
preface by
Joshua Lederberg

(defun
 translate- O

RFS
 (&key

 seq
 s

ig
n

al-pattern
s c

o
d

on-table)
(defun

 translate- O
RFS

 (&key
 seq

 s
ig

n
al-pattern

s c
o

d
on-table)

Artificial Intelligence
 and Molecular Biology
Artificial Intelligence
 and Molecular Biology
edited by
Lawrence Hunter
edited by
Lawrence Hunter

Foreward

Joshua Lederberg

Historically rich in novel, subtle, often controversial ideas, Molecular Bi-
ology has lately become heir to a huge legacy of standardized data in the
form of polynucleotide and polypeptide sequences. Fred Sanger received
two, well deserved Nobel Prizes for his seminal role in developing the basic
technology needed for this reduction of core biological information to one
linear dimension. With the explosion of recorded information, biochemists
for the first time found it necessary to familiarize themselves with databases
and the algorithms needed to extract the correlations of records, and in turn
have put these to good use in the exploration of phylogenetic relationships,
and in the applied tasks of hunting genes and their often valuable products.
The formalization of this research challenge in the Human Genome Project
has generated a new impetus in datasets to be analyzed and the funds to sup-
port that research.

There are, then, good reasons why the management of DNA sequence
databases has been the main attractive force to computer science relating to
molecular biology. Beyond the pragmatic virtues of access to enormous data,
the sequences present few complications of representation; and the knowl-
edge-acquisition task requires hardly more than the enforcement of agreed
standards of deposit of sequence information in centralized, network-linked
archives.

The cell’s interpretation of sequences is embedded in a far more intricate
context than string-matching. It must be conceded that the rules of base-com-
plementarity in the canonical DNA double-helix, and the matching of codons

to the amino acid sequence of the protein, are far more digital in their flavor
than anyone could have fantasized 50 years ago (at the dawn of both molecu-
lar biology and modern computer science.) There is far more intricate knowl-
edge to be acquired, and the representations will be more problematic, when
we contemplate the pathways by which a nucleotide change can perturb the
shape of organic development or the song of a bird.

The current volume is an effort to bridge just that range of exploration,
from nucleotide to abstract concept, in contemporary AI/MB research. That
bridge must also join computer scientists with laboratory biochemists—my
afterword outlines some of the hazards of taking biologists’s last word as the
settled truth, and therefore the imperative of mutual understanding about
how imputed knowledge will be used. A variety of target problems, andper-
haps a hand-crafted representation for each, is embraced in the roster. There
is obvious detriment to premature standardization; but it is daunting to see
the difficulties of merging the hardwon insights, the cumulative world
knowledge, that comes from each of these efforts. The symposium had also
included some discussion of AI for bibliographic retrieval, an interface we
must learn how to cultivate if we are ever to access where most of that
knowledge is now deposited, namely the published literature. Those papers
were, however, unavailable for the printed publication.

It ends up being easy to sympathize with the majority of MB computer
scientists who have concentrated on the published sequence data. Many are
even willing to rely on neural-network approaches that ignore, may even de-
feat, insights into causal relationships. But it will not be too long before the
complete sequences of a variety of organisms, eventually the human too, will
be in our hands; and then we will have to face up to making real sense of
them in the context of a broader frame of biological facts and theory. This
book will be recalled as a pivotal beginning of that enterprise as an issue for
collective focus and mutual inspiration.

x ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

1

Molecular Biology for

Computer Scientists

Lawrence Hunter

“Computers are to biology what mathematics is to physics.”

— Harold Morowitz

One of the major challenges for computer scientists who wish to work in the
domain of molecular biology is becoming conversant with the daunting intri-
cacies of existing biological knowledge and its extensive technical vocabu-
lary. Questions about the origin, function, and structure of living systems
have been pursued by nearly all cultures throughout history, and the work of
the last two generations has been particularly fruitful. The knowledge of liv-
ing systems resulting from this research is far too detailed and complex for
any one human to comprehend. An entire scientific career can be based in the
study of a single biomolecule. Nevertheless, in the following pages, I attempt
to provide enough background for a computer scientist to understand much
of the biology discussed in this book. This chapter provides the briefest of
overviews; I can only begin to convey the depth, variety, complexity and
stunning beauty of the universe of living things.

Much of what follows is not about molecularbiology per se. In order to

explain what the molecules are doing, it is often necessary to use concepts
involving, for example, cells, embryological development, or evolution. Bi-
ology is frustratingly holistic. Events at one level can effect and be affected
by events at very different levels of scale or time. Digesting a survey of the
basic background material is a prerequisite for understanding the significance
of the molecular biology that is described elsewhere in the book. In life, as in
cognition, context is very important.

Do keep one rule in the back of your mind as you read this: for every gen-
eralization I make about biology, there may well be thousands of exceptions.
There are a lot of living things in the world, and precious few generalizations
hold true for all of them. I will try to cover the principles; try to keep the ex-
istence of exceptions in mind as you read. Another thing to remember is that
an important part of understanding biology is learning its language. Biolo-
gists, like many scientists, use technical terms in order to be precise about
reference. Getting a grasp on this terminology makes a great deal of the bio-
logical literature accessible to the non-specialist. The notes contain informa-
tion about terminology and other basic matters. With that, let’s begin at the
beginning.

1. What Is Life?

No simple definition of what it is to be a living thing captures our intuitions
about what is alive and what is not. The central feature of life is its ability to
reproduce itself. Reproductive ability alone is not enough; computer pro-
grams can create endless copies of themselves—that does not make them
alive. Crystals influence the matter around them to create structures similar
to themselves but they’re not alive, either. Most living things take in materi-
als from their environment and capture forms of energy they can use to trans-
form those materials into components of themselves or their offspring. Virus-
es, however, do not do that; they are nearly pure genetic material, wrapped in
a protective coating. The cell that a virus infects does all the synthetic work
involved in creating new viruses. Are viruses a form of life? Many people
would say so.

Another approach to defining “life” is to recognize its fundamental inter-
relatedness. All living things are related to each other. Any pair of organisms,
no matter how different, have a common ancestor sometime in the distant
past. Organisms came to differ from each other, and to reach modern levels
of complexity through evolution. Evolution has three components: inheri-
tance, the passing of characteristics from parents to offspring; variation, the
processes that make offspring other than exact copies of their parents; and
selection, the process that differentially favors the reproduction of some or-
ganisms, and hence their characteristics, over others. These three factors
define an evolutionary process. Perhaps the best definition of life is that it is

2 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

the result of the evolutionary process taking place on Earth. Evolution is the
key not only to defining what counts as life but also to understanding how
living systems function.

Evolution is a cumulative process. Inheritance is the determinant of al-
most all of the structure and function of organisms; the amount of variation
from one generation to the next is quite small. Some aspects of organisms,
such as the molecules that carry energy or genetic information, have changed
very little since that original common ancestor several billion of years ago.
Inheritance alone, however, is not sufficient for evolution to occur; perfect
inheritance would lead to populations of entirely identical organisms, all ex-
actly like the first one.

In order to evolve, there must be a source of variation in the inheritance.
In biology, there are several sources of variation. Mutation, or random
changes in inherited material, is only one source of change; sexual recombi-
nation and various other kinds of genetic rearrangements also lead to varia-
tions; even viruses can get into the act, leaving a permanent trace in the
genes of their hosts. All of these sources of variation modify the message
that is passed from parent to offspring; in effect, exploring a very large space
of possible characteristics. It is an evolutionary truism that almost all varia-
tions are neutral or deleterious. As computer programmers well know, small
changes in a complex system often lead to far-reaching and destructive con-
sequences (And computer programmers make those small changes by design,
and with the hope of improving the code!). However, given enough time, the
search of that space has produced many viable organisms.

Living things have managed to adapt to a breathtaking array of chal-
lenges, and continue to thrive. Selectionis the process by which it is deter-
mined which variants will persist, and therefore also which parts of the space
of possible variations will be explored. Natural selection is based on the re-
productive fitness of each individual. Reproductive fitness is a measure of
how many surviving offspring an organism can produce; the better adapted
an organism is to its environment, the more successful offspring it will cre-
ate. Because of competition for limited resources, only organisms with high
fitness will survive; organisms less well adapted to their environment than
competing organisms will simply die out.

I have likened evolution to a search through a very large space of possible
organism characteristics. That space can be defined quite precisely. All of an
organism’s inherited characteristics are contained in a single messenger mol-
ecule: deoxyribonucleic acid, or DNA. The characteristics are represented in
a simple, linear, four-element code. The translation of this code into all the
inherited characteristics of an organism (e.g. its body plan, or the wiring of
its nervous system) is complex. The particular genetic encoding for an organ-
ism is called its genotype. The resulting physical characteristics of an organ-
ism is called its phenotype. In the search space metaphor, every point in the

HUNTER 3

space is a genotype. Evolutionary variation (such as mutation, sexual recom-
bination and genetic rearrangements) identifies the legal moves in this space.
Selection is an evaluation function that determines how many other points a
point can generate, and how long each point persists. The difference between
genotype and phenotype is important because allowable (i.e. small) steps in
genotype space can have large consequences in phenotype space. It is also
worth noting that search happens in genotype space, but selection occurs on
phenotypes. Although it is hard to characterize the size of phenotype space,
an organism with a large amount of genetic material (like, e.g., that of the
flower Lily) has about 1011 elements taken from a four letter alphabet, mean-
ing that there are roughly 1070,000,000,000possible genotypes of that size or
less. A vast space indeed! Moves (reproductive events) occur asynchronous-
ly, both with each other and with the selection process. There are many non-
deterministic elements; for example, in which of many possible moves is
taken, or in the application of the selection function. Imagine this search
process running for billions of iterations, examining trillions of points in this
space in parallel at each iteration. Perhaps it is not such a surprise that evolu-
tion is responsible for the wondrous abilities of living things, and for their
tremendous diversity.*

1.1 The Unity and the Diversity of Living Things

Life is extraordinarily varied. The differences between a tiny archebacterium
living in a superheated sulphur vent at the bottom of the ocean and a two-ton
polar bear roaming the arctic circle span orders of magnitude in many dimen-
sions. Many organisms consist of a single cell; a Sperm Whale has more than
1015 cells. Although very acidic, very alkaline or very salty environments are
generally deadly, living things can be found in all of them. Hot or cold, wet or
dry, oxygen-rich or anaerobic, nearly every niche on the planet has been in-
vaded by life. The diversity of approaches to gathering nutrients, detecting
danger, moving around, finding mates (or other forms of reproduction), rais-
ing offspring and dozens of other activities of living creatures is truly awe-
some. Although our understanding of the molecular level of life is less de-
tailed, it appears that this diversity is echoed there. For example, proteins with
very similar shapes and identical functions can have radically different chemi-
cal compositions. And organisms that look quite similar to each other may
have very different genetic blueprints. All of the genetic material in an organ-
ism is called its genome. Genetic material is discrete and hence has a particular
size, although the size of the genome is not directly related to the complexity
of the organism. The size of genomes varies from about 5,000 elements in a
very simple organism (e.g. the viruses SV40 or φx) to more than 1011 elements

4 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

*Evolution has also become an inspiration to a group of researchers interested in de-
signing computer algorithms, e.g. Langton (1989).

in some higher plants; people have about 3x109 elements in their genome.
Despite this incredible diversity, nearly all of the same basic mechanisms

are present in all organisms. All living things are made of cells* : membrane-
enclosed sacks of chemicals carrying out finely tuned sequences of reactions.
The thousand or so substances that make up the basic reactions going on in-
side the cell (the core metabolic pathways) are remarkably similar across all
living things. Every species has some variations, but the same basic materials
are found from bacteria to human. The genetic material that codes for all of
these substances is written in more or less the same molecular language in
every organism. The developmental pathways for nearly all multicellular or-
ganisms unfold in very similar ways. It is this underlying unity that offers the
hope of developing predictive models of biological activity. It is the process
of evolution that is responsible both for the diversity of living things and for
their underlying similarities. The unity arises through inheritance from com-
mon ancestors; the diversity from the power of variation and selection to
search a vast space of possible living forms.

1.2 Prokaryotes & Eukaryotes, Yeasts & People

Non-biologists often fail to appreciate the tremendous number of different
kinds of organisms in the world. Although no one really knows, estimates of
the number of currently extant species range from 5 million to 50 million
(May, 1988).† There are at least 300,000 different kinds of beetles alone, and
probably 50,000 species of tropical trees. Familiar kinds of plants and ani-
mals make up a relatively small proportion of the kinds of living things, per-
haps only 20%. Vertebrates (animals with backbones: fish, reptiles, amphib-
ians, birds, mammals) make up only about 3% of the species in the world.

Since Aristotle, scholars have tried to group these myriad species into
meaningful classes. This pursuit remains active, and the classifications are, to
some degree, still controversial. Traditionally, these classifications have been
based on the morphologyof organisms. Literally, morphology means shape,
but it is generally taken to include internal structure as well. Morhpology is
only part of phenotype, however; other parts include physiology, or the func-
tioning of living structures, and development. Structure, development and
function all influence each other, so the dividing lines are not entirely clear.

In recent years, these traditional taxonomies have been shaken by infor-
mation gained from analyzing genes directly, as well as by the discovery of
an entirely new class of organisms that live in hot, sulphurous environments
in the deep sea.

HUNTER 5

*A virus is arguably alive, and is not a cell, but it depends on infecting a cell in order
to reproduce.

†May also notes that it is possible that half the extant species on the planet may be-
come extinct in the next 50 to 100 years.

Here I will follow Woese, Kandler & Wheelis (1990), although some as-
pects of their taxonomy are controversial. They developed their classification
of organisms by using distances based on sequence divergence in a ubiqui-
tous piece of genetic sequence As shown in Figure 1, there are three most
basic divisions: the Archaea, the Bacteria and the Eucarya. Eucarya (also
called eucaryotes) are the creatures we are most familiar with. They have
cells that contain nuclei, a specialized area in the cell that holds the genetic
material. Eucaryotic cells also have other specialized cellular areas, called
organelles. An example of organelles are mitochondria and chloroplasts. Mi-
tochondria are where respiration takes place, the process by which cells use
oxygen to improve their efficiency at turning food into useful energy.
Chloroplasts are organelles found in plants that capture energy from sunlight.
All multicellular organisms, (e.g. people, mosquitos and maple trees) are Eu-
carya, as are many single celled organisms, such as yeasts and paramecia.

Even within Eucarya, there are more kinds of creatures than many non-bi-
ologists expect. Within the domain of the eucaryotes, there are generally held
to be at least four kingdoms: animals, green plants, fungi and protists. From a
genetic viewpoint, the protists, usually defined as single celled organisms
other than fungi, appear to be a series of kingdoms, including at least the cili-

6 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Al l L i fe

Archaea Bacteria Eucarya

Animals
Green Plants

(trees, f lowers, grasses)
Fungi

(Mushrooms, Athlete's foot)
Pro t i s ts

 (yeast, planaria)

VertebratesInvertebrates
(insects, worms, shel l f ish, snai ls)

Fish
(sharks, trout)

Repti les
(snakes, l izards)

Amphibians
(frogs, newts)

Birds
(eagles, finches) Mammals

Monotremata
(platypi)

Marsupials
(kangaroos)

Lept ic t ida
(rabbi ts)

Rodents
(mice)

Carnivores
(wolves)

Pinnipedia
(seals)

Pteropidae
(bats)

Pr imates
(people)

Viruses

Figure 1. A very incomplete and informal taxonomic tree. Items in italics are com-
mon names of representative organisms or classes. Most of the elided taxa are Bac-
teria; Vertebrates make up only about 3% of known species.

ates (cells with many external hairs, or cillia), the flagellates (cells with a sin-
gle, long external fiber) and the microsporidia. The taxonomic tree continues
down about a dozen levels, ending with particular species at the leaves. All
of these many eucaryotic life forms have a great deal in common with human
beings, which is the reason we can learn so much about ourselves by study-
ing them.

Bacteria (sometimes also called eubacteria, or prokaryotes) are ubiquitous
single-celled organisms. And ubiquitous is the word; there are millions of
them everywhere — on this page, in the air you are breathing, and in your
gut, for example. The membranes that enclose these cells are typically made
of a different kind of material than the ones that surround eucarya, and they
have no nuclei or other organelles (they do have ribosomes, which are some-
times considered organelles; see below). Almost all bacteria do is to make
more bacteria; it appears that when food is abundant, the survival of the
fittest in bacteria means the survival of those that can divide the fastest (Al-
berts, et al., 1989). Bacteria include not only the disease causing “germs,”
but many kinds of algae, and a wide variety of symbiotic organisms, includ-
ing soil bacteria that fix nitrogen for plants and Escherichia coli, a bacterium
that lives in human intestines and is required for normal digestion. E. coli is
ubiquitous in laboratories because it is easy to grow and very well studied.

Archaea are a recently discovered class of organism so completely unlike
both bacteria and eucarya, both genetically and morphologically, that they
have upset a decades old dichotomy. Archaea live in superheated sulphur
vents in the deep sea, or in hot acid springs, briney bogs and other seemingly
inhospitable places. They are sometimes called archebacteria even though
they bear little resemblence to bacteria. Their cell membranes are unlike ei-
ther Bacteria or Eucarya. Although they have no nuclei or organelles, at a ge-
netic level, they are a bit more like Eucarya than like Bacteria. These organ-
isms are a relatively recent discovery, and any biological theories have yet to
include Archaea, or consider them simply another kind of procaryote. Ar-
chaea will probably have a significant effect on theories about the early his-
tory of life, and their unusual biochemistry has already turned out to be sci-
entifically and commercially important (e.g. see the discussion of PCR in the
last section of this chapter).

Viruses form another important category of living forms. They are obliga-
tory parasitesmeaning that they rely on the biochemical machinery of their
host cell to survive and reproduce. Viruses consist of just a small amount of
genetic material surrounded by a protein coat. A small virus, such asφX,
which infects bacteria, can have as few as 5000 elements in its genetic mater-
ial. (Viruses that infect bactieria are called bacteriophages, or just phages.)
Their simplicity and their role in human disease make viruses an active area
of study. They also play a crucial role in the technology of molecular biolo-
gy, as is described in the last section in this chapter.

HUNTER 7

1.3 Evolutionary Time and Relatedness

There are so many different kinds of life, and they live in so many different
ways. It is amazing that their underlying functioning is so similar. The reason
that there is unity within all of that diversity is that all organisms appear to
have evolved from a common ancestor. This fundamental claim underpins
nearly all biological theorizing, and there is substantial evidence for it.

All evolutionary theories hold that the diversity of life arose by inherited
variation through an unbroken line of descent. This common tree of descent
is the basis for the taxonomy described above, and pervades the character of
all biological explanation. There is a great deal of argument over the detailed
functioning of evolution (e.g. whether it happens continuously or in bursts),
but practically every biologist agrees with that basic idea.

There are a variety of ways to estimate how long ago two organisms di-
verged; that is, the last time they had a common ancestor. The more related
two species are, the more recently they diverged. To the degree that pheno-
typic similarity indicates genotypic similarity, organisms can be classified on
the basis of their structure, which is the traditional method. Growing knowl-
edge of the DNA sequences of many genes in many organisms makes possi-
ble estimates of the time of genetic divergence directly, by comparing their
genetic sequences. If the rate of change can be quantified, and standards set,
these differences can be translated into a “molecular clock;” Li & Graur,
(1991) is a good introduction to this method. The underlying and somewhat
controversial assumption is that in some parts of the genome, the rate of mu-
tation is fairly constant. There are various methods for trying to find these
areas, estimate the rate of change, and hence calibrate the clock. The tech-
nique has mostly confirmed estimates made with other methods, and is wide-
ly considered to be potentially reliable, if not quite yet so. Most of the dates I
will use below were derived from traditional (archaeological) dating.

In order to get a rough idea of the degrees of relatedness among creatures,
it is helpful to know the basic timeline of life on Earth. The oldest known
fossils, stromalites found in Australia, indicate that life began at least 3.8 bil-
lion years ago. Geological evidence indicates that a major meteor impact
about 4 billion years ago vaporized all of the oceans, effectively destroying
any life that may have existed before that. In effect, life on earth began al-
most as soon as it could have. Early life forms probably resembled modern
bacteria in some important ways. They were simple, single celled organisms,
without nuclei or other organelles. Life remained like that for nearly 2 billion
years. Then, about halfway through the history of life, a radical change oc-
curred: Eucarya came into being. There is evidence that eucarya began as
symbiotic collections of simpler cells which were eventually assimilated and
became organelles (see, e.g. Margolis (1981)). The advantages of these spe-
cialized cellular organelles made early eucarya very successful. Single-celled

8 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Eucarya become very complex, for example, developing mechanisms for
moving around, detecting prey, paralyzing it and engulfing it.

The next major change in the history of life was the invention of sex. Evo-
lution, as you recall, is a mechanism based on the inheritance of variation.
Where do these variations come from? Before the advent of sex, variations
arose solely through individual, random changes in genetic material. A muta-
tion might arise, changing one element in the genome, or a longer piece of a
genome might be duplicated or moved. If the changed organism had an ad-
vantage, the change would propagate itself through the population. Most mu-
tations are neutral or deleterious, and evolutionary change by mutation is a
very slow, random search of a vast space. The ability of two successful or-
ganisms to combine bits of their genomes into an offspring produced variants
with a much higher probability of success. Those moves in the search space
are more likely to produce an advantageous variation than random ones. Al-
though you wouldn’t necessarily recognize it as sex when looking under a
microscope, even some Bacteria exchange genetic material. How and when
sexual recombination first evolved is not clear, but it is quite ancient. Some
have argued that sexual reproduction was a necessary precursor to the devel-
opment of multicellular organisms with specialized cells (Buss, 1987). The
advent of sex dramatically changed the course of evolution. The new mecha-
nism for the generation of variation focused nature’s search through the
space of possible genomes, leading to an increase in the proportion of advan-
tageous variations, and an increase in the rate of evolutionary change.

This is probably a good place to correct a common misperception, namely
that some organisms are more "primitive" than others. Every existing organ-
ism has, tautologically, made it into the modern era. Simple modern organ-
isms are not primitive. The environment of the modern world is completely
unlike that of earth when life began, and even the simplest existing creatures
have evolved to survive in the present. It is possible to use groups of very
distantly related creatures (e.g. people and bacteria) to make inferences about
ancient organisms; whatever people and bacteria have in common are char-
acteristics that were most likely shared by their last common ancestor, many
eons ago. Aspects of bacteria which are not shared with people may have
evolved as recently as any human characteristic not shared with bacteria.
This applies to the relation between people and apes, too: apes are not any
more like ancestral primates than we are. It is what we have in commonwith
other organisms that tells us what our ancestors were like; the differences be-
tween us and other organisms are much less informative.

Whether or not it occurred as a result of the advent of sexual recombina-
tion, the origin of multicellular organisms led to a tremendous explosion in
the kinds of organisms and in their complexity. This event occurred only
about a billion years ago, about three quarters of the way through the history
of life.

HUNTER 9

Of course, nearly all of the organisms people can see are multicellular (al-
though the blue-green algae in ponds and swimming pools are a kind of bac-
teria). Multicellular organisms gain their main evolutionary advantage
through cellular specialization. Creatures with specialized cells have the abil-
ity to occupy environmental niches that single-celled organisms cannot take
advantage of. In multicellular organisms, cells quite distant from each other
can exchange matter, energy or information for their mutual benefit. For ex-
ample, cells in the roots of a higher plant exist in a quite different environ-
ment than the cells in the leaves, and each supplies the other with matter or
energy not available in the local environment.

An important difference between multicellular organisms and a colony of
unicellular organisms (e.g. coral) is that multicellular organisms have sepa-
rated germ line (reproductive) cells from somatic (all the other) cells. Sperm
and eggs are germ cells; all the other kinds of cells in the body are somatic.
Both kinds of cells divide and make new cells, but only germ cells make new
organisms. Somatic cells are usually specialized for a particular task; they
are skin cells, or nerve cells, or blood cells. Although these cells divide,
when they divide, they create more of the same kind of cell. The division of
somatic cells and single celled organisms is a four stage process that ends
with mitosis, resulting in the production of two identical daughter cells. The
process as a whole is referred to as the cell cycle.

Only changes in germ cells are inherited from an organism to its off-
spring. A variation that arises in a somatic cell will affect all of the cell’s de-
scendents, but it will not affect any of the organism’s descendents. Germ
cells divide in a process called meiosis; part of this process is the production
of sperm and egg cells, each of which have only half the usual genetic mater-
ial. The advent of this distinction involved a complex and intricate balance
between somatic cells becoming an evolutionary deadends and the improved
competitive ability of a symbiotic collection of closely related cells.

Multicellular organisms all begin their lives from a single cell, a fertilized
egg. From that single cell, all of the specialized cells arise through a process
called cellular differentiation. The process of development from fertilized
egg to full adult is extremely complex. It involves not only cellular differen-
tiation, but the migration and arrangement of cells with respect to each other,
orchestrated changes in which genes are used and which are not at any given
moment, and even the programmed death of certain groups of cells that act
as a kind of scaffolding during development. The transition from single-
celled organism to multicellular creature required many dramatic innova-
tions. It was a fundamental shift of the level of selection: away from the indi-
vidual cell and to a collection of cells as a whole. The reproductive success
of a single cell line within a multicellular individual may not correlate with
the success of the individual.* Embryology and development are complex
and important topics, but are touched on only briefly in this chapter.

10 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Most of the discussion so far has focused on organisms that seem very
simple and only distantly related to people. On a biochemical level, however,
people are much like other eucaryotes, especially multicellular ones. Genetic
and biochemical distance doesn’t always correlate very well with morpho-
logical differences. For example, two rather similar looking species of frogs
may be much more genetically distant from each other than are, say, people
and cows (Cherty, Case & Wilson, 1978). A great deal of human biochem-
istry was already set by the time multicellular organisms appeared on the
Earth. We can learn a lot about human biology by understanding how yeasts
work.

We’ve now covered, very briefly, the diversity of living things, and some
of the key events in the evolution of life up to the origin of multicellular or-
ganisms. In the next section, we’ll take a closer look at how these complex
organisms work, and cover the parts of eucaryotic cells in a bit more detail.

2. Living Parts: Tissues, Cells,
Compartments and Organelles

The main advantage multicellular organisms possess over their single-celled
competitors is cell specialization. Not every cell in a larger organism has to
be able to extract nutrients, protect itself, sense the environment, move itself
around, reproduce itself and so on. These complex tasks can be divided up,
so that many different classes of cells can work together, accomplishing feats
that single cells cannot. Groups of cells specialized for a particular function
are tissues, and their cells are said to have differentiated. Differentiated cells
(except reproductive cells) cannot reproduce an entire organism.

In people (and most other multicellular animals) there are fourteen major
tissue types. There are many texts with illustrations and descriptions of the
various cell types and tissue, e.g. Kessel and Kardon (1979) which is full of
beautiful electron micrographs. Some of these tissue types are familiar:
bones, muscles, cardiovascular tissue, nerves, and connective tissue (like ten-
dons and ligaments). Other tissues are the constituents of the digestive, respi-
ratory, urinary and reproductive systems. Skin and blood are both distinctive
tissue types, made of highly specialized cells. Lymphatic tissue, such as the
spleen and the lymph nodes make up the immune system. Endocrine tissue
comprises a network of hormone-producing glands (for example, the adrenal
gland, source of adrenaline) that exert global control over various aspects of
the body as a whole. Finally, epithelium, the most basic tissue type, lines all
of the body’s cavities, secreting materials such as mucus, and, in the in-

HUNTER 11

*Cancer is an example where a single cell line within a multicellular organism repro-
duces to the detriment of the whole.

testines, absorbing water and nutrients.
There are more than 200 different specialized cell types in a typical verte-

brate. Some are large, some small; for example, a single nerve cell connects
your foot to your spinal cord, and a drop of blood has more than 10,000 cells
in it. Some divide rapidly, others do not divide at all; bone marrow cells di-
vide every few hours, and adult nerve cells can live 100 years without divid-
ing. Once differentiated, a cell cannot change from one type to another. Yet
despite all of this variation, all of the cells in a multicellular organism have
exactly the same genetic code. The differences between them come from dif-
ferences in gene expression, that is, whether or not a the product a gene
codes for is produced, and how much is produced. Control of gene expres-
sion is an elaborate dance with many participants. Thousands of biological
substances bind to DNA, or bind to other biomolecules that bind to DNA.
Genes code for products that turn on and off other genes, which in turn regu-
late other genes, and so on. One of the key research areas in biology is devel-
opment: how the intricate, densely interrelated genetic regulatory process is
managed, and how cells "know" what to differentiate into, and when and
where they do it. A prelude to these more complex topics is a discussion of
what cells are made of, and what they do.

2.1 The Composition of Cells

Despite their differences, most cells have a great deal in common with each
other. Every cell, whether a Archaea at the bottom of the ocean or a cell in a
hair follicle on the top of your head has certain basic qualities: they contain
cytoplasm and genetic material, are enclosed in a membrane and have the
basic mechanisms for translating genetic messages into the main type of bio-
logical molecule, the protein. All eucaryotic cells share additional compo-
nents. Each of these basic parts of a cell is described briefly below:

Membranes are the boundaries between the cell and the outside world.
Although there is no one moment that one can say life came into being, the
origin of the first cell membrane is a reasonable starting point. At that mo-
ment, self-reproducing systems of molecules were individuated, and cells
came into being. All present day cells have a phospholipidcell membrane.
Phospholipids are lipids (oils or fats) with a phosphate group attached. The
end with the phosphate group is hydrophillic (attracted to water) and the lipid
end is hydrophobic (repelled by water). Cell membranes consist of two lay-
ers of these molecules, with the hydrophobic ends facing in, and the hy-
drophillic ends facing out. This keeps water and other materials from getting
through the membrane, except through special pores or channels.

A lot of the action in cells happens at the membrane. For single celled or-
ganisms, the membrane contains molecules that sense the environment, and
in some cells it can surround and engulf food, or attach and detach parts of it-
self in order to move. In Bacteria and Archaea, the membrane plays a crucial

12 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

role in energy production by maintaining a large acidity difference between
the inside and the outside of the cell. In multicellular organisms, the mem-
branes contain all sorts of signal transduction mechanisms, adhesion mole-
cules, and other machinery for working together with other cells.

Proteins are the molecules that accomplish most of the functions of the
living cell. The number of different structures and functions that proteins
take on in a single organism is staggering. They make possible all of the
chemical reactions in the cell by acting as enzymesthat promote specific
chemical reactions, which would otherwise occur only so slowly as to be
otherwise negligible. The action of promoting chemical reactions is called
catalysis, and enzymes are sometimes refered to as catalysts, which is a more
general term. Proteins also provide structural support, and are the keys to
how the immune system distinguishes self from invaders. They provide the
mechanism for acquiring and transforming energy, as well as translating it
into physical work in the muscles. They underlie sensors and the transmis-
sion of information as well.

All proteins are constructed from linear sequences of smaller molecules
called amino acids. There are twenty naturally occurring amino acids. Long
proteins may contain as many as 4500 amino acids, so the space of possible
proteins is very large: 204500or 105850. Proteins also fold up to form partic-
ular three dimensional shapes, which give them their specific chemical func-
tionality. Although it is easily demonstrable that the linear amino acid se-
quence completely specifies the three dimensional structure of most proteins,
the details of that mapping is one of the most important open questions of bi-
ology. In addition a protein's three dimensional structure is not fixed; many
proteins move and flex in constrained ways, and that can have a significant
role in their biochemical function. Also, some proteins bind to other groups
of atoms that are required for them to function. These other structures are
called prosthetic groups.An example of a prosthetic group is heme, which
binds oxygen in the protein hemoglobin. I will discuss proteins in more de-
tail again below.

Genetic material codes for all the other constituents of the the cell. This
information is generally stored in long strands of DNA. In Bacteria, the DNA
is generally circular. In Eucaryotes, it is linear. During cell division Eucary-
otic DNA is grouped into X shaped structures called chromosomes. Some
viruses (like the AIDS virus) store their genetic material in RNA. This genet-
ic material contains the blueprint for all the proteins the cell can produce. I’ll
have much more to say about DNA below.

Nuclei are the defining feature of Eucaryotic cells. The nucleus contains
the genetic material of the cell in the form of chromatin. Chromatin contains
long stretches of DNA in a variety of conformations,* surrounded by nuclear
proteins. The nucleus is separated from the rest of the cell by a nuclear mem-
brane. Nuclei show up quite clearly under the light microscope; they are per-

HUNTER 13

haps the most visible feature of most cells.
Cytoplasm is the name for the gel-like collection of substances inside the

cell. All cells have cytoplasm. The cytoplasm contains a wide variety of dif-
ferent substances and structures. In Bacteria and Archaea, the cytoplasm con-
tains all of the materials in the cell. In Eucarya, the genetic material is segre-
gated into the cell nucleus.

Ribosomesare large molecular complexes, composed of several proteins
and RNA molecules. The function of ribosomes is to assemble proteins. All
cells, including Bacteria and Archaea have ribosomes. The process of trans-
lating genetic information into proteins is described in detail below. Ribo-
somes are where that process occurs, and are a key part of the mechanism for
accomplishing that most basic of tasks.

Mitochondria and Chroloplasts are cellular organelles involved in the
production the energy that powers the cell. Mitochondria are found in all eu-
caryotic cells, and their job is respiration: using oxygen to efficiently turn
food into energy the cell can use. Some bacteria and archaea get their energy
by a process called glycolysis, from glyco- (sugar) and -lysis (cleavage or de-
struction). This process creates two energy-carrying molecules for every
molecule of sugar consumed. As oxygen became more abundant†, some or-
ganisms found a method for using it (called oxidative phosphorylation) to
make an order of magnitude increase in their ability to extract energy from
food, getting 36 energy-carrying molecules for every sugar.

These originally free living organisms were engulfed by early eucaryotes.
This symbiosis gradually became obligatory as eucaryotes came to depend
on their mitochondria for energy, and the mitochondria came to depend on
the surrounding cell for many vital functions and materials. Mitochondria
still have their own genetic material however, and, in sexually reproducing
organisms, are inherited only via the cytoplasm of the egg cell. As a conse-
quence, all mitochondria are maternally inherited.

Like the mitochondria, chloroplasts appear to have originated as free-liv-
ing bacteria that eventually became obligatory symbionts, and then parts of
eucaryotic plant cells. Their task is to convert sunlight into energy-carrying
molecules.

Other Parts of Cells. There are other organelles found in eucaryotic

14 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

*Conformationmeans shape, connoting one of several possible shapes. DNA confor-
mations include the traditional double helix, a supercoiledstate where certain parts of
the molecule are deeply hidden, a reverse coiled state called Z-DNA, and several oth-
ers.

†There was very little oxygen in the early atmosphere. Oxygen is a waste product of
glycolysis, and it eventually became a significant component of the atmosphere. Al-
though many modern organisms depend on oxygen to live, it is a very corrosive sub-
stance, and living systems had to evolve quite complex biochemical processes for
dealing with it.

cells. The endoplasmic reticulum(there are two kinds, rough and smooth) is
involved in the production of the cell membrane itself, as well as in the pro-
duction of materials that will eventually be exported from the cell. The Golgi
apparatusare elongated sacs that are involved in the packaging of materials
that will be exported from the cell, as well as segregating materials in the cell
into the correct intracellular compartment. Lysosomescontain substances that
are used to digest proteins; they are kept separate to prevent damage to other
cellular components. Some cells have other structures, such as vacuolesof
lipids for storage (like the ones often found around the abdomen of middle-
aged men).

Now that you have a sense of the different components of the cell, we can
proceed to examine the activities of these components. Life is a dynamical
system, far from equilibrium. Biology is not only the study of living things,
but living actions.

3. Life as a Biochemical Process

Beginning with the highest levels of taxonomy, we have taken a quick
tour of the varieties of organisms, and have briefly seen some of their impor-
tant parts. So far, this account has been entirely descriptive. Because of the
tremendous diversity of living systems, descriptive accounts are a crucial un-
derpinning to any more explanatory theories. In order to understand how bio-
logical systems work, one has to know what they are.

Knowledge of cells and tissues makes possible the functional accounts of
physiology. For example, knowing that the cells in the bicep and in the heart
are both kinds of muscle helps explain how the blood circulates. However, at
this level of description, the work that individual cells are able to do remains
mysterious. The revolution in biology over the last three decades resulted
from the understanding cells in terms of their chemistry. These insights
began with descriptions of the molecules involved in living processes, and
now increasingly provides an understanding of the molecular structures and
functions that are the fundamental objects and actions of living material.

More and more of the functions of life (e.g. cell division, immune reac-
tion, neural transmission) are coming to be understood as the interactions of
complicated, self-regulating networks of chemical reactions. The substances
that carry out and regulate these activities are generally referred to as bio-
molecules. Biomolecules include proteins, carbohydrates, lipids—all called
macromoleculesbecause they are relatively large—and a variety of small
molecules. The genetic material of the cell specifies how to create proteins,
as well as when and how much to create. These proteins, in turn, control the
flow of energy and materials through the cell, including the creation and
transformation of carbohydrates, lipids and other molecules, ultimately ac-
complishing all of the functions that the cell carries out. The genetic material

HUNTER 15

itself is also now known to be a particular macromolecule: DNA.
In even the simplest cell, there are more than a thousand kinds of biomol-

ecules interacting with each other; in human beings there are likely to be
more than 100,000 different kinds of proteins specified in the genome (it is
unlikely that all of them are present in any particular cell). Both the amount
of each molecule and its concentration in various compartments of the cell
determines what influence it will have. These concentrations vary over time,
on scales of seconds to decades. Interactions among biomolecules are highly
non-linear, as are the interactions between biomolecules and other molecules
from outside the cell. All of these interactions take place in parallel among
large numbers of instances of each particular type. Despite this daunting
complexity, insights into the structure and function of these molecules, and
into their interactions are emerging very rapidly.

One of the reasons for that progress is the conception of life as a kind of
information processing. The processes that transform matter and energy in
living systems do so under the direction of a set of symbolically encoded in-
structions. The “machine” language that describes the objects and processes
of living systems contains four letters, and the text that describes a person
has about as many characters as three years’ worth of the New York Times
(about 3x109). In the next section, we will delve more deeply into the the
chemistry of living systems.

4. The Molecular Building Blocks of Life

Living systems process matter, energy and information. The basic principle
of life, reproduction, is the transformation of materials found in the environ-
ment of an organism into another organism. Raw materials from the local en-
vironment are broken down, and then reassembled following the instructions
in the genome. The offspring will contain instructions similar to the parent.
The matter, energy and information processing abilities of living systems are
very general; one of the hallmarks of life is its adaptability to changing cir-
cumstances. Some aspects of living systems have, however, stayed the same
over the years. Despite nearly 4 billion years of evolution, the basic molecu-
lar objects for carrying matter, energy and information have changed very lit-
tle. The basic units of matter are proteins, which subserve all of the structural
and many of the functional roles in the cell; the basic unit of energy is a
phosphate bond in the molecule adenosine triphosphate (ATP); and the units
of information are four nucleotides, which are assembled together into DNA
and RNA.

The chemical composition of living things is fairly constant across the en-
tire range of life forms. About 70% of any cell is water. About 4% are small
molecules like sugars and inorganic ions* . One of these small molecules is
ATP, the energy carrier. Proteins make up between 15% and 20% of the cell;

16 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

DNA and RNA range from 2% to 7% of the weight. The cell membranes,
lipids and other, similar molecules make up the remaining 4% to 7% (Al-
berts, et al., 1989).

4.1 Energy

Living things obey all the laws of chemistry and physics, including the sec-
ond law of thermodynamics, which states that the amount of entropy (disor-
der) in the universe is always increasing. The consumption of energy is the
only way to create order in the face of entropy. Life doesn’t violate the sec-
ond law; living things capture energy in a variety of forms, use it to create in-
ternal order, and then transfer energy back to the environment as heat. An in-
crease in organization within a cell is coupled with a greater increase in
disorder outside the cell.

Living things must capture energy, either from sunlight through photosyn-
thesis or from nutrients by respiration. The variety of chemicals that can be
oxidized by various species to obtain energy through respiration is immense,
ranging from simple sugars to complex oils and even sulfur compounds from
deep sea vents (in the case of Archaea).

In many cases, the energy is first available to the cell as an electrochemi-
cal gradient across the cell membrane. The cell can tap into electrochemical
gradient by coupling the energy that results from moving electrons across the
membrane to other processes. There are many constraints on the flow of en-
ergy through a living system. Most of the chemical reactions that organisms
need to survive require an input of a minimum amount of energy to take
place at a reasonable rates; efficient use of energy dictates that this must be
delivered in a quanta exceeding the minimum requirement only slightly.

The energy provided for biochemical reactions has to be useable by many
different processes. It must be possible to provide energy where it is needed,
and to store it until it is consumed. The uses of energy throughout living
systems are very diverse. It is needed to synthesize and transport biomole-
cules, to create mechanical action through the muscle proteins actin and
myosin, and to create and maintain electrical gradients, such as the ones that
neurons use to communicate and compute.

Storing and transporting energy in complex biochemical systems runs the

HUNTER 17

*An inorganic ion is a charged atom, or a charged small group of atoms, not involv-
ing carbon. These substances, like iron and zinc, play small but vital role. For exam-
ple, changing the balance of calcium and sodium ions across a cell membrane is the
basic method for exciting of neurons.

The individual building blocks of the larger molecules, i.e. amino acids and nucleic
acids, are also considered small molecules when not part of a larger structure. Some
of these molecules play roles in the cell other than as components of large molecules.
For example, the nucleic acid adenine is at the core of the energy carrying molecule
adenosine triphosphate (ATP).

risk of disrupting chemical bonds other than the target ones, so the unit of en-
ergy has to be small enough not to do harm, but large enough to be useful.
The most common carrier of energy for storage and transport is the outer-
most phosphate bond in the molecule adenosine triphosphate,or ATP. This
molecule plays a central role in every living system: it is the carrier of ener-
gy. Energy is taken out of ATP by the process of hydrolysis, which removes
the outermost phosphate group, producing the molecule adenosine diphos-
phate (ADP). This process generates about 12 kcal per mole* of ATP, a quan-
tity appropriate for performing many cellular tasks. The energy “charge” of a
cell is expressed in the ratio of ATP/ADP and the electrochemical difference
between the inside and the outside of the cell (which is called the transmem-
brane potential). If ATP is depleted, the movement of ions caused by the
transmembrane potential will result in the synthesis of additional ATP. If the
transmembrane potential has been reduced (for example, after a neuron
fires), ATP will be consumed to pump ions back across the gradient and re-
store the potential.

ATP is involved in most cellular processes, so it is sometimes called a
currencymetabolite. ATP can also be converted to other high energy phos-
phate compounds such as creatine phosphate, or other nucleotide triphos-
phates. In turn, these molecules provide the higher levels of energy necessary
to transcribe genes and replicate chromosomes. Energy can also be stored in
different chemical forms. Carbohydrates like glycogen provide a moderate
density, moderately accessible form of energy storage. Fats have very high
energy storage density, but the energy stored in them takes longer to retrieve.

4.2 Proteins

Proteins are the primary components of living things, and they play many
roles. Proteins provide structural support and the infrastructure that holds a
creature together; they are enzymes that make the chemical reactions neces-
sary for life possible; they are the switches that control whether genes are
turned on or off; they are the sensors that see and taste and smell, and the ef-
fectors that make muscles move; they are the detectors that distinguish self
from nonself and create an immune response. Finding the proteins that make
up a creature and understanding their function is the foundation of explana-
tion in molecular biology.

Despite their radical differences in function, all proteins are made of the
same basic constituents: the amino acids. Each amino acid shares a basic
structure, consisting of a central carbon atom (C), an aminogroup (NH3) at

18 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

*kcal is an abbreviation for kilocalorie, the amount of energy necessary to raise a liter
of water one degree centigrade at standard temperature and pressure. It is equivalent
to 1 dieter's calorie. A mole is an amount of a substance, measured in terms of the
number of molecules, rather than by its mass. One mole is 6 x 1023molecules.

one end, a carboxylgroup (COOH) at the other, and a variable sidechain (R),
as shown in Figure 2. These chemical groups determine how the molecule
functions, as Mavrovouniotis’s chapter in this volume explains. For example,
under biological conditions the amino end of the molecule is positively
charged, and the carboxyl end is negatively charged. Chains of amino acids
are assembled by a reaction that occurs between the nitrogen atom at the
amino end of one amino acid and the carbon atom at the carboxyl end of an-
other, bonding the two amino acids and releasing a molecule of water. The
linkage is called a peptide bond, and long chains of amino acids can be
strung together into polymers*, called polypeptides, in this manner. All pro-
teins are polypeptides, although the term polypeptide generally refers to
chains that are shorter than whole proteins.

When a peptide bond is formed, the amino acid is changed (losing two
hydrogen atoms and an oxygen atom), so the portion of the original molecule
integrated into the polypeptide is often called a residue. The sequence of
amino acid residues that make up a protein is called the protein’s primary
structure.The primary structure is directly coded for in the genetic material:
The individual elements of a DNA molecule form triples which
unambiguously specify an amino acid. A genetic sequence maps directly into
a sequence of amino acids. This process is discussed in greater detail below.

It is interesting to note that only a small proportion of the very many pos-
sible polypeptide chains are naturally occurring proteins. Computationally,
this is unsurprising. Many proteins contain more than 100 amino acids (some

HUNTER 19

*Polymers are long strings of similar elements; -mer means “element,” as in
monomer, dimer, etc. Homopolymer is a term that refers to polymers made up of all
the same element; heteropolymers are made of several different units. Proteins and
DNA are both heteropolymers. Glycogen, a substance used for the medium-term
storage of excess energy, is an example of a homopolymer.

Carboxyl group: COOH

Amino Group: NH3

Central Carbon (C)

Sidechain (variable region)

Figure 2: The basic chemical structure of an amino acid. Carbon atoms are black,
Oxygen is dark grey, Nitrogen light grey, and hydrogen white.

have more than 4000). The number of possible polypeptide chains of length
100 is 20100 or more than 10130. Even if we take the high estimates of the
number of species (5x107) and assume that they all have as many different
proteins as there are in the most complex organism (<107) and that no two
organisms share a single protein, the ratio of actual proteins to possible
polypeptides is much less than 1:10100—a very small proportion, indeed.

The twenty naturally occuring amino acids all have the common elements
shown in Figure 2. The varying parts are called sidechains; the two carbons
and the nitrogen in the core are sometimes called the backbone. Peptide
bonds link together the backbones of a sequence of amino acids. That link
can be characterized as having two degrees of rotational freedom, the phi (φ)
and psi (ψ) angles (although from the point of view of physics this is a dras-
tic simplification, in most biological contexts it is valid). The conformation
of a protein backbone (i.e. its shape when folded) can be adequately de-
scribed as a series of φ/ψ angles, although it is also possible to represent the
shape using the Cartesian coordinates of the central backbone atom (the
alpha carbon, written Cα), or using various other representational schemes
(see, e.g., Hunter or Zhang & Waltz in this volume).

The dimensions along which amino acids vary are quite important for a
number of reasons. One of the major unsolved problems in molecular biolo-
gy is to be able to predict the structure and function of a protein from its
amino acid sequence. It was demonstrated more than two decades ago that
the amino acid sequence of a protein determines ultimate conformation and,
therefore, its biological activity and function. Exactly how the properties of
the amino acids in the primary structure of a protein interact to determine the
protein’s ultimate conformation remains unknown. The chemical properties
of the individual amino acids, however, are known with great precision.
These properties form the basis for many representations of amino acids, e.g.
in programs attempting to predict structure from sequence. Here is a brief
summary of some of them.

Glycine is the simplest amino acid; its sidechain is a single hydrogen
atom. It is nonpolar, and does not ionize easily. The polarity of a molecule
refers to the degree that its electrons are distributed asymmetrically. A non-
polar molecule has a relatively even distribution of charge. Ionization is the
process that causes a molecule to gain or lose an electron, and hence become
charged overall. The distribution of charge has a strong effect on the behav-
ior of a molecule (e.g. like charges repel). Another important characteristic
of glycine is that as a result of having no heavy (i.e. non-hydrogen) atoms in
its sidechain, it is very flexible. That flexibility can give rise to unusual kinks
in the folded protein.

Alanineis also small and simple; its sidechain is just a methylgroup (con-
sisting of a carbon and three hydrogen atoms). Alanine is one of the most

20 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

commonly appearing amino acids. Glycine and alanine’s sidechains are
aliphatic, which means that they are straight chains (no loops) containing
only carbon and hydrogen atoms. There are three other aliphatic amino acids:
valine, leucineand isoleucine. The longer aliphatic sidechains are hydropho-
bic. Hydrophobicity is one of the key factors that determines how the chain
of amino acids will fold up into an active protein. Hydrophobic residues tend
to come together to form compact core that exclude water. Because the envi-
ronment inside cells is aqueous(primarily water), these hydrophobic
residues will tend to be on the inside of a protein, rather than on its surface.

In contrast to alanine and glycine, the sidechains of amino acids pheny-
lalanine, tyrosineand tryptophanare quite large. Size matters in protein fold-
ing because atoms resist being too close to one another, so it is hard to pack
many large sidechains closely. These sidechains are also aromatic, meaning
that they form closed rings of carbon atoms with alternating double bonds
(like the simple molecule benzene). These rings are large and inflexible.
Phenylalanine and tryptophan are also hydrophobic. Tyrosine has a hydroxyl
group (an OH at the end of the ring), and is therefore more reactive than the
other sidechains mentioned so far, and less hydrophobic. These large amino
acids appear less often than would be expected ifproteins were composed
randomly. Serineand threoninealso contain hydroxyl groups, but do not
have rings.

Another feature of importance in amino acids is whether they ionize to
form charged groups. Residues that ionize are characterized by their pK,
which indicates at what pH (level of acidity) half of the molecules of that
amino acid will have ionized. Arginine and lysine have high pK’s (that is,
they ionize in basic environments) and histidine, gluatmic acidand aspartic
acid have low pK’s (they ionize in acidic ones). Since like charges repel and
opposites attract, charge is an important feature in predicting protein confor-
mation. Most of the charged residues in a protein will be found at its surface,
although some will form bonds with each other on the inside of the molecule
(called salt-bridges) which can provide strong constraints on the ultimate
folded form.

Cysteineand methioninehave hydrophobic sidechains that contain a sul-
phur atom, and each plays an important role in protein structure. The sul-
phurs make the amino acids' sidechains very reactive. Cysteines can form
disulphidebonds with each other; disulphide bonds often hold distant parts
of a polypeptide chain near each other, constraining the folded conformation
like salt bridges. For that reason, cysteines have a special role in determining
the three dimensional structure of proteins. The chapter by Holbrook, Muskal
and Kim in this volume discusses the prediction of this and other folding
constraints. Methionine is also important because all eucaryotic proteins,
when originally synthesized in the ribosome, start with a methionine. It is a
kind of “start” signal in the genetic code. This methionine is generally re-

HUNTER 21

moved before the protein is released into the cell, however.
Histidine is a relatively rare amino acid, but often appears in the active

site of an enzyme. The active site is the small portion of an enzyme that ef-
fects the target reaction, and it is the key to understanding the chemistry in-
volved. The rest of the enzyme provides the necessary scaffolding to bring
the active site to bear in the right place, and to keep it away from bonds that
it might do harm to. Other regions of enzymes can also act as a switch, turn-
ing the active site on and off in a process called allosteric control. Because
histidine’s pK is near the typical pH of a cell, it is possible for small, local
changes in the chemical environment to flip it back and forth between being
charged and not charged. This ability to flip between states makes it useful
for catalyzing chemical reactions. Other charged residues also sometimes
play a similar role in catalysis.

With this background, it is now possible to understand the basics of the
protein folding problem which is the target of many of the AI methods ap-
plied in this volume. The genetic code specifies only the amino acid se-
quence of a protein. As a new protein comes off the ribosome, it folds up into
the shape that gives it its biochemical function, sometimes called its active
conformation(the same protein unfolded into some other shape is said to be
denatured, which is what happens, e.g. to the white of an egg when you cook
it). In the cell, this process takes a few seconds, which is a very long time for
a chemical reaction. The complex structure of the ribosome may play a role
in protein folding, and a few proteins need helper molecules, termed chaper-
onesto fold properly. However, these few seconds are a very short time com-
pared to how long it takes people to figure out how a protein will fold. In raw
terms, the folding problem involves finding the mapping from primary se-
quence (a sequence of from dozens to several thousand symbols, drawn from
a 20 letter alphabet) to the real-numbered locations of the thousands of con-
stituent atoms in three space.

Although all of the above features of amino acids play some role in protein
folding, there are few absolute rules. The conformation a protein finally as-
sumes will minimize the total “free” energy of the molecule. Going against the
tendencies described above (e.g. packing several large sidechains near each
other) increases the local free energy, but may reduce the energy elsewhere in
the molecule. Each one of the tendencies described can be traded off against
some other contribution to the total free energy of the folded protein. Given
any conformation of atoms, it is possible in principle to compute its free ener-
gy. Ideally, one could examine all the possible conformations of a protein, cal-
culate the free energy by applying quantum mechanical rules, and select the
minimum energy conformation as a prediction of the folded structure. Unfortu-
nately, there are very many possible conformations to test, and each energy
calculation itself is prohibitively complex. A wide variety of approaches have
been taken to making this problem tractable, and, given a few hours of super-

22 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

computer time, it is currently possible to evaluate several thousand possible
conformations. These techniques are well surveyed in Karplus & Petsko
(1990). An alternative to the pure physical simulations are the various AI ap-
proaches which a significant portion of this volume is dedicated to describing.

The position of the atoms in a folded protein is called its tertiary struc-
ture. The primary structure is the amino acid sequence. Secondarystructure
refers to local arrangements of a few to a few dozen amino acid residues that
take on particular conformations that are seen repeatedly in many different
proteins. These shapes are stabilized by hydrogen bonds (a hydrogen bond is
a relatively weak bond that also plays a role in holding the two strands of the
DNA molecule together). There are two main kinds of secondary structure:
corkscrew-shaped conformations where the amino acids are packed tightly
together, called α-helices, and long flat sheets made up of two or more adja-
cent strands of the molecule, extended so that the amino acids are stretched
out as far from each other as they can be. Each extended chain is called a β-
strand, and two or more β-strands held together by hydrogen bonds are
called a β-sheet. β-sheets can be composed of strands running in the same di-
rection (called a parallel β-sheet) or running in the opposite direction (an-
tiparallel). Other kinds of secondary structure include structures that are
even more tightly packed than α-helices called 3-10 helices, and a variety of
small structures that link other structures, called β-turns. Some local combi-
nations of secondary structures have been observed in a variety of different
proteins. For example, two α-helices linked by a turn with an approximately
60° angle have been observed in a variety of proteins that bind to DNA. This
pattern is called the helix-turn-helixmotif, and is an example of what is
known as super-secondary structure. Finally, some proteins only become
functional when assembled with other molecules. Some proteins bind to
copies of themselves; for example, some DNA-binding proteins only func-
tion as dimers (linked pairs). Other proteins require prostehtic groups such as
heme or chlorophyl. Additions necessary to make the folded protein active
are termed the protein’s quaternarystructure.

4.3 Nucleic Acids

If proteins are the workhorses of the biochemical world, nucleic acids are
their drivers; they control the action. All of the genetic information in any
living creature is stored in deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA), which are polymers of four simple nucleic acid units, called nu-
cleotides. There are four nucleotides found in DNA. Each nucleotide consists
of three parts: one of two base molecules (a purine or a pyrimidine), plus a
sugar (ribose in RNA and deoxyribose DNA), and one or more phosphate
groups. The purine nucleotides are adenine(A) and guanine(G), and the
pyrimidines are cytosine(C) and thymine(T). Nucleotides are sometimes
called bases, and, since DNA consists of two complementary strands bonded

HUNTER 23

together, these units are often called base-pairs. The length of a DNA se-
quences is often measured in thousands of bases, abbreviated kb. Nucleotides
are generally abbreviated by their first letter, and appended into sequences,
written, e.g., CCTATAG. The nucleotides are linked to each other in the
polymer by phosphodiester bonds. This bond is directional, a strand of DNA
has a head (called the 5’ end) and a tail (the 3’ end).

One well known fact about DNA is that it forms a double helix; that is,
two helical (spiral-shaped) strands of the polypeptide, running in opposite di-
rections, held together by hydrogen bonds. Adenines bond exclusively with
the thymines (A-T) and guanines bond exclusively with cytosines (G-C). Al-
though the sequence in one strand of DNA is completely unrestricted, be-
cause of these bonding rules the sequence in the complementary strand is
completely determined. It is this feature that makes it possible to make high
fidelity copies of the information stored in the DNA. It is also exploited
when DNA is transcribed into complementary strands of RNA, which direct
the synthesis of protein. The only difference is that in RNA, uracil (U) takes
the place of thymine; that is, it bonds to adenine.

DNA molecules take a variety of conformations (shapes) in living sys-
tems. In most biological circumstances, the DNA forms a classic double
helix, called B-DNA; in certain circumstances, however, it can become su-
percoiled or even reverse the direction of its twist (this form is called Z-
DNA). These alternative forms may play a role in turning particular genes on
and off (see below). There is some evidence that the geometry of the B-DNA
form (e.g for example, differing twist angles between adjacent base pairs)
may also be exploited by cell mechanisms. The fact that the conformation of
the DNA can have a biological effect over and above the sequence it encodes
highlights an important lesson for computer scientists: there is more infor-
mation available to a cell than appears in the sequence databases.This les-
son also applies to protein sequences, as we will see in the discussion of
post-translational modification.

Now that we have covered the basic structure and function of proteins and
nucleic acids, we can begin to put together a picture of the molecular pro-
cessing that goes on in every cell.

5. Genetic Expression: From Blueprint to Finished Product

5.1 Genes, the Genome and the Genetic Code

The genetic information of an organism can be stored in one or more distinct
DNA molecules; each is called a chromosome. In some sexually reproducing
organisms, called diploids, each chromosome contains two similar DNA
molecules physically bound together, one from each parent. Sexually repro-
ducing organisms with single DNA molecules in their chromosomes are

24 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

called haploid. Human beings are diploid with 23 pairs of linear chromo-
somes. In Bacteria, it is common for the ends of the DNA molecule to bind
together, forming a circular chromosome. All of the genetic information of
an organism, taken together as a whole, is refered to as its genome.

The primary role of nucleic acids is to carry the encoding of the primary
structure of proteins. Each non-overlapping triplet of nucleotides, called a
codon, corresponds to a particular amino acid (see table 1). Four nucleotides
can form 43 = 64 possible triplets, which is more than the 20 needed to code
for each amino acid (pairs would provide only 16 codons). Three of these
codons are used to designate the end of a protein sequence, and are called
stop codons. The others all code for a particular amino acid. That means that
most amino acids are encoded by more than one codon. For example, alanine
is represented in DNA by the codons GCT, GCC, GCA and GCG. Notice
that the first two nucleotides of these codons are all identical, and that the
third is redundant. Although this is not true for all of the amino acids, most
codon synonyms differ only in the last nucleotide. This phenomenon is
called the degeneracyof the code. Whether it is an artifact of the evolution,
or serves a purpose such as allowing general changes in the global composi-
tion of DNA (e.g. increasing the proportion of purines) without changing the
coded amino acids is still unknown.

There are some small variations in the translation of codons into amino
acids from organism to organism. Since the code is so central to the function-
ing of the cell, it is very strongly conserved over evolution. However, there
are a few systems that use a slightly different code. An important example is
found in mitochondria. Mitochondria have their own DNA, and probably
represent previously free living organisms that were enveloped by eucary-
otes. Mitochondrial DNA is translated using a slightly different code, which
is more degenerate (has less information in the third nucleotide) than the
standard code. Other organisms that diverged very early in evolution, such as
the ciliates, also use different codes.

The basic process of synthesizing proteins maps from a sequence of
codons to a sequence of amino acids. However, there are a variety of impor-
tant complications. Since codons come in triples, there are three possible
places to start parsing a segment of DNA. For example, the chain
...AATGCGATAAG... could be read ...AAT-GCG-ATA... or ...ATG-CGA-
TAA... or ...TGC-GAT-AAG.... This problem is similar to decoding an asyn-
chronous serial bit stream into bytes. Each of these parsings is called a read-
ing frame. A parsing with a long enough string of codons with no intervening
stop codons is called an open reading frame, or ORF; and could be translated
into a protein. Organisms sometimes code different proteins with overlap-
ping reading frames, so that if the reading process shifts by one character, a
completely different, but still functional protein results! More often, frame
shifts, which can be introduced by insertions and deletions in the DNA se-

HUNTER 25

quence or transcriptional “stuttering,” produce nonsense.
Not only are there three possible reading frames in a DNA sequence, it is

possible to read off either strand of the double helix. Recall that the second
strand is the complement of the first, so that our example above (AATGC-
GATAAG) can also be read inverted and in the opposite direction, e.g. CT-
TATCGCATT. This is sometimes called reading from the antisense or comple-
mentarystrand. An antisense message can also be parsed three ways, making a
total of 6 possible reading frames for every DNA sequence. There are known
examples of DNA sequences that code for proteins in both directions with sev-
eral overlapping reading frames: quite a feat of compact encoding.

And there’s more. DNA sequences coding for a single protein in most eu-
caryotes have noncoding sequences, called introns, inserted into them.
These introns are spliced out before the sequence is mapped into amino
acids. Different eucaryotes have a variety of different systems for recogniz-
ing and removing these introns. Most bacteria don’t have introns. It is not
known whether introns evolved only after the origin of eucaryotes, or
whether selective pressure has caused bacteria to lose theirs. The segments
of DNA that actually end up coding for a protein are called exons. You can
keep these straight by remembering that introns are insertions, and that
exons are expressed.

DNA contains a large amount of information in addition to the coding se-
quences of proteins. Every cell in the body has the same DNA, but each cell
type has to generate a different set of proteins, and even within a single cell
type, its needs change throughout its life. An increasing number of DNA sig-
nals that appear to play a role in the control of expression are being charac-
terized. There are a variety of signals identifying where proteins begin and
end, where splices should occur, and an exquisitely detailed set of mecha-
nisms for controlling which proteins should be synthesized and in what
quantities. Large scale features of a DNA molecule, such as a region rich in
Cs and Gs can play a biologically important role, too.

Finally, some exceptions to the rules I mentioned above should be noted.
DNA is sometimes found in single strands, particularly in some viruses.
Viruses also play other tricks with nucleic acids, such as transcribing RNA
into DNA, going against the normal flow of information in the cell. Even
non-standard base-pairings sometimes play an important role, such as in the
structure of transfer RNA (see below).

5.2 RNA: Transcription, Translation, Splicing & RNA Structure

The process of mapping from DNA sequence to folded protein in eucaryotes
involves many steps (see Figure 3). The first step is the transcription of a
portion of DNA into an RNA molecule, called a messenger RNA (mRNA).
This process begins with the binding of a molecule called RNA polymerase

26 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

to a location on the DNA molecule. Exactly where that polymerase binds de-
termines which strand of the DNA will be read and in which direction. Parts
of the DNA near the beginning of a protein coding region contain signals
which can be recognized by the polymerase; these regions are called promot-
ers. (Promoters and other control signals are discussed further below.) The
polymerase catalyzes a reaction which causes the DNA to be used as a tem-
plate to create a complementary strand of RNA, called the primary tran-
script. This transcript contains introns as well as exons. At the end of the
transcript, 250 or more extra adenosines, called a poly-A tail, are often added
to the RNA. The role of these nucleotides is not known, but the distinctive
signature is sometimes used to detect the presence of mRNAs.

The next step is the splicing the exons together. This operation takes
takes place in a ribosome-like assembly called a spliceosome. The RNA re-
maining after the introns have been spliced out is called a maturemRNA. It
is then transported out of the nucleus to the cytoplasm, where it then binds
to a ribosome.

A ribosome is a very complex combination of RNA and protein, and its
operation has yet to be completely understood. It is at the ribosome that the
mRNA is used as a blueprint for the production of a protein; this process is
called translation. The reading frame that the translation will use is deter-
mined by the ribosome. The translation process depends on the presence of
molecules which make the mapping from codons in the mRNA to amino
acids; these molecules are called transfer-RNA or tRNAs.tRNAs have an
anti-codon (that binds to its corresponding codon) near one end and the cor-
responding amino acid on the other end. The anti-codon end of the tRNAs
bind to the mRNA, bringing the amino acids corresponding the mRNA se-
quence into physical proximity, where they form peptide bonds with each
other. How the tRNAs find only the correct amino acid was a mystery until
quite recently. This process depends on the three dimensional structure of the
RNA molecule, which is discussed in Steeg’s chapter of this volume. As the
protein comes off the ribosome, it folds up into its native conformation. This
process may involve help from the ribosome itself or from chaperone mole-
cules, as was described above.

Once the protein has folded, other transformations can occur. Various
kinds of chemical groups can be bound to different places on the proteins, in-
cluding sugars, phosphate, actyl or methyl groups. These additions can
change the hyrogen bonding proclivity or shape of the protein, and may be
necessary to make the protein active, or may keep it from having an effect
before it is needed. The general term for these transformations is post-trans-
lational modifications. Once this process is complete, the protein is then
transported to the part of the cell where it will accomplish its function. The
transport process may be merely passive diffusion through the cytoplasm, or
there may be an active transport mechanism that moves the protein across

HUNTER 27

28 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α-he l i x

β-s t rand

β-sheet

Hydrogen bonds

Disulphide bond

Coil

{

DNA

RNA polymerase

Promoter region

Pr imary t ranscr ip t
(RNA)in t ronexon

Transcription (takes place in nucleus)

Intron splicing (takes place at spliceosomes)

mRNA

Unfolded protein

Translation (takes place at r ibosomes)

Stop codon

Splice junction consensus sites

Folded protein

Folding and post-translat ional modif icat ion

met

ATG

tRNA

Glycosylat ion si te

Figure 3. A schematic drawing of the entire process of protein synthesis. An RNA
Polymerase binds to a promoter region of DNA, and begins the transcription process,
which continues until a stop codon is reached. The product is an RNA molecule
called the primary transcript, which contains regions that code for proteins (exons)
and regions which do not (introns). The introns are spliced out at splicosomes, and
the joined exons are transported to a ribosome. There, transfer RNAs match amino
acids to the appropriate codons in the RNA; the amino acids form peptide bonds and
become an unfolded protein. The protein then folds into local formations like helices
and sheets, and forms internal bonds across longer distances. Post-translational
processing can add additional substance; e.g., glycosylation adds sugar molecules to
the protein.

membranes or into the appropriate cellular compartment.

5.3 Genetic Regulation
Every cell has the same DNA. Yet the DNA in some cells codes for the pro-
teins needed to function as, say, a muscle, and other code for the proteins to
make the lens of the eye. The difference lies in the regulation of the genetic
machinery. At any particular time, a particular cell is producing only a small
fraction of the proteins coded for in its DNA. And the amount of each pro-
tein produced must be precisely regulated in order for the cell to function
properly. The cell will change the proteins it synthesizes in response to the
environment or other cues. The mechanisms that regulate this process consti-
tute a finely tuned, highly parallel system with extensive multifactoral feed-
back and elaborate control structure. It is also not yet well understood.

Genes are generally said to be on or off (or expressed/not expressed), al-
though the amount of protein produced is also important. The production
process is controlled by a complex collection of proteins in the nucleus of
eucaryotic cells that influence which genes are expressed. Perhaps the most
important of these proteins are the histones, which are tightly bound to the
DNA in the chromosomes of eucaryotes. Histones are some of the most con-
served proteins in all of life. There are almost no differences in the sequence
of plant and mammalian histones, despite more than a billion years of diver-
gence in their evolution. Other proteins swarm around the DNA, some
influencing the production of a single gene (either encouraging or inhibiting
it), while others can influence the production of large numbers of genes at
once. An important group of these proteins are called topoisomerases; they
rearrange and untangle the DNA in various ways, and are the next most
prevalent proteins in the chromosome.

Many regulatory proteins recognize and bind to very specific sequences in
the DNA. The sequences that these proteins recognize tend to border the pro-
tein coding regions of genes, and are known generally as control regions. Se-
quences that occur just upstream (towards the 5' end) of the coding region
that encourage the production of the protein are called promoters.Similar re-
gions either downstream of the coding region or relatively far upstream are
called enhancers.Sequences that tend to prevent the production of a protein
are called repressors. Karp’s chapter in this volume discusses how this com-
plex set of interactions can be modeled in knowledge-based systems.

Cells need to turn entire suites of genes on and off in response to many
different events, ranging from normal development to trying to repair dam-
age to the cell. The control mechanisms are responsive to the level of a prod-
uct already in the cell (for homeostatic control) as well as to a tremendous
variety of extracellular signals. Perhaps the most amazing activities in gene
regulation occur during development; not only are genes turned on and off
with precise timing, but the control can extend to producing alternative splic-

HUNTER 29

ings of the nascent primary transcripts (as is the case in the transition from
fetal to normal hemoglobin).

5.4 Catalysis & Metabolic Pathways

The translation of genes into proteins, crucial as it is, is only a small portion
of the biochemical activity in a cell. Proteins do most of the work of manag-
ing the flow of energy, synthesizing, degrading and transporting materials,
sending and receiving signals, exerting forces on the world, and providing
structural support. Systems of interacting proteins form the basis for nearly
every process of living things, from moving around and digesting food to
thinking and reproducing. Somewhat surprisingly, a large proportion of the
chemical processes that underlie all of these activities are shared across a
very wide range of organisms. These shared processes are collectively re-
ferred to as intermediary metabolism. These include the catabolicprocesses
for breaking down proteins, fats and carbohydrates (such as those found in
food) and the anabolicprocesses for building new materials. Similar collec-
tions of reactions that are more specialized to particular organisms are called
secondary metabolism. The substances that these reactions produce and con-
sume are called metabolites.

The biochemical processes in intermediary metabolism are almost all cat-
alyzed reactions. That is, these reactions would barely take place at all at
normal temperatures and pressures; they require special compounds that fa-
cilitate the reaction — these compounds are called catalysts or enzymes. (It is
only partially in jest that many biochemistry courses open with the professor
saying that the reactions that take place in living systems are ones you were
taught were impossible in organic chemistry.) Catalysts are usually named
after the reaction they facilitate, usually with the added suffix-ase. For ex-
ample, alcohol dehydrogenase is the enzyme that turns ethyl alcohol into ac-
etaldehyde by removing two hydrogen atoms. Common classes of enzymes
include dehydrogenases, synthetases, proteases(for breaking down proteins),
decarboxylases(removing carbon atoms), transferases(moving a chemical
group from one place to another), kinases, phosphatases(adding or removing
phosphate groups, respectively) and so on. The materials transformed by cat-
alysts are called substrates.Unlike the substrates, catalysts themselves are
not changed by the reactions they participate in. A final point to note about
enzymatic reactions is that in many cases the reactions can proceed in either
direction. That is, and enzyme that transforms substance A into substance B
can often also facilitate the transformation of B into A. The direction of the
transformation depends on the concentrations of the substrates and on the en-
ergetics of the reaction (see Mavrovouniotis’ chapter in this volume for fur-
ther discussion of this topic).

Even the basic transformations of intermediary metabolism can involve

30 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

dozens or hundreds of catalyzed reactions. These combinations of reactions,
which accomplish tasks like turning foods into useable energy or compounds
are called metabolic pathways. Because of the many steps in these pathways
and the widespread presence of direct and indirect feedback loops, they can
exhibit many counterintuitive behaviors. Also, all of these chemical reactions
are going on in parallel. Mavrovouniotis’s chapter in this volume describes
an efficient system for making inferences about these complex systems.

In addition to the feedback loops among the substrates in the pathways,
the presence or absence of substrates can affect the behavior of the enzymes
themselves, through what is called allosteric regulation. These interactions
occur when a substance binds to an enzyme someplace other than its usual
active site (the atoms in the molecule that have the enzymatic effect). Bind-
ing at this other site changes the shape of the enzyme, thereby changing its
activity. Another method of controlling enzymes is called competitive inhibi-
tion. In this form of regulation, substance other than the usual substrate of
the enzyme binds to the active site of the enzyme, preventing it from having
an effect on its substrate.

These are the basic mechanisms underlying eucaryotic cells (and much of
this applies to bacterial and archaeal ones as well). Of course, each particular
activity of a living system, from the capture of energy to immune response,
has its own complex network of biochemical reactions that provides the
mechanism underlying the function. Some of these mechanisms, such as the
secondary messenger systeminvolving cyclic adenosine monophosphate
(cAMP) are widely shared by many different systems. Others are exquisitely
specialized for a particular task in a single species: my favorite example of
this is the evidence that perfect pitch in humans (being able to identify musi-
cal notes absolutely, rather than relative to each other) is mediated by a sin-
gle protein. The functioning of these biochemical networks is being unrav-
elled at an ever increasing rate, and the need for sophisticated methods to
analyze relevant data and build suitable models is growing rapidly.

5.5 Genetic Mechanisms of Evolution

In the beginning of this chapter, I discussed the central role that evolution
plays in understanding living systems. The mechanisms of evolution at the
molecular level are increasingly well understood. The similarities and differ-
ences among molecules that are closely related provide important informa-
tion about the structure and function of those molecules. Molecules (or their
sequences) which are related to one another are said to be homologous. Al-
though genes or proteins that have similar sequences are often assumed to be
homologous, there are well known counterexamples due to convergent evo-
lution. In these cases, aspects of very distantly related organisms come to re-
semble one another through very different evolutionary pathways. Unless
there is evidence to the contrary, it is usually safe to assume that macromole-

HUNTER 31

cular sequences that are similar to each other are homologous.
The sources of variation at the molecular level are very important to un-

derstanding how molecules come to differ from each other (or diverge). Per-
haps the best known mechanism of molecular evolution is the point muta-
tion, or the change of a single nucleotide in a genetic sequence. The change
can be to inserta new nucleotide, to deletean existing one, or to change one
nucleotide into another. Other mechanisms include large scale chromosomal
rearrangements and inversions. An important kind of rearrangement is the
gene duplication; in which additional copies of a gene are inserted into the
genome. These copies can then diverge, so that, for example, the original
functionality may be preserved at the same time as related new genes evolve.
These duplication events can lead to the presence of pseudogenes, which are
quite similar to actual genes, but are not expressed. These pseudogenes pre-
sent challenges for gene recognition algorithms, such as the one proposed in
Searls chapter in this volume. Sexual reproduction adds another dimension to
the exchange of genetic material. DNA from the two parents of a sexually re-
producing organism undergoes a process called crossover, which forms a
kind of mosaic that is passed on to the offspring.

Most mutations have relatively little effect. Mutations in the middle of
introns generally have no effect at all (although mutations at the ends of an
intron can affect the splicing process). Mutations in the third position of
most codons have little effect at the protein level because of the redundancy
of the genetic code. Even mutations that cause changes in the sequence of a
protein are often neutral, as demonstrated by Sauer, et al (1989). Their ex-
perimental method involved saturation mutagenesiswhich explores are rel-
atively large proportion of the space of possible mutations in parallel. Neu-
tral mutations are the basis of genetic drift, which is the phenomena that
accounts for the differences between the DNA that codes for functionally
identical proteins in different organisms. This drift is also the basis for the
molecular clock, described above. Of course, some point mutations are
lethal, and others lead to diseases such as cystic fibrosis. Very rarely, a mu-
tation will be advantageous; it will then rapidly get fixed in the population,
as the organisms with the conferred advantage out reproduce the ones with-
out it. Diploid sexually reproducing organisms have two copies of each
gene (one from each parent), resulting in an added layer of complexity in
the effect of mutations. Sometimes the extra copy can compensate (or par-
tially compensate) for a mutation.

Molecular evolution also involves issues of selection and inheritance. In-
heritance requires that the genes from the parent be passed to the offspring.
DNA itself is replicated by splitting the double helix into two complimentary
strands and then extending a primer by attaching complementary nucleotides.
This process is modelled in detail Brutlag, et al’s chapter in this volume. The
molecular mechanisms underlying the whole complex process of cell divi-

32 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

sion (i.e. the cell cycle) are strikingly conserved in eucaryotes, and knowl-
edge about this process is growing rapidly (see, e.g., Hartwell (1991) for a
review). Selection also occurs on factors that are only apparent on the molec-
ular level, such as the efficiency of certain reaction pathways (see, e.g.
Hochachka & Somero [1984]).

6. Sources of Biological Knowledge

The information in this chapter has been presented textbook style, with little
discussion of how the knowledge arose, or where errors might have crept in.
The purpose of this section is to describe some of the basic experimental
methods of molecular biology. These methods are important not only in un-
derstanding the source of possible errors in the data, but also because compu-
tational methods for managing laboratory activities and analyzing raw data
are another area where AI can play a role (see the chapters by Edwards, et al
and Glasgow, et al, in this volume). I will also describe some of the many
online information resources relevant to computational molecular biology
that are available.

6.1 Model Organisms: Germs, Worms, Weeds, Bugs & Rodents

The investigation of the workings of even a single organism is so complex as
to take many dedicated scientists many careers worth of time. Trying to
study all organisms in great depth is simply beyond the abilities of modern
biology. Furthermore, the techniques of biological experimentation are often
complex, time consuming and difficult. Some of the most valuable methods
in biological research are invasive, or require organisms to be sacrificed, or
require many generations of observation, or observations on large popula-
tions. Much of this work is impractical or unethical to carry out on humans.
For these reasons, biologists have selected a variety of model organisms for
experimentation. These creatures have qualities that make possible con-
trolled laboratory experiments at reasonable cost and difficulty with results
that can often be extrapolated to people or other organisms of interest.

Of course, research involving humans can be done ethically, and in some
areas of biomedical research, such as final drug testing, it is obligatory. Other
research methods involve kinds of human cells can be grown successfully in
the laboratory. Not many human cell types thrive outside of the body. Some
kinds of human cancer cells do grow well in the laboratory, and these cells
are an important vehicle for research.

Sometimes the selection of a new model organism can lead to great ad-
vances in a field. For example, the use of a particular kind of squid made
possible the understanding of the functioning of neurons because it contained
a motor neuron that is more than 10 times the size of most neural cells, and
hence easy to find and use in experiments. There are experimentally useful

HUNTER 33

correlates of nearly every aspect of human biology found in some organism
or another, but the following six organisms form the main collection of mod-
els used in molecular biology:

E. coli The ubiquitous intestinal bacterium Escherichia coli is a work-
horse in biological laboratories. Because it is a relatively simple organism
with fast reproduction time and is safe and easy to work with, E. coli has
been the focus of a great deal of research in genetics and molecular biology
of the cell. Although it is a Bacterium, many of the basic biochemical mech-
anisms of E. coli are shared by humans. For example, the first understanding
of how genes can be turned on and off came from the study of a virus that in-
fects these bacteria (Ptashne, 1987). E. coli is a common target for genetic
engineering, where genes from other organisms are inserted into the bacterial
genome then produced in quantity. E. coli is now the basis of the internation-
al biotechnology industry, churning out buckets full of human insulin, the
heart attack drug TPA, and a wide variety of other substances.

Saccharomyces Saccharomyces cervesiaeis better known as brewer’s
yeast, and it is another safe, easy to grow, short generation time organism.
Other yeasts, such as Schizosaccharomyces pombe,are also used extensively.
Surprisingly, yeasts are very much like people in many ways. Unlike the bac-
terium E. coli, yeasts are eucaryotes, with a cell nucleus, mitochondria, a eu-
caryotic cell membrane, and many of the other cellular components and
processes found in most other eucaryotes, including people. Because these
yeasts are so easy to grow and manipulate, and because they are so biochemi-
cally similar to people, many insights about the molecular processes involved
in metabolism, biosynthesis, cell division, and other crucial areas of biology
have come from the investigation of Saccharomyces (Saccharomyces is a
genus name, which, when used alone, refers to all species that are within that
genus). Yeasts play another important role in molecular biology. One of the
crucial steps in sequencing large amounts of DNA is to be able to prepare
many copies of moderate sized pieces of DNA. An widely used method for
doing this is the yeast artificial chromosome(or YAC), which is discussed
below.

Arabidopsis The most important application of increased biological under-
standing is generally thought to be in medicine, and increased understanding
of human biology has indeed led to dramatic improvements in health care.
However, in terms of effect on human life, agriculture is just as significant. A
great deal of research into genetics and biochemistry has been motivated by
the desire to better understand various aspects of plant biology. An important
model organism for plants is Arabidopsis thaliana, a common weed. Ara-
bidopsis makes a good model because it undergoes the same processes of
growth, development, flowering and reproduction as most higher plants, but
it’s genome has 30 times less DNA than corn, and very little repetitive DNA.
It also produces lots of seeds, and takes only about six weeks to grow to matu-

34 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

rity. There are several other model organisms used to investigate botanical
questions, including tomatoes, tobacco, carrots and corn.

C. elegans One of the most exciting model organisms to emerge recently
has been the nematode worm Caenorhabditis elegans. This tiny creature,
thousands of which can be found in a spadeful of dirt, has already been used
to generate tremendous insight about cellular development and physiology.
The adult organism has exactly 959 cells, and every normal worm consists of
exactly the same collection of cells in the same places doing the same thing.
It is one of the simplest creatures with a nervous system (which involves
about a third of its cells). Not only is the complete anatomy of the organism
known, but a complete cell fate map has been generated, tracing the develop-
mental lineage of each of each cell throughout the lifespan of the organism.
This map allows researchers to relate behaviors to particular cells, to trace
the effects of genetic mutations very specifically, and perhaps to gain insight
into the mechanisms of aging as well as development. A large, highly inte-
grated picture and text database of information about the cell fates, genetic
maps and sequences, mutation effects and other relevant information about
C. elegansis currently under construction at the University of Arizona.

D. melanogaster Drosophila melanogaster, a common fruit fly, has long
been a staple of classical genetics research. These flies have short generation
times, and many different genetically determined morphological characteris-
tics (e.g. eye color) that can readily be determined by visual inspection.
Drosophila were used for decades in exploring patterns of inheritance; now
that molecular methods can be applied, they have proven invaluable for a va-
riety of studies of genetic expression and control. An important class of ge-
netic elements that regulate many other genes, in effect, specifying complex
genetic programs, were first discovered inDrosophila; these areas are called
homeoboxes. Molecular genetics in Drosophila is also providing great in-
sights into how complex body plans are generated.

M. musculus Mus musculus is the basic laboratory mouse. Mice are mam-
mals, and, as far as biochemistry is concerned, are practically identical to
people. Many questions about physiology, reproduction, functioning of the
immune and nervous systems and other areas of interest can only be
addressed by examining creatures that are very similar to humans; mice near-
ly always fit the bill. The similarities between mice and people mean also
that the mouse is a very complicated creature; it has a relatively large, com-
plex genome, and mouse development and physiology is not as regular or
consistent as that of C. elegansor Drosophila. Although our depth of under-
standing of the mouse will lag behind understanding of simpler organisms,
the comparison of mouse genome to human is likely to be a key step, both in
understanding their vast commonalities, and in seeing the aspects of our
genes that make us uniquely human.

HUNTER 35

7. Experimental Methods

Molecular biologists have developed a tremendous variety of tools to address
questions of biological function. This chapter can only touch briefly on a few
of the most widely used methods, but the terminology and a sense of the
kinds of efforts required to produce the data used by computer scientists can
be important for understanding the strengths and limitations of various
sources of data.

Imaging. The first understanding of the cellular nature of life came short-
ly after the invention of the light microscope, and microscopy remaines cen-
tral to research in biology The tools for creating images have expanded
tremendously. Not only are there computer controled light microscopes with
a wide variety of imaging modalities, but there are now many other methods
of generating images of the very small. The electon microscope offers ex-
tremely high resolution, although it requires exposing the imaged sample to
high vacuum and other harsh treatments. New technologies including the
Atomic Force Microscope (AFM) and the Scanning Tunnelling Microscope
(STM) offer the potential to create images of individual molecules. Biolo-
gists use these tools extensively.

Gel Electrophoresis. A charged molecule, when placed in an electric
field, will be accelerated; positively charged molecules will move toward
negative electrodes and vice versa. By placing a mixture of molecules of in-
terest in a medium and subjecting them to an electric charge, the molecules
will migrate through the medium and separate from each other. How fast the
molecules will move depends on their charge and their size—bigger mole-
cules see more resistance from the medium. The procedure, called elec-
trophoresis involves putting a spot of the mixture to be analyzed at the top of
a polyacrylamide or agarose gel, and applying an electric field for a period of
time. Then the gel is stained so that the molecules become visible; the stains
appear as stripes along the gel, and are called bands.The location of the
bands on the gel are proportional to the charge and size of the molecules in
the mixture (see Figure 4 for an example). The intensity of the stain is an in-
dication of the amount of a particular molecule in the mixture. If the
molecules are all the same charge, or have charge proportional to their size
(as, for example, DNA does) then electrophoresis separates them purely by
size.

Often, several mixtures are run simultaneously on a single gel. This al-
lows for easy calibration to standards, or comparison of the contents of dif-
ferent mixtures, showing, for example, the absence of a particular molecular
component in one. The adjacent, parallel runs are sometimes called lanes. A
variation on this technique allows the sorting of molecules by a chemical
property called the isoelectric point, which is related to its pK. A combina-
tion of the two methods, called2D electrophoresis is capable of very fine

36 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

distinctions, for example, mapping each protein in a cell to a unique spot in
two-space, the size of the spot indicating the amount of the protein. Although
there are still some difficulties in calibration and repeatability, this method is
potentially a very powerful tool for monitoring the activities of large bio-
chemical systems. In addition, if a desired molecule can be separated from
the mixture this way, individual spots or bands can be removed from the gel
for further processing, in a procedure called blotting.

Cloning. A group of cells with identical genomes are said to be clones of
one another. Unless there are mutations, a single cell that reproduces asexu-
ally will produce identical offspring; these clones are sometimes called a cell
line, and certain standardized cell lines, for example the HeLa cell line, play
an important role in biological research.

This concept has been generalize to cloning individual genes. In this case,
a piece of DNA containing a gene of interest is inserted into the genome of a
target cell line, and the cells are screened so that all of the resulting cells
have an identical copy of the desired genetic sequence. The DNA in these
cells is said to be recombinant, and the cell will produce the protein coded
for by the inserted gene.

Cloning a gene requires some sophisticated technology. In order for a
cloned gene to be expressed, it must contain the appropriate transcription sig-
nals for the target cell line. One way biologists ensure that this will happen is
to put the new gene into a bacteriophage (a virus that infects bacteria), or a
plasmid (a circular piece of DNA found outside of the chromosome of bacte-
ria that replicates independently of the bacteria’s chromosomal DNA). These

HUNTER 37

Figure 4. This is an example of a gel electrophoresis run.. Each column was loaded
with a different mixture. The mixtures are then separated vertically by their charge
and size. The gel is then stained, producing dark bands where a molecule of a given
size or charge is present in a mixture. In this gel, the columns marked with a - are a
control group. The band marked with an arrow is filled only in the + columns.

-- + - + - + - + - + - + - +

devices for inserting foreign DNA into cells are called vectors.
In order to cut and paste desired DNA fragments into vectors, biologists

use restriction enzymes, which cut DNA at precisely specified points. These
enzymes are produced naturally by bacteria as a way of attacking foreign
DNA. For example, the commonly used enzyme EcoRI (from E. coli)cuts
DNA between the G and the A in the sequence GAATTC; these target se-
quences are called restriction sites. Everywhere a restriction site occurs in a
DNA molecule treated with EcoRI, the DNA will be broken. Restriction en-
zymes play many roles in biology in addition to making gene cloning
possible; a few others will be described below.

Both the insertion of the desired gene into the vector and the uptake of the
vector by the target cells are effective only a fraction of the time. Fortunately,
cells and vectors are small and it is relatively easy to grow a lot of them. The
process is applied to a population of target cells, and then the resulting popu-
lation is screened to identify the cells where the gene was successfully insert-
ed. This can be difficult, so many vectors are designed to facilitate screening.
One popular vector, pBR322, contains a naturally occurring transcription
start signal and some antibiotic resistance genes, designed with conveniently
placed restriction sites. If this vector is taken up by the target cells, it will
confer resistance to certain antibiotics to them. By applying the anitbiotic to
the whole colony, the researcher can kill all the cells that did not get the
cloned gene. More sophisticated manipulations involving multiple antibiotic
resistances and carefully placed restriction sites can also be used to ensure
that the gene was correctly taken up by the vector.

There are many variations on these techniques for inserting foreign genes.
It is now possible to use simple bacteria to produce large amounts of almost
any isolated protein, including, for example, human insulin. Although it is a
more complex process, it is also possible to insert foreign genes into plants
and animals, even people. A variety of efforts are underway to use these tech-
niques to engineer organisms for agriculture, medicine and other applications.
Not all of these applications are benign. One of the most successful early ef-
forts was to increase the resistance of tobacco plants to pesticides, and there
are clear military applications. On the other hand, these methods also promise
new approaches to producing important rare biological compounds inexpen-
sively (e.g. for novel cancer treatments or cleaning up toxic waste) and im-
proving the nutritional value or hardiness of agricultural products. The entire
field of genetic engineering is controversial, and there are a variety of controls
on what experiments can be done and how they can be done.

Hybridization and Immunological Staining. Biological compounds
can show remarkable specificity, for example, binding very selectively only
to one particular compound. This ability plays an important role in the labo-
ratory, where researchers can identify the presence or absence of a particular
molecule (or even a region of a molecule) in vanishingly small amounts.

38 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Antibodiesare the molecules that the immune system uses to identify and
fight off invaders. Antibodies are extremely specific, recognizing and bind-
ing to only one kind of molecule. Dyes can be attached to the antibody,
forming a very specific system for identifying the presence (and possibly
quantifying the amount) of a target molecule that is present in a system.

There is a conceptually related method for identifying very specifically
the presence of a particular nucleotide sequence in a macromolecule. The
complement to a single-stranded DNA sequence will bind quite specifically
to that sequence. One technique measures how similar two related DNA se-
quences are by testing how strongly the single-stranded versions of the mole-
cules stick to each other, or hybridize. The more easily they come apart, the
more differences there are between their sequences. It is also possible to at-
tach a dye or other marker to a specific piece of DNA (called a probe) and
then hybridize it to a longer strand of DNA. The location along the strand
that is complementary to the probe will then be marked. There are many
variations on hybridization and immunological staining that are customized
to the needs of a particular experiment.

Gene Mapping and Sequencing. The Human Genome Project is the ef-
fort to produce a map and then the sequence of the human genome. The pur-
pose of a genetic map is to identify the location and size of all of the genes of
an organism on its chromosomes. This information is important for a variety
of reasons. First, because crossover is an important component of inheritance
in sexually reproducing organisms, genes that are near each other on the
chromosome will tend to be inherited together. In fact, this forms the basis
for linkage analysis, which is a technique that looks at the relationships be-
tween genes (or phenotypes) in large numbers of matings (in this context,
often called crosses) to identify which genes tend to be inherited together,
and are therefore likely to be near each other. Second, it is possible to clone
genes of known locations, opening up a wide range of possible experimental
manipulations. Finally, it is currently possible to determine the sequence of
moderate size pieces of DNA, so if an important gene has been mapped, it is
possible to find the sequence of that area, and discover the protein that is re-
sponsible for the genetic characteristic. This is especially important for un-
derstanding the basis of inherited diseases.

The existence of several different kinds of restriction enzymes makes pos-
sible a molecular method of creating genetic maps. The application of each
restriction enzyme (the process is called a digest) creates a different collec-
tion of restriction fragments(the cut up pieces of DNA). By using gel elec-
trophoresis, it is possible to determine the size of these fragments. Using
multiple enzymes, together and separately, results in sets of fragments which
can be (partially) ordered with respect to each other, resulting in a genetic
map. AI techniques for reasoning about partial orders have been effectively
applied to the problem of assembling the fragments into a map (Letovsky &

HUNTER 39

Berlyn, 1992). These physical mapsdivide a large piece of DNA (like a
chromosome) into parts, and and there is an associated method for obtaining
any desired part.

Restriction fragment mapping becomes problematic when applied to large
stretches of DNA, because the enzymes can produce many pieces of about
the same size, making the map ambiguous. The use of different enzymes can
help address this problem to a limited degree, but a variety of other tech-
niques are now also used.

Being able to divide the genome into moderate sized chunks is a prerequi-
site to determining its sequence. Although there are several clever methods
for determining the sequence of DNA molecule, all of them are limited to a
resolution of well under a thousand basepairs at a time. In order to take this
sequencing ability and determine the sequence of large pieces of DNA, many
different overlapping chunks must be sequenced, and then these sequences
must be assembled. In order to accomplish this task, it is necessary to break
the DNA in an entire genome down into a set of more manageable sized
pieces. The ordering of these pieces must be known (so they can be reassem-
bled into a complete sequence), taken together the pieces must cover the en-
tire genome, and the same set of pieces must be accessible to many different
laboratories. This process is usually accomplished in several stages. The first
stage generates relatively large pieces called contigs. Contigs are maintained
in cloned cell lines so that they can be reproduced and distributed. Often,
these pieces of DNA are made into Yeast artificial chromosomes, or YACs,
which can hold up to about a million basepairs of sequence each, requiring
on the order of 10,000 clones to adequately cover the entire human genome.
Each of these is then broken down into sets of smaller pieces, often in the
form of cosmids.A cosmid is a particular kind of bacteriophage (a virus that
infects bacteria) that is capable of accepting inserts of 30,000 or so basepairs.
The difficulties in generating and maintaining collections of clones that large
have led to alternative technologies for large scale sequencing.

One alternative involves a new technology based on the polymerase chain
reaction, or PCR. This mechanism was revolutionary becauase it made it
possible to rapidly produce huge amounts of a specific region of DNA, sim-
ply by knowing a little bit of the sequence around the desired region. PCR
exponentially amplifies(makes copies of) a segment of a DNA molecule,
given a unique pair of sequences that bracket the desired piece. First, short
sequences of DNA (called oligonucleotides, or oligos) complementary to

40 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

*There are many interesting uses of this technology. For example, it gives law en-
forcement the ability to generate enough DNA for identification from vanishing small
samples of tissue. A more amusing application is the rumored use of PCR to spy on
what academic competitors are doing in their research. Almost any correspondence
from a competitor’s lab will contain traces of DNA which can be amplified by PCR to
identify the specific clones the lab is working with.

each of the bracketing sequences are synthesized. Creating short pieces of
DNA with a specific sequence is routine technology, now often performed by
laboratory robots. These pieces are called primers.The primers, the target
DNA and the enzyme DNA polymerase are then combined. The mixture is
heated, so that the hydrogen bonds in the DNA break and the molecule splits
into two single strands. When the mixture cools sufficiently, the primers
bond to the regions around the area of interest, and the DNA polymerase
replicates the DNA downstream of the primers. By using a heat resistant
polymerase from an Archaea species that lives at high temperatures, it is pos-
sible to rapidly cycle this process, doubling the amount of desired segment of
DNA each time. This technology makes possible the exponential
amplification of entire DNA molecules or any specific region of DNA for
which bracketing primers can be generated.*

In order to use PCR for genome mapping and sequencing, a collection of
unique (short) sequences spread throughout the genome must be identified
for use as primers. The sequences must be unique in the genome so that the
source of amplified DNA is unambiguous, and they have to be relatively
short so that they are easy to synthesize. The sites in the genome that corre-
spond to these sequences are called sequence tagged sites or STSs. The more
STSs that are known, the finer grained the map of the genome they provide.
Finding short, unique sequences even in 3x109 bp of DNA is not that
difficult; a simple calculation shows that most sequences of length 16 or so
can reasonably be expected to be unique in a genome of that size. An early
goal of the Human Genome Project is to generate a list of STSs spaced at ap-
proximately 100kbp intervals over the entire human genome. If it is possible
to find STSs that adequately cover the genome, it will not be necessary to
build and maintain libraries of 10,000 YACs and ten times as many cosmids.
Any region of DNA of interest can be identified by two STSs that bracket it.
Instead of having to maintain large clone collections, these STSs can be
stored in a database, and any researcher who needs a particular section of
DNA can synthesize the appropriate primers and use PCR to produce many
copies of just of that section.

Another issue that has been raised about the project to sequence the
genome is the need to know the sequences of all of the introns and other non-
coding regions of DNA. One way to address this issue is to target only cod-
ing regions for sequencing. The ability to find the sequences that a particular
cell is using to produce proteins at a particular point in time is also useful in
a variety of other areas as well. This information can be gleaned by gathering
the mRNAs present in the cytoplasm of the cell, and sequencing them. In-
stead of sequencing the mRNAs directly, biologists use an enzyme called re-
verse transcriptaseto make DNA molecules complementary to the mRNAs
(called cDNAs) and then sequence that DNA. Using PCR and other technolo-
gy, it is possible to capture at least portions of most of the mRNAs a cell is

HUNTER 41

producing. By sequencing these cDNAs, researchers can focus their attention
on just the parts of the genome that code for expressed proteins.

Large scale attempts to sequence at least part of all of the cDNAs that can
be produced from brain tissue have resulted in partial sequences for more
than 2500 new proteins in a very short period of time (Adams, et al, 1992).
These sequences called ESTs, for expressed sequence tagscan be used as
PCR primers for future, more detailed experiments. This work has created
controversy because of the ensuing attempt by the National Institutes of
Health to patent the EST sequences.

Crystallography and NMR. Until the relationship between protein se-
quence and structure is more fully understood, the sequences produced by
genome projects will provide only part of the biochemical story. Additional
information about protein structure is necessary to understand how the pro-
teins function. This structural information is at the present primarily gathered
by X-ray crystallography. In order to determine the structure of a protein in
this manner, a very large, pure crystal of the protein must be grown (this
process can take years, and may never succeed for certain proteins). Then the
X-ray diffraction pattern of the crystal is measured, and this information can
be used indirectly to determine the positions of the atoms in the molecule.
Glasgow, et al’s chapter in this volume describes this process in more detail.
Because of the difficulties in crystallography, relatively few structures are
known, but the number of new structures is growing exponentially, with a
doubling time of a bit over two years.

A promising alternative to crystallography for determining protein struc-
ture is multi-dimensional nuclear magnetic resonance, or NMR. Although
this process does not require the crystallization of the protein, there are tech-
nical difficulties in analyzing the data associated with large molecules like
proteins. Edwards, et al’s chapter in this volume describes some of the chal-
lenges. Both crystallography and NMR techniques result in static protein
structures, which are to some degree misleading. Proteins are flexible, and
the patterns of their movement are likely to play an important role in their
function. Although NMR has the potential to provide information about this
facet of protein activity, there is very little data available currently.

7.1 Computational Biology

In the last five years, biologists have come to understand that sharing the
results of experiments now takes more than simple journal publication. In the
1980s, many journals were overwhelmed with papers reporting novel se-
quences and other biological data. Paper publications of sequences are hard
to analyze, prone to typographical errors, and take up valuable journal space.

42 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

*Researchers without internet access can contact NCBI by writing to NCBI/National
Library of Medicine/Bethesda, MD 20894 USA or calling +1 (301) 496-2475.

Databases were established, journals began to require deposition into the
databases before publication, and various tools began to appear for managing
and analyzing the databases.

When Doolittle, et al (1983) used the nascent genetic sequence database
to prove that a cancer causing gene was a close relative of a normal growth
factor, molecular biology labs all over the world began installing computers
or linking up to networks to do database searches. Since then, a bewildering
variety of computational resources for biology have arisen. These databases
and other resources are a valuable service not only to the biological commu-
nity, but also to the computer scientist in search of domain information.

There is a database of databases, listing these resources which is main-
tained at Los Alamos National Laboratory. It is called LiMB(Lawton, Burks
& Martinez, 1989), and contains descriptions, contacts and access methods
for more than 100 molecular biology related databases. It is a very valuable
tool for tracking down information. Another general source for databases and
information about them is the National Center for Biotechnology Informa-
tion (NCBI), which is part of the National Library of Medicine. Many data-
bases are available via anonymous ftp from the NCBI server,
ncbi.nlm.nih.gov.*

A few of the databases that may be of particular interest to computer sci-
entists are described here. There are several databases that maintain genetic
sequences, and they are increasingly coordinated. They are Genbank (Moore,
Benton & Burks, 1990), the European Molecular Biology Laboratory nu-
cleotide sequence database (EMBL) (Hamm & Cameron, 1986), and the
DNA Database, Japan (DDBJ) (Miyazawa, 1990). NCBI will also provide a
sequence database beginning in 1992. The main protein sequence database is
the Protein Identification Resource (PIR) (George, Barker & Hunt, 1986).
NCBI also provides a non-redundant combination of protein sequences from
various sources (including translations of genetic sequences) in its NRDB.

Several databases contain information about three dimensional structures of
molecules. The Protein Data Bank (PDB) maintained by Brookhaven National
Laboratory, contains protein structure data, primarily from crystallographic
data. BioMagRes (BMR) is a database of NMR derived data about proteins, in-
cluding three dimensional coordinates, that is maintained at the University of
Wisconsin, Madison (Ulrich, Markley & Kyogoku, 1989). CARBBANK, con-
tains structural information for complex carbohydrates (Doubet, Bock, Smith,
Albersheim & Darvill, 1989). Chemical Abstracts Service (CAS) Online Reg-
istry File is a commercial database that contains more than 10 million chemical
substances, many with three dimensional coordinates and other useful informa-
tion. The Cambridge Structural Database contains small molecule structures,
and is available to researchers at moderate charge.

Genetic map databases (GDB), as well as a database of inherited human
diseases and characteristics (OMIM) are maintained at the Welch Medical

HUNTER 43

Library at Johns Hopkins University. To get access to these databases, send
email to help@welch.jhu.edu. Other genetic map databases are available for
many of the model organisms listed above; consult LiMB for more informa-
tion about them.

There is a database of information about compounds involved in interme-
diary metabolism called CompoundKB, developed by Peter Karp that is
available from NCBI. This database is available in KEE knowledge base
form as well as several others, and there is associated LISP code which
makes it attractive for artificial intelligence researchers; see Karp’s and
Mavrovouniotis’s chapters in this volume for possible applications of the
knowledge base.

Finally, one of the most important computer-based assets for a computer
scientist interested in molecular biology information is the bulletin board
system called bionet.This bboard is available through usenet as well as by
electronic mail. The discussion groups include computational biology, infor-
mation theory and software, as well as more than 40 other areas. Bionet is an
excellent source for information and contacts with computationally sophisti-
cated biologists.

8. Conclusion

AI researchers have often had unusual relationships with their collabora-
tors. “Experts” are somehow “knowledge engineered” so that what they
know can be put into programs. Biology has a long history of collaborative
research, and it does not match this AI model. Computer scientists and biolo-
gists often have differing expectations about collaboration, education, con-
ferences and many other seemingly mundane aspects of research. In order to
work with biologists, AI researchers must understand a good deal about the
domain and find ways to bridge the gap between these rather different scien-
tific cultures.

This brief survey of biology is intended to help the computer scientist get
oriented and understand some of the commonly used terms in the domain.
Many more detailed, but still accessible books are listed in the references. I
find this material fascinating. Not only is it interesting as a domain for AI re-
search, but it provides a rich set of metaphors for thinking about intelligence:
genetic algorithms, neural networks and Darwinian automata are but a few of
the computational approaches to behavior based on biological ideas. There
will, no doubt, be many more.

Acknowledgements

This chapter was written at the instigation of Harold Morowitz, who un-
derstood long before I did that such an introduction could indeed be accom-

44 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

plished in less than 1000 pages. He also taught the biochemistry course that I
finally took, two years afterfinishing my Ph.D. David J. States deserves much
of the credit as well. In the three years we have been working together, he
greatly extended my understanding of not only what biologists know, but how
they think. He has read several drafts of this chapter and made helpful sugges-
tions. David Landsman, Mark Boguski, Kalí Tal and Jill Shirmer have also
read the chapter and made suggestions. Angel Lee graciously supplied the gel
used in Figure 4. Of course, all remaining mistakes are my responsibility.

References
Adams, M. D., Dubnick, M., Kerlavage, A. R., Moreno, R., Kelley, J. M., Utterback, T. R.,

Nagle, J. W., Fields, C. & Venter, J. C. (1992). Sequence Identification of 2,375 Brain
Genes. Nature, 355(6361), 632-4.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. (1989). The Molecular Biol-
ogy of the Cell(2nd. ed. ed.). New York, NY: Garland Publishing.

Buss, L. (1987). The Evolution of Individuality. Princeton, NJ: Princeton University Press.

Cherty, L. M., Case, S. M. & Wilson, A. C. (1978). Frog Perspectives on the Morphological dif-
ference between Humans and Chimpanzees. Science, 200, 209-211.

Doolittle, R. F., Hunkapiller, M. W., Hood, L. E., Devare, S. G., Robbins, K. C., Aaronson, S.
A., & Antoniades, H. N. (1983). Simian Sarcoma Onc Gene, v-sis, Is Derived from the Gene
(or Genes) Encoding Platelet Derived Growth Factor. Science, 221, 275-277.

Doubet, S., Bock, K., Smith, D., Albersheim, P. & Darvill, A. (1989). The Complex Carbohy-
drate Structure Database. Trends in Biochemical Sciences, 14, 475.

George, D., Barker, W. & Hunt, L. (1986). The Protein Identification Resource. Nucleic Acids
Research, 14, 11-15.

Hamm, G. & Cameron, G. (1986). The EMBL Data Library. Nucleic Acids Research, 14, 5-9.

Hartwell, L. (1991). Twenty-five Years of Cell Cycle Genetics. Genetics, 129(4), 975-980.

Hochachka, P. W. & Somero, G. N. (1984). Biochemical Adaptation. Princeton, NJ: Princeton
University Press.

Karplus, M. & Petsko, G. A. (1990). Molecular Dynamics Simulations in Biology. Nature,
347(October), 631-639.

Kessel, R. G. & Kardon, R. H. (1979). Tissues and Organs: A Text-Atlas of Scanning electron
Microscopy. San Francisco, CA: W.H. Freeman and Company.

Langton, C., eds. (1989). Artificial Life (VI.). Redwood City, CA: Addison Wesley.

Lawton, J., Burks, C. & Martinez, F. (1989). Overview of the LiMB Database. Nucleic Acids
Research, 17, 5885-5899.

Letovsky, S. & Berlyn, M. (1992). CPROP: A Rule-based Program for Constructing a Genetic
Map. Genomics, 12, 435-446.

Li, W.-H. & Graur, D. (1991). Fundamentals of Molecular Evolution. Sunderland, MA: Sinauer
Associates, Inc.

Margolis, L. (1981). Symbiosis and Cell Evolution. San Francisco: Freeman.

May, R. M. (1988). How Many Species Are There on Earth? Science, 241(September 16), 1441-
1450.

HUNTER 45

Miyazawa, S. (1990). DNA Data Bank of Japan: Present Status and Future Plans. Computers
and DNA, 7, 47-61.

Moore, J., Benton, D. & Burks, C. (1990). The GenBank Nucleic Acid Data Bank. Focus, 11(4),
69-72.

Ptashne, M. (1987). A Genetic Switch: Gene Control and the Phage Lambda. Palo Alto, CA:
Blackwell Scientific Publications.

Sauer, R. T. (1989). Genetic Analysis of Protein Stability and Function. Annual Review of Ge-
netics, 23, 289-310.

Ulrich, E., Markley, J. & Kyogoku, Y. (1989). Creation of Nuclear Magnetic Resonance Data
Repository and Literature Base. Protein Sequence and Data Analysis, 2, 23-37.

Woese, C. R., Kandler, O. & Wheelis, M. L. (1990). Towards a Natural System of Organisms:
Proposal for the Domains Archaia, Bacteria, and Eucarya. (June), 4576-4579.

46 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

2

The Computational Linguistics

of Biological Sequences

David B. Searls

1 Introduction

Shortly after Watson and Crick’s discovery of the structure of DNA, and at
about the same time that the genetic code and the essential facts of gene ex-
pression were being elucidated, the field of linguistics was being similarly rev-
olutionized by the work of Noam Chomsky [Chomsky, 1955, 1957, 1959,
1963, 1965]. Observing that a seemingly infinite variety of language was avail-
able to individual human beings based on clearly finite resources and experi-
ence, he proposed a formal representation of the rules or syntaxof language,
called generative grammar, that could provide finite—indeed,
concise—characterizations of such infinite languages. Just as the break-
throughs in molecular biology in that era served to anchor genetic concepts in
physical structures and opened up entirely novel experimental paradigms, so
did Chomsky’s insight serve to energize the field of linguistics, with putative
correlates of cognitive processes that could for the first time be reasoned about

axiomatically as well as phenomenologically. While Chomsky and his follow-
ers built extensively upon this foundation in the field of linguistics, generative
grammars were also soon integrated into the framework of the theory of com-
putation, and in addition now form the basis for efforts of computational lin-
guists to automate the processing and understanding of human language.

Since it is quite commonly asserted that DNA is a richly-expressive lan-
guagefor specifying the structures and processes of life, also with the poten-
tial for a seemingly infinite variety, it is surprising that relatively little has
been done to apply to biological sequences the extensive results and methods
developed over the intervening decades in the field of formal language theory.
While such an approach has been proposed [Brendel and Busse, 1984], most
investigations along these lines have used grammar formalisms as tools for
what are essentially information-theoretic studies [Ebeling and Jimenez-Mon-
tano, 1980; Jimenez-Montano, 1984], or have involved statistical analyses at
the level of vocabularies (reflecting a more traditional notion of comparative
linguistics) [Brendel et al., 1986; Pevzner et al., 1989a,b; Pietrokovski et al.,
1990]. Only very recently have generative grammars for their own sake been
viewed as models of biological phenomena such as gene regulation [Collado-
Vides, 1989a,b, 1991a], gene structure and expression [Searls, 1988], recom-
bination [Head, 1987] and other forms of mutation and rearrangement [Searls,
1989a], conformation of macromolecules [Searls, 1989a], and in particular as
the basis for computational analysis of sequence data [Searls, 1989b; Searls
and Liebowitz, 1990; Searls and Noordewier, 1991].

Nevertheless, there is an increasing trend throughout the field of computa-
tional biology toward abstracted, hierarchical views of biological sequences,
which is very much in the spirit of computational linguistics. At the same
time, there has been a proliferation of software to perform various kinds of
pattern-matching search and other forms of analysis, which could well
benefit from the formal underpinnings that language theory offers to such en-
terprises. With the advent of very large scale sequencing projects, and the re-
sulting flood of sequence data, such a foundation may in fact prove essential.

This article is intended as a prolegomenon to a formally-based computa-
tional linguistics of biological sequences, presenting an introduction to the
field of mathematical linguistics and its applications, and reviewing and ex-
tending some basic results regarding structural and functional phenomena in
DNA and protein sequences. Implementation schemes will also be offered,
largely deriving from logic grammar formalisms, with a view toward practi-
cal tools for sequence analysis.

2 Formal Language Theory

This section will provide a compact but reasonably complete introduction
to the major results of formal language theory, that should allow for a basic

48 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

understanding of the subsequent sections by those with no background in
mathematical linguistics. Proofs will be omitted in this section; some will be
offered later as regards biological sequences, and will use a range of proof
techniques sufficient to demonstrate the basic methodologies of the field, but
by and large these will be simple and by mathematical standards “semi-for-
mal.” Readers interested in further studies along these lines are encouraged
to consult textbooks such as [Sudkamp, 1988; Hopcroft and Ullman, 1979;
Harrison, 1978] (in order of increasing difficulty). Those already familiar
with the subject area should skip this section.

2.1 The Formal Specification of Languages

Formally, a languageis simply a set of stringsof characters drawn from
some alphabet, where the alphabet is a set of symbols usually denoted by Σ.
One such language would be simply the set of all strings over an alphabet
Σ={0,1}; this “maximal” language is indicated by the use of an asterisk, e.g.

Σ* = {0,1}* = { ε, 0, 1, 00, 01, 10, 11, 000, 001, … } (1)

Here, the ε represents the empty stringor string of length zero; the set con-
taining ε, however, should not be confused with the empty set ∅ . The chal-
lenge of computational linguistics is to find concise ways of specifying a
given (possibly infinite) language L⊆ Σ*, preferably in a way that reflects
some underlying model of the “source” of that language. We can use infor-
mal descriptions that make use of natural language, such as in the following
example:

La = { w∈ {0,1}* | w begins with a 0 and contains at least one 1} (2)

(The vertical bar notation is used to define a set in terms of its properties; this
specification would be read “the set of all strings w of 0’s and 1’s such that
each w begins with a 0 and . . .”) However, properties expressed in natural
language are typically neither precise enough to allow for easy mathematical
analysis, nor in a form that invites the use of computational support in deal-
ing with them. On the other hand, simply exhaustively enumerating lan-
guages such as the example in (2) is also clearly ineffective—in fact, impos-
sible:

La = { 01, 001, 010, 011, 0001, 0010, 0011, 0100, … } (3)

The remainder of this section will examine formal methods that have been
used to provide finite specifications of such languages.

2.1.1 Regular Expressions and Languages.A widely-used method of
specifying languages is by way of regular expressions,which in their mathe-
matically pure form use only three basic operations. These operations are
given below, using a notation in which a regular expression is given in bold
type, and the language “generated” by that expression is derived by the ap-

SEARLS 49

plication of a function L (defined recursively in the obvious way):

(i) concatenation, denoted by an infix operator ‘.’ , or more often by
simply writing symbols in juxtaposition, e.g. L(01) = { 01} ;

(ii) disjunction (or logical OR), denoted in this case by the infix opera-
tor ‘+’, e.g. L(0+1) = { 0,1} ; and

(iii) Kleene star, denoted by a postfix superscript ‘* ’, represents the set
containing zero or more concatenated instances of its argument, e.g.
L(0*) = { ε, 0, 00, 000, 0000, … } .

The latter operation is also known as the closureof concatenation. Note the
connection between the definition of Kleene star and our previous use of the
asterisk:

Σ* = L((0+1)*) for Σ = { 0,1} (4)

One additional non-primitive operator, a postfix superscript ‘+’, is used to
specify one or more occurrences of its argument. This is the positive closure
of concatenation, defined in terms of concatenation and Kleene star as

L(0+) = L(00*) = { 0, 00, 000, 0000, … } (5)

The language from our running example of (2) can now be described
using any of several regular expressions, including

La = L(00*1(0+1)*) (6)

From this point, we will dispense with the L() notation and let the regular
expression standing alone denote the corresponding language. Any such lan-
guage, that can be described by a regular expression, will be called a regular
language(RL)*.

2.1.2 Grammars.Such regular expressions have not only found wide use
in various kinds of simple search operations, but are also still the mainstay of
many biological sequence search programs. However, it is a fact that many
important languages simply cannot be specified as regular expressions, e.g.

{ 0n1n |n≥1} (7)

where the superscript integers denote that number of concatenated symbols,
so that (7) is the set of all strings beginning with any non-zero number of 0’s
followed by an equal number of 1’s. This shortcoming of regular expressions
for language specification can be remedied through the use of more powerful
representations, called grammars. Besides a finite alphabet Σ of terminal
symbols, grammars have a finite set of “temporary” nonterminalsymbols
(including a special start symbol, typically S), and a finite set of rulesor pro-
ductions; the latter use an infix ‘→’ notation to specify how strings contain-
ing nonterminals may be rewritten by expanding those embedded nontermi-

50 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

nals (given on the left-hand side of the arrow) to new substrings (given on
the right-hand side). For instance, a grammar specifying the language La of
(2) can be written:

S→ 0A B→ 0B

A → 0A B→ 1B (8)

A → 1B B→ ε
Note that nonterminals are traditionally designated by capital letters. A

derivation, denoted by an infix ‘⇒ ’, is a rewriting of a string using the rules
of the grammar. By a series of derivations from S to strings containing only
terminals, an element of the language is specified, e.g.

S ⇒ 0A ⇒ 00A ⇒ 001B ⇒ 0010B ⇒ 00101B ⇒ 00101 (9)

Often there will be multiple nonterminals in a string being derived, and so
there will be a choice as to which nonterminal to expand; when we choose
the leftmost nonterminal in every case, we say that the series is a leftmost
derivation.

2.1.3 Context-Free Languages. Grammars such as that of (8), whose
rules have only single nonterminals on their left-hand sides, are called con-
text-free. The corresponding languages, i.e. those that can be generated by
any such grammar, are called context-free languages(CFLs); it happens that
they include the RLs and much more. For example, the language of (7) is
specified by a grammar containing the following productions:

S→ 0A A→ 0A1 A → 1 (10)

Many other grammars can be used to describe this language, but no regu-
lar expression suffices. Another classic context-free (and not regular) lan-
guage is that of palindromes, which in this case refer to “true”
palindromes—strings that read the same forward and backward—rather than
the biological use of this word to describe dyad symmetry (see section 2.4.1).
We can denote such a language (for the case of even-length strings over any
alphabet) as

{ wwR | w∈ Σ*} (11)

for any given Σ, where the superscript R denotes reversal of its immediately
preceding string argument. Such languages can be specified by context-free
grammars like the following, for Σ={0,1}:

S→ 0S0 | 1S1 | ε (12)

(Note the use of the vertical bar to more economically denote rule disjunc-
tion, i.e. multiple rules with the same left-hand side.) Thus, context-free
grammars are said to be “more powerful” than regular expressions—that is,
the RLs are a proper subset of the CFLs.

SEARLS 51

2.1.4 Automata.Grammars are intimately related to conceptual machines
or automata which can serve as language recognizers or generators. For ex-
ample, regular languages are recognized and generated by finite state au-
tomata (FSAs), which are represented as simple directed graphs, with distin-
guished starting and final nodes, and directed arcs labelled with terminal
symbols that are consumed (if the machine is acting as a recognizer) or pro-
duced (if the machine is being used to generate a language) as the arc is tra-
versed.

Figure 1 shows an FSA which again expresses the language La of (2). The
starting node is at the left, and a final node is at the right. It can be seen that
it corresponds closely to the “operation” of the regular expression given in
(6). In fact, any such regular expression can be expressed as an FSA with a
finite number of nodes or states, and vice versa, so that the languages recog-
nized by FSAs correspond exactly to the regular languages.

More sophisticated machines are associated with more powerful lan-
guages. For example, by adding a limited memory capability in the form of a
stackor simple pushdown store, we can create pushdown automata(PDA)
that recognize context-free languages. Figure 2 shows a PDA which recog-
nizes the language of (7). After consuming a 0, the machine enters a loop in
which it pushes some symbol (typically drawn from a separate alphabet) on
the stack for each additional 0 it consumes. As soon as a 1 is recognized, it
makes a transition to another state in which those symbols are popped off the
stack as each additional 1 is consumed. The stack is required to be empty in a
final state, guaranteeing equal numbers of 0’s and 1’s. (As before, it is in-
structive to note how the PDA compares to the grammar of (10).) Once
again, it can be shown that PDAs recognize all and only the CFLs.

More elaborate memory schemes can certainly be used in such machines,
leading us to ask whether they can be made to recognize additional languages,

52 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

0 1

0 0

1
Figure 1. A Finite State Automaton

and whether there are correspondingly more powerful grammar formalisms.
2.1.5 Context-Sensitive Languages.Indeed, even CFLs do not include

some apparently simple languages, such as:

{ 0n1n2n | n≥1} { 0i 1j 2i 3 j | i,j ≥1} (13)

Note the similarity of these languages to (7), which is a CFL. We can intu-
it why a PDA could not recognize (13a), for instance, by noting that the stack
would have to be emptied in the course of recognizing the string of 1’s, leav-
ing no way to “count” the 2’s. Another well-known class of non-context-free
languages are the copy languages:

{ ww | w∈ Σ*} (14)

However, by relaxing our restriction and allowing more than one symbol
on the left-hand sides of grammar rules (but always including at least one
nonterminal), all these languages are encompassed. Such a grammar will be
called context-sensitiveif the left-hand side of each rule is not longer than its
right-hand side. Note that this effectively excludes languages containing ε
(such as (14)), since any rule deriving ε would necessarily have a right-hand
side shorter than its left-hand side; we will often supplement the languages
specified by such grammars by allowing ε, for purposes of comparison. The
corresponding context-sensitive languages (CSLs), augmented where neces-
sary with ε, properly contain the CFLs as well as the examples in (13) and
(14). For instance, a grammar specifying (13a) is as follows:

S→ 0SBC 0B → 01 CB→ BC

S→ 0BC 1B → 11 C → 2 (15)

This grammar specifies (13a) via sequences of derivations like the follow-
ing. Note how in the second line the context-sensitive rule allows B’s to tra-
verse C’s leftward to their final destinations:

SEARLS 53

0 1

0 1

push x pop xx
x
x

Figure 2. A Pushdown Automaton

S ⇒ 0SBC⇒ 00SBCBC⇒ 000BCBCBC⇒ 0001CBCBC

⇒ 0001BCCBC⇒ 00011CCBC⇒ 00011CBCC⇒ 00011BCCC (16)

⇒ 000111CCC ⇒ 0001112CC ⇒ 00011122C ⇒ 000111222

The machines associated with CSLs are called linear-bounded automata,
which can move in eitherdirection on the input, and whose memory scheme
consists of the ability to overwrite symbols on the input (but not beyond it).
The requirement that each rule’s right-hand side be at least as long as its left-
hand side ensures that strings produced by successive derivations never grow
longer than the final terminal string, and thus exceed the memory available to
the automaton.

