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Preface to the Second English Edition

The first English edition of Pohl’s “Physical Principles of Mechanics and Acoustics” appeared in
1932 (published by Blackie & Son, Ltd., London and Glasgow). It was based on the second edition
of Pohl’s “Einführung in die Physik, Mechanik und Akustik” (Julius Springer, 1931). The present
new, second English edition, based on the 21st edition of “Pohls Einführung in die Physik”, Vol. 1,
(Mechanik, Akustik und Wärmelehre) (Springer Spektrum, 2017), has now been published after
nearly 85 years!

Following R.W. Pohl’s death in 1976 and the posthumous appearance of the 18th edition in 1983,
since 2004 we have edited three new revised and updated editions, based mainly on the 16th edition
(1964), the 13th edition (1955), and the 18th edition. The major change in this new series was
the addition of 74 videos demonstrating many of the experiments that R.W. Pohl had developed
and used. It is also augmented by comments in the margins when they appeared to be helpful as
additional explanations or were needed to provide more modern information (see the Preface to the
19th edition). We have in addition included the collection of exercises which Pohl provided for the
first English edition, and we have supplemented these (see the Preface to the 20th edition). The
exercises were not included in any of the first 18 German editions. We have furthermore modified
some mathematical formulations, symbols, and units so that they conform to the recommendations
of the International System of Units (SI).

We gratefully acknowledge the help of Professor W.D. Brewer of the Physics Department of the
Free University of Berlin, not only for carrying out the translation of the text with great quality and
speed, but also, and this is probably even more important, for his help with the identification and
clarification of unclear parts in the text and in our comments. The English-language readers will
appreciate the numerous links he added for further information.

We also wish to thank Dr. T. Schneider and Ms. D. Mennecke-Buehler of the Springer-Verlag
for making this edition possible, and for their generous help in carrying out its preparation and
production.

Berlin and Göttingen, March 2017 K. Lüders
R. O. Pohl
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Preface to the Twenty-First German Edition

One of the most extensive changes in this new edition concerns its format, and is intended to make
the books more readable. “Pohl” will now be published for the first time as an e-book, but also as
a printed version with a new format. The numbering of the chapters, figures, equations etc. now
conforms to the usual system in modern textbooks. The relevant exercises are given at the end of
each chapter.

We have also made major changes to the accompanying videos. In the e-book format, they are now
more readily accessible and can be called up directly using the appropriate links in the text. All
those videos which were produced in cooperation with the Institute for Scientific Films (IWF) in
Göttingen are now available in their original quality and with a spoken text. The remaining videos
were to some extent supplemented and in one case replaced by an improved version. Two new
videos have been added: “Kepler Ellipses” (an excerpt from the opening show of the 2009 “High-
lights der Physik” in Cologne), and “The Magdeburg Hemispheres” (an excerpt from a Lichtenberg
Lecture given by Prof. G. Beuermann in Göttingen).

At the same time, we have taken advantage of the opportunity to review all of the text critically.
This has led to a number of clarifications, both in the text and in the figures, including the addition
of several new figures, notably in Chapters 12 and 19.

We owe special thanks to Prof. K. Samwer from the First Physics Institute of the University of
Göttingen for his committed and helpful support of the preparation of this new edition in a variety
of ways. We also wish to give particular thanks to Prof. G. Beuermann, J. Feist and C. Mahn from
that Institute for their various and dedicated assistance. Furthermore, we wish especially to thank
Dr. J. Kirstein from the Physics Didactics group at the Free University of Berlin for his professional
and speedy editing of the videos. We are once again indebted to the Physics Department of the Free
University and its administration for providing working facilities and for the helpful efforts of many
of its members in solving technical problems, especially in connection with computer technology.
Finally, we heartily thank the Springer-Verlag, and in particular Dr. V. Spillner, Ms. M. Maly and
Ms. B. Saglio for their stimulating and agreeable cooperation.

Berlin and Göttingen, July 2015 K. Lüders
R. O. Pohl



From the Preface to the 20th Edition (2008)

The many positive comments from readers of the 19th edition of POHL’s Introduction to Mechanics,
Acoustics and Thermodynamics have encouraged us to publish a new, revised edition. This also
gave us the opportunity to include some supplementary material which we believe to be important.
In addition to new or revised marginal comments and a few factual clarifications within the text,
this new material consists in particular of additional videos and a set of exercises for the readers.
Also, the sections on osmosis and diffusion from earlier editions have now been included here.

This time, the videos were filmed under our own direction in the new lecture hall in Göttingen, in
addition to several filmed in cooperation with the Physics Didactics group at the Free University
in Berlin. In choosing the topics, we have again been guided on the one hand by our attempt
to present ’lively’ illustrations of physics, and on the other by our intention to document typical
demonstration experiments in the tradition of POHL, which in some cases are no longer being
shown even in Göttingen.

The major portion of the exercises originates with an earlier English-language edition (from 1932!);
they are thus POHL’s original exercises. However, we found it desirable to add somemore exercises
which deal with questions that either relate directly to the videos or illustrations, or that complement
the experiments, which are sometimes described rather briefly in the text due to lack of space.
These exercises are thus not problem sets in the usual sense, but rather they are intended to help the
reader achieve a better understanding of the sometimes difficult physical concepts described in this
volume, and furthermore they provide additional information.
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From the Preface to the 19th Edition (2004)

For over thirty years, from 1919 to 1952, R.W. POHL gave the introductory lectures in experi-
mental physics at the University of Göttingen for students of a variety of major subjects. The
three-volume set of textbooks based on those lectures pursued a double goal for many years: On
the one hand, they were intended to arouse the readers’ interest in physics; and on the other, they
served as textbooks for teaching basic physics to interested students. Even though in more re-
cent decades, physics education at the university level has adjusted more and more to the needs
of various professions and now includes many specialized courses, the goals of POHL’s works are
still valid and topical. We are therefore convinced that these books still convey a fascination for
the experimental investigation of physical phenomena and deserve a place on the bookshelves of
modern-day students. That is the reason for the present new edition, initially covering the fields
of mechanics, acoustics and thermodynamics. A second volume will present the most important
topics from electrodynamics and optics.

For many readers, the most noticeable characteristic of POHL’s books is the large number of exper-
iments which they illustrate and describe in detail; these demonstrate how one must ask questions
of Nature in order to uncover her secrets. The presentation of demonstration experiments using
shadow projections, which fix the attention of the observer on the essentials of the demonstration,
is an integral part of this program. But in addition, we want to provide readers with the opportu-
nity to experience the demonstrations just as they have been presented in the Göttingen lecture hall
for more than 80 years. For this reason, we have complemented this edition with two CD-ROMs
containing short videos. The first of these is an original film of a lecture delivered by R.W. POHL

in 1952 (Video 1).1 We hope that our readers will enjoy watching these videos as much as we have
enjoyed filming them.

In order to retain the liveliness of the “POHLs”, as the books are often called, it seemed important
to us to maintain the manner of presentation of their original author as nearly as possible. Since,
however, the first volume alone was available in no fewer than fourteen different editions, we
had to make choices. This book is based mainly on the 16th edition, which appeared in 1964.
Occasionally, however, we refer to other editions, in particular the 13th (1955) and the 18th (1983).

1 Video 1:
“R.W. POHL Lecturing”
http://tiny.cc/fpqujy
This film, shot by FRITZ LUETY (now professor emeritus at the University of Utah in Salt Lake City) while he was a
graduate student in 1952, for the summer celebration of the Göttingen physics institute, shows a lecture on oscillatory
motion given by POHL, with several demonstration experiments that are described in Chap. 11 of this book.

http://tiny.cc/fpqujy


From the Preface to the 19th Edition (2004) ix

We have as far as possible avoided making changes to the text. Among the exceptions are our more
frequent use of vectors and integrals, i.e. mathematical objects with which today’s readers are in
general familiar. Furthermore, we have adapted the symbols and units to modern usage, in order to
spare our readers the unnecessary annoyance of conversion. Our own attempts at enriching the text
are limited to comments in the margins, which contain both direct explanations of material in the
text and references to newer developments in the areas of physics treated.



From the Preface to the First Edition (1930)

This book contains the first part of my lectures on experimental physics. An effort has been made
to present them as simply as possible. This is intended to make the book accessible not only to
students and teachers, but also to other readers with an interest in physics.

Basic experiments occupy the most prominent place in the presentation. They serve in particular
to clarify the concepts and to provide an overview of the magnitudes of the quantities involved.
Quantitative details are not emphasized.

A large collection of demonstration experiments occupies considerable space. In our lecture hall
in Göttingen, we have a smooth-floored area of 12 � 5m2. The cumbersome accessory of earlier
lecture halls, i.e. the heavy, stationary demonstration table, has long since been dispensed with.
Instead, smaller tables are set up as needed, and they are no more anchored to the floor than is
the furniture in a living room. The clarity of the experimental arrangement and the accessibility
of the individual experimental setups are enhanced considerably by the use of these convenient
tables. Most of them can be rotated around their vertical axis and they are readily adjustable in
height. Thus, the annoying overlap of perspective between different setups can be avoided. The
setup currently being demonstrated can be highlighted and made visible to every member of the
audience by panning the tables.

The apparatus used is as simple as possible and consists of a moderate number of devices. Many of
the setups are described here for the first time. They can be obtained, as can other accessories for
lecture demonstrations, from the Spindler & Hoyer company in Göttingen.

The main portion of the illustrations in the book are based on photographs. Many of the images are
presented as silhouettes. This method of presentation is especially suitable for reproduction in book
form; in addition, it often provides some indication of the dimensions of the experimental setup.
Finally, showing the experiments as silhouettes makes them visible even in large lecture halls,
which demand clear-cut outlines, not interrupted by incidental details such as laboratory stands,
frames etc.

Göttingen, March 1930 R.W. Pohl



R.W. Pohl (1884–1976)

R.W. POHL (1884–1976) discussing color centers (F-centers), elementary crystal lattice defects which were
discovered at his institute and investigated there for many years. He is shown during a visit to the Ansco Re-
search Laboratory in Binghamton, NY in the year 1951. Details of POHL’s life and work can be found on the
website http://rwpohl.mpiwg-berlin.mpg.de of the Max Planck Institute for the History of Science (MPIWG).
There, one can find links to other literature, scientific institutions and websites which offer information and doc-
uments on the teaching and research of the famous physicist in Göttingen. In addition, the documentary video
“Simplicity is the Mark of Truth” by Ekkehard SIEKER (Video 1 from Vol. 2) can be found on the MPIWG
web site, together with all the other videos from both volumes and other audiovisual materials, available both
for videostreaming or as downloads.
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1.1 Introduction

Physics is an empirical science. It is based on experimentally-
determined facts. The facts remain, their interpretations may change
in the course of the historical progress of the science. Facts are
obtained from observations; sometimes chance observations, but
usually carefully-planned observations. Observing must be learned;
the inexperienced may be readily deceived. We offer two examples
of this:

a) The colored shadows. In Fig. 1.1, we see a white wall W , an in-
candescent gas lampC1.1 C1.1. In the incandescent

gas lamp, a net permeated
with oxides of Th and Ce
(the ‘mantle’) is heated by
a gas flame (C. AUER, 1885,
see Vol. 2, Sect. 28.6).

and an electrical incandescent lamp. P is an
arbitrary opaque object, e.g. a cardboard square. – Initially, only the
electric lamp is turned on. It illuminates the white wall except for the
shadow of the cardboard square, S1. The shadow is marked, for ex-
ample with a snippet of paper pinned to the wall. – Then only the gas
lamp is ignited. Again, the wall appears white, this time including
the marked area S1. A black shadow from the cardboard square can
now be seen at S2. – Now we come to the actual experiment: While
the gas lamp is burning, the electric lamp is switched on. This causes
not the least physical or objective change to the area S1. Neverthe-
less, to our eyes the image undergoes a fundamental change. At S1,

Figure 1.1 Colored shadows

3© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_1
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Figure 1.2 Spiral illusion

we see a lively olive-green shadow. It looks quite different from the
(now reddish-brown) shadow at S2. But still, only the light from the
gas lamp can reach our eyes from the area S1. That area is however
surrounded by a bright halo due to the light from the electric lamp.
The presence of this halo by itself gives rise to the very noticeable
change in the color of the area S1.

This demonstration is instructive for every beginner: Colors are not
physical properties, but rather results of psychology and physiology!
Not taking this fact into account has given rise to a good deal of
useless effort in the past.

b) The spiral illusion. In Fig. 1.2, everyone sees a system of spirals
curving around a common midpoint. However, in fact it consists of
concentric circles. One can verify this immediately by following one
of the circles with the point of a pencil C1.2.C1.2. Figure 11.42c shows

another, similar optical illu-
sion.

These and many other phenomena which result from the way our
sensory organs function seldom cause difficulties for practiced ob-
servers. But they still warn us to be careful. How many other as
yet unrecognized subjective influences may be lurking in our physi-
cal observations of Nature!? In particular, the most general concepts
which have been developed since earliest times in the course of hu-
man experience, such as space, time, forces etc., must be considered
suspect. Physics may yet have to deal with many a prejudice and
some misinterpretations.

1.2 Distance and Length
Measurements. Direct Distance
Measurements

Without doubt, experiments and observations have yielded new
knowledge, often knowledge of great import, even when they were
carried out only in a qualitative manner. Nevertheless, experiments
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involved are determined in terms of precise numerical values with
units. Measurements play an important role in physics. The art
of physical measurement is highly developed, the number of appli-
cable techniques is large, and they are the subject of an extensive
specialized literature and their own technical field (metrology).

Among the manifold types of physical measurements, those involv-
ing lengths and times occur particularly often – sometimes alone,
frequently paired with measurements of other quantities. It is there-
fore expedient for us to begin by discussing the measurement of
lengths and of times, and to elucidate their fundamentals, while not
concerning ourselves with the technical details of how they are car-
ried out.

We learn the usage of the words ‘length’ and ‘distance’ as children.
Every direct measurement of a length is based on applying and com-
paring to a ruler or other length standard. One counts how many
lengths of the ruler are contained within the length to be measured.
This may seem trivial, but it is often not adequately taken into ac-
count. The procedure of measurement itself, i.e. comparison with
a length standard, is not sufficient; in addition, a unit of length must
be defined.

Every definition of physical units is completely arbitrary. The most
important requirement is always an international agreement, which
must be as all-inclusive as possible. Furthermore, ready reproducibil-
ity is desirable, along with convenient numerical values for the most
frequently applied measurements in everyday life.

Length or distance measurements are based on the unit of length, the
meter. The meter was previously (before 1960) defined by the length
of a metal bar (the “archival meter”), kept at the Bureau des Poids et
Mésures in Sèvres; it is also called the “standard meter”. The modern
definition of the meter will be given below.

For calibration purposes, length standards are commercially avail-
able. They take the form of gauge blocks; these are rectangular steel
blocks with planar, parallel, highly polished end surfaces. When
struck together, they stick to each other (cf. Fig. 9.19). They can
be used to reproduce lengths to a precision within 10�3 mm D 1�m
(termed 1 micrometer, or 1 micron).

For practical length measurements, one uses divided length scales or
rulers, and various forms of measuring instruments. Rulers should
have division marks whose length is 2 1

2 times as great as their spac-
ing; then fractional distances can be estimated most accurately.

Measurement instruments for lengths facilitate reading off the frac-
tional distances by means of mechanical or optical arrangements.
The mechanical instruments make use of length conversions using
some sort of arrangement of levers, or screws (“screw micrometers”),
or gears (“dial indicators”), or spirals. Vernier calipers are also fre-
quently used.
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Figure 1.3 Length measurements using a microscope

Observations with a microscopeC1.3:C1.3. The optical micro-
scope, referred to here, is
discussed in detail in Vol. 2,
Sects. 18.11 and 18.12.

The microscope is among the
most important optical instruments for length determinations. These
are direct length measurements. As an example which can be demon-
strated to a large audience, we could measure the thickness of a hu-
man hair.

With a simple microscope, an image of the hair is projected onto
a screen. The thickness of the hair is marked on the screen with two
arrows, cf. Fig. 1.3, left side. Then the hair is removed and replaced
on the microscope’s object stage by a small scale etched into a glass
plate (object micrometer), showing e.g. one millimeter divided into
100 scale marks. The field of view now shows the image seen in
Fig. 1.3, right side. We can read off four scale divisions between the
arrows; the thickness of the hair was thus 4 � 10�2 mm or 40�m.

The error limits for length measurements with optical methods can be re-
duced to around ˙ 0.1�m.C1.4C1.4. Today, with optical

methods, distances can
be measured with uncer-
tainties down to about
20 nm (1 nm D 10�9 m, i.e.
1 nanometer). Because of
the requirements of man-
ufacturing technology,
efforts are being made to
reduce this limit even further
(cf. https://www.ptb.de/cms/
en/presseaktuelles/journals-
magazines/ptb-news/ptb-
news-ausgaben/ptb-news/
news07-2/high-precision-
length-measurements.html).

Mechanical methods can be used down to
˙ 1�m. The naked eye is limited to around ˙ 50 to ˙ 30�m (i.e. the
diameter of a hair!).

1.3 The Meter as a Unit of Length

For direct length measurements, one can employ a ruled scale with
extremely fine divisions, which are no longer visible to the naked eye.
This is demonstrated in Fig. 1.4. – One scale is attached to the fixed
part and one to the movable part of a screw caliper. Both scales are
glass platelets with fine division marks. As seen by the viewer, they
are one behind the other, and overlap over a large region. The black
division marks and the transparent gaps between them have the same
width (more precisely, each has a width of e.g. 1

20 mm).

In the zero position of the instrument, the marks on one scale just
cover the gaps on the other, so that the whole overlap region is opaque
and appears dark. If one now moves the caliper with its scale slowly
to the right, the overlap region appears periodically bright and dark.
Each new darkening means that the distance a�b has been increased
by the spacing of the division marks (in this example 1/10mm). As

https://www.ptb.de/cms/en/presseaktuelles/journals-magazines/ptb-news/ptb-news-ausgaben/ptb-news/news07-2/high-precision-length-measurements.html
https://www.ptb.de/cms/en/presseaktuelles/journals-magazines/ptb-news/ptb-news-ausgaben/ptb-news/news07-2/high-precision-length-measurements.html
https://www.ptb.de/cms/en/presseaktuelles/journals-magazines/ptb-news/ptb-news-ausgaben/ptb-news/news07-2/high-precision-length-measurements.html
https://www.ptb.de/cms/en/presseaktuelles/journals-magazines/ptb-news/ptb-news-ausgaben/ptb-news/news07-2/high-precision-length-measurements.html
https://www.ptb.de/cms/en/presseaktuelles/journals-magazines/ptb-news/ptb-news-ausgaben/ptb-news/news07-2/high-precision-length-measurements.html
https://www.ptb.de/cms/en/presseaktuelles/journals-magazines/ptb-news/ptb-news-ausgaben/ptb-news/news07-2/high-precision-length-measurements.html
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crometer, enlarged for clarity

a result, by counting the number of dark-light intervals of the invisi-
bly fine scales, one can carry out a direct length measurement. This
is, put succinctly, a length measurement using geometric interfer-
ence.

There is an optical analog to this length measurement by interfer-
ence: In optics, one can replace the man-made scales by naturally
given scales. One uses the light waves of a particular spectral line
emitted by excited atoms of the krypton isotope 86

36Kr. Their wave-
length in vacuum (the “division mark spacing”) has been compared
to the standard meter in Sèvres, and by international agreement, the
1 650 765.73-fold multiple of this wavelength has been defined as
one meter C1.5. C1.5. The unit of length ‘me-

ter’ was redefined in 1983:
“The meter is the length of
the distance which light tra-
verses during a time period of
(1/299 792 458) seconds”.
This fixes the numerical
value of the velocity of light
in vacuum and relates the
meter to the unit of time, the
second (see e.g. http://en.
wikipedia.org/wiki/History_
of_the_metre, and http://
physics.nist.gov/cgi-bin/cuu/
Info/Units/meter.html).

In this way, the hope is that the precise sense of the word ‘meter’
will be passed on to later generations more securely than by using
the “archival meter” as a prototype for defining the unit. An archival
meter rod, in spite of all the care that may be taken, remains an imper-
manent object. All rulers change their lengths in the course of long
time periods. This is the result of internal material changes which
occur within all solid bodies.

1.4 Indirect Length Measurements
of Very Large Distances

Baseline methods, stereogrammetry: Very long distances are often
no longer accessible to direct measurement methods. Consider for
example the distance between two mountain peaks, or the distance
of a celestial object from the earth. One must then apply an indirect
method of length measurement, e.g. the well-known baseline method
as indicated in Fig. 1.5. The length BC of the baseline is found when
possible by a direct length measurement. Then the angles ˇ and �
are determined. From the length of the baseline and these angles, the
required distance x is obtained graphically or by calculation.

http://en.wikipedia.org/wiki/History_of_the_metre
http://en.wikipedia.org/wiki/History_of_the_metre
http://en.wikipedia.org/wiki/History_of_the_metre
http://physics.nist.gov/cgi-bin/cuu/Info/Units/meter.html
http://physics.nist.gov/cgi-bin/cuu/Info/Units/meter.html
http://physics.nist.gov/cgi-bin/cuu/Info/Units/meter.html
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This method, well known from school mathematics, is however not
free of fundamental difficulties. It assumes without further consider-
ation that the light rays used to measure the angles can be identified
with the straight lines of Euclidian geometry. That is a presumption,
and its admissibility can in the end be confirmed only empirically.
– Fortunately, we need not concern ourselves with such fundamen-
tal uncertainties in the case of the usual physical measurements on
the earth. They become important only in special cases, e.g. in de-
termining the enormous distances which are relevant to astronomy.
Nevertheless, the beginning student of physics should be aware of
such potential difficulties; otherwise, he or she may see no problems
at all with length measurements and hold them to be the most triv-
ial sort of measurements in general. This opinion however is valid
only for direct length measurements, i.e. when applying a ruler and
comparing lengths.

To end our brief discussion of length measurements, we mention an ele-
gant technical variation of the baseline method of length determination, the
so-called stereogrammetryC1.6.C1.6. The method of stere-

ogrammetry, which is today
employed using digital data
processing technology, is
applied in many fields; in ad-
dition to surveying terrain,
also e.g. in architecture and
in medicine (X-ray stere-
ograms). Modern surveying
methods use in addition the
global positioning system
(GPS), based on the arrival of
radio signals from satellites.

It is the preferred method for surveying ter-
rain, especially in mountainous regions. In physics, it is used among other
things for determining complex 3-dimensional orbits or paths, e.g. those
of lightning discharges.
In Fig. 1.5, the angles ˇ and � were determined using some sort of protrac-
tor (e.g. a telescope with divisions on a circular scale). Stereogrammetry
replaces the two angular measurements at the ends of the baseline by two
cameras. Their objectives are denoted as I and II. The images B and C of
the same object A are shifted at their centers (different viewing angles) by
the distances BL or CR. From BL or CR on the one hand, and the overall
length BC on the other, the desired distance x of the object A can be com-
puted. This can be understood simply by applying geometry. For a given
baseline I � II and a given focal length f of the lenses, a calibration table
can be compiled.
Thus far, the method offers nothing notable. But now we encounter a se-
rious difficulty: It would be time consuming and often impossible for
example to determine the individual segment lengths in the complicated,
zig-zag path of a lightning discharge from the corresponding images B and
C. This difficulty can however be avoided. One combines the two pho-
tographic images in the well-known manner in a stereoscope to give one
image field which appears 3-dimensional. We see in Fig. 1.6 how the two

Figure 1.5 Length measurements
using a baseline, and stereogram-
metric length measurementsC1.6
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Figure 1.6 A stereoscope with a moveable marker. The images represent
forked lightning discharges

individual photographs are combined in a stereoscope. And now comes
the decisive trick: the use of a “movable marker”.
This movable marker or cursor is obtained by employing two identical
pointers 1 and 2. They can be moved over the image surface horizontally
and vertically. The distances through which they have been moved can
be read off the scales S1 and S2. In addition, the distance between the
two pointers can be varied systematically in a measurable way (S3, with
a scaled screw drive).
Looking into the stereoscope, we see these two pointers superimposed as
one, apparently floating freely in space. If we change their spacing (by
turning the screw S3), then the cursor appears to move towards us or away
from us in the ‘image space’. By using all three possible motions (S1,
S2, S3), the cursor can be adjusted to indicate any given point in the im-
age, thus to point to a mountain peak, to an arbitrary position along the
crooked path of a lightning stroke, etc. This demonstration is very impres-
sive. A calibration table then allows us to read off the distances (height,
depth, width) which determine the location of the given point (i.e. its three
spatial coordinates) from the values of the scale readings S1, S2, and S3.

1.5 Angle Measurements

Proceeding from length measurements, we can determine surface
areas, volumes and angles. We note only a few aspects of angle mea-
surements:

Planar angles (Fig. 1.7) are defined by the ratio
Arc length b

Radius r
; solid

angles (Fig. 1.8) by the ratio
Spherical surface sector A

.Radius r/2
. Then all

angles are determined as pure (dimensionless) numbers.
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Figure 1.7 The definition
of the planar angle ˝

Figure 1.8 The def-
inition of the solid
angle '

The symbol ı, representing the word degree, is simply a numerical
unit, defined by the equation

1ı D 1=360 circumference

radius
D 2�r=360

r
D �

180
D 0:01745 : : : (1.1)

� is the abbreviation for the number 3.1415. . . Correspondingly, ı
is an abbreviation for the number 0.01745. . . Thus e.g. ˛ D 100ı is
identical to ˛ D 100 � 0:0175 D 1:75.

The unit of all angles is the number 1. It is often expedient to denote
this number 1 in referring to a planar angle as the unit radian (ab-
breviated rad); or in referring to a solid angle as the unit steradian
(abbreviated sr). If these names for the number 1 occur in some com-
bination of units, one sees immediately that the determination of an
angle is included in the implied measurement procedure.

The equation: 1 radian D 57.3° simply expresses the identity

1 radian D 57:3 � 0:0175 D 1:

A cone with the opening angle ˛ intersects a surface sector A on a sphere
centered at its apex, with A D 2�r2.1 � cos˛/.
For ˛ D 32:8ı , the corresponding solid angle is ˝ D 1 D1 steradian. It
intersects a surface sector of area A D r2 on the sphere, i.e. the fraction
r2=4�r2 D 1=4� D 7:96% of the surface area of a sphere of radius r.
Example: Radiation intensity can be referred to the solid angle subtended
by the beam of radiation. See Vol. 2, Chap. 19.

1.6 Time Determinations. True Time
Measurements

The word time has two meanings: either an interval of time, or a mo-
ment in time. Just as a length is limited by its two end points, a time
interval is limited by the two moments in time at its beginning and
its end. Just as every direct length measurement is associated with
a comparison to a length standard, so is every direct time measure-
ment associated with a comparison to a clock. The most important
clocks are based on counting uniformly repeated processes (usually
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cept, but rather only experimentally: One compares many clocks of
all possible different types with each other and with periodically re-
curring astronomical phenomena. This comparison leads to a “strug-
gle for survival”: Clocks whose behavior deviates from that of the
majority are eliminated, and the regularity of operation of the surviv-
ing clocks is declared to be “uniform”.

Just like the definition of the unit of length, the definition of the unit
of time is a matter for international agreement. The unit called the
second was originally defined in terms of astronomical phenomena
(initially by the rotation of the earth around its axis, and later by its
annual orbit around the sun). These definitions, which in the final
analysis are mechanical, have proved to be inadequate1. Thus, they
have been replaced by an electrodynamic definition. It is based on
an electromagnetic wave emitted by 133

55Cs atoms under certain exci-
tation conditions, with a wavelength � in the range of 3 cm. Since
1967, the second has been defined as the time in which 9 192 631 770
oscillations (wave crest C wave trough) of these waves occur (and
can be counted) (“atomic clock”).

1.7 Clocks and Graphical Registration

Clocks which can be used for practical time measurements are well
known. They make use of mechanical oscillation phenomena. Ei-
ther a hanging pendulum oscillates in the gravitational field of the
earth (e.g. as in wall clocks or upright clocks), or a balance wheel
oscillates rotationally around a spiral spring (e.g. in a wristwatch or
pocket watch)C1.7. C1.7. Today, most small

clocks and watches utilize
the mechanical oscillations of
quartz crystals (Sect. 11.8).

We still have to show that the oscillations of such
a pendulum or balance wheel can be referred to a uniform rotation.

The swinging of a pendulum, put concisely, is similar to a circular
motion as seen from the side. Looking in the plane of the circular
motion, we see an object on a circular path as though it were moving
back and forth. Its motion over time is precisely the same as that of
a swinging pendulum. An optical recording can show this in a partic-
ularly graphical way; it converts the temporal sequence into a spatial
diagram and represents the motion in terms of a curve.

In order to register this motion, we use the arrangement which is
illustrated in Fig. 1.9: A slit S is imaged onto a screen P by the lens L.
The light source which illuminates the slit (an arc lamp) is not shown.

1 This is due to the non-constancy of the earth’s rate of rotation. The frictional
forces associated with the ocean (and surface) tides increase the rotational pe-
riod of the earth (with a power dissipation of ca. 109 kilowatts!), adding about
1:5 � 10�3 s per century. As a result, each century lasts about 30 s longer than
the preceding one. Furthermore, the rotational period varies within the course of
a year; for not clearly understood reasons, it is ca. 2 � 10�3 s longer in May than in
July. Finally, additional random fluctuations in the period of the earth’s rotation
have been observed. See Exercise 1.1.
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Figure 1.9 The relation between circular motion and a sine curve. In front of
the vertical slit S, there is a horizontal pin attached to the edge of a cylinder
which can rotate around a horizontal axis. The cylinder can be made to rotate
around this axis using a flexible shaft; the axis is parallel to the plane of the
slit.

The lens L is moved by a slider in the direction of the arrow; this
causes the image of the slit to move uniformly across the screen P.
This screen is coated with a phosphorescent powder, which glows for
a long time after being illuminated briefly. In front of the vertical slit
S, we arrange one behind the other:

1. a metal pin which moves in a circle around the surface of a cylin-
der with a horizontal axis which is parallel to the plane of the slit
(Fig. 1.9), and

2. a wire pointer which is fastened to the side of a pendulum
(cf. Fig. 1.10, metronome pendulum). Its maximum deflection is
adjusted to be the same as the radius of the cylinder which carries the
metal pin for the first experiment.

Figure 1.10 A metal pin
connected to a metronome
pendulum in front of a slit.
This arrangement replaces
S in Fig. 1.9 for the second
experiment.
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Figure 1.11 A sine curve gives the dependence of the angular function sin˛

on the angle ˛

In both cases, we obtain the same curve, deep black on a bright green
glowing background: a sine curve, see Fig. 1.11. This close connec-
tion between circular motion, the oscillation of a pendulum and a sine
curve plays an important role in many different areas of physics. We
will come back to this topic in Sect. 4.3.

Graphical registration is useful for many rapidly-occurring processes,
and in some cases it is indispensableC1.8. C1.8. Images of this type are

often obtained using CCD
cameras (charge-coupled
devices), which also permit
the images to be recorded in
color. Today, of course, there
are also convenient computer
programs which generate
graphical representations
from measured data.

For this purpose, e.g. oscil-
loscopes are useful; they can also be employed for measuring short
times. They can be used to register periods of time down to 10�9 s.

Today, in order to synchronize and calibrate clocks for science and
technology, time signals are broadcast; they are controlled by preci-
sion standard clocks (Cs atomic clocks).

1.8 Measurement of Periodic Sequences
of Equal Times and Lengths

Let us assume that within a given time t, N identical processes occur
in sequence, each one lasting a time T; e.g. oscillations or rotations.
One then defines in general

t=N D T as the period (1.2)

and (from the Latin frequentia)

N=t D 1=T D � as the frequency (1.3)

(the unit of frequency is 1/sD 1 Hertz (Hz)). Within a given length l,
N identical forms occur in sequence, each one of length D. Then we
define2

l=N D D as the period of length, (1.4)

N=l D 1=D D �� as the frequency of length. (1.5)

2 Generally accepted terminology is lacking. For D, terms like ‘wavelength’ and
‘lattice constant’ are in use. In optics, 1=D is called the ‘wavenumber’. This term
is however a poor choice, as is the term ‘number of revolutions’ used in technology.
An electric motor, for example, has a rotational frequency of � D 3000/min D
50/sD 50Hz. Reciprocal lengths and reciprocal times are not numbers, but rather
dimensioned quantities with units.
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Figure 1.12 Measurement of a periodic sequence of identical lengths Dx or
identical times Tx. One can imagine two parallel combs whose teeth partially
overlap (an arrangement like that shown in Fig. 1.4). The upper comb has
the period Dx (Tx), and the lower comb has the period D (T). The beats
produced by interference have the period DB (TB). In the figure, the length
periods (or frequencies) are Dx D 0:12 cm (��x D 8:3/cm), D D 0:11 cm
(�� D 9:1/cm) and DB D 1:2 cm (��B D 0:83/cm). We find (for D < Dx) that:
N � Dx D .N C 1/D D DB (where N is equal to 10 in the example shown in
the figure). Equations (1.6) and (1.7) follow from this (for the general case of
D ? Dx and T ? Tx).

A periodic sequence of identical lengths Dx or of identical times Tx
can be measured using the same scheme, as illustrated in Fig. 1.12. In
the upper part of the figure, we see the periodic sequence of Dx or Tx.
Superposed on it is a second periodic sequence of known lengths D
or known times T , which differ only slightly from Dx or from Tx. The
superposition produces a third periodic sequence (by “interference”)
of “enlarged” lengths DB or “stretched” times TB, which can readily
be counted or measured3. Quantitatively, for the measurement of
lengths, we find

1=Dx D 1=D˙ 1=DB or ��x D �� ˙ ��B (1.6)

and for the measurement of times

1=Tx D 1=T ˙ 1=TB or �x D � ˙ �B (1.7)

.the minus sign applies when D < Dx or T < Tx:/

Out of the many practical examples we mention only one, the strobo-
scopic measurement of a frequency �x or a period TxC1.9.C1.9. Modern high-speed

stroboscopes attain time reso-
lutions of 10�15 s.

Figure 1.13 shows a leaf spring F; we cause it to oscillate at a very
high, unknown frequency �x, as shown in Fig. 11.45. This oscilla-
tion is projected onto the wall by intermittent light pulses, a uniform
sequence of individual flashes. This kind of illumination can be pro-
duced simply by using a rotating disk with, for example, 20 slits. It
is placed in the light beam from a suitable source of light.

The frequency of illumination � is obtained from the rotational frequency
of the disk, �D. One can use a stopwatch to count the number of revolutions
of the disk N within the time t. Then N=t D �D is the frequency of the disk
and � D 20 �D is the frequency of the light pulses.

3 The index B refers to the word ‘beats’, defined later in the text, e.g. in Fig. 11.10
and in Sect. 12.4.
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stroboscopic time measurement. The oscilla-
tions of this spring are shown in Fig. 11.45.
The driving force is provided by a flexible
shaft W and a holder which is tapped on one
end by the pin A. More details are given in
Sect. 11.10 under “forced oscillations”.

We start with a high light pulse frequency � and reduce it gradually.
The image of the oscillating leaf spring seems to move, and the fre-
quency of its apparent oscillations becomes lower and lower as the
light pulse frequency decreases (stroboscopic time dilation). When
the image appears to move very slowly, one can finally determine
�B conveniently, for example �B D 1.5 Hz. We insert �B and � into
Eq. (1.7) and for the example, we find �x D 50 Hz. – In the limiting
case �B D 0, the image of the leaf spring is stationary and Eq. (1.7)
gives �x D �.

1.9 Indirect Time Measurements

Instead of today’s usual “direct” or true time measurements, i.e. mea-
surements based on counting periodic motions, in earlier times
non-periodic phenomena were often used, for example in hour
glasses and water clocks. These types of clocks played an im-
portant role in the early history of mechanics (e.g. in the work of
GALILEI, Sect. 2.4). Today, they are found only in the puny form of
“egg timers”. But a modern variant which makes use of radioactive
decays for determining the age of historical objects is of considerable
importanceC1.10. C1.10. This refers for ex-

ample to the so-called C-14
method. Here, the radioactive
carbon isotope 14

6C (half-life
ca. 5700 years) is employed;
its concentration in living
organisms has a roughly con-
stant equilibrium value, while
in no-longer living objects, it
decreases due to the radioac-
tive decay, so that the age
of such objects (since their
death) can be estimated (see
e.g. http://en.wikipedia.org/
wiki/Radiocarbon_dating.)

One concluding remark: We have described only some measure-
ment procedures for lengths and times, but have not attempted to
define these two concepts in words or sentences. Both of them have
developed over long times from extremely diverse experiences and
observations. Physicists base their use on only a narrow selection of
these. For ‘time’, for example, they might say the following:

Every physical measurement requires at least two “readings”; for
length measurements, the beginning and the end of the length must
be “read out”; electrical measurement instruments show the differ-
ence between the zero point (ground potential or zero current) and
the actual reading, etc. Between the first and the second readout, our
heart beats or the clock ticks. All observations can be ordered into
one of two groups: In the first group, the results of a measurement

http://en.wikipedia.org/wiki/Radiocarbon_dating
http://en.wikipedia.org/wiki/Radiocarbon_dating
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depend upon how often our heart beats or the clock ticks between the
first and the second readout. In the second group, by contrast, that is
of no significance for the result of the measurement. Then we can say
that the processes in the first group depend on a quantity that we call
time, and which we measure by counting heartbeats or the ticks of
the clock.“This by no means exhaus-

tively encompasses the
concept of time, but it is at
least not just a meaningless
phrase”.

This by no means exhaustively encompasses the concept
of time, but it is at least not just a meaningless phraseC1.11.

C1.11. There is a voluminous
literature on the question
raised here, which is only too
difficult to answer; namely,
“What is time?”. It has been
written not just by physi-
cists, but also by scientists
and scholars from many other
disciplines. To name just one
(arbitrarily chosen) example,
we mention the paperback
book by GENE YERGER,
“The Meaning of Time”,
whose subtitle is “A Theory
of Nothing” (Perfect Paper-
back Press, 2008).

Exercises

1.1 In the footnote in Sect. 1.7, it is pointed out that the coming
century will be about 30 s longer than the one just past. Find the
precise number using the information given in the text. (Sect. 1.7)

1.2 A swinging pendulum is observed through a rotating disk
with four slits, which is rotating at five revolutions per second. At
which oscillation period T does the pendulum seem to be at rest to
the observer? (Sect. 1.8)
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Kinematics 2
2.1 Definition of Motion. Frames

of Reference

Motion refers to a change in the location of an object with time,
as seen from a fixed, rigid frame, the “frame of reference”. This
supplementary specification is quite essential. We can see this from
a randomly-chosen example: A bicyclist looks down at her feet and
sees them moving in circular paths with the pedals. An observer
standing on the sidewalk sees a very different picture of the motion
of the bicyclist’s feet; for her or him, the feet follow a wavelike path,
namely the cycloids which are sketched in Fig. 2.1.

The rigid solid body which is our frame of reference for the descrip-
tion of motion in the rest of this chapter is the earth or the floor of the
room where we are located. We leave the daily rotation of the earth
out of consideration. (In reality, we are practicing physics on a large
carousel. The earth is also not really rigid, but instead is deformable.)

Later, we will occasionally change the standpoint of our observations,
i.e. our frame of reference. We will take the earth’s rotation into
account in some discussions, and sometimes also the deformation of
the earth. This will always be mentioned explicitly. “Otherwise we would have

an endless confusion, es-
pecially when we treat
rotational motions”.

Otherwise we
would have an endless confusion, especially when we treat rotational
motions.

For the description of all motions, also called kinematics, we require
the concepts of velocity and acceleration. We will begin with them.

Figure 2.1 The path followed by the pedals of a bicycle as seen by a station-
ary observer

17© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_2
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2.2 Definition of Velocity. Example
of a Velocity Measurement

Suppose that an object moves through a distance �l within the time
interval �t. Then we define

um D Distance moved �l

Time interval �t
(2.1)

as the mean velocity along the direction of the distance �l. This
quotient changes in general if one successively decreases the distance
�l. However, the changes gradually decrease to below the precision
of the measurements. The value of um which is then measured, which
depends only on the starting point, is denoted as the velocity u at the
starting point. Mathematically, one thus finds the velocity u as the
limiting value of um by taking the limit �t ! 0. The symbol � is
conventionally replaced by d, giving for the definition of the velocity

u D dl

dt
(2.2)

i.e. the differential quotient of the distance travelled divided by the
time interval.

This definition in many cases requires the measurement of rather
short times. As an example, we consider the measurement of the
muzzle velocity of a bullet from a pistol.

Figure 2.2 shows a suitable setup for this measurement. The distance
interval�l is fixed by two thin cardboard disks; its length could be for
example 22.5 cm. The time measurement is performed in a straight-
forward manner by referring to the basis of all time measurements,

Figure 2.2 Measurement of the velocity of a bullet from a pistol with a sim-
ple “time recorder”. On the right is the tachometer which registers the
rotational frequencyC2.1 .

C2.1. For this velocity
measurement, the defining
equation (2.2) or (2.1) is used
directly. This principle is
also applied e.g. to the mea-
surement of the velocities
of molecules in a molecu-
lar beam. For macroscopic
objects, however, a much
more elegant method is the
one described in Sect. 5.9
(Fig. 5.19), which makes use
of momentum conservation.
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For this purpose, an electric motor causes the two disks on a common
shaft to rotate at a uniform, rapid rate. Their rotational frequency �,
i.e. the quotient of the number N of rotations/time t, is determined by
a tachometer which measures rotational frequencies1, for example
� D 50Hz.

The bullet first passes through the left disk, and the bullet hole that
it leaves is our first time marker. While it travels over the distance
of 22.5 cm to the second cardboard disk, a certain time elapses, and
the bullet hole or time marker in the second disk is shifted relative
to the first marker by a certain angle, corresponding to the rotation
of the shaft during this elapsed time. After stopping the rotation, we
measure an angle of ca. 18° or 1/20 of the circumference of the disks.

By pushing a pin through the two bullet holes, we make the angular shift
visible for distant observers in the silhouette of the apparatus.

The time delay �t was thus 1
20 � 1

50 sD 10�3 s. From this, we find the
velocity

u D 22:5 cm

10�3 s
D 0:225m

10�3 s
D 225

m

s
:

We then repeat the experiment with a smaller distance �l between the
disks of only 15 cm. The end result is the same. Thus, the distance
chosen in the first experiment was already short enough. It permitted
us to measure the true muzzle velocity and not the smaller mean value
over a longer trajectoryC2.2.

C2.2. The word ‘trajectory’
originally meant ‘flight path’.
It is now used in a more gen-
eral sense to mean the path
(location vs. time or geomet-
rical form) followed by any
moving object. When this
path is circular (like the path
of a satellite around a planet),
it is called an ‘orbit’. We will
use the simpler term ‘path’
here in most cases.

Only in cases with a constant or uniform velocity can we choose the quan-
tities �l (measured distance) and �t (elapsed time) freely to allow the
most convenient measurement. In such cases, one can write the velocity in
abbreviated form as u D l=t.

One

“One should early on adopt
the habit of always writing
the units after every nu-
merical value of a physical
quantity. It belongs to good
physics practice!”

should early on adopt the habit of always writing the units af-
ter every numerical value of a physical quantity. It belongs to good
physics practice! This spares the reader from having to deduce the
units meant from the physical context, and spares oneself from com-
mitting frequent computational errors. When different units are used,
the numerical values of the measured quantities also change. Their
recalculation is automatically reliable if the quantitative results are
always given as numerical values and unitsC2.3.

C2.3. POHL indicates here
the advantage of using
physical-quantity equa-
tions, which he consistently
employs. In a preliminary
remark on writing physical
equations (included in the
volume on ‘Mechanics’ since
the 12th edition), he writes
among other things, “For
each symbol, we write both
the numerical value and the
unit. The choice of units
is free. Those mentioned
under some equations are
simply examples” (see also
Sect. 2.6).

Example
The velocity u D 225m/s is to be recalculated in terms of kilometers per
hour. We have 1m D 10�3 km and 1 s D (1/3600) hour; then

u D 225
10�3 km

.1=3600/ hour
D 810 km/h:

1 If no tachometer is available, one can make use of a simple reducing gear: a pul-
ley of circumference d is mounted on the motor shaft. An endless belt made of
string with length L� d drives another pulley a few meters away; its knot serves
as a marker. The number N0 of revolutions of the string in a time t can be counted
using this marker. Then � D N0

t � Ld is the rotational frequency.
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Figure 2.3 The geometrical addition
of vectors, e.g. of two velocities

Well-formulated units can often be seen as a compact form of mea-
surement instructions. –We will encounter this in many places in this
book.

In everyday life, we often make do with the magnitude of a velocity,
e.g. 10m/s. In physics, however, the magnitude is only one of the two
determining quantities for a velocity. The second is its direction. In
physics, velocities are always directed quantities, i.e. mathematically,
they are vectors (represented graphically as an arrow). This can be
most clearly seen in the process, well known also to non-physicists,
of addition of two velocities.

In Fig. 2.3a, the high velocity u1 (e.g. the velocity of an aircraft rela-
tive to the surrounding air) and the much lower velocity u2 (e.g. the
local wind velocity), which generally points in a different direction,
are vectorially combined to yield the “resultant” velocity u3 (the
groundspeed of the aircraft).

Vectors which point in opposite directions differ in their signs; for
example, Fig. 2.3b is described by the equation u1 D �u2 or u1 C
u2 D 0. – Therefore, u1 C u2 in Fig. 2.3c refers to the geometrical
addition or combination of the two oppositely-directed vectors u1 and
u2. The resultant vector has a magnitude (length of the arrow) of
ju1 C u2j D ju1j � ju2j. Magnitudes are denoted by vertical bars on
both sides of the symbolC2.4.C2.4. The rules for vector

addition are explained here
in an intuitive manner using
the example of combining
velocities. Vector quanti-
ties are denoted by printing
their symbols in boldface,
while their magnitudes are
represented by normal type,
dispensing with the vertical
bars for simplicity.

2.3 Definition of Acceleration:
The Two Limiting Cases

Motions with a constant velocity are rare. In general, the magnitude
and the direction of the velocity change along the path of the motion.

In Fig. 2.4, the vector u1 indicates the velocity of a body at the be-
ginning of a time interval �t. During the time interval, the body is
supposed to gain an additional velocity �u in an arbitrary direction,
represented by the short second arrow. At the end of the time inter-
val �t, the body has the velocity u2. It is determined graphically in
Fig. 2.4 as the arrow u2.

Then we define

am D Velocity increase �u
Time interval �t
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the acceleration

Figure 2.5 The definition of the path
acceleration

as the mean acceleration. The time interval �t is chosen so that the
quotient no longer changes measurably when �t is further decreased.
Mathematically, one carries out the limit �t ! 0, replaces the sym-
bol � by d, and thus obtains for the acceleration:

a D du
dt

: (2.3)

Just like the velocity, the acceleration is also a vector. The direction
of this vector is the same as that of the increase in the velocity �u
(Fig. 2.4).

In Fig. 2.4, the angle ˛ between the increase of the velocity �u and
the initial velocity u1 was arbitrary. We now consider two limiting
cases:

1. ˛ D 0 or ˛ D 180ı, Fig. 2.5. The velocity increase lies along the
same direction as the original velocity. Then only the magnitude, not
the direction of the velocity changes. In this case the acceleration is
referred to as a path acceleration with the magnitude

a D du

dt
D d2l

dt2
: (2.4)

2. ˛ D 90ı, Fig. 2.6. The velocity increase points in a direction
perpendicular to the original velocity u. Now, only the direction and
not the magnitude of the velocity changes; within the time interval
dt through the angle dˇ. In this case, one refers to du=dt as the
transverse acceleration or radial acceleration ar. From Fig. 2.6, we
see immediately that the following relation2 holds:

dˇ D du

u
or du D u � dˇ :

2 Example: dˇ D 4:5ı , ı D 0:0175, dt D 0:1 s, ! D dˇ

dt
D 4:5 � 0:0175

0:1 s
D

0:79=s .
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Figure 2.6 The definition of the
radial acceleration

The quotient
dˇ

dt
D ! (2.5)

is called the angular velocityC2.5,C2.5. The angular velocity
is also a vector. It points in
the direction of the axis of
rotation: if we look along this
direction, we see the rotation
as clockwise. Then Eq. (2.6)
has the general form:
ar D ! � u
(for the definition of the vec-
tor product, see Chap. 6). In
all cases considered here,
with !?u, the magnitude
equation is sufficient.

and the radial acceleration becomes

ar D ! � u : (2.6)

The word acceleration, according to the above definitions, is used in
physics in a quite different sense than in everyday language. First of
all, in everyday life an accelerated motion usually means a motion at
a higher speed, e.g. the accelerated circulation of a document or file. –
Secondly, the word acceleration in everyday language leaves the direction
completely out of consideration.

For the majority of motions, path accelerations a and transverse ac-
celerations ar are both present at the same time; along the path of
the motion, both the magnitude and the direction of the velocity are
changing during the motion. Nevertheless, we will limit ourselves for
the moment to the limiting cases of pure path acceleration (straight-
line motion) or pure radial acceleration (circular orbit).

2.4 Path Acceleration and Linear
Motion

(G. GALILEI, 1564–1642.) The path acceleration changes only the
magnitude, not the direction of the velocity. As a result, the motion
follows a straight-line path; its trajectory is linear.

A path acceleration is in principle easy to measure: We determine the
velocity at two times with the time interval �t; these velocities are u1
and u2. Then we compute �u D .u2 � u1/ (positive or negative) and
form the quotient �u=�t D a C2.6.

C2.6. Here, we see among
other things that POHL is
concerned not only with
the definition of a quantity,
but rather he always gives
a compact instruction for
its measurement; an aspect
which is not emphasized in
many textbooks. It is in this
sense that the detailed de-
scriptions of measurements
of velocities and accelera-
tions given here are to be
understood.

�t, as we have already pointed out, must be chosen to be sufficiently
small. The result of the measurement should not change on a fur-
ther decrease of �t. Practically, this requirement usually means that
rather short time intervals �t must be used. The latter are measured
with some sort of registration procedure. That is, the course of the
motion is first recorded automatically and the record is then evalu-
ated after the motion is complete. But there is also a much simpler
procedure. For example, time marks can be imprinted on the moving
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a freely-falling body (Video 2.1) Video 2.1:
“Free fall”
http://tiny.cc/jpqujy

object by a clock. Of course, the imprinting process must not dis-
turb the motion itself. We give a practical example: The acceleration
of a freely-falling wooden bar is to be determined. Fig. 2.7 shows
a suitable arrangement. It can also be used for many other types of
acceleration measurementsC2.7. C2.7. For example, with

modern apparatus, the ac-
celerated motion of a freely-
falling body can be conve-
niently recorded electron-
ically using photoelectric
triggers. Beams of light
which are directed at pho-
tocells are interrupted briefly
by the passing object, and the
resulting signals control an
electronic stopwatch.

The essential element is a fine ink jet which is rotating in the hor-
izontal plane. The jet is sprayed out of a nozzle D on the side of
a rotating ink container (Fig. 2.8) (electric motor with its shaft ver-
tical). The frequency, e.g. � D 50Hz, is determined by a frequency
meter. Here again, the time measurement is referred to a uniform
rotation.

The wooden bar is wrapped in a jacket of white paper and hung at
the point a. A cable trigger lets it fall at the desired time. The bar
then falls through the rotating ink jet and on to the floor. – Figure 2.9
shows the result: a clean sequence of time marks at time intervals of
1/50 of a second.

The object continues falling while the ink jet swishes past; this causes the
curvature of the time marks.

Figure 2.8 The ink jet used in Fig. 2.7, at half its actual
size

http://tiny.cc/jpqujy
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Figure 2.9 Falling body with time marks and their evaluation, with the usual
experimental and readout errors. This experiment also shows that the mea-
surement of a second-order differential quotient is in general an awkward
matter. (Video 2.1)Video 2.1:

“Free fall”
http://tiny.cc/jpqujy

We can see with the unaided eye that the motion is accelerated: The
spacing of the time marks, i.e. the distance �l through which the
object falls in the time �t D (1/50) s, increases continuously. The
computed values of the velocity u D �l=�t are written beside the
marks; the velocity increases on the average within each (1/50) s by
the amount 19.5 cm/s. Here, we ignore the inevitable errors in the
individual values (scatter). This case of free fall is one of the rare
examples of a constant or uniform path acceleration. For the magni-
tude of this constant acceleration, we find

a D 9:8m/s2:

Repetition of the experiment with an object made of a different ma-
terial, for example a brass tube instead of the wooden bar, yields the
same value for the acceleration. The constant acceleration a for free
fall is the same for all falling bodies. It is denoted by g. A more
precise value is g = 9.81m/s2. It is called the acceleration of gravity

http://tiny.cc/jpqujy
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or apparent gravity3. These are incidental experimental facts at this
point. Their great significance will become apparent later.

Our practical example of a measurement led us to the special case of
a constant path acceleration. This is an important case.

Constant acceleration means that the increase in the velocity�u is the
same in equal time intervals �t. The velocity u increases as shown in
Fig. 2.10 linearly with time t. In each time interval�t, the object trav-
els through the distance �l. Therefore, we have �l D u�t. Here, u is
the average value of the velocity within each time interval �t. Such
an interval is shown in Fig. 2.10 as a shaded area. The entire triangu-
lar area 0BC is the sum of all of the distance segments �l traversed in
the time t. Thus for the case of constant path acceleration, the overall
distance l traversed in the total time t is given by the equationC2.8 C2.8. The formula explained

graphically here (2.7) follows
mathematically from the
defining equations u D dl=dt
(2.2) and a D du=dt (2.3).
For a D const and from the
rules of integral calculus, we
obtain:
l D R

u dt D R
at dt

D a
R
t dt D 1

2at
2 .

l D 1
2at

2 ; (2.7)

i.e. the distance increases as the square of the time during which the
acceleration acts.

If the body already had an initial velocity u0 before the beginning of the
acceleration, then instead of Eq. (2.7), the equation

l D u0tC 1
2at

2 (2.8)

would apply.

The origin of the constant path acceleration is completely irrelevant.
It could be for example an electrical force instead of a mechanical
force.

Usually, for verifying Eq. (2.7), one makes use of the constant accel-
eration a D g which acts on a freely falling body. As an example, we
mention the well-known falling rope experiment.

This experiment consists of a thin rope, hung perpendicularly, with a se-
ries of lead weights attached to it; cf. Fig. 2.11. The lowest weight nearly

3 This numerical value holds near the surface of the earth; for most purposes, g can
be considered to be constant. A more precise consideration shows that g depends
weakly on the geographical latitude of the location (Sect. 7.6). Furthermore, it
also depends on local variations in the surface features of the earth (e.g. deposits
of heavy ores under the ground), and, although only weakly, on the altitude of the
location where the observations are made.
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Figure 2.11 Falling rope

touches the floor. The spacing of the other weights is arranged to corre-
spond to the squares of whole numbers. When the upper end of the rope
is released, the weights hit the floor one after another. The experimenter
hears their impacts at equal time intervals.
Strictly speaking, observations of free fall should be carried out in a vac-
uum. Only then can perturbations due to air resistance be eliminated. In
a highly evacuated glass tube, all bodies indeed fall at exactly the same
speedC2.9.C2.9. Free fall can be used

for carrying out experiments
under conditions of weight-
lessness, e.g. in the evacuated
drop tower at University of
Bremen, which is over 120m
high (cf. Comment C7.2).

A lead ball and a fluffy feather fall at the same speed in a vac-
uum, and strike the ground at the same time. In room air, in contrast, the
feather falls much more slowly, as we well know. But heavy bodies with
a relatively small surface area are only weakly slowed by air resistance
(cf. Fig. 5.20).

2.5 Constant Radial Acceleration
and Circular Orbits

(C. HUYGHENS, 1629–1695.) The radial acceleration ar does not
change the magnitude of a velocity u, but only its direction. Let
the radial acceleration ar be constant and let us assume that no other
accelerations are present. Then the direction of u changes by the
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orbit is a circle. It is traversed with the constant angular velocity
! D dˇ=dt.

The time required for a complete revolution was termed the (rota-
tional) period T in Sect. 1.8, and its inverse was called the rotational
(or mechanical) frequency �; thus � D 1=T . Then for the orbital
velocity u, we have

u D Circumference

Period
D 2�r

T
D 2�r� (2.9)

and the angular velocity is

! D 2� � Angle
Period

D 2�� (2.10)

so thatC2.10 C2.10. In general, Eq. (2.11)
is written as a vector equa-
tion:
u D ! � r.

u D !r : (2.11)

When a circular orbit is traversed with a constant velocity, the an-
gular frequency ! is thus a factor of 2� greater than the mechanical
frequency �, that is! D 2��; therefore, ! is often called the circular
frequency (unit usually 1/s). This definition and these relations hold
quite generally for periodic processes (e.g. the rotation of an electric
motor shaft).

We combine Eqns. (2.6) and (2.11) and obtain the resultC2.11 C2.11. Using the vector for-
mulations of Eqns. (2.6) and
(2.11), we obtain for the first
part of Eq. (2.12) likewise
a vectorial form:
ar D ! � .! � r/
or, for !?r:
ar D !2r.
The radius vector r points
from the center of the circular
orbit outwards, while the ac-
celeration vector points in the
opposite direction towards
the center.

ar D !2r D u2

r
: (2.12)

This radial acceleration ar must be present so that a body can tra-
verse a circular orbit of radius r with the constant angular velocity
(circular frequency) ! or the constant orbital velocity u.

Intuitively, the constant radial acceleration required for a circular or-
bit has the following interpretation (Fig. 2.12):

Suppose that a body traverses a circular segment ac within the time
interval �t. Imagine this orbit to be composed of two steps that occur
one after the other, namely:

1. A motion along a (tangential) path perpendicular to the radius
with the constant velocity u, ad D u�t;

2. an accelerated motion along a (radial) path (anti-parallel to the
radius), l D 1

2ar.�t/2. The thin horizontal lines (time markers) in the
figure permit us to see that the motion along l is accelerated, so that
we can apply Eq. (2.7).

A numerical example can be useful. The earth’s moon moves during
the time �t D 1 s along the direction ad, that is perpendicular to
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Figure 2.12 The explanation of radial
acceleration

its orbital radius, by 1 km, thereby “increasing” its distance from the
earth slightly. At the same time, it “approaches” the earth along the
orbital radius in an accelerated motion, traversing the distance l D
1
2ar.�t/2 D 1:35mm. Thus, the net effect is that the radius remains
unchanged, and the orbit is circular. The radial acceleration of the
moon is found to be ar D 2:70mm/s2.

2.6 Distinguishing Physical Quantities
and Their Numerical Values

In commerceC2.12,C2.12. The following two
sections do not belong di-
rectly to the content of the
rest of this chapter. POHL

however added them here,
after introducing the first im-
portant concepts, from the
10th edition on; possibly
because of his experience
with examinations. They
deal with simple and indeed
self-evident topics, which are
however to some extent not
consistently treated in most
textbooks even today.

the price of every item is a “quantity”, i.e. the
product of a numerical value and a unit. For example, a hat might
cost 10 $ and a pencil 10 cents. No one would consider these two
prices to be the same. The ratio of the two prices is rather

10 $

10 cent
D 10 � 100 cent

10 cent
D 100:

The same principle holds in physics: Distance l, time t, velocity u,
acceleration a, frequency � etc. are measured as physical quantities,
i.e. as products of a numerical value with a unit. A velocity of u D 7
is meaningless. It becomes meaningful only when expressed as for
example u D 7m/s. The confusion of physical quantities (e.g. dis-
tance l D 5 km and velocity u D 5 km/h) with their numerical values
(in the example, the value of the distance is 5 and the value of the ve-
locity is 5) gives rise to widespread but incorrect definitions, such as
for example “the velocity is the distance traversed in a unit time”C2.13.C2.13. Such “false defini-

tions” can still be found in
many textbooks!

The velocity is not a distance, but rather the quotient of distance/
time. – Or still worse: “The frequency is the number of oscilla-
tions in one second”. First of all, a frequency is not a number, but
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is ca. 70/minute. Secondly, a physical quantity which is supposed to
be generally applicable cannot be defined in terms of a particular unit
such as the second.

2.7 Base Quantities and Derived
Quantities

Some few physical quantities are termed base quantities and are mea-
sured in units defined especially for those quantities, the base units;
for example, time with the unit second, or temperature with the unit
kelvin. If one wishes to introduce a base quantity, it can be defined
only in terms of axioms which are founded on extensive experiments
or observations, and not on equations.

Most physical quantities are defined as derived quantities. This
means that they and their units can be defined not in terms of axioms,
but instead by means of equations which contain other quantities and
their units. We recall the example of the velocity, u D dl=dt and its
units, chosen for example to be meters/second or kilometers/hour,
etc.

The possibility of defining quantities and their units in terms of equa-
tions is the only point in which derived quantities differ from the base
quantities employed.

No physical quantity is in its essence a base quantity; one could in-
troduce many different quantities as base quantities. The number and
type of the base quantities should be chosen insofar as possible so
that no two derived quantities have the same defining equation. –
In distinguishing between base quantities and derived quantities, one
should in no case envision a hierarchy; base quantities are not im-
bued with a special aura, nor should limiting them to a certain number
(e.g. three) be raised to the status of a dogma.

The currently agreed-upon base quantities in the international unit
system (SI) and their base units areC2.14: C2.14. In these books (Vol. 1

and Vol. 2), we use mainly
(but not exclusively) the units
defined within the SI. See
for example http://physics.
nist.gov/cuu/index.html or
http://www.bipm.org/en/
measurement-units/.

Length (or distance), unit meter (m),
Time, unit second (s),
Mass, unit kilogram (kg),
(Thermodynamic) temperature, unit kelvin (K),
Electric current, unit ampere (A),
Luminous intensity, unit candela (cd); and
Amount of substance, unit mole (mol).

Note that the names of units and their abbreviations are printed in
Roman type (m, s, kg, . . . ), while physical quantities are printed in
italics (distance = l or d, mass = M or m, etc.). Avoid confusing

http://physics.nist.gov/cuu/index.html
http://physics.nist.gov/cuu/index.html
http://www.bipm.org/en/measurement-units/
http://www.bipm.org/en/measurement-units/
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them; there are not enough letters in the Roman and Greek alphabets
to allow us to use different symbols for all the quantities and units
that we requireC2.15.C2.15. Recommendations

for writing physical-quantity
expressions and equations
and for naming or abbreviat-
ing units are given at http://
physics.nist.gov/cuu/pdf/
checklist.pdf.

Exercises

2.1 A person wants to row her boat along a straight-line path from
A to B. A and B are points opposite each other on either side of the
mouth of a river, which is 600m wide; B is also 300m upriver from
A. The person rows at the same velocity as the upriver flow rate
of the tide which is coming in. In which direction should she row?
(Sect. 2.2)

2.2 Calculate the distance l which is traversed during the fourth
second by an object in free fall which began falling from a resting po-
sition at the time t D 0. The acceleration of gravity is g D 9:81m/s2.
(Sect. 2.4)

2.3 A parachute jumper initially falls freely over a distance of
50 m with the acceleration of gravity g D 9:81m/s2 after jumping
(we may neglect air friction). Then his parachute opens, delaying
his fall (i.e. it produces a negative acceleration, upwards) by 2m/s2,
so that he finally lands on the ground with a velocity of 3m/s. How
long (time t) was he in the air, and from what height h did he jump?
(Sect. 2.4)

2.4 An object of mass m D 20 kg increases its velocity from
15m/s to 18m/s, covering a distance of 20m in the process. What
is the magnitude of its constant acceleration and the corresponding
force? (Sect. 2.4 and 3.2)

2.5 A particle begins at rest at the point P and moves along
a straight-line path to the point O, a distance of 3m away. There,
its velocity is 6m/s. Plot its velocity vs. position for (a) constant
acceleration, and (b) a sinusoidal motion back and forth through the
point O. How long does the motion from P to O take in each case?
(Sect. 2.4 and 4.3)

2.6 How large is the radial acceleration ar of a person who is
at 51.5° north latitude (e.g. in London)? The radius of the earth is
6378 km. (Sect. 2.5)

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_2) contains supplementary material, which is avail-
able to authorized users.

http://physics.nist.gov/cuu/pdf/checklist.pdf
http://physics.nist.gov/cuu/pdf/checklist.pdf
http://physics.nist.gov/cuu/pdf/checklist.pdf
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3.1 Force and Mass

In kinematics, the relevant quantities are the “velocity” and the “ac-
celeration”; in dynamics, we require in addition the concepts of
“force” and “mass”. These two terms, which have a variety of mean-
ings in everyday language, first need to be defined as technical terms
of physics.

The concept of force is based on the sense of our own muscles.
A force is determined qualitatively by two characteristics: It can de-
form solid bodies which are held fixed, and it can acceleratemovable
bodies.

For the deformation of a solid body we give a clear example: Fig-
ure 3.1 shows an oak table with a thick frame Z. Two mirrors are
set on this table, and a beam of light rays passes between them as
shown in the sketch. It casts an image of the light source, an illu-
minated slit S, onto the wall. Any bending of the table top will tilt
the mirrors in the direction shown by the small arrows. This “light-
beam pointer” provides great sensitivity to small motions owing to
its length (ca. 24m); it acts as an ‘optical lever’. – We set down
a metal weight at the point A, e.g. a 1 kg block. The table top will
be deformed. In physics and technology, one says that a force is act-
ing on the block, called its weight; the deformed table top keeps the
block from being accelerated downwards. Then we press down on
the block with our little finger, causing the table top to bend more.
We could say: Now a second force is acting on the block, namely
our muscular force. Finally, we replace the block with a long rod
and slide our hand down the rod (Fig. 3.2). Again, the table top is

Figure 3.1 Optical detection of the deformation of a table top by small
forces, e.g. a finger pressing down at the point AC3.1

C3.1. This striking experi-
ment can be readily carried
out today using a beam of
laser light. (Compare also
a torsional deformation as
shown in Fig. 6.7.)

31© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_3



PartI

32 3 Fundamentals of Dynamics

Figure 3.2 The force due to external friction acts
downwards on the rod, and its counter force acts
in an upwards direction on the hand. The arrow
indicates the direction in which the hand slides
along the rod, and of its frictional force.

deformed and we can say that a force is acting on the rod, in addition
to its own weight; it is called external friction1, and is produced here
by the slipping motion of our hand sliding down the rod.

Forces are vectors. They can be decomposed into their components
in different directions. Figure 3.3 shows an example of this decom-
position.

Forces always act in pairs: The two forces may act at two different
places, but they are oppositely directed and have the same strength.
In NEWTON’s terms, this is called actioD reactio, or forceD counter
force. We offer three examples:

Figure 3.3 The decomposition of vectors into their components. A roller
A is being held fixed on a steep ramp by a horizontal force F. The vector
FG denotes the weight of the roller. We decompose both F and FG into
components parallel to the ramp and components perpendicular to it. The two
components which are perpendicular to the surface of the ramp, represented
by the arrows I and II, are held in equilibrium by the elastic force of the
slightly deformed surface of the ramp. The components parallel to the ramp,
FG cos ˛ and F sin˛, pull the roller downwards and upwards, respectively. In
equilibrium, we have F D �FG= tan ˛. If the ramp is very steep, ˛ and tan˛

are quite small, and thus the force F must be large.

1 For internal friction (viscosity), cf. Sect. 10.2.
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Figure 3.4 Deformation of a circular spring. In the center of the spring is
a guide rod. This simple apparatus will be used later for demonstration ex-
periments as an uncalibrated force meter.

Figure 3.5 Force D counter force, actio D reactioC3.2 C3.2. At the left in the pic-
ture is master mechanic
W. SPERBER, and the author
is on the right.

Video 3.1:
“Action D Reaction”
http://tiny.cc/ppqujy

(Video 3.1)

1. In Fig. 3.4, at the left a stretched circular spring is shown being
pulled by two hands. A force acts on each hand. If the spring is held
by only one hand, no force and no deformation occurs; cf. Fig. 3.4
on the right.

2. In Fig. 3.5, we see two flat, nearly frictionless carts on a smooth,
flat floor which supports their weight without noticeable deforma-
tion. The arrangement is completely symmetric, the carts and the
men on each side have the same size, shape and mass. – Both of the
men could pull at the same time, i.e. they could work together as a
“motor”; or only the man on the left or the man on the right could
pull. In each case, the two carts meet in the middle. Thus, always
two forces occur simultaneously. They are oppositely directed and of
equal strength. This is indicated by the arrows.

3. In the case of the force that we call “weight”, the counter force
would seem to be lacking. But that is simply due to our choice of the
frame of reference. Figure 3.6 shows on the left the earth and a large
stone. As seen from the sun or the moon, this picture would have to
be drawn with two arrows. The earth pulls on the stone, and the stone
pulls on the earth. Both bodies are accelerated towards each other. In
Fig. 3.6 on the right, their approach is prevented by inserting a spring
between them. In this case, two new forces occur, denoted by FD and
�FD. Now, equal but opposite forces act on each of the two bodies.
Their sum is zero, and therefore the two bodies remain motionless
relative to one another.

The concept of mass is even more ambiguous in everyday language
than the word ‘weight’. For example: dough is a mass that can be
kneaded; the news media appeal to the broad mass of people, they
consume a mass of paper, etc.

http://tiny.cc/ppqujy
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Figure 3.6 On the pairwise occurrence of
forces, force D counter force

In physics, however, the concept of mass refers to two characteristics
of every object, namely “gravitational” and “inertial” mass. “Gravi-
tational” means that every massive object is attracted to the earth with
a force which we call its “weight”. – “Inertial” means that no object
can change its velocity (magnitude and/or direction!) by itself; every
change in velocity requires the action of a force.

3.2 Measurements of Force and Mass.
NEWTON’s Fundamental Equation
of Motion

(ISAAC NEWTON, 1643–1727). For the measurement of masses and
of forces, one can use the same basic apparatus, namely a set of
weights (Fig. 3.7, upper part) and some sort of scales (e.g. a beam
balance or a spring balance).

The measurement of mass is explained in Fig. 3.7: One defines the
masses of two bodies as equal when they can be used interchangeably
on a scale or balanceC3.3.

C3.3. In this case, mass is
measured by making use of
its “gravitational” property.
Two masses are equal when
they have the same weight.
In principle, the “inertial”
property can also be used,
e.g. in collision experiments
(Sect. 5.8) or with an oscillat-
ing spring-and-mass system
(Sect. 4.3).

The unit of mass is defined by a primary
standard made of noble metals2; it is internationally denoted as the
kilogram (kg)C3.4

C3.4. This is the only unit
which is still defined by a
“prototype”, and it seems to
be showing signs of aging.
Efforts are therefore being
made to redefine the unit
of mass (see e.g. http://
en.wikipedia.org/wiki/
Proposed_redefinition_of_
SI_base_units and http://
www.nist.gov/pml/newsletter/
siredef.cfm).

(1 kgD 103 grams (g), 103 kgD 1 metric ton (t)).

Like all massive bodies, the weights are attracted to the earth with
a certain (gravitational) force. The forces which act on the weights

Figure 3.7 Measurement of
a mass using a set of weights
(above) and a beam balance. The
masses of two objects are the same
when both have the same weight
at the same place, i.e. they are at-
tracted to the earth with the same
forces.

2 It consists of 90% Pt and 10% Ir (wt.-%) and is kept at Sèvres, near Paris. See
also http://www.bipm.org/en/publications/mises-en-pratique/kilogram.html.

http://en.wikipedia.org/wiki/Proposed_redefinition_of_SI_base_units
http://en.wikipedia.org/wiki/Proposed_redefinition_of_SI_base_units
http://en.wikipedia.org/wiki/Proposed_redefinition_of_SI_base_units
http://en.wikipedia.org/wiki/Proposed_redefinition_of_SI_base_units
http://www.nist.gov/pml/newsletter/siredef.cfm
http://www.nist.gov/pml/newsletter/siredef.cfm
http://www.nist.gov/pml/newsletter/siredef.cfm
http://www.bipm.org/en/publications/mises-en-pratique/kilogram.html
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Figure 3.8 Measurement of a force using a set of weights and a beam bal-
ance. The force exerted by a spring which has been stretched by an amount
�x is compared to the force acting on a metal block from the earth’s gravity,
for short the weight of the block. (The weight of the relaxed spring is can-
celled out by the weight of the small metal block.) For practical applications,
a spring balance is more convenient to use than a beam balance; compare
Fig. 3.9.

are called simply their weights3. These weights, i.e. forces, can
also be used to measure forces in general. This is made clear by
Fig. 3.8. There, the force of a spring is compared with another force,
namely the weight of a kilogram. The unit of force is the newton
(N) (cf. Eq. (3.4)). The weight of a kilogram block at a place where
the acceleration of gravity is 9.81m/s2 (rounded off) is equal to 9.81
newton. Compare Fig. 3.9.

Why can we use the same apparatus, namely a set of weights and some sort
of balance or scales, to measure both masses and forces? The answer is in-
dicated in Fig. 3.7: The masses of two objects are defined to be equal when
they have the same weights at the same place, i.e. when they are attracted
with the same forces by the earth. The weight of an object depends first of
all on a property of that object, called its mass, and secondly on the earth:
the forces that we call weights are always directed vertically towards the
center of the earth. The influence of the earth is the same on both sides of
the balance and therefore cancels (more about the force that acts between
masses, called the gravitational force, in Sect. 4.7).

The relation between force and mass is derived experimentally by
varying the two quantities independently of one another and mea-
suring themC3.5. C3.5. Now, having intro-

duced forces in terms of the
“gravitational” mass, we will
derive the relation between
force and “inertial” mass.

The simplest experimental arrangement is shown in
Fig. 3.10. As the known force, we make use of the force F D FG

which acts on the small block A and which we call the weight of the
block. By means of a cord, this force is used to accelerate a loaded
cart. The overall mass of the objects that are accelerated together,
that of the cart and its load as well as that of the block A, is taken to
be m. The acceleration is constant and therefore can be easily com-
puted from the distance travelled, s, and the corresponding time t; it
is a D 2s=t2 from Eq. (2.7). In this way, one finds that the accelera-
tion a is proportional to the force F and inversely proportional to the

3 The word ‘weight’ inevitably reminds those who are not steeped in physics of
a property of the object instead of a force acting on it. This makes it more difficult
to realize that these forces come about through the effect of the earth (or e.g. of
the moon if the object were located on the lunar surface).
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Figure 3.9 Calibration of a spring balance as a force me-
ter. The known force is in this example the gravitational
force that acts on a metal block of mass 1/2 kg. It is the
same within the error limits of˙ 0.3% (cf. Sect. 7.6) at all
points on the surface of the earth and in this case is equal to
1
2 � 9:81 kgm/s2 D 4:90 newton.

mass m, that is

a D F

m
� const. (3.1)

This finding forms the basis of mechanics. If one sets the proportion-
ality constantD 1, then Eq. (3.1) takes on the simple and convenient
form

a D F

m
; (3.2)

or, more generally using vector notation,

a D F
m

: (3.3)

One thus can dispense with measuring the mass and force indepen-
dently of each other; or expressed positively, one makes use of the
one quantity for the measurement of the other.
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Figure 3.10 On the experimental derivation of the fundamental equation of
motion. The force which produces the acceleration is the weight FG of the
small block A. The weight of the cart and its load is compensated by an
unmeasurably small deformation of the horizontal surface (plate glass floor).
– Friction and rotational inertia of the wheels reduce the acceleration by 5 to
10%. To eliminate these sources of error, it is sufficient to incline the surface
on which the cart moves by a small amount (a few tenths of a degree). This
inclination is adjusted so that the cart, given a small push without the cord,
moves along its path with practically constant velocityC3.6. C3.6. This basic experiment

can be demonstrated today
with a cart that moves almost
without friction on an air-
track. POHL mentioned such
airtracks in the later editions
of his book, but did not de-
scribe any actual experiments
with them.

Physics makes use of the mass for the measurement of forces. The
resulting unit for force, kg m/s2, is the derived unit of force which is
called the newton, that is

1 newton .N/ D 1 kg m/s2: (3.4)

Eq. (3.3) contains the great discovery of ISAAC NEWTON, the relation
between force and acceleration. It will be found in later sections to
withstand the most rigorous experimental tests. This is rather surpris-
ing: Eq. (3.3) contains the common property of all massive bodies,
their inertia (Sect. 3.1) and the forces which are therefore neces-
sary to accelerate them. However, the masses m of the objects were
measured using the other property which all massive bodies have in
common, namely their “gravitational mass”; and this in a state with
the bodies at rest! – This fundamental fact is often described by the
brief but frequently misunderstood statement: “gravitational mass D
inertial mass” (equivalence principle).

Important applications of the equation a D F=mwill be treated in the
next chapters. At the end of the present chapter, we first clarify some
of the other concepts that will often be needed for what follows.



PartI

38 3 Fundamentals of Dynamics

3.3 The Units of Force and Mass.
Expressions Containing Physical
Quantities

We begin by examining two results of Eq. (3.2) which will help to
clarify the units of force and mass. To this end, we make use of ex-
pressions with physical quantitiesC3.7,C3.7. The consistent use of

expressions and equations
with physical quantities is
a particular advantage of
POHL’s books!

i.e. we replace each symbol
with a numerical value and its unit.

1. In Eq. (3.2), we insert the force F D 1ND 1 kg m/s2 and the mass
m D 1 kg. The result is:

a D 1 kg m/s2

1 kg
D 1

m

s2
:

Or in words: 1 newton is the force which can give to an object with
a mass of 1 kilogram an acceleration of 1m/s2, when only this force
is acting on the object (the counter force is the inertial reaction force
of the object).

2. In Eq. (3.2), we insert the force F D 9:81N (previously called
1 kilopondC3.8)C3.8. The unit of force “kilo-

pond”, which is no longer
used, was initially included
in POHL’s book to aid in
making the distinction be-
tween force and mass units,
following a suggestion by
the German standards lab-
oratories, the Physikalisch-
Technische Reichsanstalt
(today the PTB). It has now
been suppressed in favor of
the unit newton. POHL him-
self wrote (from the 17th
edition on): “In physics, the
kilopond as a unit of force
alongside the newton is just
as dispensable or superfluous
as is the energy unit ‘calorie’
alongside the watt second.”

and the mass m D 1 kg. The result is:

a D 9:81 kg m/s2

1 kg
D 9:81

m

s2
:

In words: If a body of mass4 1 kg is acted upon only by its weight,
then it experiences an acceleration a D 9:81m/s2 (free fall!).

3.4 Density and Specific Volume

In the cases of very large and clumsy or of very small bodies, the
mass can often not be measured directly with a scale or balance, but
the volume V is known from the dimensions of the body. In such
cases, one can compute its mass by making use of the helpful concept
of mass density or more briefly, simply density. Assume a body of
mass m to have the volume V. Then we define

Mass density % D Mass m

Volume V
: (3.5)

This quantity, for fixed external conditions (pressure, temperature), is
a constant that characterizes the material of which the body is com-
posed.

4 The use of the word mass in the place of ‘body’ or ‘object’ is apparently inerad-
icable. Over and over, one finds for example a ‘mass’ hanging on a string, rather
than a body, i.e. instead of the object, one of its properties! In English, the word
‘weight’ is used in a similar way: a ‘weight’ is hanging on a string, rather than
a body with a certain weight. This is, however, officially tolerated by the SI.
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Specific volume Vs D Volume V

Mass m
: (3.6)

Specific in general denotes a physical quantity when the quantity it-
self is not meant, but rather a quotient of the ‘specific’ quantity and
another quantity. This makes it unnecessary to introduce a new name
for the quotient. The ‘specific volume’ is thus the quotient of volume
and mass, or the volume referred to the mass.

Exercises

3.1 An object sitting on a frictionless, horizontal plane on the
earth’s surface is subject to the following forces: F1 D 50N in the
direction of the azimuthal angle ˛ D 155° (geoscientific notation,
i.e. north: ˛ D 0; east: ˛ D 90° etc.); F2 D 30N in the direction
˛ D 230°; and F3 D 20N to the north. Which additional force to
the northeast (˛ D 45°) would be required to make the resultant total
force Ftot lie along the east-west axis? What is the magnitude of this
total force and in what direction does it act? (Sect. 3.1)

3.2 An object with the weight FG is on a rough inclined plane with
an inclination angle of ˛ D 40°. The coefficient of sticking friction is
	h D 0:3. The object is to be just kept from sliding down the incline
by a force F which makes an angle 
 to the vertical. a) Find the
expression relating the force F to the angle 
. b) By variation of 
,
find the direction of the smallest force that will still hold the object
from sliding. (Sects. 3.1 and 8.9)

3.3 A body of mass m1 D 0:5 kg is sitting on a planar table at
a distance of 1m from its edge. A cord attached to the body is hang-
ing over the edge of the table and carries a weight of mass m2 D 20 g
(see Fig. 3.10). The system begins to move starting from this config-
uration. How large are its velocity u and its kinetic energy Ekin when
the body arrives at the edge of the table? What is the magnitude of
the force along the cord, FF? (Friction and the mass of the cord are
negligible.) (Sect. 3.2 and 5.3)

For Sect. 3.2 see also Exercise 2.4.

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_3) contains supplementary material, which is avail-
able to authorized users.
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Equation 4
4.1 Constant Acceleration in a Straight

LineC4.1 C4.1. “Applications” in
the chapter title does not
mean that we will derive
specific motions from New-
ton’s equation (also known
as the “equation of mo-
tion”), but rather that we will
demonstrate its validity with
selected examples. These are
instructive and are not always
found in other textbooks.

We start by introducing a useful convention: We take the force F to
be the cause of the acceleration a and write the equation of motion in
the form

a D F
m

: (3.3)

Our convention is completely arbitrary: In speaking, the concepts
‘cause’ and ‘effect’ are convenient and familiar, and sometimes they
are even useful. However, in the equations of physics, cause and
effect play no role.

There are several variations on our first application of Eq. (3.3); it
concerns the acceleration of a body in the vertical direction. In all
these experiments, we should keep a basic fact in mind: for each
force, one can specify only its point of action, its magnitude and its
direction, but never its point of origin. For example, the force of
a spring means only “the force related to the deformation (compres-
sion, tension) of a spring”.

Let us assume that two forces act on a body (more precisely, they act
at its center of gravity S; cf. Sect. 5.6 and 6.2, and compare Fig. 4.1):
The first force, FG, is the force of gravity, directed downwards, which
we call the weight of the body; the second, F1, is produced by com-
pressing a force meter (spring). This force is directed upwards, and
its magnitude can be read off the scale of the force meter.

Figure 4.1 The downwards acceleration a of a man doing
knee-bends

41© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_4
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We observe accelerations only so long as F1 and FG have differing
magnitudes. The direction of the acceleration (upwards or down-
wards) depends on whether the force F1 or FG has the larger magni-
tude.

The test body in the first experiment is a man, as sketched in the
figure; the force meter is a common spring balance. FG is the
downwards-directed weight of the man, and F1 is the oppositely-
directed (upwards) force of the spring. We can make three observa-
tions, in logical order:

1. The man stands at rest. The spring balance shows his weight
(e.g. 687 newton bD 70 kgC4.2).C4.2. The unit of force,

the ‘newton’, has not be-
come common in everyday
use. Commercially avail-
able scales continue to use
the unit ‘kilogram’, i.e. they
indicate the mass which cor-
responds to the measured
weight: m D FG=g with
g D 9:81m=s2. A body
of mass 1 kg has a weight
of 9.81 N.

The weight FG and the force F1 in-
dicated by the spring balance are equal and opposite, so that their
resultant force is zero.

2. The man does an accelerated knee-bend. During his downward
acceleration, the upward force read off the spring balance is smaller
than his downwards-directed weight. As a result, the resultant force,
and the acceleration, are directed downwards.

3. The man accelerates back up to his full height. During this mo-
tion, the upward force read off the spring balance is greater than his
weight. The resultant force, and the acceleration, are directed up-
wards.

A variation on this experiment is often encountered in the form of
a trick question: Instead of the large spring as in Fig. 4.1, we now
use a sensitive spring balance; on its weighing pan is a closed bottle
containing a live fly. Does the balance indicate the weight of the fly?

The answer: When the fly maintains a constant altitude, or is flying up-
wards or downwards with a constant velocity, the scale reading includes
the weight of the fly – case 1. (The fly can then be considered to be similar
to a somewhat oversized air molecule.) During an accelerated downwards
motion (“the fly is falling freely”), the balance indicates a weight which is
too small – case 2. When the fly carries out an accelerated upwards mo-
tion (“flying up faster and faster”), the balance indicates a weight which is
too high – case 3.

Another variant: An experimenter holds the force meter made of
a circular spring, which we have already encountered, with its spring
vertical (Fig. 4.2). At the upper end of the force meter is a body of

Figure 4.2 The origin of the ‘elevator feeling’
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meter is moving with a constant velocity upwards or downwards, the
indicator reading (the compression) of the circular spring is the same
as when the hand is at rest. When, however, the hand is accelerating
upwards or downwards, the spring will be more or less strongly com-
pressed, i.e. the upwardly-directed force F1 is larger or smaller than
the downwards-directed weight FG, respectively.

A similar experimental setup often plays an unpleasant role in our daily
lives. The hand can be thought of as the floor of an elevator cabin, and
we can think of the circular spring, in a drastically simplified version of
anatomy, as our gut, while the body M is our stomach. When the elevator
is accelerating downwards, the spring is stretched relative to its normal
resting position. This relaxation is the physical basis for the much-disliked
“elevator feeling”, and when repeated periodically, it causes seasickness.

Finally, we consider the same experiment in a quantitative version.
First, the principle: We hang a block of mass m on a beam balance
(Fig. 4.3) and measure the force FG, i.e. the weight of the block. Then
an invisible mechanism causes the block to move downwards with
a small acceleration. The balance deflects in a clockwise direction,
its center of gravity is moved somewhat to the left and upwards. In
this position, the force pulling the block upwards, F1, is smaller than
the weights on the right balance pan. One would thus have to remove
several small weights from the pan to return the balance to its zero
position during the downwards acceleration of the block. Then, the
force pulling the block upwards, F1, has the same magnitude as the
remaining weights on the right pan. During the downwards accelera-
tion, we thus have jFGj > jF1j, i.e. the resultant force F D FGCF1 is
directed downwards; its magnitude is jFGj � jF1j. This downwards-

Figure 4.3 A beam balance holds
a block of mass m, at rest. If the
block is accelerated downwards,
the indicator of the balance shows
a deflection (the right pan sinks)

Figure 4.4 Continuation of Fig. 4.3.
The object which experiences a constant
downwards acceleration takes the form
of a flywheel (“MAXWELL’s wheel”).
The balance is damped by an oil column
(not shown). At the lowest point of the
wheel, it changes its direction and moves
upwards again. This causes a downward
jerk (an impulse; cf. Sect. 5.5). This im-
pulse is absorbed by briefly holding the
pointer of the balance. (Video 4.1)

Video 4.1:
“MAXWELL’s wheel”
http://tiny.cc/9pqujy
We can even follow the mo-
tion without intervention
when the wheel reaches its
upper reversal point and
moves downwards again.
The essential observation,
namely that a body which is
being accelerated downwards
is lighter, no matter which
direction its velocity vector
is pointing, is somewhat ob-
scured in the first part of the
experiment by two effects:
When the wheel initially be-
comes lighter, the damped
oscillations of the balance
make it hard to read its de-
flection accurately. The same
problem occurs again when
the balance stops moving
briefly at the lower reversal
point of the wheel. In the sec-
ond part of the experiment
(after about 75 s), when some
weight has been added to the
pan on the side of the balance
where the MAXWELL wheel
is hanging, it is in equilib-
rium during the downwards
motion. Now, when the im-
pulse at the lower reversal
point is absorbed by the
balance, it remains in equi-
librium during the following
upwards- and downwards
motions, without the disturb-
ing oscillations. Note that
Fig. 4.4 shows the balance
from the opposite side as in
the video.

http://tiny.cc/9pqujy
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directed force causes the observed downwards acceleration of the
block:

a D .jFGj � jF1j/
m

:

Practical demonstration (Fig. 4.4): The force meter is a simple
kitchen scale. The object is a flywheel on a thin shaft. It is hung from
two strings which are wound around the shaft. When released, it is
accelerated downwards by its weight. The acceleration is measured
by using the equation s D 1

2at
2 and finding the time t required to

travel the distance s with a stopwatch.

Numerical example
m D 539:0 g, FG D 5:288 N, a D 0:048m/s2, computed from s D 0:83m
and t D 5:9 s. Here, F1 D 5:262 N, so that jFGj � jF1j D 2:6 � 10�2 N.

After the strings have rolled off to their ends, the flywheel continues
rotating due to its inertia. The strings are again wound up, in the
opposite sense, and the wheel climbs back up. One should not forget
to repeat the observation in this direction of motion. Again, the indi-
cation of the force meter (balance) is smaller during the accelerated
motion than at rest. The acceleration of the wheel is still directed
downwards, since it is moving upwards more and more slowly, or
with a “braked” motion (negative acceleration).“This experiment often

surprises even experienced
physicists.”

This experiment of-
ten surprises even experienced physicists.

4.2 Circular Motion and Radial Forces

(Observer at rest!) First of all, as a preliminary remark, some good
advice:“. . . some good advice:

Never draw any conclusions
about circular or rotational
motion before agreeing with
your dialog partner on the
frame of reference to be
used.”

Never draw any conclusions about circular or rotational mo-
tion before agreeing with your dialog partner (perhaps the author of
the textbook!) on the frame of reference to be used. Our frame of
reference was agreed upon in Sect. 2.1. It is the surface of the earth,
or the floor of the lecture hall.

Up to now, we have applied NEWTON’s equation of motion only to
the limiting case of a purely path acceleration (along a straight-line
path). Now we do the same for the other limiting case, that is for
a purely radial acceleration.

A body of massm is supposed to move along a circular orbit of radius
r with a constant angular velocity ! (the radius vector r points from
the center point of the orbit towards the moving body). According to
our kinematic treatment in Sect. 2.5, this motion is accelerated. The
radial acceleration, directed towards the center point of the circular
orbit, is

ar D �!2r : (2.12)

From the equation of motion, this acceleration of a body of mass m
requires a force F directed towards the center of the orbit; we will
call it the radial force (it is also called the centripetal force, ‘towards
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Figure 4.5 A ball on a rotating table, held by a leaf spring at the left of a.
The vertical force which acts on the ball, its weight, is compensated by an
invisibly small deformation of the tabletop.

the center’). Quantitatively, from the equation of motion, we must
have

� !2r D F
m

(4.1)

(Circular frequency or angular velocity ! D 2��; � is the mechanical
frequency, i.e. number of rotations/time (e.g. rpm).)

For an experimental test of Eq. (4.1), we replace the angular velocity
! by the mechanical frequency � and obtain

� 4�2�2r D F
m

: (4.2)

The radial force F could be produced by deformation of a spring;
i.e. in brief, by an elastic force. We offer three examples:

1. A leaf spring produces the radial force on a ball at the outer rim
of a carousel or rotating table (Fig. 4.5). It pulls in the direction of
the axis of rotation (towards the center of the table) and can produce
a maximum force of Fmax.

For this experiment, the spring is mounted below so that it can rotate,
and its upper end is fixed by the holding pin a. To determine Fmax,
a counter force is applied via a cord and weight. If the maximum
force Fmax is exceeded, the spring snaps out of its holder.

This spring can be used only up to a certain maximum frequency
�max; this critical frequency can be computed from Eq. (4.2), giving

�max D 1

2�

r
Fmax

mr
: (4.3)

Numerical example
Fmax D 1:77N; m D 0:27 kg; r D 0:22m; then

�max D 1

2�

s
1:77 kgm s�2

0:27 kg � 0:22m
D 0:87 s�1

Tmin D 1

�max
D 1:15 s :
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Figure 4.6 A grinding
wheel, spraying sparksC4.3C4.3. At the end of

Video 6.7, “Supple shaft. . . ”
(http://tiny.cc/5squjy), we can
see a grinding wheel spraying
sparks tangentially. Up to the
11th edition, the following
striking example could be
found here:
“The spark-spraying grinding
wheel seems to contradict our
observations of the wheel of
a car which is throwing off
mud. One can cross a smooth
road right behind a car with
dirty wheels without being
hit by the mud they throw off
(as long as the wheels are not
slipping!). The explanation
is simple: For the observer
in the moving car, the mud-
throwing tires exhibit the
same picture as the spark-
spraying grinding wheel,
i.e. tangential spraying in all
directions. For the pedestrian
behind the car, in contrast,
the contact point of the tires
with the road is the center of
rotation. All the mud flies off
perpendicular to the corre-
sponding radii”.

If this limiting value is exceeded, the ball flies off. It leaves the
carousel tangentially. When the radial acceleration is lost, the ball
flies off on a straight-line path with constant velocity. Unfortu-
nately, its weight generally disturbs our observation of this path.
The weight converts the originally straight-line path into a parabolic
falling curve; but this disturbance is less important at high orbital
velocities. A good example of this phenomenon are the sparks flying
off a grinding wheel. They exhibit very clearly the tangential escape
paths. The glowing metal particles by no means fly outwards, away
from the center of rotation (Fig. 4.6).

2. Linear force law. The force produced by a helical spring, F
(Fig. 4.7), is directed towards the center point of the circular orbit
and its magnitude is proportional to the radius of the orbit, that is

F D �Dr (4.4)

.D D spring constant/:

Inserting this condition into the general equation (4.2) yields for the
frequency

� D 1

2�

r
D

m
: (4.5)

This means that a body moves with a single frequency � on a circular
orbit. The length of the orbital radius is totally unimportant. As
long as this critical frequency � is maintained, the body follows an
arbitrary circular orbit once it has been established.

The linear force law can be implemented in various ways. In Fig. 4.7,
the body is split symmetrically and mounted with as little friction as
possible on two guide rods. These rods compensate the forces that
we call the weights of the two bodies. The arrangement of the helical
spring F allows its extension to be measured even during the rotation.

The helical spring must be pre-tensioned to the force F D Dro while the
apparatus is at rest; ro is then the distance of the centers of gravity of the
weights from their rest positions.

The experiment verifies the predictions. When the frequency is cor-
rectly adjusted, we can change the spacing r of the weights by tapping

http://tiny.cc/5squjy
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tion with a linear force law.
This figure also illustrates the
scheme of an “astatic” fre-
quency controller for all types
of motors. When deviations
from the critical rotation fre-
quency occur, the two bodies
move either all the way out-
wards or all the way towards
the center. The disk S can then
activate a control element of
the machine and restore the
critical rotation frequency.

the disk-shaped endplate S of the spring with a finger, increasing or
decreasing it at will. The bodies follow their circular orbit for any
radius. At this critical frequency �, the weights are in an indifferent
neutral equilibrium, similar to that of a ball which is at rest on a flat,
horizontal table.

3. Nonlinear force law. Let the magnitude of a force produced by
a spring and directed towards the center of the circular orbit be, for
example, proportional to r2, with a new force constant D0; that is

F D �D0r2 r
r

(4.6)

.r=r D is a unit vector in the direction of r/:

Inserting this condition into the general Eq. (4.2) for the radial force
yields the frequency

� D 1

2�

r
D0

m
r : (4.7)

The frequency � is now dependent on the radius r. For each fre-
quency, there is only one possible orbital radius r. In this orbit, the
body is in a stable equilibrium, similar to a ball resting at the bottom
of a bowl.

Experimentally, such a nonlinear force law can be implemented for
example by using a circular spring as in Fig. 4.8. During rotation,
the system can easily be perturbed, e.g. by tapping on the disk S.
Following the perturbation, the correct value of r is immediately re-
established.

Up to now, our demonstration experiments for radial acceleration by
means of a radial force involved rotating bodies with a very simple
shape. They were “small” balls or blocks. We could neglect their
diameters relative to the orbital radius r without making a significant
error. They could be considered, put briefly, to be pointlike (“point
masses”). Our final example illustrates the rotation of a more com-
plex body, namely a chain ring.
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Figure 4.8 Circular motion
with a nonlinear force law.
This figure also illustrates the
scheme of a rotational fre-
quency meter or tachometer.
Each frequency corresponds
to a particular value of the
radius r. The corresponding
position of the disk S can be
read off a scale with the aid
of a pointer.

Figure 4.9 A chain on a flywheel, for
demonstrating dynamic stability

In a preliminary experiment, a tightly-fitting chain is stretched around
a flywheel (Fig. 4.9). If the individual links of the chain were not
attached to one another, they would fly off tangentially like the sparks
from a grinding wheel, once the flywheel was set in motion.

Linked together as a chain, however, they all behave in the same
sense, namely by an expansion of the chain. This deformation pro-
duces forces F0, which lead to a radial force F on each link, as derived
in Fig. 4.10. This force F accelerates each link of the chain towards
the center of the circular orbit. From Eq. (4.1), we obtain the magni-
tude of F (using the orbital velocity u D !r):

F D F0d
r
D mu2

r
: (4.8)

At a high rotational frequency of the flywheel, one can then push off
the chain by tapping it from the side. It does not sink slackly together,
but rather rolls like a stiff circular ring across the table. It even jumps
over obstacles along the way. In this form, the experiment offers
a good example of “dynamic stability”.

A variation on this experiment is even more instructive. A long chain is
hung on a rotating sprocket wheel (Fig. 4.11). Each section of this chain
can be closely approximated by a circular segment with a variable radius r
(the radius of curvature, see Sects. 4.4). Within these segments, the forces
F0 produce the radial force F directed towards their momentary centers
of curvature (midpoints of the circles), as required for circular motion:
Eq. (4.8). This force varies along the chain. F decreases as 1=r; it thus
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Figure 4.10 The origin of the radial force in a chain ring under tension. – We
can imagine that a chain is stretched around a resting circular disk; the chain
consists of balls with a spacing d connected by helical springs under tension.
In the drawing, only 3 balls and 2 springs are shown. The long arrows begin
at the center of gravity of the middle ball and represent the forces that act
on it from the two springs, F0. Vector addition yields the net force F which
is directed towards the center of the circular orbit. The quantitative relation
between F0 and F is found from the similarity of the isosceles triangles which
have the same sides and an opening angle ˛: F=F0 D d=r.

Figure 4.11 Oval shape of a bicycle chain before
being thrown off the sprocket wheel (Video 4.2) Video 4.2:

“Dynamic stability of a bi-
cycle chain”
http://tiny.cc/cqqujy
In order to demonstrate that
“the chain loop should be
able to rotate in stable equi-
librium not only as a circular
ring, but also in any other ar-
bitrary shape”, its rotation is
shown in slow motion in the
second part of the video. It
is helpful to look at the still
images one after another;
one can then see how a bulge
in the chain caused by col-
liding with an obstacle is
maintained during continued
rotation.
For other experiments involv-
ing chains, see e.g. https://
en.wikipedia.org/wiki/Self-
siphoning_beads.

becomes smallerwhen the chain is more stretched out. Therefore, the chain
loop should be able to rotate in stable equilibrium not only as a circular
ring, but also in any other arbitrary shape! The results of the experiment
verify this expectation. A bicycle chain can be conveniently used for this
experiment. At a sufficiently high rotation frequency, it is thrown off the
sprocket wheel.
In earlier times, this experiment was sometimes demonstrated involuntarily
when a drive chain was accidentally thrown off its pulleys in a factory, etc.

4.3 Sinusoidal Oscillations: The Gravity
Pendulum as a Special Case

In Chap. 2, we limited our considerations of kinematics to the sim-
plest orbits, and likewise for the dynamics treated in the present chap-
ter: We have treated only motion in a straight line and circular orbits.

http://tiny.cc/cqqujy
https://en.wikipedia.org/wiki/Self-siphoning_beads
https://en.wikipedia.org/wiki/Self-siphoning_beads
https://en.wikipedia.org/wiki/Self-siphoning_beads
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For linear motion, there is only a linear (path) acceleration, and for
a circular orbit with constant rotational velocity, only a radial acceler-
ation. Sects. 4.3–4.9 will deal with linear pendulum oscillations and
some motions around a central point. We treat the massive moving
bodies to a good approximation as point masses. We start by de-
scribing these motions kinematically and then discuss how they are
produced by forces (dynamics).

The simplest of all periodically-repeated motions takes place along
a straight-line path (linear oscillation). A graphic representation of
its time evolution yields the curve of the oscillation which can be
described mathematically by a single sine function (Fig. 4.12). Os-
cillations of this type, and their curves, are termed sinusoidal, and in
general one speaks of a harmonic oscillator.

We recall Sect. 1.8: If N oscillations occur within a time t, then
N=t D � is the frequency and t=N D T is the period or oscilla-
tion time of the motion. – The abscissa of the sine function is an
angle ˛, whose meaning can be read off Fig. 4.12. – In the os-
cillation curve, ˛ is called the phase angle or simply the phase; it
increases proportionally to the time, so that ˛ D !t. The signifi-
cance of the proportionality factor ! can readily be seen: at t D T ,
˛ D 360ı D 2� (cf. Sect. 1.5). For arbitrary phase angles, we have
˛ D t � 2�=T D !t. Thus, ! D 2�=T D 2��, i.e. the 2�-fold of the
frequency �. ! is called the circular frequency (cf. Sect. 2.5).

Owing to the proportionality of the phase angle to time, one can plot
the oscillation curve either against the phase angle ˛ or the time t D
˛=!. Both methods are illustrated in Fig. 4.12.

The ordinate of the graph of an oscillation curve is not simply the
angular function sin˛, but instead the deflection x (the displacement
of the massive body of the pendulum from its rest position), which is
proportional to a sine function, i.e.C4.4C4.4. Since only the x direc-

tion occurs in the equations
in this section, it suffices to
use only the x component of
the vector quantities velocity,
acceleration and force. The
sign however must be taken
into account; a minus sign
means ‘directed opposite to
the positive x direction’.

x D x0 � sin˛ D x0 � sin!t: (4.9)

x is the deflection (momentary value) at the time t, and x0 is its
maximum value. x0 is often called the amplitude of the oscillation.
(Instead of x0, the symbol A is convenient when one wishes to distin-
guish several different amplitudes by using indices.)

In sinusoidal oscillations, not only the deflections x, but also the
velocities u D dx=dt and the accelerations a D d2x=dt2 can be rep-
resented by sine curves. By differentiating one and two times, one
obtains

u D dx

dt
D !x0 cos!t D !x0 sin

�
!tC �

2

�
; (4.10)

a D d2x

dt2
D �!2x0 sin!t D !2x0 sin .!tC �/ : (4.11)

Figure 4.12b shows u=!, while Fig. 4.12c shows a=!2 graphically as
functions of the time t.
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Figure 4.12 The time evolution of the deflection (position of the massive
body of the pendulum), the velocity, and the acceleration for a sinusoidal
oscillation. The period T is in general the time between two identical deflec-
tions.

The sinusoidal oscillation curve of the velocity precedes the curve
of the deflection by a “phase shift” of �=2 D 90ı; i.e. the positive,
upwardly-directed values begin one-fourth of a period (T=4) earlier
than those of x. At the time t D 0, t D T=2, t D T etc., the oscil-
lating body passes through its rest position (zero deflection). Then in
Eq. (4.10), the sine function D 1, and the velocity has its maximum
value

u0 D !x0: (4.12)

The sinusoidal oscillation curve of the acceleration has a phase shift
of � D 180ı relative to the deflection x. This means, in words:
the direction of the acceleration is at every moment opposite to the
direction of the deflection. As a result, Eqns. (4.9) and (4.11) can be
combined to yield

a D �!2x : (4.13)

This concludes the kinematic description. In order to treat the dy-
namical explanation of a sinusoidal oscillation, we have to consider
also the equation of motion a D F=m; then we obtain

F D �m!2x
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or, with the abbreviation

D D m!2; (4.14)

F D �Dx: (4.15)

In words: To produce a sinusoidal oscillation, one requires a lin-
ear force law. The force which accelerates the massive body must
be proportional to the magnitude of the deflection and oppositely
directedC4.5.C4.5. The line of reasoning

sketched here can be reversed
and then leads to the follow-
ing direct application of the
equation of motion: Insert-
ing the linear elastic force of
a spring, FD D �Dx, into the
equation of motion F D ma,
we obtain as the solution
of the resulting differential
equation a sinusoidal motion,
x D x0 sin!t (Eq. (4.9)), with
the frequency

� D 1
2�

q
D
m (Eq. (4.16)).

A linear force law can be obtained in various ways. The simplest is to
make use of the force due to the deformation (tension, compression)
of a spring (i.e. an “elastic” force). Thus, one arrives for example at
the arrangement sketched in Fig. 4.13: A body of mass m is held be-
tween two helical springs. D, the proportionality factor between the
force of the springs and the deflection, is the “spring constant” which
we have already encountered. In general, it is called the constant of
the restoring force.

From Eq. (4.14) with ! D 2��, we find the frequency

� D 1

2�

r
D

m
: (4.16)

This equation is not new to us. We have already encountered it for
motion on circular orbits in the special case of a linear force law
(Sect. 4.2). There, we found that the frequency is independent of the
orbital radius; here, it is independent of the amplitude of the oscil-
lations. The frequency is determined in both cases uniquely by the
quotient (force constant D/mass m).

Even with qualitative experiments (comparing wooden and iron balls
of the same diameter), one can see the decisive influence of the mass
of the oscillating body on the frequency (or on its inverse, the oscil-
lation period). The effect of a larger mass can be compensated by in-
creasing the spring constant, etc. Equation (4.16) belongs among the
most important formulas in physics. For that reason, measurements
of the frequency � for different values of m and D are among the
most popular and useful exercises in beginning practical laboratory
courses. – The experimental setup can take many forms. A massive
object can simply be hung from a helical spring (Fig. 4.14a). In the
rest position, the quotient of weight/spring extension yields the spring
constantD. The weight, which is constant in magnitude and direction

Figure 4.13 Implementation of a “linearly polarized” sinusoidal oscillation
with a simple elastic oscillator or “ball and spring pendulum”C4.6

C4.6. In order to compensate
the weight of the pendulum
body (ball), which is directed
downwards, in a horizon-
tal arrangement we could
replace the ball by a nearly
frictionless rider on an air-
track; the air cushion would
then take up the weight of the
rider.
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lating spring pendulum for testing
Eq. (4.16), b a gravity pendulum.
Its angular displacement ˛ is nega-
tive in this figure

and is thus simply an additional constant “background” force, has no
influence on the frequency.

The linear force law is only a special case. Nevertheless, it is of great
importance; for in every oscillatory system, no matter how complicated,
one can replace the true force law by a linear force law. In that case,
the motion must be limited to sufficiently small amplitudes (at very small
amplitudes, every force law is approximately linear).
Mathematically, this means that every force law F D �f .x/ can be ex-
panded as a series:

f .x/ D D0 C D1xC D2x
2 C : : :

The constant D0 must be zero, since the force must vanish for x D 0.
With sufficiently small values of x (small amplitudes), the series can be
terminated after the first term, so that one obtains F D �D1x.

Another example of this type of oscillator is the well-known gravity
pendulum (also known as a simple pendulum). At small amplitudes,
the construction sketched in Fig. 4.14b applies. It illustrates how the
force acting on the pendulum ball, its weight FG, can be decomposed
into two components. One of them, FT D FG cos˛, serves only to
maintain tension on the cord. The other, FR D FG sin˛ (the “restor-
ing force”), accelerates the ball along its (circular) orbit.

At small angular displacements ˛, the orbit can be approximated as
linear; furthermore, one can set sin˛ � x=l. Then for displacement
angles of less than 4:5ı, the relative errors of these approximations
are less than 10�3. (Note that ˛ is negative in the figure. The restor-
ing force FR is always opposed to the momentary displacement x of
the pendulum). We thus find FR D �FG sin˛ � �FGx=l. That is,
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the restoring force is proportional to the displacement x. The pro-
portionality factor FG=l is the constant D of the restoring force. –
The mass m of the pendulum ball, its weight FG, and the accelera-
tion of gravity g D 9:81m/s2 are related by the equation FG D mg.
Therefore, D D mg=l. Inserting D into the general equation for the
frequency of oscillatory motion (4.16) yields1

1

�
D T D 2�

s
l

g
: (4.17)

Numerical example
l D 1m; T D 2:006 s, i.e. half of an oscillation cycle in 1 s. This is the so-
called “seconds pendulum”. The longest gravity pendulum in the physics
lecture hall in Göttingen has a length of l D 11:4m and T � 6:8 sC4.7.C4.7. The longest gravity

pendulum used in the old
physics lecture hall in Göt-
tingen was the FOUCAULT

pendulum, which hung
from the roof ridgebeam
above the hall (Sect. 7.7 and
Video 7.5, as in Fig. 7.21,
“FOUCAULT’s pendulum”,
http://tiny.cc/luqujy).

Frequency and period of the gravity pendulum are thus independent
of the mass of the pendulum ball. The gravity pendulum accordingly
occupies a special position. It should be treated as a special case and
should not be the first example introduced in the study of sinusoidal
oscillations.

Equation (4.16) is important for metrology (the science and technol-
ogy of measurements). The periodic repetition of motion makes it
possible to determine the oscillation period T of a pendulum very
precisely. Thus, Eq. (4.17) is suitable for the task of obtaining reli-
able values of the acceleration of gravity (Sect. 2.4). The necessary
precondition is the best possible approach to a “point mass” hang-
ing from a “massless” cord (i.e. a mathematical gravity pendulum or
simple pendulum).

4.4 Motions Around a Central Point

In the case of sinusoidal oscillations of a spring pendulum, the ac-
celeration was seen to be no longer constant, but the path of motion
was still a straight line. The additional velocity du attained within the
time interval dt remained always in the direction of the velocity at the
beginning of the time interval, u, either increasing it (Fig. 4.15a) or
decreasing it (Fig. 4.15b). Only a path acceleration was present. In
the general case, however, the vectors du and u may differ in direc-
tion by an arbitrary angle ˛ (Fig. 4.15c). Then both path and radial
(transverse) accelerations are present at the same time. Both are com-
ponents of the total acceleration ag (Fig. 4.16). The path acceleration
a changes the magnitude of the orbital velocity. The radial acceler-
ation a% produces the curvature of the orbit. Its magnitude, from
Eq. (2.12), is a% D u2=%. Here, % is the radius of curvature, which

1 The influence of the amplitude ˛0 on the period T is small. One finds values of T
for ˛0 D 5ı which are too large by 0.048%, for ˛0 D 10ı by 0.19%, for ˛0 D 15ı
by 0.43% and for ˛0 D 20ı by 0.76%.

http://tiny.cc/luqujy
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Figure 4.16 Decomposition
of a central acceleration ag
into two components a and a%

points from the momentary center of curvature. The latter is the
center point of the circle which most closely approximates the short
segment of the orbit that one is considering at a particular time. From
the enormous variety of possible motions (just think of the possible
motions of our fingers, arms and legs!), we choose a single group for
closer examination, that of the motions around a central point.

A central motion is the motion of a body (a “point mass”) on an ar-
bitrary planar orbit in which an acceleration of varying magnitude
and direction always points towards a single point, the center of ac-
celeration. The line connecting the moving body with the center of
acceleration is called the “radius vector”. From this definition, mo-
tion around a circular orbit as well as linearly polarized pendulum
oscillations are both limiting cases of central motion. In the case of
a circular orbit with constant rotational frequency, there is no orbital
acceleration; in the case of linearly-polarized pendulum oscillations,
there is no radial acceleration. For a generalized central motion, two
simple propositions hold. First: The motion is played out in a plane.
Second: The radius vector sweeps out equal areas in equal times (the
“area law”). – Both propositions belong to kinematics. They are ge-
ometric consequences of the premise that the acceleration is arbitrary
but always directed towards the same central point.

The area law can be seen from Fig. 4.17. This figure is based on Fig. 2.12.
Three curved segments of the orbit of a central motion, corresponding to
three successive time intervals, are approximated by the three arrows xa,
ac, and ce. The central acceleration increases in going from left to right.
The thin arrows ab and cd show the continuation of the motion from the
previous time interval with the same velocity along the tangent to the orbit.
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Figure 4.17 The area law

The arrows aa0 and cc0 are the accelerated paths traversed in the same time
intervals �t towards the central point O. All the arrows are in the plane of
the page, so that the orbits remain planar. The radius vectors Oa, Oc, Oe
etc. sweep out equal areas in equal times �t:

Area D

8
ˆ̂
<̂

ˆ̂
:̂

�Oac D �Ocd; since by construction ac D cd;

�Ocd D �Oce; since the altitudes of the triangles are

cd D c0e
�Oce D �Oac area law.

Demonstration experiment: The cord of a catapult holding a stone
which is moving on a circular orbit passes through a short, smooth
tube in the left hand of the experimenter. The right hand is pulling
on the cord to shorten the length of the radius vector r. The angular
velocity ! increases proportionally to 1=r2.

4.5 Elliptical Orbits and Elliptically
Polarized Oscillations

Central motions need not follow closed orbits; think for example of
a spiral orbit. But one group of closed orbits among the central mo-
tions is particularly important: these are the elliptical orbits. We can
distinguish two cases:

1. Elliptically-polarized oscillations (“polarized” refers to the
“shape” of the oscillations). The center of acceleration of the or-
biting body lies at the midpoint of the ellipse, at the intersection of
its two principal axes.

2. KEPLER’s elliptical orbits. The center of acceleration of the orbit-
ing body is at one of the two focal points of the ellipse (Sect. 4.7).

In this section, we treat elliptically-polarized oscillations. Kinemat-
ically, they are produced by the superposition of two perpendicular
linearly-polarized, sinusoidal oscillations of the same frequency. The
shape of the ellipse is determined by the ratio of the amplitudes of the
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cillation orbits for equal amplitudes of the
two perpendicular component oscillations
(Video 4.3)

Video 4.3:
“Circular oscillations”
http://tiny.cc/1pqujy
With a simple experiment
which is described in de-
tail in Vol. 2, Chap. 9, last
section, the elliptical orbits
in Figs. 4.18 and 4.19 can
be demonstrated. Two leaf
springs mounted perpendic-
ular to each other carry disks
with slits which can allow
a light beam to pass in or-
der to follow their motions
by projection onto a screen.
After demonstrating the ex-
citation of the individual
oscillations, both springs are
excited simultaneously but
with varying phase differ-
ences.

Figure 4.19 The envelope of
elliptical oscillation orbits for
unequal amplitudes of the two
perpendicular component oscilla-
tions (Video 4.3)

two component oscillations and by their phase difference �'. The
phase difference plays the more important role.

The set of all possible orbits has a square envelope (Fig. 4.18).
When the two amplitudes are unequal, it degenerates into a rectangle
(Fig. 4.19)C4.8. C4.8. For the experimental

demonstration of elliptical
oscillations, POHL describes
some impressive mechanical
arrangements. For reasons of
space, they are not included
in this edition. However,
we mention the convenient
possibilities of an electrical
demonstration using fre-
quency generators and an
oscilloscope. A simple me-
chanical experiment is shown
in Video 4.3.

We summarize: For the kinematic demonstration of an elliptically-
polarized oscillation of arbitrary shape, two perpendicular linearly-
polarized sinusoidal oscillations of the same frequency but with ad-
justable phase difference are sufficient. When their phase difference
is 0ı or 180ı, the ellipse degenerates into a line. At a phase difference
of 90ı or 270ı, a circularly polarized oscillation, i.e. a circular orbit,
can result. In that case, the two individual amplitudes must be equal.

4.6 LISSAJOUS Orbits

The results and the methods of the preceding section can also be
applied without difficulties to treat the most general case of elastic
oscillations. We limit ourselves here to giving a summary overview.

When the frequency difference between the two component oscilla-
tions becomes large, the change in phase difference is already notice-
able after a single orbital passage. The ellipse becomes deformed.
We see the characteristic picture of a planar LISSAJOUS figure. Fig-
ures 4.20 and 4.21 show several examples of LISSAJOUS orbits. Their
shape depends on two factors:

1. the ratio of the frequencies of the two component oscillations;

2. the phase difference of the two component oscillations at their rest
point at the beginning of the experiment.

http://tiny.cc/1pqujy
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Figure 4.20 LISSAJOUS figures for a frequency ratio of 2:1 for the two per-
pendicular component oscillations. The vertical oscillation has the higher
frequency. (J.A. LISSAJOUS, 1822–1880)C4.9C4.9. J.A. Lissajous,

Comptes Rendus des Séances
de l’Académie des Sciences
41, pp. 93 and 814 (1855).

Figure 4.21 LISSAJOUS figures for a frequency ratio of 3:2 for the two per-
pendicular component oscillations. The vertical oscillation has the higher
frequency.

Figure 4.22 The production of LISSAJOUS

orbits using the bending oscillations of
a rod of rectangular cross section (2mm
wide, 3mm high). The small mirror R re-
flects the image of a pointlike light source
onto the screen which is perpendicular to
the rod. (Video 4.4)Video 4.4:

“LISSAJOUS figures”
http://tiny.cc/6pqujy
First, the horizontally and the
vertically polarized, damped
component oscillations are
shown individually. Then
both are excited simultane-
ously. From the comparison
with the LISSAJOUS figures
shown in Fig. 4.21, we can
see that the frequency of the
vertical oscillation has a ratio
of roughly 3:2 to that of the
horizontal oscillation.

A mechanical method of producing LISSAJOUS orbits is shown in
Fig. 4.22. The frequencies of the horizontal and the vertical com-
ponent oscillations are in the ratio of about 2:3. One can readily
observe them after giving a horizontal or a vertical excitation ‘kick’.
– The LISSAJOUS image sequence is the well-known one shown in
Fig. 4.21.

4.7 KEPLER’s Elliptical Orbits and the
Law of Gravity

KEPLER’s elliptical orbits have played a fundamental role twice in
the history of physics: Once in the development of celestial me-
chanics, and a second time in BOHR’s model of the atom.

“For demonstration ex-
periments, they are truly
tortuous”.

For
demonstration experiments, they are truly tortuous. They cannot

http://tiny.cc/6pqujy
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(cf. Video 4.5). Video 4.5:
“KEPLER’s elliptical or-
bits”
http://tiny.cc/tpqujy
On a planar horizontal alu-
minum plate, an object can
move with minimal friction.
It is filled with liquid nitro-
gen, which evaporates and
escapes as gas through a hole
in the bottom of the object,
so that it can glide suspended
on the gas film. A cord at-
tached to the object leads at
a distance r to a small elec-
tric motor, which produces
a constant torqueM. The
cord winds around a spiral
spindle of variable radius �

on the motor shaft, so that
the force F transmitted by
the cord depends on the mo-
mentary radius �, which is
adjusted so that � � r2, and
thus also F D M=� � 1=r2.
After a catapult launch, the
object therefore follows an
elliptical KEPLER orbit.

In a KEPLER orbit, the center of acceleration is located at one of the
two focal points of the ellipse. A KEPLER orbit results when the
object has an initial velocity which does not point towards the center.
The acceleration at every point is inversely proportional to the square
of the distance (the length of the radius vector r), so that

a D const

r2
: (4.18)

The derivation of this equation can be found in every textbook on
theoretical physics.

How can we implement the acceleration required by Eq. (4.18) phys-
ically? The answer was first found on the basis of astronomical
observations, by ISAAC NEWTON.

The moon orbits around the earth. Its orbit is very nearly circular. Its
radius is – take note of this number – equal to 60 earth radii. Kine-
matically, we have already described the moon’s orbit in Sect. 2.5:
The moon has an orbital velocity of 1 km/s and experiences a radial
acceleration of ar D 2:7mm/s2 D 2:7 � 10�3 m/s2. Therefore, the
ratio is

Acceleration of gravity g

Moon’s radial acceleration
D 9:8m/s2

2:7 � 10�3 m/s2
D 3600 D 602:

From these facts, NEWTON drew the conclusion that the same force
acts on the moon as on every stone near the earth’s surface. This
force is directed towards the center of the earth and is called ‘weight’.
However, the weight of a body is, counter to all our everyday preju-
dices, not a constant force acting on a body. Instead, it varies de-
pending on the distance r of the body from the center of the earth,
and is proportional to r�2. – Therefore, NEWTON set the weight of
the moon not equal to F D mg, but rather to

F D const
m

r2
: (4.19)

And now the final conclusion was nearly inescapable: If the earth
attracts the moon, then the converse must also be true; the moon must
attract the earth. For an observer on the moon (a different frame of
reference!), the earth has a weight. An observer supposed to be on
the sun could apply the law of ‘actio D reactio’ (another change of
frame of reference!). For this observer, both forces or weights must
be identical but oppositely directed. Then in general, in place of the
weight, we must consider the mutual attraction of two bodies by the
force

F D G
mM

r2
: (4.20)

http://tiny.cc/tpqujy
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(m and M are the masses of the two bodies and r is the distance between
their centers of gravityC4.10.C4.10. For the definition

of the center of gravity, see
Sect. 5.6.

In the case of homogeneous spheres, this law
holds for all values of r. For bodies of arbitrary shape, r must be large
compared to the dimensions of the bodies.)

This is NEWTON’s famous law of gravity. The proportionality factor
G in this law is called the universal gravitational constant.

4.8 The Gravitational Constant

The constant G in the law of gravity cannot be determined from as-
tronomical observations. It must be measured in the laboratory. –
The principle of the measurement is as follows: We construct a small
model of the astronomical situation. As the “earth”, a large lead ball
is employed (of massM, several kg), and as the “moon” or a “stone”,
a smaller ball (of massm) made of some arbitrary material. The large
ball is fixed, and the smaller one is allowed to move freely as far as
possible. One measures the acceleration a of the smaller ball and
computes the gravitational constant G from the equation

a D G
M

r2
: (4.21)

Carrying out the experiment: We employ a symmetrical arrangement
(Fig. 4.23). The two small balls are attached to the ends of a rod
(dumbbell) which is hung at its center using a fine metal band (the
torsion band, rotation axis), allowing it to rotate. Fig. 4.24 shows the
silhouette of a well-tested apparatus (a torsion balance) without the
large balls. To carry out the measurement, we rotate the large balls
from their initial position as indicated in Fig. 4.23 as dark circles into
their final position (shown as shaded circles). – Immediately after
this roating the large balls, the small balls are accelerated and begin to
move. Amirror and a long light pointer allow us to follow this motion
along a distance s with roughly 1600-fold linear magnification. We
observe it for around a minute with a stopwatch and compute the
acceleration from a D 2s=t2.

Figure 4.23 Measurement of the
gravitational constant (HENRY

CAVENDISH, chemist, 1798)
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Figure 4.24 Silhouette of a torsion balance. The large balls have been re-
moved from their movable support beam h. The dumbbell rod holding the
small balls is held in a metal block closed at front and back by glass plates
(good heat exchange). The screws s are used to arrest the torsional motion;
they press four semicircular metal disks against the small balls. The torsion
band has been highlighted in the figure so that it can be seen clearly. The
mirror is mounted at one end of the band. The oscillation period T of the
torsion balance is around 9 minutes. The lower part of the figure on the right
shows the damped ringing-down of the oscillations. The upper-right inset of
the figure illustrates the measurement of the acceleration a. The position of
the light pointer after each 15 s was photographed at 108-fold magnification.

At the start of the experiment (immediately after rotating the large balls),
the distance r of the centers of the balls and the twisting of the torsion
band are practically unchanged and therefore, the acceleration is nearly
constant. However, the torsion band was already twisted up to a maximum
value at the beginning of the experiment: In the rest position, the attractive
forces between the balls were in equilibrium with the torsional force due
to the twisting of the band. As a result, after rotating the large balls, the
resulting acceleration a of the small balls is exactly twice as large is if we
had brought the large balls from far away in to the distance r.

Numerical Example
M D 1:5 kg; r D 4:75 cm; the length of the dumbbell rod is l D 10 cm.
The light pointer has a length of L D 40m, giving a linear magnification
of the distance of V D 2L=.l=2/. The factor 2 is justified by the following
argument: A rotation of the mirror by the angle ˛ rotates the reflected
light beam by the angle 2˛. On the screen, the measured acceleration
of the light pointer is a D 1:28 � 10�2 cm/s2. From this we obtain G D
6 � 10�11 m3/(kg s2 ).
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Precision measurements of the gravitational constantC4.11C4.11. Compared with other
physical constants, the uni-
versal gravitational constant
is the least precisely known.
Only four places after the
decimal point are considered
to be certain, mostly mea-
sured using the principle of
the CAVENDISH balance, but
to some extent also in experi-
ments with falling bodies (see
e.g. http://en.wikipedia.org/
wiki/Gravitational_constant#
History_of_measurement,
and https://royalsociety.org/
events/2014/gravitation/).

yield
a value of

G D 6:6738 � 10�11 m3

kg s2
: (4.22)

The experimental determination of the gravitational constant G
represented a great step forward: using its value, the mass of the
earth could be computed. – The earth’s surface is at a distance of
r D 6400km D 6:4 � 106 m from the center of the earth. At the
earth’s surface, the acceleration due to the force of gravity has the
value g D 9:81m/s2. Inserting these two values together with G into
Eq. (4.21), we obtain

Earth’s massM D 9:81m s�2.6:4 � 106/2 m2

6:67 � 10�11 kg�1 m3 s�2
D 6 � 1024 kg.

The volume of the earth amounts to roughly 1:1 � 1021 m3. As a re-

sult, the average density of the earth is found to be D 6�1024 kg
1:1�1021 m3 D

5500 kg/m3 D 5:5 g/cm3.

This is of course only a mean value. The density of the stones in
the earth’s crust is on the average 2.5 g/cm3. Therefore, in the inte-
rior of the earth, we have to assume materials with a higher density.
Indications are that the earth’s core has a high iron content.

4.9 The Law of Gravity and Celestial
Mechanics

The discovery of a general attractive force between all massive bod-
ies is rightly counted among the great achievements of the human
mind. NEWTON’s law of gravity not only correctly predicts the mo-
tion of the moon; it is the dominant principle throughout the whole of
celestial mechanics, which describes the motions of the planets, the
comets, binary stars, etc.

The observations of the motions of the planets were summarized by
JOHANNES KEPLER (1571–1630) in the form of three laws. These
“KEPLER’s laws” state that:

1. Each planet moves on a plane around the sun. Its orbit is an ellipse
with the sun at one of the two focal points.

2. The radius vector of each planet sweeps out equal areas on the
orbital plane in equal times.

3. The squares of the orbital periods T (planetary ‘years’) are in the
ratios of the cubes of the semimajor axes of their orbits.

http://en.wikipedia.org/wiki/Gravitational_constant#History_of_measurement
http://en.wikipedia.org/wiki/Gravitational_constant#History_of_measurement
http://en.wikipedia.org/wiki/Gravitational_constant#History_of_measurement
https://royalsociety.org/events/2014/gravitation/
https://royalsociety.org/events/2014/gravitation/
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ets in the Solar System are rather small. If one for example draws the orbit
of Mars on a sheet of paper, giving its semimajor axis a length of 20 cm, the
deviation of the orbital shape from a circle is everywhere less than 1mm.
Given these numbers, we can appreciate KEPLER’s achievement in verify-
ing the elliptical orbit of this planet.

The three laws formulated by his great predecessor could be ex-
plained in a unified way by NEWTON using his law of gravity2:

1. Every elliptical orbit requires a central (centripetal) accelera-
tion. In the elliptical orbits observed by KEPLER, one focus was
distinguished over the other. According to Sect. 4.7, the accelera-
tions should be proportional to 1=r2. This is precisely the case from
Eq. (4.20) for mutually attractive (gravitational) forces.

2. KEPLER’s second law is just the law of areas, which holds for
every central motion (cf. Sect. 4.4).

3. KEPLER’s third law likewise follows from Eq. (4.20). This can be
seen by considering a special case; we allow the KEPLER ellipse to
become a circle. For a circular orbit, we have (cf. Eq. (4.2)):

F D �4�2m�2r D �4�2mr
T2

: (4.23)

For the magnitude of F, we insert the value obtained from the law of
gravity (Eq. (4.20)). Then we obtain

const
m

r2
D 4�2mr

T2
; T2 D const r3 : (4.24)

In contrast to the planets, comets often have extremely long elliptical
orbits. The semimajor axis of the ellipse can be as much as 100 times
its semiminor axis. But even for the general case of these arbitrar-
ily elongated elliptical orbits, KEPLER’s third law can be derived as
a result of NEWTON’s law of gravity. That, to be sure, requires more
extensive computations.

A simple example to conclude this section can serve to imprint the
most important aspects of celestial mechanics in the readers’ memo-
ries:

We imagine a projectile to be fired in a horizontal direction near the
earth’s surface. The atmosphere (and with it the resistance of the
air) are assumed not to exist. How great must the velocity u of the
projectile be so that it becomes a little moon, circling the earth at
a constant distance from the surface?

A circular orbit with the orbital velocity u requires a radial acceler-
ation of a D u2=r according to Eq. (2.12). This radial acceleration

2 KEPLER himself never progressed beyond qualitative efforts at explaining his
laws. For example, in 1605, he wrote, “If we were to suppose that the earth is at
rest in some particular place, and were to set another, larger earth nearby, it would
be attracted by the earth just as stones are attracted to its surface”.
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is provided by the force of the weight of the projectile. The weight
gives the projectile an acceleration of g D 9:81m/s2 towards the cen-
ter of the earth. On the other hand, the distance of the surface of
the earth from its center is equal to the radius r of the earth, about
6:4 � 106 m. We thus obtain

9:8
m

s2
D u2

6:4 � 106 m ;

u D 8000m/s D 8 km/s:

At a muzzle velocity of 8 km/s in a horizontal direction, we therefore
have the case shown in Fig. 4.25 on the left: the projectile circles the
earth close to the surface like a little satellite. This case is realized
by artificial earth satellites which are placed in orbit at an altitude
of around 400 km, moving in a direction perpendicular to the earth’s
radius.

