EKK 22.1522
A 28
УДК 51383

Aдяма 조․
Бесконечнократные пространствв петеж: Пер. с ангн. M.: Misp, 1982. - 200 с.

Краткое введенне в теорио бесконечнократнвх пространотв петөль - новоө ваправление современной топодогии. Автор книги - известныи английский математик.

Для математиков разних специальностеи, асшррантов п студентов.

$$
A \frac{1702040000-196}{041(01)-82} 1-83, \text { ч. } 1 .
$$

Родаксия литератури по математпческм наукам
(C) 1978 by Princeton University Press
(C) Перевод на русский яянк, "Мщр", 1982

Пространство петөль $\Omega \mathrm{X}$ топологического пространствв X с отмеченнои точкон - это пространство непрернвних отобраленин отрезва $[0,1]$ в X, переводящих оба нониа в отмеченнуо точку. обпедзвестно, что пространствв петель составляот в некотором смнсде привклегировянныи класс пространств, главннм образом пу-за наличия в них умнохения с рядом хороших свойств. вие дучше, если пространство является двукратннм пространством петель (т.е. пространством петел пространства петель): тогда, вапример, умнозение будет гомотопически номаутатвввв. Мохно одидать, что многократнне, а тем более бесконечнокрагнне пространства петель, сколь би редво они ни встречались, с
 из всех пространств. Такие пространства действитедно бнвапт: например, просгранство Эиденберга - Манлейна $K(G, n)$ с абелевон грушой G и лобм n является (с точносты до гомотопи ческой эквивалентности) бесконечнократным мространством петель
 странство $B U$ бесконечнои унитарнои грушын U в скду теоремн Ботта о периодичности Томотопически әквивалентно связной компоненте своего пвукратного пространства петель $\Omega^{2} B U$, так что $B U \times \mathbb{Z}=\Omega^{\text {2N }}(B U \times \mathbb{Z})_{\text {при }}$ добом N. Гдавное достомнство бесконечномратннх пространств петель состоит в их родстве с так вазнваемвии спеттрами, а через них - с обобщеннния теорпями когомологй - цевтраньнмм повятием современнои алгебраическои топологии. Наприер, $K(G, n)$ ассодиируется с пласоическиии когомодогиями с коәффидиентами в G, а $B U-c$ ноилекснои K -reopmet.

Ннига Аламса посвямөва предде всего "дробдөмо распозвавания". Как узватъ, будет ли данное пространство гомочошвчесии әквивалентно бесконечножратнолу пространству петемв? Дых этого, оквзнвается, нужно, чтобн проотранотво обжададо некоторвопи гомочотически инварвантнвап структурами. Эті структури представ-
 дарт возмоднооть вффективной продедури "распетанвания": $\mathrm{X}=\Omega_{\mathrm{L}} Y_{1}=$ $=\Omega Y_{R}=\ldots$... Для пространств эта процедура ошисава в гд. 2. дия отображенин (в неготорнх частинх сдучалх, так как в общеи оху-

 5 поовяменд "трансферу" - одному ия напоодее ярких ироявленай бесконечнократнои петдево структуры: ядесь приводитоя принаддежамее Беккеру и Готтлибу простое доказатөльство знаменитой
 шиеся две главы, первая п последняя, представляот собой соответственно введенде п рездме.
 оужденай обмего характера, остроя, уроническвх илих хвалебнвх

 ет пониманио. Ниита дает верное предотавдение о предмете, п, бевусдовно, ве будет достаточно дли оодвнавства читаледей. Бодее академическоө иэложение төорми бөсконечнократних пространств дөтель ммеетая в нните Бордмяна п Фогта [40], рјоскиии перевод которои вымед в 1977 г. в падателвотве "Mир", п в статье Мяя [92], русский перевод которон прдооединен к переводу упоминутой книги Бордмана и Фогта. Кроме того, ня русокй язык переведен
 нит, гах кинга Адамса), где в придоменин пөреводчика освөмается
 ранств петель от момента ваниаиия обвора до настоныего времени.

 gorix.

I. 5. Dyso

IFIRUИНОВИKB

Abstract

 ваторов за пригланиие, гостеприпотво п за то, уто они обес- нут опредедепннй прогресс, п я восподззовался возмохностьр скавачь об этом нескодво сдов. Кроме того, появиись п другне нСточннні, в частности работн [96] в [99] момно редомендоватв нап особенно полезнне опытни топодогам, гепамивя ознакомигься с достнгнутни рөзущтатамп. Я старадся, оддвпо, дагь бодее В этом мне очень способствовали принстонодие сдуратеда: чөм mer ixTeparype.

дх. ब. Адамо

Глава I
ПРЕЛВАРИTE円ННЕ СВЕЛЕНИЯ И ИСТОРИЯ ВОІРОСА

§ I.I. Введение

Я начну эту вводнуо главу с нескольких псторических замечании у ряда сведении общего характера. Специалистам они хоропо извеотнн, а неспециалистам долхны дать возмохность продвинуться в чтении отих замисок так далеко, как они пожелвыт.я обрисур в общих чертах три раздела гомотопическои топологии:
(i) пэучение бесконечнократных пространств петөль;
(ii) паучение стабилво теории гомотопии при помоми сдемтров;
(iii) ияучение обобщенных теория гомология и когомологин.
 ми тремя областям. В заклочение будет приведена грубая кдассификапря, вли обзор проотранств, о которых в настоящеө время иявестно, что ови являотся бесконечнократныпи пространотвами петед5.

§ 1.2. Пространства петело

В атом параграфе мы поэнакомпмся с пространствами петель. Пусть X - простравство с отмеченнои точкои x_{0}. Под пространством петель §Х мв будем понимать функциональное пространство

$$
\left(\mathrm{X}, x_{0}, x_{0}\right)^{(1,0,1)}
$$

непрорывных отобрахөнии $\omega: I \rightarrow X$ едкничного интервала $I=$ $=[0,1]$ в пространство X , переводяиих 0 в x_{0} п І в x_{0}. Зададим на этом щространотве комшактно-открытур топологио; если нухна отиеченная точка, мн принрмаем за нее постоянное отобра-
 в пространстве X.

В өтои месте необходимо дать погорическия пояонения. Вопервакх, упомлнем хоромо пзвестнуо работу Морса [III]. В нед Морс рассмотрел рхшаново многообразве M , скахем связное; ого интересовало мнозество геодевнческих в . M, ведучиа из точки P в точку Q. ов обнарукил связь мехжу этвм мнохеством геодезических и топологией пространства всех путей из P в Q;

$$
(M, P, Q)^{(I, 0,1)}
$$

непрерывных отобрахении $\omega: I \rightarrow M$, переводямих 0 в P п в Q. Гомотопическии тиі ятого пространства не зависит от точек P п Q, так что оно өквввалентно пространству ऽМ. Напрхмер, возымем в качестве M сферу S^{n} с обкчной римановой структурой; в өтом сдучае все геодевические, ведуиие из P в Q, хоропо известнн. (A ммено, ва P в Q мохно попасть по крат-
 том хе направлении п не остановивпить, когда ухе мохно било остановиться, мохно попасть в Q по геодезической длинн $2 n \pi+\theta$; начдная двигатьан в противополовном ваправлении, мд получчм геодезические длинн $2 n \pi-\theta$.) Этого вполне хватило Морсу ддя вичксленвя гомодогических грумा $H_{*}\left(\Omega S^{n}\right)$ тространства петель S.Sn. Проводя свое рассуддение в противополовном ваправления, ов показап, что еслв взять сферу S^{n} п задать ва ней лобуо другуп раменовуо структуру, то все равно ниядется бесконечно много геодезгческих, соединндмих P с Q.

во-вторых, вмеется хоропо извествая работа Серра [129]. В ней Сөрр обобщия теорему о супествовании бестонечного мнохества геодезнческих вз P в Q, заменяв сферу S^{n} произвольным рвмановым многообразвем, гомологии которого отличнн от гомологй точкн, причем әтот результат - лищь ожно из замечателлних достихения атой раоотн Серра и, возмохно, некоторые друтво даме более вехвн; я пмеп в виду предде всего раввитне Серрои методи.

Чгобн дучше разобраться в строении пространсява петедв ΩX, Cepp ввел пространство путеи

$$
E X=\left(X, x_{0}\right)^{(I, 0)}
$$

T.е. пространство непрерывних отобрахении $f: I \rightarrow X$, переводяmих 0 в x_{0}. Пространство $E X$ стягиваемо, но оно является вехным промежуточным звеном медду $\Omega \mathrm{X}$ п X . Серр определил непрерывное отобрамение

$$
p: E X \rightarrow X
$$

Формудои $p(f)=f(1)$, т.е. отобрамение p относетт каждому пути его конец. Он показал, что это отображение p обладает свонством накрывамен гомотопии для отобрахений куоов; тедерь мы называем такие отображения расслоениями в смнсле Серра. Слой $\rho^{-1} x_{\rho}$ есть в точности пространство петель ΩX. Итак, вмеется расслоения Серра

$$
\Omega X \rightarrow E X \xrightarrow{p} X .
$$

(Здесь стохт сделать маленькое замечание об обоэвачениях. Из чувствя исторической страведливости я следур обозначөниям Серра, которн вспользовал букву E. Однако многие теперь употребляот обозначение PX, пропзводя его от английского термина path-space.)

Построения такого рода обладарт больто потенциальнон общностьр; отправляясь от них, Бурбаки покаяал впоследствин, что лобое непрорывное отобрахение $f: X \rightarrow Y$ мохно заменить расслоением в смысле Серра. Для өтого достаточно заменить X некотормм другпм пространством, которое ему гомотошнчески әквивалентно, а пространство Y можно не менять.

Серр показал такве, что в этой ситуацив хорошо работает апшарат спектральннх последовательностей Лере. Использование спектральных посдедовательностен в гомологических внчисленших придало методам Серра большуо техническуо мощь, и они ожазались очень успешныдн; если добавить к өтому, что работа Серра очень өлегантна п ясно пзложена, то не будөт удивптельно, что его методн приоорели пирокуш популярность.

Прехде чем продолжать, напомно еще об одном давно известном фундаментальном факте. Пожали, самое первое, что

спепвалисти по теорих гомотопии узнарт о пространствах петель, это то, что оні позволяшт манщпулировать гомотопическими группами, сдвигая их ия одной размерности в другуо. А именно,

$$
\pi_{i}(\Omega X) \cong \pi_{i+1}(X)
$$

Этог изоморфизм мохно обобпить. Пусть W - епе одно пространство с отмеченной точкои w_{0}. Тогда отобрахения

$$
f: W \rightarrow X^{r}
$$

взаимно однозначно соответствуот отображениям

$$
g: W \times I \rightarrow X,
$$

причем это соответствие осумествляется по правилу

$$
(f w)(t)=g(w, t) \quad(w \in W, t \in I) .
$$

Привлекая отмеченнне точпи, мн находмм, что отображения

$$
f: W, w_{0} \rightarrow \Omega X, w_{0}
$$

взашмно одновначно соответствушт отображениям

$$
g: \Sigma W, \sigma_{0} \rightarrow X, x_{0}
$$

Здесь через $\sum \mathrm{W}$ обозначено факторпространство, подученное из $W \times I$ отоддествлением подпространства ($W \times 0) \cup\left(w_{0} \times I\right) \cup(W \times 1)$ в одну точку, которая становится отмечевноя точко㝵 σ_{0}° в ΣW. Это факторпространство назнвается приведенно вадстроинои над W ; часто ее обозначарт через $S W$.

Тах или иначе, переходя к гомототческим классам, ма поиучаем естественное взашио однозначное соответствие

$$
\begin{equation*}
[W, \Omega X] \leftrightarrow[\Sigma W, X] \tag{1.2.1}
\end{equation*}
$$

Здесь через $[U, V]$ обозначено множество гомотопических классов отобрамения из U в V, причем как отобрахения, так п гомотошй сохраннот отмеченнне точки.

В налия дни, чтобн вчразнть все өто, говорат, что функторы Σ п Ω сомряхени. Эта терминология является относительно недавнеи: овя принадлехит Кану [75].

B частности, за W мохно принять факторпространство $I^{n} / \partial I^{n}$, где I^{n} - единичныния вуб в \mathbb{R}^{n}, а ∂I^{n} - его граница. Тогда

$$
\Sigma W=I^{n} \times I /\left(I^{n} \times 0\right) U\left(\partial I^{n} \times I\right) U\left(I^{n} \times 1\right)=I^{n+1} / \partial I^{n+1},
$$

п наше взаимно одвозначное соответствие преврапаетоя в ияоморфизм

$$
\begin{equation*}
\pi_{n}(\Omega X) \cong \pi_{n+1}(X) \tag{1.2.2}
\end{equation*}
$$

Конечно, нужно еще объяснить, зачем топологам требуется сдвагать размерности гомотопических грулп әто - тема следупвого параграфа.

§ 1.3. Стабилввая теория гомотопин

В атом параграфе я расскажу о стабильной теории гомотопии y 0 enertpax.

Топологи проводят фундаментальноө различне медду стабильннмих у нестабивним явлениями; явление назнвается стабилным, если оно проявляется в лооои или лобои достаточно болышо размерности, при этом, по существу, не завися от размерности. Конструкциен, изменяоде размерность, обнчно является надстронка. Например, в төории гомологии страведливо равенство

$$
\tilde{H}_{n}(W ; \pi) \cong \tilde{H}_{n+1}(\Sigma W ; \pi)
$$

где $\tilde{\mathrm{H}}$ обозначает приведеннне гомологии. Но гораздо лучше этот принцрп прослемивается в теория гомотопии, где он восходпт к работе Фрейденталя [59]. Нам достаточно, чтобн W п X бнля достаточно хорошими пространствами, например CW-комплексами. Тогда надстроиня задает отображение

$$
\Sigma:[W, X] \rightarrow[\Sigma W, \Sigma X] .
$$

п пиет место сдедупая хорошо пзвестная теорема.

TEOPEMA I.3.1. Преддолоким, что компллеко $X(n-1)$-связен, а комплекс W имеет размерность d; тогда отображение

$$
\Sigma:[\mathrm{W}, \mathrm{X}] \rightarrow[\Sigma \mathrm{W}, \Sigma \mathrm{X}]
$$

өтаморино при $d \leqslant 2 n-1$ п является вэаимно однозначннм соответствдем mpи $\quad d \leqslant 2 n-2$.

Подходяшим источником для изучения этой теорема являетая книда [135], (особенно с. 590).

Чтобн докязать ее, заменярт стоящее справа множество $[\Sigma W, \Sigma X]$ множеством $[W, \Omega \Sigma X]$ при помоип изоморфизия (1.2.1). Получкм следуопио коматтативнуо диаграмму:

Здесь i_{*} обозначает отобрамение, индумированное отобрамением i, а $i: X^{*} \rightarrow \Omega \sum X$ есть отображение, соответствуюмее при изоиорфизме (1.2.1) тождественному отображениы $1: \Sigma \mathrm{X} \rightarrow \Sigma \mathrm{X}$. Эта диаграмма сводит доказнваемуо теорему к изученжл пространотвя петедв $\Omega \Sigma X$ п связи этого пространства с пространством X ; өто хе относптся и к другим теоремам теории надстроек.

На самом деле пэучение пространств петель оказалось самым плодотворным методом в теориу гомотонии. Джеюмсу [73] удалось заменить довольно большое функциональное пространство ΩS^{n} явнвм клеточнвм комплексом, настолько мальм, что момно хорошо понять его структуру; я оуду назнвать его щодельо Дхениса ддя ΩS^{n}. Это привело его к новым интеросннм результатам о надстройее. Ботт п Самельсон [44] вычислили гомологии значителього числа пространств петель, в том числе пространства петелы $\Omega\left(S^{n /} V\right.$ $\vee S^{n^{2}} \vee \ldots \vee S^{n} \alpha$) букета сфер. Основывалсь на этих вычислениях, Хилтону [63] удалось значхтельно продвинуться в пзучении Гомотошического типа пространствя $\Omega\left(S^{n} \wedge \vee S^{n_{2}} \vee \ldots \vee S^{n} \alpha\right)$; это привело к новнм результатам в теории гомотопии.

Вернемся к общему случар. Используя обовваченвя теоремн 1.3.1, назовем гомотопическуо классийкационнуо задачу нахомдения множества $[W, X]$ стабильнон, еслй $\alpha \leqslant 2 n-2$, так что мн вмем в точности такур же задачу для [$\Sigma W, \Sigma X]$, для $\left[\Sigma^{2} W, \Sigma^{2} X\right]$ и для всех высших размерностен. Это можно обобщить, оказав, что стабильная теория гомотопин - өто часть теории гомотопин, ияучарыая явления, стабиньнне в описанном выше пнтуитивном смнслө.

Чтобн убедить скептиков в разумности ятои теории, требовадось продемонстрхровать содержапиеся в ней интереснне теоремн. Хорошей рекламой для стабильно立 теории гомотопий послукила появившаяся достаточно рано двоиственность Спеньера - Уайтхеда [137, 134]. Предоолохвм, что вам дано хоропее пространство \mathbf{X}. скахем конечный комплегс, и что мв рассматриваем непатологическоо вложение пространства X в сферу S^{n}, т.е. таное вломоние, при котором дополнение \mathscr{C} проотранства X в \mathbf{S}^{n} деформа-
 ратно, СУ деформационно ретрагируетоя ви X. Тогда, согласно теореме двойтвенности Александера, гомологии п когомология домплекса Y определяртся комплексом X п де зввисят оу влодения X в S^{n}. С другои сторонн, фундаменталвая груина $\pi_{1}(Y)$ не определяется пространством X и завиогт от вложенхя; достаточно рассмотреть $X=5^{1}, n=3$ (класодческие увлн).

Вознитвет вопрос: в какои мере пространство Y опредедяетоя пространотвом X ? Оказивается, что X опроделлет огабидыныи

 тип, есля при некотором дедом m дроотранствя $\Sigma^{m} Y$ п $\quad \Sigma^{m} Z$

 денсн, а множество морфпзмов $\{Y, Z\}$ оиредеднатся гак миозо-
 т.e. xak

$$
\lim _{m \rightarrow \infty}\left[\Sigma^{m} Y, \Sigma^{m} Z\right] .
$$

Согдасно теореме І.3.1, этот предед достигаетоя; если бы комилекс Y не бнл нонечномерным, это определение множества $\{Y, Z\}$ не годплось бн. Ми момем скаяать теперь, что комплексн $Y^{\prime} Z^{\prime}$ имерт одиваковыи стабилнни гомотошическй тип в точности тогда,

Теперь вопрос о вложөниях в сферу S^{n} можно решить болев явно, сказав, что Y зависит от X череа посредство контраваркантного функтора $D=D_{n}$. Этот функтор $D=D_{n}$ принимает значения в стабильнои гомотопическои категорип Спеньера - Уаитхеда; он определен на полно\# подкатегории әтон категории, посколыку задается на всех объектах X, допускаопих вложения в S^{n}, п на всех морфизмах категории, связнвавиих такие объөктн X. Спеньер и Уайтхед назнвают комплекс $D_{n} X \quad n$-двойственным комплекcy X .

вскоре, однако, обнарукилось, что стабилная томотоппческяя категория, построөнная Спеньером и Уаиттедом, содеркит недостаточвое для некоторых целей количество объектов (даме если ослабить предположение о конечнооти комилексов). Яркин пример тагон сбтуации доставила работа Тома о кобордизмях [15I]. Том свел пзучение грулा кобордизмов к изученио некоторых стабилвных гомотопических грушा:

$$
\lim _{n \rightarrow \infty} \pi_{n+n}(M O(n)), \quad \lim _{n \rightarrow \infty} \pi_{n+n}(M S O(n)) \text { пт.․ }
$$

Здесь $M O(n), \operatorname{MSO}(n)$ п т.д. - пространства, построеннне томом и обнчно называемне компдексами Тома; пределн $\lim _{n \rightarrow \infty}$ определе-
 ляотся вместе с отображениями

$$
\Sigma M O(n) \rightarrow M O(n+1), \Sigma M S O(n) \rightarrow M S O(n+1) \text { п. п. }
$$

Мелнор первнм внсказал мысль (см. [104], особенно с. 511-512), что полохение дел значительно прояснилось би, если он удалось найти категорио, в которо вмеото последовательости пространств $M O(n)$ можно бнло бн рассматривать единын объект $M O$, аппровсемируемй өто立 последовательностыо, и которая вклочяла бн авалогичвые объекты MSO п т.д. Но такой подход онл уде известен [81, 82]. Для нашах делей подходит спектр \mathbf{E} - последователыность пространств E_{n} (с отмеченно\# точкои), надеденних оуобрахениямиј $\varepsilon_{n}: \Sigma E_{n} \rightarrow E_{n+1}$. Например, пространствя $M O(n)$ с отобрахениямия $\Sigma \mathrm{MO}(n) \xrightarrow{n+1} M O(n+1)$ составлнот спектр - опектр Toма MO. Аналогзчно обстоит дело для MSO. Другой пример: рассмотрим CW-комплекс X с отмеченнои точкой; его надстроечнын спектр определяется как спектр, у которого the пространство есть $\Sigma^{\kappa} \mathrm{X}$, а отображениями являотся тоддественнне отобракения $\Sigma\left(\Sigma^{n} X\right)=\Sigma^{n+1} X$.

Этот спектр мы будем обозвачать черев Σ^{∞} Х. Хотелось бн сказать, что эта конструкдия орределяет функтор Σ^{∞} мз CWкомшлексов в спектры. Конечно, для әтои дели (п для мнотих друтдх делей) нам нухно ввести катөгорй опектров. Ддя этого остялось правильно определить отображение спектра в спектр, что наталкдвается на небольшие техняческие трудности. В настолмее время общепризнано, что наиболее удобвы для стабильнои теории гомотоний категория опектров, построенная Бордманом $[34,35,36,153]$, и накоторне друтве категории, которне еи эквивалентнн. я попнталоя дать по возможности элементарное описание этои катөгории в статье [9] (см. в оообенности с. 1З1-146). Здесь я приведу следуопие извлечения ия этой работи.
(i) Под CW-спектром понимается спектр, в котором наддое проотранство E_{n} являетоя CW -хомплексом (с отмеченной точкон), а кахдое отобратение $\varepsilon_{n}: \Sigma E_{n} \rightarrow E_{n+1}$ осуществляет вложение ΣE_{n} в E_{n+1} в качестве подкомплекса. Эті ${ }^{n+1}$ CW-спектры можно принять за объөкти нудной категорих.
(ii) Σ^{∞} есть функтор; для лобого конечномерного комплөкса X өтот функтор индицирует взаимно однозначное соответствие

$$
\lim _{n \rightarrow \infty}\left[\Sigma^{n} X, \Sigma^{n} Y\right] \rightarrow\left[\Sigma^{\infty} X, \Sigma^{\infty} Y\right]
$$

(Здесь $\left[\Sigma^{\infty} \mathrm{X}, \Sigma^{\infty} \mathrm{Y}\right]$ обозначает множество гомотопкческих классов огображении в категории (W-спектров.)
(iii) Натегория CW-спектров устроена таким образом, что в вен осупествимя все конструкции, ноторме обнчно пропвводнтся над $C W$-комплексами.
(iv) Категория CW-спектров может бнть при хелании сдедвва градуированнои. Пусть \mathbf{E} - спектр; изменяя индексн, можно подучить из него новыи спектр; например, мохно определать спектр F равенством $F_{n}=E_{n+1}$. Tогда отображением степени 1 из $\mathbf{E ~ в ~}_{\text {в }} \mathbf{G}$ будет обмчное отобрахение (степени 0) ия F в G. обозначпм черев [X,Y] мнодество гомототических глассов отобразений степенк n из \bar{X}^{\sim} в Y.

Этого достаточно, чтобн понять существо дела. Вамно дииь знать, что супествует хорошая ватегория спектров, и уметь проявлнть гиокость при ошисании деталей констружиии. В действвтельно оти кмештся разлячнне способн ее деталияадип; все они приводят $к$
 может оказаться предпочтительне॥ другой. Поятому оставим за собои право вибора.

На этом мн закончим нам өкскурс в стабильнур гомотопичеокуо теорио и в теорио спектров; ми готовы теперь к тому, чтоон вервуться назад, к пространствам петел.

§ 1.4. Бесконечнократнне пространства петел

В этом параграфе мн познакомеммся о бескодечяократннми пространствами петөль.

Пространство петель лучше обнкновенного пространства; не воякое пространство гомотопически әквиваленгно пространству детел. Напрхмер, не всякое пространство явлнется Н-проотранствои, а пространство петель им явллется. Напомво, что проотранство X назнвается H-пространством, если в нем задано умномение

$$
\mu: X \times X \rightarrow X
$$

удовлетворвопее надлетапим акодомам. Эквввалентивм образом, мохно предполагать, что для каждого W на множестве [W, X] sадано умнохение, причем өто умнохение естественно огносдтемьно W .
 бн постоянное отобратепие вз W в отшеченнур точку X ондо едвницей; өто эхвивалентно требованид, чтобн отмеченная точка в X оила (с точностьы до гомотопии) одиницой умпожения μ. (Предподагается, что отобрамения у гомотонин сохраняшт отиеченayd точку.)

Пространство дегель $\mathrm{X}=\Omega \mathrm{Y}$, очевидно, являетоя H -пространством. в самои деле, мивохенне $\mu: \Omega Y \times \Omega Y \rightarrow \Omega Y$ мохно вадать явво форияло咅

$$
\left(\mu\left(\omega^{\prime}, \omega^{\prime \prime}\right)\right)(t)= \begin{cases}\omega^{\prime}(2 t), & \text { өcns } 0 \leqslant t \leqslant 1 / 2, \\ \omega^{\prime \prime}(2 t-1), \text { ecsm } 1 / 2 \leqslant t \leqslant 1 .\end{cases}
$$

 которои точка за первуо половину времені пробегает с јдвоенной скоростьр петло ω^{\prime}, а за вторуо половлиу - петло $\omega^{\prime \prime}$. с другои стороны, заменяя множество $[W, \Omega Y]$ множеством $[\Sigma W, Y]$ илл, что эквивалентно, фундаменталввои грудпон функшиовалного

$$
\left(Y, y_{0}\right)^{\left(w, w_{0}\right)}
$$

мн видим, что $W \rightarrow[W, \Omega Y]$ есть функтор ия пространств в групон,
Понятие H-пространства восходит к Ceppy [129] . выбравшего букву H, ччобн отметить вклад Xопфа (Hорf) в топодогир
 пуоликации. Замечанве, что пространство петель есть H-пространотво, такхе принадлекит Ceppy.

Пусть X - некоторое H -пространство. Умновение $\mu: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ позвовяет определить пропзведение Понтряиина плассов гомология в $\mathrm{H}_{*}(\mathrm{X})$ [44]. Эта мультипликативная структура слулит клочом к повмманио гомологин таких H-пространств, как ΩS^{n} п $\Omega\left(S^{n i} v\right.$ $\left.\vee S^{n_{2}} \vee \ldots \vee S^{n} \alpha\right)$. А именно, $\mathrm{H}_{*}\left(\right.$ S $\left._{2} S^{n}\right)$ есть свободная алтебра (наи Z) с одной образувмеи степени $n-1$; аналогично $H_{*}\left(\Omega\left(S^{n} \downarrow\right.\right.$ $\left.\vee S^{n_{2}} V_{\ldots} . . v S^{n^{n}} \downarrow\right)$) - свободная алгебра (нап \mathbb{Z}) с образуожиими степене $n_{1}-1, n_{2}-1, \ldots, n_{\alpha}-1$. Здесь алгебры предполагартся ассодиативнзап, но не предоолагадтся коммутативными.

Конструкция пространства петель допуокает, конечно, итерадвп. При өтом мн получаем

$$
\Omega^{2} X=\Omega(\Omega X)=\left(X, x_{0}\right)^{\left(I^{2}, \partial I^{2}\right)}
$$

у т.д. Если ухе само пространство петель является необнчанио хоромим пространством, то двукратное пространство петещ долино бигь епе аучше; не все пространствя петель явлнотся двукратными пространствами петөль.

Будем назнвать пространство X бесконечнократним поостранатвом петель, если существурт последователнность пространств $\bar{X}_{0}, X_{1}, \mathrm{X}_{2}, \ldots$ с $\mathrm{X}_{0}=\mathrm{X}$ и слабне гомотопические өквивалентноory

$$
X_{n} \xrightarrow{\Omega} \Omega X_{n+1} .
$$

Напомно, что отобрахение $f: X \rightarrow$ Yодного связного пространства в другое назнвается слабои гомотопическои эквивалентностьы, если ддя всех r

$$
f_{*}: \pi_{r}(X) \rightarrow \pi_{r}(Y)
$$

-Сть пзоморфмзм. Ив өтого условия витекает, что

$$
f_{*}:[W, X] \rightarrow[W, Y]
$$

есть ияоморфизм для всех $C W$-комплексов W. Если X п Y неовязня, то мв в первуо очередь требуем, чтобн отоораленне

$$
f_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)
$$

бнло взаимно однозначннм соответствием, а затем валагаем предвдумее требование на каждуо компоненту линейной свяаности.

Слабне гомотошичские өквивалентности служат ядесь для мреодоления мелких технических неудобств. Например, эная лиии, что пространство ΩS^{n} и его модел Дхениса олабо гомотопически эквивалентнн, ме можем получить все интересуроие вас теоремн, не доназнвая, чго они в деиствительности гомотопически эквивалентнн.

Вернемся х наше» последователности пространств $X_{0}, X_{1}, X_{2 r}$ Каддая сдабая гомотопическая әквивалентность

$$
X_{n} \rightarrow \sum X_{n+1}
$$

можат бнть, разумается, преобразовава прп помощи (1.2.1) в отобразение

$$
\Sigma X_{n} \rightarrow X_{n+1}
$$

Поэтому такая последоватөлность проотранств предотавляет собои спектр. Введем наэвание для таквх спектров. Пусть \mathbf{E} - слектр. Преобразуем его структурння отобрахения

$$
\varepsilon_{n}: \sum E_{n} \rightarrow E_{n+1}
$$

в отобрахения

$$
\varepsilon_{n}^{\prime}: E_{n} \rightarrow \Omega E_{n+1}
$$

Будем назмвать \mathbf{E} ת-спектром, еслі отобраления ε_{n}^{\prime} являдтся слабыми гомотопическими өквивалентностями. Если спектр \mathbf{E}
 своиством:

$$
\left[\Sigma^{\infty} X, E\right]_{n}=\left[X, E_{n}\right]
$$

Таквм ооразом, можно схаяать, что бесконечнократное пространогво петедь X есть нудевон член некоторого Ω-опектра $X=$ $=\left\{X_{n}\right\}$.

В случае несбходхамости пространствя X_{n} мохно заменить та-
 торых будут иметь место дале гомөоморфизмы $\mathrm{X}_{n} \cong \Omega \mathrm{X}_{n+1} \quad$ [89]. В дейотвнтелносту при определении §-опектра в иявестном отношенив дучие потребовать, чтобн отруктурнне отображения

$$
\varepsilon_{n}^{\prime}: E_{n} \rightarrow \Omega E_{n+1}
$$

били гомеоморфизмами, а не просто слабнаи гомотошгческвии өквивалентностями. Особенно удобно ято требование в теории бесконечнократных пространотв детель, в которон геометрическая вагдядность такого отределения часто позволяет избегать мелих погреиностеи в доназательствах. К тоиу же это требование не препитствует построения хорошеи категорви Ω-спектров. Но, поскольку нажа ближаныая дель - вняснить связь с теориен гомототии, это замечание пока несушественно.

Приведем несколько примеров бесконечнократнвх пространств петель. Первыни и наиболее вахннй пример - пространства Зйлөноерга - Макденна. Пусть π - абелева группа, в пуоть X_{n} комплекс Эйленберга - Макдейна типа (π, n), г.е.
 ($\pi, 几$) ; следоватөльно, сучествует гомотопическая әквивялентность $\mathrm{X}_{n} \rightarrow \Omega_{n+1}$. Таквм обраэом, лобое пространотво Өйленберга - Маклейна является бесконечнократннм пространством петед.

Следурииий прммер - пространство $\mathbf{Z} \times \mathrm{BU}$; здесь BU мохно представлять себе лдбо как нлассифииирукмее пространство бесконечномерной унитарной групин $U=U \cup(n)$, либо как предед клас-
 рподдчностд Ботта $[42,43,50,18]$, супествует слабая гомотоппческая өквщвалентность

$$
\mathbb{Z} \times B U \simeq \Omega^{2}(\mathbb{Z} \times B U) ;
$$

повтому $\mathbf{Z} \times B U$ - бесконечногратное пространство петель. Подобное верио п для $\mathbb{Z} \times B O$.

\& 1.5, оообменнне теории когомология

В этом шараграфе я расскаху об обобщенных теориях когомологи.

Будет предполагатьая более или менее известным, что обобменная теория гомологин или когомологин представляет собой функтор, удовлетворяошиии перввм пести аксномам Эеленбергя - Стинрода, но, вообще говоря, не удовлетворнопии седъмой аксноме - акстоме размерносту. В случае необходимооти можно добавить аксноиу сильнои адиитивности Милнора [706]. Рассматриваемве мнол гомологические и когомологические функторы определғотся сначала вя CW-комплексах.

Мовно смело утверхдать, что изучение п пржменение таких фунгторов представляет интерес для топологов. पаще всего использурогоя функторы оледупидх трех тинов.
(i) Обнчнне, или классические, гомологии и когомологии.
(ii) Различнне варванты К-теории.
(iii) Миогочисленные вариантн бордиямов и коборииямов.

Вероятно, стоит особо выделить также ковариантныи функтор стабщльных гомотопия. Мохно сказать, впрочем, что он фигрирует в п. (ііі) првведенного выше стиска в обзаченип теория осваменнво бордизмов; но специалистн по гомотопическои топодогни считаот его более әлементарннм и особенно вакннм для своего предмета. Стабпльне гомотомғческие труим комплекса X момно определитъ формулоІ̆

$$
\begin{aligned}
\pi_{n}^{S}(X) & =\left\{S^{n}, X\right\}=\lim _{m \rightarrow \infty}\left[S^{m+n}, \Sigma^{m} X\right]= \\
& =\left[\Sigma^{\infty} S^{0}, \Sigma^{\infty} X\right]_{n}
\end{aligned}
$$

Вообде мохно определить гомотопические групив спектра \mathbf{X} (которне автоматически будуг стабввнн) формудой

$$
\pi_{n}(X)=\left[\Sigma^{\infty} S^{0}, X\right]_{n} .
$$

Оказнвается, что эти бункторы удовлетворяiot акстомам теории го \rightarrow
 бильных когомотопических групा. Этот функтор играет в стабильой гомотопической топологии соверщенно особеннуо роль: Формально

говоря, он является инициялыним объектом в категории теорий подходящөго вида ; однако, говоря неформально, мохно признатъ,
 то де время чрезвнчаино неудобөн для вичдсления.

\& 1.6 . Соотиотөния махду спектрамй Х обобтенными теориями когомодогин

 введенных мной понятин.

Предположим для начала, что нам дава нөкоторая теория когомологин k^{*}. Перечислим еө непременнне атрибутн.
(i) Kахдому тространству X с отмеченнон точкон x_{0} п камдоиу делому 12 наша теория ставит в соответствие (приведеннур) группу когомологин $\mathbb{k}^{n}(X)$. (Здесь олово "пространотво" означает CW-комплекс.)
(ii) Кахдоку отображенио $f: X, x_{0} \rightarrow Y, y_{0}$ она относит индуппрованныи гомоморфизм

$$
f^{*}: \tilde{k}^{n}(X)-\tilde{k}^{n}(Y):
$$

(iii) Кахдому простравству X о отмеченнои точко\# x_{0} она ставит в соотвотствие изоморфим

$$
\sigma: \tilde{k}^{n}(X) \stackrel{\cong}{\leftrightarrows} \tilde{k}^{n+1}(\Sigma X)
$$

 внвести, есди угодно, из аксиом Эидденберга - Стунрода и аксхомв адлитивности Милнора. По-другому аксвоматику теории когомологй мохно поотрогть в терианах $\mathfrak{k}^{n}(), f^{*}$ и σ, приняв пх обнчнне свойства за аксжома. Мы не будем останавливачься на
 зводнаг восполвзоваться теоремои Браувя о представммостия [48, 49]. Эта теоремя утверкдает, что ковтравариантнне функтори
 неготорвім усдовиям, дмет вид $[, Y]$.

Всли вы позволите мие немного некорректное упрощение, которое я псправло дояднее, я скаху, что существуот СW-домплекон Y_{n} п взадмао опнозвачнне соответствия

$$
\tilde{k}^{n}(X) \leftrightarrow\left[X, Y_{n}\right]
$$

 Но тогда подучается следупиее составное взаимно однозначное

Это возмакно только при наличии слабой гомотопической өквиввлентности

$$
Y_{n} \cong \Omega Y_{n+1}
$$

Тактм образом, побая обобщенная теория когомолотин приводит к Ω-спектру. При этом мохно добиться того, чтобн этот Ω-спенар дехал в хорошей категория слектров.

Некорректность состоит в игнорировании того обстоятельства, что теорема Брауна применима только к связным комидексам X. С ней мохно справиться деной небольшого услохнения рассухденги: подробносту см. в [9], с. ІЗІ-ІЗ4.

В качестве примера приведеннои више общен конструкции рассмотрқм случаи, когда k^{*} есть обнчная теоржя когомологен с коэффидхентами в групе π,

$$
k^{n}(X)=H^{n}(X ; \pi)
$$

Тогда

$$
\tilde{k}^{n}(X)=\tilde{H}^{n}(X ; \pi)=\left[X, Y_{n}\right]
$$

где Y_{n}^{\prime} - комплекс Эиленберга - Макленияа тппа (π, n). Соответствуппим Ω-спектром лвляется спектр Эйленберга - Макледина групшы $\mathbb{\pi}$.

Аналогично, принимая за k^{*} гомшлекснуо K-теорир, по лучим Яि-спектр, четными членами которого являртся пространства $\mathbf{Z} \times \mathrm{BU}$, а нечетнвмии членами - пространства U. Похожее утверидение верно для вещественнои К-теории и пространств $\mathbb{Z} \times B O$.

Все эти конструниии обратимы. В знаменитой статье [555] Уайтхед поназал, что лобой спектр определяет теорио гомологй и теорию когомологии. При этом оказнваетая, что спектр Тома

MO, хота и не являетая Ω-опектром, определяет вещественвне

 когомототин и т.д.

Bог хоромее определенне E-когомологен, пригодное для ироиявомьного $C W$-компдегса X :

$$
\tilde{E}^{n}(X)=\left[\Sigma^{\infty} X, E\right]_{-n} .
$$

Конечво, это определение немедленно обобпиется и дает
E-koroмологин спектров: өсли \mathbf{X} - опектр, то по опроделенио

$$
\tilde{E}^{n}(X)=[X, E]_{-n} .
$$

Недолго душея, мохно било бн определить Е-гомологии при помоши двойственносту Ахексяндера; а вменно пожятаемея полохить для конечного комплекса X

$$
\tilde{E}_{q}(X)=\tilde{E}^{n-q-1}(Y),
$$

 да. аднахо стопт привести это опредөление к такому виду, в котором оно могдо бн бить обобтоно. Одно из таквх определенай, пригодное джя проиявольного CW -комплоксв X , таково:

$$
\tilde{E}_{q}(X)=\lim _{n \rightarrow \infty} \pi_{n+q}\left(E_{n} \wedge X\right) .
$$

приведенвое пронзведение $\mathrm{W} \wedge \mathrm{X}$ определяөтоя равенством

$$
W \wedge X=W \times X /\left(W \times x_{0}\right) \cup\left(w_{0} \times X\right),
$$

тде w_{0} п x_{0} - отмечениве гочка в W п X.

 грумпя

$$
\tilde{\epsilon}^{n}\left(S^{0}\right)=E^{n}\left(S^{0}\right)=\left[\Sigma^{\infty} S^{0}, E\right]_{-n}=\pi_{-n}(E),
$$

аналогично.) Это равенство можно рассматривать как условие, которому должеп удовлетворать спектр \mathbf{E}, представлявпиии даннуо теорио когомологии k^{*}.

По-видимому, самое время предостеречь читатөля. Груипи коэффидиентов $k^{n}\left(S^{0}\right)$ обобщөннон теории когомологии могут быть ненулевнми для многих значенан n, как положительньх, так и отринательных; иапример, в случае $К$-теории эти групты равнн \mathbb{Z} для всех четных n-положительных, отрицательных или равннх нуло. Поэтому так же обстоит дело п с гомототическими групиами соответслвуощего представляомего спектра. В частности, если мы захотим применить теорему Туревича, возвхнает затруднение: для спектра \mathbf{X} не всегда существует такая размерность α, что $\pi_{i}(X)=0$ при $i<d$. Если d_{i}, для которого $\pi_{i}(\mathbf{X})=0$ при $i<d$, супествует, то спектр X вазывается ограниченным снизу. Некоторне авторы называют спектр \mathbf{X} связнвм, если он ограничен размерностьы $d=0$, т.е. $\pi_{i}(X)=0$ при $i<0$.

Итак, мн обнаружяли, что по люоон теории когомологии можно построить некоторы спектр, а по хиждому сдектру можно построить теорию когомологии. पтобн убедиться в том, что области спентров и теории когомологић, по сушеству, аквивалентны, нукно проверить, что приведенные нонструкции, по судеству, взаимно обратны.

Если мы начнем $¢$ некоторой теории когомологин, постролм представляоний спектр, а затем рассмотрим соответствуопол этой сдектру теорио когомологии, то ма, с точностьо до изоморфизма, вернемоя к псходнои теории когомологин.