2.2 The Chomsky Hierarchy and Subdivisions

If there is no constraint on the number of symbols on the left hand sides of
rules, the grammar is called unrestricted, and the corresponding languages,
called recursively enumerable, contain the CSLs and much more. The au-
tomaton corresponding to recursively enumerable languages is, in fact, the
Turing machine itself, which establishes an important link to general algo-
rithmic programming.

This completes the basic Chomsky hierarchy of language families, which
are related by set inclusion (ignoring ε) as follows:

regular ⊂ context-free ⊂ context-sensitive⊂ unrestricted (17)

Care must be taken in interpreting these set inclusions. While the setof RLs
is a subset of the CFLs, since any RL can be expressed with a context-free
grammar, it is also the case that any CFL (or indeed any language at all) is a
subset of an RL, namely Σ*. That is, by ascending the hierarchy we are aug-
menting the range of languages we can express by actually constrainingΣ*
in an ever wider variety of ways.

The Chomsky hierarchy has been subdivided and otherwise elaborated
upon in many ways. A few of the important distinctions will be described.

2.2.1 Linear Languages.Within the CFLs, we can distinguish the linear
CFLs, which include examples (7) and (11) given above. The linear CFLs
are those that can be expressed by grammars that never spawn more than one
nonterminal, i.e. those in which every rule is of the form

A → uBv or A → w (18)

where A and B are any nonterminal and u,v,w∈ Σ*. The machines correspon-
ding to linear CFLs are one-turn PDAs,which are restricted so that in effect
nothing can be pushed on the stack once anything has been popped.

If either u or v is always empty in each rule of the form (18a), the result-
ing grammars and languages are called left-linear or right-linear, respective-
ly, and the corresponding languages are RLs. For example, the language La

54 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

of (2), which was first specified by regular expressions and is thus regular, is
also described by the right-linear grammar of (8). In one sense, then, the lin-
ear CFLs can be thought of as the simplest CFLs that are not regular.

2.2.2 Deterministic and Nondeterministic Languages.Other
classifications depend on the nature of derivations and the behavior of the au-
tomata that produce or recognize languages. One such distinction is that be-
tween deterministicand nondeterministiclanguages and automata. Essential-
ly, a deterministic automaton is one for which any acceptable input in any
given state of the automaton will always uniquely determine the succeeding
state. A deterministic language, in turn, is one that can be recognized by
some deterministic machine. The FSA of Figure 1 is deterministic, since no
node has more than one arc leaving it with the same label. In a nondetermin-
istic FSA, there might be more than one arc labelled “0” leaving a node, for
instance, and then a choice would have to be made; in attempting to recog-
nize a given input, that choice might later prove to be the wrong one, in
which case a recognizer would somehow have to backtrack and try the alter-
natives.

The PDA of Figure 2 is also deterministic, and thus the language of (7) is
a deterministic CFL. This can be seen from the fact that the automaton mere-
ly has to read 0’s until it encounters its first 1, at which point it begins pop-
ping its stack until it finishes; it need never “guess” where to make the
switch. However, the palindromic language of (11) is a nondeterministic
CFL, since the automaton has to guess whether it has encountered the center
of the palindrome at any point, and can begin popping the stack.

Any nondeterministic FSA may be converted to a deterministic FSA,
though obviously the same cannot be said of PDAs. Thus, the deterministic
subset of CFLs properly contains the RLs.

2.2.3 Ambiguity. Another useful distinction within the CFLs concerns the
notion of ambiguity. Formally, we say that a grammar is ambiguous if there
is some string for which more than one leftmost derivation is possible. As it
happens all of the example grammars we have given are unambiguous, but it
is easy to specify ambiguous grammars, e.g.

S→ S0S | 1 (19)

for which it can be seen that the string ‘10101’ has two leftmost derivations:

S ⇒ S0S ⇒ 10S ⇒ 10S0S ⇒ 1010S ⇒ 10101

S ⇒ S0S ⇒ S0S0S ⇒ 10S0S ⇒ 1010S ⇒ 10101
(20)

However, the language specified by this grammar,

{ (10)n1 |n≥0} (21)

can in fact also be specified by a different grammar that is unambiguous:

SEARLS 55

S→ 10S | 1 (22)

Can all languages be specified by some unambiguous grammar? The an-
swer is no, and languages that cannot be generated by any such grammar are
called inherently ambiguous. An example is the following CFL (not to be
confused with the CSL of (13a)):

{ 0i 1j 2k | i=j or j=k, wherei, j,k≥1} (23)

Intuitively, it can be seen that this language will contain strings, e.g. those
for which i=j=k, that can be parsed in more than one way, satisfying one or
the other of the grammar elements that impose constraints on the super-
scripts. Inherently ambiguous languages are necessarily nondeterministic; a
PDA recognizing (23), for instance, would have to guess ahead of time
whether to push and pop the stack on the 0’s and 1’s, respectively, or on the
1’s and 2’s.

2.2.4 Indexed Languages.The CSLs can also be subdivided. We choose
only one such subdivision to illustrate, that of the indexed languages(ILs),
which contain the CFLs and are in turn properly contained within the CSLs,
except that ILs may contain ε. They are specified by indexed grammars,
which can be viewed as context-free grammars augmented with indices
drawn from a special set of symbols, strings of which can be appended to
nonterminals (which we will indicate using superscripts). Rules will then be
of the forms

A → α or A → Bx or Ax → α (24)

where α is any string of terminals and nonterminals, and x is a single index
symbol. Now, whenever a rule of form (24a) is applied to expand a nonter-
minal A in the string being derived, all the indices currently attached to A in
that input string are carried through and attached to each of the nonterminals
(but not terminals) in α when it is inserted in place of A in the input string.
For rules of form (24b), when A is expanded to B, x is added to the front of
the string of indices on B in the terminal string being derived. Finally, for
rules of form (24c), the index x at the head of the indices following A is re-
moved, before the remainder of the indices on A are distributed over the non-
terminals in α, as before.

This rather complicated arrangement may be clarified somewhat with an
example. The following indexed grammar specifies the language of (13a):

S→ Ts At → 0A As → 0

T → Tt Bt → 1B Bs → 1 (25)

T → ABC Ct → 2C Cs → 2

Note that, but for the indices, this grammar is in a context-free form,
though (13a) is not a CFL. Under this scheme, indices behave as if they were

56 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

on stacks attached to nonterminals, as may be seen in the following sample
derivation (compare (16)):

S ⇒ Ts ⇒ Tts ⇒ Ttts ⇒ AttsBttsCtts ⇒ 0AtsBttsCtts

⇒ 00AsBttsCtts ⇒ 000BttsCtts ⇒ 0001BtsCtts ⇒ 00011BsCtts (26)

⇒ 000111Ctts ⇒ 0001112Cts ⇒ 00011122Cs ⇒ 000111222

Several types of machines are associated with ILs, including nested stack
automata, whose name suggests a view of ILs as allowing stacks within
stacks.

2.3 Lindenmayer Systems

Not all research in formal linguistics falls within the traditions of the
Chomsky hierarchy and grammars in the form we have presented. One other
important area will be described here, that of Lindenmayer systemsor L-sys-
tems.These differ from the grammars above in that they have no nontermi-
nals, and instead a derivation is accomplished by rewriting every terminal in
a string simultaneously, according to production rules which of course have
single terminals on the left and strings of terminals on the right. Actually,
this describes the simplest, context-free form of these grammars, called a
0L-system, an example of which would be the following:

0 → 1 1 → 01 (27)

Beginning with a single 0, this produces a series of derivations as follows:

0 ⇒ 1 ⇒ 01 ⇒ 101 ⇒ 01101 ⇒ 10101101 ⇒ 0110110101101 ⇒ … (28)

The language of an L-system, called an L-language, is the set of all
strings appearing in such a derivation chain. In this case, the language
specified contains strings whose lengths are Fibonacci numbers, since in fact
each string is simply the concatenation of the two previous strings in the se-
ries.

The 0L-languages, as it happens, are contained within the ILs, and thus
within the CSLs (with ε), though they contain neither CFLs nor RLs in their
entirety. Context-sensitive L-languages, on the other hand, contain the RLs
but are only contained within the recursively enumerable languages
[Prusinkiewicz and Hanan, 1989].

2.4 Properties of Language Families

Much of the content of formal language theory is concerned with examin-
ing the properties of families of languages—how they behave when various
operations are performed on them, and what kinds of questions can be effec-
tively answered about them. This section will give an overview of these
properties.

SEARLS 57

2.4.1 Closure Properties.One such area of investigation is that of clo-
sureproperties of families of languages, that is, whether applying various op-
erations to languages leaves the resulting language at the same level in the
Chomsky hierarchy. For example, all four of the language families in the hi-
erarchy, and the ILs as well, are closed under union, which means that, for
instance, the union of any CFL with any other CFL will always yield another
CFL. Note, however, that the deterministic CFLS are not closed under union;
consider the following two languages:

{ 0i 1j 2 j | i, j ≥1} { 0i 1i 2 j | i, j ≥1} (29)

Both these languages are deterministic, by reasoning similar to that given
in a previous section for the language of (7). However, their union can be
seen to be equivalent to the language of (23), which is inherently ambiguous
and thus nondeterministic (though it is still a CFL).

The RLs, CFLs, ILs, CSLs, and recursively enumerable languages are all
closed under concatenation (that is, the concatenation of each string in one
language to each string in another, denoted L1

.L2), as well as under the clo-
sures of concatenation (denoted L* and L+, the only difference being that the
former contains ε whether or not L does). All are closed under intersection
with any RL, e.g. the set of all strings occurring in both a given CFL and a
given RL will always be a CFL. This fact will prove to be an important tool
in proofs given below. CFLs, however, are not closed under intersection with
each other, as can be seen from the fact that intersecting the two CFLs of
(29) produces the CSL of (13a). The same is true of ILs, though CSLs and
recursively enumerable languages areclosed under intersection.

Another operation that will prove important in many proofs is that of
homomorphism. A homomorphism in this case is a function mapping strings
to strings, that is built upon a function mapping an alphabet to strings over a
(possibly different) alphabet, by just transforming each element of a string, in
place, by the latter function. For a function h on an alphabet Σ to extend to a
homomorphism on strings over that alphabet, it is only necessary that it pre-
serve concatenation, that is, that it satisfy

h(u).h(v) = h(uv) for u,v∈ Σ*, and h(ε) = ε (30)

For instance, given a homomorphism ϕ based on the functions ϕ(0)=ε,
ϕ(1)=00, and ϕ(2)=ϕ(3)=1, we would have ϕ(123031200)=00111001. All
four language families in the Chomsky hierarchy (and ILs as well) are closed
under homomorphisms applied to each of the strings in a language, except
that if the homomorphism maps any alphabetic elements to ε, the CSLs are
no longer closed. Perhaps more surprising is the finding that they are all also
closed under inversehomomorphisms, including those which thus map ε
back to alphabetic elements. Since h need not be one-to-one (ϕ, for example,
is not), h-1 may not be a unique function; thus inverse homomorphisms must

58 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

map strings to sets of strings, and in fact both homomorphisms and inverse
homomorphisms are notationally extended to themselves apply to languages,
e.g. h(L). Note that, since ε is a substring of any string at any point in that
string, one can use the inverse of a homomorphism mapping letters to ε as a
means to insert any number of letters randomly into strings of a language,
e.g. ϕ-1(001)={12, 13, 012, 102, 120, 0102,… }; yet, by the closure proper-
ty, languages thus enlarged (even CSLs) remain at the same level in the
Chomsky hierarchy.

We can employ an even more flexible means for substituting elements in
languages, based on FSAs. Ageneralized sequential machine(GSM) is an
FSA whose arcs are labelled, not only with symbols from the alphabet which
are expected on the input, but also with corresponding output symbols to
which the input symbols are converted by the action of the automaton. Thus,
a GSM arc might be labelled “0/1” to indicate that a 0 read on the input pro-
duces a 1 on the output. (A useful example of a GSM will be encountered in
section 2.5.3.) All four Chomsky hierarchy language families and ILs as well
are closed under both GSM and inverse GSM mappings, though again the
CSLs are not closed for GSMs with arcs that have ε as their output.

We note in passing that 0L-systems, in keeping with their other distinc-
tions from the Chomsky hierarchy, are closed under none of the operations
described thus far. However, being ILs, we know that, for instance, the union
of two 0L-languages will be an IL, and the intersection will be a CSL (ex-
cepting ε).

2.4.2 Decidability Properties.There are many questions that may be
asked about languages, not all of which can be answered in the most general
case by any algorithmic method—that is, there are certain undecidableprob-
lems related to languages. For example, we noted above that the intersection
of two CFLs need not be a CFL, but of course it maybe; it happens that de-
termining whether it is or not for arbitrary CFLs is undecidable. It is unde-
cidable whether one language is a subset of another, or even equal to another,
for languages that are beyond regular; the same is the case for determining if
two languages are pairwise disjoint (i.e. non-overlapping). Surprisingly, even
the question of whether a language is empty is decidable only up through the
ILs.

Perhaps the most basic question we can ask about languages is whether a
given string is a member of a given language. Luckily, this question is decid-
able for all but the recursively enumerable languages, i.e. those specified by
unrestricted grammars. This latter should not be too surprising, since in gen-
eral Turing machines cannot be guaranteed to halt on arbitrary input.

Closure properties, and even more so decidability properties, suggest a
motivation for studying languages in these terms, and wherever possible for
using grammars to specify them that are as low on the Chomsky hierarchy as
possible. Simply put, there is a marked tradeoff between the expressive

SEARLS 59

power required for languages and their general “manageability.” Nowhere is
this more obvious than in the task of determining membership of a given
string in a given language, which, though decidable, may yet be intractable.
This task of recognition is the subject of the next section.

2.5 Parsing

While automata can be used for recognition, these theoretical machines
may not lead to practical implementations. The algorithmic aspect of
computational linguistics is the search for efficient recognizers or parsers
which take as input a grammar G and a string w, and return an answer as to
whether w belongs to L(G), the language generated by G. Many such parsers
have been designed and implemented; we will mention a few of the most im-
portant.

The regular languages can be parsed in time which is O(n) on the length
of the input string, and in fact it is easy to see how to implement a parser
based on regular expression specifications. It is also the case that the deter-
ministic subset of CFLs can be parsed in linear time, using a class of parsers
typified by the LR(k) parsers [Sudkamp, 1988]. For CFLs in general, the
Cocke-Kasami-Younger (CKY) parser uses a dynamic programmingtech-
nique to save results concerning already-parsed substrings, preventing their
being reparsed multiple times. The CKY algorithm can parse any CFL in
time that is O(n3) on the length of the input, though for linear CFLs it is
O(n2) [Hopcroft and Ullman, 1979]. The Earley algorithm is a context-free
parser with similar worst-case time complexity, but it is O(n2) for unambigu-
ous grammars and in practice is nearly linear for many real applications
[Harrison, 1978]. Modifications of the CKY and Earley parsers are often use-
ful in proving the complexity of parsing with novel grammar formalisms.

For grammars beyond context-free, parsing is greatly complicated, and in
fact we have already seen that no fully general parser is possible for unre-
stricted grammars, membership being undecidable. In all cases, it must be
emphasized, it may be possible to write special purpose parsers that very
efficiently recognize strings belonging to a specific language, even ones be-
yond the CFLs. The results given here are important when no restrictions are
to be placed on languages, other than their membership in these broad fami-
lies. This is in keeping with a philosophy that grammars should be declara-
tive rather than “hard-wired” into an algorithm, and by the same token
parsers should be general-purpose procedural recognizers. Nevertheless,
some types of parsers may be better suited to a domain than others, just as
backward-chaining inferencing (which corresponds to a parsing style known
as top-down) may be better in some applications than forward-chaining
(which corresponds tobottom-upparsing), or vice-versa.

A related field in computational linguistics, that of grammatical inference,
attempts to develop algorithms that inducegrammars by learning from exam-

60 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ple input strings, both positive and negative [Fu, 1982]. While some such ap-
proaches have been developed for RLs, no great practical success has been
achieved as yet for CFLs or above, again reflecting the decreasing manage-
ability of languages as the Chomsky hierarchy is ascended.

3 Computational Applications of Language Theory

In this section we will first briefly review the major arenas in which for-
mal language theory has been applied computationally, and then present in
more detail an application of a specific grammar formalism and parsing sys-
tem to the problem of specifying and recognizing genes in DNA sequences.
This will serve to motivate the remainder of our investigations.

3.1 Natural Language

Consider the natural language sentence “The kind old man watched the
boats in the harbor.” A highly simplified grammar that can specify this sen-
tence (among many others) is given in Figure 3. Here, the top-level rule says
that a sentence consists of a noun phrase followed by a verb phrase. Follow-
ing this are the phrase-level rules, and finally the lexical entries—the tokens
in this case being English words—given according to their parts of speech.

The study of human language has led to the creation of much more com-
plex and specialized grammar formalisms, and parsers to deal with them. It is
far beyond the scope of this work to review the rich literature that has result-
ed; for this the reader is referred to textbooks such as [Allen, 1987]. We will
note, however, some basic results concerning the formal status of natural lan-
guage. One straightforward observation is that natural language is ambiguous
at many levels [Shanon, 1978], including a structural or syntactic level. For

SEARLS 61

Figure 3. A Simple Natural Language Grammar

sentence→ noun_phrase verb_phrase

noun_phrase→ article modified_noun| modified_noun

modified_noun→ adjective modified_noun|
modified_noun prepositional_phrase| noun

verb_phrase→ verb_phrase noun_phrase|
verb_phrase prepositional_phrase| verb

prepositional_phrase→ preposition noun_phrase

noun → man | boats | harbor

verb → watched adjective → old | kind

article → the preposition → in

example, if I say “I was given the paper by Watson and Crick,” alternative
valid parses could attach the prepositional phrase to the noun phrase the
paper (e.g. to mean that someone gave me a paper written by Watson and
Crick), or to the verb phrasewas given the paper(to mean that Watson and
Crick gave me some paper). Somewhat more controversial is the notion that
natural language is nondeterministic, based in part on the evidence of “gar-
den path” sentences like “The old man the boats.”Most persons first parse
man as a noun modified by old, then must backtrack upon “unexpectedly”
encountering the end of the sentence, to reparse old as a noun and manas a
verb. (Many, however, consider such phenomena to be jarring exceptions
that prove the rule, that the human “parser” is ordinarily deterministic.)

There has been much debate on the subject of where natural language lies
on the Chomsky hierarchy, but there is little doubt that it is not regular, given
the apparent capacity of all human languages to form arbitrarily large sets of
nested dependencies, as illustrated in Figure 4. An exaggerated example of
such a construction would be “The reaction the enzyme the gene the promot-
er controlled encoded catalyzed stopped.”Using the symbols from Figure 4,
we can understand the nested relative clauses of this sentence to indicate that
there is a certain promoter (x4) that controls (y4) some gene (x3) that encodes
(y3) an enzyme (x2) that catalyzes (y2) a reaction (x1) that has stopped (y1).
However difficult to decrypt (particularly in the absence of relative pro-
nouns), this is a syntactically valid English sentence, and many more reason-
able examples of extensive nesting can be found; these require a “stack,” and
thus a context-free grammar, to express. Moreover, a consensus appears to
have formed that natural language is in fact greater than context-free
[Schieber, 1985]; this is largely because of the existence of crossing depen-
dencies in certain languages, also schematized in Figure 4, which are not
suited to pushdown automata for reasons that should by now be apparent. In
Dutch, for example, phrases similar to the one above have a different word
order that crosses the dependencies [Bresnan et al., 1982]. Evidence that En-
glish is greater than context-free, which is generally less straightforward, is
perhaps typified by the sentence (from [Postal and Langendoen, 1984])
“Some bourbon hater lover was nominated, which bourbon hater lover

62 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

x x x x y y y y. . .1 2 3 4 4 3 2 1

Nested Dependencies

x x x x y y y y.1 2 3 4 1 2 3 4

Crossing Dependencies

Figure 4. Dependencies

fainted.” Here, the instances of haterand lover form crossing dependencies,
and these can theoretically be propagated indefinitely into forms such as
“bourbon hater lover lover hater . . .”which must be duplicated in a sen-
tence of this type, in effect forming a copy language.

3.2 Computer Languages and Pattern Recognition

Artificial languages such as computer languages are designed (whether
consciously or not) to inhabit the lower reaches of the Chomsky hierarchy,
for reasons of clarity and especially efficiency. The standard Backus-Naur
Form (BNF) for specifying computer language syntax is, in fact, essentially a
context-free grammar formalism. (A typical BNF, describing a domain-
specific computer language for performing various operations on DNA, can
be found in [Schroeder and Blattner, 1982].) That such languages should be
unambiguous is obviously highly desirable, and they are usually determinis-
tic CFLs as well so as to allow for fast parsing by compilers. Wherever pos-
sible, special-purpose languages such as string matchers in word processors,
operating system utilities like grep, etc., are designed to be regular for even
better performance in recognition, and overall simplicity.

Pattern recognition applications are not limited to RLs, however. The field
of syntactic pattern recognitionmakes use of linguistic tools and techniques
in discriminating complex patterns in signals or even images, in a manner

SEARLS 63

sentence

noun_ phrase verb_ phrase

noun_ phrase

article modified_noun verb_ phrase

modified_noun
article

modified_noun prepositional_ phrase

adjective verb modified_noun

noun_ phrase

noun

article

noun_ phrase

noun

prepositionnoun

adjective

the kind old man watched the boats in the harbor

Figure 5. A Natural Language Parse Tree

that is more model-based and structurally oriented than traditional decision-
theoretic approaches [Fu, 1982]. Specifying two-dimensional images appears
to require greater than context-free power; among the formalisms used in the
field for this purpose are indexed grammars [Fu, 1982; Searls and Liebowitz,
1990].

3.3 Developmental Grammars

The L-systems were in fact originally developed as a foundation for an
axiomatic theory of biological development [Lindenmayer, 1968]. The pro-
cess of rewriting terminals was meant to model cell division, with various
elaborations on the 0L-systems allowing for developmental stage-specific
variations and (in the case of context-sensitive rules) for intercellular com-
munication. Since that time, formal linguists have explored the mathematical
properties of L-systems exhaustively, while theoretical biologists have ex-
tended their application to such topics as form in plants. Quite convincing
three-dimensional images of ferns, trees, and other plants, even specific
species, can be generated by L-systems; these are reviewed in [Prusinkiewicz
and Hanan, 1989], which also discusses the intriguing relationship of L-sys-
tems to fractals.

64 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

acceptor
donor

acceptor
donor

polyA_site

stop_codon

termination

exonintronexonintronexon

met_codon

translated_regioncap_site

tata_box

cat_box

primary_transcript downstreamupstream

gene

...CCAAT...AATAA...AC...ATG...CGTCACTAGC...GTAAG...CATAG...TCCTTTGGAGAT...GTGAG...AACAG...GTTCACCCCTG...TGA...AATAAA...

Figure 6. A Gene Parse Tree

3.4 Gene Grammars

One of the useful byproducts of any practical parsing algorithm is a parse
tree, illustrated for the example above in Figure 5. This is a tree-structured
depiction of the expansion of the grammar rules in the course of a
derivation—a structural representation of the syntactic information used in
recognition. In practice, a parse tree or some other form of information about
the parse is essential to further interpretation, e.g. for semantic analysis in the
case of natural language, since otherwise a recognizer simply returns “yes”
or “no.”

It is the premise of this article that DNA, being a language, should be
amenable to the same sort of structural depiction and analysis; indeed, the
parse tree shown in Figure 6 would appear to any biologist to be a reasonable
representation of the hierarchical construction of a typical gene. This being

SEARLS 65

gene --> upstream, xscript, downstream.
upstream --> cat_box, 40...50, tata_box, 19...27.
xscript --> cap_site,..., xlate,..., polyA_site.

cat_box --> pyrimidine, “caat”.
tata_box --> “tata”, base, “a”.
cap_site --> “ac”.

base --> purine, pyrimidine.
purine --> “g” | “a”. pyrimidine --> “t” | “c”.

xlate([met|RestAAs]) --> codon(met).
rest_xlate(RestAAs), stop_codon.

rest_xlate(AAs) --> exon(AAs).
rest_xlate(AAs) --> exon(X1), intron,

rest_xlate(Xn), {append(X1,Xn,AAs)}.

exon([]) --> [].
exon([AA|Rest]) --> codon(AA), exon(Rest).

intron --> splice.
intron, [B1] --> [B1], splice.
intron, [B1,B2] --> [B1,B2], splice.

splice --> donor, ..., acceptor.
donor --> “gt”. acceptor --> “ag”.

stop_codon --> “tga” | “ta”, purine.
codon(met) --> “atg”.
codon(phe) --> “tt”, pyrimidine.
codon(ser) --> “tc”, base. % etc...

Figure 7. A Simple Gene DCG

the case, we can fairly ask what the nature of a grammar determining such a
parse tree might be, and to what extent a grammar-based approach could be
usefully generalized.

To further explore this question at a pragmatic level, we have implement-
ed such grammars using the logic-based formalism of definite clause gram-
mars (DCGs). These are grammars closely associated with the Prolog pro-
gramming language, and in fact are directly compiled into Prolog code which
constitutes a top-down, left-to-right parser for the given grammar. The sim-
plified gene grammar shown in Figure 7 illustrates a range of features.

The top-level rule for gene in this grammar is an uncluttered context-free
statement at a highly abstract level. The immediately succeeding rules show
how the grammar can be “broken out” into its components in a clear hierar-
chical fashion, with detail always presented at its appropriate level. The rules
for cat_box , tata_box , and cap_site specify double-quoted lists of
terminals (i.e., nucleotide bases), sometimes combined with nonterminal
atoms like pyrimidine . The “gap” infix operator (‘... ’) simply con-
sumes input, either indefinitely, as in xscript , or within bounds, as in up-
stream .

DCGs use difference lists, hidden parameter pairs attached to nontermi-
nals, to maintain the input list and to express the span of an element on it
[Pereira and Warren, 1980]. For notational convenience, we will refer to
spanson the input list using an infix operator ‘/ ’ whose arguments will repre-
sent the difference lists; that is, we will write S0/S where S0 is the input list
at some point, and S is the remainder after consuming some span. We will
also use an infix derivation operator ‘==>’ whose left argument will be a
nonterminal or sequence of nonterminals, and whose right argument will be
either a list or a span to be parsed. Note that this actually represents the
reflexive, transitive closure of the formal derivation operator described
above. Top-level calls might appear as follows:

tata_box ==> “tataaa”.

tata_box ==> “tatatagcg”/S.
(31)

Both these calls would succeed, with the latter leaving S bound to “gcg”.
Features of DCGs that potentially raise them beyond context-free power

include (1) parameter-passing,used here to build the list of amino acids in
the transcript. The exon rule assembles sublists recursively, after which
xlate and xlate1 combine them to form a complete polypeptide by
means of (2) procedural attachmentin the form of a curly-bracketed call to
the Prolog built-in append . This feature of DCGs allows arbitrary Prolog
code (or other languages) to be invoked within rule bodies, extending to sim-
ple utilities, more complex search heuristics, entire expert systems, dynamic
programming algorithms, or even calls to special-purpose hardware.

66 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

DCGs also allow for (3) terminals on the left-hand sideof a rule, trailing
the nonterminal; they are added onto the front of the input string after such a
rule parses. This feature is used by intron in such a way that a new codon
is created when the reading frame straddles the splice site [Searls, 1988].
Rules in this form are not context-free. We can also see that procedural
attachment gives the grammar Turing power, so that it can specify recursive-
ly enumerable languages, and in fact the same is true of unrestricted parame-
ter-passing.

SEARLS 67

| ?- (...,gene,...):Parse ==> mushba.
[loading /sun/mn2/dbs/dna/mushba.db...]
[mushba.db loaded 0.933 sec 1,442 bases]

Parse =
...
gene:

upstream$0:
cat_box:282/”ccaat”
...
tata_box:343/”tataa”
...
cap_site:371/”ac”
...

xscript:
codon(met):

405/”atg”
exon:(405/501)
intron:

donor$2:500/”gtgaga”
...
acceptor$0:606/”tctctccttctcccag”

exon:(623/827)
intron:

donor$2:827/”gtatgc”
...
acceptor$1:945/”cactttgtctccgcag”

exon:(961/1087)
stop_codon:1087/”taa”

...
polyA_site$0:1163/”aataaa”

...

Figure 8. A Gene DCG Parse

For large-scale search we have abandoned the built-in Prolog list structure
for the input string, which is instead implemented as a global data structure
in an external ‘C’ array. (Thus, numerical indexing replaces the DCG differ-
ence lists.) In conjunction with this, intermediate results are saved in a well-
formed substring table (similar in principle to a CKY parser) that also pre-
vents repeated scanning for features across large gaps. Other additions
include a large number of extra hidden DCG parameters to help manage the
parse, including one which builds and returns a parse tree. We have also im-
plemented specialized operators to manage the parse at a meta level, to arbi-
trarily control position on the input string, and to allow for imperfect match-
ing. In the terminal session shown in Figure 8 a search is performed on the
GenBank entry “MUSHBA” containing the mouse α-globin sequence. The
top level derivation operator is extended to allow calls of the form
sentence:Parse ==> input, where the input may be specified as
(among other things) a file containing sequence data, and where a parse tree
may be returned via the variable Parse .

The grammar used was derived from that of Figure 7, but with the additional
control elements described above, and much more complex rules for splice junc-
tions that use simulated weight matrices for donors and detection of branch
points and pyrimidine-rich regions for acceptors, in addition to the invariant din-
ucleotides. The resulting grammar, with considerable tuning, has been success-
ful in recognizing not only mouse but human α-like globins, while ignoring
pseudogenes (e.g., in the human α gene cluster “HUMHBA4”). We have also
tested it against the whole 73,000+ base pair human β-globin gene region
(“HUMHBB”), and were able to collect the entire cluster of five genes on a sin-
gle pass that required 4.7 CPU-minutes on a Sun 3/60. A pseudogene as well
as large intergenic stretches were passed over.

By “relaxing” the specifications in various ways (allowing in-frame stop
codons within exons and an out-of-frame final stop codon, and loosening
constraints on the splice donor weight matrix), we have also been able to
study aberrant splicing that would otherwise produce untranslatable message
[Searls and Noordewier, 1991]. By duplicating known β-thalassemia muta-
tions, additional cryptic donors were recognized, most of which are observed
in nature in aberrant splicing. The alternative transcription products seen ex-
perimentally were also produced by the DCG parser because of backtrack-
ing, which may also be useful for modeling the alternative transcription start
sites and splicing seen in certain viruses, as well as in experiment planning
applications [Searls, 1988].

The weakest links in the gene grammars developed to date are the signals
for splice junctions. In a practical implementation, it may be preferable to
incorporate other specialized algorithms (e.g. neural net recognizers) directly
into the grammar, and procedural attachment in DCGs makes this relatively
easy. The grammar still provides a very useful organizing framework, which

68 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

can serve to place such algorithms in an overall hierarchical context that cap-
tures the complex orderings and relationships among such features.

The gene grammars used for the investigations described above are writ-
ten without great regard for the linguistic status of the features being parsed,
and we have seen that the power of DCGs is such that the languages defined
potentially may reside at any level of the Chomsky hierarchy. Nevertheless,
this does not prove that the language of nucleic acids is beyond regular, and
indeed most of the features specified above can be rewritten as regular ex-
pressions, however awkward they may be. The grammar form is preferable
if for no other reason than that it promotes an abstracted, hierarchical view of
the domain. Regular grammars have been written describing much simpler
genes [Brendel and Busse, 1984], and at least one author [Shanon, 1978] has
argued that the genetic language is no more than context-free, and in fact that
a syntactic approach is not even necessary given its lack of structure in the
usual linguistic sense. However, these arguments are based on a very limited
view of biological phenomena, confined to the amino acid code itself. On
the contrary, in succeeding sections it will be seen that biological sequences
are rich with structural themes, both literal and linguistic.

4 Structural Linguistics of Nucleic Acids

We now proceed to consider exactly how much linguistic power is actual-
ly required to encompass various phenomena observed in nucleic acids that
are literally structural—that is, depending on the physical nature of DNA and
RNA, rather than any information encoded. The informational structure,
which we will refer to as functionallinguistics, will be discussed later. Only
a minimal knowledge of the molecular biology of nucleic acids is required
for this section, though a wider range of biological phenomena is cited else-
where which is beyond the scope of this work to review; for background,
readers are referred to standard textbooks such as [Watson et al., 1987;
Lewin, 1987].

4.1 Properties of Reverse Complementarity

Before beginning, we will establish a notation and some basic properties
of nucleic acid complementarity. We will uniformly adopt the alphabet of
DNA

ΣDNA = { g, c, a, t} (32)

and let a bar notation represent an operation corresponding to simple base
complementarity, i.e. indicating bases that are able to physically and infor-
mationally base-pairbetween strands of double-helical DNA:

g
_

= c, c
_

= g, a
_

= t, and t
_

= a (33)

SEARLS 69

While much of the work to follow will apply primarily to RNA structure,
we will assume that features of interest are actually being examined on the
DNA which encodes them. Clearly this operation can be extended over
strings and constitutes a homomorphism, since we can say that

u
_ . v

_
= (uv)

for u,v ∈ Σ∗

DNA (34)
We will abbreviate (34a) as uv

__
. We can also see that this homomorphism

and string reversal have the following properties:

(w)

= w, (wR)R= w, and (wR)

= (w
_
)R (35)

The composition of complementarity and reversal in (35c), which will be
written as w

_
R, is of course the “opposite strand” of a string w of DNA, since

not only are the strands of a double helix complementary but they are orient-
ed in opposite directions. Care must be taken not to treat this operation as a
homomorphism, since it does not itself preserve concatenation in general:

u
_R . v

_R ≠ (uv)

R = v
_R . u

_R where |u| ≠ |v | (36)

Rather, such a string function is an involution [Head, 1987]. We can easily
derive from the lemmas of (35) the familiar property that in essence allows
nucleic acids to be replicated from opposite strands:

(w
_

R)

R
= (w

_
R)

R = (w)

= w (37)

We will demonstrate one other fundamental property (also noted by
[Head, 1987]), concerning the special case of strings that are identical to
their opposite strands, i.e. those in the language

Le = { w∈ Σ∗
DNA |w=w

_
R } (38)

We note first that any such w must be of even length, or else it would have
a centermost base not identical to the centermost base of its opposite strand,
since they are required to be complementary. Thus, we can divide w into two
equal halves, and also conclude that

w = uv=w
_R = v

_R u
_R = uu

_R where |u| = |v | (39)

(where the bar notation is now used to denote the lengths of the strings).
Thus we see that Le is in fact the language

Le = { uu
_R |w∈ Σ∗

DNA } (40)

The equivalence of the languages (38) and (40) will come as no surprise
to any molecular biologist, since it is simply a linguistic expression of the
basic notion of dyad symmetry.The language Le will become important in
the following section.

70 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

4.2 Nucleic Acids Are not Regular

Inverted repeatsare prevalent features of nucleic acids, which in the case
of DNA result whenever a substring on one strand is also found nearby on
the opposite strand, as shown at the top of Figure 9. This implies that the
substring and its reverse complement are both to be found on the same
strand, which can thus fold back to base-pair with itself and form a stem-and-
loop structure, as shown at the bottom.

Such base-pairing within the same strand is called secondary structure.It
would seem that we could specify such structures with the following context-
free grammar:

S→ bSb
_
| A A→ bA | ε where b∈ ΣDNA (41)

The first rule sets up the complementary base pairings of the stem, while the
second rule makes the loop. Note that disjuncts using b, here and in all sub-
sequent grammars, are actually abbreviations that expand to four disjuncts,
e.g. allowing in the first rule above every possible alphabetic substitution that
maintains the required complementarity. These complementary bases estab-
lish nested dependencies between respective positions along the stem.

However, the A rule for the loop in (41) is an obstacle to further analysis,
since it can specify any string and thus the resulting language is simply
Σ∗

DNA, making it trivially regular. We will return to this issue in a moment,
but in order to study the essential aspects of this language, we will first focus
on the base-pairing stems and drop the A rule from (41), thusly:

S→ bSb
_
| ε (42)

The resulting language may be thought of as that of idealized, gapless bio-
logical “palindromes,” able to form secondary structure extending through
entire strings with no loops (i.e., we imagine them having no steric hindrance

SEARLS 71

β

β′

α

α′

α′

α

β

α α′

Figure 9. An Inverted Repeat

to prevent complete base-pairing to the ends of the stems, whereas in reality
there is a minimal loop necessary). In fact, this is simply the language Le of
(40) representing sequences concatenated to their own reverse complements.
This equivalence can be shown by simple inductions on the length of strings
in (40) and the number of derivation steps used in (42); we leave this to the
reader, though proofs along the same lines will be given below.

We will, however, show that Le cannot be an RL, by proving that no FSA
can recognize it. Such an FSA would, for instance, be required to accept
gi ci for all i ≥1 and reject gj ci for all i ≠ j. Let qn denote the node or state
in which the FSA arrives after having processed a string gn. Then we know
that qi ≠qj for all i ≠ j, since starting from the stateqi and consuming the
string ci leads to a final node, while fromqj, consuming the same string ci

must not lead to a final node. Thus the FSA must have distinct statesqi and
qj for all i ≠ j and, since any length input is allowed, it must therefore have
an infinite number of states. Since an FSA must by definition be finite, there
can be no such FSA recognizing Le, and thus Le cannot be regular.

4.3 Non-Ideal Secondary Structure

Let us call a string ideal whenever, for each base type, its complement is
present in the string in equal number. Languages having only ideal strings,
or grammars that specify them, will also be called ideal. The grammar (42)
is ideal, since any time a base is added to the terminal string, so is its com-
plement. However, the grammar (41) is non-ideal, due to its loop rule.

In addition, (41) is inadequate as a model because in fact it accepts any
string of any size via the loop disjunct, and can bypass the more meaningful
stem disjunct entirely. One practical solution to this problem is to place con-
straints on the extents of these subcomponents, for instance requiring a mini-
mum length p for the stem and a maximum length q for the loop. This
reflects biological reality to the extent that inverted repeats that are too small
or too far separated in a nucleic acid molecule can be expected to base-pair
less readily. For a given fixed p and q, this gives rise to the language

Ln = { uvu
_R |u,v∈ Σ∗

DNA , |u|≥p, and |v|≤q } (43)

That this is still a CFL is demonstrated by our ability to specify it as a
context-free grammar, as follows:

S → A0

Ai → bAi+1b
_

for 0≤ i <p

Ap → bApb
_
|B0 (44)

Bj → bAj+1 | ε for 0≤ j <q

Bq → ε

72 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Administrator
ferret

Here, subscripted rules are meant to be expanded into multiple rules ac-
cording to p and q. The A rules account for the stem, with each distinct rule
“counting” the base pairs up to the minimum required, then permitting any
number of additional base pairs; similarly, the B rules count the unpaired
bases of the loop, but in this case impose a maximum. We will prove that
this language Ln is not regular, by contradiction. Suppose that it were indeed
regular, and let us derive a new language from it:

L'n = φ(gc ∪ ggcc∪ gggccc∪ … ∪ gp-1cp-1 ∪ (Ln ∩ g*aqc*)) (45)

where φ is the homomorphism based on φ(g)=0, φ(c)=1, and φ(a)=φ(t)=ε.
We see that for fixed p and q each of the expressions in L'n is regular, and
furthermore we know that the RLs are closed under each of the operations
used, i.e. intersection, union, and homomorphism. Thus L'n itself must also
be regular. Now let us simplify the expression (45), first examining the inter-
section of Ln with the regular expression on the right. Of all the strings gen-
erated by Ln, this regular expression “selects” ones that have exactly q con-
secutive a’s, flanked by any number of g’s on the left and c’s on the right, and
no t’s at all. Since the a’s thus have nothing with which to base-pair, they
must all be in the loop portion, and in fact because there are q of them they
must constitute the entire loop. The flanking g’s and c’s thus base-pair to
form the stem, and being base-paired they must be present in equal numbers,
greater than or equal to p. Similarly the sub-expressions on the left are a
finite union of RLs containing equal numbers (less than p) of g’s followed by
c’s. The homomorphism φ serves to convert g’s and c’s to a different alpha-
bet and to discard the a’s, leaving the language

L'n = φ({ gj cj | 1≤ j <p} ∪ { gi aqci | i ≥p}) = { 0n1n |n≥1} (46)

But this language is the same as (7), which is known not to be regular (as
can be demonstrated using essentially the same proof as in the previous sec-
tion). Thus our assumption that Ln is regular must be false, and we may ex-
tend this result to a conjecture that secondary structure with any suitable lim-
its placed on its non-ideal components will not be regular. (In particular,
relating the non-ideal to the ideal regions, e.g. allowing them to be propor-
tional in size, would appear to raise the resulting languages even beyond
context-free.)

4.4 Nucleic Acids are neither Deterministic nor Linear

As was noted above, the nondeterministic parser inherent in DCGs is use-
ful in dealing with empirical nondeterminism in biological systems, such as
alternative splicing and other transcriptional variants. But besides this ob-
served nondeterminism, we can now see that the structure of nucleic acids, in
particular that associated with inverted repeats, is nondeterministic by its na-

SEARLS 73

ture. By reasoning similar to that given above for (11), any recognizer for
such structures would have to guess at the center point of the inverted repeat.
The presence of a loop does not alter this result.

The grammar (42) for inverted repeats is linear; however, many more
elaborate forms of secondary structure are possible, and anything with more
than a single stem structure would not be linear. For example, a grammar
specifying any number of consecutive inverted repeats would be simply

S→ AS| ε A → bAb
_
| ε (47)

Clearly this, or any other grammar specifying multiple inverted repeats,
would exceed the capabilities of a one-turn PDA. Even this is not a “most
general” form for ideal secondary structure, however, because it does not
allow for structure within structure, which is quite common in RNA in
configurations like that of Figure 10. We can propose a formal description of
all such secondary structure by recursively building a set of strings of this
nature.

Let us define an orthodoxstring as either ε, or a string derived from an or-
thodox string by inserting an adjacent complementary pair, bb

_
, at any posi-

tion. The intuition behind this definition is that adding such pairs to a sec-
ondary structure will either extend the tip of a stem, or cause a new stem to
“bud off” the side of a stem, and these are the only operations required to
create arbitrary such secondary structure. Clearly every orthodox string is
ideal. Moreover, we can specify the set of all orthodox strings, Lo, with a
grammar that merely adds to (42) a disjunct that duplicates the start symbol:

So → bSob
_
| SoSo | ε (48)

That this specifies exactly the orthodox strings is shown by induction on
the length of the string. The empty string ε is both orthodox and derivable

74 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α α′

β

β′

γ ′

γ

 δ δ′
ε

ε′

Figure 10. Recursive Secondary Structure

from (48). Assuming that any and all orthodox strings of length 2n (only
even-length strings being allowed) are derivable from (48), we must show
that the same is true for orthodox strings of length 2(n+1). For the longer
string to be orthodox, it must be built on some orthodox string w of length 2n
that, we know by the inductive hypothesis, is derivable from (48). Without
loss of generality, we can assume that the derivation of w delays all ε rule ap-
plications to the end. Note also that, for every derivation step applying the
first disjunct of (48) to derive the substring bSob

_
, we can substitute a deriva-

tion producing the substring SobSob
_
So instead, since

So ⇒ SoSo ⇒ SoSoSo ⇒ SobSob
_
So ⇒ bSob

_
So ⇒ bSob

_
(49)

Therefore, we can ensure that in the intermediate string just before the ε rules
are applied in the derivation of w, there will be So’s flanking every terminal
base, in every possible position where the next bb

_
might be added to create

the orthodox string of length 2(n+1). Since bb
_

is derivable from such So’s,
this same derivation can be easily extended to produce any and all such
strings, completing the inductive proof.

4.5 Nucleic Acids Are Ambiguous

We have seen that non-ideal secondary structure grammars such as (41)
are ambiguous, in a way that can subvert the implicit biological meaning
(since bases which rightfully could base-pair in the stem via the first disjunct
can also be attributed to the loop by the second rule). We can observe a
much more interesting form of ambiguity in the grammar of (48) that relates
biologically to the underlying language of orthodox secondary structure, Lo.
Consider the sublanguage of Lo consisting of concatenated inverted repeats:

Le
2 = Le

.Le = { uu
_R vv

_R |u,v∈ Σ∗
DNA } (50)

This in turn contains the set of ideal double inverted repeats, i.e.

Ld = { uu
_R uu

_R |u∈ Σ∗
DNA } (51)

Any such string can clearly be derived from So as two side-by-side invert-
ed repeats, but it follows from the equivalence of (38) and (40) that the entire
string can also be parsed as a single inverted repeat, e.g. the following two
leftmost derivations from the grammar (48):

So ⇒ SoSo ⇒ gSocSo ⇒ gaSotcSo ⇒ gatcSo
⇒ gatcgSoc ⇒ gatcgaSotc ⇒ gatcgatc (52)

So ⇒ gSoc ⇒ gaSotc ⇒ gatSoatc ⇒ gatcSogatc ⇒ gatcgatc

Note that these two derivations correspond to two alternative secondary
structures available to the input string, as illustrated in Figure 11. The first
derivation of (52), which spawns two So’s, in effect describes the so-called
“dumbbell” structure shown at the left, in which the two inverted repeats

SEARLS 75

base-pair separately; the second derivation, which uses a single So through-
out, describes the uniform “hairpin” structure shown at the right. Such dou-
ble inverted repeats are indeed thought to assume both structures alternative-
ly in certain biological situations (e.g. RNAs specifically replicated by the
bacteriophage T7 DNA-dependent RNA polymerase [Konarska and Sharp,
1990]), as well as intermediate “cloverleaf” structures, as shown in the center
of Figure 11. In fact it can be seen that for ideal double inverted repeats of
this form, a continuous series of such intermediate structures are available,
base pair by base pair, between the two extremes. It is gratifying that each
such secondary structure corresponds to a different partition on the set of
leftmost derivations, interpreted in this manner, e.g. the following cloverleaf
version of the input from (52):

So ⇒ gSoc ⇒ gSoSoc ⇒ gSoSoSoc ⇒ gaSotSoSoc

⇒ gatSoSoc ⇒ gatcSogSoc ⇒ gatcgSoc ⇒ gatcgaSotc ⇒ gatcgatc
(53)

This suggests a strong analogy between derivations and physical sec-
ondary structures—in fact, parse trees from these grammars can be seen as
actually depicting such structure. (The extent to which alternative structures
are allowed is related to the language-theoretic notion of degree of
ambiguity.)

Of course, having found an ambiguous grammar for such features does
not imply that the language containing them is inherentlyambiguous; that
would require proving that no unambiguous grammar suffices. Surprisingly,
the language Lo of generalized orthodox secondary structure appears not to
be inherently ambiguous, since it falls in a class of languages (the full or
two-sided Dyck languages—see section 2.7.5) for which unambiguous gram-
mars are possible [Harrison, 1978, p. 322]. However, there may well exist
sublanguages of Lo which are inherently ambiguous (perhaps the language
Le

2of (50), which is similar to the inherently ambiguous language of concate-
nated pairs of ordinary palindromes [Harrison, 1978, p. 240]). In any case,

76 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α

α′ α

α′ α

α′

α′

α

α

α′

α′

α

Figure 11. Dumbbell, Cloverleaf, and Hairpin Structures

we might actually prefer an ambiguous grammar that models an underlying
biological ambiguity, such as alternative secondary structure, particulary
when that ambiguity has functional significance.

Attenuators, for example, are bacterial regulatory elements that depend on
alternative secondary structure in their corresponding mRNA to control their
own expression [Searls, 1989a]; a simplified representation of their structure
is shown in Figure 12. An attenuator has the capability to form alternative
secondary structure in its nascent mRNA, under the influence of certain ex-
ogenous elements depicted in the figure, to establish a kind of binary switch
controlling expression of a downstream gene [Lewin, 1987]. If we model an
attenuator as either of two alternative languages corresponding to these
states,

Loff = { uvv
_R |u,v∈ Σ∗

DNA } Lon = { uu
_Rv |u,v∈ Σ∗

DNA } (54)

then the relationship of these languages to those of (29), and of their union to
the inherently ambiguous language of (23), is apparent. Nevertheless, this is
still not a formal proof, and in fact it can be argued that Loff and Lon should
actually be intersected, since both conditions are required to be present in the
same language to produce the function described (see section 2.7.2).

Again, while we leave open the question of the formal status of nucleic
acids vis-à-vis inherent ambiguity, we note that a contrived unambiguous
grammar for any given secondary structure may be inferior as a model, if it
fails to capture alternatives in the secondary structure. Moreover, the defini-
tional requirement for a leftmostderivation may itself be irrelevant to the
physics of folding, which presumably can occur simultaneously along the
length of the molecule. An interesting exception to this would be the folding
of nascent RNA that occurs as it is synthesized, which of course is leftmost.

Another functional theme in nature involving alternative secondary struc-
ture is self-primingof certain DNA molecules, such as parvoviruses [Watson
et al., 1987] where the ends of double-stranded molecules are able to refold
into T-shaped configurations that can “bootstrap” the synthesis of a new copy
of the entire viral genome. In this case, the most fundamental process of

SEARLS 77

α

α′ α

α
α α′

Figure 12. Attenuator Structure

replication of an organism may be viewed as depending on a kind of ambigu-
ity in the language containing its genome (see section 2.7). We will shortly
see how replication might itself result in inherent ambiguity (see section
2.5.1).

The nondeterminism of secondary structure rules out linear-time parsing,
and its nonlinearity and possible inherent ambiguity would also preclude cer-
tain quadratic-time simplifications of well-known parsers. Any of the struc-
tural elements given so far could be parsed in cubic time at worst (or, indeed,
recognized more efficiently by less general algorithms), but we will now
offer evidence for non-context-free features that may create further compli-
cations.

4.6 Nucleic Acids Are not Context-Free

The presence (and importance) of tandem repeats and direct repeats of
many varieties in DNA, as depicted in Figure 13, indicate the need to further
upgrade the language of nucleic acids; these are clearly examples of copy
languages, as specified in (14), which are known to require CSLs for their
expression. Direct repeats entail crossing dependencies, where each depen-
dency is in fact simply equality of the bases.

While there is thus strong empirical evidence for any general language of
nucleic acids being greater than context-free, we may yet ask if there is any
structural correlate, as is the case for context-free secondary structure. Sev-
eral possibilities are shown in Figure 14. The illustration on the left suggests
that a string of direct repeats extending infinitely in either direction could
shift an arbitrary number of times, and still maintain base-paired structure
with its reverse complementary string through alternative “hybridization.” In
practice, of course, only a few direct repeats might suffice, and in fact such
misalignment in highly repetitive sequences is postulated to occur in mecha-
nisms of change involving unequal crossing over [Lewin, 1987]. The illus-
tration on the right of Figure 14 shows how a circular molecule could be
formed by alternative base pairing between a simple tandem repeat and its

78 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α

α′

α

α′

α

α′

α

α′

α

α′

Figure 13. Tandem and Direct Repeats

reverse complement. (Circular molecules, which we will have occasion to
deal with again, are in fact quite important in biology; they have been sug-
gested as a motivation to extend formal language theory to circular strings
[Head, 1987].)

Are there, however, mechanisms whereby a single strand can form sec-
ondary structure that is not encompassed by the grammar of (48), and is thus
perhaps greater than context-free? In fact, recent evidence points to “non-or-
thodox” forms of secondary structure, called pseudoknots,in many RNA
species [Pleij, 1990]. Such a structure is shown in Figure 15. While each
base-paired region only creates nested dependencies, the combination of the
two necessitates crossing those dependencies.

To formally illustrate the consequences of this, consider an ideal pseudo-
knot language (i.e. one without unpaired gaps, etc.), which can be represent-
ed as follows:

Lk = { uvu
_Rv

_R |u,v∈ Σ∗
DNA } (55)

We will prove that this language is not context-free, again by contradic-
tion. If Lk were indeed a CFL, then since CFLs are closed under intersection
with RLs, the language

L'k = Lk ∩ g+a+c+t+ (56)

would also be a CFL. We can see that any choice of the substring u from
(55) must exactly cover the initial g’s selected by the regular expression,
while v must exactly cover the a’s, etc. Otherwise, some substring from (55)
would have to contain the boundary pairs ‘ga’, ‘ac’, and/or ‘ct’; this cannot
be, because each substring’s reverse complement is present, and therefore so
would be the pairs ‘tc’, ‘gt’, and/or ‘ag’, respectively, all of which are forbid-
den by the regular expression. We know that the length of u and thus the
number of g’s is equal to the length of u

_R and the number of c’s, and similar-
ly for v and v

_R so that in fact

L'k = { gi a j t i c j | i, j ≥1} (57)

SEARLS 79

α1 α3

α′1 α′3

α2 α4

α′2 α′4

α′

α

α′

α

Figure 14. Structural Correlates for Direct Repeats

which is related by a trivial homomorphism (under which CFLs are also
closed) to the language (13b), known to be greater than context-free. Hence,
Lk cannot be context-free.

The pseudoknot language Lk of (55) is clearly ideal, but cannot be ortho-
dox because it contains strings, such as those in L'k, that have no adjacent
complementary bases. Thus, there exist ideal but non-orthodox secondary
structure languages which are greater than context-free. We can, however,
show that the most general ideal language, i.e. the set of all ideal strings (or-
thodox or not) Li, is a CSL with ε since it is specified by the following essen-
tially context-sensitive grammar:

Si → BbbSi | ε
Bb → b

_
for each b,d∈ Σ∗

DNA (58)

dBb → Bbd

This grammar can only generate ideal strings, since every b derived is ac-
companied by a Bb which must eventually produce exactly one b

_
. The proof

that (58) generates every ideal string is by induction on the lengths of such
strings. The ideal string ε derives from (58); we assume that any ideal string
of length 2n does also, and attempt to show this for any ideal string w of
length 2(n+1). It must be the case that w = ub

_
vb for some u,v∈ Σ∗

DNA, and
furthermore the ideal string uv of length 2n must derive from (58) by the in-
ductive hypothesis. It can be seen that Si can only appear once in any inter-
mediate string of this derivation, and always at the end; thus, in a leftmost
derivation the final step must be an application of the ε rule to the string uvSi,
in which case we can adapt this derivation to produce

Si ⇒ … ⇒ uvSi ⇒ uvBbbSi ⇒ uvBbb ⇒ m uBbvb ⇒ ub
_
vb (59)

where the penultimate derivation steps comprise sufficient applications of the
final, context-sensitive rule of (58) to allow Bb to traverse v leftwards to its
final position—that is, m=|v|. This completes the induction, as well as the

80 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α′

α
β

β′

Figure 15. Pseudoknot Structure

proof that the grammar of (58) generates exactly Li, the set of all ideal
strings.

From the results thus far concerning secondary structure, we may make
the informal generalization that orthodox structure is inherently context-free,
and ideal non-orthodox structure is greater than context-free. Care must be
taken in extending these intuitions to specific cases, though, since subsets of
languages may be either higher or lower in the Chomsky hierarchy than the
original language. For example, the language generated by(gact)* is ideal
and non-orthodox, but obviously regular, while the language of double in-
verted repeats, Ld of (51), is orthodox but not a CFL, since it also specifies
direct repeats. We also note in passing, without proof, the interesting obser-
vation that for a complementary alphabet of less than four letters (e.g. if only
g’s and c’s are used) there can be no non-orthodox ideal strings.

4.7 Nucleic Acids as Indexed Languages

The features described thus far are all encompassed by CSLs with ε, and
in fact can be described by indexed grammars, which specify the IL subset of
CSLs. The following indexed grammar defines the copy language of DNA
(i.e., tandem repeats):

S→ bSb |A Ab → Ab A→ ε (60)

(It may be noted that this simplified grammar does not strictly correspond to
the formal definition of an indexed grammar, but there is an easy transforma-
tion to one that does, e.g. using stack end markers, etc.) The first rule serves
to record in the indices all of the bases encountered, while the A rule “plays
back” the bases in the proper order. A sample derivation from this grammar
would be

S ⇒ gSg ⇒ gcScg ⇒ gcaSacg ⇒ gcaAacg

⇒ gcaAcga ⇒ gcaAgca ⇒ gcaAgca ⇒ gcagca
(61)

Note that we can easily specify inverted repeats as well, which is not sur-
prising since the ILs contain the CFLs. We just substitute in the grammar
(60) a different rule for A:

S→ bSb |A Ab → b
_
A A → ε (62)

Then, following the same course as the last example derivation (61), we have

S ⇒ gSg ⇒ gcScg ⇒ gcaSacg ⇒ gcaAacg

⇒ gcatAcg ⇒ gcatgAg ⇒ gcatgcA ⇒ gcatgc
(63)

ILs can contain an unbounded number of repeats (or inverted repeats, or
combinations thereof), by simply interposing an additional recursive rule in
the grammar (60). We can also specify “interleaved” repeats, as in the fol-

SEARLS 81

lowing grammar specifying the pseudoknot language Lk of (55):

S→ bSb |A Ab → bAb
_
|B B→ b

_
B B→ ε (64)

With this facility for handling both crossing and nested dependencies, it is
tempting to speculate that the phenomena observed in biological sequences
may be contained within the ILs. It has been suggested that ILs suffice for
natural language [Gazdar, 1985], and it is also interesting to recall that
0L-systems, which have been so widely used to specify biological form, are
contained within the ILs [Prusinkiewicz and Hanan, 1989].

5 Closure Properties for Nucleic Acids

Viewed as a kind of abstract datatype,nucleic acids could be usefully
defined by the range of biological operations that can be performed on them.
Viewed as language, it thus becomes important to understand their linguistic
behavior under those operations. In this section we examine a number of
known closure properties of languages under various operations that are rele-
vant to nucleic acids, as well as some derived operations that are specific to
the domain.

5.1 Closure under Replication

Consider the operation devised on strings w∈ Σ∗
DNA to denote the reverse

complementary string, w
_R. Are the language families of interest closed

under this operation? In other words, if we decide that some phenomenon in
DNA falls within the CFLs (for example), can we be assured that the oppo-
site strandwill not be greater than context-free?

Recall that the bar operation is an “ε-free” homomorphism. Of the lan-
guage families we have described, the RLs, CFLs, ILs, CSLs, and recursive-
ly enumerable languages are all closed under such homomorphisms; as it
happens, they are also all closed under string reversal, and thus we can be
confident that opposite strands will maintain the same general linguistic sta-
tus. This being the case, we can design an operation on sets of strings that
will replicatethem in the sense of creating and adding to the set all their op-
posite strands:

REP(L) = { w,w
_R | w∈ L} = L ∪ L

_
R for L ⊆ Σ∗

DNA (65)

Since we have closure under union for all these language families as well,
they are still closed under this replicational operation. Note that the defini-
tion of (65) accords well with the biological fact of semi-conservative repli-
cation, in which there is a “union” of each original string with its newly-syn-
thesized opposite strand. Indeed, we can extend this operation to its own
closure (i.e., allowing any number of applications of it), denoted as usual by
an asterisk, and observe a much stronger, biologically-relevant result:

82 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

REP*(L) = REP(L) (66)

This follows from (37), and is simply a linguistic statement of the fact
that, once REP has been applied to any population of strings and they are
thus “double-stranded,” the same strings will recur for any number of repli-
cations.

It should be noted, however, that the deterministic CFLs are not closed
under either homomorphism or string reversal, so that a context-free feature
that parses deterministically on one strand may be nondeterministic (though
still context-free) on the opposite strand. The following suggests why:

LD = { agi ci gj | i, j ≥1} ∪ { tgi c j gj | i, j ≥1} (67)

Were it not for the initial ‘a’ or ‘t’ on every string in this CFL, it would be
nondeterministic for reasons described in relation to the languages of (23)
and (29). However, the ‘a’ and ‘t’ act as “markers” that tip off the recognizer
as to what elements it should use the stack to count, making LD determinis-
tic. Note, therefore, that any homomorphism that mapped ‘a’ and ‘t’ to the
same element would negate the effects of the markers and leave a nondeter-
ministic language. More to the point, string reversal moves the marker bases
to the opposite ends of the strings where the recognizer will not encounter
them until the end. Thus,

L
_

R
D = { ci gi c ja | i, j ≥1} ∪ { ci gj c j t | i, j ≥1} (68)

would be recognized (in a leftmost fashion) nondeterministically. (A more
formal grounding for this nonclosure proof may be found in [Harrison,
1978]). One practical consequence of this is that there may be situations
where it is better to parse a string in one direction than another, particularly
with a top-down backtracking parser like that of DCGs; for example, one
would want to establish the presence of the invariant dinucleotides in a splice
junction before searching for the much more difficult flanking signals.

Since replication as we have defined it constitutes a union of a language
with its reverse complementary language, it is easy to show that unambigu-
ous CFLs are not closed under this operation, since there may be strings in
“double-stranded” sets such that we cannot know a priori from which strand
they came. For example, the language

LU = { gi c i gj | i, j ≥1} (69)

is a deterministic (and thus unambiguous) CFL, since a PDA could simply
push the stack on the first set of g’s and pop on the c’s, with no guesswork re-
quired. However, when replicated this language becomes

REP(LU) = { gi c j gk | i = j or j =k} (70)

which is essentially the inherently ambiguous language of (23), necessarily
having multiple leftmost derivations whenever i = j =k.

SEARLS 83

5.2 Closure under Recombination

Other “operations” that are performed on nucleic acid molecules include
recombinatory events. For simplicity, we will confine ourselves here to
primitive manipulations like scission and ligation. The latter is ostensibly
straightforward, for, if we define ligation and the “closure” of ligation (i.e.
the ligation of any non-zero number of strings from a language) as follows

LIG(L) = { xy | x,y∈ L} = L.L

LIG*(L) = { x1x2
… xn |n≥1 and xi ∈ L for 1≤i≤n} = L+ (71)

then we can see that these correspond to concatenation and its positive clo-
sure over languages, and it is the case that RLs, CFLs, ILs, CSLs, and recur-
sively enumerable languages are all closed under these operations.

It must be emphasized that this simple definition has inherent in it an
important assumption regarding the modelling of biological ligation. View-
ing nucleic acids as literal strings in solution, one might think that there is no
a priori reason they should not ligate head-to-head and tail-to-tail, as well as
head-to-tail as is implicit in the usual mathematical operation of concatena-
tion. It happens, though, that these strings are not only directional, but that
ligation is only chemically permitted in the head-to-tail configuration; in this
instance, life mimics mathematics. As a practical matter, however, ligation
generally occurs in populations of double-stranded molecules, so we must
take account of the fact that in this case the strings from L in the definitions
(71) will also ligate head-to-tail as reverse complements. Indeed we see that

LIG(REP(L)) = LIG(L ∪ L
_

R)

= (L.L) ∪ (L.L
_

R) ∪ (L
_

R.L) ∪ (L
_

R.L
_

R)
(72)

gives all the required combinations, and uses only operations that preserve
our stated closure results.

In the case of scission, we take advantage of the fact that the language
families listed above, with the sole exception of the CSLs, are closed under
the operations of selecting all prefixes or all suffixes of a language, i.e. under

PRE(L) = { x | xy∈ L} SUF(L) = { y | xy∈ L} (73)

This being the case, we can prove closure under scission for either a single
cut or for any number of cuts, by combinations of these operations:

CUT(L) = { x,y | xy∈ L} = PRE(L) ∪ SUF(L)

CUT*(L) = { u | xuy∈ L} = PRE(SUF(L))
(74)

The latter operation, in fact, is just the set of all substrings of L. Once again,
it is interesting to note that, within the CFLs, neither deterministic nor unam-
biguous languages are closed under these operations, even though CFLs
overall are closed.

84 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Ligation offers one further complication, based on the fact that it may
occur so as to form circular molecules. We will denote this variation LIG°,
but we are left at a loss as to how to represent it linguistically, since the
strings have no beginnings. However, we can define the results of scission
of languages formed by this operation. Assuming in the simplest case that
we perform a circular ligation of each individual string in L and then cut each
circle once at every possible position, we arrive at the language

CUT(LIG°(L)) = { vu |uv∈ L} = CYC(L) (75)

which is the set of circular permutations of each string. As it happens, all of
the language families in the Chomsky hierarchy are closed under this opera-
tion (though, again, deterministic CFLs are not); a constructive proof of this
for CFLs is given in [Hopcroft and Ullman, 1979]. Closure of LIG° really
only amounts to circular ligation of repeated linear ligations, i.e.
LIG°(LIG*(L)), since a string can only be circularized once. Thus, our clo-
sure results still hold for this extension.

Biologists can manipulate DNA molecules by cutting them at specific
sites using restriction enzymes, and then ligating the resulting fragments
(also in a sequence-specific manner). The closure of so-called splicing sys-
temsunder these domain-specific operations has been studied using formal
language theory [Head, 1987]. Natural recombination, as between homolo-
gous chromosomes during meiosis, is an exceedingly important biological
phenomenon that bears some resemblance to shuffleoperations on languages
[Hopcroft and Ullman, 1979].

5.3 Closure under Evolution

Consider the following linguistic formulations of several known modes of
rearrangement at a genomic level that occur in evolution—duplication, inver-
sion, transposition, and deletion:

DUP(L) = { xuuy| xuy∈ L}
INV(L) = { xu

_Ry | xuy∈ L} where x,y,u,v∈ Σ∗
DNA

XPOS(L) = { xvuy| xuvy∈ L} and L⊆ Σ∗
DNA

(76)

DEL(L) = { xy | xuy∈ L}
We see immediately that CFLs (and RLs, for that matter) could not be

closed under DUP since this operation creates direct repeats of arbitrary
length, as in (14), which are greater than context-free. What is somewhat
more surprising, given the results of the previous section, is that the CFLs
are also not closed under either INV or XPOS. This can be seen by the effects
of the operations on inverted repeats, from which INV can make direct re-
peats and XPOScan make pseudoknot patterns; formal proofs of this follow.

Consider the CFL selected from among the inverted repeats—that is, from

SEARLS 85

the language Le of (40) – by intersection with a regular expression:

LC1 = Le ∩ (g+c)*at(g+c)* = { xatx
_R | x∈ {g,c}* } (77)

We can use intersection with a different RL to examine only the inversions of
this language that occur over suffixes of LC1 (i.e. for which y=ε in (76b)):

INV(LC1) ∩ (g+c)*at = { xxat | x∈ {g,c}* } (78)

The ‘at’ can only arrive at the end of the string as the result of inversions of
the suffix starting just before the ‘at’ in each string of LC1. We can then use
a homomorphism mapping ‘a’ and ‘t’ to ε, such as φgiven for (45), to get rid
of the final at’s and leave a simple copy language as in (14). Since we have
arrived at a non-CFL, and every other operation used preserves CFLs, it must
be the case that CFLs are not closed under inversion, and the specific case of
inverted repeats yields direct repeats.

Transposition is dealt with by a similar route, first selecting a different
subset of inverted repeats as our test CFL:

LC2 = Le ∩ g+a+t+c+ = { gi a j t j ci | i,j ≥1} (79)

We now force transpositions that again occur over suffixes of strings in LC2,
such that x in (76c) covers the g’s and a’s, u covers the t’s, v covers the c’s,
and y=ε:

XPOS(LC2) ∩ g*a*c*t* = { gi a j ci t j | i, j ≥1} (80)

But this is a pseudoknot language—in fact, L'k of (56), which we have al-
ready seen is greater than context-free. We conclude that CFLs are also not
closed under transposition.

Among the evolutionary operators, CFLs are closed only under deletion.
To show this, let us temporarily supplement Σ∗

DNA with the character §, and
design a homomorphism for which φ(b)=b for b∈ Σ∗

DNA–§, and φ(§)=ε. We
will also set up a GSM G with transitions as given in Figure 16. Then, we
see that the deletion operator can be defined as

DEL(L) = G(φ-1(L)) (81)

The inverse homomorphism will distribute any number of §’s in every possi-
ble position in every string of L, so we can use the first two such §’s in each
resulting string as end markers for deletions, and be assured of arriving at
every possible deletion, as in DEL. We accomplish those deletions with G
(which also disposes of the §’s), as the reader may confirm. Since CFLs are
closed under inverse homomorphism and the action of GSMs, we know that
DEL(L) will be a CFL. Similar results hold for RLs, ILs, and recursively
enumerable languages, though it happens that CSLs need not be closed under
DEL because G is not ε-free.

Note that minor variations of G can be used to prove the closure proper-

86 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ties of the prefix and suffix operations given in (73), and in fact those results
can be used to demonstrate the closure properties of the deleted fragments
themselves, whether linear or circular. In addition, the definitions of G and φ
may be modified to reflect other, domain-specific models in order to take ad-
vantage of the same proof methodology. For example, φ(§) can be defined to
be a recognition sequence that delimits “directed” deletions (see section
2.8.2). Using a combination of two bracketing deletion markers, we might
model the splicing that occurs in RNA processing (see section 2.3.4), or in-
deed even the inverse operation of inserting languages (at least RLs) into ex-
isting languages at designated points; this suggests that the evolution of in-
terrupted genes may not in itself have contributed to their linguistic
complexity.

6 Structural Grammars for Nucleic Acids

As noted, the DCG gene grammar presented previously was largely creat-
ed without regard for the linguistic status of DNA, but rather as a rapidly-
prototyped, reasonably efficient recognizer for “real-world” search applica-
tions. This section details our efforts to adapt logic grammars to a wider
variety of biological phenomena, with formally-based conventions suitable
to the domain.

6.1 Context-Free and Indexed Grammars

Base complementarity, as defined in (33), is easily implemented within
DCGs by creating a special prefix tilde operator as follows:

~”g” --> “c”. ~”c” --> “g”.

~”a” --> “t”. ~”t” --> “a”.
(82)

Then, creating a DCG version of the formal grammar (41) specifying

SEARLS 87

§|ε §|ε

b|b b|ε b|b

§|ε
where b∈ΣDNA–§

Figure 16. The Generalized Sequential Machine G

stem-and-loop structures is straightforward:

inverted_repeat --> [X], inverted_repeat, ~[X]

inverted_repeat -->
(83)

Here, the Prolog variables within square-bracketed lists indicate termi-
nals. The gap rule represents the loop, corresponding to the rule for the non-
terminal A in the formal grammar. We have noted that this non-ideal
specification is insufficient as a model, and it is also impractical in actual
parsing; however, we can implement the constrained version of (44) with lit-
tle extra trouble, using parameters and embedded code to create a concise
and workable (though inefficient) DCG for inverted repeats with specified
minimum-length stems and maximum-length loops:

inverted_repeat(Stem,Loop) --> {Stem=<0},

0...Loop.

inverted_repeat(Stem,Loop) --> {Next is Stem-1}, (84)

[X], inverted_repeat(Next,Loop), ~[X].

It is just as easy to transcribe other formal grammars, e.g. that of (48) rep-
resenting generalized orthodox secondary structure, to their DCG equiva-
lents. Again, a practical implementation of the DCG form would allow us to
add length constraints, gaps, and other conditions to take account of “real-
world” factors. We can also write grammars for more distinctive (that is, less
general) features, such as structures in the nature of “n-leaf clovers” like the
one illustrated in Figure 17:

cloverleaf --> [X], cloverleaf, ~[X] | leaves.

leaves --> leaf, leaves | []. (85)

leaf --> [Y], leaf, ~[Y] | [].

As was noted above, indexed grammars can be thought of as context-free
grammars that are extended by the addition of a stack feature to nonterminal

88 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α α′

γ γ ′

β

β′

δ

δ′

Figure 17. An n-leaf Clover (n=3)

elements; thus they are easily implemented in DCGs, by just attaching pa-
rameters in the form of Prolog lists to nonterminals. A DCG-based indexed
grammar corresponding to (60) would be

tandem_repeat(Stack) --> [X],

tandem_repeat([X|Stack]).

tandem_repeat(Stack) --> repeat(Stack).

repeat([]) --> [].
(86)

repeat([H|T]) --> repeat(T), [H].

while, to make the repeat rule instead play back the reverse complement
of the sequence stored on the stack, we could substitute the rule correspond-
ing to (62) as follows:

complement([]) --> [].

complement([H|T]) --> ~[H], complement(T).
(87)

Calling the top-level rule with an empty stack gives the desired results. An
indexed grammar expressing the n-leaf clover of (85) would be

cloverleaf(Stack) --> [X], cloverleaf([X|Stack]).

cloverleaf(Stack) --> leaves([]), complement(Stack).

leaves([]) --> []. (88)

leaves(Stack) --> [X], leaves([X|Stack]).

leaves(Stack) --> complement(Stack), leaves([]).

Compared with the context-free DCG of (85), this notation becomes
somewhat clumsy, a problem we will address in the next section.

6.2 String Variable Grammars

We have developed a domain-specific formalism called string variable
grammar (SVG) which appears to handle secondary structure phenomena
with significantly greater perspicuity than indexed grammars [Searls, 1989a].
SVGs allow string variableson the right-hand sides of otherwise context-
free rules, which stand for substrings of unbounded length. An example of
an SVG implemented within an extended DCG formalism would be:

tandem_repeat --> X, X. (89)

This requires only some minor modification to the DCG translator to rec-
ognize such variables as what amounts to indexed grammar nonterminals,
with the Prolog variable itself representing the nested stack [Searls, 1989a].
The variables, on their first occurrence, are bound nondeterministically to ar-
bitrary substrings, after which they require the identical substring on the
input whenever they recur. We can also generalize our rules for single base

SEARLS 89

complements, to recognize the reverse complement of an arbitrary string.
This allows rules of the form

inverted_repeat --> X, _, ~X. (90)

Here we have used an anonymous string variable to denote the gap, since it
is the case that ... --> _ . Now, the rules for direct and inverted re-
peats—features that intuitively share a similar status in this domain—can
also assume a very similar grammatical structure.

Returning to our example of the n-leaf clover of the grammars (85) and
(88), we can now write a much more concise grammar in the form of an
SVG:

cloverleaf --> X, leaves, ~X.

leaves --> [] | Y, ~Y, leaves.
(91)

We also offer economical SVG representations of the attenuator structure
of Figure 12 and the pseudoknot structure of Figure 15:

attenuator --> A, _, ~A, _, A.

pseudoknot --> A, _, B, _, ~A, _, ~B.
(92)

The use of string variables can be augmented in various ways. For in-
stance, by allowing them to be passed as parameters, we can specify an un-
bounded number of direct repeats:

direct_repeats(X) --> X, _, direct_repeats(X).

direct_repeats(X) --> X.
(93)

Then, by defining compositions of string variables (e.g.
~(~X) --> X.), we can do such things as specify any number of strictly
alternating inverted repeats:

inverted_repeats(X) --> X, _, inverted_repeats(~X).

inverted_repeats(X) --> []. (94)

We have recently shown that SVGs used in the manner described up to
this point specify languages that are formally contained within the ILs, con-
tain the CFLs, and furthermore can be parsed in O(n3) time using a variation
on the Earley parser [Searls, manuscript in preparation].

6.3 Structural Grammar Examples

The SVG formalism makes it possible to describe and recognize much
more complex patterns of secondary structure, such as the following
specification of the 3' (right-hand) end of tobacco mosaic virus RNA, cover-
ing 177 nucleotides of which two thirds are base paired [Pleij, 1990]:

90 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

tmv_3prime --> A, _, B, ~A, _, ~B,

C, _, D, ~C, _, ~D, E, _, F, ~E, _, ~F, _,

G, _, H, I, _, J, _, ~J, ~I, ~G, _, ~H, (95)

K, _, ~K, L, _, M, ~L, _, ~M, _.

This pattern consists of three consecutive, contiguous pseudoknots (corre-
sponding to the variable setsA/B, C/D, andE/F), another pseudoknot (G/H)
whose gap contains an inverted repeat with a bulge(I/J), followed by another
inverted repeat(K) and a final pseudoknot(L/M). Another example, adapted
from [Gautheret et al., 1990], is the following grammar describing a consen-
sus secondary structure for a class of autocatalytic introns:

group_I_intron --> _, A, _, B, ~A, _, C, _,

E, _, F, _, ~F, _, ~E, G, _, ~G, _,

D, _, ~C, _, H, _, ~H, _, ~D, _, (96)

I, _, ~I, _, ~B, _.

This structure contains two pseudoknot patterns; one(A/B) spans the entire
sequence and in fact brackets the cleavage sites in vivo, while the other
(C/D) is embedded in a series of stem-and-loop structures and variants.

These rules could obviously be written more hierarchically, using the ap-
propriate rules for “phrases” (such as inverted_repeat from (90),
pseudoknot from (92b), and others), but even as they stand they are
significantly more readable than other grammar formalisms would be. Nev-
ertheless, they do lack the necessary length constraints to make them practi-

SEARLS 91

Arm
Acceptor

D Arm

Anticodon
Arm

TψC Arm

Extra Arm

Figure 18. tRNA Secondary Structure

cal. In order to demonstrate a real parsing application, we will use a slightly
simpler case, that of transfer RNA, which is illustrated in Figure 18 and
whose typical cloverleaf structure is represented abstractly by the following
SVG:

tRNA(Codon) --> AcceptorArm, _, DArm, _, ~DArm, _,

AnticodonArm, _, ~Codon, _, ~AnticodonArm, (97)

_, TpsiCArm, _, ~TpsiCArm, ~AcceptorArm, _.

Here, a parameter is used to return the codon identity of the tRNA, which
is the reverse complement of the anticodonby which it recognizes the triplet
on the mRNA specifying a particular amino acid.

The E. coli tRNA SVG listed in Figure 19 is a more practical version
[Searls and Liebowitz, 1990], again using string variables for the secondary
structure, but now combined with grammar features specifying known con-
served bases or base classes. Despite these lexical constraints, most of the
information available has to do with the folded structure of the tRNA, which
causes nested dependencies to be evolutionarily conserved even where pri-
mary sequence is not. We have here used an infix control operator ‘@’ to
specify the length of the Stemstring variables. The reverse complementary
stretch uses the ‘$ ’ operator to constrain the costof the match, and here indi-
cates that up to one mismatch is allowed in the stem. The grammar now re-
turns a parameter AA indicating the actual amino acid the tRNA will carry;

92 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

tRNA(AA) --> Stem@7, “t”, base, d_arm, base,
anticodon_arm(AA), extra_arm, t_psi_arm,
~Stem$1, acceptor_arm.

d_arm --> Stem@4, “a”, purine, 1...3, “gg”,
1...3, “a”, 0...1, ~Stem$1.

anticodon_arm(AA) --> Stem@5, pyrimidine, “t”,
anticodon(AA), purine, base, ~Stem$1.

extra_arm --> 3...20, pyrimidine.

t_psi_c_arm --> Stem@4, “gttc”, purine, “a”,
base, pyrimidine, “c”, ~Stem$1.

acceptor_arm --> base, “cca”.

anticodon(AA) --> ~[X,Y,Z],
{codon(AA)==>[X,Y,Z], ! ; AA=suppressor}.

Figure 19. A tRNA SVG

this is determined in the anticodon rule using recursive derivation
[Searls, 1989a], i.e. by parsing the triplet inside curly braces in the body of
the rule. This will fail on a stop codon, as occurs in bacterial suppressormu-
tations, in which case the latter fact is returned.

This grammar was actually created from the ground up in a few hours,
using 17 known bacterial tRNA sequences in isolation as a “training set.”
Starting with an overly constrained model based on the idealized textbook
representation, the bounded gaps and cost parameters were adjusted until the
entire set parsed. This is shown through the use of a higher-level Prolog rule
which retrieves successive database entries, measures their length, and ap-
plies the derivation operator, keeping track of CPU time, as shown at the left
in Figure 20. The grammar was then tested on genomic sequences contain-
ing tRNA gene clusters, as shown at the right of Figure 20. In this and one
other gene region, all seven known genes parsed on the first try. In each case
the codon was identified correctly, including a suppressor mutation [Searls
and Liebowitz, 1990].

An approach similar to this one is currently being pursued in the laborato-
ry of Dr. Ross Overbeek at Argonne National Laboratory [R. Taylor, person-
al communication], in the domain of ribosomal RNA molecules. These are
much larger and more complex than tRNA, with dozens of stem-and-loop
structures and several pseudoknots. The specialized parser being developed
there will assist in the classification of new molecules, using a grammar de-
rived from an alignment that takes account of “covariances” or dependencies
preserved over evolution. We are currently investigating parsing strategies

SEARLS 93

| ?- test_tRNA(Codon,Start,End).
Parsing Arg-tRNA-1 (76bp)... Parsing NKV region (730bp)...
Parse succeeded in 16 ms: Parse succeeded in 583 ms:
Codon = arg, Codon = lys,
Start = 1, Start = 272,
End = 76 ; End = 347 ;

Parsing Asn-tRNA-1 (76bp)... Parse succeeded in 434 ms:
Parse succeeded in 16 ms: Codon = val,
Codon = arg, Start = 480,
Start = 1, End = 555 ;
End = 76 ;

Parse succeeded in 434 ms:
Codon = suppressor,

... Start = 558,
End = 633

Figure 20. Parses of tRNAs (left) and Genomic DNA (right)

that would make generalized SVG parsing practical [Cheever et al., 1991].

6.4 Superpositional Grammars

Transposable elements such as copia typically have long terminal repeats
that have “superimposed” on them terminal inverted repeats, as illustrated in
Figure 21. An SVG that specifies this case would be

transposon --> X, Y, ~X, _, X, Y, ~X. (98)

However, a better representation is as follows:

transposon --> W, _, W, {(X, _, ~X) ==> W}. (99)

This description uses the recursive derivation to “subordinate” the invert-
ed repeats to the more dominant terminal direct repeats—a better reflection
of the semantics of the domain, since the direct repeats are typically much
larger and better matches, and in fact the inverted repeats are not even al-
ways present. Other SVGs given previously can be similarly restated using
recursive derivation to suggest different interpretations. For example, pseu-
doknots may occur in a form illustrated in Figure 22, where there is a coaxi-
al stackingof the two base-pairing regions to form a quasi-continuous dou-
ble helix [Pleij, 1990]. The following rule for this form of pseudoknot, it
may be argued, tends to emphasize the continuity of the central stretch, and
its relationship to the flanking complementary regions:

pseudoknot --> A, _, ~AB, _, B, {(A, B) ==> AB}. (100)

We have previously presented similar sorts of “reinterpretations” of atten-
uator structure [Searls, 1989a], which are better at capturing the dual nature
of these sequences, in that they use a recursive derivation to specify the alter-
native secondary structure separately.

Recursive derivation, used in this way, allows substrings to be parsed
more than once within a single overall parse. We can generalize this to a no-
tion of superpositionof grammar elements, by defining an appropriate opera-
tor ‘&’ (after [Pereira and Shieber, 1987]) as follows:

X & Y --> W, {X ==> W}, {Y ==> W}. (101)

This superposition operator, which requires its operands to exactly coincide
on the input, allows for some novel views on structures discussed before:

94 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α α

β β′ β β′

Figure 21. A Transposable Element

tandem_inverted_repeat --> W & ~W.

double_inverted_repeat --> (X, ~X) & (Y, Y).
(102)

The first rule expresses the fact that the superposition of a sequence with its
own reverse complement is an ideal inverted repeat, per the language Le of
(38). The second rule shows how an ideal double inverted repeat, as in Ld of
(51), may be specified as the superposition of an inverted repeat with a direct
repeat.

Superposition in effect acts to “disconnect” elements of the grammar from
the usual strict consecutivity, as do gaps. In combination, these two features
permit, for instance, specifying a promoter that has a stretch of Z-DNA (a
change in the twist of the double helix that can occur where there are alter-
nating purines and pyrimidines) occurring anywhere within it, even in super-
position to other important lexical elements – which in fact is likely to be the
case:

promoter & (_, zDNA, _) (103)

Thus, superposition may prove to be an important element of functional
grammars, which we will examine in the next section. For example, Z-DNA
is actually most often associated with enhancers, which are even more
“loosely connected” in that they can occur anywhere in the general vicinity
of gene promoters, in either orientation, sometimes as direct repeats. Pro-
moters themselves, in fact, can overlap the transcription units they control
(cf. RNA polymerase III promoters), and even coding regions can coincide
in certain phage [Lewin, 1987]. This suggests a need for a general capability
to specify arbitrary relations between the spans of different features, similar
to Allen’s interval calculus [Allen, 1983]. In fact, the superposition and gap
operators suffice. We can, for instance, combine them to create a subsump-
tion ordering of alternative interpretations for an element X “preceding” an
element Y:

(X,Y) ≤ (X,_,Y) ≤ ((X,_)&(_,Y)) (104)

The first case, in which Y begins immediately after X ends, is subsumed

SEARLS 95

α′

α

β′

β

Figure 22. Coaxial Stacking in a Pseudoknot

by the second case, where Y can begin any time after X ends; this in turn is
subsumed by the third case, which only requires that Y not begin before X
does, nor end before X does. We have generalized this to a partial order, il-
lustrated in Figure 23, that is arguably complete with respect to possible rela-
tions between spans of features [Searls, 1989b].

If, in the definition (101), X and Y were not string variables but were in-
stantiated to the start symbols of two distinct grammars (which is allowed by
the definition) then clearly X&Y would produce the intersectionof the lan-
guages defined by those grammars [Pereira and Shieber, 1987]. The conse-
quences of this will be explored in the next section.

7 Functional Linguistics of Biological Sequences

To this point we have dealt formally only with the structuralnature of nu-
cleic acids, which is amenable to linguistic formulation because of its rela-
tive simplicity; we will find that a functionalor informational view of the
language of biological sequences is less clear cut. This in no way weakens
the results presented to this point. The closure properties derived for opera-
tions on nucleic acids, for example, apply to any language encoded in DNA
or in any other string for which those operations are defined. Rather, the
greater richness of the language of genes and proteins indicates all the more
the need for a well-founded descriptive paradigm. Moreover, it will be seen
that the most interesting aspects of biological languages may reside at the
point where structural and functional components interact.

A functional view will also allow us to expand our horizons beyond the
relatively local phenomena of secondary structure, to large regions of the
genome or even entire genomes (represented formally, perhaps, as strings de-
rived by concatenation of chromosomes). This will allow us in turn to rea-
son linguistically about processes of evolution, at least at a conceptual level.

96 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

X&(_,Y)X,_,Y

X,Y

X&(Y,_)

X&Y

(X,_)&(_,Y) X&(_,Y,_)
X

Y

X

Y

X

Y

X

Y

X

Y

X

Y
X includes YX precedes Y

Figure 23. Partial Order of Superposition

It may be supposed that this distinction between structural and functional
linguistics corresponds to the conventional one drawn between syntax and
semantics. There is much to recommend this, insofar as gene products (i.e.
proteins) and their biological activities may be thought of as the meaningof
the information in genes, and perhaps entire organisms as the meaning of
genomes. On the other hand, the gene grammars presented earlier clearly
demonstrate a syntactic nature, and as such grammars are further elaborated
with function-specific “motifs” it may be difficult to make a sharp delin-
eation between syntax and semantics. Ultimately, the semantics of DNA
may be based on evolutionary selection; a certain view of syntax may allow
sequences that do not support life (or not very well), just as syntactically-
valid English sentences may nevertheless be nonsensical. The discussion
that follows will not attempt to resolve where such a line should be drawn,
though the potential utility of the distinction should perhaps be borne in
mind.

7.1 The Role of Language Theory

In examining the functional aspects of the language of biological se-
quences, it becomes important to set out more precisely the goals of a lan-
guage-theoretic approach. There are at least four broad roles for the tools
and techniques of linguistics in this domain: specification, recognition, theo-
ry formation,and abstraction. By specification we mean the use of for-
malisms such as grammars to indicate in a mathematically and computation-
ally precise way the nature and relative locations of features in a sequence.
Such a specification may be partial, only serving to constrain the possibilities
with features that are important to one aspect of the system. For example,
published diagrams of genes typically only point out landmarks such as sig-
nal sequences, direct and inverted repeats, coding regions, and perhaps im-
portant restriction sites, all of which together clearly do not completely
define any gene. However, a formal basis for such descriptions could serve
to establish a lingua francafor interchange of information, and a similar ap-
proach may even extend to description of sequence analysis algorithms, as
will be seen in a later section.

Moreover, such high-level descriptions can merge into the second role for
linguistics, that of recognition. This simply refers to the use of grammars as
input to parsers which are then used for pattern-matching search—that is,
syntactic pattern recognition—of what may be otherwise uncharacterized ge-
nomic sequence data. We have seen that, in practice, these uses of linguistic
tools tend to depart from the purely formal, for reasons of efficiency, yet a
continued cognizance of the language-theoretic foundations can be impor-
tant. As an example, the discovery of pseudoknots in RNA has spurred the
development of new secondary structure prediction algorithms to improve on
programs that, possibly without the developers explicitly realizing it, were

SEARLS 97

limited to dealing with context-free structures [Abrahams et al., 1990].
The third role of linguistics is for the elaboration of domain theoriesthat in

some sense model biological structures and processes. In this case, other
grammatical objects in addition to terminal strings (e.g. nonterminals, produc-
tions, and even parse trees) would have specific biological semantics attribut-
ed to them, and would be developed as postulates that are testable by parsing
actual positive and negative exemplars. A number of possibilities along these
lines will be discussed in section 2.9 of this article. Machine learning tech-
niques could be expected to be most useful with regards to this role, to the ex-
tent that they could be made to assist in theory formation and modification.

The fourth role of linguistics, that of abstraction, can be seen as the most
conceptual insofar as its goal would be an understanding of the language of
biological sequences viewed mathematically, purely as sets of strings that are
at some level meaningful in a biological system. One way to define such a
language would be to imagine the set of all genomes that exist in viable
organisms; however, this is severely limiting insofar as there are probably
many such strings that have never existed, yet would support life. This dis-
tinction, between the set of strings that exist and the set that canexist, paral-
lels one drawn in natural language, between performanceand competence
[Chomsky, 1965]; performance refers to actual instances of the use of lan-
guage, while competence refers to the intrinsic capabilities of users to gener-
ate and recognize a language. An orientation toward the latter, in any domain,
can be expected to lead to more universal, intensional descriptions than an ap-
proach based simply on inventories of extant strings. Of course, such incom-
plete sets of instances may be important sources of information in developing
linguistic descriptions, e.g. consensus sequences for regulatory regions. In
many cases, though, we may derive notions of competence by observing the
biological machinery that manages the strings, e.g. transcription, translation,
etc. As long as our knowledge of these phenomena remains incomplete, how-
ever, these languages must remain abstractions, particularly at the level of
genomes. Still, we will see that they may constitute tools for abstract reason-
ing and thought experiments, and the sensation that they are unfathomable
must not discourage the practical application of linguistic techniques, and the
ideas gleaned from this type of analysis, in the other roles described above.

7.2 The Language of the Gene

In some situations genes are superimposed so as to create ambiguity, e.g.
in the cases of multiple start sites for transcription, alternative splicing, and
even “nested” genes. Thus, over the same stretch of DNA there would be
multiple leftmost derivations for any grammar specifying a gene, with each
derivation corresponding to a gene product. Such ambiguity suggests that
the corresponding language is nondeterministic, and thus not regular. How-
ever, it must be emphasized that this is not in itself a formal proof that the

98 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

language of DNA is not regular, since we have prejudiced our grammar by
requiring that it capture the notion of “gene” as a nonterminal, indeed one
that corresponds to a single gene product. As was the case for the formal
language of (19), there may be other, perhaps less intuitive grammars that are
unambiguous, specifying the same language as the ambiguous gene-oriented
grammar. For example, much of the observed variation is post-transcription-
al in nature, so that it may be that the ambiguity is not actually inherent at the
DNA level, but resides in other cellular processes, beyond the gene itself.
Thus, perhaps a transcript-oriented grammar might be unambiguous. How-
ever, we know that transcription itself can vary over time within the same re-
gion, as in the case of overlapping “early” versus “late” transcripts in certain
viruses; even at the level of coding regions there is overlap, including in-
stances of multiple reading frames. Thus, there seems to be good empirical
evidence that any grammar related to genes, or purporting to model underly-
ing biological processes at the gene level, would not be regular.

We arrive at this notion of ambiguity of gene products by viewing deriva-
tion as analogous to gene expression. In terms of information encoded, how-
ever, we must ask if such superposition is required of the language, rather
than simply allowed. The importance of this is that it would necessitate the
intersectionof languages, under which some important language families are
not closed. Returning briefly to a structural theme, consider attenuators (Fig-
ure 12), which we gave as examples of strings that are ambiguous as regards
the language of secondary structure since they allow alternative folding.
However, from a functional perspective, the genes that use attenuators re-
quire this secondary structure for the regulatory mechanism to work, so that
the language must in fact intersect the two cases. Since the mechanism de-
pends on orthodox secondary structure, it is CFLs, as in (54), that are being
intersected, but the resulting language is greater than context-free because it
necessarily contains direct repeats. While it happens to be an IL, it is a fact
that any recursively enumerable language can be expressed as a homo-
morphism of the intersection of two context-free languages, so that there are
potentially even more serious linguistic consequences to superposition of
non-regular elements.

The process of gene expression by its nature suggests that genes are
superpositional in another sense, reflecting the successive steps of transcrip-
tion, processing, and translation, all encoded within the same region. To the
extent that we wish any descriptive grammars to model these underlying pro-
cesses, which occur at different times, in different places in the cell, and
using different mechanisms, it would seem that such processes should be
represented by separate, well-factored grammars. The projection of all the
corresponding functional and control elements for these processes onto the
same region of DNA should then be captured in a requirement that the re-
spective grammars all parse that DNA successfully. Note that this would

SEARLS 99

also make it much easier to model situations such as the transcriptional vari-
ants that produce untranslatable messages, as described for the globin gene
grammars above; all that would be required would be to alter the RNA pro-
cessing grammar (that recognizes splice junctions) and drop the translation
grammar altogether.

If we accept that separate cellular processes should be modelled by dis-
tinct grammars, and that the underlying language represents the superposi-
tion of the resulting distinct languages, then again the language may tend up-
wards on the Chomsky hierarchy by virtue of intersection. If it is CFLs that
are being intersected, it may also be the case that we can never know the
final status of the language, since it is undecidable whether the intersection
of CFLs is a CFL or not. For that matter, even if we could arrive at a con-
text-free grammar that completely described all aspects of a gene, we might
not be able to show that it was non-regular, since in general it is undecidable
if nondeterministic CFLs (or above) are equivalent to some RL [Hopcroft
and Ullman, 1979].

7.3 The Language of the Genome

The notion of derivations corresponding to gene products would appear to
be a useful one, since it formally establishes the analogies between parsing
and gene expression, and between parse trees and gene structure, which are
inherent in the first sample gene grammars given above. It also allows us to
adapt the discussion to wider questions of the differential control of gene ex-
pression in different tissues and developmental stages. For example, if we
equate successful parsing with gene expression, we must concede that a sub-
string that is a gene at one time may not be a gene at another. This is trou-
blesome, unless we view genes in the context of the genome as a whole. If
the genome is inherently ambiguous, then multiple global derivations could
correspond to particular cell types at particular times and under particular
conditions. Any given derivation may or may not call for the gene sub-
derivation in question. From this viewpoint, it might be better to name the
corresponding nonterminal expressed-generather than simply gene.

Does this mean, though, that in any givenfixed global state of differentia-
tion, etc., genes and gene expression may yet be deterministic? For, at a
local level the apparent ambiguity of overlapping genes, or of expressed vs.
unexpressed genes, does not mean that such an ambiguity necessarily exists
at any given time in the cell; there may be external, regulatory factors that
“tip off” some cellular recognizer and thus specify one or the other of the
available parses. In this model there could be distant elements specifying
such regulatory factors in an overall genomic language, acting against ambi-
guity that may otherwise be present within isolated segments. Indeed, gram-
mar-based approaches have been proposed for simulating gene regulatory
systems [Searls, 1988], and for modelling their genomic arrangement using

100 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

transformational grammars (see section 2.9) [Collado-Vides, 1989b]. How-
ever, such mechanisms by and large exert their effects via exogenous ele-
ments (such as DNA-binding proteins) whose biochemical activity would
seem to be necessarily “ambiguous,” if only at threshold levels. It is difficult
to imagine a language recognizer sophisticated enough to precisely simulate
regulation that ultimately depends on the physical chemistry of molecules
moving through a cell. Thus, whatever the cell might do to chart its fate de-
terministically, would seem to be inaccessible to any linguistic descriptionof
the genome out of context.

Perhaps the most telling evidence for this view is the totipotency of germ-
line DNA, and the pluripotency of many somatic cells. That is, not only
must the genome be ambiguous because it has the capacity to specify a wide
variety of cell types at different times and places in development, but any
counterargument based on a notion of deterministically programmed
differentiation fails in the face of the many examples of dedifferentiation and
developmental plasticity in biology—as clear a case for nondeterminism as
could be wished. Therefore, we are left with a strong sense that the language
of genes and even of the genome as a whole, must be at least context-free.

Recently an interesting proof has been offered for gene regulatory sys-
tems being greater than context-free, based on the fact that there need be no
particular spatial relationship on the genome between genes coding for solu-
ble regulatory elements and the genes those elements regulate [Collado-
Vides, 1991b]. This being the case, an array of such regulatory genes and
their target genes, which clearly form dependencies, are presumably free to
arrange themselves so as to cross those dependencies, so that the language
describing such arrangements could not be a CFL. (This is formally argued
using a method of proof involving the pumping lemmafor CFLs, to be de-
scribed in section 2.8.1.)

7.4 The Language of Proteins

Proteins also have three-dimensional structure, whose nature suggests that
the functional language of proteins may in fact be structural in the same
sense as nucleic acids, with similar linguistic consequences. Figure 24 de-
picts a hypothetical folded protein molecule, illustrating in a highly schemat-
ic way the conformational relationships among major secondary structure
features like α-helices (the cylinder at the bottom), β-strands (the arrows in
the center), and β-turns (the “kink” iconified at the upper right).

Pattern-directed inference systems like Ariadne [Lathrop, Webster and
Smith, 1987] have been used to detect amino acid sequences that are likely to
produce such structures, combining statistical evidence for the features them-
selves with a hierarchical model of their higher-level ordering, captured in
what amounts to a regular expression. Such an approach must necessarily
deal with patterns seen on the unfolded string of amino acids, but clearly

SEARLS 101

these physical features also interact with each other in their three-dimen-
sional conformation, not only through hydrogen bonding but also where
charged moieties are brought into juxtaposition, or space-filling interactions
occur, etc. These may be expected to display correlated changes over the
course of evolution—i.e., dependencies.

Such interactions are suggested by the dotted lines between β-strands in
Figure 24; note, however, that if those dotted lines are extended as the
molecule is unfolded into a linear representation, the interactions on the right
exhibit nested dependencies, and those on the left crossing dependencies, as
in Figure 4. As we have seen, the former are characteristic of CFLs, and the
latter of CSLs. Other such dependencies may be found, for instance, in α-
helices which have one face in a hydrophobic milieu, and the other in a hy-
drophilic one; this will result in a series of periodic crossing dependencies.

The nested and crossing dependencies we have illustrated in inverted and
direct repeats in nucleic acids are much more straightforward, corresponding
to complementarity and equality of individual bases, respectively. Neverthe-
less, the dependencies in proteins, though more complex and varied (e.g.
charge, bulk, hydrophilicity, catalytic activity within active sites, etc.) are
likely to be tremendously important in terms of structure and function. Thus,
it would appear that more sophisticated linguistically-based approaches to
protein structure would be well-advised.

How might such non-regular functional languages interact with the non-
regular secondary structures that occur in nucleic acids? They may, of
course, be completely segregated, with the former confined to coding regions
and the latter to control regions, introns, and structural species like tRNA and
rRNA which have no polypeptide products. It is interesting to speculate,
however, that nature with its usual parsimony may have elected to overlap
phenomena on the DNA, for instance by favoring processed mRNA species
that form secondary structure, for purposes of stability, transport, etc. We

102 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

 nested
 dependencies

crossing
dependencies

helical
periodicities

Figure 24. Protein Structure

know that the resulting language intersection may act to increase the linguis-
tic complexity of the system, particularly since both contributing languages
may have nested dependencies, which in the case of simple inverted repeats
do lead to a promotion from CFLs to ILs. In the next section, however, we
will explore the intriguing possibility that functional CFLs may not even re-
quire context-free grammars, beyond what already exists in nucleic acid sec-
ondary structure, for their expression.

7.5 Structurally-Derived Functional Languages

The grammar of (48), which describes ideal orthodox secondary structure
in nucleic acids, defines one particular CFL. It is interesting to note, though,
that the capability to form secondary structure, as embodied in this grammar,
can be “harnessed” to express other CFLs. We have seen this in several
proofs, which have used intersection with RLs together with homomor-
phisms to arrive at distinct CFLs, such as (45) which produces (7). As an-
other example, consider languages consisting of true (as opposed to biologi-
cal) palindromes, (11). Using the language Lo of orthodox secondary
structure determined by the grammar (48), and a homomorphism based on
φ(g)=φ(c)=0, and φ(a)=φ(t)=1, we can see that

LP1= { wwR |w∈ {0,1}* } = φ(Lo ∩ (g+a)*(c+t)*) (105)

Again, we have generated a new CFL from the generic language of sec-
ondary structure, and it would appear that this might be a fairly general ca-
pacity. However, for this example we have been forced to use all four
bases—purines for the front of the palindrome, and pyrimidines for the
back—raising the question of whether the utility of this tactic will be limited
by the size of the DNA alphabet. For instance, it might appear that we
would be unable to use Lo to express the language of true palindromes over
an alphabet of size four:

LP2= { wwR |w∈ {0,1,2,3}* } (106)

As it happens, though, we can encodethis larger alphabet into dinucleotides
via a homomorphism ψ, defined as follows:

ψ(0)=gg ψ(1)=ga ψ(2)=ag ψ(3)=aa

ψ(0̂)=cc ψ(1̂)=tc ψ(2̂)=ct ψ(3̂)=tt
(107)

As before, we will use purines for the front of the palindrome and pyrim-
idines for the back, but this time we use a dinucleotide to encode each digit
in the final language. We must distinguish front and back digits for the mo-
ment, using the hat notation, in order for ψ to be a function, but we can strip
off the hats later with another homomorphism:

φ(x) = φ(x̂) = x for x∈ {0,1,2,3} (108)

SEARLS 103

In order to make use of the encoding, we must in fact apply ψ as an in-
versehomomorphism (under which CFLs are also closed). With these exer-
tions, we see that it is indeed possible to specify the desired language:

LP2= φψ-1(Lo ∩ ((g+a)(g+a))*((c+t)(c+t))*) (109)

In fact, with appropriate encodings we should be able to specify any de-
sired final alphabet, and with more sophisticated regular expressions we
could take advantage of the ability of Lo to specify iterated or nested struc-
tures as well. The remarkable thing about these specifications is that a vari-
ety of CFLs are being expressed using the “general purpose” stack mecha-
nism of secondary structure together with only an RL in the primary
sequence and some “interpretation” φψ-1.

If the notion of the interpretation as a composition of a homomorphism
with an inverse homomorphism seems odd, note that nature already uses en-
codings of this type, in the form of amino acid codons:

ψ(ser1)=ucg ψ(ser2)=uca ψ(ser3)=ucc ψ(ser4)=ucu

ψ(phe1)=uuc ψ(phe2)=uuu ψ(met1)=aug etc. . . . (110)

φ(xi)=x for x∈ {ser,phe,met, … }

where ψ now ranges over triplets from the slightly different alphabet of
RNA, ΣRNA={ g,c,a,u} . In this case, the interpretation φψ-1(w) for w∈ Σ3n

RNA
)

will yield the corresponding polypeptide of length n (ignoring questions of
alternative reading frame and stop codons). Here ψ establishes the encoding,
and φ captures the degeneracy of the triplet code. It is easy to imagine other
homomorphic interpretations of a similar nature being embodied, for in-
stance, in DNA binding proteins involved in gene regulation (which in fact
are often associated with regions of dyad symmetry).

This leads us to the question of whether anyCFL, e.g. arbitrary functional
languages, could be expressed by an RL superimposed on sequence with sec-
ondary structure, together with some interpretation to act as an “adaptor” to
the new domain. An important characterization theorem [Chomsky and
Schutzenberger, 1963] states that any CFL can in fact be specified as a ho-
momorphism of the intersection of some RL with a language belonging to a
family known as the semi-Dycklanguages. A semi-Dyck language Dr con-
sists of all well-balanced, properly nested strings of r types of parentheses;
for example, for D3 consisting of ordinary parentheses, square brackets, and
curly braces, we would have

[{}([])]{[]} ∈ D3
(}{)][∉ D3 (111)

{[(})] ∉ D3

The grammar describing semi-Dyck languages is tantalizingly close to

104 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

that of (48) for Lo, since open parentheses must be matched by closed ones
in a manner quite similar to base-pairing in secondary structure. Moreover,
the minimum alphabet required for a semi-Dyck language to express any
CFL, in order to be able to encode larger alphabets via inverse homomor-
phisms [Harrison, 1978], is one with two types of parentheses for a total of
four elements—exactly what nucleic acids provide. However, nucleic acid
secondary structure in fact represents a full or two-sided Dyck language, i.e.
one for which corresponding parentheses facing oppositedirections, as in
(111b), can also pair. In addition, we know that non-orthodox secondary
structure is allowed, such as pseudoknots, which are analogous to (111c).
Thus, we must leave open the question as to what the exact expressive power
of this paradigm may be, not to mention the question of whether any use is
made of it in vivo.

8 Evolutionary Linguistics

Evolution is a process that provides many interesting complications in the
linguistic analysis of biological systems, as suggested by the closure results
observed for the evolutionary operators of (76). In this section we will in-
vestigate some of those complications, show how grammars may be applied
to describe not only evolution itself but also algorithmic tools used to com-
pare strings that have undergone evolutionary change, and finally, discuss the
prospects of extending phylogenetic analysis from strings to languages.

8.1 Repetition and Infinite Languages

We have seen from the closure results given previously that typical evolu-
tionary rearrangements may in the right circumstances lead to a “jump” up
the Chomsky hierarchy. For example, duplications create copy languages,
which are not CFLs. However, we must take care to note that, simply be-
cause a language contains strings with duplications, does not mean that it is
greater than context-free—once again, unbounded duplications must be re-
quired(or, in an evolutionary sense, actively maintained) for this to be so.

In fact, it can be shown that, even in an RL, sufficiently long strings must
contain substrings that are allowed to occur there as tandem repeats and still
leave the resulting string within the given RL. To wit, for the FSA recog-
nizing an RL to recognize any string longer than the number of nodes or
states in that FSA, some of those nodes will of necessity be visited more than
once, so that there must be a cycle in the directed graph of the FSA. This
being the case, it must also be possible to traverse that cycle any number of
times, and thus the original string can have any number of tandem repeats at
that position, and still be guaranteed to be in the RL specified by that FSA.
This reasoning, a variation on the “pigeonhole principle,” is known as the
pumping lemmafor RLs. There is a similar result for the CFLs, commonly

SEARLS 105

used to prove non-context-freeness, which essentially says that for sufficient-
ly long strings derived from a context-free grammar some nonterminal must
recur in the same subderivation, and this subderivation can thus be “pumped”
any number of times.

This in itself need not have far-reaching consequences, since the repeat
may only be of length one—in fact, simple gaps in the DCGs we have given
satisfy the requirement. However, it does raise an issue related to the arbi-
trary extent of the repeats. If an RL contains only strings shorter than the
number of nodes in its FSA, it need not have a cycle, nor a tandem repeat.
This would necessarily be a finite language, and in fact anyfinite language is
an RL; this can be seen from the fact that a finite set of strings can be
specified by a finite, regular grammar by simply listing every terminal string
in the language as a disjunct arising from the start symbol.

Thus, if the language of DNA is indeed not regular, it must be infinite.
This is an assumption that has been implicit in the grammars we have written
to this point, which perhaps should be examined. It could be argued that the
set of all DNA molecules (or genes, or genomes, etc.) that have ever existed
is finite, so that the abstraction of the language of DNA is regular. However,
recall that our preferred notion of language as abstraction deals with the ca-
pacity of such languages to encompass all syntactically correct variations.
DNA must be potentially non-regular, certainly to the extent one believes
that it can specify an infinite variety of life—i.e. that there can be no com-
plete list of possible genomes, such that no additional genome is imaginable
that is different by even a single nucleotide from one already in the list. The
fact of evolution adds particular force to this argument, when we realize that
it is possible for the language to evolve entirely new capacities; indeed, it
has apparently done this over time, e.g. at the point that eukaryotes arose.

It might also be argued that a biological language must constrain the
lengths of strings, since there are practical problems with arbitrarily large
genomes. For example, the bacteriophage lambda protein capsid places a
limit on the size of the genome it must encapsulate; not much more than
50,000 nucleotides can physically fit inside. (In fact, a form of pumping
lemma applies to this phage: since the total protein in the capsid exceeds the
coding capacity of the genome, it follows that capsid proteins must be
“repetitive”, i.e. many identical proteins are employed in a crystalline array
to achieve a large enough structure to contain the genome [Watson et al.,
1987].) Thus, there would seem to be a finite number of possible phage
lambda genomes. However, one can imagine mutations that alter the capsid
proteins to allow an additional nucleotide insertion or two, and it becomes
difficult to say where the limits are, in a system which contains the potential
for respecifying the rules of its own game. Again, if we widen this to in-
clude every species that could theoretically exist, a finite language is even
harder to conceive, though there may be no formal nonexistence proof. In

106 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

broader terms, even the alphabet is conceivably subject to change, as indeed
may have occurred in prebiotic evolution.

Such discussions may only be of theoretical interest, since if any succinct
specification is indeed possible for the potential combinatoric variation of even
the relatively minuscule phage lambda genome, it may well require a powerful
grammar that is “artificially” regularized with constraints, but which in out-
ward form and every other respect is non-regular. The invocation of semantic
constraint or selection might well serve this purpose. Retreating somewhat
from this broadest possible abstraction, though, we can examine the case for
infinite individual features, such as inverted repeats. There are probably only
finitely many Type II restriction enzyme recognition sites, for example, since
these are mostly inverted repeats either four or six nucleotides in length, which
is about the limit of what these proteins can span on the DNA (ignoring for the
moment the possibility of “changing the rules”). Are other inverted repeats of
interest also limited in similar ways, e.g. is there a longest practicable stem
structure in an RNA molecule? Even if a consensus for such an absolute maxi-
mum could be arrived at, it would seem that this misses the point that the self-
embedding rule permitting unlimited recursion expresses the mechanical ca-
pacity of nucleic acids to form these structures in arbitrary lengths, and to
properly capture the nested dependencies they entail.

We began this section by saying that the fact that strings in a language
contain duplications does not imply that that language is not a CFL or RL.
On the other hand, we can infer from the pumping lemmas that any CFL or
infinite RL must allow strings with arbitrary numbers of duplications. It is
only if direct repeats of arbitrary extent are for some reason required by the
genome that it must be greater than context-free on this account. One sense
in which duplications may be said to be required is an evolutionary one,
since a primary mechanism of adaptation and change is for a gene to be du-
plicated and then for the copies to diverge. In fact, we can view the strings
that are “pumped” in the pumping lemma as genes themselves, specified at a
general enough level to allow divergence after they are duplicated. (They
need not be completely general, though—a specific globin gene, for instance,
can be thought of as having been pumped in this manner to create the globin
gene regions.) For that matter, a diploid genome itself may be said to be a
copy language, with the duplication required for the generation of diversity
by recombination between homologous chromosomes.

The argument that duplications are required since they reflect a mecha-
nism of evolution is somewhat indirect, if not circular; we could make a
stronger case that the functional language of DNA is greater than context-
free if functional duplications were required by the physiology of the cell.
One example might be immunoglobulin variable region gene copies; though
they are not exact duplicates, they serve the same function and their arrange-
ment is required to generate diversity economically. Gene amplification is

SEARLS 107

another mechanism whereby gene copy numbers (in this case, exact copies)
increase or decrease according to physiological demand. Once again, we see
that the generationof specific such duplications can occur by pumping RLs
or CFLs, but any requirementthat duplications of arbitrary composition be a
feature of a general functional language in order for organisms to survive
would seem to raise the abstracted language beyond context-free.

8.2 Mutation and Rearrangement

A simple point mutation can be modelled grammatically by a rule that
produces a side effect on the input string, e.g. through the use of terminal re-
placement in DCGs:

point_mutation([From],[To]), [To] --> [From]. (112)

This rule consumes no net input, but effectively just overwrites the base
From with To. Such rules can be used in actual derivations by leaving
uninstantiated the remainder portion of the difference list or span, e.g.

(_, point_mutation(X,Y), _) ==> Input/Output. (113)

where Input but not Output is initially bound, will produce every version of
Input in which X’s have been mutated to Y’s. We can write other grammars
to delete and insert bases:

deletion(X) --> [X].

insertion(X), [X] --> []. (114)

We can also generalize these rules for single base mutations to use string
variables instead for “block” mutations, e.g.

substitution(From,To), To --> From. (115)

With this expanded repertoire, we can succinctly represent a range of ge-
nomic rearrangements that occur on an evolutionary scale, corresponding to
the formal definitions of (76):

duplication, X, X --> X.

inversion, ~X --> X.

transposition, Y, X --> X, Y. (116)

deletion --> X.

This then allows us to write the most “top-level” rule of all, that for evolu-
tion itself:

evolution --> [] | event, evolution.

event, X --> X, (117)

(inversion | deletion | transposition | duplication).

108 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

This simply states that evolutionconsists of an eventfollowed by more
evolution. The rule for eventis just a disjunctive list of possible rearrange-
ments, and the variable X allows for arbitrary excursions down the molecule
to the site where the event is to occur. We have employed a version of this
grammar, which uses a random number generator for event and site selec-
tion, to simulate such evolution at the level of blocks of sequence.

More sophisticated rearrangements can also be described. For instance,
an arbitrary number of duplications and reduplications can be accomplished
with

duplication, X, X --> X | duplication, X. (118)

which consumes a string and replaces two copies, but can also recursively
call itself first. Combined with other forms of mutation, such a rule could,
for instance, model saltatory replication involving duplications of duplica-
tions, etc., postulated to occur in mouse satellite DNA evolution [Lewin,
1987].

Some inversions are thought to occur as a result of homologous recombi-
nation between inverted repeats, as illustrated in Figure 25; examples in-
clude the tail protein of phage Mu, and the flagellar antigen of Salmonella
[Watson et al., 1987]. This situation can be described using what amounts to
a literally context-sensitive rule (though it is in fact unrestricted in format):

inversion, R, ~I, ~R --> R, I, ~R. (119)

Similarly, regions between direct repeats, such as transposable elements,
may be excised as circular elements, as shown in Figure 26. Excision can be

SEARLS 109

α

α′

α′

α

γ

γ ′

β

β′

δ

δ′

α′

α γ γ ′

β

β′

δ

δ′

α

α′

α′

α

γ ′

γ

β

β′

δ

δ′

Figure 25. Inversion

specified using string variable replacement, returning the excised circular
fragment as a parameter, O:

excision(O), S --> S, X, S,

{(S,X)==>O/O}.
(120)

We concatenate Sand X using recursive derivation generatively, i.e. running
the parse backwards. What is more, the structure that is generated, O/O, is a
Prolog list that has itself as its own remainder, that is, a circular list. While
these are awkward to handle in practice, they allow us to write a rule for the
reverse reaction, that of a site-specific integrationof a circular molecule at
some substring S which it has in common with a linear molecule:

integration(O), S, X, S --> S,

{(_,S,X,S,_)==>O/O}.
(121)

These and other grammars describing genome-level rearrangements are
described in greater detail in [Searls, 1989a]. Our experience indicates that
seemingly arbitrary such rearrangements can be quite concisely specified
using SVGs. Though in a pure logic implementation they are not practical
for large scale parsing, the grammar framework should be a good one in
which to house more efficient lower-level algorithms to make this practica-
ble, in a manner that will be described below.

Many of the rules in this section are unrestricted in format, though the
string variables complicate the analysis somewhat. However, we can see that
in one sense any grammar describing evolutionary change must in fact be
greater than context-sensitive, by examining the phenomenon of recursive
duplication as suggested by the grammar of (118). The ability to create any
number of duplications of arbitrary substrings on the input indicates that no

110 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

α

α′

α

α′

γ

γ ′

β

β′

δ

δ′

α′

α

β

β′

δ

δ′

γ ′

γ

α

α′

β

β′

δ

δ′

γ ′

γ

α′

α

Figure 26. Excision and Integration

linear-bounded automaton could recognize such a language, since these au-
tomata are limited to space which is linear in the size of the input, while the
grammars can “grow” a given input string to an arbitrary extent. This does
not mean that the strings of a language which is the productof an evolution-
ary grammar are necessarily greater than context-sensitive, since we have
seen that we can recognize any number of direct repeats with an SVG that
falls within the ILs.

8.3 Comparison of Strings

The use of grammars for sophisticated pattern-matching search was pro-
posed above, where it was also demonstrated that they are likely to be better-
suited to the domain, at least in terms of expressive power, than current regu-
lar-expression based systems. Another form of search that is even more
prevalent in molecular biology, however, is based on the detection of similar-
ities between strings, rather than between a pattern and a string.

In the example grammars given above, it was seen that a simple cost func-
tion could be used to allow some degree of mismatching in the course of a
parse. Generalizing this to allow not only base substitutions but insertions
and deletions (collectively, indels) we can conceive of a derivation from
string to string, e.g.

“gaataattcggctta”$Cost ==> “gacttattcgttagaa” (122)

where the “cost” would be, for instance, the string edit distancebetween the
strings, or the total number of substitutions and indels required in the deriva-
tion; note how this linguistic formulation is different than the input/output
model of mutation described above. We can implement this as a DCG:

[]$0 --> [].

[H|T]$Cost --> [H], T$Cost. % bases match; zero cost

[H|T]$Cost --> [X], {X\==H}, T$Sub, {Cost is Sub+1}.

[_|T]$Cost --> T$Ins, {Cost is Ins+1}. (123)

String$Cost --> [_], String$Del, {Cost is Del+1}.

However, there will be a very large number of such parses, of which we are
only interested in the minimum cost parse. The corresponding minimal parse
tree will indicate a probable alignmentbetween the initial and terminal
string, which may be significant should they be evolutionarily related. We
can use the Prolog “bagof” operation to collect all parses and determine the
minimum:

best(From$Cost ==> To) :-

bagof(Cost,(From$Cost ==> To),Bag), (124)

minimum(Bag,Cost).

SEARLS 111

but this is of exponential complexity, due to the large amount of wasteful
backtracking and reparsing entailed. We have investigated the characteristics
of CKY-based algorithms for finding the minimum-cost parse, and find that
this can be accomplished in O(n3) time, with the performance improving the
better the fit of the original strings [Searls, unpublished results]. Others have
described “error-correcting” parsers based on Earley’s algorithm that will
find minimum cost parses for arbitrary grammars (not just the string deriva-
tions above), also in O(n3) time [Aho and Peterson, 1972].

These results compare unfavorably with dynamic programming algo-
rithms for minimum-distance alignment that are currently used in molecular
biology, which execute in O(n2) time, and can be further improved by tech-
niques involving preprocessing, hashing, suffix trees, etc. However, the
parsing algorithms offer the opportunity for generalization to pattern-match-
ing search at a higher level of abstraction than terminal strings, for instance
permitting differential weighting of features, mutations involving entire fea-
tures, and so on. Moreover, we have also been able to implement several tra-
ditional “algorithmic” approaches in grammar form, such as the dynamic
programming alignment algorithm given in Figure 27.

This implementation of the simplest form of distance-optimal alignment
algorithm [Sellers, 1974] uses the Prolog database to record current best

112 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Str1$Cost --> input(Str0), % consult chart first

{chart(Str0,Str1,Cost-Move)}, !,

path(Move,Str1).

_$0 --> []. % end of input string

[]$0 --> _. % end of test string

[X|Y]$Cost --> input([H|T]), % recursively find best path

{ Y$Sub0 ==> T, (X==Y -> Sub=Sub0; Sub is Sub0+1),

[X|Y]$Ins0 ==> T, Ins is Ins0+1,

Y$Del0 ==> [H|T], Del is Del0+1,

minimum([Sub-sub,Ins-ins,Del-del],Cost-Move),

assert(chart([H|T],[X|Y],Cost-Move)), ! },

path(Move,[X|Y]).

input(S,S,S). % extracts input list from difference lists

path(sub,[_|R]) --> [_], R$_. % performs specified types

path(ins,X) --> [_], X$_. % of moves on input string

path(del,[_|R]) --> R$_. % relative to initial string

Figure 27. A Dynamic Programming Alignment Grammar

scores and “moves” at each position of a comparison matrix between two
strings, and prevents reparsing the same path multiple times. This grammar
is clearly not optimal, and in fact it is not likely that any list-structured lan-
guage could compete with procedural languages, but the ease and flexibility
of the approach suggest the utility of grammars for rapid prototyping and
modification of such algorithms. We have done this with a number of algo-
rithms not ordinarily thought of as amenable to parsing, such as Fast Fourier
Transforms [Searls, 1989b]. When embedded in higher-level grammars, the
algorithms can then be tuned at leisure and eventually replaced with proce-
dural code or hardware, while retaining the linguistic framework where hier-
archical abstraction is of greatest benefit. As noted, we are exploring such an
approach that would use signal processing hardware to implement primitive
operations on string variables very efficiently [Cheever et al., 1991].

