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Preface

Engineers and applied scientists are interested in stochastic methods
because real physical systems are often subjected to random disturbances
and unpredictable environments. With the rapid development of VLSI and
computer technology, stochastic and statistical models can now be
obtained from observed data and begin to be widely available for real-time
control, communication, signal processing, and other related fields.
Therefore, stochastic and statistical methods for the analysis and design
of various technological systems are being increasingly utilized and
becoming more relevant in many areas in engineering and applied
sciences.

It is well known that statistical and stochastic concepts play a
fundamental role in the area of control and signal processing. In fact, the
Markovian (or state-space) model has been a key idea in linear quadratic
Gaussian control and in Kalman filtering; since the 1960s, most system
identification techniques have been based on statistical estimation theory,
and adaptive control is best studied and understood in a stochastic
framework. Also autoregressive (AR) and autoregressive moving average
(ARMA) models have been a major tool for spectral analysis and signal
processing as well as for economic time-series analysis, especially after the
Akaike information criteria (AIC) revolutionized the order selection
procedure of parametric models.

Probability and statistics have a long history, as their beginning can be
said to go as far back as the 17th century. In the early 1960s, these
disciplines began to spread into the areas of control engineering and signal
processing. For more than 30 years, methods of probability, statistics, and
stochastic processes have been employed in these fields and have been a
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source of interest and fascination for many researchers. Many important
results have been obtained and are currently being implemented and used
in industrial and technological areas.

During the past decades, however, new techniques of fuzzy logic,
fractal, wavelets and neural networks modeling, genetic algorithms, etc.,
have been introduced, which are also playing an increasingly important
role in control and signal processing. Some of the papers in this volume
are partially related to these topics. There has also been rapid development
in robust design and estimation techniques based on deterministic or
minimax concepts. We often encounter many students and young en-
gineers who have good knowledge of these new concepts and tech-
niques but are not familiar with probability, statistics, and stochastic
processes.

We still believe, however, that stochastic methods will continue to be
one of the key concepts in control and signal processing, and one of the
aims of this volume is to emphasize their importance and usefulness.

This book intends to give the state of the art of certain areas of statistical
and stochastic methods in control and signal processing. The 20 chapters
provide a good sample of recent trends in the area of stochastic modeling,
identification, and signal processing together with the relative open
problems, application areas, and most representative results. Overlap of
topics has been kept to a minimum and there are substantial contributions
that represent Japanese activity in these areas.

Part I covers some of latest developments in modeling, identification,
and estimation, including stochastic realization, state-space modeling,
identification and parameter estimation, filtering, fuzzy modeling, statisti-
cal models of economic behavior, etc. Part II deals with topics in signal
processing, including time-series analysis, blind deconvolution, array
signal processing, detection, image processing, €tc.

This volume is suitable for senior undergraduate and graduate students
as well as for applied scientists and professional engineers. Most con-
tributors present tutorial or review articles requiring only elementary
knowledge of statistics and stochastic processes. Reference to original
research papers is made whenever appropriate. Hence, each chapter is
self-contained and easy to read. The range of topics is so varied that a
reader with special interests should be able to find chapters relevant to
his or her particular problem.

Chapter 1, by G. Picci, discusses recent advances in modeling and
identification of stationary processes based on the geometric theory of
stochastic realization. In particular, the problem of identifying models with
exogenous inputs is formulated and a procedure for constructing minimal
state-space models is developed based on a generalization of a stochastic
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realization technique for time-series. It is also shown that this approach
naturally leads to subspace identification methods.

Chapter 2, by W. Gersch and G. Kitagawa, integrates and communi-
cates the authors’ works on general state-space modeling for time-series.
The importance of AIC for evaluating the parametric models fitted to data
is emphasized, and the numerical approximation, Gaussian sum approxi-
mation, and Monte Carlo methods for general state-space filter/smoother
implementation are discussed. Various applications are also considered.

Chapter 3, by W. E. Larimore, addresses the identification of linear,
time-invariant dynamical systems with noise disturbances and possible
feedback. The canonical variate analysis (CVA) method is applied to the
past and future of a process to obtain the optimal determination of the
states and state order of a dynamical system. Several applications are also
described, including chemical process control, spectral analysis of a
vibrating system, process monitoring and fault detection, adaptive control
of aircraft wing flutter, etc.

Chapter 4, by G. P. Rao and A. V. B. Subrahmanyam, considers a
continuous-time multivariable system identification by using generalized
MA models (GMAMs) in which the model output is expressed as a linear
combination of certain MA components of the input. It is shown that good
low-order approximations of complex systems are obtained by embedding
prior knowledge of system dynamics in the parameterizations of the
GMAMs.

Chapter 5, by Z.-J. Yang, S. Sagara, and T. Tsuji, develops a technique
of identifying a continuous-time impulse response function with local high
frequency components from sampled input-output data. The impulse
response is approximated by a multiresolution neural network composed
of scaling and wavelet functions and is then successively estimated from
a coarse resolution level to a fine resolution level via a least-squares
method with the help of the AIC.

The classic approach to model order estimation is based on the AIC
or its improved versions. Another approach to model order estimation is
based on rank test methods. Chapter 6, by J. Sorelius, T. S6derstrém,
P. Stoica, and M. Cedervall, presents a number of rank test methods
relevant to ARMA order estimation that are closely related to subspace
methods estimation. The chapter provides a numerical evaluation of these
methods based on extensive simulations studies.

In Chapter 7, S. Aihara and A. Bagchi consider the maximum a
posteriori (MAP) state estimation problem for a nonlinear system in which
the observation noise is modeled by a finitely additive white noise to avoid
the classic Brownian motion modeling for which the observation is
provided in integral form and is nowhere differentiable. The basic equation
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for the MAP state estimate is derived and a numerical procedure to solve
the basic equation is also developed.

Chapter 8, by K. Takaba and T. Katayama, is concerned with the
stochastic performance of an H., filter in the case where the underlying
noise is zero mean white noise. The relation between the bound y and
the performance of the H, filter is examined based on the monotonicity
of the solution of the associated H., Riccati difference equation. Numerical
examples are included in order to analyze the sensitivity of the H,, filter
in the presence of process and observation noises.

Chapter 9, by T. Nakamizo, develops a method for deriving a
reduced-order filter that yields an estimate of a linear function of the state
for a linear stochastic system based on a system coordinate transform. The
relationship between the reduced-order and the full-order filters is
discussed and the design method is illustrated by examples.

In Chapter 10, by M. Aoki, the interaction processes of a large number
of agents are modeled as Markov processes on the set of exchangeable
random partitions of a set of integers. A diffusion equation approximation
describing the time evolution of the population compositions of agents is
derived. It is shown that the distribution of the order statistics of the
fractions of agents is described as the average of multinomial distributions
conditioned on the vector random fractions governed by Dirichlet
distributions.

T. Fukuda, in Chapter 11, explores fuzzy random vectors (FRVs)
as a theoretical basis for studying multidimensional fuzzy stochastic
processes. The FRVs are introduced from the point of view of vague
perception of nonfuzzy random vectors. The first- and second-order
moments of FRVs are defined by applying the multivalued logic, and some
properties of FRVs are derived.

Chapter 12, by H. Sakai and S. Ohno, considers the spectral theory
of discrete-time cyclostationary processes with applications to the design
of an optimal filter bank matched to input signal statistics. A parametric
formula is derived for the cyclic spectral density matrix of a periodic AR
process. The result is then applied to the optimal design of a low pass filter
in the analysis part under perfect reconstruction conditions.

Chapter 13, by J. K. Tugnait, deals with multivariable identification
by using the error-in-variables models. Attention is focused on frequency-
domain approaches in which the integrated polyspectrum of the input
and the integrated cross-polyspectrum of the input—-output process are
employed to derive two new classes of parametric identification methods.
Identifiability and consistency of these methods are analyzed under mild
conditions. Performance analysis of the estimators is also presented.

In Chapter 14, by Y. Inouye, the design of an equalizer to perform blind
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deconvolution for nonminimum-phase systems is formulated as the
problem of maximizing the fourth-order cummulant of the equalizer
output. A necessary and sufficient condition is derived in order for
multichannel blind deconvolution to be solvable. Numerical results are
included to show the effectiveness of proposed criteria for blind deconvolu-
tion.

Chapter 15, by A. Lee Swindlehurst and M. Viberg, reviews historical
development of sensor array signal processing techniques and then
considers robust Bayesian approaches to improve the direction of arrival
and beam-forming performance by utilizing the a priori information on
the array model errors. The MAP estimator for the problem is formulated,
and a computationally feasible algorithm is developed by using a subspace
technique based on the eigendecomposition of the array covariance
matrix.

Chapter 16, by T. Sen Lee, reviews the use of stochastic methods and
signal processing techniques in tracking radar, imaging radar, and Doppler
weather radar systems. Topics included are state and parameter estimation
by extended Kalman filters, resolution enhancement based on bandwidth
expansion techniques, use of a priori information, and adaptation.

Chapter 17, by K. Kumamaru, J. Hu, K. Inoue, and T. Soderstrém,
presents two robust change detection algorithms for dynamic systems with
model uncertainty based on the Kullback information criterion. In a
soft bound approach, unmodeled dynamics are described by a random
quantity with soft bound. Moreover, in a nonbound approach, the
unmodeled dynamics are defined by the difference between a complex
model and its reduced-order submodel. Simulation examples are in-
cluded.

In Chapter 18, A. Burrell, A. Kogiantis, and P. Papantoni-Kazakos
present a sequential algorithm that detects changes from an acting
stochastic model to any one of a number of alternatives. Based on a
discrete approximation of the stochastic models, they employ stochastic
binary neural networks pretrained to produce the statistical measures
associated with these models. The overall system performance is discussed
and numerical results are presented.

K. Kamejima presents in Chapter 19 a stochastic computation scheme
to recognize complicated patterns generated via self-similarity processes.
Based on the conditional distribution of the observed images, an invariant
subset in the feature pattern is obtained. The existence of an invariant
feature implies that the generation process of self-similarity patterns can
be detected in a preassigned dictionary in finite steps. The detection
scheme is verified by computer simulation.

In the final chapter, M. Suwa and S. Sugimoto discuss a Gibbs random
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field model and its samplng algorithm for image processing. A relaxation-
type algorithm based on the Metropolis algorithm is proposed in the
sampling process. Experimental results for generating texture images from
the Gibbs random field are given in order to examine the phase transition
phenomena.

We would like to express our sincere thanks to all the contributors for
their efforts in providing excellent chapters and their patience. This volume
will become an important reference work in the field, useful to students
and scientists interested in algorithms for design and analysis of signal and
control systems in the presence of uncertainty.

We finally acknowledge with pleasure the fruitful collaboration with
Russell Dekker and Joseph Stubenrauch of Marcel Dekker, Inc.

Tohru Katayama
Sueo Sugimoto
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1

Stochastic Realization and System
Identification

Giorgio Picci

University of Padova, Padova, Italy

. INTRODUCTION

Stochastic realization theory deals with modeling of random processes.
Given a vector (say m-dimensional) process y = {y(#)}, construct models
of y representing it in terms of simpler and more basic random processes,
such as white noise, Markov processes, etc. In particular it deals with
procedures for constructing models of (wide-sense) stationary processes,
of the form

x(t+ 1) = Ax(t) + Bw(r) )
y(&) = Cx(t) + Dw(r) )

where {w(r)} is some vector normalized white noise, i.e.
E{w(t)w(s)'} = I5(t —s) E{w(} =0

where 8 is the Kronecker delta function. This representation is called a
state space realization of the process y. It involves auxiliary variables (i.e.,
random quantities which are not given as a part of the original data) such
as the state process x (a stationary Markov process) and the generating
white noise w, whose peculiar properties lead to representations of y by
models having the desired structure. Constructing these auxiliary processes
is part of the realization problem.

Wide-sense linear models of this kind are extremely important in

Supported in part by MURST.
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applications for a variety of reasons, including the relative simplicity of
the probabilistic treatment and the fact that most of the time in practice
only second-order statistics are available to describe random phenomena.
They are the starting point for popular estimation and control algorithms
like Kalman filtering, LQG control, etc.

A. Classical Stochastic Realization

“Classical” stochastic realization theory [5,6,15,18] was developed in the
late 1960s. It deals with the problem of computing the parameters
A, B, C, D of a state space realization starting from a suitable parametriza-
tion of the spectrum or covariance function of the process. This problem
is closely related to spectral factorization.

The m X m spectral density matrix of a purely nondeterministic (p.n.d.
hereafter) zero-mean process y is the matrix function

d(z) = i A(Dz™*

f=—00

where

A1) = E{y(e + k)y(k)'} = E{y(1)y(0)’}

It is well known that the spectral density matrix of a process admitting
a state space realization is a rational function of z. This fact follows easily
by the classical Kintchine and Wiener formula for the spectrum of a filtered
stationary process [29,65]. The explicit computation of the spectrum is due
to Kalman and Anderson [25,5].

Proposition 1.1 The transfer function W(z) = C(zI — A)"'B+ D of any
state space representation (1.1) of the stationary process y is a spectral factor
of ®, ie.,

W(z)W(1/z)' = ®(z) 2
Indeed it can be checked directly that, writing
D(z) = P(2) + P (1/2)’ 3

where @, (2) =3A0) + A(1)z71'+ A(2)z %+ - - is the ‘“‘causal” (i.e.,
analytic outside of the unit circle) component of ®(z), one has
&, (2) = C(zI - A)~' C' +3A(0) 4)

where

A(Q)=CPC'+DD' C'=APC'+BD’ 6)
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P = P’ being a solution of the Lyapunov equation P= APA’' + BB’. In
other words, the spectrum of a process y described by a state-space model
(1) is a rational function expressible in parametric form directly in terms
of the parameters of the realization.

Classical stochastic realization is the inverse problem of computing
the parameters (A,B,C,D) which define (minimal) spectral factors
W(z) = C(zI— A)"'B + D, of a spectral density matrix. Of course one
assumes here that the process is p.n.d. and has a spectral density which
is a rational function of z = e'*.

This inverse problem for rational spectral density functions was
essentially solved in the 1960s by Kalman, Yakubovich and Popov
[26,67,52] in the context of stability theory and was cast into its present
spectral factorization form by Anderson [5,6]. The minimal degree spectral
factors of ®(z) are in one-to-one correspondence with the symmetricrn X n
matrices P solving the Linear Matrix Inequality (LMI)

P-APA’ C —-APC’
=| = =0 6
M(P) [C—CPA’ A(O)—CPC’] ©)
in the following sense:
Corresponding to each solution P = P’ of (6), consider the full column

rank matrix factor [ 8] of M(P),
M(P) = [[B)] [B'D'] (7

(this factor is unique modulo right multiplication by orthogonal matrices)
and form the rational matrix

W(z)=C(zI-A)"'B+D 8)

Then (8) is a minimal realization of a minimal analytic spectral factor of
®(z). All minimal factors can be obtained in this way.

Under some mild regularity conditions (6) is equivalent to an Algebraic
Riccati Inequality (ARI) [6,18].

These inequalities have been much studied both from a theoretical and
a numerical viewpoint. They play an important role in many areas of
system theory such as stability theory, dissipative systems and are central
in H* control and estimation theory. It seems to be much less appreciated
in the scientific community that they play a very basic role in modeling
of stationary random signals as well. Certain solutions of the LMI (or of
the ARI) have special probabilistic properties and are related to Kalman
filter or “‘innovations-type” realizations. We shall refer the reader to the
literature [66,18,37,41] for a full discussion of these aspects of the
problem.



4 Piccl

B. Geometric Stochastic Realization

The classical ‘‘wide-sense” realization theory is purely distributional as it
says nothing about representation of random quantities in a truly
probabilistic sense (e.g., how to generate the random variables or the
sample paths of a given process, not just its covariance function). In the
last two decades a geometric or coordinate-free approach to stochastic
modeling has been put forward in a series of papers by Lindquist, Picci,
and Ruckebusch et al. [35,36,42,54,55,56] which aims at the representation
of random processes in this more specific sense. This idea is also present
in the early papers of Akaike [1,2]. It is by now very well understood how
to form state spaces and build realizations in a ‘“‘constructive” manner by
a series of geometric operations on a background Hilbert space of linear
statistics (random variables) available to the modeler. These statistics are
typically just linear functions of the variables of the process y to be
modeled but in some situations other random data may be available to
construct the model.

Since in most control applications there are also exogenous “‘input”
signals whose influence is to be taken into account in the modeling process,
we shall discuss in this paper also some generalizations of the basic ideas
of geometric realization theory from time series to random processes in
the presence of inputs.

C. Realization and Identification

It is one of the main goals of this paper to persuade the reader that the
geometric procedures of realization theory form the conceptual basis of
“subspace” identification algorithms. Some of them can actually be
numerically implemented very simply after a proper identification of the
data Hilbert space has been made.

The statistical problem of identification of a linear dynamic model, in
particular a state space model of the type (1), from an observed time series
can be approached from (at least) two conceptually different view-
points.

1. The Traditional “Optimization” Approach

This is based on the principle of minimizing a suitable scalar measure of
the discrepancy between the observed data and the data described by the
probability law underlying a certain chosen model class. Well-known
examples of distance functions are the likelihood function, or the average
squared prediction error of the observed data corresponding to a particular
model [43]. Except for trivial model classes, these distance functions
depend nonlinearly on the model parameters and the minimization can
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only be done numerically. Hence the optimization approach leads to
iterative algorithms in the space of the parameters, say in the space of
minimal (A, B, C, D) matrix quadruples which parametrize the chosen
model class. In spite of the fact that this has been almost the only accepted
paradigm in system identification in the past three decades [43,57], this
approach has several well-known drawbacks, among which are the fact
that the cost function generally has complicated local minima which are
very difficult to detect, for moderate or large dimension of the model there
is often structural insensitivity of the cost to variations in the parameters
and corresponding ill-posedness of the estimation problem, and there are
difficulties in taking consistently into account the (unknown) initial
conditions, so that the methods only work ‘“asymptotically”, etc.

These limitations, it seems to us, are a consequence of the intrinsically
“blind” philosophy which underlies setting the problem as a parameter
optimization  problem. For, almost all classical problems in control and
estimation could be trivially formulated as parametric optimization, and
pushing this philosophy to the extreme, one could well say that, in
principle, we wouldn’t need the maximum principle, Kalman filtering nor
H?® theory, since we could just formulate and solve everything as a
nonlinear programming problem in a suitable space of controller or
estimator parameters. It is a fact, however, that no real progress has
occurred in the field of control and estimation by following this type of
paradigm.

2. Subspace Identification

This is the approach more or less explicitly suggested by [3,8,13,31,58]
and also discussed in [39] and in this paper. The basic idea is to introduce
a preliminary step in the state space model identification problem
consisting in constructing the state space of the model. This is done by
geometric operations of projection of certain subspaces generated by the
data. For this reason these procedures can be regarded as stochastic
realization. The mathematical structure of the problem and its inherent
nonlinearity are well known and well understood. The nonlinearity, in
particular, has to do with the quadratic nature of the stochastic modeling
problem and the diverse manifestations of this fact (Riccati equations or
rational spectral factorization equations), depending on the class of
parametric models one uses.

In more concrete terms, the paradigm advocated here and in [39,47,48]
for identification of state space models from data is to transform the
geometric procedures of stochastic realization theory into algorithms of
numerical linear algebra. The translation of the abstract geometric
operations in the Hilbert space generated by the data will be discussed
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in Sections II and VI. These operations will have an immediate reformula-
tion as statistical procedures in a ‘“‘concrete” vector space generated by
the shifted tail sequences of the observed data. In practice, when the data
are finite, the (approximate) inner product in this Hilbert space will be
just the Euclidean inner product

) N
&= m; &y

and this makes geometric realization procedures particularly simple to
translate into vector space computations.

It should be said that the idea of formulating state space identification
as a stochastic realization problem is not entirely new and has been present
in the literature for some time. In particular Faurre [14,16,17] seems to
be the first to systematically attempt to formulate identification as
stochastic realization. His context is however still heavily coordinate-
dependent. It is actually the geometric viewpoint and the vector space
(actually the Hilbert space) characterization of the state space as a
subspace of a certain data space that allows systematic introduction of
numeric linear algebra and efficient computational tools to solve the
problem.

Il. THE HILBERT SPACE OF THE OBSERVED DATA
Naturally, in practice, instead of random variables one has a collection
of input—output data,

{uO’ul’ cens Up oo oy uN} {yO’yl’ ces Yoo yN} (9)

with u, ERP, y,€R™, measured during some experiment.*

For reasons of clarity and mathematical simplicity, we shall initially
consider an idealized situation in which the time series (9) are infinitely
long and originate in the remote past at —o. The finite data length situation
is discussed in Section VI. The geometric approach of this article is based
on the following basic ‘“‘statistical” assumption on the data.

Assumption 2.1 For N— « and for any 7=0, the time averages

N !
L im [“’”] [“’] =0 (10)
N+1 t=tp LYt+7] [ Ve

converge and the limits are independent of the initial time ¢,

*The time averages of all time series considered in this paper will be assumed to be zero.
This is clearly no loss of generality.
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This assumption can be read as some kind of “statistical regularity” of
the (future) data. It is of course unverifiable in practice as it says something
about data which have not yet been observed. Some assumption of this
sort about the mechanism generating future data seems however to be
necessary to even formulate the identification problem.

In a continuous-time setting, functions admitting an *‘ergodic” limit of
the sample correlation function (10) have been studied in depth by Wiener
in his famous work on generalized harmonic analysis [63,64]. Although
a systematic translation of the continuous-time results of Wiener into
discrete-time seems not to be available in the literature, it is quite evident
that a totally analogous set of results must hold for discrete-time signals.
In particular the reader may show rather easily by adapting Wiener’s proof
for continuous time that the limits of the time averages (10)

. LNH} Uppr | [ue|' _ _ Au(7) Auy(7) .
Alll—r.nooN"'l go |:yl+1':| [YI] =AM [Ayu(‘r) Ayy(‘r)] =0 (11)

form a matrix function A of positive type, in other words a bona fide
stationary covariance matrix sequence. We shall call A the true covariance
of the time series {y,,u,}.

Now, for each 1€ Z define the p X @ and m X  matrices

u(t) = [uh Weprs U, - - ] (lza)
YO =6y, Yivas - -] (12b)

and consider the sequences u:= {u(f)[t€Z} and y:= {y()|[tE Z}. We
shall show that these sequences play a very similar role to two jointly
wide-sense stationary processes u# and y, as those referred to in the
previous section.

Define the vector spaces % and % of scalar semi-infinite real sequences
obtained as finite linear combinations of the components of « and y,

%= {Zaju(ty) a,€ERP, 4, EZ} (13)
%= Zay(t) ax€ER™4EZ) (14)

These vector spaces can be seen as the row spaces of two infinite matrices
U and Y having as block rows the semi-infinite entries u(f) and y(¢) of (12)
for ¢ running on Z.

At this point we need to set notation. In what follows the symbols \/,
+, and @ will denote vector sum, direct vector sum, and orthogonal vector
sum of subspaces; the symbol X' will denote the orthogonal complement
of a (closed) subspace X of a Hilbert space with respect to some predefined
ambient space. The orthogonal projection onto the subspace X will be
denoted by the symbol E(:|X) or by the shorthand FX. The notation
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E(z|X) will be used also when z is vector valued. The symbol will then
just denote the vector with components E(z;|X), k=1, .. .. For vector
quantities, | v| will denote Euclidean length (or absolute value in the scalar
case).

The vector sum #\/%, which can be seen as the row space of the
compound infinite matrix [%], will originate our basic ambient space. It
can be naturally made into an inner product space in the following way.
First, define the bilinear form (:,-) on the generators of the space by

letting
' u(k) , u(]) _ 1 1 N , uf+k- uf+j]lb= Ak b
@ [y(k)]’b [y(f)]>' ;5'1,“&1\/“;“[”%_ [y,+j a'A(k—J)
(15)

for a, b €RP*™ (the prime denotes transpose). Then extend it by linearity
to all elements of %\/%.

Indeed, let a := {a,, k EZ} be a sequence of vectors a;, €RP*™, with
compact support in Z, and let a’ := {a;}. A generic element ¢ of the vector
space #\/ % can be represented as

., U _ , | u(k)
¢=a [Y] =2 “"[y(k)]

k

Introducing the infinite block-symmetric positive semidefinite Toeplitz
matrix

[ A(0) AQ) ... A(k)
A A(0) AQ)
T= . (16)
A(k) A(0)
constructed from the “‘true” covariance sequence {A(0), A(1), .. ., A(k),

... } of the data, the bilinear form (15) on #\/ % can be represented by
the quadratic form

€= (a'[u]’b'[u} = GA(k~j)b;=a'Th
y y T

We shall identify elements whose difference has zero norm (this means
(¢, & = 0< ¢=0). From this expression it may be seen that the bilinear
form is nondegenerate (unless A = 0 identically) and defines a bona fide
inner product. In the following we shall assume that for every k, each
square block-Toeplitz matrix T in the upper left-hand corner of T is
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positive definite. By closing the vector space #\/% with respect to
convergence in the norm induced by the inner product (15), one obtains
a real Hilbert space H := U\/ Y (the wedge now means closed vector sum).
This is the basic data space on which hereafter the models will be
defined.

Note that if in the limits of the sum (15) ¢ = 0 is replaced by an arbitrary
initial instant #; the limit does not change, so that

R AR e ]|

y(k) y() y(to + k) ¥(to+J)

for all t; (wide-sense stationarity). We shall define a shift operator o on
the family of semi-infinite matrices (12), by setting

oa'u(t) =ad’'u(t+1) t€Z, aclRP
oa'y(t) =a'y(t+1) t€Z, a€ER™,

defining a linear map which is isometric with respect to the inner product
(15) and extendable by linearity to all of H.

This Hilbert space framework was first introduced in [39] for time series.
It is shown in this reference that it is isomorphic to the standard stochastic
Hilbert space setup widely used in the L?-theory of second-order random
processes [30,53]. By virtue of this isomorphism one can formally think
of the observed time series (9) as an ergodic sample path of some Gaussian
stationary stochastic process (u,y) defined on a true probability space and
having joint covariance matrices equal to the limit (11) of the sum (10)
as N— oo,

Linear functions and operators on the tail sequence « and y defined in
(12) correspond to the same linear functions and operators on the processes
u and y. In particular the second-order moments of the two random
processes can equivalently be calculated in terms of the tail sequences u and
y provided expectations are substituted by ergodic limits of the type (15).
Since second-order properties are all that matters in this paper, one may
even regard the tail sequences u and y of (12) as being the same object as
the two underlying stochastic processes u and y. This will be done in the rest
of this paper. The probabilistic language can be adopted in the present
setting provided one identifies real random variables as semi-infinite strings
of numbers having the “ergodic property” described at the beginning of
this section. The inner product of two semi-infinite strings £ and 7 in H will
be called expectation and denoted E{én},

(¢, m) = E{én} (17)

In the following we shall allow E{-} to operate on matrices, taking inner
products row by row.
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This unification of language permits us to carry over in its entirety the
geometric theory of stochastic realization derived in the abstract L? setting
of [34,36,37] to the present framework. One may just reinterpret
everything in the current setting, starting from the definition of U;", Y,
U;", Y/, the past and future subspaces of the “processes” u and y at time
t. These are defined as the closure of the linear vector spaces spanned by
the relative past or future ‘“‘random variables™ u(f) and y(f), in the metric
of the Hilbert space H. We shall use the notation

U; := span{u(s)|s <1}
Y7 = Span{y(s)|s<1)
Uy = span{u(s)|s =1}
= span{y(s)|s =1}

[y

e
~+

Note that, according to a widely accepted convention, the present is
included in the future only and not in the past. The only difference to
keep in mind here is the different interpretation that representation
formulas like (1) have in the new context. The equalities involved in the
representation

x(t+ 1) = Ax(8) + Bw(r)
y(®) = Cx(t) +Dw(r) (18)

are now to be understood in the sense of equalities of elements of H, i.e.
as asymptotic equality of sequences in the sense of Cesaro limits. In
particular the equality signs in the model (18) imply nothing about the
possibility that the same relations would be holding for the sample values
¥e» X, W, at a particular instant of time ¢. This is in a certain sense similar
to the “with probability one” interpretation of the equality sign given to
the model (18) in case the variables are bona fide random variables in
a probability space.

Modeling and estimation of stationary processes on infinite or semi-
infinite time intervals naturally involve various linear operations on the
variables of the process which are time-invariant, i.e. independent of the
particular instant of time chosen as the “present”. In this setting it is
possible (and convenient) to fix the present instant of time to an arbitrary
value say t = 0 and work as if time was “frozen” att = 0. At the occurrence
one then ‘“‘shifts” the operations in time by the action of the unitary
operator o' on the data. In particular, the future and past subspaces of
the processes y and u will often be considered referred to time =0 and
denoted Y* and Y. For an arbitrary present instant ¢ we have

Y =YY, Y=Y
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Last but not least, it should be appreciated that in this setting the
projection operator has an immediate statistical meaning.

Consider the orthogonal projection E[£|X] of a (row) random variable
£onto a subspace X of the space H. This has the well-known interpretation
of conditional expectation given the random variables in X, in the
probabilistic Gaussian setting. Whenever X is given as the rowspace of
some matrix of generators X, the projection E[¢|X] has exactly the
familiar aspect of the least squares formula expressing the best approxima-
tion of the vector £ as a linear combination of the rows of X. For, writing
E[£| X] to denote the projection expressed (perhaps nonuniquely) in terms
of the rows of X, the classical linear ‘“‘conditional expectation” formula
leads to

E[¢|X] = X' [XX']' X (19)

In the case of linearly independent rows we can substitute the pseudoin-
verse § with a true inverse.

lll. INPUT-OUTPUT MODELS

In this section we shall review briefly some of the conceptual steps which
lead to the construction of state space models of a jointly stationary
“input—output” pair of random processes [y, «].

Very often, especially in control applications, there are ‘‘input” or
“exogenous’’ variables that must be taken into account to describe
accurately the dynamics of the output signal y. One is however not
interested in modeling the dynamics of the input signal per se and would
like to estimate a (causal) dynamical model relating ¥ and y which is
independent of the particular input signal.

A typical route which is commonly taken is to impose on the
data a causal (rational) transfer function model* y = W(z)i which
relates the input to a ‘“nominal” undisturbed output. The transfer
function is estimated by some variant of linear regression as if u was a
known deterministic sequence. Sometimes in the literature it is explicitly
“assumed” that u is a “deterministic” signal. The residual regression error
appears as an additive stochastic uncertainty term modeling all unpredict-
able causes independent of u, which make y deviate from the nominal
trajectory caused by the action of the input signal.

Although this is often a reasonable scheme to follow, one should be
aware that it may lead to serious errors whenever there are ‘“‘stochastic

*Here we use the Z-transform formalism.
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components” in u, correlated with the past history of y. This is so because
the input variable u(f) could then itself be described by a nontrivial causal
dynamical model involving the “‘output” process y playing in this case the
role of an exogenous variable (which should be called the “input’ in this
context) to determine u. This ““feedback structure” is extensively discussed
in the literature [10,20,7,21] where it is shown that it is nonunique and
that there are in general infinitely many causal feedback schemes which
could represent a given joint process. Even if, as in many other instances
of stochastic modeling, this nonuniqueness could be resolved by selecting
one particular representative, say an innovation feedback scheme, there
is in general no hope of recovering a fixed open loop subsystem
independent of the feedback link generating u.

Identification of a causal input-output relation in the presence of
feedback is hence an ill-posed problem (this of course in the absence of
any other specific information on the structure of the feedback link) and
the problem is better formulated as the identification of the joint process
(v, u) on the basis of the joint corresponding observed time series. This
in turn falls into the general setup of time series identification. In the rest
of this section we shall discuss specifically the case when there is absence
of feedback (from y to u) in the observed data.

A. Feedback-Free Processes

The appropriate setup for discussing feedback-free models is the theory
of feedback and causality between stationary processes a la Granger [23].
See also [10,7,20,21,49]. We shall rephrase it in the language of
conditionally orthogonal subspaces. The notation A | B|X means that the
two subspaces A, B C H are conditionally orthogonal given a third subspace
X, i.e.,

{(a—EXa,B—EXB)=0 foraEA,BEB (20)

When X = 0, this reduces to the usual orthogonality A_I B. Conditional
orthogonality is orthogonality after subtracting the orthogonal projections
onto X. This concept is discussed in depth in [36,37].

One says that there is absence of feedback from y to u in the sense of
Granger if the future of u is conditionally uncorrelated (which is the same
as independent in the Gaussian case) from the past of y given the past
of u itself. In our Hilbert space setup this is written as,

U LY U (1)

where U;, Y, , U/, Y/ are the past and future subspaces of the processes
u and y at time ¢.
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This conditional orthogonality condition will be another basic assump-
tion throughout this paper. It is quite easy to see that, in conditions of
absence of feedback, the “‘causal estimation error’ process

ys()) = y() = E[y(t)| U1l (22)

coincides with y(t) — E[y(¢)| U] and hence is uncorrelated with the whole
history of the input process u,

ys(£) L. U for all ¢

see [47]. Hence the process y; may be called the stochastic component
of y.

It also follows that the stochastic process y, defined by the complemen-
tary projection

yu(t) = E[y(|U] tE€Z

is uncorrelated with y,. It will be named the deterministic component
of y.

In the present feedback-free setting there is no non-uniqueness,
arbitrariness, or ‘‘user choice” in modeling and we have a natural unique
“input—output” linear model

YO = yult) + ys(t) = E[y())|u(s); s = f] + ys() (23)

where E[y(f)|u(s);s =<1] is the best (in the sense of minimum variance of
the error) estimate of the output y(¢) based on the past of 4 up to time
t. Under some regularity conditions on the input process to be made
precise later on, this estimate is described by a causal and stable linear
convolution operator.

Identifying the model (23) means identifying both the input—output
“deterministic’” part (described by a transfer function W(z)) and the
additive ‘“‘noise’ process y,. This last component is always present and may
well be the most important for a realistic description of the output.

It is obvious that state space descriptions for the process y can be
obtained by combining two separate state space models for y; and y,. For
example, a (forward) innovation representation of y is obtained by
combining together the (forward) innovation representation of yg

xg(t+ 1) = A;xy(t) + Bgeg(t) (24a)
ys(t) = Csxs(t) + es(t) (24b)

where e((t) is the one-step prediction error of the process y, based on its



14 Picci

own past, i.e., the (forward) innovation process of y;, and the “‘determinis-
tic” state space model for y,

x(t+1)=A,x,(8) + Bu(t) (25a)
Yult) = Cux,(t) + Dy u() (25b)

The process e; has then the meaning of conditional innovation of y
[47].

By combining together (24) and (25), the state space innovation model
of the process y “with inputs” has the following structure,

x(t+1)] _ [As 0 ][ x(0) 0 B
[x,,(t+ 1)] = [ 0 A,,J [xu(t)] " [B,,] u(t) + [ 0 ] ()
xs(8)
0 = 16 G| 0|+ Dt + e (26)
xu()

Models of this kind are naturally interpreted as state space
realizations of the familiar ARMAX-type “‘input—output” relations
¥y = W(2)a + G(z)é (here we have W(z)=D,+C,(zI- A,)"'B, and
G(z) = D + Cy(zI — A;) "' B,) often used in the identification literature.

It may happen that even if the realizations of the two subsystems
(stochastic and deterministic) are minimal, (26) may give redundant
descriptions of the signals in certain particular cases, as there may be loss
of observability when the transfer functions W(z) and G(z) have common
poles and common corresponding eigenspaces.

These cases are highly nongeneric and in practice one need not worry
about this unlikely evenience in black-box identification. However, in
certain structured problems one may have a priori some knowledge about
the way the input or the noise enters in the system and there may be noise
effects which one specifically wants to model as being subject to the same
dynamics as the input. In these cases there is actually a need to use models
which allow for common dynamics.

IV. CONSTRUCTING THE STATE SPACE OF THE
“STOCHASTIC” COMPONENT

In this section we shall discuss geometric realization theory for the
stochastic component of y. There will be no input processes in this section
and for notational simplicity we shall drop the subscript “'s”.

The geometric theory centers on the idea of Markovian splitting
subspaces for the process y. This concept is the probabilistic analog of the
deterministic notion of state space of a dynamical system and captures at
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an abstract level the property of ‘“dynamic memory” that the state
variables have in deterministic system theory. Once a stochastic state space
is given, the procedures for the construction of the auxiliary random
quantities which enter in the model and in particular the state process are
fairly obvious. Since the state variables x(¢) of a particular realization can
be regarded just as a particular basis for the state space, once a (minimal)
state space is constructed, finding state equations is just a matter of
choosing a basis and computing coordinates.

Let y be a stationary vector process and Y the relative Hilbert space
of linear functionals. Let X be a subspace of some large stationary Hilbert
space H of wide-sense random variables containing Y. Define

X, = o'X, X; = Vs=iXs, X,+ = Vs=rXs

Definition 4.1 A Markovian splitting subspace X for the process y is a
subspace of H making the vector sums Y~ \/X~ and Y*\/X™* condition-
ally orthogonal (i.e., uncorrelated) given X, denoted

Y vX LY"VvX*X. (27

The conditional orthogonality condition (27) can be equivalently
written as

E[Y' VX" Y vXT]=E[Y*vX*[X] (28)

which gives the intuitive meaning of the splitting subspace X as a dynamic
memory of the past for the purpose of predicting the joint future.
The subspace X is called proper, or purely nondeterministic if

NY vX;, ={0} and NY}VvX;} ={0}

Obviously for the existence of proper splitting subspaces y must also
be purely nondeterministic [53]. Properness is, by the Wold decomposition
theorem, equivalent to the existence of two vector white noise processes
w and w such that

Y yX~=H-(w), Y*yX*=H"#)

Here the symbols H™(w), H*(w), etc., denote the Hilbert subspaces
linearly generated by the past and future of the process w. The spaces

S:=Y"yX~ and S:=Y'yX* (29)

associated to a Markovian splitting subspace X, play an important role in
the geometric theory of stochastic systems. They are called the scattering
pair of X as they can be seen to form an incoming—outgoing pair in the
sense of Lax—Phillips scattering theory [33].
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Definition 4.2 Given a stationary Hilbert space (H, o) containing Y, a
scattering pair for the process y is a pair of subspaces (S, S) satisfying the
following conditions:

1. 0*SCSand 6SCS, i.e., S and S are invariant for the left and right
shift semigroups (this means that S, is increasing and S, is decreasing
with time).

SvS=H.

SDY and SDY*.

$+CS or, equivalently, S+CS.

hasl i

The following representation theorem provides alink between Markovian
splitting subspaces and scattering pairs.

Theorem 4.3 The intersection
X=8NS§S (30)

of any scattering pair of subspaces of H is a Markovian splitting subspace.
Conversely every Markovian splitting subspace can be represented as the
intersection of a scattering pair. The correspondence X< (S,NS) is
one-to-one, the scattering pair corresponding to X being given by

S=Y" yvX , S=Ytyxt (31)

The process of forming a scattering pair associated to X should be
thought of as an ‘“‘extension” of the past and future spaces of y. The
rationale for this extension is that scattering pairs have an extremely simple
splitting geometry due to the fact that

S1S|sNnS (32)

which is called perpendicular intersection. It is easy to show that Property
4 in the definition of a scattering pair is actually equivalent to perpen-
dicular intersection. This property of conditional orthogonality given the
intersection can also be seen as a natural generalization of the Markov
property.* Note that Al B|]X=ANBCX but the inclusion of the
intersection in the splitting subspace X is only proper in general. For
perpendicularly intersecting subspaces, the intersection is actually the
unique minimal subspace making them conditionally orthogonal.

Any basis vector x(0) := [x,(0), x5(0), ..., x,(0)]' in a (finite-dimen-
sional) Markovian splitting subspace X generates a stationary Markov
process x(t) := a’x(0), ¢t € Z which serves as a state of the process y. If X
is proper, the Markov process is purely nondeterministic.

*In which case S=X", 5 =X*, and X=X"NX"*.
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Denote by W,, W, the spaces spanned by the components, at time ¢, of
the generating noises w(f) and w(¢), of the scattering pair of X. Since

S;+1=S,®W, (33)
we can write
X+1C8,41 NS, = (§,NS)B(W,NS)) (34)

since S, is decreasing in time, we have S,,; NS, DX, and by projecting
the shifted basis ox(f) == x(¢t+ 1) onto the last orthogonal direct sum
above, the time evolution of any basis vector x(f) := [x,(¢), x2(8), ...,
x,(9)]’ in X, can be represented by a linear equation of the type
x(t+ 1) = Ax(¢) + Bw(t). It is also easy to see that by the p.n.d. property,
A must have all its eigenvalues strictly inside of the unit circle. Naturally,
by decomposing instead S,_, = S,@® W, we could have obtained a back-
ward difference equation model for the Markov process x, driven by the
backward generator w.

Note also that by definition of the past space, we have y(f) € (S,,1NS,).
Inserting the decomposition (33) and projecting y(¢) leads to a state output
equation of the form y(f) = Cx(f) + Dw(t). Here again we could have
equivalently obtained an equation driven by the backward noise w
instead.

As we have seen, any basis in a Markovian splitting subspace produces
a stochastic realization of y. It is easy to reverse the implication. We have
in fact the following fundamental characterization.

Theorem 4.4 [37,42] The state space X = span{x,(0), x,5(0), ..., x,(0)}
of any stochastic realization (1) is a Markovian Splitting Subspace for the
process y.

Conversely, given a finite-dimensional Markovian splitting subspace X,
to any choice of basis x(0) = [x,(0), x2(0), ..., x,(0)] in X there
corresponds a stochastic realization of y of the type (1).

Once a basis in X is available, there are obvious formulas expressing
the coefficient matrices A, C and C in terms of the processes x and y:

A= Ex(t+1)x(¢) P! (35)
C = Ey()x(t)' P! (36)
C = Ey(t— )x(®)’ 37

where P is the Gramian matrix of the basis (equal to the state covariance

matrix). The matrices B and D however are related to the (unobservable)

generating white noise w and require the solution of the LMIL.
Stochastic realizations are called internal when H=Y, i.e., the state
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space is built from the Hilbert space made just of the linear statistics of
the process y. For identification the only realizations of interest are the
internal ones.

A central problem of geometric realization theory is to construct and
to classify the minimal state spaces, i.e., the minimal Markovian splitting
subspaces for the process y.

The obvious ordering of subspaces of H by inclusion induces an
ordering on the family of Markovian splitting subspaces. The notion of
minimality is most naturally defined with respect to this ordering. Note
that this definition is independent of assumptions of finite dimensionality
and applies also to infinite dimensional Markovian splitting subspaces, i.e.,
to situations where comparing dimension would not make much sense.

Definition 4.5 A Markovian splitting subspace is minimal if it doesn’t
contain (properly) other Markovian splitting subspaces.

Contrary to the deterministic situation minimal Markovian splitting
subspaces are nonunique. Two very important examples are the forward
and backward predictor spaces (at time zero):

X_=EWH* X,=EWH" (38)

for which we have the following characterization [36].

Proposition 4.6 The subspaces X_. and X, are the unique minimal
splitting subspaces contained in the past H* , and, respectively, in the future
H*, of the process y.

The study of minimality forms an elegant chapter of geometric system
theory. There are several known geometric and algebraic characterizations
of minimality of splitting subspaces and of the corresponding stochastic
state space realizations. Since however the discussion of this topic would
take us too far from the main theme of the paper we shall refer the reader
to the literature [36,37].

V. STATIONARY REALIZATION OF THE
DETERMINISTIC COMPONENT

State space modeling of the deterministic component y, may be based on
the same principle of constructing splitting subspaces for the future of the
process y,, and the past of the input process u as discussed in the previous
sections. However this approach leads to state space models which are
driven by white noise and “include” also the dynamics of the process u,
which is not interesting for identification and we do not want to appear
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explicitly in the model. For example, it was shown in [46] and in [1] that
one may choose as state space for y, the predictor space E[Y;"|U;], but
that this choice leads to an innovation model for y,, where the state process
is driven by the forward innovation process of u. This model in general
includes as a cascade subsystem a state space innovation representation
for u and therefore does involve the particular dynamics of the input
process.

As we shall see, to construct state space descriptions driven by a
nonwhite process u, it is necessary to generalize the geometric theory of
stochastic realization of the previous section.

In order to streamline notation, we shall drop the subscript u
throughout this section and whenever possible fix £ = 0. Assume that y
and u are two jointly stationary p.n.d. processes of dimensions m and p.
We shall call a model of the type

x(t+ 1) = Ax(f) + Bu(t) (39a)
y(£) = Cx(£) + Du(?t) (39b)

a deterministic realization of y with input process u. Models of this kind
reduce to the standard (Markovian) stochastic models when, of course,
u is white noise. As usual a realization is called minimal if the dimension
of the state vector is as small as possible. For minimal realizations it must
necessarily hold that (A, B, C) is a minimal triplet. If A has all eigenvalues
inside the unit circle (|A(A4)|< 1), both x(f) and y(f) can be expressed as
functionals of the infinite past of u, i.e. their components belong to U;".
Realizations with this property will be called causal.

We shall now discuss the geometric construction of the state space of
a deterministic realization of y. To this purpose we shall introduce a
technical assumption of “sufficient richness” of the input process.

Assumption 5.1 For each ¢ the input space U admits the direct sum
decomposition

U=U; +U;} (40)

An analogous condition (namely U; NU/} =0) is discussed in [39]
where it is shown that it is equivalent to strict positivity of the spectral
density matrix of ¥ on the unit circle, i.e. <l>,,(ej“’)>c1, c¢>0, or to all
canonical angles between the past and future subspaces of u being strictly
positive (or, in turn, to all canonical correlation coefficients between past
and future of the input process being strictly less than one). A slightly
stronger version of this condition is found in [53], Chapter II, Sect. 7.

We assume all through this section that y(¢f) € Uy, (this is actually the
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feedback-free property). Because of this, and in virtue of Assumption 5.1,
y(f) has a unique representation as a causal functional

y(©) = D W, ru(k) (41)

where W(z) = 3§ W,z is analytic in {|z| >1}. Indeed, W(z) is just the
transfer function of the Wiener filter y(f) = E[y(t)|U;;1] and can be
expressed as

W(Z) = [q)yzl(Z)G(l/Z)—T]+ G(Z)_l

where G(z) is the outer (or minimum-phase) spectral of ®,, and the symbol
[-]. means ‘“‘analytic part”, see, e.g., [53], Chapter II. It is evident that
W(z) is analytic and, because of the nonsingularity of ®, on the unit circle,
unique almost everywhere.

Since the input-output map relating u# and y must be causal, it follows
that in our case the only realizations of interest are the causal ones.

The oblique projection of a random variable n € U onto U;” along U,
will be denoted by Ejy+[n|U;]. Clearly, if u is a white noise process, this
is the ordinary orthogonal projection onto U; .

Definition 5.2 We shall call a subspace X < U™ a oblique (causal) splitting
subspace for the pair (Y', U) if

Ep+[YTVX* U] = Eju+[YT VX" |X] (42)

Note that this condition is a generalization of the conditional
orthgonality condition (28) of the Markovian case. For the reasons
explained a moment ago, we shall only consider causal splitting subspaces
in this paper so the ‘“‘incoming” subspace S is now fixed equal to U™. The

oblique predictor space X*'~ := Ejy+[Y"|U7] is obviously contained in
U™ and is oblique splitting. It is in fact the minimal causal oblique splitting
subspace.
Write
y() = (Hwu)(0) + (W u)(1) (43)
where,
—1 t
(Hwu)(0) = D, Wegu(k),  (Wu)() = D Wi pu(k) (44)
= 0

Evidently (Hywu)(f) EU™ and (W u)(f) EU™ for +=0. This obvious fact
is formally recorded in the followimg lemma.
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Lemma 5.3 For t=0 the random variable (Hwu)(t) is the oblique
projection of y(f) onto U™ and belongs to X*'~. Consequently it belongs
to all causal oblique splitting subspaces X.

Lemma 5.4 Let X be an oblique splitting subspace and define

S=Y /X"
Then X = E||U+[§|U—] (hence X is the minimal oblique splitting subspace
for S and U™ contained in U™).

Proof. Every element s of S has the forms=y+x, yEY', x€X" s0
that Ejy+[y|U"]€EX*~CXCU™. On the other hand, by definition of
oblique splitting we have

Eu+[XT|UT] = Eju+[XT|X] xeX*
therefore

span{E|u+[5|UT][SES} =X
This implies that X is the oblique predictor space of S with respect to U™
and hence it is minimal splitting. [ |

The following is the ‘‘deterministic”’ analog of perpendicular intersec-
tion.

Lemma 5.5 Let the symbols have the same meaning as in Lemma 5.2.
Then

SNU™ =X

Proof. First note that X contains the intersection SNU~. For if
n€SN U~ then clearly it belongs to E||U+[§|U_] which is equal to X in
view of the previous lemma.

Then just observe that, conversely, the intersection contains X, since
SO X and U~ DX. This proves the lemma. [ ]

The result in particular applies to the extended future space Y =
YT \/(X*/7)7 (this is in a sense the “minimal” S).
Theorem 5.6 The oblique predictor space can be computed as the
intersection

Xt~ =(Y"yvUH)NU~ (45)

The proof of this result requires minimality theory and will not be given
here. It will be found in a forthcoming publication [50].
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Note that it is in general not true that X*'~ =Y * NU™~ as
E||U+[Y+ lU_] DYTNU™

properly, unless some special conditions are satisfied. Some partial results
pointing in the direction of Theorem 5.6 can be found in [44], Thm. 3.

Lemma 5.7 Let the symbols have the same meaning as in Lemma 5.2.
Then

S=SNU)+(SNUY (46)

Proof. That
SOSNU)+(SNUY)

is obvious since both terms in the right-hand side are subspaces of S. We
shall show that the opposite inclusion also holds.

We shall first show that Y* C(SNU7) + (SN U™). In effect, decompos-
ing y(f) for t =0 as in (43), i.e., y(1) = (Hwu)(r) + (W u)(f), from Lemma
5.3 above we have (Hwu)(f)EXCS, so that for t=0 necessarily
(W*w)(t) = y(f) — (Hwu)(f) €S as well. In fact (Hyu)()ESNU™ and
(W*u)(£) €SN U™, given the explicit dependence on the past and future
of u. Taking finite linear combinations of the form Xa; y(t), a;, €K™,
t;, = 0, and then closing in the Hilbert space norm of second-order random
variables gives immediately the inclusion we want. Second. by projecting
obliquely x™ €X™ onto the direct sum (40), we obtain

xt = E||U+[x+ U]+ E”U_[)C+ |U™].

The first term belongs to X = (SNU™) in view of the splitting property
(42), so since x* €S by definition, the second term in the sum must
belong to the same subspace. Evidently, then EjU~[x*|U]€(SNUY).
Hence X satisfies the same subspace inclusion as Y*. This concludes
the proof. [ ]

This intersection representation extends the formulaS = (SNS)@ (SN
S1). known for “orthogonal” splitting subspaces [36,37].

The following argument shows how state space realizations can be
constructed by a procedure based on the geometry of oblique splitting
subspaces.

Denote by U, the p-dimensional subspace of U, spanned by the
components of u(t). By Assumption 5.1

r1=U +U;
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and since S,,; CS,, we can then write
§t+1 N Ut_+1 - (§t N Ut_) + (§t N Ut) (47)

Now pick a basis vector x(f), say of dimension*® n in X, and let x(t + 1)
be the corresponding vector shifted by one unit of time. The n scalar
components of x(t+ 1) span S,,; N U7, so, by projecting x(t + 1) onto
the two components of the direct sum decomposition (47) we obtain a
unique representation of the type

x(t+ 1) = Ax(t) + Bu(r)
Similarly, since y(f) € N U, ;, we have
YD ES,NUL = (,NU)+(S,NT)

and by projecting y(f) onto the two components of the direct sum above
we immediately obtain the state-output equation

y(t) = Cx(t) + Du(r)

This leads to the following theorem.

Theorem 5.8 Assume the joint spectral density of y and u is rational and
that the input process satisfies Assumption 5.1. Then the oblique predictor
subspace X'~ is finite dimensional. To any choice of basis vector x(t) in
a finite-dimensional oblique splitting subspace X,, there correspond unique
matrices (A,B,C, D) such that

x(t+ 1) = Ax(t) + Bu(r) (48a)
y(t) = Cx(¢t) + Du(r) (48b)

and the realization (48) is causal, i.e. |A(A)|<1.
Conversely, the state space of any other causal realization of y is an
oblique splitting subspace.

Proof. We shall take for granted the statement that rationality implies
finite dimensionality of X*/~.

Now, it is evident that the state process x(f) of the representation
obtained by the geometric argument illustrated before the theorem
statement is stationary by construction. Hence, since x(f) is a functional

*Here for the sake of illustration we assumne that X, is finite dimensional.
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of the past history U,, there must be an n X p matrix function F(z)
analytic in {|z|>1}, with rows in the space LJ[®,dw/27] of functions
square integrable on the unit circle with respect to the matrix measure
®,(e!'”)dw/27, such that

+ar
x(t) = J e/ F(el*)dii

where @i denotes the Fourier transform (random orthogonal measure) of
the process u [53]. By substituting this into the state equation for x derived
above, we see, by uniqueness of the spectral representation, that
F(z) = (zI— A)"1B. Note that F(z) is rational and actually analytic also
on the unit circle, since poles of modulus 1 would prevent integrability
of the spectrum of x, F(z)®,(z)F(1/z)', on the unit circle. [Recall that
®,,(2z) has no zeros on the unti circle, so there cannot be cancellations with
the zeros of ®,(z)]. One easily deduces from the analyticity of F(z) that
the eigenvalues of the reachable subsystem of (A, B) must lie inside the
unit disk. On the other hand there cannot be eigenvalues of A with
|A(A)| =1, since eigenvalues with absolute value larger than one would
contradict stationarity and eigenvalues on the unit circle (necessarily
unreachable) would imply that x has a purely deterministic component.
This is impossible since X;” CU, and u is purely nondeterministic by
Assumption 5.1.

The proof of the last statement is a simple verification and will be
omitted. [ ]

VL. FINITE-INTERVAL REALIZATION WITH INPUTS

The analysis in the previous Sections III, IV, and V is based on the
idealized assumption that we have access to a doubly infinite sequence of
data. In reality we will have only a finite string of observed data (9) where,
however, N may be quite large. More specifically, we shall assume that
N is sufficiently large that replacing the ergodic limits (11) by the finite
time averages of N+ 1 elements yields good approximations of the true
covariances

{A0), A(1), AQ2) .... A(T)} (49)

for some lag T << N. This is equivalent to saying that N is sufficiently large
for the time averages (10) to be essentially the same as the inner
products

u(r) | [ w@©) |, _ ;
55 L | =40
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for r=0, ..., T. Hence we may in our analysis proceed as if we had two
finite sequences of random vectors

{w(0), u(1), u), ..., (D)},  {y(0), y(1), (2), ..., ¥(1)}  (50)

where each u(¢) and y(¢) is for our purposes the same as a semi-infinite
string (12) of data. It is of course to be understood that the inner products
are replaced by averages of finite sums when it comes to practical
implementation. This approximation is unavoidable and its effects will not
be discussed further here.

Now, the state space construction of Sections IV and V was done in
a stationary setting, where the state space model has to represent the
output process on an infinite time horizon. In a situation where only the
finite segment of data (50) is available it is necessary to understand the
relation between data and models which realize them on a finite interval
of time.

A finite-interval realization describes the process on a finite interval
[0, 7] without bringing in the history of the process outside of [0, 7).
Unfortunately, even if the process is stationary, a finite-interval realization
turns out to be in general a time-varying (nonstationary) system. The
notion of Markovian splitting subspaces applies without difficulty to
finite-interval realizations. For example, it is easy to see that the
finite-interval predictor spaces for the (stochastic component of the)
process y

X/~ = EYOAY, g, X't = EYienY g 4 (51)

are minimal Markovian splitting subspaces for the process y on the finite
interval [0, T]. These state spaces lead essentially to transient Kalman filter
(innovation) representations of the process. These state models are
initialized at x(0) = 0 and to x(T) = 0, respectively.

Even if the ultimate goal of modeling and identification is the
construction of a stationary model describing the (stationary) data which
are being observed, it is important to view model building in practice (i.e.,
when only a finite segment of data is available) as the construction of
finite-interval realizations, since this viewpoint only gives the correct way
of dealing with the (unknown) initial conditions of a stationary model.
Using state space models here facilitates things greatly as the transient
Kalman filter realizations are known to have exactly the same constant
(A, C) and C parameters as the stationary model. This point lies at the
foundations of the successful “subspace’ approach of Van Overschee and
De Moor [58] to time series identification.

Now while subspace methods identification of “purely stochastic™
systems (i.e., of signals or time series) seem to be reasonably well
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understood, see, e.g., the book [8], the influential paper [58], and the
subsequent discussions in [39], for systems which are driven by ‘“‘inputs”
or, exogenous variables, the picture still looks a bit unsatisfactory. Of the
various algorithms given in the literature [45,62,59] some require a rather
complicated analysis to motivate [59]. The assumptions on the input signal
are different (sometimes assumed to be a white noise process, a
“deterministic’’ known signal, etc.) and in particular the finite-interval
modeling issue seems to have been largely overlooked.

Regarding this last point, it has been shown in [47] that when data are
finite the two (stochastic and deterministic) realization problems cannot
be decoupled and solved separately as could be done for the stationary
infinite-interval situation. We shall try to explain below that this is an
important point to keep in mind, especially for what concerns the order
estimation step of the identification algorithm (this may perhaps sound
surprising to practitioners used to neglecting initial conditions and only
“thinking asymptotically™).