If this initial velocity is exceeded, we obtain an elliptical orbit of the
type shown in the center of Fig. 4.25. For velocities u > 8 km/s, the
projectile will orbit the earth like a planet or a comet, on an ellipse.
The center of the earth is at that focus of the ellipse which is closer to
the cannon that fired the projectile. For velocities> 11.2 km/s, known
as the escape velocity, the elliptical orbit degenerates into a hyper-
bola. The projectile leaves the earth, never to return3.

For velocities u < 8 km/s, there is also an ellipse, cf. Fig. 4.25, right-
hand side. But only that part of it which is not dotted in the figure can
be realized in practice. In this case, the center of the earth is at the
focus of the ellipse which is further from the cannon (the attraction
of the earth’s gravity acts as though the earth had shrunk to a small
body around its midpoint, while maintaining the same mass).

The lower the initial velocity u, the more elongated is the elliptical
orbit. Finally, one arrives at the limiting case shown in Fig. 4.26.

Figure 4.25 Elliptical orbits
around the center of the earth
for different initial velocities

Figure 4.26 The parabolic trajectory of an
object thrown horizontally

3 For the sun, the corresponding escape velocity is 618 km/s, and for earth’s moon,
it is 2.3 km/s.
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be practically infinitely distant. The radius vectors which point
there are nearly parallel. One finds that the portion of the elliptical
orbit which remains above the earth’s surface is to a good approx-
imation a parabola. It is the well-known parabolic trajectory of
a horizontally-thrown projectile. – These considerations are useful,
although the air resistance in reality makes their practical verifica-
tion impossible. Even at normal velocities of several 100m/s, the
braking action of air resistance is considerable. The parabola can be
seen only as a very rough approximation to the true trajectory, the
so-called ballistic curve.

Exercises

4.1 Find the amplitudes of the velocity u0 and the acceleration a0
of a body that is undergoing sinusoidal oscillations with a maximum
displacement (displacement amplitude) of x0 D 10 cm and a period
of T D 1 s. (Sect. 4.3)

4.2 The acceleration of gravity on the moon is 1/10 of its value g
on the earth. How long is the period TM of a simple pendulum on the
moon, if its period on the earth is TE D 1 s? What is the mass mM of
the moon, given its radius rM? (Sects. 4.3 and 4.7)

4.3 A stone of mass m attached to a rope of length l is being
whirled around on a circular horizontal orbit at the angular veloc-
ity !. How does its angular velocity change if the length of the
rope is suddenly decreased by l1? Treat the stone as a “point mass”.
(Sects. 4.4 and 6.6)

4.4 The heat content of anthracite coal is about 3 � 104 kJ/kg
(cf. Sect. 19.8). At what depth z under the earth’s surface could the
coal lie if the work of raising it to the surface were just equal to its
heat content? (See Sect. 13.3). (Sects. 4.8 and 5.2)

(In order to solve this exercise, one needs to know that the weight FG of an
object of mass m decreases in the interior of the earth! At the center of the
earth, its weight would be zero. It then increases linearly – assuming that
the matter of the earth has a uniform, constant density – with increasing
distance r from the center, finally reaching the value mg at the surface
of the earth (r D RE). As an equation: FG D mg.r=RE/, where RE D
6378 km.)

4.5 In Göttingen, there is a “Planetary Way”: A sphere represent-
ing the sun is in the Goetheallee, then towards the center of town
follow Mercury, Venus, Earth, etc.; all the linear dimensions are re-
duced by a factor of 2 � 109 compared to the real distances. If this
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model were set up in an otherwise empty space, free of external grav-
itational forces, could the planets circle the sun? And if so, how long
would the “year” of the model Earth be? (The radius of the real orbit
of the earth is R D 150 � 109 m.) (Sect. 4.9)

For Sect. 4.3 see also Exercise 2.5.

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_4) contains supplementary material, which is avail-
able to authorized users.
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Work, Energy, and
Momentum

5

5.1 Preliminary Remarks

Making use of NEWTON’s equation of motion and the law of “actio
= reactio”, one can treat every motion quantitatively. Many motions
are however extremely complex; one need think only of the motions
of machine parts or the motions of our bodies and their extremities.
In such cases, a description based on the equation of motion requires
a great amount of computational effort. This effort can often be re-
duced considerably by using some additional, cleverly formulated
concepts – these are work, energy, and momentum. These concepts
will not be introduced on the basis of experimental facts which we
have neglected up to now, but rather by considering the equation of
motion more closely. We begin with the concept of ‘work’.

5.2 Work and Power

Three things are agreed upon at the outset:

1. The product ‘force in the direction of the displacement’ times
‘distance displaced’ will be defined as the work.

2. CFx means: The force F and the displacement x are in the same
direction. “The force F performs

work”. One should avoid
saying, “The force works, is
working”.

The force F performs1work.

3. �Fx means: The force F and the displacement x point in opposite
directions; work is performed against the force F.

In general, the force is not parallel to the displacement, nor is it con-
stant. In this more general case, we denote the components in the
direction of the m-th displacement element �x by F1;F2; : : : ;Fm;
and we define the work W as the sum

F1�x1 C F2�x2 C : : :C Fm�xm DP
Fi�xi

.i D 1; 2; 3; : : : ; m/

1 One should avoid saying “The force works, is working”. The concept of power
will be introduced at the end of this section.

67© Springer International Publishing Switzerland 2017
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Figure 5.1 The definition of the work
as a path integral over the force

or in the limitC5.1C5.1. The general definition
of work is given by the path
integral
W D R

F � dx
over the scalar product of the
vector quantities ‘force F’
and ‘displacement element
dx’. This also fixes the sign
of the work. In all the exam-
ples discussed in this section,
W is positive, i.e. work is
performed on the object on
which the force F acts. Mi-
nus signs occur only when
the corresponding counter-
forces (reaction forces) are
employed instead of F. The
sign of W does not change.
Since often only the parallel
components of F and x are
used, whose direction is in-
cluded in their magnitudes,
sign errors can easily occur.

W D
Z

Fxdx : (5.1)

Figure 5.1 shows a graphical representation of a path integral over
the force.

With this definition of the work, its units are also determined; these
must consist of the product of a unit of force and a unit of distance.
We call

1 newton �meter (N m) D 1 Joule (J) D 1 watt � second (W s)

D 1 kgm2=s2;

1 kilowatt � hour (kWh) D 3:6 � 106 watt � second (W s):

We will calculate the work for three different cases:

1. Lifting work. In Fig. 5.2, a muscular force lifts a massive block
straight up, very slowly with the force F. The force F performs work
along the path dh:

dW D Fdh : (5.2)

Figure 5.2 The definition of lifting work
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Figure 5.3 Lifting work up a ramp. The work is not performed directly
against the weight FG of the object, but rather only against its component
in the direction parallel to the surface of the ramp, FG cos ˛. However,
the displacement x is greater than the perpendicular height h; it is x D
h= cos ˛. The lifting work along the whole length of the ramp is thus
W D �FG cos ˛ h= cos ˛ D �FGh. – Similar considerations apply to any
ramp, no matter what its shape and curvature, or to other lifting machines,
such as a block-and-tackle.

In a very slow lifting action, the velocity of the block lifted remains
practically zero. As a result, to a very good approximation, F D
�FG. Then we find

dW D �FGdh : (5.3)

This work is performed against the weight of the block. The weight
FG is practically constant for all heights h in the neighborhood of the
earth’s surface. So the shaded region indicated in Fig. 5.1 is a rectan-
gle with the area FGh. We then obtain for the lifting work up to the
height h against the force of weight FG

C5.2: C5.2. Lifting work is also
positive. Since FG and h
are directed opposite to one
another, the sign of the cor-
responding scalar product
must be taken into account:
W D �FG � h D mgh.

lifting work D �FGh: (5.4)

All types of lifting machines, e.g. the simple ramp in Fig. 5.3, can do
nothing to change the magnitude of the product �FGh. It is always
the perpendicular height h which determines the amount of work.

Numerical Example
A person with a mass of 70 kg climbs to the top of a 7000m(!) mountain
in one day. The force of his or her muscles perform lifting work of 70 kg �
9.81m/s2 �7000m� 5 �106 N m or around 1.5 kWh. This “day’s work” has
a market value of about 2 cents!C5.3 C5.3. This corresponds in

today’s currency to around
30 Eurocents per kWh for
private users in Germany,
and around 11 Ct. in the
U.S. (Exercise 4.4).

– When jumping, one need consider
only the height h by which the center of gravity of the jumper is raised.
When a person is standing, his/her center of gravity is about 1m above the
ground. In jumping over a crossbar at a height of 1.7m (cf. Fig. 5.4), the
center of gravity is raised to a height of around 2m. The height lifted is
thus only 2m� 1m D 1m. So the muscular force of the jumper performs
a lifting work of 70 kg � 9.81m/s2 � 1m, or around 700Nm.

2. Work against a spring. In Fig. 5.5, we see an object which is held
by a spring. Muscular force is used to extend the spring very slowly
in the direction x. The muscular force F performs work along the
displacement element dx:

dW D Fdx : (5.5)
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Figure 5.4 Proficient
high-jumpers roll over
the crossbarC5.4C5.4. High-jump techniques

have been developed in order
to keep the center of gravity
of the jumper as low as pos-
sible. In 1968, the American
high-jumper R. FOSBURY

earned an Olympic gold
medal with his backwards
roll – the ‘Fosbury flop’
(sneered at by the skeptics).

Figure 5.5 The definition
of work against a spring,
or “elastic work”

Figure 5.6 The calculation of work
against a spring (elastic work):R
dW D the sum of the shaded rect-

angular areas D area of the triangle
COB

When the spring is stretched very slowly, the velocity of the object
remains practically zero. As a result, to a very good approximation,
the elastic force resulting from the extension of the spring is FD D
�F, and

dW D �FDdx : (5.6)

This work is performed against the elastic force of the spring. The
elastic force is given by the linear force law (Hooke’s law), (Fig. 5.6)

FD D �Dx : (4.15)

Inserting Eq. (4.15) into Eq. (5.6), we obtain

dW D Dxdx: (5.7)

Along the displacement x, the path integral of the force is the trian-
gular region COB, whose area is 1

2xDx. Thus we find

Elastic work D 1
2Dx

2 : (5.8)

Numerical example
A bow is pulled back with a muscular force of F D Dx D 200N through
a distance of 0.4m. The muscular force has to perform work amounting to
0:5 � 200N � 0:4m D 40N m.

3. Work of acceleration. Fig. 5.7 is a continuation of Fig. 5.5: The
object has just been released by the hand; the spring relaxes back
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to its resting position by pulling together. It thereby accelerates the
object, which was previously at rest, to the left, and the elastic force
FD of the spring performs work of acceleration:

dW D FDdx : (5.9)

According to the equation of motion, Eq. (3.3), we have

FD D m
du

dt
(5.10)

and, from the definition of the velocity,

dx D udt : (5.11)

Equations (5.9) through (5.11) together yield

dW D mudu : (5.12)

The integration (analogous to Fig. 5.6) gives the

Work of acceleration D 1
2mu

2 : (5.13)

Numerical examples
A railroad train (locomotive C 8 cars), mass D 5:1 � 105 kg, velocity D
20m/s, work of acceleration� 108 Nm � 28 kWh; a bullet from a pistol
(cf. Sect. 2.2), mass D 3.26 g, velocity D 225m/s, work of acceleration
� 82Nm.

The quotient work/timeC5.5 C5.5. More precisely,
the differential quotient
dW=dt D PW.

or – equivalently – the product of force
times velocity are called the power P. The unit of power is

1watt (W) D 1Nm/s . (5.14)

When working continuously for several hours (turning a crank, walk-
ing on a treadmill etc.), a person can deliver a steady power output
of around 0.1 kilowatt (kW). For a few seconds, the power output of
a human can be greater than 1 kW; for example, a person can jump
up a 6m high staircase in 3 s. The power required is 70 kg �9:81m/s2 �
6m=3 s � 1:4 kW. More will be said about this topic in Sect. 5.11.

5.3 Energy and Its Conservation

In Sect. 5.2, we defined the integral
R
Fdx and called it ‘work’. We

calculated the work for three different cases and gave numerical ex-
amples.
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Figure 5.8 A body which has been raised up can per-
form work: it could lift another body of the same mass
to the same height, without accelerating it.

Figure 5.9 A spring which has been compressed or extended can lift an
object and thereby perform lifting work, i.e. without work of acceleration.
A continuously variable leverage keeps the lifting force F in equilibrium with
the weight FG at each moment; r is here the constant lever arm, while R is the
lever arm which varies during the rotation.

In each of these three cases, the ability to perform work was in-
creased; or, expressed differently, work was converted into the abil-
ity to perform work: A body lifted higher or a compressed spring
can themselves perform work. They can for example lift an object
(Figs. 5.8 and 5.9) or accelerate it (e.g. Fig. 5.7). This work which
has been converted into ‘the ability to perform work’ is called

lifting work mgh the potential of the lifted body
� �

elastic work 1
2Dx

2 energy Epot of the spring.

.5:4/

.5:8/
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ity, but also the ability to perform work; it can for example deform
another body in a collision and thereby perform elastic work. In this
case, the work of acceleration which has been converted into the abil-
ity to perform work is called:

work of acceleration 1
2mu

2fthe kinetic energy Eking
of the accelerated body:

(5.13)

In the above examples, the sum of the two forms of energy (potential
and kinetic) is a constant quantity; thus

Epot C Ekin D const: (5.15)

This is a fundamental law of mechanics, the conservation of energy
(briefly: energy conservation).

Explanation: In Fig. 5.7, assume that the spring relaxes through a dis-
placement of dx. Its elastic force FD performs the work dW in the
process. This work can be described in two ways: First of all, as
work of acceleration which increases the kinetic energy Ekin of the
object, thus

dW D CdEkin : (5.16)

Secondly, it can be considered to reduce the potential energy stored
in the spring, so that

dW D �dEpot : (5.17)

Equations. (5.16) and (5.17) together yield

dEpot C dEkin D 0

or
Epot C Ekin D const : (5.15)

Similarly, in the case of the free fall of a body: Its weight FG per-
forms work of acceleration dW along the displacement dhC5.6, C5.6. dh is directed down-

wards in this case.
dW D

CFGdh. This is D CdEkin and D �dEpot. Thus, here also, dEpot C
dEkin D 0 and Epot C Ekin D const.

We have thus far treated energy conservation in mechanics for only
two types of forces, for elastic forces and for weight (the force of
gravity). Such forces are called conservative. In their case, energy
is “conserved”. Frictional and muscular forces are non-conservative.

Non-conservative forces:
“They will be included
later by means of a bril-
liant extension of the energy
conservation law”.

For non-conservative forces, the mechanical energy conservation law,
i.e. Eq. (5.15), does not apply. They will be included later by means
of a brilliant extension of the energy conservation law.
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5.4 First Applications
of the Conservation Law
of Mechanical Energy

1. Sinusoidal oscillations (Sect. 4.3) consist of a periodic conver-
sion of the two mechanical energy forms into each other. For every
displacement x, it holds that

1
2Dx

2 C 1
2mu

2 D const . (5.18)

During passage through the rest position, all of the oscillation energy
has been converted to kinetic energy; here we have

1
2mu

2
0 D const D Ekin : (5.19)

At the points of reversal (maximum displacement x0, or amplitude),
all of the energy is potential, and we find

1
2Dx

2
0 D const D Epot : (5.20)

In words: The energy of a sinusoidal oscillation is proportional to
the square of its amplitude x0.

Setting Eq. (5.19) equal to Eq. (5.20), together with Eq. (4.5), leads
to an important equation, which we have already encountered:

u0 D !x0 : (4.12)

2. Oscillations whose frequency is strongly dependent on their am-
plitudes. During free fall, the weight FG D mg of an object performs
work of acceleration, 1

2mu
2 D FGh D mgh. Thus, the object’s final

velocity after falling from the perpendicular height h is

u Dp
2gh : (5.21)

With the corresponding kinetic energy, the object may elastically de-
form itself and/or the surface on which it impacts (cf. Fig. 5.10) and
thereby convert its kinetic energy into potential energy. This will be
converted back to kinetic energy by relaxation of the deformed bod-
ies. The object again rises, gaining potential energy, and so forth.
This is the origin of the motion of the dancing ball: A good ex-
ample of an oscillatory phenomenon with a non-linear force law.
The deflection does not depend sinusoidally on time; its frequency
increases strongly with decreasing amplitude (as in ‘wobble oscilla-
tions’, which are related to the dancing ball; see Sect. 11.16).

3. The definition of elastic. Deformations are called elastic when
they fulfill the mechanical energy conservation law. Practically, this
can be realized only as a limiting case. A fraction of the apparent
mechanical energy is continually converted into the energy of molec-
ular motions, i.e. into heat. The dancing ball never quite returns to its
previous height.
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ergy. A steel ball is dancing on a steel
plate. The latter could also be a glass
plate covered with soot; then one could
readily discern the flattening of the
ball on impact. Below: The time evo-
lution of the dancing ball’s motion.
(Video 5.1) Video 5.1:

“Dancing steel ball”
http://tiny.cc/3qqujy
The steel ball is released
magnetically, so that it falls
straight down without rota-
tion.

5.5 Impulse and Momentum

The path integral of the force, that is the work
R
F dx, led us to

a fundamentally important concept, namely energy. The correspond-
ing time integral

R
F dt of the force does the sameC5.7: C5.7. In contrast to the path

integral of the force, W DR
F � dx, the time integral of

the force,
R
F dt, and thus the

momentum, is a vector.

It is called
the impulse and leads to the concept of momentum.

Many motions occur with jerks or impacts; forces which change
quickly in magnitude and direction are at work. Figure 5.11 is in-
tended to illustrate the time variation of such a force. – Starting with
processes of this kind, one arrives at the concept of ‘impulse’:

Impulse D
Z

F dt : (5.22)

The unit of impulse2 is for example the newton � second (N s).

Work performed upon an object increases its energy. What is the re-
sult of an impulse? The answer is provided by applying the equation
of motion. Before the impulse, let the object have a velocity u1. Dur-
ing a time interval dti, the acceleration is given by ai D Fi=m. Within
the time interval dti, it gives rise to an increase in the velocity of

dui D aidti D 1

m
Fi dti (5.23)

Figure 5.11 The time integral of the force, or
‘impulse’

2 In electrodynamics, the corresponding quantity is the current impulse
R
Idt, mea-

sured in ampere � second (A s), and the voltage impulse
R
Udt, measured in volt �

second (V s).

http://tiny.cc/3qqujy
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or
mdui D Fi dtiI

and, after integration over time,

m.u2 � u1/ D
Z

F dt : (5.24)

The product of mass times velocity,“The product of mass
times velocity was called
by NEWTON the quantity
of motion. In more recent
times, this useful term has
been supplanted by the
word momentum, and we
too must adopt this usage”.

that is mu, was called by
NEWTON the quantity of motion. In recent times, this useful term has
been supplanted by the word momentum, and we too must adopt this
usage. Then, in words, Eq. (5.24) means: An impulse

R
F dt changes

the momentum of a body from its initial value mu1 to a final value of
mu2.

The symbol used for the momentum in most textbooks is p:

Momentum p D m � u : (5.25)

Then Eq. (5.24) becomes

�p D p2 � p1 D
Z

F dt : (5.26)

5.6 Momentum Conservation

The definitions given in Sect. 5.5 can be combined with the empirical
rule “actioD reactio”: Forces always occur in pairs; they act on bod-
ies with the same magnitudes but in opposite directions. Figure 5.12
shows the simplest example: A compressed spring is placed between
two small carts of massesM and mwhich are at rest. The overall mo-
mentum of this “system” is zero. A trigger mechanism then releases
the spring. The two carts are each acted on by an impulse of the same
magnitude but in opposite directions. As a result, each receives a mo-
mentum, also equal but opposite. As a formula, we can represent this
by:

Mu1 D �mu2I Mu1 C mu2 D 0 : (5.27)

Figure 5.12 The conservation of momentum. Two carts with the masses 2m
and m travel distances which are in the ratio 1:2 in a given time. Therefore,
their velocities are in the same ratio, 1:2.
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The sum of the two momenta remains zero. That is, in a descriptive
generalization: Without the effects of “external” forces, the sum of all
the momenta in any system of arbitrarily moving bodies remains con-
stant. This is the law of conservation of momentum. This “This momentum conserva-

tion law is no less important
than the law of energy con-
servation.”

momentum
conservation law is no less important than the law of conservation of
energy.

Momentum conservation is often called the “law of conservation of the
center of gravity”. The reason for this can be seen in Fig. 5.12. The dis-
tances travelled during a given time interval obeyMs1 D ms2.
The same equation defines the center of gravity of two bodies at rest
(Fig. 5.13).C5.8 C5.8. The center of gravity is

defined here using momen-
tum conservation, that is by
means of the inertial mass.
Its name however is derived
from the more frequently ap-
plied definition based on the
gravitational mass: it then
corresponds to the point at
which a body can be hung
so that the sum of all the
torques resulting from gravity
is zero (i.e. the body hangs
at rest without rotating; see
Sect. 6.2.)

5.7 First Applications of Momentum
Conservation

As with energy conservation, we illustrate momentum conservation
by means of a few simple examples.

1. Let us start with a flat cart, about 2 m long. A man is standing
on its right end (Fig. 5.14). The cart and the man form a system.
The man begins to walk towards the left; he thus gains a momentum
directed to the left. At the same time, the cart rolls to the right. Ac-
cording to momentum conservation, it has gained a momentum of the
same magnitude but opposite direction to that of the man. – The man
continues walking and walks off the left end of the cart. He takes his
momentum with him. The cart now rolls with a constant velocity to
the right, since it has the same momentum as the man, apart from its
opposite sign.

2. To verify this quantitative statement, we let the empty, rolling cart
meet up with a second man who is walking to the left (Fig. 5.15). The
mass and velocity of this second man are chosen to be the same as

Figure 5.14 Momentum conser-
vation. A man accelerates himself
to the left on a cart and imparts
a momentum in the opposite di-
rection to the cart. (Video 5.2) Video 5.2:

“Conservation of linear
momentum”
http://tiny.cc/tqqujy

http://tiny.cc/tqqujy
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Figure 5.15 The
momentum of the
cart in Fig. 5.14
is equal to the
momentum of the
man

Figure 5.16 Mo-
mentum conservation.
The walking man has
kept the same momen-
tum during and after
walking over the cart.
(Video 5.2)Video 5.2:

“Conservation of linear
momentum”
http://tiny.cc/tqqujy

those of the first man. The second man steps onto the cart and stops
walking. Immediately, the cart also stops rolling. The momentum
transferred from the man to the cart was of the same magnitude but
opposite direction to the momentum of the rolling cart.

3. The flat cart is standing at rest. From the right, a man comes
walking rapidly with a constant velocity. He steps onto the cart on the
right and leaves it on the left (Fig. 5.16). The cart remains standing
at rest. The man brought his total momentum along with him and did
not change it noticeably while he was on the cart. As a result, the
momentum of the cart cannot change relative to its initial value of
zero.

4. The flat cart has rubber tires. At right angles to its long axis, it
resists being shoved. However, it can easily roll in the direction of its
long axis. Therefore, it can be used to demonstrate the vector nature
of the momentum p:C5.9C5.9. These impressive

demonstrations of momentum
conservation have the ad-
vantage compared to experi-
ments on an airtrack, which
are frequently used today, of
being able to demonstrate the
vector nature of momentum.

Assume the man to be walking at an angle ˛ towards the long axis
of the cart when he steps onto it. Then only the component p cos˛
of his momentum is along the cart’s long axis. For ˛ D 60ı, the cart
reacts with only half the velocity (cos 60ı D 0:5); for ˛ D 90ı, the
cart remains at rest (cos 90ı D 0).

http://tiny.cc/tqqujy
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Collisions of Objects

Figure 5.17 shows two loaded carts with spring bumpers. They each
have the same mass. The left-hand cart is moving towards the other
with the velocity u. When they collide, they exchange their velocities;
the right-hand cart moves away with the velocity u, while the left-
hand cart is now at rest. It stops at the moment when the spring
bumpers are completely relaxed. – to explain this experiment, one
requires both momentum conservation and energy conservation. We
will illustrate this using an example where the masses are not equal.

Momentum conservation requires

Left-hand cart Left-hand cart Right-hand cart
mu D mu1 C Mu2

before the collision after the collision

or
m.u � u1/ D Mu2 : (5.28)

Energy conservation requires

1
2mu

2 D 1
2mu

2
1 C 1

2Mu22

or
m.uC u1/.u� u1/ D Mu22 : (5.29)

Equations (5.28) and (5.29) together yield

u2 D .uC u1/ : (5.30)

Figure 5.17 Demonstration of a slow collision. The helical springs F are at-
tached firmly to the cart at a and to the bumper at b. When the two bumpers
meet, the springs will be extended; an elastic force to the left thus acts on the
left-hand cart, and an equal force to the right acts on the right-hand cart.
These two forces have the same magnitudes at every moment during the
extension of the springs. They brake the motion of the left-hand cart and
accelerate the right-hand cart. (Video 5.3)

Video 5.3:
“Elastic collisions in slow
motion”
http://tiny.cc/xqqujy
The major advantage of this
arrangement is that the col-
lision takes place slowly.
Forces and energy transfers
can be clearly observed. The
collision process is made
slower by increasing the
masses of the carts by adding
the experimenters, while
keeping the overall mass on
each side equal.

http://tiny.cc/xqqujy
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Figure 5.18 The demonstration of elastic collisions
between two objects of the same mass. The balls are
hung by two threads (“bifilar suspension”), so that they
can move freely from left to right (but not forward or
backward). (Video 5.4)Video 5.4:

“Elastic collisions”
http://tiny.cc/xrqujy
Collisions between balls
having the same and dif-
ferent masses are shown.
(Exercise 5.5)

Using Eq. (5.30), one can eliminate either u1 or u2 from Eq. (5.28).
The resulting velocity is

for the colliding object u1 D u
m �M

M C m
;

.of massm/
(5.31)

for the target object u2 D u
2m

M C m
:

.of massM/
(5.32)

In the special case that M D m, it thus follows for the velocity after
the collision that u1 (colliding cart) D 0; u2 (target cart) D u. For
M > m, u1 becomes negative, i.e. it is directed oppositely to the
velocity u (the cart is ‘reflected’).

The demonstration sketched in Fig. 5.17 can be carried out with
a larger number of carts. One can occasionally see this in a rail-
road switchyard. In the lecture hall, instead of carts one generally
uses a series of steel balls which are hung as simple pendulums;
cf. Fig. 5.18. The leftmost ball is pulled out and released, so that it
collides with its neighboring ball. That ball receives the momentum
and takes on the role of colliding ball (projectile), while its next
neighbor becomes the target, and this proceeds in sequence through
the whole line of balls within a very short time. The rightmost ball
then flies up and out to the right with nearly the same velocity as the
original leftmost ball just before the first collision.

5.9 Momentum Conservation
in Inelastic Collisions
and the Ballistic Pendulum

When both bodies are moving with the common velocity u2 after
a collision, one speaks of a (completely) inelastic collision. It can
be demonstrated by replacing the elastic bumpers in Fig. 5.17 with
lead or some other easily deformable material, so that the two bodies
“stick together”. In this case, the mechanical law of energy conser-
vation does not hold. But momentum conservation alone allows us to

http://tiny.cc/xrqujy


5.9 Momentum Conservation in Inelastic Collisions and the Ballistic Pendulum 81

Pa
rt
IFigure 5.19 A ballistic

pendulum as a force meter.
Measuring the velocity of a bul-
let (suspension by two threads
of length ca. 4.2m, natural pe-
riod of oscillation T D 4:1 s).
(Video 5.5) Video 5.5:

“Measuring the velocity of
a bullet”
http://tiny.cc/qrqujy
For safety, the pendulum
swings along two light metal
rails. Its period is 2 s, and its
mass is 2.2 kg. The mass of
the bullet is 2.6 g. The pen-
dulum exhibits an amplitude
of around 12 cm (6 marks on
the scale; compare the sil-
houette). From these data, we
find the bullet’s velocity to be
320m/s.

make a prediction (since there is only one common velocity after the
collision). Momentum conservation requires

Left-hand cart Both carts together
mu D u2.mCM/

before the collision after the collision

(5.33)

or
u2 D u

m

M Cm
: (5.34)

The velocity u2 of the target body after the collision is thus only half
as great as in an elastic collision for equal masses; cf. Eq. (5.32).
This means that twice as much momentum is transferred in an elastic
collision as in a completely inelastic collision.

An example of an application is the measurement of the muzzle ve-
locity of the bullet from a pistol. In Fig. 5.19, we see the bullet
impacting with its velocity u onto a block of massM, where it lodges.
Bullet and block then move together to the right with their common
velocity u2. This velocity is measured, and using it, the muzzle ve-
locity u can be computed from Eq. (5.34).

The measurement of u2 can be carried out with a simple stopwatch.
For that purpose, we construct a ballistic pendulum. This means that
we mount the blockM in such a way that it can oscillate, e.g. between
two springs or as the mass of a gravity pendulum (Fig. 5.19). In either
case, we guarantee a linear restoring force law: the springs or the cord
of the pendulum are made sufficiently long. For a linear force law,
the important equation

u0 D !x0 : (4.12)

holds. In words: the velocity u0, here u2, with which a previously
resting body leaves its rest position in an oscillator system is obtained
in a simple manner from its amplitude x0: One need only multiply
the latter by the circular frequency ! D 2�=T (T is the period of
oscillation of the pendulum).

http://tiny.cc/qrqujy
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What an enormous simplification we have achieved by using the con-
cept of momentum! Before (in Sect. 2.2), we had to use a chart
recorder with time marks, an electric motor, a rheostat, a tachome-
ter, and a backstop. With momentum conservation at our disposal,
for the same measurement we need only a cigar box full of sand,
some twine, a balance and a stopwatch.

Beginners sometimes try to apply energy conservation for measuring the
velocity of a bullet with the ballistic pendulum. They set the kinetic energy
1
2mu

2 of the bullet equal to the kinetic energy 1
2M.!x0/2 of the pendulum.

This, however, is not permissible; the impact of the bullet is not elastic
(Sect. 5.4). On the contrary, the kinetic energy of the bullet is converted on
impact almost completely into heat; only about 0.16% remains as kinetic
energy.

5.10 Non-Central Collisions

If two bodies approach each other along a path which is not the line
connecting their centers of gravity, then instead of a “central” col-
lision, there will be a “non-central” one. It will produce angular
deviations between 0ı and 180ı. This is demonstrated and discussed
in Video 5.6:Video 5.6:

“Non-central collisions”
http://tiny.cc/jqqujy
(See also Exercise 5.8).

“Non-central collisions”. On the glass plate of an over-
head projector, which has been dusted with fine lycopodium powder,
two round steel disks can glide nearly without friction. Their tracks
in the powder are readily visible. The masses of the disks can be
varied, as well as the velocity of the projectile (in magnitude and
direction). Thus, with this model we can demonstrate collision phe-
nomena, which play such an important role in atomic, molecular and
nuclear physics.

5.11 Motions Against Dissipative Forces

Inelastic collisions are an exception among the motions we have oth-
erwise considered, in that they exhibit in principle a “loss” of me-
chanical energy. “Energy loss” or “dissipation” describes the con-
version of energy into heat, or more correctly, into internal energy.
In all the other motions, such losses were practically negligible side
effects; they were reduced to a minimum by careful design of the ex-
periments, and were completely neglected in the computations and
theoretical treatment of the measurements.

However, many motions with continual and unavoidable energy
losses play an important role in mechanics. As a first example,
Fig. 5.20 shows the velocity-time curve of a person falling from
a great height. Initially, the motion is accelerated; after one second,
the velocity has reached a value of nearly 9.8m/s. Rather soon,
however, it begins to increase much more slowly than in a vacuum,
and finally it reaches a constant value of u � 55m/s. – Explanation:

http://tiny.cc/jqqujy
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sistance on a falling person. In order
to maintain the constant terminal ve-
locity of around 60m/s for a person
with a mass of 70 kg, his/her falling
mass has to generate a power of about
40 kW(!), provided by its potential
energy.

Figure 5.21 The constant sinking velocity of balls
in viscous fluids

During the acceleration, a force F2 acts in the direction opposing
the motion. It increases with increasing velocity, until its maximum
value F2 D �FG is reached, i.e. it is equal to the force of gravity FG,
but opposite to it. Then the sum of the forces acting on the person,
F2 C FG, is zero. As a result, no further acceleration occurs, and
the velocity of the falling person has reached its constant terminal
or saturation value: the person is no longer freely falling, but rather
sinking with the constant terminal velocity u.

The essential point here, the increase of the velocity of falling up to a con-
stant terminal velocity u, can be readily shown in a demonstration exper-
iment, e.g. by letting small steel balls fall in a viscous fluid (Fig. 5.21).
Details are given in Sect. 10.3.

As a further example, we can consider our variousmeans of transport:
automobiles, railroads, ships and aircraft. Even on a horizontal path,
a vehicle requires a driving force not only to accelerate, but also to
maintain a constant velocity! – In Fig. 5.22, we see a cart carrying
about 50 kg of mass on the horizontal floor of the lecture hall. It is
being pulled via a cord with a force F1 D 9:81N. After it has moved
about 1m, its velocity reaches a constant value of ca. 0.5m/s, and
its acceleration becomes zero. Therefore, there must be a second
force acting during its acceleration, which is directed oppositely to
its motion and which increases with velocity dx=dt, that is a force
with a maximum value of F2 D �F1. – This force may be produced
in a variety of ways, for example by friction in the bearings of the
cart’s wheels or by displacement and turbulence of the surrounding
medium, usually air or water.
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Figure 5.22 As the result of a “dissipative” or “energy consuming” force
F2, maintaining a constant velocity u requires a driving force F1. The driv-
ing force F1 performs work against the dissipative force (resistance) F2. F2

increases with increasing velocity.

This is the reason that we cannot define a generally valid relation be-
tween force and velocity. In the simplest case, for example that shown in
Fig. 5.21, the resistance force increases proportionally to the momentary
velocity. In the case of ships and aircraft, it increases to a rough approxi-
mation proportionally to the squares of their velocities.

Whatever produces the force F2, the driving force F1 must always
perform work against the resistance force F2 along the distance x
travelled; this work is equal to F1x. The quotient (work W/time t)
gives the corresponding power PW , i.e. PW D F1x=t D F1u. Therefore,
some sort of motor or energy source must be available to maintain
a constant ‘cruising speed’ u, and it must produce a power of

PW D F1u : (5.35)

Examples
Automobile engines deliver between 10 and 200 kW, locomotives and air-
craft engines usually several 103 kW, the engines of large ships up to more
than 105 kW. The power required for the natural method of locomotion of
humans, walking, is in comparison very modest. For a typical walking
speed of 5 km/hD 1.4m/s on a horizontal path, one requires around 60W;
a rapid walk at 7 km/h increases this to ca. 200W. – The work performed in
walking is composed of two parts: 1. A periodic raising of the body’s cen-
ter of gravity (walk along a wall holding a piece of chalk on the wall at hip
height, and look at the resulting wavy line!); and 2. the work required to
accelerate our legs. The inelastic impacts of our feet on the ground convert
most of this energy into heat, which is thus ‘lost’ for further mechanical
usage. – When riding a bicycle, the up-and-down motion of the center of
gravity is minimized, and the work of moving the legs is also smaller. For
a bicycle speed of 9 km/h, one consumes a power of about 30W, and at
18 km/h, only about 120W. – With numbers of this kind, we are in a better
position to judge the power values quoted for various technical devices.

In the case of humans and work animals, locomotives and automo-
biles, the production of the driving force F1 is possible due to sticking
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the driving force for water-
craft (and aircraft)

friction3 (Sect. 8.9). But how is the driving force for motorized air
and water vehicles produced? Answer: The motor takes in some por-
tion of the surrounding medium (water or air) with propellers, jets,
paddle wheels or similar mechanisms and accelerates it backwards.
This gives rise to a driving force F1 in the forward direction (momen-
tum conservation!).

As an example, Fig. 5.23 shows a boat moving at a constant speed u
towards the right relative to the shoreline. The ‘motor’ is a man who
uses a paddle to accelerate water backwards, giving it a velocity u0 to
the left. In a time t, he accelerates an amount of water with a mass
M, thereby producing a momentumMu0 towards the left. At the same
time, the man himself (and the boat in which he is sitting) receives an
impulse to the right, i.e. in the direction of travel:

F1t D Mu0 : (5.36)

The force

F1 D Mu0

t
(5.37)

is the driving force. It is required to maintain a constant speed of the
boat against the resistance of the water. The force F1 performs the
work W1 D F1t u in a time t along the path t u, or, from Eq. (5.37),

W1 D M uu0 : (5.38)

At the same time, the water which was accelerated to the left receives
a kinetic energy W2 D 1

2Mu02. The motor has to deliver the sum
of these two energies, W1 and W2, but only the fraction W1 is avail-
able as useful work (for moving the boat)C5.10. C5.10. This computation is

relevant not only to boatsmen
and other water-sports enthu-
siasts, but also to the propul-
sion of all types of ships and
aircraft. In most textbooks
and lecture courses, this point
is seldom discussed.

Then we find for the
propulsion efficiency

� D W1

W1 CW2
D Muu0

Muu0 C 1
2Mu02

D 1

1C 1
2
u0
u

: (5.39)

We can see that it is advantageous to reduce the velocity u0 of the wa-
ter which is accelerated backwards, in order to maximize the propulsion
efficiency. Then, however, from Eq. (5.37), the massM of the water accel-
erated must be large in order to obtain the required driving force F1. With

3 If we wish to apply momentum conservation to a walking person, we should con-
sult Fig. 5.14 and imagine that the cart is replaced by the earth, with its enormous
mass.
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boats moved by propellers or paddle wheels, the water which is accelerated
backwards can be clearly seen in the wake of the boat.
In the case of aircraft, the same considerations hold. In the early years of
powered flight, the backwards-directed stream of air was produced only by
propellers. Today, jet engines or turbojets of various designs are employed
in many cases (Sect. 10.11). The latter of course eject not only the air they
have taken in, but also combustion products from their burning fuel.
Rocket propulsion is not fundamentally different; however, none of the
material which is accelerated backwards is taken from the surrounding
medium, but rather it is part of the initial load (fuel and oxidant) of the
vehicle. Even at a constant flight speed u, the load has momentum and
energy as seen by an observer at rest. This has to be taken into account in
a quantitative treatment. For the efficiency, one then finds

� D u.uC 2u0/
.uC u0/2

:

Space rockets, however, do not fly at constant velocities; they are accel-
erated. The forces of resistance are small in comparison to the forces
required for acceleration. To compute the speed u of the rocket under
these conditions, we start with momentum conservation (Eq. (5.27)). Then
we have

Mu D .MC�M/.uC�u/��M.u� ur/ :

At the left is the momentum at the time t, and on the right at the time
tC�t, when the rocket has ejected combustion products of mass �M (�M
is negative, the mass of the load is decreasing) with the relative velocity ur
(oppositely directed to u). It follows that

.M C�M/�u D �Mur ;

and for �t! 0

du D ur
dM

M
:

Integration, beginning with the initial mass M0 down to a mass M, then
yields

u D �ur ln M0

M
(5.40)

for the final velocity u (after burning a mass �M D M0 �M of fuel). This
is called the rocket equation. At constant ur, the final velocity uf is thus
determined uniquely by the ratio M0=M. uf is independent of the ejected
mass current dM=dt; this is the surprisingly simple result!

5.12 The Production of Forces with and
without Consuming Power

In Sect. 5.11, we have just considered the propulsion of vehicles
along horizontal paths. The weight of the vehicle had to be sup-
ported in some manner by an upwardly-directed force. In the case
of road and rail vehicles, this force arises from elastic deformations
of the road surface or the rails; for ships and airships, it results from
static buoyant forces (Sect. 9.4). For heavier-than-air craft, however,
this upwardly-directed or lifting force must be produced aerodynami-
cally using lifting surfaces or airfoils (see Sect. 10.10). This dynamic



5.13 Closing Remarks 87

Pa
rt
Ilift simply replaces the cables holding up the cabins in the case of an

aerial tramway; its effect in the end is no different from that of a hook
in the ceiling. However, a hook or a permanent magnet can pro-
duce a lifting force year in and year out without any external power
source. This is in contrast to an airfoil, which requires a steady input
of power. The production of a lifting force by an airfoil is thus fun-
damentally similar to the production of a force by an electromagnet
or a muscle: An electromagnet draws power from its source of elec-
tric current, a muscle requires an input of chemical energy from the
metabolism and tires even from “holding” (isometric force), i.e. even
without performing work in the physical or technical sense. For phys-
ical work requires not only a force, but also a displacement along
which the force acts. – All types of force which require input power
have a common characteristic: They involve “losses” of mechani-
cal, chemical or electrical energy; that is, some part of this energy
is converted into heat (more precisely: into internal energy). Heat-
ing by electric currents and by muscular activity is well known. In
the case of airfoils, heat is produced by various mechanisms; one of
them is the formation of turbulence at the tips of the aircraft wings.

“Physicists are inclined to
consider only those forces
which perform work even
in economic applications.
That is of course not cor-
rect.”

Physicists are inclined to consider only those forces which perform
work even in economic applications. That is of course not correct.
Often enough, even the provision of forces which do not perform any
work requires a considerable economic expenditure.

Example
A vehicle is required to use a very short towrope for towing another; oth-
erwise, when the road is curvy, large force components perpendicular to
the towing direction can occur. These do not perform work, but they use
additional fuel and strain the suspensions of both vehicles.

5.13 Closing Remarks

The logical path of our considerations has taken us from the equation
of motion (3.3) to the equation for momentum, (5.24). Of course,
the reverse path would be equally valid (and it was indeed that fol-
lowed by NEWTON)C5.11. C5.11. This reverse path,

starting with momentum
instead of forces, or, more
generally, starting from the
conservation laws instead
of the equation of motion,
is in fact seldom treated in
physics courses. This is cer-
tainly due not only to didactic
considerations, but may also
be a result of the historically-
determined preferences of the
teachers.

We could start with the definition of the
momentum,mu, and require that the time variation of the momentum
is proportional to the net force acting, or, mathematically,

d

dt
.mu/ D dp

dt
D F : (5.41)

For the limiting case of a constant mass m, one can then write for the
acceleration

m
du
dt
D F or a D F

m
I (3.3)

and in the limit of a purely radial acceleration

m! � u D F or ar D F
m
D ! � u : (2.6)
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For a constant mass, the two routes are equivalent. The path we took
is better adapted to the needs of a course in experimental physics.

The assumption of a constantmass m is however only an approxima-
tion, albeit one that is justified within wide limits. Its applicability
defines the boundaries of “classical mechanics”. In general, the rela-
tivistic velocity dependence of the mass must be taken into account,
and instead of m, one must write

m D m0
p
1 � u2=c2

: (5.42)

Here, m0 is the mass at zero velocity (rest mass), and c is the velocity
of light in vacuum, c D 3 �108 m/s. When this correction is taken into
account, the momentum equation (5.41) remains valid, but not the
equation of motion (3.3). In the region of extremely high velocities u,
the oh-so-simple equation of motion reaches the limits of its validity.

Exercises

5.1 Two identical cylindrical containers whose bottoms (each
with a surface area A) are at the same height, are filled with water
(density %) up to a height of h and H, respectively. What is the
work performed by the force of gravity when the two containers are
connected so that the water levels equalize? (Sect. 5.2)

5.2 An automobile of mass m D 1 t drives for one kilometer up
an incline with a grade of 1:25. In addition to the force of gravity,
it must overcome frictional forces; they amount to the equivalent of
1% of the automobile’s weight. How much work W does the engine
perform? What is its power output, if the car is moving at a speed of
60 km/h? (Sect. 5.2)

5.3 An object of mass m slides down a frictionless inclined plane.
It starts from a height h with a velocity of zero. At the height h1, it
receives an impulse �p D R

Fdt opposite to its direction of motion,
which is so strong that it slides back up the incline. What height h2
does it reach, and what is its velocity v when it finally arrives at the
bottom of the inclined plane (h D 0)? (Sect. 5.5)

5.4 A stream of water with a mass current of 1.2 kg/min strikes
a vertical plate horizontally. Calculate the velocity of the water
stream if the force that it exerts on the plate is 0.2N, for two cases:
a) The water comes to a stillstand at the plate; and b) the water is de-
flected backwards from the plate with the same velocity with which
it arrived. (Sect. 5.5)
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sions between a large ball (55mm diameter) and a small ball (11mm
diameter) are shown. a) If the small ball (mass m) strikes the large
ball (mass M, initially at rest) from the right with a velocity v1, the
large ball moves to the left with a velocity v2, while the small ball
moves to the right with a velocity v2 D v1 � �v. Calculate v2 and
�v. b) After the second collision, the large ball is again at rest. Try
to make this plausible without any further calculations. c) If the large
ball comes from the left with a velocity v2 and strikes the small ball,
which is initially at rest, the latter moves off to the right with a veloc-
ity v1. Compare the two velocities by measuring the amplitudes of
the swings, and check them against the calculation. (Sect. 5.8)

5.6 A ballistic pendulum consists of a sandbag of massM hanging
from a cord. It suffers an inelastic collision with a small object of
mass m and velocity u. To what height will the sandbag be raised by
the resulting pendulum swing? (Sect. 5.9)

5.7 A bullet of mass m1 D 30 g is shot with a horizontal velocity
of u1 D 300m/s into a large wooden block with a mass of m2 D 3 kg
which is suspended from thin cords. What is the velocity of the block
after the impact (without rotation)? What fraction of the original
kinetic energy of the bullet is converted to kinetic energy of the block
plus bullet? (Sect. 5.9)

5.8 Show that in a non-central collision of two objects of the same
mass, the angle between their paths following the collision is 90°,
presuming that the collision is elastic and that rotations can be ne-
glected. (Sect. 5.10)

5.9 A rocket takes off with a total mass of Mo C Mp. Mp is the
mass of its propellant (fuel), which is ejected out of the nozzle of the
rocket at a relative velocity of ur when burned. Determine the mass
Mp which would be necessary to accelerate the rocket to a velocity of
ur. (The acceleration of gravity can be neglected.) (Sect. 5.11)

5.10 A rocket is to be accelerated vertically from the ground with
an acceleration of ao. Its total mass on takeoff is Mt, and the com-
bustion gases are ejected from its nozzle with a relative velocity ur.
Find the mass current dM=dt which has to be ejected from the rocket
in order to produce this acceleration on takeoff. (Sect. 5.11)

For Sect. 5.2, see also Exercise 4.4; for Sect. 5.3, see also Exer-
cise 3.3.

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_5) contains supplementary material, which is avail-
able to authorized users.
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of Rigid Bodies 6
6.1 Introductory Remarks

In general, for a body moving in an arbitrary way, we can distinguish
two different forms of motion, namely progressive motions and ro-
tations. Our treatment up to now has been limited to progressive
motions. Formally, we have treated the moving bodies as point-
like objects or point masses. Experimentally, we prevented rotational
motions by using two tricks: In the case of motions along a straight-
line path, we let the accelerating force act along a direction passing
through the center of gravity (also called the “center of mass”) of the
body. For motions along a curved path, we chose all the dimensions
of the body to be small compared to the radius of curvature of the
orbit. Admittedly, for example a stone in a sling completes a full ro-
tation around its center of gravity each time it circles before being
released. But the kinetic energy of this rotational motion (Sect. 6.4)
is small compared to that of its progressive motion around the cir-
cle. Therefore, we could neglect the rotational motion as compared
to the progressive motion along the circular orbit. – In this chapter,
we consider the other limiting case: A body is not moving progres-
sively along a path; instead, its motion is limited to pure rotations.
The axis of rotation will initially be assumed to be fixed in space by
bearings.

6.2 Definition of Torque

Figure 6.1 shows a flat, rigid object with a perpendicular axle A
mounted on bearings. When the object is rotated around this axis,
every small piece of it (its ‘volume elements’ or ‘point masses’),
each with a mass �m, rotates within a plane perpendicular to the
axis, called the plane of rotation. The object is assumed to be able
to remain at rest in any arbitrary angular position around its axis of
rotation. To this end, the influence of its weight has to be suppressed.
We have to orient its axis of rotation exactly vertically; then the plane
of rotation of each point mass in the object is horizontal.

Not just any arbitrary force is sufficient to produce a rotational mo-
tion. Instead, the force must generate an effective torque around the
axis of rotation in question. This means that the force must contain

91© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_6
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Figure 6.1 The definition of a torqueM,
which is directed parallel to the axis of
rotation

a component within the plane of rotation, and its direction must not
pass through the axis of rotation.

Quantitatively, we define the torque M simply for a force F that is
parallel to the plane of rotation by means of the equationC6.1:C6.1. Equation (6.1) contains

a vector product, whose def-
inition we give briefly here:
The result c of the vector
product a � b D c is itself
a vector which is perpendicu-
lar to both a and b. a, b, and
c form a right-hand coordi-
nate system; that is, when
one looks along the direction
of c, a rotation to the right
(clockwise) leads from the
direction of a to the direction
of b. The magnitude of c is
given by c D ab sin', where
' is the angle between a and
b. The vector product is not
commutative; instead:
a � b D �b � a. (For fur-
ther details, see mathematics
textbooks.)

M D r � F : (6.1)

Here, r is the position vector which points from the axis of rotation to
the point where the force acts. The magnitude of M corresponds to
the product r?F, where r? is the perpendicular (i.e. shortest) distance
from the line along which the force acts to the axis of rotation, also
called the “lever arm” of the force. The unit of the torque is the
newton meter (Nm).

Let a torqueM rotate a body (Fig. 6.1) through the angle dˇ. Then it
performs the work dW D Fdx D Fr?dˇ D Mdˇ, or M D dW=dˇ.
Its unit is therefore the unit of work/unit of angle, e.g. newton me-
ter/rad. The unit ‘rad’ is equivalent to the number 1, and it is therefore
often left off. For this reason, a torque has the same units as work.

The torque M is also a vector. It is perpendicular to both the force
F and to the lever arm r. Thus, in Fig. 6.1, it points parallel to the
axis of rotation. Looking along the direction of the torque, we see the
resulting rotation as clockwise.

Torques can also be produced by other forces which are not parallel
to the plane of rotation. The direction of the resulting torque is then
no longer parallel to the axis of rotation (see Eq. (6.1)). In this case,
only the component of the torque parallel to the axis of rotation is
effective in producing a rotation around that axis.

Usually, a number of different forces act on a body which is free
to rotate, producing a variety of different torques. These combine
vectorially to give a resultant overall torque. This is the case for
example for an electric motor. In order to measure the total torque
exerted by the motor even during its operation, we can make use of
the equal but oppositely directed reaction torque which acts on the
housing of the motor. Details are given in Fig. 6.2.
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Figure 6.2 Measurement of the torque of an electric motor, while it is pro-
ducing a vertical air current with its output power of PW � 0:5 kW. The force
meter (cf. Fig. 3.9) is attached by a cord tangentially to the circumference of
a round table (2r D 0:25m), which is mounted on ball bearings so that it is
free to rotate around a vertical axis. The mounting of the rotatable table is the
same as that shown in Fig. 6.17. The product of the torqueM and the angular
velocity ! (Sect. 2.5) of the motor gives the power PW , e.g. in Nm/s or watt.

Figure 6.3 The center of gravity

In Fig. 6.1, the axis of rotation was chosen to be vertical. In this
limiting case, the weight of the object or of its individual point masses
�m cannot give rise to any torques parallel to the axis, which would
thus be able to produce a rotation around it. In the second limiting
case, that of a horizontal axis, the situation is different. Here, each
individual point mass �m contributes a torque as shown in Fig. 6.3,
proportional to r?�m. In general, if the object is initially in some
arbitrary position, it will begin to rotate; only in a special case will
it stay at rest in any initial position. This special case arises when
the axis of rotation passes through the center of gravity of the object.
Thus, for an axis through the center of gravity, the resulting total
torque and therefore also the sum

P
r?�m must be equal to zero.

This equation comprises a definition of the center of gravity.C6.2 C6.2. As a general definition
of the center of gravity, we
find for the resulting torque
M D R

r � g dm D 0
(g is the vector of the acceler-
ation of gravity).

We
will make use of it later. Otherwise, we will consider the center of
gravity of a body and its determination to be well known, as we have
done up to now. The center of gravity is usually treated in detail in
school physics courses in connection with levers, balances and simple
machines.

If an axis of rotation is mounted on fixed bearings, the direction, magnitude
and sense of rotation of a torque will be generally clear. In other cases (free
axes), the beginner occasionally encounters difficulties. Among these for
example is the child’s trick of “obedient” and “disobedient” spools of yarn:
A spool of yarn has fallen to the floor and rolled under the sofa. Someone
is trying to retrieve it by pulling on the end of the yarn. Some spools come
out obediently, others hide further back in their lairs. Figure 6.4 shows
the explanation. One must consider not the symmetry axis of the spool,
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Figure 6.4 Torques acting on
spools of yarn

but rather its line of contact with the floor as its axis of rotation. This is
indicated in Fig. 6.4 as Am (the “momentary axis” or “instantaneous axis”).
If the yarn is held at a sufficiently “flat” angle to the floor, even the most
obstinate spool can be forced to obey.“As is often true in life,

a little physics is of more
use here than petulant out-
bursts of temper.”

As is often true in life, a little physics
is of more use here than petulant outbursts of temper.

6.3 The Production of Known Torques,
the Constant D*, and the Angular
Velocity !

Forces of known magnitude and direction can be produced in an intu-
itively clear manner by using helical springs (Fig. 5.5). If the spring
is properly dimensioned (sufficiently long), the elastic force that it
produces is proportional to the displacement x (extension or compres-
sion) of the length of the spring. A linear force law applies (Hooke’s
law):

F D �Dx : (4.15)

The quotient of the magnitudes

Force F

Displacement x
D D

is called the spring constant or elastic coefficient of the spring.

Analogously, torques M of known magnitude and direction can be
produced in an intuitively clear manner by using a spiral spring at-
tached to an axle. Figure 6.5 shows such a torsion shaft. When
properly dimensioned (sufficient length of the spring), it produces
a torque proportional to the angle of rotation. We again find a linear
relation

M D �D�ˇ: (6.2)

The quotient of the magnitudes

Torque M

Angle ˇ
D D� (6.3)

will be called the “torsion coefficient” of the spring.
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and carrying a sphere, is the basis of a torsional pen-
dulum. The torsion shaft makes use of the bending
elasticity of a spiral spring. Its torsion coefficient is
D� D 0:055 Nm/rad.

Figure 6.6 Calibration of the torsion
shaft from Fig. 6.5 in a horizontal
position. For example: r D 0:1m,
ˇ D 180ı D � D 3:14; F D 1:71 N;
rF D 0:171 Nm; D� D 0:055 Nm/rad.

Numerical examples
See the captions of Figs. 6.5 and 6.6. Radian (rad) is another name for the
number 1, the unit of an angle (cf. Sect. 1.5).

In analogy to helical springs of known spring constant D, in the fol-
lowing we will frequently require a spiral spring (together with its
axle) of known torsion coefficient D�. Therefore, we calibrate the
torsion shaft sketched in Fig. 6.5 using the straightforward scheme
shown in Fig. 6.6. A numerical example is given in the figure cap-
tion. The axle and spiral spring are often replaced by a torsion wire or
band; but a torsion shaft with a spiral spring is a particularly clear-cut
arrangement.

Beginners often underestimate the ability to twist even thick steel rods.
Figure 6.7 shows a steel rod of 1 cm diameter and only 10 cm long which is
clamped in a vise. This apparently very rigid object can be twisted visibly
with just our fingertips. We simply need to use a light pointer of around
10m in length. It is reflected from the mirrors a and b (compare Fig. 3.1).
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Figure 6.7 Two fingers twist a short,
thick steel rod. (Video 6.1)Video 6.1:

“Twisting a rod”
http://tiny.cc/csqujy

The angular velocityC6.3C6.3. In analogy to the
orbital velocity u, which de-
scribes a progressive motion
along an orbit, the angu-
lar velocity ! is useful for
the description of rotational
motion. Since during the ro-
tation of a rigid body, all its
point masses move along
circular orbits around the
axis of rotation, they all have
the same angular velocity
! D u=r (Eq. (2.11)), which
can therefore be attributed to
the body as a whole.

has already been defined by the equation

! D dˇ

dt
: (2.5)

The orbital velocity u is fully defined only when both its magni-
tude and its direction are completely determined; it is a vector. The
same is true of the angular velocity !. Equation (2.5) gives its magni-
tude. The vector of the angular velocity is drawn along the direction
of the axis of rotation. Figure 6.8 illustrates this. A point P circles
the axis I with the angular velocity !1 and simultaneously the axis II
with the angular velocity !2. Within a sufficiently short time interval
�t, the point traverses the nearly linear orbital segment �s D P : : : 3.
This segment �s can be obtained as the resultant from the vector ad-
dition of the individual orbits

�s1 D !1r�t and �s2 D !2r�t :

A second route can also lead us to the orbit P : : : 3. We draw vectors
with the magnitudes of the angular velocities!1 and !2 along the two
axes I and II. These two vectors add vectorially to give the resultant

Figure 6.8 The angular
velocity as a vector C6.4.C6.4. From experience, it is

found that the vector addi-
tion of angular velocities (or
of axial vectors in general)
often causes difficulties for
beginners. The intuitive de-
scription given here is very
helpful for overcoming them.

Looking along the direc-
tion of the arrow, one sees
a clockwise rotation. (See
Fig. 6.31)

http://tiny.cc/csqujy
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axis, the body rotates with the angular velocity !. It then traverses
the orbit �s D !r�t in the time interval �t. The vector addition
of two angular velocities can be understood readily in this example.
One need only remember the similarity of the two triangles used in
the construction.

6.4 The Moment of Inertia, Equation
of Motion for Rotations,
and Torsional Oscillations

Once we have understood the concepts of the torque M and the tor-
sion coefficient D�, making the transition from progressive motion to
rotational motion is not difficult. We refer to Table 6.1. Its two upper

Table 6.1 Comparison of the corresponding quantities for progressive mo-
tions and rotational motions

Progressive motions Rotational motions

Velocity u D dx

dt
(2.2) 1 Angular velocity

! D dˇ

dt

(2.5)

Acceleration a D du

dt
2 Angular acceleration

P! D d!

dt

Mass m 3 Moment of inertia


 D
Z

r2dm

(6.4)

Equation of motion

a D force F
mass m

(3.3) 4 Equation of motion for rota-
tions

P! D torqueM
moment of inertia 


(6.7)

force F

displacement x
D

spring constant D

(4.15) 5
torqueM

angle ˇ
D

torsion coefficient D�

(6.3)

Oscillation frequency

� D 1

2�

r
D

m

(4.16) 6 Oscillation frequency

� D 1

2�

r
D�




(6.13)

WorkW D
Z

Fxdx (5.1) 7 WorkW D
Z

Mdˇ

Kinetic energy

Ekin D 1

2
mu2

(5.13) 8 Kinetic energy

Ekin D 1

2

!2

(6.5)

Momentum p D mu (5.24) 9 Angular momentum L D 
! (6.14)
Power PW D Fu (5.35) 10 Power PW D M!

Force F D dp
dt

(5.41) 11 Torque M D dL
dt

(6.15)
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rows contain the two kinematic quantities velocity and acceleration
(left) and the corresponding quantities for rotations (right): the an-
gular velocity ! and the angular acceleration P!. In the following
rows, we see in the left column the quantities for progressivemotions
with which we are already familiar, in the order in which they were
introduced.

We can then calculate the corresponding quantities for rotational mo-
tions, starting with the kinetic energy of a body which is rotating
around its axis. This energy must consist of the sum of all the kinetic
energies of each of the point masses which constitute the body, each
with mass �m. Any arbitrarily chosen point mass moves at a dis-
tance ri from the axis of rotation with the orbital velocity ui. Then
the kinetic energy of this point mass or ‘volume element’ is:

�.Ekin/i D 1
2�miu

2
i :

From Eq. (2.11), we use the same angular velocity ! D u=r for all
the point masses and obtain:

�.Ekin/i D 1
2�mir

2
i !

2 :

Taking the sum over all the point masses yields the kinetic energy of
the whole rotating body, i.e.

Ekin D 1
2

X
.�mir

2
i /!

2 :

The summation which stands to the left of !2 has a special name,
namelyC6.5C6.5. r is the perpendicular

distance of the point mass
dm from the axis of rotation.
Therefore, one often writes
alternatively

 D R

r2? dm.

the moment of inertia 
 D
X

.�mir
2
i / D

Z
dmr2 : (6.4)

Using this definition, the kinetic energy of a body rotating with the
angular velocity ! becomes:

Ekin D 1
2
!2 : (6.5)

Now refer in Table 6.1 to the eighth row on the right; the correspond-
ing equation for progressive motions, on the left, is

Ekin D 1
2mu

2: (5.13)

In words: For rotational motions, we replace the orbital velocity u by
the angular velocity !, and the mass m by the moment of inertia 
.
This is indicated in the third line of Table 6.1 on the right.

The equation of motion (row 4 in Table 6.1) can also be transformed
in a corresponding manner. To see this, we imagine a rigid, rotating
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dicular distance r from the axis of rotation. Then in the case of
an accelerated rotation, the orbital accelerations a of the individual
mass points all have different magnitudes; however, the angular ac-
celerations P! D a=r are the same for all points. According to the
equation of motion, the orbital acceleration a of each mass point re-
quires a force which acts in the direction of the momentary orbit,

dF D a dm D P!r dm:

Multiplication by r yields

r dF D P!r2 dm;

or, as a vector equation,

r � dF D P!r2dm

and, after integration over all the mass points,

Z
r � dF D M D P!

Z
r2 dm D P! 
 : (6.6)

The two integrals define the two new derived quantities, the torqueM
and the moment of inertia 
. To produce a torque experimentally, as
on the left side of the equation, we need only a single force F, which
acts on the rigid body at a known distance r from its axis of rotation
(Eq. (6.1)). The resulting angular acceleration is directly proportional
to the magnitude of the torque M and proportional to the inverse of
the moment of inertia 
; thus, the equation of motion for rotational
motion (row 4 in Table 6.1, right) is

P! D M



: (6.7)

For geometrically simple rigid bodies, the computation of the mo-
ment of inertia presents no difficulties. The necessary integration can
usually be carried out in a few steps. Some examples of the results:

1. A homogeneousC6.6

C6.6. Homogeneous means
that the mass is uniformly
distributed within the body,
i.e. % D const.

circular ring. Mass m, radii R and r, thickness
d, density %, axis of rotation through its center pointC6.7:

C6.7. We add that the ex-
pressions (6.8) and (6.9) hold
quite generally for a homo-
geneous, hollow cylinder.
Equation (6.9) can be simpli-
fied for the two limiting cases
d 	 R (a flat disk with a hole
in its center) to

 D �

4 d%.R4 � r4/
D 1

4m.R2 C r2/,
i.e. just half of expres-
sion (6.8), and for d � R
(a long rod) to Eq. (6.11).

perpendicular to the end surface: 
 D �

2
%d.R4 � r4/ ; (6.8)

along a diameter: 
 D m

12
d2 C �

4
d%.R4 � r4/ : (6.9)

2. A homogeneous sphere, with the axis of rotation through its center:


 D 8

15
�%R5 D 2

5
mR2 : (6.10)
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3. A long, homogeneous rod of length l and cross-sectional area A.
The axis of rotation passes through the center of gravity and is per-
pendicular to the long axis of the rod:


 D 1

12
%Al3 D 1

12
ml2 : (6.11)

4. STEINER’s law. Assuming that we know the moment of inertia 
S

of an arbitrary body of mass m for an axis of rotation which passes
through its center of gravity S: How large is its moment of inertia

A for any other arbitrary axis which is parallel to the first axis and
passes through the point A at a distance a from the first axis? Answer:


A D 
S C ma2 : (6.12)

Derivation
Rotating around the S-axis, the body will have the kinetic energy 1

2
S!2.
– Figure 6.9 shows a rotation around the A-axis. A small arrow is drawn
on the body, which starts at the center of gravity S. If the body makes a full
rotation around the A-axis, then this arrow, and thus the entire body, makes
a full rotation around the S-axis. As a result, the energy given above is
conserved, 1

2
S!2. At the same time, the center of gravity S moves along
the dashed circular orbit. We can think of the mass m of the body as
localized at its center of gravity, and we then find for the kinetic energy
of this circular motion 1

2mu
2 D 1

2m.!a/2. This second energy (from the
motion of the center of gravity) adds to the first (from the rotation around
the A-axis). Thus the rotation of the body around the A-axis has a total
kinetic energy of:

1
2
A!2 D 1

2
S!2 C 1
2m!2a2 :

Dividing by 1
2!2 yields Eq. (6.12).

However, much more important than the computation of moments of
inertia is their measurement. For bodies with a complex shape, the
integration would be unnecessarily difficult.

For the measurement of moments of inertia, one in general makes use
of torsional oscillations. We need only replace the mass m in row 6
of Table 6.1 by the moment of inertia 
 and the spring constant D of
a helical spring by the torsion coefficient D� of a spiral spring. The
torsion shaft as shown in Fig. 6.5 will define a known value of D�.
At the upper end of this shaft, we attach the body that we wish to
characterize (cf. Fig. 6.5). The axis of rotation of this body must fall
along the extension of the torsion shaft. We rotate the body by about
90ı from its rest position, release it, and observe the period of the

Figure 6.9 The straightforward derivation of
STEINER’s law; S D center of gravity
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ear oscillation (Fig. 4.13),
we obtain an expression for
the period of oscillation of
a torsional motion (6.13)
by inserting the “linear
restoring force law” (6.2)
into the equation of motion
for rotational motion, (6.7)
(cf. Comment C4.5.).


 D T2

4�2
D� : (6.13)

The torsion coefficient D� of our small torsion shaft was already
found to be 5:5 � 10�2 Nm. Thus, we obtain


 D 1:4 � 10�3 T
2

s2
kgm2 :

Numerical examples
1. Verifying a calculated moment of inertia. Taking a circular wooden disk
with m D 0:8 kg and 0.2m radius, we calculate from Eq. (6.8) with r D 0
that the moment of inertia
S should be 1:6�10�2 kgm2 for rotation around
an axis passing perpendicularly through the center point of the disk. We
observe T D 3:37 s, and thus 
S D 1:58 � 10�2 kgm2.
2. A disk and a sphere of equal moments of inertia. Figure 6.10 shows
a disk and a sphere made of the same material, to the same scale. Their
masses are in the ratio 1 : 2.9. Their moments of inertia should be equal,
according to Eqns. (6.8) and (6.10). Indeed, they both exhibit the same
oscillation period when attached to our small torsion shaft.
3. Moments of inertia of hollow and full cylinders of the same mass. Fig-
ure 6.11 shows a hollow metal cylinder and a full wooden cylinder, both
with the same masses m, the same diameters and the same lengths. How-
ever, for rotations around their cylinder axes, the hollow cylinder is found
to have a considerably larger moment of inertia 
 than the full cylinder.
This explains an often surprising experimental result: We set the two cylin-
ders side by side on a ramp, for example a board propped up to give it
a slope. The axes of the two cylinders are collinear. Then we release them
both at the same time. The full wooden cylinder reaches the bottom of
the ramp much sooner than the hollow metal cylinder. – Explanation: In
rolling down the ramp, both cylinders are accelerated by the same torque,
rFG (Fig. 6.12), since their masses and radii are the same. As a result, the
hollow cylinder, with its larger moment of inertia, experiences a smaller

Figure 6.10 A disk and a sphere with the
same moment of inertia

Figure 6.11 A full and a hollow
cylinder of the same mass (wood and
metal), with different moments of iner-
tia

Figure 6.12 The torque M D rFG acting on
a cylinder on a ramp
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Figure 6.13 A large torsion shaft for measuring the moment of inertia of
a human body in various positions. F is a strong spiral spring. Its torsion
coefficient D� is ca. 2.5 Nm/rad. The moment of inertia 
 of a man lying
horizontally is about 17 kgm2. (Video 6.2)Video 6.2:

“Moments of inertia”
http://tiny.cc/gsqujy
In the picture: R. HILSCH

(Dr. rer. nat. 1927)

Figure 6.14 The moment of inertia of a human body in three different posi-
tions. The arrows indicate the direction of the axis of rotation. The moments
of inertia (from the left to the right) are 1.2 kgm2, 8 kgm2, and 2.3 kgm2.
(Video 6.2)

angular acceleration P! and angular velocity ! (row 4 in Table 6.1). –
(Why must STEINER’s law be taken into account hereC6.9?C6.9. Those who investigate

this question will also find
the explanation of the similar,
often surprising observation
that the mass plays no role at
all! (Exercise 6.2)

)
4. The moment of inertia of the human body. We determine the moment
of inertia for rotation of a human body with various positions and axes of
rotation. For these observations, we make use of a large torsion shaft as
shown in Fig. 6.13. Some of the results of the measurements are collected
in Fig. 6.14. We will make good use of them later.

6.5 The Physical Pendulum
and the Beam Balance

The gravity pendulum (simple pendulum) treated in Sect. 4.3 is also
called a “mathematical pendulum”. It represents the ideal case of
a point-like body of mass m hung from a massless, frictionless cord.
A real or “physical” pendulum often deviates strongly from this ideal
form. For every physical pendulum, a “reduced” length can be de-
fined: It is the length l of a mathematical pendulum which would
have the same period of oscillation as the given physical pendulum.

http://tiny.cc/gsqujy
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(Axes through O or P, perpendicular to the plane
of the page)

As an example, Fig. 6.15 shows a board of arbitrary shape, hung from
a bearing as a gravity pendulum. O is the axis around which it can swing,
S is its center of gravity, and s is the distance between the two. For the
period of oscillation of this physical pendulum, the formula which holds
for every torsional oscillation can be applied:

T D 2�

r

0

D�
: (6.13)


0 is the moment of inertia around the axis O. D� is again the torsion
coefficient, i.e. D� D M=ˇ. The magnitude of the torque M can be read
off in Fig. 6.15:

M D mgs sinˇ : (6.1)

For small angles ˇ, we can again set sinˇ D ˇ. We then obtain

D� D M=ˇ D mgs (6.3)

and, from Eq. (6.13),

T D 2�

s

0

mgs
:

For a “mathematical” gravity pendulum, i.e. a point-like body hanging
from a massless cord, we found the period previously to be

T D 2�

s
l0
g

: (4.17)

For a physical pendulum, instead of the length of the cord l0 of the math-
ematical pendulum, we insert the quantity 
0=ms. This is the reduced
pendulum length. It is drawn in as a length l D 
0=ms in Fig. 6.15C6.10.

C6.10. l is longer than s:
Making use of STEINER’s
law (Eq. (6.12)), it follows
that

l D 
0

ms
D 
S C ms2

ms
,

l D sC 
S

ms
> s .

(
S D moment of inertia
around the center of gravity.)

Its lower end is called the midpoint of the oscillation P. We can think of
the total mass m of the body as being concentrated at the point P, without
changing the period of oscillation of the pendulum.
The period of oscillation of an arbitrary pendulum remains unchanged
when one takes its axis of oscillation to pass through the midpoint of os-
cillation P C6.11.

C6.11. To convince one-
self of the correctness of
this statement, use the tor-
sion coefficients for s and
(l � s), D�0 D mgs and
D�P D mg.l � s/, and, ap-
plying STEINER’s law, the
corresponding moments of
inertia 
0 D 
S C ms2 and

P D 
S C m.l � s/2, in
Eq. (6.13) and solve for the
reduced pendulum length l.

This forms the basis for a common experimental method
of measuring the reduced pendulum length (reversion pendulum).
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Figure 6.16 Schematic of a beam balance as a physical pendulum. In the
interest of clarity, the distance from the center of gravity S to the axis of
oscillation O (fulcrum) is greatly exaggerated in the drawing. Up to angular
deflections of several degrees, the deflection is proportional to the difference
in the weights on the balance pans.

One of our most important measuring instruments, the beam bal-
anceC6.12,

C6.12. The mechanical
beam balance as a measuring
instrument (see e.g. http://
en.wikipedia.org/wiki/
Analytical_balance) has
largely disappeared from
modern physics and chem-
istry laboratories and has
been replaced by sensitive
electronic analytical bal-
ances. However, it remains
an instructive example
of a torsional pendulum
(Exercise 6.7).

is a physical pendulum. – We first neglect the two balance
pans. Then the schematic in Fig. 6.16 differs only in its external de-
tails from that in Fig. 6.15.

The period of oscillation of a precision analytical balance without
pans might be e.g. 12 s, corresponding to a reduced pendulum length
of 36m.

Adding the balance pans and their weights increases the effective
moment of inertia of the balance beam. This also increases the oscil-
lation period, e.g. to 18 s. An additional mass of 100 g on both sides
increases it even further up to about 24 s.

6.6 Angular Momentum

For progressive motions, the momentum was defined as p D mu.
Momentum is a vector, and for the momentum of a “closed system”,
a conservation law holds.

In rotational motions, the mass mmust be replaced by the moment of
inertia 
, and instead of the orbital velocity u, we use the angular ve-
locity !. These two quantities define the corresponding momentum
(row 9 in Table 6.1), the angular momentumC6.13

C6.13. The angular momen-
tum introduced here depends,
like the moment of inertia, on
the axis of rotation chosen.
If the axis passes through the
center of gravity, we refer to
the “proper angular momen-
tum” or “spin” of the body.
In other cases, one can insert
Eq. (6.12) into Eq. (6.14) and
obtain L D 
s ! C ma2 !.
The first term is again the
proper angular momentum.
The second term is called the
“orbital angular momentum”,
which the body possesses
due to its motion along the
circular orbit of radius a (see
Fig. 6.9). In general, the or-
bital angular momentum is
defined by the vector equa-
tion L D mr � v, where r is
the position vector and v is
the orbital velocity (see also
Exercise 6.8).

L D 
 ! : (6.14)

The angular momentum is also a vector. It specifies the direction
and the sign or sense of the rotation. Looking along the direction
of the (positive) angular momentum vector, the sign of rotation is
clockwise. In the text, the sense of rotations applies to an observer
who is looking down from above.

http://en.wikipedia.org/wiki/Analytical_balance
http://en.wikipedia.org/wiki/Analytical_balance
http://en.wikipedia.org/wiki/Analytical_balance
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mentum. The arrows represent the angular
momenta of the wheel and the experimenter.
(At small angular velocities, the motion is dis-
turbed by the residual friction.) (Video 6.3) Video 6.3:

“Conservation of angular
momentum using a rotating
chair”
http://tiny.cc/4rqujy
In the picture: R. HILSCH

(Dr. rer. nat. 1927)

Angular momentum also obeys a conservation law, i.e. as long as no
external torques act, the angular momentum of a system (magnitude
and direction) remains constant (M D 0 in the equation of motion
for rotations (6.7)). Just as in our treatment of progressive motions,
we give some experimental examples. As an aid to visualization and
for experiments, instead of the flat carts that we used to illustrate
progressive (linear) motions (Fig. 5.14), for rotations we will employ
a swivel chair (Fig. 6.17). It can rotate with little friction (ball bear-
ings) around a vertical axis. It thus reacts only to vertically-directed
angular momenta. If the angular momentum vector is slanted relative
to the vertical, the chair takes on only its vertical component.

Examples
1. A man is sitting in the swivel chair, at rest. In his left hand, at about
eye level, he is holding a top (a weighted bicycle wheel), also at rest,
with its axis of rotation nearly vertical. The angular momentum is
initially zero. The man grasps the spokes of the wheel from below
with his right hand and starts the wheel spinning. The spinning top
thus obtains an angular momentum of 
1 !1 in a counter-clockwise
sense. Owing to the conservation of angular momentum, the man re-
ceives a (counter-) angular momentum 
2 !2 of the same magnitude
but opposite rotation sense. Indeed, he begins to rotate with the chair
in a clockwise sense. His angular velocity !2 is much smaller than
that of the top (wheel), because his moment of inertia is much larger
than that of the wheel.

2. The man presses the rim of the rotating wheel against his chest and
brings it to a stop. The rotation of the wheel and of the man and chair
both stop simultaneously. Both angular momenta are again zero.

3. The man sits motionless on the chair holding the motionless top
with its axis horizontal. He gives a spin to the top (wheel); its re-
sulting angular momentum vector is horizontal. The chair and the
man remain at rest, since they cannot react to an angular momentum
with no vertical component (the counter-component of the angular
momentum is taken up by the earth through the man’s arm and the
shaft of the chair).

http://tiny.cc/4rqujy
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Figure 6.18 A polo mallet can
be used to generate angular mo-
mentum around various axes
(Video 6.3)Video 6.3:

“Conservation of angular
momentum using a rotating
chair”
http://tiny.cc/4rqujy

4. The initially motionless top is held with its axis inclined at 60ı to
the vertical and then is given a spin. The man and the chair begin to
rotate, but with only a small angular velocity. They receive a counter-
angular momentum which is equal only to the vertical component of
the top’s angular momentum.

5. We hand a (clockwise) spinning top to the man, who is initially
not moving. He remains at rest; we gave him the top which already
had an angular momentum. Then the man rotates the axis of the
spinning top by 180ı. He turns its lower end upwards. He thereby
changes its angular momentum from CL to �L, thus all together by
�2L. The man himself begins to rotate with an angular momentum
of 2L in a clockwise sense. He then tips the top back around to its
starting position and gives it back to us. The chair and the man are
again motionless. – Thus, one can play with a “borrowed” angular
momentum for a time and then give it back.

6. The man is sitting on the swivel chair, at rest. In his hand he
is holding a polo mallet (Fig. 6.18). He will try to circle the mallet
around his head in the horizontal plane, that is around a vertical axis
of rotation. – While he is swinging the mallet, he begins to rotate,
although with a smaller angular velocity than his arm and the mallet.
The mallet and his arm can be circled through only around 180ı. As
soon as the motion of the mallet stops, so does the rotation of the
man and chair; the man and the mallet can have angular momenta
only at the same time. For a second swing, he has to return the mal-
let to its original position; he can do this along the same path, but
then he loses the angle of rotation that he had gained with the first
swing of the mallet. If he wants to maintain his angular position, he
must return the mallet along a different path before beginning another
swing; he moves it upwards in the vertical plane and then back down
in another vertical plane back to its original position. The angular
momenta of these motions in vertical planes (i.e. around horizontal
axes of rotation) cannot be taken on by the chair with its vertical axis
of rotation (they are transferred to the earth). From the mallet’s origi-
nal position, he can repeat the circular motion in the horizontal plane
and thereby double his angular gain from his initial position. These
three individual motions can of course be combined into a single mo-
tion, so that the man’s arm and the mallet move along the mantle of
a cone whose axis is inclined by for example 45ı from the vertical.

http://tiny.cc/4rqujy
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mentum (˛ can be varied between 30ı and 100ı)
(Video 6.4) Video 6.4:

“Angular momentum as
a vector”
http://tiny.cc/ltqujy

7. The vector nature of angular momentum can be demonstrated ef-
fectively with a fan which can rotate around a vertical axis (Fig. 6.19).
The propeller and the air stream receive an angular momentum L; the
fan takes on the counter-angular momentum of equal magnitude but
opposite rotational sense. The vertical component, i.e. L cos˛, causes
the fan itself to rotate around the vertical axis (see also Fig. 6.2.)

Examples
The propeller blades of the fan are supposed to be turning in a clockwise
sense when we look through them towards the housing of the fan’s motor.
– First, the fan is blowing in a horizontal direction, that is ˛ D 90ı. The
fan remains at rest on the vertical axis of its stand, since cos 90ı is zero.
Now the fan is blowing at an angle upwards, e.g. with ˛ D 45ı. The
fan rotates on its holder; seen from above, it rotates slowly in a counter-
clockwise sense. The reason: We have cos 45ı � 0:7; cos˛ thus has
a positive, nonzero value. (The frictional losses in the bearings of the
holder present no problem, because the motor and propeller are continually
transferring more angular momentum to the air stream.)
When the power to the motor is shut off, this rotation initially stops, and
then it begins again in the same sense of rotation as the propeller. The rea-
son: The rotor of the motor and the propeller are slowed down by friction
in the motor bearings. They give up their remaining angular momentum to
the housing of the motor, and we can observe its vertical component.

8. We replace the swivel chair by the large torsion shaft shown in
Fig. 6.13. A man is lying stretched out on it, holding on to two
handles (Fig. 6.20). He is given an impulse and begins to exhibit
torsional oscillations with a small amplitude. Problem: We want the
man to increase his oscillation amplitude up to full circular oscilla-
tions of 360ı without external help. Solution: He has to change his
moment of inertia around the vertical axis periodically. When he
passes through the rest position, he pulls in his legs and raises his
torso. This reduces his moment of inertia 
 and increases his an-
gular velocity !1. At the extremes of his oscillations, the reversal
points, he stretches out again and returns to a maximum moment of
inertia. At the next passage through the rest position, he repeats this
action. In a short time, he will be exhibiting torsional oscillations

1 The gain in energy comes from the work performed by the man’s muscles against
inertial forces (Sect. 7.3).

http://tiny.cc/ltqujy
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Figure 6.20 Bar exercises
with swings, simulated on
a swivel chair (Video 6.5)Video 6.5:

“The physics of swinging”
http://tiny.cc/ssqujy

with an amplitude of ˙180ı. – This experiment demonstrates in an
excellent manner the entire technique of exercising on the bars. Here,
the horizontal axis of the bars is replaced by the vertical torsion shaft
and the torque is produced not by the weight of the gymnast, as on
the bars, but instead by the spiral spring attached to the torsion shaft.
This has the advantage that the motions are slower, so that we can
more easily observe them. The experiment just described is, in the
language of gymnastics, a giant swing (see http://www.ncbi.nlm.nih.
gov/pubmed/10433423).

The gymnast on the bars knows how to reduce his or her moment of
inertia in various ways at the right moment. For example, in the giant
swing, by bending in the arms or legs or spreading the legsC6.14.C6.14. A playground swing

offers another good opportu-
nity to study this technique,
which children call “pumping
up” and physicists call “para-
metric excitation of oscilla-
tion”, in which a parameter of
the oscillator is varied, thus
exciting vibrations (compare
also Fig. 11.20).

9. The law of areas for motions around a central point (Sects. 4.4
and 4.5) is simply a special case of the conservation of angular mo-
mentum. In Fig. 4.17, at all points along the orbit, the triangular area
Oac D Oce D r2!t=2 D Lt=2m (Eq. (6.12)) remains constant.

6.7 Free Axes

In all of the rotational motions that we have considered so far, the axis
of rotation of the rotating body was fixed as a real shaft mounted on
bearings. We now drop this limitation. This will lead us to rotational
motions of bodies around free axes. In order to explain this term, we
will give several experimental examples.

a) Figure 6.21 shows a well-known circus trick: A flat plate is rotating
at the tip of a bamboo stick. Its axis of symmetry (perpendicular to
the plate) serves as a free axis of rotation.

b) A flat plate, if skilfully set in motion, can also rotate around an
axis parallel to its diameter (in the plane of the plate) (Fig. 6.22).

c) We now demonstrate a small variation on these two experiments:
we hang a cylindrical rod from one end onto the rapidly rotating shaft
of an electric motor. Either its cylinder axis or – as in Fig. 6.23 –
a transverse axis can serve as a free axis of rotation.

d) For technical applications, free axes can be used in the form of
“supple” shafts. In Fig. 6.24, a grinding wheel is set in rotation by
an electric motor (� � 50Hz). The wheel is mounted at the end

http://tiny.cc/ssqujy
http://www.ncbi.nlm.nih.gov/pubmed/10433423
http://www.ncbi.nlm.nih.gov/pubmed/10433423
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rotationC6.15 C6.15. The author as a circus
performer (the photo was
taken by one of the students
in his lecture course).

Figure 6.22 A diameter of the plate as a free axis of
rotation

Figure 6.23 A rod rotating around the axis of its
largest moment of inertia as a free axis of rotation
(Video 6.6) Video 6.6:

“Rotation around free
axes”
http://tiny.cc/itqujy

Figure 6.24 The supple shaft
of a grinding wheel (this shaft
is too thin for practical appli-
cations!) (Video 6.7) Video 6.7:

“Supple shaft as stable axis
of rotation”
http://tiny.cc/5squjy

of a ca. 20 cm long wire with a diameter of only a few millimeters.
It rotates in a stable manner around the axis of its largest moment
of inertia and makes a springy contact with a workpiece which is
pressed against it C6.16. C6.16. A practical applica-

tion:
The unavoidable differences
in direction between the
geometric axes and the an-
gular momentum vectors,
which lead to “hammering”
of a rapidly-rotating gyro-
scope or top, can be absorbed
by supple shafts.

All of these examples have two points in common:

1. The bodies used have rotational symmetry. All of them could have
been fabricated on a lathe, in principle. In each case, the body is
characterized by a figure axis or body axis.

2. One of the free axes was a figure axis, while the other was perpen-
dicular to it.

http://tiny.cc/itqujy
http://tiny.cc/5squjy
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In the following demonstrations, the rotating bodies lack rotational
symmetry. As an example, we take a flat cigar box (Fig. 6.25). Its
three pairs of sides are each painted in a different color.

e) Eyelets are mounted at the center of each side. The box is then
hung by a wire from the shaft of a motor, like the cylindrical rod
in Fig. 6.23. The experiment demonstrates the following: The mid-
lines A and C can serve as “free” axes, and the object can exhibit
stable rotation around them. These two free axes are perpendicular
to each other. – The third mid-line B, which is perpendicular to A
and C and likewise passes through the center of gravity of the object,
shows a different behavior. It cannot serve as a free axis of rotation.
The object always returns to a stable rotation around one of the other
two axes C6.17.C6.17. The most stable rota-

tion always occurs around the
axis with the largest moment
of inertia (here, axis A).

f) We repeat this last experiment with a variation; we throw the box
into the air, giving it a spin by a suitable positioning of our fingers
on releasing it (Fig. 6.26). Again, A and C can serve as free axes of
rotation. The same side of the box remains facing the observer, as
can be seen from its color. Attempts to spin the box around axis B
always lead to wobbling motions, so that the observer sees rapidly
changing colors.

With these and other, similar experiments, one can arrive at the con-
clusion that the axes of a body with the largest or the smallest mo-
ments of inertia can serve as free axes of rotation.

In the examples a) to f), which were chosen for their simplicity, the
axes are in each case readily visible from the geometry of the objects.
In other cases, one can always make use of a torsion shaft (Figs. 6.5
and 6.13) to measure the moments of inertia of axes in different di-

Figure 6.25 The axis A with the
largest moment of inertia, axis B
with an intermediate moment of
inertia, and axis C with the small-
est moment of inertia of a box


A D 6:5


B D 5:6


C D 1:4

9
>=

>;
� 10�3 kgm2

Figure 6.26 Throwing a box with a ro-
tation around its free axis A (with the
largest moment of inertia) (Video 6.8)Video 6.8:

“Free rotation of a rectan-
gular parallelepiped”
http://tiny.cc/1squjy

http://tiny.cc/1squjy
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on our flat cigar box; the results are set out in the caption of Fig. 6.25.

6.8 Free Axes of Humans and Animals

Free axes by no means require rotational symmetry of a body. This
is shown by the experiments with the painted cigar box. Still more
convincing are the uses of free axes by humans and animals.

Examples
a) A jumper performs a somersault. Leaning slightly forwards, usu-
ally with raised hands, he gives himself an angular momentum. The
corresponding axis is indicated in Fig. 6.27a as a white spot. It is
very nearly the free axis with the largest moment of inertia. The an-
gular velocity is still small. A moment later, the jumper pulls his
body together into a crouching position as in Fig. 6.27b. The axis
of rotation remains that of the largest moment of inertia, but that
moment is about three times smaller than before. As a result, the
angular velocity increases by a factor of three, from conservation of
angular momentum. This high angular velocity permits one or two,
sometimes even three complete rotations while the jumper remains
in the air. He then stretches out his body at the appropriate moment
to restore the large moment of inertia, so that he can land on the floor
with a small angular velocity. The jumping techniques of good circus
performers are physically very instructive. The first requirement for
jumping, however, is courage. “Jumping is a matter of

good nerves. The law of
conservation of angular
momentum automatically
guarantees the necessary
rotations”.

Jumping is a matter of good nerves.
The law of conservation of angular momentum automatically guar-
antees the necessary rotations.

b) A ballet dancer performs a pirouette on tiptoe. She rotates around
the long axis of her body. She uses the axis of her smallestmoment of
inertia as a free axis of rotation. She spins around this axis with a high
angular velocity ! and the angular momentum 
!. To stop, she
changes her body position at the appropriate moment to that shown in
Fig. 6.14, center, and thereby increases the magnitude of her moment
of inertia. This new moment of inertia is around seven times larger

Figure 6.27 Changing the magnitude of the mo-
ment of inertia when performing somersaultsC6.18 C6.18. In the pic-

ture: R. HILSCH

(Dr. rer. nat. 1927)
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than before; as a result, her angular velocity is reduced by a factor of
seven. She sets the sole of her foot onto the floor, braking the spin
and lowering the point of support.

c) A cat which is held by its feet and then dropped always falls on
its feet. The animal rotates around the axis of its smallest moment
of inertia; it uses this axis as the substitute for the shaft of the swivel
chair in Fig. 6.18, which is mounted in bearings. Instead of the polo
mallet, the hind quarters and the tail are swung around to produce
a rotation. Humans can readily imitate this cat trick in their ownway.
They can also induce rotations during a jump around their axis of
smallest moment of inertia, i.e. the body’s long axis.

6.9 Definition of the Spinning Top
and Its Three Axes

In the rotations that we first considered, the axis of rotation was fixed
with respect to the object, and in addition it was mounted on bear-
ings outside the rotating object. We then treated rotations around
free axes, where the axis of rotation was still fixed relative to the ob-
ject, but was no longer held by bearings. The most general case of
rotation occurs when the axis of rotation is not fixed either by exter-
nal bearings or with respect to the rotating object. The axis always
passes through the center of gravity of the object, but can continually
change its direction within the object. This last, most general form
of rotation is called gyration. Rotations around free axes or around
shafts with bearings are special cases of this more general motion,
gyration.

In their most general form, gyrations represent the most difficult
problems in all of mechanics. Even with a great mathematical effort,
one can obtain only approximate solutions. But all of the essentials
of gyration can be understood using the special case of the symmetric
top. This case is defined in Fig. 6.28. In the examples shown there,
the symmetry axis is always the axis of the largest moment of inertia
(it is also called the figure axis or body axis; in the following sections,
we will refer to it as the “figure axis”). In the physical sense, these
are flattened tops, gyroscopes, or simply spinning tops in everyday
language.

A decisive point for describing and understanding gyrations is to dis-
criminate strictly between three different axes, each of which passes
through the center of gravity of the body. These are:

Figure 6.28 Two “flattened” tops. The symmetry
or figure axis is the axis with the largest moment of
inertia.
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the largest moment of inertia of the rotating body;

2. the momentary or instantaneous axis of rotation, the axis around
which the body is rotating at a particular, given moment; and

3. the angular-momentum axis. It lies between the axis of symmetry
and the axis of rotation, and in the plane defined by those two axes.
For brevity, we will refer to it in the following as the spin axis, since
the proper angular momentum of a body is often called its “spin”,
just as one often refers to a “spinning top”.

The figure axis is easily recognizable in each of our tops; but it re-
quires a certain artifice to make the other two visible. The top shown
in Fig. 6.29 is particularly well suited to this task. It is supported
at its center of gravity by a point and socket, nearly without friction
and without external forces, so that it remains in equilibrium in any
position of the figure axis. Its center of gravity can be adjusted by
moving the metal ring A. – The figure axis carries a disk at its upper
end; paper stickers with various patterns can be placed on it. To start
with, we want to demonstrate the instantaneous axis of rotation. We
use a paper sticker with a printed text, start the top spinning, and give
the figure axis a tap from the side. This sets the top into a wobbling
motion, and we can observe the following: The text on the sticker
merges into a uniform grey, owing to the rotation of the top. Only
at one small spot, which moves around over the sticker, is the text
briefly at rest and recognizable as printed letters. The midpoint of
this spot is the instantaneous axis of rotation. This axis, as well as
the figure axis, both move over the mantle of a cone, each with the
same angular velocity !N, and these two cones have a common axis
which is fixed in space. This latter axis, which is at this point invisi-
ble, is the angular momentum axis.

In order to make the angular momentum axis visible, we start with
a preliminary experiment. We attach a sticker with concentric circles

Figure 6.29 A top for demonstrating the
three axes. To start it spinning, we clamp
the figure axis between the palms of our
hands and move them in opposite directions.
(Video 6.9) Video 6.9:

“The three axes of a top”
http://tiny.cc/2tqujy

http://tiny.cc/2tqujy
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Figure 6.30 Visualizing the spin axis. About
1/10 of actual size (R. Hagedorn, Z. Phys.
125, 542 (1949))

onto a rotating disk with the center of the circles on the axis of ro-
tation. The rotating sticker looks just the same as when it is at rest;
cf. Fig. 6.30, upper part. – Then we shift the center of the circles
to the side, away from the axis of rotation of the disk; thus the cen-
ter of the circles itself rotates around the axis of rotation of the disk.
This yields Fig. 6.30, lower part; again a system of concentric circles.
The spacing between the individual circles is the same as before, but
their contours are fuzzy and washed out. The common center of these
paler circles lies on the axis of rotation and shows us where it is. –
So much for the preliminary experiment.

For the main experiment, we put the sticker with concentric circles
onto the disk at the end of our top’s figure axis (Fig. 6.29), with the
common center point on the figure axis. By a tap to the side of the
spinning top, we again separate the three axes from each other; the
figure axis, and thus the center of the concentric circles, now ro-
tates around the angular momentum axis. This makes the angular
momentum axis visible in just the same way as in our preliminary
experiment, Fig. 6.30.

This whole phenomenon, the common rotation of the figure axis and
the instantaneous axis of rotation around the angular momentum axis,
is called nutation (its angular velocity is !N).

We give some more details on nutation in the following section. –
Here, we simply establish from the experiment a fact which will later
prove to be useful: The nutations decay after a certain time. This is
a result of the unavoidable friction in the support point of the top;
in our example, between the point and the socket on which the top
rests.
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and Its Fixed Spin Axis

The nutation which we have just observed is an immediate result of
the conservation of angular momentum. Imagine that in Fig. 6.31,
the plane of the paper contains the figure axis A of the top and its
instantaneous axis of rotation ˝ . The top is spinning around this
instantaneous axis with its angular velocity !, represented by the
vector arrow along the axis of rotation, ˝ . This angular velocity
! can be decomposed into two components !1 and !2. !1 is the
angular velocity around the axis A with the largest moment of inertia

A, while !2 is the angular velocity around a perpendicular axis C
with the moment of inertia 
C. The overall angular momentum is
then given by LA D 
A!1 in the direction of the figure axis A and
LC D 
C!2 in the direction of the perpendicular axis C.

These two angular momenta are shown in the figure as vector arrows
with thick arrowheads. Their resultant is the total angular momentum
L. Its direction thus lies between the figure axis A and the instanta-
neous axis of rotation ˝ , and within their common plane.

Now the top is by assumption “force-free”. It is supported at its center
of gravity by the point and socket. No torques of any kind act upon it.
As a result, its angular momentum, magnitude and direction, must re-
main constant (see Sect. 6.6). Its spin axis must continually maintain
the same direction in space. Both the figure axis A and the instan-
taneous axis of rotation ˝ have to rotate around this fixed spin axis
with the nutation frequency (!N). To make this clearer, in Fig. 6.32
we have indicated the three axes with stiff wires and let them rotate
around the center wire, i.e. the angular momentum axis (spin axis).
Then we see how two cones are traced out around this axis. One of
them is traced by the wire representing the figure axis; this is the cone

Figure 6.31 The three axes of
a top
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Figure 6.32 The cone of nuta-
tion

of nutation which we have already seen. The other cone is traced out
by the wire representing the instantaneous axis of rotation; it is called
the herpolhode cone. The relationship between these first two cones
can be represented by a third cone as shown in Fig. 6.32, the polhode
cone. It is attached to the figure axis, surrounds the fixed herpolhode
cone and rolls along its surface “pericycloidally”. The line of contact
between these two cones with a common apex indicates the direction
of the instantaneous axis of rotation ˝ .

Understanding the contents of this section“Understanding the con-
tents of this section requires
a certain amount of study.
But it is worth the effort.”

requires a certain amount
of study. But it is worth the effort. The word nutation occurs rather
frequently in articles on physics and technology. One should have
some understanding of what it means.

In certain cases, the angular momentum axis of a top can be collinear
with its figure axis; the flat top degenerates to a spherical top, or the
axis of rotation of a flat top coincides with its figure axis. – This
latter case can be realized in various ways, e.g. with the top shown
in Fig. 6.29. One spins the top carefully with its point support in the
center of gravity, avoiding any transverse forces on the figure axis.
Then its axis remains fixed in space. This is a phenomenon which is
well known to many non-physicists. – Variations:

a) We throw a discus, using the well-known hand flip to start it spinning
like a top. The direction of its figure axis coincides with the angular mo-
mentum axis and remains fixed (Fig. 6.33). The discus flies along the
falling branch of its orbit through the air like the airfoil of an aircraft with
a fixed angle of attack ˛. It experiences a lifting force just like a wing
(Sect. 10.10). It sinks to the ground more slowly than a stone would,
and therefore flies further than the free-fall parabola would predict (dotted
curve in the figure). – Naturally, the word “force-free” can be considered in
this case to apply only as an approximation. The airflow around the discus
produces not only a lifting force, but also a small torque on the spinning
discus; both are neglected here.
b) The diabolo top as shown in Fig. 6.34: Even when thrown to a consid-
erable height, its figure axis maintains a fixed direction in space.
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Figure 6.33 The flight path of a discus

Figure 6.34 A diabolo top

6.11 Tops Acted on by Torques.
Precession of the
Angular-Momentum Axis

After introducing the momentum p D mu, we were able to cast the
equation of (progressive) motion in the following form:

F D d

dt
.mu/ D dp

dt
: (5.41)

Furthermore, for progressive motions, we had to distinguish between
two limiting cases. In the first case, the direction of the force F was
parallel to the momentum p already present: Only the magnitude, but
not the direction of the momentum was changed by the force (linear
path). – In the second limiting case, the direction of the force was
perpendicular to the previously-present momentum at every instant:
Only the direction of the momentum changed (circular orbit).

In a corresponding manner, we will now treat the effect of a torque
M on a spinning top. We thus write the equation of motion for rota-
tion (6.7) in the form (cf. row 11 in Table 6.1):

M D d

dt
.
!/ D dL

dt
(6.15)

and can again distinguish two limiting cases. In the first, the direc-
tion of the torque vector is parallel to the direction of the angular
momentum axis: Then the top experiences an angular acceleration
P!. Only the magnitude of its angular momentum L is changed, but
not its direction.

An arrangement which can be used for measurements is seen in Fig. 4.4
(MAXWELL’s wheel). The effective torque M is equal to FG times the
radius of the shaft of the wheel.
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In the second limiting case, the vector of the torqueM is perpendicu-
lar to the direction of the angular momentum L already present in the
top’s motion. Then the magnitude of the angular momentum remains
constant, only its direction changes.

A torque which acts perpendicular to the angular momentum axis
gives rise to a precessional motion of the angular momentum axis.
The angular momentum axis is no longer fixed in space. It begins
itself to rotate along a precession cone which is fixed in space. The
angular momentum axis however remains the center line of the nu-
tation cone. The spinning top is now characterized by three angular
frequencies or velocities:

1. The angular velocity ! around its figure axis (spinning);

2. the angular velocity !N of the figure axis around the spin axis on
the nutation cone; and

3. the angular velocity !p of the angular momentum axis in its mo-
tion around the fixed precession cone.

The motions of a top with simultaneous nutation and precession are
rather complicated. For purposes of demonstration, one should there-
fore separate nutation and precession as clearly as possible. For this
purpose, we usually start with a top which is free of nutation, as far
as possible. We thus choose a top whose axes of symmetry and of
angular momentum practically coincide – an exceptional case.

The top shown in Fig. 6.29 suffices for this purpose. One need only
shift its center of gravity above or below the fulcrum point by sliding
the weight A. However, it is clearer to use the arrangement shown
in Fig. 6.35. It consists of a top with a horizontal axis (˛ D 90ı),
a gyroscope. The support of the gyroscope is at the center of gravity
of the whole system, in the form of a point and socket. In order to
provide a torque Fl sin˛ perpendicular to the angular momentum L,
we hang a small weight on the shaft of the gyroscope . This torque
has its largest magnitude, M D Fl, for ˛ D 90ı. It has two effects:
First, a small nutation; and second, a very noticeable precession. The
angular momentum axis circles around a (here very squat) precession
cone whose central axis is vertical.

The weak nutations can be ignored; we explain first how the pre-
cession comes about: The constant torque M produces in every
time interval dt an additional component of angular momentum dL
(Fig. 6.35). This component is perpendicular to the original angu-
lar momentum L and combines with it to give a resultant angular
momentum in the direction R. The angular momentum axis moves
through an angle dˇ in the time dt, within the plane defined by the
vectorsM and L. We find:

M D dL
dt

; (6.15)

and, from Fig. 6.35, dL D Ldˇ. We thus obtain

M D L
dˇ

dt
; M D !pL; !p D M


!
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Figure 6.35 Precession of a spinning top (gyroscope) under the action of
a constant torque (Videos 6.10 Video 6.10:

“Precession of a spinning
top”
http://tiny.cc/wtqujy

and 6.11)

Video 6.11:
“Precession of a rotating
wheel”
http://tiny.cc/otqujy
An analogous experiment
with a bicycle wheel hung
from a cord is shown. A sim-
ple variant of this experiment
is a toy top which dances
around without falling over.

(see Exercises 6.10 and 6.11)

or, taking the directions into account by using vector notation,

M D !p � L : (6.16)

These equations are confirmed by experiment: increasing the torque
in Fig. 6.35 (heavier weight) increases the angular velocity !p of the
precession.

When ˛ < 90ı, the torque Fl sin˛ D M sin˛ acts on the horizontal
component 
! sin˛ of the angular momentum. It follows that the
angular velocity of the precession !p is independent of the angle ˛ !

This primitive demonstration of precession has left nutation out of
consideration, as we emphasized. It is, however, sufficient for un-
derstanding many practical applications of precession. We give three
examples here:

1. Riding a bicycle “no hands”. Figure 6.36 shows the front wheel of
a bicycle. The rider leans a bit to the right. This produces a torque on
the axle of the front wheel around the horizontal direction of motion,
B. At the same time, the front wheel, acting as a top, begins to precess
around the vertical axis C and leads into a right-hand curve. The line
connecting the ground contact points of the front and rear wheels is
again under the center of gravity of the rider; the point of support is
again under the center of gravity. – The signs of all the rotations and
angular momenta are shown in Fig. 6.36.

A demonstration experiment which is especially graphic is provided
by a small model bicycle. We give its wheels a spin with a high an-
gular velocity by pressing them briefly against a rapidly rotating disk
(Fig. 6.37) and then hold the long axis of the model suspended hori-
zontally. A slight, cautious tilting to the right around this horizontal
axis immediately brings the bicycle into position for a right-hand
curve. If we set it on the ground, the bicycle moves off reliably on
a straight-line path.

http://tiny.cc/wtqujy
http://tiny.cc/otqujy
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Figure 6.36 Riding a bicycle
“no hands”

Figure 6.37 A model bicycle is “spun up” by
pressing its wheels onto a rapidly rotating disk
on the shaft of an electric motorVideo 6.12:

“Physics of riding a bicycle
with no hands”
http://tiny.cc/vsqujy

(Video 6.12)

The rider is completely dispensable. His or her role in riding the
bicycle is very modest: he or she has simply to learn not to interfere
with the automatic precessional motions of the front wheelC6.19.C6.19. The details of the

physics of bicycle riding are
in fact somewhat more com-
plicated; see e.g. F. Klein
and A. Sommerfeld: “On
the Theory of the Top”,
German original published
by Teubner 1910, p. 863.
For the influence of the
structure of the bicycle, see
e.g. J.D.G. Kooijman et al.,
Science 332, 339 (2011).

–
The hoops which were once popular toys clearly make use of the
same physical phenomena.

2. The beer coaster as a discus. Throw a beer coaster with your
right hand in a horizontal direction, tilting it slightly upwards. Then
it will at first fly like a good discus as an “airfoil” (Fig. 6.33). Soon,
however, the angle of attack will increase; the flight path, initially
flat with a slight climb, will curve up steeply. At the same time, the
coaster rises up on the right side, flies to the left and loses all its
speed. From its maximum height, it will fall abruptly to the ground.

Explanation: The angular momentum of the beer coaster is much
smaller than that of the heavier discus with its large moment of in-
ertia. The torque produced by the airflow around the disk causes
a strong precession of the figure axis, causing the angle of attack to
increase and twist.

A non-rotating disk would tip up its leading edge (cf. Fig. 10.16). The
airflow gives the disk an angular momentum along the C-axis, perpendic-
ular to its flight path (Fig. 6.38). In the case of the rotating beer coaster,
an angular L momentum is already present. The two angular momenta add
vectorially, and the figure axis of the beer coaster carries out a precessional
motion as indicated by the curved, feathered arrow in the figure.

http://tiny.cc/vsqujy
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with the right hand

3. The boomerang. The moment of inertia of the beer coaster can
be increased and the unwanted precession thereby reduced without
changing its overall weight and lifting force. We need only to thicken
the rim of the coaster while thinning (or cutting out) the middle part.

Take a cardboard ring of about 20 cm diameter and 4� 20mm profile, and
glue a sheet of writing paper onto its surface.

A ‘prepared’ beer coaster of this type with a larger moment of inertia
experiences only a small precession, according to Eq. (6.16). It will
also climb with an increasing angle of attack and lose speed, but at
the top of its flight curve, it still has a reasonable angle of attack. This
allows it to glide, still rotating, back to where it was thrown. It ex-
hibits the typical behavior of the sport article known as a boomerang.
The usual curved-hook shape of the boomerang is not at all essential
for its return flight.

However, a circular disk is not a good airfoil. An elongated oval
disk with a slight curvature is a much better airfoil and a fairly good
boomerang (and at the same time a non-rotationally-symmetric top).
For demonstrations, one can take a piece of cardboard of about 5 �
12 cm in size and 0.5mm thickness, and fold it slightly in the middle
along its long axis.

Small boomerangs are best not thrown free hand; they can be laid on
a tilted book with an overhang, and struck with a rod held parallel to the
edge of the book. A slight tilting of this ‘flight ramp’ to the side produces
a flight path that curves to the left or the right as desired, or with the re-
turn path in the same vertical plane as the outward flight. We can make
the projectile swing back and forth around the vertical from its starting
point, etc. Using the curved hook form and twisting the two blades like
those of a propeller, we can produce still more exotic flight paths (e.g. a
“corkscrew” flight) and display a number of amusing tricks.

6.12 Precession Cone with Nutation

Under suitable experimental conditions, the precession of the angular
momentum axis of a top produced by the action of an external torque
can lead to a well-formed precession cone. We give two examples:

1. The pendulum-top. A top is hung in a stable position, but so that it
can be turned in any direction (around a “universal joint”) as shown
in Fig. 6.39. It is made from a bicycle wheel (possibly with a lead-
weighted rim). When it is not hanging straight down, a torque M
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Figure 6.39 A top hung as a pendulum
with three degrees of freedom (at its upper
end, a small light bulb L allows it to be
tracked in the photos shown in Fig. 6.40)

Figure 6.40 Left: The weak nutation of a suspended top, the approach to
pseudo-regular precession; center and right: increasing nutation as the angu-
lar momentum of the top decreases (photo negatives)

acts, due to its weight FG which pulls on the lever arm r. The torque
vector is shown in the figure, as is the additional angular momentum
dL produced by the torque. In the position shown, the top begins
to rotate along a well-defined precession cone with a small angular
velocity. At the same time, it exhibits a weak nutation: The lower
end of the top’s figure axis (the axle of the wheel) does not move
along a smooth circle, but rather along a circle with a wavy contour
(Fig. 6.40, left). The greater the angular momentum of the top, the
weaker is this nutation. The nutation can be made practically unno-
ticeable. In that case, one refers to the precession as pseudo-regular.
The opposite of a pseudo-regular precession is true regular preces-
sion. In that case, the weak nutation caused by the external torque
is suppressed. This is achieved through certain initial conditions. At
the moment when it is released, one gives the top a nutation which
is opposite but equal to the nutation which would be caused by the
external torque; the top is given a small ‘kick’ when released. This
kick has to be in the direction of the vector dL. Its required strength
can be found by trial and error (compare Video 6.11). A calculation
would be out of place here.
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stronger as the angular momentum of the top decreases, i.e. as the
angular velocity around its figure axis (spinning) ‘runs down’. The
tip of the figure axis (axle of the bicycle wheel) follows the orbits that
are photographed in Fig. 6.40. – With suitable initial conditions, the
precession can even be completely suppressed. Then in spite of the
external torque, only nutations survive. Again, going into detail here
would take us too far afield.

2. The earth as a top. A famous example of precessional motion
is provided by the earth itself. The earth is not a perfect sphere,
but rather is somewhat flattened at the poles (and, precisely speak-
ing, slightly pear-shaped). Its diameter at the equator is about 0.34%
greater than the figure axis of the earth, i.e. the line connecting the
north and south poles. One can imagine that a waistline bulge has
been added to a strictly spherical earth. The gravitational attraction
of this bulge by the sun and the moon produces an external torque
on the earth-top. Its figure axis moves along a precession cone with
an opening half-angle of 23 1

2
ı
. A complete rotation around this cone

takes about 26 000 years. At the same time, the torque produces ex-
tremely weak nutations. As a result, the axis of rotation deviates at
each moment slightly from the earth’s figure axis. But the points at
which the two axes pass through the surface of the earth are only
about 10m apart.

6.13 A Top with Only Two Degrees
of Freedom2

Torques M acting perpendicular to an angular momentum axis
change the direction of the angular momentum vector (precession,
Eq. (6.16)). Conversely, a change in direction (rotation) of an an-
gular momentum produces torques Mp perpendicular to the angular

2 A degree of freedom refers to a spatial dimension in which the motion of a body
can take place. Examples: A point-like body (“point mass”) can in general ex-
perience a linear motion in any arbitrary direction in space. Its velocity can be
decomposed into three components in a Cartesian coordinate system. The point
mass thus has three degrees of freedom. – A point mass constrained to remain in
a plane has only two degrees of freedom, and a point mass held to a linear track
has only one. – A body of finite extension can experience rotations as well as
progressive motions. Its angular velocity can in the most general case point in
an arbitrary direction in space; it can then be decomposed into three perpendic-
ular components. In addition to the three degrees of freedom of its progressive
motions (translation), it has three degrees of freedom of rotation. If its axis of ro-
tation is confined to a plane, only two degrees of freedom of rotation are present.
A flywheel held by bearings has only a single rotational degree of freedom. –
A body which is moving linearly and rotating can in addition exhibit oscillations
of its individual parts relative to each other. A dumbbell-shaped object for ex-
ample can oscillate along the axis (spring) connecting the two weights, and can
simultaneously move progressively and rotate. Then in addition to the six degrees
of freedom of translation and rotation, there is a seventh for the oscillation, etc.
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Figure 6.41 Demonstration model of a pan mill. The arrow over C indicates
the angular velocity !p of the forced precession, and dL is the additional
angular momentum that it produces within the time dt. Without the constraint
provided by the grinding table, the axis A would adjust to the direction of
the thick arrow. Thus, a torque which points away from the viewer and is
perpendicular to the plane of the page must arise.

momentum axis and to the direction in which the axis is rotated. Mp

andM differ only in sign, so that we find

Mp D L �!p : (6.17)

The torques produced by forced precession play a major role in tech-
nology. As a first example of a top which is constrained to a plane, we
mention the pan mill, a form of grain mill which was already known
to the Romans (Fig. 6.41). During a rotation of the millstones, they
form a top with a forced precession. The resulting torque is in this
case in the same direction as the torque produced by the weight. It
presses the millstones onto the grinding table and thus increases the
grinding pressure. In a model, this can be made visible using a spring
below the grinding table with a pointer attached. The following ex-
ample is also impressive.

Figure 6.42 shows a gymnastic bar mounted in ball bearings KK. It
carries a motorized top (gyroscope) and a seat. The gyroscope can
swing along the axis of the bar within a U-shaped frame (in the plane
of the page). The bearings of its frame are marked with a small white
circle in the figure, and the outer frame is fixed to the bar (at ‘R’
in Fig. 6.42). A man sits down on the seat. The center of gravity
of the whole system (bar, gyroscope, man) is well above the bar,
so that the system is unstable (labile). It could for example tip to
the man’s right. This tipping produces a torque on the axis of the
gyroscope; it answers with a precession. Assume that it is rotating
in a counter-clockwise direction as seen from above. In this case,
the upper end of the gyroscope moves away from the man. Now we
come to the essential point: The man pushes the upper end of the
gyroscope still further away from himself. He feels practically no
greater resistance than with a gyroscope at rest. Nevertheless, due
to this forced precession, a strong torque is produced. It acts on the
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tion by negative-damped
precessional gyroscope
oscillations (monorail).
There is a protective metal
fender between the person
and the gyroscope, and at
the right on the gyroscope
frame R is a balance weight.
(Video 6.13) Video 6.13:

“Stabilization using a spin-
ning top”
http://tiny.cc/5tqujy
The U-shaped frame R at-
tached by bearings to the bar
can be clearly seen at the be-
ginning of the video. In the
picture: the author.

bearings of the gyroscope and thus on the bar. The bar moves back to
its original position. If it were initially tipped to the left, everything
occurs similarly but with reversed signs of rotation. The upper axis of
the gyroscope approaches the man; he pulls it a bit closer, etc. In this
manner, one can balance with very little effort. The gyroscope swings
with small amplitudes within the plane defined by its bearings. The
man need only provide a negative damping or amplification of these
precessional oscillations. That is, he must increase the amplitude
already present in each case.

Our brains can learn how to perform this “negative damping” as
a pure reflex in a surprisingly short time. When the dimensions of
the gyroscope are suitably chosen, there is no time to think before re-
acting. But our nerve and muscle coordination very quickly registers
the physical situation. After a few minutes, one feels just as secure on
this unbalanced gymnastic bar as an experienced rider on his bicycle.

Chinese tightrope artists have long since empirically discovered this help-
ful device of negative-damped gyroscope oscillations. They use an um-
brella which is rapidly twirled between the fingers as the gyroscope; they
hold the shaft of the umbrella nearly parallel to the rope and balance by tip-
ping its axis slightly. – For the most part, however, they use the umbrellas
without spinning as parachutes.

Tops or gyroscopes with only one degree of freedom can be most
effectively understood by using the methods of the following chapter.

Exercises

6.1 An object of mass m1 D 15 kg is at the end of a uniformly-
shaped beam with a mass of 5 kg. a) The beam is suspended from
a rotatable bearing at a distance of 1/5 of its length from the objectm1.
What mass m2 be added at its other end to keep it in equilibrium?
b) Where must the bearing be located if a mass m2 D 25 kg is hung
from the other end of the beam and it is to remain in equilibrium?
What is then the total force F acting on the bearing? (Sect. 6.2)

http://tiny.cc/5tqujy
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6.2 Two full cylinders with radii r1 and r2 > r1 and densities %1

and %2 > %1 are rolled down a ramp starting from the same initial
conditions; the ramp has an inclination angle ˛. Which of the two
cylinders will arrive first at the bottom of the ramp? (Sect. 6.4)

6.3 How much work W must be performed in order to set a brass
sphere 1m in diameter in rotation at 20 revolutions/min? (The den-
sity of brass is 8.5 g/cm3.) (Sect. 6.4)

6.4 A homogeneous thin rod of length a and mass m is oscillat-
ing around its suspension point at one of its ends. Find its reduced
pendulum length l. (Sects. 6.4 and 6.5)

6.5 At what point along its length would the rod in the previous
exercise have to be suspended a) to obtain the minimum oscillation
period; and b) so that the oscillation period would be the same as
when it is hung from one end? (Sects. 6.4 and 6.5)

6.6 A physical pendulum of mass m D 0:5 kg is vibrating around
a horizontal axis with a small amplitude under the influence of the
earth’s gravity; the axis is located 20 cm from its center of gravity
(see Fig. 6.15). Its reduced pendulum length is l D 50 cm. Calculate
its moment of inertia 
0 around the axis and 
S around a parallel
axis which passes through its center of gravity. (Sect. 6.5)

6.7 Figure 6.16 shows the schematic of a beam balance as a phys-
ical pendulum. a) Calculate the moment of inertia 
 of the balance
beam assuming that its oscillation period increases from T0 D 18 s to
T D 24 s when 100 g of additional weights are added to each balance
pan, as described in the text. (The points from which the balance
pans are hung lie on a straight line with the fulcrum point O, each at
a distance of l D 15 cm.) b) By what distance d would the suspension
points have to be lowered so that the oscillation period with the addi-
tional 100 g weights would remain equal to T0? (The acceleration of
gravity is g D 9:81m/s2.) (Sect. 6.5)

6.8 A person of mass m is standing on a symmetric, rotatable
plate whose axis of rotation is vertical and passes through the center
point of the plate. It has a moment of inertia 
 and is at rest. The
person first moves from the center radially outwards by a distance
r, then walks around a full circle of radius r on the plate and finally
returns along a radial path to the center. Through what angle ' has
the plate turned? (Sect. 6.6; see also Exercise 4.3)

6.9 A pencil of length l D 20 cm falls freely in a horizontal po-
sition. After it has fallen a distance h D 1m, one end strikes the
edge of a table. How does it continue to fall and what is its angular
velocity? (Sect. 6.6)
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(Fig. 6.35): Determine the angular velocities of precession with the
small torque and the torque which is three times larger (produced by
attaching the small (15 g) and the large (45 g) weights, respectively),
and explain the cause of the different angular velocities. (Sect. 6.11)

6.11 A spinning gyroscope whose rotation axis is horizontal is sus-
pended on a sharp point at its center of gravity (Fig. 6.35). Under the
influence of a torque M, produced by a weight hung on the axle,
the gyroscope precesses at an angular velocity !P. If we consider
this experiment in a frame of reference which is rotating at the same
angular velocity, adding the weight in this frame of reference also
produces the torque M, but the axle does not tip downwards. Why?
A qualitative answer will suffice. (Sects. 6.11 and 7.3)

For Sect. 6.6, see also Exercise 4.3.

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_6) contains supplementary material, which is avail-
able to authorized users.
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7.1 Preliminary Remarks. Inertial Forces

Up to now, we have considered physical processes from the point of
view of the fixed surface of the earth or the floor of our lecture hall.
Our frame of reference was the earth, treated as rigid and unmoving.
The occasional exceptions were clearly indicated.

Making the transition to a different frame of reference can be trivial
in some special cases. In these cases, the new frame of reference is
moving at a constant velocity relative to the earth. Its velocity must
not change, neither in magnitude nor in direction. Experimentally,
we can sometimes meet this condition in a vehicle which is moving
very “smoothly”, e.g. on a ship or in a railroad car. In such cases, in
the interior of the vehicle, we cannot “feel” the motion of our frame
of reference. All phenomena take place within the vehicle just as
they would in the lecture hall which is at rest. But these are rare and
exceptional situationsC7.1. C7.1. We will deal exten-

sively with such cases when
we come to the Special The-
ory of Relativity (in Vol. 2).

In general, vehicles of all types are accelerated frames of reference:
Their velocity is changing in magnitude and direction. This accel-
eration of the frame of reference leads to noticeable modifications in
our physical observations. The point of view of an observer within an
accelerated frame requires new concepts to allow us to give a straight-
forward account of the observed physical phenomena. New forces
appear to an accelerated observer. Their collective name is “inertial
forces”1. Some of them also have been given special names (centrifu-
gal force, CORIOLIS force). The description of these inertial forces
is the subject of this chapter.

In our treatment of acceleration, we have consistently distinguished
between two limiting cases: a pure path acceleration and a purely
radial acceleration, i.e. a change of the velocity only in terms of
its magnitude or only in terms of its direction. In an analogous
fashion, we now want to treat frames of reference with a pure path
acceleration, and separately frames of reference with a purely radial
acceleration, as two limiting cases.

Frames of reference with a pure path acceleration often occur. Vehi-
cles of all kinds when they start moving or brake along a straight path

1 This choice of name presupposes that the observer is aware of his own accel-
eration. A less dramatic name or a neologism which corresponds to the word
“weight” would be more appropriate.
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are examples. But such accelerations usually last only a short time
and the magnitude of the acceleration is constant at most for a few
seconds. We can treat this limiting case rather briefly. We do this in
Sect. 7.2.

A frame of reference with a purely radial acceleration is quite a dif-
ferent matter. Every carousel which is turning with a constant angular
velocity ! maintains its radial acceleration constant for an arbitrarily
long time. The earth, in particular, is just such a carousel. Thus, we
will need to study the carousel system rather thoroughly. We do this
in the remaining sections of this chapter.

To make the treatment clearer, we will make use of a special device
in the following: In each case we will first treat an observer “at rest”
in the rest frame of the earth or the floor of the lecture hall (boldface
heading!). Then, we describe the same phenomena from the point of
view of an accelerated observer, moving with the accelerated frame.
Both observers start with the equation of motion a D F=m and con-
sider forces to be the causes of observed accelerations.

7.2 Frames of Reference with Only Path
Acceleration

First, some examples:

1. An observer is sitting at rest on a moving cart, in front of a fric-
tionless table top on which a ball of mass m is lying (Fig. 7.1). The
table top compensates the weight of the ball. The table and the chair
are attached rigidly to the cart. The cart is being accelerated to the
left along its long axis (by a kick!). This causes the ball and the man
on the cart to approach each other. – Now we find two distinct ways
of describing this process:

Observer at rest
The ball remains at rest. No force is acting on it, since it lies on the
table without friction. In contrast, the cart and the man sitting on it
are accelerated to the left. The man approaches the resting ball.

Figure 7.1 Experiments in an acceler-
ated frame of reference
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Accelerated observer
The ball is accelerated to the right. Thus, a force F D �ma directed
to the right must be acting on the ball. This force is called the inertial
forceC7.2. C7.2. In the case of the iner-

tial force F D �ma, a is the
acceleration of the frame of
reference.

2. The observer on the cart is holding the ball using a force meter
(Fig. 7.2). The cart is again accelerated to the left. During the ac-
celeration, the observer on the cart feels a force on his hand and arm
muscles. The force meter indicates the magnitude of the force F.

Observer at rest
The ball is accelerated to the left. A force F directed towards the left
acts on it. For the acceleration, we have a D F=m.

Accelerated observer
The ball remains at rest. It is not accelerated. Then the sum of the
two forces acting on it is zero. The inertial force F D �ma, acting
to the right, and the muscular force acting to the left are equal and
opposite. Their magnitude can be read off the force meter.

3. In Fig. 7.3, a cart is being accelerated to the left. The observer
standing on the cart has to lean into the acceleration while the cart
is starting up; otherwise, he would fall over. – Again we give two
distinct descriptions:

Observer at rest
The center of gravity S of the man must move with the same accel-
eration (magnitude and direction) as the cart. The force F (Fig. 7.4)
required to accelerate the center of gravity, acting to the left, is pro-
duced by the man through his weight FG and an elastic deformation
of the cart (force F3). He leans forward to achieve this.

Figure 7.3 A man on a cart which is acceler-
ating to the left
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Figure 7.4 Forces as observed in the system at rest

Figure 7.5 Forces in the accelerated system

Accelerated observer
The center of gravity S of the man remains at rest. The sum of the
forces (Fig. 7.5) acting on him is zero. His weight FG pulls down-
wards, while the inertial force F D �ma acts to the rear, that is to the
right in the figure. The two combine to give the resultant force F3. It
deforms the cart below the man’s feet and thus produces the force F1

which is opposite but equal to F3.

4. An observer is in an elevator. In front of him is a table with
a spring balance holding an object of mass m. The deformation of
the spring indicates a force which is equal but opposite to the weight
FG. Then the elevator begins to accelerate downwards. The balance
now indicates a smaller reading, F1.

Observer at rest
The object is accelerated downwards. Two unequal, oppositely-
directed forces act on it. The weight FG pulls the object downwards,
while the smaller force of the spring F1 pushes it upwards. The
resultant difference force produces its downwards acceleration
a D .FG C F1/=m, with the magnitude a D .FG � F1/=m.

Accelerated observer
The object is at rest, the sum of the forces acting upon it is zero.
The upwards-directed spring force F1 of the balance is smaller
than the weight FG of the object. Therefore, a second upwardly-
directed force is present, namely the inertial force F D �ma, so that
FG C F1 C F D 0.

5. An observer jumps from a high table to the ground with the spring
balance in his hand. On the balance pan is a weight of mass m. Im-
mediately after he jumps, the indication of the balance goes from the
value FG to zero (Fig 7.6). The balance thus indicates no weight.
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(Video 7.1) Video 7.1:
“Freely falling frame of
reference”
http://tiny.cc/1uqujy
In the first part, S. KÖSTER

(doctorate 2007) jumps from
a table holding the balance;
filmed by T. BECKER (doc-
torate 2004). The second
part shows a similar jump
by H. GRÜNDIG (1929–
2003, doctorate in Göttingen,
1959), filmed in slow motion.
This part was filmed in 1960.

Unfortunately, this demonstration is over within a fraction of a second.
This disadvantage is not present in the four accelerations dealt with in
Sect. 7.3C7.3.

C7.3. POHL mentions here
experiments with “zero grav-
ity” in space stations. He also
points out the microgravity
experiments in the drop tower
at the University of Bremen.
In an evacuated tube, 120m
long, an experiment capsule
(0.8m in diameter, 1.6 to
2.4m long) can fall freely for
nearly 5 s before it is braked
to a stop by a plastic foam
cushion (see e.g. http://en.
wikipedia.org/wiki/Fallturm_
Bremen or https://www.zarm.
uni-bremen.de/drop-tower.
html).

Observer at rest
The object is accelerated. It falls like the man with the acceleration
of gravity g. The only force acting on the object is its weight FG,
which is pulling it downwards. Neither a spring force nor a muscular
force is pushing it upwards.

Accelerated observer
The object is at rest, the sum of the forces acting on it is zero. Its
weight FG which is pulling it downwards is cancelled by the inertial
force F acting upwards. Their magnitudes mg are equal. The object
is “weightless”.

These examples should suffice to elucidate the meaning of the words
‘inertial force’. Inertial forces exist only for an accelerated observer.
The observer must – at least in thought! – participate in the accelera-
tion of his frame of reference. A hand which is accelerating a bowling
ball is an accelerated frame of reference. Therefore, the hand feels
an inertial force.

7.3 Frames of Reference with Radial
Acceleration. Centrifugal and
CORIOLIS Forces

1. An observer is sitting on a rotating swivel chair with a vertical axis
of rotation and a large moment of inertia (Fig. 7.7, cf. also Fig. 7.16).
In front of him, attached to the chair, is a horizontal, smooth tabletop.
The observer sitting in the chair places a ball on this tabletop. It flies
off the table and falls to the ground.

Observer at rest
The ball is not accelerated. No forces are acting on it (its weight is
compensated by the elastic resistance of the tabletop). As a result,

http://tiny.cc/1uqujy
http://en.wikipedia.org/wiki/Fallturm_Bremen
http://en.wikipedia.org/wiki/Fallturm_Bremen
http://en.wikipedia.org/wiki/Fallturm_Bremen
https://www.zarm.uni-bremen.de/drop-tower.html
https://www.zarm.uni-bremen.de/drop-tower.html
https://www.zarm.uni-bremen.de/drop-tower.html
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Figure 7.7 Experimenting in a rotating frame of
referenceC7.4C7.4. In the picture: The

author.

it cannot move along a circular path. It flies off tangentially with
the constant velocity u D !r (! D angular velocity of the rotating
swivel chair, r D distance from the ball to the axis of rotation at the
moment when it is placed on the tabletop).

Accelerated observer
The ball is accelerated from its resting position. It moves away from
the center of rotation of the tabletop. Thus, an inertial force acts on
the ball, which is initially at rest. This force is given the special name
‘centrifugal force’. Its formula is F D m!2r.

2. The observer on the swivel chair holds a force meter between his
hand and the ball. The horizontal axis of this force meter is directed
towards the axis of rotation of the chair. The force meter indicates
a force of magnitude F D m!2r while the chair is rotating.

Observer at rest
The ball follows a circular path of radius r (radius vector r); it is ac-
celerated. This requires the presence of a radial force F D �m!2r,
directed towards the axis of rotation, which acts on the ball (“cen-
tripetal force”), Eq. (4.1).

Accelerated observer
The ball remains at rest. It is not accelerated. Therefore, the sum
of the two forces acting on it is zero. The centrifugal force which
is pulling radially outwards and the muscular force pulling radially
inwards (centripetal force) are equal and opposite. The magnitude of
these forces is m!2r.

3. The observer on his swivel chair hangs a gravity pendulum on
a stand on the table in front of him, for example a ball hung from
a cord. This pendulum will not hang vertically (Fig. 7.8). It swings
outward through an angle ˛ within the plane defined by the radius and
the axis of rotation. The angle ˛ increases with increasing rotational
frequency of the chair.

Observer at rest
The ball of the pendulum is moving along a circular orbit of radius
r; it is accelerated. This requires the force F D �m!2r which acts
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ity pendulum

Figure 7.9 Forces in the system at rest

Figure 7.10 Forces in the rotating system

horizontally towards the axis of rotation (Fig. 7.9). It is produced by
the weight of the ball FG and the elastic tension of the cord (force
F3).

Accelerated observer
The ball of the pendulum is at rest, the sum of the forces which act
at its center of gravity S is zero (Fig. 7.10). The weight of the ball
pulls downwards with the force FG, the centrifugal force F D m!2r
pulls outwards. The two combine to give a resultant force F3. This
force applies a tension to the cord and thereby produces the force F1,
which is equal and opposite to F3.