Ооратно, построим по данному спектру \mathbf{E} соответствушаио теорир когомологии E^{*}, а затем представляомин өту теорио Ω-спектр \mathbf{F}. Тогда гомочопические грумы сдектров \mathbf{E} п \mathbf{F} совпадарт (ови равнн грумпам коеффициентов теорив E^{*}). Мохно показать, что в денствительности спектри $\mathbf{E} \rrbracket \mathrm{F}$ эквивалентня.
(Мохно возразить, что данное рассупденне кедолно, так как оно сосредоточено на объехтах घ ничего не говорит о мориизмах; "следовало бн" показать, что обе конструкции функтормавнн. ОДнако это правело бн к таким вопросам, которнх мне бы не хотелось касаться, так что лучше перейти к другой теме.)
> § 1.7. Соотнотения мехду спектрамй
> и бесконөчнокретннии шространсявеми петедв
 денных понятии.

Ми только что убедились, что пропзвольныи спектр \mathbf{E} мохно ваменить эквивалентным ему ふ-спектром \mathcal{F}. В деиствительности ниччо не мешает прямо построить \mathbf{F} по \mathbf{E} : достаточно полохить

$$
F_{n}=\lim _{m \rightarrow \infty} \Omega^{m} E_{n+m}
$$

Но мы предпочитаем воопользоваться конструкциеи, приведенной в конце § I.6, п определить $\Omega^{\infty} \mathbf{E}$ как нулевой член \vec{F}_{0} представ лномего теорио $E^{*} \Omega$-спектра. Возникает составное взаимно однозначное соответствие:

$$
\begin{aligned}
& {\left[X, \Omega^{\infty} E\right]=\left[X, F_{0}\right]} \\
& {\left[\Sigma_{0}^{\infty} X, E\right]=\tilde{E}_{0}^{0}(X)}
\end{aligned}
$$

Таким образом, Ω^{∞} есть функтор из категории спектров в категорио пространств, сопрякенный функтору Σ^{∞} из категории пространств в категорио спектров. Значениями функтора Ω^{∞} ядляотся бесконечнократнне пространства петель.

Некоторне авторы испольауот оммвол Ω^{∞} для другого объекта. Однако они вряд ли не согласятся с тем, что полезно вметь два сопряженных функтора - из категории пространств в категорио спектров п из категории спектров в категорио пространств. Эти функторы я п предлагар обозначать через Σ^{∞} и Ω^{∞}. В своп очередъ я согласен с тем, что мон функтор Ω^{∞} можно резложить в композидид двух функторов: (i) функтора, относлщего спектру \mathbf{E} эквивалентны Ω-спектр \mathbf{F}, и (ii) функтора переходв от Ω спектра \mathbf{F} к пространству F_{0}. Для наших теперепних целей важнее шаг (ii), переход от спектров к проотранствам. पто касается функтора (i), я он предпочел оставить его в подходящем для него месте - в "черном ящине".

Все же кахется, что сказанного недостаточно, чтобн установить сколь-вйбудь теснуо связь между спектрами и бесконечнократными пространствами петель: ведь применение функторад момет быть сопряхено с погереи информацих.

Когда какои-нибудь автор говорит: "X есть бесконечнократное проотранство петель", он обвчно подразумевает, что им построен некоторыни опредененный 马-спектр \mathbf{X} с нулевым членом X. Прп этом чптатель может опутить потребность в дополнительной ипформации об зтом ת-спектре; о каком из многих неәквивалентных Љ-спектров с данннм нулевым членом толкует автор? И будьте уверенн, вн наддете больше смысла в его доказа-

тельстве，чем в его формулировке．Или же автор говорит：＂Такой－ то функтор ${ }^{\circ}{ }^{\circ}$ является нулеввм членом обобщенно月 теории кого－ мологши＂；долхно быть，он построил такуо теорио когомологий，но как иам уэнать－какуш？Или еще ино\＃автор говорит：＂Простран－ ства X и являштся бесконечнократными пространствами петель， но мне неиэвестно，явллется，ли такое－то отображение $f: X \rightarrow Y$ бесконечнократным петлевым отображением＂．Он подразумевает，что
 вестно，существует ли такое отображение $f: X \rightarrow Y$ одного из өтих спектров в другон，что $f=\Omega^{\infty} f$ ．Как нам помочь ему，если мн не можем описать в удооных терминах эти спектры \mathbf{X} и \mathbf{Y} ？

Чтобы в како甘－то мере исправить положение，можно попнтаться сделать функтор Ω^{∞} более информатививм．Пусть，например， \mathbf{X} есть Ω－сдектр；тогда пространство $\Omega_{1} X_{1}$（будучи пространст－ вом петель）является H －пространством，и гомотопическая өкви－ валентность $\mathrm{X}_{0} \xrightarrow{\infty} \Omega_{\mathrm{L}} \mathrm{X}_{1}$ переносит әту H －структуру на X_{0} 。 （Например，в случае комплекснои \mathbb{K}－теории H －структура на $\mathbb{Z} \times$ в CK отвечает суммрованио векторннх расслоении по Уитни；аналогично обстоит дело с вецественнои K －теорие．．и пространством $\mathbb{Z} \times$ BO．）Таким образом，можно считать，что функтор Ω^{∞} принид－ мает значения в катөгории H －пространств，а нө в категории пространств．Теперь функтор Ω^{∞} теряет меньше информация．Но это лишв первыи шаг в правильном направлении．Обнчно Ω^{∞} опре－ деляется как функтор，принимапшии значения в категории про－ странств со столь богатыми дополнительными структурами，что прп его применении вообще не происходит никако потери информадин． （Набросок этой процєдурн я приведу в гл．2．）В этом смнсле иंзучение бесконечнократных пространств петель，по суместву，эк－ вивалентно изученио спектров．

С өтои точки зрения может показатъся делом вкуса и удобст－ ва，говорить ли о свойствах и инварвантах，относяцихся к спектру \mathbf{X} или к пространству $\bigcap^{\infty} \mathbf{X}$ ．Я имеш в вид才 в первур оче－ редъ инварианты пространства $\Omega^{\infty} \mathbf{X}$ ，отражариие бесконечно－ кратнуо петлевуо структуру，такие，например，как гомолотические операции Кудо п Араки［77，78］у 耳айера и Лашода［55］или как трансфер，которынй мн рассмотрим в гл．4．Здесь ле я просто хочу подчеркнуть，чго полезно сочетать оба подхода．

Предположим，например，что задано отооражөние $f: \mathbf{X} \rightarrow \mathbf{Y}$ одного связного спектра в другой и нам нухно доказатв эпмморф－ ность индуџированного отображения гомотопическвх групा $\pi_{*}(X) \rightarrow \pi_{*}(Y)$ Лля этого вполне достаточно проверать соответ－ 1－2

ствуппее утверждение для гомоморфизма

$$
\left(\Omega^{\infty} f\right)_{*}: \pi_{*}\left(\Omega^{\infty} \mathrm{X}\right) \rightarrow \pi_{*}\left(\Omega^{\infty} \mathrm{Y}\right)
$$

Вполне возмохно, что нам удастся наfити такое отображение g : $\Omega^{\infty} \mathrm{X}-\Omega^{\infty} \mathrm{Y}$, которое может и не бнть бесконечнократннм детлевsм отображением, но пля которого

$$
\left(\Omega^{\infty} f\right) g \simeq 1: \Omega^{\infty} Y \rightarrow \Omega^{\infty} Y
$$

Этого вполне достаточно. Причем описанная ситуация не является пскусственнои, например, именно таково положение дел в случае теоремы Кана - Придди [74]. Попробности, связаннне о теоремой Кана - Придди, приведепи в § 4.1 , а последиее замечание комментируется в [8]. Поәтому можно извлечь вытоду из соединения, казалось он, несовместимого - нестабильнон и стабильно甘 теории гомотопии - и рассмотрения однои и тои же задачи с разных позиции. Другимпи словами, если мы хотим получить что-либо интересное, мы долхнн двигаться по пути, укаэываемому геометриеи.

§1.8. Оозор прямеров

В заклочение л приведу грубуо классифииацио известных к настоящему времени бесконечнократных пространств петель по трем основним типам.

Конечно, әти три типа перепрывартся, и взатмосвязи между нимй оудут исследоваться в заклпочительных главах. Но все же можно сказать, что известные сећчас бесконечнократнне пространства петөль принадлежат следуюпим трем группм.
(i) Пространства, которые строятся по способу, описанному в § І.6, по обобщенным теориям когомологии, тагим, нак обвчнне когомологии, К-теория, кобордизмы и их различнне варианть.
(ii) Пространства, которые мокно построить методами стабильной төории гомотопин с помощьь различных конструкции над спектрами и функтора Ω^{∞}.
(iii) Пространства, которне можно построить, используя специальнии аппарат, рассматриваемыи в гл. 2.

Описанная в гл. 2 процедура обшчно приводит к связному спектру \mathbf{E}; поэтому, если в прдводимых ниже описаниях не указаны группы коәффициентов $\pi_{n}(\mathbf{E})$ при $\quad \pi<0$, не нужно этому удивляться: подразумевается, что эти группы тривиалын.

Источником наиболеө интөресных пржмеров сдужат сдедушиие трп подтипа типа (iii).
(іiia) Пространства, отражаюпие геометрио многообразини.
(iiif) Пространства, свяаанныө с групиеми единиц в кольдах когомологви.
(іііс) Пространствя, связаннне о алгебраическои К-теоржеи.
Начнем с (iiia). При пзучении кусочно-линеиних п топологических многообразии необходимо построить адекватнуо теорио расслоении. Стабильные теории такдх расслоенин оказывяіотся представимыми функторами с представинондиии пространствами BPL и ВТор. Доказательство существования пространства BPL обнчно приписывается Милнору [105], но более доохупннм источником является статья [IIO]. Существование ВТор неявно подразумевяетая в [108]. Можно также ввести пространство, обозначаемое в разных местах через BF, BG или BH. Это - классифициуушиее пространство (стабильнои) чисто гоиотопической теорин расслоении, которая изучает классн посло欮о гомотопически эквивалентных расслоении со слоями, гомотопически өквивалевтными сферам [104]. Соответствуюиие "группи" PL , Тор и F в некотором смнсле сущеотвуют. То же самое можно скөзать о "факторпроотравотвах". таких, как $F / P L$ и $P[/ O$, но сећчас нет необходимости өникать в детали.

Непосрөдственннм следствием сказанного является то, что BPL, ВТор и BF - бесконечнократнне пространства петель Этот результат анонсировали Бордман п Фогт в [39]; полное доказательство было приведено в [40], однако там авторн преддочли нө касаться олучая BP[(см. [40], с. 216-217). Спучвй BPL разобран в роботе [99]. Далее, утверждение о том, что әти пространотвв являотся бесконечнократными пространствамп петөль, нуждается в јоилении, например H -структура на какдом из пространств BPL, BTop и BF соответствует суммдровано по Уитни "расслоөни解. После этого момно сказать, что PL $\mathrm{K}_{\text {-группа }} \mathrm{K}_{\mathrm{PL}}(\mathrm{X})$ нвляется нулөвим членом теории погомологин; то ме самое справедливо для $\mathrm{K}_{\text {тор }}(\mathrm{X})$ и $\mathrm{K}_{\mathrm{F}}(\mathrm{X})$. Стоило ов усилить эту теорему, вклшчив в вее результяты о таких факторпространствах, нак $F / P L$; п наконец, стопло он показать, что некоторне отображения, такие, няпример, как кяноническое отображение $\mathrm{BPL} \rightarrow$ ВТор, являштся бесконечнократвыми петлевыми отобралениями, т.е. принадлежат образу функтора Ω^{∞} (см.§ 1.7). Подобнне замечания прпложимы и к "специальным" аналогам SPL, BTop и SF "група" PL, Top и F. Но можно

поити и еце далыме. Пусть имеетоя обобщенвая теория котомологи女 k^{*} и (скалем) векторное расслоение ξ над X о тотальнвм пространотвом E, и пусть E_{0} - доподнение нулевого сеченяя. Ориентапие расолоения ζ над k^{*} мн назнвеем өлемент

$$
u \in k^{*}\left(E, E_{0}\right),
$$

ограничение которого ва побой слон F в E

$$
i^{*} u \in k^{*}\left(F, F_{0}\right)
$$

является образухщеу. Конечно, нухно еце пояснить, что значит "образушиая", в наложить некоторне уоловия на теорию k^{*}. Допустим, что өто оделано. Тогда получяется теория расслоении, в поторой рассматриваштся векторнне расслоения, задянние вместе с ориентапиеи над k^{*}. Аналогично можно денствовать и в случяе расслоении, более обиих, чем векторные. Иэ таких ориентированннх расслоенй мн строкм K-группу. Хотелось он сформулировать п доназать теорему, что әта группи является нулевым членом некоторои теории когомологии, как әто проистодшт в случве K_{pL} и $\mathrm{K}_{\text {тор }}$. Все это сделано в работе [99].

Поскольку ориентация является исходнвм пунктом многих когомологических конструкции, следует охпдать, что эти K -труппи будут естественннми областямв значений содержательннх инвариантов.

Төперь попробуем продвинуться в направлении (iiib). Многие преобразования, которие применяот при изучении геометрии многообразии, переводят сложение в умнохение. Рассмотрим, наприкер, полвыи класс पженя $c(\xi)$. Этот класс определен, если \mathcal{F} есть $U(n)$-расслоение над некоторим пространством X, а такме если ζ есть элемент группн $\mathcal{K}(\mathrm{X})$, причем

$$
c(\xi \oplus \eta)=c(\xi) \cdot c(\eta)
$$

Если мн хотим постролть rpynny, в которои лежат значения фуниции С. естественво обратитьая к мнохеству формальннх рядов

$$
1+x_{2}+x_{4}+x_{6}+\ldots,
$$

где $x_{2 q} \in \mathrm{H}^{2 q}(X)$, и превратить его в группу, $G(X)$, используя перемвоженве формальных рядов. Тогда полный класс Чженя определяет грушшовой гомоморфизм

$$
c: K(X) \rightarrow G(X) .
$$

Cител показал в работе [128], что эта группа $G(X)$ являетая вулевым членом некоторой обобценной теории когомологии. В депствительности Схгяном получен более общии результат. Ов рассматривает формөльные ряды

$$
1+x_{1}+x_{2}+x_{3}+\ldots,
$$

тдө

$$
x_{i} \in H^{i}\left(X ; A_{i}\right),
$$

но все хе ограничиввется обнчными когомо логиями.
Однако можно поставить өналогичнур задячу в более общей ситуации. Предлолохим, что задана обобщенная теория котомологии k^{*}, в которои определены \cup-произведения. Такие произведевия опредөленн, няпример, в K -теории и в теории кобордизмов.
 да

$$
1+x, \quad x \in \mathcal{F}^{0}(\mathrm{X})
$$

Возникает вопрос: будет ли эта группа нулевим членом теории когомологии?

Например, стабильнне котомотопичеокие группы составляол обобщеннур теорию когомопогий с произведениями (соответствурцию оферическому спектру $\sum^{\infty} S^{0}$); этон теория соответствует мультипликативная төория K_{F}.

В общем слячве нет особьх основании наделтьая ве то, что групша $G(X)$ является нулевим членом теории когомологии. Напротив, Шгеинер [443] пожазал, что уже номплековая K-төория с

 мер, воэынем в качестве k^{*} веществендуо K -георио KO . Тогда как мнодество $G(X)$ предстанляетая подиростренством

$$
1 \times B O \subset \mathbb{Z} \times B O
$$

Однако, чтоби представить $G(X)$ как групиу, приходвтся ввеств в BO нестандартаур H -структуру. А имевво, структурвое отображение

$$
\mu: \mathrm{BO} \times \mathrm{BO} \rightarrow \mathrm{BO}
$$

нужно определить при помоиь тензорвого перемножония вдртуальвых расслоении виртуальной размерностг: 1. (Виртуальннм расслоевдем называется формальная разность $\zeta-\eta$ двух настоямих расслоений ξ, η.$) Это H$-пространство мы обозначим через $\mathrm{BO}_{\text {, }}$

ввалогично определим $\mathrm{BU}_{\text {© }}$. Известно; что өти H -пространства $\mathrm{BO}_{\otimes} \not \mathrm{BU}_{\otimes}$ являотся бесковечнократными простравствеми петөль [127]. Общии результат, охватнвапии произвольвне теории с достаточно хорошим умножеввем, приведен в [99].

Все рассмотрения, связянние с (iiic) (одектры алгөбряическои К-теория), откладнваштся до 82.6 у 3.2.

Это, по супеству, завөршает введевие. Цель теории бесконечнократнчх проотранств петөль - снабдить топологов необходимой мм пафоомацрей о бесконечнократных пространствах петөль, или. что то хе сямое, о спектрах, или, что то же самое, об обобщенних теориях когомологии, причем особое внимание удөляется тем бесковечнократвым пространствам петель, которые возниташт ва практике и нукны в приложениях, особенно в припожениях к теории мвогообразви. Пять глан нам придется потратить на знакомство с освовнымп средотвамя ваше теория, в только в короткой заклочиятельвои седымй главе мы вернемся к ее предмету и расскажем о ее относитедьнах достиженвлх.

§2.I. Введение

Целью это甘 главн является более подробное обсуждение проекта, в обпих чертах обрисовавного в § 1.7: построить категорио проотравств, снабженних дополнительной структурой, доотаточво богатой для того, чтобн бунктор Ω^{∞} устанавливал аквивалевтность натегории спектров с этои новой катеторией структуризованньх пространств. Для реализлции әтои программн необходимо изрядное количество определении, теорем и доказательств, которне потребушт известннх интеллектуальннх усилии и могут устрапить тех, кто впервне со всем этим сталкивается; впрочем, многие чштатели, возможно, вспомнят, как оии испытнвали аналогичные чувства в отношении спектральных последовательностеи, теории дучков нли каких-нибудб других подобных вещеи, которые в настоящее врени являотся их лобимым инструментом; так что скалем еще спаспбо, что мы не занимаемся алгебрапчес-
 "матинериг".

В § 2.2 в 2.3 я попытарсь обосновать целесообразность подхода, используемого намп в обращении с этими структуризованннми пространствами, и это тосдужит достаточной мотивировкой ввmих определевй. В § 2.3 я постепенно переклоиу внамание с определении ни теоремн, а в § 2,4 мы обратвмоя R методям доказательств, во в § 2.5 п 2.6, нам придется вервутьоя к описанио мвнинерии. В § 2.7 я дополвр замечввия об "аддитивних структурах", сделанине в § $2.2-2.6$, замечвинем, что отоит рассматривать также "мультипликативнне структурн".

§ 2.2. Пространствв петедр и Ао-пространств
 в смысде Стамөф̆

В әтом паратрафе мн әа羊емся вопросом о том, как специалисты по тесриц гомотомин могут определить, өквивалентво ли некоторов пространство X пространству петель ΩY.

Предде всего такое пространство X долхно оить H_{-} пространотвом. Однако структура пространствв петель богаче, чем просто H -структуре. Это видно хотя он из того, что простренство петель әквивалентно топологическому моноиду, или полугруппе, т.е. Н-пространству, в нотором умножение строго ассоциативно и единица являетоя строгои единицеи. Для доказательства әтого факта мн воспольэуемся агрегатом, нослдим название петель Мура. Чтобн построить пространство $\Omega^{\prime} Y$ петель Мура на Y. рассматривашт отобрахения

$$
\omega:[0, t], 0, t \rightarrow Y, y_{0}, y_{0} \quad(t \geqslant 0) .
$$

Төкое отображөние назнвашт петлей длинн Ł. Разумевтся, өсли $t=0$, то отображение ω постоянно. Илеется очевидное вложение множества $\Omega^{\prime} Y$ в пространство $\Omega Y \times[0 ; \infty)$, где $[0, \infty)$ - полупрямвя $0 \leqslant t<\infty$, и мы наделяем $\Omega^{\prime} Y$ индуцррованной топологиеи. При әтом ясно, что \&Y ■ $\Omega^{\prime} Y$ гомотопически әквивалентнн. Пространство $\mathbb{R}^{\prime} Y$ обладвет очевидным умножением, при котором произведение петель длин r и 5 есть петля длини $r+s$; по отношенир к этому умнохениы $\complement^{\prime} Y$ является моноидом, эквивалентнмм $\overparen{S Q}$ как H-пространство.

Полученное необходиме условпе, по суцеству, является достаточннм: побоі̆ топологическиі монопд X, у которого $\pi_{0}(X)$ есть группа, эквивалентен пространству петель. Доказательства мы здесь не приводим, так как оно в настояшии момент не представляет для вас интереса.

С точки зрения гомотопическото тополога рассмотрение умножения $\mu: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X}$, для которого отмеченная точка явлнется строгон единицеи, всолне осмысленно: льбое умножение можно продеформировать в такое, воспользовавшись теоремой о продолжении томотопии. Но к сожалению, условие строгои ассоциативности

$$
(x y) z=x(y z)
$$

покажется ему весьмя неудобным. Оп предпочел бн иметь дело с условием гомотопическои ассоциативности

$$
\mu(\mu \times 1) \simeq \mu(1 \times \mu)
$$

но этого условия нем недостаточно, и вот почему.
Препооложим, что задрны пространство X, умножевие μ : $X^{2}=X \times X \rightarrow X$ п такөя гомотопия $h_{t}: X^{3} \rightarrow X$, что

$$
h_{0}=\mu(\mu \times 1), \quad h_{1}=\mu(1 \times \mu) .
$$

Обоэначив $\mu(x, y)$ через $x y$, яти-равевства полно переписать в виде

$$
h_{0}(x, y, z)=(x y) z, \quad f_{1}(x, y, z)=x(y z)
$$

Рассмотрим теперь отобракения $\mathrm{X}^{4} \rightarrow \mathrm{X}$. Операция умномения поз: воляет опрөделить пять таких отобрамении: они переводят точку (w, x, y, z) в составнне произведения, изображеннне на оледурщей диаграмме:

Пунгтирнне ливии но өтой ддаграмме представляот собой пять гомотопии, естественно возникапиих мехду өтими пятьр отображенияMR:

Вмеотя әти пить сомотопй составляти отобрахение

$$
S^{1} \times X^{4} \rightarrow X
$$

Мохно спросить, продолжется ли это отобрахение, скахем, до отображения

$$
H: E^{2} \times X^{4} \rightarrow X
$$

Оказнвается, что иногдя продолжается, а иногда - нет. Предпо-
 и μ - умножение в нем; в өтом случве мохно положить
$f_{t}(x, y, z)=x y z$ (независимо от t), наше отображение H, очевг:дно, существует - можно положить

$$
H(e, w, x, y, z)=w x y z
$$

(везависимо от е $\in E^{2}$). но в общем случае такото H не существует.

Mн рассматриваем суиествование H как вторичное томотопическое условие. Если отображение H существует, то модно авалогичным образом рассмютреть отображения $\mathrm{X}^{5} \rightarrow \mathrm{X}$ и сформулировать третичное гомотопическое условие. И так далөе.

Конечно, необходимо уточнить смысл слов "и так далее". В обънснении әтого я буду в основном следовать работе Сташефа [139]. (Эта работа Сташефа удобна для моих целеи, но из чувства иоторическо справедливости надо воздать должноө более ранве работе Сугавари [144].)
 указанным подразделением граншш; в частности, K_{2} есть точкө, K_{3} - единичный отрезок I, а K_{4} - диск E^{2} с грөвисеи; подразделенной как плтиугольник.
($i i$) 0 н, далее, опредөлил A_{n}-пространство кап простран \rightarrow ство X с заданним семенством отображения

$$
M_{n}: K_{\imath} \times X^{\imath} \rightarrow X,
$$

 A_{2}-пространство есть проотранство X сотображением M_{2} $X \times X \rightarrow \bar{X}, A_{3}$-пространство есть пространство X с отоб- ${ }^{2}$ рахенвем $M_{2}: X \times X \rightarrow X$ и заданнои гомотопиеи M_{3} мехду $M_{2}\left(M_{2} \times 1\right)$ и $M_{2}\left(1 \times M_{2}\right)$ ит.д.
(纤) Более точно определение дается индуктивно. Пусть X есть A_{n-1}-пространство, так что задянн отобрахения $M_{2}, M_{3}, \ldots, M_{n-1}$. Через эти отобрахения Сташеф определяет отоорамение $\left(\partial K_{n}\right) \times X^{n} \rightarrow \mathrm{X}$. По определению \bar{X} нвляется $\quad A_{n}$-пространством, еоли существует отображение

$$
M_{n}: K_{n} \times X^{n} \rightarrow X
$$

продо лжаюцее это отображение, заланное на $\left(\partial \mathrm{K}_{n}\right) \times \mathrm{X}^{n}$.

При $n \geqslant 4$ отображения M_{n} называются виспими гомото-

(iv) Пространотво X назнвается A_{∞}-пространством, если при воех $n \geqslant 2$ заданы отображения \bar{M}_{n}, наделяюиие X отруктурои A_{n}-пространства для каждого n.
(v) Понятие A_{∞}-пространства представляет собой адекватнуо (п подходящур для теории гомотопии) замену понятия пространства со строго ассоциативннм умножением.

Строго говоря, я јпростил изложевие, сосредоточившись ня условии ассоциативности и итнорируя тот факт, что отмеченная точка должна быть единицеи; однако в определении A_{n}-пространотва, фактически данном Стапиеом, присутствует требование, чтобн отмөченная точка бнла едхницен в некотором подходящем смноле.

Все это должно привести к следушему результату: пространство X тогда п только тогда эквивалентно пространству петель RY, когда X есть A_{∞}-пространотво, в $\pi_{0}(X)$-группв. Эта теоремя ненвно содерллтся в [339 , правдя, тям столь до неявно предполатается, что X связно; это замечание отвосится а к более раниим работам, используемым в [139], например к [54].

Опять-таки, строго говоря, нам требуетоя результат следуриего вида: бунктор Ω задает эквивалентность межд катөгорие (связннх пунктированннх) клеточннх пространств Y п подходятим образом определеннод натегорией пространств о A_{∞} структурои.

Я вамечу путь, оледуя по котороия мохно доказнвать такие теоремы. Из теории расолоении хорошо известно, что по лобон топологическои групие G можно построить "уииверсальное расслоение"

$$
G \rightarrow E G \rightarrow B G
$$

со слоем G, тотальнвм пространством $E G$ и базои $B G$ В зависимости от ваших предположении и вашеи конструкции пространство EG будет либо стятиваемо, либо по крайнену мере слабо гомотопически эквивалентно точке. Здесь удобно сснлаться на [7I], особенно с. 80-88. Хорошо извес'гно также, что расс поение

$$
G \rightarrow E G \rightarrow B G
$$

очень напоминаєт описанное в гл. I рассловние

$$
\Omega X \rightarrow E X \rightarrow X
$$

(Конечно; буквв E в двух этих сдучаях обоэвячает развые веши: в первом случае это есть фунтор слоя G, а во втором другои функтор баэн X; обнчно контекст позволяет иэбекать путаниџд.) Выло он желательно, чтобы функтор B (" классифицирушщее пространство") был в кеком-вибудь смысле сбратен функropy Ω ("пространство петель"). Для этого необходимо, конечно, уметь определять класскфицируюпие пространства и универсальные расслоөния для проотранств G, не столь хороших, как топологические группн. В случяе когда G есть моноид, это одөлано в [103] и [142]; см. также более позднню работу [94]. C течением времени ограничении на G становилось все меньше п меныее, хотя "универсальное расслоөние" отановилось расслоением во все более и более слабом смнсле. В конце концов "универсальное расслоение" и "классифицируриее пространство" были определены для случая, когда G является липь \mathcal{A}_{∞}-прострянством. Июменно это и сделано в работах Стедефа и Сугавари.

Еоли G есть только A_{n}-прострянство, та модно определить часть "классифицируопего проотранства", что также представляет определенннй внтерес. Например, положив $G=S^{1}$ (с) обвчноћ структуроџ топологическоћ групти) и рассматривая S^{1} как A_{n}-пространство, мн получим но өтом пути расслоение

$$
S^{1} \rightarrow S^{2 n-1} \xrightarrow{\Omega} C P^{n-1}
$$

и, используя $\pi \quad$ как приклеивакцее отображвние, получим

$$
C P^{n-1} U_{n} e^{2 n}=C P^{n}
$$

82.3. N-кратвне п оөокопечнократнне пространства петелиі

$$
\underline{E}_{n}=\square \quad E_{00}-\text {-ространства }
$$

В өтом параграфе мн расомотрим естеотвенное продолхение новструкцрй предлдущего параграфа, относящееся к घтерярованвзм щространотвем петөль $\Omega^{n} Y$ о \quad. 2 .

Пооле § 2.2 бодеө или мевее ясво, что, деฝствуя в дрхө работу Сташефа, мохно виписать условия, при которих $\mathrm{H}_{\text {-прострая- }}$ ство является двукратным пространотвом петель. Еоли $X \simeq \Omega^{2} Y$,

то, конечно, умножение в X гомотопически коммутативно, т.е.

$$
\mu \propto \mu \tau: X^{2} \rightarrow X, \text { где } \tau(x, y)=(y, x)
$$

Однако, этого условия самого по себе, конечно, недостаточво; мы хотим получить бесконечное семейтво высших гомотопий, аналогичное оемейству отобрахении M_{n}, построенному Сташефом. Предполагая, что $X \simeq \Omega^{3} Y$ или $X \approx \Omega^{4} Y$, мн цриходдмм к новвмя семећствам высших гомотопии. Более того, эти внсшие тммтопии осмысленнн и полезнн, ибо некоторне из них появляотся при построении гомологичеоких операций в $H_{*}\left(\Omega^{n} Y ; \mathbb{Z} / р\right)$ по Кудо п Араки [77. 78], Браудеру [47] и Дайеру и Ляшоव̆у [55], а эти гомологические операции, несомненно, доставлнот разумнуо информацид, отражариую существеннне свойства $\quad 几$-кратной петлевой структури

Мн сталкиваемся, однако, с тои трудностью, что для явного описания пространств K_{n} надр проделать много неприятнои работы; поэтому для дальнеушего продвимения хорошо он научиться обходиться без этого явного описания, эаменив ето некоторо "мвшиноу", которая строила бы मх для нас, подобно тому, как метод ацикличннх моделей в обшчных гомологиях поэволяет нам обходиться без вышиснвания явных формул для \cup_{i}-умножениии. Bсе "мапиини" этой главн представляют собой приспособления длл автомятического построения бесконечного количества внспих гомотопии, в в этом их основное назначеиие независимо от того, скривашт они это за своени благопристойной внешностьр или нет.

К сожалению, как я уже отмечал в § 2.1 , построение п пспользовавие этих "машин" - трудоемкое дело. По это立 причине настояшая главв неписвна скорее как очерк о пользе "'машин" : она не рассчитана на то, что по ее прочтении читатель получит удостоверение " механика". Однако я надеюсь, что овв мохет создать у болышинства читателеघ общее предотавление о том, что происходит, а также послужит предпосылкои для изучения болев технических работ. на которые я буду сонлаться.

Прежде всего мн нуддаемся в соэдании экологической ниши для расселения (α) полиадров K_{n} Стамефа и (b) некоторых других вналогично устроенннх полиэдров. Я начну с определения топологического ПРОПа, или категории операторов в смысле Бордмөна и Фогта $[39,40]$; это понятие напоминает понятие операды в смисле Мэя [92], и тозде я скажу, в чем состоит разница медду ними.

Топологический IIPOП \mathscr{P} состоит из пространств индексированннх парами цельх чисел $\alpha, b \geqslant 0$. Действмем НРОПа

ня пространстве

$$
P_{\alpha, b} \times X^{b} \rightarrow X^{\alpha},
$$

так что пространства $P_{\alpha, b}$ можно расоматривать как "пространства параметров", аналогичнне полиәдрам K_{n} Сташефа, которые представлнот собоіи пространства параметров
скольну они параметризуот отображения $\mathrm{X}^{n} \xrightarrow{\rightarrow} \mathrm{X}$.

Например, Кудо п Араки [77,78] работали с простравотвами X, наделенными структурннми отображенилмй $\theta_{m}: I^{m} \times X \times X \rightarrow X$, так что у них использовались пространства параметров $P_{1,2}=I^{m}$. Далее, Дайер и ЛашоФ [55] работали с пространствами ${ }^{1,2}$, на-
 \sum_{p} есть скменетричеокая группа степени $p, \mathcal{J}^{n} \Sigma_{p}$ есть n^{p}-кратнни дхоин $\Sigma_{p} * \ldots * \Sigma_{p}$, так что они пользовалиоь пространствамх параметров $\quad P_{1, p}^{p}=y^{n} \Sigma_{p}$.

Возврашаясь в нашеل теорй, рассмотрим пространство X; если ово локально комдактно или если мв используем комтактно порохденне тополотхи, то мохно построить простравство

$$
H_{a, b}=\left(X^{a}\right)^{\left(x^{b}\right)}
$$

п возникает отобрахевие
 HixX отобрахении

$$
\mathrm{P}_{\alpha, b} \rightarrow \mathrm{H}_{a, b}
$$

$$
f^{\prime}: X^{\alpha}-X^{b}=h^{\prime \prime}: X^{b} \leftarrow X^{c}
$$

日 подучить огобрахенше

$$
h^{\prime} h^{\prime \prime}: X^{\alpha}-X^{c} .
$$

в соответствив с этим мы потребуем, чтобн мводества $P_{\alpha, 8}$ били мвохоотвамв морфиямов невоторой категории; объектами этои катего. рип будуг стмводи $X^{\alpha}, \alpha=0,1,2,3, \ldots$, или просто делне чис-

ла $\alpha=0,1,2,3, \ldots$, м множествя $P_{\alpha, 6}$ оудут множествами мор физмов обвента 6 в обвект α. Мн потребуем такле, чтобн наша категория бнла тополотическои, т.е. чгобн отобраления

$$
P_{\alpha, b} \times P_{b, c} \rightarrow P_{\alpha, c}
$$

бнй непреравннан.
Во-вторих, по отобрамениям

$$
f: X^{\alpha} \leftarrow X^{b} \quad g: X^{c} \leftarrow X^{d}
$$

строится отображение

$$
f \times g: X^{a+c} \leftarrow X^{b+d}
$$

Поятому мы потребуем, чтобн бнли заданн отображения (умножения)

$$
P_{a, b} \times P_{c, d} \rightarrow P_{a+c, b+d}
$$

со следудицаия свойствамі.
(i) Все әти отображенпя непреривнн.
(ii) Для них имөет место строгая ассоцвативность.
(iii) Тоддественное отобрахение в пространстве $P_{0,0}$ явлнетоя строгой единндеи.
(iv) Ооозначим через 1_{α} тохдественное отобраление в пространстве $P_{a, a}$. Тогда

$$
1_{a} \times 1_{b}=1_{a+b} .
$$

$(v)(f \times g)(h \times k)=(f h \times g k)$, если обе части равенства имешт смысл.

Так гак умноденхе x есть функтор двух переменних, являо-
 дело с категориеи с произведенияма а

В-третьих, на пространстве $\bar{X}^{\text {a }}$ денствует ошмметрическая грушия Σ_{α}. В деиствителностд она деиствует ва нем справа: задав вектор $\left(x_{1}, x_{2}, \ldots, x_{\alpha}\right) \in X^{\alpha}$ как отображение

$$
X \stackrel{x}{-}\{1,2, \ldots, a\}
$$

и перестановку нак отобрамение

$$
\{1,2, \ldots, \alpha\} \stackrel{\rho}{\leftrightarrows}\{1,2, \ldots, \alpha\},
$$

$$
X \underset{x}{x}\{1,2, \ldots, a\} \underset{\sim}{\rho}\{1,2, \ldots, \alpha\} ;
$$

мохно увидеть, что ρ денствует ва \boldsymbol{x} оправа, пиосто пимматедвно посмотрев на фориуду

$$
\left(x_{\rho(1)}, x_{\rho(2)}, \ldots, x_{\rho(a)}\right)
$$

Тахим обраяом, огобрахэние

$$
\rho \mapsto \rho^{*}: \Sigma_{\alpha} \rightarrow H_{\alpha, \alpha}
$$

явмяется антигомоморфнамом (мономда в мономя). В соответотвап с әтвм мы дотребуем, чтобн дия кахдого а оих вадап антнгомоморфиям

$$
\rho \mapsto \rho^{*}: \Sigma_{\alpha} \rightarrow P_{\alpha, \alpha}
$$

 новененим \times сеедурирам образом:
(i) Bcrix $\rho \in \Sigma_{\alpha}$ I $6 \in \Sigma_{b}$, 9

$$
\rho^{*} \times \sigma^{*}=(\rho \times \sigma)^{*}
$$

где $\rho \times \sigma \in \sum_{\alpha+b}$ есть очевддная перестановка, чакал, что ога

(ii) Bc.II $f \in P_{\alpha, b} \geq g \in P_{c, d}$, ,o

$$
\rho^{*}(f \times g)=(g \times f) \sigma^{*}
$$

 $X^{8} \times X^{\alpha} \rightarrow X^{\alpha} \times X^{6}$.

$$
\Sigma_{\alpha} \rightarrow P_{\alpha, \alpha}
$$

$$
\rho \mapsto\left(\rho^{-1}\right)^{*}: \Sigma_{\alpha} \rightarrow H_{\alpha, \alpha}
$$

ралдичне мехды двули подходама несушественно.
В неноторих сдучаях рабога с ІРОПали не требует пспользованія перестановок, п потому отображения $\quad \Sigma_{\alpha} \rightarrow P_{\alpha, \alpha}$ не обязвтемво вкдочать в структуру IPOIlа; тақим образом, пиеется два

Новитне операпи, введенвое Мөем [92], анадогично описанно-

$$
f\left(g_{1} \times g_{2} \times \ldots \times g_{\alpha}\right)
$$

rде $f \in P_{1, \alpha}, g_{i} \in P_{1, b_{i}}$. Равумется, у Моя еств ошисох ахсдом

 пространств Сташофа K_{n} является операдои (бев перестановод).

 делиности І ппшв потом описивати комбинированиуо операцио

$$
f\left(g_{1} \times g_{2} \times \ldots \times g_{\alpha}\right)
$$

 тавів пространогва $P_{1,6}$ полбросив пространогва $P_{\alpha, 6}$ o $\alpha>1$
 раннон операдон; эго озвачает, что, paботая бея перестановод, mer nonoxim

$$
P_{\alpha, b}=U_{b_{1}+b_{k}+\ldots+b_{\alpha}=b} P_{1, b_{1}} \times P_{1, b_{2}} \times \ldots \times P_{1, b_{\alpha}}
$$

а пум рабоге с тереогановкали надо яаменити пространство

$$
P_{1,6} \times P_{1,6,} \times \ldots \times P_{1,6}
$$

мространотвом

$$
P_{1, b_{1}} \times P_{1, b_{2}} \times \ldots \times P_{1, b_{a}} \times \Sigma_{b^{\prime}}
$$

rax

$$
G=\Sigma_{b_{1}} \times \Sigma_{f_{2}} \times \ldots \times \Sigma_{b_{\alpha}} .
$$

 x

 охвивалентви операнам.

 cxyчat, xогда $\mathrm{X}=\Omega^{n} \mathrm{Y}$. В огом одучаө

$$
\prod_{1}^{6} X=\left(Y, y_{0}\right)^{\left(V^{6} S^{n}, s_{0}\right)}
$$

 гогорие немрераване огобратения

$$
S^{n}, s_{0} \rightarrow V_{1}^{b} S^{n}, s_{0}
$$

Постодыку лобое огображение

$$
p: S^{n}, s_{0} \rightarrow V_{1}^{6} S^{n}, s_{0}
$$

индуцррет отображение

$$
p^{*}: X-X^{6}
$$

 Яогольяуемне намая отобраменія

$$
p: S^{n} \rightarrow V_{1}^{6} S^{n}
$$

 сств дпнеиное отобрахение $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(\lambda+\mu_{1} x_{1}, \lambda_{2}+\right.$

 рая; өто озвачает, что ово являетоя образом ровно одного пз внбравввх перахиелешадедов в $I^{n} / \partial I^{n}$.
 дагается, что паралледешпед со значком " 1 " отобрамается на слагаемое номер I букета $\sqrt[3]{ } S^{2}$. п аналогнчно оботонт дело 0 пв-

 фунхиғованного пространства

$$
\left(V_{1}^{b} S^{n}, s_{0}\right)^{\left(S^{n}, s_{0}\right)}
$$

 педов.

Эта нехитран операда $\mathscr{P}=\mathscr{P}(n)$ называется операдои $n-$ мер

 Σ_{6} на $\mathrm{P}_{1,6}$ свободно.

Ма оудөи говоритя, что пространство X является E_{n}-про-

 мресдедуеи в тот пия нио момент.
 Грубо говоря, первин ия иих покаянвает, что пространство X являвтоя $И$-қратннм пространотвом петель тогда п только тогда, согда оно двлнетса E_{n}-простравством; одвако нам потребуется более точвая форидмировка.
 тор, опредөленнын ва категории пространств Y п првиммампиа звачения в категорй таких E_{n}-пространств \bar{X}, что $\pi_{0}(X)$ является грумой.
 ооотватствве E_{n}-прростравству $X(n-1)$-саяаное проотранcrbo
(iii) Имевзая остөствовное мреобразование

$$
B^{n} \Omega^{n} Y \rightarrow Y
$$

хотороө двдяетоя охвивалентвостид, есле $Y(n-1)$-овязно.
(iv) Диеетая естественное преооразования

$$
X \rightarrow \Omega^{n} B^{n} X
$$

волу не предподагатъ, что $\pi_{0}(\mathrm{X})$ есть грушыа, чо овязь
 в § 3.2. Но сушеству, для өтого достатотно раосмотреть сдучаи $n=1$.