The finite history subspaces of H generated by the finite stochastic data
(50) will be denoted

Upo, 771 := span{u(t)|0=t=T}
Y(o.71:= span{y() |0 =t=T}.

The orthogonal complement of U, 7y in U, 71V Yio,77 will be denoted
by U[O 71- so that U, T]@U[o 1= Uo.11\VV Y[o.77- The practical computa-
tion of Ufa,T] can be done by an LQ factorization of the data matrix

generating Ujo. 11V Yjo, 17-
The following lemma is straightforward. It is taken from [47].

Lemma 6.1 Let y, be described by the deterministic realization (25).
Then
E[y(t)lU[O,T]] = E[yu(t)lU[OT]] = yz:(t)

where Y,(t) is described by the same state space model but started at a
different initial state, namely

2,0t +1)=A,%,0)+ B,u(t) (52a)
Yu(t) = Cy £y (1) + Dy, (1) (52b)
xAu(O) = E[xu(O)IU[O T]] (52C)

It follows from this lemma that the deterministic part of (26), namely
the system matrices (A,. By, C,, D,) (in a suitable basis) can be identified
by using any ‘‘deterministic” identification procedure, based on the data
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(9.0, u(®)|t=1,2, ..., T}. Once the system matrices are computed the
estimate of the initial state £,(0) can also be reconstructed.

The identification of the stochastic subsystem can be based on the
projections of the output data onto the complementary subspace Uﬁ)ﬂ.
To this end, we introduce the random vectors

95(0) = (&) — Ely() | Upa.ryl. O=t=T

These can be computed from the available data and actually we have
Ufo, 7 := span{s(1) |0 =t =T}

The following proposition, taken from [47], shows how the finite-time
estimate yy(f) relates to the stochastic component y;.

Proposition 6.2 Let y,(t) == y,(t) — 9,(t) (the “‘smoothing error” of v, (1)).
Then

V() =ys(O) +yu(0), O0=t=T (53)

Hence for finite data length, the projection y,(¢) of the output on the
complementary subspace Uﬁ)j] does not coincide with the stochastic
component yy(f), as would have happened for an infinite data length. The
“ideal” projection y,(f) is affected by an additional ‘‘smoothing error”
term y,(t) which depends on the error on the estimate of the initial state
of the deterministic component, £,(0) := x,(0) — £,(0). In fact,

V) = CuAL%,(0), 0=t=T

This additional term is a source of difficulty in identification of the
stochastic part since, if its different dynamics is not properly subtracted
off, it tends to produce a stochastic model of y, of a much higher dimension
than the true order 7. In fact, the estimated model will tend to include
also the dynamics of the deterministic subsystem. Therefore a preliminary
step is necessary for the identification of the stochastic component, i.e.,
to filter out y,(z) somehow.
Note that (53) has the explicit form

[ 95(0) C, [ ys(0) ]
ys(l) CllAll yé(]‘)
R : %,(0) + : (54)
o | Laal ] [

which can be rewritten more compactly in vector form as

Vs = Qufu(o) + s
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having denoted the (deterministic) observability matrix by ),,. Note that
the two terms on the right-hand side are uncorrelated. Once the
parameters (A,,C,) of the deterministic subsystem are identified, the
matrix {3, can be assumed to be known.

It seems that one may easily filter out y,, from y; by just premultiplying
the vector equation above by Q,Q;- where Q; is a matrix with rows
spanning the left nullspace of €),,. With a procedure of this kind however
a distortion is introduced on the time series {y(¢), t=0, ..., T} which
seems to be very hard to remove. To keep control on the reconstruction
errors, one needs to filter out the unwanted term y, by a sequential
algorithm. Below we shall describe an algorithm [48] which in principle
only distorts a small finite initial segment of the time series {y,(¢), t =0,
..., T}

Algorithm 6.3 Assume A, and A; have no common eigenvalues. The
following algorithm recovers the time series {yy(t), t=0, ..., T} asymp-
totically.

1. Compute a left-coprime factorization of the rational matrix
C.l-2z"'A)7 L. Let the mxm and mXn polynomial matrices
in the unit backward shift z7', D(z 1) =Z§Dyz7%, and
N(z™Y) =287 IN,z7% be such a left-coprime factorization, i.e., let

DE Y N Y)Y=C(l-2714,)7! (55)
2. Compute
¥(9) = D(z~1)95(0) (56)
so that y(t) = N(z7)£,(0) + D(z"V)y(t). Since the first term has finite
support t =0, ..., v—1,

¥(©) =D y0), t=v
3. Solve the following vector difference equation in the unknown variable
z(1)

D(z"Hz(t) = y(1), t=v (57)
started with initial conditions z(0)=z(1)=... z(v—1)=0. Then
z(t) = yy(t), for t large enough.

Proof. In symbolic notation we have
yu(t) = Cu(l_ z—lAu)—lx-u(O)

since y,(¢) is the zero-input response of the system (52) to the initial state
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£,(0). Hence, by applying the difference operator D(z™?) to the left-hand
side we see that
v—1

D50 = D, Nez ™ £00),
0
in particular, D(z"1)y,(¢) =0 for t=v». Then the difference equation
(57) reduces to D(z™1)z(t) = D(z~Yy4(t), t= v, subject to zero initial
conditions z(0) = z(1) = ... =z(v —1) = 0. Now since the linear system
represented (of course nonminimally) by the left MFD D(z")~!D(z™1)
has all transmission zeros different from the poles of the spectrum of
ys(t), it is obvious that this equation has the steady-state solution
2(t) = y,(0). O

The left-coprime MFD (65) can be computed by reducing the polynomial
matrix [(I—2z7'A,) C.]’ to upper triangular form by left-multiplication
by a unimodular polynomial matrix, namely

Uz™)  Vie™h)][d-27'A)] _ [RG™H
o gt M N e

where R(z™!) is upper triangular. From this one gets

VazT ) Uz ) = C I - 271 A7

VIl. POSITIVITY

A warning is in order concerning the implementation of the ‘‘subspace”
identification methods in that some nontrivial mathematical questions
related to positivity of the estimated spectrum have been completely
overlooked in the discussion. This issue is thoroughly discussed in [39] and
here we shall just present a short summary. The problem occurs only in
identification of the stochastic component, which we shall here name y
for short.

It is shown in [39,40] that subspace identification is equivalent to the
following three-step procedure which is essentially the same as that
discussed in [8].

1. The first step is estimation of a finite sequence of covariance matrices
{AO’ Ala e es AT} (58)

from the observed data.

2. The second step is identification of a rational model for the covariance
sequence (58). This is a minimal partial realization (also called
“rational extension’”) problem. Given a finite set of “experimental”
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covariance data one is asked to find a minimal value of n and a
minimal* triplet of matrices (A, C, C), of dimensions n X n, m X n, and
m X n, respectively, such that

A= CA* T, k=1,...,T (59)

The solution of the partial realization problem leads to “‘estimates”
of the parameters (A, C,C) of a minimal realization of a rational
spectral density matrix of the process.

3. The third step is to compute a stationary state space model (typically
the forward innovation model) by solving the linear matrix inequality
(6), or an appropriate equivalent Riccati equation, relative to the
rational estimated spectrum computed in step 2.

The estimation of (A,C,C) is done by simply matching second-order
moments, i.e., by solving the equations (59).

This is an instance of estimation by the method of moments described
in statistical textbooks, e.g., [11] p. 497, which is a very old idea used
extensively by Pearson in the beginning of the century. The underlying
estimation principle is that the parameter estimates should match exactly
the sample second-order moments and is close in spirit to the wide-sense
setting that one is normally working in. It does not involve optimality or
minimal distance criteria between the ‘“‘true” and the model distribu-
tions.

Once a minimal triplet (A, C, C) interpolating the partial sequence (58)
has been found, so that CA*"1C' =A4, k=1, 2, ..., T, we also
completely determine the infinite sequence

{A()r Alv A2v A3v e } (60)
by setting Ay, = CA*~!C' for k=T +1, T+2, . ... This sequence is called

a minimal rational extension of the finite sequence (58). The attribute
“rational” is due to the fact that

Z@)=3Ao+ Az 4 Apz 2+ - =AM+ CzI— A)TIC (61)

is a rational function. In order for (60) to be a bona fide covariance
sequence, however, it is necessary, but not sufficient, that the Toeplitz

*Recall that (A4, C, C) is minimal if (4, C) is completely observable and (A, C') is completely
reachable.
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matrix
Ay A A, ... A,
Al Ao Ay e A
i : o (62)
A, A1 A, ... A

be nonnegative definite. In fact, it is required that the function (the
spectral density corresponding to (60))

B(z) = Ao+ D, Ap(X +27%) = Z(2) + Z(z ™)’ (63)
k=1
be nonnegative on the unit circle. This is equivalent to the function Z(z)
being positive real. Consequently, the partial realization needs to be done
subject to the extra constraint of positivity.

The constraint of positivity is a rather tricky one and in all identification
methods which are directly or indirectly, as in the subspace methods
described in the literature, based on the interpolation conditon (59) it is
normally disregarded. For this reason these methods may fail to provide
a positive extension and hence may lead to data (A, C, C) for which there
are no solutions of the LMI and hence to totally inconsistent results.

It is important to appreciate the fact that the problem of positivity of the
extension has little to do with the ‘“‘noise” or *“sample variability”
superimposed on the covariance data and is present equally well for (finite)
data extracted from a true rational covariance sequence. For there is no
guarantee, even in this idealized situation, that the order of a minimal
rational extension (60) of the first T covariance matrices of the sequence
would be sufficiently high to equal the order of the infinite sequence and
hence to generate a positive extension. A minimal partial realization may
well fail to be positive because its order is too low to guarantee positivity.

Neglecting the positivity constraint amounts to tacitly assuming that

Assumption 7.1 The covariance data (58) can be generated exactly by
some (unknown) stochastic system whose dimension is equal to the rank
of the block Hankel matrix

Ar Ay Ay ... A,

o Az Az Ay ... Au

N : : : (64)
Ay Apst Apsz oo Agu g

where u = [T72].
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This assumption is not “generically satisfied” and it can be shown [39]
that there are relatively ‘‘large” sets of data (58) for which it does not hold.
It is not even enough to assume that the data are generated from a “‘true”
finite-dimensional stochastic system: the rank condition is also necessary.
Otherwise, for a minimal triplet (4, C, C) which satisfies the interpolation
condition (59), the positivity condition will not be automatically fulfilled,
and the matrix A may even fail to be stable.

A. Statistical Properties of Subspace Methods

There are also important questions concerning the statistical significance
(what are the uncertainty bounds on the parameters and on the estimated
transfer functions, etc.) of the subspace/realization approach which have
not been touched on in the previous sections. Some do not seem to have
been completely answered in the literature as yet.

Havenner and Aoki [24,9] have given an instrumental variable inter-
pretation of the formulas for the partial realization estimates of A, C,C
described in [8]. In particular, it is pointed out in [9] that using the state
variable as an instrument gives the most efficient estimates. It is not clear
however when these particular estimates are asymptotically of minimal
variance (statistically efficient). The statistical properties of the estimates of
the B and D matrices are also difficult to analyze. The paper [12] also
relates to the statistical significance of subspace methods but discusses a
particular class of estimation procedures which appear to be different from
the method of [58]. In any case the question of asymptotic relative
efficiency of subspace methods compared with ML (or PEM) methods (a
“central statistical question” according to [12]) is left open in the above
references.

Some argue that estimation by the method of moments is in general
“nonefficient” and it is generally claimed in the literature that one should
expect better results (in the sense of smaller asymptotic variance of the
estimates) by optimization methods. Actually if the covariance estimates
are maximum likelihood estimates and the partial realization problem has
a unique solution (modulo similarity), then, choosing (4,C,C) in a
suitable canonical form, there is a map

{AO, Ap ooy AT}_>(AvC’ C)

which is locally smooth and one-to-one. It follows by a well-known
theorem of Zehna [68] that the canonical parameter estimates are also
maximum likelihood estimates. Hence in this case we have efficient
estimates.
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This argument is elaborated in [51] where it is pointed out that the
subspace estimates of A,C,C (and also those of B, D) can in principle
be as efficient as ML. In fact, they are ML estimates if so are the sample
covariance estimates which are implicitly associated to the subspace °
identification method.

The model classes described above are wide-sense. In case the signal
y is believed to be Gaussian they can equivalently be interpreted as
defining the spectrum or the covariance function of a family of Gaussian
probability laws for the underlying stochastic process. These probability
laws are uniquely determined by a corresponding model and are then also
parametrized by the parameters (4, C, C).
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. INTRODUCTION

General state space modeling, initiated in Kitagawa [1], is a Bayesian
modeling of not-necessarily linear not-necessarily Gaussian time series.
It is an extension of our earlier work on *‘smoothness priors”, a Bayesian
linear Gaussian modeling of time series. That work in smoothness priors
(reviewed in [2]) was motivated by Akaike [3], a penalized likelihood
constrained least squares computational approach. Kalman filter-type state
space approaches to that modeling were introduced in [4] and [5]. The
term ‘“‘smoothness priors”, adopted from Shiller [6], was used in [7-9].
Subsequently we attempted to redo conventional time series analysis from
the linear Gaussian smoothness priors approach as well as extend that
approach to the analysis of previously unaddressed time series modeling
problems including the modeling of multivariate nonstationary covariance
time series.

Reference [1], a recursive computational algorithm for the realization
of an algorithm for not-necessarily linear not-necessarily Gaussian state
space modeling required numerical approximations of the densities or
Gaussian-sum approximations. Work on general state space methods
continued with emphasis on the development of computational methods
and on new applications. The initial computations of conditional distribu-
tions by numerical integration methods was adequate for systems with a
small number of states. For the analysis of seasonal time series with as
many as 13 states, Kitagawa [10] used a Gaussian sum approximation to
state estimation. A two-filter formula for Gaussian sum smoothing in

37



38 Gersch and Kitagawa

Kitagawa [11], completed the Gaussian sum approximation modeling. A
more recent development (Kitagawa [12,13]) is a Monte Carlo approach
to state estimation. This chapter attempts to coherently integrate and
communicate our work and present the original smoothness priors state
space and more recent general state space approach to time series analysis.
It is important to note that the AIC, ([14,15]), Akaike’s information
theoretic criterion for evaluating the parametric models fitted to data has
a crucial role in our approach to time series modeling.

Following this introduction, in Section II, background material includ-
ing Akaike’s AIC, smoothness priors and linear-Gaussian smoothness
priors state space modeling and some of its applications are briefly
reviewed. In the applications we present trend estimation, seasonal time
series estimation, and the estimation of a time-varying autoregressive
model for the estimation of gradually changing spectra. The general state
space model is treated in Section III. Included are brief treatments of the
numerical approximation, Gaussian sum approximation and Monte Carlo
methods of general state space filter/smoother implementations. Finally,
the emphasis of the chapter, on illustrating applications of general state
space modeling is in Section IV. In the applications of mostly real data
analysis, we present abrupt trend estimation, abrupt seasonal estimation,
and estimation of abruptly changing variance and abruptly changing
spectrum estimation. Also included are the modeling of an inhomogeneous
discrete process, of a quasi-periodic process, the filtering, and the
smoothing of a nonlinear process. The examples are realized by the
different methods of general state space implementation. A more complete
treatment of our work, including many more examples, is in Kitagawa and
Gersch [16]. A list of references concludes the chapter.

. BACKGROUND
A. The AIC

Akaike’s AIC [14,15] is an information theoretic criterion for the selection
of the best of alternative parametric models based on observed data. The
AIC has proven to be extensively applicable in statistical data analysis and
engineering modeling (see [17] and [18] for example). It is an approxi-
mately unbiased estimate of the expected log-likelihood, the essential part
of the Kullback-Leibler information. The Kullback-Leibler information
or the K-L number [19] is an information theoretic measure of the
dissimilarity between two distributions. The larger the measure, the
greater the difference between the two distributions.

The maximized log-likelihood is a biased estimator of the average
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expected log-likelihood. The bias is approximately equal to the number
of parameters estimated in the model [15]. An approximate correction of
the bias is reflected in the definition of the AIC given below.

AIC(m) = —2(maximized log-likelihood of the fitted model)
+2(number of estimated parameters in the model) €))

N
=-2 2 108 fru(¥n| ém) +2] éml
n=1

In (1), f,,,(y,,l(?m) denotes the likelihood and |8,,| denotes the dimension
of the vector 6,,. A derivation of the AIC is in Chapter 2 of [16].

B. Smoothness Priors

“Smoothness priors” originated as a normal distribution theory-linear
model-stochastic regression treatment of stationary and nonstationary time
series [6,3]. A conceptual predecessor of smoothness priors can be seen
in a smoothing problem posed in Whittaker [20]. In [2], a review of some
of our smoothness priors approach to the time series analyses of what are
essentially signal-in-noise estimation problems was presented. The method
is Bayesian. The Bayesianness provides a framework for doing statistical
inference. A prior distribution on the model parameters is expressed in
the form of a stochastic difference equation and parametrized by
hyperparameters which in turn have a crucial role in the analysis. The
maximization of the likelihood of a small number of hyperparameters
permits the robust modeling of a time series with relatively complex
structure and a very large number of implicitly inferred parameters. The
critical statistical ideas in smoothness priors are the likelihood of the
Bayesian model and the use of likelihood as a measure of the goodness
of fit of the model. Reference [1], an extension of smoothness priors to
not-necessarily Gaussian not-necessarily linear model smoothness priors,
initiated work in a general state space modeling methodology.

Our own work was motivated by Akaike [3]. We applied Akaike’s linear
regression model method to a variety of time series modeling problems
not considered by Akaike and also we embedded that method into a state
space model framework and applied the state space method to additional
problems.

For illustrative purposes, consider the simple case of a time series with
nonstationarity in the mean. That can be expressed as

Yn=latén (2)

where for simplicity ¢, is a stationary Gaussian white noise and ¢, is a mean
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value function (or trend component). The problem is to estimate the
unknown ¢,, n=1, ..., N, given the observations y,, n=1, ..., N.
Following the approach in [20] let the solution balance a tradeoff of
goodness of fit to the data and goodness of fit to a smoothness criterion.
This idea can be expressed by minimizing

N N

2 On= 1+ p2 D (VEt,)? (3)
n=1 n=k+1

for an appropriately chosen smoothness tradeoff parameter u2. In (3) VX4,

expresses a kth-order difference constraint on the solution ¢,, with

Vt,=t,—t,_q1, V?t, =V (Vt,), etc.

The properties of the solution to the problem in (2)-(3) are apparent.
If u2=0, t,=y,, and the solution is a replica of the observations. As u?
becomes increasingly large, the smoothness constraint dominates the
solution and the solution satisfies the kth-order constraint. For large u?
and k =1, the solution is a constant, for k = 2, it is a straight line, etc.
Whittaker [20] left the choice of u? to the investigator.

In Bayesian analysis [21], with the trend vector given by ¢t = (¢, t5, . . .,
t,)T: the conditional data distribution of the observation vector,
y=01, y2 ---» yn)7 is in the form p(y|t, 7%, 0%) = (2mwo?)~NM?
exp{—(y — t)'(y — t)/20%}. Then, w(t|y,*, 0?), the posterior distribution
of the trend parameters, is proportional to the product of the prior
distribution of the trend, m(¢| ), and the conditional data distribution and
may be seen to be

w(t|y, 7, 0%) = p(y|t, o) m(e| ) (4)

As seen below in (6), the prior distribution on the trend parameters is
a consequence of the difference equation constraints. The integration of
the right-hand side of (4) yields L(#%, %), the likelihood for the unknown
parameters 7 and 02,

L2, %) = J " o1t (e A dr s)

1.J. Good [22] referred to the maximization of (5) for the unknown
parameters 7 and o? as a Type II maximum likelihood method.

Ignoring initial values, the smoothness priors trend modeling problem
corresponds to the maximization of

N N
exo] = 552 2, On =} exof =55 > 9407 @

To within constant terms, the first term in (6) is the conditional data
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distribution and the second term corresponds to the prior distribution of
the trend.

The role of the hyperparameter 7% as a measure of the uncertainty in
the belief of the prior distribution is clear from (6). Relatively large 7
implies a relatively wiggly trend component. The ratio of 7/% can be
interpreted as a signal-to-noise ratio.

More complete treatments of this Bayesian approach to time series
analysis appear in [2], [23] and Kitagawa and Gersch [16].

C. Smoothness Priors State Space Modeling

First the standard state space analysis is reviewed. That is followed by
some smoothness priors state space analysis applications. The applications
include nonstationarity in the mean, which itself includes modeling time
series with nonstationary trends and seasonal components, and nonstation-
ary covariance modeling.

1. Review of Standard State Space Analysis
Let a state space model be given by [24]

Xn = ann—l + ann

Yn=Hpx,+ €, )
where y, is an /-dimensional time series, and x,, is an m-dimensional state
vector. w, and ¢, are k- and /-dimensional white noises with w,, ~ N(0, Q,,)
and £,~N(0,R,,). F,,, G, and H,, are m X m, m X k, and { X m matrices,
respectively.
2. State Estimation

The problem of state estimation is to evaluate p(y,|Y,,), the distribution
of y, given the observations Y,, = (y,, . .., y,,), and the initial values Xojo
and Vp. Various problems in time series analysis can be solved by
estimating the state vector. In the case of the standard state space model,
they are given by the following Kalman filter.

(a) Prediction.
Xnln—1= FpXp_1jn—1
Vajn-1=F, Vn—l|n—anT+ Gn,0.G,T (8)
(b) Filtering.
Ky = Vuu_1HI(H, Vain—1HI + R,)™!

Xnln = Xp|p—1 T Kn(yn— annln—l) (9)
Vn|n = (1_ Kan)ann—l
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Using the outputs of the Kalman filter, the smoothed state x,, given
the entire observations Yy is given by the following fixed interval
smoother.

(c) Smoothing.
Ap=VauFri1Vitin
Xn|N = Xn|n +An(xn+l|N_xn+l|n) (10)
Vn|N = Vn|n + An(Vn+l|N_ Vn+l|n)Ar—tr
(d) Identification of the Model. The state space model and the Kalman
filter yield a very efficient method for the computation of the likelihood

of the time series models. The likelihood can be expressed by using the
conditional distributions as follows:

N
L(®) =fO1, - -, yn16) = [ [ fOnl Yuzr) (11)

n=1

Each individual term in the last expresssion is given by
1 n— HyXpjn—1)?
Y. )= expl —Vn n*tnjn—1 12
f(ynl n l) \/Fr,, p{ 27‘,, ( )

with 7, = H, Vp,_1H,| + R,. Therefore, the log-likelihood of the model
is given by

1 N & (n = HpXpm1)?
= = —— n n*nn—1

I(6) = log L(6) Z{Nlog 2m + Z‘l log 7, +Z‘1 - } (13)
6, the maximum likelihood estimate of the parameter 6, is obtained by
maximizing (13) with respect to 6. Then, computing the AIC as defined by
(1) for each of the candidate fitted models yields a unified procedure for
fitting and selecting the best of alternative time series models. Examples of
this procedure of fitting alternative models and selecting as best the one
with the smallest AIC are illustrated throughout the chapter.

3. Nonstationarity in the Mean

As before, a time series with nonstationarity in the mean can be expressed
as

yn = tn + 5" (14)
with g, a stationary Gaussian white noise, and ¢, a mean value function
(or trend component) with

Vi, =w, (15)
w, is assumed to be a Gaussian white noise with mean zero and variance
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2. The state space models for difference constraint orders k = 1 and k =2
are given by

fork=1 FO=GW=HgM=1 x,=¢, (16)
2 -1 1
=2 F® = @ =
o=z 022 1) Gwa[l]
t
H® =1 0], xn=[ ] 17
tn—l

(a) A Simple Trend Model Example. The state space model in (17) is
used here for the estimation of the trend of nonstationary time series
embedded in white Gaussian noise. We consider an N = 200 simulated
data example in which the smooth trend has the functional form of an
asymmetrically truncated Gaussian function. The problem is: Given the

noisy observations {y,, n=1, ..., N}, estimate the unknown smooth
function that is corrupted by noise. That is, specify t,n, n=1, ..., N.
The “true” smooth function ¢,,, n=1, ..., N, and the smooth function

with the superposition of ¢, and the additive noise for the fixed trend model
order k =2 for different values of the hyperparameter are shown in Fig.
1. The critical role of the hyperparameter is clearly exhibited in this
example. The estimated trend is the most irregular for the smallest value
of 7 and becomes increasingly smooth with increasing values of 72.

One generalization of the simple trend plus uncorrelated observation
noise model is to a trend plus autoregressive (AR) component plus
observation noise model. In addition in [16], we considered a further
generalization for multiple time series in which there is acommon trend and
an individual AR process model for each individual time series component.
An observation model for the set of C simultaneous time series data with
common trend and individual AR components takes the form

Yiin= tn+vi,n+ Ein» i= 1, ey C (18)

where ¢, v; ,, € , are, respectively, the common trend, the individual AR
processes and the unobserved added noise process for each time series
component. The generalizations of the simple trend model to a trend
model with an AR component and also the multiple time series with a
common trend component and individual AR components are treated in
[16] with real data examples.

(b) Seasonal Component Time Series Modeling. Time series with
seasonal components arise for example in meteorological, oceanographic,
and econometric data modeling. Here we consider an example of
econometric data modeling. A model for the seasonal adjustment of
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Figure 1 Trend model order 2, for hyperparameter values “=8.0x%1078,
8.0x 1077, 8.0x1075, 8.0x 1073

econometric data [7,25] is

Yn=th+S,+v,+¢, (19)
where ¢, is a trend component, s, is a seasonal component, v,, is a globally
stationary AR component, and ¢, is an unobserved observation error
component.

As before, let the trend component ¢, satisfy a kth-order stochastically
perturbed difference equation

Ve, = wyp (20)

where w, , is an i.i.d. sequence with w; ,,~N(0, 7).
The stationary AR component v,, is assumed to satisfy an AR model
of order p. That is given by

Vp=a1Vp_1+ +apV, ptwr, (21)

In (21) w,, is an i.i.d. sequence with w, ,~ N(0, 7).
The seasonal component of the L period difference equation is

Sp= = Sp—1—Sp—2— " " Sp—L+1 T W3, (22)

In (22), w3, is an i.i.d. sequence with w3 ,~ N(0, 73).
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These components can be incorporated and expressed in the generic
state space model form (7). x,, is the state vector at time » and y, is the
observation at time n. For any particular model of the time series, the
matrices F, G, and H, are known and the observations are generated
recursively starting from an initial state that is assumed to be normally
distributed with mean xy and covariance matrix Vj.

The state space model that includes the local polynomial trend,
stationary AR component, seasonal, and observation error components
can be written in the orthogonal decomposition form

FF 0 0 G 0 0
Xp = 0 Fz 0 Xn—1 + 0 Gz 0 Wy,
0 0 F 0 0 Gs
yn=[ Hl H2 H3 ]xn+8n (23)
The component models (F;, G, H;) in order (j=1, ..., 3) represent the

trend, stationary AR, and seasonal components, respectively. The par-
ticular trend, AR, and seasonal component difference equation constraints
that we have employed and that have representations in the (Fj, G;, H))
matrices in (23) are shown in (20), (21), and (22).

The state or system noise vector w, and observation noise &, are
assumed to be independent normally distributed random variables with
zero mean and diagonal covariance matrix

0 » 0 0 0

w, 0 0 2 0 0

[e,,]N ol’fo o 4 0 (24)
0 0 0 0 &2

An example of a state space model that incorporates each of the components
with trend order 2, AR model order 2, and seasonal component with period
L=4is

t, 2 -1 th—1 [100]

t,—1 1 0 t,—o 000

vy a; a Vn—1 010 |[wy,
Va1 | = 1 0 Vo2 [+] 0 0 0 || Wy,
Sn -1 -1 -1 s, 001 | ws,
Sp—1 1 0 0] s,-2 000
Sp—2 0 1 0] s,—3 000

Y»=[10]1 0|10 O]x, +¢,
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Again ignoring initial values, the smoothness priors problem that includes
all of the components in the decomposition identified above corresponds
to the maximization of

N 1 N
"Zl (yn iy sn)z} exp{ - 2—1%"21 (Vk tn)z}

1
exp{ - F
N

1 P 2
X exp{ —2—1%'2 (V,, - Zl a,'V,,_i) }

=1

1 N L—1 2
<ol - 272 (Zo) | @

The first term in (25) corresponds to the conditional data distribution. The
remaining terms in (25) in order correspond to the priors on the trend,
the globally stochastic component and the seasonal component.

The role of the hyperparameters 73 and 73 as measures of the
uncertainty in the belief of the priors is clear from (25). Relatively large
73 (13) imply relatively wiggly trend (seasonal) components. Relatively
small 72 (73) imply relatively smooth trend (seasonal) components. The
ratios of 1',2/02, j = 1or 3, can be interpreted as signal-to-noise ratios. Here,
too, the value of o2 in (25) is estimated essentially free of computational
cost in the Kalman filter algorithm.

{¢c) A Seasonal Adjustment Example. Here we examine the modeling
and prediction performance of seasonal models with and without AR
components in the 27-year monthly (N = 324), log-transformed sale of
household appliance data (US Bureau of the Census). The modeling and
prediction performance of globally stochastic AR components with AR
components of different order were fitted and the AIC best component
model was determined.

The computational and graphical results shown here were obtained
using the DECOMP program which appeared in [26]. Table 1 shows the
AR model order and corresponding values of the log-likelihood, estimated
innovations variance and AICs.

The AIC best model is the one with the AR model order m = 2. The
AIC is computed from the usual formula and includes the log-Jacobian
of the transformation. The number of parameters estimated is the sum
of the number of hyperparameters, plus the number of AR components
plus the state dimension. As expected, the largest absolute and relative
changes in the log-likelihood, estimated innovations variance 6% and AIC
in Table 1 occur in going from the AR(0) model to the AR(1) model.
Subsequent to identifying the AR(2) model as the single best model, we
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Table 1 AR Model Order and AICs

AR model Log

order likelihood Variance AIC
0 962.410 0.369 x 10~ 3347

1 1004.602 0.277 x 10~* 3266

2 1008.097 0.226 x 10~* 3261

3 1008.333 0.110 x 10~ 3263

4 1008.331 0.145x 10~* 3265
withheld the 24 observations, » = 301, ..., 324, recomputed the AR(0)

and AR(2) models, and predicted the withheld data.

Graphical results from these computations are in Fig. 2. The left-hand
column results, in that illustration, correspond to the AR(0) model; the
right-hand column refer to the AR(2) model. It is noteworthy that the
trend of the AR component model is smoother than the trend of the
without-AR component model. Also, the trend plus AR component is
almost indistinguishable from the trend in the without-AR component
model. The seasonal component and the noise component of the AR(2)
model were very similar to those of the AR(0) model and are not shown.
The last row of graphs in Fig. 2 shows the true data n = 276, 277, .. .,
324, the (out-of-sample) forecast values for » = 301, 302, ..., 324, and
the corresponding *+1, 2, 30 forecast bands around the forecast values.
Those graphs illustrate an important property of the AIC best trend plus
seasonal plus AR component model, as compared to the trend plus
seasonal model. That is, the forecast bands of the AIC best, trend plus
AR plus seasonal model are much tighter than those for the model without
an AR component. Therefore we can be more confident about the
reliability of the forecast using the trend plus AR plus seasonal model than
from the trend plus seasonal model. We have seen many time series in
which the trend plus AR plus seasonal model is the better AIC criterion
model than the trend plus seasonal model.

4. Smoothly Changing Spectrum Estimation

The problem of modeling time series with changing spectra arises
in numerous applications areas, including meteorology, oceanography,
speech processing, and automatic analysis of biomedical signals such as
electroencephalograms and electrocardiograms. Of the approaches that
have been proposed for the modeling of changing spectra included are,
partitioning the time series into stationary segments and modeling each
segment as an AR or ARMA model (for example [27,28]), state
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Figure 2 Linear Gaussian model analysis of household appliances data. (a) Results
from models without an AR component, original and trend, seasonal and noise
components. True data, n =276, ..., 324, out of sample forecast, n =301, .. .,
324, and 30 band. (b) Results from models with an AR component, original and
trend, AR component and original and trend plus AR components. True data,
n=276, ..., 324, out of sample forecast, n =301, . .., 324, and 3o band.

space modeling with time-dependent coefficients [29], and orthogonal
polynomial expansion of the AR coefficients of a time varying AR
(TVAR) coefficient model [30]. Other notable research in time varying
AR coefficient modeling is known.

Kitagawa [31] introduced a smoothness priors state space approach for
TVAR coefficient modeling. Subsequently variations on smoothness priors
state space TVAR modeling appeared in [7,32] and Kitagawa’s program
TVCAR in [26].

The problem in modeling nonstationary covariance time series is to
achieve an efficient parametrization to capture the local and global
statistical relationships in the time series. That objective is achieved here
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via the TVAR coefficient model by imposing smoothness priors constraints
in the form of stochastically perturbed difference equations directly on the
evolution of the individual AR coefficients. The variances of the white
noise stochastic perturbations are the hyperparameters of the AR
coefficient distributions. An alternative approach, imposing smoothness
priors constraints in the form of stochastically perturbed difference
equations on the evolution of the PARCOR coefficient in a Levinson
algorithm type lattice structure AR modeling is presented in Section IV.D
where we treat the modeling of time series with abruptly changing spectra.
The TVAR model is used in the computation of an “instantaneous spectral
density”. A formal definition of the concept of evolutionary spectra in the
context of nonlinear wavelet thresholding appears in [33]. (That approach
to changing spectrum estimation is too remote from our interests to be
treated here.)

(a) A Scalar Time-Varying AR Coefficient Model. The generic scalar

time-varying AR coefficient model of the observed data y=y,, ..., yy
is given by
m

Yn= 2 QnYn—itWn, Wp~ dist(0, 02!!) (26)
i=1

In general, in (26), the innovations w,, n =1, ..., N, are constrained to

be independent but not necessarily Gaussian distributed or necessarily
with constant variance. Initially we consider the case in which they are
Gaussian.

Here, we assume that we are modeling a nonstationary covariance time
series whose covariance structure changes slowly in time. In that case, the
coefficients a; ,, in (26) are assumed to change “gradually” with time and
w, is assumed to be a normally distributed white noise sequence with
perhaps an instantaneous variance o2. Since there are mX N AR
coefficients in the model in (26), an attempt to fit the parameters by least
squares or any other ordinary means to the N observations y,, ..., yn,
will yield poor parameter estimates. We consider the unknown AR
coefficients to be random variables and impose Gaussian distributed
stochastic constraints on those coefficients. Those constraints define a
Gaussian smoothness prior distribution on the time history of the AR
coefficients.

A simple and useful constraint for a time-varying AR coefficient model
is obtained by imposing the stochastically perturbed difference equation
constraint model on the evolution of the AR model parameters,

Via; =8, i=1,...,m (27
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For convenience, in (27) §; , is assumed to be a zero-mean Gaussian white
noise sequence with variance 77 independent of i and n. That is, % = 7,
i=1, ..., m In addition, the frequency domain constraints shown in [8]
are also incorporated in this model.

The smoothness priors constraints on the AR coefficients mitigate the
problem of overparametrization by permitting the AR coefficients to be
expressed as the solution of the constrained least squares problem

N 2 N m
2 |:yn - ai,nyn—i] + (2 2 2 [Vkai,n]2
n=1 i=1

n=1 i=1

N m N m
2 QN Y D i, (28)
n=1 i=1 n=1 i=1
In (28), m and k are assumed known and the third and fourth terms in
(28) relate to the additional frequency domain smoothness priors con-
straint terms ([8,16]). £2, +*, and A2, the tradeoff parameters which balance
the infidelity of the model to the data, and the infidelity of the model to
the smoothness constraints are not known.
Equation (28) yields a Bayesian interpretation of the least squares
problem. Multiply (28) by —1/2¢% and exponentiate. Then, to within a
constant term,

m

V2 N m /\2 N m

X exp{ - —27'7"21 ; a,-z,,,} exp{ ~ 52 2 2 i4a,-2,,,} (29)
expresses the product of the conditional data distribution, the prior
distribution of the smoothness of the AR parameters and the prior
distribution of the smoothness of the spectrum. As before, integration of
the posterior distribution of the AR parameters yields the likelihood for
the smoothness tradeoff parameters.

The TVCAR program [26] uses this approach to the modeling of time
varying AR models. That program incorporates a provision for human
intervention which permits the modeling of nonstationary covariance time
series with abruptly changing covariance structure as occurs for example
in seismic events time series. At the specific instants of abruptly changing
covariance structure, the observation variance is made very large. In effect,
that artifice is equivalent to starting the program over again at those
specified time points. In Section 4, we show a non-Gaussian method of
time varying AR coefficient modeling which achieves such an effect
automatically without human intervention.
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A complete state space model which incorporates the smoothness priors
constraints in (28) is

ay,n 1 a1,n—1 [ Wi.n
X, = = . +
am,n 1 am,n—l _wm,n
—yn Yn Yn—1 Yn—m Ep T
0 1 Ul n
= Xp +
| 0 1 0 Um.pn
[ wl,n 0 {-2
~N||:1, . (30)
| Wm,n 0 (-2
€, 0 a7 0 . 0
Uy pn 0 0 (F+AH! :
. ~N -1, . .
: : : . . 0
|t 0 0 .. 0 (FP+m*a2)!

For a fixed difference order k, the best fit of the state space smoothness
priors constraints-time varying AR coefficient model to the data y,, ...,
yn is the one for which the likelihood of the hyperparameters is
maximized. The likelihood is computed using the recursive formulas shown
in Section 11.C.2.

(b) Instantaneous Spectrum. The applications we are concerned with
here, in the fitting of time varying autoregressive models to data, involve
the estimation of an instantaneous power spectrum. That term is due to
Page in a pioneering paper [34]. Other contributions to the topic include,
for example, [35] and [36].

The instantaneous power spectral density is the distribution of energy
in the time series as a function of frequency at an instant in time. The
more conventional analysis of stationary time series by parametric or
Fourier transform methods extended to an evolutionary spectrum [35], do
not have the time-frequency resolution properties necessary to capture the
transitory characteristics of relatively rapidly changing nonstationary
covariance data.

Our own approach is to define an instantaneous spectrum operationally.
In a natural way we extend the definition of the power spectral density
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of a stationary process to that of an instantaneous power spectrum in terms
of the time varying autoregressive model. That approach, while not
mathematically formal, appears to yield meaningful computational results.
Examples were shown for the scalar case in [8] and [31] in the modeling
of scalar nonstationary covariance time series. An adaptive spectrum
estimation variation [37] combines a smoothness priors long AR modeling
[9] and state space modeling.

Therefore motivated by earlier work on spectrum estimation and the
considerations discussed above, we define the instantaneous spectrum of
a time-varying coefficient AR process by

%

D TS 2mk

—3=f=} (31)

The value of the instantaneous spectrum is obtained by substituting the
smoothed estimates of the TVAR coefficients and a smoothed estimate
of the innovations variance o2 (Section IV.C.3) into (31). The method of
estimation of instantaneous frequency introduced here has superior
time-frequency resolution properties than any of the methods reported in
survey articles on the subject [38].

(c) An Example. The MYE2F Hokkaido seismic data, n = 2600, was
modeled using the TVCAR program [26]. Two different runs of the
program were made with the AR model order m = 8. One was a linear
Gaussian modeling, the other was a “human intervention” run in which
the P-wave and S-wave arrival times estimated by using the locally
stationary AR model were inputs to the program. The likelihoods for the
Gaussian and human intervention runs were respectively —2792.35 and
—2723.97. Correspondingly the AICs were 5592.70 and 5455.95. The
human intervention model was the better AIC model. Figure 3a respec-
tively shows the original earthquake data, the envelope function and the
variance normalized data for the human intervention run. Figure 3b
illustrates the evolution of the PARCORs. The abrupt changes in the
appearance of the envelope function and PARCORs is a direct conse-
quence of the intervention. In Fig. 3c the evolution of the instantaneous
spectra computed from both the linear Gaussian model and the human
intervention model are shown. The intervention model instantaneous
spectrum captures the abrupt changes in the spectrum. Initially we observe
the spectrum of the background or ongoing vibrations of the earth. The
dramatic changes in the spectrum coincident with the arrival of the P-wave
and the S-wave are clearly discernible. After the S-wave, the spectrum
tends to return to its original steady-state form. The appearance of the
evolutionary spectrum in the linear Gaussian nonintervention modeling
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Figure 3 (a) Original earthquake data, envelope function and variance normalized
data. (b) Evolution of the PARCORs. (c) The evolution of the instantaneous spectra
computed from the linear Gaussian model and the human intervention model.
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is seen to only change gradually and the transitions from background to
P-wave to S-wave spectra are blurred.

il. THE GENERAL STATE SPACE MODEL

Consider a system described by a general state space model

Xn ~ q(xnlxn—l)
Y,~ r(yn|xn) (32)

where y,, is the time series and x, is the unknown state vector. g and r
are conditional distributions of x, given x,_, and of y, given x,,
respectively. The initial state vector x is distributed according to the
distribution p(xo|Yp). This general state space model includes various
important time series models including a linear state space model with
non-Gaussian white noises, nonlinear state space modeling, and modeling
of inhomogeneous discrete processes.

(a) General Filtering and Smoothing. For the state estimation of the
general state space model, we need to evaluate p(x,|Y,,), the conditional
distribution of x, given observations Y,,. It can be shown that for the
general state space model, the recursive formulas for obtaining the one
step ahead predictor, the filter, and the smoother are given as follows
([1,16,39]).

(b) One Step Ahead Prediction.

p(xn| Yn—l) = J q(xn|xn—l)p(xn—l| Yn—l) d-xn—l (33)

(c) Filtering.
r(yn | xn)P(xn| Yn— 1)

X,|Y,) = (34)
P( nI ) p(ynl Yn—l)
where p(y,|Y,_1) is obtained by [r(y,|x,)p(xn| Yn-1) dx,.
(d) Smoothing.
® p(xn+1| YN) q(xn+l Ixn)
= dx,4 1. 35
p(xn| YN) p(xn| Yn) J;w P(xn+1| Yn) n+1 ( )

The formulas (33), (34), and (35) show recursive relations between state
distributions. However, the conditional distribution of the state p(x,|Y,,)
is in general non-Gaussian. In the next subsection, a numerical method
for the realization of the formulas is shown.
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For the general state space model the log likelihood is obtained by

N
1(8) =" 1og p(yn| Yr—1) (36)
n=1

It should be noted here that p(y,|Y,_,) is the denominator of (34).
Therefore the log-likelihood is obtained as the by-product of the
non-Gaussian filter.

A. Implementations of the General Filter and Smoother

In this subsection, we briefly show methods for implementing the general
filtering and smoothing formulas for the case when the distribution has
a density function.

1. Numerical Approximation

The general filtering and smoothing formulas can be realized by using
numerical approximation to the densities. In this approach, each density
function is approximated by a step function, continuous piecewise linear
function, or spline function. In the step-function approximation, each
function is expressed by the number of segments, k, location of nodes,
x; (=0, ..., k), and the value of the density at each segment,
pi» (i=0, ..., k). Specifically, we use the following notation:
p(xnl Y, )~ {k,x;,pni}, p(xnl Y,) ~{k, x;, fui}» p(xnl YnN)~{k, i, 8}
q(x) ~ {kq,xq, q;}.

In a typical situation, the filtering and smoothing formulas can be
implemented by using the nonlinear transformation of state, the convolu-
tion of two densities, Bayes formula, and normalization. They can be
realized as follows:

e Convolution: p,; = AxE};l Gi—jfn—1;
® Normalization: C = AfoLl PniTyi
® Bayes formula: f,; = C_lp,,,«ryi.

(a) Remark. In the above implementation, most of the computing time
is spent for the convolution. This computation can be significantly reduced
by using an FFT algorithm [39].

2. Gaussian Sum Approximation

In the case of a state space model with densities, another way of
implementing the non-Gaussian filter is to use Gaussian sum (mixture)
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approximations to the densities [40]. In this method each density is
approximated by a Gaussian sum:

m m,
p(xnlxn—l) = 2 ai‘Pi(xnlxn—l)’ p(ynlxn) = 2 Bj‘Pj(ynlxn)
i=1 i=1
Mp, Imf'l

p(xa|Yp1) = 2 Yin®Pi(n| Yr-1), p(xa|Yy) = 2 8in@1(Xn| Yy)

k=1 =1
where each ¢; is a Gaussian density with appropriate mean and covariance
matrix. Using this approximation, the formulas for prediction and filtering
[11] are:
(a) Prediction.
M mp,
p(x|Yp—) = 2 2 ;) - 19i(Xn| Y1) ‘“2 Yin®Pk(Xn| Yr-1) (37)

i=1 I=1
(b) Filtering.

m, mp, myg,
p(xnl Yn) 2 2 ik, n‘Pl(xnl Yn) Zsln‘Pl(xnl Yn) (38)
j=1 k=
Here = means reordering, v¥,= ;8,1 (for some k),

8ikc.n = B Yk @jk(¥n| Yn—1) (for some /) and ¢; and ¢y are obtained by the
Kalman filter.

The Gaussian-sum version of the smoothing can be derived by using
the two-filter formula for smoothing [12]. Let Y"= {y,,, . . ., yy} denote
the set of present and future observations. Then

p(xnl Yn—l)P(Y" |xn)

= n =
p(xnl YN) p(xnl Yn—l, Y ) P(Ynl Yn—l) (39)
and p(Y"|x,) can be evaluated by the following backward filtering
PO i) = [ D0 200l (40)
p(Y”|x,,) =p(Yn+1|xn)r(yn|xn) (41)

Therefore, by using this two-filter formula for smoothing, the Guassian-
sum version of the smoother can be obtained.

3. A Monte Carlo Filtering and Smoothing Method

The use of Monte Carlo-Gibbs sampling methods for statistical data
analysis received a considerable impetus from [41,42] and many sub-
sequent papers. More recently Monte Carlo methods have been applied
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to time series analysis, and to non-Gaussian and nonlinear modeling as
well [43,44]; however they have primarily been used to achieve numerical
integration.

Here, we show a direct Monte Carlo method for state space prediction,
filtering and smoothing. In this method, each conditional distribution is
expressed by many of its realizations, and the movement of each “particle”
(sample from a distribution) is simulated by using the assumed model. It
can be applied to a wide class of nonlinear non-Gaussian higher
dimensional state space models if the dimensions of the system noise and
the observational noise are low. Examples of the application of the Monte
Carlo method include the modeling of time series with abrupt trend
discontinuities, time series with abrupt trend and seasonal discontinuities,
and nonlinear time series. Additional examples and many technical details
that are not shown here appear in [12,13]. An interesting variation of the
resampling scheme in the filtering procedure is in [45].

(@) One Step Ahead Prediction. Let {s{V,, ..., s{™)} be independent
realizations of p(x,_;|Y,-1). That is, fori=1, ..., m
S ~p(En_1| Ynoy) (42)

Here, m is the number of “particles” used for the approximation. Using
these realizations, generate an ith sample at time n, ) by

) ~ q(xalsi 1) (43)
Then, {t{, ..., t{™} can be considered as realizations of the one step
ahead predictor p(x,|Y,—1).

(b) Filtering. Given the current observation y, and tD ~p(x,| Vo),
compute

af = H(y,|tP) (44)
for j=1, ..., m. Then, given y,, the posterior probability is given by
(). L aP
Pr(x, = tP|Y,) = = = 45)
( n n | n ’(1) # Erin=la’(11) (

For the next predictlon step, it is necessary to represent this distribution
function by an empirical distribution. This can be done by generating m
independent realizations {s(V, . .., s¢™} by the resampling of {¢{", ..
U™} with probabilities

b4

o
a’(11)+ et a’({")

Pr(sP = D|Y,) = forj=1,...,m (46)

(c) An Algorithm for Filtering and Computation of the Likelihood. The
following is a summary of the prediction and filtering algorithm.
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1. Determine m, the number of realizations to be used for the approxima-
tion of each distribution.

2. Generate a k-dimensional random number s§ ~py(x) for j=1,
ceey M.

3. Repeat the following steps forn=1, ..., N.
(a) Generate t9 ~q(x|sQ) forj=1, ..., m.

(b) Compute af = r(g(y,,t))|dglay| for j=1, ..., m.
(¢) Generate sP ~ (ST 1)1 1aPI(x,tD) for j=1, ..., m by
the resampling of 1§V, . . ., t¢™. (I is the indicator function.)

(d) Smoothing. In principle, the algorithm for smoothing can be
obtained by a simple generalization of the filter algorithm. A careful
treatment required to avoid numerical difficulties is in [13]. We consider
a smoothing algorithm based on storing the state vector. Assume that (s,

...» $924) is the jth realization of (xy, ..., x,_;) and w$ ~g(w), and
define (¢, .. .y t9) by t,ﬂ) =sPfori=1,...,n—1and f(s9,,w?) for
i=n. Then (¢ _,, ..., tﬁ’?n_l) can be considered as realizations from

p(tsj)’ e tr(i,)| n—l)-

Next, given the observation y,, p(tf, ..., t9|Y,_,) is updated as
follows:

i ®» =p(y,,|t,(,’))p(tY), o 1P Yay)

P, .., PIY,) TS @)
This indicates that realization of the fixed interval smoother, p(x,, ...,
X,|Y,), can be obtained by storing and resampling m sets of realizations
(tY), Cey t,(,i)), j=1, ..., m, with the same probability as for the filtering
case.

In principle, this algorithm realizes the fixed interval smoothing for the
nonlinear non-Gaussian state space model. However, in practice, since the
number of realizations is finite, the repetition of the resampling will
gradually decrease the number of different realizations and will deteriorate
the shape of the distribution. Therefore, it is recommended to stop the
smoothing algorithm after repeating the resampling fewer times (at the
largest, less than 5 per cent of m is recommended).

The outcome is equivalent to applying an L-lag fixed lag smoother
rather than the fixed interval smoother. The increase of lag L will improve
the accuracy of the p(x,|Y,..) as an approximation to p(x,|Ys), while
it will decrease the accuracy of {s{1, ..., s{"} as representatives of
P(Xn| Yyi ). Since p(x,|Y,1) usually converges quickly to p(x,|Yy), it
is recommended to take L not so large.

Another way of achieving fixed interval smoothing is to apply the
two-filter formula used in [11]. Examples of the application of the Monte
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Carlo filtering method are in Section IV. Additional examples are shown
in Kitagawa [13] and Kitagawa and Gersch [16].

IV. APPLICATIONS OF GENERAL STATE SPACE
MODELING

A. Modeling Trends with Abrupt Discontinuities

Here we consider the modeling of a synthesized data set time series with
a trend which has abrupt discontinuities. To achieve reliable modeling of
such time series it is necessary to use the more general state space model
with either non-Gaussian state and/or non-Gaussian observation noise
processes. The performance of the Gaussian disturbances smooth trend
model, the numerical integration, and the Gaussian sum methods
of non-Gaussian state space modeling (described in Section III) are
shown.
Consider the data generated from the following model

Yn~N(tm1)

0 n= 1,...,100
1.5 n=101, ..., 200
-1 n=201,...,300

0 n=301, ..., 400

ty =

(48)

In the top left insert in Fig. 4, the theoretical constant mean trend values
in successive intervals, are superimposed on the observed data. The
problem is to estimate the abruptly changing mean value function ¢,,.

For these data we used the model

V&, = w,
Yn=tpt e, (49)

As before, V is the difference operator defined by V¢, =1¢,—t,_; and w,
and &, are white noise sequences that are not necessarily normally
distributed. For simplicity in the analysis, we assume that the difference
order k is one. In this case, the state space model takes on a particularly
simple form with the state, transition, input and observation matrices
respectively given by x,,=¢,, F= G = H = 1. As a consequence of earlier
experience, the following system and observation noise model classes were
considered:

Model (a): &,~ N(0,1), w, ~aN(0,7) + (1 — &)N(0, )
Model (b): &,~ N(0,1), w,~ Q(b, 7). (50)
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]

Figure 4 Nonstationary mean data with an abruptly changing theoretical mean
value superimposed and marginal posterior densities, for the best Gaussian, Pearson
and sum of Gaussian models.

Model (a) denotes a mixture of Gaussian noises. In Model (b),
Q(b, ™) denotes the distribution of the Pearson system with density
q(x;b,7) = C(# +x*)~b with J<b=w and C=2"1TBL)T(b -HI'E)
[46]. This broad family of distributions includes the Cauchy distribution
(b =1) and the Gaussian distribution (b = ). These models were fitted
by the numerical integration method.

In the analysis of these data, in Model (a), 72 was arbitrarily set to 4.0,
approximately the sample variance of the simulated data. The maximum
likelihood estimate of 72 for the Gaussian model, Model (a), witha=1.0
or equivalently Model (b) with b = =, was # = 0.0197. The AIC of the
model was 1189.44. For the mixture of Gaussian system noises model,
& =0.99, # = 0.000004, and AIC = 1179.59. We tried six Pearson family
models: b =0.6,0.75,1.0, 1.5, 3.0 and ». b = 0.60 is the AIC best Pearson
family model with % =0.90 X 1071° and AIC = 1180.98. The AIC best
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model is the mixture of Gaussian noises model. The graphical results in
Fig. 4 clearly confirm that appraisal.

B. Non-Gaussian Seasonal Component Time Series

As in Section II.C.3, nonstationary trend estimation is here extended to
include nonstationary non-Gaussian seasonal components. Here neither
the system noise w, nor the observational noise €, is assumed to be
Gaussian. We assume that they are distributed as a mixture of Gaussian
distributions

p(x) = ap1(x) + (1 — &) pa(x)

where a is the mixture weight and ¢,(x) and ¢,(x) are Gaussian densities
with appropriate means and variances. Since the state dimension of the
seasonal adjustment model is large, we used a Gaussian sum approxima-
tion.

The generic state space model that we consider for non-Gaussian
seasonal adjustment is the same as that in (7) with the exception that
instead of Gaussian process noise and Gaussian observation noise we
permit one or the other or both noise processes to be the sum of Gaussian
processes. A real data example of non-Gaussian seasonal adjustment
modeling realized by both the Gaussian sum-two filter and Monte Carlo
methods is shown.

(a) A Real Data Abrupt Trend and Abrupt Seasonal Model Example. A
real data example of the analysis of an economic time series, the quarterly
series of the increase of the inventories of private companies in Japan
1965-1983 is discussed here. The data were modeled by a Gaussian
disturbance model and also modeled under the assumption of Gaussian
observation noise and a two-component Gaussian mixture process noise
model. A second-order trend model was used, therefore the state
dimension was 5. Gaussian and Gaussian mixture modeling results by both
the two-filter formula and the Monte Carlo filter are shown in Fig. 5.
The original data are in the top row of Fig. 5. The observation interval
includes the time of the 1973 oil price crisis so, as expected, abrupt changes
can be seen in the original data. Graphical results of the estimated trend
and seasonal components for the Gaussian and Gaussian mixture two-filter
formula modeling methods are shown in the left- and right-hand columns
respectively. The Gaussian model smooths out the abrupt changes in the
trend. Those abrupt changes can be clearly seen in both the Gaussian
mixture two-filter formula and Monte Carlo modeling methods’ graphical
results. Also the seasonal component in the linear Gaussian modeling is
quite different from that seen in the non-Gaussian modeling method.
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Figure 5 Analysis of quarterly increase of inventories series. (a) Top row, the
original data. (b) Linear Gaussian model analysis, posterior means of trend seasonal
and noise components. (c) Gaussian mixture two-filter analysis, posterior medians
of trend, seasonal and noise components. (d) Linear Gaussian model analysis by
a Monte Carlo smoother. (¢) Gaussian mixture modeling by a Monte Carlo
smoother.

C. Modeling Time-Varying Variance

First we consider a Gaussian state space modeling of changing variance.
Consider a realization of white noise s, n =1, ..., N, where s,, ~ N(0, 0-2,,)
with unknown time-varying variance o%. Then, the stochastic process x2,
defined by

X = (31 +5%)2, m=1,..., N2 (51)
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constitutes an independent sequence of chi-square random variables with
two degrees of freedom (X2, ~ x3). Then from [47] the transformation

tm = log x5 + v (52)

where y = 0.57722 is the Euler constant, leaves the independent random
variable t,, with distribution that is almost normal and with the mean and
variance

E[t,,] =log 0%,  varlt,]=7%6 (53)

That tranformation justifies our use of a smoothness priors procedure for
the estimation of ¢,,,, and hence for the estimation of the unknown variance
0%,,. This approximate normal property of f,, for smoothing the log-
periodogram was used in [48].

To obtain a smooth estimate of the variance o2, consider a kth-order
difference equation constraint on the log variance defined by

Vet = Wy, (34)

In (54), w,,, ~ N(0, 1'2) i.i.d. Then, as before, embed the difference equation
constraint model in (54) into a state space form

X, = Fx,,_1+Gw,,
t,, = Hx,, + &,

(G 2] &

For convenience, assume here that k =2. Define the state vector
X = (> tm—1)T. Then the matrices F, G, H associated with (55) are

e[ ool o

Application of the Kalman filter and smoothing algorithms
described in Section II yields the smoothed value of t,y, the
logarithm of the smoothed estimate of the changing variance.

022,,,|N= O%m—llN= exp{tmn— v} Will then be our smoothed estimate of
the changing variance.