4. An artificial satellite (a space station) circles the earth at an altitude
of several 100 km (Fig. 4.25). Inside it, all the phenomena which
normally result from the force that we call ‘weight’ are absent. Here
(in contrast to the falling path acceleration in Fig. 7.6), we have as
much time as we wish to observe the lack of such forces. If, for
example, we put a metal block onto a spring balance, the balance
will indicate no weight.

Observer at rest
Like the satellite itself, all objects within it are accelerated continu-
ally towards the center of the earth, i.e. in the direction of the radius of
the satellite’s orbit. Otherwise, they could not take part in the circu-
lar orbital motion. The weight FG D mg of the metal block produces
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this acceleration. It is the only force which acts on the block and need
not be compensated by the oppositely-directed force of a compressed
spring.

Accelerated observer
The metal block is at rest. As a result, the sum of the forces acting on
the block is zero. The force that we call weight, which pulls the block
towards the center of the earth, is compensated by the centrifugal
force which pulls it away from the earth’s center (the center of the
satellite’s circular orbit). The two forces are equal and opposite; they
have the same magnitudemg. (g at an altitude of 300 kmD 8.9m/s2.)

5. In all the experiments up to now, we have observed a body which
was at rest in the rotating system. We simply asked the question as to
whether the body would be accelerated out of this resting position or
not. Now, we observe a body which is moving relative to the rotating
swivel chair. Here, we restrict our considerations to a limiting case,
namely a body with a high velocity, a bullet. Then we can neglect the
centrifugal force which is relatively small.

On the tabletop attached to the chair, we set up a small gun point-
ing horizontally outwards (Fig. 7.11). The direction of its barrel can
make an arbitrary angle ˛ with the radius connecting it to the axis of
rotation (Fig. 7.12). The gun points at a target located a distance A
from its muzzle and is aimed at the point a on the target disk. The tar-
get rotates with the chair, held by rods at the distance A. First, we fire
a bullet from the gun while the chair is at rest, and determine where
it hits the target, i.e. the point a. Then the chair is set in rotation with
the angular velocity !. The chair is supposed always to rotate in
a counter-clockwise sense as seen from above. Now, a second shot is
fired. The point b where it hits the target is deflected to the right by
a distance s relative to the targeted point, which has in the meantime
moved to a0.

Numerical Example
The chair rotates once every 2 seconds. The velocity of the bullet is u D
60m/s (air gun). The distance to the target is A D 1:2m, the deflection to
the right s D 0:075mD 7.5 cm (cf. Fig. 7.12).

Figure 7.11 The CORIOLIS

forceC7.5C7.5. In the picture: The
author.
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Figure 7.12 The experiment of Fig. 7.11 seen from above. v0 D v cos ˛ D
.R � A/! is the component of the bullet’s velocity w which is parallel to the
target disk, while v is the velocity of the muzzle of the gun. For clarity, the
angle !�t is exaggerated in the drawing. This causes a minor error: the sight
line from the gun to a0 appears not to meet the target disk at right angles.

Observer at rest
When the chair is at rest, the bullet strikes the point a that it was
aimed at. If the chair is stopped immediately after firing the bullet,
the point b where it strikes the target is to the left of the targeted
point. In this case, the velocity v of the muzzle of the gun adds to the
velocity u of the bullet. As a result, the bullet flies in the direction w
through the lecture hall.

In the experiment as in fact demonstrated, the chair continues to ro-
tate following the firing of the bullet. The bullet, in contrast, flies on
a force-free, linear path after leaving the muzzle of the gun, in the
direction w through the lecture hall. Therefore, the sighting line ro-
tates relative to the path of the bullet. At the end of the bullet’s flight
time �t, the point aimed at is at a0. Thus the point b where the bullet
strikes the target disk is deflected to the right by a distance s relative
to the aiming point. From Fig. 7.12, we read off the relation

s D A!�t:

For both flight paths (that is in the directions of u and w), the flight
time of the bullet to the target is the same, namely

�t D A=u:

Therefore, we find
s D u!.�t/2:

Accelerated observer
During the flight of the bullet, it is accelerated in a transverse direc-
tion. Its path is thus curved to the right. Within its flight time �t, the
bullet is deflected by the distance s D 1

2a.�t/2 to the right. s, accord-
ing to the result of the observer at rest, is s D u!.�t/2. From this,
we find for the observed acceleration a D 2u!. It is named for its
discoverer, CORIOLIS accelerationC7.6.

C7.6. For a simple derivation
of the CORIOLIS accelera-
tion, let the muzzle of the
gun be on the axis of rotation
and the moment of firing be
t0 D 0. Then the distance
s D R! t (Fig. 7.12). With
R D u t, we have
s D u! t2 ,
from which we obtain by
differentiating twice with
respect to time:
a D d2 s

dt2 D 2u! .There can be no acceleration
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a without a force F D ma; thus, the CORIOLIS force F D 2mu! acts
on the bullet transversely to its flight path, or, more generally,

F D 2 mu �! : (7.1)

The CORIOLIS force is an inertial force which acts on an object in
motion. It acts perpendicularly to the vectors of the angular velocity
and the path velocity. Let a frame of reference be rotating, e.g. with
the angular velocity !. Within this system, a body is moving with
an path velocity u perpendicular to the axis of rotation. Then the
CORIOLIS force F D 2mu! acts on the moving body perpendicular
to its trajectory.

The equation s D A!�t D u!t2 D A2!=u which is accepted by both
observers provides a very simple method for measuring the velocity u of
a bullet.

6. The previous example demonstrates the transverse deflection of
a moving body within an accelerated frame of reference, but only for
a single initial direction of its motion. The magnitude of its deflec-
tion should be independent of the chosen initial direction (the aiming
of the gun). But we intentionally did not demonstrate this; it can be
shown much more quickly and simply by introducing a small change
in the experiment: We replace the gun by the bob of a gravity pendu-
lum. The pendulum is hung above the tabletop attached to the swivel
chair in the usual manner (Fig. 7.13). To make it easier to observe,
the moving pendulum bob itself is used to record its own path. To
this end, a small ink pot is built into the pendulum bob, with a fine
ink jet underneath. A sheet of white paper is pinned to the tabletop
below the pendulum and the swivel chair is set in rotation with the
angular velocity !. The observer in the chair is initially holding the
pendulum bob and plugging the ink jet. The cord of the pendulum is
tipped out of its rest position within an arbitrary vertical plane. When
the pendulum bob is released, it swings with a gradually decreasing
amplitude around its non-vertical(!) rest position (Fig. 7.8). It draws
a continuous curve on the paper with the ink jet, tracing out the rosette
orbit shown at the left in Fig. 7.14. In a second experiment, the pen-
dulum is kicked out of its rest position, giving the rosette orbit shown
on the right in Fig. 7.14.

Figure 7.13 A simple pendulum in a rotating
frame of referenceC7.7

C7.7. In the picture: Master
mechanic W. SPERBER

(Video 7.2)Video 7.2:
“Simple pendulum in
a rotating reference frame”
http://tiny.cc/euqujy

http://tiny.cc/euqujy
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The pendulum swings around its rest position. In the case of
Fig. 7.14, left, the orbit is an ellipse, since on releasing the pendulum
bob from its deflected position, a tangential velocity component is
also present. It swings with an “elliptical polarization” on an orbit
fixed in space. The plane of the paper rotates under the swinging
pendulum, producing the rosette, whose center remains free of ink
dots.

In the second case (Fig. 7.14, right), there is no tangential velocity
component at the moment the pendulum starts to swing. It swings
with a “linear polarization” continually parallel within a vertical
plane fixed in space.

The fact that the rest position of the pendulum is not vertical was
explained above under Point 3.

Accelerated observer
During the motion, the pendulum bob is deflected by a CORIOLIS

force continually in a direction transverse to the plane in which it is
swinging. All the individual curves of the rosette have the same form
in spite of their different orientations in the rotating chair. Therefore,
the direction of motion within the accelerated system is unimportant
for the magnitude of the CORIOLIS force.

The deflection of the rest position of the pendulum from the vertical
results from a centrifugal force (cf. Point 3!). Both a CORIOLIS force
and a centrifugal force act on a moving body in a rotating frame of
reference.

Figure 7.14 The rosette orbits of a pendulum on a carousel. In the left image,
the pendulum was released from its maximum deflection above the ink dots
at bottom, and it initially swung to the right (arrow). The endpoint of the
rosette is coincidentally the same as its starting point. In the right image, the
pendulum was given a kick out of its initial rest position (Video 7.2).
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(In this demonstration, the swivel chair was given only a small angular
velocity !. Otherwise, we could not have followed the position of the
plane in which the pendulum bob is swinging.)

7. A spinning top in a rotating frame of reference (model of a gy-
rocompass on a rotating globe): Figure 7.15 shows a top mounted
within a frame (gyroscope) on the swivel chair. For brevity, we will
refer to the chair as the globe. Seen from above, it is assumed to
rotate in a counter-clockwise sense. The frame of the top can itself
rotate around an axis A which is perpendicular to the symmetry axis
(figure axis) F of the top. The axis A lies in a meridian plane of the
globe. Furthermore, the axis A can be adjusted to different latitudes.
It can thus make an arbitrary angle ' (‘latitude angle’) with the plane
of rotation of the globe, between 0ı (equator) and 90ı (poles). The
horizon of the position of the top can be imagined to be perpendicular
to the A axis. The observer in the rotating chair starts the top spinning
by pulling a few times on its spokes (Fig. 7.15, left). Then he leaves
the top to itself: The figure axis of the top takes up a fixed position in
the meridian plane after a few initial swings around the axis A, like
a compass needle (Fig. 7.15, right).

Now we let the two observers speak their piece:

Both observers, for simplicity, assume the same initial position of the
figure axis F of the top: it lies parallel to a circle of latitude.

Observer at rest
The rotation around the chair’s (or globe’s) axis causes a torqueM to
act on the figure axis of the top. It has a componentM1 perpendicular
to the A axis. This torque M1 causes a precession of the top’s figure
axis F around the axis A of the frame. The figure axis F at first
swings out of the meridian plane; but friction in the bearings of the A
axis quickly damps these pendulum oscillations. The axis of the top
comes to rest in the meridian plane. Then the M1 component of the
torque lies along the figure axis F, so that it can no longer produce
further precessional motions.

Figure 7.15 Model of a gyrocompass (Video 7.3)

Video 7.3:
“Gyrocompass”
http://tiny.cc/ququjy

http://tiny.cc/ququjy
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CORIOLIS forces deflect the parts of the top’s rim at ˇ to the right
along their orbits. The half of the top on the right as seen by the
reader moves out of the plane of the page towards the reader. This
moves the figure axis of the top into the meridian plane. Thereafter,
CORIOLIS forces indeed continue to act on the moving rim, but they
no longer exert a torque around the A-axis.

So much for experiments to demonstrate the definitions of the con-
cepts of centrifugal force and CORIOLIS force. Both forces exist only
for a radially-accelerated observer. The observer must participate in
the rotation of his frame of reference, at least in thought. He or she
can still continue to use the equation a D F=m within the rotating
frame by taking these new forces into account.

The appearance or disappearance of inertial forces is thus determined
by the choice of the frame of reference. For observers who move
with the frame of reference, they are no less “real” than “genuine”
forces are for the observer at rest. The term “fictitious forces” should
therefore be avoided.

What is the situation for the accelerated observer with regard to the
principle of “actio D reactio”? – Answer: He or she experiences
the same situation as an observer on the earth regarding the reaction
force to the weight. The observer in an accelerated frame of reference
cannot detect the corresponding counter-forces to the inertial forces
during the free motion of bodies within that frame.

7.4 Vehicles as Accelerated Frames
of Reference

The choice between an accelerated and a non-accelerated frame of
reference is simply a matter of taste in some cases, for example with
circular motions of bodies around fixed axes. The important thing
then is just to give a clear description of the frame of reference used
(cf. Sect. 4.2, beginning). – In other cases, however, the accelerated
frame of reference is preferable. These include most of the physics
of the vehicles used in our technological society. The acceleration
of these frames of reference is often rather complicated, since path
accelerations (starting up and braking) and transverse accelerations
(driving around curves) occur together.

Our everyday experience with inertial forces in vehicles was already
treated in the examples given in Sects. 7.2 and 7.3. For example:

a) Leaning in a train when it is starting up or braking, and when it is
travelling around curves. This prevents falling over.

b) Leaning into curves by bicycle and rider, rider and horse, aircraft
and pilot.
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c) The sideways deflection by the CORIOLIS force on the deck of
a ship which is changing course. Only by tacking “sideways” can
one walk a straight line in the intended direction.

d) One can “feel” the CORIOLIS forces especially clearly on a swivel
chair with a large moment of inertia and therefore a steady, constant
angular velocity. Try to move a weighted block (e.g. with 2 kg mass)
quickly along an arbitrary straight-line path (Fig. 7.16). The result
is startling. It feels as though your arm has gotten into a strong
current within a viscous liquid. This is a particularly important
experimentC7.8.C7.8. This “particularly

important experiment” can
unfortunately not be shown
as a demonstration, since
only the experimenter him-
or herself can “feel” the
CORIOLIS force. We how-
ever want to point out the
numerous possibilities of ex-
periencing this phenomenon
yourself on various carnival
or amusement-park rides.

(Exercise 7.1)

Numerical Example
Rotation rate: one revolution every 2 seconds, so that � D 0:5 s�1, ! D
2�� D 3:14 s�1; mass of the metal block m D 2 kg; velocity u D 2m/s;
CORIOLIS forceD 2mu! D 2 �2 kg �2m/s �3:14 s�1 D 25 kgm/s2 D 25N;
this force is greater than the weight of the moving metal block (FG D
2 kg � 9:81m/s2 � 20N)!

The list of qualitative examples is very long. More instructive than
examining them all in detail, however, is a quantitative treatment of
a particular case which at first seems weird. It involves a horizon-
tal torsion pendulum on a carousel. Figure 7.17 shows a carousel in
a side view. On it is a torsion pendulum with a rod-shaped mass
which can be placed at any desired distance from the center axis
of the carousel. Under what conditions will the torsion pendulum
continually point its long axis towards the center of the carousel, in-
dependently of all accelerations?

At a constant angular velocity !1 of the carousel, the torsion pendu-
lum remains at rest. This is because the purely radial acceleration

Figure 7.16 A swivel chair with
a large moment of inertia for demon-
strating CORIOLIS forces. The heavy
weights hanging at the sides can also
be conveniently used for the experi-
ments shown in Figs. 7.7, 7.11, 7.13
and 7.15C7.9C7.9. In the picture: Master

mechanic W. NABEL.

Figure 7.17 A torsion pendulum
on a carousel (rotating table). The
pendulum consists of a wooden
rod (pendulum mass) on the small
torsion axle that we have already
seen in Fig. 6.5 (Video 7.4)Video 7.4:

“Torsional pendulum on
a rotating table”
http://tiny.cc/cuqujy

http://tiny.cc/cuqujy
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along the long axis of the pendulum mass. Such an acceleration can
never produce a torque.

To verify this, one could mount the pendulum on a rail so that it can be
slid in a radial direction, orienting its long axis parallel to the rail. The
pendulum will then not react to any accelerations along the rail.

However, any change in the angular velocity !1, that is any angular
acceleration P!1 of the carousel, will shift the pendulum out of its rest
position. It will immediately begin to oscillate with a considerable
amplitude, since now the acceleration a is perpendicular to the long
axis of the pendulum mass. The task outlined above may at first
seem hopeless; but on the contrary, it is in fact quite simple. We
can make the torsion pendulum completely insensitive to any angular
acceleration P!1 simply through a suitable choice of its moment of
inertia 
0! We require that (derivation follows immediately):


0 D msR (7.2)

or, using STEINER’s law (Eq. (6.12)), we obtain an expression which
is more convenient for calculations:


S D m.sR� s2/ : (7.3)


0 D moment of inertia of the pendulum referred to its axis of rotation;

S D moment of inertia referred to its center of gravity; m D mass of
the pendulum (rod); s D distance from the pendulum’s center of gravity to
its axis of rotation; R D distance from the pendulum’s axis to the axis of
rotation of the carousel.

The torsion coefficientD� of the spiral spring of the torsion pendulum
is completely unimportant. It does not enter into the calculation at
all. The silhouette (Fig. 7.17) shows a pendulum mass in the form of
a rod which corresponds to this calculation (its dimensions are given
below). This pendulum indeed remains at rest no matter how strong
the angular acceleration of the carousel. This demonstration is quite
surprising. Small variations of R or s restore the original sensitivity
of the pendulum to angular accelerations.

To derive Eq. (7.3), we consider the situation from the viewpoint of
a rest frame, see Fig. 7.18. When the carousel is accelerated, a force
acts on the axis of rotation O of the torsion pendulum; it has a mag-
nitude F (direction 1). We add to it two forces of the same magnitude
which act oppositely at the center of gravity S (directions 2 and 3).
The force in the direction 3 accelerates the center of gravity S. We
have

F D ma D m.R � s/ P!1 (7.4)

. P!1 D angular acceleration of the carousel/:

At the same time, the forces in the directions 1 and 2 produce a torque
F � s. It causes a rotation around the center of gravity S, just as any
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Figure 7.18 The insensitivity of a torsion pendu-
lum towards angular accelerations of its center of
rotation O

torque does when it acts on an otherwise free object. Quantitatively,
we find

F � s D 
S P!2 (7.5)

. P!2 D angular acceleration of the object/:

We require that P!1 D P!2. This condition can be fulfilled by a suitable
choice of the distance s between the center of gravity of the pendulum
and its axis of rotation. We combine Eqns. (7.4) and (7.5) and find
a relation for s:

F

m.R � s/
D F � s


S
or 
S D ms.R� s/ : (7.3)

For the pendulum body (rod) chosen for the demonstration experiment,
with mass m and length l, we find


S D 1

12
ml2: (6.11)

Inserting this value into Eq. (7.3) yields l2 D 12s.R � s/. – Numerical
example for Fig. 7.18: R D 50 cm, s D 5 cm, l D 52 cm.

This strange“This strange demon-
stration plays a role in
transportation systems”.

demonstration plays a role in transportation systems
(cf. Sect. 7.5).

7.5 The Gravity Pendulum as a Plumb
Bob in Accelerated Vehicles

Navigation of an aircraft without visual contact to the ground de-
mands a secure knowledge of the true vertical direction at all times, or
of the horizontal plane perpendicular to it. Without this knowledge,
a pilot lacking visual information can’t even distinguish a curved
flight path from a straight one; the tension of his muscles and his
kinesthetic sense leave him clueless. They tell him only the direction
of the resultant of weight and centrifugal force, but never the true
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earth.

At rest on the ground, one can use a gravity pendulum as a plumb bob
to find the vertical direction. In accelerated vehicles, this would at
first seem useless; we have all watched a pendulum in an accelerated
vehicle. Think of a strap hanging from the baggage rack in a railroad
car. It swings back and forth, at the mercy of inertial forces. Never-
theless, one can in principle use a pendulum as a plumb bob even in
arbitrarily accelerated vehicles! We can see this by first carrying out
a thought experiment.

To this end, we modify the experiment described in Fig. 7.17 so that
the center of rotation does not move on a fixed circle, but instead
on the surface of a sphere of radius R. Every motion of the center
point O thus takes place momentarily on a great circle, and in our
thought experiment, we replace the circle from Fig. 7.17 momentar-
ily by a great circle (with the torsion axis perpendicular to it). When
Eq. (7.3) is fulfilled in this arrangement, the pendulum points contin-
ually towards the center of the sphere, even when the direction of the
great circle changes in the course of the motion.

Now, in order to carry out this thought experiment in fact, we move
the point O into the vehicle and attach a physical gravity pendulum
as in Fig. 6.15 at this point; it is suspended at only a single point,
so that it can swing in the horizontal plane. Every motion of the
vehicle now takes placemomentarily on a great circle whose radius R
is the earth’s radius (D 6:4 � 106 m). The gravity pendulum can move
freely in the plane of this great circle. To keep it at rest, we have
only to ensure that Eq. (7.3) is fulfilled. Then the pendulum points
continually towards the center of the earth, even when the vehicle
drives or flies through a sharp curve! We have thus achieved our
goal.

For a gravity pendulum, in contrast to an elastic torsion pendulum
(mass-and-spiral-spring system), the moment of inertia is directly re-
lated to the torsion coefficient D�. The choice ofD� is no longer free;
it is determined by the weight of the pendulum mass, mg. According
to Sect. 6.5, we have

D� D mgs .g D 9:81m/s2/ :

As a result, the period of oscillation of this pendulum, from Eq. (6.13),
is

T D 2�

r

0

D�
D 2�

s
msR

mgs
D 2�

s
R

g
D 84:6min : (7.6)

It is called the SCHULER period, corresponding to a mathematical
pendulum (Sect. 6.5) whose length is equal to the earth’s radius R !
(Exercise 7.5). For a physical pendulum of dimensions suitable for
installing in an airplane, that is of order of 0.1m, a period of this mag-
nitude would require a distance of s D 1 nm (Exercise 7.5), which
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is practically impossible to construct. But even physical pendulums
which are excited to oscillations with the SCHULER frequency are in-
dependent of accelerations and can be used as plumb bobs. This is an
important fact for “inertial navigation”C7.10.C7.10. See for example

R. P. G. Collinson, “Introduc-
tion to Avionics Systems”,
Kluwer Academic Press,
Boston, 2nd ed. (2003),
Chaps. 5 and 6.

7.6 Earth as an Accelerated Frame
of Reference. Centrifugal
Acceleration of Bodies at Rest

As our final accelerated frame of reference, we will consider the
“Earth Carousel”. We now take into account the daily rotation of
the earth relative to the system of fixed stars. A complete rotation by
360ı D 2� takes 86 164 s. The angular velocity of the globe is thus
small; it has the value

! D 2�

86 164 s
D 7:3 � 10�5 s�1:

This angular velocity ! produces a centrifugal force on every body
at rest on the earth’s surface, F D mac, and the corresponding cen-
trifugal acceleration ac.

Consider a body located at the geographic latitude ' (Fig. 7.19). r D
R cos' is the radius of the associated circle of latitude. Then the
centrifugal acceleration is

ac D !2r D !2R cos' D 0:03 cos' m/s2 (7.7)

.rounded offŠ/:

This centrifugal acceleration is directed outwards, parallel to the ra-
dius of the circle of latitude. In the vertical, i.e. in the direction of the
radius R of the earth, only one component of this centrifugal acceler-
ation acts, namely

aR D ac cos' D 0:03 cos2 ' m/sec2 : (7.8)

Figure 7.19 Gravitational at-
traction and centrifugal force as
a function of the latitude ' on the
earth’s surface
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site to the acceleration of gravity g which results from gravitational
attraction. On the rotating earth, therefore, the acceleration of gravity
at the geographic latitude ' is somewhat smaller than it would be if
the earth were at rest. We find

g' D g � 0:03 cos2 ' m/s2 : (7.9)

Here, g, the value of the acceleration of gravity, applies to the earth
at rest. Now we encounter a difficulty: The centrifugal force acts by
no means only on bodies on the surface of the earth; indeed, every
particle of the earth itself is subject to a centrifugal force, directed ra-
dially outwards from its circle of latitude. The sum of all these forces
produces an elastic deformation of the earth; the globe is somewhat
flattened at the poles, where its axis is about 1/300 shorter than its
diameter at the equator. As a result of this polar flattening of the
earth, the change in the acceleration of gravity g’ at the latitude '
is somewhat greater than one would calculate from Eq. (7.9). The
experimentally-measured acceleration of gravity is described by the
expression

g' D .9:832� 0:052 cos2 '/m/s2 : (7.10)

At sea level and a latitude of 45ı, one finds g D 9:806m/s2. For
' D 0ı, i.e. on the equator, the correction term is maximal; it is then
0.5%. This small correction can be neglected in many experiments.
But a precise pendulum clock at the equator in fact loses about 3.5
minutes per day as compared to a similar clock at the poles.

The polar flattening of about 1/300 mentioned above holds for the
solid body of the earth. The deformation of its liquid sheath, the
oceans, due to centrifugal force is much greater. But this latter de-
formation never occurs alone; it is combined with the diurnally and
periodically varying attraction of the oceans’ water by the sun and
the moon. The hydrosphere is thus deformed much more strongly
by these tidal forces than is the solid body of the earth. The super-
position of centrifugal forces and gravitational tidal forces yields the
complicated phenomenon of the tides. It is an example of “forced
oscillations” (Sect. 11.10). We can give only a rough sketch here.

Similar conclusions hold for our atmosphere, the ‘ocean of air’. The
tides in the atmosphere cause only small pressure variations at its
bottom, on the surface of the earth, just like the ocean tides at the
bottom of the oceans. But around 100 km above the surface, the air
tides cause motions of the air of the order of kilometers! Up there,
the tidal waves of the air are much higher than those of the water on
the surface of the oceans.
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7.7 Earth as an Accelerated Frame
of Reference. CORIOLIS Force
on Moving Bodies

For an observer looking down on the north pole, the earth rotates in
a counter-clockwise sense. It thus has the same sense of rotation as
our swivel chair in Sect. 7.3. The angular velocity !0 of the earth was
computed in Sect. 7.6; it is !0 D 7:3 � 10�5 s�1.
In Fig. 7.20, an observer is shown at a location of latitude ' on the
earth. H � H indicates his/her horizontal plane. At this location,
the angular velocity of the earth can be decomposed into two compo-
nents, one parallel to the radius R of the earth, the vertical component

!v D !0 sin' (7.11)

and one parallel to the horizontal plane, the horizontal component

!h D !0 cos' : (7.12)

These two components of the angular velocity produce CORIOLIS

accelerations of moving bodies. We start with the influence of the
vertical component !v. In the northern hemisphere, it always leads
to a deviation to the right of moving bodies. The most well-known
example is provided by FOUCAULT’s pendulum. Its principle was
already explained in Sect. 7.3 using a pendulum on a rotating chair:
The pendulum followed a rosette orbit, which always curved to the
right (Fig. 7.14).

A corresponding rosette path is followed by every long gravity pen-
dulum, consisting of a cord and a weighted ball, on the surface of the
earth. The end points of the rosette move forward, as seen from the
rest point of the pendulum, by an angle ˛ D sin ' 360ı

24 per hour. In
Göttingen (' D 51:5ı), ˛ � 12ı.

The experimental demonstration presents no difficulties in any
lecture room. Figure 7.21 shows a reliable setup. Its essential

Figure 7.20 The two components of the
angular velocity of the earth on its surface,
for determining the CORIOLIS acceleration
(Video 7.5)Video 7.5:

“FOUCAULT’s pendulum”
http://tiny.cc/luqujy

http://tiny.cc/luqujy
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Figure 7.21 FOUCAULT’s pendulum experiment (Video 7.5)

component is a good astronomical objective lens. The lens projects
a strongly enlarged image of the cord of the pendulum at the turn-
ing points of the rosette loops. The figure contains the necessary
numerical data. With the dimensions chosen, one can see the loops
of the rosettes with their turning points spaced at around 2 cm in the
enlarged image. Thus, in a single cycle of the pendulum’s swings, the
earth’s rotation around its axis can be verified! (Exercise 7.6).

Still more transparent, but unfortunately more difficult to demonstrate, is
an experiment to detect the earth’s rotation carried out by J. G. HAGEN,
S. J.C7.11. C7.11. J.G. Hagen: “La

rotation de la terre, ses
preuves mécaniques an-
ciennes et nouvelles”, Ti-
pografia Poliglotta Vaticana,
Roma 1912. J.G. HAGEN,
S.J. (1847–1930) was direc-
tor of the Vatican Observa-
tory from 1907–1930. (The
letters S. J. (Societa Jesu)
indicate that he was a Jesuit.)

In Fig. 7.22, we explain this experiment using a swivel chair.
An axle R held at a tilted angle carries a dumbbell-shaped object with
a moment of inertia 
1. (We can initially ignore the spiral spring on the
torsion axle.) The object is at rest on the rotating chair, and thus it has
an angular velocity of !0 sin'. When the string F is burnt through, two
helical springs S pull the dumbbell weights close to the axle R and thereby
decrease the moment of inertia to the value 
2. During this motion, the
two weights experience a CORIOLIS acceleration and are deflected to the
right. This causes the dumbbell to begin moving; it rotates relative to the
swivel chair with an angular velocity !2. The magnitude of !2 can be
calculated for an observer at rest relative to the ground by making use of
the conservation of angular momentum. We require


1!0 sin' D 
2.!0 sin' C !2/

or

!2 D !0

1 �
2


2
sin' : (7.13)

!2 attains its maximum value for ' D 90ı, thus at the “pole”.
To stabilize the rest position, one attaches a spiral spring to the axle R as
shown in Fig. 7.22 (torsion axle). Then the angular velocity !2 causes
an oscillation, not a continuous rotation. In the original experiment of
HAGEN, the axle and the spiral spring were replaced by a long torsion
band, and the “dumbbell-shaped object” itself was 9m long.

These two experiments can be neatly and quantitatively demon-
strated. We mention also some more qualitative observations. In
these, also, the vertical component of the angular velocity of the
earth is relevant. In the northern hemisphere, it produces a deflection
of moving bodies to the right due to the CORIOLIS force:
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Figure 7.22 Model experiment to
detect the earth’s rotation, as carried
out by J. G. HAGEN. The same tor-
sion axis is used as in Figs. 6.5 and
6.6C7.12C7.12. The shadow image of

the small apparatus required
a small person as the exper-
imenter. In the picture: The
author’s son, R. O. POHL.

a) The air in the earth’s atmosphere flows from the subtropical high-
pressure regions to the equatorial low-pressure trough. In the north-
ern hemisphere, this flow moves from the northeast to the southwest
(deflection to the right); this is the origin of the northeast trade winds
which are important for sailing ships and aircraft;

b) Bullets always deviate to the right;

c) For the wearing of railroad tracks and the erosion of river banks,
the CORIOLIS forces due to the earth’s rotation play no significant
role. These examples, often cited in earlier times, can be discarded
(Exercise 7.3).

CORIOLIS accelerations due to the horizontal component of the
earth’s angular velocity !0, i.e. !h D !0 cos', can also be detected
experimentally. But there is no experiment to demonstrate them
which is as straightforward as FOUCAULT’s pendulum experiment.

A further qualitative example is the easterly deflection of falling
stones. But its demonstration requires dropping from considerable
heights, preferably in a mine shaftC7.13.C7.13. . . . or in the drop

tower at the University of
Bremen (cf. comment C7.2). Among the most important applications of the CORIOLIS force due to the

earth’s rotation in modern times is the gyrocompass (Fig. 7.15). For ships
and aircraft, it is a serviceable compass only when it is constructed to
be insensitive to yawing and rolling and to accelerations on takeoff and
landing or braking, and to flying or sailing around curves. This can be ac-
complished by using three gyroscopes, whose horizontally-mounted axes
are at angles of 120ı , and by damping the precession oscillations whose
periods are long (ideally, T D 84min; cf. Sect. 7.5). But even perfectly-
constructed gyrocompasses exhibit errors in their indication which depend
on the direction and velocity of the moving vehicle. The reason for this is
that all vehicles are moving momentarily on a great circle on the earth’s
surface; they thus have a momentary angular velocity !2, which adds vec-
torially to the rotational angular velocity of the earth, !1. The axis of
the gyroscope therefore does not remain in the meridian plane, but rather
moves to a plane containing the resultant vector of the angular velocity
from the addition of !1 and !2. This plane is coincident with a meridian
plane only when the vehicle is moving along the equator (see also Com-
ment C7.10).
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Exercises

7.1 A pistol is mounted on a rotating platform, whose rotational
frequency is � D 10 s�1. The barrel of the pistol points from the cen-
ter of the platform radially outwards. The platform rotates, as seen
from above, in a counter-clockwise sense (and thus as in Sect. 7.3,
Point 5). The mass of the bullet is m D 4 g and its velocity is
u D 100m/s; for simplicity, we assume it to be constant. a) Find
the Coriolis force FC which the bullet exerts against the barrel of the
pistol. b) Determine the force FH in the rest frame of the lecture room
which the barrel of the pistol exerts against the bullet. (Sect. 7.3)

7.2 A pendulum hangs motionless from a cord attached to the
ceiling of the lecture room and is observed by an experimenter who is
sitting on a swivel chair that is rotating with the angular frequency !.
How does this observer describe the motion of the pendulum and the
forces which act on the pendulum in the horizontal plane? (Sect. 7.3)

7.3 Find the horizontal component aC of the Coriolis acceleration
of a railroad train which is moving at a velocity of 60 km/h in the
direction of the line of longitude through London (the latitude is ' D
51:4°). (Sect. 7.3)

7.4 A satellite circles the earth near its surface, i.e. on a circular
orbit with a radius R � RE D 6371km (earth’s radius). Determine
its period T . The acceleration of gravity is g; neglect air friction.
(Sects. 2.5 and 5.9)

7.5 A physical gravity pendulum is to be mounted in such a way
that it will oscillate with the Schuler period. How large must the
spacing s be, i.e. the distance between the suspension point O of the
pendulum and its center of gravity S (cf. Fig. 6.15)? In order not
to have to take the details of the pendulum’s shape into account, we
describe its size by its radius of inertia %, defined in the equation

 D R

r2dm D m%2 (see e.g. K. Magnus, “Kreisel”, Springer (1971),
p. 12; English see e.g. W. Wrigley, W.M. Hollister, and W.G. Den-
hard (1969), “Gyroscopic Theory, Design, and Instrumentation”
(MIT Press, Cambridge, MA).). Assume that % D 0:1m. (Sect. 7.5)

7.6 The pendulum shown in Video 7.5, “Foucault’s pendulum”,
swings with an amplitude of A D 1m (measured at the point of the
pendulum wire which is projected onto the scale on the wall of the
lecture room). The pendulum wire has a diameter of d D 0:4mm.
Göttingen lies at a latitude of ' D 51:5°. With these three items of in-
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formation and the results of the measurements which are shown in the
video, derive the angular velocity of the earth’s rotation. (Sect. 7.7)

For Sect. 7.3, see also Exercise 6.11; for Sect. 7.5, see also Exer-
cise 2.7.

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_7) contains supplementary material, which is avail-
able to authorized users.
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8.1 Preliminary Remarks

From early on, “From early on, chil-
dren distinguish between
solid and liquid bodies;
the meaning of the word
‘gaseous’ becomes clear
only much later”

children distinguish between solid and liquid bod-
ies; the meaning of the word ‘gaseous’ becomes clear only much
later. In physics, our understanding of gases is rather complete. The
distinction between solid and liquid bodies, in contrast, is more dif-
ficult. This is not a matter of limiting cases, as in biology for the
conceptual distinction between animals and plants: Major groups of
materials that we encounter in everyday life, such as resinous and
glassy substances, can be broken like solids, but even the layman
notices their similarity to very thick, viscous liquids which flow ex-
tremely slowly. With increasing temperature, their liquid properties
become more and more prominent, without passing through a well-
defined melting pointC8.1. C8.1. Another example is

silly putty, well known as
a toy for children: When
it is thrown onto the floor,
it bounces like an elastic
ball. Left at rest, it flows and
spreads outwards on the floor
slowly, under its own weight,
like a liquid.

8.2 Elastic Deformation, Flow and
Solidification

We repeat a few points from the preceding chapters: Every solid body
can be deformed by forces acting on it. In the simplest cases, the
deformation is not permanent. It disappears when the “load” is re-
moved. The deformation is then called elastic. Now we want to
discuss the deformation of solid bodies in somewhat more detail and
treat it quantitatively.

We begin with the simple arrangement shown in Fig. 8.1. A copper
wire, several meters long and 0.4mm in diameter, is stretched by
a constant force and its elongation is measured.

In order to describe this and similar measurements, we define the
ratio

Length change �l

Original length l
D " (8.1)

D elongation (for " > 0) or compression (for " < 0).

153© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_8
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Figure 8.1 The stretching of a metal wire by a ten-
sile force. The scale which is attached to the lower
end of the long wire is magnified by about 15x and
projected onto a screen. (Video 8.1)Video 8.1:

“Elastic deformation:
HOOKE’s law”
http://tiny.cc/cvqujy
(Exercise 8.1)

In addition, the quotientC8.2C8.2. Like ", � can also be
negative; i.e. the force and
the area vector are directed
oppositely. In this case, �

is called the pressure. In
this chapter, we will con-
sider mainly tensile stresses.
Eq. (8.2) as a vector equation
becomes F D � A, where �

can be a tensor in the most
general case. (For more de-
tails, see e.g. Charles Kittel,
Introduction to Solid-State
Physics, John Wiley and
Sons, Heidelberg, New York,
8th edition (2005), Chap. 3.)

� D Force F perpendicular to the area A

Cross-sectional area A of the wire or rod
(8.2)

is called the tensile stress (for short: tension, in general ‘normalized
stress’; see Sect. 8.7).

We will treat exact and careful observations in Sects. 8.3–8.7. To start
with, we describe some quick and less precise experiments. From
these, we obtain the relatively simple results shown in Fig. 8.2. Ini-
tially, the elongation " increases proportionally to the tensile stress
� ; later, around ˇ, it increases faster than proportionally. Up to this
point ˇ, i.e. up to an elongation of about 1/1000, the deformation
remains elastic, or reversible; it disappears when the stress (load) is

Figure 8.2 The relation-
ship between elongation
and tensile stress for a cop-
per wire (diameter d D
0:4mm, cross-sectional
area A D 0:126mm2).
Modulus of elasticity
E D �=" � 105 N/mm2C8.3.

C8.3. Frequently, in “strain-
stress plots” of this type, the
stress is plotted against the
strain (elongation).

http://tiny.cc/cvqujy
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increasing stress. This deformation is no longer reversible; at ˇ, the
stretching or flow limit is reached. Further stretching hardens the pre-
viously soft wire. Through heating (tempering), the hardened wire
can again be softened (made ductile).

8.3 HOOKE’s Law and POISSON’s Relation

For small values of the stress, one finds a linear proportionality be-
tween the elongation " and the tensile stress � . This is HOOKE’s law

" D 1

E
� : (8.3)

The proportionality factor E is called the modulus of elasticity (or
“Young’s modulus”). (Examples are given in Table 8.1.)

Using thick wires, or rather rods, one can at the same time observe
the elongation and the transverse contraction, defined by the ratio

"q D �Change in the diameter �d

Original diameter d
: (8.4)

For demonstration experiments, a rubber rod of several cm thickness
is suitable. When the workpiece is sufficiently thick, one can demon-
strate not only its elongation and transverse contraction under tensile
stress, but also compression and the accompanying transverse thick-
ening ("q < 0) under pressure. Within certain limits, the transverse
contraction "q and the elongation " are mutually proportional; we find

"q D 	" (8.5)

(the relation of S. D. POISSON, 1781–1840).

The proportionality factor 	 is called POISSON’s number (Examples
are found in Table 8.1).

Elongation and transverse contraction cause a change in the volume,
just as compression and transverse thickening do. If the body is

Table 8.1 Elastic constants

Material Al Pb Cu Brass Steel Glass Granite Oak wood

Young’s modulus E 7.3 1.7 12 10 20 7 2.4 10 104 N
mm2

Poisson’s number 	 0.34 0.45 0.35 0.35 0.27 0.2 – – –

Shear modulus G 2.6 0.8 4.5 4.2 8.1 2 – – 104 N
mm2
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a cube, its height is changed by the factor (1 C ") and its cross-
sectional area by the factor (1 � 	"/2. It follows for the increase
in volume (“cubic dilation”):

�V

V
D .1C "/.1� 	"/2 � 1 (8.6)

or, neglecting small quadratic terms,

�V

V
D .1 � 2	/" : (8.7)

2	, twice Poisson’s number, is according to Table 8.1 always less
than 1. As a result, the volume is always increased by elongation
(" > 0), and always decreased by compression (" < 0). When a com-
pressive stress is applied from all directions (pressure), the volume
change is three times as great as with a compressive stress in only one
dimension (unilateral stress); then Eq. (8.7) combined with HOOKE’s
law (8.3) yields

�V

V
D 3.1� 2	/

1

E
� D �� : (8.8)

The constant factor

� D 3.1� 2	/
1

E
(8.9)

is called the “compressibility” and its reciprocalK D 1=� is the “bulk
modulus” of the material.

The limiting case 	 D 0:5 means that there is no change in the volume due
to stress. This limit applies generally to liquids; cf. Sect. 9.3.

8.4 Shear Stress

Thus far, we have assumed that the force F producing the stress acts
perpendicular to the cross-sectional area A of the workpiece (wire or
rod). In this case, the quotient F=A was called the tensile stress (� >
0) or compressive stress (� < 0). – In Fig. 8.3, in contrast, the force

Figure 8.3 The definition of the shear
stress
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IF acts parallel to the cross-sectional area A of a body. (One can think

of this body as a pack of playing cards to model the situation!). Then
the body will be sheared by the force F; the cards which originally
formed an upright pile are tilted through the angle � . In this case, we
define the shear strain as the quotient

x

l
D tan � � �: (8.10)

The quotient

� D Force F parallel to the area A

Cross-sectional area A of the body
(8.11)

is called the shear stress (see Sect. 8.5).

For small stresses, one finds experimentally that the shear strain � is
proportional to the shear stress � , i.e.

� D 1

G
� : (8.12)

The proportionality factor G is called the shear modulus. This quan-
tity is also a characteristic property of the material (examples are
given in Table 8.1).

Thus, for isotropic bodies, we have all together three elastic con-
stants, namely Young’s modulus E, defined by Eq. (8.3); the shear
modulus G, defined by Eq. (8.12); and Poisson’s number 	, defined
by Eq. (8.5). These three constants are however not mutually inde-
pendent; instead, they are related by the equation

G D E
1

2.1C 	/
: (8.13)

Therefore, the elasticity of an isotropic body can be fully charac-
terized by two elastic constants; the third is then determined by
Eq. (8.13). Its derivation is given at the end of Sect. 8.5.

8.5 Normal, Shear and Principal Stress

Every load placed on a body, e.g. by a tensile stress, changes the state
of the interior of the body. The state is characterized by the quality of
strain. In the interior of a transparent body in the stress-free state, we
imagine that a number of small, spherical regions are made visible
by coloring. During loading, each of these small spheres is deformed
into a small, three-dimensional ellipsoid. This can be made clear by
a demonstration experiment (Fig. 8.4). It deals with the special case
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Figure 8.4 The definition of the concepts ‘stress’ and ‘strain’

of a planar stress: In the plane of the page, we have a broad rubber
band. A circle is drawn in the center of the unstressed band in the
form of 12 dots. The ends of the band are clamped into frames, to
which a tensile force is then applied in the plane of the page. During
this loading, the circle is deformed into an ellipse. In making the
transition from a circle to an ellipse, the 12 dots moved along the
arrows in Fig. 8.5. A similar situation holds in the general case, that is
for the transition from a sphere to a three-dimensional “deformation
ellipsoid” (strain ellipsoid).

We can arrive at the concept of strain by carrying out the follow-
ing thought experiment: We cut the ellipsoid out of its surrounding
material, at the same time applying forces to its surface which main-
tain its ellipsoidal shape, thus replacing the effective influence of the
previously surroundingmaterial. Or, expressed differently: We trans-
form the “internal forces” which are due to the surrounding material
into “external forces” and make them (at least in principle) measur-
able. The directions of these forces are collinear with the arrows in
Fig. 8.5 only along the three principal axes of the ellipsoid. Apart
from these, their magnitudes are not proportional to the lengths of
the transition arrows. – Then for each surface element dA of the de-
formation ellipsoid, we define the stress by the quotient dF/surface
area dA, the force per surface area. The force is in general not per-
pendicular to the associated surface element dA. Therefore, the stress
is decomposed into two components, one perpendicular and one par-

Figure 8.5 How the ellipse in Fig. 8.4 is formed
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plate by four equal forces, each of which
produces a shear stress � . – The edge
length is a, the thickness of the plate is
d, so that � D F=A D F=ad. The figure
shows the relation between the shear
and normal stresses and can be used to
derive Eq. (8.13).

Δa
Δa

ΔD=Δa√2

D=a√2

τ

τ

τ

τ

90–τ

90+γ

2 2
γ a

σ
1
=τ

–σ
2
=τ

allel to the surface element. The perpendicular component is called
the normal stress; the parallel component is the shear stress.

The three principal axes of the ellipsoid are special directions: In
these directions, the force is exactly perpendicular to the surface
of the ellipsoid. Along these directions, only normal stresses are
present, and these are called the three principal stresses.

Shear stresses cannot be produced independently of normal stresses.
This can be seen from a simple observation: In Fig. 8.6, we attempt
to deform a square plate of thickness d by shear forces alone. We ap-
ply four equal forces F which act parallel to the sides a of the plate.
Each of them produces the shear stress � D F=ad. The result is how-
ever the same as in Fig. 8.4, where a tensile load is applied; a circle
is deformed into an ellipse. Thus, normal stresses are also produced.
Their largest and smallest values, the principal stresses �1 and �2, oc-
cur in the directions of the diagonals. In the diagonal directions, two
of the forces F combine to give a resultant F

p
2. These forces F

p
2

are each perpendicular to a diagonal cross-sectional area ad
p
2. As

a result, the normal stresses �1 and �2 are likewise F=ad, thus exactly
the same as the shear stresses � . Thus, the deformation (strain) of the
plate can be described in two ways: either by a displacement of the
square’s sides a by �a, or by an elongation of the square’s diagonals
D by �D.

To calculate �a, one can use the shear stress � . It produces a shear strain
of

� D 1

G
�: (8.12)

In simple terms, this means that the 90ı-angles are changed to angles of
(90ı˙�), and the sides of the square are tipped by angles �=2 relative to the
diagonals D. From Fig. 8.6, we can see the geometric relation tan �=2 D
2�a=a � �=2, or, with Eq. (8.12),

2�a

a
D 1

2

1

G
� : (8.14)

To calculate�D, we use the normal stresses, i.e. the tensile stresses �1 D �

and the compressive stresses ��2 D � . The tensile stresses lengthen the
diagonals by an amount 2�Dtens D "D D �1

1
ED D � 1

ED. In addition,
according to POISSON’s relation (Eq. (8.5), the compressive stresses also
cause a lengthening of the diagonals by the amount 2�Dcomp D 	"D D
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	�1
1
ED D 	� 1

ED. The resulting overall lengthening of the diagonals from
both sides is then

2�D D 2�Dtens C 2�Dcomp D �
1

E
.1C 	/D ; (8.15)

and, introducing the edge length a,

2�a
p
2 D �

1

E
.1C 	/a

p
2

or
2�a

a
D �

1

E
.1C 	/ : (8.16)

Combining Eq. (8.14) with Eq. (8.16) yields

1

G
D 2

1

E
.1C 	/ :

This is Eq. (8.13), as given previously without derivation.

To conclude, we read off another important fact for later use from
Fig. 8.6: The directions of the principal stresses (the diagonals) and
the directions of the largest shear stresses (along the edges) are at
angles of 45ı to each other.

8.6 Bending and Twisting (Torsion)

In applying the concepts of normal stress � and shear stress � , we
have thus far limited ourselves to the simplest examples. Now we
want to consider the bending of a rod by an external torqueM.

Take a cuboid-shaped rubber eraser between the thumb and forefinger
and bend it: Its sides are not only curved, but also arched outward.
We will neglect this arching, and consider only the limiting case of a
“planar” state of strain. In Fig. 8.7, a thin rod with a constant cross-
sectional area A is bent by a constant torque M D mg � s (m D mass
of a weight). We observe its shape to be that of a circular segment.

We want to compute the radius of curvature r of the bent rod. We
make use of Fig. 8.8; it shows a cross-section along the length of the
rod. The deformation produces tensile stresses along the upper side
of the rod, and compressive stresses along the lower side. Both are
normal stresses, i.e. they are perpendicular to the cross section A.

Figure 8.7 Bending load on a thin, flat rod produced by a torque M which
is constant along its length (Video 8.2)Video 8.2:

“Bending a rod”
http://tiny.cc/4uqujy

(see also the numerical example in
Exercise 8.2)

http://tiny.cc/4uqujy
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Eq. (8.22)

With the assumptions made above, which are well fulfilled for thin
rods, the cross-sectional areas denoted as GH, G0H0 etc. should re-
main planar even during bending, that is they should simply rotate
around their centers of gravity S. Then the transition from tensile to
compressive stress occurs in a simply curved, and not arched, layer.
It is stress free, stands perpendicular to the plane of the page, and cuts
it along the line N�N. One calls this line the neutral fiber (cf. Vol. 2,
Sect. 24.9, Strain birefringence).

Under these conditions, in Fig. 8.8 we have for the two radii of cur-
vature r and .rC y/:

rC y

r
D l0

l
: (8.17)

Furthermore, we have

l0 � l

l
D elongation " : (8.18)

According to HOOKE’s law, this elongation is associated with a mod-
ulus of elasticity

E D �

"
: (8.3)

Combining Eqns. (8.3), (8.17), and (8.18) yields

� D E
y

r
: (8.19)

The integral
R

�y dA must be equal to the effective torque M, so that

M D
Z

E
y2

r
dA ; (8.20)

or, with the abbreviation

Z
y2 dA D J ; (8.21)

we obtain

r D E
J

M
: (8.22)
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Figure 8.9 Cross sections with the
same values of the geometrical mo-
ment of inertia J can have rather
different areas A (A is normalized here
to the rectangular cross section (a)).
The neutral fiber which is perpendicu-
lar to the plane of the page and passes
through S in Fig. 8.8 is dot-dashed
here

The quantity J is composed formally just like the moment of inertia,
i.e.


 D
Z

y2 dm : (6.4)

This value of 
 holds for a layer within the cross section of the rod
and is referred to the center of gravity S of the layer. As a result, we
can use the formulas for the moment of inertia which we established
earlier (Sect. 6.4) to arrive at values for J: We need only replace
the mass m in those formulas by the cross-sectional area A. For this
reason, the unfortunate name geometrical moment of inertia has been
adopted for J.

Examples
1. Rectangular cross section, A D hd (Fig. 8.9a)

J D 1

12
dh3 : (8.23)

2. Double-T beam (Fig. 8.9b)

J D 1

12
.DH3 � dh3/ : (8.24)

3. Circular, ring-shaped cross section (Fig. 8.9c,d)

J D �

4
.R4 � r4/ : (8.25)

4. Similar, but for twisting around the long axis of a tube whose wall
thickness is d D R� r (Fig. 8.11)

J D �

2
.R4 � r4/ � 2�R3d : (8.26)

For the rod in Fig. 8.7, E, J and M were constant along its length.
As a result, from Eq. (8.22), the radius of curvature r is also con-
stant, i.e. the bent rod takes the shape of a circular segment. Its
radius r as calculated from Eq. (8.22) agrees well with observed val-
ues (Video 8.2).Video 8.2:

“Bending a rod”
http://tiny.cc/4uqujy.

The importance of the geometrical moment of inertia J is explained
in Fig. 8.9. It shows profiles with the same values of the geometrical

http://tiny.cc/4uqujy
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Figure 8.10 Bending load on a rod of length l which is held at one end,
produced by a force F acting on its free end

moment of inertia J, that is the same circular radius of curvature for
the same loads. Below each profile is its cross-sectional area, given
in arbitrary units. A smaller cross-sectional area A means that less
material is required. In this regard, a tube is superior to a rod of simi-
lar diameter. This is the reason why the long bones in our appendages
are formed as tubular bones.

The geometric moment of inertia also plays a decisive role in many
other aspects of deformation. We offer two examples, the first with-
out derivation. In Fig. 8.10, a rod is clamped at one end; a force F
acts perpendicular to its long axis at its free end. Then for a moderate
deflection y of the end of the rod, we have

y D F
l3

3EJ
: (8.27)

Furthermore, we briefly treat the twisting (torsion) of a cylindrical
rodC8.4. C8.4. See also the torsion

experiment in Fig. 6.7
(Video 6.1, http://tiny.cc/
csqujy) (Exercise 8.3)

It is also determined by a geometrical moment of inertia. We
find the quotient

Torque M

Angle of torsion ˛0
D D� D GJ

l
(8.28)

(J D geometrical moment of inertia of the rod (Eq. (8.26) with r D 0), l D
length of the rod, G is the shear modulus of the material; cf. Table 8.1).

D� is the “torsion coefficient” introduced in Sect. 6.3. It can readily
be measured, either directly or by using torsional oscillations. Equa-
tion (8.28) thus provides a handy method of determining the shear
modulus G, an important quantity for materials science (Table 8.1).

To derive Eq. (8.28), we make use of a special case as shown in Fig. 8.11,
a thin-walled tube. The torque is produced by two cords wound around
the tube. We imagine the tube to be divided into flat ring-shaped sections;
these experience a shearing (angle �) relative to each other. The meaning
of the angle � can be seen from the figure. We find

� � tan � D x

l
D ˛0R

l
: (8.29)

This shear deformation is caused by the shear stress � , for which we have

� D 1

G
� : (8.12)

http://tiny.cc/csqujy
http://tiny.cc/csqujy
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Figure 8.11 The derivation of Eq. (8.28)
for the torsional deformation of a tube

The shear stress, in turn, is found from the torque M acting on the tube;
it produces forces F D M=2R acting tangentially on the ring-shaped sec-
tions, and thus the shear stress

� D 2F

Cross-section
D M

2�R2d
: (8.30)

The equations (8.29), (8.12) and (8.30), together with Eq. (8.26), yield

˛0

l
D M

G 2�dR3
D M

GJ
: (8.31)

To conclude this topic, we mention a technical application of
Eq. (8.28). For transferring or conducting mechanical power (“kilo-
watts”), one often uses a shaft. It is simply a cylindrical rod which
is loaded torsionally. For the transmitted power PW we find for
continuous motion

PW D Fu (5.35)

.u D orbital velocity/;

and thus for a rotation (row 10 in Table 6.1)

PW D M! D M2�� (8.32)

(! D angular velocity, � D rotational frequencyD (number of revolutions/
time).

Thus, instead of Eq. (8.31), we could write:

Torsion angle ˛0 D PW
2��

l

GJ
: (8.33)

In words: At a given rotational frequency �, the torsion angle ˛0 is
a measure of the mechanical power transmitted along the shaft.

Numerical example
The hollow drive shaft of a ship: l D 62m, outer diameter 2R D 0:625m,
inner diameter 2r D 0:480m, geometrical moment of inertia J (from
Eq. (8.26)) D 9:77 � 10�3 m4, material steel, with a shear modulus of
G D 8:1 � 104 N/mm2. The power transmitted to the ship’s screw is
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these values into Eq. (8.33) yields the torsion angle ˛0 D 8:8 � 10�2 D 5ı.
This means that the front and back ends of the 62m long shaft are twisted
relatively to each other by 0.014 of their circumference.
Drill stems for deep vertical bore holes can have lengths of several kilo-
meters. They must then be twisted through a number of rotations in order
to transmit the power required for drilling to the drill bit at depth!C8.5 C8.5. For deep drilling

projects, such as for example
the deep drilling program
KTB in Southeastern Ger-
many, with a depth of over
9 km, multiple twists in-
deed occur in the drill stem.
However, hydraulic motors
are also employed, directly
above the drill bit, so than
no twisting of the drill stem
occurs (see e.g. https://en.
wikipedia.org/wiki/German_
Continental_Deep_Drilling_
Program or https://en.
wikipedia.org/wiki/Kola_
Superdeep_Borehole)

8.7 Time Dependence of Deformation.
Elastic Aftereffects and Hysteresis

For quantitative observations of elastic deformation, we have thus far
considered metals, as in Figs. 8.1, 8.7 and 8.10. Glasses are also suit-
able. For demonstration experiments, a polymeric, plastic material
is often more convenient, in particular rubber. We will demonstrate
two important companion phenomena of elastic deformation using
rubber, namely elastic aftereffects (also called the “memory effect”),
and hysteresis. In our first brief demonstrations, we left these effects
out of consideration.

We load a 0.3m long and ca. 5mm thick rubber tube alternately with
around 1 and 6N tensile forces (a 100-g weight and an additional
500-g weight), and record its elongation as a function of time. The re-
sult is shown in Fig. 8.12: its deformation occurs mainly at the same
time as its loading or unloading; but a remainder, called the elastic
aftereffect, takes a noticeable time to form after loading and to disap-
pear after unloading. The new equilibrium values are approached to
a good approximation exponentially with time. On loading, after the
relaxation time � has elapsed, about 1=e � 37% of the full amount of
elastic aftereffect is still missing. On removing the load, after a time
� , about 1=e � 37% of the elastic aftereffect is still present.

Unfortunately, the separation of deformations into those with and
without aftereffects would be an oversimplification, even for small

Figure 8.12 Elastic aftereffect on stretching a rubber tube (outer diameter
� 5mm, inner diameter � 3mm)

https://en.wikipedia.org/wiki/German_Continental_Deep_Drilling_Program
https://en.wikipedia.org/wiki/German_Continental_Deep_Drilling_Program
https://en.wikipedia.org/wiki/German_Continental_Deep_Drilling_Program
https://en.wikipedia.org/wiki/German_Continental_Deep_Drilling_Program
https://en.wikipedia.org/wiki/Kola_Superdeep_Borehole
https://en.wikipedia.org/wiki/Kola_Superdeep_Borehole
https://en.wikipedia.org/wiki/Kola_Superdeep_Borehole
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Figure 8.13 The demonstration of mechanical hysteresis. A stretched rubber
tube is attached at its ends, 1 and 2. In its center, its two halves are divided
by a metal disk. A pair of cables can exert forces on this disk, which can be
increased or decreased by adding or removing weights on one or the other of
the two balance pans.

deformations. When the load is removed, some fraction of the pre-
ceding elongation remains as a permanent deformation. It can be
eliminated only by loading in the opposite direction. This is called
hysteresis. It can be demonstrated using the apparatus shown in
Fig. 8.13.

A rubber hose which is clamped at both ends and already stretched
to about twice its relaxed length can be further loaded with a tensile
stress applied stepwise as increases or decreases from the left or the
right (weights). Between two measurements, there is a pause of at
least one minute. The results are indicated in Fig. 8.14. The relation
between elongation and tensile stress along the increasing and the de-
creasing branch is shown by two curves, and we can see in Fig. 8.14
that they enclose a narrow area, the mechanical hysteresis loop. One
observes similar behavior for nearly all solid bodies, and thus also for
metals, glasses etc.C8.6C8.6. Hysteresis occurs also

in the electrical and mag-
netic properties of materials
(see Vol. 2, “Matter in elec-
tric and magnetic fields”,
Sects. 13.4 and 14.4).

A small part of every deformation is thus not reversible; the material
is not completely elastic. A small fraction of the tensile energy which
drives the elongation is always “lost” in the form of heat. In an "-�

Figure 8.14 A hystere-
sis curve obtained with
the apparatus shown in
Fig. 8.13. Forces acting
to the right are taken to
be positive. The measure-
ment series begins at the
upper right corner.
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is transformed into heat during a cycle of loading and unloading:

Loss per load cycle

Volume of the deformed body
D ��W

V
:

(The product " � � , i.e. .�l=l/ � .F=A/, has the units of work/volume).

The origin of elastic aftereffects and of hysteresisC8.7

C8.7. A quite different kind
of hysteresis is exhibited
by “shape-memory alloys”,
such as NiTi, when they pass
through a structural phase
transition during tempera-
ture changes. This can also
be produced by deformation.
They can, for example, be
plastically deformed at room
temperature, but on warming,
they return to their original
shape. They are used among
other things in medical tech-
nology (see e.g. http://web.
stanford.edu/~richlin1/sma/
sma.html).

is related to the struc-
ture of the material. During elastic deformation, individual regions of the
bulk can shift or rotate relative to one another and then act as ‘latches’.
Releasing the latches can occur either through thermal motions alone (af-
tereffects), or it may require loading in the opposite direction (hysteresis).

8.8 Rupture Strength and Specific
Surface Energy of Solids

When the load becomes sufficiently large, every solid body will be
torn or ruptured into smaller pieces (Video 8.3). Video 8.3:

“Plastic deformation, rup-
ture strength”
http://tiny.cc/kvqujy
A 40 cm-long Cu wire (of
diameter D 0.4mm) is placed
under tensile stress by hang-
ing weights on its end, until it
breaks. The rupture strength
of the copper used is found to
be Zmax � 240N/mm2.

In idealized limiting
cases, the tearing seams (“fissures”) are found to lie either perpendic-
ular to the direction of greatest normal stress, or parallel to the plane
of greatest shear stress. For that reason, one distinguishes between
tensile strength and shear strength; when they are exceeded, the re-
sult is separation fractures or shear fractures. The directions of the
greatest tensile and shear stresses are tilted by ˙45ı relative to one
another (see Fig. 8.6). Therefore, when brittle materials are pressed,
we find rupture surfaces tilted at around 45ı from the direction of the
compressive stress.

Between the regime of elastic deformation and rupture, many ma-
terials exhibit some other phenomena, namely a regime of flow or
slippage of their individual volume elements and an accompanying
hardening. Some metals can be rolled out to thin sheets or drawn
through a die to make wire even at room temperature (cold working).
The gradual change of shape associated with “plastic deformation”
makes the process of rupture still more complex than with brittle
materials, i.e. materials that rupture without previous plastic defor-
mation (e.g. glass or cast iron). – Plasticity and brittleness are not
well-defined properties of a substance; at high temperatures, every
material becomes more or less plastic (malleable, ductile).

Table 8.2 contains some values of the tensile strength of materials for
technical purposes. This is the term applied to the tensile stress Zmax

which leads to rupture. These values were measured on standardized
rods. – To properly evaluate these numbers, try the following simple
experiment: Cut a strip about 20 cm long and 3 cm wide from a sheet
of good-quality writing paper, hold it by its ends and try to tear it by
pulling uniformly. This is seldom possible. Then cut a small notch
into one side of the strip, barely 1 mm deep. Now, the paper strip can
readily be made to tear: at the “tip of the notch”, a kind of leverage

http://web.stanford.edu/~richlin1/sma/sma.html
http://web.stanford.edu/~richlin1/sma/sma.html
http://web.stanford.edu/~richlin1/sma/sma.html
http://tiny.cc/kvqujy
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Table 8.2 Technical tensile strengths Zmax (Video 8.3)C8.8Video 8.3:
“Plastic deformation rup-
ture strength”
http://tiny.cc/kvqujy

C8.8. Exceptionally large
values of the tensile strength
have been observed in var-
ious spider silk fibers: Zmax

of 800–1600 N/mm2. See
B.O. Swanson et al., Ap-
plied Physics A82, 213–218
(2006).

(To define the
tensile stress, the original cross-sectional area of the rods was used, not the
reduced area during elongation.)

Material Al Pb Cu Brass Steel Mica Quartz
glass

Wood fiber

Zmax 300 20 400 600 up to
2000

750 800 up to
120N/mm2

produces locally a very high tensile stress, and this tears the notch
deeper and deeper. Even microscopic notches or other defects can
play a decisive role in rupture.

In some cases, the perturbing effects of notches and surface defects
can be avoided. With mica, for example, one can orient the cleavage
planes parallel to the direction of tensile stress and also protect the
edges, where notches could play a significant role, by using a suit-
able clamping frame. In this way, tensile strengths of up to Zmax D
3180N/mm2 have been measured for mica.

With very thin (diameters of a few �m) fibers of glass or quartz,
freshly prepared at high temperature, tensile strengths of up to Zmax >
10 000N/mm2 have been attainedC8.9.C8.9. This value origi-

nates from a publication by
E. Orowan (Z. Physik 82, 235
(1933)).

For demonstrations, such fibers are loaded by bending themC8.10;

C8.10. Bending produces
tensile stresses on the outside
of the bent region which are
inversely proportional to the
radius of curvature of the
bend (Sect. 8.6), and can
therefore become especially
large.

one takes
a piece a few centimeters long between the finger tips. Surprisingly sharp
bends (small radii of curvature) can be attained without breaking the fiber.
The smallest defects on the surface, however, cause premature breakage; it
suffices to touch the bent fiber with another glass fiber.

In the interior (bulk) of a material, the molecules are surrounded on
all sides by their neighbors; at the surface, however, the neighbors are
missing on one side. As a result, work must be performed to move
a molecule from the bulk to a surface position. The quotient

� D Work �W required to increase the surface area

Area �A of the newly-formed surface
(8.34)

is called the specific surface energy. It can be estimated from the ten-
sile strength of a material measured without disturbance from notches
or surface defects.

In the schematic view shown in Fig. 8.15, a wire of cross-sectional
area A is broken with a separation fracture. This produces two new
surfaces of area A, and requires that the workW D 2A� be performed.
This work is performed by the force F D ZmaxA acting along a short
distance x. We thus find

2�A D ZmaxAx or � D 1
2Zmaxx : (8.35)

http://tiny.cc/kvqujy
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The distance x must be of the same order of magnitude as the range
of the atomic attractive forces or the distance between neighboring
atoms in the material. This is of the order of 10�10 m. Then from
Eq. (8.35), it follows that the specific surface energy of glass with
Zmax � 10 000N/mm2 is

� � 5 � 109 N

m2
� 10�10 m D 0:5

W s

m2
:

The high values of the tensile strengths of materials implied by
Eq. (8.35) are called the theoretical tensile strengths. They can be
larger than the measured technical tensile strengths by more than
an order of magnitudeC8.11. C8.11. Even liquids can ex-

hibit large tensile strengths
(see Sect. 9.5 and Video 9.4:
“The tensile strength of wa-
ter”, http://tiny.cc/3vqujy).

The technical strength is determined
essentially by perturbing secondary effects. “Notching” is indeed
a rough simplification, but it is still an appropriate generic term for
these effects.

8.9 Sticking and Sliding Friction

External friction (Sect. 3.1) occurs at the contact area between two
solid bodies. It plays a fundamental role in everyday life and in tech-
nical applications. For physical experimentation, it is often a source
of disturbance and of errors. Quantitative results depend strongly on
the surface condition of the objects which are in contact. – We can
distinguish between three forms of external friction: sticking friction,
sliding friction, and rolling friction.

In Fig. 8.16, a smooth, box-shaped block is pressed against a smooth
horizontal board by the force of its weight, FG D Fn. A cord trans-
mits a force F to the block, parallel to the board’s surface. This
tractive force must exceed a threshold value, Fst, before the block
will start to slide along the board. From this we conclude that the
two objects (block and board) stick to each other; a force of mag-
nitude Fst acts in opposite directions on each of them. It is called
sticking friction. This frictional force is independent of the size of
the contact area between the two objects. It depends on the proper-
ties and condition of the contact surfaces and is proportional to the

http://tiny.cc/3vqujy
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Figure 8.16 Sticking and
sliding friction

magnitude of the normal force that presses them together (perpendic-
ular to their contact surfaces), in this case Fn. The equation

Fst D 	stFn

defines the coefficient 	st of sticking friction (a number, usually be-
tween 0.2 and 0.7). Sticking friction plays an important role in tech-
nical applications. It determines the maximum possible value of the
driving force for locomotive wheels and automobile tires, as well as
for the shoe soles of a pedestrian. At the point of contact, a rolling
wheel or the shoe sole are momentarily at rest relative to the ground.
Therefore, it is sticking friction that applies here.

The force we call sticking friction arises through extremely small displace-
ments of two objects relative to one another. In the simplest picture, one
can compare the smooth surface of any solid body to a file or brush. The
microscopic parts that stick out catch on each other, so that they have to
be deformed to permit sliding. – A more refined model would have to take
the adsorbed layers of other molecules on the surfaces into account. With-
out these layers, the sticking friction between two polished surfaces can
become vanishingly small. An example: A glass block and a glass plate
in high vacuum. The word ‘sticking friction’ is dubious; sticking is too
strong an expression; it includes the concept of adhesion. Furthermore,
one speaks properly of friction only during mutual motions and not before
they begin.

Continuing our observations using the setup shown in Fig. 8.16, we
make the traction force F pulling on the block larger than the sticking
friction Fst. Then the block begins to slide in an accelerated motion.
Its acceleration a however does not correspond to the tractive force F;
it is smaller. Therefore, while the block is sliding, besides the force
F there must be a smaller, oppositely-directed force Fsl acting on the
block. This force Fsl is called the sliding friction.

The sliding friction Fsl is always smaller than the sticking friction Fst.
It is, like the latter, proportional to the normal force Fn which presses
the two bodies together, and is independent of the size of their contact
area; thus:

Fsl D 	slFn

(	sl D coefficient of sliding friction, a number usually between 0.2 and
0.5).

The sliding friction is independent of the sliding velocity only to first order.
With increasing velocity, it may decrease by up to ca. 20% of the original
frictional force which applies at very small velocitiesC8.12.

C8.12. The velocity depen-
dence of the frictional force
which is mentioned here
is quite different from that
observed for objects mov-
ing in liquids or gases (see
Chap. 10). In that case, the
frictional force increases
proportionally to the veloc-
ity, a dependence which is
generally assumed in a first
treatment of damped oscil-
lations. In this connection,
note the experiment which
is described together with
Fig. 5.22.
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velocities. For this purpose, one replaces the setup for the tractive force
as shown in Fig. 8.16 by an electric motor with a winch, inserting a force
meter in the cord which transmits the force.

In machines, external friction is usually reduced as far as possible; it
is replaced by the internal friction of fluids. This is termed lubrica-
tion.

In some cases, one has to be satisfied with reducing the external fric-
tion to a minimum. This can be accomplished only for a particular
direction of motion (Fig. 8.17). Perpendicular to this direction, one
applies an ancillary force F2 to maintain a constant velocity. During
this ancillary motion, only the small component F0sl opposes the force
F1. – Figure 8.18 illustrates a demonstration experiment.

When asked, “When asked, ‘Why, when
we are cutting something
with a knife, e.g. slicing
bread, do we not only press
down on the knife, but also
move it back and forth?’,
even many physicists will
give a wrong answer.”

‘Why, when we are cutting something with a knife, e.g. slic-
ing bread, do we not only press down on the knife, but also move it back
and forth?’, even many physicists will give a wrong answer: ‘The back-
and-forth motion converts the large sticking friction into a smaller sliding
friction’. In reality, the motion has two effects: First, the knife acts as
a saw; and second, the sliding friction in the direction of cutting1 is re-
duced by means of an ancillary force which acts perpendicular to it. One
thus makes use of the scheme illustrated in Fig. 8.17. At the beginning
of the cutting process, when the knife blade is resting on the crust of the
bread, only the sawing effect is present.
Another example is pulling a wedge out of a crevice: One moves the wedge
back and forth along the line of the crevice. Unintended, but – due to
vibrations – often unavoidable relative motions between the sides of the
wedge and the walls of the crevice produce the sometimes fatal loosening
of screws. Screws are in fact simply “rolled-up wedges”.

Figure 8.17 An object (center of gravity S) is to be
moved to the right on its horizontal supporting plate.
To produce a motion with a constant velocity, an
ancillary force F2 compensates the component F00sl of
the sliding friction Fsl . As a result, the tractive force
F1 need overcome only the small component F0sl of
the sliding friction.

Fsl Fsl

F'sl

''

F1

F2

S

1 The direction of cutting is the direction in which the knife penetrates like a wedge
into the object being cut.
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Figure 8.18 A demonstration experiment showing the reduction of sliding
friction by means of an ancillary force which performs work: The tractive
force F1 is much smaller than the sliding friction Fsl � 4N, or the still larger
sticking force Fst . Nevertheless, the block slides when the crank is rotated
or swung, i.e. when the ancillary force F2 is acting tangential to the cylinder
(length of the cylinder 1m, diameter 2 cm). For a ‘free-hand’ experiment,
a pencil, held at an angle, suffices as rotatable cylinder, and a ring can be
used instead of the block. (Video 8.4)Video 8.4:

“Reducing sliding friction”
http://tiny.cc/mvqujy

8.10 Rolling Friction

Awheel (of radius r) is pressed onto a horizontal track with a force Fn

which acts perpendicular to the track. In order to cause the wheel to
roll along the track with a constant velocity, one must apply a torque

M D 	roFn

to the wheel; its magnitude is practically independent of the velocity.
This equation defines the coefficient 	ro of rolling friction. It is found
to be a small length between ca. 10�2 mm and 1mm.

Rolling friction, in contrast to sticking friction and sliding friction,
has nothing at all to do with adhesion. It cannot be reduced by “lu-
brication”. Rolling friction is caused by the elastic deformation of
the track and the wheel at their point of contact. This point moves
along the track and around the circumference of the wheel with the
same velocity as the forward movement of the wheel. Since there is
no ideally elastic deformation, aftereffects and hysteresis always lead
to energy losses.

In order to generate the torqueM to produce the rolling motion2, one
can for example apply a force to the axle of the wheel. As driv-
ing (tractive) force F1, it must act parallel to the track (e.g. the rails
of a railroad track). The resistance force F2 acts as counter-force
(i.e. F2 D �F1), and we will call it the rolling resistance in the fol-
lowing.

The rolling resistance is important for all vehicles with wheels. In all
such vehicles, whether they are automobiles, locomotives, tractors
or trailers, the motor has to perform work against the rolling resis-
tance F2 of all the wheels (including the drive wheels). Wagons are
vastly superior to the sledges used before the invention of the wheel

2 Around momentary axes of rotation .Am in Fig. 6.4).

http://tiny.cc/mvqujy


Exercises 173

Pa
rt
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ably smaller force than to pull a sledge with the same weight FG.
A wagon requires the force FWa D M=r D 	roFG=r, while a sledge
needs a force FSl D 	slFG. We thus find for the ratio of the forces

FWa

FSl
D 	ro

	sl � r :

Example
	ro D 1mm, 	sl D 0:5, r D 50 cm, FWa=FSl D 1=250.

This ratio becomes very small when wheels with a large radius are
used. Thus, replacing sledges by wagons with large wheels was an
enormously important invention.

Exercises

8.1 In Video 8.1, “Elastic deformation: HOOKE’s law”, a cop-
per wire of diameter 0.4mm and length 4m is loaded by a weight
of 400 g and thereby reversibly stretched to an additional length of
1mm. Find the modulus of elasticity E of the wire. (Sect. 8.2)

8.2 In Video 8.2, “Bending a rod”, the brass rod (with a cross-
sectional area of 12mm width and 4 mm height) is lying on a table
of length L D 0:65m. When each overhanging end is loaded by
a weight of 1 kg, it is reversibly deformed into a circular segment, as
shown in the video. The midpoint of the rod is raised by a height H.
Measure H and the length s (s is required to determine the torque, as
indicated in Fig. 8.7). From the quantities L and H, find the radius of
curvature r of the rod. Use these values to calculate the modulus of
elasticity of brass. For length measurements in the video, use your
knowledge that the length of the table is L D 0:65m. (Sect. 8.6)

8.3 In Video 6.1, “Twisting a rod”, the length l of the cylindrical
steel rod (more precisely, the spacing of the clamps which hold the
mirror) is l D 9 cm. The diameter of the rod is d D 1 cm. The length
of the light pointer, which is just about equal to the diagonal of the
experimental area of the lecture hall, is L D 10m. The torsion angle
˛ can be found by comparing with the rod of diameter dS D 1:4 cm
which is mounted close to the projection screen on which the light
pointer is seen. The torqueM applied by the experimenter, which he
measured by using a torque wrench (not shown in the video), isM D
0:6Nm. From these data and the torsion angle ˛ (to be measured),
calculate the shear modulus G of the steel rod. (Sect. 8.6)

8.4 A wooden block of mass m D 5 kg is pulled along a horizon-
tal, flat tabletop with a horizontal force of F D 25N. The coefficient
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of sliding friction between the block and the tabletop is 	sl D 0:25
and is independent of the sliding velocity. Calculate the distance s
through which the block moves in 3 s, if its initial velocity was zero.
(Sect. 8.9)

For Sect. 8.5, see also Exercise 12.5; for Sect. 8.9, see also Exer-
cises 3.2 and 5.2.

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_8) contains supplementary material, which is avail-
able to authorized users.
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9.1 The Free Displacements of Liquid
Molecules

The distinction between solid and liquid bodies is based on their be-
havior when their shape is changed. The deformation of solid bodies
always requires the action of forces. For liquids, in contrast, the force
required to change the shape at constant volume becomes smaller and
smaller, the more slowly the deformation is carried out. In the ideal
limiting case of an arbitrarily slow deformation at constant volume,
no force at all would be required. – We can conclude from this that
in solid bodies, the smallest structural units, the molecules, are in the
main bound to fixed rest positions. In liquids, in contrast, such fixed
rest positions do not exist; all the molecules can be freely displaced
relative to one another, they “slide around loosely”.

In solid bodies, the invisible, “random” motions which are usu-
ally called thermal motions consist essentially of oscillations of the
molecules around their rest positions. In liquids, however, transla-
tional and rotational motions are also possible. We can find a greatly
oversimplified but still accurate picture of these thermal motions in
liquids in the form of the Brownian molecular motionC9.1

C9.1. ROBERT BROWN,
botanist (1773–1858), dis-
covered this motion initially
by observing pollen grains
suspended in water; in the
course of his investigations,
he found that 100-year-
old pollen grains also still
move, and finally that even
inorganic dust grains show
similar motions! His de-
scription is contained in an
article with the title, “A brief
account of microscopical
observations made in the
months of June, July, and
August 1827, on the parti-
cles contained in the pollen
of plants; and on the general
existence of active molecules
in organic and inorganic bod-
ies”. This article is readily
available in: R. Hardwicke,
“The Miscellaneous Botani-
cal Works of Robert Brown”,
London 1865, Vol. 1.

(Video 9.1).

Video 9.1:
“BROWNian motion”
http://tiny.cc/4wqujy
(see also Video 16.1:
“Model experiments on
diffusion and osmosis”,
http://tiny.cc/xhgvjy.)

The essentials can be summarized in an image

“The essentials can be sum-
marized in an image of
almost child-like simplic-
ity”.

of almost child-like
simplicity: Imagine a bowl filled with live ants; we are looking at
it from a certain distance (or nearsightedly). We cannot discern the
individual squirming insects, but only a structureless, dark brown sur-
face. A simple trick allows us to see more: We throw a few larger,
readily visible, light objects into the bowl, for example downy feath-
ers, snippets of paper, etc. These objects will not remain at rest;
shoved and pulled by the indiscernible ants, they will be constantly
moving, twisting and turning in a random way. We then see the
restless movement of the individual insects in the form of a rather
coarsened image.

The demonstration of BROWNian motion is carried out in an anal-
ogous manner. We use a fairly sophisticated microscope; between
a microscope slide and a cover glass, we put a drop of some liquid, in
the simplest case water. This liquid contains a fine, insoluble powder;
conveniently, a small amount of India ink can be added to the water,
containing a suspension of extremely fine carbon powder (grain di-
ameter � 0:5�m).

175© Springer International Publishing Switzerland 2017
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To show the demonstration to a large audience, one should use a powder
with a high index of refraction, for example the mineral rutile (TiO2). The
large index of refraction guarantees a bright image of the powder grains.

Only a few physical phenomena can fascinate the observer like the
BROWNian motion. It gives us a peek behind the backdrop of na-
ture’s workings. It shows us a new world, the restless, confusing
hustle and bustle of a completely incomprehensible number of indi-
vidual particles. Tiny grains shoot like arrows across the field of view,
changing direction in a wild zig-zag. Larger grains jerk forward, con-
stantly changing their course. The largest grains just stagger back and
forth, staying nearly in the same place; their jagged edges and cor-
ners reveal their rotations around constantly changing axes. Nowhere
is a trace of a systematic order to be seen. Random, blind chance rules
this world; that is the overpowering impression of every objective ob-
server. – The BROWNian motion belongs among the most important
phenomena observed by science. No description in words can begin
to replace the effect of first-hand observations.

An effective demonstration of BROWNian motion requires magnifi-
cation of several 100� by a microscope. Such a high magnification
leads us to overestimate the velocities involved. A different method
of observation can save us from this error; it shows the suspended
grains in the liquid only as a whole, as a swarm or a cloud, but no
longer allows us to discern the individual grains. In Fig. 9.1, we see
dust-containing water, e.g. highly diluted India ink, next to a layer of
pure water. The boundary between the two liquids is initially sharp,
but it becomes more and more washed-out in the course of time. Very
slowly, in the course of weeks, the swarm of carbon particles “dif-
fuses” into the previously clear water. Diffusion is defined in general
as any movement of molecules caused by thermal motions. Diffusion
and Brownian motion are two different names for the same process.
The term Brownian motion presumes the microscopic observation of
individual, larger particles. When dealing withmacroscopic observa-
tions, we speak of diffusion, independently of the size of the particles
observed. That is, the objects seen as a swarm or cloud can consist
of dust grains or of extremely small dissolved molecules, invisible to
any optical microscope.

For our purposes, the velocity of diffusion is the essential point. The
boundary of the swarm moves surprisingly slowly. Depending on

Figure 9.1 The advance of an interface layer by diffusion. The
initially sharp boundary layer is prepared by putting a thin, flat
cork disk onto the lower layer of water. Pure water can then be
cautiously sprayed as a fine jet onto this disk.
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boundary requires days or even weeks.

The reason for the slowness of diffusion is the close packing of the
swarming liquid molecules. The mean distance of the molecules in
a liquid is of the same order of magnitude as in the corresponding
solid material. This can be seen from two facts: The density of every
substance is roughly the same in the liquid and the solid state; and
furthermore, liquids have a very small compressibility. This prop-
erty, with which we are familiar from everyday life, will be verified
quantitatively in Sect. 9.3.

After these preliminary considerations, we can replace the real liq-
uid by a model liquid and study the properties of liquids using the
model. A good model would be a container full of live ants or round
beetles with hard wing covers. But a container full of small, smooth
steel balls will sufficeC9.2. C9.2. Model concepts in

physics are not only useful
for didactic reasons; rather,
they represent a basic as-
pect of the physical method,
namely reducing complex
situations by simplifying as-
sumptions to known laws and
descriptions (to “understand”
them). Physical models
range from point masses
in mechanics up to purely
mathematical formalisms in
theoretical physics. Besides
the model liquid made of
steel balls described here, we
will see a further example of
a model concept in Sect. 9.8
(fundamental equation of the
kinetic theory of gases).

Then we will have to simulate the ran-
dom motions of these model molecules – the “thermal motions” – in
a somewhat clumsy way by shaking the whole container. In the fol-
lowing, we will not mention this shaking in every case, but take it for
granted.

The free displacement of liquid molecules makes a number of proper-
ties of resting liquids at equilibrium understandable. They are treated
extensively in school physics courses and repeated briefly here in the
following Sects. 9.2 and 9.3. We begin by considering the positioning
of liquid surfaces.

A liquid surface always adjusts itself to be perpendicular to the di-
rection of the forces which act on its molecules. – In a flat, wide
dish, only the weight of the individual molecules acts. The surface
positions itself in a horizontal plane. In the wide basin of an ocean
or a large lake, the forces of weight are no longer parallel at differ-
ent locations; they point everywhere radially towards the center of
the earth. As a result, the surface of the liquid (ocean or lake water)
takes on the form of a sector of a spherical surface.

In a container which is rotating around a vertical axis, the liquid sur-
face takes the form of a paraboloid of rotation (Fig. 9.2). We will
explain this from the point of view of the accelerated frame of ref-
erence. Two forces act on every individual particle (molecule): its
weight mg, directed vertically downwards; and the centrifugal force
m!2r, directed radially outwards. The two forces add vectorially to
give the total force F. The surface positions itself perpendicular to

Figure 9.2 The parabolic cross-section of a rotating
steel-ball model liquid in a rectangular glass container
(photographic snapshot)
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Figure 9.3 The parabolic surface of a rotating
liquid.
tan˛ D mg

m!2r
D dr

dz ,
g

!2 dz D rdr
and integrating, z D const � r2

this total force at every point. Quantitatively, from Fig. 9.3, we have

z D const � r2 : (9.1)

9.2 Pressure in Liquids. Manometers

External forces produce stresses not only in solid bodies (Sect. 8.5),
but also in liquids. However, in liquids, we use a different terminol-
ogy; the stress is called the pressure p. For the pressure in liquids,
the force is always perpendicular to the corresponding surface1. This
follows from the free deformability of liquids in every direction; or,
put differently, the pressure in a liquid at rest is always a normal
stress; there is no shear stress in liquids at rest. A spherical volume
within a liquid at rest, made visible e.g. by coloring it with a dye,
remains spherical under any external force. The sphere will not be
distorted into an ellipsoid, but rather at most only changes its radius.

The unit of pressure p D F=A is the

C9.3. POHL introduced
the unit of pressure
newton/meter2 already in
the 12th edition (1953);
however, he did not yet use
the unit name pascal. The
pressure of the air (Sects. 9.9
and 9.10) is usually quoted
in hectopascals (1 hPa D
100 Pa). In these units, atmo-
spheric pressure is typically
around 103 hPa D 105 Pa. In
addition, the bar is used:
1 bar D 105 Pa,
1mbar D 1 hPa.
The previously-used unit
“atmosphere” is defined by:
1 atm D 1.013 � 105 Pa

� 1 bar.
In medicine, e.g. for quot-
ing blood pressure, the older
unit mmHg (Torr) is still used
(although the World Health
Organization recommended
as early as 1977 discontin-
uing the use of this unit by
1983!):
1mmHg � 1.33 hPa.
This is the gravity pressure
(Sect. 9.4) of a column of
mercury (Hg) with a height
of 1mm.

newton/meter2 D 1 pascal (Pa)C9.3 :

For pressure measurements, the molecules which produce the pres-
sure are replaced by a wall which exerts the same pressure, i.e. one
converts the “internal” forces within a solid body into “external”
forces. This is accomplished in pressure meters or manometers. –
In Fig. 9.4, on the left, we see a piston which can be displaced nearly
without friction within a cylinder that is attached to the vessel hold-
ing a liquid. The piston is itself attached to a spring balance with
a pointer and scale. – The piston and spring can be combined into

1 For solid bodies, all the directions which point outwards from a given closed
volume are considered to be positive. A tensile stress is therefore termed positive
and a pressure (compressive stress) is negative. In liquids, usually the opposite
sign is used by convention: A positive pressure p compresses the liquid volume,
a negative p tends to expand it like a tensile stress.
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a piston and a membrane
manometer

a single component in the construction of the manometer. We thus
arrive at a membrane which may be smooth or grooved (Fig. 9.4,
right). The pressure acting on it produces a curvature which moves
the pointer. The membrane, which is caused to bulge by pressure,
may be replaced by a tube with an elliptical cross-section (Fig. 9.6,
left). The tube stretches when it is filled with a liquid under pres-
sure (think of the rolled-up paper “party horns” which unroll when
blown into!). Without calibration, such instruments can be used only
to compare spatially or temporally separated pressures. But we will
describe in the next section how they can be calibrated to indicate
absolute pressures.

As proud possessors of such an uncalibrated manometer, we will now
consider the pressure distribution within liquids. For simplicity, we
first distinguish two limiting cases:

1. The pressure in the liquid results only from its own weight. Key-
word: gravity pressure.

2. The liquid is contained in a vessel which is closed on all sides. An
attached cylinder with a smoothly-fitting piston (or “ram”) produces
an external pressure, much larger than the gravity pressure of the
liquid itself. Keyword: ram pressure. We will start by considering
this second limiting case.

9.3 The Isotropy of Pressure
and Its Applications

Figure 9.5 shows an iron vessel of a complex shape, in cross-section;
it is filled with water and has four identical manometers attached
to it. On the right, we can apply ram pressure via a screw which
presses a piston inwards. All of the manometers indicate the same
readings and thus show that the pressure is the same in every direc-
tion (isotropic). – To explain this phenomenon, we imagine a model
liquid (steel balls) which has been filled into a container and is being
pressed by a piston through a suitable opening. The container will ex-
pand outwards on all sides. The free sliding of the steel balls in every
direction will not permit a particular direction to predominateC9.4.

C9.4. Alternatively, one
can imagine that spheres
are drawn within the liquid;
they just touch each other and
thus produce a connection
between the piston which
produces the pressure and
any of the manometers. At
the contact surface between
two such imaginary spheres,
the pressure from both sides
must be the same (actioD
reactio), and the same as the
pressure in the interiors of
the spheres. Therefore, the
pressure measured by the
manometer is just the same
as that produced by the pis-
ton. – For a mathematically
correct derivation of this fact,
also known as PASCAL’s
law, see A. Sommerfeld,
Mechanik der deformier-
baren Medien, Akademische
Verlagsgesellschaft Leipzig,
4th ed. (1957), Chap. 2, Sec-
tion 6; English see e.g. www.
brighthubengineering.com/
naval-architecture/106499-
hydrostatic-pressure-and-
pascals-law-for-static-fluids/

We next deal with three important applications of the isotropy of the
ram pressure.

www.brighthubengineering.com/naval-architecture/106499-hydrostatic-pressure-and-pascals-law-for-static-fluids/
www.brighthubengineering.com/naval-architecture/106499-hydrostatic-pressure-and-pascals-law-for-static-fluids/
www.brighthubengineering.com/naval-architecture/106499-hydrostatic-pressure-and-pascals-law-for-static-fluids/
www.brighthubengineering.com/naval-architecture/106499-hydrostatic-pressure-and-pascals-law-for-static-fluids/
www.brighthubengineering.com/naval-architecture/106499-hydrostatic-pressure-and-pascals-law-for-static-fluids/
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1. Calibration of a technical manometer (Fig. 9.6). A tube leads
from the manometer R to the cylinder Z with a tight-fitting piston K.
All of the inner spaces are filled with a liquid, for example hydraulic
oil. Pressure is force divided by area. The ram pressure of the piston
is thus equal to its weight plus that of the mass sitting on it, divided
by the cross-sectional area A of the piston. Now the essential point:
The friction between the piston and the wall of the cylinder must be
very small; otherwise, the force would be less than the weights just
mentioned. Eliminating the friction is accomplished through a trick:
The piston is surrounded by a thin film of liquid. This is guaranteed
by a uniform rotation of the piston around its vertical axis2 C9.5.C9.5. At very low tem-

peratures, such as in the
expansion machine of a he-
lium liquefier, this type of
lubrication is not possible,
since all lubricants solid-
ify. Here, one makes use of
helium gas as “lubricant”;
it likewise forms a lami-
nar flow around the piston.
(cf. Sect. 10.3)

To
produce the rotation, the top of the piston is designed as a flywheel.
Once it is set in rotation, it continues to rotate for a long time. The
moving flywheel is given a strong kick from above; each time, the
pointer of the manometer returns to the same reading. The position
of the indicator is therefore in fact determined by the weights alone.

Figure 9.5 The pressure distribution within a liquid when the ram pressure
is dominant

Figure 9.6 Calibration of a technical manometer R with a rotating piston K

2 This experiment also illustrates the lubrication of bearings through the laminar
flow of a fluid, as described in Sect. 10.3.
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2. The hydraulic press. This important tool is used to produce large
forces by means of small pressures. This is a widely-used application
in modern times. As an example, we mention the hydraulic jacks
used to lift automobiles in repair shops.

We illustrate an hydraulic press (Fig. 9.7) in the form of an im-
provised setup. Its essential parts are a cylindrical cooking pot A,
a thin-walled rubber bladder B, a wooden piston K, and a solid, rect-
angular frame R. The filling tube of the rubber bladder is attached to
a water faucet. A leather sleeve M around the rim of the piston pre-
vents the bladder from ‘bulging’ up between the piston and the side
walls of the pot.

Numerical example
The water supply in the lecture room in Göttingen has a pressure of around
4 � 105 Pa. The cooking pot used has an inner diameter of 30 cm, giving
the piston a surface area of about 710 cm2. The press thus yields a force
F of roughly 3 � 104 N. It can for example break oak blocks of 4 � 5 cm2

cross-sectional area and 40 cm length.

3. The compressibility of water. The low compressibility of liquids
can be measured readily using the isotropy of pressure in liquids.
The principle is the following: One presses the liquid under high
pressure into a measuring vessel, avoiding expansion of the vessel
itself. To achieve this, the vessel is surrounded by a mantle of liquid
at the same pressure as that inside. The resulting setup is sketched in
Fig. 9.8. Initially, a volume decrease �V is found to be proportional
to the increase of pressure, �p, and to the volume V, i.e. �V D
�V�p; the proportionality factor � is then measured. It is called the
compressibilityC9.6,

C9.6. The compressibility
� D .1=V/ .dV=dp/, which
we introduce here for liquids,
and likewise its reciprocal,
the modulus of compression
K D 1=�, were already dis-
cussed as material constants
of solids (Sect. 8.3) and will
be applied also to gases in
a later section (Sect. 14.10).
Note that for liquids and
gases, owing to the isotropy
of pressure, a modulus of
elasticity cannot be defined.

� � 5 � 10�10 Pa�1 :

Thus, the volume decrease �V=V of the pressurized water at 108 Pa
(about 1000 times higher than atmospheric pressure) is only about
5%. – This low compressibility of water can be shown in a variety
of surprising demonstration experiments. They all illustrate the ap-
pearance of large forces and pressures when only a small degree of
compression is produced.
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Figure 9.8 The compressibility of wa-
ter. The thick-walled glass cylinder is
filled with water, likewise the thin-walled
measuring cuvette M. The handwheel
H is employed to press down the piston
(ram) by a screw drive. – Hg : Mercury
as sealing liquid in the capillary tube (of
cross-sectional area A). – The Hg column
rises by a height �h when the pressure is
increased by �p. This indicates a volume
decrease of the water contained inM by
�V D �h � A.

Figure 9.9 Two glass teardrops (Video 9.2)Video 9.2:
“The Compressibility of
water”
http://tiny.cc/6vqujy
The video shows a de-
partmental seminar at the
1st Physics Institute of the
University of Göttingen,
where the properties of glass
teardrops were demonstrated.
A similar experiment was
exhibited by LICHTENBERG

in Göttingen many years
earlier (see G.H. de Rogier,
“Verstreute Aufzeichnungen
aus Georg Christoph Lich-
tenbergs Vorlesungen über
die Experimentalphysik
1781”, Wallstein-Verlag
Göttingen 2004, p. 48). The
glass teardrops are known
under the name of Bologna
or Batavia glass drops. Their
behavior also forms the basis
for the shattering of safety
glass.

Example
We start with a rectangular, lidless wooden box which is suitably water-
tight and is filled with water. The liquid has a free upper surface. A bullet
is shot through the side of this box, compressing the water by a volume
equal to that of the bullet (the time of its passage is too short to allow
the water to rise upwards). A considerable pressure results – the box is
splintered into kindling (bladder shot!).
A variant of this experiment requires only a modest effort. It suffices
to make a ‘glass teardrop’ explode within a water-filled beaker. Glass
teardrops are made by allowing molten glass to drop into water. They
are solid, droplet-shaped pieces of glass with enormous internal stresses
(Fig. 9.9). A glass teardrop is very insensitive to blows and impacts; one
can hammer on it without effect. In contrast, it will not survive any sort of
damage to its filamentary ‘tail’. When the tail is broken off, the teardrop
explodes into fine glass shards. If a teardrop is exploded in this way in
a closed hand, one can clearly feel how the fragments fly apart, but there
is no pain or damage (as when the safety glass in an automobile window
shatters!). The harmlessness of this experiment in one’s hand stands in
surprising contrast to the complete destruction of a beaker filled with wa-
ter (‘water hammer’).

9.4 The Pressure Distribution
in a Gravitational Field. Buoyancy3

We use a cylindrical container which stands vertically and has
a cross-sectional area A (Fig. 9.10). It is filled with a liquid of

3 The isotropic atmospheric pressure of the air (Sect. 9.9) is left out of considera-
tion in this section.

http://tiny.cc/6vqujy


9.4 The Pressure Distribution in a Gravitational Field. Buoyancy 183

Pa
rt
IFigure 9.10 The gravity pressure of a liquid

density % up to a height h. The weight of this column of liquid is

FG D mg D Ah%g : (9.2)

The weight divided by the area gives the pressure p which acts at the
bottom of the container in all directions (isotropy):

p D FG

A
D h%g : (9.3)

Numerical example for water
h D 103 m, % D 103 kg/m3, g D 9:81m/s2, p D 103 m �103 kg/m3 �
9:81m/s2 D 9:81�106 N/m2, i.e. about 100 times atmospheric pressureC9.7. C9.7. The water pressure at

the bottom of a 10m high
column of water is about the
same as the normal atmo-
spheric pressure (see also
Fig. 9.31).

– This pressure compresses the lowest layer of water by only 0.5% of its
volume (see above). Therefore, to a very good approximation, one can
treat the density % in Eq. (9.3) as independent of the depth h.

The shape and cross-sectional area of the container do not enter into
Eq. (9.3). As a result, one can imagine that even the most strangely-
shaped containers give the same pressure profiles as a simple vertical
cylinder with a constant cross-sectional area. The decisive factor
for the gravity pressure at a given point within a liquid is only the
perpendicular distance h of the point from the surface of the liquid.
Quantitatively, we find Eq. (9.3)C9.8. C9.8. BLAISE PASCAL

(1623–1662). Published in
“Traité de l’Équilibre des
Liqueurs” (1663); excerpts
from the original text are
translated into English in
W.F. Magie, A Source Book
in Physics, Harvard U. Press
(1963), p. 75.

Among the various applications of this principle which are often given
in school books, we recall the familiar liquid manometers used to mea-
sure gas and vapor pressures. Their simplest form consists of a U-shaped
glass tube containing water or mercury as sealing liquid (Fig. 9.11). These
manometers can be calibrated using Eq. (9.3) (e.g. 1mmHg � 1:33 hPa,
see Sect. 9.2).

The best-known result of the pressure distribution in a gravitational
field is the static buoyancy of bodies in a liquid. We consider the
buoyant force acting on a body which is immersed in a liquid. For
simplicity, we assume that the body has the form of a flat cylinder
(Fig. 9.12). The pressure of the liquid has no preferential direction
(isotropy). This results from the free deformability of the liquid in
every direction, due to the free displacement of its molecules. There-
fore, an upwards-directed force F1 D p1A D h1%gA presses on the
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Figure 9.11 Liquid manometer

Figure 9.12 The origin of static buoyancy

lower surface A of the cylinder, while a smaller, downwards-directed
force F2 D p2A D h2%gA acts on the upper cylinder surface. All the
forces acting on the side surfaces of the cylinder compensate each
other exactly, pairwise. There remains only the difference of the two
forces F1 and F2. It yields an upwardly-directed force F which acts
on the body as a whole. This force is called the buoyant force or
simply buoyancy:

F D %gA.h1 � h2/ : (9.4)

The product on the right is just the weight of that amount of the liquid
which has the same volume as the immersed body. We thus find in
general: The buoyant force on an immersed solid body is equal to the
weight of the liquid which it displaces (Archimedes’ principle)C9.9.C9.9. This principle forms

the basis of a very simple
method of determining the
mass density %O of an ob-
ject. One need only weigh it
once outside the liquid and
again when fully immersed in
a liquid of known density.

There are a variety of quantitative experiments on buoyancy. In-
stead of demonstrating them, we will elucidate the origin of buoyancy
using our model liquid. Figure 9.13 shows the shadow image of
a glass container half-filled with many small steel balls. We pre-
viously buried two larger balls within the small balls; one of them
is made of wood, the other of aluminum. We simulate the thermal
motion within our model liquid as usual by shaking the container
vigorously. Immediately, buoyancy brings the two large balls to the
surface. They float, the wooden ball rather high above the surface,
the aluminum ball about at its midline.

Figure 9.13 Buoyancy in
a steel-ball model liquid
(Video 9.3)Video 9.3:

“Buoyancy in a model
fluid”
http://tiny.cc/fwqujy

http://tiny.cc/fwqujy
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Of course, one cannot expect a quantitative verification of the formula for
the buoyant force from such a model experiment. The simulation of ther-
mal motions by shaking is too primitive for that.

The weight of an object and its buoyancy in a liquid oppose each
other. When the weight is greater, the object sinks to the bottom
of the liquid. When the buoyancy is greater, it rises to the surface
and floats there. The transition between these two possibilities il-
lustrates a special case: The object and the liquid which it displaces
have exactly the same weight (equal densities). In this case, the ob-
ject remains suspended at an arbitrary depth within the liquid. This
special case can be demonstrated in a variety of ways. As a particular
example, we mention a ball of amber in a solution of zinc sulfate of
suitably-chosen concentrationC9.10. C9.10. As a simple demon-

stration, we recall the “Carte-
sian diver” which is often
used as a toy. A small glass
figure (often a little devil)
containing air is put into
a test tube filled with wa-
ter; it is closed at its top end
by a rubber membrane (or
a movable rubber stopper).
The position of the figure
can be readily projected as
a shadow image onto the
wall of the lecture room. The
tail of the figure has a small
opening, so that pushing on
the membrane or stopper
presses some water into the
figure, thus increasing its
overall density. The three
cases rising, sinking and sus-
pension can be convincingly
demonstrated by regulating
the pressure with the mem-
brane.

When the buoyant force is greater, a portion of the object rises above the
surface of the liquid. The object comes to equilibrium when the displaced
water has just the same weight as the object itself. Then we say that the
object floats. For practical applications (ships), the stability of the floating
attitude is very important. It is determined by the position of the metacen-
ter. In Fig. 9.14, imagine that a ship is tilted (listing) by an angle ˛ from
its equilibrium position. Let S1 be the center of gravity of the volume of
water displaced by the ship in this tilted position, i.e. the point of action of
the buoyant force in this position. We draw a vertical line through the point
S1. Its point of intersectionwith the central midline of the ship is called the
metacenter M. This metacenter must remain above the center of gravity S
of the ship itself during any tilting or listing; only then will the resulting
torque due to the buoyant force bring the ship back to its equilibrium rest-
ing position. Only when its metacenter is above its center of gravity can
a ship float in a stable manner.

9.5 Cohesion of Liquids: Tensile
Strength, Surface Energy and
Surface Tension

Our model liquid (steel balls) has yet to explain two well-known
properties of real liquids: The molecules of a real liquid are subject
to attractive forces, they exhibit cohesion. When the liquid is poured,
they do not move apart in all directions, but rather form droplets of
different sizes and shapes. Furthermore, real liquids stick to solid
bodies (adhesion). This sticking can even lead to wetting; that is, the
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Figure 9.15 The tensile strength of a model liquid

liquid cannot be pulled off the solid body, and attempts to do so only
spread it around further. When wetting occurs, the attraction between
the molecules of the liquid and those of the solid body is greater than
that between the molecules of the liquid itself. – These shortcomings
of the model liquid can be overcome; one need only use magnetic
steel balls. Then they are attracted both to each other and to the walls
of an iron container.

The model liquid which has been modified in this way leads us to
another important fact that is not well known from everyday ex-
perience: Liquids have a considerable tensile strength (this is the
limiting value of the tensile stress which leads to fracture or sepa-
ration; cf. Sect. 8.8).

Figure 9.15 shows a sectional view along the length of an iron pipe
which is closed at its top, and is filled with the steel balls of the
model liquid. The magnetic “molecules” stick to its walls. They
form a continuous column. This column carries its own weight, and
thus it has a tensile strength in addition to its adhesion to the walls.
Figure 9.16 illustrates the same experiment with a real liquid, here
a column of water. The right arm B of the U-tube is evacuated. In
this manner, we can hang columns of water up to many meters long.
They have a tensile strength which is often surprising to observers.
The long glass tube can be conveniently attached to a board; when the
board is struck hard on the floor, causing strong downwards inertial
forces to act on the water column, it may require several tries before
the column breaks apart.

One point is central for this demonstration of the tensile strength
of water, and for the model liquid: The molecules of the liquid
must stick firmly to the walls of the tube (adhesion). Only then can
a cross-sectional constriction of the column of liquid be avoided.
This is the reason why no gas bubbles should be left on the walls
of the tube; they would immediately act as nucleation points for the
formation of constrictions (and resulting separation of the column).
For water, a tensile strength of Zmax D 3:4N/mm2 has been achieved;
for ethyl ether, the maximum value is Zmax D 7N/mm2 (comparison
values for solids can be found in Table 8.2). From the considerations
which will be discussed in Sect. 15.9, one would expect values at
least 10 times larger. Most likely, the tensile strength is reduced by
nucleation centers, tiny impurities in the liquid or on the walls of
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umn. The water has been purified of dissolved air
by boiling in vacuum. The volume B thus contains
gaseous water (water vapor) which adjusts to the cor-
responding vapor pressure (Sect. 15.7). At 20 °C, it is
23.2 hPa (see Fig. 15.11). From this we find, assum-
ing that the water vapor behaves as an ideal gas, that
its density is % D 1:7 � 10�2 kg/m3 (see Sect. 14.6).
(Video 9.4) Video 9.4:

“The tensile strength of
water”
http://tiny.cc/3vqujy
To avoid gas bubbles on the
wall of the tube, it must be
swung back and forth several
times in a horizontal position,
which removes remaining
gas bubbles. – A further in-
teresting observation is the
following: When the liquid
hits the end of the tube while
it is being swung, one may
hear a loud bang, as if the
tube had been hit by a ham-
mer. This does not occur
in the air, since a stream of
water is slowed down by air
resistance, for example be-
fore it hits the side of a wash
basin. The water vapor at
the end of the tube obviously
does not show this effect; it
immediately liquefies when
the vapor is compressed. The
speed of this phase transition
from the gas phase to the liq-
uid phase is also discussed in
Comment C16.2.

the container, as discussed in in Sect. 15.9, for example, very small
nitrogen-containing gas bubbles.

In our treatment of solids, we have already mentioned the essential
relation between the tensile strength Zmax and the specific surface
energy �, i.e. the quotient

� D Work necessary to increase the surface area �W

Size �A of the newly-formed surface
: (8.34)

Here, both �A and �W can be either positive or negative. Positive
means an increase in the surface area. Then, a force F must perform
work, and it will be stored in the surface as potential energy. Negative
means that the surface area decreases; then previously stored energy
is released, performing work and giving rise to a force. In dealing
with solid bodies, we treated only the first case; to demonstrate the
second case in solids, one requires very high temperatures or long
times. This is quite different for liquids: The free sliding of their
molecules allows us to implement both cases.

A well-known example is shown in Fig. 9.17. A liquid film
(e.g. a soap solution) is held from above and on both sides by a U-
shaped wire frame, and from below by a freely sliding wire which is
attached to the frame by loops and can slide along it. This “slider”
or “strap” can be adjusted to any desired height by a suitably-chosen
load (force F). A displacement by˙�x produces a new surface area
�A D ˙2l�x (front and back surfaces of the film!), so that the force
F performs the work

˙�W D ˙F�x D ˙2�xl� :

The distance ˙�x cancels. The remaining result is

F D 2l�: (9.5)

The strength of the force F is thus independent of �x, i.e. of the
magnitude of the extension which has already taken place. This is

http://tiny.cc/3vqujy
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Figure 9.17 A soap-solution film in equilibrium; this is
also an example of “reversible” surface work (Video 9.5)Video 9.5:

“Surface work”
http://tiny.cc/tvqujy

an essential difference compared to stretching a rubber sheet. The
popular comparison between a liquid surface and a rubber sheet must
therefore be used only with caution.

Rewriting Eq. (9.5) yields

� D Force F parallel to the surface and required to extend it

Length 2l of the movable edge of the surface
:

(9.6)
For this reason, � is often referred to as the surface work. For liquids,
both names are equally valid.

In measurements of �, friction between the slider and the frame is
a perturbing effect. It is thus preferable to use a cylindrical liquid
film instead of a planar film (Fig. 9.18). A ring with a sharp edge is
dipped into the surface of the liquid. When the liquid level is slowly
lowered, a cylindrical film is formed, similar to a thin-walled, short
tube. The force F is measured with a balance. The circumference
of the ring is l D 2�r. Table 9.1 lists some numerical values, which
refer to liquid surfaces in airC9.11.C9.11. except for liquid hy-

drogen
When the liquid films are in contact

with materials other than air, the values of � are generally smaller.
Therefore, the term specific boundary energy or boundary tension
would be more appropriate.

Without external influences, liquids often form spherical surfaces;
think for example of a droplet of mercury or of a small bubble within
a liquid. In both cases, for the filled sphere as well as for the empty

Table 9.1 The specific surface energy (surface tension) of some liquids

Liquid Temperature
in ıC

Specific Surface Energy
or Surface Tension in
10�3 W s/m2 D 10�3 N/m

Mercury 18 500
Water 0 75.5

20 72.5
80 62.3

Benzene 18 29.2
Liquid air �190 12
Liquid hydrogen �254 2.5

http://tiny.cc/tvqujy
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surface energy using a spiral spring balance.
A numerical example for water: ring diameter
5 cm, circumference 2l D 0:31m, F D
2:26 � 10�2 N, � D 0:072W s/m2.

sphere, the surface tension produces a pressure inside the sphere:

p D 2�

r
: (9.7)

Derivation
The radius r of the sphere is presumed to increase by the amount dr. Then
the surface area of the sphere increases by dA D 8�rdr and its volume by
dV D 4�r2dr. During this volume expansion, the pressure performs the
work

dWV D pdV D p4�r2dr : (9.8)

Producing the new surface area dA requires the work

dWA D dA� D 8�rdr� : (9.9)

Setting equal these two values for the work yields Eq. (9.7).

This important equation (9.7) is often used in a strict context, but also
for approximations. Examples:

1. A mercury droplet at the limit of microscopic visibility has a radius
r D 0:1�m D 10�7 m. � for HgD 0.5 W s/m2; thus we find

p D 2 � 0:5Ws=m2

10�7 m
D 107 Pa .i.e. 100 times atmospheric pressure!/

2. Everyone knows the experiment sketched in Fig. 9.19. A wetting liq-
uid is placed between two planar glass slides. It forms a concave surface,
whose smallest radius of curvature r is � d=2. Surface tension produces
a pressure p of order of magnitude given by Eq. (9.7). The direction of
p is marked in the figure by arrows4. “This is a convenient but

lax way of putting it. The
pressure itself has no direc-
tion, but instead only the
corresponding force.”

Glass plates which are “glued” to-
gether with water in this way cannot be separated by applied forces without
damaging them. They can only be slid apart very slowly under water.
3. A perfectly wetting liquid is pulled upwards into a capillary tube of
radius r, up to a height h (Fig. 9.20). – Explanation: The liquid has a hol-
low (concave) upper surface (meniscus). Its smallest radius of curvature
is � r. Then the pressure calculated from Eq. (9.7), p D 2�=r, yields an
upwardly-directed force of F D A2�=r. The downwards-directed weight

4 This is a convenient but lax way of putting it. The pressure itself has no direction,
but instead only the corresponding force.
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Figure 9.19 A water layer – intentionally
drawn much too thick here – between two
glass plates (referring to Eq. (9.7)). A nu-
merical example: The wetted surface area is
A D 10 cm2, d D 0:2 �m, r D 10�7 m,
� � 8 � 10�2 W s/m2, p D 16 � 105 Pa (� 16
times atmospheric pressure), F D 1:6 � 103 N.

Figure 9.20 Applications of Eq. (9.10): “capillary eleva-
tion” h, diameter d D 2r

of the liquid column is equal and opposite to this force, with FG D Ah%g.
The equilibrium between these two forces yields the capillary elevation:

h D 2�

r%g
: (9.10)

In the case of a non-wetting liquid, e.g. Hg in glass, the meniscus is up-
wardly convex. As a result, the pressure calculated from Eq. (9.10) corre-
sponds to a downwards-directed force. A tube dipped into mercury pro-
duces a capillary depression in its interior, of height h. – Equation (9.10)
is often employed for the measurement of �; this effect also plays a role in
the rise of sap in plants.
4. Strong inertial forces can produce bubbles, i.e. hollow spaces within
liquids. This process, called cavitation, occurs for example behind rapidly
rotating ship’s propellers or in water turbines. – Water has a surface tension
of � � 0:08Ws/m2. Therefore, each cm2 of the surface area of a bubble
has a potential energy of 8 � 10�6 W s. The resulting pressure p causes
the bubbles to collapse very quickly and compresses the energy of their
surfaces into a region of only a few molecules. These concentrations of
energy act like very high local temperature spikes. As a result, ship’s pro-
pellers and turbine blades are “eaten up” by the water; they become pitted
with deep holes. – Cavitation can also be produced by high-frequency
sound waves. The local concentrations of energy can destroy small organ-
isms which live in water, and can cause light flashes from water containing
dissolved gasesC9.12.C9.12. This phenomenon

of so-called sonolumines-
cence has been studied in
detail in recent years, but
is still not completely un-
derstood (see for example
D. Lohse, Physikalische Blät-
ter 51, 1087 (1995). English:
e.g. https://en.wikipedia.org/
wiki/Sonoluminescence)

Among the numerous other examples of surface tension, we give here
only a brief selection. In the first, the surface of a liquid appears to
resemble a slightly stretched wrapping or skin.

1. Water cannot wet greased or oily objects. Such objects can rest
on a water surface as on a loosely-filled cushion, for example an air
cushion. The surface is visibly slightly ‘dented’ below the object. For
example, one can place a slightly oily sewing needle carefully onto

https://en.wikipedia.org/wiki/Sonoluminescence
https://en.wikipedia.org/wiki/Sonoluminescence
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strider.

Liquid fuels wet every solid object. Therefore, one never sees dust on their
surfaces. Furthermore, they drip very slowly out of a container hung in
the open; the completely wetted walls of the container act like a syphon.
This process occurs very quickly when the liquid is the ‘ideal fluid’ 4He
in its superfluid phase (found at temperatures below 2.17 Kelvin), which
completely lacks internal frictionC9.13. C9.13. For more informa-

tion on the fascinating phe-
nomenon of the superfluidity
of liquid helium, see for
example K. Lüders, “Super-
flüssigkeiten”, in Bergmann/
Schaefer, Lehrbuch der Ex-
perimentalphysik, Vol. 5,
Chap. 5, Verlag de Gruyter
2nd ed. (2006). English: see
e.g. https://en.wikipedia.org/
wiki/Superfluid_helium-4

In our remaining examples, the surface tension produces the maxi-
mum possible reduction of the surface area of a free liquid surface
(minimal surfaces).

2. Mercury is injected as a fine stream into a flat watch glass, filled
with a liquid. It initially forms numerous droplets at the bottom of
the glass, of roughly 1mm diameter (Fig. 9.21). The resulting overall
surface area of the mercury is thus quite large. But then the droplets
begin to combine in a jerky manner; here and there, a small droplet
is taken up by a larger one, which limits the lifetime of the small
droplets5. After about 1 minute, only a single large puddle of mer-
cury is present. The surface area of the mercury, driven by its surface
tension, has been reduced to the minimum possible under the circum-
stances. This is an especially informative “This is an especially infor-

mative demonstration.”
demonstration: The small

droplets are “physical individuals”. The fate of a particular individual
cannot be predicted using physical methods; one can never say which
of the droplets will be the next to disappear. Nevertheless, for the set
of all the individuals, we can find a clear-cut physical rule: Their
number decreases according to an exponential lawC9.14

C9.14. This is an example
of the exponential function,
which occurs very frequently
in physics; here with a nega-
tive exponent:
N.t/ D N0 e�t=� .
N is the momentary number
of individuals at the time
t. Other examples of ex-
ponential behavior are the
“barometric pressure for-
mula” (Sect. 9.10) and the
damping of harmonic oscilla-
tions (Sect. 11.10).

with a given
mean lifetime � (in Fig. 9.21, � D 10 s). One can thus make quite
precise statements about a large set of individuals, even when such
statements are completely meaningless for particular, isolated indi-
viduals. This fact plays an important role in atomic physics (e.g. in
radioactive decay processes).

3. A water surface is covered with a non-wetting powder. Then, for
example with a needle, one adds a tiny amount of a fatty acid at the
center of the water surface. Immediately, the surface breaks up, and
a clear-cut, circular spot appears, which is free of the powder.

Explanation: The surface tension of the water is greater than that of
the fatty acid. Therefore, a droplet of a fatty acid on a water surface
forms a monolayer whose thickness corresponds to that of a single
molecule. If N molecules of a fatty acid, each with an area a, are
placed onto a water surface, they will spread out to cover a circular
area of A D Na. This allows us to determine the molecular cross-
sectional area a if we know the number N of molecules added. This
apparently modest demonstration is in fact quite important. – For
measurements, one uses a rectangular water surface and replaces the
powder by a floating movable, rectangular frame (AGNES POCKELS,
1891)C9.15.

C9.15. AGNES POCKELS

(1862–1935): cf. Nature 43,
437 (1891). She was self-
taught and wrote fundamental
articles about films on liquid
surfaces, for which she was
granted an honorary doctoral
degree (Dr.-Ing. E.h.) from
the Technical University of
Braunschweig in 1932.

5 Reflections of light simulate the appearance of bridges between neighboring
droplets in some places in the image.

https://en.wikipedia.org/wiki/Superfluid_helium-4
https://en.wikipedia.org/wiki/Superfluid_helium-4
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Figure 9.21 The coalescence of mer-
cury droplets in alcohol containing a small
amount of glycerin. This is a good example
of a process which proceeds according to
a statistical law: with a sufficiently large
number of droplets (as in the upper three
images), one can determine the mean
lifetime to be � D 10 s, i.e. after each
10 s, the number of droplets decreases to
1=e � 37% of the preceding number (pho-
tographic images, each with an exposure
time of 4 � 10�3 s). The larger droplets are
sometimes distorted because they have
been set into oscillation by coalescing with
smaller droplets. (Video 9.6)Video 9.6:

“Coalescence of Hg
droplets”
http://tiny.cc/mwqujy
The coalescence of small
mercury droplets under water
is demonstrated.

(Exercise 9.8)

0 s

10 s

20 s

30 s

40 s

50 s

60 s

205 droplets
�100%

78 droplets
� 37% ≈1/e 

29 droplets
� 14% ≈1/e2 

4. The addition of impurity molecules changes the value of the sur-
face tension. This can be demonstrated with a grain of camphor and
somewater. The different faces of the grain dissolve at different rates;
thus, the surface tension varies along different directions. The grain
‘dances around’ on the water surface. Similar processes play a role
in the movements of microscopic life-forms (single-celled animals).

5. “Oiling the seas”. An oil slick converts the “breakers” with their
foam-covered crests into rolling swells. To produce the necessary
change in surface tension, a ship need only release small amounts of
oil in the form of droplets onto the ocean’s surface.

When impurity molecules are involved, the phenomenon of surface
tension becomes rather complex. The surface tension is then termed
abnormal. That is, its magnitude becomes dependent on how much
the surface area has already been increased, as with a rubber mem-
brane. Furthermore, the increase in surface area is accompanied by
warming. Kinetic energy is converted into heat. These potentially
very interesting topics properly belong to thermodynamics.

http://tiny.cc/mwqujy
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The mass densities % of gases are considerably less than those of liq-
uids. As an example, in Fig. 9.22 (left side), we show a measurement
of the density of room air, % D 1:29 kg/m3. It is thus only about
1/800th of the density of liquid water.

The molecules are the same in a gas and in the corresponding liq-
uid. Therefore, the smaller density of the gaseous form can only re-
sult from greater average distances between the individual molecules.
The following facts also support the hypothesis of large intermolecu-
lar distances in gases:

1. Gases, in contrast to liquids, have extremely high compressibilities
(bicycle tire pump!). As a result, the density of a gas increases with
increasing pressure. At p D 160 � 105 Pa, we find for example for air
a density of % � 200 kg/m3, i.e. about 1/5th of the density of water
(Fig. 9.22, right side).

2. The BROWNian molecular motion can be observed in gases at
a much lower magnification than in liquids. To provide visible fine
particles, tobacco smoke can be conveniently used.

3. The molecules of a gas fly apart in complete disorder in all direc-
tions. They distribute themselves randomly in any available volume.
Imagine for example a leaking gas-line in a room, or the gaseous, fra-
grant components of a perfume. In contrast to liquids, no attractive
forces or cohesion of the molecules can be observed in gases without
resorting to very sophisticated methods. In any case, gases do not
form free surfaces. The cohesive forces between the molecules are

Figure 9.22 The dependence of the density % of air on the pressure p. Left-
hand image: p D 105 Pa (normal atmospheric pressure), the glass balloon
with V D 7 liter is evacuated and the balance is tared (with the weights
A). Then we allow room air to flow into the balloon; in order to restore the
equilibrium of the balance, we have to add 9 grams to the balance pan. Thus,
% D m=V D 9 g/7 liter D 1.29 kg/m3. Right-hand image: p D 160 � 105 Pa
in a steel pressure cylinder with V D 1 liter. After the compressed air is
released, we have to remove 205 grams from the right pan, i.e. % D 205 g/liter
D 205 kg/m3.
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clearly not very effective at the large intermolecular distances typical
of gases.

This completes our first overview. – The relationship between pres-
sure and density, that is of pressure, mass and volume for gases, has
been thoroughly investigated (Fig. 9.22), carefully keeping the tem-
perature constant. The results of such measurements follow a simple
relation over a large range of values; it is called BOYLE’s law (some-
times referred to as the BOYLE–MARIOTTE law, or MARIOTTE’s
law):

p D M

V
� const : (9.11)

In words: The pressure p is directly proportional to the total mass
M of the confined gas and is proportional to the reciprocal of the
volume V of its container. Two other formulations are somewhat
more compact:

p D % � const (9.12)

and

pVs D const (9.13)

(% D M=V D mass density and Vs D V=M D specific volume of the gas).

BOYLE’s law is obeyed to a good – and often excellent – approxima-
tion by all gases at sufficiently high temperatures and low pressures.
This is demonstrated by the examples collected in Fig. 9.23: The
product pV=M is represented over a large range of pressures and
temperatures by horizontal lines parallel to the abscissa; it is thus
independent of the pressure over the range shown. In this range of
pressures and temperatures, substances in the gas phase are called
ideal gasesC9.16.C9.16. Taking the tem-

perature dependence into
account leads directly from
BOYLE’s law (in the form
of Eq. (9.13)) to the equa-
tion of state for ideal gases
(Eq. (14.19) in thermody-
namics).

If noticeable deviations from BOYLE’s law occur,
then one is dealing with a real gas. At normal pressures and tem-
peratures, for example air, hydrogen, the noble gases, etc. all behave
as ideal gases, while CO2, NO2, and chlorine behave as real gases.
This distinction loses its validity at sufficiently low pressures and/or
sufficiently high temperatures: Then all substances behave as ideal
gases. BOYLE’s law is thus a typical limiting-case law. Because of
its importance, we will formulate its content once more in words:
In an ideal gas, pressure and mass density are proportional to each
other, or, equivalently, the product of pressure and specific volume is
constant.
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lines are examples of the range of
validity of BOYLE’s law for ideal
gases. The deviations which can
be seen outside this range will be
treated in Sect. 15.1. The vertical
sections of the curves occur when
part of the gas condenses (liquefies).

9.7 A Model Gas. Pressure Due
to Random Molecular Motions
(Thermal Motions)

The facts presented above can be well illustrated by a model gas.
This will be shown in the present section and in the following sec-
tions. – As molecules, we again use steel balls, as in our tried and
tested model for liquids. But now, we give these “molecules” much
more free space within a voluminous “gas container”. The latter is
a flat box with glass side windows (Fig. 9.24). Furthermore, we now
produce the random motions of the model molecules (the “thermal
motions”) by means of a vibrating steel piston A. It serves as one end
wall of the gas container. The other end wall B is also a piston; it can
be displaced with little friction, and together with a connecting rod
and a helical spring S, it serves as a pressure meter (manometer).

Now, when the apparatus is in operation, all of the steel-ball
molecules fly back and forth with a lively motion. They contin-
ually collide with each other and with the walls of the container.
These collisions are elastic. Every “molecule” is constantly chang-
ing its velocity, in magnitude and direction. It presents a picture of
truly random thermal motion.

This random molecular motion produces the pressure of the model
gas against the walls of the container. We start by measuring this
pressure using our manometer. The pressure of a gas against its con-
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Figure 9.24 A model gas consisting of steel balls. The piston A (‘ram’)
vibrates to produce “thermal motions”, while the piston B on the right can be
displaced along the tube C. Piston B and the helical spring S together form
a manometer. The rod visible within the spring S can move freely within the
tube C and serves to guide the piston B. (Video 9.7)Video 9.7:

“A Model Gas: Its baro-
metric density distribution”
http://tiny.cc/rwqujy
(see also Video 16.1,
http://tiny.cc/xhgvjy)

tainer walls results from a quite different process than the pressure of
a liquid. In the case of a liquid, the pressure is produced by “loading”,
e.g. by the weight of the liquid itself (gravity pressure), or by press-
ing a piston into a closed system containing the liquid (ram pressure).
We made no mention of a liquid pressure resulting from the random
collisions of its molecules against the walls of its container. In this
sense, gases exhibit a completely new phenomenon, related to their
lack of cohesion and of free surfaces. The gas molecules continually
patter against the container walls. Every reflection of a molecule by
a wall entails an impulse (

R
Fdt) against the wall. The sum of all

these collisions acts like a steady force of magnitude pA (A D area of
the wall). The wall can remain at rest only if it is acted upon by an
equal but opposite force, directed inwards towards the gas, produced
for example by the spring S in Fig. 9.24.

9.8 The Fundamental Equation
of the Kinetic Theory of Gases.
Velocity of the Molecules

The origin of the pressure of a gas explained above can be described
quantitatively. We need only fulfill one postulate: All N molecules
are presumed to have the same kinetic energy, averaged over time;
it is independent of the volume of the gas container: Ekin D 1

2mu
2.

Then with a brief computation (given in the fine-print paragraph that
follows immediately), we can derive the fundamental equation of the
kinetic theory of gases:

p D 1

3
%u2 or p D 1

3

u2

Vs
(9.14)

(p D pressure, % D density, Vs D specific volume of the gas, u2 D mean
value of the squared velocities of the molecules).

http://tiny.cc/rwqujy
http://tiny.cc/xhgvjy
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Derivation
In Fig. 9.25, the gas container of volume V is supposed to hold a total of N
molecules, each of mass m; the total mass of the gas is M D N � m. Then
the density of the model gas in the container is

% D Nm

V
D M

V
: (9.15)

We wish to compute the pressure acting on the left-hand side wall of the
container (of area A). A molecule with the velocity u1 travels a distance
s D u1t in the time t. As a result, only those molecules which are within
the shaded volume, As D Au1t, can reach the left side wall within the time
t. In the whole volume, there are N1 molecules with the velocity u1; then
in the smaller shaded volume, only a number Au1tN1=V is present. The
molecules fly around in a disordered manner. None of the six spatial di-
rections (˙x;˙y;˙z) is preferred. Therefore, only 1/6 of the molecules is
moving on average in the direction (�x) towards the left side wall of area
A. Thus, within the time t, only 1/6 of the molecules within the shaded vol-
ume will collide with the wall A, that is 1

6
N1
V Au1t molecules. To simplify

the computation, we assume that these molecules hit the wall in a direction
perpendicular to it. Then each individual molecule transfers an impulseR
F1dt D 2mu1 to the wall (Sect. 5.5), since the collisions are all elastic.

The sum of all these impulses within the time t is

2mu1
1

6

N1

V
Au1t D 1

3

N1m

V
Au21t : (9.16)

We can replace this sum by an impulse F01t, which acts during the time
t with the constant force F01. Then for the pressure produced by the N1

molecules with the velocity u1, we find

p1 D F01
A
D 1

3

N1m

V
u21 :

We would obtain corresponding values p2 for the N2 molecules with the
velocity u2, and so forth. Finally, we add up all the partial pressures p1, p2,
p3 : : : from the N1, N2, N3 : : : molecules with velocities u1, u2, u3 : : : We
set p D p1 C p2 C p3 : : : and N D N1 C N2 C N3 : : : and define u2 as the
arithmetic mean of the squared velocities, so that

u2 D .N1u21 C N2u22 C N3u23 C � � � /
N

:

We then obtain

p D 1

3

Nm

V
u2 : (9.17)

According to our postulate, the kinetic energy of a molecule is on aver-
age constant, and thus so is u2, the average value of the squared velocity.
Furthermore, Nm D M, i.e. it is equal to the total mass of the gas in the
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container, and Nm=V D M=V D %, the density of the gas. This yields with
Eq. (9.17)

p D % � const (9.12)

This means that our simple model leads quantitatively to BOYLE’s law!
The constant likewise follows from Eq. (9.17); we obtain Eq. (9.14) as
given above (A.K. KRÖNIG, 1856; a high-school teacher in Berlin).

Equation (9.14) makes it possible to calculate the root-mean-squared

velocity of the gas molecules, defined as urms D
p
u2, from the cor-

responding values of the pressure p and the density % of the gasC9.17.C9.17. A precise statis-
tical definition of urms

will be given in Sect. 16.3
(Eq. (16.3) and Fig. 16.9).
It will be abbreviated
as u in later sections
(e.g. Sect. 17.10).

For air under normal conditions, for example, we find

p � 105 Pa ; % � 1:3 kg/m3 :

Inserting these values into Eq. (9.14) yields for the velocity of the air
molecules at room temperature urms D 480m/s. Likewise, for hy-
drogen at room temperature, we find a molecular velocity of urms �
2 km/s. In terms of the order of magnitude, this calculation is cer-
tainly reliable. As we have emphasized, it yields mean values. The
true (momentary) velocities of the molecules are distributed widely
around the mean value (details in Sect. 16.3).

9.9 The Earth’s Atmosphere.
Atmospheric Pressure
in Demonstration Experiments

The air, just like our model gas, expands to fill the available volume.
Lacking a free surface, it has no fixed volume. How does the earth re-
tain its atmosphere? Why do the air molecules not fly out into space?
– Answer: Like all bodies, the air molecules are attracted towards the
center of the earth by their weight. Each air molecule obeys the same
conditions as a projectile (Sect. 4.9): To leave the earth, it would re-
quire a velocity of at least 11.2 km/s (escape velocity). The average
velocity of the air molecules is much less than this value. As a re-
sult, the vast majority of the air molecules is bound to the earth by its
weight.

