K+ (and K−) points of the Brillouin zone. The Fermi
energy (EF) is set to zero and φ indicates the work function. Above the vacuum level (dashed
horizontal line), the states of the continuum are difficult to describe and merge with the
σ∗ bands. The 2D hexagonal Brillouin zone is illustrated in the inset with the high-symmetry
points 
, M, K+, and K−. (Adapted with permission from Charlier et al. (2007). Copyright
(2007) by the American Physical Society)

bonding or antibonding patterns, whereas the σ bands are much less affected by the
stacking, as explained in the next section.

Interaction-Driven Distortions at the Dirac Point
Although ab initio DFT calculations confirm the tight-binding linear dispersion
picture, the estimation of the Fermi velocity vF was found to be smaller by 15–20% than
the experimental value (Calandra & Mauri 2007). Consequently, the role of electron–
electron self-energy effects in the quasiparticle (QP) band structures and the Fermi
velocity has been clarified (Siegel et al. 2011, Trevisanutto et al. 2008). With respect to
the density-functional theory within the local-density approximation (Fig. 2.7(a)), the
Fermi velocity is renormalized with an increase of 17%, such that it corrects the DFT
underestimation and leads to a value of 1.12 × 106 m/s (Trevisanutto et al. 2008), in
good agreement with accurate magnetotransport measurement of 1.1 × 106 m/s (Zhang
et al. 2005). Furthermore, the nearly linear DFT band dispersion in GW is considerably
distorted. Close to the Dirac point, the self-energy results in an unusually negative GW
bandgap correction and the appearance of a kink in the band structure (Fig. 2.7(b)),
which is due to a coupling with the π plasmon at ∼5 eV and the low-energy π → π∗

single-particle excitations.
By measuring the cyclotron mass in suspended graphene with carrier concentrations

which varied by three orders of magnitude, Elias et al. (2011) showed departures from
linear behavior due to electron–electron interactions (with increasing vF near the Dirac
point). Interestingly, no gap was found even at energies as close as 0.1 meV to the Dirac
point and no new interaction-driven phases were observed. This suggests that if there is
a gap in graphene, it is not larger than 0.1 meV.
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Figure 2.7 Many-body effects in graphene: (a) electronic band structures calculated within both
DFT-LDA (solid lines) and GW (circles and dashed lines) approaches; (b) reshaping of the Dirac
cone due to the interaction-driven renormalization (increase) of the Fermi velocity at low
momenta. The outer cone represents the linear Dirac spectrum without many-body effects. ((a)
Reproduced from Trevisanutto et al. (2008). Copyright (2008) by the American Physical Society.
(b) Reprinted with permission from Macmillan Publishers Ltd: Nature Physics (Elias et al.
2011), copyright (2011))

Consequently, the quasiparticle properties of graphene are modified by the presence
of long-range Coulomb interactions. Their effects are especially pronounced when the
Fermi energy is close to the Dirac point, and can result in strong renormalization of
the Dirac band structure (the Fermi velocity vF) and a reconstruction of the Dirac cone
structure near the charge neutrality point. Consequently, many electronic characteristics
and transport phenomena are strongly affected by these many-body effects that are
sensitive to the value of the Coulomb interaction constant in graphene.

In the preceding pages, the electronic properties of two-dimensional graphene
have been described using either an effectively massless Dirac fermion model in
the vicinity of the charge neutrality point or using a tight-binding approach within the
nearest-neighbors approximation. Refinements of the electronic band structure have
been obtained by going beyond the linear approximation, including trigonal warping
effects, extending the tight-binding model to third nearest neighbors, or by performing
full first-principles calculations, including GW corrections. Actually, both DFT and
GW simulations confirm the low-energy linear energy dispersion close to the charge
neutrality point, although renormalized Fermi velocity is obtained owing to many-body
effects (long-range Coulomb interactions) at the Dirac point. In Section 2.3, the effect
of the stacking on the electronic properties of few-layer graphene is highlighted.

2.3 Electronic Properties of Few-Layer Graphene

Bulk 3D graphites are semi-metallic materials, which exhibit very peculiar electronic
properties. Indeed, the first semi-empirical models for Bernal (or ABAB-stacking)



2.3 Electronic Properties of Few-Layer Graphene 25

(a) Hexagonal
Graphite

H

e-

e- e-

e-

e-

e-

h+

h+ h+

h+

h+

h+

e-
H

K

(b) Bernal
       Graphite

(c) Rhombohedral
Graphite

Figure 2.8 Electronic properties of graphite(s) with various stacking: Fermi surfaces of (a) simple
hexagonal graphite (AAA-stacking), (b) Bernal graphite (ABAB-stacking), and (c) rhombohedral
graphite (ABC-stacking). The three Fermi surfaces are centered on the vertical H−K−H edge of
the 3D Brillouin zone. Electron and hole pockets are labeled using e− and h+, respectively.
(Reprinted from Charlier et al. (1994a), copyright (1994), with permission from Elsevier)

(McClure 1957; Slonczewski & Weiss 1958) and rhombohedral (or ABC-stacking)
graphites (Haering 1958; McClure 1969) have demonstrated that the shape of the Fermi
surface, and consequently the nature of the charge carriers, are strongly dependent upon
the geometry of the stacking between layers. The Fermi surfaces of these two graphite
structures are represented in Fig. 2.8, and compared to the “ideal” simple hexagonal
case (AAA-stacking) where all graphene planes are piled up exactly on top of each other.
Fermi surfaces are located along the H − K − H edge of the 3D Brillouin zones and
exhibit a complex shape due to the coexistence of holes and electrons at the charge
neutrality point (Charlier et al. 1991, 1992, 1994a).

Analogously, since few-layer graphenes are intermediate quasi-2D crystals between
bulk graphite(s) and graphene, their electronic structures will be reminiscent of both
of them. The weak interlayer interaction that creates the band dispersion out of the
basal plane in graphite(s) is now responsible for the band mixing between isolated
graphene bands occurring in few-layer graphene. Since coexistence of carriers is only
possible when different bands are present in the same energy range, the number of
layers and the dependence of geometry of the interlayer interaction are key parameters
influencing the transport properties in these quasi-2D graphene-based systems.

In bilayer graphene (AB-stacking), due to symmetry reasons, the P3̄m1 group does
not contain the horizontal mirror plane. Consequently, the valence band and conduction
band only exhibit two contact points since they are not degenerated, except along the
high-symmetry axes, thus avoiding any deep domain of coexistence of electrons and
holes (Fig. 2.9(a)). The close-up of the overlapping region clearly demonstrates the loss
of the linear dispersion of the kinetic energy of the charge carriers (E ∝ k) previously
obtained for graphene (Latil & Henrard 2006; Varchon et al. 2007). Indeed, the band
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Figure 2.9 Electronic properties of few-layer graphene: band structures in the vicinity of K, and
near the Fermi level (zero energy), for: (a) bilayer graphene (ABC-stacking); (b) trilayer
graphene (ABA-stacking); and (c) trilayer graphene (ABC-stacking). (Adapted with permission
from Latil & Henrard (2006). Copyright (2006) by the American Physical Society)

structures of the bilayer system present a parabolic shape (E ∝ k2) along the high-
symmetry axes. In addition, both band extrema are actually saddle points (delimiting
a pseudogap εpsg ∼ 3 meV), and the real overlap between the two touching points
(K itself and one point along the K − 
 axis) is δε ∼ 1 meV (Latil & Henrard 2006).
Unfortunately, this domain of coexistence is far too narrow to be visible experimentally.
Nevertheless, the important feature that is preserved is the absence of a bandgap since
the upper valence band touches the lower conduction band at the K point of the Brillouin
zone. However, theoretically a significant bandgap could be induced by lowering the
symmetry of the system through the application of a perpendicular electric field (Castro
et al. 2007). Indeed, a bilayer graphene-based material has been produced experimen-
tally, exhibiting an electrically tunable bandgap, a phenomenon of great significance for
both basic physics and its applications (Mak et al. 2009).

Regarding the trigonal warping corrections discussed before for monolayer graphene,
we note that this effect turns out to be strong only close to the charge neutrality point
in this case. Tight-binding models developed for graphite can be easily extended to the
bilayer structure, which presents AB-stacking as in 3D bulk graphite. The set of hopping
parameters for graphene has to be completed with γ1 � 0.4 eV (hopping energy between
A1 and A2 atoms from the two layers), γ4 � 0.04 eV (hopping energy between A1 (A2)
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Figure 2.10 (a) Model of bilayer graphene where the hopping parameters connecting different
layers mentioned in the text are indicated. (b) The dispersion relation of bilayer graphene very
close to the charge neutrality point splits into four pockets when γ3 is considered. (This contrasts
dramatically with the parabolic dispersion that it is found when this term is ignored.)

and B2 (B1) atoms from the two layers), and γ3 � 0.3 eV (hopping interaction between
B1 and B2; see Fig. 2.10(a). The hopping γ4 leads to a k-dependent coupling between
the sublattices. The same role is played by the inequivalence between sublattices within
a layer. However, in this approximation, the γ3 hopping term qualitatively changes
the spectrum at low energies since it introduces a trigonal distortion, or warping,
of the bands. Unlike the one introduced by a large momentum in Eq. (2.32), such
trigonal warping drastically modifies the parabolic dispersions at the Dirac point at low
energies (ε < 5 meV). The electron–hole symmetry is preserved but instead of two bands
touching at k = 0, three sets of Dirac-like linear bands are obtained. The Dirac point
is thus split in four pockets (see Fig. 2.10(b)), one Dirac point remaining at ε = 0 and
k = 0, while the three other Dirac points, also at ε = 0, lie at three equivalent
points with a finite momentum (McCann & Falko 2006; McCann et al. 2007) (see also
Problem 2.11).

From the AB bilayer, trilayer graphene is constructed with an additional layer, keeping
either the Bernal ABA-stacking pattern (Fig. 2.9(b)) or the rhombohedral ABC-stacking
pattern (Fig. 2.9(c)). Indeed, when adding this third layer, electronic properties change,
and two different situations arise depending on how this extra layer is stacked on the
others.

The first possibility involves stacking the third layer so that it mirrors the first layer
(Fig. 2.9(b)). Also referred to as Bernal or ABA-stacking, this arrangement has an elec-
trical structure of overlapping linear and quadratic bands. The band structure of the ABA
trilayer is characterized by band crossings in the vicinity of the Fermi level (Fig. 2.9(b)).
The P6̄m2 space group of the ABA trilayer contains the horizontal mirror symmetry,
allowing the separation of the antisymmetric states and the symmetric ones. Moreover,
the two symmetric bands exhibit a quasilinear dispersion (massless fermions); however,
unlike monolayer graphene, a gap opens due to the nonequivalence of carbon atoms in
the same layer (εgap ∼ 12 meV). The band overlap between the top of the quasi-massless
holes band and the electrons band is predicted to be of the order of a few meV (Latil &
Henrard 2006).
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The second possibility, known as rhombohedral or ABC-stacking, involves displacing
the third layer with respect to the second layer in the same direction again as the second
with respect to the first. As the first precursor of the “rhombohedral family,” the elec-
tronic structure of ABC trilayer graphene has cubic dispersion (E ∝ k3). This means
that for low carrier concentrations (which correspond to low momentum states) the
relative kinetic energy of the particles in rhombohedral graphene’s cubic bands will be
less than that in bilayer graphene’s quadratic bands, which is again less than monolayer
graphene’s linear bands. The band structure of the ABC trilayer (P3̄m1 space group)
exhibits a single crossing point between valence and conduction bands, located along
the K–M axis (Fig. 2.9(c)). Consequently, any coexistence of charge carriers is strictly
forbidden in this specific stacking. However, a graphene quasi-massless dispersion is
preserved and bounded by a pseudogap εpsg ∼ 18 meV. The group velocities vary from
1.9–2.6 × 105 m/s (Latil & Henrard 2006).

But what happens when the number of layers is increased? N layers of graphene have
approximately 2(N−2) possible arrangements (Yacoby 2011). One of these arrangements
is the natural extension of the ABC-stacked trilayer that consists of a multilayer with
cyclic arrangement given by ABCABCA, and so on. The dispersion of such multilayers
is predicted to have even lower kinetic energy (E ∝ kN). The reason that such electronic
behavior has not yet been seen in graphite, the macroscopic form of multilayer graphene,
is because natural graphite usually exhibits Bernal stacking where such effects would
be absent. However, if effective ways of growing artificial few-layer graphene with
rhombohedral stacking are found, ABC trilayer graphene might be a new playground to
tailor the electronic properties of few-layer graphene-based nanostructures.

Moreover, ab initio calculations on bilayer and trilayer graphene (Latil et al. 2007)
suggest that the massless fermion behavior, a typical signature of single-layer graphene,
is preserved in incommensurate multilayered graphitic systems. Indeed, the linear
dispersion is conserved in turbostratic multilayer systems despite the presence of
adjacent layers (Fig. 2.11), thus predicting the presence of Dirac carriers in disoriented
few-layer graphene. More generally, the electronic properties (and consequently the
optical, vibrational, and transport properties) of a given FLG film are found to be
controlled mainly by the misorientation of the successive layers rather than their
number (Latil et al. 2007). Recent experiments have shown that a rotation among the
different graphene layers can generate van Hove singularities which, interestingly, can
be brought arbitrarily close to the Fermi energy when the angle of rotation is changed
(Li, Luican et al. 2010), thereby opening promising opportunities for tuning the role of
interactions in the material.7

To add even more excitement to this area, recent experiments and simulations in
bilayer graphene (Kim et al. 2013) show that even tiny imperfections (stacking and twist

7 The problem of rotated or twisted graphene layers is fascinating and many questions are still open. For
example, from which rotation angle does a twisted bilayer behave as a monolayer? In Suárez Morell et al.
(2010) it was suggested that this transition occurs at a finite angle of 1.5◦ (the magic angle) when
decoupling is achieved. These issues have now resurfaced after the discovery of superconductivity in
twisted bilayer graphene (Cao et al. 2018).
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Figure 2.11 Electronic properties of single and bilayer graphenes: band structures of
(a) single-layer; (b) Bernal bilayer; and (c) turbostratic bilayer in the vicinity of K point of the
Brillouin zone and the Fermi energy. The corresponding supercells are also represented.
(Adapted with permission from Latil et al. (2007). Copyright (2007) by the American
Physical Society)

angle) can dramatically change the electronic structure. The ARPES data presented in
Kim et al. (2013) show the coexistence of massive and massless Dirac fermions due to
a distribution of twists as small as 0.1◦.

In conclusion, the electronic properties of few-layer graphene (FLG) are quite
complex and present exotic electronic states. Indeed, depending on the stacking
geometry and on the number of layers, an FLG can be either metallic (with single
or mixed carriers) or an extremely narrow-gap semiconducting 2D system.

In the next two sections, confinement effects will be described when the graphene
sheet is cut in strips as for graphene nanoribbons or rolled up in cylinders such as carbon
nanotubes. The remarkable properties of graphene derived close to the K+ and K− points
are found to remain valid for 1D systems such as metallic nanotubes and wide armchair
nanoribbons. However, other symmetries result in semiconducting systems with varying
gaps. Semiconducting nanotubes and ribbons with increasing diameter (or width) show
a linear downscaling of their associated energy gaps. By using proper boundary condi-
tions, the electronic band structure of both types of system can be analytically derived,
as illustrated in the following.

2.4 Electronic Properties of Graphene Nanoribbons

As mentioned above, the combination of high charge-carrier mobilities and long
coherent lengths makes graphene an outstanding material for nanoscale electronics.
However, this wonder material has an Achilles heel. The electric conduction cannot
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Figure 2.12 (a) Honeycomb lattice of graphene showing both armchair and zigzag directions.
Ribbons with armchair and zigzag edges are shown in the schemes in (b) and (c), respectively,
where the shape of the edges at the top of each scheme is highlighted with a gray shadow. Their
corresponding 1D unit cells are marked with dashed boxes. A ribbon with a more general edge
shape is shown in (d).

be turned off by, for example, changing a gate voltage as is usual in field-effect
transistors. The ability to “turn off” graphene is crucial for achieving the control of
the current flow needed in active electronic devices. Therefore, opening a bandgap in
graphene is an important problem and many different creative ways of doing it have
been proposed.8 One possible solution is to use narrow strips of graphene, also called
graphene nanoribbons (GNRs).

Graphene nanoribbons can be obtained by cutting a graphene sheet as shown in
Fig. 2.12. If a certain direction is followed when cutting, two typical shapes are basically
possible: the armchair edge (Fig. 2.12(b)) and the zigzag edge (Fig. 2.12(c)), with both
edges having a difference of 30◦ between them. More complex shapes other than these
two “ideal” cases are a combination of armchair- and zigzag-shaped pieces (Enoki et al.
2007; Kobayashi et al. 2005). This last case is commonly found in experiments where
obtaining atomically precise ribbons is difficult. This may jeopardize the achievement
8 Alternatives in the bulk material include growing epitaxial graphene on a SiC substrate (Zhou et al. 2007).

In that case the interaction with the substrate breaks the symmetry between the A and B sublattices,
thereby opening a bandgap of about 0.26 eV. In bulk bilayer graphene, a gap can be opened by applying an
electric field perpendicular to its surface (Zhang, Tang et al. 2009).
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of clean bandgaps even for ribbons a few nanometers wide. Fortunately, strategies
involving top-down9 and bottom-up10 approaches have allowed for important progress.
Furthermore, unzipping carbon nanotubes, which could be termed a theorist’s dream,
has also been experimentally demonstrated (Jiao, Wang et al. 2010; Roche 2011;
Shimizu et al. 2011; Wang et al. 2011).

The atomic structure of nanoribbons with armchair and zigzag edges is repre-
sented in Fig. 2.12(b) and 2.12(c), along with their corresponding unit cells. Here,
we follow previous conventions (Abanin et al. 2006; Brey & Fertig 2006; Ezawa
2006; Kawai et al. 2000; Lee, Son et al. 2005; Miyamoto et al. 1999; Nakada
et al. 1996; Okada & Oshiyama 2001; Sasaki et al. 2006; Son et al. 2006a; 2006b;
Wakabayashi et al., 1999), and GNRs with armchair (zigzag) edges on both sides are
classified by the number of dimer lines (zigzag lines) across the ribbon width. We will
denote with N-aGNR and N-zGNR such armchair and zigzag GNRs, respectively,
with N being respectively the number of dimer and zigzag lines. In addition, if
not otherwise stated, in the following, the dangling bonds on the edge sites of
GNRs will be assumed to be terminated by hydrogen atoms, although dangling
bonds would not make any contribution to the electronic states near the Fermi
level. Of course, these ideally shaped edges do not correspond to the experimental
observations (Girit et al. 2009; Liu, Suenaga et al. 2009; Ritter & Lyding 2009),
where GNRs currently have a high degree of edge roughness. A more complex
edge is illustrated in Fig. 2.12(d). Topological aspects of this edge disorder will be
presented in the sections dedicated to the study of quantum transport in disordered
GNRs.

The edges in graphene nanoribbons confine the electronic wavefunctions along the
direction perpendicular to the ribbon axis. Their electronic properties can be obtained by
imposing the appropriate boundary conditions on the Schrödinger’s equation within the
simple single-band tight-binding approximation based on π -states of graphene (Ezawa
2006; Nakada et al. 1996; Wakabayashi et al. 1999) or on the two-dimensional Dirac’s
equation with an effective speed of light (∼106 m/s) (Abanin et al. 2006; Brey & Fertig
2006; Sasaki et al. 2006).

As we will see below, the presence of edges introduces new states not present in bulk
2D graphene (Nakada et al. 1996). These states appear because of the hard boundary
conditions at the edges. Indeed, if instead of a vanishing wavefunction at the edges, one
considers periodic boundary conditions – this is essentially the zone-folding approxima-
tion for carbon nanotubes introduced later in Section 2.5 – , one finds that the wavevec-
tor along the direction perpendicular to the ribbon axis kperp is quantized, thereby
defining a set of “cutting” lines in the Brillouin zone. Within this approximation, the
band structure results from cutting the dispersion for bulk graphene along those lines.

9 See, for example, Han et al. (2007), Chen et al. (2007), Li, Wang et al. (2008), Tapaszto et al. (2008),
Datta et al. (2008), Ci et al. (2008), Jiao et al. (2009), Kosynkin et al. (2009), Jiao, Wang et al. (2010),
Roche (2011), Shimizu et al. (2011), Wang et al. (2011).

10 See Campos-Delgado et al. (2008), Sprinkle et al. (2010), Cai et al. (2010), Kato & Hatakeyama (2012).
In the last study, the authors demonstrated GNR devices with a transport gap of ∼60 meV and high
on/off ratios (>104).
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Figure 2.13 (a) A four-atom unit cell used in the zone-folding procedure. (b) The corresponding
Brillouin zone is shaded gray together with the unit vectors and the Brillouin zone of bulk
graphene. Depending on the ribbon termination, K+ and K− can be folded at ±2π/(3a)
along the vertical axis (zigzag ribbons) or onto the 
 point (armchair ribbons). (c) and
(d) The projections of graphene’s bulk dispersion onto the armchair and zigzag directions,
respectively.

Figure 2.13 illustrates the basic picture of the zone-folding scheme: starting from a
four-atom unit cell (Fig. 2.13(a)), one gets the corresponding Brillouin zone (gray
rectangle in Fig. 2.13(b)). It is easy to see that for this Brillouin zone, the K points
for zigzag ribbons fold at ±2π/(3a) along the vertical axis. For armchair ribbons, the
K points fold directly onto the 
 point. Projecting the bulk dispersion of graphene on
each of the zigzag and armchair directions gives the shaded areas in Fig. 2.13(c) and
(d), respectively. While this approximation may give the correct overall shape of the
band structure and even the states at the “bulk” of the ribbon (which can be formed
by superposition of states with kperp and −kperp), it fails dramatically for low energies,
where it misses edge states. We note that edge states are generically present in all
nanoribbons, even those with irregular edges, except the armchair ones (Akhmerov
2011).

The specific edge symmetry of zigzag and armchair nanoribbons is shown in
Fig. 2.12. When the Dirac equation is used, appropriate boundary conditions need
to be applied at the edges (vanishing wavefunction). For zigzag nanoribbons, given that
one edge is formed entirely of A-type atoms while the other edge contains only B-type
atoms, the boundary conditions can be imposed separately on each sublattice (Brey &
Fertig 2006). For armchair graphene nanoribbons, this is no longer the case (Brey &
Fertig 2006). Here, we take a different path, and consider armchair and zigzag graphene
nanoribbons within a tight-binding model following Cresti et al. (2008) and Dubois
et al. (2009).
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2.4.1 Electronic Properties of Armchair Nanoribbons (aGNRs)

By analogy with what has been done previously for graphene, the tight-binding Hamil-
tonian of the ribbons can be written as

H =
∑

i
εiĉ†

i ĉi −
∑

i,j
γijĉ†

i ĉj, (2.34)

where εi represent the onsite energies, which can be chosen as the reference energies
(εi = ε = 0), γij are the transfer integrals between the jth and ith π orbitals, and ĉ†

i
(ĉi) is an operator, which creates (annihilates) an electron at the orbital localized around
site i. Within the first-nearest-neighbor approximation, γij = γ0 for i, j neighboring sites
and zero otherwise. (This is equivalent to assuming that the ribbon edges are passivated
in such a way that bulk graphene is reproduced.)

Thanks to the periodicity along the axis of the aGNR, the ĉi and ĉ†
i operators may be

expressed as Bloch sums,

ĉi = 1√
N

∑
k

eikRi ĉk(i), (2.35)

where Ri is the position of the ith site and ĉk(i) is one of the
{
ĉ1A

k , ĉ1B
k , ĉ2A

k , ĉ2B
k , . . . , ĉNB

k
}

operators, named by reference to the unit cell sites {1A, 1B, . . . , NA, NB} as represented
in Fig. 2.12(b).

Inserting Eq. (2.35) into Eq. (2.34), the tight-binding Hamiltonian of armchair GNRs
can be expressed in terms of the basis set

{
ĉ1A

k , ĉ1B
k , ĉ2A

k , ĉ2B
k , . . . , ĉNB

k
}
,

H =
∑

k ∈ BZ
Hk , (2.36)

with

Hk = γ0φ̂
†
k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 eik a
2 0 1 0 0 · · ·

e−ik a
2 0 1 0 0 0 · · ·

0 1 0 eik a
2 0 1 · · ·

1 0 e−ik a
2 0 1 0 · · ·

0 0 0 1 0 eik a
2 · · ·

0 0 1 0 e−ik a
2 0 · · ·

· · · · · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
φ̂k, (2.37)

where

φ̂k =
[
ĉ1A

k , ĉ1B
k , ĉ2A

k , ĉ2B
k , . . . , ĉNA

k , ĉNB
k

]T
. (2.38)

Through diagonalizing the Hamiltonian of Eq. (2.37), the band structure is obtained.
Figure 2.14 shows the results for three different nanoribbons (15-aGNR, 16-aGNR,
and 17-aGNR). We note that the typical Dirac-like linear dispersion or the direct gap
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Figure 2.14 Energy band structures of three armchair nanoribbons (N-aGNRs) of various widths
(N = 15, 16, 17). The tight-binding band structures (top) computed using a constant hopping
energy (γ0 = 2.7 eV) between nearest neighbors are compared to ab initio band structures
(bottom). Reproduced from Dubois (2009)

always appears at k = 0 for the armchair configuration, a fact that can also be predicted
by using the zone-folding approximation. (An alternative approach based on a mode
decomposition in real space is presented in Section 5.2.2.)

From these results, we can see that some ribbons exhibit semiconducting behavior
while others are metallic. An analytical calculation (Cresti et al. 2008) of the eigenvalues
of the tight-binding Hamiltonian at k = 0 shows that the energy gap (�N) is width
dependent:

�N =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�3� = |γ0|
(

4cos π�
3�+1 − 2

)
,

�3�+1 = |γ0|
(

2 − 4cosπ (�+1)
3�+2

)
,

�3�+2 = 0,

(2.39)

with �3� > �3�+1 > �3�+2 = 0, where N (related to the ribbon width) and � are
integers.
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Figure 2.15 Evolution of the carbon–carbon bond length (dC−C) across the 17-aGNR ribbon
width, computed using ab initio structural optimization techniques. Both the length of the
carbon–carbon parallel (empty circles) and tilted (filled squares) bonds with respect to the ribbon
axis are illustrated. Reproduced from Dubois (2009).

Therefore, the tight-binding model predicts that N-aGNRs are metallic for every
N = 3�+ 2 (where � is a positive integer), and semiconducting otherwise.11

More precise DFT calculations, however, reveal that even for the 3� + 2-GNRs,
there is a small gap at k = 0. According to DFT, all armchair ribbons remain
semiconducting (Son et al. 2006a, 2006b) with gaps which decrease as the width of the
aGNR increases, reaching the zero-gap value of graphene for infinite ribbon width. For
a ∼5 nm wide ribbon with metallic behavior as predicted by the tight-binding model,
the ab initio bandgap has a magnitude of only ∼0.05 eV.

The origin of this gap opening can be attributed to edge effects (Son et al. 2006a)
not taken into account in the simple tight-binding model. Indeed, the edge carbon atoms
of the aGNR are passivated by hydrogen atoms, some foreign atoms, or molecules in
general. Therefore, one may generally expect the σ bonds between hydrogen and carbon
as well as the onsite energies of the carbons at the edges and their bonding distances to
be different from those in the middle of the ribbon. The bonding distances between
carbons at the edges decrease from 1.44 Å (Fig. 2.15) leading to an increase of ∼15% in
the hopping integral between π orbitals. This explains the emergence of a bandgap for
all the aGNRs (Dubois 2009; Son et al. 2006a). By introducing these modified onsite
and hopping energies within an improved nearest-neighbors tight-binding model, one
obtains an improved agreement with the DFT band structure.

Finally, it has to be noted that the ab initio energy gaps are further increased when the
electron–electron correlations are taken into account by means of GW corrections
(Yang et al. 2007). DFT-LDA and quasiparticle bandgaps for armchair GNRs of
11 An alternative to the path described above is described in Section 5.2.2, where a mode decomposition in

real space, obtained by straightforward parallelization of the tight-binding Hamiltonian for GNRs and
carbon nanotubes, is introduced. This scheme is useful especially when carrying out transport
calculations, and therefore is introduced later on when the text deals with ballistic transport in carbon
nanostructures.
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Figure 2.16 (a) Ball-stick model for an 11-aGNR, which exhibits 11 C–C dimer lines making up
its width w. Hydrogen atoms (light-colored balls on the left and right edges) are used to passivate
the edge σ -dangling bonds. (b) Width-dependence of aGNRs bandgaps. The three families of
aGNRs are represented by different symbols. The values of the same family of aGNRs are
connected by solid lines as a visual guide. The open symbols are LDA bandgaps while the solid
symbols are the corresponding quasiparticle bandgaps. Dashed arrows are used to indicate the
self-energy correction for the smallest width ribbon of each of the three aGNRs families.
(Adapted with permission from Yang et al. (2007). Copyright (2007) by the American Physical
Society. By courtesy of Li Yang)

various width are compared in Fig. 2.16. In agreement with DFT-LDA calculations, the
quasiparticle band structure has a direct bandgap at the zone center for all investigated
aGNRs. In addition, the bandgaps of the three families of N-aGNRs, which are classified
according to whether N = 3� + 1, 3� + 2, or 3� (N being the number of dimer chains
as explained earlier in Fig. 2.12(b), and � being an integer), present qualitatively the
same hierarchy as those obtained in DFT-LDA (E3�+1

g > E3�
g > E3�+2

g �= 0). Although
including electron–electron interaction, the energy gaps are also found to decrease as the
widths of the aGNR increase, reaching the zero-gap value of graphene for the infinite
width.

2.4.2 Electronic Properties of Zigzag Nanoribbons (zGNRs)

Taking into account a periodicity along the ribbon length, one rewrites the Hamiltonian
as a Bloch sum (H = ∑

k ∈ BZ Hk). For zGNRs, Hk finally reads

Hk = γ0φ̂
†
k

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 2 cos( ka
2 ) 0 0 0 · · ·

2 cos( ka
2 ) 0 1 0 0 · · ·

0 1 0 2 cos( ka
2 ) 0 · · ·

0 0 2 cos( ka
2 ) 0 1 · · ·

0 0 0 1 0 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
φ̂k, (2.40)

where φ̂k = [
ĉ1A

k , ĉ1B
k , ĉ2A

k , ĉ2B
k , . . . , ĉNA

k , ĉNB
k
]t.
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Figure 2.17 Band structure of zigzag nanoribbons (8-zGNR): (a) tight-binding band structures
using a constant nearest-neighbors hopping energy (γ0 =−2.7 eV); (b) ab initio band structures.
Reproduced from Dubois (2009)

Through diagonalizing of the Hamiltonian of Eq. (2.40), the band structure shown
in Fig. 2.17 is obtained. One notes that a dispersion relation reminiscent of the Dirac
cones develops around k = ±2π/(3a). Another salient feature is the formation of a
sharp peak in the density of states at EF, resulting from the formation of partially flat
and degenerate bands with zero energy (between the Dirac points and the border of the
Brillouin zone (2π/(3a) ≤ |k| ≤ π/a)), and which represents the highest valence and
lowest conduction bands.

First-principles calculations of the electronic structure confirm that the zero-energy
states are mainly confined along the ribbon edges, but progressively spread along
the ribbon lateral dimension as the wavevector is shifted from π/a to 2π/(3a) (see
Fig. 2.17(b)). A slight dispersion of those states (which is width dependent) develops
due to the overlap between opposite edge states and the formation of bonding and
antibonding states. Actually, simple calculations show that an edge shape with three or
four zigzag sites per sequence is enough to form the edge state (Nakada et al. 1996).
The presence of such remarkably confined electronic edge states has been confirmed
by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS)
measurements (Kobayashi et al. 2005).

In contrast with the aGNR case, the modification of the carbon–carbon bonding
distance at the edges is not found to affect the low-energy electronic structures
(Fig. 2.18). The partially flat bands at the Fermi energy are actually “topologically
protected,” and thus insensitive to the precise hopping energy across the ribbon width.

The peculiar edge states of zGNRs are, furthermore, evidence of some local mag-
netic ordering, although the ribbon as a whole has a nonmagnetic ground state, with
ferromagnetic ordering at each zigzag edge and antiparallel spin orientation between
the two edges (Fig. 2.19(a)) (Lee, Son et al. 2005; Okada & Oshiyama 2001; Son et al.
2006a; 2006b; Wakabayashi et al. 1999). One notes, however, that the difference in
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Figure 2.18 Evolution of the carbon–carbon bond length (dC−C) across the 8-zGNR ribbon width,
obtained after ab initio structural optimization. Both the length of the carbon–carbon parallel
(empty circles) and tilted (filled squares) bonds with respect to the ribbon axis are shown.
Reproduced from Dubois (2009)
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Figure 2.19 Spin-polarized electronic structure of the 8-zGNR: (a) ↑↓ configuration (ground
state): a ferromagnetic order along its axis and antiparallel coupling between the edges; (b) ↑↑
configuration: a ferromagnetic order along its axis and parallel coupling between the edges. In
each panel, the energy band structure (left) and the spin-polarized electronic densities (ρ↑ − ρ↓,
right) of the iso-surfaces are computed within the spin-dependent DFT framework. Adapted
from Dubois (2009)

total energy per edge atom between non-spin-polarized and spin-polarized edge states
is only of the order of a few tens of meV (Son et al. 2006a). Additionally, zGNRs
exhibit a Curie-like temperature dependence of the Pauli paramagnetic susceptibility,
and a crossover is predicted from high-temperature diamagnetic to low-temperature
paramagnetic behavior in the magnetic susceptibility (Wakabayashi et al. 1999).

The electronic ground state of the pristine 8-zGNR shows some antiparallel (↑↓)
spin orientations between the edges (Fig. 2.19(a)), leading to a semiconducting band
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Figure 2.20 (a) Ball-stick model for a 12-zGNR which exhibits 12 zigzag chains along the ribbon
axis. Hydrogen atoms (light-colored balls on the left and right edges) are used to passivate the
edge σ -dangling bonds. (b and c) Calculated band structure (and energy gap) of a 12-zGNR
within the LSDA (b) and GW (c) approximations. The up and down spin states are degenerated
for all the bands in the ↑↓ ground state configuration, and the top of the valence band is set at
zero. The symbols �0 and �1 denote the direct bandgap and the energy gap at the zone
boundary. (Adapted with permission from Yang et al. (2007). Copyright (2007) by the American
Physical Society)

structure (0.5 eV bandgap) with full spin degeneracy. Besides, the magnetic configura-
tion with parallel (↑↑) spin orientations between the edges (Fig. 2.19(b)) is metastable
(11 meV/edge-atom higher in energy). This configuration displays a metallic behavior,
as the π∗

↑ and π↓ bands cross at the Fermi energy with the formation of a total magnetic
moment of 0.51 μB (per edge atom).

Through performance of spin-polarized calculations, the energy gap formation in
zGNRs can be rationalized by the magnetic ordering-induced staggered sublattice poten-
tials (Kane and Mele 2005b). This is unique to the edge symmetry since opposite spin
states are forced to lie on different sublattices. Since the strength of the staggered
potentials in the middle of the ribbon decreases with the ribbon width, the bandgaps of
zigzag GNRs are consequently inversely proportional to their width. The band structure
of zGNRs is slightly modified when accounting for the GW correction (Yang et al.
2007). The self-energy corrections are found to enlarge the energy gaps for all zGNRs
and slightly increase the band dispersion of edge states (Fig. 2.20).

In contrast to the bandgap (�0) located around three-fourths of the way to the
Brillouin zone edge (Fig. 2.20), the zGNR energy gap at the zone boundary (�1) is
width-insensitive because of its dominant edge-state character (Yang et al. 2007). The
dependence of the GW correction on the wave vector slightly affects the band dispersion
of zGNRs (Fig. 2.20(b–c)). The GW correction is calculated to be about 1 eV for �0

for a ribbon width between 1–2.5 nm (Yang et al. 2007). Since the �1 gap is width
independent, the corresponding GW correction remains in the order of 1.5 eV.

To conclude, we have seen the fundamental role played by edge symmetries, for
determining the precise values and the width dependence of energy bandgaps in both
armchair and zigzag GNRs. The enhanced electron–electron interaction in these quasi-
one-dimensional systems yield to significant self-energy correction in both armchair
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and zigzag GNRs. The states near the bandgap of zGNRs are sensitive to the wavevector,
giving rise to a larger band width and smaller effective mass (Yang et al. 2007). The
computed bandgaps lie in the range 1–3 eV for GNRs with widths from 3 to 1 nm.

2.5 Electronic Properties of Carbon Nanotubes

2.5.1 Structural Parameters of CNTs

In 1991, helped by state-of-the-art transmission microscopy, Sumio Iijima from NEC
laboratories in Japan discovered and first characterized Helical microtubules of graphitic
carbon (Iijima 1991). The microtubules were made of concentric cylindrical shells with
a spacing between them of about 3.4 Å , the same as usually found in conventional
graphite materials. Their diameter ranged from a few nanometers for the inner shells
to several hundred nanometers for the outer shells and they constituted what today
we call carbon nanotubes. A few years later, arc discharge methods with transition
metal catalysts were used to successfully synthesize carbon nanotubes made of a single
graphene layer rolled into a hollow cylinder (Bethune et al. 1993; Iijima & Ichihashi
1993). In contrast to the multiwall carbon nanotubes (MWNTs) obtained earlier, these
structures, called single-wall carbon nanotubes (SWNTs), had diameters of about 1 nm
and an impressively perfect crystalline structure. They were considered the “ultimate”
carbon-based 1D systems.

As shown in Fig. 2.21, the structure of single-wall carbon nanotubes is that of a
rolled graphene strip (Saito et al. 1998). Their structure can be specified by the chiral

Figure 2.21 The graphene network. The lattice vectors are indicated by a1 and a2. In this example
the chiral vector is Ch = 6a1 + 3a2. The direction perpendicular to Ch is the tube axis (dashed
lines) where the translational vector T is indicated. The angle between Ch and the a1 “zigzag”
direction of the graphene lattice defines the chiral angle θ . The resulting (6, 3) nanotube is shown
on the right. The unit cell for this nanotube is a rectangle bounded by Ch and T.
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vector (Ch) that connects two equivalent sites (A and A′ in Fig. 2.21) on a graphene
sheet. Therefore, the chiral vector can be specified by two integer numbers (n and m),
Ch = na1+ma2, and represents the relative position of the pair of atoms on the graphene
network which form a tube when rolled. The (n, m) pair uniquely labels SWNTs.

Since the chiral vector Ch defines the circumference of the tube, its diameter can be
estimated as dt = |Ch|/π = a

π

√
n2 + nm + m2, where a is the lattice constant of the

honeycomb network (a = √
3×acc and acc � 1.42 Å , the C–C bond length). The chiral

vector Ch uniquely defines a particular (n, m) tube, as well as its chiral angle θ which is
the angle between Ch and a1 (“zigzag” direction of the graphene sheet, see Fig. 2.21).

The chiral angle θ can be calculated from

cos θ = Ch · a1

|Ch||a1| = (2n + m)/(2
√

n2 + nm + m2), (2.41)

and lies in the range 0 ≤ | θ | ≤ 30◦, because of the hexagonal symmetry of the
graphene lattice. Nanotubes of the type (n, 0) (θ = 0◦) are called zigzag tubes, because
they exhibit a zigzag pattern along the circumference. Such tubes display carbon–carbon
bonds parallel to the nanotube axis. On the other hand, nanotubes of the type (n, n)
(θ = 30◦) are called armchair tubes because they exhibit an armchair pattern along the
circumference. Such tubes display carbon–carbon bonds perpendicular to the nanotube
axis. Both zigzag and armchair nanotubes are achiral tubes, in contrast with general
(n, m �= n �= 0) chiral tubes (compare, for example, the structure of the tubes shown in
Fig. 2.22(a)).

Besides the tube diameter, the chiral vector also determines the unit cell. The
translational period t along the tube axis is given by the smallest graphene lattice
vector T perpendicular to Ch. The translational vector T can be written as a linear
combination of the basis vectors a1 and a2 as T = t1a1 + t2a2. Using the orthogonality
relation Ch · T = 0, one obtains t1 = (2m + n)/NR and t2 = −(2n + m)/NR, where NR
is the greatest common divisor of (2m + n) and (2n + m). The length of the translational
vector is given by t = |T| = √

3a
√

n2 + nm + m2/NR. The nanotube unit cell is
thus a cylindrical surface with height t and diameter dt. The number of carbon atoms
per unit cell is NC = 4(n2 + nm + m2)/NR. All this information is condensed in
Table 2.1.

2.5.2 Electronic Structure of CNTs within the Zone-Folding Approximation

Now that we have completely defined the structure of the nanotubes (diameter, chirality,
unit cell, etc.) from the pair (n, m), let us turn to their electronic properties. We start
from the single-band tight-binding model of graphene in a nearest-neighbor approxima-
tion as introduced before. Simplicity is a big advantage of this approximation, which,
together with a zone folding approach, allows for the prediction of the electronic prop-
erties (Hamada et al. 1992; Saito et al. 1992a). As made clear in the next paragraphs, the
zone folding neglects curvature effects, thereby giving a good approximation for tubes
of large enough radii (dt > 1 nm). The zone-folding approach considers a nanotube as
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Figure 2.22 (a) Atomic structures of (8, 2) chiral nanotubes, (5, 5) armchair, (9, 0), and (10, 0)
zigzag. (b) Allowed k-vectors for the same nanotubes mapped onto the graphene Brillouin zone.
The areas within the gray rectangles in (b) are zoomed for better visualization in (c) and (d). For
metallic nanotubes, the allowed k-vectors include the K point of the graphene Brillouin zone as
shown in (c). The corresponding dispersion relations are linear and exhibit a metallic behavior.
In contrast, for semiconducting nanotubes, the K point is not an allowed vector and there is an
energy gap, as shown in (d). A sketch with the dispersion relations for these two cases is also
shown in (c) and (d).

a piece of graphene sheet with periodic boundary conditions along the circumferential
direction. This can be expressed by the condition

�k(r + Ch) = eik·Ch�k(r) = �k(r), (2.42)

where vectors r and Ch lie on the nanotube surface. The first equality in the last equation
is a result of applying Bloch’s theorem. These boundary conditions impose a quantiza-
tion of the allowed wavevectors “around” the nanotube circumference, k · Ch = 2πq
(q integer). In contrast, the wavevectors along the nanotube axis remain continuous.12

Therefore, when plotting the allowed wavevectors in reciprocal space, we are left with
a set of parallel lines whose direction and spacing depend on the indices (n, m) (see the

12 Strictly speaking, this is true for infinite nanotubes. However, for typical nanotube sizes, the discrete
nature of the states may become evident at low enough temperatures.



2.5 Electronic Properties of Carbon Nanotubes 43

Table 2.1 Structural parameters for (n, m) carbon nanotubes. (Adapted with permission from Charlier
et al. (2007). Copyright (2007) by the American Physical Society.)

Symbol Name Formula/value

a Graphene lattice constant a = √
3 × acc � 2.46 Å

acc � 1.42 Å

a1, a2 Graphene basis vectors
(√

3
2 ; 1

2

)
a,
(√

3
2 ; − 1

2

)
a

b1, b2 Graphene reciprocal
(

1√
3

; 1
)

2π
a ,

(
1√
3

; −1
)

2π
a

lattice vectors

Ch Chiral vector Ch = na1 + ma2 ≡ (n, m)

(0 ≤| m |≤ n)

dt Tube diameter dt = |Ch|
π = a

π

√
n2 + nm + m2

θ Chiral angle 0 ≤| θ |≤ π
6

sin θ =
√

3m
2
√

n2+nm+m2

cos θ = 2n+m
2
√

n2+nm+m2

tan θ =
√

3m
2n+m

T Translational vector T = t1a1 + t2a2 ≡ (t1, t2)

gcd(t1, t2) = 1(∗)

t1 = 2m+n
NR

, t2 = − 2n+m
NR

NR = gcd(2m + n, 2n + m)(∗)

NC Number of C atoms NC = 4(n2+nm+m2)
NR

per unit cell

In this table, n, m, t1, t2 are integers.
(∗) gcd(n, m) denotes the greatest common divisor of the two integers n and m.

scheme in Fig. 2.22(b)). The dispersion for each allowed wavevector in the circumfer-
ential direction is then obtained by cutting the dispersion relation of 2D graphene along
these cutting lines. Superposition of these curves gives the electronic structure of the
(n, m) nanotube.

Given graphene’s peculiar dispersion relation, a nanotube will be metallic whenever
one of the cutting lines crosses the K (either K+ or K−) point. Based on this fact, a rule
for metallicity follows from imposing that K is an allowed wavevector for the given
(n, m) nanotube, i.e., exp(iK · Ch) = 1. Using K = |K|a2/a with |K| = 4π/(3a), we
find that n + 2m must be a multiple of 3 or, in other terms, n + 2m ≡ 0 (mod 3).
Since 3m ≡ 0 (mod 3) for any m, it follows that n − m ≡ 0 (mod 3). Therefore, a
nanotube defined by the (n, m) indices will be metallic if n − m = 3�, with � an integer,
or semiconducting if n − m = 3�± 1.
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As a result of the previous rule, most nanotubes are semiconductors and only a
fraction (one-third) are metallic. Furthermore, (n, n) armchair nanotubes are always
metallic, whereas (n, 0) zigzag nanotubes are metallic whenever n is a multiple of 3.
For metallic nanotubes, in the vicinity of EF (k = K + δk), the dispersion relation is

E±(δk) � ±
√

3a
2
γ0|δk|, (2.43)

presenting a linear energy–momentum relation (Fig. 2.22(c)).
For semiconducting nanotubes, the K point is not included and the conduction and

valence bands emerge from states with k vectors located on the allowed line(s) closest
to the K point (see Fig. 2.22(d)). Choosing (n, m) such that n − m = 3�± 1 gives a gap
opening at the Fermi level with a magnitude that can be estimated by (see Problem 2.8)

�E1
g = 2πaγ0√

3|Ch|
= 2accγ0

dt
. (2.44)

The value of �E1
g decreases with the inverse of the tube diameter dt (dt = |Ch|/π )

(White & Mintmire 1998).13 In the large-diameter limit, one gets a zero-gap semicon-
ductor, as is expected since graphene is recovered. For a realistic (17, 0) tube with a
diameter of 1.4 nm, one gets �E1

g � 0.59 eV.
An instructive exercise is to determine the Brillouin zone of a carbon nanotube, a task

that we leave for Problem 2.7. Given that nanotubes are essentially one-dimensional,
their Brillouin zone is one-dimensional as well. The zone edges are denoted with X and
X′, with X′ = −X due to time-reversal symmetry. The case of band folding for a (5, 5)
armchair nanotube is shown in Fig. 2.23 within a band-folding scheme. Note that the
K points are folded at a distance of ±2π/(3a) from the 
 point, whereas for zigzag
nanotubes they are folded onto the 
 point itself.

In Fig. 2.24(a), the dispersion relations E(k) for an (8, 2) chiral nanotube are illus-
trated. Since n−m is a multiple of 3, this nanotube exhibits metallic behavior with a band
crossing at k = ±2π/3T. Other chiral nanotubes, like the (9, 6) (not shown), display a
zero energy gap at k = 0. The DOS of chiral nanotubes (see Fig. 2.24(a)) displays van
Hove singularities as for the achiral tubes (Charlier & Lambin 1998) shown in the other
panels.

The electronic band structure of an armchair (5, 5) carbon nanotube is presented in
Fig. 2.24(b). Six bands for the conduction states, and an equal number for the valence,
are observable. However, four of them are degenerate, leading to ten electronic levels
in each case, consistent with the ten hexagons around the circumference of the (5, 5)
nanotube. For all armchair nanotubes, the energy bands exhibit a large degeneracy at the
zone boundary, where k = ±π/a (X point), so that Eq. (2.16) becomes E(k = ±π/a) =
±γ0. This comes from the absence of dispersion along the segments connecting the

13 This 1/dt dependence of the gap on the diameter relies on the assumption of a linear dispersion of the
bands around EF (White & Mintmire 1998). Away from EF, the dispersion deviates from linear, an effect
called trigonal warping (Saito et al. 2000), which induces a dependence of the bandgap not only on the
diameter, but also on the (n, m) indices.
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Figure 2.23 Brillouin zone for graphene (gray-shaded hexagon) together with the Brillouin zone
(white rectangle) for a four-atom unit cell with lattice vectors T = a1 − a2 (translational vector
for armchair tubes) and a1 + a2 (equal to Ch/n for armchair tubes). The allowed k vectors for a
(5, 5) nanotube lie on the black lines depicted in the figure. To compute the (5, 5) band structure,
fold the corners of the hexagonal Brillouin zone onto the rectangular cell (white) and
superimpose the bands calculated for bulk graphene along the black lines of length 2π/|T|.

neighboring centers of the BZ sides (the M points), an effect that yields the so-called
trigonal warping of the bands as already discussed. The valence and conduction bands
for armchair nanotubes cross at k = kF = ±2π/(3a), a point that is located at two-thirds
of 
X (Fig. 2.24(b)). This means that the original K vertices of the original graphene
hexagonal BZ are folded at two-thirds of the 
X line (or its inversion symmetry image).
As discussed previously, the (5, 5) armchair nanotube is thus a zero-gap semiconductor,
which will exhibit metallic conduction at finite temperatures since only infinitesimal
excitations are needed to promote carriers into the conduction bands.

The density of states (DOS) �N/�E represents the number of available states �N
for a given energy interval�E (�E → 0). This DOS is a quantity that can be measured
experimentally under some approximations. The shape of the density of states is known
to depend dramatically on dimensionality. In 1D, as shown below, the density of states
diverges as the inverse of the square root of the energy (1/

√
E) close to band extrema.

These “spikes” in the DOS are called van Hove singularities (vHs) and manifest confine-
ment properties in the directions perpendicular to the tube axis. As carbon nanotubes are
one-dimensional, their corresponding DOS exhibits such a spiky behavior at energies
close to band edges (see Fig. 2.24). For all metallic nanotubes, the density of states per
unit length along the nanotube axis is a constant at the Fermi energy (EF), and can be
expressed analytically (Mintmire & White 1998):

ρ(εF) = 2
√

3acc/(πγ0|Ch|). (2.45)

The calculated 1D dispersion relations E(k) for the (9, 0) and the (10, 0) zigzag
nanotubes are illustrated in Fig. 2.24(c,d), respectively. As expected, the (9, 0) tube
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Figure 2.24 Band structure and density of states for (a) an (8, 2) chiral nanotube; (b) a (5, 5)
armchair nanotube; (c) a (9, 0) zigzag nanotube; and (d) a (10, 0) zigzag nanotube within the
zone-folding model. The 1D energy dispersion relations are presented in the [−3γ0; 3γ0] energy
interval in units of γ0, the nearest-neighbor C–C tight-binding hopping parameter (∼2.9 eV). The
energy bands are plotted along the X −
− X direction. The Fermi level is located at zero energy.

is metallic, with the Fermi surface located at 
, whereas the (10, 0) nanotube exhibits a
finite energy gap at 
. In particular, in the case of the (10, 0) nanotube, there is a disper-
sionless energy band at E/γ0 = ±1, which gives a singularity in the DOS at these partic-
ular energies. For a general (n, 0) zigzag nanotube, when n is a multiple of 3, the energy
gap at k = 0 (
 point) becomes zero. However, when n is not a multiple of 3, an energy
gap opens at 
. The corresponding densities of states have a zero value at the Fermi
energy for the semiconducting nanotube, and a small nonzero value for the metallic one.

Note that the k values for the band crossing at EF in metallic nanotubes are
k = ±2π/3|T| or k = 0 for armchair or zigzag tubes, respectively. These k values
are also the locations of the bandgaps for the semiconducting zigzag nanotubes. The
same k values also denote the positions of the energy gaps (including zero energy gaps)
for the general case of chiral nanotubes.

In semiconducting zigzag or chiral nanotubes, the bandgap (as expressed in
Eq. (2.44)) is independent of the chiral angle and varies inversely with the nanotube
diameter: �E1

g = 2γ0acc/dt (in the linear bands approximation). Density of states
measurements by scanning tunneling spectroscopy (STS) provide a powerful tool for
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probing the electronic structure of carbon nanotubes. It can be shown, indeed, that under
some assumptions, the voltage–current derivative dI/dV is proportional to the DOS.
Some experiments (Odom et al. 1998; Wilder et al. 1998) confirmed that the energy
bandgap of semiconducting tubes is roughly proportional to 1/dt, and that about one-
third of nanotubes are conducting, while the other two-thirds are semiconducting.
Resonances in the DOS have also been observed experimentally (Odom et al. 1998;
Wilder et al. 1998) on both metallic and semiconducting nanotubes whose diameters and
chiral angles were determined using a scanning tunneling microscope (STM) (Venema
et al. 1999). Several other experimental techniques such as resonant Raman scatter-
ing (Jorio et al. 2001), optical absorption, and emission measurements (Bachilo et al.
2002; Lefebvre et al. 2003; O’Connell et al. 2002) have also confirmed this structure
in van Hove singularities of the electronic densities of states in single-wall carbon
nanotubes.

2.5.3 Curvature Effects: Beyond the Zone-Folding Model

In the previous section, the electronic properties of CNTs are directly deduced from
confinement of the electrons around the tube circumference through the restriction of the
allowed k Bloch vectors, which neglects any curvature effects. However, such curvature
effects become increasingly important as the nanotube diameter is further reduced. To
account for the cylindrical geometry, one considers that carbon atoms are placed onto
a cylindrical wall, which implies that (I) the C–C bonds perpendicular and parallel to
the axis become different, so that the a1 and a2 have different lengths; (II) as a result,
the formation of an angle for the two pz orbitals located on bonds renormalize the
hopping terms γ0 between a given carbon atom with its three neighbors; (III) the broken
planar symmetry induces a mixing between π and σ , forming hybrid orbitals that exhibit
partial sp2 and sp3 character, all effects which are neglected in the zone-folding model
of graphene.

Here, we briefly summarize the effect of finite curvature on the electronic proper-
ties of nanotubes. The aforementioned modifications indexed (I) and (II) change the
conditions at which occupied and unoccupied bands are crossing (at kF), which shifts
this Fermi vector kF away from the Brillouin zone corners (K point) of the graphene
sheet (Kane & Mele 1997). Taking curvature into account for armchair nanotubes shifts
the Fermi wavevector along an allowed line of the graphene Brillouin zone. However,
for symmetry reasons, the metallic nature of armchair tubes remains insensitive to finite
curvature. In contrast, for non-armchair metallic nanotubes, kF is found to shift away
from the K point perpendicular to the allowed k-lines, which produces the formation of
a small bandgap at EF (see Fig. 2.25).

Thus, in the presence of curvature effects, the sole zero bandgap tubes are the (n, n)
armchair nanotubes, whereas (n, m) tubes with n − m = 3� (� is a nonzero integer) all
fall into the category of tiny-gap semiconductors. Armchair tubes are usually labeled
“type I” metallic tubes, while the others are of “type II.” Remaining nanotubes belong
to the intermediate-gap semiconductors (with gaps a few tenths of an eV). Tiny-gap
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Figure 2.25 Magnitude of both primary (�E1
g) and secondary (�E2

g) gaps in carbon nanotubes
with radii less than 15 Å . The primary gap (�E1

g) scales as 1/dt: (a) the secondary gap (�E2
g or

curvature induced gap) scales as 1/d2
t ; (b) the dots at �E1

g = �E2
g = 0 correspond to the

armchair nanotubes which always preserve their metallic character. (Adapted with permission
from Kane & Mele (1997). Copyright (1997) by the American Physical Society)

semiconducting nanotubes also present a secondary gap induced by curvature, which
depends on the tube diameter (as 1/d2

t ) and chiral angle (Kane & Mele 1997). The
secondary gap in quasi-metallic zigzag nanotubes (chiral angle = 0) is found to be

�E2
g = 3γ0a2

cc
4d2

t
, (2.46)

which is vanishingly small so that one generally considers that all the n − m = 3� tubes
are metallic at room temperature (see Fig. 2.25). Measurements of the density of states
using scanning tunneling spectroscopy have nicely confirmed the predicted 1/d2

t depen-
dence for three zigzag nanotubes (Ouyang et al. 2001b), together with the true metallic
nature of armchair nanotubes. The band-folding picture based on the single-band tight-
binding approach is therefore highly reasonable for large enough tube diameter (above
1 nm) (Hamada et al. 1992; Mintmire et al. 1992; Saito et al. 1992a).

2.5.4 Small-Diameter Nanotubes: Beyond the Tight-Binding Approach

The effect of curvature is significant for very small tube diameter, when σ and π
states are strongly rehybridized (effect (III)). The zone-folding picture ceases to
be correct, demanding that ab initio calculations be achieved (Blase et al. 1994)
(Fig. 2.26). Strongly modified low-lying conduction band states are introduced into
the bandgap of insulating tubes because of hybridization of the σ ∗ and π∗ states, which
reduces the energy gaps of some nanotubes by more than 50%. For example, the (6, 0)
tube, predicted to be a semimetal in the band-folding scheme, becomes a true metal
within LDA, with a density of states at the Fermi level equal to 0.07 state/eV atom
(Fig. 2.26(b) and (c)). The σ ∗−π∗ hybridization is confirmed by drawing the charge
density associated with the states around the Fermi level, as shown in Fig. 2.26(a). Such
states are no longer antisymmetric with respect to the tube wall, with a charge spilling
out of the tube. Nanotubes with diameters above 1 nm evidence no σ–π rehybridization.
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Figure 2.26 Electronic structure of a zigzag (6, 0) nanotube. Contour plot of the charge density
for state (a) at 
. The contours are in a plane perpendicular to the axis of the tube containing six
carbon atoms. The numbers cited are in units of e/(a.u.)3. The circle represents a cross section of
the cylinder on which the atoms lie. Electronic band structure (b) and density of states (c).
The energies are in eV, the reference zero energy is at the Fermi level, and the DOS is in
states/eV atom. The new band (σ∗−π∗) around the center of the Brillouin zone is traced as a
visual guide. (Reproduced with permission from Blase et al. (1994). Copyright (1994) by
the American Physical Society)

Figure 2.27 Electronic band structure of zigzag: (a) (5, 0); (b) (6, 0); and (c) (7, 0) nanotubes.
Ab initio (DFT-LDA) results (solid line) are compared to GW calculations (circles) for each
relaxed geometry. Energy is measured from the Fermi level. Dashed lines are visual guides.
(Adapted with permission from Miyake & Saito (2003). Copyright (2003) by the American
Physical Society)

Electronic properties of small-diameter nanotubes have also been explored within
the GW approximation, which makes it possible to account for many-body correc-
tions (Miyake & Saito 2003). The GW calculations found that the energy of the σ ∗ −
π∗ state is reduced with decaying diameter (as drawn by a * in Fig. 2.27), which
strongly affects the 1/d law as soon as dt ∼ 0.8 nm. For instance, the gap of the
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Figure 2.28 Band structures of (a) the distorted D2h zigzag (5, 0) nanotube and (b) the armchair
(3, 3) tube. The zero of energy has been set to the top of the valence bands and at the Fermi level,
respectively. Inset are symbolic representations of the out-of-plane acoustical and optical modes
at 
 for the phonon bands driving the Peierls instability in the (a) (5, 0) and (b) (3, 3) tubes,
respectively. (Adapted with permission from Connétable et al. (2005). Copyright (2005) by the
American Physical Society)

(7, 0) tube becomes 0.6 eV (Fig. 2.27(c)). Such a considerable many-body correction
is actually compensated for by a lattice relaxation (Miyake & Saito 2003). The lowered
state crosses the Fermi level in the (5, 0) and (6, 0) tubes which both become metallic
(Fig. 2.27(a–b)). Therefore GW corrections are not strongly renormalizing the DFT
results, which are reasonably good for varying tube diameters.

The analysis of optical spectra of both semiconducting and metallic tubes crucially
needs to account for electron–hole interaction effects, which become prominent in
small-diameter single-walled carbon nanotubes, but require ab initio calculations
(Spataru et al. 2004). Finally, note that ultrasmall tube diameters (diameter of about 4 Å)
have been obtained by performing tube growth inside AlPO4-5 zeolite channels (with
inner diameter of about 7.3 Å) (Wang et al. 2000). Some specific (but controversial)
superconductivity has been reported in such ultrasmall tubes (Tang et al. 2001) which,
given their reported diameter distribution around 4 Å, limits the possible geometries to
the (3, 3), (4, 2), and (5, 0) nanotubes.

Such ultrasmall tubes have been studied using ab initio simulations by Connetable
and coworkers (Connétable et al. 2005), who reported that the (5, 0) tube (predicted as
a semiconductor in band-folding representation) becomes metallic with two bands (one
doubly degenerate) crossing the Fermi level (yielding two different kF), a curvature
effect related to the Peierls distortion (Fig. 2.28(a)). In these calculations, the armchair
(3, 3) remains semi-metallic, but with a π−π∗ band crossing at EF that is displaced from
its ideal 2

3 
X position (Fig. 2.28(b)). To conclude, the zone-folding model is certainly
valid as long as the tube diameter remains larger than 1 nm. When this condition is not
satisfied, the single-band tight-binding approach can be misleading, requiring recourse
to more accurate calculations, either through a sophisticated tight-binding approach, ab
initio DFT-LDA, or even GW approximation depending on the tube being studied.
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2.5.5 Nanotubes in Bundles

In the previous sections, only a special achiral subset of carbon tubes known as arm-
chair nanotubes was predicted to exhibit true metallic behavior. These single-wall (n, n)
nanotubes are the only real 1D cylindrical conductors with only two open conduction
channels (energy subbands in a laterally confined system that cross the Fermi level).
Hence, with increasing length, their conduction electrons ultimately become localized
owing to residual disorder in the tube, which is inevitably produced by interactions
between the tube and its environment. However, theoretical calculations (White & Mint-
mire 1998) have demonstrated that, unlike normal metallic wires, conduction elec-
trons in armchair nanotubes experience an effective disorder averaged over the tube’s
circumference, leading to electron mean free paths that increase with nanotube diameter.
This increase should result in exceptional ballistic transport properties and localization
lengths of 10 μm or more for tubes with the diameters that are typically produced
experimentally. These transport properties of armchair nanotubes are described in detail
in Chapter 4.

Although the close-packing of individual nanotubes into ropes does not significantly
change their electronic properties, ab initio calculations predicted that broken symmetry
of the (10, 10) tube caused by the interactions between tubes in a rope induces a pseudo-
gap of about 0.1 eV at the Fermi level (Delaney et al. 1998) (Fig. 2.29). Consequently,
this pseudogap strongly modifies many of the fundamental electronic properties of the
armchair tubes, explaining in particular a semimetallic-like temperature dependence
of the electrical conductivity, as well as the presence of a finite gap in the infrared
absorption spectrum for bundles of nanotubes.

As mentioned earlier, the electronic properties of isolated (n, n) armchair nanotubes
are dictated by their geometrical structures, which impose the crossing of the two linear
π–π∗ bands at the Fermi energy (Fig. 2.29(a)). These two linear bands give rise to
constant density of states near the Fermi level and to true metallic behavior. The atomic
structure of an isolated (n, n) nanotube exhibits n mirror planes containing the tube
axis. The π -bonding state is even (the wavefunction has no sign change) while the

Figure 2.29 Energy band structures for (a) an isolated (10, 10) nanotube and (b) a bundle of
(10, 10) nanotubes. The two diagrams show (a) the crossing of the two linear π–π∗ bands for the
isolated tube (π∗) character and (b) the bandgap opening due to the breaking of the mirror
symmetry. EF is the Fermi energy and k is the wavevector. (Adapted by permission from
Macmillan Publishers Ltd: Nature, Delaney et al. (1998), copyright (1998))
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π -antibonding state is odd (sign change) under these symmetry operations. The band
crossing is thus allowed and the armchair nanotube is metallic, as illustrated schemat-
ically in Fig. 2.29(a). Note that it is precisely this symmetry of the isolated (n, n) tube
that induces the intrinsic metallic behavior of the tube and its extraordinary ballistic
conduction (White et al. 1998). Breaking this symmetry, however, completely alters this
picture. If the tubes in the rope are separated enough to eliminate any nanotube interac-
tions, the band structure will remain unchanged. However, the inter-tube distances in the
bundle are small enough that each nanotube can feel the potential due to all neighboring
tubes (Delaney et al. 1998). As a consequence of this perturbation, the Hamiltonian at
any point k where the two π–π∗ bands used to cross becomes

Hk =
(
ε0 + δ11 δ12
δ21 ε0 + δ22

)
,

where ε0 is the unperturbed energy. The diagonal matrix elements δ11 and δ22 merely
act to shift the energy and location in k-space of the band crossing. The off-diagonal
elements (δ12 and δ21) represent the quantum-mechanical level repulsion, thus opening
a gap as illustrated schematically in Fig. 2.29(b). If the vertical line through k has high
symmetry, the off-diagonal matrix elements may still be zero and a crossing may persist.
However, at a general k point, the inter-tube interactions will dramatically change the
physics of the ropes. If the symmetry of the nanotube is not broken in the bundle –
i.e., for (6, 6) armchair nanotubes – the crossing is preserved (Charlier et al. 1995).
These inter-tube interactions, which break the rotational symmetry of armchair (n, n)
tubes due to the local environment, have been measured experimentally using low-
temperature scanning tunneling spectroscopy (Ouyang et al. 2001b), thus confirming
that the magnitude of the pseudogap depends inversely on nanotube radius.

2.5.6 Multiwall Nanotubes

Another mechanism based on the multi-shell concept may tailor the electronic properties
of nanotubes. Indeed, the weak interaction between the concentric shells in a multiwall
nanotube may induce significant modifications of the electronic properties of the pristine
individual nanotubes (Kwon & Tománek 1998; Lambin et al. 1994). The interwall cou-
pling, already mentioned as opening a pseudogap in a bundle of single-wall nanotubes
due to symmetry lowering, may periodically open and close four such pseudogaps near
the Fermi energy (EF) in a metallic double-wall nanotube during its rotation normal to
the nanotube axis. Indeed, Fig. 2.30 illustrates the intriguing interplay between geometry
and electronic structure during the rotation of the inside (5, 5) armchair nanotube in the
outside (10, 10) nanotube, with the nanotubes sharing a common axis.

The individual (5, 5) and (10, 10) tubes are both metallic and present the conventional
“graphitic” interwall separation of 3.4 Å when nested. To determine the electronic
properties of the double-wall nanotube, a tight-binding technique with parameters
extracted from ab initio calculations for simpler structures has been used (Kwon &
Tománek 1998; Lambin et al. 1994). Due to the relatively high symmetry of the coaxial
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Figure 2.30 Energy band structures of a double-wall nanotube consisting of two aligned coaxial
armchair nanotubes: (5, 5)@(10, 10). Near degenerate bands with no gap characterize the
(5, 5)@(10, 10) double-wall nanotube without inter-tube interaction (a). In the presence of
inter-tube interaction, depending on the mutual tube orientation, the (5, 5)@(10, 10) system may
exhibit zero gap (b) in the most symmetric (point group symmetry: D5h), or four pseudogaps
(c) in a less symmetric and stable configuration (point group symmetry: C5). (Adapted with
permission from Kwon & Tománek (1998). Copyright (1998) by the American Physical Society.
By courtesy of Young-Kyun Kwon)

system consisting of a D5d (5, 5) nanotube nested inside the D10h (10, 10) nanotube,
the dependence of the inter-tube interaction on the tube orientation presents an 18◦

periodicity. In the absence of inter-tube interaction, the band structure of each isolated
tube is preserved and characterized by two crossing linear π–π∗ bands near EF, one
for the “left” and one for the “right” moving electrons. The band structures of a pair of
decoupled (5, 5) and (10, 10) coaxial nanotubes are illustrated in Fig. 2.30(a) as a mere
superposition of the individual band structures. Switching on the inter-tube interaction
in the (5, 5)@(10, 10) double-wall tube removes the near degeneracy of the bands near
EF as well (see Fig. 2.30(b,c)). In the most stable orientation, the double-wall system
is still characterized by the D5d symmetry of the inner tube. The four bands cross, with
a very small change in the slope (Fig. 2.30(b)). While the same argument also applies
to a least stable configuration, markedly different behavior is found at any other tube
orientation that lowers the symmetry, giving rise to four band crossings (Fig. 2.30(c)).
This translates into four pseudogaps in the density of states near EF (Kwon & Tománek
1998). At the Fermi level, the density of states of double-wall nanotubes is thus affected
by the mutual orientation of the two constituent nanotubes since the positions of the
four pseudogaps depend significantly on it. The opening and closing of pseudogaps
during the liberation motion of the double-wall tube is a unique property that cannot
be observed in single-wall nanotube ropes (Kwon & Tománek 1998). Finally, self-
consistent charge density and potential profiles for double-wall nanotubes, considering
various chiralities, have been obtained (Miyamoto et al. 2001), and demonstrate that the
atomic structure of the inner tube modifies the charge density associated with states near
EF, even outside the outer tube, so that it could even be probed experimentally using an
STM. A significant amount of charge, originating mainly from the π electron system of
the tubes is transferred mainly into a new interwall state, related to the interlayer state
in graphite (Miyamoto et al. 2001).
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2.6 Defects and Disorder in Graphene-Based Nanostructures

In the first section of the this chapter, the fascinating electronic properties of graphene
are described, suggesting the latter to be a material of choice for future nano
-electronics. Indeed, graphene exhibits an extremely high stability, huge carrier mobili-
ties, and a thermal conductivity predicted to be nearly twice that of diamond. Graphene
also presents a high response to perpendicular electric fields, making it possible to tune
the type and concentration of charge carriers. Its high carrier mobilities and long phase
coherence length (Miao et al. 2007) suggest potential applications in integrated circuits,
high-mobility transistors, or single-molecule gas sensors. Eventually, graphene can also
be patterned using existing lithographic techniques and can meet many requirements
for the process and design of nanoelectronic devices.

However, the lack of an electronic (or transport) gap in pristine graphene is an issue
that has to be overcome in order to achieve a high Ion/Ioff current ratio in graphene-
based field-effect devices (Xia, Farmer et al. 2010). In this context, controlled engineer-
ing of defects in sp2 carbon-based materials has become a topic of great excitement
(Krasheninnikov & Banhart 2007). Indeed, the electronic (and transport) properties
of carbon nanotubes (Charlier et al. 2007) and graphene-based nanomaterials (Cresti
et al. 2008; Suenaga et al. 2007) can be considerably enriched by chemical modifica-
tions, including substitution and molecular doping (Latil et al. 2004; Lherbier, Blase
et al. 2008) as well as functionalization. Another approach to tuning the electronic
properties of graphene consists of using ion or electron-beam irradiation in order to
introduce structural point defects (e.g., vacancies, Stone–Wales defects, adatoms, etc.)
in sp2 carbon-based nanostructures. Indeed, convincing room-temperature signatures
of an Anderson regime in irradiated carbon nanotubes (Gómez-Navarro et al. 2005)
and graphene (Nakaharaim et al. 2013) or low-T saturating conductivities in graphene
samples (Chen et al. 2009) have been reported. Consequently, it is crucial to understand
the influence of defects on the electronic properties of graphene-based nanostructures
not only in order to conquer their detrimental effects, but also because controlled defect
introduction may be used to tune the carbon nanosystem properties in a desired direction
(e.g., gas sensor, etc.)

In the following, a few important defects in sp2 carbon nanostructures are illustrated,
and their specific effects on the electronic properties of the host material are discussed.

2.6.1 Structural Point Defects in Graphene

Structural point defects exist in various geometrical forms in graphene and more
generally in all sp2 carbon-based nanomaterials (Banhart et al. 2011; Kotakoski et al.
2011). For example, the Stone–Wales (SW) defect is a well-known and common planar
defect in sp2 carbon nanostructures, which consists of a 90◦ rotation of a carbon–carbon
bond (Stone & Wales 1986). This topological transformation yields to the formation of
two heptagons connected with two pentagons (Fig. 2.31(a,b) and Fig. 2.32(a)).

Vacancies are missing carbon atoms in the honeycomb lattice and can be created by
irradiating graphene with ions such as Ar+ for instance. By removing one C atom from
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Figure 2.31 Structural point defects in graphene: (a) model for various realistic defects randomly
oriented and distributed in graphene. HRTEM images of defects observed in graphene :
(b) Stone–Wales; (c) vacancy; (d,e) more complex topologies containing pentagon–heptagon
pairs. ((a) Adapted from Lherbier et al. (2012). Copyright (2008) American Physical Society.
(b–e) Adapted with permission from Meyer et al. (2008). Copyright (2008) American Chemical
Society)

Figure 2.32 Topological defects in graphene and their corresponding effects on its electronic
properties. Model of the three structural defects: (a) Stone–Wales; (b) 585; and (c) 555-777
divacancies. Symmetry axes are drawn in dashed lines, tight-binding densities of states for a
single defect in a 7 × 7 graphene supercell (dashed lines indicate concentration of ∼ 1%) and for
a large plane of graphene containing randomly distributed and oriented divacancies (thick
lines indicate concentration of 1%) for the defects illustrated above: (d) Stone–Wales; (e) 585;
and (f) 555-777 divacancies. (Adapted with permission from Lherbier et al. (2012). Copyright
(2008) American Physical Society)

the graphene plane, three C atoms are left with an unsaturated bond. When the system is
relaxed, this monovacancy undergoes a Jahn–Teller distortion: two of the unsaturated
carbon atoms form a weak covalent bond, resulting in a pentagonal rearrangement
(Fig. 2.31(c)). The third unsaturated carbon atom moves radially out of the plane, mod-
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ifying the initial D3h symmetry of the hexagonal network into the favored Cs sym-
metry (Amara et al. 2007). The monovacancy is a magnetic defect since the localized
orbitals of the unsaturated carbon atom exhibit a net local magnetic moment (Lehtinen,
Foster, Ayuela et al. 2004; Lehtinen, Foster, Ma et al. 2004), which could explain the
issue of induced magnetization in some carbon nanomaterials (Yazyev, 2008, 2010;
Yazyev & Helm, 2007). However, these single vacancies migrate easily in the graphene
plane and are stabilized when they recombine with another, thus reconstructing into
various divacancy defects (Kim et al. 2011; Krasheninnikov & Banhart 2007; Lee, Son
et al. 2005).

For example, the reconstruction can lead to formation of two pentagons and one
octagon (so-called 585, Fig. 2.32(b)), or also to three pentagons and three heptagons
(so-called 555-777, Fig. 2.32(c)). According to ab initio calculations, the formation
energy of the 555-777 divacancy is smaller than that of the 585 divacancy by about
0.9 eV (Lherbier et al. 2012). Such a stabilization of the 555-777 divacancy with regards
to the 585 divacancy in graphene contrasts with the case of carbon nanotubes (Lee, Son
et al. 2005). A third kind of divacancy has also been reported (Banhart et al. 2011;
Meyer et al. 2008), exhibiting a larger extension and involving four pentagons, one
hexagon, and four heptagons (so-called 5555-6-7777, not illustrated here). In contrast
with monovacancies that cannot be considered as reversible geometrical modifications
of the ideal graphene plane, divacancies and Stone–Wales defects belong to the class
of topological defects. One also notes that the 585 divacancy as well as the SW defect
possesses a D2h symmetry since two orthogonal symmetry axes can be defined (Fig.
2.32(a, b)), whereas the 555-777 divacancy possesses a D3h symmetry (Fig. 2.32(c)).
Observation of these three structural point defects has already been reported in graphene
by means of STM experiments (Suenaga et al. 2007; Ugeda et al. 2012) or transmission
electron microscopy (TEM) images (Meyer, Kisielowski et al.(2008) 2008) and their
influence on transport properties has also deserved in-depth inspection (Lherbier et al.
2011).

In order to investigate the effect of these structural defects on graphene, two center 3rd
nearest-neighbors π–π∗ orthogonal tight-binding models for both pristine and defective
graphene can be computed using ab initio calculations. To extract optimized TB param-
eters, a set of points E(k) is chosen in the ab initio band structure and used as constraints
in a fit procedure (Lherbier et al. 2012). These TB parameters are usually fitted to
reproduce as accurately as possible the full band structure (as described previously). An
alternative strategy can also be applied when the ab initio Hamiltonian is expressed in a
localized orbitals basis set. Indeed, the TB parameters can thus be directly extracted by
performing successive operations on this ab initio Hamiltonian. In particular, the basis
set has to be reduced to a single pz orbital.

Local TB parameters corresponding to a given disorder potential are obtained using
the same fitting technique as for the pristine graphene. For the impurity potential, only
onsite modifications are considered, but the new arrangement of neighbors for carbon
atoms in the core of the defects is carefully taken into account. For the SW defect, the
rotation of the carbon–carbon bond leads to a modification of first, second, and third-
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nearest neighbors for carbon atoms in the vicinity of the rotated bond. The validity of
the TB parameterization for the defects is checked by comparing the ab initio and the
TB band structures for a 7 × 7 supercell containing a single defect. In Fig. 2.32, the TB
band structure (lines with symbols) is superimposed on the ab initio band structure (full
lines). A good agreement is obtained, especially for the valence bands. The conduction
band side seems to be less accurate but this is uniquely due to the inability of the pristine
graphene TB model to reproduce a conduction band along a K–M branch.

The density of states of random distribution of structural point defects in the
honeycomb lattice (large graphene planes) can then be estimated, revealing the
salient features that persist after taking into account the randomness character of the
disorder. Figure 2.32(d–f) presents the total DOS of large graphene samples containing
1% of SW, 585, and 555-777 divacancies, computed using the recursion method
(see Appendix D), and compared with the total DOS calculated for a 7 × 7 supercell
containing a single defect (more or less the same concentration, ∼1%). A first
observation is that the DOS of random disordered systems is much smoother than the
one corresponding to a single defect in a supercell. In the random disorder case, most
of the peaks have disappeared except those close to the Dirac point (set to zero). The
broadening due to the distribution disorder is more efficient in energy regions containing
several bands. Close to the Dirac point, the number of bands is smaller, which preserves
the defect-induced resonances. Secondly, the position of resonance energy peaks is
consistent with the ab initio supercell band structures obtained for defective graphene
(Lherbier et al. 2012). The DOS of randomly disordered graphene suggests that the
electron transport in an energy region around E = 0.35 eV should be mainly damaged by
SW defects, whereas hole transport should be altered around E = −0.35 eV for 585 diva-
cancies, and finally that 555-777 divacancies exhibit several resonance energies around
E = 0.6, −0.8, −2.1 eV, which should also lead to reduced transport performances.
Such an in-depth analysis of the transport properties of graphene containing a random
distribution of structural point defects is presented in Chapter 7.

2.6.2 Grain Boundaries and Extended Defects in Graphene

Single-atom-thick graphene sheets are presently produced by chemical vapor deposi-
tion (Li et al. 2009) on macroscopic scales (up to meters (Bae et al. 2010)), making their
polycrystallinity almost unavoidable. This polycrystalline nature of graphene samples at
micrometer length scales induces the presence of intrinsic topological defects of poly-
crystalline materials, such as grain boundaries and dislocations. Theoretically, graphene
grain boundaries are predicted to inevitably affect all kinds of physical properties of
graphene, but these drastic modifications strongly depend on their atomic arrangement.
Using atomic-resolution imaging, experimentalists have been able to determine the
location and identity of every atom at a grain boundary, discovering that different grains
stitch together predominantly through pentagon–heptagon pairs (Huang et al. 2011)
(see Fig. 2.33(a,b)). By correlating grain imaging with scanning probe and transport
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Figure 2.33 Atomic-resolution STEM images of polycrystalline graphene: (a) two grains (bottom
left, top right) intersect with a 27◦ relative rotation. An aperiodic line of defects stitches the two
grains together (scale bars 5 Å). This grain boundary is composed of pentagons, heptagons, and
distorted hexagons as outlined in (b). (c) Model of the atomic structure of a tilt grain boundary in
graphene separating two crystalline domains. ((a) and (b) Adapted with permission from
Macmillan Publishers Ltd: Nature from Huang et al. (2011), copyright (2011). (c) By courtesy of
Oleg Yazyev)

measurements, these grain boundaries were found to severely weaken the mechanical
strength of graphene, but they do not so drastically alter their electrical properties.

From a theoretical point of view, grain boundaries (GB) with large-angle symmetric
configurations were found to be energetically favorable using ab initio calculations
(Yazyev & Louie, 2010a, 2010b) (see Fig. 2.33(c)). Drastic stabilization of small-angle
configuration GBs via out-of-plane deformation has also been predicted (Yazyev &
Louie 2010b), which is a remarkable feature of graphene as a truly two-dimensional
material. Grain boundaries are expected to markedly alter electronic transport in
graphene. Indeed, charge-carrier transport across periodic grain boundaries is primarily
governed by a simple momentum conservation law (Yazyev & Louie 2010a). Two
distinct transport behaviors have been predicted – either perfect reflection or high
transparency for low-energy charge carriers, depending on the grain boundary atomic
structure (see Fig. 2.33(c)). Furthermore, engineering of periodic grain boundaries with
tunable transport gaps has also been suggested (Yazyev & Louie 2010a), allowing for
controlling charge currents without the need to introduce bulk bandgaps in graphene.
Tailoring electronic properties and quantum transport by means of grain boundary
engineering may pave a new road toward practical digital electronic devices based on
graphene at a truly nanometer scale.

The controlled engineering of extended defects represents a viable approach to
creation and nanoscale control of one-dimensional charge distributions with widths
of several atoms. When graphene is grown on two non-equivalent threefold hollow
sites of Ni(111) substrate, termed fcc (face-centered cubic) and hcp (hexagonal close-
packed) sites (Fig. 2.34(a)), a one-dimensional extended line of defects can be formed
without any unsaturated dangling bonds by restructuring the two graphene half-lattices
that are translated by a fractional unit cell vector 1/3(a1 + a2) (where a1 and a2
are the two graphene unit cell vectors) (Lahiri et al. 2010). (See Fig. 2.34(a).) The
two graphene domains can be joined at their boundary so that every carbon has a
threefold coordination, forming a one-dimensional topological defect consisting of a
pair of pentagons and one octagon periodically repeated along the dislocation line
(Fig. 2.34(b)).
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(d)

Figure 2.34 Extended one-dimensional defect in graphene. (a) Structural model and schematic
formation: the two half-lattices can be joined along the a1 − a2 direction (indicated by the
dashed line) by restructuring the graphene lattice. The domain boundary can be constructed as
illustrated, by joining two carbon atoms – indicated by the two arrows – along the domain
boundary line. This reconstructed domain boundary forms a periodic structure consisting of
octagonal and pentagonal carbon rings. The underlying Ni(111) structure illustrates how the
extended defect is formed by anchoring two graphene sheets to a Ni(111) substrate at slightly
different adsorption sites. If one graphene domain has every second carbon atom located over an
fcc-hollow site (upper part) and the other domain over a hcp-hollow site (lower part), then the
two domains are translated by 1/3(a1 + a2) relative to one another. The light, medium, and dark
gray spheres correspond to Ni atoms in the 1st, 2nd, and 3rd layers, respectively. (b) Schematic
model based on the periodic repetition of a 585 (pentagon–octagon–pentagon) defect.
(c) Experimental STM images. (d) Ab initio STM images simulated at constant current (left) and
constant height (right) for the extended 585 one-dimensional extended line with the
superimposed defect model. ((a) and (c) Reprinted by permission from Macmillan Publishers
Ltd: Nat. Nanotech., Lahiri et al. (2010), copyright 2010. (b) and (d) From Botello-Mendez et al.
(2011). Adapted by permission of The Royal Society of Chemistry)

The atomic locations identified from scanning tunneling microscopy (Fig. 2.34(c))
confirm that the defect is composed of one octagon surrounded by a pair of pentagons
and a period of twice the unit cell vector of graphene along the defect line has been
measured (Lahiri et al. 2010). Although STM constitutes an excellent experimental tool
for identifying defects in graphene (Amara et al. 2007), the interpretation of the images
can sometimes be extremely complicated. Therefore, in order to overcome the problem
of defect identification, simulated images have been calculated from the ab initio local
density of states of an extended line of 585 defects embedded in GNRs using the
Tersoff–Hamann approximation (Botello-Mendez et al. 2011) (Fig. 2.34(d)). LDOS are
computed between 0.2–0.3 eV with respect to the Fermi energy in order to account
for an n-type doping substrate (i.e., Ni in the experiment). It is noteworthy that the
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ab initio STM image for the extended line of 585 defects (Fig. 2.34(d)) exhibits a quite
good agreement with the experimental one (Fig. 2.34(c)).

Various architectures of an extended line of defects – embedded in graphene, and
exhibiting pentagonal, heptagonal, and octagonal rings of carbon – were explored using
first-principles simulations (Botello-Mendez et al. 2011). Three different stable atomic
configurations were predicted to arise from the reconstruction of periodic divacancies.

Indeed, different divacancy defects with various orientations relative to the zigzag
direction of graphene could be formed (Fig. 2.35). The first option is to remove car-
bon dimers oriented perpendicularly to the zigzag chains (Fig. 2.35(a)). Intuitively,
it is expected that after geometrical relaxation, the structure would be composed of

(a)

a

(b)

(c)

divacancy

divacancy

divacancy

SW

SW

d5d7

585

t5t7

Figure 2.35 Formation of extended lines of defects in graphene through the reconstruction of
divacancies. Lines of defects are formed after the removal of carbon dimers, either (a)
perpendicular or (b) with a 30◦ deviation from the zigzag direction. These extended arrays of
defects are called (a) d5d7 (double-5 double-7 structure) and (b) 585 (pentagon–octagon–
pentagon structure), respectively. Further displacement of one graphene side by 1

2 a (black arrow
in b) is required to relax the 585 grain boundary as observed in Lahiri et al. (2010). An extended
array of defects composed of a series of three pentagons and three heptagons (t5t7 – triple-5
triple-7 structure) is also topologically possible when the divacancy reconstruction occurs along
with a SW transformation (c). (Images from Botello-Mendez et al. (2011). Adapted by
permission of The Royal Society of Chemistry)
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two pentagons separated by an octagon, also perpendicular to the zigzag orientation.
However, the energy needed to achieve such a large strain prevents the octagons from
being formed. Instead, a C–C bond rotation (as in a Stone–Wales defect) is needed
to relieve the strain, as illustrated by the d5d7 structure in Fig. 2.35(a). The second
option consists in removing the carbon dimers tilted 30◦ from the zigzag orientation of
graphene, resulting in an alternated series of octagons and two pentagons sharing a same
side, as represented by the 585 structure in Fig. 2.35(b).

A less strained 585 structure could be obtained by displacing one of the two graphene
domains connected to the grain boundary by 1

2 a, where a is the lattice parameter of
graphene. Such a grain boundary structure is the one observed during the epitaxial
growth of graphene (Lahiri et al. 2010) (Fig. 2.34(c)). An alternative array of defects
could be reconstructed from divacancies by means of a SW transformation, thus leading
to a triple-pentagon triple-heptagon (t5t7) structure as depicted in Fig. 2.35(c). Such a
defect shape has already been suggested as a stable topology for the reconstruction of
an isolated divacancy in graphene (Amorim et al. 2007).

The energetic stability and the ground-state properties of these lines of defects
arising from the reconstruction of divacancies have also been investigated using the
DFT formalism (Botello-Mendez et al. 2011). LDA calculations predict that the most
stable reconstruction of an array of divacancies is a line of t5t7 defects (Fig. 2.35(c)),
whereas the GGA calculations predict that the most stable reconstruction is the 585
array of defects (Fig. 2.35(b)). Such a discrepancy can be easily explained by the
fact that LDA calculations tend to underestimate the lattice parameters of graphene,
while GGA calculations tend to overestimate these values. It is also noteworthy that
the experimental observation of the 585 reconstruction is constrained by the specific
synthesis conditions (Lahiri et al. 2010). However, in a top-down approach, e.g.,
vacancy creation through irradiation, the reconstruction would be either with the t5t7 or
d5d7 line of defects, and would be most probably driven by the kinetics and interaction
with the substrate.

In order to verify the potential advantages of these 1D arrays of defects in nano-
electronics, electronic band structure calculations have been performed (Botello-
Mendez et al. 2011; Lahiri et al. 2010). The presence of 5- and 7-member rings
embedded into the sp2-hybridized carbon network is found to induce an unexpected
always-metallic behavior (Terrones, Terrones, Banhart et al. 2000). Indeed, an almost
flat band, similar to that of zigzag-edged GNR, is present close to the Fermi energy
(Fig. 2.36(a)), resulting in a spike in the DOS at the Fermi level. The corresponding
electronic states from the band close to the Fermi level produce a local doping in a
narrow stripe along the line defect, thus creating a perfect one-dimensional metallic
wire embedded in the perfect graphene sheet. Such a well-defined atomic structure of
a nanowire embedded in an atomically perfect graphene sheet can help to address, in a
practical way, the formation of well-controlled contacts at the atomic level, as required
for the future development of molecular electronics.

In the case of the extended line of t5t7 defects, extra conduction channels are
induced (Botello-Mendez et al. 2011) and localized states could enhance the chemical
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Figure 2.36 Ab initio electronic band structure of the 585 extended one-dimensional defect
(a), exhibiting a flat band close to the Fermi level in the first half of the Brillouin zone. (b) Model
illustrating the enhancement of chemical reactivity along the extended line of t5t7 defects
allowing new molecular-sensing self-assembling possibilities. ((a) Reprinted by permission from
Macmillan Publishers Ltd: Nat. Nanotech., Lahiri et al. (2010), copyright 2010. Image (b) by
and courtesy of Andrés (Botello-Mendez et al. 2011))

reactivity of graphene. This extended defect opens the possibility of arranging molecules
or atoms in a linear fashion, thus behaving as a 1D template (Fig. 2.36(b)). Such
quasi-one-dimensional carbon-based metallic wires could have a big impact on the
future development of smaller functional devices and may form building blocks for
atomic-scale, all-carbon electronics.

2.6.3 Structural Defects at Graphene Edges

As illustrated in the previous sections, the atomic structure of the edges is responsible to
a large extent for the electronic properties of graphene nanoribbons. In many nanoscale
materials, the surfaces and the edges fix the symmetry inside the “bulk” and determine
the corresponding low-energy electronic structure. In GNRs, the edges also turn out to
rule the appearance of flat π bands at the Fermi level and ferromagnetic ordering of π
electrons along the ribbon axis. In aiming at future applications of graphene in electronic
and/or spintronic devices, the precise control of the edges is crucial.

Although the physics of the graphene edges has been intensively investigated in the
literature, only very few works consider the possibility for the edge to relax toward
geometries other than the standard mono-hydrogenated zigzag and armchair patterns
(Koskinen et al. 2008; Wassmann et al. 2008). In addition, experimental studies of
the graphene edge are even scarcer due to the difficulty in resolving the terminations
atomically the without perturbing their intrinsic structures (Girit et al. 2009; Meyer et al.
2008). Such a lack of edge characterization continues to prevent a deep understanding
of many experimental results. Indeed, despite theoretical calculations that predict nearly
flat bands around the Fermi level for the zigzag edges, the experimental measurements
reveal semiconducting behavior for all tested GNRs. Besides, the measured transport
properties of graphene ribbons seem to be independent of their crystallographic ori-
entation (Han et al. 2007; Li, Muller et al. 2008; Wang et al. 2008). Many reasons
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related to sample preparation (e.g., presence of adsorbates, substrate effects, etc.) or
to the appearance of mobility gaps induced by edge disorder have been put forward to
explain this disagreement between theory and experiments. Presently, the graphene edge
structure remains a widely debated issue (Dubois 2009).

2.6.4 Defects in Carbon Nanotubes

In the previous sections, only the geometrical aspect and the local environment of carbon
nanotubes have been investigated. As in graphene, the intrinsic honeycomb network
of carbon nanotubes is probably not as perfect and ideal as previously considered.
Indeed, defects like pentagons, heptagons, vacancies, or dopants could certainly also be
found, thus modifying dramatically the electronic properties of these 1D nanosystems.
Introducing defects in the carbon network is thus an interesting way to tailor the
intrinsic properties of the tube, in order to propose novel potential applications in
nanoelectronics.

Thanks to the sensitivity of the metallic/semiconducting character of carbon nan-
otubes to their chirality, they can be used to form all-carbon metal–semiconductor,
semiconductor–semiconductor, or metal–metal junctions. These junctions have great
potential for applications since they are of nanoscale dimensions and made entirely
of carbon. In constructing this kind of on-tube junction, the key is to seamlessly join
together two half-tubes of different helicity, indexhelicity@helicity (see also chiral-
ity) , without too much cost in energy or disruption in structure. The introduction of
pentagon–heptagon pair defects into the hexagonal network of a single-wall carbon
nanotube has been shown to change the helicity of the carbon nanotube and funda-
mentally alter its electronic structure (Charlier et al. 1996; Chico et al. 1996; Dunlap
1994; Lambin et al. 1995; Saito et al. 1996). Both the existence of such atomic-level
structures and the measurement of their respective electronic properties have already
been resolved experimentally (Ouyang et al. 2001a; Yao et al. 1999).

The defects, however, must induce zero net curvature to prevent the tube from flaring
or closing. The smallest topological defect with minimal local curvature (hence less
energy cost) and zero net curvature is a pentagon–heptagon pair. When the pentagon is
attached to the heptagon, as in the aniline structure, it only creates topological changes
(but no net disclination), which can be treated as a single local defect. Such a pair will
create only a small local deformation in the width of the nanotube, and may also generate
a small change in the helicity, depending on its orientation in the hexagonal network.
Figure 2.37 depicts the connection, using a single 5–7 pair, between two nanotubes
exhibiting different electronic properties. As mentioned above, the (8, 0) nanotube has
a 1.2 eV gap in the tight-binding approximation, and the (7, 1) tube is a metal (although
a small curvature-induced gap is present close to the Fermi energy).

Joining a semiconducting nanotube to a metallic one, using a pentagon–heptagon
5–7 pair incorporated in the hexagonal network, can thus be proposed as the basis of a
nanodiode (or molecular diode) for nanoelectronics. The system illustrated in Fig. 2.37
forms a quasi-1D semiconductor–metal junction, since within the band-folding picture



64 Electronic Properties of Carbon-Based Nanostructures

Figure 2.37 (a) Atomic structure of an (8, 0)/(7, 1) intramolecular carbon nanotube junction. The
large light-gray balls denote the atoms forming the heptagon–pentagon pair. (b) The electron
density of states related to the two perfect (8, 0) and (7, 1) nanotubes is illustrated with thick
black and thin gray lines, respectively. (Adapted with permission from Chico et al. (1996).
Copyright (1996) American Physical Society. By courtesy of Leonor Chico)

the (7, 1) half-tube is metallic and the (8, 0) half-tube is semiconducting. This led to
the prediction that these defective nanotubes would behave as the desired nanoscale
metal–semiconductor Schottky barriers, semiconductor heterojunctions, or metal–metal
junctions with novel properties, and that they could act as building blocks in future
nanoelectronic devices.

The beam of a transmission electron microscope can be used to irradiate nanostruc-
tures locally. Covalently connected crossed single-wall carbon nanotubes can thus be
created using electron beam welding at elevated temperatures (Terrones, Terrones, Ban-
hart et al. 2000; Terrones et al. 2002). These molecular junctions of various geometries
(“X,”“Y,” and “T”) are found to be stable after the irradiation process. To study the
relevance of some of these nanostructures, various models of ideal molecular junctions
can be generated. The presence of heptagons is found to play a key role in the topol-
ogy of nanotube-based molecular junctions. Figure 2.38 depicts an ideal “X” nanotube
connection, where a (5, 5) armchair nanotube intersects a (11, 0) zigzag tube. In order
to create a smooth topology at the molecular junctions, six heptagons are introduced at
each crossing point (Terrones et al. 2002).

The local densities of states of the metallic (5, 5) nanotube and the (semiconducting)
(11, 0) nanotube are illustrated in Fig. 2.38. The LDOS of the regions where the two
nanotubes cross reveals an enhancement of the electronic states at the Fermi level. It
is also notable that the presence of localized donor states in the conduction band (as
indicated by arrows) is caused by the presence of heptagons. The novel small peak on
the valence band (also shown by an arrow), close to the Fermi energy, can probably
be attributed to the high curvature of the graphitic system (Terrones et al. 2002). The
van Hove singularities present in the LDOS of the two achiral nanotubes are dramati-
cally less pronounced in the junction region (Fig. 2.38), thus illustrating a clear loss of
the one-dimensional character. Local density of states of CNT-based junction models
suggests their importance in electronic device applications and paves the way towards
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Figure 2.38 Atomic structure (a) and electronic properties (b) of an ideal X-junction, created by
intersecting an (5, 5) tube with an (11, 0) tube. (b) shows the one-dimensional electronic densities
of states of a semiconducting (11, 0) nanotube (light curve), a metallic (5, 5) nanotube (dashed
curve) and the average over the intersecting region of the molecular junction (black curve). The
Fermi level is positioned at the zero energy. Localized states due to the presence of defects are
indicated by arrows. (Adapted with permission from Terrones et al. (2002). Copyright (2002) by
the American Physical Society)

Figure 2.39 Nonchiral Haeckelite nanotubes of similar diameter (1.4 nm): (a) nanotube segment
containing only heptagons and pentagons paired symmetrically; (b) nanotube segment exhibiting
repetitive units of three agglomerated heptagons, surrounded by alternating pentagons and
hexagons; (c) nanotube segment containing pentalene and heptalene units bound together and
surrounded by six-membered rings. (Adapted with permission from Terrones, Terrones,
Hernández et al. 2000. Copyright (2000) by the American Physical Society)

controlled fabrication of nanotube-based molecular junctions and network architectures
exhibiting exciting electronic and mechanical behavior.

To close this subsection, we note that following the previous idea of introducing
pentagons and heptagons into hexagonal networks, a novel class of perfect crystals
– consisting of layered sp2-like carbon and containing periodic arrangements of
pentagons, heptagons, and hexagons – has been suggested theoretically (Terrones,
Terrones, Hernández et al. 2000). These sheets are rolled up so as to generate single-
wall nanotubes (Fig. 2.39), which resemble locally the radiolaria drawings of Ernst
Haeckel (1862).

These ideally defective tubes exhibit intriguing electronic properties: calculations
of local density of states of Haeckelite tubes reveal an important enhancement of
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electronic states close to the charge neutrality point, independent of orientation, tube
diameter, and chirality. Considering the possible metallic properties of Hackelites, these
new nanostructures should offer different advantages compared to carbon nanotubes
in applications (i.e., no helicity selection for electronic interconnect applications). Our
calculations also reveal that these Haeckelite structures are more stable than C60, and
present cohesive energies of the order of 0.3–0.4 eV/atom with respect to graphene,
allowing the potential synthesis of this new class of nanotubes. Although these ideal
topologies have never been synthesized, the carbon coiled nanostructures have been
explained by rolling up strips mainly made of heptagons, pentagons, and hexagons,
with a predominance of nonhexagonal rings (Biró et al. 2002).

2.7 Further Reading and Problems

• General suggested references on carbon nanotubes include Saito et al. (1998) and
Charlier et al. (2007).

• For a very detailed review on the low-energy (k·p) approximation applied to graphene
and carbon nanotubes, see Marconcini & Macucci (2011).

• A very detailed account of the boundary conditions in a terminated graphene network
is presented in Akhmerov (2011). Furthermore, a very nice presentation on graphene
zigzag edge states can be found in Wimmer (2009).

Problems

2.1 Non-orthogonal tight-binding scheme and graphene dispersion. Follow Section
2.2.1 and re-derive the dispersion relation for graphene without neglecting the overlap
s = 〈pA

z |pB
z 〉 between neighboring pz orbitals. Compare the results obtained with and

without the approximation.

2.2 Electronic structure of graphene and boron nitride: the π−π∗ model. Using a
simple tight-binding approach (one π orbital per atom in a honeycomb lattice), the
following TB Hamiltonian can be constructed:

H =
(
εA γ0f(k)

γ0f∗(k) εB

)
,

where εA and εB are the two onsite energies of the two corresponding atoms present in
the unit cell, γ0 is the hopping integral, and f(k) is the sum of the nearest-neighbor phase
factors and is equal to eikxa/

√
3 + 2e−ikxa/2

√
3 cos (kya/2) (Wallace 1947).

Solve the eigenvalue problem when εA = εB (graphene) and when εA �= εB (boron
nitride sheet, Bernal graphite, etc.).

2.3 Electronic structure of graphene: a tight-binding study. Most tight-binding studies
use a first-nearest-neighbors π−π∗ model to describe the electronic properties of
graphene. However, such an approximation produces a perfectly symmetric band
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structure (cf. previous exercise). In order to recover the existing asymmetry between
valence (π ) and conduction (π∗) bands, a third-nearest-neighbors π−π∗ model has to
be used. Such a TB model is composed of a single onsite term εpz and three hopping
terms γ (1)

0 , γ (2)
0 , and γ (3)

0 corresponding to the interaction between first-, second-,
and third-nearest neighbors, respectively. The corresponding Hamiltonian can thus be
expressed as follows:

H =
∑

i
εpz |φi〉〈φi| +

∑
i,<j,k,l>

(
γ

(1)
0 |φj〉〈φi| + γ (2)

0 |φk〉〈φi| + γ (3)
0 |φl〉〈φi| + h.c.

)
,

with εpz = 0.6 eV, γ (1)
0 = − 3.1 eV, γ (2)

0 = 0.2 eV, and γ (3)
0 = −0.16 eV. The sums on

index i run over all carbon pz orbitals. The sums over j, k, l indices run over all pz orbitals
corresponding, respectively, to first-, second-, and third-nearest neighbors of the ith pz
orbital. (For more detailed information, see Lherbier et al. (2012).)

Compare the electronic band structures of graphene along high symmetry lines using
both the first-nearest-neighbors and the third-nearest-neighbors π−π∗ models.

2.4 Electron–hole symmetry in bipartite lattices. Consider a generic bipartite lattice,
i.e., one that can be divided into two lattices where all the sites of one lattice have nearest
neighbors that belong to the other.
(a) Arrange the basis vectors spanning the Hilbert space in such a way that all the

orbitals corresponding to sublattice A come first. By assuming that only hoppings
connecting sites of different sublattices are allowed, write a generic form for the
Hamiltonian in block-matrix form.

(b) Use the previously obtained form of the Hamiltonian to show that if E is an
eigenvalue of the Schrödinger equation, then −E is also an eigenvalue and that
therefore there is particle–hole symmetry.

(c) Consider a graphene network with a line defect as shown in Fig. 2.34(b). Say if the
bipartite nature of the graphene lattice is preserved by this defect. What can you
conclude on the electron–hole symmetry of the system with the defect?

2.5 Electron–hole symmetry in finite systems. As noted in Section 2.2.1, the Hamil-
tonian is said to have electron–hole symmetry if there is a transformation, P , such that
P†HP = −H. This implies that if � is an eigenstate of H with a positive energy E
(electron function), then P� is also an eigenstate with energy −E. For the case of a
finite size system such as a ribbon, the transformation must also be compatible with the
boundary conditions. Can you mention one transformation that satisfies both require-
ments, independently of the edge termination? (For further reading, see Akhmerov &
Beenakker (2008).)

2.6 Edge states of zigzag graphene nanoribbons.
(a) Consider a semi-infinite graphene sheet with a zigzag edge. Within a simple π

orbitals Hamiltonian show that there is a normalizable solution for E = 0 which
corresponds to a state localized at the edges. How does the decay length of this
edge state (in the direction perpendicular to the edge) depend on the k vector?
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(b) Repeat the previous point for a zigzag graphene nanoribbon of finite width.
(c) Find an alternative solution to the previous two points by starting from the effective

Dirac Hamiltonian and by imposing appropriate boundary conditions.

2.7 Structural parameters and Brillouin zone of carbon nanotubes.
(a) Demonstrate the expressions for the structural parameters of CNTs given in

Table 2.1.
(b) Consider (5, 5) and (6, 3) nanotubes. Determine their structural parameters, recip-

rocal basis vectors and their Brillouin zones.

2.8 Zone-folding approximation for carbon nanotubes.
(a) Re-derive by your own method the rule for metallicity of an SWNT within the

zone-folding approximation.
(b) Analyze the case of semiconducting nanotubes and derive an expression for their

bandgap (Eq. 2.44).
(c) Choose a set of four different nanotubes (including zigzag, armchair, and chiral),

determine their structural parameters, and draw the associated cutting lines in
reciprocal space. Are they metallic or semiconducting?

2.9 Ratio of metallic to semiconducting carbon nanotubes. Within the zone-folding
approximation, one-third of carbon nanotubes are metallic. To demonstrate this state-
ment:
(a) Determine the number of all the possible nanotubes up to (n, n), N.
(b) Determine the ratio between the total number of metallic nanotubes up to (n, n),

Nm, and N. Assuming a random distribution of chiralities and large enough n, this
gives the ratio of metallic to semiconducting nanotubes.

2.10 Flat bands in carbon nanotubes and trigonal warping corrections. If you exam-
ined carefully the dispersion relation for a (10, 0) nanotube in Fig. 2.24, you might have
noticed the appearance of flatbands located at ±γ0. Here, we examine this in more detail.
(a) Plot the dispersion relation of bulk graphene (3D plot of E(kx, ky)) and visualize

the constant energy lines.
(b) Plot graphene’s isoenergy lines in k-space for different values of E from zero up

to a few eV. Observe how these lines deviate from circles as the energy is shifted
away from the Dirac point and try to conclude why these flat bands appear only
for some CNTs.

2.11 Bilayer graphene and trigonal warping effects. In this exercise, we consider an
effective Hamiltonian for bilayer graphene with Bernal stacking. The unit cell contains
two inequivalent sites labeled as A1, B1 on the top layer and A2, B2 on the bottom layer.
Their arrangement is such that atom B1 is on top of atom A2. Following (McCann,
Kechedzhi et al. 2006), By indexing the wavefunctions � = (ψA1,ψB2,ψA2,ψB1)T for
the K+ valley and � = (ψB2,ψA1,ψB1,ψA2)T for the K− valley, one can write a low-
energy effective Hamiltonian as
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H(k) = ξ

⎛⎜⎜⎝
0 v3π 0 vπ†

v3π
† 0 vπ 0

0 vπ† 0 ξγ1
vπ 0 ξγ1 0

⎞⎟⎟⎠ ,

where ξ = 1(−1) for valley K+(K−), π = px + ipy, v = (
√

3/2)aγ0/h̄, v3 =
(
√

3/2)aγ3/h̄, and a is the graphene lattice constant. The hopping parameters take the
values γ0 = 3.16 eV, γ1 = 0.39 eV, and γ3 = 0.315 eV.
(a) Calculate and plot the energy dispersion for this model of bilayer graphene with

and without the parameter γ3. The hopping parameter γ3 is responsible for the
trigonal warping effects commented on in Section 2.2.3.

(b) Repeat the previous exercise for the density of states. In which energy range can
trigonal warping be neglected?

(c) What would happen if you broke the symmetry between the two graphene sheets?

** Additional exercises and solutions are available at our website.



3 The New Family of Two-Dimensional
Materials and van der Waals
Heterostructures

3.1 Introduction

Purely two-dimensional (2D) crystals are a subclass of nanomaterials that exhibit
interesting physical characteristics due to the quantum confinement of their electrons.
Graphene was the first to be isolated by exfoliating single layers from a graphite crystal
using Scotch Tape technique (Novoselov, Geim et al. 2005). This original and efficient
method was also applied to other materials with layered structures (Novoselov et al.
2005), creating a new family of atomically thin crystals. At present, the existence
and the stability under ambient conditions of more than a few dozens of different 2D
crystals have been reported, including hexagonal boron nitride (h-BN), transition metal
dichalcogenides (MoS2, MoSe2, WS2, WSe2, NbSe2, etc.), thin oxide layers (TiO2,
MoO3, WO3, etc.), silicene, germanene, phosphorene, borophene, arsenene, stanene,
etc. These novel 2D systems also exhibit exotic properties suggesting new possible
applications. For instance, in the context of electronic applications, research aims to
develop devices built entirely out of ultrathin, flexible, and transparent 2D materials.
The energy bandgap is one of the most important properties in any electronic material
and can range from zero (in metals) to several electron-volts (in insulators). In order to
develop the widest possible range of electronic devices, the largest range of bandgap
energies should be available, which is the case in the 2D family where the bandgap
values available range from zero (in graphene, metallic dichalcogenides, etc.) to more
than 5 eV (h-BN), passing through 0.1–1 eV (in silicene, germanene, etc.) and 1–2 eV
(in phosphorene, semiconducting dichalcogenides, etc.). Furthermore, depending on
their specific electronic band structures, these 2D materials should be useful in a variety
of settings, from infrared optoelectronics to high-mobility transport. Indeed, unlike
their multilayered counterparts that exhibit an indirect bandgap, the bandgap of these
2D crystals is frequently found to be direct, a significant benefit for optoelectronic
applications (Churchill and Jarillo-Herrero 2014) (see Fig. 3.1).