8.4 Phylogeny of Languages

Once we have embraced the notion of languages described abstractly
rather than as collections of instances, we can perhaps begin to extend to the
former more of the analytical tools already applied to the latter. One such
tool would be phylogenetic trees, which are currently developed in general
for single genes treated as strings. As illustrated at the left in Figure 28, rep-
resentative strings from different species may be compared to find all the
pairwise evolutionary distances, and then a tree created which postulates an-
cestral sequences and connections among them in such a way as to, for ex-
ample, minimize the total change required. Exactly how such trees should be
constructed, and distances between strings measured, is controversial and an
area of active research, but it would seem that any effective notion of dis-
tance between two objects ought to conform to the basic mathematical ax-
ioms of a metric space; given some function δ which measures the distance
between a and b, this would require that:

δ(a,b) = δ(b,a) symmetry

δ(a,b) = 0 iff a=b identity (125)

δ(a,b) ≤ δ(a,c) + δ(c,b) triangle inequality

In fact, many (but not all) common methods of measuring string edit dis-
tances based on simple mutational models do adhere to these axioms.

Consider the possibility of a phylogenetic tree of languages which, instead
of measuring degree of mutational change over individual strings, somehow
measured distances between abstracted descriptions, e.g. grammars. Thus, it
might be possible to focus the concept of evolutionary distance at a higher
level, for instance describing major rearrangements as in the evolutionary
grammars above, but perhaps also dealing with structural and functional as-
pects of the differences between organisms and groups of organisms. This

SEARLS 113

idea is illustrated at the right in Figure 28, where the leaves of the tree repre-
sent sets of strings rather than individual strings. While one could in theory
simply collect all the genomes from each of a number of individuals in a
species and call this the language, we can by now see the virtues of concise,
possibly grammar-based descriptions that freely allow variation within a
species and constrain only what is critical to the “definition” of that species.
Putting aside for the moment the known difficulties of such grammatical
inference, we consider some of the formal consequences of such an idea.

We see first that, while the languages we are creating for each species will
have many characteristics in common, they should nevertheless be pairwise
disjoint; any language that claims to describe horses should contain no in-
stance of a human being, and vice versa. Moreover, the non-leaf languages
describing postulated ancestors should also in general be disjoint from pre-
sent-day species. That is, we must avoid the mistake of inferring ancestors
that simply subsumeall their descendants, or else we will not have captured
descriptions of change. Note, however, that we may choose to compare lan-
guages other than those of species. By generalizing languages to higher tax-
onomic levels, e.g. for eukaryotes versus prokaryotes, we would be distin-
guishing much more fundamental cellular machinery than we would by
generalizing only to the level of humans versus chimpanzees, or even verte-
brates versus invertebrates.

Finally, we would need a distance metric δ acting over languages, or
grammars specifying those languages. With this, however, we can see some
potential difficulties should the languages in question be non-regular. For we
know that, given arbitrary CFLs or CSLs L1 and L2, it is in general undecid-
able whether L1=L2. How, then, can we establish a δ which we are assured
does not violate the identity axiom of (123b) whenever δ(L1,L2)=0? Thus,
languages may not be so easy to compare. In fact, it is also undecidable
whether L1 and L2 are pairwise disjoint, so we may not even be able to tell if
our languages or their ancestors are truly distinct.

114 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

w1 w2 w3

w1·2

w(1·2)·3

L1⊇{w11
,w12

, . . . } L2⊇{w21
,w22

, . . . } L3⊇{w31
,w32

, . . . }

L1·2

L(1·2)·3

Figure 28. Phylogenetic Trees of Strings (left) and Languages (right)

Thus, while the ideal of comparing abstract descriptions of genes or
genomes holds great appeal, there are serious practical and theoretical prob-
lems to be overcome. Nevertheless, there are many avenues to explore, such
as restricting the comparison to regular aspects of these languages, perhaps
by confining the area of interest to specific phenomena. This approach has
been used by [Overton and Pastor, 1991; Pastor, Koile and Overton, 1991],
who restrict their attention to instantiated parse trees describing major fea-
tures of genes and their regulatory regions in predicting the locations of those
features in novel genes. Another approach is to focus on simple lexical and
prelexical elements, following the methodology of the field of classical
linguistics where prototypic languages are inferred from changes in basic vo-
cabulary sets. Similar techniques have been used for biological sequences,
for instance, by [Brendel et al., 1986; Pietrokovski et al., 1990]. As for the
methodology of inducing grammars, a recent proposal would use logic gram-
mar “domain descriptions” of DNA regulatory regions as a starting point for
connectionist learning programs, which would in effect “tune” the general
grammar by modifying and refining it [Noordewier and Shavlik, personal
communication]. Others have used model-based learning to derive gram-
mar-like descriptions of signal peptides [Gascuel and Danchin, 1988], and
grammatical inference techniques to study E. coli promoter sequences [Park
and Huntsberger, 1990] and 5'-splice sites in eukaryotic mRNAs [Kudo et
al., 1987].

9 Conclusion

“Precisely constructed models for linguistic structure can play an
important role, both negative and positive, in the process of discovery
itself. By pushing a precise but inadequate formulation to an unac-
ceptable conclusion, we can often expose the exact nature of this inad-
equacy and, consequently, gain a deeper understanding of the linguis-
tic data. More positively, a formalized theory may automatically
provide solutions for many problems other than those for which it was
explicitly designed.” [Chomsky, 1957]

Treating genes and potentially entire genomes as languages holds great
appeal in part because it raises the possibility of producing concise general-
izations about the information contained in biological sequences and how it
is “packaged”. One hopes that grammars used for this purpose would com-
prise a model of some underlying physical objects and processes, and that
grammars may in fact serve as an appropriate tool for theory formation and
testing, in the linguistic tradition. This article has suggested a number of
ways in which this might occur, many of which are summarized below:

SEARLS 115

Parse trees may reflect secondary structure.It is considered a
virtue of natural language grammars for their parse trees to capture
schematically some inherent structure of a sentence (see, for example
[Gazdar, 1985]). The reader is invited to draw parse trees from some
of the orthodox secondary structure grammars of section 2.4, and ob-
serve how remarkably their outlines conform to the actual physical
structures described. As we have noted, this extends also to alternative
secondary structures, modelled by ambiguous grammars.

Grammar nonterminals might model biochemical entities.For ex-
ample, nonterminals representing DNA-binding proteins could
“rewrite” as the appropriate consensus binding sites, which would be
especially useful in cases where proteins or protein complexes bind
several sites and bring them into physical proximity as a result. Such
complexes, and indeed other “layered” protein-protein interactions as
well (e.g. the complement cascade in immunology [Watson et al.,
1987]), could also be modelled hierarchically by grammars.

Grammar rules could describe intra-molecular interactions.The
nonterminals in secondary structure grammars can be viewed as repre-
senting the hydrogen bonding between complementary bases. Gener-
alizing this, other forms of chemical interaction or dependencies be-
tween distant sites in a macromolecule could be modelled, as
suggested above for protein structure. Just as parse trees can depict
secondary structure, more complex structures might be specified quite
literally using grammar formalisms from the field of syntactic pattern
recognition in which terminals are actually two- or three-dimensional
subgraphs connected by derivation [Fu, 1982].

Greater-than-context-free grammars can model mutation and
evolution. As was seen in section 2.8.2, rules producing side-effects
on the input string can capture these processes, and the ability of such
grammars to take account of lexical elements (i.e. “contexts”) that
could control such processes is particularly attractive. Transforma-
tional grammar,subsequently developed by Chomsky to account for,
among other things, “movement” phenomena in natural language,
might also be useful in describing the allowable variations on the deep
structure, or canonical syntax, of a gene (together, perhaps, with its
regulatory elements [Collado-Vides, 1989a,b]).

Grammar derivation could model gene expression.The notion of
successful derivation from a gene grammar being analogous to the ex-
pression of that gene in the cell was discussed at length in section 2.7.
In this model, nonterminals thus represent gene products and their
component parts, or, in the context of gene regulation, the aggregate of

116 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

lexical and “environmental” elements required to accomplish expres-
sion at a given time and place.

Parsing might mimic certain biochemical processes.Such envi-
ronmental elements of gene expression are of course problematic, but
we have suggested elsewhere how parsing might yet be a suitable sim-
ulation tool for these control systems [Searls, 1988]. It is interesting to
note how recursive rules in a left-to right parser resemble the physical
action of certain processiveenzymes that travel along nucleic acid
molecules, even in some cases performing a kind of “backtracking”
error correction. The suitability of even more basic language-theoretic
operations for depicting biological processes like replication and
recombination was noted in section 2.5.

Besides the potential role of linguistic tools in modelling of biological
systems, we have also discussed at length the use of grammars for specifi-
cation (both of sequence elements and of algorithms), pattern-matching
search, and as abstractions that could lead to insights about the organization
of genetic information and its tractability to computational approaches. It
seems clear that the detection and analysis of genes and other features of the
genome could benefit from parser technology and a general awareness of the
linguistic properties of the domain. The notion of a comprehensive grammar
describing the genome or even individual genes in their full generality is
clearly quixotic, but the effort to approach this ideal may yet afford a better
understanding of what is surely a fundamentally linguistic domain.

Acknowledgements

The author wishes to thank Drs. Lynette Hirschman and Chris Overton for
careful reading of early drafts and, along with Drs. Erik Cheever, Rebecca
Passonneau, and Carl Weir, for many helpful discussions. The author is also
grateful to Dr. Ross Overbeek and his student Ron Taylor, and to Drs. Mick
Noordewier and Jude Shavlik, for acquainting him with their work in
progress. Invaluable comments and suggestions were provided by Jim Tis-
dall in the area of formal language theory. A special debt is owed to Dr.
Allen Sears for his enthusiastic patronage of these efforts. This work was
supported in part by the Department of Energy, Office of Energy Research,
under genome grant number DE-FG02-90ER60998.

Note
* Abbreviations used: BNF: Backus-Naur form; CFL: context-free lan-

guage; CSL: context-sensitive language; CKY: Cocke-Kasami-Younger
(parsing algorithm); DCG: definite clause grammar; FSA: finite state au-

SEARLS 117

tomaton; GSM: generalized sequential machine; IL: indexed language; L-
system: Lindenmayer system; PDA: pushdown automaton; RL: regular lan-
guage; SVG: string variable grammar.

Bibliography
J. P. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij. Prediction of RNA Sec-

ondary Structure, Including Pseudoknotting, by Computer Simulation. Nucleic Acids Res.
18:3035-3044, 1990.

A. V. Aho and T. G. Peterson. A Minimum Distance Error-correcting Parser for Context-
free Languages. SIAM J. Comput. 1(4):305-312, 1972.

J. F. Allen. Maintaining Knowledge about Temporal Intervals. Comm. of the ACM
26:832-843, 1983.

J. F. Allen. Natural Language Understanding. Benjamin/Cummings, Menlo Park, 1987.

V. Brendel and H. G. Busse. Genome Structure Described by Formal Languages. Nucleic
Acids Res. 12:2561-2568, 1984.

V. Brendel, J. S. Beckmann, and E. N. Trifinov. Linguistics of Nucleotide Sequences: Mor-
phology and Comparison of Vocabularies. J. Biomol. Struct. Dynamics 4:11-21, 1986.

J. Bresnan, R. Kaplan, S. Peters, and A. Zaenen. Cross-serial Dependencies in Dutch. Lin-
guistic Inquiry 13:613-636, 1982.

E. A. Cheever, G. C. Overton, and D. B. Searls. Fast Fourier Transform-based Correlation
of DNA Sequences Using Complex Plane Encoding. Comput. Applic. Biosci. 7(2)143-159,
1991.

N. Chomsky. The Logical Structure of Linguistic Theory.The University of Chicago Press,
Chicago (1975), 1955.

N. Chomsky. Syntactic Structures.Mouton, The Hague, 1957.

N. Chomsky. On Certain Formal Properties of Grammars. Informat. Control 2:137-167,
1959.

N. Chomsky. Formal Properties of Grammars. In D. Luce, R. Bush, and E. Galanter, edi-
tors, Handbook of Mathematical Psychology II.John Wiley & Sons, New York, 1963.

N. Chomsky and M. P. Schutzenberger. The Algebraic Theory of Context-free Languages.
In P. Braffort and D. Hirschberg, editors, Computer Program–ming and Formal Systems, pp.
118–161. North-Holland, Amsterdam, 1963.

N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge, 1965.

J. Collado-Vides. A Transformational-grammar Approach to the Study of the Regulation of
Gene Expression. J. Theor. Biol. 136:403-425, 1989a.

J. Collado-Vides. Towards a Grammatical Paradigm for the Study of the Regulation of Gene
Expression. In B. Goodwin and P. Saunders, editors, Theoretical Biology: Epigenetic and Evo-
lutionary Order,pages 211-224. Edinburgh University Press, 1989b.

J. Collado-Vides. A Syntactic Representation of Units of Genetic Information. J. Theor. Biol.
148:401-429, 1991a.

J. Collado-Vides. The Search for a Grammatical Theory of Gene Regulation Is Formally
Justified by Showing the Inadequacy of Context-free Frammars. Comput. Applic. Biosci.
7(3):321-326, 1991b.

W. Ebeling and M. A. Jimenez-Montano. On Grammars, Complexity, and Information Mea-

118 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

sures of Biological Macromolecules. Math. Biosci. 52:53-71, 1980.

K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood
Cliffs, 1982.

O. Gascuel and A. Danchin. Data Analysis Using a Learning Program, a Case Study: An
Application of PLAGE to a Biological Sequence Analysis. In Proceedings of the 8th European
Conference on Artificial Intelligence, pages 390-395, 1988.

D. Gautheret, F. Major, and R. Cedergren. Pattern Searching/Alignment with RNA Primary
and Secondary Structures: An Effective Descriptor for tRNA. Comput. Applic. Biosci.
6(4):325-331, 1990.

G. Gazdar. Applicability of Indexed Grammars to Natural Languages. CSLI-85-34, Center
for the Study of Language and Information, Stanford, 1985.

M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading,
1978.

T. Head. Formal Language Theory and DNA: An Analysis of the Generative Capacity of
Specific Recombinant Behaviors. Bull. math. Biol. 49(6):737-759, 1987.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, 1979.

M. A. Jimenez-Montano. On the Syntactic Structure of Protein Sequences and the Concept
of Grammar Complexity. Bull. math. Biol. 46(4):641-659, 1984.

M. M. Konarska and P. A. Sharp. Structure of RNAs Replicated by the DNA-dependent T7
RNA polymerase. Cell 63:609-618, 1990.

M. Kudo, Y. Iida, and M. Shimbo. Syntactic Pattern Analysis of 5'-splice Site Sequences of
mRNA Precursors in Higher Eukaryotic Genes. Comput. Applic. Biosci. 3(4):319-324, 1987.

R. H. Lathrop, T. A. Webster, and T. F. Smith. Ariadne: Pattern-directed Inference and Hier-
archical Abstraction in Protein Structure Recognition. Comm. of the ACM 30:909-921, 1987.

B. Lewin. Genes. John Wiley & Sons, Inc., New York, third edition, 1987.

A. Lindenmayer. Mathematical Models for Cellular Interaction in Develop–ment. J. Theor.
Biol. 18:280-315, 1968.

G. C. Overton and J. A. Pastor. A Platform for Applying Multiple Machine-learning Strate-
gies to the Task of Understanding Gene Structure. In Proceedings of the 7th Conference on
Artificial Intelligence Applications, pages 450-457. IEEE, 1991.

K. Park and T. L. Huntsberger. Inference of Context-free Grammars for Syntactic Analysis
of DNA Sequences. In AAAI Spring Symposium Series, Stanford, 1990. American Association
for Artificial Intelligence.

J. A. Pastor, K. Koile, and G. C. Overton. Using Analogy to Predict Functional Regions on
Genes. In Proceedings of the 24th Hawaii International Conference on System Science, pages
615-625, 1991.

S. Pietrokovski, J. Hirshon, and E. N. Trifinov. Linguistic Measure of Taxonomic and Func-
tional Relatedness of Nucleotide Sequences. J. Biomol. Struct. and Dyn. 7(6):1251-1268, 1990.

F. C. N. Pereira and S. M. Shieber. Prolog and Natural-Language Analysis. Center for the
Study of Language and Information, Stanford, 1987.

F. C. N. Pereira and D. H. D. Warren. Definite Clause Grammars for Language Analysis.
Artif. Intell. 13:231-278, 1980.

P. A. Pevzner, M. Y. Borodovsky, and A. A. Mironov. Linguistics of Nucleotide Sequences:
I. The Significance of Deviation from Mean Statistical Characteristics and Prediction of the Fre-

SEARLS 119

quency of Occurence of Words. J. Biomol. Struct. and Dyn., 6:1013-1026, 1989a.

P. A. Pevzner, M. Y. Borodovsky, and A. A. Mironov. Linguistics of Nucleotide Sequences:
II. Stationary Words in Genetic Texts and Zonal Structure of DNA. J. Biomol. Struct. and Dyn.,
6:1027-1038, 1989b.

C. W. A. Pleij. Pseudoknots: A New Motif in the RNA Game. Trends in the Biosci.
15:143-147, 1990.

P. M. Postal and D. T. Langendoen. English and the Class of Context-free Languages.
Computational Linguistics 10:177-181, 187-188, 1984.

P. Prusinkiewicz and J. Hanan. Lindenmayer Systems, Fractals, and Plants, volume 79 of
Lecture Notes in Biomathematics. Springer-Verlag, New York, 1989.

S. M. Schieber. Evidence Against the Context-freeness of Natural Language. Linguistics
and Philosophy 8:333-343, 1985.

J. L. Schroeder and F. R. Blattner. Formal Description of a DNA Oriented Computer Lan-
guage. Nucleic Acids Res. 10:69, 1982.

D. B. Searls. Representing Genetic Information with Formal Grammars. In Proceedings of
the 7th National Conference on Artificial Intelligence, pages 386-391. American Association for
Artificial Intelligence, 1988.

D. B. Searls. Investigating the Linguistics of DNA with Definite Clause Grammars. In E.
Lusk and R. Overbeek, editors, Logic Programming: Proceedings of the North American Con-
ference on Logic Programming, volume 1, pages 189-208. Association for Logic Programming,
1989a.

D. B. Searls. Signal Processing with Logic Grammars. Intelligent Systems Rev. 1(4):67-88,
1989b.

D. B. Searls and S. Liebowitz. Logic Grammars as a Vehicle for Syntactic Pattern Recogni-
tion. In Proceedings of the Workshop on Syntactic and Structural Pattern Recognition, pages
402-422. International Association for Pattern Recognition, 1990.

D. B. Searls and M. O. Noordewier. Pattern-matching Search of DNA Sequences Using
Logic Grammars. In Proceedings of the 7th Conference on Artificial Intelligence Applications,
pages 3-9. IEEE, 1991.

P. H. Sellers. On the Theory and Computation of Evolutionary Distances. SIAM J. Appl.
Math.26:787-793, 1974.

B. Shanon. The Genetic Code and Human Language. Synthese 39:401-415, 1978.

T. A. Sudkamp. Languages and Machines. Addison-Wesley, Reading, 1988.

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular Biol-
ogy of the Gene. Benjamin/Cummings, Menlo Park, 1987.

120 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

SEARLS 121

C H A P T E R

3

Neural Networks, Adaptive

Optimization, and RNA Secondary

Structure Prediction

Evan W. Steeg

1 Introduction

The RNA secondary structure prediction problem (2˚RNA) is a critical
one in molecular biology. Secondary structure can be determined directly by
x-ray diffraction, but this is difficult, slow, and expensive. Moreover, it is
currently impossible to crystallize most RNAs. Mathematical models for pre-
diction have therefore been developed and these have led to serial (and some
parallel) computer algorithms, but these too are expensive in terms of com-
putation time. The general solution has asymptotic running time exponential
in N (i.e., proportional to 2N), where N is the length of the RNA sequence.
Serial approximation algorithms which employ heuristics and make strong
assumptions are significantly faster, on the order of N3 or N4, but their pre-
dictive success rates are low — often less than 40 percent — and even these
algorithms can run for days when processing very long (thousands of bases)
RNA sequences. Neural network algorithms that perform a multiple con-
straint satisfaction search using a massively parallel network of simple pro-
cessors may provide accurate and very fast solutions.

This paper describes research into neural network algorithms for the pre-

diction of RNA secondary structure from knowledge of the primary struc-
ture. Some background on both the computer science and molecular biology
aspects of the problem is provided, new methods are proposed, and the re-
sults of some simple, preliminary experiments are described [Steeg, 1989].

There are several goals motivating research into this area:

1. A fast and accurate algorithm for predicting RNA secondary structure is
sought. It is hoped that an approach that formalizes the problem explicitly
as an optimization problem and that incorporates a fine-grained paral-
lelism and the machine learning ability of neural networks will lead to a
good algorithm.

2. It is an interesting test of the ability of a neural net (and in particular the
MFT neural net) to learn some of the key parameters of a natural struc-
ture-to-structure mapping, in this case RNA primary structure to sec-
ondary structure. Fast learning and good generalization are among the im-
portant goals in the learning experiments.

3. Finally, the work described may be thought of as an early testing ground
for neural network and other parallel distributed processing (PDP) meth-
ods in molecular structure prediction — the 2˚RNAproblem is related to
the more difficult problems of the prediction of protein secondary and ter-
tiary structure.

1.2 Organization of the Chapter

In Section 2, the RNA secondary structure prediction problem is intro-
duced, and the necessary mathematical definitions and physical and chemical
terms are explained.

Section 3 defines the problem more formally in terms of a general class of
search problems. The most commonly used search algorithms are discussed,
and then a few of the most successful or important serial RNA secondary
structure prediction algorithms are described in this context. This provides a
brief historical summary of previous work within a unified formal frame-
work.

Our methods are described in Section 4. We discuss neural networks and
the particular class of Hopfield nets, Boltzmann Machines, and Mean Field
Theory (MFT) networks used in our research. We then define the mapping of
the 2˚RNAproblem onto the network, and explain the biochemical and physi-
cal assumptions implicit in our approach in terms of a simple graph theory
problem. Finally, reference is made to some previous work in protein struc-
ture prediction with neural networks in order to illustrate the issue of repre-
sentation of constraints.

Section 5 describes the results of the experiments. There is an analysis of
the basic models employed in terms of speed of convergence, speed of learn-

122 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ing, generalization abilities, accuracy of structure prediction, stability of so-
lutions, and hardware/memory complexity.

Conclusions about the theory and experiments are offered in Section 6,
along with some proposals for future work.

2. Secondary Structure of RNA: Its Importance and
Methods of Determination

A molecule of RNA consists of a long chain of subunits, called ribonu-
cleotides. Each ribonucleotide contains one of four possible bases: adenine,
guanine, cytosine, or uracil (abbreviated as A,G,C,U respectively). It is this
sequence of bases, known as the primary structure of the RNA, that distin-
guishes one RNA from another.

Under normal physiological conditions, a ribonucleotide chain can bend
back upon itself, and the bases can hydrogen-bond with one another, such
that the molecule forms a coiled and looped structure. The pattern of hydro-
gen bonding is generally called the secondary structure, while the conforma-
tion of the molecule in 3-dimensional space is called the tertiary structure.
The base-to-base interactions that form the RNA secondary structure are pri-
marily of two kinds — hydrogen bonding between G and C and hydrogen
bonding between A and U, as was first described by Watson and Crick in
[1953]. (See Figure 1.) In fact, there is evidence of non-Watson-Crick base-
pairing in such nucleic acids as the tRNAs, but these are considered to derive
from the tertiary structure produced by large regions of secondary structure
containing Watson-Crick basepairing. For the sake of simplicity, such base-
pairing is mostly ignored in this paper.

Genetic information, the set of instructions that directs cell maintenance,
growth, differentiation, and proliferation, is encoded in DNA molecules.
RNA serves two biological purposes: It is the means by which information
flows from DNA into the production of proteins, the catalysts and building
blocks of cells; it also acts as a structural component of ribosomes and other
complexes. It is the secondary structure, and the resulting tertiary structure,
that determine how the RNA will interact and react with other cell compo-
nents.

Work on the determination of RNA secondary structure has been carried
out for decades by a number of research groups. The classical approach is di-
rect observation of a molecule’s secondary structure using X-ray crystallog-
raphy. More indirect methods involve specific cleavage of the RNA by en-
zymes called ribonucleases. Much research has gone into the promising
approach of computational prediction of secondary structure from knowl-
edge of primary structure. The general method has been to search for
configurations of maximum base-pairing or of minimum free energy.

There are two basic problems encountered in the prediction approach.

STEEG 123

First is the need for accurate measures of the free energies of the various pos-
sible substructural components — of individual basepairs as well as stems,
loops, and bulges. Second, the space of possible secondary structures for a
given sequence is extremely large; a systematic search through all possible
configurations for a minimum-energy structure can be prohibitively slow
even on fast computers.

2.1 Structure and Free Energy—A Mathematical Model

We represent1 an RNA molecule as a sequence S of symbols : s1 s2 . . . sn,
where si is one of G,C,A, or U. A subsequence of S may be called a “se-
quence” where no confusion will occur. A sequence or subsequence may also
be called a “string”.

Given a sequence S, we represent the secondary structure of S by the
upper right triangular submatrix of an n-by-n matrix A. Aij is 1 if paired(i, j),
i.e., (for i < j), if the bases at positions i and j in the sequence are paired, and
is 0 otherwise. (See Figure 3.) The secondary structure may then also be rep-
resented by a list P of pairs, where (i, j) is in P if and only if paired(i, j). A
pairing itself will sometimes be referred to as i • j.

124 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

AGC

U

G

A
U

G C
U

A

C

AG

U

m7G
G

A

C

G

G

G

C

G

C

C

G

C

C

C

C

C

A

END

BEGIN

C

C
U

C

G
A

G
G

C

C
G

U
A A

A

C

CG

A
GC

C

U

G
G

A
D

15

U A

C

G

G

G

C

C

C A

A

U
A

C

U

m

G C

35

25

45

55
T

5

65

75

Figure 1: The figure is a 2-d representation of a tRNA molecule. The dots between
bases (letters) represent basepairing. The numbers represent the numbering of bases
in the sequence. (After [Sankoff et al. 1983]).

The subsequence from si to sj is written [i, j]. A subsequence is proper
with respect to a secondary structure P if, for every paired element in the
subsequence, its partner is also in the subsequence. If i • j is a pair and i < r <
j then we say i • j surrounds r. Likewise i • j surrounds r• s if it surrounds
both r and s. (The rule against knots dictates that given r • s, if i • j surrounds
either r or s, then it surrounds both.) Subsequence [i,j] is closed with respect
to a structure P if (i, j) in P. A pair p • qor an element r in proper string [i,j]
is accessiblein [i,j] if it is not surrounded by any pair in [i,j] except possibly
i • j. It is accessible from i • j if i and j are paired. A cyclec is a set consisting
of a closing pair i • jand all pairs p • qand unpaired elements r accessible to
it.

We can distinguish two kinds of constraints on the forming of an RNA
secondary structure: hard and soft constraints (constraintsand costsare the
terms often used in optimization work). Hard constraints dictate that certain
kinds of pairings cannot occur at all; soft constraints are those imposed by
thermodynamics upon the classes of possible structures. Hard constraints de-
termine which structures are “legal”; soft constraints determine which struc-
tures are optimal.. The hard constraints are:

1. (Watson-Crick pairing): If P contains (i, j) then si and sj are either G and
C, or C and G, or A and U, or U and A. (This may be easily extended to
include the relatively rare GU pairings.)

2. There is no overlap of pairs. If P contains (i, j), then it cannot contain (i, k)
if k ≠ j or (k, j) if k ≠ i.

3. For all i, (i, i) cannot be in P.

4. Knots are not allowed: If h < i < j < k , then P cannot contain both (h, j)
and (i, k).

5. No sharp loops are allowed: If P contains (i, j), then i and j are at least 4
bases apart.

The soft constraint on possible secondary structures P for S is simple: S
will assume the secondary structure P that has minimum free energy.

A secondary structure P for S can be described in a natural and unique
way as composed of substructures of four kinds: loops, bulges, stacked pairs
(a stack of pairs is called a stem), and external single-stranded regions. The
cyclesof P are its loops, bulges, and stacked pairs. It is useful here to provide
some definitions of cycles.

1. If P contains i • j, (i + 1) • (j – 1), … (i + h) • (j – h), each of these pairs
(except the last) is said to stackon the following pair. Two or more such
consecutive pairs is called a stacked pairscycle.

2. If P contains i • j but none of the surrounded elements i + 1 … j – 1 are

STEEG 125

paired, then the cycle is a hairpin loop. (Many molecular biologists use
“hairpin” to refer to a stem with a loop of size 0 or 1 at the end, i.e., a stem
with virtually no loop. These structures are not allowed within our model,
and it is not certain that such structures occur in vivo [Altona et al.,
1988].)

3. If i + 1 < p < q < j -1 and P contains i • j and p • q, but the elements be-
tween i and p are unpaired and the elements between q and j are unpaired,
then the two unpaired regions constitute an interior loop.

4. If P contains i • j and i • j surrounds two or more pairs p • q,r • s,… which
do not surround each other, then a multiple loopis formed.

5. If P contains i • j and (i + 1) • q, and there are some unpaired elements be-
tween q and j, (or, symmetrically, if P contains i • j and p • (j – 1) and
there are unpaired elements between i and p), then these unpaired elements
form a bulge.

6. Let r be a sequence of elements in the sequence. If r is unpaired and there
is no pair in P surrounding r, then we say r is in a single-stranded region.

In addition to these widely-accepted definitions of common substructure
types, there is the interesting phenomenon of pseudo-knots[Waterman and
Smith, 1978; Pleij, 1989]. Our current model makes no provision for the pre-
diction of such anomalous structures.

126 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Si

Sj

SqSp

Ss Sr

Multiple Loop

SiSi-1

Sj-1

Sj+1 Sj

Hairpin
Loop

Si+1

S1

SN

Si Sj

SpSp Sq

Single-Stranded Regions

Sq Sq-1

Sp Sp+1

Sj-1 Sq+1

Si+1 Sp-1

Si

Sj

Si-1

Sj+1
Interior Loop

Stacked Pairs (Stem)

Si+hSi+1Si

Sj-hSj-1Sj

Si+2SiSi-1

Sq-1SjSj+1

Si+1

Sq+1BulgeSj-1

Sq

Figure 2: This figure illustrates the six basic kinds of RNA substructure. The indices
Si etc., represent base numbering, and the dots represent basepairing. (After [Sankoff
et al. 1983]).

The classical (Tinoco-Uhlenbeck) approach to specifying the free energy
E(P) of a secondary structure rests on the hypothesis that the free energy is a
sum of the free energy values of P’s cycles.

E(P) = Σi E(ci)

Even if we accept as a working assumption the equation given above, we are
left with the task of specifying free energy values for the primitive substruc-
tures. For this we must turn to empirical biochemistry.

2.2 The Tinoco-Uhlenbeck Theory

Much progress has been made on the problem of assigning free energy
values to substructures. Although considerable theoretical work has been
done, the most useful free energy data have been extrapolated from experi-
ments on particular kinds of RNA. Much of the most important work has
been carried out by Tinoco and Uhlenbeck [Tinoco, Uhlenbeck and Levine,
1971; Tinoco et al., 1973].

A reasonable first attempt at solving the 2˚RNAproblem would probably
incorporate a detailed physical model of molecular structure. A mathemati-
cian might define a ball and stick model (balls for nucleotides, sticks for
bonds) of an RNA molecule of length N, with 2N – 4 variable angles and (N
– 1)(N – 2)/2 potential energy functions for all pairwise hydrogen bond inter-
actions. But the number of possible conformations is then an exponential
function of the degrees of freedom. Such a model would prove computation-
ally intractable for even the smallest RNA molecules.

Fortunately, Tinoco and others have simplified the problem, arguing that
only the existence or nonexistence of particular hydrogen bonds matters;
they have also provided empirical evidence that this simpler model has pre-
dictive power. Methods for relating free energy values to the size, shape, and
base composition of secondary substructures, sometimes known as the
“Tinoco Rules”, can be viewed as a means of abstracting away from much of
the complex thermodynamics of hydrogen bonding, Van der Waals forces,
rotation of covalent bonds, and steric hindrance.

The Tinoco free energy data may be found in [Tinoco, Uhlenbeck and
Levine, 1971; Tinoco et al., 1973]. Summarized below are the most impor-
tant general ideas. It is important to qualify these ideas by noting that the
E(c) free energy estimates for cycles are only estimates. The values cannot
be determined with great accuracy, but they serve as useful, if sometimes
crude, approximations of physical reality.

The most stable secondary structures, those having the lowest free energy,
are long chains of stacked pairs. That is, a stem is the only kind of cycle
which contributes negative free energy to the structure. The particular free
energy value for a given stacked pair depends upon the two bases that are
bonding, as well as a local context, i.e., the base composition of the closest

STEEG 127

stacked pairs to its upper right and/or lower left in the matrix. Loops and
bulges raise the free energy roughly in proportion to their size, that is, the
number of elements that are left unpaired between the two elements that are
paired. Beyond a certain size, loop and bulge energies seem to grow propor-
tionally to the log of the unpaired length. Thus, a certain minimum number
of stacked pairs is required to support a loop or bulge interior to the stacked
pairs.

2.2.1 On The Minimal Free Energy Assumption. Molecular biologists
commonly accept as an axiom that a full-length RNA molecule exists in its
lowest energy thermodynamic state. After transcription, the molecule
“breathes” in solution; that is, weak, non-covalent molecular interactions
(Van der Waals forces, hydrogen bonds, etc.) form, break, and reform. Final-
ly, the molecule settles into its lowest energy state — the secondary structure
which the neural net algorithms described herein attempt to predict.

There are certain exceptions and caveats to the above axiom. The sequen-
tial generation, during transcription, of an RNA molecule can trap it in a
local optimum. An example of this is attenuation, a regulatory mechanism
for some bacterial operons (summarized in [Stryer, 1981]). In other cases, an
RNA molecule will be forced into a particular configuration by its interaction
with other molecules, usually proteins. However, the minimum free energy
configuration provides a baseline with which the in vivo molecule can be
compared. Moreover, the techniques described herein are able to accommo-
date such phenomena; particular substructures can be “clamped” while the
rest of the representation of a molecule is folded using the free energy con-
straints. With these qualifications in mind, let us proceed with the description
of the theory and techniques used by others and in this project, while follow-
ing the classical simplifying assumption that minimal free energy is the de-
terminant of secondary structure.

2.3 Serial Algorithms

The development of serial algorithms for the 2˚RNAproblem starts with the
following equation. Let P be a secondary structure and suppose that [i, j] is
proper. Consider the secondary structure Pij on [i, j] induced by P. Pij con-
sists of all pairs from P whose elements belong to [i, j]. Suppose P'ij is any
other secondary structure on [i, j]. If we substitute P'ij for Pij in P, then the
result is a valid secondary structure. That is,

P* = (P – Pij) ∪ P'ij
is a valid secondary structure. Then, from the above equation it follows that

E(P*) = E(P) – E(Pij) + E(P'ij)

Therefore, if P is optimal on [1, N] then Pij is optimal on [i, j].
These facts serve as the mathematical basis for the serial algorithms for

RNA structure prediction, and they define a basic recursive scheme which

128 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

most of the algorithms follow [Sankoff et al., 1983]. The reason that the al-
gorithm in general is exponential is that every subsequence is broken into all
of its possible cycles and single-stranded regions, and each of these defines a
subsequence that must be analyzed and broken into its cycles, and so on. The
intolerable running times can be avoided by using dynamic programming in
order to compute the energy of each cycle only once, and by relying on
strong assumptions about the free energy function. (Mainly, the assumption
is that one need not calculate the energies of all subcycles in order to obtain
the free energy of a cycle; thus, the expensive recursion is avoided.) The de-
tails of these algorithms differ and will be explored in more depth below.

The other class of algorithms in use sacrifices claims of optimality in
order to obtain small polynomial running times. In these algorithms, the
basic idea is to collect a set of pairs of complementary subsequences (subse-
quences which could form chains of stacked pairs). This is a simple O(N2)
operation. Then some heuristic is employed to combine these into possible
secondary structures and more heuristics are applied in order to choose
“good” secondary structures.

3. Search Algorithms

3.1 2˚RNAas a Search Problem.

The development of the simplified Tinoco model of free energy in RNA
secondary structure has allowed researchers to work with a high-level de-
scriptive model that is independent of the low-level physics. In effect, the
focus upon mere existence or non-existence of hydrogen-bonded basepairing
reduces the problem to a discrete space that can be put into one-to-one corre-
spondence with a planar graph. Global energy minimization is implemented
as a discrete optimization problem. A discrete optimization problem can be
formulated as a search problem — a search through the space of possible
structures for the optimal structure.

Given the definitions of basepairing and secondary structures in RNA, it
is easy to see that an RNA sequence may have unimaginably many sec-
ondary structures. Even if restricted to the chemically possible structures, as
defined by the hard constraints given in Section Two, the number of sec-
ondary structures for a given RNA can be unmanageably high. To attempt to
find an optimal secondary structure, then, is to perform a search for the one
(or few) “very good structures” among the multitude of “pretty good” and
“bad” ones. The problem then is to find ways to restrict the search space
and/or to speed up the search through parallelism or by using finely tuned
physical parameters to recognize quickly the thermodynamically best struc-
tures.

Looking at the 2˚RNAas a search problem will enable us to make clear

STEEG 129

and insightful comparisons of the many solution methods proposed. In this
section, the RNA secondary structure problem is formally defined in terms
standard to search problems in computer science.

3.1.1 Defining the Search Space. Let N, a natural number, be given.Let Σ
(as in “s” for “sequence”) be the set of RNA sequences of length N, that is,

Σ = {G, C, A, U} N .

Let Π (as in “p” for “pairs”) be the set of secondary structures for sequences
of length N, that is,

Π = {0, 1}N
2

Then if T (as in “Tinoco”) is a function that assigns free energy values to
secondary structures, our search space for the problem is, formally,

Given some T,
{(S, P), T (P)} where S ∈ Σ , P ∈ Π and T: Σ → ℜ

(Where a particular sequence S is considered, and no confusion should result,
we will omit the Sargument and use T(P).)

The problem then is:

Given a sequence S ∈ Σ , construct a secondary structure P ∈ Π such
that T(P) ≤ T(P') for all P' ∈ Π

3.2 Classes of Search Algorithm

We discuss here some standard classes of search algorithms, because their
analysis sheds some light on the previous approaches to RNA structure pre-
diction as well as on our new methods.

3.2.1 Optimal Algorithms and Exhaustive Search.In terms of the
search space formulation given earlier, what does an exhaustive search algo-
rithm do? Clearly, it considers every pointP in the space of valid secondary
structures for sequence S. For each such point, it calculates the free energy
Τ(P). It then chooses the P with the lowest Τ value, and outputs P.

A simple recurrence relation defining the exhaustive search may be de-
rived by considering the assumptions and definitions from Section 2:

The assumption about the additivity of free energy among cycles:

E(P) = Σ i E(ci)

Substitutivity of structures:

If P is optimal on [1, N] then Pij is optimal on [i, j], if [i, j] is proper.

Taking these and performing some algebra, one may derive the following
rule. The free energy value for the optimal secondary structure on [i, j] is
given by

T T T(i, j) min 0, C(i, j), min (i,h) (h i, j)
i h j

= + +
<≤

[]{ }

130 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

where C(i, j) = mink≥1 minc[E(S) + Σ (ah,bh) C(ah,bh)], c representing
k–cycles from i to j, is the optimal energy for [i, j] if we close it (i.e., if i and
j are paired). If [i, j] is not closable, that is, if (i, j) is not a Watson-Crick pair
or if j – i < 4, then C(i, j) is taken to be infinity.

This analysis is due to Sankoff et al., and further details may be found in
[Sankoff et al., 1983]).

A search algorithm simplistically defined in terms of such a recurrence re-
lation is inherently inefficient. The algorithm recursively recomputes the
same answer — the T value — for each subsequence many times. Dynamic
programmingmethods work by filling in a table of subproblem values for
subsequent repeated lookup, and offer dramatic time savings for problems
which are composed of only a polynomial number of subproblems. However,
the complexity concerns for the 2˚RNAproblem do not derive solely from
the choice of full recursion versus dynamic programming. The complexity in
the general algorithm stems from the number of possible cycles that have to
be considered for each substring if multiple loops of arbitrarily high order are
allowed. That is, the number of subproblems is exponential in the size of N.
This fundamental complexity is not decreased if the algorithm looks up the
energy for each possible cycle in a table instead of visiting each cycle sub-
string recursively.

3.2.2 Approximation and Heuristic Algorithms. An exhaustive search
for the best secondary structure is not feasible. Some restrictive assumptions
have to be made, and some potential structures ruled out of consideration.
Exactly which assumptions to make, and which classes of structures to ig-
nore is a deep and difficult problem. Some heuristic choices have to be made,
and in the end one has to settle for an approximation algorithm, an algorithm
which is believed to “often” provide a “good” solution, if not always the op-
timal one.

3.2.3 Restrictions on the Search Space. In [Sankoff et al., 1983], the
basic exhaustive search algorithm is shown to have time complexity of O(r2

(rN)2crN), where r is the proportion of unpaired bases in the sequence (often
taken to be around 3/4), and c is a number providing a proportional limit on
the order k of a loop within some [i, j] (for example, it is found that usually k
≤ (j – i)/7, so c = 1/7). The simplest way to modify the exhaustive search al-
gorithm described above in order to make it efficient is to restrict the number
and kind of secondary structures to be considered, and the complexity of en-
ergy functions, while employing the same basic algorithmic structure.

Two obvious and useful restrictions to make are

1. to ignore multiple loops with order k > k0 for some small k0, and/or

2. to weaken the requirement that the algorithm work for arbitrary func-
tions T(s) for any cycle s.

Before reviewing previous work on 2˚RNAalgorithms, it is instruc-

STEEG 131

tive to consider a few more general search methods.
3.2.4 Local Search. A large and interesting class of algorithms is the

class of local search algorithms. A local search algorithm has this basic form:
Assume we have a measure g(x) of the “goodness” of a solution x. (Good-
ness may be defined analytically or in terms of heuristic and subjective crite-
ria.)

1. Start with a random solution (or some easily-obtained solution).

2. Apply to the current solution some transformation Li from a given set of
transformations. The resulting solution becomes the new current solution.

3. Repeat until no transformation in the set improves the current solution.

The resulting solution may or may not be globally optimal. Of course, if
the set of transformations includes every transformation that can take one so-
lution into another, then we have essentially the exhaustive search method —
and its high computational expense. The point of local search algorithms is
to use a set of transformations that can be considered (hence the set should
be small) and applied (so they must be efficient) in a small amount of time
and space. If the set is small and the transformations easy, then the solutions
that can be transformed one to another are considered “near”, and hence the
transformations are “local”. The result of a local search is a locally optimal
solution, also called simply a local optimum. The best solution overall is the
(or a) global optimum. One can hope, if the transformation set is a good one,
that the local optima found are at least very close to the global optimum (op-
tima).

A Hopfield network, as discussed below, is a highly parallel neural net
method of local search. The Boltzmann Machine and MFT networks repre-
sent (stochastic and deterministic, respectively) ways to change this into a
more globalsearch method.

3.2.5 Greedy Algorithms. The local search algorithms build whole solu-
tions and then transform them repeatedly. A large number of heuristic algo-
rithms build solutions incrementally. The greedy algorithms are in this class.

In a greedy algorithm, at any stage in the building of a solution it is the lo-
cally optimal step that is chosen. For example, a greedy Traveling Salesman
algorithm would, having computed a path from C1 through Ck, choose for
the next section the city which is closest to Ck, though that choice might re-
sult in a suboptimal final path. A simplistic greedy algorithm for 2˚RNA
might calculate a structure for an ever larger segment of the RNA sequence.
At step k it would have a secondary structure for [1, k – 1] and would grow
the solution by finding the best way to force the kth base onto the current
structure. In general, this would generate a rather poor solution; however,
Martinez [1984] has a biological justification for a particular greedy ap-
proach, and his method achieves good results on some RNA sequences.

132 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

3.2.6 Monte Carlo Methods, Simulated Annealing. “Simulated anneal-
ing” is a method, adapted from statistical mechanics and inspired by anneal-
ing procedures in metallurgical processing, of employing stochastic functions
in search procedures. Derived from theoretical work in [Metropolis et al.,
1953] and popularized in [Kirkpatrick, Gelatt and Vecchi, 1983] as an opti-
mization technique, simulated annealing is one example of a “Monte Carlo”
method of probabilistic numerical simulation.

The simulated annealing procedure is a way of doing a local search with-
out becoming stuck in “bad” local minima. The method is simple:

1. Define a set of local transformations Li (as in any local search) on the so-
lution space.

2. Define a stochastic function Φ from solutions (states) and temperature val-
ues (T ≥ 0) to transformations, such that

• The probabilityπi(x, T) of picking transformation Li, for some constant
temperatureT, when the current solution is x, varies directly with its
“goodness” as a move, i.e.

If g(Li(x)) > g(Lj(x)) then πi(x, T) > πj(x, T).

• The degree to which the probability of a move depends on its goodness is
higher as T is lowered. In other words, T is a measure of the randomness
in the move-generation process. Φ is the move-generation function,
which employs the probabilities πi.

3. Choose a temperature T, T> 0.

4. Repeat while T > 0:

(a) Choose a transformation and transform the current solution x by
x:= Φ(x, T)(x)

(b) If acceptable(x) then quit.

(c)Decrement T

As Kirkpatrick, Gelatt and Vecchi [1983] have pointed out, the simulated
annealing technique is a type of adaptive divide-and-conquer, with the basic
features of a solution appearing at high temperatures, leaving the specific de-
tails to be determined at lower temperatures. There is a very natural way to
map simulated annealing onto neural nets, and this, the Boltzmann Machine,
is discussed in Section 4.4

3.3 Previous Work on 2˚RNA
Historically, the systematic investigation into prediction of nucleic acid

secondary structure has been marked by three major phases, each represented
by a particular approach that dominated: 1) heuristic search over the sec-
ondary structure matrix or a large space of possible stacking regions, 2) dy-
namic programming approaches to building an optimal structure in a few
passes, and 3) incorporation of auxiliary information and kinetic or evolu-

STEEG 133

tionary assumptions into folding rules.
Pipas and McMahon [1975] designed an algorithm that performs a search

in three passes. The first pass constructs a list of all possible stems of a cer-
tain size. The second pass scans this list for stacking regions that are compat-
ible (meaning they form no knots and share no bases in common). In the
final pass the algorithm performs an exhaustive search for the set of compati-
ble stacking regions with the lowest free energy (using the Tinoco rules
[Tinoco, Uhlenbeck and Levine, 1971]).

In terms of search spaces, this algorithm can be viewed as using two pass-
es to construct a subset of Π — the subset consisting of those structures con-
taining stacking regions of at least a certain size. The third pass then searches
Π exhaustively for the P which minimizes T(P) for some given T.

The Studnicka algorithm [Studnicka et al., 1978], like Pipas and McMa-
hon’s, begins by constructing a list of all the possible stacking regions. In the
second stage, the algorithm enforces compatibility constraints between sets
of regions. Instead of ignoring conflicting regions, as the Pipas-McMahon al-
gorithm does, the Studnicka algorithm pares down the regions until compati-
bility is achieved for the now-smaller regions. The next pass combines the
regions into large structures of order k ≤ 2 (i.e., multiple loops not allowed).
A final stage permits the user to combine these large structures into sec-
ondary structures of arbitrary complexity.

Such an algorithm can examine structures of high order k (the number of
loops in a multiple loop) without the exponential time complexity seen in the
general recursive algorithm. This is because the set of high-order structures
that the algorithm can construct is severely restricted by the initial constraint
of building structures with a set of existing stacking structures. For example,
if building a structure from stems A, on [i, j], and B, on [p, q], one already
rules out all combinations of structures over subsequences [r , s] where i < r
< j , or i < s < j, or p < r < q, or p < s < q. An exponential explosion of pos-
sible structures is excised from the search space a priori.

Nussinov’s group [Nussinov et al., 1978; Nussinov and Jacobson, 1980]
was among the first to apply dynamic programming to the 2˚RNAproblem.
The Nussinov algorithms build an optimal secondary structure (subject to
certain restrictive assumptions) in one pass. The algorithms are similar in
structure to a basic dynamic programming version of the general recursive
search algorithm [Sankoff et al., 1983], except that Nussinov made simplify-
ing assumptions about structure and energy. The first version [Nussinov et
al., 1978] ignores the destabilizing effects of loops, and simply attempts to
maximize basepairing. The second version imposes a simple linear penalty
on loop size.

All of the above display either unrealistic assumptions about the free ener-
gy of substructures, and/or have high time complexity (O(N5) for Studnicka)
or space complexity.

134 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

3.3.1 Recent Advances with Dynamic Programming. With the interest-
ing exceptions of the Martinez work and Major, et al [1991], the current
“state of the art” in serial 2˚RNAalgorithms is a set of recent dynamic pro-
gramming approaches.

Sankoff, Kruskal, Mainville, and Cedergren [Sankoff et al., 1983] have
described algorithms that restrict the order of multiple loops to k ≤ 2. In the
case of arbitrary energy functions for loops, they report running times of
O(N4). When the energy function for loops is restricted to the linear case, the
result is an O(N3) algorithm. Zuker [Zuker and Stiegler, 1981], and Water-
man and Smith [1978] have proposed similar algorithms within this range of
time complexity.

In a theoretical computer science paper [1988], Eppstein, Galil, and Gian-
carlo describe an algorithm with running time O(N2log2N) for the k ≤ 2 case
where the energy function for loops is assumed to be convex function of the
number of exposed bases (bases accessible from the loop’s closing pair).
(See [Eppstein, Galil and Giancarlo, 1988] for the definitions of convex and
concave.)

Several of the dynamic programming algorithms can be parallelized quite
effectively, typically by using a wavefront method to trade O(N) processors
for an O(N) factor in running time.

3.3.2 Martinez. Martinez [1984; 1988] takes a very different approach to
minimizing free energy of molecules. Instead of building a structure using
purely combinatorial methods, his kinetics-based method simulates the fold-
ing as it might actually occur in the molecule.

The Martinez folding rule, which defines the order in which parts of the
final secondary structure are built in his algorithm, is simple:

Of all the remaining unformed stems which are compatible with those
constituting the current structure, choose the one with the largest equilibrium
constant (of association). This structure is the one whose formation is the
most thermodynamically favored chemical reaction.

In search method terms, Martinez’s method is a form of greedy algorithm.
In particular, it has the property that it removes (j–i)3 points from the search
space of possible remaining structures at each step, where i, j are the begin-
ning and end indices of the subsequence which supports the chosen stem.
The time complexity of this algorithm is only O(N2).

The Martinez method is very promising. It has been shown to work on
some medium-length (200-500 bases) sequences. The method is based on a
fairly speculative but interesting evolutionary assumption, and is expected to
be most successful in predicting the structures of RNAs whose secondary
structure is essential to function (e.g., tRNAs and rRNAs).

3.4 The MFT Network Search for Optimal RNA Structures

In terms of the search model discussed above, our neural network method

STEEG 135

may be described as a highly parallel distributed search, wherein each possi-
ble RNA secondary structure representation is distributed over many “pro-
cessing units” (one unit for each possible base-pairing) and wherein several
potential secondary structures for the input sequence are represented simulta-
neously. Conflict (w.r.t. constraint violation) between possible substructures
is implemented by inhibitory connections between units in the respective
substructures, and support (stem compatibility) is implemented by excitatory
constraints.

Points in the 2˚RNAsearch space are considered many at a time, as they
compete during the MFT network relaxation process. The MFT relaxation al-
gorithm is intended to avoid bad locally-optimal points in the space in favor
of more globally-optimal solutions. The MFT learning algorithm is intended
to make this search easier by refining the parameters of this competition over
many trials with a training set of sequence and structure data. Connection
weights constrain the dynamics of network relaxation, and can be seen as an
implicit representation of knowledge, both analytic and heuristic, that aids
the search process by pushing the network state transition process in particu-
lar directions and towards particular solutions in the solution space (π,
{ T(P)}).

4 Methods

This section describes our methods, and in particular it defines the neural
network model of RNA secondary structure used in the experiments. The
model is an example and an extension of the Mean Field Theory (MFT) ma-
chine originally proposed by Hopfield and Tank [1985] and later described
and used by Peterson and Anderson [1987], among others. The MFT ma-
chine is a deterministic approximation of a Boltzmann Machine, which is a
stochastic variant of a Hopfield net. The representation used is one wherein
an RNA secondary structure matrix is mapped directly onto a Hopfield net,
with every unit representing a basepairing.

In the first subsection, neural networks are introduced and some reasons
behind the choice of neural networks, and specifically one-layer nets, are of-
fered. Next, the MFT network and its intellectual roots (Boltzmann Machine
and Hopfield network) are introduced. Then we define our mapping of the
2˚RNAproblem onto a Hopfield net architecture. Finally, some issues in the
modelling of molecular structure are discussed with reference to our work as
well as other work on neural networks and molecular structure prediction.

4.1 Neural Networks

Artificial neural networks are models of highly parallel and adaptive com-
putation, based very loosely on current theories of brain structure and activi-
ty. There are many different neural net architectures and algorithms, but the

136 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

basic algorithm which all artificial neural nets share is the same. Assume a
collection of simple processors (“units”) and a high degree of connectivity,
each connection having a weight associated with it. Each unit computes a
weighted sum of its inputs (then may plug this sum into some nonlinear
function), assumes a new level of activation, and sends an output signal to
the units to which it is connected. In many of the models, the network settles
into a stable global state under the influence of external input that represents
an interpretation of the input or a function computed on the input. This set-
tling process, called relaxation, performs a parallel search.

4.1.1 Neural Network Applications.Besides being the focus of connec-
tionist research into models of brain function and cognition, neural networks
have been applied with some success to optimization problems and function
approximation. Optimization problems attacked with neural nets include the
Traveling Salesman problem (TSP) and graph partitioning [Peterson and
Soderberg, 1989], and process scheduling [Hellstrom and Kanal, 1990].

The 2˚RNAproblem possesses several important features of the kind of
problem at which neural network methods excel:

• Complexity: The problem has a large space of variables (search space).

• Redundancy: The set of reasonable, though not necessarily optimal, solu-
tions is large, and many roughly equivalent solutions have variable values
in common.

• Parallelism: Neural nets, of course, bring a parallel approach to any prob-
lem. Some problems seem inherently parallel (e.g., low-level vision), and
the simultaneous consideration of and competition between possible solu-
tions might well be the correct paradigm for the molecular folding predic-
tion problems.

• Noise-tolerance: The problem may require the processing of very noisy or
incomplete input data, and one would still like a reasonable answer.

In addition to these general neural net advantages, there are reasons for fa-
voring the particular architectures chosen in this project. The stochastic na-
ture of the simulated annealing procedure of the Boltzmann Machine might
model well the thermodynamics of free energy minimization of an RNA
molecule. The relationships among statistical mechanical models of spin
glasses, neural networks, and biological macromolecules is an active re-
search area [Stein, 1985; Anderson, 1988].

4.2 Architectures

A particular neural network architecture may be defined by specifying the
following (list taken from [McClelland, Rumelhart and the PDP research
group, 1986]):

STEEG 137

• A set of processing units

• A set of activation states for the units

• An output function for each unit

• A pattern of connectivity among units

• A propagation rule for propagating patterns of activity through the net-
work

• An activation rule for combining a unit’s inputs with its activation level to
produce a new activation level

• A learning rule whereby patterns of connectivity are modified by experi-
ence
In most neural net models of computation, the processing of an input vec-

tor, i.e., the solving of a particular instance of a problem, occurs through the
network relaxation process. This is the process wherein the units in the net-
work change their individual states in accordance with an update rule in
order to maximize some global measure of “harmony” or minimize “energy”
or constraint-violation.

4.3 Learning in Neural Networks

In most neural net models of computation, the processing of an input vec-
tor, i.e., the solving of a particular instance of a problem, occurs through the
network relaxation process. The information needed for a neural net to solve
a problem is largely stored in the connection weights between units. The pro-
cess whereby the weights are modified in order to improve network perfor-
mance is called, appropriately enough, learning or training.

There are several kinds of network learning procedures, but most fall into
one of two broad classes: the supervised and the unsupervised learning pro-
cedures. The research described in this report concerns only supervised
learning procedures.

In supervised learning, the connection weights between units are modified
in order to reduce some measure of error — the error being a weighted differ-
ence between what the network outputs in response to a particular input and
what one desires the network to produce in response to that input. Just as the
relaxation process may be seen as a search through the space of possible net-
work activation states for the state(s) with the lowest energy (lowest error,
highest harmony, etc.), the learning process is the search through the weight
space of the network for the set of connection weights that minimizes error in
processing the training inputs. However, one desires that the learning proce-
dure demonstrate some degree of generalization. That is, the weight
modifications should enhance performance on whole classes of possible inputs
represented by the trial patterns – not just on the trial patterns themselves.

138 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

The focus of this report is on 2˚RNA, which is essentially a large opti-
mization problem; but we require the networks also to learn a function, a
mapping between RNA sequences and secondary structures, by successively
refining estimates of a few network variables in order to reduce predictive
error.

4.4 Hopfield Nets, Boltzmann Machines, and MFT Networks

Hopfield [1982] formalized the idea of a massively parallel and highly in-
terconnected network performing a constraint satisfaction search. He intro-
duced a cost function, termed energy, which is a measure of system-wide
constraint violation. He then showed that the connection weights in a net-
work encode locally minimum energy states, and that, using a suitable
activation updating rule, these minimum energy states are exactly the stable
states of the network. In particular, a unit uk’s contribution to the network’s
energy can be computed locally:

∆Ek = E(ak=0) – E(ak=1) = (Σi ai wki).

where ai is the activation level of the ith unit, and wij is the connection
weight between the ith and jth units. The unit turns/remains on/off depending
on which state lowers the network’s energy.

Since the absolute value of the energy is bounded by the weights, the
search is guaranteed to converge, if asynchronous node updating is used.
However, like other gradient search methods, the procedure may only find a
locally optimal solution. (This was not especially problematic in Hopfield’s
early work, because the networks were intended as a model for content-ad-
dressable memory. The “memorized” states were exactly the locally mini-
mum states, and all the network was required to do was to completeone of
the stored states, i.e., to fall into a local minimum.)

In order to design Hopfield-like nets that can escape local minima, re-
searchers have adopted the simulated annealingtechnique, and thereby de-
veloped the Boltzmann Machine (BM) [Ackley, et al 1985] . In a BM, the
following stochastic updating rule (or a variant thereof) is used:

Each unit sets its activation state to 1, regardless of previous state, with
probability

Pk = 1/(1 + e–∆Ek/T)

where T, called temperature, is a measure of randomness in the system. At
higher temperatures, high randomness permits state changes to be relatively
independent of the energy, thus allowing the system to escape from local
minima. At lower temperatures, configurations with low energy are more
heavily favored. Thus, by using an annealing schedule whereby the tempera-
ture is gradually lowered or alternately raised and lowered, it is possible to
avoid certain local minima and to find more globally optimal solutions. Actu-
al performance in practice depends greatly on the topology of the energy sur-

STEEG 139

face for the particular problem and encoding.
An alternative method for avoiding local minima and generally speeding

up the search for some problems is to use continuous activationmodels. In
[1985] Hopfield and Tank introduced a model in which activation levels (and
hence outputs) take values from a fixed interval (in this case [0,1]) instead of
the set {0, 1}. Such networks are based on a Mean Field Theoryapproxima-
tion to Boltzmann Machines and are thus called MFT machinesor MFT net-
works. The MFT algorithm replaces the stochastic state transitions of the BM
with a set of deterministic equations. The solutions to these equations, for
each given temperature, represent averagevalues of the corresponding quan-
tities (correlations or co-occurrences between states of all units) computed
from extensive and time-consuming sampling in the BM. The continuous
output has the effect of smoothing the energy surface. In the binary model,
the search procedure can be viewed as moving along the edges of an M-di-
mensional hypercube (where M is the number of units); whereas, in the con-
tinuous model, the search can move smoothly within the hypercube. In terms
of an energy surface, a Boltzmann Machine performs stochastic hillclimbing
(or hill-descending); MFT recasts it into deterministic motion through a
smoother landscape. “Rather than scaling hills, one takes them away” [Peter-
son and Anderson, 1987]. Like the binary model, the continuous model is not
guaranteed to find globally optimal configurations. Nevertheless, simulations
of such a net which encoded the Travelling Salesman Problem did produce
reasonably good solutions in a short period of time. In contrast, solutions
found using the binary model proved to be only slightly better than random
[Hopfield and Tank, 1985]. Peterson and Anderson [1987] have extended this
approach and have tested the algorithm on several important optimization
and learning problems, with favorable results.

The details of the derivation of the MFT model from the Boltzmann Ma-
chine model may be found in [Peterson and Anderson, 1987]. It turns out
that the update rule for each of the continuously-valued units in a network is

and the iterative algorithm becomes

The above equations define the MFT relaxation scheme. The learning
algorithm is equally straightforward. Vi is really an estimate of <ai>, the
time average taken for the state of unit ui. What is needed for learning is the
equivalent, Vij , of the correlations <aiaj> between connected units sampled
in the Boltzmann Machine learning algorithm:

V
w V

Ti
new ji j

old

j
=

∑tanh

Vi =

∑tanh

w V

T
ji j

j

140 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

which reduces under certain conditions to

Vij = ViVj

Let Vij
+ be the Vij value for units ui and uj in a relaxation run wherein the

input units are activated by an input vector vin and the output units are
“clamped” (forcibly set and maintained) to represent vector vout; and let Vij

-

be the Vij value when the machine runs with no clamping of the output units
in response to the input vin. Then the weight update (learning) rule is the fol-
lowing.

If Vij
+ > Vij

- then increment wij .

If Vij
+ < Vij

- then decrement wij .

The increment must be proportional to Vij
+ – Vij

- and the Vij quantities are
usually averaged across cases (learning samples).

4.5 Defining an MFT Machine Model of 2˚RNA

4.5.1 The Underlying Architecture: A Hopfield Net The Hopfield net
was chosen primarily because there is a very natural mapping of the 2˚RNA
problem onto this architecture. Basically, the network is a direct representa-
tion of an RNA secondary structure matrix. Each matrix position is repre-
sented by a single unit. An activation value of 1 means that the correspond-
ing matrix element has a 1, and hence an hypothesis that the corresponding
two bases in the RNA sequence are paired; a 0 in the same unit represents an
hypothesis that the bases are not paired. A value between 0 and 1, if analog
values are used, stands for a relative probability of the two bases being
paired.

Symmetric connections are chosen because there must be signals (in-
hibitory or excitatory) between units and there are no privileged units — all
the matrix positions are,a priori, equally valid, although particular combina-
tions of them are invalid.

4.5.2 Representing the Problem: Deriving the Energy Function. Recall
the Hopfield result [1982] that the equations of motion for a symmetrically
connected network lead to convergence to a stable state. A stable state is one
in which the outputs of all units remain constant. Under certain conditions
(asynchronous node update according to the local updating rule), the net-
work’s stable states are the local minima of the quantity

V tanh
w V

T
tanh

w V
ij

jk ik

k

ik jk

k

=

+

∑ ∑1

2 T

STEEG 141

where E is a measure of energy. (This term is not to be confused with the
free energy of an RNA molecule; we will attempt to make it clear which use
is intended in each situation.) M is the number of units, ai is the activation
level of the ith unit, and wij is the connection weight between units i and j. Ii
is a level of external input to the system, a biasfor each unit.

In mapping the 2˚RNAproblem onto a Hopfield net, the network must be
described by an energy function in which the lowest state corresponds to a
legal and optimal RNA secondary structure. Low energy in the network must
correspond to low free energy in the simulated RNA molecule.

Assume that the network has M = N(N– 1)/2 units (where N is the length
of the RNA molecule), so that, intuitively, the network represents the upper
right triangular submatrix of the RNA secondary structure matrix. (See Fig-
ure 3.) Assume that each unit receives input telling it the composition of the
two bases whose possible pairing it represents (e.g., it receives a constant

E = w a a a Iij i j
j

M

i

M

i i
i

M

- 1
2

=1=1 1
∑∑ ∑−

=

142 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

w

1 N

x

y

z

y

z

w

x

Figure 3: Mapping the problem onto a neural network: The diagram on the left rep-
resents a tRNA secondary structure. On the right is its representation on a secondary
structure matrix, where each cell corresponds to a possible base pairing. The large
diagonal in the upper right of the matrix represents the main stem; the other diago-
nals represent the smaller, subordinate stems.

signal of 00 01 for (G,C), etc.).
First, we want a term in the energy definition which tells us that the opti-

mal states are ones which enforce the hard constraints on RNA secondary
structure. There should be only one unit active in any row, only one active in
any column, and there should be no knotting. Consider the local minima of
the following quantity:
(all summations are from 1 to N except where indicated), where R ranges
over rows of the network, C over columns, and i and j count up to the length
of the respective row or column.

Note that the first term is 0 iff each row R contains only one or fewer ac-
tive units; the second term is 0 iff each column C contains only one or fewer
active units; and the third term is 0 iff there are no knots. Therefore if a net-
work incorporates this energy function, the stable states of the network favor
representations of legal RNA secondary structures.

There remains the task of representing constraints on optimal secondary
structures. Basically, what is wanted is this: Favor the formation of stacked
pairs, with the precise negative energy contribution given by the Tinoco local
context value for two adjacent stacked pairs. Impose a penalty for large loops
and bulges, the penalty growing with the size. (In the experiments per-
formed, the local context values were not represented, and their omission did
not prevent good performance on the small tRNA sequences. However, it is
expected that accurate predictions for longer molecules will require local
context values.)

Add to the equation for E, the global network energy, the following terms:

and

where fd(i, j, k, l) is some function of the distance between two units (i, j)
and (k, l), and fb(i, j) is a function of the indices of a unit which returns some
value representing the tendency of a basepair to form. (For example, a high
value is returned for indices representing a G • Cpair, and low or zero value
returned for a C • Upair.)

f R Cb
C

N

R

N

(,)∑∑

µ / (, , ,) ,2
00

f R C R z C y a ad RC R z C y
y

N y

z

C R

C

N

R

N

= − + −
=

−

=

−

∑∑∑∑

STEEG 143

E a a a a

a a

R R R C
C RRij iiR

RC R z C y
y

N y

z

C N

C

N

R

N

i j i i
= + +

≠≠

+ +
=

−

=

−

∑∑∑∑∑∑

∑∑∑∑

α β

γ

/ /

/ ,

2 2

2
00

Setting the Connection Weights and Node Weights.Through the ener-
gy function definitions above and the earlier definition of energy minima for
Hopfield nets, a set of connection weights is implicitly defined. The first
three terms define inhibitory connections, with weights α,β,γ respectively,
between elements in the same rows or columns or elements whose conjunc-
tions form knots. The fourth term defines excitatory connections, with weight
µ, between elements diagonal (in the “good” direction, i.e., not the knot di-
rection) to each other. The fifth term defines the node weights, the bias for
each unit. The bias of a unit influences the tendency of a unit to be active, ir-
respective of the influence of other units acting on it via connection weights.
The bias is used in this model to represent the basic probability of a particu-
lar basepairing, independent of constraints imposed by other possible pair-
ings. (Figure 4 illustrates the connection structure of the basic network.)

It is important to understand the limitations of this representation and how
this relates to heuristic knowledge and to machine learning. The global pa-
rameters α,β,γ, µ (and through these, the connection weights wij), fd, and fb
must embody a combination of information about both the problem and pa-
rameters particular to the computational architecture. Analysis of the prob-
lem and of Hopfield networks has led to this mapping of problem to architec-

144 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

–W1 –W1

–W1

–W3
–W2

–W2

+W4

Figure 4: The structure of the basic network used for RNA secondary structure pre-
diction. W1 is the inhibitory signal between elements of a row; W2 is the inhibitory
signal between elements of a column; W3 is the inhibitory signal that prevents knot-
ting; W4 is the excitatory signal between elements of possible secondary structures.

ture, but it is not currently possible to derive analytically, from biochemical
knowledge, precise optimal values for the global parameters. It is therefore
necessary to make educated guesses at initial values (i.e., employ heuristic
knowledge) and to adapt the weights over several learning trials in order to
improve the representation and improve performance. It may be that adaptive
networks also learn so well that they, in addition to improving their ability to
represent existing biochemical knowledge, actually derive unknown or refine
known physical parameters of the RNA folding process.

Input, Output, and Hidden Units. The structure of the network as
defined for this project differs somewhat from most other Hopfield or Boltz-
mann applications. There are no separate input or output units, and no hidden
units. The input sequence (binary representations of the bases G, C, A, U,
and perhaps modified bases) is read into the rows and columns so that each
unit receives input representing the identities of the two bases whose possi-
ble pair the unit represents — one represented by the row index and one by
the column index. The bias term Ik for each unit uk is then set accordingly.
The connection weights are already determined and remain fixed during the
processing of the particular sequence.

The output of the network is the set of activation levels of all the units,
measured in analog (as numbers between 0 and 1) or binary, and preferably
represented in a format like the RNA secondary structure matrix.

There are no hidden units in the models used thus far, although there are
models under consideration which may use hidden units to represent the
more complex higher-order relationships between distant substructures that
will probably be needed for accurate prediction of very long RNA sequences.

4.6 Learning the Connection Weights and Learning RNA Structure

In this project, an effort was made to take as much advantage as possible of
regularities in the problem (in the search space) in order to define an archi-
tecture wherein fast and useful learning is possible. If most work on predict-
ing protein secondary structure [Qian and Sejnowski, 1988] seems to assume
that all the important information in the sequence-to-structure mapping is
local, the work described here assumes only that such information is either
local or uniformacross the net.

In particular, we hypothesize that there are a few (fewer than ten) impor-
tant parameters, potentially obtainable through learning from examples, that
determine the global sequence-to-structure mapping for RNA. Our current
model employs α, β, γ, µ. These few quantities, once learned, can then be
combined and replicated in some recursively specifiable way across the net
in order to construct connection weights. The problem, then, is to define
these few parameters as variables defining a learning space, and to devise a
simple way to construct connection weights from these variables. Then the
learning procedure would, instead of incrementing or decrementing each in-

STEEG 145

dividual weight wij on each pass through the net, only update the corre-
sponding global learning variable. After learning, the weights would then be
constructed from the variables and used in the relaxation search. This is in
fact what was done in this project, and the details are given below.

Such a learning scheme is beneficial in three ways. First, it probably pro-
vides for more accurate and robust learning, as it tends to ensure that key
global parameters — and not just positional correspondences found in the
learning samples — are what is learned. Second, the very small variable
space (less than 10 instead of O(N4) or O(N2)) that is optimized during
learning makes for huge decreases in learning time. Third, and perhaps most
interesting, it probably allows for some degree of scale-invariant learning.
That is, it should be possible to achieve useful learning and structure predic-
tion on a set of RNA sequences of different sizes, since the indices of partic-
ular units and connections do not have to match up exactly. Such scale-in-
variance over a very small range of sequence lengths is demonstrated in the
experiments described below. In sum, the parameterization is a regularization
scheme.

4.6.1 The Learning Variables and Learning Procedure. Following the
derivation of the energy function given above in the introduction to the
Hopfield net representation of 2˚RNA, one sees the obvious candidates for
global learning variables. Corresponding to the α, β, γ, and µ are RowInhibi-
tion, ColumnInhibition, KnotInhibition, DiagonalExcitation.

The MFT learning algorithm, modified for our global learning method,
becomes (for a network of M units):

for each training iteration k
for each learning example sequence s

Phase+(s)
Phase-(s)
for i = 1 to M

for j = i +1 to M
δ := η((ViVj)

+ – (ViVj)
–)

if (ui; uj are in the same row) then
RowInhibition := RowInhibition – δ

else if (ui, uj are in the same column) then
ColumnInhibition := ColumnInhibition – δ

else if (ui, uj form a knot) then
KnotInhibition := KnotInhibition – δ

otherwise
DiagonalExcitation = DiagonalExcitation – δ

endfor; endfor; endfor; endfor

η is the learning rate parameter. Phase+(s) normally means to run the net-
work relaxation process on input s with the output clamped (this provides the

146 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

teaching input, the supervision in supervised learning). Phase-(s) means run
the network relaxation on input sequence s with the output unclamped. Simi-
larly, the +,– superscripts refer to the correlations gathered in the clamped
and unclamped phases of learning. (In our described experiments the net-
works contain no hidden units, and therefore no distinct Phase+(s) relaxation
is needed. Instead, the (ViVj)

+ numbers are simply and quickly calculated
from a vector representing the desired network outputs

4.6.2 Constructing the Weights from the Learning Variables. The
mapping from learning variables to connection weights is quite straightfor-
ward, and follows from the definition of the system energy function E given
in an earlier section.

The inhibitory weights used are exactly the corresponding global learning
variables, e.g., (wij := KnotInhibition) if the bases represented by units ui, uj
form a knot. For the other, excitatory connections, the DiagonalExcitation is
multiplied by the value returned by a distance function applied to i and j. The
unit bias terms Ii are not affected by the learning procedure. They are deter-
mined by basepair identity as described earlier, along with a factor represent-
ing the distance (i – j), used to account for loop penalties.

4.7 Graph-Theoretic Analysis of the Methods

It is possible to explain the mapping of the 2˚RNAproblem onto neural net-
works in terms of the mathematical theory of circle graphs and edge-adjacen-
cy graphs, and thereby to relate the problem to a set of well-known combina-
torics problems.

Consider an RNA sequence S: s1s2 … sn, where si is one of G, C, A, or
U. A secondary structure P for S may be represented by a circle graph G,

STEEG 147

Linear RNA sequence
with knot(i,j,k,l)

edge x has head=i tail=j
edge y has head=k tail=l

x and y intersect

Edge(x',y')

i

j

k

l

x
y x'

y'

1 ni jk l

Figure 5: Graph theoretical interpretation of RNA secondary structure. On the left is
a linear representation of the RNA sequence 1-n with a knot involving i,j,k and l. In
the center is a circle graph (Referred to as G in the text) derived from the linear se-
quence. On the right is an edge adjacency graph (G' in the text) derived from the cir-
cle graph.

wherein the n nodes are points around a circle and the edges (i, j) correspond
to basepairs (i, j). (See Figure 5.) Edges that cross correspond to knots. All of
the substructure types and constraints on structures defined in Section 2 may
be described in terms of the circle graph. (Details may be found in [Nussinov
and Jacobson, 1980; Takefuji et al., 1990].)

Consider next a graph G' with the number of nodes equal to the number
of edges in G, and an edge (x', y') in G' for each pair of edges x = (i, j), y =
(k, l) in G that intersect. G' is the edge-adjacency graph for G. (See Figure
5.)

It is clear from the above that the 2˚RNAproblem is closely related to the
problem of finding the maximal independent set (the largest set of nodes
such that none of them are connected to another node in the set) of the edge
adjacency graph G' of a circle graph G for an RNA sequence S. Takefuji and
coworkers [Takefuji et al., 1990] designed a neural network that finds locally
optimal solutions of the general graph MIS problem, and pointed out the
connection to predicting RNA structure.

While the similarity to the graph theoretic problem provides useful in-
sights into the essential complexity of the 2˚RNAproblem, it is important to
recognize the limits of this similarity. To solve the graph MIS problem, even
exactly (an NP-complete task), corresponds to finding the largest set of pos-
sible basepairs such that none of them form knots. Clearly, this is not neces-
sarily the optimal RNA secondary structure. Some attempt must be made to
represent different stacking energies, the contribution of one stem to another
in a multiple loop, and other real biochemical and physical constraints. Such
attempts were made in our work, and machine learning was made central to
our model in order to further refine the representation, but there is room for
future work in exploring, possibly through graph theory, better problem rep-
resentations for parallel networks.

4.8 Evaluating Models and Mappings

Having defined the particular kind of one-layer neural network model
used, and the mapping of the 2˚RNAproblem onto the network model, it is
instructive to review the nature of the constraints and the information flow
within problem representations and some of the issues in representing in par-
ticular the RNA molecule and the molecular folding process.

4.8.1 Global and Local, First-Order and Higher-Order.When analyz-
ing the constraints inherent in a problem, and before choosing a representa-
tion, one may consider three dimensions along which the adequacy of a rep-
resentation (and hence a solution) will be judged. These three dimensions are
locality, order, and completeness ofinformation.

A representation for molecular structure prediction may capture simulta-
neously information on all parts of the molecule, or it may only represent a
piece at a time. We say that a representation is local if it contains information

148 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

from only a section of k elements (bases, or amino acids) at any time. It is
global if k = length(molecule). A representation is:

1. first-order if it captures interactions between primitive elements. In the
2˚RNAproblem, this means it captures base-pairing.

2. second-orderif it captures interactions between interactions between ele-
ments. For example, the representation of stems, as resulting from interac-
tions between basepairs, is second order.

3. third-order if it captures interactions between second-order objects. The
representation of thermodynamic competition between possible RNA sub-
structures is third-order.

4. nth-order, generally, if it captures interactions between (n-1)st-order ob-
jects and events.

Completeness refers to how much of the information, in a given local
“window” and of a particular order, is captured.

Obviously, one ought to strive for a global, complete, and higher-order
representation of a problem. Also obvious is that there is a trade-off in-
volved: The more global and complete a representation is, and the higher its
order, the higher is the computational complexity.

The serial algorithms for RNA secondary structure prediction are slow
precisely because they compute with higher-order information in finding op-
timal substructures, and they do this serially over the entire molecule. A se-
quential computer generally can act globally only by covering a section at a
time and iterating over the whole sequence, and this leads to long running
times. Generally, the (non-neural) parallel algorithms do not differ drastically
in their logical structure from the serial programs. Rather, they perform es-
sentially the same steps but do it over O(N) processors and thus achieve an
O(N) time savings.

The other work with neural nets on molecular structure, including Qian
and Sejnowski’s protein secondary structure prediction project [1988] (and
see also [Bohr et al., 1988]) is based on local approaches. Sejnowski used
feed-forward nets which captured only local (k = 13) information. The fairly
low accuracy of local methods (of which neural net methods are the best)
and the surprising fact that, as Qian and Sejnowski discovered, higher-order
representations did not seem to raise the predictive accuracy, indicate that
more global information must be captured, perhaps using global constraint-
satisfaction [Friedrichs and Wolynes 1989] or pattern recognition [Greller et
al 1991]. Research groups also use local representations and neural networks
to predict local aspects of protein tertiary structure [see Bohr et al., 1990 and
Holbrook, Muskal and Kim, this volume]. In RNA secondary structure, glob-
al interactions are probably more common than in protein secondary struc-
ture, and absolutely must be captured in the representation used by any com-

STEEG 149

putational method.
The neural net models used herein are intended to be global and higher-

order. The representation is explicitly higher-order, as the primitives (the pro-
cessing units) stand for possible basepairs. Connection weights between the
(2nd-order) units represent constraints on substructure types and competition
between possible structures, which is third-order information. This premise
implies a particular hardware complexity: O(N2) units and O(N3) or O(N4)
connections, depending on how much of, and how globally, the third-order
relationships are to be captured. (All of the 2nd-order information is repre-
sented, for the whole molecule, thus requiring N(N–1)/2 units.)

This hardware complexity is very expensive — prohibitively so, for very
large RNA molecules. Thus one of the long-term goals of this project is to
find ways, using separate processing stages, approximation methods, and
forms of “time-sharing” on parallel hardware, to reduce this hardware cost
significantly.

On the other hand, this neural net approach offers a large potential advan-
tage in terms of complexity. It is believed that the costs of computation on
this problem are “paid all at once”, in the amount of parallel hardware, when
using these methods. There are no additional incremental orders of complex-
ity addedwhen more general structures are handled. Relaxing an assumption
about the energy contribution of loops, or about the complexity of multiple
loops that are allowed, for example, can raise the runtime complexity of a se-
rial algorithm from O(N3) to O(N6) or worse; handling the general case —
all secondary structures are possible — mandates an exponential algorithm.
However, to handle the general case with the simple model presented in this
report requires only an O(N2)-processor, fully-connected Hopfield net.

5. Experiments and Results

5.1 General Assumptions and Methodology

In the main set of experiments the basic problem representation outlined in
Section Five, with O(N2) units, was used. The RNA sequences were limited
to a standard length of 30 bases. In particular, the first thirty bases of each of
41 tRNAs were used (35 training, 5 test, and 1 for playing around with).
These truncated sequences do not represent autonomous naturally-occurring
molecules. However, in order to make the experiments more manageable,
this limitation was considered necessary.

Because the 30-base sequences do not occur naturally except as compo-
nents, there are no published secondary structures for them. Therefore, the
secondary structures used in the training set of the supervised learning exper-
iment were those determined by Zuker’s serial program for RNA secondary
structure prediction, described in [Zuker and Stiegler, 1981]. The Zuker pro-

150 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

gram is widely used and we assume it can be trusted to find the best struc-
tures for such very small sequences.

As mentioned in an earlier section, in these experiments we did not repre-
sent the local context effects on stacking energies. This omission was made
for the sake of simplicity, and it did not prevent the nets from achieving good
results on small RNAs (length 30, and, in a few preliminary experiments
with our multiresolution model, lengths from 100 to 130). However, success
on much longer sequences probably requires the local context information,
or indeed a very different problem-to-network mapping.

5.1.1 Update Algorithm and Annealing Schedule.The network relax-
ation algorithm used in all experiments was the MFT algorithm described in
Sections Four and Five. A sweep through the network consisted of N(N –
1)/2 node updates; the choice of which node to update was made randomly
each time. The updating was also asynchronous. The network was run for a
given number of sweeps, unless stability (thermodynamic equilibrium) was
achieved before reaching that number; a check for stability was made after
each sweep.

In every experiment, the annealing schedule followed the same basic
form: Tinit = 100, Tfinal = 1, and ∆T = (Tinit+ 1)/nsweepsfor each sweep.

5.1.2 Dissimilarity and Predictive Accuracy. We define D, the structural
dissimilarity between two RNA secondary structures (true or predicted) to be
the proportion of possible basepairings on which they disagree:

where aij and bij are the units in row i and column j in the secondary struc-
ture matrix representation of the network and of the known secondary struc-
ture, respectively. The round() function rounds a number n ∈ [0, 1] to 0 or 1.

Predictive accuracy of a method for a given RNA sequence is therefore
measured as the number of correct positional matches between the secondary
structure matrix (prediction) and the actual known secondary structure, as a
percentage of the total number of cells in the matrix. That is, it is 100/D.

There are many ways to look at the problem of dissimilarity among se-
quences and structures. It is true that tRNAs are known to share a particular
overall shape — often called the “clover leaf” pattern — that is, a main stem
and loop with three smaller subordinate stem/loop structures. However, it is
very important to note that the forty tRNAs used in these experiments differ
significantly both in terms of base composition and the particular places in
the sequences where the stems occur. They also vary somewhat in length —
from 107 to 131 bases.

The initial subsequences used in the first experiments display even more
diversity than the full-length tRNAs. Their thermodynamically optimal sec-

2

1

2

11

1 [()]

()

round a b

N N
ij ij

j i

N

i

N −
−= +=

−

∑∑

STEEG 151

ondary structures, as determined by the Zuker program, do not all share the
same overall structure. Some have one stem, others have two or three. The
positions of the stems and loops also differ greatly. These general judgments
concerning dissimilarity are valuable, but quantitative measures are also
needed. The measurement of sequence homology is of course a standard tool
in molecular biology. However, it is not especially relevant in these experi-
ments, as sequences with a high degree of homology can produce very differ-
ent secondary structures, and sequences with very similar structures can have
a low degree of homology. Therefore, the positional matching measure of
structure similarity described above, though not an ideal measure, is prefer-
able in this case. The average structural dissimilarity among the training and
test structures for the length-30 subsequences experiments was calculated to
be 83 percent.

5.2 Pre-set Connection Weights, No Learning

The first experiment tested the predictive ability and examined the dynamics
of a network with pre-set connection weights processing a particular 30-base
sequence (initial subsequence of a tRNA from Clostridium pasteurianum).

The weights were set by hand, based on rough calculations of Hopfield-
energy values for some desired network states corresponding to “legal”
(though not actual) RNA secondary structures and the results of 20 trial-and-
error runs of the simulator. The sequence was read into the network, the bias
terms Ii initialized, and the network allowed to run the MFT algorithm for
500 sweeps through the net. Figure 6 is a plot of the number of sweeps
against predictive accuracy for the simulation described.

152 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

0 100 200 300 400 500

0

20

40

60

Iterations through the network

Accuracy
(% correct)

Figure 6: Predictive accuracy as a function of relaxation time, for the network with
pre-set weights, with no learning

Clearly, the preset network made some progress from a random state to-
wards reasonable guesses at secondary structure. However, the predictive ac-
curacy remained low (less than 60%), and the best solution obtained was not
stable: after 250 iterations the network moved toward less optimal structures.
The next section shows the degree to which learning improved the accuracy
and stability of structure prediction.

5.3 Learning the Connection Weights

The second experiment was intended to test the capability of the basic MFT
network to learn to predict RNA secondary structure, and to use the learned
information to produce faster, more accurate, and more stable predictions
than the network whose weights were preset.

5.3.1 The Learning Algorithms.The MFT learning algorithm described
in Sections 4 and 5, modified to fit the small learning space approach, was
used in the learning experiments. A set of 35 sequence/structure samples was
used for supervised learning. Each sample was run through the “plus” and
“minus” (clamped and unclamped) phases once. Thus there were only 35
learning passes in each experiment. The global learning variables, from
which the connection weights were derived, were updated after each pass. A
pass using the test sequence, the 30-base segment from the C. pasteurianum
tRNA, was tried at various intervals throughout the learning experiment to
test the abilities of the changing network. Note that a) the test sequence was
not among the training sequences, and b) the learning variables and weights
were not changed after a pass using the test sequence.

In the learning experiments, the network’s initial weights were set to a

STEEG 153

0 10 20 30 40

20

40

60

80

100

Number of learning trials

Test Accuracy
(% correct)

Figure 7: Predictive accuracy as a function of number of learning passes, 500 itera-
tions on learning trials, 200 iterations on test.

configuration that achieved better than random performance (15%) on a se-
quence that was neither a test nor a training sequence.

5.3.2 Results. Two experiments were performed, on five different test se-
quences: initial subsequences from tRNAs from C. pasteurianum, Bacillus
megaterium, Streptococcus faecalis, Mycoplasma capricolum, and My-
coplasma mycoides capri. The experiments used the same initial weight
configuration, the same learning rate, and the same annealing schedule. The
results were very similar, so we describe the results for the same C. pasteuri-
anumtRNA fragment used earlier.

In each experiment 200 sweeps were made through each annealing (minus
phase) of the training sample. Only 100 sweeps were made through the net-
work during the relaxation on the test sequence. The next diagram (Figure 7)
is a plot of the accuracy of performance of the network after 0; 5; 15; 25; and
35 learning passes. Figure 8 displays network activation (output) diagrams
for these snapshot points. Figure 8d is the correct structure (as predicted by
the Zuker program). It is clear that the network did improve its performance
drastically over the learning period. Also, its performance became quite
good: It achieved perfect predictive accuracy after 35 learning passes. It is
interesting also to note the steep improvement during the first 5 passes.

In a recent paper, Takefuji et al. [1990] report similar results with their
non-learning neural net method for solving near-MIS of circle graphs. Their
method found good structures (in 2 cases, structures more stable than those
predicted by serial methods) for three RNA sequences of lengths 38; 59; and
359 bases.

6. Conclusions and Future Work

6.1 Conclusions

This report presents a new class of methods for predicting RNA secondary
structures from sequences. The methods use artificial neural networks based

154 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

c da b

Figure 8. Network after 0; 5; 15 and 25; and 35 Learning Passes. (a) represents
the net after 0 learning sweeps, (b) is 5 sweeps, (c) shows the net after both
15 and 25 sweeps, and (d) shows the output at the end, after 35 sweeps.

on the Boltzmann Machine model and the Mean Field Theory deterministic
approximations to the Boltzmann Machine.

The methodology described in this paper is:

• Formulate the 2˚RNAproblem as problem of optimization and search.

• Map the search problem onto a Hopfield network (typically a method of
highly parallel local search). This mapping can be understood in terms of
some simple combinatorics and graph theory.

• Avoid the problem of Hopfield local minima by using the MFT network
training and relaxation algorithms, which implement a deterministic and
“analog” (continuous) version of the stochastic Boltzmann Machine.

• Use the MFT learning algorithm and a highly-structured connection
weight-sharing scheme to adjust a small set of parameters in the network’s
representation of the sequence-to-structure mapping, in order to improve
performance over time.

After an introduction to the problem and a review and analysis of search
techniques and neural network algorithms, the results of some preliminary
experiments were reported.

Experiments were performed on a set of 35 tRNA sequences and frag-
ments thereof, using neural network simulators implemented on serial com-
puters. Conclusions drawn from the experiments include:

• At least on small RNA sequences, a properly-configured MFT neural net-
work can learn a few global parameters from which connection weights
can be derived that enable the accurate prediction of secondary structures.
Related work on neural network methods without learning [Takefuji et al.,
1990] demonstrates that these methods may also work on moderate-sized
RNAs.

• The learning can be very efficient. 35 learning examples, each passed
through the network once, sufficed in the experiments. On each learning
pass, fewer than 400 iterations through the network always sufficed. This
fast and powerful learning is made possible by a method that constructs a
very small learning space (4 or 5 variables) for an RNA secondary struc-
ture network. This method also enables a degree of scale-invariant learn-
ing.

• With the learned weights, the networks were able to converge quickly to
exactly accurate solutions on the test sequences. 200 or fewer iterations
were required.

• A degree of generalization is possible. The test sequences were not part of
any of the learning sample sets, and in fact differed significantly from
many of the learning samples.

STEEG 155

6.2 Future Work

6.2.1 Interpreting the Network Dynamics; Representing Molecular
Dynamics. The dynamics of MFT networks configured for the 2˚RNAprob-
lem are interesting enough to warrant further study. In particular, one would
like to discover whether the dynamics of a relaxation search implement a
particular, realistic folding pathwayfor an RNA molecule. The networks
seemto mirror Martinez’s kinetically-driven sequential cooperativity search:
large stems form first and constrain the set of possible small stems; and at
each stage the most thermodynamically favored stems appear. It would be in-
teresting to investigate whether such behavior is inherent in the MFT ap-
proach, or whether it is an artifact of particular sequences or particular pa-
rameter settings.

In general, the currently prevailing models for molecular structure predic-
tion with neural networks share an essentially staticapproach to the problem.
In other words, a mapping is sought between sequence and final secondary or
tertiary structure, making no use of intermediate stages of folding. Future re-
search should explore ways to integrate kinetic effects and dynamical pro-
cesses.

6.2.2 Interpreting Continuous Activation Levels., Throughout this pro-
ject, we chose to round the activation states of the units to 0 or 1 when read-
ing them as output. The MFT relaxation algorithm also tends to drive the ac-
tivation values very close to their extrema. Thus all discussion was in terms
of elements being paired or unpaired. However, it has been pointed out that
in many cases network activation levels, read as real numbers, can be inter-
preted in terms of probabilities. Perhaps the network models could be used,
like several other RNA structure prediction programs, to predict ensembles
of near-optimal structures.

6.2.3 Bringing More Knowledge to Bear on the Problem. The simple
representations of ribnucleotides (or amino acids) used typically in computer
programs are very limited. A ribonucleotide is in reality more than a symbol;
it is a molecule, with physical structure and several important physical and
chemical properties that can be measured. Good simulation/prediction pro-
grams should probably represent these structural units as vectors, linear com-
binations of basis vectors representing physical and chemical characteristics,
like molecular weight, steric configuration, charge, magnetic dipole, and hy-
drophobicity [Nakai, et al 1988; Hunter, 1992].

Phylogeny is another source of information. How can knowledge of the
structure and sequence of one molecule be used to predict the structure of an-
other molecule whose sequence is homologous or whose function is the
same? Major et al [1991] describe a system for RNA secondary and tertiary
structure prediction that combines geometric, energetic, phylogenetic and
functional information within a symbolic constraint satisfaction framework.

156 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Their results are impressive and lead one to wonder whether the addition of
statistical induction (machine learning) methods might refine their existing
knowledge base and produce even better results.

6.2.4 Tests on Longer RNA Sequences.Obviously, the methods de-
scribed herein should be tested on larger RNAs, despite the space complexity
problems afflicting the current versions of the basic algorithm (see below).
The adaptive optimization approach seems to perform very well on small
pieces of RNA when we have a reasonably large set of representative train-
ing data. However, a very similar but non-adaptive method [Takefuji, et al,
1990] has also apparently been made to work well on some small RNAs. I do
not believe that neural networks with weights set “by hand”, or graph-pla-
narization algorithms that ignore thermodynamic subtleties, will scale up
well to larger structure prediction problems. Larger scale experiments with
adaptive algorithms will help us to determine whether a sufficient number of
RNA sequences and solved structures are available to allow machine learn-
ing methods to refine and augment the very incomplete communal knowl-
edge --- theoretical and empirical --- on the thermodynamics, kinetics, and
molecular evolutionary history of RNA folding.

6.2.5 Coarse-Grained and Multiresolution Search. The representation
described in Section 4 is useful because it is based on an obvious mapping of
the RNA secondary structure matrix onto a neural net model, and is therefore
easily understood. However, it is not very efficient in its use of hardware
(simulated hardware, in the near term). The representation employs O(N2)
processing units. (In fact, it employs exactly N(N–1)/2 units.) We have begun
to develop ways to approximate such large nets with much smaller ones, by
making assumptions about the covariance of members of clusters of units
and then using single units to represent clusters of units. In the RNA sec-
ondary structure prediction problem, the clusters of interest are those diago-
nal clusters of units (corresponding to diagonals in the 2˚RNAmatrix) repre-
senting potential stemsin the secondary structure.

The key to making such coarse-grained or multiresolution methods work,
indeed the key to making any neural network method successful in molecular
structure prediction, is to find a sensible mapping of the problem onto the net-
work. Neural networks offer challenges in representing the static and dynamic
structures of RNA (or protein), but success brings the benefits of massive par-
allelism and the simple, computable, and differentiable error measures needed
for gradient descent and adaptive improvement in structure prediction. Solving
the representational problems will lead to an entirely new class of fast, parallel,
adaptive methods for predicting and simulating physical systems.

Notes
1. Much of the notation and many of the definitions in this section are

adopted from [Sankoff et al., 1983]. We found their exposition on secondary

STEEG 157

structure types and constraints to be the clearest by far, and we hope that
their notational conventions become a standard in the field. Their text is
copyright©, 1983, American Telephone and Telegraph Company, and used
by permission.

Acknowledgements

The author would like to thank Dr. Geoffrey Hinton for helpful and in-
sightful suggestions and critiques, and Dr. Rick Collins for his careful review
of the original thesis. Thanks are also due to Dr. Carol Miernicki Steeg and
Sarah Lesher for proofreading and helpful discussions and to Desirée Sy for
editing and formatting help. The author appreciates the help of Raj Verma,
Sudarsan Tandri, and Tim Horton with graphics and diagrams and Carol
Plathan and Marina Haloulos with Macintosh tasks. Conversations with Dr.
Larry Greller, Dr. F. Ray Salemme, and the UofT Connectionist Research
Group have been very helpful in clarifying some ideas first described in the
1989 M. Sc. thesis.

Finally, the author gratefully acknowledges the support of the Natural Sci-
ences and Engineering Research Council of Canada, the University of Toron-
to and its Connaught Fellowship Fund, and the E.I. Du Pont de Nemours &
Co. in Delaware.

References
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985) A Learning Algorithm for Boltz-

mann Machines. Cognitive Science, 9:147-169.

Altona, C., van Beuzekom, A. A., Orbons, L. P. M., and Pieters, M. L. (1988).Minihairpin
Loops in DNA: Experimental and Theoretical Studies. In Biological and Artificial Intelligence
Systems, pages 93-124. ESCOM Science Publishers B.V., Kingston, New York.

Anderson, P. W. (1988). Spin Glass Hamiltonians: A Bridge Between Biology, Statistical
Mechanics and Computer Science. In Pines, D., editor, Emerging Syntheses in Science. Addison-
Wesley, Santa Fe, NM.

Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M., Lautrup, B., Norskov, L., Olsen, O. H., and
Petersen, S. B. (1988). Protein Secondary Structure and Homology by Neural Networks: The
Alpha-helices in Rhodopsin. FEBS Letters, 241:223-228.

Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M. J., Fredhom, H., Lautrup, B., and Petersen, S.
B. (1990). A Novel Approach to Prediction of the 3-Dimensional Structures of Protein Back-
bones by Neural Networks. FEBS Letters, 261:43-46.

Eppstein, D., Galil, Z., and Giancarlo, R. (1988). Speeding up Dynamic Programming. In
Proceedings: Foundations of Computer Science. IEEE.

Friedrichs, M. S. and Wolynes, P. G. (1989). Toward Protein Tertiary Structure Recognition
by Associative Memory Hamiltonians. Science, 246:371-373.

Greller, L. D., Steeg, E. W., and Salemme, F. R. (1991). Neural Networks for the Detection
and Prediction of 3D Structural Motifs in Proteins. In Proceedings of the Eighth International
Conference on Mathematical and Computer Modelling, College Park, Maryland.

158 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Hellstrom, B. J. and Kanal, L. N. (1990). Asymmetric Mean-field Neural Networks for Mul-
tiprocessor Scheduling. Computer Science UMIACS-TR-90-99, University of Maryland, Col-
lege Park, Maryland.

Holley, L. H. and Karplus, M. (1989). Protein Secondary Structure Prediction with a Neural
Network. Proceedings of the National Academy of Sciences U.S.A., 86:152- 156.

Hopfield, J. and Tank, D. (1985). Neural Computation of Decisions in Optimization Prob-
lems. Biological Cybernetics, 52:141-152.

Hopfield, J. J. (1982). Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proceedings of the National Academy of Sciences U.S.A., 79:2554-
2558.

Hunter, L. 1992 . Representing Amino Acids with Bitstrings. Submitted to Computer Appli-
cations in the Biosciences; code available by electronic mail from hunter@nlm.nih.gov.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated Anneal-
ing. Science, 220:671-680.

Major, F., Turcotte, M., Gautheret, D., Lapalme, G., Fillion, E., and Cedergren, R. (1991)
The Combination of Symbolic and Numerical Computation for Three-dimensional Modeling of
RNA. Science, 253:1255-1260.

Martinez, H. M. (1984). An RNA Folding Rule. Nucleic Acids Research, 12:323-334.

Martinez, H. M. (1988). An RNA Secondary Structure Workbench. Nucleic Acids Research,
16(5):1789-1798.

McClelland, J. L., Rumelhart, D. E., and the PDP Research Group (1986). Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition. Volume II. Bradford
Books, Cambridge, MA.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equations of State Calculations by Fast Computing Machines. Journal of Chemical Physics,
6:1087-1091.

Nakai, K., Kidera, A., and Kanehisa, M. (1988) Cluster Analysis of Amino Acid Indices for
Prediction of Protein Structure and Function. Protein Engineering, 2(2):93-100.

Nussinov, R. and Jacobson, A. (1980). Fast Slgorithm for Predicting the Secondary Structure
of Single-stranded RNA. Proceedings National Academy of Sciences, U.S.A., 77:6309-6313.

Nussinov, R., Piecznic, G., Grigg, J. R., and Kleitman, D. J. (1978). Algorithms for loop
matchings. SIAM Journal of Applied Mathematics, 35(1):68-82.

Peterson, C. and Anderson, J. (1987). A Mean Field Theory Learning Algorithm for Neural
Networks. MCC Technical Report EI-259-87, Microelectronics and Computer Technology Cor-
poration, Austin, TX.

Peterson, C. and Soderberg, B. (1989). A New Method for Mapping Optimization Problems
onto Neural Networks. International Journal of Neural Systems, 1.

Pipas, J. M. and McMahon, J. E. (1975). Methods for Predicting RNA Secondary Structures.
In Proceedings of the National Academy of Sciences, U.S.A., volume 72, pages 2017-2021.

Pleij, C. W. A. (1990) Pseudoknots: a New Motif in the RNA Game. Trends in Biochemical
Sciences, 15:143-147.

Qian, N. and Sejnowski, T. J. (1988). Predicting the Secondary Structure of Globular Pro-
teins Using Neural Network Models. Journal of Molecular Biology, 202:865-884.

Sankoff, D., Kruskal, J. B., Mainville, S., and Cedergren, R. J. (1983). Fast Algorithms to
Determine RNA Secondary Structures Containing Multiple Loops. In Sankoff, D. and Kruskal,

STEEG 159

J. B., editors, Time Warps, String Edits, and Macromolecules: The Theory and Practice of Se-
quence Comparison. Addison-Wesley, Reading, MA.

Steeg, E. W. (1989). Neural Network Algorithms for RNA Secondary Structure Prediction.
Master’s thesis, University of Toronto Computer Science Dept.

Steeg, E. W. (1990). Neural Network Algorithms for RNA Secondary Structure Prediction.
Technical Report CRG-TR-90-4, University of Toronto Computer Science Dept., Toronto, Cana-
da.

Steeg, E. and Takefuji, I. (1991) Comments on Parallel Algorithms for Finding a Near Maxi-
mal Independent Set of a Circle Graph; and Author's Reply. IEEE Transactions Neural Net-
works, 2(2):328-329.

Stein, D. L. (1985). A Model of Protein Conformational Substates. Proceedings of the Na-
tional Academy of Sciences, U.S.A., 82:3670-3672.

Stryer, L. (1981). Biochemistry, 2nd Edition. W. H. Freeman and Company, San Francisco.

Studnicka, G. M., Rahn, G. M., Cummings, I. W., and Salser, W. A. (1978). Computer Meth-
ods for Predicting the Secondary Structure of Single-stranded RNA. Nucleic Acids Research,
5(9):3365-3387.

Takefuji, I., Chen, L.-L., Lee, K.-C., and Huffman, J. (1990). Parallel Algorithms for Find-
ing a Near-maximum Independent Set of a Circle Graph. IEEE Transactions on Neural Net-
works, 1(3):263-267.

Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., and
Gralla, J. (1973). Improved Estimation of Secondary Structure in Ribonucleic Acids. Nature
New Biology, 246:40-41.

Tinoco, I., Uhlenbeck, O. C., and Levine, M. D. (1971). Estimation of Secondary Structure
in Ribonucleic Acids. Nature (London), 230:362.

Waterman, M. S. (1978). Advances in Mathematics: Supplementary Studies Vol. I, Studies in
Foundations and Combinatorics. Academic Press, New York.

Waterman, M. S. and Smith, T. F. (1978). RNA Secondary Structure: A Complete Mathe-
matical Analysis. Mathematical Biosciences, 42:257-266.

Watson, J. D. and Crick, F. H. C. (1953). Molecular Structure of Nucleic Acids. A Structure
for Deoxyribose Nucleic Acid. Nature (London), 171:737-738.

Wilcox, G. L. and Poliac, M. O. (1989). Generalization of Protein Structure from Sequence
Using a Large Scale Backpropagation Network. UMSI 89/22, University of Minnesota Super-
computer Institute, 1200 Washington Avenue South, Minneapolis, MN 55415.

Wolpert, D. H. (1990) Constructing a Generalizer Superior to NETtalk via a Mathematical
Theory of Generalization. Neural Networks, 3(4):445-452.

Zuker, M. and Stiegler, P. (1981). Optimal Computer Folding of Large RNA Sequences
Using Thermodynamics and Auxiliary Information. Nucleic Acids Research, 9:133-148.

160 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

4

Predicting Protein Structural Features

With Artificial Neural Networks

Stephen R. Holbrook, Steven M. Muskal

and Sung-Hou Kim

1. Introduction

The prediction of protein structure from amino acid sequence has become
the Holy Grail of computational molecular biology. Since Anfinsen [1973]
first noted that the information necessary for protein folding resides com-
pletely within the primary structure, molecular biologists have been fascinat-
ed with the possibility of obtaining a complete three-dimensional picture of a
protein by simply applying the proper algorithm to a known amino acid se-
quence. The development of rapid methods of DNA sequencing coupled
with the straightforward translation of the genetic code into protein se-
quences has amplified the urgent need for automated methods of interpreting
these one-dimensional, linear sequences in terms of three-dimensional struc-
ture and function.

Although improvements in computational capabilities, the development of
area detectors, and the widespread use of synchrotron radiation have reduced
the amount of time necessary to determine a protein structure by X-ray crys-
tallography, a crystal structure determination may still require one or more
man-years. Furthermore, unless it is possible to grow large, well-ordered

crystals of the protein of interest, X-ray structure determination is not even
an option. The development of methods of structure determination by high
resolution 2-D NMR has alleviated this situation somewhat, but this tech-
nique is also costly, time-consuming, requires large amounts of protein of
high solubility and is severely limited by protein size. Clearly, current exper-
imental methods of structure determination will not be able to cope with the
present and future need for protein structure determination.

Efforts toward protein structure prediction have come from two general
directions and their hybrids. The first, a molecular mechanics approach, as-
sumes that a correctly folded protein occupies a minimum energy conforma-
tion, most likely a conformation near the global minimum of free energy.
Predictions are based on a forcefield of energy parameters derived from a va-
riety of sources including ab initio and semi-empirical calculations and ex-
perimental observations of amino acids and other small molecules [Weiner,
et al 1984]. Potential energy is obtained by summing the terms due to bond-
ed (distance, angle, torsion) and non-bonded (contact, electrostatic, hydrogen
bond) components calculated from these forcefield parameters [Weiner &
Kollman, 1981]. This potential energy can be minimized as a function of
atomic coordinates in order to reach the nearest local minimum. This method
is very sensitive to the protein conformation at the beginning of the simula-
tion. One way to address this problem is use molecular dynamics to simulate
the way the molecule would move away from that (usually arbitrary) initial
state. Newton’s equations of motion are used to describe the acceleration of
atoms in a protein with respect to time; the movement in this simulation will
be toward low energy conformations. The potential energy of the molecule
can also be minimized at any point in a dynamics simulation. This method
searches a larger proportion of the space of possible confirmations.

Nevertheless, only through an exhaustive conformation search can one be
insured to locate the lowest energy structure. Even restricting the representa-
tion of a confirmation of a protein as much as possible, to only a single point
of interest per amino acid and two angles connecting the residues, the combi-
natorial aspect of an exhaustive search lead to difficult computational prob-
lems [Wetlaufer, 1973]. Under the further simplification of restricting each
atom in the protein chain to a discrete location on a lattice [Covell & Jerni-
gan, 1990] and searching the conformation space with very simple energy
equations, the exhaustive search method is feasible for only small proteins.
Alternatively, conformational space may be sampled randomly and sparsely
by monte carlo methods with the hope that a solution close enough to the
global energy minimum will be found so that other methods will be able to
converge to the correct conformation. Given an approximately correct model
from either monte carlo searches or other theoretical or experimental ap-
proaches, the technique of molecular dynamics has become the method of
choice for refinement, or improvement, of the model. This approach allows

162 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

the moving molecule to overcome some of the traps of local energy minima
in its search for a global minimum.

In general, the energetics approach of molecular mechanics is fraught
with problems of inaccurate forcefield parameters, unrealistic treatment of
solvent, and landscapes of multiple minima. It appears that this direction will
be most valuable in combination with other methods which can provide an
approximate starting model.

The second major focus of research toward predicting protein structures
from sequence alone is a purely empirical one, based on the databases of
known protein structures and sequences. This approach hopes to find com-
mon features in these databases which can be generalized to provide struc-
tural models of other proteins. For example, the different frequencies at
which various amino acid types occur in secondary structural elements; he-
lices, strands, turns and coils, has led to methods [Chou & Fasman, 1974a;
Chou & Fasman, 1974b; Garnier, Osguthorpe & Robson, 1978; Lim, 1974a;
Lim, 1974b] for predicting the location of these elements in proteins. Even
more powerful and now widely used is the prediction of tertiary structure by
sequence homology or pattern matching to previously determined protein
structures [Blundell, Sibanda & Pearl, 1983; Greer, 1981; Warme, et al,
1974] or structural elements, such as zinc binding fingers, helix-turn-helix
DNA binding motifs and the calcium binding EF hand. A portion of a target
protein that has a sequence similar to a protein or motif with known structure
is assumed to have the same structure. Unfortunately, for many proteins there
is not sufficient homology to any protein sequence or sub-sequence of known
structure to allow application of this technique. Even proteins thought to
have similar structures on functional grounds may show such little sequence
similarity that it is very difficult to determine a proper sequence alignment
from which to propose a molecular model.

Thus, an empirical approach, which derives general rules for protein
structure from the existing databases and then applies them to sequences of
unknown structure currently appears to be the most practical starting point
for protein structure prediction. Various methods have been used for extract-
ing these rules from structural databases, ranging from visual inspection of
the structures [Richardson, 1981], to statistical and multivariate analyses
[Chou & Fasman, 1974; Krigbaum & Knutton, 1973]. Recently, artificial
neural networks have been applied to this problem with great success [Crick,
1989]. These networks are capable of effecting any mapping between protein
sequence and structure, of classifying types of structures, and identifying
similar structural features from a database. Neural network models have the
advantage of making complex decisions based on the unbiased selection of
the most important factors from a large number of competing variables. This
is particularly important in the area of protein structure determination, where
the principles governing protein folding are complex and not yet fully under-

HOLBROOK, MUSKAL & K IM 163

stood. The researcher is then able to explore various hypotheses in the most
general terms, using the neural network as a tool to prioritize the relevant in-
formation.

The remainder of this review will discuss neural networks in general in-
cluding architecture and strategies appropriate to protein structure analysis,
the available databases, specific applications to secondary and tertiary struc-
ture prediction, surface exposure prediction, and disulfide bonding predic-
tion. Finally, we will discuss the future approaches, goals and prospects of
artificial neural networks in the prediction of protein structure.

2. Artificial Neural Networks

Artificial neural networks appear well suited for the empirical approach to
protein structure prediction. Similar to the process of protein folding, which
is effectively finding the most stable structure given all the competing inter-
actions within a polymer of amino acids, neural networks explore input in-
formation in parallel. . Inside the neural network, many competing hypothe-
ses are compared by networks of simple, non-linear computation units.
While many types of computational units exist, the most common sums its
inputs and passes the result through some kind of nonlinearity. Figure 1 illus-
trates a typical computational node and three common types of nonlinearity;
hard limiters, sigmoidal, and threshold logic elements. Nearly every neural
network model is composed of these types of computational units. The main

164 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 1: A computational node represented as a circle with weighted inputs and out-
put shown as arrows. The formula for summation of weighted input and bias (b) is
given, as well as three common functional forms of nonlinearity which may be used
by the node to determine output

W

Y

X
o

X
1

X
n-1

o
W

1
W

n-1

a a a

F(a)

SigmoidHard Limiter Threshold Logic

Y F

W Xi i
i

n

=

= −()
=

−

∑

()α

α β
0

1

differences exist in topology (node connectivity), methods of training, and
application. This article will focus primarily on one type of network, the
feedforward network trained with backpropagation for rule extraction pur-
poses. Networks are termed feedforward because information is provided as
input and propagated in a forward manner, with each computational unit in-
tegrating its inputs and “firing” according to its non-linearity. The following
sections will describe in more detail the characteristics of feedforward net-
works, the preferred method of training with backpropagation, and useful
techniques for network optimization.

2.1 Feedforward Networks

A typical feed-forward network is depicted in Figure 2. These networks
are often composed of two to three layers of nodes; input and output or input,
hidden, and output. Each network has connections between every node in
one layer and every other node in the layer above. Two layer networks, or
perceptrons, are only capable of processing first order information and con-
sequently obtain results comparable to those of multiple linear regression.
Hidden node networks, however, can extract from input information the
higher order features that are ignored by linear models.

Feedforward networks are taught to map a set of input patterns to a corre-
sponding set of output patterns. In general, a network containing a large
enough number of hidden nodes can always map an input pattern to its corre-
sponding output pattern [Rumelhart & McClelland, 1986]. Once such net-

HOLBROOK, MUSKAL & K IM 165

Figure 2. A three layer feedforward neural network. The circles represent the com-
putational nodes which integrate input from the preceding layer and transmit a sig-
nal to the next layer. Arrows represent weighted links (connections) between these
nodes which modulate incoming signals. The three layer network presented is the
most common, but additional layers are possible.

Output Units

Hidden Units

Input Units

works learn this mapping for a set of training patterns, they are tested on ex-
amples that are in some way different from those used in training. While
most feedforward networks are designed to maximize generalization from
training examples to testing examples, some networks are intentionally
forced to memorize their training examples. Such networks are then tested
with either an incomplete or subtly different pattern. The output of the net-
work will be the memory that best matches the input..

2.2 Training Procedure

The process of training a feedforward network involves presenting the
network with an input pattern, propagating the pattern through the architec-
ture, comparing the network output to the desired output, and altering the
weights in the direction so as to minimize the difference between the actual
output and the desired output. Initially however, the network weights are ran-
dom and the network is considered to be ignorant. While many algorithms
exist for training, clearly the most frequently used technique is the method of
backpropagation [Rumelhart, Hinton & Williams, 1986]. Backpropagation
involves two passes through the network, a forward pass and a backward
pass. The forward pass generates the network’s output activities and is gener-
ally the least computation intensive. The more time consuming backward
pass involves propagating the error initially found in the output nodes back
through the network to assign errors to each node that contributed to the ini-
tial error. Once all the errors are assigned, the weights are changed so as to
minimize these errors. The direction of the weight change is:

(1)

where Wij is the weight from node i to node j, ν is a learning rate, δj is an
error term for node j, Oi is either the output of node i or an input value if
node i is an input node. If the node j is an output node, then

(2)

with

(3)

where Fj
’ (netj) is the derivative of the nonlinear activation function which

maps a unit’s total input to an output value,Tj is the target output of the out-
put node and Oj is the actual output. If node j is an internal hidden node, then

(4)

The weight change as described in Equation 1 can be applied after each
example, after a series of examples, or after the entire training set has been
presented. Often momentum terms are added and weight changes are

δ δj j j k jk
k j

F net W= ′() ⋅ ⋅()
>

∑

net W Oj ij i
i

= ⋅()∑

δ j j j j jF net T O= ′() ⋅ −()

∆W Oij j i= ⋅ ⋅υ δ

166 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

smoothed to effect faster convergence times. Regardless of the training
recipe however, the main goal of the network is to minimize the total error E
of each output node j over all training examples p:

(5)

2.3 Network Optimization
Because the rules in most input-output mappings are complex and often

unknown, a series of architecture optimizing simulations are required when
testing each hypothesis. Examples of such optimizing experiments include
varying input representation, numbers of hidden nodes, numbers of training
examples, etc. In each case, some measure of network performance is evalu-
ated and tabulated for each network architecture or training condition. The
best performing network is chosen as that which performs the best on both
the training and testing sets.

With networks containing hidden nodes, training algorithms face the
problem of multiple-minima when minimizing the output error across all
training patterns. If the error space is rugged, as is often the case in hidden
node networks, the multiple-minima problem can be a serious one. To com-
bat this problem, researchers often permute their training and testing sets and
train a number of times on each set, while reporting the best performing net-
work for each simulation. The variance between training and testing sets as
well as between training sessions helps to describe the complexity of the
weight space as well as the input-output mapping.

Generally smooth trends in performance levels immediately point to opti-
mal network architectures. One nuisance to those who are designing net-
works to generalize from training examples to testing examples, however, is
the concept of memorization or overfitting: the network learns the training
examples, rather than the general mapping from inputs to outputs that the
training set exemplifies. Memorization reduces the accuracy of network gen-
eralization to untrained examples. Sure signs of undesired memorization be-
come apparent when the network performs much better on its training set
than on its testing set; and typically, this results when the network contains
far more weights than training examples. When undesired memorization re-
sults, the researcher is forced to increase the numbers of training examples,
reduce node connectivity, or in more drastic situations, reduce the number of
input, hidden, and/or output nodes. Increasing the number of training exam-
ples is by far the best remedy to the effects of memorization. But more often
than not, especially in the area of protein structure prediction, one is con-
strained with a relatively small database. If it is not possible to increase the
database of training examples, the next best choice is to reduce the network
connectivity. This, however, poses the problem of deciding on which connec-

E T Oj j
jp

= −()∑∑ 2

HOLBROOK, MUSKAL & K IM 167

tions to remove. Here, some have tried removing those connections that are
used the least or that vary the most in the training process. This process of
network pruning, however, often slows the already lengthy training process
and should be done with caution. Finally, reducing the number of network
nodes is the least desirable of all approaches since it often results in hiding
key information from the network, especially if the number of input nodes is
reduced. Similarly, reducing the number of hidden nodes often results in un-
acceptable input-output mappings; while reducing the number of output
nodes, often results in mappings that are no longer useful. Clearly, undesired
memorization is one of the greatest drawbacks with neural network comput-
ing. Until methods for alleviating the problem are developed, researchers are
forced to be clever in their design of representations and network architec-
ture.

Feedforward neural networks are powerful tools. Aside from possessing
the ability to learn from example, this type of network has the added advan-
tage of being extremely robust, or fault tolerant. Even more appealing is that
the process of training is the same regardless of the problem, thus few if any
assumptions concerning the shapes of underlying statistical distributions are
required. And most attractive is not only the ease of programming neural net-
work software, but also the ease with which one may apply the software to a
large variety of very different problems. These advantages and others have
provided motivation for great advances in the arena of protein structure pre-
diction, as the following sections suggest.

2.4 Protein Structure and Sequence Databases

Application of an empirical approach to protein structure prediction is en-
tirely dependent on the experimental databases which are available for analy-
sis, generalization and extrapolation. Since all of the studies discussed below
are dependent on these databases, a brief discussion of their contents is ap-
propriate.

The Brookhaven Protein Data Bank [Bernstein et al, 1977], or PDB, cur-
rently (April, 1990) contains atomic coordinate information for 535 entries.
These entries are primarily determined by X-ray crystallography, but some
more recent entries are from two-dimensional NMR and molecular modeling
studies. Of the 535 entries, 37 are nucleic acids, 10 are polysaccharides and
27 are model structures. Of the remaining entries many of the proteins are es-
sentially duplicated, with either minor amino acid changes due to biological
source or specific mutation or with different ligands bound. Taking these fac-
tors into account, one can estimate that the Protein Data Bank, currently con-
tains 180 unique protein coordinates sets. Besides the x, y, z coordinates of
the non-hydrogen atoms of the proteins and bound co-factors, the following
information is included in the Protein Data Bank entries: protein name, a list

168 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

of relevant literature references, the resolution to which the structure was de-
termined, the amino acid sequence, atomic connectivity, the researcher’s
judgement of secondary structure and disulfide bonding pattern, and also
may contain atomic temperature factors (measure of mobility), coordinates
of bound water molecules and other ligands, a discussion of the refinement
scheme and its results (estimate of error), and other miscellaneous comments
the depositors may wish to make.

In addition to the information directly available from the PDB several
computer programs are available both through Brookhaven and from exter-
nal sources for calculation of additional structural parameters from the en-
tries. These programs calculate such values as the main chain conformational
angles phi and psi, the side chain torsion angles, the surface area accessible
to a water molecule, distances between all residue pairs in the form of a ma-
trix and may also make automatic assignments of disulfide bonds, secondary
structure and even super-secondary structure folding patterns. The most
widely used of these programs and the one employed for most of the neural
network studies is the DSSP program of Kabsch and Sander [Kabsch &
Sander, 1983].

Because of the difficulty of the experimental methods of protein structure
determination, the number of known three-dimensional protein structures is
much less than the number of protein sequences which have been deter-
mined. It is vital, then, to merge this information together with the structural
information of the PDB in attempts to predict protein structure. The Protein
Identification Resource [George, et al, 1986] or PIR, as of December 31,
1989 contained 7822 protein sequences consisting of 2,034,937 residues. The
amino acid sequences of these proteins were determined either by chemical
sequencing methods or inferred from the nucleic acid sequences which code
for them. The PIR database contains, in addition to amino acid sequence, in-
formation concerning the protein name, source, literature references, func-
tional classification and some biochemical information.

An even larger database of sequences is found in the GENBANK collec-
tion of nucleic acid sequences. Many of these sequences code for proteins
whose sequences may be obtained by a simple translation program. The nu-
cleic acid sequences which code for proteins may eventually become the
source for additional entries in the PIR, but because of the rapid growth of
both the GENBANK and PIR databases there currently is a large backlog of
sequences to be added to these data banks.

A variety of computer programs also are available for analysis of the pro-
tein sequence database, the PIR. These programs include those which calcu-
late amino acid composition, search for sequence similarity or homology,
conserved functional sequences, plot hydrophobicity and predict secondary
structure.

HOLBROOK, MUSKAL & K IM 169

3. Secondary Structure Prediction with Neural Networks

At present, the largest application of feedforward neural networks in the
world of protein structure prediction has been the prediction of protein sec-
ondary structure. As secondary structures (α-helices, β-strands, β-turns, etc)
are by definition the regions of protein structure that have ordered, locally
symmetric backbone structures, many have sought to predict secondary
structure from the sequence of contributing amino acids [Chou & Fasman,
1974a; Chou & Fasman, 1974b; Garnier, Osguthorpe & Robson, 1978; Lim,
1974a; Lim, 1974b[. Recently though, Qian and Sejnowski (1988], Holley
and Karplus [1989], Bohr et al. [1988], and McGregor et al. [1989] have ap-
plied neural network models to extract secondary structural information from
local amino acid sequences and have achieved improved secondary structure
prediction levels over that derived by statistical analysis [Chou & Fasman,
1974a; Chou & Fasman, 1974b].

