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Preface

The seeds of Continuum Physics were planted with the works of the natural
philosophers of the eighteenth century, most notably Euler; by the mid-nineteenth
century, the trees were fully grown and ready to yield fruit. It was in this envi-
ronment that the study of gas dynamics gave birth to the theory of quasilinear
hyperbolic systems in divergence form, commonly called “hyperbolic conserva-
tion taws”; and these two subjects have been traveling hand-in-hand over the past
one hundred and fifty years. This book aims at presenting the theory of hyper-
bolic conservation laws from the standpoint of its genetic relation to Continuum
Physics. Even though research is still marching at a brisk pace, both fields have
attained by now the degree of maturity that would warrant the writing of such an
exposition.

In the realm of Continuum Physics, material bodies are realized as continuous
media, and so-called “extensive quantities”, such as mass, momentum and energy,
are monitored through the fields of their densities, which are related by balance
laws and constitutive equations. A self-contained, though skeletal, introduction to
this branch of classical physics is presented in Chapter II. The reader may flesh it
out with the help of a specialized text on the subject.

In its primal formulation, the typical balance law stiputates that the time rate
of change in the amount of an extensive quantity stored inside any subdomain of
the body is balanced by the rate of flux of this quantity through the boundary of
the subdomain together with the rate of its production inside the subdomain. In
the absence of production, a balanced extensive guantity is conserved. The special
feature that renders Continuum Physics amenable to analytical treatment is that,
under quite natural assumptions, statements of gross balance, as above, reduce to
field equations, i.e., partial differential equations in divergence form.

The collection of balance laws in force demarcates and identifies particular
continuum theories, such as Mechanics, Thermomechanics, Electrodynamics and
so on. In the context of a continuum theory. constitutive equations specify the
nature of the medium, for example viscous fluid, elastic solid, elastic dielectric,
etc. In conjunction with these constitutive relations, the field equations yield closed
systems of partial differential equations, dubbed “balance laws™ or “‘conservation
laws”, from which the equilibrium state or motion of the continuous medium is
to be determined. Historically, the vast majority of noteworthy partial ditferential
equations were generated through that process. The central thesis of this book
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is that the umbilical cord joining Continuum Physics with the theory of partial
differential equations should not be severed. as it is still carrying nourishment in
both directions.

Systems of balance laws may be elliptic. typically in statics; hyperbolic, in
dynamics, for media with “elastic™ response: mixed elliptic-hyperbolic, in statics
or dynamics, when the medium undergoes phase transitions; parabolic or mixed
parabolic-hyperbolic, in the presence of viscosity, heat conductivity or other dif-
fusive mechanisms. Accordingly, the basic notions shall be introduced, in Chap-
ter I, at a level of generality that would encompass all of the above possibilities.
Nevertheless, since the subject of this work is hyperbolic conservation laws, the
discussion will eventually focus on such systems, beginning with Chapter I1I.

Solutions to hyperbolic conservation laws may be visualized as propagating
waves. When the system is nonlinear, the profiles of compression waves get pro-
gressively steeper and eventually break, generating jump discontinuities which
propagate on as shocks. Hence, inevitably, the theory must deal with weak solu-
tions. This difficulty is compounded further by the fact that, in the context of weak
solutions, uniqueness is lost. It thus becomes necessary to devise proper criteria
for singling out admissible weak solutions. Continuum Physics naturally induces
such admissibility criteria through the Second Law of thermodynamics. These may
be incorporated in the analytical theory, either directly, by stipulating outright that
admissible solutions should satisfy “entropy” inequalities, or indirectly, by equip-
ping the system with a minute amount of diffusion, which has negligible effect on
smooth solutions but reacts stiffly in the presence of shocks, weeding out those that
are not thermodynamically admissible. The notions of “entropy” and “vanishing
diffusion™, which will play a central role throughout the book, are first introduced
in Chapters I1I and IV.

From the standpoint of analysis, a very elegant, definitive theory is available
for the case of scalar conservation laws, in one or several space dimensions, which
is presented in detail in Chapter V1. By contrast, systems of conservation laws in
several space dimensions are still terra incognita, as the analysis is currently facing
insurmountable obstacles. The relatively modest results derived thus far, pertaining
to local existence and stability of smooth or piecewise smooth solutions, under-
score the importance of the special structure of the field equations of Continuum
Physics and the stabilizing role of the Second Law of thermodynamics. These
issues are discussed in Chapter V.

Beginning with Chapter VII, the focus of the investigation is fixed on systems
of conservation laws in one-space dimension. In that setting, the theory has a
number of special features. which are of great help to the analyst, so major progress
has been achieved.

Chapter VIII provides a systematic exposition of the properties of shocks.
In particular, various shock admissibility criteria are introduced, compared and
contrasted. Admissible shocks are then combined, in Chapter IX, with another class
of particular solutions, called centered rarefaction waves, to synthesize wave fans
that solve the classical Riemann problem. Solutions of the Riemann problem may
in tumm be employed as building blocks for constructing solutions to the Cauchy
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problem, in the class BV of functions of bounded variation. For that purpose.
two construction methods will be presented here: The random choice scheme, in
Chapter XIII, and a front tracking algorithm. in Chapter XIV. Uniqueness and
stability of these solutions will also be established. The main limitation of this
approach is that it generally applies only when the initial data have sufficiently
small total variation. This restriction seems to be generally necessary, as it turns out
that, in certain systems, when the initial data are “large” even weak solutions to the
Cauchy problem may blow up in finite time. However, whether such catastrophes
may occur to solutions of the field equations of Continuum Physics is at present
a major open problem.

There are other interesting properties of weak solutions, beyond existence and
uniqueness. In Chapter X, the notion of characteristic is extended from classical
to weak solutions and is employed for obtaining a very precise description of
regularity and long time behavior of solutions to scalar conservation faws, in
Chapter XI, as well as to systems of two conservation laws, in Chapter XII.

Finally, Chapter XV introduces the concept of measure-valued solution and
outlines the functional analytic method of compensated compactness, which de-
termines solutions to hyperbolic systems of conservation laws as weak limits of
sequences of approximate solutions, constructed via a variety of approximating
schemes.

In order to highlight the fundamental ideas, the discussion proceeds from the
general to the particular, notwithstanding the clear pedagogical advantage of the
reverse course. Moreover, the pace of the proofs is purposely uneven: slow for
the basic, elementary propositions that may provide material for an introductory
course; faster for the more advanced technical results that are addressed to the
experienced analyst. Even though the various parts of this work fit together to form
an integral entity, readers may select a number of independent itineraries through
the book. Thus, those principally interested in the conceptual foundations of the
theory of hyperbolic conservation laws, in connection to Continuum Physics, need
only go through Chapters I-V. Chapter VI, on the scalar conservation law. may
be read virtually independently of the rest. Students intending to study solutions
as compositions of interacting elementary waves may begin with Chapters VII-IX
and then either continue on to Chapters X-XI! or else pass directly to Chapter
X111 and/or Chapter XIV. Finally, only Chapter VI is needed as a prerequisite for
the functional analytic approach expounded in Chapter XV.

Twenty-five years ago, it might have been feasible to write a treatise surveying
the entire area; however, the explosive development of the subject over the past
several years has rendered such a goal unattainable. Thus, even though this work
strives to present a panoramic view of the terrain, certain noteworthy features had
to be left out. The most conspicuous absence is a discussion of numerics. This
is regrettable, because, beyond its potential practical applications, the numerical
analysis of hyperbolic conservation laws provides valuable insight to the theory.
Fortunately, a number of specialized texts on that subject are currently available.
Several other important topics receive only superficial treatment here, so the reader
may have to resort to the cited references for a more thorough investigation. On
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the other hand, certain topics are perhaps discussed in excessive detail, as they
are of special interest to the author. A number of results are published here for
the first time. Though extensive, the bibliography is far from exhaustive. In any
case, the whole subject is in a state of active development, and significant new
publications appear with considerable frequency.

My teachers, Jerry Ericksen and Clifford Truesdell, initiated me to Continuum
Physics, as living scientific subject and as formal mathematical structure with
fascinating history. I trust that both views are somehow reflected in this work.

I am grateful to many scientists — teachers, colleagues and students alike —
who have helped me, over the past thirty years, to learn Continuum Physics and
the theory of hyperbolic conservation laws. Since it would be impossible to list
them all here by name, let me single out Stu Antman, John Ball, Alberto Bres-
san, Gui-Qiang Chen, Bernie Coleman, Ron DiPemna, Jim Glimm, Jim Greenberg,
Mort Gurtin, Ling Hstao, Barbara Keyfitz, Peter Lax, Philippe LeFloch, Tai-Ping
Liu, Andy Majda, Piero Marcati, Walter Noll, Denis Serre, Marshal Slemrod, Luc
Tartar, Konstantina Trivisa, Thanos Tzavaras and Zhouping Xin, who have also
honored me with their friendship. In particular, Denis Serre’s persistent encour-
agement helped me to carry this arduous project to completion.

The frontispiece figure depicts the intricate wave pattern generated by shock
reflections in the supersonic gas flow through a Laval nozzle with wall distur-
bances. This beautiful interferogram, brought to my attention by John Ockendon,
was produced by W.J. Hiller and G.E.A. Meier at the Max-Planck-Institut fir
Stromungsforschung, in Géttingen. It is reprinted here, by kind permission of the
authors, from An Album of Fluid Motion, assembled by Milton Van Dyke and
published by Parabolic Press in 1982.

I am indebted to Janice D’ Amico for her skilful typing of the manuscript, while
suffering cheerfully through innumerable revisions. I also thank Changging (Peter)
Hu for drawing the figures from my rough sketches. I am equally indebted to
Karl-Friedrich Koch, of the Springer book production department, for his friendly
cooperation. Finally, I gratefully acknowledge the continuous support from the
National Science Foundation and the Office of Naval Research.

Constantine M. Dafermos
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Chapter 1. Balance Laws

The ambient space for the balance law will be R*, with typical point X. In the
applications to Continuum Physics, R* will stand for physical space, of dimension
one, two or three, in the context of statics; and for space-time, of dimension two,
three or four, in the context of dynamics.

The generic balance law in a domain of R* will be introduced through its
primal formulation, as a postulate that the production of an extensive quantity
in any subdomain is balanced by a flux through the boundary; it will then be
reduced to a field equation. It is this reduction that renders Continuum Physics
mathematically tractable. It will be shown that the divergence form of the field
equation is preserved under change of coordinates.

The field equation for the general balance law will be combined with consti-
tutive equations, relating the flux and production density with a state vector, to
yield a quasilinear first order system of partial differential equations in divergence
form.

It wilf be shown that symmetrizable systems of balance laws are endowed with
companion balance laws which are automatically satisfied by smooth solutions,
though not necessarily by weak solutions. The issue of admissibility of weak
solutions will be raised.

Solutions will be considered with shock fronts or weak fronts, in which the state
vector field or its derivatives experience jump discontinuities across a manifold of
codimension one.

The theory of BV functions, which provide the natural setting for solutions
with shock fronts, will be surveyed and the geometric structure of BV solutions
will be described.

Highly oscillatory weak solutions will be constructed, and a first indication of
the stabilizing role of admissibility conditions will be presented.

The setting being Euclidean space, it will be expedient to employ matrix no-
tation, which may be deficient in elegance but is efficient for calculation. The
symbol . /"% will generally denote the space of r x s matrices and R" will be
identified with . /"!. Certain objects that are naturally rank (0,2) tensors shall be
here represented by matrices. Consequently, standard conventions notwithstanding,
in order to retain consistency with matrix operations, gradients must be reatized
as row vectors and the divergence operator will be acting on row vectors. The unit
sphere in R” will be denoted throughout by .% !,
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Chapter 1. Balance Laws

The ambient space for the balance law will be R¥, with typical point X. In the
applications to Continuum Physics, R* will stand for physical space, of dimension
one, two or three, in the context of statics; and for space-time, of dimension two,
three or four, in the context of dynamics.

The generic balance law in a domain of Rf will be introduced through its
primal formulation, as a postulate that the production of an extensive quantity
in any subdomain is balanced by a flux through the boundary; it will then be
reduced to a field equation. It is this reduction that renders Continuum Physics
mathematically tractable. 1t will be shown that the divergence form of the field
equation is preserved under change of coordinates,

The field equation for the general balance faw will be combined with consti-
tutive equations, relating the flux and production density with a state vector, to
yield a quasilinear first order system of partial differential equations in divergence
form.

It will be shown that symmetrizable systems of balance laws are endowed with
companion balance laws which are automatically satisfied by smooth solutions,
though not necessarily by weak solutions. The issue of admissibility of weak
solutions will be raised.

Solutions will be considered with shock fronts or weak fronts, in which the state
vector field or its derivatives experience jump discontinuities across a manifold of
codimension one.

The theory of BV functions, which provide the natural setting for solutions
with shock fronts, wifl be surveyed and the geometric structure of BV solutions
will be described.

Highly oscillatory weak solutions will be constructed, and a first indication of
the stabilizing role of admissibility conditions will be presented.

The setting being Euclidean space. it will be expedient to employ matrix no-
tation, which may be deficient in elegance but is efficient for calculation. The
symbol . /" will generally denote the space of r x s matrices and R" will be
identified with . #Z"*!. Certain objects that are naturally rank (0,2) tensors shall be
here represented by matrices. Consequently, standard conventions notwithstanding,
in order to retain consistency with matrix operations, gradients must be realized
as row vectors and the divergence operator will be acting on row vectors. The unit
sphere in R” will be denoted throughout by . "'
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1.1 Formulation of the Balance Law

A balance law on an open subset .4 of R* postulates that the production of a
(generally vector-valued) “extensive” quantity in any bounded measurable subset
7 of .2 with finite perimeter is balanced by the flux of this quantity through the
measure-theoretic boundary 32/ of /. Note that 32/ is defined as the set of points
whose density relative to both &/ and R¥\ 7/ is nonzero; and & has finite perime-
ter when 87/ has finite (k — 1)-dimensional Hausdorff measure: .7 =1 (37/) < oo.
With almost all (with respect to .#*~") points X of 3% is associated a vector
N(X) €. %" which may be naturally interpreted as the measure-theoretic exte-
rior normal to &/ at X. A Borel subset ¥ of 3/, oriented through the exterior
normal N, constitutes an oriented surface. The reader unfamiliar with the above
concepts may consult the brief survey in Section 1.7 and the references on geo-
metric measure theory cited in Section I.10 or may assume, without much loss,
that we are dealing here with open bounded subsets of .£" whose topological
boundary is a Lipschitz (k — 1)-dimensional manifold.

The production is introduced through a functional .#°, defined on bounded
measurable subsets &/ of .2" with finite perimeter, taking values in R”, and
satisfying the conditions

(L.1.1) SNV =)+ (), FANSL =0,
(1.1.2) | (Y <l

for some constant ¢ > 0. where |/| denotes the Lebesgue measure of /.
The flux through 92/ is induced by a functional ¢, defined on the set of
oriented surfaces ¥, which takes values in R”, and satisfies the conditions

(1.1.3) | < e 7Ny,
for some constant ¢ > 0, and
(1.1.4) GOV =)+ (%),

for all disjoint Borel subsets 7. ¥~ of 87/
Consequently, the balance law states

(1.1.5) CEYY =)

for any bounded measurable subset & of .2 with finite perimeter.

1.2 Reduction to Field Equations

Due to (I.1.1) and (1.1.2), there is a production density P € L®(.#%"; R") such
that

(1.2.1) -/’(£/)=f P(X)dX .
v
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Simifarly, by virtue of (1.1.3) and (1.1.4), with any bounded measurable sub-
set 7 of .Z", with finite perimenter, is associated a bounded Borel flix densirv
function Qy- : 82/ — R” such that

(1.2.2) 0(‘6)=f Oy (X)d.F1(X)
4

holds for any oriented surface ¥ C 8% . Clearly, if ¥ C 9%, and ¥ C 3845,

then Q;¢, and Q,., restricted to ¥ must coincide, a.e. with respect to . #*~!.
It is remarkable that the seemingly mild assumptions (1.1.3) and (1.1.4) in

conjunction with (1.1.5) imply severe restrictions on the density flux function:

Theorem 1.2.1 Under the assumptions (1.1.3), (1.1.4), (1.1.5), (1.2.1), and (1.2.2),
the value of Q,c, at X € 3 depends on 3/ solelv through the exterior normal
N(X) to & at X, namely, there is a bounded measurable function Q . . 2" x
S 5 RY such that

(1.2.3) Qi (X)=Q(X.N(X)). ae ondZ . with respect to Y

Furthermore, Q depends “linearly” on N, i.e., there is a flux density field A €
LX (27 ../0"%y such that

(1.2.4) OX,Ny=A(X)N, aeon.t,
and
(1.2.5) divA=P ,

in the sense of distributions.

Proof. To establish (1.2.3), fix X € .2 N € %! and consider any two
bounded measurable subsets </, and &, of ., with finite perimeter, such that
X € 0%, X € 8%, and N, (X) = N.,(X) = N; see Fig. 1.2.1. The aim is to
show that Q. (X) = Qs (X). Let. /3, denote the ball in R* of (small) radius r
centered at X. We write the balance law (1.1.5). first for & = & N./4, then for
/ =/, N..7, and subtract the resulting equations to get

C(B NN — G (A NIL)
(1.2.6) = L (NL\NQ)NA) = LUL\L) NA)
- QULN\DY) NOAB) + C(L\N) N .
As r | 0, the first two terms on the right-hand side of (1.2.6) are O(r*), by virtue
of (1.1.2); the last two terms are o(r¥=1), except possibly on a set of r for which

the origin is a point of rarEfaction, on account of (1.1.3), since ‘fll and &3 are
tangential to each other at X. Consequently, (1.2.2) and (1.2.6) yield

(1.2.7) Qi (X)d-FH(X) — Qi (X)d.F*(X) = 0r*™) .

B,NI7, B,N1/,
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Fig. 1.2.1.

Thus, if X is a Lebesgue point of both Q- and Qu, then Qy, (X) = Qyus (X).

The proof of (1.2.4) will be attained by means of the celebrated Cauchy tetra-
hedron argument. Consider the standard orthonormal basis {E£, :a = 1.---, k} in
R*.

For fixed o and X, let us apply the balance law to the rectangle & = (X :
—8 < Xog—X, <&, |Xs—Xg| <r B #a}with 8, ¢ and r positive small. Letting
e | 0and $ | 0, one easily deduces Q(X. —E,) = —Q0(X, E,), ae.on .2

Now fix N €. %! with nonzero components Ny, @ = 1.---,k,and X € .2°
which is a Lebesgue point of O(-. N) as well as of Q(-, £E,), ¢ = 1, -- -, k. Con-
sider the simplex & = {X : (Xa =X )Ny > —roa=1,--- k(X =X)-N <r}
with r positive and small. Notice that 3/ contains a face ¥ with exterior normal
N and faces 7,, @ = .-, k, with exterior normal —(sgn N,)E,. Moreover, we
have . #4170,y = [N, |. 7%= (7), @ = 1.--- k. Applying the balance law to
this &, dividing through by .#*~!(/ ) and letting r | 0 yields

k
(1.2.8) Q(X.Ny=) " O(X, E)N, .
a=1

which establishes (1.2.4).

It remains to show (1.2.5). When A is Lipschitz, the balance faw takes the
form

(1.2.9) f A(X)N(X)d.%"“(X):f P(X)dX
g

14

so that (1.2.5) follows directly from Green’s theorem. In the general case, when
A is merely in L™, even though (1.2.9) may no longer make sense for arbitrary
&, it will still hold for translates ¥y = {X € R* : X — Y € &} of any fixed
hypercube & by almost all ¥ in a ball {Y € R* : |Y| < ¢}, with & sufficiently
small to retain &y C .2". Accordingly, we fix any test function ¢ € C§°(RY)
with total mass |, supported in the unit ball, we rescale it by &,
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(1.2.10) Ve(X) = et y(e7'X) |

and use it to mollify, in the customary fashion, the fields P and A on the set
A .2 of points whose distance from .#* exceeds &:

(1.2.11) Pe=yexP. A =Y. xA.

For any hypercube & C .2;, we apply Green's theorem to the smooth field A,
and use Fubini’s theorem to get

i

-/divAg(X)cIX f A(X)NX)dF*1(x)
v a

]

f Y (VA(X = YINX)EYd.F*1(X)
d s SRS

/'//E(Y) A(Z)N(Z)yd.# N Z)dY
(1.2.12) R Ay
= f ve(Y) | P(Z)dzdy
RE 70

f Y (YYP(X —Y)dYdX
v Jw

f P(X)dX .
v

whence we conclude divA, = P, on.#;. Letting € | 0, yields (1.2.5) on .#4", in
the sense of distributions. This completes the proof.

i

Conversely, a field equation (1.2.5), with A € L®(#£"./"%) and P €
L>=(.4"; R"), induces a balance law (1.1.5), where . is defined by (1.2.1), and
¢/ is obtained from (1.2.2), for some function Q. € L®@Q< :R") identified
through its action on test functions ¢ € C=(R):

(1.2.13)
f ¢(X)Q;)7(X)d.7€“"(X)=f ¢(X)P(X)dx+f A(X)(grad )T (X)d X .
0 174 7

Clearly, (1.2.13) is derived formally upon muitiplying (1.2.5) by ¢, integrating
over </ and applying Green’s theorem.

In fact, the function Q3. may be constructed, through (1.2.13), even in the
more general case where A € L®(.#"../4"%) satisfies a field equation (1.2.5)
with P a measure on .Z". Of course in that case it is no longer generally true that
the value of 0, at X € 3/ depends on 92/ solely through the exterior normal
N(X) to 32/ at X. Details may be found in the references cited in Section 1.10.
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1.3 Change of Coordinates

The divergence form of the field equations of balance laws is preserved under
coordinate changes, so long as the fields transform according to appropriate rules.

Theorem 1.3.1 Let .2 be an open subset of R* and assume that functions
Aell (& /"% and P € L}, (.2 R") satisfy the field equation

loc

(1.3.1) divA =P,

in the sense of distributions on .2.". Consider any bilipschitz homeomorphism X*
of .4 toa subset .2 of R*, with Jacobian matrix

ax
(1.3.2) =%
such that
(1.3.3) detJ >a>0, ae on.t .
Then A* € L}, (.Z™.. /"%y, P* € L] (4™ R") defined by
(1.3.4) Ao X* =(det) 'AJT | P*o X" = (det))7'P

satisfyv the field equation
(1.3.5) divA* = P* |
in the sense of distributions on . X ™.

Proof. From (1.3.1) it follows that
(1.3.6) f [A(grad¢)” + PpldX =0
A

holds for any test function ¢ € C;~(.#") and thereby, by completion in W', for
any Lipschitz function ¢ with compact support in .2,

Given any test function ¢* € C{°(.#™), consider the Lipschitz function
¢ = ¢" o X*, with compact support in ..2". Notice that grad¢ = (grad¢*)J.
Furthermore, d X* = (det J)d X. By virtue of these and (1.3.4), (1.3.6) yields

(1.3.7) fp[A*(graddf‘)T + P*¢*ldX* =0,

which establishes (1.3.5). The proof is complete.
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1.4 Systems of Balance Laws

On an open subset .2 " of R¥, we consider the field equation (1.2.5) of a balance
law, which we now write in components form:

k
(1.4.1) Y duAq(X) = P(X).
a=1

The symbol 9, stands for 3/8X,, @« = 1,--- k. Recall that P and A,. @ =
l. .-k, take values in R".

We assume that the state of the medium is described by a state vecror field
U, taking values in an open subset ¢~ of R", which determines the flux density
field A and the production density field P at the point X € .2 by counstitutive
equations

(1.42) AX)=GUX), X). PX)=NOW(X)X).

where G and [T are given smooth functions defined on /* x.#" and taking values
in. Z"* and R", respectively.

Notation. Throughout this work, the symbol D will denote the gradient operator
[a/8U,,---,8/8U,] with respect to the state vector U, visualized as a n-row.
Also, D? will denote the operation of forming the (7 x n matrix-valued) Hessian
with respect to U.

Combining (1.4.1) with (1.4.2), yields the quasilinear first order system of
partial differential equations

k
(1.4.3) Y % Go(U(X), X) = TUX), X) .

a=]

from which the state vector field U is to be determined. Any equation of the
form (1.4.3) will henceforth be called a system of balance laws, if n > 2, or a
scalar balance law when n = 1. In the special case where there is no production,
IT =0, (1.4.3) will be called a system of conservation laws, if n > 2, or a scalar
conservation law when n = 1. This terminology is not quite standard: In lieu of
“system of balance laws™ certain authors favor the term “system of conservation
laws with source”. When G and [T do not depend explicitly on X, the system of
balance laws is called homogeneous.

Notice that when coordinates are stretched in the vicinity of some fixed point
X € .4, ie, X = X + €Y, then, as ¢ | 0, the system of balance laws (1.4.3)
reduces to a homogeneous system of conservation laws with respect to the Y
variable. It is for this reason that local properties of solutions of general systems
of balance laws may be investigated, without loss of generality, in the simpler
setting of homogeneous systems of conservation laws.
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A Lipschitz continuous field U which satisfies (1.4.3) almost everwhere on .2’
will be called a classical solution. A bounded measurable field U/ which satisfies
(1.4.3) in the sense of distributions, i.e.,

k
(1.4.4) f [Z 3 (X)Gu(U(X). X) + 0(X)ITWU(X). X)} dx =0,
e

a=|

for any test function ¢ € Cg°(.4"), is a weak solution. Any weak solution which
is Lipschitz continuous is necessarily a classical solution.

1.5 Companion Systems of Balance Laws

Consider a system (1.4.3) of balance laws on an open subset ..¢" of R*, resulting
from combining the field equation (1.4.1) with constitutive relations (1.4.2). A
smooth function g, defined on ¢ x .2 and taking values in . #2'-*, is called a
companion of G if there is a smooth function B, defined on ¢ x .2  and taking
values in R”, such that, forall U € ', X € .2,

(1.5.1) Dg,(U.X)=BWU,X)'DG(U.X), a=1.--k.

The relevance of (1.5.1) stems from the observation that any classical solution
U of the system of balance laws (1.4.3) is automatically also a (classical) solution
of the companion balance law

k
(1.5.2) > 8uqu(U(X), X) = h(U(X), X)

a=|
with
(1.5.3)

dg (U, X) 3G (U. X)

hU.X) = BWU, X) MU, M ChAbd AT} 182
(U.X) = BW, X)" I1( XHaZ.[ ya - B(U.X) X }

In (1.5.3) /3 X, denotes partial derivative with respect to X, holding U fixed.