Without their thermal motion, all the air molecules would fall to the
earth like stones, and – incidentally – they would form a layer on the
earth’s surface of around 10m thickness. Without their weight, they
would immediately fly off the earth, never to return. The competition
between thermal motion and weight however keeps the air molecules
suspended and leads to the formation of the free air mantle of the
earth, its atmosphere. The solid surface of the earth prevents them
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Figure 9.26 Two Magdeburg hemispheres are being pulled apart by 8 (not
16!) horses (Video 9.8) Video 9.8:

“Magdeburg hemispheres”
(Otto von Guericke’s exper-
iment)
http://tiny.cc/vwqujy
The entire lecture, although
in German, can be seen
at G. Beuermann, http://
lichtenberg.physik.uni-
goettingen.de.

from falling closer to its center of gravity. Therefore, the earth’s sur-
face carries the full weight of the air contained in its atmosphere. The
quotient of this weight divided by the surface area is the normal grav-
ity pressure of the air, for short ‘air pressure’ or ‘surface atmospheric
pressure’. It is around 1000hPa D 105 Pa (this corresponds to the
gravity pressure at the earth’s surface of a mercury column 76 cm
high).

“We humans lead a deep-sea life at the bottom of the enormous ocean
of air”. Every school “Every school child knows

this today.”
child knows this today. The – at the time

sensational – experiments carried out a few centuries ago to prove
the existence of “air pressure” are today among the most elementary
topics of school physicsC9.18. C9.18. POHL often men-

tions school physics. That
reveals what sort of previ-
ous knowledge was expected
of beginning students dur-
ing his lifetime; and from
all students. His lectures
were required not only of
physics majors, but also of
many non-majors including
pre-med students. This high-
lights a problem that today’s
physics lecturers must deal
with, namely the often very
different levels of knowledge
of elementary physics among
beginning students, due to the
different standards of their
schools, even among natural-
science majors.

Nevertheless, for reasons of historical
deference, we will describe a classic demonstration. The mayor of
Magdeburg, OTTO VON GUERICKE6 (1602–1686), pressed together
two copper hemispheres of 42 cm diameter with a greased leather
seal and pumped out the air inside them. The hemispheres were then
seen to be pressed firmly together by the air pressure of the surround-
ing atmosphere. We can compute the force as the product of the
cross-sectional area of the hemispheres (A � 1400 cm2) and the air
pressure (p � 105 N/m2): F D 1:4 � 104 N. Thus, GUERICKE needed
8 horses to pull the hemispheres apart. The woodcut shown to a very
small scale in Fig. 9.26 illustrates a demonstration of this famous ex-
periment. The picture indeed shows not 8, but 16 horses; that was of
course a bluff intended to impress the spectators, who were for the
most part laymen in matters of physics. Eight of the horses could
just as well have been replaced by a solid wall;

“Since even back then,
force equaled counter-
force.”

since even back then,
force equaled counter-force.

Today, the Magdeburg hemispheres still carry on a modest but useful ex-
istence in a puny form – that is as the well-known canning jars, consisting
of a glass jar with a lid and rubber gasket. They are evacuated not with

6 An excellent excerpt from his principal work, “Nova experimenta (ut vocantur)
Magdeburgica”, was published in 1912 by R. Voigtländer, Leipzig, as a German
translation. No beginning physicist should miss reading this book. The experi-
mental skills of GUERICKEand his descriptions, which strive for a clear simplicity,
are exemplary.

http://tiny.cc/vwqujy
http://lichtenberg.physik.uni-goettingen.de
http://lichtenberg.physik.uni-goettingen.de
http://lichtenberg.physik.uni-goettingen.de
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Figure 9.27 Chain ‘syphon’

Figure 9.28 Left: A liquid
syphon functions in a vacuum.
Right: Loading of a liquid sur-
face holds together a column
of liquid, even when it contains
gas bubbles.

a pump, but rather by using hot steam to displace the air (this also sterilizes
their contents against anaerobic bacteria!). After cooling and condensation
of the steam, a “vacuum” results.

In elementary physics classes, one often also encounters the well-
known syphon as an effect of air pressure. However, the syphon
principle has nothing to do with air pressure. It is explained in
Fig. 9.27. A chain is hanging over a frictionless pulley; each of its
ends is lying coiled up in a glass jar. When one of the jars is raised
or lowered, the chain runs into the lower of the two jars; it is pulled
down by the weight of its overhanging end H. Exactly the same prin-
ciple applies to liquids, since they, like solid bodies, have a finite
tensile strength (Sect. 9.5). As a result, a water syphon will function
quite well in a vacuum, so long as no visible gas bubbles are present
on the walls of the tube. A vacuum syphon of this type is shown
in Fig. 9.28 (left side). The overhanging end of the stream of water
is marked with its length H. In principle, a liquid syphon functions
entirely without any action of the air pressure.

The liquids we encounter in our daily lives, especially water, are
never completely free of small air bubbles. Therefore, a column
of water containing air will separate easily. This difficulty can be
overcome by loading the liquid surfaces equally on both ends, for ex-
ample in principle by using frictionless pistons as in Fig. 9.28, right
side. In practice, this loading can be most simply accomplished by
making use of the pressure of the atmosphere. It can hold together
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the right, a carbon dioxide
cylinder with a pressure-
reducing valve and hose fill the
upper beaker with the heavy
gas

a column of length L � 10m even when bubbles interrupt the col-
umn across the whole cross-section of the pipe containing it. 10m
is however only a small fraction of the column length corresponding
to the tensile strength of gas-free water .Zmax D 3:4N/mm2). This
can be rather clearly seen from the fact that air pressure plays only
a modest supporting role in the operation of a syphon, although this
role is important in technical applications.

In the case of the gas syphon, the situation is quite different. Gases
have no tensile strength. In contrast to liquids, gases can never form
a column on their own. For this reason, gas syphons cannot operate
in a vacuum. Figure 9.29 shows a gas syphon in operation. It per-
mits the invisible gas carbon dioxide to flow through a syphon hose
from the upper into the lower beaker. The arrival of the gas (and the
resulting displacement of the air) in the lower beaker is indicated by
a candle flame; it is extinguished by the CO2 gas, which does not
burn or support combustion.

The gas syphon clarifies the useful supporting role which the atmo-
spheric pressure plays in many demonstration experiments: Gases
have no free surfaces, but the presence of the atmospheric pressure
provides a certain substitute! In place of the missing free surface,
the diffusion boundary of the gas vs. the surrounding air acts as a
‘surface’. Therefore, we can handle for example ether vapor just as
though it were a liquid. We tip a bottle containing diethyl ether, keep-
ing the tipping angle small, so that no liquid can pour out of the bottle.
But we can see the ether vapor flowing out like a stream of liquid; this
stream is especially noticeable in a shadow image (‘schlieren’).

We can also collect this flowing ether vapor in a beaker resting on
a tared balance (Fig. 9.30). As the beaker is filled, the balance tips in
the direction of “increasing weight”. This is because ether vapor has
a greater density than the air which is displaced from the beaker. At
the end of the experiment, we can empty out the beaker by tipping it;
again, we see the ether vapor flow out like a broad stream of liquid
and drop to the floor.
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Figure 9.30 A stream of ether
vapor in a shadow image

9.10 The Pressure Distribution of Gases
Under Gravity. The Barometric
Pressure Formula

Thus far, we have considered the atmospheric pressure of the air only
on the surface of the earth. At sea level, it is practically constant and
equal to 103 hPa, apart from small variations due to weather condi-
tions. It is the same as the water pressure at the bottom of a freshwater
pond which is 10.33m deep.

In every liquid, the pressure decreases on going from the bottom of
the container towards higher levels. This decrease is linear in the
case of liquids. In water, the pressure decreases for example by
about 100 hPa for every meter of increased height (Fig. 9.31). The
reason for this is that lower layers of the liquid are not noticeably
compressed by the weight of the layers above them; thus every layer
of water of thickness dh makes the same contribution dp D �%gdh
to the overall pressure.

The story is quite different for gases. Gases are strongly compress-
ible; the lower layers in a gas column are pressed together by the
weight of the upper layers. The density % within each individual

Figure 9.31 Distribution
of the gravity pressure in
a water column
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of the gravity pressure in
the air at a uniform temper-
ature of 0 °C

layer is proportional to the pressure p acting on that layer. We thus
find

%

%0
D p

p0
or % D %0

p

p0
: (9.18)

Here, %0 is the density of the gas at normal atmospheric pressure, p0.
Then the contribution to the pressure of each layer of gas of height
dh is given by

dp D �%0
p

p0
gdh (9.19)

.g D 9:81m/s2/:

Integrating over height up to a maximum h yields:

ph D p0e
� %0gh

p0 D p0e
�const�h : (9.20)

Inserting the values which hold at a temperature of 0 ıC, we obtain
for the air pressure at a height h:

ph D p0e
� 0:127h

km :

This barometric pressure formula is represented graphically in
Fig. 9.32. This is the counterpart of the distribution of gravity
pressure in a column of water as shown in Fig. 9.31.

The logic of this “barometric pressure formula” can be made intu-
itively clear by our model gas with steel balls. To show this, we set
up the apparatus that we have seen already in Fig. 9.24 in a vertical
position and look at it under stroboscopic illumination. On the pro-
jection screen, we then see a series of momentary images of the type
shown in Fig. 9.33. In the lowest layers, we can see a large number
of molecules, which rapidly decreases as we go upwards. We can
recognize the competition between weight and thermal motions. Al-
ready at a height of 2m (on the screen) above the vibrating piston, the
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Figure 9.33 Snapshot image of a steel-ball
model gas, demonstrating the barometric
pressure formula (exposure time� 10�5 s).
(Video 9.7)Video 9.7:

“A Model Gas: Its baro-
metric density distribution”
http://tiny.cc/rwqujy

molecules are rather rare. Only the occasional molecule wanders up
to a height of 3m. Our “artificial atmosphere” gradually thins out
at increasing altitude, but without any discernible upper boundary.

The situation in the earth’s atmosphere is completely analogous; only
the height scale is considerably greater7. A well-defined upper limit
to the earth’s atmosphere cannot be specified, any more than for our
artificial atmosphere. 5.4 km above the earth’s surface, the density of
the air has decreased by about half (e�0:69 D 0:5); at about 11 km
to 1/4, etc. (cf. Fig. 9.32). But

“But even at several hun-
dred km above the sur-
face of the earth, some
molecules from the at-
mosphere can be found
wandering about.” even at several hundred km above

the surface of the earth, some molecules from the atmosphere can
be found wandering aboutC9.19.C9.19. In fact, the expo-

nential law is valid up to an
altitude of ca. 100 km, where
the pressure has dropped to
about 0.03 Pa and the num-
ber density of the molecules
is around 1019/m3. At still
greater altitudes, the pressure
decreases more slowly than
predicted by the exponential
law. At 300 km, it is around
10�5 Pa, with a number den-
sity of the order of 1015/m3

(CRC Handbook, 83rd edi-
tion (2002), pp. 14–19).

For even at this high altitude, we
can observe the flashes from meteorites; they begin to glow when
they enter the atmosphere. Auroras are also produced at a similar
altitude; they arise when high-energy particles from the sun penetrate
the earth’s atmosphere and interact with the gas molecules in it.

To conclude, we add some larger bodies to our artificial atmosphere,
e.g. some wooden chips. They simulate dust particles in the air.
We see the dust particles dancing around with lively “BROWNian
molecular motions”. But yet they always remain close to the “earth’s
surface”; for the weight of one of the wood chips is much greater than
that of a steel-ball molecule.

7 Furthermore, the composition of the atmosphere and its temperature also depend
on the altitude. The true distribution of these quantities can be determined only
through measurements. At high altitudes, Eq. (9.20) may fail even as an approxi-
mate description.

http://tiny.cc/rwqujy
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From the results of the preceding section, we see that the gravity
pressure in gases, as in liquids, decreases as we go upwards. Thus,
there must also be a “buoyant force” in gases, as well as in liquids.
As an example, we will describe the principle of the free balloon. It
is drawn schematically in Fig. 9.34.

Formally, we could again apply the principle derived in Sect. 9.4: The
buoyant force of the balloon is equal to the weight of the air which it
displaces. But it is expedient to consider the distribution of pressure
inside the balloon. This makes the situation intuitively clearer.

A free balloon is open at its bottom. There is no pressure difference
between the air and the filling gas at their boundary. Naturally, this
boundary is not completely sharp; it is simply a diffusion boundary
between two gases. The effective pressure difference can be observed
in the upper half of the balloon. There, the pressure of the filling gas
on the inner side of the skin of the balloon is greater than the pressure
of the air on its outer surface at the same height. Here is also where
the bleed valve of the balloon is attached (a in Fig. 9.34).

The upwards-directed force acting on the skin of the balloon is propor-
tional to the difference in density between the air and the filling gas. Both
densities decrease with increasing altitude. For the filling gas, this decrease
occurs within a loose balloon skin by gradually inflating the lower parts of
the skin. When the filling pressure is exceeded, the excess filling gas es-
capes through the opening at the bottom of the balloon. As the densities
decrease, the magnitude of their difference also decreases. At a certain
limiting value of the densities, the upwards-directed force is equal to the
weight of the balloon, and then the balloon remains suspended at a constant
altitude. A further increase in altitude requires a reduction of its weight,
e.g. by dropping off ballast.

The same pressure distribution as in a free balloon can be found in
gas lines in buildings. Just like balloons, they are surrounded by air.
Normally, the gas in the pipes is pressurized by a given level of ram
pressure; sometimes, however, this pressure is too low. Then the gas
doesn’t “want” to flow out of an open valve in the basement. On the
fifth floor of the building, however, this disturbance is not noticeable;
when a valve is opened there, the gas streams out forcefully.

Figure 9.34 The buoyancy of a free balloon.
The density %0 (Eq. 9.20) of the filling gas must
be smaller than that of the surrounding air (com-
pare Fig. 9.12), (Exercise 9.10). Note that the
difference in pressure (p2 � p1) is greatly exag-
gerated by the arrows.
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Figure 9.35 With increasing height, the gravity pressure of natural gas
decreases more slowly than that of air (BEHN’s pipe)C9.20C9.20. U. Behn,

Phil. Mag. 13, 607 (1907).

Video 9.9:
“BEHN’s tube”
http://tiny.cc/0vqujy

(Video 9.9)
(Exercise 9.11)

This situation can be elucidated by a demonstration experiment: Fig-
ure 9.35 represents the gas-pipe system as a glass tube. This tube
has a small opening for a gas flame at each of its ends; the right-
hand flame opening is 10 cm lower than the left-hand opening. We
now pass natural gas (mainly CH4) into the tube through a filling lug
somewhere along its length; its flow is restricted by a throttle valve.
Then we can readily light a flame at the upper opening a, but not at
the same-sized lower opening at b. At this opening b, there is no
pressure difference between the gas in the tube and the surrounding
air. However, at a, 10 cm higher, there is a noticeable pressure dif-
ference, which allows us to ignite a bright flame. When the tube is
held horizontally, so that both openings are at the same height, they
can both be ignited. When the tipping is reversed, so that opening
b is higher, a flame can be ignited only there. The setup is thus sur-
prisingly sensitive – it does not show the decrease in pressure with
increasing height, but rather only the difference in the decrease of the
gravity pressure in an air column and in a column of natural gas.

Finally, we mention the further example of chimneys in houses and
factories. They contain warm air and combustion gases with a lower
density than the surrounding atmosphere. The higher the chimney,
the greater is the pressure difference at its lower opening, and the
better is its “draft” (Exercise 9.9).

9.12 Gases and Liquids in Accelerated
Frames of Reference

Referring to our detailed treatment in Chap. 7, we can be brief here.
We first give some examples for a radially-accelerated frame of ref-
erence. Thus, in this whole section, we adopt the point of view of an
observer on a carousel or a swivel chair. Again, the swivel chair as
seen from above is rotating in a counter-clockwise sense.

1. Static buoyancy due to centrifugal forces. The principle of tech-
nical centrifuges. On the carousel, we set a horizontal sealed box
which is filled with water oriented in the radial direction (Fig. 9.36).
Under its lid, a ball is floating; its density is thus less than that of wa-
ter. When the carousel is rotating, the ball moves towards the center

http://tiny.cc/0vqujy
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Figure 9.37 A flame under the influence of
inertial forces

of the carousel (axis of rotation). Conversely, a ball which is lying on
the bottom of the box (density greater than that of water) will move
outwards, towards the rim of the carouselC9.21. C9.21. A further example of

buoyancy in an accelerated
frame of reference is a toy
balloon in an airplane during
takeoff or landing.

Explanation: The weight of the balls and their buoyancy due to the
weight of the water they displace are compensated by the bottom and
the lid of the box; the CORIOLIS forces are likewise compensated by
its side walls. The only remaining force is the centrifugal force. It
acts within the horizontal box just like the weight within a vertical
box. For the centrifugal force, the axis of rotation at the center is
“up”, and the outer rim of the carousel is “down”. An object in a liq-
uid experiences a buoyant force in an “upwards” direction, i.e. here
towards the axis of rotation. This buoyant force may be stronger or
weaker than the centrifugal force which is acting on the object. When
the latter predominates, the object will move towards the outer rim,
that is, figuratively, it “sinks to the bottom”. When the buoyant force
predominates, it will on the other hand “rise to the top”.

This static buoyancy in radially accelerated liquids forms the basis of
technical centrifuges, for example for separating butter-fat or cream
from milk. The fat, owing to its lower density, moves towards the
axis of rotation (cf. Sect. 16.6, last part.)

2. The deflection and curvature of a candle flame by centrifugal and
CORIOLIS forces. On the carousel, we set up a candle in a large glass
box, carefully protected against air currents. The flame tips towards
the axis of rotation (Fig. 9.37). In addition, it becomes curved to-
wards the right as seen from above.

Explanation: The vector addition of the weight and the centrifugal
force leads to a net force which slants downwards and outwards. The
gases in the flame have a lower density than the air, therefore the
force of buoyancy pushes them inwards and upwards. This buoyancy
also gives the flame gases a velocity, and therefore, in addition to
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Figure 9.38 Radial circulation in
a dish filled with liquid

centrifugal force, there will be a CORIOLIS force acting on the flame.
It will cause the flame to curve towards the right.

3. Radial circulation in liquids when individual liquid layers have
different angular velocities. In the center of our rotatable table, we
place a flat dish filled with water (Fig. 9.38). Then we give the table
a spin (constant angular velocity) and observe how the water gradu-
ally arrives at a stationary state. The water, driven by friction with
the walls of the dish, gradually takes on the same angular velocity,
initially in the neighborhood of the bottom and the side walls of the
dish. As a result, at first only the water molecules near the bottom
of the dish u are rotating and, driven by the centrifugal force (heavy
arrows), they begin to flow outwards. This flow starts up the circu-
lation shown by dashed lines. It can be readily verified using paper
snippets placed at the bottom of the dish.

After a certain time, the molecules of the upper water layers also attain
the full angular velocity of the dish, and then they also flow outwards.
The dashed circulation is thus slowed, the water level in the center of the
dish is lowered, while it rises at the outer circumference, until finally the
stationary parabolic surface shape is established (see Figs. 9.2 and 9.3).

A reversal of this behavior can also be observed. In a teacup, stirring
with a spoon initially gives the whole liquid the same angular veloc-
ity. However, friction with the bottom and sides of the cup reduces
the angular velocity of the lowest layers as soon as one stops stirring.
A radial circulation begins, but now in the opposite sense from that
shown in Fig. 9.38. It causes the tea leaves which had been lying on
the bottom of the cup to swirl towards the center.

This discussion of the circulation of water has already led us beyond
the topic of liquids and gases at rest. This takes us through a smooth
transition to our next chapter: Liquids and gases in motion.

Exercises

9.1 The two cylinders of a hydraulic press have diameters of d1 D
4 cm and d2 D 75 cm. A force F1 D 10�1 N acts on the smaller
cylinder. Find the force F2 which would have to press on the larger
cylinder in order to maintain equilibrium. (Sect. 9.3)
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area A1, and the larger piston has an area A2. The short end of a lever
is connected to the smaller piston. A force F1 D 200N is acting at
the other end of the lever, whose long arm is 10x longer than its short
arm. Find the area A2 required if the press is designed to lift a block
of mass 103 kg. (Sect. 9.3)

9.3 Determine the buoyant force F acting on a lead ball of diam-
eter d in water. (Sect. 9.4)

9.4 A hollow cylindrical buoy of height l D 2m and diameter
2r D 1m is made of sheet iron with a thickness of d D 0:5 cm, and
is designed to be held under water. Determine the required force F.
Iron has a density of % D 7:8 g/cm3. (Sect. 9.4)

9.5 A rigid balloon of volume 1000m3 is filled with hydrogen.
The mass of the empty balloon skin and its basket is m D 200 kg.
Find the force F which would be required to hold the balloon on the
ground. (Densities: air, 1.3 kg/m3; hydrogen, 0.09 kg/m3.) (Sect. 9.4)

9.6 A hydrogen-filled, sealed, rigid balloon with a volume of
10 liters is hanging from a balance, which indicates a mass of 7 g
(i.e. a weight of 0.0687N). The air pressure is 1:013 � 105 Pa (D
1 bar). Which mass m would the balance indicate if the air pressure
were to decrease by 2.6% to 0:986 � 105 Pa while the temperature
remained constant? (The density of air at the higher pressure is
% D 1:3 kg/m3.) (Sect. 9.4)

9.7 Compare the energy which is necessary to bring a water
molecule from the bulk to the surface of the liquid (surface work),
with the energy which is required to expel a molecule from the liquid
into the gas phase (energy of evaporation). The latent heat of vapor-
ization of water (see Sect. 13.4 and Fig. 14.3) is lv D 2:5 � 106W s/kg
at T D 0 °C (Fig. 13.7), and the number density in the liquid phase
of water is NV D 3:3 � 1022 cm�3. (Sect. 9.5)

9.8 In Video 9.6, “Coalescence of Hg droplets”, find the number
of mercury droplets as a function of time, N.t/. Show that N.t/ is an
exponential function and find the average lifetime � (note that in the
video, the liquid is not alcohol, as mentioned in the text, but rather
water). (Sect. 9.5)

9.9 A chimney of length l D 30m contains air at a temperature of
tc D 200 °C. The air outside the chimney has a temperature to D 0 °C
and a pressure of po D 1:013 � 105 Pa. Calculate the pressure differ-
ence po � pc, where pc is the pressure inside the chimney at ground
level. (This pressure difference drives the gas inside the chimney
upwards. For simplicity, we assume in this calculation that the gas in-
side the chimney is air and that effects due to its flow are negligible.)
Note: Take the value of the constant in BOYLE’s law (Eq. (9.13))
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from Fig. 9.23 at the two temperatures and compute the pressure dif-
ferences �p D %g�h with �h D 30m, both inside and outside the
chimney. (Sects. 9.6 and 9.11)

9.10 In Fig. 9.34, the upwardly-directed force which pushes up the
balloon is explained in terms of the difference between the decrease
in the barometric pressure of the surrounding air and that of the hy-
drogen inside the balloon from its bottom to its top surface. Calculate
this pressure difference (p2 � p1 in Fig. 9.34), and compare the force
that it produces with the static buoyant force (Fig. 9.12). To simplify
the calculation, choose the shape of the balloon to be a cylinder with
its symmetry axis upright, with its bottom surface open. Let its cross-
sectional area be A and its height h. Neglect the weight of the empty
balloon. (Sect. 9.11)

9.11 When BEHN’s pipe (Fig. 9.35) is tipped so far that the lower
flame nearly goes out, the pressure difference between the air outside
and the gas inside the pipe at that position is practically zero, and
the pressure is thus equal to p0 D 103 hPa (D 1 bar). Compute the
pressure difference �p between the gas and the surrounding air at
the upper opening. Take the height difference to be h D 0:1m, and
assume that the gas is pure methane (CH4). The densities of air and
methane are %air D 1:3 kg/m3 and %methane D 0:72 kg/m3 (these val-
ues hold at 0 °C, which we assume for simplicity here). (Sect. 9.11)

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_9) contains supplementary material, which is avail-
able to authorized users.
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and Gases 10
10.1 Three Preliminary Remarks

1. Liquids and gases differ in the formation of their surfaces and in
their volume elasticity. Nevertheless, many aspects of the phenomena
in both liquids and gases at rest can be treated in a similar manner. –
One can go even further in unifying the treatment of motions in liq-
uids and gases. Up to velocities of around 70m/s, air can for example
be considered as a non-compressible liquid; this velocity is still much
smaller than the velocity of sound in air (340m/s, cf. Sect. 14.10). In
this chapter, for brevity we will use the word “liquid” as a collective
termC10.1. C10.1. In the literature, the

word “fluid” is often used as
a collective term for liquids
and gases, and will be used
in this book when both are
expressly meant.

It includes liquids both with and without free surfaces.

2. At high velocities, gases are compressed and their temperatures
change. Processes of this type cannot be understood without the con-
cepts of thermodynamics. They will therefore be discussed later, in
Sect. 18.7.

3. In the mechanics of solid bodies, motions in basic experiments are
perturbed quantitatively – more or less – by friction, but they are not
changed qualitatively. We therefore treated friction initially as a side
effect and only in Sects. 8.9–8.10 did we make some quantitative
statements about it. – In the motions of liquids and gases, however,
even the qualitative aspects of the phenomena are influenced deci-
sively by friction. Therefore, we will treat them differently from the
motions of solid bodies: We place a quantitative discussion of fric-
tion right at the beginning and treat motions in light of its crucial
influence.

10.2 Internal Friction and Boundary
Layers

Friction between solid bodies, i.e. external friction, is hard to grasp
physically. In contrast, the friction which occurs within liquids, in-
ternal friction, can be rather clearly summarized. We demonstrate
the essentials with two experiments:

In Fig. 10.1, we show a flat metal plate B which is being pulled
slowly upwards from a glass basin filled with glycerine. Before the
experiment was started, the lower half of the glycerine was colored

211© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_10
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Figure 10.1 The two dashed lines show the two
boundary layers of thickness D which have formed
on either side of a moving plate B (‘snapshot’ image)

(e.g. with KMnO4), so that at least one horizontal plane within the
liquid was made visible (at the interface between the colored and un-
colored liquid). One can imagine that a number of other horizontal
planes could be similarly marked. During the motion, all of these
planes on both sides of the moving plate are distorted within a broad
region. This region is called the boundary layer. Its thickness D
increases in the course of the motion. The innermost part of the
boundary layer sticks to the moving solid object and moves with the
same velocity u. The next layers, further out, are also pulled along,
but their velocities become smaller with increasing distance from the
plate. Thus, within the boundary layer, there is a velocity gradient,
@u=@x.

When friction plays a role in a motion, one requires a force not only
to accelerate the moving object up to its final velocity u, but also
to maintain that velocity at a constant value (Sect. 5.11). In simple
cases, this force F is proportional to the velocity u, that is

F D k u : (10.1)

The equally strong counter-force F2 D �F which is directed oppo-
sitely to u is the frictional force or resistance (in aerodynamics, it is
also called ‘drag’). The sum of these two forces F C F2 is zero, so
that the velocity u remains constant. The proportionality factor k can
be expressed as a formula when the geometric situation is not too
complicated. We will give some examples here and in the following
section.

In Fig. 10.2, the boundary layer from the upwards-moving plate
reaches out to the walls of the basin, so that their distance x from the
plate is less than the thickness D which the boundary layer would
have in a larger basin. In this case, the velocity gradient within the
layer is practically linear; this is indicated in the figure by arrows
whose lengths decrease uniformly with increasing distance from the
moving plate. We find that k is proportional to the surface area A of
the moving plate and inversely proportional to x, i.e. k D �A=x. The
proportionality factor � depends on the liquid; it is a material constant
and is called the coefficient of viscosity (or simply the “viscosity”;
see Table 10.1). We then have

F D k u D �
A

x
u : (10.2)
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flow. This means that the flow follows the same pattern in
all the planes parallel to the page.

Table 10.1 The viscosities of some fluids

Substance Temperature
in °C

Viscosity �

in N s/m2

Air 20 1:7 � 10�5
CO2, liquid 20 7 � 10�5
Benzene 20 6:4 � 10�4
Water 0 1:8 � 10�3

20 1:0 � 10�3
98 0:3 � 10�3

Mercury �21.4 1:9 � 10�3
0 1:6 � 10�3

100 1:2 � 10�3
300 1:0 � 10�3

Glycerine 0 4:6

20 8:5 � 10�1
Pitch 20 107

The internal friction within liquids may be compared to the shear
forces in solids. The quotient F=A could be termed the ‘shear stress
�’. But there is a fundamental difference: The shear stress in solids
increases with increasing strain or distortion. The internal friction
in liquids, however, is proportional to the velocity of the distortion.
Liquids at rest exhibit nothing at all comparable to a shear stress. In
them, only normal stresses can occur (cf. Sect. 9.2).

The thickness D of the boundary layer can be estimated. One finds

D �
s

�l

%u
(10.3)

.l D length of the moving body; % D density of the liquid/:
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Derivation
The liquid within the boundary layer (Fig. 10.1) is being accelerated. It
receives a kinetic energy E � 1

2mu
2 (simplifying the velocity distribution).

The accelerating force, the force F which is equal and opposite to the force
of friction in Eq. (10.2) performs the work W � � A

D ul along the length l.
Setting E and W equal yields

1

2
mu D �

A

D
l :

We replace the mass m of the accelerated liquid by the product of its vol-
ume AD and its density % to obtain

1

2
%ADu D �Al

D
;

or, for the thickness of the boundary layer (with the prefactor
p
2), equa-

tion (10.3). – Numerical example for water: � � 10�3 N s/m2, % D
103 kg/m3, l D 0:1m, u D 10�2 m/s, D � 3mm.

10.3 Laminar Flow: Fluid Motions
Which Occur when Friction Plays
a Decisive Role

The fluid motion observed in Fig. 10.2 is an example of a “laminar”
(i.e. ‘layered’) flow. It is generally characterized by a velocity distri-
bution which is constant over time, and it occurs when the velocity u
is sufficiently small. We offer three additional examples:

First, we consider a liquid flowing through a narrow tube with a cir-
cular cross-section and length l. Due to friction, the velocity distri-
bution within the liquid is not uniform. At the walls of the tube, the
liquid is not moving; its velocity increases towards the center of the
tube and is maximal there. Figure 10.3 shows an example. Just like
the planar layers of liquid in Fig. 10.2, the coaxial liquid layers within
the tube move past each other. The force necessary to overcome the
frictional resistance is found in this case to be

F D k um D 8��lum : (10.4)

um is the mean value of the flow velocity, defined by the equations

Mean flow velocity um D Volume current PV
Cross-sectional area of the tube, �R2

and

Volume current PV D Volume V that flows through the area �R2

Time t required for this flow
:

The force F is often produced by two unequal pressures p1 and p2 at
the ends of the tube or pipe. We then have F D �R2.p1 � p2/; and
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a tube with an open cross-section of 6mm � 6mmC10.2 C10.2. In a tube of circu-
lar cross-section and also
in a channel formed by pla-
nar parallel plates, in the
stationary state of flow, one
expects a parabolic veloc-
ity profile (see e.g. Noakes,
Cath and Sleigh, "Real Flu-
ids. An Introduction to Fluid
Mechanics" University of
Leeds (2009)). This is shown
in Fig. 10.3, but only as an
approximation. A possible
explanation for this is the
experimental difficulty of
establishing precise initial
conditions for the flow.

Figure 10.4 A streamline apparatus for demonstrating flow fieldsC10.3,

C10.3. The fluid flow shown
in the “streamline appara-
tus” (Fig. 10.4) is a so-called
HELE-SHAW flow, which
occurs in flat channels as
a laminar and practically two-
dimensional flow field. The
“streamline images” thus
obtained (Fig. 10.5 and the
later figures 10.10, 10.14,
10.16, 10.17 and 10.35) are
the same as those of potential
flows (i.e. ideal, friction-
less flows; see e.g. Etienne
Guyon, Jean-Pierre Hulin,
Luc Petit, and Catalin
D. Mitescu, Physical Hydro-
dynamics, Oxford University
Press, 2nd edition (2015),
Chap. 6.)

shown at the left as a plan view from above and on the right as a profile view.
The upper chambers are connected through holes with the flat channel (the
spacing of the glass plates is 1mm). These holes are offset by one-half their
spacing in the two chambers. – First, both chambers are filled with water,
then some ink is added to the water in the right chamber. – Left: An example
of parallel streamlines. For observing the shadow image on a screen, one can
easily show the flow in a horizontal direction; two right-angle prisms can be
used to rotate the optical ray path by 90°. (Video 10.1)

Video 10.1:
“Model experiments for
streamlines”
http://tiny.cc/8wqujy

http://tiny.cc/8wqujy
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for the volume current, we obtain

PV D �

8

R4

�

p1 � p2
l

: (10.5)

This equation is called the HAGEN-POISEUILLE lawC10.4,

C10.4. It was discovered in-
dependently by G. HAGEN

(1797–1884), hydraulic
engineer in Königsberg
(published in Poggendorff ’s
Annalen der Physik und
Chemie 46, 423 (1839)),
and by J.-L.-M. POISEUILLE

(1799–1869), a physician in
Paris (Comptes Rendus des
Séances de l’Académie des
Sciences 11, 961 and 1041
(1840)).

and it plays
an important role in the physiology of our blood circulation.

The system of blood capillaries in the human body has a length of �
3 � 104 km (this is of the order of magnitude of the circumference of the
earth!). Increased muscular activity demands an increase in blood flow PV .
This is very effectively accomplished by an expansion of the capillaries
(/ R4!). The expanded network of capillaries must then be filled with
blood; the required amount of blood is taken out of the blood reservoirs
(in the splanchnicus region) (cf. H. REIN, Physiology)C10.5.C10.5. POHL refers here

to the physiology text by
H. REIN. Modern edition:
R.F. Schmidt, G. Thews, and
F. Lang (eds.), Physiologie
des Menschen, Springer-
Verlag, 28th ed. (2000),
Chap. 24. English: see
e.g. Textbook of Medical
Physiology, Guyton and
Hall, 12th ed. by John
E. Hall, Saunders-Elsevier,
Philadelphia (2011).

As a second example, we replace the tube by a very flat channel,
formed by two glass plates (of length l, width B, spacing of the plates
D d). In a channel of this type, we can readily visualize the paths of
individual liquid ‘volume elements’. We dye the liquid and obtain an
impressive image of the streamlines (Fig. 10.4). Quantitatively, we
haveC10.6

C10.6. The derivation of
Eq. (10.6), and of the other
equations in this section,
can be found for example in
A. Sommerfeld, Mechanik
der deformierbaren Medien,
Akademische Verlagsge-
sellschaft, Leipzig 1957.
English: Mechanics of De-
formable Bodies (Lectures on
Theoretical Physics), Arnold
Sommerfeld, Academic Press
(1950).

F D k um D 3�
Bl

d
um : (10.6)

As a third example, we add a circular obstacle to this laminar fluid
flow. The streamlines then show the picture reproduced in Fig. 10.5.
If we imagine it to be three-dimensional, it would show the laminar
flow around a sphere in a fluid (compare Fig. 5.21). If the sphere or
ball (of radius R) is moving slowly enough at a velocity u relative to
the fluid, then the required force is given by STOKES’ law,

F D k u D 6��Ru : (10.7)

When the fluid is at rest, F is usually the weight of the ball, reduced
by its static buoyancy. Equation (10.7) finds many applications.

Examples
1. Measurement of the viscosity �.
2. Measurement of the radii of small spheres which are suspended in the air
(droplets). This method is often more convenient than making microscopic
measurements.
3. Without the frictional resistance“Without the frictional re-

sistance of their tiny water
droplets, the clouds would
fall on our heads.”

of their tiny water droplets, the clouds
would fall on our heads. As it is, they just sink quite slowly, evaporating
from their lower sides and reforming at their upper sides.
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a sphere or a cylinder (photographic
positive image with bright-field illumi-
nation) (Video 10.1) Video 10.1:

“Model experiments for
streamlines”
http://tiny.cc/8wqujy

10.4 The REYNOLDS Number

The flow motions described in the previous section are observed only
at sufficiently low velocities and/or dimensions. When velocities and
dimensions are larger, the flow becomes turbulent. – Turbulence
refers to a strong mixing of the liquidC10.7 C10.7. See for example

S.B. Pope,
Turbulent Flows, Cam-
bridge University Press
(2000).

with swirling and eddies
(vortices). It can be most simply observed using a colored stream
of water in a transparent tube. Figure 10.6 shows a liquid flow be-
fore and after the onset of turbulence. The turbulent motions produce
an additional viscosity, called the apparent viscosity, which can be
orders of magnitude larger than the normal viscosity (Eq. (10.2)).
Equation (10.4) is no longer applicable, and the required force F in-
creases approximately as the square of the velocity.

Figure 10.6 The formation of turbulence in a stream of water within a tube,
and measurement of the REYNOLDS number as a demonstration. On the left
is an apparatus suitable for shadow projection (tube: 15mm � 15mm clear
opening). In its center is a laminar flow. On the right, a turbulent flow is
shown. The flow velocity is computed from the amount of water that flows
out, the time and the cross-sectional area of the tube (Video 10.2). Video 10.2:

“Turbulence of flowing
water”
http://tiny.cc/cxqujy

http://tiny.cc/8wqujy
http://tiny.cc/cxqujy
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Figure 10.7 The “sensitive flame”; at
the left laminar, at the right turbulent
(and noisy). The onset of turbulence can
be produced by making a soft hissing
sound or shaking a key ring (at a dis-
tance of several meters).

The turbulence of a stream of gas which is burning as a “sensitive flame”
(Fig. 10.7) is quite impressive.

The turbulent motions in the boundary layer between the earth and
its atmosphere are familiar; they are known as wind. When the turbu-
lence is strong, we speak of gusts. The altitude of the boundary layer
can be several kilometers. In a blizzard, the turbulence is especially
apparent1.

In a turbulent flow, regions of the liquid which are randomly varying
in terms of size and composition are combined into “individuals of
higher order”. During their lifetimes, which depend strongly on their
sizes, they are subject to common motions and rotations. When they
decay or shed off pieces, these can again combine into new, short-
lived individuals.

The transition from laminar to turbulent flow is determined by a “crit-
ical” value of the ratio

Re D Work of acceleration

Frictional work
D lu%

�
: (10.8)

l is a length which is characteristic of the size of the body, e.g. the radius
of a tube, boundary-layer thickness, etc.; u is the velocity of the liquid
relative to a solid body; in a tube, for example, it is the mean value of the
flow velocity as defined above; % D density of the liquid; � D viscosity
of the liquid. The ratio �=% is often called the kinematic viscosity, and, to
distinguish it, � is then called the dynamic viscosity.

1 In the evening, the wind “goes to sleep” (but only near the ground!). – The
reason: Turbulent motions lift cooler and therefore more dense air upwards, dis-
placing the warmer air there downwards, with its lower density. Both require
work, which is performed at the cost of the kinetic energy of the air, slowing the
winds near the ground.
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called the REYNOLDS number.

To derive Eq. (10.8), we make use of “dimensional analysis”C10.8. C10.8. Details of the deriva-
tion of the REYNOLDS num-
ber can be found in textbooks
on hydrodynamics, e.g.
Etienne GUYON, Jean-Pierre
HULIN, Luc PETIT, and
Catalin D. MITESCU, Phys-
ical Hydrodynamics, Oxford
University Press, 2nd edition
(2015), Chaps. 1 and 2.

This
means that we take all of the lengths which occur in the problem to be
proportional to a length l which characterizes the size of the body. Fur-
thermore, numerical factors are left off. For the work of acceleration, from
Sect. 5.2, we have

Wa D 1
2mu

2 D l3%u2 : (10.9)

The frictional work is found using Eq. (10.2):

Wr D F l D �A
u

l
l D �l2u : (10.10)

Taking the ratio of these two expressions then leads to Eq. (10.8).

Small REYNOLDS numbers mean that the frictional work is pre-
dominant, while large numbers characterize the predominance of
the work of acceleration. The ideal, frictionless fluid corresponds
to a REYNOLDS number of 1. – The “critical” values of the
REYNOLDS number which lead to turbulence can be determined
only from experimentC10.9. C10.9. Also the “sufficiently

low velocities” mentioned at
the beginning of this section
can be determined only from
experiments.

In smooth-walled tubes, Re must be
greater than 1160 to cause turbulence.

For small spheres in air, Re < 1 is the condition for avoiding turbulence
and guaranteeing the validity of STOKES’ law (Eq. (10.7)). – In the stream-
line apparatus (Fig. 10.4), we are dealing with REYNOLDS numbers of
around 10.
The air we breathe flows through our nasal channels without turbulence. In
abnormally expanded noses, however, the critical values of the REYNOLDS

number and the velocity can be exceeded, and then strong turbulence can
occur, and it increases the frictional flow resistance. Noses which are in-
ternally abnormally large thus seem to be continually blocked.

The REYNOLDS number plays an important role in every quantitative
treatment of fluid flow. Experiments on particular geometric shapes
can be first carried out with models of convenient dimensions, and
the results can then be scaled up to full-size dimensions. To this
end, one must simply choose the flow velocity, density and dimen-
sions to guarantee the same REYNOLDS numberC10.10. C10.10. This holds as long

as one can consider the fluid
to be incompressible, i.e. the
velocities must remain small
compared to the velocity of
sound in the fluid.

For aircraft,
the REYNOLDS numbers are on the order of several 107. This has
an annoying consequence for measurements; it makes the study of
technically important questions on small models more difficult. By
lowering the temperature to that of liquid nitrogen (77K) and increas-
ing the working pressure to around 10 bar, the viscosity of the air can
be decreased while simultaneously increasing its density. This allows
realistic measurements on small models at around the same velocities
as for the full-size aircraft.
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10.5 Frictionless Fluid Motion
and BERNOULLI’s Equation

From now on, we will follow the same path that we have already
taken in discussing the mechanics of solid bodies: We first attempt
to observe motion that is, as far as possible, free of the influence
of friction; that is, we will try to reduce the effects of the boundary
layer. For this purpose, we use a liquid container whose dimensions
are large compared to the thickness of the boundary layer resulting
from the motion that we wish to study.

A suitable “flow apparatus” is illustrated in Fig. 10.8. It consists of
a basin which is 1 cm wide and filled with water. Aluminum flakes
are added to the water as suspended particles. Objects of various
shapes (profiles) can be moved through the basin, loosely touching
the glass walls. In Fig. 10.8, we see an object with a circular profile,
and in Fig. 10.9, there are two objects, a and b, which are held by
invisible rods and together form a bottleneck. For photographic im-
ages, the basin is moved along a track at a constant velocity2. The
Al flakes show the magnitude and direction of the flow velocity at
every moment throughout the whole basin in the projection. In an
exposure of around 0.1 s, the path of each flake is seen as a short
streak. Each of these streaks is practically a straight line and rep-
resents, briefly stated, the velocity vector of a single water ‘volume
element’. With longer exposure times, the streaks combine to show
streamlines. They indicate the overall pattern of velocity directions,
that is the flow field. – the image of the flow can be stationary, i.e. in-

Figure 10.8 Flow apparatus. Here, again, for projection
onto a wall or screen, it is advisable to rotate the image
by 90°, as e.g. in Figs. 10.9, 10.26, 10.32 and 10.34.
(Video 10.3)Video 10.3:

“Fluid Flow around obsta-
cles”
http://tiny.cc/fcgvjy

2 For observations projected on the wall, the fixed setup of the basin sketched in
Fig. 10.8 is sufficient. The eye of the observer follows the object, and thus sees the
liquid flowing past it.

http://tiny.cc/fcgvjy
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Figure 10.9 Streamlines passing through a bottleneck; the observer (camera)
and the tube are at rest, while the liquid flows through the latter

dependent of time, or at a fixed position. Then the streamlines show
in addition the whole path followed by the volume elements of the
liquid one after another.

The time-exposure image shows the flow field in its clearest form,
as seen in Fig. 10.9. The image projected onto a wall or screen is
more lively. Often, however, one is striving for an image without too
many details, with only a few clear streaks. In this case, a strange
circumstance comes to our aid: We can imitate the flow field of
a stationary flow which is practically free of the effects of friction
in a model experiment. The streamline apparatus which we have al-
ready seen in Fig. 10.4, with its laminar flow, can serve this purpose.
In spite of the completely different conditions for producing the flow,
the course of the streamlines is that of an ideal, frictionless liquid
flow. Figure 10.10 shows an image made in this way. It corresponds
to Fig. 10.9. But in contrast to Fig. 10.9, it shows only amodel exper-
iment; we should keep that in mind. Formally, however, the image is
accurate, and its simplicity makes it clear and easy to remember.

These liquid flow patterns, practically free of the effects of friction,
which we can illustrate with such model experiments, can be main-
tained for only very short times. They are roughly analogous to the
example from the mechanics of solid bodies of a ball moving free
of forces at constant velocity; this is an idealized limiting case. But
an important law holds for this case, which forms the basis for all
that follows. It concerns the “static” pressure, i.e. the pressure of the
liquid against a surface placed parallel to its streamlines. In a first,
qualitative form, this law can be formulated as follows:

Figure 10.10 Streamlines
in a model experiment (pos-
itive photographic image in
bright-field illumination, like
Figs. 10.14, 10.16, 10.17 and 10.35)
(Video 10.1) Video 10.1:

“Model experiments for
streamlines”
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Figure 10.11 Distribution of the static pressure around a flow through a bot-
tleneck or waist. The three vertically-mounted glass side tubes serve as water
manometers.

Figure 10.12 The static pressure in a waist. It is lower than atmospheric
pressure in this case. A mercury column serves here as manometer.

In regions where the streamlines are pressed together, or the flow
velocity is increased, the static pressure p of the fluid is lower than in
the surrounding regions.

In order to make this law intuitively clear, the two experiments shown
in Figs. 10.11 and 10.12 are usefulC10.11.C10.11. Here, and in the

following experiments in this
section, we are dealing with
laminar, stationary flows.

Figure 10.11 shows the
static pressure of the flowing liquid in front of, within and behind
the bottleneck. The figure is schematic. The diameter of the tube
is not yet large compared to the thickness of the boundary layer
(Sect. 10.2); the influence of friction is therefore only partially re-
duced. As a result, the static pressure behind the bottleneck does not
attain precisely the same value as before it. – In Fig. 10.12, a con-
siderably higher flow velocity is shown. At this velocity, the static
pressure of the water in the bottleneck is less than the surrounding air
pressure. The flowing water can “suck in” mercury within a manome-
ter and pulls up a mercury column of several centimeters in height
(“jet pump” principle).

The quantitative relation between the pressure and the velocity of the
flow is found by applying the law of conservation of energy. We con-
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Its static pressure and its velocity before the bottleneck are p0 and u0;
within the bottleneck, they are p and u. The liquid must be acceler-
ated from u0 to u on entering the bottleneck, in order to pass through
it. This requires the work

V.p0 � p/ D 1
2m.u2 � u20/ ; (10.11)

or, after dividing by the volume V,

pC 1
2%u2 D p0 C 1

2%u20 D const. (10.12)

1
2%u2 is added here to the pressure p; it must therefore itself represent
a pressure. It is called the dynamic or stagnation pressure. The sum
on the right of the equation is constant. It must also represent a pres-
sure, and it is called the ‘dynamic head’ or total pressure p1. We have
thus obtained the important BERNOULLI equation,

p C 1
2%u2 D p1

static pressure stagnation pressure total pressure
:

(10.13)

Measurement of the static pressure p in a flowing liquid is accom-
plished by the setup shown in Fig. 10.12. The opening which leads
to the manometer lies parallel to the streamlines of the fluid flow. For
measurements within wide flow paths, one places the opening, usu-
ally in the form of a sieve or slit, in the side of a pressure probe. It
is connected to a manometer via a hose or tube. This is illustrated in
Fig. 10.13.

The total pressure p1 is measured in a stagnation region. One is il-
lustrated in the model experiment in Fig. 10.14: At the center of the
stagnation region (stagnation point), a streamline strikes an obsta-
cle in a perpendicular direction. The connection to the manometer
(PITOT tube) is made at this point. Here, the liquid is at rest, that is
u D 0. The static pressure is, from Eq. (10.13), equal to the total pres-
sure p1 at this point. The manometer indicates the total pressure p1.

The stagnation pressure is determined as the difference of the total
pressure p1 and the static pressure p. The stagnation pressure, from
Eq. (10.13), is given by

1
2%u2 D .p1 � p/ :

Figure 10.13 Sectional view of a pressure probe
with a ring-shaped slit for measuring the static
pressure within a flowing liquid
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Figure 10.14 A PITOT tube for measuring the total pressure in a stagnation
region; in natura, the tube is bent at a right angle, usually with an outer
diameter of only 2 to 3mm (model experiment with the streamline apparatus
(Fig. 10.4); the contours of the tube were shaded after exposing the photo)

Figure 10.15 Cross-setional view of a PRANDTL

tube, a combination of a PITOT tube and a pres-
sure probe. The liquid-column manometer which
is attached on both sides to the tubes 1 and 2 in-
dicates the stagnation pressure directly as the
difference of the total pressure p1 and the static
pressure p.

The total pressure p1 is measured with a PITOT tube, and the static
pressure p with a pressure probe. For technical measurements, it is
expedient to combine the two devices (“PRANDTL tube”, Fig. 10.15).
Stagnation-tube measurements are the preferred method for deter-
mining the velocity in flowing fluids.

Figures 10.11 and 10.12 elucidate the decrease of the static pressure p
with increasing flow velocity u. Numerous other demonstration ex-
periments can also show this. We give two examples: In each one,
the flow field is imitated by a model using the streamline apparatus
(Fig. 10.4, HELE-SHAW flow).

1. Figure 10.16 shows a circular disk in model experiments with three
different orientations within a flow field. Even the slightest tilting
causes an asymmetry in the distribution of the static pressure, which
produces a torqueC10.12.C10.12. An example of an

application is the RAYLEIGH

disk (Sect. 12.24).

When the tilting is stronger (Fig. 10.16b),
the torque can be readily seen: The regions of expanded streamlines
press against the disk on one side, while the regions of compressed
streamlines pull on the opposite sides. In the real experiment, the
disk in Fig. 10.16b would be rotated in a clockwise sense. The first
position (Fig. 10.16a) proves to be labile; the disk swings back and
forth, until it reaches a stable orientation perpendicular to the flow
(Fig. 10.16c). We can observe this by letting let a stiff sheet of paper
fall to the floor.

2. Two spheres are moving within a fluid. The line connecting
their midpoints is perpendicular to the direction of the unperturbed
streamlines. The model experiment shown in Fig. 10.17 indicates an
increased flow velocity u between the two spheres. Therefore, the
static pressure p between the spheres is reduced, and they “attract”
each other via “hydrodynamic forces”. Figure 10.18 shows a similar
experiment. In a water basin, the wooden ball at left stands upright
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Figure 10.16 Three model experiments on the flow around a disk. The disk
and the observer are at rest, the liquid is flowing. In the center image, one can
see the two stagnation points. This demonstrates the occurrence of a torque
around the center of gravity of the disk. (Video 10.1) Video 10.1:

“Model experiments for
streamlines”
http://tiny.cc/8wqujy
(see also Comment C10.6 on
Fig. 10.4)

Figure 10.17 The streamlines between
spheres or cylinders; model experiment

Figure 10.18 The attraction of a ball at rest
and a moving ball in water

as an inverted gravity pendulum. A second ball is moved past the
first one at a certain distance by a pushrod. The attraction of the
two wooden balls is clearly visible. A buffer (at bottom) keeps them
from colliding. – We can imagine two ships passing each other as
a large-scale version of the two balls. In narrow navigation channels,
for example in a canal, there is always a danger that the ships will be
pulled together and collideC10.13. C10.13. The same attrac-

tion affects a ship which
passes too close to the bank
of a canal.

It can be reduced only by proceed-
ing very slowly; for, as seen in Eq. (10.13), the stagnation pressure
1
2%u2 increases as the square of the velocity, and with it the attractive
force between the balls (or ships).

http://tiny.cc/8wqujy
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10.6 Flow Around Obstacles. Sources
and Sinks. Irrotational or Potential
Flows

In the flow fields that we have considered thus far, it is clear that
two different flows overlap. First of all, there is a parallel flow of
the liquid without the object placed in it (as shown in model form in
Fig. 10.4); secondly, after the object is placed in that flow, there is
an additional flow around it. This additional avoidance flow (or ‘flow
around obstacles’) can be observed by itself. One need only modify
the method of observation: Up to now, we have considered the object
and the observer (camera) to be at rest, and the liquid was allowed
to flow past them. We now adopt the opposite possibility: The liquid
(basin) and the observer are at rest, but the object is moving. (For
projection of the observations, one makes use of limited back-and-
forth motions.) – With this second method of observation, we find
for example the left-hand part of Fig. 10.19 instead of Fig. 10.16c,
and the right-hand part instead of Fig. 10.16b. Corresponding images
for the avoidance flow around a sphere and a cylinder can be seen in
Figs. 10.20 and 10.21. In the direction of motion, the edges of the
object are washed out and appear as half-tones in the pictures. This
was repaired after the fact by shading in the figures. The streamlines
begin at one of the shaded regions; there are sources there. They
end at the other shaded region, where there are sinks. The flow fields
move along with the objects; they are thus no longer stationary.

The flow field of a single point source (C) or sink (�) has spherical
symmetry; a cross-section is sketched in Fig. 10.22. The two shaded
areas denote the same small volume in two positions which follow
each other in time. The liquid thus flows in a radial direction and
without rotating. – The source is assumed to release a liquid volume
V within the time t. The quotient V=t D q is called its productiv-
ityC10.14.C10.14. The ‘productivity’ q

mentioned here again refers
to a volume current, as al-
ready defined in Sect. 10.3.
Its connection to the flow
velocity u leads directly to
Eq. (10.14).

For a source, the productivity has a positive sign; for a sink,

Figure 10.19 The parallel flow around a perpendicular and a tilted plate;
observer and liquid are at rest, and the plate is moving (Video 10.3)

Video 10.3:
“Fluid flow around obsta-
cles”
http://tiny.cc/fcgvjy

http://tiny.cc/fcgvjy
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flow around a sphere; ob-
server and liquid (basin)
are at rest, and the sphere is
moving

Figure 10.21 The avoidance flow around a cylinder which is parallel to a par-
allel flow; the observer and the liquid (basin) are at rest, and the cylinder is
moving

Figure 10.22 The flow field of
a source (or a sink, with reversed di-
rections)

a negative sign. Then for the velocity u of a volume element at a dis-
tance r from the source or sink, we find

u D ˙ q

4�r2
: (10.14)

Irrotational flow fields can be combined by simple superpositions.
This provides a considerable simplification in their mathemati-
cal treatment. Thus, in Fig. 10.23, the two radially-symmetric
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Figure 10.23 The flow
field of a source and
a closely neighboring
sink (a “dipole”)

fields of a source (C) and of a neighboring sink (�) have been
superposedC10.15.C10.15. Since the velocity is

a vector, flow (velocity) fields
are vector fields, and their
superposition is subject to
the rules for vector addition.
Thus, for example, the image
of the field lines of a dipole
in Fig. 10.23 is formed by
superposition of the fields of
a source and a sink.

The flow field which results is called a dipole
field. It has many applications. At large distances, the flow fields of
Figs. 10.19 through 10.21 are the same as a dipolar flow field. They
can all be replaced by dipole fields.

We will encounter Eq. (10.14) again later when we are dealing with elec-
tricity and magnetism (Vol. 2). Then, it will not contain a dependence
on a velocity u, but rather that of an electric or magnetic field on a dis-
tance r. Instead of the productivity ˙ q (m3/s), the electric charge ˙ q
(in ampere seconds) or the magnetic flux ˙˚ (in volt seconds) will en-
ter the equations. Therefore, the streamline patterns of the avoidance flow
are formally just the same as the field-line patterns in electrodynamics.
Figure 10.21 is thus similar to the magnetic field lines from a long coil
through which an electric current is flowing, and Fig. 10.19 (left) is like
the electric stray field of a parallel-plate condenser (see Vol. 2, Chap. 2,
Fig. 2.5). Similarly, Fig. 10.20 resembles the field of an electrically- or
magnetically-polarized sphere.

All these vector fields are characterized by a potential field from
which they can be derived by taking its gradient. The flow field of
a frictionless liquid is also such a vector field; we thus refer to it as
a potential flow fieldC10.16.C10.16. A good introduc-

tion to the theory of potential
flows, which describes the
flow of frictionless fluids,
can be found for example
in R.P. Feynman et al., Lec-
tures on Physics, Addison-
Wesley, Reading, Mas-
sachusetts, U.S.A. (1964),
Vol. II, Chap. 40. They can
be read online at http://www.
feynmanlectures.caltech.edu/.

10.7 Rotations of Fluids and Their
Measurement. The Irrotational
Vortex Field

Within a solid body, all its parts (volume elements) are bound rigidly
together. This has three consequences: First: The shape of an arbi-
trarily chosen volume element within the body remains unchanged
during motions. Second: Every point within a volume element has
the same angular velocity !. Third: The rotation of all the elements
is uniquely defined by their common angular velocity !.

In a liquid, on the other hand, all the volume elements can flow freely
past each other. This leads to quite different consequences from the

http://www.feynmanlectures.caltech.edu/
http://www.feynmanlectures.caltech.edu/
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within a liquid change their shapes during motions3; think for exam-
ple of Fig. 10.1. Second, different points within a volume element
can have differing angular velocities. Therefore, we can not define
the rotation of such an element by quoting a common angular veloc-
ity, as in solids. Instead, we must introduce a new measure for the
rotation of a volume element within a fluid. It must summarize the
motion by defining a reasonable mean value for the different angular
velocities within the volume element. The measure of rotation used
for fluids is called the curl of the path velocity u, or more simply,
“curl u”.

The experimental definition of the curl is simple: One puts a little
float marked with an arrow into or onto the liquid, choosing its di-
ameter to be small compared to the radius of curvature of its orbit.
During the motion, the arrow on the float will change its direction
with an angular velocity !fl. Then we defineC10.17 C10.17. The factor 2 in

Eq. (10.15) has no physi-
cal meaning. It simply results
from the mathematical defini-
tion of the curl.

2!fl D curl u : (10.15)

To obtain the mathematical definition of the curl, one starts with the
circulation � . This is defined as the path integral of the orbital ve-
locity u along an arbitrary closed curve, i.e.

� D
I

u � ds (10.16)

(the circle on the integral sign indicates a closed path or loop).

One then supposes that the path encloses a surface element dA, and
computes the quotient d� =dA for this limiting case. This defines
a new vector which is perpendicular to the surface element; it is
called the curl of the orbital velocity u: curlu. It describes the ro-
tation of the fluid within this surface element. If the surface element
lies e.g. in the xy plane, then we find for the z component of the curl

.curlu/z D
�

@uy
@x
� @ux

@y

�

: (10.17)

Derivation
Referring to Fig. 10.24, we calculate the circulation around the z axis along
the four sides of a rectangular surface element dA D dx dy. The order of
the summation is in the clockwise sense as seen by an observer looking
along the positive z-axis direction. The circulation then consists of four
individual terms, namely

d� D uxdxC
�

uy C @uy
@x

dx
�

dy�
�

ux C @ux
@y

dy
�

dx� uydy

D dxdy

�
@uy
@x
� @ux

@y

�

D .curlu/z dA :

3 With the exception of the special case treated in Eq. (10.20).
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Figure 10.24
The derivation of
Eq. (10.17); the z di-
rection points from
the plane of the page
towards the eye of the
reader

y

dy

dx

∙dx

x

ux+

uy+uy

ux

∂ux

∂uy

∂y

∂x

∙dy

The curl of the orbital velocity in its general (3-dimensional) form is
a somewhat difficult concept. Therefore, we offer several examples
of its application:

In Fig. 10.2, we see the boundary layer of a planar flow field; the
volume elements of the liquid move along straight-line paths. uy is
their upwardly-directed velocity (called u in the figure); its horizontal
component is ux D 0. Then equation (10.17) yields

.curlu/z D @uy
@x

: (10.18)

In this case, the curl is thus simply the gradient or slope of the ve-
locity u in a direction perpendicular to u. (The vector [curl u] in
Fig. 10.2 at the left of the plate points towards the observer, and at
the right of the plate, away from the observer.)

In general, the volume elements of the liquid move along curved
paths. Figure 10.25 shows a planar, circular flow in the xy plane.
Then we have

.curlu/z D u

r
C @u

@r
: (10.19)

Derivation
We compute the circulation along the path shown by heavy lines. It again
consists of four terms; they are

d� D �urd˛C0 drC
�

uC @u

@r
dr

�

.rCdr/d˛�0 dr D
�

uC r
@u

@r

�

drd˛ :

Furthermore, dA D rdrd˛ . Then we find for the quotient
d�

dA
D

.curlu/z D u

r
C @u

@r
.

Figure 10.25
The derivation of
Eq. (10.19). The ar-
row above dA indicates
its motion

∙dr∂r∂r
∂uu+

r

r
u

dr

dr

dAα
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the liquid is presumed to stick to a rotating solid disk and to have the
same angular velocity ! as the disk in all its regions. Then we have

u D !r and
@u

@r
D ! : (10.20)

With this, from Eq. (10.19) we find for the whole liquid a constant
value of the curl, namely

.curlu/z D 2! : (10.21)

This thus represents the limiting case of a “pseudo-solid rotation”.

In liquids, a different limiting case is more important; it is character-
ized by the condition:

u r D const : (10.22)

Then
@u

@r
D �const

r2
D �u

r
, and Eq. (10.19) yields

.curlu/z D 0 : (10.23)

Therefore, when the condition (10.22) is fulfilled, a liquid moves
along a curved path in a rotation-free manner; the arrow on a small
float would continually maintain its direction. This curious sort of
flow field is called an irrotational vortex fieldC10.18, C10.19.

C10.18. The magnetic field
outside a long straight wire
carrying an electric current
is also an irrotational vortex
field (see Vol. 2, Chap. 6,
Eq. (6.14)). Within the wire,
the curl of the magnetic field
equals the current density in
the wire (Ampère’s law).

C10.19. Such irrotational (or
rotation-free) vortex fields,
which mathematically de-
scribe potential flows in the
ideal case of frictionless flu-
ids (ideal liquids), can in fact
occur in real liquids with fi-
nite viscosities, as long as the
latter are not too great and
can be neglected. In any case,
however, friction is necessary
to produce the vortices. The
following paragraph will give
some examples; and the ob-
servation of vortex fields will
be the subject of the rest of
this chapter.

It is a fur-
ther example of a potential field (see Sect. 10.6).

Such a flow field can however exist only when the liquid is circling
around a core. A well-known example is the hollow vortex around
a bathtub drain. The core in this case is a liquid surface which is ro-
tating about its axis like a tube. It surrounds a column of air which is
not moving with the revolving liquid and which narrows like a funnel
in the downwards direction. – The core of an irrotational vector field
can thus be the boundary layer at the surface of a rotating cylinder4.

Imagine that the diameter of the core is continually decreasing. Then
the flow velocity in its immediate neighborhood must be increasing,
and will approach1 as a limit. This of course cannot occur. Instead,
the central parts of the liquid begin to rotate. They thus form a liquid
core, a vortex tube or, when the cross-section is very small, a vortex
fiber. Examples of this kind are given in Sect. 10.8.

The strength of the vortex, known as its vorticity, is defined as the
circulation � along an arbitrary path which encloses the core just

4 To produce and maintain a vortex in water, it suffices to set the cylinder in ro-
tation around its symmetry axis. The thickness of the boundary layer increases
without limit as a function of time (Eq. (10.3)). The velocity distribution ap-
proaches more and more that of an irrotational vortex field with increasing distance
from the surface of the cylinder (i.e. curl u D 0). – In air, with its small dynamic
viscosity, vortices can be generated by the process described in the caption of
Fig. 10.36 (see Fig. 10.37).
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once. – Example: An irrotational vortex field surrounds a rotating
cylinder and the boundary layer which is sticking to it. The cross-
sectional area of the cylinder is taken to be A, and its angular velocity
is !. Then the vortex has a vorticity of � D H

u � ds D 2� ru D
2� r!r D 2!A. One finds the same value along every closed path
which circles the core exactly once. When the path does not circle the
core, we find � D 0, the vector field is irrotational, and curl u D 0.

An irrotational vortex field, and a core around which the liquid per-
forms its rotation, together form a “vortex”. Every vortex thus con-
sists of two componentsC10.20.C10.20. The liquid cores

of vortices, as described in
Sect. 10.8, are thus regions in
which curl u¤ 0 can occur
even without friction. 10.8 Vortices and Separation Surfaces

in Nearly Frictionless Fluids

Thus far, we have restricted our considerations of motions in flu-
ids to two limiting cases. In the first, we considered motions within
a boundary layer. In that case, the internal friction of the fluid played
a decisive role (Sects. 10.2 to 10.4). In the second limiting case,
we tried to implement motions in fluids which are not influenced by
friction or boundary layers (potential flows, Sects. 10.5 and 10.6).
We accomplished this by using a flow apparatus of sufficient size,
i.e. large compared to the boundary layer. Of greatest importance,
however, was that we restricted our observations to short times at the
beginning of the motion.

At longer observation times, we find in all fluids, even in those with
very low viscosities (tiny values of the internal friction, e.g. gases!),
that new phenomena appear: Vortices and separation layers are
formedC10.21.C10.21. Examples were al-

ready given at the end of
the previous section. Note
that vortices are formed in
a boundary layer which bor-
ders on a bounding surface of
the fluid. They can then prop-
agate in a separation layer
between regions of the fluid
with different velocities.

These two phenomena are shown experimentally in the
following. – We again use the broad flow apparatus which we have
seen in Fig. 10.8, and again observe flow through a bottleneck, as in
Fig. 10.9. Initially, the flow field is symmetric in front of and behind
the bottleneck, both for the avoidance flow and for the overall flow.
These symmetrical flow fields can be observed only immediately
after beginning the motion; after a short time, their symmetry is lost.
Behind the bottleneck, two large vortices which rotate outwards are
formed (Fig. 10.26). These initial vortices are rapidly cast off in the
direction of the overall flow, and a stream remains (Fig. 10.27). It
is itself delimited from the surrounding liquid, which is at rest, by
a separation layer. In this separation layer, several small vortices
can be clearly seen. Such a separation layer can be idealized in the
limit of vanishing thickness as a separation surface. All of the liquid
‘volume elements’ which it contains must rotate. This is sketched
schematically in Fig. 10.28.

Vortices can end only at the walls of a container, at its bottom, or
at the surface of the liquid. In the interior of a fluid, there are only
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Figure 10.26 Initial vortices at the beginning of stream formation

Figure 10.27 The stream of liquid, delimited by separation layers

Figure 10.28 The definition of the separation
surface between two parallel flowing liquids
with different velocities. In the text, the veloc-
ity in one direction is zero.

vortices with closed cores; in the simplest case, they are circular (vor-
tex rings). They can be demonstrated with the apparatus shown in
Fig. 10.29. The bottom of a drum-shaped can consists of a stretched
membrane M. The air within the drum is made visible using some
sort of smoke. A tap on the membrane (drumhead) forces a stream of
smoky air to emerge from the round opening at the top of the drum
for a short time. Its outer edges immediately curve around, form-
ing a vortex ring (a “smoke ring”, as occasionally demonstrated by

Figure 10.29 Apparatus for demonstrating
vortex rings – closed, initial vortices (cast-
off vortices) – in air (Video 10.4) Video 10.4:

“Smoke rings”
http://tiny.cc/ocgvjy

http://tiny.cc/ocgvjy
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smokers with their mouths). It is futile to try to divide a vortex ring
along its diameter into two semicircular pieces with free ends.

Such a vortex ring is in general a rather stable objectC10.22.C10.22. It is notable that
these vortex rings, at a suf-
ficient distance from the
boundary layer in which they
were formed, can themselves
be described in terms of a po-
tential flow. This fact will
prove to be particularly im-
portant for our discussion of
the transverse force (the lift
in aircraft wings, sails etc.;
see Sects. 10.10 and 10.11).

It can fly
through the air for several meters past the end of the flow out of the drum,
and as a result of its energy5, it can blow over a playing card, snuff out
a candle flame, etc. – The vortex rings that are made visible by smoke
(in the shape of inflated inner-tubes) contain the core of the vortex, which
is enclosed within the ring. In this core, rotation is present (that is, curl
u ¤ 0). The second component of the vortex, the irrotational vortex field
which surrounds the core, extends far outwards. This is shown by the mu-
tual influence of two vortex rings. They can for example be produced in
rapid succession: The second ring then overtakes the first, reducing its di-
ameter in the process, while the first ring expands and slows, letting the
second ring pass through. This performance is repeated one or two times,
each time exchanging the roles of the two rings. – Two vortex rings which
are on a collision course moving towards each other along the same line
slow each other down and expand as they approach.

So much for the facts. – The separation surface and vortices are
formed here by the same cause as everywhere, namely by sticking
(adhesion) of the fluid to the solid object around which it is flowing,
and the resulting formation of a boundary layer. – An ideal fluid (po-
tential flow) should flow around the walls of a bottleneck at a high
velocity; every real fluid, however, will be impeded by the boundary
layer which forms. This impedance will act differently at the entrance
and the exit of the bottleneck. On the way towards the bottleneck,
all parts of the stream will be accelerated. Within the bottleneck,
the flow velocity attains its maximum value. The impeded bound-
ary layer will be pulled along in the direction of flow by neighboring
layers of the fluid whose flow is unimpeded. Thus, in front of the
bottleneck, the original flow field, i.e. the potential flow field, will be
maintained. Behind the bottleneck, in contrast, all parts of the flow
field will be decelerated. There, the impeded boundary layer is no
longer pulled along by the neighboring layers. It falls behind; there
is no alternative except to curve around and inject itself between the
wall and the flow. Thus, “the flow detaches from the walls”, and the
separation surface and vortices are formed.

10.9 Flow Resistance and Streamline
Profiles

The processes that we have just described, i.e. the formation of vor-
tices and separation surfaces, can lead us to an understanding of the
forces which occur when nearly frictionless fluids flow around solid
bodies. These are the flow resistance or drag (described in this sec-
tion) and the dynamic transverse force (or lift) (in Sect. 10.10). We

5 Bell-shaped jellyfish use the recoil from water vortices which they produce as
a means of propulsion.
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Figure 10.30 Distortion of the avoidance flow behind a plate which is ori-
ented perpendicular to its direction of motion; observer and liquid are at rest,
and the plate is moving to the left (Video 10.3) Video 10.3:

“Fluid flow around obsta-
cles”
http://tiny.cc/fcgvjywill investigate both of them using our flow apparatus as shown in

Fig. 10.8. The objects which are moved relative to the liquid and
are thus surrounded by a flow are again assumed to nearly touch the
glass walls of the apparatus on both sides. In both cases, therefore,
we are investigating a planar flow. The results can then be extended
by analogy to three-dimensional flows.

We start with the streamline patterns which we have already observed
in the avoidance flow around a plate, Fig. 10.16 (potential flow). In
these examples, the flow around the front and back (‘leading’ and
‘trailing’ edges) of the plate is completely symmetric. This means,
according to Eq. (10.13), that the pressures and forces on the front
and back sides are also symmetric. The sum of all the forces acting
on the object is thus zero. Then the object could be moved within
the liquid without any flow resistance at all! This, however, is in
contradiction to our everyday experience; think for example of row-
ing a boat, or stirring your soup. – In fact, this symmetry, which
is also observed in the experiments shown in Figs. 10.19 through
10.21, is destroyed very soon after the start of the motion. To demon-
strate this, we take a plate which is oriented perpendicular to the flow.
At the very beginning of its motion, there is a symmetric avoidance
flow, which we can observe by repeated back-and-forth motions of
the plate (Fig. 10.19). When the motion is continued in one direction
for a longer time, the symmetric flow becomes distorted: Two large
initial vortices which rotate inwards are formed (Fig. 10.30). They
rapidly move off in the flow direction, and in the stationary state, we
can clearly observe a separation surface behind the plate. It separates
a region (which extends beyond the right edge of the image) from the
rest of the flow (Fig. 10.31). Within this region, the liquid is rotating
in a lively manner. A number of vortices are present (this is shown
impressively in Video 10.3). Video 10.3:

“Fluid flow around obsta-
cles”
http://tiny.cc/fcgvjy

We now have an overview of how resistance or drag is produced by
flow around objects in real fluids. It comes about through the ro-
tational motions which form within the fluid at the trailing edge of

http://tiny.cc/fcgvjy
http://tiny.cc/fcgvjy
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Figure 10.31 The production of flow resistance (drag) through vortices
within a bell-shaped separation surface. In this experiment, observer and
object are at rest, and the liquid is flowing to the right. The resistance for
REYNOLDS numbers Re between 4 �103 and 105 is somewhat greater than the
product of the stagnation pressure and the area of the plate. Experimentally,
one finds its magnitude to be F D 1:1 � 12%u2AC10.23.C10.23. The comparison of

Figs. 10.31 and 10.16c shows
very impressively the influ-
ence of the viscosity: In both
figures, the object is at rest.
In Fig. 10.31, the liquid is
flowing to the right; it could
be flowing to the right in
Fig. 10.16, also (owing to the
symmetry of the streamlines,
one can choose the direction
at will). The lack of vor-
tices in Fig. 10.16 is a special
feature of the flow chosen
for this model experiment
(HELE-SHAW flow).

the object. New regions of the liquid are continually being brought
into rotation. Creating the rotational motion in these vortices, provid-
ing their kinetic energy, requires that work be performed. The force
which performs this work is the counter-force to the flow resistance.
The resistance experienced by an object which is surrounded by an
avoidance flow is caused by rotational or vortex motions on its trail-
ing edge. That is the surprising experimental finding.

The resistance or drag felt by bodies within a flow is often used
for technical applications. As an example, we could mention the
parachute (it reduces the sinking velocity of a person from about
55m/s to around 5.5m/s, cf. Fig. 5.20); other examples include the
oars of rowboats and the paddle wheels of steamboats. A further ex-
ample is provided by resistance rotors as wind turbines; they have an
S-shaped profile (Savonius rotors), or hemispherical shells mounted
on spokes, as in an ‘anemometer’. (The air resistance of the concave
side of the shell is four times larger than that of the convex side.)

In other cases, the resistance is a disturbing factor. Then it must
be reduced as far as possible by careful design of the shape of the
object. Only the small frictional resistance then remains; it arises
in the boundary layer between the object and the fluid. Nature has
provided us with many prototypes here. Their common characteristic
is their streamlined profile, as in Fig. 10.32. A streamlined object of
similar shape can be placed in a water flow at high velocity, and no
vortices will be formed. A sphere of about the same diameter at the
same flow velocity will produce strong vortex formation soon after
the flow is initiated. Streamlined profiles play an important role in
nature and in technology.
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Figure 10.32 A streamlined profile (in the flow apparatus from Fig. 10.8);
observers and object are at rest, the liquid is flowing to the right (see also
Video 10.3, Video 10.3:

“Fluid flow around obsta-
cles”
http://tiny.cc/fcgvjy
One can see here very clearly
the influence of the direc-
tion of flow on the formation
of vortices in the boundary
layer: When the streamline
profile is moved upwards
(i.e. to the left in Fig. 10.32,
liquid at rest), no vortices
are formed (apart from those
which are produced at the
thick end of the object at the
end of the motion, when the
displaced liquid flows back
around the object). When
however the streamline pro-
file is moved downwards,
vortices immediately form at
its thicker end.

in which the object is moving)

10.10 The Dynamic Transverse Force
or Lift

In general, the direction of the undisturbed flow is not identical with
a symmetry axis of a solid bodywithin the flow. An example is shown
in Fig. 10.16b and in the right-hand part of Fig. 10.19. Then obser-
vations teach us a new result: In addition to the resistance or drag Fr

in the direction of the unperturbed flow, there is a second force which
is perpendicular to the flow, as shown in Fig. 10.33. It is called the
transverse force or lift, Fa. The resultant vector of these two forces is
the total force F which acts on the body within the flow6.

The transverse force cannot be completely isolated and investigated
by itself. However, we can make the resistance Fr very small com-
pared to the simultaneously-present transverse force Fa. To this end,
one has to use objects with the profile of an airfoil or a wing, e.g. as

Figure 10.33 The trans-
verse force (lift) and
resistance force (drag)
on a tilted plate which is
moving to the left. (The
resultant total force on thin
plates is nearly perpen-
dicular to the plane of the
plate.)

6 For rough calculations, one can keep in mind two useful approximations: Trans-
verse force Fa D 1

3 %u2A, and resistance force Fr � 1 to 10% of Fa (A D area of
the plate or airfoil).

http://tiny.cc/fcgvjy
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Figure 10.34 The formation of an initial vortex from the avoidance flow
around an airfoil or hydrofoil which is moving in the shaded region (com-
pare with Fig. 10.19). The fluid and the observer (camera) are at rest, the
airfoil is moving to the leftC10.24

C10.24. The rod which
projects into the picture from
the left is only a holder for
the airfoil. The connecting
rod perpendicular to it is not
visible owing to the motion.

(Video 10.3)Video 10.3:
“Fluid flow around obsta-
cles”
http://tiny.cc/fcgvjy in Fig. 10.34. Furthermore, the object must either be “infinitely” long

or bounded by planes (as in our flow apparatus, Fig. 10.8).

Such an airfoil or hydrofoil shows the origin of the transverse force
(lift) rather clearly. We begin with a comparison of Figs. 10.16b
and 10.34: When the motion is initiated, a long-lived initial vortex
is formed as in Fig. 10.34 only by the initial avoidance flow from be-
hind and below. The sense of rotation of this vortex is marked at the
upper right with an arrow Ô. This vortex moves off with the flow.
From the initial avoidance flow in front and below, an irrotational
vortex field is formed instead of an initial vortex; it circles the air-
foil (as its core) in a clockwise sense (Õ). It has the same direction
above the airfoil as the flowing fluid; below, in contrast, the two flows
are oppositely directed. As a result, the fluid flows faster above and
more slowly below. This produces a region of reduced static pressure
above the airfoil, so that a dynamic transverse force or lift Fa acts
perpendicular to the direction of the unperturbed flow.

The observation of the avoidance flow is hampered by the washed-
out contours of the airfoil. Thus, one usually draws the whole flow,
i.e. the avoidance flow and the parallel flow, as in Fig. 10.35. At first,
a potential flow forms as seen in Fig. 10.35, upper part. This forms
the irrotational vortex field sketched in the center part of Fig. 10.35.
The potential flows are superposed and lead to the flow field shown
in the bottom part of Fig. 10.35.

The airfoil or hydrofoil can be replaced by a rotating cylinder. The
formation of the vortex field follows the same pattern as around an
air- or hydrofoil. At first, an initial vortex forms at the trailing edge
and is carried off with the flow. Later, the flow pattern shown in
Fig. 10.36 is established. With the directions of motion as shown, the

http://tiny.cc/fcgvjy
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on an airfoil or hydrofoil. Top:
Potential flow without a vor-
tex field (model experiment);
the streamlines observed in the
model experiment are shown in
the ideal case of a frictionless
fluid (Video 10.1). Video 10.1:

“Model experiments for
streamlines”
http://tiny.cc/8wqujy

Center: The
irrotational vector field which
is produced by the initial vor-
tices in a real fluid (� > 0)
(schematic). Bottom: The super-
position of the two flow fields.
The irrotational vortex field can-
not be observed by itself, but
it can be clearly discerned in
Fig. 10.34 (see also Video 10.3,
“Fluid flow around obstacles”)

Figure 10.36 Streamline pattern around a rotating cylinder. On its upper
side, the surface of the cylinder has the same direction of motion as the avoid-
ance flow; this prevents the formation of an initial vortex there. On its lower
side, the two motions are oppositely directed, which favors the formation of
an initial vortex. The difference in the pressures above and below the cylinder
gives rise to the lift force.

cylinder experiences a transverse force or lift in the direction of the
feathered arrow.

To demonstrate this effect, we use a light cardboard cylinder about the size
of a rolled-up dinner napkin (Fig. 10.37).
Its ends are closed off with disks which are somewhat larger in diameter
than the cylinder. A flat cloth ribbon is rolled up on the cylinder and is
attached to a handle like a whip. When the handle is jerked to the side
horizontally, the cylinder is accelerated across the table top, but at the same
time it begins to rotate because the ribbon unrolls. Instead of flying off
along a falling parabola, it rises up sharply and follows a looping path.

http://tiny.cc/8wqujy
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Figure 10.37 The dynamic transverse force or lift on a rotating cylinder
(MAGNUS effect) (Video 10.5)Video 10.5:

“MAGNUS effect”
http://tiny.cc/dcgvjy

(GUSTAV MAGNUS, 1802–1870, Physics In-
stitute, University of Berlin).

In both cases, for air- or hydrofoils as well as for a rotating cylin-
der, the relation discovered independently by M.W. KUTTA and
N. J. JOUKOWSKI yields the magnitude of the dynamic transverse
force Fa:

Fa D %u� l (10.24)

(% D density; u D velocity of the parallel flow, in Fig. 10.37 for example
the velocity of the cylinder on the table top; l D length of the airfoil or the
rotating cylinder; � D vortex strength (circulation) of the vortex which
surrounds the airfoil or the rotating cylinder of length l)C10.25.C10.25. The MAGNUS ef-

fect, using a vertical rotating
cylinder, was suggested as
a propulsion method for ships
by A. FLETTNER (1885–
1961).

In nature and in technology, a planar flow around an airfoil, hydrofoil
or a rotating cylinder is never observed. The ends of the airfoil or
cylinder are not bounded on both sides by large planar surfaces, like
the glass walls of our flow apparatus in Fig. 10.8. One can also not
construct infinitely long wings or cylinders. – Their finite lengths
however give rise to a new effect. The vector field which circles the
wing or cylinder (potential vortex) produces not only the transverse
force which provides lift, but also a drag which opposes the motion.
It is called the induced drag. We give a brief description of how it
comes about (Fig. 10.38): At the two ends of a wing (airfoil), the
high-pressure regions from the bottom of the wing come into contact
with the low-pressure regions from the top surface. Air flows from
below to above, producing vortices at both wingtips. Together with
the vortex field around the wing as core and the initial vortex, they
form a single closed vortex line. Its length continually increases,
as more and more air is set into rotation at the wingtips. The work
required to produce this vortex line must be generated by a force,
and its counter-force is the “induced drag”. – Without this drag, an
aircraft could maintain a constant altitude in frictionless air without
any propulsion.

Summary of Sects. 10.9 and 10.10: There are two ways besides fric-
tion in a boundary layer to generate forces between a nearly friction-
less fluid and a solid body. First of all, by producing vortices at the
trailing edge of the body: Like friction within the boundary layer,
this creates a resistance (drag) opposed to the direction of motion.

http://tiny.cc/dcgvjy
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Figure 10.38 The origin of induced drag: The small curved arrows indicate
only the sense of rotation and not the limits of the flow field (in reality, they
should be spirals). The air flows upwards to the sides in a wide region along-
side the area passed over by the wing. This is the reason why many migratory
birds, for example ducks and geese, prefer to fly side by side in a staggered
configuration, forming a “wedge” or “string”. Then, except for the lead bird,
every bird is flying in an upwards-flowing region of air, so that it requires less
power to produce the lift needed to maintain its altitude. Only the bird at the
point of the formation lacks this assistance, so that it must be relieved from
time to time.

Second, by producing an irrotational vortex field with the body as its
core: This gives rise to the dynamic transverse force (lift, transverse
to the direction of the unperturbed flow); and in addition, even when
the body has a good air- or hydrofoil profile, as a result of its finite
length also an induced drag (opposing the direction of motion within
the fluid, like every resistance force).

10.11 Applications of the Transverse
Force

The transverse force which acts on rotating bodies (the lift force in
Fig. 10.37) is used for example in sports. Example: A “cut” tennis
ball, i.e. a ball hit with a glancing blow, flies further than a ball which
is not rotating, because the transverse force compensates the weight
of the ball. – For bodies which have the profile of a wing (airfoils,
hydrofoils, sails), there are numerous applications of the transverse
force: In airfoils, the component of the transverse force which is
perpendicular to the direction of flight is used as lift; in sails, the
component which is in the direction of motion drives the ship. –
Examples:

1. If the lift acting on an aircraft is equal and opposite to its weight, it
will fly horizontally, obeying the scheme indicated in Fig. 10.33. Its
forward velocity is usually maintained by an engine. The essentials
were already summarized in Sect. 5.11 – If the engine is shut off,
the induced drag (a result of the finite length of the wings) and the
frictional losses in the boundary layer will consume its kinetic energy.
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These losses must be compensated from the stored potential energy;
i.e. the aircraft must slowly glide to the ground. The angle of glide of
its flight path is determined by the ratio of the lift to the drag (Fa=Fr;
cf. Fig. 10.33). Therefore, that quotient is called the glide ratio.

Gliding is the mode of flight of sailplanes, and it is practiced by glider
pilots and some birds. – In gliding flight, there are two methods of
gaining altitude:

a) By gliding in a rising column of air (a ‘thermal’);

Examples
A seagull suspended in the air stream that is moving upwards at an angle
behind the stern of a ship; a bird of prey circling in the rising, warm air
above and around a tall chimney.

b) by making use of the vertical gradient of a horizontal wind veloc-
ity. In the boundary layer of the air above the surface of the earth
(land or sea), the horizontal wind velocity increases with increasing
altitude.

Example
The albatross glides along a sloping flight path downwards in the direction
of the wind, collecting kinetic energy. Near to the surface of the sea, it
loops around and faces the wind, rising steeply higher, since it can use its
stored energy to penetrate the layers of increasing wind speed, thereby in-
creasing the lift acting on its wings. Once it has reached a certain altitude,
it turns again to follow the wind in a downwards glide, and so forth.

2. A child’s kite is held against the wind by a string from the ground;
this permits the air to flow around it, without carrying it away in
a horizontal direction. – The profile of a kite is a rather poor approx-
imation to a good airfoil, but it suffices.

3. A ship can move readily in the direction of its long axis, but it is
hard to move it sideways. Like the kite-string, this transverse resis-
tance to motion can hold the ship against the wind, so that its sails
are surrounded by an air flow. This makes it possible to sail even in
a direction which is not the same as that in which the wind is blow-
ing. In Fig. 10.39, we see a ship sailing “close-hauled” (also called
“working to windward”); i.e. the wind is coming obliquely from the

Figure 10.39 Sailing “close-
hauled”: Arrow 3 shows the
direction of the sidewards
drift.
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rially from the velocity of the wind relative to the ground; as a result,
the wind is flowing “flatly”, i.e. at a small angle of attack, around the
sails. The component Fv of the transverse force in the direction of
travel drives the ship forward. The component perpendicular to the
direction of travel leads to a small sidewards drift.

4. The rotor blade of a wind turbine as motor. Figure 10.40 shows
the cross-section of a rotor blade. The wind is blowing perpendicular
to the plane of the rotor, but hits the blades at a small angle of attack.
The component Fv of the transverse force which is parallel to the
plane of the rotor drives its rotation. The orbital velocity of the blades
at some distance from the rotor hub may exceed the wind velocity by
a large factor.

In order to make this intuitively clear, put a flat wedge on a smooth hori-
zontal surface and press on its flank vertically with the point of a pencil.
This will slide the wedge horizontally by a distance which is greater than
the vertical motion of the pencil. As a toy, one can build a windmill with
blades of a symmetric profile, for example a semi-cylindrical cross-section
(as shown in Fig. 10.41). A starting push gives the blade (at the position of
the cross-section shown in the figure) a velocity u relative to the ground.
The direction of u determines whether the initial vortex is cast off the left
side or the right side of the blade.
This in turn determines the sense of rotation of the circulation and thus of
the whole rotor. The blade is subject to an air flow under a small angle of
attack. All else occurs as shown in Fig. 10.40.

Figure 10.40 The prin-
ciples of operation of
a wind-turbine blade. The
component of the trans-
verse force in the direction
of arrow 3 puts a load on
the vertical axis of the
support structure.

Figure 10.41 A toy windmill with two blades which have a symmetric cross-
section. They consist of half-cylindrical rods which can rotate around the A-A
axis. When they are given a push in the direction indicated, the initial vortex
is formed at the right and the windmill rotates clockwise as seen looking in
the direction of the air flow (wind).
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Figure 10.42 The prin-
ciples of operation of an
aircraft propeller blade.
The propellers or screws of
ships operate in analogous
fashion

5. The aircraft propellerC10.26.

C10.26. In the first edition
(1930), POHL explained at
this point: “The propeller of
an aircraft or motor ship does
not bore into the fluid like
a corkscrew. Its blades are
simply rotating airfoils (hy-
drofoils).” One should keep
this fact in mind in discussing
the other examples in this
section, as well!

The sketch shown in Fig. 10.42 again
represents the cross-section of a propeller blade. The component of
the transverse force perpendicular to the plane of the propeller pro-
vides the driving force or thrust which maintains the flight velocity
of the aircraft. This is seen differently by an observer sitting in the
aircraft; he or she would say: The propeller is a fan which is blowing
an air stream backwards. Accelerating the airstream requires a force,
and the counter-force acts on the aircraft and drives it forward.

Of course, the air stream could be produced by an enclosed fan instead of
a free-standing propeller. Modern turbojet engines dispense with recipro-
cating pistons, and this represents a considerable technical advanceC10.27.C10.27. The first experi-

ments with jet engines for
aircraft were carried out in
1935 by HANS V. OHAIN

(1911–1998) in Göttingen.
He was at that time a doc-
toral student and assistant
in the research group of
R.W. POHL (see e.g. The
Jet Age, W.J. Boyne and
D.S. Lopez, eds. Smithso-
nian Institution, Washington,
DC (1979), p. 25). See also
the Wikipedia article on
R.W. POHL, in particular
Reference 17.

Exercises

10.1 Two balls of radii R1 and R2 and densities %1 and %2 are
sinking in petroleum ether with the constant velocities u1 and u2.
Determine the viscosity � and the density % of the petroleum ether.
(Sect. 10.3)

10.2 A cylindrical container of radius R is filled with water up to
a depth h. The water is flowing out through a circular opening in the
bottom of the cylinder, with a volume current of dV=dt D 1 cm3/s.
How large is the radius r of the opening? (Sect. 10.5)

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_10) contains supplementary material, which is avail-
able to authorized users.
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Vibrations 11
11.1 Preliminary Remarks

Knowledge of vibrations and waves has its origin in their close con-
nection to our sense of hearing and to music. The human body pos-
sesses an extremely sensitive detector of mechanical vibrations and
waves over an astonishingly broad frequency range (from roughly
� D 20Hz to 20 000Hz)1. Today, general topics of the physics of vi-
brations and waves are given priority in introductory courses, while
acoustics as such is less emphasized. The material in this and the
next chapter has been chosen and organized with this in mindC11.1. C11.1. Acoustics in the spe-

cific sense will be treated in
the following chapter begin-
ning with Sect. 12.24.
The terms ‘oscillations’ and
‘vibrations’ both refer to pe-
riodic motions. The latter is
less general and is usually
applied to mechanical and
acoustic motions, the subject
of this chapter. ‘Oscillations’
may also refer to periodic
phenomena in non-material
systems, e.g. electric and
magnetic fields (see Vol. 2).
Here, we use both terms,
‘oscillations’ when more gen-
erality is implied, as e.g. the
harmonic oscillator.

11.2 Producing Undamped Vibrations

Thus far, we have treated only the sinusoidal vibrations of simple
pendulums under a linear force law. The scheme of such pendulum
vibrations was presented in Figs. 4.13 and 4.14. The vibrations of
these simple pendulums were produced by an impulse directed to
the massive or inertial element of the pendulum. They are damped,
i.e. their amplitudes decrease with time, and the energy which they
obtained from the initial “pulsed excitation” is gradually lost, mainly
through the unavoidable friction between the pendulum and its envi-
ronment.

However, for many physical, technical and musical purposes, one re-
quires undamped vibrations, whose amplitude remains constant over
time. The production of such undamped vibrations calls for the con-
tinuous replacement of the energy losses mentioned above. The tech-
niques which have been invented to accomplish this can be summa-
rized by the keywords feedback or auto control: The pendulum itself
activates a mechanism which accelerates its motion at the right mo-
ment in the sense of its momentary direction of vibration.

The classical paradigm for all control through feedback is the pen-
dulum clock, Fig. 11.1. It replaces lost kinetic energy by tapping the
stored potential energy of a load of mass M that has been lifted to
a certain height. The energy transfer is accomplished by a “crown
wheel”, with teeth which are cut asymmetrically, together with an
“escapement” attached to the pendulum. This escapement permits
the pendulum to control the stepwise rotation of the crown wheel and

1 The unit of frequency is 1 hertzD 1 s�1 (abbreviated Hz)

247© Springer International Publishing Switzerland 2017
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Figure 11.1 Auto-controlling of a gravity
pendulum through feedback via an escape-
ment and crown wheel

the transfer of energy from the descending load M. In the position
shown in the figure, a tooth of the crown wheel is pressing against
the inner flank of the right hook of the escapement, b, and thus ac-
celerates the pendulum in the direction of the arrow, to the left. As
soon as the pendulum passes the midpoint of its swing, the tooth will
slide off the hook b and immediately thereafter, the other hook a will
again engage another tooth of the crown wheel. This tooth is now
pressing against the upper flank of the hook a, so that the pendulum
is accelerated to the right, and so forth.

Positive feedback of this kind can be practically implemented in
a great variety of ways, often by purely mechanical means. For ex-
ample, one can produce a periodic connection of a vibrating system
to a source of energy by means of “sticking” or “hooking” of two
bodies which are momentarily at rest relative to each other (frictional
vibrations).

Demonstration
In Fig. 11.2, we see a gravity pendulum about the size of an average clock
pendulum, in a side view. It is connected to a shaft of about 4mm diameter

Figure 11.2 Auto-controlling of a gravity pendulum via
friction with a rotating axle (frictional vibrations). The
length of the pendulum is around 30 cm, and its mass
is 200 g. The leather in the clamps on the axle has to be
rubbed with resin, like a violin bow.
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Figure 11.3 Pneumatic feedback control of
a tuning fork (Video 11.1)

Figure 11.4 Auto-controlling of a tuning
fork by pneumatic feedback (Video 11.1) Video 11.1:

“Vibrations of a tuning
fork”
http://tiny.cc/idgvjy
The video shows the tuning
fork as in the figure. Note the
adjustment of the feedback
by turning the knurled screw
on the cylinder b in Fig. 11.4.by two stuffed leather clamps. When the shaft is rotated, the pendulum is

pulled forwards with it. The clamps initially stick to the shaft (“sticking
friction”). At a certain deflection of the pendulum, the torque resulting
from the pendulum’s weight becomes too great and the friction of the
clamps is overcome; they slip back along the shaft (“sliding friction”). The
pendulum swings back, reverses, and then during its next swing forward,
at a certain moment its velocity relative to the shaft is zero – the pendulum
clamps and the shaft are moving synchronously. The clamps now again
stick to the shaft, and the pendulum is again accelerated up to the point
where it breaks free. Its next swing begins, with the same amplitude as the
first, and so forth.

Feedback control via airflows (pneumatic control) is also widely
used. Figure 11.3 shows an example, used to excite the vibrations of
a tuning fork.

The essentials are shown in Fig. 11.4 as a cross-sectional view. A piston
a is fitted smoothly into the cylinder b, but not touching its walls. The
cylinder is connected to a source of compressed air by a tube. The air
pressure forces the piston out of its resting position in the cylinder, pushing
the tine of the tuning fork to the right. When the piston is outside the
cylinder, a ring-shaped gap opens between the piston and the wall of the
cylinder, allowing the air to escape along closely compressed streamlines.
From BERNOULLI’s equation (Eq. (10.13)), the resulting static pressure of
the air is reduced and the piston is pulled back in. The natural frequency
of the tuning fork controls this process through the mechanical coupling of
the piston’s motion to the vibrations of the fork.

The use of electrical devices to control mechanical vibrations has
long since gained importance. The oldest example is the electric
doorbell, familiar to every school child today (Fig. 11.5). A pen-
dulum with an iron rod (‘clapper’) vibrates in front of one pole of
an electromagnet M. The rod also carries the contact spring of an
interrupter switch S.

In descriptions of the operation of a doorbell, the decisive point is often
misunderstood. When the interrupter contact is closed, the iron rod of the

http://tiny.cc/idgvjy
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Figure 11.5 Auto-controlling
of a gravity pendulum by an
electromagnet

pendulum (the ‘clapper’) is accelerated towards the magnet. This accel-
eration occurs not only during the half-swing 1 ! 0, but also during the
half-swing 0 ! 1; but along the path 0 ! 1, the acceleration is in the
wrong direction. It is opposite to the motion of the swinging pendulum,
retarding the pendulum’s motion and reducing its energy. As a result, an
additional condition must necessarily be fulfilled: The gain in energy along
the path 1! 0 must be greater than the energy loss along the path 0! 1.
Only the difference between these two quantities of energy is useful for
driving the vibrations of the pendulum. Practically, this means that the
current in the electromagnet along the path 0 ! 1 must be less on aver-
age than that along the path 1! 0. The current in the electromagnet must
therefore increase with time from 0! 1.
Technically, this increase in the current is produced by the self-induction
of the electric circuit. – For the demonstration, we use a gravity pendulum
(as shown in Fig. 11.5) which swings slowly (� D 2 Hz), and put an auxil-
iary coil L (a “choke”) with a large inductance into the circuit (see Vol. 2,
Chap. 10). A small lamp under the rest position of the pendulum allows
us to follow the slow increase of the current clearly (Fig. 11.6): The lamp
begins to glow during each swing only when the pendulum is reversing at
its maximum deflection 1.

Figure 11.7 shows a trace of the motion of the clapper of a door-
bell without the bell gong. The clapper rod was vibrating in front of
a slit and its motion was recorded photographically using the light
passing through (cf. Fig. 1.9)C11.2.C11.2. See also Figs. 11.22

and 11.23 in Sect. 11.5.
The time variation of the vibra-

tions in this case reveals clear deviations from a simple sine curve;
the curves seem to be pointed. Every feedback mechanism perturbs
the sinusoidal form of the vibrations (distortion!). Elimination of
the damping is bought at the price of abandoning strictly sinusoidal
vibrations. But the distortion can be reduced by careful design, to
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Figure 11.6 The current
as a function of time in the
feedback circuit of Fig. 11.5
(schematic of a doorbell)

Figure 11.7 The time graph of the non-sinusoidal vibrations of a doorbell
clapper

a much greater extent than in this intentionally exaggerated demon-
stration experiment.

Many modern electrical feedback mechanisms for mechanical vibra-
tions make use of triodes (electron tubes or transistors). Examples
can be found in Vol. 2, Chap. 11.

11.3 The Synthesis of Non-Sinusoidal
Periodic Processes and Structures
from Sine Curves

The deflection, velocity etc. of most periodic processes are not
strictly sinusoidal. Likewise, most periodic structures do not have
strictly sinusoidal profiles. Nevertheless, sine curves or sine func-
tions play an important role in physics: It is possible to synthesize,
i.e. both to generate and to represent non-sinusoidal, periodic curves
by making use of simple sine functions. We demonstrate this first
by using vibrations which we generate kinematically, referring to
the well-known relation between a circular orbit and a sine curve
(Sects. 1.7 and 4.3). We begin with the superposition of two si-
nusoidal vibrations of differing frequencies. We move a rod along
a circular path in front of a slit and present the time sequence of the
slit images as separate pictures spread out in space (using a polygon
mirror in the optical path). We can see the rod and the slit in the
upper part of Fig. 11.8. The rod is attached at its two ends to the
circumferences of two disks I and II so that it can rotate with them;
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Figure 11.8 Demonstration
apparatus for the super-
position of two sinusoidal
vibrations. The two shafts 1
and 2 are rotated via their
gears by an electric motor
which drives shaft 3C11.3.C11.3. Today, we can of

course demonstrate the su-
perposition of oscillations
in a much simpler way by
using electronic oscillators
or frequency synthesizers.
Mechanical devices may
however have an advantage
in that their operation can be
understood intuitively in a
“palpable” manner!

they are driven by an electric motor. The gears permit a fixed, integer
frequency ratio to be established between the rotation rates of the
disks, and furthermore, any desired phase difference between the two
vibrations can be chosen.

To adjust the phase difference, the upper gear on the right, which is held
by the spring F, can be pulled out and turned by the desired angle before
being engaged again to the lower gear.

The slit can be slid horizontally within the window. This allows the
amplitude ratio of the two vibrations to be adjusted to the desired
value.

Oscillations S whose frequencies are in the ratios of whole numbers
will be denoted in the following by integer indices, i.e. S1, S2, S3 : : :
We use the same indices for their amplitudes A. – Now for some
examples:

In Fig. 11.9, we see the traces of two sinusoidal oscillations S1 and S5,
i.e. oscillations whose frequencies are in the ratio 1 W 5. For the ratio
of the amplitudes A1 W A5, we have chosen a value of about 3 W 1. The
bottom trace shows their superposition: The trace of the combined

Figure 11.9 The superposition of two sinusoidal oscillations S1 and S5,
whose frequencies are in the ratio 1 W 5 and whose amplitudes have a ra-
tio A1 W A5 � 3 W 1. This picture as well as the following figures 11.10 and
11.11 are photographic images, made using the apparatus shown in Fig. 11.8.
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Figure 11.10 The superposition of two sinusoidal oscillations S10 and S9,
i.e. two oscillations whose frequencies are in the ratio 10 W 9 and whose am-
plitudes are approximately equal. The resulting curve Sr exhibits beats.

oscillation Sr resembles a sine curve which was drawn by someone
with a very shaky hand.

In Fig. 11.10, upper part, we show two sinusoidal oscillations S9
and S10 with the frequency ratio 9 : 10, of nearly equal amplitudes,
A9 � A10. Their superposition is shown as the bottom trace, Sr. It
again resembles a sine curve, but with a periodically-variable ampli-
tude. Oscillations of this form are called beats. The beat frequency,
often denoted as �B

C11.4, C11.4. Note that this beat
frequency is twice as large as
the difference frequency de-
rived from the trigonometric
sum formula:
sin˛ C sinˇ D
2 sin

˛ C ˇ

2
� sin ˛ � ˇ

2
.

is equal to the difference �� of the two in-
dividual frequencies. In this example, the oscillation amplitude goes
to zero at each beat minimum. At the time of the minimum, the two
equal amplitudes of the two sinusoidal oscillations are opposite; their
phase difference is 180ı. At the time of the beat maxima, in contrast,
the two amplitudes add with a phase difference of zero to give a value
twice that of the individual amplitudes. With two component oscilla-
tions of unequal amplitudes, the minima of the beat curve would not
go to zero.

In Fig. 11.11, upper part, we see the traces of two oscillations S1 and
S2 with an amplitude ratio of A1 W A2 � 3 W 2. Their superposition
gives a curve Sr which is symmetric around the time axis.

In Fig. 11.11, lower part, we see the same oscillations S1 and S2 as
in the upper image, but now the oscillation S2 begins at a time t D 0
with a phase angle of 90ı (its maximum), while oscillation S1 has
a deflection of zero (phase angle 0ı). The resulting superposed oscil-
lation Sr looks quite different, in spite of having the same amplitudes
and frequencies. It is not symmetric around the time axis. In this
example, we see clearly the influence of the phase difference on the
form of the resulting curve.

Summarizing the superposition of just two sine curves: In Figs. 11.9
through 11.11, we could “synthesize” some non-sinusoidal curves
using two sine functions, i.e. we could generate the curves as well as
describing them.

In the non-sinusoidal oscillations in Figs. 11.9 through 11.11, a cer-
tain oscillation pattern repeats itself in every detail after a period T1.
The reciprocal 1=T1 is called the fundamental frequency �1 of the
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Figure 11.11 The superposition of two oscillations S1 and S2 whose frequen-
cies are in the ratio 1 W 2. The comparison of the two resulting curves Sr shows
the influence of the phases on the form of the superposition curve.

non-sinusoidal oscillation process. The frequencies of the two
component oscillations are integer multiples of this fundamental
frequency.

In a corresponding manner, by adding more and more component
sine functions, we can “synthesize” ever more complex curves. The
amplitudes and phases of the components can be appropriately cho-
sen. Their frequencies must always be integer multiples of the funda-
mental frequency of the periodic curve which we want to synthesize.
– Two examples:

In Fig. 11.12, top, we synthesized a beat curve from two component
functions S9 and S10. In the bottom curve, we have added a third
component S1 D S.10�9/ to this beat curveC11.5.C11.5. An apparatus for the

mechanical superposition
of three vibrations was de-
scribed by G. BEUERMANN

(Praxis der Naturwis-
senschaften 27, 227 (1978)).

The frequency of
the third component is thus taken to be equal to the difference (beat
frequency) of the two other frequencies. Furthermore, its positive
maxima are chosen to fall together with those of the beat curve. – The
addition of such a difference oscillation transforms the original beat
curve, which was symmetrical around the abscissa, into an asymmet-
rical curve. The magnitude of the asymmetry depends in a clear-cut
way on the amplitude of the difference oscillation employed.

For our second example, we wish to synthesize the oscillation shown
as the upper trace in Fig. 11.13, a periodic sequence of “rectangles”
or “boxes”, by superposing sine curves. This can be done with a mod-
erate degree of approximation by graphically adding just three sine
curves, S1, S3, and S5. We obtain the curve labelled Sr. The approxi-
mation can be improved as much as desired by adding additional sine
curves, S7, S9 : : :
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Figure 11.12 The asymmetric oscillations Sr resulting from the superposition
of two sine functions S10 and S9 with their difference-frequency curve S1 D
S.10�9/. The frequency of this latter curve is thus equal to the difference of
the other two frequencies.

Figure 11.13 Synthesis
of a rectangular oscil-
lation I by superposing
three sine curves, S1, S3,
and S5; Sr is the resulting
curve. The curve S0r shows
curve I shifted upwards
by A, so that it ‘rests on’
the axis of the abscissa
(cf. Fig. 11.14).

The oscillation curve I sketched in Fig. 11.13 can thus be described
approximately using the three sine curves shown below it. In analytic
form, this description is as follows:

x D 4A

�

�

sin!tC 1

3
sin 3!tC 1

5
sin 5!tC � � �

�

(11.1)

.x D deflection, A D amplitude of the rectangular function, ! D 2�=T/ :

This example of “FOURIER analysis”, i.e. the representation of
a complex periodic curve in terms of a sum of sine curves whose an-
gular frequencies are integer multiples of the fundamental frequency
!, can only hint at the great importance of this method. FOURIER

analysis can of course also be applied to spatially-varying structures;
we need only change the labels on the coordinate axes. The time
coordinate t is replaced by a length coordinate, and ! D 2�=T by
k D 2�=D, where D, the length period, corresponds to the time
period T and reflects the spatial periodicity of the structure. Fur-
thermore, FOURIER analysis can also be applied to propagating or



PartII

256 11 Vibrations

travelling waves. For example, a box-shaped wave travelling to the
right, in the positive z direction, with a velocity u (cf. Fig. 11.13),
can be described by Eq. (11.1); we need only replace !t by .!t�kz/,
where !=k D .2�=T/=.2�=D/D D=T D u.

11.4 The Spectral Representation
of Complex Oscillatory Processes

When the oscillatory processes are very complicated, one often dis-
penses with a representation of the time dependence of the oscillation
and uses instead its spectral representation.

A spectrum is plotted against the frequencies of its component oscil-
lations as abscissa. The ordinate values, called spectral lines, indi-
cate the amplitudes of the individual component oscillations by their
lengths. Thus, in Fig. 11.14, we see the spectrum belonging to the
oscillation curve S0r from Fig. 11.13. It is a line spectrum, the sim-
plest representation of an oscillatory process. A spectrum contains
less information than the complete representation of the time depen-
dence of the oscillation: A spectrum contains no information about
the phases. Knowledge of the phases is to be sure indispensable for
tracing the oscillation curve (e.g. Fig. 11.11); but we do not require
this knowledge for many physically important tasks associated with
non-sinusoidal oscillations.

In Fig. 11.13, we are dealing with a special case. There, we chose
�=T D 1=2. If the ratio of �=T becomes smaller, the number of
component sine functions required increases. As an example, in
Fig. 11.15 we have taken �=T D 1=12.

In Fig. 11.15, the frequency spectrum of this rectangular oscillation is il-
lustrated with its first 20 spectral lines. If one adds up the first 10 of these
component oscillations, the result is the periodic curve III; the sharp upper

Figure 11.14 The frequency spectrum of the rectangular oscillation curve S0r
shown at the bottom of Fig. 11.13; a is an arbitrary number, e.g. 103, which
has been divided out of the component frequencies as a common factor. – In
the representation of the oscillation curve I at the top of Fig. 11.13, which is
symmetric around the axis of the abscissa, the spectral line at the frequency
‘zero’ would not occur.
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Figure 11.15 Curve I: A rectangular oscillation or pulse train in which the
time width � of the pulses (e.g. electric current pulses) is much smaller than
their repetition period T (i.e. the pulse duty factor is small). Curve II shows
the first 20 spectral lines of the associated line spectrum. A spectral line at the
frequency ‘zero’ means that there is a “constant” offset (e.g. a constant value
of direct current). Curve III is the resultant superposition of the first 10 com-
ponent oscillations (spectral lines), and curve IV shows the superposition of
the first 20 components.

corners b and c are still missing. In curve IV, the next 10 spectral lines are
added in. This has at least begun to reproduce the upper corners b and c.
To reproduce the lower corners a and d, a still greater number of additional
spectral lines must be included. The same holds quite generally for those
parts of curves that contain straight segments that are steeply inclined to
the time axis, e.g. the steeply falling segments on one side of a sawtooth
profile.

We show as examples two more spectra of important oscillation phe-
nomena.

1. Frequency spectra of damped sinusoidal oscillations with periodic
pulsed excitation. We take a numerical example for brevity: Some
sort of oscillator is to be excited to undamped sinusoidal oscillations
of frequency � D 400Hz. After its initial excitation, a sine curve
of constant amplitude and unlimited length results. The spectrum
consists of only a single spectral line at the frequency 400Hz.

Now, this oscillator is somehow damped. As a result, after a one-
time pulsed excitation, it exhibits an oscillation of finite length whose
amplitude decays with time (Fig. 11.16, part g). Above this curve,
we see the oscillation of the same system with periodically-repeated
pulsed excitation. In part e, a new excitation pulse is applied after
each 8 oscillations; in part c, after each 5 oscillations; and in part a,
after each 2 oscillations.
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Figure 11.16 The same damped sinusoidal oscillation as a function of time
for pulsed excitation at different pulse frequencies; a pulsed after each 2 oscil-
lations, or pulse frequency 200Hz, c pulsed after each 5 oscillations, or pulse
frequency 80Hz, e pulsed after each 8 oscillations, or pulse frequency 50Hz,
g only a single excitation pulse; b, d, f corresponding frequency spectra
(FOURIER transforms) of the oscillation curves to the left (note the scales
of the ordinates); h continuous spectrum (FOURIER integral) of the damped
oscillation at the left, with only one excitation pulse

Alongside each of these three time functions, we find the associated
spectrum. None of them is similar to the simple spectrum of the
undamped oscillation, that is with only a single spectral line at the
frequency 400Hz. Along with this original frequency of 400Hz, we
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see a whole series of additional spectral lines. In each of the three
spectra, the lowest frequency is that corresponding to the pulse rate,
or for short, the pulse frequency. In the three spectra, from above,
it is 200, 80 and 50Hz. The pulse frequency is the fundamental
frequency �1 of the three non-sinusoidal oscillations. All the other
spectral frequencies must be integral multiples of the pulse frequency
used for that particular spectrum. Therefore, the spectral lines occur
only occasionally at the same frequencies in the spectra for different
pulse frequencies. But, they are – and this is important – always in
the same frequency range. It is called the formant range (the dashed
curves in Fig. 11.16b, d, and f).

With decreasing pulse frequency, the required number of frequency
components or spectral lines in the spectral representation continues
to increase. We require an increasingly large number of sinusoidal
oscillations in order to represent the broad gap regions between the
damped oscillations by mutual compensation of their amplitudes. In
the limit of a single excitation pulse (zero pulse frequency), we arrive
at

2. A continuous spectrum for a damped oscillation with a one-time
pulsed excitation. In Fig. 11.16, part g, we see the time dependence
of the damped, decaying oscillation after a single excitation pulse;
and in part h, its frequency spectrum. The spectral lines now oc-
cur with an infinite density; they fill the region under the envelope
curve (dashed in the upper images) continuously. The region under
the curve is therefore shown as a black area in part h. Instead of
a spectrum with individual, separate lines, we now have a continuous
spectrum.

These important relationships have been treated only descriptively
here. Their analytic derivation is dealt with in detail in every rea-
sonably complete mathematics course under the topic of FOURIER

analysisC11.6. C11.6. For example in
H.J. Pain, The Physics of
Vibrations and Waves, John
Wiley, New York, 4th ed.
(1993), Chap. 9.11.5 Elastic Transverse Vibrations

of Linear Solid Bodies Under
Tensile Stress

Systems capable of vibrations, or oscillators, have in our treatment
up to now been reduced to a simple schematic form, consisting of
an object with inertia to store kinetic energy, and an elastic object
(spring) to store potential energy. The most clear-cut form of this
scheme was a massive ball held between two extended helical springs
(Fig. 4.13). We will henceforth refer to this ‘ball-and-spring pen-
dulum’ as an elementary oscillator (A system which oscillates with
a pure sine function is called a harmonic oscillator). This simple
scheme was thus far sufficient to represent the majority of the oscil-
lators which we have considered, although at times only by stretching
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Figure 11.17 Transverse vibrations
of two coupled elementary oscilla-
tors; both massive balls are moving
in phase (stopped-motion images)

Figure 11.18 Transverse vibrations
of two coupled elementary oscilla-
tors; the balls vibrate with a 180ı
phase shift, i.e. in opposite direc-
tions (stopped-motion images)

the point somewhat. It is however by no means sufficient to describe
all the cases which occur in nature. Often, a separate localization of
the inertial element and the elastic element is not reasonable. After
all, every object of whatever form can vibrate; we know this from our
daily experience. We have thus arrived at the problem of the proper
elastic vibrations (normal modes) of arbitrary bodies.

A vibration of the elementary oscillator along the axis of its springs
is called a longitudinal vibration; a vibration perpendicular to the
spring axis is a transverse vibration. We will start by investigating
transverse vibrations.

In Figs. 11.17 and 11.18, two such elementary oscillators are con-
nected together or coupled. This system can vibrate in two ways: In
the first case, both massive balls vibrate synchronously or in phase.
In Fig. 11.17, two instantaneous (‘stopped-motion’ or ‘snapshot’) im-
ages of these vibrations are drawn. In the second case, the two balls
vibrate in opposite directions, or phase shifted by 180 ı. Here again,
we show two stopped-motion images (Fig. 11.18).

The vibration frequencies are different in the two cases. Using a stop-
watch, we observe in Fig. 11.18 a higher frequency than in Fig. 11.17.
For two coupled elementary oscillators, we thus find two transverse
normal modes of vibration with the corresponding (proper or eigen-)
frequencies �1 and �2.

In an analogous manner, we see in Fig. 11.19 three coupled elemen-
tary oscillators. Now, three different transverse vibration modes are
found; all three are shown as stopped-motion images in the figure.
They can be demonstrated experimentally without difficulties. With
three coupled elementary oscillators, we thus obtain three natural or
proper frequencies (often called ‘eigenfrequencies’), corresponding
to three normal modes of vibration.

We could continue indefinitely in this way, repeatedly adding one
more coupled oscillator to our chain. For a chain of N coupled el-
ementary oscillators, we obtain N normal modes. In the limit of
largeN, we arrive at continuous linear objects. For such an object, we
can thus expect a practically unlimited number of transverse normal
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Figure 11.19 The three
possible transverse vi-
brations of three coupled
elementary oscilla-
tors (stopped-motion
images)C11.7 C11.7. One must be care-

ful with the nomenclature:
The first normal mode is also
called the fundamental vibra-
tion, and the second is called
the first harmonic, etc.!

Figure 11.20 Photographic (time exposure) images (side view) of the sec-
ond to the fourth transverse normal modes of a stretched rubber elastic band;
the band appears light in front of a dark background. Where it shows a gray
color, the velocity of motion perpendicular to its long axis is maximal. To ex-
cite a normal mode of frequency �, one end of the band is moved periodically
by a motor, either transversally to its long axis at the frequency �, or along
its long axis at the frequency 2�. In the latter case, the excitation is techni-
cally termed parametric, because the tension of the band (as a parameter) is
periodically varied. (The tension attains its maximum value twice during one
vibration period of the normal modes.) (Video 11.2, Video 11.2:

“Transverse normal modes
of a stretched rubber band”
http://tiny.cc/negvjy
The video shows some trans-
verse normal modes as
standing waves, up to the
eighth normal mode.

see also Video 1)

Video 1:
“R.W. POHL Lecturing”
http://tiny.cc/fpqujy

modes. As a first example, we show the undamped transverse vibra-
tions of a horizontally-stretched rubber elastic band. Figure 11.20
shows a side view as time-exposure photographs of its second to
fourth normal mode vibrations. In each of these examples, we see
three quantities periodically distributed along the band, namely the
transverse deflection, the transverse velocity, and the slope of the
band relative to its rest position. All three quantities show nodes and
maxima. At their nodes, each of the three quantities remains zero at
all times. At their maxima, the three quantities exhibit their largest
values. The deflection maxima and the velocity maxima are found at
the same positions; likewise the nodes of these quantities. The max-
ima of the slopes, however, are at the positions of the nodes of the
deflection and the velocity; for example at the two ends of the band.

For a purely kinematic visualization of transverse normal modes, a wire
bent to a sine-curve shape with a crank at one end is quite satisfactory
(Fig. 11.21). The wire is positioned in front of the projector lamp and

http://tiny.cc/negvjy
http://tiny.cc/fpqujy
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Figure 11.21 Visualization of
transverse normal modes or stand-
ing waves

Figure 11.22 Shadow projections of the vibration curves of one point on
a vibrating string, using a rotating lens wheel (Video 11.3)Video 11.3:

“Transverse vibrations of
a string”
http://tiny.cc/odgvjy
The string is plucked or
bowed.

rotated around its long axis. The projected image then shows the indi-
vidual instantaneous graphs of the vibration (often called the “vibration
phases” for short), one after another. When the crank is turned quickly, we
can readily observe the transition to the time-exposure photos as seen in
Fig. 11.20. This primitive setup is rather useful.

We return once more to Fig. 11.20 and imagine that the band which
is vibrating in its fourth normal mode is struck in the plane of the
page. Then the whole band begins to vibrate in addition in its first
normal mode, and the two normal modes occur simultaneously. Such
a simultaneous occurrence of several normal modes is often found in
stringed musical instruments. In Fig. 11.22, we see a string which is
stretched horizontally. Its vibrations can be excited by a violin bow.

With a slit which is mounted perpendicular to the string, we can
select a single “point” along the string and record its motion pho-
tographically. Figure 11.23 shows some examples: A single point
along the string, e.g. in Fig. 11.22 its midpoint, can be seen to move
transversally to the string in a way which is by no means a simple sine
function. Instead, one sees as a rule rather complex, non-sinusoidal
vibration curves. They result from the superposition of a large num-
ber of normal modes (proper vibrations). The appearance of a single
normal mode can be achieved only by very selective bowing and even
then only approximately. In general, the strings of musical instru-
ments exhibit a very complex vibration spectrumC11.8.

C11.8. See e.g. the frequency
spectrum of a violin tone in
Fig. 12.86.

http://tiny.cc/odgvjy
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Figure 11.23 The time
curves of the deflection
of one “point” on a violin
string which is undergo-
ing transverse vibrations
at multiple frequencies
(Video 11.3) Video 11.3:

“Transverse vibrations of
a string”
http://tiny.cc/odgvjy

For demonstration experiments, instead of moving the projection lens
along a horizontal straight line (as in Fig. 1.9), one can use the lens wheel
shown in Fig. 11.22. When it is rotated, the individual lenses are brought
into the optical path one after another. The wheel is rotated by hand using
the knurled knob K. The abscissa of the projected images obtained (the
time axis) is slightly curved (compare Fig. 11.23; this is a harmless flaw).

11.6 Elastic Longitudinal and Torsional
Vibrations of Stressed Linear Solid
Bodies

At the beginning of Sect. 11.5, we defined the longitudinal vibrations
of an elementary oscillator as a vibration of the massive component
of the oscillator parallel to the long axis of its helical springs.

In Fig. 11.24, we illustrate the two longitudinal vibration modes of
two coupled elementary oscillators. At left, both massive balls are
moving in the same direction, synchronized “in phase”. At the right,
they are vibrating in opposite directions, “phase shifted by 180ı”. We
continue adding additional elementary oscillators to make a chain,
and find N normal modes with N oscillators. Thus we again arrive in
the limit of large N at a linear object with a practically unlimited
number of longitudinal normal modes of vibration. As an exam-

Figure 11.24 Three stopped-motion images each of the longitudinal vibra-
tions of two coupled ball-and-spring oscillators; top and bottom at the times
of their maximum deflections, center image at passage through their rest po-
sitions. On the left, both massive balls are vibrating with the same phase, on
the right with a phase shift of 180°.

http://tiny.cc/odgvjy
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Figure 11.25 Top: The first and second longitudinal normal modes of
a rubber band with white cross stripes on a black background, 1m long; time-
exposure photos. Where the white stripes are visible only as a gray blur, the
vibration velocity along the band is high. Bottom: graphic representations
of the distribution of maximum deflection (and of the longitudinal velocities)
along the band. To excite the normal vibration modes, the left end of the band
was pulled periodically in the direction of its long axis at the frequency � of
the normal mode by a motor. (In Video 1,Video 1:

“R.W. POHL Lecturing”
http://tiny.cc/fpqujy

the author demonstrates this ex-
periment himself.)

ple, we show the undamped longitudinal vibrations of a horizontally-
stretched black rubber band with white cross stripes.

Figure 11.25 shows photographic (time exposure) images of the first
and the second longitudinal normal modes. In both examples, we im-
mediately see two quantities periodically distributed along the band,
namely the longitudinal deflections and the longitudinal velocities.
The maxima of the deflection and the velocity fall at the same points,
as do their nodes. The third quantity is the elastic deformationC11.9C11.9. This deformation cor-

responds to the slope in the
case of transverse vibrations
(Fig. 11.20).

(stretching and compression), which is also periodically distributed
along the band. The periodic distribution of the elastic deformation
causes a periodic variation �Nl in the density of stripes Nl along the
band. We define the density of stripes Nl as the quotient

Nl D Number of stripes in a segment �l

Length �l
D 1

Spacing of the stripes
:

(11.2)

The two stopped-motion images in Fig. 11.26 show the variations
�Nl of the density of stripes Nl along the length l of the band for the
first longitudinal normal mode, nearly at the phases of the maximum
deflections. The maxima of these variations are at the ends of the
band. They are thus at the points where the deflection and the velocity
have their nodes (Fig. 11.25).

In addition to the transverse and longitudinal vibrations of linear
solid bodies, there are also torsional oscillations. They can be con-
veniently demonstrated using a braided rubber band a few centime-
ters wide which is stretched horizontally. Figure 11.27 shows time-
exposure images for three normal modes.

http://tiny.cc/fpqujy
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Figure 11.26 Photographic high-speed images (ca. 10�5 s) of the first lon-
gitudinal normal mode of a striped rubber band nearly at the phases of its
maximum longitudinal deflections (to be observed stroboscopically!). The
maximum deflection in the center is ˙ 8 cm. The somewhat longer vertical
streak allows us to discern the vibration phases. Due to overstretching the
band, the images are only qualitatively accurateC11.10. C11.10. The connection be-

tween the variations �Nl

shown in Fig. 11.26 and
the quantity Nl defined in
Eq. (11.2) is given by
�Nl D Nl � Nl,mean,
where 1=Nl,mean is the mean
spacing of the stripes, aver-
aged over the total length of
the band. Since the maxima
of �Nl are at the ends of the
band, we find for the nth nor-
mal mode that (nC1) maxima
exist for �Nl. Compare
Fig. 11.31 in the following
section.

Figure 11.27 The third to the fifth torsional oscillation modes of a 1m long
and 3 cm wide stretched rubber band. The holder at one end is turned back
and forth by an eccentric on an axis parallel to the long axis of the band;
angles of a few degrees are sufficient.

11.7 Elastic Vibrations in Columns
of Liquids and Gases

As before, we treat liquids and gases together (as ‘fluids’). Our ex-
periments will be carried out for the most part using air.

In the interior of liquids and gases (their difference: formation of
surfaces), no transverse or torsional vibrations are possible, but rather
only longitudinal vibrations. This is a direct result of the free motions
of all the liquid or gas particles past each other2.

As in the case of solid bodies, we will first treat linear arrangements
of liquids and gases. Linearly-bounded liquid or gas columns can be
constrained in tubes.

Gas columns can easily be excited to normal-mode vibrations. For
example, as a demonstration, one can close off one end of a card-
board tube around 1m long and several centimeters in diameter with

2 ‘Particles’ in the sense of small volume elements, not individual molecules.
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Figure 11.28 Aerodynamic detection of the
back-and-forth air flows along the axis of an
organ pipe. (The balls could also be hung one
behind the other instead of side by side. Then
the air flow in both directions produces a mutual
repulsion of the balls.)

a rubber membrane. By plucking or tapping the membrane, we can
excite this “air column” to loud, readily audible, but rapidly decaying
normal-mode vibrations. Or else we could put a solid cover over one
end and pull a removable cover rapidly off the other end. These lon-
gitudinal vibrations take place in a manner basically similar to those
of an elastic rubber band as described in Sect. 11.6. Imagine that the
air column is divided up into thin layers, where each layer takes the
place of one stripe on the rubber band.

Between the nodes of the vibrations, these layers flow back and
forth. Their motion can be made visible with small dust particles
suspended in the air column. These can be observed microscopically
and thus used to measure the maximal deflections to both sides (“am-
plitudes”). – For demonstration experiments with a large audience,
the back-and-forth air flows at the maxima of the flow velocity can
be shown using aerodynamic forces which are independent of the
direction of motion.

Example
In the interior of a tube with a square cross-section, we hang two small
pith-balls on thin threads (Fig. 11.28). Two windows allow us to observe
the balls as a projected shadow image. The line connecting the two balls
is first placed perpendicular to the long axis of the tube. Then for a flow
along the tube axis, the streamline pattern shown in Fig. 10.17 is found.
The streamlines are pressed together between the two balls; the balls must
approach each other when the column vibrates or is blown as an organ
pipe. This is indeed the case.

The nodes of this longitudinal flow can be shown by scattering a fine
powder on the inside bottom of the tube. The powder particles come
to rest at the nodes and form KUNDT’s dust figures.

We show the normal-mode vibrations at the frequency of � � 3 � 104 Hz
(Fig. 11.29). Excitation is provided by a flue pipe which is blown directly
in front of the open end of the tube (Fig. 11.35).

The periodic distribution of the flow velocity maxima can be demon-
strated with RUBENS’ flame tube (Fig. 11.30).

The flame tube is several meters long and is filled with natural gas. On its
upper side, there is a series of burner openings running the length of the
tube. One end of the tube is closed, the other carries a membrane which can
be excited by some means to give undamped vibrations. Their frequency
has to be equal to one of the natural frequencies of the gas column in
the tube. – When the vibrating gas is flowing back and forth in the tube,
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Figure 11.29 KUNDT’s dust figures. During the vibrations, the dust forms
a fine fog which hangs perpendicular to the axis of the tube like curtains.
They move slowly along the axis. They demonstrate that the flow within
the longitudinally-vibrating gas column is associated with complex side ef-
fects (“second-order effects”). These come about through the formation of
a boundary layer between the walls of the tube and the flowing parts of the
gas column.

Figure 11.30 RUBENS’ flame tube shows the distribution of the flow ve-
locities in a longitudinally-vibrating gas column. The heights of the flames
are constant over time and their maxima lie above the maxima of the flow
velocityC11.11.

C11.11. H. Rubens and
O. Krigar-Menzel, Ann. der
Physik 17, 149 (1905). These
authors also report that this
effect is observed only at
low sound amplitudes. At
higher amplitudes, the max-
imal flame heights appear
at the nodes of the mo-
tion. These maxima then
vibrate at the frequency of
the standing sound wave
in the tube. RUBENS and
KRIGAR-MENZEL explain
the spatial vibrations at low
sound amplitudes by effects
in the boundary layer, al-
though not in as much detail
as given here. – In a sim-
ilar experiment at the 3rd
Physics Institute in Göttin-
gen (Dr. D. RONNEBERGER),
standing sound waves (at
a frequency of 2800Hz) in
air in a plexiglass tube are
shown. The tube contains
a small amount of water
along its bottom. In this
experiment, pressure ampli-
tudes of the order of 10N/m2

(� 1mm H2O) are observed
at the nodes, corresponding
to the case of high sound
amplitudes in RUBENS and
KRIGAR-MENZEL’s experi-
ments.

(Video 1 shows W. SPERBER igniting the RUBENS’ flame
tube. http://tiny.cc/fpqujy)

a boundary layer forms along its walls; cf. Sect. 10.2. In this layer, the
static pressure above the velocity maxima increases by an amount which
is constant over time, and above the nodes, it correspondingly decreases3.
This causes the periodic distribution of the flame heights, which is constant
over time. An application of these phenomena is shown in Fig. 12.46.