3.1 α-Helix, β-Strand, and Coil Predictions
The general hypothesis taken when attempting to predict secondary struc-

ture is that an amino acid intrinsically has certain conformational preferences
and these preferences may to some extent be modulated by the locally sur-
rounding amino acids. Using this information, network architectures of the

170 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

F N A R K AR

h

Secondary Structure

Figure 3: A feedforward neural network of the type used by Qian and Sejnowski
[1988] for the prediction of secondary structure from a window of input amino acid
sequence. Active nodes are shaded and the connections between each node and all
other nodes above it are illustrated schematically by arrows. Only 5 input nodes are
shown for each amino acid although 21 were used.

type in shown in Figure 3 have been designed to predict an amino acid’s sec-
ondary structure given the sequence context with which it is placed.

Qian and Sejnowski [1988] and others [Holley & Karplus 1989; Bohr et
al. 1988] have shown that a locally surrounding window of amino acids does
improve prediction levels as shown in Table 1. This table indicates that when
the size of the window was small, the performance on the testing set was re-
duced, suggesting that information outside the window is important for pre-
dicting secondary structure. When the size of the window was increased be-
yond 6 residues on each side of a central residue, however, the performance
deteriorated. Therefore, when using only local sequence information,
residues beyond 6 residues in each direction contribute more noise than in-
formation in deciding a central amino acid’s secondary structure.

Further attempts at improving prediction levels by adding a variable num-

HOLBROOK, MUSKAL & K IM 171

Window Size Q3(%) Cα Cβ Ccoil

1 53.90 0.11 0.14 0.17
3 57.70 0.22 0.20 0.30
5 60.50 0.28 0.26 0.37
7 61.90 0.32 0.28 0.39
9 62.30 0.33 0.28 0.38
11 62.10 0.36 0.29 0.38
13 62.70 0.35 0.29 0.38
15 62.20 0.35 0.31 0.38
17 61.50 0.33 0.27 0.37
21 61.60 0.33 0.27 0.32

Table 1: Dependence of testing accuracy on window size (adapted from Qian & Se-
jnowski, 1988). Q3 is average percent correct over three predicted quantities (α, β,
coil). C is correlation coefficient for each prediction type, as defined by Mathews
[1975].

Hidden Units Q3(%)

0 62.50
5 61.60
10 61.50
15 62.60
20 62.30
30 62.50
40 62.70
60 61.40

Table 2: Testing of secondary structure prediction versus number of hidden nodes.
(adapted from Qian & Sejnowski, 1988)

ber of hidden nodes as seen in Table 2 were only slightly successful. In fact,
the best performing network containing 40 hidden nodes offers only a small
improvement over the network containing 0 hidden nodes. This result sug-
gests that the mapping between flanking amino acid sequence and an amino
acid’s secondary structure is of first order, requiring little if any higher order
information (information due to interactions between 2 or more residues in
the input sequence).

Further studies showed the maximum performance of the network as a
function of the training set size as seen in Figure 4. The maximum perfor-
mance on the training set decreases with the number of amino acids in the
training set because more information is being encoded in a fixed set of
weights. The testing set success rate, however, increases with size because
the larger training set increases the network’s generalization ability. Figure 4
nicely depicts the concept of memorization. When the training set is small,
the network can memorize the details and suffers on the testing set. When the
training set is large, memorization is not possible and generalization is
forced. Furthermore, Figure 4 suggests that any additional increase in the
size of the training set is unlikely to increase the network’s testing perfor-
mance, implying that more information for predicting secondary structure is
required than that contained in a window of 13 consecutive amino acids.
This missing information is undoubtedly in the tertiary contacts between
residues in the proteins. The three-dimensional fold of the protein chain en-

172 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

C
or

re
ct

 P
re

di
ct

io
ns

 (
%

)

Residues in training set (x 100)

Figure 4: Relationship between prediction accuracy on the Training and Testing sets
and number of residues in the Training set. Adopted from Qian and Sejnowski
[1988]i

velopes most of the amino acids in a unique environment, thus modifying
their inherent tendencies toward a particular secondary structure. A predic-
tion limit is therefore approached when only local sequence information is
available.

The performance of Qian and Sejnowski’s network compared to those
prediction methods of Garnier et. al. [1978], Chou & Fasman [1974b], Lim
[1974], and Holley & Karplus [1989] is shown in Table 3. Clearly, the neural
networks out-perform those methods of the past. Approximately 1% of the
11% improvement in Table 3 between Garnier’s method and the neural net-
work method is attributed to the difference between the network’s training
set and the set of proteins used to compile Garnier’s statistics.

One benefit of using networks containing no hidden nodes is the ease with
which the network weights can be interpreted. While Sanger [Sanger, D.,
Personal Communication] has developed a method of weight analysis for
hidden node networks called contribution analysis, the technique is still in its
infancy. Until more researchers turn to this or other methods of hidden node
network weight analysis, graphical representations of the weights from input
to output nodes will have to suffice.

Figure 5 details the relative contribution to the decision of a secondary
structure made Qian and Sejnowski’s network for each amino acid at each
window position. Here, correlations between each amino acid’s sequence
specific secondary structure preference and its physical properties can be
readily extracted.

In a parallel study to that of Qian and Sejnowski, Holley and Karplus
[1989] have designed a similar network for prediction of secondary structure.
Their optimal network contains an input layer of 8 amino acids on either side
of the residue of interest (window size equals 17), a hidden layer of two
nodes and an output layer of two nodes. The two node output layer describes
three states: helix, strand and coil by taking on values of 1/0, 0/1 and 0/0 re-
spectively. Since the actual values of these nodes lie between 0 and 1, a cut-
off value or threshold was determined which optimized the network predic-

HOLBROOK, MUSKAL & K IM 173

Method Q3(%) Cα Cβ Ccoil
Chou-Fasman 50.00 0.25 0.19 0.24
Garnier 53.00 0.31 0.24 0.24
Lim 50.00 0.35 0.21 0.20
Qian & Sejnowski - 1 62.70 0.35 0.29 0.38
Qian & Sejnowski - 2 64.30 0.41 0.31 0.41
Holley & Karplus 63.20 0.41 0.32 0.36

Table 3: Accuracy comparison of methods of secondary structure prediction. Qian &
Sejnowski - 1 is their perceptron network, Qian & Sejnowski - 2 includes a smooth-
ing network using predictions from the first network as input. See text.

174 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 5: The relative values of the connection weights obtained by Qian and Se-
jnowski [1989] in their perceptron network for prediction of helix (a), strand (b) and
coil (c) from amino acid sequence. For each window position and amino acid type
the weight of its link to the next layer is represented as a shade of gray. Darker
shades indicate higher weights. The amino acid residues in this and following simi-
lar figures are in order of decreasing hydrophobicity according to Eisenberg [1984]

W I Y F L V M C A G H P S T N Q D E K R -

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

(A)

W I Y F L V M C A G H P S T N Q D E K R -

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

(B)

W I Y F L V M C A G H P S T N Q D E K R -

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

(C)

tion. The maximum overall prediction accuracy on the training set was
63.2% (Table 3) over three states with Cα 0.41, Cβ 0.32 and Ccoil 0.36
which are very similar to the results discussed previously. They also noted an
increase in prediction accuracy for residues near the amino-terminus and for
highly buried versus partially exposed β-strands. Finally, residues with high-
er output activities were found to be more accurately predicted, i.e. the
strongest 31% of predictions were 79% correct. The Holley and Karplus per-
ceptron network has recently been implemented on an IBM-compatible mi-
crocomputer and shown to reproduce their results [Pascarella & Bossa,
1989].

Attempting to extend these studies, Bohr et al. [1988] designed three sep-
arate networks to predict simply if a residue was in a helix or not, strand or
not, and coil or not given a window of 25 residues on each side of a central
amino acid. Clearly, by the size of this network, memorization was in-
evitable. But they, as will be mentioned in their approach to tertiary structure
prediction, seem to desire memorization. In fact, their approach seems to
have led to a new measure of homology.

Again using a window of 25 residues on each side of a central amino acid,
but extending the output to α-helix, β-strand, and coil, Bohr et al. trained a
network similar to Qian and Sejnowski’s on one member of a homologous
pair of proteins. The percent performance on the other protein, then, indicat-
ed the degree of homology. In this way, Bohr et al. used to their advantage
the concept of network memorization to determine the degree of similarity
between protein sequences, without requiring any sequence alignment.

In a practical application of neural networks for the prediction of protein
secondary structure, a prediction of helix and strand location was made for
the human immunodeficiency virus (HIV) proteins p17, gp120 and gp41
from their amino acid sequences [Andreassen, et al, 1990]. The input layer
used an amino acid sequence window of 51 residues (1020 binary units) and
a hidden layer of 20 units. Separate networks were trained for α-helices and
β-strands and used in their prediction.

3.2 β-turn Predictions

In order for proteins to be compact, folded structures that pack their sec-
ondary structures into remarkably small volumes [Richardson, 1981; Rose,
1978], they must have a number of chain reversals. β-Turns are a specific
class of chain reversals localized over a four-residue sequence[Richardson,
1981; Venkatachalam, 1968] and are defined by having a distance between
Cα(i) and Cα(i+3) of < 7A. Seven classes (I,I’,II,II’,VIa,VIb,VIII) and a
miscellaneous category (IV) have been defined [Richardson, 1981; Venkat-
achalam, 1968; Lewis, Momany & Sheraga, 1973] and differ by hydrogen
bond interactions between involved residues. The most common classes of
turns being I and II (41 and 26% of all turns), for example, have a specific

HOLBROOK, MUSKAL & K IM 175

hydrogen bond interaction between the C=O of residue i and the N-H of
residue i+3.

Similar to the prediction of α-helices and β-strands, network predictions
for β-turns begin with the hypothesis that the information necessary to force
the sequence of amino acids into a β-turn exists locally in a small window of
residues. The network architecture designed to further this notion is depicted
in Figure 6. Once again, the input to the network encodes a string of amino
acids. The output classifies the sequence as one of four types, Type I, Type
II, Non-Specific, or Non-turn.

Because the window size is fixed at four by the definition of β-turns, the
only network optimizing simulations required were those that determine op-
timal numbers of hidden nodes. McGregor et al. [1989] have reported, as
shown in Table 4 a network performance with 0 (perceptron) and 8 hidden
nodes. Statistics were calculated for six different testing sets and the mean
value is indicated. Table 4 also compares the performance of these networks
to the method of Chou and Fasman [1974b]. The low values for the overall
prediction accuracy reflect the stringent requirement that all four residues in
the β-turn must be correctly predicted. On an individual residue basis, 71%
of the predictions are correct compared to a chance level of 58%.

A commonly occurring issue addressed in this paper is how to adjust the
relative ratio of the four different turn types (different outputs) in the training
set. Since the numbers of types of turns and non-turns differ considerably, it
was important to decide how frequently to sample each input type. Sampling

176 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Type I Type II Non-specific Non-turn

A C Y T

Output nodes

Hidden layer

Amino Acid Sequence (4 res idues)

I npu t l aye r

(8)

(80)

(4)

....

Figure 6. The network architecture used by McGregor, et al. for identification of β-
turns. The input layer is a sequence of 4 amino acids comprising aβ-turn or non-turn
presented to the network as 20 nodes per amino acid. The output layer has one node
per turn (or non-turn) type. Shaded circles indicate activated nodes and dashed ar-
rows schematically represent the weighted links between all node.

of each type with equal frequency led to a large overdetermination of turns,
however if the sequences were sampled according to the frequency at which
they actually occur then all the predictions were for non-turns. The authors
finally used a trial and error approach, obtaining the best results by sampling
type I, II, non-specific turns and non-turns in the ratio 6:3:8:34, approximate-
ly the correct ratio except that the non-turns were reduced by a factor of six.
This biased distribution of examples may partially account for the low pre-
diction performance obtained with this network.

3.3 Secondary Structure Composition Predictions

Given the above mentioned work, it appears that the information encoded
in small windows of local sequence is sufficient to correctly predict approxi-
mately two-thirds of a protein's secondary structure [Qian & Sejnowski,
1988; Holley & Karplus, 1989; McGregor, et al, 1989]. Because of this less
than satisfactory rate of prediction, many have sought to improve the accura-
cy of secondary structure predictions by adjusting predictions based on a
consensus of many predictive methods [Nishikawa & Ooi, 1986], the sec-
ondary structure of seemingly similar proteins [Nishikawa & Ooi, 1986;
Levin & Garnier, 1988; Zvelebil, et al, 1987], and an a priori knowledge of
secondary structure composition [Garnier, et al, 1978]. In attempts to predict
the latter, others have noted that there exists a correlation between secondary
structure composition and amino acid composition [Crick, 1989; Nishikawa
& Ooi, 1982; Nishikawa,et al, 1983].

Neural networks have recently been applied by Muskal and Kim [1992] to
the problem of mapping amino acid composition to secondary structure com-
position. They trained a network to map a string of real numbers representing
amino acid composition, molecular weight and presence or absence of a
heme cofactor onto two real valued output nodes corresponding to percent α-
helix and percent β-strand. A second, or tandem, network was used to detect
memorization and maximize generalization.

Networks with and without hidden nodes were able to accurately map
amino acid composition to secondary structure composition. The correlations
between predicted and real secondary structure compositions for the net-
works containing no hidden nodes are quite similar to those obtained by
techniques of multiple linear regression [Krigbaum & Knutton, 1973; Horne,
1988] and by standard statistical clustering methods [Nishikawa & Ooi,

HOLBROOK, MUSKAL & K IM 177

Prediction Method % correct Cβ-turn
Perceptron 24.1 0.177
Hidden Layer Network 26.0 0.202
Chou-Fasman 20.6 0.167

Table 4: Statistics for β-turn prediction

1982; Nishikawa, et al, 1983], while those obtained with hidden node net-
works are considerably greater.

The improved performance with networks containing hidden nodes is
likely a result of the information contained in combinations of the quantities
of each amino acid type, i.e. x amount of Ala with y amount of His. Perhaps
secondary structure content is dependent both on composition individual
amino acids and on combinations of these compositions. Therefore, in the in-
terest of de novoand secondary structure design, serious consideration of po-
tential protagonist and/or antagonist amino acid composition combinations
may lead to improved success rates.

The hidden node network's high accuracy, however, (within ±5.0% and
±5.6% for helix and strand composition respectively) is the best predictive
performance for secondary structure composition to date and can be attribut-
ed to the non-linear mapping of multi-layer neural networks. It should be
noted that the error in these predictions is comparable to the errors associated
with the experimental technique of circular dichroism (Johnson, 1990).

Utilizing the network weights made available from Qian and Sejnowski
[1988] and counting secondary structure predictions, total average errors for
helix, strand, and coil composition were approximately ±9.1%, ±12.6%, and
±12.9% respectively. By correcting for predicted secondary composition,
Qian and Sejnowski's predictions can be altered to improve the prediction
rate from 64% to 67%. Clearly, though secondary structure composition pre-
dictions are useful and can offer some improvement to secondary structure
prediction, secondary structure predictions do appear to have reached a
plateau. This leveling of secondary structure predictions has inspired more
effort in the direction of predicting tertiary interactions, as the next sections
will suggest.

4. Prediction of Amino Acid Residues on the Protein Surface

The residues on a protein surface play a key role in interaction with other
molecules, determine many physical properties, and constrain the structure
of the folded protein. Surface exposure of an amino acid residue can be
quantified as the area accessible to a water molecule in the folded protein
[Lee & Richards, 1971]. The calculation of solvent accessibility, however,
has generally required explicit knowledge of the experimentally determined
three-dimensional structure of the protein of interest.

Recently, Holbrook, et al [1990] have applied neural network methods to
extract information about surface accessibility of protein residues from a
database of high-resolution protein structures. Neural networks of the type
seen in Figure 7 were trained to predict the accessibility of a central residue
in context of its flanking sequence.

In order to predict surface exposure of protein residues, it is first neces-

178 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

sary to define categories for the buried and exposed residues. Recent defini-
tions [Rose, et al, 1985] use the fractional exposure of residues in folded pro-
teins compared with a standard, fully exposed state such as found in extend-
ed tripeptides. In the network analysis, two definitions of surface accessible
residues were used: 1) a binary model in which buried residues are defined as
those with less than 20% of the standard state exposure and accessible
residues as those greater than 20% fully exposed and 2) a ternary model in
which a residue is either fully buried (0-5% exposure), intermediate (5-40%)
exposure, or fully accessible (greater than 40% exposure). A continuous
model, which required prediction of the actual fractional exposure was also
explored.

The neural networks used in this study contained either zero (perceptron)
or one hidden layers and weights set by backpropagation (see Figure 7). The
protein sequences were presented to the neural networks as windows,or sub-
sequences, of 1-13 residues centered around and usually including the amino
acid of interest, which slide along the entire sequence. For experiments in-
volving only the flanking residues, the central residue was omitted from the
window.

4.1 Binary Model

Window size was varied between 1 (no neighbors) and 13 (6 amino acids
on either side of the central) residues for both training and testing networks
containing two outputs. Table 5 shows the results of these experiments. The
correct overall prediction for the training set is seen to reach a maximum of

HOLBROOK, MUSKAL & K IM 179

 GLY Thr Ala Ser Asn Thr Ala

()

B I E()

0 1 2 3-1-2-3

Figure 7. Neural network architecture used for the prediction of solvent accessibility
of amino acid residues in proteins. Each amino acid in the window was represented
by activating one of 21 binary input nodes. The output consisted of either one, two, or
three nodes, corresponding to either a continuous, binary (buried/exposed) or
ternary (buried/intermediate/exposed) definition of accessibility

about 74% at window size 11 (-5:5) with a correlation coefficient of 0.48.
The highest percentage of correct prediction, 72%, and correlation
coefficient, 0.44, for the testing set was obtained with a window size of 9 (-
4:4) residues. This is only a 2% increase over the 70% obtained with net-
works trained on patterns of only single amino acids (window size 1). To in-
vestigate the significance of this difference and the influence of flanking
residues on exposure or burial of the central residue a network using exam-
ples consisting of only the flanking residues and excluding the central residue
was trained and tested on the same databases. This network was able to pre-
dict exposure of the central residue in 55.3% of the cases with a correlation
coefficient of 0.10 indicating that the sequence of the flanking residues has a
small, but significant effect on exposure of the central residue.

Analysis of the predictive capacity of the trained network as a function of
location of the residue being predicted in the protein sequence indicated that
the residues at the extreme N-terminus can be predicted with much greater
accuracy than the protein as a whole. The 10 amino terminal residues of the
proteins in the testing set can be correctly predicted in 84% of the cases (cor-
relation coefficient 0.50). A similar, but smaller effect is seen for the residues
at the carboxy-termini where 75% of the predictions are correct (correlation
coefficient 0.47). The high predictability of the N-terminal residues may
reflect the fact that this is the first region of the protein synthesized and as
such exists transiently in a different environment from the remainder of the
protein. It should also be noted that both the N-terminal and C-terminal por-
tions of the chain are more hydrophilic than the bulk of the protein.

An advantage of neural network analysis is that a prediction of surface ex-
posure is based on quantitative activity values at each of the output nodes.
Therefore a confidence level may be assigned to each prediction based on the
strength of the output activities. While the accuracy of prediction increases
with the minimum activity accepted, a corresponding decrease is seen in the
percent of the total residues whose accessibility is predicted. For example,
using the binary model of accessibility, while 100% of tested residues are
predicted with an accuracy of 72%, over half of the residues with the
strongest activities are predicted with greater than 80% accuracy.

4.2 Ternary Model

The use of a three state exposure model offers several advantages over the
two state model. First, the definition of buried and exposed residues is
clarified since intermediate cases are classified as a third category. Second, it
is possible to reproduce the observed distribution more closely by allowing
more classes. Finally, if it is not necessary to distinguish between fully and
partially exposed residues, it is possible to predict exposure with very high
accuracy. In experiments involving three-state prediction (buried, partially
exposed, and fully exposed), window size was from 1 to 9 residues, at which

180 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

point prediction of the testing set began to decrease. Table 5 gives the results
of these experiments for both the training and testing datasets. For both
datasets, the fully buried and exposed residues are predicted with greater ac-
curacy than the partially exposed residues As in the experiments with a bina-
ry representation, the exposed residues in the testing set are consistently pre-
dicted approximately 10% more accurately than the buried. The overall peak
in prediction with the ternary model occurs for the testing set at window size
7 (-3:3) after which a decline occurs. Experiments with networks containing
a hidden layer of computational nodes between the input and output layers
resulted in an improvement in prediction for window size 7 and three output
states. The maximal improvement was observed when using 10 hidden
nodes, which predicted the testing set with 54.2% overall accuracy, com-
pared to the best prediction of 52.0% with a perceptron network.

Using this three state network with hidden nodes, a residue which is pre-
dicted to be fully exposed was actually found to be fully or partially exposed
over 89% of the time, while a residue predicted to be buried was found fully
or partially buried in 95% of the cases. The difference in prediction percent-
age for buried and exposed is in large part due to overprediction of the fully
exposed state and underprediction of the fully buried state by the network. If
only fully exposed or fully buried residues are considered (cases observed or
predicted to be partially exposed are ignored) the states are predicted correct-
ly for 87% of the residues. The hydrophobic residues were predicted with
very high accuracy (86-100%) as are the hydrophilic residues (75-100%).
The ambiphilic residues glycine and threonine were, as expected, predicted
with less accuracy (68% and 60% respectively), but the ambiphilic residues
methionine, alanine and histidine are predicted with 90-100% accuracy. Even
the hydrophobic residue valine is correctly predicted to be exposed in one
case and the hydrophilic residue proline is predicted correctly to be buried in
one case.

HOLBROOK, MUSKAL & K IM 181

Window %Correct %Correct %Correct %Correct
Size Train Test Train Test

Binary Binary Ternary Ternary
1 69.1 70.0 49.1 50.2
3 70.1 69.5 52.4 51.1
5 71.0 70.8 54.1 50.1
7 71.9 71.8 55.9 52.0
9 72.5 72.0 57.5 49.8
11 73.9 71.8 - -
13 73.4 70.7 - -

Table 5: Solvent exposure predictions

4.3 Continuous Model

In order to assess the potential for prediction of the percent of fractional
exposure without regard to arbitrary definitions of burial and exposure, a di-
rect mapping can be effected from amino acid sequence represented in a bi-
nary form as described above (21 nodes per residue) to fractional exposure
(S. Holbrook, unpublished results). This mapping utilized real numbers (the
actual or predicted fraction exposures of the central residue) as the output
nodes which are fit in the training process. Using a window size of 9 amino
acid residues, the training set converged at a correlation coefficient of 0.561
with an average deviation between observed and calculated exposure of
17%. This trained network was able to reproduce the exposures of the
residues in the testing set with a correlation coefficient of 0.508 and average
deviation of 18%.

4.4 Analysis of Network Weights

Examination of the network weights allowed the physical interpretation of
the major factors influencing residue exposure. From the plot of network
weights in the binary model shown in Figure 8, it is apparent that the primary
factor governing exposure of the strongly hydrophobic and hydrophilic
residues is the identity of the central amino acid itself, however for neutral or
ambiphilic residues such as proline and glycine the flanking sequence is
more influential. Nevertheless, the weights show that hydrophobic residues 2
or 3 amino acids before or after the central amino acid favor its burial. This
is likely due to the preponderance of buried residues in β-strand and to a
lesser degree α-helical structures and the periodicity of these structures.
Since exposed residues are favored over buried in turn and coil regions, ex-
posure of the central residue is favorably influenced by neighboring residues
such as proline and glycine which preferentially are found in these regions.
As turns and coils are not periodic structures, less positional specificity is ob-
served for the exposed residues than for buried residues which prefer regular
secondary structure.

The weights to the output nodes of the three state model show a greater
contribution of neighboring residues to the exposure of the central residue,
especially for the intermediate (partially exposed) node, which is not strong-
ly determined by the central residue alone (not shown). The weights (not
shown) suggest that larger residues (i.e. W, H, Y and R) tend towards inter-
mediate exposure (correlation coefficient 0.35) regardless of their hydropho-
bicity. Generally, high weights for neighboring hydrophobic residues tend to
favor burial of the central residue and high weights for neighboring hy-
drophilic residues favor exposure of the central residue.

In summary, neural network models for surface exposure of protein
residues make highly accurate predictions of accessibility based solely on the

182 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

identity of the amino acid of interest and its flanking sequence. This capabili-
ty is a valuable tool to molecular biologists and protein engineers as well as
to those concerned with the prediction of protein structure from sequence
data alone.

5. Prediction of Cysteine’s Disulfide Bonding State

The bonding states of cysteine play important functional and structural
roles in globular proteins. Functionally, cysteines fix the heme groups in cy-
tochromes, bind metals in ferredoxins and metallothioneins, and act as nucle-
ophiles in thiol proteases. Structurally, cysteines form disulfide bonds that
provide stability to proteins such as snake venoms, peptide hormones, im-
munoglobulins, and lysozymes.

Because free thiols are unstable relative to S-S bridges in the presence of
oxygen, cysteines are typically oxidized into disulfide bonds in proteins leav-
ing the cell; and conversely, because S-S bridges are unstable relative to free

HOLBROOK, MUSKAL & K IM 183

W I Y F L V M C A G H P S T N Q D E K R -
-4

-3

-2

-1

0

1

2

3

4

(A)

W I Y F L V M C A G H P S T N Q D E K R -
-4

-3

-2

-1

0

1

2

3

4

(B)

Figure 8. Network weights for binary model of surface exposure.. (a) is the weight
matrix for the buried residue predictions, and (b) is the matrix for the exposed
residue predictions.

thiols in reducing environments, cysteines are typically reduced in proteins
that remain inside the cell. Predictions of the disulfide bonding state of cys-
teines based only on this criterion, however, result in failures for extracellu-
lar proteins containing free thiols such as actinidin, immunoglobulin, papain,
and some virus coat proteins and for cystine containing intracellular proteins
such as trypsin inhibitor, thioredoxin, and superoxide dismutase. Further-
more, to base positive disulfide bond predictions on high cysteine content
and even parity result in failures for ferredoxins, metallothioneins, and some
cytochromes. Clearly, predictions based on these simple rules fail to capture
the unique micro-environments a protein structure imposes on its cysteines to
define their disulfide bonding states.

Recently, Muskal et al. [1990] used a network of the architecture seen in
Figure 9 to predict a cysteine’s disulfide bonding state, with the presumption
that it is the local sequence that influences a cysteine’s preference for form-
ing a disulfide bond. The networks were of the feedforward type containing
no hidden nodes (perceptrons). Because every sequence presented to the net-
works contained a centered cysteine, the input layer encoded a window of
amino acid sequence surrounding but not including, the central cysteine, as
shown in Figure 9

Network performance depended on the size of the window around a cen-
tered cysteine. For testing, 30 examples were randomly selected (15 exam-

184 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

 CYS

Thr A l a Thr Asn Thr A l a

 S - S S - H

- 3 - 2 - 1 1 2 3

Figure 9. The cysteine network architecture. For clarity, only 6 window positions (3
amino acids to the N-terminal and 3 amino acids to the C-terminal side of the omit-
ted centered cysteine) and 6 nodes per window position are illustrated. The net is a
perceptron with two output nodes, one for disulphide bonded cysteines (S-S) and one
for hydrogen bonded (S-H).

ples of sequences surrounding disulfide bonded cysteines; 15 examples of se-
quences surrounding non-disulfide bonded cysteines) from the pool of 689
examples, leaving the remaining 659 examples for a training set. The
influence of flanking sequence on a centered cysteine was determined by in-
creasing window of sequence surrounding the cysteine and tabulating the
network’s predictive performance. As seen in Table 6, the network’s perfor-
mance on both the training and testing sets increases with increasing window
size. It should be noted that after window -7:7 (14 flanking amino acids, 21
nodes per amino acid, 2 output nodes, and 2 output node biases corresponds
to 14 * 21 * 2 + 2 = 590 weights), the number of weights begins to exceed
the number of training examples. As a result memorization becomes appar-
ent after a window of -6:6, suggesting that the windows -5:5 or -6:6 are opti-
mal for predictive purposes. Furthermore, Table 6 shows that trained net-
works made accurate predictions on examples never seen before thus
supporting the hypothesis that a cysteine’s propensity and/or aversion for
disulfide bond formation depends to a great extent on its neighbors in se-
quence.

Network performance for each set was evaluated by testing on a random

HOLBROOK, MUSKAL & K IM 185

Window %Train Css-bond %Test Css-bond
-1:1 65.7 .30 60.0 .22
-2:2 72.8 .45 66.7 .34
-3:3 79.1 .57 73.3 .51
-4:4 83.9 .67 73.3 .48
-5:5 85.7 .71 80.0 .61
-6:6 88.2 .76 80.0 .60
-7:7 91.4 .82 80.0 .61

Table 6: Dependence of training and testing success of the cysteine net on window
size. Window of –x:x has x amino acids on either side of the cysteine. C's are Math-
ews [1975] correlation coefficients.

Run %Correct Train %Correct Test
S-S S-H S-S S-H

1 89.7 83.3 80.0 80.0
2 89.4 82.3 80.0 80.0
3 89.7 83.3 90.0 70.0
4 90.2 83.0 70.0 90.0
5 90.5 83.0 70.0 100.0
6 90.5 84.3 90.0 70.0
7 90.0 82.7 90.0 70.0

Average 90.0 83.1 81.4 80.0

Table 7: Cross validation runs for cysteine network with window –5:5.

subset of 20 examples (10 examples of sequences surrounding disulfide
bonded cysteines; 10 examples of sequences surrounding non-disulfide bond-
ed cysteines) taken from the pool of 689 examples after training on the re-
maining 669 examples. Each experiment was conducted independently on
networks with a window -5:5 (5 amino acids to the left and 5 to the right of a
central cysteine).

After window size experiments were completed, 7 independent training
and testing experiments were conducted so as to determine an average per-
formance that was not dependent on any particular training and testing set.
Table 7 indicates that a network can be trained to predict disulfide bonded
scenarios 81.4% correctly and non-disulfide bonded scenarios 80.0% correct-
ly. Trained networks made accurate predictions on sequences from both ex-
tracellular and intracellular proteins. In fact, for the extracellular proteins ac-
tinidin, immunoglobulin, and papain, the odd cysteines not involved in
disulfide bonds were correctly predicted as such. Likewise, for the intracellu-
lar cystine-containing proteins such as trypsin inhibitor and superoxide dis-
mutase, every cysteine’s state was correctly predicted.

Figure 10 shows the secondary structure proportion as a function of win-
dow position for disulfide bonded cysteines. Here the sequences surrounding
and including half-cysteines seem to prefer the extended conformation of β−
sheets over that of turns and bends. The secondary structural preferences of

186 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

76543210-1-2-3-4-5-6-7
0.0

0.1

0.2

0.3

0.4

0.5

Helix
Strand
Turn
Bend

Coil

Window Position

Se
co

nd
ar

y
St

ru
ct

ur
e

Pr
op

or
tio

n

Figure 10. Secondary structure surrounding disulfide bonded cysteines. Secondary
structure proportion is calculated by summing number of individual secondary struc-
ture types and dividing by the total number of secondary structure occurring in that
window position. Secondary structure assignments were made by the method of Kab-
sch and Sander [1983].

half-cysteines perhaps enable the high prediction rate of a cysteine’s disulfide
bonding state. Note that in Figure 10, beyond ±5 residues from the central
half-cystine (coinciding with the selected network window size) the prefer-
ences for any secondary structure are greatly reduced.

Figure 11 is a graphical depiction of the weights averaged from the seven
network experiments. Note that cysteines at positions ±3 are not very con-
ducive towards disulfide bond formation. This can be explained by the fre-
quent occurrence of CYS-x-x-CYS in heme and metal binding proteins.
However, cysteines at position ±1 increase the propensity considerably. This
can be explained by the frequent occurrence of CYS-CYS in extracellular
proteins, where the cysteines can form a basis for linking three chain seg-
ments in close proximity. Figure 11 also shows a positive influence of closely
centered β-sheet forming residues such as ILE, TYR, and THR on disulfide
bond formation.

The contribution an individual amino acid may have towards disulfide
bond formation, irrespective of window position, can be seen in Figure 12.

HOLBROOK, MUSKAL & K IM 187

W I Y F L V M C A G H P S T N Q D E K R -

-5

-4

-3

-2

-1

1

2

3

4

5
(A)

W I Y F L V M C A G H P S T N Q D E K R -

-5

-4

-3

-2

-1

1

2

3

4

5

(B)

Figure 11. Weights for the connections to the S-S (a) and S-H (b) nodes averaged
over the 7 network experiments in Table 8. Dark shades indicate high and light
shades indicate low S-S (S-H) propensity.

One clear pattern is that the residues contributing towardsS-S bond forma-
tion are polar and/or charged while those againstformation are primarily hy-
drophobic. The effects of a locally hydrophobic environment could help to
bury a cysteine to make it less accessible to other cysteines, thus reducing the
chances of disulfide bond formation. Conversely, the effects of a locally hy-
drophilic environment could help to maintain cysteines in solution thus mak-
ing them more accessible to one another and to increases the chances of
disulfide bond formation.

The most striking features in Figure 12 exist between similar amino acids.
TYR, for example, is highly conducive towards disulfide bond formation, yet
PHE and TRP disfavor formation quite strongly. Electrostatic interaction be-
tween the edge of aromatic rings and sulfur atoms is found to be more fre-
quent between aromatics and half cysteines than with aromatics and free cys-
teines. Figure 13 also suggests that TYR will favor disulfide bond formation
over the other aromatics simply because PHE and TRP lack hydrophilic
character. Likewise, ARG suggests S-S formation more strongly than LYS.
Again, hydrophilic arguments find ARG more polar and thus more favorable
for S-S formation. Less obvious, however, is the strong S-S propensity of
ASN relative to GLN. Perhaps it is ASN’s smaller size that better enables the
close approach of a potential half-cystine. Consistent with this, the S-S
propensity of GLY, ASP and SER exceed that of their slightly larger counter-

188 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

I F V L W M A G C Y P T S H E N Q D K R -
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

A
ve

ra
ge

 w
ei

gh
t d

if
fe

re
nc

e
(o

ve
r

al
l w

in
do

w
 p

os
iti

on
s)

Figure 12. Amino acid contribution to disulphide bond formation. Weights from the
7 network experiments in Table 8 were averaged for each amino acid over all win-
dow positions. Bars represent the weights to the S-H node subtracted from the
weights to the S-S node. Bars above the midline indicate a propensity to form S-S
bonds, and those below tend to form S-H bonds.

parts ALA, GLU and THR. These differences in S-S propensity between oth-
erwise very similar amino acids may make feasible the stabilization and/or
destabilization of disulfide bonds through the site-directed mutagenesis of se-
quences surrounding half-cysteines.

The results of this network analysis suggest that tertiary structure features,
such as disulfide bond formation, may be found in local sequence informa-
tion. More experiments will need to be conducted to further exploit the infor-
mation content in local amino acid sequence. Perhaps this will suggest a new
twist to protein structure prediction.

6. Tertiary Structure Prediction with Neural Networks

Bohr, et al, [1990] recently reported the use of a feedfoward neural net-
work trained by backpropagation on a class of functionally homologous pro-
teins to predict the tertiary folding pattern of another member of the same
functional class from sequence alone. The basis of this approach is that the
commonly used binary distance matrix representation of tertiary protein
structure, will be similar for members of a homologous protein family. In this

HOLBROOK, MUSKAL & K IM 189

 GlyThr Ala

Input

Hidden (300)

0 30-30

Output

1 0 0
Helix Strand Coil

1 0 0 1.
Tertiary Distance Contacts

-30 -1

.

. .

Figure 13. Network for prediction of protein tertiary structure. Input window is 30
residues to either side of the residue of interest, each represented by 20 nodes (one of
which is activated). The output level consists of two parts; a window of 30 residues
corresponding to those to the left of the central in the input which contains a 0 or 1
reflecting whether the residue is within 8Å of the central position. The other 3 output
nodes specify the secondary structural type of the central residue.

representation the protein sequence is plotted along both the vertical and hor-
izontal axes and points are placed on the graph to indicate where two Cα po-
sitions are within a specified distance in the three-dimensional structure. The
network using tertiary structure information given as binary distance con-
straints between Cα atoms as well as a three-state model of secondary struc-
ture in the output layer and a sliding window of amino acid sequence as the
input layer of a three-layer network is shown in Figure 13.

The input layer encompassed a window of -30 to +30 residues around the
residue of interest (central residue) and the output a window of the 30
residues preceding the central residue. For input, each amino acid position
was defined by 20 nodes each with a value of zero except for the one corre-
sponding to the actual amino acid which had a value of one. The output layer
consisted of 33 nodes, 30 representing the residues preceding the central
residue and having values of zero or one depending on whether the distance
to the central residue was less than or greater than 8 Å (in some cases 12 Å
was used) respectively, and three nodes indicating secondary structure of
helix, sheet, or coil.

This network is characterized by a very large number of computational
nodes and variable weights. For input 1220 units (20x61) were used, in the
hidden layer 300-400 units, and in the output 33 units. The total number of
weighted links is therefore 375,900 or 501,200 for the two types of networks
used. Clearly, a network containing this many weights has the capacity to
memorize the small training set of 13 protease structures. The learning of the
training set to a level of 99.9% on the binary distance constraints and 100%
on the secondary structure assignment, indicates that the network memorizes
the training set effectively, but is unlikely to incorporate generalizations.
Thus, although the architecture is quite different, the application of this feed-
forward network is analogous to an associative memory network.

This network is quite similar to the associative memory Hamiltonian ap-
proach which has been applied for tertiary structure prediction [Friedrichs &
Wolynes, 1989], thus raising the possibility that an associative memory type
neural network may be useful for the storage and retrieval of protein three-
dimensional folding patterns. However, it is doubtful whether this approach
can predict tertiary structure of proteins which are not homologous to pro-
teins on which the network was trained

7. Long Range Goals

While the ultimate goal of protein structural prediction is obviously to
produce a complete set of three-dimensional atomic coordinates solely from
the amino acid sequence, the best approach to this goal and the most impor-
tant intermediate goals are still not defined. First, it should be realized that
there is no such thing as a unique set of three-dimensional coordinates of a

190 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

protein: i.e. all proteins are mobile to a greater or lesser degree and most can
assume different conformations depending on environment, ligands or sub-
strates, or complex formation. This structural variability has been observed
both by NMR methods in solution and X-ray studies in crystals. The
database for most theoretical studies, however, concentrates on an equilibri-
um or most stable conformation usually as observed in a crystal structure.
Our goal, currently, must be narrowed to determining this “sample conforma-
tion” which likely corresponds to one of the minimum energy states. Now
the question arises as to whether it is possible to determine this “protein
structure” or at least an approximation of it from information contained in
the structural and sequence databanks. It now appears that in some cases this
is possible and in others the data is insufficient. For example, highly homolo-
gous proteins likely share very similar structures, while on the other hand
large classes of proteins exist for which little or no structural information is
available such as membrane proteins and specialized structural proteins.

Thus, a more practical if less idealistic approach, will be to concentrate
efforts on the prediction of well understood structural features such as sec-
ondary structure, surface exposure, disulfide bond formation, etc. while
keeping sight of the final goal of predicting a complete tertiary structure.
This stairstep approach will not only provide valuable tools for molecular bi-
ologists, biochemists and protein engineers, but will also provide insight into
protein structure by forcing an overall critical view of the set of known pro-
tein structures. Figure 14 illustrates the overall scheme in this approach to
protein structure prediction.

Primary Structure - Amino Acid Sequence

Local Features Long Range Features Global Features
Secondary structure Disulphide bond pairs Sec. struct. composition

Surface exposure Hydrophobic interactions Structure class
Disulphide bonding state Supersecondary structure Functional class

Three Dimensional Structure

HOLBROOK, MUSKAL & K IM 191

Figure 14. A possible strategy for protein structure prediction.

8. Conclusions

The studies discussed above clearly demonstrate the power of the artificial
neural network in extracting information from the protein structure database
and extrapolating to make predictions of protein structural features from se-
quence alone. It should also be clear that so far almost all studies have uti-
lized simple backpropagation networks. While these types of networks will
continue to be widely used, it may be that the next round of advances in pro-
tein structure will involve other types of networks such as associative memo-
ry, Kohonen, or Hebbian (see, e.g., Steeg's chapter in this volume). Already,
the promise of an associative memory approach has been observed. Neural
networks comprise a powerful set of tools which have reached the stage
where biochemists and structural biologists, and not just computer scientists,
can now attack the problems of their choice. The results of these studies will
depend on their ingenuity in problem formulation, network design and the in-
formational storage of the databases. We can look forward to a rapid growth
in the number of biologists using these methods.

References
Andreassen, H., Bohr, H., Bohr, J., Brunak, S., Bugge, T., Cotterill, R. M. J., Jacobsen, C.,

Kusk, P., Lautrup, B., Petersen, S. B., Saermark, T., & Ulrich, K. (1990). Analysis of the Sec-
ondary Structure of the Human Immunodeficiency Virus (HIV) proteins p17, gp120, and gp41
by Computer Modeling Based on Neural Network Methods. J. Acquired Immune Deficiency
Syndromes, 3, 615-622.

Anfinsen, C. G. (1973). Principles that Hovern the Golding of Protein Vhains. Science, 181,
223.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. J., Brice, M. D., Rodgers, J.
R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein DataBank: A Computer-
based Archival File for Macromolecular Structures. J. Mol. Biol., 112, 535-42.

Blundell, T., Sibanda, B. L., & Pearl, L. (1983). Three-dimensional Structure, Specificity
and Catalytic Mechanism of Renin. Nature, 304, 273-275.

Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M., Lautrup, B., Norskov, L., Olsen, O. H., & Pe-
tersen, S. B. (1988). Protein Secondary Structure and Homology by Neural Networks. The
Alpha-helices in Rhodopsin. Febs Lett, 241(1-2), 223-8.

Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M. J., Fredholm, H., Lautrup, B., & Petersen, S.
B. (1990). A Novel Approach to Prediction of the 3-dimensional Structures of Protein Back-
bones by Neural Networks. Febs. Lett., 261, 43-46.

Chou, P. Y., & Fasman, G. D. (1974a). Conformational Parameters for Amino Acids in Heli-
cal, Sheet and Random Coil Regions From Proteins. Biochem., 13, 211.

Chou, P. Y., & Fasman, G. D. (1974b). Prediction of Protein Conformation. Biochem., 13,
222.

Covell, D. G., & Jernigan, R. L. (1990). Conformations of Folded Proteins in Restricted
Spaces. Biochem., 29, 3287-3294.

Crick, F. (1989). The Recent Excitement About Neural Networks. Nature, 337, 129-132.

192 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Eisenberg, D. (1984). Three-dimensional Structure of Membrane and Surface Proteins. Ann.
Rev. Biochem., 53, 595-623.

Friedrichs, M. S., & Wolynes, P. G. (1989). Toward Protein Tertiary Structure Recognition
By Means of Associative Memory Hamiltonians. Science, 246, 371-373.

Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the Accuracy and Implica-
tions of Simple Methods for Predicting the Secondary Structure of Globular Proteins. J. Mol.
Biol., 120, 97.

George, D. G., Barker, W. C., & Hunt, L. T. (1986). The Protein Identification Resource
(PIR). Nucl. Acids Res., 14, 11-15.

Greer, J. (1981). Comparative Model-building of the Mammalian Aerine Proteases. J. Mol.
Biol., 153, 1027-1042.

Holbrook, S. R., Muskal, S. M., & Kim, S. H. (1990). Predicting Surface Exposure of
Amino Acids from Protein Sequence. Protein Eng, 3(8), 659-65.

Holley, L. H., & Karplus, M. (1989). Protein Secondary Structure Prediction with a Neural
Network. Proc Natl Acad Sci U S A, 86(1), 152-6.

Horne, D. S. (1988). Prediction of Protein Helix Content from an Autocorrelation Analysis
of Sequence Hydrophobicities. Biopolymers, 27(3), 451-477.

Johnson, W. C., Jr. (1990). Protein Secondary Structure and Circular Dichromism: A Practi-
cal Guide. Proteins, 7, 205-214.

Kabsch, W., & Sander, C. (1983). Dictionary of Protein Secondary Structure: Pattern Recog-
nition of Hydrogen-Bonded and Geometrical Features. Biopolymers, 22, 2577-2637.

Krigbaum, W. R., & Knutton, S. P. (1973). Prediction of the Amount of Secondary Structure
in a Globular Protein from Its Aminoacid Composition. Proc. Nat. Acad. Sci. USA, 70(10),
2809-2813.

Lee, B. K., & Richards, F. M. (1971). The Interpretation of Protein Structures: Estimation of
Static Accessibility. J. Mol. Biol., 55, 379-400.

Levin, J. M., & Garnier, J. (1988). Improvements in a Secondary Structure Prediction
Method Based on a Search for Local Sequence Homologies and Its Use as a Model Building
Tool. Biochim. Biophys. Acta, 955(3), 283-295.

Lewis, P. N., Momany, F. A., & Sheraga, H. A. (1973). Chain Reversal in Proteins. Biochim.
Biophys. Acta, 303, 211-229.

Lim, V. I. (1974a). Algorithms for Predictions of Alpha-Helical and Beta-Structural Regions
in Globular Proteins. J. Mol. Biol., 88, 873.

Lim, V. I. (1974b). Structural Principles of the Globular Organization of Protein Chains. A
Stereochemical Theory of Globular Protein Secondary Structure. J. Mol. Biol., 88, 857.

Mathews, B. W. (1975). Comparison of the Predicted and Observed Secondary Structure of
T4 Phage Lysozyme. Biochim. Biophys. Acta, 405, 442-451.

McGregor, M. J., Flores, T. P., & Sternberg, M. J. (1989). Prediction of Beta-turns in Pro-
teins Using Neural Networks. Protein Eng, 2(7), 521-6.

Muskal, S. M., Holbrook, S. R., & Kim, S. H. (1990). Prediction of the Disulfide-bonding
State of Cysteine in Proteins. Protein Eng, 3(8), 667-72.

Muskal, S. M., & Kim, S.-H. (1992). Predicting Protein Secondary Structure Content: A
Tandem Neural Network Approach. J Mol Biol, in press.,

Nishikawa, K., Kubota, Y., & Ooi, T. (1983). Classification of Proteins into Groups Based on
Amino Acid Composition and Other Characters. I. Angular Distribution. J. Biochem., 94, 981-995.

HOLBROOK, MUSKAL & K IM 193

Nishikawa, K., & Ooi, T. (1982). Correlation of the Amino Acid Composition of a Protein to
Its Structural and Biological Characteristics. J. Biochem., 91, 1821-1824.

Nishikawa, K., & Ooi, T. (1986). Amino Acid Sequence Homology Applied to the Predic-
tion of Protein Secondary Structures, and Joint Prediction with Rxisting Methods. Biochim. Bio-
phys. Acta, 871, 45-54.

Pascarella, S., & Bossa, F. (1989). PRONET: A Microcomputer Program for Predicting the
Secondary Structure of Proteins with a Neural Network. CABIOS, 5, 319-320.

Qian, N., & Sejnowski, T. J. (1988). Predicting the Secondary Structure of Globular Proteins
Using Neural Network Models. J Mol Biol, 202(4), 865-84.

Richardson, J. S. (1981). The Anatomy and Taxonomy of Protein Structure. Adv. in Prot.
Chem., 34, 167-339.

Rose, G. D. (1978). Prediction of Xhain Rurns in Globular Proteins on a Hydrophobic Basis.
Nature (London),272, 586.

Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., & Zehfus, M. H. (1985). Hy-
drophobicity of Amino Acid Residues in Globular Proteins. Science, 229, 834-838.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Representations by
Back-propagating Errors. Nature, 323, 533-536.

Rumelhart, D. E., McClelland, J. L., & group, t. P. r. (1986). Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press.

Venkatachalam, C. M. (1968). Stereochemical Criteria for Polypeptides and Proteins. V.
Conformation of a Aystem of Three Linked Peptide Units. Biopolymers, 6, 1425-1436.

Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., & Scheraga, H. A. (1974).
Computation of Structures of Homologous Proteins. Alpha-lactalbumin from Lysozyme.
Biochem., 13, 768-782.

Weiner, P. K., & Kollman, P. A. (1981). AMBER: Assisted Model Building with Energy
Refinement. A General Program for Modeling Molecules and their Interactions. J. Comp.
Chem., 2, 287-303.

Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S.,
Jr., & Weiner, P. (1984). A New Force Field for Molecular Mechanical Simulation of Nucleic
Acids and Proteins. J. Am. Chem. Soc., 106, 765-784.

Wetlaufer, D. B. (1973). Nucleation, Rapid Folding and Globular Intrachain Regions in Pro-
teins. Proc. Natl. Acad. Sci. USA, 70, 697.

Zvelebil, M. J., Barton, G. J., Taylor, W. R., & Sternberg, M. J. (1987). Prediction of Protein
Secondary Structure and Active Sites Using the Alignment of Homologous Sequences. J. Mol.
Bio., 195(4), 957-61.

194 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

5

Developing Hierarchical

Representations for Protein Structures:

An Incremental Approach

Xiru Zhang & David Waltz

1 Introduction

The protein folding problem has been attacked from many directions. One
set of approaches tries to find out correlations between short subsequences of
proteins and the structures they form, using empirical information from crystal-
lographic databases. AI research has repeatedly demonstrated the importance of
representation in making these kinds of inferences. In this chapter, we describe
an attempt to find a good representation for protein substructure. Our goal is to
represent protein structures in such a way that they can, on the hand, reflect the
enormous complexity and variety of different protein structures, and yet on the
other hand facilitate the identification of similar substructures across different
proteins. Our method for identifying a good representation for protein structure
is embodied in a program called GENEREP1, which automatically generates hi-

erarchical structural representations for a protein of known structure.
Our approach proceeded in three stages. First, we selected a set of objective-

ly definable primitives that captured all local information in as compact a form
as possible. This step was accomplished by an unusual variation on principal
component analysis. Using these primitives to represent proteins of known
structure, we then looked for commonly co-occurring collections of primitives,
which we used to define substructure families by an analog of k-means
classification. Finally, we looked at how these families of structures are com-
bined in sequence along a protein chain by heuristically inferring finite state au-
tomata that use the structure families to recognize proteins of known structure.

We hope this paper can serve both the AI and molecular biology commu-
nities. We believe the techniques described here are generally useful in de-
signing representations for complex, ordered data in general, such as speech
processing or economic predictions. We also present the derived representa-
tion as a useful tool for analysis of protein structures in biological domains.
Our representation captures much of the important information about a pro-
tein conformation in a very compact form, which is more amenable to analy-
sis than many of the alternatives.

2 Why Worry About Representation of Protein Structures?

2.1 The Issue of Representation in AI

The importance of representation in problem solving has long been empha-
sized in AI; see, for example, [Brachman & Levesque, 1985]. Researchers in
the recent resurgence of connectionism have also started to realize its impor-
tance [e.g. Tesauro & Sejnowski, 1989]. A general lesson from AI is that
good representations should make the right things explicit and expose natural
constraints. In most of the traditional AI work, representations were designed
by users and hand-coded; see [Charniak & McDermott, 1985] and [Winston,
1984] for summary of such work. Recently, with the development of connec-
tionism, it has been shown that interesting representations can also be com-
puted “on the fly’’ from the input data. For example, [Hinton, 1988] devel-
oped internal representations for family relationships by training an
auto-association networks with a set of examples; [Ellman, 1989] trained a re-
current network on a corpus of sentences, and the network was able to ab-
stract noun/verb agreement. Researchers in computer vision have also been
concerned with computing concise representations of large amounts of visual
input data [Sanger, 1989; Saund, 1988]. Here, we attempt to bring some of
this experience to bear in developing representations of protein structure.

2.2 Existing Representations of Protein Structures

A common format of known protein structure data (such as in

196 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Brookhaven Protein Databank) gives lists of 3D coordinates for the atoms of
all of the amino acids in a protein. This is not a good representation for the
purpose of structure prediction because it is difficult to identify similar sub-
structures across different proteins and, consequently, difficult to carry out
generalization and abstraction.

Another way to represent the three-dimensional structures is to use a “dis-
tance matrix.’’ For a protein sequence of N residues, the corresponding dis-
tance matrix contains NxN entries, each representing the distance between
the Cα atoms of a pair of residues. Similar to the 3D-coordinate representa-
tion, a distance matrix carries almost all the information about the protein
structure (except the handedness of a helix), but still it is not obvious how to
build an abstraction hierarchy on top of it.

Another common way to represent the protein structure is to assign each
residue in the protein to one of several secondary structure classes. Sec-
ondary structure is a relatively coarse characterization of protein conforma-
tion, indicating basically whether the amino acid residues are packed closely
(α helix) or stretched into an extended strand (β sheet). Parts of proteins that
don’t match either category are generally labeled random coil.

Research so far on protein structure prediction has mainly focused on pre-
dicting secondary structures, e.g. [Qian & Sejnowski, 1988; Levin, Robson
& Garnier, 1986; Chou & Fasman, 1974; Rooman & Wodak, 1988]. Howev-
er, given the 3D coordinates of all the residues in a protein, researchers differ
on how to assign secondary structures. There is broad agreement on what a
typical α helix or β sheet is, but a real protein structure is complicated, and
non-typical cases are common.2 Coil is not really one class of local struc-
tures, but rather it includes many very different structures. Also, though it is
known that groups of α helices and/or β sheets often form higher level struc-
tures (often called super-secondary structures) [Richardson, 1981]—and
some researchers have even tried to predict particular super-secondary struc-
tures, such as βαβ [Taylor & Thornton, 1984]—there has not been a rigor-
ous, generally agreed way to identify different super-secondary structures in
the known proteins.

The Ramachandran plot [Schulz & Schirmer, 1979], plots φ vs. ψ angles
for all the residues in the set of protein structures used in this work. The
definition of these angles is shown in Figure 1, and a Ramachandran plot is
shown in Figure 2. We can see that the angles are not evenly distributed.
There are two dense regions; these correspond to α helices and β sheets, re-
spectively. We can also see clearly that this categorization does not capture
the richness and variety in protein structure.

Thus, a good representation for protein structures is in demand for the
purpose of structure prediction. It should produce a coherent description of
protein structures at the residue level, secondary structure level and super-
secondary structure level.

ZHANG & WALTZ 197

3 Method

Our goal is: given the 3-D coordinates of all the residues in a protein, gen-
erate a representation that can both reflect the enormously complexity of pro-
tein structures and facilitate the identification of similar substructures across
different proteins. This is exactly the kind of representation problem AI has
been concerned with. Ideally, it should be possible to describe a protein struc-
ture at several levels of abstraction, so we desire a hierarchical representation.

We have taken an incremental, bottom-up approach in developing repre-
sentations for protein structures. The first step is to find a set of lowest level

198 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

180° (ψ)

-180°

180° (φ)-180°

Figure 2. A Ramachandran plot of the φ versus ψ angles found in our dataset. No-
tice that although there are two main groups, there is significant variance within the
groups, and many points outside of them.

C

N

Cα

C

Cα

N

Cα

φ ψ

Figure 1: The definition of phi (φ) and psi (ψ) angles in a peptide chain. Most of the
bond angles and bond lengths in an amino acid are quite rigidly fixed, as is the pep-
tide bond that holds the amino acids together. There are two principal degrees of
freedom in the backbone of a peptide chain: These angles are defined around α car-
bons by the indicated planes.

primitives with which we will build higher level structures. These primitives
must capture as much relevant information about the structure as possible,
and do so in a maximally compact way. In order to define the base level, we
apply a neural network-based techniques related to principal component
analysis to a dataset that contains the structural state of each residue in a
large number of proteins.

The second step is to group continuous stretches of structural states to
form local structures, roughly corresponding to what have been called sec-
ondary structures. We take the primitives we developed in step one, and use
them to find groups of similar residues, using a method related to k-means
classification; this provides a level of description roughly commensurate
with secondary structure. Finally, we assemble our groups of related local
structures to form higher level structures, which corresponds to super-sec-
ondary structures.

The advantages of this approach are (a) given a protein’s residue coordi-
nates, it can generate representations at all three levels discussed above auto-
matically—higher level representations are built upon lower level ones; (b)
these representations are grounded on a few objective, observable structural
parameters whose accuracy depends only on the accuracy of the crystal data,
rather than some subjective judgment; (c) it is straightforward to compute a
distance (similarity/difference) between any two structures in this representa-
tion; thus when categories are formed, it is possible to compute how different
one category is from another, or how far a particular instance is from the
mean for each category.

All of the inference was done on a subset of protein structures taken from
the Brookhaven Protein Databank. The subset consisted of 105 non-homolo-
gous protein structures; we call our subset the Protein Structure DataBase
(PSDB) in the following discussion.

3.1 Defining Primitives

3.1.1 Source data. Abstraction and generalization must be solidly
grounded. In this work, each residue in a protein in PSDB is associated with
a number of structural parameters. The three parameters used here are the di-
hedral angles (φ, ψ)and water accessibility (ω)3. Dihedral angles represent a
residue’s spatial orientation relative to its two immediate neighbors in the
protein sequence, and the water accessibility reflects whether the residue is
on the surface of or inside the protein. ω is included here because it is gener-
ally believed that hydrophobic interaction plays an important role in protein
folding. Also, whether a residue is on the surface of or inside a protein is an
important source of structural information.4 The residue state vector for
residue i is defined as a 9-tuple:

SVi = < ωi-1, Φi-1, Ψi-1, ωi, Φi, Ψi, ωi+1, Φi+1, Ψι+1>

ZHANG & WALTZ 199

That is, each SVi depends on residue i’s φ , ψ and ωparameters and on those
of its two nearest neighbors in the sequence. In this work, ω takes a binary
value: either 0 (inside) or 1 (on surface). φ and ψ are are rounded to the nearest
multiple of 20 degrees. Any pair of residues that have at least 3 identical angles
and no angles that differ by more than 20 degrees are forced to have identical
state vectors. Residue state vectors include all aspects of protein structure of
concern here; it is on this basis that the abstraction hierarchy is built.

All the state vectors for all of the residues in the entire PSDB were com-
puted, and 7159 distinct residue state vectors were found. This is a highly
nonrandom distribution; in theory, there are about 3.8*107 possible residue
state vectors. In addition, the histogram of occurrence of vectors is highly
skewed. The mean number of times a state vector occurs in the database is 3;
the most frequent one occurs 2027 times.

3.1.2 Computing Canonical Representations by an Auto-association
Network. Computing the state vector for each amino acid residue in a protein
structure provides a great deal of information about the structure, but in a less
than ideal form. The elements of the state vectors are highly dependent upon
each other, and it is unclear how to measure the distance between a pair of vec-
tors. The different dimensions of the vector have different value ranges and
value distributions; it is not clear how to weight their relative importance. A
canonical representation is needed to make useful information explicit and
strip away obscuring clutter. Our approach was to use an auto-associative
back-propagation network [McClelland & Rummelhart, 1986] to automatically
identify the intrinsic features implied in the state vectors.

It has been shown that, when properly designed, the hidden unit values of
an auto-association back-propagation network will identify the intrinsic fea-
tures of its inputs [Bourlard & Kamp, 1988; Saund, 1986]. A network trained
to reproduce values at its input units (within a given accuracy) using a smaller
number of hidden units has found a more compact encoding of the information
in the input unit values. This process is related to principal component analysis
(see section 5). In addition, something else is available for free: if the hidden
unit values for each residue state vector are used as its new representation, the
lower half of the trained network (input→hidden layers) can be used as an en-
coder, and the upper half (hidden→output layers) can be used as a decoder.

At this point, we needed a mapping of the state vectors to binary vec-
tors as required by the autoassociative network encoding process. Since
the accuracy of φ and ψ angles is around 20° in PSDB, and these angles
range over [-180°, 180°], 18 units are used to encode one angle. The unit
activity then is smeared by a Gaussian function to the unit’s neighbors,
thus similar angle values will have encodings near each other in Hamming
space. This encoding of real values is similar to that in [Saund, 1986].
Four units are used to encode each ω value. This is required so that the
backpropagation error signal for ω will not be overwhelmed by that from

200 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

the angles. The network and encoding are shown in Figure 3.
After the network is trained on all of the state vectors, it can be used as an

encoder and decoder, to translate from state vectors to the newly defined
primitives. Each residue state vector can be mapped to a 20-element vector
on [0,1] obtained from the 20 hidden units of the backpropagation network.
These are called residue feature vectors. But treating the production of these
vectors solely as a blackbox encoding is somewhat unsatisfying; what do the
values of the hidden units mean?

Each hidden unit captures certain features of the input vectors. One exam-
ple is a hidden unit which is sensitive primarily to the first, fourth and seventh
position of the input vectors, that is, to the ω values. For example, when the
input vectors have the form <0,?,?,0,?,?,0,?,?>5, the output of the 6th hidden
unit is always close to 0. Another, more complex example demonstrates a dis-
tributed representation: when one hidden node is low (V0≤0.3) and another
hidden node is high (V2≥0.8) the input vectors are always of the form
<?,?,?,?,?,?,?,-120,160>, indicating the beginning of a β sheet.

The hidden unit value distributions were plotted for all 7159 distinct residue
state vectors. The values of each of the hidden nodes over the range of training
examples took on one of three distinctive distributions: bimodal, multimodal
and normally distributed. Figure 4 shows one example from each kind.

We now have a method for translating objective information about the
amino acid residues in a protein structure into a set of independent, compati-
ble features. The next step is to assemble these examples of protein structure
into general classes, based on the feature vectors we have just defined. These
features provide the basis for an objective, general classification.

3.2 Finding Common Structures Using the Primitives

We claim that the hidden unit values represent intrinsic features of the net-
work inputs. The residue feature vector representation not only provides a good
representation for clustering, but also a way to measure the “distance’’ between
different clusters (how similar two classes are) and the “distance’’ between a
particular instance and the center of the cluster it belongs to (how typical it is to
the class). This distance measure allows us to apply a standard clustering algo-
rithm to find groups of similar structures from the examples that we have.

3.2.1 The Clustering Algorithm. The clustering on the 7159 20-element
residue feature vectors was carried by a clustering procedure implemented on
the Connection Machine CM-2 which is similar to K-means clustering.6

Briefly, it does the following:
1. Get arguments: n — the number of clusters required; m — the number

of iterations desired;
2. Randomly select n vectors from the 7159 residue feature vectors as

“seeds’’ of the n clusters;
3. For each of the rest of the feature vectors, find the closest seed and put

ZHANG & WALTZ 201

the vector into that cluster;
4. Compute the deviation in each cluster, then compute the average devia-

tion of all clusters;
5. Repeat m times from Step 2 to Step 4 above, and select as the result the

clustering that has the smallest average deviation.

3.2.2 Clustering Results. Therefore, a classification of residue state vec-
tors based on the feature vectors should put similar structural states into the
same class. Using a method related to K-means clustering, the residue fea-
ture vectors were classified into clusters with small average deviations. We
looked for something around 20 classes at the beginning, and we found that
using 23 clusters produced the grouping with the smallest overall deviations.

202 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

• • • • • •

• • •

• • • • • •

output units (120)

hidden units (20)

input units (120)

(A)

ϕ (ψ): [−180, 180]

E.g., -120 :

18 units: • • •
-180 -160 -140 -120 -100 -80 -60 -40 -20 180

ω: {0, 1} 4 units:

1:

0:

(B)
Figure 3. The design of an auto-association backpropagation network for transform-
ing the residue state vectors to a canonical form. (A) The net contains 120 input
units, 20 hidden units, and 120 output units. After training, the hidden unit values
are taken as the canonical form. (B) The parameters φ and ψ are encoded as the
activities of the input/output units in the backpropagation network by quantizing the
angle to the nearest multiple of 20° and smearing the value over several neighbors.
ω,which is binary, is encoded with four bits.

Figure 5 shows an example of a cluster. 50 residue state vectors from this
cluster are plotted by φ/ψ angle. It is clear that they share strong family re-
semblance. The 23 residue structural classes found by the clustering proce-
dure are denoted by C1, C2, ..., C23.

ZHANG & WALTZ 203

(A)

(B)

(C)

Figure 4. Three kinds of distributions of the hidden unit values. (a) V6 (The 6th hid-
den unit). This kind of hidden units divides all the inputs into two classes. There are
six hidden units with this kind of distribution. (b) V1. This kind of units classifies all
the inputs into a few categories. There are six such units. (c) V0. Eight units have this
kind of normal distribution.

3.3 Correlation Between Residue State Classes And Amino Acids

It was found that there are strong amino acid preferences for each of the
23 classes computed above. That is, some amino acids appear very frequent-
ly (or rarely) in particular classes. Figure 6 shows the results of a χ2 correla-
tion test between the 20 amino acids and the 23 classes in PSDB.

3.4. Identification of Common Substructures

In PSDB, strong correlations exist among structural classes C1, C2, ...
C23 themselves, also. That is, in a protein, when Ci occurs at one place,
some Cj tends to occur at another place. A number of class patterns were
identified based on this kind of correlation.

3.4.1 Labeling the Residues with Structural Classes. Given 3D protein
structure, we can compute a 20-element feature vector for each residue by
the trained lower half of the auto-association network in Figure 8. Then from
the feature vector, we can determine which of the 23 structural classes the
residue belongs to. Thus all the residues in the sequence can be labeled for
structural class membership. That is, the structure of the protein can be repre-
sented as (assuming there are n residues):

C2C3C4C5C6C7 ... Cn-1

where Ci ∈ {C1, C2, ... C23}, i = 2, 3, (n-1). The first and the last
residues each have only one neighbor residue, and thus their structural class-

204 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

-180

0

180

-180 0 180

Phi

P
s
i

Figure 5. A cluster of residue state vectors made by a K-mean clustering procedure.
Three consecutive <φ,ψ > pairs are three points on the φ −ψ plane joined by two
straight lines, each line starts with a °, goes through an x and ends with a +. ω‘s are
not displayed here.

es cannot be computed.
3.4.2 Repetitive Patterns. It is known that there are some repetitive local

structures in proteins, mainly α helices and β sheets. Pattern matching tech-
niques using fixed pattern size do not work here because α helices and β
sheets occur with different lengths. Finite state automata (FSA’s) can easily
recognize sequences of symbols of variable length. A set of heuristics was
used to inductively generate FSA’s from instances in PSDB, and these au-
tomata were then used to identify all the similar structures. The heuristics
used were:

(1) Ci Ci ... Ci (N, M) → Ci
+

(2) Ci ... Ci Cj ...Cj Ci Ci... Cj... (N, M) → (Ci*Cj*) +

Heuristic (1) says that if in a protein sequence, a structural class Ci occurs
continuously along the sequence for at least N residues, and this occurs in M
different protein sequences, then generate regular expression Ci

+ as a gener-
al representation for such continuous, repetitive local structures.7 Heuristic
(2) is similar to (1), except that it deals with two interleaving structural class-
es Ci and Cj.

Four regular expressions (representing the FSA’s) were generated from
protein sequences labeled with 23 classes {C1, C2, C23}:

(1) RE1 = C21
+

(2) RE2 = C14
+

ZHANG & WALTZ 205

Figure 6 The contingency table for χ2 tests on the correlations between amino acids
and classes. Each column corresponds to an amino acid, and each row corresponds
to a class. A mark means the corresponding amino acid and class are correlated
with a confidence level >95%

| A| C| D| E| F| G| H| I | K| L| M| N| P| Q| R| S| T| V| W| Y
C1 | • | | | • | | • | | | • | • | • | • | • | | • | | • | • | | •
C2 | | | | | | • | | | | | | | • | • | | | | | |
C3 | | | • | | | • | | • | | | | • | • | | | | | • | | •
C4 | • | | • | • | • | • | | • | | • | | | • | | • | • | • | • | • | •
C5 | | | | | • | | | | • | • | | • | • | | | | | | |
C6 | | | | | | | | | | | | | • | | | | | | |
C7 | • | • | | | • | | • | • | | | | | • | • | | | | • | | •
C8 | | | | | • | | | • | | • | | | • | | | • | | | |
C9 | | | | | • | • | | | • | • | | | • | | | • | | • | | •

C10 | • | | • | • | • | | | | • | | • | • | • | • | • | • | • | • | | •
C11 | • | • | • | • | | | • | • | • | • | | • | • | | • | • | | • | |
C12 | | | | | | • | | | | | | | • | | • | | | • | |
C13 | • | | • | • | | • | | • | • | | | • | • | • | | • | | • | | •
C14 | • | • | • | • | • | • | | • | • | • | • | • | | • | | • | • | • | • | •
C15 | | | • | | | • | | • | • | • | • | • | • | • | | • | | • | |
C16 | • | • | | • | | | | | | | | | | | | | | | |
C17 | | | • | • | | | | | | | | | | | | | | | |
C18 | | | • | | | | | | | | | | | | | | | | |
C19 | • | • | • | | | | | | | | | | | | | | | | |
C20 | | • | | | | | | | | | | | | | | | | | |
C21 | • | | | • | | | | | | | | | | | | | | | |
C22 | | • | | | | | | | | | | | | | | | | | |
C23 | • | | | • | • | • | | | • | • | | | • | • | • | • | | | |

(3) RE3 = (C1*C21*)+

(4) RE4 = (C17*C23*)+

The average residue state vector values for these classes are:
ω1 φ1 ψ1 ω2 φ2 ψ2 ω3 φ3 ψ3

C21: <0.3 -54 -32 0.3 -67 -34 0.0 -75 -36>
C1: <0.3 -61 -26 0.4 -46 -37 1.0 -65 -26>
C14: <0.2 -92 104 0.0 -104 110 0.0 -88 93>
C17: <0.4 -93 107 0.3 -81 108 1.0 -88 116>
C23: <0.3 -73 70 1.0 -89 113 0.0 -82 96>

These repetitive patterns correspond to α helices (RE1 and RE3) and β
sheets (RE2 and RE4). The main difference between RE1 and RE3, and be-
tween RE2 and RE4 is whether the local structure is on the surface of or in-
side proteins.

3.4.3 Non-repetitive Structural Class Patterns. After the repetitive local
structures were identified, structural classes that occur often at the beginning
or the end of RE1, RE2, RE3 and RE4, and non-repetitive class patterns that
happen frequently in PSDB were found. Some interesting phenomena were
observed. For example, class pattern C10C7 occurs often at the beginning of
RE3 (61 times in PSDB), but never occurs at the end of RE3 while class pat-
tern C3C4 occurs 79 times at the end of RE3, but never at the beginning.
This suggests that classes in these two sets are not just variations of the class-
es inside RE3, but rather they have specific preference for places they occur.
Also about 100 non-repetitive class patterns (with length ≥ 4) were found
that occur 20 times or more in PSDB.

Table 3 shows how many α helices and β sheets (identified by RE1, RE2,
RE3, RE4) have common sequences proceeding them (heads) or sequences
that follow them (tails) in PSDB. More than 75% of the helices and sheets
have both head and tail ((413-89-11)/413 = 75.9%, (695-137-21)/695 =
77.3%). Only 3% of the helices and sheets have neither head and tail (11/413
= 2.7%, 21/695 = 3%). Thus, the occurrences of the heads and the tails sug-
gests strongly the existence of the corresponding secondary structures.

Finally, groups of REi’s are found that are close to each other in space and
less than 15 residues apart along the sequence. For example, RE2...RE3...RE2
(two sheets with a helix in between) occurs 18 times in PSDB. This is an ex-
ample of what has been called super-secondary structure.

4 Summary and Discussion

4.1 Protein Structures

The success of protein structure prediction research depends on whether
“rules” can be found that govern the correspondence between amino acid se-

206 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

quences and structures they form. We argue that representation plays an impor-
tant role here—good representation exposes natural constraints.

In this paper, starting with a few primitive structural features about residues
and some generalization techniques, we have developed representations for
protein structures at several levels. As shown elsewhere [Zhang, 1990], we ob-
tained a much higher secondary structure prediction accuracy with this repre-
sentation than other representations; these representations greatly facilitate the
prediction of protein structures. The correlations among structures at different
levels revealed by these representations impose constraints about which amino
acids will form what structures and where (in relation to other structures). This
suggests that instead of predicting the state of each residue as an isolated indi-
vidual (which is the case in most secondary structure prediction work today),
the structural states of all the residues in a protein should be treated as a mutu-
ally related whole. The structure hierarchy described in this chapter is one way
that these relations can be found and represented.

The representation here also has its limitations. Right now it only covers
certain super-secondary structures—those that are close to one another in
space and not very far away from each other along the sequence. It cannot
account for all the global interactions.

4.2 General

In this paper, several computational tools have been successfully applied
to the problem:

Feature Extraction. This was done by an auto-association network and
proved to be a very useful tool for the purpose. Auto-association networks
have been shown to be similar to principal component analysis [Bourlard, et
al., 1988]. However, with non-linear input/output units, their dynamics are
not yet fully understood. A principal component analysis method was ap-
plied to the same problem but did not produce as good a result in terms of
forming meaningful clusters of protein local structures. One explanation for
this is that the original dimensions need to be properly weighted in the prin-
cipal component analysis to be successful.

Primitive Identification In this chapter, clustering of the original data
based on their canonical features gave rise to meaningful categories. This gives
an interesting example about the relationship between symbolic and non-sym-

ZHANG & WALTZ 207

Head and Tail of Helices and Sheets

RE’s Total LackOne LackTwo LackHead LackTail

RE1 & RE3 413 89 11 54 57
RE2 & RE4 695 137 21 86 93

Table 3: The number of occurrences of the ``heads’’ and the ``tails’’ of the secondary
structures identified by RE1, RE2, RE3, RE4.

bolic reasoning: the original data — φ, ψ angles and ω‘s — are clearly non-
symbolic, and yet the labels for the final structural classes are symbolic. These
symbols (which correspond to the structural classes) emerged from the compu-
tation on non-symbolic data. They facilitate reasoning by identifying similar
things and omitting details (abstraction!). They differ from the symbols in clas-
sic AI in that they are “backed up’’ by non-symbolic (numeric) information, so
they can be compared, combined or broken into smaller pieces.

Correlation Among Primitives. Finite state automata and pattern match-
ing techniques have been used to determine correlations among representa-
tion primitives. The sequential nature of the input data was explored to make
such techniques applicable.

The above techniques could be applied to other representations of protein
structures such as the distance matrix, or to problems in other domains
(maybe in slightly different form), such as speech recognition and text pro-
cessing. It is hoped that the lessons learned in this work will shed light on re-
search in these domains as well.

Acknowledgment

We would like to thank Jill L. Mesirov and Robert Jones of Thinking Ma-
chines Corporation for many comments and suggestions on this work, and
Chris Sander for providing the DSSP program and for helpful discussions.
This work was supported in part by the Defense Advanced Research Projects
Agency, administered by the U.S. Air Force Office of Scientific Research
under contract number F49620-88-C-0058, while the first author was a grad-
uate student at Brandeis University, and in part by Thinking Machines Corp.
Cambridge, MA, both author's current affilitation.

Notes

1. It stands for “GENErate REPresentations.”

2.When comparing the assignment of secondary structures by crystallogra-
phers and the one by Kabsch and Sander [Kabsch, 1983] (which is com-
monly used by structure predictors) for some protein sequences in
Brookhaven Protein Databank, we found that they classify as many as
20% of the residues differently.

3. These parameters were computed from PSBD atomic coordinates by Kab-
sch and Sander's program DSSP.[Kabsch, 1983]

4. w is based on the number of water molecules bound to each residue. The
w value computed by DSSP is normalized to be in [0, 1].

5. Where ? means any value.

6. Anand Bodapati at Thinking Machines Corp. kindly provided the initial

208 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

code. We modified it to suit our need.

7. The regular expression also specifies a FSA that can recognize all the se-
quences that can be represented by this expression.

References
Bourlard, H. & Kamp, Y. (1988). Auto-Association by Multilayer Perceptrons and Singular

Value Decomposition. Biological Cybernetics, 59: 291-294.

Brachman, R. & Levesque, H. (1985). Readings in Knowledge Representation. Morgan
Kaufmann,

Charniak, E. & McDermott, D. (1985). Introduction to Artificial Intelligence. Reading, MA:
Addision-Wesley.

Chou, P. & Fasman, G. (1974). Prediction of Protein Conformation. Biochemistry, 13(2),

Ellman, J. (1989). Representation and Structure in Connectionist Models(CRL TR 8903).
Center for Research in Language, UCSD.

Hinton, G. (1988). Representing Part-Whole Hierarchies in Connectionist Networks. In Pro-
ceedings of the Tenth Annual Conference of the Cognitive Science Society(pp. 48-54).

Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: pattern recogni-
tion of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577-2637.

Levin, J. M., Robson, B. & Garnier, J. (1986). An algorithm for secondary structure determi-
nation in proteins based on sequence similarity. 205(2), 303-308.

McClelland, J. & Rummelhart, D. (1986). Parallel Distributed Processing. Cambridge, MA:
MIT Press,

Qian, N. & Sejnowski, T. (1988). Predicting the Secondary Structure of Globular Proteins
Using Neural Network Models. Journal of Molecular Biology, 202, 865-884.

Richardson, J. (1981). The Anatomy and Taxonomy of Protein Structure. Advances in Pro-
tein Chemistry, 34, 167-339.

Rooman, M. & Wodak, S. (1988). Identification of Predictive Sequence Motifs Limited by
Protein Structure Data Base Size. Nature, 335(1), 45-49.

Sanger, T. (1989). Optimal Unsupervised Learning in Feedforward Neural Networks(1086).
MIT Artificial Intelligence Laboratory.

Saund, E. (1986). Abstraction and Representation of Continuous Variables in Connectionist
Networks. In Proceedings of Fifth National Conference On Artificial Intelligence(pp. 638 -
644). Morgan Kaufmann.

Saund, E. (1988). The Role of Knowledge in Visual Shape Representation(1092). MIT
Artificial Intelligence Laboratory.

Schulz, G. E. & Schirmer, R. H. (1979). Principles of Protein Structure. New York:
Springer-Verlag.

Taylor, W. & Thornton, J. (1984). Recognition of Super-secondary Structure in Proteins.
Journal of Molecular Biology, 173,

Tesauro, G. & Sejnowski, T. J. (1989). A Parallel Network that Learns to Play Backgam-
mon. Artificial Intelligence, 39, 357-390.

Winston, P. (1984). Artificial Intelligence(2nd ed.). Reading, MA: Addison-Wesley.

Zhang, X. (1990). Exploration on Protein Structures: Representation and Prediction. Ph.D.,
Brandeis University,

ZHANG & WALTZ 209

C H A P T E R

6

Integrating AI with
Sequence Analysis

Richard Lathrop, Teresa Webster, Randall Smith,
Patrick Winston & Temple Smith

1 Introduction

This chapter will discuss one example of how AI techniques are being in-
tegrated with, and extending, existing molecular biology sequence analysis
methods. AI ideas of complex representations, pattern recognition, search,
and machine learning have been applied to the task of inferring and recogniz-
ing structural patterns associated with molecular function. We wish to con-
struct such patterns, and to recognize them in unknown molecules, based on
information inferred solely from protein primary (amino acid) sequences.
Besides its intrinsic interest as a difficult machine learning task of induction
from complex and noisy data, this is of interest in the empirical domain for:

• suggesting targets for genetic manipulation in known molecules;

• suggesting functional identification and confirmatory tests in unknown or

newly discovered molecules; and

• increasing general scientific knowledge by suggesting essential structural
elements encoding molecular function.

The work described in this chapter is part of a larger ongoing effort to as-
sociate symbolic structural patterns with functionally defined classes of pro-
teins. The basic question that we seek to address is: How can we recognize
and relate protein function and structure? In the cases of interest to us, one
typically has a defining set of sequences (instances) exhibiting the structure
or function of interest, plus some biological or chemical experimental data
which is believed to be relevant. The task is to inductively construct the pat-
tern(s) which detect regularities implicit in the set of defining sequences, and
which discriminate them from all other sequences. In machine learning
terms, this is a task of concept acquisition from positive and negative exam-
ples. Positive examples are sequences which exhibit the structure or function
under study, and negative examples are sequences which do not.

A pattern-based model is an excellent starting point for a feedback loop
between experimental testing of the model and model refinement. For exam-
ple, the pattern-based modeling of the classical mononucleotide binding fold
(MBF) in tRNA synthetases [Webster et al. 1987] and the simian virus 40
(SV40) and polyomavirus large tumor (large-T) antigens [Bradley et al.
1987] led to site-directed mutagenesis in SV40 at the site suggested by the
pattern match. The experimental manipulation [Bradley et al. 1987] verified
the MBF location there. Continued theoretical study [Figge et al. 1988] led
to a common pattern in the SV40 large-T, E1A, and myc oncoproteins (can-
cer-related proteins), all of which co-transform cells (induce cancer-like
growth) with ras. Experimental work [Grasser et al. 1988, DeCaprio et al.
1988, 1989] found that phosphorylation of the region matched by the pattern
in SV40 large-T was associated with binding the retinoblastoma (Rb) protein
(a protein that apparently suppresses cancer-like cell division, unless it is
bound and inactivated). The region matched by the same pattern in E1A
[Figge et al. 1988] was experimentally substituted for the region matched in
SV40 large-T, and the resulting domain exchange was found experimentally
to bind Rb [Moran 1988]. Experimental work confirmed that E1A also binds
Rb [Whyte et al. 1988, Lillie and Green 1989]. A generalization of the pat-
tern matched two additional proteins, E7 and CDC25, suggesting their Rb
binding [Figge and Smith 1988]. Subsequent experimental work [Storey et
al. 1988, Goldsborough et al. 1989] demonstrated that the degree of pattern
match (its differential similarity score) in papillomavirus (the virus responsi-
ble for warts) E7 was linked to the degree of biological activity. As predict-
ed, further experimental work [Munger et al. 1989, Dyson et al. 1989, 1990]
verified that E7 binds Rb. Theoretical attempts to further generalize the pat-
tern led to the discovery of a new pattern [Zhu et al. 1990] for transcriptional

LATHROP, WEBSTER, SMITH & SMITH 211

activators (a large class of proteins that bind to DNA and activate genetic
transcription). In experimental work continuing the Rb binding studies,
Breese et al. [1991] constructed a number of small (14 residue) peptides con-
taining the sequence regions matched by the pattern, demonstrated that they
bound Rb, and verified the secondary structure part of the pattern with circu-
lar dichroism measurements. Further theoretical work led to the proposal of a
full three-dimensional model [Figge et al., submitted] of the binding site in
proteins that bind Rb. This prediction now awaits experimental test.

The basis for the theoretical approach is that common functions often cor-
relate with common protein structures, domain folding types, supersecondary
structures and/or a few invariant or equivalent amino acids. This is true even
for proteins with very different primary sequences. Biologically, a mutation
that distorts a functionally important structure tends to produce an unviable
organism and so tends not to propagate. Other mutations often have little ef-
fect and so are passed to offspring. Consequently, functionally important
structure tends to be conserved, and functionally irrelevant structure tends to
drift. If the functionally related sequences exhibit sufficient evolutionary di-
versity, a conserved functional “signal” may be distinguishable above the
“noise” of mutational drift.

Unfortunately, although similar protein sequences generally indicate simi-
lar folded conformations and functions, the converse does not hold
[Creighton 1983]. There are proteins, e.g., the nucleotide binding proteins
[Rossman et al. 1974; Birktoft and Banaszak 1984], in which the secondary
and tertiary structure encoding a common function is conserved while prima-
ry sequence similarity is almost non-existent. Methods which detect similari-
ties solely at the primary sequence level have difficulty addressing functional
associations in such sequences. A number of features, often only implicit in
the protein’s primary sequence of amino acids, are important in determining
structure and function.

We attempt to identify patterns which are characteristic of a structural
motif assumed to carry out some particular function. Our approach involves
searching for a pattern which is shared by a defining set of functionally relat-
ed proteins (positive instances of the function), and which does not appear in
other proteins (negative instances, comprising the control set). The features
we employ can be predicted or inferred (even if only statistically) from the
primary structure. An initial “complex pattern” of a structural motif poten-
tially involved in carrying out the common function is iteratively refined in
order to maximize its discrimination between the positive and negative in-
stances. The resulting pattern is a preliminary model for the relationship be-
tween a protein’s structure and function, grounded in its amino acid se-
quence, which includes an identification of a functional site(s) as well as
structural elements characteristic of that function. In the machine learning lit-
erature, this is sometimes referred to as the “concept” associated with the

212 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

positive set. Regions of protein sequences matched by the pattern may sug-
gest potential sites for experimental work. Because the inference is grounded
in the primary sequence, the model is also suitable for hypothesizing the
function in unknown proteins for which the primary sequence may be the
only information available.

We have decomposed our pattern-based approach into a series of sub-
problems, each addressing a small part of the puzzle:

(1) ARIADNE [Lathrop et al. 1987] approaches our basic question by
searching an annotated protein sequence for a complex pattern describing a
structural motif assumed to be correlated with function. It employs hierarchi-
cal object-oriented representations of both pattern and protein, graph-based
sequence and annotation representations, procedural attachment of user-
defined match functions, and a complex user-extensible structural pattern
language that supports pattern element weights, gaps, annotations and
weights attached to the annotations, and so forth.

(2) The ability to match an unknown protein sequence against a complex
pattern introduces the question of: Where does the complex pattern come
from? ARIEL [Lathrop 1990, Lathrop et al. 1990, 1992] functions as an “In-
duction Assistant” for the biologist engaged in constructing such patterns. It
applies massively parallel symbolic induction to the task of refining an initial
seed pattern to increase the discrimination between positive and negative
instances. Machine learning heuristics for the main pattern language compo-
nents have been implemented on a massively parallel computer. These ma-
nipulate class membership terms, interval relationships, pattern element
weights, and an overall match threshold. The time complexity of these ma-
chine learning heuristics techniques is essentially constant, and their space
complexity essentially linear, in the number of instances in the training set.

(3) But now the further question arises: Where does the seed pattern come
from in the first place? PIMA [Smith and Smith 1990, 1992] inductively con-
structs primary sequence patterns common to a functionally-related family of
proteins, using a modified dynamic programming alignment method. These
patterns can be more diagnostic for functional family membership than using
any member of the family as a probe sequence.

The chapter begins with a background section, following which we exam-
ine each of these three areas in detail. No discussion of pattern-based se-
quence analysis is complete without some mention of statistical reliability,
and we close the chapter with a brief discussion of this important topic.

2 Background

One of the fundamental problems in molecular biology is that of relating a
protein’s structure and function to its amino acid sequence. Kolata [1986]
terms this difficult problem “cracking the second half of the genetic code”.

LATHROP, WEBSTER, SMITH & SMITH 213

Among the problems involved are: relating the protein primary sequence to
higher structural levels of protein organization (including secondary, super-
secondary, domain, tertiary and occasionally multi-protein quaternary struc-
tural levels); identifying the structural elements which are the determinates
of a protein function (structural elements here refers broadly to all levels of
protein structure); describing the organizational constraints (or patterns) that
hold between such elements; and inferring the function and structure in new
or unknown proteins.

Before 1959 it was generally assumed that every unique protein sequence
would produce a three-dimensional structure radically different from every
other protein structure. The subsequent accumulation of X-ray determined
protein structures has shown that proteins tend to have a limited number of
three-dimensional arrangements. Also, proteins with similar functions often
have similar structure. It is this regularity of protein structure that makes it
possible to investigate the relationships between sequence, encoded struc-
ture, and biological function.

The problem is, of course, difficult and complex. Approaches fall into
four broad categories, two experimental and two analytical:

(1) Analysis of physical data generated from proteins, such as X-ray and
nuclear magnetic resonance (NMR) data. The most rigorous way to connect
primary sequence to function is through X-ray analysis of co-crystal struc-
tures, which provide a three-dimensional picture of the protein molecule
bound to its substrate. Unfortunately the availability of such data is quite
limited. For most proteins, crystals suitable for X-ray analysis prove difficult
to obtain, and the experimental and analytical process may require years to
determine a single structure (where possible at all). NMR is currently possi-
ble only for small proteins, due to resolution limitations inherent in the ex-
perimental techniques.

(2) Genetic and crosslinking experimental studies which highlight poten-
tially important functional regions. Functional change associated with amino
acid substitutions, deletions and insertions can correlate amino acid positions
or regions with functional determinates. The crosslinking of substrates to
nearby amino acids supports their association with binding sites. These are
often the result of sophisticated laboratory techniques, and the data is usually
difficult and laborious to obtain.

(3) Prediction of protein three-dimensional structure and/or function di-
rectly from the primary sequence. There are three major approaches. The
first (3a) is to attempt to predict three-dimensional backbone conformation
by attempting to fold the protein sequence directly from first principles.
These methods generally employ empirical potential energy functions. They
are very computationally intensive and currently rather unsuccessful, al-
though an active area of research with hope for the future. The second ap-
proach (3b) is to predict structure based on similarity to a known three-di-

214 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

mensional structure. This approach is related to the first in using empirical
potential energy functions, but uses them to refine an initial fit obtained from
a known structure rather than to fold the chain ab initio. Success depends on
the degree of similarity between the known and modeled structures. If the
similarity is sufficiently great this method can give very good results, but
many sequences fail to exhibit appreciable primary similarity to any known
structure. The third (3c) comprises a wide variety of secondary and tertiary
structure prediction schemes that attempt to use empirical or statistical rules
of one form or another.

(4) Comparative analysis of primary sequences (or of physical values in-
ferred from the primary sequences). There are two related approaches. The
first (4a) is to compare primary sequences directly to each other. If
significant similarity occurs between a protein of interest (the query) and a
protein of known structure or function, one can reason by analogy that they
share similar structure and function. If the similarity is great enough this in-
ference is almost always correct. The second (4b) is to compare primary se-
quences to a structural or functional pattern. If a match to a known pattern
occurs one can infer that the protein of interest shares the structure or func-
tion associated with the pattern. While a pattern-based approach has often
been shown to be a more sensitive detector than direct primary sequence
similarity to any single query sequence, the validity of the inference depends
on the sensitivity and specificity of the pattern.

Others might reasonably classify some approaches differently, as many
overlap or share characteristics. Some of the references below touch several
of these areas and have been arbitrarily categorized. In any case our intent is
not a rigorous ontological division of the field, but only a pedagogical aid to
structure the presentation.

Approach (1) and (2) above rely on experimental methods that are outside
the scope of this chapter, even though computational methods are often cru-
cial in the interpretation of the experimental data. For example, the interpre-
tation of X-ray crystal diffraction data to yield the three-dimensional place-
ment of atoms is extremely computationally intensive. Hayes-Roth et al.
[1986] have applied AI constraint-based techniques to the problem of infer-
ring protein structure from NMR experimental data; Glasgow, et al. and Ed-
wards, et al. in this volume also describe AI systems that address these ap-
proaches.

Approaches (3) and (4) rely almost completely on the development and
implementation of analytical and computational methods. Most of the meth-
ods that have been developed for approach (3) apply to attempts to model the
three-dimensional placement of atoms in the protein, either numerically or
by assigning a qualitative structural class to the sequence or subsequences.
While quantum mechanics provides a solution in principle to this problem, it
is impractical for molecules such as proteins which may contain many thou-

LATHROP, WEBSTER, SMITH & SMITH 215

sands of atoms. Consequently a variety of clever innovations have been used
instead. Most of these are beyond the scope of this chapter and its focus on
sequence analysis, although some of the methods employed for (3c) use pat-
tern-based or machine learning techniques. Approach (3c) is described else-
where in the present volume, e.g. in the chapters of Holbrook et al., and
Hunter. Zhang et al. [1992] applied parallel processing machine learning
methods to find regularities in three-dimensional protein structure. A few ex-
amples of related techniques include Bohr et al. [1990], Bowie et al. [1991],
Clark et al. [1990], Cohen et al. [1989], Fasman [1989], Holbrook et al.
[1990], Holley and Karplus [1989], King and Sternberg [1990], Maclin and
Shavlik [1992], Major et al. [1991], McGregor et al. [1989], Muskal et al.
[1990], Noordewier et al. [1990], Ponder and Richards [1987], Qian and Se-
jnowski [1988], Rawlings et al. [1985], Thornton et al. [1991], and Towell et
al. [1990].

Comparative sequence analysis, approach (4), will be the focus of the re-
mainder of the chapter. These methods proceed by comparing a sequence ei-
ther to another sequence or to a pattern. Although this chapter is primarily di-
rected towards protein sequences, many of the computational techniques are
equally applicable to both protein sequences (strings from an alphabet of
twenty letters) and DNA sequences (strings from an alphabet of four letters).

2.1 Comparing Primary Sequences to Each Other

By far the most common approach to relating a protein’s amino acid se-
quence to its structure and function is by comparing its sequence to one or
more known protein sequences [Wilbur and Lipman 1983; Pearson and Lip-
man 1988; Altschul et al. 1990]. Many important advances have been made
by these methods, for example, when the sequence of an oncogene (cancer
related gene) was found to be similar to sequences of human growth hor-
mones [Doolittle et al., 1983]. The highly similar sequences clearly related
cancerous growth to defective normal cell growth.

The basic idea of most sequence comparison algorithms is to obtain a
measure of the similarity (or distance) between two sequences. This usually
reflects the minimum number of changes (“edit distance”) required to con-
vert one sequence into the other [Sellers 1974, Smith and Waterman
1981a,b]. For biological sequences, there are basically three types of muta-
tion events commonly counted: point mutations, deletions, and insertions.
These are “nature’s typos:” NATORE, NTURE, and NATEURE. An align-
ment of such sequences is defined as an ordered sequence of n-tuples, each
n-tuple containing one element, or null, from each sequence. For example:

N A T - U R E
N A T - O R E
N - T - U R E
N A T E U R E

216 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

is one alignment of these sequences. Alignments are usually constructed so as
to maximize the measure of similarity (or minimize distance) between the se-
quences. For a few examples of related techniques, see Bacon and Anderson
[1986], Barton [1990], Barton and Sternberg [1987a,b], Brutlag et al. [1990],
Corpet [1988], Felsenstein [1988], Feng and Doolittle [1987], Fischel-Ghod-
sian et al. [1990], Hein [1990], Henneke [1989], Hunter et al. [1992], Sankoff
and Kruskal [1983], Schuler et al. [1991] Taylor [1988a], Vingron and Argos
[1989], Waterman [1984, 1986]. Parallel processing versions have been im-
plemented by Collins et al. [1988] and Lander et al. [1988].

2.2 Comparing Primary Sequences to Patterns

Inspecting the four aligned sequences above, one might notice that their
observed variability could be concisely represented by “NgTgvRE”, if we as-
sume that “g” (gap) matches zero or one characters of any type, “v” matches
any one vowel, and each upper-case letter matches exactly itself. While di-
rect sequence comparison often yields important information, in some cases
it may be more desirable to derive a pattern representing the structure or
function under study and then compare sequences to that pattern. This is be-
cause a pattern is often a more sensitive detector of the regularity under
study than any single sequence, due to the “noise” in the rest of the sequence.
Further, elements of the pattern often highlight biologically important as-
pects of the protein.

What is required to compare a pattern to a protein? We must: (1) represent
the protein and the pattern to the computer; (2) have an algorithm which per-
forms the comparison; and (3) somehow obtain a pattern to compare. These
are all closely related, of course, but we shall adopt this division as an orga-
nizing theme.

For pattern matching purposes, the simplest protein representation is a lin-
ear sequence denoting its amino acids. This basic amino acid sequence is
sometimes annotated with additional information, representing additional
features (known or inferred) of the sequence. The degree of annotation possi-
ble is a function of the level of our knowledge.

At a minimum, most useful patterns must be able to represent protein posi-
tions in which any of several alternate amino acids are acceptable (amino acid
physico-chemical classes), as well as regions in which a variable number of
amino acids may occur (variable-length gaps). Beyond this, the ability to tol-
erate a certain amount of mismatch to a pattern lends robustness in the face of
mutational diversity. Weights or frequencies are often used to specify greater
tolerance in some positions than in others. There is a great deal of effort in the
field aimed at extending the power, flexibility, and expressive power of pat-
terns beyond these simple desiderata. Protein sequences fold up to form com-
plex dynamic mechanisms, in which mutations, interactions and dependencies
abound. Representations which capture in a manageable way the complexity

LATHROP, WEBSTER, SMITH & SMITH 217

inherent in Nature may expose some of her regularities more clearly.
The simplest pattern match algorithm possible is an exact match to a liter-

al string. This fails to handle most of the naturally occurring variability in bi-
ological sequences. The necessary robustness for inexact matches can often
be supplied by the pattern match algorithm instead of the pattern itself. For
example, regular expression-based patterns (which specify an exact match in
the usual finite state machine construction) can be made more robust by a
match algorithm which allows some mis-matches before discarding a poten-
tial match.

In some cases the pattern to compare may come directly from biochemical
investigation, known three-dimensional structures, analysis of genetic or mu-
tational data, knowledge of similar sequences or patterns, and other sources.
Such information is not often available in sufficient quantity and quality to
form the sole basis for pattern construction, although it may be adequate to
provide initial guesses or seed patterns. Consequently, inductive construction
of the pattern is often necessary. The simplest pattern discovery method is to
align the sequences maximizing the number of matching amino acids, then
construct a consensus sequence from the conserved regions by assigning
each consecutive pattern position to consecutive aligned sequence positions.
The pattern above, “NgTgvRE”, was constructed in this way. This simple
method may fail to find patterns in defining sets having widely diverse pri-
mary sequences, and consequently more sophisticated approaches are often
desirable. Pattern induction techniques fall broadly into two classes, depend-
ing on whether a sequence alignment is performed to bring sequence posi-
tions into explicit correspondence with each other before pattern discovery is
attempted, or not. There is an intermediate set of techniques for which se-
quence alignment and pattern discovery proceed in alternating cycles. A
number of the approaches are “semi-automatic” in actual domain practice,
the domain expert applying domain knowledge by direct manual intervention
where deemed appropriate or desirable. Any existing experimental data may
be used, either as a source of additional clues in the pattern construction pro-
cess, or to substantiate the pattern once discovered (for example, by verify-
ing that the pattern elements and the positions of matches within the se-
quences reflect experimentally known associations between sequence
position and function).

Hierarchical pattern-matching was pioneered by Abarbanel [1985] and
Cohen et al. [1983, 1986], and these researchers originated the term “com-
plex pattern”. Cohen et al. [1991a,b] added a meta-level of control knowl-
edge. Taylor and Thornton [1983] originated the use of secondary structure
predictions and hydropathy (hydrophobicity) in super-secondary structure
patterns. An explicit machine learning approach to pattern discovery in pro-
tein sequences was developed by Gascuel and Danchin [1986]. Automatic
evaluation of functional patterns was described by Guigo et al. [1991].

218 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Hodgman [1986] describes a pattern library. The chapter by Searls in the pre-
sent volume discusses complex grammars for biosequences. A few related
examples include Abarbanel et al. [1984] Barton [1990], Barton and Stern-
berg [1990], Blundell et al. [1987], Bork and Grunwald [1990], Boswell
[1988], Cockwell and Giles [1989], Gribskov et al. [1987, 1988], Hertz et al.
[1990], Lawrence and Reilly [1990], Myers and Miller [1989], Owens et al.
[1988], Patthy [1987, 1988], Sibbald and Argos [1990a], Smith et al. [1990],
Smith and Smith [1989], Staden [1989], Stormo [1990], Stormo and Hartzell
[1989], Taylor [1986, 1988b], Thornton and Gardner [1989], Waterman and
Jones [1990], and Webster et al. [1989].

Comparative sequence analysis has been an active and fruitful area for the
application of computation to biological problems, and a number of very clever
techniques have been devised. The discussion and references above provide
only an initial window. Next we turn our attention to examining our approach
to integrating AI techniques with existing domain methods for sequence analy-
sis. The approach uses three systems: ARIADNE, which matches a complex
pattern to an annotated protein sequence; ARIEL, which inductively constructs
these complex patterns by refining one or more “seed” patterns; and PIMA,
which constructs seed patterns given a family of proteins.

3 ARIADNE 1

ARIADNE was developed to explore representation and match algorithm
issues. Our motivation was to allow a more complex representation of pro-
tein sequences, in order make richer information sources explicitly available;
and correspondingly, to provide a more complex pattern language in which
to express similarities among proteins at a higher level than primary se-
quence. Because the “best” indicators of protein structure are surely not yet
known, both protein and pattern representations had to be easily extensible.
In turn, the matching algorithm had to be flexible enough to support un-
known future extensions to the representations; extensible itself in order to
easily support novel match behavior; and also efficient enough to quickly
match complex patterns to large sets of protein sequences. The resulting sys-
tem facilitates direct expression and manipulation of higher-order structures.
It identifies the optimal match between a given complex pattern and protein
sequences annotated with various inferred features, by abstracting intermedi-
ate levels of structural organization. Inference is grounded solely in knowl-
edge derivable from the primary sequence.

A biologist first hypothesizes a possible protein structure, based on bio-
chemical knowledge (for example, Figure 1a). This is used to form a pattern
describing the hypothesized common features, as a sequence of primary se-
quence elements and their annotations (for example, Figure 1b). It is often
convenient to be able to describe the pattern in terms of hierarchical group-

LATHROP, WEBSTER, SMITH & SMITH 219

ings of sub-patterns (for example, Figure 1c). ARIADNE receives as input
these pattern(s), and also one or more annotated protein primary sequences.

ARIADNE’s biological structure knowledge is encoded in a number of
pattern/action inference rules: an antecedent (pattern) that describes a rela-
tionship between structural elements, and a consequent (action) that executes
in a context with variables bound to reflect the current state of the match (the
consequent usually, but not always, hypothesizes the presence of a higher-
order structure). Patterns are represented as a hierarchy of sub-patterns, each
level an inference based on sub-patterns at lower levels. The target protein is
searched for regions which are plausibly similar to the rule antecedent. A dif-

220 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

G

G
D

+

G + GD

 Gly + Helix

 MBF core

 Mononucleotide binding fold

G + GD

 MBF tail MBF leader

(A)

(B)

(C)

Figure 1 (a) Schematic of the Mononucleotide Binding Fold-like Structure. Beta-
sheet strands are represented by arrows, alpha-helices by cylinders, and beta-turns
by angular bends. (b) The Mononucleotide Binding Fold Unfolded into a Linear Se-
quence. The first beta-strand/beta-turn/alpha-helix/beta-strand sequence will form
the basis of the structural descriptor below. Key amino acids have been labeled.. (c)
The Unfolded Mononucleotide Binding Fold as Hierarchical Groupings. It is often
convenient to be able to describe a structure in terms of intermediate levels. This fig-
ure appeared as figure 3 of Lathrop et al. (1987).

LATHROP, WEBSTER, SMITH & SMITH 221

(e)

(d)

(c)

(b)

(a)
Figure 2 (a) E. coli Isoleucyl-tRNA synthetase (residues 48-99 of 939 residues). Pri-
mary sequence input to ARIADNE. (b) E. coli Isoleucyl-tRNA synthetase (residues
48-99 of 939 residues). Secondary structure predictions (Chou and Fasman, 1978;
Ralph et al. 1987) input to ARIADNE. (c) E. coli Isoleucyl-tRNA synthetase (residues
48-99 of 939 residues). Intermediate predictions constructed by ARIADNE. (d) E.
coli Isoleucyl-tRNA synthetase (residues 48-99 of 939 residues). Intermediate predic-
tions constructed by ARIADNE. (e) E. coli Isoleucyl-tRNA synthetase (residues 48-
99 of 939 residues). Final prediction constructed by ARIADNE. No other occur-
rences of Mononucleotide-Binding-Fold are predicted in this sequence. This figure
appeared as figure 4 of Lathrop et al. (1987).

ferential similarity score between the pattern and the target protein elements
is computed, and the rule fires where this equals or exceeds some user-
specified threshold. When the rule fires, its consequent typically creates a
new entry in the overlay of inferred structures. The new entry can enable the
firing of subsequent rules. For example, Figure 2a-e shows the hierarchical
pattern matching of the mononucleotide binding fold pattern (Figure 1) to an
annotated protein sequence.

The output describes, for each input protein, which (sub)pattern(s)
matched; what their support in the annotated protein sequence was; and the
computed similarity score between the (sub)pattern(s) and the protein ele-
ments in the support. From the patterns and their match support, it is possible
to construct a local alignment of the matched members of the family, by
aligning elements which support the same pattern. For example, Figure 1a-c
shows a pattern for a mononucleotide binding foldlike structure, and Figure 3

222 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 3. Proposed alignment of aminoacyl-tRNA synthetase sequences with the first
beta-alpha-beta fold of a mononucleotide bindinglike structure. The regions predict-
ed to fold into beta-A, the turn, alpha-B, and beta-B are enclosed in the first, second,
third and fourth solid box,respectively, of each sequence. Sequences which match
the composite descriptor and/or descriptor 1 are indicated with a “+” to the right of
the figure. Secondary structure assignments for the B. stearothermophilus Tyr-tRNA
synthetase and E. coli Met-tRNA synthetase X-ray structures are indicated with an
underline. Dashed boxesindicate weakly predicted secondary structure elements.
This figure is adapted from figure 5 of Webster et al. (1987), which includes refer-
ences for the sequences.

shows the local alignment induced by the matches of the pattern to the posi-
tive sequences. If the the input sequences are divided into the positive
(defining) and the negative (control) sets, it is also possible to obtain the sen-
sitivity/specificity spectrum of the pattern as the threshold similarity score
varies. These take the form of 2x2 contingency tables (see the section on
Significance, Validity, and Pattern Quality, below) for each possible setting
of the threshold score, as well as a graph summarizing the spectrum of sensi-
tivity and specificity attainable as the threshold varies.

3.1 ARIADNE Protein Representation

We enriched the protein sequences by explicitly annotating the sequences
with information which normally is only implicit in the sequence. For exam-
ple, secondary structure predictions [Chou and Fasman, 1978; Garnier et al.
1978], hydropathy and amphipathy weighted average profiles [Eisenberg et
al. 1982, 1984], and various charge templates and clusters [Karlin et al.
1989, Zhu et al. 1990], all contain clues to higher levels of organization. All
are implicit in, but can be inferred from, the amino acid sequence. By explic-
itly annotating the protein sequence with these implicit information sources
(often computed externally by existing domain programs), we can make the
additional structural clues they contain directly available to the pattern match
process. For example, Figure 2b shows a protein sequence annotated with
secondary structure predictions [Ralph et al. 1987]. Any information source
which usefully distinguishes certain subsequences of the protein may be em-
ployed.

Although the amino acid sequences are inherently strings in a twenty-let-
ter alphabet, we represent the instance as an object-oriented directed graph.
Nodes and arcs are the typed and weighted data objects. Typed nodes in our
graph represent the twenty amino acid types found in protein sequences.
They participate in a user-extensible class generalization hierarchy depend-
ing on amino acid physico-chemical properties (volume, charge, hydropathy,
and so forth). Directed arcs annotate the sequence with extended higher-level
features. The arc type reflects the feature type, and the arc connects the node
that begins the feature to the node that ends it. Arcs represent the annotations
to the protein sequence supplied in the input data, as well as the higher-level
structural organization inferred as a result of pattern matching. For example,
nodes represent the protein sequence shown in Figure 2a, while arcs repre-
sent both the input secondary structure predictions shown in Figure 2b and
the subsequent pattern matches shown in Figure 2c-e.

This approach allows a uniform treatment of information derived from
both external and internal sources. Both are treated as annotations to the pro-
tein sequence, which make explicit some information previously implicit in
the sequence but inferrable from it. This is similar in some respects to a
“blackboard” architecture [Erman and Lesser 1975]. The hierarchical organi-

LATHROP, WEBSTER, SMITH & SMITH 223

zation of protein structure in the domain is readily mirrored, and hierarchical
patterns are easily supported. Because each extended feature represents its
own beginning and end, overlapping features of the same type are distinct.
This facilitates representation of the annotated structural correlates and in-
ferred structures. The major alternative approach (in a purely string-based se-
quence representation) is to mark the individual string characters with tokens
indicating which feature types they occur within; but then overlapping fea-
tures of the same type lose their boundaries and hence their individual identi-
ties, inseparably blurring together.

3.2 ARIADNE Pattern Language.

ARIADNE’s pattern language is divided into primitive and composite pat-
tern elements. Primitive patterns usually appear only as components in com-
posite patterns. Their match behavior is completely determined by three at-
tached procedures that directly inspect and manipulate the target protein data
structures:

1. GENERATE-EXPANSIONS returns a list of possible pairings of the pat-
tern element to target protein elements.

2. SIMILARITY-SCORE returns the similarity score that the pattern ele-
ment actually attains on any given pairing to target protein elements.

3. MAX-POSSIBLE-SCORE returns (an upper bound on) the maximum
similarity score the pattern element could ever achieve.

A number of useful primitive pattern elements are provided by default.
These include the twenty primitive amino acids; their various physico-chem-
ical classes (e.g., positively charged, hydrophobic, H-bond donors, etc.); sev-
eral spacer (gap), overlap, positioning, and containment operators; features in
various numeric transforms of the amino acid sequence (e.g., amphipathy
peaks are often associated with surface helices); primitives for recognizing
sequence annotations (including user-defined annotations); and so forth.

However, ARIADNE is predicated on the assumption that we do not yet
know the best structural features with which to analyze all proteins. The in-
tent is to provide a development framework wherein pattern primitives with
complex behavior can easily be created in response to new needs, as domain
knowledge expands through exploration and experimentation. ARIADNE
therefore provides a framework of procedural attachment for the user to
define new primitive pattern elements, with new match behavior. This is
done by allowing the user (or more likely, a programmer working with the
user) to write new procedures for the three determinates of primitive match
behavior above. Also, any annotation type used to annotate the input protein
sequence automatically induces a corresponding primitive element that rec-
ognizes occurrences of the annotation. Thus the pattern language is extensi-

224 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ble either by defining new annotations, or by directly coding the match be-
havior of new primitives.

A composite pattern is defined by giving a list of the lower-level subpat-
terns and relationships required as support. Its match behavior is completely
determined by the match behavior of its components. Hierarchical pattern
construction and matching is supported because recognition of a hierarchical
organization from low-level detail proceeds most naturally by hierarchical
construction of the intervening patterns. This is implemented internally by
annotating the protein to reflect the newly inferred structure, in exactly the
same way as we annotated the protein on input to reflect structure inferred by
domain programs. Each instance of a composite pattern, when recognized in
a low-level description, becomes available as a feature element for higher-
order composite patterns. In this way a pyramid of inferences may connect
the low-level features to the more abstract.

3.3 ARIADNE Pattern Matching Algorithm.

The power of pattern-directed inference (e.g., rule-based expert systems)
is well known, as is its applicability to molecular biology [Friedland and
Iwaskai 1985]. One of the first such systems ever constructed, DENDRAL
[Lindsay et al. 1980], also performed the task of chemical structure recogni-
tion. However, we allow flexible rule invocation based on a controllable de-
gree of partial pattern similarity. This is implemented by an A* search [Win-
ston 1984] through the space of target protein subsequences.

The search for a differential similarity to a composite pattern consists of
attempting to pair each component subpattern to an admissible subset of tar-
get objects. A partial pairing, constructed at some intermediate stage, might
pair only some of the pattern components. For a given composite pattern,
ARIADNE’s search space is the set of all possible partial pairings. The sin-
gle start state in this search space is the empty partial pairing, and goal states
are complete pairings of all pattern components. An operator which carries
one partial pairing into its successors, is to expand the next unpaired pattern
component by hypothesizing pairings to every admissible set of target ob-
jects. By applying this operator first to the start state and then iteratively to
resulting partial pairings, all complete pairings may be found. Typically, a
single new target object is created for each pair showing a positive similarity
(Figure 2c-e). For example, in Figure 2c the pattern “Gly+helix” is shown
matching its components “G” and “a-helix”. Each time a complete pairing is
found, a new “Gly+helix” object is created.

Viewed from top-to-bottom, the added target objects impose a hierarchical
organization. Viewed from left-to-right they impose a lattice structure be-
cause of the partial ordering, “followed-by”, inherited from the underlying
linear chain. Pattern recognition consists of exploring alternate pathways
through the lattice structure. For example, in Figure 2b the target object rep-

LATHROP, WEBSTER, SMITH & SMITH 225

resenting the first lysine (the first “K” in “G K T F ...”) may be followed ei-
ther by a threonine object (“T”) or by an object representing a beta-strand
prediction. The beta-strand object, in turn, may be followed either by a histi-
dine object (“H”) or by a beta-turn object. This permits structural elements
(at any level) to be manipulated and searched as a unit, independent of their
actual length or composition.

Complete pairings are ordered by a similarity score and only the higher-
scoring ones are of interest, so an efficient search strategy is desirable. The
well known A* search [Winston 1984] efficiently accommodates differential-
ly inexact similarities to a pattern and tends to focus search effort on the
most promising candidates. A* is a best-first branch-and-bound search with
dynamic elimination of redundant pairings and an optimistic estimate of the
contribution of the remaining unpaired pattern components. (The elimination
of redundant pairings may optionally be suppressed.) Optimality and conver-
gence are both guaranteed.

The key to A* search is in the selection of which partial pairing to ex-
pand. Each partial pairing has a “best possible score”, which is the highest
score that the most favorable possible pairing of yet-unpaired pattern compo-
nents could ever yield. At each step the partial pairing with the highest
BEST-POSSIBLE-SCORE is selected. If its BEST-POSSIBLE-SCORE is
below the threshold the search can fail immediately, as no partial pairing
could possibly exceed the threshold. Similarly, if it is a complete pairing then
no other partial pairing can ever complete to a higher score. Otherwise, its
next unpaired pattern is expanded and the algorithm iterates. It is possible to
enumerate all complete pairings in decreasing order of similarity score, paus-
ing and continuing the search at will.

3.4 Discussion of ARIADNE

The principle sources of power in ARIADNE are:

• The ability to utilize multiple, unreliable, inconsistent knowledge sources.
Since no prediction scheme produces accurate predictions, any inference
procedure which vitally depended on the consistency of its database (e.g.,
some forms of theorem-proving) would be ineffective.

• The use of a pattern-similarity measure to guide flexible invocation of in-
ference rules. This conveys a degree of robustness in the face of pattern
fluctuations such as mutations.

• Implementation of the rule-invocation similarity measure as an A* search.
This provides an efficient enumeration of match candidates, in order of de-
creasing similarity.

• A flexible framework for pattern language development and extension.
This is important because all the appropriate pattern elements are surely

226 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

not yet known.

• Explicit identification and representation of the intermediate hierarchy,
which helps in several ways:

- Many of the higher-order (super-secondary) structures of interest are
most effectively expressed in terms of lower and intermediate levels of
hierarchy (secondary structure groupings), and not directly at the low-
est level of description.

- Handling patterns in small pieces encourages selective pattern refinement.

- Expressing patterns consisting of key residues embedded in secondary
structures involves the interaction of different hierarchical levels.

- Breaking a large pattern into pieces increases search efficiency by re-
ducing the potentially exponential time dependency on pattern size.

The approach presented here is limited to detecting similarities in se-
quence patterns of known and/or predicted structural elements. To the extent
that hypotheses of interest can be expressed in the form of a structural pat-
tern, ARIADNE provides a powerful and efficient vehicle for finding sup-
porting regions in the target proteins. However, no use is currently made of
primary sequence similarities (or homologies), which would provide addi-
tional evidence for favoring some matches over others (particularly similari-
ty of sequence elements in between paired pattern elements across the
defining set). No direct use is made of three-dimensional spatial constraints.
The secondary structure predictions remain inherently inaccurate, even
though trade-offs can be made between reliability and coverage. Some three-
dimensional structural motifs are composed from elements widely dispersed
in the primary sequence but folded to be contiguous in space, and these are
unlikely to be seen by any method which draws its power from exploiting
constraints which are local in the sequence. No attempt has been made to en-
code or exploit “expert rule-of-thumb” knowledge of general biochemical
heuristics.

Construction of abstract structural hypotheses implies that low-level fea-
tures meet the additional constraints imposed by higher-order patterns and
relationships. These constraints take two forms: requiring a specified rela-
tionship with an element unambiguously present in the primary input (e.g.,
key amino acids); and requiring a specified relationship with other predicted
or inferred features. Importantly, in a hierarchical pattern recognizer the
structure imposed by higher-order patterns implies strong constraints on the
admissibility and interpretation of low-level features, because those not
fitting into a higher-level pattern will be dropped. A pattern acts to prune the
(uncertain, heuristic, empirical) low-level features by selective attention,
based on the strong constraint of fitting into higher-order organization (see

LATHROP, WEBSTER, SMITH & SMITH 227

Figure 2a-e). Low-level features will be interpreted in terms of the expecta-
tions encoded in the patterns being searched for.

This has both good and bad aspects. When an intelligent agent (e.g., a bi-
ologist) hypothesizes and searches for the existence of a particular pattern
based on supporting biochemical or circumstantial evidence, selective fea-
ture attention extends that evidential support down to low-level feature selec-
tion, and features supporting the pattern will be propagated upward. When a
large number of patterns are sought randomly in a large number of targets (as
in a database search), then each pattern will impose its own selective bias
and additional confirming experimental evidence should be sought. In either
case, an important estimate of the false positive (resp. false negative) rate
may be had by testing a control set known not to (resp. known to) actually
satisfy the pattern.

4 ARIEL 2

Although ARIADNE provides a powerful and flexible means to match a
complex pattern against a group of protein sequences, it raises the question,
“Where do the patterns come from?” One methodology for pattern construc-
tion by a domain expert was described in [Webster et al. 1988]. An initial
pattern is refined in an iterative loop consisting of:

a. matching the pattern against the positive and negative instances;

b. evaluating the performance (sensitivity and specificity) of the pattern; and

c. modifying the pattern and repeating.

Even in cases where a clear idea of actual structure provides an initial
seed pattern, transforming that into the final pattern that best separates the
positive and negative sequences involves a potentially large search through
pattern space. ARIEL [Lathrop 1990, Lathrop et al. 1990, 1992] functions as
an “Induction Assistant” to the domain expert engaged in such a process. It
automates and parallelizes parts (a), (b), and the low-level aspects of part (c),
of the methodology above, while the domain expert provides high-level con-
trol and direction (see Figures 4 and 5). Symbolic induction heuristics (“op-
erators”) are provided for the major syntactic components of the pattern lan-
guage. Various amino acid classes may be explored at primary sequence
positions; inter-element intervals (gaps) may be varied; weights associated
with the several pattern elements may be increased or decreased; the overall
match threshold may be changed; and pattern elements may be added or
deleted.

ARIEL runs on a CM-2 Connection Machine, and implements efficient
massively parallel machine learning algorithms for several symbolic induc-
tion heuristics (of the sort familiar to the symbolic machine learning commu-

228 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

LATHROP, WEBSTER, SMITH & SMITH 229

Figure 4 . Overview of ARIEL. Structure/function relationships, massively parallel
processing, symbolic machine learning, and on-line biological databases converge in
learning structure/function patterns as discussed in this chapter. This figure ap-
peared as figure 1 of Lathrop et al. (1990).

Figure 5. Logical system architecture. he domain expert invokes induction scripts on
a ``parent'' pattern (terms are explained in the text). Induction scripts consist of a se-
quence of induction operators, separated by filters. Induction operators construct a
set of syntactically variant patterns (``children'') from the parent. A subset of the
children (the ``induction basis set'') is matched against the instance data using the
parallel matcher. The results are returned to the induction operator, which composes
them to compute the performance of the remaining children. All the evaluated chil-
dren are returned to the script, which uses filters to prune unpromising possibilities.
The surviving results of the script are returned to the domain expert. Scripts and fil-
ters execute in the serial front-end host, while induction operators and matching exe-
cute mostly in the parallel hardware. This figure appeared as figure 2 of Lathrop et
al. (1990).

nity as Climb-Tree, Drop-Link, Expand-Range, and so forth; for example,
see Winston [1984]). We have parallelized both the match and the induction
steps (see Figure 6). First an efficient, noise-tolerant, similarity-based paral-
lel matching algorithm was developed. (See Figure 7.) The parallel matcher
was used as infrastructure to construct efficient parallel implementations of
several symbolic machine learning induction operators. (See Figure 8 for an
example of an induction operator.) Finally, the induction operators were
sandwiched together, separated by filters (both syntactic and empirical), to
compose a crude form of induction scripts. These are invoked by the domain
expert. (See Figure 9 for an example of an induction script.) Scripts and

230 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 6. Schematic organization of parallel hardware usage. An induction operator
can be decomposed into a ``basis set'' of multiple patterns (shown as boxed letters
representing different pattern terms, flanked by lozenges representing preceding and
following pattern components). These may be applied to multiple copies of the full
positive and negative instance sets in parallel (each copy of the sets is shown fronted
by the pattern matched against it, with vertical ``slices'' representing the individual
instances). All patterns may be matched against all instances in parallel. The results
may be recombined, also in parallel, within the few induction processors. This figure
appeared as figure 3 of Lathrop et al. (1990).

filters execute in the serial front-end host, while induction operators and
matching execute mostly in the parallel hardware.