The task of determining the companion balance laws (1.5.2) of a given system
of balance laws (1.4.3) may be accomplished by identifying the integrating factors
B that render the right-hand side of (1.5.1) a gradient of a function of {/. The
relevant integrability condition is

(1.54) DBW.X)'DGu(U, X) = DGo(U, X)'DBWU,X). a=1--k,

forall U € ¢ and X € .#". Clearly, one can satisfy (1.5.4) by employing any
B which may vary with X but not with U; in that case, however, the resulting
companion balance law (1.5.2) is just a trivial linear combination of the equations
of the original system (1.4.3). For determining nontrivial B, which vary with U,
(1.5.4) imposes 3 1n(n — 1)k conditions on the # unknown components of B. Thus,
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when n = | and k is arbitrary one may use any (scalar-valued) function B. When
n =2 and k = 2, (1.5.4) reduces to a system of two equations in two unknowns
from which a family of B may presumably be determined. In all other cases,
however, (1.5.4) is formally overdetermined and the existence of nontrivial com-
panion balance laws should not be generally expected. Nevertheless, as we shall
see in Chapter 111, the systems of balance laws of continuum thermomechanics
are endowed with natural companion balance |aws.

The system of balance laws (1.4.3) is called symmetric when the n x n matrices
DGy (U, X), @ = |,---, k, are symmetric, for any U € ¢, X € .2, say (" is
simply connected and

(1.5.5) Go(U,X)=Dg (U, X) , a=1,--k,

for some smooth function g, defined on ©* x .2 and taking values in . /"%,
In that case one may satisfy (1.5.4) by taking B(U, X) = U, which induces the
companion

(1.5.6) qU.X)=U"GW, X)—gU. X).

Conversely, if (1.5.1) holds for some B with the property that for every fixed
X €.#", B(-, X) maps diffeomorphically ¢ to some open subset ¢** of R", then
the change U* = B(U, X) of state vector reduces (1.4.3) to the equivalent system
of balance laws

k
(1.5.7) Y 8.GLU*(X), X) = T*(U*(X), X) ,
a=1
with
(1.5.8)
G*U*, X) =GB~ (U X), X), MW X)=MNB'U*X).X),

which is symmetric. [ndeed, upon setting

(1.5.9) g (U*, X) =q(B™'(U*, X). X) .
(1.5.10) g (U X)=U"TG"U* X)-q*(U", X),
it follows from (1.5.1) that

(1.5.11) GHU*, X)=Dgl(U* X)T, a=1,---k.

We have thus demonstrated that a system of balance laws is endowed with non-
trivial companion balance laws if and only if it is symmetrizable.

Despite (1.5.1), and in contrast to the behavior of classical solutions, weak
solutions of (1.4.3) need not satisfy (1.5.2). Nevertheless, one of the tenets of the
theory of systems of balance laws is that admissible weak solutions should at least
satisfy the inequality
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A
(1.5.12) > 9qu(U(X). X) < h(U(X). X) .

a=|

in the sense of distributions, for a designated family of companions. Relating this
postulate to the Second Law of thermodynamics and investigating its implications
on stability of weak solutions are among the principal objectives of this book.

Notice that when the inequality (1.5.12) holds, its left-hand side is necessarily
a measure and. therefore. following the discussion at the end of Section 1.2, may
be associated with a balance law.

1.6 Weak and Shock Fronts

The regularity of solutions of a system of balance laws will depend on the nature
of the constitutive functions. The focus will be on solutions with “fronts™, that is
singularities assembled on manifolds of codimension one. To get acquainted with
this sort of solutions, we consider here two kinds of fronts in a particularly simple
setting.

In what follows, .7 will be a smooth (k — 1)-dimensional manifold, embedded
in the open subset .Z" of R*, with orientation induced by the unit normal field
N. U will be a solution of the system of balance laws (1.4.3) on .4~ which is
continuously differentiable on ..4"\.7#, but is allowed to be singular on .. In
particular, (1.4.3) holds for any X € .2"\.7 .

First we consider the case where .7 is a weak fiont, that is, U is Lipschitz
continuous on ../." and as one approaches ..# from either side the partial derivatives
9, U of U attain distinct limits 87U, 37U . Thus 3, U experiences a jump [9,U] =
85U — ;U across .7 . Since U is continuous, tangential derivatives of U cannot
jump across ..~ and hence [3,U] = N,[dU/dN], @ = 1,--- k, where [0U/3N]
denotes the jump of the normal derivative aU /3N across .7 . Therefore, taking
the jump of (1.4.3) across .# at any point X € .7 yields the following condition
on [oU/aN]:

k
U
1.6.1 DG, x| =o.
(1.6.1) > NaDG,(U(X) X)[aN] 0

a=1

Next we assume .7 is a shock front, that is, as one approaches .7 from either
side, U attains distinct limits U_, U, and thus experiences a jump [U/] = U, —U_
across .# . Since U is a (weak) solution of (1.4.3), we may write (1.4.4) for any
¢ € C*(.2). In (1.4.4) integration over .2 may be replaced with integration over
AN\F . Since U is C' on ..2"\.7, we may integrate by parts in (1.4.4). Using
that ¢ has compact support in . and that (1.4.3) holds for any X € .2\.7, we
get

k
(1.6.2) f7 o(X) }: Ne[Go(Uy. X) = Go(U_, X))d-F* 1 (X) =0,

a=]



1.7 Survey of the Theory of BV Functions 11

whence we deduce that the following jump condition must be satisfied at every
point X of the shock front .7 :

k
(1.6.3) D Nu[GalUs, X) = Go(U-, X)] =0 .

a=|

Notice that (1.6.3) may be rewritten in the form

k 1
(1.6.4) >N U DG, (tU, +(1 —r)U-.X)dr][U]:O.
a=| 0

Comparing (1.6.4) with (1.6.1) we conclude that weak fronts may be regarded as
shock fronts with “infinitesimal” strength: |[{/]| vanishingly small.
With each U € ¢ and X €.4" we associate the variety

k
(.65 Z'(U,X)= {(N,V)G.Y"'" x R": Y N, DG, (U. X)V=O] .

a=l

The number of weak fronts and shock fronts of small amplitude that may be
sustained by solutions of (1.4.3) will depend on the size of 7. In the extreme
case where, for ail (U, X), the projection of 7 (U, X) onto R" contains only
the vector V = 0, (1.4.3) is called elliptic. Thus a system of balance laws is
elliptic if and only if it cannot sustain any weak fronts or shock fronts of small
amplitude. In Continuum Physics, ellipticity manifests itself as a condition of
stability in elastostatics. Ellipticity may fail in elastostatics when the constitutive
equation allows for instabilities, like phase transitions. In that case, shock fronts
are interpreted as phase boundaries, separating different phases of the material.
The opposite extreme to ellipticity, where 7 ~ attains the maximal possible size,
is typically encountered in elastodynamics and will be discussed in Chapter III.

1.7 Survey of the Theory of BV Functions

In this section we shall get acquainted with BV functions, in which discontinuities
assemble on manifolds of codimension one, and thus provide the natural setting for
solutions of systems of balance laws with shock fronts. Comprehensive treatment
of the theory of BV functions can be found in the references cited in Section 1.10,
so only properties relevant to our purposes will be listed here, mostly without
proofs.

Definition 1.7.1 A function U defined on an open subset .# " of R and taking
values in R" is of locally bounded variation if U € L, (#’) and fora =1,---, k
the distributional derivative 3, is a locally finite (vector-valued) Radon measure
Uo on .2 ie.,

(1.7.1) —f a,,¢(X)U(X)dx=f ¢(X)dpa(X), a=1,---.k,
A A

e
LGS IO
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holds for any test function ¢ € C°(.4"). When U € L'(.2") and the u, are finite,
U is a function of bounded variation, with total variation

k
(1.7.2) TV, U =) |ul£),

a=1

where |io| denotes the total variation of the measure p,. The set of functions
of bounded variation and locally bounded variation over . will be denoted by
BV (£ and BV, (.%"), respectively.

Clearly, the Sobolev space W'''(.4") of functions U/ € L'(.#") with distri-
butional derivatives 3,U € L'(.#°) is contained in BV (.#") and W,L'C' (4 is
contained in BVjo.(.#4").

The following proposition may be used to test whether some function has
locally bounded variation.

Theorem 1.7.1 Let {E,. 0 = 1, - -, k} denote the standard orthonormal basis of
R¥. If U € BVioo(-#£7), then
|
(1.7.3) limsup—f JUX +hEy) ~UXDdX = |u (%), a=1,---,k,
no hJy

Jor any open bounded set 4/ with 7 C .2 Conversely, if U € L} (.4") and the
left-hand side of (1.7.3) is finite for any 4/ as above, then U € BVioc(.£").

Proof. Fix any test function ¢ € C§°(.£") supported in 4/ and notice that
|
(1.7.4) —/ QXNUX +hE) - U(X)]dX = —/ e Yu (X; MU (X)dX
hty %
where
1
(1.7.5) Yo (X h) =f ¢(X —htEydr .
0
Clearly, [[¥oll.. < li¢ll.~ and so, recalling (1.7.1),
I
(1.7.6) Ef UX + hEg) = UCOMX < lal(4) .
o
On the other hand,
o
(7.7 lim _f SOOUX +hEy) — U)X = —f B (X)U(X)dX |
o h P W
whence

. 1
(1.7.8) Iual(%shmsup-f [UX + hE) —U(X)|dX .
wo hJy

This completes the proof.
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Theorem 1.7.2 Anyv sequence {Uy) in BV (.2°) such that | U, et pey and TV, Uy

are uniformly bounded on every open bounded 4/ with / C .2 contains a
subsequence which converges in L\, (.2), as well as almost everywhere. 1o some

Sfunction U in BV o (.27, with TV, U <liminfeL o TV, U,.

Proof. A bounded subset of L' is relatively compact when its members are L!-
equicontinuous. The assertion then follows directly from estimate (1.7.6). This
completes the proof.

The relevance of BV functions to our purposes stems from their local proper-
ties described in

Theorem 1.7.3 The domain .2 of any U € BV\oo(.4") is the union of three,
pairwise disjoint, subsets 7, 7, and .7 with the following properties:

(a) £ is the set of points of approximate continuity of U, i.e., witheach X € € is
associated Ug in R" such that, for any € > 0, asr | 0,

(1.7.9) meas{X € .4 |X = X| <r, |U(X)=Us| > €) = o(r*) .

(b) 7 is the set of points of approximate jump discontinuity of U, i.e., with each
X € 7 are associated N in ¥ *~" and distinct U_, U, in R" such that. for any
e>0asrl0,

(1.7.10)
meas{X € 2 | X=X|<r,(X=X)-N Z0,|UX) —Us| > ] = o(r") .

7 is essentially covered by the countable union of C' (k — 1)-dimensional
manifolds (.7} embedded in R*: .Z*'( Z\|UJ.Z) = 0. Furthermore. when
Xe 7 N.Z then N is normal on .7 at X.

(c) .7 is the set of irregular points of U ; its (k— 1)- dimensional Hausdorft measure
is zero: F X (7)=0.

Up to this point, the identity of a BV function is unaffected by modifying
its values on any set of (k-dimensional Lebesgue) measure zero, i.e., BV (-#7)
is actually a space of equivalence classes of functions, specified only up to a
set of measure zero. However, when dealing with the finer, local behavior of
these functions, it is expedient to designate a particular representative of each
equivalence class, with values specified up to a set of (k—1)-dimensional Hausdorff
measure zero. This will be effected in the following way.

Suppose A is a continuous function from R" to .//™* and let U € BV, (.£"),
with values in R". With reference to the notation of Theorem 1.7.3, the normalized

composition AoU of A and U is defined by
A(Uy), if Xe?

1.7.11 AcUMX) =1 i
(-7ih ° fA(rU_+(l—r)U+)dr, if Xe 7
0
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and arbitrarily on the set .7 of irregular points, whose (k — I)-dimensional Haus-
dorff measure is zero. In particular, we may employ as A the identity map to
normalize U itself:

Uo. if Xe?

1.7.12) U(X) =
( ( WWw-+uy . if Xe 7.

The appropriateness of the above normalization is justified by the following
generalization of the classical chain rule:

Theorem 1.7.4 Assume H is a continuously differentiable map from R" to R’
and let U € BVloc(.lm_/Lx(.}r'/'). Then Ho U € BVige (X)YNL>(2Z"). The
normalized function DH o U is locally integrable with respect to the measures
Ho =0U.a=1,.--- .k and

(1.7.13) d(HoUy=DHoUdU, a=1,-- .k,

in the sense
(1.7.14y - f/‘ 3. P(X)VHWU(X))dX = -/jl¢(X)D/I-1\o/U(X)dua(X) ,
Sor any test finction ¢ € C(-. ).

Next we review certain geometric aspects of the theory of BV functions.

Definition 1.7.2 A subset & of R¥ has (locally) finite perimeter when its indicator
function x., has (locally) bounded variation on R*.

Let us apply Theorem 1.7.3 to the indicator function x. of a set & with
locally finite perimeter. Clearly, the set Z of points of approximate continuity of
X« s the union of the sets of density points of & and R*\Z/. The complement
of ¥, i.e, the set of X in R* that are not points of density of either & or
R\, constitutes the measure theoretic boundary 37/ of 77, which we already
encountered in Section 1.1. It can be shown that &/ has finite perimeter if and only
if #*~1(37) < 00, and its perimeter may be measured equivalently by T Vge x.
or by .F#*~1(3). The set of points of approximate jump discontinuity of x. is
called the reduced boundary of &/ and is denoted by 3*<. By Theorem 1.7.3,
Y Cov, FHNBU\I*Y ) =0, and 8* &/ is covered by the countable union
of C! (k — 1)-dimensional manifolds. Moreover, the vector N € .% ¥~! associated
with each point X of 3*& may naturally be interpreted as the measure theoretic
exterior normal to /" at X. This was also noted in Section 1.1I.

Definition 1.7.3 Assume </ has finite perimeter and_let V € BViee(R¥). V has
inward (or outward) trace V. (or V_) at the point X of the reduced boundary
3* of &/, where the exterior normal is N, if for any & > 0, as r | 0.
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(1.7.15)
meas{X e R\ | X = X| <r(X=X)-N S0, V(X)) — Vil > €) = o0r%) .

It can be shown that the traces V. are defined for almost all (with respect
to .#*~") points of 3*/ and are locally integrable on 8*¢/ . Furthermore, the
following version of the Gauss-Green theorem holds:

Theorem 1.7.5 Assume V € BV (R¥) s0 8,V are finite measures jig, 00 = .-+ - . k.
Consider any bounded set I/ of finite perimeter, with set of density points /* and
reduced boundary 9* /. Then

(1.7.16) M(:/ﬂ:f NoVod F5V . a=1,-- k.
as

Furthermore, for any Borel subset .7 of 3./ (an “oriented surface” in the termi-
nologv of Section 1.1),

(1.7.17) ua(.7)=f No(Vo = VI FA . = 1o k|
F

In particular, the set Z of points of approximate jump discontinuity of any
U € BVioc(R¥) may be covered by the countable union of oriented surfaces and
s0 (1.7.17) will hold for any measurable subset . of 7.

For k = 1, the theory of BV functions is intimately related with the classi-
cal theory of functions of bounded variation. Assume ¢/ is a BV function on a
(bounded or unbounded) interval (a.b) C (—o00,00). Let U be the normalized
form of U, Then

t—1

(1.7.18) TViumU =sup Y _ |0 (xj00) = Tl
j=1

where the supremum is taken over all (finite) meshesa < x; <x2 <--- < x < b.
Furthermore, (classical) one-sided limits U(x=) exist at every x € (a, b) and are
both equal to U (x), except possibly on a countable set of points. When k = 1,
the compactness Theorem 1.7.2 reduces to the classical Helly theorem.

As we shall see in the following section, the above results have significant
implications to the theory of solutions of systems of balance laws.

1.8 BV Solutions of Systems of Balance Laws

We consider here weak solutions U € L>®(.#&") of the system (1.4.3) of balance
laws, which are in BViec(.#°). In that case, by virtue of Theorem 1.7.4, the func-
tions GeolU,a = 1, - -+ k, are also in BVjo(-#)NL>(.#") and (1.4.3) is satisfied
as an equality of measures. The first task is to examine the local form of (1.4.3),
in the light of Theorems 1.7.3, 1.7.4, and [.7.5.
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Theorem 1.8.1 A function U € BVioo(.27) N L>® (") is a weak solution of the
system (1.4.3) of balance laws if and only if (a) the measure equality

3G, - o
ax. (000, X) = M0 X0

k k
(1.8.1) ZDGa(U(X).X)aaU+Z
a=I a=l

holds on the set ‘€ of points of approximate continuity of U, and (b) the jump
condition

k
(1.8.2) Y NelGolUs, X) = Go(U-, X)] =0

a=]
is satisfied for almost all (with respect to .F#*=') X on the set 7 of points of
approximate jump discontinuity of U, with normal vector N and one-sided limits
U_,U,.

Proof. Let 1 denote the measure defined by the left-hand side of (1.4.3). On ¢,
u reduces to the measure on the left-hand side of (1.8.1), by virtue of Theorem
1.7.4, (1.7.13), (1.7.11) and (1.7.12). Recalling the Definition 1.7.3 of trace and
the characterization of one-sided limits in Theorem 1.7.3, we deduce (Go U)4 =
G o Uy at every point of 7. Thus, if .77 is any Borel subset of 7, then by
account of the remark following the proof of Theorem 1.7.5 and (1.7.17),

k
(1.8.3) w(.7) =f D N[Ga(U-. X) = Go(Uy, X)d-F*" .
F a=1

Therefore, 4 = [T in the sense of measures if and only if (1.8.1) and (1.8.2) hold.
This completes the proof.

Consequently, the set of points of approximate jump discontinuity of a BV
solution is the countable union of shock fronts.

As we saw in Section 1.5, when G has a companion g, the companion balance
law (1.5.2) is automatically satisfied by any classical solution of (1.4.3). The
following proposition describes the situation in the context of BV weak solutions.

Theorem 1.8.2 Assume the system of balance laws (1.4.3) is endowed with a com-
panion balance law (1.5.2). Let U € BVioc(£") N L=(£") be a weak solution of
(1.4.3). Then the measure

(1.8.4) v=Y  8ug.(U(X), X) — h(U(X), X)

k
a=}
is concentrated on the set J of points of approximate jump discontinuitv of U and
the inequality (1.5.12) will be satisfied in the sense of measures if and only if

k

(1.8.5) Nolga(Uy, X) —goe(U-, X)] 20

a=1

holds for almost all (with respect to . #*~'y X € 7.
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Proof. By virtue of Theorem 1.7.4, we may write (1.4.3) and (1.8.4) as

k k.
8. DG, o UdU e _-o,
(1.8.6) ; ° +:L:;axa
k ——— k aq
8.7 =Y DgyoUdU X _h.
(1.8.7) v Z=; Ga © +;axa

By account of (1.7.11) and (1.7.12), if X is in the set ¢ of points of approx-
imate continuity of U,

(18.8) DGqoU(X) = DGa(U(X),X), DgooU(X)= Dqa(T(X).X) .

Combining (1.8.6), (1.8.7), (1.8.8) and using (1.5.1), (1.5.3), we deduce that v
vanishes on 7 .

From the Definition 1.7.3 of trace and the characterization of one-sided limits
in Theorem 1.7.3, we infer (o U)y = go U,. If .7 is a bounded Borel subset of
7, we apply (1.7.17), keeping in mind the remark following the proof of Theorem
1.7.5. This yields

k
(1.89) W) = [ Mg lWo X) = gu(Us OU T
F =l

Therefore, v < 0 if and only if (1.8.5) holds. This completes the proof.

1.9 Rapid Oscillations and the Stabilizing Effect
of Companion Balance Laws

Consider a homogeneous system of conservation laws

k
(1.9.1) Y 3.Ga(U(X) =0

a=l

and assume that
k

(1.9.2) > Na[Ga(W) = Ga(V)] =0
a=!

holds for some states V, W in ¢ and N € .¥*~!. Then one may construct
highly oscillatory weak solutions of (1.9.1) on R¥ by the following procedure:
Consider any finite family of parallel (k — 1)-dimensional hyperplanes. all of
them orthogonal to N, and define a function &/ on R¥ which is constant on each
slab confined between two adjacent hyperplanes, taking the values V and W in
alternating order. It is clear that U is a weak solution of (1.9.1), by virtue of (1.9.2)
and Theorem 1.8.1.
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‘We may thus construct a sequence of solutions which converges in L™ weak*
to some U of the form U(X) = p(X - N)V +[1 — p(X - N)]W, where p is any
measurable function from R to [0, 1]. It is clear that, in general, such U will not
be a solution of (1.9.1). unless G(-)N happens to be affine along the straight line
segment in R" that joins V with W. This type of instability distinguishes systems
that may support shock fronts from elliptic systems that can not.

Assume now G is equipped with a companion g having the property
Y Ny[ga(W) — go(V)] # 0. Notice that imposing the admissibility condition
Y 849.(U) < 0 would rule out the oscillating solutions constructed above, be-
cause, by virtue of Theorem 1.8.2, it would be prohibited to have jumps both from
V to W and from W to V, in the direction N. Consequently, inequalities (1.5.12)
seem to play a stabilizing role. To what extent this stabilizing is effective will be
a major issue for discussion in the book.

1.10 Notes

The principles of the theory of balance laws were conceived in the process of
laying down the foundations of elasticity, in the 1820’s. Theorem 1.2.1 has a long
and celebrated history. The crucial discovery that the flux density is necessarily a
linear function of the exterior normal was made by Cauchy [1,2]. The argument
that the flux density through a surface may depend on the surface solely through
its exterior normal is attributed to Hamel and to Noll [2]. The formulation of the
balance law and the proof of Theorem 1.2.1 at the level of generality presented
here is adapted from Ziemer [1]. The recovery of the balance law from its field
equation is described in Anzellotti [1]. An alternative, more explicit, construction
of the flux function is due to Chen and Frid [1,6].

The observation that systems of balance laws are endowed with nontrivial
companions if and only if they are symmetrizable is due to Godunov [1,2,3],
Friedrichs and Lax [1] and Boillat [1]. See also Ruggeri and Strumia [1].

In one space dimension, weak fronts are first encountered in the acoustic re-
search of Euler while shock fronts were introduced by Stokes [1]. Fronts in several
space dimensions were first studied by Christoffel [1]. The classical reference is
Hadamard [1]. For a historical account of the early development of the subject,
with emphasis on the contributions of Riemann and Christoffel, see Holder [1].
The connection between shock fronts and phase transitions will not be pursued
here. For references to this active area of research see Section 8.7.

Comprehensive expositions of the theory of BV functions can be found in the
treatise of Federer [1]. the monograph of Giusti [1], and the texts of Evans and
Gariepy [1] and Ziemer [2]. Theorems 1.7.4 and 1.7.5 are taken from Volpert [1].

An insightful discussion of the issues raised in Section 1.9 is found in DiPerna
[8]. These questions will be elucidated by the presentation of the method of com-
pensated compactness, in Chapter XV.



Chapter I1. Introduction to Continuum Physics

In Continuum Physics, material bodies are modelled as continuous media whose
motion and equilibrium is governed by balance laws and constitutive relations.

The list of balance laws in force identifies the theory, for example mechan-
ics, thermomechanics, electrodynamics, etc. The referential (Lagrangian) and the
spatial (Eulerian) formulation of the typical balance law will be presented. The
balance laws of mass, momentum, energy, and the Clausius-Duhem inequality,
which demarcate continuum thermomechanics, will be recorded.

The type of constitutive relation characterizes the nature of material response.
The constitutive equations of thermoelasticity and thermoviscoelasticity will be
introduced. Restrictions imposed by the Second Law of thermodynamics, the prin-
ciple of material frame indifference, and material symmetry will be discussed.

The matrix notational conventions of Chapter I will be used here as well, with
.-/¢™* denoting the space of r x s matrices and R” identified with . /Z"!.

2.1 Bodies and Motions

The ambient physical space is R™, of dimension one, two or three. A body is
identified by a reference configuration, namely an open subset .7 of R". Points
of .72 will be called particles. The typical particle will be denoted by x and time
will be denoted by ¢.

A placement of the body is a bilipschitz homeomorphism of its reference
configuration .2 to some open subset of R™. A motion of the body over the time
interval (¢, 1) is a Lipschitz map x of .2 x (t;, tz) to R™ whose restriction to each
fixed ¢ in (t;. ;) is a placement. Thus, for fixed x € Aandt € (4, 1), x(x.t)
specifies the position in space of the particle x at time ¢; for fixed ¢ € (11, 12),
the map x(-.f) : .2 — R™ yields the placement of the body at time ¢; finally,
for fixed x € .42, the curve x(x,-) : (t;, 12) — R™ describes the trajectory of the
particle x. See Fig. 2.1.1.

The aim of Continuum Physics is to monitor the evolution of various fields
associated with the body, such as density, stress, temperature, etc. In the referential
approach, one follows the evolution of fields along particle trajectories, while in
the spatial approach one monitors the evolution of fields at fixed position in
space. The motion allows to pass from one formulation to the other. For example,
considering some illustrative field w, we write @ = f(x,t) for its referential
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X 4!
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Fig. 2.1.1.

description and w = ¢(x, t) for its spatial description. The motion relates f and
@by d(x(x.t),t) = f(x.1), forx €.2,t € (1, 1).

Hydrodynamicists commonly use the terms Lagrangian for referential and
Eulerian for spatial. This terminology has become standard, and will be adopted
here, notwithstanding that the “Lagrangian” description was actually introduced
by Euler and the “Eulerian” description was first employed by Daniel Bernoulli
and D’ Alembert.

Either formulation has its relative advantages, so both will be used here. Thus,
in order to keep proper accounting, three symbols should be needed for each
field, one to identify it, one for its referential description, and one for its spatial
description (w, f, and ¢ in the example, above). However, in order to control
the proliferation of symbols, the standard notational convention is to employ the
single identifying symbol of the field for all three purposes. To prevent ambiguity
in the notation of derivatives, the following rules will apply: Partial differentiation
with respect to + will be denoted by an overdot in the referential description and
by a ¢-subscript in the spatial description. Gradient and divergence will be denoted
by Grad and Div, with respect to the material variable x, and by grad and div,
with respect to the space variable x. Thus, referring again to the typical field w
with referential description w = f(x, ) and spatial description w = ¢(x,t), ®
will denote 9f/8t, w, will denote 3¢ /3¢, Grad w will denote grad, f, and gradw
will denote grad, ¢. This notation may appear confusing at first but the student of
the subject soon learns to use it efficiently and correctly.

The motion x induces two important kinematical fields, the velocity

2.1.1H) v=yx,
in L2 x (1, t2); R™), and the deformation gradient
(2.1.2) F=Grady ,

in L®(2 x (t, t2):. /™™). In accordance with the definition of placement, we
shall be assuming

(2.1.3) detF>a>0 a.e.
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These fields allow one to pass from spatial to material derivatives, for example,
assuming w is a Lipschitz field,

2.1.4) w=w, + (gradw)v ,
(2.1.5) Gradw = (gradw) F .

By virtue of the polar decomposition theorem, the local deformation of the
medium, determined by the deformation gradient F, may be realized as the com-
position of a pure stretching and a rotation:

(2.1.6) F=RU,
where the symmetric, positive definite matrix
2.1.7 U= (FTF)\?

is called the right stretch tensor and the proper orthogonal matrix R is called the
rotation tensor.

Turning to the rate of change of deformation, we introduce the referential and
spatial velocity gradients:

2.1.8) F = Gradv , L=gradv.