(a) A Seismic Data Example. Here, the changing variance structure of
the Urakawa-Oki, Hokkaido, Japan March 21 1982 earthquake data [49]
is estimated by both Gaussian and non-Gaussian state space models.
First we consider a linear state space Gaussian modeling of the seismic
data. Figure 6a shows an N = 1000 seismometer earthquake signal
observed in Hokkaido, March 21, Japan 1982 [49]. The original data were
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Figure 6 (a) Seismometer recording of an earthquake observed in Hokkaido,
Japan 1982. (b) The transformed series x2,- (c) Changing log-variance estimated
by the best Gaussian model, mean and *+1, 2, 3o-intervals. (d) Changing log-variance
estimated by a non-Gaussian model, median, and 0.13, 2.27, 15.87, 84.13, 97.73
and 99.87 percentage intervals.

regularly sampled at intervals of about 0.01 seconds. Four successive
observations were averaged to yield samples at intervals of 0.04 seconds.
The problem here is the estimation of the changing variance (envelope
function) of the time series, y,, ..., yn. Figure 6b shows the sequence
of transformed observations, (51), X%, m=1, ..., N/2. There are two
abrupt changes in that sequence that correspond to the arrival of the
P-wave and the S-wave. Since the density of the observational noise is
assumed known in this case, the model has only one parameter 7, the
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variance of the system noise. The maximum likelihood estimate of the
parameter was 7 = 0.04318 with AIC = 1861.64.

The estimated mean value by this model is wiggly (Fig. 6¢). If we use
a smaller value of 7, we can get a smoother curve but that curve cannot
follow the sudden change of the variance. It is possible to alleviate the
difficulty by allowing several outliers in the system noise, but that requires
the positioning of outliers and thus is applicable only when we know the
position of the outliers beforehand (e.g., the exact arrival times of P-wave
and S-wave), or when an objective and effective outlier detection
procedure is available.

A second approach to the modeling of these data is via a linear state
space non-Gaussian modeling. That is, if we consider modeling the
transformed series by a smoothness priors non-Gaussian model, we may
define the system and observation noise distributions respectively by

q(x) = r{m(7* + x%)} !
r(x) = exp{x —€*} &)

Since xZ, is exponentially distributed, the distribution of the transformed
data ¢,,, r(x), is double exponential [46].

These distributions are used in the state space model defined in (55).
The numerical integration procedure described in Section III is employed
to compute the likelihood of the unknown parameter 7. Application of
the non-Gaussian model yields the maximum likelihood estimate of 72 to
be 0.000112 with AIC = 1718.15. The AICs indicate that in this case the
non-Gaussian model is significantly better than the Gaussian model.

Figures 6c and 6d are respectively the Gaussian and non-Gaussian
estimates of the log-periodogram. The estimated curves shown in Fig. 6d
capture the abrupt changes in the sequence of transformed variables.
Elsewhere they are smoother and have less variability than the correspond-
ing Gaussian modeling. This figure clearly shows that the non-Gaussian
models with heavy-tailed noise distributions have the ability to estimate
both smooth changes and jumps of parameters simultaneously. That was
not possible with the simple Gaussian model. The robustness of the
non-Gaussian model to large deviations is apparent in this example. Due
to the nature of the sampling distribution of x2, there are frequent large
negative deviations. Those deviations act as outliers for the Gaussian
model. As a result, the estimated curves are wiggly. For the non-Gaussian
model, however, they are no longer outliers and do not severely affect
the estimates. In Fig. 6d, we see that only the lowermost 0.13 per cent
curve is affected by these large deviations.

It is interesting to note that if we use non-Gaussian modeling, the data



66 Gersch and Kitagawa

can be modeled directly without requiring the use of the transformations
in (51)=(53). If as before s, ~ N(0, 02), we can immediately use y = log s*
and the distribution of y is the double exponential y ~3- exp{} — le’}.

D. Estimation of Abruptly Changing Spectrum

Here our objective it to “automatically” achieve the modeling of a time
series whose spectrum changes abruptly. Here too an instantaneous
spectrum will be estimated by first fitting a scalar time-varying AR
coefficient model of the observed data y,, . . ., yn- Again the time-varying
AR model is given by

m
Yn= 2 U nYn—i+ Wn, W, ~ diSt(O’ o_'Zl) (58)

i=1

In general, in (58), the innovations w,,, n =1, ..., N, are constrained to
be independent but not necessarily Gaussian distributed or necessarily
with constant variance. To achieve the modeling we introduce a PARCOR
time-varying AR model.

(a) PARCOR Time-Varying AR Modeling. The coefficients of a sta-
tionary AR model can be estimated recursively via the estimation of the
partial autocorrelation coefficients (PARCORs) in a lattice AR structure
model [50]. This concept was extended to the time-varying AR coefficient
model in (58) in Kitagawa [39]. It is used here.to model the PARCORs
in terms of stochastic trend models. In contrast with the approach in
Section II.C.4, in which stochastic constraints are placed on each of m
time-varying AR coefficients, in the time-varying PARCOR method,
stochastic constraints are only placed on the PARCORs (in successively
increasing model orders). In that case, models for smoothing time-varying
partial autocorrelation coefficients are

£ = oD + £
Va{m) = y{m
b = Y £ + bY™ (59)
VA = uf
with £ = b© =y, £im) and b{™ respectively the forward and backward

prediction errors of the autoregressive model of order m. In the stationary
case v{™ = u(™ = 0, and o) = ¥\ are identical to the partial autocor-
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relation coefficients. A somewhat brief description of the method is as
follows.
The zeroth-order forward and backward innovations are

0=y, b=y, ) (60)

The relations between the order update innovations and the instantaneous
forward and backward PARCORs are in general given by

19 =197 — aibg=p
Vo) = v, VP~ N(O,7)

b9 = by~ — A fY5 (6)
V) =uP,  uP~NO,73)

The instantaneous updated forward and backward AR model parameters

for model order i =1, ..., j— 1, then become
al), = a7V + ald) 4450
YW= vV + ) ad; (62)

In (62) the order updated instantaneous PARCORs, a}{?,, yS’),, are scalar
regression coefficients and the updated forward and backward innovations
are the residuals of the regressions. The innovation in (62) is the stochastic
difference equation representation for the order updated forward and
backward instantaneous PARCORs. State space computations for the
likelihood of the hyperparameter models corresponding to 72 are used (for
convenience we let 73 = 73 = 7). Akaike’s AIC is used to determine the
AIC best order PARCOR model.

The distribution of the noise inputs may be either Gaussian or

non-Gaussian. After estimating time-varying AR coefficients by the
general smoothing, we can estimate the instantaneous spectrum of the
nonstationary process using (31).
(b) An Example. Figure 7 shows the estimated changing spectrum of
a seismic data example. The AR coefficients are estimated by assuming
that £*) and b are Cauchy and w, is Gaussian. We can see that the
arrival of P and S waves are clearly detected by this method.

E. Inhomogeneous Discrete Process

In this section we illustrate the application of the non-Gaussian modeling
method to the analysis of inhomogeneous discrete random processes data.
A particular example considered is that of Tokyo rainfall data as a
nonstationary binary process.
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Figure 7 Changing spectrum obtained by the Gaussian and non-Gaussian
models.

Consider an inhomogeneous discrete process
Yn ~ dist(A,)

where the parameter of the process A, evolves with time. The problem
considered here is the estimation of the mean value function A,, from the
observation y,, ..., y,. For this purpose, we consider A, as a state and
use the smoothness prior model

VEA, = o,

In the formulation of our state space model, for simplicity we assumed
that the random variables have density functions. But actually we only
need to compute the convolution involved in the one step-ahead prediction
formula for arbitrary distributions and Bayes formula. Therefore we can
also handle discrete distributions.

The recursive formulae for obtaining one step ahead prediction and
filtering densities for inhomogeneous discrete processes can be obtained
from Section III.

(a) Nonstationary Binary Processes. Here we show a problem concern-
ing estimating the time-varying mean of a nonstationary (inhomogeneous)
binary process. This problem was considered earlier in [51] under
Gaussian assumptions and a quadratic approximation to the likelihood
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Figure 8 (a) The number of occurrences of rain for each day of the year in Tokyo,
1983-1984. (b) The estimated binomial mean function of rainfall in Tokyo.

function. That assumption is not required in our analysis, and we do not
need to approximate the likelihood function.

The general problem in the modeling of such nonhomogeneous binary
process data is to estimate the probability p,, of the occurrence of rainfall
on a specific calendar day. The probability of rain is believed to be
gradually changing with time.

The estimates obtained from only two samples per day (Fig. 8a) are
hopelessly irregular. The original data indicating the number of occur-
rences of rainfall over 1 mm in Tokyo, 1983-1984 appears in [1].

Our model for the probability of occurrence is given by

l -
Z(mnllmpn) = (”:')pr’ln"(l _pn)ln T

qn = log[pn/(l _pn)]
qun =Vn (63)

Here [, is the number of observation at the nth time point, m,, is the
number of occurrences of an event at the nth time point and z(m,|l,, p,,)
is the probability mass function of the binomial distribution. Also
gn = log[p,/(1 — p,)]; the logit transformation is applied for compatibility
with the analysis in [51]. In their treatment, the transformation from p,,
to g, was applied to guarantee that 0<p, < 1. That is not an essential
requirement in our method, since the state space is easily restricted. As
indicated above, we apply a trend model computation to the logit of the
daily probability of rain and in (63) we assume that v, ~ dist(0, 7).
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For this system with discrete observations, the analog of the filtering
equation is given by

p(qnl Yn) = C_lzl,.(mnllmpn)p(qnl Yn—l) (64)

with  C= [T _z, Myl pr)P(qn| Yn-1)dqg,—1 and p,=eT/(e? +1),
where z, (m,|l,, p,) is the binomial probability mass function that is now
conditioned on the state at time n, g,.

The results obtained are shown in Fig. 8b. The estimated rainfall
probability reveals the known characteristics of weather in Tokyo; dry
winter, unsettled spring, clear sky in May, rainy season in late June to
mid July, stable hot summer in late July through August, generally fine
but with an occasional typhoon in September and October. The estimated
50 per cent curve resembles the one obtained from four years of data
(1981-1984) and 10 years of data (1975-1984) although the *o intervals
differ, depending on the number of observations. Unlike the procedure
in [51], here we are free from the Gaussian assumption and the quadratic
approximation to the likelihood function.

F. Quasi-Periodic Processes

Many of the time series such as ecological data, climatological data,
sunspot data, etc., exhibit the approximate repetition of a pattern but both
the period and the amplitude are not very definite and change gradually.
Although such series are frequently modeled by AR, ARMA, or AR plus
sinusoidal models, none of those models seems quite satisfactory for
prediction with more than one lead time. For such a time series with
quasi-periodic character, by using a model

Akt =v,
Ake,=u, (65)
Yn = Cnh(ts) + Wy
we can estimate the phase and amplitude of the model. Here A(?) is a cyclic

function and can be expressed, for example, by a Fourier series.

(a) The Quasi-Periodic Model. The observation process of the quasi-
periodic model is expressed by

Yn = cnh(0,) + €, (66)

where h(8,) is a cyclic or periodic function, 6, is a time-varying phase
function, and c, is a time-varying amplitude (modulating) function. QOur
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approach to modeling such quasi-periodic time series is expressed in the
form

VK19, = v, ~N(0,73)
sza,, = u,~ N(0, 1'%)

Ch = exp(an)

m m
Yn= c,,{ ajcos(27j6,) + Z B; sin(27rj0,,)} + &, 67)

j=0 =1

That is, we allow the phase 6,, to vary in accordance with a k;th-order
stochastic trend model and assume v, ~N(0,77). Also the logarithm of
the amplitude fluctuations c, varies in accordance with a k,th-or-
der stochastic trend process with u,~ N(0,73). From (66) and (67),
€, = y,—€"h(6,) is nonlinear, so that despite the fact that we let the
distribution of &, be Gaussian, i.e., r(g) ~ N(0, 0?), this model is in the
class of general state sppace models and the computations are realized by
numerical integration. Note that the periodic component model in (67)
is both cyclically and amplitude modulated to form the output. We also
note that since this model is only nonlinear in the observation process the
modifications to the filtering formula are rather simple and that no
modifications are required for the smoothing computations. This model
yields estimates of the posterior distributions of phase and amplitude. A
quasi-periodic analysis of the well-known Wolfer sunspot series is shown
here. Additional examples of the use of quasi-periodic models are shown
in Kitagawa and Gersch [16].

(b) The Wolfer Sunspot Data. Rudolf Wolf introduced a formula for
calculating the sunspot number and using historical data reconstructed the
annual mean sunspot numbers of the previous 100 years [52]. As a result
of considerable work by solar astronomers, records of annual means are
available dating back to 1700. The continued interest in the sunspot data
reflects the assumption that the data are a good indicator of the evolution
of the magnetic oscillation of the sun and there are a variety of physical
theories to account for that phenomenon [53].

The earliest linear model to account for these data is probably due to
Yule [54]. Some of the many other time series analysis studies of the
Wolfer sunspot series data appear for example in [55-58]. Our own
approach is to model these data as a quasi-periodic process by the model
in (66) and (67). We modeled these data with a first-order trend model,
k,; =1, and a first-order amplitude modulation trend model, &k, = 1. Both
the phase noise and the observation noise were assumed to be Gaussian
distributed. Since the observation equation is nonlinear, the model is in
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Figure 9 (a) The Wolfer sunspot series data, 1749-1979. (b) The estimated
amplitude and phase. (c) The estimated cyclic function and corresponding scatter
diagram.

the class of general state space modeling and the computations were
realized by numerical integration.

The graphical results obtained are shown in Fig. 9. The annual N = 231
data for 1749-1979 are shown in Fig. 9a. Also shown in Fig. 9 are the
estimated amplitude and phase and the cyclical or periodic function as well
as a scatter diagram which illustrates the observed variability of the cyclical
function. The computed results clearly exhibit the amplitude modulated
and phase modulated structure of the series.

For completeness, and possible comparison with future modeling of
these data, we report the estimated values of the fitted model. The
estimated variances of the phase and amplitude noise process are
72 =0.017 and 73 = 0.0011, respectively, and the observation variance is
&% =18.5. The cyclical function h, was a trigonometric sum of com-
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ponents up to order m = 2, with parameters ag = 0.47893, «; = 0.39369,
ay = 0.08451, B,=0.11371, B, = —0.021336. These parameters were
estimated by a Householder transformation least squares procedure and
the AIC was used to determine the best fitting model order.

G. Nonlinear Smoothing

A nonlinear smoothing methodology for time series analysis shown here
is based on the general state space model treated in Section III. The time
series is expressed in state space model form where the system model or
the observation model contains nonlinear functions of the state vector. The
performance of the method is illustrated by the analysis of an example
that has been previously considered in the literature. The example requires
numerical approximations of the relevant densities and numerical com-
putations for the nonlinear transformations of variables, the convolution
of two densities, Bayes formula, and normalization. Results for the
example are compared and contrasted with those obtained by the extended
Kalman filter method, by a second-moment approximation method, and
also by the Monte Carlo filter method. More complete treatments of this
material appear in Kitagawa [59] and [16].

The method is particularly useful for time series that cannot be analyzed
satisfactorily by the standard linear time series models or by any of a large
variety of linear approximation techniques. Some of the well-known
approaches to state space modeling of nonlinear systems include the
extended Kalman filter [60], the second-order filter, and the Gaussian sum
filter [61]. These procedures approximate the non-Gaussian distribution
by one or several Gaussian distributions and are known to be satisfactory
in various nonlinear problems [24,62]. These methods do however have
several drawbacks. The methods based on a single Gaussian density such
as the extended Kalman filter may yield disastrous results when the true
density is not unimodal. The conventional Gaussian sum filter has several
technical difficulties in its implementation. (The Gaussian mixture two-
filter method [11] does overcome some of those difficulties.)

The recursive filtering and smoothing formulas for a nonlinear state
space model that we show can be easily derived from the formulas for a
general state space model (Section III). Each of the probability density
functions is approximated by a step function or a continuous piecewise
linear function. The necessary operations on the densities are realized by
numerical computations. This kind of direct method was attempted in an
early stage of the development of nonlinear filters [63,64]. The recent
development of fast computing facilities now makes it practical to rely on
such direct numerical methods, at least for lower order systems. In return
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for the intensive numerical computations, our method is free from Gaussian
or linearity assumptions, and we also do realize a smoothing algorithm.

Other related works on state space nonlinear systems appear in [65—68]
and [43].

1. State Estimation
Consider a system described by a nonlinear state space model

Xn = g(xrr-l) + Wy
Yn=h(x,)+ &, (68)

where y, and x,, are I-dimensional observation and m-dimensional state
vectors, respectively. w,, and &,, are m-dimensional and /-dimensional white
noise sequences having densities g(w) and r(e), respectively, which are
independent of the past history of x, and y,. The initial state vector xq
is assumed to be distributed according to the density p(xg).

The notation used here is as follows. The collections of the states and
the observations up to time n are denoted by X, and Y,, namely,
X, = {x0, %1, .- -, x,} and Y, = {yy, ..., y,}. The conditional density of
x, given X; and Y; is denoted by p(x,|X;, Y)).

Here too the general problem is the evaluation of p(x,|Y;), the
conditional density function of the state x,, given the observations Y;. As
with other state space modeling, the problems of prediction, filtering, and
smoothing are respectively identified with the cases n>j, n=j, and
n<j.

The nonlinear system (68) can be expressed in the general evolution
and observation equation form as

Xp~ P(Xn|Xn-1)
Yn~PnlXn) (69)
for which the conditional densities p(x,|x,—;) and p(y,|x,) are
P(xnlxn-1) = q(x, — §(xn-1))
PWnlxn) = r(yn — h(x,)) (70)

The general state space model implies that the conditional distributions
satisfy the following Markov properties:

p(xnlxn—b Yn—l) = p(xnlxn—l)
p(ynlxmyn——l) =p(yn|xn) (71)

Then, from the general state space treatment in Section IV, we have that
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the density of x, conditional on x,, and the entire set of observations
YN is

P(xnlxn+la Yn) =P(xnlxn+la Y,) (72)

Similarly from the general state space model in Section III, we can
obtain the recursive formulas for one step ahead prediction, filtering, and
smoothing densities for the nonlinear smoothing model.

As observed in Section III, for linear Gaussian systems, the conditional
densities p(x,|Yn-1), p(x.|Y.), and p(x,|Yn) are characterized by the
mean vectors and the covariance matrices and hence (33)-(35) are
equivalent to the well-known Kalman filter [69] and the fixed interval
smoothing algorithms [24]. For nonlinear state space models, however,
due to the nonlinear transformation of the state variables, the conditional
density p(x,|Y;) is non-Gaussian even when both w, and &, are Gaussian
and cannot be specified by using the first twvo moments.

It should be noted that only the structure in (69) and the Markovianness
in (71) are the critical model assumptions. Therefore, the additive error
structure in (68) is not essential, and the method presented here can be
applied to a wider class of nonlinear models than the one formulated in
(68).

2. The Andrade Netto Example

In this section the performance of our nonlinear smoother is compared
with that of the extended Kalman filter (EKF), a second-moment
approximation method as well as the Monte Carlo filter method, by
computations on a well-known model. We consider the data artificially
generated by the nonlinear model originally considered by Andrade Netto
et al. [70].

_ 1 25x,,_1
X, = zx,,_, + 1+x’2'_l + 8 cos(1.2n) + w,

Sy, 73
Yn=35"F €n (73)

The x, and y, shown in Fig. 10a are generated by independent
Gaussian random numbers xo~ N(0, 5), w,, ~N(0,1), and &, ~ N(0, 10).
The problem is to estimate the true signal x, from the sequence of
observations {y,} assuming that the model (73) is known. Our nonlinear
filter and smoother were applied to the problem. For comparison, the
well-known extended Kalman filter, the second-order filter, and the
linearized fixed-interval smoother associated with these filters were also
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Figure 10a True signal x,, n =1, . . ., 100, and the observations y,, n =1, .. .,
100.

applied [59]. In filtering and smoothing, the following discretization was
(arbitrarily) used: k = 400, zg = —30, z; = 30, and p(xg) = N((zo + z4)/2,
(z«k — 20)%/16). Figure 10b shows the posterior densities p(x,7|Y,,), m = 16,
.., 20 and 100. From left to right each column of the figure shows the
results obtained by the extended Kalman filter, by the second-order filter,
and by our nonlinear filter and smoother, respectively. This figure
illustrates a quite typical situation where these algorithms yield substan-
tially different results. Using our nonlinear filter, the one step ahead
predictive density p(x,7|Yis) is very broad and bimodal, and this
bimodality extends to the filtered density p(x,7|Y,7) and to the smoothed
density p(x;7|Y1g). On the other hand, the extended Kalman filter
approximates each density p(x;7|Y,,) by a single Gaussian density.
Although for m =19 the smoothed density obtained by our nonlinear
smoother, p(x,7|Y,,), also becomes unimodal and resembles a Gaussian
density, its location is completely different from the one of the linearized
smoother and is actually on the other side of the origin. The second-order
filter shown in the middle column also approximates the posterior density
by a single Gaussian density. The second-order filter posterior density
estimates are very conservative in that they have large variances.
Figure 10c shows the smoothed posterior density p(x,|Yx) versus time
n obtained by our nonlinear smoother using numerical integration. In that
illustration, the bold curve shows the 50% point of the posterior density
and two fine curves express the 2.3% and 97.7% points which correspond
to the two standard error intervals of the Gaussian densities. + indicates
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Figure 10b Posterior densities p(x,7|Y,,), m = 16, . .., 20 and 100 obtained by
the extended Kalman filter-based smoother (left), the second-order filter-based
smoother (middle), and our nonlinear smoother (right).

the true value of x,. In comparison with the performance of our nonlinear
smother, the performance of the extended Kalman filter is very poor.

The smoothed estimates of the state x, obtained by the Monte Carlo
method is shown in Fig. 10d. The results compare quite nicely with those
obtained by the ‘“‘exact” nonlinear smoother in Fig. 10c and are also
superior to those obtained by the extended Kalman filter method.

Additional details, including an empirical study on the effect of the
selection of the number of nodes, and an evaluation of the extended
Kalman filter performance appear in [59] and [16]. That study clearly
shows that the EKF performance is much poorer than our nonlinear filter
or smoother.
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Figure 10c Posterior density p(x, | Y) obtained by our nonlinear smoother. The
bold curve shows the median and the fine curves show the two standard errorinterval.

20
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Figure 10d Posterior density p(x,| Yy) obtained by the Monte Carlo method.
Posterior median plus and minus two standard error intervals.

In summary, this example reveals two important points in the nonlinear
filtering problem:

1. The extended Kalman filter and any other filter that approximates the
density by a single Gaussian density may produce disastrous results
when the true density is not unimodal.

2. The information from future observations is quite important to
identify the location of the state. Thus the role of smoothing is
essential to get a good estimate of the state.
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Canonical Variate Analysis in Control
and Signal Processing

Wallace E. Larimore

Adaptics, Inc., McLean, Virginia

. OVERVIEW

In recent years, a number of subspace system identification methods have
been developed that involve primarily a singular value decomposition
computation (see particularly Larimore [27,28], Verhaegen [46], and Van
Overschee and De Moor [45]). Such procedures permit the completely
automatic and reliable identification of multivariable system. However
only the canonical variate analysis (CVA) procedure has been developed
on the basis of optimal statistical inference principles, and as a result only
it achieves optimal statistical accuracy while the others can be considerably
less accurate. In this paper, the major concepts and results involved in
CVA are developed, and a number of important applications are
discussed.

A major issue in the application of control and signal processing
methods has been the availability of suitably accurate models of the
system. Once obtained, such models can be used for the design of an
appropriate control system or implementation of a signal processing
procedure. This has been a particular problem in multivariable systems
in the past. With the recent development of CVA system identification,
it is now possible to automatically and reliably identify large-scale
multivariable stochastic systems including a description of the identified
model uncertainty.

As a result, there is a paradigm shift in the way we think of system
modeling from system data—it can now be accomplished automatically,
reliably, and with optimal accuracy. This has a number of potential

83
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Figure 1 Structure of system identification and adaptive control.

opportunities and implications for computer automated control sys-
tem design and adaptive signal processing including self-tuning, system
monitoring, fault detection, and adaptation that will be explored in this
paper. There are numerous industrial systems that have a need for such
adaptation and automation based upon automatic system identification.

A particularly impressive example of automated system identification
is a wind tunnel test of on-line adaptive control of unstable aircraft wing
flutter using CVA system identification and linear quadratic Gaussian
(LQG) control design. This example illustrates the use of a single system
identification and control design procedure to successfully identify over
100,000 multivariable systems with up to 30 states for a wide range of
system dynamics and structural configurations.

A typical situation involving CVA system identification in control is
shown in Fig. 1. Input and output data are used for identification of a state
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space model that includes the input—output transfer function as well as
a statistical model of disturbance and measurement noise processes. The
identified state space model can then be used for design of a filter for state
estimation and/or the design of a feedback controller. The presence of
unknown feedback does not degrade the optimal statistical efficiency of
the CVA procedure. In the simplest case there may not be any observed
system input, so that only a stochastic model of the observed outputs is
identified.

In the context of the literature of on-line adaptive control, the approach
proposed here is somewhat different. The steps proposed are:

® System identification. Optimal identification of the statistically sig-
nificant states of the system dynamics and disturbances and identifica-
tion of the corresponding model parameters. Also determination of
the uncertainty of the identified model may be required.

® Control design/model reduction. Control design based upon the
identified model and possibly the model uncertainty description if
robust control design is used. This may involve a model reduction step
to reduce the model order taking into account the control design
criteria.

@ State estimation. Design and implementation of a state estimator such
as a Kalman filter may be required in the controller.

A major difference in the approach proposed here as compared with much
of the adaptive control literature (for example see Bitmead, Gevers and
Wertz [6]) is that explicit identification of all statistically significant states
is first done with the model reduction occurring in the control design step
based on the control design philosophy, rather than imposing an a priori
reduced order model structure in the identification step.

This paper is organized starting with an overview of the CVA method
in the rest of this section. In Section II, the CVA method for the static
multivariate regression case is developed and shown to lead to an optimal
statistical procedure for determining the rank of a relationship between
two sets of variables. In Section 111, this result is applied to the past and
future of a process to obtain the optimal determination of the states and
state order of a dynamical process. Once the states are determined, a state
space model is estimated simply by multivariate linear regression. To select
the statistically optimal state order requires the use of the AIC that is
discussed in Section IV. This is followed in Section V by a discussion of
the computational aspects of the CVA method including the use of the
SVD and fast computational methods. The optimality of the CVA
procedure is described in Section V1. The issue of identification in the
presence of unknown feedback is developed in Section VII. The CVA



86 Larimore

method generalizes to very general nonlinear systems as discussed in
Section VIII. Finally a number of applications are described in Section
IX including chemical process control, spectral analysis of vibrating
systems, process monitoring and fault detection, on-line adaptive control
of unstable aircraft wing flutter, and robust adaptive control.

A. Heuristic Approaches to Identification

Although the development of objective methods for system identification
has long been a goal of system identification, the recent state of the art
(Box and Jenkins [7], Ljung and Séderstrédm [38]) is far from being a
well-defined objective procedure. A major cause of this situation is the
dichotomy between the computationally reliable procedures that are of
low to moderate accuracy and the high resolution procedures such as
maximum likelihood (ML) estimation that are computationally unreliable.
ML has long been used as a benchmark because of its achievement, at
least asymptotically for large samples, of the Cramer-Rao lower bound
of attainable accuracy. Most often, ML is implemented using iterative
parameter maximization that may become ill-conditioned and has no
bound in the amount of required computation.

As a result, a toolbox approach has been used where the analyst is
supplied a variety of methods for trying to coax an acceptable solution
out of the problem, with the particular method being used left largely to
the ingenuity of the analyst. This of course precludes any possibility of
online or automated use of such procedures unless a computationally
reliable procedure of lower accuracy such as least squares (LS) or recursive
least squares (RLS) is used. To compound this problem, the analyst is
confronted with a host of possible model structures (ARMAX, ARX, MA)
with attendant model orders to be specified. The literature on comparison
and selection of the best among these has been contradictory, leaving the
analyst to make a heuristic choice from a host of measures such as the
AIC, BIC, Schwartz, and cross validation criteria to mention only a few
presently in vogue.

To add to these problems are difficulties in the ARMAX parametriza-
tion that has singularities in the multivariable case as shown by Gevers
and Wertz [13]. For any particular ARMAX parametrization, there is a
particular set of parameters so that the parametrization is not well defined.
Computational algorithms necessarily become ill-conditioned at such
parameter values. It is no wonder that general high resolution multivari-
able identification methods are missing from these toolboxes. A com-
parison of the various methods for system identification is given in Table
1 including the CVA procedure described below.
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Tabie 1 Comparison of System Identification Procedures

CVA RLS ELS MLE
Unbiased estimates yes no yes yes
Statistical accuracy yes no yes yes
Nonexpert user yes yes yes no
Reliable computation yes yes no no
Model order selection yes yes no no

B. Automated and Objective Identification

To suggest that there is an objective and reliable procedure for system
identification would seem to contradict the current body of software and
practice of system identification. This possibility stems from the confluence
of several very recent developments in computational methods and model
order selection:

® The use of an over-parametrized state space model that is globally well
defined.

® Optimal determination of the system states for each state order below
some maximum using a single singular value decomposition (SVD)
computation. The computational requirements are predictable and the
computation is stable. This is entailed in the canonical variate analysis
(CVA) method (Larimore [27,28]).

® The development of an objective measure of statistical model approxi-
mation that measures the predictive ability of a model (Larimore [26],
Larimore and Mehra [36]). This holds even for quite small samples,
and permits the objective comparison of different model orders and
structures using a small sample corrected Akaike information criterion
(AIC) (Akaike [1]; Hurvich et al. [17-19)).

As a result, for a given model structure or state order, the ML estimate
is achieved using a stable, nonrecursive procedure that is bounded in
computation. No procedure can improve on the accuracy without addi-
tional assumptions or prior information about the parametric structure of
the model. In comparing different model structures and orders, an
objective and optimal procedure is again used.

Since there are no prior assumptions other than a linear, Gaussian
process, the procedure determines the best linear representation of the
process and finds all statistically significant dynamics that are present.
The error in model identification for the CVA procedure has been
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demonstrated in Larimore [31] to be very close to the maximum likelihood
lower bound, even for quite small sample sizes when the model state order
is unknown.

C. Model Assumptions

The CVA method applies to equal-spaced data in time taken from a very
general class of multivariable linear time-invariant stochastic systems. The
assumptions are that:

® The observations are equal spaced in time.

® The system is finite-dimensional, linear, time-invariant, and possibly
multivariable.

® The noise disturbances are finite-dimensional Gaussian processes, i.e.,
the output of white Gaussian noise exciting a linear time-invariant
finite-dimensional system.

® The observations may include the addition of a bias, trend, or a
deterministic polynomial function of time.

This class of systems is very general and includes the following: unknown
system state order, unstable systems and nonstationary noise, multi-input
multi-output systems, arbitrary input signals to the system including the
presence of unknown feedback around the system, arbitrary colored or
nonstationary state, and measurement disturbance processes. The CVA
method explicitly deals with processes involving unit roots, cointegration,
feedback, unstable systems, and nonstationary noise without the usual
method of differencing that can destroy important dynamical information.
For a non-Gaussian process, the CVA procedure is a generalized least
squares method. There is no assumption about the system state order
which is determined in the model fitting. A state space model is identified
in the form

X1 = Dx, + Gu, + w, €))
y.=Hx,+ Au,+ Bw,+ v, 2)

where x, is a k-order Markov state and w, and v, are white noise processes
that are independent with covariance matrices Q and R, respectively. The
parameters to be estimated are the coefficient matrices ®, G, H, A, and
. B along with the covariance matrices Q and R. The CVA approach
assumes no special parametric structure of these matrices. Imposing
special parametric structure on the model requires the use of nonlinear
optimization methods in most cases and consequently destroys the
outstanding computational and numerical properties of the CVA proce-
dure.
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It is useful to contrast the above fully parametrized case with the
parametric structure case where these matrices are functions of a vector
0 of unknown parameters that imposes some special constraints on the
model structure. The use of prior information about special parametric
structure of the problem can significantly reduce the number of parameters
to be estimated and consequently improve the accuracy of the remaining
parameters to be estimated. However if the assumed parametric structure
is incorrect, then this can result in much larger errors than not using this
prior information and estimating a general parametric model form. Also
even if the assumed special structure is correct, in a number of problems
it is more important to have a computationally reliable or automatic system
identification procedure. If in using the special parametric structure no
solution is obtained because of computational problems, then the higher
accuracy that is potentially possible is of no consequence.

Once the above state space model is identified, several additional
model forms can be calculated directly from it including the state
space innovations model form, the state space echelon or overlapping
parametrization form, and an ARMAX form. Here the ARMAX form
can be chosen so that it is well conditioned. Also if the form (1) and (2)
is unstable and/or nonstationary, the corresponding ARMAX form will
also be. This provides an elegant solution to the problem of identification
of unstable and nonstationary processes without the need for differencing
that is problematic.

. CANONICAL VARIATE ANALYSIS AND OPTIMAL RANK

A number of methods have been developed for modeling and identifying
dynamical systems from data that use primarily the singular value
decomposition for computation. If there is no noise in the system, these
methods can produce very precise results. The major difficulty is that if
there is noise in the system, the results can become much less accurate.
Various methods have been proposed to deal with such noise, however
in most cases the procedures are ad hoc. In this section, the problem of
determining the rank or dimension of a relationship is discussed from a
fundamental statistical approach that results in a statistically optimal
procedure. This leads very naturally and directly to canonical variate
analysis.

The analysis of canonical correlations and variates is a method of
mathematical statistics developed by Hotelling [15] (also see Anderson
[5]). Concepts of canonical variables for representing random processes
were explored by Gelfand and Yaglom [12], Yaglom [49], and Kailath [21].
The initial application of the canonical correlation analysis method to
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stochastic realization theory and system identification was done in the
pioneering work of Akaike [2-4], primarily involving ARMA structures.
The present approach using state space models was first developed in
Larimore [27].

Traditionally the development of canonical variate analysis in multi-
variate statistical analysis involves the successive selection of pairs of
variables from “past” and ‘‘future” such that at each step of the procedure
the pair of variables maximize a correlation measure. The development
below directly determines the maximum likelihood estimator for reduced
rank regression when the rank of a relationship is constrained. This gives
the likelihood ratio test for the rank of the relationship in terms of the
canonical correlations. Here we derive the canonical variate analysis for the
case of independent and identically distributed vectors which is simpler
than the case of correlated time series to be discussed [50].

Consider two vectors of random variables, x and y. We will initially
consider the vector x as the set of predictor variables and the vector y as
the set of variables to be predicted. We assume that x and y are jointly
distributed as normal random variables with mean zero and covariance
matrices 2, 2,,, %, and that the relationship giving the optimal
prediction of y from x is linear. The extension to the case of a nonzero
mean is trivial; however assuming a zero mean will simplify the deriva-
tion.

We wish to determine an intermediate set of r variables z that may be
fewer in number than x such that z contains all of the information in x
relevant to predicting y. This problem includes the determination of the
rank r of z, i.e., the optimal dimension r of z, and detemination of the
linear relationship between x and z as well as that between z and y.

To be precise, consider the model described by the equations

yi=Bz;t+e (3
z;=Ax; 4)

where ¢; is the error in the linear prediction of y; from x; for a particular
selection of the prediction relationship given by the matrices A and B,
and 2., is the covariance matrix of the prediction error ¢;. These equations
are of course equivalent to predicting y from x as

yYi= BAx,~+e,~= Cxi+ei (5)

where the matrix C = BA has the rank constraint rank(C)=<r. In the
derivation, it will be much easier to deal with A and B with the dimension
of z fixed as r rather than dealing with the constraint rank(C)=r.

The procedure to be used for determining the matrices A and B will
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be the maximum likelihood (ML) procedure. The optimality of maximum
likelihood procedures will be discussed in detail including the critically
important model order selection problem to determine the rank r of z.
To simplify the notation, let the matrices X = (x,, . . ., xp) and Y = (y,,
.., yn) contain the observation vectors for N samples. The joint
likelihood of Y and X as a function of A, B, and 3, is expressed in terms
of the conditional likelihood of Y given X as

P(Y,X;A, B,3.) = p(Y|X; A, B, %) p(X) (6

The density function p(X) of X is not a function of the unknown
parameters A, B, and 3, and thus can be ignored. It will be seen below
that the solution for the reduced rank problem is the same if we condition
X on Y instead of Y on X.

For A fixed, the vectors z; = Ax; are given, and the log of the conditional
likelihood of Y given X as a function of A, B, and 3, is

log p(Y|X; A, B, 5o0) = 2 log| el +3tr(SZ1(Y — BAX)(Y — BAX)")
M

From multivariable analysis (Anderson [5]), the ML estimates of B and
3. with A fixed are

B=3, ATALL AT $.=3,-3,4T48,.40) 148, (8)
where
1
N
The value of the log likelihood maximized over B and 3. with A
fixed is

2xx=lXXT; S,==YYT, 2 =—XxyT 9)

logp(Y|X;A,B,2..) = -21\—’10g|2yy -3, AT(AS,, ATy AL, | (10)

To simply the problem further we use the canonical variate analysis
(CVA) to transform the x and y to independent identically distributed (iid)
random variables that are only pairwise correlated, i.e., with diagonal
covariance. The notation I; is used to denote the k X k identity matrix.

CVA Theorem. Let Z,,(m X m) and 3,,(n X n) be nonnegative definite
(satisfied by covariance matrices). Then there exist matrices J(m X m) and
L(n X n) such that

B JT=I; LY, LT=1L (11)
J3,,LT =D =diag(y,, ..., ¥»0, ..., 0) (12)

where /m = rank(Z,,) and 7 = rank(Z,,).
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The vector of transformed variables ¢ = Jx has covariance matrix
Zee = -’Exx]Tz 1 (13)

so the CVA chooses the transformation J so that ¢ is a vector of
uncorrelated random variables. The covariance matraices of the canonical
variables ¢ = Jx and d = Ly, respectively, are thus identity matrices. The
covariance between c¢ and d is diagonal (only pairwise correlated). The
CVA is a generalized singular value decomposition (GSVD) where the
weightings X, and 3, insure that the canonical variables are orthogonal—
the random vector equivalent to orthogonality for the usual SVD. Thus
the CVA reduces the multivariate relationship between x and y to a set
of pairwise univariate relationships between the independent and identi-
cally distributed canonical variables.

Substituting the CVA into the log likelihood function maximized over
B and 3, gives, with the notation M = AJ ™!,

N N
log (Y| X; 4, B,3.) = 7 log|3,,| ![1-DMT(MMTIMD|  (14)

It can be shown that the maximum occurs at # = [1,0] which implies
that

A=[I,01J; thus z=[I,0]J)x (15)

So A is the first r rows of J. Equivalently z, the optimal rank r predictors
of y, consists of the first r canonical variables cy, . . ., ¢,. The predictable
(with a reduction in error) linear combinations of y are given by the
random variables d = [I,0]Ly, the first r canonical variables d,, ..., d,.
Note that the relationship between X and Y is completely symmetric so
that if X and Y are interchanged at the beginning, the roles of A and J
are interchanged with B and L in the solution.

The log likelihood maximized over A, B, and Z.,, or equivalently over
C = BA with constrained rank r, is given by the first r canonical
correlations y; between ¢; and d;:

N _
max  logp(Y|X;C,Ze) = 5> log|%y,|TH(1=7) (1)
{Zee, C:rank(C)=r} -1

Optimal statistical tests on rank involve likelihood ratios. Thus the optimal
rank or order selection depends only on the canonical correlations v;. A
comparison of potential choices of rank can thus be determined from a
single GSVD computation on the covariance structure. The above theory
holds exactly for zero-mean Gaussian random vectors with x; and x;
uncorrelated for {+# j. For time series, this assumption is violated.
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However analogous solutions for the time series case is obtained with
appropriate modifications.

A number of other statistical rank selection procedures are closely
related to CVA. Consider the generalized singular value decomposition
(GSVD) problem of finding J and L such that

JAJT=1Iz; LALT =1
I3, LT = D = diag(y1, ..., ¥,0, ..., 0) a7

where the weightings A and A are positive semidefinite symmetric
matrices. CVA is given by A =3,,, A =3,,. Reduced rank regression is
A =3, A =1 Principal component analysis is x =y, A = I. Principal
component instrumental variables are x = y, A = 3. Partial least squares
solves for the variables z sequentially. The first step is equivalent to
choosing A = I, A = I and selecting z, as the first variable. The procedure
is repeated using the residuals at the ith step to obtain the next variable
z;. Only CVA is optimal in maximizing the likelihood function under a
rank constraint.

Van Overschee and De Moor [45] have shown that CVA is one of the
subspace methods that effectively computes a generalized projection that
can be described by a generalized singular value decomposition. The
difference between the various subspace methods is the weightings A and
A, and the other subspace methods use weightings different from CVA.
As a result, the other subspace methods are suboptimal and potentially
may have much larger errors.

lll. CANONICAL VARIATE ANALYSIS OF TIME SERIES

In this section, the CVA method is applied to the identification of time
series data. Although the theory in the previous section applies only to
iid multivariate vectors, it is applied to correlated vector time series.
Larimore presents the extension of the previous section to the time series
case [50].

A. CVA of Past and Future

A fundamental concept in the CVA approach is the past and future of a
process. Suppose that data are given consisting of observed outputs y, and
observed inputs u, at time points labeled =1, ..., N that are equally
spaced in time. Associated with each time ¢ is a past vector p, consisting
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of the past outputs and inputs occurring prior to time ¢ as well as a future
vector f, consisting of outputs at time ¢ or later, specifically

b= (yr——l’le—Zv LI ] ulT-—l’uT—Z’ .. ')TY fl= (le’yT+l, .- ')T (18)

For simplicity, consider first purely stochastic processes with no
observed deterministic input to the system. A fundamental property of
a linear, time invariant, strict sense Markov process of finite state order
is the existence of a finite dimensional state x, which is a linear function
of the past p,

x, = Cp, 19

The state x, has the property that the conditional probability of the future
f; conditioned on the past p, is identical to that of the future f, conditioned
on the finite dimensional state x, so

P(filp)) = P(fi|x,) (20)

Thus, only a finite number of linear combinations of the past are relevant
to the future evolution of the process.

To extend this concept to processes involving deterministic controls or
inputs, the effects of future inputs must first be removed from the future
outputs. Let g, denote the future inputs g/ = (4], ul,,, . . .,) and consider
the conditional random variable f;|g,. Then the process is a controlled
Markov processes of order k if there exists a k-order state such that the
conditional distribution of f,|q, given the past p, is identical to the
conditional distribution of f;|q, given the state x, so

P((filg))|pd) = P((filqr)|x0) (21)
This is equivalent of the statement that
P(fi1(q1Pn) = P(fil (g1 x0)) (22)

For Gaussian processes, the probability distributions are characterized by
the first two moments and we can replace P(-) by the expectation
operation E{-} above and obtain a characterization of the Markov
property of the state. In this case, the conditional random variable

filgi=fi— Mg, (23)

is the regression coefficient for predicting f; from g,, where M = 3,51,
In terms of the discussion of CVA in Section II, the random vectors x;
and y; are replaced respectively by the random vectors p, and f;|g; of this
section.

In the computational problem given finite data, the past and future of
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the process are taken to be finite lags of length [ so
plT= z‘—lv ey }’:T—hu:T—h ey ulT—l)TJ flT=(les ey le+l—1)T (24)

and similarly for the future inputs g,. Akaike [4] proposed choosing the
number / of lags by least squares autoregressive modeling using recursive
least squares algorithms and choosing the number of lags as that
minimizing the AIC criterion discussed below. This insures that a sufficient
number of lags are used to capture all of the statistically significant
behavior in the data. This procedure is easily generalized to include the
case with inputs u, by using ARX models.

The CVA from (11) and (12) on the past and future give the
transformation matrices J and L, respectively, specifying the canonical
variables ¢ and d associated with the past p, and future f,. For each choice
k of state order (the rank r used in Section II), the “memory” of the
process is defined in terms of the past as

my=Jip, = [I; 0)Jp, (25)
where m, are the first k canonical variables. The vector m, is intentionally
called “memory” rather than “state”. A given selection of memory m, may
not correspond to the state of any well-defined k-order Markov process
since truncating states of a Markov process will not generally result in a
Markov process for the remaining state variables. In particular, the
memory m, does not usually contain all of the information in the past for
prediction of the future values of m,, i.e., m,1,m,.5, . . .. For the system
identification problem, this is not a problem since many orders k will be
considered and the one giving the best prediction will be chosen as the
optimal order. This optimal order memory will correspond to the state
of a Markov process within the sampling variability of the problem.

B. State Space Model Estimation

In this section, the problem of determining a state space model of a
Markov process is considered. The modeling problem is: given the past
of the related random processes «, and y,, develop a state space model
to predict the future of y, by a k-order state x,. A k-order linear Markov
process has been shown by Lindquist and Pavon [37] to have a
representation in the following general state space form

X1 = Dx,+ Gu,+w, (26)
y:=Hx,+ Au,+ Bw,+ v, 27
where x, is a k-order Markov state and w, and v, are white noise processes

that are independent with covariance matrices Q and R, respectively.
These state equations are more general than typically used since the noise
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Bw, + v, in the output equation is correlated with the noise w; in the state
equation. This is a consequence of requiring that the state of the state
space equations be a k-order Markov state. Requiring the noises in (26)
and (27) to be uncorrelated may result in a state space model where the
state is higher dimensional than the Markov order k so that it is not a
minimal order realization.

The solution to the optimal reduced rank modeling problem is given
above in terms of the canonical variables. For a given choice k of rank,
the first k canonical variables are then used as memory m, in the
construction of a k-order state space model. The canonical variables will
provide an accurate estimate of the state when k is greater than or equal
to the true state order of the system. For k less than the true state order,
the truncation to a k-order memory results in a less than optimal selection
of the state as measured in terms of maximum likelihood. However for
the purpose of determination of the optimal selection of state order, the
use of the truncated memory will still lead to an optimal procedure for
determining the system state order.

Now consider the estimation of the state space model and then its use
in model order selection. Note that if over an interval of time ¢ the state
x, in (26) and (27) was given along with data consisting of inputs &, and
outputs y,, then the state space matrices ®, G, H, and A could be estimated
easily by simple linear multiple regression methods. For the model state
order k equal to or greater than the true state order, the state estimate
m, = Jp, provided by the canonical variate analysis is a sufficiently good
estimate so that it can be used in place of the true state for estimating
these matrices of the state equations. For k less than the true order, a
suboptimal solution is obtained which is still suitable for determination
of the model state order as discussed in the next seciton.

In particular, consider the state-equations (26) and (27) with the state
x, replaced with the memory m, determined from CVA. The multivariate
regression equations are expressed in terms of covariances, denoted by
3., among various vectors as

() == () o)=L () ()] @

and the error in prediction has covariance matrix
Sn 512) [(m:ﬂ) (m,+1)]
S = = E 5
(521 S22 Ve Ve
_ ? G\ 7| (M m,
(H A)E [( Yo )7\ the @)
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and the matrices Q, R, and B are simply expressed in terms of

0=3;, (30)
B =S5, (31)
R =S5~ 5,80i1512 (32)

where 1 denotes the pseudoinverse. Explicit computation is obtained by
the substitution of m, = J;p,.

The use of the state space model form has several advantages over the
more widely used ARMAX form. The ARMAX parametrization is
inherently ill-conditioned in the multivariable case which means that for
any global ARMAX parametrization it is possible to find particular values
of the parameters that produce arbitrarily bad ill-conditioning (Gevers and
Wertz [13]). In his pioneering work on CVA of time series, Akaike [4]
developed the fitting of ARMAX forms by the successive selection of a
basis for the state space in terms of autoregressive and moving average
terms. This procedure requires a succession of SVDs with a decision made
at each step which involves much more computation and results in only
an approximate procedure.

The state space model form has the major advantage that the model
is globally identifiable so that the method is statistically well conditioned.
The state space parametrization does not provide a unique parametrization
of the problem, however all that is required is one representative from
the equivalence class of parameter values specifying equivalent models.
In the development, no unique parametrization is required. The CVA
guarantees the choice of a well conditioned parametrization from the
equivalence class.

The resulting CVA model identification procedure is fundamentally
different from most other approaches in that the state is first determined by
primarily an SVD computation and the coefficient matrices and covariance
matrices of the state space equations are then determined by simple
multiple linear regression. Other methods sharing this characteristic are
generally known as subspace methods. This is in sharp contrast with
extended least squares and maximum likelihood methods that require
iterative nonlinear optimization with no upper bound on the required
computation and that can be ill-conditioned and fail to converge. Since the
CVA method involves primarily an SVD, the computations are numerically
stable and accurate with an upper bound on the required computations.

IV. OBJECTIVE MODEL STRUCTURE SELECTION

In this section, the objective comparison and selection of model structure
and state order is discussed. The CVA method permits the comparison
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of very general and diverse model structures such as the presence of an
additive deterministic polynomial, the state order of the system dynamics,
the presence of an instantaneous or delayed effect on the system output
from the inputs, and the feedback and “causality” or influence among a
set of variables. The methods discussed below allow for the precise
statistical comparison of such diverse hypotheses about the dynamical
system.

To decide on the model state order or model structure, recent
developments based upon an objective information measure is used. Such
a method was originally developed by Akaike [1] and involves the use of
the Akaike Information Criterion (AIC) for deciding the appropriate
order of a statistical model. Considerations of the fundamental statistical
principles of sufficiency and repeated sampling provide a sound justifica-
tion for the use of an information criterion as an objective measure of
model fit (Larimore [26], Larimore and Mehra [36]). In particular, suppose
that the true probability density is p- and an approximating density is p,,
then the measure of approximation of the model p, to the truth p« is given
by the Kullback discrimination information [25]

Iyv(p- = lo P utd)
vp-,p1) fp (Y)log™— == (V)
It can be shown that for large samples the AIC is an optimal estimator
of the Kullback information and achieves optimal decisions on model
order (Shibata [44]). For small samples, an improved AIC is discussed
below that is closer to optimal than the original AIC in minimizing the
Kullback information.
The AIC for each order k is defined by

AIC(k) = —21log p(YN, UN; 8,) + 2fM,, (34)

where p is the likelihood function based on the observations (YV, U")
at N time points, and 8 is the maximum likelihood parameter estimate
using a k-order model with M; parameters. The small sample correction
factor f is equal to 1 for Akaike’s original AIC, and is discussed below
for the small sample case. The model order k is chosen corresponding to
the minimum value of AIC(k). For the model state order k taken greater
than or equal to the true system order, the CVA procedure provides an
approximate maximum likelihood solution. For k less than the true order,
the CVA estimates of the system are suboptimal so the likelihood function
may not be maximized. However this will only accentuate the difference
between the calculated AIC of the lower order models and the model of
true order so that reliable determination of the optimal state order for
approximation in maintained.

dy (33)
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The number of parameters in the state space model (26) and (27) is
My =kQ2n+m)+mn+n(n+1)/2 (35

where k is the number of states, n is the number of outputs, and m is the
number of inputs to the system. Candy er al. [9] develop this result by
considering the size of the equivalence class of state space models having
the same input/output and noise characteristics. Thus the number of
functionally independent parameters in a state space model is far less than
the number of elements in the various state space matrices. The AIC
provides an optimal procedure for model order selection in large sample
sizes.

A small sample correction to the AIC has been recently developed for
model order selection (Hurvich et al. [17-19]). The small sample
correction factor f is

N
N__(ﬂ+n+l)

f= (36)

n 2

The effective sample size N is the number of time points at which one-step
predictions are made using the identified model. For a large sample N,
the small sample factor f approaches 1, the value of f originally used by
Akaike in defining AIC. The small sample correction has been shown to
produce model order selection that is close to the optimal as prescribed
by the Kullback information measure of model approximation error.

V. COMPUTATIONAL ASPECTS

The CVA algorithm has been shown by Van Overschee and De Moor [45]
to be related to subspace algorithms that effectively compute a weighted
singular value decomposition. Such algorithms include the N4SID algo-
rithm of Van Overschee and De Moor [45] and MOESP of Verhaegen
[46]. These algorithms have a number of computational advantages over
nonlinear optimization methods for computing maximum likelihood
estimates. This includes the stable computation of models for ill-
conditioned data that is accurate to machine precision. The amount of
required computation is predetermined by the problem size and depends
on the number of inputs, outputs, the number of past lags used in the CVA
computation, and the data length. Larimore and Luk [34] show a
considerable speedup in the computation is potentially possible using
parallel algorithms on a systolic array of processors where the speedup
is proportional to the number of processors.
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Table 2 Computational Requirements of Subspace Algorithms

Flop count Storage
N4SID, MOESP O(MN?+ M2N + M?) O(N? + MN)
CVA (ADAPTY) O(MN + M?) O(N + M?)
FSD O(MN+ M?) O(N + M?)

Recently, Cho et al. [10] have developed fast computational algorithms
for subspace methods. The fast subspace decomposition (FSD) algorithm
exploits the block shift structure of the various matrices. These methods,
however, have potential problems of numerical instability (Cho et al. [10]).
The ADAPTx implementation of the CVA procedure in Larimore [32]
takes advantage of the structure to reduce the computation, but uses only
numerically stable SVD computations.

Table 2 gives a comparison of the computation and storage require-
ments for the various algorithms, where N is the data length or sample
size and M is the number of past lags used in the computation. The main
difference between the fast algorithms FSD and CVA and the other two
is the term N in the fast algorithms whereas the others have term N2. Thus
the N4SID and MOESP algorithms require about a factor of N more
computation, which can become very large for large N, and they require
a factor of around N more memory. This can make a considerable
difference. For example, for a sample size N = 10,000 and the number of
past lags M = 100, N4SID and MOESP require approximately 100 GFLOP
and 1GBYTES, where CVA and FSD require about 10 MFLOP and
100 KBYTES. Usually to apply any of the algorithms requires enough data
to obtain accurate estimates of the parameters. In such case it is necessary
that M2=< N, and the CVA algorithm is then nearly as fast as the FSD
algorithm.

The CVA computations are implemented in the ADAPTx software
package (Larimore [32]). It is available running under the Matlab software
package on both workstations and IBM/PC compatible computers. A
C++ package is also available for UNIX workstations and IBM/PC
compatible computers. Future releases are anticipated for the C++
version on high-speed signal processing chips such as the C30 and C40.

VI. OPTIMAL MODEL ACCURACY

In this section, recent results of Larimore [31] demonstrating the optimal
accuracy of CVA in small samples for multivariable systems including
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feedback and colored noise excitation are described. The near optimality
of CVA was first noted in Larimore et al. [35] for an ARMA process with
no inputs. Deistler et al. [11] have also noted the optimality of CVA for
the case of no inputs.

The expected Kullback information is directly related to the Cramer—
Rao bound on the minimum possible parameter estimation error for any
unbiased estimation procedure. As derived in Kullback [25], the expansion
of the Kullback information in a Taylor series in 6 about 6 is

21(p(80); p(6)) = (6 — 00)" Fo(0 — 6p) + 0(6 — 6p)° (37)

where the Fisher information matrix Fy lower bounds the parameter
estimation error covariance 2, of any unbiased parametric estimation
procedure 6 in that

E{(8—60)(8—00)} —Fg' =3y—F3'>0 (38)

that is, the difference is positive semidefinite. For an optimal estimation
procedure, the parameter estimation error is asymptotically normally
distributed with estimation error covariance Fj'. Twice the Kullback
information 2I(p(6,); p(8)) evaluated for @ = 8 is a Chi squared random
variable with the degrees of freedom equal to the number of estimated
parameters. The expected value is the degrees of freedom which is just
the number of estimated parameters. In small samples, Hurvich et al.
[17-19], have shown that

2E{I(p(80); p(8))} = fM.

= fX number of estimated parameters (39)

is a much better approximation where the small sample correction factor
f is given in (36).

An estimate of the expected Kullback information can be obtained
directly from simulations using a finite number R of Monte Carlo trials.
The estimate is

_ p(Yi|6y)
1(p(90):p(8)) = 2 log ~ 13y (40)
where in each trial @ is estimated using a fit set sample and 1 is calculated
using an independent prediction set sample Y. The likelihoods p(Y;|6y)
and p(Y;|8) are evaluated in Larimore [31] using a Kalman filter.
A 2-input, 2-output, 6-state system was used for Monte Carlo simulation
of the input and output data. Two cases were simulated:

® Open-loop. State noise, measurement noise, white noise input excita-
tion, and no feedback.
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Figure 2 Estimated Kullback information (© and x) and lower bound (solid line)
for known state order.

® Closed-loop. State noise, measurement noise, colored noise input
excitation, and constant gain feedback. The input excitation was
somewhat larger in this case than for the open-loop case.

In the system identification, there was no a priori information about the
presence or absence of feedback. The details of the system dynamics used
in the Monte Carlo simulations are in Larimore [31]. The ADAPTx
software described in Larimore [32] for automated identification of
multivariable systems was used to perform the system identification and
state order estimation including script files for these evaluations of the
optimality of identification.

Figure 2 gives the estimate 1(p(6p);p(8)) of the expected Kullback
information when the true state order kX = 6 is assumed known in the model
identification. Asymptotically in large samples for an optimal estimator,
this is the number of estimated parameters Mg = 43, indicated by the
horizontal dashed line. The solid line shows the small sample approxima-
tion (39) of the expected Kullback information. The results of 32 Monte
Carlo simulations each for sample sizes N equal to 100, 200, and 500 are
shown for both open-loop case () and the closed-loop case (x). The
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Figure 3 Estimated Kullback information (© and x) and lower bound (solid line)
for estimated state order.

results are in excellent agreement with the small sample theory. Figure
3 gives the results for the case of unknown state order in the model
identification and using the AIC in (34) for model order selection. In three
of the cases where the correct state order was selected in all 32 trials, there
is no difference in the results. However in the other three cases, the state
order was often underestimated leading to much larger modeling errors.
The difficulty is that the smaller sample sizes were not sufficient to
discriminate the true state order. Such effects depend entirely on the
particular system and the amount of input excitation relative to the state
and measurement noise. The closed-loop case was more successful because
there was more input excitation (apart from the feedback).