Initial input to ARIEL consists of one or more seed patterns, and also two
sets of protein primary sequences (one positive, one negative) annotated as
described above. The proteins are loaded into static data structures in the par-
allel hardware at start-up. Thereafter the domain expert and ARIEL iterate
through the pattern construction loop (a, b, c) described above. At each itera-
tion, the domain expert invokes an induction script on a “parent” pattern. A
single script may chain together several induction operators and filters. In-

LATHROP, WEBSTER, SMITH & SMITH 231

(a)

(b)

Figure 7. Embedding and matching instances in the machine. Instances occur in
very different lengths, but a constant-sized segment is placed in each processor. Dur-
ing the match phase, each processor checks only the constant-sized segment it con-
tains. A communication protocol handles matches which extend over several proces-
sors. This figure appeared as figure 1.6 of Lathrop (1990).

232 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

(a)

(b)

(c)

Figure 8. Induction operator example of CLASS-INDUCTION. This explores opti-
mizations attainable by replacing a specified term in the parent pattern (the term HY-
DROPHOBE as illustrated here) by every other term from the generalization hierar-
chy (its replacement by SMALL is shown here for concreteness, but its replacement
by every other term in the generalization hierarchy is also computed in parallel).
This figure appeared as figure 4 of Lathrop et al. (1990).

LATHROP, WEBSTER, SMITH & SMITH 233

(a)

(b)

Figure 9. Induction script example of ADD-TERM-AND-REFINE. A script consists
of a series of induction operators, separated by filters to prune unpromising candi-
dates. These chain together common sequences of induction operators. Each induc-
tion operator generates and evaluates a large number of candidate patterns. Each
filter step removes patterns based on some criteria. In the script shown here, the op-
erator ADD-TERM is first applied to the parent pattern. If the term participates in a
class generalization hierarchy, CLASS-INDUCTION is then applied to explore ap-
propriate class terms. INTERVAL-INDUCTION is next applied, to adjust the inter-
vals before and after the added term. Finally, SCORE-INDUCTION adjusts the term
scores and threshold. This figure appeared as figure 5 of Lathrop et al. (1990).

duction operators construct a set of syntactically variant patterns (“children”)
from the parent pattern. Only a subset of the children (the “induction basis
set”) is actually matched against the instance data, and from these the perfor-
mance of the remaining children is computed. Filters prune unpromising pos-
sibilities. Finally, surviving children are returned to the domain expert, and
the loop iterates. At the end of the session, output consists of a number of
patterns evaluated for their sensitivity and specificity against the data set (see
the section on Significance, Validity, and Pattern Quality, below), as well as
the spectrum of sensitivity and specificity explored across pattern space.

Figure 10 shows a schematic representation (drawn by the domain expert)
of the pattern found to be most diagnostic of a class of transcriptional activa-

234 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Schematic

Elements

Local Hydrophobic
profile minimum

 alpha-helix with
acid-faced segment

Local Hydrophobic
profile maximum

ß-turn D

Weights

If present

If absent

Space
skipped if
absent

{-1, 7} {-1, 8} {4, 8} {-5,0}

-0.5 - - -0.5 - -1.5

[V L I]

+0.5 function of net 0.0 +0.5 0.0 +1.5
template charge

+1 +16 +1 +1 +4 +1

Figure 10. The pattern found to be most diagnostic of a class of transcriptional acti-
vators containing the steroid hormone receptors. The schematic diagram was drawn
by a domain expert. The remainder of the figure describes the pattern found by
ARIEL. The pattern elements must be found in sequence. Elements in curly braces
{n, m} are allowed spaces between elements, where n is the minimum distance and m
is the maximum. Note that a negative value for n allows the beginning of the follow-
ing element to overlap the end of the preceding element. The weights given corre-
spond to the pattern elements that they are below. All weights are relative to a pattern
match threshold of +3.5 (see text). The spacer elements do not have weights; if the
match is within the allowed space limits, the weight is zero, and if not, the weight is
negative infinity.

LATHROP, WEBSTER, SMITH & SMITH 235

Gal4 1 881

166 193

148

815 843

768196 881

region I region II

74

= Experimentally mapped activation domain

= Match to proposed pattern in figure 1

= DNA or promoter binding domain

E1a 1 289

49 69 125 157

149 133 {essential region for activity}

189

GCN4

 3 matches

107 138 {smallest fully active chimeric segment}

87 152
{complete activation region, with
functionally redundant sequences}

1 281

37 134 222

{37-64, 81-104, 103-134}

hGR 1 777

486421

77 262 526 556

tau 2tau 1

530 552210 234

Figure 11 . Schematic of Four Transactivating Proteins. A schematic of four transac-
tivating proteins showing the relative positions of the pattern matches, DNA binding
domains, and experimentally mapped regions essential to that activity (hGR (Hollen-
berg and Evans 1988); E1a (Lillie and Green 1989); Gal4 (Ma and Ptashne 1987);
and GCN4, (Hope et al. 1988)) These regions were used in the pattern construction,
and so cannot be considered experimental verification of the pattern. Nonetheless,
the close correspondence between pattern matches and functionally essential regions
illustrates the potential utility of the pattern match for guiding future experimental
work in unknown transactivating proteins. This figure appeared as figure 2 of Zhu et
al. (1990).

tors containing the steroid hormone receptors, as well as the corresponding
pattern as refined by ARIEL. Figure 11 shows in schematic four transcrip-
tional activating proteins with the relative positions of the pattern matches
and the experimentally mapped activation domains known to be essential to
the function. These regions were used in the pattern construction, and so can-
not be considered experimental verification of the pattern. Nonetheless, the
close correspondence between pattern matches and functionally essential re-
gions illustrates the potential utility of the pattern match for guiding future
experimental work in unknown transactivating proteins.

4.1 ARIEL Protein and Pattern Representations.

ARIEL accepts as input the same annotated protein sequences as ARI-
ADNE. Internally, ARIEL employs a graph-based pattern representation sim-
ilar to ARIADNE, but it is not fully object-oriented due to data storage con-
siderations arising from the massively parallel Connection Machine
implementation. The major differences are that (1) the protein data structure
is static, and so neither patterns nor target objects can be hierarchically con-
structed because annotations cannot be dynamically added; and (2) the anno-
tations are implemented as typed weighted pointers, rather than as full-
fledged objects in an object-oriented style, and so lack the notion of
“containing” the amino acids which compose them.

ARIEL currently implements a restricted subset of the pattern language
generality provided by ARIADNE. Only the most commonly used language
terms (pattern elements) from ARIADNE are currently included. The set of
ARIEL language primitives was fixed by choosing the ARIADNE language
constructs that had been found to be most useful in the domain task. ARI-
ADNE was designed to be a research vehicle into useful language constructs
for the domain; consequently its pattern primitives are expressed in arbitrary
LISP code making the language nearly arbitrarily user-extensible. ARIEL
was designed to be a research vehicle into parallel symbolic induction; con-
sequently it has a fixed set of pattern primitives whose semantics are directly
encoded in the primitive hardware. ARIEL’s pattern language permits de-
scription of nodes and their generalization classes, arcs, weights, threshold,
and interval relationships. A pattern consists of a series of TERMS separated
by INTERVALS. A THRESHOLD governs the overall match quality re-
quired to qualify as a successful match.

Each term specifies either a node class or an arc type. The semantics of a
term specifying a node class are to match to a node belonging to that class.
The semantics of a term specifying an arc type are to match to and traverse
an arc of that type. Terms carry an associated SCORE-IF-ABSENT and
SCORE-IF-PRESENT that govern how the pattern term matched against
instance features contributes to the overall match score. These may indicate
either a numeric score, minus infinity, or the weight attached to the instance

236 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

feature. Arc type terms indicate a default length, usually set to the average
length of arcs of that type. Intervals separate adjacent pattern terms. The in-
terval between two terms governs where to look for the next term after hav-
ing found the previous one. An interval consists of a fixed part (representing
a mandatory offset from the preceding term) and a variable part (indicating a
window length within which to look for the next term), and thus is equivalent
to a variable-length gap in specifying a minimum and maximum number of
amino acids to skip.

4.2 Pattern Matching in Parallel Hardware.

The induction mechanisms are built upon, and call as a subroutine, a par-
allel matching algorithm. Virtually all processors in the parallel hardware
(over 98%) are of type MATCH, and receive a pattern to test and an instance
segment to match against it. A few processors are of type COLLECTION,
and collect the global results of the match. A few processors are of type IN-
DUCTION, and are used to combine the results of the induction operators
(see Figure 6).

Both the pattern, and the instance data against which it is matched, are
stored in the private data of a processor (see Figures 6 and 7). Once loaded,
the instance data is permanently resident in the processor. New patterns are
broadcast to the processors at the beginning of each match cycle. Bit-vectors
are transmitted back to the host when the cycle ends. Thus the communica-
tion channel between front-end host and parallel hardware is of low band-
width.

Large proteins are broken into several segments and stored in several ad-
jacent processors. A communication protocol handles cases in which a suc-
cessful match spans more than one processor. Each instance is assigned a
unique bit position in a bit vector, which is stored with the instance in the
processor. When each match cycle is complete, each processor compares the
highest score achieved by any match terminating in its segment to the thresh-
old from the pattern. If the threshold is met or exceeded, that processor sends
(with logical inclusive OR) the instance bit representing its protein to the col-
lection processor for that pattern. There is one collection processor dedicated
to each pattern concurrently matched. Bits sent by processors meeting or ex-
ceeding the threshold set the corresponding bit in the collection processor,
and thereby specify that the corresponding instance matched that pattern.
Each collection processor winds up with a global bit-vector corresponding
exactly to the successfully matched instances of its associated pattern.

Because we usually use no more than one or two hundred instances in the
positive and negative sets, but have thousands of processors, it is possible to
hold many duplicate copies of the full sets of positive and negative instances
in the parallel hardware. Each full copy of the positive and negative in-
stances is called a full instance set, and the processors holding them a full

LATHROP, WEBSTER, SMITH & SMITH 237

processor set. Matching one pattern against one instance is independent of
matching another pattern against a different instance, and so can be done in
parallel (see Figures 6, 7 and 8). We put different patterns in each full proces-
sor set, but each processor in the same full set receives the same pattern. By
matching against all of these concurrently, we obtain the result of matching
many different patterns exhaustively against all the positive and negative in-
stances, in essentially the real time taken to match one pattern against one
segment of one instance.

For the domain studied here, this yields the following attractive match
properties:

• Nearly Constant Time in Number of Instances; because the match against
each instance is independent and concurrent. The only time dependency
on number of instances occurs in transmitting the bit-vectors, an operation
that consumes a tiny fraction of the time of the match.

• Nearly Linear Space in Total Instance Pool Size; because we need but one
processor per segment. The space dependency on number of instances in-
volves storing the instance data together with the instance-ID.

• Nearly Constant Time in Instance Size; because an instance is segmented
and split over several processors. Any one processor looks only at a con-
stant-length segment regardless of the total length of the instance. Com-
munication costs for following arcs from one processor to another are
nearly constant in instance size because the domain has high locality (i.e.,
arcs are mostly short).

• Most Communication Local for Domains With High Locality; because if
the domain is sufficiently local, most communication except the global bit-
vector OR used to compute the characteristic set can use local communi-
cation with adjacent processors.

• Nearly All Non-Local Communication Evenly Distributed in Both Source
and Destination (No Bottlenecks or Collisions); because except for the
global bit-vector OR, all non-local communication has unique source and
unique destination.

• Space Constant Adjustable to Available Hardware, for Nearly 100% Pro-
cessor Utilization; because we can vary the length of the segment we put
in each processor. Decreasing the length uses more processors, increasing
it uses fewer. We can vary it to fill the machine.

• Works on real-world problems using realistic hardware; for example the
transcriptional activator pattern from Zhu et al. [1990] was run on an 8K
CM-2 Connection Machine.

These bounds fail to be exactly constant or linear because each match pro-

238 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

cessor must also store and transmit its own instance-ID (specifying the bit
position corresponding to its instance). A binary encoding of the instance-ID
must consume at least log N bits, forcing the formal time complexity to
O(log N) and the formal space complexity to O(N log N). However, bound-
ing the size of the binary instance-ID by as few as 64 bits (tiny compared to
the many tens of thousands of bits consumed by the typical instance itself,
and less than 1/10 of 1 percent of each CM-2 processor’s 64K bits of private
memory) would suffice for well over ten sextillion instances, certainly far be-
yond the foreseeable future of parallel hardware. The time consumed in pro-
cessing the instance-ID is currently trivial compared to seconds or even min-
utes for the match process itself, and the space consumed so small relative to
other uses that the implementation actually encodes the instance-ID as a sin-
gle bit set in a large bit-field for simplicity. Once the match and induction
steps are complete, transmitting the bit-vector back to the front-end host in-
curs a small communication cost of one bit per instance per pattern.

4.3 ARIEL Pattern Induction Mechanisms.

Induction operators have been provided for the main pattern language
components: class membership terms, interval relationships, weights and a
threshold, and pattern elements. Each operator seeks to explore a single char-
acteristic class of perturbations to the original pattern, related to a specific
pattern language component. An induction operator transforms one initial
pattern (parent) into a set of related patterns (children), and evaluates their
performance on the positive and negative instances.

One of the main points of this research is to demonstrate parallel induc-
tion algorithms rendering it unnecessary to actually match each and every
child pattern against the instances in order to evaluate its match performance.
Matching each child pattern would be an undesirable waste of our computing
resources, because the match step consumes most of the time and space of
the system. Instead, we find a subset of pattern space (an “induction basis
set”) from which, once the performance of that subset is known, we can
readily infer the exact performance of the other child patterns implied by the
induction operator. Thus we match only a few child patterns against the in-
stance data, and use those results to compute what the match performance of
other children would be.

For example, CLASS-INDUCTION operates on a language term that par-
ticipates in a class generalization network (often termed an A-Kind-Of, or
AKO, hierarchy). In the domain, this corresponds to the physico-chemical
classes of amino acids. The effect of applying CLASS-INDUCTION to a
term in a pattern is to explore all new pattern variants which may be con-
structed by changing its class to any other class in the generalization hierar-
chy. As shown in Figure 8, for this operator the “induction basis set” can be
just the leaves (or some suitable subset of the class hierarchy). In CLASS-

LATHROP, WEBSTER, SMITH & SMITH 239

INDUCTION these are the children which substitute individual amino acids
(leaves of the generalization hierarchy) at the position of interest. In the ex-
ample of Figure 8, the class SMALL is composed of the leaves A, G, and S.
The instances matched by a child substituting SMALL at a given term are
exactly the union of the instances matched by the three children substituting
A, G, or S. In general, each class is just the union of its leaves, so the in-
stances matched by a child substituting any given class at the term are exact-
ly the union of the instances matched bychildren substituting one of the
leaves making up the class. Match performance on instance data is encoded
in a bit-vector indicating which instances matched a pattern (by whether the
bit corresponding to a given instance is on or off). Pattern results for the
leaves can be merged by ORing together their bit-vectors of hit instances ac-
cording to the union comprising the class. Figure 8 shows how the match bit-
vector of the child substituting SMALL is computed by ORing the bit-vec-
tors obtained from A, G, and S. The SMALL child is never actually matched
to the instances.

The time required to explore all the children is nearly independent of ei-
ther the number of instances or the number of class terms in the generaliza-
tion hierarchy because both the match and the induction steps occur in paral-
lel hardware. Provided sufficient parallel hardware is available, in little more
than the time taken to match one pattern within one processor, we have effec-
tively evaluated every pattern which can be formed from the parent by sub-
stituting any generalization class for the specified term, against every in-
stance in the positive and negative sets. (Throughout this section, the
discussion is phrased as if sufficient hardware were available. The hardware
requirements are linear in the instance data size, and we have been able to
solve real problems using an 8K Connection Machine. Thus, this is not an
unreasonable simplification. The actual implementation adjusts to accommo-
date the hardware available, automatically iterating when an instance basis
set will not entirely fit in the available processors.)

The other induction operators function similarly. The key is the decompo-
sition of the syntactic operation on a pattern in such a way that we actually
match against the instance data only a subset of the children (the “induction
basis set”), but can then compute the results for all the other children without
actually matching against them.

One important induction operator explores variations in a range of values,
such as the interval separating two adjacent terms. The children are patterns
that vary from the parent by having a different interval (a mandatory offset
plus an active window within which the following term may appear, specify-
ing a variable-length gap) separating the two terms. The corresponding in-
duction basis set would be the intervals having offsets of different lengths
and an active window of width one. From the appropriate union of these
primitive (“basis”) intervals we can construct every other interval in the set

240 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

of child patterns, i.e., intervals with an arbitrary offset and window. Conse-
quently, from the OR of the bit-vectors associated with these “basis” patterns
we can compute the bit-vectors to asssociate with every other child pattern.
Thus we evaluate every pattern which can be formed by substituting a differ-
ent interval between the two adjacent terms, again in little more than the time
taken to match one pattern within one processor.

Another induction operator explores variations in the overall match
threshold. Although there are potentially an infinite number of children, we
are really interested only in the critical set of threshold values at which some
instance switches between being matched and not matched. Rather than ex-
plicitly constructing each possible child, this induction operator finds these
critical values using the global maximum instruction implemented by the
parallel hardware. First the parent pattern is matched as described in the pre-
vious section. The maximum score achieved in any processor is retrieved and
treated as the threshold. As above, the bit-vector OR of instances matching at
this threshold is retrieved, and the corresponding child is constructed. Suc-
cessively each distinct next lower score is retrieved and treated as the thresh-
old, and the corresponding bit-vector and child constructed. In this way we
rapidly evaluate the match performance of all children, while performing the
match step only once.

Computing the induction operator for term weights is more subtle. It ex-
plores simultaneous changes to the threshold and the SCORE-IF-ABSENT
and SCORE-IF-PRESENT parameters of any single term. (In practice we
compute this operator for all terms in parallel, but the exposition is simpler
when only a single term is considered.) For a given term, the basis set con-
sists of two child patterns: one with SCORE-IF-ABSENT zero and SCORE-
IF-PRESENT minus-infinity, the other with the values reversed. These two
patterns are matched against the instance data, and their match performances
for each different setting of the match threshold evaluated as just described.
The instances matched by either one of these patterns at any setting of the
threshold is identical to those that same pattern would match if its zeroed
score were set to the negative of the match threshold and the threshold were
set to zero. Also, the match support for this term in the two patterns is neces-
sarily disjoint. Consequently, we can compute a child term that matches the
union of the instance matches of both patterns at any of the match thresholds
individually, by setting the child’s SCORE-IF-ABSENT to the negative of
the threshold chosen for the first pattern, its SCORE-IF-PRESENT to the
negative of the threshold chosen for the second pattern, and its threshold to
zero. Thus we evaluate every pattern which can be formed by substituting a
different SCORE-IF-ABSENT and SCORE-IF-PRESENT at a single given
term and simultaneously changing the match threshold to any value, again in
little more than the time taken to match one pattern within one processor.

The set of induction operators as a whole is suitable for use in a heuristic

LATHROP, WEBSTER, SMITH & SMITH 241

search through pattern space. Their major strength is that a whole class of
characteristic perturbations may be explored rapidly. This greatly speeds the
search for a pattern which satisfactorily discriminates positive from negative
instances; eliminates the whole lowest level of search planning complexity
that previously attended to exploring each class of perturbations efficiently;
and allows a more systematic search through pattern space. Their major
weakness is that, because they explore only one major characteristic at a
time, they are poor at detecting interaction effects. This is only partially com-
pensated for by the use of induction scripts, which automatically chain to-
gether some of the more common interactions.

Induction scripts are constructed by sequencing induction operators to-
gether in a pipeline, separated by filters to prune unpromising candidates. For
example, the script for adding a new term (see Figure 9) involves first ex-
ploring the class generalization hierarchy (to find plausible terms to add),
then exploring different intervals before and after the new term (because the
insertion will disturb the previous spacing), and finally exploring different
weights for the new term, and a new match threshold. Overall, the induction
scripts implement a variant of symbolic hill-climbing beam search through
symbolic pattern space. The search is analogous to hill-climbing because
each induction operator modifies only one aspect of a pattern at a time, just
as hill-climbing search steps in one direction at a time, and because we seek
to go “uphill” as determined by increasing sensitivity and specificity (this is
not a single “direction”). It is analogous to beam search because filters retain
a number of promising candidates at each stage.

4.4 Discussion of ARIEL

The resulting induction scripts are a fairly crude search heuristic. The
pruning of intermediate patterns may be too aggressive at some step and so
discard a possible variant. The scripts are also limited in that they contain no
conditionalization, no parameterization, and no variables. There is currently
no automated effort to systematically explore all alternative avenues from
step to step within an induction script, nor from script to script. The scripts
and operators use a “generate and test” strategy for finding candidate pat-
terns, and so are less direct than methods which construct candidate patterns
by inspecting and manipulating the instances (as does PIMA, discussed in
the next section).

In spite of their current limitations, in practice the scripts prove to be rea-
sonably effective at exploring different possibilities and focusing computa-
tional effort into useful areas. The scripts raise the general level of abstrac-
tion at which the domain expert plans the search through pattern space. By
removing the necessity to expend planning effort on low-level induction
steps the domain expert is freed to formulate higher-level plans at a higher
level of abstraction, covering more possibilities with each planning step. Fu-

242 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ture improvements to ARIEL would add a planning component on top of
(and interacting with) the induction scripts, rather than attempting to expand
the scope and coverage of the script-based search approach itself (see
Hunter’s chapter in this volume on the relationship of planning to learning).

5 Covering Pattern Construction (PIMA)
and Search (PLSEARCH) Tools

As ARIEL provides an automated method to construct complex patterns
from seed patterns, we now ask: “Where does the seed pattern come from in
the first place?” A completely automated method for seed pattern construc-
tion is provided by PIMA (our Pattern-Induced Multiple Alignment pro-
gram), which uses a modified dynamic programming algorithm to inductive-
ly construct primary sequence patterns common to a family of
functionally-related proteins [Smith and Smith, 1990, 1992].

PIMA employs a pre-defined set of amino acid classes (based on a physi-
co-chemical generalization hierarchy, Figure 12) to construct a primary se-
quence pattern from a dynamic programming generated alignment. Given an
alignment between two sequences generated using the Smith and Waterman
[1981b] local optimal alignment algorithm, an “Amino Acid Class Covering”
(AACC) pattern can be constructed from the alignment by identifying the
smallest amino acid class which includes (covers) each pair of aligned amino
acids. If two identical amino acids are aligned at a position, then the symbol

LATHROP, WEBSTER, SMITH & SMITH 243

 Amino Acid Classes Match score

 X 0

 f r 1

 c e m p j 2

 a b d l k o n i h 3

C I V L M F W Y H N D E Q K R S T A G P 5

Figure 12. The amino acid class hierarchy used to construct AACC patterns during
multi-alignment. Uppercase characters, one-letter amino acid codes; lowercase
characters, designated amino acid classes; X, wild-card character representing one
amino acid of any type. The match score between any two aligned elements equals
the score assigned to the minimally inclusive class in the hierarchy that includes both
elements. [From Smith and Smith, 1992].

244 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 13. (A) A binary dendrogram constructed by clustering the pair-wise scores
for a set of serine protease-related sequences using a maximal linkage rule. (B) The
AACC pattern generated from this cluster. Upper case characters: IUPAC one-letter
amino acid codes; lower case characters: amino acid classes: a=[ILV], b=[FWY],
c=[ILVFWYCM], h=[DE], i=[HKR], j=[NQ], k=[ST], l=[DEHKRNQSTBZ],
p=[AG], X=wild-card (1 amino acid of any type), g= gap character (0 or 1 amino
acid of any type). The 8 cysteine residues forming the 4 disulfide bonds that are com-
mon to this set of proteases are all present in the pattern and are shown highlighted
in bold/underlined type. The highlighted regions at positions 178-188 and 199-200
are at the substrate binding site; the former region contains the "GDSG" motif con-
served in known serine proteases. Highlighted positions 46 and 91, along with posi-
tion 184 constitute the active site charge relay system. (C) AACC pattern construct-
ed from 4 protein serine/threonine kinase sequences: human insulin receptor
(NBRF/PIR locus A05274) and feline trk (locus A25184), mouse PDGF receptor
(locus A25742) and human ret (locus TVHURE). Six conserved regions previously
identified within the catalytic domains of protein serine/threonine kinases are shown
highlighted. [Adapted from Fig. 4 of Smith and Smith, 1990].

B. Covering pattern constructed from the above cluster.

1 20 21 40 41 60 61 80
lllhXaaGGXXCXXlXXPbX XXcXXXXigFCGXkLIXXXW VakApHCXlXXclaiLGlXX XXXXlXXEXcXXXXXXcXXP 80
lXlXXXcllgDIcLIiLXlX XXXlXlaXXaXLPlXXXXXG lXXXaXGWGXXXlgXXXXXl XXlCXlXXacXlXXClXXYX 160
GgaXXlXcCXGcclGGXDkC XGDSGGPaaXlGXcQGaaSW 200 GXXgCAXXXXPpcXXiVclb aXWIllXaA /229

C. Pattern constructed from 4 protein tyrosine kinase sequences

1 20 21 40 41 60 61 80
lXaXXaXXXaXXcXXXXlXX XXXXXlXgggXlXlXlllXl ghlAgXlcXXcXgggXXXXl laXXXXXXXXXXXXXXlXXX 80
XXXggXXXXXcXXXXNXXaX XggggggXXXXXXlXXlXXX lXXXXXXXXXiXXaXXXGXX XXlXXiXlXXXXXXXgglXl 160
XXaXXcXXXXXXXXXXXllc XXXXlXXXXXXXXclXgglX XlXXlXXggggggglXXlgg lXXXXXXXTXXXXXXlXXXX 240
XlXXXXXXXXXXXXXXXaXX XXXXXXXXXXcaXXXXXcXX XXXXXXXXXXXXXXXXgggg XXXXXcXbXlXXXXgglXXX 320
XXXXXSXXXXXaXXlXXXgg gggggggglcXRllaXLXXl LGlGXFGXVcXplXXXaXXX XXXXXVAVKXallgAlXlXX 400
XXcXlEXlaclXcXgXXlaa lccGXcklXXPXccaXEcXX XGlLXXbLilgggggggggg gggggggggggggggggggg 480
gggXXXXXXXXXGXgggggg gggggggggggggggggggg gggggggggggggggggggg ggggggggggXXXXcXlcaX 560
cXXlaXXGMXbLXXXlcVHR DLAXRNccaXlXXXcKIXDF GcXRDaclllXYXXXXlXXa PaiWMXXESaXXXXbTTXSD 640
cWSFGaaLWEIXkcpXlPbX XaXXllXcglXaXlGXXcXl PXXXXXlcXXaMXXCWlXlX lXggggXXXXlXcXXXXggi 720
XXXXXcXXXXXlXXXXXXlX XXgggggXXXXlXXXcP /757

TRRT1 Trypsinogen I precursor - Rat #EC-number 3.4.21.4
TRRT2 Trypsinogen II precursor - Rat #EC-number 3.4.21.4
B25528 Trypsinogen precursor - Mouse #EC-number 3.4.21.4
A27547 Trypsinogen, cationic, precursor - Rat #EC-number 3.4.21.4
TRPGTR Trypsinogen - Pig #EC-number 3.4.21.4
TRDGC Trypsinogen cationic, precursor - Dog #EC-number 3.4.21.4
TRBOTR Trypsinogen - Bovine #EC-number 3.4.21.4
A25852 Trypsinogen I precursor - Human #EC-number 3.4.21.4
B25852 Trypsinogen II precursor - Rat #EC-number 3.4.21.4
TRDG Trypsinogen anionic, precursor - Dog #EC-number 3.4.21.4
TRDFS Trypsinogen - Spiny Dogfish #EC-number 3.4.21.4
A29135 Venom serine protease - Barba amarilla #EC-number 3.4.21.29

TRRT1
TRRT2
B25528
A27547
TRPGTR
TRDGC
TRBOTR
A25852
B25852
TRDG
TRDFS
A29135

A. Trypsinogen/Venom serine proteases

121 92 70 34 8 Similarity Score

LATHROP, WEBSTER, SMITH & SMITH 245

Score

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

C
ou

nt

A

C
ou

nt

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100
Score

B

Figure 14. Match score distributions comparing AACC pattern vs. sequence matches
(A) to sequence vs. sequence matches (B). (A) An AACC pattern was constructed
from 4 protein tyrosine kinase sequences (Fig. 14C) and matched to 2 control sets: a
positive control set composed of 81 protein kinase (PK) related sequences (white
bars) and a negative control set 313 non-PK-related sequences (black bars;
mean±s.d=10.88±4.60); where the two sets of matches overlap, the smaller bar at
each position is shown in the foreground; at those positions where the bars are the
same height, a single stippled bar is displayed. The dashed line indicates the 99th
percentile of the negative control scores. (B) Score distributions of a single PK se-
quence (human ret, locus TVHURE) matched against the same positive (white bars)
and negative (black bars; mean±s.d=13.59±6.59) control sets described above. As in
(A), the dashed line indicates the 99th percentile of the negative control set. [From
Smith and Smith, 1990]

for that amino acid is placed at the corresponding position in the pattern. In
the other case, two non-identical residues are aligned, and the smallest cov-
ering class (represented by a lower-case characters in Figure 12) is placed
at that position. Positions in an alignment where an amino acid was is
paired to the null element are converted into gap characters (`g’) in pat-
terns. The dynamic programming algorithm has been extended such that
each gap character can function as 0 or 1 amino acid of any type during
subsequent pattern alignment (described below). This is analogous to the
way variable spacing can be specified in a regular expression pattern.

Given an unaligned set of protein sequences from a homologous family
(such as all alpha globin sequences), a single primary sequence pattern,
representing the conserved sequence elements common to all members of
the family, can be constructed. The method involves using patterns con-
structed from pairwise alignments as input for subsequent rounds of align-
ment and pattern construction. First, all pairwise alignments between se-
quences in a set are performed. The resulting pairwise scores are then
clustered using a maximal linkage rule [Sneath and Sokal, 1973] to gener-
ate a binary dendrogram (i.e., tree; Figure 13). The two most similar se-
quences in the clustered set are then aligned and a covering pattern con-
structed as described above. Patterns are similarly constructed for each
node in the tree by sequentially moving down the tree, aligning at each step
the patterns or sequences connected by the next most similar node, until a
single “root” pattern is constructed for the entire set. The root pattern rep-
resents those conserved primary sequence elements common to all mem-
bers of the set.

In a manner analogous to a regular expression pattern, covering patterns
so constructed will match with equal score all of the sequences from which
the pattern was derived. Indeed, these covering patterns can be directly
translated into standard regular expression patterns. This pattern construc-
tion algorithm can be thought of as a method to construct a single regular
expression pattern for a set of homologous sequences, and our modified dy-
namic programming algorithm is, in essence, a method to perform “regular
expression matching with mismatching” (the latter problem has been ap-
proached differently by [Myers and Miller, 1989]).

Covering patterns can be more diagnostic for family membership than
any of the individual sequences used to construct the pattern. This can be
shown by comparing the diagnostic capability of a pattern with that of the
sequences used to construct the pattern. An example of this is shown in
Figure 14, where a pattern constructed from four sequences taken from the
protein kinase (PK) family is matched against (1) a positive control set of
80 PK sequences, and (2) a negative control set of 313 different sequences
not related to the PK family. For the PK pattern, only four PK sequences in
the positive set had match scores less than the 99th percentile of the nega-

246 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

tive control set (Figure 14a). Using the same 99th percentile criterion for
determining false negative (FN) matches, the four individual PK sequences
generated 46, 29, 23, and 20 FN matches (the example with 20 FN matches
is shown in Figure 14b).

There are two apparent reasons why covering patterns can be more diag-
nostic than the sequences used to construct them. First, in sequence vs. se-
quence alignments, mismatch and gap penalties generated at non-con-
served positions can easily outweigh the match scores contributed at the
limited number of conserved sites. This is especially true in families such
as the PKs which encompass a diverse set of sequences with low overall
sequence similarity. In the patterns, non-conserved positions are converted
into “wild-card” (X) and gapped (g) characters that do not contribute to
mis-matching. Second, chance similarities between non-conserved regions
of any single positive instance sequence and non-related sequences can
broaden the score distribution of the negative control set. Non-conserved
site/regions are not represented in the patterns and thus such chance simi-
larities are eliminated.

5.1 An Application of PIMA.

Using the covering pattern construction methodology described above, we
have constructed a database of covering patterns for all sequence families in
the SWISS-PROT Protein Sequence Database. Families of related protein se-
quences were identified by performing all possible pairwise comparisons be-
tween all sequences in the SWISS-PROT database (i.e., “running the
database against itself”) using BLAST, an ultra-fast k-tuple search program
[Altschul et al., 1990]. The resulting set of pairwise scores was then clus-
tered into families using a maximal-linkage clustering algorithm. The cover-
ing pattern construction program was then used to generate a single primary
sequence pattern for each family. The current pattern library (release 4, based
on SWISS-PROT release 13) contains 2026 patterns derived from all fami-
lies of 2 or more members (encompassing 10664 of the 13837 sequences in
the database). In collaboration with the Human Retrovirus and AIDS Se-
quence Database, we have also constructed a pattern library for all gene fam-
ilies of HIV (AIDS) -related viruses. Biologists with new sequences of un-
known function can search these pattern databases with PLSEARCH (Pattern
Library SEARCH), a pattern search tool that utilizes PIMA’s pattern align-
ment algorithm. As described above, pattern searches can be more sensitive
than conventional sequence vs. sequence database search programs since
covering patterns can be more diagnostic for family membership than any of
the individual sequences used to construct a pattern. We are also using these
primary sequence patterns as “seed” inputs to construct complex hierarchical
patterns using ARIEL’s pattern induction system.

LATHROP, WEBSTER, SMITH & SMITH 247

6 Significance, Validity, and Pattern Quality

“Validity, in a metric sense, is how well the test actually measures what
its name indicates that it measures the degree to which the test reports
what it purports to report.”

—R. G. Lathrop [1969]

Questions of significance and validity are familiar fare to the statistics and
machine learning communities. Here we briefly touch on these issues with
respect to protein sequence patterns (see also [Felsenstein 1988; Karlin and
Macken 1991; Karlin et al. 1991]). The issue is of more than theoretical con-
cern to the domain practitioners: on more than one occassion, a pattern for
some defining class has been published which, while indeed matching the
defining (positive) set, subsequently was found to match almost every other
sequence in the sequence databases as well! Such a pattern is of little value.

At a minimum, patterns must be tested against both a positive and a nega-
tive set of sequences. The result yields a 2x2 contingency table:

While this provides a complete description of the pattern behavior on both
positive and negative sequences, other derivative statistics are also useful:

In particular, sensitivity and specificity should always be reported for any
published pattern. A pattern which achieves 1.0 for both sensitivity and
specificity exhibits perfect discrimination and is sometimes refered to as “di-
agnostic”. Patterns may be quite useful even if their sensitivity and
specificity are not both 1.0, but these values must be known for its full utility

Sensitivity
TP

TP FN

Specificity
TN

TN FP

Positive edictive Value
TP

TP FP

x Correlation Coefficient
TP TN FP FN

TP FP FP TN TN FN FN TP

=
+

=
+

=
+

= ⋅ − ⋅()
+() ⋅ +() ⋅ +() ⋅ +()

Pr

2 2

FN (number of
false negatives)

FP (number of
false positives)

Actual class

Positive Negative

TP (number of
true positives)

Matched
pattern

Did not match
pattern

TN (number of
true negatives)

248 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

to be realized. For example, a pattern for alpha helices that achieved 1.0 sen-
sitivity but only 0.75 specificity would be quite useful—- it would guarantee
to find every alpha helix, although it would over-predict somewhat. Similar-
ly, a pattern for alpha helices that achieved only 0.75 sensitivity but 1.0
specificity also would be quite useful—- it would not find every alpha helix,
but it would guarantee complete confidence in the matches it did find.
Nonetheless, matches to these two patterns would be interpreted very differ-
ently, and this is not possible unless their sensitivity and specificity are both
known.

“The word `significantly’ has a somewhat different meaning in statis-
tics than it has in common usage. In everyday usage, a significant dif-
ference is one which is of practical import. A significant difference in
statistical terms implies a difference that is unlikely to have occurred
by chance alone.”

—R. G. Lathrop [1969]

The statistical significance of induced patterns is always of concern. This
is especially so for those interested in applying AI methods. In our case, we
have greatly enriched the expressive representational power of both the in-
stance and the pattern languages relative to existing better-understood se-
quence-based languages current in the domain. Is it possible that their ex-
pressive power is now so rich that we could detect a discriminating
“regularity” in any randomly drawn set, even when no such regularity exist-
ed, or existed solely due to chance? The nature of the domain hampers the
usual methods for establishing significance, especially due to sequence simi-
larity, sample bias, and the small size of typical defining sets. Additionally,
any method in which the domain expert intervenes in any way cannot use the
cross-validation (leave-one-out) verification methodology, because the do-
main expert cannot be “reset” between trials. Any method which refines pat-
terns in an iterative loop cannot use methods such as a means test, analysis of
variance, or chi square, all of which assume a single independent trial.

Nonetheless, the languages we use appear to more closely reflect the un-
derlying domain ontology as understood by domain experts; the patterns in-
ferred reflect plausible generalizations that are directly subject to experimen-
tal tests by domain experts; tests of the pattern against a control (negative)
set not used in pattern construction can provide an unbiased estimate of the
false positive rate; and pattern-based discrimination should always be related
to the domain’s existing scientific literature. In the end, any computational
technique can do no more than supply a hypothesis. Verification occurs only
in an experimental setting, where a prediction is compared to Nature. Clear-
ly, more rigor is desirable, and statistical significance and validity is an area
of inquiry where formal consideration by theoreticians and their methods
would be welcome. The remainder of this section will briefly survey some of

LATHROP, WEBSTER, SMITH & SMITH 249

the domain-based issues that arise, making an attempt to discuss issues that
are intrinsic to the general problem of inferring functional patterns in the do-
main rather than artifacts of our “Induction Assistant” approach.

Instances often share evolutionary history (known as “homology” in the
domain), and hence fail to be independent of each other. These can be
thought of as near-identical twins in an evolutionary sense. This is especially
true of functionally related proteins, because related functions often spring
from a common ancestral gene. Typically, the more recent the evolutionary
divergence, the greater the degree of similarity (for example, functionally
equivalent proteins from man and chimpanzee may differ by a few percent or
less, while corresponding proteins from man and yeast may differ by more).
This complicates the analysis of our positive (defining) set. The best current
approach is to run a primary sequence similarity analysis beforehand. One
may then count homologous families (clusters) as a single sequence for re-
porting purposes, or discard sequences until each family has but one remain-
ing representative. Unfortunately, information is lost by these approaches,
while dependencies undetectable by primary sequence similarity may still re-
main. Clustering methods proposed by Felsenstein [1985], Altschul et al.
[1989], and Sibbald and Argos [1990b] promise to eventually provide a bet-
ter approach. Here one can differentially weight each sequence relative to its
similarity to other sequences, thereby attempting to retain the extra informa-
tion present in their diversity while compensating for the partial lack of inde-
pendence. However, the effect of cluster-based differential weights on any of
the standard statistical tests of significance is unclear.

The available databases do not represent anything close to a uniform sam-
pling of the space of all proteins. Rather, the sampling represents a highly
skewed bias reflecting both the research interests of individual domain re-
searchers (for example, hemoglobins and myoglobins are vastly over-repre-
sented in the protein sequence databases), and current technological limita-
tions on what we can study (for example, membrane-bound proteins are
vastly under-represented in the three-dimensional (folded shape) database
because they are virtually impossible to crystallize). Thus it is currently im-
possible to construct a control set of negative instances whose distribution
accurately reflects the space of all negative instances. One current approach
is to construct a stratified negative set that attempts to sample the major pro-
tein groups systematically. Another common approach is to randomly sample
the current databases, controlling for homology as discussed above.

Another problem, also familiar to the statistics and machine learning com-
munities, arises from the small size of typical defining sets (in many cases,
only a few dozen positive instances, or less, are known to science, especially
if highly similar sequences are removed). This raises the possibility of over-
fitting the data, also known as memorizing the training set. While cross-vali-
dation or jack-knife techniques may offer assistance, holding out a test set

250 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

may leave an impoverished training set. Additionally, the domain issue of
similar sequences is especially bothersome for these methods, and domain
opinion is divided. The problem arises when a sequence in the test set is
highly similar to another sequence in the training set. One school of thought
asserts that, because the test sequence is essentially duplicated in the training
set, the situation is as if the test sequence had not been held out at all and one
is effectively testing on the training data, invalidating the trial. The contrary
school of thought holds that, because similar sequences occur so frequently
in Nature, the next unknown sequence that arises may be highly similar to a
known sequence and one is effectively modeling an intrinsic domain fact,
yielding a better estimate of expected performance in practice. The former
position is probably preferable because more conservative, but opinions dif-
fer.

We close by pointing out several other minor protein-based violations of
common underlying statistical assumptions. First, the positive and negative
sets often differ in measurable ways from each other in ways unrelated to the
phenomenon under test (for example, the average positive instance length is
often significantly longer or shorter than the average negative instance). Sec-
ond, the underlying distributions are not normal. However, most statistical
tests are relatively insensitive to minor deviations from normality. Third,
while the negative set is usually stratified or otherwise corrected for the sam-
ple independence problem, the positive set typically employs all the positive
instances known to science (while compensating for homology as discussed
above). Thus, the selection criteria for inclusion in the sets differs. Fourth, if
homology is controlled for in the control set differently than in the defining
set, then the degree of internal independence varies between the two sets.

Notes

1. Ariadne was the Cretan princess who gave Theseus a ball of thread, by
which he found his way out of the Labyrinth after slaying the Minotaur.

2. ARIEL is a combination of ARI-adne and parall-EL, and also a pleasing
character from Shakespeare’s The Tempest

References
Abarbanel, R. M. (1985) Protein Structural Proteins Knowledge Engineering. Ph.D. diss.,

Univ. of California, San Francisco.

Abarbanel, R. M., Wieneke, P. R., Mansfield, E., Jaffe, D. A., Brutlag, D. L. (1984) “Rapid
Searches for Complex Patterns in Biological Molecules.” Nucleic Acids Res. 12:263-280.

Altschul S. F., Carroll R. J., Lipman D. J. (1989) “Weights for Data Related by a Tree.”
Journal of Molecular Biology 207:647-653.

LATHROP, WEBSTER, SMITH & SMITH 251

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990) “Basic Local Align-
ment Search Tool.” Journal of Molecular Biology215(3):403-410.

Bacon, D. J., Anderson, W. F. (1986) “Multiple Sequence Alignment.”Journal of Molecular
Biology191:153-161.

Barton, G. J. (1990) “Protein Multiple Sequence Alignment and Flexible Pattern Matching.”
in Methods in Enzymology,ed. R. F. Doolittle, 183:403-429. Academic Press.

Barton, G. J., Sternberg, M. J. E. (1987a) “Evaluation and Improvements in the Automatic
Alignment of Protein Sequences.” Protein Engineering1:89-94.

Barton, G. J., Sternberg, M. J. E. (1987b) “A Strategy for the Rapid Multiple Alignment of
Protein Sequences.” Journal of Molecular Biology 198:327-337.

Barton, G. J., Sternberg, M. J. E. (1990) “Flexible Protein Sequence Patterns: A Sensitive
Method to Detect Weak Structural Similarities.” Journal of Molecular Biology212:389-402.

Bashford, D., Chothia, C., Lesk, A. M. (1987) “Determinants of a Protein Field.” Journal of
Molecular Biology196:199-216.

Birktoft, J.J., Banaszak, L.J. (1984) “Structure-function Relationships Among Nicotinamide-
adenine Dinucleotide Dependent Oxidoreductases.” In Peptide and Protein Reviewsed. Hearn,
M. T. W., 4:1-47, Marcel Dekker, New York.

Blundell, T. L., Sibanda, B. L., Sternberg, M. J. E., Thornton, J. M. (1987) “Knowledge-
based Prediction of Protein Structures and the Design of Novel Molecules.” Nature 326:347-
352.

Bode, W., Schwager, P. (1975) “The Refined Crystal Structure of Bovine Beta-trypsin at 1.8
A Resolution.” Journal of Molecular Biology98(4):693-717.

Bohr, H., Brunak, S., Cotterill, R., Fredholm, H., Lautrup, B., Petersen, S. (1990) “A Novel
Approach to Prediction of the 3-dimensional Structures of Protein Backbones by Neural Net-
works.” FEBS Letters261:43.

Bork, P., Grunwald, C. (1990) “Recognition of Different Nucleotide-binding Sites in Prima-
ry Structures Using a Property-pattern Approach.”Eur. J. Biochem. 191:347-358.

Boswell, D.R. (1988) “A Program for Template Matching of Protein Sequences.” CABIOS
4(3):345-350.

Bowie, J.U., Luthy, R., Eisenberg, D. (1991) “A Method to Identify Protein Sequences that
Fold into a Known Three-dimensional Structure.” Science 253:164-170.

Bradley, M., Smith, T.F., Lathrop, R.H., Livingston, D., Webster., T.A. (1987) “Consensus
Topography in the ATP Binding Site of the Simian Virus 40 and Polyomavirus Large Tumor
Antigens.” Proc. of the Natl. Acad. of Sciences USA, 84:4026-4030.

Breese, K., Friedrich, T., Andersen, T.T., Smith, T.F., Figge, J. (1991) “Structural Characteri-
zation of a 14-residue Peptide Ligand of the Retinoblastoma Protein: Comparison with a Non-
Binding Analog.” Peptide Res. 4(4):220-226.

Brutlag, D.L., Dautricourt, J.-P., Maulik, S., Relph, J. (1990) “Improved Sensitivity of Bio-
logical Sequence Databases.” CABIOS 6(3):237-245.

Chou, P.Y., Fasman, G.D. (1978) “Empirical Predictions of Protein Conformation.” Ann.
Rev. Biochem47:251-276.

Clark D.A., Barton G.J., Rawlings C.J. (1990) “A Knowledge-based Architecture for Protein
Sequence Analysis and Structure Prediction.”J. Mol. Graph. 8:94-107.

Cockwell, K.Y., Giles, I.G. (1989) “Software Tools for Motif and Pattern Scanning.”
CABIOS 5(3):227-232.

252 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Cohen, B. I., Presnell, S.R., Cohen, F.E. (1991a) “Pattern-based Approaches to Protein
Structure Prediction.” Methods of Enzymology 202:252-268.

Cohen, B. I., Presnell, S. R., Morris, M., Langridge, R., Cohen, F.E. (1991b) “Pattern Recog-
nition and Pprotein Structure Prediction.” Proc. 24th Hawaii Intl. Conf. on System Sciences, pp.
574-584, IEEE Computer Soc. Press, Los Alamitos, CA, USA.

Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., Fletterick, R. J. (1983) “Secondary Structure
Assignment for Alpha/beta Proteins by a Combinatorial Approach.” Biochemistry 22:4894-
4904.

Cohen, F.E., Abarbanel, R.M., Kuntz, I.D., Fletterick, R.J. (1986) “Turn Prediction in Pro-
teins Using a Complex Pattern Matching Approach.” Biochemistry 25:266-275.

Cohen, F.E., Gregoret, L., Presnell, S.R., Kuntz, I.D. (1989) “Protein Structure Predictions:
New Theoretical Approaches.” Prog. Clin. Biol. Res. 289:75-85.

Collins, J.F., Coulson, A.F.W., Lyall, A. (1988) The Significance of Protein Sequence Simi-
larities. CABIOS4(1):67-71.

Corpet, F. (1988) “Multiple Sequence Alignment with Hierarchical Clustering.” Nucleic
Acids Res. 16(22):10881-10890.

Creighton, T.E. (1983) Proteins: Structure and Molecular Properties. W.H. Freeman and
Company, New York.

DeCaprio, J.A., Ludlow, J.W., Figge, J., Shew, J.-Y., Huang, C.-M., Lee, W.-H., Marsilio, E.,
Paucha, E., Livingston, D.M. (1988) “SV40 Large Tumor Antigen Forms a Specific Complex
with the Product of the Retinoblastoma Susceptibility Gene.”Cell 54:275-283.

DeCaprio, J.A., Ludlow, J.W., Lynch, D., Furukawa, Y., Griffin, J., Piwnica-Worms, H.,
Huang, C.-M., Livingston, D.M. (1989) “The Product of the Retinoblastoma Susceptibility
GEne has Properties of a Cell Cycle Regulatory Component.”Cell 58:1085-1095.

Doolittle, R.F., Hunkapillar, M.W., Hood, L.E., Davare, S.G., Robbins, K.C., Aaronson,
S.A., Antoniades, H.N. (1983) “Simian Sarcoma Virus Onc Gene, v-sis, Is Derived from the
Gene (or Genes) Encoding a Platelet-derived Growth Factor.” Science221:275-277.

Dyson, N., Howley, P.M., Munger, K., Harlow, E. (1989) “The Human Papilloma Virus-16
E7 Oncoprotein Is Able to Bind to the Retinoblastoma Gene Product.” Science 243:934-937.

Dyson, N., Bernards, R., Friend, S.H., Gooding, L.R., Hassell, J.A., Major, E.O., Pipas,
J.M., Vandyke, T., Harlow, E. (1990) “Large T Antigens of Many Polyomaviruses Are Able to
Form Complexes with the Retinoblastoma Protein.”J. Virology64:1353-1356.

Eisenberg, D., Weiss, R.M., Terwilliger, T.C. (1982) “The Helical Hydrophobic Moment: a
Measure of the Amphilicity of a Helix.” Nature299:371-374.

Eisenberg, D., Weiss, R.M., Terewilliger, T.C. (1984) “The Hydrophobic Moment Detects
Periodicity in Protein Hydrophobicity.” Proc. Natl. Acad. Sci. USA. 81:140-144.

Emi, M., Nakamura, Y., Ogawa, M., Yamamoto, T., Nishide, T., Mori, T., Matsubara, K.
(1986) “Cloning, Vharacterization and Nucleotide Dequences of Ywo cDNAs Rncoding Human
Pancreatic Trypsinogens.” Gene41:305-310.

Erman, L.D., Lesser, V.R. (1975) “A Multi-level Organization for Problem Solving Using
Many Diverse, Cooperating Sources of Knowledge.” Proc. Intl. Joint Conf. Artif. Intell.(IJCAI-
4), pp. 483-490.

Fasman, G.D. (1989) Prediction of Protein Structure and the Principles of Protein Confor-
mation, Plenum Press, New York, pp. 193-316.

Felsenstein, J. (1985) “Phylogenies and the Comparative Method.” Amer. Naturalist
125(1):1-15.

LATHROP, WEBSTER, SMITH & SMITH 253

Felsenstein, J. (1988) “Phylogenies from Molecular Sequences: Inference and Reliability.”
Annual Rev. Genetics 22:521-65.

Feng, D.-F., Doolittle, R.F. (1987) “Progressive Sequence Alignment As a Prerequisite to
Correct Phylogenetic Trees.” J. Mol. Evol.25:351-360.

Figge, J., Webster, T., Smith, T.F., Paucha, E. (1988) “Prediction of Similar Transforming
Region in Simian Virus 40 Large T, Adenovirus E1A, and Cyc Oncoproteins.” J. Virology,
62(5):1814-1818.

Figge, J., Smith, T.F. (1988) “Cell-Division Sequence Motif.” Nature334:109.

Fischel-Ghodsian, F., Mathiowitz, G., Smith, T.F. (1990) “Alignment of Protein Sequences
Using Secondary Structure: a Modified Dynamic Programming Method.” Protein Engineering
3(7):577-581.

Friedland, P., Iwaskai, Y. (1985) “The Concept and Implementation of Skeletal Plans.” J.
Autom. Reasoning 1(2):161-208.

Garnier, J., Osguthorpe, D.J., Robson, B. (1978) “Analysis of the Accuracy and Implications
of Simple Methods for Predicting the Secondary Structure of Globular Proteins.” Journal of
Molecular Biology120(1):97-120.

Gascuel, O., Danchin, A. (1986) “Protein Export in Prokaryotes and Eukaryotes: Indications
of a Difference in the Mechanism of Exportation.” J. Mol. Evol.24:130-142.

Goldsborough, M.D., DiSilvestre, D., Temple, G.F., Lorincz, A.T. (1989) “Nucleotide se-
quence of human papillomavirus type 31: a cervical neoplasia-associated virus.” Virology
171(1):306-11.

Grasser, F.A., Scheidtmann, K.H., Tuazon, P.T., Traugh, J.A., Walter, G. (1988) “In Vitro
Phosphorylation of SV40 Large T Antigen.” Virology165(1):13-22.

Gribskov, M., McLachlan, A.D., Eisenberg, D. (1987) “Profile Analysis: Detection of Dis-
tantly Related Proteins.” Proc. Natl. Acad. Sci. USA84:4355-4358.

Gribskov, M., Homyak, M., Edenfield, J., Eisenberg, D. (1988) “Profile Scanning for Three-
Dimensional Structural Patterns in Protein Sequences.” CABIOS4(1):61-66.

Guigo, R., Johansson, A., Smith, T.F. (1991) “Automatic Evaluation of Protein Sequence
Functional Patterns.” CABIOS 7(3):309-315.

Hanks, S.K., Quinn, A.M., Hunter, T. (1988) “The Protein Kinase Family: Conserved Fea-
tures and Deduced Phylogeny of the Catalytic Domains.” Science241:42-52.

Hayes-Roth, B., Buchanan, B., Lichtarge, O., Hewette, M., Altman, R., Brinkley, J., Cor-
nelius, C., Duncan, B., Jardetzky, O. (1986) “PROTEAN: Deriving Protein Structure from Con-
straints.” Proc. Fifth Natl. Conf. on Artificial Intelligence,pp. 904-909, Morgan Kaufman, Los
Altos, Calif.

Hein, J. (1990) “Unified Approach to Alignment and Phylogenies.” in Methods in Enzymol-
ogy, ed. R.F. Doolittle, 183:626-645. Academic Press.

Henneke, C.M. (1989) “A Multiple Sequence Alignment Algorithm for Homologous Pro-
teins Using Secondary Structure Information and Optionally Keying Alignments to Functionally
Important Sites.” CABIOS5:141-150.

Hertz, G.Z., Hartzell, G.W., Stormo, G.D. (1990) “Identification of Consensus Patterns in
Unaligned DNA Sequences Known to be Functionally Related.” CABIOS 6(2):81-92.

Hodgman, T.C. (1986) “The Elucidation of Protein Function from Its Amino Acid Se-
quence.” CABIOS2:181-187.

Holbrook, S., Muskal, S., Kim, S., (1990) “Predicting Surface Exposure of Amino Acids

254 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

from Protein Sequence.” Protein Engineering3(8):659-665.

Hollenberg, S.M., Evans, R.M. (1988) “Multiple and Cooperative Trans-activation Domains
of the Human Glucocorticoid Receptor.”Cell 55:899-906.

Holley, L.H., Karplus, M. (1989) “Protein Structure Prediction with a Neural Network.”
Proc. Natl. Acad. Sci. USA86:152-156.

Hope, I.A., Mahadevan, S., Struhl, K. (1988) “Structural and Functional Characterization of
the Short Acidic Transcriptional Activation Region of Yeast GCN4 Protein.” Nature333:635-640.

Hunter, L., Harris, N., States, D. (1992) “Efficient Classification of Massive, Unsegmented
Datastreams.” Proc. 10th International Machine Learning Workshop, Morgan Kaufmann, Los
Altos, CA, USA (forthcoming).

Itoh, N., Tanaka, N., Mihashi, S., Yamashina, I. (1987) “Molecular Cloning and Sequence
Analysis of cDNA for Batroxobin, a Thrombin-like Snake Venom Enzyme.” J. Biol. Chem.
262(7):3132-3135.

Karlin, S., Blaisdell B.E., Mocarski E.S., Brendel V. (1989) “A Method to Identify Distinc-
tive Charge Configurations in Protein Sequences, with Applications to Human Herpesvirus
Polypeptides.” Journal of Molecular Biology205:165-177.

Karlin, S., Bucher, P., Brendel, V., Altschul, S.F. (1991) “Statistical Methods and Insights for
Protein and DNA Sequences.” Annu. Rev. Biophys. Biophys. Chem. 20:175-203.

Karlin, S., Macken, C. (1991) “Some Statistical Problems in the Assessment of Inhomo-
geneities of DNA Sequence Data.” J. American Statistical Assoc.86:27-35.

King, R.D., Sternberg, M.J.E. (1990) “Machine Learning Approach for the Prediction of
Protein Secondary Structure.” Journal of Molecular Biology216:441-457.

Kolata, G. (1986) “Trying to Crack the Second Half of the Genetic Code.” Science
233:1037-1040.

Lander, E., Mesirov, J., Taylor, W. (1988) “Study of Protein Sequence Comparison Metrics
on the Connection Machine CM-2.” Proc. Supercomputing-88.

Lathrop, R.G. (1969) Introduction to Psychological Research: Logic, Design, Analysis.
Harper and Row, New York.

Lathrop, R.H. (1990) Efficient Methods for Massively Parallel Symbolic Induction: Algo-
rithms and Implementation. PhD. diss., Massachusetts Inst. of Technology, Cambridge, MA,
USA.

Lathrop, R.H., Webster, T.A., Smith T.F. (1987) “ARIADNE: Pattern-directed Inference and
Hierarchical Abstraction in Protein sSructure Recognition.” Communications of the ACM
30(11):909-921.

Lathrop, R.H., Webster, T.A., Smith T.F., Winston, P.H. (1990) “ARIEL: A Massively Paral-
lel Symbolic Learning Assistant for Protein Structure/Function.” in Artificial Intelligence at
MIT: Expanding Frontiers, ed. Winston, P.H., with Shellard, S., MIT Press, Cambridge, MA,
USA.

Lathrop, R.H., Webster, T.A., Smith T.F., Winston, P.H. (1992) “Massively Parallel Symbol-
ic Induction of Protein Structure/Function Relationships.” in Machine Learning, From Theory to
Applications, (ed.) Hanson, S., Remmele, W., Rivest, R.L., Springer-Verlag (forthcoming);
reprinted fromProc. 24th Hawaii Intl. Conf. on System Sciences (1991), pp. 585-594, IEEE
Computer Soc. Press, Los Alamitos, CA, USA.

Lawrence, C.E., Reilly, A.A. (1990) “An Expectation Maximization (EM) Algorithm for the
Identification and Characterization of Common Sites in Unaligned Biopolymer Sequences.”
Proteins 7:41-51.

LATHROP, WEBSTER, SMITH & SMITH 255

Leytus, S.P., Loeb, K.R., Hagen, F.S., Kurachi, K., Davie, E.W. (1988) “A Novel Trypsin-
like Serine Protease (Hepsin) with a Putative Transmembrane Domain Expressed by Human
Liver and Hepatoma cells.” Biochemistry27:1067-1074.

Lillie, J.W., Green, M.R. (1989) “Transcription activation by the adenovirus E1a protein.”
Nature338:39-44.

Lindsay, R., Buchanan, B., Feigenbaum, E., Lederberg, J. (1980) The DENDRAL Project
McGraw-Hill, New York.

Ma, J., Ptashne, M. (1987) “Deletion Analysis of GAL4 Defines Two Transcriptional Acti-
vating Segments.” Cell 48:847-853.

Maclin, R., Shavlik, J.W., (1992) “Refining Algorithms with Knowledge-Based Neural Net-
works: Improving the Chou-Fasman Algorithm for Protein Folding” Machine Learning (forthcom-
ing).

Major, F., Turcotte, M., Gautheret, D., Lapalme, G., Fillion, E., Cedergren, R. (1991) “The
Combination of Symbolic and Numerical Computation for Three-dimensional Modeling of
RNA.” Science 253:1255-60.

McGregor, M., Flores, T., Sternberg, M. (1989) “Prediction of Beta-turns in Proteins Using
Neural Networks.” Protein Engineering 2(7):521-526.

Mikes, O., Holeysovsky, V., Tomasek, V., Sorm, F. (1966) “Covalent Structure of Bovine
Trypsinogen. The Position of the Remaining Amides.” Biochem. Biophys. Res. Commun.
24(3):346-352.

Moran, E. (1988) “A Region of SV40 Large T Antigen can Substitute for a Transforming
Domain of the Adenovirus E1A Product.” Nature334:168-170.

Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., Howley, P.M. (1989)
“Complex Formation of Human Papillomavirus E7 Proteins with the Retinoblastoma Tumor
Suppressor Gene Product.” EMBO J.8:4099-4105.

Muskal, S., Holbrook, S., Kim, S. (1990) “Prediction of the Disulfide-bonding State of Cys-
teine in Proteins.” Protein Engineering 3(8):667-672.

Myers, E.W., Miller, W. (1989) “Approximate Matching of Regular Expressions.” Bull.
Math. Biol. 51:5-37.

Noordewier, N.O., Towell, G.G., Shavlik, J.W. (1990) “Training Knowledge-based Neural
Networks to Recognize Genes in DNA Sequences.” Proc. 1990 Neural Info. Processing Conf.

Owens, J., Chatterjee, D., Nussinov, R., Konopka, A., Maizel, J.V.J. (1988) “A Fixed Point
Alignment Technique for Detection of Recurrent and Common Sequence Motifs Associated
with Biological Features.” CABIOS4:73-77.

Patthy, L. (1987) “Detecting Homology of Distantly Related Proteins with Consensus Se-
quences.” Journal of Molecular Biology198:567-577.

Patthy, L. (1988) “Detecting Distant Homologies of Mosaic Proteins.” Journal of Molecular Bi-
ology202:689-696.

Pearson, W.R., Lipman, D.J. (1988) “Improved Tools for Biological Sequence Comparison.”
Proc. Natl. Acad. Sci. USA85:2444-2448.

Ponder, J.W., Richards, F.M. (1987) “Tertiary Templates for Proteins: Use of Packing Criteria
in the Enumeration of Allowed Sequences for Different Structural Classes.” Journal of Molecular
Biology193:775-791.

Qian, N., Sejnowski, T. (1988) “Predicting the Secondary Structure of Globular Proteins
Using Neural Network Models.” Journal of Molecular Biology202:865-884.

256 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Ralph, W.W., Webster, T.A. Smith, T.F. (1987) “A modified Chou and Fasman protein struc-
ture algorithm.” CABIOS 3:211-216.

Rawlings, C.J., Taylor, W.R., Nyakairu, J., Fox, J., Sternberg, M.J.E. (1985) “Reasoning about
protein topology using the logic programming language PROLOG.” J. Mol. Graph. 3:151-157.

Rossman, M.G., Moras, D., Olsen, K.W. (1974) “Chemical and Biological Evolution of a
Nucleotide-binding Protein.” Nature250:194-199.

Sankoff, D., Kruskal, J.B. (eds.) (1983) Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison.Addison-Weslye, Reading, MA, USA.

Schuler, G.D., Altschul, S.F., Lipman, D.J. (1991) “A Workbench for Multiple Alignment
Construction and Analysis.” Proteins9(3):180-90.

Sellers, P.H. (1974) “On the Theory and Computation of Evolutionary Distances.” Siam J.
Appl. Math. 26:787-793.

Sibbald, P.R., Argos, P. (1990a) “Scrutineer: a Computer Program that Flexibly Seeks and
Describes Motifs and Profiles in Protein Sequence Databases.” CABIOS 6(3):279-88.

Sibbald, P.R., Argos, P. (1990b) “Weighting Aligned Protein or Nucleic Acid Sequences to
Correct for Unequal Representation.” Journal of Molecular Biology216(4):813-818.

Smith, H.O., Annau, T.M., Chandrasegaran, S. (1990) “Finding Sequence Motifs in Groups
of Functionally related Proteins.” Proc. Natl. Acad. Sci. USA 87:826-830.

Smith, R.F., Smith, T.F. (1989) “Identification of New Protein Kinase-related Genes in Three
Herpes Viruses, Herpes Simplex Virus, Varicella-zoster Virus, and Epstein-Barr Virus.” J. Vi-
rology63:450-455.

Smith, R.F., Smith, T.F. (1990) “Automatic Generation of Primary Sequence Patterns from
Sets of Related Protein Sequences.” Proc. Natl. Acad. Sci. USA87:118-122.

Smith, R.F., Smith, T.F. (1992) “Pattern-induced Multi-sequence Alignment (PIMA) Algo-
rithm Employing Structure-dependent Gap Penalties for Use in Comparitive Protein Modelling.”
Protein Eng.5:35-41.

Smith, T.F., Waterman, M.S. (1981a) “Comparison of Biosequences.” Adv. Appl. Math.
2:482-489.

Smith, T.F., Waterman, M.S. (1981b) “Identification of Common Molecular Subsequences.”
Journal of Molecular Biology147:195-197.

Sneath, P.H., Sokal, R.R. (1973) Numerical TaxonomyFreeman, San Francisco.

Staden, R. (1989) “Methods to define and locate patterns of motifs in sequences.” CABIOS
5(2):89-96.

Storey, A., Pim, D., Murray, A., Osborn, K., Banks, L., Crawford, L. (1988) “Comparison of
the In Vitro Transforming Activities of Human Papillomavirus types.” Embo. J.7(6):1815-1820.

Stormo, G.D. (1990) “Consensus Patterns in DNA” in Methods in Enzymology,ed. R.F.
Doolittle, 183:211-221, Academic Press.

Stormo, G.D., Hartzell, G.W. (1989) “Identifying Protein-binding Sites from Unaligned
DNA Fragments.” Proc. Natl. Acad. Sci. USA86(4):1183-1187.

Taylor, W.R. (1986) “Identification of Protein Sequence Homology by Consensus Template
Alignment.” Journal of Molecular Biology188:233-258.

Taylor, W.R. (1988a) “A Flexible Method to Align Large Numbers of Biological Se-
quences.” J. Mol. Evol. 28:161-169.

Taylor, W.R. (1988b) “Pattern Matching Methods in Protein Sequence Comparison and
Structure Prediction.” Protein Eng. 2:77-86.

LATHROP, WEBSTER, SMITH & SMITH 257

Taylor, W.R., Thornton, J.M. (1983) “Prediction of Super-secondary Structure in Proteins.”
Nature301:540-542.

Thornton, J.M., Flores, T.P., Jones, D.T., Swindells, M.B. (1991) “Protein Structure. Predic-
tion of Progress at Last [News]” Nature354:105-106.

Thornton, J.M., Gardner, S.P. (1989) “Protein Motifs and Data-base Searching.” TIBS
14:300-304.

Towell, G.G., Shavlik, J.W., Noordewier, M.O. (1990) “Refinement of Approximate Domain
Theories by Knowledge-Based Artificial Neural Networks” Proc. Natl. Conf. on Artificial Intel-
ligence (AAAI-90), pp. 861-866.

Vingron, M., Argos, P. (1989) “A Fast and Sensitive Multiple Sequence Alignment Algo-
rithm.” CABIOS 5:115-121.

Waterman, M.S. (1984) “General Methods of Sequence Comparison.” Bull. Math. Biol.
46:473-500.

Waterman, M.S. (1986) “Multiple Sequence Alignment by Consensus.” Nucleic Acids Res.
14:9095-9102.

Waterman, M.S., Jones, R. (1990) “Consensus Methods for DNA and Protein Sequence
Alignment.” in Methods in Enzymology,ed. R.F. Doolittle, 183:221-237, Academic Press.

Webster, T.A., Lathrop, R.H., Smith, T.F. (1987) “Evidence for a Common Structural Do-
main in Aminoacyl-tRNA Synthetases Through Use of a New Pattern-directed Inference Sys-
tem.” Biochemistry 26:6950-6957.

Webster, T.A., Lathrop, R.H., Smith, T.F. (1988) “Pattern Descriptors and the Unidentified
Reading Frame 6 Human mtDNA Dinucleotide-Binding Site.” Proteins3(2):97-101.

Webster, T.A., Lathrop, R.H., Smith, T.F. (1989) “Potential Structural Motifs in Reverse
Transcriptases” Mol. Biol. Evol.,6(3):317-320.

Whyte, P., Ruley, H.E., Harlow, E. (1988) “Two Regions of the Adenovirus Early Region 1A
Proteins Are Required for Transformation.” Nature 334:124-129.

Wilbur, W.J., Lipman, D.J. (1983) “Rapid Similarity Searches of Nucleic Acid and Protein
Data Banks.” Proc. Natl. Acad. Sci. USA 80(3):726-730.

Winston, P.H. (1984) Artificial Intelligence, 2nd ed.Addison-Wesley, Reading, MA.

Zhang, X., Mesirov, J., Waltz, D., (1992) “A Hybrid System for Protein Secondary Structure
Prediction” Journal of Molecular Biology(to appear).

Zhu, Q., Smith, T.F., Lathrop, R.H., Figge, J. (1990) “Acid Helix-Turn Activator Motif.”
Proteins8:156-163.

258 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

7

Planning to Learn

About Protein Structure

Lawrence Hunter

1. Introduction

Discovery requires concerted effort. Human scientists actively seek out
information that bears on questions they have decided to pursue. They design
experiments, explore the implications of the knowledge they have, refine
their questions and test alternative ideas. Although many discoveries are the
result of unexpected observations, these surprises take place in the context of
an explicit pursuit of knowledge.

Viewing scientific discovery as a kind of motivated action raises some
basic issues common to goal-directed behavior generally: Where do desires
(to know) come from? What are the actions that can be taken (to discover)?
What are the resources those actions consume, and how are they allocated?
How are decisions about selecting and combining actions made? The goal of
this chapter is to describe a set of related systems for automated discovery in

molecular biology, sketching a framework of a cognitive theory of discovery
processes.

Automated process models of cognitive phenomena serve two functions.
One is fundamentally scientific: such models provide a vocabulary for ex-
pressing theories of mental functioning and a framework for testing and
comparing theories. The other role is a kind of engineering: these models
are artifacts that, to the degree they are successful models, accomplish use-
ful tasks, and which can extend human abilities. These functions are interre-
lated. The main scientific claim of most AI models of cognition is that a
given model is sufficient to account for some complex cognitive phe-
nomenon. Supporting a claim of sufficiency for a model of discovery in-
volves writing a program that actually makes at least moderately significant
discoveries.

Biologists hoping for useful tools from machine learning techniques can
read this chapter as a description of some approaches to applying machine
learning tools to biological problems, and as a promise for the eventual cre-
ation of an integrated framework for increased automaticity and coordina-
tion in the application of such tools. However, the main thrust of the chapter
is to use the complexity and challenges inherent in the domain of molecular
biology to argue for a new level of theorizing in machine learning, one that
addresses issues such as the design of representations, the integration and
coordination of multiple inference techniques, and the origin and transfor-
mation of specific desires for knowledge. I present arguments for the ap-
proach, and some examples, although this work does not offer significant
empirical evaluation of the approach, nor a formal statement of its charac-
teristics. This chapter is a preliminary exploration of a new set of problems
for machine learning and discovery theories: expanding the scope of these
theories to include the steps before and after data-driven inductive infer-
ence.

The chapter is divided into three sections: The first section outlines some
theoretical concerns about existing approaches to automated discovery sys-
tems, and proposes a new kind of problem for machine learning research.
The idea is to expand the purview of discovery systems to include the prob-
lems of data selection and representation, the automated selection and com-
bination of inference methods, and the evaluation of alternative approaches.
The second section describes in some detail an example of a partially auto-
mated scientific discovery process directed at the prediction of protein struc-
ture. This example includes the generation of appropriate representations
and the integration of multiple inference methods. The process is analyzed
to identify the kinds of decisions that scientists have to make before and
after the inductive step itself, and to try to illuminate the context in which
these decisions are made. In conclusion, the challenges inherent in develop-
ing testable theories that address these issues are considered.

260 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

2. Discovery in People and Machines

AI theories of scientific discovery have been around for more than a
decade ([Lenat, 1979] was arguably the first such theory). Although the role
of computation in science has grown enormously in the last ten years, AI the-
ories of discovery have, as yet, played at best a minor part in this expansion.
Scientific visualization, physical simulation systems and automated statistical
analysis are now integral parts of scientific research, but as yet there isn’t
much AI.

There are a few examples of AI in molecular biology computing, particu-
larly neural networks; for example, the cover of the 24 August 1990 issue of
Scienceis a neural net prediction of the secondary structure of the HIV-1 Prin-
cipal Neutralizing Determinant protein. However, to my knowledge, most of
the applications of AI to scientific discovery have focused on recapitulation,
or duplicating the historical record of a scientific insight [Shrager & Langley,
1990a] . Because the systems that have been so successful at recapitulation
have yet to make any novel discoveries of their own, and because the compu-
tational methods embodied in these programs have not been adopted by the
scientific community, there is reason to doubt at least the sufficiency of the
theories underlying those systems to explain scientific thinking. Admittedly
this is a high standard to apply, and there have been clear contributions of the
previous work to understanding some of the subproblems of discovery. Nev-
ertheless, demonstrations of the sufficiency of the proposed computational
methods to accomplish useful scientific tasks are so far lacking.

What might be missing from the existing AI approaches to discovery? An
indication can be found in the overview chapter from the leading collection
on the topic, Computational Models of Scientific Discovery and Theory For-
mation [Shrager & Langley, 1990a] . In that overview, Shrager and Langley,
two of the founders of the field, list the knowledge structures and processes
addressed in their extensive survey of AI models of scientific discovery. The
knowledge structures are: observations, taxonomies, laws, theories, back-
ground knowledge, models, explanations, predictions and anomalies (they
also mention hypotheses, explorations, instruments and representations, but
claim that the former set provides a sufficient basis for an account of scien-
tific behavior). The processes found in AI models are: observation, taxonomy
formation and revision, inductive law formation and revision, theory forma-
tion and revision, deductive law formation, explanation, prediction, experi-
mental design, manipulation and evaluation (comparing a prediction with ob-
servations). They also note that assimilating a new theory into one’s
background knowledge, revising an entire theoretical framework, model for-
mation and revision, and various activities related to the social and bodily
embedded aspects of scientific activity are important, although not yet ad-
dressed by AI theories.

HUNTER 261

I found it striking that there is not a single reference to the interests or
goals of the scientist in the entire survey. There is likewise no mention of a
characterization of available inferential and data gathering abilities—no self-
model of the scientist. As I will suggest in more detail below, discovery re-
quires making decisions about how to pursue specific goals for knowledge,
using a characterized collection of data-gathering and analytical tools under
significant resource constraints. Explicit representations of desired knowl-
edge, and models of the available methods for gathering and analyzing infor-
mation are crucial components of this process. Some recent work in machine
learning has raised this issue in other contexts, e.g., [Cox & Ram, 1992; des-
Jardins, 1992; Hunter, 1989b; Hunter, 1990b; Ram & Hunter, 1992] and
there is related psychological work, e.g., [Weinert, 1987] .

Existing AI theories of discovery are, almost universally, cast as methods
for searching through a space of possible hypotheses for the point that some-
how best fit the available data (e.g., [Langley, Simon, Bradshaw, & Zytkow,
1987; Shrager & Langley, 1990b] , although compare [Tweney, 1990]). The
alternative presented here casts learning and discovery as planning processes,
working from a knowledge goal to a selection of actions to take to achieve
that goal, to the execution (and perhaps reaction or replanning) of those data
gathering and inferential actions, ultimately resulting in the satisfaction of
the goals for knowledge. Since planning is well known to be just another in-
tractable search problem (in this case through the space of possible actions,
rather than possible hypotheses), it is not immediately clear what the advan-
tage of trading one intractable search space for another might be. The differ-
ence is in what these metaphors suggest about what the important research
problems are in discovery. The hypothesis space view emphasizes the impor-
tance of evaluating theories in light of all the available data, and in revising
theories given a new set of observations. The planning view emphasizes the
importance of understanding how research questions are generated, how it is
possible to characterize a priori or incrementally what information is likely
to be relevant in addressing a question (and is therefore worth gathering or
drawing inferences from) and how to select and combine inference methods
to best address a particular question. Although the questions raised by the
hypothesis space metaphor are clearly important, I believe that these other is-
sues are also important, and currently underexplored.1

2.1 Selecting Data

It is perhaps obvious that scientists have particular interests in mind as
they do their work. They do not simply examine all the information percep-
tually accessible to them and try to reach the best explanation of it. In fact, a
large portion of scientific labor is devoted to acquiring information that is
difficult to perceive, precisely because it is believed to be relevant to some
question of interest. Making decisions about what data might be worth gath-

262 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ering is a fundamental component of the discovery process. Because there
are limits on the kind and amount of information that can be gathered, and
because there are limits on the amount of data that can be consideredby any
realistic inference process, the process of directing attention to potentially
relevant data is a central one in scientific discovery.

Current machine learning (and automated discovery) approaches tend to
use all the data that is available for inference. At first, this does not seem un-
reasonable; after all, why should a program ignore information that might be
useful? For any particular learning or discovery task, it seems desirable to se-
lect as broad an array of potentially relevant phenomena as possible. It is
within the ability of current methods to discover that an aspect of a training
set is irrelevant, but hard to infer that something is missing, and even harder
to infer what that missing element might be. However, this view makes an im-
portant tacit assumption, that it is possible to identify (and ignore) all the irrel-
evant aspects of the all information that may be available to a scientific dis-
covery system.

As demonstrated in [Almuallim & Dietterich, 1991] , no existing machine
learning system learns well in the presence of many irrelevant features. Al-
muallim and Dietterich present a system that exhibits somewhat better perfor-
mance at this task, but the limitation is still significant. When compared to the
amount of information potentially available to a discovery program, the prob-
lem of selecting relevant information is quite clear. In the field of molecular
biology alone, the number and complexity of the datasets currently available
over the Internet is staggering. The amount of information available to a
human scientist in his or her local library is larger by many orders of magni-
tude, and the amount of information potentially gatherable with modern labo-
ratory instrumentation is even larger. The vastness of “all available data” de-
mands that decisions about what aspects of the universe are worth considering
must be made in order to solve any significant scientific problem. The ques-
tion of how a program can decide what data might be relevant to a particular
question is a central concern to both developing a cognitive theory of how sci-
entists think and to engineering a discovery assistant that is capable of navi-
gating the information resources of the Internet effectively.

The requirement that potentially relevant aspects of a problem be selected
before learning can occur is currently addressed by current automated discov-
ery research in two ways. Most obviously, researchers select a dataset to
which their algorithm will be applied. Existing datasets are generally win-
nowed down to select samples with various desirable characteristics. Some
data is ignored as irrelevant, and others are transformed so that the distribu-
tions of values are better matched to the characteristics of the learning system.
Possible transformations include discretizing, scaling, and combining multiple
fields. Second, researchers are making decisions about relevancy when they
craft the representations that their programs use. It is often the case that even

HUNTER 263

radically different machine learning methods (e.g., decision tree induction and
neural networks) offer similar levels of performance on a given induction
problem. The key issue in the successful application of many of these meth-
ods turns out to be the selection of a suitable representation. However, the
process of designing representations is generally taken to be outside the com-
putational theory proposed (and evaluated) by AI discovery research.

One of the goals of this chapter is to bring the question of deciding upon
the structure and content of input representations to a machine learning sys-
tem into the realm of the theory itself. This work differs from related efforts
in constructive induction (e.g., [Rendell & Seshu, 1990]) in that it addresses
the entire process, from selecting and segmenting data sources to representa-
tional transformations both before and during learning. The task, given a
specification of desired knowledge, is to make well-founded decisions that
address the following questions:

• What kinds of data might be relevant to acquiring the desired knowledge?

• What sources of potentially useful data exist?

• Given the available sources of potentially useful data, how can a dataset
that best matches the relevancy specification be retrieved?

• How should retrieved data be sampled or segregated? (e.g., for cross-val-
idation)

• How should retrieved data be transformed? (e.g., to match a particular in-
ference method)

How can a discovery system make these decisions about what data might
be worth considering and how to find and transform it to address a given
problem? A decision-theoretic approach would suggest defining utility and
cost functions. The utility of considering a set of data might be estimated
based on a characterization of the desired outcome. This is a difficult prob-
lem. The PAGODA system [desJardins, 1992] uses a decision theoretic ap-
proach to select which of several sensory modalities is worth learning about
next, based on an estimate of expected utility of learning. However, the as-
sumptions that make this estimate computationally tractable are extremely
stringent, requiring, among other things, that the utilities of learning about
the various modalities do not interact, and that the effects of learning in each
modality can be modeled accurately. The example described in section 3,
below, applies a computationally simpler method to a making a decision that
does not fit PAGODA’s assumptions.

A model of the costs of acquiring and using data is also necessary. It is
possible to make estimates of the cost of obtaining and using data, e.g., as
[Horvitz, Cooper, & Heckerman, 1989] does in evaluating the tradeoff be-
tween gathering more data and taking action in certain medical contexts, or

264 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

as [Holder, 1991] does in estimating the amount of inference necessary for
maximum predictive accuracy of certain machine learning systems. Other
data-related costs can be estimated by an analysis of how the performance of
a particular inferential method depends on the characteristics of its input, or
by the network costs, time, disk space or other factors involved in acquiring
and using the data.

No matter how large the machine, or how massively parallel, programs
are fundamentally unable to make all inferences from all the potentially us-
able information in a realistic setting. Sampling methods, incremental experi-
mentation and other methods for exploring very large spaces are applicable
to this problem, but the space of possible “features” of the universe mandates
some kind of selective attention. A novel set of problems for machine learn-
ing and discovery research to explore involves the interrelated issues of how
to represent the contents of sources of information, and how to estimate the
costs and benefits of using a potential source of information.

2.2 Knowledge Goals

An estimate of the expected utility of a source of information depends on
what how that information relates to the goals of the learner. Not all informa-
tion is equally relevant to all questions. The specific goal(s) for knowledge
being pursued by a discovery program are the basis on which judgments
about the relevancy (and hence utility) of a given collection of data must ulti-
mately be made. Knowledge goalsmust describe the content of desired
knowledge (e.g., Marvin Minsky’s home phone number, or a computable
method for calculating protein secondary structure from sequence) rather
than just its structure (e.g., biases that prefer the induction of short hypothe-
ses). Relevancy is an inherently semantic concept; a relationship between
meanings. Programs without an explicit, content-based representation of the
knowledge they desire will not, in general, be able to make effective relevan-
cy decisions to focus attention on potentially useful knowledge. To the de-
gree that programs that do not reason about their own goals for knowledge
are successful in acquiring desired knowledge, they will either have had their
input data prescreened by the researcher or they will include a built-in,
inflexible bias that encodes relevancy judgments, or both. These methods
will work in some circumstances, and built-in relevancy biases that are effec-
tive in particular situations are important contributions to attacking the gen-
eral problem, but these methods are not alone sufficient for a building a flexi-
ble and powerful discovery system.

Programs that represent and draw inferences from their own goals for
knowledge have other advantages as well. In addition to being able to make
decisions about what external stimuli to focus on, they are also able to use
those goals to focus their internal memory and inferential capacities in such a
way as to improve their performance. Programs with limitations on process-

HUNTER 265

ing ability and memory capacity need to allocate inferential resources so as
to facilitate the accomplishment of their goals; explicit representation of
those goals makes this process more flexible. Such decisions are important
for agents with bounded rationality, and have been useful in addressing
difficult inferential problems [desJardins, 1992; Hunter, 1989a; Ram, 1989]

A second important aspect of the explicit representation of desires for
knowledge is that it makes possible the automatic and dynamic choice of the
inference method or methods that are most appropriate for each particular
knowledge goal. A recent proof demonstrated that learning algorithms, very
broadly defined, can evaluate only a small proportion of the hypotheses com-
patible with the experiences they have. That is, there is no general learning
method, and “different classes of learning problems may call for different al-
gorithms.” [Dietterich, 1989] A general (i.e. human-like) learning system
will therefore have to make choices about what method(s) to learn or discov-
er in a particular context.

A mechanism for making choices about what to learn and how to learn it
is a crucial component of an automated learning system. On what basis can
such decisions be made? How well a particular learning method performs on
a particular task depends crucially on the characteristics of the concept to be
learned [Rendell & Cho, 1990] . Rendell’s work shows that the true charac-
ter of a concept effects how well a particular learning method works. In order
to use the relationships between concept character and learning method that
Rendell identified to direct the selection of a learning mechanism, the learn-
ing system must have some internal characterization of its target concept(s).
A knowledge goal is such an internal characterization of a target concept;
knowledge goals are the appropriate basis for making decisions about learn-
ing methods, data selection, and representation.

Knowledge goals may have another role to play in an integrated learning
and discovery system. They may facilitate experience-based improvement of
the learning process itself: learning how better to learn. In order for a discov-
ery program to be able to evaluate its own performance, it must compare the
actual result of inference with its original knowledge goals. This comparison
may identify areas where additional inference would be beneficial. A record
of the decisions made and an internal model of the learning and discovery
process could be used to identify alternative approaches that could be ex-
plored, or to support systematic modifications to decision making within the
learning and discovery processes themselves. This potential use of knowl-
edge goals remains unexplored, but is supported by analogy to the use of
goals and internal models in other kinds of learning (e.g., [Hunter, 1989a]).

2.3 Problem Transformation

In order to address a desire for knowledge, a discovery system must have
both data that bears on the question and inferential abilities that apply to it.

266 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

However, there is an interaction between the available data and the require-
ments of the inferential method. The structure and representation of the data
is often a determining factor in the successful application of an inferential
technique. Many of the considerations in selecting the data to attend to de-
scribed above also apply to the selection of which features of that data
should be made explicit, and how.

Often this question is complicated by the need to reduce the complexity of
the data. In order to learn a complex mapping, an inference system needs
many examples. Formal results relate the ability of any learning system to
learn a concept to the number of examples it has seen [Valient, 1984] . It is
not possible to accurately induce complex concepts from small amounts of
data. Most interesting scientific problems face this challenge. This problem
can be addressed by simplifying the space of possible concepts considered or
increasing the amount of data, or both.

The process of addressing a complex desire for knowledge by transform-
ing it into a more tractable problem that can be addressed with available data
is an important aspect of scientific creativity. Individual scientists appear to
have quite different approaches to this problem, which may depend on train-
ing, experience, the desire to try (or demonstrate) some particular approach,
and many other difficult to capture factors. Computational models of creative
processes in understanding [Kass, 1990] may be relevant to this addressing
this question.

In the specific examples described in the next section, a variety of trans-
formations were applied data to reduce the size of a problem. Generalizations
of these approaches are potentially applicable to reducing the complexity of
many other induction problems. Six interrelated classes of transformations
were applied:

• Identify invariancesso portions of the space can be collapsed into equiva-
lence classes. A simple example in structural domains is to collapse all
translations or rotations of a structure into a single class.

• Creating approximate equivalence classes, for example, by clustering the
data and ignoring distinctions within clusters.

• Prune the space e.g., by focusing on areas with a high density of examples
or with more available information.

• Decrease the resolutionof the distinctions made, for example by discretiz-
ing real values or increasing the grain size of a discrete measure.

• Find correlated attributesand develop proxy measures that reduce the
correlated attributes to a single one

• Find independent subspaces, and solve them one at a time

HUNTER 267

There are many possible ways to operationalize each strategies. The alter-
native operationalizations and strategies themselves are not mutually exclu-
sive. Each class of reductions can be applied repeatedly and in combination
with others, in an order sensitive way. For example, it may not be possible to
identify equivalence classes until the problem has been divided into indepen-
dent subspaces. Once those equivalence classes are identified, it may then be
possible to prune the problem spaces by only considering problems that fall
into the most common classes.

Different problem reductions lead to quite different results and it appears
to be difficult to predict ahead of time which combination will work. There is
also a complex interaction between problem reduction method and the selec-
tion of a specific inference method, since different inference algorithms place
differing restrictions on problem structure and representation. The question of
how to select among and apply these abstract problem reduction strategies is
an open research problem. One detailed example is given in the next section.

In short, the view of learning as a kind of planning provides an set of
novel problems not previously addressed by machine discovery work. Leav-
ing aside the question of how desires for knowledge arise, this framework
demands answers to questions about how a desire for knowledge is translated
into an executable plan for acquiring that knowledge. How are potentially
relevant sources of data identified? How is data screened, transformed, and
represented so that desired inferences can be made? How are alternative in-
ferential approaches selected among and combined to best use the available
data? How are the conclusions drawn by an inferential method evaluated?
The central claim outlined in this section is that explicit, content-based repre-
sentations of the characteristics of desired knowledge play a role in each of
these processes. The next section describes an set of examples illustrating
how that might happen.

3. Planning to Learn About Protein Structure

In this section, I will describe a coordinated set of activities in service of
the goal of being able to predict protein tertiary structure from sequence, pay-
ing special attention to the processes of selecting and representing relevant in-
formation. The collection of programs described here is implemented in the
INVESTIGATOR framework, developed at the National Library of Medicine
[Hunter, 1990a] . Although not all of the decisions described below were
made in a meaningful way by a program2, I do endeavor to provide a theoreti-
cal framework that illuminates the choices that must be made and the factors
that influence those choices, as a prolegomena to an implemented theory. In
some areas, however, even the details of the possible transformations remain
unclear. Nevertheless, in order to create sufficient computational theories of
scientific discovery (or human learning), these questions will have to be ad-

268 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

dressed. This section explores these issues in the context of a real problem in
molecular biology: predicting protein structure from sequence.

The task of predicting three dimensional structure from amino acid se-
quence is described in detail in the introductory chapter of this volume. In
brief, the genome of an organism specifies the makeup of all of the proteins
that constitute that organism. The genes specify a linear sequence of amino
acids, which are assembled at the ribosome. Although the proteins are con-
structed as a linear sequence, they only become chemically active when they
have folded up into a particular three-dimensional conformation. The posi-
tions of each atom in the protein in three-space is called its structure (or,
more specifically, its tertiary structure). Proteins are very large molecules,
and the folded shape can hide some regions, expose others, and bring ele-
ments of the protein that were at opposite ends of the sequence close together
in space. These factors are important in determining what the function of the
molecule is in the living system, and how it performs that function. Deter-
mining the structure of biomolecules is important in designing drugs, under-
standing key functions such as development or neuronal signaling, and in
practically every area of biology. Technologically, it is now relatively easy to
determine the sequence of proteins, but it remains very difficult to determine
their structures. It is easy to demonstrate that all the information needed to
determine structure must be present in the amino acid sequence alone. It has
proved to be quite difficult to find the mapping from sequence to structure.

Much related work in the field takes similar approaches to the ones pre-
sented here to learning aspects of this mapping (e.g., Holbrook, Muskal and
Kim; Zhang and Waltz; Lathrop, et al, all in this volume). However, the goal
of this chapter is to elucidate some of the cognitive processes that go unstat-
ed (although not undone) in that work, and bring those processes into the
realm of AI discovery research. For example, nearly all researchers applying
learning algorithms to the problem of protein structure prediction screen their
dataset for homologies, and use a sliding window to segment the problem.
These choices make a tremendous difference in the outcome of the work;
how are they made? What are the alternatives?

As is often the case in machine discovery work, it is easier to define the
space through which a program must search than it is to describe an effective
method for traversing that space. The space of possible data-gathering and
inferential actions is rather different than the space of possible hypotheses (or
formulae) for describing a dataset. The hope of this approach to automated
discovery research is that it will be possible to characterize knowledge gen-
erating actions on the basis of their expected difficulty or cost, and to devel-
op a set of methods for estimating the distribution of expected outcomes of
the application of these actions, given some information about the knowl-
edge desired and the characteristics of the available data. Several related ef-
forts have been made, such as [Holder, 1991] which empirically character-

HUNTER 269

izes the expected performance of a learning algorithm given a partial execu-
tion, or [Rendell & Cho, 1990] which makes estimates of the performance
of various learning methods based on the true character of the concepts they
are trying to learn.

A human scientist attacking a large problem develops a research plan,
consisting of many constituent approaches to relevant subproblems. In the
example explored below, this research plan is built by the instantiation of an
abstractly stated discovery strategy. The first step in this process is to identify
the specific knowledge goal. Then, the statement of the problem is used to
select one of three high level discovery strategies. Once a strategy has been
selected, the information in the representation of the strategy is used to deter-
mine what data is necessary. Knowledge of various data sources is used to
select a source, and then to identify and extract an appropriate dataset from
that source. The next step is to transform the available dataset to meet the re-
quirements of the strategy. This transformation is a complex process, and, in
this case, is the area where scientific creativity is most apparent. Then a par-
ticular inference method is selected. This selection may place additional re-
quirements on the dataset. A representation is selected on the basis of the
data and the inference method, and the dataset is transformed into that repre-
sentation. Parameters of the inference method must be set, or the space of
possible parameterizations explored, and the inferences made. Finally, the
outcome of the inference process must be evaluated. As the example unfolds,
several more general points about the process become apparent as well.

3.1 Characterizing the Desired Knowledge

The protein structure prediction problem is to find a mapping from a lin-
ear sequence of amino acids to a set of three dimensional coordinates for all
the atoms in each amino acid. Typical proteins contain hundreds of amino
acids, and thousands of atoms. Large proteins (e.g., Apolipoprotein B-100)
are composed of more than 4500 amino acids. Spatial resolution of 2Å is
about the level of accuracy of the training data available from crystal struc-
tures, and a large globular protein (like Apolipoprotein B) may be 150Å
along its longest dimension. The largest version of the problem therefore in-
volves a mapping from any of 204500(~105850) strings to the positions of
about 60,000 atoms in a lattice of 753 points (421,875 choose 60,000, or
over 1046,000 possibilities). The number of possible mappings is proportion-
al to the product of these two immense numbers! Fortunately, the problem is
really much smaller than this. A vanishingly small portion of the large num-
ber of possible proteins is actually observed in nature. Most proteins are
much smaller than 4500 amino acids and 150Å. A solution limited to pro-
teins of 450 amino acids or less, using only 3 atoms per amino acid and 3Å
resolution on a 90Å lattice would be a breakthrough. However, even this dra-
matically smaller problem has so many possible mappings to consider (mere-

270 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ly 10585strings and ~101700possible structures!) that it is extremely unlike-
ly to be discovered by a search through the space of possible mappings de-
scribed in this way. However intractable, this characterization of the problem
space is useful for reasoning about the data and possible representations. A
significant aspect of the discovery process involves transforming this space to
a more tractable approximation of it that retains its essential character.

Given the large number of possible solutions, why is this problem thought
to be solvable at all? Nature does it all the time. Denatured (i.e. unfolded)
proteins will fold into their native conformation (i.e. the shape they take in
living systems) in aqueous environments of suitable temperature, pressure
and pH [Anfinsen, 1973] . Cells solve this problem millions of times a
minute. The mechanism that determines how proteins fold in the cell can be
explained in the same terms as any other physical phenomenon. The forces
acting on atoms in the protein can be accurately described by quantum me-
chanics, and the molecule’s folded state minimizes its free energy in its envi-
ronment. In a system with an accurate causal model such as this, it may be
possible to computationally simulate the process, and achieve the goal. Un-
fortunately, finding the minimum energy conformation of even a much sim-
pler system from an arbitrary starting state using quantum mechanics (called
an ab initio—from first principles—calculation) is a computationally in-
tractable problem. The use of approximations and other methods to increase
the tractability of simulation is discussed below.

Despite the obvious insolubility of the problem in these terms, it is still
important to be specific about what the general problem entails. This map-
ping is the knowledge goal. The subproblem decompositions and approxima-
tions we will make along the way are methods of attacking this original, in-
soluble problem. In order to select among and evaluate these simplifications,
there must be a reference to which they can be compared. The full statement
of the problem, no matter how computationally intractable, provides a base-
line from which simplifying assumptions can be made, and by which the re-
sults can be evaluated.

3.2 The Knowledge Acquisition Strategy

Knowledge goals are addressed by taking actions that change knowledge
state, that is, by making inferences. Unfortunately, means-ends analysis ap-
plied to the space of knowledge states using inferences as operators is unlike-
ly to work. However, inference steps can be assembled into plans to acquire
knowledge, and skeletons of these plans can form general templates for as-
sembling novel plans without the need for additional reasoning from first
principles. These skeletal plans for acquiring knowledge are termed knowl-
edge acquisition strategies [Hunter, 1989a; Hunter, 1989b] .

Discovering a mapping from one complex, high dimensional space to an-

HUNTER 271

other is a common problem confronting intelligent agents, and there are sev-
eral distinct general approaches for addressing it. These approaches can be
divided into three broad categories:

• Simulationusing an effective causal model of the phenomena that underlie
the transformation, reasoning about the transformation analytically.

• Induction of an empirical mapping between the input and output spaces
based on a sample of I/O pairs.

• Case-basedmethods also work from a sample of I/O pairs, but instead of
trying to induce a mapping between them, case-based methods make pre-
dictions about an input by finding a stored example with a similar input,
and using the matching stored output as the basis for the prediction.

An autonomous discovery system would decide among these (and perhaps
other) alternative strategies when trying to discover such a mapping. Ideally,
each of these broad classes of methods would be characterized by a function
that would estimate the expected cost and utility of each method given the
characteristics of the transformation space, the available data or examples,
and the amount and usefulness of any background knowledge or bias. Unfor-
tunately, there is as yet no known method of making such a calculation in a
reasonable period of time. All three of these methods might be successfully
applied to the protein structure prediction problem, and human scientists are
pursuing research that can be classified into each category. These scientists
make their decisions about which strategy to pursue based on a variety of
factors, including personal or social ones such as the kind of academic train-
ing they have had, how an available resource might be used (e.g., a private
database or parallel computer) or where they perceive the competition is the
least strong. It is, however, possible for a program to embody heuristic, qual-
itative characterizations of the problem situations best suited to each of these
classes of methods, and make a selection based on a characterization of the
desired knowledge.

For each possible strategy, there are costs, in terms of how much compu-
tational effort the strategy is likely to require, and expected benefits, usually
cast in terms of how likely the strategy is to succeed. It may be possible to
easily eliminate a strategy on the basis of its intractability, or to easily select
one on the basis of its probability of success. The first step in the selection
process is to eliminate strategies that are intractable.

It appears to be possible to directly assess the computational demands of a
simulation strategy for protein structure prediction. In simulation, there is a
always a computational model of the causal factors underlying the desired
transformation. The expected running time and other resource consumption
of the simulation of a model can be assessed either analytically or empirical-

272 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ly, generating an estimate the resources required to execute a model given a
particular problem characterization. The simulation of the movement of a
molecule the size of a protein can take hundreds of hours of supercomputer
time to simulate nanoseconds of folding, even using heuristic energy func-
tions rather than ab initio quantum calculations [Karplus & Petsko, 1990]
The entire process of protein folding in the cell can take several seconds, in-
dicating that a simulation of folding a single protein would take more than 30
years.

However, it is worth noting here that such a conclusion, based on simple
extrapolation, can easily be incorrect. Variations on the parameters of the
simulation (e.g., lattice size or time step), the underlying model, the imple-
mentation (e.g., parallelism or clever optimization techniques) or other fac-
tors offer potential speed-ups or tradeoffs that might some form of simulation
appropriate for the problem at hand. The difficulty in making this decision is
reflected in the fact that human scientists working on this problem are cur-
rently pursuing all three strategies, and there is a great deal of research in
variations on the simulation strategy (e.g., [Skolnick & Kolinski, 1990]).

The difficulty in making correct high level strategic decisions for scien-
tific discovery is a quite general problem. Making discoveries about phenom-
ena of significance often requires taking a method that appeared intractable
and finding a way to apply it. The mere fact that a method appears intractable
on one analysis does not mean that it is not worth inferential effort to refine
or recast the method. People seem to be able to develop intuitions about what
approaches are genuinely intractable, and which are merely difficult open
problems; of course, these intuitions are not always correct.

The selection of a knowledge acquisition strategy for an unsolved prob-
lem reflects the learner’s assessment of its own inferential abilities, as well as
an assessment of the problem characteristics. It is hard to accurately assess
the cost of instantiating and executing a complex strategy, or its likelihood of
its success, especially since the learner needs to assess alternative strategies
without wasting inferential resources on evaluating strategies that will not be
used. This is an issue, since as [Collins, 1987] pointed out, there can be
significant inferential work to be done in just figuring out how to apply a po-
tential planning strategy to the problem at hand. The estimates of difficulty
and likelihood of success that people use to select among strategies may well
be based on their observations of how well other people have done using
those strategies, or own their own history, rather than on a deep analysis of
how a particular strategy will apply to a current problem of interest.

Returning to the specific problem at hand, the alternative to the analytical
approach of simulation are the two empirical approaches, induction and case-
based reasoning. Both methods are potentially achievable within reasonable
resource limits, so the question becomes which is more likely to succeed in
accomplishing the goal? Until success is achieved, there is no direct way to

HUNTER 273

make this decision. Both methods have significant potential, but no clear so-
lution. Because the strategy and set of strategy instantiation and transforma-
tion methods are better developed for the inductive methods (including neu-
ral networks) in the current implementation of INVESTIGATOR than CBR
methods are, the choice to use them can be made on the basis of the internal
abilities of the learner. This decision criterion must be secondary to an as-
sessment of how likely a strategy is to succeed, since otherwise a less well
developed strategy will never be used, even if it is assessed as more likely to
succeed on a given problem. In the general case, it is also worth exploring a
less well developed strategy periodically if there are potential opportunities
to improve it (or learn more about its applicability conditions) through expe-
rience. The question of how often to try a less well developed strategy is re-
lated to the more general problem of deciding when to gather more knowl-
edge [Berry & Fristedt, 1985] .

After selecting a strategy, a learner must instantiate it, mapping the ab-
stract components of the plan to the specifics of the current goal. The strate-
gies describe the steps of an abstract plan and constraints on the concepts
that can be used to fill variablized slots in the plan.

3.3 Selecting Relevant Data

The first step in most knowledge acquisition strategies is to find relevant
data from which inferences can be drawn. Few machine learning or discov-
ery programs address this issue. Almost universally, these programs use all
of the data that is available to them. One of the design goals in building IN-
VESTIGATOR is that it have potential access to a great deal of information
by accessing remote databases over the Internet. The computational (and
sometimes financial) expense of accessing this data is non-trivial, so INVES-
TIGATOR must make decisions about what data it will use. These decisions
are made on the basis of (1) the content-specific knowledge-acquisition goals
that drive the entire process, (2) the selection of a knowledge strategy, which
specifies the kind of information need in order to make the desired infer-
ences, and (3) characterizations of the knowledge sources that are available
to the system.

In the case at hand, the inductive learning strategy requires a large number
of pairs of problem statements and solutions. When applied to the current
knowledge goal, that requirement becomes a need for protein sequences and
the structures associated with them. INVESTIGATOR’s internal representa-
tions of its available data sources show only one source of protein structures,
and that data source also contains the related protein sequences: the
Brookhaven Protein Data Bank (PDB) [Arbola, Bernstein, Bryant, Koetzle,
& Weng, 1987] . Although in this case, the desired information can be found
in a single location, this is not generally the case. Some knowledge goals
may require using data from several different sources. Earlier work with IN-

274 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

VESTIGATOR explored using multiple sources of data to address a particu-
lar knowledge goal [Hunter, 1990a] . The representation of PDB contains in-
formation about where to find the database, how large it is and procedures to
parse its entries. The general information in INVESTIGATOR about the
database specifies that each structure in PDB contains three dimensional lo-
cation data for each atom in the molecule; most structures have well over
than 1000 atoms; that database entries also generally include information
about the bonds between the atoms, other atoms in the structure (such as co-
factors, water molecules, or substrates), data about the certainty of the each
atomic position, and that there are currently about 900 structures in PDB.
Generating representations of available data is currently done by hand, al-
though information about the size of the databases is updated automatically
whenever a database is accessed. The movement towards the adoption of the
ASN.1 data description standard for biological databases raises the possibili-
ty of the automatic generation of parsers as well [Karp, 1991] .

A selecting a source of data is only the first step. The next step in instanti-
ating the induction strategy is to select the particular data items that it will
use, and then select an appropriate representation. There are several reasons
why an inductive learning strategy may want to use only a subset of avail-
able data. In order to make estimates of the confidence in a prediction
method, a learner must put aside a test set that is not used in the training pro-
cedure, e.g., for cross validation. This test set must not be used in any aspect
of training. Another reason to use only a subset of the available data is the
possibility of errors in the training collection. Many datasets are annotated in
some way with characterizations of the certainty or believability of the data.
Since many inductive methods are sensitive to noise, it may be appropriate to
remove uncertain items from the training data, assuming that they can be
identified. A more complex consideration is matching the distribution of the
data items in the training set with the expected distribution of similar items
the universe. Information about the true distribution in the world is rarely
available, but some partial characterizations can be used to select a subset of
the training data that is likely to be closer to the true distribution than is the
entire dataset.

These 900 structures in PDB include several that are merely theoretical
predictions of structure (not empirically derived) and several of very poor
resolution. These structures can be easily identified and removed from con-
sideration. PDB also contains many variant structures of a given protein;
e.g., bound to inhibitors. These variants are given easily identifiable names
and it is possible to select only one representative from each set of related
structures. Removing all of these redundant structures reduces the total set to
324 distinct, empirical structures.

The proteins with known structures are not a random sample of proteins;
the selection process is biased in many ways, some of which are likely to be

HUNTER 275

biochemically significant. One source of bias is that the proteins in the
database are those that are interesting to biologists, and that are (relatively)
easy to crystallize, and therefore obtain structures from. It is not clear if any
correction can be made for this source of bias.

Another bias results from the fact that once a protein’s structure has been
determined, scientists become interested exploring the structures of similar
proteins for comparison. Technical problems that were solved in the creation
of one structure may generalize best to proteins of similar structure, increas-
ing the incentive to investigate similar proteins. These are reasons that en-
tries in PDB may have sequences that are much more similar to each other
than a randomly selected collection of proteins would be. If present and un-
corrected, this bias will have a significant adverse effect on both the infer-
ence process and on estimates of its accuracy.

In general, correcting a bias requires a characterization of the true distri-
bution, and a method for resampling a dataset to reflect the true distribution.
There are many possible biases that might be present in a sample, and unless
a mechanism for drawing an unbiased sample exists, there is no general way
to detect them. However, given a specification of a possible source of bias it
may be possible to test for it. The knowledge that the excess-similarity bias
might exist in PDB is socially derived, but testing and correcting for it can be
done automatically.

A source of an unbiased sample of proteins is needed in order to correct
for selection biases in the PDB dataset. The bias introduced by the require-
ment of crystalizability is easy to address, since there are many sources of
protein sequences that are not derived from (or related to) crystals, e.g., the
protein information resource (PIR) database. However, finding a collection
of sequences that is not influenced by the same socio-scientific interesting-
ness considerations is difficult. The sequences that appear in PIR are deter-
mined by those that scientist deemed worth expending the effort to acquire.
However, there are datasets that exhaustively sample some naturally defined
collection of proteins, such as those that appear on a particular chromosome,
or are expressed in a particular cell (e.g., [Adams, Dubnick, Kerlavage,
Moreno, Kelley, Utterback, et al., 1992]). These datasets are intended to
reflect the true distribution of proteins.

The true distribution of sequence similarity can be estimated by using one
of these unbiased datasets, or a sample of it. There are very effective compu-
tational tools for determining if a pair of proteins have a greater than random
similarity (e.g., BLAST, [Altschul, Gish, Miller, Myers, & Lipman, 1990]).
Using a (putatitively) unbiased sample, the expected number of hits is rough-
ly 0.0006 per pair of proteins. The same test on PDB yields nearly 0.002 hits
per pair, three times the expected number. The collection of proteins in PDB
is biased to excessive similarity.

Since the number of similar sequences in a sample the size of PDB under

276 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

the true distribution would be close to zero, the induction strategy needs to
generate a resampling of PDB to identify a set of proteins that are not similar
to each other. Although it is necessary to ignore some data for this reason,
the chance of successful induction goes up with the size of the training set,
so it is desirable to ignore as little as possible. Since a measure of similarity
(BLAST) exists, it is possible to generate a maximum size subset of PDB by
using the similarity measure to define equivalence classes, and selecting a
single representative from each class.

Even the choice of selecting which member of a class ought to be used to
represent the class is a nontrivial decision. If it is possible to determine a se-
lection criterion that facilitates successful inference, it should be used. In this
case, members were selected for high resolution, since induction is sensitive
to noise in the features of the data. The final reduced dataset has 183 struc-
tures in it, none of which have any significant sequence homology to any
other.

Although the method described above was generated manually in re-
sponse to the specific demands of this particular problem, it suggests that a
more general strategy for addressing biased data. Resampling a dataset to
find a maximum sized subset of it that reflects a specified distribution is a
well defined problem that recurs often in inductive inference. Likewise,
methods of generating estimates of the true distribution of data along some
dimension is also a recurring problem. Detecting that unrepresentative biases
exist is a much harder problem. In this context, making that inference ap-
pears to require knowledge of the way scientists make decisions about what
work do to.

3.4 Reducing the Size of the Problem Space

The problem of inducing a mapping from the entire amino acid sequence
of a protein to the positions of each of the constituent atoms is intractable.
The space of possible inputs and possible outputs is enormous, and the num-
ber of examples is quite small. The problem space must be transformed so
that the mapping to be learned is smaller, and the number of examples of this
mapping is larger. As described in above in section 2.3, this kind of problem
transformation is a significant component of scientific creativity. In [Kass,
1990] Kass describes a theory of creative explanation that involves finding
an partial match with a prior explanation and making small changes to the
structure of the previous example to meet the requirements of the current
case. The following section takes an analogous approach to finding a suitable
problem transformation.

A method widely used in the inductive protein structure prediction is the
translation of atomic positions into secondary structures [Cohen, Presnell, &
Cohen, 1990; Holley & Karplus, 1989; Qian & Sejnowski, 1988; Zhang,
Mesirov, & Waltz, 1992] . Secondary structure (for these purposes) is an

HUNTER 277

assignment of each amino acid in the protein sequence to one of three
classes, based on the hydrogen bonding characteristics of that element in
the final structure. This process involves several kinds of transformations.
First, a set of approximate equivalence classes (secondary structures) were
created; they were devised by Linus Pauling in the 1950’s to coarsely de-
scribe local aspects of protein structure, long before any 3D atomic struc-
tures of proteins were known. The classes were defined based on invari-
ances found in early crystallographic experiments. The application of this
set of equivalence classes dramatically decreases the resolution of the de-
scription of the structure, and discards a great deal of information about the
original structure, making the problem much smaller. This move is an ex-
ample of the “creating approximate equivalence classes” problem transfor-
mation described in section 2.3.

The next step in this approach involves pruning the space of secondary
structures. The secondary structure assignments used by modern biochemists
involve eight classes, defined on the basis of hydrogen bonds formed in the
molecule. The six least common of these classes are combined into a catch-
all category called random coil, focusing on the two most common sec-
ondary structures, helices and strands. This also reduces the size of the prob-
lem, and is an example of the “decrease the resolution of the distinctions
made” problem transformation.

The final step in this structure prediction strategy is to segment the prob-
lem into predicting the secondary structure assignment of each amino acid
separately, based on a local window of sequence neighbors. This move, tak-
ing a large problem and segmenting it into many smaller problems, is an ex-
ample of the “find independent subproblems” transformation.

The composite transformation of the general problem makes the problem
computationally tractable for existing induction algorithms. The size of the
problem was reduced by thousands of orders of magnitude, to a matter of
learning a mapping from a short string of amino acids to one of three classes.
However, each of the transformations introduces an assumption which may
or may not be justified: namely, that secondary structure is an appropriate
definition of equivalence classes of structural segments; that helices and
sheets are the important classes of secondary structure; and that predicting
the secondary structure class each amino acid based on is sequence neigh-
bors decomposes the overall problem into independent subproblems. The as-
sociation of underlying assumptions with transformations is useful in both
diagnosing failure (should the inference fail) or in directing the exploration
of alternative decompositions.

The existing work on protein secondary structure prediction provides one
path through the space. The planning framework outlined here identifies the
decisions that were made in generating that path, and suggests where varia-
tions could be tried. Exploring a space of alternative conceptions of a prob-

278 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

lem is part of the scientific discovery process.
The variation explored here is the replacement of secondary structure with

another equivalence class defined over the structures. Secondary structure di-
vides a three dimensional protein structure in subregions, and then classifies
the subregions. In order to find alternatives to secondary structure, the pro-
tein structures must be divided into regions and those regions assigned to
classes. Finding such a classification is a new knowledge goal, and can be
planned for recursively.

The data is given for this problem, so data source and selection issues do
not arise. The specification of a desired knowledge identifies the general
strategy required as classification. There are, however, several issues that
must be addressed in the instantiation of this strategy.

AI classification methods, e.g., [Cheeseman, Kelly, Self, Stutz, Taylor, &
Freeman, 1988; Fisher, 1987] require that the examples to be classified be
described by a fixed-length vector of feature values, and one with a relatively
small number of features. Available inference methods require the transfor-
mation of the supplied protein structures to fixed length segments.

Long, variable length sequences can be transformed into a large collec-
tion of short, fixed length sequences by segmentation, as in the final trans-
formation step in the secondary structure method described above. The seg-
ments can be mutually exclusive (end to end) or overlapping (sliding
window). The division of structures in to fixed length feature vectors is
complicated by several factors. First, the “size” of a feature vector for a
structure segment can be measured in two different ways, which are not pro-
portional to each other. First is the number of amino acids in the structure
segment, and second is the number of dimensions required to describe the
positions of the atoms in the segment (which is three times the number of
atoms). Since different amino acids have different numbers of atoms, a seg-
ment of a fixed number of amino acids will have a variable number of atom
description dimensions, and a segment with a fixed number of atom descrip-
tion dimensions will have a variable (and non-integral) number of amino
acids. This mismatch can be resolved by a problem transformation. The po-
sitions of the atoms in an amino acid are highly correlated with each other.
Knowing the position of three particular atoms (which biochemists call the
“backbone”) in amino acid is generally enough to identify the location of
the remaining atoms with a high degree of accuracy. The value of the posi-
tions of these atoms can be used as a proxy for the positions of all the oth-
ers. Protein structures can be segmented into fixed length feature vectors
containing three numbers representing the positions of each of three atoms
for each amino acid in the segment.

Other problem reduction transformations can also be applied. The
molecular segments (and the molecules themselves) are rigid bodies. Simi-
larity of rigid bodies is invariant under positional translation and rotation;

HUNTER 279

that is, if a structure is similar to another, then it will still be similar if one
or both of the objects is moved or rotated. This invariance allows for an-
other reduction in the complexity of the classification problem transform-
ing all objects that are identical under rotation or translation to a single
class. Adopting a uniform coordinate frame with which to describe the seg-
ments accomplishes this. The protein structure fragments can be translated
to a uniform coordinate frame by defining the frame relative to the moment
of inertia of each fragment. Similar fragments have similar moments of in-
ertia, and will be oriented so that their constituent atoms will have similar
absolute positions.

Decisions remain to be about the number of amino acids per segment and
whether the segmentation should be mutually exclusive or overlapping.
Overlapping segments are a superset of all possible mutually exclusive divi-
sions, and are preferable unless they produce too many examples for the in-
ference method to handle. The size of the segments should be as large as the
inference method can handle.

Selection of the classification method itself must also be made. The alter-
natives available during this work were k-nearest-neighbor clustering, con-
ceptual clustering and Bayesian classification. Bayesian classification is
preferable for several reasons. First, unlike much of the conceptual clustering
work, it is explicitly suited to clustering real-numbered location data. Unlike
k-nearest-neighbor classification, it uses the data to estimate how many
classes there are as well as their content. Finally, unlike other methods, it can
also generate classifications that have significantly differing within-class
variances. This is valuable both because the natural classes may differ in this
way, and because variance information is useful in trying to fit new data to
the model defined by the classification. Both k-nearest neighbor classification
and conceptual clustering have a strong tendency to minimize differences in
variance between classes. Bayesian classification therefore appears to be the
most appropriate of the clustering methods for this problem.

Once the data have been transformed to match the requirements of the
goal and a specific clustering method has been selected, the inference can be
done. In this case Autoclass III [Cheeseman, Stutz, Hanson, & Taylor,
1990] was used to do the Bayesian classification. Other details of this clus-
tering process are described in [Hunter & States, 1991] .

The final step in most learning strategies is to evaluate the results. In this
case, since the goal was to find an alternative to an existing classification of a
particular dataset, the results can be evaluated by correlating the original and
induced class assignments for each element. The clustering generated a much
larger number of classes than traditional secondary structure recognizes, 27
vs. 8. Some of the induced classes appeared to be more fine-grained varia-
tions on traditional secondary structure, but others showed very little correla-
tion with secondary structure. The relationship between the induced

280 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

HUNTER 281

(B)

(C)

(A)

Figure 1. Three examples of the 27 protein structure classes used as an alternative to
secondary structure. Two of the classes shown here (A & B) are similar to tradition-
ally defined classes, and the other is not. The spheres depict the positions of the
backbone atoms in five consecutive amino acids. The center of each sphere repre-
sents the mean position of the atom in the class; the size of the sphere represents the
variation in position. Grey spheres are carbon atoms and black ones are nitrogen
atoms. (A) is class 1 and is similar to alpha helix. (B) is class 8 and is similar to a
beta strand. (C) is class 10, and structures placed in this class have secondary struc-
ture assignments in all eight secondary structure classes. Nevertheless, there are
more than 800 examples of class 10 in the structure database. Table 1 completely de-
scribes the correlation between the induced classification and secondary structure..

classification and the traditional one is shown in table 1. Some examples of
the class definitions are shown in Figure 1.

This clustering provides an set of output classes which are an alternative
to secondary structure classes. Many other alternatives to the original sec-
ondary structure plan are possible. The one described above provides one ex-
ample, and illustrates the many decisions that a researcher must make in the

282 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

class β-bridge β-strand 310helix α-helix bend β-turn none

1 23 1020 0 0 4 2 192

2 37 378 0 0 3 3 727

3 46 155 1 4 8 11 727

4 18 111 31 30 499 162 160

5 18 627 0 0 1 2 115

6 30 347 0 0 2 2 411

7 33 278 0 0 19 9 409

8 0 0 0 1077 0 1 1

9 0 0 0 1013 0 1 0

10 25 60 12 34 408 53 234

11 13 542 0 0 1 1 118

12 21 62 1 2 261 10 377

13 0 0 45 845 0 52 0

14 2 90 1 1 229 7 262

15 1 13 7 10 214 335 93

16 3 2 88 558 30 155 33

17 0 2 159 463 13 128 20

18 1 1 92 407 78 219 6

19 6 3 63 230 35 215 14

20 0 0 2 638 0 0 0

21 0 0 73 479 0 27 6

22 0 0 71 106 28 170 12

23 3 3 12 146 69 171 1

24 1 1 76 47 35 228 8

25 4 8 17 35 49 129 0

26 1 1 31 90 32 189 0

Table 1. The DSSP secondary structure assignments [Kabsch and Sander, 1983] for
the amino acid in the center of the fragments placed into each class. So, for example,
of the fragments assigned to class one, 1023 would be assigned to beta strand, and
221 would be assigned to random coil (not beta-strand or alpha-helix). Class ten,
one of the most heterogeneous, would be assigned as 60 beta-strands, 34 alpha-he-
lices and 732 random coils.

course of addressing a knowledge goal. The actual classification itself is only
a part of a much larger process.

The original method reduced the 8 secondary structure classes to three by
identifying two classes as primary and combining the others into a single
group. Since there is no equivalent identification in the new classification,
and since induction methods can learn a mapping to 27 groups, this transfor-
mation was skipped. The final step in the original structure prediction strate-
gy was to segment the problem into predicting the class assignment of each
amino acid separately, based on a local window of sequence neighbors. This
is straightforwardly applied to the new classifications, and no further trans-
formations are necessary.

3.5 Choosing and Applying an Induction Method

The particular induction method used for a particular problem can be se-
lected on the basis of either expected performance or on the cost of executing
the method, or some combination. The identification of general methods for
selecting appropriate inference methods for a particular problem is an open
research problem. In the absence of an analytical method for distinguishing
among alternative induction methods, running small scale comparison exper-
iments on random samples of the data can provide justification for selecting
one over the other.

The secondary structure prediction methods described above use feedfor-
ward neural networks trained with backpropagation to learn the mapping
from the window of amino acids to the secondary structure class of the cen-
tral amino acid in the window. The induction of decision trees based on ex-
pected information gain is the major alternative induction method used in
machine learning [Quinlan, 1991] . In a set of sample runs on random sub-
sets of the problem data, the accuracy of the two methods were statistically
indistinguishable, and the decision tree learner runs several orders of magni-
tude faster than the neural network training. The neural network methods
also require the setting of a free parameter, the number of hidden nodes. This
parameter is usually set empirically, based on test performance, which re-
quires a large amount of additional running time. On this basis, the decision
tree learner was selected for the large scale induction run.

The fact that the radically different inference techniques of decision tree
induction and backpropagation training of neural networks performed at
nearly identical levels of accuracy may be somewhat surprising. It appears to
be the case that in many circumstances the effectiveness of induction de-
pends not so much on the particular inference method used, but on the data
and representation of the data that it is applied to. Although algorithm devel-
opment (and selection) is clearly an important component of machine learn-
ing, inference algorithms are not the sole factor involved in the satisfaction
of a goal for knowledge. In particular, the selection and transformation of the

HUNTER 283

data that the algorithms are applied to plays a central role in the outcome.

3.6 Evaluating the Outcome of Learning

The completed execution of a plan does not guarantee the success of the
goal for which that plan was intended. The result of the learning strategy
above is a decision tree that makes a mapping between amino acid sequence
and the classification of protein structures induced before. How well does
this tree address the original goal? At best, the resulting decision tree solves
a transformed and dramatically simplified version of the original problem.
Even if the tree were able to perfectly map from sequence to substructure
class, it is not clear how to map from a set of substructure classes back to the
positions of the constituent atoms. In particular, the segmentation of the
structure lost information about the relationship of the segments which is
difficult to reconstruct.