Looking beyond 2D, these isolated atomic monolayers can also be stacked on top
of each others (Geim & Grigorieva 2013), creating layer-by-layer meta-materials
characterized by weak interplanar van der Waals (vdW) interactions. Although lim-
ited to the stacking of only a few elemental monolayers, several vdW superlattices
have recently been fabricated experimentally with perfect precision in the direction
perpendicular to the plane (Haigh et al. 2012; Withers et al. 2015). These novel
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Figure 3.1 Comparison of the bandgap values for different 2D material families used for
nanoelectronics and optoelectronics applications. The crystal structure is also displayed to
highlight the similarities and differences between the different families. The range of values for
each material can be achieved through a variety of means. For example, it is expected that
variations in an applied perpendicular electric field, film thickness (number of layers), or
straining or alloying could modify the bandgap value. (Adapted by permission from Macmillan
Publishers Ltd: Nature Nanotechnology, Churchill and Jarillo-Herrero, copyright (2014) and
Nature Photonics, Castellanos-Gomez, copyright (2016))

vdW superlattices also reveal unusual properties and new phenomena. Indeed, several
experiments have clearly overruled the possibility of considering the properties of
the resulting material as the superposition of the properties of its components. For
example, when a MoS2–WSe2 staggered gap junction (separated by a few h-BN layers)
is excited with a laser energy lower than the larger bandgap, electron–hole separation
is surprisingly observed with the two charge carriers being collected in different layers,
indicating that an exciton state with electrons and holes in different layers could be
the excitonic ground state (Fang et al. 2014; Hong et al. 2014). Consequently, new
synergetic properties, which cannot be trivially extrapolated are expected to arise in
these novel vdW materials. In addition, these fascinating properties can be tuned on
demand by modifying both the type of 2D crystals involved in the stack and the
chosen sequence. The recent interest in vdW superlattices is based on this possibility
of tuning their properties leading to promising potential in different domains of appli-
cations, such as electromechanics (flexible and transparent electronics), optoelectronics
(solar cells, light-emitting diodes), spintronics, energy storage (lithium-ion batteries,
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Figure 3.2 Schematic of a van der Waals heterostructure, which is composed by direct stacking of
various individual 2D atomic layers in order to control the intrinsic properties of the complete
atomic assembly.

hydrogen storage), thermoelectrics, etc. (Fogler et al. 2014; Furchi et al. 2014; Georgiou
et al. 2013; Lee et al. 2014). Although the experimental fabrication of a desired vdW
superlattice is still a challenging issue, this research field will remain active for quite
a long time thanks to the virtually almost infinite numbers of possible combinations of
2D layers to create new vdW systems with promising properties that can be accurately
predicted using state-of-the-art quantum simulations (see Fig. 3.2).

The goal of the present chapter consists in overviewing the electronic properties of the
most important representatives of the 2D materials family, including also some review of
some novel electronic and optoelectronic properties in van der Waals heterostructures.

3.2 Hexagonal Boron Nitride Monolayer

In the bulk phase, h-BN is a layered, wide band-gap semiconductor (Eg > 6 eV) (Watan-
abe et al. 2009) whose exceptional optical properties (intense luminescence signal)
have recently attracted a growing interest (Bourrellier et al. 2016; Jacob 2014). From
a structural point of view, boron nitride and graphene monolayers are very similar (see
Fig. 3.3(a)). Boron and nitrogen are neighbors of carbon in the periodic table of ele-
ments, having respectively five and seven as atomic number. The boron–nitrogen bond
distance (1.45 Å) is slightly greater than the carbon–carbon one in graphene (1.42 Å).
The two hexagonal sublattices are obvious in h-BN since boron atoms are present on
one sublattice and nitrogen on the other (see Fig. 3.3(a)).

Following the same approach as for graphene, the electronic properties of h-BN can
be explained using a similar tight-binding model. Indeed, considering a single pz orbital
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per site and neglecting every interaction further away than nearest-neighbor ones, the
solution for the energy of graphene can be expressed as:

E = 1
2N

[
HAA + HBB ±

√
(HAA − HBB)2 + 4|HAB|2

]
(3.1)

where N is the number of unit cells in the crystal. This expression can be easily simpli-
fied when HAA is equal to HBB by symmetry: E = 1

N [HAA ± |HAB|].
However, this simplification made for graphene when HAA and HBB are identical is

no longer valid for h-BN. Therefore, the previous expression for the energy becomes

E = 1
N

[
Em ± 1

2

√
E2

g + 4|HAB|2
]

(3.2)

where Em = (HAA + HBB)/2 and Eg = |HAA − HBB| is the bandgap.
Consequently, in order for the conduction and valence bands to meet at one point, the

expression under the square root has to cancel, which is impossible since |HAB|2 remains
always positive or equal to zero. Therefore, the simple fact that two different species
compose h-BN instead of a single one (as in graphene) leads to the opening of a bandgap
(see Fig. 3.3(b)). As mentioned in the Chapter 2, one way to open a gap in graphene is
to break its lattice symmetry, making A and B sublattices unequivalent. In Fig. 3.3(b),
the bandgap of h-BN is found to be direct while indirect in the bulk, as also confirmed
recently with a detailed account of its origin by comparing the effect of different stacking
sequences (Sponza et al. 2018). Using DFT techniques, this bandgap is estimated to be
4.7 eV, which is clearly underestimated compare to experimental values (6 eV) due to
strong approximations used in the ab intio calculation as first explained by many-body
corrections in quasiparticle band structure for h-BN (Blase et al. 1995). Finally, the
inclusion of the electron–hole interaction is crucial for the correct description of the
momentum-dependent dispersion of the excitations, allowing complete explanation of
the optoelectronic properties of h-BN (Sponza et al. 2018).

Figure 3.3 Boron nitride hexagonal lattice (a) where dark and light gray dots stands for nitrogen
and boron, respectively. Direct lattice vectors (black arrows), interatomic distances, as well as
the two hexagonal sublattices (dark and light gray triangles) are represented. The corresponding
Brillouin zone (b) illustrating the reciprocal lattice vectors; the high-symmetry k points 
, M, K;
and K′; and the ab intio electronic band structure of h-BN along specific high-symmetry lines are
also presented.
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Bulk or few-layers h-BN are also extraordinary substrates for graphene because
their atomically smooth surface is relatively free of dangling bonds and charge
traps (Dean et al. 2010). Thanks to the lattice constant of hexagonal boron nitride,
which is similar to that of graphite and its large electrical bandgap, graphene devices on
h-BN substrates exhibit mobilities and carrier inhomogeneities that are almost an
order of magnitude better than devices on conventional SiO2. Indeed, mobilities
measured for graphene on SiO2 are of the order of ∼10,000 cm2 V−1 s−1 (Tan et al.
2007) while they are of ∼100,000 cm2 V−1 s−1 (Bolotin et al. 2008) for suspended
graphene (at room temperature). However, the electronic quality of CVD graphene
has been demonstrated to critically depend on the transfer method, and a dry transfer
technique for graphene crystals that yields devices encapsulated in hexagonal boron
nitride(h-BN) has been proposed leading to carrier mobilities up to ∼350,000 cm2

V−1 s−1 (at room temperature) (Banszerus et al. 2015). Consequently, it is mandatory
to lay graphene on an extremely flat substrate and to protect its surface from
processing-related contaminations to obtain high-performance graphene-based elec-
tronic devices.

Also, graphene on h-BN can be considered as the first model for vdW heterostruc-
ture (Geim & Grigorieva 2013) as the superlattice potential, which is induced by lattice
mismatch and crystal orientation, gives rise to various novel quantum phenomena, such
as the Hofstadter’s butterfly and the fractal quantum effect in Moiré superlattices (Dean
et al. 2013; Ponomarenko et al. 2013). In particular, for graphene placed on h-BN, the
specific difference between their lattice constants and crystallographic misalignment
generate a hexagonal periodic structure known as a Moiré pattern (Fig. 3.4(a)). The
resulting periodic perturbation, usually referred to as a superlattice, acts on graphene’s
charge carriers and leads to multiple minibands (Wallbank et al. 2013) and the gener-
ation of secondary Dirac-like spectra (Fig. 3.4(b)). These newly generated secondary
Dirac cones appear as pronounced peaks in resistivity, and are crucial for understanding
intriguing phenomena such as quantum Hall effects as a function of charge carrier
density in this system (Ponomarenko et al. 2013). Consequently, graphene-h-BN
superlattices provide a way of studying the rich physics expected in incommensurable
quantum systems, and illustrate the possibility of controllably modifying the electronic
spectra of two-dimensional atomic crystals by varying their crystallographic alignment
within vdW heterostuctures.

For example, twisted bilayer graphene rotated by exactly 30◦ has been grown up
to a millimeter scale on a silicon carbide surface while maintaining the specific
rotation angle, thus creating a two-dimensional quasicrystal without translational
symmetry (Ahn et al. 2018). Multiple Dirac cones replicated with the 12-fold rotational
symmetry have been observed in angle-resolved photoemission spectra, revealing
anomalous strong interlayer coupling with quasiperiodicity (Ahn et al. 2018). This
specific bilayer graphene system offers a new type of quasicrystal, which unites the
dodecagonal quasicrystalline nature and graphene’s relativistic properties. Indeed,
the corresponding electronic spectrum consists of resonant states labeled by 12-
fold quantized angular momentum, together with the extended relativistic states.
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Figure 3.4 Graphene-hexagonal boron nitride bilayers. (a) Moiré pattern induced by the stacking
of these two-hexagonal networks presenting a small lattice mismatch. (b) Ab initio electronic
band structures of graphene (G) and graphene on h-BN, (G-BN) illustrating the presence of
secondary Dirac cones (i.e., black circle) in both conduction and valence bands, as evidenced in
the schematic graphene spectrum at the edge the superlattice Brillouin zone (black hexagon).
(The scheme in (b) is reproduced with permission from Wallbank et al. (2013). Copyright (2013)
by the American Physical Society)

The resulting quasi-band structure is composed of the nearly flat bands with spiky
peaks in the density of states, where the wave functions exhibit characteristic patterns,
which fit to the fractal inflations of the quasicrystal tiling (Moon et al. 2019).

Unconventional superconductivity (which cannot be explained by weak electron-
phonon interactions) has also been observed in a two-dimensional superlattice
created by stacking two sheets of graphene that are twisted relative to each other
by a small angle of ∼1.1◦ (Cao, Fatemi, Fang et al. 2018). For such a magic twist angle,
the electronic band structure of this twisted bilayer graphene exhibits flat bands near
zero Fermi energy, resulting in correlated insulating states at half-filling (Cao, Fatemi,
Demir et al. 2018). Applying hydrostatic pressure increases the coupling between the
layers and can thus be used to tune the phase diagram of twisted bilayer graphene,
shifting the superconducting transition to higher angles and somewhat higher tempera-
tures (Yankowitz et al. 2019). Several theoretical models are presently trying to explain
this recently detected unconventional superconducting phase in twisted graphene
bilayers based on topological superconductivity (Xu & Balents 2018), phonon-mediated
superconductivity (Wu et al. 2018), or even complex correlation effects and charge
density waves (Isobe et al. 2018; Peltonen et al. 2018; Po et al. 2018). However, the
emergence of these flat bands have recently been demonstrated not to be just a matter of
engineering material properties but directly related to the flatness of the lowest Landau
level (Tarnopolsky et al. 2019). Consequently, this unconventional superconductivity
observed in twisted bilayer graphene with small magic angle (Cao, Fatemi, Fang et al.
2018) has probably deep hidden connections to quantum Hall effect and could possibly
occur in other van der Waals layered systems.
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3.3 Two-Dimensional Transition Metal Dichalcogenides

In analogy to graphite and hexagonal boron–nitride, transition metal chalcogenides
(TMDs) are layered materials in their bulk form with weak interlayer van der Waals
interactions. Used for its catalytic properties and for dry lubrication, one of the most
well-known TMD, bulk MoS2, is known to be an indirect gap semiconductor (gap
∼1.3 eV) (Wilson & Yoffe 1969). In 2005, mechanical cleavage using the “Scotch-
tape technique” was applied to bulk MoS2 to fabricate a monolayer, demonstrating
the stability of this 2D crystal at ambient conditions, thus opening up the possibility
of investigating a novel and wide range of new semiconducting 2D crystals based on
TMD materials (Novoselov, Jiang et al. 2005). These atomically thin transition metal
dichalcogenides exhibit remarkable physical properties resulting from their reduced
dimensionality and crystal symmetry and which could be of value for a broad range
of applications (Wang et al. 2018). Indeed, the atomic structure of a hexagonal TMD
monolayer of the type MX2 (see Fig. 3.5(a)) is constituted by a layer of M atoms (where
M is a transition metal atom such as Mo, W, etc.) sandwiched between two layers of
X atoms (where X is a chalcogen atom such as S, Se, Te, etc.).

In bulk semiconducting TMDs, the indirect bandgap corresponds to the transition
between the valence band maximum at the center of the hexagonal Brillouin zone
(
 point) and the conduction band minimum situated nearly halfway along the 
 − K
direction (Ribeiro-Soares et al. 2014). The spin–orbit interaction in TMDs is much
stronger than in graphene due to the presence of relatively heavy elements and the
involvement of the transition metal d orbitals. In 2010, it was found that by decreas-
ing the thickness of few-layered MoS2, the band structure of the material changed to
finally become a direct gap semiconductor when thinned to a monolayer (Mak et al.
2010; Splendiani et al. 2010). The same trend applies to other monolayers of TMDs;
a direct bandgap is also measured (and predicted theoretically) for MoSe2, WS2, and
WSe2 (Fig. 3.5(c–f)) where the corresponding band extrema are located at the finite
momentum K+ and K− points of the hexagonal Brillouin zone (Fig. 3.5(b)). In summary,
with respect to the electronic structure, TMDs are indirect bandgap semiconductors in
their bulk form, but when thinned down to the limit of a single monolayer, the bandgap
becomes direct, giving rise to interband transitions in the visible to near-infrared spectral
range, thus leading to interesting optoelectronic properties. In contrast to the bulk phase,
the TMD monolayer crystal structure has no inversion center, which allows to access
a new degree of freedom of charge carriers, namely the K-valley index. In addition,
the strong spin–orbit coupling in TMD monolayers leads to a spin–orbit splitting of
hundreds meV in the valence band and a few to tens of meV in the conduction band (see
Fig. 3.5(c–f)), which allows the control of the electron spin. Consequently, a 2D crystal
lattice with broken inversion symmetry combined with strong spin–orbit interactions in
TMD leads to a unique combination of the spin and valley degrees of freedom, thus
paving the way for a new research field named “Valleytronics.”

As mentioned earlier, the presence of a direct gap in the 2D form is particularly
interesting for potential device applications because of the associated possibility
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Figure 3.5 Monolayer transition metal dichalcogenide crystal structure – MX2 (a) with M = Mo,
W and X = S, Se and (b) the corresponding hexagonal Brillouin zone. The transition metal
atoms (M) appear in dark gray, the chalcogen atoms (X) in light gray. Ab initio electronic band
structures calculated for (c) MoS2, (d) MoSe2, (e) WS2, and (f) WSe2, and showing the
underestimated DFT direct bandgap Eg at the K points (K+ or K−) and the spin–orbit splitting in
both valence and conduction bands.

for efficient light emission. In the literature, the energy states close to the K points
located at the edges of the first Brillouin zone are typically referred to as K+ and K−

valleys (see Fig. 3.6(a)), whereas the term valley is generally used to designate band
extremum in momentum space (Xiao et al. 2012). The specific optical properties of
TMD monolayers are summarized in Fig. 3.6(b). Indeed, the absorption of polarized
photons (σ+) generates carriers in the K+ valley of the reciprocal space, while similarly,
the absorption of polarized photons (σ−) generates carriers in the K− valley. The chiral
optical selection rules for interband transitions in the K± valleys can be deduced from
symmetry arguments (Wang et al. 2018), but are beyond the scope of the present chapter.
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Figure 3.6 Schematic drawing of the band edges located at the K-points in semiconducting TMD
monolayers (MX2). (a) Spin–orbit coupling (�SOC) leads to an effective locking of spin and
valley indices. (b) Valley and spin optical transition selection rules. Solid (dashed) curves denote
bands with spin down (up) quantized along the out-of-plane direction. ((a) is adapted with
permission from Xiao et al. (2012). Copyright (2012) by the American Physical Society. (b) is
adapted with permission from Wang et al. (2018). Copyright (2018) by the American Physical
Society)

In addition to the 2D character of the TMD monolayers, weak dielectric screening
from the environment yield a significant enhancement of the Coulomb interaction.
This effect results in the formation of bound electron–hole pairs (bright and dark
excitons), which dominate the optical and spin properties of this family of 2D materials
(Wang et al. 2018). The spin–orbit coupling gives rise to the two valence subbands and,
accordingly, to two types of excitons, A and B, which involve holes from the upper and
lower energy spin states, respectively. At the conduction band minimum, a smaller, but
still significant spin splitting (�SOC) is also observed (see Fig. 3.6(b)). Both the value
of the bandgap and these energy splittings due to the spin–orbit interaction strongly
depend on the nature of the MX2 material.

In conclusion, the family of semiconducting TMDs is an especially promising
platform for fundamental studies of 2D systems, with potential applications in opto-
electronics and valleytronics due to their direct bandgap in the monolayer limit and
highly efficient light-matter coupling. In addition to their optical properties, TMDs
attract also attention because of their electronic properties (Jariwala et al. 2014) as
semiconductors, they can be used to fabricate new devices, such as atomically flat
transistors (Radisavljevic et al. 2011), light-emitting diodes (Ross et al. 2014; Splendiani
et al. 2010), and other optoelectronic devices such as ultrasensitive photodetectors
(Lopez-Sanchez et al. 2013).

Monolayer TMD heterojunctions, including vertical and lateral p − n junctions, have
also attracted considerable attention due to their potential applications in electronics and
optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such
as MoS2−WSe2, offers a new band-engineering strategy for tailoring their electronic
properties (Zhang et al. 2018). Large-scale, spatially controlled synthesis of heterostruc-
tures made of single-layer semiconducting MoS2 contacting conductive graphene have
been reported (Zhao et al. 2016). These chemically assembled atomic transistors exhibit
high transconductance (10 μS), on-off ratio (∼106), and mobility (∼17 cm2 V−1 s−1).
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However, when MoS2 layers are fully encapsulated within h-BN and electrically
contacted in a multi-terminal geometry using gate-tunable graphene electrodes, elec-
tronic mobilities reaching 34,000 cm2 V−1 s−1 have been measured at low temperature,
confirming that charge carriers are mostly scattered by extrinsic interfacial impurities
rather than bulk defects (Cui et al. 2015). In addition, a large enhancement in the spin–
orbit coupling of graphene has been predicted when interfacing it with semiconducting
TMDs (Gmitra & Fabian 2015). Anisotropic spin dynamics in bilayer heterostructures
comprising graphene and MoS2 or WS2 have been demonstrated (Benı́tez et al. 2018),
leading spin lifetime to vary over one order of magnitude depending on the spin
orientation, being largest when the spins point out of the graphene plane. These findings
provide a rich platform to explore coupled spin-valley phenomena and offer novel spin
manipulation strategies based on spin relaxation anisotropy in 2D materials.

3.4 Other Two-Dimensional Materials

Over the past few years, the quest for novel 2D materials has been extremely intense,
allowing the prediction and the successful synthesis of several new atomically thin
layers in various systems. For example, silicene and germanene – the nearest cousins
of graphene – have been synthesized and present interesting electronic structures
(Cahangirov et al. 2009). In these 2D materials, the strong spin–orbit couplings can open
an energy gap in the Brillouin zone, giving silicene and germanene an advantage over
graphene in real applications. In early 2014, the existence of 2D blue phosphorene (Zhu
& Tománek 2014), and two other new 2D phases of phosphorus (Guan et al. 2014)
have been predicted. In 2015, stanene was also synthesized, and its topological aspects
have been investigated (Zhu et al. 2015). The same year, atomically thin 2D boron
polymorphs were synthesized on a silver surface (Mannix et al. 2015), revealing highly
anisotropic metal characteristics. The goal of the present section consists in reviewing
the main characteristics and advantages of all these new 2D materials regarding their
electronic properties, and for their high potential for practical applications in the field
of nanoelectronics.

3.4.1 Phosphorene

At room temperature, the most stable allotropic crystalline form of phosphorus is called
black phosphorus (Morita 1986). Its name originates from its dark appearance, directly
arising from its small electronic bandgap of ∼0.3 eV (Ehlen et al. 2016). In analogy
with graphite which is an . . .ABAB . . . stack of weakly bonded graphene sheets, the
crystalline structure of black phosphorus consists of phosphorus layers stacked on top of
each other and bound to the others by weakly-dispersive van der Waals forces (Klimeš &
Michaelides 2012). A single monolayer of black phosphorus is called phosphorene (Liu
et al. 2014), and exhibits unique properties in the 2D world, such as highly anisotropic
electrical, thermal, mechanical, and optical properties; a direct electronic gap between
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Figure 3.7 Phosphorene crystal structure (a) top and (b) side views. Phosphorus atoms appear in
gray or black depending on their relative position in the monolayer (lower or upper planes). The
a1 and a2 axes represent the armchair and zigzag directions in Phosphorene, respectively. (c) Ab
initio electronic band structures along high-symmetry lines of the corresponding Brillouin zone,
illustrating the direct bandgap (Eg) at the 
 point.

0.5 and 1.5 eV; photo-induced oxidation; and high carrier mobility (Castellanos-Gomez
2015; Favron et al. 2015). Since there are five electrons on the 3d orbitals of each
phosphorus atom, sp3-like hybridization is present within the phosphorene structure,
causing the phosphorus atoms to be arranged in a puckered honeycomb lattice formation
(see Fig. 3.7(a–b)).

Regarding its electronic properties, phosphorene is a direct bandgap semiconductor
(Fig. 3.7(c)). However, this black phosphorus material exhibits a thickness-dependent
direct bandgap that changes to 1.9 eV in a monolayer from 0.3 eV in the bulk, following
the following rule: Eg = Ebulk + 1.6 eV/N1.4, where N is the number of layers in the
system (Cai et al. 2014). Such increase in the bandgap value in monolayer phosphorene
is proposed to be due to the absence of interlayer hybridization near the top of the
valence and bottom of the conduction band (Liu et al. 2014).

Although it is one of the latest newcomers in the family of 2D materials, phos-
phorene presents potential applications in electronics and optoelectronics thanks to its
high electronic mobility and its nonzero direct electronic bandgap (Castellanos-Gomez
2015). Field-effect transistors based on few-layer black phosphorus crystal with thick-
ness down to a few nanometers have been fabricated (Li et al. 2014), exhibiting charge
carrier mobility of the order of ∼1000 cm2 V−1 s−1. However, phosphorene is unstable
in ambient conditions: it oxidizes in the presence of light and air, limiting its applications
up to now (Favron et al. 2015). In order to preserve its chemical integrity and its
intrinsic properties, encapsulating phosphorene, for example with other 2D materials,
has been proposed. Indeed, h-BN-encapsulation preserves the main electronic prop-
erties of the phosphorene monolayer, while h-BN spacers can be used to counteract
the bandgap reduction in stacked black phosphorus (Constantinescu & Hine 2016).
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However, phosphorene is exceptionally sensitive to environmental screening. For exam-
ple, h-BN-encapsulation reduces the exciton binding energy in the monolayer by as
much as 70% and completely eliminates the presence of a bound exciton in four-layer
black phosphorus (Qiu et al. 2017). Consequently, from an optoelectronic point of view,
the encapsulation does not affect the optical gap, which remains nearly unchanged, but
the nature of the excited states and the qualitative features of the absorption spectrum
are dramatically modified.

Further, a phosphorene–graphene hybrid material has been proposed as a high-
capacity anode (Sun et al. 2015) for sodium-ion batteries (which are an alternative
to lithium-ion batteries because sodium sources do not present the geopolitical issues
that lithium sources might). This hybrid material made out of a few phosphorene layers
sandwiched between graphene layers shows a specific capacity of 2440 mAh/g which
can be explained by a dual mechanism of intercalation of sodium ions along the ridges
of the phosphorene layers, followed by the formation of a Na3P alloy (Sun et al.
2015). The presence of graphene layers in the hybrid material works as a mechanical
backbone and an electrical highway, ensuring that a suitable elastic buffer space
accommodates the anisotropic expansion of phosphorene layers for stable cycling
operation. A recent theoretical work also demonstrates the importance of in-plane
contraction induced by interlayer interactions in graphene–phosphorene heterostruc-
tures (Van Troeye et al. 2018).

3.4.2 Borophene

Boron is the lightest element (lowest Z) to form extended covalent network. However,
the trivalent outer shell of boron usually forms highly delocalized bonds, where
electrons are shared among three (or more) atoms, leading to 16 reported 3D bulk
allotropes (Sergeeva et al. 2014), including the well-known phase composed of B12
icosahedral clusters (Oganov et al. 2009). Consequently, the synthesis of 2D materials
with no analogous bulk layered allotropes is a quite difficult task (Mannix et al. 2018).
Nevertheless, the synthesis of borophene monolayers via controlled atomic deposition
of boron atoms on a silver surface has been reported (Feng et al. 2016, Mannix et al.
2015). Various 2D phases were observed, depending mainly on the deposition rate and
the temperature, attesting the predicted large polymorphism of borophene. Many of
these boron monolayers contain hexagonal holes (hh) stabilizing the planar structure.
According to Penev et al. (2012), the fundamental ground state is obtained for an
hexagonal hole concentration x = 0.1 − 0.15 in B1−x hhx. Consequently, B1 hh0 is
thus the densest boron limit, which corresponds to a dense buckled monolayer of boron
atoms arranged in two interpenetrating rectangular sublattices (see Fig. 3.8(a–c), or
equivalently the buckled closed-packed triangular lattice), which was presumably one
of the phases recently synthesized (Mannix et al. 2015). The lattice parameters of the
rectangular unit cell of borophene are displayed in Fig. 3.8(a–b), i.e., (a = 1.62 Å;
b = 2.87 Å) with a buckling height of ∼0.9 Å between bottom and top boron atoms in
order to enhance the energetic stability (Lherbier et al. 2016; Zhou et al. 2014).
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Figure 3.8 Borophene crystal structure, (a–b) side and (c) top views. The unit cell contains two
boron atoms (depicted as dark and light gray spheres, respectively) and is delimited by solid lines
while the repeated cells are delimited by dashed lines. (d) Ab initio electronic band structure and
density of states (DOS) with zero energy aligned to the Fermi level (EF). The Brillouin zone is
shown in the inset. The highest group velocity (6.6 × 105 m/s) for a band crossing the Fermi
level is highlighted by a dashed line starting at 
. (e) 3D plot of the two electronic bands (only
for positive ky) crossing the Fermi level (symbolized by the semi-transparent plane) in an energy
window [−1 eV; +1 eV]. Adapted from Lherbier et al. (2016)

The electronic band structure (Fig. 3.8(d)) exhibits a strongly anisotropic metallic
character as the bands are found to be highly dispersive in the kx direction (
 − X and
Y−S) with relatively high group velocity of 6.6×105 m/s, while it appears that no bands
cross the Fermi level in the ky direction (
−Y and X−S) as reported previously (Mannix
et al. 2015). Notwithstanding, one also notes that dispersion occurs along the oblique

 − S path. This reveals that bands can actually cross the Fermi level parallel to the ky
direction in some region of the 2D Brillouin zone.

The full anisotropy of the electronic structure of borophene can be revealed by care-
fully inspecting the Fermi surface (which in 2D actually reduces to a Fermi line) as
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represented in Fig. 3.8(e). While electronic bands always cross the Fermi level for any
line parallel to kx, this is not the case for lines parallel to ky. Therefore, the electronic
transport will occur only for selective wave vectors k whose kx component belongs
to the allowed region (see Fig. 3.8(e)), defining a maximal angle (kmax

θ ) for the wave
vectors k = (kx, ky) ≡ (kr, kθ ).

Borophene was found to exhibit extremely low optical conductivities due to the
absence of interband transitions up to 3 eV (Lherbier et al. 2016). Anisotropy was
also reported for the theoretical optical conductivity showing that for an electric field
oriented along the main conductive direction, the material stays optically inactive up
to 6.5 eV. Although the exact value depends on disorder, the optical transmittances
are predicted to possibly reach 100% in the visible range, making borophene more
transparent than graphene (Lherbier et al. 2016).

The recent synthesis of borophene has clearly demonstrated the huge polymor-
phism in 2D for boron, providing unprecedented diversity in a mono-elemental 2D
system with potential applications in electronics, chemical functionalization, and
material synthesis (Mannix et al. 2018). The unique mechanical and optical properties
with anisotropic metallicity of borophene are expected to be particularly useful
when integrated into heterostructures with other 2D materials (Jariwala et al. 2017).
Incorporation of borophene in vertically stacked heterostructures could also yield
numerous benefits in nanoelectronics by providing metal-semiconductor junctions
(i.e., atomically thin Schottky diodes, tunneling transistors, etc.). Moreover, the optical
and plasmonic properties predicted for borophene (Huang et al. 2017; Lherbier et al.
2016) could provide a new metallic 2D layer to investigate lightmatter interactions
in vertical vdW heterostructures. Finally, in analogy to phosphorene, sandwiching
borophene between other 2D layers (i.e., h-BN) would induce protection from air expo-
sure while simultaneously preserving its intrinsic properties as for high-performance
graphene-based devices (Dean et al. 2010).

3.4.3 Silicene, Germanene, and Stanene

In group IV of the periodic table, elements other than carbon can also form elemental
2D materials similar to graphene, based on silicon (silicene) (Feng et al. 2012;
Vogt et al. 2012), germanium (germanene) (Dvila et al. 2014), and tin (stanene) atoms
(Zhu et al. 2015). Although these 2D allotropic forms of silicon, germanium, and tin
are characterized by a hexagonal honeycomb structure similar to that of graphene,
the latter are not flat, but rather adopt a periodically buckled topology (Grazianetti
et al. 2016) (see Fig. 3.9(a–c)). The larger bond length in silicene (∼2.3 Å) compared
with graphene (∼1.42 Å) prevents the silicon atoms from forming strong π bonds.
Consequently, the ideally flat hexagonal structure distorts in order to bring silicon
atoms closer together to enable a stronger overlap of their π -bonding pz orbitals,
resulting in a buckling (mixed sp2−sp3 hybridization), which stabilizes such a puckered
hexagonal arrangement. This vertical buckling distance δ between the top and bottom
atoms of the puckered hexagonal crystal structure (Fig. 3.9(c)) is correlated to the
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Figure 3.9 Crystal structure of silicene, germanene, and stanene (a), side (b), and top (c) views.
The unit cell contains two atoms (like in graphene), but the honeycomb lattice is buckled by a
distance δ in the out-of-plane direction depending on the nature of the group IV element. (d–f)
Ab initio electronic band structure with zero energy aligned to the Fermi level. Energy bandgaps
are too small to be visible (see text). Adapted from Zhang et al. (2017)

bond angle between the framework atoms and the hybridization of the atomic orbitals.
Consequently, the δ value increases from 0 Å in graphene to 0.45 Å in silicene, 0.7 Å in
germanene, and 0.85 Å in free-standing stanene, thus inducing an associated decrease
of the bond angle, from 120◦ (pure sp2 hybridization of C atoms) to 110◦ (almost pure
sp3 hybridization of Sn atoms) (Molle et al. 2017).

In addition to this structural buckling, the spin–orbit coupling is larger in silicon
and germanium and even more in tin with respect to carbon, leading to electronic
band structures that are slightly different from graphene (Fig. 3.9(d–f)). Indeed, when
SOC is not taken into account, silicene, germanene, and stanene are predicted to be
zero-gap semiconductors with linear dispersions near the K and K′ Dirac points and
Fermi velocities roughly half of that for graphene (6 × 105 m/s). However, when SOC
is switched on, silicene, germanene, and stanene exhibit a semiconducting behavior
(Molle et al. 2017) with bandgaps of the order of ∼1.5–2 meV, ∼25–30 meV, and
∼0.1 meV, respectively.

As a result of their buckled character, these 2D semiconductors can potentially
serve as a nanotechnology platform with multiple physical features for fundamental
research and applications such as on-demand or reconfigurable devices for electronic,
photonic, thermal, energy, mechanical, chemical, and sensor nanosystems (Molle et al.
2017). However, these narrow-bandgap 2D semiconductors have been so far only
epitaxially grown on metallic surfaces in ultrahigh vacuum (Dvila et al. 2014; Feng
et al. 2012; Vogt et al. 2012; Zhu et al. 2015), and their limited environmental stability
prevent the investigation of their intrinsic properties. Moreover, the metallic substrates
used for the epitaxial growth are known to strongly modify the electronic properties of
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silicene, germanene, and stanene. In analogy with phosphorene and borophene
previously described, sandwiching these 2D semiconductors between other 2D layers
(i.e., h-BN) would induce protection from air exposure while simultaneously preserving
their intrinsic properties which could be exploited in applications such as mid- and
near-IR optoelectronics (Castellanos-Gomez 2016; Tao et al. 2015).

Recently, interest has turned to 2D mono-elemental structures of the VA group
elements (arsenic, antimony, bismuth). Single-layered materials derived from arsenic,
antimony, and bismuth are called arsenene (Zhang et al. 2015), antimonene (Ji et al.
2016), bismuthene (Reis et al. 2017), and even tellurene (Zhu et al. 2017) from the VIA
group of elements. The transition of materials from metallic conductors to semicon-
ductors upon reduction of the number of layers and consequent optical and electronic
properties is an important aspect of these novel 2D systems, which deserves more
investigation (Pumera & Sofer 2017). Though the study of these materials is still at
the early stages, predictions and preliminary measurements of their intrinsic properties
confirm that these novel 2D monolayers are complementary to conventional layered
bulk-derived 2D materials, as summarized in a few recent reviews (Pumera & Sofer
2017; Zhang et al. 2017).

3.4.4 MXenes

A few years ago, the family of 2D materials has been significantly expanded by
introducing 2D layers of transition-metal carbides, nitrides, and carbonitrides, known as
MXenes (Anasori et al. 2015; Naguib et al. 2014). MXenes have been shown to be very
promising building blocks of an impressive number of potential applications, including
energy storage devices, such as Li-ion batteries and electrochemical capacitors (Ghidiu
et al. 2014; Lukatskaya et al. 2013). MXene structures are generally produced by
selectively etching layers of sp elements from their corresponding three-dimensional
(3D) MAX phase. The MAX phases are layered 3D solids composed of 2D sheets of
MX separated by A layers (Barsoum 2000), thus exhibiting a general formula Mn+1AXn,
where M represents an early transition metal (Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta),
A represents an element from groups 13 to 16 (Al, Si, P, Ga, Ge, As, In, Sn), X
represents either a carbon or a nitrogen atom, and n varies from 1 to 3. In contrast
to graphite-like materials with strong intralayer covalent bonds and weak van der
Waals interlayer interactions, the MAX phases are mostly composed of covalent,
ionic, and metallic strong bonds. The chemical bonds between A and Mn+1Xn are
weaker than those between M and X, allowing for the extraction of A layers from
the 3D crystals (Anasori et al. 2015; Naguib et al. 2014). Although the removal of A
layers from the MAX phases cannot be achieved with the usual mechanical exfoliation
method, but using strong acid treatment (hydrofluoric) and sonication, resulting in a
3D to 2D transformation. Today, more than 20 separate MXenes have been success-
fully synthesized using a similar procedure, and dozens more have been predicted
(Anasori et al. 2015; Naguib et al. 2014).
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Figure 3.10 Top (a) and side (b) views of the crystal structure of an example of MXene monolayer:
pristine V2C. Vanadium atoms are in medium gray (large spheres) and carbon atoms are in dark
gray (small spheres); a and d are the lattice constant and the layer thickness, respectively. (c) Ab
initio electronic band structure of pristine V2C along high-symmetry lines of the hexagonal
Brillouin zone. The Fermi level is fixed as the reference of zero energy. (Adapted with
permission from Champagne et al. (2018). Copyright (2018) by the American Physical Society)

As an example, the ground-state fully relaxed hexagonal structure of the pristine V2C
is presented in Fig. 3.10. The unit cell includes three atoms, two vanadium and one
carbon, which resides in the P3̄m1 space group (Fig. 3.10(a)). These atoms are therefore
arranged in a triple-layer structure where the C layer is sandwiched between the two V
layers, as illustrated in Fig. 3.10(b). The lattice constant a is equal to 2.89 Å, and the
layer thickness d, defined as the V–V distance, equals 2.18 Å.

According to its electronic band structure, the V2C monolayer exhibits a clear
metallic behavior (see Fig. 3.10(c)). In V2C-based systems, the C atom is involved
in the bonding states through its outmost 2s and 2p orbitals, and V atoms are mainly
involved through their 3d orbitals. In the vicinity of the Fermi level (from 2 eV and
above) 3d states and are expected to give rise to electrical conductivity in the V2C
monolayer.

However, the pristine monolayer is an ideal situation since it is still presently highly
challenging to exfoliate pristine MXene monosheets from the 3D MAX phase. Indeed,
due to the use of etching agents, MXenes are always terminated with functional groups –
such as −F, =O, and −OH – that are randomly distributed at the MXene surface.
Consequently, the general formula of these chemically terminated MXene crystals is
therefore Mn+1XnTn+1, where T represents the terminal groups (Champagne et al. 2018).
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Depending on the concentration and the nature of these functional groups, both the
electronic and the transport properties of MXene can be strongly affected as it is, for
example, the case for the Ti3C2 MXene system which undergoes a metallic to indirect
bandgap semiconductor transition (Hu et al. 2015). However, in the V2C monolayer
where surface functionalization with −F and −OH groups is energetically favorable (in
contrast to oxygen termination), the metallic character of the V2CT2 structures is always
preserved (Champagne et al. 2018). Finally, experimental measurements related to the
electronic properties, including mobilities and effective masses of the charge carriers,
should be performed in order to reach a better understanding of the electronic transport
in both pristine and functionalized MXene systems.

3.5 van der Waals Heterostructures

Materials by design is one of the ultimate goal in condensed matter and materials
science although very hard to reach in practice. However, the emergence of this novel
family of 2D layers has recently allowed this unreachable dream to become reality.
Indeed, 2D crystals can be easily stacked on top of each other, creating heterostruc-
tures where the different monolayers are held together by van der Waals (vdW) forces
(see Fig. 3.11). Considering the large number and variety of 2D materials currently
available (as illustrated in the previous sections), a huge set of vdW heterostructures can
be constructed by combining and matching 2D monolayers exhibiting different proper-
ties, thus predetermining specific functionalities of the corresponding vdW assembly
(Geim & Grigorieva 2013).

As already mentioned in the introduction, when different 2D crystals are stacked
together, the synergetic effects are playing a key role. Charge redistribution as well
as magnetic modification (by proximity effect) can occur between various monolay-
ers of different nature in the stack. In addition, even if the vdW interactions between
layers can be considered as long-range weak forces, the latter could induce significant
structural changes in neighboring 2D crystals. For example, large in-plane contraction

Figure 3.11 van der Waals heterostructures: owing to a large number of 2D crystals currently
available, a huge set of vdW heterostructures exhibiting different functionalities can be created.
Adapted from Novoselov et al. (2016). Reprinted with permission from AAAS.
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Figure 3.12 The stacking of two 2D materials on top of each other may induce strong intralayer
deformations. Graphene and phosphorene are represented by dark and light gray spheres,
respectively, with their corresponding incommensurable unit cells. The phosphorene monolayer
is predicted to be strongly contracted by interlayer interactions when stacked with graphene.
(Adapted with permission from Van Troeye et al. (2018). Copyright (2018) by the American
Physical Society)

induced by interlayer interactions in graphene-phosphorene heterostructures have been
theoretically predicted (see Fig. 3.12). Indeed, when graphene and phosphorene lattices
are matched along the armchair direction (leading to a coherent interface that is found to
be energetically favored), phosphorene has to stretch by an amount of ∼7% (Van Troeye
et al. 2018). This strain is sufficient to trigger a direct to indirect bandgap transition in
this system, highlighting the full potential of material by design in vdW-heterostructure.

These structural changes in vdW heterostructures can be tuned and controlled by
adjusting the relative orientation between the individual 2D crystals (rotation and
translation between layers). However, electron tunneling between layers varies strongly
with the rotation angle between the crystal lattices, especially in graphene stacks.
Recently, encapsulated graphene stack with boron nitride shaped in such a way that an
atomic force microscope tip could push on it to vary the twist angle by as little as 0.2◦

has been proposed (Ribeiro-Palau et al. 2018). Such an ability to investigate arbitrary
rotation angle in a single device has revealed features of the optical, mechanical, and
electronic response in vdW heterostructures, establishing the capability to fabricate
twistable electronic devices with tunable properties (Ribeiro-Palau et al. 2018).

Currently, most 2D heterostructures are composed by direct stacking of individual
monolayer flakes of different materials. This assembly technique is called micro-
mechanical stacking (see Fig. 3.11). Moreover, vdW heterostructures have also been
synthesized using sequential CVD growth of monolayers or physical epitaxy. These
novel controlled layered structures have already led to the observation of numerous
exciting physical phenomena and the corresponding prototypes carried out with these
vdW heterostructures have revealed new functionalities, presenting unprecedented
possibilities of combining them for technological applications (Novoselov et al. 2016).

For example, capacitive coupling between two graphene layers through a thin
layer of h-BN with a very large gap allows for very-high-quality electronic devices,
where the charge carriers in the two graphene layers interact through Coulomb forces.
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The spatially separated electron systems remain strongly coupled by electron–electron
interactions, provided that the layer separation is comparable to a characteristic distance
between charge carriers within layers. This remote coupling induces a phenomenon
called Coulomb drag, in which an electric current passed through one of the layers
causes frictional charge flow in the other layer (Gorbachev et al. 2012).

Bipolar field effect tunneling transistor based on graphene combined with semi-
conductor and insulating 2D crystals to create a tunnel junction has also been pro-
posed (Britnell et al. 2012). The use of atomically thin h-BN as a tunneling barrier
is particularly attractive due to its large bandgap (∼6 eV), low number of impurity
states within the barrier, and high breakdown field. These graphene-based field-
effect tunneling transistors exploit to advantage the low density of states in graphene
and its one atomic layer thickness. These devices exhibit room temperature large
switching ratios (∼50) and have potential for high-frequency operation and large-scale
integration (Britnell et al. 2012). Higher on-off ratio for these field-effect tunneling
transistors can be achieved if the changes in the Fermi energy in graphene are
comparable with the gap in the tunneling barrier. Such a situation is achieved when
h-BN is replaced by WS2, leading to on-off ratio of ∼106 (Georgiou et al. 2013).

As already briefly mentioned, an unprecedented degree of control of the electronic
properties is available not only by means of the selection of materials in the stack
but also when the crystallographic orientation of two graphene electrodes separated
by a layer of hexagonal boron nitride are carefully aligned. In that case, the transistor
device can achieve resonant tunneling with conservation of electron energy, momentum
and, potentially, chirality (Mishchenko et al. 2014). Indeed, rotational misalignment
of the two graphene crystals corresponds to a relative rotation of the two graphene
Brillouin zones in the reciprocal space. If the misalignment is small enough (<2◦),
then the momentum difference between the electronic states in the top and bottom
graphene layers can be compensated electrostatically by applying bias and gate volt-
ages, leading to the resonant tunneling and observation of the negative differential
resistance (Mishchenko et al. 2014). Vertical integration of MoS2–WSe2–graphene and
WSe2–MoS2–graphene heterostructures has also led to resonant tunneling in an atomi-
cally thin stack with spectrally narrow, room temperature negative differential resistance
characteristics (Lin et al. 2015).

Regarding the interaction with light, optoelectronic devices based on graphene has
been studied intensively (Bonaccorso et al. 2010). However, due to its low absorption
coefficient, graphene-based photodetectors typically have very low responsivity.
Consequently, other 2D materials such as TMDs (Wang et al. 2012) or few-layer
phosphorene (Buscema et al. 2014) exhibiting large DOS (which guarantees large
optical absorption) have been used as photodetectors (Koppens et al. 2014).

Combining 2D materials with different work functions can create vdW heterostruc-
tures for photovoltaic applications. Indeed, photoexcited electrons and holes are
naturally separated in different TMD layers, giving rise to indirect excitons (Fang et al.
2014; Rivera et al. 2015). These excitons typically have long lifetimes, and their binding
energy could be tuned by controlling the distance between the TMD layers. Moreover,
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TMDs/graphene stacks are also interesting photoactive structures since van Hove
singularities in the electronic density of states of TMD guarantees enhanced light-matter
interactions, leading to enhanced photon absorption and electron-hole creation (which
are collected in transparent graphene electrodes) (Britnell et al. 2013). Photovolatic
devices based on these TMDs/graphene heterostructures are extremely efficient with
photoresponsivity above 0.1 A/W (corresponding to an external quantum efficiency of
above 30%).

Light-emitting diodes made by stacking up metallic graphene, insulating hexagonal
boron nitride, and various semiconducting monolayers into complex but carefully
designed vdW heterostructures introduce quantum-well engineering with one atomic
plane precision (Withers et al. 2015). Emission can be tuned over a wide range of
frequencies by appropriately choosing and combining 2D semiconductors (monolayers
of transition metal dichalcogenides), thus providing the basis for flexible and semi-
transparent electronics when the vdW heterostructure is prepared on elastic and
transparent substrates (Withers et al. 2015).

Lastly, plasmons in graphene attract a lot of attention because it is possible to
tune their frequency by changing the carrier concentration and, thus, the plasmonic
frequency (Grigorenko et al. 2012). Plasmonic and phonon-polaritonic properties
have also been investigated in other 2D materials (Dai et al. 2014). Propagating
plasmons with unprecedented low plasmon damping combined with strong field
confinement have been observed in high-quality graphene encapsulated between two
h-BN films (Woessner et al. 2015). Encapsulation of graphene with h-BN eliminates the
scattering of graphene plasmons with impurities. The main damping channels have been
identified to be the intrinsic thermal phonons in the graphene and the dielectric losses
in the h-BN, allowing for future development of graphene nanophotonic and nano-
optoelectronic devices (Woessner et al. 2015). When sandwiching several graphene
layers between h-BN spacers, plasmonic modes can hybridize in such multilayer
systems, thus possibly entereing a regime where the plasmon polaritons in graphene
and the phonon polaritons in h-BN coexist (Dai et al. 2015).

3.6 Conclusion

The family of 2D crystals is continuously growing, both in terms of variety and
number of materials. Presently, only a few dozen 2D materials have been successfully
synthesized or exfoliated. Progress in this area would be strongly accelerated by the
availability of a broad portfolio of 2D candidate materials. Recently, theoretical search
for novel 2D materials has been proposed, focusing on how easily the monolayers can
be exfoliated from their parent compounds (Mounet et al. 2018). Starting from 108,423
unique, experimentally known 3D compounds, high-throughput calculations using van
der Waals density functional theory allowed the identification of 1825 compounds
that are either easily or potentially exfoliable. In particular, a subset of 1036 easily
exfoliable cases provides novel structural prototypes (see Fig. 3.13) and simple ternary
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Figure 3.13 Most common 2D structural prototypes obtained from high-throughput ab initio
calculations. Polar histogram showing the number of structures belonging to the 10 most
common 2D structural prototypes in the set of 1,036 easily exfoliable 2D materials. A graphical
representation of each prototype is shown, together with the structure-type formula and the space
group of the 2D systems. (Reprinted by permission from Macmillan Publishers Ltd: Nature
Nanotechnology (Mounet et al. 2018), copyright (2018))

compounds as well as a large portfolio of materials to search from for optimal properties
(Mounet et al. 2018).

Since the physical properties of monolayers can often dramatically change from those
of their parent 3D materials, these ab initio predicted 2D systems provide a new degree
of freedom for applications while also unveiling novel physics, especially when these
new 2D layers will be stacked in a desired fashion in a vdW heterostructure to engineer
novel specific properties.

3.7 Further Reading

• As general suggested references on two-dimensional materials, and van der Waals
heterostructures, we refer to Novoselov et al. (2016) and Avouris et al. (2017).



4 Quantum Transport: General Concepts

The previous sections have been devoted to the electronic structure of carbon-based
materials and the new family of two-dimensional materials. The rest of the book is now
focused on their transport properties. This part is meant as a nexus, providing a brief
reminder on quantum transport with a focus on the tools that are needed later in the book.
After a discussion of the most relevant length scales and the different transport regimes,
three different formalisms are reviewed, namely Landauer theory, the Kubo formalism,
and the semiclassical Boltzmann transport equation. More technical details concerning
the use of Green’s functions methods and the Lanczos method for computing the density
of states and wave-propagation are discussed in Appendices C and D, respectively.

4.1 Introduction

4.1.1 Relevant Time and Length Scales

Electron transport through a device is a phenomenon that takes place in time and space
and as such there are relevant time and length scales. Given a device with characteristic
dimensions Lx, Ly, and Lz, if the system is metallic then one has the Fermi wavelength
λF = 2π/kF associated with its Fermi wave-number kF. The elastic mean free path
�el can be defined as the distance that an electron travels before getting elastically
backscattered (off impurities for example); �el = vFτel, where τel is the mean time
between those elastic scattering events which are usually produced by defects or
imperfections in the crystal structure. In disordered systems, when the disorder strength
is such that �el ∼ λF, the wavefunctions become localized on a length scale ξ , the
localization length.

Analogous to �el, one can define the inelastic mean free path �in = vFτin as the mean
distance between inelastic scattering events such as those due to electron–phonon or
weak electron–electron interactions. Generically, it is usual to speak of the electronic
mean free path �, without discerning the specific source, elastic or inelastic.1 The phase
coherence length �φ (and corresponding coherence time τφ) is defined as the length over
1 In graphene the main sources of scattering include charged impurities, defects in the crystal structure and

microscopic corrugations of the graphene sheet (also called ripples). Their relative importance is still
debated.
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Table 4.1 Typical magnitudes of the charge density (n), the mean free path �, Fermi wavelength (λF),
and the coherence length (Lφ ) at 4 K in various materials.

GaAs-AlGaAs Metals Graphene SWNT MWNT

n 4 × 1011 cm−2 1021−1023 cm−3 1011−1012 cm−2 1011 cm−2 ,,
� 100−104 nm 1−10 nm 50 nm–3 μma 1 μm 10−40 nm
λF 40 nm 0.5 nm 2

√
π/n 0.74 nm ,,

Lφ 100 nm 0.5 μm 0.5 μmb 3 μmc 100 nm

a In suspended graphene, mean free paths of about 100 nm were found at 4 K for n ∼ 1011 cm−2 (and
about 75 nm at 300 K) in Du et al. (2008), while Bolotin et al. (2008) estimate � of up to 1.2 μm for
n ∼ 2 × 1011 cm−2. On the other hand, reported values for devices made from graphene sandwiched in
between hBN crystals go up to 3μm (Mayorov et al. 2011).

b See Tikhonenko et al. (2009).
c Stojetz et al. (2005).

which the phase of the single-electron wavefunction is preserved (within an independent
electron approximation), which limits the scale of quantum phase interferences. Typical
values for graphene, carbon nanotubes, and other materials are given in Table 4.1.

4.1.2 Coherent versus Sequential Transport

Coherent or sequential? is probably one of the most crucial questions, since it dictates
the general framework that better suits a particular system under investigation in a
particular experimental condition (Foa Torres et al. 2003; Jonson & Grincwajg 1987;
Luryi 1989; Weil & Vinter 1987). Note, however, that the answer most probably lies in
between these two extreme situations (see also Section 4.5).

Let us imagine that we start with the sample (nanotube, graphene ribbon, etc.)
decoupled from the electrodes. As the coupling between them is turned on, there
is an increasing escape rate which determines the intrinsic width (
α) of the levels
(εα) corresponding to the isolated sample. The more isolated is the sample from the
electrodes, the longer the lifetime τD of an electron in any of those levels and the smaller
the intrinsic level width 
α = h̄/τD. If the lifetime associated with the intrinsic level
width is longer than the coherence time (τφ), then the electrons will spend enough time
inside the sample to suffer phase breaking events leading to a decoherent regime.

In the decoherent limit, one may use a sequential picture for transport in which the
electronic motion is divided, as in a theater play, into different parts:

1. Tunneling in. The electron is transmitted from the left electrode into the sample;
2. Dwelling. The electron dwells in the sample, eventually interacting with other elec-

trons or with phonons/vibrational degrees of freedom;
3. Tunneling out. The electron tunnels into the right electrode or is reflected back to

the left one.
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A sometimes implicit assumption of such a picture is that transport is decoherent.
Therefore, the description can be at a semiclassical level where only the occupation
probabilities (and not the amplitudes) are taken into account into a set of rate equations.
Typically, these rate equations take into account the different possible processes
(tunneling in and out of the sample, electron–electron and inelastic interactions) through
a Fermi golden rule for the associated transition rates. By solving these equations, one
gets the occupation probabilities from which the current and other quantities of interest
can be computed. The widely used Boltzmann equation belongs to this class of schemes,
and is introduced later in Section 4.3.

Transport in the Coulomb blockade regime (see also Section 6.5.1) is usually
described by such a sequential picture (Beenakker 1991). In this regime, the contacts to
the electrodes are weak enough such that the charge inside the sample is well defined and
quantified. One says that the transport is suppressed (or blocked) and is only possible at
precise energies, which can be tuned by varying the gate voltage (conductance peaks).
The energy scale governing such peaks is the charging energy (Ec): the energy necessary
to compensate for the electron repulsion and add one more electron to the system.

When the coherence time is longer than the residence time in the sample, the tunnel-
ing processes through the contacts and dwell inside the sample cannot be treated in a
separate fashion anymore. The picture is that of a coherent transport mechanism and the
theater play becomes a weird quantum game. This is the realm where quantum inter-
ference effects and even more exotic phenomena involving correlated motion between
electrons like the Kondo effect may take place.2 The Landauer–Büttiker theory and the
Kubo formalism, which are briefly introduced in Sections 4.2 and 4.4.4, provide an
appropriate framework for coherent, noninteracting electrons.

A crucial magnitude controlling the transition between these regimes is the intrinsic
energy level width 
α of the sample connected to the outside world. As one moves
from the coherent to the sequential regime, 
α is reduced until it becomes the smallest
energy scale in the problem (the sample being more and more disconnected from the
electrodes). Simultaneously, the value of the charging energy increases from zero to a
value where it dominates over the mean level spacing � and dictates a sequential and
discretized transfer of charges from a source to a drain electrode.

A beautiful experiment showing this transition is reproduced in Fig. 4.1 (Babic and
Schönenberger 2004). The coupling with the leads changes as the gate voltage Vg is
varied, thereby producing a crossover from low transparency to high transparency
contacts and allowing observation of the transition from coherent (lower Vg region
in Fig. 4.1(a) and (b)) to sequential tunneling (high Vg region in the figures, where
isolated resonances are observed). The conductance accordingly exhibits a wealth of
phenomena, which includes, from higher to lower gate voltage: Coulomb blockade
peaks, strong cotunneling, and Kondo effect, and destructive interference, which is

2 The Kondo effect is one of the most studied many-body phenomena in condensed matter physics (for a
review see Kouwenhoven and Glazman (2001)), and is also an active topic in graphene physics, both
theoretically (Cazalilla et al. 2012; Cornaglia et al. 2009) and experimentally (Chen et al. 2011).
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Figure 4.1 (a) Density plot of the differential conductance versus bias voltage Vsd and gate voltage
Vg (high conductance in black and low conductance in white). (b) Linear response conductance
versus gate voltage. The coupling to the leads strongly depends on the gate voltage, allowing for
the observation of very different phenomena in the same experiment, namely, Coulomb
blockade, Kondo effect, and Fano resonances. (Adapted from Babic and Schönenberger (2004).
Copyright (2004) by the American Physical Society. Courtesy of Christian Schönenberger)

manifested as Fano resonances.3 This experiment illustrates in a magnificent way
that the occurrence and the nature of the quantum transport phenomena through a
mesoscopic sample strongly depend on the conditions, the measurement setup, and the
dominant energy scales of the system under study.

4.2 Landauer–Büttiker Theory

One of the most influential frameworks for the study of quantum transport is Landauer
theory, pioneered originally by Rolf Landauer in early 1950s (Landauer 1957, 1970)
and generalized later on by Büttiker et al. (1985) for multi-lead systems. The simplicity
of Landauer’s picture for transport boosted it as a driving force in the field of nanoscale
transport. As will be shown later, several reasons make it particularly useful in the
context of graphene-based devices, and therefore we dedicate the following pages to
a brief presentation of its main points while trying to clarify the underlying assumptions
and limitations.

Let us consider a sample or device that is connected through leads to reservoirs. A
particular case with two leads is represented in Fig. 4.2. Within Landauer’s approach,
conductance through a device is seen as a scattering process where electrons injected
from the reservoirs are incident onto the device and then scattered back into the

3 Fano resonances, also known as anti-resonances in the context of electronic transport (Damato et al. 1989;
Guinea & Vergés 1987), are a coherent effect of destructive interference pioneered by Fano (1935) in
spectroscopy and observed since then in many contexts in different nanostructures (Miroshnichenko et al.
2010).
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Figure 4.2 A setup where a small conductor is sandwiched between two leads (L and R). The
leads are connected to reservoirs kept at equilibrium chemical potentials μL and μR which in
turn determine their equilibrium occupation probabilities (Fermi functions) denoted by fL and fR.

reservoirs. Landauer’s theory relates the conductance, measuring the ease with which
the electrons flow, with the transmission probability through the device. The current
through electrode j(Ij) is given by

Ij = 2e
h

∫ N∑
i=1

[
Tj,i(ε)fi(ε) − Ti, j(ε)fj(ε)

]
dε, (4.1)

where Tj,i(ε) is the transmission probability of an electron of energy ε from lead i to
lead j, and the integral is over all available energies. The factor 2 on the right-hand
side of Eq. (4.1) comes from considering the electron spin, which here just duplicates
the number of available channels. Therefore, the current is given by a balance between
the contributions from the different leads weighted by their corresponding transmission
probabilities.4 These transmission probabilities can be conveniently expressed in terms
of the Green’s functions within the device region through the trace formula. The reader
not familiar with this formalism is encouraged to follow Appendix C and complete the
brief overview given here.

For a two-terminal setup in the low bias, zero temperature limit (V → 0, kBT → 0 ),
Eq. (4.1) can be simplified to

I = 2e2

h
TRL(εF)V, (4.2)

where TRL is the total transmission probability from left to right, εF is the Fermi energy,
and IL = IR = I is the current through the device. The conductance is essentially given
by the transmission probability in this limit.

It is important to note that there are no blocking factors multiplying the occupation
probabilities in the leads (such as fi(1 − fj)) in the previous equation. Although for
systems with time-reversal symmetry, the additional terms would just cancel out leaving
the expression unchanged; the difference is a conceptual one. The blocking factors

4 Note that one can also interpret Eq. (4.1) as the balance between two terms, each one being the product of
the probability that a state of energy ε is occupied in lead j(i) times the density of states of that channel
times velocity of the corresponding state times the probability that it is transmitted Tij to the other lead
(Tji). For one-dimensional channels the density of states is proportional to the inverse group velocity,
canceling it out and leading to the referred formula.
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would be an attempt to ensure that the final states are empty and therefore not blocked
by the Pauli principle (which would somehow mean coming back to a sequential view of
transport!). However, within Landauer’s scattering viewpoint, the scattering states are
occupied according to their asymptotic occupation probability given by the Fermi func-
tions in the leads. These states are orthogonal and extend from the leads and throughout
the whole device. Therefore, there is no need of an actual transition to pass from one
side of the device to the other.5

To get more insight, both a heuristic (Section 4.2.1) and a more formal derivation
(Section C.1) will be presented. But before that let us briefly discuss the current
fluctuations. Besides the average current, its fluctuations from the average value are
also of interest. They can be characterized by a current–current correlation function
〈�I(t)�I(t′)〉, where �I(t) = I(t) − 〈I(t)〉. Its statistical moments give the full counting
statistics (Blanter & Büttiker 2000). Most often, one is interested in the low frequency
current noise, which is given by the zeroth order moment (Blanter & Büttiker 2000).
At zero temperature, when there are no fluctuations in the distribution of the incident
electrons, the zero-frequency noise is given by

SI = 2e3 |V|
π h̄

Tr
(

r†rt†t
)

, (4.3)

where |V| is the bias voltage applied between the electrodes, and t and r are matrices
containing the transmission and reflection amplitudes (evaluated at the Fermi energy)
between the different channels. If we denote the scattering matrix by S, its element
Si, j being the probability amplitude of going from channel j to channel i, then the
transmission matrix t contains the off-diagonal elements of S while the reflection matrix
r contains the diagonal elements of S. The matrix t†t can be diagonalized, and its real
eigenvalues give the transmission probabilities that we denote with Tq. On the basis of
eigenchannels, the last equation can be written as (Blanter & Büttiker 2000)

SI = 2e2

π h̄

N∑
q=1

Tq(1 − Tq). (4.4)

More generally, within Landauer’s theory, the zero-frequency noise for a two-terminal
conductor in thermal equilibrium at a temperature T is

SI = 2e2

π h̄

N∑
q=1

∫ (
Tq
[
fL(1 − fL) + fR(1 − fR)

] + Tq(1 − Tq)( fL − fR)2
)

dε, (4.5)

which contains contributions from (i) the fluctuations of the incident electron beams
(encoded in the Fermi functions) and (ii) the noise due to charge quantization. The zero-
temperature Eq. (4.3) represents the pure shot noise contribution. An important remark
emphasized by Blanter and Büttiker (2000) is that while the zero-temperature conduc-
tance can be expressed fully in terms of the transmission probabilities independently of

5 See, for example, the discussion in chapter 2 of Datta (1995).
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the choice of the basis, SI cannot. The scattering amplitudes (and not the probabilities)
are then the crucial quantities ruling both the conductance and noise.

4.2.1 Heuristic Derivation of Landauer’s Formula

Let us consider a one-dimensional metallic system coupled to two 1D electronic leads
which drive incoming and outgoing currents, as sketched in Fig. 4.3. The temperature
of the system is set to zero, so only electrons at the Fermi level participate in the
electronic current. This current originates from a potential difference between right and
left leads with e�V � EF. Such potential difference is related to a density gradient
δn = n(EF + e�V) − n(EF) (n(E) being the electron density), which can be approxi-
mated, including spin degeneracy, by

∂n
∂E

|EF .e�V = 2e�V/(π h̄vF). (4.6)

On the other hand, this electron density difference δn can also be written in terms of
the current densities in steady state as

δn = j + jR
evF

− jT
evF

, (4.7)

introducing R and T, the reflection and transmission probabilities, respectively. From
Eq. (4.7), one infers that �V = [ j(1 + R − T)/(evF)] × π h̄vF/(2e). The total current
I = Tj, so that the resistance of the system reads finally

R = �V/I = h
2e2

R
T

. (4.8)

Based on this derivation, the quantum conductance becomes G = 1/R= 2e2/h × T/R,
which has an ill-defined value in the limit of perfect transmission (T = 1). Indeed, given
current conservation, R + T = 1, a perfect transmission through the system means
T = 1 and R = 0, or G → ∞, which is clearly unphysical. The reason for such
a singularity comes from the neglect of contact effects. This problem was pioneered

Figure 4.3 Scattering through a system with a single incoming and outgoing channel and an
applied voltage difference �V. A current density j is injected from the source. The carriers are
then scattered and a fraction R is reflected and a fraction T transmitted.
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by Rolf Landauer (Imry & Landauer 1999; Landauer 1970) demonstrated that in the
situation of ballistic transport across a given (low-dimensional) system, the resistance
and dissipation will take place at the interface of the measured system and the metallic
electrodes acting as charge reservoirs. This problem can be solved by rewriting the
Landauer formula as

R = h
2e2

1
T

(4.9)

= h
2e2 + h

2e2
1 − T

T
, (4.10)

so that the quantum resistance is then seen to split into two parts for the single con-
ducting channel case. The first term of Eq. (4.10) gives the contact resistance between
the disorder-free one-dimensional metallic conductor and an electron reservoir with
many more electron channels, whereas the second term of Eq. (4.10) actually provides
information about the intrinsic resistance of the system, which can dominate the total
resistance when the intrinsic transmission is very low. This second term is physically
connected to the so-called four-point transport measurements, which allow access to
such intrinsic resistance, by excluding contact effects.

4.3 Boltzmann Semiclassical Transport

The Boltzmann equation describes the transport properties of quantum particles
(electrons, phonons) driven by a semiclassical dynamics. It determines how the particles
of the system are accelerated in external fields, losing part of their accumulated energy
through scattering-induced momentum relaxation. Scattering processes are determined
by static (impurities, defects) as well as dynamical (phonons) disorders. The Boltzmann
transport equation describes the dynamics of the distribution function fk(r, t), which
gives the probability (and not the probability amplitude) of finding a particle in
momentum-state |k〉 in the neighborhood of |r〉 and at time t. Its most general form
states

∂fk(r, t)
∂t

+ vk · ∇rfk(r, t) + F · ∇k fk(r, t) = ∂fk(r, t)
∂t

∣∣∣∣
coll

, (4.11)

with F describing external (Lorentz) forces acting on the particles, v denoting their
velocity, and where ∂fk(r,t)

∂t |coll is the collision term which drives the system toward
equilibrium, and depends on the sources of scattering and dissipation. The wave nature
of electrons is accounted for in the collision term, as well as in the particles energetics
(with E(k) and vk = 1

h̄∇kE(k) given by the crystalline band structure of the clean
system), but the particle dynamics is treated classically in the sense that quantum
interferences between multiple scattering events are disregarded. The Boltzmann
transport theory is therefore invalidated when localization phenomena enter into play
and should instead be replaced by the Kubo approach (described in Section 4.4). In
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the regime of high charge density and high temperatures, the Boltzmann transport
theory applies reasonably well, however, even in low-dimensional materials such as
graphene.

In Eq. (4.11), the collision term describes the abrupt changes of momentum due to
scattering of the particles. To keep the calculation simple, we hereafter consider only
elastic scattering (particle momentum is changed in the scattering process but energy
is conserved), but electron–phonon coupling can be treated similarly (Hwang & Sarma
2008; Munoz 2012). The rate of change of the distribution function fk due to scattering
can be written as

∂fk(r, t)
∂t

|coll =
∑

k′
fk′(1 − fk)pk′,k −

∑
k′

fk(1 − fk′)pk,k′ (4.12)

=
∑

k′
( fk′ − fk)pk,k′ . (4.13)

The first term on the right-hand side of Eq. 4.12 accounts for scattering events from
all other states |k′〉 to |k〉. The probability of one scattering event is proportional to the
probability that the state |k′〉 (resp. |k〉) is occupied (resp. vacant), and to the transition
probability pk,k′ . The second term on the right-hand side of Eq. (4.12) denotes the
contribution of the scattering from |k〉 to |k′〉. As these processes decrease fk, the second
term gets a minus sign. To obtain Eq. (4.13), the detailed balance property pk,k′ = pk′,k
has been used. The transition probability from state |k〉 to state |k′〉 is given by Fermi’s
golden rule:

pk,k′ = 2π
h̄

|〈k′|V|k〉|2δ(εk′ − εk), (4.14)

introducing the δ(εk′ − εk) function ensuring energy conservation.

4.3.1 The Relaxation Time Approximation and the Boltzmann Conductivity

To solve Eq. (4.11), one needs further approximation. The most straightforward is
the relaxation time approximation (RTA), which introduces a single timescale for
the nonequilibrium distribution function fk(r, t) to relax to the Fermi–Dirac function
f 0
k = 1/(eβ(εk−EF) + 1) (β = 1/(kBT) and EF is the Fermi energy). One defines the

deviation to its equilibrium state as gk = fk − f 0
k . The relaxation time approximation

assumes that the system is driven back to its equilibrium position as

∂f
∂t

∣∣∣∣
coll

= −gk
τk

, (4.15)
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with τk the relaxation time, which measures how fast the system relaxes to the equilib-
rium distribution after turning off the external field. The calculation of τk is related to

−gk
τk

=
∑

k′
( fk′ − fk)pk,k′ (4.16)

=
∑

k′
(gk′ − gk)pk,k′ , (4.17)

assuming that the energy and the relaxation time do not depend on the direction
of the k vector and considering only scattering with k = k′. Within the RTA, the
Bloch–Boltzmann equation becomes

∂fk
∂t

= −vk · ∇r fk − eE
h̄

· ∇k fk − gk
τk

. (4.18)

For a homogeneous electrical field and absence of temperature gradient, the steady-
state solution can be written

eE
h̄

· ∇k fk + gk
τk

= 0, (4.19)

and using ∇k fk = h̄vk∂f 0
k /∂εk + ∂gk/∂k, one finally obtains

fk = f 0
k −

(
∂f 0

k
∂εk

)
eτkvk · E. (4.20)

The relaxation time can be then calculated using Eq. (4.17) as

1
τk

=
∑

k′

(
1 − gk′

gk

)
pk,k′ (4.21)

=
∑

k′

⎛⎜⎜⎝1 −

(
− ∂f 0

k′
∂εk′

)
eτk′vk′ · E(

− ∂f 0
k
∂εk

)
eτkvk · E

⎞⎟⎟⎠ pk,k′ (4.22)

=
∑

k′

(
1 − k̂′ · E

k̂ · E

)
pk,k′ . (4.23)

In the last step, the relation vk = vkk/k = vkk̂ is used. Without loss of generality the
vector k may be chosen to point in the x direction, so k̂ = ex, and in two dimensions
wavevectors are decomposed as k̂′ = cos θk′ex + sin θk′ey, while E = Exex + Eyey.
Therefore

1
τk

=
∑

k′

(
1 − Ex cos θk′ + Ey sin θk′

Ex

)
pk,k′ (4.24)

=
∑

k′
(1 − cos θk′ )pk,k′ . (4.25)
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Note that the term proportional to pk,k′ sin θk′ cancels by summation, since sin θk′ is
an odd function of θk′ while pk,k′ is symmetric with respect to θk′ . This result holds
for isotropic scattering in k-space if all transition probabilities pk,k′ = 0 for k �= k′.
The inverse relaxation time is thus obtained by summing up the probabilities of all
scattering events, weighted with the transport factor (1 − cos θk′ ), which favors large-
angle scattering. This result makes sense physically as the large-angle scattering events
more strongly alter the distribution function, hence controlling the behavior of the relax-
ation time. Calculation of the Boltzmann conductivity is derived from the current density
J , defined as (using Eq. (4.20))

J = e
�

∑
k

vkfk (4.26)

= −e2

�

∑
k

(
∂f 0

k
∂εk

)
τkvk(vk · E). (4.27)

This gives the conductivity in the RTA as

σxx = − e2

2π

∫
kdk

(
∂f 0

k
∂εk

)
τkv2

k . (4.28)

4.4 Kubo Formula for the Electronic Conductivity

The conductivity of a bulk material is defined at finite frequency ω as the tensorial ratio
between the applied electric field and the resulting electronic current: J(ω) = σ (ω)E(ω).
We assume that the transport measurement direction is along the (Ox) axis so that only
diagonal elements are taken into account: Jx(ω) = σ (ω)Ex(ω). The Kubo approach is
a technique to calculate linear response in materials (optical, electric, etc.). It is based
on the fluctuation–dissipation theorem that establishes a correspondence between the
dissipative out-of-equilibrium response (namely, the conductivity) and the fluctuations
at equilibrium (the correlation function of the charge carrier velocities).

We provide here a comprehensive derivation of the Kubo formula for electronic
conductivity (Lherbier 2008; Roche 1996; Triozon 2002), which is suitable for study-
ing quantum transport phenomena in disordered graphene-based materials, based on
numerical simulations. It is inspired by a derivation by Nevill Mott, which calculates
the absorbed power driven by electronic transitions induced by the exchanges between
the system and the electromagnetic field (P).

Let us assume an electronic system described by the Hamiltonian Ĥ0 = P̂2

2m + V̂ ,
where V̂ gives the crystal potential which can also include the effect of crystal
imperfections. Then assume that its electronic spectrum is given by εk, |�k〉. By
applying an external (weak) electric field, the system will undergo internal fluctuations,
which are usually well captured by electronic transition between states of the system at
equilibrium. To compute σ , we start with the equation P = J · E with J = σE.
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The electric field E(t) is given by E0cos(ωt)ux, but for computational convenience we
use an oscillatory field throughout the derivation, while the limit to the static case is
taken at the end (E(t) = E0ux) with ω → 0. The associated vector potential A(t) in the
Coulomb gauge is

A(t) = − E0

2iω
(
eiωt − e−iωt)ux, (4.29)

while the total power absorbed per unit time is

Ptot abs =
∑
n,m

Pn→m
abs − Pm→n

diss . (4.30)

The average power absorbed (Pabs) and dissipated (Pdiss) per unit time can be esti-
mated from the transition probabilities p̃n→m from electronic states n to m (and inversely
(m → n)) and Fermi–Dirac distribution f (E):

Pn→m
abs = [h̄ω f (En)(1 − f (Em))] p̃n→m, (4.31)

Pm→n
diss = [h̄ω f (Em)(1 − f (En))] p̃m→n. (4.32)

Such transition probabilities per unit time are derived from a first-order perturbation
theory in the electric field as

p̃n→m = pn→m(t)
t

= 1
h̄2t

∣∣∣∣∫ t

0
dt′ei(Em−En)t′/h̄〈m|δĤ(t′)|n〉

∣∣∣∣2, (4.33)

with δĤ being the time-dependent perturbation of the total Hamiltonian. At first order,
it directly relates to the velocity operator V̂ and vector potential A through

δĤ(t′) = e V̂ · A(t′), (4.34)

δĤ(t′) = eV̂xAx(t′) (for the 1D case). (4.35)

Using (Eqs. 4.29–4.35) we obtain

Ptot abs = π h̄e2E2
0

2h̄ω
∑
n,m

∣∣〈m|V̂x|n〉∣∣2δ(Em − En − h̄ω)
[

f (En) − f (Em)
]
, (4.36)

and finally the total power absorbed per unit time and volume P = Pabs
�

(� being the
sample volume) is related to the conductivity by

P = Ptot abs

�
= σ 〈E · E〉 = σE2

0
2

. (4.37)

Using Eq. (4.37), where 〈cos2(ωt)〉 has been replaced by its average value 1/2, one gets
the Kubo conductivity

σ (ω) = π h̄e2

�

∑
n,m

∣∣〈m|V̂x|n〉∣∣2δ(Em − En − h̄ω)
f (En) − f (Em)

h̄ω
. (4.38)
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If one uses the properties of δ(x) functions and rewrites the expression as a trace of
operators, the general expression becomes

σ (ω) = π h̄e2

�

∫ +∞

−∞
dE

f (E) − f (E + h̄ω)
h̄ω

Tr
[
V̂†

xδ
(
E − Ĥ

)
V̂xδ

(
E + h̄ω − Ĥ

)]
.

(4.39)

It is also instructive to rewrite this formula introducing the autocorrelation function
of velocity (C(E, t)), together with the mean square spreading of wavepackets defined
as (�X2(E, t)). Using

δ
(
E + h̄ω − Ĥ

) = 1
2π h̄

∫ +∞

−∞
dt ei

(
E+h̄ω−Ĥ

)
t/h̄ (4.40)

inside the trace, which is further denoted by A1:

A1 = Tr
[
V̂†

xδ
(
E − Ĥ

)
V̂xδ

(
E + h̄ω − Ĥ

)]
, (4.41)

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
V̂†

xδ
(
E − Ĥ

)
V̂x ei

(
E−Ĥ

)
t/h̄
]

, (4.42)

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
V̂†

xδ
(
E − Ĥ

)
eiĤt/h̄ V̂x e−iĤt/h̄

]
. (4.43)

The velocity operator in its Heisenberg representation being

V̂x(t) =
(

eiĤt/h̄ V̂x e−iĤt/h̄
)

, (4.44)

we get

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
V̂†

x(0) δ(E − Ĥ)V̂x(t)
]

. (4.45)

Then, one uses the general definition of quantum average for a given energy E from
which any operator Q̂ has

〈Q̂〉E =
Tr
[
δ(E − Ĥ)Q̂

]
Tr
[
δ(E − Ĥ)

] . (4.46)

Replacing Q̂ by the productV̂x(t)V̂†
x(0),

〈V̂x(t)V̂†
x(0)〉E =

Tr
[
V̂†

x(0)δ(E − Ĥ)V̂x(t)
]

Tr
[
δ(E − Ĥ)

] , (4.47)
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and using this result to rewrite A1,

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
δ
(
E − Ĥ

)] 〈
V̂x(t)V̂†

x(0)
〉
E, (4.48)

A1 = 1
2π h̄

Tr
[
δ
(
E − Ĥ

)] ∫ +∞

−∞
dt eiωt 〈V̂x(t)V̂†

x(0)
〉
E, (4.49)

A1 = 1
2π h̄

A2 A3, (4.50)

with A2 = Tr
[
δ
(
E − Ĥ

)]
, and A3 =

∫ +∞

−∞
dt eiωt 〈V̂x(t)V̂†

x(0)
〉
E. (4.51)

Two interesting quantities emerge, with A2 the total density of states. The second
quantity can be reformulated as (A3), using the definition of velocity autocorrelation
function C(E, t) = 〈V̂x(t)V̂†

x(0)〉E, so that

A3 =
∫ +∞

−∞
dt eiωt C(E, t), (4.52)

A3 =
∫ 0

−∞
dt eiωt C(E, t) +

∫ +∞

0
dt eiωt C(E, t), (4.53)

A3 =
∫ +∞

0
dt e−iωt C(E, −t) +

∫ +∞

0
dt eiωt C(E, t), (4.54)

and using C(E, −t) = 〈V̂x(−t)V̂†
x(0)〉E = 〈V̂x(0)V̂†

x(t)〉E = C(E, t)†, one gets

A3 =
∫ +∞

0
dt e−iωt C(E, t)† + eiωt C(E, t), (4.55)

A3 =
∫ +∞

0
dt 2�e

(
eiωt C(E, t)

)
. (4.56)

One can easily show that the real part of the velocity autocorrelation function is
proportional to the second derivative of the mean squared spread

∂2

∂t2
�X2(E, t) = 2�e C(E, t), (4.57)

with �X2(E, t) defined as

�X2(E, t) =
〈∣∣X̂(t) − X̂(0)

∣∣2〉
E

. (4.58)

One can consequently rewrite A1 as follows:

A1 = 1
2π h̄

A2

∫ +∞

0
dt 2�e

(
eiωt C(E, t)

)
, (4.59)
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and A1 can be replaced in Eq. (4.39) to get another formulation of the Kubo conductivity
(Lherbier 2008; Roche 1996; Triozon 2002):

σ (ω) = e2

2

∫ +∞

−∞
dE

f (E) − f (E + h̄ω)
h̄ω

Tr
[
δ(E − Ĥ)

]
�

∫ +∞

0
dt 2�e

(
eiωt C(E, t)

)
.

(4.60)

This last Eq. (4.60) is the total density of states per volume unit ρ(E) =
Tr
[
δ(E − Ĥ)

]
/�. This is a general form for σ , which can now be simplified taking

two limits. First, let us go to the static electric field limit ω �→ 0,

σDC = −e2

2

∫ +∞

−∞
dE
∂f (E)
∂E

ρ(E)
∫ +∞

0
dt 2�e (C(E, t)) , (4.61)

σDC = −e2

2

∫ +∞

−∞
dE
∂f (E)
∂E

ρ(E)
∫ +∞

0
dt
∂2

∂t2
�X2(E, t), (4.62)

σDC = −e2

2

∫ +∞

−∞
dE
∂f (E)
∂E

ρ(E) lim
t�→∞

∂

∂t
�X2(E, t), (4.63)

while the zero-temperature limit (T �→ 0) implies that − ∂f (E)
∂E �→ δ(E − EF), so that

σDC(EF) = e2

2

∫ +∞

−∞
dE δ(E − EF) ρ(E) lim

t�→∞
∂

∂t
�X2(E, t), (4.64)

σDC(EF) = e2

2
ρ(EF) lim

t�→∞
∂

∂t
�X2(EF, t). (4.65)

This last expression means that ∂
∂t�X2(EF, t) should converge in the limit t �→ ∞,

to define a meaningful conductivity. The propagation of the wavepacket thus needs to
establish a saturation regime before conductivity can be safely calculated. However, as
shown in other chapters, the time-dependent scaling on the conductivity can be followed
and allowed to follow localization phenomena as long as phase coherence is maintained.
This formula, known as the Kubo conductivity (Kubo 1966), is the most general starting
point to study quantum (or classical) transport in any type of disordered materials,
provided that electron–electron interaction can be described as a perturbation with
respect to the initial electronic structure, introducing additional transitions (inelas-
tic scattering), but preserving the independent electron description of transport
quantities.

4.4.1 Illustrations for Ballistic and Diffusive Regimes

The behavior of �X2(t) and related diffusion coefficient Dx(t) defined by

Dx(t) = �X2(t)
t

(4.66)
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is easily determined in two important transport regimes. Below we outline some conse-
quences of the transport regime on the scaling property of the quantum conductivity, as
computed from the Kubo formula.

Ballistic Regime
First, in the absence of any structural imperfection, the electronic propagation remains
ballistic with the mean square spread just defined by the initial velocity of the
wavepacket �X2(t) = v2

x(0)t2, with vx(0) the velocity at t = 0. The diffusion coefficient
is then linear in time, Dx(t) = v2

x(0)t, while the Kubo conductivity is given by

σDC(E)bal = e2

2
ρ(E) lim

t�→∞
∂

∂t
�X2(E, t) = e2ρ(E) lim

t�→∞ v2
x(0, E)t, (4.67)

so that σDC(E)bal diverges in the long time limit. This singularity is inherent to the
fact that when deriving the linear response theory, a finite dissipation source, intrinsic
to the sample, is introduced both physically and mathematically. The ballistic limit
is therefore not well defined in this formalism, although as shown below, a complete
equivalence exists with the Landauer–Büttiker formulation, and the quantization of the
conductance can be obtained from the Kubo formula with some extra assumptions.
The conductance of the materials can indeed be derived from the conductivity through
G = σLd−2, with d the space dimension. For one-dimensional systems G = σ/L.
Dividing Eq. (4.67) by the relevant length scale L, we can recover a quantized
conductance expected in a ballistic regime (when reflectionless contacts are assumed).
By replacing L by 2vxt (since the length propagated during t is 2

√
�X 2(t) = 2vxt), the

conductance then becomes

G(E) = e2ρ1D(E) lim
t→∞

v2
x(E)t
L

= e2ρ1D(E) lim
t→∞

v2
x(E)t

2vx(E)t
, (4.68)

G(E) = e2

2
ρ1D(E)vx(E) = 2e2

h
= G0, (4.69)

using ρ1D(E) = 2/π h̄vx(E) and with G0 the conductance quantum (spin degeneracy
included). So even in the most unfavorable transport regime, the quantization of the
conductance can be recovered and identified to the situation of perfect transmission
through reflectionless contacts (Landauer–Büttiker approach, Section 4.2)

Diffusive Regime
The velocity autocorrelation function in the time relaxation approximation is given by
〈vx(0)vx(t)〉 = v2

x(0)e−t/τ (introducing the transport time τ and restricting the discussion
to elastic scattering events), which yields

lim
t�→∞�X2(t) = lim

t�→∞ 2τv2
x(0) [t − τ ] �−→ 2τv2

x(0)t. (4.70)
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Similarly (using Eq. (4.66)), one gets limt�→∞ Dx(t) �−→ 2τv2
x(0). The Kubo formula

for a diffusive regime then gives access to the semiclassical conductivity (σsc):

σsc(E) = σDC(E)diff = e2

2
ρ(E) lim

t�→∞
∂

∂t
�X2(E, t), (4.71)

σsc(E) = e2ρ(E)τ (E)v2
x(0, E), (4.72)

σsc(E) = e2ρ(E)vx(0, E)�e(E), (4.73)

where the mean free path �e(E) is introduced. For the diffusive regime

σsc(E) = e2

2
ρ(E) lim

t�→∞ Dx(E, t) = e2

2
ρ(E)Dmax

x (E), (4.74)

where Dmax
x corresponds to the maximum value (Dmax

x = 2τv2
x(0)). In this regime, with

the charge density defined as n(E) = ∫
dEρ(E), the mobility μ is given by

μ(E) = σsc(E)
n(E)e

. (4.75)

For free electrons E(k) = (h̄k)2/2m and v(k) = h̄k/m, with ρ1D(E) = 2
π h̄

( m
2E
)1/2 and

n1D(E) = 2
π h̄ (2mE)1/2, so that using Eqs. (4.72) and (4.75), the mobility finally is given

by

μ(E) = e2ρ1D(E)τ (E)v2(E)
en1D(E)

= eτ (E)v2(E)
2E

, (4.76)

μ(E) = eτ (E)h̄2k2

2
(

h̄2k2
2m

)
m2

= eτ (E)
m

, (4.77)

which are familiar expressions for semiclassical transport (absence of quantum inter-
ferences). One notes that estimation of the mobility becomes problematic for graphene-
based materials for plenty of reasons. First, for clean graphene-based materials
(nanotubes, graphene ribbons, or two-dimensional graphene), the mean free path
might become longer than the electrode spacing, so the use (or even the definition) of
Eq. (4.75) becomes inappropriate since it neglects contact effects. Additionally, in the
presence of intrinsic disorder (vacancies, adsorbed adatoms, etc.), strong scattering and
a significant contribution of quantum interferences occur, which again invalidate the use
of Eq. (4.75). Quantum interferences up to 100 K have been measured experimentally
in disordered graphene materials (see for instance Moser et al. (2010)), so even if
inelastic scattering restores in principle the validity of Eq. (4.75), the experimental
estimations have to be scrutinized with care. One general assumption is that the quality
of the sample can be appreciated by estimating the mobility at a charge density of
(typically) 1011 cm−2 with varying temperature, and that the absolute value allows
comparison of sample quality. In the numerical calculations (using the Kubo formula)
that are discussed later, the estimations of mobility using Eq. (4.75) are made using the
semiclassical conductivity computed at zero temperature.
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4.4.2 Kubo versus Landauer

The Kubo approach is a quantum generalization of the semiclassical Bloch–Boltzmann
approach for studying electron transport in materials, which includes all multiple
scattering effects driven by disorder. The Kubo–Greenwood formalism (Kubo 1966)
is well suited for exploring the intrinsic transport properties of a given disordered
material of high dimensionality. It mainly applies to the study of weakly or strongly
disordered systems, characterized by a diffusive regime and localization phenomena in
the low-temperature limit. It gives all information on the intrinsic quantum conductivity
which can be accessed experimentally by four-points transport measurements (meaning
two electrodes for generating voltage drop and two others for measuring induced
current). With this formalism, when the system is translational invariant, no scattering
takes place, and the “intrinsic” mean free path is infinite. Differently, the Landauer–
Büttiker transport formalism is directly linked with two-point transport measurements
(meaning two identical electrodes for generating voltage drop and measuring induced
current) and is proportional to the transmission probability for charges to be transfered
through a given system connected to external electrodes. A connection between Kubo
and Landauer can be made by rewriting the two-point resistance (computed with the
Landauer–Büttiker method) as e.g., R = R0/T = R0+Rint, making explicit the “intrinsic
resistance” Rint = R0(1 − T)/T, which could be derived applying the Kubo–Greenwood
approach.

Within this formalism, when the system is free of scattering or when the density of
impurities is sufficiently low such that �e � L (L is the distance between source/drain
electrodes) the transport regime is ballistic, with a transmission probability at energy E
entirely proportional to the number of propagating modes, that is, G(E) = G0N⊥(E).

In the situation of a large amount of scatterers (such as chemical impurities), i.e.,
when �e � L, the transport regime becomes diffusive and the conductance scales as
G(E) = G0N⊥(E)�e(E)/L. An interpolation formula allows covering of the so-called
quasiballistic regime with T = N⊥(E)/(1 + L/�e). If the quantum transmission at
the system/electrode interface is perfect (induces no scattering), then both Kubo and
Landauer formalisms are totally equivalent, although some geometrical factors differ-
entiate them if computed with the different formalisms (Akkermans & Montambaux
2007). The extracted Landauer mean free path �L

e and Kubo mean free path �K
e

are expected to be proportional, �L
e = κ�K

e (κ = 2 for d = 1, κ = π
2 (d = 2),

κ = 4
3 (d = 3)) (Akkermans & Montambaux 2007). In the case of a rectangular

waveguide, the κ coefficient depends on the dimensionality of the system (Datta 1995).
For instance, to determine exactly the κ coefficient for a finite nanotube, one needs

to solve the diffusion equation for the specified geometry and given boundary conditions
(Datta 1995). κ = 2 at the charge neutrality point. This can also be shown using
the Einstein relationship for conductivity, σF = e2ρFDF, where ρF = 4/π h̄vF is
the total density of states at CNP, and DF = �evF is the diffusivity coefficient at
CNP. The total conductivity for the quasi-1D system is obtained by using Ohm’s law,
G = G0N⊥2�e/L.
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4.4.3 Validity Limit of Ohm’s Law in the Quantum Regime

Ohm’s law in the classical regime can be easily derived using the 1D formula for
the conductance of a diffusive system, i.e., G = σscLd−2 = e2ρ(E)D/L, with
ρ(E) = 2/hvF and D = �evF. Then G = 2e2/h �e

L which uses the additivity rule of
resistance, i.e., R(L1 + L2) = R(L1) + R(L2). In the quantum regime, if one uses
the Landauer expression for the conductance/resistance, one demonstrates that the
resistance R(L1 + L2) > R(L1) + R(L2) because of multiple scattering phenomena.

4.4.4 The Kubo Formalism in Real Space

An efficient real-space implementation of the Kubo formula was first developed by
Roche and Mayou in 1997 for the study of quasiperiodic systems (quasicrystals) (Roche
& Mayou 1997). It was then adapted by Roche and coworkers to allow exploration
of mesoscopic (magneto)-transport in complex and disordered mesoscopic systems
including carbon nanotubes, semiconducting nanowires, and graphene-based materials
(Ishii et al. 2009; Latil et al. 2005; Lherbier et al. 2008; Roche 1999; Roche &
Saito 2001; Roche et al. 2005). The typical disordered samples studied with such
methodology already contain several tens of millions of orbitals, and with the use of
high-performance computing resources, the simulation of samples with one billion
atoms can be envisioned in the next decade. This numerical transport method therefore
offers unprecedented exploration possibilities of complex quantum transport phenom-
ena, not only in realistic models of disordered graphene-based materials, but also in
any other types of materials of exciting scientific and technological interest (silicon
nanowires (Persson et al. 2008), organic crystals (Ortmann & Roche 2011), topological
insulators, etc.).

We present here the basic ingredients of the numerical implementation and provide
in further sections extensive illustrations of its use in the study of disordered graphene-
based materials (Lherbier 2008; Roche 1996; Triozon 2002). Appendix D provides an
extensive technical derivation of such a real space (and order N) implementation using
the Lanczos method, which is also reviewed in detail. We present here a summary of
such a derivation since it will help us to explore most quantum transport regimes in
complex forms of graphene-based materials. We start again with the general form of the
Kubo conductivity:

σ (ω) = 2πe2h̄
�

∫ +∞

−∞
f (E) − f (E + h̄ω)

h̄ω
Tr
[
V̂x δ(E − Ĥ) V̂x δ(E − Ĥ + h̄ω)

]
dE,

(4.78)

where Ĥ is the Hamiltonian operator, V̂x is the operator for the electronic velocity along
the x axis, and f (E) is the Fermi distribution function. The DC conductivity corresponds
to the limit ω = 0. Using the property
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lim
ω→0

f (E) − f (E + h̄ω)
h̄ω

= − ∂f
∂E

= δ(E − EF) (4.79)

and after a Fourier transform, the diagonal conductivity can be simplified to

σDC = e2ρ(EF) lim
t→∞

[
1
t
〈
�X2(t)

〉
E

]
, (4.80)

where ρ(EF) is the density of states per unit of volume and
〈
�X2(t)

〉
E measures the

electronic quadratic spread at energy E, defined as

〈
�X2(t)

〉
E

=
Tr
[
δ(E − Ĥ)

(
X̂(t) − X̂(0)

)2
]

Tr
[
δ(E − Ĥ)

] , (4.81)

where X̂(t) is the position operator along the x axis, written in the Heisenberg
representation for the time t. We note that Eq. (4.80) is slightly different from
Eq. (4.65), which is the most general starting point, but which is more computationally
demanding. However, in most cases the simplification of using Eq. (4.80) is sufficient
to extract the main physics. We refer the reader to Lherbier et al. (2012) for a numerical
comparison of both formulas. We then modify Eq. (4.81), using the time-reversal
symmetry and the properties of the trace. One can demonstrate that

Tr
[
δ(E − Ĥ)

(
X̂(t) − X̂(0)

)2
]

= Tr
[
A†(t) δ(E − Ĥ) A(t)

]
, (4.82)

A(t) =
[
X̂, û(t)

]
= X̂û(t) − û(t)X̂, (4.83)

where X̂ is the position operator in the Schrödinger representation and û(t) =
exp(−iĤt/h̄) is the usual evolution operator. Secondly, the trace in Eq. (4.81) is
approximated by expectation values on random phase states. Random phase states
are expanded on all the orbitals |n〉 of the basis set and defined thus:

|wp〉 = 1√
N

N∑
n=1

exp (2iπ α(n)) |n〉, (4.84)

where α(n) is a random number in the [0, 1] range. An average over few tens of random
phases states is usually sufficient to calculate the expectation values,

Tr[. . .] −→ 〈wp| . . . |wp〉, (4.85)

and the spread (4.81) can finally be rewritten:〈
�X2(t)

〉
E

= 〈wp| A†(t) δ(E − Ĥ) A(t) |wp〉
〈wp| δ(E − Ĥ) |wp〉

. (4.86)

Equation (4.86) is now suitable for order O(N) numerical techniques and calculation of
the transport properties is possible. We leave additional technical details to Appendix D
and turn now to a physical discussion of this approach. Actually, the quadratic spread
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(Eq. 4.86) is a key quantity as it is directly related to the diffusion coefficient (or
diffusivity) through

DE(t) = 〈
X2(t)

〉
E · 1

t
, (4.87)

whose time dependence fully determines the transport mechanism. It is worthwhile also
to define the electronic spread

XE(t) =
√〈

X2(t)
〉
E =

√
tDE(t). (4.88)

The three main transport mechanisms which can be generically followed through the
time evolution of the wavepacket dynamics (illustrated in Fig. 4.4) are:

• Ballistic regime. Electrons travel through the systems without suffering any scatter-
ing, so that DE(t) and XE(t) remain linear functions in time, with slopes respectively
equal to v2

F and vF. Figure 4.4(a) shows a typical ballistic motion in clean 2D
graphene at the Dirac point for metallic armchair nanotubes, whereas Fig. 4.5 shows
the extracted energy-dependent velocity in clean two-dimensional graphene from the
linear regime, which agrees perfectly with the analytical (exact) result. In particular,
at the Dirac point, vF ∼ 2.1γ0 Å/h̄.

• Diffusive regime. Behavior in weakly disordered graphene is characterized by a
saturation of DE(t → ∞). The saturation value identifies the elastic relaxation (or
transport) time τ (see Fig. 4.4(b)).

• Localized regime. Behavior in strongly disordered graphene is manifested by
an increasing contribution of quantum interference, which reduces the diffusion
coefficient, roughly following a ∼1/t decay. Spreading XE(t) reaches an asymptotic
value that is related to the localization length ξ (E) (see Fig. 4.4(c)).

Figure 4.4 Typical behaviors of the diffusion and spread coefficients for the three characteristic
regimes: (a) ballistic; (b) diffusive; and (c) localized. Courtesy of Dinh Van Tuan.
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Figure 4.5 Velocity versus energy (solid line) and density of states (dashed line) for pristine
graphene.

All the dynamics of the electronic system are actually conveyed by the Ĥ operator.
Since the Hamiltonian accounts for the presence of static disorder (e.g., randomly
located defects), the time-dependent quantum dynamics of electronic wavepackets
capture all multiple scattering phenomena including those accessible within the semi-
classical transport regime (Bloch–Boltzmann), such as the elastic mean free path, or the
localization length defining the Anderson insulator state. Inelastic scattering phenomena
cannot be captured rigorously with such an approach, except in some indirect manner
by coupling molecular dynamics with the time-dependent wavepacket approach.

4.4.5 Scaling Theory of Localization

The scaling theory of localization in disordered systems was developed in the early
1980s, initiated earlier by P. W. Anderson and further consolidated by Abrahams et al.
(1979), who established comprehensive foundations of transport theory in disordered
systems. Theoretical predictions have been confirmed by decades of experimental work.
In one and two dimensions, any metallic system is predicted to be continuously driven to
an (Anderson) insulating state as temperature decays to zero, and all states are localized
at zero temperature. From a general perspective, the conductance of a system can be
viewed as the sum (PP→Q) over all probability amplitudes of propagating trajectories
starting from one location P and going to another one Q in real space, or more explicitly

G = 2e2

h
PP→Q, (4.89)

PP→Q =
∑

i
|Ai|2 +

∑
i�=j

AiAjei(αi−αj), (4.90)
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(a) (b)

Figure 4.6 (a) Two clockwise and counterclockwise scattering trajectories which interfere
constructively at various locations in real space where paths cross again. (b) Zoom-in of one
particular loop where in addition to momentum shift upon scattering off impurities, adiabatic
rotation of spin degree of freedom (conveyed by a weak spin–orbit scattering) is also pinpointed
by arrows (two for up spin and down spin) on both trajectories.

defining |Ai|eiαi as the probability amplitude of trajectory i. The conductance for a
disordered system is obtained by averaging over an ensemble of random configurations,
which suppresses almost all interfering terms, simplifying Eq. (4.90) to the sum
of probabilities of individual trajectories, as expected from a classical calculation,
〈G〉dis. = 2e2

h

∑
i

|Ai|2.

This is, however, not completely correct since there exists a class of scattering
trajectories which contain geometrical loops returning to an initial point in real
space (illustrated in Fig. 4.6(a)). In the presence of time-reversal symmetry, the
probability amplitude associated with the closed trajectory (C+) moving in clockwise
along the loop turns out to interfere constructively with the one (C−) topologically
identical, but moving counterclockwise (illustrated in Fig. 4.6(b)). Indeed, if we denote
α+ = ∮

C+ p · dr, it is clear that α− = α+.
Accordingly, the quantum interferences driven by the contribution of all such families

of trajectories are not canceled by disorder averaging and eventually enhance the prob-
ability of return to some origin, PO→O = 4|AO|2 (being twice the classical result in the
absence of interferences (|AO|2 +|AO|2)). Such a contribution of quantum interferences
which yields increased quantum resistance is also known as the Cooperon contribution
(see Appendix C).

This weak localization phenomenon was first theoretically described in a seminal
paper by Altshuler et al. (1985). An interesting point is that by applying an external
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magnetic field, this interference effect is actually tunable by extra phase factors related
to the vector potential. Indeed, since p → p + e

c A, the phase factors along clockwise
and counterclockwise trajectories have a sign difference, α± = ± e

h̄
∮

A ·dr. The total
probability of return to some origin is then modified as (defining φ0 = h/e, the magnetic
flux quantum)

|A0|2
∣∣∣1 + ei(α+−α−)

∣∣∣2 = 2 |A0|2
(

1 + cos
2πϕ
φ0/2

)
≤ 4 |A0|2 , (4.91)

which means that the Cooperon contribution will always be reduced compared to
its zero-field value, resulting in a resistance decrease upon switching on the field
(negative magnetoresistance) (Bergman 1984). The quantum (Cooperon) correction
δσ (L) can be actually derived as a perturbative correction of the semiclassical result
σ (L) = σsc + δσ (L) (see Appendix C), and rewritten in real space as

δσ (L) = −2e2D
π h̄�

∫ ∞

0
dtZ(t)

(
e−t/τϕ − e−t/τel

)
, (4.92)

with Z(t) = ∫
ddrP(r, r, t), the space integral of the total probability of returning to

some origin, which obeys a diffusion law, of which a solution is P(r, r, t) = 1/(4πDt)d/2

(in D dimensions). In the integral, the factor (e−t/τϕ − e−t/τel ) restricts the size
of the loops, which contribute to interferences. Indeed, since trajectories develop
in the diffusive regime (t ≥ τel, τel is the elastic scattering time), and within the
coherent regime (t ≤ τϕ , with τϕ the coherent time), all trajectories accomplished in a
timescale shorter than τel and longer than τϕ do not contribute to the total interference.
In two dimensions, it is found that δσ (L) = −(2e2/πh) ln(L/�el) (Lee & Ramakrishnan
1985). The transition to the insulating state is continuous and reached when the
quantum correction is of the same order as the semiclassical conductivity, that is, when
�σ (L = ξ ) � σsc. This simple criterion allows us to establish a universal relationship
(Thouless, 1973) between the two transport length scales of both (metallic and
insulating) regimes, as ξ = �el exp(πσsc/G0) (Lee & Ramakrishnan 1985).

Spin/Pseudospin Effect on the Cooperon
It turns out that the presence of additional degrees of freedom such as the spin (or
pseudospin in graphene) brings new features in the interference pattern. This was first
theoretically established by Hikami et al. (1980) and then confirmed experimentally
(Bergman 1984) on thin metallic film functionalized with deposited magnetic atoms. It
is usually assumed that if |s〉 is the initial spin state, it can generally be rewritten as a
superposition of the spin up |⇑〉 and spin down |⇓〉 states. In principle, there exist two
main possibilities of how the spin orientation can be changed on the scattering path in the
presence of spin–orbit coupling (defined by a Hamiltonian Hso). The first mechanism
initially derived for metals, and known as the Elliot–Yafet mechanism, assumes that
the presence of spin–orbit coupling results in a spin rotation each time the electron is
scattered at the impurities. In contrast, the Dyakonov–Perel mechanism describes spin
precession while the electron propagates between the scattering centers. The origin of
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the spin precession has been generally described in terms of lack of inversion symmetry
(i.e., in zinc blende crystals) or of an asymmetric potential shape of the quantum well
forming a 2D electron gas (the Rashba effect).

Regardless of the underlying mechanism, if an electron propagates along a closed
loop, its spin orientation is changed. The modification of the spin orientation can be
expressed by a rotation matrix U. For propagation along the loop in a forward ( f ) direc-
tion, the final state |sf〉 can be expressed by |sf〉 = U|s〉, where U is the corresponding
rotation matrix. For propagation along the loop in a backward directions (b), the final
spin state is given by |sb〉 = U−1|s〉. Here, use is made of the fact that the rotation matrix
of the counterclockwise propagation is simply the inverse of U. For interference between
the clockwise and counterclockwise electron waves, not only the spatial component is
relevant but also the interference of the spin component: 〈sb|sf〉 = 〈s|U2|s〉, making
use of the fact that U is a unitary matrix. Weak localization, and thus constructive
interference, is recovered if the spin orientation is conserved in the case that U is the
unit matrix. However, if the spin is rotated during electron propagation along a loop, in
general no constructive interference can be expected. Moreover, for each loop, a
different interference will be expected. Interestingly, averaging over all possible
trajectories even leads to a reversal of the weak localization effect. The generalization
of the Cooperon factor in the presence of spin–orbit coupling has been demonstrated to
be as illustrated in Fig. 4.6(b) (Chakravarty & Schmid 1986):

δσ = −2e2D
π h̄�

∫ ∞

0
dtZ(t)〈Qso(t)〉(e−t/τϕ − e−t/τ ). (4.93)

The amplitude terms get extra phase factors related to the spin rotation, which
accumulates along the scattering trajectory as |sn+1〉 = e−i�θSz/h̄|sn〉, assuming that�θ
is some finite rotation angle while |sn〉 denotes the spin state along the trajectory and
Sz = h̄

2σz. Then along the full trajectory the total spin-dependent accumulated phase

factor can be described by introducing the time ordering operator T Rt = T e− i
h̄
∫ t

0 Hsodt,
with Hso = h̄

4m2c2 σ · (∇V(r) × p), the spin–orbit component of the total Hamiltonian,
σ = (σx, σy, σz) with Pauli matrices. The additional term entering into the Cooperon
contribution is actually

〈Qso(t)〉 =
∑
±

〈s0|R†
−t|sf〉〈sf|Rt|s0〉. (4.94)

In Fig. 4.6, clockwise and counterclockwise trajectories returning to some origin
are shown together with some schematics of the adiabatic rotation of spin degree of
freedom (assuming a weak spin–orbit coupling). Up and down spin are adiabatically
rotated along the path yielding a ±π extra phase. The total Berry phase adds up to 2π ,
which yields sign reversal of the Cooperon contribution evidenced by the extra factor
〈Qso(t)〉 = −1/2 (see Chakravarty & Schmid 1986). In two dimensions and in the
absence of magnetic field, the weak antilocalization correction to the conductivity can
be generally recast as
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δσ (L, �e) = +2e2

πh
ln
(

L
�el

)
, (4.95)

and the Kubo (quantum) conductivity can be rewritten as σ = σBB +| 2e2

πh ln( L
�el

)|, which
means that the conductivity is increased, with respect to its semiclassical value, by the
quantum interference contribution.

4.5 Quantum Transport beyond the Fully Coherent or Decoherent Limits

Beyond fully coherent or decoherent transport, the intermediate regime where decoher-
ence partially suppresses quantum effects is also of high relevance. Such an intermediate
regime is out of reach of the technical tools presented so far, and innovative theoretical
approaches are crucially needed. A detailed presentation of new ideas and emerging
methods to tackle such a problem is beyond the scope of this book, but a brief discussion
and useful references are provided for interested readers.

The key question is how to model decoherent effects by keeping a simple one-body
description. An early insight into this issue was given by Büttiker (1988a), who pro-
posed that decoherent effects could be simulated by the action of an imaginary voltmeter
attached to the sample; see the scheme in Fig. 4.7. The electrons that get absorbed by the
voltmeter are reinjected so as to keep the zero-current condition on the imaginary elec-
trode. Since no phase memory is retained between the incoming and reinjected electrons,
phase coherence is steadily lost. This appealing picture has been used in many situations
and has the advantage that it can be readily incorporated within Landauer’s formalism.

For the simplest case of a single resonant level E0 coupled to leads through escape
rates 
L, 
R and a voltmeter through 
φ , a simple calculation shows that the effective
transmission probability entering the Landauer conductance is

T̃R,L(ε) = 
R 
L

(ε − E0)
2 + (
L + 
R + 
φ)2

{
1 + 
φ


L + 
R

}
. (4.96)

lead
(L)

sample

voltmeter

lead
(R)

Figure 4.7 Scheme of Büttiker’s imaginary voltage probe model for decoherence: decoherence
can be modeled by the action of a voltmeter whose effect is to randomize the phase of the
carriers. Each carrier entering the voltmeter is reinjected to keep the current balance but without
a phase correlation, thereby randomizing the electronic phase.
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Therefore, we can see that the conductance is the sum of a coherent term, where
electrons do not suffer from any phase-breaking event, plus a decoherent term (second
term in the curly brackets of the previous equation). Note that even the first term,
which one would associate with the coherent component, is modified by the decoherent
processes that change the escape rates in the denominator.

An important question at this point is whether this scheme can be implemented within
a Hamiltonian model. D’Amato and Pastawski (1990) proposed a tight-binding model
where the imaginary probes were included through complex self-energies with a self-
consistent chemical potential adjusted in order to fulfill the voltmeter condition. Further
generalizations were also presented in the study by Pastawski (1991). This technique
has been further used in a variety of systems (Maassen et al. 2009; Nozaki et al. 2008)
where the input values can be modeled so as to represent an effective decoherence rate
from acoustic phonons or other sources.

4.6 Further Reading and Problems

• A general textbook on transport concepts in mesoscopic physics is provided by Datta
(1995).

• For a very nice discussion on the role of symmetries in transport, see Büttiker (1988b).
• For a review on shot noise beyond the brief discussion given in Section 4.2, see

Blanter and Büttiker (2000).
• On decoherence, the loss of interference, and the quantum-classical transition, we

recommend Stern et al. (1990) and Zurek (2003).

Problems

4.1 Landauer conductance of pristine carbon-based materials.6 In this computa-
tional exercise, you are encouraged to implement a calculation of the conductance for
carbon nanotubes and graphene nanoribbons, using the Landauer formula introduced in
Section 4.3.
(a) Consider a simple system where an infinite CNT or GNR (modeled through a tight-

binding Hamiltonian) is divided into three regions: the left and right will take the
role of leads and the central one will be the sample where you may change the site
energies to emulate a bias voltage.
Hint: In the process, you may take advantage of the details provided in Appendix
C for calculation of the self-energies due to the leads and the Green’s functions of
the central region. You may use the sample codes provided in our website as well
as the datasets available for different systems.

(b) As a byproduct, you should also compute the local and total density of states for
different systems and rationalize it.

6 Problems 4.1 and 4.3 may also be solved after reading Chapter 5.
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4.2 Shot noise and exchange interference effects. For a two terminal conductor, prove
that the zero-frequency noise in the independent particle approximation is given by Eq.
(4.3). Convince yourself that it cannot be written independently of the chosen basis in
terms of transmission and reflection probabilities, as is the case with the conductance.
This shows that the noise depends critically on the interference among the carriers from
different channels and could therefore serve to probe it. It is also predictable for the shot
noise to be particularly sensitive to interaction effects.

4.3 Conductance through carbon-based materials using the Kubo formula.
(a) Let us reconsider the previous exercise, but now using the Kubo formula intro-

duced in Section 4.4.4. To do so, take advantage of the recursion methods intro-
duced in Appendix D. You may use the sample codes provided in our website.

(b) For almost the same cost, you can compute the local and total density of states.