In the case of longitudinal vibrations of an elastic rubber band, the
stripe density was distributed periodically along the length of the
band. The maxima of the stripe density were located where the axial
motion exhibits nodes (compare Fig. 11.26). Precisely the same is
true for a longitudinally-vibrating gas or liquid column; but now, in-
stead of the stripe density, we observe the number density NV of the
molecules (Sect. 13.1). For a longitudinally-vibrating column of gas,
we thus obtain the distribution sketched in Fig. 11.31. Three phases
are shown for the fourth normal mode in a tube which is closed
at both ends. Gray shading indicates the normal number density,
a lighter shading is a reduced density, and a darker shading is an in-

3 Rotations of the gas within the boundary layer (Sect. 10.2 and Eq. (10.18)) cause
the formation of two stationary vortex rings between each velocity maximum and
the two neighboring nodes. The symmetry axis of these rings is oriented along
the long axis of the tube. The sense of rotation in two neighboring vortex rings
is opposite. At the walls of the tube, the stationary flows from the vortices ap-
proach each other in those sections of the tube where the velocity maxima of the
longitudinally-vibrating column of gas are located. There, the static pressure in
the boundary layer is higher. In those sections of the tube where the nodes are
located, the stationary flows oppose each other. There, the static pressure in the
boundary layer is lower.

http://tiny.cc/fpqujy
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Figure 11.31 Three snapshot images of the distribution of the number den-
sity NV along a closed gas column vibrating at its fourth natural frequency.
Top and bottom, at the times when the density variation has its greatest am-
plitudes; center, at a time in between when the density distribution is uniform.
The length l of the section shown in the top and bottom images corresponds
to the images b and a in Fig. 11.26, i.e. a half wavelengthC11.12 .C11.12. In complete analogy

to the longitudinal vibrations
of a rubber band, in which
�Nl vibrates (cf. Fig. 11.26),
in a gas column, the number
density NV vibrates (and with
it also the local static pres-
sure) around a mean value.
Note that correspondingly, in
the n-th normal mode for NV

and for �Nl , the number of
maxima is (nC 1). In a tube
which is open at both ends,
in which the gas column is
vibrating at one of its nat-
ural frequencies, there are
nodes of the number density
(and the pressure) at the ends
of the tube, and maxima of
the flow velocity there (see
Exercise 11.2).

Figure 11.32 The periodic distribution of the number density NV in
a longitudinally-vibrating gas column excited by a flue pipe as in Fig. 11.35,
photographed in a dark field with TOEPLER’s schlieren method (Vol. 2,
Sect. 21.11, Fig. 21.26). In the figure, above and below are reversed (The dis-
tance between the condenser and the wire-shaped slit in the exit diaphragm,
b in Fig. 21.26, was 4.8m).

creased density. This distribution, shown schematically in Fig. 11.31,
can be demonstrated experimentally, most effectively with a schlieren
method. We give an example in Fig. 11.32. It shows longitudinal
normal-mode vibrations of an air column excited by a small flue
pipe. The frequency is in this case about 4 � 104 Hz (correspond-
ing to a wavelength of � � 8 mm). Sound waves with frequencies
above ca. 2 � 104 Hz are called ultrasound or ultrasonic.
Technically, normal modes of gas columns play an important role in
the construction of pipes, whistles and wind instruments of all kinds.
The usual types of design are – at least superficially – well known.
Their function is rather complicated in detail and has been only qual-
itatively elucidated. In the case of the flue pipe, there is a periodic
decay of the air flow past the lip (labium) into individual vortices.
The air flow is controlled by the vibrations of the column of air in
the pipe. A similar situation holds for the reed and the air column in
a reed pipe. This mechanism causes deviations from the sinusoidal
form in the pipe vibrations. Figures 11.33 and 11.34 show a still
rather simple (nearly sinusoidal) pipe vibration and its line spectrum.



11.8 Normal Modes of Stiff Linear Bodies 269

Pa
rt
II

Figure 11.33 A nearly sinusoidal vibration in a pipe (image by
F. TRENDELENBURG)

Figure 11.34 The spec-
trum of the pipe vibration
shown in Fig. 11.33

Figure 11.35 A flue pipe
for frequencies from about
104 to 6 � 104 Hz. The lip slit
and the lip are designed to
be rotationally symmetric.
The actual volume of the pipe
represents only a very rough
approximation to a linear
column of air.

Flue pipes which produce high-frequency tones are an important tool
for physics (Fig. 11.35). The right-hand image in the figure shows
construction details of the pipe (essentially a whistle operated with
compressed air).

11.8 Normal Modes of Stiff Linear
Bodies

In considering the normal modes of solid, linear (one-dimensional)
bodies, we have thus far treated only limp objects which had to be
stretched by external forces, for example a rubber band. Demonstra-
tion of the normal modes of stiff linear objects, such as rods made of
glass or metal, is more difficult. Such rods have to be held on knife-
edge supports under two of the nodes, or hung there from thin cords.
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Figure 11.36 Bending vibrations of a flat steel bar (87 cm long). The exci-
tation was provided by a small electromagnet under the left end of the rod,
which carried an alternating current at a frequency of 252Hz. The nodes are
made visible by scattering sand on the rod.

Figure 11.37 Longitudinal vibrations of
a rod hanging from a cord (rod length l D
25 cm), fundamental frequency � D c=2l
(c D sound velocity in the rod)

Figure 11.36 illustrates transverse vibrations for such a case, using
a flat steel bar. These oscillations are called bending vibrations.

Figure 11.37 shows a demonstration of longitudinal vibrations
(Video 11.4)

Video 11.4:
“Longitudinal vibrations of
a helical spring”
http://tiny.cc/ydgvjy
The video provides a supple-
ment to this section, in the
form of longitudinal normal
modes or standing waves on
a small helical spring; they
are readily seen as a pro-
jected shadow image. This
experiment was included in
the book up to the 11th edi-
tion.

of a short, cylindrical steel rod. They are excited by
striking one end of the rod. This impulse excitation yields a damped
vibration. The cross-section of the rod remains unchanged at the
nodes, but at the maxima, an expansion alternates periodically with
a contraction. We can hear a tone which decays within a few seconds.

The frequencies of the first normal modes of these bodies obey the
following relations:

For transverse vibrations a rod resting on both its endsC11.13

C11.13. The modes of vi-
bration of a rod resting on its
two ends (but not clamped
there) are the same as those
of a stretched rope, i.e. si-
nusoidal with nodes at the
ends. But note that in this
vibration mode, the first nat-
ural frequency is inversely
proportional to l2. Bend-
ing vibrations (see also
Fig. 11.36) and their nat-
ural frequencies are rather
complicated. For details,
see e.g. S. Timoshenko,
D.H. Young, and W. Weaver,
Vibration Problems in Engi-
neering, John Wiley, N.Y.,
4th ed. (1974), Chap. 5.

�1 D 0:453
h

l2

s
E

%
; (11.3)

for comparison: a stretched rope

�1 D 1

2l

r
�

%
: (11.4)

For longitudinal vibrations stretched rope or a rod whose ends
are either fixed or both freeC11.14

C11.14. In the case of
a stretched rope and the rod
fixed at both ends, the nodes
of the motion are held at the
ends. With a free-standing
rod, the node is at its center.
Think of the vibrations of
a column of air in pipes that
are closed at both ends or
open at both ends (organ
pipes!). For longitudinal vi-
brations, see also Sect. 12.17.

�1 D 1

2l

s
E

%
: (11.5)

http://tiny.cc/ydgvjy
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For torsional oscillations held fixed at both ends (no rotation) or
a free cylindrical rodC11.15 C11.15. When the ends of

the rod are fixed, the nodes of
the motion are held there; for
a free-standing rod, the node
is at its center.

�1 D 1

2l

s
G

%
: (11.6)

(l D length, % D density, � D tensile stress, h D thickness of the rod, E D
elastic modulus, G D shear modulus, cf. Table 8.1.)

The vibrations of short crystal rods, for example quartz crystals, have
acquired considerable technological importance in recent years; in
particular in the broad area of communications technology and for
watches and clocks, they serve as a “microscopic pendulum”.

The longitudinal vibrations of crystal rods are also suitable for generating
standing waves in columns of liquid. These vibrations are excited electri-
cally; to make the wave crests and troughs visible, a schlieren image with
bright-field illumination can be employed, as shown e.g. in Fig. 11.32.

11.9 Normal Modes of 2-Dimensional
and 3-Dimensional Bodies.
Thermal Vibrations

We can be rather brief here. In 2 and 3 dimensions, we can also trace
the occurrence of normal modes of vibration to the coupling of many
elementary oscillators. But this would be, apart from a few excep-
tions, an exceedingly challenging business mathematicallyC11.16. C11.16. It can be solved

numerically today using the
methods of so-called Finite-
Element Analysis (carried out
by fast computers).

In
the majority of all practically important cases, one remains dependent
on experimental observations. To detect the nodal lines, usually the
accumulation of dust or sand scattered on the surface is employed.
Figure 11.38 shows the nodal lines of a square and a circular metal
plate in various modes of vibration.

If, instead of scattered sand, one makes use of optical methods (refrac-
tion of polarized light), then considerably more complex normal-mode
vibrations can be observed (see Vol. 2, Sect. 24.9, ‘Strain Birefringence’).
Figure 11.39 gives two examples for short glass cylinders with circular
cross-sections.

Bowing of the plates leads to a bell shape. The vibrations of these
relatively simple forms are already unpleasantly complicated. In the
simplest case, a glass as seen from above vibrates according to the
scheme shown in Fig. 11.40. At K, we see the crossover points of
four nodal lines which take the form of “meridians”. We can imagine
that the simplest vibrations of our skull capsules, which harbor our
hearing organs in their walls, must take a roughly similar form.

In the range of extremely high frequencies up to the order of 1013 Hz,
all solid bodies, regardless of their form, possess an enormous num-
ber of elastic normal modes. Oscillations at such frequencies make
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Figure 11.38 CHLADNI sound patterns (positive photographic images)C11.17C11.17. The first publication
of this research contained
drawings of over 100 normal-
mode vibrations of round and
square plates (E.F.F. Chladni,
“Entdeckungen über die
Theorie des Klanges”, Weid-
manns Erben und Reich,
Leipzig (1787)).

Figure 11.39 Glass cylinders vibrating at high frequency, observed with
linearly-polarized light between two NICOL prisms. Their diameters are 30
and 44mm and the excitation frequency is 1.54MHz (images taken by
L. BERGMANN)C11.18C11.18. L. Bergmann,

“Der Ultraschall”, Ver-
lag S. Hirzel, Stuttgart,
6th ed. (1954), pp. 636ff.

Figure 11.40 Simple vibrations of a wineglass,
seen from above (schematic drawing)

up the disordered “thermal motions” (Chap. 16) in solid bodies or
crystals. At the highest end of this frequency range, the individual
atoms or molecules in the crystal lattice vibrate in the manner visual-
ized roughly in Figs. 11.18 and 11.24 (right).

In considering the normal modes of gas-filled volumes, the natural
frequencies and normal modes of air-containing spherical or bottle-
shaped vessels with short, open necks are especially worth mention-
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ing. These are “HELMHOLTZ resonators”, which are important in
metrology. They represent sound sources of a convenient form with
well-defined fundamental frequenciesC11.19

C11.19. See e.g. T.B. Greenslade,
“Experiments with Helmholtz
Resonators”, Physics Teach.,
Vol. 34 (1996), p. 228.

Video 11.5:
“HELMHOLTZ resonators”
http://tiny.cc/0cgvjy
The video was filmed in
the historic collection of
the 1st Physics Institute in
Göttingen.

(Video 11.5).

For architects, the normal modes of large dwelling and meeting
rooms are important. They are excited when people speak, sing or
play music.

11.10 Forced Oscillations

Following a pulsed excitation, every oscillator vibrates at one or more
of its natural frequencies. But one can also cause every oscillator
to vibrate at other, arbitrary frequencies which are not equal to any
of its natural frequencies. In this case, the oscillator is undergoing
forced oscillations. Such forced oscillations play an extraordinarily
important role in many areas of physicsC11.20. C11.20. The torsional pendu-

lum described in this section
and used for demonstrating
forced oscillations, known
as “POHL’s pendulum”, can
be found today in every col-
lection of demonstration
experiments and in every el-
ementary physics lab course.
See also Vol. 2, Sects. 11.7
and 26.2. A detailed math-
ematical treatment can be
found in H.J. Pain, “The
Physics of Vibrations and
Waves”, John Wiley, New
York, 5th ed. (1999), Chap. 2.

To treat forced oscillations, we must first deal with the concept
of damping of an oscillator more precisely than we have done so
far. Due to unavoidable losses of energy or intentional energy out-
puts, the amplitude of every oscillator decays with time following
an excitation pulse. The graph of the oscillation as a function of
time is given by curves of the type illustrated in Fig. 11.42a (de-
flection ˛). In many cases, these curves follow a simple law for
sinusoidally oscillating systems: The ratio of two maximum deflec-
tions or amplitudes on the same side of the curve remains constant
all along the time curve. It is termed the damping ratio K. Its
natural logarithm is called the logarithmic decrement �C11.21.

C11.21. This means that the
decrease of the amplitude ˛

is exponential:
˛.t/ D ˛0 � e�ıt ,
with the logarithmic decre-
ment �, defined by
ıT D � D lnK
(T D oscillation period). This
follows mathematically from
the fundamental equation for
rotational motion (equation
of motion, Eq. (6.7) in Ta-
ble 6.1 for a frictional torque
proportional to the angular
velocity (see Exercise 11.5).

The
damping constants and the logarithmic decrements are given in
Fig. 11.42a.

The reciprocal of the logarithmic decrement is equal to the number of os-
cillations after which the amplitude of the deflection has decreased to 1=e
D 37% of its original value.

Keeping these definitions in mind, we now want to elucidate the es-
sentials of forced oscillation using a demonstration experiment which
provides clear and detailed examples. This experiment makes use of
torsional oscillations at a rather low frequency: as usual, the slower
the sequence of events, the clearer our observations. Figure 11.41
shows a suitable torsional oscillator (torsional pendulum). Its iner-
tial element is a flat copper wheel with three spokes, whose hub is
mounted on an axle D. A spiral spring is also attached to the axle,
with its other end mounted on a lever at A; the lever can rotate back
and forth around D. Via the connecting rod S and a motor-eccentric
arrangement, the lever carrying the end A of the spring can be moved
sinusoidally at a chosen frequency (the motor is geared down to a low
rotational speed and can be further controlled by a rheostat) and vari-
able amplitude. In this way, a sinusoidal torque of constant amplitude

http://tiny.cc/0cgvjy
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Figure 11.41 A torsional pendulum for demonstrating forced oscillations,
with a torsion constant of D� D 2:3N/rad, moment of inertia 
 D 3:3 �
10�3 kgm2, and eigenfrequency �e D 0:42 Hz. The spiral spring has several
turns (not shown in the drawing). (Video 11.6;

Video 11.6:
“Free and forced oscil-
lations of a torsional
pendulum (POHL’s pen-
dulum)”
http://tiny.cc/uegvjy

in Video 1,

Video 1:
“R.W. POHL Lecturing”
http://tiny.cc/fpqujy POHL himself

demonstrates his torsional pendulum.)

and variable frequency can be applied to the axle D C11.22.

C11.22. By way of expla-
nation: The total torque
M acting on the axle D is
determined by the angular
deflection of the spiral spring.
This deflection is ˇ � ˛,
where ˇ D ˇ0 sin.2��t/ is
the angle that describes the
motion of the lever around
the axle, and ˛ is the momen-
tary angular deflection of the
pendulum wheel. We then
find forM:
M.t/ D D�.ˇ.t/ � ˛.t//
(D� is the angular elastic
constant (torsion constant)
of the spiral spring). In the
mathematical treatment of
the torsional pendulum, this
is the torque which enters
into the equation of motion
(Eq. 6.7). We find

 P! C D�˛.t/ D D�ˇ.t/
(
 is the moment of inertia
of the pendulum wheel).
On the right-hand side is
the additional sinusoidal
torque generated by the lever
acting at A, as described in
the text. For ˇ D 0, i.e. the
rest position of the lever,
we obtain the differential
equation which describes the
motion of a free torsional
pendulum (without damping).

The de-
flection of the torsional pendulum can be read off the angular scale
outside the wheel. Below left at M is an arrangement which allows
the damping of the wheel’s motion to be adjusted within wide limits.

The damping mechanism operates by inducing eddy currents in the copper
wheel. A small electromagnet has its pole pieces on each side of the rim
of the wheel. The oscillating wheel moves through the magnetic field pro-
duced by the magnet, without touching the pole pieces. The current in the
magnet coils can be varied to control the damping. See Vol. 2, Chap. 8.

Before beginning the actual demonstration, we first determine the
natural frequency or eigenfrequency �e and the damping ratio K for
the oscillator. For both measurements, the wheel is deflected with the
lever in its rest position and its reversal points (maximum deflection)
are registered.

Numerical example
The oscillation period Te D 2:39 s; thus the eigenfrequency �e D 1=Te D
0:42Hz. The ratio of two consecutive amplitudes is found to be nearly con-
stant at 1.285; this is the damping ratio K. To illustrate this, the sequence
of amplitudes to the left and the right at intervals of 1.2 s are graphed in
Fig. 11.42a, and their endpoints are connected with a drawn-in line.

Now for the actual experiment: We set the “exciter” in motion – here
the lever attached to the spring – and record its frequency �, wait for
the stationary state of oscillation to be established, and then record
the forced amplitude ˛0. Corresponding pairs of values of ˛0 and
� are listed in Fig. 11.42b for four different damping ratios. The
curves A, B, and C are somewhat asymmetric Gauss curves. These
are the ‘deflection curves for forced oscillations’.

When the damping is weak, but only then, the maximum amplitudes
˛0 in the frequency range near the eigenfrequency of the pendulum
are especially large compared to the amplitudes at other frequencies.

http://tiny.cc/uegvjy
http://tiny.cc/fpqujy
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Figure 11.42 a The time dependence of free oscillations of the torsional
pendulum in Fig. 11.41 with various values of the damping; curve D was
recorded with a camera. The small increase in the period with increasing
damping (at � D 1 only 4%) is negligible compared to the precision of the
present measurements. This allows us to refer to only one eigenfrequency
in the text, �e D !e=2� , independently of �. b The deflection amplitudes
of forced oscillations of the torsional pendulum at a constant excitation am-
plitude, as a function of the excitation frequency and the damping of the
resonator. With increasing damping, the maximum value of ˛0 at the res-
onance frequency �e decreases visibly. At an excitation frequency of zero,
˛0 is simply determined by the two endpoints of the end of the spring (A
in Fig. 11.41). c The influence of the excitation frequency and the damping
on the phase difference �' between the excitation and the resonator. The
excitation is always ahead in phase. The measured points were taken from
‘stopped-motion’ photographic images. At the resonance frequency �e, the
phase difference �' D 90ı, independently of the damping. Note the optical
illusion at the crossover point of the curves (see also Sect. 1.1). (Video 11.6) Video 11.6:

“Free and forced oscil-
lations of a torsional
pendulum (POHL’s pen-
dulum)”
http://tiny.cc/uegvjy

http://tiny.cc/uegvjy
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The ratio

V D Amplitude at the eigenfrequency �e

Amplitude at excitation frequency zero
; (11.7)

is called the enhancement; for curve A, it attains a value of 12.5. This
special case (� D �e) is termed resonance. Referring to this term, any
oscillator operated in the mode of forced oscillations may be called
a resonator, and the curves A, B, C are resonance curves.

At large values of the damping (curve D), peculiar features are seen: The
maximum of the resonance curve is barely visible, and it is shifted towards
lower frequencies.

The resonance curves which we have observed experimentally for
a particular example – our torsional pendulum – hold in fact quite
generally. That is the reason why we have included two captions on
the frequency axis in Fig. 11.42, parts b and c; the lower axis is inde-
pendent of the particular numbers obtained with our demonstration
apparatus. It gives the frequency of the excitation as a fraction of the
eigenfrequency of the undamped resonator, whatever its nature may
be. Thus, the curves apply not only to any kind of mechanical or
acoustic forced oscillations, but also to those of electrical and optical
systems with vastly differing resonance frequencies (see also Vol. 2,
Sects. 11.7 and 26.2).

Given the universal applicability of these curves for forced oscilla-
tions of the most diverse systems and amplitudes (lengths, angles,
pressures, electric currents, voltages, field strengths, etc.), one should
keep in mind a simple general picture of how they come about. To
this end, we consider another experimental observation: It concerns
the influence of the excitation frequency on the phase shift by which
the amplitude of the excitation (the end of the spring at A in our
demonstration) precedes the amplitude of the resonator (the pointer
Z in the demonstration). We thus have to record simultaneously both
the position of the end of the spring at A and that of the pointer Z
for the torsional pendulum in Fig. 11.41. Figure 11.42c shows the
results.

At very low frequencies, the pointer Z and the excitation A move
together, with zero phase shift, and both reverse their motions at the
same time. As the excitation frequency increases, the amplitude of
the excitation begins to move ahead of the amplitude of the torsional
pendulum (the resonator) more and more.

At resonance, the phase shift is 90ı. This means that all along the
path of the pendulum, the exciter tenses the spring in such a way
that it always accelerates the motion of the torsional pendulum. At
the left-hand maximum rotation of the torsion wheel, the end of the
spring at A is just moving out of its rest position to the right; the ex-
citer thus produces a torque to the rightC11.23.C11.23. This is the torque

D�ˇ; see Comment C11.22.
This torque reaches its

maximum value (end of the spring A at its right-hand extreme value)
when the torsion wheel is just passing through its rest position. The
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Figure 11.43 The resonance curve of the angular velocity of the torsion
wheel as it passes its rest position (˛ D 0, its maximum angular velocity
!0), for curve C from Fig. 11.42b. At resonance, the maximum value of the
angular velocity is !0 D 71 deg/s D 1.23/s. This resonance curve has its
maximum at �e, independently of the damping. This is also true of the reso-
nance curve of the energy, since the latter is proportional to the square of the
velocity.

torque is zero (the end of the spring again at its rest position) just at
the moment when the wheel is reversing at its right-hand maximum
rotation. For the oscillation of the torsion wheel from the right to the
left, we have the same situation with a reversed sign. At resonance,
the external torque, which leads the deflection ˛ by a phase angle
of 90ı, is thus feeding energy into the torsional pendulum along its
whole back-and-forth path. Without the losses due to damping, the
oscillation amplitude at resonance would increase without limit (“res-
onance catastrophe”).

Figure 11.43 gives the maximum angular velocity !0 of the torsion
wheel for curve C in Fig. 11.42b, i.e. the amplitude of the angular
velocity with which the wheel passes through its rest position. It
is related to the maximum deflection ˛0, i.e. the amplitude of the
deflection, by the simple equationC11.24

C11.24. Here, it is impor-
tant to distinguish between
the time-dependent angu-

lar velocity ! D d˛

dt
and

the constant angular fre-
quency 2�� with which the
resonator is being excited
(i.e. the frequency of the ex-
ternal sinusoidal force). In
the stationary state, for the
deflection we have
˛.t/ D ˛0 sin.2��t/
and for the time-dependent
angular velocity
d˛

d t
D ˛0.2��/ cos.2��t/,

whose amplitude is denoted
by !0 in Eq. (11.8).

!0 D ˛0 � 2�� (11.8)

.� D excitation frequency/ :

The pendulum goes through its rest position with the maximum value
of its kinetic energy E0. It is given by

E0 D 1

2

!2

0 (6.5)

.
 is the moment of inertia of the torsion wheel/:

The dependence of the energy amplitude E0 on the excitation fre-
quency is shown in Fig. 11.44. A graph of this kind is called the
energy resonance curveC11.25.

C11.25. Away from the rest
position, the total energy of
the pendulum is given by the
sum of its kinetic and poten-
tial energies. The resonance
curve shown in Fig. 11.44
it thus identical to the curve
for the total energy of the
resonator.

The kinetic energy E0 vanishes at an
excitation frequency of zero, in contrast to the maximum angular de-
flection ˛0, i.e. a pendulum at rest stores no kinetic energy.
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Figure 11.44 The resonance curve of the kinetic energy of the pendulum
when the torsion wheel is passing through its rest position. If the excitation
is turned off, this energy will be dissipated within about 8 s, as seen in curve
C of Fig. 11.42a. The half-width H of the resonance curve is the frequency
range at whose limits the amplitude of the kinetic energy is only half as great
as its maximum at the (resonant) frequency �e. To a good approximation,
H D ��e=� .

In considering the various, diverse applications of forced oscillations,
one should keep in mind just which quantities are being plotted in the
corresponding resonance curves.

11.11 Energy Transfer Stimulated
by Resonance

In the previous section, we demonstrated forced oscillations. The ex-
citation was provided by a lever which was moved periodically by an
electric motor equipped with an eccentric. – Now, we put a mechan-
ical phase shifter between the motor and the eccentricC11.26,

C11.26. POHL refers here to
the phase shifter described in
earlier editions (see image).

The phase shift of 180° re-
quired here could also be
simply produced by shut-
ting off the motion of the
eccentric for half an oscil-
lation period, e.g. from the
maximum deflection of the
pendulum on the one side to
its maximum deflection on
the other.

initially
set at zero. Then we adjust the excitation frequency � to be equal to
the eigenfrequency of the resonator (resonance condition). The ex-
citation then leads the deflection of the resonator with a phase shift
of ' D 90ı. The energy of the resonator is increased from its starting
value of zero to its maximum value Emax.

Now we come to the new effect: We increase the phase shift from
90° to 270° without interrupting the operation of the pendulum or the
excitation. As a result, the motion of the resonator along its back-and-
forth path is continually retarded, and its stored energy is released to
the excitation system, until the pendulum comes to rest. This process
is called stimulated energy transfer. It plays an important role in
optics and in electrodynamicsC11.27.

C11.27. For example in
the LASER (Light Am-
plification by Stimulated
Emission of Radiation); see
e.g. R. W. Pohl, Optik und
Atomphysik, Springer Ver-
lag, Berlin, 13th ed. (1976),
Chap. 14, Sect. 15; or Si-
mon Hooker and Colin Webb,
Laser Physics, Oxford Uni-
versity Press (2010), Chap. 2.
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11.12 The Importance of Resonance for
the Detection of Pure Sinusoidal
Oscillations. Spectral Apparatus

According to the considerations in Sect. 11.10, the forced oscilla-
tions of an oscillator or resonator can attain very large amplitudes
even when the periodic forces acting on them are quite small. This
requires that the oscillator be only weakly damped, and its eigenfre-
quency must be as close as possible to the frequency of the excitation
force. There are many demonstration experiments which show how
amazingly large amplitudes can be produced in this way (see also
Video 11.7). Video 11.7:

“Forced oscillations with
a pocket watch”
http://tiny.cc/zegvjy
This experiment was included
by POHL up to the 11th edi-
tion (1947). The video shows
how a pocket watch pendu-
lum (with an eigenfrequency
of 1.95Hz) is excited to
forced oscillations by its own
escapement, which oscillates
at a frequency of 2.00 Hz
when the watch is at rest.
The swinging of the watch
reduces the frequency of the
escapement to 1.95Hz. Thus,
the swinging watch produces
a periodic excitation at its
own resonance frequency,
and this generates a large
amplitude.

We will give another example here, using the forced
bending oscillations of a leaf spring (Fig. 11.45). We have already
employed its forced oscillations in Sect. 1.8, Fig. 1.8 to explain stro-
boscopic time measurements. The excitation was produced by an
asymmetric axle passing perpendicularly through the holder of the
spring.

A series of such leaf springs or reeds mounted on a common base can
function as a useful measuring instrument, a vibrating-reed frequency
meter (Figs. 11.46 and 11.47). The oscillations being investigated are
either coupled mechanically to the base (for example by attaching it
to the frame of a vibrating machine) or more conveniently by using
an electromagnet. Frequency meters of this kind are typical of spec-
tral apparatus. They decompose an arbitrarily complex oscillation
without regard to its phases into a spectrum of pure sine-wave com-
ponents. From this spectrum, one can read off the frequencies of the
individual sinusoidal components and their amplitudes. This can be
most simply demonstrated using an electrical system. We offer two
examples:

1. We refer to Fig. 11.13 and pass a rectangular or chopped direct
current through the electromagnet of the vibrating-reed frequency
meter. Figure 11.48a shows the arrangement, which needs no fur-
ther explanation. The rotating commutator revolves once in the time
T D .1=20/ s, and the current is switched on for a period of (1/40) s

Figure 11.45 A leaf spring or reed which is being
excited to forced vibrations (compare Fig. 1.13),
time exposure

http://tiny.cc/zegvjy
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Figure 11.46 Sketch of a vibrating-reed
frequency meter. The leaf springs have
suitably graded resonance frequencies and
each has a white, square knob at its tip
(see Fig. 11.47).

Figure 11.47 Section of the scale of
a technical vibrating-reed frequency
meter which shows the frequency of
household alternating current (50Hz)

Figure 11.48 a Production of a rectangular direct-current waveform using
a rotating commutator; b Production of beats with two sine-wave alternating-
current signals, and cutting off the beat waveform with a rectifier

during each revolution. The spectral apparatus indicates the frequen-
cies �1 D 20 Hz and �3 D 60 Hz. The next-higher frequency
�5 D 100 Hz can just be discerned in the spectrum.

2. We now refer to Fig. 11.12 and replace the direct-current source of
Fig. 11.48a (storage batteries) by two alternating-current generators
connected in series, with the frequencies �7 D 70 Hz and �4 D 40 Hz
(Fig. 11.48b). The spectral apparatus indicates these two frequencies.
– Then we add a rectifier to the circuit and cut off the beat curve on
one side, so that it resembles the curve Sr in Fig. 11.12. Immedi-
ately, in addition to the two frequencies �7 and �4, the difference
frequency �7 � �4 D 30 Hz is also indicated.

Difference oscillations or difference frequencies occur in general when
some sort of “nonlinear element” is involved in the transmission of the os-
cillations; that is, when for example a force and the resulting deformation,
or (as with the rectifier) voltage and current are not proportional to each
other. A difference frequency occurs only rarely alone. Usually, other so-
called combination frequencies are also present. They can be computed
from the scheme �c D a�1 ˙ b�2 (a and b are small integers).

Experiments of this kind are quite important; they show that a non-
sinusoidal oscillation process behaves like a physical mixture of its
individual component oscillations. Every individual component can
excite the leaf springs of the vibrating-reed frequency meter to forced
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vibrations, independently of all the others. This physical indepen-
dence of the individual component oscillations plays a large role in
all applications of forced oscillations. The next section gives an im-
portant example.

11.13 The Importance of Forced
Oscillations for Distortion-Free
Recording of Non-Sinusoidal
Oscillations

In the majority of cases, our sensory organs suffice for simply de-
tecting mechanical vibrations. Our bodies can for example register
vibrations of the ground (� ca. 10Hz) already at a horizontal am-
plitude of only 3 �m. Our fingertips can feel vibration amplitudes
of around 0.5 �m (at � D 50Hz) with a gentle touch. We will
give numerical details of the enormous sensitivity of our ears later
in Sects. 12.28–12.30. In general, however, one is not satisfied sim-
ply with detecting vibrations; rather, a true-to-form or distortion-free
recording of their time dependence is often desirable.

In every recording method, the vibrations in question produce mo-
tions in some sort of probe instrument (levers, mirrors, microphones,
sensory organs). These motions are recorded continuously, for ex-
ample (after electronic amplification) by an oscilloscope. The probe
instrument is excited to forced oscillations; it is a resonator with the
eigenfrequency �e:

For a flawless recording which correctly reproduces the time depen-
dence of the process, two error sources must be avoided: First, the
recording system must not give preference to certain frequency com-
ponents of the oscillation due to their frequencies �. Second, the
phases of the individual components must not be shifted relative to
one another. – Both requirements are fulfilled as long as � is not
greater than ca. 0:7 �e and the damping ratio K of the recording sys-
tem4 is� 50.

Justification: From curve D in Fig. 11.42b, for the same excitation
amplitudes, the amplitudes of the forced oscillations up to � � 0:7 �e
are independent of the frequency �. – According to curve D in part c

4 This statement does not hold for seismographs is � 50. In their case, the
eigenfrequency of the instrument (the “resonator”) must be low compared to the
frequencies of the seismic waves. This is for two reasons: First, the ground serves
as an accelerated frame of reference; it generates inertial forces; these cause the
ground to serve as the excitation source for forced oscillations. Second, the scale
of the instrument (the resonator) is also part of the motions of the excitation source.
As a result, at the same excitation amplitudes, the deflections shown by the instru-
ment (the resonator) are small at low excitation frequencies and large at higher
frequencies, since the resonator can follow the excitation source (the ground) less
and less as the frequency increases, in contrast to curve D in Fig. 11.42b.
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of Fig. 11.42, the phase angle �' D 2� t=T D 2� t� up to � �
0:7 �e is proportional to �. Then, 2� t D const and thus t D const.
This means that the components at all frequencies are delayed by the
same time t, i.e. they are recorded without phase shifts relative to one
another.

The recording of undistorted oscillation curves is rather challenging,
but it is a task which is essential for many purposes in science. For
acoustic/musical applications, for example for the production of mu-
sical recordings and their playback, the requirements are fortunately
less stringent (compare Sect. 12.28).

11.14 The Amplification of Oscillations

For recording oscillations and numerous other tasks of vibration tech-
nology, amplification of the oscillations plays an important role: The
essential characteristic of amplification is always that the oscillations
themselves control the input of energy from an external source. This
is accomplished today almost exclusively using electronics. Nev-
ertheless, it is useful to comprehend the essentials of amplification
with a clear-cut, purely mechanical example. For this mechanical
amplification, the energy is not taken from an electric current, but
instead from a current of water. This water stream is controlled by
the vibrations which are to be amplified. This can be demonstrated
successfully with the relatively primitive setup shown in Fig. 11.49.
A jet of water from a glass nozzle flows nearly horizontally onto
a strongly damped, stretched membrane (e.g. a tamborine). The jet
forms a smooth filament; such a filamentary stream is a very labile
object (Fig. 10.6). Tiny motions of the nozzle cause changes in the
cross-section downstream, or interruptions of the flow. The chang-
ing impulse of the stream of water hitting the membrane excites the
latter to rapidly decaying vibrations which can be heard some dis-
tance away. Thus, a light tap on the nozzle will be amplified to a loud
throb from the membrane. Similarly, the vibrations of a small tuning
fork held against the water nozzle, or the ticking of a watch, become
clearly audible all over a large auditorium.

Figure 11.49 A stream of water as an acoustic amplifier. (In Video 1, POHL

demonstrates the amplification, although silently, using a tuning fork which
he presses against the water nozzle.)
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Figure 11.50 A water
amplifier regulated
by auto control of
undamped vibrations
(feedback). (This
experiment is also
demonstrated by the
author in Video 1 Video 1:

“R.W. POHL Lecturing”
http://tiny.cc/fpqujy

(again silently).)

Electronic amplifiers are used technologically on a large scale to generate
undamped electrical oscillations. Our mechanical amplifier can accom-
plish the same task by generating undamped mechanical vibrations. One
need only set up a feedback loop between the resonator – here the mem-
brane – and the glass nozzle. The vibrations of the membrane must be
mechanically transmitted back to the nozzle; then the membrane controls
the decay of the water streamwith the rhythm of its own eigenfrequency. It
suffices to lay a metal rod on the membrane and the nozzle, as in Fig. 11.50.
Immediately, loud-sounding undamped vibrations are heard. Their fre-
quency can be varied as desired, by adjusting the tension of the membrane
and thereby changing its eigenfrequency.

11.15 Two Coupled Oscillators and
Their Forced Oscillations

We now wish to investigate some of the properties of coupled pendu-
lums, for simplicity considering only two pendulums, each of which
has the same natural frequency. We distinguish three different types
of coupling mechanismsC11.28: C11.28. A mathematical

treatment of the examples
discussed here is given in
Müller-Pouillet’s “Lehrbuch
der Physik”, 11th edition,
Vieweg und Sohn, Braun-
schweig (1929), Vol. 1, p. 55.

1. Acceleration coupling (Fig. 11.51a). One pendulum is hanging
from the other. It is located in the accelerated frame of reference of
the first pendulum and is thus subject to inertial forces.

2. Force coupling (Fig. 11.51b). The two pendulums are connected
to each other by an elastic element (spring).

Figure 11.51 a Acceleration coupling; b Force coupling; c Frictional cou-
pling. In the case of frictional coupling, no beats are observed. The first
pendulum excites the second so that it begins to swing, and from then on,
both swing together with the same amplitudes and phases (Video 11.8)

Video 11.8:
“Coupled pendulums:
Force coupling”
http://tiny.cc/pfgvjy
The video shows the nor-
mal mode vibrations of two
coupled gravity pendulums
(Fig. 11.51b) as well as their
beats; and also the beating of
a spring-torsional pendulum
and a double gravity pendu-
lum (Fig. 11.53).

(see
Exercise 11.7).

http://tiny.cc/fpqujy
http://tiny.cc/pfgvjy
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Figure 11.52 Two coupled gravity
pendulums (Video 11.9)Video 11.9:

“Acceleration coupling and
chaotic oscillations”
http://tiny.cc/8cgvjy
The two individual vibra-
tions of two coupled gravity
pendulums (Fig. 11.52) as
well as their beats are ob-
served (Exercise 11.6). Two
similar gravity pendulums
coupled in a different manner
exhibit a new form of vibra-
tions at large amplitudes,
so-called chaotic vibrations
(see “Chaotic Vibrations,
an Introduction for Applied
Scientists and Engineers”,
Francis C. Moon, John Wiley,
New York (1987)).

3. Frictional coupling (Fig. 11.51c). A part of one pendulum, e.g. the
connecting rod S which can rotate about a, rubs against a part of the
other pendulum, e.g. the rotatable collar b.

In the following, we consider only the first two cases, that is acceler-
ation coupling and force coupling. After the pendulums are coupled,
the two eigenfrequencies which we have already seen in Sect. 11.5
are observed. The lower frequency �1 applies to synchronous swing-
ing of the two pendulums, and the higher frequency �2 corresponds to
swinging in opposite directions (analogously to the vibrations shown
in Figs. 11.17, 11.18, and 11.24).

Now we come to a new observation: Initially, we move only one of
the two pendulums (No. 1) away from its rest position and then re-
lease it (Fig. 11.52). Something surprising happens – pendulumNo. 1
gradually passes all of its energy to the initially immobile pendulum
No. 2 and excites it to a large vibration amplitude. Pendulum 1 itself
comes to rest during this process. Then the cycle begins anew, with
the roles of the two pendulums reversed (Exercise 11.6).

This process of energy transfer can be described in two ways: First,
as beats of the two superposed eigenfrequencies �1 and �2

C11.29.C11.29. The effect seen in
this example holds quite
generally for coupled pen-
dulums: All the vibrations
can be described in terms of
their normal modes (eigenfre-
quencies).

Sec-
ond, as forced vibrations at resonance. Pendulum No. 1, which was
initially released at its maximum deflection, serves as the excitation
source for pendulum No. 2 as resonator, and leads it by a phase angle
of 90ı. It accelerates No. 2 along its whole swing with the correct
sign. It is itself braked by the counter force according to actio D
reactio. We are dealing here with forced vibrations with a strong
negative feedback from the resonator to the excitation source.

We offer two more examples of coupled oscillations:

In Fig. 11.53, two bifilar gravity pendulums with the same vibration
period are hung from one another. The upper ball has a much greater
mass than the lower one. If the upper one is given a small, hardly
noticeable push, the lower pendulum, with its smaller mass, exhibits
beats of a large amplitude. The beats of the larger-mass pendulum
can barely be seen.

http://tiny.cc/8cgvjy
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Figure 11.53 Two coupled gravity pendulums, hung in
a bifilar arrangement, with inertial elements of very dif-
ferent mass. They can swing in a plane perpendicular to
the page. (Video 11.8) Video 11.8:

“Coupled pendulums, cou-
pled by force”
http://tiny.cc/pfgvjy

Figure 11.54 A tuning fork with
an attached strongly damped leaf
spring (MAX WIEN’s demonstra-
tion, Ann. d. Phys. 61, 151 (1897))
(Video 11.10) Video 11.10:

“Coupled oscillations with
damping”
http://tiny.cc/5egvjy

In the following examples, one of the two pendulum vibrations can be
damped. A strongly-damped leaf spring (reed) is attached as a little
‘rider’ to a tuning fork. The arrangement is shown in Fig. 11.54.
The damping of the reed is produced in the usual way by its rubber
mounting. The reed and the tuning fork each have the same natural
frequency.

First, we hold the reed with a fingertip to keep it from vibrating. Then
the tuning fork’s tone gradually dies away after it is struck once, over
a time of around a minute. We can make its vibration readily visible
from some distance away by using the mirror M. We then repeat the
experiment, leaving the reed free to vibrate. After being struck, the
tuning fork stops vibrating very quickly, after only a few seconds.
Its energy of vibration, which is transferred to the coupled reed, has
been dissipated as heat in the reed’s rubber holder. Instead of the
long beats heard with an undamped oscillator, now we can register
only a few. When the spring is properly dimensioned, the energy will
be completely absorbed by the end of the first beat.

So much for the free oscillations of two coupled pendulums. In technical
applications, the forced oscillations of two coupled pendulums play a sig-
nificant role. We limit our considerations to a single example, the reduction
of rolling motions of ships in heavy seasC11.30.

C11.30. Another example of
such an application are the
“vibration dampers” in tall
buildings. These are large
pendulums mounted within
the buildings, whose vibra-
tion frequency is the same
as the eigenfrequency of
the structure, thus forming
a system of coupled pen-
dulums. When the building
is excited to vibration by
the wind, i.e. it begins to
sway, energy can be trans-
ferred to the pendulum and
damped there by friction. See
Ch. Ucke and H.-J. Schlicht-
ing, “Schwingende Puppen
und Wolkenkratzer”, Physik
in Unserer Zeit 3/2008(39),
p. 139; or B. Breukelman
and T. Haskett, “Good Vi-
brations”, Civil Engineering,
ASCE 71/2001(12), p. 55.

http://tiny.cc/pfgvjy
http://tiny.cc/5egvjy
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Figure 11.55 Model of an antirolling tank
(Video 11.11)Video 11.11:

“Antirolling tank”
http://tiny.cc/jfgvjy
Varying the throttle open-
ing H controls the frequency
of the oscillating water col-
umn so that it can be adjusted
to the roll frequency of the
ship’s hull. The throttle pro-
vides the damping.

We can think of the tuning fork in Fig. 11.54 as a steamship, and the leaf
spring as a strongly damped pendulum built into the ship’s hull. Further-
more, we imagine the pulsed excitation of the tuning fork to be the periodic
action of the waves on the ship; then we can already recognize the princi-
ple. The strongly-damped pendulum is implemented technically as a water
column in a large U-tube.
The model illustrated in Fig. 11.55 shows an antirolling tank of this type,
attached as a pendulum to a board with the profile of a ship’s hull, which
can rotate (roll) around A. The two arms of the U-tube are connected
above through an air pipe with a throttle valve H. When this valve is
closed, the water column cannot oscillate. The board, that is the model
ship, performs around 20 oscillations (rolls) after being tipped to 40ı. By
opening the valve, we can release the water column and at the same time
provide damping of its oscillations. Now, the model stops rolling when
tipped to 40ı after only two or three oscillations, and returns to its rest
position.

11.16 Damped and Undamped Wobble
Oscillations

Spring pendulums and gravity pendulums (simple oscillators) exhibit
a clear-cut, unified scheme for the occurrence of their oscillations:

There is a periodic exchange of potential and kinetic energy. In the
ideal limit of vanishing losses, this exchange can continue indefi-
nitely and sinusoidally at a frequency which is independent of the
amplitude of the oscillations.Sinusoidal oscillations:

“These phenomena are
given preferential treatment
in every physics textbook,
owing to their simplicity”.

These phenomena are given preferen-
tial treatment in every physics textbook, owing to their simplicity. –
A number of oscillation or vibration phenomena however do not fit
into this simple scheme, for example the “wobble oscillations” which
are frequently observed in everyday life. In Fig. 11.56 (left), we see
a wooden column which is standing with its two linear “feet” on a flat
baseplate. A small impulse in the direction of the arrow lifts the right
foot, tipping the column to the left (angle ˛), and thereby excites the
wobble oscillations, a periodic exchange of kinetic and potential en-
ergy (the latter alternating between two metastable positions, tipped
either to the left or to the right around the A–A axis). Even a su-
perficial observation allows us to grasp the defining characteristic of
wobble oscillations, namely the dependence of their frequency on

http://tiny.cc/jfgvjy
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Figure 11.56 Left: Demonstration of wobble oscillations using a rectangular
wooden column on a steel plate. The column is about 30 cm high and stands
on two long “feet”. Right: After an initial push, the oscillations of the column
were recorded photographically using a light beam. (Video 11.12) Video 11.12:

“Wobble oscillations”
http://tiny.cc/qcgvjy
In the video, besides the
wooden column that tips back
and forth around its center-
line A-A, a metal disk is also
shown (covered with plastic
to enhance the visual effect).
The disk is held at an angle
on a flat glass plate and given
a spin around its axis. It rolls
around its circumference on
the glass, at a continually in-
creasing frequency, for about
a minute, until finally coming
to rest on the plate.

– Forced
wobble oscillations can be readily excited by employing inertial forces: the
baseplate is periodically moved back and forth in the direction of the double
arrow P by a motor with an eccentric.

their amplitude. The smaller the angular amplitude ˛0, the higher the
oscillation frequency becomes (compare Fig. 11.56, right).

Wobble oscillations can also be maintained with a constant amplitude, that
is without damping. A first example of external control, i.e. forced oscil-
lations, is described in the caption of Fig. 11.56. A second possibility is
briefly illustrated in Fig. 11.57: A and B are two index fingers which are
placed on the edge of a table T at a certain distance. A metal bar S is rest-
ing on them. Then A and B are moved up and down periodically, but with
opposite phases as “exciters”.
Externally controlled, i.e. forced wobble oscillations exhibit a notable pe-
culiarity: Each excitation frequency corresponds to a certain amplitude,
both of the resonator and also of the exciter. Therefore, there is no dan-
ger that the column in Fig. 11.56 will tip over, as long as the excitation
frequency does not fall below a certain lower limiting value5.
Wobble oscillations with auto feedback can also be illustrated using the
example in Fig. 11.57. Now, A and B denote two sheets of lead attached

5 In the St. Gumbertus church in Ansbach, Germany, the church towers are not
attached rigidly to the nave. When their bells are rung, they are excited to wobble
oscillations with a predetermined amplitude of 20 cm. This presented no danger to
the rest of the structure (E. MOLLWO). Nevertheless, this example of forced wob-
ble oscillationswas unfortunately eliminated by applying a rather simple structural
change: The vertical plane in which the bell swings was rotated by 90ı . An-
other example of wobble oscillations (or “rattling”) is the “Rattleback” or “Celtic
wobble stone” (see: https://en.m.wikipedia.org/wiki/Rattleback). This is a small,
slightly asymmetric, boat-shaped piece of glass, plastic, stone or wood. When
given a spin around its vertical center axis, it stops spinning after some time, and
its kinetic energy is transferred to a different mode: it begins to wobble or “rattle”
around a body axis. After some time, the energy is transferred back to a rota-
tional mode and it again starts to spin, but in the reverse direction. This may be
repeated one or two times. For a video demonstration, see e.g. https://m.youtube.
com/watch?v=69Xm762qE8o.

http://tiny.cc/qcgvjy
https://m.youtube.com/watch?v=69Xm762qE8o
https://m.youtube.com/watch?v=69Xm762qE8o
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Figure 11.57 Producing wobble oscillations of constant amplitude, either
with external excitation or by using thermal feedback (TREVELYAN’s rocker)

to a metal block (at a spacing of ca. 6mm), and S is a hot metal bar, made
e.g. of copper. After an initial push, the bar touches first the left and then
the right lead sheet, each time causing it to bulge more deeply downwards,
which accelerates the rod’s motion with the correct phase (“TREVELYAN’s
rocker” or thermophone)C11.31.C11.31. A. Trevelyan,

Trans. Roy. Soc. Edinburgh,
Vol. 12 (1834), p. 137. An
illustration can be seen in
the same volume in front of
page 429. See also I.M. Free-
man, “What is Trevelyans
Rocker?”, The Phys. Teacher,
Vol. 12 (1974), p. 382; and
https://www.youtube.com/
watch?v=U23iwbVX-Dk for
a video demonstration.

11.17 Relaxation (or Toggle)
Oscillations

Wobble oscillations can continue indefinitely after an initial pulse
excitation, at least in the ideal limit of negligible losses. – Another
important group of oscillations, however, cannot occur at all without
a continuous input of energy: This is the group of relaxation oscilla-
tions or “toggle oscillations”. Relaxation oscillations occur whenever
there is a delay time (relaxation time) between the storage of poten-
tial energy and its conversion into kinetic energy in an oscillator. At
the end of this delay time, the stored energy is released; however, the
released energy is not used again to refill the storage element; rather,
a new quantity of energy is taken from the continuously-available
external source.

Figure 11.58 shows a simple example. A liquid container with the
profile of a non-equilateral triangle is mounted as a seesaw. It can
rock back and forth between two resting points a and b. A steady
stream of water fills the container and shifts its center of gravity to
the left. At a certain point, the ‘seesaw’ becomes unstable and tips to
the left, emptying the contents of the container, which then tips back
to the right. The cycle begins anew.

Figure 11.59 shows an analogous setup in the form of an electrical circuit.
A condenser is slowly charged from a current source through a control
resistor with a high value, until the ignition voltage of a glow-discharge
lamp in parallel with the condenser is reached. Then the lamp flashes on
and discharges the condenser quickly. Another, similar example of elec-
trical relaxation oscillations at a low frequency, � � 0:1 Hz, are the spark
discharges which can be observed with an influence machine (Wimshurst
machine) equipped with a Leyden jar.

Relaxation oscillations are distinguished from ordinary oscillations
or vibrations (periodic inter-conversion of potential and kinetic en-
ergy) by two essential characteristics:

https://www.youtube.com/watch?v=U23iwbVX-Dk
https://www.youtube.com/watch?v=U23iwbVX-Dk
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Figure 11.58 Mechanical re-
laxation oscillations. a and b are
resting points for the “seesaw”
container.

Figure 11.59 Electrical relaxation
oscillations

1. Their amplitudes cannot be changed without modifying the con-
struction of the oscillator (e.g. the container in Fig. 11.58); only their
frequencies can be varied (in Fig. 11.58 by opening or closing the
water faucet, in Fig. 11.59 by adjusting the variable control resistor).

2. Relaxation oscillations can be readily controlled by an auxiliary
oscillation of small amplitude. As a result, they can easily be syn-
chronized.

In everyday life, relaxation or toggle oscillations are extremely im-
portant. We can observe them for example in the creaking of a door
or the screeching of chalk on a blackboard, and in the operation of
a pneumatic hammer. In particular, relaxation oscillations play an es-
pecially important role in the lives of many organisms. The excitation
of nerve cells and muscular activity are examples. The functioning of
the human heart can be elucidated down to the finest details in terms
of three coupled relaxation oscillations.

Unfortunately, the mathematical treatment of relaxation or toggle os-
cillations is complex and difficult; it is therefore not dealt with as
extensively as it deserves in the literature of physics. However, the
electrical demonstrations mentioned above have contributed notably
to the understanding of relaxation oscillations.

Exercises

11.1 Sound waves with the frequencies �1 D 225Hz and �2 D
336Hz, each containing their first two overtones at 2� and 3�, are
sounded together. Show that two of these overtones lead to beats of
frequency �B D 3Hz. (Sects. 11.3 and 11.7)
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11.2 Determine the length d of the shortest capillary tube whose air
column can be excited to normal-mode vibrations by a tuning fork at
a frequency of 520Hz, if a) both ends are open; and b) if one end of
the tube is closed (sound velocity in air: c D 340m/s). (Sect. 11.7)

11.3 KUNDT’s dust figures are produced by a whistle; their spacing
is found to be 1.2 cm. Determine the wavelength and the frequency
of the sound. (Sect. 11.7)

11.4 The longitudinal fundamental vibration of a rod of length l D
2:4m is 800Hz. Evaluate the velocity of sound c l in the rod.
(Sect. 11.8)

11.5 Video 11.6, “Free and forced oscillations of a torsional pen-
dulum (POHL’s pendulum)” begins with the free oscillations of the
torsional pendulum (Fig. 11.42a). Find from this result the value
ı�1 (i.e. the time constant � ; cf. C11.21.) of the exponential decay
of the amplitude, and the frequency �e of the torsional pendulum,
and derive the logarithmic decrement �, the damping ratio K and
the half-width H of the resonance curve of the energy (Fig. 11.44).
(Sect. 11.10)

11.6 In Video 11.9, “Acceleration coupling and chaotic vibra-
tions”: For the two coupled gravity pendulums (“acceleration
coupling”), use a stopwatch to determine the frequencies of the
symmetric and the antisymmetric normal modes of vibration and
the beat frequency. Then investigate the relationship between these
three frequencies, which is hinted at in Fig. 11.10 (see also Com-
ment C11.4). (Sect. 11.15)

11.7 Figure 11.24 shows the longitudinal vibrations of two cou-
pled ball-and-spring pendulums with massive ballsm and spring con-
stantsD. a) Calculate the frequency �0 of one of the pendulums when
the other is being held fixed, and also the frequencies �1 and �2 of the
vibrations of the coupled pendulums. b) Replace the spring between
the two balls by a weaker spring, i.e. D0 	 D, which represents a sit-
uation very similar to that shown in Fig. 11.51b (note that here again,
one should observe the vibrations of one of the pendulums while the
other is being held fixed). Determine the three frequencies of the
longitudinal vibrations in this case. (Sect. 11.15)

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_11) contains supplementary material, which is avail-
able to authorized users.
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Travelling Waves
and Radiation 12
12.1 Travelling Waves

In Fig. 12.1, we are looking through a window to see a sine curve
as a shadow image. It is moving with the velocity c in the z direc-
tion: This shadow image thus represents a travelling sinusoidal wave.
Figure 12.1 shows a ‘snapshot’ of the wave. We distinguish between
wave crests and wave troughs. The distance between two correspond-
ing points along the wave, e.g. the crossing points ˛ and ˇ on the
z axis, or two successive wave crests, is called the wavelength �. The
velocity with which such a crossing point or wave crest is moving
along the z axis is called the phase velocity c of the wave.

We can represent such a travelling wave experimentally by pulling
a sine curve made of wire at the velocity c past the window. A differ-
ent arrangement is better, since it demonstrates the relation between
a sinusoidal oscillation and circular motion: We put a wire which has
been bent into a helical shape behind the window (Fig. 12.2). Then
it is rotated around its long axis (by turning the crank), with the fre-
quency � D N=t, that is N revolutions within a time t. During N
revolutions of the helix, a point followed by the eye, e.g. the crossing

Figure 12.1 Instanta-
neous image (‘snapshot’)
of a sinusoidal travelling
wave

Figure 12.2 A wire
which has been
bent into a helix
and can be rotated
around its long axis

291© Springer International Publishing Switzerland 2017
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Figure 12.3 Beads arranged along a he-
lix (Video 12.1)Video 12.1:

“Model of a travelling
wave”
http://tiny.cc/2fgvjy
The direction in which
a wave is travelling as given
in the text depends on the
sense in which the helix is
wound (right- or left-handed),
and on the sense in which
the experimenter is turn-
ing the crank (clockwise or
counter-clockwise). This can
be clearly seen in the video.

point ˛ in Fig. 12.1, moves along a distance s D N� at the phase
velocity c D s=t D N�=t or

c D �� : (12.1)

This is a fundamental relationship for every wave phenomenon. –
During the rotation of the helical wire, every observer sees the wave
weaving along like a snake in the z direction. Nevertheless, no point
on the wire is actually moving in the direction of travel z. All the
points on the wire are moving circularly in planes which are perpen-
dicular to the z axis. This can best be seen by imagining that the wire
has been dissolved into a series of individual points which follow the
helical form, as in Fig. 12.3 (small wooden beads on a thread). Each
point undergoes a sinusoidal oscillation with the period T . At a par-
ticular time t, it has a phase of ' D 2� t=T . Its neighbor to the right
has the same phase somewhat later: what is in fact moving to the
right along the wave is its phase, and thus the name phase velocity.

For a quantitative description, we first need to examine the vibrations
of a single point. Assume that the point ˛ is just touching the z axis
at the time t D 0. Then after a time t, it has reached a deflection of

x D x0 sin!t (12.2)

(x0 is the maximum possible deflection (amplitude), ! D 2�� is the cir-
cular frequency).

For the vibrations, the deflection x and die phase !t depend only on
the time. The deflection is repeated at the same position after each
period T .

In order to arrive at a description of the wave, we consider the vi-
brations of a point at a distance z further to the right. Along its path
upwards, it crosses the abscissa later than the point ˛. Its vibrations
are delayed by a phase angle of

' D 2�
t

T
D 2�

ct

cT
D 2�

z

�

relative to those of the point ˛. Therefore, instead of Eq. (12.2), they
are described by:

x D x0 sin
�
!t � 2�

z

�

�

http://tiny.cc/2fgvjy
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Figure 12.4 A ripple tank for observing surface wave fields. At the end
of a lever is an immersion contactor C which can be moved up and down
by means of a vibrator (after THOMAS YOUNG, see Comment C12.3). For
circular waves, the contactor is a short, pointed rod; for linear waves, it is
a horizontal bar (Video 12.2) Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjyor, with � D c=� and 2�� D !,

x D x0 sin!
�
t � z

c

�
: (12.3)

This is the specification of a travelling wave in terms of an equation.
For the wave, the deflection x and the phase !.t � z=c/ depend not
only on the time t, but also on the position z. The deflection repeats
itself at the same position after each period T and at the same time at
positions separated by z D �.

Any state which travels at a finite velocity can form waves. To ob-
serve waves, it is expedient to begin with states which travel at small
velocities c. Among these, small deformations of liquid surfaces oc-
cupy a prominent position; they form surface wave fields. These can
be observed in a ripple tank.

In Fig. 12.4, a ripple tank is sketched in cross-sectionC12.1. C12.1. Many of the ex-
periments described in the
following were filmed using
this ripple tank (Video 12.2).
In order to aid in finding the
individual experiments, the
times (in minutes) at which
they appear in the video are
noted in the margin of the
page (the complete video
runs for somewhat more than
6 minutes).

For pro-
ducing the waves, it contains an immersion contactor which vibrates
sinusoidally up and down at the surface of the water and serves as
a wave source. Its frequency is chosen to lie between 10 and 20Hz;
then we obtain wavelengths between 2.5 and 1.2 cm. Pointed con-
tactors give circular waves, which travel out as concentric circles
(Fig. 12.5). Linear contactors (bars) give wave crests and troughs
in the form of straight lines (linear waves), as seen in Fig. 12.11.

The edges of the tank must be flat with a gentle slope, so that the waves
are damped and no disturbing reflections occur there. – Illumination from
below can be used to project an image of the waves in the tank onto the
ceiling or, using a mirror to redirect the image, onto a wall screen. Strobo-
scopic illumination allows a particular phase, e.g. a certain wave crest, to
be easily followed in the projected image.

12.2 The DOPPLER Effect

In Fig. 12.5, we can imagine that somewhere, there is a receiver E
which responds to the oncoming waves and can count them; it could
be for example the eyes of an observer. If the source and the re-
ceiver of the waves are at rest relative to the wave-carrying medium,

http://tiny.cc/tfgvjy
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Figure 12.5 A two-dimensional
wave field on the water surface,
snapshot (exposure time 0.002 s).
The wave crests and troughs are
concentric circles (Video 12.2)Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjy
http://tiny.cc/tfgvjy
Circular waves (3:00). Note
that the wavelength depends
not only on the excitation fre-
quency, but also on the phase
velocity, which is changed
when the depth of the water
decreases. (This effect is used
to demonstrate refraction of
waves in Figs. 12.19, 12.20,
12.22, and 12.23.)

here the surface of the water, then the receiver measures the same
frequency as was emitted at the source. If the source or the receiver
are moving, then the DOPPLER effect is observed: During the prop-
agation of the waves, a decrease in the spacing of the wave crests
increases the frequency observed by the receiver, while an increase
in their spacing reduces the frequency. – For a quantitative discus-
sion, one must be careful when dealing with mechanical waves to
keep the case of a moving source (Fig. 12.6) separate from that of
a moving receiverC12.2.C12.2. In contrast to light

waves, for which only the rel-
ative motion is of importance
(see Vol. 2, Sect. 23.4).

Let the relative velocity of source and receiver be u, and the phase
velocity of the waves be c. Then the following observations can be
made:

Receiver at rest and a moving source
Instead of the source frequency �, the receiver observes a wave frequency
of:

� 0 D �

1
 u

c

D �
�
1˙ u

c
C � � �

�
(12.4)

In a time t, N0 D �t individual waves (i.e. one crest and one trough) are
emitted from a moving source which is approaching the receiver. Along
their path (ct � ut/, they are compressed; therefore, the receiver measures

Figure 12.6 Similar to Fig. 12.5,
but with the wave source moving
to the right. E denotes a “re-
ceiver” which is at rest. A scale
10 cm long is shown.

http://tiny.cc/tfgvjy
http://tiny.cc/tfgvjy
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a wavelength of �0 D .c� u/t=N0 D .c� u/=�. Inserting �0 D c=� 0 yields
Eq. (12.4).

Moving receiver and a source at rest

� 00 D �
�
1˙ u

c

�
(12.5)

If �t individual waves would arrive within the time t at a receiver which
is at rest, then for a receiver which is moving towards the source by a dis-
tance ut during the time t, an additional ut=� individual waves arrive. The
moving receiver will thus detect N00 D .�t C ut=�) individual waves in
the time t. It observes a frequency of � 00 D N00=t, giving with � D c=�

Eq. (12.5).

In Eqns. (12.4) and (12.5), the upper sign applies when the source
and the receiver are approaching each other.

12.3 Interference

Using a ripple tank, THOMAS YOUNGC12.3

C12.3. THOMAS YOUNG,
physician (1773–1829). An
appraisal of his scientific
achievements can be found
in R.W. Pohl, Physikalische
Blätter 5, 208 (1961).

discovered and named
a fundamental effect in 1802; it is basic to the understanding of all
wave phenomena. This is interference, which occurs when two waves
are superposed. – In order to demonstrate this effect, we use two
points which are rigidly connected together as excitation sources in
the ripple tank. The result is shown as a snapshot in Fig. 12.7: The
two waves add to each other, and the resulting wave field is chopped
up by interference maxima and minima.

Along the symmetry direction 00, there are travelling waves. On
both sides of this symmetry axis 00, one can observe alternating nar-
row, dark regions with no waves and broad regions containing waves.
In the wave-free regions – called for short interference fringes – for
every point along their center lines, the path difference, i.e. the dif-
ference of the distances to the two wave sources, is constant and is
an odd multiple of �=2. As a result, the two waves cancel each other.

Figure 12.7 Snapshot of
a two-dimensional wave field
showing interference be-
tween two waves (exposure
time 0.002 s). This image
and all those on through
Fig. 12.19 are photographic
positives (Video 12.2).

Video 12.2:
“Experiments with water
waves”
http://tiny.cc/tfgvjy
YOUNG’s experiment (3:30)
is easily reproduced, in
particular with long wave-
lengths. One can clearly
discern two directions of neg-
ative interference. When the
frequency is increased (short-
ening the wavelength), the
number of such directions in-
creases; however, the images
also become more complex.
The reason for this is that the
waves excited by an object
which oscillates harmoni-
cally at the water surface are
by no means simple sinu-
soidal waves with only one
wavelength, as one can see in
many of the experiments in
this video. Their interference
patterns are correspondingly
complex.

http://tiny.cc/tfgvjy
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Figure 12.8 The derivation of
Eqns. (12.6) and (12.7)

In contrast, the waves between the interference fringes are ampli-
fied. Along the center lines of the wave-containing regions, the waves
coming from the two sources add with the same phase, and thus their
path differences are integral multiples of �, as shown by the numbers
in the margin of Fig. 12.7. – The curves of equal path difference,
i.e. the center lines of both the wave-free and the wave-containing
regions, are hyperbolas. The angle between their asymptotes and the
symmetry axis 00 can be read off Fig. 12.8 at a sufficiently large dis-
tance from the sources. For the maxima (at angle ˛), where m is
a whole number (an ordinal number or index), we find

sin˛ D m�

D
; (12.6)

and for the minima

sin˛ D .2mC 1/�=2

D
: (12.7)

The amplitudes of neighboring wave trains have opposite signs (crest
instead of trough and vice versa). More details are given in Vol. 2,
Fig. 12.35.

12.4 Interference with Two Slightly
Different Source Frequencies

Suppose that in Fig. 12.7, the two exciter points are no longer rigidly
connected to each other, but instead are driven independently by two
motors, at the frequencies � and �C��. Then the interference fringes
will wander. In a periodic sequence, they arrive at the same posi-
tion previously occupied by the neighboring fringe (n times within
a time t, or at the “beat frequency” �B D n=t D ��). The interfer-
ence fringes exhibit fixed positions only in stopped-motion images.
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Figure 12.9 Two two-dimensional wave fields showing interference, in
which the second wave was produced by reflection of the first from a wall;
left: an instantaneous image, right: a time exposure, with a larger spacing of
the two wave sources. The left-hand image corresponds to the left half of
Fig. 12.7. The right margin of the picture corresponds to the surface of the
reflecting wall, and to the line 0–0 in Fig. 12.7. The arrows in the right-hand
image show the direction of propagation of the travelling waves in the inter-
ference field. Furthermore, the wall at the right and the wave nearest to it,
with a path difference of 0, are not shown.

In many cases, it is impossible to arrive at strict synchrony between
two sources and thus to avoid frequency differences �� between
them. Then, one can resort to a trick: The second source is replaced
by a mirror image of the first, guaranteeing synchrony. That is, we
allow a wave to reflect from a smooth wall and observe the super-
position of the reflected and the incident waves. Figure 12.9 (on the
left) shows an example.

12.5 Standing Waves

In Fig. 12.9, at the left we see the interference of two waves of the
same frequency as an instantaneous image. We now show a simi-
lar interference pattern as a time exposure (Fig. 12.9, right). Here,
the second wave source was also produced as a mirror image of the
first. In this time exposure, we see nothing more of the progressive
sequence of wave crests and troughs; we see only the hyperbolas
of equal path differences. Between the dark interference fringes,
the waves travel in the directions shown by the short arrows; above
the line ZZ upwards, and below the line ZZ downwards. Along the
line ZZ (and practically also in its immediate neighborhood), we ob-
serve standing waves with nodes and maxima: At the maxima, crests
and troughs follow each other in a periodic sequence. At the nodes,
the medium (water surface) is at rest1 Along the connecting line Z-Z

1 At the nodes, a stick oriented perpendicular to the water surface would change
only its angle to the vertical over time; its lower end would not move up and down.
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Figure 12.10 A time exposure of linear standing
waves in front of a wall which is at the right. The
bright regions (spacing D �=2) are formed by the
maxima when the water surface is bowed upwards.
Therefore, they appear periodically at the frequency
of the waves. (Video 12.2)Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjy
Standing waves form by
reflection from a wall at per-
pendicular incidence (1:00).
Examine the images indi-
vidually and observe the
footnote 1.

between the two wave sources, the two waves move exactly oppo-
sitely towards one another. In a strict sense, one can speak of standing
waves only in this situation, since only then is the spacing of two in-
terference minima at its smallest value, namely �=2. Standing waves
can be produced in a simple manner experimentally on a water sur-
face; one need only to cause linear waves to reflect with perpendicular
incidence from a flat wall (Fig. 12.10).

The equation for the standing waves can be derived as follows: For
the wave travelling to the right in the positive z direction, we have

xr D x0 sin!
�
t � z

c

�
: (12.3)

The wave travelling to the left is described by

xl D x0 sin!
�
tC z

c

�
: (12.8)

We abbreviate
�
!t � !

z

c

�
D ˛ and

�
!tC !

z

c

�
D ˇ, and obtain

for the resulting wave function, resulting from the two oppositely-
travelling waves

x D xr C xl D x0.sin˛ C sinˇ/ : (12.9)

We then make use of the trigonometric identity

sin˛ C sinˇ D 2 sin
˛ C ˇ

2
cos

˛ � ˇ

2
(12.10)

to obtain
x D 2x0 sin!t cos!

z

c
(12.11)

or
x D 2x0 cos 2�

z

�
sin!t : (12.12)

This is the equation of a sinusoidal oscillation whose amplitude

2x0 cos 2�
z

�
changes periodically along the z direction.

Standing waves on liquid surfaces can be “parametrically” excited by caus-
ing the container to oscillate in the vertical direction. The wave frequency
is equal to half the excitation frequency (cf. the caption of Fig. 11.20). In
this way, one can observe � < 0:1mm on water surfacesC12.4.

C12.4. See W. Eisenmenger,
Physikalische Blätter 51, 655
(1995).

http://tiny.cc/tfgvjy
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12.6 The Propagation of Travelling
Waves

How do travelling waves propagate? Why do we speak of the emis-
sion of waves? – Again, we use the ripple tank to help us answer
these questions. We set obstacles (pieces of wood or metal) in the
path of the waves.

First of all, we let linear waves with a broad wavefront fall onto a long
wall at perpendicular incidence, as in Fig. 12.11, in order to block off
“half” of the waves. From symmetry arguments, we would expect the
dashed line in the figure to be the boundary of the waves in this “semi-
plane”. Beyond this line, the “shadow” of the wall should begin. But
in fact we observe something quite different. The waves pass over
this geometric boundary and move along large arcs into the shadow
region. (For waves, their wavelength � plays the role of a characteris-
tic dimension. Here, “large” thus means “large compared to �”.) This
path of the waves is described in words, strangely enough, in the pas-
sive form; we say that the waves “have been diffracted”. The waves
which appear beyond the shadow boundary are diffracted waves.

In Fig. 12.12, we have made a slit in the obstacle to wave propaga-
tion by using two semi-planes, above and below, with a gap between
them. Again, the dashed geometric boundaries are clearly crossed
over by the waves. The connection to Fig. 12.11 is immediately evi-
dent. – In Fig. 12.13, the slit (gap) has been replaced by a rectangular
obstacle of the same width. Here, the diffracted waves appear even

Figure 12.11 Blocking linear waves
by a semi-plane. This and the following
Figs. 12.12–12.20 and 12.22–12.24 are
instantaneous images (‘snapshots’, with
ca. 0.002 s exposure time). (Video 12.2) Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjy
Diffraction (1:40). Behind
a semi-plane, the waves
propagate within the opti-
cal shadow region.Figure 12.12 “Cutting out” linear

waves by a slit

http://tiny.cc/tfgvjy
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Figure 12.13 The shadow of an
obstacle produced by linear waves

more clearly: The diffracted waves coming from the upper and lower
edges of the obstacle interfere with each other, and the “shadow” of
the obstacle becomes increasingly washed out at greater distances.
Waves continually propagate along the axis of the shadow!C12.5C12.5. In optics, this is called

a “POISSON spot” (Vol. 2,
Sect. 21.1).

Figures 12.14 and 12.15 show the corresponding experiments for
smaller dimensions. The width of the slit and of the obstacle is now
only about 3�. In this case, the geometric ray-tracing construction
fails even as a rough approximation. Behind the slit, the wave train
fans out broadly, and in the diffraction region, clear-cut maxima and
minima can be seen on both sides. Behind the obstacle, the shadow is
only indistinctly visible even at short distances; the diffracted waves
are hardly weaker than on both sides in the free wave field.

Figure 12.14 Cutting
off linear waves by a slit;
secondary maxima in
the diffraction region
(Video 12.2)Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjy
Diffraction by a slit (2:00).

Figure 12.15 The very incom-
plete formation of a shadow
behind a small obstacle in a lin-
ear wave field

http://tiny.cc/tfgvjy


12.6 The Propagation of Travelling Waves 301

Pa
rt
II

Figure 12.16 Elementary waves behind
a very small opening on which linear
waves are incident

Figure 12.17 Elementary waves
which are produced by scattering
from a small obstacle (Video 12.2) Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjy
Note here the short wave
train which was produced
by dipping the excitation bar
only once into the water sur-
face (2:30). According to
FOURIER, such a pulse con-
sists of waves from a broad
frequency spectrum (see
Fig. 11.16). The waves of
shorter wavelength travel
faster (compare Fig. 12.74;
capillary waves), and thus
a characteristic wave field is
formed in which the shorter
waves move ahead of the
longer ones (“spectral anal-
ysis by dispersion”). This
phenomenon can be readily
observed when swimming in
a calm lake!

In Fig. 12.16, the width of the slit is now smaller than the wave-
length of the waves; the incident waves which pass through it form
essentially semicircular wavefronts behind the slit. – In Fig. 12.17,
an obstacle of the same width was used. The incident waves take so
little notice of this obstacle that we can barely see its effects against
the background of continuous waves. Therefore, in Fig. 12.17 we let
a wave train of limited length (produced by a brief, pulsed excitation
of the wave source) pass by this small obstacle. In the stopped-
motion image, this short wave train has already passed the obstacle.
We see the result: The obstacle has produced a new, circular wave.
– The observations in Figs. 12.16 and 12.17 can be summarized as
follows: The slit in Fig. 12.16 and the obstacle in Fig. 12.17 have
become source points for new waves. Behind the slit, these propa-
gate as semicircular wave fronts, and around the obstacle, they are
complete circular waves. Both are limiting cases of diffraction. In
this limiting case, they are termed “scattered” waves, or “waves pro-
duced by scattering”. The name elementary waves is also often used.
Their amplitude decreases with decreasing width of the slit or ob-
stacle. However, they are present even at arbitrarily small geometric
dimensions. When the amplitude of the incident waves is sufficiently
large, they can always be detected. Even the smallest objects make
their existence known through scattering of waves (“ultramicroscopic
detection”).

The results of our experiments thus far are: We can describe the prop-
agation of waves with geometric boundaries by using simple rays or
bundles of rays. However, this works only when the geometric di-

http://tiny.cc/tfgvjy
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mensions B (width of the slit or obstacle) are large compared to the
available wavelength � (“geometric optics”).

12.7 Reflection and Refraction

In Fig. 12.18, divergent waves are incident on a smooth, planar ob-
stacle at an angle. The imperfections in its surface (scratches, bumps)
are small compared to their wavelengths. The waves are reflected as
if by a mirror (specular reflection). The rays which have been re-
versed by the mirror are sketched in. They are perpendicular to the
circles representing the incident and the reflected wave fronts. For
the rays drawn, the law of reflection holds: The angle of incidence
equals the angle of reflection. Above the mirror, we see the superpo-
sition and interference of the incident and the reflected waves. To the
right, we can discern the shadow of the mirror with its edges washed
out owing to diffraction.

In shallow water, waves propagate more slowly than in deep water
(see Eq. (12.36). This fact can be used to demonstrate refraction.
In Fig. 12.19, the line 0-0 in a ripple tank separates a shallow-water
region B (below) from a deep-water region A (above). Linear waves
incident from the upper left at an angle ˛ pass over this boundary. An
incident and a refracted ray are sketched in, also the “normal axis”
NN (perpendicular to the boundary). The transition of the waves from
region A to region B is governed by the law of refraction:

sin˛

sinˇ
D const D nA!B : (12.13)

It defines the index of refraction nA!B for the transition from A !
BC12.6.

C12.6. This is the “relative”
index of refraction. We can
write it as the ratio of two
indices of refraction, each
of which applies to one par-
ticular region or transparent
medium: nA!B D nA=nB. If
we take a fixed value for one
of the regions, then the value
of the index of refraction is
defined for all other regions.
This is done in optics by set-
ting the index of refraction
equal to 1 for the “medium”
vacuum (see also Sect. 12.11
and, in Vol. 2, Sect. 16.3.)

Using it, we find for the wavelengths

�B D �A

nA!B
(12.14)

and for the velocities of the waves:

cB D cA
nA!B

: (12.15)

Figure 12.18 Reflection of divergent
waves by a mirror at an angle of inci-
dence of 45°. The smooth surface of the
mirror appears to be distorted due to the
ripples on the water (Video 12.2).Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjy
Reflection of plane waves by
a wall at an incidence angle
of 45° (1:15).

http://tiny.cc/tfgvjy
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Figure 12.19 Refraction of
linear waves on passing into
a region of lower wave velocity:
snapshot. (The waves which
are reflected at the boundary
0-0 upwards and to the right are
not visible; they are too weak.)
(Video 12.2). Video 12.2:

“Experiments with water
waves”
http://tiny.cc/tfgvjy
Refraction (4:20). In the
video, the depth of the water
in region A is 8mm, and in
B, it is 2mm. The incident
waves are refracted just like
light waves which are inci-
dent on a glass plate (towards
the normal to the boundary),
since their phase velocity in
region B is smaller than in A.

12.8 Image Formation

Figure 12.20 shows a “shallow-water lens”: We place a flat, transpar-
ent, lens-shaped object into the ripple tank. Between its upper surface
and that of the water, the remaining depth is only about 2mm. This
“lens” is mounted on both sides in a frame which blocks the waves.
The divergent waves are delayed most when they pass through the
thick center portion of the lens, and the least at its edges, correspond-
ing to the decreasing thickness of the lens there. As a result of this
delay, the curvature of the waves changes its sign. The waves con-
verge behind the lens towards the “image point” and again diverge
after passing through it. – Reflection from concave mirrors can show
the same effect. We illustrate this in Fig. 12.21. This time, the wave
source (the “object point”) is on the left at “infinity”, i.e. we use linear
waves. In this case, the image point is termed the “focal point”. Fig-
ures 12.20 and 12.21 are quite instructive: Image points are in reality
not the convergence points of the rays, but rather extended diffrac-
tion patterns of the lens or mirror mount. Their diameter depends on
the wavelength of the waves in question and on the diameter of the
lens or mirror. The greater this diameter, the smaller the diffraction
pattern, the true image point.

To represent a wave, a single line is often sufficient, namely the nor-
mal to the wavefront; it is also called the principal ray. Referring
to this popular method of representation, one frequently calls a wave
field which is bounded by parallel lines (i.e. a wave bundle) a beam.
One thus speaks of e.g. beams of sound and of light beams.

Figure 12.20 A wave
source point as object point
is imaged by a shallow-
water lens at an “image
point”. The object point
is intentionally not on
the symmetry axis Z
(Video 12.2)

Video 12.2:
“Experiments with water
waves”
http://tiny.cc/tfgvjy
In the video, the image point
of an “infinitely” distant
object is shown (i.e. linear
wavefronts) (4:50).

http://tiny.cc/tfgvjy
http://tiny.cc/tfgvjy
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Figure 12.21 Prominence of the focal point in the interference field of short
surface waves on water in front of a cylindrical concave mirror (radius of
curvature r; f is the focal length, see also Vol. 2, Sects. 16.7 and 18.2). Time
exposure, mirror diameter 14 cm. Compare Fig. 12.48

12.9 Total Reflection

Figure 12.22 shows refraction for the case that the waves are incident
from below right upon the boundary surface. In this case, the angle of
incidence ˛ is smaller than the angle of refraction ˇ. Experimentally,
we find

sin˛

sinˇ
D const D nB!A D 1

nA!B
< 1 : (12.16)

˛ has a maximum value of 'T, defined by sinˇ D 1 (ˇ D 90°), that
is

sin 'T D nB!A D 1

nA!B
(12.17)

cannot be greater than one. 'T is called the critical angle for total
reflection. At angles of incidence ˛ > 'T, no refracted wave can
enter into the region A where the wave velocity is greater; instead,
the incident waves undergo total reflection.

According to this formal geometrical consideration, when the critical
angle 'T for total reflection is exceeded, no waves at all should pen-
etrate into the region A with its higher wave velocity (due to the fact
that at an angle of incidence of 'T, they are already refracted by 90°,
i.e. they are propagating parallel to the boundary 0-0); cf. Eq. (12.17).

Figure 12.22 The refraction
of linear waves on passing into
a region with higher wave ve-
locity
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nB→A=0.81
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αT=54°

α=63°

α=63°

α=63°

d= 1
4

λs

d=λs

10 cm

shallow
water

Figure 12.23 Demonstration of the total reflection of water waves. The wave
propagates from below right onto the boundary 0-0. During total reflec-
tion (images b und c), below 0-0, sinusoidally modulated waves travel from
right to left, i.e. the waves are split up by horizontal interference minima
(Video 12.2).

Video 12.2:
“Experiments with water
waves”
http://tiny.cc/tfgvjy
Total reflection (5:30). The
waves are produced in the
shallow-water region (water
depth 2mm), and are incident
on the boundary line to the
deep-water region (8mm) at
an angle which is greater than
the critical angle for total re-
flection. Besides the reflected
wave, we see a transversally-
damped wave, which travels
along the boundary. Its depth
of penetration into the deep-
water region is of the order
of one wavelength. When
the width of the deep-water
region (channel) is reduced
(5:30), one can also observe
a wave on the other side
of the channel; this is the
“tunnel effect” (see the end
of this section and Vol. 2,
Sect. 25.9).

We now should consider what in fact happens in total reflection. To
this end, we use the same setup as in Fig. 12.22; we again allow
a wave at the angle of incidence ˛ (here around 40°) to arrive at the
boundary from below right, above which the region A with a higher
wave velocity begins. In Fig. 12.23a, we see both refraction and re-
flection. The amplitudes of the reflected waves are much smaller

http://tiny.cc/tfgvjy
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than those of the incident waves. In this example, we have for the
index of refraction nB!A D �s=�d D 14:4mm/17.8mm = 0.81. At
sin˛ D 0:81 or ˛ D 54ı, total reflection begins. In Fig. 12.23b,
ˇ D 90ı. The refracted waves are perpendicular at the boundary and
extend upwards as curved “diffracted” waves. The amplitude of the
reflected waves is now comparable to that of the incident waves.

In Fig. 12.23c, the angle of incidence ˛ has been further increased
to 63°. We are thus in the middle of the angular range for total reflec-
tion, and there we observe the following effects:

Some waves are still propagating above the boundary (they are called
evanescent waves). In the figure, the white wave crests are overstep-
ping the boundary 0-0 by about 1mm. Their propagation direction is
parallel to the boundary. The amplitude of these waves decays very
quickly in an upwards direction, i.e. perpendicular to their propaga-
tion direction. Thus, these waves are strongly damped in a direction
perpendicular to their direction of propagation.

(Their continuation as curved, diffracted waves is very clearly seen. They
can even distract our attention as a disturbance from the essentials of the
figure. But diffraction also belongs inseparably to any bundling of waves
into a beam, etc.)

The transversally-damped waves in the second region A, which ac-
cording to formal-geometric considerations should be free of waves,
are in fact necessary for the appearance of total reflectionC12.7.

C12.7. This can be heuris-
tically justified by the fol-
lowing argument: How do
the incident waves “know”
that the region A is a “for-
bidden zone” if they cannot
penetrate it at all? Some
(small) portion of the inci-
dent wave must penetrate to
a limited distance (ca. one
wavelength) into the region
A as an “evanescent wave” in
order to impart this informa-
tion, so that the major portion
of the incident wave will be
(“totally”) reflected at the
boundary.

The
next two experiments demonstrate this. In Fig. 12.23d, the deep-
water region above the boundary 0-0 has been narrowed down to
a small strip or channel. Above 0 0-0 0, a region of shallow water
again follows it. The distance 0-0 0 is equal to a quarter of a wave-
length. The deep-water region is therefore narrower than the width
of the transversally-damped waves in Fig. 12.23c. The result: The
reflection is no longer total; some waves clearly propagate upwards
across the boundary 0-0.

And finally, the counter-experiment: In Fig. 12.23e, the distance 0-0 0
has been extended up to one wavelength. The deep-water channel
now offers sufficient space for the transversally-damped waves to
form. This also restores the total reflection.

Summary: Total reflection can occur only when the width of the re-
gion with a smaller index of refraction (in our example 0-0 0) is not
small relative to the wavelength. Otherwise, the region of smaller in-
dex of refraction does not represent an impenetrable obstacle to the
waves. They are able to pass through the ‘forbidden’ region, although
weakened, as though a path had opened through a tunnel: this is the
tunnel effectC12.8.

C12.8. This is the name of
the effect in wave mechanics.
A matter wave, e.g. an elec-
tron wave, can also penetrate
as a damped (evanescent)
wave into a forbidden re-
gion, i.e. for example into
a region where its potential
energy would be greater than
its quantum energy. This can
also occur at normal inci-
dence. If the width d of the
forbidden region is chosen to
be sufficiently small, the mat-
ter wave can pass through the
region and can be observed
on its other side, in analogy
to Fig. 12.23d; that is, the
particles corresponding to
the matter wave can “tunnel
through” the potential barrier
with a certain probability.
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12.10 Shockwaves when the Wave
Velocity Is Exceeded

Suppose that an object dips into the water surface in the ripple tank,
and moves horizontally at a constant velocity u. Let this velocity be
greater than the phase velocity c for propagation of surface waves on
the water. Then a shockwave is formed, similar to the bow waves
from a ship with which we are all familiar. Spatially, it corresponds
to a conical wave, as produced for example in Fig. 12.87 by a bullet.

Such shockwaves can also be readily produced as a periodic se-
quence. Figure 12.24 shows a suitable setup. It contains a channel
with boundaries 0-0 and 0 0-0 0, bordered on both sides by regions of
shallow water. Beyond the left margin of the picture, an oscillating
excitation source produces periodic waves in the channel: Each wave
crest which propagates along the channel acts like a moving object,
and it produces a shockwave in the shallow-water regions on either
side of the channel.

The same phenomenon can be described in quite a different manner,
namely as a limiting case of refraction at an angle of incidence of ˛ D
90ı. This is illustrated in Fig. 12.25, for the lower boundary 0-0,
to facilitate the comparison with Fig. 12.192. The location of the
normalN-N to the boundarywas arbitrarily chosen, since the incident
ray is propagating parallel to the boundary and not, as in Fig. 12.19,

B
shallow
water

shallow
water

A deep water
0´

0

0´

0

B

Waves in the
channel

Figure 12.24 Production of a periodic sequence of shockwaves

Figure 12.25 A periodic se-
quence of shockwaves can be
treated as a limiting case of re-
fraction (a representation which
is popular in geophysics)
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2 In Fig. 12.19, the wave was incident from the upper left at the angle ˛.
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at an angle to it. From Eq. (12.13), it follows for ˛ D 90ı that the
angle of refraction is given by sinˇ D 1=nA!B. ˇ is thus the same
as when the direction of the rays is reversed (Fig. 12.22); it is then
the angle of incidence 'T, the critical angle for total reflection. More
details will be given in Sect. 12.11.

12.11 HUYGHENS’ Principle

An explanation for refraction and reflection can be provided by
HUYGHENS’ principle. In Fig. 12.26, let 0-0 be a reflective boundary
surface; I is a wave crest of a linear wave incident from the upper
left. It strikes the points which are arbitrarily marked on the bound-
ary surface one after another. Each point can then be considered to
be the source of an elementary wave of the type that we encountered
in Sect. 12.6. These elementary waves are indicated by short circular
arcs in the figure. Their tangent is a wave crest II (wave front) of the
reflected wave. One of the paths which lead from the crest I to the
crest II is shown as a dashed line; all such paths are traversed in the
same times.

Figure 12.27 and its caption explain refraction at a boundary which
separates two regions where the wave velocity c is different, in a cor-
responding manner.

Finally, we consider the limiting case of refraction which is treated
in Fig. 12.25. To do so, we refer to Fig. 12.28. It shows the path of
a single wave crest T-T (a wave front). This crest moves to the right
at the velocity cA. Its ends, which abut the walls of the channel A,
are the source points of elementary waves which propagate as circu-
lar waves, however at the lower velocity cB which is characteristic of

Figure 12.26 The origin of
specular reflection from a plane,
according to HUYGHENS’ princi-
ple. The borders of the wave beam
are represented as rays.

Figure 12.27 The origin of re-
fraction according to HUYGHENS’
principle. The ray paths FH and
EG are traversed in the same times.
Their ratio is the same as the ratio
of the velocities of the waves in the
two regions, i.e. FH=EG D cA=cB D
sin˛= sinˇ D const D nA!B .
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Figure 12.28 The origin
of “MACH’s angle” �
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the shallow-water regions B. The common tangent of all these ele-
mentary waves represents the new linear wave crest T-T 0. From the
sketch, one can read off the relation

sin� D cB
cA

; (12.18)

and here, the angle � is called Mach’s angle.

Applying this result to the question raised at the beginning of
Sect. 12.10 (conical shockwaves), we obtain for MACH’s angle

sin� D Phase velocity c of the waves

Velocity u of the object
:

12.12 Model Experiments on Wave
Propagation

In Figs. 12.26 and 12.27, neither the transverse width of the incident
wave nor a structure of the boundary 0-0 was taken into account.
If this simplification is not permissible, then the common tangent
(II in Fig. 12.26, G-H in Fig. 12.27) of the elementary waves is no
longer sufficient. One then has to consider the interference due to
superposition of the elementary waves. This interference can be most
clearly illustrated by model experiments. Initially, we will deal with
the case shown in Fig. 12.12 in this way; that is, ‘cutting out’ linear
waves by passing them through a broad slit.

In Fig. 12.29, the double arrows indicate a wave crest which has ar-
rived at the opening, and its length also shows the width B of the
opening. Furthermore, the system of concentric circles indicates
a single elementary wave train, which originates from a single point
within the opening. – This wave pattern can be transferred to a glass
slide and projected onto a screen; the double arrow is drawn on the
screen. Then we imagine that using additional projectors, a contin-
uous series of similar glass slides are projected side by side on the
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Figure 12.29 Cutting out a portion of a linear wave train by using a broad
slit (FRESNEL’s case of observation). At the left, the wave pattern has been
transferred to a glass plate. The profile of the waves has been chosen to be
not sinusoidal, but rather rectangular, to avoid losing detail in the printing
process. Look at the right-hand image (and later also Fig. 12.31) along its
long axis; the arrows indicate points P1, P2 and P3 which one can imagine
to lie on the symmetry axis of the wave field. These points will be used in
Sect. 12.14 as space points for the zone construction.

screen. In practice, one uses a more clever arrangement: We use only
the one glass-slide image from Fig. 12.29 (left) and quickly move
its wave center up and down in the direction of the double arrow,
using some sort of a mechanical setup. Neither the eye nor pho-
tographic film can separate these images which follow each other
rapidly in space and in time; they register only the superposition of
all the elementary wave trains. This produces the wave pattern that
is reproduced in Fig. 12.29, right. It shows the structure of the wave
field more clearly than the earlier Fig. 12.12. Along the beam axis,
the waves are initially interrupted by nearly wave-free stripes, as in-
dicated by the arrows P. The wave field takes on a simple form only
when the distance from the slit becomes large compared to its width,
for example to the right of the arrow P1.

In the model experiment of Fig. 12.29, if we leave the upper edge
of the slit as is, but move the lower edge a considerable distance
downwards, then we arrive at diffraction by a semi-plane (Fig. 12.30).
This corresponds to Fig. 12.11.

Figure 12.30 Model ex-
periment for diffraction
by a semi-plane
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Figure 12.31 A model experiment demonstrating FRAUNHOFER diffraction
by a broad slit, and showing the formation of an “image point”, here a “focal
point” F. In its neighborhood, the waves are linear. Compare the neighbor-
hood of the focal points in Figs. 12.21 and 12.48.

In Fig. 12.29, the wave train after passing the slit is divergent. This
case is called Fresnel diffraction. By adding a converging lens, one
can convert the divergent waves resulting from the diffraction into
convergent waves. Then one refers for short to Fraunhofer diffrac-
tion:

The waves propagate more slowly within the lens than in its sur-
rounding medium. As a result, the center of the beam is delayed
relative to its outer parts. The wave front becomes concave; thus, the
straight double arrow in Fig. 12.29 should be replaced by a circu-
lar arc. Everything else proceeds just as before. We move the wave
source point (using some sort of mechanical setup) back and forth
along the curved double arrow. The result is shown as a photograph
in Fig. 12.31.

FRAUNHOFER’s observation method yields a diffraction pattern in
the focal plane of a convergent lens which is as simple as that ob-
tained only at very large distances from the slit in the FRESNEL case.
For this reason, the FRAUNHOFER case is usually preferred.

Finally, we show two model experiments on FRESNEL diffraction
from narrow slits (Fig. 12.32). Both of the diffraction patterns already
exhibit a simple structure, even close to the slit; this is obtained for
broad slits only at a considerable distance.

12.13 Quantitative Results
for Diffraction by a Slit

To begin with, we use Fig. 12.33 to understand how the minima
that can be seen on either side of the central diffraction maximum
in Fig. 12.32 come about. To this end, we suppose that the observa-
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Figure 12.32 Two model experiments showing the passage of waves through
narrow slits with different widths B. For the demonstration, we attach the
glass plate with the half-waves (Fig. 12.29, left) to the end of a vibrating reed
which can be made to vibrate back and forth by an electromagnetic drive like
that of a doorbell.

tion point P is very far away from the slit, so that the two rays leading
from the edges of the slit to P are practically parallel. Furthermore,
we divide up the slit (of width B) into a number N of regions, for
example N D 12, each of which is the same size, and number them
as 1, 2, 3 etc. Each of these regions is considered to be the point
of origin of an elementary wave with the same number. All N ele-
mentary waves meet and are superposed at the observation point P.
Then the amplitudes of the elementary waves add to give the overall
amplitude at the point P. The essential aspect of this addition is the
different paths taken by the individual elementary waves.

Suppose that the maximum path difference s, between the first and
the twelfth elementary wave, is equal to �. Then the path difference
between the first and the sixth, or between the second and the seventh
elementary waves, etc., is in each case equal to �=2. This means that
the amplitudes of each of these pairs cancel each other; as a result,
in the corresponding direction (angle ˛), there is no wave amplitude

Figure 12.33 Calculating the diffraction pattern from a slit



12.13 Quantitative Results for Diffraction by a Slit 313

Pa
rt
II

at all at P, and we have a minimum; from Fig. 12.33, this angle ˛ is
given by

sin˛ D �

B
: (12.19)

This equation agrees with the observations. It allows us to calculate
� if we know the slit width B and measure the direction of the first
minimum. – Along other directions, we can carry out the addition of
the elementary waves graphically. This yields the “amplitude land-
scape” or diffraction pattern which plays an important role for waves
of all types (see Fig. 12.35). It gives the distribution of wave ampli-
tudes for the various observation directions at some distance behind
a slit of width B.

The path difference between any two of the N neighboring elementary
waves is

�� D s

N
D B

sin˛

N
: (12.20)

For the point P0 on the slit’s symmetry axis 0-0, we find

s D 0; ˛ D 0; sin˛ D 0; �� D 0 :

Thus, all 12 amplitudes in Fig. 12.34 add here without a phase difference,
as shown in the auxiliary figure 0. Their sum is drawn in as a heavy ar-
row R0 below the image and as the height R0 in Fig. 12.35 above the point
sin˛ D 0 on the abscissa.

For the next point P1, we choose s D �

3
; then we have sin˛ D �

3B
, and

the path difference of two neighboring elementary waves is �� D 1

12

�

3
,

or, in angular units, �' D 1

12
120ı D 10ı.

The amplitudes of the 12 elementary waves add as shown in the auxiliary
figure 1. As their sum, we obtain the arrow R1. It is is entered in Fig. 12.35

as the result of the graphical addition above the point sin˛ D �

3B
on the

abscissa.

Figure 12.34 Auxiliary figures for the graphical construction of Fig. 12.35
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Figure 12.35 The “amplitude landscape” (diffraction pattern) resulting from
the passage of a plane wave through a rectangular slit. Figure 12.34 contains
the auxiliary figures needed for the construction. The radiation power (or en-
ergy current, i.e. the energy transported by the waves per unit time) of the
waves is proportional to the squares of their amplitudes. Thus, for a com-
parison with measurements (e.g. in Fig. 12.62), the ordinate values of this
diffraction pattern must be squared. Here, the signs of the amplitudes are not
taken into account (see the note at the end of Sect. 12.3).

We continue in an analogous manner. For the point P2, we choose

s D 2

3
�; i.e. sin˛ D 2

3

�

B
; �� D 1

12

2

3
�; �' D 20ı :

Auxiliary figure 2 yields the sum as the length of the arrow R2.
For the next point, we choose

s D �; i.e. sin˛ D �

B
; �� D �

12
; �' D 30ı :

The amplitudes of the 12 elementary waves add in the auxiliary figure 3
to give a closed polygon; their sum is zero. Therefore, in Fig. 12.35 at the
value sin˛ D �=B on the abscissa, we have put the corresponding point
on the axis (ordinate D 0).
Finally, we take

s D 3

2
�; i.e. sin˛ D 3

2

�

B
; �� D 1

12

3

2
�; �' D 45ı :

The graphical addition is shown in auxiliary figure 4. The amplitudes of the
first 8 elementary waves form a closed octagon; their sum is zero. The 9th
to the 12th amplitudes yield a half-octagon and thus correspond to the
arrow R4.
For s D 2�, or �' D 60ı, both the amplitudes of the elementary waves 1
to 6 and those of 7 to 12 give zero, so that the point at sin˛ D 2�=B on
the abscissa in Fig. 12.35 again lies on the axis. This should be sufficient.
We can readily complete Fig. 12.35, keeping in mind its symmetry on both
sides of the center point (at sin˛ D 0).
In Figs. 12.14 and 12.33, we have treated the limiting case of Fraunhofer
diffraction. The incident wave crests are practically straight lines. The
points P in the observation plane are “infinitely” distant to the right from
the slit, or they lie in the focal plane of a lens.
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12.14 FRESNEL’s Zone Construction

In Sect. 12.13, we treated a special case of a general procedure which
we will now deal with; it is known as FRESNEL’s zone construction.
In Fig. 12.36, let S be the wave source point and P the “observa-
tion point” (or “receiving point”). Using P as their center, we draw
a system of spherical waves with the wavelength of the radiation used
(wave crests are black and wave troughs are white). Furthermore,
centered on the source point S, we imagine a spherical surface of
radius a. It intersects the wavefronts from P, defining ring-shaped,
alternately white and black zones. Looking from the observation
point P, we see a spherical surface sector containing a system of
concentric rings, similar to that shown below in Fig. 12.38. For the
radius rm of the mth zone on the spherical sector, we find the simple
geometric relation

r2m D m�
ab

aC b
(12.21)

.for the derivation, see Fig. 12.36/:

The path of the waves via the mth zone is longer by  D m�=2
than along the line directly connecting the source point S and the
observation point P, whose length is .a C b/. All the zones have
approximately the same areas, namely

A D �.r2mC1 � r2m/ D ��
ab

aC b
: (12.22)

Now, we add to Fig. 12.36 the object, either a circular hole in an
opaque screen, or a circular disk; the double arrow indicates the di-
ameter of this object. Then only a portion of the zones remains visible
from the observation point P. Looking from P, we see the (spheri-
cally convex) zone areas as in Fig. 12.37. The number of “surviving”

S

a

a

d

b
x

P

P´
rm

Figure 12.36 The FRESNEL zone construction. m is the index of the black
and white zones, which are numbered sequentially. We have r2m D a2 � .a �
x/2, r2m D d2 � .bC x/2, and d D bCm�=2. From these three equations, we
compute r2m by neglecting small terms containing �2=4 and x2.
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Figure 12.37 The zones which are not covered by an opaque screen with
a circular opening (left), and by a circular opaque disk of the same size (right),
reduced to two-thirds their size in Fig. 12.36. The right-hand image can be
thought of as containing additional rings outwards, with decreasing line thick-
nesses.

zones changes depending on the distances a and b. Furthermore, we
consider each of the remaining zones to be the source of new elemen-
tary waves. These interfere with each other. The resultant of all the
elementary waves that arrive at P gives the amplitude at that point.
Examples:

1. The number of zones allowed to pass by a circular aperture is
even. Each pair of black and white zones practically cancels out
(but not completely!). The observation point lies in a nearly wave-
free region along the beam axis. This can be seen e.g. in Fig. 12.29
on the right at the observation point P2. Here, the opening B al-
lows only the two innermost zones to pass through (with m D 1 and
m D 2); thus an even number. In the zone construction, we must keep
in mind that in this case of an incident plane wave, the quantity a in
Eq. (12.21) is very large (!1).

2. The number of zones allowed to pass by a circular aperture is
odd. The effect of the zone left over after forming pairs remains at
full strength. The observation point lies along a region of the beam
axis which contains waves. – This can be seen e.g. in Fig. 12.29,
right, for the observation point P3. Here, the aperture leaves the three
innermost zones free (with m D 1, 2 and 3); thus an odd number.

3. An experimental investigation of the examples mentioned above,
but with a point-like wave source (sound waves), will be described in
Sect. 12.20, point 5 (and Video 12.4).

4. If we replace the circular aperture by a circular obstacle, then at the
observation point, all the zones of higher index m combine. Whether
there is one more or less is unimportant. The resultant of all the
elementary waves at the observation point has practically always the
same value; waves are always present there, e.g. on the center axis of
the “shadow” in Figs. 12.13 and 12.15; cf. also Vol. 2, Sect. 21.1C12.9.

C12.9. Understanding this
fact is by no means trivial.
A derivation can be found
for example in P. Drude,
Lehrbuch der Optik, Hirzel
Publishers, 2nd ed. (1906),
p. 155; or also in M. Born,
Optik, Springer-Verlag,
3rd ed. (1933), reissued
in 1972, pp. 144–147.
English: Principles of Op-
tics, Max Born and Emil
Wolf, Pergamon Press, 4th
ed. (1970), available at
https://archive.org/details/
PrinciplesOfOptics.

https://archive.org/details/PrinciplesOfOptics
https://archive.org/details/PrinciplesOfOptics
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Figure 12.38 A zone plate for light waves (red filter
light) and an observation point P at a distance of 2.7m
(actual size). The plate acts as a lens with more than one
focal length. The longest is f D 2:7m; about ten of the
shorter ones can be readily observed.

5. The zone construction can also be applied to observation points
that are not on the axis of symmetry. Imagine the zone surface to be
mounted on an arm which can be swung around (aCb in Fig. 12.36).
Its pivot point is at the source point of the waves, and its free end
at the observation point. Then a sideways motion of the observation
point from P to P0 moves the whole zone surface at once; thus the
zones that are free to pass through the aperture or alongside the disk
(fixed double arrow in Fig. 12.36!) are different from before. The
resultant of all their elementary waves yields the maxima and minima
outside the center of the image.

6. At large values of a, the zone surface becomes nearly planar. Then
the zone image of a circular aperture can be transferred to a glass
plate (e.g. photographically) without serious errors. The black rings
are made opaque and the white rings transparent. Such a zone plate
can be used to form images. As an example, in Fig. 12.38, a zone
plate for light waves (� D 0:6�m) and an observation point at a dis-
tance of 2.7m are shown in original size. Their focal length b is given
by Eq. (12.21). Additional focal points are to be found at b=3, b=5,
etc. (see also Vol. 2, Sect. 21.8).

12.15 Narrowing of the Interference
Fringes by a Lattice Arrangement
of the Wave Sources

Figure 12.7 shows the experiment that THOMAS YOUNG used to
demonstrate interference. In Fig. 12.39a, we repeat it as a model
experiment by means of the superposition of two transparent wave
images. This time, we do not place the two wave sources next to
each other, but rather one above the other. A continuation of this
model experiment makes use of a lattice of N wave source points,
arranged equidistantly along a line. In Fig. 12.39b, there are three
sources; in Fig. 12.39c, there are four, and so on. – This model ex-
periment clearly demonstrates two fundamental facts which are basic
to all interference phenomena3:

1. With an increasing number N of wave source points, the maxima
seen already with two interfering wave trains remain, but they are

3 Both of them can also be derived graphically using the same scheme as in
Sect. 12.13.
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Figure 12.39 A model
experiment to show the
interference of two, three
and four wave trains
from equidistant sources
(marked with points
at left). Two, three or
four glass-plate images
(cf. Fig. 12.29) are pro-
jected one above the
other. The numbers refer
to the order indices m.
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Figure 12.40 The interference max-
ima from a linear lattice; here as
a schematic illustration. The numbers
refer to the order indices m.
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compressed into a more closely-spaced angular region: The interfer-
ence fringes are narrowed.

2. Between each two neighboring maxima, .N � 2/ sub-maxima ap-
pear, i.e. one in Fig. 12.39b, two in Fig. 12.39c, etc. At large values
of N, the sub-maxima form a nearly continuous background. The
resulting scheme is sketched in Fig. 12.40.

These facts, found here with the help of model experiments, play an
important role in the precise measurement of wavelengths, especially
in all the spectral regions of optics. We will therefore treat them in
some detail experimentally in Sect. 12.20 (points 6–8).

We start by using narrow slits, spaced equidistantly, as wave source
points, and we arrange for the waves to be incident in the z direction,
as in Fig. 12.40. The waves which emerge from the slits are spread
out over a large angular range due to diffraction (cf. Fig. 12.32, right),
so that they superpose nearly as well as elementary waves and exhibit
interference. This experimental trick, basically a minor point, has led
to the terms diffraction grating or optical lattice.

For the angular dependence of the maxima ofmth order, i.e. the inter-
ference maxima with a path difference of  D m�, when the waves
are incident perpendicular to the lattice plane, we find

sin˛m D m�

D
(12.6)

(m is the order index, and D is the distance between neighboring wave
source points, called the lattice constant).

As a second possibility, we will use the mirror image of a first source
as a second source, as described in the following: Imagine that in
Fig. 12.39, the wave source is one point along the x axis and the sec-
ond, third, fourth . . . wave source points are its mirror images. Thus,
in Fig. 12.41a, one wave source S is replaced by two mirror images S0
and S00 produced by two levels of transmitting and reflecting planes.
The waves reach the receiver along two paths which subtend the small
angle 2ı. Their path difference  is shown in Fig. 12.41a.
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Figure 12.41 Interference arrange-
ments in which mirror images S0, S00,
S000; : : : of one source serve as wave
source points. a POHL (divergent light
beams); b HAIDINGER; c BRAGG;
d PEROT and FABRY (b–d plane-
parallel light beams). A demonstration
follows in Sect. 12.20, Point 8.
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In Fig. 12.41b, the receiver has been placed at a great distance and
therefore the angle 2ı is practically zero. The waves reach the two re-
flecting surfaces along the same path. Maxima of the reflected waves,
or minima of the transmitted waves, occur when the path difference
obeys

 D 2d cosˇ D 2d sin � D m� (12.23)

(m is an integer, � is often called the Bragg angle).

In Fig. 12.41c, four transparent, reflecting surfaces are placed one
behind the other at equal spacings d. In Fig. 12.41d, between two
strongly reflecting but still somewhat transparent surfaces, multiple
reflections occur. In both cases, the number N of wave source points
is increased (S0, S00, S000; : : :) and thus the condition is fulfilled which
leads to narrowing of the interference maxima. If we for example
rotate the stacked transparent plates in Fig. 12.41c around an axis
perpendicular to the plane of the page at the point A, then sharp, in-
tense maxima appear in the directions of the arrows one after another,
separated by broad, flat minima.

12.16 Interference of Wave Trains
of Limited Length

Up to now, in treating the propagation of waves, we have tacitly
made two assumptions: 1. The wave trains are excited with constant
amplitudes and have unlimited lengths; and 2. the wave sources are
point-like, i.e. the diameter of a wave source is presumed to be very
small compared to the wavelength of the waves it emits. – If these
two conditions are not fulfilled, then special features occur. They are
particularly important for light waves. It is therefore expedient to
discuss these effects in the section on optics (Vol. 2, Chap. 20).

12.17 The Production of Longitudinal
Waves and Their Velocities

The knowledge that we have gained in this chapter will now be ap-
plied to the propagation of 3-dimensional waves. For this purpose,
high-frequency longitudinal waves in air are very well suited; these
are short-wavelength sound waves.

First, some remarks about the formation of longitudinal waves. –
A state can propagate as a wave if and only if it travels at a finite
velocity. For the transverse surface waves on water, we have treated
this fact for the time being as experimentally given. Its detailed dis-
cussion will follow in Sect. 12.21. – Longitudinal waves are formed
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Figure 12.42 The
calculation of the
longitudinal sound
velocity in a rod

when elastic disturbances propagate at finite velocities. In this case,
we begin immediately with a quantitative treatment.

We let an impulse F�t act on the rod in Fig. 12.42 during the time �t
with the force F. It produces an elastic disturbance. This disturbance
propagates to the right with the velocity c, so that within the time �t,
it affects a segment of the rod of length �l D c�t. This segment has
a mass of

�m D c�t � A% (12.24)

.% is the density, A is the cross-sectional area of the rod/:

The impulse F�t has two effects on the segment of the rod: First,
it compresses the segment by the small amount �z, upper image in
Fig. 12.42. According to HOOKE’s law, this is

�z D 1

E
�l

F

A
(12.25)

.E is Young’s modulus for the material of the rod; see Sect. 8.3/:

Second, it gives the segment a momentum directed to the right:

�m
�z

�t
D F�t : (12.26)

The segment of length �l thus moves in the time �t by �z to the
right; see the lower image. In the position shown there, the corre-
sponding process repeats itself within the next time and length inter-
val.

Combining Eqns. (12.24) to (12.26) yields

c�tA%
�z

�t
D �z

�l
AE�t ; (12.27)

and it follows from this that the velocity with which the longitudi-
nal elastic disturbance moves, c D �l=�t (usually called the sound
velocity)C12.10, is given by

C12.10. Equation (12.28)
holds only for thin rods. With
other geometries, one can-
not neglect the forces which
occur due to the changes in
the cross section of the rod
(determined by the Poisson
ratio 	, Sect. 8.3). Thus, the
longitudinal sound velocity in
an unbounded medium is

cl D
s

E

%

1 � 	

.1C 	/.1 � 2	/
.

For transverse waves, this
complication does not apply.
In an unbounded medium, we
have

ct D
s

G

%
,

equal to the velocity of
a torsional wave in a rod (cor-
responding to Eq. (11.6)),
which one can represent
as the superposition of two
linearly-polarized transverse
waves with a phase shift of
90ı.
A numerical example: In
an unbounded steel body
(	 D 0.27, Table 8.1), the
longitudinal sound velocity is
cl D 5.6 km/s.

c D
s

E

%
: (12.28)
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Numerical example
For steel, E D 2:0 � 1011N=m2, % D 7850 kg=m3. Then the longitudinal
velocity in a steel rod is

c D
r

2:0 � 1011 kg

m s2
=7:85 � 103 kg

m3
D 5:05

km

s
:

12.18 High-Frequency Longitudinal
Waves in Air. The Acoustic
Replica MethodC12.11 C12.11. Sections 12.18

and 12.19 were the topic
of POHL’s farewell lecture,
given on July 31st, 1952. An
audio recording of the lecture
is provided in the biographi-
cal film “Einfachheit ist das
Zeichen des Wahren” (“Sim-
plicity is the Mark of Truth”)
(Vol. 2).

As the source for high-frequency sound waves, we use the flue pipe
which we encountered in Fig. 11.35. It emits longitudinal waves
with spherical symmetry. Figure 12.43 can serve to illustrate this.
It shows a section of a meridional plane as a stopped-motion image.
We see a periodic distribution of air pressure and density. In the dark
sketched wave crests, the pressure and density are greater, while in
the light sketched wave troughs, they are less than in undisturbed
air. The sinusoidal line added at an angle below represents the same
phenomenon. The straight line indicates the normal air pressure p,
while the sine curve shows its deviations �p to higher and lower
pressures. The absolute values of the amplitudes �p0 will be given
later in Sect. 12.24. The whole distribution which is visualized as
an instantaneous image in Fig. 12.43 moves with spherical symmetry
outwards, at a velocity of around 340m/s.

The changes in air density can be made directly visible by converting
the travelling sound waves into standing waves. This is illustrated
in Fig. 12.44 (following the scheme shown in Fig. 12.9, right). The

Figure 12.43 The propagation of
spherical travelling sound waves
in air (stopped-motion image).
Medium gray indicates the normal
density of air.

Figure 12.44 Standing sound waves
in air in the interference field in front
of a wall at R (� D 8mm, time expo-
sure using the schlieren method (see
Fig. 11.32 and Vol. 2, Sect. 21.11);
L: supply hose for compressed air).
In this image, up and down are re-
versed.
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Figure 12.45 A sound source in
the position in which it is used in
Fig. 12.46; it is a flue pipe like that
shown in Figs. 11.35 and 12.44

regions of constant density and those where the density changes pe-
riodically, i.e. the nodes and maxima, are observed as a schlieren
pattern with a dark-field method.

Understanding a dark-field image requires an elementary knowledge
of geometric optics; we have to understand the role of the pupils of
the eyes. For the acoustic replica method, this is not necessary.

In the acoustic replica method, a collimated beam of waves
(Fig. 12.45) passes at a grazing angle over the surface of a liquid
(water or petroleum ether; Fig. 12.46). At the right end, the beam is
reflected by a panel R, i.e. a “mirror” for sound waves. The reflected
waves are superposed on the incident waves, producing standing
waves in the air in front of the mirror. Directly beneath their pressure
(and density) maxima, the liquid surface is slightly deformed4: It
exhibits striations, as seen in Fig. 12.47. They can be observed best
at a grazing angle. For demonstrations to a large audience, they
can be shown as schlieren in a bright field, by using a basin with
a transparent bottom and placing a small light source underneath it.

Figure 12.46 The acoustic replica method for demonstrating standing waves
in a free sound field in air

4 As a result of the pressure distribution in the standing wave, similar to that ob-
served with the RUBENS flame tube (Fig. 11.30). This should be distinguished
from transverse surface waves (for example as seen in Fig. 12.5 and the following
figures).



12.18 High-Frequency Longitudinal Waves in Air. The Acoustic Replica Method 325

Pa
rt
II

Figure 12.47 The interference field of acoustic plane waves in front of a flat
mirror (reflector); standing waves (time exposure using the acoustic replica
method; � D 1:15 cm, � D 3 � 104 Hz). A moving mirror (u ¤ 0) would
make the interference fringes drift, due to the DOPPLER effect.

If we move the reflector in the direction of the incident waves, or
opposite to them, at a velocity u (	 c), then the interference field also
moves. The nodes of its standing waves pass by a given observation
point (e.g. the point marked with the arrow a in Fig. 12.47) at the
“beat frequency” �B D 2u=�. This is a result of the DOPPLER effect
which acts twice (on the incident and on the reflected waves)C12.12. C12.12. This is a particularly

impressive and perhaps sur-
prising demonstration of the
DOPPLER effect (Sect. 12.2)!

If a wave of frequency � strikes the moving reflector, the latter receives the
wave with the frequency � 00 D �.1˙ u=c/. The reflected wave, which is
“emitted” by the reflector, has the frequency � 0 D � 00.1˙ u=c/ D �.1˙
u=c/2, and for u 	 c, we have � 0 D �.1˙ 2u=c/. Thus, two oppositely-
travelling waves with a frequency difference of � 0 � � D �� D 2u=�

interfere with each other. This frequency difference causes the interference
fringes to wander (Sect. 12.4); here the nodes of the standing wave. They
pass the observation point, e.g. a, at the beat frequency �B D �� D 2u=�.
It follows from this that �B�=2 D u; or, in words: Using the readily mea-
surable beat frequency �B, (for example with electromagnetic waves of
short wavelength), the velocity u of the reflector (e.g. a moving automo-
bile!) can be determined (Exercise 12.7).

In the acoustic replica method, the form of the reflector R can be
varied in many ways. Figure 12.48 shows some examples (time ex-
posures!).

Figure 12.49 is also very instructive. There, the reflector for the
acoustic replica method is a hand. In the course of the demonstra-
tion, its shape is changed. In the language of optics, we say that the
hand is a “non-luminous source”; we see the “secondary radiation”
which it “emits” by reflection. Acoustically, this means that we “see”
the high-frequency acoustic radiation with which bats can recognize
obstacles and find their prey in complete darkness or without using
their eyes. “This is the ancient acoustic

archetype of radar technol-
ogy for localizing aircraft.”

This is the ancient acoustic archetype of radar technology
for localizing aircraft or other objects.



PartII

326 12 Travelling Waves and Radiation

Figure 12.48 The interference fields of short-wavelength acoustic waves in
front of a concave cylindrical mirror (left), and a 90° angular mirror (right).
– At the left, the focal point is clearly visible (compare Fig. 12.21). – At
the right, the acoustic replica method shows an especially pronounced in-
terference pattern. It is suitable for convenient and low-cost detection of
high-frequency sound waves.

Figure 12.49 The acoustic replica method makes visible the interference
field of high-frequency sound waves in front of a hand which is reflecting
them (a ‘snapshot’, i.e. the hand did not move during the exposure time)

12.19 The Radiation Pressure of Sound.
Sound Radiometers

For the quantitative investigation of sound fields, the acoustic (or
sound) radiometer is particularly useful. This instrument is based on
a little-known but significant fact: Every surface which is struck by
sound waves experiences a one-sided pressure in the direction of the
sound waves. It is called the radiation pressure of the sound waves,
analogous to the radiation pressure of light. This constant, one-sided
pressure should not be confused with the sinusoidally varying pres-
sure of the sound waves themselves (see Sects.12.18 and 12.24).
(A thin membrane struck by sound waves not only oscillates at their
frequency, but also bulges to one side in the direction of propagation
of the sound waves!)

For a qualitative demonstration of the radiation pressure, the small
“pinwheel” sketched in Fig. 12.50 can be used. We place it in front
of a concave mirror so that the focus point of the mirror is on one
of its blades. The higher the acoustic radiation power of the sound
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Figure 12.50 A “pinwheel” as an indicator for short-
wavelength sound waves

Figure 12.51 An acoustic radiometer. At
the right, we see the circular rotor behind an
inclined glass window, and behind it on the
housing, the edge of the entrance aperture. For
receiving a collimated beam of sound waves,
one puts this aperture at the focus point of
a concave mirror which concentrates the waves
(Video 12.3). Video 12.3:

“The acoustic radiometer”
http://tiny.cc/gggvjy

waves, the faster the rotation frequency of the wheel. It represents
a practical receiver for high-frequency sound waves.

If we use only one blade, and replace the bearing made of a glass
thimble and a sharp pin by a fine metal band which is under ten-
sion, then we have a sound radiometer, a quantitative measuring
instrument. Today, one can purchase small, easy-to-use models with
magnetic damping and a short, aperiodic reaction time (ca. 2 s). Fig-
ure 12.51 shows an instrument of this type. Its scale deflection can
be read off using a mirror and a light-beam pointer.

We will explain the origin of the radiation pressure of sound waves and
its magnitude by referring to Fig. 12.52. The two straight lines indicate
the boundaries of a collimated beam of travelling sound waves. Within
it, the air particles flow sinusoidally back and forth in the direction of the
double arrows with a maximum velocity u0. This decreases the pressure p
within the beam according to BERNOULLI’s equation by an amount 1

2 %u20
(% is the density of the air). As a result, air flows inwards from outside the
beam. If the beam now strikes an absorbing wall at the right with perpen-
dicular incidence, the velocity of the air particles at the wall is zero; thus
the pressure there increases by an amount equal to the stagnation pressure
pS D 1

2%u20. This is the radiation pressure. – The quantity
1
2%u20 is however

http://tiny.cc/gggvjy
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Figure 12.52 The origin of acoustic
radiation pressure

at the same time given by the quotient

Kinetic energy within the volume V of the sound field

Volume V of the sound field
I

that is, the spatial (volume) density ı of the acoustic energy (the derivation
is given in Sect. 12.24). Then for the radiation pressure of a sound wave,
we haveC12.13C12.13. The relation be-

tween radiation pressure
and radiation energy den-
sity (Eq. (12.29)) is complex.
A detailed treatment is given
by Boa-Teh Chu and Robert
E. Apfel, Journal of the
Acoustical Society of Amer-
ica 72, 1673 (1982).

pS D ı D Radiation strength b

Sound velocity c
: (12.29)

It is doubled when the irradiated surface is completely reflecting.

12.20 Reflection, Refraction,
Diffraction and Interference
of 3-Dimensional Waves

Three-dimensional waves, whose wavelengths are of the order
of 1 cm, are especially suitable for experimentally demonstrat-
ing the most important fundamentals of wave theory. We make
use of high-frequency sound waves in air, usually in the form of
parallel-collimated beams (Fig. 12.45). As receiver, we use a sound
radiometer (Fig. 12.51).

Most of these experiments could also be demonstrated using electro-
magnetic waves. Often, one can even use the same accessories for
both types of waves. We need only replace the flue pipe as wave
source by one of the small, commercially-available transmitters for
electric or electromagnetic waves (e.g. microwaves), and the sound
radiometer by a small receiver antenna and detector.

Out of the large number of impressive demonstration experiments,
we can present only a small selection in the following sections.

1. Shadowing: We direct the sound source (Fig. 12.45) towards the
receiver and place an obstacle, for example a human body, in the
sound-wave beam.

Shadowing of sound waves can, by the way, be demonstrated quite con-
vincingly without any instrumentation at all. Rub the thumb and forefinger
of your right hand together at about 20 cm from your right ear. You will
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hear a high tone, not dissimilar from that of our flue pipe. Then use your
left hand to block your right ear. You will no longer hear anything at all,
since the left ear lies completely within the sound shadow of your head.

2. Reflection, lattice planes as a mirror: The reflection of sound
waves has already been demonstrated in some of our earlier experi-
ments (e.g. Figs. 12.44–12.49). Here, a few supplementary remarks
will suffice: The reflecting surfaces need not be smooth; they can
in fact consist of lattice planes. Two examples are illustrated by
Fig. 12.53. There, the distance between the balls or the apertures
from their neighbors must be of the order of the wavelength of the
soundwaves. Then, one can readily demonstrate their specular reflec-
tion from these lattice planes using the setup sketched in Fig. 12.54.

In this setup, the angle of incidence ˇ2 can be varied by moving the
sound source which is attached to a swivel-mounted arm. A small
auxiliary apparatus (a pantograph) moves the reflecting surface R at
the same time by an angle of ˇ2. Then the reflected beam maintains
a fixed direction.

Therefore, we can use a fixed receiver. – We find a strong reflec-
tivity from the lattice planes (Fig. 12.53) at every arbitrary angle of
incidence.

The reflection of sound waves from the interface between warm and
cool air is also quite impressive. Figure 12.56 shows a suitable setup.
Using a comb-shaped gas burner (Fig. 12.55), we prepare a nearly
planar vertical wall of warm air, with a low density. It clearly reflects

Figure 12.53 Lattice planes which act as mirrors for sound waves

Figure 12.54 Demonstrating the law of reflection for a fixed direction of the
mirrored beam; the sound source is the same as in Fig. 12.45. The receiver is
a concave mirror at whose focus the input aperture of the sound radiometer
(or a microphone) is located.



PartII

330 12 Travelling Waves and Radiation

Figure 12.55 The gas burner used to prepare
a vertical layer of warm air in Fig. 12.56

Figure 12.56 Spec-
ular reflection of
a beam of acous-
tic plane waves by
a hot air layerC12.14C12.14: Air at the surface of

a lake is often cooler than the
air higher up. Then sounds,
for example the voices of
people at water level, are
reflected at the cool/warm
air interface and conducted
along the surface as in a two-
dimensional speaking tube,
so that the sound “carries
further”.

the collimated beam from the source, although not as precisely as
a wooden or metal mirror.

3. Refraction: For the demonstration of refraction of sound waves,
we use a prism which is filled with carbon dioxide gas (Fig. 12.57).
Its transparent walls are best made of silk (paper, cellophane, or plas-
tic are nearly opaque to the sound waves). After the prism is filled
with carbon dioxide, we observe an angle of refraction amounting
to ı D 9:8ı.

The angle of incidence ˛ and the angle of refraction ˇ are sketched for the
second interface. The angle ˛ is 30° for the prism. From the sketch, we
can read off ˇ D ˛ C ı, and thus ˇ D 39:8ı. From this, we find a relative
index of refraction of

nCO2!air D sin 30ı

sin 39:8ı
D 0:5

0:64
D 0:78 :

4. Scattering: We point the beam of sound waves from the source
directly towards the receiver and then interpose the hot flame gases
from a gas burner which is swung back and forth through the beam;
or we allow the beam to pass through a stream of carbon dioxide gas
poured from a watering can. In both cases, the waves are scattered
randomly in all directions by reflection and refraction (“diffuse re-
flection”), so that they no longer reach the receiver. Nothing more
can be discerned of the originally sharply collimated beam of sound

Figure 12.57 The refraction of a beam of acoustic plane waves by a prism
filled with CO2 gas. ˛ is the acute angle of the prism, and at the same time
the angle of incidence at the second face of the prism. The scale and the
receiver are fixed, while the prism and the flue pipe Pf can be rotated (see
also Fig. 12.60).
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waves (Video 12.4) Video 12.4:
“Fresnel’s zones”
http://tiny.cc/fggvjy
A setup similar to that in
Fig. 12.58 with a variable
opening 2r (iris diaphragm)
and a microphone as sound
detector at P is used to show
the variations of the ampli-
tude (not the radiation power)
on masking different numbers
of zones.

waves; it has been completely destroyed by schlieren in the air or the
turbid medium.

5. Fresnel zones. We refer to Sect. 12.14. – In Fig. 12.58, let S
be a small flue pipe as wave source and the observation point P the
entrance aperture of the receiver (acoustic radiometer). In the center
between the two is a large iris diaphragm, framed by an opaque plate.
The distances a and b are adjusted to 50 cm, and the wavelength of
the sound emitted by the source is chosen to be � � 1 cm. Then from
Eq. (12.21), we obtain

for the first second third zone etc.
the diameter 2rm D 10 cm 14:1 cm 17:3 cm etc.

The indications of the radiometer are proportional to the radiation
power which passes from the iris to the observation point P. If for
example we choose 2r1 D 10 cm, then we observe a signal of ˛ D
16 scale divisions. When we open the iris from 10 cm to 14 cm, the
power arriving at P is reduced; we find only ˛2 D 3 divisions. A fur-
ther opening to 17 cm again increases the power to ca. 15 divisions,
and so forth. Figure 12.59 shows a complete series of measurements.

6. Diffraction by a slit: The phenomena that we encountered in
Figs. 12.14 and 12.32 are demonstrated. The setup is sketched in
Fig. 12.60, and Fig. 12.61 shows an image of the slit, while Fig. 12.62
gives the results of the measurements.

Compare with Fig. 12.35: The values indicated by the sound ra-
diometer are proportional to the squares of the amplitudes, so that the
submaxima alongside the principal maximum as seen in Fig. 12.62
are relatively much smaller than in Fig. 12.35.

Figure 12.63 shows the same measurements as Fig. 12.62, but now rep-
resented in polar coordinates. Here, the radius r represents the signal
indicated by the radiometer, or the radiation power, which is proportional
to it. – Polar coordinates are preferred for technical purposes (“directional
characteristic”).

7. Narrowing of interference fringes by a lattice array of slits serving
as wave sources: Interference fringes become more sharp and nar-
row when the wave source points are arranged in a regular lattice.
This was derived using model experiments in Sect. 12.15. Experi-

http://tiny.cc/fggvjy
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Figure 12.59 The radiation power arriving at the observation point P in
Fig. 12.58 for various settings of the diameter 2r of the iris diaphragm

Figure 12.60 Passage of acoustic plane waves through a slit

Figure 12.61 The diffraction slit used in Fig. 12.60; its
width is B D 11:5 cm

mentally, lattice arrangements of wave source points can be realized
either in the form of apertures (usually slits) or as mirror images. We
start with the first method; the second will be discussed under item
No. 8. We first demonstrate the transition from YOUNG’s interfer-
ence experiment to a lattice of wave sources. To this end, the wide
slit in Fig. 12.60 (see Fig. 12.61) is replaced first by two and then
by five equidistant narrow slits (Fig. 12.64). The principal maxima
of the interference pattern keep their positions during this process
(Fig. 12.65), but with five interfering wave trains, they are consider-
ably stronger and narrower than with two. The small submaxima that
lie between them form a nearly continuous background. Five slits al-
ready demonstrate the characteristics of a typical lattice or grating5,

5 Also called diffraction grating. Concerning this name, we refer to Sect. 12.15.
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Figure 12.62 The diffraction pattern of the slit shown in Fig. 12.61 at a wave-
length of 1.45 cm. The shaded area B marks the geometric limits of the beam
(geometric shadow).

Figure 12.63 The diffraction pattern from Fig. 12.62,
shown in polar coordinates

as used in optics for spectral investigations. Under the topic ‘optics’
(Vol. 2, Chaps. 21 and 22), we will treat the properties of optical
gratings in more detail.
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Figure 12.64 The interference
of two and five wave trains from
equidistant slits; the spacing of
neighboring apertures (center to cen-
ter) is called the lattice constant D

Figure 12.65 The transition from YOUNG’s double-slit experiment to a lat-
tice or grating (Fig. 12.64), i.e. a lattice-like arrangement of slits which serve
as wave source points. This results in a narrowing of the interference fringes
by superposition of more than two wave trains.

8. Narrowing of interference fringes by a lattice array of mirror im-
ages serving as wave sources: We refer to Fig. 12.41c and make use
of the experimental setup shown in Fig. 12.54. The mirrors A consist
of four lattice planes with dimensions as given in Fig. 12.66, left. We
thus use only four mirror images as wave sources. Nevertheless, the
demonstration experiment shows two rather sharp interference max-
ima (“spectral lines” with the indices m D 3 and m D 4) (Fig. 12.66,
right). In the model experiment (Fig. 12.39c), we could clearly rec-
ognize .N�2/ D 2 submaxima between the principal maxima. They
are not visible in this demonstration experiment.

9. The interferometer: The archetype of all interferometers is the
interference setup which was described by THOMAS YOUNG in
1807 for light waves (two wave trains and two slits as source points
(Figs. 12.39a and 12.64)). It is still in use today for many measure-
ments in laboratories and in technology.

The radiation power transmitted by the two narrow slits is rather
small. Therefore, later on other designs were found which make
it possible to observe interference from collimated beams of large
cross-section. All of them use reflection or refraction to separate
one beam of waves into two beams. Out of the many designs, we
will show here only one which is particulary important in physics,
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Figure 12.66 The reflection of sound waves (� D 1:03 cm) from four
equidistant lattice planes. According to Fig. 12.41c, these produce four mir-
ror images as wave sources, arranged in a lattice. For the angles ˇ at which
the reflected waves exhibit maxima, while the transmitted waves are minimal,
cf. Eq. (12.23). � is often called the Bragg angle.