Я домхен объясніть слово "предтеорема", а то чвтателв мо-

 мпровки, принаддежамей ине. Слово "предтөорема" у меня означает, чго речь пдет 06 угверкденин, достаточном (как я надерсь) для обънонения общего содержанвя п цели результата, но не отятомен-
 вн присутствовагъ, если вн хотите, чтобн утверадение стало тео-
 обравения чттателя к первоначалыным работам. Охо показнвает

 оно означает, что литература преддагает на вибор нөсқолько та-

В случяе предтеоремн 2.3.1 тотние теоремы такого сорта мохно найти в [38], с. 57, п в [92], с.273,369.0бсукденве методов додазатедвтв таких теорем мн отлохим до следуриегс параграфа.
 что мохдо вмомить операду $P(n) \quad n$-мерных кубиков в операды

ноордадате x_{n+1}. определим операду кјбиков $\mathscr{P}(\infty)$ как $\bigcup_{n} \mathscr{P}^{(n)}$ т.е. нак объединение всех оперяд $n \rightarrow$ мерннх кубиков. Модно так модифиировать функтор Ω^{∞} нз категории спектров в натегорио пространств, что операда $\mathfrak{P}(\infty)$ будет деиствовать на лсбим пространстве вида Ω^{∞} Х; өто фактически та ле модификашия, после котороя в спектре возникал гомеомордизм

$$
X_{n} \cong \Omega X_{n+1}
$$

(см. § І.4); за деталями читатель отсилаетоя к ряботе Мая [89].山ы мохем оказать теперь, что пространство X является $\mathrm{E}_{\boldsymbol{c \infty}}$-простравством, есди на нем задано деौствие операди $\mathscr{P}(\infty)$, или, менөө вестко, действие другод операди, әквиваленгной эгон и приспособленно длл нашах техничөских делен.

Гдавное хорошев свойство этой операди $\mathscr{P}(\infty)$ оостоит в сладурпем. Поскольку в операде $\mathscr{P}(r) \quad n \rightarrow$ мерных кубиков каждое пространство $P_{1,6}(n)(n-2)$-связно, в операде $\mathcal{P}(\infty)$ каддое пространство $\mathrm{P}_{1,6}(\infty)$ стлгіваемо.

Бордман п фогт назвалих E -пространством, есих на X ммеется делотвие такого пРОПа \mathscr{P} (с перестановками), что пространства $P_{1, \text { о }}$ стятиваемя для всех $\quad b$. Это повятнв, по супеству, совпадает
 простравств $P_{1,6}$ гарантирует суцествование всех необходдмах нам

 оончнон перестановкои: $\tau(x, y)=(y, x)$. Тогда точкк μ п $\mu \tau$ пз $P_{1,2}$
 тативное H-простравство. Далее, точкв $\mu(\mu \times 1)$ и $\mu(1 \times \mu)$ в $P_{1,3}$ шомно соединить путем, п, значит, X есть гомотопически, ассоддатпвное H -пространство. Точно так ме устанавливвется, что Х есть A_{∞}-простравство, п так даяее. Для фикспровянного n некоторне из өтнх построенй мохно провести в рамках сперади $\mathscr{P}(n)$ п-мервыхх губиков, а векоторне - нельзя. Первоначально Бордман п
 кие-угодво H -пространства" (homotopy averything H -spaceв), однако впоследствии они отвазались от него по причивам, не которых мн не будем останавливатьсн.

Следурмеө утверкдение авалогично предтеореме 2.3.1. Грубо говоря, оно погазнвает, что пространство X явлнетоя бесковечнократным пространством петель тогда в только тогда, когда оно

является E_{∞}-пространотвом, но нам нужва более точная формулировка.

 ния в категория таких E_{∞}-ㅍространств X, что $\pi_{0}(X)$, яввяет0я rpyymot.

E_{∞} (-пространств в натегорио свяяных спектров.
(iii) Имеетоя вотественное преооразование

$$
B^{\infty} \Omega^{\infty} Y \rightarrow Y
$$

поторое является оквявалентностыд, если сдектр \mathbf{Y} свявен.
(iv) Имеется өстественное преобразованне

$$
X \rightarrow \Omega^{\infty} B^{\infty} X,
$$

которое явяяется өквивалентностыр, если $\pi_{0}(X)$ есть тоушва.
 ду $\mathrm{X} \approx \Omega^{\infty} \mathrm{B}^{\infty} \mathrm{X}$ сломнөе, см. § 3.2. Соотвесатвувиие точнне теоремн мохно найті в $[16,39,40,92,93,127]$.

Обсуддение методов доказательтв таких теорем мн оновя отложвм до следуомего параграфа.

Дегко объяонкть, в какон мере предтеорема 2.3.1 п 2.3.2 опускают необходдмде детали. Напрдмер, чяоть (i) предтеоремы 2.3.1 утверидает, что Ω^{n} модно сдедать функором, во для это-

 определение очеввден. Еолі ва простраиствах X п Y действует некоторая операда \mathcal{P}, мн можем рассмотреть огобрахенвя $\&: X \rightarrow Y_{\lambda}$

ддя всех $p \in P_{1, f}$. Достоннством атого определелия явлнетоя его
 нашего утвериқения, п оно достаточпо для иптереоуппиах нас сейчас придожения. Одвако әго определение не является едхнствен-

но возмохнни. Например, определяя поннтие морддзма одного H пространства в другоө, мн трөбовали, чтобн дваграммы

билм коммутативнн лишы с точностыр до гомотопии, а не строго. Отправляясь от әтого примера, можно дать п другхе определения, которме имешт то достоинство, что они гомотошччески инвариантнн, и тот недостаток, что оны очень слохнн. Этот подход отражен $\mathrm{B}[40] \mathrm{I}[53]$, часть J.

Теперь я долхен сказать, что реяультатн, подобнне предтеоремам 2.3.1 п2.3.2, не псчерпнварт нашей теории. Конечно, с пих быдо необходимо начать ввиду их вахности для напен темв; по
 лядихи узнать, является ли данное пространство И-кратным илд бесконечнократнм пространством петель. Но содержание теории этим не исчерпивается.

Прежде всего вопомним, что, как говоридось в гл. 1 , Джеtимс [78] построил для ΩS^{n} "модель", позволяриыо дучше понять отруктуру этого пространства. На самом деле оп предложил модель для $凸 \Sigma X$, где X - произвольное свнаное проотранство, эта модель позволяет мгновенно вкчислить $H_{*}\left(\Omega\left(S^{n} \vee \vee \ldots \vee S^{n} \dot{d}\right)\right.$), о чем мы упомднали в гл. I. Позже Мплгром [102] в том ме клоче дострожл модель для $\Omega^{n} \Sigma^{n} \mathrm{X}$. Наша теория додхна доставлать и доставдяет такие модели для $\Omega^{n} \Sigma^{n} X$ у $\Omega^{\infty} \Sigma^{\infty} X$, см. [92]. Мяй назчвает әто ащпроксимапионнвмии теоремамии. Нашя теория также должна объяснить п объясняет, в каком смвсле пространства
 объектами категории $\quad E_{n}$-пространств и $\quad E_{\infty}$-пространств. При әтом доказательства "вмрокскмапионных теорем" и "принддама распознавания" долвннн поддервивать друг другя.

Польза от информации о таких пространотвах, кат $\Omega^{n} \Sigma^{n} X$, очевддна. Напрвмер, Сияит [133] обнарулил некоторое стабильное расщепление пространства $\Omega^{n} \Sigma^{n} X$, и при помощи этого расщепления Маховолд построил новое интересное семеиство элементов в 2 -комионентах стабильньх гомотопических групा сфер. Визванвнй
 дадд новое еө доказатедьство, а Мө夫 еө оообиид, но я пога не могу привэози ооответствуошие ссылки 1).

 воду и посмотреть, какие инваржанты в них действитепьно содерзатся. Инвариантн, конечно, есть. и их нешало: иереход от оиисаннои гөометрие к хорошо вибранянм инвариантам, о помощыл которих мохно затем проводигь вычшсления, томе лвллется вадачөй нашен теорим. По этому поводу см. $[90,91$, I52 $]$. Но в заклоченне отоит вагомнить, что лобая теория долхна находпть овое оправдання в прадохениях x конкретним задачам п кнгөреснвм частнвм одучаяМ.

82.4. Meromp

В әтом параграфе я коө-что скаху о методвх, которвми докавиваштся утверждения, подобнне рояультатам § 2.3. я по-прелнепу
 которые помогут читатело понять оуть деда.

 редедениао функторов B^{n} п B^{∞}. Бордман п фогт в [40] стролт
 отрокт фунитор B^{n} одним ударом.

Несколько точнее, Бордман п Фогч предполагаюг, что дано
 ноддом $Y=M X$. Как я оожлсно ниже, Бордман п ¢огг исполвзушт
 етея стодько пе структур, сколько на X. Потом онв берут классифицируппее пространство $B Y$. Посде этого онм стролт $E_{\infty 0}$ структуру на $B Y$; так как $B Y$ строжтоя иа пространств Y, Y^{2}, $\mathrm{Y}_{\text {_. }}^{\mathbf{3}} \mathbf{\text { п. некоторых не вависямих от }} . Y$ вспомогательных пространств (вроде клеток), то более щли менее правдоподобно, что бесконечвсе холичество данных типа отобрахөнин $Y^{6} \rightarrow Y^{\alpha}$ для различивох

[^0]отруктурное отобрахение для $B Y$. Носкольку $B Y$ есть E_{∞}-проограногво, конструкцио мохно итерировагь.

0 прөддоженнод Мөем конструкцри функтора B^{n} а скаху позкө.
Зашетное различия теднических средотв әтвх авторов, возмом-
 пов. Я могу сквзать, что мои скитатии лежат на обевх оторонах. По-видрионо. Бормиан а Фогг исходят из того, что долхна супеогвовать теорал гомотопичөека днвариантних структур п что кто-то домжен постровть такуо теорио хотя бу раии неө самод. Ведъ төория H -пространств устроена так, что если X есть H -проотранотво, то п всякое пространство Y, томотошически өквввалевтное X , явмяетоя H -пространством. Поәтому п теория A_{n}-проотранотв вли E_{∞}-пространотв долхна обдадать тем своуством,
 если $f: X \rightarrow Y$ - гомотопическая эхвивалентносгы, то Y мозно, по оуществу, өдпнственньм способом овабдхть $A_{n}-$ мли E_{∞}-структурой так, чтобн f огало өквивалентностыл $\AA_{n}-$ или E_{∞}^{∞}-просяранств.

 лядтся свободним (уточнением эгого смисла ме здесь заннматься не будем). Бордмав в Фогт у построили ПРОПи, свободнне в втом
 (деревін) $[37,38]$. Но сути дела ата машинерия соответствует "граматикее" для "слов" из букв $M_{2}: K_{2} \times \mathrm{X}^{2} \rightarrow \mathrm{X}, \mathrm{M}_{3}: K_{3} \times \mathrm{X}^{3} \rightarrow \mathrm{X}$
 комомваторная техника придала работе Бордиана п Фогта еө неповторжауо изнсканнооть.

Напротив, МәН, как кахетсл, видит пазначенте теории в том, чтоби как можно скорее доказать необходиме теореме у ватөм вседело угдубиться в наме настоящее дело, которое ма тах мобим, т.е. вычислять разнне вепи, деЙствительно вмеппие инварианттый смвсл, как, скажем, гомологичеокие операции. Деиствуя в этом клоче, Май умело использует следушший тршк. पтобн сраввить X и Y, не обляательно пытаться строить отобрахение $f: X \rightarrow Y$ или $g: Y \rightarrow X$; елесто атого можно построить новии объект Z, огоठракашшийся вак в X,так и в Y.

Предпоженная Мәем конструкшия функтора B^{n} есть вариант барнонструкции. Непомнш, что перяоначөлвная бар-конструкция биля придумана Эйленбергом в Маклейом [57] п исполвзовалась для внчисления гомологии классуфицируопих пространств; я обълснд, в

чем состоит идея өе обобпения. Для получения обобменноя бар-конструкции необходрм некоторый особенныи функтор $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ пз категории С в себя. Разъяснам әто на примерах.

IPYмеP 2.4.1. Пусть дана алгебра A над некоторим кощццом R.
 сматриваем катөгорио C модулей над R п принамаем за T фучктор

$$
T(M)=A \otimes_{R} M
$$

Этот прпюр подоказывает аксиомн, которвм додхен удовлетворатъ фунитор Т. Во-первнх, мв предполагаем, что задано естественное преобразование

$$
\mu: T^{2} \rightarrow T
$$

доторое в ватем примере представляет собой отображение

$$
A \otimes_{R}\left(A \otimes_{R} M\right) \rightarrow A \otimes_{R} M
$$

нидуцррованиое умножением

$$
A \otimes_{R} A \rightarrow A
$$

Во-вторнх, мн прөдполагяем яаданнмм естөственное преобразование

$$
\eta: 1 \rightarrow T_{1}
$$

хоторов в нашем прпморе представняет ообои отображение

$$
M=R \otimes_{R} M \rightarrow A \otimes_{R} M
$$

мидуцарованное единицеи

$$
R \rightarrow A
$$

Кроме того, өти отображения μ, η долхны вкдочаться в комаутатиннне дпаграман

Такон функтор T вместе с преобразованиялии μ и η иррает в гомологическон алгебре роль алгебрн; я предпочел бы называть такие функторн функторами-алгебрами, хотя в теории натегории уже

дави им название: их называлт монадамқ (или тронкампл); см. [84], с. 133.

IIPMMEP 2.4.2. Нустъ C - натегория помпактно порахденных дунвтированных простравств, и пусть TX есть $\Omega^{n} \Sigma^{n} X$. Очевидно, вмеется естественное преобразование

$$
\eta: X \rightarrow \Omega^{n} \Sigma^{n} X
$$

 $\Sigma^{n} \Omega^{n} Y \rightarrow Y$, с помотыр которого мохно определить преооразоваHine

$$
\mu: \Omega^{n} \Sigma^{n} \Omega^{n} \Sigma^{n} X \rightarrow \Omega^{n} \Sigma^{n} X
$$

Ияучение эуого прдмера, принаилемамего Беку [28], послукидо, но оловем Мәя, стдиулом к развитидо өго идем.

ITPMEP 2.4.3. Вообщө, если пмеется пара сопряменвых функторов, мы можем построить монаду так ме, как в примере 2.4 .2 m поотропли өе для частного сдучая функторов Ω^{n} м Σ^{n}.

Вервемоя к пржмеру 2.4.1, в котором C есть категория R mодудеи п $T(M)=A \otimes_{R} M$. पто такое A-mодули? Это - объект M катөгорыі C, стабхеннын некоторым отобрамением

$$
\nu: A \otimes_{R} M \rightarrow M
$$

 монадн $\mathrm{T}: \mathrm{C} \rightarrow$ нязовем T -обвектоия объект M гатегории C , дия которого вадано такое отобрахение

$$
\nu: T M \rightarrow M,
$$

что коматутативны диаграммн

Спедралист по теории категорий предпочөл он называтв T -объектн T-ялгебрами, однако с точки зрения важннх для нас аналогии оолее подходядии кажется термин " $\mathrm{T}-$ модули".

IPYMEP 2.4.4. Пусть C - категория компактно дорожденних дунктированнвх пространотв, и пуств TX $=\Omega^{n} \Sigma^{n} X$, как в прии
 том.

Вернемся сновя к примеру 2.4.1. Классическая бар-консярукция модет быть исдольвована для вычисления $\operatorname{Tor}_{A}\left(L_{,}, M\right)$. мы ухе ва-
 теперь к постронал аналога $A \otimes_{R} A \odot \ldots \otimes_{R} A \otimes_{R} M$, но у нас еме

 C, когорый играл он ролв функтора $S(N)=\left[\otimes_{R} N\right.$.
 пропзволынин функтор

$$
S: C \rightarrow C^{\prime}
$$

(ов мозет принимать значения в новои ватегорий C^{\prime}). Дроддолохвм такме, что яадано естөствонное преобразования

$$
\lambda: S T \rightarrow S ;
$$

$$
L \otimes_{R} A \otimes_{R} N \rightarrow L \theta_{R} N
$$

мидудированноя действвем

$$
L \otimes_{R} A \rightarrow L
$$

Hри әтом S у λ долинн удовлетворать очевддным аксиомам, вн-

 правви функторои-модулем над функтором-алгеорой I).

пРПМЕР 2.4.5. функтор Σ^{n} является правым модулем над фунатором-алгеброй $\Omega^{n} \Sigma^{n}$.

 функтором-адюоброд T; тогда Ω^{n} будет девым футахтором-модумем над $\Omega^{n} \Sigma^{n}$ в T-объеку оудет не чем иннм, как левив фун-кторон-нодудем пз однообъектнон натегория в ватегорио $С$. После әтого мы можем довесту напу категорнуд теорид до полного догического совериеиства: мы не только обхадрмся без өдементов внугря навах объектов, но можем дахе избегачь упоминания объекітов

 натегориям никогда не уиустат.

 рованних проотраноув, п пусту $\left\{P_{1, n}\right\}$ - некогорая операда.

$$
\coprod_{n} P_{1, n} \times X^{n}
$$

 ○. 279.

Идел заклочаетоя в том, что монада P модет сдухвть адекваткои "ручнои" sаменои "дикои" монадн $\Omega^{n} \Sigma^{n}$. Я говоро "ручно月", потоиу что монада P вседедо находитоя под ноним контролем.

TEOPENA 2.4.6. Ддя подходямен операпл $\left\{P_{1, f}\right\}_{\text {, өквивалент- }}$ нои операдө n-мерних вубивов, п овязного пространствя X проотранство PX слябо гомотошическю 9хвивадентно $\Omega^{n} \Sigma^{n} \mathrm{X}$.

Ск. [92], с.281,309. Это и есть апироксимапионная теорема, о которой я говормл в конце § 2.3. Момно оказать, что PX выстудает как "моделв" дин $\Omega^{n} \Sigma^{n} X$.

Для того чтобы двагатьоя дальше в понимания оөр-понструкцин, мн долхнн договорить о скмиладиалоннх методах. Дусть σ^{n} - стан-
 $x_{0}+x_{1}+\ldots+x_{n}=1$ и неравенствами $x_{i} \geqslant 0, i=0,1, \ldots, n$. Вераивва v_{i} ятого самплегса еств точка $x_{i}=1, x_{j}=0$ при $j \neq i$. Mh оиределим төперь категориы Δ, объектамш пбторол слудат ставдартнне симдегси $\sigma^{0}, \sigma^{1}, \sigma^{2}, \ldots$; впрочем, если вы хстите заменить гео-
 бором его вершни І сказать, что сбъевтаме категории явлнотся конечнне множестве $\{0\},\{0,1\},\{0,1,2\}, \ldots$ В этон шітерпретадии морфиямама из $\{0,1, \ldots, n\}$ в $\{0,1, \ldots, m\}$ нвляртся тапие отобрахения $f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, m\}$, чго $f(i) \leqslant f(j)$ мри $i \leqslant j$, иначе говоря, мордизмя - өто неубывахмие отображения. В геометрическов интерпретадии таким отобрахениям соответствурт симплидиальнне огобразения $\sigma^{n} \rightarrow \sigma^{m}$, переводядие веромия v_{i} в вермину $v_{f(i)}$.

Приведем стандартное определение: скмплииальное множество өто ковтравариаитнны функтор из категории Δ в катеторид мнодеств. Вслп, например, X - топологическое пространство, то мн мощем построить его сиигудярнин комплекс; әто - скмплицвальное множество K, относящее каждому $n=0, I, 2, \ldots$ множество K_{n} непрернввнх отображении $f: X \leftarrow \sigma^{n}$; если $g: \sigma^{n} \leftarrow \sigma^{m}$ - морфкам категории Δ, то мв определяем $\quad g^{*}: K_{n} \rightarrow K_{m}$, принимая за $g^{*}(f)$ композициио

$$
X \xrightarrow{f} \sigma^{n} \xrightarrow[L]{q} \sigma^{m}
$$

Иногда я буду использовать анадогшчнне обозначения для произволь-
 здесь, новечно, $f \in K_{\kappa}$ и $g: \sigma^{n} \leftarrow \sigma^{m}$ есть морфизм из

Разумеется, при ваданном симплидиальном множествв K достаточно определить морфизмы g^{*} лишь для морфизмов g, пробегаюних некоторое множество образуопих для морфизмов категории Δ. (по отномендо к композиции). Имеется единственное минимальое множество образуошио, и оно состоит из следуомих отображении:
(i) Отобрахения $d_{i}:\{0,1, \ldots, n-1\} \rightarrow\{0,1,, n\}$, где d_{i} не приномет значения i п принимает какдое ия остальных значевий ровно один раз. Эти отобрахення називаотся отображениями гранеи; вообще отобрахениями гранөи називартся всякие неубнвамиие влозения.
(ii) 0тображения $s_{i}:\{0,1, \ldots, n+1\} \rightarrow\{0,1, \ldots, n\}$, где s_{i} принанает значенхе i двамдн, а все остамьнне значения по одному разу. Эти отображения назмваптся отображениями внрождения; вообще отобрахениями вырождения вазнвартся вслкие неубнвампие ошрыктивние отобрахения.

Эти образупиие удовлетворавт векоторны соотношениям, которже обмчно нет вухдв запоминать; покуда наша деятельость остается чисто теоретическои, мн будем иметь дело с категориен Δ, и пуоть ова самя звботится о своей структуре. (Это видно на примере отғсанного выме подхода к понитво сингулярного комплекса.)
 $[88]^{1 /}$.

Топодогт обично рассматриваот скмилидиальнне множества как приемлемуо коможнаторнуо замену тодологуческих пространств. Опи-
 топологическвх проотранств в сиидлидальные множества; пмеется

Если дано стилидиальное цножество K , возьмем

$$
I_{n} K_{n} \times \dot{\sigma}^{n}
$$

отаддестваи в нем $(x y, y)$ с $(x, g y)$ для всех $x \in K_{n}, g: \sigma^{n} \leftarrow \sigma^{m}$ м $y \in \sigma^{m}$ обозначим через $|K|$.

Имештоя и друтие сомидицдальние понятия, близиде к повятию

 додхно бнть фунатором из категория Δ в ватегориы колед у симымпдиальвое топологичеокое проотравство есть функтор из катего риі Δ в категорно топологичеоках щространотв.

Геометрическуо реалияалио $|\mathrm{K}|$ мозно определить и для свмилипиального топологического пространства K. Для этого в предвдумем описанип нудно рессматривать $\mathrm{K}_{n} \times \sigma^{n}$ гак продаведенве двух топодогнческих пространств (предде мы исполззовалиу дисскретиуо топологир на K_{n}). Загем ме берем весвязное обзединение

$$
\underline{U}_{n} K_{n} \times \sigma^{n}
$$

Тепорь ми можем дать сдедушиее грубое ошвсание обобдевнои
 деночвуомая ва чоподогвчөсквх пространствах, X - педогорое
 подогических проотранств в сөбя (т.е. S остъ правни функтормодуль вад функтором-амгеброн P). Тогдр последоватедыносгь

$$
\operatorname{Bar}(S, P, X)=|K|,
$$

${ }^{1)} \mathrm{Cm}$. такте $\left[157^{*}\right]$. - Дрқм. перев.

где $K_{n}=S P^{n} \mathrm{X}$ ．（в дитературе обнчно употребляется обозначение： $B(S, P, X)$ ，но я хочу избехать путаницн，связаннои с употреб－ дендем символв B для обозначения класснфидируощето пространст－ ва．）

Построенхе функтора B^{n} по Мөр осупествляется теперь сле－ дурим образом．Рассмотрим полходяисуо операду $\left\{P_{1, h}\right\}$ ，өквива－ дентну операде $ク$－мерных кубиков．Превратим өе в＇монаду P ． Тогда для лобого P－пространства X мохно полохдтв

$$
B^{n} X=\operatorname{Bar}\left(\Sigma^{n}, P, X\right)
$$

（ am. ［92］，c．338）．
Этшм завершается мои рассказ о методах Мәя．

§ 2．5．Матвив Сиггла

В этом параграфе я опий некоторуо мамину，которая хотя не－
 § $2.2-2.4$ ，но в деиствитевьости предвазначена для тех мо до－ мен．Эта маштна сконструирована Сагалом［125，127］．Первое сооб мения о неи в печати привадлелит Авдөрсону［16］．

Я пачну с попытки виделыг две основнве пдеи подхода Сагала． Первая пдея состоит в следупмем．В подходах Бордмава－Фогти Мэя （§ 2．2－2．4）чаотир яаданнои на X．структуры бидо отобрамание

$$
P_{1, n} \times X^{n} \rightarrow X
$$

 том，что для вашых деле⿺𠃊 не облзательно требовать，чтобн большеө пространство бнло прамым проиявадением пространства параматров $P_{1, n}$ д n өкяемпиров пространства X ；дјсть оно будет еще больте п епе пнертнее，лиив бн оно обладало нухнымии алгебраическимй

 ческих своћств．Коротко говора，она состоит в тои，что натегории
 גамі тппа $\mu(\mu \times 1)$ ：$\mu(1 \times \mu)$ ．

Позвольте мне начать со второй идеи. Прехде вовго я утверкдаш, что введенная в § 2.4 катөгория Δ момет оить отождествдена с мнозеством форкул тида $\mu(\mu \times 1)$, ноторые (i) имерт смыол дия побого топологического моноида M и (ii) достаточвн дхя поогроөния кдассифицируюмего пространства $B M$.

Более точно, пусть дан топологическй моноид M. одна ия ковструкцхй пространствв $B M$ начкнается с построения некоторого сммилаипального топологического пространства K . Элементу пространства K_{n} определяотоя нак одномернвіе симпдицдальнде копикля на σ^{n} оо эначениями в M. (В сдучае когда M есть диохретвал групиа G, эта конструкния совпадает с предложеннои Эиленбергом и Макдениом конотрукциен скмлицрального мномеотва тмиа ($G, 1$).)
 диклов, т.е. отобразение $f^{*}: \mathrm{K}_{n}-\mathrm{K}_{m}$. Для тех, кто попытнвает
 мев татегорное определение. Расомотрим монодд M нак категормо

 далөе, ожпллкс σ^{n} ках категорио

$$
0-1 \leftarrow 2 \leftarrow 3 \leftarrow \ldots \leftarrow n,
$$

 морфнзм ва i в j супествует тогда п тольго тогда, волда $i \geqslant j$.

 мохно рассматрирать как функтор пе ватегории

$$
0 \backsim 1 \leftarrow 2 \longleftarrow \ldots \leftarrow n
$$

в reteropin

$$
0 \longleftarrow 1 \leftarrow 2 \leftarrow \ldots \leftarrow m
$$

таг что можно определить требуемые индушрованные отобразевля. При лобом подходе ма подучяем корректво опредеденное спмидйальное топологическое пространстео K.

В нашен гонструкдии

$$
K_{n} \cong M^{n}=M \times M \times \ldots \times M \quad \text { (} n \text { оомнодвтеле\#) }
$$

Дећствительно, имеется взаимно однозначное соответотвия, относящее поциклу U набор его значенй

$$
u\left(v_{0} v_{1}\right), u\left(v_{1} v_{2}\right), \ldots, u\left(v_{n-1} v_{n}\right)
$$

или, что әквивалентно, относящее функтору U набор его звачений на морфизмах

$$
0 \leftarrow 1,1 \leftarrow 2, \ldots,(n-1) \leftarrow n
$$

Таким образом, категория Δ мохет рассмагриваться вак вачего-
 лобого моноида. Этот класс формул доотачочен для поотроения классифицдрукжнего пространства монощда M, так как одна ия ков-

$$
B M=|K|
$$

(по поводу такод "геометрическон реалияадии" см. 8 2.4).
Нал "класс формул" содерит умножение $\mu: M^{2} \rightarrow M$ (огвечаипее отображенио $\alpha_{1}: \sigma^{1} \rightarrow \sigma^{2}$). Нет веобходдмости обсухдать во всех подробностях, ${ }^{1}$ нак получартся отображения $\mu(\mu \times 1), \mu(1 \times \mu)$ м пнформадия об их равенотве; сути деля в тои п состоит, что пам во нухно внписнвать фораулн типа $\mu(\mu \times 1)$ п $\mu(1 \times \mu)$, так вак катө-. гория Δ доставляет нам целый склад тазих форауд. Й это - до-

 однократному пространству петель. Пусть X - гомотопически ассоциативное H -пространотво; рассмотрим X вак функтор

$$
\Delta \xrightarrow{\mathrm{X}} \text { (гомотопическая категория) }
$$

из категории Δ в ватегорио пространств и гомотошическдх клаосов отобраменій; ятот функтор дереводвт σ^{n} в $\mathrm{X}^{n}=\mathrm{X} \times \mathrm{X} \times \ldots \times \mathrm{X}$,

 Функтор до фувктора

$$
\Delta \xrightarrow{K} \text { (пространства), }
$$

поо погом мя сможем построжть $|\mathrm{K}|$. Здесь сдово "подвять" озвачает, что ддатраланая

 дентноотт. Осталооз разобраться в смноле эгого пооледнего требованея.

 раосмотрмм отобрамение

$$
K_{n} \rightarrow K_{1} \times K_{1} \times \ldots \times K_{1} \quad(M \text { сомохалелеп) }
$$

 отображение

$$
K_{n} \rightarrow K_{1} \times K_{1} \times \ldots \times K_{1}
$$

 вамі, он говорат о опедиалиних Δ-пространотвах.

Такпи обравом, прадлагаемни Сигалом авадог A_{∞}-пространст-
 с $K_{l}=X_{n}$. В өтом сдучае K_{n} гомототическд әквивадентно проогранству $X^{n}=X \times \times X$ п K_{n} играет роль проивведенияя $P_{1, n} \times X^{n}$ 48

$$
\$ 2.2-2.4
$$

Само ообои разумеется, өта мамива работает отдично, тав что
 кратннм пространствам петель. Первын шаг состопт здесь в том,

 тувннх моноидов.

 пествя $\{1,2, \ldots, n\}$ див $n=0,1,2, \ldots$, но теднически удобнее говорить о всех ковечних мнозөствах. Для лиоого такого множества 6 обозначим черея $P(\sigma)$ мнозество всех его подмножеств. Мороцам категорих Γ из σ в τ опредепнется как отобрахение $\theta: P(\sigma) \rightarrow$
 зенке θ однозначно опрадедяется свомия зваченияи ва одноәдо-
 непересевамиимася подмомествемии мномествя τ.)

 смнсл для монондов, мы можем отоддествить категорию, дво ственнуо

 у огоорамение

$$
\theta: P(\sigma) \rightarrow P(\tau) ;
$$

мн хотви определить огобрамения

$$
\theta^{*}: \underset{i \in \sigma}{X} A \leftarrow \underset{j \in \tau}{X} A .
$$

Для $\alpha \in \underset{j \in \tau}{\times} A$ определим $i \rightarrow$ компоненту обрава $\theta^{*} \propto$ формулой

$$
\left(\theta^{*} \alpha\right)_{i}=\Pi \alpha_{j} \mid j \in \theta\{i\}
$$

где произведение $\Pi \alpha_{j}$ берется в комабтатпвном моноиде A.
 смнсл п для коммутативных ионоддов. Это определяет вложение $\Delta \rightarrow \Gamma$. Болев точно, объекту σ^{n} отаватся в соответствве нонечвое мновество $\{1,2, \ldots, \pi\}$ у морфиаиу f категория Δ, расоматрмваемоку вак неубываппее отобрамение

$$
f:\{0,1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots, m\},
$$

отавится в ооответствие морфизи $f^{\prime}: P\{1,2, \ldots, r\} \rightarrow P\{1,2, \ldots, m\}$ натегория Γ, опредедлемын дормудои

$$
f^{\prime}\{i\}=\{j \mid f(i-1)<j \leqslant f(i)\} .
$$

Палве, Г-пространство K есгь по определенво ковтравариантнин функтор из катөгория Γ в категорио простравств; ня сказанного внио сдөдует, что Г-пространотво является Δ-простран-
 ммее Δ-проотранотво является спепгальным в ухазанном ввше синодд.

Повятте одепиадыного Г-пространства яввяется одной из преддагаемах Сагалом замен понлтки $E_{\infty}-$-пространства Бордмана - Фогта Мад. Уме ва основанид оказаниого више складивается виечатление, что оно додхно отдинно работать; даваяте убедимеся в этом, рас-

странства как пидивддуального топололжчеокого пространотва, но теперь мы хотим, чтооы резултат конотрукции бнд Г-проотранством, т.е. функтором вз категорих Γ в категорио пространотв. Итак, пусть $К$ еоть Γ-пространотво, дия воторого мы хотвм построить клаоспиидруумее пространотво, п пуоть б еоть объект категорих $Г$. Ми определдем эвачөние функтора 8 К на σ мак

$$
\tau \mapsto \mathrm{K}(\sigma \times \tau)
$$

Конечво, нужно прсверить, что здесь все в порядке, но п так яоно, что 9то оченъ пзящная конструкцря.

Этот подход онл первоначально прөдназвачен пскдочитемьно дия
 нялся х теорах n-кратных проотранотв петелы, но этого достаточно ддя вапбодее интересних приложенин. Впрочем, впосдедотвии Кобб [52] дал набросок устроиства - аналога мамины Сигала, работамщего в олучае Т-кратных пространогв петель.

Другая маптина, построенная ва баяе омпплицральнвх идеи, била предложена Барратом п Иикклсом $[22,23,24,25,26]$.

§2,6, Под尺лочение теория категорай

Возниквет вопрос: где вяять на практике все этп внстие гомотопид, необходимне для работн мамин, додобних расокотренным в § 2.2-2.5? Ответ оостопт в том, что оии вознивадт самп собои, когда в павом-вибудь контексте понвляется умножение, которое "в приниипе" ассоцвативно п коматативао. Например, в теориях расслоении, рассмотренннх в § 1.8 , одерации сдожения Уитні момно
 уточнение этого ивтуитивного утверхдения оделано в [40] п [99]. Соответствупмая техническая пробдема оостоит в том, чтобн приидать вырахенио "в приндипе" строгхй смвол. В этом параграфе мы исодедуем одно из возмохных решений этой пробдемв.

По-видимоиу, лучше всего начагь с расомотрения двух конкретнах примеров.
 жат множества $\{1,2, \ldots, n\}$ (где $n \geqslant 0$), причем морфизмы пи $n \rightarrow$.

ПРиаßР 2.6.2. Пусть задано (двокретное) коматуативное кодвдо R, п дусть C - категория, в которои n - обвект еоть овободвын модуав R^{n}. Дру этом морфизмон пз R^{m} в R^{n} существуот тогда и толно тодда, когда $几=m$, в в этом сдучае они представляшт собои R-линеинне взамано одвозначпне соответствия, т.e. ооставанот матричцуо групиу $G L(n, R)$.

Общим для өтгх двух натегордй явллется наличие бифунитора $\square: C \times C \rightarrow C$, ноторын огрого асоодвачивен и обладает отрогон өдииіицеи. Более точно, в оболх случаях бифунктор вв обзектах зядаетоя формидоу

$$
n \square m=n+m \text {; }
$$

из өтон формулн видно, что на объектах он строго ассодиативен
 делить фунитор \square на морфизмах. B пргмере 2.6.2 пусть $A \in$ $\in G L(n, R)$ и $B \in G L(m, R)$; мах полагаем

$$
A \square B=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

Очевидно, что эта операпия огрого асооцғативва п что единотвен-
 догечно в првмере 2.6.I пуотв $\sigma \in \Sigma_{n}$ п $\tau \in \Sigma_{m}$; мы обозна-
 на $\{1,2, \ldots, n\}$ п как τ ва $\left\{n+1, n+2, n+n+\frac{1}{2}\right.$. Очевдино, что п уга опе-

Своиогва категории \quad С , которые ма тодвко что проверили для двух наших приморов, спепаалиоты по категориям виратапт оховами: С есть отрого монодданывая категория (см. [84]. о. 157-158; впрочем, некоторые чштагеди, возмовно, предпочтуг работу [85], кратвость которон ухе овма до себе явллется почти достаточной рекомендаддеи.)
 коматтативвы, не являетоя строго коместативнвм; нацример, вак иравндо,

$$
\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right] \neq\left[\begin{array}{ll}
B & 0 \\
0 & A
\end{array}\right] .
$$

 в теория катеториан ее назнваотт сымметричнои, если задан естествениай изомордазм

$$
c: \square \cong \square \tau: C \times C \rightarrow C,
$$

где

$$
\tau: C \times C \rightarrow C \times C
$$

$$
\begin{aligned}
\tau(X, Y) & =(Y, X) \\
\tau(f, g) & =(g, f)
\end{aligned}
$$

 рентвооте.

В прпюрах 2.6.1 п 2.6 .2 супествование изоморфизиа C оче-

$$
c=\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right]: R^{n} \oplus R^{m} \rightarrow R^{m} \oplus R^{n}
$$

 В этом схучае говорат просто о моноддаввоя категорап, си. [日]

 ная катөгория" [93].

$$
0 \longleftarrow 1 \leftarrow 2 \leftarrow \ldots \leftarrow n,
$$

в которой морфпзм (единствевныи) из i в j оумествует тогра и только тогда, ногда $i \geqslant j$. (Некоторне автори предпочиташт

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots \rightarrow n
$$

п это в донцв понцов приводит к тому ве оамоку, но я дри тадом внборе не могу достичь оогласованносту мехду моних формула-
 гументов.) Полохви

$$
K_{n}=\operatorname{Hom}(0 \leftarrow 1 \leftarrow 2 \leftarrow \ldots \leftarrow n, C),
$$

т.ө. опрөделим K_{n} как мнохество функторов ия датегории $0<1$ -

 гория \triangle еоть не что иное, ках функтор из категории $0 \leftarrow 1 \leftarrow 2 \leftarrow \ldots \leftarrow n$

 мество K . Это свиллицадвное мнохество вазивается нервом ватвгории C, в ма оудем обозначать его через Nerve (C).
 ранство жатегории C еоть

$$
B C=|\operatorname{Nerve}(C)|,
$$

т.е. для построенвя $B C$ надо взять перв $\operatorname{Nerve(C)~катөтории~} C$ п өго гөометричесдур роализапир (см. §2.4).

 нростравствои эитенберга - МаглеІва тита ($\pi, 1$).

в прпшерах 2.6.1 2.6 .2 категоржя C сводитоя х последова-

$$
\coprod_{n \geq 0} B G_{n} .
$$

 хем адехатз BC строгхм моноддом.

 категория, то $B C$ еств E_{∞}-Іроотранство.

Cu. [93], 0.78 .
 ган", потому что так удобнее для некоторих примров. Предполозтм, напрмиер, что мн росоматрвваем вариант трпмера 2.6.2, в когором объектамп категории C являртся конечно поровденные
 врад лл захочетоя преврешать эту категориы в строго моноидальнур категорво. Однако, так как ме всегда момем добдться "отрогосту" соответотвудпимия катеторынмя поотроенияия [72], то нам нет нухды прояввять беопоконство.

Замечу, что прицери 2.6.1 п 2.6.2 показнвамт, что уровень обпиостх, приняти立 в § 2.3 , не являетоя чрезмернвм. В этих примерах $B C$ является E_{∞}-пространотвом, пин мохем воспомвзовать-
 простравотво $\Omega^{\infty} \mathrm{Y}$ ве эквдвалентно $B C$, потоку чго $\pi_{0}(B C)$

 83.2 .

Отгладивая әто обсухдение до § 3.2 , я ограничуоь утверкдениеи, что в пранере 2.6.I

$$
B C=\prod_{n \rightarrow 0} B \Sigma_{n}, \quad Y=\Sigma^{\infty} S^{0}, \quad \Omega^{\infty} Y=\Omega^{\infty} \Sigma^{\infty} S^{0}=\lim _{n \rightarrow \infty} \Omega^{n} S^{n},
$$

 стрултуриых огобрахения

$$
\begin{aligned}
& \text { область определения: } \operatorname{Mor}(\mathrm{C}) \longrightarrow \mathrm{Ob}(\mathrm{C}) \text {. } \\
& \text { облаоть значении: } \operatorname{Mor}(\mathrm{C}) \rightarrow \mathrm{Of}(\mathrm{C}) \text {. } \\
& \text { тохдествввныи морфизм: } \mathrm{Of}(\mathrm{C}) \rightarrow \mathrm{Mor}(\mathrm{C}) \text {, }
\end{aligned}
$$

непрерывны. Это не вносит оупеєтвенних иэменений в построение классифицррруомего проотранства $B C$, так как в § 2.4 мы опре-
 множеств, но и геометрическур реализадид спминддальних топологпиөских пространств. Предтеорама 2.6.3 остается при өтом оправедливои.

\& 2.7. Кольдевве теорим

В этом параграфе я сделар иесколыко, возможно несвоевремен-

В алгебраическо топодогии обнчно счптают, что чем богаче алгебрапческая структура, тем дучше. В частвости, иметоя поня-
 теории k^{*} задано умвохение

$$
k^{p}(X) \otimes k^{q}(X) \rightarrow k^{p+q}(X),
$$

 ривания

$$
k^{p}(X) \otimes k^{q}(Y) \rightarrow k^{p+q}(X \times Y)
$$

Ex

$$
\tilde{k}^{p}(X) \otimes \tilde{k}^{q}(Y) \rightarrow \tilde{k}^{p+q}(X \wedge Y)
$$

 том, утобн в теораі одектров суцествовалд понятня, соответст-
 го веобходно опредөлाчь привөдениое проивведение $E \wedge F$ двух одекгров; пооде атого мокно ввесту понитне "колыцевого спентра"

$$
\mu: \mathbf{E} \wedge \mathbf{E} \rightarrow \mathbf{E}
$$

 мокно, не будет достаточна ддя рошения бодяе серъеяних вадач.