** Additional exercises and solutions are available at our website.



5 Klein Tunneling and Ballistic
Transport in Graphene and
Related Materials

In this chapter, we start with a presentation of the so-called Klein tunneling mechanism,
which is one of the most striking properties of graphene. Later, we give an overview
of ballistic transport both in graphene and related materials (carbon nanotubes and
graphene nanoribbons). After presenting a simple real-space mode-decomposition
scheme, which can be exploited to obtain analytical results or to boost numerical
calculations, we discuss Fabry–Pérot interference, contact effects, and the minimum
conductivity in the two-dimensional (2D) limit.

5.1 The Klein Tunneling Mechanism

The Klein tunneling mechanism was first reported in the context of quantum electro-
dynamics. In 1929, physicist Oskar Klein (1929) found a surprising result when solving
the propagation of Dirac electrons through a single potential barrier. In nonrelativistic
quantum mechanics, incident electrons tunnel a short distance through the barrier as
evanescent waves, with exponential damping with the barrier depth. In sharp contrast, if
the potential barrier is of the order of the electron mass, eV ∼ mc2, electrons propagate
as antiparticles whose inverted energy–momentum dispersion relation allows them to
move freely through the barrier. This unimpeded penetration of relativistic particles
through high and wide potential barriers has been one of the most counterintuitive
consequences of quantum electrodynamics, but despite its interest for particle, nuclear,
and astrophysics, a direct test of the Klein tunnel effect using relativistic particles still
remains out of reach for high-energy physics experiments.1

In 1998, Ando, Nakanishi, and Saito deduced a full suppression of backscattering
in metallic carbon nanotubes for long-range disorder, as a consequence of Berry’s
phase and electron–hole symmetry (Ando et al. 1998). In 2006, Katsnelson, Novoselov,
and Geim demonstrated that massless Dirac fermions in graphene offer a unique test
of Klein’s gedanken experiment (Klein 1929). This remarkable prediction was then

1 We emphasize that despite its name, the Klein tunnel effect does not involve tunneling as usually meant in
quantum mechanics because it does not rely on evanescent waves. It is the roles of pseudospin
conservation and electron–hole symmetry that are crucial in this case.
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confirmed by a series of finely tuned experiments (Stander et al. 2009; Young & Kim
2009, 2011). A collimating effect on ballistically transmitted carriers was revealed
through analysis of the conductance oscillations (and phase shift in the conductance
fringes at low magnetic fields) in a graphene-based p–n junction, providing compelling
evidence of the perfect transmission of carriers normally incident on the junctions
(Cheianov & Fal’ko 2006; Shytov et al. 2008). In the following, we provide a complete
derivation of the analytical calculation for both a single layer and bilayers.

5.1.1 Klein Tunneling through Monolayer Graphene with a Single (Impurity)
Potential Barrier

Let us consider a system such as the one represented in Fig. 5.1: two normal regions with
a potential barrier in between. To obtain the transmission probability, we follow a simple
scheme and solve for the wavefunctions in each of the regions and then match them.

The 2D Wavefunction of an Electron in Graphene
As discussed in Section 2.2.2, the graphene electronic structure at low energy can be
obtained from the two-component effective equation H� = E�, where

H = h̄νF

(
0 k̂x − ik̂y

k̂x + ik̂y 0

)
= h̄νF(σxk̂x + σyk̂y), (5.1)

where σx, σy are Pauli spin matrices and k̂ = (k̂x, k̂y) = −i� is a wavevector operator.
In the previous equation, we have dropped the subindex K+ in the Hamiltonian; the

Figure 5.1 Scattering of Dirac electron by a square potential.
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calculations for the other valley proceed in an analogous way. The 2D spinor wavefunc-
tion is written as

�sk(r) =
(
�1

�2

)
exp(ikr), (5.2)

Substituting Eq. (5.2) into 5.1 yields

h̄νF

(
0 kx − iky

kx + iky 0

)(
�1

�2

)
= E

(
�1

�2

)
. (5.3)

To solve this equation, we use the band dispersion

Esk = sh̄νF|k|, (5.4)

where s = +1 and −1 denote the conduction band and valence bands, respectively. By
substituting into Eq. (5.3), we obtain

�2 = kx + iky

s|k| �1 = seiφ�1, (5.5)

with

kx = |k| cosφ, ky = |k| sinφ, (5.6)

so the corresponding momentum space pseudospinor eigenfunction becomes

�s,k =
(
�1

�2

)
=
(

1
seiφ

)
�1, (5.7)

and the wavefunction is

�(x, y) =
(
�1(x, y)
�2(x, y)

)
=
(

1
seiφ

)
�1eikxx+ikyy. (5.8)

Using the normalization condition of the wavefunction, we finally get�1 = 1√
2L

, where
L2 is the area of system; this is

�(x, y) = 1√
2L

(
1

seiφ

)
eikxx+ikyy. (5.9)

Now that we have the wavefunctions for the different regions, let us proceed by appro-
priately matching them.

Wavefunction Matching
Let us calculate the wavefunction in different regions of the Klein tunneling model and
then evaluate the transmission probability. We consider a potential barrier that has a
rectangular shape with width D and is infinite along the y axis,
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V(x) =
{

V0 in region II,
0 in regions I, III.

(5.10)

Wavefunctions in Different Regions
We assume that the incident electron wave propagates at an angle φ in region I and then
diffracts into region II with angle θ with respect to the x axis. As we showed above, the
wavefunction in region I is given by Eq. (5.9). Because the potential does not change
along the y axis, the y component of momentum is conservative,

kI
y = kII

y = kIII
y = ky. (5.11)

Furthermore, the potentials in regions I and III are the same so kI = kIII, so that the
electron wave in region III also propagates at an angle θ with respect to the x axis and

kI
x = kIII

x = kx. (5.12)

Similar to Eq. (5.3), the Schrödinger equation in region II becomes(
V0 h̄νF(kII

x − iky)
h̄νF(kII

x + iky) V0

)(
�II

1

�II
2

)
= E

(
�II

1

�II
2

)
. (5.13)

From this, we deduce

kII
x =

√
(E − V0)2/ (h̄νF)

2 − k2
y , (5.14)

tan θ = ky√
(E − V0)2/ (h̄νF)

2 − k2
y

. (5.15)

The wavefunction in the different regions can be written in terms of incident and
reflected waves:

�I(x, y) = 1√
2L

{(
1

seiφ

)
ei(kxx+kyy) + r

(
1

sei(π−φ)

)
ei(−kxx+kyy)

}
, (5.16)

�II(x, y) = 1√
2L

{
a

(
1

s′eiθ

)
ei(kII

x x+kyy) + b

(
1

s′ei(π−θ)

)
ei(−kII

x x+kyy)

}
, (5.17)

�III(x, y) = t√
2L

(
1

seiφ

)
ei(kxx+kyy), (5.18)

where s = sgn(E) and s′ = sgn(E − V0). This provides the whole set of wavefunctions
for the different regions of the scattering problem.
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The Transmission Probability and Klein Tunneling
The coefficients r, a, b, t are obtained by requiring continuity of the wavefunction,

�I(0, y) = �II(0, y), (5.19)

�II(D, y) = �III(D, y). (5.20)

Substituting the wavefunctions by their generic forms, we get for the first equation⎧⎨⎩1 + r = a + b,

s(eiφ + rei(π−φ)) = s′(aeiθ + bei(π−θ)).
(5.21)

Similarly, for the second, we obtain⎧⎨⎩aeiqxD + be−iqxD = teikxD,

s′(aei(θ+qxD) + bei(π−θ−qxD)) = tsei(φ+kxD),
(5.22)

where qx = kII
x . From Eq. (5.21), we have

b = − seiφ − s′eiθ

seiφ + s′e−iθ ae2iqxD. (5.23)

Substituting Eq. (5.23) into the first expression in Eq. (5.21), we obtain

a = seiφ + s′e−iθ

−2iseiφ sin(qxD) + 2s′ cos(θ + qxD)
(1 + r)e−iqxD. (5.24)

Using Eq. (5.23) and Eq. (5.24), we obtain

b = − seiφ − s′eiθ

−2iseiφ sin(qxD) + 2s′ cos(θ + qxD)
(1 + r)eiqxD. (5.25)

Substituting Eq. (5.24) and Eq. (5.25) into the second expression of Eq. (5.21), we
finally find that

s(eiφ − re−iφ) = (ss′ei(φ+θ) + 1)e−iqxD + (ss′ei(φ−θ) − 1)eiqxD

−2iseiφ sin(qxD) + 2s′ cos(θ + qxD)
(1 + r), (5.26a)

⇔ s(eiφ − re−iφ) = 2ss′eiφ cos(θ − qxD) − 2i sin qxD
−2iseiφ sin(qxD) + 2s′ cos(θ + qxD)

(1 + r), (5.26b)

⇔ r = ieiφ sin(qxD)(sinφ − ss′ sin θ )
sin(qxD) − ss′ [sinφ sin θ sin(qxD) − i cosφ cos θ cos(qxD)]

. (5.26c)

The transmission can then be obtained straightforwardly from T(φ) = tt∗ = 1−rr∗ =
1 − R:

T(φ) = cos2 θ cos2 φ

cos2(qxD) cos2 θ cos2 φ + sin2(qxD)(1 − ss′ sin θ sinφ)2
. (5.27)
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Figure 5.2 (a) Transmission probability T(E) for normally incident electrons in single-layer and
bilayer graphene (black solid and black dashed lines, respectively), and in a non-chiral zero-gap
semiconductor (gray dotted line) as a function of width D of the tunnel barrier. In this plot the
barrier for monolayer graphene is 450 meV and about 240 meV for the other two materials.
T(E) through a 100 nm-wide barrier as a function of the incident angle is shown for single-layer
(b) and bilayer (c) graphene. In each of these plots, two curves are shown; they correspond to a
Fermi energy of ∼ 80 (solid line) and 17 meV (dashed line), and λ ∼ 50 nm. The barrier heights
V0 are 200 and 50 meV for the solid lines in (b) and (c), respectively, and 285 and 100 meV for
the dashed lines in (b) and (c), respectively. (Adapted by permission from Macmillan Publishers
Ltd: Nature, Katsnelson et al. 2006, copyright (2006))

In the limit |V0| � |E|, the value of θ → 0 can be replaced in Eq. (5.27), which becomes

T(φ) = cos2 φ

cos2(qxD) cos2 φ + sin2(qxD)
= cos2 φ

1 − cos2(qxD) sin2 φ
. (5.28)

Equation (5.28) means that under resonance conditions qxD = πN, N = 0, ±1, . . . ,
the barrier becomes totally transparent (T = 1). Additionally, the barrier always remains
perfectly transparent for angles close to normal incidence, ϕ = 0 (see Fig. 5.2), which
stands as a feature unique to massless Dirac fermions and is directly related to the
Klein paradox in QED. It is important to note that this perfect transmission for normal
incidence is not a resonance effect. Indeed, this perfect tunneling can be rationalized in
terms of the conservation of pseudospin. In the absence of pseudospin-flip processes,
an electron moving to the right can be scattered only to a right-moving electron state or
left-moving hole state (see also the discussion in Section 2.2.2). The matching between
directions of pseudospin for quasiparticles inside and outside the barrier results in per-
fect tunneling. In the strictly one-dimensional (1D) case, such perfect transmission of
Dirac fermions has also been discussed in the context of electron transport in carbon
nanotubes (see Section 6.1).
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5.1.2 Klein Tunneling through Bilayer Graphene with a Single (Impurity) Potential Barrier

The 2D Wavefunction of an Electron in Bilayer Graphene
The Hamiltonian of an electron in bilayer graphene has the form

H = − h̄2

2m

(
0 (k̂x − ik̂y)2

(k̂x + ik̂y)2 0

)
. (5.29)

Similar to the 2D spinor wavefunction of single-layer graphene, the wavefunction of
bilayer graphene in the ith region satisfies

− h̄2

2m

(
0 (k̂x − ik̂y)2

(k̂x + ik̂y)2 0

)
� i

sk(r) = (E − Vi)� i
sk(r), (5.30)

where the wavefunction has the following form (the electrons are free in the y direction
and the momentum in the y direction is unchanged):

� i
sk(r) =

(
ai

(
�1

1

�1
2

)
i

eikixx + bi

(
�2

1

�2
2

)
i

e−ikixx

+ ci

(
�3

1

�3
2

)
i

eκixx + di

(
�4

1

�4
2

)
i

e−κixx

)
eikyy. (5.31)

Substituting such an expression for� i
sk(r) into Eq. (5.30), and following the same steps

as for the monolayer case, we find that(
�1

1

�1
2

)
i

=
(

1
sie2iφi

)
�1

1i, (5.32a)

(
�2

1

�2
2

)
i

=
(

1
sie−2iφi

)
�2

1i, (5.32b)

(
�3

1

�3
2

)
i

=
(

1
−sihi

)
�3

1i, (5.32c)

(
�4

1

�4
2

)
i

=
(

1
−si/hi

)
�4

1i, (5.32d)

where

si = sgn(Vi − E), h̄kix =
√

2m|E − Vi| cosφi,

h̄ky =
√

2m|E − Vi| sinφi = const,

κix =
√

k2
ix + 2k2

y , hi =
(√

1 + sin2 φi − sinφi

)2
.
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The way to obtain the first two pseudospinors is the same as for single-layer graphene,
whereas the two others can be derived as follows:

− h̄2

2m

(
0 (k̂x − ik̂y)2

(k̂x + ik̂y)2 0

)(
�3

1

�3
2

)
i

eκixx+ikyy = (E − Vi)

(
�3

1

�3
2

)
i

eκixx+ikyy,

(5.33a)

− h̄2

2m

(
0 (k̂x − ik̂y)2

(k̂x + ik̂y)2 0

)(
�4

1

�4
2

)
i

e−κixx+ikyy = (E − Vi)

(
�4

1

�4
2

)
i

e−κixx+ikyy.

(5.33b)

From this, we obtain(
0 (κix + ky)2

(κix − ky)2 0

)(
�3

1
�3

2

)
i

= 2m(E − Vi)
h̄2

(
�3

1
�3

2

)
i

, (5.34a)

(
0 (κix − ky)2

(κix + ky)2 0

)(
�4

1
�4

2

)
i

= 2m(E − Vi)
h̄2

(
�4

1
�4

2

)
i

, (5.34b)

so we have the relations

κ2
ix = k2

y + 2m|E − Vi|
h̄2 = k2

y + k2
i = k2

ix + 2k2
y , (5.35a)

�3
2i = −si

(κix − ky)2

k2
i

�3
1i = −sihi�

3
1i, (5.35b)

�4
2i = −si

k2
i

(κix − ky)2�
4
1i = − si

hi
�4

1i. (5.35c)

Therefore, the wavefunction in the ith region is

� i
sk(r) =

(
ψ i

1(x, y)
ψ i

2(x, y)

)
, (5.36)

where

ψ i
1 =

(
aieikixx + bie−ikixx + cieκixx + die−κixx

)
eikyy,

ψ i
2 = si

(
aiei(kixx+2φi) + bie−i(kixx+2φi) − cihieκixx − di

hi
e−κixx

)
eikyy.

This gives the general form of the wavefunctions for the bilayer case.

Transmission Probability and Chiral Tunneling in Bilayer Graphene
Equation (5.36) gives the form of wavefunctions in the different regions. To avoid
divergence of the wavefunction as x → −∞ (x → +∞), d1 = 0 (c3 = 0) in
region I (III). There is no reflected wave in region III so b3 = 0. Using the continuity
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conditions for both components of the wavefunction and their derivatives, for the case
of an electron beam that is incident normally (φ = 0) and low barrier V0 < E:

a1 + b1 + c1 = a2 + b2 + c2 + d2,

a1 + b1 − c1 = a2 + b2 − c2 − d2,

k1(ia1 − ib1 + c1) = k2(ia2 − ib2 + c2 − d2),

k1(ia1 − ib1 − c1) = k2(ia2 − ib2 − c2 + d2),

a2eik2D + b2e−ik2D + c2ek2D + d2e−k2D = a3eik1D + d3e−k1D,

a2eik2D + b2e−ik2D − c2ek2D − d2e−k2D = a3eik1D − d3e−k1D,

k2(ia2eik2D − ib2e−ik2D + c2ek2D − d2e−k2D) = k1(ia3eik1D − d3e−k1D),

k2(ia2eik2D − ib2e−ik2D − c2ek2D + d2e−k2D) = k1(ia3eik1D + d3e−k1D), (5.37)

where k1 = k1x = κ1x =
√

2mE
h̄ and k2 = k2x = κ2x =

√
2m|E−V0|

h̄ . From these equations,
we have ψ1 = −ψ2 both inside and outside the barrier. For the case of an electron beam
that is incident normally (φ = 0) and high barrier V0 > E, we have equations similar
to Eq. (5.37), but with s2 = −s1 = −s3 = −1 from which we obtain the transmission
coefficient t:

t = a3

a1
= 4ik1k2

(k2 + ik1)2e−k2D − (k2 − ik1)2ek2D . (5.38)

The transmission probability T is given by

T = |t|2 = 4k2
1k2

2
(k2

1 + k2
2)2 sinh2(k2D) + 4k2

1k2
2

. (5.39)

Therefore, T in this case decays exponentially with the height and width of the barrier.
This is in striking contrast with monolayer graphene where transmission is unity. For
bilayer graphene, pseudospin conservation does not forbid backscattering. The results
for both cases are shown in Fig. 5.2, where they are also compared with those for a
non-chiral zero-gap semiconductor.

5.2 Ballistic Transport in Carbon Nanotubes and Graphene

One of the main problems hindering molecular electronics has been the poor quality
of the contacts between the molecular sample and the metallic electrodes. This leads
to low conductance values and usually takes us out of the coherent regime analyzed
in this section (see Section 4.1.2). The outstanding quality of the contacts achieved
for carbon nanotubes and graphene devices changed this picture radically allowing,
for example, for the observation of ballistic transport and Fabry–Pérot interference
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(Herrmann et al. 2007; Kim et al. 2007; Liang et al. 2001; Wu et al. 2007; Wu
et al. 2012), which is addressed in the following pages.

5.2.1 Ballistic Motion and Conductance Quantization

The intrinsic electronic transport along the nanotube axis is perfectly ballistic if the
measured conductance is quantized (and L-independent), only varying with the number
of available conducting channels at the considered energy (N⊥(E)). In that regime,
G(E) = 2e2/h×N⊥(E) (including spin degeneracy). The quantized conductance profile
for a given nanotube can actually be directly deduced from the band structure features,
by counting the number of channels at a given energy. A metallic armchair nanotube
presents only two quantum channels at the charge neutrality point (CNP), resulting in
G(EF) = 2G0. At higher energies, the conductance increases as more channels become
available for transport. Figure 5.3 shows the electronic bands and conductance of a clean
(5, 5) metallic tube.

This situation has been experimentally measured for very clean metallic nanotubes
with ohmic contacts between the SWNT and metallic (palladium) voltage probes (Javey
et al., 2003, 2004). Figure 5.4 (left panel) shows the IDS(VDS) for metallic single-
walled carbon nanotubes (SWNTs) (Pd Ohmic contacts) with lengths ranging from
700 nm down to 55 nm. The low-bias regime is clearly linear, and makes it possible
to extract a corresponding conductance G = dI/dV, which turns out to be very close
to the maximum quantized value 4e2/h and (as expected) shows almost no temperature
dependence (Fig. 5.4 (right panel)). Using semiclassical (Bloch–Boltzmann) transport
simulations, mean free path acoustic phonon scattering is estimated to be in the order
of 300 nm, whereas for optical phonon scattering, the inelastic length is estimated to be

Figure 5.3 Band structure (left), density of states (middle), and conductance (right) for a (5, 5)
armchair nanotube.
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Figure 5.4 (a) Electrical properties of ohmically contacted metallic SWNTs of various lengths
(diameters d ∈ [2, 2.5] nm, oxide thickness is 10 nm). Solid lines are experimental IDS − VDS
curves, while symbols are Monte Carlo simulations. (b) Conductance versus gate voltage
recorded (under a low bias of VDS � 1 mV) at 290, 150, and 40 K. (Adapted from Javey et al.
2004. Copyright (2004) by the American Physical Society. By courtesy of Hongjie Dai)

about 15 nm (see Section 6.1.1 for more details). Transport through very short (10 nm)
nanotubes is free of significant acoustic and optical phonon scattering and thus ballistic
and quasiballistic at the low- and high-bias voltage limits, respectively. High currents
of up to 70 μA can flow ballistically through a short nanotube section in between Pd
contacts (Javey et al. 2003, 2004).

These values are, however, the uppermost theoretical limits that can be experi-
mentally accessible. In practical situations, lower values are found since quantum
transmission is limited by interface symmetry mismatch, inducing Bragg-type backscat-
tering. Additionally, topological and chemical disorders, as well as intershell coupling
for multiwalled nanotubes, introduce intrinsic scattering along the tube, which also
lowers the total transmission probability. Both effects will have an impact on the
transmission through the different conducting channels or modes in the leads. If
Tn(E) ≤ 1 is the transmission probability through one of those channels at energy E, the
conductance is given by G(E) = G0

∑
n=1,N⊥ Tn(E) (Datta 1995).

To make the last statements more concrete, in the following subsection, we intro-
duce a useful way of decomposing the system (be it a carbon nanotube or a graphene
nanoribbon) into independent channels or modes, thereby giving a picture of what these
conduction channels are.

5.2.2 Mode Decomposition in Real Space

Solving the Hamiltonian by brute force to obtain the transport/electronic properties of
pristine carbon nanotubes or graphene (armchair edge) nanoribbons, even by using a
decimation procedure, is computationally demanding and much physical insight might
be lost. In the following, a simple procedure to break the Hamiltonian into independent
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Figure 5.5 Representation of the atomic positions for different terminations of graphene
nanoribbons: (a) armchair and (b) zigzag. The dashed boxes separate different layers of carbon
atoms. Note that zigzag and armchair carbon nanotubes can be obtained, respectively, from
(a) and (b) by imposing periodic boundary conditions along the vertical direction. In the case of
armchair nanotubes, one has to additionally arrange for the number of atoms in each layer to be
an even number.

building blocks is described. The trick is simple but tremendously powerful: a suitable
unitary transformation performs the desired decomposition, which serves as a starting
point for either more efficient computational codes or insightful analytical calculations.
The following paragraphs follow previous works carried out for nanotubes (Mingo et al.
2001) as well as graphene ribbons (Rocha et al. 2010; Zhao & Guo 2009).

Figure 5.5 shows arrangements of carbon atoms for nanoribbons of armchair and
zigzag edges. By adding a periodic boundary condition along the vertical direction, this
represents as well the arrangement for the case of carbon nanotubes where curvature
effects are neglected. In general, the Hamiltonian can be written in a block-matrix form
where each block corresponds to the orbitals inside each layer (as depicted in Fig. 5.5)
for a particular diameter/width of the nanotube/nanoribbon. The idea is to find a basis
where all these block matrices have a diagonal form. As we see below, depending on
the boundary conditions, this is sometimes possible thereby rendering a decomposition
of the 2D lattice into several independent 1D lattices.

The nearest-neighbor π orbitals Hamiltonian is given by

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
Hl1 V1

V†
1 Hl2 V2

V†
2 Hl3 V†

1

V1 Hl4 V†
2

V2 Hl5 · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.40)

where Hli = EiIm×m is the block matrix corresponding to the orbitals in the ith layer
and V1 and V2 are the hopping matrices connecting layers of different type. The precise
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form of these matrices depends on the particular system at hand. In the following, we
consider zigzag and armchair nanotubes and armchair graphene nanoribbons.

Zigzag carbon nanotubes. Let us consider an (n, 0) carbon nanotube. In this case,
m = n and

V1 = γ0

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 1
1 1
0 1 1 · · ·

· · · · · · . . .

⎞⎟⎟⎟⎟⎟⎠ , (5.41)

and V2 = γ0In×n. V1 can be easily diagonalized, i.e., there is an (n × n) matrix C such
that C†V1C has a diagonal form. The eigenvectors of the matrix V1 are plane waves
around the nanotube circumferential direction:∣∣ϕq

〉 = 1√
n

n∑
j=1

exp(ikqj) |j〉 , (5.42)

where q = 1, . . . , n is the mode index, and |j〉 represents the π orbital localized at
the jth atom in a given layer. Since V2 and Hli are proportional to the identity, they
commute with V1 and the transformation defined by the previous equation (let us call
it C) diagonalizes all the matrices simultaneously. Using a change of basis transforma-
tion of the form

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · ·
C 0 0
0 C 0
0 0 C

· · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.43)

the transformed Hamiltonian is represented by n uncoupled chains with alternating
hoppings γ0 and γq = 2γ0 exp(−iπq/n) cos(qπ/n) (q = 1, . . . , n) with q the mode
index. Each of these modes is represented in Fig. 5.6.

Figure 5.6 Representation of the modes/eigenchannels resulting after the mode decomposition
described in the text for: (a) zigzag carbon nanotubes and armchair graphene nanoribbons; and
(b) armchair carbon nanotubes.
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Given that dimers with alternating hoppings like the ones above always have a gap
unless the hoppings have equal absolute value, one can see that whenever n is a multiple
of 3, |γ | = ∣∣γq

∣∣ is satisfied for q = n/3, 2n/3, and the system is metallic. The modes
with q = n/3, 2n/3 are in this case the only ones which contribute to the density of
states and the conductance in the vicinity of the charge neutrality point. Readers are
encouraged to undertake Problem 5.3 at the end of this chapter.

Armchair graphene nanoribbons. In this case, m = n and V2 = γ0In×n, hence

V1 = γ0

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0
1 1
0 1 1 · · ·

· · · . . .

⎞⎟⎟⎟⎟⎟⎠ . (5.44)

Note that V1 differs from what is given in Eq. (5.41) only in the matrix element in the
upper right corner (which gives the periodic boundary condition for carbon nanotubes).
However, in contrast to the case of zigzag tubes, the matrix V1, Eq. (5.44), cannot be
diagonalized. Therefore, a different strategy is required and a new basis set for armchair
ribbons has to be obtained by imposing a “particle-in-a-box” assumption as described
below.

Inspired by the geometrical arrangement of the A and B sublattices, an alternative
block-diagonal change of basis transformation can be adopted:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

C1

C2

C2

C1

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.45)

where the arrangement of the matrices C1 and C2 is periodically repeated with a four-
layer periodicity (the same as the lattice). The matrix elements of C1 and C2 are chosen
to satisfy hard boundary conditions:

[C1]i,q = 2√
2n + 1

sin
(

2iqπ
2n + 1

)
, (5.46)

[C2]i,q = 2√
2n + 1

sin
(

(2i − 1)qπ
2n + 1

)
. (5.47)

Interestingly, the blocks of the transformed Hamiltonian H′ = U†HU are all diago-
nal. Indeed, the blocks proportional to the identity matrix remain invariant (H′

li =Hli ,
V ′

2 =V2), while [V ′
1]i,q = [C†

1V1C2]i,q = 2γ0δi,q cos(qπ/(2n + 1)). Therefore, the graph-
ene armchair nanoribbon can also be represented as n-independent one-dimensional
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chains with alternating hoppings γ0 and γq = 2γ0 cos(qπ/(2n + 1)), q = 1, . . . , n.
A simple analysis of the electronic structure of each of these modes/eigenchannels
shows that, for metallic armchair nanoribbons, there is a single mode with a nonvan-
ishing density of states close to the charge neutrality point (see also Problem 5.3).

Armchair carbon nanotubes. Let us consider (m, m) armchair SWNTs. The carbon
atoms are arranged into layers as shown in Fig. 5.5(b), which in this case corresponds to
a (3, 3) SWNT once periodic boundary conditions are taken along the vertical direction.
In this case, n = 2m, V1 = V†

2 = γ0In×n and the only nontrivial matrices are the Hli .
By applying a change of basis transformation such as the one proposed in Problem 5.3,
it is possible to obtain a set of decoupled circumferential modes (Mingo et al. 2001).
The Hamiltonian for each of these modes is represented in Fig. 5.6 and corresponds to
ladders rather than 1D chains, ϕq = πq/m with q = 0, 1, . . . , m−1. The circumferential
mode contributing to the density of states at the charge neutrality point corresponds to
ϕ = 0, leading to two decoupled 1D chains.

5.2.3 Fabry–Pérot Conductance Oscillations

Let us consider a device made up of a high-quality sample, which is connected to
electrodes through almost perfect contacts. Almost is the crucial word here. It implies
a departure from certainty – when the contacts are perfect, transmission is perfect, and
therefore there is no uncertainty! – thereby giving room for interference. Indeed, the
interference between the “paths” corresponding to different numbers of reflections at
the interfaces may lead to a phenomenon similar to the Fabry–Pérot interference found
in optics. But this time, one has an electrical Fabry–Pérot interferometer working on the
basis of quantum interference.

Several experiments have reported a successful realization of Fabry–Pérot interfer-
ence both in carbon nanotube devices (Herrmann et al. 2007; Kim et al. 2007; Liang
et al. 2001; Wu et al. 2007) and in graphene devices (Wu et al. 2012, Oksanen et al.
2014). The evidence relies on the observation of oscillations in the conductance as the
gate voltage is changed. In the following, we comment on these results and outline a
way to rationalize them through a minimal model. Though, throughout this book we
have mostly been confronted with Hamiltonian models, this time scattering matrices are
our starting point.

The experimental setup used, for example, in Liang et al. (2001) consists of a metal-
lic carbon nanotube coupled to left and right electrodes and a gate (see scheme in
Fig. 5.7(a)). The presence of Fabry–Pérot interference in this electrical measurement
setup was verified by using the gate (Vg) and bias (V) voltages as control parameters
in low-temperature experiments (Liang et al. 2001) as shown in Fig. 5.7(c). At first
sight, this plot may seem reminiscent of the conductance pattern usually found in the
Coulomb blockade regime. We emphasize, however, that this is not the case as can be
appreciated by looking at the scale bar on the right. Indeed, the conductance minima
(dark regions) do not show any blockade since the conductance remains close to 3e2/h.
The maxima are not very far from the quantum limit of 4e2/h for a metallic nanotube
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Figure 5.7 (a) A typical experimental setup used to observe Fabry–Pérot oscillations in the
conductance of SWNTs. (b) The reflections and transmissions at the interfaces of the device
which are modeled through the scattering matrices SL (left lead), SR (right lead) and SF (for free
propagation inside the sample). (c) Experimental results from Liang et al. (2001) showing the
conductance as a function of the bias (V) and gate (Vg) voltages for a 220 nm long SWNT at 4 K.
(Reprinted by permission from Macmillan Publishers Ltd: Nature; (Liang et al. 2001),
copyright 2001)

in the first conductance plateau. Furthermore, since the level spacing is approximately
constant close to the charge neutrality point, the regularity of the pattern gives access
to a typical energy, which in this case turns out to be the level spacing, whereas in the
Coulomb blockade regime (see Section 6.5.1), the charging energy sets the dominant
energy scale. The dependence of the spacing between the maxima on the inverse length
of the device is plotted in the inset to Fig. 5.7(c) and shows the expected linear law.

Scattering matrix modeling. It is instructive to rationalize this experiment by resorting
to the Landauer formalism in a minimal model as outlined below (details are left for
Problem 5.5). To this end, we need to compute the transmission probability. Instead of
using Green’s functions for a model Hamiltonian, here we follow Liang et al. (2001)
and propose a simple model for the scattering matrices corresponding to each of the
processes involved in the interference: (i) partial reflections at the contacts and (ii) free
propagation through the sample. The composition of these scattering matrices makes
calculation of the scattering matrix of the overall system possible.

The scattering matrix relates the incoming and outgoing probability amplitudes at a
given scatterer. In this case, we have two active channels in the system; therefore Sα
(α = L, R, F) has dimension 4 × 4. [SL]ij are the transmission and reflection amplitudes
between the different channels i, j = 1, 2, 3, 4, where i, j = 1, 2 (i, j = 3, 4) correspond
to the channels on the left (right).
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Scattering matrices for free propagation through the sample. If one assumes that the
two propagating channels do not mix, the ballistic propagation inside the nanotube can
be captured by

SF =

⎛⎜⎜⎜⎜⎝
0 0 eiφ1 0
0 0 0 eiφ2

eiφ1 0 0 0
0 eiφ2 0 0

⎞⎟⎟⎟⎟⎠ , (5.48)

where φ1 and φ2 represent the phases accumulated during the propagation inside the
sample in each of the two propagating channels.

Scattering matrices for the contacts. Let SL and SR be the scattering matrices for
the left and right contacts, respectively. The partial reflections at the contacts can be
modeled in SL and SR by adding a suitable set of parameters. Here, we show the alterna-
tive proposed by Liang et al. (2001), which consists in writing them as an exponential,
thereby ensuring unitarity:

SL(R) = exp

⎛⎜⎜⎜⎜⎝i

⎛⎜⎜⎜⎜⎝
r2 r1 exp(±iδ1) 0 0

r1 exp(±iδ1) r2 exp(±iδ2) 0 0
0 0 r2 r1 exp(∓iδ1)
0 0 r1 exp(∓iδ1) r2 exp(∓iδ2)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ .

(5.49)

Furthermore, r1 and r2 can be assumed to be energy independent, leaving all the
dependence on the bias and gate voltages in the phase shifts appearing in SF. Using the
above matrices, the total scattering matrix ST can be obtained by composing them. In
Problem 5.5, you are invited to continue with this calculation in detail. Once this is done,
knowledge of ST then allows for calculation of the Landauer conductance as a function
of the bias and gate voltages. The Fabry–Pérot conductance maps simulated using this
scattering matrix modeling compare very well with the experimental one as shown in
Fig. 5.8 from Liang et al. (2001). Comparison with the experiment at hand may allow the
extraction of useful information: Do the metal contacts introduce important intermode
coupling? Are there other effects not considered here that may play a role? In the results
shown in Fig. 5.8, the parameters used to adjust the experimental behavior did require
an intermode coupling (i.e., a nonvanishing r1).

Indeed, many issues which are beyond simple description above have been addressed
over the past years, including the appearance of additional low-frequency modulation
of the interference pattern (Jiang et al. 2003) and interaction effects (Kim et al. 2007).

We note that other very sensitive experiments have also probed the zero-frequency
noise in the Fabry–Pérot regime (Herrmann et al. 2007; Kim et al. 2007; Wu et al. 2007)
for SWNTs. Experiments suggest, in some cases, a good quantitative agreement with a
coherent noninteracting picture (Herrmann et al. 2007), while other results show mod-
erate deviations (Wu et al. 2007) which are attributed to either electron–electron inter-
actions (Herrmann et al. 2007; Wu et al. 2007) or decoherence (Herrmann et al. 2007).
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Figure 5.8 Calculated (left) and measured (right) conductance patterns as a function of V and Vg
for a 220 nm SWNT device. Dark corresponds to 2.9 e2/h and white to 3.2 e2/h. (Reprinted by
permission from Macmillan Publishers Ltd: Nature (Liang et al. 2001), copyright 2001)

Results compatible with a Tomonaga–Luttinger liquid were also found for weak
backscattering at the contacts (Kim et al. 2007). We mention that the presence of
enhanced Coulomb interaction in low dimensionality was predicted to give rise to the
formation of a Luttinger liquid (Luttinger 1963), a phenomenon which was then applied
to the case of metallic carbon nanotubes (Egger 1999; Egger & Gogolin 1997). The
theoretical fingerprints for Luttinger liquid in nanotubes include peculiar power-law
behavior of the temperature-dependent conductance, with an exponent depending on
the contact geometry, or spin–charge separation. Transport evidence of such many-body
states has been reported experimentally, but in very specific conditions, including a high-
quality metallic single-walled nanotube connected to external reservoirs with at least
one poor (tunneling) contact (Bockrath et al. 1999; Gao et al. 2004). A more detailed
presentation of the background and experiments is given in Charlier et al. (2007).

We close this subsection by noting that, more recently, Fabry–Pérot oscillations have
also been reported in sub-100 nm length graphene devices (Wu et al. 2012) and also in
outstanding experiments on suspended graphene devices (Grushina & Morpurgo 2013;
Rickhaus et al. 2013).

5.2.4 Contact Effects: SWNT-Based Heterojunctions and the Role of Contacts between
Metals and Carbon-Based Devices

Up to now, we have been mostly focused on intrinsic effects in carbon-based devices.
However, it may be crucial to capture the contact effects, i.e., the contact resistance
between the measured material (nanotubes, graphene) and the conducting electrodes.
The electrodes are generally formed by other materials like palladium or gold, though
there is also great interest in all-carbon devices (Anantram & Léonard 2006).

SWNT-Based Heterojunctions
The electronic structure of an intramolecular nanotube-based heterojunction was first
investigated by Chico et al. (1996), who considered the case of the junction of two
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Figure 5.9 Conductance profile for a single semiconducting nanotube (11, 0) and a metallic
nanotube (12, 0), together with the conductance of the double junction (12, 0)–(11, 0)–(12, 0)
(a ball-and-stick structure is shown in the inset).

nanotubes of different diameter connected through pentagon–heptagon pairs. A different
configuration (illustrated in the inset of Fig. 5.9) is that of a double heterojunction,
where the leads are formed by (12, 0) nanotubes while the central region contains an
(11, 0) semiconducting one. These junctions have been experimentally observed and
measured by STM (Ouyang et al. 2001a) (for a review see (Odom et al. 2002)). The
conductance between the STM tip and the device in different regions gives information
on the local density of states. The different position of the peaks associated with the van
Hove singularities allows characterization of the device. In this case, a good agreement
has been found with the predictions of a simple π orbitals model.

What about the transport properties of such devices? Following a calculation within
the Landauer–Büttiker formalism (Triozon et al. 2005), one obtains the conductance
shown in Fig. 5.9 as a function of the Fermi energy in the low-temperature limit. Here,
a simple tight-binding model for the π orbitals with a single hopping parameter for all
carbon–carbon bonds is used. The solid and the dashed black lines are the conductance
for an internal tube of 2.5 and 5.0 nm, respectively. The results for the (11, 0) and
(12, 0) SWNTs are also shown for reference. The overall decrease of the conductance
is evident, with the conductance being limited by the smallest number of modes, min
(N(12,0), N(11,0)), at the given energy. The small conductance for the shorter junction is
due to tunneling through the gap and is already suppressed for 5.0 nm. The results for a
longer system of 100 nm (not shown here) do not change much, with faster oscillations
near the gap being the main difference.
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Contacts between a Metal and a Metallic Carbon-Based Material
The contact resistance of metallic interfaces mainly depends on the local atomic bonding
and orbital rehybridization at the contact, and remains finite even for vanishing bias
potential. As an illustration, let us consider the case of a metal-metallic CNT-metal
junction. The scattering rate between the metal and the nanotube (which is also related
to the self-energy of the contact �) can be estimated using a simple Fermi golden rule.
Assuming that |km〉 = ∑

l eikm·l|ϕl
m〉 (resp. |kF〉 = ∑

l eikF·l|ϕl
NT〉) are the propagating

states with km (kF) the wavevector in the metal (resp. nanotube), we take |ϕl
NT〉 the

localized atomic basis orbitals (pz-like) in cell (�) that will have a finite overlap with
|ϕl′

m〉 only for a few unit cells, defining the contact area ((l − l′) small).
The scattering rate between metal and nanotube is related to 〈km|Hcontact|kF〉. This

matrix element depends on the chemical nature of the interface bonding (covalent, ionic,
etc.) and on the overlap 〈ϕl

NT|ϕl′
m〉, which changes depending on the interface geometry

(end or side/bulk contacts, length of the contact as illustrated in Fig. 5.10), together
with the momentum of the atomic orbitals contributing to |km〉. The optimization of
the coupling is achieved when the wavevector conservation is maximally satisfied, i.e.,
∼ δ(km − kF). For metallic armchair tubes, a larger coupling rate is obtained for km �
2π/3

√
3acc, while a smaller metallic wavevector induces a smaller coupling rate. The

tunneling rate from the metal to the nanotube can be effectively written as

1/τ ∼ 2π
h̄

|〈km|Hcontact|kF〉|2ρNT(EF)ρm(EF), (5.50)

with ρNT(EF) (ρm(EF)) the density of states of the nanotube (metal) at the Fermi level.
Intriguingly, several experiments on metallic tubes have reported G � G0 at low bias,
instead of the two theoretically predicted channels, assuming the π–π∗ degeneracy at
the charge neutrality point. This could be explained either by one channel becoming
completely reflective or by a specific mismatch between the symmetries of the incoming
and outgoing states.

Figure 5.10 Contact types between a nanotube and electrode first layers: (a) end contacts; and
(b) side or bulk contacts. Courtesy of Juan-José Palacios (2003)
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π

π
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π

Figure 5.11 Contribution of π and π∗ channels at CNP to the total nanotube conductance for
armchair (10, 10) and (40, 40) tubes, and modeling the metal contact by a jellium. Adapted from
Mingo & Han (2001). (Reprinted with permission from Mingo & Han (2001). Copyright (2001)
by the American Physical Society)

This issue was raised by Mingo and Han (Mingo & Han 2001) who investigated
such an imbalance in coupling strength between the π–metal (jellium) contact and the
π∗–metal contact, by using quantum simulation with a Landauer–Büttiker approach.
Figure 5.11 shows the contribution of the two channels to the conductance at the charge
neutrality point as a function of nanotube length (for two different nanotube diameters).
The transmission probability of the π∗–metal is clearly seen to almost vanish for a
sufficiently large diameter, supporting the scenario of interface symmetry mismatch.

Metal/Semiconducting Nanotube/Metal Junctions
The different case of interfaces between metals and semiconducting nanotubes
(M-SCSWNT-M junctions) deserves particular consideration, given their central role
in the operation of nanotube-based field-effect transistors (see Section 5.2.4). Here,
the formation of interface dipoles and Schottky barriers at the interface can produce
very large contact resistance and a tunneling transport regime at low bias and low
temperatures. The charge redistribution at the metal/semiconductor interface can be
described by the band bending and existence of metal-induced gap states. Those features
strongly depend on the relative positions of the Fermi level and band edges of the metal
and nanotube in contact, as discussed further below (Heinze et al. 2002).

Several other papers have also emphasized the importance of the hybridization
between carbon and metal orbitals at the contact (for instance Nemec et al. 2006), while
other work has discussed the role of the Schottky barrier (Anantram & Léonard 2006).
The variations of the contact geometry (end, side, or melted), nanotube length, and metal
type, can certainly explain why the experimental data are markedly scattered. Much
effort is being devoted to controlling these contacts, as reported for example in (Xia et al.
2011) where a transport efficiency of about 75% is achieved for palladium–graphene
junctions. Moreover, while charge transfers, interface states, and the Schottky barrier
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physics are within the scope of ab initio simulations, computational limitations make
it still impossible to compute any transport properties on micrometers long tubes (and
in the presence of gate and bias voltages) at any degree of accuracy. Finally, for higher
bias voltage between conducting probes, due to the potential drop profile along the tube,
the modifications of bands along the tube axis produce additional backscattering
(Anantram 2000). This Bragg reflection is a fundamental point that could explain
the experimental observation of limited turn-on current with increasing bias voltage
(Poncharal et al. 2002).

Schottky Barriers and SWNT-Based Field-Effect Transistors
Léonard and Tersoff pioneered theoretical studies on Schottky barriers in SWNT–metal
contact interfaces, unraveling the fact that their peculiar nanoscale dimension and
unconventional electrostatics (with poor screening effects) should result in a totally
inefficient Fermi-level pinning mechanism, a fact suggesting fine-tunability of the
Schottky-barrier height, eventually disappearing with the formation of a purely ohmic
contact (Léonard & Tersoff, 1999, 2000a, 2000b, 2002). Nanoscale interfaces were thus
envisioned as providing an unprecedented means to eliminate the inconvenient Schottky
barrier hindering hole and electron injection. After tremendous efforts to precisely
characterize the SB physics in carbon nanotube-based field-effect transistors (SWNT-
FETs) (Martel et al. 2001), Javey et al. (2003) finally reported compelling experimental
evidences of Schottky barrier suppression in SWNT-FET by using contacts between
palladium and semiconducting nanotube with sufficiently large tube diameter (Javey
et al. 2003, Kim et al. 2005), a result which brought hope for the advent of all-carbon
nanotube-device nanoelectronics (Tersoff 2003).

Nevertheless, there is still a fundamental need for in-depth understanding of nanoscale
interfaces, since a large dispersion of experimental measurements is usually obtained
(Anantram & Léonard 2006; Franklin & Chen 2010; Leonard & Talin 2011; Svensson
& Campbell 2011). One problem lies in the experimental techniques commonly used
to study contacts to bulk materials, which cannot be exploited at nanoscale, and poor
statistics over devices shows a large discrepancy in the reported Schottky barrier heights
as well as several contradictory conclusions (Martel et al. 2001). From this perspective,
accurate simulation of nanotube-transistor current–voltage characteristics are needed
for capturing the precise role of SWNT diameter and interface atomic structure of
the metal/nanotube junction, as well as the contribution of chemical doping, since all
those aspects eventually drive device control and performances. As argued by (Tersoff
2003), the atomic-scale reasons for the disappearance of the SB-barrier for certain
devices remain to be fully clarified. Many questions remain unsolved, such as: Why
should palladium give a smaller Schottky barrier than platinum, gold, or titanium? The
answer to this question should be sought in the chemical sticking properties of the metal
to carbon structures, or in some combination of metal-/carbon-dependent interfacial
charging properties and long-range electrostatics. To date, however, those questions are
very challenging computationally, and would require self-consistent calculations fully
based on first-principles methods to unveil the process of Schottky barrier formation for
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different types of nanoscale metal–nanotube interfaces. Besides, since ohmic contacts
have been achieved for nanotubes with diameter above 2 nm (but with limited ON/OFF
performances) (Kim et al. 2005), this theoretical knowledge would also be highly
desirable for further monitoring and elimination of the SB in narrower tubes, whose
electrical properties would be more favorable for practical devices.

5.3 Ballistic Motion through a Graphene Constriction: The 2D Limit and
the Minimum Conductivity

The conductivity of a ballistic clean graphene has been discussed in the situation of
a specific transport setup consisting of two heavily doped leads bridging a central
(undoped) graphene region pinned at the Dirac point (charge neutrality point) and with
geometry characterized by W and L, which are respectively the width and the length of
the sandwiched graphene sample.

When considering a clean graphene sample in the ballistic regime where the electron
mean free path �el � L, the transport problem shares some similarities with Klein
tunneling phenomena, where due to the chiral nature of the electrons, the transmission
is always finite at specific angles through a p–n–p or n–n–n junction. One considers a
graphene ribbon of length L and width W in the limit of short and wide armchair ribbons
(L < W) with hardwall or smooth confining potential at the edges. The system is kept at
energies around the CNP, and it is connected to two leads at high potential with a large
number N of active conductive channels. Through solution of the noninteracting Dirac
equation with such geometry, the conductivity is given by the number of evanescent
modes, as σ = (L/W)(4e2/h)

∑
n=1 Tn, with Tn = |1/ cosh(qnL)|2, the transmission

probability with qn being the transverse wavevector, which can be rewritten as

σ = 4e2

h
L
W

∞∑
n=0

1
cosh 2[π(n + 1/2)L/W]

−→ 4e2

πh
(W � L). (5.51)

Equation (5.51) can be derived using a twisted boundary condition �(y = 0) =
σx�(y = 0) and �(y = W) = −σx�(y = W), where σx is a component of the Pauli
matrix (Tworzydło et al. 2006). This particular boundary condition mimics the massless
Dirac fermions inside the graphene sample but infinitely massive Dirac fermions in
the leads. Now, the above formula in the wide sample (W � L) limit converges to a
universal value 4e2

πh , which is known as the quantum limited conductivity of graphene in
the clean limit (as illustrated in Fig. 5.12). This theoretical result has been tested numer-
ically by calculations based on a tight-binding model (Cresti et al. 2007). This peculiar
transmission property has been also confirmed experimentally (Miao et al. 2007).
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Figure 5.12 Conductivity versus energy for an armchair nanoribbon with lateral width
W = 150 nm (and varying length in between highly doped source/drain contacts, L = 5, 15, 30,
and 60 nm). The minimum conductivity 4e2

πh is also drawn with a horizontal dashed line.
Courtesy of A. Cresti.

5.4 Further Reading and Problems

• Regarding Klein tunneling, we recommend the presentation in (Katsnelson 2012). For
a recent review on this subject, including the connection to phenomena in quantum
optics, such as the Snell–Descartes law of refraction, total internal reflection, Fabry–
Perot resonances, and total internal reflection, we recommend (Allain & Fuchs 2011).

Problems

5.1 Potential step for Dirac fermions. Consider Dirac fermions incident on a potential
step of height V0.
(a) Formulate three general conservations laws. (Hint: Remember that the Hamiltonian

is time independent and that it is translational invariant in one direction (y). What
can you say about the current density along the direction perpendicular to the
step?)

(b) Derive the transmission probability.

5.2 Pseudospin conservation and the absence of backscattering. Consider massless
Dirac electrons entering a region where the potential is proportional to the identity
matrix. Prove that for normal incidence they cannot be backscattered.

5.3 Mode decomposition.
(a) Following the lines of Section 5.2.2, deduce the mode decomposition for armchair

SWNTs.
(b) Consider the mode-decomposition for armchair SWNTs and GNRs as well as

zigzag SWNTs given in Section 5.2.2. Determine the Hamiltonian for each of the
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independent modes that have (when possible) a nonvanishing DOS at the charge
neutrality point. What can you say about the degeneracy close to this point?

(c) Compose the total density of states and the conductance by superposing the results
for each of the independent modes for a (5, 0) SWNT and for an armchair 8-aGNR.

5.4 The zigzag challenge. Starting from a simple tight-binding Hamiltonian and
following the spirit of Section 5.2.2, you are challenged to obtain a suitable mode-
decomposition for the case of zigzag GNRs. Can you do it? Pay attention to the choice
of unit cell.

5.5 Fabry–Pérot conductance maps. Following Section 5.2.3, we ask you to recon-
sider the setup of Fig. 5.7(a) and derive an expression for the Fabry–Pérot conductance
map in Fig. 5.7(c). To this end, we propose the following.
(a) Establish a simple model for the scattering matrices at the contacts and for the free

propagation inside the sample. You may choose a model as the one proposed in the
text or choose your own parameterization.

(b) Compose the partial scattering matrices in (a) to obtain the total scattering matrix
for the device.

(c) Use these results to obtain the linear response conductance (Landauer) as a func-
tion of the gate and bias voltages.

(d) Questions for further thought: What would happen if the leads introduce intermode
coupling? How would these results change if instead of a carbon nanotube one
considers a graphene nanoribbon? What would be the effect of defects on the
conductance patterns? (Suggested reading: Jiang et al. 2003; Liang et al. 2001.)

5.6 Current noise for noninteracting electrons in the Fabry–Pérot regime. Using the
results of the previous exercise, determine the zero-frequency noise for the setup of
Fig. 5.7(a). (Suggested reading: Herrmann et al. 2007; Kim et al. 2007; Wu et al. 2007.)

5.7 Fabry–Pérot conductance maps revisited. Let us reconsider the problem of the
Fabry–Pérot conductance maps. This time, you are encouraged to start from a simple
tight-binding model for an infinite SWNT, which is divided into three regions; the cen-
tral one of length L is going to be our resonant cavity and the rest the left and right leads.
To simulate the weaker contact with the leads, you may set a weakened carbon–carbon
hopping between the leads and the central region, preserving the rotational symmetry of
the system. Then by exploiting the mode decomposition of Section 5.2.2, try to obtain
the conductance maps within the Landauer–Büttiker formalism. Discuss the limitations
of the model.

** Additional exercises and solutions available at our website.



6 Quantum Transport in Disordered
Graphene-Based Materials

This chapter gives an overview of the main quantum transport properties in disordered
graphene-based materials with a focus on the analysis of main transport length scales
and conduction regimes that develop when short-range or long-range defects are incor-
porated inside the honeycomb lattice. First, consider the generic models of disorder are
considered, such as the Anderson disorder or a density of impurities modeled by long-
range Gaussian potential. Numerical implementations of the Kubo method presented
earlier, and technically described in Appendix D, are used and validated by direct com-
parison with analytical results for both low-dimensional (nanotubes, nanoribbons) and
two-dimensional graphene, especially in the semiclassical transport regime.

Next, weak and strong localization phenomena are investigated, and the typical mean
free path and localization for a given density of defects are estimated. The effects of
more specific impurities, such as monovacancies, structural disorder, or grain bound-
aries – unique to graphene-based materials – are also investigated in-depth, with sim-
plified (but realistic enough) tight-binding models. Finally, some fundamental issues
concerning Coulomb blockade physics are presented.

6.1 Elastic Mean Free Path

The elastic mean free path (�el) is a key quantity in mesoscopic transport which dictates
the crossover between ballistic and diffusive regimes. The behavior of �el in nanotubes
and graphene nanoribbons exhibits unique scaling features, and can vary by orders of
magnitude under a small Fermi level shift, owing to the close proximity of linearly
dispersive bands and parabolic-like energy subbands. This allows spectacular tuning
(using electrostatic gates or chemical doping) of transport regimes from ballistic to
localization for the same sample.

It is first instructive to analyze the case of short-range disorder, which allows illustra-
tion of common properties of transport length scales in all considered graphene-based
low-dimensional materials. The Anderson potential for disorder is the most generic
model for investigating localization phenomena in low dimension, being very conve-
nient for both analytical derivations and numerical simulations. It was introduced by
Anderson in the late 1950s (Anderson 1958). The Anderson disorder is a white noise
(uncorrelated) disorder, which is generally introduced through modulations of the onsite
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energies of a π orbital tight-binding Hamiltonian (επ = επ+ δεπ ). The disorder strength
is tuned by choosing randomly δεπ ∈ [−W/2, W/2] (with, for instance, a uniform
probability distribution with P = 1/W). For weak enough disorders, �el can then
be derived analytically for both metallic carbon nanotubes and graphene nanoribbons
Cresti et al. We provide the essential results below. Let us begin with the case of
2D graphene, which offers the possibility of a straightforward analytical derivation,
introducing the total density of states, approximated as

ρ(E) = 2|E|
π (h̄vF)2 . (6.1)

By writing �el = vFτ and using the Fermi golden rule (perturbation theory) to com-
pute the elastic scattering time, τ (τ−1 = (2π/h̄)ρ(EF)W2/12), one finally obtains

�el ∝ 1/|E|, (6.2)

which diverges when |E| → 0. This crude estimation pinpoints a difficulty in calculating
transport length scales when the Fermi level lies close to the Dirac point. A numerical
calculation within the Kubo approach allows evaluation of �el at a quantitative level in
2D disordered graphene with Anderson scattering potential (numerical simulations are
presented in Section 6.2.4).

In quasi-1D systems such as SWNTs and GNRs, scattering angles are restricted either
to forward-scattering events at zero angle, which leads to momentum relaxation but does
not affect the elastic transport length scale, or to backscattering events at an angle of π ,
which thus monitor the behavior of �el. Using the Anderson disorder model, White and
Todorov first derived an analytical formula for the low-energy elastic mean free path
(�el) (Roche et al. 2000; White & Todorov 1998) using a two-bands model. A simple
derivation is provided below, mainly following the path set out in White and Mintmire
(1998). For armchair metallic nanotubes, the scattering rate obtained in perturbation
theory gives

1
2τ (EF)

= 2π
h̄

∣∣∣∣〈�n1(kF)| Û |�n2(−kF)〉
∣∣∣∣2ρ(EF) × NcNRing, (6.3)

with Nc and NRing being the respective number of pair atoms along the circumference
and the total number of rings taken in the unit cell (used for diagonalization), whereas
the eigenstates at the Dirac point are given by

|�n1,n2(kF)〉 = 1√
NRing

∑
m=1,NRing

eimkF |αn1,n2(m)〉, with

|αn1(m)〉 = 1√
2Nc

Nc∑
n=1

e
2iπn
Nc

(
|pA

z (mn)〉 + |pB
z (mn)〉

)
,

|αn2(m)〉 = 1√
2Nc

Nc∑
n=1

e
2iπn
Nc

(
|pA

z (mn)〉 − |pB
z (mn)〉

)
. (6.4)
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We consider here the simple case of an uncorrelated Anderson disorder defined by

〈pA
z (mn) | Û | pA

z (m′n′)〉 = εA(m, n)δmm′δnn′ ,

〈pB
z (mn) | Û | pB

z (m′n′)〉 = εB(m, n)δmm′δnn′ ,

〈pA
z (mn) | Û | pA

z (m′n′)〉 = 0, (6.5)

with εB(m, n) and εA(m, n) denoting the onsite energies of electron at atoms A and B
in position (m, n), values which are taken at random within an interval [−W/2, W/2]
and with probability P = 1/W. Replacing Eq. (6.4) in Eq. (6.3), and using Eq. (6.5), a
simple calculation gives

1
τ (EF)

= πρ(EF)
h̄

⎛⎝ 1√
NcNRing

∑
NcNRing

ε2
A + 1√

NcNRing

∑
NcNRing

ε2
B

⎞⎠ , (6.6)

and finally

�el = 18
√

3acc(γ0/W)2N. (6.7)

Such an expression shows that for fixed disorder strength, �el upscales linearly with
the nanotube diameter, an unusual property suggesting a ballistic regime in the limit
of very large diameter (or equivalently two-dimensional graphene). In Section 6.1.1,
experimental data evidencing micrometers long mean free paths up to room temperature
confirm such exceptional conduction capability of metallic carbon nanotubes.

As typical parameters, we consider an armchair (5, 5) nanotube, with disorder
W = 0.2γ0, and after applying Eq. (6.7), �el ∼ 550 nm, a value much longer than the
circumference, thus indicating a ballistic motion for long distances. Figure 6.1 shows
�el in armchair metallic nanotubes with increasing diameters (from (5, 5) to (30, 30)),
using the Kubo approach implemented within the order N method (see Section 4.4.4).
The results fully validate the predicted scaling law with tube diameter in the vicinity of
the Dirac point (with, for instance, �el(15, 15)/�el(5, 5) = 3).

An additional remarkable feature lies in the strong energy dependence of �el, partic-
ularly close to onsets of new subbands (or van Hove singularities). Besides, for higher
energy subbands, the 1/W2 remains, but �el are found to be much smaller, without a
linear scaling property with diameter. Such a large tunability of transport length scales
upon small energy level shift was the origin of intense debate concerning the inherent
transport mechanisms in single- and multiwalled carbon nanotubes in the late 1990s.
The ballistic or diffusive nature of transport is shown here to be highly dependent on
the energy-dependent transport mechanism, beyond the nature and strength of super-
imposed disorder. We note that multiwalled carbon nanotubes were shown to be par-
ticularly interesting, owing to intrinsic incommensurability between neighboring shells,
allowing for the emergence of a diffusive regime, and quantum interference phenomena
in the limit of ultraclean systems (Roche & Saito 2001; Roche et al. 2001). Concerning
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Figure 6.1 Energy-dependent mean-free path as a function of diameter. Inset: �el versus W
showing the 1/W2 scaling Fermi. (Reprinted with permission from Triozon et al. (2004).
Copyright (2004) by the American Physical Society)

graphene nanoribbons, �el can also be derived in a similar fashion in metallic armchair
graphene nanoribbons as (Areshkin et al. 2007)

�el = 12(γ0/W)2(N + 1)aCC, (6.8)

which also scales linearly with the ribbon width and follows �el ∼ 1/W2.
In conclusion, low-dimensional (metallic) graphene-related systems exhibit mean

free paths that may diverge with increasing diameter or ribbon width for a fixed disorder
strength W. Notwithstanding, only armchair nanotubes truly behave as 1D massless
Dirac fermions close to the charge neutrality point since gaps form for all types of GNRs
when edge boundary conditions are properly taken into account (chemical passivation of
unsaturated dangling bonds, edge reconstruction, etc.). In that sense, armchair metallic
nanotubes present the unique case of one-dimensional ballistic conductors up to room
temperature.

6.1.1 Temperature Dependence of the Mean Free Path

The results presented in the section above have established the zero-temperature limit
for �el. Although the coupling between electrons and acoustic vibrational degrees of
freedom is weak at low temperatures, the temperature dependence of the mean free
path can only be derived when properly taking into account inelastic scattering medi-
ated by electron–phonon coupling. Besides, the temperature dependence of a nanotube
resistance can also be driven by the electrical bias-induced excitation of phonon modes
whose characteristics will depend on applied bias voltage, regardless of the temperature
of the surrounding experimental setup.
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In the low-temperature (and low-bias) regime, only acoustic modes play some role,
which can be accounted for using perturbation theory (Fermi golden rule) and the
Boltzmann transport equation (Lazzeri & Mauri 2006). Alternatively, the effect of low-
energy vibrational disorder (introducing time-dependent lattice distortions) can also be
explored through the Kubo approach, using a time-dependent renormalization of the
off-diagonal coupling matrix elements of the Hamiltonian (Ishii et al. 2010). As a result,
an inelastic (temperature-dependent) mean free path can be calculated: we named � such
a mean free path, which differs from �el, which gives the zero-temperature limit.

Technically, the time-dependent atomic displacements obtained by molecular dynam-
ics can be transfered to renormalization of π–π off-diagonal coupling elements γij(t),
which thus encode the electron–phonon interaction in both harmonic and anharmonic
regimes, as discussed in Gheorghe et al. (2005). A possible starting point is the empirical
form γij(t) = γ 0

ij |R0
i − R0

j |2/|Ri(t) − Rj(t)|2 (Harrison 1989), with γ 0
ij = 2.5 eV, where

Ri(t) represents the atomic position at time t and R0
i is at equilibrium. The phonon-

vibration effects are accounted for by the molecular dynamics (MD) simulation using
the Brenner–Tersoff potential for C–C bonds (Brenner 1990). For fixed temperature T,
the velocities of carbon atoms are normalized at each time step by the conditions of∑Nc

i=1 McṘ2
i /2 = 3NckBT/2, where Mc and Nc are mass and number of carbon atoms,

and kB is the Boltzmann constant (Ishii et al. 2009).
Figure 6.2 shows the computed resistances of (5, 5) SWNTs at T = 0 K and T = 60 K

as a function of SWNT length L and for W = 0.2 (Anderson disorder). It is interesting
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Figure 6.2 Length dependence of the total resistance for a (5, 5) SWNT at 0 K (black line) and
60 K (gray line) with Anderson disorder potential W = 0.2. (2G0)−1 is also shown (horizontal
dashed line), with G0 = 2e2/h. The other dashed line pinpoints the crossover from the ballistic
to the diffusive regime. Inset: Time dependence of the diffusion coefficient for the same
parameters. (Figure adapted from Ishii et al. (2010). Copyright (2010) by the American
Physical Society)
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Figure 6.3 (a) Temperature dependence of the mean free paths for a (5, 5) SWNT with both
dynamical disorder and several strengths of the static disorder potential W. (Reproduced with
permission from Ishii et al. (2010). Copyright (2010) by the American Physical Society.) (b)
Mean free path for several nanotubes (metallic and semiconducting). Most metallic SWNTs
(open circles) saturate at higher values than that of semiconductors (closed circles), T−1 (dashed
line). Insets: Scanning gate microscopy images taken on two different devices. Less current
intensity is indicated by brighter color (gray). Defects are highlighted by the bright region
(suppressed current). Scale bar is 500 nm. (Reproduced with permission from Purewal et al.
(2007). Copyright (2007) by the American Physical Society. Courtesy of Philip Kim)

to observe that the decay of the diffusion coefficient at zero temperature (inset) due to
localization effects is fully suppressed at T = 60 K (as expected when introducing deco-
herence effects). Importantly, the length-dependent resistance pinpoints the crossover
from a ballistic-like (length-independent) to a diffusive behavior in which the increase of
resistance scales linearly with tube length. The crossing point of the two asymptotic lines
for ballistic and diffusive regimes enables estimation of the mean free path, � ∼ 0.4 μm
at T = 60 K (for W = 0.2) (Ishii et al. 2010).

In Fig. 6.3(a), the logarithm plot of temperature-dependent �(T) is shown for
W = 0, 0.1, and 0.2 with increasing temperature. The low-temperature behavior of
�(T) is clearly fixed by the static disorder strength (T < 50 K), whereas electron–
phonon scattering events dominate in the high-temperature regime, whatever the static
disorder strength. The scaling behavior �(T) ∼ T−1 obtained numerically is in perfect
agreement with Fermi’s golden rule (Suzuura & Ando 2002) and with experimental
data (Purewal et al. 2007) shown in Fig. 6.3(b).

6.1.2 Inelastic Mean Free Path in the High-Bias Regime

At very high temperature or in the high-bias voltage regime (that is, for Vbias ≥ 0.2 V),
the contribution of inelastic phenomena eventually yields strong current saturation. This
was first reported by Yao and coworkers in metallic tubes (Yao et al. 2000). In this
experiment, a low-bias linear current–voltage characteristic is first observed, followed
by a current saturation for Vbias ∼ 1 V, regardless of the temperature of the sample. The
overall I(V) response function is actually well-described by a phenomenological law,
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I = V
R0 + V/I0

, (6.9)

with R0 and I0 two constants giving, respectively a voltage-independent intrinsic resis-
tance and a current saturation value in the order of 20−130 μA (regardless of the tube
diameter). The interpretation assumes that the saturation comes from the strong inelastic
backscattering of electrons coupled to optic (or zone boundary) vibrational modes.
In this scenario, the inelastic mean free path is the propagating length needed for elec-
trons to accumulate an additional energy of ∼h̄�ph, the relevant optical phonon mode
that will instantaneously produce electron backscattering. Assuming a linear potential
drop between voltage probes separated by L, i.e., V(l) = Vbias(1 − l/L), where l is the
distance from the source, then the energy gain reads e

∫ �ie
0 ∂V/∂ldl = h̄�ph from which

one finds �ie = (h̄�phL)/eVbias. Besides, assuming that the length-dependent resistance
can be split into two contributions, by virtue of the Mathiessen rule, one can write

R(L) = h
4e2

L
�el

+ h
4e2

L
�ie

= R0 + h
4e2

eVbias

h̄�ph
= R0 + Vbias

I0

with R0 = h/4e2Ltube/�el the intrinsic resistance and �el the elastic mean free path,
whereas I0 = (4e/h)h̄�ph, which is indeed in the range 20 − 30 μA depending on the
chosen phonon energy. Note that if �el is an intrinsic measure of the elastic disorder
strength (defect density, etc.) which is a bias- and temperature-independent quantity, �ie
is voltage dependent in this model, but at a fixed voltage it should remain inversely
proportional to the nanotube length. Intriguingly however, by using a semiclassical
Boltzmann approach, a fitting of the experimental data is achieved taking a fixed �ie
(for a fixed tube length), independent of the voltage bias (Yao et al. 2000).

The observation of a length-dependent scaling of the resistance has been reported
in several experimental works (Javey et al. 2004; Park et al. 2004). Lower resistance
was measured for shorter tubes, and current saturation was shown to be reduced when
decreasing Ltube from 700 to 50 nm at which no saturation was observed for voltage bias
up to 1.5 V. Again, the analysis within the Fermi golden rule and Boltzmann approach
allows extrapolation of some typical values for the inelastic scattering lengths that can
be as short as 10 nm (Javey et al. 2004).

However, the discrepancy or strong fluctuations between theoretical estimates
obtained by fitting procedures and the computed �ie (with perturbative theory), even
when using ab initio calculations (Lazzeri & Mauri 2006; Lazzeri et al. 2006), raises
some fundamental questions about the applicability of Fermi’s golden rule, the Math-
iessen rule and semiclassical transport theory to tackle inelastic quantum transport in
metallic carbon nanotubes, or within the context of carbon nanotubes-based field-effect
transistors (Appenzeller et al. 2004). The most probable scenario is that a scheme
beyond the widely used Boltzmann equation is needed in situations like this, which lie
between the fully decoherent and fully coherent regimes.

Furthermore, nonperturbative effects of electron–phonon interaction, which are
beyond the validity of the Boltzmann approach, may also emerge. Indeed, although
the Peierls distortion mechanism is ineffective in metallic SWNTs to produce a
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semiconducting state even at very low temperatures (Mintmire et al. 1992; Saito
et al. 1992b) (except possibly for very short radius SWNTs (Connétable et al. 2005)),
modifications in the phonon band structure due to a related mechanism, the Kohn
anomaly (Kohn 1959a), are observable at moderate temperatures in both SWNTs
(Farhat et al. 2007) and graphene (Pisana et al. 2007). A related Peierls-like mechanism
was proposed at high bias, leading to nonequilibrium gaps at half the optical phonon
energy above/below the charge neutrality point (±h̄�/2), which in turn would be
observable as a small plateau in the current–voltage characteristics. The theoretical
method adopted to tackle such phenomena employs the generalized Landauer–Büttiker
formula expanded in a higher dimensional space (the electron–phonon Fock space)
(Anda et al. 1994; Bonča & Trugman 1995). This approach can cope with the strong
coupling of electrons to certain symmetry-selected phonon modes, a regime out of reach
of perturbative methods and semiclassical transport concepts. We refer to Foa Torres
and Roche (2006) and Foa Torres et al. (2008) for more details.

6.1.3 Quantum Interference Effects and Localization Phenomena in Disordered
Graphene-Based Materials

A knowledge of the mean free path �el in disordered graphene-related systems is a
first essential step since it allows identification of the frontier between the ballistic
and the diffusive propagation of wavepackets. The localization length ξ is the other
physical length scale that defines the transition toward the insulating regime in which the
conductance further decays exponentially with the system length as G ∼ G0 exp(−L/ξ )
(Section 4.4.5).

Weak localization phenomena have been clearly observed in multiwalled carbon
nanotubes with diameter ranging from ∼ 3 to 20 nm (Bachtold et al. 1999; Stojetz et al.
2005) as well as in graphene nanoribbons with widths in the order of ∼ 200 − 500 nm
(Tikhonenko et al. 2008). Weak antilocalization (WAL) has also been observed in
graphene-based materials and relate to the pseudospin-related Berry’s phase interfer-
ences, and induced sign reversal of the quantum correction (Section 4.4.5). Also, the
transition from weak antilocalization to weak localization has also been reported for
reduced ribbon width (Tikhonenko et al. 2008). As the width of the graphene ribbons is
reduced from ∼ 20 nm down to ∼ 5 nm, weak antilocalization is eventually suppressed,
owing to an increasing contribution of edge defects and enhanced contribution of other
disorder sources (topological, vacancies, adsorbed impurities, etc.).

It is instructive to analyze the variation of quantum transport features with varying
dimensionality or defect-induced broken symmetries. Weak localization effects are
generally revealed experimentally by tuning the strength of quantum corrections through
the application of an external magnetic field (as explained in Section 4.4.5). However,
for low-dimensional systems such as carbon nanotubes or graphene ribbons (with
typical diameters or widths ≤10 nm), large magnetic fields also severely affect the
electronic band structures, making the analysis of resulting magnetofingerprints much
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more difficult. Some illustrative examples have been presented in multiwalled carbon
nanotubes (Bachtold et al. 1999; Stojetz et al. 2005), and in graphene nanoribbons
(Poumirol et al. 2010; Ribeiro et al. 2011).

We provide here the most representative quantum localization effects in graphene
nanoribbons. As seen in Chapter 2, zigzag-type GNRs display quite peculiar elec-
tronic properties, with low-energy wavefunctions sharply localized along the ribbon
edges. Using the Landauer–Büttiker approach, the scaling properties of the quantum
conductance of these systems can be numerically investigated. The typical energy
dependence of conductance profiles for both zGNR and aGNR of width ∼20 nm
are shown in Fig. 6.4(a) and (b), for the clean, weak disorder (W = 0.5) and strong
disorder (W = 2) limits. For weak disorder (W = 0.5, Fig. 6.4(a)), transport in aGNR
seems much less altered than the behavior displayed by zGNR. This contrasts with

μ

μ

Figure 6.4 (a) Conductance for a single disorder configuration of a zigzag (solid black line) and an
armchair (dashed black line) GNR with width ∼20 nm (W = 0.5). Gray lines correspond to ideal
zigzag (solid line) and armchair (dashed lines) ribbons. (b) Configuration averaged (over ∼400
samples) normalized conductance as a function of GNR length for both zigzag and armchair
GNRs. The solid (dashed) arrow shows the energy at which the calculations for the zGNR
(aGNR) have been performed. (c) and (d) Same information as for (a) and (b) but for a larger
disorder strength (W = 2). (Adapted from Lherbier, Biel et al. (2008) by courtesy of Blanca Biel)
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the case of stronger disorder (W = 0.5), where the conductance of both aGNR and
zGNR are strongly reduced at low energies, with similar fluctuations indicating
strong localization (Fig. 6.4(c)). Figure 6.4(b) and (d) show the exponential damping
of averaged conductances (over ∼ 400 different disorder configurations), i.e., 〈ln G/G0〉
∼ L/ξ . By fitting these numerical results, ξ values in zigzag ribbons are found to be
smaller than armchair ribbons by up to two orders of magnitude at high enough energies.
In contrast, for larger disorder strength, such as W = 2 (Fig. 6.4(c)), the localization
lengths for both types of ribbons become almost indistinguishable, showing that edge
symmetry then loses its integrity.

An important result of mesoscopic physics (presented in Section 4.4.5) is the exis-
tence of a fundamental relationship between �el and ξ (referred to as the Thouless
relation (Thouless 1977)). In a strictly 1D system, it can be analytically demonstrated
that ξ = 2�el, whereas for quasi-1D systems (with N⊥(E) conducting channels), the
relation is generalized as

ξ (E) = [β(N⊥(E) − 1)/2 + 1]�el(E), (6.10)

with β a factor dependent on the time-reversal symmetry (Beenakker 1997). Avriller
et al. (2007) have extensively confirmed the applicability of such a foundational relation
between transport length scales in chemically doped metallic carbon nanotubes, using
the Landauer–Büttiker conductance method.

6.1.4 Edge Disorder and Transport Gaps in Graphene Nanoribbons

Low-temperature conductance measurements in the Coulomb blockade regime display
large fluctuations (Stampfer et al. 2009) (see also Section 6.5.2) with an enhanced
depletion of the conductance at low energy, referred to as a transport (or mobility) gap.
The origin of such a transport gap has been debated theoretically, especially regarding
the role of edge-disorder-induced localization effects (Akhmerov & Beenakker 2008;
Areshkin et al. 2007; Cresti & Roche 2009; Evaldsson et al. 2008; Mucciolo et al. 2009;
Wimmer et al. 2008). As shown below, the topological complexity of edge imperfec-
tions observed experimentally needs to be accounted for when analyzing the transport
properties in edge-disorder GNRs.

In what follows, we discuss the transport properties in edge-disordered GNRs using
Green’s function technique (Cresti et al. 2007). As an illustration, we focus on the impact
of various edge-disorder configurations by scrutinizing the conductance properties of
several 16-zGNRs (with length L = 500 nm), with randomly removed carbon edge
atoms with equal probability 7.5%, and varying complexity of the edge defects topology
(see Fig. 6.5). The disorder profile is defined by the probability P, controlling the number
of defects on each edge to P × L/a, where a = 2.46 Å is the lattice parameter (within
a precision of 2%). The edge-disorder profile is developed from a pristine zGNR and
by removing edge carbon atoms randomly (as depicted in Fig. 6.5). The probability of
removing atoms is chosen such that the total number of defects remains proportional
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Figure 6.5 Left: Conductance of a disordered 16-zGNR (with length L = 500 nm) with 7.5% of
randomly removed edge carbon atoms. Case (a) includes dangling atom defects (D1) and single
(D2), and double (D3) missing hexagon defects, whereas D1 is prohibited in case (b) and D1 and
D2 are disallowed for case (c). Right: A disordered ribbon edge with D1, D2, and D3 defects
shown in boxes. (Reproduced with permission from Cresti and Roche (2009). Copyright (2009)
by the American Physical Society)

to P. Transport properties for different defect types and comparable disorder strength
can therefore be contrasted. Figure 6.5(a) denotes the richest edge defects profile which
contains Klein defects (single dangling edge atoms, defect D1), together with missing
hexagon defects, either one (defect D2), or two (defect D3).

Depending on the topology of edge defects, large transport fluctuations are obtained.
Figure 6.5(a) shows the 16-zGNR conductance profile with the highest disorder com-
plexity (largest variety of edge defects). The strong suppression of transmission in the
first plateau (region marked by two vertical lines close to E = 0), suggests an Anderson
insulating regime with a localization length ξ � L. The conductance of a disordered
ribbon in which Klein defects (D1) are discarded is shown in Fig. 6.5(b). In that case,
the conductance remains large in the first plateau, but appears more suppressed at higher
energies. Finally, by removing the possibility of both Klein defects and single missing
hexagons (D1 and D2), a completely different transport regime forms (for the same
length of the graphene ribbon). Figure 6.5(c) shows that the conductance is very close
to G0 = 2e2/h, which gives the ballistic limit of the clean system (Wakabayashi et al.
1999). The conductance can thus range from a localized to a quasiballistic regime
depending on the local defect complexity and ribbon length. The structural property
of local edge defects has therefore a genuine impact on resulting transport properties
of GNRs.

The average conductance G = T × (2e2/h), where T is the averaged transmis-
sion coefficient over 1000 different configurations, is shown in Fig. 6.6, for 16-zGNR
with single missing hexagons distributed with a probability P = 7.5%. The quantized
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Figure 6.6 Transport gap evolution with L. Inset: Average conductance (1000 different
configurations) of disordered 16-zGNR (defects are single missing hexagons with density
P = 7.5%). The bold line marks the (L, E) region for which G < 0.01 × 2e2/h. The
L dependence of the transport gap width starts from L ≥ 470 nm (dashed line). A particular
value is shown (double arrow line) at L = 1250 nm. (Reproduced with permission from Cresti
and Roche (2009). Copyright (2009) by the American Physical Society. Courtesy of
Alessandro Cresti)

conductance of pristine GNRs sets the limit at L = 0. With increasing L, the transport
regime evolves from a diffusive to an insulating state evidenced by the exponential
decay of the conductance (Fig. 6.6). The crossover between diffusive and localization
regimes is identified by comparing �(T)/T and �(ln T)/ln T (� stands for the stan-
dard deviation). The transport (or mobility) gap of the GNR is defined by an energy
region for which G < 0.01 × 2e2/h. Here, such a transport gap is obtained when
L ≥ 470 nm (dotted line), but then further enlarges with the ribbon length, owing to the
accumulation of quantum interferences. The existence of highly chemically reactive and
disordered edges enhances the transport gap fluctuations, yielding a clear caveat against
using nanoribbons in nanoelectronic devices, which would require perfectly controlled
current–voltage characteristics, with very small sample-to-sample fluctuations.

6.2 Transport Properties in Disordered Two-Dimensional Graphene

6.2.1 Two-Dimensional Disordered Graphene: Experimental and Theoretical Overview

The nature of disorder in graphene and its impact on transport properties deserve a
detailed investigation. First, because there exist many possible sources of disorder
which are introduced during the material fabrication (graphite exfoliation, epitaxial, or
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CVD growth) as well as during the device fabrication, which includes transfer to other
substrate, contact deposition, electrical current cleaning, and so forth. These methods
produce either local or more long-range lattice imperfections – defects, impurities,
ripples, and long-range strain deformations – which impact graphene’s electronic and
transport properties in different ways, also depending on the charge densities and
magnitude of screening phenomena. The possibility of observing unique transport
features such as Klein tunneling, electron collimation, or weak antilocalization phe-
nomena is unique in condensed matter, but strongly sensitive to the nature of crystalline
imperfections, and the atomic range of the corresponding disorder potential.

Defects in exfoliated graphene transfered to a silicon dioxide substrate generally
range from local structural imperfections or glued adatoms to long-range Coulomb
scattering potentials produced by charged impurities (trapped in the oxide) or ripples
quenched by substrate roughness after graphene deposition. In the high-density limit,
a nearly linear carrier-density-dependent conductivity σ (n) ∼ n has been observed
experimentally (Yan & Fuhrer 2011) (and convincingly interpreted with semiclassical
physics, Section 4.3). Close to the Dirac point, when graphene is deposited onto SiO2,
the formation of so-called electron–hole puddles (which are spatially fluctuating charge
densities) produces percolation transport which precludes transition to the formation of
the expected insulating state.

For sufficiently clean graphene, the Dirac point conductivity usually remains finite
even down to cryogenic temperatures, but its value is not universal and varies from
sample to sample (depending on sample quality and precise preparation process). Sig-
nificantly low electron–phonon scattering has been experimentally reported (Chen et al.
2008), implying that static disorder (especially close to the Dirac point) dominates
low-temperature resistivity. Figure 6.7 (right inset) shows typical behavior for a pris-
tine graphene sample in a large density range, which can be well-fitted with σ (n) =
(1/(neμL) + ρS)−1 with μL ∼ 26, 000 cm2/Vs, and ρS = 53 �, while the density is
extracted from gate voltage Vg using n = Cg(Vg − Vg

min)/e (Vg
min being the value

at which conductivity is minimum, while typical gate capacitance Cg = 11 nF/cm2)
(taken from Chen et al. (2008)).

A popular quantity to characterize graphene’s structural quality is the charge mobility,
which at zero temperature is given by μ(E) = σsc(E)/en(E), where σsc = e2ρ(E)v(E)�el
is the semiclassical conductivity deduced from the Einstein formula, with ρ(E) the
DOS, n(E) the charge density at energy E, �el the elastic mean free path, and e the
elementary charge (assuming zero temperature). Close to the charge neutrality (or
Dirac) point, the measured experimental conductivities are mostly found to range
within ∼ 2 − 5e2/h, although the charge mobility can vary by almost one order of
magnitude (Jiang et al. 2007; Oezyilmaz et al. 2007; Zhang et al. 2006). This effect has
been attributed to the change of charge density due to the doping from the substrate
and/or contacts.

On the theoretical side, the calculation of the Kubo conductivity for 2D graphene with
short-range disorder, and within the self-consistent Born approximation (SCBA), yields
σmin

xx = 4e2/πh (h is the Planck constant) for the two Dirac nodes (Shon & Ando 1998)
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Figure 6.7 Conductivity versus gate voltage (at K) for pristine (undoped) graphene (right inset),
and chemically doped graphene (main plot). Different curves are for potassium coverage density
ranges within [0.37, 3.3] × 1012 cm−2. Top-left inset is an optical microscope image of the
monolayer graphene device, with a schematic of the measurement circuit. Courtesy of M. Fuhrer.
(Reproduced with permission from Yan and Fuhrer (2011). Copyright (2011) by the American
Physical Society)

(see Section 6.2.4), which is typically 1/π smaller than most of the experimental data.
Numerical calculations using the Kubo formula confirm such a prediction (Lherbier,
Biel et al. 2008; Lherbier et al. 2011, Nomura & MacDonald 2006). By contrast, by
assuming that elastic scattering is dominated by a screened Coulomb potential (ionized
impurities), Nomura & MacDonald 2006 have numerically reproduced the low-energy
dependence of the electronic conductivity using a full quantum approach of the Kubo
formula and performing a finite-size scaling analysis. They found that σmin

xx ∼ e2/h close
to the Dirac point, in better agreement with most experiments. Other calculations have
analyzed the effect of screened Coulomb potential on semiclassical Bloch–Boltzmann
conductivity, taking into account the role of background zero potential fluctuations
(electron–hole puddles) (Das Sarma et al. 2011). These space-dependent charged inho-
mogeneities provide percolation paths for the propagating charges down to the zero-
density limit, which prohibit the exploration of transport at the Dirac point and yield a
nonuniversal minimum conductivity which is sample dependent.

Unique transport features develop in graphene with low disorder. The Klein tunneling
(KT) mechanism (see Section 5.1) is the first intrinsic and spectacular manifestation
of massless Dirac fermion physics where backward reflection is partially or totally
suppressed (depending on the incident angle of the incoming wavepacket and the height
and width of the barrier) when charge crosses a local tunneling barrier. This result
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contrasts with usual behavior in Schrödinger physics in which the propagation of an
electronic wavepacket is exponentially damped when crossing a barrier of increasing
width. Klein tunneling stands as an efficient mechanism to suppress localization effects,
provided that the impurity potential is sufficiently long-range to prohibit intervalley
scattering between the two inequivalent Dirac cones. The KT mechanism is inherent
to the symmetric electron–hole electronic band structure and the pseudospin degree of
freedom associated with the AB sublattice degeneracy. In metallic carbon nanotubes
(Ando et al. 1998), a similar mechanism leads to a total suppression of backscattering,
enforcing a ballistic motion of charges up to micrometers and up to room temperature.

Pseudospin shares similar symmetries with the spin degree of freedom, and as such,
the corresponding wavefunctions acquire extra phase factor which, when accumulated
along a closed trajectory, produces an interference pattern dominated by a Berry’s
phase. The observation of the WAL in graphene (Tikhonenko et al. 2008, 2009) is such
a manifestation of pseudospin effects on phase interferences. In 2006, McCann and
colleagues provided a solid theoretical derivation of the Cooperons quantum correction
in the presence of pseudospin-related Berry’s phase factors (McCann et al. 2006). The
nature of disorder and contribution of intravalley versus intervalley scattering events is
actually crucial for clarifying the predominance of weak localization (WL) versus WAL
phenomena, as discussed later (see Section 6.2.6 for details). The possibility of strong
(Anderson) localization is also inherent to the nature of disorder, and is expected to
follow the weak localization regime, as dictated by the scaling theory of localiza-
tion (Lee & Ramakrishnan 1985).

Finally, intentional doping of graphene is a versatile way to tune electronic properties.
The first experimental attempt was made using a controlled flux of atomic potassium,
introducing physisorbed atoms to the graphene substrate, and resulting in a Fermi
level shift and conductivity decrease. Figure 6.7 illustrates such a chemical doping
effect driven by the physisorption of potassium atoms, which produce scattering centers
and weak electron transfer to the graphene substrate. When the potassium coverage
density ranges are varied within [0.37, 3.3] × 1012 cm−2, a continuous degradation
of the conductivity is observed together with an energy downshift of the minimum
conductivity (measured at the Dirac point) driven by charge-transfer effects (Chen et al.
2008; Yan & Fuhrer 2011). In parallel, theoretical calculations suggested that boron and
nitrogen impurities in substitution of carbon atoms would bring more spectacular impact
in conduction, such as electron–hole transport asymmetry (Lherbier, Biel et al. 2008) or
mobility gaps in doped graphene nanoribbons (Biel, Triozon, Niquet et al. 2009).

In the next sections, we present the various possible sources of disorder in two-
dimensional graphene and their specific impact on transport properties. We start from
the more academic (but generic) short-range potential such as the Anderson disorder or
long-range potential profile (Coulomb potential), and continue with more structurally
and chemically invasive defects such as adsorbed oxygen and hydrogen atoms (see
Section 10.4). The latter allow stronger tunability of disorder strength, function-
alities (such as intrinsic magnetism), and transport regimes in graphene materials.
General analytical results are derived either using the semiclassical Boltzmann transport
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equation or its quantum generalization (Kubo–Greenwood method). The main transport
characteristics in various forms of disordered graphene-related systems are ascertained,
and the limitations of the semiclassical transport description are given and illustrated.
We also discuss how weak antilocalization phenomena develop and what governs the
crossover from weak to strong localization, using a comprehensive disorder model. This
is followed by an analysis of the impact of structural defects such as monovacancies
and divacancies, as well as grain boundaries in polycrystalline graphene, which fix
an intrinsic limit for charge mobilities in CVD-grown graphene. Finally, quantum
transport in strongly damaged graphene is discussed, with a focus on defects such as
monatomic oxygen- and hydrogen-adsorbed defects, which are the focus of many recent
experiments.

6.2.2 Metallic versus Insulating State and Minimum Conductivity

The effect of disorder in metallic materials has been a greatly debated issue. A key ques-
tion has been to understand how a metallic system will change to an insulating state with
the increase in disorder in the material. Sir Nevill Mott proposed that the metallic state
persists as long as the mean free path remains larger than the Fermi wavelength (Mott
1990). Beyond that scale, the system was proposed to undergo a discontinuous transition
to the insulating regime, with vanishing conductivity at zero temperature. Assuming the
conductivity as σ = e2

h kF�el, this argument leads to a minimum conductivity given by
σmin = e2

h kFλF ∼ e2

h (known as the Ioffe–Regel criterion), before it abruptly vanishes
at the metal–insulator transition.

It is worth noting that the effect of disorder in graphene is a rather delicate issue
since the applicability of usual perturbative treatments (Fermi golden rule) and validity
of a semiclassical approach (Bloch–Boltzmann) become questionable close to the Dirac
point in many regards. First the assumption of weak disorder requires λF � �el, which
becomes problematic close to the Dirac point since λF ∼ 2

√
π/n → ∞ as n → 0

(when approaching the Dirac point). In the presence of disorder, the density of states is,
however, increased compared to the clean case and charge density is then not strictly
going down to zero. As discussed and illustrated in this section, different types of
disorders produce a varying nature of electronic states close to the Dirac point, with
inequivalent degree of localization depending on the underlying broken symmetries.

Weak Coulomb scatterers (charges trapped in the oxide) generate real space or
charge inhomogeneities which, in the vicinity of the Dirac point, yield the formation of
electron–hole puddles on the scale of about 30 nm. The absence of valley mixing then
induces maximum effects of the Berry’s phase, Klein tunneling, and antilocalization
phenomena. The observed minimum conductivity in graphene, and absence of a
localization regime, has been related to percolation transport conveyed by Klein-
tunneling mechanisms (Chenaiov et al. 2007; Katsnelson 2012). In contrast, sharp
defects such as vacancies or other types of structural defect with strongly broken local
symmetries promote the predominance of intervalley scattering events and drive the
electronic system to the Anderson insulating state.
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6.2.3 Boltzmann Transport in Two-Dimensional Graphene

Using the expression derived in Section 4.3, the starting point for computing the relax-
ation time in graphene within the Fermi golden rule is given by

1
τ

= 2π
h̄

∑
q

(1 − cos θk+q)|〈k + q|Û|k〉|2δ(εk+q − εk), (6.11)

introducing a scattering potential Û which has an arbitrary form for the moment. Note
that the relaxation time is also named transport time, and differs from the elastic scatter-
ing time, which is the lifetime of a plane wave state. (It is given by the same Eq. (6.11),
excluding the 1 − cos θk+q term.) The ratio between both timescales allows for some
discussion about the nature of underlying disorder (Monteverde et al. 2010).

Figure 6.8 shows the different angles introduced for transformation of the integral
factors. The following equations are straightforward to demonstrate: q = 2k sin θk+q/2
(the momentum transfer), θq = π/2 + θk+q/2, and cos θq = −q/2k. The

∑
q sum is

converted into an integral via
∑

q = S/(2π )2 ∫ d2q, so that

1
τ

= 2π
h̄

S
(2π )2

∫ ∞

0
qdq

∫ +π

−π
dθq(1 − cos θk+q)|〈k + q|Û|k〉|2δ(εk+q − εk). (6.12)

The term |〈k + q|Û|k〉|2 can be replaced by ni|V(q)|2(1 + cos θk+q)/2, where ni is the
impurity density, V(q) the Fourier transform of the scattering potential, and the cosine
term in parenthesis derives from the chirality factor that arises from the projection of
the spinor wavefunctions between the incoming and outgoing states (for the case of no
valley mixing). Indeed, recalling that the general form of the eigenstates reads as

Figure 6.8 The wavevectors used in derivation of the relaxation scattering time. q denotes the total
momentum transfer involved in the scattering event.
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� = 1√
2

(
1

eiθk

)
eik · r, (6.13)

where eiθk = kx + iky

|k| , (6.14)

the overlap between two wavevectors is∫
�†(k)�(k + q)dr = 1

2
(1, 1) ·

(
1

eiθk+q

)
= 1

2
(1 + eiθk+q ), (6.15)

which yields | ∫ �†(k)�(k + q)dr|2 = 1
2 (1+cos θk+q). Equation (6.12) is finally rewrit-

ten by changing variables in the integrand using properties of the δ function. Straight-
forward calculations show that δ(εk − εk+q) = 1

h̄vFqδ(cos θq + q
2k ), and 1/τ reads

1
τ

= ni

2π h̄2vF

∫ 2k

0
|V(q)|2dq

∫ +1

−1

d cos θq√
1 − cos2(θq)

(1 − cos2 θk+q)δ
(

cos θq + q
2k

)

= niρ(EF)
4h̄

∫ π

0
|V(q)|2(1 − cos2 θk+q)dθk+q. (6.16)

The first expression of Eq. (6.16) is clearly limited to variations of q from 0 to 2k,
while the contribution of the integrand of Eq. (6.16) cancels at θ = π as a consequence
of pseudospin interferences. Depending on the form of V(q), different Boltzmann con-
ductivity behaviors are obtained, including long-range Coulomb (V(q = 2kf sin(θ/2)) ∼
q−1), Gaussian white noise (V(q) ∼ q0), and Gaussian correlated disorder (V(q) ∼ e−q2 )
mimicking a screened potential, as well as resonant scatterers that cause a maximal
phase shift of π/2 between incoming and outgoing wavefunctions (Stauber et al. 2007).
The expression of the Boltzmann conductivity (at zero temperature) can be derived from
the Einstein (or Drude) formula σ = 4e2ρ(E)D(E), where ρ(E) = 2|E|/(π × (h̄vF)2)
gives the DOS close to the Dirac point, and D(E) = v2

Fτ/2 the diffusion coefficient in
the diffusive regime (remember |E| = h̄vF

√
n, introducing the charge density n). Then

the semiclassical conductivity σsc(E) reads

σsc(E) = 4e2

h
× |E|τ

2h̄
= 4e2

h
k�el(E)

2
, (6.17)

with the transport time τ given by Eq. (6.16). The final expression of the Boltzmann
conductivity depends on the nature of the scattering potential. Short-range scatters are
defined by fluctuations of the potential profile on the scale of the carbon–carbon spac-
ing (vacancies, adatoms, etc.) and introduce marked valley mixing (coupling between
k vectors distant in the Brillouin zone, located at different valley–intervalley scattering).
The Anderson model is one example of such disorder, which for sufficiently large
potential strength breaks all symmetries of graphene. In contrast, long-range scatters
are defined by potential profiles which change smoothly at the atomic scale, restrict-
ing scattering events to short momentum transfer in reciprocal space. This limits the
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possibility of scattering events to intravalley transitions, which has profound conse-
quences on all transport properties.

Long-Range Disorder
Coulomb scattering in graphene stems from long-range variations in the electrostatic
potential caused by the presence of trapped charged impurities in the underlying sub-
strate. This disordered Coulombian potential is further screened by the conduction elec-
trons propagating through graphene, so its local strength becomes density-dependent
(greater screening is expected at higher electron density). The long-range character of
the induced electrostatic interaction could be included in the model of bare Coulomb-
type scattering centers such as

Ui = 1
4πεrε0

Nimp∑
j=0

e2

|ri − rj| , (6.18)

where ε0 and εr stand, respectively, for the vacuum and relative permittivities and Nimp
represents the number of scattering centers or impurities. However, the application of
the bare Coulomb potential can only be justified for low values of the electron density
when the screening effects limiting the range of the potential are negligible (Rycerz
et al. 2007). To go beyond this, the simplest screened potential would be given by the
Thomas–Fermi approximation,

Ui = UTF

Nimp∑
j=0

e−ξTF|ri−rj|

|ri − rj| , (6.19)

where the parameters UTF and ξTF describe the strength and the range of the scattering
centers for the Thomas–Fermi potential. The inclusion of screening makes it possible
to achieve both the limits of Coulomb scattering (for low n) and short-range scattering
(for high n). However, the singularity at ri = rj in the Thomas–Fermi potential, Eq.
(6.19), causes numerical instabilities. Using a self-consistent calculation of the impurity
scattering in the random phase approximation (RPA), the scattering rate is found to
be proportional to

√
n/ni (assuming a random distribution of charged impurities with

density ni), which leads to a Boltzmann conductivity at high density (n � ni) (Adam
et al. 2007),

σsc = e2vFτ

h̄

√
n
π

= Ce2

h
n
ni

, (6.20)

with C a dimensionless parameter related to the scattering strength, and C � 20 within
the random-phase approximation (taking the dielectric screening from the SiO2 sub-
strate). Chen et al. (2008) experimentally explored the effect of charged impurities
on the carrier conductivity by doping graphene with a controlled potassium flux in
ultra-high vacuum (UHV). The gate voltage of minimum conductivity was found to
become more negative with increase in doping (with reduced mobility), resulting from
the electron doping induced by K atoms, which shifts the Fermi level up in energy with
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Figure 6.9 The long-range disorder potential U(x, y). Courtesy of Frank Ortmann
(Ortmann et al. 2011)

respect to the Dirac point. The value of σ (Vg) was also found to become more linear with
the increase in doping concentration ni, in agreement with Eq. (6.20) (as seen in Fig. 6.7
main plot).

It is further convenient to use a model for screened potential based on a Gaussian
function, to allow a more comprehensive analytical derivation of the semiclassical con-
ductivity (Nomura & MacDonald 2007; Zhang et al. 2009). A realization of the disorder
potential is introduced by randomly choosing Nimp lattice sites r1, r2, r3, . . . , rNimp out
of the total number N carbon sites in the disordered sample, and by randomly choosing
the potential amplitude Un at the nth site in the interval [−W/2, W/2] (W given in γ0
units). We then smooth the potential over a range ξ by convolution with a Gaussian
function (see Fig. 6.9 for illustration):

Uimp(r) =
Nimp∑
n=1

Une
−|r−rn|2

2ξ2 . (6.21)

Assuming random configurations of different graphene samples with same size, ξ , W,
and nimp = Nimp/N, provides a statistical ensemble for a given disorder strength. We
fix the impurity effective range ξ = 3acc = 0.426 nm as a typical value for a long-
range potential, but vary W to describe different screening situations. Such a potential
mimics the effect of screened charges trapped in the substrate. The disorder strength is
quantified by the dimensionless correlator (Nomura & MacDonald 2007; Rycerz et al.
2007; Zhang et al. 2009),

K0 = (L/Nimp)2

(h̄vF)2

Nimp∑
i=1

Nimp∑
j=1

〈Uimp(ri)Uimp(rj)〉 (6.22)
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of the random impurity potential (with vanishing average 〈Uimp〉 = 0 over disorder
configurations). The impurity potential correlation function equals

〈Uimp(r)Uimp(r′)〉 = K0(h̄vF)2

2πξ2 e
− |r−r′ |2

2ξ2 . (6.23)

Using |V(q)|2 = K0(h̄vF)2e−q2ξ2/4, the scattering time (Eq. 6.16) can be derived, and
after straightforward calculations, the Boltzmann conductivity is given by

σsc(E) = 4e2

h
πnξ2eπnξ2

K0I1(πnξ2)
(6.24)

= 2
√
πe2

K0h

[
(2πnξ2)3/2 + O(nξ2)1/2

]
, (6.25)

with the carrier density n = k2
F/π and I1 the modified Bessel function (I1(x) =

1/π
∫ π

0 ex cos θ cos θdθ + 1/π
∫∞

0 e(−x cosh t−t)dt). K0 = 40.5nimp(W/2γ0)2(ξ/
√

3a)4

where nimp = Nimp/N denotes the relative concentration (Klos & Zozoulenko 2010;
Rycerz et al. 2007).

The leading term for high density can also be obtained considering the classical
diffusion of a particle undergoing small-angle deflections from the random potential U.
Defining z = πnξ2, σsc then exhibits two different limits. For |z| � 1 → σsc ∼ constant
while |z| � 1 → σsc ∼ n3/2. The situation |z| � 1 arises when the Fermi wavelength
is larger than the effective screening length λ � ξ , which describes a strong quantum
scattering, while the opposite condition |z| � 1 drives to a classical scattering λ� ξ .

Short-Range Disorder: Anderson Disorder
A simple approximation for describing a short-range potential can be defined as U(r) =∑

j Ujδ(r − rj), where Uj are onsite energies which are taken as random within a certain
energy scale and following a given distribution (uniform, Gaussian, correlated distri-
bution, etc.). By directly applying the Fermi golden rule, one obtains at the simplest
approximation level

1
τ

= 2π
h̄

× 〈nimpU2
i 〉

2
|E|

2π (h̄vF)2 , (6.26)

and defining a dimensionless parameter W = 〈nimpU2
i 〉

4π (h̄vF)2 , we get τ = 2π
h̄ |E|W and

σBB = 2e2

πh
× 1

W
, (6.27)

which means that the Bloch–Boltzmann conductivity is a constant, independent of the
energy close to the Dirac point (illustrated in Fig. 6.13 inset). The Anderson disor-
der roughly mimics neutral impurities such as structural defects, dislocation lines, or
adatoms, although the local geometry and chemical reactivity of defects and impurities
actually demand more sophisticated ab initio calculations if aiming at quantitative pre-
dictions. An interesting aspect of this model is, however, that numerical simulations can



166 Quantum Transport in Disordered Graphene-Based Materials

be contrasted with analytical results derived in the SCBA (Ostrovsky et al. 2006; Shon
& Ando 1998). First, the density of states is obtained as

ρ(E) = − 1
πL2

∑
α

!m〈Gα,α(E + iη)〉 = 4
(E)/(πniu2), (6.28)

with 
(E) = !m�(E + iη) derived from the self-energy, which satisfies the recurrent
equation (which is solved numerically)

�(E + iη) = niu2

2π
(E −�(E + iη))

∫ kc

0

kdk
(E −�(E + iη))2 − (γ k)2 , (6.29)

with ni the defect density and u2 the average squared disorder strength. A mapping of
this model to the Anderson disorder is possible by adjusting parameters to obtain the
same average values and variances, i.e., ni(1 − ni)|u| = W/

√
12 and kc = γ0/ε0, the

cutoff where εc = 50ε0 in the simulations. ε0 is an arbitrary energy scale assumed
to have the same order of magnitude as relevant energies such as E, �, and 
 in the
SCBA, �(E) = �e�(E + iη) (Shon & Ando 1998). Figure 6.10 shows the density of
states (DOS), computed with a Lanczos-type method (Section 4.1), which is reported
as a function of W. The disorder-free DOS (dashed line) shows typical behavior with a
linear increase at low energy and the presence of two sharp van Hove singularities at
E = ±γ0. As W increases, two different features are observed. At high energies, van
Hove singularities are smoothed, whereas close to the charge neutrality point, Anderson

Figure 6.10 (a) DOS of an ideal (dashed lines) and disordered graphene sheets for several
values of W ∈ {1; 1.5; 2; 2.5}. (b) Zoom- in of the energy area around the charge neutrality point.
(Reproduced with permission from Lherbier, Biel et al. (2008). Copyright (2008) by the
American Physical Society)
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disorder enhances the DOS in full agreement with analytical results (Shon & Ando
1998). (See Fig. 6.10(b) for a close-up.)

Short-Range Disorder: Strong Scattering of Local Impurities
Finally, note that other different types of short-range defects such as vacancies and
cracks in graphene flakes have also been predicted to produce midgap states in graphene
(Stauber et al. 2007). By considering that an incident particle is a massless Dirac particle,
we can use 2D scattering theory to access the transport time as well as the conductivity.
We consider impurities (distributed randomly in the graphene network with a density ni)
defined by a strong local scattering potential such as U(r) = V0 > 0 if r < R, and zero
otherwise (deep circular potential well), where V0 is the potential strength while R is the
potential range. We next consider an incident low-energy massless Dirac particle with
wavevector k such that kR � 1 (see Fig. 6.11), so that the scattering amplitude has the
form (Katsnelson 2012)

f(θ ) = e2iδ(k) − 1
i
√

2πk
(1 + e−iθ )

= −√
π/2k

J0(k̃R)
kRJ1(k̃R)

+ ln
(

2
kRγE

)
+ iπ/2

(1 + e−iθ ),

where δ(k) is the s wave scattering phase shift, γE = 1.781, and Jn are Bessel functions.
The wavevector k̃ is defined as k̃ = |h̄vFk − V0|/h̄vF, vF = 106 ms−1 in a graphene
monolayer. The weak potential limit is given by weak V0 � h̄vFk and k̃ ∼ k, whereas
the strong potential limit assumes V0 � h̄vFk and k̃ ∼ V0/h̄vF. Here, we focus on the
strong disorder limit so that k̃R ∼ V0R/h̄vF which is k-independent. The differential
cross section dA/dθ and transport times are given by

dA
dθ

= |f(θ )|2 = 8 sin2 δ(k)
πk

1 + cos θ
2

,

1
τ

= nivF

∫
(1 − cos θ )|f(θ )|2dθ ,

Figure 6.11 A scattering event of incident electron with momentum k, on short-range impurity
potential, with scattering amplitude f(θ ) in a direction defined by scattering angle θ .
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and the transport cross section and total cross section are

Atr =
∫

dθ (1 − cos θ )|f(θ )|2 = 4 sin2 δ

k
.

The transport time τ can be determined from Atr using the relation 1/τ = nivFAtr =
4nivF sin2 δ(k)/k, while the conductivity derives from

σ = 2e2

πh
vFkFτ (kF).

To derive the kF dependence of τ and σ , we consider different limits determined
by the three terms in the denominator of f(θ ) in the equation for scattering amplitude
above. When J0(k̃R) ∼ 0, the logarithmic term predominates. This is possible since
k̃R ∼ V0R/h̄vF can be larger than one even if kR � 1 (resonant case). In this situation,
the phase shift of the scattered wavefunction becomes

δ(k) ∼ − π

2 ln(kR)
→ 0,

which leads to a transport cross section and transport time

Atr ∼ 4δ2

k
∼ π2

k ln2(kR)
,

τ ∼ k ln2(kR)
nivFπ2 ∼ k ln2(kR). (6.30)

This finally gives a conductivity which becomes roughly linear in the charge
density as

σ = 2e2

πh
n
ni

ln2(
√
πnR), (6.31)

where ni is the short-range defect density. This equation mimics the one for charged
impurities, Eq. (6.20), with a slightly logarithmic dependence of the conductivity on the
charge carrier density. One observes the mathematical singularity of Eq. (6.31), which
suggests a diverging resistivity 1/σ → ∞ in the vicinity of the Dirac point, outlining
a limit of such derivation. These disorder models are, however, quite complicated to
compare with experimental data. This is partly due to the simplification made in the
modeling and the various sources of disorder usually present in a real situation. It is,
however, very useful to draw basic conclusions with respect to the strength and range
of the disorder, which nevertheless encode a certain universality.

6.2.4 Kubo Transport: Graphene with Anderson Disorder

The effect of short-range scattering potential (Anderson disorder potential) with the
disorder strength (W) is now analyzed using the Kubo conductivity. The mean free path
�el(E) is deduced from the saturation of the diffusion coefficients (using the numerical
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Figure 6.12 Mean free path versus energy (�el) for various strengths of the Anderson disorder
potential.

method presented in Sections 4.4.4 and 4.2). Figure 6.23(a) gives several D(t, E = 0)
time evolution behaviors at the Dirac point. After the starting quasiballistic spreading of
the wavepackets, a saturation regime develops and is followed by a decay of D(t, E = 0)
when quantum interferences are strong enough (see Section 6.2.7). The behavior of
�el(E) is shown in Fig. 6.12.

The semiclassical conductivity has actually been derived by Shon and Ando (1998)
using a perturbation theory and the SCBA. The semiclassical part of the conductivity,
σxx ∼ Tr〈vx!mG(E + iη)vx!mG(E + iη)〉conf., can then be simplified by 〈G(E)G(E′)〉 ∼
〈G(E)〉〈G(E′)〉 (all interference effects driven by Cooperon contributions are neglected),
and is then deduced to be (Shon & Ando 1998)

σsc(E) = 1
2

e2

π2h̄

[(
E −�(E)

(E)

+ 
(E)
E −�(E)

)
arctan

(
E −�(E)

(E)

)
+1

]
. (6.32)

A peculiar energy dependence of σsc(E) is obtained, together with a universal min-
imum value at the Dirac point, where σsc = 4e2/πh (Fig. 6.13, main plot). Using
the Kubo method, σsc is evaluated for various W (Fig. 6.13), and found to agree very
well with the SCBA results. In particular, for W = 2, the dimensionless parameter
A = (4πγ0)/(niu2) is fixed at A = 21 to get a convincing fit for energies up to 2ε0 with
ε0 = 0.3 eV. The SCBA result fails, however, to describe the transport coefficient in the
presence of strong disorder, since the neglect of quantum interferences jeopardizes the
observation of localization (see Section 4.4.5).

The mobility (μ) versus charge energy is given in Fig. 6.14 for several strengths of
the Anderson disorder. Similar energy dependencies are obtained for μ(E) and �el(E).
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Figure 6.13 Main plot: semiclassical conductivity for Anderson disorder strengths of
W = 1.5, 2.0, and 2.5. The dashed line denotes the minimum value of σsc = 4e2/πh.
Inset: Boltzmann result (horizontal dashed line) and self-consistent Born approximation (dashed
line) using Eq. (6.32) with fitting factor A = 21 for W = 2. (Reprinted from Roche et al. (2012).
Copyright (2012), with permission from Elsevier)

At low energies, a simple Fermi golden rule captures the downscaling of μ with W,
although it diverges precisely at the Dirac point. In most semiclassical simulations, the
Dirac point charge density becomes vanishingly small, which introduces a nonphysical
singularity in the mobility. By numerically integrating the disordered DOS, it is, how-
ever, possible to compute a finite charge density at the Dirac point, offering a more
meaningful discussion of the Dirac point transport physics (see Section 10.3.1 for a
particularly striking example and discussion). Experimental transport measurements of
graphene samples deposited onto silicon oxide are also reported in Fig. 6.14 (right),
from Tan et al. (2007). Different experimental samples with varying quality exhibit a
charge density dependence of μ, which is seen to vary with absolute value of μ. The
Anderson disorder leads to a theoretical μ(n), which seems to best reproduce samples
with higher mobilities. However, a quantitative analysis is out of reach of a simplified
disorder model, and would have to account for many other sources of scattering.