L is decomposed into the sum of the symmetric stretching tensor D and the
skew-symmetric spin tensor W
2.1.9 L=D+W, D=4{L+LT), w=LL-LT).

The class of Lipschitz continuous motions allows for shocks but is not suffi-
ciently broad to also encompass motions involving cavitation in elasticity, vortices
in hydrodynamics, vacuum in gas dynamics, etc. Even so, we shall continue to
develop the theory under the assumption that motions are Lipschitz continuous,
deferring considerations of generalization until such need arises.

2.2 Balance Laws in Continuum Physics

Consider a motion x of a body with reference configuration .2 C R™, over a
time interval (¢, r;). The typical balance law of Continuum Physics postulates that
the change over any time interval in the amount of a certain extensive quantity
stored in any part of the body is balanced by a flux through the boundary and
a production in the interior during that time interval. With space and time fused
into space-time, the above statement yields a balance law of the type considered
in Chapter 1, ultimately reducing to a field equation of the form (1.2.5).

To adapt to the present setting the notation of Chapter I, we take space-time
R™+! a5 the ambient space R¥, and set . = ./# x (4, ), with typical point
X = (x, t). With reference to (1.2.5), we decompose the flux density field A into a
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spatial part and a temporal part, namely A = [~¥, O], with ¥ € L| (.27 /2™7),

@ e L|'oc(.%': R"). In the notation of the previous section, (1.2.5) now takes the
form

(2.2.1 © =Div¥ + P .

This is the referential field equation for the typical balance law of Continuum
Physics. The field @ is the density of the balanced quantity; ¥ is the flux density
field through material surfaces; and P is the production density.

The corresponding spatial field equation may be derived by appealing to The-
orem 1.3.1. The map X~ that sends (x, t) to the point (x(x.1),t) is a bilipschitz
homeomorphism of .2 to some subset .2 of R™*!  with Jacobian matrix (cf.
(1.3.2), (2.1.1), and (2.1.2)):

Flv
222 J=|:0 I]'

Notice that (1.3.3) is satisfied by virtue of (2.1.3). Theorem 1.3.1 now implies that
(2.2.1) holds in the sense of distributions on .#" if and only if

(2.2.3) O} +div(*v") =dive* + P*

is satisfied in the sense of distributions on .2 ™, with @* € L}
L (&>, /2"y and P* € L] (%™ R") defined by

loc

(2R W* e

224) O*=(detF)'e, w*=(detF)"'WFT, P*=(detF)"'P.

It has thus been established that the referential field equations (2.2.1) and the
spatial field equations (2.2.3) of the balance laws of Continuum Physics are related
through (2.2.4) and are equivalent whenever the fields are in L] .

In anticipation of the forthcoming discussion of material symmetry, it is useful
to investigate how the field equations (2.2.1) and (2.2.3) transform under isochoric
changes of the reference configuration of the body, induced by a bilipschitz home-
omorphism X of ./ to some subset . /2 of R™, with Jacobian matrix

ax
(2.2.5) H=—, detH=1.

ax
By virtue of Theorem 1.3.1, the referential field equation (2.2.1) on ../? will trans-
form into an equation of exactly the same form on .72, with fields ©, ¥, P related
to ®. ¥, P by

(2.2.6) =0, V=vH', P=P.

In the corresponding spatial field equation, the fields @, ", P* are obtained
through (2.2.4) : ©" = (det F)"'® . ¥ = (detF)"'TF P’ = (det F)"'P,
where F denotes the deformation gradient relative to the new reference configu-
ration .22, Since F = FH™!, using (2.2.6), (2.2.4) and (2.2.5) yields
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Q2.2.7) @ =0". ¥V=v_, P=p,

i.e., as was to be expected, the spatial field equations are unaffected by changes
of the reference configuration of the body.

[n Continuum Physics, theories are identified by means of the list of balance
laws that apply in their context. The illustrative example of thermomechanics will
be considered in the following section.

2.3 The Balance Laws of Continuum Thermomechanics

Continuum thermomechanics, which will serve as a representative model through-
out this work, is demarcated by the balance laws of mass, linear momentum,
angular momentum, and energy, whose referential and spatial field equations will
now be introduced.

In the balance law of mass there is neither flux nor production so the referential
and spatial field equations read

2.3.1) po=0,
2.3.2) o +div(prT) =0,

where py is the reference density and p is the density associated with the motion,
related through

2.3.3) o = po(det Fy ',

Note that (2.3.1) implies that the value of the reference density associated with a
particle does not vary with time: pp = po(x).

In the balance law of linear momentum, the production is induced by the body
force (per unit mass) vector b, with values in R”, while the flux is represented by
a stress tensor taking values in ../Z™™. The referential and spatial field equations
read

(2.3.4) (pov) =DivS + ppb ,
2.3.5 . (ov), + div (pvvT) =divT + pb,

where S denotes the Piola-Kirchhoff stress and T denotes the Cauchy stress, related
by

‘2.3.6) T = (det F)"'SFT .

For v € .¥™ ! the value of Sv at (x,t) yields the stress (force per unit area)
vector transmitted at the particle x and time ¢ across a material surface with normal
v; while the value of Tv at (x, 1) gives the stress vector transmitted at the point
X in space and time ¢ across a spatial surface with normal v.
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In the balance law of angular momentum, production and flux are the moments
about the origin of the production and flux involved in the balance of linear
momentum. Consequently, the referential field equation is

2.3.7) (x A por) =Div(x AS)+ x A pob

where A denotes vectorial exterior product. Under the assumption that pov, S and
pob are in L} while the motion x is Lipschitz continuous, we may use (2.3.4),
(2.1.1) and (2.1.2) to reduce (2.3.7) into

(2.3.8) SFT = FST .

Similarly, the spatial field equation of the balance of angular momentum reduces,
by virtue of (2.3.5), to the statement that the Cauchy stress tensor is symmetric:

(2.3.9) T =T.

There is no need to perform that calculation since (2.3.9) also follows directly
from (2.3.6) and (2.3.8).

In the balance law of energy, the energy density is the sum of the (specific)
internal energy (per unit mass) ¢ and kinetic energy. The production is the sum of
the rate of work of the body force and the heat supply (per unit mass) r. Finally,
the flux is the sum of the rate of work of the stress tensor and the heat flux. The
referential and spatial field equations thus read

2.3.10) (po€ + %povTv)' =Div@' S+ Q)+ pov" b + por .
2.3.11) (pe+ %vav), +div[(pe + %vav)vT] =divw ' T+q)+pv b+ pr,

where the referential and spatial heat flux vectors Q and g, with values in ..Z4!"™,
are related by

(2.3.12) g = (det F)"'QFT .

Note that when the velocity field v is Lipschitz continuous, so that the standard
product rule of differentiation applies to v7 v and v’ S, the field equation (2.3.10)
reduces, by account of (2.3.4), to

2.3.13) po€ = tr (SET) + DivQ + por .

Continuum Physics assigns different roles to the balance laws: The field equa-
tions (2.3.2), (2.3.4), (2.3.5), (2.3.10) and (2.3.11), for the balance of mass, linear
momentum and energy, are viewed as conditions on the evolution of the various
fields that serve to determine the motion of the body. By contrast, the balance of
angular momentum (2.3.8), (2.3.9) is regarded as a condition on material response,
to be satisfied identically by the constitutive relations.

The list of balance laws is complemented by the Second Law of thermody-
namics, which postulates that the growth, over any time interval, in the entropy
stored in any part of the body exceeds the sum of the entropy flux through the
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boundary and the entropy production in the interior during that time interval. It is
assumed that the entropy flux is heat flux divided by temperature and the entropy
production density is heat supply divided by temperature. Thus. if s denotes the
(specific) entropy (per unit mass) and 6 is the absolute temperature, & > 0, the
above “imbalance™ law leads to the Clausius-Duhem inequalitv, in referential and
spatial form:

(2.3.14) (pos) = Div (lQ) + poi .
0 0
2.3.15) (ps) +div (psvT) > div (%q) + pg .

A motion together with an entropy field constitute a thermodynamic process
of the body; they determine all the fields involved in the balance laws through
constitutive relations, depending on the nature of the material. A fundamental
premise of Continuum Physics is that the Clausius-Duhem inequality should hold
identically for any smooth process that balances mass, momentum and energy.
Consequently, in the context of smooth processes the inequality is regarded as
a condition on material response, inducing restrictions on constitutive relations.
Introducing the referential and spatial temperature gradient fields

(2.3.16) G =Gradd, g=gradd, g= GF™',

we note that when the velocity field v and the temperature field 6 are Lipschitz
continuous, the reduced form (2.3.13) of the energy equation combines with the
Clausius-Duhem inequality (2.3.14) to yield the dissipation inequality

. 1
Q.3.17) Poé — poBs —tr (SFT) — 5QGT <0.

After appropriate reduction of the constitutive equations, the Clausius-Duhem
inequality will hold identically for smooth thermodynamic processes but not nec-
essarily for processes that are not smooth. Consequently, in addition to being
employed as a condition on material response, the inequality is charged with the
responsibility of testing the thermodynamic admissibility of nonsmooth processes.

To prepare for forthcoming investigation of material symmetry, it is necessary
to discuss the law of transformation of the fields involved in the balance laws when
the reference configuration undergoes a change induced by an isochoric bilipshitz
homeomorphism X, with unimodular Jacobian matrix H (2.2.5). The deformation
gradient F and the stretching tensor D (cf. (2.1.9)) will transform into new fields
F and D:

]

(2.3.18) F=FH', D=D.

The reference density po, internal energy ¢, Piola-Kirchhoff stress S, entropy s,
temperature 6, referential heat flux vector Q, density p, Cauchy stress 7, and
spatial heat flux vector ¢, involved in the balance laws, will also transform into
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new fields 7. %, S,5,0. 0,5, T, and g according to the rule (2.2.6) or (2.2.7),
namely,

(23.19) Bp=p. E=¢, S=SH', 5=s, 6=6, Q0=QH",
(2.320) ﬁ=p, T=T. .q_=q,

Also the referential and spatial temperature gradients G and g will transform into
G and g with

(2.3.21) G=GH™', g=3.

2.4 Material Frame Indifference

The body force and heat supply are usually induced by external factors and are
assigned in advance, while the fields of internal energy, stress, entropy and heat
flux are determined by the thermodynamic process. Motions may influence these
fields in as much as they deform the body: Rigid motions, which do not change the
distance between particles, should have no effect on internal energy, temperature
or referential heat flux and should affect the stress tensor in a manner that the
resulting stress vector, observed from a frame attached to the moving body, looks
fixed. This requirement is postulated by the fundamental principle of material
frame indifference which will now be stated with precision.

Consider any two thermodynamic processes (x,s) and (x*, s¥) of the body
such that the entropy fields coincide, s* = s, while the motions differ by a rigid
(time dependent) rotation:

4.1 e, =00x(x,t), x€.B, te.t),.
(24.2) oTwow)=00)0T(ty=1, detO()=1. te(t,t).

Note that the fields of deformation gradient F, F*#, spatial velocity gradient L, L*
and stretching tensor D, D* (cf. (2.1.8), (2.1.9)) of the two processes (x,s),
(x*, s*) are related by

(2.4.3) F*=0F, L*=0L0"+00", D*=0DOT.

Let (&, S, 6, Q) and (¢*, S*, 8%, O*) denote the fields for internal energy, Piola-
KirchhofT stress, temperature and referential heat flux associated with the processes
(x.s) and (x*, s*). The principle of material frame indifference postulates:

(2.4.4) f=e. S*=0S5, 6'=0, 0'=0.

From (2.4.4), (2.3.16) and (2.4.3) it follows that the referential and spatial tem-
perature gradients G, G* and g, g* of the two processes are related by

(2.4.5) G'=G, gt=g0T.
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Furthermore, from (2.3.6), (2.3.12) and (2.4.3) we deduce the following relations
between the Cauchy stress tensors 7, T# and the spatial heat flux vectors q,q° of
the two processes:

(2.4.6) T°=0T0", ¢*=40".

The principle of material frame indifference should be reflected in the con-
stitutive relations of continuous media, irrespectively of the nature of material
response. lllustrative examples will be considered in the following two sections.

2.5 Thermoelasticity

In the framework of continuum thermomechanics, a thermoelastic medium is char-
acterized by the constitutive assumption that, for any fixed particle x and any
motion, the value of the internal energy ¢, the Piola-Kirchhoff stress S, the tem-
perature 6, and the referential heat flux vector Q, at x and time ¢, is determined
solely by the value at (x, t) of the deformation gradient F, the entropy s. and the
temperature gradient G, through constitutive equations

e =¢&(F,s, G)

S = S(F,s, G)
2.5.1) A

6 =6(F,s, G)

0 = Q(F,s,G)

where 2. S. 6, O are smooth functlons defined on the subset of . /™™ xR x. /41"
with det F > 0. Moreover, O(F s, G) > 0. When the thermoelastic medium is
homogeneous, the same functions £, S, 6, Q and the same value pg of the reference
density apply at all particles x € .22,

The Cauchy stress T and the spatial heat flux ¢ are also determined by consti-
tutive equations of the same form, which may be derived from (2.5.1) and (2.3.6),
(2.3.12). When employing the spatial description of the motion, it is natural to sub-
stitute on the list (2.5.1) the constitutive equations of 7 and ¢ for the constitutive
equations of S and Q; also on the list (F, s, G) of the state variables to replace
the referential temperature gradient G with the spatial temperature gradient g (cf.
(2.3.16)).

The above constitutive equations will have to comply with the conditions
stipulated earlier. To begin with, as postulated in Section 2.3, every smooth ther-
modynamic process which balances mass, momentum and energy must satisfy
identically the Clausius-Duhem inequality (2.3.14) or, equivalently, the dissipa-
tion inequality (2.3.17). Substituting from (2.5.1) into (2.3.17) yields

. N L. ] -
(2.5.2) te[(00drE — SYET] + po(858 — 6)5 + podeGT — BQGT <0.
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It is clear that by suitably controlling the body force b and the heat supply r one
may construct smooth processes which balance mass, momentum and energy and
attain at some point (x. t) arbitrarily prescribed values for F, s, G, F, .G, subject
only to the constraint det F > 0. Hence (2.5.2) cannot hold identically unless the
constitutive relations (2.5.1) are of the following special form:

e =¢(F,s)

S = podré(F,s)
(2.5.3) .

6 = 0,e(F,s)

0 = Q(F.s5,G),
(2.5.4) O(F,s,G)G" > 0.

Thus the internal energy may depend on the deformation gradient and on the en-
tropy but not on the temperature gradient. The constitutive equations for stress and
temperature are induced by the constitutive equation of internal energy, through
caloric relations, and are likewise independent of the temperature gradient. Only
the heat flux may depend on the temperature gradient, subject to the condition
(2.5.4) which implies that heat always flows from the hotter to the colder part of
the body.

Another requirement on constitutive relations is that they observe the principle
of material frame indifterence, formulated in Section 2.4. By combining (2.4.4)
and (2.4.3); with (2.5.3), we deduce that the functions £ and Q must satisfy the
conditions

(2.5.5) 8(OF,s)=&(F,s), O(OF,s,G)= Q(F,s,G),

for all proper orthogonal matrices O. A simple calculation verifies that when
(2.5.5) hold then the remaining conditions in (2.4.4) will be automatically satisfied,
by virtue of (2.5.3); and (2.5.3);.

To see the implications of (2.5.5), we apply it with O = R7, where R is the
rotation tensor in (2.1.6), to deduce

(2.5.6) 8(F,s)=8WU,s), OF,s,G)=QWU,s,G).

It is clear that, conversely, if (2.5.6) hold then (2.5.5) will be satisfied for any
proper orthogonal matrix O. Consequently, the principle of material frame indif-
ference is completely encoded in the statement (2.5.6) that the internal energy and
the referential heat flux vector may depend on the deformation gradient F solely
through the right stretch tensor U.

When the spatial description of motion is to be employed, the constitutive
equation for the Cauchy stress

(2.5.7) T = pdré(F,s)FT ,
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which follows from (2.3.6), (2.3.3) and (2.5.3),, will satisfy the principle of mate-
rial frame indifference (2.4.6), so long as (2.5.6) hold. For the constitutive equation
of the spatial heat flux vector

(2.5.8) qg=4q(F.5.8)

the principle of material frame indifference requires (recall (2.4.6);, (2.4.3); and
(2.4.5)):

(2.5.9) G(OF,s5,80T)=§(F,s, )07 ,

for all proper orthogonal matrices O.

The final general requirement on constitutive relations is that the Piola-
Kirchhoff stress satisfy (2.3.8), for the balance of angular momentum. This im-
poses no additional restrictions, however, because a simple calculation reveals
that once (2.5.5); holds, S computed through (2.5.3): will automatically satisfy
(2.3.8). Thus in thermoelasticity material frame indifference implies balance of
angular momentum.

The constitutive equations undergo further reduction when the medium is en-
dowed with material symmetry. Recall from Section 2.3 that when the reference
configuration of the body is changed by means of an isochoric bilipschitz home-
omorphism X with unimodular Jacobian matrix H (2.2.5), then the fields trans-
form according to the rules (2.3.18), (2.3.19), (2.3.20) and (2.3.21). It follows,
in particular, that any medium which is thermoelastic relative to the original ref-
erence configuration, will stay so relative to the new one, as well, even though
the constitutive functions will generally change. Any isochoric transformation of
the reference configuration that leaves invariant all constitutive functions signals
material symmetry of the medium. Consider any such transformation and let H be
its Jacobian matrix. By virtue of (2.3.18)y, (2.3.19); and (2.5.3),. the constitutive
function £ of the internal energy will remain invariant, provided

(2.5.10) 8(FH™'.5) =&(F.,s) .

A simple calculation verifies that when (2.5.10) holds the constitutive functions
for S and 6 determined through (2.5.3); and (2.5.3); satisfy automatically the
invariance requirements for that same H. The remaining constitutive equation,
for the heat flux vector, will be treated for convenience in its spatial description
(2.5.8). By account of (2.3.18),, (2.3.21), and (2.3.20);, ¢ will remain invariant if

251hH 7 G(FH™',s.8) =§(F.,s,8) .

It is clear that the set of matrices H with determinant one for which (2.5.10)
and (2.5.11) hold forms a subgroup ¢ of the special linear group .¥ £ m, called the
symmetry group of the medium. In certain media, % may contain only the identity
matrix / in which case material symmetry is minimal. When !¢ is nontrivial, it
dictates through (2.5.10) and (2.5.11) conditions on the constitutive functions of
the medium.
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Maximal material symmetry is attained when 2 = . ,. In that case
the medium is a thermoelastic fluid. Applying (2.5.10) and (2.5.11) with H =
(det FYy~V"mF ¢ . % ,,. we deduce that £ and § may depend on F solely through
its determinant or, equivalently by virtue of (2.3.3), through the density p:

(2.5.12) e=E(p.s). q=q(p,s.8).

The Cauchy stress may then be obtained from (2.5.7) and the temperature from
(2.5.3);. The calculation gives

(2.5.13) T=-p(p.s)I, B=20p.s).
where
(2.5.14) plp.s) = p*8,E(p.s) .

The constitutive function g in (2.5.12) must also satisfy the requirement (2.5.9) of
material frame indifference which now assumes the simple form

(2.5.15) G(p.s.g07) =g(p,s,8)07 |

for all proper orthogonal matrices O. In three space dimensions (m = 3), the final
reduction of ¢ that satisfies (2.5.15) is

(2.5.16) =«k(p.s.lghg ,

where ¥ is a scalar-valued function. We have thus shown that in a thermoelastic
fluid the internal energy depends solely on density and entropy. The Cauchy stress
is a hvdrostatic pressure, likewise depending only on density and entropy. The heat
flux obeys Fourier’s law with thermal conductivity x that may vary with density,
entropy and the magnitude of the heat flux.

An isotropic thermoelastic solid is a thermoelastic material with symmetry
group ‘4 the proper orthogonal group .¥¢ ,,. In that case, to obtain the reduced
form of the internal energy function £ we combine (2.5.10) with (2.5.6),. Recalling
(2.1.7) we conclude that

(2.5.17) 8OUOT,s)y=8.,s)

for any proper orthogonal matrix O. In particular, we may apply (2.5.17) for the
proper orthogonal matrices O that diagonalize the symmetric matrix U : OUOT =
A. This establishes that in consequence of material frame indifference and material
symmetry the internal energy of an isotropic thermoelastic solid may depend on
F solely as a symmetric function of the eigenvalues of the right stretch tensor U.
Equivalently,

(2.5.18) e=&y, -, Im,s) .

where (Iy, ... 1) are the principal invariants of U; in particular, /| = trU,
I, = detU = det F. The reduced form of the Cauchy stress, computed from
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(2.5.18) and (2.5.7). and also of the heat flux vector, for the isotopic thermoelastic
solid, are recorded in the references cited in Section 2.7.

We conclude the discussion of thermoelasticity with remarks on special ther-
modynamic processes. A process is called adiabatic if the heat flux Q vanishes
identically; it is called isothermal when the temperature field 6 is constant; and
it is called isentropic if the entropy field s is constant. Note that (2.5.4) implies
O(F,s.0) = 0 so, in particular, all isothermal processes are adiabatic. Materials
that are poor conductors of heat are commonly modeled as nonconductors of heat,
characterized by the constitutive assumption Q = 0. Thus every thermodynamic
process of a nonconductor is adiabatic.

In an isentropic process, the entropy is set equal to a constant, s = 5; the
constitutive relations for the temperature and the heat flux are discarded and those
for the internal energy and the stress are restricted to s = 5:

e =&(F,5)

2.5.19) N
S = podre(F.5).

The motion is determined solely by the balance laws of mass and momentum.
In practice this simplifying assumption is made when it is judged that entropy
fluctuations have insignificant effect. Later on we shall encounter situations where
this is indeed the case. We should keep in mind, however, that an isentropic process
cannot be sustained unless the heat supply r is regulated in such a manner that the
ensuing motion together with the constant entropy field satisfy the balance law of
energy.

Isentropic thermoelasticity rests solely on the balance laws of mass and mo-
mentum and this may leave the impression that it is a mechanical, rather than a
thermomechanical, theory. In fact the constitutive relations (2.5.19) suggest that
isentropic thermoelasticity is isomorphic to a mechanical theory called hvperelas-
ticity. 1t should be noted, however, that isentropic thermoelasticity inherits from
thermodynamics the Second Law under the following guise: Assuming that the
process is adiabatic as well as isentropic and combining the balance law of energy
(2.3.10) with the Clausius-Duhem inequality (2.3.14) yields

(2.5.20) (poE + %povTv)' < Div('S) + pov’b .
The spatial description of this inequality is
2.52D (pe + LpvTv), + div[(pe + Lpv V0] < div(v'T) + pv’h

The above inequalities play in isentropic thermoelasticity the role played by
the Clausius-Duhem inequality (2.3.14), (2.3.15) in general thermoelasticity: For
smooth motions, they hold identically, as equalities', by virtue of (2.3.4) and
(2.5.19). By contrast, in the context of motions that are merely Lipschitz contin-
uous, they are extra conditions serving as the test of thermodynamic admissibility
of the motion.

! In particular, this implies that smooth isentropic processes may be sustained with r = 0,
that is without supplying or extracting any amount of heat.
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2.6 Thermoviscoelasticity

We now consider an extension of thermoelasticity, which encompasses materials
with internal dissipation induced by viscosity of the rate type. The internal energy
g, the Piola-Kirchhoff stress S, the temperature 6, and the referential heat flux
vector 0 may now depend not only on the deformation gradient F, the entropy s
and the temperature gradient G, as in (2.5.1), but also on the time rate F of the
deformation gradient:

e=8(F, F.s5,G)

S=S(F,F, s G)
(2.6.1) ..

6 =0(F, F.s,G)

Q=0(F.F,s.G).

As stipulated in Section 2.3, every smooth thermodynamic process which bal-
ances mass, momentum and energy must satisfy identically the dissipation inequal-
ity (2.3.17). Substituting from (2.6.1) into (2.3.17) yields

(2.6.2) tr[(podrE — S)FT] +tr (podi 2 FT) + po (3,8 — 0)3
. 1 -
+ podgeGT — ~5QGT <0.

By suitably controlling the body force b and heat supply r, one may construct
smooth processes which balance mass, momentum and energy and attain at some
point (x, t) arbitrarily prescribed values for F, F, s, G, F, 5, G, subject only to the
constraint det F > 0. Consequently, the inequality (2.6.2) cannot hold identically
unless the constitutive function in (2.6.1) have the following special form:

e=E(F,s)
S = pydré(F,s)+ Z(F, F.,s.G)
(2.6.3) R
0 = 3,£(F.s)
0= 0Q(F.F,sG),
(2.6.4) w[Z(F, F.5.G)FT] + = : O(F. F,5,G)GT > 0.
6(F,s

Comparing (2.6.3) with (2.5.3) we observe that, again, the internal energy, which
may depend solely on the deformation gradient and the entropy, determines the
constitutive equation for the temperature by the same caloric equation of state.
On the other hand, the constitutive equation for the stress now includes the addi-
tional term Z which contributes the viscous effect and induces internal dissipation
manifested in (2.6.4).

The constitutive functions will have to be reduced further to comply with the
principle of material frame indifference, postulated in Section 3.4. In particular,
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frame indifference imposes to internal energy the same condition (2.5.5); as in
thermoelasticity and the resulting reduction is, of course, the same:

(2.6.5) E(F,s)=¢8U,s),

where U denotes the right stretch tensor (2.1.7). Furthermore, when (2.6.5) holds
the constitutive equation for the temperature, derived through (2.6.3)3, and the term
podrE(F. 5), in the constitutive equation for the stress. will be automatically frame
indifferent. It remains to investigate the implications of frame indifference on Z
and the heat flux. Since the analysis will focus eventually on thermoviscoelastic
fluids, it will be expedient to switch at this point from S and Q to T and g; also
to replace, on the list (F, F, s, G) of state variables. F with L (cf. (2.1.8)) and G
with g (cf. (2.3.16)). We thus write

(2.6.6) T = pdré(F,s)FT + Z(F.L.s.g8) ,
2.6.7) qg=4q(F,L,s.g).

Recalling (2.4.3) and (2.4.5), we deduce that the principle of material frame in-

difference requires
268 Z(OF,0LOT + 007,s5,807) = OZ(F, L.s5,8)0".
(2.6.8) o

G(OF,0LOT + 007,5,g07)=§(F, L,s,8)07,

for any proper orthogonal matrix O. In particular, for any fixed state (F. L, s, g)
with spin W (cf. (2.1.9)), we may pick O(r) = exp(— tW), in which case O(0) =
1, 0(0) = —W. It then follows from (2.6.8) that Z and § may depend on L solely
through its symmetric part D and hence (2.6.6) and (2.6.7) may be written as

(2.6.9) T = poré(F.5)FT + Z(F,D.s. g)

(2.6.10) g =G(F,D.s.g),

with Z and § such that

2610 Z(OF,0DOT7.5,80T)= OZ(F, D,s,8)0",
G(OF.0DOT.5.80") =G§(F.D,s,8)07,

for all proper orthogonal matrices O.