Vil. IDENTIFICATION UNDER FEEDBACK

In this section, the justification is given for the use of CVA and in
particular any maximum likelihood procedure when feedback is present
from the plant output to the plant input. As will be seen, very little
knowledge is required about the feedback structure, and the CVA or ML
identification is done as if there is no feedback. This is in contrast to some
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other procedures that are not ML. where the presence of feedback can
cause bias or other anomalies. A procedure is developed that makes
possible the comparison and test of hypothesis concerning different
feedback structures for the system. A general survey of identification
under feedback is given in Gustavsson, Ljung, and Soderstrom [14].

Consider the identification problem where the observed system inputs
u, and observed outputs y, are given and it is desired to identify the
input—output system and noise model for the system disturbances. The
CVA procedure developed above assumes that the input i, is exogenous,
that is, it is uncorrelated with past and future disturbances to the system.
We wish to extend the results to apply to the case of feedback from the
past outputs to the present input via some sort of dynamical feedback
relationship. This would introduce a correlation between the present input
and past disturbances of the system.

The following notation will be used in the development, Yx = (yn, - - -,
y1) and similarly for Uy where Y; for i <1 means that no variables are
included in the set. Also let p, denote the vector of inputs and outputs
in the strict past of ¢. The joint likelihood function of the outputs Y, and
the inputs Uy conditional on the initial state expressed by the past p,
at time =1 and as a function of the unknown parameters 6 can be
expressed as

P(Yn, Unlp1;6) = pO'ny un| YN—1, Un—1, P15 0)
X p(Yn_1, Un—1]P15 6) (41)
=pOnlun, Yn-1, Un-1,P156)
X p(un|Yn-1, Un—1, P15 0)
X p(Yn-1, Un-1|P15 6) (42)

where first (yn,up) is conditioned on (Yn—;, Uny—1) and then yy is
conditioned on uy. Now successively applying this gives

N
p(Yn, Un|py; 6) = HP(}’:'“h Y1, Ui—1,0150)

=1

N
x [Tp@d Yier, Uer, P13 0) (43)
=1
N N
= ]_—[ POl unps; 6) ]_—[ p(ups; 6) (44)
=1 t=1

N
=T p(Gnu)lps6) (45)
t=1
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where the last equality is simply the result of successively conditioning the
joint process (y,, u4,) on its past. The probability densities above involve
the conditional random variable y,|(u,,p,) that is the usual output
innovations process of the plant input-output model. The conditional
random variable u,|p, is the innovation of the feedback system with a
required delay of one time step between y, and u, Also the conditional
random variable (y,, u,)|p, is the innovations process for the joint vector
process (y,, ;). The joint likelihood function of (y,, &) is expressed as the
product of two terms that are thus independently distributed. Each of these
terms is the product of probabilities of independently distributed innova-
tions processes.

Notice that in the second term of the product there is no instantaneous
effect of the output y, on the feedback u, so that there is a minimum delay
of one time step. The reason for this is that in the joint model process
(y» 4,) there is in general a correlation between the two components y,|p,
and u,|p, of the innovations process (y,,u,)|p,. The conditioning above
expresses this correlation as an effect of the input u, on the output y,. This
imposes a delay in the feedback between y, and u,. The two forms are
exactly equivalent. The correlation of the joint model has been expressed
as an input—output effect in the plant. These are just equivalent ways of
expressing a contemporaneous effect in the system. If instead u, is
conditioned on y, rather than the conditioning above of y, on u,, then the
delay would have appeared in the plant. The delay can be arbitrarily
selected to be in either the plant or feedback part of the system. There
is no way of determining which is correct from the data without prior
knowledge or some additional inputs in the system. One can write the
system of equations either way and obtain an equivalent description of
the system as discussed in Litkepohl [39].

The above factoring of the likelihood function into two terms as in (44)
and (45) always holds and is a consequence of simple conditional
probability rules. The real usefulness comes, however, when the plant
and feedback pieces of the system can be parametrized separately.
Suppose that the parameter vector can be written as 6 = (6, 7)) where
the two subvectors respectively parametrize the plant and feedback parts
of the systems. In this case, the maximum of the likelihood function is
the product of the maximums of each of the two pieces. This allows the
consideration of the plant—feedback structure for the process as opposed
to a joint model with all possible relationships between the process y,
and u,.

The advantage of this can be seen by considering the number of
parameters required to estimate a feedback structure verses a joint model.
Suppose that the true process has the plant-feedback structure with 4
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states in each of the plant and the feedback parts with y, and u, each one
dimensional. Then the number of required parameters to estimate the
plant is 14 and to estimate tahe feedback part of the system is 13 for a
total of 27 parameters. The joint system model requires 35 parameters.
On the average it is to be expected that the AIC of the joint model will
be larger by 8 than the AIC for the feedback structure model. On the other
hand, suppose that the process is really not of the form of the feedback
model. For example suppose that the true system is of state order 8 where
all parameters are required to adequately describe the system. From the
theory, 35 parameters are required to describe the system, and most of
the time this would be the optimal description of the system to be
identified. Then when each of the separate models for the plant and
feedback part of the system is maximized, some common states may appear
in each of these models since they are only considered separately. As a
result, the total number of parameters will be significantly more than 35.
In this way tests of hypotheses can be set up concerning the presence or
absence of a feedback structure in the system.

Now notice that if the hypothesis of a feedback structure is correct, then
the identification of the two separate pieces is done separately and.as if
the inputs to the respective pieces were uncorrelated with the past outputs
of the system. In doing so, what is implicitly assumed is that

® There is a delay in the feedback from the output y,_; to the
input u,.

® The input innnovations u,|p, which are disturbances in the feedback
part of the system are uncorrelated with the output innovations
¥e|(u,, p,) that are disturbances that are effecting the plant.

e The input innovations u,|p, are nonzero.

Then ML identification of the system will yield the same result whether
the presence of feedback is taken into account or not. The last condition
above is necessary to assure identifiability and depends on the particular
nature of the input innovation as well as the plant where persistent
excitation will guarantee identifiability. The first two conditions guarantee
that the various effects are correctly interpreted by the model. The delay
can be assumed to be in the feedback and the above statements
appropriately modified.

The analysis can be taken one step further to test the lack of feedback.
In such a hypothesis, the model fitted for the feedback would be modified
as p(u,|U;) where U; is the past of only u and not y so that there is no
feedback from y, to u,, We could also test for the absence of any
contemporaneous effect by setting the appropriate parameter to zero in
the model fitting. Thus there are a number of different structures that can
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be fitted and compared to determine the most appropriate model for the
system.

In some applications such as forecasting, it does not matter which of
several equivalent delay structures is used, and the one used is arbitrary.
In other applications however it may be necessary to know the delay
structure or inject additional signals in the system so that it can be
determined. For example if the identified model is to be used for the design
of a control system and then modification of the system feedback, it is
necessary to know the actual delay structure.

The above results easily generalize to dividing up a multivariate time
series into more than two subsets of variables. Following the above
procedure, tests for feedback between the various subsets can be
constructed as in Larimore and Cavanaugh [33] and Larimore [51].

Vill. EXTENSIONS TO NONLINEAR SYSTEMS

In this survey of CVA methods, there is only space for a brief indication
of the nature of the extension to nonlinear systems. This extension is quite
surprising in the generality of the results. A detailed discussion of
nonlinear CVA is contained in Larimore [29].

The definition of the Markov property of nonlinear processes is the
same as in Section III above except that the state x, = C(p,) is a nonlinear
function of the past. The reduced order prediction problem involves the
prediction of nonlinear functions g(f;) of the future using nonlinear
functions h(p,) of the past.

First consider the problem where g and 4 are fixed functions and we
wish to find the nonlinear function g(h(p)) such that the relative prediction
error

lg(f) — &(h@) sz, = E{18(f) — &(h(pN]" ZLel8(f) — 2 ()]} (46)

is minimum, where () denotes the pseudoinverse operation. For a given
pair of such functions, the optimal predictor is the conditional expectation
of g(f;) given the random vector A(p,)

& = E{g(f)|h(py)} (47)

The conditional expectation operator can be expressed in terms of
projection operators in the Hilbert space of nonlinear functions of the past
p, and future f,.

Now with the optimal prediction § given by (47), consider the r-rank
nonlinear prediction problem of finding an r-dimensional nonlinear
function h(p) and an r-dimensional nonlinear function g(f) of f so
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as to minimize (46). Specifically consider the following minimization
problem.

(a) Rank r Nonlinear Prediction Problem. For a given positive integer
r, find r-dimensional vector functions A(p) and g(f) minimizing the relative
prediction error

min [|g(f) - 8(h(p)) llxg, (48)
.9

where g = E(g|h).
The optimal solution to this problem reduces to a sequence of univariate
function optimization procedures involving maximal correlation. Consider

random vectors X = (xy, ..., x,) and Y =(yy, ..., y,). The maximal
correlation of X and Y is defined as
Pr(X,Y)= SfUP p(f(X),g(Y)) = sup E[f(X)g(Y)] (49)
.8

pE:

where f and g run over all Borel measurable functions with zero mean,
i.e., Ef= Eg =0, and p(f, g) is the correlation coefficient given in this case
by E[f(X)g(Y)].

From the theory of continuous operators on Hilbert spaces, under
suitable assumptions on the probability distributions there always exist
functions g and A for which the maximal correlation is attained. The
alternating conditional expectation (ACE) algorithm of Brieman and
Friedman [8] is available for computation of the optimal functions g and
h by iteratively projecting g on the Hilbert space over p, and 4 on the
Hilbert space over f,, ACE has been used extensively in nonlinear
regression problems in many variables.

A nonlinear CVA procedure using less optimal methods than ACE was
implemented in Larimore [29] and applied to the Lorenz chaotic attractor
to obtain a nonlinear model of the process.

IX. APPLICATIONS
A. Chemical Process Control

The CVA approach has been applied to a number of complex multi-
variable chemical processes using both detailed simulation models as well
as real process data. The study of Schaper et al. [43] includes a stirred
tank reactor, an autothermal reactor, and a pilot scale distillation column.
Other studies of chemical processes include an industrial recovery boiler
by Kemna et al. [23], and the use of model predictive control along with
CVA for on-line identification and control of a CSTR process by Kemna



Canonical Variate Analysis 109

et al. [22]. The discussion below concerns the results of Schaper et al.
[43].

A detailed simulation model of a 2-input, 2-output, continuous stirred
tank reactor (CSTR) was used for data simulation to test the CVA
algorithm. The dynamics were mildly nonlinear for the variations around
the set point that were simulated. The step responses produced by the
CVA identification were closer to the true response than those of the
theoretical linearized model. CVA was shown to handle time delays by
augmenting the system state order.

The tubular autothermal reactor exhibits virtually every process non-
ideality encountered in practice including (1) both stable and unstable
steady-state operation, (2) both inverse response (nonminimum phase)
and oscillatory dynamic behavior, (3) very nonlinear behavior resulting
from exponential dependence of reaction on temperature, (4) distributed
process characteristics, (5) highly coupled state variable structure due to
internal energy flow paths, (6) inaccessible concentration state variables,
(7) practical controllability and observability problems, (8) stiff equations
(a need for two time scale techniques), and (9) a relatively high process
noise. The detailed simulation of a 2-input, 2-output system involved 36
nonlinear ODEs. CVA identified a 6-state system with the AIC indicating
that there was no further significant model structure. In contrast with
earlier studies of other identification methods, CVA was able to capture
the extreme stiffness of the system dynamics.

B. Modeling Vibrating Systems

In this section, first an example of model identification from shake table
data is given, and then a comparison of CVA with the eigensystem
realization algorithm (ERA) for a feedback system is discussed.

To illustrate the power of the CVA method, its application to data from
a shake table is discussed. There are 2 outputs and 1 input to the system.
The CVA procedure was applied to 600 time observations. The canonical
variate analysis decomposed the system into 117 states. The AIC is plotted
in Fig. 4 with a minimum at 29 states which was chosen as the optimal
model order and involved the estimation of 152 parameters. Since there
were only 600 time points used, this is a small sample case for system
identification.

The frequency response function of the identified system from input
1 to output 1 is given in Fig. 5 along with the probability 0.999 confidence
bands. These bands are simultaneous so that the probability is 0.999 that
the true transfer function is contained within the bands over all fre-
quencies. A detailed discussion of the confidence band procedure and
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Figure 4 AIC versus model state order.

interpretation is contained in Larimore [30]. The accuracy of the CVA
identified model was comparable to a 32,000 sample FFT where FFTs were
performed on batches of 512 points using a Hanning window and averaged
for batches with 50 percent overlap. The FFT thus required about 50 times
as much data and it appeared that the CVA procedure was still more
accurate. This is due to the adaptive nature of the spectral estimation. Note
how the width of the confidence bands increases where there are very
sharp peaks or valleys in the curve while it can be very narrow where it
is slowly changing.

In another study, Hunter [16] did an extensive comparison of CVA and
the eigensystem realization algorithm (ERA) of Juang and Pappas [20]
in simulations of a vibrating structure. The structure was a finite element
model of a lithographic stage including actuator and measurement
dynamics with a total of 84 states, 3 input actuators, and 3 output sensors.
Some of the modes were lightly damped, and four signal-to-noise ratios
were considered of infinite (no noise), 6 Db, 0 Db, and —6 Db with the
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Figure 5 Identified transfer function and confidence bands.

noise exciting the system state. The effects of active control were
considered including rate feedback, linear quadratic Gaussian feedback,
or no feedback. Two levels of the feedback gains were evaluated for each
combination of signal-to-noise level and feedback type. For each case, time
series of 988,400 points were simulated and used for doing model
identification using CVA and ERA.

In evaluating the identified model accuracy, the error measure used was
the RMS value of the difference between the theoretical impulse response
and the identified model impulse response expressed as a percent error.
The error measure for CVA was between 0.1 and 0.25 of the value for
ERA. CVA was typically 7 times more accurate than ERA, and for ERA
to achieve the same accuracy by using more data would require 49 times
the sample size since RMS error varies with the square root of sample
size. ERA has a number of similarities with CVA in that a major part
of the computation involves an SVD. However, the first crucial step of
ERA involves the estimation of the frequency response function by
averaging FFTs of the data. This first step is a nonparametric modeling



112 Larimore

method that is known to be far less accurate than parametric identification
methods.

C. Process Monitoring and Fault Detection

There have recently been a number of studies of process monitoring and
fault detection trying to isolate and use a low dimensional subspace where
the process is under normal operation. The chemometric methods of
partial least squares and principal component analysis have been used to
try to identify such a subspace in Kourti and MacGregor [24], Nomikos
and MacGregor [41], and MacGregor and Kourti [40]. These methods
have been mostly developed and applied for static regression problems
and not dynamical systems. The CVA method provides a precise and
rigorous approach to identifying the low dimensional state space that
contains the process behavior apart from random observation noise.

The approach is to identify the system state space and then look for
anomalous behavior either within the state space or behavior that
significantly departs from the state space. Let #c be the time ¢ at
which a change in the process occurs and denote the future outputs
fr=@ur,yL, 1, ..., yE) and similarly for the future inputs g,.. The future
canonical variables d are given by L times the future outputs f,. conditional
on the future inputs g, and have the form

dlc = L(flc - Mqlc) (50)

The matrix M has blocks consisting of the system impulse response
function of the form M; = H®' /G for i>], M;; =0 for i <j, and block
diagonal M;; = HA. Then under the null hypothesis, the future canonical
variables d,. lie in a low dimensional subspace with an expected response
due to the state x,. at time tc. The dimension of this subspace is equal
to the state dimension. Also recall that from the Markov property of the
process dynamics, the prediction of the future from the state x,. is identical
to the prediction using the past p,. consisting of all past process inputs
and outputs. The prediction of the future with zero future inputs is simply
yi+i= H®'x,. The prediction of the future canonical variables d from the
past canonical variables that are precisely the states x,, is simply Dx,. where
D is the diagonal matrix of the canonical correlations ;. From the CVA
analysis, the error

die = Dxy (51)

in predicting the future canonical variables d; has covariance matrix I — D2,
Often at least some of the canonical correlations are close to 1 so that
the corresponding prediction error 1— 9? for say the future canonical
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variable d; is quite small. A disturbance or change in the system can effect
the future canonical variables in many different ways. However the CVA
takes advantage of the correlation structure in the process to reduce the
variance in the future canonical variables from 1 to 1—4?. The future
canonical variables d; with index i larger than the state order all have
canonical correlation y; = 0 and variance 1 and are mutually uncorrelated,
and there is no reduction in prediction error using information in the state
or the past.

Several tests of the hypothesis of no change in the process can be
constructed. From the above discussion, a natural statistic for testing
change in the process is the T? statistic

T? = (dlc - Dxlc)T(I - DZ) (dlc - Dxlc) (52)

Also we can partition the error vector (52) and the covariance matrix
I—- D? to contain the first k and last /—k elements and obtain two
additional statistics denoted T? and TZ. The statistic T7 can be used to
test that the process satisfies the state space model on the state space
subspace, while the statistic 75 can test that the process lies on the state
space subspace. The statistic T? is distributed as a Chi-squared random
variable with k degrees of freedom while 7% is Chi-squared with /—k
degrees of freedom. Typically / is much larger than k so that T? = T} + T#
contains a lot of “noise”” in the term 77 in observing any departure in the
process dynamics on the state space subspace. This is the advantage of
using T7. If changes cause a response off the state space subspace that
is large enough compared to the high dimensional noise in T%, then it will
be detected in the statistic T7. Thus the CVA decomposition of the
past/future can be used to construct tests of hypotheses to provide a
transparent and powerful means for checking if the behavior of the process
is in control or out of control. ‘
Suppose that such a test has indicated that a possible change has
occurred. With more future data, a test can be developed to precisely test
the hypothesis that a change in the process has occurred. In particular,
the change model consists of two models that are fitted to the process
respectively before and after the suspected change. This is compared to
fitting a single model over the whole data set to determine if this is a better
description of the data than the change model. The primary tools for
performing such a test is the CVA model identification that gives ML
models and the Akaike information criteria (AIC) for comparing model
fit. The approach is quite simple. The data are split into two data intervals
D, and D, that may have a gap between them. CVA is used to fit
dynamical models M, and M, respectively to each of the data set D, and
D,. Also the model M, is fitted to the union Dy, = D, U D, of the



114 Larimore
data sets. Then the AIC of the composite model consisting of two models
[My, M,] is simply the sum of the AICs

This is compared with AIC[M, ,,], and the smaller is the preferred model.
Keep in mind that the standard error of the sampling variability is of the
order of

V2(D1+ Dy — D142) (54)

where D; is the number of estimated parameters in model M;. If the
difference is of this order, then there is no clear preference for the change
or no change models.

The above test has been applied to detection of the presence of
disturbances in simulations of a continuous stirred tank reactor in Wang,
Seborg and Larimore [48]. The disturbances included ramps, steps, and
sine waves. The CVA procedure was found to be much more sensitive
for detection of disturbances than standard Shewhart charts or more recent
principal component analysis (PCA) methods. The above monitoring
method using CVA was also applied by Wang, Seborg and Larimore [47]
to the Tennessee Eastman Challenge Problem and compared with PCA
and Shewhart charts. CVA monitoring was able to detect the presence of
disturbances missed by the standard monitoring methods.

D. On-Line Adaptive Control of Unstable Wing Flutter

A dramatic example of the use of CVA identification and LQG control
design is discussed in Peloubet ef al. [42]. The problem is to design a fully
adaptive control system to stabilize unstable aircraft wing flutter:

® No prior assumptions on the system dynamics or state order.

® [dentify a model of the system dynamics strictly from observational
data.

® Design a feedback controller based on the identified model.

e Adapt to changes in dynamics due to changes in aircraft speed and
altitude.

® Adapt to changes in dynamics due to changes in wing stores (dropping
stores or changing fuel in wing tanks).

® When the wing flutter is unstable (above a particular aircraft speed),
the controller must stabilize the flutter.

The system was demonstrated in a wind tunnel test at NASA Langley.
Previous flutter suppression systems were nonadaptive, or only semiadap-
tive where some prior knowledge of the system dynamics was assumed.
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The adaptive control system consisted of:

® CVA for on-line automated system identification.

® CVA also provides a Kalman filter state estimator for use in LQG
control.

® Linear quadratic (LQ) control design implemented on-line using the
CVA identified state space model.

® Linear quadratic control (LQG) feedback control using the Kalman
filter state estimate and LQ control.

The CVA identification and LQ control design were typically implemented
once per second using the last 8 seconds of data sampled at 100 Hz. This
was accomplished with a 40 MFLOPS computation rate. The state
estimates and feedback control were computed at the 100 Hz rate to
provide the feedback.

Wind tunnel tests were conducted at the NASA Langley 16 Foot
Transonic Dynamics Tunnel. Extensive tests were conducted over a 3.5
week period for 6-8 hours per day involving three store configurations with
unstable flutter. The aircraft model was a  scale full span model with a
10 foot wing span. The aircraft system inputs were two flaperon control
surfaces, one on each wing, and 6 accelerometer sensor outputs, 3 on each
wing. Speeds of up to 30 percent above the critical unstable flutter speed
were tested for all three store configurations.

Over 100,000 dynamical system models were identified, controllers
designed, and feedback implemented with no failures of the algorithms
until the last day, as discussed in the next section. Most of the tests were
conducted above the critical flutter speed where the dynamics were
unstable. Consequently the identified models typically were unstable and
had state orders between 15 and 30 states. The identified model provided
a disturbance model for state and measurement noise as well as the
input/output dynamics. The disturbance model provided the basis for the
Kalman filter state estimator with good disturbance rejection.

Tests were conducted to evaluate the ability of the adaptive control
system to adapt to changes in the flutter dynamics. One test was a rapid
decleration of the wind tunnel speed which changes flutter dynamics. In
another test, the adaptive controller was restarted with no prior knowledge
of the system dynamics. In this case, the first identified model used 1
second of data, the second used 2 seconds, etc., until reaching the use
of 8 seconds of past data for identification. In some cases it took several
seconds of data before the controller achieved stabilizing feedback. Several
tests were done where stores were dropped from the wing so that there
was an instant change in dynamics as well as an impulse of energy input
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into the unstable system. Video cameras clearly showed growing vibration
of the wingd due to the unstable dynamics and no stabilizing control
feedback. It took several seconds of data following the store drop before
the CVA identification could determine a sufficiently accurate model so
that the corresponding controller would stabilize the system.

E. Robust Adaptive Control

At the end of the wind tunnel tests of the adaptive control of wing flutter
described in the previous section, the system went unstable and the wing
broke.

In subsequent analysis, the cause of the instability in the controller was
found to be due to the uncertainty in the identified model exceeding the
controller robustness. This was due to the system identification not
providing any measure of the identified model accuracy, and the controller
not assessing robustness relative to the model uncertainty. Currently
available CVA identification software discussed in Larimore [32] provides
confidence bands on the estimated frequency response function developed
in Larimore [30] that could be used for at least assessing the robustness
of the controller relative to this model uncertainty.

There are several potential approaches to robust adaptive control using
the model uncertainty from the identified model:

® Check robustness. Determine if the designed controller has sufficient
robustness to contain the identified model uncertainty.

® Robust controller design. Use the identified model uncertainty in the
controller design.

e Change input excitation. Determine how the system input excitation
spectrum could be changed to reduce the identified model uncertainty
with a corresponding increase in controller robustness relative to the
model uncertainty.

The information available from CVA identification on model accuracy can
thus be used in several ways from simply checking robustness, using it in
robust control design, or determining how to change the input excita-
tion.
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Il. INTRODUCTION

System identification is concerned with the determination of an ap-
propriate mathematical model which adequately describes the input—
output characteristics of a system under consideration. The existing
literature on the subject includes a large part which is based on treatment
in discrete-time (DT) [1-4] and a considerable part which advocates and
describes several approaches based on continuous-time (CT) for identifica-
tion of physical systems. An elaborate justification for the choice of CT
models for physical systems and several methods of identification for a
variety of CT model forms may be found in Unbehauen and Rao [5] and
Sinha and Rao [6]. This chapter is concerned with identification of dynamic
systems in terms of CT models in a particular form which is termed
“generalized moving average” for its structural similarity with its discrete-
time (DT) counterpart. The term does not reflect the literal sense of
moving average in this case.

Consider a CT linear time-invariant asymptotically stable dynamical
system & with input u(f) and output y(f). The input—output description
of the system in terms of its unknown transfer function G%p), is

() = Gp)u()) + (o) 1)

*Presently on deputation at the International Foundation for Water Science and Technology,
PO Box 25862, Abu Dhabi, U.A.E.
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Table 1 Various Choices of the Dynamic Operator § for CT Modeling

5 Description
1 q”! Backward shift operator
1-47! , _—
2 o7 Forward difference-based approximation
q I
2 1+q7!
3 — q_l Trapezoidal approximation
T;1-gq
1-47" , _—
4 T Backward difference-based approximation
5

The term G°(p)u(f) represents the component of response of the system
to the input u(f), v(¢) represents the stochastic part of y(f), and p is the
differential operator. In many practical situations, only discrete samples
of the input and output signals are available, requiring an approximate
version of the CT model in an appropriate time domain. Consider the set
of measurements sampled at equal intervals of length Tg.

YN = {u(k),y(k),k=1,...,N} @)

Given YV and some prior knowledge of the dynamics of &, the system
identification problem is to obtain G(8,8), an estimate of the transfer
function which best describes the dynamics of & in some sense by
minimizing a chosen norm of the modeling error. 8 represents the time
domain of approximation of the model. # € R” is the parameter vector.
Some simple approximations of the CT domain are listed in Table 1 as
functions of the backward shift operator ¢~ !.

In terms of G(8, 8), the input—output description becomes
y(k) = G(3, 6) u(k) + H(3, 6) e(k) ()

in which the second term accounts for the combined effects of v(f),
unmodelled dynamics (due to model simplification), and possibly of
unknown initial conditions. This term is generally called the noise
model.

The focus of our attention in the present treatment is on the first term.
The treatment is also applicable to the second term.
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SYSTEM
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Figure 1 Role of model structure in parametric system identification.

Il. IDENTIFICATION OF PARAMETRIC MODELS

In the process of identification by parametric models, it is necessary to
select a model with a suitable structural form characterized by an
appropriate set of parameters. In the case of CT systems, the handling
of the time domain is additionally important. The complexity and quality
of the estimation procedure naturally depend on the chosen model
structure. It is therefore desirable to make a choice that leads to reasonably
good estimates of the system even with very simple parameter estimation
approaches. This point is explained in Fig. 1. The measured input—output
signals, the specific form of the model, and the related set of parameters
happen to be the inputs to a parameter estimation algorithm which gives
the estimated model parameters of the model.

The choice of the model (structure and parametrization in a time
domain) is governed by the nature of the system under test, as understood
from the quanitative or quantitative prior knowledge of the system and
the intended application of the estimated model. The quality of the model
estimate with a given parameter estimation approach in turn depends on
the chosen model (structure and parametrization in a time domain).



124 Rao and Subrahmanyam

lll. SYSTEM IDENTIFICATION IN CONTINUOUS-TIME
DOMAIN

CT dynamic systems have traditionally been modeled by linear differential
equations in the time domain, or rational transfer functions in the complex
variable s in the frequency domain. Some models can be processed on
digital computers only after discretizing the CT operators and process
signals. Consequently, CT systems have been subjected to a process of
discretization which gives rise to difference equations in the time domain,
or rational transfer functions in the complex variable z in the frequency
domain. These models have been in wide use mainly for their simple digital
appeal and the availability of analytical tools until the virtue of the CT
treatment became evident in the context of identification and control [6-9].
CT approaches avoid the following setbacks which are inherent in the
traditional DT approaches:

1. High sensitivity of the model coefficients which is associated with rapid
sampling and gives rise to problems in parameter estimation and
control,

2. Clustering of poles near (1,0) in the z-plane at high rates of sampling
leading to undesirable numerical ill-conditioning,

3. Creation of a non-minimum phase feature which is unnatural and

problematic,

4. Loss of uniqueness of models due to their dependence on sampling
time,

5. Loss of physical significance of parameters due to discretization,
and

6. Loss of available knowledge in the discretization process in partially
known CT systems.

Mukhopadhyay et al. [10] discuss these in greater detail and cite further
literature on this aspect. Investigations in this direction have led to
attractive approaches to the DT approximation of CT models. A particular
feature of these approaches is that the parameters in the resultant DT
approximation retain their strong relationship, which is asymptotically an
identify, with those of the original CT version [5,6] and the resulting DT
domain is in harmony with its CT counterpart. In these approaches, the
DT (sampled or averaged) measurements, and the filtered versions of
signals that arise in CT modeling, are computed by way of DT
approximations of the CT differentiation operator p = d/dt¢, such as items
24 of Table 1.
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IV. PARAMETRIC FORMS OF CONTINUOUS-TIME MODELS

A general parametric form of description for Eq. (3) is the polynomial
black-box model

B(5,0)
F(8,0)

C(5, 0)
D(5, 0)

A(8,0)y(k) = u(k) + e(k) (4)
that is the CT counterpart of the DT Box—Jenkins version [11,12]. In this,
u(k) and y(k) are the samples of input and output signals, respectively,
and e(k) is a sequence of independent and uniformly distributed zero mean
random variables. A(8,0), B(8,0), C(8,0), D(5,0), and F(5,0) are
polynomials in 8 whose coefficients are arranged to form the parameter
vector 6. Specific cases of these polynomials lead to particular models such
as autoregressive (AR), moving average (MA), autoregressive and moving
average (ARMA), and so on. In particular, to characterize stationary
stochastic processes, the following ARMA model is considered.

A(3, 0)y(k) = C(3, 0)e(k) &)
where

A(B,0)=8""+a;8" '+, . +a,,
C(8,0) =8+ 18" 1+ .. +cpe

whose coefficients appear in the AR and MA portions, respectively, of
the model. In the context of the discussion in this chapter, the terms AR,
MA, and ARMA refer to the CT context, where the operator § denotes
an approximation to the CT differentiation operator, and not the usual
backward shift operator.

The ARMA model of Eq. (5) is commonly used in spectral estimation
and time series analysis. In dynamic system identification, where the goal
is to characterize the dynamic input—output relation of the underlying
process, the following model is suitable:

A(8, 0)y(k) = B(3, O)u(k) (6)

where A(5,0) = 8"+a,6" '+...+a,, and B(5,0) = b, 8" '+ b,6" 2+
...+b,. Here the MA portion is formed from the process input signal
which is usually known and measurable. Hence, in the sequel, with a little
abuse of notation, this model is also termed as an ARMA model. We
refer to

B(5, 0)
A5, 0) ™

G(8,6) =
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s “deterministic ARMA” in the same vein. This model attempts to
represent the dynamics of G%(p) through a proper rational transfer
function having insightful features such as poles and zeros. However, the
nonlinear-in-parameters nature of this model structure is not in favour of
simplicity in parameter estimation.

With this model structure, the model output error (OE) in sampled
form is

_ B(5,0)
A parameter estimation criterion is to minimize
N
Top(k) = 3, eoe(k)? ©
k=1

with respect to 6. Since the output error of Eq. (8) is nonlinear-in-
parameters, this happens to be a problem of nonlinear optimization. In
an attempt to simplify the situation, most of the identification approaches
resort to the equation error (EE).

eeell) = S0 - g i) (10)
and a criterion
N

Jep(k) = D, epp(k)? (1)
k=1

Here 1/E(6) is a linear-dynamic operator of adequate order for the removal
of the need for direct differentiation of process data [12]. These operators
also serve the purpose of prefilters used for removing unimportant
frequencies from the process data.

Since Eq. (10) is linear-in-parameters, parameter estimation is
simplified to linear recursive least squares (RLS) estimation. However,
EE minimization has its disadvantages.

® Biased estimation. The parameter estimates will be biased when the
EE is not white [1]. Variants of the ordinary least squares (LS)
algorithm such as “generalized least-squares” and “instrumental
variables” [3] are applied to remove the bias. These and other “bias
compensating least-squares” methods [13-15] are computationally
demanding [16]. These approaches assume that the measurements are
actually generated by an ARMA model, and that the measurement
noise is Gaussian distributed. However, the performance of some of
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these may not be satisfactory when there is significant modeling error,
as this component of error may not be Gaussian distributed.

& Reducible models (for MIMO systems). Consider a vi-input, v,-output
system described by the transfer function matrix (TFM)

G“(S, 0) 612(6, 0) P le(ﬁ, 0)
621(6, 0) G22(6> 0) cee G2vi(8’ 0)

G(5,0) = : . : (12)
G,1(6,0) G,2(8,0) ... G,,[5,0

where,

B;{(3, )
Gi{5,0) = m

EE formulation necessitates a canonical form having a least common
denominator (CD) of all the elements of the TFM. The CD
considerably inflates the unknown parameter vector. To reduce this
inflation partially, the TFM is decomposed into multiple input-single
output (MISO) submodels with several CDs limited only to the rows
of the TFM. In this way, a two-stage algorithm was proposed by
Diekmann and Unbehauen [17] for DT model identification, and its
CT version by Mukhopadhyay et al. [16]. A Gauss—Seidel type iterative
algorithm that does not require a CD was suggested by Rao et al. [18].
The approaches to estimation of irreducible CT models are surveyed
in [16,19].

® Distribution of estimation errors. Modeling of physical processes is
synonymous with approximation. The approximation is tantamount to
undermodeling. This coupled with noisy process data results in biased
estimates. Though it is possible to eliminate bias due to measurement
noise, the bias resulting from undermodeling cannot be eliminated at
all. It can be distributed over a range of frequencies by careful design
of the identification experiment [20] such that such undermodeling is
not harmful in the context of the final application of the resulting
model. With ARMA modeling, the problem of experiment design for
a prescribed distribution of bias over a range of frequencies is not
simple and straightforward.

Using Parseval’s theorem, the frequency domain description of the

EE criterion (11) in the limit as Tg— o, is

A(jw, 6) 2
E(jw)

oo

.w 2
JEE<w)=f U(jo) G"(jw)—f;g—a;g W (13

0
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where U(jw) is the Fourier transform of the input signal. The first term
on the right-hand side of (13) is a weighting function that manipulates
the second term (bias) over a range of frequencies. With the chosen
ARMA model structure, it is clear that this weighting function is a
function of the yet-unknown A(J, ) which renders on-line experiment

design impossible. Off-line design, however, is shown to be possible
[21].

These problems are simplified, as will be clarified in the following
section, when one considers linear-in-parameters models. Note that a
parametrization G(8, 6) is linear if second and higher order derivatives of
G(8, 9) with respect to 6 vanish for all 8 and linearity of a parametrization
is different from the linearity of the model in terms of its input—output
behavior. Even nonlinear models can be linearly parametrized.

In recent years, there has been a considerable amount of literature on
linear-in-parameters models in the context of identification and approxi-
mation of dynamical systems. An attempt to unify various model forms
which are linear-in-parameters is made in the following under a “general-
ized moving-average modeling” framework.

V. MODELS IN GENERALIZED MOVING-AVERAGE FORM

One situation in which the ARMA model of Eq. (6) is linearized (with
respect to ) is when its denominator A(8, 9) is fixed as some appropriate
A(8) which leads to the description
n—1 b 6,,_
G(8,0) =
®0=2 ~ar
in which 6 =[b,,b,...,b,]T and &(8) = 1/A(8) [6"~1,8"2%,...,8. A
linear-in-parameters model is therefore obtained as:

0 = 2 uth) (15)

= 07&(5) (14)

whereby EE = OE and estimation (minimization) is linear. This leads to
an advantageous situation with the following possibilities.

® Robust estimation. In the limit as N— o, the LS estimate 6 in the
presence of zero-mean disturbances tends to 0, where 6* is the limiting
estimate in the absence of disturbances. In particular, if the distur-
bance term is Gaussian and there is no modeling error, the LS estimate
Bis asymptotically normal with mean 6* and a covariance proportional
to the variance of the disturbance. This holds good even for colored
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disturbances uncorrelated with the input. This implies that the LS
estimation is robust to zero-mean disturbances. Note that the estimates
will still be “biased’’ due to the inherent undermodelling.

® Irreducible model estimation. With MIMO TFM models, since the
denominators do not include unknown parameters, the CD formula-
tion does not inflate the parameter vector.

e Simplified error distribution problem. The weighting function in Eq.
(13) now equals|[A(jw)/E(jw)] U(jw)[*. The absence of the unknown
0 in this weighting function permits on-line experimental design for
a prescribed bias distribution.

® Gray-box modeling. The fixed denominator polynomial A(8) in the
linear-in-parameters model (14) serves as an additional design variable
allowing for effective incorporation of prior knowledge of the process
dynamics. By an intelligent choice of this polynomial, even complex
systems can be estimated significantly accurately with a smaller number
of parameters.

These are the advantages of linear-in-parameters models in system
identification. In these models output is expressed as a linear combination
of certain MA components of the input. This leads to the “‘generalized
moving average model” (GMAM) formulation as

n

y(k) = 23, 0:F(B)u(k) (16)

i=1

In this model, the moving average components of the inputs are formed
as the responses of a set of known filters {7;(8)} to u(k). These filters form
the basis

B(3) = [71(8), 72(8), . . ., Zu(O)]” a7
of the GMAM structure

G(5,0) = D, 6;7(9) (18)
i=1

With such a parametrization, the model output error

soe(k) = y(k) = 2, ,7(8)u(k)
i=1
is linear in {6;}, and consequently the minimization problem of the output
error criterion (Eq. (9)) is linear.
Models of the above structure evolve very naturally from truncated
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power series expansions of the rational transfer function. For example,
in the DT case, the system transfer function may be written as

G Y= hiq™ (19)
i=1

where {h;} is the impulse response sequence. This suggests the following
parametrization

G(3,0)=0"8(q™") (20)

where 0=1[6,,60,,...,60,]7, and g H=[¢g"',97%...,947"". The
quality of this approximation depends on the rate of convergence of the
impulse response sequence. The poles of G%(z) close to the unit circle slow
down the rate of convergence. Consequently a high model order is
required for a given tolerance. For these reasons, in rapidly sampled CT
systems the rate of convergence of the approximation will be very slow,
and in the limit as Ts— 0, the DT poles approach unity and consequently
the approximation fails to converge. Furthermore, even in the case of
convergent approximations, high model order is required as the memory
of the basis (shift operator) is very short (unity). Therefore, model
representations having better convergence properties and less sensitivity
to sampling rate will be preferable.

In the CT case, the transfer function G%p) may be expanded about
p = as a complex power series in p~! as

G*p) = 3, hp™"Y (21)
=1
leading to the form
Gp,0)=0"8p"") (22)

where 6= [hy, hy,. .., h,]T and 2 H=[p Lp%...,p7"". Itis well
known that h; are the CT Markov parameters of G%(p) which are
defined as
di—l o
h;=——— 23
(] dtl—lg (t) (=0 ( )

where g(t) is the impulse response of G%(p).

Considering a similar expansion of G%p) about p = 0, one has models
parametrized in terms of normalized time moments of the impulse
response g°%(t) of G%p), i.e.,

G(p, ) = 67&(p) (24)
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where 0 = [m;,m,,...,m,]T and B(p) = [p,p>?,...,p"]" and

m;= (_.,1 Y r £g%(r)dt (25)
0

i

are the normalized time moments.
Other basis functions are also possible. Well known among these are
Laguerre and Kautz filters. Laguerre filters imply a basis

eLAG(p)=[ L1 (”"") - (u)"_']r 26)

PHApHA\P+A)  Up+a\p+A
with A >0, and Kautz filters imply

Brautz(®) = [0i(P), ¥a®), - - -, ¥u(@)]” @7

where

— 14
¢2k—l(p1bac) p2+bp+C|:

pz—pb+c k-1
p>+pb+c

and

¢’2k(p’ b’ C) =

1 p2—bp+c k=1
p>+bp+c|p*+bp+c

with >0, ¢>0, and k=1,2,.... Wahlberg [22] discusses these bases
in greater detail. The role played by the basis in continuous and discrete
system modeling is discussed by Goodwin et al. [23,24].

In the following sections, CT models parametrized in terms of Markov
parameters and time moments are presented for CT MIMO system
identification. These models are so generalized as to include prior
knowledge of system dynamics, and to ensure that even low order models
give an adequate representation of the system under consideration.

V. MARKOV PARAMETER MODELS

The use of Markov parameters for parametrizing models is not new in the
field of system identification. There have been references to DT Markov
parameters for identification of DT multivariable models. DT models of
the form of Eq. (20) were considered for identification by Sinha et al. [25].
The problem of direct DT Markov parameter (MP) estimation based on
cross-correlation between the output and a white noise input has also been
studied by Sinha ef al. [25]. Niederlinski and Hajdasinski [26] survey the
related issues.

However, in CT situation, the reference to Markov parameters is rare.
This is because of the natural but difficult-to-compute form (23) in which
Markov parameters are defined for CT systems.



132 Rao and Subrahmanyam

The work of Dhawan et al. [27] is the first attempt at the use of MP
models for SISO CT model identification. The MP model (22) is
transformed into an integral equation in which the integrals are realized
using block-pulse functions [28], thereby avoiding the derivative route to
the realization of Markov parameters. However, truncation of the MP
model as in Eq. (22) often leads to poor approximation, due to which the
estimation may fail to converge. A simple generalization of the original
MP model to ensure convergent approximations may be found in Dhawan
et al. [27] and Kiiper [29]. Further generalization of the basis leading to
flexible and well-behaved approximations was suggested by Subrah-
manyam and Rao [30] and have been extended to MIMO systems by
Subrahmanyam et al. [31].

A. Estimation of Moving-Average Models

Consider a vi-input, v,-output MIMO system having a transfer characteris-
tic G%p), and an input-output relationship

¥(?) = G%(p)u() + v() (28)

where y € R*>, u ERY, and v € R*>. CT Markov parameters of this system
are defined as the coefficients of the power series

G%p) = > Hp™
=1

where {H,} is the Markov parameter sequence (MPS). Denote

ha  h oo gy,

hion haxn .. Ry,
H = )

Bivot hivo oo A,

In terms of the MPS,

¥y = > Hu'(t) +v(),
=1
where u/(f) is the Ith integral of u(s). Assuming absolute convergence of

the MPS and thus uniform convergence of partial sums, a truncated MP
model is obtained as

y(©) =D Hul () +e(?) (29)
=1
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where e(?) includes the truncation (of the MPS) error and the contribution
of unknown initial conditions in addition to the usual noise term v(¢). This
model is valid only when the power series expansion of G%(p) is absolutely
convergent. Note that, when the system is represented in the sampled
domain as G%g~"), the resulting DT MPS is the impulse response
sequence of the system. For asymptotically stable systems, the DT MPS
is absolutely convergent. But, when represented in the CT domain, even
stable systems may have diverging MP sequences. To ensure absolute
convergence and to increase the rate of convergence of the approximation,
a more general version of Markov parameters, called Markov-Poisson
parameters, was suggested by Subrahmanyam and Rao [30]. In terms of
these, G%(p) is expanded as

G%p) = H,(—) u(t 30
)= 2, B ) W (30)
The Markov—Poisson parameters {H,} are related to the Markov
parameters {H,;} as

]

— 1 ;

}L:?E"'C,._IA"'H,., I=1,..;8>1 (31
i=1

Thus, the model is

n !
10 =Y, 8LV w+et)
=1

implying the basis

_|_8 B\ B _\"
0= [ ew) (53] |

The elements of &pe(p) are the well-known Poisson filters [32] of
increasing order in which A and B are tunable parameters. This generaliza-
tion improves the low-frequency predictive ability of the model. The
choice of the filter parameter A has to be made according to the a priori
knowledge of the poles of the system. In general, a A> 0 is well suited
for overdamped systems with poles not very close to the imaginary axis
of the s-plane. On the other hand, a A <0 with a large B is appropriate
when the poles (complex) of the system are arbitrarily close to the
imaginary axis.

Parameter estimation may now be carried out by decomposing the
problem into v, MISO subproblems and considering one subproblem at
a time or in parallel. In the sequel, one such MISO problem is considered
and the subscript i, which denotes the row index, is dropped mainly for
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notational simplicity. Further, only n; parameters are considered for the
jth element of the MISO problem. Approximating the derivative operator
by & in the parameter estimation equation we get

y(k) = ®(k)To
where
(I)(k) = [q)l(k)’q)Z(k)’ .. wq)v,'(k)]T

(k) = [71(8) (), LB UK), - - . Fuf@u(O), j=1,.. v,
0= [hl,11 . .h,”,ll. . .|h1'v'., .. .h"w,'v,.]T

and

{
70 =(525)

Next, we define the cost function as

N
J(8) = [0~ (0)]"P(0) [ — B(0)] + D, [y(k) — (k) 6]
k=1

The LS estimate that minimizes J(0) is
N - N
O(N) = [P(O)‘l +> d)(k)d)(k)T] l[P(O)"é(O) + > (k) y(k)]
k=1 k=1

provided the inverse exists. This estimate may be calculated using the
conventional recursive least squares algorithm.

B. Irreducible ARMA Model Realization

Given the estimates of H,,/=1,. . .,n, the first step towards realization
of an irreducible ARMA TFM model is to examine the columns or rows
of the Hankel matrix #(p,q) formed from the estimates as

I'll 132 _ﬁq
H, Hj; I-I<1+1

#p,9)=| - Do : (32)
ﬁp ITIp+1 ﬁp+q

for predecessor independence [33,34]. In view of the MISO decomposi-
tion,

ITI1 = [51,1,51,2,- . -,El,v,']
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Interchanging columns, Eq. (32) may be written as

%v q) = [Wla%’ . .,in],

where #;,j=1,2,...,v; are the pxXq Hankel matrices of the SISO
elements of the MISO submodel.

Thus, the problem of structural identification of the MISO model is also
decomposed into equivalent problems of finding ranks of Hankel matrices
of individual elements over a row. Singular value decomposition may be
used for this purpose.

According to the “partial realization theory” of [35] and [36], given a
finite sequence of Markov parameters, it is possible to find a finite
dimensional realization whose first few Markov parameters are cor-
respondingly equal to the given finite sequence of Markov parameters.
Accordingly, given a finite estimate Markov-Poisson parameter sequence,
irreducible TFM models can be derived solving the following equations
together with Eq. (31).

-1
hl,ij = bl,ij_ 2 h,‘,-]-a,_,,,-]-, = 1,2, ey n,-]-
r=0

hl+n,',',ij =- hn,-,-+l—r,ijar.ija [=1,2,...

r=1

where the ijth element of the TFM is considered to be of the form
ij—1
bl‘,IS"’ + e . + b’l",lj
s" 4+ aly,-,-s""'_' +...+ a,,,.,.,,-,-

Gij(s ) =

Supposing the system is of this ARMA form, some insight may be given
regarding the nature of the MPS.

® The MPS is convergent when all the poles of all the elements of the
TFM are inside the unit circle centered at the origin of the s-plane.
Equivalently, the Markov-Poisson parameter sequence (MPPS) is
convergent when all the poles of all the elements of the TFM are inside
the circle of radius B centered at (—A,0) of the pole-zero plot. This
circle may be termed the zone of convergence of the sequence.

® The MPS (or MPPS) is finite if and only if all the poles of all the
elements of the TFM lie at the origin of the zone of convergence.

C. Conversion of MPS into Finite Form

The usual infinite-length MPS is finite (with length max; ;{n;} when no
CD is assumed, or max;{n;} when column-wise CD is assumed) only when



136 Rao and Subrahmanyam

the poles of each subsystem of the TFM lie at the origin of the convergence
zone. For a known system, all poles can be placed at the center by state
feedback. Then such a modified system will have a finite MPS. In the
identification problem, since such state feedback cannot be introduced as
the system itself is unknown, it is possible to introduce the effect of
pole-placement on the input—output measurement data, by some iterative
pole-placement algorithm. For the sake of simplicity, the SISO case is
considered in the following.
Consider the state equation of G%(p) in its controller form

x(t) = Ax(t) + bu(p)

where
0 1 0 0 0
0 0 1 0 0
A = , b =
—@p —0p-1 —an-) 1 1
The matrix A can be written as
A= AO — bk
where
010 0
0 01 0
Ao=| . : : - =} k=lanayy,..., 4]
0 00 1

Therefore we have the state equation as
x(1) = Agx(¥) + bu(),

where u(t) = u(t) — kx(¢) is the filtered input signal. The fictitious system
described as above by the signal pair %(f) and x(¢) has a finite MPS, as
the eigenvalues of A, are all at zeros. Therefore, by transforming the
original system into that described by the above, the approximation error
due to truncation of the MPS can be made to vanish. This is equivalent
to placing the poles of the system at the origin of the convergence zone.
Based on this, a time-recursive and iterative algorithm was initially
proposed by [30], which was later extended to tackle multivariable
systems by [31]. For a detailed description and analysis see this latter
reference.
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VII. TIME MOMENT MODELS

Like Markov parameters, time moments also play an important role in
the field of reduced-order modeling [37,38]. Despite the wealth of other
mathematically sound methods available for reduced order modeling, the
moment matching method is still considered as the simplest and is widely
used. In the field of system identification, an approach for multivariable
system identification has been recently proposed by Subrahmanyam et al.
[39].

A. Estimation of Moving-Average Models

The TFM may be written in terms of the time moments which are related
to the impulse response as

6p) = [ goea= 3 mp
0 =0
where

1\ (>
M,=(I'1)J' d0dt,  1=1,2
' 0

happen to be the normalized time moments of the impulse response.
Define

mn M ... Mgy,

My Mo ... My,
H[ =

mya1 My ... my . vi

In terms of the time moment sequence (TMS) {M;}, the system
input—output relation becomes

y() = X, Mu@) +v(r)
=0
where u() is the /th derivative of u(f). Assuming absolute convergence

of TMS and thus uniform convergence of partial sums, similar to the case
of MP modeling, the truncated TM model is

y(©) = > MuO(r) +e(r) (33)
=0

To validate the use of the above model even for systems with diverging
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TMS, additional exponential scaling of the series will be necessary to
ensure convergence.
To avoid the direct use of derivatives, Eq. (33) is operated on both sides

by an (n+ 1)th order Poisson filter operator B"*Y(p +A)"*! [32].
Denoting

!
7I,n+l(P)=ﬁ"+l(p_+[;)"T, 1=0,1,...,n

the time moment (TM) model is

Zonr1) Y1) = D, MiZ) 1P (@) +e(r) (34)
=0

For the ith row of Eq. (34) (dropping the subscript i in all relevant
symbols), taking into account n; time moments of the jth MISO subsystem,

and letting n = max;{n;}, the parameter estimation equation in discrete-
time is obtained as

y(k)=®(k)76
where
D(k) = [@(k), Pa(K), . .., D,(K)]T
(I)]-(k) = [70,n+l(6) u]'(k)7 71 ,n+l(8) u/(k)’ R 7n,',n+l(8) u]_(k)]T’

j= 1, v Vi
y(k) = Zo,n+1(8) y(k)
0=1[mg,1,....mu7l...IMg .. oMy, T

Parameter estimation may now be carried out with the usual least squares
algorithm.

B. Irreducible ARMA Model Realization

Given the estimates of M,/ = 1,. . ., n, an irreducible ARMA TFM model
can be realized in a manner similar to the case of Markov parameter
models. Let

Aij(S) =1+ al,,-,-s +...+ a,,,.’.‘,-js""f
— ii— 1
B[]'(S) = bO,ij+ bl,,-]-s +...+ b"i’._l‘ijsnl

and

Ml= {ml,ij;i= 1’~ . ~’v07j= 1" . .,Vi}

Given the estimates of M;, [ = 1, . . ., n, the TFM elements can be obtained
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by solving the following equations:
-1

my ;= by ;i— 2 m, @,  1=0,...,m—1,

r=0
and
ni;
ml+n,-j,ij =- 2 mn,-j+l—r,ijal,ija l= 1’2a s
r=1

Supposing the system is of this ARMA form, the following remarks are
in order.

1. The TMS is convergent if all the poles of all the elements of the TFM
are outside the unit circle centered at the origin of the s-plane. This
circle is the zone of convergence of the sequence.

2. The TMS is finite if and only if all the elements of the TFM are
denominator free (i.e., have denominator 1).

C. Conversion of TMS into Finite Form

The TMS is finite when all the subsystems of the TFM are denominator
free, in which case the length of the TMS is max;{n;} and modeling will
not involve unmodelled dynamics. This situation can be met by adding
fictitious zeros to each subsystem, to cancel their respective denominators.
In an identification experiment, this is achievable for ARMA systems as
illustrated below for the SISO case

Y0 = g Eu)
If the denominator A(p) is known, we can write
¥ =28 1) = gb-p" (1),

where #(f) = [1/A(p)]u(f). Thus the model between u(f) and y(f) has a
finite TMS. Therefore, by estimating the denominators and then canceling
them in an iterative way, it is possible to convert the TMS into a finite
form, so as to remove the truncation error. For such an iterative algorithm
with detailed analysis, see [39]. '

VIll. CHOICE OF PARAMETRIC FORM

When physical phenomena, which can be captured only by complex
relationships, are represented by simplified models, the probability that
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a given model set includes the precise model of the observed process is
zero. Modeling error is inevitable and the performance (viz. predictive
ability) of the estimated models depends on the choice of model structure
and the prior knowledge embedded into the chosen model structures, for
a given model order.

In the proposed class of GMAMSs, the following parametrizations are

considered for CT system modeling.

Motivated by Markov—Poisson parameter models, with a Poisson filter
chain:

_[B_(_BY _B Y
?PF(B)_[8+A’(8+A>""’(8+A>] (35)
and,

Motivated by TM models, with a state-variable filter (SVF)
1 8 8!
50 = | 55 565 £G)) 36)

where 1/E(5) is a nth order stable filter. A typical choice is an nth-order
Poisson filter.

The following issues are now studied via numerical examples.

Predictive ability. The above two choices &pe(8) and BsyH8) are
related through a linear nonsingular transformation (for A # 0), e.g.,
forn=4and g=1.
0 0 0 1
0 0 1 =

&
0 2 -y |%O

1 =32 3A%2 )3

BsvH(d) =

Hence for a given model order, models based on these two sets will
have the same predictive ability.
The numerical behavior of the estimation algorithm is dictated by the
condition number of the matrix

N
R= D ®(k) (k)T
k=1

It has been pointed out by [30] that use of &pe(5) results in high
condition numbers of the above matrix, as these functions are
overlapping and nonorthogonal. On the other hand, the second set
Bsvi() is near-orthogonal [24], which improves the condition num-
ber.
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® Numerical conditioning may be improved if an intelligently chosen
linear transformation of these sets of basis functions is made before
parameter estimation commences. When such transformation results
in an orthogonal set, the numerical properties of the algorithm will
be significantly improved. A popular orthogonal basis is in terms of
Laguerre filters:

2 (s')_'l 1 (86-A 1 (8-A\"""1T
LAGET ™ |8+ A76+A\8+2) "8+ A\6+2A

The required linear transformations are for (n =4 and g =1),

0 0 0

1
1 =22 0 0
BLac(d) = 1 —4x 42 0 Zpr(9)
| 1

—61r 122 —8A3

and
1 3x% 31
A CD U |
BLaG(d) = A=A a2 0 &sve(d)
1 3x% 31

Example 1. Consider a CT system

25 +6
GO = F T s 16

This is simulated using trapezoidal approximation with a Gaussian white
input of variance 1.0 and steady-state gain 1.0 for 100 sec at a sampling
time 0.1 sec.

Models of various orders are estimated with A = 8=1.0. Parameter
estimates are shown in Table 2. Frequency response plots of the true
system and the estimated models are shown in Figs 2, 3, and 4,
respectively, for Bpg(8), Bsvi(d), and B Ag(8). As seen from these
figures, the estimation quality improves with increase in model order n.
Figure 5 shows that, for a given model order (n = 4), all the three sets
of basis functions produce models with almost the same frequency
response.

Table 3 compares the condition numbers for increasing n. Though the
condition numbers with &p(8) and B5ye(8) are larger than those with
B ac(d), the estimates do not show significant numerical errors (see Fig.
5). However, the same may not be the case with small-word-length
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Table 2 Parameter Estimates of Example 1

Basis d [
1 [0.9827]
2 [0.1914, 0.8133]
Bpp 3 [0.0585, 1.4174, —0.4760]
4 [0.0556, 1.4320, —0.5038, 0.0163]
5 [0.0459, 1.5054, —0.7109, 0.2783, —0.1190]
1 [0.9824]
2 [1.0046, 0.1867]
BsvE 3 [0.9999, 1.5233, 0.0562]
4 [1.0000, 2.5116, 1.5886, 0.0517]
5 [0.998, 3.5395, 4.0578, 1.6732, 0.0425]
1 [0.9827]
2 [0.5981, —0.4066]
BLaG 3 [0.6482, —0.4707, —0.1190]
4 [0.6477, —0.4702, —0.1198, —0.0020]
5 [0.6482, —0.4718, —0.1179, —0.0050, —0.0074]

102 10+ el X 10t 102 104 T T 10t

Figure 2 Results of estimation with Bpg(8): (a) — G%(jw), (b) ————n =1, (c)
———n=2,(d)----- n=3,4and5.

computers, and transformations such as suggested in item 3 above will be
helpful.