6.2.5 Kubo Transport: Graphene with Gaussian Impurities

In this section, we explore the effect of long-range (Gaussian) disorder potential (math-
ematically defined in Section 6.2.3) on transport features. We first investigate how
quantum transmission develops through a finite size system containing a single scatter,
following the interesting work of (Zhang et al. 2009). By diagonalizing the Hamilto-
nian of a small supercell with N carbon sites (and a single impurity), the band struc-
ture Ek,ψk = ∑N

i=1aki|i〉 is obtained as well as the participation ratio Pk defined by
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Figure 6.14 Left: Charge mobility with carrier density (a) and mean free path (b) for
W = 1, 1.5, 2, 2.5 (from top to bottom). (Reproduced with permission from Lherbier, Biel et al.
(2008). Copyright (2008) by the American Physical Society.) Right: Experimental mobility.
(Reproduced with permission from Tan et al. (2007), courtesy of Philip Kim. Copyright (2007)
by the American Physical Society)

Pk =
(∑N

i=1 a2
ki

)2

N
(∑N

i=1 a4
ki

) . The quantity Pk is a measure of the localization of electronic states.

Localized states are defined by Pk ∼ 1/N, whereas extended states require that Pk
remains constant with system size (as shown in Fig. 6.15).

The results obtained with varying the potential height V (V> 0) are shown in
Fig. 6.15(a–d). For V ≤ 0.2γ0, states remain Dirac-like inside and outside the barrier
(for incoming-left and outgoing-right electrons), as depicted in Fig. 6.15(e) and (f).
The formation of bound states is obtained by further increasing V, as revealed by the
small values of P in the negative energy region near the Dirac point (Fig. 6.15(c)).
For positive injected energy (arrow with solid line in Fig. 6.15(g)), the electron is
not far from K both inside and outside the barrier, which preserves the Klein tunneling
mechanism. In contrast, for negative energy (arrow with dashed line in Fig. 6.15(g)), the
presence of a non-Dirac barrier (marked by the arrow/barrier) affects electron tunneling,
and induces a localization of the state around the impurity (bound states). When V is
increased up to V ∼ γ0 (Fig. 6.15(h)), the Klein tunneling is totally suppressed owing
to the radical change of the electronic structure.

The relative contribution of intervalley versus intravalley scattering has been com-
puted for both the single scatter limit and for an average result of a disordered system
(Zhang et al. 2009). The valley-resolved scattering amplitude A is calculated following
Ando (1991). The sum of all the scattering amplitudes can be related to the sum over all
propagating channels at EF, which is written as Nc = Aintra + Ainter = A (Fig. 6.16).
This interesting analysis allows differentiation of the transport regime depending on the
relative strength of intervalley versus intravalley scattering. As seen in Fig. 6.16, the
intravalley contribution predominates as long as the onsite impurity potential remains
smaller than γ0. In such a case, Klein tunneling or weak antilocalization phenomena
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Figure 6.15 (a–d) Participation ratio for graphene with N = 70 × 40, with a single impurity at
the center with different potential barrier height V ≥ 0, and fixed ξ = 1.73a. (e–h) Scattering
process corresponding to the left counterparts. (Adapted with permission from Zhang et al.
(2009). Copyright (2007) by the American Physical Society. Image courtesy of Wu-Ming Liu)

Figure 6.16 Normalized scattering amplitudes of intravalley and intervalley versus W. Each
point is an average of over 100 samples on a square graphene sheet with 112 × 64 sites. Inset:
Same results for the single-impurity case at the Dirac point. (Adapted with permission from
Zhang et al. (2009). Copyright (2007) by the American Physical Society. Image courtesy of
Wu-Ming Liu)
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Figure 6.17 Main plot: Transport time τ for several values of the onsite disorder strength W.
Left inset: Diffusion coefficient at Dirac point for chosen impurity densities and W = 2.
Right inset: kF dependence of the measured transport time for four different graphene samples.
(Adapted with permission from Monteverde et al. (2010). Copyright (2010) by the American
Physical Society)

mainly dominate the total conductivity. In the absence of intervalley scattering, one
notes that Bardarson et al. (2007) have also numerically studied the one-parameter scal-
ing behavior. Their results show that the Dirac point conductivity scales logarithmically
with sample size, but does not reach a scale-invariant limit (β(σ ) = d ln σ/d ln L > 0),
confirming that Dirac fermions evade Anderson localization and remain delocalized as
long as valleys are not mixed by scattering. In conclusion, the true impact of long-range
disorder is markedly dependent on the W value.

We can further deepen the analysis of the quantum transport properties using numer-
ical analysis of the quantum Kubo transport. Fig. 6.17 (inset) shows the evolution of
the wavepacket dynamics (through time-dependent diffusion coefficients) at the Dirac
point (E = 0) for W = 2 and increasing impurity density (ni = 0.125%, 0.25%, 0.5%).
The diffusion coefficients reach a saturation regime, typically after 1 ps, indicating a
diffusive regime. At much longer timescales, a time-dependent decay of the diffusion
coefficient is observed (regardless of the energy and impurity density), indicating the
onset of weak localization phenomena. The maximum value of D(t) = Dmax provides
the elastic mean free path �el = Dmax/2vF and the total transport time τ = �el/vF,
where vF = 8.7 × 105 m s−1 is the Fermi velocity.

Figure 6.17 (main plot) gives the transport time (deduced from the numerical dif-
fusion coefficient (inset)) for three values of W = 1.0, 1.5, and 2.0 in γ0 units. The
behavior of τ (E) in the vicinity of the Dirac point is found to strongly vary depending
on the disorder strength considered. For W = 2.0, τ (E = 0) ≈ 5 fs, and increases almost
linearly at higher energies. By contrast, for W = 1.5 and W = 1.0, τ exhibits an upturn
close to the Dirac point followed by a saturation value of τ (E = 0) (about four times
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larger for W = 1.5) due to a finite density of states. For the weakest disorder (W = 1),
τ (E) ∼ 1/E for low energies and τ (E) ∼ E at higher energies.

An experimental estimation of the transport time τ (kF) is also shown in Fig. 6.17
(right inset) for four different exfoliated graphene samples with mobilities ranging from
3000 to 5000 cm−1 (Monteverde et al. 2010). The wavevector (or energy) dependence is
similar to the simulated transport time for W = 2.0, which decays as the charge density
is reduced. The experimental data are further reasonably fitted using

τ (kF) = kF ln2(kFR)
π2nivF

, (6.33)

taking ni ∼ 1012 cm−2 and R in the order of the lattice spacing. This form is consistent
with resonant scattering due to short-range disorder as introduced in Section 6.2.3,
and yields a typical semiclassical behavior of the conductivity given by Eq. (6.31). An
opposite energy-dependent behavior of τ (kF) is observed experimentally for bilayer
graphene, indicating a possible interpretation in terms of larger screening strength
(Monteverde et al. 2010).

The behavior of the elastic scattering time can be analyzed using the Fermi golden
rule. Together with the energy dependence of the density of states roughly proportional
to E, we found an energy-dependent contribution for τ by Fourier transforming the long-
range potential. For weak disorder, the low-energy relaxation time is approximated by
τ ∝ 1/(E(1 − cE2)) ≈ 1/E + cE, so that a low-energy peak and a linear slope at higher
energies separated by a minimum τ at finite E are expected. In the simulations, such
an expected weak disorder limit is obtained for W = 1.0 (Fig. 6.17), while for larger
disorder, the above estimation has to be revised. For W = 1.5, the DOS at the Dirac
point is finite and the leading term for τ (E) at low-energy 1/E, stemming from the
DOS, is strongly reduced. As a result, the minimum for τ (E) still exists but is relocated
to smaller energies (E ≈ 400 meV). For stronger disorder (W = 2.0), the DOS at the
Dirac point is large enough that the minimum at finite E disappears.

The Kubo conductivity for the case of Gaussian impurities with density ni = 4%
and ξ = 16a in the density interval |z| ≤ 35 (Radchenko et al. 2012) is shown in
Fig. 6.18 (main plot). Therefore, for |z| � 1, σ shows a linear density dependence
σ ∼ n, whereas the semiclassical Boltzmann approach (see Eq. (6.25)) predicts a
superlinear dependence σ ∼ n3/2 and a vanishing conductivity at the Dirac point. This
outlines one limitation of the semiclassical approach in the regime of low densities,
where the effects of multiple scattering impact on DOS and semiclassical transport
length scales (mean free path) are neglected. A similar discrepancy is obtained for
the case |z| ≤ 1 for which neither the density dependence of σ nor the absolute val-
ues is correctly obtained using the Boltzmann equation (Eq. (6.25)) (Radchenko et al.
2012). Another disagreement is also reported in Radchenko et al. (2012) for the case of
short-range Gaussian impurities. Figure 6.18 (inset) shows the Kubo conductivity (at
E = 0.2γ0) for the case of ni = 2% of Gaussian impurities with onsite impurity potential
of ∼37γ0. No logarithmic correction (as predicted by Eq. (6.31)) is obtained with the full
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Figure 6.18 Main frame: Conductivity versus electron density n (the number of electrons per
C atom) for random Gaussian impurities ni = 4% (ξ = 16a) using the Kubo formula (bold line)
or the Boltzmann result according to Eq. (6.25) (dashed line). Inset: Conductivity versus electron
density n for random impurities with density ni = 2% for the Kubo conductivity (bold line) and
for the Boltzmann conductivity using Eq. (6.31) (dashed line). Curves are shifted to the charge
neutrality point at n ∼ 0.02 (Adapted with permission from Radchenko et al. (2012). Copyright
(2012) by the American Physical Society. By courtesy of T. M. Radchenko)

Kubo calculation, which instead evidences a plateau of the semiclassical conductivity,
similar to the case of homogeneous Anderson disorder (Section 6.2.4).

6.2.6 Weak Localization Phenonema in Disordered Graphene

Broken Symmetries and Weak Antilocalization: Cooperon Contribution
Through classification of disorder symmetry classes, a generalized diagrammatic theory
of quantum interferences in graphene has been derived (Falko et al. 2007; Kechedzhi
et al. 2007; McCann et al. 2006). It describes the contributions of various particle–
particle correlation functions (associated with a given class of scattering diagrams),
or Cooperons, to the total quantum correction of the semiclassical conductivity whose
strength is monitored by several phenomenological parameters (intravalley versus inter-
valley elastic scattering times). The magnetoconductance�σ (B) obtained by this theory
is then used for fitting experimental curves. The full derivation of such a theory is a
highly technical and tedious exercise which goes beyond the scope of this book. We just
summarize the main features concerning the various contributions of Cooperons, which
either decrease (weak localization – WL) or increase (weak antilocalization – WAL)
the quantum conductivity with respect to its semiclassical value. For such purposes,
we recall the effective Hamiltonian describing massless Dirac fermions but including
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the trigonal warping deformation. Near the corners K± of the hexagonal Brillouin zone,
the effective description of the Hamiltonian can be rewritten as (Falko et al. 2007)

Ĥ = vF�z(σxpx + σypy) + μ�0[σy(pxpy + pypx) − σx(p2
x − p2

y)] + Ûdis, (6.34)

where the first term determines the massless Dirac fermions, while the second term
accounts for the trigonal warping correction (with a threefold symmetry) to the
Dirac cone. Ĥ takes into account in-plane nearest neighbor A/B hopping with the
first (second) term representing the first- (second-) order term in an expansion with
respect to momentum p measured from K+ and K−. Here σ0 ≡ I, σx,y,z gives the
AB lattice space Pauli matrices, whereas the inter-/intravalley matrices are denoted
by �0 ≡ I,�x,y,z. The latter term in Eq. (6.34) entails the disorder potential. Such
an effective Hamiltonian operates in the space of four-component wavefunctions
[�K+ (A),�K+ (B),�K− (B),�K−(A)] describing the electronic amplitudes on A and
B sites and in the valleys K± (see Section 2.2.2). Electrons in the conduction and
valence bands differ by the isospin projection onto the momentum direction, so that
σ · p/|σ · p| = 1 in the conduction band, and σ · p/|σ · p| = −1 in the valence band
for the K+ valley. By contrast, in the K− valley, the electron chirality is mirror-reflected,
so that σ · p/|σ · p| = −1 for the conduction band and σ · p/|σ · p| = +1 for the
valence band. For an electron in the conduction band, the plane wave states can be
written generically as

|�K±,p(r)〉 = eip·r/h̄
√

2

(
eiθp/2 |↓〉K±,p ± e−iθp/2 |↑〉K±,p

)
, (6.35)

|�K±,−p(r)〉 = e−ip·r/h̄
√

2

(
eiθp/2 |↓〉K±,−p ∓ e−iθp/2 |↑〉K±,−p

)
, (6.36)

with, for instance, |↑〉K+,p = [1, 0, 0, 0], |↓〉K+,p = [0, 1, 0, 0] and |↑〉K−,p = [0, 0, 1, 0],
|↑〉K−,p = [0, 0, 0, 1], and with the factors e±iθp/2 encoding the Berry’s phase effects
(Section 2.2.2). One defines pseudospin up |↑〉 (resp. pseudospin down |↓〉) for
restriction of the wavefunction to the A (resp. B) sublattice. The trigonal deformation
of the Dirac cone exhibits a p → −p asymmetry of the electron dispersion inside each
valley, as illustrated in Fig. 6.19(a): E(K±, p) �= E(K±, −p). Owing to time-reversal
symmetry, trigonal warping shows, however, some symmetry between two valleys as
E(K±, p) = E(K∓, −p).

The final Cooperon correction to the semiclassical conductivity results from the full
(disorder averaged) phase interference of electronic trajectories, which are topologically
identical with time-reversal symmetry (as sketched in Figs. 4.6(a) and 6.19(b)). Such
quantum correction is formally described in terms of the Cooperon contributions (intro-
duced in Section C.3), which are (for spin-1/2 particles) classified as singlets and triplets
in terms of isospin (AB lattice space) and pseudospin (inter-/intravalley) indices (given
through Eqs. (6.35) and (6.36)). With regard to the isospin (sublattice) composition
of Cooperons, only singlet modes are mathematically found to be relevant (bringing a
pole in the corresponding two-particle correlation function for the total backscattering
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Figure 6.19 (a) Shape of the Fermi surface at finite Fermi energy, illustrating the processes
responsible for trigonal warping (τ−1

w ), chirality-breaking (τ−1
z ), and intervalley scattering

(τ−1
i ); with τ−1∗ = τ−1

w + τ−1
z (Horsell et al. 2008). (b) Real-space diagram of the closed

trajectories responsible for quantum interferences correction, which are limited in size by the
dephasing rate τ−1

ϕ . (c) The scattering times related to quantum interferences in graphene. The
solid curve separates the regions of electron localization and antilocalization. ((b) and (c) are
adapted with permission from Tikhonenko et al. (2009). Copyright (2009) by the American
Physical Society)

amplitude p′ = −p). This can be seen in the correlator describing two plane waves
∼�K+,p�K−,−p, with �K+,p and �K−,−p, propagating in opposite directions along a
ballistic segment of the closed trajectory (as in Fig. 4.6(a)), which displays the generic
form (Falko et al. 2007) |↑〉K+,p|↓〉K−,−p − |↓〉K+,p|↑〉K−,−p − e−iϕ |↑〉K+,p|↑〉K−,−p +
eiϕ |↓〉K+,p|↓〉K−,−p containing only sublattice-singlet terms (the first two terms) because
triplet terms (the last two terms) disappear after averaging over the momentum direction
(〈eiϕ〉 = 0).

Diagrammatic calculations show that the total Cooperon can then be mainly divided
into intravalley Cooperons (interfering trajectories confined to a single valley) and
intervalley Cooperons (interfering trajectories containing valley mixed trajectories)
(McCann et al. 2006). Each Cooperon contribution is confined by two cutoff timescales
(see Sections 4.4.5 and C.3 for details), namely the elastic (temperature-independent)
relaxation times related to a given class of elastic scattering events (τzz, τ⊥z, τ⊥⊥, . . .)
and the coherence time τϕ , which dictates the maximum length of interfering trajecto-
ries. Denoting {x, y} ≡⊥, the total scattering time can actually be split (assuming total
x/y symmetry) in a generic form as

1
τ

= 1
τ0

+ 1
τzz

+ 2
τ⊥z

+ 2
τz⊥

+ 4
τ⊥⊥

, (6.37)
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where disorder effects are included in all three directions of space x, y, z. For instance,
in the specific case of Gaussian white noise potential defined by

〈usl(r)u′
s′l(r

′)〉 = uslδs,s′δl,l′δ(r − r′),

the several elastic scattering times (which are all longer than the momentum relaxation
time τ0) will then be defined as h̄τ−1

sl = πρ(EF)u2
sl. A nonreconstructed vacancy would

contribute to all terms except u⊥z and uz⊥, while bond disorder would contribute to all
terms except uzz. A more realistic disorder potential will make the analytical calculation
of timescales out of reach and numerical simulations are required to go beyond phe-
nomenology, although no direct calculation of those elastic length scales is technically
possible (in contrast to τ0 = τ , the momentum relaxation time), except through the
fitting of the numerical magnetoconductance curves (as discussed in Section 6.2.6). The
full diagrammatic calculation of the Cooperon correction to the conductivity reduces to
(Falko et al. 2007; Kechedzhi et al. 2007; McCann et al. 2006)

δσ = 2e2D
πh

∫ d2q
(2π )2 (Cx

0 + Cy
0 + Cz

0 − C0
0 ), (6.38)

where the two first Cooperon terms (Cx
0 + Cy

0) give the intravalley contributions (includ-
ing trigonal warping), whereas the two others (Cz

0 − C0
0 ) provide the intervalley parts.

The last term in Eq. (6.38), C0
0 , is the main Cooperon contribution, which dictates the

sign of the quantum correction δσ , when coherence time is sufficiently long (τϕ > τi).
The intervalley component Cz

0 is determined by the intervalley scattering rate (cutoff)
τ−1

i = 4τ−1
⊥⊥+2τ−1

z⊥ , while the two intravalley components Cx
0 and Cy

0 are determined by
cumulative inter-/intravalley scattering rates (also including the trigonal warping effect),
with τ−1∗ = τ−1

w + 2τ−1
z + τ−1

i and with τ−1
z = 2τ−1

⊥z + τ−1
zz .

Let us consider the effect of the trigonal warping deformation of the Dirac cone
on interference phenomena, following Falko et al. (2007). In the quantum interference
picture, two phases θ+ and θ− are accumulated along the time-reversal symmetric paths,
and the cumulated π Berry’s phase fixes the phase difference of a given trajectory
δ = θ+ − θ− = πN (where N is the winding number of a trajectory), and determines
the strength of the WAL correction. Notwithstanding, the asymmetry of the electron
dispersion brought about by the trigonal warping (Fig. 6.19(a)) deviates δ from πN.
Indeed, since any closed trajectory is a combination of ballistic intervals characterized
by momenta ±pj (for the two directions) and duration tj, each segment’s contribution
to the total phase difference is given by δj = [E(pj) − E(−pj)]tj (taking the energy
versus momentum relation of the second term of the Hamiltonian Eq. (6.34)). Since δj
are random and uncorrelated, the mean square of the total phase difference simplifies to
∼〈(tjδj)2〉ϕ t/2τ0. A relaxation rate related to trigonal warping is further deduced from
e− 1

2 〈δ2〉ϕ = e−t/τw , which yields τ−1
w = 2τ0(μE2

F/h̄v2
F)2, where τ0 is the momentum

relaxation time, vF = √
3aγ0/2h̄ = 106 m s−1, and μ = 3γ0a2/8h̄2 (γ0 = 3 eV,

a = 0.26 nm). For the typical parameters in measured samples (Tikhonenko et al.
2009), τ−1

w = 0.001 ps−1 for the Dirac region (EF � 30 meV, τ0 ∼ 0.1 ps) and
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τ−1
w = 0.3 ps−1 for the highest measured concentration (EF � 130 meV, τ0 ∼ 0.05 ps).

Trigonal warping of the Fermi surface is found to have a very weak effect compared
to estimated intravalley scattering timescales (Falko et al. 2007). One notes that trig-
onal warping effects should play an important role whenever τw becomes the smallest
timescale, suppressing the two intravalley Cooperons together with their corresponding
WAL fingerprints.

It is worth noting that the two intervalley Cooperons are not affected by trigonal
warping due to time-reversal symmetry of the system, which requires E(K±, p) =
E(K∓, −p) (Fig. 6.19(a)). These two Cooperons cancel each other in the case of weak
intervalley scattering, thus giving δσ ∼ 0. However, intervalley scattering, with a rate
τ−1

i larger than the decoherence τ−1
ϕ breaks the exact cancellation of the two intervalley

Cooperons and partially restores weak localization. Following McCann et al. (2006),
Kechedzhi et al. (2007), and Falko et al. (2007), the global effect of Cooperons on the
transport observable is finally recast (using Eq. (6.38)) as

�σ (B) = e2/πh

{
F
(
τ−1

B

τ−1
ϕ

)
− F

(
τ−1

B

τ−1
ϕ + 2τ−1

i

)
− 2F

(
τ−1

B

τ−1
ϕ + τ−1

i + τ−1∗

)}
,

(6.39)

with τi, τω, τs, and τB = h̄/2eDB being the scattering times, while τϕ denotes the
coherence time. The above formula shows that depending on the relative strength of
intravalley versus intervalley scattering, negative (weak localization) or positive magne-
toresistance (weak antilocalization) will be obtained. The function F(x) can be approx-
imated by F(x) � x2/24 for x � 1, which has different consequences depending on the
quantum coherence time.

In the high-temperatures regime, τϕ becomes small enough such that τ−1
i and τ−1∗

(which are temperature independent) can be neglected next to τ−1
ϕ and one easily

reduces Eq. (6.39) to

�σ (B) � −2e2

πh
F
(
τ−1

B

τ−1
ϕ

)
< 0. (6.40)

So when the magnetic field increases, �σ (B) decreases, and a weak antilocaliza-
tion effect develops, instead of the usual weak localization correction. In the low-
temperatures regime, τϕ becomes eventually very long, so that the second and third
terms of Eq. (6.39) become negligible compared to the first one, so that

�σ (B) � e2

πh
F
(
τ−1

B

τ−1
ϕ

)
< 0. (6.41)

We observe again the opposite phenomenon to that described at low temperatures,
that is, weak localization is found to prevail. Finally, in the intermediate temperatures
regime, when τ−1

ϕ is in the order of the intervalley and intravalley scattering rates τ−1
i

and τ−1∗ , the final correction depends on the ratio τi/τ∗. When intravalley scattering
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dominates, then τ∗ � τi, and weak antilocalization drives the magnetoconductance
profile, whereas weak localization takes place if τi � τ∗.

This theory has been verified by a series of fine-tuned experimental measurements
confirming the existence of weak antilocalization effects, whose origin thus stems from
the pseudospin-driven Berry phase interference term (Horsell et al. 2008; Tikhonenko
et al. 2008, 2009). In particular, Tikhonenko and coworkers have experimentally con-
firmed such a complex phase diagram (see Fig. 6.19, right frame).

It is worth mentioning that the Cooperon theory, presented as derived in the per-
turbative regime, remains at some point phenomenological, owing to the introduced
elastic timescales beyond the momentum relaxation time (τ0), which cannot be derived
analytically for a general model of (realistic) disorder. Additionally, if τ0 is directly
connected to the diffusion coefficient in the diffusive regime, the other timescales are not
directly accessible from zero-field transport coefficients, and their effect is only revealed
through the positive or negative contribution of the total Cooperon to the semiclassi-
cal conductivity. Therefore, estimations of these temperature-independent timescales
demand particular care and further scrutiny. Actually, numerical simulations give a
further access to the connection (and crossovers) between these localization phenomena
and the underlying nature of microscopic disorder. In the following, a single additional
scattering time is found to be enough to measure the ratio between intravalley versus
intervalley scattering, which dictates the dominating localization phenomenon (weak
localization or weak antilocalization).

Crossover between Weak Localization and Weak Antilocalization:
Numerical Analysis
Let us investigate localization effects under a magnetic field for disordered graphene
with Gaussian impurities. We introduce a magnetic field through the Peierls phase
(Ortmann et al. 2011), with a flux per hexagon given by φ = ∮

A·dl = h/e
∑

hexagon ϕαβ .
A gauge is implemented where

∑
hexagon ϕαβ can take integer multiples of 1/(NxNy)

with Nx and Ny = Nx + 1 defining the sample size (Ortmann et al. 2011).
The application of an external magnetic field is seen to induce some significant

changes in the time dependence of the diffusion coefficients (Fig. 6.20). First for W = 2
(referred to as a strong disorder case), the time dependence of D(t, B) exhibits a clear
suppression of quantum interferences (Fig. 6.20(a)) with increasing magnetic strength,
as expected in the weak localization regime. On reducing W to W = 1.5, this trend
starts to deviate at B = 0.137 T since, after initial suppression of quantum interferences,
the diffusion coefficient decreases with increasing magnetic field, although it remains
constant at long times (Fig. 6.20(b)). Such a fingerprint of WAL indicates a stronger
contribution of intravalley processes (sketched in Fig. 6.20, bottom pictures). This
tendency becomes even more pronounced for W = 1 (Fig. 6.20(c)), but care in
interpretation has to be taken once all intervalley scattering events have been suppressed
(as suggested by Zhang et al. (2009), and shown in Fig. 6.15), since activation of
the Klein tunneling mechanism might then totally dominate scattering phenomena,
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Figure 6.20 Magnetic field–dependent Dirac point diffusion coefficient for several values of W
(W = 2 (a), W = 1.5 (b), and W = 1 (c)), with fixed ni = 0.125% and correlation length
ξ = 0.426 nm. Adapted from Ortmann et al. (2011)

jeopardizing the establishment of the diffusive regime, and WAL. This is further
discussed below by analyzing the magnetoconductance patterns.

Several (theoretical) magnetoconductance �σ (B) = σ (B) − σ (B = 0) profiles are
shown in the left panels of Figs. 6.21 and 6.22 for two different disorder strengths.
For W = 2 (Fig. 6.21), the sign of �σ (B) (positive magnetoconductance) manifests a
weak-localization behavior, regardless of the Fermi energy. Figure 6.21 (right) shows
the experimental data obtained by Tikhonenko and coworkers, which exhibit similar
trends (Tikhonenko et al. 2008, 2009). All experimental curves measured at low tem-
perature (T = 5 K) also exhibit positive magnetoconductance whatever the induced
charge densities (Fig. 6.21, right panel), which thus agrees with Eq. (6.41).

For smaller disorder (W = 1.5), the sign of �σ (B) is seen to change at sufficiently
high-magnetic field, suggesting a crossover from weak localization to weak antilocaliza-
tion (Fig. 6.22, left panel). The estimation of the elastic mean free path (�el ∼ 9−20 nm)
remains much smaller than the simulated sample size, warranting the occurrence of the
diffusive regime and quantum interferences. Figure 6.22 (right) shows the experimental
data at higher temperature, T = 27 K, for the same charge densities as in Fig. 6.21
(Tikhonenko et al. 2008, 2009). Here, the onset of weak antilocalization at a higher
temperature agrees with Eq. (6.40) derived earlier.

It is instructive to observe that in Zhang et al. (2009) (and Fig. 6.15) the strength of
valley, mixing is steadily enhanced when increasing disorder from W = 1 to W = 2
(while keeping ξ = 0.426 nm). The strong contribution of intervalley scattering for
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Figure 6.21 Left panel: �σ (B)(ni = 0.125%, ξ = 0.426 nm) for four different Fermi level
positions (EDP = 0, EI = 0.049 eV, EII = 0.097 eV, and EIII = 0.146 eV). Averages over 32
different configurations are performed. Dashed lines are fits from analytical curves. Right panel:
Experimental data extracted from Tikhonenko et al. (2009) obtained at T = 5 K. Here I, II, and
III refer to charge densities at about 2 × 1011 cm−2, 1012 cm−2, and 2.3 × 1012 cm−2,
respectively. (Right panel reproduced with permission from Tikhonenko et al. (2009). Copyright
(2009) by the American Physical Society. Figure reprinted from Roche et al. (2012). Copyright
(2012), with permission from Elsevier)

Figure 6.22 Left panel: �σ (B) for four different Fermi level positions (EDP = 0, EI = 0.049 eV,
EII = 0.097 eV, and EIII = 0.146 eV) after Ortmann et al. (2011). Sixty-four configurations
have been averaged. Dashed lines are fits to analytical curves. Right panel: Experimental
magneto-conductance curves measured at T = 27 K extracted from Tikhonenko et al. (2009).
(Right panel reproduced with permission from Tikhonenko et al. (2009). Copyright (2009) by
the American Physical Society. Figure reprinted from Roche et al. (2012). Copyright (2012),
with permission from Elsevier)
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the case W = 2 supports the computed positive magnetoconductance. Besides, by
decreasing the disorder strength (from W = 2 to W = 1.5), WAL emerges in conjunction
with the reduction of intervalley processes. We can also contrast numerical simulations
with a phenomenological law that solely includes an extra single elastic scattering time
τ∗ (dictating the relative strength of valley mixing). Then for W ≥ 1 both intravalley
and intervalley processes jointly contribute, whereas intervalley scattering is suppressed
when W < 1. The relevant expression for �σ (B) can be rewritten as

�σ (B) = e2/πh
{
F(τ−1

B /τ−1
ϕ ) − 3F(τ−1

B /(τ−1
ϕ + 2τ−1

∗ ))
}

, (6.42)

where F(z) = ln z + ψ(1/2 + z−1), ψ(x) is the digamma function and τ−1
B = 4eDB/h̄

(McCann et al. 2006). Least-squares fits (dashed lines) are superimposed on the simu-
lated �σ (B) (symbols), taking τϕ = 9 ps (the maximum computed time). For W = 2
and W = 1.5, τ∗ ranges within [1.1 − 2.3] ps and [1.5 − 6.3] ps, respectively (increas-
ing values with increasing energy), thus confirming the weak localization regime for
lowest B, which is fully consistent with McCann et al. (2006) (τi < τϕ).

It is thus demonstrated that pseudospin effects are tunable by adjusting a single
disorder parameter W, which denotes the depth of an impurity-driven local Coulomb
potential. When W ≥ 1 (unit of γ0), local energetics between nearest neighbors A
and B sites fluctuate enough to increase intervalley scattering, which progressively
predominates over the intravalley contribution (Zhang et al. 2009). The comparison with
experimental data, however, deserves an additional comment. Indeed, in the simulation,
the crossover from weak localization to weak antilocalization occurs as the Fermi level
is moved from high energies to lower energies. The experimental data obtained at
finite temperatures (Fig. 6.22) show an opposite trend. First, one should mention that
the disorder model used here is kept constant with changing charge density. A self-
consistent screening calculation of the scattering potential should be more suitable,
but screening is expected to be less efficient for lower densities (screening will essen-
tially decrease the value of W). Thus the crossover from WL to WAL is not expected
to change by using energy-dependent (and differently screened) scattering potential.
Second, the simulations are performed at zero temperature and should therefore be
ultimately compared with the lowest temperature measurements. In Fig. 6.21, one sees
the absence of WAL, which agrees with the simulation, considering a sufficiently deep
onsite impurity potential.

6.2.7 Strong Localization in Disordered Graphene

The simulation using the Kubo formula and Anderson disorder (Section 6.2.4) shows
that the semiclassical conductivity remains high and always larger than or equal to
the SCBA limit value σsc = 4e2/πh. This value is first observed at the Dirac point.
However, the conductivity would not be sensitive to localization effects except in
the presence of some decoherence mechanisms such as electron–electron scattering
or electron–phonon coupling (Lee & Ramakrishnan 1985). Here at zero temperature,
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Figure 6.23 (a) Diffusion coefficient D(E, t) as a function of time for various disorder strengths
and Fermi energies. D(E, t) has been normalized with respect to its maximum value Dmax(E) to
allow an easier comparison between the different curves. (b) ξ (E) for three disorder strengths.
(Reproduced with permission from Lherbier, Biel et al. (2008). Copyright (2008) by the
American Physical Society)

the time dependence of the diffusion coefficient clearly evidences the contribution of
localization effects that develop beyond the diffusive regime. Figure 6.23(a) shows
D(E, t) at the Dirac point for different Anderson disorder strengths W. A saturation of
D(E, t) pinpoints the diffusive regime, while its further decay at longer times (which is
enhanced for increasing W) indicates a larger contribution of the quantum interferences
correction.

The 2D localization length ξ can be estimated using the fact that the transition to
the insulating state occurs when the quantum correction, which scales as �σ (L) =
(G0/π ) ln(L/�el) (L is the length scale associated with the propagation time), is of
the order of the semiclassical conductivity σsc. Given that localization occurs when
�σ (L = ξ ) � σsc, we thus obtain

ξ = �el exp(πσsc/G0). (6.43)

Some numerical results for the Anderson disorder, using Eq. (6.43), are shown
in Fig. 6.23(b) for several disorder strengths (average over several tens of configurations
has been performed). It is clear that the general shape of ξ (E) is mainly dominated by
the behavior of σsc(E) (see Fig. 6.13), which is expected because of the exponential
dependence of ξ (E) on σsc(E). As a result, although �el diverges when approaching
the Dirac point (Fig. 6.12), ξ (E) shows an opposite trend, with a minimum value at
lowest energies. It is also worth observing that even for disorder strengths as large
as W ∼ 6 eV, ξ (E = 0) ≥ 10 nm, while it quickly increases with energy, reaching
several microns. For more realistic values of W in the order of 1 eV, ξ (E) ∼ 10 μm.
Localization of electronic states in graphene with Anderson disorder is therefore very
inefficient, although shorter localization lengths are found at the Dirac point. This
feature is actually quite general for all types of short-range disorders (see Section 10.3.1
for complementary analysis on oxygen-damaged graphene).
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6.3 Graphene with Monovacancies

This section focuses on the effect of monovacancies (or missing carbon atoms) on
quantum transport in graphene. Figure 6.24 shows a scanning tunnel microscope (STM)
picture of a single monovacancy on graphite previously irradiated with Ar+ ions (Ugeda
et al. 2010). Although various types of vacancies have been observed in disordered
graphene, monovacancies are particularly interesting since they do not break electron–
hole (chiral) symmetry. However, by breaking A/B sublattice symmetry, vacancies offer
the possibility (similar to adsorbed hydrogen atoms) to generate the formation of local
magnetic moments and long-range magnetic ordering (antiferromagnetic, ferromagnetic
or paramagnetic states), although the issue remains theoretically debated, owing to
the complexity to cope with a self-consistent calculation of the interaction between
localized magnetic moments (including Coulomb screening effects) and therefore the
stable formation of short, medium, or long-range magnetic ordering.

Monovacancies particularly affect the electronic structure of graphene at the Dirac
point, introducing zero-energy modes (ZEM) whose impact on the Dirac point trans-
port physics could be fundamental for explaining experiments in ultraclean graphene
(Ponomarenko et al. 2011). Also, transport properties have been predicted to be very
sensitive to the way the sublattice symmetry is broken (Ostrovsky et al., 2006). For
equally distributed vacancies among the two sublattices, a saturation (or even increase)
of the conductivity at (from) σ0 = 4e2/πh with increasing density of vacancies has
been reported in the tunneling regime of a very short graphene channel (Ostrovsky et al.
2010), whereas another calculation (using the Kubo formula) has claimed the emergence
of a quantum critical point due to the ZEM and with σ0 = 4e2/πh as a quantum
conductivity in the bulk limit. Finally some calculations have found a saturation or even
increase of the conductivity with density of defects (Ferreira & Mucciolo 2015; Yuan
et al. 2010; Zhu et al. 2012), in full contradiction with the scaling theory of Anderson
localization.

Figure 6.24 STM picture of a single vacancy in graphite. (Reproduced with permission from
Ugeda et al. (2010). Copyright (2010) by the American Physical Society. Courtesy of J. M.
Gomez-Rodriguez and I. Brihuega)
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We explore here transport in graphene with vacancies using the Kubo method (and
some results derived from the Landauer-Büttiker formula), which makes it possible to
provide a more comprehensive explanation of effects of monovacancies on quantum
transport properties in disordered graphene.

A vacancy in the honeycomb lattice leaves three dangling covalent bonds, which
might eventually reassemble into one double bond and one dangling bond, but here we
restrict the study to nonreconstructed vacancies. The vacancies are then theoretically
modeled by suppressing hopping terms between the orbital at a vacancy site and its
nearest neighbors. Another possibility of describing the vacancy at a given site is to
add a very large onsite potential (e.g., in the order of Uv = −6γ0 = +17.4 eV for the
simulation presented later). The TB Hamiltonian is given by

H = −
∑
<i,j>

(
γ0|i〉〈j| + h.c.

) −
∑
<iv,j>

(
γ0|iv〉〈j| + h.c.

) +
∑

iv

Uv|iv〉〈iv|, (6.44)

where iv indexes the ith vacancy site and the brackets in the summation indices indi-
cate that the corresponding sum is over nearest neighbors. An important issue is the
distribution statistics of the vacancies among the two A and B sublattices. Indeed, using
the rank-nullity theorem, an imbalance of vacancies between the two sublattices A
and B has been shown to create ZEM, that is, the formation of impurity states at the
Dirac point (Pereira et al. 2008). This demonstration requires taking only first-neighbor
interactions into account, and goes as follows. Consider a system with m vacancies on
lattice B and (m + 1) vacancies on lattice A. Both lattices have the same number of
sites: NA = NB = Nsites/2. Using the AB representation of the Hamiltonian, Eq. (6.44),
and reordering the real-space basis of subspaces A and B so that sites corresponding to
vacancies come last, we get for the interaction matrix HBA operating from subspace B
onto subspace A:

HBA =
(

H̃BA Om,NA−m

ONB−m Om

)
, (6.45)

where On,p is the null matrix of dimension n × p. Since there are m + 1 vacancies on
sublattice A, the NA − (m + 1)th basis vector in subspace A represents a vacancy. It
verifies: HBA|NA − (m + 1)〉 = 0. Consequently, the last line of matrix H̃BA is null and
this operator has at least one eigenvector associated with the eigenvalue 0. From this
vector we can obtain a vector in B space by completing with zeros. We call this new
vector ϕ. Also, we have

HBB =
(
εB × INB−m ONB−m,m

Om,NB−m (εB + Uv) × Im

)
, (6.46)

where In is the identity matrix of size n, and εB the onsite energy on the B sublattice in
the clean case. By construction, ϕ verifies: HBB(ϕ) = εBϕ. Finally, applying the total
Hamiltonian (6.44) to vector (0,ϕ) yields
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H
(

0
ϕ

)
=
(

0
HBA(ϕ) + HBB(ϕ)

)
= εB

(
0
ϕ

)
. (6.47)

Therefore, the additional vacancy on one sublattice creates an electronic state at the
onsite energy and located on the other sublattice. Since for graphene εB = εA = 0, these
modes will be created at the Dirac point. This creation of modes at zero energy mainly
affects the spectrum near the Dirac point. The formation of an energy gap �g has been
derived in Pereira et al. (2008), and for a vacancy concentration n, it is predicted that

�g � h̄vF
d

, (6.48)

with d = n−1/2 the average distance between vacancies. Note that when vacancies are
equally distributed over the two sublattices, ZEM should not appear if Uv �= 0. Also,
even if the distribution is numerically enforced to be random over both sublattices, some
ZEM appear due to statistical error, as might be the case in the numerical study (Zhu
et al. 2012), in which unexplained ZEM have been reported. In the following, we enforce
a strict distribution of vacancies among both sublattices, with a focus on the two cases of
main interest, namely the situation for which vacancies are equally distributed among
different A and B sublattices, and the situation for which all vacancies belong to the
same sublattice, say the A sublattice (AA).

6.3.1 Electronic Structure of Graphene with Monovacancies

Electronic structure calculations are performed using the Lanczos recursion method on
a sample of 106 atoms with periodic boundary conditions (Section D.1). This sample
size allows for a randomization of the distribution of vacancies. The chosen parameters
for the Lanczos calculations are N = 1500 recursion steps with energy resolution of
η = 0.005|γ0| = 0.015 eV. We investigate several concentrations of vacancies n up to
1% for the two cases where the vacancies are either equally distributed among the two
sublattices (AB) or restricted to a single sublattice (AA).

The numerical results for the DOS in the AB case are plotted in Fig. 6.25 for vacancy
densities varying from 0.1% to 1%. We restrict the analysis to the energy region around
the Dirac point where most of the modifications occur. Note that we also observe a
softening of the van Hove singularities at higher energies (not shown here), but hole–
particle (chiral) symmetry is conserved.

The vacancies induce an increase of the spectral density around the Dirac point, with
a flattening with increasing density of vacancies. Although the DOS seems to increase
close to the Dirac point, as in Pereira et al. (2008), the chosen numerical resolution to
capture the zero-energy physics must be very high. DOS in the AA case are plotted
in Fig. 6.26, for the same concentrations. Here again, the system remains particle–hole
symmetric. As expected, the breaking of A–B symmetry (see Fig. 6.26, insets) generates
a peak at zero energy, although it has been softened numerically.
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Figure 6.25 DOS for vacancy concentrations n = 0.1%, 0.4%, 0.8%, 1% distributed equally over
the two sublattices, and for the clean case. Inset: Ball-and-stick views of graphene with AB
vacancy distribution. Vacant sites and bonds are colored in gray.

Figure 6.26 DOS for same concentrations of vacancies as in Fig. 5.28 distributed on one sublattice
only. Inset: Ball-and-stick views of graphene with AA vacancy distribution. Vacant sites and
bonds are colored in gray.

The peak height increases with vacancy concentration and induces a decay of the DOS
on each side of the Dirac point, which is actually related to the formation of gaps. For
more clarity, we define an energy ε up to which the DOS can be considered as negligible
and plot, in Fig. 6.27, �g against n1/2, which is found to scale linearly, agreeing with
Eq. (6.48). In both AB and AA cases, vacancies preserve hole–particle symmetry and
affect the electronic structure around the Fermi energy, although in a different manner.
In the first case, the DOS increases and tends to flatten, while for the AA distribution,
there is a depletion of the DOS around the Fermi energy with a finite concentration of
ZEM in the middle.
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Figure 6.27 Width of the gap �g estimated from Fig. 6.26 as a function of ∼n1/2
i , with ni the

density of vacancies. The continuous line is a linear fit of the simulation.

6.3.2 Transport Features of Graphene with Monovacancies

For a low density of vacancies distributed roughly equally on both sublattices in a
random manner, one expects that the defect-induced short-range scattering will lead
to diffusive and subsequently localization effects. These transport regimes have been
studied and confirmed by several authors (Cresti, Ortmann et al. 2013; Fan et al. 2014;
Trambly de Laissardière & Mayou 2013). The Anderson localization was found numer-
ically in Fan et al. (2014), evidenced by an exponential increase of the resistivity versus
sample size (or temperature downscaling) for all energies of the Dirac spectrum. Similar
conclusions were obtained in other works, although the Dirac point transport physics
was debated for a while and Cresti, Ortmann et al. (2013) extracted from their numerics
σ ∼ 1/Lβ with β ∼ 2, a result that could be consistent with the peculiar localization
properties of ZEM. The authors favored the power-law regime to be consistent with
the power law localization of the wavefunctions, but as discussed at the end of the
section, by improving the numerical convergence of the calculations, the robustness of
the Anderson localization regime is established.

Below, we show the Kubo conductivity obtained in the semiclassical and the quan-
tum regimes, which are followed by analyzing the dynamics and scaling properties of
the propagating electronic wavepackets (Section D.1). The random phase states (RPS)
evolve during a little more than 15 ps, and the total system is a rectangular sheet of
212 × 122 Å2, chosen large enough to limit finite-size effects (Cresti et al. 2013).
For each concentration and distribution of vacancies, the maximum of the diffusion
coefficient Dmax(E) is first estimated, together with the mean free path �el(E) and the
Fermi velocity v(E). From these values, one deduces σsc the semiclassical conductivity
in the diffusive regime. We also follow the time-evolution of the Kubo conductivity to
quantify the contribution of quantum interferences, using the approximation
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σ = e2

2
ρ(E)

D(E, t)
t

. (6.49)

Numerical results for the fully balanced AB configuration are summarized in
Fig. 6.28. The semiclassical conductivity is plotted as a function of energy (main
plot, full line) with a density of vacancies of 0.8%. Away from the Dirac point, σsc
increases with energy, while it exhibits a plateau above the value σsc = 4e2/πh (black,
dotted line). This result confirms earlier theoretical predictions (Ostrovsky et al. 2010;
Zhu et al. 2012). The scale-dependent conductivity for the same concentration of
vacancies is also shown after a time t = 15 ps (dashed and dotted line), and is seen to
decay below σ0, pinpointing the onset of localization phenomena, which are stronger
for larger vacancy concentration (as illustrated by the dashed curve which corresponds
to the conductivity at timescale t = 15 ps for a concentration n = 1%). To confirm
the presence of localization effects, the evolution of diffusion coefficients D(E, t) at
n = 0.8% is shown for several energies in the region of the plateau. Values of D(E, t)
are seen to reach a saturation regime after a few femtoseconds, and then start to decline
sublinearly, as expected in a weak localization regime (see Fig. 6.28, left inset).

Figure 6.28 (right inset) further displays �el(E) for various concentrations: 0.1%,
0.2% and 0.4% (from top to bottom). At the Fermi energy, the mean free path is below
10 nm for a concentration of 0.1%, while for 0.4%, �el(E) is just a few interatomic
distances, suggesting short localization lengths. Only at sufficiently higher energies
do we observe that �el roughly scales as 1/n. An important feature revealed by these

Figure 6.28 Main plot: Semiclassical (full line) and Kubo conductivity (dashed line, dash, and
points) versus energy for different concentrations of vacancies, equally distributed among
sublattices. Left inset: Evolution of diffusion coefficients calculated at E = 0.15 eV, for different
concentrations of vacancies. Right inset: Elastic mean free path against energy for different
vacancy concentrations.
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(a)

(b)

Figure 6.29 (a) Main plot: σsc(E) for n = 0.4% of vacancies on one sublattice, for two different
energy resolutions η = 0.003 (dashed line), 0.015 eV (full line). Inset: Corresponding DOS
(squares: η = 0.015 eV, diamonds: η = 0.003 eV). (b) Main plot: σsc(E) for n = 0.8% of
vacancies on one sublattice, for two different energy resolutions η = 0.003 eV (dashed line),
0.015 eV (full line). Inset: Evolution of diffusion coefficients at chosen energies.

simulations is that the energy scale on which transport is affected by vacancies matches
the one found previously when studying the electronic structure (see Fig. 6.25). All these
results concerning the AB configuration are consistent with previous studies on weakly
hydrogenated graphene (Leconte et al. 2011; Soriano et al. 2011). It is also interesting
to note that the Dirac point conductivity scaling follows a power law, which could be a
fingerprint of ZEM (Cresti, Ortmann et al. 2013), although more extensive simulations
have concluded to an Anderson localization regime (Fan et al. 2014).

Figure 6.29(a) (main plot) presents the semiclassical conductivity in the AA case for
n = 0.4%, for two different energy resolutions: η = 0.005γ0 � 0.015 eV (dashed
line) and η = 0.001γ0 � 0.003 eV (full line). Both curves exhibit a behavior similar to
that found in the AB case (see Fig. 6.28), except for a peak lying in the middle of the
plateau, at the Fermi energy. The first curve, for η = 0.015 eV, saturates above σ0, as
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was observed by Leconte et al. (2011). However, with increasing degree of resolution
in energy (for the same density of vacancies), the conductivity drops dramatically and
goes below the classical limit; only the midgap peak is increased. The inset reveals
the underlying phenomenon: here are plotted corresponding DOS for the two energy
resolutions (the better the resolution, the higher the DOS obtained). Figure 6.29(b) (main
plot) exhibits a similar evolution of the σsc(E) when increasing the density of vacancies
to n = 0.8%. For both energy resolutions, σsc decays under σ0 around the Dirac point,
with a marked peak exactly at the Fermi energy. For η = 0.003 eV and n = 0.8%,
the DOS in the region close to the Dirac point (E < 0.25 eV) strongly resembles a gap
within numerical resolution. This evolution toward a gap when decreasing the resolution
confirms the results presented in Pereira et al. (2008), which suggest that in the zero
temperature limit (η → 0) the system is an Anderson insulator at the Dirac point.

It is worth noticing that one could draw incorrect conclusions by a too superficial
consideration of the behavior of the diffusion coefficients D(t) for states with energies
lying inside the gap. The analysis is made by looking at numerics in Fig. 6.29(b) (inset),
for two energy resolutions η = 0.015 eV (full lines) and η = 0.003 eV (dashed lines).
From the simulations and selected energies, one sees that D(t) quickly reach a saturation
regime but then surprisingly remain constant at long elapsed times, suggesting a diffu-
sive regime in which quantum effects would be suppressed. This result would be really
unexpected since by looking only at D(t), one could conclude that localization effects
are suppressed when enforcing the vacancy distribution on one of the two sublattices.
Nevertheless, the observed formation of a gap in the density of states clearly suggests
that D(t) should be driven to zero in the limit η → 0, and this is actually confirmed
by increasing the energy resolution from η = 0.015 to 0.003 eV. The D(t) are clearly
seen to decay when η → 0 (localized states), whereas the spectral weight of these
states being negligible on average, so they should bring an irrelevant contribution to the
temperature-dependence in conductivity experiments.

A more rigorous study has been performed in Fan et al. Figure 6.30 shows, for
graphene with 1% vacancies, the main scaling behavior of the Kubo conductivity
σ at the Dirac point and at an energy of 0.1 eV above. The exponential decay is
unquestionable, and from the fits to the conductivity, the localization lengths ξ for two
selected energies are extracted and shown as symbols in Fig. 6.30 (inset) with values of
ξ (E = 0) � 8.5 nm and ξ (E = 0.1) � 14.2 nm. These numerical data obtained from
the Kubo conductivity perfectly agree with the calculations using the Landauer-Büttiker
formula and one-parameter scaling theory (Kramer & MacKinnon 1993; MacKinnon
& Kramer 1981) (solid line). An estimation of ξ (E) using the Thouless relationship
ξ (E) = λ(E) exp

[
πσsc(E)

G0

]
(dashed line) is also shown.

One notes that the Thouless relationship result well agrees at E = 0.1 eV with other
results, but gives an overestimated value for ξ at the Dirac point since the numerical
value of the zero-energy semiclassical conductivity is not numerically well defined
in this limit (see the DOS in Fig. 6.25). In any case, Fig. 6.30 shows clearly that
the Dirac point conductivity decays exponentially with increasing length and the esti-
mated localization length agrees perfectly with that predicted from the one-parameter
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Figure 6.30 Conductivity σ as a function of length L in graphene with 1% vacancy defects. The
inset shows the localization length as a function of the Fermi energy calculated from a direct
numerical fit and using the scaling theory of localization (a = 0.142 nm). (The inset is
reproduced with permission from Fan et al. (2014). Copyright (2014) by the American Physical
Society. Courtesy of Zheyong Fan)

scaling theory (Kramer & MacKinnon 1993; MacKinnon & Kramer 1981). This vali-
dates the formation of an Anderson localization regime at the Dirac point in presence of
vacancies.

Other numerical results have been analyzed in terms of the formation of a critical state
at the Dirac point (Ferreira & Mucciolo 2015; Ostrovsky et al. 2010). Ostrovsky and
coworkers found a saturation of the Landauer-Büttiker conductivity at a value of 4e2/πh
when increasing the vacancy density, a behavior suggesting the suppression of local-
ization phenomena and a resulting length invariant quantum conductivity (Ostrovsky
et al. 2010). Importantly, these results do not apply to the bulk limit but to a situation
where boundary conditions (very short channel length against ribbon width) induce
direct tunneling between evanescent states at contact, whose density scales with the
number of vacancies. By contrast, Ferreira and Mucciolo obtained a Kubo conductivity
of 4e2/πh at the Dirac point (Ferreira & Mucciolo 2015), which they assigned to a
quantum critical point. Such peculiar value for the bulk quantum conductivity of zero
spectral measure seems to have a questionable physical meaning, whereas quantum
transport simulations reported in Cresti, Ortmann et al. (2013); Trambly de Laissardière
and Mayou (2013) and Fan et al. (2014) advocate for a dominant Anderson regime
for all the energy spectrum and suggest some delicate numerical convergence issue, as
extensively discussed in Fan et al. (2019).
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6.4 Polycrystalline Graphene

6.4.1 Motivation and Structural Models

Chemical vapor deposition (CVD) enables the growth of very large films of relatively
good quality graphene. However, these films are polycrystalline and incorporate a large
number of interconnected domains (of different sizes) through grain boundaries, which
are formed roughly as lines of structural defects and differ randomly in crystalline ori-
entations one from another. The formation of extended topological defects is observed
at the interface between grains: the grain boundaries (GBs).

Figure 6.31 (in UHV and low temperature) shows a scanning tunneling microscope
picture of a grain boundary in graphene, where the different orientations of the two
adjacent grains are clearly visible on the corresponding Moiré pattern. These interface
regions contain a large amount of structural defects, especially odd-numbered carbon
rings, that will act as strong scattering centers, limiting charge mobilities. Moreover, a
grain boundary breaks the translational symmetry of the system so that wavefunctions
from the two coalescent grains interfere in a destructive manner along the GB, which
generate interface states. A theoretical model (Ferreira et al. 2011) proposes charge
accumulation along grain boundaries, creating an electrostatic potential that would cause
GBs to act as extended electron scatterers.

We note that certain highly symmetric line defects (as shown in Fig. 2.34) can actually
give rise to an interesting valley-filtering effect (Gunlycke & White 2011). For instance,
in the case depicted in Fig. 6.32(a), the incoming low-energy electron states are given
by Eq. (2.27) that we repeat here:

|�ξ ,s〉 = 1√
2

(
1

se+iξθk

)
, (6.50)

where ξ is the valley index (ξ = ±1 gives the wavefunction in the K± valley) and
s = ±1 is the band index (electron or hole band). The angle θk = arctan(ky/kx) defines
the angle of the wavevector measured from the center of the corresponding valley.

Figure 6.31 Scanning tunneling microscope picture of a grain boundary. Two different Moiré
patterns for individual grains are clearly visible. Courtesy of José-Maria M. Gomez-Rodriguez
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Figure 6.32 (a) A line defect in graphene. (b) Valley states scattering off the line defect. The
sublattice symmetric |+〉 and antisymmetric |−〉 components of the incident state |�ξ 〉 are
transmitted and reflected, respectively. At the two valleys, K+ and K−, an incident quasiparticle
state is defined by the valley index (ξ = ±1) and wavevector k, where the latter points in the
direction k given by the angle of incidence θk. The scattering is shown to be valley-dependent
(Gunlycke & White 2011). ((a) is reproduced with permission from Gunlycke and White (2011).
Copyright (2011) by the American Physical Society)

The first (second) component of the vector on the right-hand side of the previous equa-
tion gives the probability amplitude in the A (B) sublattice.

Following Gunlycke and White (2011), let us consider waves incident from the left
and write k = k(cos θk, sin θk) with k = |k|. Then, using these relations one can write
the right-moving solutions as:

|�ξ 〉 = 1√
2

(
1

ie−iξθk

)
. (6.51)

In the limit k → 0, the reflection operator and the graphene translation operator per-
pendicular to the line defect commute. This allows construction of symmetry-adapted
states |±〉 that are eigenstates of both operators (do not confuse the ± with the values
of ξ ). The reflection operator maps A onto B sites and vice versa, and therefore it can be
represented by the operator σx acting on the two sublattices. From the eigenstates of σx,
we get

|±〉 = 1√
2

=
(

1
±1

)
. (6.52)

The graphene states expressed in the symmetry-adapted basis become

|�ξ 〉 = 1 + ie−iξθk

2
|+〉 + 1 − ie−iξθk

2
|−〉. (6.53)

Gunlycke and White (2011) found that there exist two symmetric states at the Fermi
level without a node on the line defect, carrying quasiparticles across the line defect
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Figure 6.33 (a) An experimental device with multiple electrodes forming contact over two
coalesced grains (dashed lines). (b) Current versus bias voltage, measured within each grain and
across the grain boundary. The legend shows the corresponding electrode pairs for each curve.
(Adapted with permission from Macmillan Publishers Ltd: Nature Materials, Yu et al. (2011),
copyright (2011))

without scattering. The calculation of the transmission probability across the line
defect is

Tξ = |〈+|�ξ 〉|2 = 1
2

(1 ± sin θk), (6.54)

which immediately means that the line defect is semitransparent and its transparency
depends on the valley (TK+ + TK− = 1). At a high angle of incidence, there can be
almost full transmission or reflection, depending on the valley index (K±).

Recent work based on full tight-binding description of such line defects showed
that the valley filtering effect can be reversed by applying a gate voltage (Ingaramo &
Foa Torres 2016). This occurs because of a valley-dependent Fano resonance splitting
(Ingaramo & Foa Torres 2016).

The impact on transport of a single boundary has also been measured experimentally
(Ma et al. 2017; Yu et al. 2011). Figure 6.33(a) and (b) shows respectively the exper-
imental setup and current–voltage curves measured within two adjacent CVD-grown
grains (curves for V7,8 and V9,10) and at the boundary (curve for V8,9). All curves exhibit
a linear behavior from which the conductance can be derived (e.g., G8,9 = dI

dV |V8,9 ).
From this measurement, it is clear that the current is reduced (together with correspond-
ing conductance) when electrons have to cross a grain boundary. A complementary
study by Tsen et al. (2012) combining electron transmission microscopy with electrical
measurements has also revealed links between electrical and geometrical properties of
GBs. However, these studies have generally been carried out on few samples and for a
better examination of the potential of CVD-graphene for applications (such as transpar-
ent electrodes), a fundamental connection between the morphologies of polycrystalline
graphene and their transport features is highly desirable.

Although CVD grown films can be produced at large scales, their corresponding elec-
trical performances remain a bit disappointing when compared with those of exfoliated
graphene. A better understanding of the impact of GBs at the macroscopic scale is thus
highly desirable to guide experimentalists and engineers for further optimization of the
growth processes. A comprehensive description of the correlation between mobility,
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sheet resistance, and average grain size is key, as well as the scaling properties of
electronic and thermal transport in addition to mechanical properties (when increasing
average grain size for instance). Excellent reviews can be found in Cummings, Duong
et al. (2014); and Isacsson et al. (2017).

At present, based on atomic-resolution images (An et al. 2011; Huang et al. 2011;
Kim et al. 2011; Kurasch et al. 2012) and theoretical models (Yazyev & Louie 2010a),
it is a relatively well-established fact that different grains in polycrystalline graphene
preferably stitch together predominantly via pentagon–heptagon pairs. Additionally,
diffraction-filtered imaging has provided some mapping of the location, orientation, and
shape of hundreds of grains and boundaries, revealing an unexpectedly small and intri-
cate patchwork of grains interconnected by tilt boundaries (Kim et al. 2011). However,
a typical grain boundary is covered by adsorbates, which indicates that the local config-
uration of atoms in these areas can differ from the ideal pentagon–heptagon chains.

In what follows, we will discuss some electronic and transport properties of poly-
crystalline graphene models introduced by Jani Kotakoski (Kotakoski & Meyer 2012).
The polycrystalline graphene structures are created by initially fixing only the number
of grains and the size of the sample and then randomly growing each of the grains with
similar random orientation. The dynamical growth of the structure stops when all the
grains have reached neighboring grains in all directions. The equilibrium structures
are then created using molecular dynamics simulations (Kotakoski & Meyer 2012).
This procedure leads the formation of corrugated structures with realistic misorienta-
tion angle distribution and ring statistics (see Fig. 6.34). Such structures have been
additionally flattened while ensuring that the local atomic density at any point in the
structure remained reasonable. We mention that multiscale modeling of polycrystalline

Figure 6.34 Model structures for polycrystalline graphene. (a) Top view of a periodic
20 nm × 20 nm graphene sheet with four grains, as marked by the numbered shaded areas.
The lines indicate orientations of the graphene lattice within each grain. (b) Distribution of
misorientation angles for the bicrystalline sample structures used in this study. (c) Relative
probabilities for nonhexagonal carbon rings in the same structures. (Reproduced with permission
from Kotakoski and Meyer (2012). Copyright (2007) by the American Physical Society)



198 Quantum Transport in Disordered Graphene-Based Materials

Figure 6.35 Left and right panels are ball-and-stick models for samples S1 and S2, respectively,
with grain boundaries outlined in dark tint. Courtesy of Jani Kotakoski.

graphene has been also performed by Hirvonen and coworkers using phase field crystal
models. Such models predict realistic formation energies and defect structures of grain
boundaries, and are thus ideally suited to deal with ultralarge system sizes required by
the polycrystalline nature of graphene (Hirvonen et al. 2016).

For the rest of the discussion, we focus on the electronic and transport properties of
two different samples (from here designated S1 and S2; see Fig. 6.35) in which the
average grain sizes are 18 nm and 13 nm, respectively.

6.4.2 Electronic Properties of Polycrystalline Graphene

The electronic and transport properties of these flat disordered lattices can be well
investigated using a simple π–π* orthogonal tight-binding (TB) model, described by
a single pz orbital per carbon site, with nearest neighbors hopping γ0, and zero onsite
energies. The study was carried out on about 600 × 600 Å2 sheets including Nsites =
138, 292 carbon atoms for sample S1 and Nsites = 137, 985 carbon atoms for sample
S2 (shown in Fig. 6.35). Periodic boundary conditions were applied to the structures
to minimize finite size effects. A criterion to search the first nearest neighbors was set
empirically to 1.15 × aCC. The local fluctuations of bond length are small enough to
reasonably keep a constant value of γ0 for the transfer integral. The density of states is
then computed using the Lanczos recursion method with N = 1000 recursion steps and
an energy resolution η = 0.01γ0 � 0.03 eV (Van Tuan et al. 2013).

The DOS of S1 and S2 show little difference from that of pristine graphene (Fig. 6.36
main plot). This suggests that grain boundaries correspond to weak disorder preserving
electron–hole symmetry. Only the presence of some enhanced density of zero energy
modes and a slight smoothing of van Hove singularities at E = ±γ0 reveal the presence
of the disorder. Figure 6.36 (inset) shows that S2 (which is more fragmented than S1) has
a larger DOS especially close to the charge neutrality point, reflecting a higher density
of midgap states (Stauber et al. 2007).

We next identify grain boundaries by searching for atoms for which the bond length of
at least one nearest neighbor differs from the pristine carbon spacing (aCC = 1.42 Å) by
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Figure 6.36 Main plot: DOS for pristine graphene (dotted line), polycrystalline graphene S1 (bold
line), and the DOS average over grain boundary sites only of S1 (dashed line). Inset: Zoom in
the DOS of S1 and S2 (dot-dashed) together with pristine graphene (dashed lines).

0.03 Å or more. Figure 6.36 (main plot) shows the average of local DOS (LDOS) over
all boundary sites of S1 (applying the recursion method to a random phase state strictly
located on boundary sites). The averaged density shows a very marked contribution of
midgap states (Stauber et al. 2007), together with a strong suppression of van Hove
singularities at ±γ0 = ±2.9 eV. The electron–hole symmetry is also considerably
broken owing to the presence of many odd-membered rings along the GB.

6.4.3 Mean Free Path, Conductivity and Charge Mobility

Figure 6.37 (inset) shows the time dependence of D(t) at the Dirac point for both samples
S1 and S2. From the maximum values, �el(E) (and σsc) are deduced (Fig. 6.37, main
plot). Despite some genuine electron–hole asymmetry for energies higher than 3 eV (far
from the experimentally relevant energy window), �el are found to be weakly changing
over an energy window around the charge neutrality point, with �el(E, S1) ∈ [6, 10] nm
for S1 and �el(E, S2) ∈ [4, 7] nm for S2. In Fig. 6.37, we also show a rescaled energy-
dependent value given by

√
2 × �el(E, S2), which is surprisingly close to the behavior

of �el(E, S1) for S1. It turns out that the corresponding grain size perfectly matches with
such a rescaling factor; that is, the grain size for S2 is about

√
2 times smaller than the

typical grain size of S1.
From the results above and more extensive simulations, a remarkably simple scaling

law of the mean free path with the average grain size (dgz) has been identified, namely
�el ∼ dgz, a scaling that is also reflected on the charge mobility and sheet resistance
of the polcyrstalline sample (Van Tuan et al. 2013). We observe in Fig. 6.38 (inset)
the energy dependence of σsc(E), which manifests as energy-dependent variation sim-
ilar to the mean free path (as well as some linear dependence with charge density in
the low-energy limit). An interesting feature is that σsc(E) remains much larger than
the minimum value 4e2/πh (horizontal dashed line), which fixes the theoretical limit
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Figure 6.37 Main plot: Mean free path for S1 (�el(E, S1), solid curve) and S2(�el(E, S2), dashed
curve), together with a rescaled value

√
2 × �el(E, S2) (dot-dashed curve). Inset: Time evolution

of D at the Dirac point for sampler S1 and S2.

Figure 6.38 Charge mobility μ(E) for both samples (main plot) along with the semiclassical
conductivity σsc(E) (inset). Horizontal dashed line in the inset gives 4e2/πh. (Adapted with
permission from Van Tuan et al. (2013). Copyright (2013) American Chemical Society)

in the diffusive regime, as derived within the SCBA and valid for any type of disorder.
This indicates that polycrystalline graphene remains a good conductor.

The charge mobility, μ(E) = σsc(E)/en(E), with n(E) being the carrier density, is
found to vary within 100 cm2 V−1 s−1 to ∼2 × 104 cm2 V−1 s−1 for n = 1012 −
1013 cm−2, in very satisfactory agreement with the typically reported values for poly-
crystalline graphene in recent literature (Tsen et al. 2012). We stress that the computed
values of μ(E) are valid down to the charge neutrality point (that is to the smallest
charge density n(E)), since we account for the disorder-induced finite DOS, which yields
nonzero charge density (and thus no singularity as 1/n(E)).
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Figure 6.39 (a) Grain boundary resistivity values (ρGB) extracted from the literature. Open circles
are measurements at the charge neutrality point, closed circles are measurements far from the
charge neutrality point, and stars are for measurements for unknown Fermi level location.
(b) Experimental sheet resistances as a function of grain size from various published works.
The solid gray line outlines the scaling law of Eq. (6.55), with RG

s = 300 �/� and
ρGB = 0.3 k� μm. In both panels, the spread of simulation results stems from varying
chemical functionalization degree of grain boundaries (see insets). Figures reproduced from
Isacsson et al. (2017); see this reference for more details and all references of mentioned
experimental data.

The semiclassical conductivity σsc of polycrystalline graphene scales linearly with
the average grain size (Van Tuan et al. 2013). An interesting point is that the impact of
GBs can be recast through the scaling relation (Cummings, Duong et al. 2014)

Rs = RG
s + ρGB/lG, (6.55)

where Rs ≡ 1/σsc is the sheet resistance of the polycrystalline graphene, RG
s is the sheet

resistance within the graphene grains, lG is the average graphene grain size, and ρGB is
the GB resistivity. By calculating Rs for polycrystalline samples with a variety of grain
sizes and fitting to Eq. (6.55), Cummings et al. extracted an intrinsic GB resistivity of
ρGB = 0.07 k� μm (Cummings, Duong et al. 2014). This value is on the low end of
those obtained experimentally. However, as shown in Fig. 6.39(a), the value of ρGB
depends significantly on the measurement technique, doping level, material quality, and
degree of chemical functionalization (Isacsson et al. 2017).

Actually, the spread of simulation results indicates that ρGB is modulated by
more than one order of magnitude upon varying the density of chemical adsorbates
on GBs. Figure 6.39(b) displays the impact of GBs on the experimental electrical
properties of polycrystalline graphene through values of sheet resistance versus grain
size. Simulation results are shown as open squares, with the spread of values resulting
from different degrees of chemical functionalization of the GBs. Overall, the mea-
surements follow the scaling trend described by Eq. (6.55), and the crossover between
GB-dominated and grain-dominated transport occurs for grain sizes in the range of
1–10 μm.
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An important information for experimental research is that the charge mobil-
ity for a (clean) polycrystalline graphene sample with an average grain size of
1 μm (and at a charge density of n = 3 × 1011 cm−2) should be in the order of
μ∼ 300.000 cm2 V−1 s−1, whereas to achieve a sheet resistance of 10�/� (technology
target for transparent conductors) would require clean samples with 100 μm average
grain size. This is typically one to two orders of magnitude larger compared to estimates
from today’s experimental data. Such a difference is likely due to the chemical contam-
ination of the grain boundaries (Cummings, Duong et al. 2014; Isacsson et al. 2017).
A joint experimental and theoretical study of hydrogenated and oxidized CVD graphene
samples has shown that oxygen defects (such as epoxy) accumulate at grain boundaries
and eventually provoke strain-induced cracks in the sample and subsequent strong decay
of the charge mobility of related devices (Seifert et al. 2015). This does not occur in
presence of hydrogen defects, which distribute more homogenously across the samples.

Finally, we note that for the high-quality polycrystalline models studied here numeri-
cally, one sees very weak time-dependent decay of D(t) after the saturation value, which
indicates a negligible correction due to quantum interferences and localization effect, as
confirmed by transport measurements (Yu et al. 2011). The values obtained for �el and
σsc(E) allow an estimation of the localization length ξ (E) of electronic states. Using the
scaling analysis ξ (E) = �el(E) exp(πhσsc(E)/2e2) (Lee & Ramakrishnan 1985), one
obtains localization lengths in the order of ξ � 10 μm over a large energy window
around the charge neutrality point. This contrasts with values in the order of ξ � 10 nm
usually obtained with typically 1% of structural defects or covalently bonded adatoms
(Lherbier et al. 2012).

To conclude, one observes that the use of CVD graphene in electronic applications
rely highly on the production of large area high-quality graphene, and thus dictates
an engineering challenge consisting in growing large single-crystalline graphene free
from grain boundaries. The technical problem is that fabricating large single-crystalline
graphene implies low growth rate and high energy consumption, primarily caused by the
required high growth temperature and long growth time. This could eventually restrict
highly efficient large scale graphene production for industrial purposes, but as shown
in this chapter, the electronic transport properties of clean and polycrystalline graphene
are actually very good provided they remain clean from extra chemical contamination
so that further improvement is within reach by controlling surface contamination and
avoiding the incorporation of defects and cracks upon transfer from metallic to insu-
lating substrates. Accordingly, as fostered by ZongFan Liu from the Beijing Graphene
Institute in China, novel growth processes should be developed to overcome such
limitations (Sun et al. 2018).

6.5 Graphene Quantum Dots

Electron–electron interactions in graphene systems are generally expected to expected
to have an important role, especially: (i) close to the Dirac point, where the low carrier
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concentration strongly reduces the screening effects of the Coulomb interactions; (ii) in
flat bands, where the quenching of the kinetic energy may lead to enhanced interactions;
and (iii) when confinement is strong as in graphene quantum dots. Other effects such as
spin–orbit coupling may also play an important role and this is addressed in Section 8.2.

Quantum dots (Alhassid 2000; Kastner 1992; Kouwenhoven et al. 1997) are obtained
by confining the electrons in a sample in all three spatial dimensions, much as in an
atom but in a length scale orders of magnitude larger. Furthermore, the possibility
of contacting them using electrodes allows us to reveal their electronic properties via
transport measurements, reaching a much higher magnetic flux than would be possible
in atoms. Notwithstanding, it must be noted that as a result of the larger size, the
quantization energies of these artificial atoms (of about 1 meV) are smaller than for
atoms, and therefore low temperatures are required to resolve them.

Quantum dots made of nanometer-thick graphite layers were demonstrated in early
work (Bunch et al. 2005), and a few years later, graphene quantum dots were achieved
(Geim & Novoselov 2007; Ponomarenko, Schedin & Katsnelson, 2008; Stampfer
et al. 2008), attracting much attention (Stampfer, Guttinger & Molitor, 2012). But why
graphene instead of GaAs or other materials? In the following, a brief overview of
graphene quantum dots tries to shed light on this and other questions. But first let us
review some basics on the Coulomb blockade.

6.5.1 Generalities on Coulomb Blockade

The phenomenon known as Coulomb blockade (Kastner 1992; Kouwenhoven et al.
1997) takes place when the quantum dot is weakly coupled to the leads as represented
in Fig. 6.40(a). The conductance then falls below e2/h and the charge inside the island
gets quantized. The relevant energy scales are the level spacing δε between the single
particle levels of the dot, the intrinsic level widths 
L(R) of a given energy level due to
the left and right electrodes, the charging energy Ec, and the thermal energy kBT.

The first experiments on the Coulomb blockade were done in metallic grains (Giaever
& Zeller 1968) where the mean level spacing � = 〈δε〉 is much smaller than kBT. In
this situation, we have�� kBT � Ec and the grain energy spectrum can be considered
as a continuum. The electrostatic energy of N electrons in the quantum dot is given by
(Kastner 1992)

U(N ) = (N e)2/(2C) − N eηVg, (6.56)

where C is the effective capacitance of the quantum dot and ηVg is the energy shift of the
states in the quantum dot due to the gate voltage Vg. By rewriting the previous equation
as U(N ) = (Q − Q0)2/(2C) + constant with Q = N e and Q0 = CηVg, one sees that
U(N ) is a parabola with minimum at Q = Q0. Now suppose that Vg is chosen such that
a given value of N minimizes U, then the energy needed to add or take an electron out
of the quantum dot is e2/(2C) and there is an energy gap of Ec = e2/C for excitations.
For low enough temperatures (kBT < e2/(2C)), this leads to a blockade in the electron
and hole flow to the quantum dot.
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Figure 6.40 (a) A quantum dot weakly coupled to electrodes and in the presence of a gate voltage.
(b) Two consecutive conductance peaks vs. gate voltage showing a blockade region in between.
(c) Representation of the energy levels for two situations: when blocking is active (left) and at a
conductance peak (right).

However, when Q0 = (N +1/2)e, one has U(N ) = U(N +1), i.e., the configurations
with N and N + 1 electrons are degenerate, and the tunneling of charge to and out
of the dot is allowed, leading to a conductance peak. This is observed as a series of
conductance peaks separated by regions of vanishing conductance as the gate voltage is
changed.

When the quantum dots are small enough such that the level spacing is larger than
kBT, one is in the regime of quantum Coulomb blockade: kBT < � � Ec. A term due
to the filling of the discrete levels Ej must be added to U(N ):

U(N ) = Q2/(2C) +
N∑
j=1

(
Ej − eηVg

)
. (6.57)

The separation between the N th and the N + 1th conductance peaks can be
obtained from

(
eηVg

)
N+1 − (

eηVg
)
N = e2/C + (EN+1 − EN ) = Ec + δε. (6.58)
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Therefore, the separation between the conductance peaks is controlled by the charging
energy plus a smaller term due to the spacing of the dot levels. A scheme summarizing
this is presented in Fig. 6.40(b) and (c).

Besides providing information on the quantum dot level spacing, the fluctuations in
the intensity of the conductance peaks in the quantum Coulomb blockade regime offer
complementary information on the wavefunctions in the quantum dot. Indeed, using the
standard (sequential) theory (Beenakker 1991), one obtains for the conductance peak
Gmax in resonance with the jth dot level

Gmax = 2e2

h
π

2kBT

j,L
j,R

(
j,L + 
j,R)
. (6.59)

This expression is obtained for a single nondegenerate level Ej by assuming that the
intrinsic level widths are the smallest energy scale in the problem (
j = 
j,L + 
j,R �
δε, kBT) and a constant interaction model (Alhassid 2000) (Ec independent of the num-
ber of electrons in the dot). Since 
j can be related to the overlap between the electrodes
and the dot wavefunctions, the conductance peaks provide information on the latter
(Jalabert et al. 1992).

Studies of a large number of Coulomb blockade conductance peaks and the associated
level spacings reveal reproducible universal statistical features, i.e., features that are
independent of the particular device; see Alhassid (2000) and references therein. They
can be explained by thinking of these islands as nano-/meso-scale electron billiards
which are classically chaotic. This fact leads to a peculiar level spacing statistics exhibit-
ing repulsion among neighboring levels described by the Wigner–Dyson distribution
(Alhassid 2000). The theoretical level spacing statistics can be derived within random
matrix theory and follows one of the Gaussian random ensembles: Gaussian orthogonal
ensemble (GOE) or Gaussian unitary ensemble (GUE) depending on whether or not
the time-reversal symmetry is broken (Alhassid 2000). Conductance peaks also obey
specific statistics which can be derived by similar methods (Alhassid 2000; Jalabert
et al. 1992).

Experimentally, achieving good statistics for the level spacings and the conductance
peaks is a difficult task since as the gate voltage is changed, the charging energy and the
tunneling into the leads may be modified as well. For the case of the conductance peaks,
many independent realizations can be obtained by applying a variable magnetic field,
thereby improving the statistics (Chang et al. 1996; Patel et al. 1998).

6.5.2 Confining Charges in Graphene Devices

In quantum dots formed of semiconducting materials like GaAs, gating carefully chosen
regions is enough to confine the charges. However, this is ineffective for graphene
devices due to Klein tunneling (see Section 5.1). The absence of a true bandgap in bulk
graphene makes controlling the electron flow a challenging task. Notwithstanding,
tunable confinement has been demonstrated by etching graphene into nanoribbons,



206 Quantum Transport in Disordered Graphene-Based Materials

Figure 6.41 (a) An etched graphene nanoribbon (GNR) of width W and the underlying charge
puddles. (b) Scanning force microscopy image showing an etched graphene nanoribbon together
with a single electron transistor (SET) used to detect single charging events in the ribbon. SG1,
PG, and SG2 are lateral gates used for operation of the SET. (c) Low bias conductance of the
nanoribbon versus back gate showing a gap between the regimes of hole and electron transport.
(d) and (e) are zooms of (c); (e) shows a detail of a single sharp resonance within the gap.
(Reproduced with permission from Stampfer et al. (2009). Copyright (2009) by the American
Physical Society. Courtesy of C. Stampfer)

which serve as the contacts between a larger graphene sample and the electrodes
(Geim & Novoselov 2007; Ponomarenko et al. 2008; Stampfer et al. 2008) or in
graphene nanoribbon pn junctions (Liu, Oostinga et al. 2009).

One must be aware, however, that a disorder potential in the nanoribbons may induce
electron–hole puddles producing charged islands along the ribbon direction (Liu, Oost-
inga et al. 2009; Stampfer et al. 2009; Todd et al. 2009). This introduces new energy
scales such as the charging energy of the quantum dots that are formed, thereby making
it a more difficult problem than one would have naively expected. Figure 6.41 (repro-
duced from Stampfer et al. 2009) illustrates this issue.

Tunability of a graphene quantum dot can be achieved by using a back gate as well as
side gates, which allow pinching off the constrictions independently. An example of a
tunable Coulomb blockade device is shown in Fig. 6.42(a) and (b). A trace of the source-
drain current as a function of the gate voltage for this device is shown in Fig. 6.42(c).
The conductance oscillations were shown to be regular over more than ten conductance
peaks with a period of 18.2 mV, as shown in Figure 6.42(d). Fig. 6.42(e) shows a density
plot of the differential conductance as a function of the bias and plunger gate voltages.

From the width of the Coulomb diamonds along the vertical direction, one can infer
a charging energy Ec ∼ 3.5 meV. An independent estimation of Ec can be obtained
by modeling the island as a disk with diameter d and calculating its self-capacitance
(Güttinger et al. 2012; Kouwenhoven et al. 1997) Cdisk = 4ε0εd, where ε can be
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Figure 6.42 (a) and (b) An all-graphene quantum-dot device. (c) The oscillation in the
source-drain current as a function of the plunger gate PG as indicated in (a). The peak spacing
for 18 consecutive current peaks is plotted in (d). The differential conductance as a function of
the bias and plunger gate voltages is shown as a density plot in (e). (Reprinted with permission
from Stampfer et al. (2008). Copyright (2008), American Institute of Physics. Courtesy of C.
Stampfer)

estimated as the average of the dielectric constant of the oxide underneath and the vac-
uum ε, ε = (εox + 1)/2 � 2.5. Since this simple model underestimates the capacitance
of the island, which is increased by the capacitive coupling of the island to the gates and
the leads, the resulting charging energy Edisk

c = e2/Cdisk can be used as an upper bound
for the charging energy of the island Ec (Ec ∼ 2.5 × Edisk

c ) (Güttinger et al. 2012).
From Fig. 6.42(d), one can see that there are no important fluctuations in the sep-

aration between Coulomb peaks, from which we can conclude that the island spacing
is much smaller than Ec. This is confirmed by Fig. 6.42(e), which shows no additional
lines due to excited states or cotunneling events.

Smaller dots (d < 100 nm) may reveal important information about the level statistics
of the graphene island (Ponomarenko et al. 2008). But is there any difference between
graphene quantum dots and those made of conventional semiconductors? This is an
interesting and debated question (Huang, Lai & Grebogi 2010; Libisch, Stampfer &
Burgdörfer 2009; Ponomarenko et al. 2008). Whereas in the absence of a magnetic
field for a chaotic dot made of a usual semiconductor material one would expect
level statistics given by the GOE, the level spacing of a chaotic Dirac or neutrino
billiard was predicted to follow the GUE (Berry & Mondragon 1987) (a time-reversal
symmetry breaking due to chirality). Although experimental evidence in this direction
has been presented (Ponomarenko et al. 2008), time-reversal symmetry at zero magnetic
field is restored when both valleys are taken into account (see, for example, Beenakker
(2008), and other authors have shown numerical evidence for GOE statistics in both
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clean chaotic billiards (Libisch et al. 2009) and disordered dots with defects (Huang
et al. 2010).

So far, we have seen that tunable confinement is possible in single-layer graphene
devices by connecting the graphene island with the electrodes through graphene con-
strictions. There are two factors that complicate the controllability of these confining
constrictions: (a) the formation of electron–hole puddles as mentioned before and (b)
edge roughness. Electron–hole puddles may be lessened by suspending the device,
thereby isolating it from the substrate. An alternative would be to use a substrate such
as hexagonal boron nitride (Dean et al. 2010) where disorder effects are reduced. Edge
roughness, on the other hand, changes the ribbon properties as predicted (Evaldsson
et al., 2008; Mucciolo et al., 2009; Querlioz et al., 2008), increasing the differences
between different geometries (as observed in Han et al. (2007), and Chen et al. (2007)),
introducing localization and inducing energy gaps. Improving the edge sharpness can be
achieved, for example, by optical annealing (Begliarbekov et al. 2011) or by bottom-up
fabrication of GNRs (Cai et al. 2010).

A different strategy was presented in Allen et al. (2012), where quantum confinement
has been demonstrated in suspended bilayer graphene with external electric fields used
to open a bandgap. Given that a suspended 2D sample is used, the experiments are clean
from edge-disorder and substrates effects.

Other interesting phenomena not mentioned before include controlling the spin
degree of freedom in graphene quantum dots and exploring elastic and inelastic
cotunneling phenomena. Interested readers may find more in specialized reviews
(Güttinger et al. 2012).

6.6 Further Reading and Problems

• For a general presentation on disorder effects in carbon nanotubes, see Roche et al.
(2006).

• Readers interested in transport through edge states and the influence of disorder (not
covered here) may follow the presentation in Wimmer (2009). A clever way to do
interferometry with these states is discussed in Usaj (2009).

• For a very recent and detailed review on graphene quantum dots, we recommend
Güttinger et al. (2012).

Problems

6.1 Conductance through a SWNT with a single vacancy. As another example of
application of Landauer’s theory to carbon-based devices, let us consider the case of
transport through a metallic carbon nanotube with a single vacancy. The simplest forms
of introducing the vacancy within a π -orbital model are (i) disconnecting one of the
orbitals or (ii) introducing a very large onsite energy at one lattice point. Both models
give equivalent results for the Landauer conductance.
(a) Calculate the conductance in the presence of this defect.
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(b) You are encouraged to rationalize the conductance decrease due to the vacancy
using the mode-decomposition introduced in Section 5.2.2. (For a complementary
approach that uses an effective Hamiltonian instead of the tight-binding model
used here, we refer to Matsumura and Ando (2001).)

6.2 Conductance in the presence of a single Stone–Wales defect. Consider a nanotube
with a single Stone–Wales defect.
(a) By using a simple tight-binding model, where only the topology of the hoppings

is changed, compute the density of states and the conductance.
(b) Repeat your calculation for a graphene nanoribbon. Do the results depend on the

position of the defect?

6.3 Transmission through a line defect and valley filtering. Consider the line defect
in Fig. 6.32(a).
(a) Consider electrons that are incident on the line defect from the left. Express the

solutions for the wavefunctions on each valley (in bulk graphene) for these left-
moving electrons.

(b) Following Gunlycke and White (2011), note that in the k → 0 limit, the reflection
operator and the graphene translation operator perpendicular to the line defect
commute. Then obtain symmetry-adapted states |±〉 that are eigenstates of both
operators.

(c) Compute the transmission probabilities for states on each valley and show that this
line defect acts a valley filter.

6.4 Elastic mean free path of carbon nanotubes and graphene nanoribbons.
(a) Follow up our discussion in Section 6.1 based on White and Mintmire (1998) and

derive Eq. (6.7) (�el = 18
√

3acc(γ0/W)2N) for the elastic mean free path in carbon
nanotubes. Discuss the dependence of �el on the tube diameter.

(b) Discuss the dependence of �el on the width for the case of a graphene nanoribbon.
(Hint: For this last question you may follow Areshkin et al. (2007).)

6.5 Level spacings of GaAs and graphene quantum dots compared.
(a) Compare the typical level spacing for a quantum dot made of GaAs and one made

of graphene with the same diameter d. In which one are confinement effects going
to be more important?

(b) Look for experimental data in the literature to confirm your assertion and point
out the main differences between the conductance oscillations in small and large
diameter dots.

** Additional exercises and solutions available at our website.
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The concept of Berry phase has become a cornerstone in condensed matter physics,
with remarkable observable consequences such as the quantum Hall effect in graphene.
We start this chapter by introducing the Berry phase in the context of the solid-
state theory, which includes the definition of this geometric phase intricated to its
mathematical cement known as Berry Curvature. Next, we briefly ellaborate on some
of its consequences on the semiclassical transport theory by introducing the notion
of anomalous velocity, which induces the valley Hall effect phenomenon. We then
continue by overviewing some of the salient effects of quantum phases driven by
internal degrees of freedom and external magnetic fields on the electronic and transport
properties of graphene-based materials, including the peculiarities observed in the
quantum Hall effect regime and driven by the additional pseudospin-related Berry’s
phase. This chapter will also explain how to incorporate the effects of gauge fields
as phase factors of tight-binding parameters, followed by various illustrations of the
field-dependent electronic properties of carbon nanotubes and single-layer graphene,
showing their simple (although spectacular) consequences on transport properties, all
aspects predicted theoretically and confirmed experimentally. Finally, we introduce
Haldane’s model of a Chern insulator, providing the first framework for achieving a
quantum Hall effect without Landau levels, thereby preparing our way for the quantum
spin-Hall effect to be discussed in Chapter 8.

7.1 Berry Phase

The Berry phase (or Pancharatnam–Berry phase) was introduced in 1984 by Michael
Berry (Berry 1984) emphasizing how geometric phases of time-evolving wavefunctions
provide a powerful and unifying concept in several branches of classical and quantum
physics. Since then, this concept has acquired a paramount importance in condensed
matter and many advances have been achieved on relating the theory of such phases
and their observable consequences (Resta 2000; Xiao et al. 2010). Here, we briefly
introduce the concept and then comment on its importance for describing the electronic
and transport properties in graphene-based materials and two-dimensional materials
described by honeycomb lattices.
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Let us consider a Hamiltonian H(#λ) that depends on a collection of parameters
#λ = (λ1, λ2, . . . , λn), which, in turn, may depend on time. The adiabatic theorem tells
that if #λ changes slowly in time, then a particle initially in a eigenstate |ψj,#λ〉 (with
eigenenergy εj,#λ) will remain in that state (apart from corrections that vanish in the limit
of slow enough variation). What comes as a surprise is what happens with the phase
of such a state. The state at time t differs from the initial one in a phase. The factors
multiplying the initial state include two contributions:

(i) The first term reads exp[(−i/h̄)
∫ t

0 dt′εj,#λ(t′)], and describes the (expected) phase
acquired because of the dynamics, also called the dynamical phase;

(ii) The second factor, exp(iγ (t)), gives the geometric phase, which may even persist
after a cyclic change of parameters. The geometric phase after such cyclic variation
is called the Berry phase and can be understood as a correction capturing the effect
of the states that are projected out in the adiabatic approximation.1

The geometric phase can be recast in a convenient form by noting that the phase
difference between the jth eigenstate corresponding to slightly different values of #λ is

e−idγj =
〈ψj,#λ|ψj,#λ+d#λ〉

| 〈ψj,#λ|ψj,#λ+d#λ〉 | . (7.1)

Using this equation, one can write the change in the phase dγj as

dγj = i 〈ψj,#λ|∇̂λψj,#λ〉 · d#λ = Aj · d#λ, (7.2)

where we have defined Aj,#λ ≡ i 〈ψj,#λ|∇̂λψj,#λ〉, which is called the Berry connection (and
sometimes also Berry vector potential) as it defines the phase connecting eigenvectors,
which correspond to Hamiltonians nearby in parameter space.

Although the Berry connection is not gauge invariant, the Berry phase defined on a
closed directed curve C,

γj =
∮

Aj,#λ · d#λ, (7.3)

becomes gauge invariant as it only depends on the initial and ending points of the
geometrical contour in the Brillouin zone. Another key mathematical quantity is the
so-called Berry curvature �j, which is given by the curl of the Berry connection:

�j(#λ) ≡ ∇λ × Aj,#λ. (7.4)

Thus, the flux of the Berry curvature through the surface whose frontier is the
contour C gives the Berry phase. The Berry curvature is therefore a very useful quantity,
which through the Berry phase pilots the time-dependent evolution of propagating
wavefunctions.

1 One must recall that one of the assumptions is that the levels are nondegenerate so that at each instant, the
eigenstates of the Hamiltonian (corresponding to the instantaneous values of the parameters) remain in a
one-to-one relation with each other. In this process, the states other than the one under consideration are
essentially being projected out. Their effect is manifested in the Berry phase.
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A fundamental question is how can we connect this parameter variation with the
physics of a crystal? The answer to this question was pioneered by Joshua Zak, who
provided a formulation of the Berry phase for the energy bands in solids (Zak 1989).
The role of the parameter space is taken naturally by the space of wave-vectors k,
labeling the Bloch-type solutions in a crystal |�k〉 = eik·r|ψk〉, and the role of the
eigenstates is played by the periodic part of the Bloch-type solutions |ψk〉 satisfying
〈r|ψk〉 = 〈r + R|ψk〉, with R a Bravais lattice vector. The |ψk〉 are the eigenstates of
H(k), which takes the role played by the Hamiltonian in our previous discussion.

This way, the concept of Berry phase is conveniently ported to the case of the states
in a crystal, and we can now use all the previous expressions by making the appropriate
replacements. The variation of k in parameter space can be thought of as a variation
induced dynamically on a wavepacket upon the action of, for example, a magnetic field.
The interesting point is that when k moves in the wave-vector space, the Bloch states
will in general acquire a Berry phase. The Berry phase is an intrinsic property of the
band structure features. Being fully defined by the eigenstates (and not the eigenergies),
it provides information, which is complementary to that of the energy spectrum, and
therefore an additional label for the crystal energy bands.

For single-particle physics, the so-called Chern number is determined by the
integration of the Berry curvature over the whole Brillouin zone, and when it takes
an integer value (or half-integer for many-body wavefunctions), it acquires the nature
of a topological invariant of the wavefunction correlations (expressed through the
Kubo Hall conductivity). Its groundbreaking role in explaining the unprecedented
quantization (and robustness to disorder) of the Hall plateaus has been pioneered by
Mahito Kohmoto (1985). Here, we will mention a few useful properties of the Berry
curvature and related concepts for later use in the rest of this chapter (Xiao et al. 2010):

(i) The first property is a statement of a conservation law for the Berry curvature:∑
j
�j(k) = 0. (7.5)

Thus, the sum of the Berry curvature over all available bands is zero at each point
in parameter space.

(ii) If the crystal has inversion symmetry (IS), then

�j(k) = �j(−k). (7.6)

(iii) If the crystal has time-reversal symmetry (TRS), then

�j(k) = −�j(−k). (7.7)

Because of this property, in the presence of TRS, the integral of the Berry curvature
over the full Brillouin zone vanishes. Thus, a TRS breaking ingredient such as a
magnetic field is typically needed to get nontrivial Chern number. This will be the
subject of later sections in this chapter.
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As a result of (ii) and (iii), in the presence of both inversion and time-reversal
symmetry, either �j(k) ≡ 0 for all k, or it is not defined. As we will see, the latter point
is crucial for the case of graphene, where in spite of having both symmetries, the Berry
phase differs from zero.

The existence of a nontrivial Berry phase has been demonstrated to have many
profound consequences in quantum physics (Kohmoto 1985; Thouless 1998; Xiao et al.
2010), and in graphene and carbon nanotubes, it conveys phenomena such as absence
of backscattering, Klein tunneling, weak antilocalization, the zero-energy Landau level,
and an anomalous quantum Hall effect, as presented throughout this book.

7.2 Graphene’s Berry Phase and Its Observation in ARPES Experiments

One particularly relevant manifestation of the Berry phase in graphene stems from the
pseudospin quantum degree of freedom associated with the sublattice degeneracy of
the honeycomb lattice. The experimental observation of such Berry phase has been
made possible thanks to photoemission spectroscopy studies performed by the group
of Alessandra Lanzara (Hwang et al. 2011).

First, let us observe that under 2π rotation, the eigenstates of the Dirac excitations
in graphene get a π phase factor (the π -Berry phase). Indeed, using the rotation
operator R(θ ) = e−iθ ·S/h̄, with S = h̄/2σ̂z for spin-1/2 particles, it is readily shown that
R(θ = 2π )|�K± (s = ±1)〉 = eiπσ̂z |�ξ ,s〉 = −|�ξ ,s〉 (using e−iθ (n̂·σ̂ )/h̄ = cos θ+ i(n̂ · σ̂ )
sin θ ). By computing the Berry connection using Eq. (7.4), we obtain

A = −i〈ψk|∇̂k|ψk〉 = −i
2

(1, e−iθ ) ·
(

0
i∇kθeiθ

)
= eθ

2|k| , (7.8)

(eθ is a unit vector perpendicular to p) while

γc =
∮

A · dk =
∫ 2π

0
dk · eθ

2|k| = π . (7.9)

The observation of a Dirac cone and the existence of pseudospin-related quantum
phases has been confirmed through angle-resolved polarization-dependent photo-
emission spectroscopy (ARPES) (Hwang et al. 2011; Liu et al. 2011). Figure 7.1
shows the experimental photoelectron intensity maps at the Fermi level EF versus
the two-dimensional wave-vector k for single-layer graphene for the two polarization
geometries. The main feature in the intensity maps of both geometries is an almost
circular Fermi surface centered at the K point. Additionally, the angular
intensity distribution is seen to be polarization-dependent in the sense that the minimum
intensity position is in the first Brillouin zone for X-polarization, while the maximum
intensity position is in the first Brillouin zone for Y-polarization geometry, suggesting a
π rotation of the maximum intensity in the kx− ky plane around the K point upon rotating
the light polarization by π/2, from X to Y. This result can be demonstrated by computing
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ED+0.4 eV

Max.

Figure 7.1 Measured intensity maps of single-layer graphene at energy E = EF with X- and
Y-polarized light, respectively. Intensity maxima are denoted by white arrows and the electronic
band structure of single-layer graphene is shown in the sketch. EF is 0.4 eV above the Dirac
point energy. (Reproduced with permission from Hwang et al. (2011). Copyright (2011) by the
American Physical Society. By courtesy of Choonkyu Hwang)

the wave-vector-dependent photoelectron intensity Ik = |〈k + Q|Helm(k, Q)|�sk〉|2,
introducing the field-induced transition matrix element between graphene eigenstates
and |fk+Q〉 = 1/

√
2(1, 1), the plane-wave final state projected onto the pz orbitals

of graphene. (Note that all states are expressed using the basis set of Bloch sums of
localized pz orbitals at sublattices A and B.) The interaction Hamiltonian coupling to
electromagnetic waves of wave-vector Q is obtained by using the velocity operator
and the external vector potential as − e

c Â · v̂ (A(r, t) = AQei(Q·r−ωt)), which can be
approximated close to the Dirac point by Helm(q + K) ∼ evF

h̄c (A0
xσx + A0

yσy). Finally,
one obtains for both polarizations IX−pol

k ∼ sin(θq/2), whereas IY−pol
k ∼ cos(θq/2) from

which it is clear that the photoemission intensity map is rotated by π when the light
polarization is rotated by π/2 (Hwang et al. 2011).

7.3 Anomalous Velocity and Valley Hall Effect

The dynamics of Bloch electrons in the presence of electromagnetic field occupies a
central role since the early days of solid-state theory. Applying a weak electric field
produces a change of the electronic wave-vector, i.e., a motion in momentum space.
A crucial quantity is the electron velocity, which is typically written as (Ashcroft &
Mermin 1976a):

vn(k) = 1
h̄
∂εn(k)
∂k

, (7.10)

where εn(k) corresponds to the eigenenergy of the state with wavevector k in band
n. This expression gives the velocity of the Bloch electrons, which is field-independent
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(which is very convenient given that the electric field breaks the translational invariance,
thereby jeopardizing the application of Bloch’s theorem).

However, the description of the semiclassical dynamics needs to be modified when a
nonvanishing Berry curvature is present. Specifically, it can be shown that an anomalous
term involving the Berry curvature and the electric field E appears:

vn(k) = 1
h̄
∂εn(k)
∂k

− e
h̄

E ×�n(k), (7.11)

which needs to be supplemented with the equation of motion:

k̇ = − e
h̄

E. (7.12)

The second term on the right-hand side of Eq. (7.11) is known as the anomalous velocity
and although it had already been obtained in the 1950s (Karplus & Luttinger 1954;
Kohn & Luttinger 1957) its connection with the Berry curvature came decades later.
(For a review, we refer to Xiao et al. (2010).) Being perpendicular to the electric field,
the anomalous velocity is expected to lead to a Hall effect, namely the generation of a
voltage difference transverse to the electric current.

By using the symmetry properties of the Berry curvature (Section 7.1), we can get a
better grasp of when this anomalous term can play a role. One of the most interesting
outcomes is the possibility of having a Hall effect which, unlike the conventional one,
does not arise from an applied magnetic field. Indeed, one could have a Hall effect
arising solely from inversion symmetry breaking.

Let us consider the case of graphene with broken inversion symmetry. This can arise,
for example, as a substrate effect; when graphene is placed on hexagonal boron nitride,
the onsite potential becomes different on each sublattice (Zhou et al. 2007). This leads
to a gap opening and also to a Berry curvature which is nonzero and with opposite signs
on each valley. Thus, when an electric field is applied, electrons in different valleys will
move in opposite directions perpendicular to the electric field, thereby giving a valley
Hall current in the bulk (Xiao et al. 2007, 2010).

Exploiting the valley degree of freedom critically requires generating and detecting
valley polarized currents. There are several proposals for generating valley polarized
currents, including using a constriction in a suitable geometry (Rycerz et al. 2007), using
line defects (Gunlycke & White 2011; Ingaramo & Foa Torres 2016) (as discussed in
Section 6.4.1), or strain (Fujita et al. 2010; Stegmann & Szpak 2016, 2018). The valley
Hall effect, on the other hand, offers an alternative path for detecting a valley polar-
ized current. Recent experiments reported the observation of such effect in transport
(Gorbachev et al. 2014), though it is currently debated (Marmolejo-Tejada et al. 2018).

A similar scheme can be applied to bilayer graphene where the breaking inversion
symmetry can be induced and tuned by applying an electric field perpendicular to the
graphene bilayer (Shimazaki et al. 2015). Finally, onset of quantized valley Hall effect
from nonlocal transport measurements in very high-quality hBN-encapsulated graphene
(ballistic) devices suggests the formation of valley-polarized edge states in a gapped
structure (Komatsu et al. 2018), whereas the exciting possibility of simultaneously
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generating in graphene a bulk valley-polarized dissipative transport and a quantum
valley Hall effect by combining strain-induced gauge fields (for a recent review on
this topic we refer to Naumis et al. (2017)) and real magnetic fields has been proposed
theoretically (Settnes et al. 2018).

7.4 The Peierls Substitution

To study the effects of a magnetic field B in graphene, we need to revise how to introduce
it in the Hamiltonian. In a tight-binding or lattice Hamiltonian (which contrasts with
the nearly free electron limit), this is typically done by using the so-called Peierls
substitution (after Rudolf Peierls (Peierls 1933)), whereby the hoppings connecting i
and j, γij, are transformed as2 (Kohn 1959b):

γij(B) = exp
(

i
q
h̄

∫ rj

ri

A · d�

)
× γij(B = 0). (7.13)

The hoppings at zero field are multiplied by a phase factor (known as the Peierls’ phase)
equal to the charge q (which is equal to −e) divided by h̄ times the line integral of
the vector potential A (B = rotA) on a straight path connecting ri and rj. This is very
convenient as it is not necessary to recompute the material parameters when changing
the magnetic field but rather the change in the phase, which is much easier to calculate.

In the continuum limit, this is equivalent to the substitution:

(h̄/i)∇ → (h̄/i)∇ − qA, (7.14)

also known as minimal coupling.3 The crucial point is that the gauge invariance of the
Schrödinger equation has to be preserved. This means that following a gauge transfor-
mation (A → A + ∇χ ), we need to transform the operators (or the states) accordingly.

The Peierls substitution provides a direct way to assess the effects of a magnetic
field based on a tight-binding model and is the basis of many calculations. The
underlying approximations are, however, quite subtle and have been the subject of
considerable debate (Alexandrov & Capellmann 1991; Kohn 1959b; Luttinger 1951).
Usually, it is derived assuming slowly varying potentials on the lattice scale (Luttinger
1951) (requiring, for example, that the basis of localized orbitals remains unaffected
by the magnetic field). Other subtle issues arise especially when interactions beyond
nearest neighbors are present, and one might question, for example, the choice of a
straight path in the line integral. For a detailed discussion on these issues, we refer to
Boykin et al. (2001).

As a particle loops around a lattice’s unit cell, it acquires a phase φ, which is equal to
the sum of the individual phases along the path, see Fig. 7.2. This phase can be regarded
2 For a brief account on this, we refer to The Feynman Lectures on Physics, volume III, section 21–2,

available at www.feynmanlectures.caltech.edu/.
3 Note that we use here the international system of units (SI). In the CGS system, the substitution reads

(h̄/i)∇ → (h̄/i)∇ − (q/c)A, where c is the speed of light.

www.feynmanlectures.caltech.edu/
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Figure 7.2 Scheme depicting the phases φj picked up by the nearest-neighbor hoppings along a
plaquette of the graphene lattice when a magnetic field is present. The total phase along the
closed loop is φ is the sum of the individual phases dictated by the Peierls substitution.

as a manifestation of the celebrated Aharanov–Bohm phase (Aharonov & Bohm 1959),
the (geometric) phase accumulated by a charged particle when moving in a magnetic
field:

φAB = q
h̄

∮
C

A · d�, (7.15)

which is also written as −2π times  B, the magnetic flux through the area enclosed by
the contour C divided by the magnetic flux quantum  0 ≡ h/e. Note that the natural
periodicity here is given by h/e, whereas in other cases such as superconductors, it is
given by the superconducting magnetic flux quantum, h/(2e), where the factor 2 stems
from the charge of the Cooper pairs.

It is usual to specify the magnitude of the magnetic field in terms of the flux per
plaquette. The flux per plaquette is the magnetic flux through a unit cell (plaquette)
of the lattice. The flux per plaquette in units of the magnetic flux quantum is thus
very convenient for specifying the magnitude of the magnetic field in a numerical
implementation.

One must notice that the original translational invariance of the lattice is generally
lost because of the presence of the magnetic field, and a new (magnetic) length scale
emerges. As we will see later on, this is not the case with Haldane’s model, where
similar physics is obtained as an intrinsic property of the lattice.

7.5 Aharonov–Bohm Gap Opening and Orbital Degeneracy Splitting
in Carbon Nanotubes

In 1993, Ajiki and Ando (1993, 1996) theoretically predicted that an axial magnetic
field should tune the nanotube band structure between a metal and a semiconductor,
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Figure 7.3 Brillouin zone of a graphene sheet together with allowed states for an armchair tube
(dashed lines) at zero magnetic flux. Allowed electronic states near the k-points under an axial
magnetic field are given as dotted lines, while circles give the equipotentials close to the
Dirac point.

owing to the modulation of the electronic wavefunctions through the Aharonov–Bohm
phase (Aharonov & Bohm 1959). For too strongly disordered nanotubes (Bachtold
et al. 1999; Roche & Saito 2001), such a phenomenon is actually masked by the  0/2
Altshuler–Aronov–Spivak magnetoresistance oscillations (Altshuler et al. 1981), so it
requires clean nanotubes and a ballistic regime to be observed. After a series of initial
magnetotransport experiments (Stojetz et al. 2005; Strunk et al. 2006), the fascinating
possibility of turning a metallic nanotube to a semiconducting one and vice versa has
finally been nicely confirmed in a careful experiment (Fedorov et al. 2007).

Besides, the application of a perpendicular magnetic field was also predicted to
generate Landau levels (LLs) with peculiar features (Roche et al. 2000; Saito et al.
1994). The confirmation of such an interesting structure of LL in nanotubes has been
revealed in clean nanotubes (ballistic regime) through the B-dependent modulation
of a Fabry–Perot cavity (Raquet et al. 2008). The peculiarities of LL in graphene
nanoribbons have also recently been revealed in experiments (Poumirol et al. 2010;
Ribeiro et al. 2011). For two-dimensional graphene, strong perpendicular magnetic
fields produce the quantum Hall effect, which is addressed in Section 7.7. Below, we
provide the essential theory for understanding magnetic-field dependences of electronic
structure and transport in these systems.

When the B-field is applied parallel to the tube axis, a spectacular field-dependent
bandgap is generated as well as symmetry breaking of the orbital degeneracy. To deepen
this effect, let us consider the two-dimensional Cartesian coordinates r̃ = (x̃, ỹ) in the
basis defined by (Ch, T). The vector potential is thus rewritten as A = (φ/|Ch|, 0), while
the phase factor between two π orbitals located at r̃i = (x̃i, ỹi) and r̃j = (x̃j, ỹj) becomes
ϕi − ϕj = iφ(x̃i − x̃j)/|Ch|. As a consequence, the periodic boundary conditions on the
quantum phase are changed following



7.5 Aharonov–BohmGapOpening and Orbital Degeneracy Splitting in Carbon Nanotubes 219

�k(r + |Ch|) = eik·Ch ei 2π
φ0

∫ r+Ch
r A(r′)·dr′

�k(r), (7.16)

and the additional magnetic phase factor thus reduces to 2πφ/φ0, so that the change in
the quantum momentum becomes

κ⊥ → κ⊥(φ) = 2π
|Ch|

(
q ± α

3
+ φ

φ0

)
, (7.17)

with α = 0 for metallic tubes, whereas α = ±1 for semiconducting tubes. In Fig.
7.3, the modification of available electronic states is illustrated in reciprocal space.
Using (7.17), the field-dependent gap oscillation for an initially metallic tube is

�EB = E+
q=0(k‖,φ/φ0) − E−

q=0(k‖,φ/φ0) = 3�E0φ/φ0, (7.18)

if φ ≤ φ0/2 while�E0 = 2πaccγ0/|Ch| denotes the gap at zero flux. If φ0/2 ≤ φ ≤ φ0,
then�EB = 3�E0 |1 − φ/φ0|, so that the bandgap exhibits an oscillation between 0 and
2πaγ0/|Ch| with period φ0 (Ajiki & Ando 1993, 1996). For example, �EB ≈ 75 meV
at 50 T for a (22, 22) tube (diameter ≈ 3 nm), while �EB ≈ 40 meV at 60 T for a
(10, 10) tube (diameter = 1.4 nm). To obtain a magnetic field equivalent to φ = φ0 in
nanotubes with diameters of 1, 10, 20, and 40 nm, magnetic fields of 5325, 53, 13, and
3 T, respectively, are needed.

Besides the φ0-periodic bandgap oscillation, the Aharonov–Bohm effect influences
the whole subband structure through the field-dependent energy splitting of the
van Hove singularities (Roche et al. 2000). Indeed, in the absence of a magnetic
field, each energy level is fourfold degenerate (including spin and orbital degeneracy).
The orbital degeneracy is attributed to the symmetry between clockwise (+) and
counterclockwise (−) electronic motions around the tube. In the presence of the axial
magnetic field, electrons in degenerate (+) and (−) eigenstates acquire opposite orbital
magnetic moment ±μorb, which thus yields an upshift of the energy of (+) and a
downshift of the energy of (−), lifting the orbital degeneracy (van Hove singularity
splitting) (Roche et al. 2000).