Figure 12.67 The interferometer setup of A.A. MICHELSON

the MICHELSON interferometer (Fig. 12.67). In this design, the two
reflecting surfaces are placed perpendicular to one another; T is a
“beam splitter”, i.e. a surface which reflects about half of the inci-
dent waves and transmits the other half. The phase difference of the
resulting two wave trains is determined by their path difference s.
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12.21 The Origin of Waves on Liquid
Surfaces

We have discussed the most important facts concerning the prop-
agation of waves or radiation using longitudinal waves in air and
transverse surface waves on water. We showed how longitudinal
waves are produced in Sect. 12.17. In this section, we will treat the
formation of surface waves. The results will lead us to some insights
which are significant for waves of all types.

The waves on liquid surfaces can be represented by a simple pic-
ture of sinusoidal oscillations only in the limiting case of very small
amplitudes. In general, the wave troughs are broad and flat, while
the crests are narrow and high. Figure 12.68 shows an instantaneous
image of a water wave which is travelling to the right. – The for-
mation of such a wave can be observed with a wave tank. This is
a long, narrow channel made of sheet metal with glass windows in
its sides (around 150 � 30 � 5 cm). It is half-filled with water. As
we have seen before, aluminum flakes are mixed into the water and
can be observed as suspended particles (Chap. 10). A movable bar
serves to initiate the wave motion; it can be displaced up and down
by a motor. When the wave travels along the channel, we can observe
a streamline pattern as shown in Fig. 12.69. This is a time exposure
of 0.04 s duration. The streamline pattern shown in the figure would
be seen by an observer who is at rest in the lecture room. It shows
the distribution of directions of the velocities of the water particles.

In a wave, the motion of the liquid is not stationary. As a result,
the paths followed in the course of time by individual water particles
are by no means identical to the streamlines (cf. Sect. 10.5). These

Figure 12.68 The profile of a water wave of small amplitude. The wave
crests do not “tip over”and no foamy breakers are formed.

Figure 12.69 Streamlines in a travelling water surface wave (photographic
positive exposure with bright-field illumination)
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Figure 12.70 The circular mo-
tion of individual liquid ‘volume
elements’ (the orbital motion) in
a travelling water wave (photo-
graphic negative with dark-field
illumination). The upper edge of the
picture does not show the outline of
a wave, but rather is due to the ran-
dom distribution of the aluminum
flakes.

paths look quite different. For moderate wave amplitudes, they are
to a good approximation circular. We can observe these circular or-
bits both at the surface and also at considerable depths in the water.
However, the diameter of the circular orbits is greatest for the water
particles in the uppermost water layers, near the surface.

To demonstrate these circular orbits of the individual water particles
(the “orbital motion”), we add a small amount of suspended alu-
minum flakes to the water. Furthermore, we take the period of the
wave motion to be the exposure time for our photographs. In this
way, we can obtain images such as the one shown in Fig. 12.70.

Based on our experimental observations, we arrive at the scheme
which is sketched in Fig. 12.71. It shows the circular orbits of several
liquid particles which are near the surface. Their diameter 2r is equal
to the difference in height between the tips of the wave crests and the
bottoms of the wave troughs.

We will call the orbital velocity on the circular paths w, i.e.

w D 2�r

T
:

The time T for a complete rotation corresponds to the advance of the
wave by a full wavelength �.

Figure 12.71 The correlation between the streamlines and the circular mo-
tions within travelling water waves. The horizontal row of points indicates
volume elements at the water surface which are in their rest positions; the
clockwise circular arcs connected to them show their paths. By connecting
the small arrow points, we obtain the profile of the wave (which is travelling
to the right) at the end of the next time interval. The circular motion is shown
only for each second velocity vector arrow.
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Figure 12.72 The orbital motions (orbital velocity w) of the water particles
as seen by an observer who is moving with the travelling wave

To simplify the computation, we assume a surface between water
and air. Initially, we will ignore the density and motions of the air
relative to those of the water. Furthermore, from now on we assume
that the observer is moving to the right at the phase velocity c. For
this “observer in the moving frame”, the wave as a whole is at rest;
its outline appears to be frozen in its motion.6 But as a result, the
individual liquid particles are zipping past the observer to the left at
high velocities (Fig. 12.72).

Thus, a volume element of the water in a wave trough has a veloc-
ity of u1 D c C w, and at the crest of a wave, a velocity of u2 D
c � w. These velocities produce stagnation pressures; in a trough,
p1 D 1

2%.cCw/2, and at a crest, p2 D 1
2%.c�w/2. In a wave trough,

the stagnation pressure p1 acts to produce a deepening; at a crest,
the pressure p2 tends to produce a flattening. In a trough, the sur-
face of the liquid is subject to two pressures with forces that are in
mutual equilibrium: The difference of the two stagnation pressures,
i.e. p1 � p2 D 2%wc, pulls downwards. A static pressure p D %gh D
%g2r pushes upwards. This static pressure results from the vertical
distance h between the crests of the wave and its troughs. It follows
from p1 � p2 D p that

wc D gr : (12.30)

For small orbit amplitudes r, we find

w D 2�r

T
and T D �

c
; thus r D w

c
� �

2�
(12.31)

and so

c2 D g�

2�
: (12.32)

(For example ground swells, with � D 1 km, T D 25:4 s and c D
142 km/h; or � D 50m, T D 5:7 s and c D 32 km/h).

6 The “observer in the moving frame” can thus apply the knowledge gained from
Figs. 10.11 and 10.12.
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In deriving this equation for the calculation of the static pressure,
the surface tension � was neglected in comparison to the weight of
the liquid. This is permissible down to wavelengths of the order
of 5 cm. For still smaller waves, the term 2��=�% should be added
into Eq. (12.32), and then we obtain

c2 D g�

2�
C 2��

�%
: (12.33)

The phase velocity c for surface waves as derived from this equation
is shown later as a graph in Fig. 12.74. – When the first term is
dominant, we speak of gravity waves. When the second dominates,
we have capillary waves. For capillary waves alone, we find

c2 D 2��

�%
: (12.34)

Derivation
The static pressure p D 2r%g which results from the height difference h
between the wave crests and the troughs of the waves can be neglected;
instead, we consider the static pressure which is due to the curvature of
the wave crests and troughs, p D �=r C �=r D 2�=r (from Eq. (9.9; see
Fig. 12.73). It provides the counter-force to the difference of the two stag-
nation pressures, i.e. the pressure p1 � p2 D 2%wc. We find

2%wc D 2�

r
: (12.35)

For the circular orbits of the water particles, we found Eq. (12.32). For
w D c, a circular orbit of diameter 2r D �=� provides a good ap-
proximation to the curvature of a sinusoidal wave. Inserting w D c and
r D �=.2�/ into Eq. (12.35), we obtain Eq. (12.34).

Equation (12.32) remains applicable down to a water depth of h �
0:5�. In the opposite limit of a vanishingly small water depth h, the
propagation velocity of the shallow-water waves becomes indepen-
dent of �; the same value holds for all wavelengthsC12.15:

C12.15. Equation (12.36) is
important for the demonstra-
tion of how surface waves
break, Figs. 12.19, 12.22 and
12.23. It is derived here for
amplitudes comparable to the
water depth, but holds also
for smaller amplitudes. The
tsunami phenomenon can
also be understood from en-
ergy conservation: The wave
loses kinetic energy near the
shore, due to the reduction of
c, and this is transferred to its
potential energy, so that its
height (amplitude) increases.
See also Video 12.2 (http://
tiny.cc/tfgvjy).

c2 D gh : (12.36)

Consequences: Long ground swells of small amplitude can rise up
to disastrous heights when they run onto a beach with a gentle slope

Figure 12.73 The addition of two
static pressures produced by two
curved surfaces. The liquid, bordered
here by dashed lines, has an arbitrary
shape. Its surface I presses upwards
and is pressed upon (owing to the
isotropy of pressure) by the surface II.

http://tiny.cc/tfgvjy
http://tiny.cc/tfgvjy
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(tsunami). The reduced velocity near the shore causes a “pile-up”
effect so that the water from the rear of the swell overtakes the water
at its front; a very large volume of water thus reaches the shore in
a short time, and can inundate the nearby (normally dry-land) regions
up to depths of more than 10 m.

Derivation
In deep water, the gravity waves propagate to the right as shown in
Fig. 12.71. There, with the decay of the wave at the left side and its
buildup on the right side of each wave crest, the velocity vectors trace
out circles. – When the depth h of the water is reduced, we arrive at
the limiting case of ground waves. The amplitude of the gravity waves
has become practically equal to the depth h of the water at rest. Below
a wave trough, the water is flowing along a horizontal line. It flows to
the left at a velocity w D c in a wave trough which is moving to the
right at a velocity c; for an observer who is “moving with the wave”, this
velocity is thus c C c D 2c. For such an observer, a stagnation pressure
of 1

2 %.2c/2 D 2%c2 is in equilibrium with a static pressure. The latter
arises as with all gravity waves through the height difference between the
crests of the waves and their troughs; thus

2%c2 D 2h%g or c2 D gh :

Thus far, we have neglected the fact that a second medium is located
above the liquid surface. This medium is air, and we have specifically
neglected its effects. We now relax this constraint. Above the liquid
of density %, a second fluid of density %0 is presumed to be present.
Then, instead of Eq. (12.33), we have

c2 D % � %0

%C %0
g�

2�
C 2�

�

�

%C %0
: (12.37)

Examples
We offer three examples:
1. In two layers of the atmosphere (one above the other), as a result of
temperature differences, the mass densities % and %0 may be different. Then
at the interface between the layers, there can be waves. They can be seen
through the periodic condensation of water in the form of ‘ribbed’ cirrus
clouds.
2. Dead water: Not far from the mouths of rivers, especially in Scandina-
vian fjords, one can frequently observe the phenomenon of “dead water”.
Ships which are moving slowly, i.e. at 4 to 5 knots (� 8–10 km/h), are
suddenly brought to a stop by an apparently invisible force, while sailing
vessels no longer obey the helm.
Explanation: Fresh water with a lower density forms a layer above salt
water with a higher density. The vessel reaches down into the interface
region between the two layers. Its motion generates high-amplitude waves
along this interface, which however remain invisible to the eye above the
water surface. The visible water surface (interface between water and air)
remains practically at rest. The vessel must provide all the energy for this
wave motion; this causes its noticeable slowing down. This case is thus
similar to the formation of a flow resistance for objects in a fluid flow due
to the formation of vortices behind it.
3. For demonstration experiments, we sometimes need waves with a very
slow propagation velocity. Then we can pour a layer of petroleum onto
water, mark the interface with aluminum dust, and insert a flat excitation
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bar into the interface region. It can produce waves of high amplitude there,
while the surface of the petroleum, its interface with the air, remains prac-
tically at rest.

12.22 Dispersion and the Group
Velocity

The content of Eq. (12.33) is graphically represented in Fig. 12.74:
For surface waves, the phase velocity c depends on their wavelength
(top image), and the waves exhibit dispersion, defined as the quotient
dc=d�, which is a function of their wavelength (bottom image). – If
dispersion is present, then the phase velocity c D � � � can always
be determined experimentally when the waves are excited at a fre-
quency � and their wavelength � can be measured7. Two examples
can be seen in Fig. 12.75.

When the excitation is limited to a single frequency, this instanta-
neous image of the travelling wave (Fig. 12.1) corresponds to the
curve of a sinusoidal oscillation (Fig. 4.12). If waves are excited at

Figure 12.74 The phase velocity (top) and dispersion (bottom) of flat, nearly
sinusoidal surface waves on water with various wavelengths as used for
demonstration experimentsC12.16

C12.16. An example of the
dispersion of these waves is
shown in Video 12.2, where
a short rectangular pulse,
produced by dipping an ex-
citation bar into the liquid
just once, is stretched out
into a long pulse (see also
the “aged capillary waves”
in Fig. 12.81). Short waves
propagate faster than longer
waves.

Video 12.2:
“Experiments with water
waves”
http://tiny.cc/tfgvjy.

7 This procedure is often considerably more precise than a direct measurement of
the phase velocity from the distance travelled and the time required. The method
using (KUNDT’s) dust figures has long been applied in acoustics, and today, an
analogous method is preferred for electric waves of short wavelength.

http://tiny.cc/tfgvjy
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Figure 12.75 Measurement of the phase velocity of sinusoidal capillary
waves on a water surface. We can see the shadow of a 5 cm long ruler.

two or more frequencies, then the instantaneous images of the travel-
ling waves correspond to the graphs which result from superposition
of sinusoidal oscillations of different frequencies and amplitudes. If
dispersion is also present, then during the propagation of the result-
ing waves, the shape of the instantaneous images changes. With two
excitation frequencies in the ratio 1 : 2, for example, the two curves
Sr in Fig. 11.11 are transformed periodically into one another along
the path of propagation.

These changes of shape are important in limiting cases. If the fre-
quencies involved lie e.g. within a narrow region between � and � ˙
d�, they produce wavelengths between � and �
d�. Then as a result
of dispersion dc=d�, a prominent point on the resulting waveform,
e.g. the highest wave crest, does not move at the phase velocity c
which belongs to �, but rather at the group velocity8

c� D c � �
dc

d�
: (12.38)

To derive Eq. (12.38), imagine that in Fig. 12.76 there is a wave travelling
to the right, which has resulted from the superposition of two sinusoidal
waves. Its ‘snapshot’ image A is a “beat curve” (something like that in
Fig. 11.10). The longer of the two sinusoidal waves (B) is assumed to
have the wavelength � and the phase velocity c; the shorter wave (C) has
�0 D � � d� and the phase velocity c0 D .c � dc/.9 Within the resulting
wave .A/, the two sinusoidal waves cannot be distinguished in any form.
In order to find the velocity with which the resulting wave (curve A) is
moving to the right, we need to define a marker on the waveform. It is
convenient to use a maximum (crest) of the wave A. In the instantaneous
image A, it is marked with the double arrow 1. This maximum lies over
the wave crests � and d (curves B and C). After a propagation time of
�t, both maxima have moved to the right. The maximum � has travelled
along a distance s D c�t, while the maximum d has travelled a somewhat

8 This term can lead to misunderstandings; note the last paragraph of this section.
9 Corresponding to normal dispersion in optics (Vol. 2, Sect. 27.2). See also
Fig. 12.74.
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Figure 12.76 Wave graphs
(“snapshot images”) to il-
lustrate the definition of the
group velocity. We have chosen
d� D �tdc here.

shorter distance s0 D .c� dc/�t. The lead .s� s0/ D ds D dc�t gradually
approaches the value d�. This case is sketched in the three lower curves:
The point of equal phases is now at the wave crests ı and e. That is, the
maximum, the marker of the wave group, has not moved along a distance
c�t, but only along the smaller distance �s D .c�t � �/. Therefore, the
velocity of the marker, i.e. the group velocity, is

c� D c�t� �

�t
;

and this leads to Eq. (12.38), since we chose ds D dc�t D d�.

The consequences of Eq. (12.38) can be – quantitatively! – explained
by a demonstration experiment. The necessary apparatus is described
in Fig. 12.77:

Two waves of differing wavelengths are represented by the shadow
images of two gears, B and C. Black gear teeth mean wave crests, and
the white gaps between them are wave troughs. These “waves” do not
travel as in Fig. 12.76 along straight-line paths, but rather on circular
paths. – The two gears are mounted on the same shaft, one behind
the other, and can be rotated independently. Then in the shadow im-
age A, the beat curve resulting from their superposition can be seen;
it exhibits four wave groups. The gears are driven by a slow-running
synchronous motorM. The velocities c and .cC dc/ of the two gears
can be conveniently adjusted by using pulley wheels of different di-
ameters driven by elastic belts. A pointer Ph permits us to measure
the phase velocities of the individual waves with a stopwatch.
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Figure 12.77 The quantitative demonstration of the group velocity (details
are given in the text). The “rectangular” profile of the waves poses no prob-
lem here, just as in other geometric model experiments on wave theory, for
example in Sects. 12.12 and 12.15. M is an electric motorC12.17.C12.17. E. Mollwo, Phy-

sikalische Zeitschrift 43, 257
(1942).

We can choose at will whether the longer wave � (B) or the shorter
.� � d�/ (C) has the greater phase velocity. In the first case, the
group velocity c� is smaller than the phase velocity c, and the phase
marker Ph overtakes the groups. In the second case, the groups over-
take the phase marker. In the limiting case

dc

d�
D 0 ;

the groups have exactly the same velocity as the phase. In the limit
cd� D �dc, the group velocity becomes c� D 0. The groups remain
fixed at one spot.

A strictly sinusoidal wave train in the mathematical sense has no be-
ginning and no end, either in time or in space. Its spectrum will con-
tain a single spectral line, as in Fig. 12.78a. Every sinusoidal wave
that occurs in nature however has a beginning and an end. Therefore,
it appears in its spectrum as a very narrow band (Fig. 12.78b). On
both sides of the sine wave frequency, it includes a region d�, which
is very narrow compared to its mean wavelength �. This narrow
region is filled with a dense series of spectral lines (a FOURIER inte-
gral). For the purposes of computations, we can as an approximation
replace this dense series with two spectral lines that fall within the
narrow region (Fig. 12.78c). We made use of this fact above, in order
to derive Eq. (12.38) for the group velocity c� and to demonstrate c�
experimentally. As a result of this approximation, instead of a single
group, we obtained a sequence of identical groups (Fig. 12.77). Ac-
cording to Eq. 12.38, a group velocity is defined only for wave groups
whose spectrum includes a narrow range of wavelengths between �
and �˙d�. One can thus not consider the group velocity to be simply
the velocity of any arbitrary wave group.



12.23 The Excitation of Waves by Aperiodic Processes 345

Pa
rt
II

Figure 12.78 The spectra of unbounded waves
(a and c), and of a short (d) and a long (b) wave
group (short refers here to the spatial length of
the group, not to its wavellength)

12.23 The Excitation of Waves
by Aperiodic Processes

The greatest contrast to mathematical sine waves is the propaga-
tion of aperiodic processes, e.g. the practically aperiodic wave group
shown at the top of Fig. 12.79. Such wave groups have a broad, con-
tinuous spectrum; strictly speaking, they contain an unlimited range
of wavelengths on each side of the mean wavelength � (Fig. 12.78d).

If such an aperiodic wave group passes through a medium without
dispersion, that is a medium in which the phase velocity is the same
for all wavelengths, then the shape of the group along its path through

Figure 12.79 The time dependence of the production of gravity waves by
an aperiodic disturbance of the water surface at the time zero (‘snapshots’,
extended by computed values to the right of the arrows, because the wave
tank was too short); upper image, 1.3 s after a single (i.e. aperiodic) pulse of
the excitation bar (in a wave tank as described in Sect. 12.21)



PartII

346 12 Travelling Waves and Radiation

Figure 12.80 Along an elastic cord, an aperiodic wave group propagates
without any change in shape (here, a 10m long helical spring); its velocity
follows from Eq. (11.4)

the medium remains unchanged. In this case, one can readily de-
termine the common phase velocity c for all the waves experimen-
tally. Transverse waves along an elastic cord offer a good example;
cf. Fig. 12.80.

If, in contrast, an aperiodic wave group passes through a medium
with dispersion, then the shape of the group will continually change
along its path. This can be seen for example in gravity waves on
a water surface, Fig. 12.79. (Their dispersion is normal, i.e. their
phase velocities c increase with increasing wavelength.) – At the
beginning of an experiment (upper left), an excitation bar is thrust
into the water surface. After 1.3 s, we can observe a nearly aperiodic
wave group. In the course of time, the group becomes longer and
longer; at its front, longer waves form, while shorter ones collect
behind the group.

Here, we have used a wave tank ca. 3m long and 60 cm deep, with
a straight bar for wave excitation. This bar is thrust once, aperiodically,
into the surface of the water. The formation of perturbing capillary waves
can be suppressed by putting a very thin layer of fatty-acid molecules
onto the liquid surface; usually, it is sufficient to dip one’s hand into the
waterC12.18.C12.18. A very well-formed

(circular) wave train has been
observed with gravity waves
of wavelengths 5–20 m and
used to verify Eq. (12.32).
(E. Mollwo, Optik 4, 450
(1948/49)).

The shape of the waves can be observed through windows
on the sides of the tank. If no windows are available, one could observe
the mirror images of a long fluorescent tube reflected in the water surface.
These were photographed to obtain Fig. 12.79.
We can consider a similar experiment on a larger scale: In Fig. 12.79,
imagine that the zero point at the upper left is a storm zone near Cape
Horn. Then when the Atlantic is free of storms, a ground swell of a few
centimeters amplitude propagates as far as the south coast of England. At
first, after several days, waves of lengths around several 100m and peri-
ods of about 20 s appear. The waves which follow later have gradually
decreasing wavelengths and periods. For more details, see e.g. https://en.
m.wikipedia.org/wiki/Swell_(ocean)#.

These observations are very instructive; they show that dispersion
alone suffices to convert an aperiodic process (in optics, for exam-
ple “incandescent light”) into periodic waves (in optics “monochro-
matic light”). It is not at all necessary to give the dispersive medium
(e.g. glass) a particular geometric form (e.g. as a prism; cf. Vol. 2,
Sect. 16.10). Dispersion can however never produce strictly sinu-
soidal (“monochromatic”) waves. Even short wave trains from long
wave groups produced by dispersion consist of waves from a range
between � and (� C d�). In their spectra, they are represented by
a narrow band, as shown in Fig. 12.78b. Therefore, spectral appa-

https://en.m.wikipedia.org/wiki/Swell_(ocean)#
https://en.m.wikipedia.org/wiki/Swell_(ocean)#
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Figure 12.81 “Aged” capillary
waves travelling to the right on
a water surface; at the left side
of the group, the wavelength is
approximately 1.7 cm

ratus that are based on dispersion, for example prism spectrographs,
have a limited resolving power, �=d�.

For each short wave train from a long wave group produced by dis-
persion, we can specify a group velocity c�. For the case of gravity
waves, c� is always less than their phase velocity c at all wavelengths,
but c� increases along the direction of propagation of the group. For
this reason, the wave group in Fig. 12.79 becomes longer and longer,
the further it moves away from its source.

The dispersion of the capillary waves can be treated in a similar manner,
but now, dc=d� is negative, so that the dispersion is “anomalous”: the
short waves travel faster than the long waves (Fig. 12.17). At the front
of a wave group, new crests are formed. At first, we can discern around
15 wave crests; but the shorter waves are damped much more strongly by
frictional effects in the surface layers as they propagate through a wave-
length than the longer waves (cf. Sect. 9.5, point 5). Therefore, the short
waves at the front of the group decay more quickly. After a propagation
time of around 2.5 s, an aged group exhibits the form shown as a photo-
graphic image in Fig. 12.81. At the left, waves of about 1.7 cm wavelength
remain. Explanation: At a wavelength of � D 1:73 cm, the curve of the
phase velocity c has its minimum (Fig. 12.74, top). In the region of this
minimum, dc=d� � 0; thus, the group velocity c� and the phase velocity c
are practically identical; the aged group in Fig. 12.81 can then continue on
its way without any further noticeable change in its shapeC12.19.

C12.19. Such an “aged”
wave group of capil-
lary waves can be seen in
Video 12.2 (at 2:30min.); see
also Fig. 12.17.

Video 12.2:
“Experiments with water
waves.”
http://tiny.cc/tfgvjy

All of the observations described in this section “All of the observations de-
scribed in this section can
be conveniently experienced
on the smooth water sur-
face of a pond.”

can be conveniently ex-
perienced on the smooth water surface of a pond. There, one frequently
sees a very noticeable phenomenon: If a small object (a stick or a fishing
line) is moved relative to the water surface within its plane, we can see
standing waves in front of it, i.e. waves moving at the same speed as the
object. They occur just when the relative velocity u > 23 cm/s, i.e. when it
exceeds the minimum value of the phase velocity in Fig. 12.74. Then, the
slowest waves can no longer ‘run ahead’ of the moving object.

12.24 The Energy of a Sound Field.
The Wave Resistance for Sound
Waves

The energy density ı of a sound field is defined by the quotient

ı D Energy of oscillation within the volume V

Volume V
: (12.39)

http://tiny.cc/tfgvjy
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The waves are presumed to be weakly divergent, i.e. they form
a beam with a small divergence (opening angle10), but are practically
still plane waves, which strike a surface A perpendicular to it. Then
within a time t, they convey to this surface an energy

E D ıAct ; (12.40)

i.e. the entire energy which was previously contained in the vol-
ume Act. The area A is “irradiated”. Its irradiance is defined by
the ratio

Ee D Incident radiation power

Irradiated surface area
; (12.41)

thus

Ee D E

tA
D ıAct

tA
D ıc :

From this, we obtain for the irradiance the important relation:

Ee D ıc : (12.42)

Its units are for example W/m2.

The oscillation energy in the sound field is the sum of the oscillation
energies of all the volume elements of the air that are vibrating along
the direction of propagation of the sound waves. The energy of each
sinusoidal oscillation can be computed either as the maximum value
of its potential energy or the maximum of its kinetic energy. Think of
a simple pendulum: At its maximum deflection, all of its oscillation
energy is in the form of potential energy; when it is passing through
its rest position, its energy is all kinetic. At all intermediate positions,
the total energy is composed of both potential and kinetic energy. The
same is true for sinusoidal sound waves.

The maximum velocity of the air particles, i.e. the velocity amplitude
(technically: their “rapidity”), will be denoted by u0. The greatest de-
viation of the air pressure from its value in air at rest, i.e. the pressure
amplitude of the sound waves, will be called �p0 (known technically
as the sound pressure amplitude or sound pressure level, SPL). Then
a quantity of air of volume V and density % contains the kinetic en-
ergy

Ekin D 1

2
%Vu20

and its acoustic energy densityC12.20C12.20. Note: ı is equal to
the sound pressure (acous-
tic radiation pressure) pS;
cf. Eq. (12.29).

is

ı D 1

2
%u20 : (12.43)

Starting from the potential energy, after a brief computation we ob-
tain an expression for the acoustic energy density:

ı D 1

2

.�p0/2

c2%
: (12.44)

10 The details of divergence, radiation power and related concepts can be found in
Vol. 2, Chap. 19.
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Derivation
Beginning with Eq. (5.8), we find Epot D 1

2�V�p0, and the energy density

ı D 1

2

�V

V
�p0 : (12.45)

We use the modulus of compression of a gas,

K D V
�p0
�V

and the velocity of soundC12.21 C12.21. Derived in an anal-
ogous way as for a solid rod
(Sect. 12.17); however, the
modulus of elasticity E of
the solid material must be
replaced by the modulus of
compressibility of the gas.

c D
s

K

%
: (12.46)

Combining these equations yields Eq. (12.44).

During each sinusoidal oscillation, the velocity amplitude u0 and the
maximum deflection x0 are related to each other by the equation

u0 D !x0 (4.12)

.! D 2�� D circular frequency/ :

We thus obtain a third expression for the acoustic energy density, this
time containing the frequency of the sound waves:

ı D 1

2
% !2x20 : (12.47)

The above equations are by no means applicable only to air; they
apply to every medium that carries sound waves. The energy density
increases as the square of the frequency. As a result, high-frequency
sound waves give rise to striking phenomena, for example cavitation
in liquids. In Fig. 12.82a, standing acoustic waves (� � 1 cm) are
produced by reflection from a ground-glass plate serving as a mirror.
We place a soap film in the region of the sound waves. It cuts the
wave crests and troughs into strips perpendicular to the plane of the
page. In the crests, the film becomes cloudy due to cavitation, i.e. the
segregation of gas bubbles. This can be projected as a shadow image
onto the glass plate (Fig. 12.82b).

All three characteristic quantities of air vibrations, namely the ampli-
tudes u0 of the velocity, �p0 of the pressure changes and x0 of the
deflection can be measured directly.

1. The measurement of the velocity amplitude u0 is carried out by
making use of hydrodynamic forces.

Example
The RAYLEIGH disk. In the sound field, a thin disk the size of a coin is
hung suspended, free to rotate. It carries a mirror for a light pointer and is
protected from air currents by a small gauze cage. Let the surface normal
of the disk be inclined at an angle # of ca. 45° relative to the direction of
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Figure 12.82 Sound waves of high energy density cause cavitation in a soap
film, which is cut at an angle by a field of high-frequency standing sound
waves (� D 1 cm; the source is the same as in Fig. 12.45)

propagation of the sound waves. The airflow of the waves passes around
the disk with the well-known streamline pattern as shown in Fig. 10.16b.
The disk experiences a torqueC12.22 ofC12.22. This torque is maxi-

mal when the disk is inclined
at an angle of 45° relative to
the undisturbed airflow.

M D 4

3
ı r3 sin 2# (12.48)

(r D Radius of the disk, ı D energy density of the sound waves).

2. To measure the pressure amplitude �p0, one generally uses a ca-
pacitive microphone.

3. To measure the maximum deflection x0, one places tiny dust par-
ticles into the sound field and observes their pendulum orbits with
a microscope. The small spheres are pulled along by the internal
friction (viscosity) of the gas (Sect. 10.3). They exhibit nearly the
same amplitudes (maximum deflections) as the surrounding volume
elements of the air. However, this method is applicable only at high
energy densities ı.

We combine Eq. (12.46) with Eqns. (12.43) and (12.44) to obtain

�p0
u0
D c% Dp

K% : (12.49)

This ratio of the pressure amplitude to the velocity amplitude is called
the acoustic wave resistance Z (compare Vol. 2, Sect. 12.7.)

This wave resistance determines the reflection at the interface be-
tween two media. If a plane wave is incident perpendicular to the
interface with a medium having a different wave resistance, then the
ratio R isC12.23

C12.23. The acoustic wave
resistance Z D c% corre-
sponds to the wave resistance
Z D p

	0=.��0/ for elec-
tromagnetic waves (Vol. 2,
Sect. 12.7). The reflec-
tion coefficient derived
from FRESNEL’s formu-
las (Vol. 2, Sect. 25.8) is
R D ..Z1 � Z2/=.Z1 C Z2//2.
This yields Eq. (12.50).

R D Reflected radiation power

Incident radiation power
D

�
c1%1 � c2%2

c1%1 C c2%2

�2

: (12.50)

It is called the reflection coefficient or reflectivity. The reflected and
the incident waves superpose to give a resultant wave.
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In the technical and acoustics literature, for a sinusoidal sound wave of
radiation power PW1 or pressure amplitude �p1, the absolute values are
often not quoted, i.e. for example PW1 in watt or �p1 in newton/meter2,
but instead only the relative values. These are compared to a reference
power PW2 or a reference amplitude �p2, which must be precisely specified
in every case. Then, either the quantity

x D 10 � log PW1

PW2
D 20 � log �p1

�p2
(12.51)

is computed, or else the quantity

y D 1

2
ln
PW1

PW2
D ln

�p1
�p2

: (12.52)

Both of these quantities are pure numbers. They are combined with the
number 1 as multiplier and we give the number 1 two new names, namely
in the first case decibel (dB), and in the second case Neper (Np). – If for
example we use a reference pressure of �p2 D 1N/m2 (D 1 Pa), then the
specification “�60 dB” implies a pressure amplitude of �p1 D 10�3 N/m2.
These special names for the number 1 have an advantage: They remind
us which equation for the power or pressure comparison has been em-
ployed. Their great disadvantage, however, is that one can interpret decibel
or Neper (and, later, the phon) incorrectly to be units, similar to the am-
pere, kilogram, candela etc.
In technology, the (effective) reference pressure is often taken to be �p2 D
2 �10�5 N/m2. Then the quantities x and y, i.e. the logarithms of the relative
measured pressures, are quoted as absolute sound-pressure levels! Often,
decibels are also used to denote orders of magnitude, in contrast to the
usual form. Then, for example, 80 dBD 108, 20 dBD 102,�30 dBD 10�3
etc.

12.25 Sound Sources

In the ripple tank, we could get a good intuitive picture of the mech-
anism of wave emission. We could see how the excitation bar dips
rhythmically into the water surface and displaces some water at the
frequency of its vertical vibrations. This experiment can be applied
in analogous fashion to the spatial emission of longitudinal elastic
waves in air, water, etc. If a sphere changes its volume in the rhythm
of sinusoidal oscillations, one is dealing with an ideal sound emit-
ter, the breathing sphere. All the points on its surface vibrate with
the same phase, and the result is a completely symmetric emission of
spherical waves. This ideal sound emitter has yet to be technically
implemented. But some solutions to this problem approach the ideal
rather closely. Thick-walled containers with a vibrating membrane
are good examples in this connection. The membrane is best driven
electromagnetically from within the container. Applying this princi-
ple to acoustic signals in water, using membranes of around 50 cm
diameter, power levels of the emitted sound waves in water of up to
0.5 kW have been achieved. The “membrane” or diaphragm is in this
example a steel plate of ca. 2 cm thickness!
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Figure 12.83 The sound emission of a vibrating string

In the simplest vibrational mode, the membrane of a sound source
oscillates with the same phase all over its surface, and exhibits no
nodal lines except at its rim. Furthermore, as a rough approxima-
tion, we will consider its amplitude to be constant over the whole
surface area. Then we have physically quite similar conditions to
the constant-phase emission of waves from the aperture of a slit in
Fig. 12.12. We can thus consider the emission of the waves into
a spatial cone under the right circumstances, similar to what is shown
in Fig. 12.14. In this case, the diameter of the membrane must be
a multiple of the emitted wavelength.

Passable sound sources are also the open ends of short, thick oscillat-
ing air columns. Very poor emitters are, in contrast, the stringswhich
are often employed in musical instruments.

In Fig. 12.83, the black disk represents the cross-section of a vibrat-
ing string which is perpendicular to the plane of the page. The string
is just beginning a vibration in the direction of the arrow, downwards.
It then “displaces”, roughly speaking, the air on its lower side, and
there, a wave train begins with a crest. At the same time, the string
leaves, again roughly speaking, an empty space on its upper side, and
there, a wave train begins with a trough. The two waves have a phase
difference of practically 180° in every direction and cancel each other
almost completely by interference. Therefore, the vibrating string is
a very poor emitter of sound waves. Similar considerations apply to
tuning forks.

For practical applications, the vibrations of strings and of tuning
forks must therefore first be transferred to good emitters. To this end,
one arranges a suitable mechanical connection between the strings or
tuning fork and a good emitter, which is thus excited to forced vibra-
tions. Under some circumstances, one can make use of the special
case of resonance to obtain large amplitudes. The emitter is then set
up to have weak damping and its resonance frequency is matched
to that of the tuning fork or string. To illustrate this, we offer two
examples:

1. In Fig. 12.84a, a piece of twine is held at the right by a hand.
Two fingers of the other hand rub its left end. The twine begins to
vibrate like a violin string, but it emits practically no sound. Then we
attach its right end to a good emitter, e.g. a short metal or cardboard
cannister with a membrane (Fig. 12.84b). Now the vibrations are
emitted as sound waves which can be clearly heard at some distance.

2. A tuning fork is mounted on a short wooden box which is open
at one end, usually called a resonance chamber or sound box.

“One often hears that ‘The
vibrations were ampli-
fied by resonance’. This
is a rather skewed way of
expressing the situation.”

One
often hears that “The vibrations were amplified by resonance”. This
is a rather skewed way of expressing the situation. The essential
point is only the relatively good emission properties of the box; the
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Figure 12.84 Coupling of
a poorly-emitting string to
a membrane which is a good
emitter

Figure 12.85 Improvement of
the sound emission from a tun-
ing fork by a wall on each side
(W. BURSTYN)C12.24 C12.24. W. BURSTYN con-

structed among other things
electric musical instruments
at the beginning of the 20th
century.

resonance is simply an aid to transferring the vibrations. We can
demonstrate this with a surprising experiment. We bring one tine of
a tuning fork as shown in Fig. 12.85 into the gap between two walls
which are large in comparison to the wavelength of its tone. The
tuning fork can now be heard at some distance away. This is because
the interference of the waves from the inner and outer sides of the
tine is now considerably reduced and the tuning fork has thus been
made into a tolerably good emitter.

In the case of musical instruments, e.g. those of the violin family, the situ-
ation is rather complex. The strings and the sound box form a confusingly
coupled system (Sect. 11.15). The box itself has a whole series of reso-
nance frequencies. In producing its forced vibrations, certain frequencies
of the vibrating strings are thus strongly favored. Figure 12.86 shows a vi-
bration curve and the associated vibration spectrum of a tone from a violin.
The sound box of a violin is stiffened from within by the sound post. The
top plates, considered as membranes, are by no means small compared to
all the wavelengths used in music. Therefore, the emission can exhibit
strongly-preferred directions.

With the topic of violin characteristics, we come to a discrimina-
tion which is of some importance technically, between primary and
secondary sound sources. Primary sound sources (emitters) have to
produce vibrations with a certain spectral composition. We condone
the fact that every individual primary sound source, for example ev-
ery musical instrument, has a right to its characteristic spectrum; or,
stated physiologically, to its own particular timbre. The situation is
quite different for secondary emitters. A typical modern represen-
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Figure 12.86 The vibration curve (at left) and the frequency spectrum (right)
of a violin tone (H. BACKHAUS)C12.25C12.25. The frequency spec-

trum (FOURIER analysis, see
Sect. 11.3) of the vibration
curve shows the amplitudes
of the fundamental tone and
the harmonics, referred to as
partial tones, of the g1 note
of the d-string of an Antonius
Stradivarius violin dating
from 1707. The frequency of
the fundamental is 392Hz.
The harmonics determine
the timbre, which can vary
considerably from instru-
ment to instrument. (After
Fig. 11 from H. Backhaus,
Die Naturwissenschaften 17,
811 (1929).)

tative of this latter group is the loudspeaker. Loudspeakers have no
free choice in their frequency spectra. They are required to emit – in
the form of sound waves – the electrical oscillations which are sent
to them, without giving preference to any partial tone components.

12.26 Aperiodic Sound Sources
and Supersonic Velocities

In Sect. 12.10, we encountered shockwaves and conical waves. They
are generated when an object moves aperiodically and its velocity
exceeds that of the sound waves (or other waves). This case of-
ten occurs in the air. As examples, we could mention the end of
a whiplash, a bullet, or an aircraft flying at supersonic speed. These
rapidly moving bodies generate conical waves11. Figure 12.87 shows
such a conical wave from a bullet, just at the moment when it has
overtaken the muzzle report (‘bang’) of the gun. The opening angle
of the sound wave cone is called MACH’s angle (Sect. 12.11). A sin-
gle conical wave is heard by the ear as a ‘boom’ or ‘bang’; a periodic
series of these waves sounds like the tone from a trombone.

In the acoustic investigation of bullets, it must be taken into account that
sound waves of large amplitudes can propagate at higher velocities than

Figure 12.87 The muzzle report of a gun
and the conical wave from a bullet (the
black cloud at left is gas from the powder
explosion). (This and the following picture
are photos taken by C. CRANZ using the
schlieren method.)

11 Journalists will then report that “the sound barrier has been broken”.



12.27 Sound Receivers 355

Pa
rt
II

Figure 12.88 Shock waves produced by two
simultaneous sparks with different electric
currents (larger at the top)

the normal speed of sound. Near electric sparks, one can readily observe
sound waves whose velocities are around 500m/s (Fig. 12.88).

12.27 Sound Receivers

Sound receivers can be divided into two groups in the sense of limit-
ing cases: Pressure receivers and velocity receivers.

1. Pressure receivers: The majority of pressure receivers consist of
membranes fixed at their edges. They can be attached within cap-
sules, walls, funnels etc. Examples: Microphones of all types, as
well as the eardrum.

All pressure receivers carry out forced vibrations in the sound field.
Their amplitudes are independent of their orientation within the
sound field; the air pressure is independent of direction (pressure
isotropy; cf. Sect. 9.3). Every living-room barometer demonstrates
this. A barometer is in the end just a pressure receiver for longi-
tudinal waves in the air. But in the case of atmospheric pressure
fluctuations, we are usually dealing with oscillation processes of
extremely low frequency.

Technically, microphones are much more important today than all
other types of pressure receivers. Radio broadcasting and sound
recording have raised the standards here enormously. Over a broad
frequency range from around 100 up to 10 000Hz, they are required
to maintain the original amplitude ratios. As with all forced oscilla-
tions, this requirement can be bought only at the price of a greatly
reduced sensitivity.

2. Velocity receivers. In the case of velocity receivers, the veloc-
ity amplitude of the alternating air flow of a sound wave is used to
produce forced oscillations. This can be most readily made clear by
giving an experimental example.

In Fig. 12.89, we see a thin glass fiber about 8mm long which is
set up as a small leaf spring perpendicular to the direction of the
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Figure 12.89 A fine glass fiber as a de-
tector of motion (velocity receiver) (in
reality, it is only 0.028 mm thick)

propagating sound waves (microprojection!). Periodic changes in the
air pressure have no influence at all on this fiber. On the contrary, the
alternating air flow in the direction of the oscillating air particles pulls
it along by internal friction and thereby excites it to forced vibrations
(here using a reed pipe as sound source, close to the fiber). This fiber
is a typical velocity receiver. It at the same time exhibits an important
and – for velocity receivers – characteristic property: We find that its
amplitude depends on its orientation in the sound field. If it is placed
with its long axis parallel to the direction of sound propagation, the
fiber remains at rest.

Velocity receivers can be used as directional receivers. Imagine two
such fibers oriented symmetrically to the long axis on each side of
a moving body. If there is a straight-line course to the sound source,
both receivers will answer with the same amplitude. Sideways de-
viations from the straight course will give rise to inequalities in the
forced amplitudes of the two fibers.

Pressure and velocity receivers are, as mentioned, limiting cases. Ev-
ery momentum transfer from pressure requires a wall which is not
noticeably deformed by the pressure. The forced amplitudes of the
wall must remain small compared to the deflections x0 of the oscillat-
ing air or water particles. Air has a low density % and therefore larger
deflections x0 (compare Eq. (12.47)). Therefore, pressure receivers
can be constructed successfully for air, but only with difficulty for
sound waves in water. Pressure receivers in air can also become ve-
locity receivers in water.

12.28 The Sense of Hearing

Hearing and our auditory organs are for the most part the objects of
physiological and psychological research. Nevertheless, for physical
purposes, we want to summarize the most important facts concerning
them. Likewise, in optics one should know the properties of the eye,
at least in general terms.

1. Our ears react to mechanical vibrations in the very broad frequency
range from about 20Hz up to around 20 000Hz. The human ear thus
encompasses a spectral range of at least 10 octaves (210 D 1024).
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The upper limit of this range decreases with increasing age of the
hearer.

2. Sinusoidal vibrations produce a sensation of a pure note in the ear.
Every note has its particular pitch. The pitch of a note is a sensory
perception and as such is not accessible to physical measurements.
The pitch of a note depends in the main on the frequency of the
waves, but to some extent also on the strength of irradiation at the
ear. Unfortunately, we generally speak of the frequency of a note.
This is of course convenient, but it is a rather lax form of expression;
what is meant is always the pitch of the note as experienced by the
ear when it is excited by a sinusoidal wave of the given frequency at
a medium irradiation strength.

3. In the most favorable frequency range, our ears can distinguish
two frequencies that differ by only 0.3%. The ear thus has a “spectral
resolving power” �=d� of around 300. This corresponds in optics to
what one can achieve with a glass prism of a basal thickness of about
1 cm.

4. The ear responds to non-sinusoidal vibrations by perceiving
a tone. A tone is independent of the phase differences between the
individual sinusoidal partial tones. This is a fundamental insight
based on the observations of GEORG SIMON OHM. It corresponds to
HELMHOLTZ’s interpretation that the inner ear functions as a spectral
apparatus for sound waves (cf. Sect. 12.30).

A musical chord corresponds to a frequency spectrum with a par-
ticular structure, characterized by the ratio of the frequencies and
amplitudes of its spectral lines. The absolute value of the fundamen-
tal frequency is unimportant. Two sinusoidal oscillations of nearly
the same energy density with a frequency ratio of 1:2 always yield
the chord called an “octave”, etc.

5. The most important tones are the syllables of language. – In
normal reading, the eye is stimulated by a temporal sequence of two-
dimensional symbols. They are distinguished by a spatial sequence
of individual elements, namely letters or syllables. Often, we can
‘hear’ the writer speaking when we read a text written by someone
we know. In normal hearing, however, the ear is stimulated by a tem-
poral series of air-pressure variations. These have spectra of differing
forms. Voiceless consonants are characterized by broad, continuous
spectra with a variety of shapes. Voiced consonants and vowels can
be represented as frequency spectra. One finds the same spectral lines
independently of the pitch of the voice (bass, tenor etc.) in regions
which are characteristic of the particular vowel. These are called the
formant ranges (Fig. 12.90). They are finally just the damped normal
modes of the oral cavity etc., which are periodically excited through
impulses of air pressure from the larynx along the lines of Fig. 11.16.
In general, the frequency and intensity of this excitation is constantly
changing. These changes determine the intonation of the speaker. If
in contrast the excitation is continuous, with a constant frequency and
intensity, we experience the solemn intonation of a priest at prayer.
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Figure 12.90 Left: Vibration curve of the vowel ‘a’ as sung by a male voice
(recording by FERDINAND TRENDELENBURG). The impulse frequency of
the larynx was 200Hz. Right: Representation of this vibration curve in the
form of a frequency spectrum. The principal formant range is clearly visible.

The time sequence of the language elements, i.e. their spectra, can be
continually recorded on tape (Fig. 12.91). This yields a script whose
spatial sequence of elements consists of spectra. This script can be
read, much like e.g. Morse code, but only after considerable practice.

Spoken language can be reproduced by mechanical means. Girls
play with dolls which have a bellows in their torsos and can say
‘mama’ and ‘papa’. – A speaking machine was described in 1791 by
WOLFGANG V. KEMPELEN12. It contains apparatus to produce tones
and hissing sounds which could be activated by openings and keys
operated by the hands and fingers. Newer versions of such speaking
machines make use of electronic devices.

6. At higher energy densities, the ear can hear difference frequencies.
It hears not only two notes of frequencies �2 and �1, but also a third
note of frequency �2 � �1. Difference frequencies can be readily
demonstrated using organ pipes. Occasionally, still other “combina-
tion frequencies” can be heard, e.g. the “sum frequency” (�1C �2) or
the frequency (2�1 � �2) (cf. Sect. 11.12, point 2).

7. The rise and decay times of the ear are not well known; they appear
to be of the order of some 10�2 s.

8. With two ears, we can recognize the direction from which sound
waves are arriving. This works best for tones and noises with a sharp
onset or with repetitions of characteristic details. The decisive factor
is the time difference between the excitation of the left ear and of
the right ear by the same portion of the sound wave curve (compare
Fig. 12.92). At frequencies of several 1000Hz, differences in the
irradiation power due to the shadowing effect of the head also play
a role (cf. Sect. 12.19).

12 His book on “The Mechanism of Human Speech along with a Description of
a Speaking Machine” was published in Vienna in 1791 by J.V. Degen Publishers.
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Figure 12.91 A time sequence of a number
of spectra (around 200) corresponding to
counting from 1 to 3 in English. The spec-
tra, which follow each other from bottom to
top in a dense series, each have a height of
only a few tenths of a millimeter in the im-
age. The amplitudes are not represented as
in Fig. 12.90 (right side) in terms of ordinate
values of different heights, but rather as the
darkness (density) of a photographic plate.

Figure 12.92 Directional hearing Hold the two ends of a piece of hose
around 2m long in your ears and let an assistant tap on the hose near its
midpoint. The apparent direction of the sound deviates from the medial plane
of the head when the position of the tapping is more than 0.5 cm from the
midpoint of the hose. Our sense of hearing thus reacts to difference in the
arrival times of sounds of �t D 3 �10�5 s. At �t D 60 �10�5 s (corresponding
to 20 cm path difference, roughly the diameter of the head!), we localize the
apparent sound source at right angles to the medial plane.C12.26.

C12.26. At the left:
E. MOLLWO, Dr. rer. nat.
(Göttingen 1933); at
the right: H. KELTING,
Dr. rer. nat. (Göttingen 1944).
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12.29 Phonometry

Phonometry in acoustics corresponds to photometry in optics. Both
evaluate a type of physical radiation not according to its power (en-
ergy/time D energy current, measured in watt), but rather according
to its effect on our sensory organs, i.e. on our ears and eyes. Just
as photometry holds only for observers with normal sight (compare
Vol. 2, Chap. 29), phonometry applies only to observers with normal
hearing.

All sound perceptions, i.e. notes, tones, noises etc., have, besides
their quality of ‘pitch’ (high, low, hollow, brilliant etc.) a second
quality, their loudness (or sound level). It corresponds to the bright-
ness in the perception of light by the eyes. The loudness cannot be
physically measured, i.e. it cannot be determined as a multiple of
some physical unit, no more than brightness or any other percep-
tional quality of our sensory organs. However, with our ears, we can
perceive two irradiance strengths (i.e. the incident radiation power
PW/receiver area A), even from quite different sound sources, as being
equally loud.

As is well known, the eye is capable of a corresponding comparison.
It can perceive two irradiance strengths of light, even when they orig-
inate from quite different types of light sources, to be equally bright.
The irradiance strengths as judged by the eye are termed illumination
levels (cf. Vol. 2, Chap. 29).

This ability of our sensory organs forms the basis for setting up
a phonometry (sound measurement) and a photometry (light mea-
surement) for technical, practical purposes. Both make it possible to
determine two spatially or temporally separated irradiance strengths

I D Incident radiation power PW
Receiver area A

I unit: W/m2 (12.53)

so that they can be reproduced at an arbitrary place and time.

In phonometry, one does not try to quote the irradiance strength (in-
tensity) I in absolute units, e.g. in W/m2, but rather as a relative
quantity in multiples of an agreed-upon, small reference irradiance
strength Imin D 2 � 10�12 W/m2. (This corresponds roughly to the
detection threshold of the human ear at the frequency � D 103 Hz,
typically for a younger person, ca. 20 years old). The ratio I=Imin in
practice would yield numbers between 1 and 1012. This large range
is made more compact by using decimal logarithms. The loudness L
is defined as

L D 10 � log I

Imin
(12.54)

.Imin depends on the frequency as seen in Fig. 12.93; see below/:
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The loudness is thus a pure number. One combines it with the num-
ber 1 as multiplier and gives this number the name phon (cf. the end
of Sect. 12.24C12.27). C12.27. The unit phon is not

included in the SI (cf. Com-
ment C2.14.). It is a unit
of the subjective quality
“loudness”, used e.g. by the
American National Standards
Institute and the international
standards organization ISO
(see http://www.iso.org/iso/
home.html). It is defined as
“the dB sound pressure level
(see Comment C12.28.) of
a 1 kHz tone which sounds
just as loud”.

One thus says for example that the loudness
of everyday speech corresponds to 50 phon. This means that ev-
eryday speech has an irradiance strength as perceived by the ear of
I D 105 � Imin D 2 � 10�7 W/m2 (10 � log 105 D 50). – The range
of loudness stretches from 0 phon (the level of the barely percepti-
ble) up to 120 phon (the noise level in a boiler factory or next to an
airplane, sometimes termed the threshold of pain for the ears).

From the defining equation (12.54), it follows that if the irradiance strength
as perceived by our ears is multiplied by a factor of 10, then the loudness
increases by 10 phon, since 10 � log 10 D 10 � 1 D 10. – Examples:
One very softly ticking clock has a loudness of 10 phon, ten such clocks
together have 10C10 D 20 phon. –One roaring motorcycle has a loudness
of 90 phon, ten of them together have 90C 10 D 100 phon.

The spectral sensitivity distribution of the ear is illustrated by
Fig. 12.93. The ordinate values show both the sound pressure
amplitude �p0 and also the irradiance strength I. The values of
the irradiance strength or intensity apply to a cross-sectional area of
a free sound field, not disturbed by a human head, for a wave which
is incident perpendicular to the face of the hearer. With increasing
loudness, the spectral sensitivity distribution changes; the curves be-
come flatter. With a further increase, instead of hearing, the observer
feels pain. In the range of their greatest sensitivity, our ears react to
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Figure 12.93 The curves of spectral sensitivity of the ear for different val-
ues of the loudness. Along each curve, the loudness is perceived as the same
as for a pure comparison tone (� D 1000 Hz) which is produced with an
irradiance strength (or sound pressure level, i.e. a physical stimulus!) corre-
sponding to the given loudness. The bottom curve is the detection threshold
of the ear of a young person (20 years old). With increasing age, the curves
rise more sharply above 2000 HzC12.28.

C12.28. Today, loudness
is usually quoted in dB
(Eq. (12.51)). For this mea-
sure, instead of the individual
curves as in Fig. 12.93, which
depend on the age of the
hearer, fixed conventional
frequency dependencies
(so-called ‘A-weighting’,
‘B-weighting’, etc.) are used,
and they are indicated by
adding corresponding letters,
e.g. dB(A). For more details
on A-weighting, see for ex-
ample https://en.wikipedia.
org/wiki/A-weighting

http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html
https://en.wikipedia.org/wiki/A-weighting
https://en.wikipedia.org/wiki/A-weighting
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changes in the air pressure of �p0 D 10�5 N/m2, i.e. a value which
is 10�10 times smaller than the normal air pressure!

Figure 12.93 shows vividly just how astonishingly adaptable our ears are:
In the frequency range of its greatest sensitivity, the ear – just like the eye
– can deal with variations in the irradiance strength I over a range of 1 �
1012. Both of these sensory organs behave, put succinctly, as though they
were measuring instruments with logarithmic scales. Both are wonderfully
adapted to their respective purposes: The ear for example can hear nearly
as well in a region of weak, diffracted, reflected or scattered sound waves
as when the waves are freely propagating.

12.30 The Human Ear

The most essential part of our auditory canal is the “inner ear”, which
is a bony labyrinth containing a spiral organ (the cochlea) lodged in
the petrous bone. The mechanical (sound) waves are directed to it via
two paths: 1. through the eardrum (tympanum) and the bones of the
middle ear (ossicles); and 2. through the soft tissue and the bones of
the head. The first path is dispensable; one can still hear without an
eardrum and the ossicles.

The eardrum and the ossicles fulfill merely the following purpose: The in-
ner ear is filled with a watery liquid, the endolymph, and its density is about
800 times greater than that of air. As a result, the reflectivityR between the
air and the inner ear would be nearly 1.0 (cf. Eq. (12.50). Now, however,
the sound wave should reach the endolymph with its given energy density
ı, without hindrance and without reflection losses. This is accomplished
by the eardrum and the lever system of the ossicles13. According to this
concept, the eardrum and the ossicles would be unnecessary in mammals
that live exclusively in water (dolphins and whales). Indeed, none of these
animals has an outer ear. The auditory canal, the eardrum and the ossicles
have degenerated to mere remnants.

Nerve excitation in the eye takes place in the mosaic-like retina. It
reacts practically to only one octave of the electromagnetic spec-
trum. Nevertheless, we can distinguish a multitude of colorful and
un-colorful hues. Furthermore, the acuity of the images that we see
is not compatible with the quality of the lens of the eye. Both ef-
fects cannot be understood physically. They can be produced only
if central processes within the brain play an important participatory
role.

The nerve excitation of the inner ear takes place in CORTI’s organ,
within the cochlea. The basilar membrane is a part of this organ.
To first order, it can be described as a delicate separating wall be-
tween two rigid tubes (the scala tympani and the scala vestibuli). In

13 At the hearing threshold and the most favorable frequency, � � 3000Hz, the
amplitude of the motions of the eardrum is only about 6 � 10�10 m; it is thus only
a few atomic diameters. In the inner ear, the amplitudes are still smaller by at least
a factor of 30.
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humans, it is 34mm long, and its width increases from the begin-
ning of the tubes to their ends from 0.04 to 0.5mm. HELMHOLTZ

interpreted this membrane as a tiny vibrating-reed frequency meter,
a spectral apparatuswhich is characterized by its particular simplic-
ity (Sect. 11.12). He thought of the membrane not as a homogeneous
band, but rather as a dense series of stretched strings, grown together
at their ends (in place of the vibrating reeds or leaf springs). Their
resonance frequencies were presumed to decrease along the length
of the membrane, i.e. with increasing width. In reality, the basilar
membrane lacks such a structure, but nevertheless it retains the prop-
erties of a spectral apparatus. Its function can be demonstrated using
a model which was designed for that purpose. It fulfills the necessary
condition for demonstration models: The processes to be observed
take place sufficiently slowly.

The model is sketched in Fig. 12.94. Two metal channels with a rect-
angular cross-section are fitted at their sides with glass walls, and
between them in the middle is a highly elastic partition, the artificial
basilar membrane. Its width is delimited by a wedge-shaped metal
frame. The width of this frame increases from left to right. For
reasons of “mechanical similarity”, the membrane must have elas-
tic properties which cannot be realized with a solid body; instead, we
have to make use of an interface between two liquids of differing den-
sity and surface tension, e.g. benzene above and water below (with an
added salt, MgCl2, to increase its viscosity). – The “stirrup” (one of
the ossicles) at the lower left end can move the “oval window” back
and forth in a sinusoidal motion by means of an eccentric, at frequen-
cies between 1Hz and 8Hz. The vibrating oval window becomes the
source of a wave group which travels to the right along the “basilar
membrane”.

Figure 12.94 A linear model of the cochlea in the inner ear. The brass plate
at the right end is removable and has a cork gasket. Instead of the “round
window”, a glass tube, bent upwards, is used. The artificial basilar membrane
is 31 cm long and its width increases from 1 to 18mm. The “stirrup’ is caused
to vibrate by an eccentric attached to an electric motor. In the human ear, the
stirrup is the last of the three ossicles, the small bones which act as levers to
reduce the displacement between the eardrum and the oval windowC12.29.

C12.29. Similar investi-
gations were reported by
H.G. DIESTEL (Acustica 4,
489 (1954)). There, he men-
tions an unpublished thesis
by H. DORENDORF, in which
similar model experiments
were described (1st Physical
Institute, Göttingen (1950)).
It may be that the measure-
ments quoted here are at least
partially based on this thesis
(which has in the meantime
been lost).
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Figure 12.95 Wave groups which are travelling along the “basilar mem-
brane” of the ear model after being sinusoidally excited at � D 4Hz. To
provide a clearer overview, the waves have been emphasized by filling with
a black color; in the original photos, only their sharp outlines were visible.
Wave trains without this subsequent filling-in can be seen in Fig. 12.96.

The eight upper lines in Fig. 12.95 (numbered 1 to 8) show photos
(‘instantaneous images’) taken at equal time intervals during one os-
cillation period. At the right, above the dashed straight line a-a, we
can see the remainder of the wave group from the previous period.
From line 10 on, at the left of the dashed straight line b-b, the next
wave group appears and follows a similar path. Below the line c-c,
we see the beginning of still another wave group. – Thus, in spite
of the sinusoidal excitation of the oval window, the basilar mem-
brane does not carry a sine wave, but rather a peculiarly-shaped wave
group. In this example (� D 4Hz), it reaches its maximum amplitude
at the 10 cm distance mark. Further to the right, it decays rapidly. In
the process, its group velocity decreases. At the 13 cm distance mark,
it has become practically zero. Further to the right, the “basilar mem-
brane” remains completely at rest.

Now we come to a second, decisive experimental result: The position
or distance mark where the wave group attains its maximum ampli-
tude depends uniquely on the frequency of the excitation. This can
be seen in the original photos in Fig. 12.96: The wedge-shaped mem-
brane thus acts as a spectral apparatus; not identically to a vibrating-
reed frequency meter, but in a similar manner.
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Figure 12.96 ‘Instantaneous images’ of wave trains on the model basilar
membrane at the moments when they reach their maximum amplitudes, for
four different frequencies of the sinusoidal excitation. The wave groups re-
main similar to each other. They are simply stretched longer with decreasing
frequency. The group in the second line corresponds to the group in the fourth
line in Fig. 12.95; its wave crest has however not been filled in with black
color in this image.

What it accomplishes can be described physically only as a prelim-
inary decomposition14. The high resolving power which is in fact
observed in human hearing cannot be understood physically. As in
the case of the eye, we find also for the ear that central processes,
which take place in the brain, must play a major role. These remain
today outside the realm of our scientific understandingC12.30. C12.30. For further reading

on the subject of hearing,
see e.g. E.A. Lopez-Poveda,
A.R. Palmer and R. Meddis,
The neurophysiological bases
of auditory perception. New
York: Springer (2010); ISBN
978-1-4419-5685-9.

The so-
lutions to the great problems in biology and neurophysiology will
probably be found only in some still-distant future.

Exercises

12.1 A locomotive is approaching an observer, who is not moving,
with a velocity of u D 72 km/h, and emits a whistle tone of frequency
� D 500Hz. What frequency �0 is heard by the observer? (Sect. 12.2)

12.2 A plane wave on water strikes a wall at perpendicular inci-
dence. In the wall are two slits with a spacing a, whose width is
small in comparison to the wavelength of the water wave. Describe
the interference maxima at a distance y � a for small deflection
angles. (Sect. 12.3)

12.3 A planar sound wave strikes a screen that contains four small
apertures. They are arranged at the corners of a square whose sides
have a length a. Where are the interference maxima with the smallest
distance from the symmetry axis? (Sect. 12.3).

14 A preliminary decomposition selects from a mixture of waves of various lengths
those that belong together in broad regions. One often uses “filters” for this pur-
pose, e.g. in optics, a glass filter that passes only red light.
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12.4 A planar sound wave is incident at right angles on a diffrac-
tion grating with narrow slits. On a screen at a distance a from the
grating, the interference maxima have a spacing b. How large must
the lattice constant D be, i.e. the spacing between two neighboring
slits in the grating? (Sect. 12.15)

12.5 Determine the longitudinal sound velocity cl in a glass
rod of density % D 2:6 g/cm3 and modulus of elasticity E D
6:5 � 104 N/mm2. (Sects. 8.3 and 12.17)

12.6 The sound pulse of an echo-sounder travels in a time �t D
0:15 s from the surface of the sea to the sea bottom and back. The
velocity of sound in water is c D 1440m/s. Determine the depth d of
the water. (Sect. 12.17)

12.7 In order to measure the velocity u of an auto that is travelling
towards an observer, a radio wave of frequency � is reflected from
the auto. The frequency of the reflected wave is increased due to
the DOPPLER effect and is superposed with the incident wave, so
that the observer measures beats with a frequency �B. Determine the
velocity u. The frequency is � D 1 � 109 Hz and �B D 56Hz (Radio
waves and electromagnetic waves in general are treated in detail in
Vol. 2, Chap. 12. Here, we need only know that in air, they propagate
at the velocity of light, c D 3 � 105 km/s). In deriving the answer, it is
useful to begin with the mathematical superposition of two travelling
plane waves, moving in opposite directions; Comment C11.4 can be
helpful for this. (Sect. 12.18)

12.8 Determine the angle ˛max of the prism in Fig. 12.57 on which
the incident sound wave undergoes total reflection, using the in-
dex of refraction which was found experimentally in Sect. 12.20.
(Sect. 12.20)

12.9 A sound wave of wavelength � D 1:03 cm is incident on a cu-
bic lattice with a lattice constant of d D 3 cm, as shown in Fig. 12.66.
Find the angle under which diffraction maxima occur for the orders
m D 1, 2, 3 and 4. (Sect. 12.20)

12.10 Two water waves of wavelengths � and � C d� have indices
of refraction n and n C dn. Compute the group velocity c� with
which the pulse formed by superposition of the two waves propa-
gates. (Sect. 12.22)

12.11 The frequency range of the human singing voice stretches
from about 80Hz (bass) up to 800Hz (soprano). Find the range of
wavelengths. The velocity of sound is 340m/s. (Sect. 12.25)

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_12) contains supplementary material, which is avail-
able to authorized users.
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Fundamentals 13
13.1 Preliminary Remarks. Definition

of the Concept ‘Amount
of Substance’

Thermodynamics is of fundamental importance for all branches of
science and technology. Its most important laws are valid for all
natural phenomena. Unfortunately, in contrast to the other areas of
physics, its qualitative structure cannot be recognized directly from
straightforward, clear-cut experiments; instead, long and tedious se-
ries of measurements are usually required. In thermodynamics, in
contrast to electromagnetism, there are no perfect insulators. This of-
ten makes experimental setups complicated, and a quantitative eval-
uation of their results is time-consuming and tedious.

As a collective term for solid bodies and for definite amounts of liq-
uids and gases, we will use the concept amount of substance. (This
rather awkward term is part of the International System of Units (SI).
In German, it is more compactly expressed as Stoffmenge.) If the
matter is present only in the solid form, or is only liquid or gaseous,
then we say that it is in a single phase. If the matter, e.g. water, is
present both in liquid form and as a gas, then it has two phases. All
substances have, in addition to their mass M, a volume V, a tem-
perature T , and they are subject to some pressure p, for example the
ambient atmospheric pressure. The three quantities V, p and T are
called the simple state variables or quantities of state.

All substances are composed of atoms. The amounts encountered in
everyday life contain an extremely large number of individual atoms.
For example, the number density

NV D Number N of molecules in the volume V

Volume V
(13.1)

of air at room temperature and pressure is NV D 2:5 � 1025=m3.
Thus, in each cubic millimeter of air, there are typically 2:5 � 1016
molecules. Thermodynamics in the end deals with the behavior of
enormous numbers of individual particles. It says nothing whatever
about the behavior and the fate of single individuals. We cannot spec-
ify at any given time for any one of them its exact position or velocity,
neither its magnitude nor its direction. Pressure and temperature can-
not even be defined for a single molecule. We can measure only the
state which characterizes the ensemble of all the molecules.

369© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_13
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In order to permit a simple description of relationships which depend
to first order on the number of particles involved, the concept of the
amount of substance was defined as a physical quantity in 1971, as
an additional base quantity with the base unit “mole” (symbol: mol).
1mol of a substance contains exactly as many particles as there are
atoms in 12 grams of 12C. The amount of substance n is thus a mea-
sure of the number N of particles:

n D N

NA
or N D n � NA :

Here, NA is the AVOGADRO constant:

NA D 6:022 � 1023 mol�1 :

This definition of the amount of substanceC13.1

C13.1. POHL did not include
this definition of the amount
of substance in his textbooks,
although he was in other
cases very open to accepting
new definitions of quantities
and units. Here, however,
he “saw no advantage in it”,
as he wrote in the preface to
the 12th edition, and he con-
tinued to use the mole as an
“individual unit of mass”. –
We have nevertheless decided
to introduce this convention
into the text, as it has now
been in effect for more than
40 years. We note however
that this quantity is still not
familiar to many physicists
and is not very carefully de-
fined in most textbooks. One
finds again and again for
example the incorrect state-
ment that n is “the number of
moles”!

means that it is to be
used in physical-quantity equations just like other physical quantities,
in particular for quantitative statements always as a numerical value
and a unit (see Sect. 3.3 and comment C2.2 in Sect. 2.2).

Quantities which refer to the amount of substance are termed “mo-
lar”, e.g. the molar mass Mm D M=n (unit: kg/mol) and the molar
volume Vm D V=n (unit: m3/mol).

13.2 The Definition and Measurement
of Temperature

In geometry, we measure one quantity as the base quantity, namely
length. In kinematics, a second quantity is needed, the time; and for
dynamics, a third quantity, the mass. In thermodynamics, a fourth
quantity is required, the temperature.

In the skin on the surface of our bodies and in some mucous mem-
branes, besides pressure and pain receptors, we have another sort of
sensory organs. One type of these reacts to external stimuli with the
perception of warm, the other with the perception of cold. Guided
by these sensory organs, we can order objects in a series according
to their ability to call forth a feeling of ‘warm’ or ‘cold’. The ori-
gin of these perceptions is called the temperature of the objects. The
temperature, qualitatively defined in this way, is useful also as the
“cause” of numerous other phenomena, including many that are in-
dependent of our perceptions. Changes in the temperature also cause
changes in

1. the dimensions of objects. With increasing temperature, metal
wires become longer and stretched rubber bands become shorter
(Fig. 13.1); bimetallic strips become curved (Fig. 13.2) and gases
expandC13.2

C13.2. This thermal (length
or volume) expansion is
described by the thermal
expansion coefficient
˛ D 1

l
l
T � 1

3
1
V

V
T .

It can itself depend upon the
temperature. For iron, for ex-
ample, at room temperature,
˛ D 1:23 � 10�5 K�1. For
rubber, ˛ is negative.

(Video 13.1).

Video 13.1:
“Model experiment on
thermal expansion and
evaporation”
http://tiny.cc/nggvjy
The thermal expansion of
a solid body as well as its
melting and evaporation are
demonstrated in a model
experiment.

2. the absorption of light. Thus, for example, HgI2 appears reddish
at lower temperatures and yellow at higher ones (> 131 °C).

http://tiny.cc/nggvjy
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Figure 13.1 A stretched rubber band (length � 50 cm) draws together by
about 3 cm when it is heated to ca. C90°C. We must increase its load from 2
up to 2.2 kg in order to restore its original length.

Figure 13.2 Bending of an electrically-
heated bimetallic strip (at the left seen
from the front, with the strip lying in the
plane of the page; at the right seen in
profile). It consists of two layers of sheet
metal, made of a nickel-iron alloy, which
are welded together; one of the strips
contains 6 percent by weight of man-
ganese. The strip has been slit so that it
can be heated by an electric current.

3. the electrical resistance of metals, which increases linearly with
temperature at not-too-low temperatures.

4. the electric voltage between two different metals which are in con-
tact (Fig. 13.3: the thermocouple).

This list could be continued almost indefinitely: The majority of all
physical and chemical phenomena show some dependence on the
temperature. Each of these could be used to define a measurement
procedure for the temperature and to construct a measuring instru-
ment, called a thermometer, for the temperature.

In daily life, we often use the volume change of a liquid, as in a mer-
cury thermometer, with a temperature scale suggested by the Swedish
mathematician and surveyor A. CELSIUS in 1742. It contains one
hundred divisions between the temperature of melting ice and that
of boiling water, and is familiar today to every school child. Hg
thermometers can be used between C800 and �39 °C. For lower
temperatures down to �200 °C, thermometers filled with pentane are
used.

Hg thermometers for use up to 300 °C are evacuated; at higher tempera-
tures, vaporization of the Hg is prevented by filling the thermometer tube
above the liquid with nitrogen gas at pressures up to 100 times atmospheric
pressure (107 Pa). – Addition of a small fraction of thallium allows mer-
cury to remain liquid down to �59 °C, so that it is usable for temperature
measurements down to this temperature.
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Figure 13.3 An electrical ther-
mometer for demonstration
experiments. It consists of two
wires, one made of silver and the
other of Constantan, which are sol-
dered together at the points 1 and 2
and connected to a voltmeter. The
contact point 1 is brought into ther-
mal contact with the object to be
measured, while point 2 is held at
a reference temperature of 0 °C,
for example using an ice-water
bathC13.3.C13.3. The two thermo-

couples are connected in
opposition, so that their dif-
ference voltage is measured
(as in Fig. 15.6).
Today, for most demonstra-
tion experiments, electrical
resistance thermometers with
digital temperature indication
are employed; they are more
convenient to use.

Compare also Fig. 15.6.

Besides liquid thermometers or outside their limiting temperature
ranges, electrical thermometers are often used. These can be ther-
mocouples as shown in Fig. 13.3, or also resistance thermometers.
For even higher temperatures, optical temperature measurements
using “radiation thermometers” play an important role (see Vol. 2,
Chap. 28).

All thermometers are calibrated today using legally determined and
accurately reproducible temperature values known as “fixed points”.
These fixed points (melting points, vapor pressures, etc.) have been
developed with a considerable amount of tedious effort. The follow-
ing aspects are important for this work:

A quantitative definition of the temperature using a Hg or other
liquid-expansion thermometer is – in spite of its great practical ap-
plicability – not completely satisfactory. This can readily be seen by
referring to Fig. 13.4. It shows the scale of a Hg thermometer of the
usual technical design, and to its left, the scale of an alcohol ther-
mometer which has been calibrated with its aid. In the range shown,
only the divisions on the scale of the Hg thermometer are uniform,
while those of the alcohol thermometer are not. The temperatures
defined by the volume expansion of liquids are seen to depend on the
arbitrary choice of the substances (e.g. Hg), and on the type of glass
used for the tube.

The temperature defined with gas thermometers (Fig. 13.5) is, for
sufficiently low gas densities, practically independent of the nature
of the gas used. A conceptually fully-satisfactory definition of the
temperature should however be not only practically, but also funda-
mentally independent of the substance used in the thermometer. This
goal was attained by the “thermodynamic temperature scale” (see
Sect. 19.6). The gas thermometer belongs among the most important
measurement instruments which can be used to establish a practical
temperature scale based on the thermodynamic scale.

The currently best representation of the true thermodynamic temper-
atures T is presumed to be the “International Temperature Scale of
1990” (ITS-90), which contains fixed points ranging from 0.65 Kelvin
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Figure 13.4 Right: The scale of a mercury thermometer with
uniform divisions between 0 °C and 100 °C; at left: the divi-
sions of an alcohol thermometer which has been calibrated
using the mercury thermometer

Figure 13.5 Schematic of a constant-
volume gas thermometer. By adding
mercury, the volume of the gas can be
held constant and the pressure can be
read off the height h of the mercury col-
umn. From the pressure, the temperature
of the gas can be calculated according to
Sect. 14.6 (cf. Sect. 14.9, Point 3)

up to the highest temperatures that can be measured by applying
PLANCK’s radiation lawC13.4. C13.4. A more detailed

treatment can be found in:
W. Blanke, Physik in unserer
Zeit 22, 13 (1991). English:
see bipm.org. In the year
2000, a further international
temperature scale (PLTS-
2000) was adopted, which
extends the scale to the range
of very low temperatures
(from 1 K down to 0.9mK).

The unit 1 kelvin (K) has been defined
as the 273.16-th part of the temperature of the triple point of water.
In daily life, we use the CELSIUS temperature scale. Its relation to
the KELVIN scale is

t
ıC
D T

K
� 273:15

(273.15K is the melting temperature of ice under atmospheric pres-
sure).

Science and technology have spoiled us by providing readily usable
and accurate thermometers, no less than by e.g. the construction of
precise clocks and electrical multimeters. Nevertheless, the funda-
mental question of the measurement procedure and the calibration of
the instruments should not be neglected; otherwise, one could eas-
ily overlook the great efforts that have been expended in the past to
develop reliable measurement technology.
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13.3 The Definitions of the Concepts
of Heat and Heat Capacity

The concept of ‘temperature’ by itself is not sufficient to describe
all the processes associated with changes in temperature. This can
already be seen from a simple example, namely the equalization of
the temperature between two bodies of different composition and ini-
tially at different temperatures (Fig. 13.6, top). – Let the temperatures
of the two bodies be T1 and T2, and their masses M1 and M2. The
two bodies are brought into close thermal contact. Neither chem-
ical transformations nor phase changes are assumed to take place,
i.e. solids are presumed to remain solid, liquids remain liquid, etc.
After a certain time, a ‘mixing temperature’ T , which lies between T1
and T2, will be observed. It is however not simply a mean value; the
relation

M1T1 CM2T2 D .M1 CM2/T

does not hold. Rather, we require two factors c1 and c2 to describe
the process, and we must write

M1c1T1 CM2c2T2 D .M1c1 CM2c2/T (13.2)

or, rearranged,

c1M1.T1 � T/ D �c1M1.T � T1/ D c2M2.T � T2/ ;

� c1M1�T1 D c2M2�T2 : (13.3)

For the product
Q D cM�T (13.4)

we use the name heat, and instead of Eg. (13.3), we write

�Q1 D Q2 :

In words: The heat �Q1 which is given up by the warmer body 1
when thermal contact is established is equal to the heat Q2 which is
taken on by the cooler body 2 (G.W. RICHMANN, 1711-1753)C13.5.C13.5. RICHMANN pro-

posed this rule in 1747/48
(“RICHMANN’s rule”). In
1753, he was fatally injured
while carrying out an experi-
ment with lightning.

Figure 13.6 Top: The flow of heat from
a hot to a cool gas container when direct con-
tact is established. Center: The same process
when the two containers are connected by
a metal rodM. Bottom: Performing mechan-
ical work transfers energy from a gas under
high pressure to a gas at lower pressure; if
initially T1 D T2, then after the transfer,
T2 > T1.
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The word heat is unfortunately used in different ways. Only in spe-
cial cases does it refer to a particular form of energy, just like the
words potential, kinetic, electrical and magnetic energy. Most often,
the word ‘heat’ characterizes that special type of energy which can be
transferred from a particular quantity of matter to another quantity of
matter: This is a transport process which is driven by a temperature
difference alone, without any other contributing factors. We refer to
such a transport process for short as thermal. – In the special case
mentioned above, one refers to heat as the kinetic part of the internal
energy (cf. Sect. 16.1).

Heat transport can take place in various ways: either through con-
duction, when the two quantities of matter or their containers are in
direct contact or via a thermally conducting material (Fig. 13.6, top
and center); through radiation, if they are separated by a vacuum (or
in practice often by air) (see Vol. 2, Chap. 28); or through convection
(see Sect. 17.6).

The italicized words “without any other contributing factors” will be
illustrated by comparing two examples: In Fig. 13.6 (top), a container
of warm gas I is brought into direct contact with a container of cool
gas II. Instead of the direct contact through the walls of the contain-
ers, a metal rodM (a “good conductor of heat”) could also be used to
connect the two containers; cf. Fig. 13.6 (center). In both cases, the
temperature T1 is initially higher and the temperature T2 lower. Heat
is conducted from the container I to container II.

In Fig. 13.6 (bottom), each of the gas containers has a sliding wall in
the form of a piston. The two pistons are connected rigidly to each
other by a glass connecting rod (a “thermal insulator”). The pressure
of the gas in container I is higher than in container II. After some
sort of catch (not shown) is released, the two pistons will move to the
right. In this process, T1 will decrease and T2 will increase. Energy
is removed from the left-hand container, because the gas it contains
is performing work; the energy is added to the right-hand container,
since its piston, in moving to the right, performs work on the gas in
this container. Here, a “process of work” is taking place, i.e. a “trans-
fer of work”, which also leads to changes in the temperatures. This
example illustrates that heat and work (or energy) are essentially sim-
ilar. – Likewise, when a quantity of matter is heated through friction,
mechanical work is being performed1.

In practice, heat transfer processes play an important role both in
the kitchen and in the laboratory. We could think for example of
an electric immersion heater in water. The container is presumed to
be thermally insulating, i.e. it should allow no thermal transport due
to temperature differences between its contents and the surroundings.
Thermally well-insulated vessels have doublewalls made of a poorly-
conducting material such as glass. The space between the walls is

1 Or else electricalwork, when an electric current is passed through a resistive con-
ductor and thereby heats it through ‘electrical friction’ (cf. Fig. 13.2, and Vol. 2,
Sect. 1.12).
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evacuated to prevent heat transfer by convection, and the walls are
‘silvered’ (with a thin film of silver, copper or aluminum) to reduce
heat transfer by radiation as far as possible. We will often make use
of such containers (“Thermos bottles”), which can be found today in
almost every household.

The essential similarity of heat and energywas recognized as early as
1842 by the physician ROBERT MAYER. In retrospect, we may never
be able to fully appreciate the achievements of scientific pioneers.
Today, the similarity of heat to the other forms of energy has long
since been considered to be “self-evident”; it has become a matter of
course. The unit of heat Q is thus a unit of energy, e.g. joule (J) or
watt-second (W s) (see Sect. 5.2)C13.6.

C13.6. The heat unit “calo-
rie”, historical but still used
in daily life, is given by 1 cal
� 4.2 J. Now that we have introduced the quantity of heat Q, the factors c

also acquire their physical significance. They refer to the specific
heat, i.e. heat referred to some other quantity. Suppose for example
that an electric heater produces the energy E D IUt in a substance
which contains the amount of substance n with the mass M. The
energy transfer is thermal, i.e. the energy is delivered in the form of
heat Q. Q increases the temperature of the substance by �T . The
quotient Q=�T is called the heat capacity. Then, as the specific heat
capacity (often simply called the “specific heat”), we define

c D Q

M ��T
; (13.5)

and as the molar heat capacity

C D Q

n ��T
: (13.6)

Table 13.1 lists some valuesC13.7.

C13.7. “Molar” quantities
are referred to the amount of
substance n (cf. Sect. 13.1).
Making use of the “molar
mass”:

Mm D Mass M

n
,

specific quantities, i.e. quan-
tities referred to the mass of
a substance, can readily be
converted to molar quanti-
ties referred to the amount of
substance and vice versa. For
the values in Table 13.1, this
can readily be verified. – The
numerical value of the molar
mass was previously termed
the “molecular weight” (see
also comment C16.1).

They are valid in every case only
within a limited temperature range.

Table 13.1 Specific and molar heat capacities and heats of melting of some solids and liquids

Substance Molar mass Specific and molar heat capacity
at 20 °C

Specific and molar latent heat of
melting

Mm c C lf Lf
�

kg

kmol

� �
kW s

kg � K
� �

kW s

kmol � K
� �

105 W s

kg

� �
106 W s

kmol

�

Aluminum 26:98 0:897 24:2 4:036 10:9
Copper 63:54 0:385 24:5 2:047 13:0
Lead 207:2 0:128 26:5 0:247 5:12
NaCl 58:45 0:85 49:7 5:17 30:2
Benzene 78:11 1:69 132 1:26 9:84
Water 18:02 4:16 75 3:34 6:02
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13.4 Latent Heat

(JOSEF BLACK, 1762)C13.8. C13.8. J. BLACK (1728–
1799) carried out investiga-
tions on thermal equilibrium
and discovered, indepen-
dently of J.C. WILCKE, the
concepts of latent heat and
specific heat.

In our experiments thus far, the sub-
stances have undergone no kind of transformation. Solid bodies re-
mained solid, liquids remained liquid and gases remained gaseous.
The composition of materials also remained unchanged, both their
chemical composition as well as their crystal structures. We now re-
lax this restriction, and allow phase transitions to take place. Then
a substance can accept or release energy in the form of heat without
changing its temperature. In this case, the heat transferred is called
latent. We offer two important examples:

1. Specific heat of vaporization and condensation. In Fig. 13.7, we
see a container which is partly filled with water and then evacuated.
A manometer is attached to the container so that we can observe the
pressure inside it, and also an adjustable spring valve. In addition,
the container is equipped with an electric heater, insulated from the
outside world.

After switching on the heater current, we observe that the water be-
comes warmer, and with its increasing temperature, its vapor pressure
also increasesC13.9. C13.9. Vapor refers here to

the gaseous phase of water.
The vapor is continuously in contact with the

liquid water and is in equilibrium with it. The resulting partial pres-
sure of the water vapor is termed the saturation pressure or the vapor
pressure. Numerical values can be found in Fig. 14.3. At a certain
pressure p, the spring valve opens and the vapor escapes continu-
ously. From this moment, the temperatures of both the water and of
the vapor remain constant, and the two temperatures remain equal.
– Deduction: The vapor which is escaping must be continually re-
placed; water must be constantly passing from the liquid to the vapor
phase. The heat Q which is being passed into the water is consumed
by the process of evaporation without any increase in the tempera-
ture, i.e. it is taken up as latent heat. The amount of water which
has evaporated, measured in terms of its mass M, is found to be pro-

Figure 13.7 The measurement of the heat
of vaporization (H D electric heater inside
the insulation). The manometer M indicates
normal air pressure when its connecting tube
is open to the room air. It thus measures
the entire pressure of the vapor, not just its
excess pressure over the normal air pressure.
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Figure 13.8 A cooling bottle with liquid
ethyl chloride (C2H5Cl)

portional to the heat Q which has been added. Thus, we form the
quotient

lv D Added heat Q

Mass M of the evaporated liquid
; (13.7)

and call it the specific latent heat of vaporizationC13.10.C13.10 POHL used the sym-
bol ‘r’ here; we have used
the more relevant ‘l’, which
stands for “latent heat”.
The symbol lv refers to the
(specific) latent heat of va-
porization, i.e. referred to the
mass of the body; compare
also Sects. 14.3 and 14.4.
The subscript ‘v’ denotes
“vaporization”. The sym-
bol ‘L’ refers to the amount
of substance n and is then
termed the molar latent heat
(similarly to heat capacities;
see previous section). It may
also refer to the latent heat of
an entire body, e.g. the heat
of melting of an ice cube, and
this should be specifically
mentioned.
In Eq. (13.8), POHL origi-
nally used the symbol � for
the latent heat of melting (or
fusion). We again use ‘l’ or
‘L’ here, with a subscript f
for “fusion”.

– In the next
chapter, Fig. 14.3 shows measurements of the vaporization of water
at temperatures between 0 °C and 374 °C.

Every liquid which is evaporating takes up heat from its surroundings.
Numerous types of cooling apparatus are based on this fact. In the lab-
oratory, the cooling bottle sketched in Fig. 13.8 is often used. It contains
liquid ethyl chloride (boiling temperatureD 13 °C, vapor pressure at 18 °C
D 1:24 � 105 Pa). The liquid is sprayed out of the small nozzle under its
own vapor pressure. The surface struck by the spray has to provide the
heat of vaporization, so that it is cooled. In this way, one can readily ob-
tain temperatures below 0 °C in the laboratory. In medicine, this method
is used to provide a local anesthesia by cooling. (Demonstration: Spray
a piece of black paper, breathe on it and observe how it becomes frosty.)

The heat required for vaporization can be regained by condensing
the vapor back to a liquid. Apart from its sign, the specific latent
heat of condensation is equal to the specific heat of vaporization.
For demonstration experiments, water vapor (steam) is passed into
a thermos bottle filled with cold water. It condenses there, and warms
the water in the process. From the mass of the condensed water and
the temperature increase, we can calculate the value of the heat of
condensation.

2. Specific heat of melting and crystallization. The specific heat of
melting is determined in essentially the same way as the specific heat
of vaporization. We determine the mass M of the substance which
has been melted by applying the quantity of heat Q to it. Then we
define the specific latent heat of melting to be the quantity

lf D Added heat Q

Mass M of the melted substance
: (13.8)
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Table 13.1 contains examples, along with the correspondingly-
defined molar heat of melting Lf D Q=n, again at normal atmospheric
pressure.

The latent energy contained in the liquid can be completely regained
when it solidifies. The heat of crystallization is, apart from its sign,
identical to the heat of melting. For a demonstration experiment,
sodium thiosulfate (Na2S2O3 � 5 H2O), used as a fixing agent in pho-
tography, is well suited as the substance to be melted or solidified.

The melting point of this salt lies at C48.2 °C. The melt can be strongly
supercooled. It can be maintained for days at room temperature. If the
melt is “seeded” with a small crystal, the process of crystallization begins,
accompanied by a considerable rise in the temperature. This process can
be used to evaporate ether and make it visible at some distance by igniting
the ether vapor. – Technically, this transition can be used to manufacture
heating pads. The salt is filled into a rubber pouch and melted by immers-
ing in hot water. It will then maintain its temperature for some time at
C48 °C (the “hold point”).

3. Heat of transition. In Fig. 13.9, a piece of carbon-containing sheet
iron (0.9 percent by weight of C) is heated by means of an electric
current until it is glowing yellow. After the current is switched off,
it cools rapidly and darkens. As it passes through a temperature of
t � 720 °C, it again flashes brightly: at this temperature, it undergoes
a phase transition – delayed by supercooling – from the form of iron
called the � phase into a less energetic mixture of carbon-free � iron
and Fe3C (cementite). At this transition, a considerable amount of
heat is released.

Without the supercooling, the temperature decrease would simply be
brought to a standstill for a short time: the “hold point” is characteristic of
a phase transition.

Summary: Adding heat to a system can not only increase the temper-
ature of some substance, but also can induce a transition between
phases at constant temperature in the interior of the material. In
both cases, energy is stored within the substance. All forms of en-
ergy stored within a material are termed “internal energy” U. It is
thus qualitatively distinguished from the potential and kinetic ener-
gies which the substance may possess as a whole. More details will
be given in Sect. 14.3.

Figure 13.9 Demonstrating the heat of transi-
tion
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Exercise

13.1 Calculate the influence of thermal expansion on the move-
ment of a pendulum clock whose pendulum is made of steel, if the
temperature increases by 20K. For simplicity, the pendulum may be
treated as a mathematical gravity pendulum. The linear coefficient of
expansion ˛ is 1 � 10�5 K�1 (Sect. 13.2).

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_13) contains supplementary material, which is avail-
able to authorized users.
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The First Law
and the Equation of State
of Ideal Gases

14

14.1 Work of Expansion and Technical
Work

Our next goal is to obtain a quantitative summary of the law of energy
conservation, that is the First Law of thermodynamics. This and the
following section will provide preparatory discussions.

In the mechanics of solid bodies, we defined the work W as the
product “force in the direction of the motion times distance moved”,
i.e. W D R

F ds (Sect. 5.2). The force F can itself be expressed as
the product “pressure p times area A” when it is exerted by a liquid
or a gas. Then for the work, we obtain W D � R

pA ds or, since
A ds D volume element .dV/C14.1,

C14.1. Determining the signs
of energetic quantities is
based on the following con-
vention: Energy which is
input into a particular system,
e.g. the working substance in
Fig. 14.1, is taken to be posi-
tive, while the energy that is
output is negative. Referred
to the working substance, the
work of expansion which it
performs

W D �
2Z

1

p dV

is negative (both factors in
the integral are positive),
while the work of compres-
sion

W D �
1Z

2

p dV

which is performed on it is
positive, since owing to the
reversed limits of the integral,
dV now has the opposite sign.
F

W D �
Z

p dV : (14.1)

Just as with previous examples, we want to make this expression for
the work clear by providing a sketch; it can be seen in Fig. 14.1.
A working substance which is contained in a cylinder is pressing
against a piston. It displaces the piston to the right, increasing its vol-
ume in the process, and thus performs mechanical work. The motion
is supposed to take place so slowly that no local non-uniformities of
pressure, density or temperature can occur. The pressure does not re-
main constant during the motion of the piston, as shown by the curve
1 : : : 2 in the figure. The work of expansion� R 2

1 p dV corresponds to
the shaded area below the expansion curve.

In technological applications, all machines work in periodic cycles.
They can perform work only by making use of a flowing working
substance. For this case, the concept of technical work Wtechn has
been defined. It is explained in Fig. 14.2. The upper images show the
cylinder of a machine with an inlet and an outlet valve and a piston.

In the first time interval (stroke) of the cycle, the working substance
flows at constant pressure into the cylinder. It occupies its initial
volume by pushing the piston out to the position 1. In the process,
it performs the work of displacement �p1V1 on the piston, i.e. the

381© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_14
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Figure 14.1

C14.1 Continued
The signs have been con-
sistently defined here, to
conform to this convention
and to agree with other text-
books. The opposite signs
which were used by POHL in
some cases in earlier editions,
which corresponded to the
technical thermodynamics
conventions of the time, have
all been removed from this
edition. This modification
corresponds to a sugges-
tion made by K. HECHT,
a friend and former student
(Dr. rer. nat. 1930) of the
author, who pointed out in
a detailed letter as early as
1985 that sign changes were
needed.

p-V diagram for defining the work of expansion, � R 2
1 p dV: It is

the shaded area enclosed below the expansion curve. The working substance
in this example performs not only lifting work, but also work of acceleration
(cf. Fig. 18.2)

p1=

p1 p2

p2= const

decreasing

V1 V2

V2V0

const

The working substance
flows in at constant 
pressure.

The working substance 
expands with decreasing 
pressure.

The working substance
is pushed qut at constant
pressure.

Figure 14.2 p-V diagram for defining technical work Wtechn D
R 2
1 V dp: the

shaded area enclosed alongside the expansion curve. The working substance
flows through the machine from a pressure vessel with a high, constant pres-
sure p1, e.g. a steam boiler, and is received by a vessel with a low, constant
pressure p2, e.g. a condenser, or into the free atmosphere.
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working substance gives up energy. In the second interval, the inlet
valve is closed and the working substance expands further, pushing
the piston to position 2; its pressure decreases from p1 to p2. In
this process, the working substance performs the work of expansion
W D � R 2

1 p dV on the piston. In the third interval, the outlet valve is
open and the working substance is pushed out of the cylinder at the
constant pressure p2 by the piston. It regains the work of displace-
ment p2V2 from the piston.

The working substance thus performs two portions of work on the
piston, namely �p1V1 and � R 2

1 p dV. While it is flowing out of
the cylinder, it receives the work p2V2. Thus, in sum, the working
substance performs the following technically useful (or for short tech-
nical) work on the piston:

Wtechn D � p1V1 �
R 2
1 p dV C p2V2 D R 2

1 V dp :

corresponds in
Fig. 14.2 to:

� vertical
rectangular

area
O�p1�1�V1

area
V1�1�2�V2

under the
expansion curve

horizontal
rectangular area
O�p2�2�V2

shaded area
p1�1�2�p2
alongside the

expansion curve

(14.2)
So much for this specific example based on a cylinder and piston.
In an analogous manner, we quite generally distinguish two different
cases:

1. A confined working substance expands and performs work on the
external systemC14.2: C14.2. Don’t let yourself

be confused by the differ-
ent signs of W and Wtechn.
Both of these expressions are
negative; they thus describe
work which is performed by
the working substance on the
external system.

Work of expansion W D �
2Z

1

p dV : (14.3)

2. A working substance flows through some arbitrary machine, in-
creases its volume in the process from V1 to V2, and reduces its
pressure from p1 to p2. It performs the

Technical work Wtechn D
2Z

1

V dp (14.4)

on the external system.

The relation between these two types of work can be seen from
Eq. (14.2); it is

Wtechn D W � p1V1 C p2V2 : (14.5)

In ideal gases (Sect. 14.6), at constant temperature, p1V1 D p2V2. In
this case, there is no difference between work of expansion W and
technical work Wtechn.
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14.2 Thermal State Variables

For every amount of substance n, we can specify its volume V, its
pressure p, and its temperature T . These readily measurable quan-
tities are called the simple state variables, as we have already men-
tioned in Sect. 13.1.

The defining characteristic of a state variable is that it is independent
of the process or the “path” taken by previous changes of state. This
independence is not the case for other important quantities, e.g. the
work W D � R

p dV. This can be seen in an example: In Fig. 14.1,
the work performed is represented by the shaded area in the p-V
diagram. This area however depends on the “path”, i.e. in this ex-
ample on the shape of the curve which leads from state 1 to state 2.
– There is a unique relation between the state variables when only
one phase is present; it is called the thermal equation of state. It is
particularly simple in the case of an ideal gas. – When any two of the
three state variables are known, the thermal equation of state deter-
mines the third, independently of any changes of state that may have
taken place in the meantime. The only prerequisite is that none of
the changes of state may change the chemical composition or other
properties, e.g. the microcrystalline structure of the substanceC14.3.C14.3. The amount of sub-

stance n or the number of
particles N of the atoms or
molecules involved is also
assumed here to remain
constant. When it is not, an
additional state variable, the
chemical potential 	 must
be taken into account (see
e.g. Baierlein, Ralph (April
2001), "The elusive chemical
potential", American Journal
of Physics 69 (4), pp. 423–
434).

In addition to the simple thermal state variables mentioned, there are
a number of other state variables or state functions. Among these, we
will encounter the internal energy U, the enthalpy H, the entropy S,
and the free energy F. A small number of state variables is always
sufficient to specify all of the observable and measurable quantitative
relations in a (macroscopic) thermodynamical system.

14.3 The Internal Energy U
and the First Law

We return to considering Fig. 14.1. Suppose that a quantity of heat
Q is applied to the confined gas, e.g. by an electrical heater which
is not shown in the figure. Some part of this heat can be removed
to the external system as work W . Think of a steam engine, or of
increasing the area of a liquid surface (cf. surface work, Sect. 9.5) or
of the output of electrical energy, e.g. by a thermocouple. The rest of
the energy which was input as heat can be stored in the inner parts
of the system as internal energy U, thus increasing it by the amount
�U. In the form of an equationC14.4, we have:

C14.4. The formulation of
the First Law (Eq. (14.6))
does not depend on whether
the energies considered are
input into a system or out-
put by it. This applies also
to the special case shown
in Eq. (14.7)! The remarks
given below the equation are
only exemplary.

General

Q C W D �U (14.6)
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For the special case of work of expansion

Q C .� R
p dV/ D �U

Heat input
.not

a state variable/

)

C
(

Energy
output as external work

.not a state variable/

)

D
(

Increase of
the internal energy

.state variable/:

(14.7)

Equation (14.6) is called the First Law of thermodynamics. As long
as processes proceed without any temperature changes of the sub-
stances involved, the sum of potential and kinetic energies in me-
chanics remains constant. The same is true in electrodynamics for
the electrical and the magnetic energies and for combinations of these
four forms of energy. For these energies, the “law of energy conserva-
tion” has been thoroughly verified. The First Law of thermodynamics
includes an additional energy form in these sums, which can be ther-
mally taken up by a substance from its surroundings or given up to
the surroundings, and in the process can be consumed completely
or partially to change the internal energy U of the substance by an
amount �U.

The internal energy has thus far been only qualitatively introduced in
Sect. 13.4. The First Law permits us to define its changes quantita-
tively (corresponding to changes in the potential energy in mechan-
ics). The First Law also implies the assertion that the internal energy
is a state function. It declares that: Given a system1 in a particular
state 1, characterized by state variables p1, T1 : : :, through inputs and
outputs of heat Q and external work W (of arbitrary kinds), the sys-
tem will pass in sequence through the states 2, 3, : : : Finally, it will
arrive back at its initial state 1. Then, one will find experimentally –
without exception – that the sum of all the energies thermally input to
and output from the system is equal to the sum of all the work input
to and output by the system. During all the changes of state of the
system, no energy is lost or gained. The internal energy in state 1 at
the end is exactly the same as it was at the beginning. It is determined
only by the state variables (p, T , . . . ).

We first apply Eq. (14.7) to a system which consists only of a single
chemically uniform substance. We know the value of its heat of va-
porization Q D n �Lv. A liquid is presumed to evaporate at a constant
pressure, called its saturation pressure (Fig. 13.7). The measured
heat of vaporization can be decomposed into two terms according to
Eq. (14.7) in the following way:

˚
Heat input Q

�C
�

Work of expansion
W D �p.Vvapor � Vliquid/

�

D
8
<

:

Increase �U
of the internal energy
in the transition liquid

! vapor:

9
=

;

The increase of the internal energy is �U D Uvapor�Uliquid. It arises
in particular from an increase in the potential energy of themolecules,

1 As the “system” in physical terms, one means all the substances and objects
which are included in the considerations at hand.
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Figure 14.3 The specific
latent heat of vaporization
lv of water at different
temperatures, and its de-
composition into two
components, the increase
�U of the internal en-
ergy, and the work of
expansion �W. All three
quantities are referred to
the mass of the vapor pro-
duced. Thus, the specific
quantities, referred to the
massM, are shown.

Saturation pressure

Water

Temperature
0 100 200 300 374°C

1 10 100 220

specific heat of 
vaporization Q/M=lv

105 Pa
Ws
kg

–W/M

ΔU/M

2.5∙105

2.0∙106

1.5∙106

1.0∙106

0.5∙106

which mutually attract each other. The work of expansion has to
be performed against the saturation pressure of the vapor, in order
to make room for more vapor that is continually being produced. –
Figure 14.3 shows this decomposition for the vaporization of water in
the temperature range from 0 to 374.2 °C. In this range, the saturation
vapor pressure increases up to 228 � 105 Pa. Above 374.2 °C, �U D
0; vapor and liquid become indistinguishable. This temperature is
called the “critical temperature” of water.

14.4 The State Function Enthalpy, H

In many applications of thermodynamics, we need to make use of
a flowingworking substance, as mentioned above. All such cases can
be reduced to the scheme sketched in Fig. 14.4: A working substance
flows out of a vessel I through a machine M and into a second ves-
sel II. The two loaded pistons indicate that constant pressures are
maintained in the two vessels.

Figure 14.4 The performance of work by a flowing working substance. The
meaning ofM is explained in the text (fine print). A working substance flow-
ing through the machine has a volume V1 and the pressure p1 before entering
M; on exitingM, it has a volume V2 and the pressure p2.
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M could for example be a steam engine of arbitrary construction, or a pneu-
matic hammer. Both supply technical work Wtechn to the external world.
M could also be a compressor which inputs the technical work Wtechn into
a quantity of working substance. M could be a mixing machine which in-
creases the temperature; the energy required is input as work. M could
also be a heating or cooling apparatus, which adds or removes heat. Fi-
nally, various possibilities can be combined; one could for example equip
a compressor with a cooling system.

For the treatment of flowing working substances, we introduced the
concept of technical work. From its defining equation (14.4), it fol-
lows that

W D Wtechn C p1V1 � p2V2 : (14.5)

We insert this value into Eq. (14.6), i.e. QCW D U2�U1, and obtain

QCWtechn D U2 � U1 � p1V1 C p2V2 (14.8)

or
QCWtechn D .U2 C p2V2/ � .U1 C p1V1/ : (14.9)

U, p and V are state variables. As a result, the sums in parenthe-
ses are also state variables. These sums have been given the name
enthalpy H; thus

H D U C pV

Enthalpy D Internal energy C Work of expansion
: (14.10)

The enthalpy is a much-used energetic state variable or state func-
tion. It is applicable to flowing working substances in cases where
one would use the internal energy U for confined working sub-
stances. With the enthalpyH and the technical workWtechn D

R
V dp,

Eq. (14.9) takes on the form

Q C R
V dp D �H

Heat inputg C
�
Technical work performed
on the external system(!)

�

D
�
Enthalpy
increase:

(14.11)

Example of an application: If a vapor is produced at its saturation
pressure, then p is constant (Fig. 13.7). At constant p, we haveR
V dp D 0. Therefore, Eq. (14.11) gives Q D �H; in words: The

heat input for the vaporization is equal to the increase in the enthalpy
of the substance resulting from the vaporization. Thus, this energy
which is required for vaporization (the latent heat Lv) is also referred
to as the enthalpy of vaporization; and the same applies to the heat of
fusion Lf or enthalpy of fusion.
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14.5 The Two Specific Heats, cp and cV

If we know the internal energy U and the enthalpy H, we can now
cast the concept of specific heat capacity into a physically impeccable
form. – Up to now, we have defined the specific heat of a substance
by means of the equation

c D Heat Q added

Mass M � Temperature increase �T
: (13.5)

The heat put into the substance, e.g. from an electric heater, is dis-
tributed quite differently when the system is held at constant volume
than when it is at constant pressure. At constant volume, enforced
by sufficiently rigid container walls, the temperature rises and thus
only the internal energy U of the substance is increased. However, at
constant pressure, the substance can expand during the temperature
rise. In addition to the increase of its internal energy, there is also
work of expansion. In other words: At constant pressure, instead of
an increase of the internal energy U, the enthalpy H D U C pV is
increased.

As a result, we need to define two different specific heats: first, a spe-
cific heat cV at constant volume, i.e.

cV D
�

Increase �U of the internal energy

Mass M of the substance � Temperature increase �T

�

VDconst

or

cV D 1

M

�
@U

@T

�

VDconst
: (14.12)

Secondly, a specific heat cp at constant pressure, i.e.

cp D
�

Increase �H of the enthalpy

Mass M of the substance � Temperature increase �T

�

pDconst

or

cp D 1

M

�
@H

@T

�

pDconst
: (14.13)

The difference of the two specific heats is found to be

cp � cV D 1

M

	

pC
�

@U

@V

�

TDconst


 �
@V

@T

�

pDconst
: (14.14)

Derivation
Start with the definition of the enthalpy, H D U C pV . Then, instead of
Eq. (14.13), we can write:

cp D 1

M

	
@U

@T
C p

�
@V

@T

�


pDconst
: (14.15)



14.5 The Two Specific Heats, cp and cV 389

Pa
rt
III

In general, the internal energy U of a body or an amount of substance
depends both on T and also on V . Therefore, we obtain

dU D
�

@U

@T

�

VDconst
dT C

�
@U

@V

�

TDconst
dV (14.16)

and from this,
�

@U

@T

�

pDconst
D

�
@U

@T

�

VDconst
C

�
@U

@V

�

TDconst

�
@V

@T

�

pDconst
: (14.17)

Combining Eqns. (14.12), (14.15) and (14.17) yields Eq. (14.14).

So much for the now flawless definitions. For a reasonable compar-
ison of the specific heats of various substances, one requires their
molar heat capacities (Eq. (13.6) from Sect. 13.3). Then, for differ-
ent materials, we are dealing with the same amounts of substance n
or with the same numbers N of particles.

Figure 14.5 shows typical examples of the molar heat capacities Cp

for some solid materials. Only at high temperatures do they approach
a constant value. With decreasing temperature, they are strongly re-
duced.

The two specific heat capacities of gases, cp and cV, play an important
role. Unfortunately, only one of them, namely cp, the specific heat at
constant pressure, can be measured reliably. – The fundamentals of
the measurement procedure are explained in Fig. 14.6C14.5. C14.5 The temperature of

the calorimeter increases
only slightly above room
temperature during the ex-
periment. Therefore, the
cooling rate of the hot gas
in the calorimeter remains
practically unchanged, and
(T1-T2) quickly becomes con-
stant. Thereafter, both �Q
and M increase linearly with
time.

A steady
flow of gas passes through a coiled tube Swithin a calorimeter K; this
is an apparatus for determining heat capacities, here a water calorime-
ter, in which the heat input �Q is obtained from the temperature rise
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Figure 14.5 The temperature dependence of the molar heat capacity Cp for
three solids. If the measured points are plotted against a rescaled temperature
axis, T=
, then with a suitable choice of 
, one can make the curves nearly
identical. This ‘universal curve’ is called the DEBYE functionC14.6. C14.6. P. Debye, Ann. Phys.

39, 789 (1912).
The tem-

perature parameter 
 is the DEBYE temperature of each of the solids (Pb:

 D 88K; Cu: 
 D 315K; Diamond: 
 D 1860K) (see also Sect. 16.4,
final part. Here, R is the universal gas constant; cf. Eq. (14.22))
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Figure 14.6 Scheme of the measurement of the specific heats of gases at con-
stant pressure. The flowmeter operates according to the “Rotax” principle: In
a glass tube whose diameter increases conically, there is a float with short,
propeller-like wings. The float rises higher with increasing gas flow rate (gas
volume/time). The coiled tubing S enhances heat exchange with the water in
the calorimeter K, which is in a double-walled vessel like a Thermos bottle
(see Sects. 13.3 and 17.9). Not shown is the thermometer for measuring the
temperature rise of the water

of the water and the known heat capacity of the calorimeter vessel.
The temperature of the gas is measured before and after it passes
through the calorimeter; likewise the massM of the flowing gas. The
heat deposited in the calorimeter is then �Q D �H D cpM.T1�T2/.
Measurements“Measurements of this kind

are suitable as practical
laboratory exercises; but
as lecture demonstration
experiments, they have
a boring effect.”

of this kind are suitable as practical laboratory exer-
cises; but as lecture demonstration experiments, they have a boring
effect. Table 14.1 contains some specific heats that were measured in
this way.

Measurements of cV, the specific heat at constant volume, are an awk-
ward matter. The heat taken up by the walls of the gas container is
more than that absorbed by the gas confined in it. The corrections
are in general larger than the quantities to be measured. This can
be avoided only by limiting the measuring time (to less than 10�2
seconds). As a result, usually an indirect route is followed for de-
termining cV. One measures the ratio � D cp=cV (or, equivalently,
Cp=CV) and computes from it the specific heat cV using knowledge
of cp. The values listed in Table 14.1 were obtained in this manner.

There are several useful procedures for measuring � D cp=cV, known
as the adiabatic exponent (Sect. 14.9, Point 4). It is however expedi-
ent to discuss them later (Sect. 14.10).

14.6 The Thermal Equation of State
of Ideal Gases. Absolute
Temperatures

Thermodynamics received a considerable clarification through the in-
vestigation of gases, beginning with the thermal equation of state for
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Table 14.1 Heat capacities of various gases

Gas Molar
mass

Specific and molar heat capaci-
ties at 20 °C

Mass density %

at 0 °C and
105 Pa cp cV Cp CV � D cp

cV
�kg

m3

� � kg

kmol

� � kW s

kg � K
� � kW s

kmol � K
�

He
Ar

�
Mon-
atomic

0.179
1.784

4.003
39.94

5.23
0.523

3.21
0.317

20.94
20.94

12.85
12.69

1.63
1.65

H2
O2
air

9
=

;
Di-
atomic

0.0899
1.429
1.293

2.016
32.0
29

14.3
0.918
1.005

10.1
0.655
0.717

28.83
29.37
29.14

20.45
20.98
20.78

1.41
1.40
1.40

CH4
NH3
CO2

9
=

;
Poly-
atomic

0.7168
0.771
1.977

16.04
17.03
44.01

2.22
2.16
0.837

1.697
1.655
0.647

35.59
36.78
36.83

27.21
28.18
28.48

1.31
1.31
1.29

ideal gases. – Up to now, we have encountered the “ideal gas law”
only for the special case of constant temperature. It states: For an
ideal gas at constant temperature, the quotient ‘(pressure)/(mass den-
sity)’ or the product ‘(pressure) times (specific volume)’ is constant.
Or, in the form of an equation,

p

%
D pVs D pV

M
D const: (9.11 to 9.13)

(p D pressure, M D mass of the gas confined in the volume V , % D
M=V Dmass density of the gas, and Vs D 1=% D V=M D specific volume
of the gas).

For air at 0 °C, one finds experimentally the quotient of pressure/mass
density to be �

pV

M

�

0 ıC
D 7:84

W s

kg
: (14.18)

This quotient of pressure/mass density has been measured over
a wide range of temperatures, not only for air, but for many other
gases. Some of the results are summarized in Fig. 14.7 (upper part).
For all the gases, one observes straight lines when the values are
plotted against the temperature. The slopes of these lines differ from
one gas to another, but the extrapolation of all the lines to lower
temperatures cuts the axis of temperature at the same point, namely
at �273.2 °C.
In the lower part of the figure, instead of the quotient pV=M, the or-
dinate represents the quotient pV=n (n is the amount of substance).
This produces an essential simplification: Now, the slope of the lines
is the same for all gases. A single straight line can be used to fit
the measured points for all the different gases. Its intersection with
the abscissa at �273.2 °C remains the same. Thus, this temperature,
�273.2 °C, has been found to be a distinguished value with a univer-
sal significance; it is called the ‘absolute zero’ of temperature.
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Figure 14.7 The equation of state of ideal gases and the definition of the
absolute temperature. The small numbers in parentheses at the margins of the
upper graph are the numerical values of the molar masses of the gases,Mm in
g/mol (previously, they were called ‘molecular weights’, and were quoted as
dimensionless numbers) (1 atm � 105 Pa.)

The experimental results shown in Fig. 14.7 allow us to define a tem-
perature scale in “absolute” terms, i.e. without negative values and
practically independent of materials properties. There are many pos-
sibilities for this definition. The one in use today goes back to Lord
KELVIN: The point on the line in Fig. 14.7 (lower part) where the
quotient pV=n was measured at the temperature of melting ice is
associated with a temperature of 273.15K. Any other value would
have been equally permissible. But the value chosen by KELVIN has
a great advantage: The units of the KELVIN scale are exactly the
same as those of the CELSIUS scale. As we have already mentioned
(Sect. 13.2), there is a simple expression relating the temperatures as
measured on these two scales:

T

K
D t
ıC
C 273:15 :

The KELVIN scale (‘absolute temperatures’) is likewise shown in
Fig. 14.7. Temperatures measured on this scale give a simple form to
the equation of state of ideal gases:

pV D nRT (14.19)

(n D amount of substance of the gas confined in the volume V; a numerical
example is given in Exercise 14.1).
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Other formulations are in common use and are expedient:

pVm D RT (14.20)

and

p D %RT

Mm
(14.21)

(Vm D V=n D molar volume, Mm D M=n D molar mass with M D the
mass of the gas, % = mass density)C14.7. C14.7. For the definition

of “molar” quantities, see
Comment C13.7.The proportionality factor R is called the universal gas constant.

It can be determined experimentally from the slope of the lines in
Fig. 14.7. The result is

R D 8:31
W � s
mol � K : (14.22)

Equation (14.19), the equation of state of ideal gases, also contains
the amount of substance n of the molecules confined within the vol-
ume VC14.8. C14.8. The volume of an

ideal gas with the amount
of substance nD 1mol
can be readily computed
from Eq. (14.19); under so-
called “standard conditions”
(or “normal conditions”,
i.e. T D 273K and
pD 1.013 � 105 Pa), it
has the value V D 22.4 liter.
This is the standard molar
volume Vm D 22:4 liter/mol.
– thus, as long as one can
apply Eq. (14.19), the amount
of substance n or the molar
massMn D M=n can be
obtained very simply, by
measuring the mass of the
gas in a certain volume under
standard conditions.

If we insert n D N=NA (Sect. 13.1) into Eq. (14.19) and
at the same time use the abbreviation R=NA D k, then we obtain an
additional formulation of the equation of state of ideal gases, namely

pV D NkT (14.23)

(N D the number of molecules confined in the volume V).

The new constant k which appears here is thus

k D R

NA
D 8:31W � s

mol � K � mol

6:022 � 1023
or

k D 1:38 � 10�23 W � s
K

(14.24)

(NA D AVOGADRO’s constantD 6:022 � 1023 mol�1).

This universal constant k is called BOLTZMANN’s constant (the mo-
tivation for this name is given in Sect. 18.4).
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14.7 Addition of Partial Pressures

According to Eq. (14.23), the pressure p in the volume V at a given
temperature is independent of the type of molecules and depends only
on their number N. This leads us to DALTON’s law of the addition of
partial pressures. We explain it by referring to Fig. 14.8:

Two different gases (which do not react chemically with each other)
are confined in two equal-sized chambers at the pressures p1 and p2.
A piston pushes the gas from the right chamber through a valve O
into the left chamber, while the temperature is being held constant. –
Result: In the left chamber, we now have a pressure of p D p1 C p2.
The two pressures p1 and p2 add as “partial pressures” to give the
total pressure p.

An example of DALTON’s law: At the temperature of the human
body, i.e. C37 °C, the air pressure at sea level (p D 1013hPa) in
the lungs of a person is composed of the following partial pressures2:

Gas Nitrogen Oxygen Carbon
dioxide

Water vapor

Partial pressureD 757 140 53.3 62.7 hPa

At an altitude of 22 km, the atmospheric pressure is only 62.7 hPa
(see Fig. 9.32). At body temperature, the vapor pressure of water
alone is just as high. As a result, the partial pressures of the other
gases in the lungs drop to zero. The lungs of a person are thus filled
only with water vapor and breathing is no longer possible. At still
lower external pressures, the human body begins to boil, i.e. the vapor
pressure of the water it contains becomes higher than the external air
pressure.

Boiling means that bubbles of vapor form within a liquid. It occurs
when the vapor pressure of the liquid becomes equal to the external
pressure which acts on it, for example the pressure of the surrounding
atmosphere. This, together with DALTON’s law, leads to two surpris-
ing demonstrations:

Figure 14.8 Schematic of the
addition of partial pressures

2 The air in the lungs thus has a considerably higher concentration of CO2 than the
air outside. The ratio of the partial pressure of CO2 to that of O2 is nearly 0.4. At
high altitudes, a person breathes faster and more deeply. Nevertheless, this ratio
increases still further with increasing altitude, since the body produces just as
much CO2 at high altitudes as it does at sea level. One therefore cannot calculate
the composition of air in the lungs at various altitudesmerely according to physical
criteria.
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1. At normal atmospheric pressure, water boils at 100 °C, and carbon
tetrachloride (CCl4) at 76.7 °C. – We arrange these nearly mutually-
insoluble liquids in two layers, with the heavier CCl4 below, and heat
them in a water bath; then boiling begins at the interface already at
a temperature of 65.5 °C! – Reason: At this temperature, water has
a vapor pressure of 256 hPa and CCl4 has a vapor pressure of 757
hPa. The sum of these two partial pressures, according to DALTON’s
law, gives a total vapor pressure of 1013 hPa, equal to the ambient
atmospheric pressure, so that the formation of bubbles and boiling
can begin.

2. We immerse a test tube filled with air, with its open end down-
wards, in a flat dish full of diethyl ether ((CH3CH2)2O). Immediately,
air bubbles out of the opening! It is displaced by the partial pressure
of the ether vapor (� 580 hPa at 20 °C).

14.8 The Caloric Equations of State
of Ideal Gases. GAY-LUSSAC’s
Throttle Experiment

Besides the simple state variables p, V and T , we have defined other
state variables (or state functions, also called thermodynamic poten-
tials; for example the internal energy U and the enthalpy H). They
in turn are functions of p, V and T . This dependence can be repre-
sented by caloric equations of state. In these, one of the three simple
state variables can always be substituted by the other two. In general,
caloric equations of state thus contain two simple state variables.

For example, in order to describe the dependence of the internal en-
ergy on the temperature, we make use of Eq. (14.17). It contains the
dependence of the internal energy of an amount of substance n on its
volume at a fixed temperature, which is the same before a process
begins and when it is completed (independently of whatever changes
take place during the process). We thus need the quantity

�
@U

@V

�

TDconst
i.e. the limiting value of

�
�U

�V

�

TDconst
:

It has to be determined experimentally. For the measurement of �U,
we can use the relation

�U D QCW : (14.6)

For measurements on gases, we employ the apparatus which is
sketched in Fig. 14.9: Two steel cylinders, I and II, are in a water-bath
calorimeter (the thermometers, thermal insulation and stirrer are not
shown in the figure). I contains air at high pressure (e.g. 152 � 105 Pa;
under these conditions, air is still nearly an ideal gas), while II is
evacuated. When the throttle valve between the two cylinders is
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Figure 14.9 The throttle experiment of
L.J. GAY-LUSSAC (1807): At constant tem-
perature, the internal energy of an ideal gas
is independent of its pressure and density.
(Above: schematic; below: a demonstration
experiment. Each cylinder has a volume of
V D 2 liter, a mass of M D 4:52 kg and
a heat capacity of 2093Ws/K)

opened, the pressure and density of the air decrease without any
work being performed on the outside world (for short: external
work). Such a decompression is called a throttled release. – When
W D 0, Eq. (14.6) is simplified to �U D Q. In words: A confined
gas in a calorimeter is decompressed through a throttle. The gas is
supposed to be at the same temperature after the decompression as
before. In order for this to hold, a quantity of heat Q must be added
to or removed from the calorimeter. Then we have Q D �U, i.e. Q is
equal to the change in the internal energy U of the gas decompressed
through the throttle.

Experimentally, one finds Q D 0, and therefore �U D 0C14.9.C14.9. This experiment is not
shown as a demonstration.
It is illustrated in the upper
part of Fig. 14.9. Here, the
whole setup is inside one
calorimeter, which indicates
no temperature change during
the experiment, �T D 0.
In the actual demonstration
experiment (lower part of the
figure), we still see the same
result due to its symmetric
construction.

This
means that the internal energy of the air did not change during its de-
compression. The internal energy U of an ideal gas is independent of
volume, pressure, and density at constant temperature. As a formula:

�
@U

@V

�

TDconst
D 0 : (14.25)

To understand the demonstration experiment, it is best to follow the
process in detail. The cylinders themselves serve as calorimeters,
each equipped with an electric thermometer. When the throttle valve
is opened, the air in cylinder I is decompressed and expands. It
produces a jet and performs work of acceleration. The equivalent
quantity of heatQ is taken up from thewalls of cylinder I, its tempera-
ture decreases by ��TI . The kinetic energy of the air jet is converted
within cylinder II by turbulence and internal friction into internal en-
ergy. The temperature of II thereby increases by �TII. In practice,
one finds ��TI D �TII, in this example� 7K. The result is that the
quantity of heat which is taken up by the air from cylinder I is equal
to the quantity of heat which is released in cylinder II. Thus, also in
this demonstration experiment, the net quantity of heat Q exchanged
with the air is overall zero.

From the throttle experiment of GAY-LUSSAC, we can draw two con-
clusions:
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1. In ideal gases, the internal energy U contains no potential energy
which depends upon the spacing of the molecules. Therefore, in de-
scribing ideal gases, we can neglect the forces between the molecules
and treat them as vanishingly small.

2. In ideal gases, the internal energy U depends only on the tem-
perature, and thus not on two, but only on one of the simple state
variables. As a result, in Eq. (14.12), we can leave off the condition
V D const; similarly, we can omit p D const in Eq. (14.13), since pV
also depends only on T . Then we obtain

McV D @U

@T
or U D McVT C U0 (14.26)

and

Mcp D @H

@T
or H D McpT C H0 : (14.27)

Every energy is defined only with respect to an arbitrarily-chosen
zero point; think for example of the potential energy of a stone which
has been lifted to a certain height. Thus, we can agree to take U0

and H0, the zero points of the internal energy of an ideal gas and its
enthalpy, to be their values at the temperature of absolute zero3. Then
for ideal gases, we obtain the simple caloric equations of state

Internal energy U D McVT ; (14.28)

Enthalpy H D McpT ; (14.29)

or, for the corresponding molar quantities,

Internal energy U D nCVT ; (14.30)

Enthalpy H D nCpT : (14.31)

It is important not to overlook the essential assumption underlying these
expressions: In integrating the starting equations (14.26) and (14.27), cp
and cV were taken to be constant.

The enthalpy H and the internal energy U differ by the quantity pV
(Eq. 14.10). For an ideal gas containing an amount of substance n,
we have pV D nRT . Then we find

n.Cp � CV/T D nRT ;

or

Cp � CV D R : (14.32)

3 The magnitude of the constantsU0 (or H0), i.e. the energy of a substance at abso-
lute zero, is well known today. It is equal to the mass of the substance multiplied
by the square of the velocity of light. U0 is therefore very large; for example, for
1mol of hydrogen, it is equal to 1:8 � 1014 W s.
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In words: For every ideal gas, the difference of its two molar heat
capacities is equal to the universal gas constant.

Numerical example for nitrogen

Cp � CV D 29:14
Ws

molK
� 20:79

Ws

molK

D 8:35
Ws

molK
� R :

14.9 Changes of State of Ideal Gases

In addition to the thermal and caloric equations of state for ideal
gases, we must consider as a third case the equations for changes of
state. Such changes can in general be represented in a p-V diagram,
and the equations for the changes of state give the relation between
two of the simple state variables. These are presumed to change uni-
formlywithin the volume of gas under consideration. There should be
no local differences in temperature, pressure or density, such as might
occur when the changes of state are very rapid. Unfortunately, these
equations are sufficiently simple only in the limiting case of com-
pletely ideal gases. For these, one usually distinguishes five types of
state changes:

1. Isothermal changes of state. They occur when the temperature is
held constant. We have already encountered their equation under the
name BOYLE’s Law:

pV

M
D const : (9.11)

From it, by differentiating, we obtain

dp

dV
D � p

V
(14.33)

and the isothermal compressibility

dV

V
� 1
dp
D �1

p
: (14.34)

The origin of pressure from the random thermal motion has also been
treated in previous sections. The graphs of Eq. (9.11) are hyperbo-
las. One of these curves, which are called isotherms, is drawn in
Fig. 14.10. A transition, e.g. from state 1 to state 2, that is an isother-
mal expansion, produces the external work W . In this process, the
internal energy U of the gas remains unchanged. Therefore, the work
W which is performed on the external system must be replaced by
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Figure 14.10 An isotherm at
22 °C

input of a quantity of heat Q. Quantitatively, both for the work of
expansion and for the technical work, we findC14.10 C14.10. In general, the exter-

nal work W and the technical
workWtechn are different
quantities. In the special case
of isothermal changes of state
of ideal gases treated here,
however, they are equal. Both
the internal energy U and the
enthalpy H remain constant
during such processes.

W D Wtechn D �Q D �nRT ln
V2

V1
D �nRT ln

p1
p2

: (14.35)

Derivation

W D �
2Z

1

p dV; p D nRT

V
; W D �nRT

2Z

1

dV

V
D �nRT ln

V2

V1
:

In such a process then, the entire quantity of heat Q which is input
to the amount of substance n of the ideal gas is converted into work.
Conversely, in an isothermal compression, the work performed on the
gas is completely converted into heat and given off by the gas.

2. Isobaric changes of state. They take place at constant pressure.
Their equation is

T

V
D const: ; (14.36)

i.e. the volume V increases proportionally to the temperature T
(Fig. 14.11). The transition from the state 1 to the state 2 or vice
versa is represented in a p-V diagram by a straight line parallel to
the abscissa. In an isobaric expansion, for example, the amount of
substance n of the gas performs the work

�W D p.V2 � V1/ D nR.T2 � T1/ : (14.37)

During the expansion, the enthalpy of the gas increases by �H D
nCp.T2 � T1/, and the corresponding quantity of heat must be input
to the gas. The ratio of work performed and heat input is

�W
Q
D nR.T2 � T1/

nCp.T2 � T1/
D R

Cp
D Cp � CV

Cp
; (14.38)
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Figure 14.11 An isobar be-
tween two (lightly drawn)
isotherms

or, with � D Cp=CV,
�W
Q
D � � 1

�
: (14.39)

In an isobaric volume decrease, the corresponding quantity of heat
must be removed.

3. Isochoric changes of state. These take place at constant volume.
Their equation is

T

p
D const : (14.40)

Pressure and temperature in an isochoric change of state are propor-
tional to each other. The transition, e.g. from a state 2 to the state 1
is represented by a straight line parallel to the ordinate of the p-V
diagram (Fig. 14.12). Heat must be input to the gas; it is converted
entirely to internal energy, giving an increase of

�U D nCV.T2 � T1/ : (14.41)

Work is not performed, since the volume remains constant.

On cooling (the transition going from state 1 to the state 2), the inter-
nal energy is decreased and the corresponding quantity of heat must
be removed.

4. Adiabatic changes of state (Video 14.1).Video 14.1:
“Adiabatic changes of
state”
http://tiny.cc/yggvjy
Using an air pump which
has a small heat capacity, the
temperature changes during
compression and expansion
are demonstrated qualita-
tively.

These occur without ex-
changing heat with the surroundings (i.e. thermally isolated), that is
with Q D 0. They play an important role in physics and technology.
On expansion of the gas, its pressure drops not only due to its volume

Figure 14.12 An isochore
between two (lightly drawn)
isotherms

http://tiny.cc/yggvjy
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Figure 14.13 Adiabatic curve
for a monatomic gas with
� D 1:66 (Table 14.1)

increase, but also due to the associated cooling of the gas. The corre-
sponding curves are called adiabatic curves (Fig. 14.13) and fall off
more steeply than a hyperbola. Their equation is given by4

pV� D const (14.42)

(POISSON’s Law).

Derivation
We refer to Fig. 14.14. We can replace the adiabatic expansion by an
expansion from 1–3 at constant pressure (isobar) and a pressure reduction
from 3–2 at constant volume (isochore). Along the path 1–3, that is the iso-
baric volume increase, the quantity of heat dQ1-3 D nCpdTpDconst must be
input to the gas to keep its pressure constant. Along the path 3–2, that is the
isochoric pressure decrease, the quantity of heat dQ3-2 D nCVdTVDconst
must be removed from the gas to keep its volume constant. The sum of
these two quantities of heat must be zero, since all together, we want to
reproduce an adiabatic change of state, in which no heat is exchanged with
the surroundings. We thus arrive at

Cp.dT/pDconst D �CV.dT/VDconst : (14.43)

The two temperature changes result from the thermal equation of state for
ideal gases, i.e. from pV D nRT. We find

.dT/pDconst D p dV

nR
and .dT/VDconst D V dp

nR
(14.44)

or
.dT/VDconst
.dT/pDconst

D V dp

p dV
: (14.45)

Continuing, with Eq. (14.43) we obtain

dp

dV
D � Cpp

CVV
D ��

p

V
: (14.46)

In words: Along the adiabatic curves, the differential pressure change is
by a factor � greater than along an isotherm (Eq. (14.33)).

4 Instead of the volume V , one can also use the molar volume Vm D V=n, if the
amount of substance n of the confined gas is separated out of the constant.
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Figure 14.14 The derivation of the adiabatic
exponent

From Eq. (14.46), we obtain by integrating:

ln pC � lnV D lnŒconst�

or
pV� D const : (14.42)

Additional equations which are important for adiabatic changes of
state can be found in the following Point 5.

5. Polytropic changes of state. They take place when the thermal
insulation is not sufficient to guarantee an adiabatic change of state.
During the expansion, the pressure falls due to the increasing volume
and the associated cooling. Because of the insufficient thermal insu-
lation, this cooling is however less than in a perfectly adiabatic ex-
pansion. As a result, the curve referred to as a polytropic (Fig. 14.15)
falls off less steeply than an adiabatic curve. Its equation is

pV˛ D const: (14.47)

Thus, when the thermal insulation is not perfect, one cannot set the
exponent ˛ equal to �; instead, a smaller value must be used, called
the polytropic exponent. Then, instead of e.g. Eq. (14.46), we have:
Along a polytropic curve, the differential pressure change is by a fac-
tor ˛ greater than along an isotherm.

Making use of the equations

und
p1V1 D nRT1
p2V2 D nRT2

)

; (14.19)

Figure 14.15 A polytropic
curve for a diatomic gas (� D
1:4)
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along with Eq. (14.47), we obtain the following relations which are
useful for applications:

T2
T1
D

�
V1

V2

�˛�1
D

�
p2
p1

� ˛�1
˛

(14.48)

and for the external work which is performed during the expansion:

W D � p1V1

˛ � 1

"

1 �
�
p2
p1

� ˛�1
˛

#

D �n R

˛ � 1
.T1 � T2/ D �p1V1 � p2V2

˛ � 1
: (14.49)

The technical work Wtechn is in this case larger thanW by a factor ˛:

Wtechn D � ˛

˛ � 1
p1V1

"

1 �
�
p2
p1

� ˛�1
˛

#

: (14.50)

For adiabatic changes of state, in all of these equations we must re-
place ˛ by � D cp=cV. Then, for the external work performed during
an adiabatic expansion, we derive from Eq. (14.49), second term:

W D �nCV.T1 � T2/ : (14.51)

Derivation
of Eqns. (14.49) and (14.50):

W D �
2Z

1

pdV D �
2Z

1

constV�˛dV D �const V
1�˛
2 � V1�˛

1

1 � ˛
: (14.52)

Furthermore, from Eq. (14.47), we set the const D p1V˛
1 D p2V˛

2 , and
from Eq. (14.19) we set pV D nRT, and rearrange to obtain Eq. (14.49).
We then arrive at Eq. (14.50) by starting with Eq. (14.49) and making use
of Eq. (14.5).