For the balance law of angular momentum (2.3. 9) to be satisfied, Z must also
be symmetric: Z7 = Z. Notice that in that case the dissipation inequality (2.6.4)
may be rewritten in the form

) .
2.6.12) w[Z(F.D.s.g)D] + = G(F.D,s,8)g" = 0.
6(F.s)

Further reduction of the constitutive functions obtains when the medium is
endowed with material symmetry. As in Section 2.5. we introduce here the svm-
metry group ‘% of the material, namely the subgroup of Y% ,, formed by the
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Jacobian matrices H of those isochoric transformations X of the reference config-
uration that leave all constitutive functions invariant. The rules of transformation
of the fields under change of the reference configuration are recorded in (2.3.18),
(2.3.19), (2.3.20) and (2.3.21). Thus, % is the set of all H € .¥£,, with the

property
B(FH™',s)=&(F.s),

2.6.13) Z(FH™',D,s, g) = Z(F, D.s, g) .
G(FH™',D.s.g)=4(F,D,s,g) .

The material will be called a thermoviscoelastic fluid when ‘¢ = ¥4 ,.
In that case, applying (2.6.13) with H = (det F)"Y"F ¢ .¥%,,, we conclude
that £, Z, and § may depend on F solely through its determinant or, equivalently,
through the density p. Therefore, the constitutive equations of the thermoviscoelas-
tic fluid reduce to

e=2£(p,s)

T =—p(p.s)I +Z(p, D, s,
2.6.14) p(p,s) o 8)

6 = 9;E(p, 5)

qg=4(p.D,s,8)

where p is given by (2.5.14). For frame indifference, Z and g should still satisfy,

for any proper orthogonal matrix O,
Z(p,ODO",5,860"y=0Z(p, D,s,8)07,

(2.6.15) ) § pr 5. 8)
4(p,ODO7,5,60")=g(p,D,s.8)07 ,

which follow from (2.6.11). It is possible to write down explicitly the form of the
most general functions Z and ¢ that conform with (2.6.15). Here, it will suffice
to record the most general linear constitutive relations that are compatible with
(2.6.15),

(2.6.16) T = =p(p. )] + A(p, s)(tr DY + 2fi(p, s)D ,
(2.6.17) q=Kk(p,s)g,

which identify the (compressible) Newtonian fluid.

2.7 Notes

The venerable field of Continuum Physics has been enjoying a revival, concomitant
with the rise of interest in the behavior of materials with nonlinear response.
The encyclopedic works of Truesdell and Toupin [1] and Truesdell and Noll [1]
contain reliable historical information as well as massive bibliographies and may
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serve as excellent guides for following the development of the subject from its
inception, in the 18th century, to the mid 1960’s. The text by Gurtin [1] provides
a clear, elementary introduction to the area. A more advanced treatment. with
copious references, is found in the book of Silhavy [1]. Other good sources,
emphasizing elasticity theory, are the books of Ciarlet [1], Hanyga [1]. Marsden
and Hughes [1] and Wang and Truesdell [1]. The recent monograph by Antman
[3] contains a wealth of material on the theory of elastic strings, rods, shells
and three-dimensional bodies, with emphasis on the qualitative analysis of the
governing balance laws.

On the equivalence of the referential (Lagrangian) and spatial (Eulerian) de-
scription of the field equations for the balance laws of Continuum Physics. see
Dafermos [17] and Wagner [3]. It would be useful to know whether this holds
under more general assumptions on the motion than Lipschitz continuity. For in-
stance, when the medium is a thermoelastic gas, it is natural to allow regions of
vacuum in the placement of the body. In such a region the density vanishes and
the specific volume (determinant of the deformation gradient) becomes infinitely
large. For particular results in that direction, see Wagner [2].

The field equations for the balance laws considered here were originally de-
rived by Euler [1,2], for mass, Cauchy [3,4], for linear and angular momentum, and
Kirchhoff [1]. for energy. The Clausius-Duhem inequality was postulated by Clau-
sius [1], for the adiabatic case; the entropy flux term was introduced by Duhem [1]
and the entropy production term was added by Truesdell and Toupin [I]. This last
reference also contains an exhaustive treatment of the balance laws of Continuum
Physics.

The postulate that constitutive equations should be reduced so that the Clausius-
Duhem inequality be satisfied automatically by smooth thermodynamic processes
which balance mass, momentum and energy was first stated as a general princi-
ple by Coleman and Noll [1]. The examples presented here were adapted from
Coleman and Noll [1], for thermoelasticity, and Coleman and Mizel [1]. for ther-
moviscoelasticity.

The use of frame indifference and material symmetry to reduce constitutive
equations originated in the works of Cauchy [4] and Poisson [2]. In the ensuing
century, this program was implemented (mostly correctly but occasionally incor-
rectly) by many authors, for a host of special constitutive equations. In particular,
the work of the Cosserats [1], Rivlin and Ericksen [1] and others in the 1940°s
and 1950’s contributed to the clarification of the concepts. The principle of mate-
rial frame indifference and the definition of the symmetry group were ultimately
postulated with generality and mathematical precision by Noll [1].






Chapter 1I1. Hyperbolic Systems of Balance Laws

The ambient space for the system of balance laws, introduced in Chapter I, will
be visualized here as space-time, and the central notion of hyperbolicity in the
time direction will be motivated and defined. Companions to the flux, considered
in Section 1.5, will now be realized as entropy-entropy flux pairs.

Numerous examples will be presented of hyperbolic systems of balance laws
arising in Continuum Physics.

3.1 Hyperbolicity

Returning to the setting of Chapter I, let us visualize R* as R” x R, where R™,
m =k — 1, is “space” with typical point ¥, and R is “time” with typical value ¢,
s0 X = (x, t). We write 9, for 9, denote Gy by H and thus rewrite the system of
balance laws (1.4.3) in the equivalent form

G.1.) B HWU(x, 1), x 1)+ ZB,,G,,(U(x, N, x.t)=IUEx, O, x.1) .

a=]

Definition 3.1.1 The system of balance laws (3.1.1) is called Ayperbolic in the
t-direction if, for any fixed U € © ,(x,t) e . & and v € ™1 the n x n matrix
DH(U, x,t) is nonsingular and the eigenvalue problem

(3.1.2) [Z vy DGy (U, x, 1) —ADH(U,x.t):| R=0

a=1

has real eigenvalues A, (v; U, x, 1), ---, A, (v U, x, 1), called characteristic speeds,
and n linearly independent eigenvectors R, (v; U, x.t}.+--, R,(v; U, x.1).

A class of great importance are the symmetric hyperbolic systems of balance
laws (3.1.1), in which, for any U € ¢ and (x,t) € .#', the n X n matrices
DGy (U, x,t),a = 1,---, m, are symmetric and DH(U, x, t) is symmetric posi-
tive definite.

The definition of hyperbolicity may be naturally interpreted in terms of the
notion of fronts, introduced in Section 1.6. A front .7 of the system of balance
laws (3.1.1) may be visualized as a one-parameter family of m — 1 dimensional
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manifolds in R™, parametrized by ¢, i.e., as a surface propagating in space. In
that context, if we renormalize the normal N on .7 so that N = (v, —s) with
v € .M 1 then the wave will be propagating in the direction v with speed s.
Therefore, comparing (3.1.2) with (1.6.1) we conclude that a system of n balance
laws is hyperbolic if and only if # distinct weak waves can propagate in any space
direction. The eigenvalues of (3.1.2) will determine the speed of propagation of
these waves while the corresponding eigenvectors will specify the direction of the
amplitude.
When .7 is a shock front, (1.6.3) may be written in the current notation as

(3.1.3)
—s[HUs,x,t) = HU-.x. D]+ )_valGa(Uy, x,1) = Go(U_, x.D] =0,

a=}

which is called the Rankine-Hugoniot jump condition. By virtue of Theorem 1.8.1,
this condition should hold at every point of approximate jump discontinuity of any
function U of class BV, that satisfies the system (3.1.1) in the sense of measures.
It is clear that hyperbolicity is preserved under any change U* = U*(U, x, ¢)
of state vector with U*(-. x, t) a diffeomorphism for every fixed (x.t) € .%4". In
particular, since DH (U. x, t) is nonsingular, we may employ, locally at least, H
as the new state vector. Thus, without much loss of generality, one may limit the
investigation to hyperbolic systems of balance laws that have the special form

(3.1.4) QU D+ Y 0GaUx.t). x. t) = TUx, 1), x.1) .

a=1

For simplicity and convenience, we shall regard henceforth the special form (3.1.4)
as canonical. The reader should keep in mind, however, that when dealing with
systems of balance laws arising in Continuum Physics it may be advantageous to
keep the state vector naturally provided, even at the expense of having to face the
more complicated form (3.1.1) rather than the canonical form (3.1.4).

3.2 Entropy-Entropy Flux Pairs

Assume that the system of balance laws (1.4.3), which we now write in the form
(3.1.1), is endowed with a companion balance law (1.5.2). To recast (1.5.2) in the
new notation, we rewrite it in the form

(3.2.1) INU@. . XD+ Y dagalUlx, 1), x. ) = h(U(x, 1). x.1) .

a=]

by setting g = 1. As we shall see in Section 3.3, in the applications to Continuum
Physics companion balance laws of the form (3.2.1) are intimately related with
the Second Law of thermodynamics. For that reason, n is called an entropy for
the system (3.1.1) of balance laws and (q,---, gu) is called the entropy flux
associated with n.
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Equation (1.5.1), for @ = k, should now be written as
(3.2.2) DnU,x.t)=BWU.x.t)' DHU.x,1) .

Assume the system is in canonical form (3.1.4) so that (3.2.2) reduces to Dy = B”.
Then (1.5.1) and the integrability condition (1.5.4) become

(3.2.3) Dqg,(U,x,t) =DnU.x,) DG, (U.x.t), a=1,.---,m

(3.2.4)

D*n(U. x, ) DG4 (U, x,t) = DG (U, ) DpU.x.t), a=1,---,m.

’

Notice that (3.2.4) imposes %n(n — 1)m conditions on the single unknown
function 5. Therefore, as already noted in Section 1.5, the problem of determining
a nontrivial entropy-entropy flux pair for (3.1.1) is formally overdetermined, unless
either n = | and m is arbitrary, or n = 2 and m = 1. However, when the system
is symmetric, we may satisfy (3.2.4) with n = J|U|*. Conversely, if (3.2.4) holds
and n(U. x,t) is uniformly convex in U, then the change U* = DnT of state
vector renders the system symmetric hyperbolic.

3.3 Examples of Hyperbolic Systems of Balance Laws

Out of a host of hyperbolic systems of balance laws in Continuum Physics, only
a small sample will be presented here. They will serve as beacons for guiding the
development of the general theory.

(a) The Scalar Balance Law. The single balance law (n = 1)

(3.3.1) ou(x,t)+ Zaag,,(u(x, thx.)=ou(x,t),x,t)

a=l

is always hyperbolic. Any function 5 (x, x, t) may serve as entropy, with associated
entropy flux and entropy production computed by

“9n 0ga
ot o — __d y = lv"'vm ’
3.3.2) q / n 3u u o
—[9n08  9qa an  an
(3-3.3) ;[au dxy 0xy + du ot

Equation (3.3.1), the corresponding homogeneous scalar conservation law, and
especially their one-space dimensional (m = 1) versions will serve extensively as
models for developing the theory of general systems.

(b) Thermoelastic Nonconductors of Heat. The theory of thermoelastic mc?dia
was discussed in Chapter II. Here we shall employ the referential (Lagrangian)
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description so the fields will be functions of (x, t). For consistency with the no-
tation of the present chapter, we shall use 9, to denote material time derivative
(in lieu of the overdot employed in Chapter IT) and 3, to denote partial derivative
with respect to the @-component x, of x.

The constitutive equations are recorded in Section 2.5. Since there is no longer
danger of confusion, we may simplify the notation by dropping the “hat” from
the symbols of the constitutive functions. Also for simplicity we assume that the
medium is homogeneous, with reference density pp = 1.

As explained in Chapter II, a thermodynamic process is determined by a motion
¥ and an entropy field s. In order to cast the field equations of the balance laws
into a first order system of the form (3.1.1), we monitor x through its derivatives
(2.1.1), (2.1.2) and thus work with the state vector U = (F, v, 5), taking values in
R™+m+1_In that case we must append to the balance laws of linear momentum
(2.3.4) and energy (2.3.10) the compatibility condition (2.1.8);. Consequently, our
system of balance laws reads

O Fiq — Oqvi =0, ia=1.,m,
(334) §8v — Y0 0uSiu(F.5)=b; . i=1,--.m.

O [e(F.8)+ 31v1] = X, 0 [ 201, viSia (F. )] = X0 bivi + 1,
with (cf. (2.5.3))

de(F, s) 6(F. s) = de(F,s)
9 - 8 .

3.3.5) Sia(F,5) =
a ior N

A lengthy calculation verifies that the system (3.3.4) is hyperbolic on a certain
region of the state space if for every (F,s) lying in that region
de(F,s)

ds

3.3.6) >

I\ o 3%e(F,s) . m—1
(3.3.7) ,;,Z=1 .,,,;Z=1 TFF, vevpgiE; > 0, forall vand & in.y ™!
By account of (3.3.5),, condition (3.3.6) simply states that the absolute temperature
must be positive. (3.3.7), called the Legendre-Hadamard condition, means that £
is rank-one convex in F, i.e., it is convex along any direction £ ® v with rank
one. An alternative way of expressing (3.3.7) is to state that for any v € . ""~!
the acoustic tensor N(v. F, 5), defined by

3.3.3) N-~(st)—iwvv ij=1,---.m
W L BFgaE, P PIT

is positive definite. In fact, for the system (3.3.4), the characteristic speeds are
the 2m square roots of the m eigenvalues of the acoustic tensor, and zero with
multiplicity m? — m + 1.
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Recall from Chapter 11 that, in addition to the system of balance laws (3.3.4),
thermodynamically admissible processes should also satisfy the Clausius-Duhem
inequality (2.3.14) which here takes the form

r

(3.3.9) —-o5 < _9(F.s) .

By virtue of (3.3.5), every classical solution of (3.3.4) will satisfy (3.3.9) identi-
cally as an equality. Thus, in the terminology of Section 3.2, —s is an entropy for
the system (3.3.4) with associated entropy flux zero.! Weak solutions of (3.3.4)
will not necessarily satisfy (3.3.9). Therefore, the role of (3.3.9) is to weed out
undesirable weak solutions. The extension of a companion balance law from an
identity for classical solutions into an inequality for weak solutions will play a
crucial role in the general theory of hyperbolic systems of balance laws.

(c) Isentropic Process of Thermoelastic Nonconductors of Heat. The physical
background of isentropic process was discussed in Section 2.5. The entropy is
fixed at a constant value § and, for simplicity, is dropped from the notation. The
state vector reduces to U = (F, v) with values in R"*". The system of balance
laws results from (3.3.4) by discarding the balance of energy:

0 Fia — 8,0i =0, ia=1,,m
(3.3.10)

Bvi =Y Siu(F)=b, i=1,.m
and we still have

de(F)

311 o = +
€ ) Sia(F) oF,

ihha=1,--,m,

The system (3.3.10) is hyperbolic if £ is rank-one convex, i.e., (3.3.7) holds at
s =5.

As explained in Section 2.5, in addition to (3.3.10) thermodynamically ad-
missible isentropic motions must also satisfy the inequality (2.5.20), which in the
current notation reads

(3.3.12) aye(F) + 1P =Y 8 [Z v,«S,«a(F):| <Y b
a=I1 i=1 i=1

By virtue of (3.3.11), any classical solution of (3.3.10) satisfies identically (3.3.12)
as an equality. Thus, in the terminology of Section 3.2, n = &(F) + 1lvf? is an
entropy for the system (3.3.10). Note that (3.3.10) is in canonical form (3.1.4) and
that Dy = (S(F). v). Therefore, as shown in Section 3.2, if the internal energy
e(F) is uniformly convex, then changing the state vector from U = (F,v) to
U* = (S, v) will render the system (3.3.10) symmetric hyperbolic.

! Identifying —s as the “entropy” here, rather than s which is the physical entropy. may
look strange. This convention is made because it is more convenient to deal with func-
tionals of the solution that are nonincreasing with time.
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Weak solutions of (3.3.10) will not necessarily satisfy (3.3.12). We thus en-
counter again the situation in which a companion balance law is extended from an
identity for classical solutions into an inequality serving as admissibility condition
on weak solutions.

The passing from (3.3.4) to (3.3.10) provides an example of a truncation pro-
cess which is commonly employed in Continuum Physics for simplifying systems
of balance laws by dropping a number of the equations while simultaneously re-
ducing proportionally the size of the state vector. In a canonical truncation, which
preserves the entropy structure and does not increase wave speeds, the elimination
of any equation should be paired with freezing the corresponding component of
the special state vector that symmetrizes the system. Thus, for instance, one may
canonically truncate the system (3.3.10) by dropping the i-th of the last 1n equa-
tions while freezing the i-th component v; of velocity, or else by dropping the
(i, @)-th of the first m* equations while freezing the (i, @)-th component S;, (F)
of the Piola-Kirchhoff stress.

(d) Thermoelastic Fluid Nonconductors of Heat. The system of balance laws
(3.3.4) governs the adiabatic thermodynamic processes of all thermoelastic me-
dia, including, in particular, thermoelastic fluids. In the latter case, however, it
is advantageous to employ spatial (Eulerian) description. The reason is that, as
shown in Section 2.5, the internal energy, the temperature, and the Cauchy stress
in a thermoelastic fluid depend on the deformation gradient F solely through the
density p. We may thus dispense altogether with F and describe the state of the
medium through the state vector U = (p, v, s) which takes values in the (much
smaller) space R™+2,

The fields will now be functions of (x, ¢). For consistency with the notational
conventions of this chapter, we will be using 9, (rather than a f-subscript as
in Chapter II) to denote partial derivative with respect to ¢. Also, the typical
components of the position vector y will be labeled with Latin indices, e.g. x;, x;,
and the corresponding partial derivatives 3/3;, 3/8x; will be denoted by 5;, ;.

The balance taws in force are for mass (2.3.2), linear momentum (2.3.5) and
energy (2.3.11). The constitutive relations are (2.5.12), with § = 0, (2.5.13) and
(2.5.14). To simplify the notation, we drop the “tilde” from the symbols of the
constitutive functions. Therefore, the system of balance laws takes the form

9p+ ZT:] Bj(pvj) =0
8.(pv) + S, (o) + dplp.s) = pby . i=1m

(3.3.13)
Alpep. 5) + 1plvP1+ 320, 3il(pe(p. ) + 3p1VI* + plp, $))v)]
= 2 j=1 PbjY; + pr,
with
(3.3.14) P(p.s) = p’e,(p.s), B(p,s) =¢p,s) .

The system (3.3.13) will be hyperbolic if
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(3.3.15) E(p,5) >0, pyp.s)>0.

In addition to (3.3.13), thermodynamically admissible processes must also sat-
isfy the Clausius-Duhem inequality (2.3.15), which here reduces to

(3.3.16) d(=ps)+ Y d(—psv;) < —

P .
ey 8(p, s)

When the process is smooth, it follows from (3.3.13) and (3.3.14) that (3.3.16)
holds identically, as an equality. Consequently, n = —ps is an entropy for the
system (3.3.13) with associated entropy flux —psv. Once more we see that a
companion balance law is extended from an identify for classical solutions into
an inequality serving as a test for the physical admissibility of weak solutions.

(e) Isentropic Process of Thermoelastic Fluids. The entropy is fixed at a constant
value and is dropped from the notation. The state vector is U = (p.v), with
values in R™*!. The system of balance laws results from (3.3.13) by discarding
the balance of energy:

3o+ i 3oy =0

(3.3.17) .

3 (pvi) + 20 d(pviv)) + dip(P) =pbi , i=1,-.m
with
(3.3.18) p(p) = p*€'(p) .

The system (3.3.17) is hyperbolic if
(3.3.19) p(p)>0.
A classical example is the polyvtropic gas:
(3.3.20) p=kp?, k>0, y>1.

Thermodynamically admissible isentropic motions must satisfy the inequality
(2.5.21), which here reduces to

(3:3.21) l0e(o) + boluP] + 3 8 (pe(o) + olel? + poDu] < Y byt
j=1 j=1

The pattern has become by now familiar: By virtue of (3.3.18), any classical

solution of (3.3. 17) satisfies identically (3.3.21), as an equality, so that the function

n = pe(p) + $plv|? is an entropy for the system (3.3.17). At the same time,

the inequality (3 3.21) is employed to weed out physically inadmissible weak

solutions.

() Maxwell’s Equations in Nonlinear Dielectrics. Another rich source of inter-
esting systems of hyperbolic balance laws is electromagnetism. The underlying
system is Maxwell’s equations
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B =—curl E

(3.3.22)
oD =curlH —J

on R?, relating the electric field E, the magnetic field H, the electric displacement
D, the magnetic induction B and the current J, all of them taking values in R3.
Constitutive relations determine E, H, and J from the state vector U =
(B, D). For example, when the medium is a homogeneous electric conduc-
tor, with linear dielectric response, at rest relative to the inertial frame, then
D = ¢E,B = uH, and J = oE, where ¢ is the dielectric constant, u is the
magnetic permeability and o is the electric conductivity. In order to account for
(possibly) moving media with nonlinear dielectric response and cross coupling of
electromagnetic fields, one postulates general constitutive equations

(3.3.23) E=EB,D), H=H(B,D), J=J(B, D),
where the functions E and H satisfy the lossless condition

9H _OE
D 4B’

Physically admissible fields must also satisfy the dissipation inequality

(3.3.29)

(3.3.25) 8n(B, D) + divg(B, D) < h(B, D)
where (recall (3.3.24))

(3.3.26) r;=/[H-a’B+E-a’D], g=EAH, h=—J.E.

Thus 5 is the electromagnetic field energy and q is the Poynting vector. A
straightforward calculation shows that smooth solutions of (3.3.22), (3.3.23) satisfy
(3.3.25) identically, as an equality. Therefore, (1, ¢) constitutes an entropy-entropy
flux pair for the system of balance laws (3.3.22), (3.3.23). Since Dnp = (H, E),
it follows from the discussion in Section 3.2 that when the electromagnetic
field energy function is uniformly convex, then the change of state vector from
U = (B, D) to U* = (H, E) renders the system symmetric hyperbolic.

The dielectric is isotropic when the electromagnetic field energy is invariant
under rigid rotations of the vectors B and D, in which case 1 may depend on
(B, D) solely through the three scalar products 8- B, D- D, and B - D.

(g) Lundquist’s Equations of Magnetohydrodynamics. Interesting systems of
hyperbolic balance laws arise in the context of electromechanical phenomena,
where the balance laws of mass, momentum and energy of continuum thermo-
mechanics are coupled with Maxwell’s equations. As an illustrative example, we
consider here the theory of magnetohydrodynamics which describes the interac-
tion of a magnetic field with an electrically conducting thermoelastic fluid. The
equations follow from a number of simplifying assumptions, which will now be
outlined.
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Beginning with Maxwell’s equations, the electric displacement D is considered
negligible so (3.3.22) yields J = curl H. The magnetic induction B is related to
the magnetic field H by the classical relation B = uH. The electric field is totally
generated by the motion of the fluid in the magnetic field and so is given by
E=BAv=uHAv.

The fluid is a thermoelastic nonconductor of heat whose thermomechanical
properties are still described by the constitutive relations (3.3.14). The balance of
mass (3.3.13), remains unaffected by the presence of the electromagnetic field.
On the other hand, the electromagnetic field exerts a force on the fiuid which
should be accounted as body force in the balance of momentum (3.3.13);. The
contribution of the electric field E to this force is assumed negligible while the

contribution of the magnetic field is / A B = —uH A curl H. By account of the
identity
(3.3.27) —H AcurlH=div[H® H— {(H - H)I].

this body force may be realized as the divergence of the Maxwell stress tensor. We
assume there is no external body force. The electromagnetic effects on the energy
equation (3.3.13); are derived by virtue of (3.3.26): The internal energy should
be augmented by the electromagnetic field energy %ulle. The Poynting vector
w(H Av) A H = p|HPv — u(H - v)H should be added to the flux. Finally, the
electromagnetic energy production —J - E = —u(H A v) - curl H and the rate of
work (J A B)-v = —u(H Acurl H) - v of the electromagnetic body force cancel
each other out.
We thus derive Lundquist’s equations:

(3.3.28)
9,0 +div(pv) =0
3(pv) + div [pv® v — uH ® H] + grad [p(p.s) + ulHI’] =0
3 [pe(p. 5) + 1plv)* + julHI?]
+div [(pe(0, 5) + Lplv* + p(p.s) + ulHP)v — u(H - )H] = pr
oH —curl(vaA H)=0. '

The above system of balance laws, with state vector U = (p. v, s, H). will be
hyperbolic if (3.3.15) hold. Thermodynamically admissible solutions of (3.3.28)
should also satisfy the Clausius-Duhem inequality (3.3.16). By virtue of (3.3.14),
it is easily seen that any classical solution of (3.3.28) satisfies identically (3.3.16)
as an equality. Thus —ps is an entropy for the system (3.3.28), with associated
entropy flux —psv.

3.4 Notes

The theory of nonlinear hyperbolic systems of balance laws traces its origins to .the
mid [9th century and has developed over the years conjointly with gas dynamics.
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English translations of the seminal papers, with commentaries, are collected in
the book of Johnson and Chéret [1]. Research was particularly intense during
the Second World War; see the papers of Bethe [1]. von Neumann [1.2,3] and
Weyl [1]. The state of the art in the late 1940’s is vividly presented in the classic
monograph by Courant and Friedrichs [1]. It is the distillation of this material that
has laid the foundations of the formalized mathematical theory in its present form.

A number of synthetic works, with different scopes, are available to the stu-
dent of the field. The survey articles by Lax [5] and Dafermos [6] provide quick,
elementary introduction to the area. The book of Smoller [1] is a comprehensive
text at an introductory level, while the more recent, two-volume treatise by Serre
[9] combines a general introduction to the subject with advanced, deeper inves-
tigation of certain topics. The earlier monograph by Rozdestvenskii and Janenko
[1] emphasizes the contributions of the Russian school, which was very active in
the 1950’s and 1960’s. An elementary text, with more narrow scope, is Jeffrey [2].
The lecture notes of Bressan [4] and Majda [3] provide clear, insightful accounts
of the theory in the one-space and multi-space dimensional setting, respectively.
The theory is also covered, to a certain extent, in the textbook of Hormander [1]
and the treatise of Taylor [1]. From the standpoint of numerical analysis, LeVeque
[1] is an introductory text, while the books of Godlewski and Raviart [1,2] provide
a more comprehensive and technical coverage together with a voluminous list of
references. The lecture notes of Tadmor [I] is also a good source of insightful
information and references. Another valuable resource is the text of Whitham [2]
which presents a panorama of connections of the theory with a host of diverse
applications as well as a survey of ideas and techniques devised over the years by
applied mathematicians studying wave propagation, of which many are ready for
more rigorous analytical development. The book of Zeldovich and Raizer [1] is
an excellent introduction to gas dynamics from the perspective of physicists and
may be consulted for building intuition. Monographs with more specialized scope
will be referenced later, as they become relevant to the discussion.