This mechanism is illustrated in the DOS plots for a (5, 5) tube in Fig. 7.4 in which
the tube is metallic at zero magnetic field. The calculation has been performed using a
simple tight-binding model in the π orbital approximation, while the nearest-neighbor
hopping integrals are renormalized in the presence of the magnetic field using Eq. (7.13).
As predicted, by applying a finite magnetic flux φ threading the tube, the bandgap
opens and increases linearly with φ, to reach a maximum value at half flux quantum
(φ0/2). Further, the bandgap is linearly reduced until it finally closes again when the
field reaches a flux quantum (not shown here). For all armchair (n, n) metallic tubes,
the magnitude of the field-dependent splitting of the qth van Hove singularity (vHs) can
actually be derived analytically as

�EB(q,φ/φ0) = 2γ0

[
sin
π

q

(
cos

πφ

qφ0
− 1

)
− cos

π

q
sin
πφ

qφ0

]
. (7.19)
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Figure 7.4 Density of states of a (5, 5) nanotube under increasing magnetic flux values:
(a) φ/φ0 = 0; (b) φ/φ0 = 0.1; (c) φ/φ0 = 0.2; and (d) φ/φ0 = 0.5.
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Figure 7.5 Density of states of a (21, 23) tube at zero and finite flux. Top inset: expanded plot
of the DOS. Bottom inset: evolution of the vHs splitting �EB as a function of magnetic field.
(Reproduced with permission from Charlier et al. (2007). Copyright (2007) by the American
Physical Society)
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Figure 7.6 (a, c) Transfer characteristics G(Vg) of (CNT-FETs) at axial magnetic fields from 0 to
21 T. At Vg = V∗

g, a strong suppression of conductivity is observed at high magnetic fields. The
insets show the AFM images of CNTFETs. (b, d) Magnetoconductance curves G(B) measured at
Vg = V∗

g at different temperatures. (Figure courtesy of G. Fedorov)

Semiconducting tubes [i.e., (n, m) tubes with n − m = 3� ± 1 (� being an integer)]
are affected in a similar way, but the gap expression is slightly different. One finds
�EB = �E0 |1 − 3φ/φ0|, if 0 ≤ φ ≤ φ0/2 and �EB = �E0 |2 − 3φ/φ0| when
φ0/2 ≤ φ ≤ φ0. Hence, the initial zero-field energy gap (�E0) continuously decays
with φ, reaching zero at φ = φ0/3. The gap further opens as φ increases from φ0/3,
reaching a local maximum (�E0/2) at φ = φ0/2, before closing again at φ = 2φ0/3,
and finally recovering its original value �E0 at φ = φ0. Figure 7.5 shows the DOS of a
3 nm diameter semiconducting single-walled tube with and without magnetic flux (main
panel) near a van Hove singularity as well as the evolution of the vHs splitting with the
field (bottom inset).

The van Hove singularity splitting has been observed by spectroscopic experiments
(Zaric et al. 2004), while magnetoresistance oscillations were first studied in disordered
and large-diameter multiwall carbon nanotubes (Bachtold et al. 1999), first revealing
Altshuler–Aronov–Spivak φ0/2-periodic magnetoresistance oscillations driven by the
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quantum interferences (Altshuler et al. 1981). Several years afterwards, the joint
contribution of field-modulated bandstructure features was confirmed (Stojetz et al.
2005; Strunk et al. 2006). Three-terminal devices with conduction channels formed by
quasi-metallic carbon nanotubes were shown to operate as nanotube-based field-effect
transistors under strong magnetic fields (Fedorov et al. 2007).

Figure 7.6 shows the transfer characteristics of two samples measured at different
magnetic fields (Fedorov et al. 2007). At zero field, the G(Vg) curve exhibits ambipolar
behavior, indicating the presence of a small 10 meV gap in the electronic spectrum,
typical of non-armchair metallic nanotubes. A magnetic field in the axial direction
strongly affects the transfer characteristics (Fig. 7.6(a) and (c)). The effect of an
axial magnetic field is most pronounced at the gate voltage V∗

g corresponding to the
minimum value of conductance. The exact value of V∗

g changes with temperature, but
not with magnetic field for B > 10 T. When the magnetic field is changed between
6 and 15 T, the conductance G(V∗

g) (sample 1, Fig. 7.6(a)) drops by about three
orders of magnitude at 35 K. A similarly strong effect is observed in another sample
(Fig. 7.6(c)). The off-state conductance of the devices is actually found to exponentially
decrease with the magnetic flux intensity, confirming the gap opening driven by the
Aharonov–Bohm effect (Fedorov et al. 2007). Remarkably, intrinsic properties of a
quasi-metallic CNT, such as the helical symmetry, as well as the characteristics of
the Schottky barriers formed at the metal–nanotube contacts, can also be obtained
by using temperature-dependent magnetoresistance measurements (see Fedorov et al.
2007, for details).

7.6 Landau Levels in Graphene

The massless Dirac fermion nature of electronic excitations in monolayer graphene is
beautifully manifested in the high magnetic field regime: graphene’s energy spectrum
splits up into non-equidistant Landau levels (LL) (Goerbig 2011; McClure 1956), as
represented in the scheme in Fig. 7.7. This contrasts with the Landau level spectrum for
non-Dirac electrons which has equidistant levels, thereby serving as a smoking gun of
graphene’s Diracness (Novoselov, Geim et al. 2005; Zhang et al. 2005).

To describe the spectrum in the presence of an external perpendicular magnetic
field B, one can resort to the Peierls substitution, which is applicable as long as the
characteristic magnetic length lB = √

h̄/eB remains much larger than the lattice
spacing. This is actually the case for experimentally accessible magnetic fields since
a/lB � 0.005 × √

B [T]. Alternatively, one can use equivalent minimal coupling when
working in the continuum in the long wavelength approximation. In the following, we
will use the latter option to derive analytical expressions.

We denote the gauge-invariant kinetic momentum with � ≡ −ih̄∇ + eA(r), where
A(r) is the vector potential that generates the magnetic field Bez = ∇ × A(r) perpendi-
cular to the graphene plane. Using the commutation relation [rμ, pν] = ih̄δμ,ν between



7.6 Landau Levels in Graphene 223

Figure 7.7 (a) Shows a Dirac cone with the unevenly spaced Landau levels superimposed. The
density of states (DOS) containing delta functions at the Landau levels is shown in (b).

the components rμ of the position operator and pμ = −ih̄∂/∂xμ of the canonical
momentum operator (rμ = x, y for the 2D plane), one obtains the noncommutativity
between the components of the kinetic momentum

[�x,�y] = −i
h̄2

l2B
, (7.20)

such that these components may be viewed as conjugate. Let us introduce the convenient
ladder operators

â = lB√
2h̄

(
�x − i�y

)
and â† = lB√

2h̄
(
�x + i�y

)
, (7.21)

which satisfy the usual commutation relation [â, â†] = 1, as in the case of the harmonic
oscillator. In terms of these ladder operators, the linearized Hamiltonian, which in the
absence of magnetic field is given by Heff, ξ

q = ξ h̄vF (qxσx + ξqyσy) (see Section 2.2),
for a finite magnetic field becomes (Goerbig 2011)

HξB = ξ
√

2
h̄vF
lB

(
0 â
â† 0

)
, (7.22)

where (when contrasted to the zero-field Hamiltonian) the A and B components have
interchanged in the spinors describing electrons around the K− point (ξ = −).

The solution of the equation HξBψn = Eλnψn, in terms of the two-spinors,

ψn =
(

un
vn

)
, (7.23)
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provides the Landau level spectrum of electronic excitations in graphene

â†â vn =
(

Eλn√
2h̄vF/lB

)2
vn, (7.24)

which indicates that vn ∝ |n〉 is an eigenstate of the number operator â†â, â†â|n〉 = n|n〉,
with energies

Eλn = λ h̄vF
lB

√
2n, (7.25)

where λ = ± denotes the levels with positive and negative energy, respectively (Goer-
big 2011). Furthermore, substitution of this result in the eigenvalue equation yields
un ∝ λâ|n〉.

Note that the term relativistic is used to distinguish the λ
√

Bn dispersion of the levels
from the conventional (nonrelativistic) Landau levels, which disperse linearly in Bn.
This has been verified by different experiments as, for example, STM measurements
(Andrei et al. 2012). Interestingly, this type of experiments can also unveil the localiza-
tion properties of the Landau levels.

A remarkable difference with respect to nonrelativistic Landau levels in metals (with
parabolic bands) is the presence of a zero-energy Landau level with n = 0. This level
needs to be treated separately, and indeed the solution of the eigenvalue equation yields
an eigenvector

ψξ ,n=0 =
(

0
|n = 0〉

)
, (7.26)

with a single nonvanishing component. As a consequence, zero-energy states at the
K+ point are restricted to the B sublattice, whereas those at the K− have a nonvanishing
weight only on the A sublattice. For Landau levels with n �= 0, the eigenstates

ψ
ξ
λ,n�=0 = 1√

2

(|n − 1〉
ξλ|n〉

)
(7.27)

are spinors in which both sublattices are equally populated, but the components corre-
spond to different nonrelativistic Landau states. More information about the extension
to the situation of the strongly interacting case can be found in Goerbig (2011).

In 2013, by measuring high field magnetotransport properties of graphene on top
of a boron nitride substrate, the long-sought-after Hofstadter’s butterfly4 (Hofstadter
1976) was finally unveiled (Dean et al. 2013; Ponomarenko et al. 2013). This was made
possible thanks to the Moiré pattern created by the interaction between graphene and
boron nitride and related long superlattices periodicities (on the order of tens of nano-
meters). Besides providing the first direct evidence of the fractal spectrum predicted by
Hofstadter, this demonstrated the enormous potential of layered structures.

4 Hofstadter’s butterfly is a fractal pattern in the energy spectrum of a 2D system in a magnetic field. It
arises due to the interplay between the lattice periodicity and the one imposed by the magnetic field and
leads to a butterfly-like shape when one looks to the spectrum (energy versus magnetic flux).
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Finally, we would like to comment that in another recent study Tarnopolsky et al.
(2019) point out that the flatness of the bands at magic angles (Suárez Morell et al.
2010), which became a focus of attention after the discovery of superconductivity in
twisted bilayer graphene (Cao, Fatemi, Fang et al. 2018; Cao, Fatemi, Demir et al. 2018),
has analytical connections to quantum Hall wave function (Tarnopolsky et al. 2019).

7.7 Quantum Hall Effect in Graphene

First discovered by Klaus von Klitzing in 1980 (von Klitzing et al. 1980), the quantum
Hall effect is a quantum-mechanical version of the effect discovered by Edwin Hall 100
years earlier in 1879. In the (classical) Hall effect, a current through a sample with a
perpendicular magnetic field leads to a voltage perpendicular to both of them. This Hall
voltage results from the preferential deflection of carriers produced by the Lorentz force.
The quantum mechanical version found by Klaus von Klitzing offers a rich and thrilling
path to one of the most interesting chapters of contemporary physics. Indeed, it led to
a whole family of Hall effects, while ultimately offering an entrance to the physics of
topological insulators.

The effect in which the Hall conductivity σxy becomes quantized,

σxy = 2Ne2/h,

and the longitudinal conductivity becomes vanishingly small, σxx ∼ 0, was first
observed in two-dimensional electron systems produced in semiconductor heterostruc-
tures under extreme conditions of low temperatures and strong magnetic fields
(von Klitzing et al. 1980).

The prefactor N in σxy is the filling factor, and in the original experiments (von
Klitzing et al. 1980) turned out to be an integer (N = 1, 2, 3, . . .) with a precision that
in more recent experiments reaches up to nearly one part in a billion. This came as a
great surprise as the values of the conductance plateaus were universal, independent
of the details of the material, sample geometry, etc. It is a noteworthy example of a
fundamental and useful discovery: it was a manifestation of a macroscopic quantum
effect. Its use in metrology started to be discussed already a day after the discovery
(von Klitzing 2005).

The integer quantum Hall effect (IQHE) (von Klitzing et al. 1980) is explained in
terms of single-particle orbitals of an electron in a magnetic field and is intimately
connected to the quantization of the spectrum into Landau levels. In constrast, it can also
happen that N is a fractional number, N = 1/3, 2/5, 3/7, 2/3, 3/5, . . .; in this case, the
fractional quantum Hall effect (FQHE) fundamentally relies on strong electron–electron
interactions, and the existence of so-called charge–flux composites known as composite
fermions (Laughlin 1983; Tsui et al. 1982). As we will see, given the sublattice and
valley degeneracies in graphene, one may also interpret the result in terms of half
integers and call it fractional, but the physics is that of the conventional IQHE and
can be explained without interactions.
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For everyone participating in or witnessing this adventure, the role of our hero,
graphene, in the history of the Quantum Hall effect and the birth of topological insulators
has been fascinating, first as a model (the playground for Haldane’s model (Haldane
1988)) and then as a real material, allowing for the realization of the effect at room
temperature (Novoselov et al. 2007) and now appearing as the material of choice in
metrology (Janssen et al. 2013; Ribeiro-Palau et al. 2015), and again as a first candidate
for a topological insulator (Kane & Mele 2005b), then forgotten and now resurfacing
thanks to new studies searching for proximity induced enhancement of spin-orbit
coupling. (More on this in Chapter 8.)

7.7.1 Experimental Observation of Hall Quantization in Graphene

Owing to the peculiar nature of the Landau levels spectrum with energy spacing
given by En = sgn(n)

√
2h̄vF2eB|n|, the well-known integer quantum Hall effect

(IQHE) (von Klitzing et al. 1980) observed in conventional two-dimensional electron
systems transforms to a relativistic half-integer (anomalous) QHE in graphene whose
quantized Hall conductivity becomes (Goerbig 2011; Novoselov, Jiang et al. 2005;
Zhang et al. 2005):

σxy = 4e2/h × (N + 1/2). (7.28)

Figure 7.8 Longitudinal resistivity (ρxx) and Hall conductivity (σxy) as a function of charge
density in monolayer graphene at 14 T and 4 K. The inset shows the case of bilayer graphene.
(Reprinted by permission from Macmillan Publishers Ltd: Nature (Novoselov, Jiang et al. 2005),
copyright (2005). Courtesy of Andre Geim)
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Such an anomalous QHE was simultaneously reported by the groups of Manchester
University (Novoselov, Jiang et al. 2005) and Columbia University (Zhang et al. 2005).
Figure 7.8 shows both the charge density dependence of the longitudinal resistivity (ρxx)
and Hall conductivity (σxy) at 14 T and 4 K as reported in (Novoselov, Jiang et al.
2005). We note that the quantum Hall effect in graphene has been named half-integer to
distinguish it from the integer and the fractional quantum Hall effects. The shift in the
first quantum Hall plateau can be related directly, through a semiclassical argument, to
the Berry phase of π mentioned earlier in this chapter.

Interestingly, quantized plateaus of the Hall conductivity have also been reported at
room temperature and with magnetic fields as low as 20 T in Novoselov et al. (2007).
Although much efforts were devoted to reach higher temperatures using semiconductor
heterostructures, current efforts have failed to achieve a quantum Hall regime with
temperatures over 30 K. In this sense, graphene offers a playground for such macro-
scopic quantum effect at room temperature, while also allowing for better prospects for
metrological applications (Janssen et al. 2013; Ribeiro-Palau et al. 2015).

The reason behind this extraordinary observation of the quantum Hall effect at room
temperature is twofold: On the one hand, the larger difference between the n = 0
and the n = ±1 Landau levels (scaling more conveniently with the magnetic field as
compared to usual semiconductors), and on the other hand, the large mobilities that
remain almost unchanged in the temperature range between 4 K and room temperature
(Novoselov et al. 2007).

7.7.2 Remarks for the Numerical Investigation of the Hall Response

As we have seen, the Hall response can be probed through multiterminal measure-
ments. The contacts are typically arranged in a cross or H-type configuration. Current
is passed from source to drain while the contacts in the perpendicular direction are used
as voltmeters. In the coherent regime, this can be simulated quite naturally within the
Landauer-Büttiker picture explained in Section 4.2. However, as compared with the
two-terminal setups, one finds additional difficulties associated with the geometry. In
a Green’s functions–based calculation, the self-energies due to the leads will introduce
effective high-order couplings between the sites at the interface between the sample
(arbritrarily chosen central region of the device) and the lead. This, in turn, requires
modifying the simple recursive Green’s functions methods explained in Appendix C.
An alternative to sort this problem is the so-called knitting algorithm (Kazymyrenko &
Waintal 2008).

More recently, higher level libraries such as KWANT (Groth et al. 2014) have taken
the modeling and simulation of this type of multiterminal devices to a more comfortable
level. Indeed, the KWANT library (Groth et al. 2014) allows for a much easier calcula-
tion of the transport properties, which is perfectly tailored for such complex geometries.
One needs to define the desired lattice, its interaction parameters, and the shape of the
device area; the code takes care of solving the harder part of the problem. Even in such
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a case, however, there is one issue that needs to be solved beforehand: the selection of a
proper gauge for the vector potential.

The magnetic field is introduced through the Peierls’ substitution explained earlier in
this chapter. Choosing, for example, a Landau gauge for a magnetic field of magnitude
B along z:

AL = −Byx̂, (7.29)

gives the following Peierls phase between sites i and j:

φL
ij = −B(xi − xj)

yi + yj

2
. (7.30)

This vector potential depends on the absolute y coordinate, and hence it preserves the
lead translational invariance along x but it does not for leads that are tilted with respect
to this direction. The gauge thus needs to be chosen so as to preserve translational
invariance in all the leads, while smoothly interpolating between them in the sample
region. A prescription that fulfills this requirement is the following (Baranger & Stone
1989; Shevtsov et al. 2012):

φij = φL
ij + i − j, (7.31)

where  i is given by

 i = −B(1 − cos(2θ ))
xiyi
2

+ B sin(2θ )
x2

i − y2
i

4
(7.32)

for all sites i belonging to a lead (forming an angle θ with the x axis) and zero otherwise
(i.e., the sites in the sample).

Therefore, in the presence of a magnetic field, we add a Peierls phase to each matrix
element γi,j, which is the sum of φL

ij (the one corresponding to the usual Landau gauge)
and the difference of the potentials associated to the initial and final sites. With this
prescription, we preserve the translational invariance in all leads.

7.7.3 The Mystery of the Zero-Energy Landau Level Splitting

One striking fingerprint of the graphene Landau level spectrum is the formation of a
fourfold degenerate zero-energy Landau level (twofold valley and spin degeneracies)
where electrons and holes coexist. The anomalous QHE is actually tightly interwoven
with the π Berry’s phase and pseudospin degree of freedom, which requires decoupled
K+ and K− valleys (Ostrovsky et al. 2008). In the presence of disorder-induced sublat-
tice symmetry breaking and strong valley mixing, QHE is predicted not to differ for any
other two-dimensional system (Aleiner & Efetov 2006; Altland 2006; Ostrovsky et al.
2008).

Several experiments performed in high-mobility samples have confirmed the
presence of additional quantized Hall plateaus at σxy = 0, associated with splitting of
the zero-energy LL. The level splitting may have different origins, such as spin and/or
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sublattice degeneracies, which could be driven by a Zeeman interaction or a disorder-
induced symmetry-breaking effect (Li et al. 2009), or electron–electron interactions
(Jiang et al. 2007; Nomura & MacDonald 2006; Zhang et al. 2006), although the
issue remains complicated and probably material quality dependent. The nature of the
σxy = 0 quantized plateau has also been envisioned as a possible manifestation of an
unconventional dissipative QHE, which would assume a finite σxx value at the Dirac
point (in between split Landau levels) (Abanin et al. 2006, 2007; Checkelsky et al.
2008; Jia et al. 2008; Zhang et al. 2010). Such dissipative QHE (with finite conductivity
σxx ∼ 1 − 2e2/h) is predicted to be conveyed by the formation of counterpropagating
(gapless) edge states carrying opposite spin. Finite σxx (�e2/(πh)) at the Dirac point
has also been obtained numerically in some disordered graphene models (introducing
bond disorder in a tight-binding model), and tentatively related to the formation of
extended states centered at zero energy, but without evidence of a fully quantized σxy
(Jia et al. 2008).

The anomalous dissipative nature of the QHE remains, however, in puzzling
contradiction with many other experiments reporting divergent Dirac point resis-
tivity (Checkelsky et al. 2008) and a conventional nondissipative QHE regime.
The measurement of a temperature-dependent activated behavior of σxx(T) further
supports the nondissipative nature of the plateau σxy = 0 in the presence of spin-
splitting gap opening (Giesbers et al. 2009; Kurganova et al. 2011; Zhao et al.
2012). Thus much effort is still required on both theoretical and experimental sides
to develop a comprehensive picture of QHE in disordered graphene. One can also
expect that the physics of QHE in disordered graphene is much richer, with possible
unconventional and defect-specific fingerprints of the magnetotransport features and
localization/delocalization mechanisms. The possibility to structurally and chemically
vary the quality and properties of graphene by chemical substitutions, functionalization,
or the formation of hybrid materals (for instance, graphene/boron nitride samples)
offers interesting challenges for further exploration of QHE. We finally outline the
prediction of highly unconventional zero-energy Hall conductance plateau in the
absence of an energy bandgap and Landau-level degeneracy breaking, driven by
the formation of impurity-induced critical states (Leconte et al. 2016), which could
possibly explain puzzling experimental data in strongly disordered graphene samples
(Nam et al. 2013).

7.7.4 Universal Longitudinal Conductivity at the Dirac Point

We briefly analyze here the behavior of the dissipative conductivity (σxx) of the zero-
energy Landau level in the presence of Anderson disorder, and also with or without
additional A/B sublattice symmetry-breaking potentials. This illustrates some basic and
general features of disorder-induced localization effects on QHE, and the modifications
induced by energy-level splitting. The Kubo longitudinal σxx and Hall conductivities
are computed in the presence of disorder and external magnetic fields with varying
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Figure 7.9 Main plot: Dirac point Kubo conductivity with varying Anderson disorder potential W.
Localization length ξ (E) (inset) at the center of the zero-energy Landau level (solid line) and
density of states (dashed line and arbitrary units) for W = 1.5 and B = 9.6 T. (Reproduced with
permission from Ortmann and Roche (2013). Copyright (2013) by the American Physical
Society)

strengths (within the experimentally accessible range of parameters, from a few tesla to
several tens of tesla). σxy(E) is computed using a recently developed order-N approach
derived by Frank Ortmann (Ortmann & Roche 2013). The longitudinal conductivity has
already been discussed, whereas the novel algorithm for the Hall conductivity σxy(E) is
essentially implemented from

σxy(E) = − 2
V

∫ ∞

0
dte−ηt/h̄

∫ ∞

−∞
dE′f (E′ − E)

× Re
[
〈ϕRP|δ(E′ −Ĥ) ĵy

1
E′ − Ĥ + iη

ĵx(t)|ϕRP〉
]

, (7.33)

with ĵx = ie0
h̄ [Ĥ, X̂ ], the current operator (X̂ the position operator), while η → 0 is a

small parameter required for achieving numerical convergence.
Figure 7.9 shows the conductivity σxx(E, B, W) of the zero-energy LL for a graphene

with Anderson disorder and a perpendicular magnetic field. A clear absence (or suppres-
sion) of localization is seen for disorder up to W = 2. The values of σxx(E = 0, B, W ≤2)
are shown in Fig. 7.9 (maximum computational time of the wavepacket spreading is
12 ps). At high enough energies, localization effects come into play in relation to the
formation of mobility edges, as manifested by a finite localization length (ξ ) at the tails
of the zero-energy LL (see W = 1.5 in Fig. 7.9). When the disorder strength exceeds
W = 2.5, all states including the zero-energy LL eventually localize, prohibiting the
QHE state (Ortmann & Roche 2013; Sheng et al. 2006).
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Actually, as seen in Fig. 7.9, three different transport regimes for σxx are identified
depending on the disorder strength and applied magnetic field (Ortmann & Roche 2013).
In the absence of disorder, all states are localized by the magnetic field (σxx → 0),
whereas small disorder induces delocalization, as seen in the enhancement of σxx with
W. For disorder such that W � 0.1, σxx increases roughly linearly with W, regardless of
the magnetic field (tuned from 4.8 T to 100 T). The value of dσxx/dW depends on the
magnetic field, and is seen to be larger for lower B. This actually agrees with the scaling
of the magnetic length lB ∝ B−1/2, which reduces disorder-induced delocalization
effects as B is increased (and magnetic length is shortened).

Strikingly, for a large range of disorder values W ∈ [0.3, 2] and for magnetic strengths
varying between 2.4 and 200 T, the dissipative conductivity σxx saturates to a constant
value �1.4e2/h. Finally, in the limit of strong disorder (W > 2.5), all states become
localized and the system is driven to the insulating state (for moderate B). Differently
from the low-W limit, the conductivity is higher for stronger fields, indicating reversed
roles of disorder and B field compared to the zero-disorder limit, i.e., disorder localizes
states while the magnetic field tends to suppress localization effects.

By introducing a sublattice symmetry-breaking disorder, pseudospin-split states are
found to convey different critical bulk conductivities σxx � e2/h, regardless of the split-
ting and superimposed Anderson disorder strengths, dictating the width of the σxy = 0
plateau (Ortmann & Roche 2013). The pseudospin-splitting is included through a heuris-
tic model, which shifts all onsite energies of A (and B) lattice sites by a constant
quantity VA (and VB). When all A and B sites are differentiated in energy according
to VA = −VB, a gap of VA − VB = 2VA is naturally formed. The superposition of both
potentials mimics some weak imbalance in the adsorption site in the sense of a slightly
preferred sublattice (Anderson disorder is such that |VA| � W). In between pseudospin-
split critical states, σxx eventually vanishes owing to intervalley-induced localization
effects. Interestingly, it is found that by keeping the product pVA constant, the same
splitting strengths and split-gap (p the density of impurities breaking the sublattice
symmetry) are obtained.

The analysis of σxx(L) for various energies makes it possible to discriminate localized
states from critical states, which remain delocalized as seen by a length-independent
σxx. A typical result (σxx, σxy) is shown in Figure 7.10 (maximum propagation time of
wavepackets is t = 6 ps while disorder is set to W = 0.2). The maximum value of the
doubly peaked σxx is found to be field-independent. Two peaks of σxx are actually related
to disorder-induced pseudospin-splitting. Remarkably, the peak maxima σxx are not half
of the maximum obtained in the unsplit case but reduced by a factor of � 0.7. Fig. 7.10
finally shows that σxx(E = 0) → 0 while the double-peak height of �e2/h is robust
for different magnetic fields and disorder strength pVA (Ortmann & Roche 2013). The
Hall conductivity (W = 0) σxy for pVA = 0 (gray) and pVA = 0.005, p = 2.5% (black)
and corresponding DOS (dashed lines) at 45 T and W = 0.002 are shown in Fig. 7.10
(right inset).

To date, available experimental data do not provide any universality concerning
the critical values of σxx, which often show electron–hole asymmetry and variability
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Figure 7.10 Longitudinal and Hall conductivities with and without sublattice impurity potential.
Main plot: σxx(t = 6 ps) for W = 0.2 using pVA = 0.0005 (dotted line), pVA = 0.001 (dashed
lines), and pVA = 0.002 (solid line). Magnetic fields as indicated. Left inset: σxx(t = 6 ps) (solid
line), DOS (dashed line) for W = 0.2, pVA = 0.004. Right inset: Hall conductivity (W = 0) σxy
for pVA = 0 and pVA = 0.005, p = 2.5%, together with the corresponding DOS (dashed lines)
at 45 T and W = 0.002. (Reproduced with permission from Ortmann and Roche (2013).
Copyright (2013) by the American Physical Society)

(Giesbers et al. 2009; Kurganova et al. 2011; Zhao et al. 2012). It is expected that the
study of QHE in chemically modified graphene (for instance, upon atomic deposition,
hydrogen or oxygen adsorption, doping, strain, etc.) will reveal a plethora of additional
interesting features of transport coefficients, allowing for an in-depth scrutiny of
the connection between microscopic localization phenomena and the resulting phase
diagram (σxx, σxy versus magnetic field and temperature) of the QHE.

7.8 The Haldane Model

In this section, we introduce a model of great importance in the theory of topological
states of matter, which is strongly connected with the physics of the quantum Hall
effect described before. Formulated in 1988 by Duncan Haldane (Haldane 1988), the
playground for this model is graphene (which at that time was only a theoretical one).

Inspired by the quantum Hall effect discovered earlier by Klaus von Klitzing (von
Klitzing et al. 1980), Haldane was set to find a realization of the same effect but without
Landau levels. In the presence of a magnetic field, the typical length scale becomes
the magnetic length, and therefore it is not a property of the lattice. In order to have a
nonvanishing Chern number, one needs more prominently a gap as the summation of the
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Berry curvatures over all bands needs to be zero. For a single-band system, this would
immediately lead to a vanishing Chern number.

Since in graphene, the Dirac point is protected by inversion and time-reversal
symmetry, we need to break any of those. (Changing the lattice period through a Kekul
pattern would also work, but we are not considering that here.) Breaking inversion
symmetry alone by introducing, for example, a staggering (also called Semenoff mass
(Semenoff 1984)) opens a gap but the Chern number vanishes. This results from the
symmetry properties of the Berry curvature noted earlier, in a system with preserved
TRS, �j(k) = −�j(−k), and thus the integral of the Berry curvature over the full
Brillouin zone vanishes.

Haldane then introduced a new type of mass term, which like a magnetic field breaks
time-reversal symmetry. This term was introduced as next-nearest-neighbor hoppings
with a phase akin to that in the Peierls substitution but chosen so that there is no net flux
per plaquette. The full Hamiltonian reads:

H = �
∑

j
ξjc†

j cj + γ0
∑
〈i,j〉

c†
i cj + γ2

∑
〈〈i,j〉〉

e−iεijφc†
i cj, (7.34)

where the double brackets in the last summation indicate sum over second-nearest
neighbors and ξj = +1 when j ∈ A and ξj = −1 when j ∈ B. Thus, the sign of the
phase acquired depends on whether the path from j to i is clockwise or anticlockwise.

Haldane’s model is sketched in Fig. 7.11. Two terms are incorporated over the usual
ones in the simple tight-binding model for graphene: (i) Complex second-nearest-
neighbors hoppings breaking time-reversal symmetry. The second-nearest-neighbor
hoppings are given by γ2 exp(−iεijφ), εij = sign(d1 × d2)z, d1 and d2 are unit vectors
along the direction of the two bonds connecting the next-nearest neighbor sites and φ
is a chosen flux (like in the Peierls substitution introduced earlier). The sign of such
phases is indicated in the figure. (ii) A mass term which breaks inversion symmetry.
This term is simply a staggered on-site energy, which is taken to be equal to +� for the
A-sites and −� for the B-sites.

Figure 7.11 Scheme showing the connectivity between the lattice sites in the Haldane model.
Complex second-nearest neighbors-hopping are added to graphene’s lattice; the sign of the
corresponding phases is indicated in the figure. Furthermore, lattice sites A and B have onsite
energies +� and −�, respectively.



234 Quantum Hall Effects in Graphene

Figure 7.12 (a) Phase diagram for the Haldane model introduced in the text. The regions are
marked with the values of the corresponding Chern numbers, +1, −1, and 0. The energy
dispersions for the points marked with b, c, and d are shown below. The states bridging the bulk
gap turn out to be localized close to the edges. In (b–d), γ2 = 0.1γ0.

The interplay between the two mass terms (the Semenoff and the Haldane masses)
leads to a phase diagram as shown in Fig. 7.12. The Chern numbers are indicated in the
different areas, separated by full lines at the points where the Chern number becomes ill
defined. (The system is metallic.)

To understand why the two masses have competing effects, one observation is due:
The Semenoff mass, being local, has no k-dependence and the mass term is the same
for both inequivalent Dirac cones, thereby leading to a gapped spectrum as shown in
Fig. 7.12(b). In contrast, the Haldane term has opposite signs for each cone. This leads
to a band-inversion for the case of the Haldane mass which is ultimately responsible for
the edge states bridging the gap (as shown in Fig. 7.12(c)). The case in Fig. 7.12(d) is a
special one as the states bridging the closed and open cones are dispersive. These states
are not topological though since short-range scatterers may lead to transitions between
them and the continuum of states available at the same energy.

A breakthrough was presented in 2005 when Kane & Mele (2005a and 2005b) real-
ized that the physics of this model could be connected to spin–orbit interaction, a work
that paved the way for the era of topological insulators. Essentially, graphene with
intrinsic spin–orbit coupling (see Chapter 8) can be written as two copies of the Haldane
model with opposite phase (equal to pi/2), one for spin up and the other for spin down.

Interestingly, Haldane’s model has been realized in ultracold matter experiments as
an effective Hamiltonian (Jotzu et al. 2014). Notwithstanding, to date this model has not
proven a suitable physical model for describing any real two-dimensional material. Very
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recently, a modified Haldane model was proposed (Colomés & Franz 2018), a model
exhibiting dispersive antichiral edge states, which are modes propagating in the same
direction at both parallel ribbon edges and compensated by bulk counterpropagating
modes. Such edge states, resilient to disorder, have been proposed as analogs to
the Fermi arcs in 3D Dirac and Weyl semimetals and could be useful for low-
power electronics or spintronics. Additionally, the optical properties of the modified
Haldane model displays a rich phase diagram showing tunable pseudospin polarization,
valley polarization, and circular dichroism, with the unprecedented possible simultane-
ous realization of both perfect valley polarization and circular dichroism enabling the
co-integration of photonics and valleytronics in a single material or device (Vila et al.
2019). Variants of this model in bilayer configurations have been proposed to achieve
one-way tranport of charge, valley and spin (Berdakin et al. 2018; Dal Lago et al. 2017;
Foa Torres et al. 2016).

7.9 Further Reading and Problems

• For a review of Berry phase effects in condensed matter theory, see Xiao et al. (2010).
• An account of the experimental manifestations in graphene can be found in Young

et al. (2014).

Problems

7.1 Three golden rules for Berry curvature. Demonstrate the rules mentioned in the
text, Eqs. (7.5), (7.6), and (7.7). Interpret each of them and mention at least one conse-
quence associated with each.

7.2 Landau levels in graphene. Consider the low-energy approximation for electrons
in graphene. Consider a magnetic field perpendicular to the graphene plane.
(a) By using the Peierls substitution p̂ → p̂ + eA (where A is the vector potential

determining the magnetic field B, B = ∇ ×A), solve for the spectra and obtain the
Landau levels. What is the degeneracy of each Landau level?

(b) Compare your response to (a) with that for the case of a normal metal.
(c) The Landau level with n = 0 is a special one. Comment on this Landau level and

the character of the corresponding wavefunction.

7.3 Haldane’s model. Haldane’s model is sketched in Fig. 7.11. Two terms are
added in addition to the usual ones in the simple tight-binding model for graphene:
(i) Complex second-nearest neighbors hoppings breaking time-reversal symmetry.
The second-nearest neighbors hoppings are given by γ2 exp(−iεijφ), εij = sign(d1 ×
d2)z, d1 and d2 are unit vectors along the direction of the two bonds connecting
the next-nearest neighbor sites and φ is a chosen flux (as in the Peierls substitu-
tion introduced in this chapter). The sign of such phases is indicated in the figure.
(ii) A mass term which breaks inversion symmetry. This term is simply a staggered
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on-site energy, which is taken to be equal to +� for the A-sites and −� for the
B-sites.

The full tight-binding Hamiltonian reads:

H = �
∑

j
ξjc†

j cj + γ0
∑
〈i,j〉

c†
i cj + γ2

∑
〈〈i,j〉〉

e−iεijφc†
i cj,

where the double brackets in the last summation indicate sum over second-nearest
neighbors and ξj = +1 when j ∈ A and ξj = −1 when j ∈ B.
(a) Compute the electronic structure for an infinite sheet for different values of φ and

� and compare with those for graphene and graphene with a mass term (� terms
in the above Hamiltonian).

(b) Repeat point (a) for the case of a ribbon. Show that graphene with a mass term
differs from Haldane’s model at the edges.

(c) Plot the probability associated to the wave-functions in (b) at different energies.
Discuss your results. Argue why the Haldane model does not give an ordinary
band insulator.



8 Spin-Related Phenomena

8.1 Introduction

Charge and spin are fundamental properties of electrons, which are intensively
harnessed in modern technologies of information processing, computing, and data
storage. The binary or analogue information are implemented through the control of
charge currents in active devices (field-effect transistors [FET]) and logic circuits,
whereas the spin is currently mainly used for tuning magnetoresistance signals and
embedding data storage and data retrieval in core memories and hard disk drives
(Chappert et al. 2007). As highlighted in the International Technology Roadmap for
Semiconductors (ITRS, www.itrs2.net/), electronic architectures, which would entirely
rely on spin physics, could revolutionize the world of information processing and
memory storage with the possibility to develop ultralow-power, fast, and strongly
miniaturized technologies covering a wide landscape in Internet of Things.

The field of spintronics was sparked with a scientific breakthrough in the 1980s,
when the giant magnetoresistance (GMR) effect, first predicted theoretically by Albert
Fert from CNRS-THALES in France, and later confirmed experimentally, thanks to the
improvement in fabrication of multilayers composed of alternating ferromagnetic with
ultrathin (nanometer scale) nonmagnetic conductive layers. After the initial report in
1985 of spin-polarized electron injection from a ferromagnetic metal to a normal metal
by Johnson and Silsbee (1985), the foundational step made by Albert Fert (Baibich et al.
1988) and Peter Grünberg (Binasch et al. 1988), both awarded the 2007 Nobel Prize in
Physics, was to report GMR in thin-film structures elaborated by an alternating sequence
of ferromagnetic and nonmagnetic layers.

GMR is a significant change in the electrical resistance of the multilayer structure
which is controlled by the magnetization of adjacent ferromagnetic layers (which can
either be in a parallel or an antiparallel alignment). The overall resistance is relatively
low for parallel alignment and relatively high for antiparallel alignment. The magnetiza-
tion direction of such magnetic layers is then controlled by external magnetic fields and
the dependence of electron scattering on the spin orientation. Such quantum effect was
further refined in the tunneling magnetoresistance (TMR), a similar magnetoresistive
effect occurring in magnetic tunnel junction (MTJ), which consists of two ferromagnets
separated by a thin insulator (spin device called spin valve). GMR and TMR have been

www.itrs2.net/
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used to develop a plethora of applications including magnetic field sensors (used to
read data in hard disk drives), microelectromechanical systems (MEMS), biosensors, or
medical devices. But GMR multilayer structures also constitute the building blocks of
all magnetoresistive random access memories (MRAM), which store huge amount of
information bits (Fert 2008). Even more recently, the discoveries of the spin transfer
torque effect (STT) and the spin–orbit torque (SOT), which permit the control of the
magnetization with an electrical current (Garello et al. 2018; Locatelli et al. 2014; Ralph
& Stiles 2008), have triggered a second revolution in spintronics. Since magnetoresis-
tive effects allow the readout of increasingly small magnetic bits, STT and SOT now
provide enabling mechanisms to manipulate – precisely, rapidly, and at low energy
cost – the magnetic states, which are central information medium for spintronic devices
and technologies. Already STT-MRAM technologies are emerging in the data storage
market, whereas recent reports at IMEC show promising perspective for large-scale
implementation of SOT-MRAM technologies (Garello et al. 2018).

Since the beginning, graphene (and related two-dimensional materials) has attracted
attention of the spintronics community. Indeed, the unique electronic band structure of
massless Dirac fermions combined with ultralow intrinsic spin–orbit coupling (SOC)
was anticipated to clearly favor long distance and fast transmission of spin information
(Han et al. 2014; Roche & Valenzuela 2014; Seneor et al. 2012). The pioneering work
in the group of Bart van Wees has echoed such high expectations (Tombros et al.
2007), and has been followed by a decade of intense research (Dlubak et al. 2012;
Guimaraes et al. 2012; Roche et al. 2015) to eventually obtain spin diffusion lengths
exceeding tens of micrometers at room temperature (and spin lifetime above 10 ns) and
in scalable graphene materials (Drogeler et al. 2016). Yet the obtained spin diffusion
lengths differ by several orders of magnitude compared to early theoretical works pre-
dicting spin lifetime values up to the microsecond or even the millisecond scale (Ertler
et al. 2009; Huertas-Hernando et al. 2006), that is three to six orders of magnitude
larger.

Besides, graphene also offers a fantastic platform for designing efficient spin
manipulation protocols, and hence for the generation of a full spectrum of spintronic
nanodevices for beyond CMOS while being compatible with more-than-Moore CMOS
and nonvolatile low-energy MRAM memories (Dery et al. 2012). Of particular interest
is the prediction that the coating of magnetic materials with graphene enables stronger
control on the perpendicular magnetocrystalline anisotropy, which would strongly
reduce the current density needed to switch elementary magnetic memory building
block (for instance, in the STT-MRAM or SOT-MRAM) (Roche et al. 2015). Addi-
tionally, the interfacing of graphene with other strong SOC materials (such as TMDs),
magnetic insulators – such as Europium Sulfide (EuS), Europium oxide (EuO), or high
Curie temperature Yittrium Iron Garnet (YIG) – as well as topological insulators or
two-dimensional magnetic materials offer remarkable possibilities to manipulate spin
transport via the effective magnetic fields induced by proximity (Hallal et al. 2017;
Huang et al. 2018; Khokhriakov et al. 2018; Leutenantsmeyer et al. 2017; Song
et al. 2018; Yang et al. 2013). In that respect, the recently discovered spin-FET
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(Dankert & Dash 2017; Yan et al. 2016) and the giant spin transport anisotropy
(Benitez et al. 2018; Cummings et al. 2017; Ghiasi et al. 2017; Leutenantsmeyer et al.
2018; Omar & van Wees 2017; Song et al. 2018; Xu et al. 2018) point toward a new
dimension for the design of innovative spin-driven active devices. Finally, graphene
also provides solutions for the integration of several circuit elements on the same
platform. For instance, nonvolatile graphene FETs with ferroelectric gates have been
demonstrated to operate as three-terminal resistive memories, while graphene-based
memristors are interesting since they may act both as memory and logic elements (Jeong
et al. 2010). From all these perspectives, graphene, being compatible with more-than-
Moore CMOS and nonvolatile low-energy memory technologies, brings revolutionary
opportunities for achieving efficient spin manipulation and for the creation of a full
spectrum of spintronic nanodevices, including ultra low-energy devices and circuits
comprising (re-)writable microchips, transistors, logic gates, and more.

In the following, Section 8.2 first presents the essential aspects of spin–orbit
coupling (SOC) properties in graphene, including the derivation of the SOC from
the Dirac equation, as well as the implementation of such interaction in tight-binding
or continuous models. The DFT results are also reviewed with a focus on the strengths
of the various possible SOC terms emerging from intrinsic or extrinsic factors.
Section 8.3 describes how the spin lifetime is usually measured in experiments and
presents the variability of estimates, found to be strongly material-dependent (including
quality of graphene and interfacing with the substrate). Section 8.4 analyzes the two
main conventional spin relaxation mechanisms (namely Elliot–Yafet and Dyakonov–
Perel) with a theoretical description of how such mechanisms need to be revised
for graphene electronic states, in particular in the limit of clean graphene devices
where spin transport becomes dictated by the entanglement between the spin and the
pseudospin degrees of freedom (Van Tuan et al. 2014). Finally, Section 8.5 covers other
transport phenomena sensitive to weak proximity effect between graphene and strong
SOC materials, such as weak antilocalization, spin Hall effect (SHE), spin transport
anisotropy, or spin torque physics.

8.2 Spin–Orbit Coupling in Graphene

Understanding the origin and nature of SOC in graphene is fundamental to further study
of the main spin transport properties. In a nutshell, SOC is a relativistic effect (which can
be derived from the Dirac equation) between electrons and a local electric field either
due to internal or external electric fields, and which has the general form Hso = μB

2mc2
#E ·

(#σ × #p). Indeed, fast moving electrons sense an effective magnetic field in their rest
frame, which by virtue of the Zeeman effect affects their spin degree of freedom through
a generic term written as Hso = gμB

2
#BR · #σ . The corresponding effective magnetic field

#BR ∼ #E · (#p × ẑ) (usually named a Rashba field) is parallel to the graphene plane, and
induces a precession of the electron spin with a frequency (Larmor frequency) given by
� = μB|#BR|

h̄ .
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8.2.1 Derivation from the Dirac Equation

A more complete derivation, from the relativistic Dirac Hamiltonian, is both instructive
and necessary to further elaborate realistic tight-binding parameters in complex interface
geometries. It starts with the definition of the Hamiltonian as (Dirac 1928, 1930):

H =
(

0 cp · σ

cp · σ 0

)
+
(

mc2 0
0 −mc2

)
+ V (8.1)

The solution of the Dirac equation H|ψ〉 = E|ψ〉 is a two-component wave function
(spinor) |ψ〉 = (ψA,ψB)

T which satisfies

ψB = cp · σ

E − V + mc2ψA (8.2)

p · σ
c2

E − V + mc2 p · σψA = (E − V − mc2)ψA (8.3)

In the nonrelativistic limit, ψB becomes negligible compared to ψA, since from
E = mc2 + ε and V � mc2, Eq. (8.2) is rewritten as

ψB = p · σ

2mc
ψA � ψA (8.4)

and at the lowest order in (v/c), Eq. (8.3) reduces to the Schrödinger equation.1(
p2

2m
+ V

)
ψA = εψA (8.5)

Here ψA is solution of the Schrödinger wave function ψ . At higher orders of (v/c), the
normalization condition of the wave function implies∫ (

ψ+
A ψA + ψ+

B ψB
) = 1 (8.6)

and by using Eq. (8.4), one finds∫
ψ+

A

(
1 + p2

4m2c2

)
ψA = 1 (8.7)

A normalized wave function is obtained when ψ =
(

1 + p2

8m2c2

)
ψA. Substituting it into

the Dirac equation, and using for c2

E−V+mc2 the expansion 1
2m

(
1 − ε−V

2mc2 + · · ·
)

, one
derives after some rearrangement, the Pauli equation(

p2

2m
+ V − p4

8m3c2 − h̄
4m2c2 σ · p × ∇V + h̄2

8m2c2 ∇2V

)
ψ = εψ (8.8)

where the first and second terms are usual parts of the nonrelativistic Hamiltonian, while
the third term denotes the relativistic correction to the kinetic energy, the fourth term is
the SOC term, and the final part is a potential-induced energy shift. The SOC term can

1 Using (σ · A)(σ · B) = A · B + iσ · (A × B)
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actually be derived in a more intuitive manner, assuming that an electron is moving with
a velocity v under the action of an electric field −eE = −∇V. Such an electric field is
generated by an external potential V, stemming either from the presence of adatoms
or due to the interaction and symmetry breaking induced by an underlying substrate.
The electron is equivalently submitted in its rest frame to an effective magnetic field
B = −v × E/c, leading to an interaction energy as

Vμs = −μsB = −gsμB
2ec

σ · v × ∇V = − gsh̄
4m2c2 σ .p × ∇V = − h̄

2m2c2 σ · p × ∇V

(8.9)

This result turns out to double the SOC term appearing in the Pauli equation, a difference
explained by Thomas (1926). Fundamentally, the electron moves in a rotating frame of
reference, which leads to its spin precession under the action of

B = −v × E
2c

(8.10)

which yields the full SOC term

VSOC = − h̄
4m2c2 σ · p × ∇V (8.11)

We now rewrite the SOC term as a force F

HSOC = α (F × p) · s = −α (s × p) · F (8.12)

where α is an unknown parameter. We use s instead of σ to denote the spin degree of
freedom to avoid confusion with the pseudospin in graphene. The inversion symmetry
generates an in-plane electric field (force) at the origin of the intrinsic SOC. In the
presence of a structure’s mirror symmetry with respect to any nearest-neighbor bond
(see Fig. 8.1(a)), the intrinsic SOC vanishes, while the next-nearest-neighbor intrinsic
SOC has a nonzero value. Accordingly

Figure 8.1 SOC in graphene: (a) Intrinsic SOC forces. (b) Rashba SOC force. (Reproduced from
van Tuan (2016). Courtesy of Dinh Van Tuan)
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HI = iγ2

(
F// × dij

)
· s = 2i√

3
VIs · (d̂kj × d̂ik) (8.13)

where γ2 and VI are material-dependent parameters, d̂ij is the unit vector from atom
j to its next-nearest-neighbors i, and k is the nearest neighbor of i and j. Besides, the
graphene band structure is also altered by the presence of an out-of-plane electric field
(see Fig. 8.1(b)), originating from a gate voltage or charged impurities in the substrate
or adatoms. This external electric field breaks the spatial inversion symmetry and intro-
duces a nearest-neighbor (extrinsic) SOC. This Rashba SOC (which induces spin flip
transitions between nearest neighbors) displays a generic form

HR = iγ1

(
s × d̂ij

)
· F⊥ez = iVRẑ · (s × d̂ij) (8.14)

where j is the nearest neighbor of i and γ1 and VR are material and interface-dependent
parameters. The full SOC-tight-binding (TB) Hamiltonian finally reads

H = −γ0
∑
〈ij〉

c+
i cj + 2i√

3
VI

∑
〈〈ij〉〉

c+
i s · (d̂kj × d̂ik)cj + iVR

∑
〈ij〉

c+
i ẑ · (s × d̂ij)cj (8.15)

Close to the Dirac point, a low-energy Hamitonian approximation h(k) can be easily
derived on the basis {|A〉, |B〉} ⊗ {| ↑〉, | ↓〉}, with

h(k) = h0(k) + hR(k) + hI(k) (8.16)

and where

h0(k) = h̄vF (ησxkx + σyky) ⊗ 1s

hR(k) = λR
(
η[σx ⊗ sy] − [σy ⊗ sx]

)
hI(k) = λIη [σz ⊗ sz] (8.17)

with Fermi velocity vF = 3
2γ0, Rashba SOC λR = 3

2 VR, and intrinsic SOC λI = 3
√

3VI
(Qiao et al. 2012), all SOC terms being momentum-independent. The spin directly
couples with the pseudospin instead of momentum as in conventional metals or
semiconductors, while the usual SOC term (k × s) is small and usually neglected. By
diagonalizing the Hamiltonian given in Eq. (8.16), the low-energy electronic bands are
derived (Gmitra et al. 2009; Rashba 2009):

εμν(k) = μλR + ν
√

(h̄vFk)2 + (λR − λI)2 (8.18)

where μ and ν = ±1 are band indexes. In the absence of Rashba SOC, the electronic
system is gapped with � = 2λI (see Fig. 8.2(c) left panel). In the presence of a Rashba
SOC, the competition between Rashba and intrinsic SOC determines the existence or
not of a finite � value. The gap remains finite if � = 2(λI − λR) for 0 < λR < λI
(Fig. 8.2(c)), whereas it closes when λR > λI, and the electronic structure then becomes
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a zero-gap semiconductor with quadratically dispersing bands (Fig. 8.2(c) right panel).
The analytical form of the eigenfunctions is written as

ψμν(k) =
(
χ−|ηe−iηϕ

[
εμν − λI

νh̄vFk

]η
, 1〉 + μχ+|−iηe−i(1+η)ϕ , ie−iϕ

[
λI − εμν
νh̄vFk

]η
〉
)
/Cμν

with tanϕ = ky/kx and the normalization constant Cμν = √
2
(

1 +
[
λI−εμν

h̄vFk

]2η
)2

.

The expectation value of the spin polarization of electronic states is further derived
as (Gmitra et al. 2009; Rashba 2009),

sμν(k) = h̄vF(k × ẑ)√
(h̄vFk)2 + (λI − μλR)2

= h̄vFk√
(h̄vFk)2 + (λI − μλR)2

n(k) (8.19)

where n(k) = (sinϕ, − cos ϕ, 0) is the unit vector along the spin direction called spin
vector. As seen from Eq. (8.19), the remarkable characteristic of the spin polarization
is that it remains in plane and perpendicular to the electron momentum k, while its
magnitude vanishes when k → 0. As a result, near the Dirac point, the spin and the
pseudospin are strongly coupled, a fact which generates strong entanglement between
the spin and pseudopsin dynamics and gives rise to an hitherto unknown source for spin
relaxation, especially dominating in the ultra clean graphene limit (see Section 8.4.3 and
Cummings & Roche 2016; Van Tuan et al. 2014, 2016).

Importantly, one notes that at high energies h̄vFk � λR + λI and the pseudospin
becomes fully controlled by the momentum dynamics via h0(k) and thus aligns in the
same direction (in plane). The spin dynamics is then dictated by its coupling with
pseudospin via hR(k), which leads to the saturation (to 1) of the spin polarization for
a certain momentum in Eq. (8.19). By successive unitary rotations of h(k) first into
the eigenbasis of h0(k) and then into the spin basis with respect to the direction n(k),
an effective Bychkov-Rashba-type 2 × 2 Hamiltonian is obtained for both holes and
electrons (Ertler et al. 2009),

h̃(k) = ν(h̄vFk − λI) − νλRn(k) · s (8.20)

The second term in Eq. (8.20) resembles the Bychkov-Rashba Hamiltonian in semi-
conductor heterostructures Hk = h̄�(k) · s/2, evidencing that the SOC also acts on the
electrons spin as an in-plane magnetic field, of constant amplitude but perpendicular to
k. In this effective magnetic field, the spin precesses with a frequency and a period of
(Ertler et al. 2009)

� = 2λR
h̄

, T� = π h̄
λR

(8.21)

All these results have been confirmed quantitatively by numerical simulations using
real-space order-N method implemented for spin dynamics (Cummings & Roche 2016;
Van Tuan et al. 2014, 2016) (see Section 8.7).
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Figure 8.2 (a) Two of the possible nnn hopping paths through the s, p orbitals, arrows, with a
corresponding spin, shown by arrows on the orbitals. The opposite sign for the clockwise (left)
and the anticlockwise (right) effective hopping is determined by the signs of the two SOCs of the
p orbitals. (b) A representative leading hopping path, arrows, which is responsible for the Rashba
SOC effect, by coupling states of different spins, illustrated by arrows on the orbitals. The
effective hopping is between nearest neighbors. Left: dominant p orbital contribution. Right:
negligible d orbital contribution. For clarity, the orbitals of the same atoms are separated
vertically, according to their contribution either to the σ -bands (bottom) or to the π -bands (top).
(c) Band structures of graphene with spin–orbit coupling in an external transverse (varying)
electric field. Touching Dirac cones exist only when spin–orbit coupling is neglected (first from
left). When SOC is switched on, the orbital degeneracy at the Dirac point is lifted and the
spin–orbit gap appears (second from left). In an external electric field perpendicular to graphene,
due to a gate or a substrate, the Rashba effect lifts the remaining spin degeneracy of the bands
(third, fourth, and fifth from left). If the intrinsic and Rashba couplings are equal, at a certain
value of the electric field, two bands form touching Dirac cones again (fourth from left). If the
Rashba coupling dominates (fifth from left), the spin–orbit gap closes. (d) Ab initio band
structures of graphene are represented by circles and fitted with an analytical model. The spin
branch μ = 1 is shown in solid and μ = −1 in dashed, corresponding to the different Dirac
cones in (a). The calculated Fermi velocity is vF = 0.833 × 106 m/s (Fermi level is at zero). ((a)
and (b) are reproduced with permission from Konschuh et al. (2010). Copyright (2010) by the
American Physical Society. (c) is reproduced by permission from Macmillan Publishers Ltd:
Nature Nanotechnology (Han et al. 2014), copyright (2014). (d) is reproduced with permission
from Gmitra et al. (2009). Copyright (2009) by the American Physical Society. Images courtesy
of J. Fabian and M. Gmitra)
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8.2.2 Theoretical Estimation of the SOC Terms Magnitude

SOC in graphene is clearly expected to be weak owing to the low atomic number of
carbon (Z = 6, while spin–orbit interaction scales as Z4). Moreover, the natural occur-
rence of zero nuclear spin isotope C12 is close to 99% and makes hyperfine interaction
a vanishingly small decoherence mechanism. The precise magnitude of SOC is actually
a highly complicated question, but concurrently a critical information to determine the
spin lifetime and the dominant spin relaxation mechanism. A theoretical estimate for
intrinsic SOC λI ∼ 100μ eV has been first proposed by Kane and Mele (2005a). This
value was reduced by Min et al. (2006) to 0.5μ eV by using microscopic TB model
and second-order perturbation theory, a result later supported by Huertas-Hernando
et al. (2006) with a TB model and by Yao et al. (2007) using first-principles calcula-
tions. Another DFT calculation of Boettger and Trickey (2007), using a Gaussian-type
orbital fitting function methodology finally provided 25μ eV. The studies published in
Huertas-Hernando et al. (2006); Yao et al. (2007); Min et al. (2006) gave similarly small
values for λI, but these calculations only involved the SOC induced by the coupling
between pz (forming the π bands) and s orbitals (forming the σ band). However, as
pointed out in Konschuh et al. (2010), the coupling of the pz orbitals to the d orbitals
(see Fig. 8.2(a) and (b)) dictates the spin–orbit effects near the K(K′)-points. Indeed,
owing to a finite overlap between the neighboring pz and dxz, dyz orbitals, the intrinsic
splitting λI is linearly proportional to the spin–orbit splitting of the d states, ξd (orbitals
higher than d have a smaller overlap and contribute less). However, due to the absence of
the direct overlap between the pz and σ -band orbitals, the spin–orbit splitting induced
by the σ − π mixing depends only quadratically on the spin–orbit splitting of the pz
orbital, ξp, yielding a negligible contribution (Huertas-Hernando et al. 2006; Min et al.
2006; Yao et al. 2007) (Fig. 8.2(a)).

λI � 2(εp − εs)
9V2

spσ
ξ2

p +
9V2

pdπ

2(εd − εp)2 ξd (8.22)

where εs,p,d are the energies of s, p, d orbitals, respectively and Vspσ and Vpdπ are
hopping parameters of the p orbital to the s and d orbital, respectively. This TB
calculation leads to an intrinsic SOC of λI = 12μ eV (Konschuh et al. 2010), agreeing
with DFT simulations (Gmitra et al. 2009). Such results also suggest that the Rashba
term (absent for zero electric field) is tunable with an external electric field E (which is
perpendicular to graphene plane)

λR � 2eEzsp

3Vspσ
ξp +

√
3

eEzsp

(εd − εp)
3Vpdπ

(εd − εp)
ξd (8.23)

where zsp and zpd are the expectation values 〈s|ẑ|pz〉 and 〈pz|ẑ|dz2〉, respectively, of
the operator ẑ (Fig. 8.2(b)). All these calculations predicted that the Rashba SOC
is directly proportional to the electric field E, but the estimated values vary by
about one order of magnitude from 5μ eV in Gmitra et al. (2009) to 40–50μ eV in
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Huertas-Hernando et al. (2006) and Ast and Gierz (2012) and to 67μ eV in Min et al.
(2006), for a typical electric field of E = 1 V/nm.

8.3 Spin Transport Measurements and Spin Lifetime

The estimation of the spin lifetime (as well as the spin diffusion coefficient) is generally
achieved through spin valve and Hanle spin precession measurements (Fig. 8.3). In these
nonlocal transport experiments, injected (in-plane polarized) spins diffuse far away from
the main charge current flow, precess under the action of an external (and perpendicular)
magnetic field and slowly (or fastly) loose their polarization depending on the nature and
strength of disorder and extrinsic SOC sources. The measured nonlocal magnetoresis-
tance signals are generally analyzed by solving a one-dimensional spin-Bloch diffusion
equation, which assumes a diffusive (random walk) propagation of spin, and relate the
resistance to microscopic parameters through

Rnl ∼
∫ +∞

0

1√
4πDt

e− L2
4Dst cos(ωLt)e− t

τs (8.24)

with Ds = vFτ
2
s (τs the spin lifetime) the spin diffusion coefficient, ω the Larmor

frequency, and L the distance in between electrodes. The first measurement of electron
spin relaxation was performed by Tombros et al. (2007) using mechanical exfoliated

Figure 8.3 (a-left) Plan-view scanning electron microscope image of a two-terminal local spin
valve. The width of the epitaxial graphene channel on SiC is 10μm, and the distance between
the two Al2O3/CO electrodes is L = 2μm. (a-right) Optical image of the entire structure,
including contact pads. (b) Ball-and-stick mode of monolayer graphene on top of SiC. (c) Large
local �R spin signals measured at 4 K. (d) Oscillating and decaying device resistances as a
function of the applied magnetic field (Hanle measurement).((a) and (b) are adapted by
permission of Macmillan Publishers Ltd: Nature Physics (Dlubak et al. 2012), copyright (2012).
(c) is adapted from Seneor et al. (2012) with permission)
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single-layer graphene (SLG) on SiO2 substrate (with mobility of the devices about
2000 cm2 V−1 s−1). The authors extracted a spin lifetime of a few hundreds of ps and
spin diffusion length of several micrometers (at room temperature), similar to the values
obtained for conventional metals or semiconductors. Similar values have been reported
by subsequent measurements in similar graphene devices (Han and Kawakami 2011;
Han et al. 2010), and interestingly the spin transport properties were generally found
to be relatively insensitive to the temperature and weakly dependent on the direction
of spin injection and charge density. Since the spin relaxation mechanism was believed
to originate from extrinsic sources of SOC (substrate, adatoms), spin measurements for
varying quality of graphene samples, and nature of substrates were then performed by
many experimental groups.

The measurement of spin diffusion length on large scale, epitaxially grown graphene
on SiC(0001) was first reported in 2012 by Maassen et al. (2012). A spin lifetime (τs)
value of a few nanoseconds, one order of magnitude larger than in exfoliated graphene
on SiO2, was initially deduced. However, the spin diffusion coefficient Ds ≈ 4 cm2/s
was found to be 80 times smaller than expected (compared to the charge diffusion
coefficient), yielding 70% lower value for spin diffusion length λs. The longer τs but
much smaller Ds was tentatively explained by the influence of localized states arising
from the buffer layer at the interface between the graphene and the SiC surface, and
coupled to the spin transport channel (Maassen et al. 2013). Measurements also
manifested a weakly temperature-dependent τs with a decay of Ds by more than
40% and τs by about 20% at room temperature. Assuming that the removal of the
underneath substrate would reduce extrinsic SOC, spin measurements on suspended
graphene were further undertaken (Guimaraes et al. 2012). However, despite a much
higher mobility (μ ≈ 105 cm2 V−1 s−1), the increase in the spin diffusion coefficient
(Ds = 0.1 m2/s) was only one order of magnitude when compared to SiO2 supported
graphene. This indicated that despite longer mean free path, in the order of a micrometer,
and reduced impurity scattering, the spin lifetime upper limit could not exceed a few
hundreds of picoseconds with spin diffusion length of a few micrometers. The next
significant advance was made by the group of Fert, reporting room temperature spin
diffusion length of hundreds of micrometers (Dlubak et al. 2012; Seneor et al. 2012)
(see Fig. 8.3), a result contrasting prior estimates although the way to extract the spin
transport length scales in both types of experiments differed substantially, giving rise to
conflicting interpretations (Roche & Valenzuela 2014). Finally, other groups used CVD
method to grow graphene on copper (Cu) substrate and studied the effect of corrugation
on spin lifetime (Avsar et al. 2011; Drogeler et al. 2016). They observed similar spin
transport lengths as in exfoliated graphene and showed that ripples in graphene flakes
have minor effects on spin dynamics. The record spin lifetime achieved to date with
polycrystalline CVD graphene is about 10 ns at room temperature (Drogeler et al.
2016), a result which seems to set an upper limit for spin transport in scalable graphene,
of relevance for practical applications.

Importantly, one has to observe that the usual way to estimate the spin lifetime
(and spin diffusion length) using Eq. (8.24) cannot tackle the situation of ballistic
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(or quasiballistic) charge motion, and needs further generalization when the quality
of samples is such that the mean free paths reache several hundreds of nanometers
and exceed the electrode spacing (Du et al. 2008). Additionally, for more disordered
graphene, the contribution of quantum interferences and localization phenomena
(which in certain materials persist up to 100 K) are neglected and could affect any
estimation. Finally, τs can be also estimated independently from two-terminal spin
valves measurements (using a phenomenological approach), but turns out to yield
estimations, which differ by orders of magnitudes compared to Hanle measurements
(both types of measurement setups are illustrated in Fig. 8.3 and adapted from Dlubak
et al. (2012) and Seneor et al. (2012)).

In conclusion, despite earlier theoretical predictions of spin lifetimes in the range
of microseconds or even milliseconds (Ertler et al. 2009), after a decade of improved
experimental measurements in much cleaner graphene samples, the upper limit for the
spin lifetime saturates at about 10 ns, which is three to six orders of magnitude lower
than the original theoretical values. Proposals to explain the unexpectedly short spin
relaxation lengths include spin decoherence due to interactions with the underlying sub-
strate, the presence of random distribution of magnetic impurities and the adsorption of
molecules, the generation of ripples or corrugations, the presence of strain, topological
lattice disorder, graphene edges, etc. (see Han and Kawakami (2011)). However, the
presence of a dielectric oxide, low impedance contacts, or enhanced spin-flip processes
do not seem to affect the spin relaxation times. To further advance in the understanding
of spin transport, an in-depth description of possible spin relaxation mechanisms is
detailed in the forthcoming section.

8.4 Spin Dynamics and Relaxation Mechanisms

The sources for spin relaxation have been a puzzle for long and fiercely debated in the
literature. Inspired by the knowledge about spin transport in metals and semiconduc-
tors (Fabian et al. 2007), two mechanisms were proposed in graphene, namely the
Elliot-Yafet (EY) (Elliot 1954; Ochoa et al. 2012) and the Dyakonov-Perel (DP)
(D’yakonov & Perel 1971a, 1971b; Huertas-Hernando et al. 2009) mechanisms.

The EY mechanism has been derived for spin relaxation in metals, and related
the spin dynamics with the electron scattering off impurities or phonon events. Each
scattering event changes the electron momentum, with a finite spin-flip probability,
which is derived by a perturbation theory (assuming weak spin–orbit scattering). As a
result, an SOC-dependent scattering potential produces admixtures of spin and electron
momentum in the wave functions, so that scattering changes electron momentum
and simultaneously induces spin-flip event. This gives rise to weak antilocalization
phenomena in the low-temperature regime, and more interestingly, a typical scaling
behavior of the spin lifetime with momentum relaxation as τEY

s ∼ c0τp (c0 a scaling
parameter generally in the order of few tens thousands). However, the DP mechanism
usually occurs in materials lacking inversion symmetry (such as small bandgap
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semiconductors). In such situations, the SOC generates an effective momentum-
dependent magnetic field about which electron spin precesses during its propagation
and in between scattering events. The longer the time an electron travels, the larger
angle the electron spin precesses and as a consequence, the larger the spin dephasing
between electrons, since at each scattering event, the direction and frequency of the
precession changes randomly. As a result, the spin lifetime is inversely proportional to
elastic scattering time τDP

s ∼ τ−1
p .

On the experimental side, systematic studies of spin dynamics in SLG and bilayer
graphene (BLG) spin valves with tunneling contact were performed in Han and
Kawakami (2011). In SLG, the spin lifetime was found to vary linearly with momen-
tum scattering time τp, suggesting the predominance of an EY-mechanism for spin
relaxation, in contrast to the case of BLG, for which the scaling between τs and τp
was found to follow the DP scaling. One notes that surprisingly, Pi and coworkers also
reported that τs increases with decreasing τp in the surface chemical doping experiment
with Au atoms on graphene (Pi et al. 2010), indicating that the DP mechanism
is important there. This experiment led to the conclusion that charged impurity
scattering is not the dominant mechanism for spin relaxation, despite its importance
for momentum scattering. Even more puzzling, Zomer et al. (2012) performed spin
transport measurements on graphene deposited on boron nitride with mobilities up to
4 · 104 cm2 V−1 s−1 and showed that neither EY nor DP mechanisms alone allow for
a fully consistent description of spin relaxation, but maybe a combination of both.
A tentative crossover has been proposed to be related to the charge density, while
different mechanisms for spin relaxation are assumed to coexist, but without any clue
concerning their respective microscopic origin. Furthermore, electron spin is expected
to relax faster in BLG than in SLG because the SOC in BLG is one order of magnitude
larger than the one in SLG due to the mixing of π and σ bands by interlayer hopping
(Guinea 2010), but the experimental results showed an opposite behavior (Han and
Kawakami 2011; et al. 2011), increasing the confusion. Spin lifetime in BLG is a
few nanoseconds and was interpreted as dictated by DP (Han and Kawakami 2011;
et al. 2011). Most recent results have concluded on a DP mechanism for graphene
on silicon oxide, presenting lowest mobilities, whereas graphene on boron nitride
exhibits a more complex behavior (Drogeler et al. 2014, 2016; Guimarães et al.
2014), which has been analyzed in terms of spin dephasing regime as discussed in
Section 8.4.3. In Avsar et al. (2011), the spin properties in CVD-grown monolayer
(bilayer) graphene samples were found to be dominated by the EY-type (DP-type)
relaxation mechanism. Simultaneously, the corresponding transport time scales were
found to be �e = vF × τp ∼ 20–30 nm, with τs ∼ 175–230 ps for monolayer, and
�e = vF × τp ∼ 30–50 nm, τs ∼ 260–340 ps for bilayers. Therefore, despite similar
mean free paths (a few tens of nanometers) and spin lifetimes, the scaling behavior of
�e vs. τs was opposite and not understood.

A theoretical derivation has been proposed for disordered monolayer graphene, by
taking into account the Dirac cone physics. The authors found scaling as τs ∼ ε2

Fτp/λ
2
R,

that is, of EY type (Ochoa et al. 2012) (see Section 8.4.2 below). However, such a result
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assumes the absence of intervalley scattering and the estimated spin lifetimes are much
too long compared to experimental data.

In conclusion, to determine the upper limit for spin lifetime and the correspond-
ing dominant mechanisms for spin relaxation, a lot of effort has been put in by both
experimentalists and theoreticians, but without reaching any consensus. The discrep-
ancy between the theoretical and experimental estimates remains puzzling. Besides, the
theoretical derivations of both EY and DP mechanisms for graphene generally assume a
strong coupling of momentum with pseudospin, a property which breaks down near the
Dirac point (see Section 8.4.3). All these results clearly point out a lack of theoretical
understanding of spin dynamics and spin relaxation mechanisms in graphene, demand-
ing for a deeper theoretical inspection with quantum simulation of spin transport, to
explore the regimes out of reach of perturbative treatments and traditional semiclassical
transport phenomenology. We hereafter provide a deeper insight into the spin dynamics
of electrons in graphene in the presence of disorder and SOC, showing what is similar
to other materials and what is unique to massless Dirac fermions with internal degrees
of freedom.

8.4.1 Dyakonov–Perel Mechanism

From a general perspective, the presence of an in-plane magnetic field B‖(k) ∼ �(k),
related to a Rashba SOC, triggers the precession of the electron spin in between scatter-
ing events. Random scattering thus induces motional narrowing of this spin precession,
and will drive the spin relaxation phenomenon (see Fig. 8.4(a–d)). The spin relaxation
rates for the α-th spin component following the DP mechanism can be actually written
as (Ertler et al. 2009)

Figure 8.4 DP spin relaxation in graphene: (a) Dirac coin when SOC is included. (b) B‖(k) along
the Fermi circle. (c) Charged impurities in substrate induce electric field in graphene. (d)
Illustration of the spin relaxation in a spatially random potential due to the charged carriers.
(e) Calculated spin relaxation time τs as a function of the Fermi energy EF. (Reproduced with
permission from Ertler et al. (2009). Copyright (2009) by the American Physical Society)
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1
τDP

s,α
= τ ∗

(〈
�2(k)

〉 − 〈
�2
α(k)

〉)
(8.25)

where τ ∗ is the correlation time of the random spin–orbit field. In graphene, this value
coincides with momentum relaxation time τ ∗ = τp (Ertler et al. 2009; Fabian et al.
2007) and the symbol 〈 · · · 〉 expresses an average over the Fermi surface. Because
〈�2(k)〉 = (2λR/h̄)2, 〈�2

z (k)〉 = 0, and 〈�2
x,y(k)〉 = 1

2 (2λR/h̄)2, the DP relation for spin
relaxation in graphene is (following (Ertler et al. 2009; Huertas-Hernando et al. 2009))

τDP
s,z = h̄2

4λ2
Rτp

and τDP
s,{x,y} = 2τDP

s,z = h̄2

2λ2
Rτp

(8.26)

Since the spin lifetime is inversely proportional to the momentum relaxation time, the
DP spin relaxation length is independent of mean free path (Huertas-Hernando et al.
2009).

λs =
√

Dτs =
√

1
2

v2
Fτpτs = h̄vF

2
√

2λR
(8.27)

Figure 8.5 provides an illustrative overview of the dynamics of spin polarization of
electrons moving through graphene away from the Dirac point and in the strong disorder
regime. The dependence of the polarization dynamics on disorder strength is dictated
by the transport time τp. An effective spin–orbit coupling λR (as induced by adatoms
for instance) leads to spin precession when the injected electrons are polarized out of
the plane or along the direction of momentum. The spin precession time is obviously
given by T� = π h̄/λR. Panel (a) shows the case when τp � T�, a regime which
is typically seen in various experiments and dirtier samples. Different snapshots at
different times (T1, T2, T3) show that the ensemble-averaged spin polarization (Sz in
panel (d)) decays weakly since elastic scattering interferes with the spin precession.
A scattering event experienced by one propagating state randomizes its momentum,
and hence the orientation of the effective field about which the spin precesses. Being
no longer coherent with the other states, such randomization drives spin relaxation in
the ensemble. The spin relaxation time depends on how strongly the precession of the
scattered state deviates from the rest of the ensemble. If the scattering time is short
(τp � T�), the difference in the precession remains small. The time-dependent profiles
clearly yield a scaling law, which follows Sz ∼ cos(2π t/T�)e−t/τs , where T� is the spin
precession time.

By increasing the scattering time (τp � T�), faster spin decoherence is obtained
(panel (b)), as confirmed by comparing the corresponding averaged polarization
(panels (d) and (e)). This illustrates the DP mechanism for which the spin lifetime
scales inversely with the transport time (τs ∼ 1/τp). Panel (c) shows the clean limit
(with small residual disorder such that τp � T�), where only a few scattering events
occur during the time sequence, and spin precesses over long timescale. The average
polarization (panel (f)) then clearly exhibits such spin precession characterized by
oscillations with period T�. On top of this, the spin signal decays continuously owing to
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Figure 8.5 Time evolution of spin expectation value for various τp. (a) shows the case of ultrashort
τp, whereas the change of the spin dynamics for intermediate (resp. long values) are reported in
(b) and (e) (respectively (c) and (f)). (a)–(c) illustrate how spin vectors evolve for increasing
time as indicated in (d)–(f), respectively. (d)–(f) display the time dependence of the polarization
averaged over the Fermi circle. Courtesy of Frank Ortmann (adapted from Avouris et al. (2017))

scattering and dephasing effects. The decay is weaker for lower scattering, suggesting
that τs should be maximized for long τp, usually observed at energies closest to the
Dirac point. However, based on further quantum simulations, we find the opposite
behavior, i.e., τs is minimized at E = 0 and that a simplified description of spin motion
fails to capture the more subtle phenomenon governing the Dirac point spin physics
(Section 8.4.3).

Similar to the spin dynamics picture developed above, the phenomenology proposed
in Ertler et al. (2009) assumes some homogeneous Rashba SOC together with an
underlying disorder potential (with tunable density of impurities), which should roughly
capture the effect of the interaction between graphene and an oxide substrate, including
the trapped charged impurities distributed at random (electron–hole puddles). However,
the analytical estimates and Monte Carlo simulations (Ertler et al. 2009) with DP
mechanism show that the corresponding spin relaxation times are between micro-
to milliseconds (see Fig. 8.4(e)), that is several orders of magnitude larger than the
experimental results.

Actually, such values for the spin lifetime are deduced from Monte Carlo simulations,
which assume that along any given classical trajectory ([r(t), k(t)]), the spin dynamics
is described by Bloch spin equation dS

dt = �R[r(t)](n[k(t)] ∧ S) assuming some energy-
independent spin precession frequency (Fabian et al. 2007). Finally, τs is numerically
obtained by averaging over random trajectories with different initial momenta, assuming
that t � τtr. The result from a fit of numerics to Sα(t) ∼ e−t/τα gives τα � μs − ms
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for typical density of Coulomb impurities (Ertler et al. 2009). Another prediction of this
work, in full contradiction to all experimental data, is that the spin lifetime is maximum
at the Dirac point (see Fig. 8.4(e)). As shown by Cummings and Roche (2016), the
assumption of a constant �R for all energies is incorrect and fails to capture multiple
interferences and dephasing, which ultimately drive the spin dynamics and relaxation
(Section 8.4.3).

8.4.2 Elliot–Yafet Mechanism for Graphene

Here, we present the main steps of the derivation proposed by Ochoa et al. (2012)
concerning the calculation of the spin relaxation time for Dirac fermions under certain
approximations (weak SOC and single valley restriction). Their derivation assumes
a SOC effect dominated by a Rashba SOC, but the result surprisingly suggests an
EY mechanism. As mentioned in Section 8.2.2, the intrinsic SOC obtained by TB model
and DFT calculations is in the order of a few μ eV (Huertas-Hernando et al. 2006;
Konschuh et al. 2010; Min et al. 2006; Yao et al. 2007), which can become smaller
than the Rashba SOC. In the case of slowly varied Rashba SOC induced by electric
field or ripples, the Hamiltonian can be written in the form

H = −ih̄vFσ · ∇ + λR(σ × s) (8.28)

Because of the Rashba SOC, Bloch states with well-defined spin polarization are no
longer eigenstates of the Hamiltonian. The Bloch eigenstates are then written as (Ochoa
et al. 2012)

�k,± =
[(

1
εk±
h̄vFk eiθk

)
⊗ | ↑〉 ± i

(
εk±
h̄vFk eiθk

e2iθk

)
⊗ | ↓〉

]
eikr. (8.29)

where θk = arctan(ky/kx) and the energy εk± = ±λR +
√

(h̄vFk)2 + λ2
R is obtained

from Eq. (8.18) with λI = 0. When λR = 0, the eigenstates in Eq. (8.29) have their
spin pointing along (helicity +) or opposite to (helicity −) the transport direction. This
contrasts with the case λR �= 0 but in the case of λR/εF � 1, each of these eigenstates
with chiral states ± can be identified using perturbation theory (Ochoa et al. 2012).

Within the Born approximation, the local scattering potential U(r) becomes diagonal
in the sublattice and spin degrees of freedom, and the scattering amplitudes f 0±(θ ) for
chiral channels ± for an incoming electron with positive chirality (in the case of λR = 0)
are given by (Ochoa et al. 2012):

f 0
+(θ ) = −(h̄vF)−1

√
k

8π
Uqe−iθ (1 + cos θ )

f 0
−(θ ) = −(h̄vF)−1

√
k

8π
Uqie−iθ sin θ (8.30)
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Figure 8.6 Illustration of the scattering potential U(r) in the chiral channels.

where Uq is the Fourier transformation of the scattering potential evaluated for
q = k′ − k and for an angle θ (see Fig. 8.6) between k′ and k. When the Rashba
SOC is included, one finds

f λR+ (θ ) = −(h̄vF)−2

√
1

8πk+
(ε + (ε − 2λR) cos θ)Uq+e−iθ

f λR− (θ ) = −(h̄vF)−2

√
1

8πk−
(ε + 2λR)Uq− ie−iθ sin θ (8.31)

where k± = (h̄vF)−1
√
ε2 ∓ 2ελR and q± = k′± − k. The probability for a spin-flip

process induced by scattering in both chiral channels and driven to the presence of the
SOC is determined through

S(θ ) =
∑

±1 | f 0±(θ )|| f λR± (θ ) − f 0±(θ )|∑
±1 | f 0±(θ )|2 (8.32)

denoting the amount of spin relaxed in the direction defined by θ . The total amount of
spin relaxation during a scattering event stems from the average of S(θ ) integrated over
the whole Fermi surface:

S = 〈S(θ )〉 = 1
2π

∫
dθS(θ , ε = εF) (8.33)

Additionally, one easily shows that f λR± (θ )− f 0±(θ ) ∼ λR/εF when expanding Eq. (8.31)
in powers of λR/εF. This implies that S(θ ) ∼ λR/εF, which is independent of U(r).
This result first derived for weak disorder (Huertas-Hernando et al. 2009) was later
generalized (beyond perturbation theory) for the cases of scattering by boundary, strong
scatterers, and clusters of impurities (Ochoa et al. 2012). Assuming such a form of
S(θ ), the EY relation for graphene can be derived. Indeed, the spin rotation at each
collision is S ∼ λR/εF so that the total change of spin orientation after Ncol collisions
scales as

√
NcolεF/λR. Dephasing occurs when

√
NcolεF/λR ∼ 1 and hence after a time
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τEY
s = Ncolτp. This leads to the EY scaling τEY

s ≈ ε2
F
λ2

R
τp, observing that the spin lifetime

τs is here not only proportional to τp but also depends on the carrier density (and thus
the Fermi energy εF). In this regime, the spin diffusion length is proportional to the
elastic mean free path �e according to λs = √

Dτs =
√

1
2 v2

Fτpτs ∼ �e
εF√
2λR

. This deriva-
tion has a true pedagogical virtue but its applicability to realistic models of disordered
graphene is limited as well as for the understanding of spin dynamics in graphene in the
clean limit.

8.4.3 Spin–Pseudopsin Entanglement and Spin Relaxation

Pseudospin-related effects (and the associated Berry phase) are known to drive most
of the unique transport signatures of graphene (Klein tunneling, weak antilocalization,
anomalous quantum Hall effect), but the role of such extra degree of freedom on spin
relaxation has been discovered only recently. Pseudospin and spin dynamics are usually
perceived as decoupled from one another, with pseudospin dynamics much faster when
compared to spin rotation. However, this picture collapses in the vicinity of the Dirac
point, a region that is out of reach for semi-classical and perturbative approaches, but
is particularly relevant for experiments. In the presence of SOC, spin couples to orbital
motion, and therefore to pseudospin (Rashba 2009) so that spin and pseudospin dynam-
ics cannot be treated independently. Here, we present the main ideas underpinning a
new relaxation mechanism and driven by a spin–pseudospin entanglement effect. To
capture the unusual behavior of the spin lifetime at low energies, it is first instructive to
investigate the Kane-Mele-Rashba (KMR) Hamiltonian in the vicinity of both valleys
K and K′. From Eqs. 8.16 and (8.17), it is obvious that at low energy (when |#k| → 0),
the term which couples pseudospin and momentum (h0(#k)) vanishes, in contrast to the
Rashba term (hR(#k)), which connects spin and pseudospin. Hence close to the Dirac
point, the term hR(#k) dictates the spin and pseudospin precession motion and leads to
a spin–pseudospin locking feature. On the contrary, for high energies (|#k| > 0), the
term h0(#k) exceeds the Rashba term and disrupts the locking effect. Figure 8.7 gives the
computed band structure of the Kane-Mele-Rashba Hamiltonian (Eq. (8.17)) assuming
8% impurity coverage (Van Tuan et al. 2014). The Rashba term generates a counter-
propagating spin texture in the kx, ky plane that tends to vanish close to the Dirac point
as (Rashba 2009):

#Sνμ(#k) = μh̄vF(#k × #z)√
λ2

R + h̄2v2
Fk2

(8.34)

We further calculate the modulus of the spin polarization vector |#S| = |(〈sx〉, 〈sy〉, 〈sz〉)|
from the eigenstates of the full Hamiltonian in Eq. (8.16) with both intrinsic and Rashba
SOC

�#k,± =
[(

cA,↑
cB,↑

)
⊗ | ↑〉 ± i

(
cA,↓
cB,↓

)
⊗ | ↓〉

]
ei#k#r. (8.35)
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Figure 8.7 Band structure calculated using the Kane-Mele-Rashba model for 8% adatom
concentration generating an overall Rashba SOC. The inset shows the typical Rashba-like spin
texture for the conduction bands. (Reprinted by permission from Macmillan Publishers Ltd:
Nature Physics, Van Tuan et al. 2014, copyright (2014))

In the presence of the Rashba SOC term, the Bloch states with well-defined spin polar-
ization are no longer eigenstates of the complete Hamiltonian (Ochoa et al. 2012). The
clear signature of spin–pseudospin entanglement is actually evidenced at low energies
(#k → 0) since the electronic states write

�I
#k,± =

(
0
1

)
⊗ | ↑〉 ±

(
i
0

)
⊗ | ↓〉 (8.36)

�II
#k,± =

(
1
0

)
⊗ | ↑〉 ±

(
0
i

)
⊗ | ↓〉. (8.37)

In both cases, a change in sublattice (pseudospin) index entails a change in spin index.
This means that at low energy, spin and pseudospin are completely locked and |#S| ≈ 0.
The situation is different for high energies (|#k| > 0); when pseudospin–momentum
coupling comes into play, all coefficients become equally weighted (|cσ ,s| ≈ 0.5), and
spin and pseudospin are unlocked leading to |#S| ≈ 1.

It is also instructive to explore the spin propagation in graphene using more
general quantum dynamics methods, and taking into account the specificities of the
graphene band structure in the presence of SOC and disorder (energy broadening and
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Figure 8.8 (a) Convolution of the spin precession frequency (right axis) with a Lorentzian energy
broadening (left axis). The η parameter gives the HWHM of the Lorentzian, while α denotes the
variation of the spin precession frequency. (b) Exponentially decaying cosine, with frequency ω0
and decay time 1/αη. By courtesy of A.W. Cummings, reproduced from Avouris et al. (2017)

electron–hole puddles). Pioneering studies have been realized using an exact calculation
of spin dynamics through time-dependent evolution methods (see Section 8.4.3 for
technical details) (Cummings & Roche 2016; Van Tuan 2016; Van Tuan et al. 2014,
2016). The advantage of such approaches is to capture the effect of both disorder of any
kind and strong SOC regimes, beyond the reach of perturbation theory.

Concerning the nature of disorder in (clean) exfoliated graphene samples, it is known
that the strength and size of electron–hole puddles can vary significantly for different
substrates – such as SiO2 or hexagonal boron nitride (h-BN) – and in the situation of
clean supported graphene, it is generally assumed that a weak Rashba SOC field is
always present because of mirror symmetry breaking and surrounding electric fields.
When the disorder is strong enough to yield τp � T� (case of electron–hole puddles
for graphene/SiO2), then the numerical simulations (Van Tuan et al. 2016) confirm
the scaling for the spin lifetime as τs ∼ 1/ni, where ni is the puddle density and the
ratio τ⊥

s /τ
‖
s = 1/2, in full agreement with the conditions required for the DP regime

(Zhang & Wu 2012) (see also Fig. 8.9).
However, for cleaner graphene samples and flat substrates (e.g., electron–hole pud-

dles for h-BN), the regime τp � T� can be eventually reached; a regime where DP
regime ceases to apply, as well as the conventional EY regime. In such a quasiballistic
transport regime in graphene, τp is no longer a relevant timescale for understanding spin
relaxation. It has actually been found that in this limit, the spin relaxation is dictated
by the presence of energy broadening and, more importantly a nonuniform precession
frequency, a fundamental ingredient which has been neglected in prior studies (Ertler
et al. 2009). The presence of SOC generates the effective magnetic field Beff which
monitors the spin rotation. When the magnitude of Beff (or its direction) depends on
the electron energy (or momentum) distribution (defined by temperature or effective
disorder-induced broadening), then the total spin signal derives from interference and
dephasing between different precession frequencies. As a matter of illustration, let us
focus on the case illustrated in Fig. 8.8, where the spin precession frequency varies
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linearly with ω(E) = ω0 + αE, while the energy occupation for electrons is given
by a Lorentzian distribution L(E) = η/[π (E2 + η2)] (η as the half-width at half-
maximum (HWHM)). From simple considerations, the total spin signal s(t) is obtained
from (Cummings & Roche 2016)

L(E) cos(ω(E)t) =
∫ +∞

−∞
(η/π )/(E2 + η2) cos((αE + ω0)t)dE = e−αηt cos(ω0t)

(8.38)

Equation (8.38) indicates that the combination of energy broadening and nonuniform
spin precession leads to a dephasing of the spin signal, which is eventually lost at a rate
proportional to both the broadening η and the precession variation. This decay (not
necessarily exponential) occurs even in the ballistic regime provided the existence of a
frequency mixing in energy or momentum. Indeed, when the Lorentzian distribution is
replaced with a Gaussian distribution, Eq. (8.38) gives e−(ασ t)2/2, with σ the standard
deviation, whereas a Fermi distribution produces!t/ sinh(!t) (! = απkT and kT is the
thermal energy) (Cummings & Roche 2016).

In conclusion, if the DP mechanism dominates for dirty graphene with low mobility,
in the limit of clean (and even ballistic) limit, a new spin dephasing mechanism, driven
by strong coupling between spin and pseudospin, gives rise to an intricate mixing of
precession frequencies which dictate the energy variation of the spin lifetime, as well as
its upper value (Cummings & Roche 2016; Van Tuan et al. 2014, 2016). Actually, the
approximation of an energy-independent spin precession frequency made in Ertler et al.
(2009) was demonstrated to be the origin of the astonishing discrepancy of such earlier
calculations compared with experimental data (Cummings & Roche 2016).

For the full picture, Fig. 8.9 shows the τs(1/τp) for both numerical and experimental
data taken from Drogeler et al. (2014). In the main frame, the simulation for the SiO2
substrate, the scaling matches well with the DP relation, τs = (T�/2π)2/τp, where
T� = 2π h̄/(3VR), whereas for the h-BN substrate, the opposite scaling trend is seen,
with τs proportional to τp, reminiscent of the EY mechanism. The crossover is related
to the ratio τp/T�. For SiO2, one clearly obtains a regime where τp � T� meaning
that momentum scattering frequently interrupts the spin dynamics, inducing motional
narrowing of the precession as described in the DP relaxation mechanism. However,
for the h-BN substrate, numerical simulations show that τp ≥ T�, allowing for spin
precession between scattering events. In this case, the momentum scattering acts as
an effective broadening of states, leading to increased dephasing and relaxation. This
behavior can be qualitatively reproduced by tuning the broadening parameter in the
case of clean graphene (dashed line). Similar trends have been obtained in experiments
that compare spin relaxation on SiO2 and h-BN substrates (Drogeler et al. 2014). As
shown in the inset of Fig. 8.9, these measurements indicate an inverse relationship
between τs and the sample mobility for SiO2 substrates in agreement with DP (Zhang
& Wu 2012). Meanwhile, spin lifetimes of SLG on h-BN substrates appear to show
a positive correlation between τs and the mobility, therefore supported with the new
theoretical picture.
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Figure 8.9 Spin lifetime vs. 1/τp for graphene in the presence of SOC and e-h puddles. Squares
(circles) are for graphene on h-BN (SiO2) substrate. Closed (open) symbols are for spin
relaxation at the Dirac point (at E = −200 meV). The dashed line shows the spin lifetime
assuming only energy broadening (top axis). Inset: Experimental results for spin lifetime vs.
electron mobility on h-BN and SiO2 substrates. (The main panel is reprinted from Van Tuan
et al. (2016). The inset is reprinted with permission from Drogeler et al. (2014)). Copyright
(2014) American Chemical Society)

8.5 Manipulating Spin by Proximity Effects

In order to advance toward more versatile use of graphene in spintronic devices, the
creation and manipulation of polarized (or pure) spin currents is a fundamental step.
Remarkable progress has been made in that direction by harnessing weak proximity
effects interfacing graphene with magnetic insulators and strong SOC materials such as
transition metal dichalcogenides (TMDs) and topological insulators (Garcia et al. 2018;
Hallal et al. 2017; Huang et al. 2018; Khokhriakov et al. 2018; Leutenantsmeyer et al.
2017; Song et al. 2018; Yang et al. 2013). Electronic structures of TMDs are strongly
determined by SOC effects, and they also present the advantage of very good interface
matching with graphene, which facilitates the imprint of spin-dependent features of
graphene while maintaining its superior charge transport properties.

In lateral devices, proximity effects can be probed through Hanle spin precession
measurements but also through the weak antilocalization analysis. Further, the resulting
transfer of spin features to graphene has raised expectations to use such van der Waals
heterostructures for improved spin Hall effect (SHE) (Avsar et al. 2014) as well as spin
torque phenomenon (Rodriguez-Vega et al. 2017). Finally, the recently discovered fam-
ily of 2D magnetic materials, such as layered magnetic insulator CrI3 (Klein et al. 2018)
opens fascinating perspectives for ultraminiaturized vertical magnetic tunnel junctions,
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as well as other other possible proximity effects in lateral devices. In the following, we
briefly review the main aspects of the underlying physics and ongoing issues.

8.5.1 Manipulating Spin Using 2D Magnetic Substrates

Magnetic anisotropy is an important requirement for realizing two-dimensional
magnetism. Indeed, magnetic order is theoretically prohibited in the 2D isotropic
Heisenberg model at finite temperatures by the Mermin–Wagner theorem (Mermin &
Wagner 1966). Consequently, magnetic anisotropy removes this restriction, enabling
for instance, the occurrence of 2D Ising ferromagnetism.

The magnetic properties of a layered crystal can dramatically change when it is
cleaved to the few-layer limit (Huang et al. 2018). One example is chromium triiodide
(CrI3), a van der Waals magnetic insulator that displays out-of-plane ferromagnetic
behavior in the monolayer (2D Ising ferromagnet). Surprisingly, it adopts an alternating
ferromagnetic alignment in few-layer crystals, giving a layered antiferromagnetic
ground state in the bilayer (Huang et al. 2018). Through electrostatic doping, the
magnetic ground state of these materials can be controlled electrically (Huang et al.
2018), thus allowing for the manipulation of these ultrathin magnets with potential
applications in spintronics. Moreover, the magnetic state in van der Waals magnetic
tunnel junctions fabricated from few-layer CrI3 crystals can be probed (Klein et al.
2018). This arises from the sensitive dependence of quantum electron tunneling
on the barriers magnetic state. These new results on 2D ferromagnets allow for the
exploration of new magnetoelectric phenomena and van der Waals spintronics based on
2D materials.

8.5.2 Magnetic Proximity Effects in Vertical Spin Devices

Magnetic tunnel junction (MTJ) is one of the building blocks of spintronics applica-
tions (Chappert et al. 2007). The key element of an MTJ is its tunnel barrier, most
commonly made of MgO or Al2O3. Achieving precise control of the barrier thickness
down to only a few atoms while avoiding thickness nonuniformity, pinholes, or point
defects remains a major challenge for these metal oxides. This has led to considerable
interest in integrating materials that remain stable as atomically thin monolayers, such
as the layered 2D materials into MTJs (Piquemal-Banci et al. 2016).

Vertical spin devices combining magnetic materials and two-dimensional layers are
intensively investigated given that improved TMR performances could directly impact
memory storage technologies (see Fig. 8.10). Recently, strong influence of proximity
effect (e.g., hybridization) on 2D materials at the interface with ferromagnets have
been reported (Piquemal-Banci et al. 2018). Indeed, an insulating h-BN layer at a fer-
romagnetic interface (such as Co, Fe, . . . ) could become metallic due to the strong
hybdridization. This normally unpolarized h-BN layer becomes spin polarized acting as
a spin filter with strong spin polarization>50% TMR (see Fig. 8.10). Finally, this effect
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Figure 8.10 2D-magnetic tunnel junctions based on hexagonal boron nitride. (a) Sketch of the 2D
section of the magnetic tunnel junctions. (b) Tunnel magnetoresistance signal measured on a
Co/h-BN/Fe magnetic tunnel junction at 2 mV. (Adapted with permission from Piquemal-Banci
et al. (2018). Copyright (2018) American Chemical Society)

Figure 8.11 Representation of bilayer h-BN on Co hcp (0001) within the (a) commensurate and
(b) incommensurate configurations. (c) Representation of monolayer h-BN on Fe fcc (110).
Spin-resolved projected density of states onto the boron and nitrogen atoms (d–f), corresponding
to the three atomic configurations depicted in the upper panel. Gray curves correspond to the
projection of the density of states on the h-BN layers. Darker curves identify the contributions
associated with the p-orbitals of nitrogen and boron. For each stacking configuration, the spin
polarization of h-BN is depicted on the right of each panel, illustrating both the excess of
majority and minority spins. (Adapted with permission from Piquemal-Banci et al. (2018).
Copyright (2018) American Chemical Society)

was shown to be voltage dependent since an inversion of the TMR sign was observed
as a function of voltage in a 2D-based magnetic tunnel junction. Through analysis of
spin polarizations of h-BN/Co and h-BN/Fe interfaces extracted from experimental spin
signals in light of spin filtering, the presence of two hybrid chemisorbed/physisorbed
h-BN interfaces was suggested. Ab initio calculations confirmed that this modification
of the h-BN/metal coupling (chemisorption versus physisorption) induces an inversion
of the spin-polarization of the h-BN layer (see Fig. 8.11). These results illustrate the
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strong potential of h-BN for MTJs and are expected to ignite further investigations of
other 2D materials (graphene, TMDs, . . . ) for large signal spin devices.

8.5.3 Weak Antilocalization in Graphene/TMD Heterostructures

Several measurements of Weak Antilocalization (WAL) in a graphene/TMD het-
erostructure were made with TMD as WS2, WSe2, and MoS2 substrates (Völkl et al.
2017; Wakamura et al. 2018; Wang Ki, et al. 2015; Yang et al. 2016, 2017), but the
estimation of spin transport length scales from those studies, using a conventional
WAL theory frame has led to contradictory interpretations, although typical spin
transport times were estimated to be a few picoseconds. In Yang et al. (2016, 2017),
the relaxation time was found to scale inversely with the momentum scattering time,
and could be tuned by ∼10% in either direction with a vertical electrical field. This was
analyzed in terms of the DP mechanism of spin relaxation induced by Rashba SOC.
(A Rashba strength of λR ≈ 0.4 meV was estimated.) Independent measurements of
graphene/WSe2 also interpreted their spin relaxation process as a DP mechanism and
evaluated a Rashba SOC of λR ≈ 0.7–1 meV (Völkl et al. 2017).

Meanwhile, a comprehensive set of WAL measurements demonstrated the importance
of eliminating classical effects from the magnetoconductance (Wang et al. 2016). At
high temperatures, the dephasing time τφ becomes very short, washing out interference
effects, and any dependence of the conductivity on the magnetic field can be considered
to arise from classical effects. In these measurements, subtracting the high-temperature
magnetoconductivity curves from the low-temperature curves resulted in a sharp WAL
peak and little to no upturn of �σ at higher fields; see Fig. 8.12(a) and (b) where a
flat profile of �σ is indicative of very fast spin relaxation. Indeed, fits to WAL theory
yield upper bounds of τso ≤ 0.1–0.4 ps. As shown in Fig. 8.12(c), this behavior is
found over many devices, including different TMDCs (MoS2, WS2, and WSe2) and a
wide range of mobilities (3000–110, 000 cm2/V·s). By analyzing Shubnikov-de Haas
oscillations in bilayer graphene/WSe2 devices, the Rashba SOC strength was estimated
to be λR ≈ 10–15 meV, which is one order of magnitude larger than what was found in
other measurements or in ab initio simulations (Gmitra et al. 2016; Wang et al. 2016;
Yang et al. 2016).

If these measurements demonstrate strong proximity-induced SOC in graphene, the
interpretation disregards the contribution of valley-Zeeman SOC, which however has
been predicted theoretically (Cummings et al. 2017), and confirmed by Hanle measure-
ments (Benitez et al. 2018; Ghiasi et al. 2017), to be responsible for fast relaxation
of the in-plane spins (and yielding a giant spin lifetime anisotropy). As shown very
recently, a careful analysis of WAL measurements can reveal this behavior (Zihlmann
et al. 2018). According to the theory of McCann and Fal’ko, two spin relaxation
times have to be introduced with the first one τsym determined by both intrinsic and
valley-Zeeman SOC, while the second τasy is dominated by Rashba SOC (McCann
& Fal’ko 2012). As discussed in Yang et al. (2016, 2017); Völkl et al. (2017), and
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Figure 8.12 (a) Temperature-dependent evolution of the magnetoconductance in a graphene/WS2
heterostructure. Subtracting the high-temperature classical signal gives the normalized
magnetoconductivity shown in (b). Panel (c) shows a summary of WAL measurements made
using this background subtraction, yielding a uniform spin–orbit time across a wide range of
devices and TMDCs. Panels (a)–(c) are reproduced from Wang, Ki et al. (2016). (d) Fits to
magnetoconductance (from Wakamura et al. (2018)) are made using the WAL formulas (see
Garcia et al. (2018) for deeper analysis). (Reproduced from Garcia et al. (2018), with permission
from The Royal Society of Chemistry)

Zihlmann et al. (2018), the contribution of intrinsic SOC is negligible, so that τsym is
entirely dictated by the valley-Zeeman SOC. Following an analysis made in Garcia
et al. (2018), it is found that τasy = 2τ⊥

s and τso = τ
‖
s , which allows the determination

of both λR and λVZ. Additionally, the spin lifetime anisotropy can be estimated as
ζ = τasy/2τsym. In recent measurements of graphene/WSe2 devices (Zihlmann et al.
2018), such an analysis gets λR ≈ 0.35 meV, λVZ ≈ 0.2–2 meV, and ζ ≈ 20. These
results agree well with DFT simulations (Gmitra et al. 2016; Wang Ki, et al. 2015; Yang
et al. 2016), spin relaxation theory (Cummings et al. 2017), and Hanle measurements of
spin lifetime anisotropy (Benitez et al. 2018; Ghiasi et al. 2017), and thus highlight the
importance of considering the valley-Zeeman SOC when studying quantum transport
in these systems.

8.5.4 Spin Transport Anisotropy

The ratio between spin lifetimes for out-of-plane and in-plane polarizations τs,⊥/τs,‖ is
a fingerprint of the spin–orbit coupling effects occurring in a given system. For two-
dimensional metallic materials with strong (in-plane) Rashba SOC, such ratio is strictly
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equal to 1/2, a result derived analytically (Fabian et al. 2007; Zhang & Wu 2012). Curi-
ously, most experiments studying the case of graphene/SiO2 or graphene/h-BN have not
found any anisotropy (i.e., τs,⊥ = τs,‖) (Guimarães et al. 2014; Haydock et al. n.d.; Raes
et al. 2017). Such experimental data contrast with spin dynamics simulations (Van Tuan
et al. 2016) and suggest either the presence of magnetic impurities (Kochan et al. 2014;
Soriano et al. 2015) or the randomization of the Rashba SOC field (in both magnitude
and direction), which could both lead to the vanishing of the Rashba-induced spin
anisotropy. Although this remains to be fully clarified, the interfacing of graphene with
much stronger SOC materials such as TMD has allowed for demonstration of the effi-
ciency of proximity effects to imprint new spin properties to graphene electronic states.

The nature of spin relaxation in graphene/TMD systems has been explored
theoretically by Cummings et al. (2017), through the study of the spin dynamics
in a randomly fluctuating magnetic field (following the method published in Fabian
et al. (2007)). The low-energy Hamiltonian of the graphene/TMD is written as
H = H0 + H� + HI + HR + HPIA (Gmitra et al. 2016)

H0 = h̄vF(κσxkx + σyky),

H� = �σz,

H A/B
I = 1

2
[
λA

I (σz + σ0) + λB
I (σz − σ0)

]
κsz, (8.39)

H A/B
PIA = a

2
[
λA

PIA(σz + σ0) + λB
PIA(σz − σ0)

]
(kxsy − kysx),

HR = λR(κσxsy − σysx).

where vF is the Fermi velocity, κ = 1(−1) for the K (K′) valley, σi (si) are the
sublattice (spin) Pauli matrices, ki are the wave vector components relative to K or
K′, and a = 0.246 nm is the graphene lattice constant. H0 describes the Dirac cone,
and H� is a TMD-dependent staggered sublattice potential. H A/B

I and H A/B
PIA are the

intrinsic and the pseudospin inversion asymmetry (PIA) SOC, respectively, the latter of
which is permitted by broken z/−z symmetry in graphene (Kochan et al. 2017). Due to
the broken sublattice symmetry, these terms can have different strengths and signs on
the A and B sublattices (λA/B

I and λA/B
PIA). Finally, HR is the Rashba SOC induced by a

perpendicular electric field. In the following, TB parameters are taken from Table I of
Gmitra et al. (2016).

Equation (8.39) is practical for performing TB calculations, but it is also convenient to
combine the sublattice-dependent terms as H = H0+H�+HI+HVZ+HR+HPIA+H�PIA

with (Cummings et al. 2017)

HI = λIκσzsz,

HVZ = λVZκsz, (8.40)

HPIA = aλPIAσz(kxsy − kysx),

H�PIA = a�PIA(kxsy − kysx),
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where λI = (λA
I + λB

I )/2, λVZ = (λA
I − λB

I )/2, λPIA = (λA
PIA + λB

PIA)/2, and
�PIA = (λA

PIA − λB
PIA)/2. In this form, HI is the usual intrinsic SOC in graphene,

which opens a topological gap 2λI at the Dirac point. HVZ is a valley Zeeman term,
which polarizes the bands out of the graphene plane with opposite orientation in
the K and K′ valleys. HPIA renormalizes the Fermi velocity, while H�PIA leads to a
k-linear splitting of the bands, similar to the case of a 2D electron gas with Rashba SOC
(Bychov & Rashba 1984). Except for the PIA terms, this Hamiltonian is identical to
the one considered in previous works (Wang Ki, et al. 2015, 2016; Yang et al. 2016).
The spin dynamics is then investigated from the total effective SOC field by rewriting
Eq. (8.40) in the basis of the eigenstates of H0 and projecting onto the conduction and
valence bands. At high energy, the Hamiltonian reduces to (Cummings et al. 2017)

H = H0 + 1
2

h̄ #ω(t) · #s,

h̄ωx = −2(ak�PIA ± λR) sin θ , (8.41)

h̄ωy = 2(ak�PIA ± λR) cos θ ,

h̄ωz = 2κλVZ,

where k is the wave vector magnitude, θ is the direction of k with respect to kx, and #ω
is the spin precession frequency of the effective SOC field. The in-plane components
of #ω give a Rashba-like spin texture, where +(−) is for the conduction (valence) band.
Strong PIA SOC leads to electron–hole asymmetry. The out-of-plane component of #ω is
determined by λVZ and changes sign between valleys. The overall texture of the effec-
tive SOC field is pictured in Fig. 8.13. Due to momentum scattering, each component
of #ω fluctuates in time, and the correlation of the fluctuating field can be described by
(Fabian et al. 2007)

ωα(t)ωβ (t′) = δαβω2
αe−|t−t′|/τc,α , (8.42)

Figure 8.13 Illustration of spin physics in graphene/TMD heterostructures. The tall arrows depict
the effective SOC field within the Dirac cones at K and K′ valleys. Intervalley scattering
dominates the in-plane spin dynamics, while overall momentum scattering controls the
out-of-plane behavior. Courtesy of A.W. Cummings
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where the correlation time of fluctuation τc,α depends on the components of #ω. The
in-plane components ωx/y depend only on θ , so that τc,x = τc,y = τp (momentum
scattering time). However, the out-of-plane component ωz depends on the valley
index with τc,z = τiv (intervalley scattering time). Assuming that τc,αωα � 1,
applying Eqs. (8.41) and (8.42) to the equation of motion for the density matrix
(Fabian et al. 2007),

dρI(t)
dt

=
( 1

ih̄

)2
∫ t�τc

0
[VI(t), [VI(t′), ρI(t)]] dt′, (8.43)

with VI(t) = 1
2 h̄ #ω(t) · #sI(t) and #sI(t) = eiH0t/h̄#se−iH0t/h̄, one obtains

τ−1
s,x = ω2

z τiv + ω2
yτp,

τ−1
s,y = ω2

z τiv + ω2
xτp, (8.44)

τ−1
s,z = (ω2

x + ω2
y )τp.

In Eq. (8.44), the out-of-plane spin relaxation follows τ−1
s,⊥ ≡ τ−1

s,z = 2[(ak�PIA ±
λR)/h̄]2τp (DP regime), with an increased SOC by the PIA term. However, the in-plane
relaxation includes contributions from both the intervalley and the overall momentum
scattering. Since τiv > τp and DFT calculations have found that λVZ > λR for the
tungsten-based TMDs (Gmitra et al. 2016; Wang Ki, et al. 2015; Yang et al. 2016),
the in-plane relaxation rate becomes τ−1

s,‖ ≡ τ−1
s,x = τ−1

s,y ≈ (2λVZ/h̄)2τiv. Ignoring the
PIA term, the spin lifetime anisotropy then becomes τs,⊥/τs,‖ ≈ (λVZ/λR)2(τiv/τp).
Using DFT values of λVZ = 1.2 meV and λR = 0.56 meV for graphene on WSe2
(Gmitra et al. 2016), and assuming relatively strong intervalley scattering (τiv ∼ 5τp), a
spin lifetime anisotropy of ∼20 is obtained. The nature of the spin relaxation, with τs,‖
determined by τiv and τs,⊥ by τp, is shown schematically in Fig. 8.13.