 ставлять себе как "слохение" п "умноженге".

Возьем, напрмер, пространство $X=\Omega^{n} S^{n}$; в нем пмется операдвія одожения $\propto: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$, уоторая вознивает вв равенства

 дательно сдедать переход к пределу прд $几 \rightarrow \infty$.

 нечно, налагает усдовия (с точностыр до гомоготия) на огобрагения \propto п μ, как порознь, так п вмасте; нацример, с точносяыо до

В частностл, дхя колддөвяго одектра \mathbf{E} грушша 0 -меравх

 пространство $X=\mathbb{Z} \times B U$ явияетоя полыдевим проотравством, в ко-

 ножением вегторных расолоенй.

0 дваго мохно пойту еще дальше п потребоватъ, чтобн \propto п μ удовлетворяли соответствуоитм усдовиям ве тольхо с точносты до

 русский перевод которой готовктся в падательстве "Наува". прам. перев.

 домидевого E_{0}-пространогва.

Дусть вмеется категория с двумя согжасованннми моноддальными структурами в смнсле §2.6. Например, в начеотве C можно взять категорио вонечннх множеств с операпиями дизъдпктного объедпнения и декаргова умножения. При этом моино надеяться, что построеннов в § 2.6 щнассифимиуомен пространство $B C$ окахется хольдевым $E_{o p}$-пространством.

Понятие голвцевого E_{∞}-проотранства долдно быть отправнон
 он ваделться, что имеет мөсто вввлог предтеоремн 2.3.2, котоpant покавап бн, что исследование $\mathrm{E}_{\infty}-$ Н-пространств X фактически равновначно посдедованто спектров. Однако опектраль-

 в висшей степени мемателно иметъ определение приведенного ум-

 пересмотреть самые основаная теория спектров. Такоя пересмотр

 по одвоку пространотву E_{n} д期 вахдого \because. Бескоориинатнын огектр состоит нз пространств $E(V)$, опрөдеденвих дия кадного

 деэворитедное определөния гольчевого E_{∞}-одектра.

 рах, нак, например, проолены ордент рремоотд офернчеоках раослоении в обобменннх теориях когонологни.

 вавного огобразенняма

$$
\left(E \Sigma_{n}\right) \times \Sigma_{n}(X \wedge X \wedge \ldots \wedge X) \rightarrow \Sigma^{?} X,
$$

 топодогам привжекатедвва; ово доставляет подходяни! вонтедот
 [II3]. Іо поводу поддевяк H_{∞}-спехтров см. [98].

И в закдочение параграфа нескодыко обддх одов. Я не сомпеварсь, что намеченнне здесь теораи могут бить поотроенн, до

 где эго тольто возможно. Одвако я пока не готов обсуддать вго более подробно у отсыдар читатедя к $[99,98]$.

'Тлава 3
ЛОКАЛИЗАЦИЯ И ГРУIIIOBOE ПОПОЛНसНК

\& 3.

 ходить на другоө пространотво, не будучи өку эквввалентным. Я со-
 ввет пространотво X в неноторов другое пространство, родственное, но не әквввалентноө еку. Начну с локализаини, воторая про-

В теораи гомотошии ддея рассмотрения 2-примарних проблем от-

 лема касается \mathbb{Z}-модуле月, вн момөтө ввести гольцо $\mathbb{Z}_{(2)}$ - кальцо делвх чисөл, локанизовавноө по двойне, - как мнохөство дробей a / b е \mathbb{Q}, для которнх b нечетво. Тогда локализадиеп \mathbb{Z}-модуля M по двонке оудет $M_{(2)}=M_{z} \mathcal{Z}_{(2)}$. Эфект этои понструкинии соотопт в тощ, уто 2-примарнне проблемн осташтся неизменни-
 me , наоборот, нухно пзбавиться от 2-примарнвх проблем п оставпть все остальвне, то момно воспользоваться проияведениөм $M \otimes_{z} \mathbb{Z}[1 / 2]$.

По-видимопу, перввм, кто полноотьд осознал, что в теории гомотопии имөется анелог алгвбрапчөской локализапии, бкл Сулливан [149, і50]. Безусловно, открытие Сулливана имело пирокй резонанс епе до того, как оно било опублиновано; надо отметить такля, что пекоторне математикв работали в этом напрядлении независимо и опублитовали свой работи раньте.

Мн начнем раосмотрение әтого прецмета со слелуюцего вопроса:
 пуоть A - абелева группа. Дүть решения нашен sадачв восолотно яоен. Вначале ма построим проот ранство Мура Y, т.е. пространотво
 пример, вибөрем свободнуо \mathbb{Z}-резольвөнту группи A, овахем

$$
0 \rightarrow R \xrightarrow{d} F \rightarrow A \rightarrow 0 ;
$$

 изошордпямы

$$
\begin{aligned}
& H_{n}\left(V_{\beta \in B} S^{n}\right) \cong R, \\
& H_{n}\left(V_{\gamma \in \Gamma} S^{n}\right) \cong F ;
\end{aligned}
$$

после әтого можно постронть тагое отобрахение

$$
f: \bigvee_{\beta \in B} S^{n} \rightarrow \bigvee_{\gamma \in \Gamma} S^{n}
$$

сто динагреме

$$
Y=\left(\underset{\gamma \in \Gamma}{V} S^{n}\right) U_{f} C\left(V_{\beta \in B} S^{n}\right)
$$

 фпциентвих, полокив

$$
\tilde{k}_{m}(X ; A)=\tilde{k}_{n+m}(X \wedge Y) .
$$

Из сказанного видно, что справедлива тесрана об универсальштх коэффниентах в виде точвой поолодовагелыносуп

$$
0 \rightarrow \tilde{k}_{m}(X) \otimes_{z} A \rightarrow \tilde{k}_{m}(X ; A) \rightarrow \operatorname{Tor}_{z}\left(\tilde{R}_{m-1}(X), A\right) \rightarrow 0
$$

Отспда совериенно яоно, как ввести гоэффициентн в спекгр. А именно, опрөделим по опектру \mathbf{E} новни опектр \mathbf{F} фораулод

$$
F_{m}=E_{m-n} \wedge Y
$$

Если ограничиться случаем, ногда в \mathbf{A} огсутстнует крученде, ма

$$
\begin{aligned}
& \pi_{n}(F) \cong \pi_{n}(E) \otimes A, \\
& H_{n}(F) \approx H_{n}(E) \otimes A .
\end{aligned}
$$

Таким образом, мн опрөделнли функтор на катөгории спектров, действие которого на гомотопические групти \mathcal{T}_{\imath} у грушы гомологии H_{r} виралается тензорным умножением на A .

Возникает вопрос: супествует ли конотруныия на пространствах, согласушиался на бесконөчнократных проотранствах петөль с приведеннои конструкіиеЙ для спектров? я говоро "проотранотва", но нам вполне достаточдо односвязных CW-номпдексов. Впрочем, теорип мохно сделать нечувствитөльной к некотороку каличеству неприятностеи, чинимых фуидаментальной грушо步, но ве особөнно большолу, и я воздерхуоь от обсукдения этой воэможнооти.

Случай, ногда A есть подколыцо калыца рачиональных чисел, не вкзњвает никаких затруднении. В атом случаө \mathbb{Z}-модулв M назнвается А-локальныя, өсли он додуснает отрустуру A-модуля. (Если такая структура существуөт, то ова единственна; болеө того, произвольнны \mathbb{Z}-гомомордизм таких A-модулей являетоя A-гомоморйзмом.) Дусть X - односвязнын CW-номплекс. Назовем его А-ложальньм, если (i) A-локальнн его гонотопическве грушын $\pi_{r}(X)$ или, что эквивалентно, ($\left.i i\right)$ А-локальни его групшн гомологин $H_{r}(X)$.

TEDPEMA 3.1.1 (Сулливан [149], с. 49). Дуоть $X=$ односвязнин CW-комплеко и A - подкалыцо калыда рапнональвих чисел.
 $i: X \rightarrow Y$ со следувацимй авойствама:
(i) Дространство Y А-докально п отобрахение $i: X \rightarrow Y$ универсально как отобрахение пространства X в А-ловальное пространство.
(ii) Oтобразөвие i локаливует Гомотошические трупшн, т.ө. гомоморфизм

$$
i_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)
$$

ніддуцирует изоморииям

$$
\bar{\pi}_{r}(X) \otimes A \xrightarrow{\underline{m}} \pi_{r}(Y) .
$$

(iii) Oтооражение л локализует групи делочисленных гомо-

$$
i_{*}: H_{n}(X) \rightarrow H_{n}(Y)
$$

$$
H_{n}(X) \otimes A \xrightarrow{\tilde{n}} H_{n}(Y) .
$$

такое проотранотво Y ми будем обозначать через XA п рассматривать его как "простравотво X , локалхзованное введением коэффициентов ия $A^{\prime \prime}$. Напрмиер, $\mathbb{X} \mathbb{Z}[1 / 2]$ означает такур локализацио проотранотва X, прм которон удалнатся связавнне с ним 2 -примарнне проблемы п т.д.

Позвольте мве привөоги пабросок двух предлаженивх Сулливаном мөтодов дяя поотроения пространствя Y. Прөжде всего эаметим, что өали X өсть сфера S^{n}, то рөауньтат конструкпии диктуется усло внем (iii): эа пространотво Y аледует приянть пространство мура
 оледоватөльно пряклеивая клеткп CS n. Скопируөм ату процөдуру и постровм пространство Y, поолөдоватөльно приклеивая конусн нал иространствами Иура. Конечно, чтобн осуцествить такуо мроцедуру, необходвами соответотвувдхе отобрахения, по которвм мы будем приклеивать напв гонусн, но для этого суцествуот индуктиввые предполозения и лелан.

Второй мөтод двоиствен первоку. Заметдм, уто если X - проотранотво Әиленберга - Маклепна тиха (π, n), то реяультат конотрукдия диктуется условкем ($i i$): за прострамство Y следует
 Но для лобого пространства определена баинн Постниксва, т.е. пространотво X мовно прадставить ках итерированное рассноенгө,
 мн снова строва ивдуктивно, последовательао локализуя простракства в бапве Постникова пространстна X. Последняя фраза прөднию. пего абяаща нрп этом тамө доализируөтоя.

В дальнениям вем оудет удобно обозвачать пространство Эдиен-

1) В гл. 2 один рая промелькнуло боляе привнчное обозначение $K(\pi, \pi)$, - прим. перев.

менее удобно月 форме. (Конечно, әтд рөзультати могут пметь п таиие следствия, которне прекрасно формулируются без всякой локализядии.) В качествө примера первого типа мохно привести утверхдөние из книгд Сулливана [149] , с. 63: имеотоя гомотопическия эквивалентности

$$
\begin{aligned}
& \left(F / T_{o p}\right) \mathbb{Z}[1 / 2] \cong B O \mathbb{Z}[1 / 2] \\
& \left(F / T_{o p}\right) \mathbb{Z}_{(2)} \cong \prod_{n} E M\left(\pi_{n}, n\right),
\end{aligned}
$$

где π_{n} - следупиде групин:

$n=0$	1	2	3	4	$\bmod 4$
$\pi_{n}=\mathbb{Z}_{(2)}$	0	$\mathbb{Z} / 2$	0	$\mathbb{Z}_{(2)}$	

Посколыгу с 2-прымарнод точка зренвя пространство $F /$ Тор уотроено не так, как с p-прммарнои при нечөтном p, то вряд ли можно описать $F / T O p$. не разделив проотне числа. Прдменения сформулированного результата лежат в төории многообразин.

Друтои пример - приводимая нихе төорема 6.2.1 (теорема Адамса - Придди) в формулировке пспольяует локализапир п без локализадии была бн вөверна.

Прммер второто типа доставляет приводвмая нине теорема 5.1.I (гипотөза Адамса), первоначально оформулированная бөs помощи локализадии. Ее формулировка с ложалвзадиенй намного удобнеө и лснее. По первоначальному замнсду өтот результат предполагялось пржменить для изученвя \tilde{y}-Гомоморфизма в төориі гомотошии.

Как только воэникает истинная нөобходриость в пекотором матөматичөском языке, он пояіляется. Ещва ли нухно обсухдать его роль как технического средства. (Это висказивание не исилочает, конечно, воэможности ввөдөния төмй или иньми авторами язнка, без которого можно обснтись.) Тем не менее мнө хотелось он проилльст-

Локализадаы мокно использовать для построения конечвых Н-пространств, отличннх от класспческих. Напрамер, мохнс построить конечнын комшлекс X, который является H-пространством п на 2 -прммарнин взгляд похож на $S p(2)$, а ва 3 -примарнии - на $S^{3} \times S^{7}$. Этс пространство X - в ве $S p(2)$ (посмотрите на него сквозь З-примарнне очки), и не $S^{3} \times S^{7}$ (рассмотрите его с ใ-примарной позиции). Это, вероятно, один пэ чистеныих примеров

прмменения так називаемого перемешивания по Забродстоку [156]. Ов чем-то напоминает монотров из средневековнх сказок: голова лыва на теле лошади. Вце более ддткиil опособ sаклочается в том, чтобн взять дви части уивотного п составить их, новернув одву пя частен: возымите льва, отрубите еку голову, а эатем првделаите ее, обратив шастыд вазац. Именно так строится првмер Хилтова Роитберга $[67,68]$; роль льва кграет пространотво $S p(2)$.

В следукием првмере мн отведем раля лвва прост ранству HP^{∞} бесконечномерноку проөктивноиу проотранотву над телом кватөрнио-
 следукцимия тремн свонствамп: (i) $\Omega X \cong S^{3}$. (ii) Для всех
 ва X с HP^{∞}; пространства с өтния свовотваик изучались Рөктором [І2І]. Но третье свойство противоположно атмм двум. Напожним (см., например, § 1.8), что цля лооого отображенияя $f: X \rightarrow B U$
 оражөния f гонөчен, то он равев 1. Это условие означает почти полное отсутотвве конечномерных векторвих расолоөвий пад X, п в этом отнотөнии X совсем не похохе ва HP^{∞}.

Конечно, при пспользовании лопялизачии бивает необходдмо знать кое-что такое, чего я не сказал. Теоремн 3.1 .1 вполне достаточно, пога нас интересует переход от пространотва к өго локализаиии. Но иногпи нухно двигаться в противополонном направлении: зная локалияованнне пространотва, восстановить глобащвуо картину, т.е. сводства псходного, нелокализованного проотранства. Ржскуя показаться поверхностны, я ограничусь пзлохением двух рөзультатов, с которыии, пожалуи, чптатөло лучше ознакомиться, чөм пропустить кх.

Первнй рөзультат полезөв прд объөданении информаиии, получөвнои по двум мномествам простнх чисел. Пуоть A п B - подколыда в колыце радиональних чисел. Тогда манно построить следуиыо діarpanму:

 X комуттативвая диаграмана

являетая кав декартовям, тав и кодекартовым квадратом. Болөе того, есля W- поночвин односвязния CW-комплекс, то отобрахеняе

$$
W \stackrel{\&}{\&} X(A \cap B)
$$

$$
W \rightarrow X(A \cap B) \leadsto X A
$$

Второп резулвтат полезед, өсли мы пожелаем собрать воөдино пнформапио, полученнур отдельно для капдого простого p.
 плепсн, попчем комплагс W ковечен. Тогда отобрахение

$$
W \xrightarrow[f]{A} X
$$

$$
W \xrightarrow{t} X \rightarrow X \mathbb{Z}
$$

(где P 파огаөт все простне числа).
(b) Предполонм теперқ, что гомотопиеские грудми комплекса X конечво порокдевв, по краниен мере в размерностях $\leqslant \operatorname{dimW}$. Пусть даны отобрахения

$$
W \xrightarrow{f_{p}} X \mathbb{Z}_{(p)}
$$

$$
W \xrightarrow{\ell_{p}} X \mathbb{Z}_{(p)} \rightarrow X \mathbb{Q}
$$

лежат в обдем томотопическом класое, не зависяцем от p. Тогда сумествует отобралөния

$$
W \xrightarrow{f} X,
$$

томотопвя f_{p}.
Отраничения в әтих предложениях отбросить нельяя.
Для далвненынего ттевия о локализацидх п ссилок я рекошендовал би $[45,46,64,65,66,97,109]$ (а тавме [$\left.558^{*}\right]$. - Нерев).

Тедерь мн занемся следушен задачен. کмештся два простран-

 долхны оильно различаться в внсние гокотошичокке грушн. Воз-
 $f_{*}: \mathrm{H}_{*}(\mathrm{X} ; \mathrm{A}) \rightarrow \mathrm{H}_{*}(\mathrm{Y} ; \mathrm{A})$ является изоморфмзмом лить

Впорвне о возможности такой сетуацип я узнал вз рао́отн Квиллена [IIB]. В рали Y там внотупает пространство $B U$. पтобн построктв X, вщбецев сначала некоторое простое p. Дусть F_{p} конечное поле ия P элементов, и пусть \vec{F}_{p} - алгебраичеокоя аамевание паля F_{p}. Пусть, далее.

$$
G L\left(\infty, \bar{F}_{p}\right)=U_{n} G L\left(n, \overline{F_{p}}\right)
$$

- бесконечномөрная линенная груша над полем \vec{F}_{p}. Ми будем рас-
 топологй ва ней пет. В качестве пространотва X возымеи класодфицируввее простравство $B G\left[\left(\infty, \bar{F}_{p}\right)\right.$. Это проотравство Эилевберга - Маклейна, у которого фундаменально групой являстся ата громаивая нешөлева груита $G\left[\left(\infty, F_{p}\right)\right.$, а все внотие гомотопи-

$$
f: B G\left[\left(\infty, \bar{F}_{p}\right) \rightarrow B U\right.
$$

$$
f_{c}^{*}: H^{*}\left(B G L\left(\infty, \bar{F}_{p}\right) ; A\right) \leftarrow H^{*}(B U ; A)
$$

1) В некоторих работах пранлт териян квдллеввзаиия. - Допм. перев.
 р-кручения. Но это значшло, что в оотавиеноя части рассукдения Квиллева пространотво $\operatorname{BGL}\left(\infty, \bar{F}_{p}\right)$ могло анукнть вполне прнемленон земеноп пространотва $B U$, поожолыау рассуддение основнвалооь на төораи препятствин. Суцества п цели рассудцения Квиллена я поонусь позднее (см. гл. 5).
 $X=B O\left(\infty, F_{p}\right) \quad$ (p вечетво).

 оражение уде построено, очень хочется доказать, что в когомало-
 груші когомология вирочем, Квицев почти тах п поступи, хотя п одорми атс әлегантнеө.
 вөдливосте әтого результата (хотя это, возмохно, төалогическая

Hyore.

$$
\Sigma_{\infty}=\bigcup_{n} \Sigma_{n}
$$

$$
Y=\Omega^{\infty} \Sigma^{\infty} S^{0}=\lim _{n \rightarrow \infty} \Omega^{n} S^{n}
$$

 то: можво явно указать отобрахение

$$
f: B \Sigma_{\infty} \rightarrow \mathbb{R}^{\infty} \Sigma^{\infty} S^{0}
$$

$$
f_{*}: H_{*}\left(B \Sigma_{\infty} ; A\right) \rightarrow H_{*}\left(\Omega^{\infty} \Sigma^{\infty} S^{0} ; A\right)
$$

 го результага, то (с той ге оговоркои, что п ввше) она, возмокно, тахова: при построөнив модөли пространства $\Omega^{\infty} \Sigma^{\infty} S^{8}$
 тода ви усдолвзуетө тагько пространотва $B \Sigma_{n}$ п иичего болвле. Одваво вто вамечание привопит к новоио вопросу, а именно: в даком смналө ята модель алпронскмирует пространство $\Omega^{\infty} \Sigma^{\infty} S^{0}$?
 рабоге [76] показяли, что ночги лпоое пространотво махно гомоло гпческх аппрокоиворовать пространством Эилөнберга - Маклейна EM ($\tau, 1)$, тде π - некоторая таинственная искусственно поотроөнная групия. Однако нас болине интересуог алучаи, когда такал оптуадия вознакает өстөственным образои.

 X - топологпческое проотранотво, п пустз π - вормальная под-
 вершенва, т.е. $[\pi, \pi]=\pi$. В порвом првмере ма возымем $X=B \Sigma_{\infty}$

$$
i^{*}: H^{*}(X ; A) \leftharpoonup H^{*}\left(X^{+} ; A\right)
$$

 лям.) И все же я не позалер на әто меота.

Идвя закнрчется в том, чгобн сначала, добавпв двуморния клетки, убить трушу π, а аатем, приклеив тресмерғне влетки,
 подрооно әто делается тах. Мокно счигагь, что X еогъ CW-доми-
 нормальнои подгрупле $\pi \subset \pi_{1}(X)$. Возқмем произвольныд өлемент
$x \in \mathbb{K}$. Поскальку помгруппа π совершенна, әтот әлемөнт допу окает представление вида

$$
x=\prod_{i=1}^{m}\left[y_{i}, z_{i}\right],
$$

гдө $y_{i}, \underset{\widetilde{X}^{\prime}}{z^{\prime}} \in \mathbb{\pi}$. Дуоть X^{1} и 1 - одномернне остовн комплөкcob X $=$ X . Tar как отображения

$$
\pi_{1}\left(\tilde{X}^{1}\right) \rightarrow \pi_{1}(\tilde{X})=\pi
$$

әтвмордно, момво подоорать алементн \bar{y}_{i} п \bar{X}_{i} пв $\pi_{1}\left(\tilde{X}^{1}\right)$, которне переходлт при өтом отобрахөнии в y_{i} п z_{i}. Можвно построить новыи комплекс Y, приклеввая к X двумериуо клетку по приглегвавмему отобраменио из класса

$$
p_{*} \prod_{i=1}^{m}\left[\bar{y}_{i}, \bar{z}_{i}\right] .
$$

Накритие \tilde{X} пространства X продолпается до накрития \tilde{Y} пространотва Y. Это пространство Y получается из пространства Y приклевванием двумерных клеток, одва из которых приклөивается по отобрамөнио из пласса

$$
\prod_{i=1}^{m}\left[\bar{y}_{i}, \bar{z}_{i}\right],
$$

а остальние получартся прнмөнением алементов груптн $G=\pi_{1}(X) / \pi$ скольтенуй накрытия.

Мн продөлаөм өту продедуру для множества әлементов $\boldsymbol{x} \in \boldsymbol{\pi}$, пороздакпиих π как нормальнуо пощгрушпу π. Пространства, которжя получатся в результаяе этого, мы снова обозначим чөрез Y п Y. Тогда пространотво Y односвязно, и, согласно теореме Гуревича,

$$
\pi_{2}(\tilde{Y}) \cong H_{2}(\tilde{Y})
$$

Поскольку использованнзе прр построении \bar{Y} приклеивапиие отобрагенля гомологични нуло в Y^{1}, имеөтся разложение

$$
H_{2}(\tilde{Y}) \cong H_{2}(\tilde{X}) \oplus F,
$$

где F - свободныи $\mathbb{Z}[G]$-модуль (от обраяупщих, соответствурмих клеткам, которне мы дебавляем к X). предполакам, чго ооразн элементов $f_{\alpha} \in \pi_{2}\left(Y^{2}\right)$ при изошорфизме Гуревпча составляот $\mathbb{Z}[G]$-базис в F. Мн определяем X^{+}как пространство, палученное из Y приклөиванием трехмерных клеткк ${ }^{\text {по }}$ отобрахөниям из класоов $p_{*} f_{\alpha}$. Накрнвахпее проотранство X^{+}допускает такоө хө прямое описания, как \tilde{Y}. Для кахдого \propto ммеөтся одва трехмервая клөтка, приклеөнная по отобракенир ия класса f_{∞}, а такхе клөтки, полу ченнне из нее преобразованиямии из грумты G. Если воопользоватьоя клеточнвми цопмми, то комплекс относитель. ных депен $\mathrm{C}_{*}\left(\tilde{\mathrm{X}}^{+}, \tilde{\mathrm{X}}\right)$ прингмает вид

$$
\ldots 0 \rightarrow F \xrightarrow{\cong} F \rightarrow 0 \rightarrow 0 .
$$

Таким ооразом, вложенне $\mathrm{C}_{*}(\tilde{\mathrm{X}}) \rightarrow \mathrm{C}_{*}\left(\tilde{\mathrm{X}}^{+}\right)$явияетоя депнон әквивалентностыр нап $\mathbb{Z}[G]^{*}$. Свонства (i) $\left.\boldsymbol{(}\right)$ (ii) доказаны.
 групा алгөбраичөской K -төории. Имөнно, вояымем пространство
 стве π подгруипи в $G L(\infty, R)$, порохиеннур элементарнван мани рицамя. После әтого ме полагаем

$$
K_{i}(R)=\pi_{i}\left((B G L(\infty, R))^{+}\right) .
$$

Конечно, в әтом случае необходппо, чтоби условня (i) (ii) 'бпределяли X^{+}с точностьь до канонщчөскоя гомогопическои аквввалентности. Это доказывается непосредствөнно с помощыл төорив преплтствии. При этом прпменяетоя условия ($\mathrm{i} i$), в котором в ка-
 одного из кандидатов на пространство X^{+}- будем обозвачагъ вх просто через $\pi_{n}\left(\mathrm{X}^{+}\right)$. но во всех интересвих случаях X^{+}лверя ${ }^{+}$ ется H -прострраиством, а следовательво, действие груишн $\pi_{1}\left(\mathrm{X}^{+}\right)$ на $\tau_{n}\left(\mathrm{X}^{+}\right)$тривзально. Вознихает оиумениа, что, может бить, мохно избавиться от суетн п непрвятностей, связанных с локаяь-

К сожалөвир, вапих давных недостаточпо, чтоби ввести на X^{+}
 ность действия $\pi_{1}\left(\mathrm{X}^{+}\right)$на $\pi_{n}\left(\mathrm{X}^{+}\right)$. тем не мевее в неших прамерах кое-что можно проверить недосредствөнно. Расомотоми, напрамер, спучай $X=B \Sigma_{\infty}$. Мн мажем построить гомоморфмзм $\mu: \Sigma_{\infty} \times \Sigma_{\infty} \rightarrow \Sigma_{\infty}, \quad$ заставляя первнй сомвохитөль Σ_{∞}

переставлть нечетнне чксла, а второн сомноштөль Σ_{∞} - чөтние чиола. Конструкция гласспфицирушего пространства преооразует пропзведения в произведения, поэтоиу мы получаем отобрамөнхе

$$
B \mu: B \Sigma_{\infty} \times B \Sigma_{\infty} \rightarrow B \Sigma_{\infty} .
$$

Однако это отобраленве не задает на $X=B \Sigma_{\infty}$ отруктуру H мроотранотва, посколык отмечевная точка не явллется единицен. Но $B \Sigma_{\infty}$ п не может бить H-пространотвом, так ках его фундаментальная грушыа Σ_{∞} неабөлева. Однаво илос-тонструкдрия фувкториальна и сохраняет проиэвөдөния. Поәтому мн полу чаем такхе отобратения

$$
(B \mu)^{+}:\left(B \Sigma_{\infty}\right)^{+} \times\left(B \Sigma_{\infty}\right)^{+} \rightarrow\left(B \Sigma_{\infty}\right)^{+} .
$$

$$
\mu^{\prime}:\left(B \Sigma_{\infty}\right)^{+} \times\left(B \Sigma_{\infty}\right)^{+} \rightarrow\left(B \Sigma_{\infty}\right)^{+},
$$

 кгм образом, деиотвге срушыв $\pi_{1}\left(\left(B \Sigma_{\infty}\right)^{+}\right)$ва $\pi_{n}\left(\left(B^{\prime} \Sigma_{\infty}\right)^{+}\right)$ тривнадвро.
 морфхзм

$$
\mu: G L(\infty, R) \times G L(\infty, R) \rightarrow G L(\infty, R),
$$

sвставляя дервуо матриц деиствовать ва бвзноных векторах с нө-

Абсолштно ясно, как аконочатвзяровагь эту ситуалив. Аксноин доланя состоять в том, что $X=B G_{\infty}$, где $G_{\infty}=\bigcup_{n} G_{n}$ п групmи $_{+} G_{n}$ составлног пермстативнуо датегорио. Тотда пространство

(i) $i_{*}: \pi_{1}(X) \rightarrow \pi_{1}\left(X^{+}\right)-$опвнорфиам с ядром $\pi_{\text {; }}$;

(iv) $i_{*}: H_{*}(X)^{1} \rightarrow H_{*}\left(X^{\eta}\right)$ - пзоморумам (с постояннымй

 чится, если пөрелтд х пределу по коипонентам монопда М. Ми
 мераа.

воли X еоть H -пространство, то умноменге в нем задает умножение в $\pi_{0}(X)$. Назовем прост ранство X грушооодоонык, өсли
 ранотво петель грумоподобво, посколыку $\pi_{0}(S Y) \cong \pi_{1}(Y)$. Нем ве хотөлось он требовать групоподобносте рассиатриваенах нан

(a)

$$
M=\coprod_{n \geqslant 0} B \Sigma_{n} ;
$$

$$
\begin{equation*}
M=\coprod_{n \geq 0} B G[(n, R) \tag{b}
\end{equation*}
$$

$\pi_{0}(M)$ өсть монодд $\{0, I, 2, \ldots\}$ о оончним словением. во

 M_{\propto} соответствуриуо связнур комооненту монопда M_{i} в частно-
 $n=0,1,2, \ldots$.
 M, п пространство петель $\Omega B M$ пространства ВМ. Ииеется отобрахөние

$$
i: M \rightarrow \Omega B M,
$$

причем оно согласовано со структурои H -пространств. Летко оплсать өго воздействие на $\pi_{0}:$ груша $\pi_{0}(\Omega B M)$ является у вивөр-

$$
i_{*}: \pi_{0}(M) \rightarrow \pi_{0}(\Omega B M)
$$

есть уивверсальное отобразөние.
В приведенных прпмерах (a) п $(b) \pi_{0}(M)=\{0,1,2, \ldots\}$: $\pi_{0}(\Omega B M)=\mathbf{Z}$. Однако, өсле ма имеем дело с категориен C конечно породдөнних проектувиах R-модулен и их изомориямов,

$$
\pi_{0}(\Omega B M)=K_{0}(R)
$$

тах пак 凤ВМ - груштоподобноө H -пространотво, всө өго связнне комповентн гомотопически аквввалөитни. Поэтои

$$
\Omega B M \cong \pi_{0}(\Omega B M) \times(\Omega B M)_{0}
$$

Одвако связнне компонөнтн монопда M не обязательно гомотоническе әквивалентны. В правөдөнних выше прпмерах (a) (b)

$$
M_{n}=B \Sigma_{n}, \quad M_{n}=B G L(n, R)
$$

Очевидно, что в өтих прмерах нас интөреоует предел пространств M_{n} пр $n \rightarrow \infty$ т.е. $B \Sigma_{\infty}$ мли $B G L(\infty, R)$.

TEOPFAR 3.2.1 (төорема о групповом пополнении [21, 27, 93,

$$
\lim _{\alpha \in \pi_{0}(M)} H_{*}\left(M_{\alpha}\right) \rightarrow H_{*}\left((\Omega B M)_{0}\right)
$$

өсту изоморфизм; әквивалентная фориллировка:

$$
\mathbb{Z}\left[\pi_{0}(\Omega B M)\right]_{\mathbb{Z}\left[\pi_{0}(M)\right]_{*}} H_{*}(M) \rightarrow H_{*}(\Omega B M)
$$

өсть ияоморыням.
Препде чем объясвять предположөвия іп завлочение этой теоре-

$$
M_{n}=B \Sigma_{n} \text { 旦 } M_{n}=B G L(n, R)
$$

$(\Omega B M)_{0}=\left(B \Sigma_{\infty}\right)^{+},(\Omega B M)_{0}=(B G L(\infty, R))^{+}$.
 доказывает согласованность обахх нодходов к построению высших K-груши $K_{i}(R)$. Пөрвии подход - эчо подход Көиллена чөрөз

ипоо－конструкцио；в өтои случае определение тахово：$K_{i}(R)=$ $=\pi_{i}\left((B G L(\infty, R))^{+}\right)$．Дрр второи подгоде катөгоріи ковеч－ но порохденных R－модуле поменаөтся в некоторур матину；на ви－ ходе получаөтся Ω－спөктр о нулөввм членом $\Omega \mathcal{S} B$ ，п грушы $\mathrm{K}_{i}(R)$ вознаквот как гомотопичөскве групын өтого спектра．Ілос－ конструкиия намного элементарнөе，но она опредөляет толыто гомо－ топичеокй тиІ и ничего болеө；нулөво㤟 хе член 』－одектра палу－ чеется с намного более богатой структурои．

Наброоок доказательотва аледствия 3．2．2．Пусть M_{∞} есть $\lim _{n} M_{n}$ ，т．ө．в рассматриваемвх слу－ чалх $B \Sigma_{\infty}$ илाद $B G L(\infty, \hat{R})$ ．Дегко построить отображенве атого пространства в（вBM），и，согласно наше』 теореме，ато отображение вндуцррует пзоморфизм в сомолотиях．Taк как（תBM） есть H －пространотво，то

$$
\begin{aligned}
\pi_{1}\left((\Omega B M)_{0}\right) & =H_{1}\left((\Omega B M)_{0}\right) \cong H_{1}\left(M_{\infty}\right) \cong \\
& \cong \pi_{1}\left(M_{\infty}\right) /\left[\pi_{1}\left(M_{\infty}\right), \pi_{1}\left(M_{\infty}\right)\right]
\end{aligned}
$$

Следоватөльно，внполнено даложенное више уаловие на фуниементайь нур группу．Поәтоиу ясно，чго пространство（凤ВМ）удовлөтворяет условиям（i），（ $i i i$ ）п（ $i v$ ），характерияупим X^{+}，для $X=M_{\infty}$

С некоторой точки зрения кахется соблазнительннм помияаться усдлить теорелу о групшовом пополненип，распространвв ее заглоче－
 он для（ $\Omega B)_{0}$ огрангтиться проверкой условие（i）п（ii）．Но бөз этого можно обо月тисз，д я не виду особых препиуиеств в тахом уоиленив．
 Рторая часть утверадения поясняет сема сөбя．Кал $\mathbf{Z}\left[\pi_{0}(\Omega B M)\right]$ ，

$$
\mathbb{Z}\left[\pi_{0}(\Omega B M)\right] \otimes H_{*}(M) \rightarrow H_{*}(\Omega B M)
$$

билинейо нап $\mathbb{Z}\left[\mathbb{\pi}_{0}(M)\right]^{\mathbb{I}}$ ．
 Прим．перев．

 $\propto \in \pi_{0}(M)$, saraer отобразенгө

$$
H_{*}\left(M_{\beta}\right) \rightarrow H_{*}\left(M_{\alpha \beta}\right)
$$

Имеөтся диагряма

 ми получим отобразение

$$
\underset{\beta}{\lim } H_{*}\left(M_{\beta}\right) \rightarrow \underset{\beta}{\lim _{\beta}} H_{*}\left((\Omega B M)_{i_{*} \beta}\right) .
$$

 $\mathrm{H}_{*}\left((\Omega \mathrm{BM})_{\rho}\right)$ у предал тагсе является пзоморфдзмом.

(i) Дли лобих \propto, β нв $\tau_{p}(M)$ сумествуот γ, δ ни $\boldsymbol{\pi}_{0}(M)$, тame, पто

$$
\gamma \alpha=\delta \beta .
$$

то для недоторого δ пв $\pi_{0}(\mathcal{M})$

$$
\delta_{\alpha}=\delta_{\beta} .
$$

 вев: в (i) момо повоить $\gamma=\beta, \delta=\alpha$ а а ($i(i) \delta=\gamma$.

 катөгорпи. При дожазагельстве гомотопическои коматативности ис-
 рентность.) Іобтому ма шожем бевбоязненно делать лобоө предпо-
 ті, в частності преддаложвние о комастативности моноида $\pi_{0}(M)$.

Впрочем, условия (i) ($i i$) могут видолнятьая п в отсутствме конаттегивнооті $\pi_{0}(M)$.
 кім $\mathbb{Z}\left[\pi_{0}(M)\right]$ нодулем. Наприер, в сдучае, когда $\pi_{0}(M)=$ $=\{0,1,2, \ldots\}$, последнөө утреркянине означает. что колыдо конечных рядов Дорава $\mathbb{Z}\left[t, t^{-1}\right]$ двллется шиоокмм модулем над
 как н в өтом чаотном алчде: $\mathbb{Z}\left[\pi_{0}(\Omega B M)\right]$ есть прнмой предел свободних модулей. Иs өтах уаловм выгекает у цзоморфизм

Няа потребуется такие следукиее. Дусть $\gamma \in \pi_{0}(M)$. Тогда

$$
\lim _{\alpha} H_{*}\left(M_{\alpha}\right) \rightarrow \lim _{\alpha} H_{*}\left(M_{\alpha}\right)
$$

$$
H_{*}(\Omega B M) \rightarrow H_{*}(\Omega B M)
$$

$$
\Omega B M \rightarrow E B M \rightarrow B M,
$$

 ляетая опектраивной послөдовагеввостьо левих модулед нап H_{*} (尺BM). Яоно таксе, уто ога спектральнал пооледоватаивнооль uneer baд

$$
H_{*}(B M ; S) \Rightarrow H_{*}(p t),
$$

 ивоморфевх $H_{*}(\Omega B M)$.

$$
M \rightarrow E M \rightarrow B M
$$

$$
H_{*}\left(B M ; S^{\prime}\right) \Rightarrow H_{*}(p t) .
$$

 нме последоватөиьности п являвцеоая огобравенгеш левих моддлеt вап $\mathrm{H}_{*}(\mathrm{M})$.
 средством операиин

$$
Z\left[\pi_{0}(\Omega B M)\right] \bullet_{Z\left[x_{0}(M)\right]}
$$

$$
\mathbb{Z}\left[x_{0}(\Omega B M)\right]^{\theta^{2}\left[x_{0}(M)\right]^{H}(M)}
$$

- которая огобразвется в S.

Теперь мы поворачивяем рухалтку теоренн оравнения опектральних последоватөлвостей. Прпмевяя нидукцаш, ирадполохвм, то

$$
\mathbb{Z}\left[\pi_{0}(\Omega B M)\right] \bullet_{Z\left[x_{0}(M)\right]} H_{*}(M) \rightarrow H_{*}(\Omega B M)
$$

 няоморфпзм в размерностлх <ル. Тогда, очөвидно, п

$$
H_{0}\left(B M ; S_{n}^{\prime \prime}\right) \rightarrow H_{0}\left(B M ; S_{n}\right)
$$

$$
\begin{array}{r}
\mathbf{Z} \oplus_{\mathbf{Z}\left[x_{0}(\Omega B M)\right]} \mathbb{Z}\left[\pi_{0}(\Omega B M)\right] \otimes_{\mathbf{Z}\left[x_{0}(M)\right]} H_{n}(M) \rightarrow \\
\rightarrow \mathbb{Z} \oplus_{\mathbb{Z}\left[\pi_{0}(\Omega B M)\right]} H_{n}(\Omega B M)
\end{array}
$$

$$
\lim _{\alpha} H_{n}\left(M_{\alpha}\right) \rightarrow H_{n}\left(\left(\Omega B M_{0}\right)\right.
$$

- гзоморфим. Следоватөльно, теорема верна п в размерноотп n . Набросок доказатепсттв saкончен.

глава 4

TPAHC历EP

S4. $\sqrt{2}$. дведенве

Понятие транофера тесно переплетается с вопросемп, подвятіми в гл. І. Дөло в том, что трансфер позволяет опраделщть в капдон из грулा накоторон теория когомологки, например в

$$
E^{0}(X)=\left[X \cup(p t), \Omega^{\infty} E\right]
$$

дополнвтөльнуо структуру, которая в обием слячае в $[X \cup(p t), Y]$ отсутствует. Эта дополнителввая структура ограмаег от руқту.ру бесконечнократного пространства детеля ма $\Omega^{\circ} \mathrm{E}$.

Капдому, кто изучает алгөораическур топологио, мохно ревомендовать готя он непного оввамометься с понягнем трансфера, по-

 ова погребуется в гл. 5, содермамей применение транофера; ова

$$
p: X^{\ln \rightarrow X} Y
$$

 можно такве понвмать его кав расслоение в синоле Ствнродв, огрян-

Дил того чтоби определіть трансфер

$$
p^{!}: C_{m}(Y) \rightarrow C_{m}(X)
$$

 Полавмм

$$
p^{\prime} f=\sum g \mid p g=f
$$

 Оказиваетоя, что

$$
p^{!} d=d p^{!}
$$

 $h: \sigma^{i-1} \rightarrow X$, ния ноторит $p h=f d_{i}$.
 $A=p^{-1} B \subset X$. Torma $p^{!}$orooparaer $C_{m}(B)=C_{m}(A)$. पanyчается депное огобрагенге

$$
p^{\prime}: C_{m}(Y, B) \rightarrow C_{m}(X, A)
$$

 долучіа дешное огобратение

$$
p^{\prime}: C_{m}(Y, B ; \Lambda) \rightarrow C_{m}(X, A ; \Lambda)
$$

1. уодепное отокражение

$$
p_{1}: C^{m}(Y, B ; \Lambda) \leftarrow C^{m}(X, A ; \Lambda)
$$

черовавние гомоморыама

$$
\begin{aligned}
& p^{\prime}: H_{m}(Y, B ; \Lambda) \longrightarrow H_{m}(X ; A ; \Lambda), \\
& p_{!}: H^{m}(Y, B ; \Lambda) \leftarrow H^{m}(X, A ; \Lambda) .
\end{aligned}
$$

 exurat

$$
p: X, A \rightarrow Y, B .
$$

 позднеө.