The term “entropy” in the sense employed here was introduced by Lax [4].

Simple physical models that lead to scalar conservation laws (or simple sys-
tems thereof) are described in Whitham [2]. The study of weak fronts in isentropic
thermoelasticity has exerted seminal influence in the development of the notions
of hyperbolicity, stability, etc. An account, together with an extensive list of ref-
erences, can be found in Truesdell and Noll [1].

The systems (3.3.13) and (3.3.17) are commonly called Euler equations. There
is voluminous literature on various aspects of their theory, some of which will be
cited in subsequent chapters. For a detailed analytical study in several space di-
mensions together with an extensive bibliography, see the monograph of Lions [2].

The Euler equations for ideal gases may also be derived from Boltzmann’s
equation, in the kinetic theory, upon identifying density, velocity, pressure, tem-
perature, etc, with appropriate moments of the molecular velocity distribution
function. By monitoring additional moments, the theory of Extended Thermody-
namics (cf. Miiller and Ruggeri [1]) embeds the Euler equations into a hierarchy
of, progressively larger, hyperbolic systems of balance laws. One may pass from
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more complex to simpler systems in this hierarchy via canonical truncation (cf.
Boillat and Ruggeri [1]).

The one-space dimensional versions of (3.3.4), (3.3.10), and (3.3.17) will be
recorded in Section 7.1. These systems provide the governing equations, in La-
grangian or Eulerian coordinates, for gas flow in ducts and have been studied
extensively in that context.

For a systematic development of electrothermomechanics, along the lines of
the development of continuum thermomechanics in Chapter II, see Coleman and
Dill [1] and Grot [1]. Numerous examples of electrodynamical problems involving
hyperbolic systems of balance laws are presented in Bloom [1]. For magnetohy-
drodynamics see for example the texts of Cabannes [1] and Jeffrey [1].

The theory of relativity is a rich source of interesting hyperbolic systems of
balance laws, which will not be tapped in this work. When the fluid velocity is
comparable to the speed of light, the Euler equations should be modified to account
for special relativistic effects; cf. Taub [1] and Friedrichs [2]. For hyperbolic
systems of balance laws arising in general relativity, see Ruggeri [1,2], Smoller
and Temple [1,2], Pant [1] and J. Chen [1].

Hyperbolic systems of balance laws, with special structure, govern separation
processes, like chromatography and electrophoresis, employed in chemical engi-
neering. In that connection the reader may consult the monograph by Rhee, Aris
and Amundson [1]. The system of electrophoresis will be recorded later, in Section
7.3, and some of its special properties will be discussed in Chapters VII and VIIL






Chapter 1V. The Initial-Value Problem:
Admissibility of Solutions

The initial-value problem for a hyperbolic system of conservation laws will be for-
mulated, and classical as well as weak solutions will be considered. Nonuniqueness
of weak solutions will be demonstrated in the context of the simplest nonlinear
scalar conservation law, the well-known Burgers equation. This raises the need to
devise conditions that will weed out unstable, physically irrelevant, or otherwise
undesirable solutions, hopefully singling out a unique admissible solution of the
initial-value problem. Two admissibility criteria will be introduced in this chapter:
The requirement that admissible solutions satisfy a designated entropy inequality;
and the principle that the hyperbolic system should be viewed as the “vanishing
viscosity” limit of a family of systems with diffusive terms. A preliminary in-
vestigation of the compatibility of the above two criteria will be conducted. The
chapter will close with remarks on the interpretation of boundary conditions in the
context of weak solutions.

4.1 The Initial-Value Problem

To avoid trivial complications, we focus the investigation on homogeneous hyper-
bolic systems of conservation laws in canonical form,

@4.1.1) QUMD+ 8.Ga(U(x,1) =0,

a=|

even though everything that wilt be done in this chapter can be extended in a
routine manner to general hyperbolic systems of balance laws (3.1.1). Here, x
takes values in R™ and ¢ in [0. 00); U takes values in some open subset 7~ of "
and G4, @ = 1, ---, m, are given smooth functions from ¢ to R". Hyperbolicity
means that for every fixed U € * and v € . ™! the n x n matrix

(4.1.2) A; U) =) uDGa(U)
a=I

has real eigenvalues A, (v; U), - - -, A,(v; U) and n linearly independent eigenvec-
tors Ry(v; U),---, R,(v; U).
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With (4.1.1) we associate initial conditions
(4.1.3) U, 0)=Uy(x), xeR™,

where Uy is a given bounded measurable function from R™ to ¢~ .

A classical solution of (4.1.1) on a time interval [0, T) is a bounded, locally
Lipschitz, function U, defined on R” x [0, T) and taking values in ¢, which
satisfies (4.1.1) almost everywhere. This function solves the initial-value problem
(4.1.1), (4.1.3) when it also satisfies (4.1.3), for all x € R".

A weak solution of (4.1.1) on the time interval [0, T) is a bounded measurable
function U, defined on R™ x [0, T) and taking values in ¢, which satisfies (4.1.1)
in the sense of distributions. Any weak solution which is locally Lipschitz is
necessarily a classical solution.

The type of the system (4.1.1) induces a certain degree of regularity in the
time behavior of weak solutions:

Theorem 4.1.1 Any weak solution U of (4.1.1) on [0, T) may be normalized so
that

1 T+e
(4.1.4) UG, 1) = lin});/ UG.tydt, t€l0,T),

where the limit is taken in L weak*.

Proof. Recalling the definition of L> weak* and using that almost all points in the
domain of any measurable real-valued function are Lebesgue points, we conclude
that (4.1.4) holds almost everywhere on [0, T).

We now fix 0 < 7 <o < T and take any x € C§°(R™). For positive small
¢ and 8, we define the Lipschitz function ¢ (x, ) = x (x)8(t), where 6(¢) = 0 for
O<t<t,8(t)=c¢'¢t-—T)fort<t<t+e 8(t)=1fort+e<t<og-3,
() =8 o —t)foro—8 <t <o,and (t) =0 foro <t < T. We then write
that U satisfies (4.1.1), in the sense of distributions, with test function ¢:

1 T+E a
(4.1.5) —/ / X(x)U(x,t)dxa’t—l/ / x (U (x, Hdxdt
€Jre R 8 JosJrn
+/ / Y 8ax ()G (U(x, N)dxdt = O(e) + 0(8) .
o " a=1

By letting § and ¢, separately, go to zero, we infer that the limit on the right-hand
side of (4.1.4), as ¢ — 0, exists for any 7 € [0, T). Hence, by modifying U, if
necessary, on a set of 7 of measure zero, we attain a normalized representative
which satisfies (4.1.4), for all T € [0, T). The proof is complete.

From now on, we shall always consider weak solutions in their normalized
form. In particular, the initial conditions (4.1.3) will now be satisfied in the classical
sense. Equivalently,
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T m
(4.1.6) / / [a,¢u + Zaad)Gu(U):Idxdt +/ $(x. 0)Up(x)dx =0 .
0 Jrw ol 7

for every Lipschitz test function ¢ with compact support in R™ x [0, T). It should
also be noted that normalization renders evolutionarity, that is if U (x, t) is a weak
solution on [0, T) with initial value U (x, 0), then, for any € (0, T), the function
Us(x,t) = U(x,t + 1) is also a weak solution on [0. T — t), with initial value
Ug(x,0) =U(x, 7).

The system converts spatial to temporal regularity as seen in the following
proposition.

Theorem 4.1.2 Let U be a weak solution of (4.1.1) on [0, T) such that, for any
fixedt € [0,T), U(-,t) € BV(R™) and TV (U(-,1)) < V, forall ¢+ € [0, T).
Then t — U(-.t) is Lipschitz continuous in L' (R™) on [0, T),

(4.L.7) WU o) -UCDllengs <aVlo —7|, 0<t<0<T.

where a depends solely on the Lipschitz constant of G. In particular, U is in BV,
on R" x [0, T).

Proof. Fix 0 < 7 < 0 < T and any ¥ € C(R™;. /') with [¥(x)] < 1,
x € R™. We write the /-th component of (4.1.5) with x = ¥;, we sum over
i=1--- n, and thenlet § { 0 and ¢ | 0. Upon using (4.1.4),

(4.1.8) / Y()[Ux.t)—Ux,o)ldx

=—/ / Y 8. ¥ (0)Ga(U(x, 1))dxdt .
r ‘"'a=l

The integrand on the right-hand side is estimated in terms of the total variation
of G(U(-, 1)), which in turn is bounded by aV. Taking the supremum of (4.1.8)
over all ¥ with |¥ (x)] < 1, we arrive at (4.1.7).

Theorem 1.7.1 together with (4.1.7) imply that U is in BVjc on R™ x [0, T).
The proof is complete.

4.2 The Burgers Equation and Nonuniqueness
of Weak Solutions

A fundamental difficulty in the theory of weak solutions to the initial-value prob-
lem for nonlinear hyperbolic systems of balance laws is that uniqueness generally
fails. This may be demonstrated through the simplest, scalar conservation law in
one space variable

4.2.1) Bu(x,t) + 9 (%MZ(XJ)) =0,
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called the Burgers equation. Indeed, notice that the initial-value problem for (4.2.1)
with data
-1. x <0

4.2.2 u(x,0) =
( ) ( I, x>0

admits the family of BV weak solutions

-1, —0o<x <—~t
x

7, -t <X < —qt
—a, —at<x<0

(4.2.3) ug(x,t) =

«, O<x <at

x

7 at <x <t

I, t<x<o0,

where ¢ is any number in [0, 1]. In particular, the solution obtained for « = 0 is
locally Lipschitz away from the origin, while the rest contain a stationary shock
at x =0.

The above example highlights the need to devise criteria that will screen weak
solutions for admissibility.

4.3 Entropies and Admissible Solutions

We assume that our system of conservation laws (4.1.1) is endowed with a desig-
nated entropy 7 with associated entropy flux (qi,---, gm). As we saw in Section
3.2, forany U € 7,

(4.3.1) Dga(U) = DnU)DG(U), a=1,---.m,
(4.3.2) D*nU)DG,(U) = DG (U DUy, a=1,---,m.

We shall employ this entropy-entropy flux pair to weed out undesirable weak
solutions. We shall call a weak solution U of (4.1.1), (4.1.3), on [0, T), admissible
if it satisfies the inequality

(43.3) INUE D)+ Y 8aqa(U(x, 1)) £0,

a=|

in the sense of distributions. The motivation for this notion of admissibility is
provided by the observation that all the systems of balance laws from Continuum
Physics encountered in Chapter 11 are indeed accompanied by some inequality
in the form (4.3.3) which expresses, explicitly or implicitly, the Second Law of
thermodynamics.
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Turning to weak solutions U of the initial-value problem (4.1.1), (4.1.3), on
[0, T), one may define admissibility in analogy to (4.1.6):

(4.3.4)

T m
/ / [Bnlfn(U) + Zaallfqa(U)]dxdt +/ W (x, 0)n(Up(x))dx =0,
0 JR a=1 R"

for all nonnegative Lipschitz continuous test functions y, with compact support in
R™ x [0, T). It should be noted, however, that (4.3.4) is not generally compatible
with the principle of evolutionarity, as it does not necessarily guarantee that, for
each 7 € [0, T), the solution U, (x, ) = U(x,t + 1), with initial data U, (x,0) =
U(x, t), will also be admissible. One may thus consider replacing (4.3.4) with the
stricter condition

(4.3.5)

T m
/ / [a,./n;(U) + Z&,l/fqa(U)]a’xdt +/ Y(x, T)U(x, T))dx > 0 .
t " a=] R™

which is to hold for all T € [0, T).

Clearly, all classical solutions of (4.1.1), (4.1.3) do satisfy (4.3.3), (4.3.5), and
a fortiori (4.3.4), as equalities, and are therefore admissible.

Convex entropies play a very important role in the theory of hyperbolic systems
of conservation laws. As we saw in Section 3.2, the presence of a uniformly convex
entropy implies that the system is symmetrizable. The following proposition shows
that entropy inequalities with convex entropies induce stability by strengthening
the time regularity of solutions.

Theorem 4.3.1 Assume D*n(U) is positive definite, uniformly on compact subsets
of . If U is any weak solution of (4.1.1), (4.1.3) on [0, T), taking values in some
convex compact subset of ¢, which satisfies the entropy admissibility condition
(4.3.5), then, forany T € [0,T) and R > 0,

1
(4.3.6) lim -
el0 g

T+€
/ / [U(x.t) — U(x, T)|°dxdt =0 .
T lxj<R

Proof. Fix 7 € [0,T), R > 0 and ¢ > 0. Write (4.3.5) for the test function
VX, 1) = x(Ix])8(t), where x(r) =1 for0 <r < R x(r) =1 —-&"'(r - R)
for R<r<R4ex(r)=0forR+e <r <00,0(t)=1-¢""t~r1)for
0<t<t+eand8(t)=0fort+¢c <t <T.This gives

T+e
(4.3.7) ——el- / / n(U (x, t))dxdt -+—/ U (x, t))dx + O(e) = 0.
T |xt<R x| <R

Combining (4.3.7) with Theorem 4.1.1 yields
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T+€
4.3.8) limsupl/ / {nUx. 1) = nU(x, 1))
elo & Jr <R

—DnUx. tN[Ux.t) —U(x. t)l}dxdt <0

whence (4.3.6) follows. This completes the proof.

The reader should bear in mind that convexity is a relevant property of the
entropy only when the system is in canonical form. In the general case, convexity
of 7 should be replaced with the condition that the (7 x n matrix-valued) derivative
DB(U, x,t) of the (n-vector-valued) function B(U.x,t) in (3.2.2) is positive
definite.

A review of the examples considered in Section 3.3 reveals that the entropy,
as a function of the state vector which renders the system of balance laws in
canonical form, is indeed convex in the case of the thermoelastic fluid (example
(d)), the isentropic thermoelastic fluid (example (e}) and magnetohydrodynamics
(example (g)). This may raise expectations that in the equations of Continuum
Physics entropy is generally convex. However, as we shall see in Section 5.3,
this is not always the case: hence the necessity to introduce a broader class of
entropies.

Whenever the admissible solution U is of class BV, the inequality (4.3.3)
will be satisfied in the sense of measures. As already noted in Section 3.1, the
normal N at any point of approximate jump discontinuity may be renormalized as
N = (v, —s), where v € .¥ "~ ! is the direction and s is the speed of propagation
of the shock. It then follows from Theorem 1.8.2 that (4.3.3) will hold if and only
if

(439) —S[’)(U+) - ')(U—)] + Z va[qa(U+) - %(U—)] =< 0

a=!

at every point of the shock set.

4.4 The Vanishing Viscosity Approach

The premise here is that a solution U of (4.1.1) is admissible provided it is the
u | 0 limit of solutions U,, to a system of conservation laws with diffusive terms:

n m

@40 U@ D+ WU =p Y 8a[Bap(U(x,0)83U(x, 1] .

a=| a, =1

The motivation and terminology for this approach derive from Continuum
Physics: As we saw in earlier chapters, the balance laws for thermoelastic ma-
terials under adiabatic conditions induce first order systems of hyperbolic type.
By contrast, the balance laws for thermoviscoelastic, heat conducting materials,
introduced in Section 2.6, generate systems of the second order in the spatial
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variables, containing diffusive terms like (4.4.1). In nature, every material has vis-
cous response and conducts heat, to some degree. Classifying a certain material
as an elastic nonconductor simply means that viscosity and heat conductivity are
considered negligible, though not totally absent. Consequently, the theory of adi-
abatic thermoelasticity may be physically meaningful only as a limiting case of
thermoviscoelasticity, with viscosity and heat conductivity tending to zero. It is
this general philosophy that underlies the vanishing viscosity approach.

In writing down (4.4.1), the first question is how does one select the n x n
matrices Byg(U), a.f = L, ..., m. When dealing with specific systems 4.1.1)
of conservation laws from Continuum Physics, there are natural, physically mo-
tivated, choices for (4.4.1). For example, when (4.1.1) is the system (3.3.13) of
conservation laws of mass, momentum and energy for a thermoelastic fluid non-
conductor (with zero body force and heat supply), which we visualize as a New-
tonian fluid with constitutive relations (2.6.16), (2.6.17) having vanishingly small
viscosity and heat conductivity, the natural choice would be

(4.4.2)
o+, 9(py) =0,

3 (pvi) + 2, 8;(pviv)) + 8, pp, 5)
= A.Z;-":l 8,'3]1)] + u Z;’,:l 81(8;vj + 811),') .

0 [pe(p 5)+ > valz] + 3 [ pe(p,s)+ 3 vaI2 + p(p, s)ly; ]

—AZ:"J ,8[v,8v1]+uzu 1 95 [vi (Bivy + 35v)] + . X1, 8

The reader should note that (4.4.2) contain three independent physical parame-
ters, namely the bulk viscosity A, the shear viscosity 1 and the heat conductivity
k, which might all be very small albeit of different orders of magnitude. Thus,
one should be prepared to consider formulations of the vanishing viscosity prin-
ciple, more general than (4.4.1), containing several independent small parameters.
However, such a generalization will not be pursued here.

Physics suggests the natural form for (4.4.1) in every example considered
in Section 3.3, including electromagnetism, magnetohydrodynamics, etc. On the
other hand, in the absense of guidelines from Physics. or for mere analytical and
computational convenience, one may experiment with artificial viscosity added to
the right-hand side of (4.1.1). For example, one may add artificial viscosity to
(4.2.1) to derive the Burgers equation with viscosity:

1
(4.4.3) ou(x,t)+ 9, (—u (x, t)) = uafu(x, t).
It is clear that artificial viscosity should be selected in a way that the B.g

induce dissipation and thus render the initial-value problem (4.4.1) well-posed.
The temptation is to use for B, matrices that would render (4.4.1) parabolic, and
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in particular 0 if « % B and / if @ = B, which would reduce the right-hand side
of (4.4.1) to uAU. The physically motivated example (4.4.2), however, sounds
a warning that confining attention to the parabolic case would be ill-advised.
In general, we shall have to deal with systems (4.4.1) that are of intermediate
parabolic-hyperbolic type, in which case establishing the well-posedness of the
initial-value problem may require considerable effort.

Assuming a vanishing viscosity mechanism has been selected, rendering the
initial-value problem (4.4.1), (4.1.3) well-posed, the question arises in what sense
should one expect the family {U,} of solutions to converge, as 1 | 0. This is of
course a serious issue: If the sense of convergence is too weak, it is not clear that
lim U, will be a weak solution of (4.1.1), (4.1.3). On the other hand, requiring
very strong convergence may raise unreasonable expectations for compactness of
the family {U,). Various aspects of this problem will be discussed later in the
book.

Another important task is to compare admissibility of solutions in the sense
of the vanishing viscosity approach and admissibility in the sense of a designated
entropy inequality (4.3.3), as discussed in Section 4.3. Reviewing the survey of
continuum thermodynamics in Chapter II, reveals that whenever (4.4.1) results
from actual constitutive equations and (4.3.3) derives from the Clausius-Duhem
inequality, solutions of (4.1.1) obtained by the vanishing viscosity approach will
automatically satisfy (4.3.3). For example, solutions of (3.3.13) obtained as the
(A, 1, «) | 0 limit of solutions of (4.4.2) will satisfy automatically the inequality
(3.3.16). A necessary condition for compatibility of (4.4.1) with (4.3.3) is that the
matrices D1 B, be positive semidefinite. Under the popular choice B,y = 0 if
a # B and By = I if @ = B, this requirement reduces to the familiar condition
that 7 is convex. The following proposition exhibits a set of sufficient conditions
for compatibility:

Theorem 4.4.1 Consider the system of conservation laws (4.1.1) which is endowed
with a designated entropy 1 and is equipped with artificial viscosity (4.4.1), such
that

(4.4.4) Y EID U)Bus(U)Es = D 1) Bag(U)EsI
o f=1 a=l B=I1
forany U e ¢ andall &, € R",a = 1,---,m. Assume the initial data Uy take

values in a compact subset of ¢ and also Uy — U € L*(R™), with U a state
where 1 attains its minimum on ¢ . Suppose that for any u > 0 the initial-value
problem (4.4.1), (4.1.3) admits a solution U, on [0, T), which takes values in
a compact subset of ¢, independent of u, is locally Lipschitz on R" x (0, T),
assumes the initial data in a strong sense, tends to U as |x| = oo, and satisfies
Zﬁ Bys(U)3gU, € L3*(R™ x (0, T)), for @ = 1---,m. Suppose, further, that
Uy, = U, ae on R™ x (0,T), for some sequence [u} with p | 0 as k — oo.
Then U is a weak solution of (4.1.1), (4.1.3) on [0, T) which satisfies the entropy
admissibility condition (4.3.5).
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Proof. It will suffice to check (4.3.4), namely the particular case of (4.3.5) for
7t = 0. We fix any Lipschitz continuous test function ¢ on R™ x [0, T), with
compact support. Multiplying (4.4.1) by ¢ and integrating by parts over R™ x[0, T)
yields

T m
(4.4.5) /0 / [8,¢U“+28a¢6a(U,,)]dxdt+ / é(x, 0)Up(x)dx
” a=l R

T m
= u/ / Z Oa®Byp(U,)0gU, dxdt .
o Jam

o, B=1

We normalize the designated entropy-entropy flux pair so that n(U) =
O,q,,(U) =0,a =1,---,m. We fix any nonnegative Lipschitz continuous test
function ¥ on R™ x[0, T'), with compact support, we multiply (4.4.1) by ¥ Dn(U,,)
and integrate over R” x [0, T). Using (4.3.1) and after an integration by parts, we
deduce

T m
(4.4.6) /0 / [a,wn(UuH}jaawqa(u#)]dxdz+ /R ¥ (x, 0)n(Up(x))dx
x"' a:l m

T m
- #/ / Z 0a ¥ DUy} Bop(U,)33 U dxdt
0 " a.p=1
T m
+“/ / ¥ Y (3U)" D'n(U,) Bap(U,) 33 Updixdt .
0 el

We introduce a large positive parameter r and apply (4.4.6) for the special test
function ¥ = x (x)8(t), where

1 0<t<T=2r"
(4.4.7) 8(ty=3 r(T -0 —1 T-2rt'<t<T—-r!
0 T—rl<t<T,
1 O0<|Ix|<r
(4.4.8) x(x)=43 x| +r+1 r<ixl<r+1
0 r+1<|x| <o0.

Then we let r — oo. Noting that 8,y n(U,) < 0, recalling the assumed behavior
of U, as |x| - oo, and using (4.4.4), we conclude

m T
(4.4.9) ny. /0 /
o=l .

By virtue of (4.4.9), the right-hand side of (4.4.5) tends to zero, as i | 0, and
thus U = limU,, satisfies (4.1.6), i.e., it is a weak solution of (4.1.1), (4.1.3).

2 .
dxdt 5/ n(Up(x))dx .
Rﬂl

Y Bup(Up)3sU,
B=t
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Moreover, U also satisfies the inequality (4.3.4), since, as u | 0, the first term
on the right-hand side of (4.4.6) tends to zero, by account of (4.4.9), while the
second term is nonnegative, because of (4.4.4). This completes the proof.

4.5 Initial-Boundary-Value Problems

Suppose the system (4.1.1) of hyperbolic conservation laws is posed not on the
whole of R” but just on a proper, open subset & of it, say with finite perimeter.
Let 3*</ denote the reduced boundary of </, on which the exterior normal field
v to & is defined (cf. Section 1.7). In order to formulate a well-posed problem
for (4.1.1) on the cylinder .#" = &/ x (0, T), in addition to assigning initial data
U(x, 0) = Up(x) on its base </, we must also impose boundary conditions on its
lateral boundary .2 = 8*~ x (0, T). We shall not address here the issue of what
would constitute appropriate boundary conditions for a particular system (4.1.1).
We will only discuss the preliminary question, namely how boundary conditions of
any kind may be realized on the “thin” set .2, within the class of weak solutions.

When the solution U is a BV function on.#, its inner trace U_ is well-defined
on .77 (cf. Section 1.7). Consequently, within the BV framework, boundary con-
ditions may be formulated in an almost classical, pointwise sense.

By contrast, when the solution U is just a bounded measurable function, there
is no proper way of defining its trace on a manifold of codimension 1, like .2,
On the other hand, recalling the remark following the proof of Theorem 1.2.1, one
may define in a natural sense normal components of vector fields whose space-
time divergence is a bounded measure on .Z". The obvious example that comes to
mind is the field (G{(U).---, G,(U), U) whose space-time divergence vanishes
by virtue of (4.1.1). We may thus define a bounded measurable function G, on
.72 which is naturally interpreted as the trace

m

(4.5.1) Gp=) vaGa(U).
a=!

Furthermore, if the solution satisfies an entropy admissibility condition (4.3.3), the
space-time divergence of the field (g, (U), ---, g (U), n(U)) will be a bounded
measure on .4 and thus we may also define on ./ a bounded measurable function
4. to be interpreted as the trace

(4.5.2) g2 =) vagulU) .

a=1

From this standpoint, natural boundary conditions for (4.1.1) should involve special
functions of U, like (4.5.1) and (4.5.2), whose trace on . /2 may properly be defined.

An alternative viewpoint is to follow the vanishing viscosity approach, de-
scribed in Section 4.4, one step further, by imposing appropriate, classical bound-
ary conditions on the system (4.4.1) and then let the limiting process u | 0 pick
natural boundary conditions for (4.1.1). What these boundary conditions may be
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is not clear a priori, because boundary layers generally form near .2, when u is
small. Assume (4.1.1) is endowed with an entropy-entropy flux pair (5. ¢) which
satisfies (4.4.4). Let U, be a solution of (4.4.1) in the cylinder .2 satisfying
Dirichlet boundary conditions U, = U on .7, Suppose some sequence {U,,}
converges a.e. to a solution U of (4.1.1) on .2". In particular, as explained above,
the traces G.» and g are defined on . /2. One may then show, at least formally,
that

(4.5.3) 40 —G4,~DnO)G -G 4] <0,

where

(4.5.4) Gr=3 vGall), Gr= vagu(l).
a=1 a=]

[t is conceivable that (4.5.3) should be interpreted as a boundary entropy admissi-
bility condition on solutions of (4.1.1) on .Z", with boundary conditions U = U
on .72, The issue of boundary conditions is currently under active investigation.

4.6 Notes

Apparently, it was Bateman [1] who first suggested, in a little noticed paper, that
(4.2.1) and (4.4.3) should be employed as models for the system of conservation
laws of inviscid and viscous gases. The commonly used name of Burgers [1] was
attached to these equations by Hopf [|] (cf. Section 6.9).