Equation (8.44) is valid for strong intervalley scattering (τivωz � 1), so that the
corresponding fast fluctuation of ωz provokes a motional narrowing of the in-plane
spin precession and an inverse dependence of τs,‖ on τiv. In contrast, in the regime
τiv → ∞, a constant out-of-plane SOC field monitors the time-dependence of the in-
plane components of the precessing electron spin, and one gets

τ−1
s,x = ω2

yτ
∗
p ,

τ−1
s,y = ω2

xτ
∗
p , (8.45)

τ−1
s,z = (ω2

x + ω2
y )τ ∗

p ,

where τ ∗
p = τp/(ω2

z τ
2
p + 1). In the absence of intervalley scattering τs,⊥/τs,‖ = 1/2,

as in Rashba systems (Fabian et al. 2007). To check the above picture numerically the
graphene/TMD system is modeled by the TB form of Eq. (8.39), together with a disorder
term Hdis = ∑

i,s Vdis(#ri) c†
iscis, where c†

is(cis) is the creation (annihilation) operator at
site i with spin s, and Vdis(#ri) is the potential at site i. The disorder is described by
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Figure 8.14 Spin dynamics in the graphene/WSe2 system for (a) strong and (b) negligible
intervalley scattering. The insets show the corresponding anisotropies of spin lifetimes.
(Reproduced with permission from Cummings et al. (2017). Copyright (2017) by the American
Physical Society. Courtesy of A.W. Cummings)

Gaussian-shaped electron–hole puddles with Vdis(#ri) = ∑N
j=1 εjexp(−|#ri − #rj|2/2ξ2),

with the strength εj of each scatterer randomly chosen within [−ε, ε], and with a uniform
width ξ = √

3a (Adam et al. 2011). In the dilute limit, τp and τiv are inversely propor-
tional to the number of scatterers N, while ε controls their relative magnitude (larger ε
giving stronger intervalley scattering) (Ortmann et al. 2011; Zhang et al. 2009). Charge
and spin transport are investigated using the real-space wave packet propagation method
(Cummings, Cresti et al. 2014; Van Tuan et al. 2016). The momentum relaxation time
τp(E) is deduced from the time evolution of the diffusion coefficient D(E, t), while the
spin lifetime is evaluated from the time-dependence of the expectation value of the wave
packet spin #s(E, t), fitting the numerics either to exp(−t/τs,α) or to exp(−t/τs,α) cos(ωzt).
The density of charge scatterers is characterized as a percentage of the number of carbon
atoms, n = N/NC × 100%.

Figure 8.14(a) and (b) show #s for disorder profiles corresponding to intervalley
scattering in the strong limit (defined by the parameters n = 0.1% and ε = 2.8 eV)
and the weak limit (defined as n = 1% and ε = 0.5 eV). The τp obtained for these
disorder parameters have values similar to the experimental estimates (Wang Ki,
et al. 2015, 2016; Yang et al. 2016). For strong intervalley scattering, the in-plane
component of #s decays much more quickly than the out-of-plane component, and spin
precession is suppressed (Fig. 8.14(a) inset). In contrast, in the case with negligible
intervalley scattering the in-plane spin component precesses about the effective spin–
orbit field with frequency ωz = 2λVZ/h̄, and relaxes more slowly than the out-of-plane
component (Fig. 8.14(b) inset). This behavior is consistent with Eqs. (8.44) and (8.45).
A giant anisotropy is reported in the inset of Fig. 8.14(a), with τs,⊥ = 20–200 ps
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and τs,‖ ≈ 1 ps. Actually, the values of τs estimated from Eq. (8.44) well agree
with the numerical simulations and the spin dynamics model. Note that the fit of
τs,‖ assumes a typical intervalley scattering time of τiv = 5τp (Zhang et al. 2009).
Additionally, by increasing the disorder density to n = 1%, τs is rescaled by a factor
of 10, confirming the inverse relationship between τs and τp,iv (not shown here; see
Cummings et al. (2017)). The numerical spin lifetimes in the absence of intervalley
scattering, i.e., when τs,‖ � τs,⊥ yield, as expected, an anisotropy of 1/2 (inset of
Fig. 8.14(b)).

To conclude, the combined presence of the imprinted Rashba and valley-Zeeman
SOC lead to a peculiar spin texture of graphene electronic states, which in situation
of strong intervalley scattering largely enhance spin randomization, but only of the in-
plane spin component. In the DP regime, the relaxation rates of the out-of-plane and
in-plane spins can be actually written generally as

(
τ⊥

s

)−1 =
(

2
ak�PIA ± λR

h̄

)2
τp,

(
τ ‖

s

)−1 =
(

2λVZ

h̄

)2
τiv + 1

2

(
τ⊥

s

)−1
. (8.46)

The out-of-plane spin thus follows a typical Rashba-induced relaxation process, with
an electron–hole asymmetric behavior that originates from the PIA SOC. Meanwhile,
because τiv > τp by definition and typically λVZ > λR, the in-plane relaxation rate is
dominated by the valley-Zeeman SOC, and converges to the typical Rashba behavior
only when intervalley scattering or valley-Zeeman SOC are absent. Experimentally, the
effect of PIA has not been observed, which could be an indication that in real systems
this effect is somehow suppressed. For that reason, it can be neglected in the final
expression for the spin lifetime anisotropy considering only Rashba and valley-Zeeman
SOC (Garcia et al. 2018)

ζ ≡ τ⊥
s

τ
‖
s

≈
(
λVZ

λR

)2 (
τiv

τp

)
+ 1

2
. (8.47)

Those results have been confirmed by a microscopic theory of spin dynamics
in weakly disordered graphene with uniform proximity-induced SOC in which a
time-dependent perturbative treatment is employed to derive the spin Bloch equa-
tions (Offidani & Ferreira 2018), and also verified experimentally (Benitez et al.
2018; Ghiasi et al. 2017), therefore standing as a smoking gun of large SOC prox-
imity effects induced in graphene by strong SOC materials. Finally, the theoret-
ical possibility to tune, by gate voltage, such spin current anisotropy has been
predicted in graphene/topological insulators heterostructures (Song et al. 2018), and
then realized in bilayer and monolayer graphene/TMDs structures (Xu et al. 2018;
Leutenantsmeyer et al. 2018).
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8.6 Spin Hall Effect

8.6.1 Introductory Picture and Basics

Let us first present an instructive spin phenomenon, which takes place when an electron
beam crosses a spatial region where an inhomogeneous magnetic field is applied. This
effect (Zeeman effect) was historically measured by Stern-Gerlach, and through this
they confirmed the existence of the electron spin intitially proposed by W. Pauli (Gerlach
& Stern 1922). This phenomenon, which leads to a magnetic field–driven spin separa-
tion of propagating electrons (driven by an electric field), can be derived easily assuming
that incoming electronic wave packets will encounter a spatial region determined by an
inhomogeneous magnetic field; for instance Bz = B0 + β · z. Then the wave packet
spin component (with generic form |�0〉 = a|⇑z〉 + b|⇓z〉) will become sensitive to
the magnetic field once crossing the corresponding region. This interaction between
spin and magnetic field is described by a new Hamiltonian term as H = −μ0#S · #B or
H = −μ0Bzσz. This leads to

H =
[ −μ0(B0 + β · z) 0

0 +μ0(B0 + β · z)

]
=
[

C(z) 0
0 −C(z))

]
which can be easily diagonalized with solutions H|⇑z〉 = C(z)|⇑z〉 and H|⇓z〉 =
−C(z)|⇓z〉, and thus the time evolution of the wave packet can be written as
|�(t)〉 = e−iHt/h̄|�0〉 or |�(t)〉 = ae−iC(z)t/h̄|⇑z〉 + be+iC(z)t/h̄|⇓z〉. Accordingly, the
probability to measure up-spin becomes larger, for z > 0 which is modulated by
e+iμ0B0t/h̄e+iμ0βzt/h̄| ⇑z〉, while the probability to measure down-spin becomes larger
for z < 0 which is modulated by e−iμ0B0t/h̄e−iμ0βzt/h̄|⇓z〉, defining k⇑

z = +μoβt/h̄ and
k⇓

z = −μoβt/h̄. This shows that the magnetic field separates the incoming electrons
according to their spin polarization, and if a screen is placed on the trajectory of the
electron beam, the observed splitting on the screen is a direct proof of the existence and
peculiarity of the spin degree of freedom.

The spin Hall effect (SHE) has a similar origin, but here the effective (inhomoge-
neous) magnetic field stems from SOC effects. When electrons propagate under the
action of an electric field in a strong SOC material (either due to internal symmetry or
SOC-dependent impurities), then a spin-dependent Lorentz force leads to the appear-
ance of spin accumulation on the lateral surfaces (i.e., signs of the spin directions being
opposite on the opposing boundaries) (Dyakonov & Perel 1971c; D’yakonov & Perel’
1971d; Hirsch 1999; Sinova et al. 2015; Zhang 2000). More precisely, SHE can be
generated by two main microscopic mechanisms, the first one being an extrinsic mech-
anism driven by a spin-dependent Mott scattering, where carriers with opposite spin
diffuse in opposite directions when colliding with material imperfections or impurities,
whereas the second driving force is intrinsic to the internal SOC symmetries of materials
lacking inversion symmetry (generally small bandgap semiconductors). The intrinsic
SHE is often presented in analogy with the Magnus effect for which a spinning ball in
air deviates from its straight path in a direction depending on the sense of rotation. In
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Figure 8.15 Illustration of the direct and inverse SHE, assuming example of 2D system like
graphene within the xy-plane: (a) in the direct SHE, conventional unpolarized charge current I1
generates transverse pure spin current ISz

2 or spin accumulation (when transverse leads are
removed) of opposite sign at opposite lateral edges; (b) in the inverse SHE, pure spin current
ISz
1 generates transverse charge current I2 or voltage V2V3 in an open circuit. (Reproduced from

Cresti et al. (2016), with kind permission of Società Italiana di Fisica. Courtesy of B. Nikolić)

SHE the analog of the air is an effective internal electric field, and the relative motion
between the magnetic moment (associated to the spin) and the electric field generates
a spin-dependent distortion of the electron trajectories. A clear interest and advantage
of SHE is that one can then manipulate spin by electrical means without the use of
ferromagnetic materials or real magnetic fields.

The first experimental confirmation of SHE was obtained by optical techniques prob-
ing spin accumulation in semiconductors (Kato et al. 2004; Wunderlich et al. 2005),
but soon after, evidence for room temperature SHE was directly obtained by elec-
trical detection, using small (of size ∼ 1 μm), metallic (Hoffmann 2013; Valenzuela
& Tinkham 2006), and semiconductor (Ehlert et al. 2014) samples. Another impor-
tant reciprocal effect is the inverse SHE, occurring when an injected pure spin cur-
rent generates transverse charge current or transverse voltage in an open circuit. The
inverse SHE has become a “standard detector” of pure spin currents (Sinova et al.
2015). The two SHE effects are equivalent to each other due to Onsager reciprocity
relations (Hankiewicz et al. 2005) and are pictured in Fig. 8.15 (using four-terminal
device geometry).

To compare efficiency of SHE-driven conversion of charge into spin in different
materials, one often uses the figure of merit known as the spin Hall angle θsH (SHA)
defined by the ratio of driving charge current and resulting spin current. Assuming that
an injected charge current (defined by I1 = I↑1 +I↓1 �= 0 and ISα

1 = I↑1 −I↓1 = 0) generates
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a pure spin current (defined as ISz
2 = I↑2 − I↓2 �= 0 and I2 = I↑2 + I↓2 = 0) then the SHA

is given by

θsH = ISz
2
I1

. (8.48)

This quantity is dimensionless when using the same units for spin and charge currents,
which are defined in terms of the spin-resolved charge currents I↑, I↓ carrying spins
pointing along the α = {x, y, z}-axis. Note that separated spins are orthogonal to spin
flux, as illustrated in Fig. 8.15 for two-dimensional samples. The definition in Eq.
(8.48) is suitable for calculations based on the Landauer-Büttiker (LB) formula while
for calculations based on the Kubo formula for bulk conductivities the SHA is written
as (Cresti et al. 2016)

θsH = σ z
xy

σxx
, (8.49)

where σ z
xy is the SH conductivity and σxx is the longitudinal charge conductivity. From

the expression above, it is clear that the evaluation of SH from a bulk formula supposes
that the system is in a diffusive regime so that Kubo conductivities have finite values,
and one has to remark that one cannot make SHA arbitrarily large by reducing σxx with
more and more disorder and defects since what drives the formation of the spin current
should also be connected to the source of dissipation, so the applicability range of
Eq. (8.49) is limited.

In the experimental literature, the highest reported values for θsH are typically in the
order of ∼10−4 for semiconductors and increase up to ∼0.01 for metals like Pt and
∼0.1 for metals like β-Ta and β-W (Sinova et al. 2015). The use of graphene and other
two-dimensional materials to increase θsH has been the subject of intense discussion and
controversies. Below we summarize the main results.

8.6.2 Enhanced SHE in Graphene?

In 2013, combining direct and inverse SHE, Balakrishnan et al. (2013, 2014) performed
all electrical nonlocal measurements in chemically modified graphene devices. From
the analysis of their data, they extracted a very large value θsH � 0.2–0.9 suggesting
a giant SHE. This experiment has attracted a lot of attention but has also raised seri-
ous concerns. Indeed these experiments have utilized heavy adatoms like Cu, Au, Ag
(Balakrishnan et al. 2014) or even light adatoms like hydrogen (Balakrishnan et al. 2013)
and fluorine (Avsar et al. 2015) in order to locally enhance SOC in the graphene region
surrounding the adatom. This method of enhancing SOC in graphene seems difficult
to control and the observation of very similar results for quite different adsorbants is
puzzling.

The report of SHE for hydrogenated graphene was actually severely questioned by
other groups (Kaverzin & van Wees 2015; Wang, Cai et al. 2015), and recently nonlocal
measurements in the H-bar geometry also evidenced a large nonlocal resistance, but
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Figure 8.16 (a) Optical image of a typical graphene/Pt spin device. The two Co wires (150 and
200 nm wide) and two Pt wires (150 nm wide) located at the right side constitute the reference
device for standard Hanle measurements. The Pt wires in the middle and in the extreme right are
used to perform the spin Hall measurements. (b) Standard Hanle measurement obtained for the
parallel and antiparallel magnetic state of the reference device at room temperature. The
continuous line shows the best fitting of the data from which the spin-dependent parameters of
graphene are extracted. ((c), (d)) Probe configurations and corresponding experimental results
obtained at room temperature for the SHE (light gray curve in (c)) and ISHE at Vg = 0 in a
device for which the channel length is 4 μm. The ISHE measurements in (d) show the
dependence of the signal on the orientation of the magnetization M, of the injector, light gray for
upwards magnetization and dark gray for downwards magnetization. In all the measurements,
the magnetic field B is applied out of the sample plane. For clarity, small background signals
have been extracted from the experimental results in (c) (8.5 m�) and (d) (13.5 m�). (Figure
adapted from Torres et al. (2017), by courtesy of W. Savero Torres)

not sensitive to an applied in-plane magnetic field (Völkl et al. 2018). Additionally, the
measured inverse SHE by electrical spin injection failed to confirm large spin Hall angle
suggested by the SHE interpretation of the nonlocal measurements (Balakrishnan et al.
2013). Finally, a more rigorous theoretical derivation also supports a much smaller SHA,
and therefore all results definitely indicate that the large nonlocal resistance obtained in
hydrogenated graphene samples is not caused by a spin-related origin (Balakrishnan
et al. 2013; Völkl et al. 2018).
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Figure 8.17 Left panel: Spin Hall conductivity for various graphene/TMD heterostructures. Inset:
scaling of the θsH with intervalley scattering strength for WS2 (Garcia et al. 2017, 2018.
Courtesy of J.H. Garcia.) Right panel (main frame): Nonlocal spin-to-charge conversion curves
obtained by applying a charge current between Co electrode 3 and the right Ti/Au electrode and
measuring the voltage across the graphene/MoS2 stripe. The magnetic field is applied along the
in-plane hard-axis direction (Bx) for initial positive (black) and negative (white symbols)
magnetization directions of the Co electrodes. (Inset top right): Sketch of proximity-induced
SHE in graphene. A charge current applied along the graphene/MoS2 stripe (y-axis) results in a
spin current with out-of-plane (along z) spin polarization in the graphene channel along x.
Bottom left inset: Optical microscope image of one device. It contains graphene shaped into two
Hall bars connected each other. The ends of the graphene stripes are connected to Ti/Au contacts.
The MoS2 flake lies on one of the graphene Hall bars. Four Co/TiOx electrodes are placed on top
of graphene. (Adapted with permission from Safeer et al. (2019). Copyright (2019) American
Chemical Society. Courtesy of F. Casanova)

In monolayer graphene/Pt devices, Savero Torres et al. reported a two-order of
magnitude enhancement of the spin Hall signal when compared to their fully metallic
counterparts. The enhancement stems from an unusually large effective SHA of up
to 0.15 in combination with efficient spin injection and the large spin resistance of
graphene (see Fig. 8.16). The later leads to the observation of 100% spin absorption in
Pt observed when graphene is in monolayer form. The analytical model proposed in this
work shows that the effective spin relaxation time in graphene can be accurately deter-
mined using the (inverse) SHE as a means of detection (Torres et al. 2017). Additionally,
the possibility for obtaining SHE induced by proximity effect in graphene/TMD has
been also studied experimentally (Avsar et al. 2014) and theoretically in Garcia et al.
(2017, 2018). By using real-space methodology to compute σ z

xy and σxx, θsH as large
as 1%−10% was predicted for graphene/WS2 heterostructures, and for a Fermi level
nearby the Dirac point (see Fig. 8.17, left panel).

A more convincing experimental evidence of SHE in graphene/TMD has finally been
reported (Safeer et al. 2019), indicating that there are many rooms at the interface
between graphene and strong SOC two-dimensional materials to tailor the spin trans-
port physics and the generation of large (pure) spin currents. Figure 8.17 (right panel)
shows antisymmetric Hanle curves, which reverse by switching the initial magnetization
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direction. This confirms that, at the graphene/MoS2 region, the out-of-plane spins are
converted into a charge current, which in open circuit condition gives rise to a nonlocal
resistance (Safeer et al. 2019). We note that an unambiguous demonstration of tun-
able room-temperature spin galvanic and spin Hall effects in graphene/WS2 has been
reported (Antonio Benı́tez et al.).

8.7 Spin Transport Formalism and Computational Methodologies

Hereafter we present the developed computational methodologies to follow the time
evolution of the spin polarization using real-space approach (van Tuan 2016). To include
spin in the wavefunction we use the two-component spinor to represent the spin wave-
function

|�〉 =
(
�↑
�↓

)
(8.50)

And the random-phase state used to obtain maximum computational efficiency

|�RP〉 = 1√
N

N∑
i=1

⎛⎝ cos
(
θi
2

)
eiΦi sin

(
θi
2

)⎞⎠ e2iπαi |i〉, (8.51)

where (Φi, θi) is the spin orientation of electron of orbital |i〉 in spin spherical coordinate
system

The spin dynamics of the system are then directly related to the time-dependence of
spin polarization S(t), which can be given by the expectation value of the spin Pauli
operator.

S(t) = 〈σ (t)〉 = 〈ψ(0)|σ (t)|ψ(0)〉 (8.52)

where σ (t) = e
iĤt
h̄ σe

−iĤt
h̄ is the spin operator in Heisenberg representation. However, this

expectation gives the spin polarization for the whole spectrum, which is not meaningful.
Finding the expectation value at a specific energy is more important. In order to do so,

Figure 8.18 Spherical coordinate system (Bloch sphere) for describing the spin polarization in real
space.



8.7 Spin Transport Formalism and Computational Methodologies 275

we use the formula for quantum average of any operator at a given energy

S(E, t) =
Tr
[
δ(E − Ĥ)σ (t)

]
Tr
[
δ(E − Ĥ)

] =
Tr
[
δ(E − Ĥ)σ (t) + σ (t)δ(E − Ĥ)

]
2Tr

[
δ(E − Ĥ)

] (8.53)

Approximating the trace by expectation values on random-phase states |ψ(0)〉 =|ϕRP〉
is the strategy to get a faster calculation.

S(E, t) = 〈ψ(0)|δ(E − Ĥ)σ (t) + σ (t)δ(E − Ĥ)|ψ(0)〉
2〈ψ(0)|δ(E − Ĥ)|ψ(0)〉 (8.54)

= 〈ψ(t)|δ(E − Ĥ)σ + σ δ(E − Ĥ)|ψ(t)〉
2〈ψ(0)|δ(E − Ĥ)|ψ(0)〉 (8.55)

where the time evolution of the wave packets |ψ(t)〉 = e
−iĤt

h̄ |ψ(0)〉 is obtained by
solving the time-dependent Schrödinger equation. This is the equation we use for the
calculation of spin polarization.

Let’s denote the quantity in the numerator of Eq. (8.55) as

P(E, t) = 〈ψ(t)|σδ(E − Ĥ)|ψ(t)〉 (8.56)

Equation (8.55) becomes

S(E, t) = �e (P(E, t))
〈ψ(0)|δ(E − Ĥ)|ψ(0)〉 (8.57)

The denominator is directly proportional to the density of states ρ(E) and can be
computed by the real-space method while the numerator can be calculated by including
the energy resolution η

P(E, t) = 〈
ψ(t)|σ δ(E − Ĥ)|ψ(t)

〉
=
〈
ψ(t)|σ 1

2π

[
1

η − i(E − Ĥ)
+ 1
η + i(E − Ĥ)

]
|ψ(t)

〉
= 1

2π

∑
j

〈
ψ(t)|σ |φj

〉 〈
φj|

[
1

η − i(E − Ĥ)
+ 1
η + i(E − Ĥ)

]
|ψ(t)

〉

= i
2π

∑
j

μj

〈
φj|

[
1

E + iη − Ĥ
− 1

E − iη − Ĥ

]
|ψ(t)

〉

P(E, t) = i
2π

∑
j

μj

[〈
φj| 1

z − Ĥ
|ψ(t)

〉
−
〈
φj| 1

z∗ − Ĥ
|ψ(t)

〉]

where μj = 〈ψ(t)|σ |φj〉 with any complete basic set {|φj〉} and z = E + iη.
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By building an orthonormal basis with the Lanczos method (see Appendix B), begin-
ning with |φ1〉 =|ψ(t)〉, we have

P(E, t) = i
2π

∑
j=1

μj

[(
1

z − H

)
j,1

−
(

1
z∗ − H

)
j,1

]
(8.58)

where H is the tridiagonal matrix of Ĥ in the Lanczos basis

H = (
Hij

) =

⎛⎜⎜⎜⎜⎝
a1 b1 0 · · ·
b1 a2 b2

0 b2 a3 · · ·
...

...
. . .

⎞⎟⎟⎟⎟⎠ (8.59)

Now to get a solution, we need to compute the first column of the inverted matrices
z − H and z∗ − H, which we call κ and κ , respectively

(z − H)K = 1 ⇒
∑

n
(z − H)mnκn = δm1 (8.60)

writing Eq. (8.60) explicitly

(z − H11)κ1 − H12κ2 = 1

−H21κ1 + (z − H22)κ2 − H23κ3 = 0

...

−Hn,n−1κn−1 + (z − Hnn)κn − Hn,n+1κn+1 = 0

From κ1 we can get the others

κ2 = (z − H11)κ1 − 1
H12

κ3 = (z − H22)κ2 − H21κ1

H23

...

κn = (z − Hn−1,n−1)κn−1 − Hn−1,n−2κn−2

Hn−1,n

We can do the same for κ just by replacing z by z∗. Using the fact that κ1 = κ∗
1 , we can

show that κ j = κ∗
j . Finally, we get the formula for Eq. (8.58)

P(E, t) = i
2π

∑
j=1

μj
[
κj − κ j

]
P(E, t) = − 1

π

∑
j=1

μj!m
(
κj
)

(8.61)
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Substituting this formula into Eq. (8.57) leads to the final expression for spin
polarization

S(E, t) = − 1
π�ρ(E)

∑
j=1

�e
(
μj
)!m

(
κj
)

. (8.62)

8.8 Further Reading

• On graphene spintronics, see Han et al. (2014) and Roche et al. (2015).
• On spin Hall effects and nonlocal measurements, see Sinova et al. (2015) and

Valenzuela (2009).



9 Quantum Transport beyond DC

In this chapter, we give a taste of quantum transport beyond direct current (DC)
conditions, when time-dependent potentials are applied to a device. Our main focus
is on Floquet theory, one of the most useful approaches for driven systems. Section
9.4 is devoted to an overview of some of the most recent advances on driven transport
in graphene-related materials, while Section 9.5 presents an illustrative application to
laser-illuminated graphene.

9.1 Introduction: Why AC Fields?

Though less explored, quantum transport beyond the DC conditions considered in pre-
vious sections also offers fascinating opportunities. Alternating current (AC) fields such
as alternating gate voltages, alternating bias voltages, or illumination with a laser can be
used to achieve control of the electrical response (current and noise), thereby providing
a novel road for applications. Furthermore, there are many novel phenomena unique to
the presence of AC fields such as quantum charge pumping (Altshuler & Glazman 1999;
Büttiker and Moskalets 2006; Switkes et al. 1999; Thouless 1983), i.e., the generation
of a DC current even in the absence of a bias voltage due to quantum interference,1

coherent destruction of tunneling (Grossmann et al. 1991), or laser-induced topological
insulators (Kitagawa et al. 2011; Lindner et al. 2011).

The activity in this area has grown rapidly in the arena of nanoscale systems (Kohler
et al. 2005; Platero & Aguado 2004). Notwithstanding, it was not until the last few years
that advances in the applications to graphene-related systems started to flourish. (See the
overview in Section 9.4.)

Let us consider the two paradigmatic situations schematized in Fig. 9.1, namely a
graphene device with two time-dependent gate voltages applied to different parts of
the sample (a) or subjected to laser illumination (b). In both situations, the electronic
excitations can be modeled through a time-dependent Hamiltonian of the general form:

Ĥ(t) = Ĥ0 + Ĥ1(t). (9.1)

1 For a closed system, the generation of a circulating current is called “quantum stirring” (Sela & Cohen
2008).
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Figure 9.1 Two paradigmatic situations of transport beyond the DC limit: a graphene sample
contacted between two electrodes in the presence of (a) two AC gates in the sample region
(represented by shaded areas) and (b) laser illumination applied perpendicularly to the
graphene plane.

In the first case, a simple model of the alternating gates would be to add a harmonic
modulation of the site energies in a tight-binding Hamiltonian (Foa Torres and Cunib-
erti 2009; Orellana & Pacheco 2007), whereas in the second case laser illumination
can be included through a time-dependent vector potential (Calvo et al. 2011; Oka &
Aoki 2009; Syzranov et al. 2008).

This time dependence renders the usual separation of space and time variables
inapplicable, thereby making the calculation of the transport response more cum-
bersome. For the particular case of time-periodic Hamiltonians, one can exploit the
time periodicity to achieve elegant and simple solutions, as shown in Section 9.3.
Furthermore, if the time variation is sufficiently slow one may use the appealing
adiabatic theory mentioned in Section 9.2.

9.2 Adiabatic Approximation

To obtain meaningful approximations, two relevant timescales need to be weighted:
the electronic traversal time through the sample τD and the period of the time-periodic
potential T. If τD is much shorter than T, the Hamiltonian is effectively static during the
electrons’ trip through the device. The corrections due to the slow time dependence of
the potential can be calculated through the “adiabatic” theory (Brouwer 1998; Büttiker
et al. 1994; Entin-Wohlman et al. 2002; Kashcheyevs et al. 2004).

Within this framework, the current which flows in response to a cyclic variation
of a set Xj of device-control parameters is expressed in terms of the scattering matrix
S(Xj) of the system (Brouwer 1998; Büttiker et al. 1994). Since the scattering matrix
S(Xj) is calculated for a stationary situation where the potentials are frozen at time t, the
response of the system is assumed to depend on time only through the parametric time-
dependence Xj(t). In general, the current will contain a component due to the bias voltage
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as well as a component which survives even for vanishing bias voltage (Brouwer 1998).
This last component is called the pumped current, while the first one is a generalization
of the Landauer current (Entin-Wohlman et al. 2002).

This approximation works reasonably well for alternating gates where the achievable
frequencies determine an energy scale h̄�, which is much smaller than all the other
energy scales in the problem (100 GHz correspond to a photon energy of 0.41 meV,
which in turn matches kBT for a temperature of 4.75 K). Some illustrations of its use
in graphene-related materials can be found in Prada et al. (2009) and Zhu and Chen
(2009) and references therein. In situations where the leading-order (adiabatic) correc-
tion vanishes, going beyond the adiabatic approximation becomes crucial (Foa Torres
et al. 2011; San-Jose et al. 2011; Zhou & Wu 2012).

9.3 Floquet Theory

Floquet theory (Kohler et al. 2005; Sambe 1973; Shirley 1965) is based on the appli-
cation of a theorem due to Gaston Floquet to obtain the solutions of the Schrödinger
equation with a time-periodic potential.

Formulated long before Bloch’s theorem, Floquet’s theorem (Floquet 1883) can be
thought of as its analog for time-periodic (instead of space-periodic) Hamiltonians.
Given a Hamiltonian with a time period T, there is a complete set of solutions of the
form

ψα(r, t) = exp(−iεαt/h̄)φα(r, t), (9.2)

where εα are the quasienergies and φα(r, t+T) = φα(r, t) are the Floquet states. It can be
shown that Floquet states corresponding to quasienergies differing in an integer multiple
of h̄� are physically equivalent, i.e., linearly dependent, and therefore only states within
−h̄�/2 ≤ εα < h̄�/2 need to be considered. This is the analog of the first Brillouin
zone when using Bloch’s theorem. Furthermore, one notices that the states given by
Eq. (9.2) separate the slow dynamics (contained in the exponential factor) from the fast
dynamics (given by Floquet states φα(r, t)).

Replacing the solutions given by Eq. (9.2) into the time-dependent Schrödinger equa-
tion (TDSE) gives [

Ĥ(r, t) − ih̄
∂

∂t

]
φα(r, t) = εαφα(r, t). (9.3)

This equation has the same form as the usual time-independent Schrödinger equation
but with two main differences:

(1) Equation (9.3) is an eigenvalue problem in Floquet space R ⊗ T , where R is
the usual Hilbert space and T is the space of periodic functions with period
T = 2π/�. The Fourier space T is spanned by the set of orthonormal vectors
〈t |n〉 ≡ exp(in�t), where n is an integer. If |i〉 is a basis for R, a suitable basis for
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Figure 9.2 (a) By using Floquet theory, the TDSE is mapped to an equivalent time-independent
problem in a higher dimensional space. This scheme shows a monochromatically driven
graphene sample along with the replicas corresponding to up to ±1 photon excitations. Though
formally the number of replicas is infinite, in practice, the (T ) space is truncated until
convergence of the desired response function is achieved. (b) Floquet Hamiltonian in matrix
form with blocks defined according to the number of “photon” excitations n, m.
H(n) = 1

T
∫ T

0 dtHe−in�t is the nth Fourier component of the Hamiltonian.

Floquet space (Sambe 1973) is {|i, n〉 ≡ |i〉 ⊗ |n〉}. The index n can be assimilated
to the number of “photon” excitations (or modulation quanta) in the system as
noted by Shirley (1965).

(2) The role of the Hamiltonian is played by the Floquet Hamiltonian

ĤF = Ĥ − ih̄
∂

∂t
, (9.4)

whose matrix elements in Floquet space are given by

〈i, m| ĤF | j, n〉 = 1
T

∫ T

0
dt 〈i| Ĥ |j〉 e−i(n−m)�t + nh̄�δn,m. (9.5)

Therefore, the time-dependent problem has been mapped to a time-independent one
in a higher dimensional space (as represented in Fig. 9.2(a)). The diagonal elements
of the Hamiltonian take into account the number of “photons” in the system while
the matrix elements connecting the different states are determined by the Fourier
components of the time-dependent potential. The Floquet Hamiltonian can be cast
in the block-matrix form shown schematically in Fig. 9.2(b).

9.3.1 Average Current and Density of States

To obtain the current through the device one may assume: (i) noninteracting electrons,
(ii) a harmonic time-dependent field limited to a finite region of the sample, and (iii) a
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sample connected to semi-infinite electrodes where thermalization takes place. Under
these assumptions, a coherent calculation gives an appealing expression for the time-
averaged current (Kohler et al. 2005):

Ī = 1
T

∫ T

0
dt I(t) = 2e

h
∑

n

∫ [
T(n)

R, L(ε)fL(ε) − T (n)
L, R(ε)fR(ε)

]
dε, (9.6)

where T(n)
R,L(ε) is the probability for an electron on the left (L) with energy ε to be

transmitted to the right (R) reservoir while exchanging n photons. These probabilities
are weighted by the usual Fermi–Dirac distribution functions fR(L) for each electrode.

To compute the transmission probabilities between the different inelastic channels,
as needed to obtain the total current, Eq. (9.6), we may relate them to the Floquet–
Green function (see also Foa Torres 2005; Martinez 2003), the Green’s functions for the
Floquet Hamiltonian, GF = (εI−HF)−1, in a way similar to the usual scattering theory
(Kohler et al. 2005; Stefanucci et al. 2008):

T (n)
R, L(ε) = Tr

[

R,n(ε)G(R, n),(L,0)(ε)
L,0(ε)G†

(R,n),(L,0)(ε)
]

, (9.7)

where G(R,n),(L,0)(ε) is the block matrix for the Floquet–Green function connecting the
left and right electrodes with the exchange of n photons. Note that the subindex F
was omitted to simplify the notation. The escape rates to the electrodes now take into
the account the different possible elastic and inelastic channels through the additional
subindex n:


α,n(ε) = i
[
�α(ε + nh̄�) −�†

α(ε + nh̄�)
]

, (9.8)

where �α(ε) is the usual retarded self-energy correction due to electrode α = L, R.2 In
a multiterminal configuration as typical for measuring the Hall response, special care
needs to be taken as the presence of pumping currents might affect the calculation,
see Foa Torres et al. (2014).

For an expression of the noise as characterized by the zeroth moment of the current–
current correlation function, we refer to Kohler et al. (2005). For noninteracting systems,
this formalism gives results equivalent to those of the nonequilibrium Green’s function
(Keldysh) formalism (Arrachea & Moskalets 2006).

In the presence of an AC field, one may compute the DC component of the spectral
function. This time-averaged density of states is given by (Oka & Aoki 2009; Zhou &
Wu 2011)

DOS(ε) = − 1
π

lim
η→0+

Im

[∑
i

〈i, 0| GF(ε + iη) |i, 0〉
]

, (9.9)

which is the trace of the Floquet–Green function restricted to the block corresponding
to zero photons.

2 A derivation of Eq. (9.7) in this multichannel case can be found in the appendix of Stefanucci et al. (2008).



9.3 Floquet Theory 283

It is important to note that a truncation of Floquet space is needed to compute these
probabilities. Indeed, one considers only the Floquet states | j, n〉 within some range for
n, i.e., |n| ≤ Nmax. This range can be successively expanded until the answer converges,
giving thus a variational (non-perturbative) method. The case of an AC bias may seem
difficult to handle within this scheme, since it introduces a modulation not restricted to
the sample. However, one can use a suitable gauge transformation to map an AC bias
voltage into a time-dependent field acting on the borders of the sample region (Kohler
et al. 2005).

9.3.2 Homogeneous Driving and the Tien–Gordon Model

If the time-dependent field is applied homogeneously to the sample, i.e.,

Ĥsample(r) = Ĥ0
sample(r, t) + eVac cos(�t)Î, (9.10)

a separation of the space and time variables in the time-dependent Schrödinger equation
is still possible (Platero & Aguado 2004):

ψ(r, t) = ψ0(r, t) exp(−ie(Vac/h̄�) sin(�t)), (9.11)

where ψ0(r, t) are the solutions in the absence of the time-dependent potential. By
expanding the complex exponential in Fourier series,

e−i(eVac/h̄�) sin(�t) =
∑

n
Jn

(
eVac

h̄�

)
ein�t, (9.12)

one already has the solutions in the Floquet form (Kohler et al. 2005). After some
algebra one gets

Ī = 2e
h
∑

n

∣∣∣∣Jn

(
eVac

h̄�

)∣∣∣∣2 ∫ T(ε)( fL(ε) − fR(ε))dε. (9.13)

Here T = TR, L = TL, R is the transmission in the absence of driving force. This has
the same form as the solution proposed by Tien and Gordon (1963) to describe photon-
assisted processes. Note that if inversion symmetry is broken, (x → − x) TR, L �= TL, R,
and therefore there could be a pumped charge even with only one time-dependent
parameter.3 This is called single-parameter pumping (or monoparametric pumping) and
requires going beyond the adiabatic approximation (which gives a vanishing response
in such a case).4

3 As a side note, we point out a recent work reexamining the photocurrents induced when illuminating
noncentrosymmetric materials (in the absence of any bias voltage) from the viewpoint of quantum
pumping (Bajpai et al. 2019).

4 See, for example, Moskalets and Büttiker (2002), Foa Torres (2005), Kaestner et al. (2008).
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9.3.3 Time-Evolution Operator

In the general case of a time-dependent Hamiltonian, the time-evolution operator
Û (t, t0) (defined such that Û (t, 0)ψ(t0 = 0) = ψ(t)) can be written as

Û (t, 0) = T exp
(

− i
h̄

∫ t

0
dt Ĥ(t)

)
, (9.14)

where T is the time-ordering operator. When the Hamiltonian is time-periodic, Ĥ(t +
nT) = Ĥ(t) (n an integer), the time-evolution operator shares the same time periodicity.
Therefore, knowing the time-evolution operator at one driving period allows building a
map into the evolved states ψ(t = nT) at any integer multiple of T, however large is n.
Indeed,

Û (nT, 0) = T
n∏
0

exp
(

− i
h̄

∫ T

0
dt Ĥ(t)

)
(9.15)

=
n∏
0

T exp
(

− i
h̄

∫ T

0
dt Ĥ(t)

)
(9.16)

=
[
Û (T, 0)

]n
, (9.17)

where in the second line one uses the fact that since the Hamiltonian is T-periodic,
the terms in the product are equal and therefore commute, allowing the time-ordering
operator to be brought inside the product.

Furthermore, it can be shown that Û(T, 0) is related in a striking way to the Floquet
Hamiltonian:

Û (T, 0) = exp
(

− i
h̄
ĤFT

)
, (9.18)

i.e., a Floquet state with quasienergy εα acquires a phase exp(−iεαT/h̄) after one
period T. Hence, if one wants to compute the stroboscopic evolution of a system with
a T-periodic Hamiltonian at times t = nT, it can be done just as for time-independent
Hamiltonians, but the role of the stationary eigenfunction is now played by the Floquet
states and instead of the Hamiltonian one needs to use the Floquet Hamiltonian.

9.4 Overview of AC Transport in Carbon-Based Devices

Interest in AC transport in carbon-based devices has been inspired by diverse sources:
from developing new methods able to cope with more atoms or give the full time-
dependent response (in contrast with time-averaged values) (Perfetto et al. 2010;
Stefanucci et al. 2008), to proposing different setups that exploit the peculiarities of
these materials for enhancing quantum pumping both in the adiabatic (Alos-Palop &
Blaauboer 2011; Grichuk & Manykin 2010; Prada et al. 2009; Zhu & Chen 2009) and
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nonadiabatic regimes (Foa Torres et al. 2011; San-Jose et al. 2011; Zhou & Wu 2012),5

to finding new ways of generating backscattering in spite of Klein tunneling effects
in graphene (Savelev et al. 2012)6 or even the generation and control of laser-induced
topological states in a monolayer (Gu et al. 2011; Kitagawa et al. 2011; Perez-Piskunow
et al. 2014; Usaj et al. 2014) and bilayer graphene (Suárez Morell & Foa Torres 2012).
Although most of the work in these issues has been theoretical, there are already several
experiments available. Quantum pumping, for example, has been studied in carbon
nanotubes (Leek et al. 2005) and more recently also in graphene (Conolly et al. 2013)
where it promises to close the metrological triangle by allowing us to redefine the
ampere. A related ratchet effect probing inversion symmetry breaking due to substrate
or adatoms has also been probed recently (Drexler et al. 2013). The role of defects
in AC transport through graphene-based materials is an important issue that requires
further progress. In the context of adiabatic quantum pumping, the role of topological
defects was examined in Ingaramo and Foa Torres (2013).

A strong momentum to this area is also expected to come from the experimental com-
munity working on laser-induced effects and nanophotonics. We refer to Bonaccorso
et al. (2010) and Glazov and Ganichev (2013).

Floquet theory, in particular, has been applied to a variety of carbon-based devices
including Fabry–Pérot interferometers with AC gating (Foa Torres and Cuniberti
2009; Rocha et al. 2010) and nonadiabatic quantum pumps (Foa Torres et al. 2011;
San-Jose et al. 2011; Zhou & Wu 2012). Another example is developed in more
detail in Section 9.5, where the captivating possibility of opening a bandgap in
graphene through illumination with a laser field (Calvo et al. 2011; Oka & Aoki 2009;
Syzranov et al. 2008) is discussed.

Further theoretical studies propose new ways of achieving states akin to those of
a topological insulator through laser illumination, a Floquet topological insulator
(Cayssol et al. 2013, Kitagawa et al. 2011; Lindner et al. 2011; Perez-Piskunow et al.
2014). A topological insulator (Hasan & Kane 2010) exhibits a bulk bandgap as for
a usual insulator, but has surface or edge states which are gapless and protected by
time-reversal symmetry. These states turn out to be insensitive to smooth changes in
the potential or disorder. To date, the materials exhibiting topological properties are
scarce and the ability to control their transport features is very challenging and limited
(Hasan & Kane 2010). Being able to change the topological properties in the same
material by using a laser field could open fascinating doors for novel ways of controlling
electronic states of matter (Lindner et al. 2011), particularly in graphene devices (both
monolayer (Kitagawa et al. 2011; Perez-Piskunow et al. 2014) and bilayer graphene
(Suárez Morell & Foa Torres 2012)). The description of the topological properties of a
system with a time-dependent Hamiltonian, however, remains a challenging technical
task (Rudner et al. 2013). One of the proposals (Kitagawa et al. 2011) is building

5 The issue of quantum pumping in graphene nanomechanical resonators is also discussed in Low
et al. (2012).

6 Savelev et al. (2012) offer a solution for the problem of an arbitrary spacetime-dependent scalar potential.
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an effective time-independent Hamiltonian, chosen so that its dynamics mimics one
of the time-dependent system at t = n × T (T being the period of the field). Using
this stroboscopic picture, the topological properties result from applying the usual
classification for time-independent systems to the effective Hamiltonian. Many more
questions, however, remain open: Is it possible to produce laser-induced protected states
in graphene in an experimentally relevant regime? What is the nature of those states and
how robust are their conduction properties?

Perez-Piskunow et al. (2014) advance in this direction by presenting the first analyti-
cal solution and a proposal for unveiling “laser-induced chiral edge states” in graphene.
The interplay between spin–orbit interaction and a laser in bulk graphene was explored
in Scholz et al. (2013).

9.5 AC Transport and Laser-Induced Effects on the Electronic
Properties of Graphene

Among the many promising areas sparked by graphene research, graphene photonics
(and optoelectronics) is one of the brightest.7 Since the very beginning, light has been
one of the best tools for noninvasive characterization of carbon-based materials (Jorio
et al. 2011). But light can also be used for achieving useful functions that take advantage
of the extraordinary properties of these materials: from improved energy harvesting8 and
novel plasmonic applications9 to graphene photodetectors (Konstantatos et al. 2012).

Recently, the captivating possibility of controlling the electronic properties of
graphene through simple illumination with a laser field (Kibis 2010; Oka & Aoki
2009; Syzranov et al. 2008) has been examined through atomistic calculations (Calvo
et al. 2011, 2012), calculations of the optical response (Busl et al. 2012; Zhou & Wu
2011), among other interesting issues (Abergel & Chakraborty 2009; San-Jose et al.
2012; Savelev & Alexandrov 2011). The basic idea is that laser illumination may couple
states on each side of the Dirac point, inducing a bandgap at energies ±h̄�/2, if the
field intensity and frequency � are appropriately tuned.

Here we analyze this in more detail following recent studies (Calvo et al. 2011, 2012;
Oka & Aoki 2009). We start by considering an electromagnetic field modeled in a semi-
classical approximation: a monochromatic plane wave of frequency � traveling along
the z axis, perpendicular to the plane defined by the graphene sheet (see Fig. 9.3(a)).

By using a Weyl’s gauge, the electromagnetic field is represented through a vector
potential A(t) = (Ax cos(�t) x + Ay cos(�t + φ) y) (the electric field being directly
related to the time derivative of A), where Ax, Ay, and the phase φ can be set to go from
linear to circular polarization. The interaction with the laser field is modeled through the

7 See, for example, Bonaccorso et al. (2010), Xia et al. (2009), Karch et al. (2011).
8 See, for example, Gabor et al. (2011) and the more recent results in Tielrooij et al. (2013).
9 Graphene plasmonics is a blooming field; see, for example, Koppens et al. (2011); Chen et al. (2012).
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Figure 9.3 (a) A graphene sample illuminated by a laser field perpendicular to the graphene plane.
(b) The quasi-energy spectra along a particular k direction. The crossing points including the
first two Floquet replicas are marked with circles. (c–f) Average density of states for (c) linear,
(d) ϕ = 0.125π , (e) ϕ = 0.375π , and (f) circular polarizations taking h̄� = 140 meV. The black
solid line is for I = 32 (mW/μm2), while the gray dashed line corresponds to
I = 130 (mW/μm2). The case in the absence of irradiation is shown with a dash-dotted gray
line for comparison. (Adapted with permission from Calvo et al. (2011). Copyright 2011,
American Institute of Physics.)

Hamiltonian

H(t) = vFσ̂ · [p − eA(t)] , (9.19)

where vF � 106 m/s denotes the Fermi velocity as usual and σ̂ = (σ̂x, σ̂y), the Pauli
matrices describing the pseudospin degree of freedom.

As made clear below, a correct description of our problem crucially requires a solu-
tion valid beyond the adiabatic approximation. Here we can exploit the Floquet theory
introduced in Section 9.3, which is an appropriate approach for such electron–photon
scattering processes. Once the Hamiltonian is defined, one can proceed by computing
the matrix elements of the Floquet Hamiltonian leading to the replica picture discussed
in Section 9.3. This is the basis for the calculation of the transport properties and the
time-averaged DOS. We skip the details here, which are left for Problem 9.4 (more can
be found in Calvo et al. 2013), and discuss some results.
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Figure 9.3(c–f) shows how the time-averaged density of states (DOS) for bulk
graphene changes as the polarization goes from linear to circular. For linear polarization,
one observes a strong depletion for energies close to ±h̄�/2. These depletions evolve
into gaps, called dynamical gaps (Oka & Aoki 2009; Syzranov et al. 2008), for circular
polarization. Furthermore, close to the Dirac, point a mini-gap opens for circular and
elliptic polarizations. A closer scrutiny of these figures shows that the gaps mentioned
are areas with a small negligible DOS in the bulk limit and for the parameter range
explored here.

To rationalize this behavior, one can take advantage of the Floquet picture explained
before. A scheme with the quasienergy spectra close to the Dirac point including
n = 0, ±1 photons is shown in Fig. 9.3(b). The dispersion relation for the states{|k, n〉±

}
for n = 0 is represented with a solid line, while those for n = ±1 are

shown with dashed lines. The effects of the AC field are expected to be stronger at
the crossing points marked with circles, leading to the opening of energy gaps at
those points provided that the Hamiltonian has a nonvanishing matrix element. From
geometrical considerations, one can see that the crossing of the states differing in one
photon lies exactly at ±h̄�/2. These degeneracies are increased by the AC field, leading
to the gaps observed in Fig. 9.3(c–f). Analytical expressions for the dependencies of
these gaps on the field parameters can be obtained in a direct way (Calvo et al. 2011).
While the dynamical gaps depend linearly on the amplitude of the vector potential, this
dependence is quadratic at the mini-gap around zero (which is produced by a virtual
photon emission and reabsorption process).

But, are there any consequences on the conductance? To answer this question, one
can compute the DC component of the conductance within a tight-binding model and
following a transport calculation, such as the one introduced in Section 9.3. The results
are shown in Fig. 9.4 for the case of linearly polarized light along the x direction. In this
case, the calculation for an armchair ribbon can be done in an efficient way by using the
mode decomposition introduced in Section 5.2.2. One can observe that the conductance
also shows an important depletion around the dynamical gaps.

Here, we have chosen the laser wavelength within the mid-infrared region, i.e.,
λ � 9μm. A careful analysis (Calvo et al. 2011) shows that in this frequency region,
the effects should be maximized while keeping reasonable power levels. Furthermore,
gating graphene to reach dynamical gaps located at ∼70 meV is also within experimental
reach. Further work along these lines hints that lateral confinement in laser-illuminated
graphene nanoribbons may have an important role, especially in small ribbons of a few
nanometers wide (Calvo et al. 2012). Bilayer graphene also shows similar features,
though trigonal warping effects may introduce important changes in the low-energy
spectra (Suárez Morell & Foa Torres 2012).

The emergence of this peculiar structure of gaps in the Dirac spectrum of an
illuminated sample has been experimentally observed in careful ARPES experiments
(Wang et al. 2013). These experiments were carried out by illuminating the three-
dimensional topological insulator Bi2Se3 with a mid-infrared laser. Its surface states
form a Dirac cone. Thus, the theory outlined before applies and the experiment
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Figure 9.4 DC component of the conductance calculated for a graphene stripe of 1μm times 1μm
in the presence of a linearly polarized laser as a function of the Fermi energy. The solid line is for
a laser power of 32 mW/μm2 while the dashed line corresponds to 130 mW/μm2. (Reprinted
with permission from Calvo et al. (2011). Copyright 2011, American Institute of Physics.)

(Wang et al. 2013) indeed shows the formation of laser-induced bandgaps under
circularly polarized light.

A natural question at this point is whether these laser-induced gaps are topological
(and thus bear edge states bridging the gap) or not. A study on the emergence of chiral
edge states bridging the dynamical gaps is presented in Perez-Piskunow et al. (2014) and
Usaj et al. (2014). Figure 9.5 shows how edge states develop at the dynamical gap in an
illuminated graphene ribbon once the width is large enough. These states are smoking
guns of the underlying topological nature of the states. A detailed map of the associated
invariants for different laser frequencies and intensities is presented in Perez-Piskunow
et al. (2015). More recent results also showed the possibility of realizing an isolator, a
device where transmission occurs only in one direction and not in the opposite (this is, a
nonreciprocal effect leading to one-way transport), in laser-illuminated bilayer graphene
(Dal Lago et al. 2017).

Another fingerprint revealing the nature of these peculiar states is their Hall response
(Dehghani et al. 2015). There has been a considerable amount of debate around this
issue, even in the coherent regime. While some authors predicted a quantized response
as in the integer quantum Hall effect (Kitagawa et al. 2011), others argued on the
presence of an anomalous suppression of the transport response (Kundu et al. 2014).
Full numerical simulations of a laser-illuminated graphene sample showed that not
all the laser-induced edge states may contribute to the Hall conductance (Foa Torres
et al. 2014), at least in the weak electron–photon coupling regime. Recent experiments
consistent with this have been reported recently (McIver et al. 2018).
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Figure 9.5 Panel (a) shows a scheme of a typical two-terminal setup where a laser of frequency �
shines on a section of an eventually disordered graphene ribbon. The circular polarization is
shown to induce chiral edge states akin those in the integer quantum Hall regime. Panels (b)–(d)
show the evolution of the quasienergy dispersion as the system width W is increased ((b)
W = 21.3 nm, (c) W = 42.6 nm, and (d) W = 426 nm). In these numerical results, h̄� = 0.2γ0
and Nmax = 2. The color scale indicates the weight contributing to the average density of states.
(Reprinted with permission from Perez-Piskunow et al. (2014). Copyright 2014, American
Physical Society.)

We close this section by pointing out that this physics may have an impact on other
areas such as condensates (Crespi et al. 2013) and photonic crystals, where experiments
are already available (Rechtsman et al. 2013). We expect that future experimental work
in this area may help to unveil this interesting physics.

9.6 Further Reading and Problems

• For a review on AC transport in nanostructures, see Kohler et al. (2005).
• Readers interested in Floquet theory may also enjoy the foundational papers (Sambe

1973; Shirley 1965).
• For a very nice introduction to quantum pumping, we suggest Büttiker and Moskalets

(2006) and references therein.
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Problems

9.1 Quantum pumping: generating a current at zero DC-bias. In this exercise, we try
to shed light on the mechanism behind quantum charge pumping. To this end, we follow
Büttiker and Moskalets (2006) and consider a one-dimensional system consisting of two
regions with alternating potentials, V1 = V0 cos(�t) and V2 = V0 cos(�t+φ), separated
by a distance D.
(a) Analyze the transmitted amplitudes (specially the inelastic ones) and show

that the phase difference φ may induce a directional asymmetry in the transmission
probability, so that T← �= T→. (V0 can be considered to be small to simplify the
analysis. Then only channels with plus or minus one photon need be included.)

(b) Interpret the asymmetry found before in terms of an interference effect in Floquet
space.

(c) Obtain the dependence of T← − T→ on the phase difference φ.

9.2 Fast or slow? Search the literature for the typical and the largest frequencies that
can be achieved using conventional electronics (e.g. ac gate or ac voltage). Compute the
photon energy and obtain the associated temperature. Contrast your results with those
corresponding to optical frequencies and ellaborate a conclusion.

9.3 AC gated Fabry–Pérot interferometers and the quantum wagon-wheel effect.
Reconsider the simple model for a Fabry–Pérot resonator made of an infinite CNT of
Problem 5.7. This time, we follow Foa Torres and Cuniberti (2009) and Rocha et al.
(2010), and add a homogeneous alternating potential to the central part of the system,
which is modeled by adding an onsite term eVAC cos(�t). VAC and � are the oscillation
amplitude and frequency, respectively.
(a) Compute the changes in the conductance (dI/dVbias) as a function of a bias

voltage Vbias (which can modeled through a symmetric shift of the leads’ onsite
energies by ±Vbias) and a stationary gate voltage Vgate applied to the central
part of the system. Check the contour plots of the conductance as a function of
these two variables for different values of the driving frequencies. Show that
the conductance recovers the pattern found for the stationary case (VAC = 0)
when h̄� is commensurate with the mean level spacing in the central region �
(wagon-wheel effect). Compare this with the results obtained for other values of
the frequency.

(b) Compute the zero-frequency noise (see Kohler et al. (2005) for explicit formulas)
as a function of the driving parameters VAC and h̄�. Show that this time the
stationary values are recovered when h̄� is commensurate with twice the mean
level spacing (named quantum wagon-wheel effect because it relies on the phase
shift of the carriers (Foa Torres & Cuniberti 2009)). Interpret your results.

9.4 Laser-illuminated graphene. Consider the case of laser-illuminated graphene as
presented in Section 9.5.
(a) Starting from the Hamiltonian given by Eq. 9.19, write its Fourier components and

give an expression for the matrix elements of the Floquet Hamiltonian following
Eq. (9.5).
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(b) Obtain analytical expressions for the gaps within a small-intensity approximation.
(c) Design the steps needed for the evaluation of the average DOS (Eq. (9.9)).
(d) Design a numerical code for numerical evaluation of the DOS. You may help

yourself by using the codes already available through our website.

** Additional exercises and solutions available at our website.



10 Ab Initio and Multiscale
Quantum Transport in
Graphene-Based Materials

This chapter illustrates the several possible computational approaches that can be
used toward a more realistic modeling of disorder effects on electronic and transport
properties of carbon-based nanostructures. Multiscale approaches are first presented,
combining ab initio calculations on small supercells with tight-binding models devel-
oped from either a fitting of ab initio band structures or a matching between conductance
profiles with a single defect/impurity. Chemical doping with boron and nitrogen of
carbon nanotubes and graphene nanoribbons (GNRs) is discussed in detail, as well as
adsorbed oxygen and hydrogen impurities for two-dimensional graphene, both being of
current fundamental interest. Finally, fully ab initio transport calculations (within the
Landauer–Büttiker conductance framework) are discussed for nanotubes and graphene
nanoribbons, allowing for even more realism, albeit with limited system sizes, in
description of complex forms of edge disorder, cluster functionalization, or nanotube
interconnection.

10.1 Introduction

In the following sections, disordered and chemically doped carbon nanotubes and
graphene nanoribbons are explored. The main scientific goal consists in illustrating how
defects and impurities introduce resonant quasi-localized states at the origin of electron–
hole transport asymmetry fingerprints, with the possibility of engineering transport (or
mobility) gaps. Several multiscale approaches are described to develop various tight-
binding models from first-principles calculations. A first technical strategy (illustrated
on boron-doped nanotubes, Section 10.2.2) consists in designing a tight-binding model
by fitting the ab initio band structures. Such an approach is used to describe doped
metallic nanotubes, but actually ceases to be accurate for graphene nanoribbons, owing
to complex screening effects introduced by edges.

A second approach consists in adjusting the tight-binding parameters by searching for
a good match with first-principles transport calculations for a short nanotube or ribbon
with a single dopant. This is illustrated in Sections 10.2.3 and 10.5.11 for nitrogen-
doped nanotubes and boron (and nitrogen)-doped graphene nanoribbons. Using the
reparameterized tight-binding models, mesoscopic transport can then be investigated in
micrometer-long and disordered semiconducting nanotubes and graphene ribbons with
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random distribution of chemical impurities. By studying the statistics of transmission
coefficients, transport length scales such as the mean free paths (�el) and localization
lengths (ξ ) are predicted, together with crossovers between transport regimes. The scal-
ing between �el and ξ is demonstrated to be in full agreement with the generalized form
of the Thouless relationship, thus offering the first quantitative test for fundamental
theories of mesoscopic physics (Section 10.2.3).

Finally, full ab initio transport calculations in both disordered graphene ribbons and
defective carbon nanotubes are presented in Section 10.5, for various types of defects
such as edge defects or grafted molecules and randomly distributed clusters. Although
these calculations are much more computationally demanding, they prove to be essential
in a situation of enhanced chemical complexity at the nanoscale, while they offer more
possibilities for quantitative comparison with experimental data.

10.2 Chemically Doped Nanotubes

10.2.1 Tight-Binding Hamiltonian of the Pristine Carbon Nanotube

The electronic properties of an armchair (n, n) carbon nanotube (CNT) are first described
using a tight-binding Hamiltonian with a single pz orbital per site and only nearest-
neighbors hopping integrals. Within this approach, the Hamiltonian only depends on the
network connectivity. Such an assumption is valid and accurate enough for describing
the energy bands near the charge neutrality point. Note that the numerical studies are
restricted to weak disorder, meaning that the elastic mean free path �e � λF (λF =
3
2
√

3acc ≈ 3.7 Å).

10.2.2 Boron-Doped Metallic Carbon Nanotubes

In order to investigate the transport properties of boron-doped (metallic) carbon
nanotubes, the first step consists in a calculation of the electronic structure of arm-
chair (10, 10) nanotubes containing 2500 cells using periodic boundary conditions
(105 atoms) and the zone-folding approximation (ZFA) (Latil et al. 2004). A conven-
tional tight-binding Hamiltonian can be defined as follows:

Ĥ =
N∑
α=1

εα|α〉〈α| +
∑
〈α,β〉

[
γαβ |α〉〈β| + h.c.

]
, (10.1)

where the first sum is achieved over all the p⊥ orbitals, while the second is limited to first
neighbors of the α site. In Eq. 10.1, the matrix elements εα denote the onsite energies,
while γαβ are the hopping integrals.

The ZFA technique applied to boron-doped carbon nanotubes consists in deriving the
local electronic properties in the vicinity of an atomic substitution. Unfortunately, the
tight-binding methods are usually not suitable to account for charge transfer between
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different atomic species. However, by adding a corrective electrostatic potential to the
onsite energies, the effects of electric fields, charge transfer, or electric dipole moments
can be taken into account. The corresponding corrections (added as extra terms to
the onsite energies) are usually calculated self-consistently (solving a Schrödinger–
Poisson equation). The onsite energies εα in Eq. 10.1 are labeled εC, εB for carbon
and boron atoms, respectively. The γCC and γBC describe the inequivalent hopping
integrals. Practically, these parameters are obtained by fitting the ZFA band structure
to the ab initio calculations (Latil et al. 2004).

In order to capture the electronic fingerprints of carbon orbitals in the vicinity of the B
impurity, the electronic structure of a supercell containing 31 carbon atoms and a single
B atom is first examined using a DFT approach within the LDA approximation. The
electronic density for the last (half) occupied band is found to be distributed only on the
p⊥ orbitals for atoms located close to the impurity, up to the third-nearest neighbors
of the B impurity. This localization of the highest occupied molecular state-lowest
unoccupied molecular state (HOMO-LUMO) band allows us to restrict the correction to
carbon atoms only up to this level of accuracy. Additionally, such a result suggests that
the hopping integrals between sites are not affected by the charge transfer. Moreover,
the boron atom is supposed to be “carbon-like,” i.e., γCC = γBC = γ . Consequently,
only six parameters need to be adjusted: the single hopping integral γ , the carbon and
boron onsite energies εC and εB, and the renormalized carbon onsite energies ε3, ε2, and
ε1 (respectively, third-, second-, and first-nearest neighbors of the boron impurity).

These parameterizations are performed using a least square energy minimization
scheme between DFT-LDA and ZFA band structures. At first, the ab initio electronic
band structure of an isolated graphene sheet is used to fit the hopping terms. As a
low boron density is considered, the chemical potentials (Fermi energies) of the two
subsystems are equal, resulting in εC = EF, supercell = EF,CNT. The band structure
obtained with the optimal parameters can thus be favorably compared to the DFT-
LDA band structure (not shown here) (Latil et al. 2004). The best fit for the hopping
integral gives γ = 2.72 eV, while onsite energies are εB = +2.77 eV, ε1 = −0.16 eV,
ε2 = +0.21 eV, ε3 = +0.39 eV, and εC = −1.56 eV. Finally, the spectrum is shifted to
fix the charge neutrality point (EF) to 0 eV.

As illustrated in Fig. 10.1(a), the DOS of a 0.1% B-doped (10, 10) CNT exhibits
the typical acceptor peak (E1), as confirmed by ab initio calculations (Choi et al. 2000).
Depending on the energy, three different transport regimes are obtained, as illustrated in
Fig. 10.1(b). At energy E2 above the Fermi level (far from the impurity resonance level),
the diffusion coefficient scales almost linearly with time, indicating a quasiballistic
motion and a weak sensitivity to the presence of boron impurities.

By contrast, at the Fermi energy, the saturation of D(EF, t) → D0 ∼ �evF denotes a
diffusive regime. The extracted �e is found to decay linearly with dopant concentration,
following Fermi’s golden rule (Fig. 10.2, left). However, the mean free path is also
predicted to increase linearly with the nanotube diameter (Fig. 10.2, right). This upscal-
ing with diameter for a fixed disorder is a unique character of metallic nanotubes, as
derived in Section 6.1. Interestingly, the typical values obtained numerically for �e turn
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Figure 10.1 (a) Density of states of a 0.1% B-doped (10, 10) CNT. (b) DE(t) for three different
energies (indicated by arrows in (a)). DE(t) for energy E1 is 10 times magnified. (c) DE(t) at an
elapsed time t = 200h̄/γ0, for the same B-doped CNT (solid line) and a pristine CNT (dashed
line). Courtesy of S. Latil
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Figure 10.2 Mean free path �e estimated at the Fermi energy for B-doped (n, n) nanotubes.
Left: Evolution of �e for a (10, 10) nanotube with varying boron densities. Right: Evolution
of �e vs. tube diameter for a fixed concentration of B atoms (0.1%).

out to agree reasonably well with experimental data (Liu et al. 2001) (�e ∼ 175–275 nm
for boron-doped nanotubes with diameters in the range 17–27 nm, and 1.0% of boron
impurities).

Finally, at the resonant energy of the quasi-bounded states (E1), the diffusivity
exhibits a ∼1/t behavior, typical signature of a localization phenomenon. In Sections
10.2.3 and 10.5.11, a more extensive analysis of quantum interferences and localization
phenomena is achieved, including extraction of the localization lengths, directly from
the scaling analysis of transmission coefficients (for 1D systems) or using the predicted
logarithmic law to describe weak localization quantum corrections (for two-dimensional
disordered graphene).

It is worth mentioning that the chemical disorder induces strong electron–hole
conduction asymmetry (see Fig. 10.1(c)). This is further observed in the length
dependence of conductance. Indeed, by increasing the (effective) channel length of the
device denoted Ldevice from ∼10 nm to ∼1 μm (Fig. 10.3), the contribution of quantum
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Figure 10.3 Quantum conductance for a device (with varying channel length) made of a single
(10, 10) nanotube containing 0.1% of boron impurities. Courtesy of Sylvain Latil

interferences comes into play and further amplifies the electron–hole conductance
asymmetry. For instance, the hole conductance has been totally suppressed, whereas
electron conductance remains close to its maximum value (2G0) for a nanotube length
of about 1.2 μm. Such a phenomenon of resonant scattering will actually be suggested
to open interesting perspectives for the design of unipolar graphene-based field-effect
transistors with improved ON/OFF current ratio (see Section 10.5.11).

10.2.3 Nitrogen-Doped Metallic Carbon Nanotubes

The Single Nitrogen Impurity Case
An alternative approach to capture the effect of chemical impurities and resonant scat-
tering is presented below. Using first-principles calculations, the energy-dependent con-
ductance profile is first computed for a finite length armchair (n, n) CNT, where a single
carbon atom (labeled δ) has been substituted by a nitrogen impurity. Next, the evo-
lution of scattering potential around an impurity is computed self-consistently using an
ab initio code (SIESTA (Soler et al. 2002)). Effective onsite and hopping matrix elements
are then directly extracted from the ab initio simulations (thus including structural
optimization of the system), and a simplified tight-binding Hamiltonian with a single
orbital per site is developed using the following form:

Ĥδ =
∑
α

Vδ,α |α〉 〈α| −
∑
<α,β>

(
γαβ |α〉 〈β| + h.c.

)
. (10.2)



298 Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials

Figure 10.4 Onsite pz orbital energies in doped graphene sheet upon (left) N doping and (right) K
doping. Filled circles correspond to the two pz orbitals in the ab initio calculation (solid line
gives the Gaussian fit). The abscissa indicates the distance (in Angstroms) from a carbon atom to
the N impurity (in the substitution case), and to the hexagon center on which the K impurity
projects (in the physisorption case). (Reproduced with permission from Adessi et al. (2006).
Copyright (2006) by the American Physical Society. Courtesy of Christophe Adessi)

The main effect of a single-nitrogen impurity can be captured by a proper renormaliza-
tion of onsite energetics through Vδ,α , conserving the hopping integrals γαβ ≈ γ0 =
2.9 eV. The evolution of the ab initio onsite energies for π orbitals as a function of
the distance to the impurity can be fitted by a Gaussian-like function over a range of
10 Å (Adessi et al. 2006), as depicted in Fig. 10.4. In the present simulation, nitrogen
atoms in substitution are compared to physisorbed potassium atoms. The potential well
created by a N impurity in substitution is clearly much deeper than the one associated
with the partially screened K+ ion (Fig. 10.4). In particular, the ability of adsorbed K
ions to trap electrons is significantly reduced as compared to N impurities. We note
that even though screening of Coulomb potential is known to be much weaker in low
dimension, the K-induced potential does not seem to be much longer in range than the
one generated by the nitrogen impurity. However, some arbitrariness still remains in
the choice of the ab initio atomic-like basis (spatial extent, completeness, etc.), which
could significantly alter the impurity potential with fluctuations as large as ∼1 eV. One
reasonable approximation consists in adjusting the onsite π potential impurity around
the obtained ab initio value and optimizing the agreement between tight-binding and
ab initio conductance profiles (see below).

Such an impurity potential breaks the reflection symmetry plane of the nanotube, gen-
erating two resonant quasibound states in the conductance profile, shown in Fig. 10.5.
The first resonance (located at low energy in the π∗ band) is of even parity (s-wave) and
broad in energy. In contrast, the second sharper resonance (located at higher energy) has
odd parity (p-wave). Both resonances suppress one conduction channel of given parity.
The energy position of the s-wave resonance can be finally adjusted with respect to the
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Figure 10.5 Conductance curve versus energy for both the pristine (dashed line) and doped with a
single nitrogen impurity (solid line) (10, 10) armchair nanotube. (Adapted with permission from
Avriller et al. (2006). Copyright (2006) by the American Physical Society)

first van Hove singularity (less than a tenth of an eV) by tuning the onsite nitrogen poten-
tial, therefore improving the agreement with the ab initio calculation (Choi et al. 2000).

Doping with a Random Distribution of Nitrogen Atoms
Using such an effective impurity potential Vδα , it is now possible to explore the meso-
scopic transport properties of chemically doped nanotubes with nitrogen impurities
(for a fixed doping density ndop). The total Hamiltonian of the disordered nanotube
is written as

Ĥ(�) =
∑
δ∈�

∑
α

Vδ,α |α〉 〈α| − γ0
∑
<α,β>

(|α〉 〈β| + |β〉 〈α|), (10.3)

where � denotes an ensemble of impurity distributions, satisfying the chosen doping
level. All disorder configurations have the same probability (P(�)) of occurring and the
resulting conductance average is computed from G = ∑

� P(�)G(�). The mean dis-
tance between impurities �imp = a/2nndop becomes a new length scale of the problem.
For a (10, 10) CNT, �imp = 0.12/ndop Å, and for a doping rate ndop = 0.1%, the mean
distance between impurities is �imp ≈ 12 nm. Consequently, the nanotube lengths must
satisfy L ≥ limp.

The normalized conductance T(�) = G(�)/G0 depends on the distribution � of
impurities, hence becoming a random variable, statistically defined by its
mean value T = 1

card({�})
∑
� T(�), and its root-mean-squared (RMS) fluctuation

�T =
√

T 2 − T 2. Analysis of the dependence of the conductance probability distri-
bution P(T; E, L) on energy E and length L gives access to all transport length scales
(�el and ξ ). For instance, the elastic mean free path is extracted from the curve T(L),
using the interpolation given by Eq. 10.4. The values obtained for �el (Fig. 10.6) are in
very good agreement with estimations based on the Kubo method (Avriller et al. 2007).
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Figure 10.6 Electronic mean free paths in a (10, 10) nanotube doped with nitrogen impurities with
ndop = 0.05%, 0.1%, 0.2%, 0.3% (from top to bottom) estimated using the Kubo method
presented in Section 4.4.4. (Adapted with permission from Avriller et al. (2006). Copyright
(2006) by the American Physical Society)

Figure 10.7 Left: Conductance values (at E = 0.35 eV) as a function of the disorder configuration
(L = 20 nm ≤ �el). Right: Corresponding conductance histogram. (Reproduced with permission
from Avriller et al. (2007). Copyright (2007) World Scientific)

The whole range of transport regimes is discussed below for the (10, 10) nanotube with
0.1% nitrogen impurities (Avriller 2008).

Conductance Statistics
Conductance Profiles in the Quasi Ballistic Regime
All results on conductance statistics are presented for a selected energy (E = 0.35 eV,
indicated by an arrow and filled circle in Fig. 10.5). The dispersion of conductance
values (by varying disorder configuration) for L = 20 nm < �el ∼ 122 nm is given in
Fig. 10.7. P(T) is found to be very narrow with a maximum close to its ballistic value
(T ≈ 2). The first two moments of the transmission distribution exhibit well-defined val-
ues T = 1.8 and�T = 0.2, pinpointing a crossover from a ballistic to a diffusive regime.

The length scaling of the conductance obtained can be captured by adding a resistance
quantum per channel to the diffusive contribution, i.e., R ≈ R0/N⊥ + R0/N⊥(L/�el),
giving

T = N⊥
1

1 + L
�el

, (10.4)
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Figure 10.8 Left: Conductance values (at E = 0.35 eV) as a function of the disorder configuration
(L = 122 nm ∼ �el). Right: Corresponding conductance histogram. (Reproduced with
permission from Avriller et al. (2007). Copyright (2007) World Scientific)

Figure 10.9 Left: Conductance values (at E = 0.35 eV) as a function of the disorder configuration
(L = 400 nm > ξ ). Right: Corresponding conductance histogram. (Reproduced with permission
from Avriller et al. (2007). Copyright (2007) World Scientific)

which yields to the expected asymptotic limits T ≈ N⊥ for L � �el and T ≈
N⊥�el/L for L � �el, but remains approximative at the transition (L ∼ �el). The
transition regime occurs when the tube length is similar to the mean free path. Figure
10.8 depicts the dispersion of T in the ballistic regime, that is for L ∼ �el = 122 nm.
Here, the distribution P(T) becomes Gaussian-like and fully symmetric, with first
moments given by T = 1.0 and �T = 0.3.

Conductance Profiles in the Localized Regime
The localized regime is reached when the nanotube length L becomes longer than the
localization length ξ , with exp{ln T} decreasing as ln T = −L/ξ (Gómez-Navarro et al.
2005; Hjort & Stafström 2001; Kostyrko et al. 1999). For example, the corresponding
dispersion values for T in such a regime (L = 400 nm > ξ = 170 nm) are reported
in Fig. 10.9. The formation of the localized regime is evidenced by a strongly asym-
metric distribution P(T), a peak near zero transmission and a long tail toward higher
values of T.

The first moments T � �T = 0.3 do not reflect the shape of P(T). In order to
characterize such a regime, the most suitable statistical indicator is actually given by
ln T (Abrahams et al. 1979; Anderson et al. 1980). Figure 10.10 shows the dispersion
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Figure 10.10 Left: Conductance dispersion as a function of the sample number for the case
L = 400 nm > ξ . Right: Corresponding conductance histogram. (Reproduced with permission
from Avriller et al. (2007). Copyright (2007) World Scientific)

of ln T for L = 2000 nm � ξ = 170 nm. The distribution P(ln T) becomes more
symmetric with first moments ln T = −11.7 and � ln T = 4.8.

Transport Regimes and Crossovers
Through scrutiny of the length dependences of �T/T and |� ln T/ln T| at E = 0.35 eV,
the crossover between transport regimes can be identified (Avriller et al. 2007). Indeed,
�T/T is found to increase as a function of L, whereas |� ln T/ln T| peaks near L = �el
and further decays with increasing length. The crossing point of the two curves occurs
at L = Lc ≈ 385 nm (in our case) where the relative fluctuations of T and ln T become
similar. The regime remains thus quasiballistic as long as�T/T < 1, whereas the local-
ization regime forms when �T/T > 1 and |� ln T/ln T| < 1. At L = Lc, the resistance
of the nanotube is of the order of the resistance quantum, which thus confirms the onset
of the localization regime, following an argument given by Thouless in 1977 (Thouless
1977). Indeed, Thouless proposed viewing the normalized conductance as the ratio
between two characteristic energy scales, namely G/G0 ≈ Eth/� where Eth = h̄D/L2

and�, the mean level spacing. Localization takes place when Eth ≈ �, that is when the
conductance becomes smaller than the quantum of conductance (Thouless 1977).

Localization Length (ξ ) and Thouless Relationship
The localization length at E = 0.35 eV is extracted from the curve ln T(L). Taking
into account points for which L > Lc, the curve is fitted with the scaling law ln T =
−L/ξ . Random matrix theory (RMT) allows some connection between both transport
length scales by studying statistical properties of eigenvalues of the t̂LR t̂†LR matrix.
In disordered wires, the statistics of the joint distribution of transmission coefficients
P(T1, . . . , TN⊥ ; L) have been studied in-depth (Mello et al. 1988). In the asymptotic
metallic (localized) regime (when �el � L � ξ (ξ � L)), the joint probability
distribution can actually be written analytically. The ratio ξ/�el is found to be driven by
the symmetry class of the Hamiltonian and not the microscopic nature of the underlying
disorder model.

The general relation between mean free path and localization lengths was derived by
Beenakker for multimode wires, ξ/�el = 1

2 {β(N⊥ − 1) + 2} (Beenakker 1997). The
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β coefficient depends on the symmetry class of the Hamiltonian under time-reversal
transformation. When the system is invariant under time reversal (belonging to the
orthogonal class), β = 1, whereas when time-reversal symmetry is broken (the system
then belonging to the unitary class), β = 2. The first case is obtained in a metallic system
without spin–orbit coupling or magnetic field, whereas the second arises in the presence
of a magnetic field. This relationship is a generalization of the Thouless relationship for
1D-disordered systems where ξ = 2�el (Thouless 1973) and for disordered wires in the
limit of a high number of channels ξ ≈ N⊥�el.

In the case of (10, 10) nanotubes doped randomly with nitrogen impurities, the weak
disorder approximation and geometric restriction of the wire are satisfied. It is, however,
difficult to establish the extent to which the tight-binding model presented for doped
nanotubes matches with the scattering matrix hypothesis, that is, if the universal mean
values of RMT are equivalent to our model mean values. The difficulty comes from
the fact that the CNT’s Hamiltonian is the sum of a given initial periodic Hamiltonian
combined with a random potential profile driven by the chemical impurities, whereas
RMT is based on an entropy ansatz, regardless of the underlying energetics of the
problem. Accordingly, the energy-dependent behavior of transport scaling properties
is not within the reach of the RMT. Only in specific regions of the spectrum can the
fluctuating part dominate and drive to universal behavior.

For (10, 10) nanotubes doped with 0.1% of nitrogen atoms, the scaling properties
of the averaged conductance T are strongly energy-dependent. Figure 10.11 illustrates
the weak energy dependence of conductance G(L), for L varying from 10 to 3000 nm.
At E = −0.78 eV, the conduction remains quasiballistic (T ≈ 2), whereas at the
quasibound state resonance energy E = 0.69 eV, strong localization develops. Such
a possibility of tailoring the conduction regime (and conductance value) from a ballistic
motion to an Anderson insulator is unique to graphene-related systems and proves to be
extremely useful for device applications in Section 10.5.11

Figure 10.11 Length dependence of the Landauer conductance for a disordered (10, 10)
nitrogen-doped nanotube at several energies and fixed doping ndop = 0.1%. Averages are
performed over 200 configurations of disorder. (Reproduced with permission from Avriller et al.
(2007). Copyright (2007) World Scientific)
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10.3 Two-Dimensional Disordered Graphene with Adatoms Defects

10.3.1 Monatomic Oxygen Defects

In this section, we focus on the impact on quantum transport of monatomic oxygen
atoms adsorbed on graphene. Atomic oxygen has been observed experimentally by
means of scanning tunneling measurements (Hossain et al. 2012) as illustrated in
Fig. 10.12. A weak ozone treatment (O3) of the graphene sample actually generates
such epoxy defects, as discussed experimentally by Moser et al. (2010). The influence
of physisorbed O2 molecules on the electronic properties of graphene turns out to be
negligible in contrast to these epoxy groups.

An important observation is that oxygen atoms find their equilibrium position by
bridging two first-neighbor carbon atoms so that locally, the A/B sublattice symmetry is
not fully broken (consistent with the absence of local magnetism). The bridge between
the oxygen and its carbon neighbors slightly displaces locations of both carbon atoms
but does not form a covalent bond. The resulting epoxy defects are found to be stable at
room temperature.

In order to analyze transport properties of oxygen-functionalized graphene, ab initio
calculations are mandatory to develop a suitable tight-binding Hamiltonian. Indeed, a
standard π electron orthogonal tight-binding (TB) model based on first-nearest-neighbor
interactions of the px and the pz orbitals of oxygen with carbon can be easily derived
from DFT simulations (Leconte et al. 2011). The combined contribution of the s and
pz orbitals of carbon binding with oxygen is reduced to a single orbital. Practically,
an ab initio band structure calculation is performed on a supercell containing a single
epoxy defect. The bands near the Fermi energy are then fitted using TB parameters, as
detailed in Leconte et al. (2010, 2011).

The effect of epoxy defects on transport allows us to discuss a longstanding debated
issue related to the validity of the semiclassical Boltzmann approach in disordered
graphene. Consequently, the corresponding assumptions and the current debate are
summarized first.

Figure 10.12 (a) STM image of epitaxial graphene after exposure to monatomic oxygen.
(b) High-resolution STM picture of several chemisorbed oxygen atoms on graphene. (Adapted
by permission from Macmillan Publishers Ltd: Nature Chem. Hossain et al. (2012), copyright
(2012). Courtesy of Mark Hersam)
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Does Boltzmann Conductivity Capture Dirac Point Physics?
At low energy, the presence of electron–hole puddles generates transport percolation
precluding Anderson localization (Das Sarma et al. 2011). In first transport experiments,
the origin of the absence of Anderson localization and the reported minimum conduc-
tivity were attributed to these puddles. (See Section 6.2.1 for a complete overview.)

In a puzzling experiment on clean graphene sandwiched between two boron-nitride
layers, the suppression of electron–hole puddles was observed to result in a large
increase of the Dirac point resistivity, suggesting a transition to the Anderson localiza-
tion regime (Ponomarenko et al. 2011). However, the role of quantum interferences has
been fiercely questioned, with an alternative scenario being argued based on Boltzmann
transport (that is, absence of localization phenomena) and ascribing the divergence of
the resistivity to a vanishingly small density of states (Das Sarma et al. 2011).

The use of the Boltzmann approach relies on approximating the conductivity as

σ ∗
Drude(E) = (4e2/h) × k�el(E)/2, (10.5)

using ρ(E) = 2|E|/(π × (h̄vF)2). From Eq. 10.5, the conventional downscaling with
defect densities can be deduced as σ ∗

Drude(Vg) � 1/ni. But the conductivity decay is
stronger close to the Dirac point, suggesting a different interpretation of the data (Pono-
marenko et al. 2011), as argued in Das Sarma et al. (2012). However, this interpretation
has still to be studied with care since within the self-consistent Born approximation, the
semiclassical conductivity should reach a limit value given by 4e2/πh. Figure 10.13
illustrates this minimal conductivity: σ ∗

Drude (left) and the exact result σKubo (right). The
approximation performed in Eq. 10.5 actually drives the semiclassical conductivity to
zero, especially in the vicinity of the Dirac point, in contradiction with the exact result,
which remains larger or equal to 4e2

πh . Both, the Kubo conductivity and experimental data

Figure 10.13 Left: Boltzmann conductivity versus gate voltage (or energy) for graphene with
several densities of epoxide defects. Right: Kubo conductivity and semiclassical conductivity
for two defect densities 0.95% (inset) and 4.42% (main plot). Two other curves depicting
conductivity in the localization regimes at longer times are also drawn. Adapted from Leconte
et al. (2010)
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Figure 10.14 Kubo conductivity (at different times of wavepacket evolution) in a graphene sample
containing 4.42% of impurities randomly distributed in the plane. The minimum value of
σsc = 4e2/πh is indicated by the horizontal dashed line. (Reprinted from Roche et al. (2012).
Copyright (2012), with permission from Elsevier)

(Moser et al. 2010) confirm that, especially close to the Dirac point, localization effects
are significant up to about 100 K, driving the system to an Anderson insulating regime.

Localization Effects in Oxygen-Damaged Graphene
Figure 10.14 presents the semiclassical conductivity (σsc) together with the quantum
Kubo conductivity computed at different timescales (beyond the diffusive regime) for
4.42% epoxy defects randomly distributed in graphene. These calculations are achieved
by computing Dx(E, t) and by evaluating σ (E, t) = 1

4 e2ρ(E)D(E, t). Oxygen defects pro-
duce quasibound states at some resonant energies, thus breaking the symmetry between
electron and holes transport. Such asymmetry has already been seen in the local density
of states but further develops in the energy profiles of �e(E), σsc(E), and localization
contributions (Leconte et al. 2011). For long enough timescales, σ (E, t) � 4e2/hπ ,
indicating the strong contribution of quantum interferences and localization effects.

The time evolution of the Kubo conductivity clearly shows quantum interference
effects, which can easily be understood from the scaling theory of localization. In a
two-dimensional disordered system (such as the one pictured in Fig. 10.15 (left)),
two different scaling behaviors are predicted depending on the strength of quantum
interferences, namely the weak localization regime defined by (Leconte et al. 2011;
Lherbier et al. 2012),

σ (L) − σ ∣∣Dmax = − e2

h̄π2 ln
(

L√
2�el

)
, (10.6)

and the strong localization regime driven by σ (L) ∼ exp
( − L(t)

ξ

)
, where ξ is the

localization length, while L(t) = 2
√

2�X2(t) is the average length scale probed
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Figure 10.15 Left: Ball-and-stick model of epoxy defects adsorbed on graphene. Right: Weak
localization corrections to σsc for different impurity densities at energy 0.8 eV for weak defect
(main) and strong defect density (inset). Adapted from Roche et al. (2012)

by the wavepacket. The transition from the weak to the strong regime occurs at
kF�el ∼ 1. For a defect density of 4.42%, �el ≤ 3 Å satisfies this criterion for all
energies between 0.5 and 1 eV. The value of ξ can thus be estimated, either using
ξ (E) = �el exp (πσsc/G0) (Lee & Ramakrishnan 1985), or directly extracted from the
exponential scaling decay of conductance with length.

Figure 10.15 (right) illustrates that in the weak disorder limit (up to ∼ 1% of defects)
both the numerical σ (L) (symbols) and the analytical σDmax − e2/h̄π2 ln

(
L√
2�el

)
(solid

lines) are in reasonable agreement. The fitting loses its quality for larger defect density
owing to the transition to strong localization. Assuming an exponential decay of the con-
ductivity, ξ values are estimated to be of the order of 11.2 and 5.3 nm for defect densities
of 3.22% and 4.42%, respectively (at E−EF = 0.8 eV), making quantitative comparison
with experimental data possible (Moser et al. 2010). With use of the Landauer–Büttiker
method, the effect of epoxy defects on quantum transport in graphene nanoribbons has
been found to generate mobility gaps and larger electron–hole transport asymmetry
(Cresti et al. 2011).

10.3.2 Atomic Hydrogen Defects

Adsorption of hydrogen atoms on graphene introduces sp3 defects, thus breaking the
AB symmetry and turning the material into a large bandgap insulator (graphane) in
the large density limit.1 In the present section, we study the low hydrogen density
limit and contrast the transport results depending on the underlying A/B sublattice
symmetry breaking. This issue is of genuine concern since the Lieb theorem predicts
that any imbalance between A and B sites generates ferromagnetic ordering in the
groundstate, with total magnetic moment related to S = 1/2|nA − nB| with nA,B the

1 Graphane was theoretically described in Sluiter and Kawazoe (2003) and Sofo et al. (2007), and
experimental evidence was presented in Elias et al. (2009).
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functionalized sites of type A (or B) (Lieb 1989). Such a magnetism is taken into
account through a self-consistent (spin-dependent) Hubbard Hamiltonian in which the
Coulomb interaction is accounted for by means of the Hubbard model in its mean-field
approximation (Soriano et al. 2011) and defined as follows:

H = γ0
∑
<i, j>,σ

(
c†

i,σ cj,σ + h.c.
)

+ U
∑

i

(
ni,↑〈ni,↓〉 + ni,↓〈ni,↑〉) , (10.7)

where c†
i,σ (cj,σ ) is the creation (annihilation) operator in the lattice site i (j) with spin

σ , U is the onsite Coulomb repulsion, and ni,↓, ni,↑ are the self-consistent occupation
numbers for spin-down and spin-up electrons, respectively. The ratio U/t is adequate
to reproduce the spin density obtained from first-principles calculations. To compute
〈n̂i↑〉 = ∫

dEf (EF − E)ρi↑(E), a self-consistent procedure is used: 〈n̂iσ 〉0 ⇒ H ⇒
ρiσ ⇒ 〈n̂iσ 〉. Once the convergence is achieved, two different sets of spin-dependent
onsite energies εi↑ = U〈n̂i↑〉(1 − 〈n̂i↓〉) and εi↓ = U〈n̂i↓〉(1 − 〈n̂i↑〉) are obtained,
allowing estimation of the magnetization Mi = 〈n̂i↑〉 − 〈n̂i↓〉/2. Assuming weak spin–
orbit coupling, two different spin-dependent Kubo conductivities can be predicted:

σ↑,↓(E, t) = (e2/2)Tr[δ↑,↓(E − Ĥ)]D↑,↓(E, t), (10.8)

with Tr[δ↑,↓(E −Ĥ)/S] and D↑,↓(E, t), respectively, the spin-dependent density of states
per surface unit at Fermi energy E and the diffusion coefficients.

Figure 10.16 (inset) shows D↑(E, t) at three selected energies for nx = 0.8%, assum-
ing the hydrogen defects are randomly distributed in the graphene matrix but equally

Figure 10.16 Main plot: Kubo conductivities for the nonmagnetic state with nx = 0.8% hydrogen
impurities: semiclassical value 4e2/hπ (horizontal dashed line), quantum conductivity at 250 fs
(rhombus symbols), and 2000 fs (triangle symbols). Inset: Diffusion coefficients (spin-up
channel) for selected energies. Antiferromagnetic spin polarization (opposite arrows) on H
defects is also pictured in the ball-and-stick model. (Reprinted from Roche et al. (2012).
Copyright (2012), with permission from Elsevier)
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σ

Figure 10.17 Spin-dependent Kubo conductivities (at elapsed time t = 7600 fs) for different
hydrogen defect densities, enforcing a local ferromagnetic ordering (AA). Diffusion coefficients
(spin-up channel) for selected energies (inset). Ball-and-stick model illustrates two hydrogen
defects with ferromagnetic spin polarization (arrows). (Reprinted from Roche et al. (2012).
Copyright (2012), with permission from Elsevier)

on each A/B sublattice. The diffusion coefficients reach a saturation regime after
a few hundreds of femtoseconds, and then exhibit a logarithmic decay (fingerprint
of weak localization). The corresponding semiclassical and Kubo conductivities
evaluated at long times are illustrated in Fig. 10.16 (main plot). The Drude conduc-
tivity σsc is seen to remain larger than 4e2/πh, whereas quantum interferences yield
σ↑,↓(E, t) ≤ σsc, as reported for two elapsed times t = 250 fs and t = 2000 fs
(Fig. 10.16 (main plot)).

If hydrogen defects are solely occupying one of the two sublattices, an unconven-
tional transport regime develops. Figure 10.17 (inset) gives the corresponding diffu-
sion coefficients, which are found to saturate at sufficiently long times, but without
further decay, in contrast with Fig. 10.16. The corresponding saturation of the Kubo con-
ductivity to its semiclassical value indicates a puzzling absence of localization effects
(Fig. 10.17, main plot), which presently lacks theoretical explanation. Indeed, although
such a choice of defect functionalization preserves one sublattice free from sp3 con-
tamination, the related suppression of quantum interferences remains difficult to cap-
ture using analytical arguments. One prediction is, however, that the existence of local
ferromagnetic ordering could be reflected in an anomalously robust metallic state, a
phenomenon which could be further discussed in relation to the concept of a “super-
metallic state” introduced by Ostrovsky, Gornyi, and Mirlin for monovacancies (Cresti
et al., 2013; Ostrovsky et al. 2006). Recent experiments on hydrogenated graphene have
shown some modulations of pure spin currents, tentatively related to the interaction
between propagating spins and hydrogen-induced local magnetic moments (McCreary
et al. 2012).
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Figure 10.18 Scattering time τ for various densities of adsorbed monatomic oxygen (left) or
hydrogen defects (right). (Reprinted from Roche et al. (2012). Copyright (2012), with
permission from Elsevier)

10.3.3 Scattering Times

An interesting observation lies in the relation between the energy dependence of the
transport times and the nature of underlying disorder and symmetry-breaking mech-
anisms. This is actually of great interest for determining the relation between local
symmetry-breaking effects and resulting transport features at the mesoscopic scale. To
illustrate this point, τ computed with the Kubo approach is shown for oxygen adatom
(left) and hydrogen adatom (right) densities in Fig. 10.18. The behavior of τ for epoxide
defects actually looks very similar to that of the long-range Coulomb impurities with
onsite potential depth (W = 1.5, Fig. 6.17, main plot), whereas hydrogen defects look
closer to the short-range disorder case (Fig. 6.17 for W = 2).

The fingerprint of τ (E) for hydrogen defects looks very similar to the Anderson
disorder with W = 2. As mentioned above, adsorbed hydrogen atoms locally break
the sp2 symmetry and A/B degeneracy, in contrast to epoxide defects. Interestingly,
the absolute values of scattering times are only weakly sensitive to the defect density,
and τ (E = 0) ∼ 25–30 fs for ni � 0.4%, but their energy dependence reflects local
symmetry-breaking mechanisms. These features are fingerprints for specific defects,
thus allowing possible discussion about potential sources of disorder in experiments
(Monteverde et al. 2010).

10.4 Structural Point Defects Embedded in Graphene

As already described in detail in Section 2.6, structural defects (such as vacancies)
in graphene can be intentionally introduced by ion or electron-beam irradiation.
Using Ar+ irradiation of carbon nanotubes for instance, an Anderson localization
was induced and experimentally observed using scanning tunneling microscope (STM)
techniques (Gómez-Navarro et al. 2005). Usually, it is believed that single vacancies
(also called monovacancies) freely migrate and recombine to easily form divacancy
defects (Lee, Wang et al. 2005). The conductivity of irradiated two-dimensional
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graphene has however been found to saturate at the Dirac point above e2/h even
down to cryogenic temperatures, remaining a puzzling unexplained feature (Chen et al.
2009). Recent STM analysis of irradiated graphene has also revealed the signature of
resonant states produced by divacancies (Ugeda et al. 2010). In the present section, we
discuss how a strong (Anderson) localized regime can be tuned by varying the density
of such types of structural defects (Banhart et al. 2011; Cockayne et al. 2011; Kotakoski
et al. 2011), which can be intentionally introduced in the graphene substrate.

Here, we focus on the three structural imperfections (already observed experimen-
tally) described in Section 2.6, namely the Stone–Wales (SW) defect and two types of
divacancies (missing two carbon atoms). In contrast to monovacancies, those defects are
all nonmagnetic. SW defects are commonly observed in sp2 carbon-based materials (Lee
& Stone 1985), and can be seen as generated by a 90◦ rotation of a carbon–carbon bond.
This topological transformation produces two heptagons connected with two pentagons
(Fig. 10.19(a)). The first divacancy reconstruction yields two pentagons and one octagon
(named 585, Fig. 10.19(b)), while the second relates to the formation of three pentagons
and three heptagons (named 555-777, Fig. 10.19(c)). Ab initio calculations (Lherbier
et al. 2012) suggest that the formation energy of the 555-777 divacancy is smaller than
that of the 585 divacancy by about 0.9 eV in graphene, which differs from nanotubes
where curvature stabilizes the former reconstruction (Lee, Wang et al. 2005).

As described in Section 2.6, tight-binding models for pristine graphene and for
defects are derived by extracting the suitable TB parameters directly from the SIESTA
Hamiltonian used to calculate the ab initio band structures (Lherbier et al. 2012). The
effects of these topological defects on the electronic properties of graphene have also
been investigated in Chapter 2. TB densities of states of randomly distributed structural
defects in the honeycomb lattice, as depicted in Fig. 2.32, confirm that the defect
signatures, inducing energy resonances, are preserved in the DOS of random disordered
system.

In order to model even more realistic systems, the case of a mixture of defects is now
explored by considering graphene planes containing 50%–50% of SW/585, SW/555-
777, and finally 585/555-777. The corresponding DOS estimated for a defect concen-
tration of 1% in total (half of one type and half of the other type) are represented in
Fig. 10.19(d–f)). These DOS containing a mixture of two types of defects are compared
also with the DOS of graphene planes containing a single type of defect separately
(defect concentration: 0.5%). The features observed in the DOS of the mixed systems
are roughly the sum of the individual features of each defect type. The particular case
of SW/585 is interesting in the sense that the resonance peaks of these two defects are
almost symmetric with respect to the Dirac point (Fig. 10.19(d)), tending to overlap and
leading to an increase of the DOS at the Dirac point. In this special situation, there is
no more a clear minimum of DOS associated with the Dirac point. With the addition of
other types of defects, a large increase of the DOS at the Dirac point can be foreseen
(Fig. 10.19). This is actually what is observed in Haeckelite planes (Terrones et al.
2000) and in highly defective or amorphous graphene membranes (Holmström et al.
2011; Lherbier et al. 2013). However, this increase of DOS comes from resonant states
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Figure 10.19 Three structural point defects: (a) Stone–Wales, (b) 585, and (c) 555-777
divacancies. The different symmetry axes are outlined in dashed lines. TB densities of states are
shown for a large graphene plane containing a defect concentration of 1% (thick solid lines) of
(d) SW/585, (e) SW/555-777, and (f) 585/555-777. These DOS are compared with DOS
obtained with 0.5% of each defect separately (dashed lines). The position of the Fermi energy is
indicated by a vertical arrow. Mean-free paths (�el) for concentrations ranging from 0.1% to
1.0% of (g) SW/585, (h) SW/555-777, and (i) 585/555-777 structural defects. (Adapted from
Lherbier et al. (2012). Copyright (2012) by the American Physical Society. Courtesy of Aurélien
Lherbier)

mainly localized around the defects, which will therefore not participate in the transport
of charge carriers, but will rather degrade it (Lherbier et al. 2013).

The corresponding elastic mean free paths for graphene structures containing varying
densities of SW/585 defects, SW/555-777 defects, or 585/555-777 defects (ranging
from 0.1% to 1.0%) are illustrated in Fig. 10.19(g–i). The energy dependence of �el
exhibits dips associated with the defect resonance energies (or equivalently bumps in the
DOS). The mean free path changes by no more than one order of magnitude, regardless
of the energy and defect nature. For a defect concentration of ∼0.1%, mean free path
ranges within 60–200 nm for the longest values and 2–10 nm for the shortest. For a
defect concentration ≥ 1%, �el can eventually be shorter than 10 nm for the whole
spectrum.
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10.5 Ab Initio Quantum Transport in 1D Carbon Nanostructures

10.5.1 Introduction

Coherent quantum transport in mesoscopic and low-dimensional systems can be rig-
orously investigated either with the Kubo–Greenwood (Kubo 1966) or the Landauer–
Büttiker formalisms (Büttiker et al. 1985). The first approach, explicitly illustrated in
the previous sections, derives from the fluctuation–dissipation theorem. This technique
allows evaluation of the intrinsic conduction regimes within the linear response, and
gives a direct access to the fundamental transport length scales, such as the elastic
mean free path (�el) and the localization length (ξ ). While �el results from the elas-
tic backscattering driven by static perturbations (defects, impurities) of an otherwise
clean crystalline structure, ξ denotes the scale beyond which quantum conductance
decays exponentially with the system length (L), owing to the accumulation of quantum
interference effects that progressively drive the electronic system from weak to strong
localization.

The coherence length Lφ gives the scale beyond which localization effects are
fully suppressed owing to decoherence mechanisms, such as electron–phonon (e–ph)
or electron–electron (e–e) couplings, treated as perturbations on the otherwise nonin-
teracting electronic gas (weak localization regime). When �el becomes longer than the
length of the nanotube in between voltage probes, the carriers propagate ballistically,
and contact effects prevail.

In such a situation, the Landauer–Büttiker formalism becomes more appropriate since
it rigorously treats transmission properties for open systems and arbitrary interface
geometries. Besides, its formal extensions (nonequilibrium Green’s functions (NEGF)
and Keldysh formalism, see Appendix C) further enable us to investigate quantum
transport in situations far from the equilibrium, of relevance for high-bias regimes
or situations with a dominating contribution of Coulomb interactions (Datta 1995;
Di Ventra 2008).

Interestingly, to investigate coherent quantum transport in a graphene ribbon or a
nanotube of length L with reflectionless contacts (ideal contact) to external reservoirs,
both transport formalisms are formally fully equivalent. In the following, the Landauer–
Büttiker formalism is used and the corresponding conductance G(E) = 2e2/h × T(E)
is evaluated from the transmission coefficient T(E) = Tr{
̂L(E)Ĝ(r)

S (E)
̂R(E)Ĝ(a)
S (E)},

given as a function of the retarded Green function Ĝ(r)(E) = {EI − ĤS − �̂L(E) −
�̂R(E)}−1 and �̂R(�̂L) the self-energy accounting for the coupling with the right (left)
electrode (Datta 1995; Di Ventra 2008; Pastawski & Medina 2001). The Landauer–
Büttiker formula can be implemented with effective models such as a tight-binding
Hamiltonian fitted on first-principles calculations (as depicted previously) or a fully
ab initio Hamiltonian. The ab initio electronic transport calculations presented in
the following sections are performed within the nonequilibrium Green’s functions
formalism and using the one-particle Hamiltonian obtained from the DFT calculations
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as implemented in the TRANSIESTA (Brandbyge et al. 2002) or SMEAGOL codes
(Rocha et al. 2006).

When defects in a nanostructure are introduced, the supercells containing the per-
turbation are connected to perfect nanotube- or ribbon-based leads. To simulate open
boundary conditions, the self-energies associated with the leads are included within the
self-consistent calculation of the potential. Finally, the electronic transmission functions
are evaluated using the Fisher–Lee relation (Fisher & Lee 1981) (see Appendix C).
Note that, for the computation of the transmission functions, a convergence study of the
supercell size has to be considered in order to obtain a good screening of the perturbed
Hartree potential due to the defect. It is then possible to experimentally investigate the
energy dependence of the conductance by modulating the density of charge using a
capacitive coupling between the nanostructure channel and an external gate.

10.5.2 Carbon Nanotubes

As a reminder, for a carbon nanotube of length L between metallic contact reservoirs,
the transport regime is ballistic if the measured conductance is L-independent, and only
given by the energy-dependent number of available quantum channels N(E) times the
conductance quantum G0 = 2e2/h, that is G(E) = 2e2/h × N(E), including spin
degeneracy. Such an ideal situation occurs only in the case of perfect (reflectionless)
or ohmic contacts between the CNT and metallic voltage probes. In this regime, the
expected energy-dependent conductance spectrum is easily deduced, from band struc-
ture calculations, by counting the number of channels at a given energy. For instance,
metallic armchair nanotubes present two quantum channels at the Fermi energy EF = 0
or the charge neutrality point, resulting in G(EF) = 2G0. At higher energies, the con-
ductance increases as more channels become available to conduction. For illustration,
the electronic bands and conductance of a (5, 5) metallic tube are displayed in Fig. 10.20
within the symmetric π–π∗ tight-binding model.
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Figure 10.20 Band structure (a) and conductance (b) for (5, 5) armchair nanotube calculated
within the nearest neighbor π -orbitals tight-binding model.
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Figure 10.21 Ab initio band structures and quantum conductances for (a) (5, 5) armchair;
(b) (9, 0); (c) (10, 0) zigzag; and (d) (8, 2) chiral nanotubes. (Reproduced from Dubois et al.
(2009), with kind permission from Springer Science and Business Media.)

This quantum conductance of armchair carbon nanotubes within a nearest- neigh-
bor π orbital tight-binding Hamiltonian is in good agreement (Fig. 10.21(b)) with
ab initio calculations (Fig. 10.21(a)). Indeed, the (5, 5) armchair carbon nanotube is
found to be a metallic nanowire with two linear electronic energy bands which cross
at the Fermi level and contribute two conductance quanta (=4e2/h) to the conductance
when the tube is defectless. These two quantum channels at the charge neutrality
point also lead to a plateau of conductance over a quite important interval of energies
(∼2.5 eV).

In Fig. 10.21(b) and (c), the ab initio electronic properties and the corresponding
conductance are presented for (9, 0) and (10, 0) zigzag nanotubes, respectively. The first-
principles calculations confirm the general features of the electronic structure obtained
in the tight-binding approach. Indeed, as mentioned in Chapter 2, the opening of a sec-
ondary gap (pseudogap) at the Fermi energy produced by the curvature of the graphitic
walls in the (9, 0) nanotube can be observed. In the (10, 0) case, predicted to exhibit
a semiconducting behavior, a primary gap of 0.8 eV is obtained, leading to a zero
transmission for that specific energy window. Finally, in order to be as exhaustive as
possible, the ab initio electronic properties and the conductance of (8, 2) nanotubes are
illustrated in Fig. 10.21(d). Although the single-band model would have proposed a
metallic tube, the first-principles calculations predict a semiconducting system with a
very small pseudogap related to the curvature of the nanotube, analogous to the (9, 0)
nanotube.
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Note that all these ab initio conductance values are the uppermost theoretical limits
that would be experimentally measured. In practical situations, lower values are
observed since reflectionless transmission at the interface between the voltage probes
(metallic leads) and the nanotubes is fundamentally limited by interface symmetry
mismatch, inducing Bragg-type backscattering. Additionally, topological and chemical
disorders, as well as intershell coupling, introduce intrinsic backscattering along the
tube, which also reduce its transmission capability. To account for both effects, one
generally introduces Tn(E) ≤ 1, the transmission amplitude for a given channel, at
energy E, so that G(E) = G0

∑
n=1,N⊥ Tn(E) (Datta 1995) (see also the discussion in

Section 5.2.2), as illustrated in the following for the case of topological defects, doping,
and chemical functionalization in carbon nanotubes.

10.5.3 Defective Carbon Nanotubes

The effects of impurities and local structural defects on the conductance of metallic
carbon nanotubes have been calculated using ab initio techniques within the Landauer–
Büttiker formalism (Choi et al. 2000; Dubois et al. 2009). For example, with a point
(single-atom) vacancy, the conductance presents one broad dip (valence region) and
two narrower dips (conduction region), as illustrated in Fig. 10.22(a). The reduction of
conductance at the broad dip is 1G0 with approximately half reflection of both π and π∗

bands. Because a single impurity breaks the mirror symmetry planes containing the tube
axis, an eigenchannel is a mixture of the π and π∗ bands. Consequently, an electron in
an eigenchannel is either completely reflected or completely transmitted. The location of
the broad dip (−1.2 eV with respect to the charge neutrality point) is quite different from
the results obtained using a single-band tight-binding model, which predicts a single dip
exactly at the Fermi level (Chico et al. 1996).

Actually, the electron–hole symmetry is no longer valid in a more realistic ab initio
calculation, and the dip position moves. Moreover, two other narrower dips are observed
closer to EF and originate from resonant scattering by quasibound states derived from
the broken σ bonds around the vacancy (Fig. 10.22(a)). The σ bonds between the
removed atom and its neighbors are broken and dangling bonds are produced, which
are mainly composed of π orbitals parallel to the tube surface. Since σ bond states are
orthogonal to the π valence band states, a very weak coupling is present between them.
Among three quasibound states derived from three dangling bonds, one is an s-like
bonding state, which lies well below the first lower subband (outside the scope of the
figure). The other two states are orthogonal to it (i.e., partially anti-bonding) and give
rise to the two narrower dips in the conduction region, as shown in Fig. 10.22(a).

The interaction among the dangling σ bonds actually causes substantial atomic relax-
ations, at the origin of reconstruction of the bare monovacancy (D3h symmetry), into a
more stable vacancy structure exhibiting Cs symmetry (Fig. 10.22(b–c), Amara et al.,
2007). More specifically, the D3h vacancy undergoes a Jahn–Teller distortion upon
relaxation, where two of the atoms near the vacancy move closer, forming a pentagon-
like structure while the third atom is slightly displaced out of the plane. In addition,
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Figure 10.22 Ab initio quantum conductance of a (5, 5) armchair nanotube containing a bare D3h
monovacancy (a); and a reconstructed Cs vacancy in two different positions: (b) tilted or (c)
perpendicular to the axis of the tube. Atomic structures of the corresponding defects are shown
in insets. (Reproduced from Dubois et al. (2009), with kind permission from Springer Science
and Business Media)

the vacancy can adopt two different positions related to the hexagonal network of the
nanotube: a tilted position (Fig. 10.22(b)) or a perpendicular position (Fig. 10.22(c))
regarding the axis of the nanotube. The tilted vacancy is found to be the most stable
configuration with a �E = 1.34 eV energy difference compared to the perpendicular
case (Zanolli and Charlier 2010). Both vacancies have a significant influence on the
electronic structure of the tube, at the origin of important backscattering to incoming
electrons at resonant energies. In fact, the accurate positions of the vacancy-related qua-
sibound state levels depend on various factors such as atomic configuration, orientation
versus the axis of the tube, and the nanotube diameter (Choi et al. 2000; Zanolli &
Charlier 2010).

Additionally, since the localized orbitals of unsaturated carbon atoms are expected to
behave as magnetic impurities (Lehtinen, Foster, Ayuela et al. 2004; Lehtinen, Foster,
Ma et al. 2004; Shibayama et al. 2000), a monovacancy (but not a divacancy) is expected
to hold a net magnetic moment. It is worth mentioning that periodic-boundary-condition
calculations can lead to results in contradiction with these theoretical predictions. Inter-
estingly, the total magnetic moment of CNTs containing the tilted monovacancy oscil-
lates with the length nd0 of the 1 × 1 × n supercell (d0 being the length of the (5, 5) unit
cell), and finally goes to zero as illustrated in Fig. 10.23 (square symbols). It is worth
noting that these oscillations are not due to a poor k-point sampling of the Brillouin zone
since accurate convergence studies have been performed (Zanolli and Charlier 2010).