 ртоя пространством BS. Нахрнтве n-листво, где $n=|G| /|S|$ -
 arpasaca:

$$
p^{*}: H^{*}(B G ; \Lambda) \rightarrow H^{*}(B S ; \Lambda)
$$

 Пуств $p: X \rightarrow Y \rightarrow$ хонечволиствое вакрнтве. Предположвм (для
 вектордое расслоение вад X. Коиллексное вегторноө расслоөние $p_{!} \xi^{\xi}$ над Y можно построить следупимм образом. В качестве слоя
$\left(p_{!} \zeta\right)_{y}$ в точке $y \in Y$ mis bosumem

$$
\left(p_{!} \xi_{y}=\underset{p x=y}{\oplus} \xi_{x} .\right.
$$

$$
P_{!}: K(X) \rightarrow K(Y)
$$

эго п өогь транофер ягын.

 оганозох воорданат.)

 вопатьоя.
 (1971 г.) [122]. Роуш ковстатдрует, что вакогорне ия его реэультатов палученя незаввспюо Кввлленом. В өго рабоге ми находан вехное геометрическое ваблддевхе. Пуоть $\mathrm{p}: \mathrm{X} \rightarrow \mathrm{Y}$ - лохально
 нолагать, что все ові соотолт пз одного п того хе тусла алемев-

 одехтров

$$
p^{\prime}: \Sigma^{\infty}(Y / B) \rightarrow \Sigma^{\infty}(X / A) .
$$

 точкой: поппростравотво А огакдесталяетап в новур точи, хогорал п считаетоя отиечевной; в частнооті, в аиучае пуотого А подучаем $X / \varnothing=X U(p t)$.

 тpy E , падучаетая огобразение

$$
\begin{aligned}
E^{0}(X, A) & =\left[\Sigma^{\infty}(X / A), E\right] \\
E^{0}(Y, B) & =\left[\Sigma^{\infty}(Y / B), E\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\Sigma^{\infty}(X / A), E\right] \xrightarrow{f}\left[\Sigma^{\infty}(X / A), F\right]} \\
& \left(\varphi^{\prime}\right)^{\bullet} \mid \\
& {\left[\Sigma^{\infty}(Y / B), E\right] \xrightarrow{\mid}\left[p^{\prime}\right)^{\infty}} \\
& {\left[\Sigma^{\infty}(Y / B), F\right]}
\end{aligned}
$$

$$
p^{\prime}: \Sigma^{\infty}(Y / B) \rightarrow \Sigma^{\infty}(X / A)
$$

Геомөтрическал Едел конструкцп 4.I.I доотаточво проота п проврачна. Вначале предполаквм, что X п Y понечномернн, акахем, их размернооть $\leqslant \mathcal{d}$. Постровм пропавөденве $Y \times I^{\wedge}$ пространства Y ша стандаргнын n-мернын куб. Пра достаточно багвшом n вакрытхе

$$
Y \times\left(\operatorname{Int} I^{n}\right)_{1}^{x_{1}} Y
$$

 е вкиадивает X в $Y \times\left(\operatorname{Int} I^{n}\right)$:

 слом нахрыгия; мохво вэлть $n>d$. Далев постровм हубчатур од-

$$
X \xrightarrow{P} X \times I_{Y}^{I^{n}} \xrightarrow{p n_{1}} \xrightarrow[x_{i}]{a^{n}} Y \times I^{n}
$$

Здеоь e^{\prime} өоть вложөнге проот ранотва X в $\mathrm{X} \times \mathrm{I}^{n}$, поотроөнное по
 отвляөт вложения вонөчного числа непересөкапцдоя малөньких ку-
 до форалле

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longmapsto\left(m_{1} x_{1}+c_{1}, m_{2} x_{2}+c_{2}, \ldots, m_{n} x_{n}+c_{n}\right)
$$

(cw. 2n. 25.
 ства $\mathrm{X} \times \mathrm{I}^{n}$ прямо, не пспольауя строжтөльних лөсов в видия влозе-
 во, - аго вдоление $e^{\prime \prime}$.

Прі всвх обстолтальствах, стягтвая в точку допалнөнпе кубчвтод окрестності, а такве поддтлстранство $B \times I^{n}$, ма получеа ого

Это п есть нудное нам отобраление.
По своеи форме вама конструкция вклочает в себл пропявольны вибор, п нөобходамо доказать, что өө рөзультет от өтого вибора не зависет. Предположвм, что конотрукция проделана дватия, о вибором n_{0} у n_{1} в качөотвя n_{1} с вубором e_{0} п. e_{1} в качестве еит.д. Увеличим n_{0} Е n_{i} до векоторого обмего значения $n_{\text {, п }}$ өто n возымем настолько богынвм, насколько потрөбуется. Увеличиван куб $I^{n_{0}}$ до вуоа I^{n} отводл коорпинатам $x_{n_{0}+1}, \ldots, x_{n}$

 трудно. поот ронть диаграмеу

которая оогласуөтся с данныан ддаграниами на концах $t=0 _t=1$ нитервала временг I. Таквк ооразом, подучватая огобраление

$$
\frac{I \times \Sigma^{n}(Y / B)}{I \times p t} \rightarrow \frac{I \times \Sigma^{n}(X / A)}{I \times p t}
$$

Наконед, еслп X в Y - бөсконечномерние, комплеусн, мал долхны будем. проводить построение по остоввм X^{α} п Y^{α}; прм увелмл ченви d мо будөм соответствөвно увеличввать n, причем необходмм позвботаться, чтобы то, что мн постродм для $d+1$, било согласовано о төм, что мн постронле лля d. หмевно эдесь нам потребуөтся предөльны及 переход, а для нөго нөооходниы спектры'
$\Sigma^{\infty}(X / A) \quad \Sigma^{\infty}(Y / B)$.

$$
p^{\prime}: \Sigma^{\infty}(Y / B) \rightarrow \Sigma^{\infty}(X / A)
$$

 сической конструкциец Эюкана, с вюторой мн начали нап рассказ.
 предкохөние 2.1. с. 983.)

Теория Роуша поэволяет таске устаноднть связь мехду транофөром п структурніми отображенияаи тина, рассмотревноло в гл. 2.

Очевидно, что отоорахөния \boldsymbol{p}^{\prime} пе хонструкдии 4.1.1 долхны
 вспоиндм $о$ них в \& 4.3.

Теперь я вставло замечанме, отвосящеөся \boldsymbol{x} намей основной темө. Мы аидим, что для того, чтобн контравариантны функтор k (X)
 вовалі гранорери

$$
p_{!}: k(X) \rightarrow k(Y)
$$

 трансферы. Одно время оила дане гмиотеза (см. [14I], с. 50), чге судөствованиө трансфера являетая достагочния Јсловием. Иначе го-

 - $1977 \mathrm{r} .\left(\mathrm{cm} .\left[165^{*}\right]\right.$. - Iерев.).

 о дем эвалі лишь те, колу оченъ повезло.

Рассаотрим

$$
\mathbb{R}^{\infty} \Sigma^{\infty} S^{0}=\lim _{n \rightarrow \infty} \mathbb{R}^{n} S^{n}
$$

Возымем одву вя колшонени өтого пространотва, акахем ($\left.\Omega^{\infty} \Sigma^{\infty} S^{0}\right)^{0}$. Локализуем ее по дводке; получим, окажем, $\left(\Omega^{\infty} \Sigma^{\infty} S^{0}\right)_{\text {(l) }}^{0}$. Ока знвается, что это проотранотво являетои прявым сокноителем про странства $\mathbb{R}^{\infty} \Sigma^{\infty} \mathbb{R} P^{\infty}$. Балев точно,

$$
\Omega^{\infty} \Sigma^{\infty} \mathbb{R} P^{\infty}=\left(\Omega^{\infty} \Sigma^{\infty} S^{0}\right)_{(2)}^{0} \times(?)
$$

 төль. В частноотн, стабилвне гомотопиеокия групи пространства $\mathbb{R P}^{\infty}$ өтиморфво отобракаштся на 2 -примарнне коипонентн отабильных гомотопических групи офер в полозительнах размөрноотях,
 дуцирован хорошо извеотным отобрахеннем огөктров. Однако встреч-

 отобрахөннем проотранств. Поэтоп өтот результат ннтересен п о методологпческои точкв зреная, поскальку пспользование "нестабпльной" геомөтрии окөзнваетая суцественним длн доказатальства "стабильного" результата.

Имеется аналогичпй результат п для проотих $p \neq 2$. Мохно sеменить $\mathbb{R} P^{\infty}$ проотранством $B \mathbb{Z}_{p}$, однако это веоправданно больмоө пространотво. Кохно замөнить $\mathbb{R} P^{\infty}$ мроочранством $B \Sigma_{p}$, но
 отранство ($\left.\mathrm{B} \dot{\Sigma}_{\rho}\right)_{\text {pos }}{ }^{+}$

Сдедупиая работа, о которой пойдет реть, - 970 работа Беккера п Готтлид 1975 г. [33]. Беккер п Готтлиб нмели дело с расслоө-
 расалоөния $p: E \rightarrow B$, у которого алоем F является компиаттое глаикоө многообразие, структурной грумой - компахтная групиа
 лехс. Әга ситуииия пораззтельно напоминает транофер Борммана (h) (ом. [35], о. 45-48). Далее Беккер п Готтлио строят отоораxemse

$$
p^{\prime}: \Sigma^{\infty}(B / \phi) \rightarrow \Sigma^{\infty}(E / \phi),
$$

которое махво иопользовать дли поотроения траноферов. Земотти,
 хения

$$
\left(p^{!}\right)^{*}: H^{n}(E) \rightarrow H^{n}(B) .
$$

 деле в обичпнх когомалогиях конструкшия Беккөра - Готтлиба приа воднт в результатам, которне можно объвснить в ранеө извеотиих терминах. Для өтого мене дупво коө-чго папоинить. Дуоть \mathbf{F} - мио-

$$
H^{n}(E) \rightarrow H^{n-\alpha}\left(B ; H^{\alpha}(F)\right) ;
$$

мспользуя фундаментальнын класо алоя, мн можем прөвратить өго - отобразения

$$
H^{n}(E) \rightarrow H^{n-\alpha}(B) .
$$

 пооколыу әто назввине, оправдано в чвотном олучае вогонолог" де Рама. Тогда в обичных когомалогиях хонотрукпия Беквере - Гот-
 ного раослоөния вдолі слоөв п (ii) митегрирования по слоям.

Этот рөяультат позволил Бекверу п Готтлвбу перенести ва, груп-

 тате, подученнок више для вовөчных ррушा.
 N - нормалвяатор максщнального тора в G, а $E^{*}=$ промзволвіая оообщөвная төория когомологии. Тогда отоорахение

$$
E^{*}(B G) \rightarrow E^{*}(B N)
$$

 прямое слагавмое.
 рассन0enie

$$
G / N \longrightarrow B N \xrightarrow{P} B G .
$$

 sием, хак нам п нухно; прп атом характөристика эйлера - Пуянкаре $\chi(G / N)$ равна I. в обичных когомологмях этого онло он достагочно, чгоби композщция

$$
H^{*}(B G) \xrightarrow{p^{*}} H^{*}(B N) \xrightarrow{I_{n}} H^{*}(B G)
$$

равнялась І. В обобщөнных когомологилх ме не мохем доказать, что ята компоэидия өсть I. Ожнако она индуцируется отоорахөнием спектров, окахем

$$
f: \Sigma^{\infty}(B G / \phi) \rightarrow \Sigma^{\infty}(B G / \varnothing),
$$

 цогомалогиях; следовательно, f лвляетсп гомотопической өквивалөнтностьр, что и дает нухное расщөплөкие.

Теперь мне нухно пояснить, почему п вазвал 4.1.2 иредтеоремоІ. Приведөнный набросок доказательства неполон, посколкку, как п сказал, Беккөр и Готчлио прөдпочиташт строить трансфер только в случеө, когда базои расслоөния яввнется конетий комплехс, а иространство $B G$ не является конечны коиплексои. Поатому Беккар

 4.ई. 2 махно вивестп п па результата Бөккера п Готтпиба, поо з

одвано удооиөе всего ароддиавать розуньтатн, өсии оит арод-

 от өтого ограничөния јдастся избавиться．И оыло ощ велательно оделать это ${ }^{\text {I }}$ ．Волі өто так，то утверрдение 4.1 .2 являетоя насто лцей төорөмои，доказьваемои по привөдөнно ехеме．

Во вояком олучае，мы заклрчаем，что в прзнциие＇транофер Беккера－Готтлиба позваляөт получать рөзультатя о группах ли， сравнимне о темп，которнө классическлй транофер дает для конеч－ hax rpyini．

В дальненем транофер Беккера－Готтлиба бил обобщөн，а не－ обходимня уаловия для өго существования осляолени［ЗІ］．

Хоромөө краткоө ияложөние траисфера Бекrөра－Готтлиба п өго приловөнии имөөтся в［79］．

\＆4．2．Трансоер п структурння отобрахения

В этом параграфө мн вначале установим свнзь трансфера́ с вве－ деннымд в гя． 2 структурными отобрахөниями．Ватөм мы содоотавам это О подходом，описаиннм в § 4．I，точнее с конструкцией 4．1．1． Наконеп，в заклрчения мы посмотрим，как некоторне хорошне свой－ ствв транофера соответствуот хоровим свойствем структурнах ото－ орахенй．

Пөрвая нема дель－уотановить взампно однозначное соотвөтст－ вие мехду трансфөрөмпи и гомотошическими классами отруктурних отобрахенй ．Конөчно，сначала необходимо все өто определкть．

Транофер－это то，что ставит в соответстыие каддоиу n－лист－ нопу накрытив $p: X \rightarrow A$ некоторуо функиио

$$
P_{!}:[X, V] \rightarrow[A, W] .
$$

Это $几$ долхно онть зафиксировано：всө рассматриваемвня траноферы опредөленн пля n－листннх накрытия．Пространства V п W такхя вефикоированн．Мн рассматриваем $[, V]$ как аналог одной теории когоналогй（илд，вернеө，одной грушия когомалогин），а［，W］－ как аналог другои теории．$[X, V]$－множество гомототи ．өеках класоов отоорамения ия X в．V ，где ни отоорамения，ни гомото мии не обязанн сохранять отмеченнне точкм．То ке относится пи ［A，W］．（以н внбралп такон додход，поскольку нам делатөльно грименить функтор $[, V]$ непосредственно $к$ наиему накрывавиему

[^1] W . котория могут п ве совпадать, - не просто ненудноө обобцө-

 отобрамения. Отобравением одного $几$-листного накрития в другоө називается декартов хвядрат

 p на слой накрытея q. Мн трөбуем, чтобн для каидого тахого

Әго завөриает вапе опрөделение травсфера.

$$
\theta:\left(E \Sigma_{n} \times V^{n}\right) \times_{\Sigma_{n}}(p t) \rightarrow W
$$

Я пропу промения аа чрезмернзе подробвостх, одвако все 970 мня понадобится. Групша Σ_{n} - әто грлпиа перестановок n әлементов $\{1,2, \ldots, n\}$. Пространотво $E \Sigma_{n}$ өсть тотальное иространство ункверсалиного Σ_{n}-раоалоөивя: таква образом, ово стяттвяөоо. п груша Σ_{n} овободво денствует ва нем страва. Грумша Σ_{n}

 G опредаляөтся гак факторпрост ранотво пропзведөния $X \times Y$ по

$$
(x g, y) \propto(x, g y)
$$

 ложненньм обозначением проотранствя X / G; пока это дедствитель

 не будет петрмвиальнда.
 sa у этом параграфе, но он лөгко момет оыть согласован с подхо-

 правилу $g y=y g^{-t}$. Исдальзуя ото замечанве соответотвупиам 00разом, на помем sаменіть проотранство

$$
\left(E \Sigma_{n} \times V^{n}\right) \times_{\Sigma_{n}}(p t)
$$

проот ранотвамат

$$
E \Sigma_{n} x_{\Sigma_{n}} V^{n}, \quad V^{n} \times \Sigma_{n} E \Sigma_{n}
$$

 турные огоорахения клвосидиииуотся отвосаталино гомотоши, ира
 чежнме точкк.

Для нао педостаточно простои констатация сущестчования вяеишно однозначного соответотвия между трансфераип п отруктурынам

 фер.
 ить главное расслоение, ассоцированное о $п$-листввм вахрыгием $p: X \rightarrow A$. определм подиозество $\bar{X} \subset X^{n}$ цах мнозество фувг-

$$
\underline{x}:\{1,2, \ldots, n\} \rightarrow X,
$$

аядапихх взапмно однозначное соответствие мнохества $\{1,2, \ldots, \pi\}$ с недоторым слоем иакрнтия p. Груииа Σ_{n} дед̈ствует справа на X. умеөтся очевидное отахдеотвление

$$
\bar{X} x_{\Sigma_{n}}(p t) \cong A
$$

$$
\theta:\left(E \Sigma_{n} \times V^{n}\right) x_{\Sigma_{n}}(p t) \rightarrow W \text {, }
$$

 ку $E \Sigma_{n}$ универсально, момно поотропть Σ_{n}-отобраление

$$
\lambda: \bar{X} \rightarrow E \Sigma_{n}^{n} .
$$

Мовво данөе поотролти Σ_{n}-отоорагеніне

$$
\mu: \bar{X} \rightarrow V^{n}
$$

$$
\bar{X} \xrightarrow{i} X^{n} \xrightarrow{\mu^{n}} V^{n}
$$

 Σ_{n}-orodpazerire

$$
X \xrightarrow{(\lambda, \mu)} E \Sigma_{n} \times V^{n}
$$

$$
A \cong \bar{X} \times E_{E_{n}}(p t) \xrightarrow{(\lambda, \mu) x_{\Sigma_{n}}^{1}}\left(E \Sigma_{n} \times V^{n}\right) x_{\Sigma_{n}}(p t) \xrightarrow{d} W .
$$

$$
p_{!}:[X, V] \rightarrow[A, W]
$$

коррегтно определена. Әто нөтрудно. Лооне два отобразения λ Σ_{n}-гомотоиғн, поовалык $E \Sigma_{n}$ унвверсально; анелогично, прд яемене отобратения $И$ гомототвыя отобратением отобраменне μ

 ніе трансфера $p_{\text {! }}$ по отруктурнолу отобраленало θ.

Некоторме автори, вероятно, палагарт, тто это построөнин транофера p_{1} тробуөт вуоора представителеД классов омехнооти. воли кто-нибудь все өще думает, что предстапители классов смекности позволяот обналать отооразенве

$$
X \xrightarrow{i} X^{n} \xrightarrow{u^{n}} V^{n}
$$

 денге по пОВОду өГО вкусов.

 orpycryparix oroopaxemin

$$
\theta:\left(E \Sigma_{n} \times V^{n}\right) x_{\Sigma_{n}}(p t) \rightarrow W
$$

п траноферамп опиояниого ттиа.

 cateropiz © is obrekra $(p: X \rightarrow A ; u)$ y oorexy $(q: Y \rightarrow B ; v)$

 ст рукциі фпналвного обвекта будөт ввдно, уго

$$
B=\left(E \Sigma_{n} \times V^{n}\right) \times \Sigma_{n}(p t),
$$

 возначного соответствия. Действтельно, пүоть

 mho bumanththan coothomerme

$$
p_{1} u=\theta \propto .
$$

Пренде чем продалиать, веролтво, полезно посмотрети ша омлев
 saданноб $\boldsymbol{\sim}$

$$
\begin{aligned}
& E \times{ }_{\Sigma_{n}}\{1,2, \ldots, n\} \\
& \mid 1 n_{\Sigma_{n}}{ }^{e} \\
& E \times{ }_{\Sigma_{n}}(p t)
\end{aligned}
$$

 отанто童, уго оозлсняет обовначения C).

Әуг две процедури взаионо ооратны. Особевно оупеотвенно дия
 perncy:

$$
\begin{aligned}
& \overline{\mathrm{X}} \times_{\Sigma_{n}}[1,2, \ldots, n\} \\
& { }_{L_{n}}\left\langle x_{\Sigma_{n}}{ }^{1}\right. \\
& \mathrm{X}^{n}{ }_{\Sigma_{n}}\{1,2, \ldots, n\} \xrightarrow{\text { or }} \mathrm{X}
\end{aligned}
$$

$$
e v(\underline{x}, i)=\underline{x}(i)
$$

$$
\bar{\xi}: \bar{X} \rightarrow \bar{Y}
$$

 motomryeornm Rraccam.

Продолши поотроение обещанного финанвного обвекта. Входншее
 рлалит расолоөнием $E \Sigma_{n} \times V^{\mu}$; samпем это в явном вдде:

$$
\begin{aligned}
& Y=\left(E \Sigma_{n} \times V^{n}\right) x_{\Sigma_{n}}\{1,2 ; \ldots, \pi\} \\
& B=\left(E \Sigma_{n} \times V^{n}\right){ }_{\Sigma_{n}}(p t)
\end{aligned}
$$

Oгобрагения $v: Y \rightarrow V$ даино прадотавлятвся композпиией

$$
\begin{aligned}
Y=\left(E \Sigma_{n} \times V^{n}\right) \times \Sigma_{\Sigma_{n}}[1,2, \ldots, n\} \\
\left.\right|_{\pi_{2} \Sigma_{n}} ^{1} \\
V_{\Sigma_{n}}[1,2, \ldots, n\} \xrightarrow{\bullet} V
\end{aligned}
$$

$$
\pi_{2}: E \Sigma_{n} \times V^{n} \rightarrow V^{n}
$$

 оражение вичнолеқпия.

$$
X \xrightarrow{(\lambda, \mu)} E \Sigma_{n} \times V^{n}
$$

где $\zeta=' \zeta(\lambda, \mu), \alpha=\alpha(\lambda, \mu)$.
лгмии 4.2.2. (i) Для кахдого отоорахения $u: \bar{X} \rightarrow V$ форпула $\mu=\mu^{n} i$ вадает едмвотвеввоө Σ_{i} оотоорахөнве $\mu: X \rightarrow V^{n}$,

 $(p: X \rightarrow A ; u)$ в oosens $(q: Y \rightarrow B ; v)$.

 нехpurnit, oxazem

日月

$$
\lambda: \cdot I \times \bar{X} \rightarrow E \Sigma_{n} .
$$

 Hes

$$
\mu: I \times \bar{X} \rightarrow V^{n} .
$$

Дил өтого доотаточно восдоввяоватьоя ттверадөнием (i), ввлв в. начестве 4 гомотопты

$$
I \times X \rightarrow V
$$

Согласно сказанноко выне, теорема 4.2.1 иөпосредственно витөкает из лемми 4.2.2.

Кан п Придпи вспользовали наяваиия "прөдтрансфөр" в частнои алучао, когда структурное отобрамөние θ является тохдественном

огобрагөнвем 1 п, оледоватөльно,

$$
W=\left(E \Sigma_{n} \times V^{n}\right) x_{\Sigma_{n}}(p t)
$$

Иа прөдвдущего очевздно, что прөдтранофер являетоя транофером,
 что боивме о нем огазать нечего.
 orpyeryphory otoopameнид

$$
\left(E \Sigma_{n} \times V^{n}\right) \dot{x}_{\Sigma_{n}}(p t) \rightarrow V .
$$

котороө определено для лобого бөсконечнократного проотранства дөтөлв $V=$ аट V, то получится транофер, оовпадапиии с трансферои ия конот рукиие 4.I.I.
 предломеняе 1.7).

чтобм уотановить трөбуөмоя совпадөите, вноерем в качеотве пространства $E \Sigma_{n}$ пространство $P_{1, \eta} \quad$ п-наборов кубиков в

 sора, не өоть $E \Sigma_{n}$, тах что соответствуицео доказатөльотво дал-
 годе х пределу, аналогичнур проверкө гs 8 4.I.)

 пабор дуопков $y_{1}, y_{2}, \ldots, y_{n}$ в стандартвои кубе I, тасте saданинг в определөвиом порядке. Возникает отобрахензе

$$
\lambda: \bar{X} \rightarrow P_{1, i}
$$

 ooopor, Σ_{n}-отоорагение

$$
\lambda: \bar{X} \rightarrow P_{1, n}
$$

 определения показивает, что конструкция \& 1.1 घ 4.2 соответ-

В нехоторих сутуаддях структурноө отобрадение

$$
\left(E \Sigma_{n} \times V^{n}\right) x_{\Sigma_{n}}(p t) \longrightarrow V
$$

удаөтся подучить праио, не ооратаясь у теореме 4.2.3. Вот просто甘 првшер. Дусть V - пространство эиленбергя - Макле甘на типа (τ, m); тогда оно является бесконечнократным пространством нетедь (ом. гх. І), но, равным образом, можно построить п струхтурное отобратөние. Поскольку гомотопччеокие классн отобрахөнй в V находятоя во взавмно однозначнои соответствви с классаих когомологин, достаточно рассмотреть группу когомологии
 постушть пначе: построичь модель пространства V , являопидоя фактическп конаттативноД грушои, п рассмотреть отоорахение

$$
\left(E \Sigma_{n} \times V^{n}\right) \times \Sigma_{n}(p t) \rightarrow V,
$$

переводямеө (e, v_{1}, \ldots, v_{n}) в произведөние $v_{1} v_{2} \ldots v_{n}$.
Дахе в том случае, когда наши структурнне отобрахения нө промсходят вз теорени 4.2.3, читатөль может надеятьоя үвидегь,
 отруктурнах огобрахенй. Эта надөмда дпалне оправдана. Рассмотрмм, напринер, олучая, когда V пWявляотоя H -пространствами, а схедовательно, $[, V]_{\text {п }}[, W]$ - функтори оо звачениями в категории. грушы. Тогпа мохно потребовать, чтоби трансфер, соответствуцшй огруктурноку отображенвр θ, оив гомоморфизмом грушा. Яоно, тто ато условие доднно формудцроваться в виде гомотопическод моноттативности векоторой дхаграман, содеркаме\# θ п двв Нструктури $\mu_{\mathrm{y}}, \mu_{\mathrm{w}}$, п ясно, кав получить ого уодовне. Һнодтся раялохөвия

$$
\begin{aligned}
{[X, V \times V] } & =[X, V] \times[X, V] \\
{[A, W \times W] } & =[A, W] \times[A, W]
\end{aligned}
$$

 ствует трансфер.

$$
p_{!} \times p_{1}:[X, V] \times[X, V] \rightarrow[A, W] \times[A, W] .
$$

$Э$ Это отруктурное отобрахение Θ долвно бить отобрагенлем в $W \times W$, а погоиу нухно задать две его комшоненту. Первуо кои-

$$
\begin{aligned}
& \left(E \Sigma_{n} \times\left(V \times V V^{n}\right) \times \Sigma_{n}(p t)\right. \\
& \mid\left(1 \times x_{1}^{n}\right) \times \Sigma_{n}^{1} \\
& \left(E \Sigma_{n} \times V^{n}\right) \times \Sigma_{n}(p t) \xrightarrow{\theta} \mathrm{W}
\end{aligned}
$$

$$
\begin{aligned}
& \left(E \Sigma_{n} \times(V \times V)^{n}\right) \times \Sigma_{n}(p t) \\
& \mid\left(1 \times x_{2}^{n}\right) \times \Sigma_{n} 1
\end{aligned}\left(E \Sigma_{n} \times V^{n}\right) \times \Sigma_{\Sigma_{n}}(p t) \xrightarrow{\theta} W
$$

$$
\begin{aligned}
& \left(E \Sigma_{n} \times(V \times V)^{n}\right) \times \Sigma_{n}(p t) \xrightarrow{\theta} W \times W \\
& \mid\left(1 \times \mu_{v}^{n}\right) \times \Sigma_{n}^{1} \\
& \left(E \Sigma_{n} \times V^{n}\right) \times\left.\Sigma_{n}(p t) \longrightarrow \quad\right|_{W}
\end{aligned}
$$

 змा"as

$$
X \xrightarrow{\mathrm{R}} Y \xrightarrow{q} Z
$$

 равенство

$$
(p q)_{!}=p_{!} q_{!}
$$

 крытпи.

 транофер похучается па бесконечнократных проотранств петељ, тах что, о одно оторомм, трансфоры обмадалт всоми нухнна пам хо-

 Baxiatroosin.

 риі бөохонечнократних пространств петель. Разнхшр лишь в том,

 данних конструкиии - бөсконечнократного .пространства петель к 00 результату - трансферу.

24.3. Aoprarbsae cBolloren sparctopa

В агом параграфе транофер воегда будет додомагъод в омлоде

$$
p: X, A \rightarrow Y, B
$$

 дводе мах похучаем огобрахения огектров

$$
p^{!}: \Sigma^{\infty}(Y / B) \rightarrow \Sigma^{\infty}(X / A)
$$

 Заворпается етот параграФ разбором своего рода рабочего прпора,
 фере могхо он бнгя усдолвзовано.

 накрытве p нвдуцироваво накрытием p^{\prime}, т.е. द взаимно одно-
 Тогда (гомотошчески) коммутативна следуопая дваграмма:

$$
\begin{gather*}
\Sigma^{\infty}(X / A) \xrightarrow{\Sigma^{\infty} \xi} \Sigma^{\infty}\left(X^{\prime} / A^{\prime}\right) \\
p^{\prime} \mid \tag{4.3.1}\\
\Sigma^{\infty}(Y / B) \xrightarrow{\Sigma^{\infty} \eta} \sum^{\infty}\left(\varphi^{\prime}\right)! \\
\left.Y^{\prime} / B^{\prime}\right)
\end{gather*}
$$

Догазатедвотво ядементарво.

 $X \rightarrow X / A$ тахуо поодөдовагепность:

$$
X \rightarrow X / A \xrightarrow{j}(X / A) \cup C X \propto \Sigma A .
$$

(4.3.2)

$$
\begin{aligned}
& \Sigma^{\infty}(\mathrm{X} / \mathrm{A}) \xrightarrow{\Sigma^{\infty} j} \Sigma^{\infty} \Sigma \mathrm{A} \propto \Sigma \Sigma^{\infty} \mathrm{A} \\
& \Sigma^{\infty}(Y / B) \xrightarrow{p^{\prime} \mid} \stackrel{\Sigma_{j}^{\infty}}{\mid \Sigma \Sigma\left(q^{\prime}\right)} \Sigma^{\infty} \Sigma B \approx \Sigma \Sigma^{\infty} B
\end{aligned}
$$

 последоватедвооть

$$
X, A \xrightarrow{p} Y, B \xrightarrow{q} Z, C .
$$

 ололап п $A=p^{-1} B, \quad B^{q}=q^{-1} C$. Тогда

$$
\begin{equation*}
(q p)^{!}=p^{\prime} q^{!}: \Sigma^{\infty}(X / A)-\Sigma^{\infty}(Z / C) \tag{4.3.3}
\end{equation*}
$$

Дохазательотво мдементарно.
Категорпчно ваотрсенный чттатедь, возмохно, уривхен, поче-

$$
(Y, B)=\coprod_{i \in I}\left(Y_{i}, B_{i}\right),
$$

$$
(X, A)=\coprod_{i \in y}\left(Y_{i}, B_{i}\right) .
$$

$$
p^{\prime}: V_{i \in I} \Sigma^{\infty}\left(Y_{i} / B_{i}\right) \longrightarrow \underset{i \in \mathcal{F}}{V} \Sigma^{\infty}\left(Y_{i} / B_{i}\right)
$$

 mapari $i \neq j$.
(Это утворидение очевидно.)
Стандартноо приюнение утворидения (4.3.4) овявано о пвучо-
 десвязное ооводиненге пвух подкомиексов X^{\prime} " $\mathrm{X}^{\prime \prime}$, 18 моторых X^{\prime} явняется n^{\prime}-дпочвм нахрытием иад Y, а $X^{\prime \prime}$ есть $n^{\prime \prime}$-дстное вахрытне вад Y. Првменои (4.3.4) х вмахениям

$$
X^{\prime} \rightarrow X, X^{\prime \prime} \rightarrow X
$$

$$
\begin{gathered}
p^{\prime}: \Sigma^{\infty}(X / A)-\Sigma^{\infty}(Y / B) \\
\Sigma^{\infty}\left(X^{\prime} / A^{\prime}\right) \vee \Sigma^{\infty}\left(X^{\prime \prime} / A^{\prime \prime}\right)
\end{gathered}
$$

авия

$$
\begin{aligned}
& p^{\prime}: X^{\prime}, A^{\prime} \longrightarrow Y^{\prime}, B^{\prime} \\
& p^{\prime \prime}: X^{\prime \prime}, A^{\prime \prime} \longrightarrow Y^{\prime \prime}, B^{\prime \prime}
\end{aligned}
$$

$$
p^{\prime} \times p^{\prime \prime}: X^{\prime} \times X^{\prime \prime} \longrightarrow Y^{\prime} \times Y^{\prime \prime}
$$

$$
X^{\prime} \times X^{\prime \prime} /\left(A^{\prime} \times X^{\prime \prime} \cup X^{\prime} \times A^{\prime \prime}\right), \quad Y^{\prime} \times Y^{\prime \prime} /\left(B^{\prime} \times Y^{\prime \prime} \cup Y^{\prime} \times B^{\prime \prime}\right)
$$

момво отохдествіть о

$$
\left(X^{\prime} / A^{\prime}\right) \wedge\left(X^{\prime \prime} / A^{\prime \prime}\right), \quad\left(Y^{\prime} / B^{\prime}\right) \wedge\left(Y^{\prime \prime} / B^{\prime \prime}\right)
$$

(4.3.6). Oтобрахона о

$$
\left(p^{\prime} \times p^{\prime \prime}\right)^{\prime}: \Sigma^{\infty}\left(\left(X^{\prime} / A^{\prime}\right) \wedge\left(X^{\prime \prime} / A^{\prime \prime}\right)\right) \leftarrow \Sigma^{\infty}\left(\left(Y^{\prime} / B^{\prime}\right) \wedge\left(Y^{\prime \prime} / B^{\prime \prime}\right)\right)
$$

дожет оить огоддествдено о $\left(p^{\prime}\right)^{!} \wedge\left(p^{\prime \prime}\right)$!.

 хо одно гя проогранств $Y^{\prime}, Y^{\prime \prime}$ явлнетая хове чномерным. В бодое

 денмяд в хогомологиях, мы ирменим (4.3.5) в сочетании о (4.3.1), вамрммер, х дватрамано

$$
p^{\prime}: E^{*}(X, A) \longrightarrow E^{*}(Y, B)
$$

 дить за его раощеплендем на компонентн связнооту. Му проилиоотрируем әтот подход на одном прамере.

 повох ρ, сохраняоинах мнохество мар (1,2) $(3,4), \ldots$, ($2 n-1,2 n$). (ρ мохет переотавиять шары в менять местами эдемен-

$$
1 \rightarrow\left(\Sigma_{2}\right)^{n} \rightarrow \Sigma_{2} \int \Sigma_{n} \rightarrow \Sigma_{n} \rightarrow 1
$$

 zypmoll dimarpamat？

$$
\begin{gathered}
? \sim H^{*}\left(B\left(\Sigma_{2} \int \Sigma_{m+n}\right)\right) \\
H^{*}\left(B\left(\Sigma_{2 m} \times \Sigma_{2 n}\right)\right) \sim H^{*}\left(B\left(\Sigma_{2(m+n)}\right)\right)
\end{gathered}
$$

 $B \Sigma_{n}$（рдо τ будет равно $2\left(m^{\prime}+n\right)$ ）．Рассмотрмм проотравотво воо－工昭盛

$$
f:\{1,2, \ldots, n\} \longrightarrow \mathbb{R}^{\infty} .
$$

Эхошепт этого проотранства мохно рассматрмвать хак набор пв r

 Σ_{n}（прр помопр комоозимон

$$
\left.\boldsymbol{R}^{\infty} \underset{ }{\&}\{1,2, \ldots, r\} \xrightarrow{p}\{1,2, \ldots, r\}\right) .
$$

 чениых）наборов уз r точек в \mathbb{R}^{∞} ．Нас будет питоресовауь оху－
 равочва иростравотва $B \Sigma_{n}$ ．

 extrpozarie

$$
B\left(\Sigma_{2 m} \times \Sigma_{2 n}\right) \longrightarrow B\left(\Sigma_{2(m+n)}\right)
$$

 раем номегкх．
 $B\left(\Sigma_{2} \int \Sigma_{m+n}\right)$ ，расомотран пространство наборов ия r точед в R^{∞} ，

$$
B\left(\Sigma_{2 m} \times \Sigma_{2 n}\right) \longrightarrow B\left(\Sigma_{2} \int \Sigma_{m+n}\right)
$$

 ноло смводод α равно $2 m$, а чнодо спводов 6 равно $2 n$:

$$
B\left(\left(\Sigma_{q} \int \Sigma_{m-q}\right) \times \Sigma_{q} \times\left(\Sigma_{2} \int \Sigma_{n-q}\right)\right) .
$$

 груша

$$
\underset{q}{\oplus} H^{*}\left(B\left(\left(\Sigma_{2} \int \Sigma_{m-q}\right) \times \Sigma_{q} \times\left(\Sigma_{2} \int \Sigma_{n-q}\right)\right)\right),
$$

 вет в приморе 4.3.6.

 ovirx (explefive deleted) ${ }^{\text {I) }}$ вempt.

 форй

 в одом дом, телст пестрел вотавамп: expletive deleted. Ipranper.
2) an. [163*]. - Zpinarieper.

 mir romomideama:

$$
K_{0}(X) \rightarrow K_{P L}(X) \rightarrow K_{T o p}(X) \rightarrow K_{F}(X)
$$

 xame!

$$
\begin{array}{rlllllllll}
r=0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \bmod 8 \\
\pi_{i}(B O) & =2 & 2 / 2 & 2 / 2 & 0 & Z & 0 & 0 & 0 & Z
\end{array}
$$

$$
\mathrm{K}_{0}(\mathrm{X}) \longrightarrow \mathrm{K}_{\mathrm{F}}(\mathrm{X}),
$$

16-2

$$
\tilde{K}_{0}\left(S^{n}\right) \longrightarrow \tilde{K}_{F}\left(S^{n}\right)
$$

Czesa ayoir rру"ma
$\tilde{X}_{0}\left(S^{n}\right)=\pi_{n-1}(0)=\pi_{n-1}($ SO $)$ (во воявом охучае, прп $n>1$),

- с九рава -

$$
\tilde{K}_{F}\left(S^{n}\right)=\pi_{n-1}^{s}\left(S^{0}\right) .
$$

$$
\pi_{n-1}(S O) \longrightarrow \pi_{n-1}^{S}\left(S^{0}\right) .
$$

$$
\varphi: H^{n}(X ; \mathbb{Z} / 2) \longrightarrow H^{n+n}\left(E, E_{0} ; \mathbb{Z} / 2\right) .
$$

$$
\begin{aligned}
& H^{n+\tau}\left(E, E_{0} ; Z / 2\right) \xrightarrow{S_{q}^{i}} H^{n+n+i}\left(E, E_{0} ; Z / 2\right) \\
& { }_{\varphi} \mid= \\
& H^{n}(X ; \mathbb{Z} / 2)
\end{aligned}
$$

 охоения ૬ форобдой

$$
w_{i}(\xi)=\varphi^{-1} S q^{i} \varphi(1) .
$$

 иу гхасон $w_{i}(\xi)$ не ивменятоп.

 $w_{1}(\xi)=0$ н $w_{2}(\xi)=0$, то преетая пзоморфвам Тома

$$
\mathrm{KO}^{n}(\mathrm{X}) \stackrel{\varphi}{\longleftrightarrow} \mathrm{KO}^{n+n}\left(E, E_{0}\right) .
$$

 групиу что п $K_{0}(X)$, во обояваченте $\mathrm{KO}^{\circ}(\mathrm{X})$ виглядит приятвео,

$$
\Psi^{\star}: \mathrm{KO}^{0}(\mathrm{X}) \longrightarrow \mathrm{KO}^{\circ}(\mathrm{X}) .
$$

 норфизшаме колыда $К 0^{(}(\mathrm{X})$ в колвдо $\mathrm{KO}^{(}(\mathrm{X})$.

$$
\Psi^{*}: \mathrm{KO}^{n}(\mathrm{X}) \longrightarrow \mathrm{KO}^{n}(\mathrm{X} ; \mathbf{Z}[1 / k])
$$

ER

$$
\Psi^{*}: K O^{n}(X ; Z[1 / k]) \longrightarrow \mathrm{KO}^{n}(\mathrm{X} ; \mathbb{Z}[1 / k]) .
$$

Honomin

$$
\rho^{t}\left(\xi_{)}\right)=\varphi^{-1} \Psi^{t} \varphi(1) .
$$

 copacize oso:

$$
\rho^{*}(\zeta \oplus \eta)=\rho^{*}(\xi) \cdot \rho^{*}(\eta),
$$

 ormercy yyunall pesyastar:

TROPEM 5.1.1. Kоmозmens

$$
\mathrm{BO} \xrightarrow{\Psi^{*}-1} \mathrm{BO} \longrightarrow \mathrm{BFZ}[1 / k]
$$

ᄃомотомвя ну 200.

$$
K_{0}(X) \longrightarrow K_{F}(X)
$$

$$
\pi_{n-1}(S O) \longrightarrow x_{n-1}^{S}\left(S^{0}\right)
$$

 гедвогва.