And the mapping from sequence to substructure class was far from per-
fect. The final application of the decision tree learner to the full dataset yields
a decision tree that classifies an independent test set correctly slightly more
than 36% of the time. In addition to this estimate of the absolute accuracy of
this method, it is also possible to compare it to the accuracy of the secondary
structure prediction strategy it was based on. Since the secondary structure
method maps to one of three classes, and the variation maps to one of 27
classes, the accuracy statistics cannot be compared directly. The information
content of the mappings can be measured, however, showing a slight edge
for the variation: 0.9 bits per prediction for predicting one of three classes
63% of the time versus 1.68 bits per prediction for predicting one of 27
classes 36% of the time, under the observed class distributions. (The details
of the this analysis, and a more specific description of the results can be
found in [Hunter, 1992])

4. Conclusions

The purpose of this chapter was to illuminate the wide range of activities
and decisions that go unstated in machine learning work, and to provide a
framework for bringing these decisions into the realm of theories of learning
and discovery. The process of getting from broadly stated problem to the
final application of an inference method to a specific dataset contains many
opportunities for machine learning research; this chapter is a preliminary at-
tempt to explore those opportunities.

The exploration attempted to identify the decisions that had to be made in
the pursuit of a particular strategy for making a discovery about protein
structure prediction. Each decision point embodies alternative paths that
might be taken towards the overall knowledge goal. The path actually taken

284 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

above tried a variation on the previously described secondary structure pre-
diction approach, generating an alternative classification of protein substruc-
tures. This alternative path produced only a minor gain in overall perfor-
mance. However, the claim of this chapter is not that the particular
alternative pursued solved the overall problem, but that it is one of many al-
ternative plans for achieving the goal.

Machine discovery has generally been described as the search through a
space of hypotheses for one that best fits a given collection of data. The task
of this chapter was to make the collection of data seem less “given.” Cast as
a problem of selecting a potentially effective course of action in the service
of an explicitly stated goal for knowledge, the question of what data to use
(and in what form) becomes a central concern, not always part of the state-
ment of the problem.

The many open questions and the plethora of on-line data, much of it
symbolic, seems to make molecular biology an ideal domain for the testing
of machine discovery tools. However, molecular biology offers too much of
a good thing; the amount of data available is far too large for most existing
machine learning methods, and is growing exponentially. The challenge
posed by this domain to the machine learning and discovery community
should now be clear. The task of making generalizable inferences about map-
pings between datasets, given a set of training examples, is not all there is to
learning and discovery. A general theory of learning and discovery must also
be able to figure out what mappings might be worth learning about, and what
data might be relevant to learning them.

Notes

1. It is also worth noting that the metaphors used in science are not incidental
to the research enterprise. They provide scaffolding for arguments, color
the language used and guide inquiry (see, e.g., [Bloor, 1977; Hesse,
1966]).

2. It is always possible to write a computer program to make a particular
choice. This decisionmaking is only meaningful if the program had alter-
native choices and a theoretically justifiable mechanism for making the
choice. Arbitrary selection with backtracking in the case of errors, for ex-
ample, is not an adequate mechanism for making complex choices.

References
Adams, M. D., Dubnick, M., Kerlavage, A. R., Moreno, R., Kelley, J. M., Utterback, T. R.,

Nagle, J. W., Fields, C., & Venter, J. C. (1992). Sequence Identification of 2,375 Brain Genes.
Nature, 355(6361), 632-4.

Almuallim, H., & Dietterich, T. (1991). Learning with Many Irrelevant Features. In Pro-

HUNTER 285

ceedings of Ninth National Conference on Artificial Intelligence, vol. 2 (pp. 547-552). Anahiem,
CA: AAAI Press.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). A Basic Local
Alignment Search Tool. Journal of Molecular Biology, 215, 403-310.

Anfinsen, C. B. (1973). Principles that Govern the Folding of Protein Chains. Science, 181,
223-230.

Arbola, E., Bernstein, F., Bryant, S., Koetzle, T., & Weng, J. (1987). Protein Data Bank. In F.
Allen, G. Bergerhoff, & R. Sievers (Eds.), Crystallographic Databases - Information Content,
Software Systems, Scientific Applications(pp. 107-132). Bonn: Data Commission of the Interna-
tional Union of Crystallography.

Berry, D., & Fristedt, B. (1985). Bandit Problems: Sequential Allocation of Experiments.
NY, NY: Chapman and Hall.

Bloor, D. (1977). Knowledge and Social Imagery. London: Routledge and Kegan Paul.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). AutoClass: A
Bayesian Classification System. In Proceedings of Fifth International Conference on Machine
Learning, (pp. 54-64). Ann Arbor, MI: Morgan Kaufman.

Cheeseman, P., Stutz, J., Hanson, R., & Taylor, W. (1990). Autoclass III. Program available
from NASA Ames Research Center: Research Institute for Advanced Computer Science.

Cohen, B., Presnell, S., & Cohen, F. (1990). Pattern Based Approaches to Protein Structure
Prediction. Methods in Enzymology, (May 23, 1990).

Collins, G. (1987) Plan Creation: Using Strategies as Blueprints. PhD diss., Yale University,
Report YALEU/CSD/RR#599.

Cox, M. T., & Ram, A. (1992). Multistrategy Learning with Introspective Meta-Explana-
tions. In Machine Learning: Proceedings of the Ninth International Conference, (pp. 123-128).
Aberdeen, Scotland: Morgan Kaufman

desJardins, M. (1992) PAGODA: A Model for Autonomous Learning in Probabilistic Do-
mains. Ph.D. thesis, University of California, Berkeley, Computer Science Division (EECS),
available as technical report UCB/CSD 92/678.

Dietterich, T. (1989). Limitations on Inductive Learning. In Proceedings of Sixth Interna-
tional Workshop on Machine Learning, (pp. 125-128). Ithaca, NY: Morgan Kaufman.

Fisher, D. (1987). Knowledge Acquisition Via Incremental Conceptual Clustering. Machine
Learning, 2, 139-172.

Hesse, M. (1966). Models and Analogies in Science. South Bend, IN: University of Notre
Dame Press.

Holder, L. B. (1991) Maintaining the Utility of Learned Knowledge Using Model-based
Adaptive Control. PhD thesis, University of Illinois at Urbana-Champaign, Computer Science
Department.

Holley, L. H., & Karplus, M. (1989). Protein Secondary Structure Prediction with a Neural
Network. Proceedings of the National Academy of Science USA86 (January), 152-156.

Horvitz, E., Cooper, G., & Heckerman, D. (1989). Reflection and action under scarce re-
sources: Theoretical Principles and Empirical Study(Technical report no. KSL-89-1). Knowl-
edge Systems Laboratory, Stanford Univ.

Hunter, L. (1989a) Knowledge Acquisition Planning: Gaining Expertise Through Experi-
ence. PhD thesis, Yale University, Available as YALEU/DCS/TR-678.

Hunter, L. (1989b). Knowledge Acquisition Planning: Results and Prospects. In Proceedings

286 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

of The Sixth International Workshop on Machine Learning, (pp. 61-66). Ithaca, NY: Morgan
Kaufman.

Hunter, L. (1990a). Knowledge Acquisition Planning for Inference from Large Datasets. In
Proceedings of The Twenty Third Annual Hawaii International Conference on System Sciences,
vol. 2, Software track (pp. 35-44). Kona, HI: IEEE Press.

Hunter, L. (1990b). Planning to Learn. In Proceedings of The Twelveth Annual Conference
of the Cogntive Science Society, (pp. 26-34). Boston, MA: Erlbaum Associates

Hunter, L. (1992). Classifying for Prediction: A Multistrategy Approach to Predicting
Protein Structure. In R. Michalski (Ed.), Machine Learning IV: Multistrategy LearningSan
Mateo, CA: Morgan Kaufman. Forthcoming.

Hunter, L., & States, D. (1991). Applying Bayesian Classification to Protein Structure. In
Proceedings of Seventh Conference on Artificial Intelligence Applications,vol. 1 (pp. 10-16).
Miami, FL: IEEE Computer Society Press.

Karp, P. (1991). ASN.1 parser and Printer Documentation(Technical report 5). National
Center for Biotechnology Information.

Karplus, M., & Petsko, G. A. (1990). Molecular Dynamics Simulations in Biology. Nature,
347(October), 631-639.

Kass, A. (1990) Developing Creative Hypotheses By Adapting Explanations. Ph.D. thesis,
Yale University, Available as Institute for the Learning Sciences Technical Report #6.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific Discovery:
An Account of the Creative Process. Cambridge, MA: MIT Press.

Lenat, D. (1979). On Automated Scientific Theory Formation: A Case Study Using the AM
Program. In J. Hayes, D. Mitchie, & L. I. Mikulich (Eds.), Machine IntelligenceNew York, NY:
Halstead Press.

Qian, N., & Sejnowski, T. (1988). Predicting the Secondary Structure of Globular Proteins
Using Neural Network Models. Journal of Molecular Biology, 202, 865-884.

Quinlan, J. R. (1991). C4.5. Program available from the author: quinlan@cs.su.oz.au.

Ram, A. (1989) Question-driven Understanding: An Integrated Theoryt of Story Under-
standing, Memory and Learning. PhD thesis, Yale University, Report YALEU/CSD/RR#710.

Ram, A., & Hunter, L. (1992). A Goal-based Approach to Intelligent Information Retrieval.
Applied Intelligence, to appear in vol. 2(1).

Rendell, L., & Cho, H. (1990). Empirical Learning as a Function of Concept Character. Ma-
chine Learning, 5(3), 267-298.

Rendell, L., & Seshu, R. (1990). Learning Hard Concepts through Constructive Induction:
Framework and Rationale. Computational Intelligence, 6, 247-270.

Shrager, J., & Langley, P. (1990a). Computational Approaches to Scientific Discovery. In J.
Shrager & P. Langley (Eds.), Computational Models of Scientific Discovery and Theory Forma-
tion. San Mateo, CA: Morgan Kaufmann.

Shrager, J., & Langley, P. (Ed.). (1990b). Computational Models of Scientific Discovery and
Theory Formation. San Mateo, CA: Morgan Kaufmann.

Skolnick, J., & Kolinski, A. (1990). Simulations of the Folding of a Globular Protein. Sci-
ence, 250(November 23), 1121-1125.

Tweney, R. D. (1990). Five Questions for Computationalists. In J. Shrager & P. Langley
(Eds.), Computational Models of Scientific Discovery and Theory Formation.San Mateo, CA:
Morgan Kaufmann.

HUNTER 287

Valient, L. (1984). A theory of the learnable. Communications of the ACM27(11), 1134-
1142.

Weinert, F. E. (1987). Introduction and Overview: Metacognition and Motivation as Deter-
minants of Effective Learning and Understanding. In F. E. Weinert & R. H. Kluwe (Eds.),
Metacognition, Motivation and UnderstandingHillsdale, NJ: Lawrence Erlbaum Associates.

Zhang, X., Mesirov, J., & Waltz, D. (1992). Hybrid System for Protein Secondary Structure
Prediction. Journal of Molecular Biology, 225, 1049-1063.

288 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

8

A Qualitative Biochemistry

and Its Application to the

Regulation of the Tryptophan Operon

Peter D. Karp

1 Introduction

This article is concerned with the general question of how to represent
biological knowledge in computers such that it may be used in multiple prob-
lem solving tasks. In particular, I present a model of a bacterial gene regula-
tion system that is used by a program that simulates gene regulation experi-
ments, and by a second program that formulates hypotheses to account for
errors in predicted experiment outcomes. This article focuses on the issues of
representation and simulation; for more information on the hypothesis for-
mation task see (Karp, 1989; Karp, 1990).

The bacterial gene regulation system of interest is the tryptophan (trp)
operon of E. coli (Yanofsky, 1981). The genes that it contains code for en-
zymes that synthesize the amino acid tryptophan. My model of the trp oper-

on—called GENSIM (genetic simulator)—describes the biochemical reactions
that determine when the genes within the operon are expressed and when
they are not, the reactions by which the genes direct the synthesis of the
biosynthetic enzymes (transcription and translation), and the reactions cat-
alyzed by these enzymes. Therefore my modeling techniques are specifically
designed to represent enzymatically-catalyzed biochemical reactions whose
substrates include macromolecules with complex internal structures, such as
DNA and RNA. These techniques address such issues as: How might we
represent the attributes and the structures of the objects that make up the trp
operon? What is a suitable ontology for these objects—an appropriate level
of abstraction at which to model them? How might we describe a gene regu-
lation experiment, and how can we maintain a library of known experiments?
How might we represent known biochemical reactions? How can we design
a simulation program that predicts the outcome of a gene regulation experi-
ment by correctly and efficiently simulating every reaction that occurs in that
experiment, and only those reactions?

GENSIM embodies a qualitative biochemistrybecause it provides a frame-
work for representing knowledge of biochemistry, and for performing quali-
tative simulations of biochemical systems. The specific features of this quali-
tative biochemistry are as follows.

I employ frames to represent biochemical objects that correspond to
homogeneous populations of molecules. This representation describes the
decomposition of complex objects into their component parts. I use frame
knowledge bases to represent the objects present in the initial conditions of
different experiments. Section 2 describes how instance frames represent
chemical objects in simulation knowledge bases; Section 3 describes how
class frames are used to represent general classes of biochemical objects, and
presents a method for automatically instantiating these classes.

I employ frames called processes to represent biochemical reactions; reac-
tions are arranged in an inheritance hierarchy and often inherit portions of
their definitions from more general reaction classes. Section 4 discusses the
GENSIM process knowledge base.

The GENSIM simulator uses information in the process knowledge base to
determine what reactions occur among the objects in an experiment, and to
predict what new objects will be present at the end of an experiment. Section
5 presents two different algorithms used by GENSIM to simulate process exe-
cution. Because biochemical reactions are probabilistic events that act on
populations of molecules, when GENSIM simulates reactions it splits reacting
populations of molecules into two subpopulations: those that do react and
those that do not react (this operation is called object forking). Object forking
is necessary to ensure simulation correctness, but it is a computationally ex-
pensive operation. Therefore, Section 5.5 presents methods for increasing
simulation efficiency. For example, there are times when we can avoid object

290 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

forking. Section 5.4 identifies a restriction on the syntax of biochemical reac-
tion descriptions that is necessary to ensure simulation correctness.

Section 6 presents the results of several simulations that have been com-
puted by GENSIM. Section 7 compares my model of the tryptophan operon to
models of biochemical systems that have been created by other researchers.

I claim that the methods embodied by GENSIM are sufficient to represent
qualitative scientific knowledge about objects and processes in molecular bi-
ology and biochemistry, such that the knowledge can be used to predict ex-
perimental outcomes, and such that other programs can reason about and
modify this knowledge.

The mechanism of transcription will be used as an example throughout
the remainder of this article. Transcription is a set of processes that are in-
volved in the expression of genes, such as those within the trp operon. Tran-
scription is somewhat analogous to copying a magnetic tape. An enzyme
(called RNA polymerase) first attaches to the trp operon DNA at a promoter
site, and then moves along the linear DNA strand, reading the message on
the DNA and simultaneously synthesizing another long molecule called
RNA that contains what is effectively a copy of the DNA message. When
RNA polymerase recognizes a terminator DNA site, it releases both the
DNA and RNA.

2 Representation of Biochemical Objects and Experiments

In the GENSIM framework, a user defines a gene regulation experiment by
describing the objects present at the start of the experiment. I have used
IntelliCorp’s KEE frame knowledge representation system to represent all of
GENSIM’s knowledge (Kehler and Clemenson, 1984). To describe an experi-
ment in which a particular strain of E. coli is grown in a particular medium, a
user creates KEE instance frames that represent the bacterial DNA (wildtype
or mutant), the proteins that are present within the cell (such as RNA poly-
merase and the regulatory trp-repressor protein), and small molecules that are
present (such as glucose and tryptophan). Users do not create these frames
“out of the blue,” but by instantiating existing class frames (see Section 3).

In the ontology for this qualitative biochemistry, each “object” represents
not a single molecule, but rather a homogeneous populationof molecules.
For example, all molecules of tryptophan in a experiment that are in a given
state (such as those floating free in solution, as opposed to those bound to the
trp-repressor protein) are represented by a single KEE frame. All molecules
of tryptophan in a different single state (such as bound to the trp-repressor
protein) are represented by a different single KEE frame.

These frames reside within a single KEE knowledge base for this particu-
lar experiment, called an SKBor simulation knowledge base. Other experi-
ments could be described within other knowledge bases.1 In the context of a

KARP 291

GENSIM simulation the SKB corresponds to the working memory of a pro-
duction system. Since the facts it contains are represented using frames, all
facts are literals and contain neither disjunction nor negation.

GENSIM does not represent temporal aspects of objects explicitly; the work
of (Simmons and Mohammed, 1987) and (Williams, 1986) is relevant to this
problem. GENSIM’s task is to simulate the behavior of a biochemical system
during a very short interval of time. Within such a short interval, new objects
can come into existence because the creation of an arbitrarily small amount
of an object is enough to change its concentration from zero to positive.
However, we make the simplifying assumption that GENSIM simulations take
place in a short enough interval that a population of molecules is never fully
consumed; thus objects are never deleted from simulations. When an arbi-
trarily small amount of an object is destroyed, we cannot assume that its con-
centration has changed from positive to zero.

This assumption implies that the number of objects in a simulation must
increase monotonically. In reality, biologists do perform experiments over in-
tervals of time long enough that objects are completely consumed by reac-
tions. However, this assumption simplifies the implementation of GENSIM

significantly. Without it, GENSIM would have to reason about time and quan-
tities. Yet the system is still able to make predictions for an interesting class
of experiments. This assumption also simplified the implementation of the
HYPGENEhypothesis formation program described in (Karp, 1989).

3. The Class Knowledge Base

GENSIM’s class knowledge base(CKB) is a taxonomic hierarchy that de-
scribes classes of biochemical objects such as genes, proteins, and biochemi-
cal binding sites. The KB describes the properties and states of different
classes of objects, and the decomposition of objects into their component
parts. The CKB can be viewed as a library that records all known types of
objects that could be present in experiments on the trp system (in practice,
we have omitted many marginally relevant objects because bacteria are in-
credibly complex biochemical systems). Each object class is represented as a
KEE class frame. The CKB is shown in Figures 1 and 2.

A central type of relationship among objects in this domain is the
containmentof one or more objects by a composite object. The example ob-
ject structure in Figure 3 describes an experiment object that has two compo-
nents: an enzyme (RNA-Polymerase) and a segment of DNA
(Trp.Operon). The trp operon is in turn divided into a number of compo-
nent regions. Several issues of interest arose in the representation of objects
with complex component structures: how to represent different types of con-
tainment relationships, how to define classes of these objects, and how to in-
stantiate these classes. The slots within the Trp.Operon class shown in

292 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 4 are used to represent the component structure of this object (each
slot has been truncated for brevity)

A user instantiates Trp.Operon by sending a Create.Instance
message to the Trp.Operon frame. The LISP method invoked instantiates
Trp.Operon and then recurses, sending the same message to each of the
class frames listed in the Component.Object.Classes slot of
Trp.Operon . Instantiating Trp.Operon itself involves creating a new
instance of the class with a unique name, such as Trp.Operon.1 . The

KARP 293

Chorismate.plus.Mut.Trp.Pathway.Expt

Chorismate.plus.Trp.Pathway.Expt

JacksonY.Anom

JacksonY.Ctl

JacksonY.Simple

Leader.Xcription.Expt

Leader.Xcription.Expt.Mut.trpR

Trp-R.plus.Trp.Expt

Wildtype.in.Chorismate.Expt

Wildtype.in.Trp.Chorismate.Expt

XCription.Expt

Experiments

Chorismate.Medium

Trp-Excess.Medium

Trp-Minimal.Medium

Trp.plus.Chorismate

Media

Promoter.Polymerase.Binding.Site

Trp.Operator.Repressor.Binding.Site
DNA.Binding.Sites

dRibosome.Binding.Site

dStart.Codon

dStop.Codon

DNA.Active.Sites

Ribosome.RBS.Binding.SiteMisc.Active.Sites

Anthranilate-Synthetase.Trp.Inhibition.Site

RNA-Polymerase.Promoter.Binding.Site

MUT.Trp-R.Operator.Binding.Site

Trp-R.Operator.Binding.Site

MUT.Trp-R.Trp.Binding.Site

Trp-R.Trp.Binding.Site

Protein.Binding.Sites

Protein.Active.Sites
Active.Sites

Wildtype

trp.delta.ED24

trp.delta.LC1419

trp.delta.LD1412

trpL29

trpL75

trp.Mutants
E.coliBacteria

Figure 1. Object classes within the class knowledge base. The lines represent the
class–subclass relation and connect object classes with the subclasses to their right.
This figure shows objects that describe experiments, media, and bacterial strains, as
well as active sites within proteins and DNA, and mutations.

names of the created component objects are bound to the variables named in
the Component.Object.Bindings slot of Trp.Operon .

A general problem that occurs when encoding class-level templates that
are used to guide the creation of instance frames is how to encode relations
among objects at the class level so that those relations can automatically be
instantiated at the instance level. For example, every promoter object in an
operon records what operator object in that operon controls the promoter. We
wish to specify this general relationship in the operon class object, and

294 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Ribosome.Binding.Site

Start.Codon

Stop.Codon

Charged.trp.tRNA
Charged.tRNAs

trp.tRNAUncharged.tRNAs

Transfer.RNAs

RNA.Active.Sites

RNA.Gene
16S.rRNA

23S.rRNA

5S.rRNA

Ribosomal.RNAs

Rna.Segments

Messenger.RNAs

Trp-R.Operator

Trp.Operator
Operators

Trp-R.Promoter

Trp.Promoter
Def.ON.Promoters

Promoters
Def.OFF.Promoters

Trp-R.Operon
Trp.Leader.Region

Trp.Operon.LC1419
Trp.Operon.LD1412

OperonsRegulons
Trp.Operon.ED102.S
Trp.Operon.ED24

Trp.Operon
Trp.Operon.ED102

Trp.Leader

Trp.Leader.ED102
Trp.Leader.LC1419

Trp.Leader.LD1412

Spacers

Trp-R.Terminator

Trp.Terminator
Terminators Trp-A

Trp-B

Trp-C

Trp-C.LC1419

Trp-D

Trp-D.ED102

Trp-D.ED24

Trp-D.LD1412

Trp-E

Trp-E.ED24

Trp-R.Gene

Genes

Leaky.Terminators

Restriction.Sites

DNA.Segments

Proteins...

Nucleic.Acid.
Segments

Figure 2. Object classes within the class knowledge base. This figure shows the
“nucleic acid segment” objects that are used to describe various regions of DNA and
RNA, as well as classes of proteins, which are shown in the continuation of figure 2
on the next page.

KARP 295

Trp.Operator

Promoter.Polymerase.Binding.SiteTrp.Promoter

Trp.Operator.Repressor.Binding.Site

Trp.Leader

Trp-E

Trp-D

Trp-C

Trp-B

dRibosome.Binding.Site

Trp-A

dStop.Codon

Trp.Terminator

Trp.Operon

RNA-Polymerase.Promoter.Binding.SiteRNA-Polymerase

XCription.Expt

Figure 3. The objects in a transcription experiment. This experiment contains the
trp operon and RNA polymerase, both of which have the internal structure shown.
The lines in this figure represent the part-of relationship between a containing object
and the parts to its right.

Figure 2 continued: The proteins are classified according to both structural and
functional attributes.

Activators
Glycoproteins

Lipoproteins

30S.Ribosome.Subunit

50S.Ribosome.Subunit

Ribosome

Nucleic.Acid.Proteins

Conjugated.Proteins

Generic.ProteaseProteases

RNA-Polymerase

RNaseRNases

Trp-tRNA-SynthetasetRNA-Synthetases

Enzymes

Oligo.Proteins

Anthranilate-Synthetase.Component.I

Anthranilate-Synthetase.Component.II

PA-Isomerase.Mut

PA-IsomeraseMonopolypeptide.Proteins

Trp-R.Polypeptide

Trp-Synthetase.Alpha

Trp-Synthetase.Beta

Polypeptides

Trp-ApoRepressor.NOB

Trp-ApoRepressor.NTB

Trp-ApoRepressorApo-Repressors

Inactivated.Repressors

Trp-RepressorRepressors

Repressor-like.Proteins

Anthranilate-Synthetase

Trp-Synthetase
Simple.Proteins

Proteins

whenever a user instantiates the operon class, the promoter within the newly
instantiated operon should refer to the operator object within that operon ob-
ject. GENSIM allows the user to list a set of variablized assertions within the
Structural.Relations slot of an object class. These assertions are ex-
ecuted by Create.Instance using the variable bindings described in the
previous paragraph. For example, the first PUT.VALUE expression asserts a
relationship between a promoter and an object that regulates that promoter.

4. The Process Knowledge Base

The process knowledge base(PKB) describes the potential behaviors of
the objects in the trp system such as biochemical binding, rearrangement,
and dissociation events.

The sample process in Figure 5 describes a binding reaction between the
activated trp-repressor protein and the trp operator. Table I gives the functions
and predicates used in GENSIM processes. The process specifies that for any
two molecules of type Trp.Operator and Trp-Repressor , if these ob-
jects contain complementary binding sites, and if these sites are empty and
contain no mutations that interfere with this binding reaction, then new in-
stances of these objects should be created and bound together as a new object.

Users represent processes using KEE frames. A process definition specifies
actions that will be taken (listed in the Effects slot of the process) if cer-
tain conditions hold (listed in the Preconditions slot). In addition, since
processes operate on objects, the Parameter.Object.Classes slot
specifies the types of objects on which a process acts. Processes are executed
by a process interpreter. The interpreter activates a process when at least one
object is present from each class in the parameter-object classes of the pro-
cess. The Parameter.Objects slot lists variables that are bound to the
actual objects with which a process has been activated. In addition, an arbi-

296 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

FRAME: Trp.Operon

SLOT: VALUES

Component.Object.Classes: (Trp.Promoter Trp.Promoter
Trp.Operator Trp.Leader
dRibosome.Binding.Site
Trp-E dStop.Codon ...)

Component.Object.Bindings: ($pro1 $pro2 $op1 $lead1
$drbs1 $trpe $dsc1 ...)

Component.Objects:
Structural.Relations: ((PUT.VALUE $Object

‘Regulated.Promoters $pro1)
(PUT.VALUE $pro2

‘Regulator $op1))

Figure 4. The Trp.operon class.

KARP 297

Parameter.Object.Classes: Trp.Repressor Trp.Operator
Parameter.Objects: $A $B
Preconditions: Check that $B contains an active site that

interacts with objects of $A’s type.
[EXISTS $Bsite

(AND
(IS.PART.R $Bsite $B)
(OBJECT.EXISTS $Bsite Active.Sites)
(EXISTS $site.interaction.class

(AND
(MEMBER $site.interaction.class

(GET.VALUES $Bsite
Potential.Interacting.Objects))

(OBJECT.EXISTS $A
$site.interaction.class]

Check that $Bsite is not occupied.
[NOT (EXISTS $obj

(AND
(MEMBER $obj

(GET.VALUES $Bsite
Object.Interacting.With.Site))

(OBJECT.EXISTS $obj
(GET.VALUE $Bsite

Potential.Interacting.Objects]
Check that $Bsite does not contain a
mutation that disables the current reaction.
[NOT (EXISTS $mutation

(AND (IS.PART $mutation $Bsite)
(OBJECT.EXISTS $mutation

Mutations)
(MEMBER $Current.Process

(GET.VALUES $mutation
Processes.Disabled]

Effects: Create a new object that contains $A
and $B as parts.
(BINDV $Complex

(CREATE.COMPLEX RepOp.Complexes
(LIST $A $B) RBOUND))

Record that $A is interacting with $Bsite.
(PUT.VALUE $Bsite

Interacting.With.Site $A))
Record that the promoters controlled by $B
are no longer able to bind RNA Polymerase.
(PUT.VALUE (GET.VALUE $B

Promoters.Controlled)
Receptive.To.Polymerase NO)

Figure 5. The definition of the process Trp-Repressor.Binds.Operator . This
process describes the binding of the activated trp-repressor protein to the trp opera-
tor. Comments that explain the process are given in italics.

trary list of variable bindings may be given in the Bindings slot.
Processes possess an additional type of precondition called Efficien-

cy.Preconditions . These preconditions prevent process invocations
that, although technically correct, are uninteresting. For example, the trp-re-
pressor protein binds to the operator site at the start of the trp operon. It can
bind there during almost any of the 17 intermediate steps of the transcription
process that GENSIM generates to model the progression of RNA polymerase
along the DNA. These intermediate transcription-elongation complexes,
however, have no special functionality when bound to the repressor, and are
thus uninteresting. The Efficiency.Preconditions are used to pre-
vent GENSIM from simulating these reactions—thereby increasing simulation
speed—and because expert biologists usually ignore these reactions. But by
putting these preconditions in a special slot, we make it easy to ignore them
during tasks such as hypothesis formation.

The process frames within the PKB are structured as an inheritance hier-
archy, part of which is shown in Figure 6. At the top level is a general tem-
plate for all processes. Its children are templates that provide descriptions of
general classes of events, such as chemical-binding and enzymatic-reaction
processes. In turn, the children of these templates either describe actual pro-
cesses (such as the bindings of particular species of molecules), or define im-
portant subclasses of processes. An example of such a subclass is Mutual-
ly.Exclusive.Binding . This template defines preconditions for a
subclass of binding processes: for object A to bind to B, it cannot be the case

298 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Predicate or Function Meaning

(OBJECT.EXISTS X Y) Object X exists within class Y
(IS.PART X Y) Object X is part of object Y
(MEMB X Y) Atom X is an element of list Y
(GET.VALUES X Y) The value of slot X of object Y
(BINDV $X Y) Binds variable $X to the value Y
(CREATE.COMPLEX X Y) Creates an object of type X containing the

objects in list Y as parts
(COPY.STRUCTURE X) Creates a copy of object X
(PUT.VALUE X Y Z) Stores Z into slot X of object Y
(EXISTS $X Y) True if expression Y is true for one binding

of $X
(FORALL $X Y) True if expression Y is true for all bindings

of $X

Table I. The predicates and functions used within GENSIM process definitions. OB-
JECT.EXISTS , IS.PART , and MEMBare predicates. The symbols AND, OR, and NOT
may also be used, and have their standard logical meanings.

that A is already bound to an object of class B, or that B is already bound to
an object of class A. A particular process instance can inherit slots from one
or more template processes. For example, Trp-Repressor.Binds.Trp
inherits most of its definition from the Repressor.Binds.Cofactor
template, which specifies the behavior of the class of all repressor proteins.
Trp-Repressor.Binds.Trp inherits additional preconditions from the
process Mutually.Exclusive.Binding . Process classes often pro-
vide enough of the definition of a process instance that only the Param-
eter.Object.Classes slot must be modified in the instance, to define
the actual classes of objects to which the process pertains.

KARP 299

Mutually.Exclusive.Binding
Naked.Binding.Prcs

R.Efficient.MutEx.Binding
R.MutEx.Binding

Binding.Conditions

Fill.Binding.Sites

Release.Binding.Sites
Binding.Effects

Anthranilate-Synthetase.Assembly

Trp-Synthetase.Assembly
Protein.Assembly

Repressor.Binds.Operator
Protein.Binds.DNA

Protein.Binds.Protein

Protein.Binds.RNA

Binding.Processes

Dissociation.Processes

Asite.Binds.B

Generic.Protease.Catalysis

PA-Isomerase.Catalysis

RNAse.Catalysis

Trp-Synthetase.Alpha.Catalysis

Trp-Synthetase.Beta.Catalysis

Trp-Synthetase.Catalysis

Catalysis.Processes

MutableObj.Binds.Obj

Mutation.Check1

MutableObj.Binds.MutableSite

Polymerase.Binds.Promoter
Trp-Repressor.Binds.Operator

MutableSite.Binds.MutableSite

MutableObj.Binds.MutableObj

Ribosome.
Binds.RBS

MutableSite.Binds.MutableObj

Anthranilate-Synthetase.
CatalysisMutation.Check2

Enzyme.Binds.Inhibitor

Repressor.Binds.Cofactor

Protein.Binds.SmallMolecule

trp.tRNA.Charging

tRNA.ChargingRNA.Binds.SmallMolecule

Naked.SmallMolecule.Check

Leaky.Transcription.Termination

Transcription.Elongation

Transcription.Initiation

Transcription.Termination

Transcription.Processes

Translation.Elongation

Translation.Initiation

Translation.Termination

Translation.Processes

Processes

MutableSite.Binds.Obj

Bsite.Binds.A

Figure 6. The process knowledge base. Process classes are linked to their super-
classes by solid lines; executable process instances are linked to the classes of which
they are members by dashed lines.

I have created special machinery to facilitate the use of inheritance to
modify process templates. Process preconditions, bindings, and effects are
actually represented by pairs of slots—called for example, Effects.M and
Effects.A . The values of the slot Effects.M (main) are inherited using
KEE’s override inheritance—new values for this slot override previous val-
ues. Values of Effects.A (additional) are inherited using union inheri-
tance—new values for this slot are unioned with the previous values. The
process interpreter executes the effects listed in both of these slots. The pairs
of slots for preconditions and bindings are defined analogously.

This use of inheritance to define processes is similar to that used in object-
oriented programming (OOP) systems (Goldberg and Robson, 1983; Stefik
and Bobrow, 1986) (although GENSIM’s process interpreter does not employ
the message-sending control structure of OOP). Thus, our approach reaps
many of the same benefits as OOP systems, such as facilitating the definition
of new processes and the maintenance of existing processes. GENSIM’s use of
inheritance is novel in two ways. First is the use of inheritance in this par-
ticular type of language—a production-rule—like process-description lan-
guage. Because GENSIM processes are so similar to the production rules used
in expert systems, inheritance probably could be used in this way as a soft-
ware-engineering tool in the construction of expert systems. The second
novel aspect of this use of inheritance is the manner in which an individual
process is dissected into pieces (preconditions, effects, parameter objects,
bindings) that can be inherited and modified as required. OOP systems usual-
ly treat procedures as indivisible units that can only have additional code
wrapped around them, rather than having their internals altered as desired.

The definition of a process inheritance hierarchy should have benefits in
addition to those already defined. This approach should facilitate the defini-
tion of new processes by hypothesis formation programs such as HYPGENE.
These programs could postulate new processes by instantiating process tem-
plates (see (Karp, 1989) for more details).

4.1 Alternative Reaction Representations

At least two other approaches could be used to represent biochemical re-
actions. One approach would eschew the use of processes, and would repre-
sent the behaviors of an object using slots within that object. For example,
for an object O, one slot might list all objects that O can react with, and other
slots might list other objects that inhibit or activate these reactions. Another
slot might list the products of the reactions. This approach is problematic in
several ways. First, a given object might participate in several reactions, each
of which could involve different other reactants, and produce different prod-
ucts. Thus, the slot values must be encoded in a way that does not lose infor-
mation about which reactants are associated with which products, activators,
and inhibitors. Second, if five objects participate in a given reaction, presum-

300 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ably each object must describe the same reactants, products, activators, in-
hibitors, and so on, which is highly redundant. Third, as GENSIM processes il-
lustrate, it usually is not sufficient simply to list the activators and inhibitors
of a reaction; we usually must test for particular properties of these objects
using complicated predicate-calculus formulae. Without the language of
predicate calculus we could not express preconditions such as: the trp-repres-
sor protein binds to the trp-operator region only if a specific binding site
within the trp repressor is occupied by tryptophan. In summary, when reac-
tions involve several reactants, it is clearer and more efficient to separate
process definitions from object definitions. And when reactions involve com-
plex preconditions and effects—as biochemical reactions often do—a special
language is required to express this complexity.

A second approach would use processes that are somewhat more general
than those most often used by GENSIM (in fact, GENSIM’s representation of
mutations uses this approach). If we were to model three different repressible
operons using GENSIM—say, the trp, lac, and phe operons—we would have
to create separate GENSIM processes to describe the binding of the trp-repres-
sor to the trp operator, the lac-repressor to the lac operator, and the phe-re-
pressor to the phe operator. GENSIM allows these processes to be constructed
using inheritance from the general Repressor.Binds.Operator pro-
cess, but we still might argue that this approach creates an excessive number
of processes. The alternative would be to use a single general process, such
as Repressor.Binds.Operator , to define a slot within each repressor
object that specifies the operator(s) to which the repressor can bind, and to
reference this slot from the Repressor.Binds.Operator process. Al-
though this approach is considerably more compact, it has two disadvan-
tages. First, it would force a proliferation of the slots that encode these object
interactions—every general process (such as Repres-
sor.Binds.Operator) would refer to such a slot. Second, this approach
blurs the clean separation between structure and behavior that is inherent in
the CKB and the PKB. The new specificity slot acts much like a process pre-
condition, yet it resides within an object. If object behaviors are defined
using processes only we have much more modular descriptions that will be
easier to maintain and extend.

5. The Process Interpreter

GENSIM processes bear significant similarity to production rules, and the
program that interprets processes is similar to a production system. The pro-
cess interpreter uses processes to detect interactions among objects that exist
in the current simulation, and computes the effects of these interactions. This
section describes how the process interpreter activates and executes process-
es, and manages the existence of objects during a simulation. Since these is-

KARP 301

sues are so closely intertwined, this section alternates between the two. It be-
gins with a brief description of object management, then presents a detailed
description of process execution. It finishes by presenting points related to
both issues.

Before proceeding, let us resolve the potential ambiguity of the term pro-
cess instance. I use this term to mean the execution of a process on a given
set of objects—an instance of process execution. Because processes are
defined hierarchically in a KEE KB, the KB contains both class process
frames and instance process frames; I use the term leaf processto refer to in-
stance process frames.

5.1 Object Management

At least two possible approaches to the management of objects are con-
ceivable in GENSIM. The term object managementrefers to the manner in
which operations on objects (such as creation, deletion, and modification) are
implemented. Consider the simple reactions in Figure 7, in which an object A
is acted on by two processes: one converts A to object B, the other converts
A to object C. A simulator might model the first reaction in one of two ways:
it might modify A directly to produce B, or it might copy A to a new object,
and then modify that new object to produce B.

GENSIM should produce correct and complete predictions: it must predict
all and only all the correct reactions. Predictions should not depend on the
order in which processes are executed; for example, care must be taken that
the execution of the first reaction in Figure 7 does not prevent execution of
the other by removing the A object, because both reactions would occur to
some degree. In general, most chemical processes are probabilistic events
that act on populations of molecules. Since objects A, B, and C represent
populations of molecules, and reactions occur at some finite rate, it is likely
that, at some time, members of all populations exist. Thus, when a biochemi-
cal reaction converts A to B, all members of population A do not disappear
instantaneously.

We conclude that GENSIM should not destroy objects or modify their prop-

302 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

A

B

C

Figure 7. A simple reaction network in which an object Acan cause two reactions;
one produces Band the other produces C.

erties, because to do so would allow the possibility that the system would
overlook some reaction. Rather than modifying A directly to create B, GEN-
SIM copies A and modifies the copy to produce B. I call this operation object
forking. The assumption that object populations are never fully consumed
was discussed in Section 3.

This discussion also implies that, to predict both whatreactions occur, and
the ratesof these reactions, requires a two-stage computation (GENSIM cur-
rently performs only the first stage):

1) Determine the complete set of reactions that will occur—that is, the com-
plete set of objects that will be created and the set of processes that will
fire. Forbus calls this task computing the “process and view structures”
(Forbus, 1986).

2) Use information about reaction rates and molecular concentrations to
compute how muchof each object population forms. Forbus calls this task
“resolving influences” (Forbus, 1986).

The intuition here is that to predict the rate of a reaction R that consumes
reactants I1,…,In, we must know about all other reactions in which each Ii
takes part, so that we can compute the relative rates of these competing reac-
tions.

Most other qualitative-reasoning researchers have not used object forking.
One reason for this may be that in their domains, objects do not represent
populations of molecules, some of which probabilistically change to another
state—they represent individual objects that change completely. Simmons
and Mohammed (Simmons and Mohammed, 1987) use an explicit model of
time to represent object properties as histories, so in effect, different versions
of different objects exist at different points in time due to the different values
their properties take on at these different points in time. The biochemistry
domain does not allow this approach because the populations of molecules
we model often coexist at a single time.

5.2 Reference Patching

One complication that arises during object forking is that the component
objects of a complex object may refer to one another, and these references
must be altered during the copy operation. This procedure is called reference
patching. For example, a component of the Trp.Operon object—Pro-
moter.1 —contains a slot Regulator with value Operator.1 . This
slot indicates what operator object controls this promoter. The value of this
slot must be altered in the object to which Promoter.1 is copied, to name
the object to which Operator.1 is copied, since a promoter is regulated
by only the operator in the same operon object.

Another complication is that there are some object slots for which refer-
ence patching should not be performed, such as slots that do not contain the

KARP 303

names of objects. Thus, each slot in the system is described by a special
frame that describes whether or not reference patching should be performed
for that slot.

5.3 Implementation of the Process Interpreter

I constructed two different implementations of the process interpreter. The
first uses a brute-force algorithm and is slow. It iterates through all processes
in the PKB, and searches for objects in the simulation that are members of
the parameter object classes of the current process. It then determines which
combinations of these objects satisfy the preconditions of the process, and
executes the effects of such processes, until no new reactions are detected.
More precisely, the first interpreter cycles through the following steps until
no new processes can be activated in Step 2.

1) Process selection:Select a member P from the set of all leaf processes
that exist in the process knowledge base.

2) Process activation (binding of processes to objects):Consider each ob-
ject class Ck, k=1…N listed in the Parameter.Object.Classes of
P. Let ℑ k be the set of object instances within class Ck. If every set ℑ k is
nonempty, then create a new set A containing all possible tuples of the ele-
ments of each ℑ k. Each tuple contains an element of ℑ 1, an element of ℑ 2,
and so on including an element of ℑ N. The set A is the set of possible bind-
ings of the parameter-object variables of P, and is a list of all possible in-
teractions of objects due to P. If any ℑ k is empty, no activations of this
process are generated.

3) Filter process activations: Remove from A every set of variable bindings
for which process P has already been activated with that set of bindings in
this simulation. Because objects never change, and because process pre-
conditions can refer only to objects in the parameter objects of a process,
the truth or falsity of the preconditions of a process as applied to a given
set of objects will never change. Thus, it is never necessary to activate a
process more than once on a given set of parameter objects.

4) Process execution: For each Aj remaining in A:
a) Bind the variables in the Parameter.Objects slot of P to the

objects in Aj
b) Evaluate the variable bindings in the Bindings slot of P
c) Evaluate the Preconditions of P. IF any are false, THEN contin-

ue to the next Aj; ELSE
d) Execute the Effects of P

This approach is inefficient in two ways:

1) It repeatedly examines every process, even for processes for which no ob-

304 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

jects exist in some parameter-object class of the process

2) It repeatedly generates process activations that have been considered pre-
viously, which must be filtered out in Step 3 (at a cost) to avoid the larger
cost of reevaluating the process preconditions.

The cost of these inefficiencies grows as more objects and processes exist in
a simulation.

To improve what is essentially a generate-and-test algorithm, we move
part of the test inside the generator. New process activations are generated
only when the process interpreter first starts running, and when new objects
are created. A given set of object bindings is never generated more than once
for a process.

The second algorithm maintains two data structures. The first is the pro-
cess-activation queue, which contains process variable-binding tuples—the
variable bindings for which each process has not yet been executed. The in-
terpreter repeatedly pops entries lists off this queue and executes the given
process with the given variable bindings.

The second data structure is used to determine what process activations
should be created when a new object is created. It is called the live-objects
list and consists of a list of records of the form

(C (P1 … Pn) (O1 … On))

where

• C is the name of a class of objects that appears in the Parameter.Ob-
ject.Classes slot of at least one process

• (P1 … Pn) is the set of processes that contain C in their Parameter.Ob-
ject.Classes slot—the processes that describe reactions involving
this class of object

• (O1 … On) is the list of objects within class C that exist in the simulation

When a new object O is created by the execution of a process, the following
actions are taken:

1. Let C be the class of O.

2. Find the set ℜ of all records in the live-objects list such that record Ri de-
scribes a class that is equal to or a superclass of C. If none exist, exit.

3. Add O to the object list of each record in ℜ .

4. For each Ri in ℜ do

For each process Pj in Ri do

Compute the new variable bindings for Pj. Imagine that Pj oper-
ates on two objects—one of class C, the other of class D. The ac-
tivations of Pj consist of O paired with every object from class D

KARP 305

(as listed in the live-objects record for D). Append these activa-
tions to the process-activation queue.

Two properties of this approach are worth noting. First, new process acti-
vations are generated only when new objects are created. This approach is
correct because new process activations must include at least one new ob-
ject—since old objects are never modified, a group of old objects will never
spontaneously activate an existing process that had not been activated previ-
ously. Similarly, because objects are forked and not deleted, process activa-
tions never have to be removed from the process-activation list.

An additional optimization is possible using a slightly different data struc-
ture. It may be the case that the interpreter could prove that an existing object
O will always prevent process P from firing, because O will always cause a
precondition of P to be violated (GENSIM could prove this by partially evalu-
ating the preconditions of the process (Hsu, 1988)). In this case, the inter-
preter should never generate an activation of P that includes O. This infor-
mation could be used in a similar approach that stored live objects within a
class on a per-process basis, rather than with every process that acts on the
class (the latter is done in the current live-objects structure). Objects would
be removed from the list for a process when GENSIM proved that they could
not fire that process.

5.4 A Restriction on Process Preconditions

The preceding approach to object management and process execution re-
quires that we impose a restriction on the syntax of process preconditions to
guarantee the correctness of our simulations. This restriction has an interest-
ing biochemical interpretation.

The restriction is that a precondition of a process P may not check for the
existence or nonexistence of an object D1 unless D1 either is a parameter ob-
ject of P, or is part of an object that is a parameter object of P. For example,
a process P1 that describes the binding of object A1 to B1 may not check
whether no objects exist in the simulation that belong to class D. Therefore,
the following precondition is forbidden for process P:

(NOT (EXISTS $X (OBJECT.EXISTS $X D)))

But P may, however, check whether no objects of class D exist in the simula-
tion as parts of B1:

(NOT (EXISTS $X (AND (OBJECT.EXISTS $X D)
(IS.PART $X B1))))

Without this restriction the correctness of simulations is no longer guaran-
teed, because the truth of the shorter precondition will depend on whenthe
process interpreter evaluates that precondition (which depends on when pro-
cess P is executed). If evaluation occurs when no objects of type D exist,
then the precondition will be true. But if it occurs after the execution of an-

306 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

other process P2 that creates an object of type D, then the precondition will
be false. Thus, in this example the relative execution times of processes P1
and P2 (which times are undefined in GENSIM simulations because GENSIM

has no model of time and assumes all reactions occur in a very brief interval)
determines the truth of the precondition.

The value of the restriction is that by stipulating that D1 must be part of
B1 it ensures that D1 must exist at the time P1 is activated. The second algo-
rithm activates P1 when, and only when, all of the parameter objects of P1
exist. So, if P2 created B1, P2 must have executed before P1. Furthermore,
given the framework of object forking, once created, B1 cannot be modified.
Thus, there is no possible ambiguity in the evaluation of the preconditions of
P1.

An important question to ask is: does this restriction have reasonable se-
mantics in the biochemistry domain? The answer is yes. In general, biochem-
ical reactions occur when a set of reactants is present in solution, and when
each of the reactants is in a required state. Process preconditions examine the
states of the reactants. In general, the only way one molecule can influence
the state of another molecule is by physically attaching to the other molecule
and altering its conformation. That is, there is no way for A1 and B1 to magi-
cally sense the presence or absence of D1 in solution. To affect the reaction,
D1 must bind to A1 or B1 to alter that object’s state, in which case D1 is a re-
actant in this reaction, and should therefore be listed as a parameter object of
the process. Thus, it makes no biochemical sense to write the type of precon-
dition that we prohibit.

5.5 Optimizations

The reason we employ object forking is that this approach to managing
simulation objects meets the correctness and completeness criteria described
in Section 5.1. A drawback of object forking is that in the trp operon simula-
tions are slower by roughly a factor of 20 than are simulations in which ob-
jects are modified directly. Object forking increases the computational re-
sources required for simulation of the trp operon because some processes
within this system generate many complex objects. During execution of the
transcription process, for example, each movement of RNA polymerase
along a DNA strand is accomplished by a different activation of a single pro-
cess that generates a new copy of the transcription-elongation complex that
contains DNA, mRNA, and RNA polymerase (each of which is a complex
object). Object forking is costly both because the KEE frames that represent
objects are expensive to create, and because the large numbers of created ob-
jects can later cause large numbers of additional reactions. Here we discuss
methods for increasing the speed of simulations.

5.5.1 Avoidance of Object Forking.In the biochemical domain there is a
specific case in which objects can be modified directly to avoid the cost of

KARP 307

forking the object, without sacrificing the correctness of the simulation. The
need to copy-then-modify objects rather than to modify them directly arose
from the possibility that multiple processes might act on the original object.
Modifying the original object could cause some of its behaviors to go
undetected. However, if inspection of the PKB reveals that only a single pro-
cess acts on a given object class (in which case the object class would be
named in the Parameter.Object.Classes slot of a single process),
the preceding consideration would appear to be nullified. Unfortunately, it is
not completely nullified, because multiple activations of the process could
act on the same object. For example, if we found that the only process acting
on the class RNA-Polymerase is the Polymerase.Binds.Promoter
process, the object RNA-Polymerase.1 still could bind to two different
instances of Trp.Promoter , such as Trp.Promoter.1 and
Trp.Promoter.2 . Thus, we cannot avoid forking RNA-
Polymerase.1 . We can, however, avoid copy-then-modify when only a
singleknown process acts on a given object class, and that process has only
oneparameter object. For example, the transcription-elongation process acts
on a single Transcription.Elongation.Complex object (whose
components are the DNA, enzyme, and RNA described earlier). This opti-
mization has not been implemented within GENSIM.

Note that this optimization may cause problems for a program that must
analyze a simulation-dependency trace, such as a hypothesis formation pro-
gram. Such a program might try to understand why a final set of objects are
predicted to be present in a given experiment by inspecting the intermediate
objects that reacted to form those final objects. It is just those intermediates
that this optimization destroys.

5.5.2 Object Merging. A procedure called object mergingis used to de-
tect when two different processes independently create the same object.
When this event is detected, only one of the object descriptions is retained.
This procedure produces a small economy by eliminating redundant storage
of the merged objects. It produces a much larger savings by preventing pro-
cesses from being invoked by the redundant objects, and by preventing the
creation of the additional redundant objects that these duplicate reactions
would produce.

5.5.3 Sharing Object Descriptions with an ATMS. It is possible to use
an ATMS (DeKleer, 1986) to reduce the storage consumed by object forking.
This approach was inspired by the ATMS property of allowing efficient ex-
ploration of alternative decisions through storing rather than recomputing el-
ements of the problem-solving state that the alternatives share. For example,
the ATMS has been used previously in qualitative physics to represent envi-
sionments more efficiently (Forbus, 1984; deKleer and Brown, 1984). My
hope was that an ATMS could be used in a similar way to provide efficient
storage of different objects that have a large amount of common structure.

308 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

This use of the ATMS is novel because I propose using the ATMS to repre-
sent more efficiently common aspects of similar objects that coexist within a
single contextof the simulation. Previously, it has been used to represent
more efficiently common aspects of similar objects that exist in alternative
predictions of the state of the physical system (envisionments).

IntelliCorp’s KEE contains an ATMS implementation (Intellicorp, 1986;
Morris and Nado, 1986). In the following paragraphs, I describe this ATMS
implementation, sketch how it might be used to solve this problem, discuss
why this approach will fail, and then examine additional ATMS functionality
that will solve the problem.

KEE’s ATMS forms the basis for a facility called KEEworlds, which is
well integrated with KEE’s frame representation system. By default, any
modification to a KEE frame (e.g. of a slot value) affects the background(the
root world), and all slot-value queries access the background. New worlds
are defined as children of the background and/or existing worlds. Users may
explicitly direct assertions and queries to the background or to any existing
world. By default, any fact true in the parent of a world W is also true in W.
But W may override someof the facts defined in its parents: the values of ex-
isting slots in existing frames may be modified arbitrarily, however, it is pos-
sible to create, delete, or rename both frames and slots in the background
only.

Figure 8 shows how the KEEworlds facility could be used to implement
object forking. The background and the worlds W1 and W2 represent three
consecutive states of the transcription process discussed earlier. In this pro-
cess, a transcription-elongation complex object contains two other objects:
an RNA whose length grows as the process executes repeatedly, and a DNA.
Rather than create new versions of the elongation complex object for every
step, the KEEworlds facility allows the core descriptions of each object to be
inherited by the KEEworlds facility with only the changes to each object
recorded explicitly, as shown in Figure 8. The substructure of the RNA.1 ob-
ject changes the length of the RNA increases, and new objects A.1 and B.1
are created.2

The limitation of this mechanism arises in the following situation. Imag-
ine the existence of a biological process that specifies that two RNA objects
may bind together when they are components of a transcription-elongation
complex. If this reaction were to occur between the two versions of the
RNA.1 object in worlds W1 and W2, we would create a new world W3 with
parents W1 and W2. W2 would inherit descriptions of RNA.1 from both W1
and W2. The problem is that the new world W3 would contain only a single
version of RNA.1, whose properties would result from merging the RNA.1
objects from W1 and W2. Chemically, two distinct RNA objects must exist in
W3, but KEE’s approach to world inheritance causes the descriptions of

KARP 309

RNA.1 from W1 and W2 to be merged, because both objects have the same
name. Because object names are both the basis for sharing information be-
tween worlds and the source of the merging problem, the KEEworlds imple-
mentation is not able to reduce the space required to represent similar objects.

This limitation would not exist in a worlds mechanism that had the addi-
tional functionality of being able to rename objects from one world to anoth-

310 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

TComplex.1
 components: RNA.1 DNA.1

DNA.1
 container: TComplex.1

RNA.1
 container: TComplex.1

TComplex.1

DNA.1

RNA.1
 components: A.1

A.1
 container: RNA.1

TComplex.1

DNA.1

RNA.1
 components: A.1 B.1

A.1

B.1
 container: RNA.1

Background W
1 W

2

A' B' D'C'
DNA

RNA RNA RNA
A BA

W

TComplex.1

DNA.1

RNA.1
 components: A.1 B.1

A.1

B.1
 container: RNA.1

3

DNA
A' B' C' D'

DNA
A' B' C' D'

TComplex.1

 components: RNA.1 DNA.1

Background

DNA.1

 container: TComplex.1

RNA.1
 container: TComplex.1

TComplex.1

DNA.1

RNA.1
 components: A.1

A.1
 container: RNA.1

1
W

TComplex.1

DNA.1

RNA.1
 components: A.1 B.1

A.1

B.1
 container: RNA.1

2
W

Figure 8. Use of an ATMS to share the descriptions of similar objects during a simu-
lation.

er. That is, if we were able to rename RNA.1 to RNA.2 within W2, no merg-
ing of the two RNA objects would occur in the child world W3. GENSIM does
not use this technique because we lack such an ATMS. (In KEEworlds,
frames can be renamed only in the background.)

Other researchers employ an ATMS, but for different purposes: Forbus
uses it to represent alternative envisionments more efficiently (Forbus,
1986), and Simmons and Mohammed use it to represent causal dependencies
for later analysis by their diagnostic system (Simmons and Mohammed,
1987).

6. GENSIM Trials

I tested the GENSIM program in a number of trial runs. In each trial I used
the program to predict the outcome of a different biological experiment. This
section describes each trial by stating what objects were present in the initial
conditions of the experiment whose outcome GENSIM predicts, and what re-
actions and new objects were predicted by GENSIM. For some trials, I show
the internal structures of objects in the initial conditions or the prediction.

6.1 The Trp Biosynthetic Pathway

This simple trial models the trp biosynthetic pathway, in which a set of
enzymes convert chorismate to tryptophan (the current model ignores the
reactant serine). The initial conditions of the experiment are shown in Figure
9, the predicted outcome in Figure 10. Figure 11 shows the internal structure
of every object in the prediction. GENSIM’s prediction is correct in that it
omits no reactions that should occur, it includes all reactions that do occur,
and the objects produced by each reaction have the predicted parts and prop-
erties.

6.2 The Trp Biosynthetic Pathway with a Mutant Enzyme

This trial is a variation of the previous trial. In this trial, the enzyme tryp-
tophan synthetase contains a mutation that prevents it from catalyzing the re-
action that converts InGP to tryptophan. The mutation is represented as an
object that is part of the tryptophan-synthetase object. GENSIM correctly pre-
dicts that the last two (rightmost) reactions in Figure 10 do not occur.

6.3 Transcription of the Trp Leader Region

The leader-region transcription trial focuses on another subset of the over-
all trp system: the transcription of DNA. Figure 12 shows the objects in the
initial conditions of this experiment, which include a truncated version of the
trp operon called Trp.Leader.Region.1 (I removed all the genes in the
operon to make this trial easier to describe), the enzyme RNA polymerase,
the trp-aporepressor protein, and tryptophan. The prediction generated by

KARP 311

312 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Anthranilate-
Synthetase.3

trp.8

Anthranilate-Synthetase.
Component.I.3

Anthranilate-Synthetase.
Trp.Inhibition.Site.3

Anthranilate-Synthetase.
Component.II.3

Anthranilate-Synthetase.
COMPLEX.2

Anthranilate-Synthetase.
Component.I.1

Anthranilate-Synthetase.
Trp.Inhibition.Site.1

Anthranilate-Synthetase.
Component.II.1

Anthranilate-Synthetase.1

Trp-Synthetase.Alpha.2

Trp-Synthetase.Beta.3

Trp-Synthetase.2

trp.7

InGP.2

PRanthranilate.2

Chorismate.1

Phosphoribosyl-Anthranilate-Isomerase.1

Chorismate.plus.
Trp.Pathway.Expt.1

Figure 11. The internal structures of the objects predicted to be present at the end of
the trp biosynthetic-pathway experiment.

Chorismate.1

Anthranilate-Synthetase.
Component.I.1

Anthranilate-Synthetase.
Trp.Inhibition.Site.1

Anthranilate-Synthetase.
Component.II.1

Anthranilate-Synthetase.1

Phosphoribosyl-Anthranilate-Isomerase.1

Trp-Synthetase.Alpha.1

Trp-Synthetase.Beta.1
Trp-Synthetase.1

Chorismate.plus.Trp.
Pathway.Expt.1

Figure 9. The initial conditions of the trp biosynthetic-pathway experiment. Every
object in this figure contains the objects to its right as parts. For example, the Trp-
Synthetase.1 enzyme has two parts: the alpha and beta subunits of the protein.
The experiment as a whole is represented by the object Chorismate.plus.Trp.-
Pathway.Expt.1 , which contains all the objects in the experiment as parts.

Chorismate.1

Anthranilate-
Synthetase.1

Phosphoribosyl-Anthranilate-
Isomerase.1

Trp-Synthetase.2

PRanthranilate.2

InGP.2

trp.7

Anthranilate-Synthetase.
COMPLEX.2

Figure 10. The predicted outcome of the trp biosynthetic-pathway experiment. The
lines in this figure indicate the process firings whereby objects react to create the ob-
jects to their right. For example, Trp-Synthetase.2 reacts with InGP.2 to form
trp.7 .

GENSIM is shown in Figure 13. This prediction is correct. The two sequences
of reactions in this experiment fork the population of trp operon leader-re-
gion DNA into two classes: those whose operator regions bind to the activat-
ed repressor protein Trp-Repressor.2 , and those whose promoters bind
to RNA-Polymerase.1 and undergo transcription to produce a messenger
RNA.3 The figures do not name Trp.Leader.1 as participating in these
reactions, but rather name the components of the operon that react: the pro-
moter Trp.Promoter.1 and the operator Trp.Operator.1 .

The internal structure of one of the transcription-elongation complexes is
shown in Figure 14. A transcription-elongation complex contains RNA poly-
merase, the DNA that RNA polymerase is transcribing, and the mRNA that
RNA polymerase has synthesized thus far. The number of segments (parts)
within the mRNA reflects the length of DNA that RNA polymerase has tra-
versed. Since the mRNA contains two segments, we can infer that RNA
polymerase traveled two segments along the DNA to produce this trans-
cription-elongation complex. Figure 15 shows the internal structures of every
object in this experiment.

KARP 313

Promoter.Polymerase.
Binding.Site.1

Trp.Promoter.1

Trp.Operator.Repressor
. Binding.Site.1

Trp.Operator.1

Trp.Leader.1

Trp.Terminator.1

Trp.Leader.Region.1

RNA-Polymerase.Promoter.Binding.Site.1RNA-Polymerase.1

Trp-R.Operator.Binding.Site.1

Trp-R.Trp.Binding.Site.1
Trp-ApoRepressor.1

Leader.Xcription.Expt.1

trp.4

Figure 12. The objects in the initial conditions of the leader-region—transcription
experiment.

Trp.Promoter.1

RNA-Polymerase.1

Trp.Operator.1

Trp-ApoRepressor.1

trp.4

XCInit.Complexes.1

Trp-Repressor.2

XCElong.
Complexes.1

XCElong.
Complexes.1

Messenger.
RNAs.3

RepOp.Complexes.1

Figure 13. The outcome of the leader-region transcription experiment that was pre-
dicted by GENSIM.

6.4 The Full Trp System

This trial simulates the entire trp system as it was known in the late 1960s.
Figure 16 shows the initial conditions of this experiment. GENSIM’s predic-
tion is shown in Figures 17 and 18. Figure 17 shows the transcription of the
trp operon by RNA polymerase, which yields a free mRNA (Messen-
ger.RNAs.18). Some of this mRNA is degraded into its constituent bases
by the enzyme RNase.1 . The mRNA also reacts with ribosomes, as shown
in Figure 18. Messenger.RNAs.18 contains five ribosome-binding sites,
including Ribosome.Binding.Site.47 .4 Each binding site attracts a
ribosome, which translates the five different regions of mRNA into polypep-
tides such as Trp-Synthetase.Beta.1 Some of these polypeptides
bind together to form larger, functional proteins, such as Trp-Syn-
thetase.1 .

The enzymes produced from translation of the trp-operon mRNA react
with chorismate to carry out the steps in the trp pathway. The trp thus pro-
duced enters into several reactions: It binds to and inhibits anthranilate syn-
thetase, and it activates the trp aporepressor protein (the latter complex then
binds to the trp operator). Finally, the trp-tRNA-synthetase enzyme catalyzes
the binding of tRNAtrp and trp to form charged tRNAtrp (which is used in all
protein synthesis).

Generation of this prediction required approximately 70 minutes of Dora-
do (Xerox 1132 LISP machine) CPU time. The prediction contained a total of
1050 objects (including components).

7. Related Work

Here I review the work of other AI researchers who have created models
of biochemical systems, comparing and contrasting their techniques with
those described in this article:

• Meyers’ model of the life cycle of Lambda phage (Meyers, 1984)

• Round’s model of the E. coli trp operon (Round, 1987)

314 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Misc.mRNA.Segment.2

Misc.mRNA.Segment.3
Messenger.RNAs.2

RNA-Polymerase.Promoter.Binding.Site.4RNA-Polymerase.4

Trp.Leader.5

Trp.Operator.Repressor.
Binding.Site.5

Trp.Operator.5

Promoter.Polymerase.
Binding.Site.5

Trp.Promoter.5

Trp.Terminator.5

Trp.Leader.Region.5

XCElong.Complexes.2

Figure 14. The internal structure of a transcription-elongation complex.

KARP 315

Misc.mRNA.Segment.4
Misc.mRNA.Segment.5

Messenger.
 RNAs.3

Misc.mRNA.Segment.2

Misc.mRNA.Segment.3Messenger.RNAs.2

RNA-Polymerase.Promoter.
 Binding.Site.4RNA-Polymerase.4

Trp.Leader.Region.5

Trp.Leader.5

Trp.Operator.Repressor.
 Binding.Site.5

Trp.Operator.5

Promoter.Polymerase.
 Binding.Site.5

Trp.Promoter.5

Trp.Terminator.5

XCElong.
 Complexes.2

Trp.Leader.3

Trp.Operator.Repressor.
 Binding.Site.3

Trp.Operator.3

Promoter.Polymerase.
 Binding.Site.3

Trp.Promoter.3

Trp.Terminator.3

Trp.Leader.Region.3

Trp-R.Operator.
 Binding.Site.4

Trp-R.Trp.
 Binding.Site.4

Trp-ApoRepressor.4

trp.6Trp-Repressor.3

RepOp.
 Complexes.1

Misc.mRNA.Segment.1Messenger.RNAs.1

RNA-Polymerase.Promoter.
 Binding.Site.3

RNA-Polymerase.3

XCElong.
 Complexes.1

Trp.Leader.4

Trp.Operator.Repressor.
 Binding.Site.4

Trp.Operator.4

Promoter.Polymerase.
 Binding.Site.4

Trp.Promoter.4

Trp.Terminator.4

Trp.Leader.Region.4

RNA-Polymerase.Promoter.Binding.Site.2RNA-Polymerase.2

XCInit.
 Complexes.1

Trp.Leader.2

Trp.Operator.Repressor.
 Binding.Site.2

Trp.Operator.2

Promoter.Polymerase.
 Binding.Site.2

Trp.Promoter.2

Trp.Terminator.2

Trp.Leader.Region.2

Trp-R.Operator.Binding.Site.3

Trp-R.Trp.Binding.Site.3

Trp-ApoRepressor.3

trp.5

Trp-
 Repressor.2

Trp-R.Operator.Binding.Site.2

Trp-R.Trp.Binding.Site.2
Trp-ApoRepressor.2

Trp.Leader.1

Trp.Operator.Repressor.Binding.Site.1
Trp.Operator.1

Promoter.Polymerase Binding.Site.1
Trp.Promoter.1

Trp.Terminator.1

Trp.Leader.Region.1

RNA-Polymerase.Promoter.Binding.Site.1RNA-Polymerase.1

Leader.Xcription.
 Expt.1

Figure 15. The objects in the predicted outcome of the leader-region-transcription
experiment.

• Weld’s PEPTIDE model of biochemical reactions (Weld, 1984; Weld, 1986)

• Koton’s GENEX model of gene expression (Koton, 1985)

• Karp’s earlier model of the trp operon (Karp and Friedland, 1989)

316 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

23S.rRNA.1

5S.rRNA.1
50S.Ribosome.Subunit.1

16S.rRNA.130S.Ribosome.Subunit.1

Ribosome.RBS.Binding.Site.1

Ribosome.1

Promoter.Polymerase.Binding.Site.1Trp.Promoter.1

Trp.Operator.1

Trp.Leader.1

dRibosome.Binding.Site.1

Trp-E.1

Trp-D.1

dRibosome.Binding.Site.2

Trp-C.1

dStop.Codon.2

dStop.Codon.1

dRibosome.Binding.Site.3

dStop.Codon.3

dRibosome.Binding.Site.4

Trp-B.1

dStop.Codon.4

dRibosome.Binding.Site.5

Trp-A.1

dStop.Codon.5

Trp.Terminator.1

Trp.Operon.1

Trp-ApoRepressor.1

Generic.RNAse.1

RNA-Polymerase.1 RNA-Polymerase.Promoter.Binding.site.1

Trp-tRNA-Synthetase.1

Trp-R.Operator.Binding.Site.1

Trp-R.Trp.Binding.Site.1

Chorismate.Medium.1 Chorismate.1

Trp.Operator.Repressor.Binding.Site.1

Trp.Expt.1

Figure 16. The initial conditions of the experiment involving the full trp system.

• Koile and Overton’s model of the life cycle of the HIV virus (Koile and
Overton, 1989)

• Brutlag et al’s model of DNA metabolism (Brutlag et al., 1991)

• Mavrovouniotis’ model of intermediary metabolism (Mavrovouniotis,
1990; see also Mavrovouniotis, this volume)

Virtually all of these researchers represent objects as frames that describe

KARP 317

UTP.1GTP.1CTP.1ATP.1

Messenger.RNAs.18

XCElong.Complexes.17

XCElong.Complexes.16

XCElong.Complexes.15

XCElong.Complexes.14

XCElong.Complexes.13

XCElong.Complexes.12

XCElong.Complexes.11

XCElong.Complexes.10

XCElong.Complexes.9

XCElong.Complexes.8

XCElong.Complexes.7

XCElong.Complexes.6

XCElong.Complexes.5

XCElong.Complexes.4

XCElong.Complexes.3

XCElong.Complexes.2

XCElong.Complexes.1

Trp.Promoter.1

XCInit.Complexes.1

RNA-Polymerase.1

RNase.1

Figure 17. Simulation of the trp system, part 1. This figure shows a simulation of
transcription of DNA and degradation of the resulting mRNA. The nodes of the
graph are the names of objects (many objects in this figure contain 10 to 30 compo-
nent objects). The links in the figure connect the reactants and products of each reac-
tion; for example, Trp.Promoter.1 and RNA-Polymerase.1 reacted to yield the
transcription-initiation complex XCInit.Complexes.1 .

object properties and object part-whole structures. Exceptions are Koton,
who used PROLOG clauses to represent this information, and Mavrovonioutis,
who used Flavors. Although most workers represented object parts such as
binding sites, none approached the complexity used for example in the GEN-
SIM representation of a transcription-elongation complex (see Figure 14). In

318 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Trp.Operator.1

RepOp.Complexes.1

Charged.trp.tRNA.1

Trp-Repressor.1

PRanthranilate.1

InGP.1

Trp-Synthetase.1

trp.1

Chorismate.1

Trp-ApoRepressor1

trp.tRNA.1

Ribosome.1

Phosphoribosyl-Anthranilate-Isomerase.1

XLElong.Complexes.2

XLElong.Complexes.7XLElong.Complexes.1

XLElong.Complexes.6

XLElong.Complexes.3

XLElong.Complexes.8

XLElong.Complexes.4

XLElong.Complexes.9

XLElong.Complexes.5

XLElong.Complexes.10

XLInit.Complexes.1

XLInit.Complexes.2

XLInit.Complexes.3
XLInit.Complexes.4XLInit.Complexes.5

Ribosome.Binding.Site.50 Ribosome.Binding.Site.49 Ribosome.Binding.Site.48

Ribosome.Binding.Site.47

Ribosome.Binding.Site.46

Trp-Synthetase.Alpha.1 Trp-Synthetase.Beta.1

Anthranilate-Synthetase.1

Anthranilate-Synthetase.Component.I.1

Anthranilate-Synthetase.Component.II.1

Trp-tRNA-Synthetase.1

Anthranilate-Synthetase.COMPLEX.1

Figure 18. Simulation of the trp system, part 2. This figure shows the translation of
the trp operon mRNA to produce the enzymes in the trp biosynthetic pathway, the re-
actions catalyzed by these enzymes, and the reactions involved in repression of the trp
operon. Each ribosome-binding site named in this figure is a component of the Mes-
senger.RNAs.18 object in the previous figure.

addition, none of the other programs represented classes of biological objects
that were automatically instantiated to describe particular experiments, as de-
scribed in Section 3. Koile and Overton represented little or no information
about object properties or structures; their approach focuses on object quanti-
ties such as concentrations.

Only GENSIM and Weld’s PEPTIDE perform object forking (in Weld’s ter-
minology he “splits the histories” of the “nodes” that represent populations
of molecules—he also merges histories when identical nodes are produced
by different reactions, which is identical to GENSIM’s object merging). Koton
states (p. 33) that her approach is to focus only on those binding reactions
with the highest affinities, and not to simulate all possible competing reac-
tions. Section 5 of this article provides the most thorough analysis of the rea-
sons to perform object forking, and of ways to optimize this procedure.

The different researchers took varying approaches to representing quanti-
tative information about the biological systems they modeled. Like GENSIM,
Koton represented no quantitative information at all. Mavrovonioutis, Weld,
Koile, and Karp (Karp and Friedland, 1989) applied techniques developed
for qualitative physics (and developed new techniques) to their biological
systems. They could represent very coarse quantitative information such as
“the concentration of the HIV primary transcript is greater than zero” (Koile
and Overton, 1989), or somewhat more precise order-of-magnitude informa-
tion such as “the concentration of X is much greater than the concentration of
Y” (Mavrovouniotis, 1990). Mavrovonioutis also used chemical theory to es-
timate values for kinetic and thermodynamic parameters of his system. Mey-
ers represented reaction rates and protein concentrations as real numbers, but
these numbers were not solidly grounded in experimental data. Brutlag is the
only researcher to accurately represent and reason with experimental condi-
tions such as temperature and pH.

All of the researchers represented reactions using some type of condi-
tion—action formalism. Meyers employed production rules. Round devel-
oped a process-description language that allows a user to decompose pro-
cesses into their component subprocesses. Brutlag used KEE production
rules. Koton used PROLOG rules containing preconditionsand postconditions
to represent reactions; Weld used a similar precondition-postcondition repre-
sentation, but in addition each reaction had a pattern that was equivalent to
GENSIM’s parameter object classes. Section 5 shows that separating the pa-
rameter object classes from the rest of the preconditions facilitates the index-
ing of processes according to the objects whose behaviors they describe and
leads to a more efficient simulation algorithm. Koile and Overton encode re-
actions using Forbus’ qualitative process theory (see next paragraph). None
of the systems except for GENSIM arrange reactions in an inheritance hierar-
chy, which is useful for describing complex reactions in a modular fashion.
This approach may also be useful for hypothesis formation because by sum-

KARP 319

marizing knowledge of known classes of reactions the taxonomy provides
expectations for the types of unknown reactions we are likely to discover.
Only this article and Weld’s work describe simulation algorithms in any de-
tail; Weld’s algorithm is equivalent to the first GENSIM algorithm presented in
Section 5. Only GENSIM and PEPTIDE allow quantification within reaction pre-
conditions and postconditions, which provides the ability to express complex
reactions.

Forbus (Forbus, 1984; Forbus, 1986) and Simmons and Mohammed
(Simmons and Mohammed, 1987) use a notion of process in their process-
modeling systems that is similar to that used by GENSIM; all include parame-
ters, preconditions, and effects. GENSIM processes are most similar to what
Forbus terms individual views, because both are concerned with creating and
deleting objects, and with altering relations between objects. Those things
that Forbus calls processes describe how quantities change in a physical sys-
tem, whereas GENSIM has no notion of quantity. Forbus briefly discusses the
use of an abstraction hierarchy to define processes, although he did not im-
plement this idea (Forbus, 1984, p. 44). The main difference in our approach-
es is that for a process P1 to be a specialization of another process P2, Forbus
requires that the parameter-object classes, preconditions, and quantity condi-
tions of P1 must be a subset of those of P2. Since our Preconditions.M
slot allows parent preconditions to be removed in a child process, we do not
use this restriction. In addition, Forbus does not discuss inheritance from
multiple parents. There are also differences between our process-definition
languages. The preconditions of Forbus’ processes must contain a conjunc-
tive list of (possibly negated) predicates; the preconditions of GENSIM pro-
cesses can include arbitrary predicate-calculus formulae, including disjunc-
tion and quantification. In addition, GENSIM and the system built by Simmons
and Mohammed allow process effects to be conditionalized and universally
quantified; Forbus does not allow this.

Weld addressed the problem of using a model of a given chemical reac-
tion to predict the aggregate behavior of many molecules that undergo the
same reaction. His technique is similar to mathematical induction. The ag-
gregationtechnique allows him to predict the transcription of an entire gene
by reasoning about an individual transcription-elongation event that ad-
vances RNA polymerase one base along a DNA strand. This technique re-
duces the execution time of simulations and produces simpler and more un-
derstandable causal explanations, but it has an important limitation: Weld’s
program cannot predict the final sequence of the transcribed RNA because
the aggregation technique does not copy every base from the DNA to the
RNA; in fact, PEPTIDE does not even know that the length of the mRNA is
the same as the length as the DNA from which it was transcribed. For similar
reasons, his program would be unable to predict what proteins would be
translated from a given mRNA (as Weld notes on p. 52 of (Weld, 1984)).

320 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

8 Conclusions

This article has presented a qualitative biochemistry: an ontology for bio-
chemical objects and reactions. It has also presented and analyzed methods
for simulating biochemical systems. The ontology and the simulation meth-
ods provide a framework for representing theories of molecular biology, and
for using these theories to predict outcomes of biological experiments. A
user describes a theory by building a knowledge base of classes of objects
that are relevant to the biochemical system (the CKB), and a knowledge base
of processes that describe potential interactions among these objects (the
PKB). A user describes the initial conditions of an experiment by construct-
ing a knowledge base that describes the objects present at the start of the ex-
periment. Predictions are computed by a process interpreter that uses the
knowledge of reactions in the PKB to detect and simulate the interactions
among the objects in the experiment.

The limitations of the GENSIM framework are that it does not allow us to
represent quantitative aspects of the trp operon, nor does it allow us to repre-
sent temporal or complex spatial information. Although many interesting
problems in this domain do not involve time, space, or quantities, many do.
In addition, GENSIM incorporates the assumption that its predictions span a
sufficiently short time interval that no population of objects within a simula-
tion will be fully depleted. If we required GENSIM to reason about temporal
aspects of the regulation of the trp operon, this assumption would be violat-
ed.

The contributions of this research include methods for representing the
decomposition of objects into their component parts, and for instantiating
structured objects from class descriptions. GENSIM processes are more ex-
pressive than are many production-rule languages because process precondi-
tions can include negation, disjunction, and quantification. The PKB de-
scribes both particular chemical reactions and general classes of chemical
reactions; it also uses KEE’s frame inheritance to define processes in a novel
way. This use of inheritance is applicable to traditional production-rule lan-
guages as well as to GENSIM’s process-description language.

To produce correct simulations, GENSIM uses object forking to manage ob-
jects during a simulation, and restricts the syntax of process preconditions to
eliminate process descriptions that have no valid chemical interpretation. I
identified several optimizations to the simulator: under certain conditions we
can modify objects directly rather than copying and then modifying (forking)
them, we can merge the descriptions of identical objects that are created dur-
ing a simulation, and we can share the descriptions of similar objects in a
simulation using an ATMS. I also presented a novel algorithm that GENSIM

uses to activate processes efficiently.
I tested GENSIM by predicting the outcomes of several experiments in the

KARP 321

bacterial tryptophan operon from the history of attenuation. The program
produced flawless predictions of the outcomes of experiments involving the
trp biosynthetic pathway, the transcription of the trp operon, and the entire
trp operon gene regulation system.

Acknowledgements

This work was supported by funding from NSF grant MCS83-10236, NIH
grant RR-00785, DARPA contract N00039-83-C-0136, and by the National
Library of Medicine. This work benefited greatly from many discussions
with Peter Friedland, Charles Yanofsky, Bruce Buchanan, and Edward
Feigenbaum. Dan Weld contributed comments on a draft of this article.

Notes

1. It is important to note that this is a simplified conception of experiments.
Often experimenters both establish initial experimental conditions, and
perturb the system at later times (often using a complex protocol) by
adding reagents, applying heat or cold, etc.

2. For simplicity, we show the new objects A.1 and B.1 in W1 and W2 only,
but as noted earlier, new objects must be created in the background.

3. Most bacteria contain only a single copy of the trp operon. Thus, when I
refer to the population of operons, I assume that the experiment involves
many cells, each of which has a trp operon.

4. I have modeled the trp operon as it was known before Platt’s experiments
revealed the presence of a ribosome-binding site in the leader region of the
operon (Platt and Yanofsky, 1975).

References
D. G. Brutlag, A. R. Galper, and D. H. Millis. Knowledge-based Simulation of DNA

Metabolism: Prediction of Enzyme Action. Computer Applications in the Biosciences,
7(1):9-19, 1991.

J. DeKleer. An Assumption-based TMS. Artificial Intelligence,28(1):127-162, 1986.

J. De Kleer and J. S. Brown. A Qualitative Physics Based on Confluences. Artificial Intelli-
gence,24(1-3):7-84, 1984.

K. Forbus. Qualitative Process Theory. Technical Report TR-789, Massachusetts Institute of
Technology AI Laboratory, 1984.

K. Forbus. The Qualitative Process Engine. Technical Report UIUCDCS-R-86-1288, Uni-
versity of Illinois Computer Science Department, 1986.

322 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.Addison-
Wesley, 1983.

J. Y. Hsu. On the Relationship Between Partial Evaluation and Explanation-based Learning.
Technical Report Logic-88-10, Stanford University, 1988.

IntelliCorp. KEEworlds Reference Manual,1986.

P.D. Karp. Hypothesis Formation and Qualitative Reasoning in Molecular Biology.PhD the-
sis, Stanford University Computer Science Department, June 1989. Technical reports STAN-CS-
89-1263, KSL-89-52.

P.D. Karp. Hypothesis Formation as Design. In Computational Models of Discovery and
Theory Formation. Morgan Kaufmann Publishers, 1990. (See also Stanford Knowledge Systems
Laboratory report KSL-89-11.)

P. D. Karp and P. E. Friedland. Coordinating the Use of Qualitative and Quantitative Knowl-
edge in Declarative Device Modeling. In Artificial Intelligence, Modeling and Simulation,pages
189-206. John Wiley and Sons, 1989. See also Stanford Knowledge Systems Laboratory report
KSL-87-09.

T. P. Kehler and G. D. Clemenson. KEE, the Knowledge Engineering Environment for In-
dustry. Systems And Software,3(1):212-224, 1984.

K. Koile and G. C. Overton. A Qualitative Model for Gene Expression. In Proceedings of
the 1989 Summer Computer Simulation Conference,1989.

P. Koton. Towards a Problem Solving System for Molecular Genetics. Technical Report 338,
Massachusetts Institute of Technology Laboratory for Computer Science, 1985.

M. Mavrovouniotis. Group Contributions for Estimating Standard Gibbs Energies of Forma-
tion of Biochemical Compounds in Aqueous Solution. Biotechnology and Bioengineering,
36:1070-1082, 1990.

S. Meyers. A Simulator for Regulatory Genetics and its Application to Bacteriophage Lamb-
da. Nucleic Acids Research,12(1):1-9, 1984. Also available as Stanford Heuristic Programming
Project report HPP-83-12.

P. H. Morris and R. A. Nado. Representing Actions with an Assumption-based Truth
Maintenance System. In Proceedings of the 1986 National Conference on Artificial Intelligence,
pages 13-17. Morgan Kaufmann Publishers, 1986.

T. Platt and C. Yanofsky. An Intercistronic Region and Ribosome-binding Site in Bacterial
Messenger RNA. Proceedings of the National Academy of Sciences, USA,72(6):2399—2403,
1975.

A. D. Round. QSOPS: A Workbench Environment for the Qualitative Simulation of Physical
Processes. Technical Report KSL-87-37, Stanford Knowledge Systems Laboratory, 1987. Also
appears in Proceedings of the European Simulation Multiconference.

R. Simmons and J. Mohammed. Causal Modeling of Semiconductor Fabrication. Technical
Report 65, Schlumberger Palo Alto Research, 1987.

M. Stefik and D. G. Bobrow. Object-oriented Programming: Themes and Variations. AI
Magazine,6(4):40-62, 1986.

D. S. Weld. Switching between Discrete and Continuous Process Models to Predict Molecu-
lar Genetic Activity. Technical Report TR-793, Massachusetts Institute of Technology AI Labo-
ratory, 1984.

D. S. Weld. The Use of Aggregation in Causal Simulation. Artificial Intelligence,30:1-34,
1986.

B. C. Williams. Doing Time: Putting Qualitative Reasoning on Firmer Ground. In Proceed-

KARP 323

ings of the 1986 National Conference on Artificial Intelligence,pages 105-112. Morgan Kauf-
mann Publishers, 1986.

C. Yanofsky. Attenuation in the Control of Expression of Bacterial Operons. Nature,
289:751-758, 1981.

324 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

9

Identification of Qualitatively Feasible

Metabolic Pathways

Michael L. Mavrovouniotis

1. Introduction

Cells function as organized chemical engines carrying out a large num-
ber of transformations, called bioreactions or biochemical reactions, in a
coordinated manner. These reactions are catalyzed by enzymes and exhibit
great specificity and rates much higher than the rates of non-enzymatic re-
actions. Enzymes are neither transformed nor consumed, but that facilitate
the underlying reactions by their presence. The coordination of the exten-
sive network of biochemical reactions is achieved through regulation of
the concentrations and the specific activities of enzymes. Single enzyme-
catalyzed steps in succession form long chains, called biochemical path-
ways, achieving the overall transformation of substrates to far removed
products.

Biochemical pathways are often described in symbolic terms, as a suc-
cession of transformations of one set of molecules (called reactants) into

another set (called products); reactants and products are collectively re-
ferred to as metabolites.

In the construction of metabolic pathways one uses enzyme-catalyzed
bioreactions as building blocks, to assemble pathways that meet imposed
specifications. A class of specifications can be formulated by classifying
each available building block, i.e., each metabolite and each bioreaction, ac-
cording to the role it can play in the synthesized pathways. For example, a
set of specifications may include some metabolites designated as required
final products of the pathways, other metabolites as allowed reactants or
by-products, and some bioreactions as prohibited from participating in the
pathways.

Non-obvious alternative pathways, including those that are not known
to be present in any single strain, are especially interesting, because they
might prompt new discoveries. The complexity and density of intermediary
metabolism generally permit a large number of pathways.

Many distinct pathways can be constructed to include the same bioreac-
tions but achieve different transformations. For example, the reactions
A →B+C and 2B+C→D can form the pathways 2A→→D+C and
A+B→→D, depending on whether the reactions are combined in 2:1 or 1:1
proportions. Thus, a fully specified pathway must include a coefficientfor
each bioreaction, to indicate the proportions at which the constituents are
combined.

Systematic synthesis of pathways that satisfy a set of such specifications
is relevant in the early steps of the conception and design of a bioprocess,
where a pathway must be chosen for the production of the desired product.
For the synthesis of desired bioproducts, the operating pathway is a crucial
factor in the feasibility of the process and the selection of appropriate cell
lines and media

The synthesis of pathways can identify fundamental limitations in the e
anabolism(synthesis of biomolecules) and catabolism (breakdown of
biomolecules, e.g. for digestion) of any given cell, because the pathways de-
termine what transformations are possible in principle. Consider, for exam-
ple, the problem of identifying a mutant strain lacking a particular enzyme.
One must define the set of combinations of substrates on which the mutant
cell is able to grow by identifying suitable pathways (despite the lack of a
particular enzyme) to consume the substrates in question. Such pathways
may differ significantly from the standard routes. Thus, systematic genera-
tion of pathways is a more reliable way to predict the ability or inability of a
mutant strain to grow on specified sets of substrates. Consequently, it can
have a significant impact on the identification of mutant strains lacking a cer-
tain bioreaction. Conversely, if the target is not elimination of an enzyme but
absence of growth on specific sets of substrates, one must pinpoint the en-
zymes that should be eliminated to blockall the pathways for the catabolism

326 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

of the substrates. The selection of an appropriate set of enzymes depends on
the correct generation of all relevant pathways.

The rates of enzymatic reactions are influenced by factors such as the pH
and the concentration of metabolites. Furthermore, the regulation of gene ex-
pression determines what enzymes are synthesized by a cell, and therefore
what bioreactions are available to participate in pathways. Without detailed
information on these phenomena, one cannot identify pathways that will
definitely be active under given conditions. One can only identify potential
metabolic pathways which are qualitatively feasible. The qualitative feasibil-
ity is confined here to two attributes. First, each bioreaction participating in a
pathway must be feasible in the direction in which it is used. Second, the
overall stoichiometry (the quantitative relationship between the metabolites
involved, expressed as ratios) of the pathway, which derived from a linear
combination of the stoichiometries of the constituent bioreactions, must sat-
isfy imposed constraints.

In the following sections, I present an AI method for addressing both the
question of judging whether a particular reaction is feasible and the process
of taking a collection of reactions and set of constraints and then finding all
of the feasible pathways. The next section focuses on thermodynamic feasi-
bility and describes a group-contribution technique that allows the estimation
of equilibrium constants of biochemical reactions. This method was imple-
mented in Symbolics Lisp, but is not currently available in executable form;
a future version will be implemented in Common Lisp. The remainder of the
chapter describes a symbolic approach to the construction of pathways that
satisfy stoichiometric constraints.

2. Thermodynamic Feasibility

The feasibility and reversibility of a bioreaction is determined by its equi-
librium constant and the concentrations of its reactants (also called substrates)
and products. Because intracellular concentrations vary within limited ranges
(e.g., 1µM to 5mM), the equilibrium constant alone is sufficient for reaching a
qualitative conclusion on a bioreaction’s feasibility. In general, a feasible and
irreversible reaction is characterized by an equilibrium constant, K, much
larger than 1. A feasible and reversible (i.e., feasible in both the forward and
reverse directions) reaction is characterized by an equilibrium constant of the
order of 1. A reaction that is infeasible in the forward direction but feasible in
the reverse direction is characterized by an equilibrium constant much smaller
than 1. The quantitative interpretation of these criteria depends on the range
of permissible intracellular concentrations for metabolites.

The thermodynamic analysis can also be carried out using the standard
Gibbs energy of reaction, ∆G°' which is closely related to the equilibrium con-
stant, K:

MAVROVOUNIOTIS 327

∆G°' = – RT lnK (1)

Here, R is the ideal-gas constant and T the temperature. The standard state
for ∆G°' is a dilute aqueous solution at T =25°C, pH = 7, and concentrations
of compounds (other than H+, OH–, and H2O) equal to 1 M. The standard
Gibbs energy of reaction is related to the standard Gibbs energies of forma-
tion of its reactants and products. Letting Vi be the stoichiometric coefficient
of compound Si, we can write a reaction (or any transformation with known
stoichiometry) as:

∑ViSi = 0 (2)

Here, Vi is positive for products and negative for reactants. Let ∆Gi°' be
the Gibbs energy of formation of Si. The Gibbs energy of reaction, ∆G°', is
then given by the equation:

∆G°' = ∑Vi ∆Gi°' (3)

From the Gibbs energies of formation of a set of compounds one can cal-
culate the Gibbs energy for anybiochemical transformation within this set of
compounds.

Group-Contribution methods [Benson, 1968; Benson et al., 1969; Do-
malski and Hearing, 1988; Joback and Reid, 1987; Mavrovouniotis et al.,
1988; Mavrovouniotis, 1990b; Reid et al., 1977; Reid et al., 1987] have been
widely used to estimate numerical values of properties of pure compounds.
To estimate a property, one views the compound as composed of functional
groups and sums amounts contributed by each group to the overall value of
the property.

A given group-contribution method must provide a set of functional
groups, which serve as the building blocks for the compounds of interest.
The contribution of each group to the thermodynamic property of interest
must also be provided, along with the origin, a starting value that is used in
the estimation (and is constant for all compounds). To estimate the property
of a particular compound, one decomposes the compound into groups, and
adds the contributions of the groups to the constant origin.

Let Co be the origin for the property C, and let Ci be the contribution of
group gi which is used Ni times in the compound. The property C for the
whole compound is calculated as:

C = Co + ∑Ni Ci (4)

A group contribution method can be developed using data (i.e., the value
of the property for several compounds), to estimate the contributions of the
groups to the property of interest. In effect, if the data consist of values of C
for a set of compounds, and the molecular structures (hence the Nis) of the
compounds are known, then a number of equations of the form of Equation
(4) are available, and the unknown origin Co and contributions Ci can be de-
termined. It is generally desirable to have as many data points as possible

328 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

and obtain values for the contributions by minimizing the sum of the square
of the errors (multiple linear regression); the error is defined for each data
point as the difference between the given value and the value estimated by
Equation (4).

If C is a property applicable to reactions, in the linear manner suggested
by Equation (3), then data on reactions and data on compounds can be treat-
ed uniformly. Reactions can be viewed as collections of groups by subtract-
ing the number of occurrences of each group in reactants from its occur-
rences in products, because both Equation (3) and Equation (4) are linear.
The same linear-combination treatment must also be applied for the contribu-
tion of the origin and all additional corrections.

We have recently developed a comprehensive group-contribution method
[Mavrovouniotis, 1990b, 1991] for the estimation of the Gibbs energies of
formation of biochemical compounds, and hence the Gibbs energies and
equilibrium constants of biochemical reactions.

The data used in the regression were taken from several sources [Thauer
et al.,1977, Barman, 1969, Barman, 1974, Hinz, 1986, Lehninger, 1975,
Lehninger, 1986, Sober, 1970, Edsall, and Gutfreund, 1983] and were
screened for gross errors. A large set of groups was used, to cover most bio-
chemical compounds and achieve good accuracy. In addition, corrections
were introduced to account for certain group-interactions.

Special groups were used for certain complex compounds with important
metabolic roles. For example, the pair NAD+/NADH was represented by a
single group, which represents the structural differences between the two
compounds which are relevant for a large number of biochemical reactions.
Finally, it should be noted that all compounds and groups were represented
in their common state in aqueous solution. The determined contributions of
groups have been presented by Mavrovouniotis [1990b, 1991].

Examples. A few example calculations will be provided here to illustrate
the use of the group-contribution method. Consider the estimation of the
Gibbs energy of formation of glutamate, whose syntactic formula is shown in
Figure 1a. It can be broken down into groups in a straightforward manner, as
shown in Figure 1b. The calculation entails the addition of the contributions
(multiplied by the number of occurrences of each group) to the fixed contri-
bution of the origin, as shown in Table 1. In this example, no special correc-
tions are needed. The final result is -164.7 kcal/mol, which deviates by 2.4
kcal/mol from the literature value -167.1 kcal/mol [Thauer et al., 1977].

As an example involving a complex cyclic compound, consider next the
estimation of the Gibbs energy of formation of ATP, whose structure is
shown in Figure 2. Table 2 shows the calculation of the Gibbs energy from
the contributions.

Another example is provided in Figure 3 and Table 3 for a biochemical re-
action, catalyzed by alcohol dehydrogenase. The reaction is decomposed into

MAVROVOUNIOTIS 329

330 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

—CH<OCO—1– —CH2—
—COO

1–

—NH3
1+—CH2—

O— CO— CH2 —CH1– —CH2
O

1–
CO—

NH3
1+

(a)

(b)

Group or Number of Contribution Total
Correction Occurrences (kcal/mol) Contribution

Origin 1 –23.6 –23.6
–NH3

1+ 1 4.3 4.3
–COO1– 2 –72.0 –142.0
–CH2– 2 1.7 3.4
–CH< 1 –4.8 –4.8

–164.7

Figure 1: (a) The structure of glutamate. (b) Decomposition of the structure into groups

OH

CH

OH

CH

CH CH

CH
CH

O

N

N

N

N
C

C
C

NH2

CH2O1–PO2
1–PO2

2–PO3 OO

OH

CH

OH

CH

CH CH

CH
CH

O

N

N

N

N
C

C
C

NH2

CH2
O1–PO2

1–PO2
2–PO3 OO

secondarysecondary

one-ring
one-ring

one-ring
one-ring

one-ring

one-ring

one-ring

one-ring
one-ring

two-ring

two-ring

one-ring

one-ring

one-ring

primary

heteroaromatic rings

(a)

(b)

Figure 2: (a) The structure of ATP (b) Decomposition of the structure of ATP into groups

Table 1: Calculation of the Gibbs energy of formation of glutamate from contribu-
tions of groups. The contributions are those given by Mavrovouniotis (1991).

groups in Figure 3; note that the pair NADH / NAD+ is considered a single
group. The calculation in Table 3 ignores the contributions of the origin and
the group –CH3, because they are the same for ethanol and acetaldehyde,
i.e., they have net number of occurrences equal to zero. The result is 4.8
kcal/mol, which compares well with literature values of 5.5 kcal/mol [Bar-
man, 1969] and 5.9 kcal/mol [Hinz, 1986].

MAVROVOUNIOTIS 331

Group or Number of Contribution Total
Correction Occurrences (kcal/mol) Contribution

Origin 1 –23.6 -23.6
–NH2 1 10.3 10.3
–OPO3

1–primary 1 –29.5 -29.5
–OH secondary 2 –32.0 -64.0
–CH2– 1 1.7 1.7
–OPO2

1–– 2 –5.2 -10.4
ring –O– 1 –24.3 -24.3
ring –CH< 4 –2.2 -8.8
ring –N< 1 7.6 7.6
ring –CH= 2 9.6 19.2
ring =N– 3 10.4 32.2
ring >C= 1 8.2 8.2
two-ring >C= 2 16.8 33.6
heteroaromatic ring 2 –5.9 -11.8

–60.8
Table 2: Calculation of the Gibbs energy of formation of ATP from contributions of
groups. The contributions are those given by Mavrovouniotis (1991).

CH3 —OH—CH2

H
1+

CH3 =O—CH

NAD1+ NADH(a)

(b)

CH3 —OH—CH2

H
1+

CH3 =O—CH

NAD1+ NADH

primary

compound pair

undecomposed
small molecule

Figure 3 (a) The reaction catalyzed by alcohol dehydrogenase. (b) The reaction is
decomposed into groups, so that its Gibbs energy can be estimated.

Discussion. Using the contributions and corrections of given by
Mavrovouniotis [1990b, 1991], one can estimate the standard Gibbs energy
of formation of a biochemical compound, provided that the molecular struc-
ture of the compound is known. The standard Gibbs energy and the equilibri-
um constant of any biochemical reaction can be estimated from the molecu-
lar structures of its reactants and products.

The method has broad applicability because it provides the contributions
for a comprehensive set of groups. The error is usually less than 2 kcal/mol.
Thus, the method provides an acceptable first approximation to the thermo-
dynamics of biochemical systems. Mavrovouniotis [1990b, 1991] provides
precomputed values for common metabolites. For compounds that have only
small structural differences from the precomputed ones, only the contribu-
tions of groups describing the differences need be considered [Mavrovounio-
tis, 1990b].

A fundamental difficulty in the group-contribution methods for biochemi-
cal compounds is that there are often strong interactions among groups due
to conjugation. The conjugatesof a compound are alternative arrangements
of the valence electrons; a compound that is strongly influenced by conjuga-
tion cannot be properly decomposed into groups.

We are currently investigating a new property-estimation framework,
named ABC [Mavrovouniotis, 1990a], which is based on using contributions
of Atoms and Bonds for properties of Conjugates of a compound. This ap-
proach has been enhanced by approximate quantum-chemical analysis and
has been demonstrated for simple compounds in the ideal-gas state
[Mavrovouniotis, 1990a]. It is expected that the ABC framework will be of
great value in estimating their properties of biochemical compounds.

332 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Group or Number of Contribution Total
Correction Occurrences (kcal/mol) Contribution

Origin 0

H1+ 1 -9.5 -9.5

NADH minus NAD+ 1 4.7 4.7
–CH3 0

–CH2– –1 1.7 -1.7

–OH primary –1 –28.6 28.6
–CH=O 1 –17.3 -17.3

–4.8

Table 3: Calculation of the Gibbs energy of the reaction catalyzed by alcohol dehy-
drogenase, from contributions of groups.. The contributions are those given by
Mavrovouniotis (1991).

2 Synthesis of Pathways

An approach for the synthesis of biochemical pathway [Mavrovouniotis,
et al 1990a] is presented here. This section gives the formulation of the prob-
lem and the developed algorithm, which is complete and sound. An example
showing the step-by-step operation of the algorithm in a small abstract prob-
lem is provided, along with a discussion of computational issues. The next
section in this chapter presents a case study on the biosynthesis of lysine
from glucose and ammonia.

Biochemical pathway synthesis is here the construction of pathways
which produce certain target bioproducts, under partial constraints on the
available substrates (reactants), allowed by-products, etc. In connection with
this formulation of the synthesis problem, it should be noted that:

• A pathway must include all reactions responsible for the conversion of ini-
tial substrates to final products, and not merely the steps leading from the
intermediary metabolism to the product.

• The pathways sought are not restricted to the already known routes found
in textbooks. New pathways are quite acceptable and present the most in-
terest.

In order to construct pathways from bioreactions, one needs a database of
metabolites and bioreactions. The information stored in the database for each
bioreaction and each metabolite is shown in Table 4. The database included
roughly 250 bioreactions and 400 metabolites..

MAVROVOUNIOTIS 333

Information on Metabolites

• Set of groups that comprise the molecule
• Standard Gibbs Energy of formation in aqueous solution
• Typical concentrations (only for currency metabolites)
• List of reactions that consume the metabolite
• List of reactions that produce the metabolite

Information on Bioreactions

• Stoichiometry of the reaction
• Standard Gibbs Energy of reaction
• Physiological information on reversibility of the reaction
• List of metabolites the reaction consumes
• List of metabolites the reaction produces

Table 4: Information useful in the synthesis of biochemical pathways from the
database of metabolites and bioreaction.

Stoichiometric Constraints. A whole class of specifications in the syn-
thesis of biochemical pathways can be formulated by classifying each build-
ing block (each metabolite and each reaction from the database) according to
the role it is required or allowed to play in the synthesized pathways.

A given metabolite can participate in a pathway in any of three capacities:
(a) as a net reactantor substrate of the pathway; (b) as a net productof the
pathway; and (c) as an intermediatein the pathway, i.e., participating without
net consumption or production. One can impose constraints on pathways by
stating which metabolites are required and which are prohibited to partici-
pate in the synthesized pathways in each of the above three capacities. Not
all metabolites need be strictly constrained as required or prohibited. Some
may simply be allowedto participate in the pathways.

For example, metabolites (from a database of biochemical reactions and
metabolic intermediates) can be classified according to whether they are al-
lowed to be net reactants in the pathways:

1. Required reactants(or desired reactants) mustbe consumed by the pathway;

2. Allowed reactantsmay or may not be consumed by the pathway; and

3. Excluded reactants(or prohibited reactants) must notbe consumed by the
pathway.

In a realistic synthesis problem, the default characterization for each metabo-
lite is specification (3): The bulk of the metabolites in the database are ex-
cluded from being net reactants of the synthesized pathways.

Specification (1) underlies a strict inequality, i.e., stoichiometric
coefficient of the metabolite (in the pathway) less than zero, while
specification (2) underlies a loose inequality, i.e., stoichiometric coefficient
less than or equal to zero. Thus, the first constraint is strict, while the second
one is loose. This distinction is relevant in the description of the algorithm,
because strict constraints are initially satisfied only in their loose form.

The classification of metabolites as potential products or intermediates of
the pathways is quite similar. For intermediates, however, the default charac-
terization differs, as most of the metabolites would normally be classified as
allowed intermediates. It should be noted that constraints on intermediates
are generally not motivated by physiological considerations. They are usual-
ly a device for selecting a particular subset of the synthesized pathways.

The constraints on different roles of the same metabolite are not indepen-
dent. For example, a metabolite that is required as a net product mustbe ex-
cluded as a reactant.

A given bioreaction can participate in pathways in either (a) its forward,
or (b) its backwarddirection. Thus, one can impose constraints by stating
which bioreactions are required, which are allowed, and which are prohibited
to participate in the synthesized pathways in each of the two directions.

334 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Many constraints designating bioreactions excluded in the backward direc-
tion will be present, stemming from knowledge about the (thermodynamic or
mechanistic) irreversibility of bioreactions. To this end, one can introduce
some kind of constraint on the equilibrium constants (or the Gibbs Energies)
of the reactions that can be used; one possible constraint is a simple upper
bound on the Gibbs Energy (or a lower bound on the equilibrium constant).
Note that the same kind of constraint ought to apply to both the forward di-
rection and reverse (backward) direction of the reaction, because the nominal
direction of a reaction in the database is often arbitrary.

The constraints imposed on the two directions of a bioreaction are not
completely independent. For example, it is not meaningful to specify a reac-
tion as required in both the forward and reverse direction; a reaction that is
required in one direction mustbe excluded in the other direction. Thus, there
are in total 5 possible designations (out of a total of 3x3=9 simple-minded
combinations) for a reversible reaction:

• Allowed in both directions

• Required in the forward direction and excluded in the backward direction

• Required in the backward direction and excluded in the forward direction

• Allowed in the forward direction and excluded in the backward direction

• Allowed in the backward direction and excluded in the forward direction

3 Description of the Algorithm.

The synthesis algorithm [Mavrovouniotis et al 1990a] is devoted to the
satisfaction of the above kinds of constraints imposed on the participation of
metabolites and bioreactions in biochemical pathways.

Given a set of stoichiometric constraints and a database of biochemical re-
actions, the developed algorithm synthesizes all biochemical pathways satis-
fying the stoichiometric constraints. The algorithm is based on the iterative
satisfaction of constraints, and the stepwise transformation of the initial set
of available bioreactions (which can be thought of as one-step pathways that,
in general, do not satisfy the constraints), into a final set of pathways, which
satisfy all imposed constraints.

To facilitate the description and analysis of the algorithm, some defini-
tions are given here. A combinationof a set of constituent pathwaysis a
pathway whose coefficients are linear combinations of the coefficients of the
constituent pathways. In order to retain the original direction of each con-
stituent pathway, the linear combination may involve only positive combina-
tion coefficients. Let P and Q be pathways derived from the same reaction
database. The pathway P is a subpathwayof Q if and only if every reaction

MAVROVOUNIOTIS 335

that has a positive coefficient in P also has a positive coefficient in Q. Equiv-
alently Q is called a superpathwayof P.

Reaction-Processing Phase. In order to account for the reversibility of
reactions, each thermodynamically reversible reaction is decomposed into a
forward and a backward reaction. From this point on, we prohibit the partici-
pation of both the forward and the reverse reaction in the same pathway, be-
cause such a pathway would be redundant.

The constraints placed on the original reactions are then easily trans-
formed into constraints on the new reactions. For a reaction Rk, and its
coefficient ak:

• Rk may occur in the pathway, i.e., ak ≥ 0.

• Rk must occur in the pathway, i.e., ak > 0.

• Rk must not occur in the pathway, i.e., ak = 0.

Constraints dictating that certain reactions should not participate in the
constructed pathways can be satisfied right from the start. Such reactions are
simply eliminated and removed from the active database.

The remaining reactions can be thought of as one-step pathwayswhich
will be combined in subsequent phases of the algorithm to form longer and
longer pathways satisfying more and more constraints.

Metabolite-Processing Phase. The main body of the algorithm tackles
one constraint at a time, by transforming the set of particular pathways .
Thus, at each iteration stage in the synthesis algorithm, the problem state,
often called the state of the design[Mostow, 1983, Mostow, 1984] consists
of the following elements:

• The set of constraints (on the stoichiometry) or metabolites that still re-
main to be processed.

• The set of incomplete pathways constructed so far. These are pathways
that satisfy the already-processed constraints.

• Back-pointers which show, for each remaining metabolite, the pathways in
which it participates. These data-structures must be initially created by
passing over each of the initial one-step pathways.

At each pathway-expansion step, the set of active pathways is modified to
satisfy a constraint. For example, if the constraint designates a metabolite as
an excluded reactant and excluded product, all possible combination-path-
ways must be constructed by combining one pathway consuming the
metabolite and one pathway producing it, such that the metabolite is elimi-
nated from the overall net stoichiometry. Once the combinations are con-
structed, all pathways consuming or producing the metabolite are deleted.

More generally, the algorithm finds a modification of the set of pathways

336 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

such that all surviving pathways satisfy the requirement. This involves the
construction of new pathways as combinations of existing ones, as well as
deletion of pathways. More specifically, for S the metabolite being processed
and using the backward-pointers readily available in each metabolite, two
subsets of the current pathway set, L, are assembled:

• The list of pathways that produce the metabolite: Lp={Pi| S participates in
Pi with a net stoichiometric coefficient ai>0}.

• The list of pathways that consume the metabolite: Lc={Pi| S participates in
Pi with a net stoichiometric coefficient ai<0}.

• The list of pathways in which the metabolite participates as an intermedi-
ate: Lr={Pi| S participates in some reaction R with coefficient ri≠0, but S
does not participate in the net transformation of Pi, i.e., ai=0}.

• The list of pathways in which the metabolite does not participate at all
Ln={Pi| the coefficient of S in each reaction R of Pi is ri=0}.

The pathways that may, at this step of the algorithm, be deleted from the
current set will be pathways from the lists Lp, Lc, and Lr, depending on the
nature of the constraint. The pathways that may be constructed are linear
combinations using exactly one pathway from Lc and exactly one pathway
from Lp:

• Combination pathways: Le={akPi–aiPk | Pi∈ Lc; Pk∈ Lp; Pi and Pk do not
involve the same reaction in different directions; and ai and ak are the net
coefficients with which S participates in Pi and Pk}. Since Pi∈ Lc, ai<0 and
the combination akPi–aiPk has positive coefficients; thus, it is a legitimate
combination of pathways. The net coefficient of S in akPi–aiPk is
akai–aiak=0. Thus, for all pathways in Le, S is only an intermediate; it is
neither a net reactant nor a net product. As was noted earlier, we exclude
combinations of two pathways that involve the same reaction in different
directions.

For constraints on reactants and products, the construction of the new set
of active pathways is delineated below. The different cases are listed by pri-
ority, i.e., in the order in which they should be applied. Once a particular
case applies then the remaining cases are automatically excluded1.

• If S is an excluded product and a required reactant (i.e., ak < 0), all combi-
nation pathways are constructed, and the producing pathways are deleted.
In effect: L←L∪ Le–Lp

• If S is an excluded reactant and a required product (i.e., ak > 0), then:
L←L∪ Le–Lc.

• If S is an excluded product and an allowed reactant (i.e., ak ≤ 0), then:
L←L∪ Le–Lp

MAVROVOUNIOTIS 337

• If S is an excluded reactant and an allowed product (i.e., ak ≥ 0), then:
L←L∪ Le–Lc

• If S is an excluded reactant and an excluded product (i.e., ak = 0), then:
L←L∪ Le–Lc–Lp

• If S is an excluded intermediate, then: L←L–Lc–Lp–Lr, or, equivalently,
L←Ln

• If S is a required intermediate, then: L←L.

• If S is an allowed reactant, an allowed product, and an allowed intermedi-
ate, then the set of active pathways is carried intact to the next iteration:
L←L

• If S is a required intermediate , then: L←L.

After the processing of the constraint, there is a new set of active path-
ways which satisfy the constraint, with the exception that for strict-inequality
constraints, i.e., required products (ak > 0), required reactants (ak < 0), and
required intermediates, only the corresponding loose-inequality constraints
are guaranteed to be satisfied. The strict-inequality constraints will receive
additional consideration in the last phase of the algorithm.

In addition to the set of active pathways, L, the whole state of the design
that was described earlier must also be properly updated after each constraint
is processed. For example, to update the back-pointers that point from each
metabolite to the pathways in which it participates, pointers corresponding to
deleted pathways must be removed and pointers corresponding to new path-
ways must be added.

Pathway-Marking Phase. At the end of the metabolite-processing phase,
there is a final set of active pathways satisfying all of the requirements, ex-
cept the strict-inequality constraints for which only the corresponding loose
inequalities are satisfied. Because of the linear nature of the requirements, all
combinations of pathways also satisfy the constraints.

If each pathway is marked with the strict-inequality constraints it satisfies,
the final answer to the synthesis problem can be obtained:

• The pathways satisfying the original stoichiometric constraints of the syn-
thesis problem are all those combinations of pathways which include:

◊ at least one pathway consuming each required reactant,

◊ at least one pathway producing each required product,

◊ at least one pathway containing each required intermediate, and

◊ at least one pathway in which each required reaction participates.

Naturally, a single constituent pathway may possess many of the strict-in-
equality constraints and can serve to satisfy many of the above requirements.

338 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Thus, if a pathway from the final active set satisfies all of the strict inequali-
ties, then that pathway itself is acceptable as one solution to the overall syn-
thesis problem; any combination of that pathway with other pathways from
the final set is also acceptable. If, on the other hand, there is a strict-inequali-
ty requirement which is not satisfied by any of the pathways in the final set,
then there is no solution to the original synthesis problem.

One may wonder whether there are, in the final set, pathways which do
not satisfy any of the strict-inequality requirements, and whether there is any
reason to construct or keep such pathways. There are indeed such pathways,
called neutral pathways, generated by the algorithm. Since these pathways
do not contribute to the satisfaction of any strict-inequality requirements, it is
not necessaryto use them in combinations constructed from the final set, but
they may by freely included in such combinations as they neither prevent any
requirements from being satisfied nor introduce additional requirements.

The algorithm that was presented above is correct (it generates only feasi-
ble pathways) and complete (it generates all pathways satisfying the require-
ments). The performance of the current implementation of the algorithm is
quite efficient for well formulated problems. These mathematical and com-
putational properties of the algorithm are discussed in detail below.

Correctness. If a combination of pathways from the final set (produced
by the synthesis algorithm) contains at least one constituent pathway satisfy-
ing each of the strict inequality requirements (referring to required reactants,
products, intermediates, or reactions), then the combination pathway satisfies
all of the initial stoichiometric requirements.

The algorithm is correct because each of the original requirements is
satisfied in one of the three phases (and after each constraint is satisfied it
cannot be subsequently violated):

• Excluded reactions are removed during the reaction-processing phase.

• Excluded intermediates, reactants, or products are eliminated in the
metabolite-processing phase. This happens because the pathways that vio-
late the constraints are removed, and any new combination-pathways satis-
fy the constraints (by their construction).

• Constraints on required reactants or products are satisfied in two phases. In
the metabolite-processing phase of the algorithm, after the processing of
any particular metabolite, the current set of active pathways satisfies the
stoichiometric constraints imposed on that metabolite at least in their loose
inequality form. In the pathway-marking phase of the algorithm, a combi-
nation of pathways from the final set satisfies the union of the strict-in-
equality requirements satisfied by its constituent pathways, because the
stoichiometries of a combination-pathway are linear combinations of its
constituent pathways (with positive coefficients), and those constituent

MAVROVOUNIOTIS 339

pathways that do not satisfy the strict inequalities satisfy the correspond-
ing loose inequalities. Thus, acceptable final solutions will contain re-
quired reactants and products.

• Constraints on required intermediates and reactions are similarly satisfied
in the pathway-marking phase.

Completeness. The synthesis algorithm creates a final set of pathways
such that: Any pathway satisfying the original stoichiometry constraints is a
combination of pathways from the final set, with one constituent pathway
satisfying each strict-inequality constraint.

Incompleteness could only arise in the metabolite-processing phase. At
the beginning of the phase, the algorithm has an initial set of (one-step) path-
ways. Since that set contains all the feasible reactions (unless they have been
designated as excluded) any feasible pathway is (by definition) a combina-
tion of pathways from that set. The metabolite-processing phase processes
each metabolite and its constraints, transforming the set of active pathways.
Therefore, it must be shown that:

if beforeprocessing a particular metabolite there exists a pathway that: (a)
Satisfies the constraints on the metabolite; and (b) can be constructed as a
combination pathway from the current set of active pathways

then, after processing the metabolite, the pathway can still be constructed
from the (changed) active set.

This holds because of the way each kind of requirement is handled.
Consider, as an example, a metabolite S whose constraint is that it may not
occur at all in the stoichiometry of the pathway (excluded reactant and ex-
cluded product). As defined in the description of the metabolite-processing
phase, let L be the initial active set, Lc the set of the partial pathways (in the
initial active set) that consume it, and Lp the set of partial pathways that pro-
duce it. Let Le={akPi–aiPk | Pi ∈ Lc, Pk∈ Lp, and ai and ak are the net
coefficients with which S participates in Pi and Pk} be the set of new combi-
nation pathways created. The net coefficient of S in a pathway Pe=akPi–aiPk
from Le is akai-aiak=0. Processing the metabolite will lead to a new set of ac-
tive pathways: L∪ Le–Lc–Lp. It will be shown that any pathway Q that can
be constructed from L to satisfy the constraints on S can also be constructed
from L∪ Le–Lc–Lp.

If the composite pathway Q does not involve any pathways from Lc or Lp,
then it can be constructed after the processing exactly the way it was con-
structed before, since its constituent pathways remain unaffected by the pro-
cessing of the metabolite.

If Q involves constituent partial pathways from Lc and Lp, then for each
of these partial pathways Pi let xi be the coefficient of S in Pi and yi the
(non-negative) coefficient with which the constituent pathway Pi participates

340 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

in Q. If the constraint on S is satisfied, its coefficient in Q must be zero.
Thus:

(5)

Let Y be the total consumption and total production of the metabolite in Q:

(6)

By defining

fi = | xi yi / Y | (7)

The net stoichiometric coefficient of S in Q can be written as:

(8)

Note that, since xi>0 and xj<0 for each of the right-hand summation terms:

(9)

After the parameters fi are determined, an equation similar to Equation (8)
holds for any metabolite. Specifically, if ai is the coefficient of another
metabolite T in Pi, and aQ is the coefficient of T in Q, then:

(10)

where fi and fj are still derived from Equation (7), i.e., from the coefficients
of S—the metabolite being processed. An identical equation holds for the
coefficients of reactions in the pathways: If ai is the coefficient of a reaction
in pathway Pi and aQ is the coefficient of the same reaction in Q, then Equa-
tion (10) holds.

Thus, the transformation in Equation (10) denotes that the composite
pathway Q can be written as a sum of pairs of constituent partial pathways
(with fi and fj the coefficients used in combining Pj and Pi), such that for
each pair the metabolite has zero total coefficient, as Equation (9) states. To
demonstrate that these pairs are exactly the combinations (i.e., the pathways
of Le) created by the algorithm, Equation (11) can be used to eliminate fi and
fj from Equation (10):

(11)

The term ajxi-aixj refers precisely to a combination pathway from Le, while
the factor yiyjY–1 provides the coefficients of combination that construct Q
from pathways in Le. Hence, a composite pathway that satisfied the con-
straint beforethe metabolite was processed can still be constructed after the

a y y a x a x YQ i j j i i j
j xi x ji

= −()[]
<>

−∑∑
:():() 00

1

a a y a y f a y fQ i i
i

i i j j j i
j xi x ji

= = +()∑ ∑∑
<> :():() 00

x y f x y fi i j j j i+ = 0

x y x y f x y fi i
i

i i j j j i
j xi x ji

∑ ∑∑= +()
<> :():() 00

Y x y x yi i
x

i i
xi i

= = −
> <

∑ ∑
() ()0 0

x yi i
i

∑ = 0

MAVROVOUNIOTIS 341

metabolite is processed, using the combination-pair partial pathways created
in the processing.

Computational Complexity Issues. The number of pathways that satisfy
a set of stoichiometric constraints is, in the worst case, exponential in the
number of reactions. Consider the reactions depicted in Figure 4. For each
diamond (numbered as D1, D2, etc.) consisting of two parallel branches, a
pathway can follow either the upper branch or the lower branch. If there are
n diamonds (and 4n=m reactions), there are n junctions where these choices
occur. Thus, there are 2n=2m/4distinct pathways. These are all genotypical-
ly independent: Since no two of them involve the same set of choices (at the
junctions), it follows that no two of them involve the same set of enzymes.

Since the algorithm described here constructs all genotypically indepen-
dent pathways, the algorithm would require time (and storage space) expo-
nential in the number of reactions. Thus, the algorithm’s worst-case com-
plexity is at least exponential. In practice, however, the metabolism contains
long sequences of reactions but few parallel branches of the type of Figure 4.
Thus, with careful design of the computer programs it is possible to obtain
results more efficiently than the worst-case complexity suggests.

It is useful to discuss, in the context of computational complexity, why the
metabolite-processing phase of the pathway does not necessarily start from
metabolites that are required reactants and may instead start from other inter-
mediates. In the formulation of the problem, constraints are imposed on all
metabolites. When the algorithm selects the next constraint to satisfy, it picks
the one that appears easiest to process (an approach reminiscent of greedy
algorithms); this would be the metabolite that participates in the smallest
number of reactions, regardless of whether the metabolite is a required reac-
tant or an excluded reactant.

The fact that the algorithm processes not only designated required reac-
tants (or products) is an important factor in guaranteeing the completeness of
the algorithm and guarding it against computational complexity. Consider the
simple pathway of Figure 5, and suppose that the whole reaction database
consists of the two reactions in the figure, and the objective is to convert
pyruvate to oxaloacetate. An algorithm that searches from substrates towards

342 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

A 1

A 2

A 3

D1
A

3n+1
A3n-2

A
3n-1

A 3n

DnA4

A 5

A 6

D2 A 7

A 8

A 9

D3 A10
..
.

Figure 4: A set of reactions giving rise to an exponential number of pathways

products cannot start the construction of a pathway from the reaction:
PYRUVATE + METHYL-MALONYL -COA → OXALOACETATE + PROPIONYL-COA

because this reaction uses methyl-malonyl-CoA, which is not available as a
reactant. Likewise, that algorithm can not start from:

PROPIONYL-COA → METHYL-MALONYL -COA + CO2
because the reaction requires propionyl-CoA which is also not available.
Thus, this type of algorithm fails to see that, taken as a cluster, these two re-
actions achieve the desired transformation. The algorithm presented here, on
the other hand, considers the constraint that designates propionyl-CoA as an
excluded reactant and excluded product, and immediately constructs the
pathway of Figure 5 to satisfy the constraint.

Implementation. The algorithm was implemented in LISP, on Symbolics
3640 and 3650 computers. The performance of the implementation of the al-
gorithm greatly varies with the exact formulation of the problem, but it is
generally proportional to the cardinality of the final set of pathways.