In fact, these oscillations of the total magnetic moment are due to a long-range inter-
action between the periodic images of the magnetic moments mediated by the con-
duction electrons of the metallic tube, also called indirect exchange coupling (Kirwan
et al. 2008). This indirect coupling is defined as the energy required to rotate the mag-
netic moments from the ferromagnetic to the antiferromagnetic configuration, that is
J = E↑↑ − E↑↓, where E↑↑ and E↑↓ are the total energies of the ferromagnetic and
antiferromagnetic configurations, respectively. The interaction results in an oscillatory
behavior of J, whose amplitude decreases as a power law of the distance between the
magnetic impurities. Such a power law strongly depends on the nature of the impurity
and on the dimensionality of the system.
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Figure 10.23 Total magnetization (μB) for a 1 × 1 × n supercell containing one monovacancy
calculated within the periodic-boundary-condition scheme (gray curve �—�) and for the open
system with 1 × 1 × n core region (black dotted curve •—•). Indirect exchange coupling
(J, meV) for the 1 × 1 × 2n supercell containing two monovacancies at distance nd0 (gray
curve )—)). All the calculations are performed for a (5, 5) CNT containing a monovacancy
reconstructed in the tilted configuration, as illustrated in the inset. (Adapted with permission
from Zanolli and Charlier (2010). Copyright (2010) by the American Physical Society)

When the supercell contains a single defect, periodic boundary conditions either allow
a non-spin-polarized configuration or a ferromagnetic coupling between the periodically
repeated magnetic impurities. Hence, when their distance is such that the antiferro-
magnetic coupling is the lowest-energy configuration (i.e., J > 0), the periodic system is
forced into either a non-spin-polarized or a ferromagnetically coupled state, depending
on the relative energetic ordering of the three possible magnetic configurations (ferro-
magnetic, antiferromagnetic and non-spin-polarized) (Venezuela et al. 2009).

To check this assumption, J has been calculated for double supercells of various
length, 2nd0, containing two monovacancies at nd0 distance, retrieving the expected
damped oscillatory behavior (Fig. 10.23, triangles). Indeed, the single-monovacancy
supercells having zero-magnetization (zero values in the “square symbols” gray curve
of Fig. 10.23) correspond to a two-monovacancy system where the antiferromagnetic
coupling is favored (J > 0 in the “triangle symbols” gray curve of Fig. 10.23).

Even though the indirect coupling is quite weak (J is of the order of a few meV), it
clearly affects the periodic-boundary-condition computation of the magnetic properties
of defected CNTs. Consequently, to accurately describe the local magnetic properties of
isolated vacancies, an open system with a single magnetic impurity has to be considered.
The defected CNTs are thus modeled as two semi-infinite sections of nanotube and
a central region (or core) containing a single defect site, as described in Zanolli and
Charlier (2009). Using this approach, the magnetization of the tilted monovacancy has
always been found to be finite and converges for a core region consisting of 1 × 1 × 15
cells (see Fig. 10.23, black dashed curve).

It can further be noted that both the open system and the periodic-boundary-condition
approaches can be considered as first approximations to “real” CNTs with low or high
densities of defects, respectively. On the one hand, the open system scheme can approx-
imate the experimental case of low densities of vacancies only when the separation
between defects is larger than the interaction range of the indirect exchange coupling.
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This interaction is found to depend on the location of the magnetic impurity on the
hexagonal network of the host CNT (Kirwan et al. 2008) and can vary substantially
from 3 to 10 nm. Consequently, the open system approach can model a “real” defected
CNT where vacancies are more than ∼3–10 nm apart.

On the other hand, the periodic-boundary-condition approach presents some intrinsic
limitations in describing the opposite limit of a high density of vacancies in CNTs, as
recently illustrated for magnetic impurities in graphene (Venezuela et al. 2009). Indeed,
a periodic-boundary-condition calculation with one defect per unit cell always forces
the periodically repeated magnetic impurities to be in the same spin state (either non-
spin-polarized or ferromagnetically coupled).

The antiferromagnetic or noncollinear spin polarization of the magnetic impurities
cannot be described within such an approach. Besides, the periodicity of a periodic
boundary condition (PBC) calculation is an ideal model, which imposes spurious inter-
actions that are not present in the real system, where the distribution of defects is ran-
dom. Consequently, the PBC technique cannot model “real” CNTs with a high density of
defects, unless the defects are equally and ideally spaced and present either no coupling
(no spin polarization) or a ferromagnetic coupling.

After clarification of how to study the magnetic properties of a single defect site in
CNTs, the open system scheme is used to predict both the magnetization and the spin-
polarized conductance of defected tubes (see Fig. 10.24). From these calculations, it
can be seen that the open system scheme makes it possible to recover the expected
magnetic behavior of monovacancies. In addition, these results definitely show that the
magnetization of defected CNTs can be ascribed to the presence of unsaturated carbon
atoms, in agreement with a naive picture of a dangling bond.

Figure 10.24 Ab initio quantum conductance and DOS calculated for a (5, 5) CNT containing a
monovacancy reconstructed in its most stable (a, c) and next stable (b, d) configurations,
respectively. The DOS allows one to identify the degree of localization of the dips in the
transmission curve to facilitate the comparison. (Adapted with permission from Zanolli and
Charlier 2010. Copyright (2010) by the American Physical Society)
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The analysis of the conductance curves (Fig. 10.24) reveals that a carbon nanotube
containing a monovacancy may act as a spin filter within some specific energy windows.
For instance, the conductance at EF of the tilted reconstruction of the monovacancy
(Fig. 10.24(a)) drops from 2G0 to G0 for one spin channel (majority spin carriers) while
the minority spin conductance is almost unaffected. Consequently, at EF, half of the
electrons with majority spin orientation will be filtered out while minority electrons
will be almost fully transmitted. The situation is reversed at 0.4 eV: majority electrons
are almost fully transmitted while half the minority electrons are reflected. A similar
behavior is predicted for the parallel monovacancy (Fig. 10.24(b)).

The conductance dips correspond to states which are quasilocalized (wide dips,
Fig. 10.24(a)) or strongly localized (sharp dips, Fig. 10.24(b)) on the under-coordinated
carbon, as can be seen from the height of the peaks of the density of states (DOS,
Fig. 10.24(c) and (d), respectively) computed from the Green’s function of the open
system.

The information on the degree of localization of the states on the defect site
obtained from the conductance and the DOS computed within the open system scheme
helps in better understanding why the range of the exchange coupling is so long and
affects the magnetization computed when using periodic boundary conditions. As
an example for the monovacancy in the parallel configuration, electronic states are
seen to be more localized on the defect site (Fig. 10.25(b)) and, hence, little coupling
between adjacent cells is found within the periodic-boundary-condition scheme. On the
other hand, for the monovacancy in the tilted configuration, the electronic states
localized on the defect sites are clearly extended over the whole cell (Fig. 10.25(a)),
resulting in a strong coupling of the magnetic impurities. The spatial extension of the
quasi-localized states is inversely proportional to the tube radius R and the indirect
coupling will have the same 1/R dependence (Kirwan et al. 2008). For this reason,
oscillations in the magnetic moment are less pronounced in the parallel case and in the
graphene case.

Figure 10.25 Wavefunctions illustrating the degree of localization of the electronic states in a
(5,5) CNT containing a monovacancy reconstructed in its most stable (a) and next stable (b)
state. The tilted vacancy induces a more extended state (a) than the parallel one (b). (Adapted
with permission from Zanolli and Charlier (2010). Copyright (2010) by the American Physical
Society)
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10.5.4 Doped Carbon Nanotubes

Analogous to point defects, boron or nitrogen impurities, substituting carbon atoms,
produce quasibound impurity states of a definite parity and reduce the conductance by
a quantum unit 2e2/h via resonant backscattering (Choi et al. 2000), as presented in
Fig. 10.26. The conductance of the doped tube is found to be virtually unchanged at EF,
meaning that the impurity potential does not scatter incoming electrons at this energy.
On the other hand, two pronounced dips are observed in the conductance below EF for
the boron impurity since it acts as an acceptor dopant. The amount of the conductance
reduction at these dips is 1G0 (Fig. 10.26(a)). The upper dip is caused by an approximate
half reflection from states of both π and π∗ bands. Because a single impurity breaks
the mirror symmetry planes containing the tube axis, an eigenchannel is a mixture
of the π and π∗ bands. Consequently, an electron in such an eigen-channel is either
completely reflected or completely transmitted. Associated with the two conductance
dips, the density of states (DOS) around the boron impurity exhibits two peaks arising
from the presence of quasibound states (Fig. 10.26(a)). The lower peak is too close (∼1
meV) to be seen separately from the peak originating from the van Hove singularity
of the lower subbands. A nitrogen substitutional impurity has similar effects on the
conductance (Choi et al. 2000), but on the opposite site of the charge neutrality point
since it acts as a donor dopant (Fig. 10.26(b)). In summary, a substitutional boron or
nitrogen impurity produces quasibound states of definite parity (resonant states) made
of π orbitals perpendicular to the tube surface below or above EF, in close analogy to
the acceptor or donor levels in semiconductors, and the conductance is reduced at the
corresponding quasibound state energies.

Figure 10.26 Effects of a boron (a) and a nitrogen (b) impurity on the conductance of a (10, 10)
carbon nanotube. The conductance as a function of the incident energy exhibits two dips. The
local density of states (LDOS) around the impurity presents two peaks (indicated by arrows)
and rapid changes, respectively, associated with the dips in the conductance. (Reproduced
from Choi et al. (2000). Copyright (2000) by the American Physical Society. Courtesy of
Hyoung Joon Choi)
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Figure 10.27 (a) Atomic structures of phosphorus–nitrogen-doped (10, 0) nanotube. The
phosphorus atom protrudes from the nanotube wall due to the longer P–C bonds. (b, c) Quantum
conductance and density of states plots for P–N-doped (b) zigzag (10, 0) and (c) armchair (6, 6)
carbon nanotubes (solid line), compared with pristine nanotube values (dashed line). The
conductance of the semiconducting tube is almost insensitive to the presence of the dopant.
Localized states cause scattering, and hence a reduction of the conductance close to the
corresponding energies for the metallic tube. (Adapted from Cruz-Silva et al. (2009))

Experimentally, hetero-doped carbon nanotubes are quite easily synthesized by CVD
techniques (Cruz-Silva et al. 2008) using for example benzylamine and triphenylphos-
phine as nitrogen and phosphorus sources, respectively. These P–N-doped nanotubes
are thermodynamically stable, as predicted theoretically when scrutinizing the defect
formation energies (Cruz-Silva et al. 2009). Analysis of the relaxed structures confirms
that phosphorus maintains an sp3 hybridization and bonds to the carbon atoms with
tetrahedral orbitals, inducing structural strain in the carbon network in order to accom-
modate the longer P–C bonds and the larger sized P ion (Fig. 10.27(a)). Total energy
calculations also confirm that curvature helps to reduce the structural strain caused by
the phosphorus, and that the P–N defect is energetically more stable than the phosphorus
impurity alone.

The electronic band structure shows the presence of “semi-localized” states around
the P–N doping atoms (Cruz-Silva et al. 2009). In contrast to nitrogen, these states
do not modify the intrinsic nanotube metallicity. Electronic transport calculations on
pristine and P–N-doped nanotubes clarify the different effects of the dopants on their
conductance (Fig. 10.27(b, c)). The calculation of the quantum conductance shows
that zigzag phosphorus-doped nanotubes do not modify the intrinsic semiconducting
behavior (Fig. 10.27(b)), in contrast to what is observed for N-doped nanotubes (Choi
et al. 2000). Phosphorus–nitrogen doping in a (10, 0) nanotube only creates bound and
quasibound states around the phosphorus atom that are dispersionless giving sharp peaks
in the density of states (Fig. 7.27(c)). These states are normal to the nanotube surface
and do not contribute to the electronic transport in semiconducting nanotubes, while
in the case of a metallic nanotube, these states behave as scatterers, creating small
dips in the conductance at specific energies. These electronic properties are also very
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useful for fast response and ultrasensitive sensors operating at the molecular level.
Such molecular selectivity has been predicted in CO, NH3, NO2, and SO2 adsorbed on
P–N-doped nanotubes (Cruz-Silva et al. 2011). In fact, the adsorption of different chem-
ical species onto the doped nanotubes modifies the dopant-induced localized states,
which subsequently alter the electronic conductance. Although SO2 and CO adsorptions
cause minor shifts in electronic conductance, NH3 and NO2 adsorptions induce the
suppression of a conductance dip. Conversely, the adsorption of NO2 on P–N-doped
nanotubes is accompanied by the appearance of an additional dip in conductance, corre-
lated with a shift of the existing values. Overall, these changes in electric conductance
provide an efficient way to detect selectively the presence of specific molecules (Cruz-
Silva et al. 2011).

10.5.5 Functionalized Carbon Nanotubes

The transport properties of carbon nanotubes can be tailored by molecular function-
alization (Balasubramanian et al. 2008; Collins et al. 1998; Star et al. 2003). Indeed,
functionalized carbon nanotubes display tunable structural and electronic properties,
and promise to become for nanoelectronics what DNA is for the life sciences. For
instance, by grafting photoactive molecules onto the nanotube, the resulting nanotube-
based devices could be controlled optically (Campidelli et al. 2008; Simmons et al.
2007). The recent development of synthetic methods to attach ligand molecules has
been a major breakthrough, and opens the possibility to use molecular self-assembly
and nanolithography techniques to arrange nanotubes in a device. An accurate control of
the physical properties can also be made possible by target molecular functionalizations
that tune the electronic response or the structural conformations.

In order to graft molecules at the nanotube surface, two types of chemical function-
alization are usually considered, namely physisorption (non-covalent functionalization)
and chemisorption (covalent functionalization). Both methods provide effective path-
ways for modifying the intrinsic properties of electric transport along CNTs, but a trade-
off has to be found to add a new functionality to the tube without excessively damaging
its electronic and transport features (Balasubramanian et al. 2008).

Non-covalent Functionalization
In the case of physisorption, the non-covalent adsorption of molecules has the advantage
of enabling CNT functionalization while preserving their electronic structure, since the
original sp2 hybridized bonds and conjugation remain unaltered (Tournus et al. 2005).
Consequently, the scattering efficiency resulting from molecule deposition remains neg-
ligible owing to weak bonding (see, for instance, Latil et al. (2005)) and vanishing
charge transfer. Nevertheless, physisorption effects on electronic conduction have been
suggested to critically depend on the nature of molecular species and their HOMO-
LUMO gap positioning with respect to the Fermi level of the host tube (Latil et al. 2005).
For example, benzene molecules yield vanishing modulations of the intrinsic conduc-
tance, whereas azulene molecules (with a HOMO-LUMO gap of about ∼2 eV) produce
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substantial elastic backscattering in the nanotube, resulting in mean free paths of the
order of a few micrometers for large coverage. Such a possibility of creating/removing
a reversible elastic disorder by a simple adsorption/desorption of molecules covering the
nanotube surface opens interesting perspectives for experimental studies and potential
applications in nanotechnology.

Covalent Functionalization: A Few Examples
In the case of chemisorption, covalent functionalization of CNT involves the forma-
tion of saturated sp3 bonds which markedly breaks the nanotube π conjugation (Zhao
et al. 2004). The diazonium addition is a commonly used technique (Cabana & Martel
2007; Lee, Son et al. 2005), but can result in dramatic loss in tube transport capability
if too many addends are chemisorbed. The impact of covalent functionalization on tube
conductance can, however, be significantly reduced by a suitable choice of the addends.
To circumvent such a problem, [2 + 1] cycloaddition reactions have been theoretically
proposed (Lee, Son et al. 2005; Lee & Marzari 2006). Such functionalization is driven
by grafted carbene (or nitrene) groups that induce bond cleaving between adjacent
sidewall carbon atoms, maintaining the sp2 hybridization and providing sites for further
attachment of more complex molecules and related functionalities. A transport study
based on a nonorthogonal tight-binding Hamiltonian has first reported strong differ-
ences between monovalent and divalent additions in short-length nanotubes (Park et al.
2006). Using ab initio calculations, Lee and Marzari (Lee, Son et al. 2005; Lee &
Marzari 2006) further demonstrated that cycloaddition reactions induce the grafting of
dichlorocarbene groups (CCl2) which preserve most of the conductance in (5, 5) CNT
metallic nanotubes, in contrast to phenyl-type functionalization. However, these first-
principles calculations have been limited to ultrashort nanotube segments with length
below 50 nm. Below, various processes of chemical functionalization are detailed, and
their impact on electronic and transport properties in micrometer-long and disordered
nanotubes is analyzed following (Lopez-Bezanilla 2009).

Diazonium salts are a group of organic compounds sharing a common functional
group with the characteristic structure of R−N+

2 X−, where R can be any organic ligand
such alkyl or aryl and X is an anion such as a halogen. Phenyl group (denoted with the
formula C6H5 and sometimes abbreviated as  ) is the aryl component of diazonium
salts which is widely used in chemistry to functionalize carbon nanotubes to form
nanotube composites. Diazonium salts provide a selective chemical reaction that favors
the covalent attachment to metallic CNTs. Such a selectivity characteristic is used for
sorting nanotubes of different chiralities (Strano et al. 2003). In the grafting process, the
aryl diazonium cation gets one electron from the substrate and subsequently becomes
an aryl radical by losing an N2 molecule (see Fig. 10.28). The attachment of a phenyl
group onto the nanotube sidewall makes an anchorage point for further grafting of more
complex molecules with specific functionalities (Campidelli et al. 2008). Due to the sp3

rehybridization induced by the grafting of the phenyl group, this new chemical function
strongly affects local features of the carbon-based systems.
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Figure 10.28 Grafting of phenyl groups onto the CNT sidewall. First, an electron is extracted
from the nanotube by means of the reaction with diazonium reagents. An N2 molecule is
formed and the aryl group gets chemically attached to the nanotube, resulting in the creation of
a stable C–C covalent bond and a radical which is further passivated by another aryl group in a
similar process.

Charge transport in metallic single-walled CNTs with random distribution of phenyl
and carbene functional groups bonded to the tube sidewalls has been investigated within
a first-principles approach (López-Bezanilla et al. 2009; López-Bezanilla, Triozon, Latil
et al. 2009). The disorder introduced by the grafted groups breaks both translational
and rotational symmetries. The conductance modulations and conduction regimes (from
quasiballistic to diffusive) have been investigated as a function of both incident electron
energy and functional groups coverage density on long nanotubes from a few hundreds
of nanometers to the micron scale. First-principles mesoscopic transport study demon-
strates that carbene cycloaddition preserves ballistic conduction up the micron scale,
whereas the grafting of phenyl groups yields a mean free path in the nanometer scale,
leading to a strong localization regime for commonly studied nanotube lengths.

The computational approach is based on a large set of ab initio calculations, which
are first performed to get the Hamiltonian and overlap matrix associated with small
tube sections functionalized by single groups (see Fig. 10.29(a) and (b)). Such a set
of building blocks Hamiltonian is further used to reconstruct a micrometer-long tube
Hamiltonian formed by a random mixture of functionalized and pristine tube portions to
introduce both rotational and translational disorder (see Fig. 10.29(c)). Upon building
the small block Hamiltonian with one defect, periodic boundary conditions are used. The
length of the building block is chosen such that geometric and energetic perturbations
induced by functional groups vanish as the edges are reached. The renormalization
procedure used here takes advantage of the locality of the orbital basis set used in
the ab initio simulation (SIESTA code), allowing us to consider the system as formed
by nearest-neighbors’ interacting sections. As depicted in Fig. 10.29 (bottom panel),
an armchair CNT is divided in segments, so that H is partitioned in onsite energy
diagonal blocks and nearest-neighbor coupling blocks. By coupling, in a random way,
functionalized and pristine building blocks, CNTs as long as desired can easily be built
up (López-Bezanilla et al. 2009; López-Bezanilla, Triozon, Latil et al. 2009; López-
Bezanilla et al. 2010).

The case of a single functional group is first investigated. The effect of a pair of
phenyl rings or a carbene group in the electronic structure of an armchair CNT is directly
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Figure 10.29 sp2-like and sp3-like functionalization. Top panel: Atomic structures of the building
blocks assembled further in longer structures with both kinds of covalent grafting: (a) sp3-like
functionalization with phenyl groups and (b) sp2-like functionalization through divalent addition
by carbene groups. (c) CNT functionalized with phenyl groups constructed by assembling
individual sections. (Adapted with permission from López-Bezanilla, Triozon et al. (2009).
Copyright (2009) American Chemical Society)

observable in the band energy diagram. Figure 10.30(a) illustrates the unaltered band
structure of a (10, 10) CNT upon functionalization with a carbene group. The bond
between neighboring circumferential carbon atoms is broken and new bonds between
carbene carbon atom and two nanotube carbon atoms are formed. Figure 10.30(b) and
10.29(c) depict a CNT with a carbene group covalently attached in an orientation that
favors a stable configuration. The system CNT-CH2 reaches its configuration energy
minimum by displacing the carbon atoms that serve as an anchorage site to the carbene,
which entails a rupture of the original C–C bond of nanotube atoms. If one considers
only a nearest-neighbor scheme, every C atom is found to be bonded to three C atoms,
preserving the original π orbitals network. In Fig. 10.30(d), the preserved π orbitals
centered in the altered nanotube carbon atoms are shown in a representation based
on Wannier functions approach (Marzari & Vanderbilt 1997). As seen below, carbene
bond orientation in the nanotube plays a key role in electronic transport properties.
The orientations depicted in Fig. 10.30(c) and (d) are the most stable configurations
for zigzag and armchair CNT, respectively.

As can be seen in Fig. 10.30(b), two flat bands at energy values that coincide with
the conductance dips in Fig. 10.31(a) show up in the energy band diagram. These
nondispersive bands indicate the presence of molecular states, which have localized
the system wavefunction around the phenyl groups, as observed in Fig. 10.30(f) where
the local density of states (LDOS) is plotted for the state at energy −0.6 eV. At this
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Figure 10.30 Energy bands of a functionalized armchair CNT with a carbene group (a) and with
a pair of phenyl rings (b). (c) Ball-and-stick image of a carbene group grafted onto the
semiconducting nanotube in a skewed orientation. (d) Carbene functionalization when the C–C
bond is perpendicular to nanotube axis (Courtesy of N. Marzari). (e) and (f) The LDOS of the
hybrid CNT-pair of phenyl at two energies: in (e) the density of states has been projected over
an interval of energy close to the Fermi energy; in (f) the projection is over the localized state
at −0.6 eV.

energy, the largest contribution to the DOS comes from the orbitals associated with
the functional groups, i.e., system wavefunction is localized over the molecules, unlike
Fig. 10.30(e) where the wavefunction is homogeneously spread along the system.

The diameter of such a (10, 10) tube is close to the limit separating the area of
stability for closed carbene configurations (larger tubes) and opened geometries (smaller
tubes) (Lee & Marzari 2006). Closed configurations introduce significant backscattering
and the advantage of cycloaddition is therefore lost for larger diameter tubes. Further,
on the basis of activation energy calculations for desorption, carbene is found not to
be thermally stable on large tube diameters and graphene. Due to the planar-like geom-
etry of large CNTs, carbene groups do not induce displacement of C atoms from the
original structure (as in the case of small–diameter armchair nanotubes), and thus spon-
taneously desorb at room temperature (Margine et al. 2008). Paired configurations in the
1,4-geometry (para – where two phenyls are grafted as third-nearest neighbors) are
investigated keeping intact the conjugation properties of the CNT. Several arguments
suggest that such a configuration is the most likely to occur in nanotubes: (a) the graft-
ing of a first radical is known to enhance the reactivity of a carbon atom at an odd
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Figure 10.31 Conductance profiles (in units of G0) for phenyl and carbene functionalization
(averaged over 40 different random configurations): (a) Conductance for various molecular
coverages of a 300 nm long (10, 10) CNT functionalized with phenyl groups. (b) Same as in (a),
but for a 1000 nm long nanotube functionalized with divalent addition of carbene groups.
The insets give the same information but for the (6, 6) nanotubes. (Adapted with permission
from López-Bezanilla et al. (2009). Copyright (2009) American Chemical Society)

number of bonds away from it, (b) the 1,4-configuration is slightly more stable than the
1,2-configuration (ortho), and (c) isolated phenyls have been shown to spontaneously
diffuse or desorb at room temperature on standard diameter tubes (Margine et al. 2008).

Increasing the number of grafted phenyl groups has a strong impact on the conduc-
tivity of both 300 nm long (6, 6) and (10, 10) nanotubes, as shown in Fig. 10.31(a).
The sp3 bond between the phenyl and the tube surface reduces the conductance for
all energies but with marked suppression of one conduction channel at two symmetric
energy resonances for a single grafted group. By increasing the coverage density, a
stronger damping of the conductance pattern is observed. For a fixed molecule density,
this effect is enhanced for smaller nanotube diameter. The conductance is found to
roughly decay inversely proportional to the coverage density (Fig. 10.32). Using a
conventional phenomenological law, the disorder average transmission coefficient can
be related to the elastic mean free path as T̄ = <G>/G0 = N⊥(1 + L

�el
)−1. This

expression allows prediction of some approximated range and scaling behavior of the
mean free path (Fig. 10.32).

With simpler disorder models (such as Anderson disorder), analytical forms and
scaling behavior of elastic mean free paths have been derived for both carbon nano-
tubes (White & Todorov 1998) or graphene nanoribbons (Areshkin & White 2007).
In particular, �el was demonstrated to upscale linearly with tube diameter for a fixed
disorder strength. Here, for the 300 nm long (6, 6) nanotube, �el quickly decays with
coverage density to reach �el ∼ 15 nm when 40 groups are attached to the sidewalls.
The same number of functional groups on a larger diameter nanotube (10, 10) will,
however, yield �el ∼ 100 nm. The calculated mean free path also presents some upscal-
ing with nanotube diameter, although the scaling behavior cannot be extracted in detail.
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Figure 10.32 (a) Disorder average conductance at the charge neutrality point (main plot) and
estimated elastic mean free path (inset) as a function of grafted phenyl groups density for a
300 nm long nanotube. (b) The same for grafted carbene groups for a nanotube length of 1μm.
(Adapted with permission from López-Bezanilla, Triozon, Latil et al. (2009). Copyright (2009)
American Chemical Society)

As evidenced by these results, sp3 bonds are clearly not favorable for good conduction
efficiency of hybrid nanotubes, and thus not suitable for applications.

In contrast, the cycloaddition of carbene groups induces only a small downscaling
of the conductance in the first plateau, with increase in the coverage density (see
Fig. 10.32). In contrast to the phenyl groups, an asymmetry of the conductance decay is
already observed for the single molecule case. The much weaker change of conductance
indicates a quasiballistic regime. The values of �el are given in the inset to Fig. 10.32(b),
and are in the range of ∼ 2−9 μm, depending on coverage density and nanotube
diameter. In this case, a rough linear scaling of �el is observed with tube diam-
eter (López-Bezanilla et al. 2009). Note that the coverage density in the case of
carbene groups is larger than for the phenyl case, demonstrating the weak effect of
such functionalization on transport properties of pristine nanotubes, which is crucial for
further envisioning the use of long hybrid nanotubes. We mention that a recent statistical
study of the conductance distributions P(g) in such type of disordered micrometer-long
carbon nanotubes has perfectly reproduced the nontrivial, non-Gaussian, crossover
to Anderson localization, in full agreement with the Dorokov–Mello–Pereyra–Kumar
scaling equation, offering a possible experimental test of such universality (Lopez-
Bezanilla et al. 2018).

In summary, by using a fully ab initio transport approach, transport regimes in
chemically functionalized long carbon nanotubes can be explored, comparing two
different and important types of chemical bonding. The results provide evidence of
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good conduction ability in the case of carbene cycloadditions, whereas paired phenyl
addends are found to yield a strongly diffusive regime, with estimated mean free path
ranging from a few tens of nanometers to 1 nm, depending on the coverage density
and incident electron energy. Functionalizing is thus an interesting tool to develop
novel devices based on modified carbon nanotubes that have specific organic molecules
covalently linked to their walls, thus combining the exceptional structural stability and
electronic properties of microscopic wires with the diversity and tunability of material
properties that come from the molecular attachments.

10.5.6 Carbon Nanotubes Decorated with Metal Clusters

Due to their high surface to volume ratio, CNTs are promising candidates as active
elements for extremely sensitive gas-sensing devices since their conductance can be
easily perturbed by interaction with gas molecules (Charlier et al. 2009; Goldoni et al.
2010; Zanolli & Charlier 2009). However, the response of pristine CNTs to gases is
weak and scarcely selective since the ideal carbon hexagonal network is held together
by strong sp2 bonds characterized by a low chemical reactivity with the molecular
environment. Consequently, functionalization of the CNT sidewalls is mandatory to
improve both the sensitivity and the selectivity of CNT-based gas sensors (Peng & Cho
2003). In particular, functionalization with metal nanoparticles (NPs) can lead to highly
sensitive and selective gas sensors, thanks to the extraordinary catalytic properties of
metal NPs (Charlier et al. 2009; Zanolli & Charlier 2012; Zanolli et al. 2011).

Although the sensing ability of CNTs decorated with metal NPs relies on the huge
chemical reactivity of the cluster surface, the whole CNT–NP system acts as the
detection unit of the device. Indeed, the interaction with gas molecules results in
an electronic charge transfer between the molecule and the CNT–NP sensor, which
affects the position of the Fermi energy and, hence, the conductivity of the detection
unit. Such a conductivity modification can, for instance, be measured by embedding
mats of metal-decorated carbon nanotubes in a standard electronic device (Char-
lier et al. 2009). Since these mats usually behave as p-doped semiconductors, the
adsorption of an extra electron coming from molecules exhibiting a donor character will
induce a resistance increase. Analogously, the interaction with molecules exhibiting
an acceptor character will lead to a reduced resistance. In addition, functionalization
of CNTs with metal nanoparticles can be exploited to improve the sensor selectivity,

since different metals will present different reactivities toward different molecules.
Hence, a gas sensor device can be fabricated by depositing on a microsensor array
several sets of CNT mats, each decorated with different types of metallic NPs (Leghrib
et al. 2010).

First-principles modeling have been used to investigate sensing responses of CNTs
decorated with various NPs in order to deeply understand the detection ability of these
nanosystems for specific gas species (Charlier et al. 2009; Zanolli & Charlier 2012;
Zanolli et al. 2011), demonstrating that DFT simulations are powerful tools to predict,
improve, and design the next generation of gas nano-sensors.
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10.5.7 Graphene Nanoribbons

In contrast to carbon nanotubes, quantum transport properties of GNRs are expected to
strongly depend on whether their edges exhibit the armchair or the zigzag configuration.
Indeed, in the previous sections, the electronic properties of GNRs have been pre-
dicted using the single-band model and ab initio calculations, revealing a dependence on
the edge topology (Nakada et al. 1996). The armchair GNRs are semiconductors with
energy gaps, which decrease as a function of increasing ribbon width. As mentioned
earlier, the gaps of the N-aGNRs depend on the N value, separating the ribbons into
three different categories (all exhibiting direct bandgaps at 
). The band structures
and the corresponding quantum conductances of two armchair GNRs are illustrated
in Fig. 10.33(a, b). The 16-aGNR is a ∼0.8 eV gap semiconductor, thus inducing a
quite large energy interval where no transmission is allowed (Fig. 10.33(a)), while the
gap of the 17-aGNR is reduced to less than 0.2 eV (Fig. 10.33(b)). The region of zero
conductance is also reduced accordingly, and a very small external electric field would
induce an electronic transmission through one channel (1G0 for the conductance).

Figure 10.33 Atomic structures, electronic band structures, and quantum conductances (electronic
transmission) of various graphene nanoribbons: (a) 16-armchair GNR; (b) 17-armchair GNR.
(c, d) 8-zigzag GNR with (c) antiparallel (↑↓) or (d) parallel (↑↑) spin orientations between the
two magnetic edges. The spin-dependent transport is evaluated for both magnetic configurations
of the 8-zGNR but is only visible for the parallel (↑↑) spin orientations (ferromagnetic). In such
a case, one spin orientation is labeled α-spin (in black solid line) while the other is labeled
β-spin (in gray solid line). (Reproduced from Dubois et al. (2009), with kind permission from
Springer Science and Business Media)
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Identically, nanoribbons with zigzag-shaped edges also exhibit direct bandgaps which
decrease with increasing width. However, in zGNRs, quantum transport is dominated by
edge states, which are expected to be spin polarized owing to their high degeneracy.
Indeed, for topological reasons, zigzag-shaped edges give rise to peculiar extended
electronic states, which decay exponentially inside the graphene sheet (Nakada et al.
1996). These edge states, which are not reported along the armchair-shaped edges, come
with a twofold degenerate band at the Fermi energy over one-third of the Brillouin zone.

The ground state of zGNRs with hydrogen passivated zigzag edges presents finite
magnetic moments on each edge with negligible change in atomic structure, thus sug-
gesting zGNRs to be attractive for spintronics (Son et al. 2006a). Indeed, upon inclusion
of the spin degrees of freedom within ab initio calculations (LSDA), the zGNR are
predicted to exhibit a magnetic insulating ground state with ferromagnetic ordering at
each zigzag edge and antiparallel spin orientation between the two edges (Son et al.
2006a). The total energy difference between ferromagnetic (↑↑) and antiferromagnetic
(↑↓) couplings between the edges is of the order of ∼20 meV per edge atom for
an 8-zGNR, but this decreases as the width of the ribbon increases and eventually
becomes negligible if this width is significantly larger than the decay length of the spin-
polarized edge states (Lee, Son et al. 2005). Because the interaction between spins on
opposite edges increases with decreasing width, the total energy of an N-zGNR with
antiferromagnetic arrangement across opposite edges is always lower than that of a
ferromagnetic arrangement for low values of N (N ≤ 30).

The band structures and the spin-dependent quantum conductances of an 8-zGNR are
illustrated in Fig. 10.33(c, d) in the two respective magnetic configurations (↑↓ and ↑↑)
of the ribbon edges. The ↑↓ spin configuration of the 8-zGNR conserves the semicon-
ducting behavior of the GNR family, and its electronic transmission function displays
a gap of 0.5 eV around the Fermi energy (Fig. 10.33(c)). On the contrary, in the ↑↑
spin configuration, the 8-zGNR becomes metallic, inducing a nonzero electronic trans-
mission function at the Fermi energy (Fig. 10.33(d)). In addition, the spin-dependent
conductance calculation also reveals that the transmission of π electrons with one type
of spin orientation (α-spin) is favored for an energy region around −0.5 eV below the
charge neutrality point. On the contrary, π∗ electrons with the other orientation (β-spin)
are more easily transmitted around +0.3 eV above the Fermi energy.

10.5.8 Graphene Nanoribbons with Point Defects

However, ideal zigzag GNRs are not efficient spin injectors due to the symmetry
between the edges with opposite magnetization. In order to obtain net spin injection,
this symmetry must be broken (Wimmer et al. 2008). Incorporating defects (such
as vacancies or adatoms) in the GNR or imperfections at the edge, which usually
cannot be avoided experimentally, breaks the symmetry between the edges and could
thus influence the spin conductance of the GNR (Fig. 10.34(a)). In addition, the
introduction of magnetic point defects in zGNRs favors a specific spin configuration
of the edges. As an example, the ↑↑ spin configuration is favored when vacancies or
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Figure 10.34 Effect of a point defect on the ab initio quantum conductance of an 8-zGNR (a).
Electronic transmission functions are estimated in the presence of an isolated carbon adatom
(b) or an isolated vacancy (c) localized around the ribbon axis, in either the ↑↑ configuration
(top panel) or the ↑↓ configuration (bottom panel) of the ribbon edges. The α-spin and β-spin
components are shown in dark and light gray, respectively, while the dotted lines indicate the
number of π channels in the pristine nanoribbon. (Adapted from Dubois (2009))

adatoms are introduced around the ribbon axis. Consequently, point defects are also
expected to play a key role in the transport properties of zGNRs (Dubois et al. 2009).
Ab initio calculations of the electronic transmission functions have been performed
within the Landauer approach using a supercell containing the point defect connected to
two leads consisting of a few unit cells of ideal 8-zGNR. Both the (↑↓) semiconducting
and the (↑↑) metallic spin configurations of the ribbon are considered (Fig. 10.34).

The main impact of the magnetic point defects on the transport properties is a global
reduction of the transmission associated with the π and π∗ electrons. This is related
to a decrease of the transmission probability of some π–π∗ conduction eigenchan-
nels compared to the pristine 8-zGNR. Within the (↑↓) semiconducting configuration
(Fig. 10.34(b, c), bottom), the presence of defects essentially reduces the conductance
for energies ranging from −0.80 to −0.3 eV (π channels) and from 0.3 to 0.5 eV (π∗

channels), inducing a slight breaking of the spin degeneracy. Within the (↑↑) metallic
configuration, a similar reduction of the conductance is observed (Fig. 10.34(b, c), top).
However, the defects also induce sharp drops in the transmission function around the
Fermi level. At these energies, the electronic states localized on the defect are spin
polarized and can only mix with one of the two spin conduction channels. Consequently,
the spin degeneracy of the electronic transmission function is raised just around the
Fermi energy. In summary, when adatoms and vacancies are introduced, the parallel
spin orientation may be preferred and the local magnetic moment of the defect adds to
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the contributions of the edges. Furthermore, a spin-polarized transmission is observed
at the Fermi energy, suggesting a use of defect-doped graphene nanoribbons as a spin-
valve device (or spin-filter) in future spin-based electronics.

10.5.9 Graphene Nanoribbons with Edge Reconstruction

In contrast to carbon nanotubes, GNRs exhibit a high degree of edge chemical reactivity,
which, for instance, prevents the existence of truly metallic nanoribbons (Barone et al.
2006; Cresti et al. 2008; White et al. 2007). Additionally, the discrepancy between
the theoretical electronic confinement gap and the experimentally measured transport
gap has been attributed to localized states induced by edge disorder (Evaldsson et al.
2008; Mucciolo et al. 2009; Querlioz et al. 2008). Several experimental studies have
also reported the characterization of individual edge defects. To date, several defect
topologies of edge disorder (reconstruction and chemistry) have been proposed for
GNRs, and ab initio calculations have shown the stability of certain types of geometries
such as the Stone–Wales reconstruction (Huang et al. 2009; Koskinen et al. 2008;
Wassmann et al. 2008). Indeed, at room temperature, the zigzag edge is found to
be metastable and a planar reconstruction implying pentagons and heptagons (zz57)
spontaneously takes place (Fig. 10.35(a)). Such a zz57-reconstruction self-passivates
the edge with respect to adsorption of atomic hydrogen from a molecular atmosphere.
Indeed, the formation of triple bonds with alternating single bonds is suggested by the
nearly isolated dimers at the ribbon edge, thus removing the dangling bond bands (due
to the absence of hydrogen) away from the Fermi level by lifting the degeneracy by
almost 5 eV (Koskinen et al. 2008). Because the dangling bond bands shift to elusive
energies, the corresponding chemical reactivity is also reduced, stabilizing the zz57
edge. This zz57-reconstruction also modifies the electronic structure of the ribbon.

Figure 10.35 Atomic structure model (a), electronic band structure (b), and quantum conductance
(c) of an 8-zGNR with a reconstructed edge containing pentagons and heptagons (zz57). The π
electronic states surrounding the Fermi energy are represented in (d) and are found to be mainly
localized on the zz57-reconstructed edge. (Reproduced from Dubois et al. (2009), with kind
permission from Springer Science and Business Media)
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The presence of the edge states around the Fermi level (Fig. 10.35(b)) makes this recon-
struction ideal for conductance measurements, in contrast to armchair ribbons where
the edge state is absent. Indeed, ab initio quantum conductance of a zz57-reconstructed
8-zGNR has been calculated (Dubois et al. 2009) and is presented in Fig. 10.35(c).
The electronic transmission is predicted to be quite high at the charge neutrality point
(G = 3G0), compared to the conventional conductance (G = 1G0) predicted for
pristine zGNRs at the Fermi energy (Fig. 10.33(d)). In the zz57-edge reconstruction,
π electrons are easily transmitted and these electronic channels are localized at the
zz57-reconstructed edge (Fig. 10.33(d)). Consequently, this novel thermodynamically
and chemically stable reconstruction could play a key role in the formation of angular
joints in nanoribbons (Li, Wang et al. 2008). A knowledge of the atomic structure and
the stability of the possible ribbon edges is a crucial issue to control the experimental
conditions of the formation of graphene nanoribbons of desired properties for future
nanoelectronics.

10.5.10 Graphene Nanoribbons with Edge Disorder

Most of the transport studies of edge-disordered GNRs have assumed simplified defect
topologies (Evaldsson et al. 2008; Mucciolo et al. 2009; Querlioz et al. 2008). However,
a few ab initio calculations have also analyzed a much larger complexity of edge recon-
struction and edge chemistry, given the reported stability of certain types of geometries
such as the Stone–Wales reconstruction (Huang et al. 2009; Koskinen et al. 2008; Wass-
mann et al. 2008). Several experimental studies have also reported the characterization
of individual edge defects either by means of Raman spectroscopy, scanning tunneling
or transmission electron microscopy (Cançado et al. 2004; Girit et al. 2009; Liu et al.
2009). Consequently, it is necessary to investigate the impact of realistic edge-defect
topology on the electronic transport properties of long and disordered GNRs.

The electronic and transport properties of aGNRs have been predicted to strongly
depend on the geometry of the edge reconstruction (Dubois et al. 2010). Indeed, the
transport signature due to a single defect at low energy turns out to range from a full
suppression of either hole or electron conduction to a vanishingly small contribution
of backscattering. Besides, hydrogenation of the chemically active defects is found to
globally restore electron and hole conduction as described below.

Figure 10.36 illustrates various types of possible defect along the ribbon edge using
Clar’s sextet representation (Clar 1964, 1972). Among all the defects, the reconstructed
geometries that preserve the benzenoid structure of pristine aGNRs turn out to weakly
affect the electronic transmission. The most striking example is the conductance profile
of the D4 defect (Fig. 10.36(e)). The conductance remains very close to its maximum
quantized value as found in the pristine case, with weak backscattering mainly observed
in higher subbands. Slightly differently, the double heptagon and pentagon defect (D3)
exhibits two conductance suppression dips (Fig. 10.36(d)), symmetric with respect to the
charge neutrality point, recalling the signature of an sp3-type defect (López-Bezanilla
et al. 2009).
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Figure 10.36 Conductance profiles of 35-aGNR for six different edge geometries: pristine ribbon
(dashed black lines), single defect (light gray thick solid lines), and average conductance for
500 nm long aGNRs containing 30 defects (dark gray thin noisy lines). TDOS are given for
(a) and (b). (Top) Edge-defect topologies containing odd-membered rings: (a) a single pentagon
defect – D1, (b) A single heptagon – D2. (c) Spatial representation of the transmission
eigenchannel at the energy marked by an arrow in panel (b). (Bottom) Edge reconstruction
involving only benzenoid defects: (d) two heptagons and one pentagon – D3, (e) Small hole due
to a dimer extraction – D4. (f) D1H and (g) D2H denote the dihydrogenated pentagon and
heptagon, respectively. Insets: Clar’s sextet representation for each edge geometry. (Adapted
with permission from Dubois et al. (2010). Copyright (2010) American Chemical Society)

Other topologies preserving the benzenoid structure also yield very similar results
to those of the D3 and D4 defects (not shown here). In marked contrast, edge defects
containing monohydrogenated odd-membered rings convey much stronger backscatter-
ing efficiency. Conductance fingerprints for single reconstructed pentagon and heptagon
defects are illustrated in Fig. 10.36(a) and 10.36(b), respectively. Interestingly, a marked
acceptor (donor) character develops for the pentagon (heptagon) defect, as evidenced
by the strong electron–hole conductance asymmetry. Such an effect, already observed
in nanotube junctions (Charlier et al. 1996), is due to the charge transfer taking place
in the π–π∗ bands when odd-membered rings are embedded in a perfect hexagonal
network. According to the Mulliken decomposition of the electronic density, a slight
excess of π electrons (+0.152) is found on the pentagonal ring and a small deficit of
π electrons (−0.135) is reported on the heptagon. Five-membered rings (D1) have thus
an acceptor character, whereas seven-membered rings (D2) exhibit a donor character,
and even-membered rings (D3, D4) are predicted to be neutral in a planar hexagonal
network (Tamura & Tsukada 1994).
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Total and local DOS have been computed for D1 and D2 (Fig. 10.36(a) and (b)) and
reveal the energy position of quasibound states, which are responsible for the conduc-
tance drops (Choi et al. 2000). The charge density contour plot (Fig. 10.36(c)) represents
the electronic state incident from the left and totally reflected by the quasibound state
at the energy indicated by an arrow in Fig. 10.36(b). The backscattering associated with
quasibound states is a general mechanism. The acceptor, donor, and neutral character-
istics reported respectively for the D1, D2, and D3/4 topologies are actually very robust
regardless of the ribbon width. However, the broadening of the conductance dips is
expected to decrease for larger ribbon widths. The intensity of the observed electron–
hole conductance asymmetry is thus likely to depend on the actual ribbon geometry.

The high chemical reactivity of defects such as D1 and D2 is further explored by
assuming a dehydrogenation of the carbon atom sitting at the edge. Resulting conduc-
tance profiles for the new defects D1H (Fig. 10.36(f)) and D2H (Fig. 10.36(g)) strongly
differ from the monohydrogenated cases (D1 and D2). Indeed, in the presence of addi-
tional passivation, the conductance is fully restored for D1H, whereas the signature for
D2H becomes similar to that of D3. In both cases, the initial strong reduction of electron
or hole conductance is markedly suppressed, suggesting a possibility to tune the trans-
port properties from a metallic to a truly insulating state (or vice versa) upon varying
the coverage of monatomic hydrogen, as discussed experimentally for 2D graphene
(Bostwick et al. 2009).

The Clar’s sextet representation (Clar 1964, 1972) (Fig. 10.36 (insets)) provides a
pictorial scheme to understand the impact of edge defects (Baldoni et al. 2008) on
transport properties. Clar’s theory proposes a simplified description of the π electronic
structure of hydrocarbons on the basis of the resonance patterns that maximize the
number of benzenoid sextets drawn for the system. The benzenoid sextets, depicted
as plain circles in the insets of Fig. 10.36, are defined as the carbon hexagons that
stem from the resonance between two Kekulé structures with alternating single and
double bonds. These are associated with a benzene-like delocalization of the π electrons
over the carbon ring. As a consequence, Clar’s representation gives direct insights
into the aromaticity of the π electronic structure. According to Clar’s theory, pristine
aGNRs are fully benzenoid (i.e., all π orbitals are involved in a benzenoid sextet). This
ideal picture is not preserved in the presence of defects. Upon introduction of the D1
and D2 topologies, the bonding of the aGNR can be seen as the superposition of two
mirroring Kekulé structures that partially destroy the benzenoid character of the aGNRs
(Fig. 10.36(a) and (b)). By increasing the localization of π electrons in carbon–carbon
double bonds, such defects destroy the local aromaticity at the ribbon edge and are thus
expected to have a large effect on the π–π∗ conduction channels. On the contrary,
the dihydrogenation of both defects D1 and D2 fully restores the benzenoid character
of the ribbon, as illustrated by Clar’s sextet representations (Fig. 10.36(f) and (g)).

To further substantiate the effect of these topological defects on the mesoscopic
transport properties, the behavior of long disordered aGNRs is explored with random
distribution of edge defects. In Fig. 10.36, the conductance of 500 nm long disordered
aGNRs containing 30 defects (light gray lines) is superimposed onto the single defect
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results (dark gray lines). Computed conductances are averaged over 20 different
disorder configurations. The original conductance fingerprints of the defects considered
are further amplified when longitudinal disorder is introduced, resulting for D1 (D2), in
an almost fully suppressed hole (electron) conduction for low defect density.

As mentioned earlier, ab initio transport calculations are highly computationally
demanding, and the development of an accurate tight-binding (TB) model is therefore
extremely useful for achieving a complete mesoscopic study. Consequently, most
studies dedicated to edge disorder in GNRs rely on a simple topological nearest-
neighbor TB Hamiltonian. However, when compared to ab initio results, this turns out
to generally yield a wrong description of transport properties in the case of non-neutral
defects.

Figure 10.37 showns the conductance profiles of three defects (D1, D2, and D4)
computed either within a topological TB model (black solid lines) or within an adjusted
TB model (gray solid lines). Although the agreement between ab initio and topological
TB results is good for the D4 defect, strong discrepancies are observed for D1 and D2
defects. In the latter cases, the topological model leads to a severe underestimation of the
backscattering efficiency. The fitting of the TB parameters from ab initio calculations
directly by adjusting the conductance profiles for a single defect is definitely more
accurate (Avriller et al. 2007).

Within the fitted TB model, the transport properties of disordered aGNRs are investi-
gated by considering lengths varying up to L = 5μm and random distribution of defects

Figure 10.37 Conductance profiles of 35-aGNR for three isolated defects: (a) D1, (b) D2, and
(c) D4. Ball-and-stick models of the defects are illustrated on the right. Black dashed lines
represent the conductance of the pristine ribbon. The ab initio computed curves are shown in
light gray solid curve. Black and dark gray lines correspond to the topological and fitted TB
models, respectively. (Adapted with permission from Dubois et al. (2010). Copyright (2010)
American Chemical Society)
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Figure 10.38 Conductance of a 35-aGNR with a 6 × 10−2 nm−1 density of (a) D1 defects,
(b) D2 defects, (c) D4 defects, and (d) mix of {D1, D2, D4} defects. The conductance is given
as a function of the carrier energy and the length of the ribbon (L). G(L, E) has been averaged
over 100 different defect distributions. The white lines delineate the (L, E) regions for which
the conductance value G ≤ 0.01G0 (criterion for the experimental conduction gap). (Adapted
with permission from Dubois et al. (2010). Copyright (2010) American Chemical Society)

with a density of 6×10−2 nm−1. Figure 10.38 shows the conductance of long disordered
aGNRs (averaged over 100 different configurations) as a function of energy and ribbon
length. Also, the regions of the (L, E) plane where the conductance is experimentally
insignificant (i.e., G(E) ≤ 0.01G0 (Han et al. 2007)) are delineated by white lines,
allowing determination of the length-dependent conduction gaps.

In the presence of charged defects (i.e., pentagon (D1) and heptagon (D2) defects), the
conductance scaling behavior of long disordered aGNRs presents a striking electron–
hole asymmetry. Figure 10.38(a) and (b) clearly shows that depending on the energy at
which carriers are injected, the electronic transport ranges from ballistic to localized
regimes. In D1-defected aGNRs (Fig. 10.38(a)), the propagation of electrons in the
first plateau remains quasiballistic up to a length L > 5μm. As a consequence of the
acceptor character of D1 defects, the hole conduction, in the same energy window, is
almost fully suppressed for length L< 0.5μm. In contrast, in the presence of D2 defects
(Fig. 10.38(b)), holes in the first plateau remain conductive up to length L > 5μm,
while the donor character of the D2 defects suppresses electron conduction in the same
energy window. Obviously, such disordered edge-defect profiles with a single defect
type are rather unlikely, but this example shows however that spectacular fluctuations
of transport length scales occur in some specific situations.

The comparison with more realistic defect distributions is rather instructive. Indeed,
the conductance scaling in the presence of a random distribution of D4 defects, and a
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Figure 10.39 Localization length ξ for a 35-aGNR with a 6 × 10−2 nm−1 density of D4 defects
(dark gray solid line) and a mix of {D1, D2, D4} defects (light gray solid line). The vertical
dashed lines correspond to the position of the van Hove singularities. ξ for the D4 defects is up
to almost one order of magnitude longer than in the case of mixed defects. (Adapted with
permission from Dubois et al. (2010). Copyright (2010) American Chemical Society)

mix of three types of defects {D1,D2, D4} is detailed for the same edge-defect density in
Fig. 10.38(c) and Fig. 10.38(d), respectively. For both defect distributions, the conduc-
tance decay is rather homogeneous within the first electron and hole plateaus. However,
while the marked electron–hole asymmetries associated with the D1 and D2 defects
compensate each other, the presence of odd-membered rings continues to crucially
impact the electron and hole localization. This can be seen by looking at the white line
in the (L, E) plane. The presence of defects noncompliant with the benzenoid character
of aGNRs (i.e., D1 and D2) thus appears to strongly affect the ballistic propagation of
carriers, even for low defect concentration (Dubois et al. 2010). This has been further
emphasized by the estimated localization lengths that are shown in Fig. 10.39 as a
function of the carrier energy.

While the distribution of D4 defects gives rise to a localization length ξ ∼ 1μm for
low-energy carriers, the introduction of charged defects strongly reduces the average
value in the [−0.5, 0.5] eV energy window. Note that the fluctuations of ξ in cor-
respondence with the van Hove singularities for D1 defects are due to the increased
scattering induced by the high DOS at these points. In the case of the mixed disorder,
these fluctuations are absent or considerably reduced owing to the strong smearing effect
that disorder produces in the DOS.

At last, recent outbreaks in bottom-up chemical techniques have demonstrated
the synthesis of atomically perfect zigzag graphene nanoribbons (zGNRs) (Wang,
Talirz et al. 2016) and of their corresponding analogs with phenyl-edge function-
alization (Ruffieux et al. 2016). Indeed, as depicted in Fig. 10.40(a), the monomer
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Figure 10.40 (a) Periodic 6-zGNRs with phenyl-edge defects before cyclodehydrogenation as
obtained by Ruffieux et al. 2016. This structure is not stable and during the cyclodehydrogenation
process, the phenyl groups undergo ring closure, falling either on one or the other side, possibly
leading to ideal structures as in (b). (c) Spin-dependent conductance spectra for 6-zGNRs with
phenyl groups located on their edges, as illustrated on the inset. (Adapted with permission from
Salemi et al. (2018). Copyright (2018) American Physical Society)

used would at first glance yield a perfectly periodic 1D structure. However, during
the cyclodehydrogenation process, the phenyl groups undergo ring closure, which
can happen toward two directions, inducing either perfectly periodic or also possibly
nonperiodic nanoribbons. These phenyl defects are strictly localized along the edges and
do not modify the global structure of the ribbon (Fig. 10.40(b)). Since edge-localized
states are responsible for magnetic properties of zGNRs, the effect of such phenyl-
edge defects might lead to interesting spin-dependent transport properties. Using first-
principle calculations and a Landauer-Bttiker approach, the spin-dependent electronic
transmissions have been predicted for various phenyl-edge-modified zGNRs (Salemi
et al. 2018). Figure 10.40(c) presents the conductance of a 6-zGNR with phenyl groups
located at specific positions on both edges. Theoretical results suggest that the control
of phenyl decoration at the zigzag edges could accurately tune the spin-polarized
currents generated at the edges of the zGNRs (Salemi et al. 2018). Consequently, edge-
engineering, with atomically controlled process, could open a new route to tailor the
spin-dependent properties of these zGNRs, opening the way to design novel devices for
future spintronics applications.

In summary, the electronic and quantum transport properties of edge-disordered
graphene nanoribbons have been investigated using both fully ab initio techniques and
accurately parameterized tight-binding models (Dubois et al. 2010). Single topological
defects such as pentagons and heptagons have been predicted to induce a strong
electron–hole transport asymmetry. Besides, conduction gaps driven by defect-induced
localization effects have been found to depend not only on the defect density and
ribbon length but also on the geometry and chemical reactivity of edge imperfections.
The above analysis is drawn from physical processes that are general in essence. The
scope of these results should therefore extend to realistic edge profiles. In particular,
similar fluctuations of the conductance have been reported for other GNR topologies
whose ground-state π electronic structure is aromatic according to Clar’s rule. Note
that the GNR topologies that come with partially filled states at the edge are known
to break the graphene aromaticity (Wassmann et al. 2008). Therefore, the present
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conclusions in terms of Clar’s sextet theory are unlikely to apply for such ribbon
geometries. In addition, hydrogenation has been identified as a possible new route
to tune the robustness of the electronic conductance against edge roughness. As
reported experimentally in graphene (Bostwick et al. 2009), the controlled deposition
of monatomic hydrogen is a key ingredient in exploring a metal/insulator transition in
these 1D materials.

10.5.11 Doped Graphene Nanoribbons

Finally, doping may also be used to tailor the electronic and transport properties of
GNRs. In carbon-based materials, p-type (n-type) chemical doping can be achieved by
boron (nitrogen) atom substitution within the carbon matrix, leading to interesting nano-
devices, which are crucial for building logic functions and complex circuits (Derycke
et al. 2001). As previously mentioned regarding metallic carbon nanotubes, boron (B)
and nitrogen (N) impurities yield quasibound states that strongly backscatter propagat-
ing charge for specific resonance energies (Choi et al. 2000). In contrast with CNTs, dop-
ing in GNRs turns out to display even more complex features depending on the dopant
position, ribbon width, and edge symmetry. Indeed, the energies of the quasibound states
in GNRs are strongly dependent on the position of the impurity with respect to the ribbon
edges (Biel, Triozon, Blase et al. 2009). Binding energies of the bound state associated
with the broad drop in conductance are found to increase as the dopant approaches one
of the edges of the ribbon. The large variation of resonant energies with dopant position
indicates that random distribution of impurities will lead to a rather uniform reduction
of conductance over the occupied states as part of the first conduction plateau (Biel,
Triozon, Blase et al. 2009). These predictions are in sharp contrast to the case of CNTs
where resonant energies do not depend on the position of the dopant around the tube
circumference. In addition, doping effects are also found to depend on the ribbon
symmetry and width, leading for example to a full suppression of backscattering
for symmetry-preserving impurity potentials in armchair ribbons. Finally, chemical
doping could be used to enlarge the bandgap of a fixed GNR width, resulting in the
enhancement of device performances (Biel, Triozon, Niquet et al. 2009). All these
predictions calculated in chemically doped GNRs are illustrated in the following.

The impact of substitutional (boron and nitrogen) doping and edge disorder can be
investigated using first-principles methods. A self-consistent calculation (Biel, Triozon,
Niquet et al. 2009) provides the profile of the scattering potential around the impurity
location, which generally produces quasibound states strongly localized around the
defect at a resonance energy. For a boron (nitrogen) impurity, an ab initio study can
be first performed for the infinite armchair GNR, replacing one of the carbon atoms by
the boron (or nitrogen) dopant. In a second step, the onsite and hopping self-consistent
Hamiltonian matrix elements (on a localized basis set) are then used to build up the
tight-binding Hamiltonian.

The tight-binding model is developed by adjusting the onsite and hopping self-
consistent Hamiltonian matrix elements (on a localized basis set) in order to reproduce
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Figure 10.41 Main plot: Conductance for 35-aGNR and a single boron impurity displaced from
the center to the ribbon edge (bottom to top). Conductance for the undoped case is given in
dashed lines. Except for the bottom curve, all others have been upshifted for clarity. Insets: Same
as in main plot for two selected nitrogen dopant positions (at the edge (top), and off-center
(bottom) for the 20-aGNR). (Adapted from Biel, Triozon, Niquet et al. (2009))

the ab initio conductance fingerprints of a single impurity. This approach turns out to
be much more accurate than a simple fit of band structure. Transport calculations based
on the Landauer–Büttiker approach are then performed using these TB Hamiltonians,
eventually taking into account a random distribution of impurities and disorder average.

Figure 10.41 shows the quantum conductance for a 35-aGNR as a function of energy
for different positions of a single boron impurity along the lateral dimension of the rib-
bon. A large variation of resonant energies with dopant position is observed indicating
an increase in binding energy of the bound state, a feature not previously observed
in carbon nanotubes owing to rotation symmetry (Biel, Triozon, Blase et al. 2009).
This feature also indicates that a random distribution of impurities will lead to a rather
uniform reduction of conductance over the lowest energy window of occupied states.

An astonishing feature is the observation of full suppression of backscattering even
in the presence of bound states, when the impurities are located exactly at the center
of the ribbon. To understand such a symmetry effect, it is worth noting that GNRs
do not always present a well-defined parity associated with mirror reflections with
respect to their axis. An ideal odd-index aGNR retains a single mirror symmetry plane
(perpendicular to the ribbon plane containing the ribbon axis), and its eigenstates thus
present well-defined parity with respect to this symmetry plane. The eigenstates of
the doped ribbon keep the same parity with respect to this mirror plane, provided
that the potential induced by the dopant preserves this symmetry. For the case of an
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Figure 10.42 Left: Band structure of the 35-aGNR. Black lines correspond to the undoped ribbon;
Gray lines correspond to the case of B at the center. Right: Real space projections of several
eigenstates at 
-point (dashed line denotes the ribbon axis). �π denotes the valence band state
for pristine ribbon, �∗

π for same energy but with a single B-defect at center of ribbon, and
�QSB the projection of the quasibound state. Corresponding locations of the two latter states
are indicated by arrows in the left panel. (Adapted from Biel, Triozon, Blase et al. (2009))

odd-index aGNR, this can only occur when the dopant is located exactly at the central
dimer line, as seen in Fig. 10.42. The wavefunctions �∗

π , at the 
 point associated
with the first band below the charge neutrality point (CNP), and �QSB do not mix
because of opposite parity, which suppress backscattering (Fig. 10.41, bottom curve).
For any other position of the dopant, the well-defined parity of the wavefunctions is not
preserved, and backscattering develops mainly at the position of the energy resonance
of the quasibound state.

Let us examine the impact of different doping rates on ribbons of about 4 nm width,
namely the pseudo-metallic 35-aGNR and the semiconducting 34-aGNR. Ribbons with
a length up to 1 μm are considered, and impurities are uniformly distributed over the
whole ribbon length and width, with a restriction preventing the overlap of the scattering
potentials of individual dopants.

Figure 10.43 illustrates conductance as a function of energy for the (a) 35- and
(b) 34-aGNRs, for doping rates between ≈0.02% and 0.1%. Here, electrodes are treated
as semi-infinite and perfect GNRs, and disorder is included only in the region between
the electrodes (channel). As a result of the acceptor-like character of the impurity states
induced by the boron dopant, the conductance is affected in a clear asymmetric fashion
for energy values below or above the CNP, as evidenced by the opening of a large
mobility gap that extends well beyond the first conductance plateau below the small
initial electronic bandgap. The mobility gap width reaches almost 1 eV, of the order of
the silicon energy gap.
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Figure 10.43 Average conductances as a function of energy for the pseudo-metallic 35-aGNR for
doping rates ≈0.02%, 0.05%, and 0.1% (from top to bottom). The dashed black line corresponds
to the ideal (undoped) case. Averages have been performed over ∼500 disorder realizations with
a ribbon length of ≈ 1 μm. Bottom: Same for the semiconducting 34-aGNR. Right: A randomly
doped GNR.

The asymmetry of the electron/hole conduction is also spectacularly evidenced
by scrutinizing the energy-dependent transport regimes. Figure 10.44 shows the
length dependence of the conductance for several configurations of randomly doped
35-aGNRs, with a doping rate of ≈0.05%, at an energy = 0.25 eV below (top panel)
and above (bottom panel) the CNP. For energy values lying in the conduction band
(bottom panel), the conductance for various random configurations is found to slowly
decay with ribbon length with values G � G0 = 2e2/h, indicating the robustness of a
quasiballistic regime.

In contrast, for energies lying in the valence band (top panel), a strong exponential
decrease of the conductance is observed (inset), with large fluctuations associated with
different defect positions (main panel). The exponential decay of the conductance with
the length of the ribbon is related to the Anderson localization, which has already
been observed experimentally at room temperature in defected metallic carbon nan-
otubes (Gómez-Navarro et al. 2005), due to their long phase coherence lengths.

Figure 10.44 (inset) shows localization lengths (ξ ) extracted from 〈ln G/G0〉 = −ξ/L
(with L the ribbon length) for hole transport at different doping rates. A statistical
average over about 500 disorder samples is performed. The value of ξ ranges within
10–300 nm, depending on the ribbon width and doping density, and scales as 1/ni. The
value of ξ is also observed to further increase with the ribbon width but in a nonlinear
fashion, owing to the nonuniformity of the disorder potential with the dopant position.

Since the width of these GNRs is reaching the capability limits of standard litho-
graphic techniques (as, for instance, produced by the IBM group (Chen et al. 2007)), it is
interesting to study the case of aGNRs with widths of ≥10 nm, as for instance shown in
Fig. 10.45 for an 80- and an 81-aGNR. This figure presents the conductance of a 10 nm
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Figure 10.44 Conductances as a function of length for a set of doping realizations of the 35-aGNR
at 0.25 eV below (a) and above (b) the CNP for a doping rate of ≈ 0.05%. Inset: Localization
lengths as a function of doping rate for the 34- and 35-GNRs (at E = −0.2 eV), and for 80- and
81-aGNRs (at E = −0.1 eV). Solid lines are fits related to calculated values. (Adapted with
permission from Biel, Triozon, Niquet et al. (2009). Copyright (2009) American Chemical
Society)

Figure 10.45 Main panel: Same as 10.44 for semiconducting 81-aGNR and three selected doping
rates (≈0.02%, 0.05% and 0.2%, from top to bottom). (Adapted with permission from Biel,
Triozon, Niquet et al. 2009. Copyright (2009) American Chemical Society) Inset: SEM image of
various patterned graphene nanoribbons fabricated by lithography. (Reprinted from Chen et al.
(2007). Copyright (2007) with permission from Elsevier)
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wide armchair nanoribbon with low boron doping. For a doping density of ≈0.2%, the
ribbon manifests a mobility gap of about ∼1 eV. When lowering the doping level to
0.05%, the mobility gap reduces to about 0.5 eV and finally becomes less than 0.1 eV
for lower density. The 0.2% case is obtained for a fixed nanoribbon width and length, so
that optimization would be required upon upscaling either lateral or longitudinal sizes.

10.5.12 GNR-Based Networks

The controlled formation of narrow graphene strips with well-defined edges has
been an intense topic of research. Significant progress in this direction has been
achieved recently, as described in recent reviews (Jia et al. 2011; Terrones et al. 2010).
Well-defined crystallographic edges displaying zigzag or armchair morphologies are
byproducts of CVD-grown graphene inside a TEM after processing using Joule
heating (Jia et al. 2009), by scanning tunneling lithography (Tapaszto et al. 2008),
or through catalytic cutting (Ci et al. 2008; Datta et al. 2008). Large-scale synthesis
of GNRs from the unzipping of carbon nanotubes along their axis has also been
demonstrated (Terrones 2009; Terrones et al. 2010). In particular, plasma etching has
been used to produce very narrow nanoribbons from single-wall carbon nanotubes (Jiao,
Zhang et al. 2010; Ouyang et al. 2010; Wang & Dai 2010). The use of CNTs as
starting material to produce GNRs presents the advantage that all the already available
technology of CNT production can be exploited. In fact, arrays and networks of
CNTs can be used to produce well-aligned arrays and networks of GNRs (Jiao, Zhang
et al. 2010). Even though the edges of such nanoribbons are not atomically smooth,
devices constructed with arrays of such nanoribbons display relatively high ION to
IOFF ratio. The nanoribbon cross-points have been suggested for use in applications
in logic electronic devices. Based on the bottom-up fabrication of GNRs from the
dehalogenation of self-assembled polyphenilenes, a controlled synthesis of a GNRs-
based nanonetwork has been confirmed (Cai et al. 2010).

Focusing on systems that can be experimentally realized with existing techniques,
both in-plane conductance in interconnected graphene nanoribbons and tunneling con-
ductance in out-of-plane nanoribbon intersections have been studied (Botello-Méndez,
Cruz-Silva et al. 2011). Both ab initio and semiempirical simulations confirm the pos-
sibility of designing graphene nanoribbon-based networks capable of guiding electrons
along desired and predetermined paths. In addition, some of these intersections exhibit
different transmission probability for spin-up and spin-down electrons, suggesting the
possible applications of such networks as spin filters (Botello-Méndez, Cruz-Silva et al.
2011). Furthermore, the electron transport properties of out-of-plane nanoribbon cross-
points of realistic sizes are described using a combination of first-principles and tight-
binding approaches. The stacking angle between individual sheets is found to play a
central role in dictating the electronic transmission probability within the networks.

As described in detail in the previous sections, the electronic transport properties
of isolated aGNRs are sensitive to the shape of the edges and the ribbon width (Yang
et al. 2007). These GNRs exhibit a bandgap Eg that decreases with the width. Con-
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sequently, a region of zero conductance is observed in aGNRs due to the absence of
conduction channels in the energy window around Eg. Conversely, the electronic band
structure of zGNRs exhibits localized edge states close to the Fermi energy (EF). The
states extend along the edges and correspond to nonzero density of states at EF and a
high electronic conductance at the charge neutrality point. Spin-polarized calculations
reveal that such edge states carry a finite magnetic moment with a ferromagnetic order-
ing along the edges but an antiferromagnetic ordering between them (Lee, Son et al.
2005). The interaction between the edges leads to a magnetic insulating ground state.
The edge interaction and the bandgap decay with the GNR’s width. As the width of the
zGNR increases, such interaction weakens, and the difference in energy between the
parallel and antiparallel spin ordering along the edges disappears. Therefore, the spin-
polarized electron conductance of a narrow zGNR exhibits vanishing conduction around
the charge neutrality point, and two sharp peaks of conductance due to the presence of
edge states.

The conductance across continuous or in-plane networks of GNRs has already
been investigated using a simple single-orbital nearest-neighbor tight-binding method
(Areshkin & White 2007; Jayasekera & Mintmire 2007). The properties of in-plane
cross-points are found to be very sensitive to the geometry of the junction. Notably,
under such an approximation, which does not consider spin degrees of freedom, the
conductance along a zGNR and across a cross-point exhibits high conductance (∼0.8G0)
(Jayasekera & Mintmire 2007). In contrast, ab initio simulations (Botello-Méndez,
Cruz-Silva et al. 2011) indicate that the electronic transport of GNRs is significantly
affected when they are assembled into networks or branches. A notable exception
is the cross-point between two zGNR terminals, forming an angle of 60◦ in which
the scattering is minimal, as illustrated in Fig. 10.46 along the (1–4) or (2–3) path,
respectively.

First-principles spin-polarized calculations reveal that these 60◦ intersections have
interesting spin transmission behavior. In order to comply with the periodic boundary
conditions, the most stable configuration (illustrated in Fig. 10.46(b)) exhibits different
spin alignment at the edges of the two 60◦ turns at the intersection. The existence of the
antiferromagnetic state combined with the presence of the junction effectively breaks
the left–right symmetry (Fig. 10.46(b)). As a consequence, the transmission probability
is different for the two spin channels. For instance, the low-energy spin-up electron
conductance along the 1–4 path is significantly higher than the spin-down conductance
along this path (compare the light gray lines in Fig. 10.46(c,d)). Opposite behavior is
observed for the 2–3 paths. However, note that the symmetric pathways in the total
conductance are retrieved (the sum of spin-up and spin-down contribution).

An alternative arrangement for GNR networks is through out-of-plane or bilayer
cross-points. In these cases, the interaction between the two GNRs is weak, and the
changes in conductance across the GNRs and the conductance between them are driven
by tunneling across the GNR cross-point (Botello-Méndez, Cruz-Silva et al. 2011).
As illustrated in Fig. 10.47, this hypothesis is confirmed by the ab initio quantum
conductance along and across two zGNRs. At the cross-point between two 6-zGNRs,
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Figure 10.46 (a) Ab initio quantum conductance of an in-plane cross-point between two 5-zGNRs
for various transmission paths (paramagnetic state–non-spin-polarized calculation). The dark
gray and light gray arrows in the inset represent the spin configuration corresponding to the
curves shown in (c, d). (b) Ball-and-stick representation of the zGNR intersection.
Spin-dependent conductances are found to be higher along specific paths of the cross-point.
(c, d) Spin-polarized ab initio quantum conductance of a zGNR as represented in (b). Note the
different spin-up and spin-down transmission probabilities along the same path (e.g., 1–4).
While the total transmission (spin up + spin down) is symmetric along various paths, the spin
state effectively breaks the structure’s symmetry (i.e., vertical C2 axis), yielding a
spin-dependent conductance. The dashed gray line represents the conductance of an isolated
5-zGNR in the corresponding spin state. (Adapted with permission from Botello-Méndez,
Cruz-Silva et al. (2011). Copyright (2009) American Chemical Society)

the conductance along the GNR is mainly preserved. Indeed, the loss of transmitted
electrons through tunneling at a cross-point is almost nonexistent, regardless of their
spin polarizations (Fig. 10.47(b)). However, there is only very little tunneling for the
single electron channel across the two 6-zGNRs. Only the electrons localized at the
edges tunnel across the GNRs (Fig. 10.47(c)).

First-principles calculations are frequently limited by computational resources to
investigate routinely the transport properties of realistic nanoribbon networks, which
include a much larger number of atoms than the systems studied above. For this
reason, a single-band tight-binding model based on a Slonczewski–Weiss–McClure
(SWMC)-like parameterization (Slonczewski & Weiss 1958) has been proposed to
investigate larger systems (Botello-Méndez, Cruz-Silva et al. 2011). In order to describe
accurately the properties of graphene and GNRs, interactions up to the third-nearest
neighbor (White et al. 2007) have to be considered by setting a cutoff interaction of
3.7 Å, and an exponential decay of the hopping parameter of the form e−η(d−d0), where
d is the separation between two carbon atoms and d0 is the C–C equilibrium distance
(1.42 Å for in-plane interactions, and 3.35 Å for out-of-plane interactions). Different
hopping parameters (γ0) have been used for the A and B sites of the carbon hexagonal
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Figure 10.47 (a) Ball-and-stick models of an out-of-plane conducting zGNR network composed of
two 6-zGNRs (four terminals are present). Ab initio quantum conductance along (b) and across
(c) out-of-plane zGNR networks depicted in (a). The dashed lines represent the conductance of
isolated GNRs. Note that the small tunneling current (c) between the zGNRs depends on the type
of intersection and the localization of the electrons at a particular energy (e.g., edge states).
(Adapted with permission from Botello-Méndez, Cruz-Silva et al. (2011). Copyright (2009)
American Chemical Society)

lattice in graphene. In order to properly describe the bandgap of GNRs, corrections
to the onsite (ε) and hopping parameters of edge atoms (γedge), and their interaction
with other atoms have to be included (Gunlycke & White 2008). One TB parameter
has also been used for the out-of-plane interactions (γ1). Starting from such a model,
the numerical values of the onsite and hopping parameters can be fine-tuned using an
evolutionary algorithm: the fitness function being defined as a weighted error of the
calculated band structure with respect to the first-principles DFT-PBE band structure
calculations. The weight has to be chosen in order to minimize the error at low energies.
The ab initio band structures of graphene, GNRs, bilayer graphene, and GNR networks
have been used as references, confirming a satisfactory agreement with the TB model,
in the energy region close to the charge neutrality point (Botello-Méndez, Cruz-Silva
et al. 2011).

In addition, DFT calculations within the LDA or GGA approximation are known to
underestimate the weak attraction between graphene layers (Dion et al. 2004). However,
the exponential decay of this TB approach can successfully model the difference of
interaction between the AA and AB stacking within GNR cross-points, fixing a separa-
tion distance between the layers to 3.35 Å (which corresponds to the experimental values
of the AB stacking in graphite). Starting from a cross-point, an armchair nanoribbon can
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Figure 10.48 Quantum conductance through an aGNR/zGNR out-of-plane cross-point as a
function of the stacking angle θ . Atomic models depicting an 11-aGNR and a 6-zGNR
intersecting at (a) 10◦ and (b) 30◦. (c) Conductances along the aGNR at the cross-point for
various intersection angles compared to AA stacking when θ = 90◦ (see inset). (d) Quantum
conduction as a function of the stacking angle θ for an aGNR/zGNR cross-point with a ∼5 nm
width. (Adapted with permission from Botello-Méndez, Cruz-Silva et al. (2011). Copyright
(2009) American Chemical Society.)

be rotated by an angle θ , as shown in Fig. 10.48. The conductance along and across the
nanoribbons is found to strongly depend on this specific stacking angle θ .

Figure 10.48(d) presents the conductance at ±0.5 eV as a function of the stacking
angle θ both along the 11-aGNR, and across this aGNR through a 6-zGNR each with a
width of ∼5 nm. A maximum of conductance along the aGNR is observed for θ values
around 30◦ with almost a 10-fold increase compared to its value at θ = 0◦ for −0.5 eV.
Such an increase is due to the fact that the interaction between the GNRs is minimal
at θ = 30◦. Conversely, at θ � 30◦, the overlap and interaction between the GNRs
increase, thus enhancing the tunneling probability and increasing the scattering in the
isolated GNR. A similar behavior is observed for different energies for selected stacking
angles (Fig. 10.48(c)). A direct comparison between the AA and AB stacking is also
presented in Fig. 10.48(c), for an 11-aGNR/6-zGNR intersection, suggesting that the
effect of different stacking orders at θ = 0◦ has less impact on the conductance than the
stacking angle.

In summary, first-principles and tight-binding calculations performed on a number of
GNR cross-points (Botello-Méndez, Cruz-Silva et al. 2011) and their quantum transport
properties indicate that GNR networks are appealing for potential applications and could
play an important role in the development of carbon-based electronics. The quantum
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transport through in-plane GNR cross-points has been found to be severely scattered at
the intersections, except for 60◦ zGNR terminals, confirming that patterned graphene
and GNRs could be used for functional devices and current flux guides (Romo-Herrera
et al. 2008). In addition, the transmission probability at these intersections is different
for spin-up and spin-down electrons, suggesting the possibility of their use as spin filters.
Furthermore, the tunneling transmission at the intersection of bilayer GNR networks is
calculated to be very sensitive to the stacking angle between the ribbons. The edge-state
channels are remarkably robust and could be tuned with an external electric field in order
to induce tunneling from an aGNR, thus allowing future development in band-to-band
tunneling GNR-based transistors (Schwierz 2010).

10.6 Conclusion

In conclusion, the present chapter has overviewed some basics of electronic and
quantum transport properties in low-dimensional carbon-based materials including
2D graphene, graphene nanoribbons, and carbon nanotubes. Although CNTs and GNRs
share similar electronic confinement properties due to their nanoscale lateral sizes, the
effects of boundary conditions in the perpendicular direction with respect to the system
axis trigger very different electronic and transport properties. For each nanostructure,
a simple tight-binding approach (single-band model) has been proposed to describe
their specific electronic behavior, and, when necessary, ab initio calculations have been
used to accurately complete the picture. Both 1D systems have also been perturbed
using topological defects (vacancies, adatoms), multi-structures and stacking, chemical
doping and functionalization to tailor their electronic structure, etc. The effects of these
topological, chemical, structural perturbations on the quantum transport of both CNTs
and GNRs have been predicted.

To conclude, because of their remarkable electronic properties and structural physical
properties, CNTs or GNRs are expected to play an important role in the future of
nanoscale electronics. Not only can nanotubes be metallic, but they are mechanically
very stable and strong, and their carrier mobility is equivalent to that of good metals,
suggesting that they would make ideal interconnects in nanosized devices. Further,
the intrinsic semiconducting character of other tubes, as controlled by their topology,
allows us to build logic devices at the nanometer scale, as already demonstrated in many
laboratories. Similarly the combination of 2D graphene for interconnects together with
graphene nanoribbons for active field-effect transistor devices could allow completely
carbon-made nanoelectronics.

The complete understanding of fundamental electronic and transport concepts in
low-dimensional carbon-based nanomaterials definitely needs theoretical modeling and
advanced quantum simulation, together with joint studies with experiments. Theory
has been very important to initiate, validate, and orientate carbon nanotube science,
particularly as far as electronic properties are concerned. Yet, in 1992, one year after
the discovery of nanotubes by S. Iijima, several groups theoretically predicted their
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unique behavior as metals or semiconductors. Similarly, the electronic properties of 2D
graphene and graphene ribbons were explored decades before the fabrication of those
nanostructures. Since carbon-based nanomaterials have still probably not revealed all
their secrets, numerical simulations still have successful days to come in predicting
new interesting atomic topologies and their corresponding structural and electronic
properties, thus expanding their potential impact in carbon science.

10.7 Further Reading

• See Roche et al. (2006) and Cresti et al. (2008).



Appendix A Electronic Structure
Calculations: The Density Functional
Theory (DFT)

A.1 Introduction

Over the last few decades, there has been a significant increase in the use of compu-
tational simulation within the scientific community. Through a combination of the
phenomenal boost in computational processing power and continuing algorithm
development, atomistic scale modeling has become a valuable asset, providing a useful
insight into the properties of atoms, molecules, and solids on a scale “often inaccessible”
to traditional experimental investigation.

Atomistic simulations can be divided into two main categories, quantum mechan-
ical calculations and classical calculations based on empirical parameters. Quantum
mechanical simulations (often referred to as ab initio or first-principles) aim at solving
the many-body Schrödinger equation (Schrödinger 1926). The original reformulation
of the Schrödinger equation offered by the DFT provides valuable information on the
electronic structure of the system studied.

The very essence of DFT is to deal with noncorrelated single-particle wavefunctions.
Many of the chemical and electronic properties of molecules and solids are determined
by electrons interacting with each other and with the atomic nuclei. In DFT, the knowl-
edge of the average electron density of the electrons at all points in space is enough
to determine the total energy from which other properties of the system can also be
deduced. DFT is based on the one-electron theory and shares many similarities with
the Hartree–Fock method. DFT is presently the most successful and promising (also
the most widely used) approach to computing the electronic structure of matter. In this
appendix, the basics of DFT modeling techniques are explained.

A.2 Overview of the Approximations

A.2.1 The Schrödinger Equation

In principle, an exact theory for a system of ions and interacting electrons is based
on solving the many-body Schrödinger equation for the corresponding wavefunction
(Schrödinger 1926). The wavefunction of a many-body system consisting of interacting
electrons and nuclei can be defined as �({ri}, {RI}), where {ri} and {RI} correspond



A.2 Overview of the Approximations 355

to the electronic and nuclear coordinates, respectively. In the framework of a nonrel-
ativistic, time-independent approximation, the Schrödinger equation of a system is as
follows:

Ĥ�({ri}, {RI}) = E�({ri}, {RI}), (A.1)

whereĤ is the time-independent Hamiltonian operator and E is the energy of the system.
The Hamiltonian that describes the physics of this many-body system, neglecting the
relativistic effects, is given by

Ĥ = − h̄2

2me

Ne∑
i

∇2
i − h̄2

2MI

Nn∑
I

∇2
I + 1

2

Nn∑
I�=J

ZIZJe2

|RI − RJ|

+
Ne∑
i

ZIe2

|ri − RI| +
Nn∑
I

ZIe2

|ri − RI| + 1
2

Ne∑
i�=j

e2∣∣ri − rj
∣∣ . (A.2)

Here, the atomic cores and the electrons are referred to by the capital and small indexes,
respectively. The index i sums over the number of electrons Ne with mass me, and the
index I sums over the number of nuclei Nn, with corresponding mass MI. The first two
terms of Eq. (A.2) represent the kinetic energies of all the electrons and nuclei, respec-
tively. The remaining terms represent the electrostatic interactions that occur among the
particles of the system: the repulsion between the nuclei, the electron–nucleus, and the
repulsive electron–electron Coulomb interactions, respectively. Equation (A.2) can be
written in a compact way when considering T and V for kinetic and potential energies,
respectively:

Ĥ = Te({ri}) + Tn({RI}) + Vn−n({RI})
+ Ve−n({ri}, {RI}) + Ve−e({ri}). (A.3)

Ever since the Schrödinger equation was discovered, it has been a dream of researchers
to find reasonable approximations to reduce its complexity. The first important approxi-
mation is obtained by decoupling the dynamics of the electrons and the nuclei, which is
known as the Born–Oppenheimer approximation (Born & Oppenheimer 1927).

A.2.2 The Born–Oppenheimer Approximation

The Born–Oppenheimer approximation exploits the fact that the nuclei are much heavier
than the electrons (Born & Oppenheimer 1927). This is true even for the lightest nucleus,
a proton whose mass is approximately 1800 times larger than the electron. Hence,
in most cases, the timescale of the electron response is a few orders of magnitude
faster than that of nuclei, which allows the dynamics of the electrons and nuclei to be
decoupled. As a consequence of this approximation, nuclei and electrons can be treated
separately. The electrons are evolving in the field of fixed nuclei with Hamiltonian (Ĥe)
expressed as
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Ĥe = Te({ri}) + Ve−n({ri}, {RI}) + Ve−e({ri}). (A.4)

The solution to a Schrödinger equation involving the previous Ĥe is

Ĥe�e({ri, σi}, {RI}) = Ee�e({ri, σi}, {RI}), (A.5)

where �e represents the electronic wavefunction. The latter is a function only of the
electronic coordinates {ri}, while it depends parametrically on the set of nuclear coor-
dinates {RI} for a fixed configuration of the nuclei. Furthermore, for simplicity, the
electronic spatial and spin coordinates {ri, σi} are placed into one variable {xi}, so that
Eq. (A.5) can be rewritten as

Ĥe�e({xi}) = Ee�e({xi}). (A.6)

The total energy Etot, for given positions of the nuclei, corresponds to the sum of the Ee
and the nuclear repulsion energy from the third term in Eq. (A.2), leading to

Etot = Ee + Vn−n({RI}). (A.7)

In summary, the Born–Oppenheimer approximation allows one to treat separately
the nuclear and electronic degrees of freedom in the many-body problem. The major
difficulty in solving Eq. (A.6) is the interaction between electrons, where all the many-
body quantum effects are hidden. Since the movements of electrons are correlated, the
instantaneous coordinates of each electron should be known, which essentially requires
the treatment of 3Ne variables for an Ne-electron system. Even after applying this sim-
plification, the many-body problem remains intractable. Hence, further approximations
are needed to efficiently solve Eq. (A.6).

A.2.3 The Hartree Approximation

The Hartree approximation (Hartree 1957) provides one way to reduce Eq. (A.6),
the many-electron wavefunction problem, to a product of Ne one-electron wavefunc-
tions. Each electron moves independently within its own orbital and sees only the
average potential generated by all the other electrons. This Hartree potential can be
approximated by an average single-particle potential and is expressed by the Coulomb
repulsion between the ith electron and the electron density produced by all other
electrons (n(xj)):

VH(xi) =
∫ n(xj)

|ri − rj|dxj, n(xj) =
Ne∑
j=1

|φj(xj)|2. (A.8)

The solution to the one-particle wave-equation (ψi(xi)) is[
− h̄

2m
∇2 + Vext(xi) + VH(xi)

]
ψi(xi) = εiψi(xi), (A.9)
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where the first term corresponds to the one-electron kinetic energy. In this equation, the
effective potential experienced by the single electron includes two terms: the Hartree
potential and the external Coulomb potential, given by

Vext(xi) = Ve−n({xi}, {RI}) + Vn−n({RI}). (A.10)

However, the equations are still nonlinear and the fermionic character of the electrons
is ignored. According to the Pauli exclusion principle, two electrons cannot occupy the
same quantum state. However, the wavefunction in Hartree theory is

�(xi) =
Ne∏
i
ψi(xi), (A.11)

and is not antisymmetric under the interchange of two electrons, which is incompatible
with the Pauli principle. This problem is rectified by the Hartree–Fock theory.

A.2.4 The Hartree–Fock Approximation

The Hartree–Fock approach is considered as the fundamental first step in quantum
chemistry. Indeed, the Hartree–Fock theory is derived by invoking the variational prin-
ciple, which states that the expected value of the electronic Hamiltonian (Ĥe) for any
guessed or trial wavefunction is always greater than or equal to the electronic ground
state energy E0[�0]. This remains true when the wavefunction is in the true ground
state �0, i.e., (E[�] ≥ E0[�0]). The advantage of the variational principle is that the
ground state energy E0[�0] can be approached by starting with a trial function, and
the quality of the wavefunction can be improved variationally in the restricted anti-
symmetrized space of single-particle wavefunctions. The wavefunctions of Eq. (A.11)
can be approximately described with a single Slater determinant. A Slater determinant
is a linear combination of the product of independent electron wavefunctions (ψi(xi))
with all possible combinations of the permutations of their coordinates. The Slater
determinant satisfies the antisymmetric property of the wavefunction, and hence obeys
the exclusion principle of Pauli. The wavefunctions of Eq. (A.11) are replaced by

�({xi}) ≈ �HF({xi}) = 1√
Ne!

∣∣∣∣∣∣∣∣∣∣

ψi(xi) ψj(xi) · · · ψNe (xi)
ψi(xj) ψj(xj) · · · ψNe (xj)

...
...

. . .
...

ψi(xNe) ψj(xNe) · · · ψNe(xNe)

∣∣∣∣∣∣∣∣∣∣
, (A.12)

constructed from a set of one-particle orbitals {ψi(xi)} required to be mutually orthonor-
mal 〈ψi|ψj〉 = δij. Taking the expectation value of the electronic Hamiltonian Ĥe of
Eq. (A.5) with the trial functions defined by the Slater determinant of Eq. (A.12), one
gets the total electronic Hartree–Fock energy functional. The Hartree–Fock equation
(Marx & Hutter 2000), which comes from an energy-minimization of the Hartree–Fock
energy functional, is given by
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[
− h̄

2me
∇2 + Vext(xi) + VH (xi) + VX (xi)

]
ψi(xi) = εiψi(xi), (A.13)

where now the exchange term is properly taken into account as

VX (xi)ψi(xi) = −e2
∑

j
ψj(xi)

∫
dxj
ψ∗

j (xj)ψi(xj)
ri − rj

. (A.14)

The exchange operator is defined via the action of the electrons on a particular orbital
ψi. It is noticeable that upon action on orbital ψi, the exchange operator of the jth
state “exchanges” ψj(xj) → ψi(xj) in the kernel as well as replaces ψi(xi) → ψj(xi)
in its argument. Thus, the exchange term is a nonlocal operator, and in this sense, the
exchange operator does not possess a simple classical interpretation like the Hartree
term (Marx & Hutter 2000). A considerable amount of complexity is introduced in this
nonlinear exchange operator due to the many-body interactions. This is true even for
obtaining the first-order approximation of the total energy (Marx & Hutter 2000).

A.3 Density Functional Theory

DFT differs from other wavefunction-based methods by using the electron density n(r)
as the central quantity. An important advantage of using the electron density over the
wavefunction is the much reduced dimensionality. Regardless of how many electrons
are present in the system, the density is always three-dimensional. This allows DFT to
be readily applied to much larger systems; hundreds or even thousands of atoms become
possible. This is one among the many reasons why DFT has become the most widely
used electronic structure approach today. First, the electron density can be expressed as

n(r) = Ne

∫
|�(x1, x2, . . . , xNe )|2dσ1dσ2 . . . dσNe , (A.15)

where xi represents both spatial and spin coordinates. n(r) determines the probability of
finding any of the Ne electrons within the volume r. The electrons have arbitrary spin
and the other Ne − 1 electrons have arbitrary positions and spin in the state represented
by �. This is a nonnegative simple function integrating the total number of electrons,

Ne =
∫

n(r)dr. (A.16)

A.3.1 The Thomas–Fermi Model

There have been many attempts to reformulate the problem based on the ground state
charge density n(r). Thomas and Fermi exploited first the fact that the electronic energy
can be expressed in terms of electronic density (Fermi 1927; Thomas 1927). In their
model, the kinetic energy of the electrons is derived from the quantum statistical theory
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based on the uniform electron gas, whereas the electron–nucleus and electron–electron
interactions are treated classically. Within this model, the total energy is a functional of
n(r) expressed as

ETF[n(r)] = 3
10

(2π2)2/3
∫

n3/5(r)dr

− Z
∫ n(r)

r
dr + 1

2

∫∫ n1(r)n2(r)
|r1 − r2| dr1dr2, (A.17)

where the first term is the kinetic energy (i.e., the kinetic energy density for a system
of noninteracting electrons with density n) while the second and third terms are the
electron–nucleus and electron–electron interactions, respectively. Although it is not the
most efficient, the Thomas–Fermi model illustrates that the ground state energy can be
determined purely using the electron density.

A.3.2 The Hohenberg–Kohn Theorem

The essential role played by the electron density in the search for the electronic ground
state was pointed out in 1964 by Hohenberg and Kohn (1964). They derived the funda-
mentals of DFT, which allows us to express the electronic Hamiltonian as a functional of
n(r). This formalism relies on two theorems: (i) there exists a one-to-one correspondence
between external potential ν(r) and electron density n(r), and (ii) the ground state
electron density can be obtained by using a variational principle.

The electronic Hamiltonian depends explicitly on the configuration of the nuclei only
through ν(r). Assuming that the first theorem is valid, then from n(r) one can obtain
ν(r) upto a trivial additive constant. The electronic Hamiltonian can be expressed as a
functional of n(r). Suppose there is a collection of electrons enclosed in a box influenced
by two external potentials ν(r) and ν′(r), which differs from ν(r) by more than a constant
in a nondegenerated system (local system). Assuming that these two potentials lead to
the same electron density n(r) for the ground state, two different Hamiltonians Ĥ and Ĥ′,
whose ground state electron density is the same, are present. However, their normalized
wavefunctions � and � ′ would be different. As a consequence, the ground state energy
E0 would be

E0 < 〈� ′|Ĥ|� ′〉 = 〈� ′|Ĥ′|� ′〉 + 〈� ′|Ĥ − Ĥ′|� ′〉

= E′
0 +

∫
n(r)[ν(r) − ν′(r)]dr, (A.18)

where E0 and E′
0 are the ground state energies for Ĥ and Ĥ′, respectively. Similarly, E′

0
would be

E′
0 < 〈�|Ĥ|�〉 = 〈�|Ĥ′|�〉 + 〈�|Ĥ′ − Ĥ|�〉

= E0 −
∫

n(r)[ν(r) − ν′(r)]dr. (A.19)
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Summing Eqs. (A.18) and (A.19) leads to E0 + E′
0 < E′

0 + E0, which is an obvious
contradiction. This demonstrates that it is not possible to find two different external
potentials that can give the same electron density n(r). Consequently, n(r) uniquely
determines ν(r) (up to a constant) and all ground state properties.

The energy Eν can be explicitly written as a function of the electron density n(r) for
a given external potential ν(r):

Eν[n(r)] = T [n(r)] + Vn−e[n(r)] + Ve−e[n(r)]

=
∫

n(r)ν(r)dr + FHK[n(r)], (A.20)

where FHK[n(r)] is dependent only on n(r), independently of any external potential ν(r).
Thus FHK is a universal functional of n(r) and is defined as

FHK[n(r)] = T [n(r)] + Ve−e[n(r)]. (A.21)

The second theorem of Hohenberg and Kohn demonstrates that the ground state energy
can be obtained variationally from the density. The density that minimizes the total
energy is the exact ground state density, thus rationalizing the original intuition of
Thomas and Fermi (Fermi 1927; Thomas 1927). This is expressed as

E0[n0(r)] ≤ Eν[n(r)]. (A.22)

The total energy functional (following the first theorem) given by Eq. (A.20) is calcu-

lated for a trial density ν(r) and is consistent with charge conservation
∫

n(r)dr = Ne.

The total energy functional is always greater than or equal to the true ground state total
energy E0 of the system:

Eν[n(r)] =
∫

n(r)ν(r)dr + FHK[n(r)] ≥ E0. (A.23)

These two theorems demonstrate that the problem of solving the Schrödinger equation
for the ground state can be exactly recast into the variational problem of minimizing
the Hohenberg–Kohn functional, Eq. (A.21), with respect to the minimization of a
functional of the three-dimensional density function. However, most of the complexities
of the many-electron problem are associated with the determination of the universal
Hohenberg–Kohn functional FHK[n(r)].

A.3.3 The Kohn–Sham Equations

Kohn and Sham transformed the DFT into a practical electronic structure theory (Kohn
& Sham 1965). They recognized that the failure of the Thomas–Fermi theory mainly
resulted from the bad description of the kinetic energy. In order to address this problem,
they returned to the picture of noninteracting electrons moving in an effective field.

FHK[n(r)] is written as a sum of the kinetic energy of noninteracting electrons (Ts), the
classical electrostatic Hartree energy (EH), and all the many-body quantum effects are
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put together into the exchange and correlation energy (Exc). Thus, the energy functional
of the previous section becomes

E[n(r)] =
∫

n(r)ν(r)dr + FHK[n(r)]

=
∫

n(r)ν(r)dr + Ts[n(r)] + EH[n(r)] + Exc[n(r)]. (A.24)

The constraint minimization of the FHK[n(r)] functional for Ne electrons can be rewrit-
ten, introducing the indeterminate multiplier μ as the variational problem:

δ

{
FHK[n(r)] +

∫
ν(r)n(r)dr − μ

(∫
n(r)dr − Ne

)}
= 0. (A.25)

Formally Eq. (A.25) leads to the Euler–Lagrange equation for the charge density:

δFHK[n(r)]
δn(r)

+ ν(r) = μ. (A.26)

This minimization under the constraint of orthonormality for the one-particle orbitals
ψi leads to a set of Ne single-particle Schrödinger-like equations, the so-called Kohn–
Sham equations, that are expressed as[

− h̄2

2me
∇2 + νKS[n(r)]

]
ψi(r) = ĤKSψi(r) = εiψi(r). (A.27)

Here, ψi are the Kohn–Sham one-electron orbitals and the electron density is defined as

n(r) =
Ne∑
i=1

|ψi|2, (A.28)

where νKS[n(r)] is the effective potential experienced by the electrons and is expressed as

νKS[n(r)] =
δ

∫
n(r)ν(r)dr + Ts[n(r)] + EH[n(r)] + Exc[n(r)]

δn(r)

= ν[n(r)] +
∫ n(r′)

|r − r′|dr′ + νxc[n(r)]. (A.29)

The exchange–correlation potential is given by the functional derivative of the
exchange–correlation energy:

νxc[n(r)] = δExc[n(r)]
δn(r)

. (A.30)

Finally, the total energy can be determined from the resulting equations of density and
potentials through

E =
Ne∑
i=1
εi − 1

2

∫∫ n(r)n(r′)
|r − r′| + Exc[n] −

∫
νxc[n(r)]n(r)dr. (A.31)
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Figure A.1 The self-consistent resolution scheme for the Kohn–Sham equations. (Adapted from
Nogueira et al. (2003))

The Kohn–Sham equations, Eq. (A.27), require to be solved self-consistently due to
the density dependence on the one-electron Kohn–Sham effective potential νKS. The
general procedure consists in starting with an initial guess of the electron density, and
constructing the effective potential ν(r) from Eq. (A.24) in order to extract the Kohn–
Sham orbitals. Based on these orbitals, a new density is obtained from Eq. (A.28) and
the process is repeated until convergence is achieved (Payne et al. 1992). Finally, the
total energy is calculated from Eq. (A.31) by using the obtained electron density, as
illustrated in Fig. A.1.

The exact total energy can be extracted if each term in the Kohn–Sham energy func-
tional is known. This is unfortunately not the case. Indeed, the exchange–correlation (xc)
functional (Exc) remains unknown. Exc includes the nonclassical aspects of the electron–
electron interaction along with the component of the kinetic energy of the real system,
differently from the fictitious noninteracting system. Since Exc cannot be determined
exactly, this energy term has to be estimated using different possible approximations.

A.3.4 The Exchange–Correlation Functionals

The simplest way to approximate the exchange–correlation (xc) energy of an elec-
tronic system is the local-density approximation (LDA), which was proposed by Kohn
and Sham (1965). In this approximation, a real inhomogeneous system is divided into
infinitesimal volumes in which the density is assumed to be constant. The exchange–
correlation (xc) energy for the system is constructed by assuming that the exchange–
correlation energy εxc[n(r)] per electron at a point r in the electron gas is equal to the
exchange–correlation energy per electron in a homogeneous electron gas that has the
same electron density as the electron gas at point r. Thus, one can write

εxc[n(r)] = εhom
xc [n(r)], (A.32)
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and the total exchange–correlation energy is written as

ELDA
xc [n(r)] =

∫
εhom

xc [n(r)]n(r)dr. (A.33)

In practice, the exchange and correlation terms are calculated separately. The exchange
part is given by the Dirac exchange-energy functional (Dirac 1930):

ELDA
x [n(r)] = −3

4

(
3n(r)
π

)1/3
. (A.34)

Here, the local Wigner–Seitz radius rs(r) is defined as rs(r) = ( 3
4πn(r)

)−1/3, which is
the radius of the sphere that would contain exactly one electron in the homogeneous
electron gas density n(r).

As for the exchange term, the exact correlation term is unknown. However, an
approximate expression can be determined by interpolating homogeneous electron
gas data obtained by quantum Monte-Carlo calculations as reported by Ceperley and
Alder (1980). The parameterization proposed by Perdew and Zunger (1981) is the
most commonly used by the scientific community. The LDA ignores corrections to
the exchange–correlation energy at a point r due to the nearby inhomogeneities in
the electron density. Strictly, the LDA is valid for slowly varying density. However,
it is noticeable that calculations performed using the LDA have been remarkably
successful (Payne et al. 1992).

However, it was realized very early that only the local uniform density at each given
point is not a reasonable approximation for the rapidly varying electron density of many
materials. An attempt to improve the LDA consists in taking into account not only the
local uniform density n(r), but also the gradient terms (∇n(r)) of the total charge density
in the exchange–correlation energy term. Based on this idea, the exchange–correlation
energy of the generalized gradient approximation (GGA) can be written as

EGGA
xc [n(r), ∇n(r)] =

∫
Fxc[n(r), ∇n(r)]dr. (A.35)

The GGA functionals are often called “semi-local” functionals due to their dependence
on the gradient of the density ∇n(r). Typically for many properties, such as geometries
and ground state energies of molecules and solids, GGA can yield better results than the
LDA. The functional Fxc is taken as a correction to the LDA exchange and correlation
relation, while ensuring again the consistency within exchange–correlation energy as in
LDA. Within GGA, the exchange energy is then expressed as

EGGA
x [n(r)] =

∫
εx[n(r)]FGGA

x (s)dr, (A.36)

where FGGA
x (s) is the exchange enhanced factor which represents how much exchange

energy is over the LDA exchange value for a given n(r). One GGA functional differs
from another according to the choice of this exchange enhanced factor Fx, which is a
function of s, a dimensionless reduced gradient defined as
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s = |∇n(r)|
2(3π2)1/3n(r)4/3 . (A.37)

Various approximations have been proposed for the Fx(s) functional, for instance, by
Perdew and Wang (Perdew 1991) and by Perdew, Burke, and Ernzerhof (PBE) (Perdew
et al. 1996). Generally, when materials properties have to be screened, the PBE func-
tional is used, and the Fx(s) is expressed as

FPBE
x (s) = 1 + k − κ

1 + μs2

κ

. (A.38)

In PBE, κ and μ are parameters obtained from (nonempirical) physical constraints
(Perdew et al. 1996). The functional form of the gradient-corrected correlation energy
EGGA

c is also expressed as a complex function of s. For more details on PBE parameter-
izations, see Perdew et al. (1996).

A.4 Practical Calculations

For practical reasons, it is necessary to introduce crystal lattices (which exhibit a peri-
odical symmetry) to solve numerically large periodic systems using DFT. The crystal
lattice is typically used to reduce the amount of atoms (thus, of interacting particles)
when using only the unit cell. In addition to this, the equations derived in the previous
section need to be projected onto a complete basis set. This basis set should be of finite
size in order to allow us to perform computer calculations. Finally, band structures and
k-point grids are introduced, followed by the pseudopotentials.

A.4.1 Crystal Lattice and Reciprocal Space

A solid material is composed of many electrons and ionic cores per cm3. In principle, all
these positions should be taken into account to construct the Kohn–Sham Hamiltonian.
Fortunately, the periodic symmetry of the crystal lattice allows us to reduce the interac-
tion problem to only electrons and ionic cores that are present in the unit cell. A crystal
is determined by its atoms’ positions and follows the rules of symmetry (repeating them
by performing translations). The set of translations that generates the complete crystal
is called the Bravais lattice. This set of translations forms a group, as the sum of two
translations is again a translation. Other symmetries (e.g., a rotation) leaving the crystal
unchanged can also exist. These form a group called a point group which is a group of
geometric symmetries (isometries) that keep at least one point fixed. The space group
of a crystal is given by the sum of the translation group and the point group.

The set of all translations forms a lattice in space in which each translation can be
written as a linear combination of the primitive vectors a1, a2, a3:

t = i1a1 + i2a2 + i3a3, (A.39)
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where i1, i2, and i3 are integers. The positions of the atoms in the unit cell can be
described with respect to the primitive translation vectors. Due to the periodicity of
the lattice, all periodic functions can be Fourier-transformed. The Fourier-transformed
space is also called reciprocal space, where the set of reciprocal vectors bi of the primi-
tive translations aj satisfy

bi · aj = 2πθij, (A.40)

which is the definition of the reciprocal lattice. A vector in the reciprocal space is usually
denoted as G and is given by

G = i1b1 + i2b2 + i3b3, (A.41)

where i1, i2, and i3 are integers. By using this reciprocal lattice, the first Brillouin zone
can be defined as the Wigner–Seitz cell of the reciprocal space (Ashcroft & Mermin
1976b). This “minimum representation” of the system to be studied using the periodic
boundary conditions of large systems is the basic idea of this approach, to be used
for the DFT calculations throughout the various examples of carbon nanostructures
investigated in this book.

A.4.2 The Plane Wave Representation

For such periodic systems, the external potential satisfies the relation V(r + t) = V(r),
imposed by the periodic boundary conditions, and therefore the corresponding effective
one-electron Hamiltonian obeys the translation invariance. The Bloch theorem applies
to the electronic wavefunctions of the system. The eigenfunctions can be written as a
product of a plane wave (eik·r) and a function (un,k(r)) having the same periodicity as
the potential V(r):

ψn,k(r) = eik·run,k(r), where un,k(r + t) = un,k(r). (A.42)

Here, k represents the wave vector, and n is the band index. The Bloch theorem allows
us to expand the electronic wavefunction in terms of a discrete set of plane waves to the
periodic function un,k(r), whose wave vectors are the reciprocal lattice vector (G) of the
periodic crystal:

un,k(r) = 1√
�

∑
G

Cn,k+G eiG·r, (A.43)

where � is the volume of the unit cell. The electronic wavefunction can thus be
rewritten as

ψn,k(r) = 1√
�

∑
G

Cn,k+G+r ei(k+G)·r. (A.44)

Using the above expressions to solve the one-electron Schrödinger-like equation with
an effective periodic potential, e.g., the Kohn–Sham potential defined in Eq. (A.29), the
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Kohn–Sham wavefunction can be expanded with the plane wave basis sets as described
in Eq. (A.44). As a result, Eq. (A.27) can be rewritten as∑

G′

[
h̄2

2m
|k + G|2δGG′ + νn−n(G − G′) + νH(G − G′)

+ νxc(G − G′)

]
Cn,k+G = εn,kCn,k+G, (A.45)

where ν(G − G′) are the Fourier transforms of the potential in real space (which
can exhibit different functional forms depending on the pseudopotential method):
here, νn−n(G − G′) is the nuclei–nuclei interaction Coulomb potential, νH(G − G′) is
the Hartree potential, νxc(G − G′) is the exchange–correlation potential, δGG′ is the
Kronecker symbol δ, and reflects that the kinetic energy is diagonal, whereas εn are the
electronic energies.

The solution of this secular equation is obtained by diagonalizing the Hamiltonian
matrix of elements Hk+G,k+G′ , given by the terms in brackets of Eq. (A.45). The size of
the matrix is determined by the choice of the cutoff energy. The plane wave expansion
is truncated to include terms with a kinetic energy only up to a certain cutoff value:

h̄2

2me
|k + G|2< Ecutoff. (A.46)

Employing a finite basis set introduces a new source of inaccuracy, which can be reduced
by increasing the number of plane waves or the kinetic energy cutoff (Ecutoff). Therefore,
appropriate convergence tests have to be performed in order to find an Ecutoff that is
sufficient to compute the property of interest with the required accuracy. Despite the
Ecutoff, it is often computationally heavy to determine the size of the matrix for systems
that contain both valence and core electrons. This problem can be overcome by using
the pseudopotential approximation as discussed in the following sections.

A.4.3 k-Point Grids and Band Structures

In a periodic solid, the number of electrons is of the order of Avogadro’s number. Only
a set of k points is allowed and determined by the periodic boundary conditions or
generalized Born–von Karman boundary conditions to the wavefunctions. The latter
can be interpreted by saying that a particle that leaves one surface of the crystal simul-
taneously enters the crystal at the opposite surface. The density of allowed k points is
proportional to the volume of the solid. The infinite number of electrons in the solid is
accounted for by an infinite number of k points, and only a finite number of electronic
states are occupied. The spacing of the k points goes to zero and k can be considered as
a continuous variable. The occupied states at each k point contribute to the ground state
properties of the solid such as the electronic potential, electron density, and the total
energy. However, the electronic wavefunctions at k points that are very close together
will be almost identical. Hence, it is possible to represent them by a single k point
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instead of over a region of k space. In order to obtain accurate electronic potential,
electron density, and total energy, efficient methods have been used to choose the finite
sets of k points. Generally, the method proposed by Monkhorst and Pack (1976) is
used in which a uniform mesh of k points is generated along the three lattice vectors
in reciprocal space. The magnitude of any error in the total energy or the total energy
difference due to inadequacy of the k points sampling can always be reduced to zero
by using a denser set of k points. Therefore, it is crucial to test the convergence of the
results with respect to the number of k points in general.

Due to the translational symmetry and to the continuous nature of k points, only the
first Brillouin zone with its band eigenvalues and energy gaps is taken into account
to plot these eigenvalues for the so-called band structures. In order to calculate the
electronic density and other properties, it is necessary to integrate (all) over the k
points in the Brillouin zone. The number of these k points necessarily depends on the
material: for insulators only a few points are needed as all bands are filled, while for
metals more points are needed for the bands that cross the Fermi level. The presence
of additional symmetries, such as rotations or mirror reflections, allows one to consider
only a part of the Brillouin zone. The smallest possible part that can be mapped to the
complete Brillouin zone by applying all symmetries is called the irreducible Brillouin
zone (IBZ).