14.10 Applications of Polytropic
and Adiabatic Changes of State.
Measurements of � D cp=cV

The changes of state described in Sect. 14.9 are important for numer-
ous applications. Here, we can give only a few examples:

1. The measurement of a polytropic exponent ˛. In Fig. 14.16, air is
confined in a glass vessel (V D several liters) at a small overpressure
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Figure 14.16 The measurement of a polytropic expo-
nent ˛

Figure 14.17 Measurement
of the polytropic exponent
as in Fig. 14.16 (Pressure
units: 1mm water column
� 10 Pa)

1

3

2

Atmospheric
pressure

in mm
water

column

Volume V/ Mass M
Pr

es
su

re
 p

(dp)isoth

(dp)polytr

(p1–p3)=77

p3=23
p1=100

^

^
^

p1 D 103 Pa (Š h D 100mm water column). The valve is opened
and then immediately closed when the overpressure has been com-
pletely released. The expansion is polytropic (from Point 1 to Point 2
in Fig. 14.17), since the thermal insulation offered by a glass vessel
is not perfect. The air inside is not as strongly cooled as it would be
by an adiabatic expansion, i.e. with perfect thermal insulation. Nev-
ertheless, less air leaves the vessel than if the expansion had been
isothermal. As a result, the pressure increases (along the isochore
from Point 2 to 3) as the air gradually warms back to room tempera-
ture. Again, an overpressure p3 results; in the example, p3 D 230Pa
(Š h D 23mm water column). We could have reached Point 3 im-
mediately through a slow isothermal expansion. We would simply
have to allow exactly the same amount of air to escape the vessel as
in the case of the rapid polytropic expansion.

The pressure changes are small compared to the ambient air pres-
sure (atmospheric pressure, i.e. 104 mm water column). Both the
polytropic curves and the isotherms in Fig. 14.17 can therefore be
approximated as short straight lines. From this figure, we read off

the polytropic pressure drop .�dp/polytr D p1
the isothermal pressure drop .�dp/isoth D p1 � p3 :

As found by computing dp=dV in Eqns. (14.19) and (14.47), the ratio
of the two pressure drops is the polytropic exponent ˛ that we are
seeking, and thus

dppolytr
dpisoth

D ˛ :
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In the example, ˛ D 100
100�23 D 1:3. The air thus expands in Fig. 14.17

with the polytropic exponent ˛ D 1:3.

2. Measurement of the adiabatic exponent � D cp=cV from the ve-
locity of sound. With ‘perfect’ thermal insulation, the expansion in
Fig. 14.17 is adiabatic. The measured exponent ˛ must then become
equal to the adiabatic exponent �air D 1:40. Indeed, it has often been
attempted to measure � in this manner. However, it is not simple to
eliminate all possible perturbing heat inputs. – This is more read-
ily accomplished with very rapid expansion processes. They can be
found for example in sound waves, both propagating and standing
waves. One can obtain � with good precision from measurements of
the velocity of sound. For the sound velocity in gases, we found

csound D
s

K

%
: (12.46)

Here, % is the density of the gas and K its modulus of compression:

1

K
D �dV

V

1

dp
: (14.53)

For an adiabatic expansion (˛ D �), we have (Eq. (14.46))

dV

dp
D �1

�

V

p
;

and thus
K D � � p : (14.54)

Inserting Eq. (14.54) into Eq. (12.46) yields

csound D
r

� � p
%

: (14.55)

Numerical example
At 18 °C and p D 105 Pa (1000 hPa), air has a density of % D 1:215 kg/m3.
The velocity of sound is measured to be csound D 340m/s; from this we find
� D 1:40. The velocity of sound can best be determined using standing
waves of a known frequency. (“KUNDT’s dust figures”, Sect. 11.7).

The velocity of sound csound decreases with decreasing temperature.
This can be seen by rearranging Eq. (14.55) using the equation of
state of ideal gases, (14.21)C14.11: C14.11. The velocity of

sound csound in an ideal gas
is thus independent of its
density %!csound D

s

� � R

Mm
� T : (14.56)

3. The production of high temperatures through polytropic compres-
sion. Before European matches were introduced, the fire pumpwas in
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Figure 14.18 A Malaysian fire pump, replicated here as a glass
model. Instead of the tinder S, we could attach a piece of cotton
wool dipped in carbon disulfide or diesel oil to the bottom of the
piston. Then the heat of compression would cause the air-vapor
mixture to burst into flames.

widespread use along the Malaysian Archipelago, especially in Bor-
neo; it is often called a ‘pneumatic lighter’ (Fig. 14.18): A piston is
thrust into a wooden cylinder. The air in the cylinder is heated, ig-
niting a piece of tinder attached to the bottom of the piston. Today,
diesel engines make use of the same process to ignite the fuel-air
mixture which has been injected into the cylinder.

14.11 Pneumatic Motors and Gas
Compressors

These are not only technically important machines (e.g. the pneu-
matic jackhammer), but they are also very instructive from the point
of view of physics.“The non-physicist often

thinks that a cylinder of
compressed air is an energy
storage system, similar for
example to the wound-up
spring of a pocket watch.
This interpretation is false”.

The non-physicist often thinks that a cylinder of
compressed air is an energy storage system, similar for example to
the wound-up spring of a pocket watch. This interpretation is false,
for the following reason: Air is a nearly ideal gas, and therefore, the
energy of a quantity of air at a constant temperature is independent of
its pressure and density. Thus, when compressed air performs work
by expanding isothermally, it gives up none of its own internal energy,
but instead takes the energy from some other source. A compressed-
air motor, as we shall see, is simply a machine which converts heat
into work.

Figure 14.19 A compressed-
air motor. For isothermal
operation, the cylinder is sur-
rounded by an electric heating
mantle. (Video 14.2)Video 14.2:

“Compressed-air motor”
http://tiny.cc/0ggvjy

http://tiny.cc/0ggvjy
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Isothermal operation is exemplified by the cylinder of a small ma-
chine as shown in Fig. 14.19, when it is surrounded by an electric
heating mantle whose heater current is controlled so that the air flow-
ing into and out of the cylinder is kept at the same temperature,
i.e. T2 D T1. Then the expansion of the air is isothermal, and we
can apply Eq. (14.35) for the technical work performed:

Wtechn D �Q :

(See the derivation in Sect. 14.9.)

In words: In isothermal operation, the heat Q which is input is com-
pletely converted into work, and the machine represents the ideal
limiting case of 100% mechanical performanceC14.12. C14.12. The “mechanical

performance” quoted here
does not contradict the Sec-
ond Law. It should not be
confused with the efficiency
of heat engines. POHL dis-
cusses the compressed-air
motor in this connection in
more detail in Sect. 19.7.

If the heat-
ing mantle is left off, the machine operates in a polytropic mode; in
the limiting case of good thermal insulation it is adiabatic, and thus
without heat exchange with the surroundings. In this latter limiting
case, we find for the technical work

Wtechn D �H

(follows without computation from Eq. (14.11) for Q D 0).

In words: When a compressed-air motor is operating adiabatically,
the work performed is equal to the decrease in enthalpy of the com-
pressed air. The air leaves the machine cooler than when it enters;
that is, T2 < T1, but this loss of enthalpy will be replaced afterwards
by heat exchange from the surrounding atmosphere, so that T1 is re-
stored. In the adiabatic mode, the compressed air must merely lend
some energy in advance.

The enthalpy reduction in a thermally insulated motor can be used to cool
gases, e.g. for the liquefaction of helium. One then refers to ‘cooling by
performing work’ or an ‘expansion machine’ (G. CLAUDE (1870–1960);
cf. Sect. 15.6).

The operation of a compressor is just the reverse of that of the motor.
When its cooling is not adequate, the machine driving the compressor
must increase the enthalpy of the compressed air while compressing
it, and the additional work performed for this is lost afterwards when
the compressed air cools uselessly back to ambient temperature in its
pressure vessel.

Exercises

14.1 The molar mass of oxygen is Mm D 32 g/mol. n D 2 kmol of
O2 gas ( OD MD 64 kg) is at a temperature of 27 °C, i.e. T D 300K,
in a volume V D 300 liter D 0:3m3. What is the pressure of the O2?
(Sect. 14.6)
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14.2 A gas cylinder of volume V1 D 10 l contains oxygen at a pres-
sure of 15 � 105 Pa. Another cylinder of volume V2 D 40 l contains
nitrogen at a pressure of 8 � 105 Pa. What is the total pressure when
the two cylinders are connected to each other? (Sect. 14.7)

14.3 To what fraction of its original volume must air be com-
pressed in order to reach a temperature of 500 °C? Assume that
the process is polytropic, with a polytropic exponent of ˛ D 1:36
(Sect. 14.9).

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_14) contains supplementary material, which is avail-
able to authorized users.
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Real Gases 15
15.1 Phase Changes of Real Gases

We now know the equation of state of ideal gasesC15.1, C15.1. The terms “ideal gas”
and “real gas” have nothing
to do with the gas itself. As
long as a gas obeys the equa-
tion of state of ideal gases,
it is termed “ideal”. If its
behavior deviates from the
predictions of that equation,
e.g. in the neighborhood of
its boiling point, then it is
termed “real”.

and that
knowledge suffices to permit us to derive the equations of the various
types of state transformations (isothermal, adiabatic etc.) without
new experimental results. For real gases, there is no generally-
applicable equation of state; therefore, to quantitatively describe
their changes of state, we must rely on observations. The most im-
portant of these is the experimental determination of the isotherms
of real gases. The isotherms exhibit the same qualitative behavior
in all cases. For carbon dioxide (CO2), they can be exhibited in
a demonstration experiment with a modest effort. Figure 15.1 shows
the setup, and Fig. 15.2 summarizes the results in a p-Vm diagram
whose coordinate axes have been appropriately chosen.

At temperatures above C80 °C, the isotherms are still hyperbolic.
They can still be described by the equation pVm D const. AtC40 °C,
already a strong deformation of the curve is seen. At C31 °C, the
isotherm exhibits a point of inflection with a horizontal tangent: In
the neighborhood of this critical point K, the pressure is independent
of the volume of the confined gas. The state variables at this point
are termed critical. For CO2, the critical temperature is

Tcr D 304K .31 ıC/;

Figure 15.1 The investigation of phase changes (semi-schematic). S is used
to fill the apparatus (1 bar D 105 Pa).

409© Springer International Publishing Switzerland 2017
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Figure 15.2 A p-Vm diagram of carbon dioxide with appropriate axes
(THOMAS ANDREWS, chemist in Belfast, 1813–1885). (Vm D V=n is
the molar volume.) At 0 °C, the liquid has a molar volume of Vm;l D
0:048 m3/kmol (abscissa value of point ˛1) and the gas has a molar volume
of Vm;g D 0:46m3/kmol (abscissa value of point ˇ1).

the critical pressure is

pcr D 73:6 � 105 Pa;
and the critical molar volume is

Vm;cr D 0:096m3=kmol:

Examples for other substances can be found in Table 15.1.

Below the critical temperature, the phenomena become completely
different. Let us follow the isotherm at C20 °C, beginning at a large
volume, that is at the lower right: initially, the pressure increases
up to the value 58:1 � 105 Pa at the point-ˇ. When the volume is
decreased further, the pressure remains constant (along the segment-
ˇ � ˛ of the curve). Along this segment, the form of the carbon
dioxide changes: An increasing fraction is separated from the rest by
an interface or surface, i.e. it becomes liquefied. At the point ˛, all
of the substance is in the liquid phase and an interface is no longer
present. Continuing to decrease the volume requires that we apply
an enormous pressure: Liquid CO2 is considerably less compressible
than gaseous CO2 (steep rise of the isotherm!).

All the other isotherms below the critical point K exhibit a similar
behavior. The end points of their straight, horizontal sections are
delimited at the left by a dashed curve, and at the right by a dot-
dashed curve, defining the envelope of the coexistence region. The
two curves meet at the critical point K. They show the limits of the
region in which the liquid and the gaseous phases can exist together.
At the left of the dashed curve, there is only liquid; at the right of
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the dot-dashed curve, there is only gas. Above the critical point K,
distinguishing between gas and liquid is no longer meaningful.

For the straight-line segments (the “average lines”) of the isotherms,
the abscissa values at their end points, e.g. ˛ and ˇ0, give the mo-
lar volumes Vm of the liquid and the gaseous fractions (a numerical
example is given in the caption of Fig. 15.2).

For each filling and temperature of a container (in the example
sketched for Vm D 0:2m3/kmol and 0 °C), the ratio of the lengths
j/i gives the ratio of the amount of substance as liquid/amount
of substance as gasC15.2. C15.2. Derivation: The total

amount of substance n is the
sum of the fractional amounts
of substance of the gas, ng,
and the liquid, nl. At a molar
volume of Vm, ˛1 < Vm <

ˇ1 (Fig. 15.2), a part of the
substance is gaseous, ng D xn
(0 < x < 1) and the rest is
liquid, nl D .1 � x/n. x is
thus the molar fraction of the
total amount of substance that
is gaseous. Then we have for
the combined molar volume:
Vm D xˇ1 C .1 � x/˛1 or
x D .Vm � ˛1/=.ˇ1 � ˛1/ ;

since ˛1 and ˇ1 are the molar
volumes of pure liquid and
pure gas, respectively. For the
example shown in Fig. 15.2,
we find
x D i=.i C j/ and 1 � x D
j=.iC j/;
and thus nl=ng D j=i.

– At the critical filling, where Vm;cr D
0:096m3/kmol and T D 0 ıC (cf. Fig. 15.4),

89% of the substance bD 45% of the volume is liquid
11% of the substance bD 55% of the volume is gaseous:

The left-hand (dashed) limiting curve ends at a pressure of 5 � 105 Pa on
a point marked by a small circle in the figure. Below this pressure, CO2 is
a solid. At the same pressure, a second circle is drawn in to the left, and
a third is far to the right outside this region on the isotherm corresponding
to �56:2 ıC (at Vm D 3m3/kmol). We will return to the significance of
these circles when we deal with the triple point.

For water, today still the most important working substance, some
special symbols and terms are in use. Water vapor in a state outside
the limiting curves is called superheated steam, and on the limiting
curve it is called dry saturated steam; within the limiting curve, it is
termed wet steam.

Wet steam is a mixture of water vapor and fine water droplets. It
appears to the eye as a white fog or as a white cloud. Superheated
and saturated water vapor are just as invisible as for example the air
in a room. They lack the fine suspended water droplets which scatter
light (see Vol. 2, Chap. 26). – The non-physicist usually thinks of
water vapor as this visible wet steam (fog).

Technically, the term specific steam content of wet steam is used. This
refers to the ratio

x D Mass of the dry saturated steam
Mass of the steam and the water droplets

suspended in it

D
�

i

iC j

�

(15.1)

in Fig. 15.2. Along the left-hand limiting curve, x D 0; on the right-hand
curve, x D 1.

15.2 Distinguishing the Gas
from the Liquid

The isotherms of CO2 (Fig. 15.2) lead us to some important con-
clusions. Figure 15.3 shows only two of the isotherms, namely the
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Figure 15.3 Distinguishing be-
tween gases and liquids: A cyclic
process which includes the
critical point K between two
isotherms of CO2 (the limiting
curve at the left is dashed, at the
right dot-dashed)

one at C20 °C and the one at C40 °C. In addition, the two limit-
ing curves are drawn in and the region bounded by them is shaded.
Within this region (the “coexistence region”), the gas and the liquid
are both present. We begin with the state ˛ and allow the volume to
increase. The pressure remains constant, while an increasing fraction
of the substance “vaporizes”. At the state point ˇ, all of the CO2

has vaporized and no surface or interface remains. Now we keep the
volume constant (Vm D 0:227m3/kmol) and raise the temperature up
to C40 °C (� ); thereafter, we compress the gas back to its original
volume (Vm D 0:057m3/kmol) isothermally (ı). In this process, the
pressure increases up to about 150 � 105 Pa. From now on, we keep
the volume constant and cool back to C20 °C, finally arriving back
at our starting point, ˛. Result: We have not observed any interface
formation, nor any fog, i.e. no precipitation of liquid CO2 in the form
of small suspended droplets. Nevertheless, all of the CO2 has now
again been liquefied. It exhibits a characteristic property of every liq-
uid: It cannot be noticeably compressed even when the pressure (here
at 20 °C) is increased to several hundred 105 Pa.

The whole closed path (cycle) can also be followed in the reverse
direction, i.e. in the order ˛, ı, � , ˇ, ˛. Then we see no interface
disappear, but nevertheless, beginning at the point ˇ, we see a new
interface form.

Result: In general, phase transitions take place with discontinu-
ous changes of the physical properties, e.g. the transition (solid $
liquid): The two phases are separated over their entire range of ex-
istence by the limiting curve (Figs. 15.10 and 15.11). The phase
transition (liquid$ gas), in contrast, takes place continuously below
the critical temperature: In Figs. 15.10 and 15.11, the dashed curve
ends at the critical point K.

A liquid cannot exist alone, i.e. in an otherwise empty space1. The
liquid surface is not a shell which secures it. An interface forms sim-

1 In outer space, liquids with a large mass could be held together by their mutual
attraction (gravitation). But then they would always be surrounded by a gaseous
atmosphere.
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Figure 15.4 The liquid-gas phase transition in CO2

with increasing temperature. In I, all of the substance is
finally liquid (danger of explosion!), in III it is finally
all gaseous. However, in II, the continuous transition
at the critical temperature can be tracked; tube II illus-
trates the critical filling at 0 °C; cf. Sect. 15.1C15.3. C15.3. It is worth the effort

to reconstruct these three
phase transitions using the
diagram in Fig. 15.2; this
will lead to a more complete
understanding of the diagram.
The case of tube I at first
seems to contradict all of our
everyday experience!

ply as the boundary between two phases of the same substance. On
its outer side, the same substance must be present in the form of sat-
urated vapor, pure or mixed with another gas, for example ambient
air. Only then is there an equilibrium, in which the same number of
molecules move per unit time from the one phase to the other and
vice versa. For water at room temperature, around 1022 molecules
per second and cm2 do this!! (cf. Sect. 16.1, Point 1). This statistical
equilibrium prevents one phase from growing at the expense of the
other.

At the end of Sect. 9.9, we encountered the diffusion boundary be-
tween two chemically different gases as a kind of interface or surface.
With the same justification, we can now consider the surface of a liq-
uid to be a diffusion boundary. It separates two chemically identical
substances in physically different phases.

These results can be very clearly demonstrated with three equal-sized
glass tubes filled with different amounts of CO2 (Fig. 15.4). When
the temperature is increased, the surface in tube I rises, in tube III it
falls, and in tube II, at the critical temperature the surface approaches
the center of the tube and vanishes there. That is, at the critical tem-
perature, the molar volumes or specific volumes of the gaseous and
liquid phases have become equal; the two phases are no longer dis-
tinguishable.

When the tubes are again cooled, the surface appears once again in
the middle of tube II2. Its reappearance is announced by a glimmering
layer of fog: In the statistical manifestation of the thermal motions,
the phase transition appears first here, then there3. Sub-microscopic
“nucleation centers” form through a local accumulation or accretion
of molecules, and from them, tiny and at first volatile droplets are
formed. Only at larger particle densities NV of the droplets do they
merge together to form a surface, i.e. a boundary interface between
the two phases.

2 Only there does the molar volume have precisely its critical value in the gravita-
tional field of the earth; above the middle, it is larger; below, it is too small.
3 At the critical point, dp=dV D 0 or dV=dp D 1. That is, even minimal local
variations in the pressure are sufficient to cause noticeable changes in the specific
volume or its reciprocal, the density.
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Figure 15.5 A two-dimensional
model of the structure of a liquid with
statistical density fluctuations

On approaching the critical temperature, there is certainly a continu-
ous transition from the liquid to the gas. At lower temperatures, how-
ever, the liquid phase is much closer to the solid than to the gaseous
phase. A liquid can almost be thought of as a very fine, microcrys-
talline powder: its micro-crystals have very short lifetimes, and the
fragments of decaying micro-crystals reunite in an uninterrupted al-
ternation to form new micro-crystals. – The following formulation
puts this another way: A liquid is a solid in a state of turbulence with
very small but still crystalline turbulence elements. As “higher-order
individuals”, these are subject to mutual, progressive motions and ro-
tations. In two dimensions, this can be convincingly simulated with
steel-ball molecules in a flat dish. On shaking and stirring, we find
“crystalline” regions that continually change their sizes and shapes,
but always maintain hexagonal close packing (Fig. 15.5).

15.3 The VAN DER WAALS Equation
of State for Real Gases

All of the isotherms shown in Fig. 15.2, with the exception of the
straight-line segments in the coexistence region, can be represented
to a good approximation by a third-order equation, the VAN DER

WAALS equation of state. It is given by

�

pC a

V2
m

�

.Vm � b/ D RT (15.2)

.Vm D V=n D molar volume of the gas/:

In this equation, a and b are two constants which are characteristic of
the particular type of molecules (i.e. the substance) that it describes.
For every ideal gas, a single constant, namely R, suffices to determine
its equation of state. For every real gas, by contrast, we require at
least three constants. Some numerical values of a and b are set out in
Table 15.1.

At the critical point, the isotherm in the p-Vm diagram runs parallel to the
abscissa, and furthermore, it has a point of inflection there. Therefore, the
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Table 15.1 Critical state variables and VAN DER WAALS constants for some real gases

Critical state variables VAN DER WAALS

Sub-
stance

Molar mass Temperature Pressure Molar vol-
ume

Constant Constant

Mm Tcr pcr Vm;cr a b
� kg

kmol

� (K) (105 Pa) � m3

kmol

� �105 Pam6

kmol2

� � m3

kmol

�

H2 2.02 33 12.9 0.065 0.19 0.022
He 4 5.2 2.3 0.058 0.034 0.024
H2O 18 647.4 221 0.055 5.54 0.031
N2 28 126 34.1 0.090 1.36 0.039
O2 32 154 50.4 0.075 1.37 0.032
CO2 44 304 73.6 0.096 3.65 0.043
SO2 64 430 78.5 0.096 6.84 0.056
Hg 200 � 1720 � 1080 � 0.040 0.82 0.017

following relations hold there:

�
@p

@Vm

�

cr
D 0 (15.3)

and �
@2p

@V2
m

�

cr

D 0 : (15.4)

With these two conditions, from Eq. (15.2) we obtain

a D 3.V2
mp/cr (15.5)

and
b D 1

3 .Vm/cr : (15.6)

The values listed in Table 15.1 for the constants a and b have been cho-
sen so that they fit the VAN DER WAALS equation of state (15.2) to the
measured isotherms over the widest range possible. With the values of
a and b fixed in this way, the condition (15.5) is well fulfilled, but the
condition (15.6) only to a relatively poor approximation. For CO2, for ex-
ample, the measured value is .Vm/cr D 0:096m3/kmol; but in Table 15.1
we find 3b D 0:129m3/kmol. The VAN DER WAALS equation is just an
approximation. Strictly considered, each different gas, due to the individ-
ual properties of its molecules, would require its own particular equation
of state. We cannot demand too much of an equation that neglects these
many individual properties! (Exercise 15.1)

The VAN DER WAALS equation of state differs from the simple ideal-
gas equation by the additional terms a=V2

m and b. Their physical
significance is readily seen. Let us start with the internal pressure,
the term a=V2

m. Under otherwise similar conditions, a lower pressure
would be measured externally if the molecules were to experience
a mutual attraction for each other. Therefore, in the equation of state
for real gases, we must add a correction term to the measured pres-
sure p when the molar volume Vm becomes small and the molecules
are on average close together. The force that corresponds to the
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internal pressure a=V2
m acts in the same sense as the force applied

externally by a piston (B in Fig. 9.24)C15.4.C15.4. Both forces are thus
directed from the surface
(container walls) into the
interior of the gas.

Now to the term b. The equation pVm D const was derived for
a model gas. The volume in which the molecules can carry out their
random thermal motions was taken to be the volume V of the whole
container. When the molar volume of the gas becomes small, we can
no longer neglect the proper volume of the molecules themselves, as
we did for ideal gases. We must decrease the molar volume available
to the gas by a quantity which is proportional to the molar volume
Vm;molec: of its molecules themselves. That is, instead of Vm, we write
Vm � const � Vm;molec: or, using the abbreviation const � Vm;molec: D b:
Vm � b (the factor ‘const’ is � 4).

15.4 The JOULE-THOMSON Throttle
Experiment

Now that we have knowledge of the VAN DER WAALS equation of
state, we return to GAY-LUSSAC’s experiment (Sect. 14.8).

From this fundamental experiment, it follows that we can expand
a gas without changing its internal energy U. In this case, for
Eq. (14.6), we find

�U D QCW D 0 :

This can be the case when there is no exchange of thermal energy
with the surroundings (adiabatic process, Q D 0) and furthermore no
external work is performed (expansion through a throttle valve,W D
0)4. In this type of expansion, the temperature of the gas remains
constant if it is an ideal gas.

For real gases, in contrast, under the same conditions there will be
temperature changes �T . In principle, this can be demonstrated with
the setup sketched in Fig. 14.9; but that has two disadvantages: First,
it is relatively insensitive; and second, it is superfluous to first pro-
duce a gas jet with kinetic energy and then convert that energy by
friction back into internal energy. In order to avoid both of these
disadvantages, J.P. JOULE and W. THOMSON (later Lord KELVIN)
replaced the expansion of a confined gas with its internal energy held
constant by the expansion of a gas flow with its enthalpy H held con-
stant, i.e. an isenthalpic process.

Their experimental arrangement, shown schematically in Fig. 15.6,
corresponds to the general scheme of Fig. 14.4. In the JOULE-
THOMSON experiment, the “machine” M is a reducing valve which
prevents the formation of a jet, e.g. a narrow opening, or the fine
channels of a porous disk. It is thermally well insulated. As a result,

4 The other possibility, namely Q D �W , was already discussed in Sect. 14.11
(isothermally-operated compressed-air motor).
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Figure 15.6 The expansion experiment of JOULE and THOMSON (1853).
The throttle consists here of a porous sintered glass disk. It is fused into the
glass walls of the apparatus. The two thermocouples are wired in opposition,
so that the voltmeter Th indicates the difference �T of their two temperatures
directly.

the gas cannot take up any heat from its surroundings; in Eq. (14.11),
i.e. QCWtechn D �H, Q D 0. During the expansion,Wtechn D 0 (no
moving parts, no acceleration!), so that �H D 0 and

H D U C pV D const : (15.7)

As a result of the constancy of the enthalpy, the internal energyU, and
with it the temperature, can increase or decrease simply by changing
the quantity pV during the expansion. Some data from a measure-
ment are shown graphically in Fig. 15.7. Usually, the expansion
(�p < 0, i.e. negative) causes a cooling effect (�T D T2 � T1 <
0). However, in certain ranges of temperature, heating is observed,
e.g. with air at a pressure of 220 � 105 Pa, above an “inversion tem-
perature” of about 230 °C (Point b in Fig. 15.7)C15.5. C15.5. The inversion tem-

peratures of H2 and He
are� 200K and � 50K,
respectively. In order to
obtain cooling with the
JOULE-THOMSON effect,
these gases must therefore
be precooled, for example by
adiabatic expansion (see also
Sect. 15.6).

The JOULE-
THOMSON effect �T=�p observed in particular cases must thus be
the sum of two contributions, a cooling effect and a heating effect.
Usually, the cooling predominates; but the heating effect can also be
the larger of the two.

In order to elucidate these two contributions, we start with the flow of an
ideal gas. A gas containing the amount of substance n of mass M passes
through the throttle. At the pressure p1, we assume its volume to be V1.

Figure 15.7 Measurements
of the JOULE-THOMSON ef-
fect for air at various starting
temperatures and pressures p1.
Outside the range a-b and at
p1 D 220 bar, heating occurs
(1 bar D 105 Pa).



PartIII

418 15 Real Gases

During its expansion, no work is performed; the prerequisite for perform-
ing internal work, i.e. an attractive force between its molecules, is lacking
in an ideal gas, and there is no external work since the apparatus contains
no moving parts and the molecules are not accelerated. The work of dis-
placement performed on the gas at the left by the compressor, p1V1, is
just the same as the displacement work performed by the gas at the right,
�p2V2. Therefore, from Eq. (15.7), U1 D U2 and thus T1 D T2: The
equation of state of ideal gases permits no change in the temperature on
expansion without performing external work. The cooling or warming of
real gases on expansion must therefore be connected with the additional
correction terms in the VAN DER WAALS equation which describes them.
The internal pressure a=V2

m which results from the mutual attraction of the
molecules explains the cooling observed on expansion. As a result of the
internal pressure a=V2

m, the pressure of a real gas is lower than that of an
ideal gas at the same number density NV of its molecules. The greater the
compression, the more the pressure is reduced relative to that of an ideal
gas. Thus, the work of displacement p1V1 performed on the compressed
real gas by the compressor is less than the work of displacement �p2V2

performed by the expanded gas. As a result, according to Eq. (15.7), U1 >

U2 and T2 < T1. The gas leaves the throttle at a lower temperature, it is
cooled.
This cooling can, however, be overcompensated by a heating effect which
is due to the correction term b. Due to the term b, at the same number
density NV of the molecules, the pressure of a real gas is higher than that
of an ideal gas. For the ideal gas, we have p D 1

3u
2=Vs D 1

3u
2Mm=Vm

(cf. Sect. 9.8); for a real gas, p D 1
3 u

2Mm=.Vm � b/. Therefore, the work
of displacement performed on the compressed real gas by the compressor,
p1V1, is greater than the work of displacement performed by the expanded
gas, �p2V2. Then from Eq. (15.7), U1 < U2 and T2 > T1. The gas leaves
the throttle at a higher temperature, it has been heated. This heating may
predominate over the cooling described in the previous paragraph.
The quantitative mathematical formulation of these considerations does
not yield satisfactory results; in particular, it gives no dependence of
the effects on the pressure, in stark contrast to the experimental results
(Fig. 15.7). The VAN DER WAALS equation is, as we have already em-
phasized, only an approximation. We should not expect too much from its
application.

15.5 The Production
of Low Temperatures
and Liquefaction of Gases

Some important processes for the liquefaction of gases are based on
cooling by means of the JOULE-THOMSON effect, in particular for
the liquefaction of air, hydrogen, and helium. Figure 15.8 illustrates
a demonstration experiment showing the liquefaction of air. Dry air at
a pressure of around 150 � 105 Pa flows through a tightly wound, mul-
tilayered copper coil within a transparent Thermos bottle (“Dewar
vessel”). At its lower end is a fine nozzle, the throttle. The expanded
and cooled gas can exit the Dewar vessel at its top. On the way out, it
flows between the coils of the copper tubing and cools the gas which
follows it, at the same time itself being warmed (SIEMENSC15.6

C15.6. KARL WILHELM

SIEMENS (Sir WILLIAM)
(1823–1883), the brother of
WERNER VON SIEMENS,
studied chemistry, physics
and mathematics in Göttin-
gen. coun-
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Figure 15.8 A demonstration experiment show-
ing liquefaction of air by the LINDE process. The
cooled but not yet liquid fraction of the air flows
upwards between the coils of the copper-tubing
heat exchanger and escapes into the room. This
precools the air which follows on its way into
the vessel (“countercurrent heat exchanger”; see
Sect. 17.6.). The copper tubing has an outer di-
ameter of 2mm and an inner diameter of 1mm.
The nozzle (throttle) consists of its flattened end.
(Video 15.1) Video 15.1:

“Liquefaction of oxygen”
http://tiny.cc/8ggvjy
The experiment becomes
more straightforward when
the flattened end of the
copper tube in the video is
replaced by an adjustable
needle valve which can be
controlled from above and
which serves as throttle.

tercurrent process, Sect. 17.6). After a few minutes, the expanded
gas has been cooled to its boiling temperature. Then its liquefaction
begins at a constant temperature. One can observe a liquid emerg-
ing from the tube, at first as a fog, then as a continuous liquid jet;
it quickly fills the lower part of the Dewar vessel. – In this process,
only a small fraction x of the gas flowing into the apparatus is lique-
fied (x � 0:1). The greater portion (1 � x � 0:9) flows out of the
vessel as gas, taking with it the enthalpy of condensation of the liquid
produced.

We can consider the entire LINDE apparatus, that is the throttle and the
countercurrent heat exchanger, to be an isothermal expansion machine:
The gas flowing into the apparatus and the gas flowing out have the same
temperature T. The gas flowing in, at a pressure p1, brings its enthalpy
HT;p1 into the vessel, while the gas flowing out at the pressure p2 takes
its enthalpy .1 � x/HT;p2 with it. The enthalpy xHliquid remains with the
fraction x which is liquefied. Then we can write the enthalpy balance as

HT;p1 D .1 � x/HT;p2 C xHliquid

and from it, we find the fraction x which is liquefied to be

x D HT;p1 � HT;p2

Hliquid � HT;p2

:

Numerical example for the liquefaction of air�
H

M

�

20 ıC
200 bar

D 4:634 � 105 W s

kg
;

�
H

M

�

20 ıC
1 bar
D 5:028 � 105 W s

kg
�
Hliquid

M

�

�193 ıC
1 bar
D 0:922 � 105 W s

kg
; and thus x D 0:096 � 0:1 :

Besides air liquefiers, there are today technically highly-developed
liquefiers for hydrogen and helium. Those in use in modern laborato-
ries yield many liters of liquid per hourC15.7.

C15.7. See for example
G.K. White, P.J. Meeson:
Experimental Techniques in
Low-Temperature Physics,
4th ed., Clarendon Press,
Oxford (2002).

By reducing the pressure
above liquid helium and thus lowering its boiling point, one can ob-
tain T � 1K. Temperatures between 1 and 0.4K can be reached by

http://tiny.cc/8ggvjy
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using the helium isotope5 3He. It is circulated in a closed-cycle cryo-
stat, alternating continuously between the liquid and the vapor phase
(similarly to the cooling substance used in household refrigerators).
– Still lower temperatures (down to 0.005K) can be obtained not with
3He alone, but rather by using mixtures of 3He and 4He isotopesC15.8.C15.8. The production of

low temperatures by 3He-4He
“dilution refrigeration”, men-
tioned by POHL in the last
editions, is very widespread
today. More details can be
found for example in the
book by F. Pobell, Matter
and Methods at Low Tem-
peratures, Springer, 2nd
ed. (1996).

15.6 Technical Liquefaction Processes
and the Separation of Gases

The liquefaction of gases has considerable economic importance, as
well as scientific interest. The various processes differ mainly in the
way in which the gas is precooled. Often, precooling is accomplished
by adiabatic expansion in a piston and cylinder machine or in a tur-
bine: Then the work performed by the gas can be put to good use. –
The last cooling stage prior to liquefaction is frequently implemented
by using the JOULE-THOMSON effect, i.e. according to the scheme
shown in Fig. 15.8. The yield of liquid air from all the different pro-
cesses is roughly the same. It is about 1.33 liter/kWh (the maximum
possible yield from an ideal process would be 5.3 liter/kWh).

Liquefied gases are indispensable cooling resources for technology
and research today. Liquefaction on a technological scale is required
among other things for the separation of gases, in particular for sep-
arating air into oxygen and nitrogen. Nitrogen is used for example
in the synthesis of ammonia (fertilizers!) and oxygen for example in
welding and for medical purposes. – The amount of work required
for the separation of air is rather small in the ideal case, namely
0.014kWh/m3. It is required only in order to compress the two gases
from their partial pressures up to atmospheric pressure.

Every gas separation is hampered by the thermal motions of the
molecules. For this reason, one first cools the air until it liquefies
and separates the gas mixture at a low temperature. A transitory
cooling can in principle be carried out without expending work, if
one uses a countercurrent heat exchanger to transfer the temperature
(Sect. 17.6).

The actual separation process is known under the name of rectifi-
cation. It is based on the fact illustrated in Fig. 15.9: At a given
temperature, air (like many other mixtures of different substances)
has a different composition in the liquid and the gas phases. In per-
centages of the amount of substance (mole percent), air at 83K (its
boiling point), for example, consists of:

in the liquid phase: 65%O2 and 35%N2 ;

in the gaseous phase: 37%O2 and 63%N2 :

5 This rare isotope of helium became more widely available, and affordable, since
the manufacture of its parent isotope, 3H or tritium, was carried out on an industrial
scale for military purposes. 3He is currently again rather expensive.
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Figure 15.9 The separation of
air into its component gases by
‘rectification’. The gentle slope
of the tube in the lower image
indicates that the liquid current
flow is maintained by gravity.
Technical rectification columns
are vertical, and the pure oxy-
gen is drawn off as liquid at the
bottom. The distribution of con-
centrations observed in such
a plant is shown in the upper
image; the difference in the va-
por/liquid distributions of O2 and
N2 near their boiling points is an
example of their differing ‘rela-
tive volatilities’, often observed
for distinct liquids, which can
then be separated by distillation.

The essential point of a rectification process is shown in Fig. 15.9:
currents of liquid and gas phases flow in intimate contact with each
other in opposite directions through a tube along which a temperature
gradient is maintained. The liquid flows in the direction of increasing
temperature. Nitrogen, which boils at 77K, evaporates preferentially
from the liquid current, while oxygen, boiling point 90K, condenses
preferentially out of the gas phase. When the flow rate is sufficiently
slow, an equilibrium is established at every point along the tube, cor-
responding to the local temperature at that point. For example, in
a section of the tube which is at 83K, the liquid and the gas phases
have the different compositions marked by dashed arrows in the fig-
ure, as mentioned above.

In the technical implementation of rectification plants, care is taken
in particular to provide a close contact and mutual mixing of the
two oppositely-directed currents. The yield of pure oxygen from
well-designed plants is about 2m3/kWh (much less than the ideally
possible yield of 14m3/kWh).

15.7 Vapor Pressure and Boiling
Temperature. The Triple Point

The p-Vm diagram of a substance (for example CO2, as in Fig. 15.2)
does not permit us to discern an important relation, namely the de-
pendence of the vapor pressure on the temperature. This relation is
best represented in a p-T diagram. An example for CO2 can be seen
in Fig. 15.10, and for water in Fig. 15.11. In both cases, the ordi-
nate of the diagram is logarithmic, i.e. it shows increasing orders of
magnitude.
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Figure 15.10 The phase
diagram of CO2. With
a linear scale on the or-
dinate, instead of the
logarithmic scale used
here, the curves would rise
very steeply.

Figure 15.11 The phase
diagram of water. At the
triple point, all three curves
intersect each other with
different slopes. Compare
Fig. 15.12.

These diagrams each contain three curves. Every point on a curve
denotes a matched pair of the variables pressure and temperature.
Only at these paired values can two phases of the substance coexist
in a stable manner, that is in equilibrium with each other.

The dashed curve corresponds to the pressure which is required to
liquefy the gas, known as the saturation pressure. The solid curve
corresponds to the pressure of solidification of the gas, that is the
formation of frost: the saturation pressure of the solid phase. Finally,
the third, dot-dashed curve corresponds to the solidification of the
liquid phase (Video 15.2).

Video 15.2:
“Liquid and solid nitrogen”
http://tiny.cc/ihgvjy
By “pumping off”, liquid
nitrogen can be cooled and
frozen. Note that the density
of the solid phase is greater
than that of the liquid phase.

These two figures can also be rotated by 90ı so that the pressure
axis becomes the abscissa. Then for every value of the pressure, the
dashed curve shows the corresponding boiling point of the liquid;
the full curve gives the sublimation temperature of the solid phase;
and the dot-dashed curve shows the melting point of the solid phase.

http://tiny.cc/ihgvjy
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Below a pressure of 500 � 105 Pa, the melting temperature depends
only weakly on the pressure. For CO2, the melting temperature rises
somewhat with increasing pressure; for water, it is lowered.

The three curves have one common point of intersection, the so-
called triple point. The data for the triple point are:

for CO2 W T D 217K .�56:2 ıC/; p D 5 � 105 Pa ;

for H2O W T D 273:16K .0 ıC/; p D 611Pa :

At the triple point – but only there – all three phases, solid, liquid, and
gaseous, can exist together. They are in equilibrium; no one of the
three phases can grow at the cost of the other two. In Fig. 15.2, we left
the three points marked by small open circles without explanation.
Their meaning is now clear: they correspond to the triple point. At
this point, at a temperature of T D 217K (�56.2 °C) and a pressure
of p D 5 � 105 Pa, the molar volume Vm

of solid CO2 is 0:034m3=kmol;
of liquid CO2 is 0:041m3=kmol, and
of gaseous CO2 is 3:22m3=kmol :

Away from the triple point, at most two phases can exist together;
along the solid curve, only a solid phase and its saturated vapor.
At pressures below 611Pa, ice can no longer melt, it can only sub-
lime (evaporate). Likewise, at atmospheric pressure (105 Pa), it is
not possible to produce liquid carbon dioxide, only CO2 snow (the
well-known ‘dry ice’) at T D 194K (�79.2 °C).

The production of dry ice is very simple (Video 15.3): Video 15.3:
“Solid carbon dioxide (dry
ice)”
http://tiny.cc/lhgvjy
In this video, showing
part of a lecture given by
Prof. BEUERMANN, the
preparation of dry ice is
explained and demonstrated.

The CO2 cylinders
which are commercially available have a pressure of about 50 � 105 Pa at
room temperature; according to Fig. 15.10, they contain a mixture of liq-
uid and gaseous CO2. A thick cloth bag is attached to the cylinder valve
and the valve is cautiously opened, so that gas from the cylinder flows out
through the bag. As it flows out, the CO2 gas forms a jet and performs work
of acceleration (externalwork to accelerate the molecules in the jet). In ad-
dition, due to the JOULE-THOMSON effect, it also performs internal work,
i.e. work against the mutual attractive forces between its molecules. For
both reasons, the CO2 cools until it reaches the temperature corresponding
on the curve to the ambient atmospheric pressure of 105 Pa, i.e.�79°C (see
Figs. 15.6 and 15.10, and Sect. 15.4).

The contents of Figs. 15.10 and 15.11 form the basis of GIBBS’ phase
rule for a system containing a single substance: The number of freely
disposable state variables is equal to 3 minus the number of phases
which are in equilibrium. When all three phases are in equilibrium,
no state variable is free; all three have their fixed values at the triple
point. – When two phases of one substance are in equilibrium, only
one of the two state variables p and T is freely disposable; the other
is fixed on one of the curves in the p-T diagram. – In order to obtain
only one phase of a substance, one can choose both state variables p
and T arbitrarily; every pair p and T on the diagram is allowed; the
values no longer have to remain on one of the curves.

http://tiny.cc/lhgvjy
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15.8 Hindrance of the Phase Transition
Liquid ! Solid. Supercooled
Liquids

The melting temperature of a crystalline solid at a given pressure is
a characteristic and precisely-determined quantity for that particu-
lar substance. The melting temperature cannot be exceeded without
melting of the solid; that is, its outer layers become liquid. In the
reverse direction, the situation is different: The melting point can be
considerably undershot without passing through the phase transition
liquid! solid: Liquids may be strongly supercooled.

If a boiling flask containing dust-free water is dipped into a cooling
bath at �20 °C and shaken or stirred, avoiding splashing, the water
can be readily cooled to around �10 °C. Smaller amounts of water,
several tenths of a gram, can be supercooled down to �33 °C. The
actual solidification temperatures are determined by the presence of
various submicroscopic impurities which act as nucleation centers.
The process of crystallization initiated at these centers always leads
to the formation of hexagonal ice.

Tiny water droplets can even be cooled down to �72 °C without
freezing. The water must be purified of impurities which could act as
nucleation points for crystallization by repeated freezing and melt-
ing. At this temperature, the ice crystallizes in a cubic structure
with a solidification point of �70 °C. – The vapor-pressure curve of
a supercooled liquid is a continuation of the curve for the normal liq-
uid without bends or kinks (cf. Fig. 15.12, an enlarged section from
Fig. 15.11).

Figure 15.12 The
vapor-pressure curve of su-
percooled water (dashed).
For comparison, the vapor-
pressure curve of ice is
drawn in as a thin solid
line.
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15.9 Hindrance of the Phase Transition
Liquid $ Gas: The Tensile
Strength of Liquids

The phase transition gaseous! liquid can also be hindered by re-
moving nucleation centers. Saturated vapors can be strongly super-
cooled, most simply by an adiabatic expansion. Here, too, the phase
transition can be induced retroactively by introducing nucleation cen-
ters. Suitable for this purpose, among many other species, are ions
of any type. At such nucleation centers, surfaces are formed from
supersaturated vapors, leading to the precipitation of droplets as fog
(This is applied for example in a cloud chamber used for the detection
of ionizing radiation).

Furthermore, the phase transition from liquid! gaseous can also be
strongly hindered by removing nucleation centers. For a demonstra-
tion, we fill a test tube which has been well cleaned using chromic
acid with double-distilled water and heat it slowly in an oil bath.
The water can reach a temperature of around 140 °C without boil-
ing. It persists in a quiet state, with evaporation from its surface.
Then, suddenly, within the water a turbulent transition to vapor sets
in; the contents of the tube are ejected explosively. Boiling water can
produce a genuinely dangerous situation. That is why, in practice,
a delay in boiling, accompanied by ‘bumping’, should be avoided if
possible. A simple protection lies in using ‘dirty’ vessels. A bet-
ter method is to introduce small, angular objects (“boiling stones”),
for example small shards of porcelain. The pores in their surfaces
permit the stabilization of small gas bubbles (i.e. by preventing their
reabsorption), which then serve as nucleation points.

To form such free surfaces within liquids, it is by no means always
necessary to increase their temperature. One can also cause the liq-
uid to rupture. This requires tensile forces of the order of 100 �105 Pa
(Sect. 9.5). Is there a prospect of increasing this value still further
by removing perturbing nucleation centers? The VAN DER WAALS

equation replies positively: Fig. 15.13 shows the isotherm for water
at 300 °C in a p-V diagram. It was determined experimentally, like
the two limiting curves ˛00K and Kˇ. The isotherm �˛0ˇ0� shows the
normal process, where along the linear segment of the curve ˛0ˇ0,
a surface is formed. In this region, two phases are present, and there-
fore, we cannot apply the VAN DER WAALS equation here.

It is probable that the nucleation centers can be effectively removed
so that the linear segment of the isotherms can be suppressed. If this
is indeed possible, then only one phase will be present, and then we
can apply the VAN DER WAALS equation also between the limiting
curves. This is indicated in the curve segment ˛�"ıˇ. This repre-
sents the complete isotherm as calculated for 18 °C. It of course is an
approximation, as is every application of the VAN DER WAALS equa-
tion. For example, the point ˛ should lie on the left-hand limiting
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Figure 15.13 Computing the tensile strength of “nucleus-free” water by ap-
plying the VAN DER WAALS equation. – As a supplement to the text, we
quote the following data: In “nucleus-containing” water, the linear segment
˛ˇ of the 18° isotherm would fall practically along the axis of the abscissa,
since the saturation pressure of water vapor at 18 °C is only 2.13 hPa. In or-
der to show all the data in this figure, the abscissa has a logarithmic scale.
Thus, the areas below the curve segment "ıˇ and above the curve segment
˛�" are not equal, as they would be with a linear scale on the abscissa. – The
curve segment �ı cannot correspond to stable states. Along this segment, an
increase in the molar volume leads to a decrease in the tensile strength.

curve at ˛00. – Nevertheless, one result is valid: The isotherm leads
for certain values of the molar volume to negative pressures, that is to
tensile stresses of over 108 Pa (D 100N/mm2 or� 1000 bar). There-
fore, nucleus-free water at 18 °C should exhibit a tensile or rupture
strength of this orderC15.9C15.9. Comparable to the

tensile strengths of solids
(see Table 8.2; see also
Sect. 9.5)

(Video 9.4).

Video 9.4:
“The tensile strength of
water”
http://tiny.cc/3vqujy
(see Sect. 9.5).

The tensile strength of all liquids decreases with increasing tem-
perature. It becomes zero at an upper limiting temperature. This
experimental fact is also in agreement with VAN DER WAALS’s equa-
tion: at T D 27

32 Tcr, the isotherm intersects the Vm axis at a point � ,
where the tensile strength thus vanishes.

Exercise

15.1 From the measurements shown in Fig. 9.23, it follows that
air at temperatures above 0 °C and pressures up to 100 bar behaves
like an ideal gas. This is to be quantitatively confirmed: a) Calculate
the molar volume Vm of nitrogen at T D 293K and p D 2 � 107 Pa
using the equation of state for ideal gases and compare it with the
molar volume of crystalline (solid) nitrogen, with a density of % D
1:026 g/cm3 (this value was measured at T D 21:15K). b) Show that
the value of Vm calculated in a) also fulfills the VAN DER WAALS

equation of state to a good approximation.

http://tiny.cc/3vqujy
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Heat as Random Motion 16
16.1 Temperature on the Molecular

Scale

We have seen that the concept of random motion, for short “thermal
motions”, can be readily understood with the aid of model exper-
iments. In their simplest versions, these replace the molecules by
small, elastic steel balls (Sect. 9.7). Based on such model experi-
ments, we derived the following equation for the pressure:

p D 1
3%u2 (9.14)

(% D density of the gas, u D velocity of the molecular translational mo-
tions.)

For the experimentally-determined equation of state of ideal gases,
we have already encountered the form

pV D NkT : (14.23)

Furthermore,

% D Nm

V
(9.15)

(N is the number of molecules in the volume V , m the mass of a single
molecule, and k is the BOLTZMANN constant (Eq. (14.24))).

Combining Eqns. (9.14), (14.23) and (9.15) yields

mu2 D 3kT : (16.1)

u2 is the mean value of the squared velocity; the left side is thus twice
the kinetic energy Ekin of one molecule. Then the energy can also be
expressed as

Ekin D 3
2kT : (16.2)

This equation states that the average kinetic energy Ekin of each
molecule of an ideal gas is proportional to the temperature and is
independent of its chemical nature or its mass m. Or conversely: The
temperature of a gas is determined by the kinetic energy Ekin of its

429© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_16
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molecules. – From Eq. (16.1), it follows that the velocity of the gas
molecules has an average value of1

urms D
q

u2 D
r

3kT

m
D

s
3RT

Mm
: (16.3)

(Mm D M=n D the molar massC16.1,C16.1. The “molar mass”
Mm (see Comment C13.7 in
Chap. 13) is usually denoted
simply byM in the chemical
literature. In order to avoid
confusion with the mass in
general, we will continue
to use the index ‘m’ here.
Remarkably, in most physics
textbooks in use today, the
molar mass is not mentioned
at all!

where M D Nm is the total mass of
the molecules, and R is the universal gas constant (Eq. (14.22))).

We list here a few applications of these equations:

1. The thermal motions of molecules during evaporation and ex-
pansion through a nozzle. We refer to Sect. 9.8. – A gas volume
V1 contains N1 molecules, each having a mass m. Then, in a time
t, approximately N D 1

6
N1
V1

A ut molecules with the velocity u pass
through an area A. The total mass Nm of these N molecules is M D
1
6%A ut, where % D N1m

V1
is the density of the gas. The equation of state

of an ideal gas in the form of Eq. (14.21) at a pressure p gives for the
density % D pMm=RT . Inserting these expressions into Eq. (16.3)
yields the ratio M

A t � 0:29 p
p
Mm=RT . A more precise calculation

changes only the numerical factor; for the mass-current density, we
obtain

M

A t
D 0:4 p

r
Mm

RT
(16.4)

(M D total mass of the molecules which pass through the area Awithin the
time t).

Instead of themass M, we could also refer to the amount of substance
n of the molecules, or the number of molecules N, or their volume V.
Then we obtain the corresponding current densities

n

A t
D 0:4 p

s
1

MmRT
;

N

A t
D 0:4 pNA

s
1

MmRT
(16.5)

and
V

A t
D 0:4

s
RT

Mm
(16.6)

.NA is the AVOGADRO constant;D 6:022 � 1023 mol�1/:

1 For the velocity of sound csound, we have

csound D
s

� � RT
Mm

: (14.56)

Therefore, the velocity of the gas molecules is

u D csound
p
3=� � csound

p
2 :
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Example
Water at 293K (20 °C) and at its saturation pressure of p D 2:32 � 103 Pa.
R D 8:31Ws/(molK), Mm D 18 g/mol. Inserting these values yields the
particle current density

N

A t
� 1026

m2 s
:

At room temperature, every second around 1026 molecules escape from
each m2 of water surface, and the same number returns from the saturated
vapor above the surface. – In 1m2 of surface area, only about 1019 water
molecules are located within the surface layer (cf. Fig. 15.5). Therefore,
the dwell time of an individual molecule at the surface is on the average
only about 10�7 sC16.2. C16.2. This explains why

water vapor in bubbles is
quickly liquefied when the
bubbles shrink, as we can
conclude from the observa-
tions in Video 9.4 (http://
tiny.cc/3vqujy, see the ex-
planation beside Fig. 9.16).
We could also think of the
bubbles which occur in cavi-
tation and cause strong local
heating, producing flashes of
light (sonoluminescence, see
Comment C9.12). This also
leads us to suppose that the
gas phase disappears rapidly.

Equation (16.6) leads to the ratio of the times t1 and t2 in which,
at a given temperature and pressure, equal volumes of two different
gases escape through an opening:

t1
t2
D

s
Mm;1

Mm;2
D

r
m1

m2
: (16.7)

From this relation, the molar massesMm (or the molecular masses m)
of different gases can be compared (R. BUNSEN). Figure 16.1 shows
a tried-and-tested experimental arrangement. The gas is confined at
the left under the pressure p of a mercury column. At the upper end
of the container is a small opening in a thin metal disk.

For demonstration experiments, we replace the small opening at the
top of the tube by the porous wall of a clay cylinder (Fig. 16.2). At its
bottom, a water manometer is connected to the cylinder, and a wide
beaker is placed over it. Then for example hydrogen is blown into
the beaker. The pressure within the clay cylinder rises sharply. The

Figure 16.1 The comparison of molecular
masses, after R. BUNSEN. One measures the
time in which the mercury (shown black in the
figure) in the left-hand section of the tube rises
from the lower mark to the upper one.

http://tiny.cc/3vqujy
http://tiny.cc/3vqujy
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Figure 16.2 Diffusion through a porous clay
cylinder

Figure 16.3 Demonstration of diffusion using
two steel-ball model gases. Top: At the left,
there are initially only small ‘molecules’, at
the right only large ones. Bottom: The opening
in the separating wall has been unblocked and
diffusion has begun (see also Video 16.1)Video 16.1:

“Model experiments on
diffusion and osmosis”
http://tiny.cc/xhgvjy
With an apparatus whose
principle is explained in
Fig. 16.14, diffusion, os-
mosis and the BROWNian
motion are illustrated with
the model. The openings in
the separating wall are large
enough that the small balls
can diffuse through, but not
the large balls (a “semiper-
meable membrane”).

reason: H2 molecules diffuse in large numbers into the clay cylinder,
about four times faster than the slower air molecules can diffuse out.
After several seconds, the hydrogen flow is stopped and the beaker
is removed. Very quickly, the overpressure in the clay cylinder is
converted into a reduced pressure. The confined H2 molecules diffuse
more rapidly out of the cylinder than the air molecules which replace
them can diffuse inwards.

Given the great importance of diffusion processes, a model experi-
ment with our ‘steel-ball gas’ is quite appropriate. Figure 16.3 shows
the setup, which we have already encountered in Fig. 9.24; however
here, it is divided in the center by a wall with a small opening. Fur-
thermore, on both sides there are oscillating pistons which maintain
the artificial thermal motions. With static pictures in a book, we are
limited to snapshots; they give only a pale impression of the lively
effect of this demonstration experiment in action (Video 16.1).

2. Temperature changes accompanying volume changes. Every gas
warms on compression and cools on expansion (Sect. 14.9). Reason:
On expansion, the molecules are reflected from a wall which is mov-
ing away, and this reduces their velocities. On compression, the wall
is moving inwards into the container, so that the molecules which
are reflected from it experience an increase in their velocities. This
can be clearly demonstrated with a single ‘steel-ball molecule’. In
Fig. 16.4, it is dropped from a height h onto a glass plate. It un-
dergoes an elastic reflection and flies up again; at the same time,
a second, smaller glass plate is moved downwards by hand. Now,
the rising ball is reflected on a wall which is moving towards it; it
flies back down with an increased velocity. This game is repeated
several times, then the ball is allowed to fly up past the second glass
plate and rises up to well above its original height h.

http://tiny.cc/xhgvjy
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Figure 16.4 A model experiment on warm-
ing of a gas by compression (HARALD

SCHULZEC16.3) C16.3. HARALD SCHULZE

(1900-1997), student in the
experimental physics lectures
of the author. The experiment
is mentioned already in the
first edition of the “Thermo-
dynamics” lectures (1941).16.2 The Recoil of Gas Molecules Upon

Reflection. The “Radiometer
Force”

Figure 16.5 shows schematically a glass bulb which can be evacuated.
It contains a small plate P, for example of aluminum foil or mica. The
plate is mounted on a leaf spring and this serves as a force meter. –
If one produces a temperature gradient between the two surfaces of
the plate at a low gas pressure, then a force F acts on the plate in the
direction of decreasing temperature. This phenomenon is called the
radiometer effect. This somewhat misleading name is due to the fact
that the temperature difference is usually produced by irradiating one
side of the plate with light.

Especially suitable for demonstration experiments is the “light mill”
or CROOKES’ radiometer (Fig. 16.6). In it, four mica platelets, black-
ened with soot on one side, are mounted as the blades of a pinwheel.
The wheel has a point and socket bearing at its hub, allowing it to
rotate freely in a horizontal plane, as seen in Fig. 12.50. When irra-
diated with light, it always begins to rotate in the direction indicated

Figure 16.5 A schematic arrangement for de-
tecting the radiometer effect, which results from
the recoil of the reflected gas molecules. For
quantitative measurements, a torsion band should
be used instead of the leaf spring F shown here.

Figure 16.6 A horizontal section through
a “CROOKES radiometer” (W. CROOKESC16.4,
1874)

C16.4. Sir WILLIAM

CROOKES (1832–1919).
He studied gas discharges
and discovered the element
thallium.

Video 16.2:
“CROOKES radiometer
(light mill)”
http://tiny.cc/qhgvjy

(Video 16.2)

http://tiny.cc/qhgvjy
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Figure 16.7 The depen-
dence of the radiometer
force on the gas pressure
in the low-pressure range.
A temperature difference
is present between the two
surfaces of the platelet.
(Original measurement by
W.H. WESTPHALC16.5,C16.5. WILHELM HEINRICH

WESTPHAL (1882–1978),
from 1920 professor of
physics at the University
of Berlin, from 1935 at
the Technical College in
Berlin; author of several text-
books. See also W. Gerlach,
Z. Physik 2, 207 (1920).

thus
the old-fashioned units:
1mmHg � 1:33 hPa, 1 mil-
lipond D 9:81 � 10�6 N).
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by the arrow. Its rotational frequency increases with the intensity of
the light.

In spite of its name, the radiometer effect has nothing to do with
radiation, in particular not with the tiny radiation pressure of visi-
ble light. This can be most simply shown by using a sheet of mica
which is blackened with soot on the side which faces away from the
light source. The radiometer force is then directed towards the light
source. Radiometers rotate even when the light is coming from all
sides. The essential point is the difference in light absorption by the
two surfaces of the blades; it produces a temperature gradient be-
tween the two sides and thus causes the radiometer force.

The radiometer force F depends in a characteristic way on the gas
pressure p (Fig. 16.7). In the low-pressure range, the force increases
proportionally to the pressure. In this range, the mean free paths
of the gas molecules are large compared to the dimensions of the
radiometer. The molecules undergo few collisions with each other;
instead, they are reflected only by the radiometer blades and by the
walls of the bulb. When the blackened surface has a higher temper-
ature than the shiny surface, the molecules are reflected from it with
a higher average velocity than from the cooler shiny surface. The
reflected molecules produce a recoil on both sides; but it is greater
on the warm side than on the cooler side. Thus, the resultant force F
points in the direction of decreasing temperature. The force is propor-
tional to the frequency of the collisions with the blade, and therefore
to the gas pressure.

At higher gas pressures, the mean free path of the gas molecules is no
longer long compared to the dimensions of the radiometer. Then, other
phenomena can occur, and the force F decreaseswith increasing gas pres-
sure (dashed segment of the curve in Fig. 16.7). The details would take
us too far afield here. – The radiometer effects on small suspended par-
ticles or thin fibers are extremely strange. For example, small suspended
carbon particles in the focus of the condenser of a projection lamp follow
tiny spiral-helical orbits for hours; the orbits themselves form closed rings
(photophoresis).
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16.3 The Velocity Distribution
and the Mean Free Path of the Gas
Molecules

We now know two methods for determining the velocities of gas
molecules experimentally (Sects. 9.8 and 16.1). Both methods are
based on applications of momentum conservation and yield only av-
erage velocities. However, the distribution of the velocities around
this average value can also be determined experimentally. To this
end, one makes use of molecular beams. In Fig. 16.8, a small block
of silver Ag is vaporized from an electrically-heated molybdenum
crucible. The highly-evacuated glass vessel is equipped with two
slits, A and B. They select a sharply bundled beam from the silver
atoms which are flying in all directions out of the crucible. This beam
collides with the cooled wall W . There, the atoms form a sharply-
bounded, highly reflective spot. Its shape corresponds to the path of
the beam shown as a dashed line in the figure. Above the second
slit B, the glass walls of the vessel remain free of precipitated silver.
To measure the velocities of the silver atoms, the whole apparatus is
mounted on a rapidly-rotating turntable, whose rotation axis is per-
pendicular to the plane of the paper in Fig. 16.8. We then have the
same situation as described in Chap. 7 for the measurement of the
velocity of a bullet. The silver atoms are deflected to one side by the
Coriolis force, and from the degree of deflection, we can compute
their velocities (Sect. 7.3, Point 5).

Carrying out this measurement with a similar apparatus yields the
results as shown in Fig. 16.9 for nitrogen at two temperatures: A dis-
tribution of the velocities over a wide range is observed.

The distribution over a wide range of velocities can be represented by the
“distribution law” derived by MAXWELL. It gives the fraction dN=N of

Figure 16.8 The production of molecular
beams. ‘Ag’ is the silver which is being
evaporated from a Mo crucibleC16.7. C16.7. OTTO STERN used

the experiment in Fig. 16.8 to
determine the average ther-
mal velocity of Ag atoms
(Zeitschrift f. Physik 2, 49
and 3, 417 (1920)). The
velocity distribution as in
Fig. 16.9 was measured with
a more advanced apparatus
using Cs atoms, described in
his Nobel lecture (1946) and
by J. Estermann, O.C. Simp-
son, and O. Stern, Phys. Rev.
71, 238 (1947).
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Figure 16.9 The velocity distribution of gas molecules using the example
of nitrogen (molar mass Mm D 28 g/mol; thus at T D 293K (20 °C), uf D
417m/s and the root mean squared velocity is urms D 1:22 uf D 509m/s).
The velocities are marked by arrows.

the molecules whose velocities lie between u and .uC du/. MAXWELL’s
distribution law is given byC16.6:C16.6. Often called the

MAXWELL-BOLTZMANN

distribution. For its deriva-
tion, see e.g.: W. Nolting,
Statistische Physik, 3rd
ed., Vieweg Braun-
schweig/Wiesbaden (1998),
Exercise 1.3.7. English: see
https://en.wikipedia.org/wiki/
Boltzmann_distribution

dN

N
D 4u2p

�

� m

2kT

� 3
2
e�

1
2 mu

2

kT du (16.8)

A detailed examination of this equation shows that the maximum of the
curves in Fig. 16.9 corresponds to the most frequently-occurring or most
probable velocity:

uf D
r

2kT

m
D

s
2RT

Mm
: (16.9)

Taking the arithmetic mean of all the velocities, we obtain the mean (aver-
age) velocity

um D 2p
�
uf D 1:13 uf : (16.10)

It is thus somewhat higher than the most probable velocity.
Initially, we introduced the rms (“root-mean-square”) value urms of the ve-
locity, defined by the equation

urms D
r

3kT

m
D

s
3RT

Mm
: (16.3)

This rms velocity urms is thus higher by a factor of
q

3
2 D 1:22 than the

most probable velocity uf, and 1:22
1:13 D 1:08 times higher than the mean

velocity um. – The differences between the most probable, the mean, and
the rms velocities are thus of no practical importance.

Our molecular picture of a gas is now nearly complete. Only the con-
cept of the mean free path is still lacking. This is the name given to
the straight-line path of a molecule between two successive collisions

https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Boltzmann_distribution
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with other gas molecules. – Nitrogen, to mention one example, has
a mean free path of l � 6 � 10�8 m at 0 °C and 1013 hPa, roughly 20
times larger than the average molecular separation under these condi-
tions. Experiments for determining l will be described in Sect. 17.10.

16.4 Molar Heat Capacities
in a Molecular Picture.
The Equipartition Principle

The molar heat capacities of ideal gases can be understood in
a molecular picture as follows (A. NAUMANN,C16.8 C16.8. ALEXANDER

NAUMANN, Gießen, Ann. der
Chemie 142, 265 (1867); see
also the book by the same au-
thor: “Lehr- und Handbuch
der Thermochemie”, Verlag
Vieweg (1882), Chap. 9.
NAUMANN was not aware
of the rotational degrees
of freedom and interpreted
their contribution to the
specific heat as molecular
vibrations (“heat of atomic
motions”). – The rotational
degrees of freedom (zero
for single atoms, two for
diatomic and three for poly-
atomic molecules) became
understandable only after
RUTHERFORD showed in
1911 that the masses of
atoms are concentrated in
their atomic nuclei! (see the
footnote on the next page).

1867): We write
the corresponding defining equations (14.12) and (14.13), as well as
Eq. (14.32) for the two molar heat capacities

CV D 1

n

�
@U

@T

�

; (16.11)

Cp D 1

n

�
@H

@T

�

D CV C R : (16.12)

For an ideal monatomic gas, that part of the internal energy U which
is due to randommotion is mainly the kinetic energy Ekin of the linear
motions of the molecules; briefly, their kinetic energy of translational
motion. A single molecule makes a contribution of

Ekin D 3

2
kT D 3

2

nRT

N
: (16.2)

A gas with N molecules or the amount of substance n gives the con-
tribution

U D NEkin D 3

2
nRT : (16.13)

Therefore, from Eqns. (16.11) and (16.12), we find

CV D 3

2
R ; Cp D 5

2
R ;

Cp

CV
D 1:67 :

Amonatomic molecule has three degrees of freedom (of translational
motion). That means that its velocity along its linear path (trans-
lation) consists in general of three components, one in each of the
directions of three-dimensional space. Each one of these three de-
grees of freedom of a single molecule contributes the kinetic energy

Ekin D 1

2
kT D 1

2

nRT

N
(16.14)

(k D BOLTZMANNconstantD 1:38 �10�23 W s/K, R D 8:31Ws/(mol K));
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Table 16.1 Molar heat capacities (R D 8:31 W s/(mol K))

Type of
molecule

Examples Molar heat capacities

Cp CV � D Cp=CV

at constant

Pressure Volume

monatomic

�
Hg vapor

noble gases

�
5
2R

3
2R 1.67

diatomic

�
H2; O2; N2

CO, HCl

�
7
2R

5
2R 1.40

polyatomic

�
CH4; NH3

CO2

�

4R 3R 1.33

or, as the contribution of an amount of substance n of a gas containing
N molecules, we find for its kinetic energy:

Ekin,N D NEkin D 1

2
nRT : (16.15)

A diatomic molecule has the shape of a dumbbell. It can rotate
around two axes, each perpendicular to the other and to the long axis
of the dumbbell2. This contributes two additional degrees of free-
dom. These new degrees of freedom are considered to be equivalent
to the translations; this is called the principle of statistical equipar-
tition. Thus a diatomic gas has all together five degrees of freedom.
They contribute a kinetic part to the internal energy of a gas contain-
ing the amount of substance n, given by

U D 5

2
nRT : (16.16)

As a result, from Eqns. (16.11) and (16.12), we find for diatomic
gases:

CV D 5

2
R ; Cp D 7

2
R ;

Cp

CV
D 1:40 :

Tri- and polyatomic molecules have three degrees of freedom for
their rotations. Together with their three degrees of freedom for trans-
lation, one thus finds for tri- and polyatomic gases

CV D 3C 3

2
� R D 3R ; Cp D 4R ;

Cp

CV
D 1:33 :

Table 16.1 summarizes these results for several gases. They agree
well in general with the measured values as shown in Table 14.1.

2 The rotation around the long axis itself need not be considered, since its moment
of inertia is vanishingly small.
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Figure 16.10 The molar heat capacity of hydrogen as a function of the tem-
perature (R is the gas constant D 8.31W s/(molK)). For comparison, the
results for two monatomic gases are also shown. In the dashed region, H2

is liquid and solid (cf. Fig. 14.5).

In solids, the molecular building blocks have fixed rest positions.
They cannot participate in progressive motions. Instead, the atoms
can vibrate around their rest positions. For the kinetic energy of these
vibrations, there are three degrees of freedom. By themselves, they
would give Cp D 3

2R
C16.9. C16.9. For solids, there is

practically no difference be-
tween Cp and CV, as long
as nonlinear effects can be
neglected, i.e. as long as the
temperature is not too high
(T � 300K). Since measure-
ments are always carried out
at constant pressure, only Cp

is given here in the text.

To maintain thermal equilibrium, in the
solid we must add an equal amount of potential energy of vibration.
This second energy contribution leads to Cp D 3

2RC 3
2R D 3R. This

explains the limiting value of Cp � 3Rwhich is found for most solids
built out of many individual atoms. (This is the rule of DULONG and
PETITC16.10,

C16.10. A.T. Petit, P.L. Du-
long, Ann. Chim. Phys., 2nd
Series, Vol. 10 (1819), p. 395.

cf. Fig. 14.5.)

These successes gave experimental support to the equipartition prin-
ciple. But in any case, it must be considered to be only an idealization
of the limiting case, permissible in the range of high temperatures.
This can be seen from the measurements given in Fig. 16.10. They
refer to the molar heat capacity of a diatomic gas (H2) at various tem-
peratures. At high temperatures, CV has a value of � 5

2R; but as the
temperature is lowered, it decreases and finally reaches a value of 3

2R,
i.e. the value expected for monatomicmolecules. – Interpretation: As
the temperature decreases, the rotations gradually come to rest; only
translational motions remain, as for monatomic molecules. – At this
point, we can go no further with the methods of “classical physics”.
We instead must turn to quantum mechanicsC16.11. C16.11. The same is true

of the lattice vibrations in
solids. For a discussion of the
temperature dependence of
the specific heat as seen in
Fig. 14.5, see e.g. R.O. Pohl,
Am. J. Phys. 55, 240 (1987).

We summarize the essentials of Sects. 16.1 through 16.4: The ideal
gases gave us the opportunity to interpret the state variables tem-
perature and an important part of the internal energy in a graphic
manner. The directly measurable state variables temperature and
pressure arise from the random thermal motions of the molecules
(Sect. 16.1). They are found to be statistical averages over an enor-
mous number of individuals (molecules or atoms). We can make only
statistical statements about the individual molecules. According to
the equipartition principle, we can say: On statistical average, each
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molecule makes the following contribution to the internal energy U
for each of its degrees of freedom at a sufficiently high temperature T:

Ekin D 1

2
kT (16.14)

where k is the BOLTZMANN constant, 1:38 � 10�23 W s/K. An ex-
perimental determination of k will be described in Sect. 16.6. The
following section has the goal of preparing us for that task.

16.5 Osmosis and Osmotic Pressure

Osmosis originally meant “diffusion through porous membranes”. If
two substances are separated by a wall through which they can dif-
fuse at different rates, then temporarily, a pressure difference will
arise. This phenomenon is best known with two gases (Fig. 16.2).
A similar experiment can also be carried out with two liquids. Exam-
ple: We immerse a glass vessel filled with alcohol (CH3CH2OH) and
closed at the bottom with the membrane from a pig’s bladder into
a dish containing pure water. The membrane will bulge outwards
(I. A. NOLLET, 1748). In this case, also, the pressure difference is
only temporary. Osmotic phenomena can also be observed when dif-
fusion between a solution and the pure solvent takes place. To show
this, we can make the wall or membrane semipermeable, i.e. pene-
trable by the solvent and impenetrable by the solute. Diffusion then
leads to a steady pressure difference between the solution and the sol-
vent. This phenomenon is what today is exclusively called osmosis.

Semipermeable barriers are realized in their most complete and mani-
fold forms as living cell membranes. The best artificial production re-
mains the membrane described in 1867 by MORITZ TRAUBE, made
of copper ferrocyanate. Its preparation is simple: One adds for exam-
ple a droplet of concentrated copper sulfate solution onto the surface
of a dilute solution of yellow potassium ferrocyanate (K4Fe(CN)6).
Then a skin-like bubble of copper ferrocyanate forms on the surface.
It quickly bulges out due to its uptake of water; the surrounding so-
lution becomes more concentrated due to the loss of this water, and
sinks to the bottom of the container as a result of its greater density,
forming visible striations (shadow projection; cf. Fig. 16.11).

With a suitable experimental setup, this puffing up takes place in
a preferred direction. For example, one can throw a few small crys-
tals of ferrous chloride (FeCl2) onto the bottom of a cuvette filled
with a potassium ferrocyanate solution (30 g K4Fe(CN)6 � 3H2O in
1 liter of water). In the course of a half-hour, plant-like formations
will grow from the crystals up towards the surface (Fig. 16.12).

Experiments of this kind and their quantitative extensions can be
generically described on the basis of Fig. 16.13. There, we see two
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Figure 16.11 Puffing up of a membrane in a solution
as a result of osmotic pressure. The bubble which
is hanging under the surface of the solution appears
bright in the shadow projection. At the lower end of
the striation which is sinking downwards, we can see
a vortex ring.

Figure 16.12 Osmotic pressure can produce plant-
like formations

Figure 16.13 Volume increase of
a solution due to osmotic pressure

chambers, separated by a semipermeable partition W . The cham-
bers are each equipped with a piston of cross-sectional area A. They
contain a solvent (shaded), e.g. water, and the left-hand chamber in
addition contains dissolved molecules of a solute (black dots). This
arrangement is not in equilibrium: Both pistons are moving to the
left; the left-hand piston is being pushed out and the right-hand pis-
ton is being pulled in.
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Explanation: The dissolved molecules behave qualitatively like a gas;
their thermal motions produce a pressure, called the “osmotic pres-
sure” pos. This osmotic pressure pushes out the left piston and
thereby increases the volume of the solution in the left chamber. This
volume increase by the osmotic pressure is possible only when water
from the right chamber can flow through the membrane, pulling the
right-hand piston inwards.

The osmotic pressure pos can be measured in two ways (Fig. 16.13,
Part b): Either we let the left-hand piston press on a spring force me-
ter, or the right-hand piston pull on a spring. In both cases, a force F
results which hinders the motion of the left-hand piston3 After either
of the springs has been deformed by a sufficient amount, the volume
increase of the solution stops, and F=A D pos, so that a mechanical
equilibrium has been established.

By the addition of springs, each of the two pistons has been converted
into a manometer. – The simplest form of manometer is still a liquid-
column manometer. In it, the piston is replaced by a free surface,
and the force of the spring by the weight of the column of liquid.
We could thus use either one of the setups sketched in Parts c and
d in Fig. 16.13. In both, the final displacement h of the manometer
indicates the osmotic pressure to be measured.

One can also combine the setups sketched in Parts c and d and de-
sign the chambers to have the same diameter as the manometer tubes.
Then we arrive at a simple U-tube, which is divided by a semiperme-
able partition W at its lowest point. The solution in the left-hand
chamber rises from ˛ to ˛0, while the water level on the right falls
from ˇ to ˇ0 (Part e of the figure).

In many cases which are of practical importance, the semipermeable
partition is itself movable. Such cases can be readily demonstrated
by a model experiment (Fig. 16.14). Little steel balls represent wa-
ter molecules, while larger balls represent the solute molecules. The
outer walls are vibrating pistons; they produce the random thermal
motion of the model molecules. The partition between the two cham-
bers has holes like a sieve through which the small ‘molecules’ can
pass. A spiral spring provides a rest position in the middle for this
“semipermeable” partition. If only small molecules are present, the
partition remains in its center position (Fig. 16.14, left side). If larger
solute molecules are added to the left-hand chamber, their “osmotic”
pressure pushes the partition to the right (Fig. 16.14, right side): The
left-hand chamber increases its volume due to the pressure of the
larger molecules. In both images, one can begin with an arbitrary
distribution of the small molecules, e.g. all of them in the left-hand
or the right-hand chamber; they will always reproduce the same equi-
librium distribution after some time.

3 Water has a sizeable tensile strength (Sect. 9.5); it can thus be treated like a rigid
connection between the two pistons. Compare also Sect. 15.9.
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Figure 16.14 A model
experiment showing the
origin of osmotic pres-
sure. On each side of
the axle a, we can see
the outer coil of a spiral
spring. The motion of
the semipermeable par-
tition is damped by an
oil-filled shock absorber
(not shown) (Video 16.1). Video 16.1:

“Model experiments on
diffusion and osmosis”
http://tiny.cc/xhgvjy

This model experiment explains for example the behavior of red blood
cells in pure water. They puff up due to their semipermeable, elastic skins.
Finally, the skin bursts. To prevent this, one must never replace serious
blood losses by injecting pure water into a blood vessel; instead, a “phys-
iological solution” must be used, which has the same osmotic pressure as
that found in the interior of the red blood cells (pos D 7 bar, corresponding
to a NaCl solution with a concentration of c D 0:16 kmol=m3)C16.12. C16.12. Correctly known as

“normal saline” (see S. Awad,
S.P. Allison, and N. Lobo
Dileep (2008), "The history
of 0.9 % saline", Clinical Nu-
trition (Edinburgh, Scotland)
27 (2), pp. 179–188). Every
molecule of NaCl adds two
ions to the solution, so that
the total ion concentration is
0.32 kmol/m3. 0.9% refers
to the mass concentration,
9 kg/m3 NaCl in water (see
also Comment C16.14.). For
comparison: Seawater con-
tains about 3% NaCl.

The essential point in all osmotic phenomena is the volume increase
of the solution. It always occurs when the solute molecules cannot
leave the solution, but the solvent can enter it. This condition can be
fulfilled even without a visible semipermeable partition; one can for
example use a vacuum as a “semipermeable” region. This is the case
e.g. in an isothermal distillation.

In Fig. 16.13 , Part f , we see an evacuated vessel containing two
measuring cylinders. The left one contains the solution, e.g. LiCl
in water; the right cylinder contains the solvent, e.g. pure water.
Initially, the two cylinders are filled to the same height; the liquid
surfaces were at ˛ and ˇ. In the course of a few days, the volume of
the solution increases, and the levels become different (a foolproof
demonstration experiment!). Their final stationary height difference
is denoted by h. Then the pressure equivalent to a liquid column of
height h is equal to the osmotic pressure pos, i.e.

pos D h%Sg (16.17)

%S D density of the solution; g D acceleration of gravity/:

Interpretation: Above the two liquid surfaces is saturated vapor. It
consists only of molecules of the solvent, but the vapor pressure pS
above the solution is lower than the vapor pressure p0 above the pure
solvent (demonstration experiment in Fig. 16.15). As a result, in
Fig. 16.13 , Part f , more water molecules strike the surface at ˛ than
can evaporate from it; that is, water is distilled from ˇ to ˛.

When does this process of distillation come to an end? Answer: The vapor
pressure p0 of water corresponding to the temperature of the observations
applies to the vapor directly above the water surface. As the column be-
comes higher, the pressure decreases, according to the barometric pressure

http://tiny.cc/xhgvjy
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Figure 16.15 The vapor pressure of a solu-
tion is less than that of the pure solvent. The
upper stopcock is used to pump out the air
from the apparatus, while the lower one can
be opened to equalize the pressures on both
sides.

formula. At a height h above the water surface, it is reduced to

ph D p0e
� %0gh

p0 (9.20)

(%0 D density of the water vapor above the water surface).
As the height h increases, the pressure ph at some point becomes equal
to the pressure above the surface at ˛0, the vapor pressure pS of the solu-
tion; then the same number of molecules fall onto the surface at ˛0 as are
evaporating from it in a given time. The volume increase then comes to an
end.
Making use of this result, we wish to derive the relation between the os-
motic pressure and the vapor pressure. We set ph D pS, and furthermore,
from Eq. (16.17), we take h D pos=%Sg. Then we obtain

pS
p0
D e
� %0pos

p0%S : (16.18)

Furthermore, we treat the water vapor to a good approximation as an ideal
gas and set

p0 D %0RT

Mm
; (14.21)

thus obtaining

ln
pS
p0
D �%0posMm

%0RT%S

or

pos D %SRT

Mm
ln

p0
pS
� %SRT

Mm
� p0 � pS

pS
: (16.19)

(The approximation is valid, since p0=pS is only slightly greater than 1, so
that in the series expansion ln x D x � 1 C : : :, the higher terms can be
neglected.)
Direct measurements of the osmotic pressure are tedious and time-
consuming. Equation (16.19) as just derived provides a convenient indirect
method. We compare the vapor pressure pS of the solution with the vapor
pressure p0 of the pure solvent, and compute the osmotic pressure using
Eq. (16.19). In fact, one does not usually measure the vapor pressures pS
and p0 of the solution and the solvent, but rather the corresponding boiling
points TS and T0. Then for the osmotic pressure, we find the simple
relationC16.13

C16.13. The transition from
Eq. (16.19) to Eq. (16.20) is
intuitively clear. The mathe-
matical derivation of (16.20)
proceeds via the CLAUSIUS-
CLAPEYRON relation for
the vapor pressure curve
(cf. Eq. (19.19)) and involves
some approximations which
are however equally valid
as those used to arrive at
Eq. (16.19).

pos D %Slv
TS � T0

T0
(16.20)

(%S is the density of the solution; for rather dilute solutions, it is � the
density of the solvent. T0 is the boiling point and lv the specific heat (latent
heat) of vaporization of the solvent; cf. Sect. 13.4, especially Eq. (13.7)).
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All the direct and indirect measurements of osmotic pressure lead in
the case of dilute solutions (of the order of one-tenth mole=liter) to
a surprisingly simple result: For the molecules of the solute, we can
apply the equation of state of an ideal gas4 This formulation is often
called “VAN’T HOFF’s law”:

posV D nRT or pos D cRT (16.21)

(n D amount of substance dissolved in the volume V of solution, that is
n=V D concentration cC16.14. C16.14. Here, a new quantity

is defined, the (molar) con-
centration c D n=V, where
n is the amount of substance
of the dissolved material
(solute) and V is the vol-
ume of the resulting solution
(unit: kmol/m3 or mole/liter).
Alternatively, the mass con-
centration can be used:
c (mass)D M=V, where
M is the mass of the solute
(unit: kg/m3 or gram/liter).
The conversion factor is the
molar massMm of the solute:
c .mass/ D c .molar/ �Mm.
In chemistry and medicine,
a practical unit is also used:
the ‘percent solution’. It is
the mass (in gram) of solute
dissolved in 100ml of solu-
tion, quoted as a dimension-
less number, ‘% solution’;
e.g. 5 g of salt (NaCl) dis-
solved in 100ml of aqueous
solution is a ‘5% saline (salt)
solution’.

For c D 0:1 kmol/m3 and T D 273K (0 °C),
the osmotic pressure is pos D 2:24 � 105 Pa� 2 bar.)

This occurrence of the same equation of state under quite different
conditions is very instructive. We can see that the equation of state
is in the end based on the statistical laws governing the thermal mo-
tions of a large number of particles, in particular on the fundamental
relation

Ekin D 1

2
kT :

This holds even for macroscopic objects and for systems which are
not chemically uniform, such as for example dust-like suspended par-
ticles in liquids and gases.

16.6 The Experimental Determination
of BOLTZMANN’s Constant k
from the Barometric Equation

Everyone knows what happens in a liquid which is clouded by sus-
pended particles: In the course of time, it clears up; the particles
“drift down to the bottom” of the container. In this process, the
larger particles form a clearly-defined layer, while the finer ones are
in a diffuse cloud which gradually becomes thinner. – Interpretation:
The particles are pulled downwards by their weight (reduced by their
static buoyancy!). But the random thermal motions hinder their sink-
ing downwards5 The result of this competition is a distribution of the
particles over the whole depth of the liquid, just as the molecules of
the air are distributed over the depth of the atmosphere.

4 Therefore, one often uses the osmotic pressure to determine the molar massMm

of a dissolved substance. One obtains from Eq. (16.21)

Mm D R � M
V
� T
pos

.M=V D density %S of the solution/:

5 The BROWNian motion (cf. Sect. 9.1). Every suspended particle undergoes
a rapid, random series of collisions with the invisible molecules of the liquid.
Within the time �t between two such collisions, each suspended particle has on



PartIII

446 16 Heat as Random Motion

Figure 16.16 The density distribution of
suspended particles in water. This draw-
ing is based on photographs taken by
J. PERRIN. It represents four horizontal
layers at height intervals h of 10�m each.
The particles are grains of gummi gutta
with a diameter of 0.6�m and a density of
% D 1210 kg/m3. The mass of a single
particle is 1:25 � 10�16 kg; and its “effec-
tive” mass after subtracting its buoyancy is
m D 2:17 � 10�17 kg.

Figure 16.16 shows an example of suspended gummi gutta partic-
lesC16.15C16.15. Gummi gutta is

a natural resin, which is how-
ever poisonous. J. PERRIN
used a different resin, called
mastix.

in water, with a diameter of 0.6�m. The instantaneous
images show the distribution of the particles in four horizontal layers
which are each separated by 10�m in height. The series of these
images is in relatively good agreement with a longitudinal section
through the model gas atmosphere, i.e. with Fig. 9.33.

This qualitative agreement is rather convincing; however, the quanti-
tative evaluation will be decisive.

In Chap. 9, we have already discussed the distribution of the air
molecules in the gravitational field of the earth, described by the baro-
metric pressure formula. It was found to be given by:

ph
p0
D e
� %0gh

p0 (9.20)

(ph is the pressure at the altitude h, p0 the pressure and %0 the density of
the gas at the altitude zero (sea level)).

average the energy
1
2mu

2 D 3
2 kT (16.2)

.m is the mass of the suspended particle/:

Unfortunately, the time interval�t is far too short to permit a measurement of their
velocities. Otherwise, one could measure u directly, then insert it into Eq. (16.2)
and thus determine k.
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Now we replace the ratio of the pressures by the ratio of the number
densities of the molecules. We write

ph
p0
D NV;h

NV;0
D Number/Volume at the height h

Number/Volume at the height zero
: (16.22)

Furthermore, we relate the pressure and the density of the gas via the
equation of state for ideal gases. We write this in the form

p0 D %0
RT

Mm
D %0

kT

m
(14.21 and 14.23)

(k D BOLTZMANN constant, Mm D molar mass of the gas, m D mass of
one molecule)

and obtain the barometric pressure formula in the form

NV;h

NV;0
D e�

mgh
kT : (16.23)

This equation contains two unknowns, namely m and k. If how-
ever the mass m is known (it can be found e.g. from the particle
diameter and density), then one can determine k by counting the
particle numbers N as a function of the height h. This was first
carried out by J. PERRIN in 1909)C16.16. C16.16. See J. Perrin,

“Atoms”, 2nd ed., Van
Nostrand & Co., New York
(1923), Chap. 4. – JEAN

PERRIN (1870–1942), Nobel
Prize 1926.
Another method of determin-
ing k is described at the end
of Sect. 17.5.

The “effective” mass of
the individual suspended particles was m D 2:17 � 10�17 kg (cf. the
legend of Fig. 16.16). In air (the mass of a nitrogen molecule is
4:65 � 10�26 kg), the pressure p and the density % decrease by half
for each 5.4 km of altitude increase. In the case of the suspended
particles, this same decrease occurs over a height increase of only
4:65�10�26
2:17�10�17 � 5:4 � 106 mm � 0:01mm D 10�m. Compare Fig. 16.16.

A concentration gradient of the suspended particles can be produced in
several other ways. Frequently, the weight is replaced by centrifugal force
(Sect. 9.12, Point 1). With today’s materials, centrifugal accelerations of
up to the 106-fold of the earth’s acceleration of gravity can be reached
(rotational frequency � 1800 s�1 with a circumference velocity of around
900m/s at a radius of 8 cm). Then instead of g in Eq. (16.23), we can insert
106 g. In this way, even large molecules can be given a density profile like
that of suspended macroscopic particles (“ultracentrifuge”).

16.7 Statistical Fluctuations
and the Particle Number

The upper part of Fig. 16.17 shows a snapshot of our steel-ball model
gas (Sect. 9.7, exposure time� 10�5 s). The whole volume is divided
into 16 partial volumes by lines drawn through the container. In the
lower part of the figure, the same partial volumes are shown, each
one with a number N giving the number of molecules that it contains
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Figure 16.17 The ex-
perimental derivation of
Eq. (16.25)
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at that moment. The average value of N is N � 8, but the individual
values exhibit considerable fluctuations around this mean, defined by
the equation

" D Deviation �N of the individual value from the mean

Mean value N
:

(16.24)
The values of �N are also shown in Fig. 16.17, along with those of
.�N/2. We take the average value of the squared deviations, i.e. "2,
and find after a sufficiently large number of such experiments the
result:

"2 D 1

N
: (16.25)

In words: The mean value of the squared deviations is equal to the
inverse of the average number of individual objects involved.

This relation, which we have found here empirically, holds quite gen-
erally, e.g. for the volume occupied by the N gas molecules, for the
density of a gas, for the fluctuations over time of radioactive decay
rates, etc.

We present here a proof for the density fluctuations in an ideal gas. In
a large volume of such a gas, we imagine a partial volume V to be con-
fined in a cylinder which is closed at one end by a freely movable piston.
This piston can be considered to act as a very large molecule. As such, it
participates in the statistical fluctuations due to the thermal motions within
the gas.
If the piston during its random back-and-forth movements decreases the
volume V by �V , then its potential energy increases by

Epot D � 1
2�p�V :

Averaged over time, this must be equal to 1
2 kT, that is

1
2 kT D � 1

2 �p�V : (16.26)
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Now from differential calculus, we have

�p D dp

dV
�V

or, after insertion into Eq. (16.26),

.�V/2 D � kT

dp=dV
: (16.27)

The equation of state for the ideal gas (Eq. (14.23)) gives us the denomi-
nator:

dp

dV
D �NkT

V2
;

and thus �
�V

V

�2

D 1

N
: (16.28)

The left-hand side of this equation is the relative fluctuation of the volume
containing the N molecules. We can now introduce the number density of
the molecules, that is NV D N=V . We have NV.t/ � V.t/ D N D const, so
that (from the product rule for differentiation):

�NVV C NV�V D 0 (16.29)

or
�NV

NV
D ��V

V
; (16.30)

and finally
�

�NV

NV

�2

D
�

�%

%

�2

D 1

N
(16.31)

.% D mass density/:

16.8 The BOLTZMANN Distribution

We apply the barometric pressure formula:

NV;h

NV;0
D e�

mgh
kT : (16.23)

The product mgh has a simple physical meaning: it is the difference
�E of the potential energies of a molecules in the gravitational field
at two altitudes separated by the height difference h. We thus obtain

NV;h

NV;0
D e��E

kT (16.32)

(NV;h D number density of the molecules at the height h, NV;0 D number
density of the molecules at the base height. Molecules with the index h
have more energy than those at the base height by an amount �E.)
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This BOLTZMANN distribution, derived here for a special case, holds
quite generally. For all processes which take place in thermal equi-
librium, it gives the ratio of the numbers of molecules whose energies
differ by the energy �E in some arbitrary force field.

Within the scope of this introductory text, a few examples of the pos-
sible applications of this very general equation (16.32) will have to
suffice. It can be used for example to describe:

The dependence of the vapor pressure of a material on its tempera-
ture. Then �E refers to the heat of vaporization per molecule.

The MAXWELL-BOLTZMANN velocity distribution (Sect. 16.3).
Then �E refers to the kinetic energy of the molecules.

The dependence of the equilibrium of a chemical reaction on the con-
centrations of the reactants (the law of mass action). Here, �E refers
to the reaction energy per molecule for the reaction.

The dependence of the electrical conductivity of a non-metallic elec-
tron conductor on the temperature. Then �E is the separation energy
of an electron from its binding site.

The electron emission of a glowing body. Then �E refers to the work
function of an electron in the material.

The spectral energy distribution of the radiation from a ‘black body’.
Then �E is the energy h� of a light quantum of frequency �.

Owing to the great general importance of Eq. (16.32), we present below
another straightforward derivation:
We assume that two molecules with the energies E1 and E2 collide elas-
tically during their thermal motions; after their collision, they have the
energies E01 and E

0
2. Then we have from energy conservation

E1 C E2 D E01 C E02 : (16.33)

In statistical equilibrium (quasi-stationary state), the number of transitions
!
N from left to right in this equation must be equal to the number of tran-

sitions
 
N from right to left. We denote the number of molecules with the

energy E by N.E/. Then we have

!
ND constN.E1/N.E2/ ;
 
ND constN.E01/N.E02/ :

(16.34)

We take the two constants to be equal; that is a plausible assumption, which
is justified later by the success of our results. With this condition, if follows
from Eq. (16.34) that

N.E1/N.E2/ D N.E01/N.E02/ : (16.35)

Now we have to search for a function N.E/ which fulfills Eqns. (16.33)
and (16.35) simultaneously. This is the case for the trial function

N.E/ D N0e
ˇE : (16.36)
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It converts Eq. (16.35) into

N2
0e

ˇ.E1CE2/ D N2
0e

ˇ.E01CE02/ ;

and this, when Eq. (16.33) holds, is an identity. Furthermore, it follows
from Eq. (16.36) that

N.E1/

N.E2/
D eˇ.E1�E2/ : (16.37)

Finally, the comparison with Eq. (16.23), our special case for the baromet-
ric pressure formula, gives ˇ D �1=kT. We thus obtain quite generally

N.E2/

N.E1/
D e�

E2�E1
kT : (16.38)

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_16) contains supplementary material, which is avail-
able to authorized users.
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Transport Processes:
Diffusion and Heat
Conduction

17

17.1 Preliminary Remarks

We have already dealt twice with diffusion processes, both times in
connection with the molecular picture for thermal motions
(Sect. 16.1). In the present chapter, we want to discuss some as-
pects of the quantitative treatment of diffusion, and then to make
a few remarks about the related topics of heat conduction and heat
transport. – Beginners may want to skim over some of this mate-
rial. These are indeed problems of practical importance, but their
quantitative treatment is still not very satisfying.

17.2 Diffusion and Mixing

To begin, we need to demarcate the concept of diffusion clearly from
other phenomena involving mixing. – First, let us imagine that two
different but miscible liquids are arranged in two layers (cf. Fig. 9.1),
with the liquid of higher density below. The initially sharp boundary
surface between the two layers will gradually become washed out,
and in the course of many weeks, the two liquids will become com-
pletely mixed into a homogeneous solution. This case represents true
diffusion; the mutual intermixing of the two types of molecules is
simply a result of their molecular thermal motions.

In the second case, we imagine that local density variations are
present within the two liquids, produced for example by local
temperature differences. Then there will be upwards and downwards-
directed currents within the liquids, initially forming clearly-recog-
nizable patterns. This type of free convection makes a considerable
contribution to the intermixing of the two liquids; in comparison,
genuine diffusion may become practically insignificant (being orders
of magnitude slower).

This latter effect is exemplified in a third case. Now, we imagine that
convection is forced: Using moving solid bodies (e.g. the blades of
a stirrer), we produce turbulent flow.

453© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_17
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In order to observe pure, genuine diffusion by itself, we must sup-
press convection in its two forms, free and forced, by making use
of a suitable experimental arrangement. We can for example allow
fluids with a lower density to “float” on other fluids with a higher
density, carefully avoiding the occurrence of local temperature varia-
tions. Most simply, we can introduce one of the molecular species in
the solid phase.

17.3 FICK’s First Law and the Diffusion
Constant

We refer to Fig. 16.2 and reproduce it schematically in Fig. 17.1:
A gas, e.g. H2, is allowed to diffuse through a porous partition of
thickness l. On both sides of the partition and within its channels,
air serves as “solvent”. The partition serves only to avoid disturbing
convection currents.

As usual, we define the number density of the molecules by the quo-
tient

NV D Number N of dissolved molecules

Volume V of the solution
: (13.1)

On the front (left) side of the partition, we maintain the number
density constant at NV;a; behind the partition, all the molecules that
diffuse through are removed by some arbitrary mechanism, e.g. they
are blown away by an air stream. Then within the partition, there is
a constant gradient in the number density:

@NV

@x
D �NV;a

l
:

Wemeasure the number @N of molecules that diffuse through the area
A within the time @t, and thus experimentally determine the “molec-

Figure 17.1 The derivation of Eq. (17.1)
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ular current”:

@N

@t
D �DA@NV

@x
: (17.1)

In words: The current of diffusing molecules is proportional to the
gradient of their number density (FICK’s first law). The constant of
proportionality D is called the diffusion constant (here for H2 diffus-
ing in the air of the channels). This law holds in general, not just for
the particular geometry described above.

So much for the empirical facts. The molecular picture leads us to an
interpretation and permits the calculation of the diffusion constant D
in simple cases.

The diffusing molecules are continually undergoing collisions with
the molecules from their surroundings (the “solvent”). Each of them
is subject to a time-averaged force F in the direction of the diffusion,
which moves it against the frictional resistance of its surroundings
at an average velocity u. The corresponding frictional work is per-
formed with the power

PW D uF (5.33)

and is returned to the surroundings as kinetic energy. – For later con-
siderations, we define the quotient

	 D u

F
(17.2)

as the mechanical mobility.

If the mean free path is short compared to the diameter, then it follows
for example for spherical molecules from STOKES’s formula for frictional
motion (Eq. (10.7)) that:

	 D .6�R�/�1

(R is the radius of the molecules, and � is the coefficient of viscosity of the
surroundings, i.e. of the solvent).

Figure 17.2 represents a thin layer of the solvent perpendicular to
the direction of the diffusive motion. The cross-sectional area of the
layer is A, and its thickness is �x. It contains N D NVA�x dissolved
molecules (black dots). Each one of them is subject to the force F.
This force can be replaced by an osmotic pressure �p D .p1 � p2/
which presses against the surface element A=N. Then we find the
relation:

F D �p
A

N
D � 1

NV

�p

�x
: (17.3)
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Figure 17.2 The mechanism of FICK’s law

For the osmotic pressure, the ideal-gas equation holds:

p D N

V
kT D NVkT : (14.23)

It leads to
�p D �NVkT : (17.4)

Inserting equations (17.3) and (17.4) into Eq. (17.2) yields

F D u

	
D � kT

NV

�NV

�x

or, with the abbreviation

Diffusion constant D D 	kT ; (17.5)

we obtain

u D � D

NV

�NV

�x
: (17.6)

This “diffusion velocity” u implies that within the time �t, �N
molecules diffuse through an area A of the partition. Then we have

�N D �tAuNV ; (17.7)

or, for the diffusion velocity,

u D 1

A

�N

�t

1

NV
: (17.8)

Finally, we combine Eqns. (17.6) and (17.8) to yield FICK’s first law,
which we had already obtained above from purely empirical consid-
erations:

�N

�t
D �DA�NV

�x
: (17.1)

The diffusion constant D has the dimensions m2/s. Table 17.1 lists
some measured values.

Often, the diffusing particles are electrically-charged molecules.
These “charge carriers” acquire a preferred direction when an elec-
tric field is applied during their diffusion, and they thus carry an
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Table 17.1 Some examples of diffusion constants and diffusion paths

(Molecule) diffuses at a temperature
of (ıC)

with the diffu-
sion constant D�
m2

s

�

and a single molecule
moves from its original
position in one day (ac-
cording to Eq. (17.16)) by
a distance of

H2

O2

in air at atmospheric
pressure

0
0

6:4 � 10�5
1:8 � 10�5

3.3m
1.8m

Urea
Salt
Cane sugar

in water 15
10
18.5

1:0 � 10�9
9:3 � 10�10
3:7 � 10�10

13mm
13mm
8mm

Gold in molten lead 490 3:5 � 10�9 25mm
Gold in solid lead 165 4:6 � 10�12 0.9mm
H2

Potassium
as color centersa

in a KBr crystal 680
650

2:3 � 10�8
5:2 � 10�8

6 cm
9.5 cm

a Color centers: See Vol. 2, Sect. 27.14.

electric current. In this way, for example ionic currents and electron
currents can arise in liquids, in gases and in solids. In favorable
cases, these directed diffusion processes can be followed directly by
eye (see R.W. Pohl, Elektrizitätslehre, 21st ed. (1975), Sects. 16, §6
and 25, §22; or cf. the image on the Wiki site for R.W. POHL, https://
en.wikipedia.org/wiki/Robert_Pohl).

The mobility	e of the charge carriers is not referred to the force, but rather
to the electric field E D force F=charge e. We thus obtain the electrical
mobility

	e D u

E
D ue

F
D e	 (17.9)

(e D charge of the carriers, e.g. in ampere second (A s); 	 as defined in
Eq. (17.2)).

17.4 Quasi-Stationary Diffusion

The application of FICK’s first law presupposes that we know the
gradient of the number density, i.e. �NV=�x. It can be readily de-
termined for a stationary state (Fig. 17.1). This may also be the case
to a good approximation for many processes which are only approx-
imately stationary (quasi-stationary states). An example of this type
is sketched in Fig. 17.3. A solid body Y contains N molecules of type
I in the volume V; their number density is thus NV D N=V. Think
of a solid-state solution, e.g. of thallium atoms in a KBr crystal. Into
this solid body, we suppose that N� molecules of a gas diffuse in-
wards from the left, for example Br2 molecules. They are supposed
to unite at the diffusion front with N molecules of type I and there-
fore to drop out of further diffusion processes. By what distance x
does the diffusion front move forward within a time t?

https://en.wikipedia.org/wiki/Robert_Pohl
https://en.wikipedia.org/wiki/Robert_Pohl
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Figure 17.3 Linear concentration gradient for
diffusion accompanied by chemical reaction

Within the volume A dx, there are dN D NVA dx molecules of type I;
thus, we have

dN�

dt
D NVA

dx

dt
: (17.10)

This process can still be treated to a very good approximation as sta-
tionary. That is, we can neglect dx relative to x and treat the process
as if it occurs practically at a fixed location. As a result, the layer of
thickness x which has already been chemically converted takes over
the function of the partition in Fig. 17.1. The concentration of dif-
fusing molecules is N�V at the left of this layer, and at the right, after
the layer, i.e. at the diffusion and reaction front, it is zero. Thus we
again find as an approximate expression for the diffusion concentra-
tion gradient

�N�V
�x
D �N

�
V

x
: (17.11)

We apply Eq. (17.1) to the N� molecules and obtain together with
Eqns. (17.10) and (17.11) the result

NV
dx

dt
D D

N�V
x

: (17.12)

The solution of this differential equation is

x2 D 2
N�V
NV

Dt ; (17.13)

and thus, as the answer to the question in italics above,

x2

t
D D � const (17.14)

.‘const’ is a pure number/:
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This result has been demonstrated with the example mentioned
above, the diffusion of Br2 into a Tl-doped KBr crystalC17.1. C17.1. The crystal takes

on a brown color on be-
ing heated in K vapor
(E. Mollwo, Ann. Physik,
5th Series, Vol. 29, p. 394
(1937)).

The
previously brown layer x becomes clear, since the TlBr molecules
formed are colorless. – Equation. (17.14) plays an important role for
surface reactions on metals, i.e. when they “tarnish”.

17.5 Non-Stationary Diffusion

In our two examples of applications of FICK’s first law, the number
density of the diffusing molecules at the front of the diffusion path (at
a distance l from the left-hand surface in Fig. 17.1 or the coordinate
xCx in Fig. 17.3, respectively) was held constant at the value zero.
In general, the number density NV of the molecules on both sides
of the diffusion region being considered is variable over time. The
process is then no longer stationary; the spatial distribution of the
diffusing molecules varies in the course of time. The increase in the
number density NV in a region between x1 and x2 can be obtained
from the difference in the numbers of molecules flowing in at x1 and
out at x2.

If we again assign a positive sign to a particle current moving in the pos-
itive x-direction, then for the rate of change of the number density NV in
the volume V between x1 and x2 we find

@NV

@t
D 1

V

(
@N

@t

ˇ
ˇ
ˇ
ˇ
x1

� @N

@t

ˇ
ˇ
ˇ
ˇ
x2

)

:

Setting V D A � .x2�x1/ and making use of Eq. (17.1), we obtain from this

@NV

@t
D D

@2NV

@x2
: (17.15)

This differential equation is called FICK’s second law.

We also give an example of a non-stationary diffusion process here;
however, we will not derive it. In our example, at the time t D 0, the
number density in a whole region is taken to be zero. At the front
side of this region, it has the value NV;a, and this value is held con-
stant during the entire process of diffusion. How does the distance x
between the location of a certain concentration NV;x and the entry
point x D 0 change? Answer: Once again, we have

x2

t
D D � const : (17.14)

The conclusions implied by this equation are represented graphically
in Fig. 17.4: The distributions of the number densities at various
times remain similar to each other. They can be made identical by
a suitable choice of the time-axis scales.
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Figure 17.4 The diffusion gradient as a function of time. The distances x
traversed by a particular given value of the number density, e.g. 40% of its
initial value NV;a, behave as the square roots of the diffusion times, e.g. as
1 : 2 : 4.

In the case of BROWNianmotion, one does not observe diffusion as a mass
phenomenon, but instead as an individual process. One cannot follow the
progress of a certain concentration, but only of single particles. One mea-
sures how the distance x of a given particle from an arbitrary starting point
gradually increases with time t. In this case, for the constant in Eq. (17.14),
we find the number 2. We thus have

x2

t
D 2D : (17.16)

If the particles are spherical, we can compute D by using Eq. (10.7)
(Stokes’ law) and Eqns. (17.2) and (17.5). We then obtain

x2

t
D kT

3��R
(17.17)

.R is the particles’ radius, � the viscosity coefficient of the fluid/:

From this equation, we can also make an experimental determination of
the value of the BOLTZMANN constant (k D 1:38 � 10�23 W s/K).

17.6 General Considerations on Heat
Conduction and Heat Transport

As we have already mentioned in Sect. 13.3, heat can be transported
either through “conduction” or through “radiation”. The necessary
precondition is a temperature gradient. Heat conduction takes place
in the interior of materials via different mechanisms, such as molec-
ular motions in gases and liquids, or elastic waves and electronic
motion in solids. In gases and liquids, as for diffusion, “genuine”
heat conduction due to processes on the molecular scale must be dis-
tinguished from the usually predominant heat transport by free and
forced convection.
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Figure 17.5 Convective heat transport via convection cells, each of which
is formed by a flow of hot liquid from the hotplate upwards and of cooled
liquid back downwards (BÉNARD cells (1900)C17.2) C17.2. E.L. KOSCHMIEDER:

“BÉNARD Cells and Taylor
Vortices”, Cambridge Univer-
sity Press (1993).

within a liquid layer
(e.g. in liquid paraffine). The cells are deformed by mutual pressure into
mainly hexagonal shapes, sometimes with a regularity which approaches that
of a honeycomb. In each cell, the liquid is rising in the interior and sinking
on the outside of the cell. The flow is completely stationary. If it is disturbed
by stirring, a new pattern is formed within a fraction of a minute (actual size).

Figure 17.5 shows an example for heat transport by convection. A hot
metal plate is covered with a layer of liquid about 3mm thick; above
it is the cool room air. The liquid contains suspended fine aluminum
particles which make its free convection visible. They exhibit a com-
plicated, honeycomb-like pattern. Heat transport by forced convec-
tion can be found for example in the cooling systems of automobiles.

An important and instructive application of heat transport mainly by
convection is exhibited by the countercurrent heat exchanger. – In
the laboratory, one sometimes needs to change the temperature of
a flowing substance temporarily, e.g. in order to accelerate a chemi-
cal reaction within a fluid or to purify a liquid by distillation. Then
the scheme which is sketched in Fig. 17.6 can be used: At the left,
heat is applied to the flowing substance by a Bunsen burner flame
below the flask, while at the right, heat is removed by a water-cooled
condenser. Such a setup is convenient but wasteful. All of the heat
power added at point a is lost again at b and carried off by the cooling
water. Such an arrangement would be unacceptable for large-scale
technical applications; but it can be avoided, in the ideal limiting case
completely. This is the function of the countercurrent heat exchanger,
developed in 1857 by WILHELM SIEMENSC17.3. C17.3. W. SIEMENS: see

Comment C15.6 in Chap. 15.
– An important technical
application of the coun-
tercurrent exchanger is in
the liquefaction of air by
the LINDE process (see
Sect. 15.5).

Its principle is indi-
cated in Fig. 17.7. At the left, the liquid whose temperature is to be
varied flows in, for example water at room temperature T1; below, in
the round boiling flask, it has a temperature T2, say 353K (80 °C).
At the upper right, water at room temperature T1 again flows out.
In principle, one needs to add heat to the flowing liquid only at the
beginning of operation; in this example, by heating the water in the
boiling flask to 80 °C. From then on, further heat input is theoretically
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Figure 17.6 Producing temperature
variations in a flowing substance without
energy conservation

Figure 17.7 Schematic of a countercurrent heat
exchanger; the temperature change of the flowing sub-
stance is accomplished with minimal energy losses

unnecessary. The upwards-flowing water in the outer tube gives its
heat up to the downwards-flowing water in the inner tube. When the
tubes are sufficiently long, this “temperature exchange” takes place
with only tiny temperature gradients. At every level along the tube,
the upwards-flowing (outgoing) water is only slightly warmer than
the downwards-flowing (incoming) water adjacent to it.

In reality, no countercurrent exchanger can function without adding
any heat energy at all. Firstly, losses due to heat conduction along
the tubing are unavoidable1. As a result, continuous addition of heat
is necessary, but at a much lower power level than in the setup of
Fig. 17.6. Secondly, the flow within the tubes must be turbulentC17.4,C17.4. Turbulent flows

were already described in
Sect. 10.4.

in order to ensure good heat exchange. Maintaining a turbulent flow
however requires a power input to a pump or some similar arrange-
ment.

Summarizing briefly: In the ideal limiting case, the countercurrent
exchanger fulfils an important technical function: It makes it possible
to temporarily change the temperature of a flowing substance without
a continual high power input.

For this reason, this trick is used by many warm-blooded animal species to
reduce heat losses, for example when their feet remain in contact with cold
water or ice for long periods. – Example: The male Emperor penguin who
is brooding an egg. He has to stand on the ice in the south-polar weather
for around two months without any nourishment!

1 They can, however, be minimized by using very long, helically coiled tubing.
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17.7 Stationary Heat Conduction

Genuine heat conduction can be readily observed in solid bodies. We
suppose that in a time �t, a (thermal) energy �Q passes through an
area A, driven by a temperature gradient �T=�x. Then we obtain for
the heat current:

�Q

�t
D ��A

�T

�x
: (17.18)

In words: The heat current is proportional to the temperature gradi-
ent. The proportionality constant � is called the thermal conductivity
coefficient. It depends strongly on the temperature. This is illus-
trated in Fig. 17.8 with three examples. – In copper, a typical metal,
heat transport is accomplished almost entirely by the (conduction)
electrons; in crystalline quartz, an insulator, it is due completely to
high-frequency elastic waves (quantized sound waves or phonons).
Both the electrons and the elastic waves are scattered by other elastic
waves (electron-phonon and phonon-phonon scattering). The fre-
quency of occurrence of such scattering processes decreases with

Cooper drawn and 
tempered

Quartz, crystalline

Quartz, 
vitreous

KTemperature
1 10 100 1000

10

1

10–1

102

10–2

10–3

T
he

rm
al

 c
on

du
ct

iv
ity

 c
oe

ff
ic

ie
nt

  λ

W
cm2∙K/cm

Figure 17.8 The dependence of the thermal conductivity coefficient � on the
temperature
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decreasing temperature. At very low temperatures, a different distur-
bance of heat transport predominates, namely scattering by localized
lattice defects and by the surfaces of crystallites. Given the complete
disorder in quartz glass, for example, its heat conductivity is very
smallC17.5.C17.5. See e.g. R.O. Pohl,

Xiao Liu, and E. Thomp-
son, Rev. Mod. Phys. 74, 991
(2002).

All these topics belong among the problems of solid-state
physics.

17.8 Non-Stationary Heat Conduction

Non-stationary heat conduction can be described by a differential
equation, analogous to FICK’s second law for diffusion. For heat
conduction which is limited to the x direction (i.e. one-dimensional),
it is given by

@T

@t
D � �

% � c �
@2T

@x2
: (17.19)

Here, � is the thermal conductivity coefficient defined by Eq. (17.18),
% is the density of the conducting material, and c is its specific heat.
The ratio �

%�c is called the temperature conductivity (units e.g. m2/s).

We will give only one example of non-stationary heat conduction.
It is analogous to the diffusion process illustrated in Fig. 17.4. In
Fig. 17.9, at the time t D 0, we suppose that the temperature T is the
same at all points within a metal rod. Then it is suddenly increased
to the value T1 at one end of the rod; thereafter, we observe the tem-
perature distribution along the rod as a function of time. Figure 17.9
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Figure 17.9 Raw data from a demonstration experiment showing the time
evolution of a temperature gradient (in an iron rod of 8mm diameter and
1m length, without any thermal insulation. The setup is shown in the up-
per image). The distance travelled by a point at a particular temperature is
proportional to the square root of the time.
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shows the results: The distance x from the entry point x D 0 to the
point at which a certain temperature Tx is observed increases pro-
portionally to the square root of the elapsed time. The temperature
distributions observed at different times remain similar to each other.
They can be made to appear identical by a suitable choice of the time
scales.

17.9 Transport Processes in Gases and
Their Lack of Pressure Dependence

In gases and liquids (i.e. fluids), the relation between diffusion
and heat conduction is intuitively clear. In the case of diffusion,
we are dealing with the statistically-ordered forward motion of the
molecules. Heat conduction can be described concisely as the diffu-
sion of an excess of kinetic energy of the molecules. In Fig. 17.10,
we suppose that the wall at the left is at a higher temperature than
the gas in the container; convection is excluded. Then the adjacent
gas layer will be the first to be heated, i.e. its molecules will ac-
quire an increased kinetic energy. This distinguishes them from the
molecules in other layers. No distinguishing feature of any kind can
be maintained in a statistical process with a large number of individ-
uals (molecules). The distinguished molecules must therefore give
up a part of their excess kinetic energy in collisions with the other
molecules. Thus, the excess kinetic energy gradually diffuses into
the gas layers further to the right.

In a completely analogous manner, we can understand another phe-
nomenon which depends on molecular motions but which we have
thus far not explained: Internal friction (Sect. 10.2, see in particular
Fig. 10.2). In Fig. 17.11, we suppose that the left wall is moving up-
wards with a velocity u. The molecules in the adjacent layer acquire

Figure 17.10 The mechanism of heat conduction in gases

Figure 17.11 The mechanism of internal friction in gases
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Figure 17.12 The lack of dependence of the internal friction (viscosity) on
pressure. The spacing between the rotating cylinder L and its surrounding
housing is exaggerated in the drawing for clarity.

a preferred direction of motion (upwards) through collisions with this
wall, and therefore have an additional momentum component mu di-
rected upwards. This is indicated in the figure by small arrows. This
one-sided excess momentum distinguishes the molecules of the layer
nearest the wall from all the others in the container. This distin-
guishing feature cannot be maintained in a statistical ensemble of
molecules; thus, the upwards-directed excess momentum is gradu-
ally transported into the layers further to the right and causes them to
move, albeit more slowly, in the same direction as the wall. We see
that internal friction or viscosity can be concisely described as the
diffusion of an additional momentum component of the molecules.

Just like diffusion and heat conduction, internal friction (viscosity)
can be strongly enhanced by convection, especially by turbulent con-
vection. We have already seen this in Sect. 10.4.

The relation between diffusion, heat conduction and internal friction
in gases becomes very clear through a common feature: All these
phenomena are independent of the gas pressure over a wide range.
This surprising fact can be most simply illustrated for the case of
internal friction.

In Fig. 17.12, an inner cylinder is rotating within an outer cylinder.
Their spacing is about 1mm, apart from a segment a. There, the spac-
ing is reduced to roughly 0.2mm. During rotation, the air between
the two cylinders is set in motion in the direction of the rotation, due
to its viscosity. Then, between the two regions ˛ and ˇ, a pressure
difference is built up, here � 20 hPa. We then pump a large fraction
of the air, 80% or more, out of the chamber containing the cylinders.
Nevertheless, the manometer continues to show the same pressure
difference of� 20 hPa.

The following experiment is even more striking: We put a steel ball into the
upper end of a precision glass tube which is standing vertically (diameter
� 15mm). The difference in the outer diameter of the ball and the inner
diameter of the tube is about 0.01mm. The tube contains air at atmospheric
pressure (� 105 Pa). During the downward motion of the ball as it falls



17.9 Transport Processes in Gases and Their Lack of Pressure Dependence 467

Pa
rt
III

Figure 17.13 A simple demonstration experi-
ment to show the lack of dependence of the heat
conductivity of a gas on its pressure. The heat
current flows out of the hot water bath through
the gas layer in the double-walled vessel into the
diethyl ether ((CH3CH2)2O) and produces a cor-
responding current of ether vapor. The strength
of this current is shown by the height of an ether
flame which is burning at the top of the vessel.
Over a large range, it is independent of the pres-
sure of the gas layer between the vessel walls.

through the tube, the gas within the tube must flow around the ball through
a very narrow, circular slit. Its viscosity produces a large resistance: The
ball does not “fall” with an acceleratedmotion, but instead it “sinks” (after
a brief initial period) with a constant velocity (Sect. 5.11). At this velocity,
it covers a distance s (e.g. 60 cm) in a time t (e.g. 30 s). If we reduce the gas
pressure p, the time required for the ball to sink initially remains the same.
Only at a pressure of p � 0:16 � 105 Pa does it begin to sink noticeably
faster; at p � 1:3 Pa, it finally approaches free fall.

The lack of dependence of the heat conductivity of a gas on its pres-
sure is likewise relatively easy to demonstrate. Details are shown in
Fig. 17.13.

So much for the facts. Nowwe consider their explanation on a molec-
ular basis: The number of molecules diffusing in a given time through
a given area, the amount of their additional momentum or of their
excess kinetic energy are all proportional to their number density
NV. They are in addition proportional to the mean free path l of
the molecules, i.e. to the distance they travel on the average between
collisions (Sect. 16.3). NV increases in direct proportion to the gas
pressure, but l decreases in indirect proportion to the pressure; their
product is thus independent of pressure. Therefore, in gases, every
type of diffusion (or “transport process”) does not depend on the pres-
sure.

Hydrogen has a very long mean free path; under standard conditions
(0 ıC; 1013 hPa), it is l D 1:4 � 10�7 m. As a result, hydrogen has a very
high heat conductivity (cf. Fig. 17.14).

At very low pressures, the concept of the mean free path l begins to
become meaningless: The mean free paths of the molecules become
larger than the dimensions of their container. The molecules can then
bounce back and forth unimpeded between opposite container walls.
The momentum or energy transferred to and from the walls becomes
smaller as the density of the gas decreases. This is the principle of
the Thermos bottle, a container which has double walls separated by
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Figure 17.14 A simple demonstration experiment for comparing the heat
conductivities of H2 and air. In addition to genuine heat conduction, free
convection also occurs. Two identical platinum wires (connected in series)
are heated by the same electric current. The wire in air glows bright yellow,
and is thus very hot, while the wire in H2 remains dark; it is cooled by the
high thermal conductivity of the hydrogen. In mixtures of gases, the heat
conductivity depends on the composition of the mixture. This is the reason
why heat conductivity is often used in technical applications to monitor the
composition of a gas mixture. – The basic aspects of the different processes
can be readily demonstrated with the above setup.

an evacuated space. Heat transport to and from its interior can occur
only through radiation.

But even these radiation losses can be reduced! To accomplish this, the
vacuum space is filled with a large number of thin layers of aluminized
plastic, e.g. Mylar, typically 30 layers/cm, which are separated from each
other by an electrically-insulating material, for example Nylon netting.
Since the temperature difference between neighboring Mylar layers is
small, the radiative heat transport between them is also very small. The
overall heat transfer through this stack is inversely proportional to its
thickness, and thus can be represented as a mean apparent thermal con-
ductivity between the outer, warm surface of the container and its inner,
cold surface. Even with a residual gas pressure of some 10�2 Pa, the
thermal conductivity of these “superinsulated” Thermos or cryogenic con-
tainers is of the order of 10�7 W/(cmK) between the outer wall at 300 K
and the inner wall at 20KC17.6,C17.6. JACK W. EKIN, Ex-

perimental Techniques for
Low-Temperature Measure-
ments, Oxford University
Press (2006), p. 57 and
Fig. 2.4, p. 58.

which is about four orders of magnitude
lower than the thermal conductivity of vitreous quartz at 10K (Fig. 17.8).

17.10 Determination of the Mean Free
Path

The relationship between the three diffusion phenomena (of mol-
ecules, of momentum and of energy) and the mean free path lmakes it
possible to determine this important quantity experimentally by three
different methods. The necessary formulas (Eqns. (17.22), (17.24)
and (17.26)) can be obtained from fairly simple considerations. We
proceed in a similar manner as in Sect. 9.8, where we dealt with the
pressure of a gas. Instead of Fig. 9.25 as used there, we refer here to
Fig. 17.15. We consider the molecules which pass through a cross-
sectional area A at the position x, coming from the left and the right.
Two other areas are drawn in to the left and the right of the area A at
the positions .x � l/ and .xC l/; l here denotes the mean free path.
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Figure 17.15 The derivation of
Eq. (17.20)

On average, the molecules which will pass through A from the left
and from the right suffer their last collisions before reaching A at
these two adjacent areas. The number densities NV of the molecules
and their velocities u thus remain constant within the two shaded vol-
umes. From the left, in a time dt, a number

dN1 D Adt 16 .NVu/.x�l/ ;

of molecules arrives at A, and from the right, a number

dN2 D Adt 16 .NVu/.xCl/ :

We have encountered the factor 1
6 previously in Sect. 9.8. The result-

ing molecular current in the x-direction is then

dN

dt
D A

6
Œ.NVu/.x�l/ � .NVu/.xCl/� D �A

6

d.NVu/

dx
2l ;

or

dN

dt
D �A l

3

d.NVu/

dx
: (17.20)

Note that this equation is quite general and could be applied to any
ensemble of moving particles, macroscopic or microscopic. We will
apply this general equation to particular situations involving molecu-
lar motions in the following:

1. Diffusion of molecules. The temperature is the same everywhere, and
thus u, the average molecular velocity, is constantC17.7.

C17.7. We now apply the
general equation (17.20)
to the particular case of
molecules with their random
thermal motion. We cannot
specify a microscopic ve-
locity here; only a statistical
average over the six spa-
tial directions and the wide
range of magnitudes can be
given. It was introduced in
Sect. 9.8 as the “rms (root-
mean-square) velocity” urms,
and more precisely defined
in Eq. (16.3). The average
molecular velocity referred
to here and used in the next
sections is this statistical ve-
locity. It is an average over
the microscopic, random ve-
locities of the molecules, and
we denote it here for short
by u, to keep it separate from
macroscopic velocities such
as u?, referred to in the dis-
cussion of viscosity, or the
phonon velocity u mentioned
in Comment C17.8.

For the diffusing
molecular currents, we obtain

dN

dt
D �A l u

3

dNV

dx
D �DA dNV

dx
; (17.21)

which is FICK’s first law with the diffusion constant

D D l u

3
: (17.22)
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2. Diffusion of additional momentum, i.e. internal friction or viscosity as in
Fig. 17.11. Perpendicular to the direction of their diffusion, the molecules
have an additional velocity component u? (indicated by small arrows in
Fig. 17.11. This is typically a macroscopic flow velocity). They thus have
an excess momentum p? in the direction of this velocity. For the momen-
tum current, we have

dp?
dt
D � l

3
A
d.NVumu?/

dx
D � l u

3
ANV

du?
dx

m

or, using Eq. (5.41),
F

A
D ��

du?
dx

; (17.23)

and, assuming a homogeneous velocity gradient and generalizing the ve-
locity to u,

F D �A
u

x
; (10.2)

we find the viscosity coefficient � to be:

� D l u

3
NVm : (17.24)

3. Diffusion of energy: heat conduction as in Fig. 17.10. Each molecule
transports the additional energy 1

2 fkT, and all the molecules together trans-
port in this way a thermal energy Q (f D number of degrees of freedom,
k D BOLTZMANN constant). For the energy current, we find:

dQ

dt
D � l u

3
A
1

2
NVfk

dT

dx
(17.25)

or
dQ

dt
D ��A

dT

dx
(17.18)

with the “thermal conductivity coefficient” �C17.8C17.8. This expression
(the right-hand term in
Eq. (17.26)) holds also for
the heat conductivity in
electrically-insulating solids
(see Fig. 17.8), where c is
the specific heat contribution
due to lattice vibrations (see
Fig. 14.5) that propagate
through the crystal lattice
at the velocity u as elastic
waves (then u replaces the
average molecular velocity
u).

� D l u

6
NVfk D 1

3
l u%c (17.26)

.% D density; c D specific heat/:

17.11 The Mutual Relations
of Transport Processes in Gases

Up to now, we have treated the various transport processes as inde-
pendent of one another. This is quite correct in a first approximation.
However, when we look more closely, we find experimentally that
the different transport phenomena are mutually interrelated. We of-
fer four examples of these interrelations:
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Figure 17.16 The production of
a temperature difference by dif-
fusion. The smaller image below
shows the brass slit valve which
separates the two chambers I and
II. The thermocouples 1 and 2 are
made from silver foils with welded-
on wires of steel and Constantan.

1. Diffusion in gases produces temperature differences and they in
turn lead to heat conduction. In Fig. 17.16, chamber I contains hy-
drogen, and thus a gas with a small molar mass, Mm D 2 g/mol.
Chamber II contains carbon dioxide, with Mm D 44 g/mol. Both
of these gases are at the same pressure and temperature; 1 and 2 are
thermocouples connected in opposition. – By a slight rotation around
the long axis of the chambers, we can open a slit valve which sepa-
rates the two chambers (cf. small image below!). Then the two gases
can mutually diffuse into one another. After we open the valve, for
around 30 seconds, a temperature difference of about 0.6 °C is estab-
lished, with chamber II at a lower temperature.

Explanation: The small H2 molecules quickly penetrate into the CO2

via isothermal diffusion, so that the number density NV and the pres-
sure p temporarily drop in chamber I. In order to restore their original
values, the gas in chamber II expands adiabatically, thereby com-
pressing the contents of chamber I and performing external work. As
a result of this work, the gas in chamber II cools; the temperature
thus exhibits a gradient, increasing in the direction II ! I, in the
same direction as the diffusion of the heavier molecules (CO2).

2. Temperature differences produce a pressure difference in gases
(KNUDSEN effect). In Fig. 17.17, a portion of room air is confined
within a porous clay cell. Inside the cell, there is an electric heater.
As a result, the temperature in the tiny channels of the clay walls is
higher near the inside of the walls than on the outside. A glass tube
which extends below the cell into a beaker of water allows the air in
the cell to expand and escape to the outside (bubbles!). We observe
a continual stream of escaping air: Room air is constantly pulled
through the porous clay walls into the heated cell, and as a result, the
pressure within the cell is higher than outside it.

The explanation starts with the condition for a stationary state. The number
of molecules passing through a cross-sectional area A in the time dt is
NVuA dt. Assuming that the same number enter and leave the channels
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Figure 17.17 Porous clay cylinder for demonstrating
the KNUDSEN effect

in the cell walls in a given time, and that the channels on average have
a uniform cross-section, this leads to:

.NVu/1 D .NVu/2; (17.27)

where the indices 1 and 2 refer to the quantities on the hot and the cool
sides of the porous wall, respectively.
This equation (17.27)C17.9

C17.9. In fact, Eq. (17.27) is
a continuity condition. The
air molecules outside the
cell at (2) are in equilibrium
at the (lower) temperature
T2. They enter the chan-
nels with the net average
(one-dimensional) velocity
uch;2 D u2. The mean free
path l plays no role within
the channels. There, the
molecules are rapidly ther-
malized to the (higher) inner
temperature T1 and exit at
(1) with the somewhat higher
velocity uch;1 D u1.
Their density NV has de-
creased slightly.
Since no molecules are
lost or gained within the
channels, their entering
molecular current dN2=dt
is equal to the exiting cur-
rent dN1=dt. These currents
are given by .NVuA/1;2 (A is
the net cross-sectional area
of the channels). This gives
Eq.(17.27), taking A1 D A2.
The rest of the calculation
leading to Eq. (17.28) is
simple manipulations of
Eq. (16.1), making use of the
ideal gas equation (14.23).

is combined with the ideal gas law,

p D NVkT (14.23)

and (from the kinetic theory of gases, Chap. 9) with

1

2
mu2 D 3

2
kT ; (16.1)

yielding after some simple manipulations:

p1p
.T/1

D p2p
.T/2

: (17.28)

That is, when the temperature is different on the two sides of the porous
wall, the pressures also become different.

3. In gas mixtures, temperature differences produce concentra-
tion gradients (thermodiffusion). The KNUDSEN effect which we
discussed above under Point 2 requires only one species of gas
molecules. It was simply convenient to describe it there using a mix-
ture of gases, namely room air.