• The requirements for setting up the initial data structures are proportional
to the size of the database. Rough requirements per database object are
0.05 s of elapsed time (with garbage-collection suppressed), 70 list-words,
and 70 structure-words2.

• The requirements for the main body of the algorithm appear proportional
to the number of solutions for those cases in which results were obtained.
The program needs 0.15 seconds (elapsed time), 200 list-words, and 100
structure-words per synthesized pathway.

A typical problem requires 35s, 40k list words, and 40k structure words
for the initial set-up, and 8 minutes, 1M list words, and 500k structure words

MAVROVOUNIOTIS 343

Pyr OxAc

Methyl-malonyl-CoA Propionyl-CoA

CO2

Figure 5. Carboxylation of pyruvate through an alternative pathway, involving
Methyl-malonyl-CoA and Propionyl-CoA

for the construction of pathways (based on 5000 final pathways).

4. An Example of the Operation of the Algorithm.

A step-by-step application of the algorithm for a synthesis problem is pre-
sented here. The set of reactions under consideration is:

a. A → B
b. B ↔ C
c. C ↔ D
d. C + D ↔ F + K
e. F + K ↔ H + E
f. H + D ↔ E + F
g. A ↔ E
h. E → F + G
k. F ↔ G
m. G → L
All metabolites are designated as excluded reactants and excluded prod-

ucts, with the exception of A, which is a required reactant, and L, which is a
required product.

We first construct the reverse reactions, for reactions b, c, d, e, f, g, and k. We
designate the reverse reactions as -b, -c, -d, -e, -f, -g, and -k respectively. We also
list separately each metabolite and the pathways in which it participates.
Representing only the reactions from which a pathway is constructed, an ex-
pression like [2a, 2-g, b] denotes a pathway that is constructed as a linear
combination of the reactions a, -g, and b, with coefficients 2, 2, and 1, re-
spectively. To represent instead the overall transformation accomplished by
this pathway, the expression 2E → → B + C is used. The two expressions
can be combined into 2E →[2a, 2-g, b]→ B + C. Using this notation the ini-
tial pathways are:

A →[a]→ B
B →[b]→ C
C →[-b]→ B
C →[c]→ D
D →[-c]→ C
C + D →[d]→ F + K
F + K →[-d]→ C + D
F + K →[e]→ H + E
H + E →[-e]→ F + K
H + D →[f] → E + F
E + F →[-f] → H + D
A →[g]→ E
E →[-g]→ A

344 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

E →[h]→ F + G
F →[k]→ G
G →[-k]→ F
G →[m]→ L

The set of metabolites with the pathways in which they participate is:
A: [a], [g], [-g]
B: [b], [-b], [a]
C: [b], [-b], [c], [-c], [d], [-d]
D: [c], [-c], [d], [-d], [f], [-f]
E: [e], [-e], [f], [-f], [g], [-g], [h]
F: [d], [-d], [e], [-e], [f], [-f], [h], [k], [-k]
G: [h], [k], [-k], [m]
H: [e], [-e], [f], [-f]
K: [d], [-d], [e], [-e]
L: [m]

Following the algorithm, the metabolites that participate in fewer path-
ways must be processed first. L, which participates in only one pathway, is a
required product (and an excluded reactant). Since L is produced by one par-
tial pathway and is not consumed by any partial pathway, processing the con-
straints on this metabolite does not change any pathway.

The next metabolite that is processed must be either A or B; the order in
which these two metabolites are processed does not affect the results and we
arbitrarily choose B. One new pathway are constructed: [a,b] as a combina-
tion of [a] and [b]; this operation is denoted as [a]+[b]=[a,b]. Note that it is
not permissible to construct the pathway [b]+[-b], because it would involve
the same reaction in both the forward and reverse directions. The pathways
[a], [b], and [-b] are then deleted. The set of active pathways is now:

A →[a, b]→ C
C →[c]→ D
D →[-c]→ C
C + D →[d]→ F + K
F + K →[-d]→ C + D
F + K →[e]→ H + E
H + E →[-e]→ F + K
H + D →[f] → E + F
E + F →[-f] → H + D
A →[g]→ E
E →[-g]→ A
E →[h]→ F + G
F →[k]→ G
G →[-k]→ F
G →[m]→ L

The updated set of metabolites becomes:

MAVROVOUNIOTIS 345

A: [a, b], [g], [-g]
C: [a, b], [c], [-c], [d], [-d]
D: [c], [-c], [d], [-d], [f], [-f]
E: [e], [-e], [f], [-f], [g], [-g], [h]
F: [d], [-d], [e], [-e], [f], [-f], [h], [k], [-k]
G: [h], [k], [-k], [m]
H: [e], [-e], [f], [-f]
K: [d], [-d], [e], [-e]

The metabolite A is processed next. Since A is a required reactant and ex-
cluded product, a new combination pathway are constructed as [-g]+[a,b]=[-
g,a,b], and only pathway [-g] is deleted. For the next step G is selected arbi-
trarily among the metabolites G, H, and K (which participate in the same
number of reactions). In processing G, there are two pathways consuming it
([-k] and [m]) and two pathways producing ([h] and [k]). Hence, four combi-
nations would be constructed, except that [k] cannot be combined with [-k].
Three legitimate combinations remain, namely: [h]+[-k]=[h, -k]; [h]+[m]=[h,
m]; [k]+[m]=[k, m]. The original four pathways in which G participated are
deleted.

After the processing of A and G, the active pathways are:
A →[a, b]→ C
C →[c]→ D
D →[-c]→ C
C + D →[d]→ F + K
F + K →[-d]→ C + D
F + K →[e]→ H + E
H + E →[-e]→ F + K
H + D →[f] → E + F
E + F →[-f] → H + D
A →[g]→ E
E →[-g, a, b]→ C
E →[h, -k]→ 2 F
E →[h, m]→ F + L
F →[k, m]→ L

The set of metabolites becomes:
C: [a, b], [c], [-c], [d], [-d], [-g, a, b]
D: [c], [-c], [d], [-d], [f], [-f]
E: [e], [-e], [f], [-f], [g], [-g, a, b], [h, m], [h, -k]
F: [d], [-d], [e], [-e], [f], [-f], [h, m], [k, m], [h, -k]
H: [e], [-e], [f], [-f]
K: [d], [-d], [e], [-e]

The metabolite K, participating in four pathways, is processed next. The
combinations [d]+[e]=[d, e], and [-e]+[-d]=[-e, -d] are created, and the path-
ways [d], [-d], [e], and [-e] are deleted. The set of active pathways becomes:

346 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

A →[a, b]→ C
C →[c]→ D
D →[-c]→ C
C + D →[d, e]→ H + E
H + E →[-e, -d]→ C + D
H + D →[f] → E + F
E + F →[-f] → H + D
A →[g]→ E
E →[-g, a, b]→ C
E →[h, -k]→ 2 F
E →[h, m]→ F + L
F →[k, m]→ L

The set of metabolites becomes:
C: [a, b], [c], [-c], [d, e], [-e, -d], [-g, a, b]
D: [c], [-c], [d, e], [-e, -d], [f], [-f]
E: [d, e], [-e, -d], [f], [-f], [g], [-g, a, b], [h, m], [h, -k]
F: [f], [-f], [h, m], [k, m], [h, -k]
H: [d, e], [-e, -d], [f], [-f]

Processing H in a very similar fashion, two combination pathways are
constructed, namely [-f]+[-e,-d]=[-f,-e,-d] and [d,e]+[f]=[d,e,f]. The path-
ways now become:

A →[a, b]→ C
C →[c]→ D
D →[-c]→ C
C + 2 D →[d, e, f]→ 2 E + F
2 E + F →[-f, -e, -d]→ C + 2 D
A →[g]→ E
E →[-g, a, b]→ C
E →[h, -k]→ 2 F
E →[h, m]→ F + L
F →[k, m]→ L

The set of metabolites becomes:
C: [a, b], [c], [-c], [d, e, f], [-f, -e, -d], [-g, a, b]
D: [c], [-c], [d, e, f], [-f, -e, -d]
E: [d, e, f], [-f, -e, -d], [g], [-g, a, b], [h, m], [h, -k]
F: [d, e, f], [-f, -e, -d], [h, m], [k, m], [h, -k]

Since D involves now only 4 pathways, it is processed next. The fact that
the coefficient of D in [d, e, f] and [-f, -e, -d] is 2 must be reflected in the
construction of the combinations. The new pathways are constructed as
2[c]+[d,e,f]=[2c, d, e, f] and [-f,-e,-d]+2[-c]=[-f, -e, -d, 2 -c], and all four
pathways that involved D are deleted. The set of active pathways is now
significantly smaller:

A →[a, b]→ C

MAVROVOUNIOTIS 347

3 C →[2c, d, e, f]→ 2 E + F
2 E + F →[-f, -e, -d, 2 -c]→ 3 C
A →[g]→ E
E →[-g, a, b]→ C
E →[h, -k]→ 2 F
E →[h, m]→ F + L
F →[k, m]→ L

Only three metabolites remain:
C: [a, b], [2c, d, e, f], [-f, -e, -d, 2 -c], [-g, a, b]
E: [2c, d, e, f], [-f, -e, -d, 2 -c], [g], [-g, a, b], [h, m]
F: [2c, d, e, f], [-f, -e, -d, 2 -c], [h, m], [k, m], [h, -k]

C is processed next and leads to two combinations, 3[a,b]+[2c,d,e,f]=[3a,
3b, 2c, d, e, f] and 3[-g, a,b]+[2c,d,e,f]=[3 -g, 3a, 3b, 2c, d, e, f]. Then the ac-
tive pathways are:

3 A →[3a, 3b, 2c, d, e, f]→ 2 E + F
A →[g]→ E
E →[3 -g, 3a, 3b, 2c, d, e, f]→ F
E →[h, -k]→ 2 F
E →[h, m]→ F + L
F →[k, m]→ L

The two metabolites remaining are:
E: [3a, 3b, 2c, d, e, f], [g], [3 -g, 3a, 3b, 2c, d, e, f], [h, m], [h, -k]
F: [3a, 3b, 2c, d, e, f], [3 -g, 3a, 3b, 2c, d, e, f], [h, m], [k, m], [h, -k]

The two metabolites can be processed in either order to yield the final re-
sults. Processing F leads to three new combinations of pathways: [3a, 3b, 2c,
d, e, f]+[k, m]=[3a, 3b, 2c, d, e, f, k, m]; [h, m] + [k, m] = [h, k, 2 m]; and
finally [3 -g, 3a, 3b, 2c, d, e, f]+[k, m]=[3 -g, 3a, 3b, 2c, d, e, f, k, m]. After
the original 5 pathways in which F participated are deleted, the remaining
pathways are:

3 A →[3a, 3b, 2c, d, e, f, k, m]→ 2 E + L
A →[g]→ E
E →[3 -g, 3a, 3b, 2c, d, e, f, k, m]→ L
E →[h, k, 2m]→ 2 L

Processing E (and omitting pathways that include the same reaction in op-
posing directions) leads to the combinations: 1/3[3a, 3b, 2c, d, e, f, k, m] +
2/3[3 -g, 3a, 3b, 2c, d, e, f, k, m] = [2 -g, 3a, 3b, 2c, d, e, f, k, m]3; [3a, 3b,
2c, d, e, f, k, m] + 2[h, k, 2m] = [3a, 3b, 2c, d, e, f, 3k, 5m, 2h]; and the much
simpler [g]+[h, k, 2m]=[g, h, k, 2m]. Thus, the final pathways are:

A →[2 -g, 3a, 3b, 2c, d, e, f, k, m]→ L
3 A →[3a, 3b, 2c, d, e, f, 3k, 5m, 2h]→ 5 L
A →[g, h, k, 2m]→ 2 L

These three pathways are feasible solutions to the original synthesis prob-
lem. All other feasible pathways are linear combinations of pathways from

348 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

this set, with positive coefficients.
When the algorithm is not permitted to run to completion (because of lim-

ited computational resources), it can provide useful partial results.
Specifically, it will return a list of pathways that satisfy only someof the con-
straints involved; it will also return the list of unprocessed constraints. In the
detailed example discussed in this section, if the algorithm must stop before
the last step, it returns a list of four pathways that satisfy all constraints ex-
cept for the constraint designating E as an excluded reactant and excluded
product; the algorithm also indicates that the constraint on E has not been
satisfied.

5 A Case Study: Lysine Pathways

We are going to perform, in this chapter, a case study on the synthesis and
evaluation of biochemical pathways for the production of lysine from glu-
cose and ammonia [Mavrovouniotis, et al1990a].

It should be emphasized right from the start that the analysis we perform
here is not exhaustive; our aim is merely to demonstrated the concerted ap-
plication and utility of our methods in a real system and not to arrive to
definitive answers on the synthesis of lysine.

The basic procedure we will follow in this case study is as follows:

• We synthesize a pathway as close as possible to the pathway believed to
prevail

• We identify bottlenecks in the pathway by performing a maximum-rate
analysis for each reaction

• We synthesize pathways that bypass bottlenecks

• We synthesize other pathways to explore alternatives that omit key en-
zymes

• We try to identify fundamental constraints on the structure and yield of the
pathways

Note that this is a procedure suggested from the point of view of the goals
of the analysis. The exact application of the methods may take place follow-
ing a number of different structures. For example, one can generate all path-
ways producing the desired product from the substrates a priori, carry out all
the maximum rate calculations for all pathways, and then perform all the
tasks by appropriate search through this (potentially very big) set of path-
ways.

Table 5 shows the abbreviations that we will use for metabolic intermedi-
ates throughout this chapter. The core of the bioreaction network with which
we will work is shown in Figure 6. It includes:

MAVROVOUNIOTIS 349

• Glycolysis

• Lactate dehydrogenase, converting pyruvate to lactate (a common anaero-
bic fate for pyruvate)

• The usual citric acid cycle (or tricarboxylic acid cycle, which will be re-
ferred to as TCA), with the exception of the bioreaction α-ketoglutarate
dehydrogenasewhich will be assumed to be absent or non-functional

• The glyoxylate shunt to complement TCA and make up for the absence of

350 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ABBREVIATION METABOLITE

2PG 2-phosphoglycerate
3P-OH-Pyr 3-Phosphohydroxypyruvate
3P-Ser or P-Ser 3-Phospho-serine
3PG 3-phosphoglycerate
AcCoA (or Acetyl-CoA) Acetyl-Coenzyme-A
αkG α-ketoglutarate
Ala Alanine
ASA Aspartate-semialdehyde
Asp Aspartate
Cit Citrate
DHAP Dihydroxyacetone-phosphate
Fru6P Fructose-6-phosphate
FruDP Fructose-1,6-diphosphate
Fum Fumarate
GAP Glyceraldehyde-3-phosphate
Glc Glucose
Glc6P Glucose-6-phosphate
Gln Glutamine
Glt or Glu Glutamate
Gly Glycine
Glyox Glyoxylate
i-Cit Isocitrate
Lys Lysine
Mal Malate
OxAc Oxaloacetate
PEP Phosphoenolpyruvate
Pyr Pyruvate
Suc Succinate
SucCoA Succinyl-Coenzyme-A

Table 14: Abbreviations of the names of metabolites

α-ketoglutarate dehydrogenase

• The bacterial pathway that leads from oxaloacetate to aspartate and on to
lysine.

• Glutamate dehydrogenaseand glutamine synthetasefor the synthesis of
glutamate and glutamine

Figure 6 was constructed to conform to the bioreaction network used in
the analysis of experiments of lysine production. Note that the figure is sub-
stantially simplified, as:

• Many side-reactants and side-products are not shown.

• Many reactions are lumped together. In particular, the arrow drawn from
aspartate-semialdehyde (ASA) to lysine represents 6 individual bioreac-

MAVROVOUNIOTIS 351

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

Figure 6: The basic bioreaction network for the synthesis of lysine

tions.

One of the basic pathways believed to function in bacteria (such as Bre-
vibacterium Flavum) for the conversion of glucose to lysine is shown in Fig-
ure 7. The pathway uses the glyoxylate shunt to bypass α-ketoglutarate de-
hydrogenase, which has not been included in the network.

The pathway of Figure 7 is actually only a partial one, because the path-
way leading from aspartate to lysine requires succinyl-CoA and glutamate (at
the same time producing succinate and α-ketoglutarate).

We can complete the pathway by looking for the smallest possible path-
way which contains all the reactions already marked and additional reactions
to balance the stoichiometries for succinyl-CoA, glutamate, succinate, and
α-ketoglutarate. The stoichiometries of other metabolites (such as ATP or

352 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

Figure 7: Partial pathway of the normal route of lysine production. Bold arrows in-
dicate the reactions used in the pathway. Dotted arrow indicates a prohibited reac-
tions.

NAD) are also unbalanced, but we will consider them to be allowed reactants
and allowed products.

The completed pathway is shown in Figure 8. The reactions added are
succinate kinaseand glutamate dehydrogenase, which, as might be expected,
comprise the simplest alternative.

Maximum-rate analysis. We will calculate here the minimum enzyme
requirement, which is a parameter related to the maximum rate of each biore-
action [Mavrovouniotis et al., 1990b]. By comparing the rates of the bioreac-
tions in the basic pathway of Figure 8 we will uncover kinetic bottlenecks.
For the estimation of the maximum rate of a bioreaction, we need the equi-
librium constant of the reaction, the concentrations of the reactants and prod-
ucts of the reaction, and the concentrations of enzymes:

• We would like to be as conservative as possible in choosing a value for the

MAVROVOUNIOTIS 353

Figure 8: Completion of the basic pathway for the synthesis of lysine.

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

equilibrium constant, because it has a very strong effect on the maximum
rate. We take the equilibrium constant of a bioreaction to be equal to the
maximum value among:

◊ Any available data from the literature (residing in the database)

◊ The value estimated by the group-contribution method

• The concentrations of all metabolites are assumed to be in the default
range we normally use for physiologically acceptable conditions. Thus,
the concentrations of the products of each bioreaction are set to 5x10-6

and the concentrations of reactants are set to 5x10-3.

• The concentration of the enzyme is not assumed to have any particular
value. Since the maximum rate is proportional to the concentration of the
enzyme, we can estimate [Mavrovouniotis, et al 1990b] the quantity r/E,
i.e., maximum rate divided by the enzyme concentration, leaving the en-
zyme concentration unspecified.

Instead of using the ratio r/E, where the quantity E (in mol/l) refers to in-
tracellular concentration and r (in mol/s l) refers to rate per unit cell volume,
we can equivalently estimate the inverse of that ratio, i.e., E/r, which denotes
the minimum enzyme requirement(per unit rate) for the bioreaction. The ac-
tual (i.e., experimental) E/r of a reaction must be higher than our estimate;
since actual enzymes are less efficient it takes a higher (than ideally estimat-
ed) enzyme concentration to achieve a given rate. The minimum enzyme re-
quirement, E/r, is a particularly convenient quantity because the minimum
enzyme requirement of the whole pathway can be obtained simply by adding
together the requirements of all the reactions.

In this context, it is convenient to take r not as the rate of the bioreaction
examined, but rather as the rate of production of the final product. To achieve
this transformation of reference-rate, we only need to multiply the initial en-
zyme requirement of each reaction by the corresponding coefficient of the re-
action-stoichiometry of the pathway.

Note that, since a pathway involves many enzymes, the enzyme require-
ment of the pathway denotes the sum of the concentrations of different en-
zymes. This is not unreasonable considering that the different enzymes have
to coexist and function in the same cell, and compete, in their synthesis, for
same limited resources of the cell. Similarly, the pathway as a whole com-
petes for resources for all of its enzymes, because it is functional only when
sufficient quantities of all enzymes are present. Thus, in evaluating a path-
way as a whole and comparing it to other pathways, it is useful to lump the
concentrations of all the enzymes in the pathway and estimate the minimum
enzyme requirement of the pathway.

The minimum enzyme requirement for each bioreaction in the basic path-
way of Figure 8 is shown in Figure 9. For each reaction in Figure 9, the num-

354 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ber shown is the enzyme requirement of that reaction, in milliseconds. The
total enzyme requirement for the whole pathway of Figure 9 is approximate-
ly 14 ms.

About half of the enzyme requirements of the pathway come from the
bioreaction malate dehydrogenase, which has an enzyme requirement of 6.44
ms. The next larger contribution, equal to 2.7 ms, comes from glyceralde-
hyde-phosphate dehydrogenase. However, we have very little control over
that enzyme since it belongs to glycolysis. Thus, malate dehydrogenasere-
mains the main kinetic bottleneck of the pathway.

Bypassing the Potential Kinetic Bottleneck. We seek now new path-
ways that eliminate the kinetic bottleneck of malate dehydrogenase. In Fig-
ure 10 we show a first possibility, which has been already determined (exper-
imentally) to function under certain conditions. This pathway involves the

MAVROVOUNIOTIS 355

0.03 0.01
0.18

2.79

0.19

0.15

0.13

0.02 0.01

0.03

0.02 0.01

0.03

0.01

0.67

1.56

1.52

6.44

0.09

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

Figure 9 Calculation of minimum enzyme requirements for the basic pathway for ly-
sine production

carboxylation of pyruvate, bypassing the whole TCA cycle. This direct con-
version of pyruvate to oxaloacetate can be achieved by two distinct bioreac-
tions:

• Pyruvate carboxylase
• Oxaloacetate decarboxylase

The pathway of Figure 10 successfully bypasses the kinetic bottlenecks
because its minimum enzyme requirement is only 6.4 ms, roughly equal to
one half the requirement of the initial pathway. This pathway also has a high-
er maximum molar yield. Its yield is 100%, i.e., the pathway yields one mole
of lysine per mole of glucose, as compared to a molar yield of 67% for the
initial pathway of Figure 9.

If the original pathway has some good traits, we might prefer to bypass
only the immediate vicinity of the bottleneck and retain much of the structure

356 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

0.02 0.01
0.12

1.86

0.13

0.10

0.03

0.67

1.56

1.52

0.09

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

0.14

Figure 10: Minimum enzyme requirements for a lysine pathway involving carboxyla-
tion of pyruvate

of the original pathway intact, including the TCA cycle. A first alternative,
shown in Figure 11, involves bypassing malate dehydrogenasewith a set of
just two reactions:

• Lactate-Malate transhydrogenaseachieves the conversion:

MALATE + PYRUVATE → OXALOACETATE + LACTATE

• Lactate dehydrogenaseachieves the conversion:

LACTATE → PYRUVATE

The combination of the two reactions converts malate to oxaloacetate.
Unfortunately, the enzyme requirement of this bypass is approximately the
same as that of malate dehydrogenase. Specifically, lactate dehydrogenase
has a requirement of 5.32 ms (compared to 6.44 for malate dehydrogenase).

MAVROVOUNIOTIS 357

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

5.32

0.07

Figure 11 Pathway converting malate to oxaloacetate, with lactate and pyruvate as
intermediates

Thus, this particular pathway offers little improvement over the original one.
It is interesting to note that this pathway uses lactate dehydrogenasein the
direction opposite to that originally drawn in Figure 6

Two more interesting alternatives are shown in Figures 12 and 13. They
both involve:

• Conversion of malate to fumarate by using Fumarase in the direction op-
posite to that initially assumed in Figure 6

• Conversion of succinate to fumarate by Succinate dehydrogenase as in the
original pathway

• Conversion of fumarate into aspartate through Aspartate aminolyase

Since oxaloacetate is used in order to form citrate, half of the aspartate

358 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

Figure 12.. The simplest of the pathways bypassing malate dehydrogenase by con-
verting fumarate to aspartate

must be recycled back into oxaloacetate to close the TCA loop. The two
pathways use different ways to achieve this:

• In the pathway of Figure 12 the reaction aspartate glutamate transami-
nase converts oxaloacetate to aspartate, by operating in the direction re-
verse to that assumed in the original bioreaction network (Figures 8 to 11).

• The pathway of Figure 13 uses a set of two reactions, Glycine dehydroge-
naseand Glycine-oxaloacetate aminotransferase, involving interconver-
sion of glycine and glyoxylate.

The pathway of Figure 13 is longer, but it is actually the most efficient
(kinetically) of all the pathways sharing the TCA structure of the original
pathway. Its minimum enzyme requirement is 8 ms, i.e., almost half of the
requirement of the original pathway.

MAVROVOUNIOTIS 359

OxAc

GAP

Fru6PGlc6PGlc

3PG

PEP Pyr Lac

CO2

AcCoA

Ci t

i - C i t

kGα

SucCoA

Suc

Fum

Mal

NH
3

Glt

NH
3

Gln

Asp

ASA

Lys

CO2

CO2

CO2

Glyox

glyox

gly

Figure 13. The kinetically most efficient of the pathways bypassing malate dehydro-
genase by converting fumarate to aspartate

Persistent Intermediates. In the two pathways discussed above, oxaloac-
etate is partly bypassed, in that it is needed only for the synthesis of citrate,
and not directly for the synthesis of aspartate and lysine. An interesting ques-
tion is whether we can bypass oxaloacetate altogetherand produce aspartate
directly from pyruvate or glucose.

With the reactions in our database, this turns out to be impossible. Thus, it
appears that oxaloacetate is a key intermediate in the production of aspartate
and lysine. The pathways we discuss in this chapter (and other pathways
which were constructed but will not be discussed) indicate, in fact, that, the
only persistentintermediates, i.e., intermediates that occur in all pathways
are:

• The intermediates of glycolysis from glucose to phosphoenolpyruvate,
with that section of the pathway fixed

• The intermediates of the pathway from aspartate to lysine, a pathway that
is also fixed

• Oxaloacetate, for which no surrounding reaction is fixed, but the interme-
diate itself is always present (participating in different reactions)

One might argue that the conclusion that oxaloacetate is a necessary inter-
mediate is obvious, because standard biochemistry textbooks classify lysine
in the aspartate family [Mandelstam et al., 1982, Rawn, 1983, Snyder et al.,
1985], and aspartate is commonly synthesized from oxaloacetate. However,
the pathways discussed here involve several different bioreactions consum-
ing or producing oxaloacetate; thus, the metabolism in the region of this in-
termediate can hardly be characterized as fixed. Our conclusion states that
any lysine-producing pathway involves at least 2 of these reactions (hence
there is no pathway that can avoid the intermediate altogether).

In the pathway of Figure 12 (and its variation suggested by Figure 13) as-
partate and lysine are not directly derived from oxaloacetate, because fu-
marate is converted to aspartate by a single enzyme. In fact, aspartate is con-
verted into oxaloacetate (rather than the reverse). Thus, the metabolism in
the neighborhood of aspartate, fumarate, malate and oxaloacetate is quite dif-
ferent from what one would find in a standard biochemistry textbook. This
portion of the metabolism suggests that it is possible to derive aspartate with-
out the intervention of oxaloacetate. It turns out however that, within the en-
zyme database used here, the necessary TCA intermediates (malate or succi-
nate) cannot be produced from glucose without the intervention of
oxaloacetate; this constraint necessitates the presence of oxaloacetate in any
pathway leading from glucose to lysine. In effect, the real obstacle is that
production of fumarate from glucose requires the TCA cycle and hence ox-
aloacetate.

To illustrate this point better, assume that (in addition to glucose) we

360 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

could use succinate as an allowed reactant. A priori biosynthetic
classifications would still entail oxaloacetate as a required intermediate. In-
spection of Figure 13 reveals, however, that succinate can be converted to fu-
marate and on to aspartate (by aspartate aminolyase), without the interven-
tion of malate or oxaloacetate. Thus, with succinate as an additional
substrate, it is entirely possible to synthesize lysine with a pathway that does
not entail oxaloacetate.

If one rests with the preconceived pathways of biochemistry textbooks,
one would draw a variety of conclusions about essential enzymes and inter-
mediates. It would, for example, appear safe to assume that the carboxylation
of pyruvate to oxaloacetate must involve either pyruvate carboxylaseor ox-
aloacetate decarboxylase. This assumption would not be correct, because
there are non-obvious alternatives, such as the pathway of Figure 12. Other
pathways discussed here (e.g., Figures 11 or 13) contain other non-obvious
possibilities for different biotransformations.

Fundamental Constraints. Some of the most interesting results of apply-
ing the synthesis algorithm involve not particular pathways found, but rather
demonstrations that no pathways exist to meet certain sets of specifications.

We discussed already the fact that there is no pathway that will reach as-
partate (and consequently lysine) from glucose without going through ox-
aloacetate. A second interesting constraint that was uncovered by the algo-
rithm refers to the maximum yield of the pathway:

• The yield can exceed 67% only if carbon dioxide is recovered by some
bioreaction.

In effect, if we eliminate reactions that consume carbon dioxide, the yield
is restricted to be 67% or less. A point to keep in mind is that these con-
straints only hold for the set of reactions present in our database. It is entirely
possible that inclusion of additional reactions will change these results.

5 Concluding Remarks

The problem of synthesizing qualitatively feasible biochemical pathways
was discussed in this chapter. With respect to thermodynamic feasibility, a
group contribution technique that allows the estimation of equilibrium con-
stants of bioreactions was described. With respect to stoichiometric require-
ments, an algorithm for pathway synthesis was presented, based on the itera-
tive satisfaction of constraints, and the transformation of the initial set of
reactions (which can be thought of as one-step pathways) into a final set of
pathways which satisfy all constraints. The algorithm generates all biochemi-
cal production routes that satisfy a set of linear stoichiometric constraints;
these constraints designate bioreactions and metabolites (in their role as reac-
tants, products, or intermediates of the pathways) as required, allowed, or

MAVROVOUNIOTIS 361

prohibited. For the task of synthesis of biochemical pathways, this is the first
algorithm that is formal and well-defined, with proven properties like com-
pleteness and correctness.

The algorithm is of significant value in the investigation of alternative
biochemical pathways to achieve a given biotransformation (which is defined
by a set of stoichiometric specifications). It can also produce pathways that
bypass bottlenecks of a given pathway. A variety of alternative non-obvious
routes for the synthesis of lysine demonstrates the utility of computer-based,
systematic construction of pathways. Furthermore, the algorithm can identify
fundamental limitations that govern the biochemical pathways and the pro-
cess. In the case of lysine-producing pathways, it was shown that oxaloac-
etate is always present as an intermediate, and that in the absence of recovery
of carbon dioxide by some bioreaction the yield of lysine over glucose is re-
stricted to be 0.67 or less.

If the database of bioreactions is expanded to include a much larger num-
ber of bioreactions (and ultimately all known bioreactions), the computation-
al performance of the algorithm would have to be drastically improved, in
terms of both conceptual structure and actual implementation.

Notes

1 The constraints are assumed to be consistent. For example, if S is a re-
quired product, it cannot be a required reactant.

2 On Symbolics computers there are 36 bits in each word (32 bits for data
and 4 bits for data-type). In LISP implementations on general-purpose
hardware, one word might actually correspond to ~6 bytes. The distinction
between list-words and structure-words is only important if one is recy-
cling objects (and hence structure-words).

3 To obtain smaller integer coefficients for the combination pathway, the
fractions 1/3 and 2/3 were used instead of 1 and 2 in the construction of
the combination. This has the same effect as dividing the resulting path-
way by 3; clearly, the essence of the transformation and the overall
significance of the pathway are not affected by multiplicative constants.
Only the molar proportionsof metabolites and reactions matter.

References
Barman, T. E. Enzyme Handbook, Supplement 1 (Springer-Verlag, New York, 1974).

Barman, T. E. Enzyme Handbook, Volume 1 (Springer-Verlag, New York, 1969).

Barman, T. E. Enzyme Handbook, Volume 2 (Springer-Verlag, New York, 1969).

Benson, S. W. Thermochemical Kinetics (Wiley, New York, 1968).

362 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Benson, S. W., Cruickshank, F. R., Golden, D. M., Haugen, G. R., O’Neal, H. E., Rodgers,
A. S., Shaw, R., and Walsh, R. Chemical Rev., 69, 279 (1969).

Domalski, E. S., and Hearing, E. D. “Estimation of the Thermodynamic Properties of Hy-
drocarbons at 298.15 K.” Journal of Physics and Chemistry Ref. Data,14, 1637 (1988).

Edsall, J. T., and Gutfreund, H. Biothermodynamics(Wiley, New York, 1983).Hinz, H.-J.
Thermodynamic Data for Biochemistry and Biotechnology(Springer-Verlag, New York, 1986).

Joback, K. G., and Reid, R. C. Estimation of Pure-Component Properties from Group Con-
tributions. Chem. Eng. Comm.,57, 233 (1987).

Lehninger, A.E. Biochemistry, 2nd ed. (Worth, New York, 1975).

Lehninger, A.E. Principles of Biochemistry(Worth, New York, 1986).

Mandelstam, J., McQuillen, K., and Dawes, I. Biochemistry of Bacterial Growth, 3rd

edition, pp. 163-165. Wiley, New York, 1982.

Mavrovouniotis, M. L, Symbolic Computing in the Prediction of Properties of Organic
Compounds, Technical Report SRC TR 89-95 (Systems Research Center, University of Mary-
land, College Park, MD, 1989).

Mavrovouniotis, M. L. Computer-Aided Design of Biochemical Pathways. Ph.D. Thesis,
Dept. of Chemical Engineering, Massachusetts Institute of Technology, 1989.

Mavrovouniotis, M. L. “Estimation of Properties from Conjugate Forms of Molecular Struc-
tures: The ABC Approach”, 29: 1943-1953 Industrial and Engineering Chemistry Research,
1990a.

Mavrovouniotis, M. L. Group Contributions to the Gibbs Energy of Formation of Biochemi-
cal Compounds in Aqueous Solution. Biotechnology and Bioengineering,36, 1070-1082,
1990b.

Mavrovouniotis, M. L. Estimation of Standard Gibbs Energy Changes of Biotransforma-
tions. Journal of Biological Chemistry, 266, 14440-14445, 1991.

Mavrovouniotis, M. L., Bayol, P., Lam, T.-K. M., Stephanopoulos, G., and Stephanopoulos,
G. Biotechnology Techniques,2, 23 (1988).

Mavrovouniotis, M. L., Stephanopoulos, G., and Stephanopoulos, G. Computer-Aided Syn-
thesis of Biochemical Pathways. Biotechnology and Bioengineering, 36, 1119-1132, 1990a.

Mavrovouniotis, M. L., Stephanopoulos, G., and Stephanopoulos, G. Estimation of Upper
Bounds for the Rates of Enzymatic Reactions. Chemical Engineering Communications,93, 211-
236, 1990b.

Morrison, R. T., and Boyd, R. N. Organic Chemistry, 3rd edition (Allyn and Bacon, Boston
1973).

Mostow, J. “Rutgers Workshop on Knowledge-Based Design” SIGART Newsletter(90):19-
32, October, 1984.

Mostow, J. “Toward Better Models of the Design Process” AI Magazine6(1):44-56, Spring,
1985.

Old, R.W., and Primrose, S.B. Principles of Gene Manipulation, 3rd edition. Blackwell Sci-
entific Publications, London, 1985.

Rawn, J. D. Biochemistry, pp. 883-888. Harper and Row, New York, 1983.

Reid, R. C., Prausnitz, J. M., and Poling, B. E. The Properties of Gases and Liquids, 4th

edition(McGraw-Hill, New York, 1987).

Reid, R. C., Prausnitz, J. M., and Sherwood, T. K. The Properties of Gases and Liquids, 3rd

edition(McGraw-Hill, New York, 1977).

MAVROVOUNIOTIS 363

Snyder, L.A., Freifelder, D., and Hartl, D.L. General Genetics. Jones and Bartlett Publishers,
Boston, 1985.

Sober , H.A. (ed) Handbook of Biochemistry(CRC, Cleveland, Ohio, 1970).

Thauer, R. K., Jungermann, K., and Decker, K. Bacteriological Reviews, 41: 148 (1977).

364 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

10

Knowledge-Based Simulation

of DNA Metabolism:

Prediction of Action and

Envisionment of Pathways

Adam R. Galper, Douglas L. Brutlag & David H. Millis

1. Introduction

Our understanding of any process can be measured by the extent to which
a simulation we create mimics the real behavior of that process. Deviations
of a simulation indicate either limitations or errors in our knowledge. In ad-
dition, these observed differences often suggest verifiable experimental hy-
potheses to extend our knowledge.

The biochemical approach to understanding biological processes is essen-
tially one of simulation. A biochemist typically prepares a cell-free extract
that can mediate a well-described physiological process. The extract is then
fractionated to purify the components that catalyze individual reactions. Fi-

nally, the physiological process is reconstituted in vitro. The success of the
biochemical approach is usually measured by how closely the reconstituted
process matches physiological observations.

An automated simulation of metabolism can play a role analogous to that
of the biochemist in using and extending knowledge. By carefully represent-
ing the principles and logic used for reasoning in the laboratory, we can sim-
ulate faithfully, on a computer, known biochemical behavior. The simulation
can also serve as an interactive modeling tool for reasoning about
metabolism in the design of experiments, in discovery, and in education.

1.1 Simulation Methods

Simulation is a modeling technique that represents the behavior of indi-
vidual components of a system over time. There are two predominant ap-
proaches [Rothenberg, 1989]. The analytic approach to simulation uses
mathematical analysis to represent the temporal behaviors of components,
often in closed form. Analytic simulations capture aggregate system behavior
by modeling small and relatively similar entities. Discrete-event, or discrete-
state, simulation is used when the system’s overall behavior is not under-
stood well enough to permit formal mathematical analysis; instead, the low-
level, pairwise interactions of components are encoded, the simulation is
“run,” and higher-level patterns of interaction are revealed.

Until recently, most simulations of metabolism were analytic. By
metabolism, we mean a set of reactions, the members of which participate in
the synthesis (anabolism), degradation (catabolism), or general maintenance
of a substance. A typical reaction in a metabolic pathway may involve nu-
merous reactants, intermediates, and products, and may be catalyzed by an
enzyme and cofactors. Furthermore, each reaction may be characterized ki-
netically in terms of metabolite concentrations and reaction rates. The analyt-
ic approach to metabolic simulation typically requires the determination of
steady-state rate equations for constituent reactions, followed by numerical
integration of a set of differential equations describing fluxes in the
metabolism [Bierbicher, Eigen, and Gardiner, 1983; Franco and Canela,
1984; Kohn and Garfinkel, 1983a; Kohn and Garfinkel, 1983b; Thomas, et
al., 1976; Waser, et al., 1983].

For example, Franco and Canela present an analytic simulation of purine
metabolism, including the salvage pathway and interconversion of purine
mononucleotides, using information from the literature about the kinetic be-
havior of 14 metabolic enzymes [Franco and Canela, 1984]. They then simu-
late an increase or decrease in the concentration of any enzyme to approxi-
mate the metabolic changes observed in inborn errors of purine metabolism.

The feasibility of the analytic approach is limited by the extent to which
the metabolic processes of interest have been characterized. For most
metabolic pathways, either we are unaware of all the steps involved or we

366 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

lack rate constants for each step. This lack of information precludes the use
of the mathematical approach in describing the process. Even when reaction
rates are known, differential equations incur great computational costs; nu-
merical integration of Franco and Canela’s set of 15 differential equations,
implemented in FORTRAN 77, required almost 2 hours of CPU time on an
IBM 4341 mainframe. Subsequent simulation of enzyme deficit and overpro-
duction required an average of 275 seconds of CPU time per enzyme.

Although the closed-form solutions of analytic simulation are appealing,
they are often cryptic and are difficult to use interactively. Differential equa-
tions model metabolites along only quantitative dimensions (e.g., concentra-
tions, reaction rates); qualitative knowledge (e.g., structural properties of
metabolites or enzymes) is often external to the simulation. If a reaction in a
metabolic pathway is only partially characterized, a strict analytic approach
to simulation may not work, for lack of quantitative data.

The discrete-event approach to simulation, on the other hand, can use all
available data, both quantitative and qualitative, and can even incorporate an-
alytic methods where applicable; semiquantitative models, which couple
symbolic and numeric computing techniques, have been developed for a
number of domains, including the human cardiovascular system and gene
regulation in bacteria [Widman, 1989; Karp and Friedland, 1989; Meyer and
Friedland, 1986].

The critical feature of discrete-event simulation is its natural support of
qualitative representation and reasoning techniques, which offer explicit
treatment of causality. Qualitative representations are thought to provide
more insight into how physical systems function [deKleer and Brown, 1984].
The recent flurry of interest in qualitative reasoning has much to offer to both
analytic and discrete-event simulations of physical systems [Bobrow, 1984].

Whereas the differential equation is the basic currency of analytic simula-
tion, the rule is central to discrete-event simulation. Rule-based methods
allow the representation of knowledge at multiple levels of detail [Buchanan
and Shortliffe, 1984; Davis, Buchanan, and Shortliffe, 1977]. For example,
in some instances, the actual catalytic mechanism and intermediates of a
metabolic reaction are known and can be specified. In other instances, only
substrates and products can be represented. Likewise, the regulation of a
pathway can be represented at various levels of detail. For example, the feed-
back inhibition on the transcription process, which controls the overall level
of activity of an enzyme, can be expressed in a few simple rules, without the
entire process of gene expression being described. Other pathways may re-
quire a more detailed representation of all enzymes, activators, and in-
hibitors.

A rule-based, discrete-event simulation of metabolism can also be fast and
highly interactive. Inference is commonly achieved through forward chain-
ing, or deduction from an asserted fact, and through backward chaining, in

GALPER, BRUTLAG & M ILLIS 367

which specific facts are inferred to support a hypothesis. Truth-maintenance
mechanisms, which deduce and retract conclusions automatically when the
underlying fact base changes, make the reasoning processes involved in rule-
based simulations more robust and efficient [deKleer, 1986].

Most important, a discrete-event simulation, implemented with rules, can
explain its predictions based on the known facts and on the rules relating
those facts. Explanation graphs show the flow of logic, the relationships
among stated facts, and the deduced conclusions. In comparison, analytic
simulations often obscure the understanding being sought.

1.2 A Simulation of DNA Metabolism

We have built a rule-based, discrete-event simulation of DNA
metabolism. In particular, we have focused on the pathways of DNA replica-
tion and repair in Escherichia coli(E. coli). The simulation relies on a
panoply of artificial-intelligence (AI) techniques for representation, infer-
ence, and explanation; we refer to the simulation as knowledge-based. We
have chosen initially to represent all domain knowledge qualitatively, be-
cause most biochemists reason about DNA metabolism in qualitative terms
[Schaffner, 1987].

Unlike intermediary metabolism, in which the flow of substrates and
cyclical reactions are critical, DNA metabolism is characterized by discrete,
temporally ordered events, in which the concentration of substrate is as-
sumed to be sufficient to support metabolic reactions. For example, when a
nucleotide is present, we assume that its concentration is greater than Km, the
substrate concentration at which an enzyme-catalyzed reaction proceeds at
half-maximal velocity. Thus, the reactions with which we are concerned ei-
ther occur or do not occur; there are no partial reactions in our system.

With this commitment, we have little need for the precise quantitative
measures that characterize enzyme kinetics. We map all continuous vari-
ables, such as substrate concentration, pH value, and temperature, into dis-
crete ranges, in which enzymes either show activity or do not show activity,
and we refer to these ranges within rules.

Currently, the simulation can predict the action an enzyme will take under
a large number of experimental conditions, and can envision a subset of the
possible metabolic pathways followed by substrates. In qualitative reasoning,
envisionment is the determination of all possible behavioral sequences from
an initial structural description. Ultimately, we hope to envision all possible
pathways from an initial description of an experimental situation.

This chapter recounts our experience thus far in developing a knowledge-
based simulation of DNA metabolism. Section 2 provides background infor-
mation for computer scientists and biologists. In Section 3, we present our
techniques in detail. Section 4 provides sample interactions with the simula-
tion. Finally, Section 5 compares our techniques to related work on metabol-

368 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ic simulations, summarizes our conclusions, and discusses future research di-
rections.

2. Background

We have begun a formal description, using AI techniques, of the replica-
tion and repair pathways of DNA metabolism in E. coli. In this section, we
present, for computer scientists, a brief description of DNA metabolism, and,
for biologists, an introduction to relevant symbolic processing techniques.

2.1. DNA Metabolism

The major mechanisms of DNA metabolism include replication, repair,
transcription, and mutation. Genetic information is transferred from parent to
progeny by the faithful replication of DNA, in which the nucleotide base se-
quence of the parent molecule is duplicated. Repair mechanisms preserve the
integrity of DNA molecules by correcting occasional replication errors (mis-
matched base pairs) and eliminating damage caused by the environment (ra-
diation, chemicals). The expression of genetic information begins with the
transcription of DNA to RNA. Mutations of DNA molecules, which result in
mutant phenotypes, can involve the substitution, addition, or deletion of one
or more bases. These metabolic processes are not understood completely, but
many of the implicated enzymes have been well characterized. In our simula-
tion, we address the mechanisms of replication and repair in the common in-
testinal bacterium E. Coli by representing current knowledge about the criti-
cal enzymes.

DNA polymerase I from E. coli is one of the more complex enzymes of
DNA metabolism, possessing at least five distinct enzymatic activities in a
single polypeptide chain [Kornberg, 1980; Kornberg, 1982]. It is the central
player in the major pathways of DNA replication and repair, and is one of the
most highly characterized enzymes in DNA metabolism. The enzyme is able
to synthesize DNA from the four precursor deoxynucleoside triphos-
phates—dATP, dGTP, dCTP, and dTTP—as long as a primer-template DNA
molecule is present. The enzyme extends the 3'-hydroxyl terminus of a DNA
primer, which is hydrogen-bonded to the template, by adding nucleotide
residues one at a time, according to the Watson–Crick base-pairing
rules—adenine with thymine and guanine with cytosine.

DNA polymerase I occasionally adds a nucleotide that cannot hydrogen-
bond to the corresponding base in the template strand. When this happens,
polymerization stops, because the primer is no longer correctly hydrogen-
bonded. However, DNA polymerase I can remove the unpaired base using an
endogenous 3' exonuclease activity and resume polymerization. This 3' ex-
onuclease activity is known as proofreading. DNA polymerase I can also re-
move base-paired nucleotides from the 5' terminus; when polymerization oc-

GALPER, BRUTLAG & M ILLIS 369

curs simultaneously, nick translation may occur. Polymerization and exonu-
cleolytic degradation are the primary activities of DNA polymerase I, as de-
picted in Figure 1.

E. coli DNA ligase performs an important function at the end of DNA re-
pair, replication, and recombination—namely, sealing the remaining nicks.
DNA ligase joins adjacent 3'-hydroxyl and 5'-phosphoryl termini in nicked
duplex DNA by forming a phosphodiester bond. In E. coli, DNA ligase re-
quires magnesium and nicotinamide adenine dinucleotide (NAD) as cofac-
tors.

Phosphodiester bond synthesis occurs through three component reactions
[Lehman, 1974], as depicted in Figure 2. First, the enzyme reacts with NAD
to form ligase-adenylate, a complex in which an adenosine monophosphate
(AMP) moiety is linked to a lysine residue of the enzyme through a phospho-
amide bond. Nicotinamide mononucleotide (NMN) is released (see Figure

370 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

TEMPLATE-PRIMER ACTION PRODUCT

Intact

duplexes

Nicked

duplexes

Gapped

duplexes

Single

strands

Primed

single

strands

No change

No change

Strand

displacement

or

Nick

translation

Strand

displacement

or

Nick

translation

Gap filling

Chain

elongation

Chain

elongation

Chain

elongation

Figure 1. The activities of DNA polymerase I on various templates and primers.
(Source: Adapted from Kornberg, 1980, with permission.)

2a). Next, the adenyl group is transferred from the ligase-adenylate complex
to the DNA at the site of the nick to generate a new pyrophosphate linkage,
between the AMP group and the 5'-phosphoryl terminus at the nick (see Fig-
ure 2b). Finally, the 5' phosphate is attacked by the apposing 3'-hydroxyl
group at the nick to form a phosphodiester bond, and AMP is eliminated (see
Figure 2c).

Each of these component reactions is reversible; thus, DNA ligase is also
able to catalyze an AMP-dependent endonuclease reaction. These nicking
and sealing activities can be demonstrated through the AMP-dependent con-
version of a closed superhelical circle via a nicked, adenylylated intermedi-
ate to a closed, relaxed circle [Modrich, Lehman, and Wang, 1972]. For a
complete discussion of DNA metabolism, we refer the reader to any of sev-
eral textbooks on molecular biology, including [Freifelder, 1985; Watson,
1988], and to reference texts on replication and repair [Kornberg, 1980;
Friedberg, 1985].

The catalytic actions mediated by DNA polymerase I and DNA ligase de-
pend on both the physiological conditions and the structure of the DNA sub-
strate. For example, if conditions are not appropriate for binding free nu-
cleotides, then polymerization by DNA polymerase I will not occur.
Alternatively, if the 3' primer terminus of the DNA is not a hydroxyl group,
then polymerase I will bind either too tightly or too loosely to the substrate,
and synthesis of new DNA will be thwarted. If NAD is not present, then

GALPER, BRUTLAG & M ILLIS 371

OH P

L NAD + L AMP NMN ++ +

L AMP

OH P OH P

AMP

L+

b)

c)

OH P

AMP

AMP+

a)

Figure 2. The activities mediated by DNA ligase. a) DNA ligase and nicotinamide
adenine dinucleotide combine to form ligase adenylate. b) The adenyl group is
transferred from the ligase-adenylate complex to the DNA at the site of the nick to
generate a new pyrophosphate linkage. c) The 5' phosphate is attacked by the ap-
posing 3'-hydroxyl group at the nick to form a phosphodiester bond, thus eliminating
the AMP.

DNA ligase will not seal a nick. Notice that these catalytic actions, as well as
all those depicted in Figures 1 and 2, can be expressed succinctly as rules,
with the appropriate descriptions of enzyme, substrate, and conditions.

2.2. Artificial Intelligence Methods

Artificial intelligence offers numerous methods for representing large
amounts of knowledge and for reasoning with that knowledge to find solu-
tions to problems. We use a common and very general framework known as
a production system. A production system consists of a set of rules for draw-
ing conclusions and performing actions, a working memory that structures
the relevant information appropriately, and a control strategy for governing
the use of the rule set on the working memory. Each of our production rules
is expressed in an English-like if–then form. For example, to denote the re-
quirement that a 3' terminus be paired and have a hydroxyl group for DNA
polymerase I to extend a primer, we write

(IF (OR
(AND (THE EXTERNAL-3P-GROUP OF DNA IS HYDROXYL)

(THE EXTERNAL-3P-END OF DNA IS PAIRED))
(AND (THE INTERNAL-3P-GROUP OF DNA IS HYDROXYL)

(THE INTERNAL-3P-END OF DNA IS PAIRED)))
THEN
DEDUCE

(A SPECIFICITY OF DNA-POLYMERASE-I IS PRIMER-EXTENSION))

We shall explain the representation of DNA and enzyme in Section 3.1;
for now, notice that the premise and conclusion of this rule refer to objects in
our simulated world (DNA, DNA-POLYMERASE-I). Each object, or unit,
has various attributes, or slots (e.g., INTERNAL-3P-END, SPECIFICI-
TY), each of which can take on a number of values (e.g., PAIRED,
PRIMER-EXTENSION). Units correspond to real-world entities, and slots
describe those entities; with these tools, we can build the second component
of a production system—the working memory on which the rules act.

Unit representations, often referred to as frame-based, have several ad-
vantages over other representational methods [Fikes and Kehler, 1985; Min-
sky, 1975; Minsky, 1986; Stefik, 1979]. Frames can be organized into hierar-
chies, in which the most specific objects, called instances, inherit attributes
from the more general objects, called classes. In addition, hierarchical frame-
based representations are object-orientedand modular [Bobrow and Stefik,
1986; Brachman, Fikes, and Levesque, 1983; Levesque and Brachman,
1984; Stefik and Bobrow, 1986].

The final component of a production system is the control strategy, which
is used to apply the production rules to the working memory. To determine
the applicability of each rule, the production system can compare the premise

372 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

of the rule to working memory; if the premise is true, the rule is “fired,” and
the actions prescribed by the rule are taken. The control strategy specifies the
order in which rules will be compared to working memory and resolves
conflicts that arise when several rules match at the same time. Two common
control strategies are breadth-firstand depth-firstsearch.

The production-system framework can be used to reason in both the for-
ward and backward directions. In the forward direction, we reason from the
data available currently; the premises of rules are matched against working
memory, and any actions are taken on the working memory. Then, the rule
set is compared to the new working memory. This approach is often called
data-directed reasoningor forward chaining. In the backward direction, we
reason from our desired goals; the conclusions of rules are matched against
working memory, and the premises become new goals to be achieved. We
continue until the initial goal is achieved. This approach is known as goal-
directed reasoningor backward chaining. Of course, the same rule set can be
used for both forward and backward chaining.

In addition to a production system, we use a technique known as truth
maintenance. A truth-maintenance system (TMS) supports nonmonotonic
reasoning, in which the number of facts known to be true is not strictly in-
creasing over time. Thus, the addition of a new piece of information to work-
ing memory may force the deletion of another. A TMS manages the depen-
dencies among facts. A particular fact becomes true when one or more
supporting facts becomes true. The same fact may become false during the
course of a run through the simulation if new information causes the support-
ing facts to become false.

For example, a user may assert that DNA has a hydroxyl group at its 3'
terminus, which is also paired. The system can conclude that DNA poly-
merase I could extend the primer from the 3' end, if the environmental condi-
tions were appropriate (e.g., nucleotides are required). If the user now re-
moves the fact that the 3' terminus is paired, the TMS retracts the earlier
conclusion about DNA polymerase I’s specificity for extending the primer.
The TMS is similar to a forward chainer in that both examine facts that are
currently true to determine whether new facts can become true. In addition,
the TMS can withdraw a fact when there no longer are sufficient data to sup-
port that fact.

We refer the reader to any of several AI textbooks for a comprehensive in-
troduction to the field [Nilsson, 1980; Rich, 1983; Charniak and McDermott,
1985; Schapiro, 1986].

3. Techniques

In this work, the domain-specific knowledge has been provided directly
by the developers of the system and by readings from the literature

GALPER, BRUTLAG & M ILLIS 373

[Kornberg, 1980; Lehman, 1974]. In the future, we plan to simplify the pro-
cess of knowledge acquisition, so that a biochemist will be able to enter new
information without having to learn the details of the knowledge representa-
tion. We discuss some possibilities for knowledge-acquisition tools in Sec-
tion 5.

The simulation currently resides in the Knowledge Engineering Environ-
ment (KEE), developed by Intellicorp, Inc. KEE provides a rich collection of
knowledge-engineering tools in a Common LISP environment. A flexible
and expressive frame system allows the representation of complex objects,
relationships, and behaviors. KEE units can be organized logically into hier-
archies to permit parsimonious representations. Rules are themselves units,
and can be used for both forward and backward chaining. An assumption-
based truth-maintenance system [deKleer, 1986] manages the dependencies
among facts, as expressed by rules. Facts can thus be concluded automatical-
ly whenever existing evidence supports their inference; when justifications
are retracted, all dependent facts are retracted as well. KEE’s ActiveImages
package provides a number of graphic displays for both viewing and modify-
ing attribute values in KEE objects. The KeePictures package will permit us
to develop graphic representations of metabolic objects, including intermedi-
ates and products.

In Sections 3.1 through 3.4, we distinguish between the representation of
simulation objects and the representation of the interactions between these
objects.

3.1. Representation of Objects

We have developed a modular and robust representation for the metabo-
lites we wish to simulate. There are currently three major classes of objects:
DNAS, ENVIRONMENTAL-CONDITIONS, and ENZYMES. An instance of
each class requires specification of all possible attribute values; the rules de-
scribing an instance’s behavior are described in Section 4.2. There are cur-
rently four major objects: DNA, an instance of the DNASclass; CONDI-
TIONS, an instance of the ENVIRONMENTAL-CONDITIONSclass; and
two ENZYMESinstances, DNA-POLYMERASE-Iand DNA-LIGASE. All
information regarding DNA–including class information, instances, active im-
ages, and rules–is contained in the DNA-KB knowledge base. Likewise, all
information regarding the environmental conditions is contained in the CON-
DITIONS-KB . All information regarding each enzyme instance is contained
in the dedicated knowledge bases, POL-I-KB and LIGASE-KB . This de-
sign allows us to load units for selective testing, without the interference of
knowledge from other objects in the simulation. This use of distributed
knowledge bases also will eventually allow us to examine specific subsets of
enzymes, much as a biochemist would mix reagents in the laboratory.

The descriptive information in the DNASclass is intentionally redundant.

374 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Our goal is to provide methods for specifying the properties of DNA in as
many ways as is natural for a scientist. For example, the biochemist can de-
clare that the STRUCTUREof DNA is a NICKED-CIRCLE, or that the
TOPOLOGYis CIRCULARand the STRANDSare NICKED-DUPLEX. Either
description will infer the other. The rules for reasoning about DNA are in-
stances of the DNA-RULESclass and refer only to attributes of a DNAunit.
All 96 DNA-RULESinstances are organized by the attribute of DNArefer-
enced in the conclusion of the rule; thus, all rules that determine the TOPOL-
OGYof DNAare members of the TOPOLOGY-RULESsubclass of DNA-
RULES.

We use a hierarchy of four levels to describe DNA. At the lowest level,
we describe a DNA molecule by characterizing the 5' and 3' termini at both
external and internal positions. For example, a gapped, linear DNA molecule
will have 3'-internal and 5'-internal termini at either end of the gap; in addi-
tion, there are 3' and 5' external termini at the ends of the molecule. We char-
acterize each terminus by specifying the chemical group present (e.g., HY-
DROXYL, PHOSPHATE, DIDEOXY, ADENYL) and the nature of the terminus
(e.g., PAIRED, UNPAIRED, RECESSED, PROTRUDING). At the next level,
we summarize the information about the termini by filling the ENDSslot
with values such as FLUSHand 3'-PROTRUDING. These values can be
specified by the user or inferred by rules that consider the status of the com-
ponent termini. At the next level, the user can fill slots that specify compo-
nents of the overall structure of the molecule: The NICKS slot qualitatively
describes the nicks present (NONE, SOME, ONE, MULTIPLE), the TOPOLO-
GYslot specifies the possible shapes (e.g., LINEAR, Y-FORM, CIRCULAR),
the STRANDEDNESSslot can take on the values SINGLE-STRANDEDand
DOUBLE-STRANDED, and the STRANDSslot describes the strands indepen-
dent of topology (e.g., INTACT-DUPLEX, NICKED-DUPLEX, PRIMED-
SINGLE-STRAND). Finally, at the highest descriptive level, the overall
STRUCTUREslot offers a list of common DNA structures (e.g., PRIMED-
CIRCLE, NICKED-LINEAR , COVALENTLY-CLOSED-CIRCLE), from
which the value of component slots can be inferred. The active image associ-
ated with the DNAunit is shown in Figure 3. We can conceive of multiple, in-
dependent DNA units in a simulation; if a reaction causes the generation of a
new, independent DNA molecule (e.g., strand displacement followed by
cleavage of the displaced strand), the simulation will contain two DNA in-
stances, a duplex and a single-stranded molecule, each of which will interact
differently with the enzymes present.

The CONDITIONSunit contains three quantitative attributes that describe
the physical environment: TEMPERATURE, PH, and IONIC-STRENGTH
(see Figure 4). Values of these slots have been mapped into discrete ranges to
facilitate purely qualitative reasoning and to reduce the number of rules that
cannot be handled by the TMS (see Section 4.3). Currently, the TEMPERA-

GALPER, BRUTLAG & M ILLIS 375

TURE-RANGEslot can take on values from among 0-TO-5 , 5-TO-20 ,
20-TO-45 , 30-TO-37 , and 45-TO-100.

The significant PH-RANGEvalues are 6.0-TO-9.5 and 7.5-TO-8.0 ;
the PH-RANGEslot value is unknown if the PHslot value is not within these
ranges. The IONIC-STRENGTH-RANGEslot is handled in a similar fash-
ion, with range values 0.001-TO-0.003 and 0.001-TO-0.3 .

The CONDITIONS-RULESclass manages the mapping of all quantita-
tive variables into qualitative ranges, which are then referenced in the
premises of rules that represent interactions between enzymes, substrates,
and the environment. The other attributes in the CONDITIONSunit, includ-
ing NUCLEOTIDES, MONOVALENT-CATIONS, DIVALENT-CATIONS,

376 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 3. Display of the DNA unit. DNA can be described at several levels of detail.
At the most detailed level, DNA can be characterized by the 5' and 3' termini at both
external and internal positions; at the most abstract level, the substrate DNA can be
one of 16 common structures. The goal is to provide methods for specifying the prop-
erties of DNA in as many ways as is natural for a scientist.

ANIONS, and COFACTORS, represent physical objects, and could be mod-
eled as units in the simulation. We have chosen not to do this, because we are
interested in these objects only by virtue of their presence or absence; we
have no use for structural descriptions of these objects. We thus consider
these substances as attributes of the environment and assume that they are
present in quantities that support the reactions simulated, if they are present
at all.

We propose a general model for the qualitative representation of enzymes,
embodied in the ENZYMESclass. The ACTIVITY of an enzyme is deter-
mined by the environmental conditions; likewise, the SPECIFICITY of an
enzyme depends solely on the substrate. In turn, the ACTIONof the enzyme
depends on the enzyme’s specificity and activity. In many cases, an enzyme
may exist in different STATEs—for example, free or bound to a substrate.
The DNA-POLYMERASE-Iand DNA-LIGASE units contain different lists
of potential values for each of the ACTIVITY , SPECIFICITY , ACTION,
and STATEslots. For example, DNA polymerase I can display binding ac-
tivities (e.g., XMP-BINDING, XTP-BINDING , DNA-BINDING), synthetic
activities (DIDEOXY-CHAIN-TERMINATION, STRAND-DISPLACE-

GALPER, BRUTLAG & M ILLIS 377

Figure 4. Display of the CONDITIONS unit. The quantitative attributes are mapped
into range attributes (not shown). For example, when the TEMPERATURE is 37.5 de-
grees, the TEMPERATURE-RANGE attribute is 20-TO-45. All enzyme-activity rules
that depend on temperature use this attribute to determine temperature.

MENT), or degradative activities (3P-EXONUCLEASE, 5P-
EXONUCLEASE). Similarly, ligase can bind (DNA-ADENYLYLATION,
SELF-ADENYLYLATION), synthesize (SEALING-ACTIVITY), or de-
grade (ENDONUCLEASE-ACTIVITY). Recall that the ACTIVITY value
depends solely on the environmental conditions; the SPECIFICITY slot for
each enzyme has similar types of values, but depends on the substrate de-
scription. Slots describing an enzyme can take on multiple values at the same
time; for example, in nick translation, the polymerization and 5' exonuclease
activities of polymerase I are possible simultaneously. The active images for
DNA-POLYMERASE-Iand DNA-LIGASE, depicting all possible values for
each slot, are displayed in Figure 5.

3.2. Representation of Interactions and Behaviors

The object representations described in Section 3.1 correspond to the
working memory of a production system; the rule set, which operates on
working memory, captures knowledge of the potential interactions between
and behaviors of the simulation objects. Rules for simulating DNA-POLY-
MERASE-I action are all instances of the DNA-POL-I-RULES class, con-
tained in the POL-I-KB knowledge base. The LIGASE-RULE class is like-

378 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 5. The DNA-POLYMERASE-I and DNA-LIGASE representations. Each sub-
panel represents an enzyme attribute and contains all possible values of that at-
tribute.

wise independently contained in the LIGASE-KB knowledge base.
We structure enzyme rule hierarchies along the same lines as the represen-

tation of the enzyme; for example, there are POL-I-SPECIFICITY-
RULES, POL-I-ACTIVITY-RULES , and POL-I-ACTION-RULES sub-
classes of the DNA-POL-I-RULES class. A typical instance of
POL-I-ACTIVITY-RULES , describing the effect of the environment on
the activity of an enzyme, is

(IF (OR (A TEMPERATURE-RANGE OF CONDITIONS IS 0-TO-5)
(A TEMPERATURE-RANGE OF CONDITIONS IS 5-TO-20)
(A TEMPERATURE-RANGE OF CONDITIONS IS 20-TO-45))

(A IONIC-STRENGTH-RANGE OF CONDITIONS IS .001-TO-.3)
(A PH-RANGE OF CONDITIONS IS 6.0-TO-9.5)

THEN
DEDUCE

(AN ACTIVITY OF DNA-POLYMERASE-I IS DNA-BINDING))

Another POL-I-ACTIVITY-RULES instance may reference previously
deduced activities, in addition to other slots of the CONDITIONSunit.

To predict the action an enzyme mediates, we combine knowledge about
the specificity and activity of the enzyme. If the ACTIVITY of DNA-POLY-
MERASE-I is DNA-BINDING, but there is no DNA present, then we cannot
predict that DNA polymerase I actually will bind. A POL-I-SPECIFICI-
TY-RULES instance asserts the readiness of the DNA substrate for action by
an enzyme; an example can be found in Section 2.2. A POL-I-ACTION-
RULESexample follows:

(IF (AN ACTIVITY OF DNA-POLYMERASE-I IS SYNTHESIS)
(A SPECIFICITY OF DNA-POLYMERASE-I IS PRIMER-EXTENSION)

THEN
DEDUCE

(AN ACTION OF DNA-POLYMERASE-I IS PRIMER-EXTENSION))

Most rules for predicting enzyme action are fairly simple. However, there
may be 15 to 20 underlying facts necessary to infer the required specificity
and activity of the enzyme.

Prediction of enzyme action is only the first step in metabolic simulation;
we also want to predict a sequence of different reactions that the enzymes
may mediate as the substrate is altered by the actions of the enzyme. The
KEEworlds facility is used to this end. The KEEworlds facility allows us to
represent steps in a metabolic pathway as changes in the substrate or en-
zyme; rules can define new worlds (steps in a pathway) in which all informa-
tion about metabolic objects is inherited from a parent world and only
changes to these objects are stored explicitly in the child world. The KEE-
worlds facility is tightly coupled to the TMS; the TMS is used to predict

GALPER, BRUTLAG & M ILLIS 379

what actions the enzyme would take in the altered environment. Multiple
worlds can be linked together in a highly branched fashion typical of known
pathways of DNA metabolism.

When an enzyme action is predicted, the simulation creates a new world
in which the structure of the substrate DNA in the original world is modified
by the enzyme’s action; the new world inherits all information about the
DNA from the original world, but modifies slot values accordingly. For ex-
ample, if the ACTIONof DNA-POLYMERASE-Iis NICK-TRANSLATION
on a nicked-linear structure, in a new world, the substrate DNA will now be
an intact, duplex molecule. In addition, the enzyme structure may change as
a result of its action. In the preceding example, the enzyme may begin bound
to the nick; we describe this situation by filling the STATE slot of DNA-
POLYMERASE-Iwith the value NICK-BOUND. In the new world, there is
no longer a nick, and the enzyme is bound to a flush end.

Rules that generate new worlds are called new-world-action rules in KEE.
The new-world-action rule for the example in the previous paragraph is

(IF (THE STRUCTURE OF DNA IS NICKED-LINEAR)
(THE STATE OF DNA-POLYMERASE-I IS NICK-BOUND)
(THE ACTION OF DNA-POLYMERASE-I IS NICK-TRANSLATION)
(THE INTERNAL-5P-ENDS OF DNA ARE ?Z)

THEN
IN.NEW.AND.WORLD

(CHANGE.TO (THE STRUCTURE OF DNA IS INTACT-LINEAR))
(DELETE (THE INTERNAL-3P-GROUP OF DNA IS HYDROXYL))
(DELETE (THE INTERNAL-3P-ENDS OF DNA ARE PAIRED))
(DELETE (THE INTERNAL-5P-ENDS OF DNA IS ?Z))
(CHANGE.TO (THE STATE OF DNA-POLYMERASE-I IS FLUSH-BOUND))

This rule represents the processof nick translation in a nicked-linear
molecule. The generated world has modified the DNA molecule—there are
no longer internal 3' or 5' termini—and has changed the state of the enzyme.
Nick translation is actually a process composed of similar, repeated steps; we
lump these steps into one for this process. Other processes may require a
finer granularity of representation.

3.3. Inference

We use an assortment of inference techniques in our simulation. The pre-
diction of enzyme action involves a combination of forward chaining, back-
ward chaining, and truth maintenance. In addition, the simulation of steps in
a metabolic pathway requires forward chaining on new-world-action rules.
Each of these rules generates a new world in a pathway, asserts new facts,
and possibly retracts existing facts; the TMS then predicts enzyme actions in
the newly generated world. Next, the new-world-action rules are fired in the

380 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

new world, and the process repeats, until no new worlds can be generated.
Within each world, the TMS distinguishes between two types of facts.

Primitive facts are added directly to working memory by the user. These
facts do not depend on the truth of any other fact. The truth of deduced facts
depends entirely on the truth of one or more other facts. Thus, only deduced
facts can lose their support and be withdrawn by the TMS during a simula-
tion. Primitive facts can be withdrawn by only the user.

The operation of the TMS is analogous to the activity of readjusting our
belief in certain propositions based on a set containing contradictory evi-
dence. Facts can become true through a cascading of evidence in which the
consequent of one justification serves as one of the antecedents of another. If
the facts asserted by the user lead to a contradiction, this contradiction is dis-
played to the user in a special window called a worlds browserand in the
KEE message window. A menu item provides a complete explanation of the
origin of the contradiction in terms of both the competing facts and the con-
clusions derived from those facts (see Section 3.4).

In our simulation, users can assert or retract facts via the graphical inter-
face, or programmatically via a LISP expression. Using the mouse to point to
a fact will assert that fact if it is unknown, or will retract that fact if it is
known. Known facts are highlighted in inverse video. After a new primitive
fact is asserted or retracted, the TMS adds facts that can now be deduced,
and removes any deduced facts that are no longer true. All user-initiated as-
sertions take place in the backgroundworld, from which all new worlds are
spawned.

KEE restricts TMS justifications to purely monotonic rules; these rules
are called deductionrules. For example, the following rule is monotonic;
facts are added to only the current environment:

(IF (OR (THE EXTERNAL-5'-END OF DNA IS PAIRED)
(THE INTERNAL-5'-END OF DNA IS PAIRED))

THEN
DEDUCE

(A SPECIFICITY OF DNA-POLYMERASE-I IS 5'-EXONUCLEASE))

Assume, however, that we want to retract a fact explicitly, as in the following
rule:

(IF (AN ACTIVITY OF DNA-POLYMERASE-I IS DNA-BINDING)
(OR (A DIVALENT-CATIONS OF CONDITIONS IS MG)

(A DIVALENT-CATIONS OF CONDITIONS IS MN))
(A NUCLEOTIDES OF CONDITIONS IS DATP)
(A NUCLEOTIDES OF CONDITIONS IS DTTP)
(A NUCLEOTIDES OF CONDITIONS IS DGTP)
(A NUCLEOTIDES OF CONDITIONS IS DCTP)

GALPER, BRUTLAG & M ILLIS 381

(A NUCLEOTIDE-RANGE OF CONDITIONS IS NO-DDXTPS)
THEN
DO

(AN ACTIVITY OF DNA-POLYMERASE-I IS SYNTHESIS)
(DELETE (AN ACTIVITY OF DNA-POLYMERASE-I IS LIMITED-SYNTHE-

SIS))))

KEE cannot generate justifications for this rule, because the rule expresses
explicit nonmonotonic reasoning. Likewise, rules with certain operators as
premises, including LISP expressions, do not generate TMS justifications.
These rules are expressed as same-world-actionrules within KEE; we also
refer to these same-world-action rules as non-TMSrules.

Since justifications are not generated for non-TMS rules, these rules are
not invoked automatically when their premises become true, whereas TMS
rules are. In addition, non-TMS rules cannot be included in explanation
graphs. We group all non-TMS rules into a single class, and forward chain on
this class whenever the value of a unit referenced in the antecedent of a non-
TMS rule changes. Special functions called demons (or KEE active values)
are attached to the attributes mentioned in the antecedents of non-TMS rules.
These demons permit nonmonotonic reasoning with non-TMS rules.

To accommodate both standard production rules and the TMS representa-
tion of the same knowledge, we have modified the KEE rule parser. Whenev-
er a new rule is entered into the knowledge system (whether via the standard
user interface or via the KEE rule editor), the rule is parsed by KEE and the
type, the premises, and the conclusions of the rule are determined. We have
added a further rule-parsing function to the normal KEE rule parser that ex-
amines the rule type. If the rule is nonmonotonic, then the rule unit is added
to the non-TMS rules class so that it will be invoked automatically whenever
one of its premises changes, as described. If the rule is monotonic, then its
premises are asserted into the TMS as justifiers for the conclusions of the
rule. Thus, all monotonic rules have a double representation in the knowl-
edge system. The fact that KEE is itself implemented as a series of knowl-
edge bases allows us to modify KEE’s action and to change its behavior.

3.4. Explanation

Our knowledge system has a mechanism by which it can explain its pre-
dictions for each step of a pathway. For any fact deduced by the TMS, an ex-
planation graph displays the sequence of TMS justifications that were used to
derive that fact. In Figure 6, the simulation has ascertained that, given the
current state of the substrate, DNA polymerase I could translate a nick. If
asked to explain this fact, the TMS would construct the explanation graph
shown, based on the currently justifiable facts.

The explanation graph displays the following information. The user has
stated that the DNA has some nicks and that it has an internal 3'-OH group.

382 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

These facts are labeled “FROM.BACKGROUND.ONLY.” The TMS has in-
voked a rule by which it is able to deduce that any DNA with some nicks
must be a nicked duplex. The firing of another rule allows the TMS to deduce,
from the presence of the internal 3'-OH group in a nicked duplex DNA, that
DNA polymerase I could perform nick translation on this DNA molecule.

The user can also ask the system about facts that have not been deter-
mined to be true by using the QUERY function. This function invokes the
backward chainer and engages in a brief dialogue with the user, searching
through the set of rules for ways to establish the given fact and asking the
user for additional information that could serve to support this fact.

4. Sample Interactions

There are two modes of interaction with the simulation: prediction and en-
visionment. In the prediction mode, the user asserts known facts about an ex-
perimental system, by describing the DNA and environmental conditions via
the corresponding active images; the TMS will conclude other facts automat-
ically. The user can also reason backward from a desired enzyme action. In
the envisionment mode, the user chooses to generate all possible metabolic
pathways from initial conditions. We present brief examples of each mode,
using DNA polymerase I in isolation.

GALPER, BRUTLAG & M ILLIS 383

Figure 6. An explanation graph depicting why (A SPECIFICITY OF DNA-POLY-
MERASE-I IS NICK-TRANSLATION). The explanation graph uses TMS justifica-
tions to explain the system’s reasoning.

384 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 7. An initial experimental environment. The temperature is 37 degrees Cel-
sius and the pH value is 7.4. No DNA polymerase I activity is possible.

Figure 8. An increase in the ionic strength. DNA polymerase I is now able to bind to
DNA. The display for the ACTIVITY of DNA-POLYMERASE-I now shows DNA-
BINDING.

GALPER, BRUTLAG & M ILLIS 385

Figure 9. The addition of Mg++. The divalent cation Mg++ is required for exonu-
clease activities. 3P-EXONUCLEASE and 5P-EXONUCLEASE activities now ap-
pear in the ACTIVITY slot.

Figure 10. The addition of nucleotides. With the introduction of four nucleotides —
ribo ATP, dTTP, dGTP, and dCTP — DNA shows limited synthetic activity due to the
lack of dATP.

4.1. Prediction of Enzyme Action

We begin with an experimental environment at 37 degrees Celsius and a
pH value of 7.4 (Figure 7); notice that DNA polymerase I displays no activi-
ty. If we increase the ionic strength (Figure 8), polymerase I is able to bind to
DNA. With the subsequent addition of the divalent cation Mg++ (Figure 9),
DNA polymerase I now shows 3' and 5' exonuclease activities. In Figure 10,
we add four nucleoside triphosphates—ribo ATP, dTTP, dGTP, and dCTP.
Notice that DNA polymerase I can now bind to these triphosphates and in-
corporate some of them; the limited synthetic activity is due to the lack of
dATP. In the presence of Mn++ (Figure 11), however, DNA polymerase I can
incorporate ribo ATP into a growing strand; the activities RIBO-INCORPO-
RATION, SYNTHESIS, and STRAND-DISPLACEMENTcan now be con-
cluded.

In Figure 12, we assert the presence of a GAPPED-LINEARmolecule,
with paired 3' and 5' internal ends and a hydroxyl group at the 3'-internal ter-
minus. The SPECIFICITY slot of DNA-POLYMERASE-Inow indicates
that DNA polymerase I can bind to three locations on the substrate (the 3'
termini, the 5' termini, and the primer terminus), hydrolyze the molecule
from either a 3' or a 5' terminus, or extend the primer, and, in doing so, fill
the gap. In Figure 13, the simulation predicts seven actions for DNA poly-

386 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 11. The addition of Mn++. Ribo ATP is incorporated into a growing strand,
in the presence of Mn++. Three new activities are displayed: RIBO-INCORPORA-
TION, SYNTHESIS, and STRAND-DISPLACEMENT.

merase I, each of which can be explained graphically using TMS
justifications. Other examples of the use of the system to predict enzyme ac-
tion have been published elsewhere [Brutlag, 1988].

4.2. Envisionment of Metabolic Pathways

Figure 14 depicts a partial envisionment of the metabolic pathways that

GALPER, BRUTLAG & M ILLIS 387

Figure 12. A description of DNA and the specificities of DNA polymerase I. A
GAPPED-LINEAR structure is asserted; from this fact, the system concludes that the
STRANDS are GAPPED-DUPLEX, the STRANDEDNESS is DOUBLE-STRANDED,
the TOPOLOGY is LINEAR, and the 3' and 5' internal ENDs are PAIRED. The
SPECIFICITY slot of DNA-POLYMERASE-I now indicates that DNA polymerase I
can bind to three locations on the substrate (BINDING-TO-3P-TERMINI, BINDING-
TO-5P-TERMINI, and BINDING-TO-PRIMER-TERMINUS), hydrolyze the molecule
from either a 3' or a 5' terminus (3P-EXONUCLEASE and 5P-EXONUCLEASE), ex-
tend the primer (PRIMER-EXTENSION), and fill the gap (GAP-FILLING).

originate with the gapped linear DNA molecule described in Section 4.1.
KEE generates a graph of worlds; we have enhanced this graph to diagramat-
ically depict changes in the structure and states of objects. In this example,
DNA polymerase I is the only enzyme present. Each world is named for the
action most recently taken by the enzyme; if the enzyme is free, the world is
named after the structure of the DNA present in that world.

The system generates four new worlds based on the predicted actions of
DNA polymerase I, as described in Section 4.1. Each of these worlds is the
result of a binding process. In the first world (W1), the enzyme is bound to
the 3'-internal, or primer, terminus. Here, primer extension, or gap filling, is a
predicted action; thus, a new world is generated in which the primer is ex-
tended, until the gap has become a nick. In this world, DNA polymerase I
can nick translate; the system generates another new world in which the en-
zyme is now bound to the 3'-external terminus of an intact linear molecule.
The only action possible in this world is the dissociation of DNA polymerase
I from the substrate; a new world is generated to describe the result of this
process. Finally, as depicted in the final world of this pathway, the free en-
zyme can bind to free nucleotides, but no further activity is observed.

The second world (W2) contains the enzyme bound to the external 5' ter-
minus of the gapped molecule. In this world, the enzyme can hydrolyze the

388 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Figure 13. The predictions of ACTIVITY, SPECIFICITY, and ACTION for DNA-
POLYMERASE-I.

DNA from the external 5' position. The system generates a new world, corre-
sponding to the result of exonuclease activity at the external end. In the
world labelled, “5' exonuclease at end,” DNA polymerase I has hydrolyzed
the intact single strand of the substrate; as a result, the STATE of DNA-
POLYMERASE-Ihas changed from 5P-EXT-BOUND to FREE, and the
STRUCTUREof DNAhas changed from GAPPED-LINEARto SINGLE-
STRANDED-LINEAR. Since the substrate no longer supports any enzymatic
actions, the enzyme binds to free nucleotides in a new world, and the path-
way is terminated.

In the third world (W3), the enzyme is bound to the internal 5' terminus
and 5' exonuclease is a predicated action. In the world labelled, “5' exonucle-
ase at gap,” the enzyme has hydrolyzed a segment of the gapped strand of

GALPER, BRUTLAG & M ILLIS 389

Gapped Linear DNA

P

3' 5'

5'

Bound to 3' Primer End

P

W1

Bound to 5' Internal End

P

W3

Bound to Nucleotides

XTPP

W4

Gap to Nicked Linear

P

Nicked to Intact Linear

P

Intact Linear DNA

P

P

5' Exonuclease at end 5' Exonuclease at gap

P

Bound to Nucleotides

XTPP

Bound to 3' Terminus

P

Bound to Nucleotides

XTPP
P

Bound to 5' Terminus

W2

Bound to 5' External End

P

Bound to Nucleotides

XTPP

Figure 14. A partial envisionment of the metabolic pathways mediated by DNA poly-
merase I, beginning with a gapped, linear DNA molecule.

the substrate; as a result, the STATEof DNA-POLYMERASE-Ihas changed
from 5P-INT-BOUND to FREE, and the STRUCTUREof DNAhas changed
from GAPPED-LINEARto PRIMED-LINEAR. The enzyme can now bind
the primer and the 5' end of the molecule, as well as the free nucleotides pre-
sent in the environment. New worlds are generated for each of these possibil-
ities. Although not shown, the simulation continues with the extension of the
primer in one pathway and the hydrolysis of the primer in another.

The final world (W4) contains a situation encountered previously in the
pathways originating From W1,W2, and W3—namely, the enzyme has bound
free nucleotides, and no further activity is observed.

5. Discussion

In recent years, several researchers have developed qualitative models of
metabolic processes [Weld, 1986; Karp, this volume; Mavrovonioutis, this
volume]. Weld’s PEPTIDE system serves as the basis for his theory of aggre-
gation, which detects repeating cycles of processes and creates a continuous
process description of the cycle’s behavior. We avoid many of the problems
his theory addresses by representing continuous processes explicitly. For ex-
ample, we do not model the polymerization process as a sequence of steps,
each of which adds a nucleotide to a growing strand of DNA; instead, poly-
merization extends a primer as far as possible in one step, and then stops.
Likewise, the exonuclease activities of DNA polymerase I are represented
not as a sequence of discrete processes, but rather as one continuous process.
Binding processes are modeled in a stepwise fashion; in discrete steps, poly-
merase I may bind to the end of a DNA substrate, then bind to a group at the
end of the substrate, and then catalyze a polymerization or hydrolysis reac-
tion. If an event can interrupt a continuous process, with qualitatively similar
results at any point in time, we anticipate the event before the process has
begun and generate two new worlds: one for the continuous process and one
for the interrupted, continuous process. However, we do foresee that we will
need aggregation and cycle detection techniques in the near future; the lack
of cycle detection currently limits the envisionment capabilities of our sys-
tem to those pathways that have no reversible reactions.

Karp’s model of the regulation of the trp operon serves as the basis for a
hypothesis-formation program, which can reproduce the discoveries made by
biologists studying gene regulation over a 20-year period. Karp represents
biochemical objects with KEE frames; these objects correspond to homoge-
neous populations of molecules. In our system, instances of the DNASand
ENZYMESclasses represent single molecules. To illustrate the implications,
suppose a DNA molecule has several spatially separated locations at which
an enzyme can bind; in a real experiment, one DNA polymerase I molecule
may bind at an internal nick, while another may bind at the external end of

390 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

the same DNA molecule. Since we represent only a single enzyme molecule,
our simulation generates pathways for only one enzyme action at a time.
Thus, our system cannot envision all the pathways that may occur under ex-
perimental conditions; simultaneous combinations of actions may produce
paths that are missing from our system. For this reason, we refer to our path-
way generation technique as partial envisionment.

Karp’s reactions are stored in KEE frames, and are organized into process
knowledge bases. These processes are arranged in an inheritance hierarchy
and can inherit attributes from more general reaction classes. Karp construct-
ed a process interpreter to detect and permit interactions between objects. We
store our reactions using KEE rule units, and use standard KEE reasoning
mechanisms (forward chaining and truth maintenance) to generate pathways.
Currently, none of our reactions dynamically generates simulation objects
distinct from the original substrate; our new-world-action rules simply
change the character of the original DNA molecule. Karp’s system dynami-
cally instantiates new objects; we foresee the need for a similar function, as
we augment our representation of enzyme functions and add more enzymes
to the system.

The goals of our system are different from those of Weld, Karp, and
Mavrovonioutis. PEPTIDE’s domain of DNA transcription was meant to test
Weld’s process aggregation methods; Karp’s system contains a comprehen-
sive model of bacterial gene regulation, but was developed to test theories of
scientific discovery. Mavrovonioutis has developed a system for the comput-
er-aided design of biochemical pathways. Our simulation has been developed
for use by biochemists as an interactive reasoning tool. We believe that our
representation of enzymes, substrates, and processes is natural and intuitive.
The attributes both of the substrates and of the enzymes, as well as the rules
relating them, are expressed in biochemical terms and phrases. Representing
DNA metabolism in this way provides explanation and didactic capabilities
that can be used readily by biochemists not involved in the development of
the knowledge system. Knowledge of a metabolic step can be either detailed
or sketchy and still can be represented by the rule-based methods we employ.

Currently, our representation paradigm requires that a user have an under-
standing of knowledge-representation techniques to change or add new infor-
mation. For instance, to represent a new enzyme, the user must first create a
new instance of the ENZYMESclass. Then, he must specify all possible val-
ues of SPECIFICITY , ACTIVITY , ACTION, and STATEfor the ENZYME,
and write at least one rule to conclude each value of each attribute, following
the general paradigm for enzyme representation described in section 3.1. To
perform these operations, the user must know how to create a unit, how to
specify the values allowed for attributes, what the syntax for writing a new
rule is, and which semantics are allowed in the premises of those rules. KEE
allows new units to be generated by simple menu selection and rules to be

GALPER, BRUTLAG & M ILLIS 391

built in a context-sensitive text editor. In a future version of the knowledge
system, we intend to provide a programmatically driven enzyme-acquisition
function that, in conjunction with a tutorial, will greatly facilitate these steps.

Specifically, we would like to automate as much of the enzyme-represen-
tation process as possible. It is clear to us that many enzymes will share
many of their rules with other enzymes of their class (e.g., all exonucleases
hydrolyze DNA from the ends), and only a few of the rules are needed to
specify uniquely any instance of an enzyme class. Hence, one method for au-
tomating the knowledge-acquisition process would be to write prototypical
rules describing an enzyme class that refer to object types; these rules could
then be inherited by specific instances of the enzymes, with references to ob-
ject types replaced by specific objects. This approach is similar to Karp’s use
of process hierarchies. For example, the class of 3' exonucleases would have
a set of general rules describing the binding and hydrolysis of 3' termini of
DNA. Instances of 3' exonucleases would be represented by instantiated
rules from the class level and by additional rules describing the specific be-
havior of the enzyme.

One advantage of this paradigm for enzyme representation is the ease
with which knowledge can be validated. The steps we have outlined guaran-
tee one form of completeness, in that every action of the enzyme can be con-
cluded from at least one set of experimental conditions. Because of the natu-
ral modularity of the rules, it is easy for an expert to examine the premises of
every rule, either manually or programmatically, to determine whether they
cover every situation leading to the conclusion. In addition, consistency of
the rule set is checked at the same time by the TMS, which constantly moni-
tors contradictions or violations of cardinality in the frame system.

We are addressing three major limitations of our current representation of
enzymes. First, there is no provision in our model for rules concerning inter-
actions among enzymes. One enzyme influences the activity of the other en-
zyme only through its effects on substrates or cofactors. For example, DNA
ligase inhibits nick translation by DNA polymerase I by sealing nicks in the
substrate. There are no rules indicating that DNA ligase can limit the extent
of nick translation by displacing the DNA polymerase I in a competitive
fashion based on the processivity of the polymerase reaction. We are devel-
oping a framework for enzyme-interaction rules.

Second, the simulation predicts the action of only a normal, intact, and
uninhibited enzyme. We might want to study an enzyme that was missing
one of its activities or that had one activity inhibited (e.g., a mutant enzyme,
a chemically modified enzyme, or a specific enzyme inhibitor). Although it is
possible to do this manually by duplicating the enzyme and removing or al-
tering specific rules, we would like to develop an automatic method for in-
hibiting any single activity of an enzyme. This method would allow the sys-
tem to analyze, via backward chaining, experimental situations in which one

392 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

or more activities may be missing. The system could then conclude from the
results of an experiment which activities may be present or absent. Karp’s
system can simulate mutant enzymes.

The third limitation is the current lack of a communicative visual repre-
sentation of the objects in the simulation. We would like to represent DNA
molecules and enzymes with object-oriented graphics; we believe that we
could summarize in small diagrams most of the information currently pre-
sented in lists of attribute values. A pathway could then be represented by a
sequence of diagrams showing enzyme–substrate interactions; animation
would be possible, as well.

Acknowledgments

We thank Lyn Dupré for her editorial comments. This work was supported
by grant LM04957 from the National Library of Medicine. ARG and DHM
are Training Fellows of the National Library of Medicine. The KEE Soft-
ware was provided under the University Grant Program from IntelliCorp,
Inc. We would also like to thank both IntelliCorp, Inc., and IntelliGenetics,
Inc., for providing DLB with support for a sabbatical during which this work
was initiated.

References
C. Bierbicher, M. Eigen, and W. Gardiner, “The Kinetics of RNA Replication,” Biochem-

istry 22, 2544–2559 (1983).

D. Bobrow and M. Stefik, “Perspectives on Artificial Intelligence Programming,” Science
231, 951–956 (1986).

D. Bobrow, ed., Qualitative Reasoning About Physical Systems, MIT Press, Cambridge,
MA, 1988.

R. Brachman, R. Fikes, and H. Levesque, “KRYPTON: A Functional Approach to Knowl-
edge Representation,” IEEE Computer16, 67–73 (1983).

D. Brutlag, “Expert System Simulations as Active Learning Environments,” in R. Colwell,
ed., Biomolecular Data: A Resource in Transition, Oxford University Press, Oxford, England,
1988.

B. Buchanan and E. Shortliffe, eds., Rule-Based Expert Systems, Addison-Wesley, Reading,
MA, 1984.

E. Charniak and D. McDermott, Introduction to Artificial Intelligence, Addison-Wesley,
Reading, MA, 1985.

R. Davis, B. Buchanan, and E. Shortliffe, “Production Rules as a Representation for a
Knowledge-based Consultation Program,” Artificial Intelligence8, 15–45 (1977).

J. deKleer, “An Assumption-based TMS,” Artificial Intelligence28, 127–162 (1986).

J. deKleer and J. Brown, “A Qualitative Physics Based on Confluences,” in D. Bobrow, ed.,
Qualitative Reasoning About Physical Systems, The MIT Press, Cambridge, MA, 1985.

R. Fikes and T. Kehler, “Control of Reasoning in Frame-based Representation Systems,”

GALPER, BRUTLAG & M ILLIS 393

Communications of the ACM28, 904–920 (1985).

R. Franco and E. Canela, “Computer Simulation of Purine Metabolism,” European Journal
of Biochemistry144, 305–315 (1985).

D. Freifelder, Essentials of Molecular Biology, Jones and Bartlett, Boston, 1985.

E. Friedberg, DNA Repair, W.H. Freeman, New York, 1985.

P. Karp and P Friedland, “Coordinating the Use of Qualitative and Quantitative Knowledge,”
in L. Widman, et al., eds., Artificial Intelligence, Simulation, and Modeling, Wiley, New York,
1989.

P. Karp, “A Qualitative Biochemistry and its Application to the Regulation of the Trypto-
phan Operon,” this volume.

M. Kohn and D. Garfinkel, “Computer Simulation of Metabolism in Palmitate-perfused Rat
Heart. I. Palmitate oxidation,” Annals of Biomedical Engineering 11, 361–384 (1983a).

M. Kohn and D. Garfinkel, “Computer Simulation of Metabolism in Palmitate-Perfused Rat
Heart. II. Behavior of Complete Model,” Annals of Biomedical Enineering 11, 511–532 (1983b).

A. Kornberg, DNA Replication, W. H. Freeman, New York, 1980.

A. Kornberg, 1982 Supplement to DNA Replication, W. H. Freeman, New York, 1982.

I. Lehman, “DNA ligase: Structure, Mechanism and Function,” Science186, 790–797
(1974).

H. Levesque and R. Brachman, “A Fundamental Tradeoff in Knowledge Representation and
Reasoning,” in Proceedings of the CSCI/SCEIO Conference 1984, CSCI, London, Ontario,
1984.

M. Mavrovouniotis, “The Identification of Qualitatively Feasible Metabolic Pathways, this
volume.

S. Meyers and P. Friedland, “Knowledge-based Aimulation of Genetic Regulation in Bacte-
riophage Lambda,” Nucleic Acid Research12, 1–9 (1984).

M. Minsky, “A Framework for Representing Knowledge,” in P. Winston, ed., The Psycholo-
gy of Computer Vision, McGraw-Hill, New York, NY, 1975.

M. Minsky, The Society of Mind, Simon and Schuster, New York, 1986.

P. Modrich, I. Lehman, and J. Wang, “Enzymatic Joining of Polynucleotides. XI. Reversal of
Escherichia Coli Deoxyribonucleic Acid Ligase Reaction,”Journal of Biological Chemistry
247, 6370–6372 (1972).

N. Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto, CA, 1980.

E. Rich, Artificial Intelligence, McGraw-Hill, New York, 1983.

J. Rothenberg, “The Nature of Modeling,” in L. Widman et al., eds., Artificial Intelligence,
Simulation, and Modeling, Wiley, New York, 1989.

K. Schaffner, “Exemplar reasoning about biological models and diseases: A relationship be-
tween the philosophy of medicine and philosophy of science,” Journal of Medicine and Philoso-
phy11, 63–80 (1986).

S. Schapiro, The Encylcopedia of Artificial Intelligence, Wiley, New York, 1986.

M. Stefik, “An Wxamination of a Frame-Structured Representation System,” Proceedings of
the Sixth International Joint Conference on Artificial Intelligence, 845–852 (1979).

M. Stefik and D. Bobrow, “Object-oriented Programming: Themes and variations,” Science
6, 40–62 (1986).

R. Thomas, et al., “A Complex Control Circuit: Regulation of Immunity in Temperate Bac-

394 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

teriophages,” European Journal of Biochemistry71, 211–227 (1976).

M. Waser, et al., “Computer Modeling of Muscle Phosphofructokinase Kinetics,”Journal of
Theoretical Biology103, 295–312 (1983).

D. Weld, “The Use of Aggregation in Causal Simulation,” Artificial Intelligence30, 1–34,
1986.

J. Watson, et al., The Molecular Biology of the Gene, Benjamin/Cummings, Menlo Park,
CA, 1987.

L. Widman, “Semi-quantitative ‘Close-enough’ Systems Dynamics Models: An Alternative
to Qualitative Simulation,” in L. Widman, et al., eds., Artificial Intelligence, Simulation, and
Modeling, Wiley, New York, 1989.

GALPER, BRUTLAG & M ILLIS 395

C H A P T E R

11

An AI Approach to the Interpretation

of the NMR Spectra of Proteins

Peter Edwards, Derek Sleeman,
Gordon C.K. Roberts & Lu Yun Lian

1 Introduction

The use of computers in chemistry and biochemistry has been widespread
for many years, with machines performing many complex numerical calcula-
tions, e.g. solving quantum mechanical problems. However, some of the most
interesting and challenging problems encountered in these domains are not nu-
merical in nature. In particular, the interpretation or rationalization of many ob-
served phenomena cannot be reduced to an equation or series of equations.
Such problems are typically solved using intuition and experience and draw
upon a great deal of empirical knowledge about the problem area. It is not sur-
prising therefore, that these domains have proved such a fertile area for the ap-
plication of artificial intelligence techniques. In this chapter we describe one
such application, designed to assist a spectroscopist in the task of interpreting
the Nuclear Magnetic Resonance (NMR) spectra of proteins [Edwards, 1989].

There are a number of scientific and medical applications of nuclear mag-
netic resonance spectroscopy and magnetic resonance imaging (MRI). The
greatest impact of NMR in the chemical sciences has without doubt been in
the elucidation of molecular structures. During the 1980s rapid developments
in two-dimensional Fourier transform NMR made possible the determination
of high quality structures of small proteins and nucleic acids. NMR spec-
trometers (in common with other laboratory experiments) invariably produce
experimental data subject to noise, corrupted or missing data points, etc.
User judgements in interactive processing of these data inevitably bias re-
sults, often unintentionally. The aim of the system currently under develop-
ment is the automation of part of this task for NMR spectra of proteins. Our
hope is that automation will limit the introduction of such user biases.

We now provide a brief introduction to proteins before describing the
technique of nuclear magnetic resonance which can be used to elucidate the
structure of such molecules.

2 Protein Chemistry

2.1 The Nature of Proteins

Proteins are probably the most diverse biological substances known. As
enzymes and hormones, they catalyze and regulate the reactions that occur in
the body; as muscles and tendons they provide the body with its means of
movement; as skin and hair they give it an outer covering; in combination
with other substances in bone they provide it with structural support, etc.
Proteins come in all shapes and sizes and by the standard of most organic
molecules, are of very high molecular weight. In spite of such diversity of
size, shape and function, all proteins have common features that allow their
structures to be deciphered and their properties understood. Proteins are
biopolymers composed of amino acid building blocks or monomers. There
are 20 common amino acids used to synthesize proteins; their structures and
names are shown in Figure 1. The amide linkages that join amino acids in
proteins are commonly called peptide linkages and amino acid polymers are
called polypeptides. Figure 2 shows a piece of protein backbone with the
peptide linkages labeled.

2.2 Protein Structure

The structure of a protein molecule is considered at three levels of detail:
primary, secondaryand tertiary structure. The primary structure describes
the chemical composition of the protein; the secondary structure describes
common structural arrangements of parts of the backbone; while the tertiary
structure details the folding of these chains in three dimensional space.

Primary Structure The first stage in the process of protein structure pre-

EDWARDS, SLEEMAN, ROBERTS& L IAN 397

398 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

N C α C

O

H H

Protein backbone unit.

H βC H
3

Alanine
Ala
A

βC H
γ1C H

3

γ2C H
3

Valine
Val
V

Leucine
Leu
L

γC H
δ1C H

3

δ2C H
3

βC H
2

Isoleucine
Ile
I

βC H
γ2C H

3

γ1C H
2 δC H3

Serine
Ser
S

βC H2 O Hγ

Threonine
Thr
T

βC H
γC H

3

γO H

Aspartic acid
Asp

D

βC H
2

C Hγ O2

Asparagine
Asn

N

βC H2 Cγ HN 2

O
δ1

δ2

Lysine
Lys
K

βC H2 C Hγ 2
C Hδ 2

C Hε 2 N Hζ 2

Glutamic acid
Glu
E

βC H2 C Hδ O2γC H
2

Glutamine
Gln
Q

βC H2 γC H2 Cδ HN 2

O
ε1

ε2

Arginine
Arg
R

βC H2 C Hγ 2
C Hδ 2

N Hε Cζ H2Nη2

η1N H

Histidine
His
H

βC H2 C Hγ Cδ2

H
ε1C

H δ1N Nε2

Phenylalanine
Phe

F

βC H2
Cγ HCζ

C Hδ1 C Hε1

C Hδ2 C Hε2

Cysteine
Cys
C

βC H2 γS H

Tryptophan
Trp
W

βC H2 Cγ Cδ2

H
ε1N

H δ1C Cε2 Cη2H

Cζ3 H

Cζ2 H

Cε3 H

Tyrosine
Tyr
Y

βC H2
Cγ Cζ

C Hδ1 C Hε1

C Hδ2 C Hε2

HOη

Methionine
Met
M

βC H2 C Hγ 2
S Hδ 3εC

Proline
Pro
P

βC H2

CN ' αH

γC H2

δCH2

Glycine
Gly
G

Figure 1 The protein backbone unit and the 20 amino acid side chains, shown with
the three and one letter abbreviations for each. Proline is an imino acid, and its N
and Cα backbone atoms are shown. Greek letters (α, β, γ, δ, ε, ζ, η) identify the dis-
tance (number of bonds) from the central (α) carbon atom. C=carbon, H=hydrogen,
N=nitrogen, O=oxygen, S=sulphur atoms.

diction is the determination of its primary structure, i.e., the linear arrange-
ment of the amino acid residues within the protein. This is determined by
chemical means.

Secondary StructureThe major experimental technique that has been used
in the elucidation of secondary structure of proteins is X-ray crystallographic
analysis. When X-rays pass through a crystalline substance they produce
diffraction patterns. Analysis of these patterns indicates a regular repetition of
particular structural units with certain specific distances between them. The
complete X-ray analysis of a molecule as complex as a protein can take many
months. Many such analyses have been performed and they have revealed that
the polypeptide chain of a natural protein can assume a number of regular con-
formations. Rotations of groups attached to the amide nitrogen and the carbonyl
carbon are relatively free, and it is this property that allows peptide chains to
adopt different conformations. Two major forms are the β sheet and α helix.

The β sheet consists of extended polypeptide chain with backbone
residues forming hydrogen bonds between the chains. The sheet is not flat,
but rather is pleated, in order to overcome repulsive interactions between
groups on the side chains. The α helix is a right-handed helix with 3.6 amino
acid residues per turn. Each NH group in the chain has a hydrogen bond to
the carbonyl group at a distance of three amino acid residues. The side chain
groups extend away from the helix. Certain peptide chains assume what is
called random coil arrangement, a structure that is flexible, changing and sta-
tistically random. The presence of proline or hydroxyproline residues in
polypeptide chains produces another striking effect. Because the nitrogen
atoms of these residues are part of five-membered rings, the groups attached
by the N - Cα bond cannot rotate enough to allow an α helical structure.

EDWARDS, SLEEMAN, ROBERTS& L IAN 399

Cα C N Cα C N Cα

βC

Cγ

OO
HH HH

peptide linkages

H

Figure 2. Protein backbone with α, β and γ carbons labeled. Peptide bonds link to-
gether adjacent amino acids. When an amino acid forms a peptide bond, two hydro-
gen atoms and one oxygen atom are released, and the remaining portion of the amino
acid is called a residue.

Tertiary Structure The tertiary structure of a protein is the three dimen-
sional shape which arises from foldings of its polypeptide chains. Such fold-
ings do not occur randomly: under normal environmental conditions, the ter-
tiary structure that a protein assumes will be its most stable arrangement, the
so-called “native conformation.” Two major molecular shapes occur natural-
ly, fibrous and globular. Fibrous molecules have a large helical content and
are essentially rigid molecules of rod-like shape. Globular proteins have a
polypeptide chain which consists partly of helical sections which are folded
about the random coil sections to give a “spherical” shape.

A variety of forces are involved in stabilizing tertiary structures including
the formation of disulphide bonds between elements of the primary structure.
One characteristic of most proteins is that the folding takes place in such a
way as to expose the maximum number of polar groups to the aqueous envi-
ronment and enclose a maximum number of nonpolar groups within its inte-
rior. Myoglobin (1957) and haemoglobin (1959) were the first proteins
whose tertiary structures were determined by X-ray analyzes.

3 Protein NMR

The first NMR experiments with biopolymers were performed over thirty
years ago. The potential of the method for structural studies of proteins was
realized very early on. However, in practice, initial progress was slow be-
cause of limitations imposed by the instruments and the lack of suitable bio-
logical samples. In recent years there has been a huge increase in interest in
the technique, primarily due to the development of two-dimensional NMR
which makes the task of interpreting the data more straightforward [Jardet-
zky, 1981; Wüthrich, 1986; Cooke, 1988].

NMR techniques are complementary to X-ray crystallography in several
ways:

• NMR studies use non-crystalline samples e.g. solutions in aqueous or non-
aqueous solvents. If NMR assignments and spatial structure determination
can be obtained without reference to a corresponding crystal structure, a
meaningful comparison of the conformations in single crystals and non-
crystalline states can be obtained.

• NMR can be applied to molecules for which no single crystals are avail-
able.

• Solution conditions for NMR experiments (pH, temperature, etc.) can be
varied over a wide range. This allows studies to be carried out on interac-
tions with other molecules in solution.

We shall now define a number of terms commonly used by NMR spectro-
scopists.

400 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Chemical shift defines the location of an NMR signal. It is measured rel-
ative to a reference compound. The chemical shift is normally quoted in
parts per million (ppm) units and is primarily related to the magnetic envi-
ronment of the nucleus giving rise to the resonance.

Spin-spin coupling constantscharacterize through-bond interactions be-
tween nuclei linked by a small number of covalent bonds in a chemical struc-
ture.

NOEs (Nuclear Overhauser Enhancement/Effect) are due to through-
space interactions between different nuclei and are correlated with the in-
verse sixth power of the internuclear distance.

3.1 Two Dimensional NMR

Conventional (one dimensional) NMR spectra of proteins are densely
crowded with resonance lines. There is no straightforward correlation be-
tween the NMR spectrum of the simple, constituent amino acids and the
macromolecules. This makes it difficult to detect individual residues within
the spectrum. There are a number of reasons for this, including the spatial
folding of proteins, which has an effect on chemical shift values; and physi-
cal side-effects due to the size of proteins. As a consequence of the difficul-
ties involved in interpreting such data, spectroscopists choose to produce two
dimensional spectra of proteins and other biopolymers1.

With 2D NMR the natural limitations of 1D NMR can largely be over-
come. The main advantages of 2D NMR relative to 1D NMR for proteins are
that connectivities between distinct individual spins are delineated, and that
resonance peaks are spread out in two dimensions leading to a substantial
improvement in peak separation, thus making the spectra far easier to inter-
pret.

Two main types of 2D experiment are important for proteins. One records
through-bond interactions between 1H nuclei (HOHAHA, COSY) while the
other detects through-space interactions (NOESY). We shall not go into the
details of how these different experiments are performed, suffice it to say that
the first pair of techniques allow one to study interactions occurring within
amino acid residues while the second illustrates longer-range interactions oc-
curring between amino acids. Figure 3 shows a piece of protein backbone
with selected through-bond and through-space interactions labeled.

The selection of techniques for the visualization of the data from a 2D ex-
periment is of considerable practical importance. Spectral analysis relies pri-
marily on contour plots of the type shown in Figure 4. Contour plots are suit-
able for extracting resonance frequencies and for delineating connectivities
via cross peaks, but care must be taken when attempting to extract quantita-
tive information from such a plot.

Limitations for the analysis of 2D NMR spectra may arise from a phe-

EDWARDS, SLEEMAN, ROBERTS& L IAN 401

nomenon termed “t1 noise”, i.e. bands of spurious signals running parallel to
the ω1 axis at the position of strong, sharp diagonal peaks. These signals may
arise due to spectrometer instability or other sources of thermal noise. They
may also be an artifact of inadequate data handling during the Fourier trans-
form. Ideally, NOESY or HOHAHA spectra should be symmetrical with re-
spect to the main diagonal. In practice, however, noise, instrumental artifacts
and insufficient digitization tend to destroy perfect symmetry. A number of
2D NMR experiments, including COSY and NOESY are described by Mor-
ris [1986].

We shall now describe how NMR techniques may be used to determine
protein structure.

402 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Cα C N Cα C N Cα

βC

OO
HH HH H

H

NN

Nα

βα

Figure 3. Protein backbone illustrating through-bond (dotted line) and through-
space (solid line) 1H - 1H interactions.

ppm

1ω

2ω
ppm

05.010.0

0

5.0

10.0

Figure 4. The two-dimensional HOHAHA spectrum of Nisin (a 34 amino-acid
polypeptide)

4 Protein Structure Prediction

The process of determining the structure of a protein by NMR relies on a
chemical sequence for the protein (assumed to be correct) being available.
Each residue in the protein will give rise to a characteristic set of peaks in the
HOHAHA and COSY spectra and interactions between residues will lead to
cross peaks in the NOESY spectrum. The interpretation of these spectra in-
volves detection of the residue spin-systems in the HOHAHA and COSY,
followed by analysis of the NOESY in order to link these spin-systems to-
gether. The steps involved are:

1. The spin systems of individual amino acid residues are identified using
through-bond 1H - 1H connectivities. Each spin system produces a pattern
of signals within the HOHAHA and COSY spectra that is characteristic of
one or more amino-acid residue. (Section 4.1)

2. Residues which are sequential neighbors are identified from observation of
signals in the NOESY spectrum indicating sequential connectivities2 αN,
NN and possibly βN. (Section 4.2)

3. Steps (1) and (2) attempt to identify groups of peaks corresponding to pep-
tide segments that are sufficiently long to be unique in the primary struc-
ture (sequence) of the protein. Sequence specific assignments are then ob-
tained by matching the segments thus identified with the corresponding
segments in the chemically determined amino acid sequence.3 Note that
for larger proteins, crystallographic data may also be used here. (Section
4.2)

4. The occurrence of certain patterns of NMR parameters along the polypep-
tide chain is indicative of particular features of secondary structure.
NOESY signals are used to detect interactions between residues in the
protein. (Section 4.3)

4.1 Assignment of Spin Systems

HOHAHA & COSY techniques A COSY spectrum consists of the con-
ventional NMR signal along the diagonal and off-diagonal peaks (cross
peaks) corresponding to 1H - 1H interactions. The peaks along the diagonal
represent a normal spectrum of the system. Figure 5 is a schematic 2D plot
showing the approximate positions of different types of protons along the di-
agonal.

With few exceptions COSY cross peaks are only observed between pro-
tons separated by three or less covalent bonds and thus are restricted to pro-
tons within individual amino-acid residues. Some of the 20 residues found in
proteins give rise to unique patterns in the COSY spectrum. Not all residues

EDWARDS, SLEEMAN, ROBERTS& L IAN 403

produce unique patterns as a number of them have similar structures and thus
give rise to very similar COSY cross peak patterns. Often one can only identi-
fy something as belonging to a class of residues. NH protons and aromatic
protons are relatively easy to identify. However, multiple methylene (CH2)
groups often cause problems as it becomes difficult to ascertain their ordering.

In order to make the signals easier to analyze, a variation on the standard
COSY technique is employed, HOHAHA. Whereas COSY only shows inter-
actions occurring between neighboring protons, such as αβ, βγ and so on,
HOHAHA provides in principle, an overall picture by showing all 1H - 1H
interactions occurring for each proton within the residue. Thus for a residue
containing N, α, β and γ protons, the HOHAHA spectrum will contain a
peak for each interaction with the N proton: Nα, Nβ, Nγ; a peak for each in-
teraction with the α proton: αβ, αγ and so on. This technique has only been
in routine use relatively recently, and has largely superseded COSY as it pro-
vides additional information. However, as noted below in point (3) it is often
necessary to use these two techniques together. Thus, in the NH region of the
HOHAHA spectrum one sees cross peaks due to each of the protons in the
residue. In the Cα region one sees peaks caused by the Cβ, Cγ protons, etc.
and in the Cβ region peaks resulting from Cγ, Cδ, etc. Figure 6a shows the
HOHAHA spectrum for the threonine residue. Even with this technique we
find that not all residues can be uniquely identified.

Correlations to δ protons are often not observed from the amide (NH) pro-
tons. The δ protons can however be observed in the Cα and Cβ regions and it
is therefore quite common for different regions of the spectrum to be exam-
ined in order to detect the differing signals belonging to a spin system. In

404 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ppm

1ω

2ω
ppm

010.0

0

10.0

NH

aromatic

α

CH2

CH3

Figure 5. Positions of the different types of protons along the diagonal of a HOHA-
HA or COSY spectrum.

order to make the δ protons observable in the NH region it is necessary to
adjust the experimental parameter known as the mixing time. Unfortunately,
as this parameter is increased information starts to be lost from the spectrum
due to relaxation processes.

For small proteins it is usually possible to pick out all of the spin systems
despite there being many hundreds of protons contributing to the spectrum.
The interpretation process begins with an attempt to assign the individual
spin-systems within the HOHAHA spectrum. The region of the spectrum
displaying peaks due to interaction between the N and Cα protons (approxi-
mately 3.8 - 5.5 / 7.6 - 9 ppm) is termed the “fingerprint” region and all inter-
pretations begin in this area. Study of the HOHAHA spectrum of Nisin4

shown in Figure 4 serves to illustrate the reason for this decision, as the reso-
lution in this region is a great deal better than in the Cα or Cβ regions. Spin
systems are detected by the following procedure:

1. Find a group of peaks which are aligned5 along a vertical in the NH re-
gion.

2. As it is possible to have more than one set of spin system peaks on the

EDWARDS, SLEEMAN, ROBERTS& L IAN 405

N Cα C

βC

O
H H

OHCγ H3

Threonine (Thr)

0

10

1.14.58.3 010

N

α

γ

β

N

α

γ

β

0

10

1.14.58.3 010

N

α, β

γ

0

10

1.14.58.3 010

a

b c

Figure 6. The HOHAHA spectrum (a) of threonine together with two possible forms
of its COSY spectrum (b & c).

same vertical, it is often necessary to resolve such overlapping systems.
This is accomplished by the choice of a Cα signal in the NH region (Fig-
ure 7); a horizontal line is then traced to the diagonal; looking up the verti-
cal from this point, all the Cβ, Cγ, etc. signals belonging to the same
residue as the Cα are observed. If these signals are compared with the sig-
nals in the original part of the NH region, the group of peaks in that region
belonging to the same spin-system should become obvious, as they will
have a constant chemical shift value in the vertical direction.

3. For certain residues, the chemical shift values of the α, β, γ and other pro-
tons can be very similar, leading to the ordering of signals becoming con-
fused (Table 1). From the HOHAHA spectrum it is impossible to say
which signals are due to which protons and in such a situation it is neces-
sary to resort to a COSY spectrum as this makes explicit the “adjacent”
protons. Figures 6b and 6c show the COSY spectra for threonine with the
chemical shift values of the α and β protons occurring in slightly different
positions. As COSY only shows cross peaks for “one step” interactions it
is quite easy to differentiate between the α and β protons, regardless of
their chemical shift values; the α interacts with N and β, while the β inter-
acts with α and γ. From the HOHAHA spectra in Figure 6a it is impossi-
ble to distinguish between these protons.

4. Often, all the signals for a particular spin system are not present, due to
peak overlap and other effects. In such a situation the spectroscopist will
often resort to “intelligent” guesswork based upon his knowledge of the
technique to “fill the gaps.” This knowledge is used to provide a plausible
NMR reason why signals do not appear and may, for example, involve de-
cisions based upon the similarities of chemical shift values for individual
protons.

5. Once a pattern of signals has been detected within the spectrum, it is la-

406 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

0

10

010

NH

ω
1

ω
2

C α

Figure 7. Detection of peaks belonging to the same spin-system. (The white circle
indicates a peak that does not belong to the same spin-system as the others.)

beled as having been produced by one or more of the 20 amino-acid
residues. In the case of some patterns the spin system may only be labeled
as belonging to a group of residues with similar structure, such as those
with long side chains or aromatic groups.

Chemical shift values could be used to distinguish between the different
residue types, but in practice such values are regarded as being too unreliable
and are little used.

Thus, in order to perform a complete spin-system assignment, it is neces-
sary to have both the HOHAHA and COSY spectra of the protein. The HO-
HAHA spectrum is used to identify the spin-systems while the COSY spec-
trum is used to identify troublesome α and sidechain protons prior to the
sequential assignment process.

This entire process is currently performed using a ruler and pencil (to link
signals in the spectrum together) and can take several days of a spectro-
scopists time.

4.2 Connecting the Spin Systems

NOESY techniqueDepending on the actual settings used during the ex-

EDWARDS, SLEEMAN, ROBERTS& L IAN 407

β β γ γ

β β γ γ

β β γ γ

β

β γβ

β γβ

δδ

γγβ

β ε3β

ββα

βα

βα

H '

γ

H '

Residue Protons

Arg

Gln

Glu

Ile

Leu

Lys

Met

Pro

Ser

Thr

Trp

H

H

γ

H '

β

H ' H H '1.63 (.43) 1.79 (.34) 1.52 (.34) 1.56 (.34)

H H ' H H '1.92 (.27) 2.10 (.20) 2.29 (.25) 2.35 (.20)

H H ' H '2.04 (.18) 2.27 (.20) 2.34 (.21)1.97 (.20)

H 1.74 (.37) 1.30 (.32)

H ' HH 1.60 (.37) 1.71 (.31) 1.51 (.30)

H ' HH 1.74 (.38) 1.84 (.34) 1.30 (.39) 1.36 (.37)

H 'H 1.54 (.24) 1.57 (.23)

H 'HH 1.88 (.35) 2.18 (.40) 1.92 (.50) 2.02 (.45)

H ' HH 1.89 (.19) 2.03 (.21) 1.98 (.21)

H 'H 3.72 (.44) 3.89 (.43)H 4.50 (.47)

H 4.17 (.31)H 4.53 (.43)

H ' 3.42 (.22)H 4.29 (.80)

Table 1. Residues with protons which are difficult to identify. Each proton is fol-
lowed by a mean chemical shift value, determined from a study performed on 20 pro-
teins. The figure in parentheses is the standard deviation.

periment, NOESY cross peak signals (off-diagonal peaks) can be obtained
for pairs of protons at varying distances apart. Figure 3 illustrates the interac-
tions that can occur between 2 adjacent residues.

Which through-space interaction is prevalent will depend upon the geo-
metric shape of the protein. It is possible to get non-sequential NOE interac-
tions due to hydrogen-bonded interactions between adjacent sheets, etc. The
NMR experiment may be “fine-tuned” to indicate only those interactions oc-
curring within a certain distance. For example, those occurring between adja-
cent residues. This is achieved by use of the experimental parameter, mixing
time (τm). It is usual to set τm initially to exclude all but the shortest range
NOEs which are due to sequential interactions and very short through-space
interactions6. This type of experiment is used during the sequential assign-
ment process. For the determination of secondary structure it becomes neces-
sary to alter τm to allow the longer range NOEs to give rise to signals. The
region 3.8 - 5.5 / 7.6 - 9.0 ppm is the “fingerprint” region of a NOESY spec-
trum (c.f. HOHAHA).

It is possible to set τm in order to exclude all but onesequential neighbor
of each residue and the shortest through-space interactions. This technique is
particularly useful for sequence confirmation experiments when segments of
polypeptide chain can be constructed based on the spectrum and checked
against the chemically derived sequence.

The sequential assignment process requires that the chemical sequence of
the protein be available.

Sequential assignmentUsing the three sequential connectivities αN, NN,
βN it is possible to “walk” the entire length of the residue chain. Using just
one of these types of connectivity is often not sufficient, due to absent or
overlapping peaks, etc. The HOHAHA and NOESY spectra both possess di-
agonal peaks corresponding to correlations between protons from the residue.
As these peaks occur in the same positions in both spectra, this gives us a
means of relating cross peaks in the NOESY to the spin systems identified in
the HOHAHA. Figure 8 illustrates the process of sequential assignment using
these techniques. One begins by selecting a diagonal peak, such as a Cα peak,
in the HOHAHA spectrum which belongs to a known spin system (d1). A is
an off-diagonal peak within that spin-system. The corresponding diagonal
peak in the NOESY is then detected (d1’) and a horizontal line drawn away
from the diagonal to find the NOESY off-diagonal peak. (If more than one
peak is present along the horizontal, then they are all treated as possibly being
due to sequential connectivity.) A vertical line is then drawn back to the diag-
onal (d2). The corresponding diagonal peak in the HOHAHA spectrum is
then identified (d2’) and the fact that the two residues are adjacent is noted. B
is an off-diagonal peak in the adjacent spin-system7. This process is repeated
until a peptide segment of perhaps five or six residues has been detected, e.g.

408 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

GCA*L , where * indicates a residue which cannot be identified with abso-
lute certainty from the HOHAHA/COSY spectra

The chemically determined amino acid sequence is then searched for pep-
tide segments that will match the partial sequences identified by sequential
NMR assignments. The sequence is needed at this stage to eliminate erro-
neous sequential assignment pathways, which may have resulted because
non-sequential NOE connectivities have been interpreted as sequential
ones8. In principle, all the information missing in incomplete spin system
identifications can be obtained during the sequence specific assignment pro-
cess. Patterns in the HOHAHA spectrum that have been labeled as one of a
group of residues can be uniquely identified once their sequence positions
are known. Once all the spin systems in the HOHAHA have been fully iden-
tified, they are labeled with their residue name and sequence position.

The sequence specific assignment technique described here works well for
small proteins up to approximately 100 residues. If there are too many
residues, signal overlap becomes a major problem. For larger proteins it is
often necessary to use crystallographic data to help with NMR assignments.

4.3 Secondary Structure Prediction

We have already seen that the short range NOESY interactions allow us to
determine which of the residues detected in the HOHAHA spectrum are ad-
jacent. This same information can also be used to indicate some features of
secondary structure. Non-sequential interactions also indicate secondary
structure, e.g. interaction between the ith and ith+3 residues is seen in α-he-
lices. Accurate identification of the ends of a helix can be difficult. Table 2
summarizes the type of interactions seen in the NOESY spectrum for partic-

EDWARDS, SLEEMAN, ROBERTS& L IAN 409

ω1

ω2

ω1

ω2

HOHAHA NOESY

Cα
region

NH region
a

d2'

b

d1

A
B

x1, y1

x2, y2

d2

d1'x2,
y1

N NOE peakα

Figure 8. Use of the HOHAHA and NOESY spectra to perform sequential assignments.
HOHAHA peaks a, d1and A are due to residue R1, while peaks b, d2' and B are due
to residue R2. NOESY peak d1' is due to R1 and peak d2 to R2.

ular secondary structures, together with a guide to the peak intensity.
Coupling constant values (determined from the spectrum) can also be

used to provide support for a particular structure.