Example 2. Now consider an underdamped second-order system [40],

1
G%) = s2+0.25+ 1

The measurement data are obtained with a sampling time of 0.001 sec.
A model of the following structure

i 0,8
i=1

(& + 2w, + w2

G(5,0) = n even
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193 10
Figure 3 Results of estimation with Bgyg(8): (a) — G’(jw), (b) ————n=1,
(c)-—+- n=2,(d)---- n=3,4andS.

gt

103 0 10¢ 10 103 103 104 109 ol 102
Figure 4 Results of estimation with &_,5(8): (a) — G%jw), (b) ————n =1,
(c)——- n=2,(d) - n=3,4and>5.

104
102 0t 109 10! [T

193 104 100 100 102

Figure 5 Comparison of results for n = 4: (a) — G°(jw), (b) ———— Bp(8), (c)
""" Bsvr(8), (d) -+ BLac(d)

with {= 0.2 and @, = 1.2 (for the original system these are 0.1 and 1.0
respectively) is estimated. This may be written in terms of &gy /(8) with
E(8) of Eq. (36) as

E(8) = (8% + 2{w, 8 + w?)"?
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Table 3 Comparison of Condition Numbers (Example 2)

n Bpr(5) Bsve(d) BLac(d)
1 1.000000 1.000000 1.000000
2 186.7289 45.64127 45.64652
3 1880.815 159.8336 70.09879
4 11109.74 380.5729 94.07874
5 11698.33 1273.411 120.6597
10!
g -100
§u" .\ ~ * .‘
N~ i
e 1 .
< N
s el
104 300
103 10 100 10! 10? 103 104 100 10! 102

Frequancy

Figure 6 Results of estimation with gyg(8) for Example 2: (a) — G%(jw), (b)
———n=1, (c)---~- n=4,(d) - n==6.

This parametrization is in spirit close to the case of Kautz filters. By
regrouping terms of these filters, the above parametrization may be
obtained.

Models of orders 2, 4, and 6 are estimated and the parameter estimates
are shown in Table 4. Frequency responses of these estimated models are
shown in Fig. 6. This example shows how prior knowledge of system
dynamics may be embedded into the basis to model even complex systems
with a small number of parameters.

These illustrative examples suggest the use of &syH8) with the filter
polynomial E(8) chosen to represent prior knowledge of poles, real or
complex in general, as

E(8) = ]_[ (8+A)" ﬁ (8% +ad + b)"™. (37
i=1 i=1

The advantage of regrouping terms of the resultant parametrization in
terms of Laguerre/Kautz filters is to have a numerically well-conditioned
estimation. Otherwise they provide the same level of approximation.
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Table 4 Parameter Estimates Example 2

d @

2 [1.4143, —0.6455]
4 [2.1353, —0.1078, 1.0653, —0.1991]
6 [3.0206, 1.8372, 3.0559, 1.3535, 0.6472, 0.1282)

IX. CONCLUSIONS

One of the crucial phases in the procedure for parametric system
identification is the parametrization of the model structure. Traditionally,
models are parametrized as rational transfer functions. Such descriptions
(being inherently nonlinear), despite their clarity of dynamics with poles
and zeros, require nonlinear estimation. On the other hand, linearly
parametrized model structures simplify the problem, with linear estimation
as the main advantage. A class of CT generalized moving average models
that are linear-in-parameters is proposed in this chapter.

Among various possible GMAMs, CT models parametrized with
“Markov parameters” and ‘“‘time moments” have been studied in this
chapter, for irreducible model identification of MIMO systems. An
advantage of these parametrizations is that, irreducible rational transfer
function (matrix) or minimal state-space descriptions of models are
realizable even from truncated sequences of Markov parameters and time
moments. Thus, the sense of poles and zeros is preserved. For a limited
class of finite-dimensional systems, for which such zeros and plots do exist,
[31] and [39] showed that it is possible to find them in an iterative fashion.
See also [41].

Due to the linearity of the suggested parametrizations, the estimation
is robust to zero-mean white/colored disturbances. Monte Carlo simulation
results confirming this may be found in [30,31] and [39].

The problem of inflated models for MIMO system has been avoided
since the chosen parametrizations do not involve unknown denominators.
Recall that in the case of rational TFM models with EE minimization,
formation of a common denominator inflates the size of the unknown
parameter vector.

Another feature of the methodology proposed here is that, by
embedding prior knowledge of the dynamics of the system in the choice
of a basis for the model, it is possible to estimate good lower-order
approximations of complex systems. In such cases, the parametrization in
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terms of &B5yp(p) with the filter polynomial E(p) as in Eq. (37) seems to
be a natural choice.
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. INTRODUCTION

System identification usually implies the modeling of an unknown system
from its input-output data. The system model may be either non-
parametric or parametric [1]. Usually, in the time domain, a linear system
can be described by its nonparametric model, i.e., its impulse response
model. An important benefit of impulse response identification is that no
a priori knowledge about system order and dead time of the process is
necessary but only a rough estimate of the settling time. Recently, it has
been found that realization algorithms based on the system impulse
response (Markov parameters) can be effectively applied to the problem
of state-space model identification. Such algorithms include recent im-
provements based on the singular value decomposition techniques such
as the eigensystem realization algorithm (ERA), the eigensystem realiza-
tion algorithm using data correlations (ERADC), etc. [2]. In such
methods, the Markov parameters are used to determine a balanced
state-space model, and the model order is determined by the Hankel
singular values. This leads to a clear trade-off between model order and
identification quality in terms of a singular value plot. It is obvious that
such realization algorithms require accurate estimates of the Markov
parameters. Therefore how to identify the system impulse response

149
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effectively is viewed as an important task in system identification theories
and techniques.

Since in most cases the input—output data are sampled in discrete time,
impulse response identification typically implies that we estimate the
discrete-time impulse response (unit impulse response) model (DTIRM).
It should be noted that especially in the case of a small sampling interval,
the input correlation matrix may have a large size; therefore, it is usually
required that the input signal should include sufficient frequency com-
ponents to make the input correlation matrix nonsingular. A white noise
may be a good choice for this purpose. However, from the practical
viewpoint, it is undesirable to let the input cause the system under study
to fluctuate strongly due to the possible resulting damage; therefore, in
many practical situations, only band-limited (smoothed) input signals are
allowable. This often makes the identification problem ill-conditioned and
hence makes the impulse response estimate very sensitive to the measure-
ment noise. In contrast to the common DTIRM identification, the
Laguerre/Kautz model approach can reduce greatly the number of
parameters needed to obtain useful approximations of the processes of
interest, and is therefore numerically efficient [3,4]. However, this
approach requires a priori knowledge of the dominant poles of the system,
to achieve accurate approximations.

So far, many researchers have been attacking the ill-conditioned
problem encountered in impulse response identification via various
approaches. A popular one is the regularization approach with single or
multiple regularization parameters, which regularize the inverse of the
input correlation matrix [5-8]. Usually, the regularization parameters are
determined by trial and error, or determined optimally through a very
sophisticated iterative estimation scheme [8]. Most recently, Sano and
Tsuji [9] proposed the decimation and interpolation approach to smooth
DTIRM identification in the ill-conditioned cases of band-limited input,
fast sampling rate, and short data length. Similarly, Yang et al. [10] tried
to approximate the impulse response using the generalized radial basis
function network [11] in which the Gaussian basis functions are equidis-
tantly located in the time domain and have the same width. Since the
center distance of the basis functions is usually chosen as a multiple of
the sampling interval, far fewer parameters require to be estimated. This
leads to the improvement of the nonsingularity of the input correlation
matrix and therefore yields smooth estimate results. However, so far
accurate identification of the impulse response which includes high-
frequency components locally has not been discussed enough. Such
impulse responses can be found in systems with fast or slowly decaying
poles, or systems of nonminimum phase, which are frequently encountered
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Figure 1 An example of the impulse response which includes high-frequency
components locally.

in practice. For the purpose of illustration, an example of the system
impulse response which includes high-frequency components locally is
shown in Fig. 1. The high-frequency components require a small sampling
period which may tend to cause ill-conditioned problems in the cases of
band-limited input and short data length [9], whereas a large sampling
period may cause some information loss of the high-frequency components
of the impulse response. Therefore, it is difficult to identify the impulse
response shown in Fig. 1 accurately via the conventional methods with
uniform sampling rate.

In this work, the authors propose a new approach to identification of
the DTIRM for a linear system from sampled input—output data using
multiresolution approximation theory. Our attention is especially focused
on systems whose impulse responses include high-frequency components
locally.

The wavelet transformation, which has received great attention
recently, is a new tool for time-frequency analysis. The wavelet
transformation of a signal is an expansion of the signal into a special family
of functions called wavelets [12,13]. A family of wavelets is generated from
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a single prototype wavelet by dilation of the timescale and shift along the
time axis. Since the wavelets exist locally both in the time domain and
the frequency domain, one can extract some information about a signal
with respect to time and frequency. The wavelet transformation provides
sharp time resolution for rapidly changing signal components and fine
frequency resolution for slowly varying components. The multiresolution
analysis which decomposes a signal into orthogonal subspaces of different
frequency bands by the wavelet transformation, using the wavelets which
are dilated at corresponding timescales, is capable of analyzing both the
local and global properties of the signal [12-15]. Some studies of system
identification using the wavelet transformation have been carried out by
Maeda er al. [16], Tabaru et al. [17], Benveniste et al. [18], and Safavi e
al. [19].

In this work, the continuous-time impulse response (CTIR) of the
system under study is approximated by a multiresolution neural network
(MRNN) composed of the scaling and wavelet functions which are shifted
and dilated based on multiresolution approximation theory. The scaling
and wavelet functions which are shifted and dilated based on multiresolu-
tion approximation theory are employed as the basis functions of the
network. Then the system under study can be viewed as a weighted sum of
a group of subsystems in which the shifted and dilated scaling functions and
wavelet functions are interpreted as their impulse responses respectively. It
should be noticed here that due to the excellent time-frequency localization
properties of the basis functions, it is not necessary to include all the basis
functions into the network. For rapidly changing components, we choose
high-frequency basis functions, and for slowly varying components we
choose low-frequency basis functions. That is, some redundant basis
functions are removed. Therefore, the number of parameters needed to
approximate the impulse response of interest can be reduced greatly. In this
work, a heuristic identification procedure with the aid of the popular
orthogonal least squares (OLS) method [20,21] and AIC is proposed to
select significant subsystems such that only moderate parameters are
required to be estimated, in contrast to the conventional method. The
algorithm is performed in a hierarchical manner. The impulse response is
estimated from a coarse resolution level (low-frequency subspace) to a fine
resolution level (high-frequency subspace) successively via the OLS
method. The AIC is utilized to select significant subsystems at each
resolution level, such that some redundant subsystems in the high-
frequency domain which are sensitive to noise effects in the case of
band-limited input signal are discarded. This leads to a parsimonious model
of the impulse response and hence only moderate parameters are required
to be estimated, in contrast to the conventional method. It is shown through
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simulation study that the proposed method yields accurate estimate of the
impulse response which includes high-frequency components locally, even
in the ill-conditioned cases of band-limited input, fast sampling rate, short
data length, and significant measurement noise.

Il. CONVENTIONAL IDENTIFICATION METHOD FOR
DTIRM

In this section, we review briefly the traditional DTIRM identification
method of a linear system. A linear time-invariant continuous system can
be described by its CTIR response g(7) as

x(1) = J g(r)u(t—7)dr )
0

where u(f) and x(¢) are the input and output signals, respectively. It is well
known that the impulse response is a complete characterization of the
system.
In practice, it is usually the situation that the signals are observed at
the signal sampling instants kT (k=1,2,...):
kT
x(kT) = J g(Mu(kT — 7)dr 2)
0
where T is the sampling interval. In this work, we will denote x(kT), u(kT)
as x(k), u(k), respectively.
The sampled measurement of the output is described as

y(k) = x(k) + v(k) ©))

where v(k) denotes the measurement noise, which is assumed to be
zero-mean, Gaussian and white.

Typically, in computer control applications, the input signal u(f) is kept
constant between the sampling instants:

u(@®) =ulk), kT=st<k+1)T 4)
Equations (2), (3), and (4) lead to

k iT
=S uk-i) f g(r) dr+ v(k)
i=1 -1)T
n+l1
=~ > huk — i)+ v(k) (5)

i=1
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where n is a natural number such that (n + 1) T is longer than the settling
time.

Usually, impulse response identification means that we estimate the unit
impulse response hA(i = 1,2,...,n+1) from sampled data, instead of the
original CTIR g(7). Equation (5) can be written in vector form:

y(k) = pT(k)h + v(k)
PT(k) = [u(k = 1),u(k —=2). . .,u(k —n—1)]

RT=[hy,hy. . o Byl (6

and the vector k can be estimated by the least squares (LS) method as
i 1 n+N -1 1 n+N

R ECEC] ™
k=n+1 k=n+1

provided that the inverse matrix of

1 n+N

2=|3 > s
k=n+l1

exists.

It has been derived that the mean square error of the estimated impulse
response is inversely proportional to the data length, proportional to the
noise variance, and proportional to the sum of the inverses of the
eigenvalues of ® [8,9]. From a practical viewpoint, since we cannot
fluctuate the system strongly due to the possible resulting damage, it is
often required that a band-limited (smoothed) input signal is applied. In
this case, it is well known that the input correlation matrix £ may become
nearly singular (some of its eigenvalues tend to zero), and hence the
estimated impulse response tends to oscillate significantly due to noise
effects. Moreover, in the case where the impulse response includes
high-frequency components locally, one has to choose a very small
sampling interval than ordinarily required to avoid aliasing effects. In the
case of a fast sampling rate, 2 may also become nearly singular and thus
makes the estimated impulse response unacceptable [9].

ll. MULTIRESOLUTION APPROXIMATION OF CTIR

A multiresolution analysis of L%(R) is a sequence V(i€ Z) of closed
subspaces of L?(R) such that the following hold [12-15]:

1.
...C:VéC:VIC:VbC:V_IC:V_z..J
<« Coarser Finer—
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2.
+co +o
M V.= {0}, | Vi is dense in L*(R);
m=—w m=—w
3.
gDEV,gRN)EV,_1,  OELXR);
4.
g()EVo=g(t—iT)EV,,  g() ELX(R);
5.

A¢(f) € Vps.t. {¢(¢t — iT)i € Z} is an orthonormal basis in V.

Based on multiresolution approximation theory, the space Vj can be
decomposed as

Vo= W@V,
=We@W,eV;
—;WI@WZ@...@WL@VL 8
where

V,, = span{2~ "2 ¢(2~™7—iT)}

9)

W, = span{2 "2 y(2=™"7 —iT)}
for meZ, ¢(7) and y(7) are the scaling function and the wavelet,
respectively. It should be noticed here that the subspaces
Wi, Wy, . . ,W,,V, are mutually orthogonal [12-15]. In the frequency
domain, considering the positive frequencies, V is the space of functions
with frequencies concentrated in the interval [0, #/2%), while W,), is the
space of functions with frequencies concentrated in the interval
[@/2™, m2m =) [22]. The relations of the subspaces in the frequency
domain are shown in Fig, 2.

Various wavelets and corresponding scaling functions have been found
and investigated in the literature [12]. The widely reported Meyer scaling
function and wavelet are infinitely continuously differentiable and sym-
metric, and it is therefore easy to investigate their time-frequency
localization properties through visualization via computer graphics. In this
study we use the Meyer scaling function and wavelet. Normalizing the
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Vo

|
0 —12t— T

Figure 2 Relations of subspaces in the frequency domain.

sampling period to unity, we have the Fourier transformations of the
Meyer scaling function and wavelet respectively [12]:

’

1 |w| <2773
®(a) = 4 cos| Zo[ || -1 2mf3 <|w| < 4nf3 (10)
2 2w
) otherwise

e—iw2gn [%"(;—wi‘"l - 1)] 23 <|w| =473

=< 1
Y e w2 o [Zv(ilwl—l)] 4nl3<|w|=8n/3 (1)
mw

0 otherwise

where w(7) is a C* (n an arbitrary natural number) function satisfying

0 7=0 g
V(T)={1 :zl 12

with the additional property
W) +ul-7)=1 (13)
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Figure 3 Amplitude of ®(w).
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Figure 4 Amplitude of ¥(w).

The amplitudes of ®(w) and ¥(w) are shown in Figs 3-4, and the inverse
Fourier transformations ¢(7) and ¢(7) are shown in Figs 5-6.

Considering the causality of the impulse response and the fact that the
impulse response of a stable system exists in a finite time interval, we have
to approximate the function g(7) over the finite domain 2 = [0, (n + 1) T].
Then g(7) can be approximated in the space V, by a wavelet neural
network (WNN) of the form [18,23,24].

g1 =, co d(r—iT) (14)

i=0
with a finite number of nodes.
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Detailed discussions on the WNN can be found in Benveniste et al. [18],
Zhang and Benveniste [23], and Zhang er al. [24]. Some practical
considerations should be, however, remarked upon here.

Firstly, the sampling period T should be chosen such that it satisfies
the Nyquist rate, i.e., the resolution level of the network should be
sufficiently fine [24].

Secondly, the structure of the WNN is similar to that of the radial basis
function (RBF) network [11]. For practical purposes, the scaling functions
need not have compact support and hence the fast-decaying functions such
as the Meyer scaling function are also acceptable [24].
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Thirdly, since we are only interested in approximating g(7) for 7€ 2,
the scaling functions are truncated to zero when =& 2. In this case, the
coefficients in Eq. (14) should be solved by the LS method or the
gradient-descent method based on the LS criterion when the samples of
g(7) are obtained in 2. The common empirical wavelet transformation will
lead to poor approximation [24]. Moreover, strict attention should be paid
when the scaling functions are truncated, i.e., the dominant part (or the
peak value) of the scaling functions should be kept in 2 [23]. Otherwise,
the approximation may be ill conditioned and hence the solution of the
coefficients may not be unique. Empirically, the symmetric Meyer scaling
function is recommendable for this purpose since it is fast-decaying and
the peak of the main lobe is much more significant compared to the other
parts.

Fourthly, it is trivial to understand the fact that in the conventional
DTIRM identification method mentioned in Section II, g(7) is expressed
in the space V, by the Haar scaling function (piecewise constant
approximation). The Haar scaling function and wavelet, while having
compact support, are not continuous and hence do not have good
time—frequency localization, which is a major inconvenience for multi-
resolution approximations.

In this chapter, to extract some information about the impulse response
with respect to time and frequency, the WNN named by Zhang et al. [24]
is further developed to an MRNN in which the scaling and wavelet
functions are shifted and dilated based on multiresolution approximation
theory. This idea has also been mentioned in Zhang et al. [24].

Decompose g(7) € Vy successively such that

8(7) = gum) + goAm) + . . . + 8i(7) + 8 (7) (15)

where gli(r) EW,, (m=1,2,...,L), gk(r) €EV,. Equation (15) shows
that g(7) can be represented as a low-pass approximation at scale L plus
the sum of L detail (wavelet) components at different resolutions.

Using the scaling functions and the wavelets as basis functions, g(7) can
be expressed via the following MRNN:

L (w2™-1 niz
g =2, D dpimdn)+ D, cribr d7) (16)
m=1 =0 =0

where ¢, {7) and ¢, {7) are the dilated and shifted scaling function and
wavelet respectively:

Y A7) = 2724271 —iT)
$r A7) =272~ Lr—iT) 17)
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Equation (16) implies that by dilation and shift, the CTIR is decom-
posed in the time—frequency plane by a family of basis functions which
are locally receptive in both the time and frequency domains. The number
of parameters in the MRNN (16) is also n+ 1, the same as that in
Eq. (5). However, owing to the excellent time-frequency localization
properties of the basis functions, it is not necessary to choose all the basis
functions in Eq. (16), i.e., some of the basis functions which are redundant
for approximation of the impulse response can be neglected, according
to the time-frequency characteristics of the impulse response under
study.

As mentioned previously, since we are only interested in approximating
g(7) for 1€ D, the basis functions are truncated to zero when 1€ 2. In
this case, the coefficients of the MRNN (16) should be solved by the LS
method when the samples of g(r) are obtained in 2. The common
empirical wavelet transformation will lead to poor approximation [24].
Moreover, the constraints on the adjustable parameters n and L should
be noticed here. n and L should be chosen such that the dominant part
(or the peak value) of all the dilated and shifted basis functions in the
MRNN (16) are within 2. Otherwise, the problem of solving the
coefficients of the MRNN (16) may be ill conditioned. Additionally, it is
required usually that n and L are chosen such that n/2" is also a natural
number.

In our case, however, the samples of the impulse response g(7) are not
measurable directly, therefore we have to embed the derived MRNN into
the system equation (1) and solve the coefficients from the sampled
input—output data.

IV. IDENTIFICATION ALGORITHM
A. Decomposition of the System Model for

Identification
Using the MRNN (16), the system equatlon (1) becomes
L (2™-1
OEDD 2 Gy 0 A8) + 2 cL.x%.40) (18)
m=1 =0
where
1
X ) = J Ym AT)u(t—7)dr
o
1
Xt 40) = f buAT)ult—7) dr 19
0
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Equation (18) implies that the unknown linear system can be divided into
n + 1 subsystems, in which ¢, {(7) and ¢, {7) (rE€ D) are interpreted as
their known impulse responses respectively.

As mentioned in the previous section, since we are only interested in
approximating g(7) for 7€ 2 via the MRNN, the basis functions ,,, {7)
and ¢; {(7) are truncated to zero when 7& 2. Keeping this fact in mind,
we have the following result from Eq. (2) and (18).

n+1 iT
y(k) =, u(k—1) [ g(r)dr + v(k)

i=1 Jai-nr

L (n2™)-1 ni2-
=D D dmath )+ D, cpxt (k) +v(k) (20)
m=1 i=0 i=0
where
n+l IT
Xt k)= S uk— ) J bu A7) dr
=1 ¢-nT
— T v
=p"(k)hy ; (21)
n+l1 IT
X gk = u(k—1I) J UmADdr (m=1,2,...,L)
=1 (-HT
— w
=p (k)hm.i
and
pT(k) =[utk—1),uk-2)...,utk—n—-1)]
RiTi=[ht i hY iz, ohiine1]
RiLi= R i, Bz, hmine] (m=1,2,.. L) (22)

Usually, the error of the identified model includes mainly two
components: the bias error (modeling error) and the variance error (effects
of noise) [25]. The first component increases when the model complexity
decreases, while the second component increases when the model
complexity increases. Therefore, a trade-off should-be taken between the
two antagonistic trends.

It is obvious that the number of unknown parameters in Eq. (20) is
also n+1, the same as that in Eq. (5). Owing to the excellent
time—frequency localization properties of the basis functions, however, it
is not necessary to choose all the subsystems in Eq. (20), i.e., some of
the subsystems which are redundant can be discarded with little deteriora-
tion in modeling accuracy; and the number of parameters needed to
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approximate the impulse response of interest can be reduced greatly in
contrast to the conventional impulse response identification method.
Therefore, the key point in the identification algorithm is to determine
an estimation model as parsimonious as possible, taking the bias/variance
trade-off into account. Here the well-known AIC is utilized as a
criterion:

AIC(p) = NInV + pM (23)
where
n+N-1
I GCRER (24)
k=n

and (k) is the estimated output, and M is the number of the parameters.
In this study, p is chosen as p = 4. For detailed discussions on this choice,
the reader is referred to [20,21,26,27].

However, in many cases, the total number of subsystems in Eq. (20),
n+ 1, may be tens or hundreds, therefore, in practice it is a difficult task
to determine which terms are significant and which terms can be discarded,
in the absence of enough a priori knowledge. Here, without loss of
generality, the problem is simplified based on the following policy.

1. Usually, the coarsest approximation of the impulse response at scale
L exists in the whole interval 0<+=(n+ 1) T and is expressed by a
moderate number of basis functions in the space V. Therefore, all
the M,; = n/2" +1 basis functions in V, are selected. It has been
reported that in the case of band-limited input, identification of the
low-pass approximation of the impulse response is not ill conditioned
[9,10].

2. In most cases, for the stable systems, the wavelet spectra of the
impulse response in each frequency band are large at short r and decay
when 7 becomes longer. Therefore, if we determine the impulse
response length, i.e., the number of selected wavelet basis functions
in each of the spaces W, W,,. .., W, appropriately, a parsimonious
model which is less sensitive to noise can be obtained.

According to the above discussions, the system model (20) becomes

n+1 iT

k) =S ulk—) J g(r)dr + (k)
i=1 (-)T

My—1

L Mym—1
= > Y dpixn )+ D, cpxt k) +v(k) (25)
m=1 =0

i=0
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where M, denotes the number of the selected wavelet basis functions
in W,,. If M, =0, then none of the wavelet basis functions in W,, is
chosen.

The above equation can be rewritten in vector form:

y(k) = z7(k) 0 + v(k)
27(k) = [25.(K), 21 (k) oK), - - - 20 (K)]
OT = [OKL’ 051’ 052’ LR} OEL] (26)
where
25, (k) =[x} oK), x5 (KD, . - -, X% (ag, —1)(K)]
ng(k) = [x:l,O(k)’x:l,l(k)’ .. 'ax:l,(Mwm— l)(k)] (m=1,2,...,L) (27)

07, =lcLo L1 L M-
0% =[dmodm1- - dmMom—1)] (M=1,2,...,L) (28)

and the total number of parameters are denoted as M=M,; + M, +
Mo+, ..+ M, =n+1.

B. Brief View of the OLS Method

The preceding discussions imply that the key point of the identification
problem is to choose suitable M, My, . . ., My,;, which determine the
lengths of the decomposed components of the impulse response in
the spaces W, W,,...,W,, respectively. In our previous work [28],
the authors used the genetic algorithm (GA) to determine suitable
M, M,,,...,M,,;. The GA is a parallel, global, probabilistic search
procedure based on the mechanics of natural selection and natural genetics
[29]. Because the GA simultaneously evaluates many points in the search
space, it can in effect search many local optima and thereby increases the
likelihood of finding the global optimum. Although the method with the
aid of the GA proposed by the authors leads to efficient results, a
drawback of this method is that it is very computationally demanding due
to the use of the GA.

The OLS method, which is a very powerful method that combines
model structure selection and parameter estimation via orthogonalization,
has been studied widely in the field of nonlinear system identification
[20,21,27] in the last decade. Various simulation studies and practical
applications have shown that this algorithm provides a simple and powerful
means of fitting parsimonious models to real systems. In this study, a
heuristic identification procedure using the OLS method is proposed to
select suitable M,,,M,,,...,M,;, from a large set of candidates.
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Solving LS problems by an orthogonal decomposition of the regression
matrix is a well-developed technique. Arranging (20) from k=n+1 to
n + N yields the following matrix form:

y=P0+V
y=[y(n+1),p(n+2),...,.y(n+N)]
V=[n+1),v(n+2),...,v(n+N)|T

P=[pi,ps.....pmMl
= [ZvL’ZwawZa .. ~aZwL] (29)

where

pi=Ipin+1),p(n+2),....p(r+NN (i=12,...,M)
2y =121 1:2v0 2 > Zop M)
Zopi=xi -+, x -ny(r+2). . xp op(n+ M7
(i=1,2,....M,;)
Zwm=Zwm1>Zwm> - >Lymm,,)] (MmM=1,2,...,L)
Zym.i=xm -+ D x; qopnn+2) .. xy p(n+ mIT
(i=12,....M,,) (30)

The OLS method involves the transformation of the set of p; into a set
of orthogonal basis vectors, and thus makes it possible to calculate the
individual contribution to the desired output energy from each basis
vector. The regression matrix P can be decomposed into

P=WA (31)

where A is an M X M triangular matrix:

(1 oy @z ... apg
0 1 axn ... o
A=[0 o - : (32)
: 1 am-nm
O ... 0 O 1 |

and W is an N X M matrix with orthogonal columns w; such that

WIw =D (33)
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where D is an M X M diagonal matrix with diagonal elements d;:

— w1
d,' =WwW; W;
n+N

= > wwik) (=1,2,...,M) (34)

k=n+1
The space spanned by the set of orthogonal basis vectors w; is the same
space spanned by the set of p;, and (29) can be rewritten as

y=Wg+V (35)
The orthogonal LS solution g is given by

g=D"'wTy (36)
or

g,.=% (i=12,..,M) 37

Since the w; are mutually orthogonal, adding some other regressors does
not influence the values of the determined elements of g. This advantage
is very important in forward regression procedures of model structure
determination.

The quantities ¢ and @ satisfy the triangular system

Ab=¢ (38)
and the parameter estimate 0is readily computed from the above relation
using backward substitution. Various orthogonal techniques can be
applied to derive (31) [21]. The well-known classical Gram-Schmidt
method which is most used for the OLS method computes one column
of A at a time and orthogonalizes P as follows: at the jth stage make the
jth column orthogonal to each of the j—1 previously orthogonalized

columns and repeat the operation for j =2,3, ..., M. The computational
procedure can be represented as

W) =D
T
“=lﬁli <j<7
%= YT w, (=i=) i=2,...M (39)

j—1
”7=1U— Eiaywi
i=1

The OLS method has superior numerical properties compared with the
ordinary LS method. Our interest in the OLS method, however, is to use
it for model structure determination. In studies of nonlinear system
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identification, the regressor selection procedure is based on the individual
contribution to the desired output energy from each basis vector, and some
statistical criteria such as the Akaike-type criteria can be employed to
terminate the selection [20,21,27]. Practically, however, the problem of
impulse response is often seriously ill conditioned especially in the case
of fast sampling rate and band-limited input, and hence the common
regressor selection procedure does not yield satisfying results in many
cases. In this study, as mentioned above we simplify the problem to the
determination of the length of the impulse response in each subspace, i.e.,
to choose suitable M,,;, M,.,,...,M,,;, which determine the lengths
of the decomposed components of the impulse response in spaces
Wi, Wy, ..., W, respectively.

C. Hierarchical Identification Procedure

The heuristic identification procedure is performed in a hierarchical
manner. The impulse response is estimated from a coarse resolution level
(low-frequency subspace) to a fine resolution level (high-frequency
subspace) successively via the OLS method. At each resolution level, the
AIC is utilized to select an appropriate length of the impulse response (the
number of wavelet basis functions in the corresponding subspace).

The algorithm of the proposed multiresolution identification method
for the system impulse response is described as follows.

Step 1. Identify the impulse response in V, space. As mentioned
previously, all the M,,; = n/2% + 1 basis functions in V' are selected. The
OLS solution and AIC in V, space are calculated as follows:

wi=2,p,
T
8= w1y
' wiw,
T 3\
wiZ,
_ i &y, : :
@ = ——¥oal I=i<
/] wl'Twi ( ])
j—1
W; = ZvL.j_ E a;W; j= 25 .. -anL (40)
i=1
T
5 WTg J
Wi Wj /

AlICpy, ,(4)=NInV+4M,, (41)
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Step 2. Identify the impulse response in spaces W, W _y,..

successively:

167

- Wi

Step 2a. Set the number of selected basis functions to M =M, .

Step 2b. Set the space (resolution level) index to m= L.

Step 2c.

Calculate

wiZy,

@ = i Lwm,j
U

T

N

(I=i<))

Wi W;

j—1
w,-=Zme—Ea;,-wi y j=M+1,... . M+M,, (42)
i=1

T
g=—4>
Wi W; J

where M,,,.(1< M,,,<n/2™) satisfies
AICpr4 1, (4) < AICp4 (4) for M, +1

and 1=</[/=<n/2™.

(43)

Step 2d. Set
M=M+M,,,.

the number of selected basis functions to

Step 2e. Decrease the space index to m = m — 1 and go to step 2c¢ until
m=1.

Step 3. Check the redundancy of the selected subsystems in high-
frequency spaces, and remove those subsystems which are considered to
be redundant. That is, find a suitable space index m from 1,2, ..., L such
that AIC(4) reaches its minimal value, where the number of subsystems
Mis givenby M=M—M,,—M,,—...— M,,,..

Step 4. Compute the estimates of the original parameters using backward
substitution from

0=g—-(A-Do (44)
Step 5. Synthesize the estimated discrete-time impulse response of the
system as

L Mw,"—l MVL_l

il=2 E i+ E €L,ihL
1 =0 =0

m=

(45)
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V. SIMULATION RESULTS

To illustrate the effectiveness of the proposed identification algorithm,
some numerical examples are shown in this section.

A. System 1
We consider the following system with a zero-order hold in the input:

3.98p%—10.3p + 1880
1) =
X = 3 17 + 980p + 962

where p denotes the differential operator.

Since the impulse response of this nonminimum phase system includes
high-frequency components locally (the reverse action in the first part),
a small sampling period T = 0.04 (sec) is chosen. The length of the impulse
response is assumed to be (n + 1) T =129 X 0.04 = 5.16 (sec), and a short
data length for identification is given as N = 300.

The band-limited input is the output of a third-order Butterworth
filter

(46)

1
"o = (plwc)® + 2(plw)? + 2(plw) + 1 () (47)
where 7(t) is a discrete-time white noise:

The filter is implemented by the bilinear transformation at a smaller
interval T' = T/10.

The simulation results in the case of noise/signal ratio (NSR) = 10%
for various values of the cut-off frequency w. of the input shaping filter
such as 0.4#/T, 0.67/T, 0.87/T, 1.07/T are shown in Table 1 and Figs 7-8.
Here the NSR is defined as o,/0,% where o, and o, denote the standard
deviation of the sampled measurement noise and true system output,
respectively. In Figs 7-8, the dashed line and the solid line represent the
true impulse response and its estimate, respectively. In Table 1, Conv.
and Prop. denote the conventional method and the proposed method
respectively, and the relative mean square error (RMSE) is defined as

h—h|?

From Table 1 and Figs 7-8, it can be found that in the ill-conditioned
cases of band-limited input, fast sampling rate, and short data length, the
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Table 1 Results of System 1

RMSE Parameter number in each subspace Total
W, Conv. Prop. M, M., M, M., M, M
0.47/T 0.3913 0.0069 0 1 2 2 9 14
0.6#/T 0.1237 0.0032 2 4 1 2 9 18
0.87/T 0.0199 0.0030 2 4 1 2 9 18
1.0%/T 0.0102 0.0045 2 4 1 1 9 17

estimated impulse response by the conventional method oscillates roughly
due to the effects of the measurement noise. However, the proposed
method yields a very accurate estimate of the impulse response, and the
rapidly changing components are also estimated correctly. Additionally,
the conventional method requires the estimation of 129 parameters
whereas our proposed method requires the estimation of only 14-17
parameters. As an example, the frequency responses of the estimated
impulse responses by the conventional method and the proposed method
respectively when w, = 0.4#/T are shown in Fig. 9, where the dashed line
and the solid line represent the true frequency response and its estimate,
respectively. By the proposed method, the redundant subsystems in the
high-frequency domain which are sensitive to noise effects in the case of
band-limited signal are discarded. Therefore, it can be verified that our
method is quite superior to the conventional one, especially in the
high-frequency domain.

It can also be found that when the cut-off frequency of the input shaping
filter becomes smaller, ie., the identification problem gets more ill
conditioned, the proposed algorithm tends to neglect more subsystems in
the high-frequency domain, and hence the system model becomes more
parsimonious. This fact implies that the proposed algorithm makes a
trade-off between the bias error (modeling error) and the variance error
(effects of noise) appropriately.

In this example, we only show the results when L = 4, i.e., the coarsest
approximation of the impulse response is given at scale L = 4. It has been
verified empirically that when L = 3,4,5, 6, the results are quite similar,
that is, the results are not sensitive to the selection of L. According to
the discussions in Section IV, a suitable L is usually chosen such that
identification of the low-pass approximation of the impulse response at
scale L is not ill conditioned.
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Figure 7 Estimated impulse response of System 1 (conventional method).
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Figure 9 Estimated frequency response of System 1 (w. = 0.4%/T): (a) conven-
tional method; (b) proposed method.

B. System 2

The second example is the following oscillatory system with a zero-order
hold in the input:

0.25

x(1) = 740251035 u(t) (50)
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Table 2 Results of System 2

RMSE Parameter number in each subspace Total
(3% Conv. Prop. Mwl sz Mw3 MW4 Mv4 M
0.2#/T 57.148 0.0043 0 0 3 5 9 17
0.4=/T 1.5694 0.0033 0 0 4 5 9 18
0.67/T 0.4968 0.0037 0 0 4 5 9 18
0.8%/T 0.0798 0.0039 0 0 4 5 9 18

The sampling period is chosen as T=0.5 (sec), and the length of the
impulse response is determined as (n + 1) T =129 X 0.5 = 64.5 (sec). The
data length and the input shaping filter, etc., are the same as those for
System 1. The results when NSR = 20% are shown in Table 2 and Figs
10-11. Since the impulse response of this system does not include
high-frequency components, the subsystems in the high-frequency domain
which are sensitive to noise effects in the case of band-limited input signal
are discarded. This improves the numerical properties of the impulse
response estimate. Since the wavelet basis functions that approximate the
impulse response in spaces Wy, W, are omitted, it can be found that our
method is also very effective in the case where the sampling period is
shorter than ordinarily required, which may lead to an ill-conditioned
problem.

VI. CONCLUSIONS

In this work, the authors have proposed a new identification method for
the discrete-time impulse response model of a linear system from sampled
input—output data using multiresolution approximation theory. Our atten-
tion is especially focused on systems whose impulse responses have locally
rapidly changing components. The CTIR of the system under study is
approximated by an MRNN based on multiresolution approximation
theory. Hence the system under study can be viewed as weighted
summation of a group of subsystems in which the shifted and dilated
scaling functions and wavelet functions are interpreted as their impulse
responses respectively. Then a heuristic identification procedure with the
aid of the OLS method and AIC is proposed. The impulse response is
estimated from a coarse resolution level (low-frequency subspace) to a fine
resolution level (high-frequency subspace) successively via the OLS
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method. At each resolution level, the AIC is utilized to select an
appropriate length of the impulse response (the number of wavelet basis
functions in the corresponding subspace). Simulation results show that the
proposed method yields an accurate estimate of the impulse response with
locally rapidly changing components, even in the ill-posed cases of
band-limited input, fast sampling rate, and significant measurement
noise.
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Comparative Study of Rank Test
Methods for ARMA Order Estimation

Joakim Sorelius, Torsten Séderstrom, Petre Stoica, and Mats Cedervall
Uppsala University, Uppsala, Sweden

. INTRODUCTION

Autoregressive moving average (ARMA) models are extensively used in
signal processing, automatic control, and system identification to describe
signals generated from a physical system. The reason is that a vast class
of stationary signals can, as far as second-order moments are concerned,
be described as the output of a stable rational filter, driven by white noise,
i.e., these signals can be described by ARMA models. This follows from
the famous theorem by Weierstrass, which implies that we can approxi-
mate the signal arbitrarily well by increasing the order of the filter.
However, for practical reasons, it is not feasible to use models of a too
high degree. Except for the computational burden it may induce, many
algorithms used in signal processing become numerically unreliable as the
poles and zeros of the system approach one another. The conclusion is
that we must determine a finite, but not too large, order of the ARMA
process. Yet the order should be chosen so that the ARMA model
describes the signal under study with an accuracy that is sufficient for the
application at hand.

There is a large number of methods that can be used for order
estimation of both scalar and multivariable ARMA processes. The
literature up to 1985 is reviewed and commented on in [1], and a more
recent reference is [2]. Many classical order estimation schemes, such as
the final prediction error (FPE) and Akaike’s information criterion (AIC)
[3,4], or improved versions of these methods, can be difficult to use
because of their computational complexity and the multivariable search

179



180 Sorelius et al.

they require. In brief, these methods evaluate a criterion function, which
depends on the parameters of the ARMA model, for many different orders
of the process. The criterion function is then inspected, and the order that
gives its minimum value, or the order at which the decrease in the criterion
function becomes insignificant, is chosen as the relevant order of the
process under study.

Another class of ARMA order estimators is formed by the so-called
rank test methods. These methods rely on the fact that a certain Hankel
matrix formed from the true covariances of the studied signal has rank
equal to the system order, and statistical methods can then be applied to
estimate that rank from the data. As is the case of the visual order
estimators, the rank tests are related to parameter estimation. Indeed, the
recently developed methods for subspace-based state space system iden-
tification (4SID) operate on the same Hankel covariance matrix (and its
singular value decomposition) as the rank tests, see, e.g., [5-7]. These
estimation methods have the advantage over other system identification
techniques that they do not require any special canonical parametrization
of the system, or estimation of its so-called Kronecker invariants. In fact,
they only need the order of a minimal state space realization of the process
to provide consistent estimates of the system dynamics from observed data.
This order is exactly what is provided by the rank test methods.

In the following sections of this chapter we will describe and compare
some recently proposed tests for the estimation of the order of a possibly
multivariable ARMA process. An outline of the presentation is as follows.
Section 11 introduces the necessary notation and concepts and gives a proof
of the main result concerning the rank properties of the ARMA covariance
matrix. In Section III we describe three different rank test methods for
ARMA order estimation. They are compared and evaluated in Section
IV by means of some numerical examples, and Section V finally states
some conclusions from the experiments.

. AUTOREGRESSIVE MOVING AVERAGE
PROCESSES

The general form of an autoregressive moving average model considered
here is defined as follows:

A(g~Hy(0) = C(g™ He()) (1

In Eq. (1), ¢! denotes the backward shift operator, i.e., g~ *y(1) =
y(t—k) (for k=0,1,2, ...), y(t) is the ny-dimensional output at time ¢,
and e(1) is the input, sometimes called the driving noise vector, which is
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assumed to be of the same dimensions as y(f). The left coprime
(ny X ny)-dimensional polynomial matrices A(¢ ') and C(q~?) are defined
through the relations

A(@ N =1+A1q7 "+ +Ap0q™™,  An*0 2)

C(g HN=1+Ci1q7 '+ +Cpeq™,  Cpe#0 ®3)
and it is assumed that

detA(z) #0 |z]|=1

detC(z) # 0 |z|=1

so that A(z) and C(z) have all zeros strictly outside the unit circle. Further,
e(?) is a white noise process, i.e., e(f) is a sequence of independent and
identically distributed random variables of zero mean and with a positive
definite covariance matrix, given by

Ee(t)eT(s) = A, . 4)

where E denotes the expectation operator and &, ; is the Kronecker delta.
In the model (1)-(4) we have chosen Ag= Cy=1, and the resulting
ARMA is called monic. Note that this choice of Ag and Cy introduces no
large restriction. Indeed, any nonsingular Ag or Cy # I can be factorized
out of (1) and incorporated in the covariance matrix A.. In what follows
we will assume that e(¢) is normally distributed, which will simplify the
treatment in the coming sections.
The input/output relation (1) can be written as

y(©) = g(a~ He(® ®)
The transfer function g(g~!), of dimension ny X ny, given by
g(a ) =A"YgHC@™ (6)

is stable, has a stable inverse, and fulfills £(0) = I. Conversely, given a
rational strictly positive definite spectral density ®(w) there exists a unique
rational filter 4(¢~') and a covariance matrix A, such that

() = 5= Fle)AF () 7

4(q™") and 4 !(g71) are asymptotically stable, 8)

and &(0) = I. This is the spectral factorization theorem [8] and implies that
a signal with rational spectral density ®(w) can be described by the model
(4)-(5). This signal can be represented as a monic ARMA process
described by (1)-(3) (see, e.g., [9]).
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The general ARMA process (1) can also be described through the
following state-space representation of order r:

x(t+1) = Fx(t) + Ge(d)
y() = Hx(t) + e() €)

where x(f) is the r-dimensional state vector and e(¢) is the previously
introduced white noise. The representation (9) is assumed to be minimal,
i.e., it uses the minimal number of states. If F, G and H are such
that the transfer function g(¢~') =1+ H(qgI— F)"'G and its inverse
G (g") =1- H(ql - F+ GH)™' G both are asymptotically stable, it is
usually referred to as the innovation representation [10]. The model (9)
will be used in the sequel for the derivation of the main result for the rank
test methods. The order of the ARMA process represented by (9) is
defined as follows.

Definition 1. The order r of a (possibly multivariable) ARMA process,
described by (1)-(4), is defined as the order of its minimal state space
realization (9). u

As a consequence of Definition 1, it holds that for a scalar ARMA process,
r = max(na, nc) (10

with na and nc as defined in (2)~(3). For a multivariable ARMA, the
relationship between the ARMA order r and the degrees of the A(g™!)
and C(g~") polynomials is not so straightforward (see, e.g., [11]).

For the order estimation problem it is not necessary to specify a
candidate state space or ARMA model; we shall see that the rank tests
for ARMA order estimation only operate on different versions of the
covariance matrix of the ARMA process under study. Let

R(7) = Ey(t)y"(t—7) (ny X ny) (11)

denote the autocovariance at lag 7. Then define the general covariance
matrix

R(@  R(@-1) ... R(g-p+1)
R(g+1) R(q)
B, .2 | R@+2) (12)
R(g+p-1) R(q)

=EY,()YT(t—q) (13)
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where
Y £ OT@y e +1) -+ YT+ k—1)T  (knyx1) (14)

The square matrix &, , is block Toeplitz and is of dimension pny X p ny.
Often we will work with the block Hankel counterpart of (12), obtained
by permuting the block columns of &, ;:

A
Fp.q = Rp.q! (15)
R(g-p+1) R@@-p+2) ... R(q)
R(g-p+2) R@-p+3)
=| R@-p+3) (16)
R(q) R(@+p-1)
where J is the p ny X p ny permutation matrix
0 I
I
J= . a7n
I 0

i.e., J is the matrix with a number of p identity matrices of dimension
ny X ny placed along its main (block) antidiagonal. We note that the block
Hankel matrix %, , and the block Toeplitz matrix &, , share the same
rank properties, since the rank of a (block) matrix is unaffected by
permutation of its (block) columns. We now turn to the main result
concerning the rank of the matrix &, 4, or equivalently %, ,, which has
a potential for ARMA order estimation. We formulate this result as a
theorem.

Theorem 1. It holds that
rank %, ,=r forp=r (18)
Proof. We first obtain a well-known factorization of %, ,. From (9), we
have that
k-1
x(t+k) = Fx()+ Y, F¥"'"1Ge(t + ) (19)
1=0
and hence

Ex(t+ k)x"(f)y= F¥P for k=0 (20)
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where P = Ex(f)x’(¢) is the (positive definite) covariance matrix of the
state vector, and also

Ex(t + k)e(f) = F*~1GA, (21)
It follows from (9) that
R(7) = HFTPHT+ HF™'GA,
=HF™'D for =1 (22)

with D 2 FPHT + GA, (r X ny). According to the above calculations we
have

H
%, = I{F (DFD --- F'7'D) (23)
HF-!
£ o(H,F)¢(F, D) (24)

where O(H,F) and C¢(F,D) are the observability and controllability
matrices of a state space model associated with F, H and D. By the
Cayley—Hamilton theorem [12], each matrix F satisfies its own characteris-
tic equation

det(g/ —F)=q" +fig" '+ +f,=0 (25)
so that
Fr=—fiFF ' —fF2—...—fI (26)

This enables us to claim that for p =r, we can increase the dimension of
#,,p Without changing its rank properties. Indeed, with the obvious
changes of the number of block columns and block rows of ¢(H, F) and
C(F, D) the factorization (23) holds true for any #, ,,. For p>r, each of
the p — r last blocks in @ and in € can be written as a linear combination
of the r first blocks, according to (26), and thus the rank of %, , is
unaffected. Hence, for p=r, %, , has the same rank as

y(®
Fow=E| yt+1) |0T¢-1)y"t-2) ") 27

R(1) R(2) R(Q)
R(2) R(3)
=| R3) . : (28)
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which is the infinite dimensional block Hankel covariance matrix. From
(19), we have that

e(?)
y(¢+ k)= HF*x(t) + (HF*'G ... HGI) : (29)
e(t+k)
which, in turns, yields the following equation
y(® H 1 e(r)
ye+1)§ _ HF2 x(0) + HG I 0 e(t+1) (30)

ye+2)| | HF

HFG HG I et +2)

Post-multiplying both sides of (30) by (y7(¢ — 1)y’(t—2) ...) and taking
expectation, we obtain

H
Foo oo = :; Ex()(yT(t-DyT(t-2)..)) (31)
= w(if,F)F (32)

where 0(H,F) 2 (HT FTHT .. . )7 is the extended (infinite dimensional)
observability matrix. The matrix I' £ Ex(¢)(y7(¢ — 1)y"(t—2) ... ) can be
factorized as follows. From (9), we can write

e(t—1)
x(?)=(G FG F*’G ...)| e(t-2) (33)

and introducing the extended (infinite dimensional) controllability matrix
€(F,G)2 (G FG F?G ...) (34)
we have

e(t—1)
I'=CF,GE| e:—2) |(T¢-1)y"(t-2)...)
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elements have zero mean and variance of order N~ !. This follows from
the central limit theorem and the fact that the estimates (41) that constitute
the entries of ﬁp,p are consistent and asymptotically normal, see, e.g.,
[8,13]. The above result implies that

#,p= O(N™'?) (43)

where O(N %) (for some a = 0) thus denotes a term whose elements have
standard deviation of the order of N™% We can also write

VNvec(#, ,— %, )~ %0, V) (44)

In (44), vec (-) denotes the operator that stacks the columns of a matrix
(+) on top of each other. The matrix V can be viewed as the asymptotic,
normalized, covariance matrix of vec ﬁp, p- Since ?p, p is a random matrix,
ﬁ'fp,p has in general full rank for any p, and the result of Theorem 1 is
thus valid only asymptotically in N. This motivates the development of
a statistical test which would enable us to determine the rank of %, ,, given
the estimate #, ,. The rank tests for ARMA order estimation to be
presented here typically determine an m-vector f from a factorization of

the sample covariance matrix. Under the null hypothesis

Hy:rank %, , =r (45)
it is shown to satisfy

VN ~%(0, P) (46)

for some positive definite matrix P, which depends on V in (44). It then
holds true that the test quantity

A& NpTP~' o~ xP(m) (47)

where P is a consistent estimate of P. According to (47), 4 is asymptotically
x*-distributed with m degrees of freedom, and the following significance
test can be used to decide upon the rank of %, ,

A=< xa(m) = rank %, ,=r (H is true)
f> x4(m) = rank %, ,>r (reject Hp) (48)

The significance level a is defined as

& = prob(u > x2(m)|u ~ xX(m)) (49)

The parameter «a is called the probability of false alarm:; it is the probability
of declaring rank %, ,>r when in fact it holds true that rank #, ,=r.
The threshold x2(m) for different values of m and a can be read from
a table of the x? distribution, see, e.g., [14].
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. RANK TEST METHODS

A. A Rank Test Based on the Eigenvalue
Decomposition

In this section a rank test based on the eigenvalue decomposition (EVD)
of the Hankel matrix (15) is described. This test was first developed by
J.-J Fuchs [15,16]. We first treat the estimation of the order of a scalar
ARMA process, and then give a brief indication of how to extend the test
to include the more complicated multivariable case.

1. Scalar Case

Consider the ARMA process given by (1), where the polynomials A(g™!)
and C(q~"') are assumed to be scalars. In this simple case it is possible
to do more than merely estimating r = max(na,nc), the order of the
minimal state space realization of the ARMA. We shall see that we can
estimate both na = deg A and nc = deg C from a sample of N measure-
ments of y(f), by using the more general Hankel matrix (16) rather than
the one discussed in Theorem 1. Indeed, consider the Aa X /ia Hankel
matrix

Fauie= EY,a (Y 5, (t — C)] (50)
R(Ac—~rAa+1) ... R(Ac)
= . : (51)
R(Ac) R(Ac+ fia— 1)
= 2,;;,’,@]. (52)

When R(7) appearing above is a scalar, the rank properties of #z, 4., or
equivalently those of &z, 4., are well known [17]. Introduce the in-
teger

r* = min(#ia ~ na, fic — nc) (53)

Consider the case when Aiu = fic. From Theorem 1, it follows that r* <0
(which means that /ia < na) gives an #y4, ,;, matrix of full rank, and that
r* >0 gives a singular #;z, 7 When #Aua # fAic, we can show that the
determinant of ¥z, 4. satisfies
=0 for r* >0
det#p 54 # 0 r*=0 54
generically # 0 r*<o0

By “‘generically’”” above we understand that systems which give a singular
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Fu, 7 for some r* <0 can occur, but this happens with probability zero
since the parameters of such a system must fulfill a number of nontrivial
relations. A discussion of this matter, as well as a formal proof of (54),
is given in [17].

The properties (54) of #z, 4. can be used to estimate the degrees na
and nc, respectively. Indeed, testing the singularity of #z, 4 for different
combinations of Az and Ac will reveal how the parameter r* depends on
ra and A as described in detail below.

Algorithm 1. Scalar Fuchs Test

1. Test #z  for singularity for increasing #ia = 2, 3, . . .. Stop at Aia = j,
with % ; the first singular matrix in the sequence.
Set r=j—1 and go to Step 2.

2. If #,,1, is nonsingular go to Step 3.
Test #,.1,,—; for singularity for increasing i =1, 2, . ... Step at the
first nonsingular matrix #,, | ,—; in the sequence. We then have na = r
and nc=r—i. END

3. Test #,_; ,+1 for singularity for increasing i =0, 1, 2, . . .. Stop at the
first nonsingular matrix #,_;,,; in the sequence. We then have
na=r—iand nc=r. END [

Note that in order to obtain r, the order of the ARMA under study, just
Step 1 needs to be performed.

The test is constructed in such a way that %z, 4. admits at most one zero
eigenvalue A 4, and we will always have r* =0. The corresponding
sample covariance matrix, ﬁ’f i, fies Wl generlcally have full rank and the
results (54) are valid only asymptotically in N. Let )«,,a # denote the
smallest eigenvalue of ﬁ'f,,a 4o and introduce the null hypothesns

Ho: Mgac=0 (B ra, fic singular) (55)

We now turn to the derivation of the statistical properties of X,{‘a, 7 Which
will enable us to develop a statistical test for deciding whether %, . is
to be declared singular or not. First observe that, under the null hypothesis
(i.e., r* >0), the exact covariance matrix #z, 7 appearing in the test is
always of one of two possible types:

Type 1: #pps A@=na+1, Aic=nc+i, 1,2, ..., na—nc+1
Type 2. B a0 AC=nc+1, ARa=na+i, 1,2, ..., nc—na+1 (56)

The following lemma holds concerning the eigenvectors of the Type 1 and
Type 2 matrices:
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Lemma 1. Under the null hypothesis (35), the eigenvector of Fg s
corresponding to the distinct zero eigenvalue is

81=(ans - a4y l)T (57)

or

&=0:--0a,- - q l)T (58)
for a Type 1 and Type 2 matrix, respectively.

Proof. The proof of Lemma 1 is based on the Yule-Walker equations,
which state that the covariance function R(7) of an ARMA process (1)
satisfies the relation

na

R(ky=— > ajR(k+j) k>nc (59)
i=1

First consider matrices of Type 1: the /th row of %, 4.1 nc+:81 IS

{Fnav1nc+i81}1=anaR(nc+i—na+1-1)+a,,_R(nc+i—na+1)
+:- +R(mc+i+i-1)
na

=R(nc+i+1-1)+ D qR(nc+i+1—1+))
j=1

=0 forl=1,2,...,na+1 (60)
In the same manner, for Type 2 matrices, the /th row of @,,4; nc+182 is

{7na+i,nc+182}l = anaR(nc —na+1)+ ana—lR(nc —na+l+ 1)
+. - +R(nc+1)

na
=R(nc+1)+ Y, a;R(nc+1+])
i=1

=0 forl=1,2,...,na+i (61)
which completes the proof. |

In order to establish the statistical distribution of the smallest eigenvalue
of #4, 4 needed for the singularity test we must distinguish between Type
1 and Type 2 matrices. Here we will focus on Type 2 matrices, but the
arguments are easily modified to the case of %4, 4 being of Type 1, and
the final results are the same for both cases. (The derivation for Type 1
matrices is described in detail in [15].)
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We partition the EVD of a Type 2 matrix #,,4;nc+1, of dimension
(na+i)x (na+i), as

Frneinei =S By o) (3) ()

where the na+i—1 columns of the matrix S contain the normalized
eigenvectors correspondmg to the nonzero eigenvalues of #,,.+; .+ and
the vector g, £ g./||g|| is the normalized eigenvector corresponding to the
distinct zero eigenvalue. Also, g, and the columns of S are orthogonal.
The corresponding decomposition of a sample Type 2 matrix is

R 0 8T
g(na+1 nc+1 = (s g2) ( 0 A,, i +1) ( g{) (63)

where § and ?2 are defined similarly to S and g,. Standard results from
matrix perturbation theory [18] give that g, and g, are related as

5228 -8=0WN""?) (64)

Thus, using the orthogonality properties of g gz and § we obtain (note that
g‘na+1 nc+1g2 = (ﬁ‘na+t nc+1 = g(na+1 nc+l)g2 - O(N 1/2))

A

ina+z ne+l1 = gz na+i, nc+ng
= B2+ &2) Fuarinc+1(82 + &2)

— T4 = =T4 =
=82 g(na+1 nc+182 + 82 g(na+i,m:+182
+ g2 g(na+1 nc+1g2 + g2 g(na+i,m:+lg2

= EZ g(na+i,m:+l§2 + O(N_l) (65)
By using (41) and (50) we can write
1 &
Frarinet1= 5 2 Ynari(OY fari(t=nc = 1)J (66)
=1

Combining (65) and (66) yields

Xna+1 nc+l = 2 g2 na+1(t)Yna+l(t —nc-— I)JEZ + O(N_l)

= %,i v(w(t) + O(N =) (67)
=1
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In (67) we have introduced the two stationary sequences v(¢f) and w(t)
defined as follows:

V(t) é E{Yna+i(t)

1
=r— (@Yt +i—=1+ -+ y(t+i—1+na))
llg2l
=8 Vpgr it +i=-1) (68)
with g; £ g1/||g,|| and where we have made use of the fact that, from
(57)-(58), llg1ll = llg2ll. Furthermore,

w(t) £ Yt —nc—1)Jg,

1
=m(a,,ay(t—nc—l+na)+---+y(t—nc—1))

= -g_lTJYna+l(t —hc— 1) (69)

We now use the expressions (67)-(69) to evaluate the mean and the
variance of Apg4; net1. TO that end we first determine the autocovariance
and cross-covariance sequences of v(f) and w(r). The autocovariance
sequence for v(f) is

Vi & Ev(e)v(t - k)
=B E{Y a1t +i=- )Y 1t +i—1-k)}g,
= glrzna+l,k§l- (70)
Similarly, for w(f) we get
Ew(t)w(t = k) = ZTJE(Y yaur(t — nc = 1)Y 1541t — nc — 1 - k)}Jg,
= glr-”enaﬂ,k-’gl
= glrznaﬂ,k?l
= Y (1)

where, in the third equality, J&/ = ® follows from (11)-(12). If k in (70)
and (71) is larger than nc, 8,1 « is of Type 1 and it follows from Lemma
1 that y, =0 for k>nc. By the stationarity of w(r), y—_x = y, and
hence

Y«=0, |k|>nc (72)
The cross-covariances between v(f) and w(f) are given by
v 2 Ev()w(t — k)
=81 E{Ynas1(t+i= DY L i(t—nc—1-k)J}g,
= 81 Fna+ 1nc+i+kB1 (73)
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For k> —i, the covariance matrix #,,41 nc+i+x 15 of Type 1, so from
Lemma 1 we have that v, =0, k> — i, and particularly

v, =0, for k=0 74)

The above calculations together with the central limit theorem thus give
that )At,,a+1,,,c+,~ as expressed in (67) can be viewed as an asymptotically
Gaussian distributed, zero mean, random variable [13,19] with variance
given by

ERZ,.. =E(l i v(eyw(r) + O(N-‘))2
na+inc+1 N

t=1

N
= NL z z Ev(O)w(t)v(s)w(s) + O(N~2)

N N
= Ni DD AEv(OW(DEV(s)W(s) + Ev(t)v(s)Ew(t)w(s)
+ Ev(t)w(s)Ew(t)v(s)} + O(N~?)