Tеорема S.I.1 догазава ряком авторов.
 работе [150] (ом. такхе [149]. - Перев.). Хотя это доказательотво не было первым, оно оказяло влияния ва другие доказательства аще до овоего появления в печати, и следует отдать
 В доказательотвя Сулдввана погользуотая методы современноя ал-
 скавать 0 нाх.

$$
B U \xrightarrow{\Psi^{4}-1} B U \rightarrow B F \mathbb{Z}[1 / k]
$$

$$
B G L\left(\infty, \bar{F}_{q}\right) \longrightarrow B U
$$

$$
B G\left[\left(\infty, \bar{F}_{q}\right) \rightarrow B U \xrightarrow{\varphi^{4}-1} B U \rightarrow B F \mathbb{Z}[1 / q]\right.
$$

гоиотопва нуд.
时娍 уомшознцри

$$
X \xrightarrow{+} B U(n) \xrightarrow{q^{4}-1} B U \rightarrow B F \mathbb{Z}[1 / q] \text {. }
$$

 расодоенве над X, огрухтурнон групой погорого яввяется не грушта $U(n)$, а пормадвяачор $N(T)$ массшмального гора T в $U(n)$.

 достаточпо показатъ, что комшозпцряя

$$
X \rightarrow B G L\left(\infty, \bar{F}_{q}\right) \longrightarrow B U \xrightarrow{\Psi^{q}-1} B U \rightarrow B F \mathbb{Z}[1 / q]
$$

 огобрахение

$$
X \longrightarrow B \Gamma \longrightarrow B U
$$

 дехсныа представденияа подгруши труими Г. Звачпт, достагочво

$$
X \rightarrow B \Gamma \xrightarrow{B \rho} B U(n) \xrightarrow{\psi^{q}-1} B U \rightarrow B F \mathbb{Z}[1 / q] .
$$

$$
\Gamma \longrightarrow N(T) \subset U(n) .
$$

Нале угвердденге дохазаво.

 иредодомения, достагочно естествениа п годигся тадго п дия рас-

 огранства $B U$ осоявегствуег огображввио ироограногтва $B G L(\infty, F)$
 ноямпрая

$$
B G L\left(\infty, F_{q}\right) \rightarrow B G L\left(\infty, F_{q}\right) \rightarrow B U \xrightarrow{y^{q}-1} B U
$$

$$
B U \xrightarrow{4^{4}-1} B U,
$$

$$
B G L\left(\infty, F_{q}\right) \longrightarrow F\left(\Psi^{q}-1\right) \text {. }
$$

 гонтноотD, ғ.0. पто

$$
\left(B G L\left(\infty, F_{\psi}\right)\right)^{+} \propto E\left(\Psi^{q}-1\right) .
$$

$$
\pi_{*}\left(\left(B G L\left(\infty, F_{q}\right)\right)^{+}\right),
$$

8.e. $K_{\text {(}}\left(F_{q}\right)$.

$$
K_{F}(B G) \longrightarrow K_{F}(B N)
$$

 Квицгона.
 as.

$$
\begin{aligned}
& \text { Trasa } 6
\end{aligned}
$$

16.5. вроденвя

 гагогорио пространотв, построөнниі в гд.І. Состоянне наших яни-
 upoorem.

 иросяранством петөло?

 вого проотранства петед, то единственна ли ата отруктура?

 странств иетедв)?
 $\Omega^{\omega 0} f=f$, оумеотвуот, то единотвонио ал ово?

 пеудовлетворитедно; у вас вет горошего обвего шотода решевия

 топливо - напрпмер, отобрахение одной периттативнод категория
 Әто - покдочитедно високоохтановое горочеө. 耳вигаяов в этом нам правлениЕ, момно хоө-чего доочичц, п яако подход пспольовадая

 - морфиамаме - их автоморфизмн; мохно, далее, поставить в соот-

 в которо обвегты - конечномернне векторине пространочва над ко

Одваго есуъ много отобрахении, в существование которнх хочет-

 в недотором отнотения он спорен, но уогоричеоки он опоообствовад разнитни налагяемих методов.
 ранству V вад подем вещеотвенивх чисед \mathbb{R} алтобру $\Lambda(V)$. Оп

$$
\begin{gathered}
\Lambda(\zeta \oplus \eta) \cong \Lambda(\xi) \otimes \Lambda(\eta), \\
\Lambda(1)=2 .
\end{gathered}
$$

$$
\Lambda: \mathrm{BO}_{\bullet} \longrightarrow \mathrm{BO}_{\bullet} \mathrm{Z}[1 / 2] .
$$

 нечнохратним детдевнм. Действитедино, разве "внешняя амгебра"
 гение (см. \& 1.8, 5.1)? Но нама маитна упорно твордит, чео огоя функтор дия нее не подхадит иаи по крайней шоро что ого невпямавно иревратитъ в отобратение спехтров, отвеъампе теоматричестоиу содершанит яадачн.

 соблена х преодоленио грудностеи самого общего характера; воз-

 георема в своем чаством сдучае решает проодепу (b).

 операмиапи ЛаІІера - Дамофа т трансфером, И несомненно, дедо спо-

недосяагочно, уа его заботя определить, гакже требуштод вгоричние угаси.

 отвования транофера о одредеденнния овожотвами эолило веобходвмо для подгчения рещения, в некотором чаотном одјчве оно также п до-

 oe otomit ajonyotatb.

Эта төорема в вехотором частном одучае решает пробдешу (b)

 "убпвания" гомотопическах групи. Дли лооого опектра \mathbf{Y} оупествуея огехту $Y(n, \ldots, \infty)$, онабженвы отобрахендем $Y(n, \ldots, \infty) \rightarrow Y$

(i) $\pi_{n}(Y(n, \ldots, \infty))=0$ прр $r<\pi$;
(ii) пидуировавное огобразение

$$
\pi_{n}(Y(n, \ldots, \infty)) \rightarrow \pi_{n}(Y)
$$

 оквивадентноотз ㅍостранств

$$
\Omega^{\infty} X \propto B S O Z_{(p)}
$$

$$
X \propto b_{s 0_{\Phi}} \mathbb{Z}(p)
$$

 5. 3), аналогичио обстомт дөло для одектров. Тоорема повазувает. ч70 отрукуура бесконечнократного ароотрансява петөль ни $\mathrm{BSOZ}_{(p)}$, по супеочду, единственна.

$$
\mathbb{S}^{\infty} X \propto B U_{\oplus} Z_{(p)}
$$

IIFMGSP 6.2.2. Бесхонечнохратные проотранстве петелв BSO°

 zах H -простравотва. Это покавивает. уто вся огя суета вокруг локализацпй действигедвно необходюа.

$$
\begin{aligned}
& f_{*}: \pi_{4}(B S O) \longrightarrow \pi_{4}(B S O), \\
& f_{*}: \pi_{8}(B S O) \longrightarrow \pi_{8}(B S O) .
\end{aligned}
$$

 ㅍрим. перев.

 отупное H -отобрахение с праввлнвм яначением n; напрмюр. ес巫 $n=1$, то можно взать отобратение

$$
\rho^{5}: \mathrm{BSO}_{\oplus} \longrightarrow \mathrm{BSOZ}[1 / 5]
$$

 велевтвости обязательно $m= \pm 1$, у дотомя не существует H -яхвиваленчности о $n=1$. Случай $n=-1$ модно свеоти п случар $n=$ +1 , окомпоновав первое отобрамөние о өндоморфизмом $\Omega^{\infty}(-1)$ обхяс ти определенкя или обхасти яначеник.

IIPMEP 6.2.4. Простравства F/PL (пал $F / T o p$) у $B O$ стано-
 после локализацра по лобому нечетному p.

На самом деле эти простравствя сами нвлногоя бесжонечнократнимо пространстввми петель, нак доказалд Бордман п погт [39, 40] (см. § 1.8); то, что пооде локалияаипи по печетнокы p они ста-
 ранствя, доказал Судливан ([150], с. 24) ${ }^{\text {I }}$.

Теперь а намеуу доказатедьство теорема 6.2.1. Пусть \mathbf{X} -

 морфнн; например, при $p=2$ они долхны оить изоморднн

$$
H^{*}(Y ; Z \mathbb{Z} / 2)=A / A\left(S q^{1}, S q^{3}\right)
$$

 формаддао $\circ \quad k$-инварвантах спектра \mathbf{X}.
 перевод которои готовится в издатедвстве "щар". - Дрдм. перед.

Когомологические внчисления позволяот исследовать спектральнур последоватедьность Адамса

$$
\operatorname{Ext}_{A}^{* *}\left(H^{*}(\mathbf{Y} ; \mathbb{Z} / p), H^{*}(\mathbf{X} ; \mathbb{Z} / p)\right) \Rightarrow[\mathrm{X}, \mathrm{Y}]_{*} ;
$$

пзоморитзм A-модулен

$$
H^{*}(Y ; \mathbb{Z} / p) \cong H^{*}(\mathbf{X} ; \mathbb{Z} / p)
$$

мохно рассматривать нак некогорый өлемент θ из Ext ${ }^{0}$.
Bropof основной mar состоит в доказательстве того, что груша

$$
E x t_{A}^{s, t}\left(H^{*}(\mathbf{Y} ; \mathbb{Z} / p), H^{*}(\mathbf{X} ; \mathbb{Z} / p)\right)
$$

гривхальна при $t-s=-1$. Огсдда следуег, что әлемент θ принадлешыт ядру всех дифферениралов. Этот таг, конечно, в основном заклочается в внчисления; его можно сделать более концептуальмым, постровв структурнур теорив нодулел над маленькими подалгебрамад алгебрм Стинрода А.

Tрети品 основон шаг состоит в преодоленим трудностен, связаннвх со сходммостыд спектражно носледовательности Адамса, ибо нам сдучан, конечно, абсолотно видадает из тод области, где работарт хорошо пзвестнве достаточнне условия сходимости спектралыни посдедовательности Адамса. Однако все де удается доказагъ, что ияоморфизм θ индицррется некоторым отооражением спектров $f: X \rightarrow Y$. Доказагельство супественным обрезом испольвует тот факт, что нам известно достачочно много әндоморфвзмов ставдартного спектра Y. Построив отображение f, уме нетрудно погазать, что оно является өквивалентностыо.

Эттм заверпяөтся изложение схемд доказательства.

§ 6.3. Теоремя Мадсена, Снэыта и Торнхәва

Эта теорема в нежотором частном олучае решает продлемн (c) у (d) из § 6.1. Я начну с "глобалвного" варианта теорема, кочо-

 оні сфориулированл пихе в виде предложении 6.3.4-6.3.9 п сопроводдартся краткми обсукдением. Затем я попттарсь показать, в чем полвза от этих результатов, на примере некоторых следствии,

которже подучили из них Мадсен, Свэнт и Торнхяв. В залдоченпе я скаху несколько слов о доказагельствах.

Но сначала посмотрим на формулировки.
TЕОРЕМА 6.3.1. Еслй \mathbf{X} и \mathbf{Y} - такие связние спептры, что

$$
\Omega^{\infty} \mathbf{X} \approx B S O, \quad \Omega^{\infty} \mathbf{Y} \simeq B S O
$$

то отобрахение

$$
\Omega^{\infty}:[X, Y] \longrightarrow\left[\Omega^{\infty} \mathrm{X}, \Omega^{\infty} \mathrm{Y}\right]
$$

инъективно.
Здесь [X,Y] есть мнохество гомотошхческих квассов морхия мов в категориц спектров, а $\left[\Omega^{\infty} \mathbf{X}, \Omega^{\infty} \mathbf{Y}\right]$ есть множество гомото пических классов отображении в категории пространств. Очевидно, что эта теорема решает (в своем частном случае) проблему (d) по
§6.1; ответ состоит в том, что отобрахение простравотв f : $\Omega^{\infty} \mathrm{X} \rightarrow \Omega^{\infty}$ Ү допускает не болөе одного бесковечнохратного рас. петливания.

$$
\Omega^{\infty} X \simeq B S O, \quad \Omega^{\infty} Y \simeq B S O
$$

то следурпие условвя, наложенвне на отобрахение

эквивалентны:
(i) гомотопическй пласс отображения $\&$ лехстт в $\operatorname{Im} \Omega^{\infty}$;
(ii) f есть H -отоорамение, п естественное шреооразование

$$
f_{*}:\left[W, \Omega^{\infty} \mathrm{X}\right] \longrightarrow\left[W, \Omega^{\infty} \mathrm{Y}\right]
$$

комму

$$
B\left(\mathbb{L} / p^{n}\right) \longrightarrow B\left(\mathbb{Z} / p^{z+1}\right)
$$

(где p пробегает все простие чпсла, а r - делые чпсма 0,1 , 2,...).

Сделаем остановку, чтоби осмнслить последнее преддозение. ипоое накрнвавмее отображенве (свнзного пространствя в связное пространство) индушрует на фундаменталивах грушах мономорфпу: дрименительно к упомянутоку взше накрнтио әто дает мономорфтзи

$$
B\left(\mathbb{Z} / p^{2}\right) \longrightarrow B\left(\mathbb{Z} / p^{x+1}\right)
$$

ІІ условио нашеіи теореми

$$
\begin{aligned}
& {\left[\mathrm{W}, \Omega^{\infty} \mathrm{X}\right]=[\mathrm{W}, \mathrm{BSO}]=\widetilde{\mathrm{KSO}}(\mathrm{~W}),} \\
& {\left[\mathrm{W}, 8^{\infty} \mathrm{Y}\right]=[\mathrm{W}, \mathrm{BSO}]=\widetilde{\mathrm{KSO}}(\mathrm{~W}),}
\end{aligned}
$$

так что индуцровавное отобразение f_{*} момно трактовать как когомолоптческур операцпо

$$
f_{*}: \widetilde{\mathrm{KSO}}(W) \longrightarrow \widetilde{\mathrm{KSO}}(W) .
$$

Если f еогь H-огображение, то операпия f_{*} аддитивна; в наштм же утвермдении требуется, чтобн ова также коламутировала с трансфером. Мве предотавляется, что щмллквапро (i) \Rightarrow (ii) после гл. 4 мохно считагь очевиднон.

Теорема 6.3.2 решает (в своөм чаством случае) проблемд (с) ия § 6.1; она дает практически прмпенвани способ уэвать, является лІ данное отображение бесконечнократннм пегдевым.

TEOFEMA 6.3.3. (α) Eсді $\mathbf{X} \underline{\underline{Z}} \mathbf{Y}=$ такия свяаные спектры, что

$$
\Omega^{\infty} X \simeq S O, \quad \Omega^{\infty} Y \simeq B O
$$

10

$$
[\mathbf{X}, \mathrm{Y}]=0 .
$$

$$
\Omega^{\infty} X \simeq \operatorname{Spin}, \quad \Omega^{\infty} Y \simeq B S O
$$

Y0

$$
[\mathbf{X}, \mathbf{Y}]=0
$$

Естественно подучать такого рода результати, отталливаясь от теорем 6.3.1, 6.3.2 п питересуясь соответствушции реяультатами - градуированнои груиее ${ }^{\text {I) }}[\mathrm{X}, \mathrm{Y}]$. Результатн, подобнне теорем 6.3.3, можно использовать в стандартных рассуждениях с точнн-

1) Creктр \mathbf{X} с $\Omega^{\infty} \mathbf{X}=\mathrm{BSO}$ (нак в 6.3 .2) и спевтр \mathbf{X}^{\prime} с $\Omega^{\infty} \mathbf{X}^{\prime}=$ - SO (как в 6.3.3) подучартся одив из другого сдвигом градуировки. - Прим. перев.
 мени童 спептрон.

Страведиивы авалогт теорем 6.3.1, 6.3.2, в когорих вмоото

 вуро очередг доказввать именно их.
 Однако эти авторы сосредоточивалт овое внимание на p-дожалывом І p-полном олучамх в ущеро глобальному случар; хроме того, у
 дозволяот доказать ее для всех проствх p, кроле $p=2$; поолдд-
 орем 6.3.1, 6.3.2 и 6.3.3 читатель может ооратиться х [99], георема 7.1, с.130, теорема І.6, с.212, п теорема 7.2, с.131.

Как а уде говормл, делесообразно начатъ с доказательств
 смвсл подсказнвает, что глобалвнй варвант помучается иа них $\sigma 0^{\circ}$ лее или менее ставдартным использованием общепринятоп төхнаки довализацхй и попомнения с добавленвем, возмомно, аргумептов, связавных с функтором lim 1 - дерввм пронзводным функтором оо-

 турироваршие в черновиве згон книтн. Tong, кто изберет этот дуть, естественво изменить утверидение теоремя так, чтобн оно утверидало в точности то, что доказивает доказагедбсгво. Прд этом вннсняется, что нет необходрмосту предшолагать гдобалиныо 9квивалентность

$$
\Omega^{\infty} X \approx B S O
$$

достаточно считать, что имөртся докалынне әквивалентноочи

$$
\Omega^{\infty} X \mathbb{Z}_{(p)} \simeq B S O \mathbb{Z}_{(p)}
$$

 своя эквивалентность) у, кроме того, что все групші $\pi_{r}(\mathbf{X})$ нонечно порождены (над \mathbb{Z}). Авадогмчдо обстожт дело со спектром Y. Однако приведенние выше утверкдения проме, у ови воолне

Даже если мв решаем ве угдубляться в дебри ставдартнои тех-
 чая, все пе стоит дать фориялировку п доказательотво одного-двух

бомөе простых у өмөментарных случаев, чтобн посмотреть, что для 07050 нухно.

Имед дөло с p-докадвым ули p-полнни случаем, мы можем восподвзоваться теоремои Адамса п Принапи, т.е. теоремои 6.2.1, п заменить "нензвестнве" спектры $\mathbf{X} \mathbf{Y}$ "известивми" спектрамия, дредставддмдиии разлиянне варианты связнои К-теории. Раосмотрим реяудытатн, которие мохно получить на этом пути. По-ввадиому, проме всего начать с комлексного сдучая, а погом перечеслить взшенення, когорне необходвмо произвести при переходе к вещественному случар; кроме того, виддмо, проще начать с изучения операцран в стандаргной K-теория $K(W)$, а не в $\mathrm{KSU}(W)$. Таким образом, мн нрнходпм $к$ нөобходимости рассмотрения самнх простнх у эмөментаріных сдучаев.

Пуоть К - спектр, представлярпинй классическуь периодическуо момалекснур К-геормо. Методом "убивания гомотопических грум" (см. \& 6.2) ма постром спектр $\mathrm{K}(0, \ldots, \infty)$, которыи представляет свнзнуо комлекснуо K -георио. Он часто обозначается через ви, но я оудр обозвачачъ его через Һи (до прячинам, пзлодениям в [99] на с. I2I). Полохтм

$$
X=k u=K(0, \ldots, \infty) .
$$

Тогда

$$
\Omega^{\infty} \mathbf{X}=\mathbf{Z} \times B U
$$

$$
\left[W, \Omega^{\infty} X\right] \simeq K(W)
$$

Дусть Λ - абелева груита когффицрентов, не имевмая кручения. В основном нас будут интересовать случаи, когда Λ есть $\mathbb{Z}_{(p)}{ }^{-}$ колицо дедих чисөд, докализовавное по p, или \mathbb{Z}_{p}^{\wedge} - колвдо (р) дихх p-बдических чисел; но это не причина для отваза от рассмотревия других грути. Вводя коәффициентн (см. гл. 3), мн можем построить сдектр

$$
Y=X \Lambda=k u \Lambda .
$$

Напрамер, если $\Lambda=\mathbf{Z}_{(p)}$, то $\mathbf{Y}=\mathbf{X} \Lambda=k и \Lambda$ естъ лохализадия спекгра $X=k$ по p. Уопользование хе коэффициентов в \mathbb{Z}_{p}^{\wedge} нграет ту ке роль, когоруо прм других подходах июрает пополненге. Друго апособ построения спектра $k и \Lambda$ состоит в том, что сначад спектр K при помоми коэффиихентов преврамается в спектр $\mathbf{K} \Lambda$, посде чего убпвание гомотопических груты дает спектр

$$
(\mathrm{K} \Lambda)(0, \ldots, \infty) ;
$$

$$
\Omega^{\infty} \mathbf{Y}=\Lambda \times B U \Lambda
$$

у принять ато равенство за опредөлөние пространотва BU」. Далеө,

$$
\left[W, \Omega^{\infty} Y\right]=K \Lambda(W),
$$

где справв стоит $К$-теория с коэффиииентамд в Λ.
IPRINORFHIE 6.3.4. Теорема 6.3.1 остается справедмиво п

$$
\Omega^{\infty}:[X, Y] \rightarrow\left[\Omega^{\infty} X, \Omega^{\infty} Y\right]
$$

пнъективно.
IIPRINOMEHVE 6.3.5. Теорема 6.3.2 остается справеддиво共 п пои таком виборе спектров $X \underline{\underline{Z}} \mathbf{Y}$, еслй $\Lambda=\mathbb{Z}_{(p)}$ дли $\Lambda=\mathbf{Z}_{p}^{\hat{1}}$.

На самом дөле здесь достаточно рассматривать накрнтия

$$
B\left(\mathbb{Z} / p^{r}\right) \longrightarrow B\left(\mathbb{Z} / p^{n+1}\right)
$$

липв для того простого p, которое фдгурирует в прутыах $\Lambda=\mathbf{Z}_{\text {(}}$ плй $\Lambda=\mathbb{Z}_{p}$; конечно, r по-преднеку пробегает угсда $0,1,2, \ldots$. Так как в 6.3 .5 участвует меньше накрытии, чем в 6.3 .2 , то разумно доказывать 6.3.5 раньшө, чем 6.3.2.

Теперь ми хотим переитти к расомотренио случаєв, когда $\Omega^{\infty} \mathbf{X}$ больше похоже на $B S U$, чем на $\mathbb{Z} \times B U$.

IPR при следуюцем внооре спектров:

$$
\begin{aligned}
& \mathbf{X}=\mathbf{K}(2 \Lambda, \ldots, \infty) \quad \text { с модмм } n \geqslant 0, \\
& Y=X \Lambda, \text { где } \Lambda \text { не пмеет крученмя. }
\end{aligned}
$$

Очевидно, что это предложение погломает предложенне 6.3.4
 $\mathbf{K}(4, \ldots, \infty)$ представллет 3-связнур помплепснур К-теорно; в его можно обозначить через $b s u_{\text {, поскольку (при } n=2 \text {) }}$

$$
\Omega^{\infty} X=B S U
$$

 표 следухмем внборе спектров:

$$
\begin{aligned}
& \mathbf{X}=\mathbf{K}(4, \ldots, \infty),
\end{aligned}
$$

0пнть-гаки достаточно рассмагравать нагрытия

$$
B\left(\mathbb{Z} / p^{n}\right) \longrightarrow B\left(\mathbb{Z} / p^{r+1}\right)
$$

дешь дая одного простого p.
 спектр K спептром КО, представляривм класспческуо периодиче-
 групи можно постролть спектр

$$
\mathbf{X}=\mathbf{K O}(2, \ldots, \infty)
$$

представляошхии 1 -связнул вемественнуо К-теорио; өго можно обозвачить черея 6so, посколыку

$$
\Omega^{\infty} X=B S O
$$

 опехтров $X=6 s 0 \underline{Y}=630 \Lambda$, где Λ не имеет пручения.

ІРЕддохенй 6.3.9. Теорема 6.3.2 остается справедливои для опектров $X=6$ so

Оиять-гаки (конечно хе) достаточно рассматривать накрытия

$$
B\left(\mathbb{Z} / p^{n}\right) \longrightarrow B\left(\mathbb{Z} / p^{n+1}\right)
$$

Темерь я пошітарся продемонстрировать полезность өтих ревультатов, приведя незо́торне следствия, подученнне Мадсеном,
 पarz.

$$
\Psi^{\star}: \mathrm{BSO}_{\odot(p)} \longrightarrow \mathrm{BSO}_{\odot(p)}
$$

явияатся бөсковечнозратвим петдөвм отображением.
 в ra. 3 п выше в этом параграфе. Этот резудтат имеетоя в [86], георема 4.5, о. 39. Однако, гав ваметіх Мөй, его мохно вивесту

 синоде, обзяовенном в гх. 5; тагое его тодкование оправдиваетая

 татн работи [86], в частноотд преддоженя D, с. 4, у теорема 4.3. с. 37, представанот сооой разновдддооту сдедствия 6.3.11 относлинеся к другтм интерпретаддям отображення

$$
\begin{aligned}
& \mathrm{e}: \mathrm{F} / \mathrm{O} \longrightarrow \mathrm{BSO}_{\odot} \\
& \sigma: F / \mathrm{PL} \longrightarrow \mathrm{BSO}_{\odot} \mathrm{Z}[1 / 2],
\end{aligned}
$$

Cu. [86], теоремя E, C. 5.

 тедств предложении 6.3.4-6.3.9. Проме всего будет ссоредоточиться на доказатедотвах преддохениа 6.3 .4 п 6.3 .5 , а потом
 дах того, чтоои доказать предхомения 6.3.6-6.3.9.
 праведено в §6.4; оно огдгчается от доказатедствв Мадсева, C

$$
\alpha: \mathbb{Z} \times B U \longrightarrow \Lambda \times B U \Lambda
$$

$$
\alpha: K(W) \longrightarrow K \Lambda(W) .
$$

Структуру мнозествя $\mathrm{A}(\Lambda)$ описать очень проото; ято сдедано в \& 6.4 в вдде демон 6.4.I, так как вся предварительная работа проденана в этом параграфе. Эти реэультатн применим п мобои групле Λ, нө имеющей кручения, но 0 точки зрения осталнои части доказателства дучше воего вачать с p-адичөско-

 $B\left(\mathbb{Z} / p^{n+1}\right)$; см. демагу 6.5.1. Затем м мохем вайти уодовия,
 чадмдоия вакритиям

$$
\begin{aligned}
& B(1) \longrightarrow B(\mathbb{Z} / p), \\
& B(\mathbb{Z} / p) \longrightarrow B\left(\mathbb{Z} / p^{2}\right), \\
& B\left(\mathbb{Z} / p^{2-i}\right) \longrightarrow B\left(\mathbb{Z} / p^{q}\right) .
\end{aligned}
$$

 тагов не составляет труда; а имено, элемент $\alpha \in A(\Lambda)$ додвен
 нейвая кощбинадия

$$
\alpha_{\imath}=\sum_{k \neq \bmod p} \lambda_{k} \Psi^{k}
$$

 6.5.6).
 $\lambda_{4} \Psi^{-\pi}$ естъ беовонечнохратное петлевое отобраление прв јоло-
 (умномоние на k) явияется ияоморфизом; в нарем одучве ото ммоет шесто, когда k взампно просто с p. Отсдда одедует, что лиобая кодечная сумиа

$$
\alpha_{i}=\sum_{k \neq \bmod p} \lambda_{k} \Psi^{k}
$$

тоже являтся бесконечнохратнви петдеввм отобралением.

 α_{n} поднриеетоя до отобразения

$$
b_{n} \in[X, Y]
$$

 мент

$$
b \in[X, Y],
$$

такои, что $\Omega^{\infty} f=a$. В этом несте в статьлх [86], с. 20 , отрока $4-5$, I [87], с. 410, строки 6-7, авгоры говорат о "несломнон про-
 Чптатемо всегди дестно зватъ, чтс авторы огазивают ей такое до-

 потрачу неготорое время на тосдедование өто望 пробдемя сходпмо-
 чго автсри статьт [86] говорят чпстуо правлу: ові могут беs риокв предоставить оту пробледу мие. Я подояревал, однаго, что

 вхуоов. Боден чочно, я дуеар, что авторя статын [86] соопрамиоь восподвзоваться своиствамия "дополнения по Судинвану" ииг
 вану фактически прөдставияет собон полмакттйиарро; всдду, где ова прпеним, она приводит к комактннм топодогиям, При этом

 пример грулив

$$
\Lambda={\underset{1}{\oplus} \mathbb{Z}_{p}^{\wedge}, ~}_{\wedge}^{\infty}
$$

 самом деле, то а преддочту работатз о попохнентем, а но с хои

 не пиет кручения, но не обязателино нояна пип хауодорфова. Цев параграфа соотопт в том, чтобн проделать всь работу, уополвуушир липи предполохение оо очсутствии кручения, перед тем, как вводить какие бн то ни бндо другте предподомения. Ддя начама в опипу структуру введеннон в \& 6.3 грушы $A(\Lambda)$. Посже
 чтс приведет нас х догаэатөдьотву предложения 6.3.4. Затөм, ввгонед, а покапу, что в преднотении 6.3 .5 саучай $\Lambda=\mathbb{Z}_{\text {(}}$)
 развития вялагаемвх методов прпменптедво к другдм сдучаям, упоминутіа в 6.3.6-6.3.9.

$$
\alpha: \mathbf{Z} \times B U \longrightarrow \Lambda \times B U \Lambda,
$$

 операцрй

$$
\alpha: K(W) \longrightarrow K \Lambda(W) .
$$

Дия пуучения полиа $A(\Lambda)$ мн в качестве пробного прогуранства

 СР ${ }^{\infty}$, т.е. sадаваемлй очевддним отобрахением

$$
\mathbb{C} P^{\infty}=B U(1) \longrightarrow B U=1 \times B U \subset Z \times B U .
$$

Подомвм $x=\xi-1$. Тогда $\mathrm{K} \Lambda\left(\mathbb{C} \mathrm{P}^{\infty}\right)$ огохдествлнется с аддатияно⿱
 yemzol p ри

$$
a(\xi)=\sum_{i \geq 0} \lambda_{i} x^{i}
$$

 $A(\Lambda)$ 照 $K \Lambda\left(\mathbb{C} P^{\infty}\right) \approx \Lambda[[x]]$.
 сделаннне там предодомения относщтедно Λ неощравванно ограни-

$$
\alpha_{*}: \pi_{2 j}(\mathbb{Z} \times B U) \rightarrow \pi_{2 j}(\Lambda \times B U \Lambda) \quad(j \neq 0)
$$

 ить тако я мемент $b_{i} \in A(\mathbb{Z})$, что

$$
f_{i}\left(\xi_{1}\right)=x^{i}
$$

(Это вытекает на доман 6.4.1, но ва оамом доде авное поочроение

$$
\left(f_{i}\right)_{*}: \pi_{2 j}(\mathbb{Z} \times B U) \longrightarrow \pi_{2 j}(\mathbb{Z} \times B U)
$$

 प70

$$
\beta_{i i}=i!.
$$

$$
a(\xi)=\sum_{i} \lambda_{i} x^{i} ;
$$

$$
a_{*}: \pi_{8 j}(Z \times B U) \longrightarrow \pi_{2 j}(\Lambda \times B U \Lambda)
$$

представляет собой умоожение ва

$$
\mu_{j}=\sum_{i=0}^{j} \lambda_{i} \beta_{i j}
$$

 86.6.

$$
a: \mathbb{Z} \times B S O \longrightarrow \Lambda \times B S O \Lambda ;
$$

$$
A O(\Lambda) \longrightarrow 2 \Lambda \oplus \widetilde{K O \Lambda}^{0}\left(C P^{\infty}\right)
$$

$$
\alpha \longmapsto \alpha(\eta)
$$

 діт в 2.) Сдедствие 6.4 .2 в вещественном сдучае остается верHiN.

я уге оказап, что в основу взчисления групшя [kи,kи Λ]

 $K_{*}(k u)$.

 резудвтата, вя которанй мо оотлемся.

$$
K_{*}(k u) \longrightarrow K_{*}(K)
$$

(пвдучпровавное морфпзмом $k u \rightarrow K$) яввяөтся мономорфпзмом.

 ненте. Но $\pi_{*}(\mathrm{~K})$ естъ (градупрованная) облаоть гдавнях вдеа-
 боден.

Заметвм, что мэтод работн [іт] мохно, конечно, пррменить и
 ство дөив 6.4.3, но но особ̈енио обдегчает нам диянь, потому что хемй 6.4 .4 все равво пухно догазнвать.
 вается ва вичисленщлх до методан, паломенным в книге [9], c. $331-371$.

 подмодуль свободного модудя свободен, так гак $\pi_{*}(\mathrm{KO})$ не есть обдасту главных идеалов; приходатоя применить метод работн [IT] негосредственио к алучар KO_{*} ($\mathrm{f} \boldsymbol{3} \mathrm{O}$). Это применение в оснодном базмруетая на пзлагаемах нихе нделх; правда, требуртоя но-

По-вфдрмои, упестно сказать, что әтот метод довольствуетоя весымя экономвым вабором данннх. Тот факт, что $\mathrm{KO}_{*}(\mathrm{X})$ өоть
 детвсриомего уоловиям теоремн 6.3.1; достаточно далө почробо-

$$
\mathscr{R}^{\infty} X \mathbf{Z}_{(p)} \simeq \operatorname{BSO}_{(p)}
$$

 8ывается не стодв јх Јехим.

Предде чем доказнвать деман 6.4.4, я хочу расширать ее фор-
 यы $\mathrm{K}_{*}(\mathrm{~K})$. Оно освовано вя влохения

$$
\mathrm{K}_{*}(\mathrm{~K}) \longrightarrow \mathrm{K}_{*}(\mathrm{~K}) \oplus \mathbb{Q},
$$

 $\pi_{*}(K)$ явинется полыдом многочменов Дорана $\mathbb{Z}\left[t, t^{-1}\right]$, где
 $K_{*}(K) \oplus \mathbb{Q}$ есть польдо многочденов Іорана

$$
Q\left[u, v, u^{-1}, v^{-1}\right]
$$

где u п - образн өдемантв t три очобратениях

$$
\begin{aligned}
& \pi_{*}(K)=K_{*}\left(\Sigma^{\infty} S^{0}\right) \longrightarrow K_{*}(K), \\
& \pi_{*}(K)=\left(\Sigma^{\infty} S^{0}\right)_{*}(K) \longrightarrow K_{*}(K) .
\end{aligned}
$$

 nerefincx souviramit

$$
\sum_{n, 0} \lambda_{n, 0} u^{n} v^{6} \in \mathbb{Q}\left[u, v, u^{-1}, v^{-1}\right]
$$

 регь спектри $K(2 ヶ, \ldots, \infty)$ мохду $K ः k и=K(0, \ldots, \infty)$ (по пово(0) обовваченат оу. 86.2).

$$
\mathrm{K}_{\psi}(\mathrm{K}(2 n, \ldots, \infty)) \longrightarrow \mathrm{K}_{*}(\mathrm{~K})
$$

 $\sum_{n, 0} \lambda_{3,0} u^{2} v^{3} \in K_{*}(K)$, प70 $\lambda_{n, 3}=0$ 표 $3<\pi$.

$$
K(2 n+2, \ldots, \infty) \xrightarrow{i} K(2 n, \ldots, \infty) \xrightarrow{j} \operatorname{EM}(\mathbb{Z}, 2 n),
$$

 в сих порподгчнооті достаточно рассмотреть саучаі $n=0$; ми

(6.4.6)

$$
\mathrm{K}_{*}(\mathrm{~K}(2, \ldots, \infty)) \xrightarrow{i_{*}} \mathrm{~K}_{*}(\mathrm{~K}(0, \ldots, \infty)) \xrightarrow{f_{*}} \mathrm{~K}_{*}(\mathrm{EM}(\mathbb{Z}, 0))
$$

$$
c h_{0}: K \longrightarrow E M(Q, 0)
$$

естъ нудевая компонента характера Чшеня, а помоонцряя

$$
K_{*}(\mathbf{K}) \longrightarrow \pi_{*}(\mathbf{K}) \odot \mathbf{Q}
$$

действует по формдлам

$$
\begin{aligned}
& u^{n} v^{s} \longmapsto 0 \text { прв } s \neq 0, \\
& u^{n} v^{s} \longmapsto t^{n} \text { прп } s=0
\end{aligned}
$$

$$
E M(\mathbb{Z}, 0) \longrightarrow E M(\mathbb{Q}, 0)
$$

 витедно; по наблоденио дк. У. Уайтхеда ${ }^{\text {I) }}$

$$
K_{*}(E M(\mathbb{Z} / p, 0)) \cong H_{*}(K ; \mathbb{Z} / p),
$$

и хоромо известео, что

$$
H_{*}(\mathbf{K} ; \mathbf{Z} / p)=0
$$

для лобого простого p. Переходя к распирениям, мы похучвем, प70

$$
K_{*}(E M(G, 0))=H_{*}(K ; G)=0
$$

 му прөделу, ма вицм, что авалогнчное равенство пшет шестс дии
 Корасслоение

$$
E M(\mathbf{Z}, 0) \longrightarrow E M(\mathbf{Q}, 0) \longrightarrow E M(\mathbb{Q} / \mathbf{Z}, 0)
$$

дает точнур посдедовагедвность.

$$
\ldots \rightarrow K_{*}(E M(\mathbb{Z}, 0)) \xrightarrow{\alpha} K_{*}(E M(Q, 0)) \rightarrow K_{*}(E M(Q / \mathbb{Z}, 0))=0 ;
$$

 Прмм. дерев.
 грамав (6.4.6).
 чден спектра $k u$, иан мохем постродгя эдешену пз $K_{0}(k u)$, оорая nоторого в $K_{0}(K)$ есть

$$
\frac{1}{n!}\left(u^{-1} v-1\right)\left(u^{-1} v-2\right) \ldots\left(u^{-1} v-(n-1)\right)
$$

 упрощено в других рабогах (см., вапример, [х3]). Небольшое огли. ние паних обозначения от обоязаченй пз [12], с. 407, обусдовдено двумя пргчтнами. Во-первах, здесь я очмтах $B U$ вторим чдоном опектра, а не нудеввы, как в [12]. Во-вторих, я успользовад $\mathrm{K}_{0}\left(\right.$) вместо $\mathrm{K}_{2 n}$ (). Во всяком случае, образ нашего әлөщентя при отобраменит

$$
\mathrm{K}_{0}(\mathrm{~K}(0, \ldots, \infty)) \longrightarrow \pi_{0}(K) \otimes \mathbb{Q}
$$

ecrs $(-1)^{n-1} / n$.
Так ках это справедливо для лооого $几$, отсдда следует, что

Ив точносту посдедоватедносту

$$
K_{*}(K(2, \ldots, \infty)) \xrightarrow{\varepsilon_{*}} K_{*}(K(0, \ldots, \infty)) \xrightarrow{\dot{j}_{*}} K_{*}(E M(Z, 0))
$$

 омду пержодвчносте мв подучяем, что

$$
K_{*}(K(2 n+2, \ldots, \infty)) \longrightarrow K_{*}(K(2 n, \ldots, \infty))
$$

есть. мономорфизм прри всех n.
Рассмочрви теперь спектр К как предеп последоватеднност саегтров

$$
\ldots \rightarrow K(2 n+2, \ldots, \infty) \rightarrow K(2 n, \ldots, \infty) \rightarrow \ldots
$$

тогда $\mathrm{K}_{*}(\mathrm{~K})$ - прмои предел прямой спстемн

$$
\ldots \rightarrow K_{*}(K(2 n+2, \ldots, \infty)) \rightarrow K_{*}(K(2 n, \ldots, \infty)) \longrightarrow \ldots
$$

Так как әто прямая схстема мономорфизмов, то отобрахение кахдого чдена в предеп есть мономорфизм. Отспда следует первое утвермдөние деман 6.4.5, которое заодно дожазнвает деммы 6.4.4 у 6.4.3.

 ия некоторого өө чтена, скахен, он еоть обрая өлемөнта

$$
x \in K_{*}(K(2 m, \ldots, \infty)) .
$$

 дјмхая воластативвая дваграмма, авахотичная диаграююе (6.4.6):

$$
\mathrm{K}_{*}(\mathrm{~K}(2 m+2, \ldots, \infty)) \xrightarrow{i_{*}} \mathrm{~K}_{*}(\mathrm{~K}(2 m, \ldots, \infty)) \xrightarrow{j_{*}} \mathrm{~K}_{*}(\mathrm{EM}(\mathrm{Z}, 2 m)) .
$$

 приходдт из $\mathrm{K}_{*}(\mathrm{~K}(2 ヶ, \ldots, \infty))$. गемеа 6.4.5 доказава.

 доглй пространств Эпленбергя - Маклеіна.

$$
[k u, K \Lambda]_{*} \rightarrow \operatorname{Hom}_{\pi_{*}(K)}^{*}\left(\mathrm{~K}_{*}(k u), \pi_{*}(K \Lambda)\right),
$$

 дпзи, пероводяпиі $x \in K_{*}(k u)_{\text {в }}\langle f, x\rangle$.

$E x t_{\pi_{*}(K)}^{* *}\left(K_{*}(W), \pi_{*}(K \Lambda)\right) \Rightarrow K \Lambda^{*}(W)$,

в хогорой краевой гомоморфизм вмеет описаннын виме вид: он пе-
 по формуде $x \mapsto\langle f, x\rangle$. Этот варвант төоремн оо уннвероалиних коәффициентах содержится в [6], лекция 1 ; правда, гам ничего не скаяано о сходимости өтон спектральнои последовательноотп, но еө сходимость может бить доказана с помопыр указании, приведеннах в [7]. с. ІІ. Эта спектральная последовательость оходвтоя в том смясле, что она удовлетворяет теореме 8.2 из [9], с. 224.
 $s>0$. в сплу леммн 6.4.3, "ака тто спектральная посдедовательность вырождается в краевой гомоморфвзм). Это докаэнвает демау 6.4.7.