4.4 3D Structure Determination

As we have seen, the NOESY spectrum can be used to indicate features of
secondary structure. They can also be used to determine a tertiary (3D) struc-
ture for the protein.

The NOESY data is converted into a set of limits on the distances be-
tween pairs of interacting protons. Tables containing all internuclear dis-
tances in the protein are constructed with the spectroscopic information used
to provide some of the entries and the geometry of common structural fea-
tures used to provide others. Upper and lower limits are recorded for each
distance. It should be noted that this is an approximate technique as there is
no straightforward mapping from NOE to distance (as the general environ-
ment complicates the signal). Strong, medium and weak NOEs are taken to
indicate upper distance limits of 2.5, 3.5 and 4.5Å respectively. Known
molecular bond lengths, bond angles and standard geometries are used to
provide interatomic distances for atoms separated by one or two bonds. Pep-
tide dihedral angles obtained from coupling constants can also be recast as
limits on distances between atoms separated by three bonds. A lower limit on
interatomic distances is normally set as the sum of the van der Waals radii.

Generating a three dimensional structure from this data is not straightfor-
ward and a number of different approaches exist including Distance Geome-
try algorithms [Havel, 1983], Molecular Dynamics [Hermans, 1985] and sys-
tems employing geometric constraint satisfaction, such as the PROTEAN
system (see below). Distance Geometry and Molecular Dynamics are exam-

410 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

αN (i, i+4)

αβ (i, i+3)

αN (i, i+3)

NN (i, i+2)

αN (i, i+2)

NN (i, i+1)

α N (i, i+1)

strong

weak

medium

weak

NONE

strong

medium

NN (i, i+1)

α N (i, i+1)

weak

α N (i, i+1) strong

αhelices β sheet

very strong

extended form

Table 2. Common secondary structure NOESY interactions.

ples of methods within the adjustment paradigmfor interpretation of NMR
data [Altman, 1988], i.e. they generate starting structures, usually at random,
and then search the neighboring conformational space until the mismatch be-
tween the data predicted from the adjusted structure and the experimental
data is minimized in terms of some chosen function. By contrast, methods
within the exclusion paradigmgenerate starting structures in a systematic
manner and test them for agreement with the given data set. All structures
compatible with the data are retained as possible solutions, and all incompat-
ible structures are excluded from further consideration.

Distance Geometry algorithms work with distances between points rather
than Cartesian coordinates. They allow the choice of three mutually perpen-
dicular axes to be made such that a “best fit” emerges as a 3D description of
the structure. This fit usually contains some small incompatibilities with the
distance information. These are minimized according to user supplied crite-
ria, often some kind of energy relaxation calculation is required to relieve
strain in the structure. Alternative solutions are generated by repeating the
calculation with a random choice for the distances, each somewhere within
its limits. The effect is to sample the conformation space. Confidence in a so-
lution grows if repeated calculations arrive at a similar end point.

The input to Molecular Dynamics programs consists of the covalent struc-
ture of the molecule and a number of energetic terms, e.g. energy to stretch
bonds, energy for van der Waal’s repulsion. Other energy terms are linked to
distance constraints. The program then solves Newton’s equations of motion
using the energy terms. Balance between the energy terms is important.
There is no known test for uniqueness, but confidence increases if repeated
simulations from different starting points converge to give a similar final re-
sult.

5 Computational Aspects of NMR

The earliest use of computers in NMR was for time-averaging of multiple
scans in the mid-1960s. Systems for performing the first Fourier transforms
in commercial NMR instrumentation appeared in 1969. From the early 1970s
the majority of NMR instruments were interfaced to minicomputers which
controlled data acquisition and performed FFT (Fast Fourier Transform) and
standard post-FT processing. By the mid-1970s NMR instrumentation was
designed around 16-20 bit word minicomputers with low resolution colour
graphics and digital plotters used for output. In the early 1980s NMR instru-
ment computers began to be replaced by modern microcomputer and mini-
computer systems, augmented by array processors. The current generation of
NMR instruments incorporate microcomputers performing tasks ranging
from sample temperature control to data acquisition and supervision and con-
trol of the user interface. Most NMR instruments make use of high resolution

EDWARDS, SLEEMAN, ROBERTS& L IAN 411

graphics for data display. The current trend is to perform data reduction away
from the spectrometer using general-purpose commercial workstations. Levy
[1986] reviews some of the computational aspects of NMR.

The application of computers to NMR can be separated into two areas: 1)
data acquisition and experiment control and 2) data reduction. The task of
acquiring data and performing control over the spectrometer is handled by
computers embedded in the instrumentation, usually through proprietary
software that is not available to the user. The timing of experimental events,
pulse programming and so on occurs on a rapid time scale. The data reduc-
tion task, on the other hand, has relatively light real-time constraints. Data
reduction is usually performed using ex-spectrometer computers, which fa-
cilitate the use of new data reduction techniques and which remove lengthy
processing from the instrument and thus lead to an increase in spectrometer
throughput. The most common language in scientific computing remains
FORTRAN, although recently C has begun to be widely used also. Artificial
intelligence languages such as LISP, PROLOG and POP-11 are finding use
in scientific software, but as yet only on a very small scale.

5.1 AI Applications & NMR

Chemistry was one of the first disciplines, aside from Computer Science,
to actively engage in research involving AI techniques. The Dendral project
[Carhart, 1977; Lindsay, 1980; Smith, 1981; Djerassi, 1982] is almost cer-
tainly the most well-known of these attempts to use AI for chemical applica-
tions, and aimed to develop computer programs to assist structural organic
chemists in the process of structure elucidation. Dendral was the first major
application of heuristic programming to experimental analysis in an empiri-
cal science, a practical problem of some importance. It was the first large
scale program to embody the strategy of using detailed, task-specific knowl-
edge about the problem domain as a source of heuristics, and to seek general-
ity through automating the acquisition of such knowledge. The structure elu-
cidation process involves a number of steps. First, chemical and
spectroscopic data (including NMR data) are interpreted to provide a number
of structural constraints. These constraints are substructures that must either
be present, or absent from the molecule under investigation. All possible
candidate structures consistent with these constraints are then generated. Ad-
ditional discriminating experiments are then planned so that the one correct
structure can be determined.

Heuristic Dendral was constructed from a simple acyclic structure genera-
tor and a planning module (the preliminary inference maker) that performed
a classification based on mass spectral data. The early version of the system
dealt only with ketone molecules while subsequent versions of the system
were extended to handle additional classes of molecules such as ethers and

412 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

amines [Schroll, 1969]. At the same time other spectral data were incorporat-
ed into the system in the form of one dimensional 1H NMR spectra.

Another aspect of the Dendral project was the Meta-Dendral system
[Buchanan,1971; Buchanan, 1973]. This arm of the project was concerned
with the production of useful tools for chemists at a lower level than the
complete structure elucidation system. The system was originally devised for
the analysis of mass spectral data although it was extended by Mitchell and
Schwenzer [Schwenzer, 1977; Mitchell, 1978] to the analysis of 13C NMR
data. The principles governing 13C NMR are similar to those of 1H spec-
troscopy, although the scale of observed shifts is greater for the former.
Again, as in 1H NMR, the precise chemical shift of a nucleus depends on the
atom or atoms attached to it. The system generated rules which relate precise
13C shift ranges to specific environments for the resonating carbon atom.
The chemical shift range associated with a particular environment is found
by matching the generated structure against a training set of molecules and
their spectra. The minimum and maximum values of the shift corresponding
to that environment are recorded and form the range used in the rules. Goal
states can be characterized by various criteria such as requiring a rule to have
a sufficiently narrow range or to be supported by a minimum number of ex-
amples in the training data. The system begins with a very primitive sub-
structure (e.g. a simple carbon atom) and a correspondingly vague chemical
shift range (-∞ → +∞). Operators modify this structure by adding hydrogen,
carbon, and so on The generated rules are used to predict spectra for a set of
candidate molecules and the structures ranked by comparison of the predict-
ed spectrum with that of the unknown.

The use of a database of 1H NMR data to eliminate incompatible candi-
dates from the list of structures produced by exhaustive generation of iso-
mers is described by Egli [1982]. Structures obtained by a generator program
are evaluated by prediction of their 1H NMR spectra. The predicted and ob-
served spectra are then compared and the candidates ordered based on such
comparisons. The approach to spectrum prediction is strictly empirical and
involves the derivation of a set of expected chemical shifts for the protons in
each candidate. Egli describes a suite of programs which allow a user to
build and maintain a 1H NMR database that correlates substructural environ-
ments with observed proton resonances; to predict the spectrum of one or
more candidate structures for an unknown compound; to compare the pre-
dicted and observed spectra of the molecule and to order the candidates
based upon this comparison.

A similar database of 13C NMR correlations containing 10,350 distinct
substructure/chemical shift pairs is described by Gray [1981]. This database is
also used for prediction of spectra for generated structures. It is also used to
perform the interpretation of the 13C NMR spectra of unknown molecules (to
arrive at a set of substructural fragments). This interpretation is performed so

EDWARDS, SLEEMAN, ROBERTS& L IAN 413

as to arrive at the minimal, internally consistent set of substructures.
The use of structural constraints provided by two-dimensional NMR is de-

scribed by Lindley [1983]. Partial structures obtained from the two-dimen-
sional NMR spectrum are combined with other spectral data in an effort to
elucidate the correct structure of an unknown molecule. All the constraints are
provided by a chemist, who is required to interpret the spectroscopic data.

A number of workers (other than those involved in the Dendral project)
have addressed the problem of constructing computer programs to automate
or semi-automate the task of structure elucidation. The use of a number of
different techniques for computer-assisted structure elucidation is described
in Hippe [1985]. These include library-search algorithms which perform the
comparison of an unknown spectrum with those in a standard collection
stored on disc. Such algorithms typically return a list of spectra and their as-
sociated structures ranked according to some matching function. Hippe also
describes integrated methods of structure elucidation. Three major compo-
nents are common to all systems which attempt the structure elucidation task.
First, some interpretation of the chemical and spectral data is performed, in
order to derive structural fragments. The next step involves molecule assem-
bly, i.e. the generation of complete structures compatible with the fragments
and constraints provided by the first phase. Finally, spectra of the generated
structures are simulated and compared with the observed data. This allows
structures to be ranked on the basis of the quality of the fit between predicted
and observed data.

The CASE system [Shelley, 1977; Shelley, 1981; Munk, 1982] is a suite
of programs designed to accelerate and make more reliable the entire process
of structure elucidation.The task of reducing chemical and spectroscopic data
to structural information is currently shared by the chemist and the system.
Interpreters capable of detecting the presence of structural fragments based
on infrared and 13C NMR data [Shelley, 1982] exist. Two-dimensional NMR
data may be used to provide information about the connectivity of atoms in a
molecule. The INTERPRET2D module of the system [Christie, 1985] ac-
cepts 2D-NMR data input by the chemist and generates the structural conclu-
sions consistent with this information as a set of alternative fragment sets.
These sets describe all possible carbon-carbon atom connections consistent
with the data and may also be used as input to a structure generator program.

CHEMICS [Sasaki, 1971; Yamasaki, 1977; Sasaki, 1981] uses 1H NMR,
13C NMR, infrared and ultra-violet data to decide which of a set of 150
structural fragments are present in an unknown molecule. The fragments be-
lieved to be present are arranged into sets which satisfy the molecular formu-
la and 1H and 13C NMR spectra. A structure generator uses these sets as
input to create molecular structures. CHEMICS analyzes the 1H NMR data
by first calculating the area of each group of signals in the spectrum. The
number of protons associated with each group is thus assigned. Recognizable

414 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

spin-system patterns are then identified. The most probable structural frag-
ments are then inferred based on chemical shift values. The number of each
of these fragments is estimated based on the peak area values. 13C NMR data
is interpreted as follows: first, the number of carbons associated with each
peak in the spectrum is computed, based on signal intensities; next, the split-
ting of each peak is examined and individual signals are labeled as arising
due to protonated or non-protonated carbons and the number of protons on
each carbon recorded. Finally, based on the information already extracted to-
gether with the chemical shifts of the signals, a set of structural fragments
consistent with the information are obtained.

The STREC system [Gribov, 1977; Gribov, 1980; Elyashberg, 1987] also
uses the plan, generate and test approach. During the plan phase, infrared and
1H NMR data are examined and a set of plausible fragments computed. A
generator uses these fragments to generate all possible structural isomers.
Each structure is then checked against a library of structural fragments for
which spectroscopic data are available. The fragments detected have their
characteristic spectral information compared with the experimental data for
the unknown. If the experimental data do not confirm the presence of the
fragment, analysis of that structure is terminated. Each fragment in the li-
brary has data for infrared, 1H NMR, ultra-violet and mass spectra. STREC2
[Gribov, 1983] is an enhanced version of the original STREC system, capa-
ble of handling larger structures, which makes use of 13C NMR data in addi-
tion to the techniques described above.

SEAC (Structure Elucidation Aided by Computer) uses infrared, 1H NMR
and ultraviolet data to infer the structure of an unknown molecule [Debska,
1981]. A system for the interpretation of infrared, 13C NMR and mass spec-
tral data, based on the idea of intersecting the interpretations of each of these
techniques has been developed by Moldoveanu [1987]. Each of the three
spectra is interpreted to generate three sets of plausible fragments; the inter-
section of these sets is then found and the resulting group of fragments is
output to the user. The output also indicates the number of each of these
functional groups present in the molecule and the possible positions of sub-
stitution of these groups in the unknown molecule.

Knowledge-based techniques have also been applied to the interpretation
of other kinds of spectroscopy, including gamma ray activation spectra
[Barstow, 1979; Barstow, 1980], ESCA (Electron Spectroscopy for Chemical
Analysis) [Yamazaki, 1979], X-ray fluorescence spectroscopy [Janssens,
1986] and X-ray diffraction spectra [Ennis, 1982].

5.2 Computational Aids for Protein NMR

A number of attempts have been made to automate part of the protein
structure determination process. One of these systems [Billeter, 1988] starts

EDWARDS, SLEEMAN, ROBERTS& L IAN 415

from a well-defined list of spin-systems which have been identified by the
user. The program considers all possible assignments that are consistent with
the data currently available. If new data are provided the program eliminates
assignments that are inconsistent. It performs logical decision-making and
bookkeeping functions and avoids making ambiguous decisions when multi-
ple assignments are possible. Uncertain decisions, i.e. decisions based on
NMR data that do not allow a unique interpretation are left to the user. An-
other system, developed by Cieslar [1988], identifies potential spin-systems
within the HOHAHA spectrum by locating aligned peaks. However, attach-
ing residue labels to these spin-systems is left to the user. Once spin-systems
have been labeled, the program endeavors, through the use of NOESY sig-
nals, to identify sequential connectivities. Partial sequences are identified in
this manner and then located within the chemical sequence. The system then
constructs all possible assignments for all partial sequences that are consis-
tent with the input data. In order to achieve consistency the partial sequences
must not contain overlaps and no particular spin-system should be used in
more than one position. All solutions for the assignment of the complete se-
quence are then generated and checked by the system. Eads [1989] describes
a suite of programs which assist in the sequential assignment process and
which use peak coordinates and intensity values directly as input. The pro-
grams trace spin-systems out to the β protons, look for NOESY cross peaks
between relevant protons and create lists of sequential spin-systems. Tracing
the spin-systems beyond the β protons and establishing correspondence with
the primary sequence is left to the user.

The ABC system [Brugge, 1988] automates the process of determining
secondary structure from NMR data. The program is able to identify α heli-
cal and β strand segments of chain by means of a set of qualitative criteria
that are used in analyzing data derived from the NMR spectra. ABC is imple-
mented within the BB1 architecture [Hayes-Roth, 1988]. Input to ABC
consists of the primary sequence of the protein, lists of observed NOEs and
residue information. The output of the program is a set of secondary struc-
ture elements, defined by their extent over the primary sequence. Each struc-
ture is also labeled with the evidence used to derive it and pointers to partial
structures from which it was constructed. The output of ABC can be used as
part of the input to programs for determining the tertiary structure of pro-
teins. ABC has been tested using published data on nine different proteins
and its ability to locate regions of secondary structure, and its precision in
defining the extent of these regions have been measured. The system per-
forms well and comes close to reproducing the results of expert analysis of
NMR data.

The PROTEAN system [Lichtarge, 1986; Altman, 1988; Altman, 1989] is
based on the exclusion paradigm described earlier. Its purpose is to sample
the conformational space of a protein systematically and to determine the en-

416 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

tire set of positions for each atom that is compatible with the given set of
constraints. To maintain computational feasibility, PROTEAN solves the
protein structure problem in a hierarchical fashion. The program uses knowl-
edge of the protein sequence together with NMR data to determine the sec-
ondary structure. It next defines the coarse topology of the folded structure
and then specifies the spatial distribution of atomic positions using a descrip-
tion of accessible volumes. From these values, the original data are predicted
to verify the resulting family of structures.

The secondary structure of the protein is determined using the ABC sys-
tem described above. The units of secondary structure and a set of experi-
mental constraints (primary structure, NOE distances, surface and volume in-
formation) are then passed to the SOLID GS module. This computes the
accessible volume for the units of secondary structure. SOLID GS uses ab-
stract representations to reduce the number of objects whose positions need
to be sampled. For example, helices are represented by cylinders. The next
module, ATOMIC GS, refines the secondary structures and coils using dis-
crete sampling for atoms. The output of this module is then processed by an-
other (KALMAN) which employs a probabilistic refinement method9 for de-
termination of the uncertainty in each atom. The final component of the
system, BLOCH, calculates NMR data and evaluates the match between ob-
served and predicted values. The system has been used to investigate the ter-
tiary structure of the lac-repressor headpiece, a protein with 51 amino acid
residues. The structural solution proposed by PROTEAN closely matches
that proposed by a manual interpretation of the data performed by an expert
protein spectroscopist.

6 The Protein NMR Assistant
We are in the process of developing a Protein NMR Assistant (PNA)

which will aid a spectroscopist in the identification of residue spin systems
and the prediction of secondary structure. (We are not currently interested in
the problem of tertiary structure prediction.) Previous systems which have
addressed this problem, such as those described earlier, have tackled only
part of the task and have left much of the interpretation to the spectroscopist.
PNA aims to provide a complete system for the identification and assignment
of spin-systems, leading to the prediction of secondary structure.

Two previous attempts at inferring protein structure using AI techniques
are CRYSALIS [Engelmore, 1979; Terry, 1983] and PROTEAN [Hayes-
Roth, 1986]. CRYSALIS attempted to infer the structure of a protein of
known composition but unknown conformation using X-ray diffraction data.
Both these systems made use of the blackboard architecture to integrate di-
verse sources of problem-solving knowledge and to partition the problem
into manageable “chunks”. We are currently investigating whether such an

EDWARDS, SLEEMAN, ROBERTS& L IAN 417

approach would be appropriate for the task of interpreting 2D NMR of pro-
teins. The characteristics of this task are: a large solution space; noisy data;
likelihood of multiple, competing solutions; and the use of a number of co-
operating sources of knowledge. This would seem to make it suitable for the
blackboard approach.

6.1 The Blackboard Architecture

A blackboard system consists of three main components: the blackboard,
a set of problem-solving knowledge sources and a control mechanism. The
blackboard serves to partition the solution space of the problem domain into
one or more domain-specific hierarchies, representing partial solutions. Each
level in the hierarchy possesses a unique vocabulary that serves to describe
the information at that level. Objects on the blackboard can be input data,
partial solutions as well as final solutions and possibly control information.
Relationships between objects are denoted by named links. Domain knowl-
edge is partitioned into separate modules which transform information at one
level into information on the same or different levels. These modules are
termed knowledge sources (KSs) and perform transformations using rules or
procedures. The KSs are separate and independent. Each KS is responsible
for knowing the conditions under which it can contribute to the solution and
thus has a precondition which indicates the conditions on the blackboard that
must exist before the main part of the KS can be activated. The choice of
which KS to use is based on the state of the solution, the latest additions and
modifications to the solution and on the existence of KSs capable of improv-
ing the state of the solution. A controller monitors the changes to the black-
board and decides what to do next. The solution evolves one step at a time
with any type of reasoning step (data-driven, goal-driven and so on) being
applied at each stage.

For a particular application it is necessary to define a solution space and
the knowledge needed to find the solution. This space is divided into levels
of analysis corresponding to partial solutions and the domain knowledge is
divided into specialized KSs that perform the subtasks necessary to arrive at
a final solution. How the problem is partitioned into subproblems makes a
great deal of difference to the clarity of the approach, the resources required
and even the ability to solve the problem at all. This discussion has been nec-
essarily brief; a number of excellent articles on this subject exist [Hayes-
Roth, 1983; Nii, 1986a; Nii, 1986b], together with two books [Engelmore,
1988; Jagannathan, 1989].

A blackboard system can serve as a powerful research tool, allowing the
solution space and domain knowledge of an application problem to be parti-
tioned in different ways and a variety of reasoning strategies to be evaluated.
The robustness of blackboard systems stems primarily from the way in

418 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

which they are organized which tends to localize changes. The answer pro-
duced by a blackboard system is often a complex datastructure, different
parts of which may have been computed through different reasoning paths. A
trace of the system’s execution history is unlikely to prove very useful to the
user. We are addressing the problem of visualization of results as part of the
development of the current system.

The blackboard architecture has been used in a wide variety of applica-
tions, including speech understanding [Erman, 1980]; submarine detection
[Nii, 1982]; image understanding [Nagao, 1979]; and computer controlled
manufacturing [Ayel, 1988]. A number of generalized architectures have also
been developed to allow blackboard application systems to be constructed
more easily. Examples of such tools include: AGE [Nii, 1979], Hearsay-III
[Balzer, 1980], BB1 [Hayes-Roth, 1988], GBB [Corkill, 1986], PCB [Ed-
wards, 1990]. The PCB system is a problem-solving architecture designed to
ease the construction of complex knowledge-based systems in chemical do-
mains. Although the system we shall describe below is not built within this
framework, its design and implementation owe much to the PCB system.

We shall discuss the Protein NMR Assistant in terms of the components
of the blackboard architecture described above, i.e. the blackboard (its levels
and objects), the knowledge sources (structure and function) and control. The
system architecture is shown in Figure 9.

6.2 The PNA Blackboard

The blackboard is divided into five levels (as shown in Figure 9): data,
spin-system, segment, labeled residue and secondary structure. The contents
of each level are as follows:

data: Spectroscopic data (HOHAHA, COSY and NOESY) plus the chemical
sequence.

spin-system: Hypotheses describing the identification of residue spin-sys-
tems within the HOHAHA spectrum.

segment: Partial sequences of 5 or 6 residues assembled from the spin- sys-
tem hypotheses.

labeled residue: Fully labeled residue hypotheses each of which describes
the sequence position of a residue, together with the spectroscopic data
used to identify it.

secondary structure: Units of secondary structure identified through exami-
nation of the NOESY spectrum.

Objects on each of these levels are represented using a frame-based repre-
sentation. The chemical sequence is represented by a frame containing a
number of slots, the first of which contains the full sequence represented as a

EDWARDS, SLEEMAN, ROBERTS& L IAN 419

list of the usual one letter abbreviations. Other slots contain the length of the
sequence and the number of each of the twenty amino-acid residues present
within the sequence. The spectroscopic data is represented on a peak-by-
peak basis. Each peak in the HOHAHA spectrum is represented using the
following slots: id (unique identification number for the peak); xcoord(x co-
ordinate of the peak center); ycoord (y coordinate of the peak center); xsize
(“width” of the peak in the x direction); ysize(“width” of the peak in the y
direction); peak-type(label indicating whether or not the peak is noise); in-
fers(list of the spin-system hypotheses which the peak is associated with).

Objects on the spin-system level define the nature of the residue spin-sys-
tems identified from the HOHAHA spectrum. Each hypothesis contains the
following slots: infers (list of segment hypotheses supported by the spin-sys-
tem); supported-by(list of HOHAHA peaks which make up the spin-sys-
tem); residue-type(name of the amino-acid residue giving rise to the spin-
system); peak-list(identification numbers and coordinates of the HOHAHA
peaks which make up the spin-system); diagonal-peaks(positions of each of

420 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

STAN

SLOC

SAM

COSI

CSA

SID

NOISE

NOESY

COSY

HOHAHA Chemical Sequence

Spin-system
level

Segment
level

Secondary structure
level

Labeled residue
level

Data
level

Chemical
Sequence

COSY

NOESY

NOESY

INITIAL

Figure 9. The Protein NMR Assistant system blackboard architecture.

the diagonal peaks involved in the spin-system); protons (label indicating
whether the COSY spectrum should be used o distinguish between peaks in
the spin-system). If the system is unable to uniquely assign a spin-system to
a particular residue, the residue-typeslot contains a list of the possible
residues associated with that spin-system, instead of an individual residue
name.

Segment level hypotheses also contain infers and supported-byslots. in-
fers is used to indicate which of the objects on the labeled residue level the
segment hypothesis has provided evidence for, while supported-bylists those
spin-systems which were connected to form the segment. Other slots within
the segment hypotheses are: segment-sequence(the partial sequence stored
as a list); noesy-links(peak data indicating the sequential connectivities for
each of the residue pairs in the segment). In the event that a residue is not
uniquely identified on the spin-system level, the segment-sequenceslot will
contain a list of possible residues in place of a single residue.

A fully labeled residue hypothesis contains all the information associated
with the identification of a residue. As well as infers and supported-byslots
(which indicate which secondary structure unit the residue is involved in and
which segment supports it), objects on this level also contain the following:
residue-type(residue name); sequence-position(position of the residue with-
in the chemical sequence); peak-list(identification numbers and coordinates
of the HOHAHA peaks which comprise the residue spin-system); diagonal-
peaks(positions of each of the diagonal peaks involved in the residue spin-
system); noesy-links(NOESY peak data used to assemble the segment in
which the residue occurs).

The final level of the PNA blackboard contains the secondary structure hy-
potheses. These objects detail the exact nature and extent of any secondary
structure unit identified within the protein. Structural hypotheses contain the
following: supported-by(list of labeled residues which make up this unit);
structure-unit(type of unit, i.e. α helix, β sheet); start (position in the chemical
sequence at which the unit commences); finish(position in the sequence where
the unit terminates); spatial-noesy(NOESY interactions used to infer the pres-
ence of the unit). In cases were there is uncertainty as to the exact point in the
sequence where the structural unit begins or ends, the startand finishslots con-
tain lists of residues, indicating a region of the protein sequence.

6.3 The PNA Knowledge Sources

The system currently consists of eight knowledge sources: INITIAL (Ini-
tialization) NOISE (Noise removal), SID (Spin-system identifier), CSA
(Chemical shift analyzer), COSI (COSY interpreter), SAM (Sequential as-
signment module), SLOC (Sequence locator) and STAN (Structure analyz-
er). We shall now describe each of these KSs in turn.

EDWARDS, SLEEMAN, ROBERTS& L IAN 421

INITIAL The first of the PNA KSs deals with the initialization of the
blackboard and with the loading of spectroscopic and chemical sequence
data. The coordinate data representing the HOHAHA, COSY and NOESY
spectra are held in text files which are compiled by this KS into the internal
representation described above. The chemical sequence is also compiled
from a file containing the one letter residue symbols. In addition to loading
the sequence, INITIAL also calculates its length and the number of each of
the amino-acid residues that are present within it.

NOISE As described earlier (Section 3.1), the HOHAHA spectrum con-
tains bands of noise (t1 noise) which run parallel to the ω1 axis. Before the
system attempts to identify spin-systems within the spectrum, it first uses the
NOISE KS to identify peaks which may be due to noise. NOISE examines
the spectroscopic data and searches for groups of peaks which run parallel to
the ω1 axis, i.e. peaks which possess approximately the same y coordinate
value. These peaks, once identified, have noisewritten to their peak-type
slot. This information is then used by the other KSs during analysis of the
spectrum.

SID This KS uses the coordinate representation of the HOHAHA spec-
trum10 together with the chemical sequence of the protein and attempts to
identify residue spin-systems. The chemical sequence is used in order to pre-
vent residues absent from the protein being proposed. SID contains knowl-
edge describing each of the twenty common amino acid residues and the ap-
proximate chemical shift values of each of their protons. Each of the residues
is represented by a frame containing a description of the protons found in
that residue, represented by a list. For example, isoleucine is represented by
the list [N Ca Cb Cg1 Cg1 Cg2 Cg2 Cg2 Cd1 Cd1 Cd1], i.e. 1 amide proton,
1 Cα, 1 Cβ, etc. Another slot contains a list of the approximate chemical
shift values of each proton. Thus, for isoleucine, the chemical shift list is:
[8.26 4.13 1.74 1.30 1.01 0.78 0.78 0.78 0.69 0.69 0.69], i.e. the amide pro-
ton has a value of approximately 8.26, the Cβ a value of 1.74, etc. The ap-
proximate chemical shift values we are using were obtained from a statistical
analysis of water soluble polypeptides and proteins [Groß, 1988]. It should
be noted that the values are only approximate and are merely used as a guide
to the likely nature of the spin-system.

The spin-system identification process proceeds as follows. Beginning at
the limit of the amide proton region of the HOHAHA spectrum (9.0 ppm), a
peak is selected that is close to the diagonal. All peaks with the same x coor-
dinate as this peak (+/- some threshold value) are detected. SID then exam-
ines the spectrum for peaks in other regions with the same y coordinate as the
peaks in this list. The set of peaks which are aligned in the NH region of the
spectrum and which have companion peaks in other regions which are also
aligned along a vertical, are then labeled as possibly belonging to the same
spin-system. This list is then processed to remove all but one peak with any

422 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

y coordinate value. The contents of this list correspond to the protons in an
individual spin-system. This list is compared against the list of chemical
shifts held by SID for each residue and all those residues which match the
pattern of peaks are retained. By match here, we mean that the shift values
for the spin-system peaks are equal to those in the residue chemical shift lists
+/- some scatter parameter. We are assuming (for the moment) that the spec-
tral data is complete, i.e that each residue in the protein gives rise to the cor-
rect number of cross peaks and that there are no missing or extraneous peaks.

All peaks in the spectrum that have been assigned to a spin-system are la-
beled as such and a spin-system hypothesis created. This hypothesis holds
the identification numbers and coordinates of each peak involved in a spin-
system together with the name of the residue. As we have already seen
(Table 1), it can be difficult to detect the Cα and Cβ protons of certain
residues due to very similar chemical shift values for different protons. It is
important that the N, Cα and Cβ protons are clearly labeled as it is the posi-
tions of these protons that are used by the sequential assignment module
(SAM). Figure 10 shows the alignment of cross-peaks in the Nisin spectrum
corresponding to an isoleucine residue, while Figure 11 contains the spin-
system hypothesis created by PNA to describe the identified isoleucine
residue.

One of the problems to be solved within SID is a means of resolving peak
overlap, i.e. how to distinguish between a number of peaks which occur in
very close proximity. It is obvious that for spin-system identification to be
successful, such peaks must be differentiated.

CSA This KS examines spin-system hypotheses which have been created

EDWARDS, SLEEMAN, ROBERTS& L IAN 423

α

β

N

δγ
2

γ
1
’ γ

1
’’

isoleucine

CH

H
O

H

H C3 CH 3CH 2

N C C

Figure 10. The identification of an isoleucine spin-system.

by the SID KS and uses knowledge of chemical shift data in order to check
whether the residue has Cα and Cβ protons which may be confused with
other protons. From an examination of Table 1, it is obvious that the residues
listed there are likely to lead to just this kind of assignment difficulty. If such
confusion occurs, the hypothesis is labeled accordingly. For example, in
isoleucine residues, the Cβ and Cγ1’ protons may easily be confused and
thus [Cb Cg1] is placed in the protons slot of the spin-system hypothesis. If
protons with difficult to assign resonances are not believed to occur in the
residue, CSA writes completeto the protons slot.

COSI Using the COSY coordinate data, this KS attempts to distinguish
between protons within spin-system hypotheses which have been labeled by
the CSA KS. It performs this task using the list of coordinates of the protons
within the spin-system together with the information provided by the CSA
label. The y coordinates are used to detect the appropriate diagonal peaks in
the COSY coordinate map. Cross peaks which occur between these diagonal
peaks are then traced. The representation of the structure of the residue (de-
scribed above) is then called upon and the system determines (based on
knowledge about COSY interactions) which of the COSY cross peaks is due
to each of the one step interactions. Thus, each of the important α, β and N
protons is correctly labeled within the spin-system hypothesis and the value
of the protons slot set as complete.

To illustrate the solution adopted by PNA to these problem assignments,

424 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

spin-system hypothesis 23:

[]

peak list : [835 310.8 712.34] [1076 889.76 920.13]

[1285 310.7 976.6] [1153 923.51 974.18]

[1154 923.58 984.78] [1085 890.7 974]

[1086 890.65 984.05] [1082 890.6 957.56]

knowledge-source :

[spin-system-id]

infers :

supported-by :
]peak1154 peak1285peak1153

[peak835 peak1076 peak1085 peak1086peak1082

residue type : ile

protons : [Cb Cg1]

diagonals peaks: [

]

310.8 N 712.34 a 890.7 b 923.58 g1 957.56 g1

974 g2 974 g2 974 g2 984.78 d 984.78 d

984.78 d

Figure 11. The spin-system hypothesis corresponding to the isoleucine spin-system
shown in Figure 10.

consider Figure 6. From the HOHAHA spectrum of Threonine (6a) it is im-
possible to distinguish between the Cα and Cβ proton. However, as COSY
only has cross peaks due to adjacent interactions (6b, 6c), the Cα - Cβ inter-
action can be seen, as can the N - Cα and Cβ - Cγ interactions. As the Cα
proton gives rise to two cross peaks, one with N and the other with Cβ, while
the Cβ proton is involved with Cα and Cγ, it is quite straightforward to dif-
ferentiate between the α and β protons.

SAM This KS uses the chemical sequence and the spin-system hypothe-
ses, together with a coordinate representation of the short τm NOESY spec-
trum with an additional descriptor for each peak to provide intensity infor-
mation. The sequential assignment process then proceeds as follows. The
chemical sequence is examined and either a unique residue, or unique dipep-
tide segment (pair of adjacent residues) is detected. In the case of a unique
residue, the system then looks through the spin-system hypotheses for a hy-
pothesis corresponding to this residue. For dipeptides, one of the residues in
the pair is selected and the appropriate hypothesis retrieved. The coordinates
of the Cα peak are extracted and the NOESY spectrum examined for a cross
peak with the same y coordinate. The x coordinate of this peak is then re-
trieved and the spin-system hypotheses examined for a N proton with the
same x coordinate. This group of connected peaks corresponds to a αN short
range interaction. If the search for an interaction is unsuccessful, then the co-
ordinates of the N proton peak in the starting residue are used and if this
fails, the Cβ peak is used. If such an interaction is detected, SAM notes that
the two residues are adjacent and the process is repeated using the spin-sys-
tem hypothesis for the second residue. This continues until a 5 or 6 residue
segment has been assembled at which point SAM creates a segment hypothe-
sis. This hypothesis contains the partial sequence and the NOESY peak data
used to construct it. SAM then selects another spin-system hypothesis and at-
tempts to generate another 5 or 6 residue segment.

SLOC Once a peptide segment has been created by the SAM KS, the
SLOC KS may be invoked. This KS attempts to locate the partial sequence
defined by the segment hypothesis within the overall chemical sequence of
the protein. The sequence is searched for a matching segment and the se-
quence position numbers of each of the residues are noted. At this stage, un-
certainties as to the exact nature of a residue spin-system are resolved using
the sequence. Each of the spin-system hypotheses used to generate the seg-
ment are then examined and the appropriate fully labeled residue hypotheses
created.

STAN This KS uses the fully labeled residue hypotheses and a coordinate
representation of the NOESY spectrum with an intensity descriptor for each
peak. It contains information on the type of interactions expected for each
secondary structure unit. This information is represented as a series of frames
containing details of the type of protons involved, their relative positions in

EDWARDS, SLEEMAN, ROBERTS& L IAN 425

the sequence, the intensity of the signal and the secondary structure. For ex-
ample, to represent that an αN (i, i+4) interaction with weak intensity indi-
cates an α-helix, a frame would contain the following: [a n 4 weak alpha].
STAN examines the NOESY data for cross peaks indicating particular sec-
ondary structure units and creates structure hypotheses (described above) de-
tailing the nature and extent of these structures. Table 3 contains a summary
of the function of each of the PNA knowledge sources.

6.4 Control

The control component of PNA must integrate the performance of each of
the domain knowledge sources described above with intervention by the
spectroscopist during problem-solving. Unlike the KSs, each of which is a
specialized problem-solving entity dealing with a small part of the overall
task, the user is able to contribute at any stage of the process. The user may
choose to interrupt the performance of the system and may, for example, cre-
ate a new hypothesis or modify an existing one on any level of the black-
board. The control task faced by PNA is therefore a dynamic constantly
changing one, with the system requiring a flexible control structure.

Rather than encoding a fixed control strategy into the system we are im-
plementing a control framework which will allow the user to intervene dur-
ing problem-solving. However, we have restricted the amount of user inter-
action which is allowed during the analysis of the data. For example, the SID
knowledge source generates all potential spin-system hypotheses without
any interruption by the user. One the spin-system identification process is
complete the user is free to intervene and to inspect the hypotheses and if
necessary to modify or even delete some of them. Other KSs, such as COSI
or SAM modify or create only one hypothesis before allowing the user to in-
tervene. This approach is, we feel, a useful compromise between no user in-
teraction during problem-solving and allowing the user to intervene at any
point during problem-solving - with all its inherent difficulties.

It should be noted that although Figure 9 indicates the flow of reasoning
moving upwards from the data level, that the system also supports top-down
reasoning. For example, the identification of a segment hypothesis within the
chemical sequence may remove an uncertainty as to the nature of a residue
spin-system, which will result in modifications to lower-level hypotheses.

7 Discussion

The Protein NMR Assistant aims to provide a spectroscopist with a pow-
erful tool for the analysis of nuclear magnetic resonance spectra of proteins.
Currently, much of this task is performed by hand and is extremely time con-
suming. By providing an interactive environment for the analysis of HOHA-

426 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

HA, COSY and NOESY spectra, it is hoped that the time required to perform
the analysis of such data will be reduced and that the reliability of results will
be increased.

A user interface, consisting of a series of windows displaying the spectra
and allowing the user to interact during the interpretation process is under
development. Such an interface is, we feel, a vital part of the overall archi-
tecture. We are investigating how the partial solutions created on the black-
board can be displayed in such a way that they are meaningful and assist the
user in comprehending the actions of the system. Once fully implemented,
PNA will be used to examine a number of proteins for which NMR data are
available and the results and performance of the system evaluated.

We are currently investigating the application of machine learning tech-
niques to the 2D NMR of Carbohydrates [Metaxas, 1991]. This study aims to
generate an empirical theory relating the structural form of a molecule with
its 2D NMR spectrum. It is hoped that the experience gained through this
project will allow us to investigate the applicability of such methods to 2D
NMR of Proteins. Empirical rules relating spectral features to protein struc-
ture could be used to assist in secondary structure prediction and perhaps
during the sequential assignment process. The existence of some rules, such
as those relating peaks in the NOESY spectrum to secondary structure, gives
us confidence that this domain will prove suitable for the application of ma-

EDWARDS, SLEEMAN, ROBERTS& L IAN 427

Knowledge Source Function

NOISE Identifies noise bands and other spurious peaks in the
HOHAHA spectrum prior to the spin-system identification
process.

SID Attempts to identify residue spin-systems within the coordinate
representation of the HOHAHA spectrum.

CSA Using knowledge of approximate residue chemical shifts,
examines spin-system hypotheses and labels those which contain
"troublesome" protons.

COSI Examines the COSY coordinate map in an effort to distinguish
between troublesome signals identified by CSA.

SLOC Searches the chemical sequence for a segment generated by
SAM and generates a residue hypothesis labeled with its
sequence position.

STAN Infers the presence of secondary structure units using residue
hypotheses and the NOESY spectrum.

SAM Links spin-system hypotheses together to form segment
hypotheses.

INITIAL Initialises the PNA blackboard by loading spectroscopic and
sequence data.

Table 3 Summary of the Protein NMR Assistant Knowledge Sources.

chine learning techniques. Any knowledge obtained using such techniques
could be tested within the problem-solving environment provided by the Pro-
tein NMR Assistant.

Notes

1 It should be noted that three dimensional NMR experiments are also now
possible.

2 Figure 3 illustrates these sequential NOE connectivities.

3 Proline residues can present a problem during the interpretation process,
as they do not possess an amide proton and thus any residue adjacent to a
proline will appear to be a terminal residue.

4 A 34 amino-acid peptide with molecular formula C143H230N42O37

5 By aligned we mean that the peak centers lie along the same vertical line
allowing for some scatter value.

6 As some NOEs due to secondary structure features may appear in this ex-
periment, it is necessary to refer to the chemical sequence during sequen-
tial assignment of spin systems.

7 If the NOE cross peak occurs between two protons within the same
residue it is ignored.

8 We are of course assuming that the sequence is correct.

9 The double-iterated Kalman filter.

10 The transformation from the original HOHAHA spectrum to this coordi-
nate representation is performed using a commercial 2D “peak picking”
program.

References
R.B. Altman, B.S. Duncan, J.F. Brinkley, B.G. Buchanan and O. Jardetzky, Determination of

the Spatial Distribution of Protein Structure Using Solution Data, in J. W. Jaroszewski, K.
Schaumburg and H. Kofod (Eds.), NMR Spectroscopy in Drug Research,Munksgaard, Copen-
hagen, 1988, 209-232

R.B. Altman and O. Jardetzky, Heuristic Refinement Method for Determination of Solution
Structure of Proteins from Nuclear Magnetic Resonance Data, Methods in Enzymology, 1989,
177, 218-246

J. Ayel, A Conceptual Supervision Model in Computer Integrated Manufacturing, in Pro-
ceedings of the Eighth European Conference on Artificial Intelligence (ECAI88), Munich, FRG,
August 1-5, 1988, 427-432

R. Balzer, L.D. Erman, P.E. London and C. Williams, Hearsay-III : A Domain-Independent

428 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Framework for Expert Systems, in Proceedings of the First National Conference on Artificial
Intelligence (AAAI80), Stanford, California, USA, August 18-21, 1980, 108-110

D.R. Barstow, Knowledge Engineering in Nuclear Physics, in Proceedings of the Sixth In-
ternational Joint Conference on Artificial Intelligence (IJCAI79), Tokyo, Japan, August 20-23,
1979, 1, 34-36

D.R. Barstow, Exploiting a Domain Model in an Expert Spectral Analysis Program, in Pro-
ceedings of the First National Conference on Artificial Intelligence (AAAI80), Stanford, CA,
USA, August 18-21, 1980, 276-279

M. Billeter, V.J. Basus & I.D. Kuntz, A Program for Semi-Automatic Sequential Resonance
Assignments in Protein 1H Nuclear Magnetic Resonance Spectra, Journal of Magnetic Reso-
nance, 1988, 76: 400-415

J.A. Brugge, B.G. Buchanan and O. Jardetzky, Toward Automating the Process of Determin-
ing Polypeptide Secondary Structure from 1H NMR Data, Journal of Comput. Chemistry, 188, 9
(6): 662-673

B.G. Buchanan, E.A. Feigenbaum and J. Lederberg, A Heuristic Programming Study of
Theory Formation in Science, in Advance Papers of the Second International Joint Conference
on Artificial Intelligence (IJCAI71),London, September 1-3, 1971, 40-50

B.G. Buchanan and N.S. Sridharan, Analysis of Behaviour of Chemical Molecules: Rule
Formation of Non-Homogeneous Classes of Objects, in Advance Papers of the Third Interna-
tional Joint Conference on Artificial Intelligence (IJCAI73), Stanford, CA, USA, August 20-23,
1973, 67-76

R.E. Carhart, T.H. Varkony and D.H. Smith, Computer Assistance for the Structural
Chemist, in D.H. Smith (Ed.), Computer-Assisted Structure Elucidation, ACS Symposium Se-
ries no. 54, ACS, Washington D.C., 1977, 126-145

B.D. Christie, Personal Communication, September 1985

C. Cieslar, G.M. Clore & A.M. Gronenborn, Computer-Aided Sequential Assignment of
Protein 1H NMR Spectra, Journal of Magnetic Resonance,1988, 76, 119-127

R.M. Cooke & I.D. Campbell, Protein Structure Determination by Nuclear Magnetic Reso-
nance, BioEssays,1988, 8 (2), 52-56

D.D. Corkill, K.Q. Gallagher and K.E. Murray, GBB: A Generic Blackboard Development
System, in Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI86),
Philadelphia, PA, USA, August 11-15, 1986, 2, 1008-114

B. Debska, J. Duliban, B. Guzowska-Swider and Z. Hippe, Computer-Aided Structural
Analysis of Organic Compounds by an Artificial Intelligence System, Anal. Chim. Acta.,1981,
133: 303-318

C. Djerassi, D.H. Smith, C.W. Crandell, N.A.B. Gray, J.G. Nourse and M.R. Lindley, The
Dendral Project: Computational Aids to Natural Products Structure Elucidation, Pure & Applied
Chem., 1982, 54 (12), 2425-2442

C.D. Eads & I.D. Kuntz, Programs for Computer-Assisted Sequential Assignment of Pro-
teins, Journal of Magnetic Resonance, 1989, 82, 467-482

P. Edwards, D. Sleeman, G.C.K. Roberts & L.Y. Lian, An Intelligent Assistant for Protein
NMR, Aberdeen University Computing Science Department Technical Report, AUCS/TR8910,
1989

P. Edwards, A Cooperative Expert System for Spectra Interpretation, PhD thesis, School of
Chemistry, University of Leeds, 1990

H. Egli, D.H. Smith and C. Djerassi, Computer-Assisted Structural Interpretation of 1H

EDWARDS, SLEEMAN, ROBERTS& L IAN 429

NMR Spectral Data, Helvetica Chimica Acta, 1982, 65: 1898-1920

M.E. Elyashberg, V.V. Serov and L.A. Gribov, Artificial Intelligence Systems for Molecular
Spectral Analysis, Talanta, 1987, 34 (1), 21-30

R.S. Engelmore and A. Terry, Structure and Function of the CRYSALIS System, in Pro-
ceedings of the Sixth International Joint Conference on Artificial Intelligence (IJCAI79), Tokyo,
Japan, August 20-23,1979, 1: 250- 256

R.S. Engelmore and A.J. Morgan, Blackboard Systems,Addison-Wesley, Wokingham, Eng-
land, 1988

S.P. Ennis, Expert Systems : A User’s Perspective of Some Current Tools, in Proceedings of
the Second National Conference on Artificial Intelligence (AAAI82), Carnegie-Mellon Universi-
ty, Pittsburgh, PA, USA, August 18-20 1982, 319-321

L.D. Erman, F. Hayes-Roth, V.R. Lesser and D.R. Reddy, The Hearsay-II Speech Under-
standing System: Integrating Knowledge to Resolve Uncertainty, ACM Computing Surveys,
1980, 12 (2), 213-253

N.A.B. Gray, C.W. Crandell, J.G. Nourse, D.H. Smith, M.L. Dageforde and C. Djerassi,
Computer-Assisted Structural Interpretation of Carbon-13 Spectral Data, J. Org. Chem., 1981,
46: 703-715

L.A. Gribov, M.E. Elyashberg and V.V. Serov, Computer System for Structure Recognition
of Polyatomic Molecules by IR, NMR, UV and MS Methods, Anal. Chim. Acta.,1977, 95: 75-
96

L.A. Gribov, Application of Artificial Intelligence Systems in Molecular Spectroscopy, Anal.
Chim. Acta.,1980, 122: 249-256

L.A. Gribov, M.E. Elyashberg, V.N. Koldashov and I.V. Pletnjov, A Dialogue Computer Pro-
gram System for Structure Recognition of Complex Molecules by Spectroscopic Methods, Anal.
Chim. Acta., 1983, 148: 159-170

K.H. Groß & H.R. Kalbitzer, Distribution of Chemical Shifts in 1H Nuclear Magnetic Reso-
nance Spectra of Proteins, Journal of Magnetic Resonance, 1988, 76: 87-99

T.F. Havel, I.D. Kuntz and G.M. Crippen, The Theory and Practice of Distance Geometry,
Bulletin of Mathematical Biology,1983, 45 (5), 665-720

B. Hayes-Roth, The Blackboard Architecture: A General Framework for Problem Solving ?,
Stanford University, Computer Science Department, Heuristic Programming Project Report No.
HPP-83-30, 1983

B. Hayes-Roth, B. Buchanan, O. Lichtarge, M. Hewett, R. Altman, J. Brinkley, C. Cornelius,
B. Duncan and O. Jardetzky, PROTEAN: Deriving Protein Structure from Constraints, in Pro-
ceedings of the Fifth National Conference on Artificial Intelligence (AAAI86),Philadelphia, PA,
USA, August 11-15, 1986, 2: 904-909

B. Hayes-Roth and M. Hewett, BB1: An Implementation of the Blackboard Control Archi-
tecture, in Blackboard Systems,Addison-Wesley, Wokingham, England, R.S. Engelmore and
A.J. Morgan (Eds.), 1988, 297-313

J. Hermans (Ed.), Molecular Dynamics and Protein Structure, Polycrystal Book Service,
1985

Z. Hippe, Problem-Solving Methods in Computer-Aided Organic Structure Determination,
J. Chem. Inf. Comput. Sci.,1985, 25: 344-350

V. Jagannathan, R. Dodhiawala and L.S. Baum (Eds.), Blackboard Architectures and Appli-
cations,Academic Press: San Diego, CA, 1989

K. Janssens and P. Van Espen, Evaluation of Energy-Dispersive X-Ray Spectra with the Aid

430 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

of Expert Systems, Anal. Chim. Acta.,1986, 191: 169-180

O. Jardetzky and G.C.K. Roberts,NMR in Molecular Biology, Academic Press, New York,
1981

G.C. Levy, Current Trends in Computing: Hardware, Software and Nuclear Magnetic Reso-
nance Research, J. Molec. Graphics, 1986, 4 (3),170-177

O. Lichtarge, C.W. Cornelius, B.G. Buchanan and O. Jardetzky, Validation of the First Step
of the Heuristic Refinement Method for the Derivation of Solution Structures of Proteins from
NMR Data, Knowledge Systems Laboratory, Computer Science Department, Stanford Universi-
ty, Report No. KSL-86-12

M.R. Lindley, J.N. Shoolery, D.H. Smith and C. Djerassi, Application of the Computer Pro-
gram GENOA and Two-Dimensional NMR Spectroscopy to Structure Elucidation, Organic
Magnetic Resonance, 1983, 21 (7), 405- 411

R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum and J. Lederberg, Applications of Artificial
Intelligence for Organic Chemistry: The Dendral Project, McGraw-Hill, New York, 1980

S. Metaxas, P.Edwards and D. Sleeman, The Interpretation of COSY 1H NMR Spectra for
Small Sugar Molecules, Aberdeen University Computing Science Department Technical Report,
AUCS/TR9109

T.M. Mitchell and G.M. Schwenzer, Application of Artificial Intelligence for Chemical In-
ference XXV. A Computer Program for Automated Empirical 13C NMR Rule Formation, Org.
Mag. Res., 1978, 11 (8), 378-384

S. Moldoveanu and C.A. Rapson, Spectral Interpretation for Organic Analysis Using an Ex-
pert System, Anal. Chem.,1987, 59: 1207-1212

G.A. Morris, Modern NMR Techniques for Structure Elucidation, Magnetic Resonance in
Chemistry,1986, 24: 371-403

M.E. Munk, C.A. Shelley, H.B. Woodruff and M.O. Trulson, Computer- Assisted Structure
Elucidation, Z.Anal. Chem.,1982, 313: 473-479

M. Nagao, T. Matsuyama and H. Mori, Structural Analysis of Complex Aerial Photographs,
in Proceedings of the Sixth International Joint Conference on Artificial Intelligence (IJCAI79),
Tokyo, Japan, August 20-23,1979, 2, 610-616

H.P. Nii and N. Aiello, AGE (Attempt to Generalize) : A Knowledge-Based Program for
Building Knowledge-Based Programs, in Proceedings of the Sixth International Joint Confer-
ence on Artificial Intelligence (IJCAI79), Tokyo, Japan, August 20-23,1979, 2, 645-655

H.P. Nii, E.A. Feigenbaum, J.J. Anton and A.J. Rockmore, Signal-to-Symbol Transforma-
tion: HASP/SIAP Case Study, AI Magazine, 1982, 3 (2), 23-35

H.P. Nii, Blackboard Systems: The Blackboard Model of Problem Solving and the Evolution
of Blackboard Architectures, AI Magazine, 1986, 7 (2), 38-53

H.P. Nii, Blackboard Systems: Blackboard Application Systems, Blackboard Systems from a
Knowledge Engineering Perspective, AI Magazine,1986, 7: (3), 82-106

S. Sasaki, Y. Kudo, S. Ochiai and H. Abe, Automated Chemical Structure Analysis of Or-
ganic Compounds: An Attempt to Structure Determination by the Use of NMR, Mikrochimica
Acta.,1971, 726-742

S. Sasaki, H. Abe, I. Fujiwara and T. Yamasaki, The Application of 13C NMR in CHEMICS,
The Computer Program System for Structure Elucidation,in Z. Hippe (Ed.), Data Processing in
Chemistry (Studies in Physical and Theoretical Chemistry 16), Elsevier, 1981, 186-204

G. Schroll, A.M. Duffield, C. Djerassi, B.G. Buchanan, G.L. Sutherland, E.A. Feigenbaum
and J. Lederberg, Applications of Artificial Intelligence for Chemical Inference III. Aliphatic

EDWARDS, SLEEMAN, ROBERTS& L IAN 431

Ethers Diagnosed by their Low-Resolution Mass Spectra and Nuclear Magnetic Resonance
Data, Journal American Chemical. Society,1969, 91, 7440-7445

G.M. Schwenzer and T.M. Mitchell, Computer-Assisted Structure Elucidation Using Auto-
matically Acquired 13C NMR Rules, in D.H. Smith (Ed.), Computer-Assisted Structure Eluci-
dation, ACS Symposium Series no. 54, ACS, Washington D.C., 1977, 58-76

C.A. Shelley, H.B. Woodruff, C.R. Snelling and M.E. Munk, Interactive Structure Elucida-
tion, in D.H. Smith (Ed.), Computer-Assisted Structure Elucidation,ACS Symposium Series no.
54, ACS, Washington D.C., 1977, 92-107

C.A. Shelley and M.E. Munk, CASE, A Computer Model of the Structure Elucidation Pro-
cess, Anal. Chim. Acta.,1981, 133: 507-516

C.A. Shelley and M.E. Munk, Computer Prediction of Substructures from Carbon-13 Nucle-
ar Magnetic Resonance Spectra, Anal. Chem.,1982, 54: 516-521

D.H. Smith, N.A.B. Gray, J.G. Nourse and C.W. Crandell, The Dendral Project: Recent Ad-
vances in Computer-Assisted Structure Elucidation, Anal. Chim. Acta.,1981, 133, 471-497

A. Terry, The CRYSALIS Project: Hierarchical Control of Production Systems, Stanford
University Technical Report, HPP-83-19, 1983

K. Wüthrich, NMR of Proteins and Nucleic Acids, Wiley, New York, 1986

T. Yamasaki, H. Abe, Y. Kudo and S. Sasaki, CHEMICS: A Computer Program System for
Structure Elucidation of Organic Compounds, in D.H. Smith (Ed.), Computer- Assisted Struc-
ture Elucidation, ACS Symposium Series no. 54, ACS, Washington D.C., 1977, 108-125

M. Yamazaki and H. Ihara, Knowledge-Driven Interpretation of ESCA Spectra, in Proceed-
ings of the Sixth International Joint Conference on Artificial Intelligence (IJCAI79), Tokyo,
Japan, August 20 - 23 1979, 2, 995 - 997

432 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

C H A P T E R

12

Molecular Scene Analysis:

Crystal Structure Determination

Through Imagery

Janice I. Glasgow, Suzanne Fortier & Frank H. Allen

1 Introduction

This chapter describes the design of a prototype knowledge-based system
for crystal and molecular structure determination from diffraction data. This
system enhances current methods for the determination and interpretation of
protein structures by incorporating direct methods probabilistic strategies,
experience accumulated in the crystallographic databases, and knowledge
representation and reasoning techniques for machine imagery. The process of
determining the structure of a crystal is likened to an iterative scene analysis,

This paper is based on "Crystal and Molecular Scene Analysis," by Glasgow, Fortier
and Allen which appeared in the Proceedings of the Seventh IEEE Conference on Ar-
tificial Intelligence Applications, Miami Beach, Florida, Feb. 1991

which draws both from the long-term memory of structural motifs and the
application of chemical and crystallographic rules.

A crystal consists of a regular three-dimensional arrangement of identical
building blocks, termed the unit cell; a crystal structure is defined by the dis-
position of atoms and molecules within this fundamental repeating unit. A
given structure is determined by interpretation of an electron-density image
of the unit-cell contents which can be generated from the amplitudes and
phases of the diffraction data. Normally, however, only the diffraction ampli-
tudes can be measured experimentally: the necessary phase information must
be obtained by other means. This is the classic phase problemof the crystal-
lographic method.

The structure determination of small molecules (up to 150 or so indepen-
dent non-hydrogen atoms) has become a routine process in the last fifteen
years. This is best observed in the rapid growth of the Cambridge Structural
Database which has seen its number of entries increase from 14,000 to
90,000 in that period of time. Direct methods have contributed much to this
progress by providing a mathematical, computer oriented solution to the
phase problem. By contrast, the determination of macromolecular structures
remains a lengthy and difficult task in which the phase problem continues to
be a major hurdle.

The initial electron-density images obtained for macromolecules are typi-
cally incomplete and noisy. Interpretation of these images often involves
mental pattern recognition on the part of the crystallographer: the image is
segmented into features which are then pattern matched against individual
recollections of expected structural motifs. Once recognized, this partial
structure information can be used to improve the phase estimates and hence
the subsequent image. The success of this iterative approach to image re-
construction depends crucially on individual recall of existing structural
knowledge and on the ability to recognize its presence in a noisy map.

Our proposed knowledge-based system incorporates databases of infor-
mation on previously determined crystal structures from which templates
for pattern matching can be derived. Clearly, this will enhance the memory
capability of the individual crystallographer. Further, our approach to image
reconstruction is influenced by some of the current cognitive theories for
imagery. These theories suggest that an image is organized as a depiction of
its meaningful parts and their spatial relationships. Based on this assump-
tion, a schema has been designed and implemented in which an image is de-
picted as a multi-dimensional symbolic array. Here the symbols in the array
correspond to the meaningful parts of the image. The schema also includes
functions that correspond to the processes involved in mental imagery, func-
tions which form the basis for effective pattern matching techniques.

In combination with the probabilistic direct methods, these concepts of
knowledge-based imagery provide for a more fluid approach to crystal struc-

434 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ture analysis: the phase determination is now guided by structural informa-
tion established by a pattern recognition procedure which makes use of
chemical and crystallographic reasoning. This allows the image reconstruc-
tion process to follow a hierarchical path and therefore take advantage of the
structural organization of proteins.

In the next section we provide an overview of our symbolic array knowl-
edge representation schema for imagery. In Section 3 we discuss how the
crystallographic phase problem can be reduced to a search problem, and in
Section 4 we describe the structural databases used in our system. Section 5
presents our iterative algorithm for crystal structure determination.

2 Imagery

Mental simulations can provide insights that contribute to effective prob-
lem solving techniques. James Watson reported visualizing “pairs of adenine
residues whirling in front of my closed eyes” at a time when he and Crick
were verging on solving the structure of DNA [Watson 1968]. Similarly, the
chemist Kekulé reported that it was spontaneous imagery that led him to the
discovery of the molecular structure of benzene [MacKenzie 1965].

In determining crystal structures, crystallographers also relate the use of
mental visualization or imagery. The electron density representation of the
unit cell contains features which must be interpreted in terms of the expected
chemical constitution of the crystal. Additionally, the interpretation must
conform to chemical and crystallographic rules, as established from earlier
experiments. Thus, it is natural for crystallographers to use their own mental
recall of known molecular structures, or of fragments thereof, to compare
with and interpret the electron density features. Furthermore, since crystals
are three-dimensional objects, this mental pattern recognition must involve
the rotation and translation of images through space. Theories of cognition
would support the view that humans do indeed perform these “mental rota-
tion” functions [Shepard and Metzler 1971].

The schema we propose for crystal structure determination supports the
functions of imagery and visualization by representing crystal structures
using both descriptive and depictive knowledge representation techniques. A
symbolic array data structure is used to denote the hierarchical and spatial
structure of such an image. Information needed to construct a symbolic array
as well as the chemical knowledge of a crystal are stored and manipulated as
a frame structure.

In this section we describe a knowledge representation scheme for im-
agery that can be used to represent, manipulate and reason about crystal
structures. Such a representation includes a data structure for storing an
image and functions on the representation that correspond to the mental
processes involved in imagery. Before presenting this scheme, we

GLASGOW, FORTIER& A LLEN 435

overview some of the research in cognitive psychology that has contributed
to its design.

2.1 Mental Imagery

After many years of neglect, the topic of mental imagery has recently
emerged as an active area of research in cognitive psychology. A debatable
issue in this research concerns the underlying representation of images
[Block 1981]: is an image represented as a description or as adepictionof its
components?

Those who support the descriptive approach in the imagery debate sug-
gest that images are not a distinct domain and thus are represented and ma-
nipulated as propositions [Pylyshyn 1981]. Contrary to this, supporters of the
depictive approach state that imagery does involve a unique class phenomena
and that images are organized into meaningful parts that are represented in
terms of their spatial relations. The descriptive approach to representing im-
ages is appealing since it provides an abstract representation without
significant loss of information. Although this representation is sufficient, it
has been argued that it may not always be the most desirable. By studying
the way people make inferences concerning spatial relationships, [Kosslyn
1980] has argued that mental imagery is used extensively. Further, he argues
that both descriptive and depictive representations of images are involved in
these mental processes.

As an alternative to defining a formal model for imagery, Finke has sum-
marized much of the research in mental imagery by defining a set of “unify-
ing principles” [Finke 1989]. Theimplicit encodingprinciple states that im-
agery is used to retrieve information that was not explicitly stored in
memory. The principle of perceptual equivalencesuggests that imagery is
functionally equivalent to perception, in the sense that similar mechanisms
are activated when objects or events are imagined as when the same objects
or events are perceived. The spatial equivalenceprinciple states that an
image preserves, though sometimes distorts, the spatial relations of objects.
The principle of transformational equivalenceproposes a similarity relation
between imagined and physical transformations. The final principle, the
structural principle, states that the structure of an image is coherent, well or-
ganized and can be reinterpreted. These five principles allow the underlying
intuitions of imagery to be expressed and further developed without restrict-
ing a model to the point where it applies to only a single task.

The primary goal of research in machine imagery is to develop represen-
tational tools for building programs that reason about and solve difficult
problems using imagery. Similar to the cognitive approach of Finke, in de-
veloping computational tools for imagery we do not wish to restrict our-
selves to a single model. Rather, we define a representation that allows the
broad principles of imagery to be captured and expanded on.

436 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

2.2 The Data Structure

The proposed representation schema for imagery is based on a formal the-
ory of embedded, rectangular arrays [Jenkins and Glasgow 1989, More
1981]. Similar to set theory, array theory is concerned with the concepts of
nesting, aggregation and membership. Array theory is also concerned with
the concept of data objects having a spatial position relative to other objects
in a collection. This theory strives to provide a universal recursive data struc-
ture that can be used effectively in a language that spans multiple program-
ming paradigms. Such a language, Nial [Jenkins, Glasgow and McCrosky
1986], is being used to implement the computational processes for machine
imagery as well as our knowledge-based system for crystal structure determi-
nation.

The array data structure provides a multi-dimensional realization of an
image. The embedded nature of the array also allows for a parts-hierarchy
depiction of an image. Detailed information (lower levels of the hierarchy)
can either be hidden or made explicit in such a representation since hierarchi-
cal structure is expressed using embedded arrays. Thus the symbolic
identification of meaningful parts of an image allows the depiction of a part
to be suppressed unless attention is focused on that part.

Theories of cognition suggest that imagery involves both descriptive and
depictive information [Kosslyn, 1980]. They have also suggested that in
long-term memory depictive knowledge may be stored as a literal description
of the locations of the parts within an image. Thus, the structure we propose
is one which represents an image descriptively, yet allows a symbolic array
depiction to be generated when needed [Glasgo and Papadias, 1992].

The important concepts in crystallography are: the periodically repeating
motif in a unit cell of a crystal (CRYSTAL); the molecules and/or structural

GLASGOW, FORTIER& A LLEN 437

IMAGE

ATOM MOLECULE CRYSTAL

carbon.1 benzene.1 crystal .1

i s
a

i s
a

i s
a

has
par t

has
par t

i s
a

i s
a

i s
a

has
par t

has
par t

Figure 1. Semantic net for concepts and objects for crystallography domain

fragments (MOLECULE) and the atoms (ATOM). A semantic network that
illustrates structural and hierarchical relationships between these concepts is
presented in Figure 1. Instances of each of these concepts are also illustrated
in the network.

A frame structure is used in our scheme to provide a descriptive represen-
tation of the concepts and objects for crystallography. An image frame has
two required slots: a parts slot that provides a literal representation of the
components of an image and their locations in Euclidean space; and a depict
slot that contains a default function that generates the symbolic array repre-
sentation of an image from the given parts and locations. An example of a
frame that represents the depictive and descriptive knowledge of a crystal
structure is illustrated in Figure 2.1

A symbolic array denotes the structural features of an image. This array
may be depicted in one, two or three dimensions. Figure 3 illustrates a two-
dimensional projection of the three-dimensional symbolic array data struc-
ture that would be generated using the depict slot of the image frame and the
parts slot of the crystal frame.

Hierarchical organization is a fundamental aspect of imagery. Theories of
selected attention suggest the need for an integrated spatial/hierarchical rep-
resentation: when attention is focused on a particular feature, the brain is still

438 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

FRAME: Dicyclohexano-18-crown-6 with potassium phenoxide and phenol

class: crystal

parts: phenoxide-ring 0 0 0
DC-18-crown-6 1 1 1
phenol 2 2 2

molecular formula: K-1 O-8 C-32 H-47

space group: Pnca

unit cell dimensions:
14.15 23.794 9.491
 90 90 90

Figure 2. Frame for a crystal structure

phenoxide ring

DC-18 -c rown-6

phenol

Figure 3. Two-dimensional projection of symbolic array for crystal structure

partially aware of other features and their spatial relation to the considered
feature. Our symbolic array representation supports such theories by consid-
ering an image as a recursivedata structure. A symbolic element of an array
can itself denote a subimage. Consider the image of the crystal structure de-
picted in Figure 3. The symbols in this structured representation can denote
structured subimages. Figure 4 illustrates the symbolic array depiction of the
crystal structure when attention is focused on the subimage of phenoxide-
ring. As with the image of the crystal, this embedded array would be generat-
ed using the depict slot of the image frame for the phenoxide-ring.

The primary goal of the knowledge-based system for crystal structure de-
termination is to obtain a detailed and precise three-dimensional picture of
the atomic arrangement in the crystal. In Section 5 we describe an algorithm
that reconstructs such an image of a crystal in the form of a symbolic array.

A computational model for mental imagery has previously been proposed
[Kosslyn 1980]. In his theory, images have two components: a surface repre-
sentation (a quasi-pictorial representation that occurs in a visual buffer) and a
descriptive representation for information stored in long-term memory. The
two-dimensional surface representation of his theory is fundamentally differ-
ent from the symbolic array representation described in our chapter. Howev-
er, the design of the frame representation and the functions defined on im-
ages in our representation were greatly influenced by Kosslyn’s empirical
studies and model.

2.3 Functions on Images

The effectiveness of a scheme for knowledge representation is measured
primarily by how well it facilitates the processes that operate on the repre-
sentation. Larkin and Simon argue that diagrams are computationally prefer-

GLASGOW, FORTIER& A LLEN 439

DC-18-c rown-6

phenol

H3 H2

C3 C2

H4 C4 C1 O1

 C5 C6

H5 H6

Figure 4. Embedded array representation of subimage phenoxide-ring, projected into
two dimensions.

able to propositional representations, not because they contain more informa-
tion but because the indexing of the information supports efficient computa-
tions [Larkin and Simon 1987]. In this subsection we propose a set of primi-
tive functions that were designed to support the cognitive inferences
involved in imagery. These functions on symbolic arrays are considered in
three categories: functions for constructing images, functions fortransform-
ing images and functions for accessing images.

The first class of functions we consider are those involved in constructing
an image. These functions are summarized in Figure 5.

Theories of cognition support three distinct memory systems: sensory
storage, working or short-term memory and long-term memory [Baddeley
1986]. When considering machine imagery, we are mainly concerned with
representation in working memory. One way to construct an image in work-
ing memory is to retrieve an instance of this image from long-term memory.
Computationally, we interpret long-term memory as a database of frames
that provide a propositional and a literal representation of an image. The cre-
ation of an image from such a representation is on an “if-needed” basis. An
invocation of the function specified in the depict slot results in the construc-
tion of a symbolic array representation of the image from the literal represen-
tation of its parts.

A basic process of thought is the creation of new concepts from old. Im-
agery involves constructing and manipulating images in unique ways. Our
model supports processes for imagery by allowing complex images to be
constructed as a composition of simpler images. For example, we may store
images of a ball and a box, but the image of a ball sitting on top of a box is
created from the two subimages and the desired spatial relation. The hierar-
chical representation of images permits us to compose two or more images

440 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

NAME OPERATION

Retrieve

Construct

Compose

Symop

Resolve

Compare

Consistent

Retrieve an image representation from long-term memory.

Construct a symbolic array depiction of an image from a descriptive
literal representation.

Compose two images into a single complex image with a given
spatial relationship.

Use symmetry information to retrieve regularities in an image.

Use pattern matching information and world knowledge to
transform an image into one of higher resolution.

Compare images and determine similarity measure.

Determine if an image is consistent with world knowledge.

Figure 5. Functions for constructing images

into a single image in which the components are spatially related.
Images can also be constructed through the processes involved in percep-

tion and recognition. In this case the initial representation of an image comes
from sensory store, which holds information impinging on the sense organs.
As suggested in [Marr and Nishihara 1978], an image may go through sever-
al stages of representation going from perception to recognition. The pro-
cesses involved in these transformations are complex and dependent on the
domain. One such process is the ability to compare two images and deter-
mine a measurement of closeness. This measurement can depend on both
spatial and non-spatial features of an image. We also consider the function
resolve that takes the results of pattern matching and refines the image. Re-
solving an image may result from reconstructing recognized features into a
new image. Once this has been done, the resulting image can be checked for
consistency with world knowledge. In the crystallographic domain, for ex-
ample, a complex image may be constructed that depicts molecules at too
close a distance. Such an image could be evaluated as impossible by the con-
sistentoperator given this domain of interpretation.

Images are often constructed using incomplete knowledge. This is partic-
ularly true when considering three dimensional images where perception
may be in two dimensions. In cognition, missing information can be provid-
ed by considering regularities such as symmetry in an image [Pentland
1986]. The function symop is used to retrieve regularities through symmetry
operations such as reflection and rotation.

As suggested by empirical experiments in cognitive psychology [Shepard
and Metzler 1971], mental imagery also involves processes for manipulating
objects in space. Figure 6 summarizes the proposed functions for transform-
ing images.

Note that the functions for transforming a symbolic array representation
of an image are typically not meant as an alternative form of representation,
but as a means of viewing an image from a variety of perspectives. These
functions are necessary in developing a theory of recognition based on pat-
tern matching of spatial images. For example, we may need to rotate and

GLASGOW, FORTIER& A LLEN 441

NAME OPERATION

Rotate

Translate

Zoom

Project

Rotate array depiction of an image a specified number of degrees
around one of the axes.

Translate position of component within a symbolic array.

Increase or decrease the apparent size of a depiction of an image.

Project a three dimensional array onto two dimensions.

Figure 6. Functions for transforming images

translate a perceived image before it can be pattern matched with an image
reconstructed from long-term memory.

The final class of functions corresponds to processes for accessing an
image. These functions are particularly useful when reasoning about images.
Figure 7 summarizes these functions.

The focus function is a mapping from an image and a symbolic feature of
the image to a new image such that attention is concentrated on the specified
feature. If the designated feature is not an atomic array, then the new image
will be the old image with the feature replaced by its symbolic array repre-
sentation. Knowledge involving the spatial relations of an image can be re-
trieved using the query operation.

2.4 Otherapplications of this work

The research in machine imagery underlying the crystallography system
has impact beyond the molecular recognition application. Since the knowl-
edge representation schema was designed to capture fundamental properties
of mental imagery, its implementation provides a basis for the computational
modeling of cognitive theories that involve processes related to imagery.
These include the sequential and parallel processes involved in memory re-
trieval of images, attention, recognition, learning and classification [Glasgow
1990a, Glasgow 1990b]. As well, the scheme provides a framework for de-
veloping other knowledge-based applications. Currently, we are considering
additional applications in the areas of haptic perception, game playing, medi-
cal imaging and robotic motion planning.

3 The Crystallographic Phase Problem

Even though the diffraction experiment yields several hundred to thou-
sands of observations, and normally a relatively high ratio of observations to
unknown parameters, the information sought - a three-dimensional picture of
the atomic arrangement in the crystal - cannot be calculated directly from the
measured data. This is because such a calculation requires knowledge of both

442 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

NAME OPERATION

Find

Focus

Query

Scan a depiction of an image to determine the location of a
component.

Shift attention to a particular component of an image.

Retrieve propositional information from an array depiction of
an image.

Figure 7. Functions for accessing images

the amplitude and the phase of each diffracted ray and the latter cannot be
measured experimentally. This is a basic problem in any crystal structure de-
termination, and it cannot be easily circumvented, despite the mathematical
overdeterminacy, because of the Fourier transform relationship between the
crystal structure and its diffraction pattern.

The most successful and straightforward approach to the solution of the
phase problem are the so-called direct methods [Hauptman 1986]. This ap-
proach uses probability theory to retrieve phase information from the ampli-
tude data. It essentially predicts the value of certain linear combinations of
the phases and provides a way, through the variance of the distributions, of
ranking the information according to reliability. The process evaluates sever-
al thousand of such linear equations and yields a redundant system of equa-
tions from which the values of the individual phases will then be extracted.
Phasing is initiated from a basis set of, typically, four phases whose values
can be selected (for origin and enantiomorph specification), together with a
number of further selected phases whose values are permuted. This yields
several possible solutions corresponding to the several possible phase permu-
tation combinations, and indeed the method is referred to as the multisolu-
tion approach. Figures of merit are then calculated and used to assess which
of the solutions appears to be the best one. The last, and finally the only im-
portant test, is whether or not any of the phase sets will produce an inter-
pretable image of the structure.

The crystallographic phase problem can be thought of as a general search
problem [Fortier, Glasgow and Allen 1991]. In this context, the multisolution
approach can be described as a simple generate and-test search procedure as
illustrated in Figure 8. The morphology of the search tree is unusual, though.
The tree has a single depth level with a large branching factor; the number of
nodes in such a tree is usually between 32 and 128. What characterizes and
limits the search is the fact that the heuristic evaluation functions used (the

GLASGOW, FORTIER& A LLEN 443

. . .

BASIS
PHASE SET

PS 1

PS 2 PS 63
PS 64

Figure 8. Phase Search Tree

figures of merit) are not effective in pruning partially developed solutions.
This is because these heuristic functions do not test the actual goal of the
search: the interpretability of the reconstructed image. Rather, they provide
ranking numbers that are derived from the underlying probabilistic model.
They depend, thus, on how well the actual structure fits the statistical model.
The a priori model, assumed by direct methods, is that the repeating atomic
motif in the crystal can be represented by a collection of atoms uniformly
and randomly distributed through space.

Traditional direct methods explore the phase space and evaluate phasing
paths by using only very general chemical constraints—the electron density
distribution must be everywhere nonnegative and its peaks must correspond
to atoms—and the constraints imposed by the amplitude data. While these
constraints have proven sufficiently limiting for applications to small
molecules, they are not adequate for tackling the more complex structures
such as those of proteins.

Several additional chemical constraints, such as limits on bond lengths
and angles or expected conformations, are usually available at the outset of a
structure determination project. In a direct methods procedure, these addi-
tional constraints are supplied by crystallographers, who use their recall of
existing results to reconstruct structural templates, and their visual abilities to
match these templates with the developing electron density image. Recent
theoretical results have shown, however, that information from partial struc-

444 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

. . .

BASIS
PHASE SET

PS 2 PS 3 PS 4 PS 5 PS 6 PS 7 PS 8PS 1

PS 21 PS 22 PS 41 PS 42 PS 71 PS 72

PS 211 PS 212 PS 213 PS 214 PS 714PS 713PS 712PS 711

X X X X X

X X XX

X X X X X X X

Figure 9. Hierarchical Phase Search Tree

ture identification, together with diffraction data, can be incorporated in a
general direct methods joint probability distribution framework [Bricogne
1988, Fortier and Nigam 1989]. These results open the way for AI contribu-
tions to direct methods for solving protein structures by allowing for a flexi-
ble, context driven solution procedure which can automatically take advan-
tage of all available information. In particular, the image reconstruction can
be modeled as an iterative resolution process in which any structure recogni-
tion can be used to evaluate the phasing paths as well as guide the phasing
exploration through the incorporation of further chemical constraints. A
phase search tree that reflects this hierarchical strategy is illustrated in Figure
9. Furthermore, this work has provided the theoretical basis needed for the
computer generation of the phasing distributions. It thus becomes possible to
consider dynamic systems in which distributions, tailored to the knowledge
base, are generated as needed.

4 The Structural Databases

Crystallographers, perhaps mindful of the intrinsic importance of their re-
sults, have a long and successful history of documentation. Early printed in-
dexes and compendia have now been replaced by computer-based informa-
tion banks. Complete three-dimensional structural data for some 140,000
compounds, from simple metals to proteins and viruses, are now stored in
four crystallographic databases [Allen, Bergerhoff and Sievers 1987]. All of
the databases are regularly updated with new material and the long-term
memory of existing crystal structures increases by about 10% per year. The
Cambridge Structural Database [Allen, Kennard and Taylor 1983]
(CSD:90,000 + organo-carbon compounds) and the Protein Data Bank
[Bernstein, Koetzle, Williams, Meyer, Brice, Rodgers, Kennard, Shi-
manouchi and Tasumi 1977] (PDB: 550 + macromolecules) contain the vast
bulk of available experimental knowledge of three-dimensional molecular
structures.

The systematic recall of three-dimensional structural knowledge from the
databases is essential to our imagery approach to crystal and molecular struc-
ture determination. However, this knowledge is not explicit in the plethora of
three-dimensional crystallographic facts, e.g. coordinates, cell dimensions,
symmetry operators, etc., that dominate the information content of the
databases. Rather, it must be derived from the stored facts via mechanisms
for search, retrieval, classification, reasoning and rule generation. These ac-
tivities are made possible by the rule-based two-dimensional representations
of formal chemistry (structural diagrams or sequence data) that are also in-
cluded in the databases. This is knowledge that can be searched using the
syntactic language of chemistry and which underpins the interpretation of the
three-dimensional structural facts.

GLASGOW, FORTIER& A LLEN 445

A new crystal structure determination is seldom undertaken without some
prior knowledge of the expected two-dimensional chemistry of the com-
pound. This knowledge forms the basis for a database search to locate the
key chemical fragments of the molecule, e.g. helices, rings, ring systems,
acyclic functional groups, etc. In three-dimensions these fragments may
occur in a number of different conformations, each of which represents a po-
tential template for pattern matching with the electron density maps. Meth-
ods for machine learning, embodied in cluster analyzes based on suitable
shape descriptors, serve to classify the database fragments into conforma-
tional subgroups. [Allen, Doyle and Taylor 1991]. The derivation of syntac-
tic rules, which describe the conformational relationships of fragments one
with another, provides a linguistic framework which permits larger templates
to be built. Template generation and model building are active research areas
for both small and large molecules (see e.g. [Dolata, Leach and Prout 1987;
Wippke and Hahn 1988; Blundell, Sibanda, Sternberg and Thornton 1987]).
The results, apart from their use in crystallography, are extensively used in
rational drug design projects.

A systematic and comprehensive knowledge of the weak hydrogen-bond-
ed and non-bonded interactions is also crucial to image reconstruction and
validation from electron-density maps. These interactions not only govern
the limiting contact distances between molecules in the crystal structure, but
also play a key role in stabilizing the molecular structures of large molecules
such as proteins and nucleic acids.

Crystallographic data have always been the primary source of information
on the dimensions and directional preferences of hydrogen-bonded systems
[Taylor and Kennard 1984]. The use of statistical analysis, decision theory,
and the classification of H-bonded motifs observed in crystal structures, sug-
gest rules that govern H-bond formation [Etter, MacDonald and Bernstein
1990]. Application of these rules provide knowledge of the environmentally
dependent limiting geometries and motif templates that are relevant to crystal
structure determination (see e.g., [Sawyer and James, 1982]).

The study of limiting contact distances between non-bonded atoms has a
similar dependence on crystal structure results. Even today, most chemists use
the non-bonded radii of Pauling [Pauling 1939] which are based on limited
experimental data and assume that (a) non-bonded atoms are effectively
spherical in shape and (b) the radii are additive and transferable from one
chemical environment to another. Database analyzes (e.g. [Taylor and Ken-
nard 1984, Allen, Bergerhoff and Sievers 1987]) indicate that these assump-
tions are inexact, i.e. the limiting contact distance between two atoms depends
on their chemical environments and on their direction of mutual approach. In-
terest now focuses on geometries and motifs which are stabilized by even
these weak intermolecular forces, both in small molecules [Desiraju 1989]
and in proteins [Rowland, Allen, Carson and Bugg 1990]. The knowledge of

446 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

non-bonded atomic shapes defines not only the limiting contact distances be-
tween atoms, but also the spatial shape and size of both fragments and
molecules. Further, the motifs formed by non-bonded interactions provide ad-
ditional templates for use at all stages of a crystal structure determination.

In addition to statistical techniques, concepts from machine imagery re-
search are being used for motif classification. Research in this area includes
determining methods for developing classification schemes for images based
on symbolic representations of both the conformation and configuration of
molecules. Such a classification scheme will be used to extract syntactic
rules of three-dimensional molecular structures from the crystallographic
databases.

5 Crystal Structure Recognition

The problem of determining the structure of a crystal from diffraction data
belongs to the general class of image reconstruction problems. The goal of
the reconstruction is to produce a complete image which contains both depic-
tive and descriptive knowledge of the three-dimensional atomic arrangement
in the crystal. This image is built from information on the unit cell, the sym-
metry operators within the unit cell and finally the unique asymmetric por-
tion of the repeating atomic motif. Determining a crystal structure is there-
fore analogous to a scene analysis in which the structural atomic motif
enclosed in the unit cell is recognized by using a memory of previously de-
termined structural templates and is understood through the application of
chemical and crystallographic rules.

Thus our approach borrows partially from research in the area of vision.
In particular, we incorporate existing segmentation algorithms that decom-
pose an image into its meaningful parts. The technique used for recognizing
a fragment of a crystal structure involves comparing its image to a stored
representation of a previously recognized structure and evaluating the fit.
This template matching approach is a simple and relatively old technique
that has been used in vision applications. Recognition in our model also as-
sumes constructed shape and volume descriptions, as in the approach of Marr
[Marr 1982].

The crystallographic application differs from vision applications in a
number of ways. First, the image for a crystal is perceived and depicted in
three dimensions. This eliminates many of the problems of feature segmen-
tation and recognition involved in vision applications: features in three di-
mensions do not overlap and we can utilize three-dimensional segmentation
and pattern matching techniques. As well, we are not concerned with factors
such as light sources, surface material or atmospheric conditions that may
distort the appearance of a visual image. The complexity that does exist in
the crystallographic application relates to the incompleteness of data due to

GLASGOW, FORTIER& A LLEN 447

the phase problem.
In our approach, the process of crystal structure determination is modeled

as resolving the three-dimensional image of the atomic arrangement within
the crystal. By using a hierarchical approach, the phasing search space is ex-
panded to a multilevel search tree. At each level of the search tree, any par-
tial structure determined through pattern matching is used to update the prob-
ability distribution so as to provide higher resolution images. Thus, the
identification process is an iterative one. Once an image of the crystal has
been constructed, we focus on particular regions of the structure and try to
pattern match them with structural templates from the database. Good match-
es serve not only to guide the identification search, but also to refine our
image of these substructures and iteratively refine our complete structure.

Figure 10 illustrates the processes involved in structure recognition. Ini-
tially, an image of the structure, in the form of an electron density map, is
constructed using the measured amplitudes and a given phase set. The known
chemical information for the crystal is used to do a preliminary database
search for fragments that could be anticipated in the structure. Simultaneous-
ly, the current image is segmented into distinct three-dimensional “blobs” or
subimages that correspond to the structural features of the image. These fea-

448 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Diffraction Data Chemical Data

Image
Construction

Database
Search

Feature
Segmentation

Model
Building

Pattern
Matching

Resolve

Interpretable
Image

Figure 10. Algorithm for structure recognition

tures are then compared with images of the fragments retrieved from the
database. Heuristics, based on the results of this three-dimensional pattern
matching, are used to prune the search tree. In addition, matched images pro-
vide the necessary information for improving and expanding the phases and
thereby resolving the image. These processes are repeated until the resolu-
tion of the image matches that of the diffraction data. Figure 11 illustrates a
two-dimensional projection of images going through several stages of resolu-
tion, where the higher resolution images correspond to utilizing an increased
phase set in their construction.

We now present a brief discussion of each of the steps in the crystallo-
graphic image reconstruction algorithm.

• Image Construction. Just as in vision, the image of a crystal may go
through several stages of representation. At this step of the algorithm, the
image of the crystal is represented as a three-dimensional electron density
map resulting from the diffraction experiment and the current phase set. Fig-
ure 12(a) illustrates a two dimensional projection of a three-dimensional
array representation of an electron density map, where the values in the array
denote the electron density at the corresponding locations within the unit cell
of a crystal.

Initially the electron density map is constructed using low resolution
phases from the basis set expanded by selecting a small number of additional
phases. Such a map will correspond to a low-resolution, noisy image of the
crystal but, as additional phases are determined in successive iterations of the
algorithm, the maps will reveal clearer and clearer (higher-resolution) images
as illustrated in Figure 11.

• Feature Segmentation. In this process we partition the electron density
map into distinct, three dimensional structural features. Standard image pre-
processing techniques, such as noise reduction, local averaging, ensemble
averaging, etc. are applied prior to segmentation. These techniques are used
to enhance features of an image by establishing regions that either contain or

GLASGOW, FORTIER& A LLEN 449

Figure 11. Resolution stages of molecular image

do not contain electron density. A technique for determining distinct
blobs/regions is then used to segment the map into features. World knowl-
edge about anticipated shapes is used to determine whether these features are
consistent with the chemical knowledge of the structure. Output from the
process consists of a set of distinct blobs/regions that correspond to the struc-
tural features of the image; these may now be used to pattern match with an-
ticipated patterns retrieved from the database. Figure 12(b) illustrates the
blobs resulting from a segmentation process on an electron density map.

A library of segmentation functions for three-dimensional images is being
implemented and tested on the images of crystal. Included in this library are
functions that correspond to boundary detection, region growing, hierarchical
and boundary melting techniques.2

We are also considering techniques that incorporate knowledge of the
crystallographic domain. The selection of appropriate segmentation func-
tions, to be used at each iteration of the algorithm, depends on the level of

450 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

10 08 02 01 02 04 09 15 15 11 07 06 06 06 03 02 01 00 00
09 06 04 04 05 07 13 34 59 55 28 19 21 18 15 13 06 01 01
05 03 04 06 09 13 21 49 85 79 41 34 41 34 51 43 20 10 07
05 06 08 10 13 15 19 29 48 47 29 37 66 61 28 09 05 02 01
10 09 15 18 16 24 36 33 23 20 20 22 34 35 18 08 04 01 01
08 22 84 56 38 42 72 66 33 19 21 17 18 25 20 10 05 03 04
11 42 85 79 37 36 64 58 28 16 18 20 43 86 49 19 09 02 04
13 31 54 48 25 22 33 29 23 34 33 24 52 83 62 25 11 04 03
16 29 26 19 17 16 16 19 38 68 64 32 46 32 17 13 06 04 02
32 61 47 21 15 15 15 19 36 63 59 25 13 06 07 08 06 10 11
34 64 52 21 14 18 18 17 19 30 27 11 10 09 04 05 04 07 11
18 34 31 22 25 27 22 19 27 33 29 17 08 08 05 03 03 01 05
09 14 24 49 67 45 27 51 68 47 20 09 05 02 03 03 00 01 03
08 10 26 66 92 64 33 52 70 47 20 11 07 04 02 00 00 00 00
07 11 20 38 55 42 22 27 32 25 19 14 08 05 00 04 02 00 02
05 14 20 22 23 21 21 21 22 37 45 27 40 09 04 00 00 00 02
07 19 39 56 47 26 22 25 40 75 83 47 17 11 05 00 00 00 00
09 21 51 80 56 32 24 26 34 60 63 36 17 08 02 02 05 06 03
08 15 31 49 44 41 61 62 39 28 22 15 13 08 05 09 08 07 00
03 03 03 07 12 19 32 35 24 13 08 07 06 07 12 25 59 87 66
01 00 01 04 07 08 10 07 06 06 03 07 03 07 11 18 52 87 69

(B)

10 08 02 01 02 04 09 15 15 11 07 06 06 06 03 02 01 00 00
09 06 04 04 05 07 13 34 59 55 28 19 21 18 15 13 06 01 01
05 03 04 06 09 13 21 49 85 79 41 34 41 34 51 43 20 10 07
05 06 08 10 13 15 19 29 48 47 29 37 66 61 28 09 05 02 01
10 09 15 18 16 24 36 33 23 20 20 22 34 35 18 08 04 01 01
08 22 84 56 38 42 72 66 33 19 21 17 18 25 20 10 05 03 04
11 42 85 79 37 36 64 58 28 16 18 20 43 86 49 19 09 02 04
13 31 54 48 25 22 33 29 23 34 33 24 52 83 62 25 11 04 03
16 29 26 19 17 16 16 19 38 68 64 32 46 32 17 13 06 04 02
32 61 47 21 15 15 15 19 36 63 59 25 13 06 07 08 06 10 11
34 64 52 21 14 18 18 17 19 30 27 11 10 09 04 05 04 07 11
18 34 31 22 25 27 22 19 27 33 29 17 08 08 05 03 03 01 05
09 14 24 49 67 45 27 51 68 47 20 09 05 02 03 03 00 01 03
08 10 26 66 92 64 33 52 70 47 20 11 07 04 02 00 00 00 00
07 11 20 38 55 42 22 27 32 25 19 14 08 05 00 04 02 00 02
05 14 20 22 23 21 21 21 22 37 45 27 40 09 04 00 00 00 02
07 19 39 56 47 26 22 25 40 75 83 47 17 11 05 00 00 00 00
09 21 51 80 56 32 24 26 34 60 63 36 17 08 02 02 05 06 03
08 15 31 49 44 41 61 62 39 28 22 15 13 08 05 09 08 07 00
03 03 03 07 12 19 32 35 24 13 08 07 06 07 12 25 59 87 66
01 00 01 04 07 08 10 07 06 06 03 07 03 07 11 18 52 87 69

(A)

DATABASE
 FRAGMENT

CRYSTAL
 FEATURE

(C)

Figure 12. Two-dimensional projection of stages of image recognition: (a) Electron
Density Map (b) Segmented Electron Density Map (c) Pattern matching step

resolution of the image being considered.
At this stage, we also determine some descriptive information about the

segmented feature. This includes volume and shape information that can be
used to assist in the pattern matching process.

• Database Search. The knowledge-based system is designed to incorpo-
rate information from the crystallographic databases described in Section 4.
Prior knowledge of the two-dimensional chemistry of each new crystal struc-
ture defines a ‘query’ domain for a chemical search of the databases. This
query is partitioned (a) to generate bonded chemical fragments for which
likely three-dimensional templates are required for pattern matching, (b) to
identify hydrogen-bond donors and acceptors present in the molecule, and
(c) to identify atoms or functional groups which are likely to play a key role
in the non-bonded interactions that stabilize the crystal and molecular struc-
ture. In (b) and (c) the databases are searched and analyzed to retrieve limit-
ing geometries and likely three-dimensional motifs for use in pattern match-
ing and image resolution.

• Model Building. Once an anticipated fragment has been retrieved from
the database, a symbolic array image for the fragment is reconstructed. From
this image of the fragment we can generate a blob-like depiction at a resolu-
tion level corresponding to the current resolution of the features of the crys-
tal.

• Pattern Matching. The input to this process is the set of unidentified
features derived from the segmentation step and the set of anticipated frag-
ments selected from the database using chemical and structural information.
The goal of the process is to compare each of the unidentified features with
database fragments to determine the best three-dimensional structural match-
es. Both iterative and parallel algorithms for carrying out these comparisons
are currently being considered [Lewis, 1990].

To facilitate a pairwise comparison, the three-dimensional representation
of the known molecular structure is oriented within the cell of the unknown
structure. Techniques from molecular pattern recognition are being used to
achieve the correct position through rotation and translation [Rossman,
1990]. Patterson-based techniques are used to focus attention on the most
promising regions of the electron density map. A template matching ap-
proach is then applied and the degree of fit assessed. Figure 12(c) illustrates a
pair of subimages considered for pattern matching.

• Resolve. Information gathered from successful pattern matches (those
with a high degree of fit) is used to update the phase set and subsequently
generate a new electron density map for the crystal. This information is first
checked for consistency with other knowledge for the domain; for example
the image composition is checked against packing constraints for the crystal.
The structural information, which is kept at a resolution level matching that
of the current image, is then incorporated in the direct methods phasing tools.

GLASGOW, FORTIER& A LLEN 451

This provides additional chemical constraints which serve in the improve-
ment of the current phases and the expansion to higher resolution phases and
therefore higher resolution images. Note that keeping the structure recogni-
tion information at the current image resolution level ensures that this infor-
mation guides rather than drives the structure determination process.

The resolve process also controls the search space for the algorithm. Recall
that we are attempting to reach a goal state in which enough phase informa-
tion is available to construct an interpretable image. Incorrect pattern matches
may lead to paths in the search tree (Figure 9) in which the expansion to high-
er resolution phases does not contribute to forming a clearer image. Interme-
diate evaluation functions applied to the evolving images allow us to prune
such paths and only consider those that lead towards a goal state.

The processes described above are repeated until a fully interpretable
image of the structure has been resolved. At this stage we can combine the
whereinformation, derived from the segmentation process, with the what in-
formation, derived from the pattern matching process, to construct a symbol-
ic array representation for the crystal. The “where” information provides the
exact location of each of the distinct features within the unit cell of the crys-
tal; the “what” information gives the chemical identity of these features. By
combining the “where” and “what” information in a symbolic array, we are
able to reconstruct a precise and complete picture of the atomic arrangement
for the crystal. Using the symbolic array representation and the known chem-
ical data for the crystal, a frame representation can be constructed and added
to the database of known structures.

Each individual module described above is being implemented and tested
in an independent manner to establish an initial working prototype for each
subtask. Once this preliminary, but extensive, work has been completed, the
modules will be integrated and the system tested in its entirety. Currently,
three-dimensional electron density maps are obtained by use of existing crys-
tallographic software. A library of functions for the preprocessing and seg-
mentation of these images at various levels or resolution is under develop-
ment. As well, routines for the extraction of meaningful features (size, shape,
centre of mass, etc.) from the derived segments are being developed. A pro-
totype for the semantic network memory model has been established. The
network incorporates the customory "chemical structure" hierarchy of pro-
tein structures (atom, residue, secondary structure,etc.) as well as the "clas-
sification" hierarchy that allows for the inheritance of properties. Routines
for the construction of symbolic array and electron density map representa-
tions from the frame representations have been tested for selected cases.
Work has begun on the pattern matching module and on the implementation
of a direct space pattern matching function. The resolve module is still at the
design stage, although several of the direct methods algorithms in its core
have already been implemented and tested.

452 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

Although the initial implementation of the algorithm is sequential, the al-
gorithm and the individual processes are being designed to incorporate any
potential parallelism for later re-implementation. For example, we can con-
currently process the pairwise pattern matching of fragments from the
database with features from the crystal. Further, the hierarchical phase search
tree (Figure 9) can be considered as an “OR” search tree. That is, if any path
can be generated from an initial state to a goal state then a solution is found.
Since these paths are independent, they can be generated in parallel.

In the reconstruction algorithm described above, imagery plays an impor-
tant role in identifying crystal structures. The spatial/hierarchical structure of
a crystal is represented as a symbolic array image. Such a representation can
be transformed into three-dimensional depictions for pattern matching.
Image transformation functions are then used to pattern match features of a
crystal with the depictions of molecular structures reconstructed from the
symbolic arrays. Ultimately, the image reconstruction process results in a
symbolic array depiction for the initially unidentified crystal structure.

The programming language Nial, which is based on the theory of arrays, is
being used to implement the prototype system. The array data structure and
primitive functions of Nial allow for simple manipulations of the crystal lat-
tice. Furthermore, the Nial Frame Language [Hache, 1986] provides an imple-
mentation for the frame structures used in the imagery model. Nial also pro-
vides the syntax to allow us to express the parallel computations inherent in
our reconstruction algorithm [Glasgow, Jenkins, McCrosky and Meijer, 1989].

6 Related Work

Computer-assisted structure elucidation by use of knowledge-based rea-
soning techniques is one of the most active application areas of artificial in-
telligence in chemistry. When applied to two-dimensional structural chem-
istry, the goal is the interpretation of chemical spectra (mass spectra, IR,
NMR data) in terms of candidate two-dimensional chemical structure(s). A
number of systems have been developed, of which the DENDRAL project is
by far the best known [Gray, 1986]. Some of the fundamental methodologies
used in DENDRAL - for example, mechanisms and algorithms for knowl-
edge representation, pattern matching, machine learning, rule generation and
reasoning - have had a lasting impact on the computer handling of two-di-
mensional chemical structures. They have also contributed significantly to
the development of chemical database systems and of tools for computer-as-
sisted synthesis planning and reaction design (see e.g., [Hendrickson, 1990]).

Applications to three-dimensional structural chemistry and crystallography
are still relatively new and comparatively more fragmentary. They can be
broadly divided into two interrelated categories, depending on whether their
main purpose is the classification or the prediction of three-dimensional

GLASGOW, FORTIER& A LLEN 453

molecular structures. For small molecules, the primary application area is that
of molecular modeling in relation to projects in rational drug design
[Dolata,Leach and Prout,1987; Wippke and Hahn, 1988] For macromolecules,
artificial intelligence tools have also been used extensively in the computer-
assisted classification of structural subunits, an essential precursor to structure
prediction. Numerous studies of protein structure classification and prediction,
aimed at various levels of the protein structural hierarchy, have been reported
(e.g., [Blundell, Sibanda, Sternberg and Thornton,1987; Clark,Barton and
Rawlings,1990; Hunter and States,1991; Rawlings, Taylor, Nyakairu,Fox and
Sternberg, 1985; Rooman and Wodak,1988]). In addition, promising work in
application of artificial inteligence methods to the interpretation of NMR
spectra of macromolecules has begun (e.g. Edwards, et al, this volume).

The use of artificial intelligence techniques to assist crystal structure de-
termination, particularly in the interpretation of electron density maps, was
suggested early on by Feigenbaum, Engelmore and Johnson [1977] and pur-
sued in the CRYSALIS project [Terry,1983]. This project has not yet result-
ed, however, in a fully implemented and distributed system. More recently,
several groups (e.g. [Finzel et al., 1990, Jones et al., 1991, and Holn and
Sander, 1991] have reported the use of highly efficient algorithms for the au-
tomated interpretation of medium to high resolution electron density maps
using templates derived from the Protein Data Bank [Bernstein et al.,1977]
Our project, however, is concerned with the full image reconstruction pro-
cess and, in particular, the ab initio phasing of diffraction data. Primarily it is
the low to medium resolution region of the image reconstruction problem
that is being addressed here. Clearly, our approach can draw from the many
important results mentioned above.

7 Conclusion

The knowledge-based system described in this chapter offers a compre-
hensive approach to crystal structure determination, which accommodates a
variety of phasing tools and takes advantage of the structural knowledge and
experience already accumulated in the crystallographic databases. Intrinsic to
our approach is the use of imagery to represent and reason about the struc-
ture of a crystal. Artificial intelligence tools that capture the processes in-
volved in mental imagery allow us to mimic the visualization techniques
used by crystallographers when solving crystal structures.

The problem of structure determination is essentially reformulated as the
determination of an appropriate number of sufficiently accurate phases so as
to generate a fully interpretable image of the crystal. In other words, we re-
duce the overall problem to a search problem in phase space. The search is
guided by the continual refinement of an image through the use of partial
structure information. This information is generated by matching the salient

454 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

features of the developing image with anticipated structural patterns estab-
lished in previous experiments.

The process of determining the structure of a crystal is likened to an itera-
tive scene analysis which draws both from the long-term memory of struc-
tural motifs and the application of chemical and crystallographic rules. In
this analysis, the molecular scene is reconstructed and interpreted in a fluid
procedure which establishes a continuum between the initially uninterpreted
image and the fully resolved one. The artificial intelligence infrastructure,
with its machine imagery model, allows for a coherent and efficient recon-
struction. Indeed, it provides a data abstraction mechanism that can be used
to reason about images and, in particular, to depict and reason with relevant
configurational, conformational and topological information at a symbolic
level. Thus our approach builds upon the current methodology used for pro-
tein crystal structure determination by setting a framework in which reason-
ing tasks as well as numerical calculations can be invoked. In this integrated
approach, the process of crystal structure determination becomes one of
molecular scene analysis. Taken individually, such analyzes result in the
recognition and understanding of a specific chemical scene. Put together,
they provide insight into the three-dimensional grammar of chemistry and
the rules of molecular recognition.

Acknowledgements

Financial assistance from the Natural Science and Engineering Research
Council of Canada, Queen’s University and the IRIS Federal Network Center
of Excellence is gratefully acknowledged.

Notes

1. The depict slot is not illustrated in the frame in Figure 2 since this function
is constant for all images. For a detailed description of the frame represen-
tation for imagery and the implementation of the depict function see [Pa-
padias 1990].

2. See [Baddeley, 1986] for an overview of algorithms for two-dimensional
segmentation.

References
F. H. Allen, G. Bergerhoff, and R. Sievers, Crystallographic Databases. IUCr, Chester,

1987.

F. H. Allen, M. J. Doyle, and R. Taylor. Automated Conformational Analysis from Crystal-
lographic Data. 1. A Symmetry-modified Single-linkage Clustering Algorithm for 3D Pattern

GLASGOW, FORTIER& A LLEN 455

Recognition. Acta Crystallographica, B 47: 29-40, 1991.

F. H. Allen, O. Kennard, and R. Taylor. Systematic Analysis of Structural Data as a Research
Tool in Organic Chemistry. Accounts of Chemical Research, 16: 146-153, 1983.

Alan Baddeley. Working Memory. Oxford Science Publications, 1986.

D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall Inc,. 1982.

F. C. Bernstein, F. F. Koetzle, G. J. B. Williams, E. F. Meyer Jr. , M. D. Brice, J. R. Rodgers,
O. Kennard, T. Shimanouchi and M. Tasumi, The Protein Data Bank: A Computer Archival File
for Macromolecular structures. Journal of Molecular Biology. 112: 535-542, 1977.

N. Block, ed. Imagery, MIT Press, 1981.

T. L. Blundell, B. L. Sibanda, M. J. E. Sternberg and J. M. Thornton. Knowledge-based pre-
diction of protein structures and the design of novel molecules. Nature, 326:347-352, 1987.

G. Bricogne. A Bayesian Statistical Theory of the Phase Problem. A Multi-channel Maxi-
mum-entropy Formalism for Constructing Joint Probability Distribution Factors. Acta Crystallo-
graphica, A44:517-545, 1988.

D. A. Clark, G. J. Barton and C. J. Rawlings. A Knowledge-based Architecture for Protein
Sequence Analysis and Structure Prediction. Journal of Molecular Graphics, 8:94-107, 1990.

G. R. Desiraju, Crystal Engineering. Elsevier, London, 1989.

D. P. Dolata, A. R. Leach and C. K. Prout. WIZARD: Artificial Intelligence in Conforma-
tional Analysis. Journal of Computer-Aided Molecular Design, 1:73-86, 1987.

M. C. Etter, J. C. MacDonald and J. Bernstein. Graph-set Analysis of Hydrogen-bond Pat-
terns in Organic Crystals. Acta Crystallographica, B46: 256-262, 1990.

E. A. Feigenbaum, R. S. Engelmore and C. K. Johnson. A Correlation Between Crystallo-
graphic Computing and Artificial Intelligence Research. Acta Crystallographica, A33:13-18,
1977.

R. A. Finke. Principles of Mental Imagery. MIT Press, 1989.

B. C. Finzel, S. Kimatian, D. H. Ohlendorf, J. J. Wendoloski, M. Levitt and F. R. Salemme.
Molecular Modeling with Substructure Libraries Derived from Known Protein Structures. In
Crystallographic and Modelling Methods in Molecular Design, C. E. Bugg and S. E. Ealick,
eds. Springer-Verlag, New York, 1990.

S. Fortier, J. I. Glasgow, and F. H. Allen. The Design of a Knowledge-based System for
Crystal Structure Determination. In H. Schenk, editor, Direct Methods of Solving Crystal Struc-
tures. Plenum Press, London, 1991.

S. Fortier and G. D. Nigam. On the Probabilistic Theory of Isomorphous Data Sets: General
Joint Distributions for the SIR, SAS, and Partial/Complete Structure Cases. Acta Crystallo-
graphica, A45:247-254, 1989

J. I. Glasgow. Artificial Intelligence and Imagery. In Proceedings of Tools for Artificial Intel-
ligence, Washington, 1990.

J. I. Glasgow. Imagery and Classification. In Proceedings of the 1st ASIS SIG/CR
Classification Research Workshop, Toronto, 1990

J. I. Glasgow and D. Papadias. Computational Imagery, Cognitive Science,In press, 1992.

J. I. Glasgow, M. A. Jenkins, C. McCrosky and H. Meijer. Expressing Parallel Algorithms in
Nial. Parallel Computing , 11,3:46-55 1989.

N. A. B. Gray. Computer-Assisted Structure Elucidation. John Wiley, New York, 1986.

L. Hache. The Nial Frame Language. Master’s thesis Queen’s University, Kingston, 1986

456 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

H. Hauptman. The Direct Methods of X-ray Crystallography. Science, 233:178 - 183, 1986.

J. B. Hendrickson. The Use of Computers for Synthetic Planning. Angewandte Chemie In-
ternational Edition (English). , 29:1286-1295, 1990.

L. Holn and C. Sander, Database Algorithm for Generating Protein Backbone and Side-
chain Coordinates from a Cα Trace: Application to model building and detection of co-ordinate
errors. Journal of Molecular Biology, 218:183-194,1991.

L. Hunter and D. J. States, Applying Bayesian Classification to Protein Structure. in Pro-
ceedings of the Seventh IEEE Conference on Artificial Intelligence Applications, IEEE Comput-
er Society Press, 1991.

M. A. Jenkins and J. I. Glasgow. A Logical Basis for Nested Array Data Structures. Pro-
gramming Languages Journal 14 (1): 35-49, 1989.

M. A. Jenkins, J. I. Glasgow, and C. McCrosky. Programming Styles in Nial. IEEE Software.
86:46-55, January 1986.

T. A. Jones, J-Y. Zou, S. W. Cowan and M. Kjeldgaard. Improved Methods for Building Pro-
tein Models in Electron-density Maps and the Location of Errors in Those Models. Acta Crys-
tallographica, A47:110-119, 1991.

S. M. Kosslyn. Image and Mind. Harvard University Press, 1980.

J. H. Larkin and H. A. Simon. Why a Diagram Is (Sometimes) Worth Ten Thousand Words.
Cognitive Science 11: 65-99, 1987.

S. Lewis. Pattern Matching through Imagery. Master’s thesis, Queen’s University, Kingston,
1990.

N. MacKenzie. Dreams and Dreaming. Aldus Books, London, 1965.

D. Marr and H. K. Nishihara. Representation and Recognition of the Spatial Organization of
Three-dimensional Shapes. In Proc. of the Royal Society of London, B200: 269-294, 1978.

D. Marr. Vision. W. H. Freeman and Company, San Francisco, 1982.

T. More. Notes on the Diagrams, Logic and Operations of Array Theory. In Bjorke and
Franksen, editors, Structures and Operations in Engineering and Management Systems. Tapir
Pub. , Norway, 1981.

D. Papadias. A Knowledge Representation Scheme for Imagery. Master’s thesis, Queen’s
University, Kingston, 1990.

L. Pauling. The Nature of the Chemical Bond. Cornell University Press, Ithaca, 1939.

A. P. Pentland. Perceptual Organization and Representation of Natural Form. Artificial Intel-
ligence, 28 :295-331, 1986.

Z. W. Pylyshyn. The Imagery Debate: Analog Media Versus Tacit Knowledge. In N. Block,
editor, Imagery, 151-206. MIT Press, 1981.

C. J. Rawlings, W. R. Taylor, J. Nyakairu, J. Fox and M. J. E. Sternberg. Reasoning about
Protein Topology Using the Logic Programming Language PROLOG. Journal of Molecular
Graphics,3:151-157,1985.

M. J. Rooman and S. J. Wodak. Identification of Predictive Sequence Motifs Limited by Pro-
tein Structure Data Base Size. Nature, 335:45-49 1988.

M. G. Rossman. The Molecular Replacement Method. Acta Crystallographica A46:73-82,
1990.

R. S. Rowland, F. H. Allen, W . M. Carson, and C. E. Bugg. Preferred Interaction Patterns
from Crystallographic Databases, In S. E. Ealick and C. E. Bugg, editors, Crystallographic and
Modeling Methods in Molecular Design. Springer, New York, 1990.

GLASGOW, FORTIER& A LLEN 457

L. Sawyer and M. N. G. James. Carboxyl-carboxylate Interactions in Proteins. Nature,
295:79-80, 1982.

R. N. Shepard and J. Metzler. Mental Rotation of Three-dimensional Objects. Science,
171:701-703, 1971.

R. Taylor and O. Kennard. Hydrogen-bond Geometry in Organic Crystals. Accounts of
Chemical Research, 17:320-326, 1984.

A. Terry. The CRYSALIS Project: Hierarchical Control of Production Systems. Technical
Report HPP-83-19, Stanford University, Palo Alto, CA, 1983.

J. D. Watson. The Double Helix. Wiley, New York, 1968.

W. T. Wippke and M. A. Hahn. AIMB: Analogy and Intelligence in Model Building. Tetra-
hedron Computer Methodology,1:141-153, 1988.

458 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

A F T E R W O R D

The Anti-Expert System:

Hypotheses an AI Program Should

Have Seen Through

Joshua Lederberg

One of the most difficult steps in the development of an expert system is
the recruitment and exploitation of the domain wizards. Almost always it is
necessary to establish teams of specialists to deal with the programming is-
sues and the user interfaces as well as the incorporation of domain specific
knowledge. Experts will communicate how they read a gel, or what is the
canonical biological interpretation of DNA sequences conserved over phylet-
ically diverse organisms. The computer scientist will rarely have an indepen-
dent base of knowledge and experience for critical judgments about the wis-
dom thus received.

Therein may lie the greatest hazards from the proliferation of expert sys-
tems; for much of that expertise is fallible.

It is 14 years since I have been actively involved in the collaborations that
led to the DENDRAL and MOLGEN projects; and I am just now at an early
stage of planning a resumption of research on theory formation and valida-

tion, as applied to molecular biology. But I recall how easily the most primi-
tive errors could become locked into firm rules – which would sometimes
persist for a long time until revealed by lucky accident. For example, we had
what we called a badlist in DENDRAL, intended to filter out substructures
that experience told were unstable or otherwise untenable. This can give
enormous economy in pruning back a combinatorial explosion. One such
rule was quite plausible: badlist included a proscription against substructures
with 2 -NH2 (amino) groups pendant on a single carbon; C..(NH2)2 can be
expected to split off ammonia. But one of us overlooked two outstanding ex-
ceptions, namely urea (NH2)-C=O-(NH2) and guanidine,
(NH2)-C=NH-(NH2). We were too fixated on prohibitions that would apply

successfully to much larger molecules.
I intend, however, to put that self-skepticism to a larger, constructive pur-

pose. My first target is an examination of many of the central doctrines in the
history of micro- and molecular biology, especially those that we have
learned to have led us to egregious error. I call those the “Myths we have
lived and died by.” By and large they are half-truths whose domain of veraci-
ty and application was perceived to go far beyond the evidentiary basis that
led to their adoption. And we cannot live with prolonged suspension of dis-
belief in these myths, or we would be practicing nothing but an unremitting
nihilism.

I will examine the logical structures that founded the adoption of these be-
liefs, and again the data and reconstructions that led to their demise. This
will require a system of knowledge representation that will enable a more
formal examination of these theories, and in turn a computer based system
for critical scrutiny (theorem-proving) and new hypothesis generation. All of
this work is a direct extrapolation of the DENDRAL effort, which used es-
sentially the same approach for “theories” (postulated chemical structures) in
the more readily formalizable domain of organic chemical analysis. There
the data came originally from mass spectrometry and NMR; later we devel-
oped a more flexible interactive system (CONGEN) that enabled all source
inputs. One of the interesting uses of CONGEN was as a theorem-prover,
namely to reexamine the purported proofs of structure that had been pub-
lished in a leading journal of organic chemistry. You guessed it, many of
those proofs were at least formally defective; and in at least one case that had
eluded the human reviewer, substantively so.

My intention is to review the principal doctrinal themes of molecular biol-
ogy from a similar perspective. But armed with an easy retrospectroscope, I
thought it only fair to be put on the line for some as yet unsubstantiated fu-
ture revulsions of thought. These are to illustrate objectives. As yet I have
done no explicit programming on this issue. Nevertheless, I have found great
value in the style of thinking that is evoked in the context of designing the
computer systems. (Harking back to DENDRAL, it also led to a style of crit-

460 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

ical mental chemistry that matches in importance the first order assistance
from the machine.)

So here are two intended bona fides—Contradictions to the existing
regime of thought that, I believe, will be experimentally tested in the near fu-
ture. Both of them are deeply embedded in the conventional wisdom!

1. The 3-dimensional shape and functionality of (folded) proteins is fully
determined by the primary amino-acid sequence, and this in turn by the
nucleotide sequence of the gene. [The latter part of this statement is al-
ready eroded by knowledge of messenger RNA splicing, and further by
some remarkable examples of post-transcriptional editing of RNA]. This
doctrine has been essential for the development of mechanistic ideas of
cell and organelle assembly, and especially for our modern views of anti-
body formation.

But this is probably an overstatement. My counter-prediction is that we
will discover examples where ambiguous and divergent patterns of folding
will enable a given primary protein sequence to fold into two or more well
defined, and biologically distinctive final conformations. It is hard for me
to imagine that evolution has not exploited this potentiality for flexibility
in use of a given blueprint. Evidence for this has been counter-selected,
and often discarded as precipitates or “noise”. A number of experts of
folding have agreed, that “yes”, this should be more carefully considered.

2. The germ line in multicellular animals is completely segregated from the
soma. This Weismann’s doctrine is the foundation of the refutation of
lamarckian and lysenkoist ideas, and perhaps for that reason has never
been critically examined, except with the crude anatomical methods of the
last century. It is certainly very nearly true! However exceptions could be
of critical importance, for evolution, pathology, and biotechnology.

I am seeking a still more systematic way to discover issues where a com-
puter-aided custodian could be a help, not of mere incremental advance, but
of further scientific and technological revolutions. The following list is a
brief history of biological myths that took substantial effort to overthrow.
Could a computer program help us overthrow today’s myths faster?

1. Bacteria are Schizomycetesi.e., divide only by fission. But Lederberg
[1946] showed they had sex.

2. Bacteria reproduce sexuallywas a radical revision, but Lederberg
[1951] took it too literally and missed the unique mechanisms of pro-
gressive DNA transfer (takes 100 minutes!) discovered by Jacob.

3. Toxins kill is an important paradigm in history of infectious disease. But
the world (and Koch in particular) was misled for 80 years in searching
for the “cholera toxin” as an agent lethal by parenteral assay. That toxin

LEDERBERG 461

“merely” promotes the secretion of water into the gut. The misunder-
standing has cost tens of millions of lives that could have been saved by
feeding salt water.

4. DNA → RNA. True enough, but it overlooked the reverse transcriptase
(DNA ← RNA), which earned a Nobel Prize for Baltimore and Temin.

5. Colinearity of DNA with protein(1:1 theory) and enzymes are proteins
were the key ideas in the classic work of Beadle and Tatum; Benzer; and
Yanofsky. However, they overlooked mRNA processing and introns,
which earned Cech a Nobel prize (for ribozymes).

6. Only germ cells mate. But somatic cells can be fused too [Lederberg
1955], and enable somatic cell genetic analysis; see the second “future
myth,” above.

7. Mutations are deleterious. This was long believed, but based on entirely
circular reasoning, namely: most visible mutations are visible. But 99%
of nucleotide substitutions are invisible. This myth delayed the evolu-
tionary theory of drift [Kimura, 1991] and engendered gross miscalcula-
tions of the genetic disease load attributable to mutation.

8. Mutations are spontaneous. But they are chemical changes in DNA, and
this is by no means homogeneous in molecular structure throughout the
genome. In addition, DNA is deformed in a wide variety of ways as part
of the mechanisms of regulation of gene expression. There is abundant
chemical evidence that “activated” DNA is more accessible to reagents
like dimethyl sulfate and DNAse-1; but the biological consequences of
this differential reactivity have scarcely been examined.

9. Genes have a fixed locus and segregate 1:1(Mendel onward) But some
genes jump! (McClintock) Segregation is not so rarely perturbed by
“gene conversion”

10. Infinitude of antibodiesand Pauling’s instructionist theories. These ideas
slowed the development of clonal selection theory, which is now the ac-
cepted explanation of antibody formation.

11. Tetranucleotide DNA- P.A. Levene’s model was at most a tentative re-
capitulation of primitive data, but it was taken too rigidly, and greatly
delayed the recognition of DNA as the genetic material

12. Chemicals cause cancer. Some do, but this idea greatly oversimplifies
the multifactorial basis of carcinogenesis, and leads to enormous misfo-
cus in managing environmental hazards.

13. Life evolved on earth- (Oparin, Miller-Urey). but chemical evolution
probably started with cosmic condensation. Open possibility: all organic

462 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

material on earth is derived from cometary and meteoritic infall, may
now be leading hypothesis.

With a few exceptions I have been personally involved in these bifurca-
tions. At least once (2, above) to my chagrin!!

References

Detailed accounts and bibliographies of the cases mentioned can be found
in the following sources:

Brock, T.D. 1990 The Emergence of Bacterial Genetics.Cold Spring Harbor Laboratory
Press.

Buss, L.W. 1987. The Evolution of Individuality. Princeton University Press.

Friedland, P. and Kedes, L. 1985. Discovering the Secrets of DNA. Comm. ACM28:1164-
1186.

Kimura, Motoo, 1991 Recent Development of the Neutral Theory Viewed from the Wright-
ian Tradition of Theoretical Population Genetics. Proc. Natl. Acad. Sci. USA88: 5969-5973.

Lederberg J. 1956. Prospects for the Genetics of Somatic and Tumor cells. Ann. N.Y. Acad.
Sci. 63: 662-665.

Lederberg J., Cowie D.B. 1958. Moondust. Science 127: 1473-1475

Lederberg, J. 1987. How DENDRAL was Conceived and Born. In ACM Conference on the
History of Medical Informatics.pp. 5-24. Association for Computing Machinery, N.Y., 1987.

Lederberg, J. 1988. The Ontogeny of the Clonal Selection Theory of Antibody Formation:
Reflections on Darwin and Ehrlich: Ann. NYAS546:175-187. 1988

Lederberg, J. 1991. The Gene (H. J. Muller 1947). Genetics129:313-316.

Lindsay, R.K., B.G. Buchanan, E. A. Feigenbaum and J. Lederberg Applications of Artificial
Intelligence for Organic Chemistry: The Dendral Project.McGraw-Hill Book Co., (1980).

McClintock, 1983. The Significance of Responses of the Genome to Challenge.Les Prix
Nobel. Stockholm: Almqvist & Wiksell.

Stefik, M. 1981. Planning with Constraints MOLGEN .1. Artificial Intelligence16: 111-139

Stryer, L. 1988. Biochemistry(3d. ed.) New York: W. H. Freeman.

LEDERBERG 463

464 ARTIFICIAL INTELLIGENCE & M OLECULAR BIOLOGY