=%2 — |y (B + 7R+ mev_i) + O(N™)

1 i _
=N(73+2k2]y,%)+0(N 2 (75)

where we have used (72) and (74) and the formula for the expectation
of a product of four Gaussian random variables [20].

Note that the results on the distribution of the smallest eigenvalue of
2/,,,,+,,,c+1 obtained above are valid also for matrices of Type 1 [15].
Denote by g the eigenvector obtained from the EVD (63) of - PP
either type and let o%,,, #ic be the estimate of the asymptotic variance of
its smallest eigenvalue )t,;h 7 Form the following test quantity:

A%

na, Ac

n= P (76)

To obtain 6%;,, #c replace all quantities in (75) with their sample estimates
(note that nc+ 1 in (75) is replaced by #it) so that

c—1

e = (73+2 > vi) )
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~

The estimates {#;}7%o! are obtained from (70) by replacing na + 1 by s
(see also (67)-(68)) which yields

Ve =8 R il (78)
It follows from the statistical properties of f\,;;,';;c that under Hy of (55)
and asymptotically in N, 4 is x* (1) distributed. Thus, the following test
can be used to decide upon the rank of %z, 4
7= x2(1) = Bz, 4 singular
71> x2(1) = Fz, 7 nonsingular

where the threshold x2(-) is defined in (49).

(79)

2. Generalization to the Multivariable Case

Now consider the case of a multivariable ARMA, a state space realization
of which is assumed to be given by (9). Define %, ,(S) as the matrix of
dimension k X p ny built from all the p block columns of #, , in (15) and
the k rows with indices iy, i, ..., i, Where

LY (S ) (80)

is a vector containing the above indices. We assume that the first block
row of #, , has full row rank, which means that the elements of y are
linearly independent, and that p is chosen larger than or equal to r, so
that Theorem 1 holds. Then the following test strategy is proposed to
determine the order of the ARMA.

Algorithm 2. Multivariable Fuchs Test

1. Start with k=ny, S, =(1,2, ..., ny).
2. Add the next row of #, ,, with index denoted by /, to the matrix
#,,p(Sk) and test the resulting matrix for singularity.
e if singular, drop the row from %, ,(Si) as well as all rows in %, ,
with index /+jny, j=0,1,2, ...
o if nonsingular, add index / to S; to obtain S,,,, and set
k=k+1.
3. If there are untested rows left in #, ,, return to the beginning of Step
2; else the test is terminated, and the order of the ARMA is
r=k.

In the multivariable case, the singularity test is somewhat more involved
than in the simple scalar case previously treated because of the row
manipulations described above. As before, the test operates on the sample
covariance matrix ﬁfp, »(Sk), obtained from %, ,(S;) with the exact
covariances replaced by their estimates (41). In general, this matrix is not
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square, and the EVD cannot be used. Instead we determine the singular
value decomposition (SVD) of %, ,(S,) and partition it as follows:

14050 = 010 (55 ) (77) G

In (81), (U i) and (V; V), of dimensions k X k and pny X p ny respec-
tively, are orthogonal matrices, and #; is the normalized k-dimensional
eigenvector corresponding to the smallest eigenvalue, denoted by 6. The
test quantity is then defined as

n=NTQ7 12 (82)
where the vector 2 and the matrix Q are given by
= il %, (S)V2= (ako 0...0) (mx1) (83)

o=v{ {?(O)TV(O) + 2 W(T)+T] (l))}f’z (m x m) (84)
=1

with m £ pny —k+1. Note the similarity between (77) and (84). In
(83)—(84) the following definitions are used:

) = o T (85)
N y(e+ 1:1)
r =52 | " ot oy tea)
(kny x kny) (86)

—

y(e+ip)

v [ YD
r=+ | TP o i-n oy i-py
=1 .
y(t—p)
#,.p-1-1 (Pny X pny) (87)

The integer M appearmg in the summation of (84) is defined as the number
of block rows in ? p that have contributed with at least one row to the
set specified by S,. When y(t) is a scalar, (86) reduces to T,()) = R, 150
that y(l) = it &, iy, which is the quantity (77) defined for the scalar case.
Since 7/ .p(Sk) is not square in general, we must require that k =p =r+1
(Hy of the scalar case), for (83)-(84) to reduce exactly to (76)—(77).

It can be verified, with calculations similar to those that were carried
out for the scalar case (equations (67)—(75)), that with the above
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definitions, asymptotically in N, we have

)~ x*(m) (88)
and the following singularity test can be applied:

{-;,s Xa(m) = %, ,(Sy) is singular (has not full row rank)

7> xa(m) = %, ,(Sk) is nonsingular (has full row rank) (89)

Clearly, one of the difficulties with the proposed test is to choose the value
of p large enough so that one can be sure that a zero singular value
obtained in the test is due to the newly introduced row. Often, some @
priori knowledge of an upper bound of the order of the ARMA under
study can be used to determine a suitable value of p.

The results on the multivariable rank test briefly outlined above are
described in detail in [16].

B. A Rank Test Based on the LDU Decomposition

In this section, a rank test based on Gaussian lower triangular—-diagonal-
upper triangular (LDU) decomposition of ﬁfp,p (with p =r) as defined in
(15) is presented. The test, which was first presented by Gill and Lewbel
[21], directly copes with the case of a general multivariable ARMA
process.

As the name suggests, the LDU-decomposition partitions the matrix
fq’lp,p into a praoduct of three matrices: L, which is lower triangular, D,
which is diagonal, and U, which is upper triangular. The decomposition
is usually performed by successive Gaussian elimination. Some kind of
pivoting operation is necessary to ensure numerical stability of the
decomposition procedure. We shall see that the test to be developed below
requires the pivoting to be complete. With complete pivoting we mean
that at each step of the Gaussian elimination the current submatrix is
searched for its largest element (in absolute magnitude), which is shifted
to the stop left corner by column and row interchanges (this is in contrast
to partial pivoting which only shifts the largest element in the first column
of the submatrix). Pivoting is discussed, e.g., in [18] and the numerical
implementation of the LDU-decomposition is treated in detail in [22].

LDU-decomposition with complete pivoting of #, , yields

P#, ,0=LDU (90)

where P and Q are permutation matrices corresponding to the pivoting
and D is a diagonal matrix which will have a certain structure due to the
row and column pivoting as will be explained below. As mentioned before,
matrices L and UT are lower triangular, and they are normalized to have
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ones along the diagonals. If the pny X p ny matrix #, , has rank r, then
the LDU-decomposition with complete pivoting can be partitioned as

Gy e

and the decomposition (91) is unique [24]. The corresponding LDU-
decomposition for %, ,, is denoted

Lll 0

LDU =
(L2l Ip ny—r

P&, ,0=LDU, (92)
and is partitioned as
(L O Dy 0\(0Uy Up
Lbu= (Lzl Lzz) ( 0 Dz) ( 0 Uzz) 3)

In (91) and (93) the row as well as the column partition is by rand pny —r.
An important property of the complete pivoting is that it ensures that the
r X r diagonal matrix D; in (91) is nonsingular and that the diagonal of
D contains exactly p ny —r zeros, placed as indicated in (91). Also, it
follows from (90) that L.y, L;, UT;, U7, are unit lower triangular, and
since fq’lp,p + % p» Ly, as well as U%, will be unit lower triangular but
different from their exact counterparts. It is shown in [21] that as N grows
to infinity, the roofed quantities in the sample LDU-decomposition (93)
converge in probability to the true ones, given by (91). In other
words,

P%, ,0=1LDUSP%, ,0=LDU (94)
In particular, D,% 0 and we shall see that under the null hypothesis,

Hy: rank #, ,=r (95)
we can derive the statistical properties of the p ny — r vector

d, £ diag(D,) (96)

which will enable us to develop the test for determining the rank of %, .
Let A;be a (pny — r) X (p ny — r) matrix that has 1 as its (i, {)-element and
zeros elsewhere. Also define

A=(A4y - Apny—r)T (97)

It is easily verified that the (pny — r) X (p ny — r)?> matrix A satisfies the
orthogonality property

ATA=Ippny, (98)
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and also that

vec D, = Ad, 99)
with @, as defiend in (96). Introduce the test quantity

f=Ndfw~la, (100)
with W defined as

W= ATKT® H)(OT® PYV(Q ® PR ® H A (101)

In (101), ® denotes the Kronecker product and V is a consistent
estimate of the covariance matrix of the limiting distribution of
VN vec(#, , — %, ,). One way of obtaining V" from the data will be given
later on, more specifically in equation (116). The matrices H and K are
defined by

H=(-Lyp'LyLi' L) (102)
k= ( ~Uii U Uz ) (103)
Uz

The following theorem will be used to construct the LDU-decomposition
rank test.

Theorem 2. Under the assumptions made, it holds true that the test
quantity (100) satisfies

i~ x(pny—r) (104)
i.e., 9 is asymptotically x*-distributed with p ny — r degrees of freedom.
Proof. The proof is patterned from the one in [21]. To verify (104) it
is, according to (46), sufficient to show that

V/Nd, ~ 70, W) (105)

where W is the asymptotic counterpart of (101). From (94), we infer
that

VNP(#, ,— %, )05 VNLDU - LDU) (106)

For notational convenience, introduce the matrices

(L (0
L=(0) ()

Uy= (U U) U,=(0 Uy) (107)
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and similarly define L, L,, U;, and U,. Then it is easy to see that
under H,
\/N(LDU— LDU) = \/N(lel Ul + Lzbzsz— L,D,U))
= \/N(Ll - Ll)bl Ul + Ll\/ﬁ(bl - DI)UI
+L,D,VNWU,-U) + L,VND, U, (108)

and using (94) and (106) we obtain, asymptotically in N, that

‘\/NP(?p,p— 7P,P)Q = \/N(Ll - Ll)DlUl + Ll\/ﬁ(bl - Dl)Ul
+L,D,VNW, - U) + L,VND,U,  (109)
Now, the matrices A and K introduced in (102)—(103) above satisfy the
readily verified properties
HLI = 0, HLz = Ipny—r
U,k=0, U,K=1

pny—r

(110)

so that pre- and postmultiplying equation (109) with A and K, respectively,
yields

VND,= HPVN®, ,— %, ,)0K (111)
and by (96) and (98)—(99) we have that

VNd, = VNATvec(D,)
= V/NAT vec(HP(%, , — %, ,)OK)
= VNAT(KTQT Q@ HP)vec(#, , — %, )
=ATKTQ@ H) QT ® P)VNvec(#, , — %, ) (112)
where use was made of the formulas (see, e.g., [8])

vec(ABC) = (CT® A)vec B and (AC® BD) = (A ® B)(C® D). Now,
from (44) we finally obtain

VNd,~ %0, W) (113)
with W being the asymptotic counterpart of (101). ]

The estimate ¥ needed to calculate W in (101) above can be obtained as
follows. Define the vector A through
h £ vec (%, ,)
= Evec(Y,()Y, (t— p)J)
= E{JY,(t-p) QY (1)} (pny)*x1 (114)
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and similarly define & by replacing the expectation operator in (114) by
1/NZ¥.,. Then

V= NEh-h)(h—h)T

= NEhhT - NhhT
1 N N
= E{N 21 1 JY,(t=p)YF(s — p)I ® Y,(0) Y,,T(s)} - NrRT  (115)
t=1 s=
Defining #, ,(7) £ EYp(t)YpT(t—p— 7)J and using the formula for the
product of four Gaussian random variables [20] one can show that

N
V=g 2 (V=D {UR ) @R, .+ [vecH, ()]

T=—N

X [vec &, (-]} (116)

The calculations needed to arrive at (116) are straightforward but
notationally complicated, and we choose to omit the details (to derive
(116) from (115), consider each block of V separately). A consistent
estimate of V is finally obtained by replacing all quantities in (116) by their
sample counterparts. However, for a limited number of data points, this
will turn out to be quite a bad estimate of V. The reason is that the
covariances appearing in (116) will be poorly estimated at large lags 7.
The classical remedy is to truncate the sum at some | 7| = M << N. This can
be done as we know that the true covariance function R(7) should be
“small” for large |7|. In practice, a good truncation point may be difficult
to determine, as it depends on many factors, such as the order of the
process, the number of available data points, and the value of p chosen
when constructing #, ,. A rule of thumb can, however, be obtained as
follows. The largest lag of the covariance function appearing in %, ,(7)
in (116) is 7+ 2p — 1. Inspired by results from spectral analysis we assume
that the maximum lag we can estimate is 7= N/8 so we choose

M= max(O, I-%-I -2+ 1) (117)

where [x] denotes the first integer which is larger than or equal to x.
The result of Theorem 2 suggests the following rank test for ARMA
order estimation:

Algorithm 3. LDU Decomposition Rank Test

1. Perform the LDU decomposition (92) of the sample covariance matrix
%, - Set j=0.
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2. Partition the decomposition according to (93) to obtain the (p ny — j)-
vector dy, and construct the matrix W (101).
e Iff=<xi(pny—J), then rank #,.p = Jj and the order of the ARMA
isr=j.
® Else, set j=j+ 1. If j<pny, go to the beginning of Step 2,
otherwise the test is terminated.
3. If the test terminates with j=pny, then the rank of #, , could
not be determined and p must be increased to find the ARMA
order. ]

C. A Gramian-Based Rank Test

In this section we will present a Gramian-based (GRAB) order estimation
scheme. The test relies on the eigenvalue decomposition of the ‘“Gramian”
of the covariance matrix. The discussion here focuses on the case of a
scalar ARMA process, but an extension to the general multivariable case
is straightforward, as will be briefly indicated below. The test is due to
Stoica and Cedervall and was first developed for the detection of the
number of signals impinging on an array of sensors [23].

1. Scalar Case
Let the covariance matrix of a scalar ARMA be defined as

y(®
+1
22e| YD\ Ge—k) ye—k+1) - ye-1)) (118)
ye+p-1)
= EYp(t)YkT(t —k) (pxk) (119)
Then it follows from Theorem 1 that
rank®=r forp=r, k=r (120)
To see this, note that
R(k) R(k—-1) ... R(1)
R(k+1) R(k) R(2)
R= R(2k—1) R(k)

R(2k) R(k+1)

R(k +'p -1 R('p)
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_ Re. i
EY,_ (DY (t—2k)

Clearly, ® can be factorized in the same manner as shown in (23) of the
proof of Theorem 1. Applying the Cayley-Hamilton theorem enables us
to claim that

(121)

rank ® =rank By = r fork=r, p=r (122)
which justifies (120). Let

1 N
=5 21 Y,(O)YI(t—k) (pxk) (123)
=
denote the sample estimate of the covariance matrix  in (119). Introduce
the null hypothesis as
Hy:k=r-1 (124)

In what follows we will assume that p has been chosen sufficiently large
so that p = r. The main theme in this section is to develop a statistical test
based on the smallest eigenvalue of the Gramian matrix

VERTR (kxk) (125)
Denote this eigenvalue by A. Under the null hypothesis,
vizle (126)

the asymptotic counterpart of ¥, is singular and admits one and only one
zero eigenvalue. As a consequence, we would expect A to be small. In
what follows we will derive the perturbation properties for the smallest
eigenvalue of the sample Gramian matrix ¥ under the assumption that
Hy and (120) hold true. To obtain a suitable asymptotic approximation
for the smallest eigenvalue of ¥, first note that as

A>0 for any N<o, (127)

a first-order approximation of A (which would allow negative values)
cannot be appropriate. In fact, owing to (127), the first-order term in an
asymptotic expansion of A must vanish, and hence the second-order term
should be the one of interest. In order to derive the latter term, the
following additional notation is introduced. Let

nft )

=SAST + (0)gg” (128)
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denote the EVD of ¥. Similarly,
¥ =SAST + AgT (129)

is the EVD of ¥. The eigenvectors in both EVDs above are orthonormal,
and the distinct (by assumption) eigenvalues are arranged in decreasing
order. Also, let

&= UA"ST (130)

denote the SVD of R The matrices A and S are as defined previously
and U is the [p X (k — 1)]-dimensional matrix of the principal left singular
vectors of & (so that UTU = I). It follows that

Q&r-uvuT (131)
is an idempotent (p X p)-matrix with the following rank:
rankQ=(p—-k+1) (132)

The following theorem gives an asymptotically valid expression of A.

Theorem 3. Under Hy,

A=gT&T Q&g + O(N~37?) (133)
and the vector
d& &g (134)

is asymptotically normally distributed with zero mean and covariance matrix
given by

k—1
1
D=-7 2 WN-|7)(R..8"R,q8) (135)

T=—k+1

where &, . is defined in (12).

Proof. We first derive (133). Since the estimate (123) is consistent and
asymptotically normal, it can be assumed that the roofed quantities in
(129) tend to the corresponding ones in (128) with an error of the order
of N™V2 as N— = (see, e.g., [24]). In other words

RLR2-2=0N"1?
S23-5S =O(N?
geg-g =OWN™"?)
A2A-A=0(N""?
A2A-0 =O(N"? (136)
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Now, note that

A=gT¥g—gT(¥-Ang (137)
Since g = 0, the first term in (137) can also be written as
gT¥g=g"(R-R)(R-R)g (138)

which shows that it is O(N~!). Next we deal with the second term in
(137). As

W — A=3A8T+AggT - M1
= SAST+ AU - 88T - A1
= 3(A - An3T (139)
and 278 = 0 because of the orthogonality of # and 3, one can write
gT(¥ - g =g"S(A-An3Tg
=(g-»TSA -3 -2
=(g-8)TSA8T(g-2) - (- 2)"5M87(s - 2)
=gl S+ A +A)S+8)Tg- TS+ HAS +5)Tz
=gT8A8Tg+ O(N73?) (140)

In order to proceed, an approximation of g7 in terms of the data matrices
¥ or ® is required. It is readily verified that

gT¥s = gTSASTS +gTAga"s
=gT(S+ A +A)(S+85)TS+gTMg+2)(g+3)Ts
=gT(S+HAS+3)TS+gI(S+HAS+3)TS + AgT(g + 2)zT$
=gT8A + gTSASTS +gTSA(S+ 8)TS+ A(1 +g75)gTs

=gTSA+O(N7Y) (141)
which gives
gT8=gT¥SA'+ONY) (142)

Insertion of (142) into (140) yields
gV —Ang = gT¥sSA~'ST¥g + O(N3?)

=gT(R+B)T(R+ R)SA'ST(R+ B)T(R+ B)g
+O(N*?)

=gTRTRSA \STR Bg+ gTRTRSA 'S TR ¢
+gTRTBSA ' STR Bg + gTRTRSA ' STRT Bg
+O(N3?

=gTRTRSA 1 STRT g + O(N~37?) (143)
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Finally, combining (130), (131), (137), and (143) yields
A=gTVg—gTRTRSA ' STRT g + O(N ~3?)
=gT®TRe — gTRTUUTZg + O(N~3?)
= gTRTQ&g + O(N~3?) (144)
which is the same as (133).
We next turn to the statistical properties of the vector d of (134). The

asymptotic normality of d follows from the central limit theorem as given,
e.g., in [13]. The result

Ed=FE&g=2g=0 (145)

is immediate from (128). Concerning the covariance matrix D we have
that

D 2 E(Rg)(Re)"

= N2 2 BV O¥ L~ Kgg s~ Y )

= D (RegTRT + (EY, ()Y (s - Mg (EYelt — YT(5))

+(EY,(0Y, (5)gT(EYi(t — K)Y{ (s — K))g}

N
=o+% D, (N—|7){R(1)gg" R (~7) + R, .8 Re..8}  (146)
T=—N

where
R(1) = EY,(0Y{(t—k—1) (147)

(R = ®&(0), by notational convention). In the above caiculation, use was
made of the standard formula for the fourth-order moments of normally
distributed random variables [20]. In order to obtain (135) we need to show
that the first term in the sum of (146) is zero. To see this, note that by Lemma
1, the normalized eigenvector corresponding to the (distinct) zero eigenvalue
of ¥ is given by

gT= (anaana—l a4y 1)/(1 (148)
where a= (1 +a?+---+a2,)"2. We have that

Y2t~ k=g =~ Ayt — k=) (149)
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where g denotes the forward shift operator, and hence
R(1)g = E[Y,(DA(q)y(t —k —7))/a
= E[A(g™ )Y (Oy(t — k= 7))/a
=0 for r=0 (150)
The last equality follows from the Yule-Walker equations (59), and we
also made use of the easily verified fact that for any scalar filter A(z) it
holds that E[x(¢){A(q)z()}] = E[{A(g~)x(8)}z(¢)]. Similarly
R(—7)g=0 forr=0 (151)
so that the first term in the sum of (146) is indeed zero. Proceeding in
the same manner with the second term we find
g7 R:..g = E[gT Y ()Y (t - 78]
= E[A(@)y(0A(q)y(t - D))a®
= E[A(g~ " )y()A(g~)y(t — ))a?
= E[C(g™De(®)C(g™ e(t — 7))/
=0 for|r|>r=k-1 (152)
Inserting (150)-(152) into (146) yields the desired result (135). n

Now, we cannot make any statement on the distribution of
A=dTQd (153)

directly, but we can transform A into another random variable which is
approximately normally distributed. To see how this can be done, recall
that the random vector d in (153) is indeed asymptotically normally
distributed with zero mean and covariance matrix D. Define

Z=D'"2QDY? (pxp) (154)

where D2 denotes a (symmetric for notational convenience) square root
of the positive definite matrix D. As mentioned before, the matrix Q is
idempotent with rank (p — k+1). Since D can be assumed to have full
rank, this implies that

rankZ=p—-k+1 (155)
Let
T8 0
Z=KMKT, M= . ;. KTK=] (156)

0 Hp—k+1
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denote the EVD of the matrix Z, and let

x2 KTD"24 (157)
Making use of the notation introduced above we can write (153) as
A=xTMx (158)
The random vector x is asymptotically %(0, I) distributed. Let
p—k+1
yi= > @ forj=1,2,3 (159)
k=1

where {;) are the eigenvalues obtained from the EVD of Z, a consistent
estimate of Z. Also set

p=1-2%%/(3%3) (160)

Then, when N grows to infinity, }he following transformed and normalized
random variable derived from A,

T = Ml(V31)" — 1 = (¥ — 1)yl 51/(207 )12 (161)

is asymptotically normally distributed with zero mean and unit variance
[25], so that the test quantity

72 T2~ x() (162)

i.e., 7 is asymptotically x*(1) distributed.
Summarizing the above results leads to the following ARMA order
estimation scheme.

Algorithm 4. Scalar GRAB Rank Test

1. Compute the estimates {%&, .} of {®, .}.
Fork=1,2, ... do:

2. Compute the sample estimates {#&(r)} and {&, ,} of the corresponding
theoretical covariances.

3. Determine A, g, and U from the SVD of 2. Calculate an estimate D
by replacing all quantities in (135) with their estimates. Next
determine Z and compute its eigenvalues. Finally obtain # from
(161)-(162).

4. If 7=x2(1) then accept Hy, i.e., the order of the ARMA is found
to be r =k —1. Otherwise reject Hy, set k= k+1, and go back to
step 2. The threshold x2(1) is defined in (49). [ |

2. Generalization to the Multivariable Case

To modify the test for the multivariable case, first note that the calculations
carried out above are general in the sense that they apply to any covariance
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matrix 2 of rank r, provided that Hy holds. The only exception is the result
(135) because in the calculations (148)-(152) we assumed that the
polynomials A(z) and C(z) were scalars. If we replace (135) by (146), the
above calculations are perfectly valid for a general multivariable ARMA
process. We must, however, change the test strategy to ensure that ¥ has
at most one zero eigenvalue. This is done in the same manner as outlined
in Algorithm 2 of Section A. Let &(S,) be the matrix of dimension p ny X k
obtained from all the p block rows of ® and the k columns with indices
specified by the vector S; (80). We obtain the following test:

Algorithm 5. Multivariable GRAB Rank Test

1. Start with k=ny, S, =(1,2, ..., ny).
2. Add the next column of ® with index denoted by [/ to the matrix
R(Sk)-
& if singular (as determined by Algorithm 4 with D from (146)) drop
the column from &(S), as well as all columns in & with index
I+jny,j=0,1,2, ...,
® if nonsingular, add index [/ to §; to obtain Si,,, and set
k=k+1,
3. If there are untested rows left in &, return to the beginning of Step
2; else the test is terminated, and the order of the ARMA is
r=k.

Note that in order to obtain a good estimate of D, needed in the above
algorithm, it may be necessary to truncate the sum (146) at some
|7 = M < N (see the end of the previous section for a discussion on this
point).

IV. COMPARISON AND EVALUATION OF THE RANK
TESTS

In this section we will illustrate the performance of the different rank tests
for ARMA order estimation that were presented above. This will be done
by means of some simple scalar numerical examples.

A first impression may be that the three rank tests previously treated
are very different from each other. However, they all rely on the same
rank result, namely Theorem 1, even if the actual covariance matrix used
may be slightly different from method to method. The three methods are
summarized in Table 1. We see that the methods are in fact very similar.
One important difference between the methods is the user parameters.
All methods, except for the scalar Fuchs test, require the parameter p to
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Table 1 Summary of the Different Rank Test Methods: Covariance Matrix,
Test Quantity, and the Limiting Distribution of the Test Quantity (m = dim 2,

n = dimd,)

Covariance Test Limiting User
Method matrix quantity distribution parameters
Fuchs
scalar Fon e A = Aoyl %0 e () (none)
see (76)
multivariable %, ,(Sk) H=NzTQ 12 X(m) p
see (82)
LDU Fop f=Naf W4, X(n) .M
see (100)
GRAB
scalar v=2T® =12 (1) p
see (162)
multivariable ¥ = BT(S)R(S,) 7 = T2 () M
see (162)

be chosen by the user (it is necessary to have p = r for Theorem 1 to hold,
and the GRAB test even requires p >r). We often have some a priori
information on the order of the ARMA process under study, which can
be used to choose p. We might expect that the methods will determine
the true order more frequently when p increases, as then more covariances
are taken into account in the tests, but we also know that covariances at
large lags may be inaccurately estimated because of the limited amount
of data points available. The conclusion is that a too large value of p may
be computationally cumbersome, but also lead to degraded performance.
In addition to the parameter p, the LDU and the multivariable GRAB
tests require the truncating point M to be determined. Again, we will have
to make a trade-off between how many covariance elements we include
in the calculations and how well these can be estimated.

We now turn to the numerical examples. We will use the two different
ARMA models listed in Table 2, fed by Gaussian white noise with zero
mean and unit variance, as a starting-point for the investigation of the
performance of the different methods. The pole-zero distribution and the
power spectral densities of the two processes are shown i1 Figs 1 and 2.
We see that for Al, both the poles and the only zero are located well off
the unit circle. The covariance function of Al is thus decaying rapidly,
and since there is no risk for pole—zero cancelation, we expect that the



210 Sorelius et al.

Table 2 The Two Different ARMA Processes Used to Evaluate the Rank
Test Methods

Name True order AR parameters MA parameters Figure
Al 2 10.640.7 10.8 1
A2 4 1 -2.760 3.809 —2.654 0.924 1-0.20.04 2

Power spectral density in db

-y

e

o
-

X
0.5
of o 10°
-0.5
X
—1
-1 10
-1 -0.5 0 0.5 1 10™ 10° 10
x = poles, o0 = zeros Frequency

Flgure 1 Pole-zero location and power spectral density of the process Al
(A=[10.640.7], C=[10.8]), true order r =2.

rank test methods will perform well for this case. Concerning A2, the
situation is more delicate. The poles are situated much closer to the unit
circle, and we will need a large number of data points to be able to get
a good estimate of the covariance function. The difference between the
models Al and A2 can also be stated in terms of the condition number
(defined as the ratio of the largest and smallest eigenvalue) of ﬁ/p,p.
Indeed, for A2 this condition number is three orders of magnitude larger
than the one for Al, and all methods can thus be expected to have more
difficulty in correctly estimating the order of the more complex model.

We will assess the performance of the different methods in terms of
the probabilities of fitting, overfitting and underfitting. The probability of
fitting refers to the percentage of times that the correct order is estimated
for a certain number of runs, each on independent realizations of the data.
The over- and underfitting probabilities are defined in a similar manner.

1
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1 10°
0.5 10
o]

Power spectral density in db

0 10
o
-05 10°
=
-1 10
-1 -0.5 0 0.5 1 10‘1 100 10
x = poles, 0 = zeros Frequency

Figure 2 Pole-zero location and power spectral density of the process A2
(A =[1-2.763.809 —2.6540.924], C = [1 —0.2 0.04]), true order r =4,

We will say that a rank test method is “good” when it has a high probability
of fitting. In all examples we will use 100 independent trials and choose
the false alarm probability to be a = 0.05.

Figure 3 shows the performance of the methods for estimating the order
of the process Al as a function of N, the number of data points. For the
LDU and GRAB methods, we have chosen p = 4, and the truncation point
M is determined from (117). Also, the performance of the LDU method
without truncation is displayed for comparison. We can see that truncation
is important: a much larger N is required to reach the same performance
as the truncated LDU. Except for the LDU method without truncation,
the methods seem to behave very similarly. For very short data samples,
a small difference in performance is visible.

Figure 4 shows the performance for the model A2, with p=35. As
expected, a larger amount of data is necessary to estimate the order
correctly. Again, the LDU method without truncation has a much lower
performance than the other three methods. The LDU and GRAB methods
show slightly better small sample properties than the Fuchs method.

As mentioned above, one advantage of the scalar Fuchs method is that
it does not require any parameters to be chosen by the user. The LDU
and GRAB methods both require the choice of p. Figure 5 shows their
performance with respect to p, for different values of N. It is seen that
for a short data sample (N = 300), the performance of the methods
decreases with increasing p. This is expected, because even if more

1
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Figure 3 The performance for Al (p =4, M = N/8-17).

covariances are taken into account, they are not accurately estimated. We
note that the LDU method is more sensitive with respect to p than the
GRAB method. This is so because the choice of the truncation point as
M =[N/8] —2p+1 is not good for large values of p and small values of
N, which again illustrates the difficulty in choosing the truncation point
for the LDU method. For a large sample (N = 1000) both methods are
insensitive to the choice of p. We can even see a slightly increased
performance for both methods for large values of p.

In Fig. 6 we study the sensitivity of the methods to pole-zero
cancelation. We let the poles of the system Al move on a circle (starting
at the original position as shown in Fig. 1) and plot the performance as
a function of the angle between the poles and the zero. In this example,
we have chosen N = 300, and in view of Fig. 5 we have selected p =7,
a value that gives good performance both for the LDU and the GRAB
methods. Again, M is chosen according to (117). We expect the methods
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Figure 4 The performance for A2 (p =5, M = N/8 - 9).

to underfit when the poles and the zero are closely spaced, since we will
then almost have a pole—zero cancelation, and the system will then appear
to be of order r = 1. We see that this is indeed the case; all methods are
sensitive to closely spaced poles and zeros. To realize if this is a property
only of the rank test methods, we have included the performance of the
so-called F-test in Fig. 6. The F-test, which is an optimal order estimation
procedure, uses a function of the estimated prediction errors for increasing
model orders as a test quantity. It thus requires the estimation of the model
parameters, which necessitates a parametrization of the model and the use
of a multidimensional search in the parameter space, see [8]. The F-test
has a slightly better performance than the rank test methods when the
poles and the zero are closely spaced, but this better performance is
obtained at the price of increased complexity and a higher computational
burden.
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Figure 5 The performance for Al of GRAB and truncated LDU as a function
of p for N = 300 and N = 1000 (note the different scale).

V. CONCLUSIONS

We have given a detailed presentation of three different methods for
ARMA order estimation: the Fuchs test, the LDU test, and the GRAB
test. The methods are summarized in Table 1. The performance of the
methods is assessed by means of some numerical experiments for scalar
ARMA processes.

In the cases we considered, all three methods gave similar results, with
a slightly better performance for the GRAB test in the case of a more
complicated ARMA process, provided that the user parameter associated
with this method was chosen optimally. Our conclusion is that in the case
of a scalar ARMA process, the Fuchs method is the easiest one to use,
as it involves no user parameters. Since the methods showed a similar

performance, it is natural to first try the Fuchs method for an order
estimation problem at hand.
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Figure 6 Performance for different pole locations: the angle between the zero and
the poles of Al is varied (p =7, N = 300).

The LDU and GRAB tests may provide better results for more
complicated model structures, as they allow the use of more information
(covariance elements) by suitably changing the user parameters. However,
the LDU test may be difficult to use when only a short data sample is
available, as it is then very sensitive to the values of these parameters.
Indeed, the GRAB test showed better performance than the other
methods for closely spaced poles and zeros in the cases we considered.

In many cases, the rank test methods have a somewhat degraded
performance as compared to maximum likelihood tests, such as, e.g., the
F-test. However, the rank tests are easy to apply as they operate more
directly on the output data. Neither a numerical search procedure, nor
a parametrization of the ARMA process under study is required,
which is a significant advantage of the rank-based order determination
methods.
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. SYSTEM AND OBSERVATION MECHANISMS

We consider a simple example of system and observation mechanisms:

de?(t)  dx(r) dx(t) .
a2 + Fa " [(x(t), ar ) = system noise 1)
¥1(8) = hyx(f) + observation noise @
y2(t) = hy dx(¢)/dt + observation noise )

The precise meaning of the above equations can be given by

{dxl(t)/dt =x(t), O =x o)
dry(t) = — () de+ f(xy, x) de+ dw(r),  x(0) = o
y() = Clxy () x2(8))" + e(?), 4)
where
hy 0
c= ( 01 hz) )

w(f) is a Brownian motion process in R! with incremental covariance o?
and e(?) is a finitely additive white noise in L%(T; R?) independent of w.
If the observation noise is modelled by using a Brownian motion, the data
are given by the ‘“‘integral form” and are nowhere differentiable. This
causes a serious difficulty when one handles real data. The remarkable
advantage of the finitely additive white noise is that the results obtained
are always in the form where real data can be directly used. In technical

217
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terms we say that the results are always in robust form. (See [3] for more
general information on finitely additive white noise theory.) The nonlinear
filtering problem for general systems has also been studied and the related
Zakai equation has been derived in [3].

Here we shall consider a different situation from the usual filtering
problem, i.e., a maximum a posteriori probability (MAP) state estimation
problem is studied. If the observation noise is modeled by a Brownian
motion process, the existence of a MAP estimator has already been
explored by Zeitouni and Dembo [6]. The main objective of this chapter
is twofold. One is to reformulate the MAP state estimate in the finitely
additive white noise setup. The other is to derive the recursive estimation
equation like the Zakai equation for a nonlinear filtering problem.

In Section II, first we derive an Onsager-Machlup functional to the
system equation (3). From this functional, the a posteriori probability
functional can be derived in the finitely additive white noise setup. In
Section III, the basic equation for the recursive MAP estimator is obtained
by using a dynamic programming approach. A numerical approximation
technique for realizing this basic equation is proposed with the aid of a
finite difference scheme in Section IV. We also demonstrate a numerical
example. The symbols used in this chapter are listed below:

T: time interval |0, ¢

L*(T; R¥): space of square integrable functions defined on T with values
in R¥;||i and (-,-) denote the norm and inner product,
respectively.

H'(T; R?): space of functions ¢ defined on T with values in R? such that
d¢/dt € L(T; R?).

C{:space of k-times continuously differentiable functions with
bounded derivatives.

. ONSAGER-MACHLUP FUNCTIONAL AND A
POSTERIORI PROBABILITY

The signal x(f) = (x,(9)x2(f))’ is an R%valued process on a probability
space ({2, 4, P). We know that (3) has a unique continuous solution under
the Lipschitz condition for f. In (4) e is the Gaussian white noise on
(H,€, 1g), where H = L%(T;R?), € is the field of cylinder sets in H, and
K is the canonical Gauss measure on €. Now the processes x(¢) and e(f)
are defined on different probability spaces. To make (4) precise, we have
to define x and e on the same probability space. It is clear that the union
of such o-algebras over all possible finite dimensional projections is an
algebra, which we denoted by 2. We define a finitely additive measure
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a on 4 by
a(C X A)=ug(C)P(A), Cec, AEA

The basic result in signal estimation is the white noise version of the
Kallianpur-Striebel formula [3].

Theorem 2.1 For any integrable g in (0, A4, P),
_ E{gx)exp(=3| Cx) [7r + (v, C(x)))}
Eal8l) = = Elexp(-TIC0 B+ 0, C))

where E (-) and E(-) denote the expectation with respect to the measure
a and P, respectively. The likelihood functional is given by

LF(y) = E{exp(~3| C(0) [& + (v, C(x)))} )

In order to derive the a posteriori probability state estimator, we should
modify the Onsager-Machlup functional given by [5], because the system
state x,(¢) is not stochastically perturbed.

(6)

Theorem 2.2 Assume that

fECFRY. ®
Then
o PUSUDIE0) = Go0) et = elxa(0) = o, 31(0) = xo)
&0 P{sup,| W(t) |RI < E}
d 2
=op| ~5z ||| 2 w0~ 1010.00)| o
B, 1 (Y 3f(d1,42)
+Etf—zjo Tzdt}, ()]

for & = (1 ¢2)' € H'(T; R?) with ¢5(0) =%, and ¢(t) = xo + [ipa(s)ds.
Proof. It is easy to show that x,(¢f) — ¢,(¢) satisfies

déa()
dr de —

dx2(2) = ¢2(0) = - px2() = 2(1) + (1)) dt

+f( J ’ (x2(s) — Ba(s)) ds + x, + "¢2(s) ds,
0

0

= () + (D) | dt + dw(d)

= 4’2( )dt +f(x2— ¢, + d2) dt + dw(f) (say)
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By Girsanov’s transformation, one has

P{sup,|x2() — $2() |r' < £] x2(0) = %, X1(0) = xo}

lim

&—0 P{sup,|w(t) |RI <E}
= E{exp{ J fw+ @) — "’2( )d (O/o?
0
1
27 J R'dt}

|sup |w(t) | gt < &, %2(0) = X, x,(0) = xo}
t

It is easy to show that

f "Fow + ) dw(i) = f "Fda) dwi)
0 0

+ J ,f[— uw(t) + (61D, $2(9) (4’1(;1’ () J , w(s) ds
1

0 0

L ICNORN0)
dxo

tr t 2
+ J [O(w2)+0(( J w(s)ds) )]dw(t) (10)
0 0

By Ito’s formula, we have

w(t)] dw(?)

~u[ w0 aw0 =5 @y = wiepP an
0
and
J” PO $2D) gy = L1 S2) W)
o dxo dxy 2
TP £f(10), $2(9)
B L 2 { 0x10%> 2(0)
+ L1610, 6:(0) dd>z(t)}
0XZ dr

s f " (@10, 420)
> .

oxs 12)

0
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If w satisfies sup,e7|w(?)|g' < ¢, then

‘ - J ,fw(t) dw(s) - go%, =C¢, (13)
0

and
" 3f(1(8), $2(0) v 6'f(¢1(t) $29) .| -
L o w(f) dw(t) + L P dt|=Cre (14)

Integrating by parts, we also have

¥ of(d1(D), $2(0) [
L oy L w(s) ds dw(s)
J’fﬁf(cbl(t) $50) 41 f W) ds J,fw(t) f CORZ0)
0 9%y 0 0 *1
X dw(s) ds dt (15)

If w satisfies sup,e7|w(f)|g1 <€, then

dw(r)

J'fﬂf(rbl(f), $,(1)
0x1

<Cye (16)
0

and hence

<Cqe. (17)

J’fﬁﬁ(ﬁlﬁ@) L w(s) ds dw(?)

0

From the recent results given by Shepp and Zeitouni [5], we have

E{exp{ J ,fk(s) dw(s)}
0

for any k € L¥(T;R").
Hence, summarizing the above estimates, we finally obtain the result
(9), and the proof is complete.

sup,er|w(®) g, = s}—» 1 ase—0 (18)

Now we shall present an a posteriori probability under the observation
data y € L*(T; R?).
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Theorem 2.3 For ¢ €E® = {$E R?|$, € H(T;R"), ¢1(t) = x,+ [ba(s)
ds, ¢2(0) = x,},

im Probability{sup,e r{x2(t) — $2()|r1 <ely(t), 1 E T, x5(0) = %o, x1(0) = x,.}

£—0 P{sup,criw()|r1 <e}
= ——LFI'(y) exp{ 5 o'ZJ' B(d¢(t) - F(¢(t))
-3 BT a3 [ lowolea

1 (¥
+3] cworyoal
0

B LI}(y) CXP{ - J;IL(d’(‘)’)’(f)) dt} (say),
where
B=(01), )
and
= ¢,
K¢) ( —nd2+f(dy, ¢2)) ' (20)

Proof. In Theorem 2.1, we set
g(x) X{w:sup|xa—dn|<e} N{w:x2(0)=tox1(0)=x,}
where y is an indicator function. Hence
Eo{X{w:suple—dal<e)n (wx(O)=tox1(0)=xo} | V() , 1 € T}
— E{X(w:sup|n- fal<e) (20 =tox10)=xo) exp(—3C(x) & + (7, C(x)))}
E{exp(—3| C()[% + (v, C(x)))}
= APR(¢,y) (say). (21)

It is easy to show that APR(¢, y) is equal to the probability of the event
{sup,e7|x2(t) — $2(t) |t <€} under the condition {y(f),tE€ T,x0) =
X,x1(0) = x,}. On the other hand, it is easy to show that

—lJ"f|C(x)|§zdt+J C(x)' ydt+= J |C(¢)|det—f C(¢) ydt
2 )y 0 2),

0

-3 (et - coy e+ cpa [ cw - @y yar
0

0

=1I(¢,y) (say) (22)



A MAP Recurslve Nonlinear Filtering 223

In the space {w;sup,|xa(f) — ¢2(t) |rt < €} N {@:x2(0) = X,x1(0) = x,}, we
obtain

|I(¢, y)| = Ci(sup;|x2 — ¢ [kt + sup,|x2 — 2|11 + |y [F))
= C2€

Hence

exp(— Coe)E{x {supdx2()— ()| r'<e} N {w:x2(0) =xo,x1(0)=xo)}

i
< APR(4,) exp{ f |C(8) et f @)y dr}
0 0
=exp(C26)E{x {supdx2(0)—d2(D)|rt <€} N{w:x2(0)=15,%1 (0)=xo)}

Consequently, the following inequality can be derived:
P{sup|x2(t) — 2(1) |, < €| x2(0) = %x1(0) = x,}
P{sup|w(?) |r! < €}

APR(4,) i [”
P{SUP,|W(I)|R1<€} { J' |C(¢)|R dr J;)

P{sup,|x2(f) — 5(1) |r! < €| x2(0) = %o, X1(0) = x,}
P{sup | w()) | < €}

exp(— Cy¢)

C(¢>'ydr}

=exp(Cy€)

The proof has been completed.

ill. HAMILTON-JACOBI EQUATION

In order to derive the recursive state estimator from the cost given by (13),
we must take the optimization procedure twice. First, for a fixed ¢, the
optimization problem with the cost given by (13) is rewritten as

#s) = F(¢(s)) + B'v(s), 0<s<t
{qb(r) = x )
with the cost
t oF
J(t,y,v) = lo($(0)) + azj [v(s)[Rrds + 5 L B(,sz(qb) ds
o3[ 1c@heas- [ c@)-yes (24)
0 0

where vE L%(0,;R'), we add the initial cost ly(¢(0)), and a-b=
21'2=1aibi~
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Define
8(t,x) = inf, J(2,y,v) (25)

where it should be noted that the filter (23) has a terminal condition
¢(t) = x and we can use the usual dynamic programming argument to the
value functional (25).

The second optimization step is to find the ¢°(¢) such that
S(t, ¢°()) = S(t,x), VYxER?, (26)

at each time . So ¢°(f) is an optimal state.

This is analogous to the minimum variance state estimation case that
to compute the conditional mean E{x(f)|y(s);0<s=1t}, one can first
average over all samples satisfying x(f) = x and obtain the conditional
density p(t,x) and then one averages over x € R2.

Lemma 3.1 In addition to all assumptions, we further set

|l(x)| = C(1 + | x[&2)
27

{1520 12.c0 + e @7
The value function S(t, x) satisfies

|D.S(t,x)|r2 = C(1 + |x|52) (28)

Jqf &l‘;x) de= C(l +|x|k2+ Jqf|y(t)|§z dt) (29)

0 0

8¢, %) | = C(1 +|x[Z2) (30)
Proof. Define

1, ,  10F
169.3) = 521Vl + 32 (8 + 51 CO) ke~ C@)-y (31)

From (8), we have
U, v,y) = c1|vlkz—co(1 +|y[R2) : (32)
Hence from Bensoussan [1], Lemma 2.1, p. 18, we find that
t
[[ vy ae =t + e (33
0
Furthermore, the estimates (28) and (30) are also derived in [1], p. 18.

Here we shall prove (29), because the function ! contains y € L*(T; R?).
By using the optimality principle of dynamic programming, we get

Sit,x) = inf{ J” U, v,y)ds+S(t—h,d2(t — h))}, (34)
t—h
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where time moves in the backward direction, i.e., ¢7(t — k) is an optimal
path at the time t—h for the cost J(t—h,y,v°). In (34), we set
v(s) = v(constant) and get

S@t,x) < f ’ U, V,y)ds + St —k, ot — h)) 35)
t—h
where
s) = F(@s)) + B'7, (1) = x (36)
It follows from (36) that
| ¢t = h) — x|g2 =< C|R|(1 + | x|g2) (37

From (28), we have
| St — b, it — h)) = St —h, x)|
= DSt —h,X)|x=¢ (bt — h) — x), for min(, x) < £ =< max(¢,, x)
=Clhl(1+|x[%?) (38)
From (33), we obtain

S(t,x) = f ' iy, V,y)ds
~h
+8(t—h,x)+|SE—h,lt —h)) = S(t—h,x)]|

t
<Clh|(1+xfa) + C j |y(5) [Bads + S(t— hy ) (39)
t—h

Hence,

B o1+ xlfa+ 10D ae.t (40)

On the other hand, for every control satisfying (33), we obtain
|S( = b, ¢t = h)) = St = h, 3)]
<D,S(t—h,x)x=¢ (Dt —h) — x)
=CQ +|x|g2) - |$t — h) — x| g2
=+ xfih+ 0+ leled) | 1@l @
It follows from (32) and (41) that o

t
Sit,x) < inf{cl J
t

|v(5) [ dis — coh+ S(t - h,¢:’<r—h))}
-h
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t
= inf{cl f |v(s) |kt ds — coh + S(t — h, x)
t

—h

- |S(r—h,¢f(r—h))—5(r—h,x)|}

t
= inf{clj |v(s)|%t ds — coh
t

—h

t

— {1+ |xlg) j 1v(5) s i

t—h

—c(1+|x|k)h + S(t— h,x)]»
=—CQA +|x|k)h+S(t—h,x)
This implies that

DD 20+ )xfe)

Hence, (29) can be derived. The proof has been completed.

The dynamic programming equation becomes

aS(;t, ) _ inf{I(x,v,y) — D;S(t,x)- {F(x) + B'v}} = 0

S(0,x) = l,(x)
where [ is given by

I(x,v,y)—D,S(t,x)- {F(x)+ B'v} =
%l V= 02szs(trx)|%?' - %il szs(trx) ﬁ?z - DxS(t1 x) f(x)
1 1 9F
+51C) = Cx)-y + 5509 = DuS(t,0)- FEx)

Hence, the optimal v° is given by

v2 = D,,S(t,x)

(42)

(43)

(44)

(45)
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Consequently, we have the following Hamilton-Jacobi equation:

$+ ;iDnS(I, x) [kt + D, S(t, x) - F(x)
1 1 oF
—51C() |&e + Cx)- y(9) — EE(") =0 (46)
8(0,x) = L(x). 47)

Theorem 3.1 The function S(t, x) defined by (25) satisfies (46). Moreover
S is the maximum function satisfying (23-30) and (46).

This proof has been found in Bensoussan [1], pp. 21-25.

IV. NUMERICAL PROCEDURE

From Lemma 3.1, (27) is characterized by
Dy S(t; X)x=dp(y =0 (48)

Hence, for solving the Hamilton—Jacobi equation (46) numerically, we
need only the local solution S(z, x) around D,S = 0. This implies that we
can set artificial boundary conditions. If we solve the Zakai equation
instead of the Hamilton—-Jacobi equation, we really need the global p(¢, x),
because we shall calculate the average [Z.xp(t, x) dx. The property that
from the local solution of S(¢, x) around D, S = (O the optimal state estimate
@ (1) can be derived is a main advantage for the formulation of the MAP
state estimate. One more advantage is that the Hamilton-Jacobi equation
can be numerically solved by using a finite difference scheme and its
convergence property of the approximated solution to the original one has
been proved by Kushner [4]. Here we shall present a numerical scheme
for solving (46) and consider the one-dimensional case in order to simplify
notation. First, we set the lattice

Sh={x=j5,j=0,%1,%2, ..., *(k—1)} (49)
with
9%y = {x = j8,j = £k} (50)

where § is a spatial step, and the boundary 3/ is sufficiently large. Before
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presenting the numerical scheme, we shall introduce the new notation:
for any v(t,x), let

_v(tx+8)—v(t,x)

Affv 5 , Jjé
_ v(t,x) — v(t,x — &) ,
Ajv= ) 5 , X=Jjé

vt = max(v, 0)
v~ = max(—v,0).

Here we shall present a numerical scheme for realizing the Hamilton—
Jacobi equation [2]:

1. First, we find that ¢°(0) which satisfies
Dylo(X)x=gp0y =0 (51)

Here we assume that we can find a unique point ¢°(0).
2. Reset 3% as

Sh={x=¢°0)+j8,j=0,%1,%2, ..., £(k—1)} (52)
with ’
3%~ {X = ¢°(0) * k8}
3. For the time stage i, construct an indicator function
+_ 1, for {xE€d|F(x) + a®Af S(t,x) >0, 1=} _o5t(k)}
Y 10, for others
__[1, for {x € o%| F(x) + o?Aj S(t,x) <0, = Sk _ot(k)}
X 0, for others

where the time step & = 8t(j) is chosen as

maxl{ 8’? [| F(¢°(0) + j8) + *A} S|xF

+| F(¢°(0) + j8) + o?A; S| x?,-]} =1 (53)
4. The observation data are modified by

1 {-8t(i)
Yi= ——= y(s)ds (54)
i 8[(1) '[Zsj;&)&(k)
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5. Denoting
S;;=S@tx) fort=3k_obt(k), x=¢°0)+js (55)

the following explicit finite difference equation can be solved:

S S

S (B P S AT Sy

+ (Fl+ 02Aj_ S,'J)Aj_ Sl[X;

o _ _
-5 |87 SlPx i+ |87 S5 x5}

1 1/dF . h
- ElCllz + Cly, bt E(Ex_)l = O, for ] (S 20
{Si+l,-k =8it1,—k+1
Si+l,k = Si+1,k—1 (56)

where

oF

F;= f(d°(0) + j8), C;= C(d°(0) +j9), (—) = =
]

=— (57)
dx | (0)+j5

ax

In the above numerical procedure, Fleming and Soner proposed that

the spatial step 8 is chosen as a function of &t which satisfies (53) in [2].

However, here the time step &8t is adjusted, because of the easy
implementation by using a digital computer.

6. In order to find an optimal state estimate ¢°(i + 1), first we find
J = argmin;es#S;.q ).
7. Around the grid j, we pick up

Si+1,}'—q’ Si+1,7—q+17 LR Si+1,}3 Si+l,}'+11 LIRS} Si+1,‘}+q (58)

for some fixed g <k.

8. By using a cubic interpolation method, we construct a polynomial
8;+1(x) which satisfies (58).

9. Find a minimal point x of Sjﬂ(x). This is an optimal state estimate
(see Fig. 1).
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197 T T T T T
- Cubic interpolation
196} 0 S at the grid (i,j) ]
195
194

Value of S
)
W

192+
191
190 -
+  Optimal state estimate
189 ] 1 1 * Il 1
1 2 3 4 5 6 7
Spatial region x

Figure 1 A drawing of how to seek an optimal estimate.

A. A Numerical Example

Since we were performing a minimization for fixed y, no change is effected
by adding

1 t
5| o eas
0

to the cost J(t, y, v). So in the following simulations, § is the value function
corresponding to the cost J(t, y, v) +3 Jb|y(s) |52 ds.
We consider the following nonlinear function,

f(x,((%) =-x p=11 (59)

C= ((2) (1)) (60)
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system state

0.l
0.15

Figure 2 A sample run of true system states.

observation data

1.5

time (s)

0.5 <

[ 3=
0.15

y_{2} -0.05 -0.05

y-{1}

Figure 3 A sample run of the observation data.



232 Aihara and Bagchi

-3
158 10 — T T v v
Estimated state
x10+- E
s
g 5 — |
o rue 7
s \ . . . .
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Figure 4 Sample runs of the optimal estimate and true state.

Time (0.03s)

iy “\“\“\\\\x\
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,\\\\\\\\ ) \\\\‘\\\\‘ AW
{
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T
p W
b

Figure 5 A sample run of the value function S(¢,x) at ¢ = 0.03 sec.
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Time (0.043)

Figure 6 A sample run of the value function S(¢,x) at ¢ = 0.04 sec.

Time (0.115)

2 ,.
A /;;I'o"t“ N
15 q |\\\\\\\s“0:0',";;;'/"'0“‘ A \o
R
L

Figure 7 A sample run of the value function S(¢,x) at t = 0.11 sec.
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Time (0.135)

=3
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I

(=2

2
;
&

=3
-3

P=Y
=

Value function

II//
/

0

Figure 8 A sample run of the value function S(z, x) at t = 0.13 sec.

This system equation is of so-called Duffing type. Theoretically speaking,
we assume that for the outside of a sufficiently large ball |x|g2=< D the
nonlinear function f(x, dx/d¢) is reset as a linear function. Furthermore,
we replace e by o,e(?). In the digital simulation studies, we set

8t(0) = 0.001, 6 =0.01, o=0.1, o, =0.001 (61)
Furthermore, we set the initial condition /,(x) as

L)

;x

4

In Figs 2 and 3, two sample runs of true system state x(#) and observation
data y(r) are demonstrated.

From S(¢,x), we must find a point x = argmin,cr(S(¢, x)) and this is
the optimal state estimate ¢(r)°. In this example, first we seek a grid point
7 and then we pick up 7 point around j. Next by using a cubic interpolation
method, we construct a polynominal and again find a minimal point. The
optimal state estimate ¢(f)° is shown in Fig. 4.

For the nonlinear system, the optimal value function S(x, ) is no longer
a quadratic form. We demonstrate the value function S(x,#) at the time
points ¢ = 0.03, 0.04, 0.11, 0.13, 0.16, 0.2, 0.24, and 0.3 (sec), in Figs
5-12.
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08 \“"'lllll
06 5 \\\\}\\Q\\\ \\\ Il/ A
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§ B \ ‘

Time (0.16s)

Figure 9 A sample run of the value function S(¢,x) at t = 0.16 sec.