Демма 6.4.7 остается верной в в вещественном случв: имеется наоморфпгм

$$
[\text { bso, KOL }]_{*} \rightarrow \mathrm{Hom}_{\pi_{*}(\mathrm{KO})}^{*}\left(\mathrm{KO}_{*}(\text { bso }), \pi_{*}(\mathrm{KO} \Lambda)\right) .
$$

Дожазатөльство анадогжчно.
другои способ (вддвис, менее удосіныл) вичпсления грушы $[k u, K \Lambda]_{*}$ п $[\mathrm{fso}, \mathrm{KO} \Lambda]_{*}$ состокт в применениі мегодов работн [14].
 뽀 $[k u, \mathrm{~K} \Lambda$] триваальнн,
(b) Если для $f \in[k u, K \Lambda]$ гомоморопямия

$$
f_{*}: \pi_{2 s}(k u) \longrightarrow \pi_{2 s}(K \Lambda)
$$

Дохаватедвство. Утвердиния (a) недосредстэенно сдедует пз дөман 6.4.7, посколвку нечетнне комшонентн траду-

[^2]$$
\operatorname{Hom}_{x_{*}(K)}^{*}\left(K_{*}(k u), \pi_{*}(K \Lambda)\right)
$$

трввалынн но демем 6.4.3.
Для доказательства утверадения (b) раосмотрим такое отоораменге $f \in[k u, K \Lambda]$, что мобая композмиия

$$
\Sigma^{\infty} S^{2 s} \xrightarrow{t^{6}} k u \xrightarrow{t} K \Lambda
$$

(где $s \neq 0$) триввалвна. Отсдда оледует, что в обозваченвях двои м 6.4 .5

$$
\left\langle f, u^{2} v^{s}\right\rangle=0 \quad \text { mpm } \quad s \geqslant 0 .
$$

всли \boldsymbol{x} - эдемент грушы $\mathrm{K}_{*}(k u)$, то по демме 6.4.5 певоторое его вратное $\vee \boldsymbol{V}$ мовно представитв в ниде

$$
v x=\sum_{s \rightarrow 0} \lambda_{r, s} u^{r} v^{s},
$$

где $\lambda_{r, s} \in \mathbb{Z}$. Тогда $\langle f, \nu x\rangle=0 \mathbf{n}$, значпт, $\langle f, x\rangle=0$, посколву Λ не пмеөт кручения. Равенство $f=0$ сдедует теперь из деман 6.4.7. Схөдствде 6.4.8 доказано.

 альна. Доказатемвтво анадогччно: ооразупмие π_{*} (КОК) \rightarrow модуля KO_{n} (bso) дежаг в вудевой комоневте, а (-I)-я сомовента

 теоремы тпа 6.3.3(a); аналогмчно обстомт дело п дв 6.3.3(b).

 В частности, отображенве $f: b s 0 \rightarrow K O \Lambda$ определяется вндуцирован-
 ІІІपно.

$$
[k u, k u \Lambda] \stackrel{\approx}{\sim}[k u, K \Lambda]
$$

 $k u \rightarrow k u \Lambda_{\text {на }}$ гомогошгческие груты определяется воядействтем ва гомотопическіе грушы отооражения $\Omega^{\infty} f: \mathbf{Z} \times B U \rightarrow \Lambda \times B U \Lambda$. Поэгоиу преддозөния 6.3 .4 внтекает из утверадендя $6.4 .8(\mathrm{~B})$.

Докаватөпьство предлопеппя 6.3.6. Демам 6.4.3 остаетоя вериои нри замене спехчра k и спехтром

 таргся веранаи при яамене спектра $k и$ лобвм одектром $K\left(2 n_{r, \ldots}^{\infty}\right)$; доказательтва почту не шөняогся. Но такая явмена преврашает доказательтво премиожения 6.3 .4 в доказательство преддожения 6.3.6.

Анадогтчны образом 9ті рассуддения проводятоя в вещественном сдучае и догазнвадт преддожение 6.3.8.

$$
a_{*}: \pi_{2 b}(\mathbb{Z} \times B U) \rightarrow \pi_{2 s}\left(\mathbb{Z}_{(p)} \times B U Z_{(p)}\right)
$$

 6.3.5 верно дми $\Lambda=\mathbb{Z}_{p^{\circ}}^{\wedge}$. Тогда супествует тамое огобрахение

$$
f: k u \rightarrow k u \mathbf{Z}_{p}^{\wedge}
$$

$$
\mathbb{Z} \times B U \xrightarrow{a} \mathbb{Z}_{(p)} \times B U \mathbb{Z}_{(p)} \rightarrow \mathbb{Z}_{p}^{\wedge} \times B U \mathbb{Z}_{p}^{\wedge}
$$

$$
f_{*}: \pi_{2 t}(k u) \rightarrow \pi_{20}\left(k u \mathbb{Z}_{p}^{n}\right)
$$

$$
\lambda_{s} \in \mathbb{Z}_{(p)} \text { Orcддpa }
$$

$$
\left\langle f, u^{*} v^{8}\right\rangle \in \pi_{*}(\mathbf{K}) \otimes \mathbb{Z}_{(p)}
$$

 наmғать

$$
\nu x=\sum \lambda_{n, 0} u^{n} v^{s}, \text { rде } \lambda_{n, s} \in \mathbb{Z}
$$

п. звачит,

$$
\langle f, \nu x\rangle \in \pi_{*}(K) \otimes \mathbb{Z}_{(p)} .
$$

 принадлежал колыд $\tilde{\pi}_{*}(\mathbb{K}) \otimes \mathbb{Z}_{p}^{\wedge}$, не самом деде принадлелпт колиы
 ется через отобрахение

$$
f^{\prime}: k u \rightarrow k u \mathbf{Z}_{(p)}
$$

Нагонед, оледотвзе 6.4.2 показнвает, что $\Omega^{\infty} f^{\prime}=\alpha$. Дома 6.4.9 доказава.
 случая $\Lambda=\boldsymbol{Z}_{p}^{\hat{1}}$ в преддохения 6.3 .7 , но ддесь приоддтоя роспма-
 в КSU-rеорй. Дейотвително, в конце натих рассурденй нам погребуется внать, что огобрахеняе

$$
\alpha: B S U \rightarrow B S U Z_{(p)}
$$

опрөделяется помозициен

 ном случае я скаяах об авалоге грушы $A(\Lambda)$ достаточно много.

 рассудиение проходпт для впожения этой грумпн в ве p-адичеокое поподнение.

86.5. Вучпсления при домо"द्य зранофера

В әтом п сдедуощем параграфах я предполагар, что груша кодффицентов Λ не пмет кручения а что она повна в хаусдорфовя в p-адическои топодогих; например, годится $\Lambda=\mathbf{Z}_{p}^{\wedge}$. В этом параграфе я внчисмо групй $K \Lambda\left(B\left(\mathbb{Z} / p^{2}\right)\right)$ п продемонстрируо еффект предподожения, ччо эдемент $\alpha \in A(\Lambda)$ комаутирует с трансфером. Резупьтати будут описанн в терминах прямого разложения груішы $A(\Lambda)$.

Я начну с ввчисления груишы $K \Lambda\left(B\left(\mathbb{Z} / p^{n}\right)\right)$. в грудпе $U(1)$ меется өдинственная подцрупи, изоморфная грушые \mathbb{Z} / p^{2}; влохение определнет отобрахөние

$$
B\left(\mathbb{Z} / p^{n}\right) \longrightarrow B U(1)=\mathbb{C} P^{\infty} .
$$

пуств $\xi_{n} \in K\left(B\left(\mathbb{Z} / p^{2}\right)\right)$ есть образ элемента $\xi \in K\left(C P^{\infty}\right)$. Этот өлемент удовлетворяет соотношенио

$$
\left(\xi_{n}\right)^{p^{z}}=1
$$

 $\bmod p^{r}$, составлнрт Λ-базис в $K \Lambda^{0}\left(\bar{B}\left(\mathbb{Z} / p^{r}\right)\right)$; то хе время

$$
K \Lambda^{1}\left(B\left(\mathbb{Z} / p^{r}\right)\right)=0
$$

Я продолвар фораслировать резудттатн прехде, чем давать докяяатедьства.

СПЕЛСТВИIR 6.5.2. ДДл лобого r п добого $~ \alpha \in A(\Lambda)$ су耳ествует

$$
b=\sum_{k} \lambda_{k} \Psi^{k}
$$

耳. ва самом деде в $K\left(B\left(\mathbb{Z} / p^{r^{\prime}}\right)\right.$ ддя всех $r^{\prime} \leqslant r$.

IIFММі 6.5.3. Очооразения
$\ldots \rightarrow B\left(\mathbb{Z} / p^{n}\right) \longrightarrow B\left(\mathbf{Z} / p^{n+1}\right) \rightarrow \ldots \rightarrow B U(1)=C P^{\infty}$
 слвіствив 6.5.4. Комоовмтала

$$
A(\Lambda) \rightarrow \frac{\lim }{2} K \Lambda\left(B\left(\mathbf{Z} / p^{2}\right)\right)
$$

явллется пзоморбвэмом.
 спектрамвнур посдедсвагөлность Атья - Хпрдеоругя. Пусть $R\left(\mathbb{Z} / p^{*}\right)$ есть кольцо представленай грушы \mathbb{Z} / p^{η}; ово явнлетоя своботвви \mathbf{Z}-модулем п свободно поромдается одпомернвпи представженияаи группв \mathbb{Z} / p^{n}. Вложенве $\mathbb{R}\left(\mathbb{Z} / p^{2}\right)$ в $K^{\prime}\left(B\left(\mathbb{Z} / p^{n}\right)\right)$ переводит одномернне представления в әлементн ξ_{\sim}^{i} (где i пробегеят все вн-

 $R\left(\mathbb{Z} / p^{2}\right)$. факт оргруипа'

$$
R\left(\mathbb{Z} / p^{\eta}\right)_{2 m} / R\left(\mathbb{Z} / p^{\eta}\right)_{2 m+2}
$$

есть \mathbb{Z} при $m=0_{\text {п }} \mathbb{Z} / p^{2}$ при $m>0$. Профипьтровав грушиу
 филтрации отобрахение

$$
\Lambda \otimes R\left(\mathbb{Z} / p^{n}\right) \longrightarrow K \Lambda\left(B\left(\mathbb{Z} / p^{n}\right)\right)
$$

 тор $\Lambda \otimes$ сохраняет точвость; поятом

$$
\frac{\Lambda \otimes R\left(\mathbb{Z} / p^{n}\right)_{2 m}}{\Lambda \otimes R\left(\mathbb{Z} / p^{2}\right)_{2 m+2}} \begin{cases}\Lambda & \text { прі } m=0, \\ \Lambda / p^{n} \Lambda \text { пр } & m>0,\end{cases}
$$

[^3]

$$
\Lambda \otimes R\left(\mathbb{Z} / p^{\eta}\right) / \Lambda \otimes R\left(\mathbb{Z} / p^{\eta}\right)_{2 m} ;
$$

инынан сдовами, $K \Lambda^{0}\left(B\left(\mathbb{Z} / p^{2}\right)\right)$ есть попомвение группи $\Lambda \otimes R\left(\mathbb{Z} / p^{2}\right)$

 $\Lambda \otimes R\left(\mathbb{Z} / p^{2}\right)$ фдльтрадия тривиальна, а на слагаемом $\Lambda \oplus \tilde{R}\left(\mathbb{Z} / p^{n}\right)$ топология, порожденная фильтрапен, совдадает с p-Адической топодогией. Так ках груша Λ додна и хауодорфова в p-адическои топодогиу, то попожненге $\Lambda \otimes \widetilde{R}\left(\mathbf{Z} / p^{2}\right)$ по топологй, породденнои фидьтапией, есть сновя $\Lambda \otimes R\left(\mathbf{Z} / \boldsymbol{\rho}^{2}\right)$. Это доказнвает демас 6.5.I

Доказатедвство опедствпя 6.5.2. Пусть даны $\alpha \in A(\Lambda)$ п некоторое r. Если

$$
f=\sum_{k} \lambda_{k} \Psi^{k},
$$

то

$$
f\left(\xi_{n}\right)=\sum_{k} \lambda_{k} \xi_{n}^{A}
$$

По демам 6.5.1 мн мохөм подоорать такоө b, что $f\left(\xi_{\tau}\right)=a\left(\xi_{\eta}\right)$.

 \boldsymbol{Z}-динейнои комбинацй

$$
\sum_{i} \mu_{i} \xi_{n}^{i} .
$$

 отобратения a, b непрерывнн в этой топодогии, то $a x=b x$ дая лобого $\quad x \in K\left(B\left(\mathbb{Z} / p^{2}\right)\right)$.

 дифферөвциалд трввкальны, то груша $\mathrm{K} \Lambda^{*}(\mathrm{X})$ деиотвительно присо-
 Iрмм. перев.
 отобразения

$$
K\left(B\left(\mathbb{Z} / p^{r^{\prime}}\right)\right)-K\left(B\left(\mathbb{Z} / p^{\eta}\right)\right)
$$

 дискретной топологией; тогда $B\left(\mathbb{Z} / \rho^{\infty}\right)$ бддег пространством эдлен-
 строить как прямо夂 предел иространств $B\left(\mathbb{Z} / p^{r}\right)$. Так как ооратная спстема

$$
\ldots-K \Lambda^{*}\left(B\left(\mathbf{Z} / p^{n}\right)\right)-K \Lambda^{*}\left(B\left(\mathbf{Z} / p^{n+1}\right)\right) \backsim \ldots
$$

состоит иа ятморфиззов, то огображенге

$$
\frac{\lim }{\tau} K \Lambda^{*}\left(B\left(\mathbf{Z} / p^{\eta}\right)\right)-K \Lambda^{*}\left(B\left(\mathbb{Z} / p^{\infty}\right)\right)
$$

является взоморфизмом. Рессмотрим теперь отобразенве

$$
B\left(\mathbb{Z} / p^{\infty}\right) \longrightarrow B U(1) ;
$$

гомологические грушв этого отобрахения - өто гомохогическле
 из них, которяе отличны от нуля, нзоморфнн $\mathbb{Z}[1 / p]$. Так нак групиа Λ хаусдорфова в p-адическов топологки, то

$$
\operatorname{Hom}(\mathbf{Z}[1 / p], \Lambda)=0
$$

 p-адвческой топомогни, ноказнвает, что

$$
E x t(\mathbb{Z}[1 / p], \Lambda)=0
$$

 когомологии нашего отображения равни вулы, т.е. отобратение

$$
H^{*}\left(B\left(\mathbf{Z} / p^{\infty}\right) ; \Lambda\right)-H^{*}\left(\mathbb{C} P^{\infty} ; \Lambda\right)
$$

является пзоморизмом. При помощи спекградыно поодедоватедно сти Атьи - Хирдебруда мн внводиа ия әтого, что отобратенге

$$
K \Lambda^{*}\left(B\left(\mathbf{Z} / p^{\infty}\right)\right)-K \Lambda^{*}\left(C P^{*}\right)
$$

таксе явнвется пвоморфиямом. Эттм докаэана делана 6.5.3.
Следотвие 6.5 .4 витекает из демам 6.5 .3 п $6,4.1$.

 бегагь подходящее мнохеотво представитөлен, напримор $0 \leqslant i \leqslant p^{2} / 2$. Так нак все өтқ рассдоения четномерны п ориентируемл, то ва самом деде мн подучвм описание подгрушшы $2 \Lambda \oplus$ $\oplus \operatorname{KSO} \Lambda\left(B\left(\mathbb{Z} / p^{2}\right)\right)$ грушы $K O \Lambda\left(B\left(\mathbb{Z} / p^{2}\right)\right)$.

Следотвия 6.5 .2 п 6.5 .4 таже переносятся ни вещественныи олучан.

Остадьнне резудтатн өтого парагрөфа переносятоя на вещест-
 не бјд y yomonisars of srom.
 описагь пряио раздожение групын $\mathrm{A}(\Lambda)$. В обозначениях демады

$$
\sum_{i} \lambda_{i} \xi_{n}^{i} \longmapsto\left(\sum_{i=0 \bmod p} \lambda_{i} \xi_{n}^{i}\right)+\left(\sum_{i=0 \bmod p} \lambda_{i} \xi_{n}^{i}\right) .
$$

Очевддно, ччо уто раядомение сохраняетоя при переходе к обратноиу предеду п зядает прямое раздомение групы $A(\Lambda)$ вида, скаzeм

$$
\begin{equation*}
a \mapsto \alpha^{\prime}+\alpha^{\prime \prime} \tag{6.5.5}
\end{equation*}
$$

Здесь α^{\prime} есть та чвоть операпии α, ноторая может онть определена прі помощи операции Ψ^{k} с k, взаимно простим с p (п поррентного перехода в пределу), в то время как $\alpha^{\prime \prime}$ есть та часть операцвал α, которая мохет бить опредедөна при понощи операщий Ψ^{\hbar} с \notin, кратнвм p (п корректного перөхода к пределу). Это прямое разложение обратного предеда основаво на предподожении о подноте и хаусдорфовости групшы Λ в ее $р$-адическои топологии и пе может бить получено бөз такого рода предположөнии.

Теперь ясно, что преддожение 6.3.5 будет вытекать пи. следурпех двух резудвтатов.
 Haxpinh $B\left(\mathbb{Z} / p^{h}\right) \rightarrow B\left(\mathbb{Z} / p^{n+1}\right)$, s $\alpha^{\prime \prime}=0$.

Леммя 6.5 .7 будет дохазана в 86.6 ; наша яадача в өтом дараграфе заклочается в доказательстве пемам 6.5.6. Я приотудао к описанир участвуоитах в нен траноферов.

$$
B\left(\mathbf{Z} / p^{2}\right) \longrightarrow B\left(\mathbf{Z} / p^{\imath+1}\right) .
$$

 диаграмма грулा:

 которой являртся накрыттяями:

Ддя стоящего справа накрнтвя мв нопользуем коногрукдроо
 регулярное представдение грушы \mathbb{Z} / ρ. В сиду естественности для стоящего олева накратия мы подучш

$$
\operatorname{Tr} 1=1+\xi_{n+1}^{p^{n}}+\xi_{n+1}^{2 p^{\eta}}+\ldots+\xi_{n+1}^{(p-1) p^{n}}
$$

 плинатввностд трансфөра ${ }^{1}$, так вап $\xi_{r}^{2} \in K\left(B\left(\mathbb{Z} / p^{\imath}\right)\right)$ есть образ элемента $\xi_{n+1}^{2} \in K\left(B\left(\dot{\mathbf{Z}} / p^{n+1}\right)\right)$.

 комаутируот о транофером. Расомотрим раядожение (6.5.5)

$$
\alpha \mapsto \alpha^{\prime}+\alpha^{\prime \prime}
$$

$$
B\left(\mathbb{Z} / p^{n}\right) \longrightarrow B\left(\mathbb{Z} / p^{n+1}\right)
$$

удовлатворяет соотномениы

$$
(\alpha T r-T r a) \varepsilon_{r}^{i}=p a^{\prime \prime} \xi_{r+1}^{i}-T r a^{\prime \prime} \xi_{r}^{i}
$$

 $B\left(\mathbb{Z} / p^{2}\right)$ п $B\left(\mathbb{Z} / p^{n+1}\right)$; поэтоия, согхано сдедотвир 6.5.2, достаточно докаяагь ее пля $\alpha=\Psi^{k}$. Іусть сначала $k=0 \bmod p$, так что $\alpha^{\prime \prime}=\Psi^{*}=a$. Тогда

$$
\begin{aligned}
\Psi^{k} \mathrm{Tr} \xi_{n} & =\Psi^{k}\left(\sum_{l=0}^{p-1} \xi_{n+1}^{1+l p^{n}}\right)=\sum_{l=0}^{p-1} \xi_{n+1}^{k+\ell p_{p}^{n}}= \\
& =p \xi_{n+1}^{k}\left(\operatorname{tax} \operatorname{sax} k p^{n}=0 \bmod p^{n+1}\right)=p \Psi^{k} \xi_{n+1}
\end{aligned}
$$

 равна нудо; мохно провесту те же внчнсления, что п для случая

Прхменяя демау 6.5 .9 п операцивм α^{\prime} п $\alpha^{\prime \prime}$, ме можем раздолить еө на две форады:

$$
\begin{aligned}
& \alpha^{\prime} \operatorname{Tr} \xi_{r}^{i}=\operatorname{Tr} \alpha^{\prime} \xi_{r}^{i}, \\
& \alpha^{\prime \prime} \operatorname{Tr} \xi_{r}^{i}=p \alpha^{\prime \prime} \xi_{r+1}^{i} .
\end{aligned}
$$

Этг фориддв останутся верннав при замене эдеменчя $\quad \zeta_{\eta+1}^{i}$
 өдемента x в групие $K\left(B\left(\mathbb{Z} / p^{r}\right)\right.$; нам нет пеобходимости доказнватв 9 то.

 uу 6.5.9 к накржтим

$$
B(1) \longrightarrow B(\mathbb{Z} / p)
$$

п подагая $i=0$, ма подучвм

$$
\left(\alpha T_{r}-T_{r} \alpha\right) 1=p \alpha^{\prime \prime} 1-\operatorname{Tr} \alpha^{\prime \prime} 1=\lambda\left(p-\sum_{\ell=0}^{p-1} \varepsilon_{1}^{\ell}\right)
$$

так что обязателыно $\lambda=0$. Предполохим тедерь по индукции, что в $B\left(\mathbb{Z} / p^{\eta}\right)$ виеет место равенство $\alpha^{\prime \prime} \zeta_{\varepsilon}=0$; индукции начкнается со олучая $r=0$, в вогором наше утверадлнне потинно в суду сказанного выше. Расомотрим накрытие

$$
B\left(\mathbb{Z} / p^{t}\right) \rightarrow B\left(\mathbb{Z} / p^{\imath+1}\right)
$$

ия дөиаы 6.5 .9 внтегает, что

$$
p a^{\prime \prime} \xi_{r+1}-\operatorname{Tr}_{r} \alpha^{\prime \prime} \xi_{r}=0
$$

 r. Теперь из одедствия 6.5 .4 витекает, что $\alpha^{\prime \prime}=0$, п пемма 6.5.6 догазава.
 Нам оиять предстоит расплачпваться за наме невнимание к грушен SU.

Пусть дана аддитхввая когомологмчеоная операция

$$
\alpha:[W, B S U] \rightarrow[W, B S U \Lambda]
$$

где $\Lambda=\mathbb{Z}_{p}^{\wedge}$. Согдасво [IO$]$, пшеөтся единотвенвая когомллогическая оцерапия b, вкдочаөмая в компутативнуо диаграмау

$$
\begin{aligned}
& {[W, B S U] \xrightarrow{a}[W, B S U \Lambda]} \\
& {[W, B U] \xrightarrow{b}[W, B U \Lambda]}
\end{aligned}
$$

$x \triangleleft\left[B\left(\mathbf{Z} / p^{2}\right), B U\right]$, го $p^{n} x$ өоть оорая декогорого элеменга
 coot paвенство

$$
b T r p^{r} x=T r b p^{r} x
$$

 $\left[B\left(\mathbf{Z} / \mathbf{p}^{i+1}\right), B U \Lambda\right]$.

Тимется много операций C, вклдочаемах в комоутативнуо дииаrpanory

पтобн построить такуло операдно, пужно, в сущности, только вуорать скатяр λ о

$$
c 1=\lambda 1
$$

Однако ммеется одна п только одна гакая операпия C, компитирумпая с трансферами во всех наших накрятиях. Болеө точно, тах нак на өлементах из ядра аутментации С уже коммутируөт с трансферами, то для коммутирования С С трансферами необходимнл и достаточным является равенство

$$
c \operatorname{Tr} 1=\operatorname{Trc1} .
$$

Рассукдая так дө, как при доказательстве леммн 6.5.6, мн вхдим, что необходимвм п достаточным для этого явллется равенство $c^{\prime \prime} 1=0$. Но в гриввальном случае мы вмеөм $\left(\Psi^{0}\right)^{\prime \prime}=\Psi^{0}$; оледоватедно, пметоя одво и только одно значение λ, гарантирурмен равенство $c^{\prime \prime} 1=0$.

Считая вердвм предлохение 6.3 .5 , мн подччяем отобраменин

$$
f: K(0, \ldots, \infty) \rightarrow(K(0, \ldots, \infty)) \Lambda
$$

$$
g: K(4, \ldots, \infty) \rightarrow(K(4, \ldots, \infty)) \Lambda
$$

Дия доказательотва равенства $\Omega^{\infty} g=\alpha$ достаточно проверить, что а омрөдедяется комшозициеи

$$
B S U \xrightarrow{a} B S U \Lambda \rightarrow \Lambda \times B U \Lambda,
$$

 травтои проотранотва $\Lambda \times B U \Lambda$. Докавателвс тво вакончено.

Сообрахения, овязанння с переходом от 6 к с, хоромо работарт І в вещественном слдчяе.

Делыы өтого параграфа явивется довазательство лемен 6.5.7. я проведу өго длл комплексного одучая; в вемественнои случае серьезних отапуиа не возиикаат.

Еотественно преддя всего обоудить возмамние способи топодо-

 тпипивая окреотность дуля состоит из морфхзмов $f: k u \rightarrow k u \Lambda$, вмемпих трмввальное ограниченін ни остов ku^{n}; ках чополог, я, быть мохет, а рrіоиіпрядпочнтар менно өту топодотір.

$$
[k u, k u \Lambda] \xrightarrow{\Omega^{\infty}} A(\Lambda) \longrightarrow K \Lambda\left(B\left(\mathbb{Z} / p^{2}\right)\right)^{\mathrm{I}} .
$$

Хочется, кодечно, чтоби ова овлд непрерявной. Очевидной топодо-
 опять-таки топологвя Фильграппи, в воторои, окрестностяви нуля являотея ядра

$$
k \operatorname{er}\left[K \Lambda\left(B\left(\mathbb{Z} / p^{n}\right)\right) \rightarrow K \Lambda\left(B\left(\mathbb{Z} / p^{n}\right)^{n}\right)\right] .
$$

 блиякым к вуло, если

$$
x=0 \bmod p^{n}
$$

[^4]для достаточно бодвого n. С алгеораическои топки зрения р-адическая тодология проме и удобнее, таи что представляется

Очевхдная топодогия, которуо мохно ввести в

$$
A(\Lambda)=\frac{\lim }{n} K \Lambda\left(B\left(\mathbb{Z} / p^{n}\right)\right)
$$

есть топология обратного предела p-адических топологин в членах $K \Lambda\left(B\left(\mathbb{Z} / р^{n}\right)\right)$. я буду назнвать такуо топологпо предельнон; это - одна пз топологии, очевиднвм образом овязанннх с вычисдениями § 6.5, вкльчапмими трансфер. Возможны, однако, и другие определения, столь же разумвне и приводяние фактически к той де семон топологии. Во-первых, вспомним изомориянм

$$
A(\Lambda) \stackrel{\curvearrowleft}{\longrightarrow} K \Lambda\left(C P^{\infty}\right)=\Lambda[[x]]
$$

из леммн 6.4.1. Мн можем топологизировать $\Lambda[[x]]$, считан тшиино甘 окрестностты нуля множество таквх формальных отепенных радов $\sum_{i} \lambda_{i} x^{2}$, что

$$
\lambda_{i} \equiv 0 \bmod p^{n} \quad \text { длs } \quad 0 \leqslant i \leqslant m .
$$

Такуо топологиы я буду назнвать топологией рядов.
Во-вторых, мн можем топологизировать $A(\Lambda)$, считая тишичнои окрестносты нуля множество таких очображении

$$
a: \mathbb{Z} \times B U \longrightarrow \Lambda \times B U \Lambda,
$$

что гомомородузмн

$$
\alpha_{*}: \pi_{2 i}(\mathbb{Z} \times B U) \longrightarrow \pi_{2 i}(\Lambda \times B U \Lambda)
$$

сравнвдд с нулем по модуло p^{n} при $0 \leqslant i \leqslant m$. Эчу тодологио я буду назнвать π_{*}-топодогиеи; өто - топология, напболее очевидным образом связанная со строением грумты [ku,kи Λ].

Разумеется, так как мы имеем дело исклочитедно с К-теориеи такех простнх пространств, как $B\left(\mathbb{Z} / p^{\varepsilon}\right)$ и $\mathbb{C} P^{\infty}$, то между өтвми тремя топологиями долана быть простая связд.

лемМА 6.6.1. Все три топологии в $A(\Lambda)$ совнадаот.
Дди наштх делеи достаточно знать, что предельная топология тоньше π_{*}-топологии; но било бн глупо проити мимо окончательного результата.

Я повременд с доказательством ленов 6.6.1 п зякончу моп объ-
 Первая такая топология өстөственно возникает из нашего анализа трупын $A(\Lambda)$: типичная окрестность нуля состовт из таких отоорамении $f: k u \rightarrow k и \Lambda, ~$ что гомоморфпзмн

$$
f_{*}: \pi_{2 i}(k u) \longrightarrow \pi_{2 i}(k u \Lambda)
$$

сравнимн с нулем по модулдо p^{n} прн $0 \leqslant i \leqslant m$. В сзлу сказанного выше п предломения 6.3.4 это означеет, что множество [ku, $k u \Lambda$] тодологияируется как подгруша грушн $A(\Lambda)$, в которур оно вкладнвается посредством Ω^{∞}.

Второи топологхеи является p-адическая топология, естественно возникаопая в группе

$$
\operatorname{Hom}_{\pi_{*}(K)}^{*}\left(K_{*}(k u), \pi_{*}(K \Lambda)\right)
$$

из деммн 6.4.7. Для описания типичной окрестности нуля возвмем конечное мнохество элементов $x_{1}, x_{2}, \ldots, x_{m}$ из $K_{*}(k u)_{\text {п о опре- }}$ делим типичнуо окрестность V нуля как множество таких $f \in \mathrm{KA}^{*}(k u)$, что все числа

$$
\left\langle f, x_{1}\right\rangle,\left\langle f, x_{2}\right\rangle, \ldots,\left\langle f, x_{m}\right\rangle
$$

делятся на p^{n}. я буду назнвать такуо топологво K_{*}-рополопиен.
ЛЕРММ 6.6.2. опреде денная выше π_{*}-топология в $[k u, k u \Lambda]$ совпядает с $\mathrm{K}_{\text {.топодогдеи. }}$

Конечно, надо отметить, что обе эти топодогиг строго грубеө, чем топология фильтраши, с которой я начал это обсуідднве.

Я отложу и доказательство лемав 6.6 .2 до окончаная мопх оозясненй. Оправданием лемм 6.6 .1 п 6.6 .2 слукит их исполвзование в следувмем рассукдении.

В н в о д лемама 6.5.7 из демм 6.6.1 п6.6.2. Рассмотрим в $A(\Lambda)$ өлемент a^{\prime}, дежямин в подрространстве $a^{\prime \prime}=0$. Ив определе-
 сумиами

$$
\alpha_{r}^{\prime}=\sum_{k \neq \bmod p} \lambda_{k} \Psi^{k} ;
$$

 падает с остальнддд топомогнями в $A(\Lambda)$. Отолдествим [kи, ku Λ]
 грушы $[k и, k и \Lambda]$ полна в K_{*}-гполопни, а по лемме 6.6 .2 $K_{*} \rightarrow$ гопология оовпадает о топодогиеи, индущрованнои в $\operatorname{Im} \Omega^{\infty}$ топологиеи грушы $A(\Lambda)$. отспда вытенвет, что последоватөльность a_{r}^{\prime} оходится в в $\operatorname{lm} \Omega^{\infty}$ п, значпт, $\alpha^{\prime} \in \operatorname{lm} \Omega^{\infty}$. Этим доказана лемма 6.5.7.
 рестность в π_{*}-топодогии, состояшан ия таких f, что

$$
f_{*}: \pi_{2 i}(k u) \longrightarrow \pi_{2 i}(k u \Lambda)
$$

оравнтмо с нудем по модуло p^{n} ири $0 \leqslant i \leqslant m$. Это равноонльно rong, yro

$$
\left\langle f, v^{i}\right\rangle=0 \bmod p^{n} \operatorname{mpm} 0 \leqslant i \leqslant m,
$$

ооратно, пусть V - невоторая окрестность в K_{*}-топодогви; постаточно рассматрявать окрестность, определяеиуо какми-либо
 $f \in K \Lambda^{*}(k u)$, что $\langle f, x\rangle=0 \bmod p^{n}$. Эдемент x момно пред-

$$
\sum_{\imath, s} \mu_{n, s} u^{n} v^{s}
$$

где $\mu_{n, s} \in \mathbb{Q} \quad$ II $s \geqslant 0$; ман можем очттать, что в сулал входят
 ентов $\mu_{3,0^{\prime}}$ мн мохем вашисать, что

$$
p^{t} x=\sum_{r, s} v_{r, 0} u^{r} v^{3}
$$

$$
\left\langle f, v^{3}\right\rangle=0 \bmod p^{n+t} \quad \operatorname{mри} \quad 0 \leqslant s \leqslant m,
$$

ма видим, стто пз $f \in V^{\prime}$ следует $f \in V$, т.е. $V^{\prime} \subset V$. Этим довазана лемма 6.6.2.

Доказатедвотво демми 6.6.1. Свячаяя я

Вопомни, что в доказатедбочве сдедотвия 6.4.2 бида јстанов-

$$
\alpha\left(\xi_{0}\right)=\sum_{i} \lambda_{i} x^{i}
$$

п мидуцррованных гомоморфмямов

$$
a_{*}: \pi_{2 j}(\mathbf{Z} \times B U) \longrightarrow \pi_{2 j}(\Lambda \times B U \Lambda)
$$

последние представдлот ообой умнозения на числа $\mu_{j}=\sum_{i=0}^{i} \lambda_{i} \beta_{i j}$,

$$
\lambda_{i}=0 \bmod p^{n} \quad \text { upr } \quad 0 \leqslant i \leqslant m
$$

ro

$$
\mu_{j}=0 \bmod p^{n} \quad \text { прп } \quad 0 \leqslant j \leqslant m
$$

$$
\operatorname{det}_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j \leqslant m}}\left(\beta_{i j}\right)=1!2!3!\ldots m!;
$$

$$
\mu_{j}=0 \bmod p^{n+t} \quad \text { прп } 0 \leqslant j \leqslant m
$$

то

$$
\lambda_{i} \equiv 0 \bmod p^{n} \quad \text { upy } \quad 0 \leqslant i \leqslant m
$$

Отспда следует, что топодогхя рядов совшадает с $\pi_{\#}-$-ппподоrиeй.

 состоямая, скахеи, пз таких $a \in A(\Lambda)$, что

$$
\alpha\left(\xi_{r}\right) \equiv 0 \bmod p^{n} \text { в } K \Lambda\left(B\left(\mathbb{Z} / p^{r}\right)\right)
$$

В польце $K\left(B\left(\mathbb{Z} / p^{n}\right)\right)$ пмеет место равенство $\left(q_{n}\right) p^{n}=1$,

$$
\left(x_{n}\right)^{p^{r}}=\left(\xi_{n}-1\right)^{p^{n}}=p y
$$

дли некоторого подходямего y. Возведя өто равенство в стедень n, ма получум

$$
\left(x_{n}\right)^{n p^{n}}=p^{n} y^{n}
$$

Поятой если

$$
b(\xi)=\sum_{i=m}^{\infty} \lambda_{i} x^{i},
$$

где $m=n p^{n}$, то обязательно $\overline{f\left(\xi_{n}\right)}=p^{n} z$ для некоторого подходямего \boldsymbol{z}. Запппем

$$
\alpha(\xi)=\sum_{i=0}^{\infty} \lambda_{i} x^{i}
$$

оравненпя

$$
\lambda_{i}=0 \bmod p^{n} \text { прп } 0 \leqslant i<m=n p^{n}
$$

задавт окрестность вуля в топодогих рядов, п из сказанного внше сдедует, что a дедатт в $V^{\text {I }}$).

Наконед, я докаху, что пределыная топология тоньше тополотии рядов. Пусть дана окрестность V нуля в топологии рядов, состоятая, скажем, ня таквх a, что

$$
\alpha(\xi)=\sum_{i} \lambda_{i} x^{i}
$$

где

$$
\lambda_{i}=0 \bmod p^{n} \quad \text { мри } i \leqslant m
$$

Иппукдшей вния по k мн построим число $r=r(k)$ со оледуоним свопством: еслй

$$
f(\xi)=\sum_{i \geqslant k} \mu_{i} x^{i}
$$

[^5]я $b\left(\zeta_{n}\right)$ переходит в нхлы'в $K \Lambda\left(B\left(\mathbf{Z} / p^{\eta}\right)^{2 m}\right)$, то $\quad b \in V$.
 и $r=n$. продподомвм что построено чполо $r=r(k+1)$, где
$15 k \leqslant m$. Так как $\widetilde{K}\left(B\left(\mathbb{Z} / p^{2}\right)^{2 m}\right)$ аннудируетоя уановенгем на

 p^{3}. Полохия

$$
r^{\prime}=r(k)=\max (n, r, s) .
$$

Eos.rI

$$
f(\xi)=\sum_{i \neq k} \mu_{i} x^{i}
$$

п $b\left(\zeta_{\varkappa^{\prime}}\right)$ переходит в нуль в $K \Lambda\left(B\left(Z / p^{n^{\prime}}\right)^{2 m}\right)$, то, расомат, ривая чден нахменьтей фильтрацхи, мн вхдим, что $\mu_{\star}=0 \bmod p^{\varkappa^{\prime}}$. Расомотрим теперь такур операиио C, что

$$
c(\xi)=\sum_{i=k+1} \mu_{i} x^{i} .
$$

очевидно, что $c\left(\xi_{n}\right)$ переходит в нупы $\left.{ }^{\mathrm{I}}\right)_{\mathrm{B}} \mathrm{K} \Lambda\left(B\left(\mathbb{Z} / p^{n}\right)^{2 m}\right)$; поөтому по предполохенио индукцви $c \in V$. отспда оледует, что $b \in V^{2}$) и маг индтициии завершен.

Иядокпия заканчиваетоя ва $k=1$; прп этом подучаетоя такоо r, что өслй для операгпия b

$$
b(\xi)=\sum_{i \neq 1} \mu_{i} x^{i}
$$

п $b\left(\xi_{n}\right)$ переходит в пудв в $\bar{K} \Lambda\left(B\left(\mathbb{Z} / \boldsymbol{p}^{2}\right)^{2 m}\right)$; то $b \in V$. Сдв

 $=\max (s, n)$, п пусть $V^{\prime \prime}$ есть множество тайх $\alpha \in A(\Lambda)$, чтг

[^6]

 частнах яначенаи $r>1 \mathbf{m > 1}$.

Гдава 7

875,00901

В втой гдаве я попттадсь коротко п，вероятно，совершенно неадекватим образом обрисовать нынешнее положение дөх в нашей обл⿰阝тㅍ．

По－видрмому，лучше воего продолхить разговор，начаты⿺𠃊 в § 1．8． Как быдо сказано，для изучения топодогии многообразии топологам нөобходимо，в частностп，исследовать следухмуо последователь－ ность грушा п гомоморфпзмов：

$$
K_{0}(X) \rightarrow K_{P L}(X) \rightarrow K_{T o p}(X) \rightarrow \dot{K}_{F}(X) .
$$

Другип сдовами，хн хотим рассмотреть представлямиие пространот－ вa

> BO, BPL, BTop, BF

вместө с соответствушшаи факторпространствамв，проанализировать иди представить их как бесконечнократнне пространства петель от болөе элементарнв частен．Конечно，мөлательно анализировать пе тольто объектн，но п отобрамения；в пдеале хотедось бы иметь спии сок отображенин，в котором кахдое геометрически вахное отобра－ мение встречаетоя ровно один раз，у указател，в котором бнли би кратко обрисованн все ранее построеннне интереснне отображе－ ния и указнвадось zx место в главном списке．В то время，когда я читал әти лекции，мне казалооь，что такои уровень сиотемати－ зации әтого предмета не скоро будет достигнут．Сейас（9／IX 1977）в өтом направдених имеется яначвтедьнии прогресс．В ятом мохно убөдитьоя，обративпитсь，напрммер，к работе［99］．Оказа－ дось，в частности，возможннм дотазать，что отображение，пост－ ровннов при помопи＂дискретннх моделен＂，согласуется с отобра－ жением，построенным другими методами．

Вернемся к проекту "анализа объектов". Как уже говорилооь в гд.5, гомотопическвии группами пространства BF слукат стабддння гомогопические групия сфер, и поэтому они очень слохнн. 0днако посде локализации по нечетноиу простому числу стабилввне гомотопическия груиы сфер расщепляотся в прямоло сумепу вида

$$
\pi_{n}^{3}\left(S^{0}\right) \cong(\lim y)_{n} \oplus(\operatorname{coter} y)_{n}
$$

Это можно внвесяи пз приведеиних в гл. 5 результатов. Поәтому мы винуждены смириться о перспектвво построения единого иро-отранства или опектра, гомотопическимв груптами которого явлнотоя групт соке凡 f. И отому пространотву или спектру мы вверяем все нерешенные проблемы теории гомотопии. Лобое пространотво илм спектр, задуманное и созданное ддя этого, мохно назвагь сокег $\}$. Конечно, автор未, которые в чрезмериом рвении зв-
 вать один и точ же обвект с разних точек зрения, могут добавить x этопу обозначенпи нихние и верхиие иицегси и друтие украпения.

Небольшая аномалия возникает при локализации по простому числу 2. Груипа $\pi_{n}^{3}\left(S^{0}\right)$ по-прехнему расиепляется в прямур сумму "известнои части", связаинои с К-теориен, и "неиздестной части", однако описанве "известнои чвсти" долкно бнть несколыко другим. Помимо образа классического \mathcal{F}-гомоморфзма эта часть содераит пряме слагпемне $\mathbb{Z} / 2$, порокденнне әлемеитани μ_{r} при $r=1,2 \bmod 8[5]$. Эти фактн хорошо издестии топологөм и добимн мми, но вряд ли трогарт кого-нибудь еше.