The issue of admissibility of weak solutions of hyperbolic systems of con-
servation laws stirred up a debate quite early in the development of the subject.
Responding to the introduction of shock fronts in gas dynamics by Stokes [1]
(cf. Section 1.10), Kelvin (in private correspondence) and Rayleigh [1] raised the
objection that, in the presence of shocks, (isentropic) flows that conserve mass and
momentum fail to conserve (mechanical) energy; in other words, weak solutions
of the system (3.3.17) do not generally satisfy (3.3.21) as an equality. Intimidated
by this criticism, Stokes [2] revised his paper, renouncing the idea of a shock.
By the turn of the century, following the development of thermodynamics, weak
solutions had been reinstated in Physics, albeit under conditions of admissibility,
in the form of inequalities derived from the Second Law, as we saw in Section
3.3 (cf. Burton [1], Weber [|]. Rayleigh [2]). The jump conditions associated with
entropy inequalities were first written down by Jouguet [1], for the equations of
gas dynamics. In the framework of the general theory of hyperbolic systems of
conservation laws, the use of entropy inequalities to characterize admissible solu-
tions was proposed by Kruzkov [1] and elaborated by Lax [4]. We shall return to
this topic on several occasions.

The idea of regarding inviscid gases as viscous gases with vanishingly small
viscosity is quite old; there are hints even in the aforementioned, seminal paper by
Stokes [1]. The important contributions of Rankine [ 1], Hugoniot [1] and Rayleigh
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[3] helped to clarify the issue. In later chapters, we shall have frequent encounters
with the vanishing viscosity approach, as a method for constructing admissible
solutions or as a means of identifying admissible shocks. References to relevant
papers will be provided in the proper context.

An exposition of the theory of systems of intermediate parabolic-hyperbolic
type is given in the monographs of S. Zheng [1] and Hsiao [2], where the reader
will find an extensive list of references.

Boundary conditions for L* solutions as traces on the boundary are considered
in Heidrich [1] and Kan, Santos and Xin [1]. A systematic study of boundary-value
problems is contained in Serre [9]. In the linear case, well-posedness is governed
by the Lopatinski condition. On the issue of boundary layers and condition (4.5.3)
see Bardos, Leroux and Nedélec [1], Benabdallah and Serre [1], DuBois and
LeFloch [1], Gisclon [1], Gisclon and Serre [1], Grenier [1], Joseph and LeFloch
[1], Otto [1] and Xin [4].



Chapter V. Entropy and the Stability
of Classical Solutions

It is a tenet of Continuum Physics that the Second Law of thermodynamics is
essentially a statement of stability. In the examples discussed in the previous
chapters, the Second Law manifests itself in the presence of companion balance
laws, to be satisfied identically, as equalities. by classical solutions, and to be
imposed as inequality thermodynamic admissibility constraints on weak solutions
of the systems of balance laws. A recurring theme in the exposition of the theory
of hyperbolic systems of balance laws in this book will be that companion balance
laws induce stability under various guises. The reader will get here a glimpse of
the implications of entropy inequalities on the stability of classical solutions.

It will be shown that when the system of balance laws is endowed with a
companion balance law induced by a convex entropy, the initial-value problem is
locally well-posed in the context of classical solutions: Sufficiently smooth initial
data generate a classical solution defined on a maximal time interval, of finite or
infinite duration. Moreover, this solution is unique and depends continuously on
the initial data, not only within the class of classical solutions but even within
the broader class of weak solutions that satisfy the companion balance law as an
inequality admissibility constraint. It will further be demonstrated that the same
conclusion holds even when the entropy is convex only in the direction of a certain
cone in state space, provided that the system of balance laws is equipped with
special companion balance laws, called involutions, whose presence compensates
for the lack of convexity in complementary directions.

From the standpoint of analytical technique, this chapter presents the aspects of
the theory of quasilinear hyperbolic systems of balance laws that can be tackled
by the methodology of the linear theory, namely energy estimates and Fourier
analysis.

5.1 Convex Entropy and the Existence

of Classical Solutions

As in Chapter [V, we consider here the initial-value problem

(5.1.1) a,U(.r.t)+Zaaca(uu,r))=o,

a=l
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(5.1.2) U,0)=Us(x), xeR"

for a homogeneous hyperbolic system of conservation laws in canonical form. The
results may be extended to general hyperbolic systems of balance laws (3.1.1) at
the expense of trivial technical complications.

It will be shown that when the system of conservation laws is equipped with a
uniformly convex entropy, a classical solution of the initial-value problem exists
on a maximal time interval, provided the initial data are sufficiently smooth.

In what follows, a multi-index r will stand for a m-tuple of nonnegative inte-
gers: r = (ry, -+, rm). Weput |r|=r  +---+r, and 3 = 9" --- 3». Thus 3"
is a differential operator of order |r|. For the gradient operator (d,,---, 8,x), We
shall be using the symbol V.

For€=0,1,2,---, H' will be the Sobolev space W*2(R";. ZZ"") of n x m
matrix-valued functions. The norm of H¢ will be denoted by || - ||,. By the Sobolev
embedding theorem, for £ > m/2, H* is continuously embedded in the space of
continuous functions on R™.

Theorem 5.1.1 Assumie the system of conservation laws (5.1.1) is endowed with
an entropv n with D*n(U) positive definite, uniformly on compact subsets of (" .
Suppose the initial data Uy are continuously differentiable on R™, take values
in some compact subset of ¢ and VU, € H® for some £ > m/2. Then there
exists Tx.0 < T, < 00, and a unique continuously differentiable function U on

R™ x [0, Tx.), taking values in " , which is a classical solution of the initial-value
problem (5.1.1), (5.1.2) on [0, To,). Furthermore,

(5.1.3) VU(-, 1) € C°([0, To); HY) .
The interval [0, T,.) is maximal, in the sense that whenever T, < 00

(5.1.49) limsup |[VU(-, |1~ = o0
1T

and/or the range of U (-, t) escapes from every compact subset of (* as t 1 T

Proof. It is lengthy and tedious. Just an outline will be presented here, so as to
illustrate the role of the convex entropy. For the details the reader may consult
the references cited in Section 5.4.

Fix any open subset .2 of R” which contains the closure of the range of U,
and whose closure .2 is in turn contained in . With positive constants  and
T, to be fixed later, we associate the class .7 of Lipschitz continuous functions
V, defined on R™ x [0, T]. taking values in ./?, satisfying the initial condition
(5.1.2) and

(5.1.5  VV(E.DelLl=([0,TEHY, 8V, 1) eLl>(0,T] L NL™)

with

(5.1.6) sup [VV (.l £ o0,
[0.T]
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(5.1.7) sup [0,V (-, Dlle~ €bw, sup I3, V(.D1: < bow .
[0.7] [0.7]
where
(5.1.8) b’ =max Y |[DG.(V)]?.
Ve?n;

For o sufficiently large, .7 is nonempty; for instance, V(x.t) = Uy(x) is a
member of it.

By standard weak lower semicontinuity of norms, .7 is a complete metric
space under the metric

(5.1.9) PV Vy=sup V() = V(.0 .
(0.7]
Notice that, even though V(-.1) and V(-, ) are not necessarily in L2, p(V, V) <
2bwT < o0, by virtue of V(-.0) — V(-,0) =0 and (5.1.7).
We now linearize (5.1.1) about any fixed V € .7
(5.1.10) QUM+ DGa(V(x,1)3U(x.1)=0.
a=l
The existence of a solution to (5.1.1), (5.1.2) on [0. T] will be established by
showing that

(a) When w is sufficiently large and T is sufficiently small, the initial-value prob-
lem (5.1.10), (5.1.2) admits a solution U € .% on [0, T].

(b) The aforementioned solution U is endowed with regularity (5.1.3), slightly
better than (5.1.5) that mere membership in . would guarantee.

(c) For T sufficiently small, the map that carries V € .7 to the solution U € .#
of (5.1.10), (5.1.2) is a contraction in the metric (5.1.9) and thus pocesses a
unique fixed point in .7, which is the desired solution of (5.1.1), (5.1.2).

In the following sketch of proof of assertion (a), above, we shall take for
granted that the solution U of (5.1.10), (5.1.2), with the requisite regularity, exists
and will proceed to establish that it belongs to .7 . In a complete proof, one
should first mollify V and the initial data, then employ the classical theory of
symmetrizable linear hyperbolic systems, and finally pass to the limit.

We fix any multi-index r of order 1 < |r| < £+ 1, set 3"U = U,, and apply
3" to equation (5.1.10) to get

(5-1.11) 34U, + ) DGa(V)3U, = ) _(DGu(V)d'%U — ¥'[DGa(VIG U} .

o=l a=\

The L? norm of the right-hand side of (5.1.11) may be majorized with the help
of Moser-type inequalities combined with (5.1.6):

(5.1.12) 1Y (DG (V)3 3uU ~ 9 [DGeo(V)3aUT 2

a=l]

<clVVIL=IVUIle + clVU = VV e < 2acol VUe -
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Here and below ¢ will stand for a generic positive constant which may depend on
bounds of derivatives of the G, over ./ but is independent of w and T.

Let us now multiply (5.1.11). from the left, by 2U,TD277(V), sum over all
multi-indices r with 1 < |r| < € + 1 and integrate the resulting equation over
R™ x [0, t]. Note that

(5.1.13) 2U7 D*n(V)a,U, = 3,[UT D*n(V)U,1 = 2UT 3, D*n(V)U, .

Moreover, by virtue of (4.3.2),

(5.1.14) 20T D*(V)DGo(V)3,U, = 8,[UT D*n(V)DGo(V)U,]
—2UT 8,[D*n(V)DGo(YU, .

Recall that D2n(V) is positive definite, uniformly on compact sets, so that

(5.1.15) Ul DU, = 8IU12, Ve,

for some § > 0. Therefore, combining the above we end up with an estimate
{

(5.1.16) IVUC. DI < el VU7 +cw/ IVU(, D)lldr
0

whence, by Gronwall’s inequality,

(5.1.17) sup VU (. D)7 < ce™T VUGl -
0.7

From (5.1.17) follows that if w is selected sufficiently large and T is sufficiently
small, sup(o.7 IVU(, D]l < w. Then (5.1.10) implies SUpo. 7 3. U, D= <
b, supo 7 18U (-, T)l 12 < bow, with b given by (5.1.8). Finally, for T sufficiently
small, U will take values in .72 on R™ x [0, T]. Thus U € .7 .

Assertion (b), namely that U is regular as in (5.1.3), may be established by
carefully monitoring the mode of convergence of solutions of (5.1.10), with V
mollified, to those with V in .7". This, less central, issue will not be addressed
here.

Turning now to assertion (c), let us fix V and V in.Z which induce solutions
U and U of (5.1.10), (5.1.2), also in.¥ . Thus

(5.1.18) 3,[U~ U]+ZDG (V)au[U=T] Z[DG (V)= DGo(V)]oU
a=| a=!

Multiply (5.1.18), from the left, by 2(U — U)” D*5(V) and integrate the resulting
equation over R™ x [0, ¢]. 0 < ¢ < T. Notice that

(5.1.19) 22U =U)' D*n(v)a,(U = U) = 8,[(U = U D*n(V)(U - U)]

-2U =)o, D*n(vY(U = T)
and also, by virtue of (4.3.2),
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(5.1.20)
2U =0)"D*n(V)DGu(V)3e(U = TU) = 8,[(U = U)" D*n(V)DGo (VYU - T)]
= 2(U = U) 3,[D*n(V)DGo (HIU = T).

Since D2n(V) is positive definite,
(5.1.21) U -U)"Dnv)WU -TU) > 8U-TJ.

Therefore, combining the above with (5.1.6), (5.1.7) and the Sobolev embedding
theorem we arrive at the estimate

{
612) W=Dl < co [ 10 =D 0lde
[}

{
+eo [ IV =Vt DIl - D). lsde
0
Using (5.1.9) and Gronwall’s inequality, we infer from (5.1.22) that
(5.1.23) p(U,U) < coTe“Tp(V, V).

Consequently, for T sufficiently small, the map that carries V in.Z to the solution
U of (5.1.10), (5.1.2) is a contraction on .7 and thus possesses a unique fixed
point U which is the unique solution of (5.1.1), (5.1.2) on [0, T], in the function
class .7 .

Since the restriction U (-, T') of the constructed solution to ¢t = T belongs to the
same function class as Uy(-), we may repeat the above construction and extend U
to a larger time interval [0, T']. Continuing the process, we end up with a solution
U defined on a maximal interval [0, T) with T, < 00. Furthermore, if T, < o0

then the range of U (-, t) must escape from every compact subset of /* as ¢ 1 T
and/or

(5.1.24) IVUG )le > 00, ast} Ts .

In order to see the implications of (5.1.24), we retrace the steps that led to (5.1.16).
We use again (5.1.12), (5.1.13), (5.1.14), and (5.1.15), setting V = U, but we no
longer majorize ||VU|| .~ by aw. Thus, in the place of (5.1.16) we now get

{
(5.1.25) VUG DI £l VU +C/ VUG D= IVUC DT
0

Gronwall’s inequality then implies that (5.1.24) cannot occur unless (5.1.4) does.
This completes the sketch of the proof. '

It should be noted that the possibility of a finite life span of the solution,
raised by Theorem 5.1.1, is not an artifact of the proof. As we shall see later, in
consequence of nonlinearity classical solutions generally break down in a finite
time and the “catastrophe” (5.1.4) triggers the development of a shock front.
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5.2 Convex Entropy and the Stability of Classical Solutions

The aim here is to show that the presence of a convex entropy guarantees that
classical solutions of the initial-value problem depend continuously on the initial
data, even within the broader class of admissible bounded weak solutions.

Theorem 5.2.1 Assume the system of conservation laws (5.1.1) is endowed with
an entropy 1 with D*n(U) positive definite, uniformly on compact subsets of (- .
Suppose U is a classical solution of (5.1.1) on [0, T), taking values in a convex
compact subset I/ of ¢, with initial data Uo. Let U be any admissible weak
solution of (5.1.1) on [0, T), taking values in &/, with initial data Uy. Then

(5.2.1) / \Ux,t) = Ulx, n)|’dx < aeb'/ |Uo(x) — Up(x)|dx
Jx|<R lxt<R+st

holds for any R > 0 and t € [0, T), with positive constants s, a, depending solely

on &, and b that also depends on the Lipschitz constant of U. In 1 particular, U

is the unique admissible weak solution of (5.1.1) with initial data Uy and values

in .

Proof. On &/ x 2/ we define the functions

(5.2.2) WU, U) = nU) - nU) - DnU)[U -T],
(5.2.3) fuU,U) = qo(U) ~ qo(U) — Dn(U)[Ga(U) — Go(U)],
(5.2.4) Z (U, U) = Go(U) — Go(U) — DG(U)[U - U],

all of quadratic order in U — U (recall (4.3.1)). Consequently, since D2n(U) is
positive definite, uniformly on &/, there is a positive constant s such that

m 172
(5.2.5) [Z | fuU, U)P] < sh(U.U).
a=|

Let us fix any nonnegative, Lipschitz continuous test function ¥ on R™ x
[0. T), with compact support, and evaluate 4, f, and Z, along the two solutions
U, t),U(x,1). Recallill_g that U, as an admissible weak solution, must satisfy
inequality (4.3.4), while U, being a classical solution, will identically satisfy (4.3.4)
as an equality, we deduce

(5.2.6)

T m
/0. /u.a Ia'wh(uvU)+Zaa¢fa(U.D_)]a’xa’t+/ W (x, 0)h(Uo(x), Ug(x)dx
" a=1 R™
T . . m
= —/ / Ia"”D"(U)[U — U1+ Y 0¥ Dy@)[Gu(U) ~ Gu(0)] |dxdt
o Jre s

- /R Y, 0)Dy(Uo(xN[Up(x) — Up(x)]dx .
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Next we write (4.1.6) for both solutions U and U, using components of the Lip-
schitz continuous vector field ¥ Dn(U) as test function ¢, to get

(5.2.7)
T m
/ / [a,[an(U)][U — U1+ ) 4ly Dn(O)[Ga(U) — Go(D)] {duxdr
0 JR" o

+ | v(x, 00DnUo(x))[Up(x) = Up(x)ldx =0 .
Rm

Since U is a classical solution of (5.1.1) and by virtue of (4.3.2),

(5.2.8) 3,00(T) = 3T D'n(@) =~ 3T DGo(T)D*n(D)

a=l|

=~ 80U D(@)DG. D)

a=|

so that, recalling (5.2.4),

(5.2.9) 3, DU =Tl + ) 3% Dn(@)[Ga(U) ~ Ga(0)]

a=]

= Za,,'u"ozq('u')z,,(u, 7).

a=!
Combining (5.2.6), (5.2.7) and (5.2.9) yields
(5.2.10)

T m _
/ / [a,wh(u,'U')+Zaawfa(u,ﬁ)]dxdz+ / ¥ (x, 0)h(Up(x), Up(x))dx
o JRr a=i R"

T m .
> / / ¥ 00" Dn(U)Zo(U, U)dxdt .
0 “ cr=l

We now fix R > 0, t € (0, T) and ¢ positive small, and write (5.2.10) for the
test function ¥ (x, T) = x(x, T)0(1), with

l 0<t<t

1
(5.2.11) 8(t) = -€—(t—t)+l t<t<t+e

0 t+e<t<T
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(5.2.12)
! 0<t<T,
0<|x{<R+s(t—1)
11
xy =] FREsC-D-kll+1 07 <T,

R+s—-1t)<|x|<R+st—1)+¢

0 0<t<T,
R+st—-t)+e<|x| <@

where s is the constant appearing in (5.2.5). The calculation gives

(5.2.13)
1 1+ _ _
—/ / h(U(x, 1), U(x, t))dxdt < / h(Up(x), Ug(x))dx
L) txl<R ¥l < R+st

! . m .
_l// shU, T+ 2 £,(U, T | dxdr
€ Jo JRest—t)<|x|<R+sti—T)+¢ x|

a=l

t m _ _ _
-/ / ZBD,UTDZn(U)Zu(U, U)dxdr + O(e) .
0 Jixf<R+st—1) g=|

We let & | 0. The second integral on the right-hand side of (5.2.13) is nonnegative
by account of (5.2.5). Using that U is Lipschitz continuous, n is convex, and
Theorem 4.1.1, we deduce

(5.2.14) / h(U(x,r),U(x,z))dxsf h(Up(x), Up(x))dx
|x|<R

|| <R+st

! m _
- / / > 8, U D'n(U)Zs(U, U)dxdr .
0 JIx|<R+s(1—-1) o=

As noted above, h(U, U) and the Z, (U, U) are of quadratic order in U — U and,
in addition, h(U, U) is positive definite, due to the convexity of 5. Therefore,
(5.2.14) in conjunction with Gronwall’s inequality imply (5.2.1). Notice that a
and s depend solely on & while b depends also on the Lipschitz constant of U.
This completes the proof.

It is remarkable that a single entropy inequality, with convex entropy, manages
to weed out all but one solution of the initial-value problem, so long as a classical
solution exists. As we shall see, however, when no classical solution exists, just
one entropy inequality is no longer generally sufficient to single out any particular
weak solution. The issue of uniqueness of weak solutions is knotty and will be a
major issue for discussion in subsequent chapters.

5.3 Partially Convex Entropies and Involutions

The previous two sections have illustrated the beneficent role of convex entropies.
Nevertheless, the entropy associated with systems of balance laws in Continuum
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Physics is not always convex. An illustrative case is example (c) of Section 3.3,
namely isentropic, adiabatic thermoelasticity, with system of balance laws (3.3.10),
and entropy function n = e(F) + %[vl2 which would be convex if ¢ were convex.
Even though ¢ may indeed be convex on certain regions of state space, global
convexity of it is incompatible with experience and, in particular, would violate
the principle of material frame indifference, which requires e(OF) = (F) for all
proper orthogonal matrices O (cf. (2.5.5)). Of course, £ may still be convex in
certain directions. In fact, recall that the system (3.3.10) is hyperbolic when ¢ is
rank-one convex (cf. (3.3.7)). In contrast to convexity, rank-one convexity does
not violate any laws of physics and is supported by measurements in materials
like rubber.

It will be shown here that the failure of £ to be convex in certain directions is
compensated by the property that solutions of the system (3.3.10) satisfy identically
the additional conservation laws

(5.3.1) OpFig =0 Fip=0, i=1....m: a.f=1--m.

The extra conservation laws (5.3.1) also apply to the system (3.3.4) of balance
laws of adiabatic thermoelasticity (example (b) of Section 3.3).

Systems exhibiting such behavior arise quite commonly in Continuum Physics.
For example, solutions of Maxwell’s equations (3.3.22), with current J = 0, satisfy
identically the additional conservation laws

(5.3.2) divB=0, divD=0,

whenever the initial data do so. Similarly, solutions to Lundquist’s equations
(3.3.28) of magnetohydrodynamics satisfy

(5.3.3) divH =0.

Similar cases are encountered in the general theory of relativity; see references in
Section 5.4. In view of the above, it is warranted to investigate systems of balance
laws with this special structure in a general framework:

Definition 5.3.1 The first order system
(5.3.4) Y M.3,U=0
a=|

of differential equations, with M, constant k x n matrices, & = 1,---, m, is called
an involution of the system (5.1.1) of conservation laws if any (generally weak)
solution of the initial-value problem (5.1.1), (5.1.2) satisfies (5.3.4) identically,
whenever the initial data do so.

Thus (5.3.1) is an involution of (3.3.10) as well as of (3.3.4); (5.3.2) is an
involution of (3.3.22); and (5.3.3) is an involution of (3.3.28). The reader should
exercise caution to distinguish involutions (5.3.4) which must be satisfied by all,
even weak, solutions of (5.1.1) from conditions like (5.3.4) that need only hold
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for classical solutions. An example of the latter case is the vanishing of vorticity
in smooth irrotational flows of Newtonian fluids: A standard calculation, that may
be found in every text on hydrodynamics, shows that in any classical solution
on R? x (0, T) of the Euler equations (3.3.17) with body force derived from a
potential, b = grad ¢, when the vorticity curl v vanishes at ¢+ = 0 then it vanishes
everywhere in space-time:

(5.3.5) curlv =0 .

However, (5.3.5) is not an involution of (3.3.17) because it does not necessarily
hold for weak solutions.
A sufficient condition for (5.3.4) to be an involution of (5.1.1) is that

(5.3.6) M,Gp(U) + MG, (U) =0, a,B=1---.m,

for any U € . We shall focus our investigation here to this special case which
covers, in particular, the prototypical examples (5.3.1), (5.3.2) and (5.3.3). Alter-
native, more general, sufficient conditions are exhibited in the references cited in
Section 5.4.

With the involution (5.3.4) and any v € . "~ we associate the k x n matrix

m

(5.3.7) Nw)y=) vaM,

a=|

Recalling the notation (4.1.2), it follows from (5.3.6) that
(5.3.8) NwWAWV, U)y=0

so, in particular, any eigenvector R(v; U) of A(v; U) with nonzero eigenvalue
A(v: U) must lie in the kemel of N(v). We make the simplifying assumption,
valid in the prototypical examples, that for any v € . "~! the rank of N(v)
equals the dimension of the kemel of A(v; U).

The premise is that in the presence of involutions the entropy need only be
convex in the direction of a cone defined by

Definition 5.3.2 The imvolution cone in R" of the involution (5.3.4) is

(5.3.9) ¢ = U ker N(v)

ve.s m-1

with N(v) given by (5.3.7).

In what follows, for p > 0, functions on R™ will be called 2 p-periodic when

they are periodic, with period 2p, in each variable x4, @« = 1,---,m; and .7’
will denote the standard hypercube {x € R” : |x,| < p, @ = |, -+, m) with edge
length 2p.

Lemma 5.3.1 Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.3.4). Fix U € ¢ and consider the differential operator
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(5.3.10) % =Y DGu(U)dy .
B=1

A 2p-periodic L%, function S from R™ to R" with

loc -

(5.3.11) / S(x)de =0
v

satisfies

(5.3.12) Y Ml3,5=0

in the sense of distributions if and only if there is a 2 p-periodic Wl:,‘cz Juncrion
from R™ to R" such that

(5.3.13) S=%x,

(5.3.14) Wxleeay <apliSllw-vaeay o Nxllweeesry < apliSllier, -
where a is independent of p and S.
Proof. That (5.3.13) implies (5.3.12) follows immediately from (5.3.10) and

(5.3.6).
To show necessity, expand S in Fourier series

(¥4
(5.3.15) S(x)= exp I7(s -x)] X®,
§
where the summation runs over all vectors £ = (&, ---.&x) in R™ with integer
components. By (5.3.11), X(0) = 0. Note that
(5.3.16)

I1S03205r = Qm”X]X@HZ IS 1207y = D)™ }ju+w|rwxew
By virtue of (5.3.12) and (5.3.7), for £ # 0,
(5.3.17) |ﬂMEW9M9=(Z}M@)M@=O

a=I

so that X (£) lies in the kernel of N (|€|™'€). By assumptlon the rank of N (|£[71§)
equals the dimension of the kernel of A(|&|™'E; U). Therefore, for any £ # 0 we
may determine Y (&) in R” such that

(5.3.18) mm*swna———axm
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5.3.19 YE) < 21X ()
( ) Y&l = 3 §|| 3
for some constant a independent of p and S. It follows that the Fourier series
(5.3.20) x(x) = Zexp|——(§ X)l Y{§)
£#£0

defines a 2 p-periodic WIL‘CZ function x from R™ to R", which satisfies (5.3.13), by
virtue of (5.3.10), (4.1.2) and (5.3.18), as well as (5.3.14), by account of (5.3.16),
(5.3.19) and

(5.3.21)
X2 = @PY" D WY@, Iz = @P)" YA +IEDOIYENF .
H H

This completes the proof.

Lemma 5.3.2 Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.3.4), with involution cone € . Suppose P is a symmetric n X n matrix-

valued L™ finction on R™ which is uniformly positive definite in the direction of
7, ie

(5.3.22) ZTPX)Z>plZP?, Ze?¥ , xeR",
Jfor some p > 0, and its local oscillation is less than u, i.e.,

(5.3.23) limsup sup |P(¥)—P(x)|<pu—28,
0 |y—x|<e

for some 8 > 0. It W is any L?* function from R"™ to R" which is compactly
supported in the hypercube .72 and satisfies

(5.3.24) Y M. W =0

a=|

in the sense of distributions, for some Q in W='2, then
(5.3.25) fm W) POW(x)dx = 8IW I3, — bIWIE,-2 = BIQN -2
where b does not depend on W or Q.

Proof. Expand W and Q in Fourier series over .7

(5.3.26) W) =) exp [%(s -x)l X¢E)., xe,
£

(5.3.27) Q)= exp [%(5 -x)l Y&, xe. 7.
H
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Note that Y (0) = 0 and
(5.3.28)
IWI2 = @p)" Y _IXEF . W0 =2p)" Y (A +IERIXER,
£ £

(5.3.29) 1QI-2 = @p)Y" Y A+ 1EDT Y@ .
£

Furthermore, by virtue of (5.3.24) and (5.3.7), for any £ # 0,

(5.3.30) EINUEIT' &)X () = (Z saMa) XE=YE.
a=l|

We may thus split X (£) into

(5.3.31) XE =& +¥(E), £+#0,
where @ (£) lies in the kernel of N (J&]|~'&) while ¥ (&) satisfies

C
5.3.32 '4 —Y .
( ) ¥ (&) < ZISII &

Here and below, ¢ will stand for a generic constant, independent of W. In turn,
(5.3.31) induces a splitting of W into

(5.3.33) WX =XO0)+SO+Tx), xe.70,
with
(5.3.39) . )
Sx) = ZEXP [Z(E 'X)I &), Tx)= Zexp [E(E 'X)I v .
£20 p £20 p

Notice that S satisfies (5.3.11) and (5.3.12) while

(5.3.35) TNz < cll@llw-12
We now cover .72 by the union of a finite collection .7}, - - -, .7, of open
hypercubes, centered at points y!, .- -, y/, such that
(5.3.36) sup |P(x) = P(yDlspu—-28, I=1--.J.
x€F

With the above covering we associate a partition of unity induced by C* functions
8,,-+-,0, on R" such that spt9, c Z; N7, I =1,---,J, and

J
(5.3.37) Yol =1, xesptW.
=1

Then
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J
(5.3.38) W) P(x)W(x)dx = Z/ 67 ()W (x)T P(x)W (x)dx
R” 4]

J
= Z[ B} IW @) POHW (x)dx
v

+ Z[ B2OW D) [Px) = PO)IW(x)dx .