We could leave out the porous wall, use a mixture of gases instead
of a pure gaseous substance, and maintain a temperature gradient
within the gas mixture. Then the molecules of higher mass will be
enriched in the cooler region; the heavier molecules thus move in the
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Figure 17.18 Separation of a gas mixture by ther-
modiffusion in a “separation tube”. A wire, tightly
stretched in the middle of the tube, is heated until
it glows in a mixture of CO2 and H2 (partial pres-
sures� 0:37 bar and 0.13 bar; the CO2 should
be filled first!). In about 5 minutes, the hydrogen
becomes enriched in the upper part of the tube,
and prevents the wire from glowing there due to
its good heat conductivity. (For the demonstration
setup, the tube length is 1m and its inner diame-
ter is 1 cm. The wire should be well centered and
the long axis of the tube exactly vertical). One can
also use a mixture of argon and bromine vapor.
Then, the enrichment of bromine at the lower end
of the tube causes it to liquefy there.

direction of decreasing temperature. This phenomenon is called ther-
modiffusion. It was applied by K. CLUSIUS very successfully for the
separation of molecular mixtures, in particular mixtures of different
isotopes. His “separation tube” consists of a long, vertically-mounted
glass tube with an electrically-heated wire along its central axis. The
warm mixture of gases rises near the center of the tube, while cooler
gas sinks near the outer wall. The molecules of greater mass diffuse
preferentially radially outwards and are carried down by the gas flow
at the perimeter of the tube so that they are enriched near the bot-
tom. Figure 17.18 shows a demonstration setup. Thermodiffusion
also occurs when one of the “molecular species” consists of larger
particles. For example: Warm air rises above a radiator, and between
the radiator and the cooler wall, there is a temperature gradient. Dust
accumulates in front of the wall, so that it becomes soiled with streaks
of dust. – When a pot is used for cooking over an open fire, small par-
ticles of soot from the hot flame gases drift towards the bottom of the
pot and cover it with a layer of carbon black.

The explanation of thermodiffusion also follows from Eq. (17.20). We
must simply take into account that NV and u in Fig. 17.15 are, in a precise
description, somewhat different on each side of the surface A when a tem-
perature gradient is present along the x-direction. – In Eq. (17.20), we
replace the number density NV by 3p=mu2 (this expression follows from
Eq. (9.14) with the density % D NVm). Then we obtain

dN

dt
D �Apl

m

d.1=u/

dx
: (17.29)

Now using
1

2
mu2 D 3

2
kT (16.1)

we find after some straightforward manipulations

dN

dt
D CA lp

2T
p
3mkT

dT

dx
: (17.30)

Thus, a molecular flow results, and it moves in the direction of increas-
ing temperature. This flow is stronger for the lighter molecules in a gas
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mixture than for heavier ones. In the stationary state, therefore, the lighter
molecules are enriched towards the hotter side and the heavier molecules
are enriched towards the cooler side.

4. Pressure differences in gases produce temperature differences.
Figure 17.19 shows a “vortex tube”, above as a section along its
length, and below in cross-section at the location b. At this point,
air enters tangentially into the tube at a high pressure p. Centrifugal
force ensures that the pressure is higher just inside the walls of the
tube than at its center axis. To the right of position b, there is an ori-
fice of about 2mm diameter. A valve H provides a means to regulate
the relative strength of the airflows which are moving to the right and
to the left. The airstream which exits the tube at the right is cool,
while the stream exiting at the left is warm. With p D 6 bar, we can
readily obtain a temperature difference of 40 °C. Within a short time,
the right-hand end of the tube is covered by a thick layer of frost.

Figure 17.19 Vortex tube (RANQUE-HILSCH vortex tube: R. Hilsch,
Z. Naturforschung 1, 208 (1946))
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The State Function
Entropy, S 18

18.1 Reversible Processes

All mechanical, electrical and magnetic processes in which – in the
ideal limit – no temperature differences occur, are reversible. This
means that such processes could in principle be made to ‘run back-
wards’ along the path that they have taken previously. Their initial
state can be restored, without causing a permanent change of state in
any of the components involved. Some examples:

A mechanical or an electrical oscillation takes place reversibly; it
reproduces its initial state over and over in a periodic sequence.

The free fall of a steel ball is likewise reversible, but restoring its ini-
tial state requires some auxiliary apparatus, e.g. a hard steel plate as
in Fig. 5.10. With its help, the accelerated downwards motion can be
converted into an upwards motion. The steel plate is not changed in
any lasting way in this process; it serves only as a temporary storage
medium for potential energy.

A third example of a reversible process can serve to explain the con-
cept of “quasi-static”. It is illustrated in Fig. 18.1. The force F of
a stretched helical spring and the weight FG of a mass are kept always
very close to equilibrium; this is accomplished by a lever system
whose leverage is continuously variable. Then an arbitrarily small
difference between F and FG can precipitate motion in the one or
the other direction. The initial state can thus be restored at any time.
This process must proceed very slowly, and thus practically without

Figure 18.1 The quasi-
static expansion of
a stretched spring

475© Springer International Publishing Switzerland 2017
K. Lüders, R.O. Pohl (Eds.), Pohl’s Introduction to Physics, DOI 10.1007/978-3-319-40046-4_18
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Figure 18.2 Quasi-static
expansion of a working
substance, for example com-
pressed air

acceleration. Such a process is called quasi-static. Briefly, we define
a quasi-static process as a sequence of equilibrium states.

Processes in which temperature differences occurmay also take place
quasi-statically. They must take place quasi-statically if they are to
be considered reversible. Examples:

Figure 18.2 shows the reversible, quasi-static expansion of a gas. The
variable leverage has to be adjusted to fit the particular gas.

As a second example, we consider the reversible, quasi-static conver-
sion of a liquid into a gas or vice versa. In Fig. 18.3, we see a cylinder
with a piston. Below the piston is a liquid, with its gaseous phase (va-
por) between the piston and the liquid surface. The piston is pressed
down by a weight; above the piston, the cylinder has been evacuated.
The pressure of the piston can be adjusted by choosing the weight
so that the pressure of the piston is practically equal to the saturation
vapor pressure of the liquid substance, Case B. Then the piston can
either rise very slowly and convert all the liquid into vapor, Case A;
in this case, heat energy must be supplied from the surroundings. Or
else it can descend very slowly and condense all the gas to liquid,
Case C; in this case, heat must be given up to the surroundings. Both
processes, A and C, take place extremely slowly, i.e. quasi-statically,
and therefore reversibly. Arbitrarily small temperature differences
suffice to push the process in one or the other direction.

Summary: All reversible processes are characterized by three fea-
tures: Reversible processes can be brought back to their initial states

Figure 18.3 Reversible evaporation
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(if necessary using auxiliary apparatus) by simply following their
path backwards. Restoring their initial states requires no net expen-
diture of energy, and they do not cause a permanent change of state
in any of the bodies involved.

18.2 Irreversible Processes

The converse of reversible processes are the irreversible processes.
Among them are in particular diffusion, the expansion of gases
through a throttle or a nozzle, or into a vacuum, external and internal
friction, plastic deformation of objects, heat conduction (when the
temperature differences are not vanishingly small), energy input by
radiation, as well as all those chemical reactions which do not run
their course with infinite slowness.

Irreversible processes are characterized by three features:

1. All irreversible processes proceed spontaneously in only one di-
rection. This corresponds to our daily experience. The molecules of
a perfume which are diffusing into the air in a room never return vol-
untarily to the open bottle from which they came. An object whose
motion has been slowed by air friction will never be accelerated again
by the air molecules so that it regains its original velocity. A portion
of the air outside a house will never give up its internal energy to heat
our apartment or even to fire up the boiler of a steam locomotive.
When a stone falls on the floor, it suffers an inelastic collision there
and comes to rest. We never experience the converse of that process:
No one has ever observed a stone that one day rose back up spon-
taneously. These possibilities could readily be reconciled with the
First Law of thermodynamics, but the molecules never realize them
in practice. They can be depended on to divide up a large fortune (of
energy, for example); but they will never agree to transfer that fortune
voluntarily to a single, distinguished individual (the perfume bottle,
the stone etc.).

2. In all irreversible processes, work is wasted, i.e. the possibility of
obtaining useful work which exists is always defaulted upon. Instead
of useful work, the processes give us only warmer objects. Examples:

A certain amount of air is confined within a cylinder equipped with
a movable piston. The air is heated while the piston is held fixed.
Thereafter, it gives up energy by conduction and radiation until it
has again cooled to room temperature. During this cooling process,
work is wasted, and the chance of obtaining useful work is lost: We
could have given the heated air the opportunity to push out the piston
and to perform work until its expansion had cooled it back to room
temperature. – In the first case (cooling by heat conduction), the
additional heat energy delivered from the fuel used to heat the air is
divided up among the enormous number of individual air molecules
in the room and is no longer available for performing macroscopic
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work; in the second case (cooling by expansion while performing
work), it can be made use of.

Figure 14.9 shows a gas that is being expanded irreversibly without
performing work. We could have placed a turbine in the tube con-
necting the two pressure cylinders and obtained work from it during
the pressure equalization. Instead, the air in the right-hand cylinder,
after being cooled by the expansion through the valve between the
cylinders (work of acceleration!), is simply warmed back to ambient
temperature through internal friction in the right-hand cylinder.

We let a stone which has been lifted up fall back to earth and waste its
kinetic energy on impact, warming the ground throughwork of defor-
mation and friction. If it had been connected to a suitable apparatus,
it could have been allowed to sink slowly to the ground and to per-
form useful work in the process; think of the weights of a pendulum
clock and of its chimes.

3. In closed systems, irreversible processes lead to permanent
changes of state. We could indeed restore the original state after
an irreversible process has run to completion1, by replenishing the
work which was wasted during the process – however, there is an
essential limitation: We must not be dealing with a “closed system”,
i.e. the work must be input to the objects which make up the system
from outside it, and excess heat must be given up to the outside. For
example, the turbine mentioned above would have to be driven back-
wards as a pump, with the necessary work provided from outside;
or the stone would have to be lifted back up using muscle power. In
such cases, fuel is burned or food is consumed outside the system,
and thus the state of some body outside the system is permanently
changed.

“The existence of irre-
versible processes is a fact
confirmed by experience. It
has been completely veri-
fied by the efforts of many
unhappy inventors.”

The existence of irreversible processes is a fact confirmed by experience.
It has been completely verified by the efforts of many unhappy inventors.
Such an inventor might for example try to trick the molecules; we could
imagine the setup sketched in Fig. 18.4. It is supposed to disturb the ho-
mogeneous temperature distributionwithin a gas without consuming work.
The gas in the left-hand part of the container is to be made warmer, while
the gas at the right is to become cooler. Overall, thermal energy will be
conserved. The gas at the left could then be used to heat the boiler of
a steam engine, while the cool gas at the right could be used to condense
its exhaust steam.
How does our inventor proceed? He bores a hole in the partition separating
the two halves of the container and closes it on one side with a weir made
of fine hairs. His plan is the following: the velocities of the molecules are

Figure 18.4 The irreversibility of temperature
equalization

1 That is why it is preferable to use the word “irreversible”, which is derived from
Latin, rather than the literal translation “impossible to turn around”.
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statistically distributed. Only the fastest molecules coming from the right
should be able to slip through the weir; the slower ones would rebound
from it. Then the fastest molecules, with their higher kinetic energies,
would pass over into the left-hand part of the container. There, they will
have to share their energy with all the other molecules present; but at least
the average kinetic energy would increase on that side. Its temperature
would rise, while the temperature at the right would fall. – What is the
problem with this “invention”? Answer: The BROWNian motion of the
hairs of the weir. They would have to be so fine that they could be moved
aside by individual, fast molecules. However, if they were that fine, they
themselves would act as large “molecules” in the statistical distribution of
the thermal motions. The weir would open and close statistically. Often
enough, it would be open just when an undesirable molecule with only
a small kinetic energy arrived at the partition. Thus, on the average, noth-
ing would be gained and both halves of the chamber would maintain the
same temperature.

18.3 Measurement of the Irreversibility
Using the State Function entropy

Completely irreversible processes occur frequently2. Figure 18.5
shows an irreversible expansion as discussed in Sect. 14.8 in con-
nection with an experiment using the steel-ball molecular model.
Completely reversible processes, in contrast, are ideal limiting cases;
all real processes are only partially reversible, they always contain
irreversible contributions.

These facts made it necessary to characterize reversible processes and
to measure the degree of their irreversibility. This goal was met by
discovering a new state function, called the entropy. One can arrive
at this new function by the following route:

In Fig. 18.6, a gas consisting of an amount of substance n at a constant
temperature T1 can be allowed to expand in a reversible, quasi-static
manner. Its volume is allowed to increase from V1 to V2, while the
pressure decreases from p1 to p2. The work performed by the gas

Figure 18.5 A steel-ball model of a gas;
at the top before, and at the bottom after
a small expansion from a net volume V1 to
V2 (cf. Sect. 18.4)

2 For example, all the motions treated in Sect. 5.11 are irreversible. In such mo-
tions, temperature differences occur due to internal and external friction.
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Figure 18.6 The definition
of a reversible process

during this isothermal process is

W1 D �T1nR ln
V2

V1
D �T1nR ln

p1
p2

(14.35)

.n D amount of substance (the gas);R D universal gas constant/:

At the same time, the gas takes up an amount of heat energyQrev.1/ D
�W1 reversibly from the large water bath, thus keeping its tempera-
ture constant.

This heat which is taken up is however not uniquely connected with
the expansion; it is not determined only by the initial and final states;
it it thus not a state variable.

We can show this by carrying out the expansion of the gas, main-
taining the same initial and final states, via a different path. For this
purpose, we extract a quantity of heat Qrev from the whole system in
Fig. 18.6 reversibly before the expansion starts by using a suitable
auxiliary apparatus, and thereby reduce its temperature to T2. Then
we carry out a slow isothermal expansion at this lower temperature,
and for the heat that is taken up, we now find only

Qrev.2/ D T2nR ln
V2

V1
:

At the end of the expansion, we put back reversibly the heat Qrev

which we had previously removed, and thus restore the initial tem-
perature T1.

Therefore, we have the same initial state, namely V1 and T1, and
the same final state, namely V2 and T1; but nevertheless, Qrev.1/ and
Qrev.2/ are different, because the “path” was different! – In contrast,
however, the quotient

Reversibly absorbed heat

Temperature during the heat uptake

is the same in both cases, namely

Qrev.1/

T1
D Qrev.2/

T2
D nR ln

V2

V1
: (18.1)
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This quotient is independent of the path taken by the process; it is
thus a state function. We can use this state function as a measure of
the irreversibility. It has been given its own name, entropy3.

For the potential energy of a body or its internal energy, the zero
point is always arbitrary; we can measure only changes or differences
in these quantities. The same applies to the state function entropy:
Its zero point is also arbitrary. The special case that we have just
considered, a reversible expansion at constant temperature, simply
makes a contribution to the entropy already present, since of course
the ideal gas in our example had already taken up thermal energy or
released it at some temperature or other. Therefore, we finally define
the entropy increase by

�S D S2 � S1 D Qrev

T
: (18.2)

In Fig. 18.6, the expansion was performed reversibly. The “system”
consisted of a large water bath and a cylinder containing the confined
gas. The gas thus took up heat quasi-statically (Qrev.1/), while the
water bath gave up heat quasi-statically .�Qrev.1//. According to the
defining equation (18.2), in this reversible process, the entropy of
the gas increased by

Qrev.1/

T1
and that of the water bath decreased by

�Qrev.1/

T1
. For a reversible process, we thus have

X Qrev

T
D 0 : (18.3)

Thus, a reversible process in a closed system produces no change in
its entropy. We can henceforth use Eq. (18.3) for such a system as
the defining feature of a reversible process.

A completely reversible process is an ideal limiting case which can-
not be attained in practice. All real processes are more or less irre-
versible. Then for a closed system, we findC18.1

C18.1. Here, we are dealing
with entropy production.
Corresponding to the ob-
servations of irreversible
processes described in
Sect. 18.2, their entropy can
only increase. The magnitude
of this entropy production
is the measure of the irre-
versibility of the process.
– In the limiting case of
reversible processes, the
entropy production is zero, so
that the entropy of the system
remains constant, i.e. it obeys
a conservation law (compare
Sects. 18.5 and 18.6).

X Qrev

T
> 0 : (18.4)

As an example, we choose the irreversible process of heat conduc-
tion. It is likewise presumed to occur in a system composed of two
parts. The thermal energyQrev is given up by the system at the higher
temperature T1 and is taken on at the lower temperature T2. In this
process, the entropy of the hotter body decreases by �Qrev=T1, while

3 The name was coined by R. CLAUSIUS in 1865 from the ancient Greek for
“turning towards”, referring to what he had previously called the “transformation
contents”.
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that of the cooler body increases by an amount Qrev=T2. The sum
Qrev=T2 � Qrev=T1 D �S is thus positive. This entropy increase �S
of the system is a uniquemeasure of the irreversibility of the observed
heat conduction phenomenon.

18.4 Entropy in a Molecular Picture

We have so far derived the entropy only for a special case. Neverthe-
less, we will apply the defining equation

�S D Qrev

T
(18.2)

quite generally. In order to justify that, we wish to clarify the role of
the ratio Qrev=T in the molecular picture. In this picture, we will be
able to “visualize” the state function entropy just as clearly as other
state variables and functions, i.e. the temperature, pressure, internal
energy and enthalpy. This level of intuitive understanding is possible
as a rule only for the simple case of ideal gases.

We refer to Fig. 18.5 and imagine how the corresponding model ex-
periment would function. The small volume V1 is the x-th fraction
of the large volume V2, i.e. V1 D V2=x. In the volume V2, we ini-
tially assume that only a single molecule is present. It can be located
with absolute certainty, and thus with the probability w2 D 1

1 , some-
where within the volume V2, but only with the probability w1 D 1=x
within the x-th partial volume, i.e. within the volume V1. This means
that with x observations, on statistical average we find it once in
the volume V1. For two molecules, the probabilities of finding both
molecules simultaneously in V2 or in V1 are:

w2 D 1

1
; w1 D

�
1

x

�2

I

and for three molecules,

w2 D 1

1
; w1 D

�
1

x

�3

I

and for N molecules,

w2 D 1

1
; w1 D

�
1

x

�N

: (18.5)

The ratio W D w2=w1 denotes how much more probable it is to find
all the molecules in V2 instead of in V1. We obtain

W D xN
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or
lnW D N � ln x : (18.6)

With N D nR=k (Sect. 14.6) and x D V2=V1, we obtain

k lnW D nR ln
V2

V1

or, together with Eqns. (18.1) and (18.2),

�S D k � lnW : (18.7)

The increase of the entropy which accompanies the expansion of an
ideal gas can thus be reduced to the ratio of two probabilities. We also
require the value of the universal constant k D 1:38 � 10�23 W s/K.
An increase in the entropy means a transition to a state of higher
probability. In Fig. 18.5, finding all of the gas molecules in the partial
volume V1 is not impossible, but rather only extremely improbable.
That already holds for the relatively few molecules of the model gas,
and a fortiori for the enormous number of molecules in a genuine gas.
The relationship between entropy and probability was recognized by
LUDWIG BOLTZMANN (1844–1906). For this reason, the constant k
carries his name.

Think of a mixture of ice and water at 0 °C. In the ice, the molecules are
arranged very regularly in the form of a crystal lattice; this is a very im-
probable state. In the water, they are in a more probable state, with a large
degree of randomness. As a result, the entropy of the water is consider-
ably greater than that of the same amount of ice. Nevertheless, a thermally
insulated block of ice does not spontaneously convert even a part of itself
into water. That would lead the whole system to an extremely improba-
ble state; a portion of the ice would have to cool below 0 °C in order to
provide the necessary heat of melting for the rest. That would reduce the
entropy of the whole closed system: The entropy of the ice would have to
decreasemore at a temperature below 0 °C than the entropy of the water at
0 °C would increase through the addition of heat.
Another example is perhaps intuitively clearer. The letters which make up
this text are in an extremely improbable state; they therefore have a much
lower entropy than if they were simply jumbled up in a box with no kind of
order. Nevertheless, the letters of this text will certainly not spontaneously
convert themselves into a disordered heap; such a transition would have
to pass through an extremely improbable intermediate state: Many of the
letters would have to accumulate a very great thermal energy and – as
“molecules” – use it to jump over their neighbors.

18.5 Examples of the Calculation
of the Entropy

Working through examples and applications is always the fastest way
to become accustomed to a new physical concept and to be able to
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use it productively. To this end, we will first calculate the state func-
tion entropy for several important cases, and then in Sect. 18.6 we
will treat the first applications of the calculated values. – In order
to measure the state function entropy, we will always have to em-
ploy quasi-static, reversible processes; that follows directly from its
definition in Sect. 18.3.

1. Entropy increaseC18.2C18.2. The increase in en-
tropy in all the examples
treated in this section always
refers to the substance con-
sidered, which exchanges
entropy with its surround-
ings via reversible processes.
For the overall system, the
entropy remains constant, in
accord with Eq. (18.3). Thus,
we are not dealing with true
entropy production, but rather
with entropy exchange (ac-
companied by a transfer of
heat).

on melting. Let us assume that an object has
a mass M and a specific heat of melting l f . Its melting point is T .
The process of melting takes place in surroundings which are only
slightly higher in temperature. The latent heat Mlf is thus taken up
by the object at practically the melting temperature, i.e. reversibly. In
that case, the entropy of the melting object increases by the amount

�S D Mlf
T

: (18.8)

Numerical example
for water at standard atmospheric pressure (1013 hPa)

T D 273K ; l f D 3:34 � 105 W s/kg (see Table 13.1) :

Then the increase in the specific entropy is

�S

M
D 1:22 � 103 W s

kgK

or, with the molar mass Mm D M=n D 18 g/mol, the molar entropy in-
crease becomes

�S

n
D 22

Ws

molK
D 2:64R

.R D 8:31W s/(mol K)/:

For mercury (Mm D 200 g/mol), the corresponding numbers are

T D 234:1K ; l f D 11:8 � 103 W s

kg
;

�S

n
D 10

Ws

molK
D 1:20R :

On reversible melting, the entropy of the surroundings decreases by
the same amount as it increases within the object that melts. Thus, as
in every reversible process in a closed system, the overall amount of
entropy remains unchanged. – The corresponding conclusion holds
also in all the following examples.

2. Entropy increase on heating. A substance of mass M is heated at
constant pressure from an initial temperature Ti to a final temperature
Tf. In this process, small amounts of heat are transferred at gradually
increasing temperatures, and thus reversibly. For the entropy increase
of the substance heated, we therefore find

�S D �Qrev.1/

T1
C �Qrev.2/

T2
C � � � D

X

j

�Qrev.j/

Tj
; (18.9)

�S D M

�
cp1�T

T1
C cp2�T

T2
C � � �

�

D M
X

j

cpj�T

Tj
; (18.10)
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Table 18.1 Specific state variables for water along its vapor-pressure curve. The reference point for the en-
thalpy and the entropy is chosen to be 0 °C.

Liquid Saturated vapor
Temp-
erature

Vapor
pressure

Volume V

MassM

Enthalpy H

MassM

Entropy S

MassM

Volume V

MassM

Enthalpy H

MassM

Entropy S

MassM
(°C) �

105
N

m2

� �
m3

kg

� �

105
W s

kg

� �

103
W s

kgK

� �
m3

kg

� �

105
W s

kg

� �

103
W s

kgK

�

17.2 0.02 0.001 0.724 0.255 68.3 25.33 8.71
59.7 0.20 0.001 2.495 0.829 7.79 26.09 7.91
99.1 0.98 0.001 4.149 1.298 1.73 26.71 7.37

151 4.9 0.0011 6.364 1.851 0.382 27.47 6.83
211 19.6 0.0012 9.043 2.437 0.101 27.97 6.36
310 98 0.0014 13.984 3.345 0.0185 27.26 5.61
374 221 0.0037 20.625 4.313 0.0037 22.07 4.61

or, in the limit of infinitely small increments and with constant spe-
cific heat,

�S D Mcp

fZ

i

dT

T
D Mcp ln

Tf
Ti

; (18.11)

and, with Mcp D nCp (see Eqns. (13.5) and (13.6)),

�S D nCp ln
Tf
Ti

: (18.12)

Numerical example
for water on heating from its melting point up to its boiling point at stan-
dard pressure (1013 hPa). Its heat capacities are nearly constant over this
temperature range:

Ti D 273K ; Tf D 373K ;

cp D 4:19 � 103 W s

kgK
or Cp D 75:5

Ws

molK
;

�S

M
D 1:31 � 103 W s

kgK
or

�S

n
D 23:6

Ws

molK
D 2:84R :

Table 18.1 gives some additional values of �S=M at various temperatures.
These values play an important role in technical applications. To simplify
the calculations, the specific entropy of liquid water at 0 °C (273K) and
standard atmospheric pressure (1013 hPa) is arbitrarily set equal to zero.
We make use of this convention in quoting measured values, and denote
the entropy thus defined by S.

3. Entropy increase on evaporation: PICTET-TROUTON rule. Let
a liquid have the mass M and the specific heat of vaporization lv . It
is evaporated at constant pressure (its saturation vapor pressure) and
the corresponding temperature T . Then for the increase in entropy,
we have

�S D Mlv
T

: (18.13)
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Numerical example
For water at standard pressure (1013 hPa), T D 373K and lv D 2:26 �
106 W s/kg (see Fig. 14.3); then we find

�S

M
D 6:06 � 103 W s

kgK
or

�S

n
D 109

Ws

molK
D 13:1R :

For the molar entropy increase �S=n, quite similar values for the
evaporation of many other substances are obtained. This is the con-
tent of “TROUTON’s ruleC18.3.C18.3. See e.g. A. Eucken

and E. Wicke, “Grundriss
der physikalischen Chemie”,
Akad. Verlagsges., 10th ed.
(1959), Chap. 2. Apparently
published independently
by R. PICTET (1876) and
R.T. TROUTON (1883).
English: see JAIME

WILNIAK, Chemical Educa-
tor 6 (2001), p. 55. Available
online at https://de.scribd.
com/document/71366734/
Frederick-Thomas-Trouton-
The-Man-The-Rule-And-
the-Ratio

When liquid water is converted into water vapor, the increase in its
entropy is thus about five times greater than when ice is converted
into liquid water (2:64R). When liquid water at 0 °C is converted
into saturated water vapor at 100 °C, the molar entropy of the water
increases by

�S

n
D 2:84R C 13:1R � 16R

on heating
(Pt. 2)

on vaporization
(Pt. 3)

or, referred to its mass,

�S

M
D .1:31C 6:06/ � 103 Ws

kgK
D 7:37 � 103 W s

kgK
:

This latter quantity is called the specific entropy of the saturated va-
por. Values for other temperatures can be found in Table 18.1.

4. Entropy changes associated with changes of state of ideal gases.
We look at the p-V diagram in Fig. 18.7 and proceed in two steps
from the state 1 (temperature T1) to the state 2 (temperature T2 > T1).
First, the gas (amount of substance D n) takes up heat at constant
pressure along the path 1 ! 3; and then along the path 3 ! 2, it
receives work at constant temperature. The constancy of the tem-
perature T2 is possible only if a quantity of heat equivalent to the
work is given up by the gas to its surroundings. Then, making use of
Eqns. (18.12) and (14.35),

�S D n

3Z

1

CpdT

T
�

nRT2 ln p2
p3

T2
: (18.14)

Figure 18.7 Calculating the entropy of ideal
gases

https://de.scribd.com/document/71366734/Frederick-Thomas-Trouton-The-Man-The-Rule-And-the-Ratio
https://de.scribd.com/document/71366734/Frederick-Thomas-Trouton-The-Man-The-Rule-And-the-Ratio
https://de.scribd.com/document/71366734/Frederick-Thomas-Trouton-The-Man-The-Rule-And-the-Ratio
https://de.scribd.com/document/71366734/Frederick-Thomas-Trouton-The-Man-The-Rule-And-the-Ratio
https://de.scribd.com/document/71366734/Frederick-Thomas-Trouton-The-Man-The-Rule-And-the-Ratio
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Now, T3 D T2, p3 D p1. Then we find for the increase of the molar
entropy

�S

n
D Cp ln

T2
T1
� R ln

p2
p1

: (18.15)

The entropy of an ideal gas thus increases with increasing tempera-
ture and decreases with increasing pressure. The entropy of an ideal
gas accordingly consists of two parts: The first part depends on the
temperature, and the second part depends on a geometrical constraint,
namely the available volume, which determines the pressure and the
number density. On isothermal compression, the entropy of an ideal
gas becomes smaller. – For the derivation of this equation, we could
have carried out the transition from state 1 to state 2 along some other
arbitrary path, e.g. in the two steps 1! 4 and 4! 2. The entropy is
a state function; it is independent of the path along which a change
of state is accomplished.

18.6 Application of Entropy
to Reversible Changes of State
in Closed Systems

When reversible processes occur adiabatically, i.e. without any ex-
change of heat with their surroundings, then the sum of the entropies
of all the bodies involved remains constant; the processes are isen-
tropic. This constancy of the entropy in reversible, adiabatic pro-
cesses is often employed.

We begin by showing in Fig. 18.8 some adiabatic curves in the p-
Vm diagram (Vm D V=n) of an ideal gas for reversible expansion:
At the lower end of each adiabatic curve, the constant value of the
associated molar entropy S=n is noted.

Formation of fog or clouds on adiabatic expansion. Water vapor with
a vapor pressure of p1 is expanded adiabatically, and its pressure de-
creases to p2. What fraction y of the water will precipitate as fog
droplets? This case plays an important role in meteorology – think of
an upwardly-directed current of warm air.

Before the expansion and cooling, the vapor pressure p1 is associ-
ated with the temperature T1. At this temperature, the water vapor
of mass M has the entropy S1. During the expansion and cooling
process, a fraction y of the vapor is condensed to liquid water (fog
droplets). The mass of the vapor is reduced to M.1 � y/, and at its
temperature T2, it retains the entropy .1 � y/S2. Furthermore, water
droplets of mass My are formed. At the temperature T2, this liquid
water has the entropy yS02. Setting the entropies before and after the
condensation equal, we find

S1 D .1 � y/S2 C yS02 :
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Figure 18.8 Adiabatic curves for a diatomic, ideal gas as curves of constant
entropy. The reference point for the entropy has been chosen to be 0 °C and
standard atmospheric pressure (1013 hPa) (cf. Exercise 18.1).

Furthermore, we have

S2
vapor
� S02

liquid
D lv

T2
M : (18.13)

Combining these two equations, we obtain

y D S2 � S1
M

T2
lv

: (18.16)

Numerical example for water vaporC18.4C18.4. Determined using
Eq. (18.15). Taking T0 D
273K and p0 D 1013 hPa
as starting values, use p1,
T1 and p2, T2 as end points,
respectively, to determine S1
and S2 (Eq. (18.15)), then
convert to specific entropies.

p1 D 200 hPa ; T1 D 333K .59:8 ıC/ ;
S1
M
D 7:91 � 103 W s

kgK
:

p2 D 20 hPa ; T2 D 290:3K .17:1 ıC/ ;
S2
M
D 8:71 � 103 W s

kgK
:

The specific heat of vaporization (latent heat) of water at T2 is (Fig. 14.3)

lv D 2:45 � 106 W s

kg
:

Result:
y D 0:095 ;

i.e. 9.5% of the saturated vapor has been condensed to fog droplets.

18.7 The H-S or MOLLIER Diagram with
Applications. Supersonic Gas Jets

Thus far, we have depicted the states of substances only in p-V or p-T
diagrams. Their ordinates represent the pressure, while the abscissa
shows the specific volume V=M, or the molar volume V=n, or the
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temperature T . One could however equally well use other pairs of
state variables to construct such diagramsC18.5. C18.5. For some examples

of MOLLIER diagrams, see
http://www.engineersedge.
com/thermodynamics/
enthalpy_entropy_mollier.
htm
Supersonic jets are described
for example in https://www.
fas.org/sgp/othergov/doe/lanl/
pubs/00326958.pdf

As one of the many possibilities, in Fig. 18.9 we show an H-S di-
agram for the case of air. On the ordinate, the specific enthalpy is
plotted, i.e. H=M, and the abscissa represents the specific entropy,
i.e. S=M. The values on the ordinate are computed from Eq. (14.27),
while those on the abscissa are found with Eq. (18.15). In both cases,
the temperature dependence of the specific heats has been taken into
account (see, for example, Fig. 16.10).

In an H-S diagram, the adiabatic curves are straight lines which run
parallel to the ordinate axis. The isotherms, drawn here for several
temperatures between �130 °C and C50 °C, are straight lines only
at low pressures, and then they are parallel to the abscissa axis. –
In a p-V diagram, the isobars and the isochores would be straight
lines, while in the H-S diagram, these lines of constant pressure and
of constant volume are curved. In Fig. 18.9, only a few isobars are
shown for pressures in the range .0:01 � 200/ � 105 Pa.
The H-S diagram plays an important role in the adiabatic changes of
state of flowing substances. One can determine the technical work
which can be obtained from a change of state without any compu-
tations; only the values on the ordinate need be read off. In the
following, we treat an example of an application which is equally
important in basic physics and in technology. It concerns the adia-
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Figure 18.9 A portion of the H-S or MOLLIER diagram for air (from
Zeitschrift des VDI 48, 271 (1904)). R. MOLLIER (Professor in Dresden)
introduced the enthalpy as the quantity on the ordinate of state diagrams in
1904. The curves are isotherms and isobars, respectively. The values of the
enthalpy and the entropy are referred to standard conditions, 0 °C and an air
pressure of 1013 hPa.

http://www.engineersedge.com/thermodynamics/enthalpy_entropy_mollier.htm
http://www.engineersedge.com/thermodynamics/enthalpy_entropy_mollier.htm
http://www.engineersedge.com/thermodynamics/enthalpy_entropy_mollier.htm
http://www.engineersedge.com/thermodynamics/enthalpy_entropy_mollier.htm
https://www.fas.org/sgp/othergov/doe/lanl/pubs/00326958.pdf
https://www.fas.org/sgp/othergov/doe/lanl/pubs/00326958.pdf
https://www.fas.org/sgp/othergov/doe/lanl/pubs/00326958.pdf
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batic flow of a gas which is escaping from a pressurized container: a
“supersonic jet”.

For this example, we choose the gas to be air. The air is compressed
to a high pressure p1 within a pressure cylinder, where the pressure
is held constant. The air is allowed to flow out through a nozzle,
forming a jet, and enters a space where the ambient pressure p2 is
lower. During the expansion, the air performs work of acceleration
and imparts kinetic energy (in one direction!) to itself. How does the
resulting jet velocity u depend on the initial and final pressures?

In an adiabatic process, no thermal energy is exchanged with the sur-
roundings. Therefore, in the equation for the First Law, Q can be set
to zero. For the work of acceleration of the flowing air, we then find,
using Eq. (14.11) and setting the work of acceleration equal to the
kinetic energy of the air in the jet, 1

2Mu2:

H2 � H1 D Wtech D 1
2Mu2 : (18.17)

The enthalpy difference H2�H1 can be read directly off the H-S dia-
gram for air (Fig. 18.9). We can for example assume that the air in the
pressure cylinder is at a pressure of p1 D 40�105 Pa and a temperature
of 20 °C. Its state is marked in Fig. 18.9 by the point ˛. The adiabatic
expansion proceeds to a final pressure of p2 D 10 � 105 Pa. Then the
final state of the air is marked by the point ˇ in Fig. 18.9. The dif-
ference between ˛ and ˇ along the vertical axis gives the decrease in
the specific enthalpy during the expansion. It is

�H2 �H1

M
D 9:6 � 104 W s

kg
:

Inserting this value into Eq. (18.17) shows the final or muzzle veloc-
ity of the air jet to be u D 438m/s.

In a similar fashion, the flow velocities for other final pressures p2
can be obtained, and they are plotted in Fig. 18.10a. In all cases,
a constant initial pressure of p1 D 40 � 105 Pa has been assumed. –
Result: The jet velocity can be considerably greater than the speed of
sound csound (D 340m/s at 20 °C). Nevertheless, one cannot achieve
velocities greater than a certain limiting value umax. In our example,
with an initial pressure of p1 D 40 � 105 Pa, the highest obtainable
muzzle velocity is umax D 760m/s. This maximum value is obtained
when the air flows out into a vacuum.

On expansion, the density of the air (i.e. the quotient % D M=V)
decreases. This is shown for our example in Fig. 18.10b. The values
shown here were calculated with the aid of Eq. (14.42). See also
Footnote 1 there.

The mass M of the air that flows out is proportional to the time of
flow t, to the density % of the air, to the cross-sectional area A of the
nozzle and to the flow velocity u. It is given by the product of these
four quantities, that is

M D t%Au : (18.18)
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Figure 18.10 The su-
personic flow of a gas
jet from a nozzle. All
three curves apply
to an initial pressure
of p1 D 40 � 105 Pa.
The values of u and %

are those found after the
expansion.
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With the mass current

I D Mass M of the flowing air

Time t
; (18.19)

we obtain
A

I
D 1

%u
: (18.20)

This quantity is plotted in Fig. 18.10c. We consider its content in
detail, making use of the other two parts of the figure. We find the
following:

In Fig. 18.10a, the curve of the flow velocity hardly deviates from the
ordinate axis up to about 70m/s. Thus, the density curve for low ve-
locities in Fig. 18.10b corresponds to a single fixed point, namely the
point on the ordinate axis: The density % is thus constant up to about
1=5 of the velocity of sound (Sect. 10.1). At “low” velocities, gases
behave like non-compressible fluids: The quotient A=I decreases in
Fig. 18.10cwith increasing values of u. – However, at high velocities,
the situation is quite different: Here, the density % decreases rapidly
with increasing velocity. As a result, in Eq. (18.20), the increase in u
is compensated by a decrease in %, so that the quotient A=I becomes
constant over a certain range (in Fig. 18.10c). Later, the decrease in
% begins to predominate over the increase of u, and the quotient A=I
once again rises. At its minimum (Point � ), the flow velocity is equal
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to the velocity of sound

csound D
s

� � R

Mm
� T (14.56)

(T D temperature of the adiabatically expanded gas at the point of the
smallest cross-section).
The minimum of A=I, and thus the maximum of the mass current, is
reached when

p2
p1
D

�
2

� C 1

� �
��1

:

For air, this occurs at an external pressure of p2 D 0:53 p1.

This can be derived in the general case, but it can also be understood
qualitatively: If the velocity of sound has been attained at the location
of the smallest cross-section in the nozzle by a sufficient reduction
in the external pressure p2, then additional “downstream” reductions
in the pressure have no further effect. They can propagate at most
with the velocity of sound, and therefore cannot overcome the flow
velocity and penetrate upstream to the point of smallest cross-section.

If a simple nozzle is used (as shown in Fig. 18.11), the point of small-
est cross-section falls together with the muzzle of the nozzle. Then,
in the muzzle of a simple nozzle, the flow velocity can be at most equal
to the velocity of sound. If we want to obtain higher muzzle veloc-
ities, then the nozzle must be enlarged conically after its narrowest
point (Fig. 18.12). The cross-sectional area A of the nozzle must be
adapted to the area required by the mass current I at every point. Then
the gas can exit the muzzle with the full velocity predicted by theH-S
diagram. At the narrowest part of the nozzle, the flow velocity is still
equal to the velocity of sound; therefore, the mass current I remains
the same as before, without the conical extension of the nozzle.

Figure 18.11 Example of a simple nozzle, not suitable for produc-
ing supersonic velocities

Figure 18.12 A de LAVAL nozzle for pro-
ducing supersonic gas jets (C. G. P. DE

LAVAL, 1845–1913, Sweden)
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Exercise

18.1 Using the adiabatic curves shown in Fig. 18.8, determine the
corresponding molar entropies and compare them with the values
given in the figure. (Sects. 18.4 and 18.6. Hint: Refer to Eq. (18.15).)
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Converting Heat into
Work. The Second Law 19
19.1 Heat Engines and the Second Law1

Heat engines were developed as a technological innovation in order
to make use of temperature differences for performing mechanical
work. The most important types of heat engines, the steam engine
and the internal combustion engine, are well known to everyone to-
day. All heat engines mediate the transition from a hot region to
a cool region by means of a flowing working substance and repeat
this process periodically. The initial state of the machine is repeat-
edly and periodically reproduced; the only quantity which is perma-
nently consumed is the supply of fuel.

Without the mediation of a machine, temperature differences are
equalized by thermal processes alone, i.e. through heat conduction
and radiation. Both of these processes are irreversible; in both, work
is thus wasted, or in other words, an opportunity to perform useful
work is not utilized (Sect. 18.2).

In contrast, we could obtain the ideal maximum amount of work
that could be performed by eliminating all irreversible effects such
as friction, heat conduction and radiation, and instead permit the
temperature difference to be equalized via a “heat engine” in a re-
versiblemanner; that is, all the steps in the process must occur quasi-
statically. This will be shown in the following.

A working substance takes on the heat energyQrev.1/ (> 0) from a hot
reservoir at the high temperature T1 in an isothermal and reversible
step. When the working substance has flowed to the cool reservoir
at the lower temperature T2, it gives up the smaller amount of heat
energy Qrev.2/ (< 0), again in an isothermal and reversible step, to the
cool reservoir. Then the excess heat energy Qrev.1/ C Qrev.2/ D �W
can be completely converted to mechanical work, assuming that all
the other intermediate steps in the machine’s operation take place
reversibly. In that case, from Eq. (18.3), we see that the sum of all
the entropy changes is zero, i.e.

Qrev.1/

T1
C Qrev.2/

T2
D 0 : (18.3)

1 It is suggested that the reader familiarize him- or herself with the properties of ir-
reversible processes (in Sect. 18.2, in particular the examples given under Point 2)
before reading this chapter.

495© Springer International Publishing Switzerland 2017
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The ratio of work W .< 0/ performed to heat Qrev.1/
C19.1C19.1. The negative sign of

the output quantities is due to
the formulation of the First
Law (Eq. (14.6)), here
QCW D 0 .
For a heat engine, Q > 0 and
W < 0. The energy balance is
then
Q D Q1 C Q2 D �W
or
Q1 D �W � Q2.
(Q1 is positive, whileW and
Q2 are negative.)

consumed,

�W
Qrev.1/

D Qrev.1/ C Qrev.2/

Qrev.1/

D �ideal (19.1)

defines the thermal efficiency �ideal of an ideal heat engine. The com-
bination of Eqns. (18.3) and (19.1) yields

�ideal D �W
Qrev.1/

D T1 � T2
T1

: (19.2)

The highest theoretically-possible efficiency �ideal of a heat engine is
thus independent of all the details of its construction and operation.
The essential point is only that all possible irreversible processes be
eliminated; then the determining factors are simply the higher tem-
perature at which the heat Qrev.1/ is input quasi-statically, and the
lower temperature at which the heat Qrev.2/ is output quasi-statically.

Equation (19.2) is a quantitative statement of the Second Law of
thermodynamics. Its essential content was formulated in 1824 by
SADI CARNOTC19.2.C19.2. S. CARNOT (1796–

1832): “Réflexions sur la
puissance motrice du feu
et les machines propres
a développer cette puis-
sance”, Paris (1832).

CARNOT’s considerations were still based on
the assumption of a “heat substance” (“phlogiston”). The modern
interpretation of Eq. (19.2) and our knowledge of its general applica-
bility are due in the main to RUDOLF CLAUSIUS (1822–1888).

The First Law states that the sum of all the energies which contribute
to a change of state remains constant. This can be demonstrated ex-
perimentally by converting work completely into heat, for example
using friction. – The reverse process is not possible: The Second
Law limits the conversion of heat into work.

For T1 D T2, from Eq. (19.2), both �ideal and also the work W per-
formed are equal to zero. This fact is the basis of a formulation of
the Second Law which is due to PLANCK. It states that, “It is not
possible to construct a machine which does nothing more than lift-
ing a weight and cooling a heat bath by withdrawing the equivalent
amount of heat”C19.3.C19.3. This is the reason why

the Second Law is often sum-
marized by the statement:
“It is impossible to construct
a perpetual motion machine
of the second kind”. That
would be a machine which
does nothing other than con-
vert heat to mechanical work
with 100% efficiency.

In the isothermal expansion of a gas, the entire amount of heat taken up
by the gas is indeed converted to work (see Sect. 14.11). Nevertheless,
this does not contradict the Second Law, because in addition to performing
work, for example the work of lifting a weight, something else is happen-
ing: The density of the gas is reduced or the amount of pressurized, stored
air is decreased.

The Second Law of thermodynamics is also a purely empirical re-
sult. The discussion above clearly shows this. The ‘law’ is based on
the successes of technology and its experience in constructing heat
engines.
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19.2 The CARNOT Cycle

The considerations in Sect. 19.1 stand and fall with the possibility
that a working substance can take up an amountQrev.1/ of heat energy
reversibly and can release a smaller amount Qrev.2/ reversibly.

The fundamental possibility of such processes can be demonstrated with
a machine which carries out a “CARNOTcycle” (Fig. 19.1). It makes use of
a gas which is confined in a cylinder, as shown in Fig. 18.2. This cylinder
is first brought into thermal contact with a hot reservoir or heat bath (T1 in
Fig. 18.6). The gas expands isothermally and quasi-statically by taking up
the heat Qrev.1/ reversibly from the heat bath and performing mechanical
work with it. The cylinder is then thermally isolated from its surroundings
and the gas is further expanded adiabatically until it reaches the tempera-
ture T2 of a cooler heat reservoir. During these two expansion steps, the
gas performs all together the work W1.
In the third step of the cycle, thermal contact is made with the cooler heat
bath. The gas is compressed isothermally and quasi-statically, thereby giv-
ing up the heat Qrev.2/ reversibly to the cooler heat bath. In the fourth
step, the cylinder is again thermally isolated and the gas is compressed
adiabatically until it reaches its initial temperature T1. Then the initial
state of the system has been restored. During the two compression steps,
the work W2 must be performed on the gas. The net output of work is
Qrev.1/ C Qrev.2/ D �.W1 C W2/ D �W . At each changeover between
isothermal and adiabatic volume variations, the adjustable lever arm shown
in Fig. 18.2 must be set to the appropriate length.

The decisive point in the CARNOT cycle is that the temperature of
the working substance (the gas in the cylinder) is equilibrated to
the temperature of the respective heat bath with which it is brought
into contact. This requirement can be fulfilled by a slightly different
cyclic process in the STIRLING engine, which can be more readily
constructed. It is based, as we shall soon see, on the use of a regen-
erator.

Figure 19.1 CARNOT cycle p

V

T
1

T2
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19.3 The STIRLING Engine

This engineC19.4C19.4. It was invented by
ROBERT STIRLING, a Scot-
tish clergyman, in 1816.

was previously used for small-scale industrial pro-
cesses and as a toy. It demonstrates the essentials of a heat engine
in an especially clear way: that is, the mediation of heat transfer be-
tween a hot and a cool reservoir by a working substance in a periodic
process. We will explain its construction and operation by making
use of the semi-schematic illustrations in Fig. 19.2, and will employ
it several times in order to demonstrate the content of Eq. (19.2) ex-
perimentally.

The two heat baths I and II in Fig. 19.2 at the temperatures T1 and T2
(T1 > T2), respectively, are attached to the left and the right ends
of a cylinder. In the cylinder, besides the piston there is a drum
D. It contains channels along its length. This drum is pushed back
and forth within the cylinder by means of a connecting rod to the
crankshaft (not shown), with a phase shift of around 90° relative
to the piston. The drum fulfills a double function: First, it acts as
a displacer, moving the working substance (usually air) alternately
towards the hot and the cool heat bath. Second, it acts as a heat stor-
age medium (regenerator). This means that during the displacement
of the gas, the latter flows through the channels in the drum. The
drum takes up heat from the gas flowing to the right (Part b) and
gives it up to the gas which is flowing to the left (Part d).

The four-step operation of this heat engine is illustrated in the four
parts of the figure. At a, the air has expanded isothermally by taking
up heat at the higher temperature T1 and is moving the piston to the
right. At b, the displacer shoves the air towards the cooler heat bath.

Figure 19.2 The operation of
a STIRLING engine. At a and c, the
displacer D is at its reversal point,
while at b and d, the motion of
the piston is reversed (rest points)
(Video 19.1).Video 19.1:

“Operation of a STIRLING

engine”
http://tiny.cc/gigvjy
The operation is explained
using a lecture-demonstration
model. There, the function of
the regenerator is performed
not only by the displacer
drum, but also by a wire net
within the cylinder.

http://tiny.cc/gigvjy
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On the way, it is cooled to the lower temperature T2 while flowing
through the channels in the displacerC19.5. C19.5. This step is an

isochoric change of state
(Sect. 14.9, Point 3). The
cyclic process here is com-
posed of two isotherms and
two isochores. The important
point however (just as in
the CARNOT cycle) is that
the expansion occurs at the
higher temperature and the
compression at the lower
temperature.

At c, the piston is moved
to the left by the flywheel (stored mechanical energy!) and the air is
compressed isothermally at the lower temperature T2, giving up heat.
At d, the displacer shoves the compressed air back towards the hot
reservoir. On the way, it is warmed up to T1 by flowing through the
channels, taking up the stored heat from the regenerator. Then the cy-
cle can begin anew: The compressed air can again take on more heat
at the higher temperature, expand isothermally and push the piston to
the right, performing work. After 1/4 of a rotation, the initial state a
has again been reached.

In the ideal limiting case, the work performed by the engine with this
cyclic process would be

�W D Qrev.1/

T1 � T2
T1

: (19.2)

Here, Qrev.1/ is the heat energy which is taken up at the higher tem-
perature, causing the gas to expand. This heat uptake is isothermal in
the ideal case. Then we haveC19.6 C19.6. These equations hold

under the assumption that the
working substance is an ideal
gas, which is the case for air
near room temperature. The
statement of the Second Law
(Eq. (19.2)) is however inde-
pendent of this assumption; it
holds quite generally.

Qrev.1/ D nRT1 ln
V2

V1
D nRT1 ln

p1
p2

(14.35)

(n D amount of substance (air), R D universal gas constant, p1 (V1) and
p2 (V2) are the pressures (volumes) before and after the isothermal expan-
sion).

Combining Eq. (14.35) and Eq. (19.2) yields

�W D nR.T1 � T2/ ln
p1
p2

or
�W D const .T1 � T2/ : (19.3)

In words: The work performed by the STIRLING engine is deter-
mined only by the temperature difference T1 � T2. This assertion
can readily be confirmed in a demonstration experiment. Figure 19.3
shows a STIRLING engine in silhouette. The upper half of the cylin-
der is held at the constant temperature of C20 °C (293K) by circu-
lating water, and the lower half is alternately heated by a glycerine
bath at C220 °C (493K) and cooled in liquid air at �180 °C (93K).
In both cases, the temperature difference is the same, namely 200K.
Indeed, the machine runs in both cases at the same speed of rotation
and thus performs the same amount of work in equal times (here the
work serves only to overcome the friction of its bearings).

A more modern engine would use a fixed regenerator. It connects two
cylinders in which the pistons move with an appropriate phase shift.
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Figure 19.3 Verification of Eq. (19.3) with
a STIRLING engine. The crank 2 moves the
displacer drum (D) sketched in Fig. 19.2. The
tube ends Rs serve as input and output open-
ings for the room-temperature water which
maintains the temperature of the upper half
of the cylinder. Its lower half is in this case
cooled by liquid air, and is thus the cooler
end, denoted by II (Video 19.2).Video 19.2:

“Technical Version of
a STIRLING engine”
http://tiny.cc/kigvjy
In the video, it is shown that
only the temperature differ-
ence between the two halves
of the cylinder determines the
operation of the STIRLING

engine. The engine shown
here is about 100 years old.
For a demonstration of its op-
eration, see also Video 19.1
(http://tiny.cc/gigvjy).

19.4 Technical Heat Engines

Technical heat engines do not operate reversibly. The most impor-
tant steam engines today are steam turbines. In their construction,
the dependence of the gas density on its pressure must be taken into
account. The points treated in Sect. 18.7 must be considered. The
head (height of the water level above the turbine) for water turbines
corresponds to the decrease of the specific enthalpy of the steam in
a steam turbine. In modern turbines, it can be up to 0.33kWh/kg,
corresponding to a water head of 122 km(!). Therefore, if the steam
were expanded in a single step, the corresponding velocity would be
around 1.5 km/s. For this reason, steam turbines are subdivided into
several stages connected in series.

The working substance for turbines remains today in most cases wa-
ter vapor; in special cases, the steam stages are preceded by a stage
using a circuit of Na or biphenyl vapor. The water vapor, after being
evaporated, is passed through a “superheater”, i.e. it is converted to
unsaturated vapor, a pure gas. Temperatures of up to about 500 °C
are employed.

Apart from steam engines, internal combustion engines are of great
technological importance. In their case, the heat energy is produced
within the cylinder, at its upper end. The working substance is air
with a small component (less than 21 mole percent) of gaseous com-
bustion products. – Assume the volume of the combustion chamber
above the piston to be V1 (Fig. 19.4). After combustion, the tem-
perature rises up to T1. While pushing out the piston, the working
substance expands adiabatically up to the cylinder volume V2. In the
process, it cools to a temperature of

T2 D T1

�
V1

V2

���1
(14.48)

� D adiabatic exponentI for air; .� � 1/ � 0:4 .Table 14:1/:

The remainder of the heat produced, which is not converted to work,
is given up to the surrounding air along with the exhaust gases. Its

http://tiny.cc/kigvjy
http://tiny.cc/gigvjy
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Figure 19.4 Regarding the efficiency of an internal
combustion engine

temperature decreases in this process from T2 down to the outside
temperature. In order to avoid taking average values for the temper-
atures, we insert T1 and T2 into Eq. (19.2) and obtain as the largest
theoretically-possible efficiency

�ideal D T1 � T2
T1

D 1 �
�
V1

V2

���1
: (19.4)

The smaller the ratio V1=V2 (its inverse is called the compression
ratio), the cooler the exhaust gases and the higher the efficiency.

The required quantity of air and fuel can be introduced into a small
combustion chamber only by compressing them strongly. If the pis-
ton compresses a fuel-air mixture (NIKOLAUS OTTO, 1876), the ratio
V2=V1 � 8 cannot be exceeded if we wish to avoid premature ig-
nition. This corresponds to an efficiency of �ideal D 57%. If only
the air is compressed by the piston and the fuel is then injected into
the combustion chamber (RUDOLF DIESEL, from 1893), then we can
increase the compression ratio to V2=V1 � 16. This corresponds to
�ideal D 67%.

OTTO and DIESEL engines have roughly the same temperature in
their combustion chambers, T1 � 1900K. But the DIESEL engine,
with V2=V1 � 16, can eject its exhaust gases at a temperature T2
which is lower than in the OTTO engine, with V2=V1 � 8. The prac-
tically achievable efficiencies are for the OTTO engine � 30%, and
for the DIESEL engine� 35%.

19.5 Heat Pumps (Refrigeration
Devices)

In Fig. 19.3, we showed a STIRLING engine as a readily understand-
able heat engine. At its upper end, heat was applied, while the cooler
reservoir was below. Based on this particular experiment, we can
establish a general scheme which is applicable to every heat engine
(Fig. 19.5, left). It represents the ideal limiting case of complete re-
versibility. A working substance moves periodically between two
containers I and II at different temperatures. It mediates the transfer
of heat from the warmer container I to the cooler container II. The
working substance takes up the heat Qrev.1/ at the higher temperature
T1. At the lower temperature T2, it gives up the smaller quantity of
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Figure 19.5 The heat pump
(refrigeration device) as the
reverse of a heat engine (we
have left off the index rev
on the heats Q.)

Figure 19.6 A STIRLING

engine used as a heat pump
(refrigeration device) Th is
a thermocouple (Video 19.3).Video 19.3:

“Heat pump/refrigerator”
http://tiny.cc/1hgvjy
The experiment is carried
out with the same lecture-
demonstration model as in
Video 19.1 (http://tiny.cc/
gigvjy).

heat Qrev.2/ (< 0). The difference between these two heat energies
is employed to perform useful work W (< 0) (cf. Comment C19.1).
In the scheme shown, the work is stored as the potential energy of
a weight lifted to a certain height. The process comes to an end when
the temperature difference has been equalized by the energy trans-
port, i.e. when T1 D T2 is reached.

Can the temperature equalization between the heat baths I and II be
reversed again, can we warm I at the cost of II? We surely can! We
need only supply the quantity of work W previously performed by
the machine and allow it to run backwards. Then it no longer acts as
a heat engine, but instead as a heat pump. The cyclic process of the
STIRLING engine then proceeds in the reverse direction, i.e. compres-
sion at a higher temperature and expansion at a lower temperature.

We first show this experimentally. In Fig. 19.6, the STIRLING engine
is driven by an electric motor; in the process, the lower half of the
cylinder II is cooled, and the upper half is heated correspondingly.
After a short time, a temperature difference of T1 � T2 D 10K has
already been produced. By applying mechanical work, heat has been
“pumped up” from II to I.

This experiment leads directly to the idealized scheme for all heat
pumps (Fig. 19.5, right). Compare it to the scheme of all heat engines
to the left; this needs no further explanation.

Often, heat pumps are used under the name refrigeration devices.
As ‘refrigerators’, they have the task of cooling an insulated space
II, for example the interior of a household refrigerator, relative to
its surroundings I, for example the room air. As heat pumps in the
narrower sense, they have the task of heating an insulated space I, for

http://tiny.cc/1hgvjy
http://tiny.cc/gigvjy
http://tiny.cc/gigvjy
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example a living room, relative to its surroundings II, for example the
free atmosphere outside; or, as “air conditioners”, of cooling a similar
space relative to the outside air. Depending on their mode of use, their
efficiency has to be appropriately defined. We do this again for the
the ideal limiting case of complete reversibility; the required work is
then minimal. For a refrigeration deviceC19.7, C19.7. the energy balance

for the refrigeration device or
heat pump is given by
Q2 CW D �Q1 .
(Q2 and W are input to the
device, Q1 is the heat output.
Compare Comment C19.1).

we have

�ideal D Qrev.2/ (Heat taken up at the low temperature) .T2/

W (Work expended)

D Qrev.2/

�Qrev.1/ � Qrev.2/

;

or, with
Qrev.1/

Qrev.2/

D �T1
T2

; (18.3)

�ideal D T2
T1 � T2

: (19.5)

For the heat pump, we find

�ideal D �Qrev.1/ (Heat taken up at the high temperature) .T1/

W (Work expended)

D �Qrev.1/

�Qrev.1/ � Qrev.2/

or, with Eq. (18.3),

�ideal D T1
T1 � T2

: (19.6)

Technical details would lead us too far afield. We will have to be
content with a few remarks:

1. From Eq. (19.5), we obtain the basic rule of refrigeration technol-
ogy: In order to cool an object to a low temperature T2, the working
substance should never take up heat at a temperature lower than T2.
The lower T2, the less efficiency, according to Eq. (19.5). In short: “In short: You shouldn’t

cool champagne with liquid
air”.

You shouldn’t cool champagne with liquid air.

2. Gases are not suitable as working substances for refrigera-
tion devices and heat pumps. The volume of the gas cannot be
changed rapidly and isothermally, i.e. practically without tempera-
ture changes, because the heat exchange with the surroundings is
too slow; furthermore, high pressures are required for effective cool-
ing. For this reason, one preferentially uses substances for which
under the given conditions the liquid and the gas phases exist in
equilibrium, e.g. CO2, ammonia, freon. Their volumes can then be
readily changed isothermally by a phase change, i.e. evaporation and
liquefaction.

3. A numerical example of Eq. (19.6): A residence is to be heated by
using a heat pump. The heat input to the machine is to be taken from
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the air outside. At an outside temperature of 0 °C, an inside temper-
ature of 20 °C is to be maintained. Then T1 D 293K, T2 D 273K.
From Eq. (19.6) for the ideal limiting case of complete reversibility,
we find

�ideal D T1
T1 � T2

D 293

293 � 273
D 293

20
D 14:7 :

Today, our living space is often heated by electric radiators. That
is very convenient, but inefficient. A more physically acceptable
method would be the following: We should use the electrical en-
ergy to pump in the heat from outside the house. In our example,
about 7% of the otherwise necessary electric power would suffice!
This means that with an energy consumption of one kilowatt hour,
we could bring around 14 kilowatt hours of heat into our rooms! The
increased use of heat pumps would be highly desirable to conserve
our energy resources.

19.6 The Thermodynamic Definition
of Temperature

Equation (19.2) contains no material constants. We can therefore de-
fine a measurement procedure for the temperature with its aid which
is independent of all such materials properties. We need only fix one
or the other of the two temperatures T1 or T2 to an arbitrarily-chosen
numerical value, e.g. T2. Then the other temperature is uniquely
determined by the thermal efficiency of a completely reversible ma-
chine. In principle, we have only to measure the efficiency of such
a machine in order to obtain the unknown temperature2 T1. This
was first recognized by WILLIAM THOMSON, later Lord KELVIN

(1824–1907). For that reason, the absolute temperature scale (that is,
the scale which contains no negative values) is named after KELVIN

(Sect. 14.6). Practically, it is identical to the temperature scale as
defined by good-quality gas thermometers.

19.7 Pneumatic Motors.
Free and Bound Energy

Thus far, we have treated the conversion of heat into work based on
making use of a temperature difference and carried out by heat en-
gines. It is however also possible to convert heat into work without

2 Instead of fixing one of the two temperatures at an arbitrarily chosen value, we
could choose such a value for the difference of two temperatures, i.e. .T1�T2/ (cf.
Sect. 14.6).
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a temperature difference, that is in an isothermal process. A clear
example of this is a pneumatic motor which is operated isothermally.

We repeat from Sect. 14.11: The isothermally-operating pneumatic
motor is a machine which converts the heat that it takes up from its
surroundings into work. Its efficiency is ideally 100%. The conver-
sion is accomplished by the expansion of compressed air.

Now we add a new point: The expansion increases the entropy of the
compressed air. Its entropy increase is:

C19.8. This equation in its
general form is:
Qrev D

R
T dS .

�S D Qrev

T
and thusC19.8 Qrev D T ��S : (18.2)

This entropy increase characterizes the permanent change which
the working substance (compressed air) undergoes when it performs
work isothermally. We will show the effects of this permanent change
in the general case, i.e. not limited to the expansion of compressed
air.

The First Law:

Q D �W C �U

heat input
energy output

as external work

increase of
the internal
energy

9
>>=

>>;
(14.6)

leaves it completely undecided as to how the thermal energy input is
to be divided between the two terms on the right. This is determined
only by the Second Law.

Inserting Eq. (18.2) into Eq. (14.6), with

Q D Qrev ;

we obtain
W D �T ��SC�U (19.7)

or, for an isothermal process, i.e. a process occurring at constant tem-
perature,

Wisoth D �.U � T � S/ : (19.8)

The brackets contain only quantities of state. Therefore, their content
is also a quantity of state (a state function)3. It is called the free
energy F; thus,

F D U � T � S : (19.9)

The free energy is smaller than the internal energy; their difference

U � F D T � S (19.10)

3 Only differences, such as �U, �S, �F, etc. are measurable. If one determines
numerical values for U, S, F, etc., they always hold only for a particular reference
temperature, which must be quoted, as for example in Table 18.1.
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is also referred to as the bound energy.

Then
Wisoth D �F (19.11)

which thus represents the maximum work that can be obtained from
an isothermal and reversible process4.

The bound energy T � S is not wasted, but rather it is determined in
such a way that it is not available for the performance of additional
work5.

For many applications, one requires the influence of the temperature
on the free energy F or on the maximum work Wisoth which can be
performed by an isothermal process. We can obtain this influence
from Eq. (19.2) by applying it to a very small temperature difference
T1 � T2 D dT . Then we obtain

�dWisoth

Qrev
D dT

T
: (19.12)

From this, with Eq. (18.2), it follows that

�dWisoth

dT
D Qrev

T
D �S : (19.13)

Inserting this into Eq. (19.8) or (19.7), we obtain the equation (named
for HELMHOLTZ) for the maximumwork which can be obtained from
an isothermal process:

Wisoth D T
dWisoth

dT
C�U : (19.14)

It plays an important role in physical chemistry.

19.8 Examples of Applications
of the Free Energy

1. A compressed-air cylinder as an energy storage medium. In
the particular case of compressed air, the situation is especially sim-
ple, since the internal energy U of the ideal gas remains constant on

4 Maximum work, because in Eq. (18.2), only reversible processes were presup-
posed.
5 The internal energy of a material can be compared with the assets of a company;
the free energy with its “liquid” assets, and the bound energy with its “non-liquid”
assets (e.g. plants and property).
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isothermal expansion and therefore, �U D 0. We thus obtain from
Eqns. (19.11) and (19.8)

Wisoth D �F D �T ��S : (19.15)

Here, we have from Eq. (18.15)

�S D nR ln
p1
p2

: (19.16)

Example
A steel cylinder of mass 64 kg and volume 42 liters at a pressure of p1 D
190 � 105 Pa (D 190 bar) contains 330 moles of compressed air at room
temperature. On isothermal expansion to p2 D 1 bar, its free energy is
reduced by

�F D �293K � 330mol � 8:31
W s

molK
� ln 190

1

(see also Exercise 15.1). The logarithmic factor has the value ln 190 D
5:25. Then

�F D �4:2 � 106 W s � �1:2 kWh :

An electrical storage battery with about the same mass (70 kg) reduces its
free energy on complete discharge by around 2 kWhC19.9. C19.9. For comparison, we

mention that the free en-
ergy of fuels (butter, coal)
amounts to about 10 kWh/kg.

2. Entropy elasticity or rubber elasticity. For the majority of solid
materials, e.g. the metals, the elastic forces which accompany defor-
mation arise from the change in their internal energies. – The situ-
ation is quite different for ideal gases. The setup sketched schemat-
ically in the upper part of Fig. 19.7 permits the measurement of the
elastic force Fel which is produced by a column of air confined in
a container. If the sliding carriage is moved isothermally to the left,
the length of the air column will be changed by �l < 0. The force
Fel remains practically constant. The air is compressed and, from
Eq. (19.15), work is performed on it:

�Fel�l D �F D �T ��S

For the elastic force, we thus obtain

Fel D �S

�l
� T : (19.17)

The elastic force Fel is therefore proportional to the temperature. It
arises simply because the entropy of the air is reduced on isothermal
compression. As a result, we speak of its entropy elasticity.

The entropy of the air, according to Sect. 18.5, Point 4., is given by

�S

n
D Cp ln

T2
T1
� R ln

p2
p1

: (18.15)

If the air column at the top of Fig. 19.7 is shortened adiabatically by
�l, the entropy of the gas remains constant, but its two contributions
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Figure 19.7 The demonstration of entropy elasticity with a compressed col-
umn of air and a stretched rubber band (G is a galvanometer for temperature
measurements; the force meter is shown only schematically. At the top, Fel

acts to the right, against the motion of the carriage; at the bottom, the elastic
force acts to the left).

in Eq. (18.15) both change: On adiabatic compression from p1 to p2,
the first term increases at the cost of the second. The temperature of
the gas is increased by adiabatic compression.

Among solid materials, one can also observe entropy elasticity,
e.g. in rubber and the rubber-like polymers (Fig. 19.7, bottom).
Equation (19.17) is again applicable. We find that Fel at a constant
length l of a rubber band is usually proportional to T to a good ap-
proximation. When the band is adiabatically stretched by �l, it will
become warmer. From these two facts, it follows that the internal
energy of rubber-like materials is nearly independent of their exten-
sion and volume. Therefore, here also the elastic force is determined
only by the entropy of the band. But now the entropy decreases on
isothermal extension. This can be readily understood:

Rubber-like materials belong to the group of high-polymer sub-
stances. In these materials, identical and relatively small molecules
(monomers) are joined like the links of a chain into long threadlike
molecules. In a disordered pile, they form a matted wad as the most
probable arrangement (high entropy). When the band is stretched,
the threadlike molecules are pulled apart and become parallel to
some extent; their arrangement becomes more ordered and thus less
probable (lower entropy). As a model, we can simulate the polymer
chains by macroscopic chains of ca. 10 cm length, whose links are
magnetic. If we let them lie on a glass plate and vibrate the plate to
simulate the thermal motions, they will form a disordered, matted
wad (with high entropy), like the polymeric molecular chains.

When a rubber band is adiabatically relaxed, so that its entropy re-
mains constant, it will cool.

3. The dependence of the melting temperature on the pressure. Sup-
pose that a substance at constant temperature and pressure changes
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its volume by �V on melting. Differentiation of the molar work of
expansionW D �p�Vm with respect to T yields

dW

dT
D � dp

dT
�Vm: (19.18)

Inserting this equation into Eq. (19.13), we obtain from the Second
Law the so-called CLAUSIUS-CLAPEYRON equation:

dT

dp
D T

Lf
�Vm : (19.19)

It shows the pressure dependence of the melting temperature. (Lf
is the molar latent heat of meltingC19.10; C19.10. A similar equation

applies to the vapor pressure.
The derivative dT/dp then
holds along the vapor pres-
sure curve, Vm refers to
the difference in molar vol-
umes of the gas (vapor) and
the liquid, and the constant
Lv is the molar latent heat of
vaporization.

cf. Comment C13.10). –
For some substances, the melting temperature increases with increas-
ing pressure. Examples: Wax and CO2 (Fig. 15.10). In their case,
dT=dp > 0. Then, according to Eq. (19.19), �V > 0 must also hold,
i.e. these substances must expand on melting.

For other substances, the melting temperature decreases with increas-
ing pressure. Example: Water (Fig. 15.11). In this case, dT=dp < 0.
Then, from Eq. (19.19), �V < 0 must hold, i.e. these substances
must contract on melting. Both kinds of behavior are observed ex-
perimentally.

19.9 The Human Body as an Isothermal
Engine

Energy is input to the body by the oxidation of our foodstuffs. For
example, we find for

Butter : : : 9:1
Oatmeal : : : 4:2
Rice : : : 3:9
Bread : : : 2:3
Potatoes : : : 0:9

9
>>>>>=

>>>>>;

kWh

kg

At rest, maintaining the life functions of an adult human requires
a power of about 80W. That is, a human body requires an energy
input of around 2 kWh per day. When the person is performing me-
chanical work, the energy input must be increased up to 3 to 4 kWh
per day; for heavy workers, this can be as much as 6 kWh per day.
On the average, a human requires an energy input of only about
1300 kWh per year (commercial value around 3 $!)C19.11.

C19.11. For electrical energy,
this corresponds today in
Germany to a consumer cost
of around 400 Euros or 440 $.
In the U.S., the average con-
sumer cost would be around
130 Euros or 145 $.
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The thermal efficiency of our muscles is in general around 20%;
through training, it can be increased up to ca. 37%. Therefore, the
muscles cannot possibly be working as heat engines. At an ambi-
ent temperature of T2 D 293K (20 °C), from Eq. (19.2), the internal
body temperature would have to be T1 D 465K (192 ıC)! So only
an isothermal production of muscular work is a possible explanation.
In that case, around 60 to 80% of the chemical energy of our food
is converted to heat! Work, for example climbing a mountain, gener-
ates heat. (In these figures, the basal metabolism of the body, i.e. its
requirement of 2 kWh per day at complete rest, is not included.)

In a careful observation, one has to consider two different processes in
the work performed by muscles. During one of them, force is generated;
this process is similar to discharging a storage battery: Stored chemical
energy is converted to mechanical work. The efficiency of this process can
reach 90%. Then a second process follows; figuratively speaking, it is like
recharging the battery. This second process, in contrast to the first, can
proceed only in the presence of O2. It requires an oxidation step, has a low
efficiency and produces quite a lot of heat.
Continuous athletic activity, isotonically or in motion, requires a power
input of about 1.4 kW (corresponding to an oxygen consumption of 4 liters
per minute). Around 1/5 of this power, i.e. about 300W, is available for
carrying out mechanical work (in contrast to isotonic work). For brief
high-level activity, the ‘muscular storage battery’ has an energy reserve of
the order of 100 kilowatt-seconds. It can be replaced in about a half hour
after complete exhaustion, accompanied by an uptake of 15 liters of O2.
A small fraction, which decreases strongly with increasing demand, can
be converted to mechanical work. By using this energy reserve, a human
can expend a mechanical power of several kilowatts for a few seconds
(Sect. 5.2).

The work performed by our muscles is by no means reversible. Their
work is just as irreversible as that of technical heat engines. Work
performed reversibly is much too ponderous and slow.“Work performed re-

versibly is an ideal, but even
this ideal is, like some oth-
ers, not necessarily worth
striving for”.

Work per-
formed reversibly is an ideal, but even this ideal is, like some others,
not necessarily worth striving for.

Exercise

19.1 At an outside temperature of �5 °C, a heating boiler in
a house is to be maintained at a temperature of 40 °C by a heat
pump. How much electrical energyWel will be consumed in the ideal
case of completely reversible operation of the pump, if the required
heat input to the boiler amounts to 1 kJ? (Sect. 19.5)

Electronic supplementary material The online version of this chapter (doi:
10.1007/978-3-319-40046-4_19) contains supplementary material, which is avail-
able to authorized users.



Table of Physical Constants

Some important physical constants (CODATA values from Dec. 2014)
Gravitational constant � D 6:6674 � 10�11 Nm2/kg2

Electric field constant "0 D 8:854 188 � 10�12 A s/Vm
Magnetic field constant 	0 D 12:566 370 � 10�7 V s/Am
Velocity of light in vacuum c D ."0	0/

�1=2 D 2:997 925 � 108 m/s
Wave resistance of vacuum Z D .	0="0/

1=2 D 376:73 Ohm
Relative atomic mass of the proton .A/p D 1.007 277 u
Relative atomic mass of the neutron .A/n D 1.008 665 u
Proton mass mp D 1:672 621 � 10�27 kg
Rest energy of the proton .Wp/0 D 9:382 720 � 108 eV
Rest mass of the electron m0 D 9:101 383 � 10�31 kg
Rest energy of the electron .We/0 D 5:109 99 � 105 eV
Ratio of proton mass/electron mass mp=m0 D 1836.152
Elementary electric charge e D 1:602 177 � 10�19 A s
Specific charge of the electron e=m0 D 1:760 366 � 1011 A s/kg
Boltzmann’s constant k D 1:380 648 � 10�23 W s/K

D 8:617 325 � 10�5 eV/K
Planck’s constant h D 6:626 070 � 10�34 W s2

D 4:135 667 � 10�15 eV s
Smallest orbital radius of the H atom aH D "0h2=�m0e2 D 0:529 177 � 10�10 m
Bohr magneton 	B D 	0he=4�m0

D 1:165 407 � 10�29 V sm
Classical electron radius rel D 	0e2=4�m0 D 2:820 419 � 10�15 m
Rydberg frequency Ry D e4m0=8"20h

3 D 3:289 842 � 1015 s�1
Rydberg constant R�y D e4m0=8"20h

3c D 10 973 731:6 m�1

Compton wavelength �C D h=m0c D 2:426 310 � 10�12 m
Sommerfeld’s fine structure constant ˛ D e2=2"0hc D 1=137:036

D Electron’s velocity u in the smallest H orbit

Velocity of light c

511



Solutions to the Exercises

I. Mechanics
1.1. After 100 years, each day will be 1:5 � 10�3 s longer than today; then after one year, it will be
1:5 � 10�5 s longer, and tomorrow, it will be 1:5 � 10�5=365:25 s, i.e. 4:106 � 10�8 s longer. Then in
100 years, the clocks will be ahead by 4:106 � 10�8 s � .1C 2C 3C : : :C 36 525/ D 27:4 s. (The
sum can be solved analytically and its solution can be found in many mathematics textbooks).

1.2. T D 0:05 s

2.1. Downriver, at an angle of 53.13ı to the bank.

2.2. s D 34:3m

2.3. t D 17:35 s; h D 293m

2.4. a D 2:475m/s2; F D 49:5N

2.5. a) t D 1 s; b) t D .�=4/ s

2.6. ar D 2:10 � 10�2 m/s2

3.1. F D 63:1N; Ftot D 42:75N to the east (˛ D 90ı)

3.2. a) F D 0:431 FG=.0:959 sin
 C 0:413 cos
/; b) 
 D 66:7ı

3.3. v D 86:9 cm/s; Ekin D 0:196Nm; FF D 0:189N

4.1. u0 D 0:628m/s; a0 D 3:95m/s2

4.2. TM D 3:16 s; mM D gr2M=.10G/ (G D gravitational constant)

4.3. The new angular velocity is !1 D l2!=.l� l1/2

4.4. z D 5086 km

4.5. With a tangential velocity of 1:5 � 10�5 m/s, the model earth could circle the sun on a stable
orbit. Its “year” would be exactly as long as a real year!
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5.1. W D A%g.H � h/2=4

5.2. W D 0:136 kWh; Power P D 8:16 kW

5.3. h2 D h1 C .
p
2g.h� h1/ ��p=m/2=2gI v D p2gh2

5.4. a) v D 10m/s; b) v D 5m/s

5.5. a) From the conservation of energy and momentum, we find: v2 D 2.m=M/v1=.1C m=M/ �
2.m=M/v1 and �v D 2v1=.1 C m=M/. b) After the first impact, the balls swing outwards until
their kinetic energy is completely converted to potential energy. Then they swing back again, so
that the first impact is played out again in reverse. c) When the large ball collides with the small
one, the latter flies away with the velocity� 2v2 (this can be seen especially clearly in the frame of
reference of the large ball). The large ball loses a velocity of 2v2.1CM=m/, that is less than 1%.
This result is verified by comparison of the two amplitudes.

5.6. h D m2v2=.2g.MC m/2/

5.7. v D 2:97m/s; 13.36 J still remains from the original 1350 J.

5.8. This follows from the conservation laws for momentum and energy, together with the
Pythagorean Theorem.

5.9. Mp D 1:718M0 or 63% of the total initial mass.

5.10. dM=dt D Mt.ao C g/=ur (g D acceleration of gravity).

6.1. a) m2 D 1:875 kg; b) 7/18 of the length of the beam, as measured from m2; F D 441N.

6.2. One can either use the equation of motion to compute the acceleration of the cylinder axles,
dv=dt D .2=3/g sin˛, or else use the law of energy conservation to find the final velocity, v Dp
4gh=3. Both expressions contain neither the mass (or the density) nor the radii of the cylinders.

The two cylinders thus arrive at the bottom simultaneously.

6.3. W D 976 J

6.4. l D 2a=3

6.5. a) At one of the two points at a distance of a=.2
p
3/ from the center of gravity; b) at one of

the two points at a distance of a=6 from the center of gravity.

6.6. 
0 D 0:05 kgm2; 
S D 0:03 kgm2

6.7. a) 
 D 0:00579kgm2 (make use of Eq. (6.12)); b) d D 0:28mm (here, the torsion coefficient
changes by 2mgd).

6.8. ' D 2�mr2=.
 Cmr2/

6.9. Under the assumption that the end of the pencil does not slide immediately off the edge of
the table, the pencil will begin to rotate around its point with the angular momentum 
! (where
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 D .1=3/ml2), which is equal to the orbital angular momentum mvl=2 at this point. It follows
that ! D .3=2/

p
2gh=l, or � D 5:3 rotations per second. This result could be checked simply by

using a video camera.

6.10. See Eq. (6.16)

6.11. The gyroscope is also rotating in the moving frame of reference, but without precession. For
each of its volume elements, the rotation can be decomposed into a vertical velocity component
parallel to the vector of the angular velocity !P and a horizontal component. The latter leads to a
CORIOLIS force on the volume element, which causes a torque to act on the axle of the gyroscope.
The sum of all these torques leads to an overall torque which is parallel to M but opposite in
direction. Its magnitude would have to be found from a computation; here, we content ourselves
with the statement that it would have the same magnitude as M. In the rotating frame of reference,
the sum of all the torques along the axle of the gyroscope is thus zero.

7.1. a) FC D 2mu! D 50N. b) While the bullet is moving within the barrel of the pistol, it moves
along a circular orbit with a continually increasing radius. The distance s along this orbit is given
by s D R!t and R D ut. It then follows that s D u!t2, and thus the acceleration is d2s=dt2 D 2u!
and the force is FH D 2mu! D 50N, so that it has the same magnitude as FC, but the opposite
direction.

7.2. For the observer in the rotating frame of reference of the swivel chair, the pendulum is moving
on a circular orbit with the velocity u D !R. This requires that a radial forcem!2R directed towards
the center of rotation be acting. This force is composed of the centrifugal force FZ D m!2R, which
is directed outwards, and the CORIOLIS force FC D 2mu! D 2m!2R which is directed towards the
center.

7.3. aC D 2!v sin' D 1:9 � 10�3 m/s2 � 10�4g (g D acceleration of gravity). The CORIOLIS

force is thus negligible compared to the inertial forces which are due for example to the imperfect
flatness and smoothness of the rails.

7.4. T D 2�
p
R=g, i.e. the SCHULER period!

7.5. s D 1:5 � 10�9 m � 1 nm

7.6. During seven complete swings, that is after 48 s, the image of the pendulum wire has shifted
by seven wire diameters, or by 2.8mm on a circle of radius A D 1m. From this, at the latitude of
Göttingen, we find an angular velocity of !G D 5:83 � 10�5 s�1. Dividing by the factor sin 51:5ı D
0:78 then yields !E D 7:5 � 10�5 s�1 (the precise value is 7:3 � 10�5 s�1).

8.1. E D 1:25 � 105 N/mm2

8.2. From L and H, with a certain amount of trigonometry, we find for the radius of curvature r D
2:56m. s is measured to be 0.26 m. Then we can compute the torque which deforms the rod:
M D 1 kg � g � 0:26m D 2:6Nm (note that the torque which is due to the second kg weight serves
only to keep the rod from being accelerated). The geometrical moment follows from Eq. (8.23):
J D 64 � 10�12 m4. Then, finally, we obtain E D 10:3 � 104 N=mm2, in good agreement with the
value given in Table 8.1.
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8.3. The light pointer (broadened by diffraction) is displaced by nearly ds. From this, we find ˛ D
7 � 10�4. With the geometrical moment from Eq. (8.26), we obtain G D 8:0 � 104 N=mm2, in
agreement with the value given in Table 8.1.

8.4. s D 11:5m

9.1. F2 D 34:5N

9.2. A2 D 5A1

9.3. F D ..4=3/�d3=8/g%water (g D acceleration of gravity)

9.4. F D 12 700N

9.5. F D 104 N

9.6. m D 7:35 g (weight 0.072N)

9.7. The heat of evaporation (vaporization) for one molecule is 7:6 � 10�20 W s. In each cm2 of
water surface, there are 1:03 �1015 molecules, as can be found from the number density of the water
molecules. Then from Table 9.1, we find the surface work for one molecule to be 7:2 � 10�21 W s.
Around 10% of the heat of vaporization is thus required to bring the molecules to the surface where
they can evaporate.

9.8. � D 4:8 s (in order to keep the effort required for counting to a minimum, it was begun after
6 s following the end of the pouring).

9.9. The constants of BOYLE’s law are, at 0 °C: 0.8m3 bar/kg; and at 200 °C: 1.4m3 bar/kg; po �
pc D 1:6 � 102 Pa (D 1:6mbar)

9.10. .p2 � p1/A D gAh.%air � %hydrogen/; this is the same as for the buoyant force.

9.11. The pressure in the methane is greater than in the surrounding air, by �p D 0:57 Pa (this
corresponds to the gravity pressure (Sect. 9.4) of a column of water 0.057mm “high”!).

10.1. � D 2gR2
1R

2
2.%2 � %1/=9.R2

1u2 � R2
2u1/I % D .R2

1u2%1 � R2
2u1%2/=.R2

1u2 � R2
2u1/

10.2. From energy conservation, Eq. (10.12), and neglecting the viscosity of the water, we find
r D .1=

p
�
p
2gh/

p
cm3=s, as long as R� r, so that we can consider the water in the cylinder to

be practically at rest.

II. Vibrations and Waves
11.1. These beats are produced by the harmonics 2�2 and 3�1.

11.2. a) d1 D 0:326m; b) d2 D 0:163m (the reduction of the resonance frequency at a fixed length
is used for example in constructing organ pipes; see E. Skudrzyk, “The Foundations of Acoustics”
Springer (Heidelberg, New York) 1971).
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11.3. � D 2:4 cm; � D 14:17 kHz

11.4. cl D 3840m/s

11.5. ı�1 D � D 50 s; �e D 0:42Hz; � D 4:8 � 10�2; K D 1:05; H D 6:4 � 10�3 Hz

11.6. For the symmetrical normal mode oscillation, we obtain the frequency �s D 0:900Hz, and
for die antisymmetrical normal mode, �as D 0:997Hz. For the beat frequency, �B D 0:100Hz. The
difference �� D �s � �as D 0:097Hz is found, in agreement with the beat frequency determined
experimentally.

11.7. a) �0 D
p
2D=m=2� , �1 D

p
D=m=2� , �2 D

p
3D=m=2� ; b) �0 D

p
.DC D0/=m=2� ,

�1 D
p
D=m=2� , �2 D

p
.DC 2D0/=m=2� . Note that in both cases, one of the eigenfrequencies

is always larger and the other is always smaller than the frequency of a single pendulum as defined
in the problem. The difference between the two eigenfrequencies becomes smaller as the coupling
becomes weaker.

12.1. �0 D 531Hz

12.2. Maxima appear along the axis of symmetry and at a spacing of˙my�=a from it, where m D
1; 2; 3; : : ::

12.3. On the diagonals of the square, since in these directions, the openings are at the greatest
distances from each other.

12.4. D D �a=b

12.5. cl D 5000m/s

12.6. d D 108m

12.7. u D 60 km/h

12.8. sin˛max D 1=n D 0:78; ˛max D 51ı

12.9. m D 1: � D 9:9ı (grazing angle), ˇ D 80:1ı; m D 2: � D 20ı, ˇ D 70ı; m D 3: � D 31ı,
ˇ D 59ı; m D 4: � D 43:4ı, ˇ D 46:4ı.

12.10. c� D c.1C �.dn=d�/=n/

12.11. � D 4:25m to 0.425m

III. Thermodynamics

13.1. The clock advances too slowly by 10�4, thus losing about one minute per week.

14.1. Applying Eq. (14.19), we find p D 166 � 105 Pa (D 166 bar).

14.2. Addition of the partial pressures yields ptot D 9:4 � 105 Pa.
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14.3. With V1 D initial volume, V2 D final volume and the temperatures T1 D 291K (room
temperature) and T2 D 773K, we obtain from Eq. (14.48): V1=V2 D 15:1. The volume must
therefore be reduced by a factor of about 1/15.

15.1. a) Vm D 1:217 � 10�4 m3/mol D 3:5Vm;solid, i.e. the density of the gas is 28 % of the density
in the solid phase. b) From the VAN-DER-WAALS equation, with this value of Vm, we calculate a
value of RT which is only around 1 % smaller than the true value. An exact solution of the VAN-
DER-WAALS equation yields Vm D 1:23 � 10�4 m3/mol, that is a value which is about 1 % larger.
The ideal-gas equation thus holds rather precisely for nitrogen, even at a packing density at which
the intermolecular distance is only 50% larger than in the solid state.

18.1. Make use of Eq. (18.15) and take the standard conditions, T1 D 273K and p1 D 1013 hPa.
Then you obtain the molar entropies as shown in Fig. 18.8.

19.1. Wel D 0:143 kJ
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Acceleration, 20, 35

definition, 21
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of a sinusoidal oscillation, 50

Acceleration of gravity = Apparent
gravity, 25

Acceleration of gravity = Free-fall
acceleration, 35

Acoustic replica method, 323
Acoustic wave resistance, 350
actioD reactio, 32, 59, 76, 141
Adiabatic change of state, 400, 489
Adiabatic curve, 401
Adiabatic expansion, 487
Adiabatic exponent, 390, 402

measurement, 405
Air friction, 83
Air pressure, 199
Air resistance, 26, 83
Aircraft

lift, 241
propulsion, 86
thrust, 244

Airfoil, 238
Amount of substance, 29, 369
Anemometer, 236
Angle measurement, 9
Angle of incidence, 302
Angle, unit of, 10
Angular acceleration, 97
Angular momentum, 97, 104, 115,

117
as vector, 104

Angular momentum conservation,
105

Angular velocity, 22, 27, 96, 97, 277
as a vector, 96

Apparent gravity, 25
Apparent viscosity, 217
ARCHIMEDES’ principle, 184
Area law, 55
Atmosphere (atm), 178
Atmosphere = “ocean of air”, 198,

445
Atmosphere of the earth, 198

Auto control, 283
Auto-controlling

of a tuning fork, 249
AVOGADRO constant, 370
Avoidance flow, 226, 238
Axis

free, 108
Axis of incidence, 302
Axis of rotation, 91

B
Balance, 43, 104
Ballistic curve, 65
Ballistic pendulum, 81
Bar exercises, 108
Bar, unit of pressure, 178
Barometric equation, 445
Barometric pressure formula, 203,

204, 446, 449
Base quantities, 29
Base units, 29
Basilar membrane, 363
Bats, 325
Beam balance, 43, 104
Beam of sound, 303
Beat frequency, 253
Beats, 14, 253, 284, 342
BEHN’s tube, 206
Bending vibrations, 270
BERNOULLI’s equation, 223, 327
BEUERMANN,G., 254
Bicycle, 84
Bicycle riding, 119
Bicycle, riding ‘no hands’, 119
Bimetallic strip, 371
Blood circulation, 216
Blood reservoir, 216
Boiling, 394, 425
Boiling temperature, 421
BOLTZMANN distribution, 449
BOLTZMANN, LUDWIG, 483
BOLTZMANN’s constant, 393, 483

determination by J. PERRIN, 445
Boom, supersonic, 354
Boomerang, 121
Bound energy, 506

Boundary energy, 188
Boundary layer, 211, 212

in the RUBENS’ flame tube, 267
thickness, 213

Bow wave, 307
BOYLE’s law, 194
BRAGG angle, 321, 335
Breakers, 192
Breathing sphere, 351
BROWN, R., 175
Brownian motion, 175, 445, 479

in gases, 193, 204
Bulk modulus, 156
Buoyancy, 86, 184

in gases, 205
in liquids, 183

C
Calorimeter, 389
Capillary depression, 190
Capillary elevation, 190
Carbon dioxide

isotherms, 410, 411
phase diagram, 422

CARNOT cycle, 497
CARNOT, SADI, 496
Cartesian diver, 185
CAVENDISH, H., 60
Cavitation, 190, 349
Celestial mechanics, 62
CELSIUS temperature scale, 373,

392
CELSIUS,A., 371
Center of gravity, 77, 93
Centrifugal force, 134, 177, 206
Centripetal force = radial force, 44
Chain ‘syphon’, 200
Changes of state

by irreversible processes, 478
of ideal gases, 398
reversible, 487

Chemical potential, 384
Chimney, 206
CHLADNI sound patterns, 272
Circular frequency, 50
Circular motion, 44
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Circular orbits, 26
Circulation, 229
CLAUSIUS, RUDOLF, 496
CLAUSIUS-CLAPEYRON equation,

509
Closed system, 478, 487
Cloud chamber, 425
Clouds, sink velocity, 216
Cold working, 167
Collision

elastic, 79
inelastic, 80
non-central, 82

Combination oscillations, 280
Compressibility, 156, 177, 193

isothermal, 398
of water, 181

Compression, 153
Conical waves, 307, 354
Conservation of angular

momentum, 115
Consonants, 357
Convection, 460
Cooling bottle, 378
Coriolis force, 138, 149, 435
Countercurrent heat exchanger, 420
Countercurrent process, 419
Coupled pendulums, 283
Critical temperature, 386, 414
Curl, 229
Current impulse, 75
Cutting, 171
Cyclic process, CARNOT, 497

D
DALTON’s law, 394
Damping ratio, 273
Dancing balls, 75
dB(A), 361
de LAVAL nozzle, 492
Dead water, 340
DEBYE temperature, 389
Decibel (dB), 351
Decompression, 396
Deep drilling, 165
Deformation

elastic, 153, 165
of solid bodies, 31, 96
of solids, 153
plastic, 167

Deformation ellipsoid, 158
Degree Celsius (°C), 371, 392
Degrees of freedom, 123, 437
Delay in boiling, 425
Density, 38

of air, 193
Density = Mass density, 38
Density fluctuations, statistical, 414,

448

DEWAR vessel, 376
Diabolo top, 116
DIESEL engine, 501
Difference frequency, 253, 358
Difference oscillation, 255, 280
Diffraction, 299

by a slit, 311, 331
FRAUNHOFER, 311
FRESNEL, 311

Diffraction grating, 319
Diffusion, 176, 413, 432, 453, 469,

471
Diffusion boundary as surface

for gases, 201
of liquids, 413

Diffusion constant, 455, 456
Dilation, cubic, 156
Dipole, 228
Directional characteristic, 331
Directional hearing:, 359
Directional receiver, 356
Discus, 117, 121
Dispersion, 301, 341, 342, 347
Distance, 4
Distance measurement

direct, 4
Doorbell, 249
DOPPLER effect, 293, 325
Drag, 212
Droplets, 191, 192
Dry ice, 423
DULONG-PETIT

rule, 439
Dynamic pressure = Stagnation

pressure, 223
Dynamics, 31

E
Ear, 362

detection threshold, 360
frequency range, 356
model of the cochlea, 363
spectral sensitivity distribution,

361
Earth

as a top, 123
as an accelerated frame of

reference, 146, 148
atmosphere, 198

Earth’s rotation
detection by HAGEN, 150
verification by FOUCAULT, 149

Eddy-current damping, 274
Efficiency, 85

of a heat engine, 496, 501
of a heat pump, 503, 504
of a refrigeration device, 503
of muscles, 510

Elastic, 74

Elastic aftereffect, 165
Elastic aftereffects, 165
Elastic coefficient, 94
Elastic deformation, 153, 165, 264
Elastic oscillator, 52
Elementary oscillator, 259
Elementary waves, 301, 308, 312
Elevator feeling, 43
Elliptical orbit, 56
Elongation, 153, 154
Energy, 71

bound, 506
conservation of, 71, 74
free, 505

applications, 506
internal, 379, 384, 396
kinetic, 73, 98, 429

of rotation, 97, 98, 100
potential, 72

Energy conservation, 385
Energy release, stimulated, 278
Enthalpy, 387, 416, 489
Enthalpy of vaporization, 378, 387
Entropy, 479, 481, 489

and probability, 483
calculations, 483
in a molecular picture, 482

Entropy changes of ideal gases, 486
Entropy elasticity, 507
Entropy increase, 481, 482

by melting, 484
on evaporation, 485
on heating, 484

Entropy production, 481
Envelope, 410
Equation of motion

for rotations, 97–99, 117
Equation of state

caloric, 395
for ideal gases, 391, 392
for real gases, 414
thermal, 384, 391
VAN DER WAALS’, 414, 415

Equilibrium
indifferent, 47
stable, 47

Equipartition principle, 437, 438
Escape velocity, 64
Expansion, 479, 480
Expansion coefficient, 370

F
Feedback, 247, 250, 283
FICK’s law

first, 455, 469
second, 459

Field-line patterns
in electrodynamics, 228

Figure axis, 112, 113
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Fire pump, 405
First Law, 385, 496, 505
Fixed temperature points, 372
Flame, sensitive, 218
Floatation, 184
Flow

laminar, 214
turbulent, 217

Flow apparatus, 220
Flow around a disk, 225
Flow field, 220, 226

irrotational, 227
Flow limit, 155
Flow resistance, 234
Flow resistance around objects, 235
Flow through a nozzle, 490, 491
Flow velocity in a nozzle, 491
Flue pipe, 268, 269, 323
Fluid, 211
Focal length, 304
Focal point, 303, 311, 326
Fog formation, 411, 412, 425, 487
Force

as vector, 32
conservative, 73
hydrodynamic, 224
measurement of, 35
unit of, 35, 37

Force law
linear, 46, 52
nonlinear, 47

Forced oscillations, 273
amplitude, 275
phase difference between

excitation and resonator,
275

Forces
aerodynamic, 266
hydrodynamic, 349

Formant range, 259, 357
FOUCAULT’s pendulum experiment,

149
FOURIER analysis, 255, 259
FOURIER integral, 258
Frame of reference, 17, 33

accelerated, 129, 141, 206
with pure path acceleration, 129,

130
with pure radial acceleration,

130
Frame of reference with radial

acceleration, 133
FRAUNHOFER diffraction, 311
Free axes, 108

of humans and animals, 111
Free balloon, 205
Free energy, 505

applications, 506

Free fall, 23, 38
Frequency, 13, 19, 27, 28

amplitude-dependent, 74
Frequency meter, 280
Frequency spectrum, 358
FRESNEL diffraction, 311
FRESNEL zones, 315, 331
Friction

external, 32, 169
internal, 211, 466, 470
sliding, 169

Frictional resistance, 212, 214, 216,
236

Frictional work, 219
Frictionless fluid motion, 220
Fundamental equation

of kinetic theory of gases, 196
of motion, 37

Fundamental vibration, 261

G
Gas

flow out of a nozzle, 491
ideal, 194
in an accelerated frame, 206
real, 194

Gas compressors, 406
Gas constant, universal, 393
Gas law, ideal, 391
Gas liquefaction, 420
Gas molecules, velocity, 198, 430,

435
Gas syphon, 201
Gas thermometer, 372
Gases

heat conduction, 465, 470
ideal, 195, 392, 395
internal friction, 466, 470
model experiment, 196, 204, 432
real, 409
transport processes, 465

Gauge block, 5
GAY-LUSSAC’s throttle experiment,

395
Geometrical moment of inertia, 162,

163
GIBBS’ phase rule, 423
Glass teardrops, 182
Gliding flight, 242
Gravitation, 34, 35
Gravitational constant, 60, 62
Gravity pendulum, 53

in a rotating frame of reference,
134, 138

Gravity pressure, 182, 183
in the air, 203
in water, 202

Group velocity, 341, 342
GUERICKE,OTTO VON, 199

Gyrocompass, 140, 150

H
HAGEN-POISEUILLE law, 216
Hair, diameter of, 6
Hardening, 155, 167
Harmonic oscillator, 50, 247
Harmonics, 261
Heat, 375

as random motion, 429
conversion into work, 495
latent, 377

Heat capacity, 376
molar, 376, 389

of gases, 391, 438
of some solids, 389
temperature dependence, 439

specific, 376, 388
Heat conduction, 460, 481

genuine, 460
in gases, 465, 470
non-stationary, 464
stationary, 463

Heat conductivity
temperature dependence, 463

Heat current, 463
Heat engine, 495

efficiency, 496, 501
technical, 500

Heat exchanger
countercurrent, 419, 420, 461

Heat of condensation, 377
Heat of crystallization, 378
Heat of melting, 378
Heat of transition, 379
Heat of vaporization, 377, 378, 450,

485
of water, 386

Heat pump, 501, 502
efficiency, 503, 504

Heat transport, 375, 460
through radiation, 375, 468

Heating pad, 379
Hectopascal (hPa), 178
HELE-SHAW flow, 215
Helium, superfluid, 191
HELMHOLTZ resonator, 273
HELMHOLTZ’s equation, 506
Herpolhode cone, 116
HertzD 1 s�1, 13, 247
Hold point, 379
Hollow vortex, 231
HOOKE’s law, 155, 322
Hour glass, 15
H-S diagram = MOLLIER diagram,

489
HUYGHENS’ principle, 308
HUYGHENS,CHR., 26
Hydraulic press, 181
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Hydrodynamic attraction, 225
Hydrofoil, 238
Hysteresis, 166
Hysteresis curve, 166
Hysteresis loop, 166

I
Ideal gas, 194, 195, 395

changes of state, 398
equation of state, 392
molar heat capacity, 398

Image formation, 303
Image point, 303, 311
Impact = impulse, 75
Impulse, 75
Index of refraction, 302, 330
Indices, 296, 318
Individual unit of mass, 370
Inertia, 34
Inertial forces, 129
Initial vortex, 238
Instantaneous axis, 94
Interference, 295
Interferometer, 334
Internal combustion engine, 500
Internal energy, 379, 384, 396
Internal friction

in liquids, 211
independence of pressure, 466

internal friction, 470
Internal pressure, 416, 418
International temperature scale, 372
Intonation, 357
Inversion temperature, 417
Irradiance, 348, 360
Irreversibility, 479, 482
Irreversible process, 477, 481
Irrotational vortex field, 228, 231
Isochoric change of state, 400
Isotherm, 398
Isothermal change of state, 398
Isotherms

of CO2, 410, 411

J
Jet engines, 244
Jet propulsion, 86
JOULE, 68
JOULE-THOMSON effect, 417, 418,

420
JOULE-THOMSON throttle

experiment, 416
Jumping techniques, 70

K
KELTING,H., 359
Kelvin

as unit, 373
temperature, 392

temperature scale, 373, 504
KEMPELEN,W. V., 358
KEPLER, JOH., 62
KEPLER’s elliptical orbits, 58, 63
KEPLER’s laws, 62
Kilogram, 34
Kilopond, 38
Kilowatt (kW), 71
Kilowatt hour, 68
Kinematics, 17
Kinetic theory of gases, 196
Kite, 242
KNUDSEN effect, 471
KUNDT’s dust figures, 266, 341,

405

L
Larynx, 357
Latent heat, 377

of melting, 484
Latent heat of vaporization, 378,

444
Lattice constant, 13, 319, 334
Lattice plane, 329, 334
Law of areas, 63, 108
Law of gravity, 60
Law of reflection, 302
Law of refraction, 302
Law of thermodynamics

first, 385, 496, 505
second, 495, 505, 509

Leaf spring, 15, 279
Length, 4
Length measurement

by interference, 7
indirect, 7
microscopic, 6

Lens for water waves, 303
Lens wheel, 263
Lift, 237, 240

of a wing, 116, 239
Light mill, 433
LINDE, liquefaction of air, 419
Line spectrum, 256
Liquefaction

of air, 419
of gases, 418, 420

Liquid
in an accelerated frame, 206
supercooled, 424
tensile strength of, 425

Liquid helium, 419
Liquid manometer, 184
Liquid surface, 412

as diffusion boundary, 413
in an accelerated frame of

reference, 177
Liquids

internal friction, 211

tensile strength, 186
LISSAJOUS orbits, 57
Logarithmic decrement, 273
Longitudinal vibrations, 260, 263,

270
of linear solid bodies, 263

Longitudinal waves, 321
in air, 323

Loudness, 360
Loudspeaker, 354
Lubrication, 171
Lunar motion, 27

M
MACH’s angle, 309, 354
Magdeburg hemispheres, 199
Magnitude of a quantity, 20
MAGNUS effect, 240
Manometer

liquid, 184
Mass, 34

molar, 370, 376, 393
Mass density, 38
Materials, solid, 508
MAX WIEN’s experiment, 285
Maxima, 261
MAXWELL-BOLTZMANN velocity

distribution, 450
MAXWELL’s velocity distribution,

436
MAXWELL’swheel, 43
Mean free path, 435, 436, 467, 468
Mean squared deviation, 448
Melting temperature, 422

pressure dependence, 508
Memory effect, 165
Metacenter, 185
Meter, 5–7
Metronome, 12
MICHELSON interferometer, 335
Microphones, 355
Microscope, 6
Midpoint of oscillation, 103
Mobility, 455
Model gas, 195, 197, 479
Model gas atmosphere, 446
Model of liquid structure, 414
Modulus of compression, 349, 405
Modulus of elasticity, 155
Molar heat capacity, 376, 389

in a molecular picture, 437
of ideal gases, 398

Molar mass, 370, 376, 393
determination, 393

Molar volume, 370, 393
of ideal gases, 393

Mole, 370
Molecular beam, 435
Molecular mass
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comparison after R. BUNSEN,
431

Molecular velocity
calculation, 197
measurement, 435

Molecular weight, 376
MOLLIER diagram, 488, 489
MOLLWO, E., 287, 344, 346, 359
Moment of inertia, 97, 98

computation, 99
measurement of, 100
of a human body, 102, 108
of cylinders, 101

Momentary axis, 94
Momentum, 76, 470
Momentum conservation, 76, 77, 81
Motion

around a central point, 54
Muscular work, 510
Musical instruments, 262, 353
Muzzle report or bang, 354
Muzzle velocity, 81

N
Natural gas, 206
Neper (Np), 351
Neutral fiber, 161
NEWTON ISAAC, 59, 76, 87
Newton meter, 68
Newton, unit of force, 37
NEWTON’s equation

applications, 41
NEWTON’s fundamental equation

of motion, 34
Nodal lines, 271
Nodes, 261, 297
Normal modes

in liquids and gases, 265
maxima, 261, 264
nodes of, 261, 264
of 2- and 3-dimensional bodies,

271
of linear solid bodies, 263
of stiff linear objects, 269
of vibration, 260

Normal stress, 159
Normalized stress, 154
Nose, blocked, 219
Note, 357
Number density, 369, 454
Nutation, 114, 115, 121

cone of, 116, 118

O
Object point, 303
Observation point, 315
Octave, 357
OHM, GEORG SIMON, 357
Optical lattice, 319

Optics, geometric, 302
Orbital angular momentum, 104
Ordinal number, 296
Oscillation

damped, 273
elliptically polarized, 56
gravity pendulum, 53
linearly polarized, 52

Oscillation frequency
of an elastic pendulum, 52
of torsional oscillations, 97

Oscillation period
of a gravity pendulum, 54

Oscillations, 247
amplification of, 282
damped, 258
excitation of, 247
forced, 147, 273
non-sinusoidal, 251, 262
of strings, 262
sinusoidal, 49, 252
spectral representation of, 256
superposition of, 252

Osmosis, 440
Osmotic pressure, 442, 444
OTTO engine, 501

P
Pan mill, 124
Parabolic trajectory, 64
Parametric excitation, 261, 298
Parametric excitation of

oscillations, 108
Partial pressures, 394
PASCAL,BLAISE, 183
Pascal, unit of pressure, 178
Path acceleration, 21, 22, 54, 130

constant, 25
Path difference, 312
Pendulum

coupled, 283
mathematical, 54, 103
period of, 54
physical, 103
simple, 54

Pendulum clock
automatic control, 247

Pendulum length, reduced, 102, 103
Pendulum-Top, 121
Period, 13

of torsional oscillation, 101, 103
Phase, 50, 292
Phase angle = Phase, 50
Phase changes

of real gases, 409
Phase diagram

of CO2, 422
of water, 422

Phase differences in sound waves,
357

Phase rule of GIBBS, 423
Phase shift, 51
Phase transition

hindrance, 424, 425
liquid-gas, 425
of CO2, 413
solid-liquid, 412, 424

Phase velocity, 291, 341
Phon, 361
Phonometry, 360
Photophoresis, 434
Physical quantities, expressions, 38
Pipe vibrations, 268
Pirouette, 111
Pitch

of the voice, 357
PITOT tube, 224
PLANCK’s radiation law, 373
Plasticity, 167
Pneumatic motors, 406, 504
POCKELS, AGNES, 191
POHL’s pendulum, 273
Point mass, 47
POISSON’s law, 401
POISSON’s number, 155
POISSON’s relation, 155
Polhode cone, 116
Polytropic curve, 402
Polytropic exponent, 402

measurement, 403
Potential flow, 226, 228
Power, 71

of a human, 71
of rotational motions, 97

PRANDTL tube, 224
Precession, 117

of the earth, 123
Precession cone, 118, 121
Press, hydraulic, 181
Pressure, 154, 178

in liquids, 178
in the lungs of a person, 394
osmotic, 442
production of, 195
static, in fluids, 223
units of, 178

Pressure distribution
in a gravitational field, 183
in air, 203
in gas lines, 205
in standing waves, 324
in water, 202

Pressure probe, 223
Pressure receiver, 355
Principal ray, 303
Principal stress, 159
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Prism
for sound waves, 330
spectral resolving power, 347

Probability, 482, 483
Productivity, 226
Projectile velocity, 18
Propeller, 244
Proper angular momentum, 104
Pulsed excitation, 247, 257
p-V diagram, 382

of carbon dioxide, 410

Q
Quantities referred to the amount of

substance (molar), 376
Quantity

derived, 29
of of substance, 369
physical, 28

Quasi-static processes, 476

R
Radar, 325
Radial acceleration, 21, 26, 44, 130,

133
Radial force, 44
Radian, 10, 95
Radiation power, 326, 348
Radiation pressure of sound, 326
Radiometer force, 433
Radius vector, 55, 62
Rapidity, 348
RAYLEIGH disk, 349
Real gases, 194, 409

isotherms, 410
phase changes of, 409

Recording, distortion-free, 281
Rectification, 420
Reference frame, 44
Reflection coefficient, 350
Reflection of sound waves by warm

air, 329
Reflection of water waves, 302
Refraction of sound waves, 330
Refraction of water waves, 302
Refrigeration device, 501, 502
Refrigeration technology, basic rule,

503
Regenerator, 498
Relaxation oscillations, 288
Relaxation time, 165, 288
Resolving power, 347

of the ear, 357
Resonance, 276

importance for the detection of
sinusoidal oscillations,
279

Resonance chamber, 352
Resonance curves, 276

Resonator, 276
Restoring force, 52
Reversible processes, 475, 480
Reversion pendulum, 103
REYNOLDS number, 217, 219
Ripple tank, 293
Rocket equation, 86
Rockets, 86
Rolling friction, 172
Rosette orbit

of a pendulum, 139, 148
Rotation pendulum

POHL’s pendulum, 273
Rotation, sign or sense, 104
Rotations of liquids, 228
Rubber

elasticity, 370, 508
mechanical hysteresis, 166

RUBENS’ flame tube, 266
Rule of DULONG-PETIT, 439
Rupture strength

of solids, 167

S
Sailing

close-hauled, 242
Satellite, artificial, 135
Saturation pressure, 377, 386, 422
Scales, 34
Scattering, 330
Schlieren

in air, 331
SCHULER period, 145
Screw caliper, 6
Screw micrometer, 5
Screws, loosening of, 171
Seasickness, 43
Second, 11
Second Law, 505, 509

of thermodynamics, 495
Secondary radiation, 325
Seismograph, 281
Separation fracture, 168
Separation of gases, 420
Shadow, 299, 328

colored, 3
Shaft

supple, 109
Shallow-water lens, 303
Shape memory alloys, 167
Shear modulus, 155, 157
Shear strain, 157
Shear stress, 157, 159
Shockwave, 307
SI = Système International

d’Unités, 29
Simple pendulum, 53
Sine curve, 13, 251
Sink, 226

Sinking, 83
Sliding friction, 170

coefficient of, 170
Slit, 299
Solid bodies, 153

deformation, 31, 96, 153
Solids, 153, 508
Somersault, 111
Sonoluminescence, 190
Sound detection threshold, 361
Sound field

energy of, 328, 347
pressure amplitude, 348, 350
velocity amplitude, 349

Sound radiometer, 326
Sound receivers, 355
Sound shadows, 328
Sound source, 351

primary, 353
secondary, 353

Sound velocity, 322
in gases, 349
supersonic, 354, 488, 492

Sound wave resistance, 347
Sound waves

diffraction of, 331
in air, 323
standing, 323

Sound-pressure amplitude, 348
Source, 226
Speaking machine, 358
Specific, 39
Specific enthalpy of vaporization,

378
Specific heat, 376, 388
Specific heat of vaporization, 444
Specific volume, 39
Spectral apparatus, 279
Spectral representation, 256
Spin, 104
Spiral illusion, 4
Spring balance, 36
Spring constant, 46, 52, 94
Spring pendulum, 52, 53
Stabilizing tank, 286
Stagnation point, 223
Stagnation pressure, 223
Standard conditions, 393
Standing waves, 297, 323
State variables

critical, 409
for water, 485
simple, 369
thermal, 384

Statistical fluctuations, 447
Steam

superheated, 411
Steam engine, 500
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Steamboats, 236
STEINER’s law, 100, 102, 143
Steradian, 10
Stereogrammetry, 8
Sticking friction, 169
Stimulated energy transfer, 278
STIRLING engine, 498, 501
STOKES’ law, 216
Strain, 157
Strain ellipsoid, 158
Stream formation, 233
Streamlines, 216, 220, 225, 237,

239
in a model experiment, 224, 225,

239
in a water wave, 336

Stretching limit, 155
String

emission of, 352
vibrations of, 262, 352

Stroboscope, 14
Sublimation, 423
Sublimation temperature, 422
Sum frequency, 358
Supercooling, 424
Superfluidity of helium, 191
Supersonic jet, 492
Supersonic velocities, 354, 488
Surface

formation of, 413, 425
Surface defects, 168
Surface energy, 168, 187, 188
Surface tension, 188

abnormal, 192
Surface waves on water, 336
Syphon, 200

for gases, 201
for liquids, 200

T
Technical work, 381, 387
Temperature, 370

critical, 386, 414
on the molecular scale, 429
thermodynamic definition, 504

Temperature conductivity, 464
Temperature scale, international,

372
Tennis ball, ‘cut’, 241
Tensile strength

of liquids, 186, 426
of solids, 168
of water, 186, 426

Tensile stress, 154, 426
Thermal conductivity, 463, 470
Thermal expansion coefficient, 370
Thermal motions

in gases, 195
in solids, 175

of molecules, 430
Thermal vibrations, 271
Thermocouple, 372
Thermodiffusion, 473
Thermometer, 371, 372
Thermos bottle, 376
Throttle experiment of

GAY-LUSSAC, 396
Throttled release, 396
Tides, 147
Tightrope artist, 125
Time, 10, 16
Time integral, 75
Time measurement, 10

true, 10
Time measurements

indirect, 15
Toggle oscillations, 288
Tone, 357
Top, 105, 112

angular momentum axis, 113
force-free, 115
instantaneous axis of rotation,

113
momentary axis of rotation, 113
precessional oscillations, 125
symmetry axis, 113
with two degrees of freedom,

123
Torque, 97

definition of, 92
of an electric motor, 93
production of, 94

Torsion, 163, 164
Torsion balance, 61
Torsion coefficient, 94, 97, 163
Torsion shaft, 94, 95
Torsional modulus = shear modulus,

157
Torsional oscillation, 97, 100, 264,

271, 273
Torsional pendulum, 95
Torsional waves, 322
Total pressure = dynamic head

in fluids, 223
Total reflection, 304, 306
Trade winds, 150
Transport processes in gases, 465
Transverse acceleration, 21
Transverse contraction, 155
Transverse force

applications, 241
dynamic, 237, 240

Transverse vibrations, 259, 260, 270
Transverse waves, 322
Travelling waves, 291
TREVELYAN’s rocker, 288
Triple point, 411, 421, 423

TROUTON’s rule, 485
Tsunami, 340
Tuning fork, 282, 352

auto-control, 249
damping, 285
improvement of emission, 353

Tunnel effect, 306
Turbulence, 217, 414
Twisting, 95, 96, 163

U
Ultrasound, 268
Unit of work, 68
Unit system

SI, 29
Units, 5
Universal gas constant, 393

V
VAN DER WAALS’ equation of

state, 414, 415
Vapor

saturation pressure, 377
Vapor pressure, 421, 450
Vapor-pressure curve

of ice, 424
of supercooled water, 424

Vector, 20
Vector product, 92
Velocity, 28

definition, 18, 29
of a bullet, 137
of molecules, 198, 430
vector addition, 20

Velocity distribution
in laminar flow, 215
MAXWELL-BOLTZMANN, 436,

450
of gas molecules, 435

Velocity of light, 88
Velocity of sound, 405
Velocity receiver, 355
Vernier caliper, 5
Vibrating-reed frequency meter,

279, 363
Vibrations, 292

excitation of, 247
in pipes, 268
of a doorbell, 249
of a gravity pendulum, 248
of strings, 352
self-controlling, 247
undamped, 247

Violin
as sound source, 353
frequency spectrum, 354

Viscosity, 212, 213, 470
dynamic, 218
kinematic, 218
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of gases, 466
Voltage impulse, 75
Volume current, 214, 216
Volume, molar, 393
Vortex field, irrotatonal, 228, 231
Vortex ring, 234
Vortex tube, 474
Vortices and separation surfaces,

232
Vorticity, 231
Vowels, 357

W
Water-wave experiments, 294
Watt = N m/s, 71
Watt second, 68
Wave field on a water surface, 294
Wave maxima, 297

Wave tank, 336
Waves

diffracted, 299
on liquid surfaces, 336
standing, 297
travelling, 291

Weight, 31, 35
of the moon, 59

WESTPHAL,W.H., 434
Wet steam, 411
Wetting, 185, 189
Wobble oscillations, 286

amplitude dependence of the
frequency, 286

Work, 67
against a spring, 69
definition, 68

in rotations, 97
of acceleration, 70, 396, 490
of lifting, 68, 69
of rotation, 92

Work of displacement, 381
Work of expansion, 381, 383
Work, technical, 383

Y
YOUNG, THOMAS, 293, 295, 317,

334
YOUNG’s modulus = modulus of

elasticity, 155

Z
Zone plate, 317
Zones, FRESNEL, 315


	Preface to the Second English Edition
	Preface to the Twenty-First German Edition
	From the Preface to the 20th Edition (2008)
	From the Preface to the 19th Edition (2004)
	From the Preface to the First Edition (1930)
	R.W. Pohl (1884–1976)
	Contents
	List of Videos
	Part I Mechanics
	1 Introduction; Distance and Time Measurements
	1.1 Introduction
	1.2 Distance and Length Measurements. Direct Distance Measurements
	1.3 The Meter as a Unit of Length
	1.4 Indirect Length Measurements of Very Large Distances
	1.5 Angle Measurements
	1.6 Time Determinations. True Time Measurements
	1.7 Clocks and Graphical Registration
	1.8 Measurement of Periodic Sequences of Equal Times and Lengths
	1.9 Indirect Time Measurements
	Exercises

	2 The Description of Motion: Kinematics
	2.1 Definition of Motion. Frames of Reference
	2.2 Definition of Velocity. Example of a Velocity Measurement
	2.3 Definition of Acceleration: The Two Limiting Cases
	2.4 Path Acceleration and Linear Motion
	2.5 Constant Radial Acceleration and Circular Orbits
	2.6 Distinguishing Physical Quantities and Their Numerical Values
	2.7 Base Quantities and Derived Quantities 
	Exercises

	3 Fundamentals of Dynamics
	3.1 Force and Mass
	3.2 Measurements of Force and Mass.Newton's Fundamental Equation of Motion
	3.3 The Units of Force and Mass. Expressions Containing Physical Quantities
	3.4 Density and Specific Volume
	Exercises

	4 Applications of Newton’s Equation
	4.1 Constant Acceleration in a Straight Line
	4.2 Circular Motion and Radial Forces
	4.3 Sinusoidal Oscillations: The Gravity Pendulum as a Special Case
	4.4 Motions Around a Central Point
	4.5 Elliptical Orbits and Elliptically Polarized Oscillations
	4.6 Lissajous Orbits
	4.7 Kepler's Elliptical Orbits and the Law of Gravity
	4.8 The Gravitational Constant
	4.9 The Law of Gravity and Celestial Mechanics
	Exercises

	5 Three Useful Concepts: Work, Energy, and Momentum
	5.1 Preliminary Remarks
	5.2 Work and Power
	5.3 Energy and Its Conservation
	5.4 First Applications of the Conservation Law of Mechanical Energy
	5.5 Impulse and Momentum
	5.6 Momentum Conservation
	5.7 First Applications of Momentum Conservation
	5.8 Momentum and Energy Conservation During Elastic Collisions of Objects
	5.9 Momentum Conservation in Inelastic Collisions and the Ballistic Pendulum
	5.10 Non-Central Collisions
	5.11 Motions Against Dissipative Forces
	5.12 The Production of Forces with and without Consuming Power
	5.13 Closing Remarks
	Exercises

	6 Rotational Motion of Rigid Bodies
	6.1 Introductory Remarks
	6.2 Definition of Torque
	6.3 The Production of Known Torques, the Constant D*, and the Angular Velocity 
	6.4 The Moment of Inertia, Equation of Motion for Rotations, Torsional Oscillations
	6.5 The Physical Pendulum and the Beam Balance
	6.6 Angular Momentum
	6.7 Free Axes
	6.8 Free Axes of Humans and Animals
	6.9 Definition of the Spinning Top and Its Three Axes
	6.10 The Nutation of a Force-Free Top and Its Fixed Spin Axis
	6.11 Tops Acted on by Torques. Precession of the Angular-Momentum Axis
	6.12 Precession Cone with Nutation
	6.13 A Top with Only Two Degrees of Freedom
	Exercises

	7 Accelerated Frames of Reference
	7.1 Preliminary Remarks. Inertial Forces
	7.2 Frames of Reference with Only Path Acceleration
	7.3 Frames of Reference with Radial Acceleration. Centrifugal and Coriolis Forces
	7.4 Vehicles as Accelerated Frames of Reference
	7.5 The Gravity Pendulum as a Plumb Bob in Accelerated Vehicles
	7.6 Earth as an Accelerated Frame of Reference. Centrifugal Acceleration of Bodies at Rest
	7.7 Earth as an Accelerated Frame of Reference. Coriolis Force on Moving Bodies
	Exercises

	8 Some Properties of Solids
	8.1 Preliminary Remarks
	8.2 Elastic Deformation, Flow and Solidification
	8.3 Hooke's Law and Poisson's Relation
	8.4 Shear Stress
	8.5 Normal, Shear and Principal Stress
	8.6 Bending and Twisting (Torsion)
	8.7 Time Dependence of Deformation.Elastic Aftereffects and Hysteresis
	8.8 Rupture Strength and Specific Surface Energy of Solids
	8.9 Sticking and Sliding Friction
	8.10 Rolling Friction
	Exercises

	9 Liquids and Gases at Rest
	9.1 The Free Displacements of Liquid Molecules
	9.2 Pressure in Liquids. Manometers
	9.3 The Isotropy of Pressure and Its Applications
	9.4 The Pressure Distribution in a Gravitational Field. Buoyancy
	9.5 Cohesion of Liquids: Tensile Strength,Specific Surface Energy, and Surface Tension
	9.6 Gases as Low-Density Liquids Without Surfaces.Boyle's Law
	9.7 A Model Gas. Pressure Due to Random Molecular Motions (Thermal Motion)
	9.8 The Fundamental Equation of the Kinetic Theory of Gases.Velocity of the Gas Molecules
	9.9 The Earth's Atmosphere. Atmospheric Pressure in Demonstration Experiments
	9.10 The Pressure Distribution of Gases in the Gravitational Field.The Barometric Pressure Formula
	9.11 Static Buoyancy in Gases
	9.12 Gases and Liquids in Accelerated Frames of Reference
	Exercises

	10 Motions in Liquids and Gases
	10.1 Three Preliminary Remarks
	10.2 Internal Friction and Boundary Layers
	10.3 Laminar Flow: Fluid Motions Which Occur when Friction Plays a Decisive Role
	10.4 The Reynolds Number
	10.5 Frictionless Fluid Motion and Bernoulli's Equation
	10.6 Flow Around Obstacles. Sources and Sinks. Irrotationalor Potential Flows
	10.7 Rotations of Fluids and Their Measurement.The Irrotational Vortex Field
	10.8 Vortices and Separation Surfaces in Nearly Frictionless Fluids
	10.9 Flow Resistance and Streamline Profiles
	10.10 The Dynamic Transverse Force or Lift
	10.11 Applications of the Transverse Force
	Exercises


	Part II Vibrations and Waves
	11 Vibrations
	11.1 Preliminary Remarks
	11.2 Producing Undamped Vibrations
	11.3 The Synthesis of Non-Sinusoidal Periodic Processes from Sine Curves
	11.4 The Spectral Representation  of Complex Oscillatory Processes
	11.5 Elastic Transverse Vibrations of Linear Solid Bodies Under Tensile Stress
	11.6 Elastic Longitudinal and Torsional Vibrations of Stressed Linear Solid Bodies
	11.7 Elastic Vibrations in Columns of Liquids and Gases
	11.8 Normal Modes of Stiff Linear Bodies
	11.9 Normal Modes of 2-Dimensional and 3-Dimensional Bodies. Thermal Vibrations
	11.10 Forced Oscillations
	11.11 Energy Transfer Stimulated by Resonance
	11.12 The Importance of Resonance for the Detection of Pure Sinusoidal Oscillations. Spectral Apparatus
	11.13 The Importance of Forced Oscillations for Distortion-Free Recording of Non-Sinusoidal Oscillations
	11.14 The Amplification of Oscillations
	11.15 Two Coupled Oscillators and Their Forced Oscillations
	11.16 Damped and Undamped Wobble Oscillations
	11.17 Relaxation (or Toggle) Oscillations
	Exercises

	12 Travelling Waves and Radiation
	12.1 Travelling Waves
	12.2 The Doppler Effect
	12.3 Interference
	12.4 Interference with Two Slightly Different Source Frequencies
	12.5 Standing Waves
	12.6 The Propagation of Travelling Waves
	12.7 Reflection and Refraction
	12.8 Image Formation
	12.9 Total Reflection
	12.10 Shockwaves when the Wave Velocity Is Exceeded
	12.11 Huyghens' Principle
	12.12 Model Experiments on Wave Propagation
	12.13 Quantitative Results for Diffraction by a Slit
	12.14 Fresnel's Zone Construction
	12.15 Narrowing of the Interference Fringesby a Lattice Arrangement of the Wave Sources
	12.16 Interference of Wave Trains of Limited Length
	12.17 The Production of Longitudinal Waves and Their Velocities
	12.18 High-Frequency Longitudinal Waves in Air. The Acoustic Replica Method
	12.19 The Radiation Pressure of Sound. Sound Radiometers
	12.20 Reflection, Refraction, Diffraction and Interference of 3-Dimensional Waves
	12.21 The Origin of Waves on Liquid Surfaces
	12.22 Dispersion and the Group Velocity
	12.23 The Excitation of Waves by Aperiodic Processes
	12.24 The Energy of a Sound Field. The Wave Resistance for Sound Waves
	12.25 Sound Sources
	12.26 Aperiodic Sound Sources and Supersonic Velocities
	12.27 Sound Receivers
	12.28 The Sense of Hearing
	12.29 Phonometry
	12.30 The Human Ear
	Exercises


	Part III Thermodynamics
	13 Fundamentals
	13.1 Preliminary Remarks. Definition of the Concept `Amount of Substance'
	13.2 The Definition and Measurement of Temperature
	13.3 The Definitions of the Concepts of Heat and Heat Capacity
	13.4 Latent Heat
	Exercise

	14 The First Law and the Equation of State of Ideal Gases
	14.1 Work of Expansion and Technical Work
	14.2 Thermal State Variables
	14.3 The Internal Energy U and the First Law
	14.4 The State Function Enthalpy, H
	14.5 The Two Specific Heats, c_p and c_V
	14.6 The Thermal Equation of State of Ideal Gases. Absolute Temperatures
	14.7 Addition of Partial Pressures
	14.8 The Caloric Equations of State of Ideal Gases.Gay-Lussac's Throttle Experiment
	14.9 Changes of State of Ideal Gases
	14.10 Applications of Polytropic and AdiabaticChanges of State. Measurements of 
	14.11 Pneumatic Motors and Gas Compressors
	Exercises

	15 Real Gases
	15.1 Phase Changes of Real Gases
	15.2 Distinguishing the Gas from the Liquid
	15.3 The van der Waals Equation of State for Real Gases
	15.4 The Joule-Thomson Throttle Experiment
	15.5 The Production of Low Temperatures and Liquefaction of Gases
	15.6 Technical Liquefaction Processes and the Separation of Gases
	15.7 Vapor Pressure and Boiling Temperature. The Triple Point
	15.8 Hindrance of the Phase Transition Liquid  Solid:Supercooled Liquids
	15.9 Hindrance of the Phase Transition Liquid  Gas:The Tensile Strength of Liquids
	Exercise

	16 Heat as Random Motion
	16.1 Temperature on the Molecular Scale
	16.2 The Recoil of Gas Molecules Upon Reflection. The “Radiometer Force”
	16.3 The Velocity Distribution and the Mean Free Pathof the Gas Molecules
	16.4 Molar Heat Capacities in a Molecular Picture.The Equipartition Principle
	16.5 Osmosis and Osmotic Pressure
	16.6 The Experimental Determination of Boltzmann's Constant k from the Barometric Equation
	16.7 Statistical Fluctuations and the Particle Number
	16.8 The Boltzmann Distribution

	17 Transport Processes: Diffusion and Heat Conduction
	17.1 Preliminary Remarks
	17.2 Diffusion and Mixing
	17.3 Fick's First Law and the Diffusion Constant
	17.4 Quasi-Stationary Diffusion
	17.5 Non-Stationary Diffusion
	17.6 General Considerations on Heat Conduction and Heat Transport
	17.7 Stationary Heat Conduction
	17.8 Non-Stationary Heat Conduction
	17.9 Transport Processes in Gases and Their Lack of Pressure Dependence
	17.10 Determination of the Mean Free Path
	17.11 The Mutual Relations of Transport Processes in Gases

	18 The State Function Entropy, S
	18.1 Reversible Processes
	18.2 Irreversible Processes
	18.3 Measurement of the Irreversibility Using the State Function entropy
	18.4 Entropy in a Molecular Picture
	18.5 Examples of the Calculation of the Entropy
	18.6 Application of Entropy to Reversible Changes of Statein Closed Systems
	18.7 The H-S or Mollier Diagram with Applications. Supersonic Gas Jets
	Exercise

	19 Converting Heat into Work. The Second Law
	19.1 Heat Engines and the Second Law
	19.2 The Carnot Cycle
	19.3 The Stirling Engine
	19.4 Technical Heat Engines
	19.5 Heat Pumps (Refrigeration Devices)
	19.6 The Thermodynamic Definition of Temperature
	19.7 Pneumatic Motors. Free and Bound Energy
	19.8 Examples of Applications of the Free Energy
	19.9 The Human Body as an Isothermal Engine
	Exercise

	Table of Physical Constants
	Solutions to the Exercises
	Index