Value function

Time (0 2s)
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S ‘\\\ {\\\ ol R \
‘\\ \\\\ \“
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1 A
05
0
05
.
002

0018 3

Figure 10 A sample run of the value function S(z,x) at = 0.2 sec.
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Alhara and Bagchi

Figure 11 A sample run of the value function S(¢, x) at ¢ = 0.24 sec.

Time (0.3s)

l///l;///,;l'.

a7

Flgure 12 A sample run of the value function S(¢, x) at ¢ = 0.3 sec.
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Stochastic Properties of the H, Filter

Kiyotsugu Takaba and Tohru Katayama
Kyoto University, Kyoto, Japan

. INTRODUCTION

In recent years, the H, filtering problem has received much attention as
a new approach to robust filtering [1-7]. The H. filtering problem is to
find a state estimator such that the maximum energy in the estimation error
over all possible noise disturbance trajectories is less than a prescribed
bound y. The filtering with H, criterion is appropriate when there exists
a significant uncertainty in the statistics of the noise disturbance.

The H. filtering problem has been solved from various viewpoints [1-7].
An LQ optimization approach in the time domain to the H., filtering and
smoothing problems was given for the continuous-time case by Nagpal and
Khargonekar [2]. For the discrete time case, the frequency domain
approaches to the stationary filtering problem were given based on the
bounded real lemma by Haddad et al. [3] and Yaesh and Shaked [4]. Yaesh
and Shaked [5,6] gave game theoretic interpretations of the H., filter for the
finite-horizon problem. Fujita et al. [7] derived a solvability condition of the
finite horizon H,, filtering problem based on completing the square and the
conjugate point argument of a certain Riccati difference equation. They
also showed the applicability of the H. filter to active vision systems.

In the above works, the H., filter was derived in the deterministic setting
where the noise disturbances are deterministic L,-signals. On the other
hand, it is well known that the Kalman filter offers optimal estimates in
the least-squares error sense for a stochastic system, and that the H., filter
converges to a Kalman filter as vy goes to infinity. This relationship between
these two filters suggests the importance of the performance analysis of
the H,, filter in the stochastic setting. Therefore, in this paper, we will

239
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consider the performance of the discrete-time H., filter in the case where
the underlying noise disturbances are zero mean Gaussian white noise
processes.

This paper is organized as follows. In Section II, we give a brief review
of the finite horizon H,, filtering problem for a discrete time system. In
Section III, it is first shown that the H., filter is optimal in the sense of
the exponential quadratic error criterion for a stochastic system [9,10].
Secondly, we compare the performance of the H. filter with that of the
Kalman filter where the estimation error covariance matrix is employed
as the performance index. Next, we show the monotonicity property of
the H., Riccati difference equation (RDE) with respect to the prescribed
H,, error bound . Based on this property of the solution to the H,, RDE,
we study the relationship between y and the performance of the H., filter.
The results in this paper will provide an insight into the selection of the
design parameter .

In this paper, we will use the standard notation: (-)T denotes the
transpose, I the identity matrix with appropriate dimension, E{-} the
expectation, and || -|| denotes the Euclidean norm for a vector and the
largest singular value for a matrix. We also define the weighted Euclidean
norm ||x||p = (xTQx)" for a vector x and a positive definite matrix Q.

Il. FINITE HORIZON H. FILTERING PROBLEM
We consider a linear discrete time system described by
Xpr1 = Apxp + Brewy €))
Yie = Cxp+ Dyvy 2
where x; ER",y, €RY? are the state vector and the measurement output
at time k, respectively. The exogenous signals w, ER™ and v, €RY
are the process disturbance and the measurement noise, respectively.

Hereafter, we assume that R, := D,Df >0 holds for any k. To add
generality, we wish to estimate the vector z; € R” defined by

Zp = kaka Lk #0 ' (3)
The finite horizon H., filtering problem is to find the estimates of z,
and x, based on the measurement set {yy, . . ., y¢} such that
N
2 2= 2l
Sup —x k=0 <y 4)
w,v,.X0

Wil + llvel) + |10 = %o|ffi-1
k=0



Stochastic Properties of the H,, Filter 241

where 2, is the estimate of z;, and xg is the a priori estimate of the initial
state xo. Also, Il is a positive definite weighting matrix which represents
the uncertainty of the initial state. The inequality (4) implies that the
maximal energy ratio of the estimation error to the disturbance should
be less than the prescribed bound 1.

We define the cost functional J by

N N N
=3 ||zk—zk||2—v2( S+ S ||vk||2+||xo—rco||2—n)
k=0 k=0 k=0
N N N
-3 ||zk—ek||2—v2( S wel+ S llye - Cerellc +
k=0 k=0 k=0

[l x0 = Zollfi-1 ) )
Then, it is easily seen that (4) is equivalent to

J<0 for all (wg, vy, x) such that
N
(IwelP +11viell?) + (xo— o) "I (xo — Xo) # 0 (6)
k=0
A solution to the H. filtering problem is given by the following
theorem.

Theorem 1. Suppose that Ay is nonsingular for all k € [0, N]. Then, there
exists a filter achieving the H., error bound in (4) if there exists a positive
definite solution P, to the Riccati difference equation

Pio1=ArP 3 AT+ By BY, Po=TI (7a)

Sk=I1+(CER'C— LELY) Py (7b)
and the following inequality holds.

Vie=v1—-L,P(I+CFRC P 'LE>0 ®

If such a solution P, exists, then one of the filters achieving the H., error
bound (4) is given by

Eike = Zre—1 + Kere — CaZu—1) )
e+ vk = Arkem, Eo—1=Xo (10)
24 = LiXpn (11)
Ky = P, CL(Rc+ C P, CH™! (12)

where %, denotes an estimate of x, based on the measurement set
{yOa . -ayt}~
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Proof. Suppose that the RDE (7) has a positive definite solution Py
satisfying V;,>0. It suffices to show that (6) holds for the filter in
9)-(12).
We now define X, = P;!. Since Ay is nonsingular, we see from the
matrix inversion lemma that
Xy = AR Xii1 Ak + A X1 BiW ' BE X1 Ag
—CYR'Ce+y72LY L, (13)
where Wy :=I— Bf X, ,1Bx. Also, the RDE (7) is rewritten as
Pis1— By BE = Ak Pi(I+ CER'CP) 1 AL
+ AP LIV L, PLAT>0
This implies that X3}, — BB = X T2{I - XT? B« BY X Y2} X7 }2>0.
Hence, we obtain Wy =1— B} X, B, >0.
It is clear from (9)—(12) that
Xper1 = ArXe — Ak K Yi + Bewi (14)

where we define

X =2k = Xk—1, = Yi— Ciie—1
Then, simple but tedious calculations using (7)—(14) yield

Tk 1 X1 Zerr — X Xicke = |[wie [P + || ve|? = v72|| 2 = 2|
= 1w — wi Ry, = | 72|l (15)
where
wi = Wi'B{ Xis1Akke Q=R+ Ci P CR
By summing up (15) from k=0 to k = N, we obtain
N

7= | Fengariyer 3, (o= vl 15elhed | <0 (9
k=0

Moreover, suppose that J = 0. Then, we get Xy =0and w, = w}, 7, =0
for all k. It thus follows from (14) that

Fra1= (Ak+ BOWE ' BEX i1 A ke, a1 =0
This implies xo = X and w, = 0, v, = 0 for all k. Therefore, the H, error

bound (6) is satisfied by the filter of (9)-(12). |

Remark 1. The existence of a positive definite solution P, to the H, RDE
(7) satisfying V, >0 is also necessary for the existence of an H,, filter. The
proof is given based on the conjugate point argument of the solution to
(7) by Fujita et al. [7].
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Remark 2. The H, filter in (9)-(12) is an optimal minimizing policy in
the following minimax filtering problem [8].

max min max (max min max (. . . (max min max (J)). . .)) a7n
Yo Z0 Xo0,Wo Vi E4] wq YN ZIN WN

lll. STOCHASTIC PROPERTIES OF H. FILTER

In the previous section, we have derived an H, filter in the deterministic
setting. In this section, we will consider the performance of the H,, filter
in the case when wy and v, are zero mean Gaussian white noise processes.
In the following, we assume that w, and v, are Gaussian white noise
processes such that

E{w,} =0, E{n}=0 (18)

AL =L e -

where &, is the Kronekar delta. We also assume that the initial state x,
is a Gaussian random vector with mean X, and covariance 7.

A. Exponential Quadratic Error Criterion

One of the well-known stochastic properties of the H, filter is the
optimality in the exponential quadratic error criterion [9,10].

Proposition 1 [9,10]. Assume that w; and v, are zero mean Gaussian white
noise processes with unit covariances and that xq is the Gaussian random
vector with mean Xy and covariance I1. Then, H, filter in (9)-(12) is optimal
in the minimization of the following cost functional

N
Jeo = E{exp(v-z Sz —zkn%l-n}) (20)
k=0

Proof. Since w, and v, are zero mean Gaussian white noise processes
with unit covariance, and since x is generated by the Gaussian distribution
with mean X, and covariance II, the joint probability density function is
given by

N
f(w, v, xp) =const. eXP{— > (||Wk||2+||Vk||2)—||xO—70||%1-'} 21
k=0



244 Takaba and Katayama

where const. denotes an irrelevant positive constant. Then, by the
definition of the expectation, we obtain

® oo o foo foo N
eo= [ [T [T e e 2al?) v
—o0 J—o0 —o00 J—o0 J—o0 k=0

dwpydvy. . . dwodvedxg

= const. Jw Jw e Jw Jw Jwexp(y‘z.l) (22)

dwpdvy . . . dwodvedxg

Recall that the measurement set {yq, . . ., y«} is available for the estimation
at time k. It thus follows that the minimization of Jgq with respect to
Zk(k=0,...,N) is expressed as

Jw mm{ Jw Jw [ . [ Jm mm{ Jmexp(y‘zl)dw,v} va]. . ]
dwodxg}dv()

It is also shown that

J exp{Z(x)} dx = const. exp{max Z(x)} (23)
X
where Z(x) is a quadratic function of x such that ¢*Z/axaxT <0 [10,11].
Since exp( - ) is a monotonically increasing function, the application of the
above formula to (22) shows that the minimization of Jgo with respect
to 2, (k=0,...,n) is equivalent to the minimax filtering problem (17):
max min max (max min max (... (max min max (J))...))
vo Zo xowo w1 24 VN EN wN
As in Remark 2, this minimax optimization yields the H,, filter of (9)-(12).
Therefore, the H,, filter minimizes the exponential quadratic cost Jgq.

B. Estimation Error Covariance

As vy tends to infinity, the second term in the cost functional J of (5)
becomes dominant, so that the minimax filtering problem (17) reduces to
the minimization problem:

N
mm{ 2 (” Wk”2 + ”yk - Ckxk”%‘»’;-l) + “.X()—E()”%l_]}
WX Lk=0

As is well known, this minimization problem is equivalent to the
minimum-variance estimation or least squares estimation problem in the
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case where w, and v, are zero mean Gaussian white noise processes with
unit covariances, and where x; is the Gaussian random vector with mean
X and covariance II [12]. Among all causal state estimators, the following
Kalman filter offers the optimal solution to the above minimization:

Rirke = k-1 + KV — Crkire—1) (24)
Rive= Ak, Xo—1=%o (25)
K} = PiCI(Rx+ C,PLCH™! (26)

where the matrix P} is the optimal estimation error covariance matrix
P = E{(Xk — 2urk—1) %k — Fare—1)" )
which satisfies the following RDE.
Pjy1= AkPiAf — A PiCi(Ri + C PiC) ™' C PL AL + By B,
Py=11 27
It follows from the above observation that the H,, filter is a modified
version of the Kalman filter by using the parameter y. In fact, we easily
see from (7), (9)-(12) and (24)—(27) that the H. filter converges to the
Kalman filter as vy goes to infinity. Hence, it is very important to compare
the performances of these filters when w,, v, and x, are given by Gaussian
white noise processes. As a measure to compare the performances of the
H. and Kalman filters, we adopt the estimation error covariance matrix
which is a standard performance index in the stochastic setting. Hereafter,

we assume that there exists a positive definite solution P, to the RDE (7)
satisfying V>0 for all Kk €[0, N].

Theorem 2. Suppose that wy, v, are zero mean Gaussian white noises with
unit covariance matrices, and that xy is the Gaussian random vector with
mean xg and covariance I1. Define

Ay = E{(xk — Epk-1)Ck = Zare—1) "}
for the H., filter of (9)—(12). Then P, = A, = P} holds for all k €0, N].
Proof. We define

Fi= AcKy = AP CE(Rc + C P CR)™!

Fi=AxKj= Ay PiCE(Re + Ci PLCH)™!

From (1)-(3), (9) and (10), the dynamics of the estimation error
Xy = xk—.fk/k_l is described by

Xikr1= (A= F C)xe + Bewie — FiDyvi, X =X9—Xg



246 Takaba and Katayama

It follows that
Ag+1=(Ax— FC) A(Ay = Fi Ci)T + Fy R Fi + B, B,
Ag=11 (28)
Also, after some simple calculations, the RDE (7) reduces to
Pry1=(Ax = FLC) Pl Ak — FiCi)T + Fi R
+ By BY+ AP, LYV 'L, P AF, Py=1I (29)

where P, :=P(I+CFRZ'CiP;)"'=0. Subtracting (28) from (29)
yields

Pis1—Ags1 = (A= FC)(Pr— A)(Ag — F C)T
+ AP LE(Y1— L P LY 'L P AT,
P()—A()= 0

Since V= y*I — L P, L} >0 holds for all k€ [0, N], we get P, — A, =0
for all kK €[0, N] by induction.
Next we prove A, = P;. It is easily verified that

Piv1=(Ax— FrC) Pi{Ax — FLC)T+ FiR Fi" + B, Bf
= (Ax— Fy C)Pi(A — F C )" + By Bf + F R F}
—(Fe—FQ)R(F,—Fp)T, Py=T1 (30)

Subtracting (28) from this yields

Pis1— Ars1 = (Ax — FLC)(Pk — A) (A — F Cp)T
— (Fx— FR)R(Fe — FQ)T

where Py — Ag=0. Since R, >0, we get Py — A, =0 for all kE[0,N] by
induction. ]

Lemmal. Weassume that P, P' € R"*" and R € R9*9 are positive definite
symmetric matrices. If P= P’ >0 holds, then we have

P(I+ CTR™'CP)"'=zP'(I+ CTR™ICP) =0

Proof We define P=PU+CTR™'CP)™' and P =P+
CTR™ICP)~ ! It is easily seen that

P=(I-KC)P(I-KC)T+KRKT=0 (€3))
PP=(I-K'C)P’U-K'C)"+K'RK'T=0 (32)
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where K= PCT(R+ CPCT)™! and K’ =P'CT(R+ CP'CT)~!. We also
rewrite (32) as
P'=(I-KC)P'(I- KC)" + KRKT
- (K'=K)R+CPCT)K' -K)" (33)

Subtracting this from (31) yields

P-P'=(I-KC)P-P)I-KC)T
+(K'-K)YR+CP'CTYK'-K)T (34)

The right-hand side of the above equation is positive semidefinite since
P=P'>0 and R>0. This completes the proof. |

We now define
Py=P(I+CERZ'CPY)™!
Py = Pi(I+ CER'CPy)™!

where P, and P} are the positive definite solutions to the RDEs (6)
and (27), respectively. Then, the gain matrices K; and K} can be
expressed as

Ki=P,CiR;', Ki=P.CiR;'

Thus, from Theorem 2 and Lemma 1, we get || K, || r=|| K||r, where ||-||¢
denotes the Frobenius norm, i.e., || M||r= VTr(M" M). This implies that

the H,, filter is more sensitive to y; — Cy X4 /-1 than the Kalman filter. In
the case where the measurement noise v is small, the estimate by the H.,,
filter will converge to the neighborhood of the actual state faster than the
Kalman filter. On the other hand, when the measurement noise v, is large,
the estimate of the H. filter is degraded more easily than that of the
Kalman filter.

By defining w; = Bxwy, Vi = Dyvy, and Q, = B, Bf, we see that the
least squares filtering problem for the system (1)—(3) where w, and v, are
zero mean Gaussian white noise processes with unit covariances is
equivalent to the least squares filtering problem for the system:

X1 = ApXp+ o (35)
Vi = Cpxp+ v (36)

where w; and v, are zero mean Gaussian white noise processes satisfying

@y _ Q 0
E{ [ Vk][wr vIJ} = [ 2 Rk] 5t 37
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It is also straightforward to show that the H., RDE (7) is expressed as

Pii1= AP AL — Ak P CL(Ri + Co P CHY™ 1 C P AT + O (38)
Ok = ByBi + AP LEV ' L P AT (39)

Since V, is positive definite for any k, comparison of the above equation
with the Kalman filter RDE (27) shows that the H, filter is optimal in
the least squares sense for the system (35), (36) where w; and v, are
mutually uncorrelated zero mean Gaussian white noise processes such that
E{ww]} = Qx8k, and E{vv]} = R; 8, It may also be noted that
Qi = Oy holds for all &, since V;>0. We see from the above discussion
that the H. filter is a robust filtering algorithm for the uncertainty in the
covariance of the process disturbance w;. Let Q§°™, 07°™, and A°™ be
the nominal values of Qy, Oy, and Ay, respectively. Then, we have

ARST = (Ax— Fx C) ARP™(Ax — FL C)T + FL R FF + QF°™,

Agom =11 (40)
Aps1= (A= FLCOA(A = F, C )T + Fy Ry FE + Oy,
Ag=11 41

Subtracting (40) from (41) yields

AT — Apsr = (A — FrC(AR™ — A (A — F C)T
Qnom Qk, Anom — AO = O

Thus, Ag=AZ°™ holds if Q,= Qp°™ for all k. This implies that the
estimation error variance Tr A, is not larger than the nominal performance
Tr AZ°™ when the actual covariance of wy is smaller than the nominal
value. On the other hand, when Q, is larger than Q}°™, we have
A, = AZ°™. However, similarly to the above discussion, we obtain A, < P,
if Qx=<Q, for all k. Hence, Tr P, provides an upper bound on the
estimation error variance Tr A, for the uncertain disturbance covariance
Ok € {Qx| Q= G7°™}. Further, if Q, is sufficiently close to Q7°™, then
the estimation error variance Tr A, remains in the neighborhood of the
optimum Tr Py.

C. Relationship Between y and H.. RDE

In Section II, it was shown that the H. filter is given in terms of the positive
definite solution to the H, RDE (7), which depends on the prescribed
design parameter y. Therefore, in order to study the performance of the
H, filter, it is important to investigate the behavior of the Riccati solution
P, as y changes.

We first introduce the following lemma.
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Lemma 2. Define
¥(P,y)= P+ PLT(¥*I- LPLT)"'LP

for a given pxn matrix L. Assume that PO =P =0 gand
Y*I— LPY LT >0 hold for given n X n symmetric matrices PV and P®.
Then we have

WP, y)= y(PD, ) (42)
Proof. We define
MD = yPO T2 LPOLT™1 j=1,2
ML MLN\T
o(P, M) = (1+ —) P(1+ —) - MMT
Y Y
It is clear that $(P®, y) = o(P®, MD).
For any matrix M ER"*P, we get
o(PO, MO) = (M — M) - LPOLYMO - )"
+o(POM), i=1,2
It follows that
WP, 5) = $(P®, y) = (P, MD) — o(P2), M®))

= %(M(l) - M(z))(‘yzl— LP(I)LT)

X (MM — MENT 4 (P, M@
— (PP, M@)

_ (1+ M(i)L)(P(l)—P(Z))(I+ M(i)L)T

+ %(M(‘) -~ M@y 1- LPOOLT)

X (MM — M@HT

Since P(V= P(?) and y*I— LP(V LT >0, we obtain y(PM, y) = y(P@, y).
Let P§) denote the solution to the RDE (7) for given v, (i = 1,2). Then.,
P satisfies
PO, = A POEIY AT+ B BY, PP=1 (43a)
S =1+ (CFRF'"C— vy 2LELY)PY, i=1,2 (43b)
We also define

PP = PRI+ CER ' C P!
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Theorem 3. Suppose that v, <y,, and that the RDE of (7) has positive
definite solutions P (i=1,2) such that v}1— L PPLT>0 for all
k€[0,N]. Then, P = P2 and PV = P holds for all k € [0, N].
Proof. Since P{D= P2 implies P{)= P{?) by Lemma 1, it suffices to
prove P{= P2,

For k =0, it is obvious that P{") = P =1I.

We assume that PQ) = Pftz) holds for k=0,1,.. .,t. Since Pff) =0, I_’f"')
(i=1,2) are well defined and positive definite. We see from Lemma 1
that P = P2 It thus follows from Lemma 2 that

‘I/I(I_)t(l), 71) = l/ll(l_)t(l)v 72) = ‘/lt(l_)t(z), 72) (44)

where
Yu(P,y) = P+ PL{(¥*1 - Ly PLY)" 'L, P

By simple calculations, (43) reduces to

Py = AP, v)AT + B,BT (45)
Thus, we get

P — Py = A{d(PO, 71) — w(PD, )} AT 2 0 (46)
As a result, we have shown by induction that P{) = P{? holds for all
k €0, N]. u

The above theorem shows that the solution to the RDE (7) is monotoni-
cally nonincreasing with respect to the parameter y. By a discussion similar
to the previous subsection, as vy gets larger, P, becomes smaller, while
the H, filter gets less sensitive t0 y; := yx — CrXpx—1- As a result, the
parameter vy represents a trade-off between the mean square error and
the sensitivity to the estimation error j;.

IV. NUMERICAL EXAMPLE

Let us consider the system given by

Xp+1= [(1) O';)S] X+ [(1)] Wi,  Xo= [(1)] (47)
11
Vi = 712- 712- Xk (1) (1)] Vi (48)
V2 V2

Zyp = [1 O:ka (49)
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Figure 1 Relationship among Py, Ay, and P}.

Hereafter, we assume N =50 and II = /. In this case, the optimal value
of the parameter vy is Yyop =1.000. Figure 1 shows the relationship
among Py, P;, and A, for y=1.2. We see from the figure that
TrPy=TrA,=Tr P} holds for all k since P, = A, = P} by Theorem2,

Furthermore, in order to compare the performance of the H, filter with
that of the Kalman filter, we performed simulations (Fig. 2), in which we
set w, =0 to see the sensitivity of the filters to y; = yx — Ci Xg/k—1- The
measurement noise v, is zero mean Gaussian white noise. Figures 2a and
b show the estimation errors z, — 2, for E{v{} =0.01 and E{v}} =0.1,
respectively. In the case when the measurement noise v, is small (Fig. 2a),
the H.. filter presents a much better transient response than the Kalman
filter. On the other hand, when v, is large (Fig. 2b), the H,, filter is more
sensitive to the measurement noise than the Kalman filter.

Next, we consider the performance of the H, and Kalman filters

under uncertain process disturbance. We rewrite the state space equation
47) as

1 0.05 1 <
Xet1= [O 1 ]xk+ @y, Xg = [O] (50)

where w; is a zero mean Gaussian white noise process with covariance
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Figure 2 Comparison of H, filter and Kalman filter.



Table 1 Error variances for various disturbance covariances.

E{wgof} = Oy

leréom onm leréom + onm eréom + ZQ_Eom Q_nom 4Q_Iré°m
3 3 3 k 3
nominal H, 1.291 1.682 1.694 1.707 1.720 1.732
E{||% 1% nominal Kalman 1.279 1.670 1.696 1.723 1.749 1.776
(k = 50) optimal values 1.267 1.670 1.690 1.706 1.720 1.732

19Y14 “H a9y Jo sejadoid d1seyIolS

17
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Figure 4 Estimation errors for various values of .
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Q- Notice from (47) that the nominal value of Q, is given by
Qpom = diag[0 1]. Moreover, we obtain kr%n | Qo™ — 9" || = 0.007

nom

and m[gx | Qo™ — Q|| = 0.266, where Q%°™ is the nominal value of

QO in (39). Table 1 shows the estimation error variance E{||xk||2} atk =50
for a variety of Q;s. When the disturbance covariance Qy is larger than
the nominal value, the estimation error variance of the (nominal) H filter
is smaller than that of the nominal Kalman filter. Hence, we see from the
table that the robustness of the H,, filter for large process disturbance is
stronger than that of the Kalman filter.

The relationship between vy and Tr Py = 10, 40 is illustrated in Fig. 3.
In the figure, we see that Py, P49 are monotonically nonincreasing with
respect to y. We also obtained similar results for other &s.

Simulation results for various y are shown in Fig. 4, for which the
measurement noise is the zero mean white noise with E{v} =0.01. As
shown in the figure, the H, filter becomes less sensitive to y, as v becomes
large.

V. CONCLUSION

In this paper, we have derived some results on the performance of the
H,, filter as applied to a stochastic system subject to zero mean Gaussian
white noise disturbances. First, it is shown that the H,, filter is optimal
in the sense of the exponential quadratic error criterion. Then, by using
Riccati difference equations, we have compared the performances of the
H, filter and the Kalman filter in the above stochastic setting. The
relationship between the prescribed H,, bound y and the performance of
the H,, filter is investigated based on the monotonicity property of the
solution to the H., RDE. The above results will provide a guideline for
determining the value of the design parameter .

Although we restricted our discussions to the finite horizon problem
in this paper, the results obtained here also apply to the infinite horizon
H,, filtering problem for a time-invariant system by replacing the RDEs
by the corresponding algebraic Riccati equations.
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Reduced Order Functional Estimator for
Linear Stochastic Systems

Takayoshi Nakamizo
Ashikaga Institute of Technology, Tochigi, Japan

Il. INTRODUCTION

It is well known from the Kalman filtering theory that the order of the
optimal filter for the stochastic system is the same as the order of the
system. In many practical situations, however, where we need not know
all the state variables, but we may be interested in knowing only a few
important state variables, a reduced-order filter would be preferable to
the standard Kalman filter.

The standard problem of reduced-order filtering has been extensively
reported for the case where some of the observations are assumed to be
noise free [1-3]. In this chapter, unlike the previous studies, we consider
the case where none of noise-free observation is assumed. This chapter
deals with the design problem of a reduced-order filter which estimates
a specific linear function of the state for the linear stochastic system [4-6].
It can be shown that this problem can be reformulated as a standard
Kalman filtering problem for the reduced-order system obtained through
an appropriate system transformation. Thus a method for designing a
reduced-order filter offers the possibility of significant reduction in
computational requirement and less complexity in physical implementa-
tion. However, the price to pay for these benefits is some loss of
performance compared with the full-order Kalman filter. Finally the
relation to the full-order Kalman filter is also carefully discussed in this
chapter.

The structure of this chapter is as follows. The problem statement is
given in Section II. The structure of a reduced-order filter is assumed. The

257
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unbiasness is first required, and then the remaining design freedom can
be used to mirimize the performance measure. An appropriate similar
transformation of the system is proposed in Section III by means of which
a very simple design procedure can be driven. It is shown that the
estimation problem can be reformulated as a problem of a standard
Kalman filter for the reduced-order stochastic system obtained through
a system transformation. The proposed design procedure is completely
parallel to the standard Kalman filter design. Furthermore the relationship
between the full-order Kalman filter and the proposed reduced-order filter
is discussed in Sections IV and V. This is another contribution of this
article. In Section VI are presented simple examples to illustrate the design
procedure of the reduced-order filter. The concluding remarks are given
in Section VII.

Il. PROBLEM STATEMENT
Consider the linear stochastic system described by
x() = Ax(t) + Bw(t)
y(&) = Cx() + v()
where the state x(¢) is an n vector and the output y(¢) is an m vector; A,
B, and C are constant matrices of appropriate dimensions. The plant

disturbance w(f) and the measurement noise v(¢) are zero mean white noise
processes with

1)

E{w(f)wT(r)} = Wo(t— 7)

2

E{v(t)vT(D} =V8(t—1) @
Furthermore, for simplicity, w(f) and v(f) are assumed to be mutually
independent. The problem of interest is to estimate a specific linear
function of the state vector;

z1(1) = Kx(1) 3
where z,(f) is of dimension k =n. Define a reduced-order estimator as
21(0) = F21(r) + Gy(0), 4)

where 2,(f) is the estimate of z,(f). The matrices F and G are to be
determined so that 2,(¢) is unbiased, namely

E{z;() —2,(} =0 ©)
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and the estimation error criterion

J=E{(z1— 21)"(z1 — 1)} (6)

is minimized.

ll. REDUCED-ORDER FUNCTIONAL ESTIMATOR
A. System Transformation

It is assumed, without any great loss of generality, that the rank condition
must hold;

rank[lé] =n )

By this is meant that kK +m=n and the matrix C is assumed to have at
least n — k rows which are independent of the matrix K. The case where
the above rank requirement does not hold will be briefly discussed at the
end of this section.

First we pick any m = n—k independent rows among those of the
matrix C, which are independent of the matrix K, and denote them C.
Introduce the nonsingular matrix defined by

K
T= [ C] ®)

by which the state vector x is transformed into z = Tx. Define also

T '= [g]—l = (N, M)

Then
KN=1, KM=0
CN=0, CM=1,
NK+MC=1,,,,

It follows that

Ay, Ap| _ [KAN KAM
Ay Ay CAN CAM

=5 - [ &)

TAT! =[
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The observation matrix C can be rearranged as

Clm L=
C_[C]rﬁ’ m=m+m

Thus we can write

~[C]x+ 7
y C Vz
and the transformed matrix becomes
CT '= G_N gM _ | Cn
CN CM 0o 1,
Therefore the transformed system can be described by
Z.1=A1121+A1222+BIW (9)
22 = Az] Z1 + AzzZz + Bzw

{)’1 =Cnz1+ Cpza+t vy (10)

y2=22F Vv,

B. Problem Solution

The design procedure of the reduced-order filter is as follows:

1. Derive the transformed system described as (9) and (10).

2. Since, from (10),, z; = y, — v,, we obtain
nn=Anzi+Any:+Biw—Apy, 1)

y1=C1121 + Craya+vi— Ciava

3. To the system described by (11), the corresponding Kalman filter can
be easily derived as

2= A2+ A1y + Gy — Ci121 — Ciayi)

G, = (PC{i - A;RD) R (12)
P=Ay,,P+ PAT,— (PCTi — A2 RD) R (PC11 — A12RDy)
+B;WBT + A, RppAT,
where
Ri1 Riz| _ I —Cip||[ Vi1 Via 1 0 (13)
R, R, 0 I VL Vvul||-ChL I
and

E{v(yv] (D} =V;d(t—7), i,j=1,2

In particular, if Cy; =0, then R;= V.
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The proof will be given in the next section. Eq. (12); can also be
rewritten as

P=(A; +ARLRG C) P+ P(A + A RLRY Cyy)T
— PCliR1{! C1y P+ ByWB] + A;5(Ryy — RLRI'R1D AL,

C. Derivation of Design Procedure

It will be shown in this section that the result given by (12) gives the
optimal solution of the problem stated in Section II. Define the dynamics
of a reduced-order filter by

2, =F2,+ Gyy; + Goys (14)

where F, Gy, and G, are design parameters to be determined.

1. Error Equation
The error e(¢) is defined as
e() = z1(1) — 21())
Then the estimation error equation is readily given by
e=Fe+(An—-F-G1Cy)z; + (A= G2~ G, ()2, 15
+BIW—GIV1—62V2 ( )

2. Requirement of Unbiasness

Assume that the matrix F is selected to be stable. The requirement of
unbiasness of (5) is satisfied if

A“—-F—GIC“=0
(16)
Ap—-G,—G1C=0
from which we can obtain in terms of G,
F=4,-G(Cn
Gy=A41,-G,Cn,

3. Error Covariance Equation
Substituting (16) into (15) yields

e=(An—- G Cn)e+ Byw—Apvya— Gi(vy — Ciava) (17)
Define the error covariance matrix as

P(1) = E{e()e’ (1)}
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From (17), the error covariance equation can be given by

P=(A11—GiCy))P+ P(A;;— G, Cy))T + ByWBT

+GyR1;GT + GyRp AL + A RE, GT + A p Ry, AT, (18)

where

Ry=Vi—CpVh-VipCh+CiVaCh

Rip=Vi2—CppVa

Ry =Vy
so that we have (13).

4. Minimization
For any time 7(=¢), the problem is to determine G;(¢), 0 =¢= 7 so that
J = E{eT(1)e(r)} = tr[ P(7)] (19)
is minimized by using the matrix minimum principle [7,8]. On the basis
of (18), the Hamiltonian can be given by
H = tr[P(1) AT(7)]
=tr[(A}; P+ PA; + ByWB] + A1,RnAT) AT]
+tr[G1 Ry GT AT]= tf[Gy(Cyy P — Ri2AD) AT]
—tr[(C1y P — PR, AD)TGTAT] (20)

where A is the matrix of Lagrangian multipliers. According to the
minimum principle,

OHIGGy = 0
becomes
—A(C11P— R2A%) — AT(C;1 P~ R, AT) T+ AG Ry,
+ATGiR;; =0 (21)

On the other hand, the Lagrangian multiplier is determined by

A= —6HI3P = —A(A1; — G1C11) — (A1 — G1C1)TA (22)
with the terminal condition

A(7) = otr[ P(7)]/oP(7) =1

From (22), it can be seen that A(f) is a positive symmetric matrix. Thus,
from (21), the optimal value of G; must be given by

Gy = (PC{i— AppRD)RY (23)
It should be noted that G,(f) does not depend on time .
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5. Solution
From the preceding derivation, the optimal parameters are obtained as
F=A4,,-G:Cn

G2=Ap—-Gi1Cr2
G1=(PCli— AR RYY
Therefore the reduced-order filter can be described as
21=Anz +Apy2+ G — Ciizi— Croyy)
where G, is given by (12),. Substituting (23) into (18) yields
P=A, P+ PAT,— (PCLALRL)RGNPCT - AnRD)T
+ ByWBT + ApRypnAD.

6. Remarks

1. The reduced-order filter obtained here may be said to be equivalent
to the filter given by Nagpal, Helmick, and Sims [5]. In particular,
they defined the reduced-order innovation process for the resultant
filter and showed that the reduced-order innovation process possesses
similar properties to that of the full-order Kalman filter. However, that
must be self-evident only from the design procedure presented
here.

2. When the rank requirement of (7) is not fulfilled, it is not possible
to select C so that the matrix T becomes nonsingular. In this case,
we could modify the linear function of the state to be estimated as

K .
z|= [1?] x=Kx. (29
where the matrix K is to be selected such that
K
T=|"2 25
[ C] (25)

be nonsingular. The price to pay for this is the augmentation of the
filter order.

3. Needless to say, the optimal estimate of the linear function z; = Kx
is given by 2, = K& in which % is generated by the full-order standard
Kalman filter. The computational and implementational simplicity
is achieved at the cost of somewhat poorer performance. In the
following, we will investigate the relationship between the full-order
optimal Kalman filter and the reduced-order filter proposed here.
It will be also interesting to observe that the reduced-order filter
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could be derived from the full-order Kalman filter as will be shown
in Section V.

IV. REPRESENTATION OF THE FULL-ORDER
KALMAN FILTER

From (9) and (10), the transformed system can be expressed as
[ 2, An An|[=z B,

.| = + w 26
H N e
and
1| _ Cu Cn||z + Vi @7
_y2 0 1 F4) Vo
It follows from (26) and (27) that the standard Kalman filter can be readily
given by

él An Ap|[ 2 N [Cll C12:| [21]}
1= | +T - . 28
4 R P [ ] e [ i [ P T
where the filter gain I" is described by
I= [711 Yi2| _ [Pu Py [Cn C12_ [Vn V12:|_1
Y21 Y22 P, Pn|| O I ||[Vvh Va
A. Relationship Between R~ and V'
From (13)

[911 Q12] _ [Vll V12:|_1
oh O Vh Va

_ 1 0 1[Ri: R7'[I -Cp2
-CL I1||RL Ry 0 I
Since the inversion of a partitioned matrix R can be expressed as

[Rll R12:|_1 _ [Rl_ll(“‘ Ri2ST'RLRTY _R1_11R12S_1:|

(29)

RY, Rxn -ST'RLRT s1
where

S=Ry— RLR Ry,



Functional Estimator for Stochastic Systems 265

we can obtain from (29)
Q1= RGN + RS T'RLRTY
Q5= =R + RS 'RLRTY) Cr2 — R RS !
Q% = CLRI + Ri2S T 'RLRT) Cra + CHLRI RS ™!
+S 'RLRTC1p+ 857!
and also
ChLOy + 0L =-S"'RLRY
ChLOL+ Q=810 +RLR Cr2)
C1T2011C12+01T2C12+C1T2012+022=S_l. (30)

B. Full-Order Kalman Filter Representation

It can be easily shown from (28) that the Kalman filter can be
expressed by

{551 =Ap21+ A2+ v — Ci121 — Cr22p) + v12(y2 — 22) G1)
2,=An21+Ani+ vu(y1 — Cnz — C1222) + v22(y2— 22)
where the filter gain can be given as
{711=P11C1T1911+P12(C1T2911+91T2) (32)
Y12 = P11C11 Q12 + P1aoCH Qs + Dp2)
{721 = PLCTIO + Pou(CHL Oy + O) (33)
y22 = P CliQ + Pn(CHh 012 + O2)

and the error covariance matrices Py are given by the solution of

Py = Ay Py + P ATy + A Ph + P AL + ByWBT — P10, PT,
— (PuCli + P12CH) Q41(Cri Py + C12Ph)
— P1,005(C11 P11 + C12PD) — (P11 Cli + P12CH) 02 Ph

Py, = Ay Py + A2 Py + P11 ASy + PoAL + ByWBT - P, Q5 Py
— (P11 Cl1 + PaCH) 041(C1y Pz + C12 Pr)
= P2O{y(C11 Pia+ C12Pp) — (P11 Cl1 + P12 C 1) Q12 P

Py; = A3 Pia+ Ay Py + PLAT + Py AL + BoWBY — Py 0o Py
— (PLCTy + P Ch) 041(Chi Piz + C12 P)
= PnOf(C11 Pia+ C12Pp) — (PLCT 1 + Py + P Ch) Q12 Py
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Making use of (30), the above equations can be written in terms of R

Py, = Ay Py + Py Al - Py CL Oy €y Py + ByWBT — PSP

+PiAL+STIRLRTC Pry)
+(Az+ P ChiRi{ RS~ Y Ph

Piy= APy + Py AL — P11 CT Oy, €y Py + ByWBE ~ P1aS™1Py,

+Pi(AL + STIRLRT 1y Pyy)
+(A1z+ P CTiRTT Ri2S ™) Py

Py = Ay Py + Py A, - PL,CT 04, Cy1 Pia+ ByWBE — Py S™1Py,

+ Py(AZ, + STIRLRT Cyy Pyy)
+(Ax+ PLCTIRI RS ) Py

V. DERIVATION OF REDUCED-ORDER FILTER FROM
FULL-ORDER KALMAN FILTER

A. Derivation 1

The dynamic equation of the full-order filter becomes from (31)
2= (An—11C1) 21+ (A~ y11C2— Y12) 22 + Yuy1 + Yi2)2

In order to eliminate the term 2, from (35), we put
Ap~71Cn—72=0

Then we obtain
2= (A1~ 111C10) 21+ Y111 + Y1232

= (A~ 111C11) 21+ y1 +(A2— 711C2)y2
=A1121+ Ay + 1101 — Cr121 — Cr2y2)

(34)

(35)

(36)

(7)

which will lead us to (12);. Substituting y;; and 7y, of (32) for (36)

yields
Ap=y11Ci+ 712
= P;; CT1045 + P1(CH Qs + Q) + P11 CT1 Q41 Coy
+ P(CHLO + QD) Cr,
=P Cli( Q2 + 041 C12)
+ P1(CHhQy1 Cra+ QL C1a + CHLO + Q)
Taking (30) into account, it follows that
Az =(P2— P11 CTiRi{'Ryp)S ™!

(38)
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or
Py, = A;pS+PCliR{ Ry,
Substituting back into (33) yields
y11 = P11CHiQu + P CH0y, + Q)
= P11 C11Q41 = P,S™'RLRTY
—P11Cl1941 - (A12S + P11 CliRTY' Ry2) S TR RTY
= P11 CTi(Q11 — R RS ' RLRTTY) ~ ARG RTY
= (PuuCli~ ARD) R
Similarly, applying (38) to (34), we can obtain
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(39)

(40)

Py = A Py + PyAl - Py CT 04 Cy Py + ByWBT + P S~ Ph

=AnPn+PnAfL - P ChHLQCoiPyy + ByWBT
+(AS+ P CHR) S YSAL + RLR'C11 Pyy)
= (A1 + ApRL R Ci) Py + Piy(Afy + CHiRT RLAT)

+ B WBT + ALSAL ~ P CTi(@11 — R R12S 'R RTY)

X C11 Py
= (A1 +ApRLRT C) Py + Pr(AT + CTiRT R1AD)

— P CliRyy C1y P+ ByWB] + A1p(Roz — RLRTT R1)AT, (41)
This reveals that the reduced-order filter represented by (37), (40), and

(41) is in coincidence with the reduced-order filter given by (12).

B. Derivation 2

The error covariance submatrix Py of the full-order Kalman filter is given

from (34) by

Py =Ay; Py + Py AT - Py CT04,C Py + ByWBT - PSP

+Pio(AL+STIRL R Cy Pry)
+(App+ P CHiRTR,S Y PL

Here we consider the artificial problem to determine the matrix P;, so

that tr[Py,] is maximized. The Hamiltonian is defined as
H =u[P(nAT()]
From ¢H/6P; =0

AAL+STIRLRI C1iPi)T+ AT(A2 + Py CHRIIS 7Y
'-AP12S_1 '—ATP12S_1 =0
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Therefore
Pi=A;S+PiCHR Ry,
which is equal to (39).

VI. EXAMPLES

Example 1. A simple example will be given here to illustrate the design
of the reduced-order filter. The system considered here is given by

.01 0
x—[o O]x+[1]w (42)
_ 1 0 Vi
y = [0 I]H H @)
where the noise variances are given by
o] 0
w=ol, V=[]
o 4

A. Full-Order Optimal Kalman Filter

The dynamics of the full-order Kalman filter is expressed as
£, =+ yu01—2) + 7202 — £2)
X2 = v21(y1 — 1) + ¥22(y2 — £2)

where the filter gains are

[711 712] _ [Pn Plz] [0'1_2 0 ]
Y21 Y22 PL, Pn|[ 0 o&3?
Also the steady-state values Pj; of the error covariance are satisfied by
2P, — Pii/of — Phlo3 =0
P22—P11P12/0%—P12P22/0%=0 (45)
Phlof — Polo% + 0%, =0
the solution of which is given by

P = a105(2rs + r*52)2/(1 + rs)

(44)

P12=a'10'w/(1+rs) (46)
Py = 00,,(2rs + r*s?)2(1 + rs)
where

r=o,lo,, s = o1/oy
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B. Design of the Reduced-Order Filter for z = (1,0)x
The system can be described from (42) and (43) as

X1 =x
{£2 = w2 (47)
{)’1 =X+ (48)
Ya=x2+ V2
Substituting x» = y, — v, into (47) yields
X1 =Yy2— V2
yri=x1+tv;

Thus, the reduced-order filter can be readily obtained as
i1=y2+ Giy1— 1)
G, = Plo}
P=o,0; (49)
It should be noted that the filter is independent of o%.

1. Alternative Derivation from the Full-Order Kalman Filter
From (44),

£1= vy + a0 +21) + (- y12) %2
= P11/0'%
Y12 = P03 (50)
To eliminate £, from (50), putting y;, =1 yields
1=y + ¥ (1 — 1)
and from (45),, taking y;, =1 and Pj; = vy,, into account,
03— P}ilo% =0

Hence, we can obtain P;; = oq,0, and y;; = g»/o;. Thus we have the
reduced-order filter given by (49).
Another observation gives the same result. In fact, from (45)

P} =203 P1a— 01 P1ylos

Maximization of P;; with respect to P;, gives
Py = 0’%
Phi= 013

which leads us to the same reduced-order filter as (49).
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It is interesting here to note that
P= lim Pll

Ty—>

where Py, is given by (46),: namely the error variance of the reduced-order
filter is equal to the limiting value of the error variance Py, of the full-order
Kalman filter as o,, tends to infinity.

C. Derivation of the Reduced-Order Filter for z= (0,1)x

From (42) and (43), the reduced-order filter can be designed on the basis
of the dynamics:

X =W
Y2=Xx2+ v
and is readily given by
Jéz =Gi(y2—%2)
G, = Ploy,
P=oy0, (51)

It should be noted that the filter does not depend on o%.
Another observation also gives the same results. From (45)s,

P%z = 0’% O%v - 0’%}%2/ 0’%

The maximum value of P, is achieved when P, =0, i.e.,
Py, =0
P}, = oo,

which easily reduces to (51). Also we can observe that
P= lim Py,

o|—®
where P, is expressed by (46)s.
Example 2. An example will be presented here to illustrate the design

of the reduced-order filter where the rank condition does not hold.
Suppose that the dynamic system is described as

-1 4 5 1
i=l 4 2 2|x+|2|w
0 0 -3 2

_[r2 3,
Y=l 1 1 |*TY
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with noise variances

10
W=oa, V="3[0 1]

Consider the case where the desired linear function to be estimated is
given as

z1=(123)x (52)

Since the rank condition of (7) does not hold, the first-order filter cannot
be obtained. As shown in (24), we can consider the second-order filter
by modifying (52) as

2_123‘x
711 o]

An appropriate transformation matrix T of (25) can be defined as

1 2 37
T=|11 0
11 1,

The system transformation gives

1 -1 -1 11
z=13 -3 —-1]|z+]| 3|w
3 0 4 5

I L P
Y=1o 0 1

Based on the above system, we can readily obtain the second-order filter
for 02 =0.1 and o2 = 1.0 as

; _ | —34.4804 -1{, + 35.4804 1
A= _gss17 -3 | 11ss17 [T |12
with the steady-state value of the estimation error variance P;; = 3.548.

It is interesting to note that the optimal value of error variance achieved
by the full-order Kalman filter can be calculated as P = 3.240.

Vil. CONCLUDING REMARKS

In this chapter, we have described a computationally feasible design
technique for the reduced-order unbiased filter which estimates a specified
linear function of the state for the stochastic system. The solution of the
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present problem is simply to derive the Kalman filter by a standard method
for the reduced-order stochastic system obtained from an appropriate
system transformation. Due to the reduction of filter order, the result is
of course suboptimal. The price to pay for the computational simplicity
is some deterioration of performance. Finally the relation to the full-order
Kalman filter has also been discussed.
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Shares in Emergent Markets: Dynamics
and Statistical Properties of Equilibrium
Classification of Agents in Evolutionary
Models

Masanao Aoki

University of California, Los Angeles, Los Angeles, California

. INTRODUCTION

Much attention has recently been paid to the construction of macro-
economic models which incorporate nonpairwise externalities among
agents, such as fads or bandwagon effects. These effects are called field
effects in [1], [2], and [3], and referred to as social influences in [4] and
[5]- See also [6], [7], [8], or [9]. An example in sociology is [10]. By
modeling these externalities we hope to deduce an “‘emergent property”
of a system of agents, i.e., aggregate properties or characteristics of
situations involving a large number of interacting economic agents. These
interactions are not pairwise in nature, but are between individual agents
and aggregate environments, which are in turn determined by or
dependent on the behavior or decisions of the collection of agents.

To address this need, we start with a more disaggregate description of
a collection of agents than commonly used in traditional macroeconomics,
and investigate the nature of patterns of interactions which may emerge
as the number of agents increases, i.e., we look for conditions under which
statistically significant stable patterns of interactions emerge.

To begin, we classify agents by their types or characteristics, and use
their joint statistical descriptions or dynamics of transitions of agents from
one type to another to derive their stationary distributions. See [1] and
[2], and [11] and [12] for modeling approaches in a similar spirit. By
“types,” we mean any scheme to classify or categorize agents, such as
behavioral or decisions rules used by agents, stores they shop, or brands
of goods they buy, and so on, depending on the context of models we

273
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wish to construct. We thus employ Markov processes with sets of random
partitions of agents into separate types, classes, or categories as the state
spaces.

For example, in a simulation study of a fish market which involves
interaction among a large number of buyers and a small number of sellers
of fresh fish, Weibusch, Kirman, and Herreiner discovered in [13] that a
stable pattern of market shares for the sellers emerges under certain
conditions.* In this example, the customers are partitioned into types by
the stores they buy fish. When the number of sellers is small, say 2 or
3, the situations can be modeled using the master equations exactly as in
[1] and [2], and we can examine its equilibrium distributions.t Aldous has
an example in [15] which he attributes to J. Pitman, called the Chinese
restaurant process, in which people arrive sequentially at an initially empty
restaurant with a large number of tables and seat themselves. In this
example, customers are classified by the tables they sit at. This perspective
can be applied to noneconomic situations as well. For example, relative
sizes of basins of attraction of random maps of a finite sets of points can
be so examined; compare [15] with [16]. The former adopts this viewpoint,
while the latter does brute force calculations. Here the points are classified
into types by the basins in which it will eventually be attracted. We
introduce the notion of frequency spectrum in Section IV by which these
seemingly unrelated topics can be unified.

When the number of types is large, it is analytically messy and not
practical to use the master equations directly. Instead of dealing with
approximations to the master equations, we adopt an alternative approach
in this chapter. As a first step, we derive the stationary distributions of
random partitions of agents into types. In the case of the fish market with
four or more sellers, we look for stable distributions of (the order statistics
of) market shares of sellers by regarding patterns of buyers among sellers
as random partitions of the set of buyers (and the process of changing
patterns as Markov processes on the set of random partitions).}

*See also [14]. Slightly generalizing their formulation, customers on a given day may be
regarded as a sample from the population of the city, hence the sample size may vary from
day to day. The number of sellers may also vary from day to day.

1This alternative approach is more informative than their study which relies heavily on
simulation experiments since the existence and local stability properties may be analyzed
to supplement and augment the simulation studies.

$As we discuss later we focus on the order statistics of the composition, i.e., the fractions
of agents per type rather than their absolute numbers in all applications. It is known that
this gives a tractable problem formulation, when the number of agents becomes very large.
Over the course of time, some buyers change their minds and shop at a different store. This
is captured by transition rates of the Markov process over partitions.
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In this chapter we primarily discuss stationary distributions of the
compositions of agents by focusing on the order statistics of the
compositions of a population of economic agents by some characteristics
or traits, such as types, or choices, and examining the fractions of agents
of these characteristics. Thus we treat agents as exchangeable in the
technical sense known in probability theory. We focus on asymptotic
results for the stationary distributions of the shares (types) of customers
in markets, i.e., shares of the sellers when the number of buyers becomes
large and when the number of sellers also becomes large in the fish market,
for example.*

The usual approach of modeling such interaction phenomena in the
economic literature would involve random matching with anonymous
partners or some other game theoretic devices. The game theoretic
approach does not seem to be useful when the number of participants is
large, since game theoretic algorithms are probably nonimplementable for
the case with a large number of participants.i As will become apparent,
the number of types or categories need not be fixed. The approach we
propose here can accommodate new types appearing randomly, such as
new consumer goods, decision or behavioral rules and so forth, as results
of innovations or learning.

We use results on random partitions and random maps, as summarized
in [15] for example, and introduce into the economic literature the
equilibrium distributon called Ewens’ sampling formula, developed in the
context of population biology, see [17], to describe the order statistics of
the market shares. This formula arises naturally as the random average
of multinomial distributions with the parameter vector governed by
Dirichlet distributions. This approach can deal with large numbers of types
of participants at least approximately due to a result of Kingman who in
[18] and [19] demonstrated that any model which has the Ewens sampling
property must necessarily have a Poisson—Dirichlet distribution for the
decreasing order statistics of the proportion or market shares.f There is

*The numbers of agents of any type all approach zero as the number of types becomes
unbounded. This is why we focus on the order statistics.

tFor example, [23] or [24] deals with two or three types of agents at the most. This is due
to the sheer combinatorial computational burden which overwhelms the computational
capability at our disposal. These kinds of difficulties also favor statistical descriptions of the
stationary compositions of populations of agents by types adopted in this chapter.

1The Poisson—Dirichlet distribution is a generalization of the Dirichlet distribution, as the
number of agents and types go to infinity in a certain way. See [25] or [26] on the Dirichlet
distribution. See [15] or [27] for a useful interpretation of this distribution in terms of a
Pélya-like urn model.
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a key parameter in the Ewens distribution, which is denoted by 6 in this
chapter. We can interpret it in terms of the probability of two agents
belonging to the same subset in the partition of the set of total number
of agents. Here, we use the notion of the frequency spectrum or intensity
which is introduced in Section IV.

There is a related literature on Zipf's law and size distribution of market
shares or firm sizes as discussed in [20], [21], [22], and others, and
Bose—FEinstein statistics. We comment on the relation of these with
Dirichlet distributions and the Ewens’ sampling formula in Section V. The
connection here is shown to be the logarithmic series distribution, which
appears as the mean of Poisson random variables which would be
independent except for the constraint imposed on them by the total
numbers of agents in the model. Whittle has developed similar results in
[28]. Keener, Rothman, and Starr have developed a two-parameter family
of distributions on partitions which cover these distributions in [29]. See
also [30], [31], and [32].

il. DIRICHLET DISTRIBUTIONS AND EWENS’
SAMPLING FORMULA

A probability distribution of a population composition is defined on a
finite dimensional simplex. It is a collection of nonnegative numbers, x;,
i=1,2,...,n, satisfying the sum constraint, 2;x; = 1, by regarding x, as
the coordinates of a point x = (x,%, ...,X,) in an r-dimensional
Euclidean space. We think of x, as the proportion or fraction of agents
of type i in the population. Since the labeling of types as type 1, 2, and
so on, is arbitrary in the sense that there is no intrinsic meaning, economic
or otherwise, to the orders of labels, x, are exchangeable and the joint
distributions are symmetric in these variables.*
An exchangeable Dirichlet distribution has the density

I'(na) a1
F"(a) (x1x2 SR “‘n)
where x,=1—x;—...—x,_;. It is regarded as a density for x,

i=1....n—1. Wedenote this by D(«a, n) for short. Here, « is a parameter
of the distribution. We interpret it later.

Several ways of obtaining Dirichlet distributions are known [25]. One
is as follows: suppose Y,, i =1,2,. . ., n, are independently and identically

*See [15] or [18] on exchangeability and exchangeable partitions.
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distributed (i.i.d.) random variables with density y* le ¥/I'(a), for
positive y. Define S =Y;+...+Y,, and a new set of random variables
by V;=Y/S, i=1,2,...,n—1. Change the variables from Y, to V;,
i=1,...,n—1, and S. The Jacobian is $"~ !, and we deduce the joint
probability density function

T(na) 14 .
gvi,va V) = H vt
=1

F"(a)

where v, =1—v{—v,—...—v,_1. We also see that § is independent of
Vii=1,2,...,n—1.

Dirichlet distributions possess important properties of neutrality intro-
duced in [33], and size-biased permutation or rescaling mentioned in [34].
See Hoppe in [35] and [36] for a discussion in the more general setting
of Poisson-Dirichlet distributions.

Consider a random sample of size n drawn from a population with K
types of agents with relative composition or fractions, x{,x;, .. ., xg. Let
n,; be the number of agents of type i. Suppose that they have a multinomial
distribution

n!

1y HE

P(nl,nz,...,nK;K)=, X1 ... XK

11! NN IlK!
where Z;n, = n. For a simpler explanation assume that », is positive for

all i.
When we average this expression with respect to a Dirichlet distribution

D(e,n)* we obtain the probability

n! I'(Ke) T'(e+ny)...T(e+ng)
ok TE(e) I'(Ke + n)

P(nq, ..., ng; K)= -

Now arrange n; in decreasing order n 1y = n2)=. . . n() for some k = K.
The probability of the first k order statistics is given by

o n! I'(Ke) I'(e +nay) . .. T(e +np,)
P(nc1y, - - - Ay K) = nay - ng! T'%(¢) I'(Ke+7r)
XM

*The index & is the same for all fractions because we assume them to be exchangeable.



278 Aoki

where r = n¢y+ ...+ ngy. and M is the number of ways that the order
statistics can be distributed among K types, i.e.,
K!
(11!(12! ... a,!(K— k)'

M=

and where a; is the number of n, equal to j. See [37] and [38].
If we let K go to infinity, and ¢ to zero, in such a way that Ke approaches
a constant, 0, then

K!
(K—k)IT(e)f
and we obtain the limiting expression

n! 65 T'(6)

nay- - Agya!t . all(0+7)

Ok

P(ngyy, . . Ry k) =

This is the equilibrium distribution of the order statistics of the fractions
of the ways agents distribute themselves among different types, and is the
same as the Ewens sampling formula [19] to which we return shortly. The
joint probability when a total of n agents are involved is obtained by
replacing » by » and k by K. An alternative expression for the
probability distribution is obtained by noting that IIi_ n, is expressible as
191292 j% .. . n", see [39].

Some special cases shed light on this distribution. When »n agents are

all of the same type, then we have a,=0, i=1,...,n—1, and a,,=1,
and
n—1 ]
P(ay=...a,-1=0,a,=1;n)= ——
(al a1 a, I’l) H 0+]

j=1
When n = 2, this yields the probability

1
P(al =O,02:1;2)=m

This is the probability that two agents chosen randomly in succession
are of the same type. This expression may be used to interpret the
parameter 0.