A

By virtue of (5.3.36) and (5.3.37),
J
(5.3.39) Z[ O} (W) T[P(x) — P(yNW(x)dx = —(u — 29)IW 12, .
Ty

Recalling Lemma 5.3.1, we construct the function x which induces S through
(5.3.13). Foreach I =1, ---, J, we split 6; W into

(5.3.40) BIW =5+ TI y
where
(5.3.41) S =%£6rx),

(5.3.42)  Ti(x) = 6;(x)X(0) +6;(x)V(x) — [Z aﬂe,(x)DGﬂ(t?)] x(x) .
p=1

Clearly, S; is square integrable, has compact support in .7/}, and
(5.3.43) f Si(x)dx =0 .
P

Furthermore, by Lemma 5.3.1,
(5.3.44) iMaBaS, =0.
=1
Consequently, S; may be expanded in Fourier series over .77,
(5.3.45) Six) = ;CXP[%[E (= y’)]l zZ¢), xeZ,
with Z(0) = 0 and
(5.3.46) EINUEI'6)Z(E) = (i ) Z(¢)=0.

Thus Z(£) lies in the complexification of ¥ and so, by Parseval’s relation and
(5.3.22),
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(5.3.47) / S0 PGS (dy = 2p')" ) ZE) P(y)Z(§)
v :

> u2p")” Z 1Z@)* = #/ 187 (x)[2dx .
E .

"

e

Moreover, from (5.3.42), (5.3.28), (5.3.35), (5.3.14), and (5.3.33) we infer
(5.3.48) / T (ORdx < AW s + QIR s .
e
We now return to (5.3.38). From (5.3.40), (5.3.47), and (5.3.48) it follows that

(5.3.49) / 9,3(x)W(.\')TP(y’)W(.\')zl.\'
4

8 2
> (I - —)/ SiOT PS8 (x)dx — i T ()T P(v') T (x)dx
2u) Jw, 8 S

2
Again by (5.3.40) and (5.3.48),

(5.3.50)
, 8 2 2
/ 1S;(x)Pdx > (I - —)/ 67 (x)|W (x)|%dx — —“/ |T:(x)|2dx
Ve 2u) S, 8 S
8 S R
> (1 - 2—) / 67 (OIW ()P dx — clWIE s ~ cll Q-2 -
mJ)J

Combining (5.3.38), (5.3.39), (5.3.49), (5.3.50) and (5.3.37), we arrive at (5.3.25),
This completes the proof.

8 , ,
> (u - —)/ 181 ()P = el W — QU

7

The following proposition extends Theorem 5.1.1 to the situation where invo-
lutions are present and the entropy is convex only in the direction of the involution
cone.

Theorem 5.3.1 Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.3.4), with involution cone ¢ , and an entropy n, with D*n(U) positive
definite in the direction of ¢ , uniformlv on compact subsets of (*. Suppose the
initial data Uy are continuously differentiable on R™, take values in a compact
subset of 7, are constant, say U, outside a bounded subset of R™, satisfy the
involution on R™, and VUy € H" for some £ > m/2. Then there exists Tu,
0 < Ty < 00, and a unique continuously differentiable function U on R™ x[0, Tw),
taking values in (-, which is a classical solution of the initial-value problem (5.1.1),
(5.1.2) on [0, Teo). Furthermore,

(5.3.51) VU, 1) € C[0, To): HY) .

The interval [0, To.) is maximal. in the sense that whenever To < 00
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(5.3.52) limsup |[VU (-, )|z~ = o0
"M T«

and/or the range of U(-, t) escapes from every compact subset of " as t 1 T,.

Proof. It suffices to retrace the steps of the proof of Theorem 5.1.1. In the definition
of the metric space .7 the stipulation should be added that its members are
constant, U, outside a large ball in R™.

The first snag we hit is that (5.1.15) no longer applies, since D?5(V) may now
be positive definite only in the direction of . To remove this obstacle, we first
note that by (5.1.11) and (5.3.6)

m

(5.3.53) MgdglU, = Q,
p=1
where
m I
(5.3.54) 0=-> Mﬂ/ 3[DG(V)]8,U,dt
a.f=1 0

m

t
+ Z Mﬂaﬂ/ {DG«(V)3 8, U — 3" [DG,(V)d, Ut .
a.f=1 0

Applying Lemma 5.3.2, with P = D*p(V) and W = U,, we obtain
(5.3.55) Ul D*n(V)U,dx 2 8| U, |1% = el U, 113-2 — el QI -
]Rm

Integrating (5.1.11) with respect to ¢ yields

(5.3.56) MU, G Ollw-tz < el VUl + co / IVUC, o)lleds -
0

Furthermore, (5.3.54) together with (5.1.6) and (5.1.12) imply

(5.3.57) 10C, Dllw-1z < cw f VUG, ©)lledr
0

By employing (5.3.55), (5.3.56), (5.3.57) as a substitute for (5.1.15), we establish,
in the place of (5.1.16), the new estimate

t
(5.3.58) IVUG, O} < cllVUOI? + co(l + wT) f IVU(, T)l2dr
i}

whence we deduce that, when w is sufficiently large and T is sufficiently small,
supp. 71 IVU (-, B)lle < w, as required for the proof.

A similar procedure is used to compensate for the failure of (5.1.21): We use
(5.1.18) and (5.3.6) to get

(5.3.59) Mgdg(U ~Uy =@,
B=l1
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where
m ! -
(5.3.60) Q0=-> Mﬂ/ 3s[DG4(V)]8,(U — U)dr
a.B=l 0
m !
-3 Mﬂaﬂ/ [DGo(V) — DGo(V)]3,Udr ,
0

a.p=1
and then apply Lemma 5.3.2, with P = D?p(V), W = U — U, to get
(5.3.61)

WU -0 Dn(V)WU = Vdx 2 81U =TU|j3: —clU = Ulyes = cl Q13- -
Rm

Integrating (5.1.18) with respect to ¢, we obtain the estimate
(5.3.62)
t
U =) Dllw-12 < cw/ U =)Dz + 1V = VI D)
0

Moreover, (5.3.60) together with (5.1.6) imply

(5.3.63) Q¢ Dllw-12 < wao (I =) Ol + 1V = V) o)l 2dde

We employ (5.3.61), (5.3.62) and (5.3.63) as a substitute for (5.1.21). This yields,
in the place of (5.1.22), the new estimate

(5.3.64)
(U =T, DIE; < co(l +wT)/ U =0, DB+ 1V =V, D) dr .
i}

From (5.1.9), (5.3.64) and Gronwall’s inequality we deduce
(5.3.65) pU,U) < [coT (1 + wT)]'/2 explcwT (1 + wT)]p(V, V)

which verifies that, for T small, the map that carries V € . to the solution
U €. of (5.1.10), (5.1.2) is a contraction.

Apart from the above modifications, the proofs of Theorems 5.3.1 and 5.1.1
are identical.

To illustrate the use of Theorem 5.3.1, we apply it to the system (3.3.10),
with involution (5.3.1). A simple calculation shows that the involution cone ¢’
consists of all vectors in R™**™ of the form (€ ® v, w), with arbitrary £, v and
w in R™. Thus, the entropy n = &(F) + %|v|2 is convex in the direction of
¢ provided that £(F) satisfies (3.3.7). Consequently, Theorem 5.3.1 establishes
local existence of classical solutions for the system of balance laws of isentropic,
adiabatic thermoelasticity under the physically natural assumption that the internal
energy is a rank-one convex function of the deformation gradient.

Theorem 5.2.1 may also be similarly extended to the situation where the en-
tropy is convex just in the direction of the involution cone:
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Theorem 5.3.2 Assume the system of conservation laws (5.1.1) is endowed with
an involution (5.3.4), with involution cone ¢ , and with an entropy n with D*np(U)
positive definite in the direction of (4 umjormlv on compact subsets of (- . Suppose
U is a classical solution of (5.1.1) on a bounded time interval [0, T), taking values
in a convex, compact subset &/ of ¢, with initial data U, that satisfy the involution.
Let U be any admissible weak solution of (5.1.1) on [0,T), with t — U(.,1)
continuous in L oo (R™), which takes values in &, coincides with U outside some
ball in R™, has Iocal oscillation

(5.3.66) limsup sup |U(y».0) —U(x,)l <k, 0=51<T,

el jy—x|<e
and initial data Uy satisfving the involution. If k is small, then
(5.3.67) WUx, ) = U, D’dx <a | |Us(x) — Ug(x)*dx
Rm Rm

holds for t € [0, T), and some constant a that depends on &/, on T and on the
Lipschitz constant of U. In particular, U is the unique admissible weak solution
of (5.1.1) with values in &, small local oscillation and initial data U,.

Proof. Retracing the steps of the proof of Theorem 5.2.1, we rederive (5.2.13).
Letting R t oo and £ | 0 in (5.2.13), taking into account that U — U vanishes
outside some ball, U is Lipschitz, and ¢t — U(-, t) is continuous, we arrive again
at (5.2.14), with R = oo:

(5.3.68) / h(U(x,t),U(x.t))dxg/ h(Uo(x),Uo(x))d.\'
Ul Rm

! m
- / / > 3,U" D) Z. (U, Dydxdr .
0 " =1

From (5.2.2),
(5.3.69) U Y =U-=-U)TPWU,UNU-U),
where
1 w
(5.3.70) P, U) =/ / D*n(U + z(U — U))dzdw .
i} i}

In particular,
(5.3.71) ZTPW.U)Z>pZ2?, Ze?

for some p > 0. Therefore, when « in (5.3.66) is so small that the local oscillation
of P(U(x, 1), U(x, 1)) is less than y1, we may apply Lemma 5.3.2, with W = U-U
and @ =0, to get

(5.3.72)
f R(Ux, 0, U(x, t)dx = 8|UC, 1) = UG, D5 = UG 1) = UG, Dy
]Rm
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for some § > 0. We estimate the second term on the right-hand side of (5.3.72)
as follows:

(53.73) WUGE D =UCDlw-: < I1U) = Ug(lw-r2
+/0, 18U, ) = UG, DY w-12dT
(5.3.74)
13{U ¢ T) = UG, DMz = || }: 3AGa (U, 1)) = Go (T (-, 1)} ly-12

a=|
m

ZuGaw( ) = GaUC )z < elUCT) =TC D)z
Furthermore, by (5.2.4), Z,(U, U) is of quadratic order in U — U. Therefore,
combining (5.3.72), (5.3.73) and (5.3.74), we deduce from (5.3.68):

(5.3.75) NG, = U DR < cllUo() = UoOII2,
2

t ]
+ cfo UG, ©) = UG n)l%dt + ¢ I/ NG, ) =T, Dliede
0

whence (5.3.67) follows. This completes the proof.

In the above theorem, the hypothesis that t — U(-,t) is strongly continuous
appears extraneous, so it is natural to inquire what conditions, short of convexity,
would have to be imposed on 7 to render this requirement superfluous.

Definition 5.3.3 An entropy 1 for the system of conservation laws (5.1.1), endowed
with an involution (5.3.4), is called quasiconvex if forany U € L= (R™; ¢* ), which
is 2p-periodic, satisfies (5.3.4) and has mean

(5.3.76) U=@py™ /W.U(y)dy ,
over the standard hypercube . %" in R™ with edge length 2p, it is

(53.77) (@) < 2p)™" /7 NNy .

Roughly, quasiconvexity stipulates that the uniform state minimizes the total
entropy, among all states that are compatible with the involution and have the same
“mass”. This is in the spirit of the fundamental principle of classical thermostatics,
that the physical entropy is maximized at the equilibrium state.

The relevance of quasiconvexity is demonstrated by the following proposmon
whose proof may be found in the references cited in Section 5.4:

Theorem 5.3.3 Assume the system of conservafion laws (5.1.1) is endowed with
an entropy n and an involution (5.3.4), such that the rank of N(v) is constant,.
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for any v € ¥ ™"\, and equal to the dimension of the kernel of A(v:U). Then
f‘ gNW)dx is weak’ lower semicontinuous on the space of L vector fields U
that satisfv (5.3.4) if and only if n is quasiconvex. Furthermore, any quasiconvex
n is necessarily convex in the direction of the involution cone .

In particular, when 7 is quasiconvex the requirement of strong L' continuity
of t = U(-,t) may be relaxed into continuity in L> weak™.

Even though Definition 5.3.3 is tailored to equilibrium, quasiconvexity may
also be interpreted in the framework of dynamics, as follows. Recalling Lemma
5.3.1, U on the right-hand side of (5.3.77) can be replaced by U+ %y, for
some 2p-periodic Lipschitz function x. In turn, U + % x may be interpreted as
an approximation to the value at time ¢ of the solution of (5.1.1), (5.1.2), with
Up(x) = U +£x(£72x). A more natural extension of the notion of quasiconvexity
to the realm of dynamics is provided by the following

Definition 5.3.4 An entropy 7 for the system of conservation laws (5.1.1), endowed
with an involution (5.3.4), is called dynamically quasiconvex if for any U €
L>®(R™+!: r~), which is 2p-periodic in the spatial variables, satisfies (5.34) and
has asymptotic mean

N 1 ¢
(5.3.78) U=2p)™"lim —/ / U(y, t)dydrt |
elo e Jo Joar

at time zero, it is

N 1 ¢
(5.3.79) ) <@2p™ Iiminf—/ / n(U(y, t)dydr .
el e Jo Jow

By mimicking the proof of Theorem 5.3.3, one shows that when 5 is dynam-
ically quasiconvex no extraneous hypothesis on the continuity of 1 > U(-, 1) is
required, because the weak time regularity induced by Theorem 4.1.1 is sufficient
for passing to the £ | 0 limit in the proof of Theorem 5.3.2.

Clearly, any dynamically quasiconvex entropy is quasiconvex. Moreover, any
convex entropy is dynamically quasiconvex, and a fortiori quasiconvex, by virtue
of Jensen’s inequality. However, whereas convexity may be tested easily, by direct
calculation, quasiconvexity, as defined by Definition 5.3.3, is an implicit condition
that is hard to verify in practice. In view of Theorem 5.3.3, it is tempting to
conjecture that any entropy which is convex in the direction of the involution
cone is necessarily quasiconvex. This is indeed the case when the entropy is
quadratic: n = UT AU. In general, however, quasiconvexity is a stricter condition
than mere convexity in the direction of the involution cone.

The above may be illustrated in the framework of our prototypical example,
the system of balance laws (3.3.10) of isentropic, adiabatic thermoelasticity, with
involution (5.3.1) and entropy n = &(F) + 4[v|. In that case n is quasiconvex
when £(F) is quasiconvex in the sense of Morrey For any constant deformation
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gradient F and any Lipschitz function x from .7% to R", with compact support
in. 7,

(5.3.80) e(F) < (zp)‘"’/ e(F + Vx)dy .
e

In other words, a homogeneous deformation of .7 minimizes the total internal
energy among all placements of . 7" with the same boundary values. Any quasi-
convex internal energy is rank-one convex (3.3.7), i.e., n is convex in the direction
of the involution cone. On the other hand, examples have been constructed of e(F)
that are rank-one convex but not quasiconvex.

A sufficient condition for £(F) to be quasiconvex is that it be polyconvex, in
the sense of Ball, i.e,, in the physically relevant case m = 3:

(5.3.81) e(Fy=0(F, F*,w),

where F* denotes the matrix of cofactors of F, F* = (det F)F~', w = det F,
and o is a convex function on R'®, When the elastic material is isotropic and the
function £ in (2.5.18) is convex in the principal invariants (Iy, - - -, I), then £(F)
is polyconvex.

Actually, polyconvex £(F) are even dynamically quasiconvex. This follows
from Theorem 4.1.1 combined with the observation that, as F and v result from
a Lipschitz motion x = x(x,t) through (2.1.1) and (2.1.2), the L*> fields w and
F* satisfy the following, kinematically induced, conservation laws:

3 3
(5.3.82) dw=Y "> Bu(Frv),
a=1 i=|
(5.3.83) 3 F) = Z Z dul€apy€ije Fjpvi) » vk =1.2,3.
a.p=li.j=I

where €44y, €« denote the standard permutation symbols. To establish these iden-
tities, recall the discussion and notation of Section 2.2, Consider first the (trivial)
conservation law (2.2.3), in Eulerian coordinates, with @* = I, ¥* = T, Pr=0.
Its equivalent, Lagrangian form (2.2.1) reduces to (5.3.82), because, by virtue of
(2.2.4),0 =det F = w, ¥ =det F(F~'v)T = (F*v)7, P = 0. To verify (5.3.83),
start with the obvious conservation law

(5.3.84) (F™Y, = (grad x), = grad (x,) = —grad (F '
in Eulerian coordinates, and derive its equivalent Lagrangian form through (2.2.4).
The calculation gives

3 3
(5.3.85) BF =) Y dul(det F)(Fg'F! = Fl Fahuil .

a=l i=1

which easily reduces to (5.3.83).
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In an alternative approach, one may embed the system (3.3.10), with state
vector U = (F. v), into a larger, albeit equivalent, system, consisting of (3.3.10),
(5.3.82) and (5.3.83), with new state vector U = (F, F*, w, v). When the internal
energy function is of the form (5.3.81), with o (locally) uniformly convex, the
system in this new realization is endowed with a uniformly convex entropy n =
o(F, F*. w)+ }|v]?, so that local existence of classical solutions may be inferred
directly from Theorem 5.1.1, thus circumventing the need for Theorem 5.3.1,
while stability of classical solutions within the class of admissible weak solutions
follows immediately from Theorem 5.2.1, even without requiring time continuity
and small oscillation as in Theorem 5.3.2.

5.4 Notes

A more extensive discussion of the material covered in Section 5.1, including a
complete proof of (a slight variation of) Theorem 5.1.1, is contained in Majda
[3]. This presentation is in the spirit of the theory of linear symmetric hyperbolic
systems developed by Friedrichs. For an alternative, functional analytic, approach
to the subject, see Kato [1] and Taylor [1].

The proof of Theorem 5.2.1 combines ideas of DiPerna [5] and Dafermos [9].

Hyperbolic systems of conservation laws with involutions were considered
by Boillat {3] and by Dafermos [12]. In particular, Boillat [3] exhibits sufficient
conditions that are more general than (5.3.6) and presents examples arising in the
theory of general relativity. The analysis in Section 5.3 is intimately related to
the theory of compensated compactness as formalized by Murat and Tartar; see
Tartar [1,2]. The “involution cone” corresponds to the “characteristic cone”, in
the terminology of that theory. Theorem 5.3.1 is new; however, typical examples,
like the system (3.3.10) of balance laws of isentropic thermoelasticity, have been
studied extensively in the literature; see, for example, Hughes, Kato and Marsden
[1], or Dafermos and Hrusa [1]. Theorem 5.3.2 is taken from Dafermos [21].

The notion of quasiconvexity introduced by Definition 5.3.3 is a generalization
of quasiconvexity in the sense of Morrey [1] due to Dacorogna [1]; for detailed
study and a proof of Theorem 5.3.3, see Miiller and Fonseca [1]. These notions
were originally developed in the framework of the calculus of variations, where
lower semicontinuity of functionals is the central issue. In particular, equilibrium
(i.e. time-independent) solutions of the system (3.3.10) are minimizers of the inter-
nal energy. It is in the context of this problem that Ball [1] introduced the concept
of polyconvexity and discussed its connections with quasiconvexity and rank-one
convexity. Voluminous literature on the subject has derived from Ball’s pioneering
paper. The question whether rank-one convexity generally implies quasiconvexity
was debated for a long time until finally answered, in the negative, by Sverak [1].
The idea of enlarging the system (3.3.10) is due, independently, to LeFloch and to
Qin [1], who derives the kinematical conservation laws (5.3.82), (5.3.83), albeit
only for smooth motions. Other state variables, such as det ¥~! may be used as
well, which also satisfy kinematically induced conservation laws (Wagner [3]).



Chapter VI. The L' Theory
of the Scalar Conservation Law

The theory of the scalar balance law has reached a state of virtual completeness. In
the framework of classical solutions, the elementary, yet effective, method of char-
acteristics yields a sharper version of Theorem 5.1.1, determining explicitly the life
span of solutions with Lipschitz continuous initial data and thereby demonstrating
that in general this life span is finite. Thus one has to deal with weak solutions,
even when the initial data are very smooth.

In regard to weak solutions, the special feature that sets the scalar balance
law apart from systems of more than one equation is the size of its family of
entropies. It will be shown that the abundance of entropies induces an effective
characterization of admissibe weak solutions as well as very strong L!-stability
and L*-monotonicity properties. Armed with such powerful a priori estimates,
one can construct admissible weak solutions in a number of ways. As a sample,
construction will be effected here by the method of vanishing viscosity, the theory
of L'-contraction semigroups, the layering method, an approach motivated by the
kinetic theory, and a relaxation method. It will also be shown that when the initial
data are functions of locally bounded variation then so are the solutions. Finally,
it will be explained why these methods fail in the case of systems of balance laws.

In order to expose the elegance of the theory, the discussion will be restricted
to the homogeneous scalar conservation law, even though the general, inhomoge-
neous balance law (3.3.1) may be treated by the same methodology, at the expense
of rather minor technical complications.

The issue of stability of weak solutions with respect to the topology of L™
weak* will be addressed in Chapter XV. The special case of a single space variable,
m = 1, has a very rich theory of its own, certain aspects of which will be presented
in later chapters.

6.1 The Initial-Value Problem:
Perseverance and Demise of Classical Solutions

We consider the initial-value problem for a homogeneous scalar conservation law:

6.1.1) B,Lt(x.r)+zaaga(tt(x,t))=O, xeR", tel0.T),

a=]



82 V. Entropy and the Stability of Classical Solutions

In an alternative approach, one may embed the system (3.3.10), with state
vector U = (F. v), into a larger, albeit equivalent, system, consisting of (3.3.10),
(5.3.82) and (5.3.83), with new state vector U = (F, F*, w, v). When the internal
energy function is of the form (5.3.81), with o (locally) uniformly convex, the
system in this new realization is endowed with a uniformly convex entropy n =
o(F, F*. w)+ }|v]?, so that local existence of classical solutions may be inferred
directly from Theorem 5.1.1, thus circumventing the need for Theorem 5.3.1,
while stability of classical solutions within the class of admissible weak solutions
follows immediately from Theorem 5.2.1, even without requiring time continuity
and small oscillation as in Theorem 5.3.2.

5.4 Notes

A more extensive discussion of the material covered in Section 5.1, including a
complete proof of (a slight variation of) Theorem 5.1.1, is contained in Majda
[3]. This presentation is in the spirit of the theory of linear symmetric hyperbolic
systems developed by Friedrichs. For an alternative, functional analytic, approach
to the subject, see Kato [1] and Taylor [1].

The proof of Theorem 5.2.1 combines ideas of DiPerna [5] and Dafermos [9].

Hyperbolic systems of conservation laws with involutions were considered
by Boillat {3] and by Dafermos [12]. In particular, Boillat [3] exhibits sufficient
conditions that are more general than (5.3.6) and presents examples arising in the
theory of general relativity. The analysis in Section 5.3 is intimately related to
the theory of compensated compactness as formalized by Murat and Tartar; see
Tartar [1,2]. The “involution cone” corresponds to the “characteristic cone”, in
the terminology of that theory. Theorem 5.3.1 is new; however, typical examples,
like the system (3.3.10) of balance laws of isentropic thermoelasticity, have been
studied extensively in the literature; see, for example, Hughes, Kato and Marsden
[1], or Dafermos and Hrusa [1]. Theorem 5.3.2 is taken from Dafermos [21].

The notion of quasiconvexity introduced by Definition 5.3.3 is a generalization
of quasiconvexity in the sense of Morrey [1] due to Dacorogna [1]; for detailed
study and a proof of Theorem 5.3.3, see Miiller and Fonseca [1]. These notions
were originally developed in the framework of the calculus of variations, where
lower semicontinuity of functionals is the central issue. In particular, equilibrium
(i.e. time-independent) solutions of the system (3.3.10) are minimizers of the inter-
nal energy. It is in the context of this problem that Ball [1] introduced the concept
of polyconvexity and discussed its connections with quasiconvexity and rank-one
convexity. Voluminous literature on the subject has derived from Ball’s pioneering
paper. The question whether rank-one convexity generally implies quasiconvexity
was debated for a long time until finally answered, in the negative, by Sverak [1].
The idea of enlarging the system (3.3.10) is due, independently, to LeFloch and to
Qin [1], who derives the kinematical conservation laws (5.3.82), (5.3.83), albeit
only for smooth motions. Other state variables, such as det ¥~! may be used as
well, which also satisfy kinematically induced conservation laws (Wagner [3]).



Chapter VI. The L' Theory
of the Scalar Conservation Law

The theory of the scalar balance law has reached a state of virtual completeness. In
the framework of classical solutions, the elementary, yet effective, method of char-
acteristics yields a sharper version of Theorem 5.1.1, determining explicitly the life
span of solutions with Lipschitz continuous initial data and thereby demonstrating
that in general this life span is finite. Thus one has to deal with weak solutions,
even when the initial data are very smooth.

In regard to weak solutions, the special feature that sets the scalar balance
law apart from systems of more than one equation is the size of its family of
entropies. It will be shown that the abundance of entropies induces an effective
characterization of admissibe weak solutions as well as very strong L!-stability
and L*-monotonicity properties. Armed with such powerful a priori estimates,
one can construct admissible weak solutions in a number of ways. As a sample,
construction will be effected here by the method of vanishing viscosity, the theory
of L'-contraction semigroups, the layering method, an approach motivated by the
kinetic theory, and a relaxation method. It will also be shown that when the initial
data are functions of locally bounded variation then so are the solutions. Finally,
it will be explained why these methods fail in the case of systems of balance laws.

In order to expose the elegance of the theory, the discussion will be restricted
to the homogeneous scalar conservation law, even though the general, inhomoge-
neous balance law (3.3.1) may be treated by the same methodology, at the expense
of rather minor technical complications.

The issue of stability of weak solutions with respect to the topology of L™
weak* will be addressed in Chapter XV. The special case of a single space variable,
m = 1, has a very rich theory of its own, certain aspects of which will be presented
in later chapters.