Возврашалсь виовь к проекту "анализа объектов", приходится щршанагь нерадостну перспективу введения трубого объекта сонег'. Хотелось бн кестко управлять всеми оставпимися компонентами натего раздожения, и на практике это покв что означает, что опи долхнн быть тесио связвнннми с известинми спектреми, представляриими варұанту связнои K -теории. (Когда я говорв "тесно связанн", я имеш в виду, что допускаются такие коиструкции, как норасслоения, возниваопие из известних отображений между известными спектрами K -теории.) Поэтому результат типа изложенного в гл. 6 дозволяет надеяться, что отобрамения между такммя спектрами поддартся управленио. См. об этом [69], теорема 6.1 (хотя я не очень доверлы некоторым p-адическим результатам этого препринта), или [70], теорема 9.3 на с. 232, теорема 9.9 на с.236.

Получить хорошее представдение о достигіутом в әтой области прогрессе можно, оравиив проблемн, ноставленние в [95], с үевультатами, полученными в [99]. Кониретпзе проблеми рассматриваемого мною типа я могу разделить по трем уровням.
 олему 6: "Когда Н-отобраление опного беоконечнократного проотранотва петель, гомотогическщ эквивалентного локализованноку ими дополненному по p пространотву BSO, в другое такое проояранотво являетая бөоконочнохратнцм петлөвнм отобрагенщем ${ }^{\text {" }}$
 т Торнхяд. И как я и мредпозагал, нам теперь не очень страмия мроолеле өтого уровня.

Теперь я переныд х формудировке двух проблем второго, промеуточного уровня.

BOIPOC 7.I.I. ATLA, Bott у Hampo в [I9] онабдид Spinрассноения КО-ориентапие\#, т.е. задали естөственное преобразование

$$
\mathrm{K}_{\text {spin }}(\mathrm{X}) \stackrel{6}{\sim} \mathrm{~K}_{\mathrm{spin;} \boldsymbol{K O}}(\mathrm{X}),
$$

 Spin-расслоений с фиксировапной KO-ориентамиеи, а отооражение

$$
\pi: K_{\text {spin; }^{\prime} o}(X) \longrightarrow K_{s_{\text {pin }}}(X)
$$

өсть эабивание этой ориентации. Продомжаетоя ли б до естеотвениого преобразования б теорий когомодогиі , тахого что $\pi \sigma=1$?

воІІРС 7.1.2. Этот вопрос аналогичен вопросу 7.1.1,
 сулиивана STop-расолоенин над KOZ $[1 / 2]$ (ом. [149$], 86$).

Эти двв вопрося являртся типотезамл 2 и 3 работн [95]. На эти вопроси, правда в олетка измененном виде, додученн полокитөльние ответи; однако этих ответов нам вподне достаточно, поокольку они поэволяот достичь иохомпур цель. Иөмененив состоит в следуощем: ооотнопения типа $\pi \sigma=1$ внподняргоя не в групне
 ми сфорических расодоении, а не Spin-расодоенй (см. І.8). Подробности ом. в [99], төорема 7.11, с. І35, теорема 7.16, c. 137.

Теперь а перехоху к формллировке адинственной пробления тротьего, самого гдуоокого уровня, которая овявана с вартантом оосуждавшеися в гл. 5 типотези Адамса для бесконечнократвых пространств петель.

Сначала сбормллируем комплексннй вариант әтой гипотезн. Донустім, что отобраление

прододхвется до өстественного преобразования төорй когомологии, моторое соответствует огобраденио спектров

$$
\mathrm{Bu} \rightarrow \text { BSF. }
$$

ВОІРОС 7.I.3. Гомотопва лі компознцяя.

нудо в смнсле отобрахений опектров?
Это - гхпотеза I пз [95]. Недавно она доказана в двух неза-
 [132] (cm. такхе [164], [167]- Перев.), В оонову методов фрвдлянде-

 минерия гл. 2 до пх согласования. Методы Cе申ырра закдочадтся в геометрическом поотроения теорй когомологй, представденной гомотошвческим слоем отобрахения $\Psi^{k}-\mathrm{I}$, такои, как в [І3I].

ВОПРОС 7.1.4. Капов должен оитз ведеотвеннии анадог вопроса 7.1.3 прм простом $p=2$?

Прұ нечетном простом p проблемн нет: на очевидны: вемеотвенныи анахог вопроса 7.1.3 ответом слухат ответ на вогрос 7.1.3. Спучай $p=2$ неивбехно является совершенно другим. Нетрудно сформуировать стодв слабое утверадения, что оно будет бесполеэным (например, пустое), илл же стол сильноө, что оно будет воверним (например, очевидныи вещественннй аналог вопроса 7.1.3). Вопрос в том, чтобы соораулироватъ "правильное" утверддение. Кажетоя, подходямाия шандидат найден, однако я пога еше не слшшал, что өсть хотъ какая-то надедда доказать әто утверадөhixe.

Отмечу такле еме одно недавнөе достижение: доказано, что разнне маминн из г'л. 2 , по суцеству, эквивалентнн. Точнее, на машину, преврападпит входящие в нее пространства в спектры, накладнвается некоторая разумная система акспом; при этом пожаэано, что соответствуопий вариант машиин Мәя удовлетворяет этим аксчомам; показано, что лобая машина, удовлетворяюшая этим аксиомам, эквивалентна матине Спгала, которая оказнвается наиболее удобнои

для оравнөния. Пропзотло то хө, что и о аксиомами Эйденбергт Ствнрода: создатель ново青 машини долхен принять на себя бремя проверки виполнения этих аксиом для своей мапинн. Это достияание принадлешкт Мәд п Томасону [100]. Главнал пдея запмствовавя из работи фддоровяча, доказавшего единствечность спектров в ахгебрагческои К-гөория [58].

В дополнение к этому доказана единственность машин, преооразуриих пермутативнне категории в опектри.

По-видпмому, вта теория находится в достаточно удовлетворителном состояниц и олизка к выоонненио своих глявных деден. Этвм мадорным аккордом й завершим нашу книту.

1. Adam J. Y. Veotor fielde on apheres, Ann. of Math.(2) 75 (1964)
 рах. - Сб. Мауематェка, [963, $7: 6$, с. 49-79.]
2. On the groupe J(X). I, sopolocy 2(1963), 181-195.
 marixa, 1966, 10:5, c.70-84.
3. _Oon the eroupe $J(X)$. II, sopelogy 3 (1965), 131-171.
 матвка, 1967, II:4, 0.3-4I.]
4. \qquad On the groupe $J(X)$. III, fopology 3 (1965), 193-222. (theerся перевод: Адамс لІх.Ф. 0 грутиах $J(X)$. W. - СС. Матеmayman, 1968, 12:3, c.3-36.]
5. _工n the groupd $J(X)$. IV, ropology 5 (1966), 21-71. With a correction. ropology 7 (1968) 331. [Иwеется перевод:
 c. 37-97.]
6. L_Lectures on coneralised oohomology, in Lecture sotee in mathemation no. 99. springor 1969, 1-138.
7. -_Algebralo topology in the lat deoade, proceedinge of syaposia in pure wathemation 22, Meor. Meth.S00. 1971, 1-22.
8. ._The rahn-priddy theoren. proo. Combridge philos.800. 73 (1973), 45-55.
9. Stable homotopy and generalieed ookomology, univorsity of chioago presa, 1974.
10. -_ primitive elemonts in the X-theory of BSU, Quarterly Jour. of math. 27 (1976), 253-262.
11. Adams J.P., Clarke P.V. stable operations on complex X-theory, Illinais Jour. Math. 21 (1977) no 4,826-829.
12. Adams J.P., Harris A.S., Switzer R.M. Hopf algebres of
cooperations for real and complex X-theory, proc. Iondon math. 800. (3), 23 (1971), 385-408.
13. Adam J.F., Hoffman P. Opermtione on I-theory of toraionIree spaces, Fath. Froc. cambridse philon.soo. 79 (1976). 483-491.
14. Aden J. F., Friddy 8.B. Uniquaness of 8s0, yath. Proc. cenbridge philen. 80c. 80 (1976), 475-509.
15. Aders J. P., walker 0 . On complex stiefel manifolde, proc. Cumbridge philos. soc. 61 (1965), 81-103. [Имеется деревод:
 Сб. Математпка, 1967, 11:4, с. 42-68.]
16. Andermon D.F. spectra and Γ-sete, in proceedinge of symposia in pure rathemation 22, Aner. math.Soc., 1971, 23-30.
17. Atiyah M.I. Charaoters and cohomology of fiaite croups.

18. Atiyah M.P., Bott A . On the periodioity theoren for conplaz veotor bundles, acta rath, 112 (1964), 229-247.
19. Atiyah M.F., Bot R., shapiro A. Clifford modulen, sopolegy 3 suppl. 1 (1964), 3-38.
20. Atijah M.P., Segal G. Ruivariant K-theory and completion, Jour. Differential ceonetry 3 (1969), 1-18.
21. Barratt M. Q. A note on the cohomology of aemigroups, jour. London th.Soc. 36 (1961), 496-498.
22.

A free croup functor for atable homotopy, in Procedings of sympoile in pure rathemation 22, mer. Math.800. 1971. 31-35.
 1099.
 functor for atable homotopy theory, ropologs 13 (1974), 23-45.
25. _ Γ^{+}-ntructurea. II. A recognition principle for infinite loop apaces, topologj 13 (1974), 113-126.
26. - Γ^{+}-structures. III. The stable atructure of $\Omega^{\infty} \Sigma^{\infty} A$, Topology 13 (1974), .199-207.
27. Baxratt M.G., priddy S.B. On the homology of nonconneoted monoids and their associated groups, Coment. Math.Helr. 47 (1972). 1-14.
28. Beok J. on H-Spaces and infinite loop apaoen, in Iecture Motee in rathematice no. 99, Springer 1969, 139-153.
29. \qquad Clasaifying spaces for homotopy-everything E-apa-

0es, in reoture motea in mathanatios no. 196, Springer 1971. 54-62.
30. peoker J.C. Charecteristic Clangea and X-theory, in Inoture Fotes in Matheaatios no. 428, springer 1974, 132-143.
31. Beoter J.C., Oasmon A., Gottlieb D.H. The Leffachets amber and fibre prenerving mapn, Bull. Amer. with.Soc. 81 (1975), 425-427.
32. Becker J.C., gottilb D.E. Applioationg of the evaluation map and trangfer map theorems, wath. 1 na 211 (1974), 277288.
33. ————tranafor map and fiber bundles, topology 14, (1975), 1-12,
34. Boardman J.1. theais, Cenbridet 1964.
35. - stable homotopy theory, simographed notes, mivernity of Tarwick, 1966.
36. —— 8table homotopy theory, mimeographed noten, Johne Hopkine, 1969/70.
37. \qquad monoide, H -apeces and tree aurgery, nimeographed notes, Haverford college, 1969.
38. \qquad Homotopy atruotures and the language of treas ${ }^{1)}$. prooeedinga of syaposia in pure Mathenatios 22, Amer. yath. 80c. 1971, 37-58.
39. Boardman J. . . Vegt R.I. Homotopy-ovexything H-apeoes, Bull. Amex. Math. Soc. 74 (1968), 1117-1122.
40. \qquad Homotopy invariant algebraic etructuren on topolosical spaces, Leoture Motes in Mathematice no. 347, springer 1973. [Ђмеөтся перевод: Борран Дхя, Фогт Р. Гомотош=ческн шнвариантни апебрапческие структури на топодогпческих пространотвах. - М.: Мерр, 1977.]
41. Borel A, Hirgebruah F. Gharacterimtic olansen and homogeneous epeces, I. Aner. Jour. Math. 80 (1958), 458-538.
42. Bott R. The atable homotopy of the olasaical groupa, proc. rat. Aoad. Soi. UsA 43 (1957), 933-935
43. ——ne atable homotopy of the clansical groups, pmale of math (2) 70 (1959), 313-317.
44. Bott R., samelson $H_{\text {. an }}$ one pontryegin produot in epaces on pathe, coment. Hath. Helv. 27 (1953), 320-337.
45. Bounfield A.K., Kan D.M. Iooaliantion and completion in homotopy theory, Bull. Mer. Math. 800.77 (1971), 1006-1010.

1) They whisper in the wind (oни meлөcrят нa вerpy).
46. Homotopy linits, oompletion and localiaations, Looture Fotel in Mathemation no. 304, Springer 1972.
47. zrowder W. Homology operationa and loop apaces, Illinois jour. Math. 4 (1960), 347-357.
48. Brown g. H. Cohomology theorien, samale of math, (2), 75 (1962), 467-484. With a correotion. Annals of math (2), 78 (1963), 201.
49. Abstract Homotopy wheory, qranc. Amer. Wath 800. 119. (1965), 79-85.
50. Cartan H. Sominaire H. Oartan 12, 1959/60. periodicitd des groupes dihomotopie stables des groupes olaasiques, diapres Botta, Séoretariat mathematique, 11 rue plerre curie, parie $5^{\text {e }}, 1961$.
51. Cartan H., gilenberg S. Homological Algebra, princeton univ. press 1956. [Имеегся поревод: Картан А., Эиленберг С. Гомодогическая алгебра. - М.: ИII, I960.]
52. Gobb P.V.2. P_{n}-apaces and n-fold loop apaces, Bull. Amer math. 500.80 (1974), 910-914.
53. Cohen P.R., Lada I.J., May J.P. the homology of iterated loop apaces, lecture yotea in Mathomation nó. 533, 8pringer 1976.
54. Dold 1., Yanhof R.E. Prinoipal quadifibratione and fibre homotopy equivalence of bundles, Illinois jour. wath. 3 (1959), 285-305.
55. DJer E., Iashof R.E. Homology of itoxated Loop appaces, mmox; Jour. Eath. 84 (1962), pp. 35-38.
56. Bokuann B. on complexen with operatorif, Proc. Het. Aoad..Safi USA 39 (1953), 35-42.
57. Bilonbere s., mactane s. on the croups $\mathrm{H}(\pi, n$). I. smale of Math. (2), 58 (1953), 55-106.
58. Fiedorowios 2. A note on the apeotre of algobraic x-theery Topelogy. 161 (1977). 417-422.
59. Froudenthal H. Uber die Elacsen van sphareambilidungen.I. composito rath. 5 (1937), pp. 299-314.
60. Priedlender s.M. pibration in otale homotopy theory, publ. wath. of the I.H.E.S. 42 (1973), 5-46.
61. -_Stable Adams conjecture, aubaittod to the Math. Proo. Camb. Philios. Soo.
62. Geraten S.M. on the apoctrua of algebraic x-theory, Bull. smex. Kath. soo. 78 (1972), 216-219.
63. Hilton P.J. on the homotopy groups of the union of apheren, J. London math.Soc. 30 (1955), 154-172. [Имеется перевод:
[Хилтон II. 0 гомотопкческих группах объединении офер. - Со. Математика, 1957, I:1. с.19-36.]
64. Kilton P.J., Kislin G., Roitberg J. Topological localisation and nilipotent groupe, sull. Amer. yath. Soc. 78 (1972), 1060-1063.
65. - Homotopical locallsation, proc. London yath. Soc. (3), 26 (1973), 693-706.
66. -_ Localisation of ailpotent groupa and apaces, FoxthHolland 1975.
67. Hilton P.J., Roitberg J. Hote on principal s^{3}-bundles, Bull. Amer. Math. Soc. 74 (1968), 957-959.
68. - on principal s^{3}-bundies over apheres, snnale of Math. (2), 90 (1969), 91-107.
69. Hodglin In, Suaith V.P. The X-theory of aome more wellknown apaces, preprint.
70. - Topics in X-theory, Leoture sotes in Mathematios no 496, Springer 1975.
71. Husemoller D. Fibre bundlea, Mograw-Hill 1966. РРмеется перевод: Хьозмолдер Д. Расслоенные пространства. -M : Mup, 1970.]
72. Isbell J.R. On coherent algebras and atirct algebras, J.A2gebra 13 (1969), 299-307.
73. James I.M. Reduced product apaces, Annals of Math. (2) 62 (1955). 170-197. [Имеется перевод: Дхеымс И. Приведеннне степени пространств. - Сб. Математика, 1957, 1:3, с.3-34.]
74. Eahn D.S., priddy S.B. Applicationa of the traisfer to stable homotopy theory, Bull. smer. Math.Soc. 78 (1972). 981-987.
75. Kan D.M. Adjoint functors, trans, Amer. Math. Soc. 87 (1958) [имеется перевод: Кан Д. Сопряхенные функторы. - Сб. Математикв, 1959, 3:2, с. 3-34.]
76. Kan. D.M., Mhurston W.P. BVery connected apace has the hom mology of a $\mathrm{I}(\mathrm{f}, 1$), ropology 15 (1976), 253-258.
77. Eudo T., sraki S. on $\mathrm{H}^{*}\left(\Omega^{N}\left(\mathrm{~S}^{n}\right) ; \mathrm{Z}_{2}\right)$, Proc. Japan Aoad. 32 (1956), 333-335.
78. Topology of H_{A}-apaces and H -squaring operations, мem. Fac.sci. kyusyu oniv.Ser. a 10 (1956), 85-120
79. Lemaire J.M. Le transfort dans les espaces fibrés (d'apres J. Becker et D.Gottileb). Seminaire H. Bourbald no. 472,1975
80. Iigaard H.J. Infinite 200 p mapa from SF to BO at the prime 2, Illinois Jour. of Math. 21 (1977) N: 4, 830-835.
81. Ifma B.L. The Spaniermitehead duality in new homotopy categories, summa Brasilieneis Math. 4 (1959), 91-148.
82. Stable postnikor invariants and theix duale, Suna Braniliensis Math. 4 (1960), 193-251.
83. Maclane S.Categorical Algebra, Bull. amer. Math.S0c. 71 (1965), 40-106.
84. Categories for the working mathematician, aram duate texta in mathenatics no. 5, Springer 1971.
85. yacyab J. Categories for the idle mathematioian; all your need to know. prooeedings of the philharmonic society of zanaibar 17 (1976), 10-9.
86. Madsen I., Snaith V.P., Toxnehave J. Homomorphisme of apeotre and bundle theories, preprint, Aarhus 1974/75.
87.

Infinite loop maps in geometric topology, yath. Froo. Comb. phil.Soc. 81 (1977), 399-430.
88. May J.P. Simplicial objects in algebraic topology, Van Fostrand Mathematical studiea no. 11, Fan Fontrand 1967
89. \qquad Categories of speotra and infinite loop apacea. in yecture rotea in Mathematice na. 99, Springer 1969. 448-479.
90.

A general algebraio approach to steenrod operatione, in Ieoture 耳otes in Mathemation no. 168, Springer 1970, 153-231. [Готовится перевод в кзд-ве "Наука" в качестт ве придаения к кн.: Сгинрод Н. Эпстеин Д. Когомологические операнин.]
91. proceedinge of symposia in pure yathematios 22 , Amer. yath. Soc. 1971, 171-185.
92. in wathemation no. 271, Springer 1972. [Weercs пepeвод: Муй Дх. Геометрия итерированних пространств петель. - Доподненге к кн.: Бордман لд., Фогт Р. Гомотопически инвариавтнно вдгөбраические структури на топологических пространствах. М.: Мир. 1977, с. 267-403]
93. —— F_{∞} spaces, group completions, and permutative oategoriea, in wrew developments in topologyn. London yath. Soc. lecture notea no. 11, Cambridge univ. Preas 1974, 61-93.
94 —_ Classifying spaces and fibrationa, yem. Amer. wath. Soc. 155 (1975).
2.1-2 de matematica y aympoaia Vol． 1 ，sociedad mathematica мexicana，1975，106－125．
96. —— Infinite loop apace theory，Bull．aner．Kath．Soo． 83 （1977），456－494．［Имеется перевод：Мәй Дх．Теория оеско－ нечнократних пространств петедъ．－Успехи матем．наук，I981； 36，5，c．137－195］
97. \qquad The homotopioal foundations of algebraic topology． to appear as a monograph of the 工ondon mathematical sooiety． 98． H_{∞} ring apectra，in the proceedings of the tom pology conference in stanford，1976，to appear in the series proceedings of Symposia in pure math．，smer．Math．Soc．
99．May J．P．，Quinn F．，Ray H．，Fornahave J．E ∞ ring apaces and S_{∞} ring apeotra，Lecture 耳otes in Math．no． 577. Springer 1977.
100．may J．P．，Thomason I．The uniqueness of infinite loop apace maohines，topology， 17.3 （1978），205－224．
101．MoDuff D．，segal G．Homology fibrationa and the group oom－ pletion＂theorem，ravent．צath． 31 （1976），279－284． 102．pilegran R．J．Iterated loop apaces，snnale of yath． 84 （1966）； 386－403．
103．－The bar conatruction and abelian 甘－apaces，fill－ noin Jour．Math． 11 （1967），242－250．
104．milnor J．F．om the cobordime ring Q and a complex anelo－ gue．I．Amex．Jour．Kath． 82 （1960），505－521．
105. －Marobundles and differentiable structures， nimeographed notes，princeton 1961.
106．－＿On axiomatic homology theory，peoific Jour．math 12 （1962），337－341．
107．＿＿＿Topological manifolde and amooth manifolde，in Proc．［ntern．Congrese math．1962，matitut mitteg－Inff－ ler，1963，132－138．
108.
———merobundles，ropology 3，suppi．1（1964）． 53－80．
109．Himura H．，Fiahida G．，Foda H．Iocalisation of CW－comple－ zes and its applicatione，J．Math．Soc．Japan 23 （1971），593－ 624.

110．Morlet c．mprofibrées et atructures différentiables， séminaire bourbaki 1963／64，raso．1，expose 263.
111．yorse y．the caloulus of variations in the large，smer． Math．Soc．Colloquium publications vol．18，Amer．Math． soc．， 1934.
112. mahida a. Gohomology operation in iterated loop apaces; Proc. Japan Load. 44 (1968), 104-109.
113. \qquad The nilpotency of elements of the stable homotopy groupa of apheree, J.math.Soc. Japan 25 (1973), 707-732.
114. Priddy S.B. on $Q^{\infty} S^{\infty}$ and the infindte gymietric eroup, In prooeedingn of Symposia in pure math. 22, Neer. Math. soc. 1971. 217-220.
115. Transfer, symetric groups, and stable homotopy theory, in Leoture rotes in mathenation no. 341: Springer 1973. 244-255.
116. quillen D.G. Sone remarics on ítale homotopy thoory and a conjecture of 1 dars, 20pology 7 (1968). 111-116.
117. Cohomology of aroups, in proceeding of the Ir ternational Congress of Fathematioiang 1970, Gauthlez Fillare 1971, vol. 2, 47-51.
118. \qquad The Adans conjecture, Topology 10 (1970).67-80.
119. \qquad On the oohomology and K-theory of the gemeral linear groups over a finite field, pnale of yath. (2), 96 (1972). 552-586.
120.

On the group completion of a ainplicial mono1\&. Privately oiroulated us-not to appear.
121. Rector D.In Ioop structures on the homotopy type of s^{3}. in Ieoture roten in Mathematioe no 249. Springer 1971, 99-105.
122. Roush F.W. Tranafer in generalised cohomologr theoriee, thesie. Finceton 1971.
123. sanderson B.J. Dneermion and erbeddinge of projective spaces, Proc. Iondon Math.S00. (3), 14 (1964),137-153.
124. segal G.B. Olamaifying apeces and mpectral sequancen. publ. Yath. of the I.Z.E.S., no. 34 (1968). 105-112.
125. \qquad Homotopy-evexything H-speoes. Privately-cireula ted Ms.
126. \qquad Confignration-apaces and iterated loop-spaces, Inront. yath. 21 (1973), 213-222.
127. C_Categories and cohomology theoriee. sopoloet 13 (1974), 293-312.
128. ——nemitiplicative group of olassical cohomolegy. quarterly Jour. Math. 26 (1975), 289-293.
129. Serve J-P. Homologie ajoguliexe den eapacen fibrea, annale of rath. (2), 54 (1951), 425-505. [Wеется перевод: Серр玉. -П. Спнгулярнне гожологин расслоенних пространств. В кн.: Расслоеннне пространства. - М.: ИІ, I958, с. 9-114] liens, Annala of Math. (2). 58 (1953), 258-294. [Имевтся
 вих групп. - В ки.: Расслоеннне пространствя. - М.: ИІ. 1958, c. 124-162.]
131. Seymour R.M. Vector bundlea invariant under the Adamg operations. Quarterly Jour. Math. 25 (1974), 395-414.
132. the infinite loop Adams conjecture, submitted to Inventiones Math.
133. snaith V.P. 1 stable decompoaition of $\Omega^{n} S^{n} X_{\text {, Jour. I }}$ don yath. Soc. (2), 7(1974), 577-583.
134. Spanier E.E. Duality and S-theory, Bull. Amer. Math.Soo. 62 (1956). 194-203. [Кеется перевод: Спеньер Э. Двонственноств п S-теория. - Сб. Натематига. 1959, 3:1,с.17-26]
135. —_Algebraic Topology, mcgraw-Hill 1966. [Иweetcs перевод: Спеньер 3. Адгебракчесная топодогия. - М. : 切, 1966.]
136. Spanier E.H., Whtehead J.H.C. A first approrimation to homotopy theory, Proo. Mat. Aoad. Sox. USA, 39 (1953), 655660.
137. $56-80$.
138. \qquad The theory of carriers and S-theory, in Algebraic geometry and topology, Princeton univ. press 1957, 330-360. [Имеется перевод: Спаньер Э.Г., Јаиттед Дд.Г. Теория воси-

139. Stasheff J.D. Homotopy asaociativity of B-apacea. I, zranm. Arer. Yath.Soc. 108 (1963), 275-292.
140. Ey 2 (1963), 239-246.
141. \qquad Infinite loop opacea - an historioal survey, in Lecture noten in mathematics no. 196, Springer 1971, 43-53.
142.Steenrod N.E. Milgramie clasaifying apace of a topological group, ropology 7 (1968), 349-368.
143. Steiner R. Smith's Prize easay, Cambridge 1976.
144. Sugawara M. A condition that a apace ie grouplike, Math. Jour. Okayama jmiv. 7 (1957), 123-149.
145. Sullivan D. Triangulating homotopy equivalences, mimeographed notes, farwiok 1966.
146. Sullivan D. Smoothing homotopy equivalencea, mimeographed notes, Warwick 1966/67.
147.
——_ On the Rauptrermutung for manifolde, sull amer. math.soc. 73 (1967), 598-600.
148. \qquad Geometric topology, mimeographed notes, princoton 1967.
149. -_Geometric topology. Part I. Ipcalisation, periodicity and calois symmetry, mimeographed notes, kII 1970. Пимеется перевод: Сулливан Д. Геометрическая топология. M.: Мир, 1975.]
150. \qquad Genetion of homotopy theory and the Adama conjeoture, annals of yath. 100 (1974). 1-79.
151. Thom R. quelques prprietes globales des varietes difforentiables, Comment. Math. Helv. 28 (1954), 17-86. [hseetcя деревод: Том Р. Некоторне свойства "в дедом" дпфферекдируемых многообразии. - В кн.: Рассдоенные пространства. - М: KII, 1958, c. 291-351.]
152. truchiga A. Homology operations on ring spectrum of i^{∞} type and their applications, Jour. Kath.Soc. Japan (1973), 277-316.
153. Togt R. Boardman's stable homotopy category, mimeographed notes, Aarhus 1970.
154. Wagoner J.B. Delooping oleasifying apaces in algebraic I-theory, Topologs 11 (1972), 349-370.
155. Whitehead G.I. Ganoralized homology theories, 5 rans. Amer. Math.S00. 102 (1962), 227-283.
156. zabrodsky 4. Bomotopy associativity and finite CW complexes, ropology 9 (1970), 121-128.

I57. Габриаль ІІ., Дисман М. Категория частиых п теория гомото-

158. Постников М.М. Докадизапия топологических пространств.Успехи матем. наук, 1977, т.32, јі 6, с. 117-181.
 иространств с особенноствмп. - М.: Мир, 1982.
160. Clapp M. Duality and transfer for parametrized apectra, Arch. Math., 37 (1981), 甘 5, 462-472.
161. Cohen F.R., Hay J.P., Taylor L.R. Spliting of oertain spaces CX, Lath. Proc. Cambridge phllos. Soc., $84: 3$ (1978) 465-496.
162. \qquad Spliting of some more apacen, Math. proc. Cambridge phillos Soo., 86;2 (1979), 227-236.
163. Fonhbech M. The tranafor and oonpaot lie groups, tranm. Anor. Beth. soc., 251 (1979) 131-169.
164. Friedlander E., Seymor R. fwo proofs of the atable 1 dana conjecture, pull. smex. math. soc., 83, w6 (1977) 1300 1302.
165. Krainea D., Lada F. 4 oounteraxample to the tranafer oonjecture, in Leoture Yoter in Math. no 741, SpriagenVerlag, Heidelberg, 1979, 588-624.
166. maden I., wilgran R.J. The olasaifying apacea for aurgery and ooberdise of manifolds, $\Delta \mathrm{nn}$. Math.studies, prinoeton univ. proas, 92, 1979.[Готовится перевод в пяд-ве "Мир".]
167. soymor R., smaith V. \& J-homomorphise associated with a space of eapty varietes (addenda and corrigenda to two papers on the J-homomorphism) in leoture Notes in Math no 741, Springer-Vorlag, Hoidelberg, 1979, 643-652.
168. Switser R.M. Algebraio topologs: homotopy and homology. springer-verlag, Boriln Heldelberg sew york, 1975.
[Гочовмтся поревод в пяд-ве "Науга".]

Адамса гітотеза 127

Axcrom дия манинни 181
Ахгеорамческая K шгеорая 29.
32, 83
Апироможмапнонная теорема 49, 55

Бар-допструлияя 51-52, 57
Бесхоордхнатныі сдектр 70

Bucme romotomir 37. II5

Геоме трическая реалняация 57
Гомототй вuсиие 37, II5
Гомозоміччески инвармантине структури 50
Гомогопическах груыи убивяmise 135
Грушыа свпилириавная 57
Ірушы гомотошін (пространотв)
II

- - (creктров) 24
- - стабилвнн 2 I
- кояфиирентов 24,73

Двонственность Спеивера -
Jatitxeqa 14
ДеІ̆ствие IIPOIl 39-40

Дискретние модели 133

Едаинственностъ манини $\mathbf{1 8 1}$

Забродскии, поремешнвание по Забродсколу 77

Кава п Прхииие георема 99
 мространотво 66

- монопианвая 65
- , нерв 66
- периутатінвar 65
- сmmerprymar 65
--етрого монопваввваи 64
- топодораческая 67

Квидеена пмоо-донотрукиня 81, 87
Квасспйишарушыее пространство
38

- - категория 66

193

Когерентносты усдовия 65
Колддвое пространство 69

- E_{∞}-пространство 70

Коддевой объект гомотопическод категорыг 69

- crearp 70
- En-cпектр 71
- H_{∞}-спектр 7 I

Кољдо свмплициавное 57
Комплекс Тома 15
Копрагл одномерннй 59
Козффидденту в обобденнах тео-
 24, 73
Кубиков n-мерних операда $\rho(n)$ 45

- операда $P_{(\infty)} 46-47$

Кудо п Aparı операцра 27

Іокампаария 75

Мадсева - Сияйта - Торихәва теореша 138

- - - локальны варгакт I43
"Манина" 39
- Сигала 58

Машанерия 33
Мнохество симддддхадвно 57
Мовада 53
Мономц топологщчеслан 34
Мововдальная категорая 65
Мудтипликативная теория 68
Mypa netai 34

Надстроика (приведенная) II
Нерв (категорипі) 66
Ниша өкодогичестая 39

Одномерныи кодика 59
Операда 39, 43

- кубихов 46-47
- n-mephix кубiaros 45

Orepaцин Дailepa п Датофа 27

- Кудо 1 Араки 27

Ориентацдаи 30
Ocrроту 7, 64, 184, 187
Отобрахенве накритни 104

Поремешивание по Забродсхому 77 Пермстативная категория 65 Петли Mgра 34
Паос-конструксдя Квилхена 81, 87
Полжедри Сташефа 36
Понтрятина пропзведенно 18
Пополнение 136, 142
Правиы функтор-мадул 54

- Т-функтор 54

Предельная топологтя 170
Предтеорема 45-46
Предтрансфер III
Приведенвое пропзведения 24

- - спектров 68-70

Прннии распозвавания 49
Проияведензе Понтрптшна I8
IIPOІа действие 39-40
IIPOI (чоподогическиі) 39
Пространство грушпоподобное 85

- кдасспйцрруриее 38
- кодвцевое 69
- петедв 8
- - бесконечнократноо 18
- - двукратноо 18
- Эиденберга - Магледина 20

Распоянавания прпирап 49
Расслоенге в смнсле Серра 10

- сферическое 124
- универсальное 37-38

Рядов топодогия 170

Coppa рассдоение 10
Сігедв матина 58
Сометрачнная категормя 65
Смпиелс стаңдартнын 55
Спшыдхциальная групша 57
Споивддиаљнно кољвдо 57

- мномество 57
- уодологическое пространст80 57
- - - спедвальное 6I

Сдабая гомотошическая әквявалентность 18
Соедхнччељная тканъ $58-59^{\circ}$
Сопрниенность 12
Crektp 15

- бескоордгнатнын 70
- кдеточнии 15
- кодвдевоя 70
- E $_{\infty}$-колыевои 70
- H_{∞}-колддевой 70
- недстроечны甘 15
- ограниченння снвау 25
- представлномран 23-25
- свяэны 25
- сферическй 24
- Toma 15
- Энленбергя - Макдейна 23

Спонвера - Уайтхеда двоногвенностъ I4

- - стабпњная гомототичекая кагегория 14
 тододогхчесхое простравство 61
- Г-проотравство 62
- \triangle-проотранство 6I

Стабилная гомототическая кятөгория Спенъера - Уайтхеда
 $2 I$
Стандартнин сиаплекс 55
Статефа полпәдры 36
Строго моноддаљная категордя 64
Cyma Yyinm 29
Сферическое расслоөние 124

Tоорема Адамса - Придипи 135

- аптроксимационная 49. 55
- Кана п Придии 99
- Мадсена - Снәйта - Торнхава 138
- -- --докальныи варжант 143
- О трупоовом пополнендя 86

Теории гомологий обобенние $2 I$

- когомологии обобменнн $2 I$

Тоормя надстроек 13
Tома комшлекс II

- chertp 15

Тодологическая категория 67
Топологмческиі моно耳д 34

- IIPOII 39

Тододогвя р-адичоская 170

- пределная 170
- рядов 170
- \$uxb трарагі I69

Трансфер 94, 112
Tpoliva 53'
 135
Уntur cyiva 29
Універсалиное расслоене 37-38
Јсловия ассопративностп 33-36

- догерентностд 65

Фидярашин топология 169
 coB II9, I2I-I22
ФунRTOр-aл工ебра 52
©yLuctop reomespiqecroin peaniзаघit 57
Функтор-модудв правыл 54

Эиленберга - Маклейна пространство 20

- - спектр 23

Экологическая наша 39

А-догальнын модуль 74
A_{n}-пространство 36
$\mathrm{A}_{\mathbf{N}^{-}}$-рространство 38
B (хлассифипруомее пространство) 38
$B^{n} 46,58$
$B^{\infty} 48$
BF 29, 127, 177-179
BO20, 23, 31, 131
$\mathrm{BO}_{\oplus}, \mathrm{BO}_{\oplus} 32$, 134
BPL29, 177
$B \mathrm{BO}_{\oplus}, \mathrm{BSO}_{\Phi} 136$
Bso,bso.e, BsO . 135 , 136
BSU I43
Bsи 143
BTop 29
BU 20, 23, 31
$B U_{\oplus}, B U_{*} 3 I-32$
BUNI43
coker J 178
CW-crearp I6
E-пространство 47
E_{n}-пространство 38, 45
E_{∞}-пространство 38,47

- полыдевое 69-70

F 29
Н -пространство 17
imJ 178
J-гомоморфкзм 124, 127, 178
K -геория 2I, 23, 29, 30
K_{*}-топология I7I
$K_{5} 29$ I77
KO, KO, $\mathrm{K}_{0}(X)$ I32, 135, 145
$K_{\text {PL }}(X), K_{T_{0}}(X) 29,132$
ku 142
MO,MSOI5, 24
p-aдпческая топодогия 170
PL 29
$T \rightarrow 40$ ду5 53
T-oosekt 53
Т-Функтор правин 54
Top 29, I77
Г (категория) 6I
[-пространство 62

- спеддадвное 62
Δ (категория) 55
Δ-простравсяво $6 I$
- спепхалиное 6I
π_{μ} - чопология 170
8
Ω-cдeктр 19
$\Omega^{\infty}{ }^{\infty}$
$\sum_{\Sigma^{\infty}}$ II $16,2 I$
\sum^{∞} I6, 2I
$\cup-$ пронзведенве 3 I
Предисдовле редактора поревода 5
Продисловме 7
 8
§ I.I. Введение 8
§ 1.2. Пространства петедь 8
§ 1.3. Стабилввая теория гомотошнй I2
§ I.4. Бесконечнократнве пространствя петель 17
§ I.5. Обобщеннне теорді когомология 21
 когомолотин 22
 пространствама петедв 25
§ 1.8. Oбsор прммеров 28
Гдрвя 2. Машанерая 33
§ 2.I. Введение 33
\$ 2.2. Пространства петелы п A_{∞}-пространства в сиасде Cтатефа 34
8 2.3. N-кратние п бесконечнокрагнне пространствя потедь; E_{n} - $E_{\infty_{\infty}}$-пространства 38
§ 2.4. Мегоди 50
8 2.5. Машыдва Сагада 58
82.6. Подклочение теории гатегорй 63
8.2.7. Колыение теории 68
Гдава 3. Докализапия п грушовое подоинение 72
8 3.1. Іокадазацря 72
8 3.2. Плос-конструкцпя и груповое пополнение. 79
Гмавв 4, Транофер. 92
84.1. Введение 92
8 4.2. Трансфер п структурнме отобрашения 103
8 4.3. Формальнне сводства трансфера II5
Гдавя 5. Гипотезв Адамся 123
\& 5.1. Обсухдение гипотезч 123
85.2. Доказатедства гипотезу 128
Главя 6. पастнын сагчай сроггров пия K - георай; теорема Адамса - Приддл п Мапсеня - Снаята - Торигяв I32
86.1. Введение I32
8 6.2. Теорема Адамса прядиди 135
86.3. Теорема Мадсева, Снәйтя п Торнгява 138
 преддохения 6.3.4 148
§6.5. Вычисления при домопи трансфера 160
86.6. Несхохико одов о сходышося! 169
 177
87.1 .0630 p 177
Cmincor mireparypu I82
Іредметви青 указателв 183

Уваваемай чптатеды!

 офорилені, гачестве перевода 1 другие проогм прпсзгатъ до адресу: 129820, Москва,
 ствo "Map".

Дх. Адамс

Бесконечнохратнне пространствя петель
Научнн редектор Г.М. Цлкерман
Мл. научнын редактор И.В. Герасямова
Худохник А.B. Шиидов
Художественнын редактор В.И. Шаповалов
Техническй редактор Г.Б. Адолина
Корректор А.Я. Шехтер
ИБ $» 3765$
Подмисано к печати $55,09.82$.
Формат 60×90 1/16.
Бумөга офсетная „ 2. Печагь офсетная. Объем 6,25 буи.п.
Усд, печ.д. 12,5. Усд.кр.отг. 12,73.
Уч.-під. д. 9,61. Иад. К I/1953.
Тмрах 5300 якз. Зак. 7168 цена I р. 40 к.
ИЗДАТЕЛЬСТВО *МИР»

Отпечатано в Пропэводственно-падатедвском кошбинате ВИНИТИ
г. доберы, Окчябрьскй просдект, 403

[^0]: 1) Gm . по этому поводу [$16 \mathrm{I}^{\prime \prime}$], [162 ${ }^{\text {月 }}$]. - Прим. перев.
[^1]: 戸）это сделано．См．［160＂］．－прмм．перев．

[^2]:

[^3]: Ipry, repe Be

 и равна нулд в осталвних случаях. - Прам. перев.

[^4]: 1) $_{\text {отобрахение }} A(\Lambda) \rightarrow K \Lambda\left(B\left(Z / p^{2}\right)_{\text {nueer }} \operatorname{sax} A(\Lambda)=K \Lambda\left(C P^{\infty}\right)=\right.$ $=K \Lambda\left(B\left(\mathbf{Z} / p^{\infty}\right)\right)=K \Lambda\left(B\left(\underline{\lim } \mathbf{Z} / p^{n}\right)\right) \rightarrow \lim K \Lambda\left(B\left(\mathbf{Z} / p^{2}\right)\right) \rightarrow$ $\rightarrow K \Lambda\left(B\left(\mathbb{Z} / p^{2}\right)\right)$ - пррми. перев
[^5]: 1) Депстаитөяно, $a(\xi)=\sum_{i=0}^{m-1} \lambda_{i} x_{m}^{i}+f\left(\xi_{i}\right)$, тде $\quad f\left(\xi_{i}\right)=$ $=\sum_{i=m}^{\infty} \lambda_{i} x^{i}$. Вврахение $\sum_{i=0}^{\boldsymbol{m}_{i}} \lambda_{i}\left(x_{n}\right)^{i}$ делится на p^{n} ооглас-
 выте. - Іррам. перев.
[^6]:

 Прим перев.
 ку $\mu_{i}=0 \bmod p^{x^{\prime}}$ п $r^{\prime} \geqslant n$, а $\mu_{j}=0 \bmod p^{n}$ при $k+1 \leqslant j \leqslant m$, поскольку $с \in V$. - Прми. перев.