The probability that all » agents are of a different type is obtained by
setting a; to n and all other as to zero:

n—1

0

Plai=n,a,=...=a,=0;n) = —
Pl 0+j
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A. An Urn Model Representation

All these expressions strongly suggest a connection with a representation
of these probabilities by a Poélya-like urn model. This is indeed true, and
has been shown in [27] and [36]. Ewens’ development in [17] is also very
much in the urn model framework. Consider an urn which contains only
6 black balls initially.* Each time a black ball is drawn, it is returned to
the urn together with one ball of a new type (color). When a nonblack
ball is drawn, then it is returned together with a ball of the same type
(color). Therefore, after j draws, the probability that the (j + 1)th draw
is a black ball is 6/(0 +j), and the probability that the (j + 1)th draw is
not a black ball is j/(8 + j). The probability that the first j draws are all
of the same type agrees with the expression obtained above with a;= 0,
i=1,...,j—1,and q; =1,

1 2 G—1) _6(G—1)!T(6)
0+10+2" " "0+j—1  T(0+))

P(alz...=a]-_1 O(l_ )_

Let g;; be the probability that the first j draws yield i types of balls,
i.e., J balls are of i different colors. For example, g, is the expression
we just derived, and

¢
DiT o). (0+j-1)

We have a recursion relation

QJ+11 q110+] (I]l 10+]

Suppose we write these g;; as
_c(j.i) o

AT

where we define
[0 =0(0+1)...(0+j—1)
Then we easily see that c(j.i) satisfies the recursion relation
c(n,iy=c(n—1,i—1)+(n—1)c(n—1,i)

where we used n rather than j.

*Allow for fractional numbers. Otherwise think of one black ball with weight # and make
the probability of drawing a ball proportional to the weight.
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This recursion is the same as the (unsigned) Stirling number of the first
kind.* By noting that X;a; = K, we can rewrite the probability as

1 m(619 1
P(ay,...,a,,K) = ——— ==
o {5

0+n—-1Co-1 j=1 U i

Rewritten this way, we see a connection with the logarithmic series
expression for the probability in [11] to which we return later.

B. Neutrality

One might question the appropriateness of the Dirichlet distributions for
the vector of random fractions of economic agents. We describe next why
this distribution is the most natural one to use in our context.

First, Fabius shows in [40] that if none of the fractions x; nor 1 — Zx;
vanishes almost surely in a random vector of fractions (x,. . .,xk), then
these fractions are distributed as a Dirichlet distribution or the limit of
such distributions. Second, we refer to the notion of neutrality in [33] and
that of a size-biased permutation (re-sampling) or rescaling in [34]. They
both refer to a population with fractions which have the representation

Xy = Uy

and
-1
xm=umH(1—u,-), m=2
j=1

where u; are independent random variables, called residual fractions, and
the model, called (infinite) residual fraction model. This is the same as
the random alms model of Halmos in [41], although he did not discuss
these notions.

In a random vector of fractions (x,, . . .,x,), x; is said to be neutral if
x, is independent of {x/(1 —x,),x3/(1 —x;),...,x,/(1 —x;)}. This means
that x; does not influence the manner in which the remaining fractions
proportionally divide the remainder of the unit interval. These are rescaled
fractions. If we introduce another set of random variables by

*See [42] or [43] on Stirling numbers.
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fori=1,2,...,n—1,and z, = 1, then z, is independent of (23, . . ., z,,_1).
If (x1,x2,...,x) is independent of (xj+1,.. ., x)/(1 —x1—x2—...—x))
for all j, we call the vector x completely neutral. Thus, if x is completely
neutral, then z,, z, . . ., z, are independent. The converse is also true. See

[35].
Let the density of z; be given by
B(a,b) ™ 28711 —z)% !

i=1,...,n—1, where B(-,-) is the beta function. Then the density
function of the x; is D(«,n) when b; = (n—i)a. See [33].

Consider an infinite sequence, i.e., let K go to infinity. If u;,u,,. ..
are sequences of independent beta variates with the same density
a(l1 — u)®~!, then E(u;) = 6 with 6= (1+ B)~!, for all i, and

E(x)=6(1-6)"

The random variables x; are such that

ImE(x; +x2+...+x) =1
)

and x; +x2+ ... +x; converges to 1 in probability. Furthermore,

> o D@+ Drk+1)
;E("'k h= T(a+k+1)

Next, compare this with
E(x¥) = E{E(x*|xy, %2, . . ., x)} = E(Sx}™)
where x; are governed by D(e,n). The moment is given by

T(Ke+ )T(K+k+1) T(0+1)T(k+1)
T(K+ ) (Ke+k+1) T(0+k+1)

for all nonnegative k as K goes to infinity.

These two expressions are equal when we set a = . The sequence of
random fractions given by the Dirichlet distribution tends in distribution
to that specified by the residual fraction representation, because their
moments become the same. (See [26] for a sufficient condition for the
convergence of distributions of bounded random variables.) Moreover, it
is known that a population with infinitely many types which are completely
neutral or an infinite residual allocation model with independent and
identically distributed residual fractions with density 6(1 — «)%~ ! is the only
infinite residual allocation model which is invariant in distribution under
size-biased permutation, as shown in [35].

The limit of order statistics distributions as n goes to infinity is named
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the Poisson-Dirichlet distribution by Kingman in [18]. Patil and Taillie
point out in [34] that Kingman’s and the model sketched above are
permutations of each other, and are merely alternative description of the
same underlying population structure.

For later comparison, we note that when a sample x,, . . ., xg is arranged
in nonincreasing order from the largest to the smallest, X{ = X}=.
its order statistics are such that

AXt=x)=6x"Y1-x)%!
for 12=x=<1, and

Xt =x,X3=y)=Fx"y {(1-x—y)®!

.y

for0=y=x=1,and 0=1—x=2y. These expressions are derived in [37].
See also [38].

lll. RANDOM PARTITIONS AND EWENS’
SAMPLING FORMULA

We think of statistical distributions of buyers among stores, or more
generally, of economic agents among various types as randomly partition-
ing a set of agents, i.e., a set of n points into K subsets for some K.
Alternatively we may think of n agents and group them into K subsets.
We can also relate these to partitioning permutations into cycles where
agents in a cycle may be regarded as of the same type as we do in Section
IV.A.

As time progresses agents randomly switch stores to buy or randomly
change their types. We treat these processes as Markov processes on the
set of partitions. Is there going to be some useful statistical characterization
of market structure which emerges from such random visits? The answer
is yes under some technical conditions. The Ewens sampling formula
introduced in Section II is one example of such distributions.

Suppose there are K stores and call agent type i if he buys at store i
at some given point in time. Let g; be the number of stores which have
exactly j customers, i.e.,

2(1]‘=K
J

and

D jg=n
7
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where n is the number of agents in this sample. If it helps, one may
visualize K nonempty boxes with a; of them containing j unmarked, i.e.,
nondistinguishable, balls. Then the Ewens sampling formula states that
the distribution of balls in K boxes is

n! 6k
P(al,az, .. .,a,,;K) ="—W

[T &
j=1

Kingman in [18] and [19], and Watterson in [44] and [37] have
derivations of this formula. We comment on the Kingman derivation based
on the consistency requirements on the partition, since this approach has
a direct implication on the sampling of market shares on a particular day.
The basic idea is that probability distributions on the set of all possible
partitions of n agents must be consistent in the following sense: think of
n agents as a sample from N agents, i.e., on a given day only n of the
total number, N, of agents come to market. Then the partition of n into
various stores must be such that a further sampling of m agents out of
n should be the same as the sampling of m from the initial N agents in
the distributions. Kingman shows that the Ewens formula satisfies this
property and he proves the characterization theorem that the partition
structure with consistency implies that the distribution is the Ewens form
for some 6. See [45] for a useful summary.

IV. FREQUENCY SPECTRUM

Here we follow [36] to describe the concept of frequency spectrum or
intensity which is the probability of a fraction being in some range. This
notion was introduced in [17]. We follow Hoppe in [36].

Let f be a bounded measurable function on [0, 1]. Let Q, be the first
component in the size-biased permutation of the composition vector,
x = (x1, Xy, .. .,Xg), i.€., the fraction of the agents of the same type as the
agent first drawn. Thus

> Ry xi= E(flQ)]x)

In the Poisson-Dirichlet population, Q, has beta (1, 6) density. Taking
the expectation of the above

1
B3 e} = 00} = | o - e

0
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Now choose a particular f which is equal to ™! if u=¢ and zero
otherwise for ¢ in the unit interval. Then, the expected number of types
whose frequency exceeds ¢ is given by

1
J 6u~'(1 - u)® 'du
t

namely,
d(x) = 6x~ (1~ x)*!

is the frequency spectrum.

Having obtained the frequency spectrum many interesting results can
be calculated. For example, the probability that two randomly drawn
agents are of the same type is given by

1
1+a

1
E(xY) = J Pax~ (1 -x)*"ldx =
0

Hence, the parameter a(= 6) which characterizes the intensity may be
interpreted accordingly. Recall our earlier discussion in Section II.A.

A. Attractors in Discrete Random Dynamics

Given a set of # points in a space S, a random map assigns a point to each
point of S. For simplicity we assume that each element of the set of all
transformations of S into S is equally likely.*

Because # is finite and a map stays fixed once chosen, attractors of a
given random map consist of cycles and paths leading into the cycles. We
associate weight w, with the sth attractor which is the fraction of points
which fall in this attractor out of the total of n points. Katz shows in [47]
how to decompose or partition random maps into components. See [16]
and [46] for background material.

To calculate the probability distribution or the frequency spectrum of
the weights, consider the probability, Q(T, Ty, . . ., T,,,), that a randomly
selected configuration S at time zero visits T, different points in S (at time
0,1,...,T;—1) before it falls on a point already visited, that a randomly
selected initial state S, visits T, different point of S before it falls on the
point already visited, and that a randomly selected initial state S,, visits
T,, different points before it falls on the points previously visited by all

*There are n” possible random maps. If we consider only the set of one-to-one maps there
are n! such maps. There are other possibilities. See [46].
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the initial states. The expression is in Derrida and Flyvbjerg [16]. The
probability Y,, that the m initial states fall on the same attractor is

Ym=2 2 2 Q(TI,TZ,-'-,Tm)
T1=1T2=0  Tm=0
For a given random map, the probability Y,, that m initial states fall
on the same attractor is

Y, = 2 wi
Therefore, on the average
1
Y, = J fwW)ywndw
0

where f(W)dW is the average number of attractors which have weights
between W and W + dW. The expression f(W) is the frequency spectrum.
Calculating Y,,, we identify

AWy =3 W1 - Wy

This corresponds to the case with 8 =3 of the frequency spectrum, and
follows from the fact that for exchangeable random partitions the
probability that agents 1 and 2 belong to the same set in the partition is
£. See [15] for the calculations involved.

We next sketch the direct calculation used in [16]. Let us illustrate the
case of m =2, when there are N points. With the first initial point, the
probability of choosing T distinct points is

1 2 T, T,
lx(l N)x(l N)...x(l N)XN’

because the (73 + 1)th point must fall on one of the T points. With the
second initial condition, the probability of choosing T, points and that of
the (7, + 1)th point falling on one of the first T, points (otherwise these
two initial points do not belong to the same basin) is obtained by
multiplying the above by

_hy_nhtl _hit -1 T
(- )(1- D) (1=t Fem) o

Change variables to T, = \/Ntl and 7, + T, = VNt, and carry out the
integral to conclude that 6 is 3.
The probability that a randomly chosen initial state belongs to a basin
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of attraction of weight W is given by
g(W) = WAW)

When f(x) =6x"1(1-x)%! more generally, we obtfain g(x) =
6(1 —x)®~*. This is a well-known density in the literature of ecology
according to [45].

B. Markov Processes on the Set of Exchangeable
Partitions

Evolutionary dynamics of a large number of agents of a (large) number
of types may be modeled as Markov processes on partitions of the set of
agents who are exchangeable. Here we give an example of such dynamics
due to Kingman, [48] and [18]. See also [49]. Poisson-Dirichlet distribu-
tions arise in many ways. One way is via the notion of empirical
distributions of frequencies of different types of agents.* Consider a set
of N agents, each of whom is one of S types. Fix N for simpler explanation.
Consider a discrete time Markov chain {G,} for convenience of discussion.
Its state space is a finite set of all possible types of agents. Let p(i,j) be
the transition probability of a type i agent at time ¢ changing into a type
J agent at time ¢+ 1. An example ist

p(ivj) = (1 - u) 8i,j+ uq(ivj)

where Q = {q(i,))} is a stochastic matrix, and u is a parameter of small
value. Here it is exogenously given. It may depend on some economic
variables such as price vectors in economic applications. This implies that
customers mostly revisit the same store but occasionally go to another store
with the probability shown in Q.

At time ¢ label agents in random order X,(f), r = 1,2, ..., N. Think of
this as the rth element to be drawn at time ¢ in random sampling without
replacement. These random variables are exchangeable by construction
and hence

N
P(X(+1) = ]G} =55 . PXl0),])

a=1

Let the probability of being in state j at time ¢ be denoted by
7)) = Pr(X\(5) =)

*Types are to be interpreted broadly: classes, choices of stores to buy, and so on.
+Other forms of transition rates or transition probabilities are discussed in [2], Chapter 5,
[11], and [12].
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It satisfies

L1 . N
mli) = 3 2 EP(Xa(0,0)} = 2, mlDp(i. )
where the summation is over all states.
Suppose that P = {p(i, )} is irreducible, aperiodic, and positive recur-
rent, with stationary probability measure {#(i)}. Then, regardless of the
initial state of the Markov chain, we have

7({) ~ 7())
as time goes to infinity for all j.
Let
(i, j) = Pr{X (t) = i, Xo(H) = j}
Then

meili) =27 3 E@X, DP (X0, )
a,b

By exchangeability, if a # b, the right-hand side becomes

E{p(X1(t), Dp(X2(0), 1)} = 3, mlk, p(k, Dp(l, )

k!

and if a = b, then it is

E{p(Xy(t), Dp(X2(0), )} = D, mlk)p(k, )p(k. )

k

We also have

7L, ) — 7, )

In general,

T1J2 - - > Jn) = PH{XW(O) = 1, . ., Xn() = Ju} = 7102, -+ 5 Jin)

Note that 7(j,,. . .,j,) is a symmetric function of its » arguments, and
7(jy,. . .,j,) forms a consistent family in the sense that

Z Tr(jl’ . "jn) = Tr(jl’ .- '7jn—l)
In
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For the example of p(i, j) mentioned at the beginning of this subsection
we can write this transition as

n(n +6- l)ﬂ(jl,jZ’ < ',].n) = 02 2 7T(jl9' . -’].a—l’i,].a+l, .. ',jn)
a i
X q(i,ja)

+ 2 "(jl’ N -,ja—bja+l’ .. Jn) Va
a

where 0 =2Nu and v, = |{a # b,j, =j,}|.
By de Finetti’s theorem, these properties are enough for the existence

of a family of random variables p(i) which are nonnegative and sum to
one, such that

152+ - -»in) = E{p(G1) PG - - - p()}

which has a natural interpretation as the limiting distribution as n goes
to infinity of the empirical distribution of » random variables X,.

More specifically, p(i) are the frequencies of the random fractions of
types in the population, i.e., the frequency spectrum. Let f be any
continuous function on [0,1]. Then

1 1
E[Epo)f{p(f)}] - [ £y () = [ fx)xb(x) dx
0 0

where we write u as x@(x). Here ¢(x) is the frequency spectrum, i.e., the
probability of relative frequency lying between x and x + dx.

Now set j; =j, =...=j, =jin the arguments of the #rs. This equation
becomes
1
(n—1+06) [ X e(x)dx =6 wi,j,. . ..))q6))
0 ij

+(n=1) D (.. .,j)
J

Note that
1
> oy 0i) = E{ Ep(i)"} = [ X" (x) dx
J J 0
In the first term on the right-hand side of this equation

3, #tuiv. o = Ef 3 p0a0p 0} = EIp01PO™
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where ¢{(p()) = 2;p(i)q(i,j). Assume that ¢; is independent of j. This
assumption leads to the expression

(n—1+0)j

0

1x"¢(x)dx = ojl Px)x" " 1p(x)dx + (n— 1)

0
1
X [ X~ 1p(x)dx
0
which can be made into a first-order difference equation for
1
h, = [ X" P(x) dx
0

with the forcing term

1
rei= [ s s

0
(n=1+60)h,=06k,_1+(n—1)h,_;
On solving this

n—1
_ (n—-1)(n—-2)...(r+1)
"n‘*’;) (n—1+6)...(r+96) r

where we set h; =1 and kg = 1.
We can rewrite this expression as

n—1 1 1

h, = 02 n—-1Cr [ w1 —wy)rrldu [ P(v)v (v)dv
r=0 0 0

The right-hand side can be written compactly as

0 [1 [1 (1—u+uv)" 1 1y(v) ¢(v) dudy
o Jo

Changing variables from (u,v) to (x,v), with x =1 —u + uv, we convert
the integral expression into

] Jl x"1(1 - x)f! JX (1 =v)"OY(v) $(v)dvdx
0

0
Since this equals A, for all n=1 we identify

$(x) = 0~ 1(1 - x)*~ [ " (=) 290) () dv

0
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We convert this into a differential equation for ¢ and solve it as

$(x) = Cx~'(1 -X)""'eXP{— 0 fl y (1 -y)"'tﬁ(y)dy}

Kingman ([48], p. 34) shows that this frequency spectrum is approxi-
mately given by

(x) = 0~ 1(1 - x)°~!

Another example of a transient frequency spectrum is in [49].

V. LOGARITHMIC SERIES DISTRIBUTION

In this section we connect the (ordered) market share distributions with
Zipf's distributions, and the like, used in the economic literature on size
distributions. In [11] Kelly used a birth-and-death process with immigra-
tion to study family sizes and clustering of agents in social environments
such as at cocktail parties. His models may be reinterpreted in terms of
agents of different types in the spirit of this chapter. The state space of
a continuous time Markov process is n = (ny, n, . . .), where only a finite
number of components are nonzero.

A birth in a collection of categories with j agents may be interpreted
as one agent changing his type, i.e., moving from a category which contains
j agents to form a new category with (j+ 1) agents, i.e., n changes
into

(nl, N (IS YY 1,’1j+1 +1,.. )
A death in a category with j agents mean that n changes into
(ny,. - SRt l,nj— 1,’1j+1, .

The boundary condition is » changing into (n; + 1, 7, . . .) when an agent
of a new type enters, and a single agent departs.

In the simple case of constant birth rate A and death rate p with
immigration rate v Kelly has established that the equilibrium distribution
given by

o
n,'

p(n) = const X 1_[

ji=1
where

B=vy, x=Np
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and where x is assumed to be less than one, is a stationary distribution
for n = (ny,n,,...), where n; is either the number of types containing
exactly j agents, or the number of agents of type j, depending on the
interpretation. Note that

E(n) =B,
The random variable n; is Poisson with mean which is inversely related
to j and is called a logarithmic series distribution in [37]. See [50] for
additional information of this distribution.

To extend this model to market share models, we follow [37] in part,

and assume that the as are independent Poisson random variables with
mean

Pr(a(i)=)) = 0%

where 87! = —In(1 — x), with x less than one, and where a(j) is as defined
in Section III, i.e., it denotes the number of stores with exactly j
customers.

From the assumption, we have

N ' N a(i)
P{a(1),a(2), .. .,a(N)} = exp{ Z ]‘ n (Ox’) a(,)v

=1
subject to the constraints
N

>, a() =
j=1
and

N
_2 ja(i) =

Usmg the dummy variable s;, the joint probability generating function
of these random variables is

N N 0x’
E{ n sj.’(f)} = n exp {— (55— 1)]»
j=1 j=1 I
Set sj=si. Then
EsM) = exp( 0 2 —,)exp( 2 (xs)’)

since Eja([) N. We can use (1—xs)"? for the second exponential
expression since the powers in s match up to the Nth in our generating
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function calculations. The coefficient of sV yields

. x
P( 2]“0) = N) = exp(— 02 7) N+o-1Cnx"
where we use the relation between the negative binomial and binomial
coefficients
—OCN(_x)N = N+e—1CNxN

We thus recover Ewens’ formula by dividing the joint probability by the
above:

i\ a(f)
P{a(1),a(2), . . .,a(N)|N} = ﬁ I1 (GTXI) ﬁ

By setting s; to s, we obtain

E(s%) = exp(— 0 2 Jj—,j)(l —x)7%

After replacing s; by s¢ and proceeding analogously, we use
EGXN) = exp(— ] 2 Jj—_j)(l —x¢p) %

to obtain

T(N+6s) T(6)
I(6s) I(N+6)

By replacing s; with s,-di in the probability generating function of the
as and differentiating E(H(sj)“(/7¢’”(f)|N)k,- times with respect to s; and
setting it to 1, we have

E(@() N} = M ] (f)k exp(oz #) / Ne0-1Cr

where M = Zjk;, and where (m), = m(m—1)...(m—k+1). Up to terms
of degree N in ¢, the exponential term agrees with (1—¢)7¢,
in which ¢V M has the coefficient n_p+9-1Cn—_pr Note that
ky+2k,+...+Nky=M=N.

A special case is

E(sX|N) =

(i}
E(a()|N) = ;N——j+0—lCN—j/N+0—lCN

which is the case with k; =1, all other ks being zero. When we evaluate
the right-hand side, by approximating the factorials by Stirling’s formula
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it is approximately equal to
A A b ‘
8| N+6-1 N Y(o_i \
j I—L N-6+1 N+6-1
N

The second and third factors converge to 1 as N become large. The last
factor converges to (1 —j/N)®~!. Therefore we recover an approximate
expression for the frequency spectrum:

Ea(j)|N) ~ 6x~ (1 — x)°~"dx

where x is the relative frequency j/N and dx is approximated by 1/N. Recall
that we have earlier derived this frequency spectrum directly.

VI. ZIPF'S LAW AND BOSE-EINSTEIN STATISTICS

Hill establishes a connection to Zipf's law with the logarithmic series
distribution in [22] which is the starting-point of Watterson’s analysis
described above.*

Let K/N converge to 6 in probability. Hill shows that a(j)/K converges
in probability to 8(1— 6) in probability. Now, if 6 is distributed as a
logarithmic series

-1

6In(1 —x)

for 6= (1 —x), and zero otherwise, then

E{a—l(é)} =yl

fi6) =

Vil. DISCUSSIONS

This chapter proposes the use of Ewens’ sampling formula to describe
stationary distributions of compositions of agents into a large number of
types, and describes two notions, neutrality and consistency, as sufficient
conditions for the formula to be useful in economic applications. Whether
these conditions are satisfied, as least asymptotically, in economic

*An equivalent description is the following: after ensuring each type is represented by at
least one agent, the remaining number of agents is distributed in a Bose-Einstein way.
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applications has not been tested empirically. What kind of economic
phenomena or market structures possess this neutrality property? This
question requires empirical testing.

We have alluded to the econometric aspects of estimating various
parameters or treating the number of agents in markets as samples from
a potentially much larger number of agents so that only a small number
of them actually come to markets. Estimating the biomass of different
species of fish from data on catches would be an interesting applica-
tion.

We can go further in the directions indicated. For example, we can treat
situations where sellers drop out or exit the market when their profit over
some period drops below some critical level, i.e., we can introduce a pure
death process into the modeling process. We do not discuss this here for
space limitation. See [51] for discussions on transient distributions, and

[52] for related developments on asymptotic theory of extreme order
statistics.

VIll. APPENDIX
A. Order Statistics

Let X, i =1,..., K, be nonnegative exchangeable random variables which
sum to one. Let ¢(xy,...,xk) be its density function.

The decreasing order statistics, denoted by X(;)= X(3)=. . ., are such
that their joint proability density function is given by

f(X(l)a- . .,X(,.)) = K(K— 1)(K—2) . .(K—r+1)J. . .Jd)(xl,. . .,xK)
X dxy,. . Ldxg_g

where the integration is over the appropriate region in (K — 1)-dimensional
space, and which is shown to be given by

r—1

1—-x—...—x, _

0 e*"g(x'—xi) 1k
r j=l

See [37] and [38]. In this expression vy is Euler’s constant, and g(-) is the
density of a random variable Z which has Laplace transform

E(e™'%) = exp{e Jl (e™”— 1)y‘1dy}
0
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The product I'(6)e®g(z) equals z°~! in the range 0 < z < 1. Therefore the
joint density for the first r nondecreasing order statistics is given by

flx, xa, . 0 %) = 0’( H x11-x-.. .x,)o"')
=1

B. Exchangeable Random Partitions

This section collects some relevant results and definitions from [15] for
easy reference.

A function f from a set {1,2,..., N} onto itself induces a partition of
this set: points i and j belong to the same component if and only if some
k-fold iteration of f evaluated at i is the same as some m-fold iteration
evaluated at j. Here we take f to be uniform over the set of all NV possible
functions, then induced partitions are exchangeable random partitions.

The main result we use in this paper is Theorem 11.14, and Proposition
11.9 in [15]. Proposition 11.9 defines the Poisson-Dirichlet distribution
on the set

={(P1,P2,. SIPIZ P -,217;51}
j

Let Ly be a map from the set of all partitions of {1,2, ..., N}, denoted
by A = {A;}, into partitions of N into sums of nonincreasing integers

IN= {(ni):nlznzz, . "zni=N}
i

where n; is the number of elements in A;, denoted by |A,|.

As N goes to infinity, N I\{RV)— D = (D, D5, . ..) almost surely,
where RV denotes the set of random partitions of positive integers up to
N, and where D is an element of A. Its distribution is called the
Poisson-Dirichlet distribution by Kingman in [19].

Define

OmMay,az,. . .,an) = P{a(RN) = (a;, . . .,ap)}

Then, this expression is known as Ewens’ sampling formula in the
literature of population genetics

QN(al,..-,aN)=0(0+1) 0+N I)H]ﬂ’a]
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In this expression, the factor,
N

Tl

is the number of permutations of {1,2,...,N} with exactly g; cycles of
length j,j=1. Note that > ja;= N.

The parameter 6 in it is related or interpreted by the fact

1

2,(0,1) = 1+

where the left-hand side is the probability P(R?{1,2}),i.e., 1 and 2 belongs
to the same set in the partition of {1,2}. In the uniform random partition
=} as shown by Aldous. This number has been obtained by more
elementary and direct calculation by Derrida and Flyvbjerg in [16].
Let D = (Dy, D,,...) be as above, governed by the Poisson-Dirichlet
distribution. As we have discussed in the main part of this chapter, we
should think of D; as the fraction of agents of type i. Define

¢(y)dy = Pr(some D; € (y, y + dy)}

This function is called the intensity or frequency spectrum function.
Aldous also has a short derivation of this function given by

¢() =y~ 1 —-y)°*"

Using this function we can calculate many interesting functions. For
example

2

0
Pr(1,2,...,N in distinct components) = H _—
i=1 6+i—1
In view of this and other related relations we can interpret the
remainder of Ewens’ sampling formula. See [17] for details.
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Fuzzy Random Data Obtained as Vague
Perceptions of Random Phenomena

Tokuo Fukuda

Otemon Gakuin University, Osaka, Japan

. INTRODUCTION

The purpose of this chapter is to explore fuzzy random vectors (FRVs)
or equivalently multidimensional fuzzy random variables which will be
a theoretical basis for investigating multidimensional fuzzy stochastic
processes given as an extension of scalar ones proposed by the author and
his colleagues [1-4].

Suppose that a person feels the atmospheric temperature and humidity,
and that he expresses the degree of comfort by using a word like “sultry,”
“comfortable,”” ‘“‘very sultry,” “very comfortable,” etc. The linguistic data
obtained from him as mentioned above have two outstanding features.
One is fuzziness due to the intrinsic vagueness of the words like ‘‘sultry”
and “comfortable”’, and another is the randomness caused by the random
fluctuations of the temperature and humidity. Furthermore, it should be
noted that a person feels the temperature and the humidity simultaneously
and he expresses the degree of comfort synthetically. Hereafter, we call
these data fuzzy random data (FRD). Then, a natural question arising with
respect to FRD is evidently how to describe them mathematically and what
properties they have.

There have been many publications concerned with fuzzy random
variables with various definitions. See, e.g., Kwakernaak [5,6], Miyakoshi
and Simbo [7], Kruse and Meyer [8], Boswell and Taylor [9], Inoue [10],
Klement, Puri and Ralescu [11], Puri and Ralescu [12-14], and Uemura
[15]. However, it may be fair to say that little effort has been made to
investigate FRVs from the viewpoint of the vague perceptions of non-fuzzy
random vectors.

299
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In this chapter, using the set representation method of fuzzy sets, the
concept of FRVs is introduced, and some of their statistical properties are
investigated theoretically.

Section II is devoted to describing the basic results concerned with
general fuzzy sets, and the functions of multidimensional fuzzy sets (fuzzy
vectors) are also given in the same section. FRVs are introduced in Section
III, where the methodology proposed by Kwakernaak [5] is adopted with
the help of correspondence theory. Furthermore, in Section 1V, applying
multivalued logic, the statistical moments of FRVs up to second moments
are proposed and some of their properties are examined theoretically.
Proofs of propositions and theorems are deferred to the appendix.

Il. SET REPRESENTATIONS OF FUZZY VECTORS
AND MATRICES

In this chapter, a fuzzy set U given as a vague perception of x, € X is
defined by the triple

U=(X,{Uasla€(0,1)},s50) ' (1)

where X is called the basic space; s is the predicate, i.e., sg: X — P with
@ the “universe of discourse” defined by a set of statements, and assigns
a statement

sg(x) = {x coincides with x,} 2

to each element x €X; and {U,|a €(0,1)} is the family of subsets of X
satisfying

L, UcU,cLz;U forVa€(0,1) €))

In (3), L, U and LU are the strong cut and the level set of U at « defined
respectively by

LU= (x| GEX)A(D)(x)>a)) for a€[0,1) 4)

LU= (x| cEX)A(D)(x) = @)} for a€(0,1] )
where (0)(x) is the membership function of I/ given by

(O)(x) = t(s5(x)) (6)

and #(*) in (6) is the truth function of * in the sense of multivalued logic.
The crisp point x,, in X, which gives the vague perception, i.e., the fuzzy
set U, is called the original point of /. The definition of fuzzy sets adopted
in this chapter is a modified one originally proposed by Kwakernaak [5].
Furthermore, we call the family of subsets {U/,|a € (0,1)} defined by (3)
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the set representation of a fuzzy set . This view is slightly but not
essentially different from its usual definition (see, e.g., [8] or [16]).

As seen from the definition of fuzzy sets given by (1), there may be
many fuzzy sets which have the same strong cuts and level sets at every
level a € (0,1). This leads to the following definition of the equivalence
of fuzzy sets:

Definition 2.1 Two fuzzy sets [J and V are called equivalent, and denoted
by U=V, if

LoU=L,V and LzU=LgzV for Va€(0,1) @)
It can be shown that if the following relation
L,UCV,CLgU for YaE(0,1) 8

holds, then &/ = V, where {V,|a €(0,1)} is the set representations of V.
Furthermore, let {a; |r=1,2, ...} and {e; |r=1, 2, ...} be a strictly
increasing and decreasing sequence, respectively, such that

a=limae;, fora€l0,1), and a=lima;} forac(0,1] (9)

r—» r—»

as well as @, €(a,1) and a;f €(0,a). Then,

L,U=J U,- fora€[0,1) and
1

r

g

LU= U, for a€(0,1] (10)
r=1
are valid [8].

Let the basic space X of a fuzzy set I/ be a metric space, and let
{U4]@€(0,1)} be the set representation of [J. Then, the collection of all
fuzzy sets in X is denoted by 4(X) when it satisfies the following
conditions:

1. () U.=L10+Q

ag(0,1)
2. U, is compact for each a €(0,1)
3. supp U defined by

supplU=c |J U,=dLo0 (11)
ac(0,1)

is also compact.
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Proposition 2.1 Let U= (X, {U,|a€(0,1)}, sp) be a fuzzy set in §(X),
where X is a metric space, and f:X— Y be a mapping from X to another
metric space Y. Then,

f(O) = (Y, {f({UJ]| € (0,1)}, 550y (12)
is the fuzzy set satisfying

f(L,O) = L,f(D) for Va€[0,1) (13)
and

f(Lz0)C Laf(D) for Va€(0,1] . (14)
where

spoy(v) = {v coincides with f(u,)} (uo: the original point of 0) (15)

Furthermore, when f is a continuous mapping, the equality in (14) holds,
ie.,

f(LszU) = Lgf(U) for Ya € (0,1] (16)
and U is a member of §(X).

The family of fuzzy sets is denoted by 4(X) when each element U in
4.(X) is a member of 4(X) and its set representation is composed of
compact and convex sets. When X is the n-dimensional Euclidean space
R”, the fuzzy sets in £(R") are called (n-dimensional) fuzzy vectors in
this chapter.

Let us consider the fuzzy set obtained as a vague perception of a crisp
m X n matrix A, (original matrix),

A=R™", {Al]a€(0,1)},54) (17)
where the basic space is given by R™*", and its set representa-

tion {A,/a€(0,1)} is given by the family of sets of m X n matrices
satisfying

L,ACA,CLzA for Va€(0,1) (18)
with

L. A = {A|(AER™YN((A)(A) > a)} (19)

LzA = {A|(AER™N((A)(A) = a)) (20)

(A)(A) = Hsa(A)) ' (21)
and

si(A) = {A coincides with A} (22)
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As given in (17), the fuzzy sets on the basic space R™*” will be represented
by using bold-faced capital letters with a tilde. The families of fuzzy sets
g(R™*") is defined in the same manner as (R”). The fuzzy set in
g(R™>") is called a fuzzy matrix in this chapter.

lll. FUZZY RANDOM VECTORS AND MATRICES
A. Fuzzy Random Vectors

Let (0,4, P) be a complete probability space, where 4 is the g-algebra
generated by the subsets of 2, and P is a non-atomic probability measure.
Let x, € R" be a random vector defined on this probability space. Assume
now that we perceive the value of x,, through a set of rectangles {W;|i € J}
with J a finite or countable set, each representing a rectangle in R", such
that

W;(1W;=@ fori#j and |J W;=R"
ieJ
Let us define the special type of fuzzy set given by
I;=(R", {ii,alae(()’ D},sr) (23)
where
s1,(x) = {x coincides with x, in W;}
with I; , = W; for Ya € (0,1), and

1 lf xE Wi
0 otherwise

(s20)) = (A)(x) = {

Then, we can consider that knowing in what rectangle the point x, exists
is equivalent to getting the fuzzy set defined by (23). Therefore, the

mapping

characterizes a special type of FRVs, and this implies we can define FRVs
by replacing the set representations {I; o/ € (0,1)}(i €J) by the collec-
tion of general set representations.

In order to define FRVs mathematically, first define the reduced
probability space ({0, 4, P) generated by 7C 4, where (} is the quotient
space of £, i.e.,

0 =0/~ (24)
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with the equivalence relation

~ S [VAEZ, 0, EA S v, EA] (25)
A is the reduction of # defined by
= {Alc"H(A)EA) (26)
where ¢(-) is the canonical projection, i.e.,
c(w)=c(w) =0EQ if wy~w, (w;,w,EQN) 27)
and P is the probability measure on A given by
P(A)=P(c"'(A)) for VAE A (28)

Let X7 be the collection of all the nonempty compact convex subsets of
R”, and #(X’) stand for the Borel family of X7, i.e., the minimum
o-algebra generated by the open subsets of X7, where the topology of X7
is generated by the Hausdorff metric dy given by

uEA ve uEB vEA

dy(A,B) = max{ sup inf ||u —v||, sup inf |ju— vll} (29)

for arbitrary elements A and B in K. Then, we have the following
definition.

Definition 3.1 The FRV X obtained as the vague perception of an
ordinary random vector x, is defined by the mapping %:Q — g(R") with

(@) = (R", {x(®)|@E€EQ,a€(0,1)},s;) (30)

where the set representation {i,(®)|@€ Q,a€(0,1)} is composed of
A-measurable correspondences from €) to R” [17]; and s; is the predicate
associated with the statement

s:(x) = {x(w) = xo(w) a.s. in 0} (31)
The measurability of % is given through that of the function %, from Q
to B(XY), i.e.,

i (E)EA for every EE&X") (32)

A correspondence %, between ) and R” is a relation between them
whose domain is the whole of . Thus, %, can be considered as a function
from () to the family of the subsets of R” with the property that %,(@) # &
for all @ €.

Definition 3.2 The random vector x,, of which the FRV % is a fuzzy
perception, is called the original random vector of the FRV. We denote
the admissible set of all possible original random vectors by .
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Throughout this chapter, we assume that the following conditions hold:

(A-1) x,E€ x and x,Esuppx (x,: the original random vector)

(e X)/\(§E m X, a.8. in Q)} +J
ae(0,1)

The condition (A-1) is surely natural since FRVs are obtained as the vague

perception of random phenomena. (A-2) implies that the correspondence

X has at least one almost everywhere selection. For more detailed aspects

of almost everywhere selections of correspondences see, €.g., [18] and

[17].

(A-2) {E

Proposition 3.1 The following four measurabilities are equivalent:

(a) %;'(E)EA for every EE &(X")

(b) UG ={0EQ|x(®) NG+ T}E A for every GEBR")
() ¥(G)={0o€Q|i,(®) CG}EA for every GE BR")

(d) Gr(x,) = {(@,x) EQ X R"|xE i,(®)} EAX BR"

where 4 X 8R") is the product o-algebra on Q4 X R”, i.e., the smallest
o-algebra containing all the products of the form A X B with A € A and
B € BR").

Since %, is a correspondence from €} to R”, the composition %,0 ¢ is a
correspondence from € to R”. Therefore, the following corollary also
holds:

Corollary 3.1 Let x, be a correspondence defined by the composition
Xo0c. Then, the following four measurabilities are equivalent.

(@) x;YE)EA for every EE€&XD)

(b) x%(G)={wEQ|x(w)NG + T} EA for every G E BR")
(©) x(G) ={wEQ|x,(w) CG}E A for every G € BR")

(d) Gr(x,) = {(@,x) € Q X R"|x € x,(w)} E A X BR"

where 4 X B(R") is the product o-algebra on £ x R".

Theorem 3.1 Let % be an FRV and {x,|a € (0,1)} its set representation.
Then, the following properties hold:

(i) Lo¥(®) is an A-measurable correspondence for Ya € (0,1).
(i) {Lax(@®)|@EQ,a€ (0,1)} is a set representation of the FRV equiv-
alent to x.
(iii) supp (@) is an A-measurable correspondence.
(iv) L1i(@) is an A-measurable correspondence.
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Theorem 3.2 Let & be a FRV and {%,|a€(0,1)} its set representation.
Then, for each a € (0,1) and i€ {1, 2, .. ., n}, inf ¥, (@) and sup %, ()
are A-measurable random variables, where

ja’,-(d)) = {xileia(d)),x = (xlv ceey xn),} (33)

Let x be a scalar FRYV, i.e., a fuzzy random variable. Then, using
Theorem 3.1(iii) and the same procedure for the proof of Theorem 3.2,
we can confirm 4 measurability of inf(supp %) and sup(supp ). Then, the
following corollary is obtained.

Corollary 3.2 Let % be a fuzzy random variable. Then,

(i) infL,% and sup L,% are A-measurable for each a € (0,1).
(ii) inf Lg% and sup Lg% and A-measurable for each a € (0,1].
(iii) inf(supp ) and sup(supp ) are A4-measurable.

B. Fuzzy Random Matrices

Let X" be a collection of all the non-empty compact subsets of R™>",
and &(X"™*") stand for the Borel family of X", where the topology of
K> is generated by the Hausdorff metric dy given by (29) with the
matrix norm

instead of the vector one, where A, is the maximum eigenvalue of A’ A.
Then, fuzzy random matrices (FRMs) are defined in the same manner as
that for FRVs:

Definition 3.3 The FRM M obtained as the vague perception of an
ordinary random matrix M, is defined by the mapping M:Q — g(R™*")
with

M(&) = (R™", {M,|a € (0,1)},sn) (35)

where {M(&)|a € (0,1)} is composed of 4-measurable correspondences
from Q) to &X™*"); and

sp(M) = {M(w) = My(w) a.s. in Q} (36)

Let & be an n-dimensional FRV. Then, as a kind of fuzzy version of
the matrix xx’ generated by the ordinary random vector x, the fuzzy set
¥ x' generated by % is given as follows:

FEF = (R {5,055 a€(0,1)},s:m) (37)
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where %, is the element of the set representation of %,

i 0x, = {W|W=xx',x EX,} (38)
and
szme(W) = {W coincides with x,x5} (39)

Proposition 3.2 Let X be a FRV and {%,|a € (0,1)} its set representation.
Then, the fuzzy set given by (37) is a fuzzy random matrix, i.e., XC %' is
the element of g(R"™") and

(8, D 3,)"YE) EA for every ER € B(X"™") (40)
Furthermore, X%’ satisfies

L (x0%') =(Lox)B(Lax) for Va€[0,1) (41)
and

Lz(#0x") = (Lzx)E(Lgx)’ for Ve €(0,1] (42)

IV. STATISTICAL PROPERTIES OF FRVs
A. Expectation of FRVs

Let £ be a possible original random variable of the FRV %, i.e., a random
vector in x. In order to investigate the statistical properties of %, consider
first the following statement:

s#(£) = {£ coincides with the original random vector x, a.s. in Q} (43)
Then, the above statement sz(£) is rewritten as
548 = N {Hw) = xo(w)| 0w EQ except for Vo E A € 4
such that &w) # x,(w) and P(A) = 0} (44)

Using the results given by Bellman and Giertz [19], it can be found that
the truth value of si(£) is evaluated as

1(s:(8)) = esseigf {G(@))(&())} (45)
where

essigf {(Z(@))(&(w))} = inf{(¥(@))(4w))| 0w EQ, & = c(w) except for
e Vw € A € 4 such that {w) # x.(w)
and P(A) =0} (46)
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Incidentally, the proposition

se(r)(x) = {x coincides with the expectation of x,} 47
is given by
sey(¥) = V Asd§ N (E{} = x)} (48)
£EX

Then, the truth value of the composite proposition sz (x) is given by

Hse(zy(x)) = Sup{ (essinf (i(d’))(ﬁ(w))) N(E{E} = x)} (49)
I3=3% weEN

with sup@ =0.* We introduce here the Aumann-like integral (ab-
breviated as AL-integral) given by

(AL) f £ dP = {x

x= [ap e s, (50)
where %, is an arbitrary element of the set representation of %, and S(%,)
is the selection set of %,, i.e.,

S(%,) = {£|EE€ x; Hw) E X (@) ass. in Q; @ = c(w)} (51)
Using the AL-integral given above, the expectation of %, is defined by

E{%,} = (AL) f %,dP (52)

When the admissible set of possible original vectors x is composed of
integrable random vectors satisfying the condition (A-2), it is easy to show
that

E{x,} # & for each a€(0,1) (53)
Then, we can confirm the following property holds.

Proposition 4.1 Let & be a FRV and {x,|a € (0, 1)} its set representation.
Assume that every element of x is integrable. Then,

{x|(se(2)(5)) >} C E{%a} C {x|t(sp(xy(x)) Za} for Va€(0,1) (54)

Therefore, the following definition of the expectation of a FRV & should
be reasonable.

Definition 4.1 Let & be a FRV and {X,|a €(0, 1)} its set representation.

*Hereafter, we always consider sup@ = 0.
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Assume that every element of y is integrable. Then the expectation of the
FRV x is defined by

E{x} = R", {E{%.}|2€(0,1)},5£(z)), (35)

where sgy;) is the predicate associated with the statement given by (47),
and {E{%,}|a€(0,1)} is the set representation of E{x} given through
(52).

It is clear from (54) that

L E{%} CE{x,) CLgE{x} for Va€(0,1) (56)
with

L, E{x} = {x[(E{x})(x) > a} (57)

LzE{x} = {x|(E{x})(x) = &} (58)
and

(E{x})(x) = t(sp(x)(x)) (59)

which means that { E{%,}|a € (0, 1)} surely satisfies the condition imposed
on set representations of fuzzy sets.

The following corollary is obtained immediately from the proof of
Proposition 4.1.

Corollary 4.1 Let & be a FRV and {x,|a €(0,1)} its set representation.
Assume that every element of x is integrable. Then {E{L,x}|a € (0,1)}
and {E{Lzx}|a€(0,1)} are the set representations of the fuzzy set
equivalent to E{%}, and they satisfy

Lo E{x} C E{Lo%} C E{Lak} C LzE{%} (60)

By using Lyapunov’s convexity theorem (see, e.g., [17]), we have the
following result.

Proposition 4.2 If the admissible set of possible original random vectors
x consists of all integrable ones, then E{%} is convex.

For the convexity of E{¥}, we have another result:

Proposition 4.3 Let X be a FRV and yx also convex, i.e., if ¢ € x and
& E X, then £ =26+ (1 — A& Ex for A€(0,1]. Then, E{%} is convex,
if E{%} exists.

In order to investigate further the properties of the expected FRVs, we
have to introduce the concept of integrably boundedness of .

Definition 4.2 The admissible set of possible original random vectors
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X is L"-integrably bounded if x consists of all the random vectors
satisfying

|&(w)|"<h(w) a.s. in Q (61)

where h(w) is the random variable such that

fth<+oo (62)

Theorem 4.1 Let k be a fuzzy random vector, i.e., x€E4.(R"), and
assume that x satisfies the following conditions:

(i) x is convex
(ii) x is composed of the random vectors satisfying (61) and (62) with
n=1
(iii) x is closed with respect to convergent sequences, i.e., if uj—u a.s.
in Q(u; € x), then u is the element of x.

Then, E{x} is a fuzzy vector, E{x} € §.(R").

Theorem 4.2 Let % be a fuzzy random vector. Assume that x is
L-integrably bounded. Then, E{%} is a fuzzy vector, and it satisfies

cl L E{x} = E{cl L %} (63)
and
LgE{x} = E{Lzx} (64)

for every a€ (0,1).

B. Second Moments of FRVs

Since x[dx' is a fuzzy random matrix when % is a FRV as shown in
Proposition 3.2, it is possible to consider the second moment of k. Let
x, be the original random vector of a FRV k. Then, the statement “M
coincides with E{x,x,}” is given by

SE(emey (M) = fV {sd©) N(E{&E'} = M)} (65)
€x

where sz(£) is the proposition given by (43). Using the same procedure

as for sg(¢ given by (48), the truth value of the composite statement

sgzmey (M) is given by

(s ety (M)) = sup{(essinf(ﬂ@)@(w))) N(E(EE) = M)} (66)
cex L\ wen
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Therefore, using the second moment E{X,[%,} of the correspondence
X, 1.€.,

E{%,0%,) = (AL) f %, 0%,dP (67)

the following relation is confirmed.

Proposition 4.4 Let % be a FRV and {%,|a € (0,1)} its set representation.
Assume that each element ¢ of x is square integrable, i.e.,

f||§||2dP<+w for VEE x (68)

Then,

{M|t(sp(zmey(M)) > a) C E{x, B X5} € {M|t(sezmsy(M)) = a}
for Ve €(0,1) (69)

Definition 4.3 Let % be a FRV and {x,|a € (0, 1)} its set representation.
Assume that every element in y is square integrable. Then, the second
moment E{x %'} of % is defined by

E{xQx'} = (R {E{x,Lx,}|a€(0,1)},5e(z:ms}) (70)

where s @e is the predicate associated with the statement given by (65),
and {E{x,Ex,}|a€(0,1)} is the set representation of E{¥[Hx'} given
through (67).

Furthermore, the proposition “M coincides with the variance of the
original random vector x,, of ¥’ should be given by

Svar{M) =§v {s:(&) N\ (var § = M)} (71)
€x
where
var§ = E{(§— E{£§})({— E{§})’} (72)

Then, using the same procedure as for sg(;qey defined by (65), the truth
value of the composite proposition s,,.(M) is given by

(5var M) = sup{(essinf (x(«:»))@(w)))/\@arg - M)} )
135 weEN

The following proposition is proved by using the same procedure as that
for Proposition 4.4,
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Proposition 4.5 Let  be a FRV and {x,|a € (0, 1)} its set representation.
Assume that each element of y is square integrable. Then, we have
{M|t(svar(M)) > a} Cvar i, C {M|t(syar(M)) = a} Va€(0,1) (74)

where

var¥, = E{(k, BIE{%,}) O (£ D E{x,})'} (75)
and
ko B E{xs} = {x|x = £ - E{¢},£E X4} (76)

Definition 4.4 Let % be a FRV and {,|a € (0, 1)} its set representation.
Assume that every element of y is square integrable. Then, the variance
of % is defined by

vark = (R™*", {vark,|a € (0,1)}, Syars) an

where s,,.; is the predicate associated with the statement given by (71),

and {var¥,|a€(0,1)} is the set representation of var¥ given through
(75).

Proposition 4.6 Let ¥ be a FRV and assume that each element
of x is square integrable. Then {E{L,(x3x')}|a€(0,1)} and
{E{Lz(x 2 x")}|a € (0,1)} are the set representations of the fuzzy sets
equivalent to E{x[ X'}, and they satisfy

L,E{xOx'} CE{L(xBx")} CE{x,0%,} CE{Lz(xEx")}
CLzE{(xQx'} (78)
for each a€(0,1). Furthermore, var L, % and var Lz% are also the set
representations of the fuzzy sets equivalent to var X and they satisfy
L,(vark) Cvar L % C vark, C var Lzi C Lg(varX) 79)

for each a €(0,1), where var L, % and var Lz% are given by (75) with
Xy,=L,% and %, = LgX, respectively.

Theorem 4.3 Let ¥ be a FRV, and assume that the admissible set of
possible original random vectors x satisfies the following conditions:

(i) x is convex
(ii) x is composed of the random vectors satisfying (61) and (62) with
n=2.
(iii) x is closed with respect to convergent sequences, i.e., if uj—u a.s.
in u; € x), then u is the element of x.
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Then, E{x 3 X'} and var X are fuzzy matrices, i.e.., they are the elements

Of ¢(R" Xn) .

Theorem 4.4 Let % be a FRV, and assume that x is L?-integrably bounded.
Then, E{x 0 X'} and var % are the elements of g(R™™") and they satisfy

cl LyE{x B3} = E{cl((La%) B (La%)")) (80)
LzE{xQ"} = E{(LaX) 8 (LaX)"} (81)
cl L (varx) = var(cl L,%) (82)
Ly(var %) = var(Lg¥) (83)

for every a € (0,1).

With the help of Proposition 3.2, the propositions and theorems in this
subsection are proved by using the same procedures as those for E{x} in
Subsection IV.A, and hence, they are omitted here.

V. CONCLUSIONS

In this chapter, a class of FRVs and their statistical moments up to second
moments have been introduced from the consistent viewpoint of fuzzy
perceptions of ordinary nonvague random vectors, and some properties
of FRVs and their statistical moment have been examined theoretically,
where set representations of fuzzy sets are thoroughly adopted because
of the feasibility for describing operations between FRVs.

It may be fair to say that by adopting the family of compact convex
correspondences as the set representation of an FRV, we are able to
introduce a reasonable definition of FRV, which is basically compatible
with the (scalar) fuzzy random variable proposed by Kwakernaak [5] and
is never obtained from a simple extension of Kwakernaak’s. Furthermore,
the proposed concept of FRVs as vague perceptions of random vectors
may be, in some sense, a bridge between two major types of fuzzy random
variables: one proposed by Kwakernaak and the other by Puri and Ralescu
[12].

It should be noted that since the set representations of proposed FRVs
are constructed by collections of correspondences, the rich theory of
correspondences is expected to be applicable for further investigation of
our FRVs.
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VL. APPENDIX: PROOFS OF PROPOSITIONS AND
THEOREMS

Proof of Proposition 2.1

(i) Since we can rewrite the propositions sq ) by

spon(v) = \E/X{Sa/\(v=f(u))} (A.1)
it follows that
Wspan(v)) = Sgl))({(f/)(u)lv = f(u)} (A2)

Assume here that

YE (vlH(spon(v)) > a) = {

sup ()W) = ) > a} (A3)

Then, it can be found that there is some element x € X such that y = f(x)
and x € L, UC U,. Hence, it is clear that

y=fGx)C{vlv=F(u), uely,} (A.4)
or equivalently

{v|tspan(v)) >} CA(LaU) Cf(Ua) (A.5)

On the other hand, when there is a y such that

YEf(U) = {v|v=F(u), ueU,} (A.6)
some element x in X satisfies y = f(x) and x € U, C L; U, which means

yCS{vlv=fw), ue€Lzl)C (dspenv) =) (A7)
or equivalently

f(Uq) Cf(LaU} C (¥ dsqen(v) = a) (A.8)
Combining (A.5) with (A.8), we have

(v €span(v)) > a) Cf(Ua) C {v|span(v)) = a} (A.9)

for Ya € (0, 1), which shows that {f(U,)|a € (0,1)} is a set representation
of the fuzzy set f(U).

(ii) From (A.5) and the definition of the membership function of f(0),
it is clear that

L.f()Cf(L,U) for a€[0,1) (A.10)
Assume here that

YEf(LaU) = {v|v=f(w), u€L,U) (A.11)
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Then, we can find that there exists at least one element x of L, U satisfying
y = f(x), which means

y=10 || sup (@I =) >a]
uex (A.12)
= Lof(U),
or equivalently
f(L,O)YC L,f(U) for a€[0,1) (A.13)
Therefore, combining (A.10) with (A.13), it follows that
f(L,O)= L, f(U) for Va€E[0,1) (A.19)

(iii) It is obvious from (A.8) that (14) holds. Hence, in order to show
(16), it is sufficient to prove

f(Lz;0) 2 Lsf(U) for a€(0,1] (A.15)
Define x,(v) and m(v) by

xo(v) = {uEX|(v =f(u)) \(uE€ LzU)} (A.16)
and

m(v) = {(O)(w)| (@€ X)N\ (v = f(u))} (A.17)
respectively. When x,(v) is not empty, it is easy to verify that

Laf(O)Cf(LzU) for a€(0,1] (A.18)

If x,(v) is empty, Lzf(U) is rewritten as
Laf(0) ={y ¥

Hence, if v € L5zf(U) holds, we obtain

supm(v) = a (A.20)
ueX

sup m(y) = a} (A.19)
ueX

Since we have assumed x,(v) =, it follows that
B<a for all BEm(v) (A.21)

Therefore, a is an accumulation point of m(v), i.e., there is a strictly
increasing sequence {af |k =1,2,...} of elements ai € m(v) with

lim af = (A.22)

k—oo

The property af Em(v) is connected with the existence of x; € X, which
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satisfies the condition v =f(x;) and (U)(x¢) = af, and hence x,
€ LzU.

Since U € g(X), it can be shown that LzrU is a compact subset of X
for each k € N. Therefore, we can conclude that the sequence {x;|k € N}
has an accumulation point x and especially that it contains a partial
sequence {x; |k € N} convergent to x. Furthermore, from the compactness
of LzU for a €(0,1], it follows

x€ [\ LglU= LU (A.23)
k=1
Since f is a continuous mapping and LgzUD Lz U, VKEN, we
obtain

lim x;, = x = lim f(x;) = f(¥) (A.24)

k— k— oo

For all k€N, f(x;) =v, and hence f(x) = v with x€ Lz U as shown in
(A.23). Therefore,
xEUEX|(v=Ffu)N\uE L;U)}
= Xa(v) (A.25)
which is a contradiction to the assumption x,(v) = . Therefore, only the
case ‘x,(v) # &’ occurs and (16) is proved.
(iv) Assume that f is a continuous mapping. Then, it is obvious that

f(U) is compact. Furthermore, using the equalities given by (13) and (16),
it follows that

N f<0a>=LTf<0>=f<LTU>=f( N 0a)ae® (A.26)

a€<(0,1) a€(0,1)
and

supp f(U) =cl | F(U) =clLof(U) = clf(Lo D)

a«€(0,1)
Celf(cl LoU) = f(cl LyU) = f(supp U) (A.27)

where the compactness of supp U has been used. Therefore, we can
conclude f(U) € g(X).

Proof of Proposition 3.1

In order to prove Proposition 3.1, we need the following Lemmas [17].

Lemma A.1 The following statements are equivalent:
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(@) %;'(E)EA for every E € B(Ry).
(b) x%(B) E 4 for every open subset BE R".

Lemma A.2 Let %(B) be an element of 4 for every open subset B € R”.
Then,

(d) Gr(x,) €A X B(R").

Lemma A.3 Let Gr(x,) be 4% B8R")-measurable. Then,
(c) (G)E A for every G € B(R").

(Proof of Proposition 3.1)

(a)— (d) and (d)— (c): These are easily obtained from Lemmas A.1,
A.2, and A.3.

(c)—> (b): Let B be an arbitrary element of #(R"). Then, the
complement B¢ is also an element of B(R™) and hence O\il(B°)€E 4.
Furthermore, we have

O3 (BS) = O\{@ € Q| %,(&) C RNB}
= {a €|, (®) NB # &}
= 24(B) (A.28)
which implies %%(B) €A4.
(b) > (a): An arbitrary open subset G of R” is clearly an element of

B(R") and this means that (b)— (b)’. Then, using Lemma A.1, it follows
that (b)— (b)' — (a).

Proof of Theorem 3.1

(i) Let {a; [r=1,2,...} and {o;" [r=1,2,...} be respectively strictly
decreasing and increasing sequences satisfying (10). Then, it follows
that

L= Ut (@), Lax=[)%(®), (A.29)
r=1 r=1

and LzX is compact and convex because so is %7 . Since %,-(®) and %,+(®)

are A-measurable and X,# (@) DX,4(@) 2. .. for each @€, it follows

that
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(Lo %) (A) = {a, =0 CJ fur (@) C A}
=1
ﬂ o (@) CA} E A (A.30)
and
(Lak)" (A) = { }
ﬁ E0|i (@)