A.4.4 The Pseudopotential Approximation

Most physically interesting properties of solids are largely determined by the valence
electrons rather than the core. The valence electrons can be thought of as loosely bound
orbitals, delocalized over the crystal, which strongly influence the formation of bands in
a solid. In contrast, the core electrons, that are tightly bound around each atomic nucleus
and largely unperturbed by the surrounding environment, are essentially not involved
in chemical bondings. Moreover, the deeply bound core electrons within plane-wave
basis sets require a huge amount of basis functions for their description, which implies
a significant computational cost. This can be avoided by using the pseudopotential
approximation (Phillips 1958) which replaces the strong ionic potential with a weaker
pseudopotential. In general, the pseudopotential formalism is used for two main reasons
which are (i) to reduce the number of plane waves to describe the core electrons as a
weaker pseudopotential due to their deep potential and (ii) to eliminate the fast oscilla-
tions of the wavefunctions of the valence electrons. These two issues are illustrated in
Fig. A.2, where the pseudopotential is much weaker than the all-electron potential and
where the pseudo wavefunction has no radial node inside the core region. It is essential
within the pseudopotential scheme that outside the core region, the pseudopotential and
pseudo wavefunction become the same with the corresponding all-electron functions.

The most common form of a pseudopotential is:

V PS(r) =
∑

|Yl,m〉Vl(r)〈Yl,m|, (A.47)
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Figure A.2 All-electron potential (dashed line) and pseudopotential (solid line) and their
corresponding wavefunctions. The radius at which the all-electron and pseudo-electron values
match is designated rc. (Adapted from Rignanese (1998))

where |Yl,m〉 are the spherical harmonics and Vl are the angular momentum dependent
components of the pseudopotential. A pseudopotential that uses the same potential in
each angular momentum is called a local pseudopotential, i.e., it only depends on the
distance from the nucleus. A fundamental requirement for the pseudopotential is the
ability to accurately describe the valence electrons in different chemical environments.
Such a property is called the transferability of the pseudopotential.

Based on this idea, a systematic and successful procedure for the development
of accurate and transferable pseudopotentials has been developed, where the added
constraint of norm-conservation is introduced (Bachelet et al. 1982; Hamann et al.
1979). Modern norm-conserving pseudopotentials are obtained by inverting the free
atom Schrödinger equation for a given electronic configuration of reference and forcing
the pseudo wavefunctions to match the true valence wavefunctions beyond a certain
chosen distance from the nucleus. In summary, a norm-conserving pseudopotential is
built on a given reference atomic configuration, to meet the following conditions:

(1) The pseudo energy-eigenvalues should match the true (all-electron) valence eigen-
values.

(2) The pseudo wavefunctions φPS
l should be nodeless, and the functions and their first

derivatives must be differentiable.
(3) The pseudo wavefunctions should match the all-electron wavefunctions beyond a

chosen core radius rl
c:

φPS
l (r) = φAE

l (r), for r > rl
c. (A.48)

(4) The total integrated pseudo-charge density from a given φPS
l (r) and the correspond-

ing all-electron charge density are identical inside the core radius rl
c:∫

r<rl
c

|φPS
l |2r2dr =

∫
r<rl

c

|φAE
l |2r2dr. (A.49)
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Various parameterization schemes exist to generate the norm-conserving pseudopoten-
tials (e.g., Troullier and Martins (1991) parameterizations). Note that in the original
formulations, the pseudopotentials are semi-local but they can easily be transformed
into a separable form using the Kleinmann–Bylander scheme (Kleinman & Bylander
1982). The nonlocal pseudopotential is used to accurately represent the combined effect
of the nucleus and the core electrons, since different angular momenta can be scattered
differently. The pseudopotential can be conventionally rewritten in a form that separates
the long- and short-range components, where the long-range component is local and
corresponds to the Coulomb tail.

The norm-conserving requirement ensures that the logarithmic derivative of φPS
l

(related to the phase shifts in the scattering) has the same behavior (up to the first order
changes in energy) as in the all-electron case, which is often related to the transferability.
For elements with strongly localized orbitals (i.e., 3d elements) the norm-conserving
pseudopotentials require a large basis set of plane waves. To overcome this limitation,
one usually increases the cutoff radius, but this is in general not a good solution
because the transferability is always considerably affected when rc is increased. Many
attempts to improve the norm-conserving pseudopotentials have been centered around
the logarithmic derivative of the atomic and pseudo wavefunctions (Rignanese 1998).

Vanderbilt proposed a radically new concept based on relaxing the norm-conserving
constraint, introducing a so-called ultrasoft pseudopotential (USPP) (Vanderbilt 1990).
As with norm-conserving pseudopotentials, the all-electron and pseudo wavefunctions
are required to be equal outside rc, but inside rc they are allowed to be as smooth as pos-
sible. As a consequence, the pseudo wavefunctions are not normalized inside rc, result-
ing in a charge deficit. This problem is solved by introducing a localized atom-centered
augmentation charge in which the correct pseudo-charge density accounts for the part
of the charge (in the core region) that is not described by the pseudo wavefunctions
ψi (Rignanese 1998). The augmentation of the pseudo-density with appropriate func-
tions (denoted QI

nm(r)) localized in the core region is defined as

n(r) =
∑

i
[ψ∗

i (r)ψi(r) +
∑
I,lm

QI
nm〈ψi|βI

n〉〈βI
m|ψi〉], (A.50)

where the functions βI
n are strictly localized in the core region and are also used to

define the nonlocal pseudopotential. The functions βI
n and QI

nm(r) are related to the
atomic functions βn and Qnm by

βI
n(r) = βn(r − RI), (A.51)

QI
nm(r) = Qnm(r − RI). (A.52)

The Qnm are constructed in the atomic “pseudization” procedure in such way that, at
the reference energies, the electron density of the pseudo wavefunctions as defined
by Eq. (A.50) is the same as the all-electron density. The functions βn and Qnm are
obtained from first principles in the USPP scheme, and characterize the atomic species
(Rignanese 1998).
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Although the pseudopotential approach has worked reliably for three decades, a
new method called projector-augmented wavefunctions (PAW) has been introduced by
Blöchl (1994) to replace these pseudopotentials. In principle, this PAW approach is
more accurate compared to others such as USPP for two main reasons. First, the cutoff
distance or the extension in space of the pseudopotential is smaller in PAW than in
USPP. Second, the PAW approach reconstructs the real wavefunction with all its nodes
in the core region, while the USPP do not.

The central idea in the PAW method is to express the all-electron valence states ψi
in terms of a smooth pseudo wavefunction ψ̃n, which is augmented by a local basis set
expansion and restricted to a small region, called the augmentation sphere, around each
atom (Blöchl 1994). The core states of the atoms are considered frozen. Given a smooth
pseudo wavefunction, the corresponding all-electron wavefunction (i.e., orthogonal to
the set of core orbitals) can be obtained through a linear transformation operator τ̂ :

ψi(r) = τ̂ ψ̃i(r), with τ̂ = 1 +
∑

i
|φAE

i 〉〈p̃i|ψ̃n −
∑

i
|φ̃PS

i 〉〈p̃i|ψ̃n, (A.53)

where p̃i are atom specific but system independent functions, which are only nonzero
inside the augmentation sphere. The index i refers to the sum over the atomic sites, the
angular momentum and reference energies. φAE

i and φ̃PS
i are the all-electron and pseudo-

partial waves that match at the core radius. Finally, p̃i are the projector functions that
have to be created in such a way as to be dual to the partial waves:

〈p̃i|ψ̃j = σij. (A.54)

A radial cutoff distance, rAE
c , that defines the atomic augmentation sphere is selected,

similarly to a cutoff radius for a pseudopotential. The larger is the augmentation sphere,
the smoother are the pseudo wavefunctions. However, the overlap with neighboring
augmentation spheres should be avoided. For the all-electron valence states, smooth
partial waves are constructed for r > rAE

c and one smooth projector is defined for each
of the partial waves. In principle, an infinite number of projectors and partial waves
are required for the PAW method to be exact (Blöchl 1994). For practical calculations,
an accurate dataset will need only one or two projection functions for each angular
momentum. From the atomic frozen-core electron density nAE

c (r), a new smooth electron
density ñAE

c (#r) is obtained. The latter must be identical to nAE
c (r) for radii larger than

rAE
c . The wavefunction and the atom-centered smooth-core electron density contribute

to the whole pseudo-electron density. The true all-electron density is obtained from
the pseudo-electron density. Finally, the PAW total energy is a function of the pseudo
wavefunctions and of the occupation numbers (Blöchl 1994).

A.4.5 Available DFT Codes

Up to this point, the discussion has basically focused on the description of the DFT and
its practical calculation to determine the electronic ground-state of an atomic system.
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Improvements in computer hardware and software allow simulations of materials with
an increasing number of atoms. The computational load scales linearly (or with a higher
power) with the number of atoms present in the simulation cells. It is thus of prime
importance to choose the right software to be used in this context. Among the several
existing DFT approaches, the choice of software is made according to the trade-off
between numerical accuracy and system size. Several main DFT codes currently on the
market are listed below as examples of software frequently used to predict the electronic
and transport properties of carbon-based nanostructures:

(1) ABINIT (Gonze 2005; Gonze et al. 2009) is a GPL licensed DFT package used
worldwide. ABINIT is a package whose main program allows one to find the total
energy, charge density and electronic structure of systems made of electrons and
nuclei (molecules and periodic solids) within DFT, using pseudopotentials and a
planewave or wavelet basis. Valence and core electrons are treated on different
footings: the core electrons are frozen, and either replaced by norm-conserving
pseudopotentials or treated by the augmentation of plane waves by projectors (PAW
method). The code also includes options to optimize the geometry according to the
DFT forces and stresses, to perform molecular dynamics simulations using these
forces, to generate dynamical matrices, Born effective charges, dielectric tensors
based on density-functional perturbation theory (DFTP), and many more proper-
ties. Excited states can be computed within the many-body perturbation theory
(the GW approximation and the Bethe–Salpeter equation), and time-dependent den-
sity functional theory (for molecules). More details are available on the website:
www.abinit.org.

(2) QUANTUM ESPRESSO (Giannozzi et al. 2009) is an integrated suite of open-source
computer codes for electronic-structure calculations and materials modeling at the
nanoscale. It is based on DFT, plane waves, and pseudopotentials. The main pro-
gram allows one to compute the ground-state properties within DFT using the
pseudopotentials (norm-conserving and ultrasoft) and the PAW method. Several
exchange–correlation functionals and some hybrid functionals are included in this
code. More details and the code are available at: www.quantum-espresso.org/.

(3) SIESTA (Spanish initiative for electronic simulations with thousands of atoms)
(Soler et al. 2002) is both a method and its computer program implementation, to
perform electronic structure calculations and ab initio molecular dynamics simula-
tions of molecules and solids. This code uses the standard DFT with LDA and GGA
together with the norm-conserving pseudopotentials (in the form of Kleinman–
Bylander). Atomic orbitals are used as a basis set, allowing unlimited multiple-zeta
and angular momenta, polarization, and off-site orbitals. SIESTA uses a finite 3D
grid for the calculation of some integrals and the representation of charge densities
and potentials. More details are available at: www.icmab.es/dmmis/leem/siesta/.

(4) CASTEP (Clark et al. 2005; Segall et al. 2002) is a leading code for calculating
the properties of materials from first principles. Using density functional theory,
it can simulate a wide range of materials properties including energetics, structure

www.abinit.org
http://www.quantum-espresso.org/
www.icmab.es/dmmis/leem/siesta/
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at the atomic level, vibrational properties, electronic response properties, etc. In
particular, it has a wide range of spectroscopic features that link directly to exper-
iment, such as infrared and Raman spectroscopies, NMR, and core-level spectra.
This software is a full-featured materials modeling code based on a first-principles
quantum mechanical description of electrons and nuclei. It uses the robust meth-
ods of a plane-wave basis set and pseudopotentials. More details are available at:
www.castep.org.

(5) VASP (The Vienna ab initio simulation package) (Kresse & Furthmüller 1996a,
1996b) is a computer program for atomic scale materials modeling, e.g., elec-
tronic structure calculations and quantum mechanical molecular dynamics, from
first principles. It computes an approximate solution to the many-body Schrödinger
equation, either within density functional theory (DFT), solving the Kohn–Sham
equations, or within the Hartree–Fock (HF) approximation. Hybrid functionals that
mix the Hartree–Fock approach with density functional theory are implemented
as well. In VASP, central quantities, like the one-electron orbitals, the electronic
charge density, and the local potential are expressed in plane-wave basis sets. The
interactions between the electrons and ions are described using norm-conserving or
ultrasoft pseudopotentials, or the projector-augmented-wave method. More details
are available at: www.vasp.at.

www.castep.org
www.vasp.at


Appendix B Electronic Structure
Calculations: The Many-Body
Perturbation Theory (MBPT)

B.1 Introduction

In Appendix A, a detailed description of the electronic structure calculation techniques
based on the so-called density functional theory (DFT) was presented. As mentioned and
illustrated in that section, DFT is widely used to investigate the electronic properties of
materials, their defects, interfaces, etc. Unfortunately, the semi-local approximations of
DFT, such as the local density approximation (LDA) and gradient generalized approx-
imation (GGA), suffer from a well-known substantial underestimation of the bandgap.
This may be interpreted as a result of the fact that DFT does not properly describe
excited states of a system. This failure of DFT may also induce a wrong estimation of
the position of the electronic defect/dopant levels in the bandgap.

Some empirical solutions exist to overcome the problem of DFT bandgap underes-
timation. For example, the “scissor” technique consists in correcting the LDA/GGA
gap error by shifting the conduction band up so as to match the gap relative to the
experiment. However, such a method is not accurate enough for defining the accurate
position of defect/dopant levels occurring in the bandgap.

Another solution to the underestimation of the bandgap in DFT consists in using
the so-called hybrid functionals which have recently become very popular. Indeed,
these functionals incorporate a fraction of Hartree–Fock (HF) exchange, which leads to
improvement of the bandgap compared to LDA/GGA (Curtiss et al. 1998; Muscat et al.
2001; Paier et al. 2006). Yet, the fraction of HF exchange cannot be known in advance
for all materials, and its optimal value is material dependent (Ernzerhof et al. 1997;
Ernzerhof & Scuseria 1999). Therefore, the reliability of hybrid functionals cannot be
assessed a priori (Kümmel & Kronik 2008). Indeed, a recent theoretical work (Jain et al.
2011) demonstrates that the orbital energies from various existing hybrid functionals
are not reliable in predicting the bandgaps of all materials, either the optical or the
quasiparticle gap. Even if a specific functional may give a good value for the bulk
bandgaps, the same functional in general does not yield accurate gap values for the same
material in different configurations, such as at its surfaces or in nanostructures (Jain
et al., 2011).

A more successful approximation for the determination of excited states is based on
the many-body perturbation theory (MBPT) (Abrikosov et al. 1975; Fetter & Walecka
1971; Hedin & Lundqvist 1970; Landau & Lifschitz 1980; Onida et al. 2002). Within the
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DFT scheme, the response of a system of interacting electrons to an external potential
Vext is that of independent particles responding to an “effective” potential. A similar idea
is that the long-range, and relatively strong, Coulomb forces could screen the individual
electrons, with a surrounding charge cloud of the other electrons. This leads to defining
the quasiparticle as an electron plus its screening cloud. Thus, the response of strongly
interacting particles can be described in terms of weakly interacting quasiparticles.
Hence, MBPT offers an approach for obtaining quasiparticle (QP) energies in solids
which is controlled and amenable to systematic improvements. The principal results of
MBPT, as well as its practical use, are summarized in the following.

B.2 Many-Body Perturbation Theory (MBPT)

B.2.1 Hedin’s Equations

In MBPT, the QP energies EQP
i and wavefunctions ψQP

i are determined by solving the
quasiparticle equation:[

−1
2
∇2 + Vext(r) + VH(r)

]
ψ

QP
i (r) +

∫
�(r, r′; EQP

i )ψQP
i (r′)dr′ = EQP

i ψ
QP
i (r),

(B.1)

where Vext and VH are the external and Hartree potentials, respectively. In this equation,
the exchange and correlation effects are described by the electron self-energy opera-
tor �(r, r′, EQP

i ), which is nonlocal, energy dependent, and non-Hermitian. Hence, the
eigenvalues EQP

i are generally complex: their real part is the energy of the quasiparticle,
while their imaginary part gives its lifetime.

The main difficulty resides in finding an adequate approximation for the self-energy
operator �. Another key quantity is Green’s function (Hedin & Lundqvist 1970)
G(r, r′, t, t′). It describes the probability of finding an electron with spin σ at time t and
position r, if another electron with spin σ ′ is added (or removed) at position r′ at time t′.
Considering the condition � = 0, the noninteracting (which still contains the Hartree
potential) Green’s function G0 can be constructed from the one-particle wavefunctions
ψi and energies Ei of the “zeroth-order” Hamiltonian as

G0(r, r′, E) =
∑

i

ψi(r)ψ∗
i (r′)

E − Ei + iηsgn(Ei − μ)
, (B.2)

where μ is the chemical potential and η is a positive infinitesimal. Hedin (1965) pro-
posed a systematic way to approximate the self-energy � by including a perturbation
series expansion in the fully screened Coulomb interaction. The exact one-body Green’s
function G is thus written using the Dyson equation:

G(12) = G0(12) +
∫

G0(13)�(34)G(42)d(34). (B.3)
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Figure B.1 (a) The self-consistent process for solving the complete Hedin’s equations resulting
from GW approximation. (b) Four coupled integro-differential equations resulting from the GW
approximation. The so-called G0W0 approximation consists in performing the loop only once
starting from G = G0. (Adapted from Giantomassi et al. (2011))

Here, 1 ≡ (r1, σ1, t1) is used to denote space, spin, and time variables and the integral
sign stands for summation or integration of all these where appropriate. 1+ denotes
t1 + η, where η is a positive infinitesimal. The self-energy � is obtained by solving
self-consistently Hedin’s closed set of coupled integro-differential equations:


(12; 3) = δ(12)δ(13) +
∫
δ�(12)
δG(45)

G(46)G(75)
(67; 3)d(4567), (B.4)

P(12) = −i
∫

G(23)G(42+)
(34; 1)d(34), (B.5)

W(12) = v(12) +
∫

W(13)P(34)v(42)d(34), (B.6)

�(12) = i
∫

G(14)W(1+3)
(42; 3)d(34), (B.7)

where P is the polarizability, and W and v are the screened and the unscreened Coulomb
interaction, respectively. 
 is the vertex function, which describes higher-order correc-
tions to the interaction between quasiholes and quasielectrons. The self-consistent iter-
ative process is illustrated in Fig. B.1(a). The most complicated term in these equations
is 
, which contains a functional derivative and hence cannot in general be evaluated
numerically.

B.2.2 GW Approximation

In order to solve Hedin’s equation, a possible strategy is to start with � = 0 and neglect
the variation of the self-energy with respect to the Green’s function δ�(12)/δG(45) = 0
in Eq. (B.4). This leads to the Green’s function G (at this step, the Hartree independent-
particle G0) and the vertex function is set to a delta function as


(12; 3) = δ(12)δ(13). (B.8)
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Thus, the polarizability in Eq. (B.5) writes

P(12) = −iG(12+)G(21), (B.9)

which corresponds to the random phase approximation (RPA) for the dielectric matrix.
The screening also corresponds to RPA screening (W0). The self-energy � in Eq. (B.7)
is then a product of Green’s function and of a screened Coulomb interaction:

�(12) = iG(12)W(1+2), (B.10)

where the Green’s function is the one consistent with the Dyson’s equation. In principle,
this process should continue until self-consistency is reached (until the input Green’s
function equals the output one). However, in practice it has never been pursued. Instead,
calculations usually stop once the self-energy � = G0W0 (i.e., after one round) or
by searching for the self-consistency of a reduced set of equations is obtained (see
Fig. B.1(b)), short-cutting the vertex function. These approximations are called non-
self-consistent (one-shot GW or G0W0) and self-consistent GW approximation (GWA),
respectively. More details can be found in Onida et al. (2002), and Giantomassi et al.
(2011).

B.3 Practical Implementation of G0W0

B.3.1 Perturbative Approach

In practical calculations, one needs a starting point for the independent-particle Green’s
function. The quasiparticle energies are more efficiently obtained from Eq. (B.1) than by
solving the Dyson equation, Eq. (B.4). The approach consists in treating the difference
of the self-energy and the Kohn–Sham potential (see Appendix A) as a perturbation.
Despite some fundamental differences, the formal similarity is striking between the
quasiparticle equation, Eq. (B.1), and the Kohn–Sham equation, Eq. (A.27):[

−1
2
∇2 + Vext(r) + VH(r)

]
ψDFT

i (r) + Vxc(r)ψDFT
i (r) = EDFT

i ψDFT
i (r), (B.11)

where Vxc is the DFT exchange–correlation potential and EDFT
i is the DFT energy. It

turns out that the quasiparticle and the DFT wavefunctions are typically similar, at least
for many simple bulk materials. For example, in silicon, the overlap between the quasi-
particle and the DFT wavefunctions has been reported to be close to 99.9% (Rohlfing
et al. 2003; White et al. 1998). Hence, EDFT

i and ψDFT
i for the ith state are used as a

zeroth-order approximation for their quasiparticle counterparts. The QP energy EQP
i is

then calculated by adding to EDFT
i the first-order perturbation correction, which comes

from substituting the DFT exchange–correlation potential Vxc with the self-energy
operator �:

EQP
i = EDFT

i + 〈ψDFT
i |�(EQP

i ) − Vxc|ψDFT
i 〉. (B.12)
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Figure B.2 The perturbative approach for finding the quasiparticle correction. In principle, the
self-energy matrix element �ii(E) = 〈ψDFT

i |�(E) − Vxc|ψDFT
i 〉 and the true quasiparticle

correction �(EQP
i ) are found from the solution of E − EDFT

i = �ii(E), i.e., at the crossing of the
dashed black line and �ii(E) in the circular zoom-in. In practice, the perturbative approach
exploits the fact that it is computationally feasible to use the Taylor expansion around �(EDFT

i )
[Eqs (B.14) and (B.15)] and to find an approximate value for the QP correction at the crossing of
the gray and black dashed lines. (Extracted from Giantomassi et al. (2011))

To solve Eq. (B.12), the energy dependence of � must be known analytically, which is
usually not the case. Under the assumption that the difference between QP and DFT
energies is relatively small, the matrix elements of the self-energy operator can be
Taylor-expanded to the first-order around EDFT

i to be evaluated at EQP
i :

�(EQP
i ) ≈ �(EDFT

i ) + (EQP
i − EDFT

i )
∂�(E)
∂E

∣∣∣∣
E=EDFT

i

. (B.13)

In this expression, the QP energy EQP
i can be solved for

EQP
i = EDFT

i + Zi〈ψDFT
i |�(EDFT

i ) − Vxc|ψDFT
i 〉, (B.14)

where Zi is the renormalization factor defined by

Z−1
i = 1 − 〈

ψDFT
i

∣∣ ∂�(E)
∂E

∣∣∣∣
E=EDFT

i

∣∣ψDFT
i

〉
. (B.15)

The principle is illustrated in Fig. B.2.

B.3.2 Plasmon Pole

Another approximation that is often used concerns the screened Coulomb interaction W.
In the calculation of W = ε−1v, the inverse dielectric function is a frequency-dependent
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matrix. The so-called plasmon-pole model of Godby–Needs (1989) consists in substi-
tuting the frequency dependence of the imaginary part of every element of the matrix
with just a narrow Lorentzian peak, which is related to the plasmon excitations of the
system, since ![ε−1

GG′
]

is the loss function. This loss function is expressed as

![ε−1
GG′

] = AGG′ (q) × [δ(ω − ω̃GG′ (q)) − δ(ω + ω̃GG′ (q))] , (B.16)

where AGG′ is the amplitude of a delta function centered at the plasmon frequency
ω̃GG′ (q). Using the Kramers–Kronig relations, the resulting dielectric function is then,
in reciprocal space,

�[ε−1
GG′

] = δGG′ + �2
GG′(q)

ω2 − ω̃2
GG′(q)

, (B.17)

where G is a reciprocal lattice vector and q a vector in the first Brillouin zone together
with � and ω̃, which are parameters giving the strength and the position of the poles,
respectively. They can be obtained, for example, using the static screening and sum
rules (Godby & Needs 1989), or fitted to a full calculation along the imaginary energy
axis. The exact formulation of the plasmon pole model is far beyond the scope of
the present appendix. Note that other plasmon pole models have been proposed in the
literature (Giantomassi et al. 2011).

In summary, the theoretical bases of MBPT and Hedin’s equations have been
presented leading to the GW and G0W0 approximations. The perturbative approach,
which is the most commonly used for obtaining the quasiparticle energies, is introduced
together with the frequency dependence of the self-energy operator based on the
plasmon pole model. This MBPT within the G0W0 approximation is frequently used in
various chapters to model more accurately the electronic structures of various carbon-
based nanostructures.



Appendix C Green’s Functions and
Ab Initio Quantum Transport in the
Landauer–Büttiker Formalism

The Landauer–Büttiker (LB) formalism is widely used to simulate transport properties at
equilibrium. The applications range from 1D conductors such as nanowires, nanotubes,
nanoribbons to 3D conductors such as molecular junctions with two or more contacts.
At the ab initio level, this LB formalism is quite practical thanks to the Fisher–Lee
relation, which connects the Landauer expression to the Green’s function formalism.
The transport properties of a given material can be simulated by finding the Green’s
function of the system within DFT (or even MBPT).

In this appendix, the Green’s function formalism is briefly reviewed. Section C.1 pro-
vides an introduction with a derivation of the trace formula starting from the Lippmann–
Schwinger equations, then Section C.2 discusses recursive Green’s function techniques,
while Dyson’s equation is introduced and applied to the case of a disordered system
in Section C.3. Finally, Section C.4 is devoted to the implementation of LB formalism
in conventional ab initio codes in order to investigate coherent electronic transport in
nanoscale devices.

C.1 Phase-Coherent Quantum Transport and the Green’s Function Formalism

Green’s functions are one of the most useful tools (Economou 2006) for calculation
of different physical quantities of interest such as the density of states or the quantum
conductance and conductivity. In the context of phase-coherent quantum transport, they
play a crucial role because their relation with the scattering matrix can be exploited to
compute the quantum transmission probabilities as needed within the Landauer–Büttiker
formalism presented in Section 4.3.

Although the real power of the Green’s functions (GFs) appears when many-body
effects such as electron–electron or electron–phonon interactions are taken into account,
the subjects addressed in the present appendix are limited to a description of noninter-
acting systems. In the following, a brief reminder to Green’s functions (GFs) techniques
is provided. Our focus will be on lattice models.

From the time-evolution operator to the Green’s function in the energy domain.
Given the (time-dependent) Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (C.1)
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with the initial condition |ψ(t = t0)〉 = |ψ0〉, the time-evolution operator U(t, t0) is
defined as

|ψ(t)〉 = U(t, t0)|ψ(t0)〉. (C.2)

This operator is unitary, thereby ensuring that the probability is conserved, 〈ψ(t)|ψ(t)〉 =
〈ψ(t0)|ψ(t0)〉 and satisfies:

ih̄
∂U(t, t0)
∂t

= HU(t, t0). (C.3)

When the Hamiltonian is time-independent, the time-evolution operator is a function
of the time difference t − t0, U(t, t0) = U(t − t0). If we are interested in the causal
propagation of an initial state, then it makes sense to restrict the domain to t − t0 ≥ 0.
Let us choose for simplicity t0 = 0. One can see that the operator defined by

Gr(t) = − i
h̄
#(t)U(t), (C.4)

(#(t) is the Heaviside step function) satisfies the inhomogeneous equation,(
ih̄
∂

∂t
− H

)
Gr(t) = δ(t). (C.5)

(By now, the delta term on the right-hand side should give a clue to readers that this
function G(t) is a Green’s function!) For the case of a time-independent Hamiltonian,
we have

Gr(t) = − i
h̄
#(t)

∑
α

e− i
h̄ Eα t|ψα〉〈ψα| (C.6)

where Eα are the Hamiltonian eigenvalues.
Our next step is to Fourier transform the last equation from time to the energy domain:

Gr(ε) = − i
h̄
∑
α

∫ ∞

−∞
dt#(t)e

i
h̄ (ε−Eα)t|ψα〉〈ψα|. (C.7)

By using the integral representation of the Heaviside function #(t) = limη→0+ i∫∞
−∞

dω
2π

e−iωt

ω+iη , we get:

Gr(ε) = limη→0+
∑
α

|ψα〉〈ψα|
ε + iη − Eα

. (C.8)

This last expression is very useful as it is a representation of the energy domain Green’s
function in terms of the eigenstates and eigenvalues of the Hamiltonian. The eigenvalues
of H correspond to the poles on the real axis of Gr(ε), while the residues are related to
the eigenfunctions. By using the closure relation, one can also write it in a more compact
form:

Gr(ε) = limη→0−
1

ε + iη − Eα
. (C.9)
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This Green’s functions is called the retarded GF, to be distinguished from the
advanced GF denoted as Ga,

Ga(ε) = limη→0−
1

ε + iη − Eα
. (C.10)

Choosing the retarded or the advanced Green’s function implies a choice on the
boundary conditions on the eigenfunctions (Messiah 1999). The sign of the imaginary
part η is related to the sign of the time that we want to observe (past or future). In
particular, we are interested in the retarded Green’s function which gives the causal
response. Hereafter, we will simply call it the Green’s function and for the sake of
brevity, we will sometimes omit the limη→0+ limit.

Interpretation. The Green’s functions in the energy domain provide the response of the
system to a source term ( f ) added to the time-independent Schrödinger equation:

(H − (ε + iη)) |ψ(ε)〉 = |f 〉. (C.11)

Indeed,

|ψ(ε)〉 = −Gr(ε) |f 〉 (C.12)

where Gr = limη→0+[(ε + iη) − H]−1 is an operator defining the retarded (r) Green’s
functions. This allows for a straightforward interpretation of the GFs.

Fisher–Lee relation. The Fisher–Lee relation allows us to connect the scattering matrix
element from electrode β to electode α, Sα,β with the Green’s function (Fisher & Lee
1981). For the simple case where the electrodes contain a single channel each, we have:

Sα,β (ε) = δα,β − 2i
√

α(ε)
β (ε)Gr

α,β (ε) (C.13)

where 
α = h̄vα/a, with vα the group velocity in the corresponding channel and a the
lattice constant. The components of S give the probability amplitudes for transmission
(α �= β) and reflection (α = β).

Matrix form. One can also formulate the problem in a discrete basis, say {|i〉} (for
example, think of a localized basis set in a crystal structure). Given the Schrödinger
equation in matrix form,

(εI − H)u = 0,

formally, we define the retarded Green’s function (in this matrix form also called the
resolvent operator),

Gr(ε) = limη→0+ ((ε + iη)I − H)−1. (C.14)

Each element of this matrix can be written as:

Gr
i,j = limη→0+

∑
α

ψ∗
α,iψα,j

(ε + iη) − Eα
(C.15)
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whereψα,i is the ith component of the eigenvector ψα corresponding to the Hamiltonian
in matrix form (H), Eα is the corresponding eigenvalue.

Analogously, one can define the advanced Green’s function in matrix form.

Relation with the density of states. Another quantity of interest is the local density of
states at site i, denoted as Ni(ε). From the expression for the Green’s functions in basis
set, one can see that the total density of states N(ε) is given by

N(ε) = − 1
π

∑
i

Im Gr
i,i = − 1

π
Tr[Im Gr] =

∑
i

Ni(ε). (C.16)

N(ε)dε gives the number of states in the energy interval [ε, ε + dε]. One can verify that
when the system is finite, the density of states is a sum of delta functions.

Lippmann-Schwinger equations. Another interesting property arises when consid-
ering a perturbation V. Assuming that the solutions of the unperturbed Schrödinger
equation are known, (H0 |ψ0

n 〉 = En |ψ0
n 〉), the solutions of the perturbed Schrödinger

equation, (
H0 + V − (E + iη)

)
|ψ(r)〉 = 0 (C.17)

are given by

|ψ(E)〉 = |ψ0(E)〉 + G0(E) V|ψ(E)〉 (C.18)

or equivalently

|ψ(E)〉 = |ψ0(E)〉 + G(E) V|ψ0(E)〉 (C.19)

where the G0(E) and G(E) functions are respectively the retarded GFs of the unperturbed
and perturbed system. These relations are called the Lippmann-Schwinger equations and
can be applied to the scattering problem. Indeed, this procedure allows to straightfor-
wardly connect the bulk propagating states of the isolated leads (|φL

kj
〉) to the stationary

scattering states of the complete system (|ψL
kj
〉). Assuming that the perturbation of the

system V corresponds to the coupling between the leads and the central region (i.e.,
V = HLD + HDL + HDR + HRD, the Lippmann-Schwinger Eq. (C.19) is rewritten as

|ψL
kj
〉 = |φL

kj
〉 + G(Ekj) V|φL

kj
〉. (C.20)

Dyson equations. Following the same idea as before, if H = H0 + H1, one can find
the so-called Dyson equations:

G = G0 + G0H1G (C.21)

and

G = G0 + GH1G0 (C.22)

where G0 is the GF associated to H0 and G is the GF associated to H.
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Figure C.1 Schematic representation of the two-terminal transport setup: (a) connected to an
external battery. (b) The device is contacted to two semi-infinite bulk electrodes assumed to be
at thermal equilibrium. (c) Block-decomposition of the Hamiltonian into sub-matrices associated
with the central region and the principal layers of the semi-infinite leads. HD contains all the
interactions inside the central region. HLD and HDR describe the coupling between the central
region and the leads. H0 accounts for all interactions inside the principal layers (PLs) of the
leads. H1 describes the coupling between nearest-neighbor PLs.

Formulation of the problem in a typical transport setup. Hereafter, the typical trans-
port setup depicted in Fig. C.1 is considered in a general scattering approach. This
system is conveniently divided into three parts: (i) the left and (ii) right leads that are
assumed to be made of perfect, defect-free crystalline materials, and (iii) a central region
that can be any kind of set of atoms. This region, which potentially corresponds to the
active part of the device, could thus be a single atom, a molecule, a section of carbon
nanotubes, a finite-size graphene nanoribbon, or even a bulk slab. Besides, the central
part and the leads may either have the same cross section dimensionality or not (e.g.,
a single molecule stretched between two massive gold electrodes). In summary, the
system consists of two semi-infinite, defect-free, electrodes that are coupled to a central
region where all the scattering processes take place.

This system can also be conveniently described by means of principal layers. A
principal layer (PL) is the smallest set of atoms that represents a unit cell of the semi-
infinite crystal forming the leads and which interacts only with the nearest-neighbor
PLs. Therefore, owing to the decomposition onto a set of localized basis functions, the
Hamiltonian of the system under consideration can be written in matrix form as
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H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · · · ·
H−1 H0 H1 0 · · ·

0 H−1 H0 HLD 0 · · ·
· · · 0 HDL HD HDR 0 · · ·

· · · 0 HRD H0 H1 0
· · · 0 H−1 H0 H1

· · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.23)

where H0 is the [n × n] matrix that describes all the interactions within the principal
layers. Similarly (HD) is the [m × m] matrix describing the interactions within the
central region. Here, n and m are the dimensions of the basis set localized within a
principal layer and the central region, respectively. Finally, the interaction between
nearest-neighboring PLs are contained in the [n × n] H1 matrix, and the interaction
between the central part and the left (right) lead is described in the [n × m] ([m × n])
HLD (HDR) matrix. In the case of non-orthogonal localized orbitals, the overlap matrix
(S) adopts the same block matrix form as the Hamiltonian (H).

Such a transport setup imposes to deal with an infinite hermitian problem whose
solutions are not accessible by application of the Bloch theorem owing to the central
region that breaks the translational symmetry. However, the problem can be solved by
computing the retarded Green’s function of the single-particle Schrödinger equation.
Roughly speaking, this function gives the response at any point of the system due to
a particular excitation at any other. The retarded Green’s function of the full system
(Gr(E)) satisfies,

[(E + iη)S − H] Gr(E) = I (C.24)

where I is an infinite-dimensional identity matrix and (E + iη) is the energy comple-
mented with an infinitesimal positive imaginary part in order to insure the causality
(otherwise, if one takes η → 0− one gets the advanced GF Ga). H and S are the infinite
dimensional matrix Hamiltonian and overlap matrix.

Let us now apply the Green’s function formalism to the transport problem illustrated
in Fig. C.1. Though the matrix that has to be inverted is infinite-dimensional, the Green’s
function formalism allows to account naturally for the open boundary conditions that
rule the asymptotic behavior of the transport problem. In the following, the Green’s
function of the central part is shown to be easily calculated separately, without calculat-
ing the whole Green’s function. Using the definition of the retarded Green’s function,
Eq. (C.24) reads⎛⎜⎝ ε+SL − HL ε+SLD − HLD 0

ε+SDL − HDL ε+SD − HD ε+SDR − HDR

0 ε+SRD − HRD ε+SR − HR

⎞⎟⎠ ·

⎛⎜⎝ GL GLD GLR

GDL GD GDR

GRL GRD GR

⎞⎟⎠ = I

(C.25)

where ε+ = (E + iη) and the Hamiltonian overlap, and Green’s matrices have been
divided into sub-matrices corresponding to the left/right leads and the central region.
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The HL/R sub-matrices account for all interaction inside the left and right leads. These
blocks are thus infinite-dimensional [∞×∞], as well as SL/R and GL/R. On the contrary,
the interesting sub-matrices (i.e., SD, HD, and GD) have the dimension [m×m], where m
is the number of degrees of freedom (i.e., orbitals) in the central region. Finally, the sub-
matrices HLD, and HDR that represent the interactions between the leads and the central
region have the dimension [∞ × m] and [m × ∞], respectively. However, these sub-
matrices (HLD and HDR) are actually zero with the exception of the bottom/top n lines
that represent the coupling between the last PL and the central region (i.e., the HLD and
HDR matrices introduced in Eq. (C.23)). Here, n is the number of degrees of freedom
(i.e., orbitals) in the PL.

With selection of the three block-equations that involve GD, the following system of
equations is readily derived(

ε+SL − HL
)

GLD + (SLD − HLD)GD = 0 (C.26)

(SDL − HDL)GLD + (
ε+SD − HD

)
GD + (SDR − HDR)GRD = 0 (C.27)

(SRD − HRD)GD + (SR − HR) · GRD = 0 (C.28)

With substitution of the Eqs. C.26 and C.27 into Eq. (C.28), an explicit expression for
the sub-matrix GD is obtained, and has the following form

Gr
D(E) = [

ε+ SD − Heff
D (E)

]−1 (C.29)

with

H eff
D (E) = [

HD −�r
L(E) −�r

R(E)
]

(C.30)

where the concept of the retarded self-energies associated with the left and right leads is
introduced

�r
L(E) = [

ε+SDL − HDL
]

G0r
L
[
ε+SLD − HLD

]
�r

R(E) = [
ε+SDR − HDR

]
G0r

R
[
ε+SRD − HRD

]
. (C.31)

Here, G0r
α are the retarded Green’s function associated with the isolated leads α = L, R,

G0r
α = [

ε+Sα − Hα
]−1 . (C.32)

Although this last equation still contains infinite matrices, the self-energy can be
computed easily by exploiting the fact that the interaction between the central region
and the leads only involves a finite number of atoms close to the interface. Besides,
owing to the sparsity of {HDL, SLD,HDR, SRD}, only the n lines of G0r

L/R that correspond
to the surface PL are actually needed in Eq. (C.31). This sub-matrix G0r

L/R has the finite
dimension [n×n] and can be computed either semi-analytically or by recursion methods
(see Fig. C.2).
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Figure C.2 Scheme representing the recursive procedure described in the text for the calculation
of the surface Green’s functions. At each step, one layer is eliminated and its effects included
through a renormalization of the adjacent’s layer Hamiltonian and the matrix elements
between them.

In summary, the Green’s function expressed in Eq. (C.29) is defined within the central
region only while the effect of the contact are mapped into complex self-energies. The
imaginary part of the self-energies accounts from the finite lifetime of the electronic
states inside the central region. Indeed, due to the interactions with the contact, eigen-
states can leak out from the central region.

The connection with the transmission probability T (from left to right) is given by
the so-called trace formula:

T (ε) = 4Tr
[

LGr†

D
RGr
D
]
, (C.33)

where we have introduced the the broadening 
L/R = i
2
[
�r

L/R −�r†
L/R

]
(which accounts

for the non-hermicity of the self-energy operators). We note that in the literature, it is
also usual to define these broadenings without the factor 1

2 (in such a case the factor 4
in the previous equation needs to be removed).

The expression for the electric current through the junction is (Meir & Wingreen
1992),

I = 2e
h

∫
4Tr

[

LGr†

D
RGr
D

] [
f(E − μL) − f(E − μR)

]
dE, (C.34)

the factor 2 on the right-hand side takes into account the spin degeneracy. Expres-
sion (Eq. (C.34)) is the Landauer formula (Landauer 1957) for a two-terminal system
where the transmission probability is written as a trace over the transmission matrix
[
LGr†

D
RGr
D].
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C.2 Self-Energy Corrections and Recursive Green’s Functions Techniques

Recursive Green’s functions techniques must be in your toolbox as they offer an efficient
way to compute the self-energy corrections due to the semi-infinite leads and the Green’s
functions for the sample region (Guinea et al. 1983; Lopez Sancho et al. 1985; Pastawski
et al. 1983). This is specially the case for tight-binding Hamiltonians where their sparse
nature can be fully exploited with these techniques.

In the previous section, we considered a tripartite system and expressed the GFs of
the central region in terms of an effective [m × m] Hamiltonian. The other two parts of
the system are taken into account exactly through the self-energy corrections. If these
two parts consisted, let’s say, of only one layer, then Eq. (C.31) together with Eq. (C.32)
would provide closed expressions for the self-energy corrections.

For the semi-infinite leads, further work is needed. One may take advantage of the fact
that the layers are coupled following a nearest-neighbor structure. Indeed, the Hamilto-
nian has a tridiagonal block-matrix form that can be exploited to iteratively incorpo-
rate the effect of the leads layer by layer following each time the procedure described
before for the tripartite system. This is schematically represented in Fig. C.2. The upper
line, step (0), represents the principal layers of the semi-infinite lead’s Hamiltonian
numerated from 0 on, H0 is the intralayer block-matrix Hamiltonian while H1(−1) is
the interlayer Hamiltonian connecting with the next layer to the left (right). Throughout
this section, an orthonormal basis will be considered, the case when the overlap matrix
is different from the identity matrix can be worked out easily provided that it preserves
the block tridiagonal structure.

At step ( j), layer j is eliminated, thereby renormalizing the adjacent block Hamilto-
nian matrices. Their updated values are denoted by H0

(j) (marked with shaded gray in
Fig. C.2), the effective Hamiltonian is written as:

Heff(n)
lead =

⎛⎜⎜⎜⎜⎝
H(j)

0 H(j)
1 0 · · ·

H(j)
−1 H(j)

0 H1 0 · · ·
0 H−1 H0 H1 0 · · ·

· · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎠ , (C.35)

where

H(j)
0 (E) = H(j−1)

0 + H(j−1)
−1 G0r

(j−1)(E)H(j−1)
1 , (C.36)

H(j)
±1(E) = H(j−1)

±1 G0r
(j−1)(E)H(j−1)

±1 , (C.37)

G0r
(j−1)(E) = ((E + iη)I − H(j−1)

0 (E))−1, (C.38)

H(0)
0 = H0, H(0)

±1 = H±1. (C.39)

By setting a small imaginary part η, after a large enough number of decimation steps
H(n)

0 (E) will converge and the associated surface GFs can be computed. This closes the
loop for the calculation of the self-energy corrections Eq. (C.31). For N decimation
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Figure C.3 An alternative and more efficient scheme for the calculation of the surface Green’s
functions. In contrast to the procedure shown in Fig. C.2, at each step, half of the layers is
eliminated.

steps, the computational cost will scale like N × n3 (since matrix inversions at each step
require n3 operations).

An alternative and much faster scheme (Lopez Sancho et al. 1985) that fully exploits
the translational invariance within the leads is represented in Fig. C.3. Here, at each step
instead of one, half of the layers are eliminated. The effective block-matrix Hamiltonian
are not uniform but distinguish the surface layer from the bulk ones, and after j iteration
steps it is given by

Heff(n)
lead =

⎛⎜⎜⎜⎜⎝
H(j)

0[s] H(j)
1 0 · · ·

H(j)
−1 H(j)

0 H(j)
1 0 · · ·

0 H(j)
−1 H(j)

0 H1 0 · · ·
· · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎠ , (C.40)

where

H(j)
0[s](E) = H(j−1)

0[s] +�+(E), (C.41)

H(j)
0 (E) = H(j−1)

0 +�+(E) +�−(E), (C.42)

H(j)
±1(E) = H(j−1)

±1 G0r
(j−1)(E)H(j−1)

±1 , (C.43)

�±(E) = H(j−1)
∓1 G0r

(j−1)(E)H(j−1)
± , (C.44)

G0r
(j−1)(E) = ((E + iη)I − H(j−1)

0 (E))−1, (C.45)

H(0)
0 = H(0)

0[s] = H0, H(0)
±1 = H±1. (C.46)

After N steps, the surface layer Hamiltonian H(N)
0[s] incorporates the effect of 2N − 1

neighboring layers (to be compared with N in the previous scheme). The schemes
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presented here can be used as well to compute the Green’s functions for the sample as
needed for the calculation of the conductance using the trace formula. In that case, one
must note that only GFs between the first and last layer in the device region are needed
because of the sparsity of the self-energies that only have nonvanishing elements on the
sites of the device that are connected to the leads as discussed in the paragraph after
Eq. (C.32). Furthermore, when a mode decomposition such as the one explained in
Section 5.2.2 is feasible, the reduction in the computational cost is enormous.

In cases where the layer dimensions are irregular across the sample or when addi-
tional leads are connected to it, the schemes above may fail or just be inefficient. A
generalization for such cases called knitting algorithm was presented in Kazymyrenko &
Waintal (2008) and associated resources are also available on the web (http://inac.cea.fr/
Pisp/xavier.waintal/KNIT.php). A more recent project for transport calculations called
KWANT (Groth et al. 2014) is also available (https://kwant-project.org/).

C.3 Dyson’s Equation and an Application to Treatment of Disordered Systems

The expansion of the Green’s function in terms of the eigenstates provides a very elegant
representation. The trouble is that most of the time, those eigenstates are unknown.
However, if the eigenstates of a given Hamiltonian H0 are known, then one expects
that if an extra term Vdis, describing for example the disorder strength, remains weak
enough to be treated as a perturbation, its effect can be captured (to a first approximation)
through the induced elastic transition between states of the otherwise clean system. The
exact GF for the system is

((E + iη)I − Ĥ0 − Vdis)Gr(E) = I, (C.47)

or

((E + iη)I − Ĥ0)Gr(E) = (I + Vdis)Gr(E), (C.48)

which can be recast in the so-called Dyson equation,

Gr(E) = Gr
0(E) + Gr

0(E)VdisGr(E), (C.49)

which is a recursive equation valid whatever the strength of the potential Vdis. Given
its form, the Dyson equation can be expanded to make explicit all multiple scattering
events as

Gr(ε) = Gr
0(E) + Gr

0(E)VdisGr
0(E) + Gr

0(E)VdisGr
0(E)VdisGr

0(E) + · · ·
= Gr

0(E)
(
I + VdisGr

0(E) + (VdisGr
0(E))2 + (VdisGr

0(ε))3 + · · ·
)

. (C.50)

In the presence of the disorder potential, the eigenstates of H0 acquire a finite life-
time due to elastic scattering. To compute such a new timescale, one can consider the
propagation probability amplitudes 〈k|Gr(E)|k′〉, given by

http://inac.cea.fr/Pisp/xavier.waintal/KNIT.php
https://kwant-project.org/
http://inac.cea.fr/Pisp/xavier.waintal/KNIT.php
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〈k|Gr(E)|k′〉 = Gr
0(E, k)δk,k′ + Gr

0(E, k)〈k|Vdis|k′〉Gr
0(E, k)

+
∫ ddq

(2π )d Gr
0(E, k)〈k|Vdis|q〉Gr

0(E, q)〈q|Vdis|k′〉Gr
0(E, k′) + · · · ,

(C.51)

where the expansion should be made to all orders of the multiple scattering events (see
Roche et al. (2006)). There are plenty of possible sources of disorder, such as a random
distribution (with density ni) of structural defects or charged impurities for instance,
described by a screened Coulomb potential of the type V(r − Ri) ∼ −e2/|r − Ri|2 ×
e−|r−Ri|/λ.

In practice, such a calculation for a particular disorder configuration is analytically
and numerically out of reach without further approximation. Fortunately, when dealing
with transport properties in disordered materials, one is first mainly interested by some
disorder-average property, and if existing, some universalities of transport features.
Transport coefficients can be generally computed from disorder-averaged Green
function elements such as 〈k|Gr(E)|k′〉dis, where an average over a disorder statistics is
performed. Disorder averaging turns out to restore translational invariance of the
computed quantity, an essential point to evaluate how averaged Green functions
are renormalized in the presence of a weak disorder (treated perturbatively). The
Dyson equation (also expressed using Feynman diagrams as illustrated in Fig. C.4) is
essentially rewritten as (we take k′ = k for simplicity without loss of generality)

〈k|Gr(E)|k〉dis = Gr
0(E, k) + Gr

0(E, k)�k(E)〈k|Gr(E)|k〉dis, (C.52)

where �k(E) encompasses the whole ensemble of so-called irreducible Feynman
diagrams of 〈k|Gr(E)|k〉dis, which cannot be decomposed into another subset of
diagrams (see Fig. C.5). Equation (C.52) is solved easily and gives

Figure C.4 Feynman diagrams representing probability amplitude 〈k|Gr(E)|k′〉dis up to the third
order of perturbation. Star symbols denote the averaged scattering impurity potential, the number
of stars giving the order of the perturbation. Filled circles pinpoint changes of the momentum
direction upon scattering.
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Figure C.5 Irreducible Feynman diagrams in the self-energy �k(ε) up to third order plus two
fourth-order diagrams for illustration.

〈k|Gr(E)|k〉dis = 1
E − εk −�k(E)

. (C.53)

The calculation of �k(E) can be achieved to a given order of perturbation theory,
which obviously depends on the disorder strength compared to the energy scale defining
the unperturbed structure (π−π hopping term in sp2 carbon structures). At the lowest
order of the so-called Born approximation, �k(E) = niV0 = ni

∫
drV(r) (the first

diagram in Fig. C.5), the average Green function is just modified by a constant shift
of all energy levels with no dynamical consequence. In contrast, at the first order of the
Born approximation (second diagram of Fig. C.5),�k(E) = ∑

q |V(k−q)|2 1
E−εq+iη (note

that V(k − q) = 1/�
∫

dre(k−q)·rV(r), which has real and imaginary parts, !m�k(E)
moves the poles of the Green function away from the real axis, and is related to the
finite lifetime of propagating states conveyed by the initial eigenstates of unperturbed
Hamiltonian). In the Born approximation, to the second order of perturbation theory,
�k(E) is derived as

�e�k(E) = niV(q = 0) +
∑

q

|V(q)|2
εk − εq

, (C.54)

!m�k(E) = −πni
∑

q
|V(k − q)|2δ(εk − εq) = h̄

τk
, (C.55)

which is also known as the Fermi golden rule (τk is the elastic relaxation time). Using
such an expression for the self-energy, the impurity average Green function in energy
becomes

〈k|Gr(E)|k〉dis = 1

E − (εk + �e�k(E)) + ih̄
τk

. (C.56)
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By Fourier-transforming such a Green function, one obtains the time- and space-
dependent propagators as

〈k|Gr(t)|k〉dis =
∫ dE

2π
e−i(E+iη)t

E − (εk + �e�k(E)) + ih̄
τk

= −iθ (t)e−iεkte−t/τk ,

〈k|Gr(r)|k〉dis = −πρ(E)
kF.r

eik|r|e−|r|/�kF ,

with �kF = vkτkF . The impurity scattering transforms the free electrons into quasipar-
ticles with a finite lifetime given by scattering time and a finite elastic mean free path.
When dealing with transport coefficients, one needs to evaluate the impurity-average of
two-particle Green functions. Indeed, the Kubo–Greenwood formula (in d dimensions)
for the quantum conductivity can be rewritten in terms of Green functions as (Kubo
1966)

σxx = e2
∫ ddk

(2π )d
dE
2π

v2
x(k)

f(E) − f(E + h̄ω)
h̄ω

Gr(k, E)Ga(k, E + h̄ω), (C.57)

developed on the basis of eigenstates of the unperturbed Hamiltonian. The perturbation
introduced by a weak disorder potential yields a finite dissipation, which guarantees a
finite conductivity. Similar to the one-particle Green function case, the calculation of
the propagator Gr(k, E)Ga(k, E+ h̄ω) is achieved using impurity-averaging and restored
translational invariance. The Dyson equation generalized to the two-particles Green
function is named the Bethe–Salpeter equation, which gives

〈Gr(k, E)Ga(k′, E + h̄ω)〉dis = δ(k, k′)〈Gr(k, E)〉dis〈Ga(k′, E + h̄ω)〉dis

+ 〈Gr(k, E)〉dis〈Ga(k, E + h̄ω)〉disC(k, k′,ω)〈Gr(k′, E)〉dis

× 〈Ga(k, E + h̄ω)〉dis. (C.58)

The first term is the classical (diffusion) term, which excludes all quantum interfer-
ences and obeys a classical diffusion equation. The second term contains all constructive
quantum interferences that survive to the impurity-averaging process, and which are
condensed in the so-called Cooperon term C(k, k′,ω), which contains all irreducible
Feynman diagrams describing such interferences. This is the foundation of weak local-
ization theory, and by developing the perturbation series for the two-particle Green
function, the general form of C(k, k′,ω) is derived and shown to obey the equation

C(k, k′,ω) = 〈Gr(k, E)〉disV(q = 0)〈Ga(k′, E + h̄ω)〉dis

+
∑

q
|V(q)|2〈Gr(k − q, E)〉dis〈Ga(k′ + q, E + h̄ω)〉dis|V(−q)|2 + · · ·

Assuming isotropic scattering, |V(q)|2 = C0 = h̄/(2πρ(E)τ ), and defining

� =
∑

q
〈Gr(k − q, E)〉dis〈Ga(k′ + q, E + h̄ω)〉dis, (C.59)
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the infinite series rewrites C(k, k′,ω) = C0 + C0�C0 + C0�C0�C0 +· · · , or C(k, k′,ω) =
C0(1 +�C0 + (�C0)2 + · · · ) = C0/(1 −�C0), which finally simplifies to

C(k, k′,ω) = h̄
2πρ(E)τ 2

1
D(k + k′) − iω

. (C.60)

It is clear that such a Cooperon term presents a divergence when k′ = −k, which
pinpoints a mathematical pole of the interferences when considering the backscattering
probability. The quantum correction of the conductivity is then given by

δσ (ω) = −2e2

π h̄
Dτ

∫ ddq
(2π )d

1
Dq2τ − iωτ

. (C.61)

The integral remains finite owing to the physical cutoff (elastic τel and coherence
times τϕ) that need to be introduced. In two dimensions, a straightforward integral
calculation yields

δσ (ω) = − e2

2π2h̄
ln
τϕ

τel
, (C.62)

which is the basis of the scaling analysis of the localization theory. Equation (C.62) is
used when applying the Kubo method in disordered graphene-based materials.

C.4 Computing Transport Properties within Ab Initio Simulations

In Section C.1, the computation of the Green’s functions for the central region is shown
to rely on a proper evaluation of the self-energies associated with the left and right
electrodes. In Section C.2, we had an overview of some of the most common recursive
Green functions methods as typically used for tight-binding Hamiltonians. Here, we
revisit this issue and then present the main steps involved in ab initio simulations of
quantum transport within a self-consistent Landauer–Büttiker scheme.

Since these self-energies have to be computed for each transverse k-vector, and at
several energies, a stable and efficient computational algorithm is crucial for the code
performance. The main computational cost in calculating the self-energies of the con-
tacts is related to evaluation of the retarded Green’s function of the isolated leads. Within
several packages (SMEAGOL, TRANSIESTA, etc.; see below), these Green’s functions
are constructed following a semi-analytical scheme (Rocha 2007) globally composed of
three steps. First, the Bloch states of the infinite system are derived. Second, these Bloch
states are used to build the retarded Green’s function corresponding to the infinite leads.
Then, appropriate boundary conditions are applied in order for the Green’s function to
vanish at the free surface of the semi-infinite leads. The three steps are described in more
detail below.

(1) Owing to the division of the leads into “principal layers” (PLs – see Fig. C.1),
the Hamiltonian and the overlap matrices are arranged in the trigonal form described in
Eq. (C.23). In this formulation, H0 and S0 account for all the interactions and overlap
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integrals inside one PL. H1 and S1 are the off-diagonal blocks that correspond to the
interactions and overlap integrals between the nearest-neighbor PLs. In order to simplify
the notation, the matrices Kα = Hα − ESα with (α = 0, 1, −1) are introduced. In the
case of an infinite periodic lead, the Bloch theorem applies along the transport direction
(z-axis) and the bulk electronic states can be mapped into Bloch states �z = eikzφk,
where z = n∗d is an integer multiple of the PL length (d) and k is the wave-vector along
the transport axis. Within this PL notation, the time-independent Schrödinger equation
of the isolated contact [H|ψ〉 = E S|ψ〉] assumes the following form:

K−1 Cα−1 + K0 Cα + K1 Cα+1 = 0, (C.63)

where Cm is a vector of length n, and α labels the successive PLs. The different K
matrices are thus defined as

K0 = H0 − ES0,

K1 = H1 − ES1,

K−1 = H−1 − ES−1. (C.64)

Note that, for some applications, it is also common to write Eq. (C.63) in the so-called
transfer-matrix form (Sanvito et al. 1999),(

− (K1)
−1 K0 − (K1)

−1 K−1

1 0

)
.

(
Cα

Cα+1

)
= T .

(
Cα

Cα+1

)
, (C.65)

=
(

Cα−1

Cα

)
, (C.66)

where T is the transfer matrix.
Since deep inside the contacts, the leads are periodic along the transport direction,

the electronic scattering states of the system have to obey the asymptotic behavior of
propagating Bloch states. The Schrödinger equation (Eq. C.63) inside the contact can
therefore be reexpressed into the following eigenvalue problem:(

− (K1)
−1 K0 − (K1)

−1 K−1

1 0

)
.

(
Cα

Cα+1

)
= eikd

(
Cα

Cα+1

)
, (C.67)

where d is the length of the PLs along the direction of transport. Solving this equation
for both leads yields two sets of 2n complex wave-vectors (kL/R

j : j = 1, . . . , 2m) and
their associated bulk complex state-vectors (φL/R

kj
). These propagating (and decaying)

Bloch states are the basis functions on which the transport problem is developed. For
convenience, the wave-vectors are ordered such that the first m states are incoming to
the scattering region, and the other m outgoing from the scattering region. Finally, the
open boundary conditions of the original transport problem can be described in terms of



C.4 Computing Transport Properties within Ab Initio Simulations 395

the bulk states φL/R
kj

by imposing the proper asymptotic form on the stationary scattering
states of H:

�L
kj

(r) =
{
φL

kj
+ ∑2m

i=m+1 rij φ
L
ki

, rz ∈ L,∑2m
i=m+1 tij φR

ki
, rz ∈ R,

(C.68)

where tij and rij are the transmission and the reflection amplitudes, respectively. Here,
�L

kj
are the scattering states that are incident from the left contact and are characterized

by kj in an asymptotic sense, i.e., these originate from the bulk states φkj . A similar
expression is easily derived for the scattering states �R

kj
that are incident from the right

contact. The transmission and reflection amplitudes found here are the usual quantities
of the scattering theory and can be computed using transfer matrix techniques (Sanvito
et al. 1999).

As mentioned earlier, the Schrödinger equation (C.63) can be conveniently mapped
into an eigenvalue calculation with the aid of the transfer matrix (Sanvito et al. 1999):

T =
(

−(K1)−1K0 −(K1)−1K−1

1 0

)
. (C.69)

The eigenvalues of T are the 2n roots eikld that define the complex wave-vectors of
the Bloch states at energy E. The upper part (i.e., the n first elements) of the 2n
eigenvectors are the expansion components of the Bloch electronic functions over
the localized basis functions. In order to simplify the discussion, the eigenvectors are
ordered such that the electronic states with indices ranging from 1 to n correspond to
Bloch waves propagating/decaying in the right direction. On the contrary, the indices
ranging from n + 1 to 2n are associated with Bloch waves propagating/decaying in the
left direction. Finally, it is worth mentioning that the solution of the eigenvalue problem
(Eq. (C.69)) assumes that K1 is invertible. Moreover, the stability of the algorithm
requires that K1 is not ill-defined. Therefore, a regularization procedure for K1 is highly
desirable, though this point is crucial for the accuracy and stability of the code (Rocha
2007; Sanvito et al. 1999).

(2) In order to construct the retarded Green’s function of the infinite leads, one notes
that the Green’s function (Gzz′ ) is a simple wave-function for all z ≤ z′. Since it has to
be retarded, and continuous at z = z′, one may assume the following form:

Gzz′ =
{ ∑n

l=1 φkle
ikl(z−z′) αkl , z ≥ z′,∑2n

l=n+1 φkle
ikl(z−z′) αkl , z ≤ z′,

(C.70)

where the αkl coefficients have to be determined. Folding these expressions into the
Schrödinger equation (C.63), the coefficients present the following form:

αkl = φ̃†
kl

V−1, (C.71)
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with

V = (H†
1 − ES†

1)

⎡⎣ n∑
l=1

φkle
ikl(z−z′)φ̃†

kl
−

2n∑
l=n+1

φkle
ikl(z−z′)φ̃†

kl

⎤⎦ , (C.72)

where the set of φ̃†
kl

is made from the duals of φkl (i.e., φ̃†
kl
φkm = δlm).

(3) Finally, the Green’s function of the semi-infinite leads can be obtained from the
Green’s function of the infinite leads by subtracting from Gzz′ a linear combination of
eigenvectors that ensure the annihilation of the Green’s function at the free surface.
Considering, for example, the left lead which extends from z = −∞ to z = z0 − 1,
subtraction of the term

�z(z′ − z0) =
n∑

l=1

2n∑
h=n+1

(
φkheikl(z−z0)φ̃†

kl

)
.
(
φkle

ikl(z0−z′)φ̃†
kl

)
V−1 (C.73)

from Gzz′ gives a new retarded Green’s function, which vanishes at the principal layer
z = z0 taken as the surface. In this way, the retarded Green’s functions of the semi-
infinite leads have been computed, and all the ingredients are gathered for calculation
of the self-energies.

Finally, note that the derivation of the self-energies proposed above assumes that
the entire leads are undisturbed by the central region. This means that the interfaces at
which the surface Green’s functions are computed have to be sufficiently far away from
the scattering region in order for the scattering potential to be zero into the leads. Upon
this assumption, the lead self-energies have to be computed only once and remain valid
throughout the self-consistent determination of the scattering potential.

Before summarizing, the self-consistent procedure used for calculation of the out-
of-equilibrium scattering potential, calculation of the out-of-equilibrium density matrix
should be briefly mentioned:

ρ = 1
2π

∫ ∞

−∞
[fL(E − μL)AL(E) + fR(E − μR)AR(E)] dE, (C.74)

where f(E) is the equilibrium Fermi electronic distribution, and μL/R are the chemical
potentials inside the left and right leads, respectively. It is worth noting that the integra-
tion in Eq. (C.74) is not a trivial computational task since the integral is unbound and
the spectral functions AL/R are not analytical. However, the computational cost of the
integration can be significantly reduced by rewriting the integral in Eq. (C.74) as the
sum of two contributions, ρequ and ρ�:

ρ = 1
2π

∫ ∞

−∞

[
f(E − μL)AL(E) + f(E − μR)AR(E)

]
+
[
f(E − μL)AR(E) − f(E − μL)AR(E)

]
dE

= 1
2π

∫ ∞

−∞
ADf(E − μL) dE + 1

2π

∫ ∞

−∞
AR(E)

[
f(E − μR) − f(E − μL)

]
dE

= ρequ + ρ�. (C.75)
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Figure C.6 The closed contour (CIm + CRe) used to compute the equilibrium component of the
electronic density matrix. Filled dots account for the poles of the Fermi distribution function
enclosed in the complex integration part.

The first term (ρequ) accounts for the “equilibrium” component of the electronic density.
Indeed, it corresponds to what should be obtained if both leads have the same chemical
potential (μL = μR). All poles of the spectral function AD are lying on the real axis, and
the function is analytical elsewhere. Therefore, though unbound, the integration of AD
can be performed in the complex plane using contour integral techniques. The contour
used conventionally is depicted in Fig. C.6, where Ebottom is chosen below the deepest
valence electronic state. For finite temperatures, the contour encloses some poles of the
Fermi distribution function located at {zα = i(2α + 1)πkBT, with α = 1, . . . , nα}.
Finally, the integral is computed as

1
2π

∫ ∞

−∞
AD(E)fL(E − μL) dE = −

∫
CIm

AD(z)fL(z − μL) dz − 2πkBT
nα∑
α=1

AD(zα).

(C.76)

The second term in Eq. (C.76) accounts for the corrections induced by the out-of-
equilibrium conditions. The spectral functions AL/R are not analytical and the integration
cannot be obtained using complex contours techniques. However, the integration is
bounded by the two Fermi distribution functions and can be evaluated on a dense energy
grid. Note that the formula (C.76) does not account for the contribution to the density
of the electronic states that are localized within the scattering device and do not couple
with the leads. In the presence of such states, (C.76) is not valid anymore and additional
information has to be supplied.

Finally, the self-consistent procedure related to calculation of the out-of-equilibrium
electronic density and electric current is described, as implemented in several ab initio
transport packages (SMEAGOL, TRANSIESTA, etc.; see below). The main feature of the
Green’s function DFT-based schemes is to extend the scope of the standard DFT codes
based on localized basis sets, by calculating the out-of-equilibrium density matrix. As
such, though the out-of-equilibrium electronic density does not minimize the density
functional, these schemes rely on the Kohn–Sham Hamiltonian as the single-particle
Hamiltonian. Therefore, the self-consistency is very similar to the one encountered in
standard DFT codes. The self-consistent procedure can be summarized in the diagram
in Fig. C.7.
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Figure C.7 Self-consistent cycle for computation of the out-of-equilibrium density matrix and
electric current. Dark gray frame (top left) corresponds to the preliminary DFT calculation
aiming at producing a good initial guess for the out-of-equilibrium electronic density. Light gray
frames (top right) describe the preliminary calculation of the self-energies of the leads. Medium
gray frames (bottom) correspond to the main step of the actual self-consistent cycle.

In many situations, the nonequilibrium condition brings only small corrections to the
ground-state electronic density. Therefore, it is good practice to use a DFT-computed
ground-state electronic density as the guess input density for the nonequilibrium
calculations. Then, the latter proceed in two steps. First, the electronic structure
corresponding to the infinite leads is computed, in order for the contact self-energies
to be built over the proper range of energies (i.e., the full bandwidth of the material).
This step has to be performed only once, since the leads are assumed to remain in their
equilibrium states. Second, the out-of-equilibrium density matrix is computed in a self-
consistent way. The self-consistent cycle is accomplished by determining the Hartree
(electrostatic) potential as a solution of Poisson’s equation with appropriate boundary
conditions. Though Poisson’s equation can be solved in real space, it is common to
use fast-Fourier transform algorithms that are computationally efficient. Actually, the
electrostatic potential is calculated for a virtual periodic system obtained by repeating
the effective Hamiltonian Heff

D (E) along the transport direction. Besides, a saw-like
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term, whose drop is identical to the bias applied, is added to the Hartree potential in
order to recover the correct voltage drop across the device. Finally, when convergence
is reached, the electric current is computed as a by-product of the retarded Green’s
function.

The Green’s function formalism outlined in the present appendix has been imple-
mented in several simulation codes. In the following, we list some of these codes and
their main features as specified by their developers:

1. SMEAGOL (Rocha et al. 2006) has been designed to calculate transport properties
of atomic scale devices. SMEAGOL is an ab initio electronic transport code based
on a combination of density functional theory (DFT) and nonequilibrium Green’s
function transport methods (NEGF). The Kohn–Sham equations for an open non-
periodic system are solved in the NEGF scheme, and the current is then extracted
from the Landauer formula. The code has been designed to describe two terminal
nanoscale devices for which the potential drop must be calculated accurately. It
has been specifically created to deal also with magnetic systems, since the code
is fully spin-polarized and includes the possibility of performing noncollinear spin
calculations (Rocha et al. 2005). More details are available at: www.smeagol.tcd.ie.

2. TRANSIESTA (Brandbyge et al. 2002): the present SIESTA release (Soler et al. 2002)
includes the possibility of performing calculations of electronic transport proper-
ties using the TRANSIESTA method, which is a procedure to solve the electronic
structure of an open system formed by a finite structure sandwiched between two
semi-infinite metallic leads. A finite bias can be applied between both leads, to
drive a finite current. In practical terms, calculations using TRANSIESTA involve the
solution of the electronic density from the DFT Hamiltonian using Green’s functions
techniques, instead of the usual diagonalization procedure. Therefore, TRANSIESTA
calculations involve a SIESTA run in which a set of routines is invoked to solve the
Green’s functions and the charge density for the open system. These routines are
packed in a set of modules, referred to as the “TRANSIESTA module.” More details
are available at: www.icmab.es/dmmis/leem/siesta/.

3. WANT (Calzolari et al. 2004) is an open-source, GNU General Public License suite
of codes that provides an integrated approach for the study of coherent electronic
transport in nanostructures. The core methodology combines state-of-the-art DFT,
plane-wave, norm-conserving, pseudopotential calculations with a Green’s function
method based on the Landauer formalism to describe quantum conductance. The
essential connection between the two, and a crucial step in the calculation, is use of
the maximally localized Wannier function representation to introduce naturally the
ground-state electronic structure into the lattice Green’s function approach at the
basis of the evaluation of the quantum conductance. Moreover, knowledge of the
Wannier functions of the system allows direct linking between the electronic trans-
port properties of the device and the nature of the chemical bonds, providing insight
into the mechanisms that govern electron flow at the nanoscale. More details are
available at: www.wannier-transport.org.

www.smeagol.tcd.ie
www.icmab.es/dmmis/leem/siesta/
http://www.wannier-transport.org
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4. ONETEP (Skylaris et al. 2005) (order-N electronic total energy package) is a linear-
scaling code for quantum-mechanical calculations based on DFT. ONETEP uses
a reformulation of the plane-wave pseudopotential method, which exploits the
electronic localization that is inherent in systems with a nonvanishing bandgap.
Direct optimization of strictly localized quantities expressed in terms of a delo-
calized plane-wave basis allows division of the computational effort among
many processors to allow calculations to be performed efficiently on parallel
supercomputers. More details are available at: www2.tcm.phy.cam.ac.uk/onetep/.

www2.tcm.phy.cam.ac.uk/onetep/


Appendix D Recursion Methods for
Computing the Density of States
(DOS) and Wavepacket Dynamics

The Lanczos tridiagonalization method orthogonally transforms a real symmetric matrix
A to symmetric tridiagonal form. Traditionally, this very simple algorithm is suitable
when one needs only a few of the lower eigenvalues and the corresponding eigenvectors
of very large Hermitian matrices, whose full diagonalization is technically impossible.
We introduce here the basic ingredients of the recursion method based on the Lanczos
tridiagonalization, and explain how calculation of the DOS as well as the dynamics of
wavepackets (and related conductivity) can be performed efficiently.

D.1 Lanczos Method for the Density of States

The Lanczos method is a highly efficient recursive approach for calculation of the
electronic structure (Lanczos 1950). This method, first developed by Haydock et al.
(1972, 1975), is based on an eigenvalue approach due to Lanczos. It relies on compu-
tation of Green functions matrix elements by continued fraction expansion, which can
be implemented either in real or reciprocal space. These techniques are particularly
well suited for treating disorder and defect-related problems, and were successfully
implemented to tackle impurity-level calculations in semiconductors using a tight-
binding approximation (Lohrmann 1989), and for electronic structure investigations
for amorphous semiconductors, transition metals, and metallic glasses based on linear-
muffin-tin orbitals (Bose et al. 1988). Recent developments include the exploration of
a degenerated orbital extended Hubbard Hamiltonian of system size up to 10 millions
atoms, with the Krylov subspace method (Hoshi et al. 2012; Takayama et al. 2004).

The recursion method is said to be of order N since the computational cost scales
linearly with the total number of atoms defining the (disordered) system (Grosso &
Parravicini 2006). The key idea of the recursion method is to construct iteratively a
Lanczos (or Krylov) basis, which tridiagonalizes the Hamiltonian (initially defined in a
localized basis set), and then to compute diagonal matrix elements of the Green function
(to access the density of states) by using the continued fraction expansion method.

The recursion method is thus a basis transformation, which turns out to be very
suitable for dealing with tight-binding Hamiltonians for which strong disorder limits
the use of diagonalization methods and perturbative treatments. The Lanczos method
allows simulation of electronic (and transport as discussed in Section D.2) behavior of
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disordered systems up to the scale of 100 millions of orbitals using high-performance
computing resources. The limit is actually not really the total number of atoms, but
rather the necessary computational time to access the transport regimes of interest. As
shown below, a very efficient computational trick is to compute the trace of any operator
related to electronic and transport properties on a reduced number of random phase
states (NRP) instead of a fully complete and orthogonal basis:

Tr
[
δ(E − Ĥ)

] =
M∑

J=1
〈ϕJ|δ(E − Ĥ)|ϕJ〉 = M

NRP
×

NRP∑
i=1

〈ϕi
RP|δ(E − Ĥ)|ϕi

RP〉, (D.1)

where M is the dimension of Ĥ in the TB basis and |ϕRP〉 is defined by

|ϕRP〉 = 1√
M

M∑
J=1

ei2πθJ |ϕJ〉, (D.2)

with θJ, a random number between 0 and 1. This state |ϕRP〉 has a random phase on
each orbital of the TB basis. Numerically, with only about 10 of such states, a high-
energy resolution can be obtained, even though the starting dimension M can be as high
as several tens or hundreds of millions of orbitals. Concerning the Lanczos method, the
basic algorithm is described as follows:

• The first step starts with |ψ1〉 = |ϕRP〉:

a1 = 〈ψ1|Ĥ|ψ1〉, (D.3)

|ψ̃2〉 = Ĥ|ψ1〉 − a1|ψ1〉, (D.4)

b1 = ‖|ψ̃2〉‖ =
√

〈ψ̃2|ψ̃2〉, (D.5)

|ψ2〉 = 1
b1

|ψ̃2〉. (D.6)

• All other recursion steps (∀n ≥ 2) are identical and given through

an = 〈ψn|Ĥ|ψn〉, (D.7)

|ψ̃n+1〉 = Ĥ|ψn〉 − an|ψn〉 − bn−1|ψn−1〉, (D.8)

bn =
√

〈ψ̃n+1|ψ̃n+1〉, (D.9)

|ψn+1〉 = 1
bn

|ψ̃n+1〉. (D.10)

The coefficients an and bn are named recursion coefficients and are respectively,
the diagonal and off-diagonal of the matrix representation of Ĥ in the Lanczos basis
(that we write ˜̂H ):
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˜̂H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b2

b2
. . . . . .
. . . . . . bN

bN aN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.11)

Simple linear algebra shows that

〈ϕRP|δ(E − Ĥ)|ϕRP〉 = 〈ψ1|δ(E − Ĥ)|ψ1〉

= lim
η �→0

− 1
π

!m

(
〈ψ1| 1

E + iη − Ĥ
|ψ1〉

)
,

while

〈ψ1| 1

E + iη − ˜̂H
|ψ1〉 = 1

E + iη − a1 − b2
1

E + iη − a2 − b2
2

E + iη − a3 − b2
3

. . .
(D.12)

which is termed a continued fraction. To compute Eq. (D.12), however, in practice
we must introduce a cutoff, or termination (named TERM), typically after N ∼ 1000
recursion steps. Then 〈ψ1|(E + iη − ˜̂H )−1|ψ1〉 becomes

1

E + iη − a1 − b2
1

· · · · · ·
. . .

· · · · · ·
. . .

E + iη − aN−1 − b2
N−1

E + iη − aN − b2
N × TERM

Several types of terminations can be employed depending on the spectrum of
the system under study (and mainly depending on the number of gaps and energy
resolution that is needed). The energy resolution on the computed density of states
depends on the total number of recursion steps and the stability of the orthogonality
of the constructed Lanczos basis set. Additionally, to evaluate δ(E − Ĥ), a Lorentzian
function (E + iη − Ĥ)−1 is usually employed, although it is not suitable for a one-
dimensional system because of the large number of van Hove singularities (for instance,
for studying carbon nanotubes or semiconducting nanowires (Persson et al. 2008)).
Another method, the kernel polynomials method (KPM) can cure these problems, and
we refer to Weisse et al. (2006) and to the Ph.D. thesis of Aurélien Lherbier (2008) for
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further details, and applications to complex materials (such as semiconducting silicon
nanowires).

D.1.1 Termination of the Continued Fraction

Let us now show how one can concretely compute the diagonal matrix element from
the continued fraction. The general form of the tridiagonalized Hamiltonian after the
Lanczos algorithm reads

˜̂H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b2

b2
. . . . . .
. . . . . . bN

bN aN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.13)

The total density of states can then be computed as a continued fraction. In the tight-
binding basis, one has

〈ψRP|δ(E − Ĥ)|ψRP〉 = lim
η→0

− 1
π

Im

(
〈ψRP| 1

E + iη − Ĥ
|ψRP〉

)
, (D.14)

while in the Lanczos basis one gets (with |ψRP〉 becoming |ψ1〉, the seed vector of the
Lanczos procedure),

〈ψ1|δ(E − ˜̂H )|ψ1〉 = lim
η→0

− 1
π

Im
1

E + iη − a1 − b2
1

E + iη − a2 − b2
2

E + iη − a3 − b2
3

. . .
(D.15)

We name G1 the continued fraction and define Gn as

G1 = 1

E + iη − a1 − b2
1

E + iη − a2 − b2
2

E + iη − a3 − b2
3

. . .

, (D.16)

G1 = 1
E + iη − a1 − b2

1G2
, (D.17)

Gn = 1
E + iη − an − b2

nGn+1
. (D.18)
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Since we compute a finite number of recursion coefficients, the subspace of Lanczos
is of finite dimension (N), so it is crucial to terminate the continued fraction by an appro-
priate choice of the last {an=N, bn=N} elements. Let us rewrite the continued fraction as

G1 = 1

E + iη − a1 − b2
1

E + iη − a2 − b2
2

E + iη − a3 − b2
3

. . .
E + iη − aN − b2

NGN+1

,

(D.19)

where GN+1 denotes such a termination. The simplest case is when all the spectrum
is contained in a finite bandwidth [a − 2b; a + 2b], a is the spectrum center and 4b its
bandwidth. Recursion coefficients an and bn oscillate around their average value a and b,
and the damping is usually fast after a few hundreds of recursion steps. The termination
then satisfies

GN+1 = 1
E + iη − a − b2GN+2

= 1
E + iη − a − b2GN+1

, (D.20)

from which a polynomial of second degree is found,

−(b2)G2
N+1 + (E + iη − a)GN+1 − 1 = 0, (D.21)

and straightforwardly solved

� = (E + iη − a)2 − (2b)2, (D.22)

GN+1 = (E + iη − a) ∓ i
√−�

2b2 , (D.23)

GN+1 = (E + iη − a) − i
√

(2b)2 − (E + iη − a)2

2b2 . (D.24)

Figure D.1 shows b(n) for the case of pristine graphene. The value of bn is seen to
quickly tend toward b ∼ 4 eV. As seen in Fig. D.1, a closed form of the termination term
can be typically introduced after a few hundreds of recursion steps (N ∼ 100−1000)
depending on the spectrum complexity.

D.2 Wavepacket Propagation Method

We have shown here how to apply the Lanczos method to compute the wavepacket
spreading in an arbitrary complex disordered material. This is the central technical
ingredient of the (real space and order N) computational implementation of the Kubo–
Greenwood method used throughout this book. It has been pioneered by Roche and
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Figure D.1 Recursion coefficient bn for pristine graphene with bandwith ∼[−8; 8] eV.

Mayou for studying quantum transport in quasicrystals (Roche 1996, 1999; Roche &
Mayou 1997), and then further improved for achieving higher energy resolution and
optimized computational cost (Lherbier 2008; Triozon 2002). The most recent review
of its applicability to graphene -related systems has been provided in Roche et al. (2012).

The main quantity to compute is the mean square spread (�X 2(E, t)) introduced in
Section 4.4.4. First, starting from Eq. (4.58), we have

�X 2(E, t) = 〈∣∣X̂(t) − X̂(0)
∣∣2〉E, (D.25)

with X̂(t) the position operator in the Heisenberg representation. In Section 4.4, the
average of any operator Eq. (4.46) was introduced, which we can rewrite as

�X 2(E, t) = Tr
[
δ(E − Ĥ)

∣∣X̂(t) − X̂(0)
∣∣2]

Tr
[
δ(E − Ĥ)

] , (D.26)

�X 2(E, t) = Tr
[
(X̂(t) − X̂(0))†δ(E − Ĥ)(X̂(t) − X̂(0))

]
Tr
[
δ(E − Ĥ)

] . (D.27)

We then use several identities and definitions to rewrite (X̂(t) − X̂(0)):

X̂(t) = e
iĤt

h̄ X̂(0)e
−iĤt

h̄ , (D.28)

Û(t) = e
−iĤt

h̄ , (D.29)
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where Û(t) is the evolution operator,

X̂(t) − X̂(0) = Û†(t)X̂Û(t) − X̂, (D.30)

X̂(t) − X̂(0) = Û†(t)X̂Û(t) − Û†(t)Û(t)X̂, (D.31)

X̂(t) − X̂(0) = Û†(t)[X̂, Û(t)], (D.32)

using Û†(t)Û(t) = I, and [· · · , · · · ] the commutator. Then by replacing these quantities
in Eq. (D.27), one gets

�X 2(E, t) = Tr
[
[X̂, Û(t)]†Û(t)δ(E − Ĥ)Û†(t)[X̂, Û(t)]

]
Tr
[
δ(E − Ĥ)

] , (D.33)

�X 2(E, t) = Tr
[
[X̂, Û(t)]†δ(E − Ĥ)[X̂, Û(t)]

]
Tr
[
δ(E − Ĥ)

] . (D.34)

Using the random phase states as initial states, we find

�X 2(E, t) = 〈ϕRP|[X̂, Û(t)]†δ(E − Ĥ)[X̂, Û(t)]|ϕRP〉
〈ϕRP|δ(E − Ĥ)|ϕRP〉

, (D.35)

�X 2(E, t) = 〈ϕ′
RP(t)|δ(E − Ĥ)|ϕ′

RP(t)〉
〈ϕRP|δ(E − Ĥ)|ϕRP〉

. (D.36)

The techniques used for the computation of the density of states can thus also be
employed for the computation of �X 2(E, t), provided that one first evaluates |ϕ′

RP(t)〉.
The evaluation of |ϕ′

RP(t)〉 needs Û(t)|ϕRP〉 together with [X̂, Ĥ]. Let us start by explain-
ing the calculation of [X̂, Ĥ]. By definition [X̂, Ĥ] = X̂Ĥ − ĤX̂, given that X̂ is
diagonal:

[X̂, Ĥ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . . Hij(Xi − Xj)

. . .

Hij(Xi − Xj)
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D.37)

where (Xi − Xj) is the distance between orbitals |ϕi〉 and |ϕj〉. We now focus on the cal-
culation of Û(t)|ϕRP〉 = |ϕRP(t)〉. The time evolution of the random phase wavepacket
is followed through use of the evolution operator Û(t), which can be efficiently approx-
imated using a basis of orthogonal polynomials, with the Chebyshev polynomials as the
most computationally efficient choice. For a given time step (T), we can write such a
decomposition as

Û(T) = e
−iĤT

h̄ =
∞∑

n=0
cn(T)Qn(Ĥ), (D.38)
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where Qn is a Chebyshev polynomial of order n. The Chebyshev polynomials (Tn)
usually act on the interval [−1 : 1], whereas the Hamiltonians considered here have
larger bandwidths [−1 : 1] so some rescaling of the polynomials needs to be performed
to use their recurrent properties. Some useful equations are

Tn(cos(θ )) = cos(nθ ), (D.39)

Tn(Ẽ) = n
2

Pi( n
2 )∑

k=0

(−1)k (n − k − 1)!
k! (n − 2k)!

(2Ẽ)n−2k (∀n �= 0), (D.40)

where Pi denotes the integer part and Ẽ ∈ [−1 : 1]. Then

T0(Ẽ) = 1, (D.41)

T1(Ẽ) = Ẽ, (D.42)

T2(Ẽ) = 2Ẽ2 − 1, (D.43)

...

additionally for n ≥ 1,

Tn+1(Ẽ) = 2Ẽ Tn(Ẽ) − Tn−1(Ẽ), (D.44)

while for the rescaled Chebyshev polynomials (∀E ∈ [a − 2b : a + 2b]) we get

Qn(E) =
√

2Tn

(
E − a

2b

)
(∀n ≥ 1), (D.45)

Q0(E) = 1, (D.46)

Q1(E) =
√

2
E − a

2b
, (D.47)

Q2(E) = 2
√

2
(

E − a
2b

)2
−

√
2, (D.48)

...

with the recurrence relation n ≥ 2,

Qn+1(E) = 2
(

E − a
2b

)
Qn(E) − Qn−1(E). (D.49)

Once the Qn polynomials are well defined, one can compute the related cn(T)
coefficients:

cn(T) =
∫

dE pQ(E)Qn(E)e
−iET

h̄ , (D.50)

or pQ(E) = 1

2b
√

1 − (E−a
2b

)2
, (D.51)
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introducing the weight pQ(E) to get an orthonormalized basis. Practically, cn(T) are
computed starting from a fictitious tridiagonal Hamiltonian (Ĥf), where all diagonal
elements are identical and taken as a, while all identical off-diagonal elements are
b except the first one, being

√
2b, so that

Ĥf =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
√

2b√
2b a b

b
. . .

. . . b
b a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.52)

Using this fictitious Hamiltonian in Eq. (D.50),

cn(T) =
∫

dE pQ(E)Qn(Ĥf)e
−iET

h̄ , (D.53)

cn(T) =
∫

dE 〈0|δ(E − Ĥf)|0〉Qn(Ĥf)e
−iET

h̄ , (D.54)

cn(T) =
∫

dE 〈n|δ(E − Ĥf)|0〉e −iET
h̄ , (D.55)

cn(T) = 〈n|e
−iĤfT

h̄ |0〉, (D.56)

cn(T) =
N∑

i=0
〈n|Ei〉e

−iEiT
h̄ 〈Ei|0〉, (D.57)

where we have used Qn(Ĥf)|0〉 = |n〉 and where Ei and |Ei〉 are the eigenvalues and
eigenvectors of Ĥf. We can now calculate |ϕRP(T)〉:

|ϕRP(T)〉 = Û(T)|ϕRP〉, (D.58)

|ϕRP(T)〉 �
N∑

n=0
cn(T)Qn(Ĥ)|ϕRP〉 =

N∑
n=0

cn(T)|αn〉, (D.59)

where |αn〉 = Qn(Ĥ)|ϕRP〉. With the definitions introduced in Eqs. (D.46–D.48) and the
recurrence relation Eq. (D.49), we obtain

|α0〉 = |ϕRP〉, (D.60)

|α1〉 =
(
Ĥ − a√

2b

)
|α0〉, (D.61)

|α2〉 =
(
Ĥ − a

b

)
|α1〉 −

√
2|α0〉, (D.62)

|αn+1〉 =
(
Ĥ − a

b

)
|αn〉 − |αn−1〉 (∀n ≥ 2). (D.63)
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Following the same reasoning as for |ϕRP(T)〉, |ϕ′
RP(T)〉 can be evaluated first, and

written as

|ϕ′
RP(T)〉 = [X̂, Û(T)]|ϕRP〉, (D.64)

|ϕ′
RP(T)〉 �

N∑
n=0

cn(T)[X̂, Qn(Ĥ)]|ϕRP〉 =
N∑

n=0
cn(T)|βn〉, (D.65)

with |βn〉 = [X̂, Qn(Ĥ)]|ϕRP〉. Using Eq. (D.49), we deduce

[X̂, Qn+1(Ĥ)] =
[

X̂,

(
Ĥ − a

b

)
Qn(Ĥ)

]
− [X̂, Qn−1(Ĥ)], (D.66)

which is rewritten using [A, BC] = B[A, C] + [A, B]C,

[X̂, Qn+1(Ĥ)] =
(
Ĥ − a

b

)
[X̂, Qn(Ĥ)] − [X̂, Qn−1(Ĥ)] +

[
X̂,

(
Ĥ − a

b

)]
Qn(Ĥ).

(D.67)

Multiplying the right term by |ϕRP〉 using |βn〉 and |αn〉 we get

|βn+1〉 =
(
Ĥ − a

b

)
|βn〉 − |βn−1〉 +

[
X̂,

(
Ĥ − a

b

)]
|αn〉. (D.68)

The commutator is rewritten as [X̂,
(
Ĥ−a

b

)
],[

X̂,

(
Ĥ − a

b

)]
= 1

b

[
X̂,
(
Ĥ − a

)]
= 1

b

(
X̂
(
Ĥ − a

) − (
Ĥ − a

)
X̂
)

= 1
b

(
X̂Ĥ − ĤX̂ + a

(
X̂ − X̂

)) = 1
b
[
X̂, Ĥ

]
. (D.69)

So we finally obtain the recurrence relation for |βn〉:

|βn+1〉 =
(
Ĥ − a

b

)
|βn〉 − |βn−1〉 + 1

b
[
X̂, Ĥ

]|αn〉. (D.70)

One notes that computation of |βn〉 requires evaluation of |αn〉 and the commutator
[X̂, Ĥ]. Using such a real-space approach, simulations of charge mobility in disordered
graphene samples can be achieved for systems with several tens of millions of atomic
orbitals (typical graphene area of 1 μm2).

Note that a similar methodology has also been developed for following phonon prop-
agation in the harmonic approximation and computing the associated thermal conduc-
tivity of material of any complexity (Li et al. 2010, 2011; Sevincli et al. 2011).
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D.3 Lanczos Method for Computing Off-Diagonal Green’s Functions

One inconvenient feature of the Lanczos approach presented so far is its restriction to
calculation of diagonal Green function matrix elements. Although some generalization
is possible, as recently proposed by Ortmann and Roche (2013), for calculation of the
Hall Kubo conductivity, the situation of transport through open systems (heterojunc-
tions) becomes more problematic.

A similar order-N method for calculation of Landauer–Büttiker conductance has been
achieved, however, by Triozon and Roche (2005). This formula has the advantages of
being general, and independent of the dimensionality of the system and its eventual
geometrical complications.

To implement the recursion approach in the Landauer framework (Imry & Landauer
1999), a generalization of the Lanczos approach to nonsymmetric matrices is necessary.
The Green’s function is obtained from an effective Hamiltonian, H = H0 + �L +
�R (with H0 the Hamiltonian of the system connected to electrodes left (L) and right
(R)), which is nonsymmetric, because of the presence of complex self-energy matrix
elements (�L,R) describing the finite system coupled to the electrodes. This requires
us to implement a so-called bi-orthogonalization process as summarized below. The
basic principle of the algorithm is to start from the normalized vector |ψ〉 and from the
non-Hermitian matrix H from which a bi-orthogonal basis {|ψn〉, 〈φn|} is constructed
following

|ψn+1〉 = H|ψn〉 − an+1|ψn〉 − bn|ψn−1〉, (D.71)

〈φn+1| = 〈φn|H − 〈φn|an+1 − 〈φn−1|bn, (D.72)

with the initial conditions |ψ−1〉 = |φ−1〉 = 0, |ψ0〉 = |φ0〉 = |ψ〉 and the bi-
orthogonality condition 〈φn|ψm〉 = 0 if n �= m. This last condition is equivalent to
the following relations for an and bn:

an = 〈φn|H|ψn〉
〈φn|ψn〉 , (D.73)

bn = 〈φn−1|H|ψn〉
〈φn−1|ψn−1〉 = 〈φn|ψn〉

〈φn−1|ψn−1〉 . (D.74)

The four Eqs. (D.71–D.74) allow a recursive determination of the bi-orthogonal basis
and of the coefficients an, bn. Note that in “ket” notation, Eq. D.72 must be understood as
|φn+1〉 = H†|φn〉−a∗

n+1|φn〉−b∗
n|φn−1〉. One starts from |φ0〉 = |ψ0〉 = |ψ〉. At step 0,

one computes H|ψ0〉 and a1 = 〈φ0|H|ψ0〉/〈φ0|ψ0〉 by expanding all the amplitudes
within the tight-binding localized basis.

Values of |ψ1〉 and |φ1〉 are then obtained by computing H|ψ0〉−a1|ψ0〉 and H†|φ0〉−
a∗

1|φ0〉, while the first coefficient b1 is subsequently deduced from Eq. (D.74). At step 1,
H|ψ1〉 is computed together with a2 = 〈φ1|Ĥ|ψ1〉/〈φ1|ψ1〉.
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Then |ψ2〉 and |φ2〉 result from the computation of vectors H|ψ1〉 − a2|ψ1〉 − b1|ψ0〉
and H†|φ1〉 − a∗

2|φ1〉 − b∗
1|φ0〉. Finally, the coefficient b2 is deduced from Eq. (D.74).

Steps n ≥ 2 are fully similar to step 1. In the basis {|ψn〉}, H thus has a tridiagonal form:

H =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 b1

1 a2 b2

1 a3 b3

1 . .
. .

⎞⎟⎟⎟⎟⎟⎟⎠ . (D.75)

Hence the recurrence relations (D.71) and (D.72) lead to a nonsymmetric matrix and
to a nonnormalized bi-orthogonal basis. With the choice of a different convention, a
symmetric tridiagonal matrix and/or a normalized basis could be obtained. The quantity
〈ψ |Gr(z = E±0+)|ψ〉 = 〈φ0| 1

z−H |ψ0〉 can then be computed by the continued fraction
method.

This quantity is actually equal to the first diagonal element of (z − H)−1 where H is
the tridiagonal matrix (D.75). Let us call G0(z) this matrix element and define Gn(z), the
first diagonal element of the matrix (z −Hn)−1, with Hn the matrix H without its n first
lines and columns:

Hn =

⎛⎜⎜⎜⎜⎜⎜⎝

an bn

1 an+1 bn+1

1 an+2 bn+2

1 . .
. .

⎞⎟⎟⎟⎟⎟⎟⎠ . (D.76)

From standard linear algebra, it can be shown that

G0(z) = 1
z − a1 − b1G1(z)

, (D.77)

and replicating such an algorithm, one gets a continued fraction of G0(z):

G0(z) = 1

z − a1 − b1

z − a2 − b2

· · ·

. (D.78)

In contrast with the standard recursion method, the recursion coefficients an and bn do
not show any simple behavior for large n. Simple truncation of the continued fraction at
sufficiently large n has been shown to yield reasonably good convergence. This method
was tested on carbon nanotube-based heterojunctions (Triozon & Roche 2005), with
perfect agreement with the decimation techniques presented in Appendix C.
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Büttiker, M. (1988b), “Symmetry of electrical conduction,” IBM J. Res. Dev. 32(3), 317–334.
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scientifiques de l’École Normale Supérieure, S’er. 2 12, 47–88.

Foa Torres, L. E. F. (2005), “Mono-parametric quantum charge pumping: Interplay between
spatial interference and photon-assisted tunneling,” Phys. Rev. B 72(24), 245339.

Foa Torres, L. E. F., Avriller, R., & Roche, S. (2008), “Nonequilibrium energy gaps in carbon
nanotubes: Role of phonon symmetries,” Phys. Rev. B 78(3), 035412.

Foa Torres, L. E. F., Calvo, H. L., Rocha, C. G., & Cuniberti, G. (2011), “Enhancing single-
parameter quantum charge pumping in carbon-based devices,” Appl. Phys. Lett. 99(9), 092102.

Foa Torres, L. E. F. & Cuniberti, G. (2009), “Controlling the conductance and noise of driven
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Lopez-Bezanilla, A. (2009), Étude à partir des premiers principes de l’effet de la fonctionnalisat-

iron sur le transport de charge dans les systèmes à base de carbone à l’échelle mésoscopique,
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Star, A., Gabriel, J.-C. P., Bradley, K., & Grüner, G. (2003), “Electronic detection of specific
protein binding using nanotube fet devices,” Nano Lett. 3(4), 459–463.

Stauber, T., Peres, N. M. R., & Guinea, F. (2007), “Electronic transport in graphene: A semiclas-
sical approach including midgap states,” Phys. Rev. B 76, 205423.

Stefanucci, G., Kurth, S., Rubio, A., & Gross, E. K. U. (2008), “Time-dependent approach to
electron pumping in open quantum systems,” Phys. Rev. B 77, 075339.

Stegmann, T. & Szpak, N. (2016), “Current flow paths in deformed graphene: From quantum
transport to classical trajectories in curved space,” New J. Phys. 18(5), 053016.

Stegmann, T. & Szpak, N. (2018), “Current splitting and valley polarization in elastically
deformed graphene,” 2D Mater. 6(1), 015024.

Stern, A., Aharonov, Y., & Imry, Y. (1990), “Phase uncertainty and loss of interference: A general
picture,” Phys. Rev. A 41(7), 3436–3448.
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Wimmer, M., Adagideli, I., Berber, S., Tománek, D., & Richter, K. (2008), “Spin currents in rough
graphene nanoribbons: Universal fluctuations and spin injection,” Phys. Rev. Lett. 100, 177207.

Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., et al. (2015), “Light-emitting diodes by
band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306.

Woessner, A., Lundeberg, M. B., Gao, Y., et al. (2015), “Highly confined low-loss plasmons in
graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425.

Wu, F., MacDonald, A., & Martin, I. (2018), “Theory of phonon-mediated superconductivity in
twisted bilayer graphene,” Phys. Rev. Lett. 121(25), 257001.

Wu, F., Queipo, P., Nasibulin, A., et al. (2007), “Shot noise with interaction effects in single-
walled carbon nanotubes,” Phys. Rev. Lett. 99, 156803.

Wu, Y., Perebeinos, V., Lin, Y.-m., et al. (2012), “Quantum behavior of graphene transistors near
the scaling limit,” Nano Lett. 12(3), 1417–1423.

Wunderlich, J., Kaestner, B., Sinova, J., & Jungwirth, T. (2005), “Experimental observation of
the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev.
Lett. 94, 047204.

Xia, F., Farmer, D. B., Lin, Y.-m., & Avouris, P. (2010), “Graphene field-effect transistors
with high on/off current ratio and large transport band gap at room temperature,” Nano Lett.
10(2), 715–718.

Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A., & Avouris, P. (2009), “Ultrafast graphene
photodetector,” Nat. Nanotechnol. 4(12), 839–843.

Xia, F., Perebeinos, V., Lin, Y.-m., Wu, Y., & Avouris, P. (2011), “The origins and limits of metal-
graphene junction resistance,” Nat. Nanotechnol. 6(3), 179–184.

Xiao, D., Chang, M.-C., & Niu, Q. (2010), “Berry phase effects on electronic properties,” Rev.
Mod. Phys. 82, 1959–2007.

Xiao, D., Liu, G.-B., Feng, W., Xu, X., & Yao, W. (2012), “Coupled spin and valley physics in
monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802.

Xiao, D., Yao, W., & Niu, Q. (2007), “Valley-contrasting physics in graphene: Magnetic moment
and topological transport,” Phys. Rev. Lett. 99, 236809.



454 References

Xu, C. & Balents, L. (2018), “Topological superconductivity in twisted multilayer graphene,”
Phys. Rev. Lett. 121(8), 087001.

Xu, J., Zhu, T., Luo, Y. K., Lu, Y.-M., & Kawakami, R. K. (2018), “Strong and tunable spin-
lifetime anisotropy in dual-gated bilayer graphene,” Phys. Rev. Lett. 121, 127703.

Yacoby, A. (2011), “Graphene: Tri and tri again,” Nat. Phys. 7(12), 925–926.
Yan, J. & Fuhrer, M. S. (2011), “Correlated charged impurity scattering in graphene,” Phys. Rev.

Lett. 107, 206601.
Yan, W., Txoperena, O., Llopis, R., et al. (2016), “A two-dimensional spin field-effect switch,”

Nat. Commun. 7, 13372.
Yang, B., Lohmann, M., Barroso, D., et al. (2017), “Strong electron-hole symmetric Rashba spin-

orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures,” Phys.
Rev. B - Condens. Matter Mater. Phys. 96(4), 041409.

Yang, B., Tu, M.-F., Kim, J., et al. (2016), “Tunable spin-orbit coupling and symmetry-protected
edge states in graphene/WS2,” 2D Mater. 3, 031012.

Yang, H. X., Hallal, A., Terrade, D., et al. (2013), “Proximity effects induced in graphene by
magnetic insulators: First-principles calculations on spin filtering and exchange-splitting gaps,”
Phys. Rev. Lett. 110, 046603.

Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L., & Louie, S. G. (2007), “Quasiparticle energies
and band gaps in graphene nanoribbons,” Phys. Rev. Lett. 99, 186801.

Yang, T.- Y., Balakrishnan, J., Volmer, F., et al. (2011), “Observation of long spin-relaxation times
in Bilayer Graphene at Room Temperature,” Phys. Rev. Lett. 107, 047206.

Yankowitz, M., Chen, S., Polshyn, H., et al. (2019), “Tuning superconductivity in twisted bilayer
graphene,” Science 363(6431), 1059–1064.

Yao, Y., Ye, F., Qi, X.-L., Zhang, S.-C., & Fang, Z. (2007), “Spin-orbit gap of graphene: First-
principles calculations,” Phys. Rev. B 75, 041401.

Yao, Z., Kane, C. L., & Dekker, C. (2000), “High-field electrical transport in single-wall carbon
nanotubes,” Phys. Rev. Lett. 84, 2941–2944.

Yao, Z., Postma, H. W. C., Balents, L., & Dekker, C. (1999), “Carbon nanotube intramolecular
junctions,” Nature 402(6759), 273–276.

Yazyev, O. & Louie, S. (2010a), “Electronic transport in polycrystalline graphene,” Nat. Mater.
9, 806.

Yazyev, O. V. (2008), “Magnetism in disordered graphene and irradiated graphite,” Phys. Rev.
Lett. 101, 037203.

Yazyev, O. V. (2010), “Emergence of magnetism in graphene materials and nanostructures,” Rep.
Progr. Phys. 73(5), 056501.

Yazyev, O. V. & Helm, L. (2007), “Defect-induced magnetism in graphene,” Phys. Rev. B 75(12),
125408.

Yazyev, O. V. & Louie, S. G. (2010b), “Topological defects in graphene: Dislocations and grain
boundaries,” Phys. Rev. B 81(19), 195420.

Young, A. F. & Kim, P. (2009), “Quantum interference and Klein tunnelling in graphene
heterojunctions,” Nat. Phys. 5(3), 222–226.

Young, A. F. & Kim, P. (2011), “Electronic transport in graphene heterostructures,” Ann. Rev.
Condens. Matter Phys. 2(1), 101–120.

Young, A. F., Zhang, Y., & Kim, P. (2014), Experimental Manifestation of Berry Phase in
Graphene, Springer International Publishing, Cham, pp. 3–27.



References 455

Yu, Q., Jauregui, L. A., Wu, W., et al. (2011), “Control and characterization of individual
grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater.
10(6), 443–449.

Yuan, S., De Raedt, H., & Katsnelson, M. I. (2010), “Modeling electronic structure and transport
properties of graphene with resonant scattering centers,” Phys. Rev. B 82(11), 115448.

Zak, J. (1989), “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62(23), 2747–2750.
Zanolli, Z. & Charlier, J.-C. (2009), “Defective carbon nanotubes for single-molecule sensing,”

Phys. Rev. B 80(15), 155447.
Zanolli, Z. & Charlier, J.-C. (2010), “Spin transport in carbon nanotubes with magnetic vacancy-

defects,” Phys. Rev. B 81(16), 165406.
Zanolli, Z. & Charlier, J.-C. (2012), “Single-molecule sensing using carbon nanotubes decorated

with magnetic clusters,” ACS Nano 6(12), 10786–10791.
Zanolli, Z., Leghrib, R., Felten, A., et al. (2011), “Gas sensing with Au-decorated carbon

nanotubes,” ACS Nano 5(6), 4592–4599.
Zaric, S., Ostojic, G. N., Kono, J., et al. (2004), “Optical signatures of the Aharonov-Bohm phase

in single-walled carbon nanotubes,” Science 304(5674), 1129–1131.
Zhang, C., Li, M.-Y., Tersoff, J., et al. (2018), “Strain distributions and their influence on

electronic structures of WSe2-MoS2 laterally strained heterojunctions,” Nat. Nanotechnol.
13(2), 152.

Zhang, L., Zhang, Y., Khodas, M., Valla, T., & Zaliznyak, I. A. (2010), “Metal to insulator
transition on the N = 0 Landau level in graphene,” Phys. Rev. Lett. 105(4), 046804.

Zhang, P. & Wu, M. (2012), “Electron spin relaxation in graphene with random Rashba
field: Comparison of the D’yakonov-Perel’ and Elliott-Yafet-like mechanisms,” New J. Phys.
14(3), 033015.

Zhang, S. (2000), “Spin Hall effect in the presence of spin diffusion,” Phys. Rev. Lett. 85,
393–396.

Zhang, S., Yan, Z., Li, Y., Chen, Z., & Zeng, H. (2015), “Atomically thin arsenene and anti-
monene: Semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem.
Int. Ed. 54(10), 3112–3115.

Zhang, Y., Jiang, Z., Small, J. P., et al. (2006), “Landau-level splitting in graphene in high
magnetic fields,” Phys. Rev. Lett. 96, 136806.

Zhang, Y., Rubio, A., & Lay, G. L. (2017), “Emergent elemental two-dimensional materials
beyond graphene,” J. Phys. D: Appl. Phys. 50(5), 053004.

Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005), “Experimental observation of the
quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204.

Zhang, Y., Tang, T.-T., Girit, C., et al. (2009), “Direct observation of a widely tunable bandgap in
bilayer graphene,” Nature 459(7248), 820–823.

Zhang, Y.-Y., Hu, J., Bernevig, B. A., et al. (2009), “Localization and the Kosterlitz-Thouless
transition in disordered graphene,” Phys. Rev. Lett. 102, 106401.

Zhao, J., Park, H., Han, J., & Lu, J. P. (2004), “Electronic properties of carbon nanotubes with
covalent sidewall functionalization,” J. Phys. Chem. B 108(14), 4227–4230.

Zhao, M., Ye, Y., Han, Y., Xia, Y., et al. (2016), “Large-scale chemical assembly of atomically
thin transistors and circuits,” Nat. Nanotechnol. 11(11), 954–959.

Zhao, P. & Guo, J. (2009), “Modeling edge effects in graphene nanoribbon field-effect transistors
with real and mode space methods,” J. Appl. Phys. 105, 034503.



456 References

Zhao, Y., Cadden-Zimansky, P., Ghahari, F., & Kim, P. (2012), “Magnetoresistance measurements
of graphene at the charge neutrality point,” Phys. Rev. Lett. 108(10), 106804.

Zheng, L. X., O’Connell, M. J., Doorn, S. K., et al. (2004), “Ultralong single-wall carbon
nanotubes,” Nat. Mater. 3(10), 673–676.

Zhou, S. Y., Gweon, G.-H., Fedorov, A. V., et al. (2007), “Substrate-induced bandgap opening in
epitaxial graphene,” Nat. Mater. 6(10), 770–775.

Zhou, X.-F., Dong, X., Oganov, A. R., et al. (2014), “Semimetallic two-dimensional boron
allotrope with massless Dirac fermions,” Phys. Rev. Lett. 112(8), 085502.

Zhou, Y. & Wu, M. W. (2011), “Optical response of graphene under intense terahertz fields,”
Phys. Rev. B 83(24), 245436.

Zhou, Y. & Wu, M. W. (2012), “Single-parameter quantum charge and spin pumping in armchair
graphene nanoribbons,” Phys. Rev. B 86, 085406.

Zhu, F.-F., Chen, W.-J., Xu, Y., et al. (2015), “Epitaxial growth of two-dimensional stanene,” Nat.
Mater. 14(10), 1020–1025.

Zhu, R. & Chen, H. (2009), “Quantum pumping with adiabatically modulated barriers in
graphene,” Appl. Phys. Lett. 95(12), 122111.

Zhu, W., Li, W., Shi, Q. W., et al. (2012), “Vacancy-induced splitting of the dirac nodal point in
graphene,” Phys. Rev. B 85, 073407.

Zhu, Z., Cai, X., Yi, S., et al. (2017), “Multivalency-driven formation of Te-based mono-
layer materials: A combined first-principles and experimental study,” Phys. Rev. Lett.
119(10), 106101.
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