6.1 The Initial-Value Problem:
Perseverance and Demise of Classical Solutions

We consider the initial-value problem for a homogeneous scalar conservation law:

6.1.1) B,Lt(x.r)+zaaga(tt(x,t))=O, xeR", tel0.T),

a=]
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6.1.2) w(x,0) =up(x), xeR".

Fora = 1.---,m, the g, are given smooth functions on R. We realize the g, as
components of a m-vector g.
A characteristic of (6.1.1), associated with a continuously differentiable solu-
tion u, is an orbit £ : [0. T) — R™ of the system of ordinary differential equations
dx, ,

6.1.3) ‘dT=ga(“(xJ))» a=1,---,m.

With every characteristic & we associate the differential operator

d

(6.1.4) =0 +;ga(u(s<r>.r))aa ,

which determines the directional derivative along &. In particular, since u satisfies
(6.1.1), du/dt = 0, i.e., u is constant along any characteristic. By virtue of (6.1.3),
this implies that the slope of the characteristic is constant. Thus all characteris~
tics are straight lines along which the solution is constant. With the help of this
property, one may study classical solutions of (6.1.1), (6.1.2) in minute detail.
In particular, for scalar conservation laws Theorem 5.1.1 admits the following
refinement:

Theorem 6.1.1 Assume that ug, defined on R™, is bounded and Lipschitz continu-
ous. Let

m

(6.1.5) k= e;gn;gf; &30 (3)Bptt0(3) .

Then there exists a classical solution u of (6.1.1), (6.1.2) on the maximal interval
[0, Two), where To, = o0 when k > 0 and Too = —x~" when k < 0. Furthermore,
ifug is C* so is u.

Proof. Suppose first Vg € HY, for £ very large, so that, by Theorem 5.1.1, the
solution u of (6.1.1), (6.1.2) exists on some maximal interval [0. Tc) and is a
smooth function. Since u is constant along characteristics, its value at any point
(x,1), x e R", 1 € [0, T,), satisfies the implicit relation

(6.1.6) u(x, ) = up(x —tg' (u(x, 1)) .

In particular, the range of u coincides with the range of uy.
Differentiating (6.1.6) yields

act ”0(,\‘)

(6]7) aal.l( , 1) = - ~ s
=0 V4135 gp(uo(3))dpuo(y)

a=1,.--,m,

where y = x —tg’(u(x,1)). Thus, by virtue of Theorem 5.1.1, T, = o0 when
k > 0and T, > —«~' when ¥ < 0. On the other hand, if x < 0 then
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derivatives of the solution along characteristics emanating from points (y, 0)
with ng’,’(uo(y))aﬁuo(y) < Kk + & < 0 will have to blow up no later than
t = —( +¢)"' Hence Toc = —x~".

When «g is merely Lipschitz continuous, we approximate it in L>(X"), via
mollification, by a sequence {«,} of smooth functions with Vu, € H¢ and

nt 1

(6.1.8) essinf Y gy (10,(¥)su, (y) >k — — .
Classical solutions of (6.1.1) with initial data u, are defined on R™ x [0, T,),
where T, > n when x > 0 and 7, > —(k — 1/n)~' when x < 0, and are
Lipschitz equicontinuous on any compact subset of R” x [0, T..). Therefore, we
may extract a subsequence which converges, uniformly on compact sets, to some
function « on R” x [0, T ). Clearly, u is at least a weak solution of (6.1.1),
(6.1.2) and, being locally Lipschitz continuous, is actually a classical solution on
[0, Tw). The limiting process also implies that u still satisfies (6.1.6) for v € R™
and t € [0. T). In particular, if up is differentiable at a point y € R” then u
is differentiable along the straight line x = y + 1g'(uo(¥)), the derivatives being
given by (6.1.7). Consequently, T is the life span of the classical solution.

When 1 is C¥, (6.1.6) together with (6.1.7) and the implicit function theorem
imply that « is also C¥ on R” x [0, T»,). This completes the proof.

From the above considerations becomes clear that the life span of classical
solutions is generally finite. It is thus imperative to deal with weak solutions.

6.2 Admissible Weak Solutions and Their Stability Properties

In Section 4.2, we saw that the initial-value problem for a scalar conservation
law may admit more than one weak solution, thus raising the need to impose
admissibility conditions. In Section 4.3, we discussed how entropy inequalities
may serve that purpose. Recall from Section 3.3 that for the scalar conservation
law (6.1.1) any smooth function n may serve as an entropy, with associated entropy
flux

(6.2.1) qa(")=/ 7@e(0do, a=1.--,m,

and entropy production zero. It will be convenient to relax slightly the regularity
condition and allow entropies (and thereby entropy fluxes) that are merely locally
Lipschitz continuous. Similarly, the g, need only be locally Lipschitz continu-
ous functions. It turns out that in order to characterize properly admissible weak
solutions, one has to impose the entropy inequality

(62.2) (. 0) + Y daGa(u(x, 1) <0

a=]

for every convex entropy-entropy flux pair:
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Definition 6.2.1 A bounded measurable function « on R" x [0, T) is an admissible
weak solution of (6.1.1), (6.1.2), with 1g in L>(R™). if the inequality

T m
(6.2.3) / / [Brt/fn(u) +Zaatlfqa(u)]dxdt +/ Y{x, 0)nlue(x))dx > 0
0 Wl .~ I Rm

holds for every convex function 5, with g, determined through (6.2.1), and all
nonnegative Lipschitz continuous test functions ¥ on R” x [0, T'), with compact
support.

Applying (6.2.3) with n(u) = %u, ¢, (1) = tg,(u) shows that (6.2.3) implies
(4.1.6), i.e., any admissible weak solution in the sense of Definition 6.2.1 is in
particular a weak solution as defined in Section 4.1. Also note that if i is a classical
solution of (6.1.1), (6.1.2), then (6.2.3) holds automatically, as an equality, i.e., all
classical solutions are admissible. Several motivations for (6.2.3) will be presented
in subsequent sections.

To verify (6.2.3) for all convex n, it would suffice to test it just for some
family of convex n with the property that the set of linear combinations of its
members, with nonnegative coefficients, spans the entire set of convex functions.
To formulate examples, consider the following standard notation: For w € R, w*
denotes max{w, 0} and sgnw stands for —1, 1 or 0, as w is negative, positive or
zero. Notice that any Lipschitz continuous function is the limit of a sequence of
piecewise linear convex functions

k
(6.2.4) colt + Z ci{u —u;)*

i=1
with¢; > 0,i =1, ---, k. Consequently, it would suffice to verify (6.2.3) for the
entropies u, with entropy flux +g,, @ = 1, -+, m, together with the family of
entropy-entropy flux pairs
(6.2.5)

n,u) = (u—-u*, guuu)=sgn(u—'*[g(u)—g @), a=1--,m.

where 1t is a parameter taking values in R. Equally well, one may use the celebrated
family of entropy-entropy flux pairs of Kruzkov:

(6.2.6)

nuity = |u—ul, gl i) =sgn(u —[ga(u) — g}, a=1,.--,m.

The fundamental existence and uniqueness theorem, which will be demon-
strated by several methods in subsequent sections, is

Theorem 6.2.1 For each uy € L®(R™), there exists a unique admissible weak
solution u of (6.1.1), (6.1.2) on [0, o0c) and

(6.2.7) u(-. 1) € C°([0, 00); L{ (R™)) .
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The following proposition establishes the most important properties of admis-
sible weak solutions of the scalar conservation law, namely, stability in L! and
monotonicity in L™:

Theorem 6.2.2 Let u and u be admissible weak solutions of (6.1.1) with respective
initial data ug and uy taking values in a compact interval [a,b]. There is s > 0,
depending solely on [a,b), such that, for any t € [0, T) and R > 0

(6.2.8) / [u(x, ) —u(x,)]tdx < / [to(x) — Up(x)]*dx .
jx]<R

|v]< R+st
(6.2.9) o t) =, Ollrge<ry < luol) = UoC)ll Lrgej<rest) -

Furthermore, if

(6.2.10) ug(x) <ug(x), ae onR”
then
6.2.11) u(x,t)y <u(x,t)y, aeonR" x[0,T).

In particular, the (essential) range of both u and U is contained in [a,b].

Proof. The salient feature of the scalar conservation law that induces (6.2.8) is that
the functions n(u; u), g, (u; u), defined through (6.2.5), constitute entropy-entropy
flux pairs not only in the variable u, for fixed u, but also in the variable u, for
fixed u.

Consider any nonnegative Lipschitz continuous function ¢ (x, t. X, 7), defined
on R™ x[0, T) xR™ x [0, T) and having compact support. Fix (%, 7) in R"™ x[0, T)
and write (6.2.3) for the entropy-entropy flux pair n(u; u(X, 1)), go(u; u(X, 1)), and
the test function ¥ (x,t) = ¢ (x,t,X,1):

T
(6.2.12) // [3,¢(x,t,f,;)n(u(x,t);fl_(f,f))
o Jan
+ Z 3., (%, 1, %, Do (ulx, 1); U(X. 7))]dxdt
a=1

+ ¢(x,0,X, Dnuo(x); u(x.1))dx 20 .
]Rm
Interchanging the roles of u and &, we similarly obtain, for any fixed (x,¢) in
R™ x [0, T):
T - -
(6.2.13) / / la,-qb(x, 1, X, O)n(u(x, 1); u(x, 1)
0 "

+ i O, ¢ (x,1,%,D)qa(u(x, 1) U, 7))]d§d?

a=}

+/ S(x. 1, %, O)n(u(x, 1); o)A 2 0 .
R’"
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Integrating over R” x [0, T) (6.2.12), with respect to (X, 1), and (6.2.13), with
respect to (x, t), and then adding the resulting inequalities yields

T T
(6.2.14)/ / / / l(B, + ) (x, t, X, Dnu(x, 1); (X, 1))
o Jr~Jo Jer

+ (B, + 0,0, 1, X, Da(u(x, 0, T(E, D) }d.rdzdfd?

a=}

T
+/ / ¢ (x.0,%, )nluo(x); u(X, 1)) dxdxdt
0 m Rnl

T
+/ / O(x, 1, %, 0)nplulx, 1); 1o (F))dxdxdt > 0 .
0 o Rm

We fix a smooth nonnegative function p on R with compact support and total
mass one:

(6.2.15) / pE)E =1.

Consider any nonnegative Lipschitz continuous test function ¥ on R™ x [0, T),
with compact support. For positive small e, write (6.2.14) with

(6.2.16) ¢(x,t,f,7>=e“"'+”‘/’(x;)?'t;t) ( )ﬂ ( _xa)
a=1

and then let ¢ | 0. Noting that

6.217) (3 + ) P(x,1,%,1)

o () ()1 (55)
€

R

(6.2.18) (3, + 5,) P(x,1,%.1)

s () (1 (552

a=|

(6.2.19) In(u(x, 1); 1o (X)) — nlue(x); Ho(EN! < lulx, t) — uo(x)! ,
(6.2.20) In(uo(x); #(X, 1)) — n(ug(x); uo(N)| < (X, 1) —up(X)| ,

recalling Theorem 4.3.1, and by standard convergence theorems, we conclude
(6.2.21)

T m
fo /R lanlf(x,t)n(u(x, DG, D) + Y B (X, Dqau(x. 1) r:(x,t))}dxdt
a=1

+/ Y (x, 0)n(uo(x); to(x))dx > 0 .
Rm
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From (6.2.5) it is clear that there is s > 0 such that

. 12
(6.2.22) |:Z |qq (1t ﬁ)l{l < sn{u; )
a=1

for all «# and i in the range of the solutions.
Fix R > 0,+r €[0,T), and ¢ > 0 small; write (6.2.21) for the test function
Y(x, 1) = x(x. 1)6(1), with x and 8 defined by (5.2.12) and (5.2.11), to get

l I+
(6.2.23) —/ / [u(x, 7) —u(x, T)]Tdxdr < / [ug(x) — Ho(x)]Tdx
& Jy |v|{<R X, <R+s1

Iy forcim+ 35
S sn(u )y + — g, {(u; L—l)}d.\'dt + O(e) .
€ Jo JR+stt-T)<x<Ris(i—1)+¢ ; |X[

On account of (6.2.22), the second integral on the right-hand side of (6.2.23) is
nonnegative. Thus, letting € | 0, recalling Theorem 4.3.1, and using that (1 — )™
is a convex function of u — i, we arrive at (6.2.8).

Interchanging the roles of « and u in (6.2.8) we deduce a similar inequality
which added to (6.2.8) yields (6.2.9).

Clearly, (6.2.10) implies (6.2.11), by virtue of (6.2.8). In particular, applying
this monotonicity property, first for /o(x) = b and then for uo(x) = a, we deduce
u(x,t) < b and u(x,t) > a ae. Interchanging the roles of « and 7, we conclude
that the essential range of both solutions is contained in [a,b]. Thus 5 in (6.2.22)
depends solely on [a,b]. This completes the proof.

From (6.2.9) we draw immediately the following conclusion on uniqueness
and finite dependence:

Corollary 6.2.1 There is at most one admissible weak solution of (6.1.1), (6.1.2).

Corollary 6.2.2 The value of the admissible weak solution at any point (X, 1) de-
pends solely on the restriction of the initial data to the ball {x € R" : |x —X| < st}.

Another important consequence of (6.2.9), recorded in the following propo-
sition, is that any admissible weak solution of (6.1.1) with initial data of locally
bounded variation is itself a function of locally bounded variation. At this point
the reader may wish to review the material in Sections 1.7 and 1.8.

Theorem 6.2.3 Let u be an admissible weak solution of (6.1.1) with initial data ug €
BVioo(R™) taking values in a compact interval [a,b]. Then u € BVioe(R” x(0.7)).
For any t € (0. T). the restriction u(-,t) of u to t is in BV,oc(R™) and

(6.2.24) TVi<rju(, t) < TVg<resitto(t)

Jor every R > 0, where s depends solely on [ab].
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Proof. Let [E,.o = |, ---, m} denote the standard orthonormal basis of R"'. Note
that, for @ = 1, - -+ . m, the function u, defined by u(x.t) = u(x+hEy. t). h > 0,
is an admissible weak solution of (6.1.1) with initial data 7y. 1o (x) = wo(x +h Eg).
Therefore, by virtue of (6.2.9), for any t € (0, T),

(6.2.25) lte(x+hEq, t)—ulx, t)|dx _<_/ lteo(x +hEL) —up(x)|dx .
Jxi<R x| <R+st

Since 1y € BVioc(R™), Theorem 1.7.1 and (1.7.2) yield that u(-,t) € BVo.(R"™)
and (6.2.24) holds.

Thus d,u(-,¢) is a Radon measure which is bounded on any ball of radius
R in R™ uniformly on compact time intervals. Since u is bounded, it follows
from Theorem 1.7.4 that 8,g,{(u(-, t)) has the same property. In particular, for
o = 1,.--,m, the distributions d,u and d,g, (1) are locally finite measures on
R™ x (0, T). Because (6.1.1) is satisfied in the sense of distributions, 3,u will
also be a measure on R” x (0, 7). Consequently, « € BV,(R™ x (0.T)). This
completes the proof.

The trivial, constant, solutions of (6.1.1) are stable, not only in L' but also in
any L?. Since 1 may be renormalized, it suffices to establish L?-stability for the
zero solutton.

Theorem 6.2.4 Let u be an admissible weak solution of (6.1.1), (6.1.2), with initial
data taking values in a compact interval [a,b). There is s > 0, depending solely on
[a,b], such that, forany 1 < p <o0,t €[0,T), and R > 0,

(6.2.26) (-, ONerge<ry < Mol Leqei<res -
Proof. For 1 < p < oo, consider the convex entropy n(u) = |u|?, with entropy

flux (¢, - - -, qm) determined through (6.2.1). Note that there is s > 0, independent
of p, such that

m 1/2
(6.2.27) [Z Iqa(u)|2:| <snpm), uclab].
a=|

Fix R > 0,1 €[0,T), and ¢ > 0 small; write (6.2.3) for the above entropy-
entropy flux pair and the test function ¥ (x, 1) = x(x, 1)8(r), with x and 6
defined by (5.2.12) and (5.2.11). This yields

l t+€ .
(6.2.28) —/ / lu(x, )| dxdt 5/ fuo(x)| dx
€ J; Ixj<R |l <R4st

1 /' / l N Xy
- sp(u) + — (,(u)]dxdt + O(e) .
€ J0 JR+st—-1)<|x| <R+s(t—1)+e ; |x|q

We know that the range of  is contained in [a,b] and so, by (6.2.27), the second
integral on the right-hand side of (6.2.28) is nonnegative. Thus, letting £ | 0 and
using that |u|” is convex, we arrive at (6.2.26). This completes the proof.
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The following sections will present various methods of constructing admissible
weak solutions of (6.1.1), (6.1.2), inducing alternative proofs of Theorem 6.1.1.

6.3 The Method of Vanishing Viscosity

The aim here is to construct admissible weak solutions of the scalar hyperbotic
conservation law (6.1.1) as the u | 0 limit of solutions of the family of parabolic
equations

6.3.1) du(x,t)+ Zauga(u(x, )y =pdulx,t). xeR", ref0.2).

a=I

where A stands for Laplace’s operator with respect to the space variables, A =
Y ey 82, and u is a positive parameter.

The motivation for this approach has already been presented in Section 4.4.
Note that (6.3.1) is not necessarily related to any specific physical model and so
the term p Au should be regarded as “artificial viscosity”.

Because (6.3.1) is parabolic, the initial value problem (6.3.1), (6.1.2) always
has a unique solution, which is smooth for t > 0 (assuming the g, are regular)
even when the initial data ug are merely in L, For example, if the derivatives
g, are Holder continuous, then the solution « of (6.3.1), (6.1.2) is continuously
differentiable with respect to ¢ and twice continuously differentiable with respect
to the space variables, on R" x (0. co).

Espousing the premise that “interesting” solutions of (6.1.1), (6.1.2) are u | 0
limits of solutions of (6.3.1), (6.1.2), provides the first justification of the notion
of admissible weak solution postulated by Definition 6.2.1:

Theorem 6.3.1 Let u, denote the solution of (6.3.1), (6.1.2). Assume that for
some sequence {pui}, with py | 0 as k — 00, {u,,} converges to some function
u, boundedly almost everywhere on R™ x [0, 00). Then u is an admissible weak
solution of (6.1.1), (6.1.2) on R™ x [0, c0).

Proof. Consider any smooth convex entropy function r, with associated entropy
flux (gy.--- . g.) determined through (6.2.1). Multiply (6.3.1) by '(u,, (x. ¢)) and
use (6.2.1) to get

(6.3.2) () + Y Bualiy) = pANG,) = un" () Y Baul® -

a=l a=l

Multiply (6.3.2) by any smooth nonnegative test function ¥, with compact
support in R™ x [0, 00), integrate over R™ x [0, 00), and integrate by parts..Takmg
into account that the last term in (6.3.2) is nonnegative yields the inequality
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(6.3.3) / / I:B,d/n(uu)-i-Zd tlfqa(u#):ldxdt-i-/ Y(x, Onue(x))dx

—u/ / AYyn(uy)dxdt .

Setting ¢ = p; in (6.3.3) and letting k — oo, we conclude that the limit u of
{u,, ) satisfies (6.2.3) for all smooth convex entropy functions n and all smooth
nonnegative test functions ¥. By completion we infer that (6.2.3) holds even when
n and ¥ are merely Lipschitz continuous. This completes the proof.

That (6.1.1) and (6.3.1) are perfectly matched becomes clear by comparing
Theorem 6.2.2 with

Theorem 6.3.2 Let u and u be solutions of (6.3.1) with respective initial data ug
and Uy that are in L' (R™) and take values in a compact interval [a,b]. Then, for
anyt > 0,

(6.3.4) / [w(x, ) —u(x, )] dx < / [teo(x) — Uo(x)]Tdx
Rm R”I

(6.3.5) leeG-r 8) —u(, Ollergry < Nuo(e) = Tl Lrmmy -

Furthermore, if

(6.3.6) up(x) <ug(x), ae onR™,
then
6.3.7) u(x,t)y <u(x,t)y, onR" x (0,00).

In particular, the range of both u and u is contained in [a,b].
Proof. From standard theory of parabolic equations follows that when ug(-), to(-)
are in L'(R™) N L>®(R™), then u(-, 1), (-, t) and their spatial derivatives of any
order are also in L'(R™) N L (R™), with norms uniformly bounded with respect
to ¢ on compact subsets of (0, o).

For ¢ > 0, we define the function 5. on R by

0 for —co<w <0

(6.3.8) ne(w) = Z_e for 0 <w < 2¢

w—¢ for 2e <w <00.

Using that both u and & satisfy (6.3.1), one easily verifies the equation
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(6.3.9) e =)+ Y dalml et — W[ga () — go (D]}

a=1

=Y 0l = Dga (1) — ga ()]0 (1 — &)
a=1

=pAn(u —u) — unl(u —u) Z[Ba(u -0J?

a=1}
Fix0 <s <t < oo and integrate (6.3.9) over R” x (s. r). Considering that the last
term on the right-hand side of (6.3.9) is nonnegative, we thus obtain the inequality

(6.3.10) ﬁ ne(u(x, t) —u(x, l))(lr—/ neulx.s) —u(x.s)dx

= Z/ / n. (u — W)[ga (1) — 8o (10)]3, (4 — Wdxdr .

Notice that n/(t — w)[g, (1) — g ()] is bounded, uniformly for ¢ > 0. Also,
as € | 0, n.(u(x.t) —u(x,t)) converges pointwise to [i(x,r) — u(x, t)]* while
n(u{x, )—u(x, ))[ga(ulx, t)) — g, ((x, t))] converges pointwise to zero. There-
fore, (6.3.10) and the Lebesgue dominated convergence theorem imply

(6.3.11) / [u(x,ty —u(x, )] dx —/ [tu(x,s) —u(x,s)]Tdx <0 .
R™ R

whence we deduce (6.3.4), by letting s | 0.

Interchanging the roles of 1 and & in (6.3.4) we derive a similar inequality
which added to (6.3.4) yields (6.3.5).

Clearly, (6.3.6) implies (6.3.7), by virtue of (6.3.4). In particular, applying this
monotonicity property, first for i7g(x) = b and then for ug(x) = a, we deduce
u(x,t) < band u(x,t) > a. Interchanging the roles of « and u, we conclude that
the range of both solutions is contained in [a,b]. This completes the proof.

Estimate (6.3.5) may be employed to estimate the modulus of continuity in the
mean of solutions of (6.3.1) with initial data in L*@®")N L'(E™).

Lemma 6.3.1 Let u be the solution of (6.3.1), (6.1.2), where ug is in L'(R™) and
takes values in a compact interval [a,b). In particular,

(6.3.12) / lg(x + ) —uo(x)ldx <w(¥. yeR",
Rul

for some nondecreasing function w on [0, 00), with w(r) { 0 as r | 0. There is a
constant ¢, depending solely on [ab], such that, for anv t > 0,

(6.3.13) / l(x + v, ) —ulx.)ldx <o(¥)). yeR™,

(6.3.14)

lu(x, t +h) —u(x. )dx < (B + uh'P)ugllpram +40®h'?) . k>0
Rm
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Proof. Fix t > 0. For any y € R™, the function u(x,t) = u(x + y,¢) is the
solution of (6.3.1) with initial data io(x) = ug(x + y). Applying (6.3.5) yields

(6.3.15) lu(x + v, t) —u(x,|dx < / |o(x + v) — up(x)|dx
Rm Rm

whence (6.3.13) follows.

We now fix A > 0. For ¢ = 1, ---,m, we normalize g, by subtracting g,(0)
so henceforth we may assume, without loss of generality, that g,(0) = 0. We
multiply (6.3.1) by a bounded smooth function ¢, defined on R™, and integrate
the resulting equation over R™ x (¢,¢ + h). Integration by parts yields

(6.3.16) / S u(x, t +h) —ulx, ))dx
Rm

t+h m
=/ / Izaacp(x)ga(u(x,t))+uA¢(x)u(x‘t) dxdrt .
i o | =

Let us set
6.3.17) vix) =ulx,t+h) —ulx,t).

To establish (6.3.14), we would wish to insert ¢(x) = sgnuv(x) in (6.3.16). How-
ever, since the function sgn is discontinuous, we have to mollify it first, with
the help of a smooth, nonnegative function p on R, with support contained in
[-m'/2, m'/?] and total mass one, (6.2.15):

(6.3.18) O(x) = / “"’/31_[ ( g )sgnv(z)d'

Notice that [d,¢| < c;h™'/ and |A¢| < c,h~%>. Moreover, by virtue of (6.3.5),
withw =0, u(, D)l p@r) < lue()ll 1@, Therefore, (6.3.16) implies

(6.3.19) / ¢ (x)v(x)dx < ch* + ph")lugl g
Rm

where ¢ depends solely on [a,b]. On the other hand, observing that
(6.3.20)
[v(x)| —~ v(x)sgn v(z) = [v(x)] - [v(2)| +[v(z) = v(x)]sgn v(z) < 2|v(x) — v(2)] .

we obtain from (6.3.18):

(6.3.21) v(x)|-¢()v(x) = fR h""/znp(xahl_,f")[Iv(X)I—v(-r)sgnv(z)]dz

/s |]_[p(sa)|v(x)—v(x— h'7E)NdE
1§ <

Combining (6.3.17), (6.3.21), (6.3.19), and (6.3.13), we arrive at (6.3.14). This
completes the proof.
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We have now laid the groundwork for presenting a

Proof of Theorem 6.2.1 Assume first that up € L>(K")NL'(R™). Let u,, denote
the solution of (6.3.1), (6.1.2). By Theorem 6.3.2 and Lemma 6.3.1, the family
{u,} is uniformly bounded and equicontinuous in the mean on any compact subset
of R™ x (0. o0). Consequently, any sequence {p}, with gy | 0 as & > o, will
contain a subsequence, denoted again by {y.}, such that {u,, } converges in Ll'oc,
as well as boundedly almost everywhere on R” x [0, o). to some function u. On
account of Theorem 6.3.1, u is an admissible weak solution of (6.1.1), (6.1.2).
Since there may exist at most one such solution (cf. Corollary 6.2.1), we conclude
that the whole family {u,} converges to u, as j¢ | 0. Furthermore, by virtue of
Lemma 6.3.1, for i > 0,

(6.3.22) / fu(x, t 4+ h) —ulx. Hldx < 0112/3||uo||,.1(_—,_,”, + 4wy,
Rm

so u(-, t) € C%[0, c0); L' (R™)).

Suppose now ug € L>(R™). For R > 0, let xg denote the function on R™,
with xg(x) = lif |x| < R and yg(x) = 0if|x] > R. Let u¥ denote the admissible
weak solution of (6.1.1), with initial data xgug € L*(E")NLIR™). As R —> oo,
Xritg — ug in L} (R™). Therefore, by account of estimate (6.2.9), the family
{u®} will converge in L] to some function u. Clearly, « is an admissible weak
solution of (6.1.1), (6.1.2). By Corollary 6.2.1, this solution is unique. Moreover,
by Corollary 6.2.2, on any compact subset of R" x [0,00), u = u® if R is
sufficiently large. Since uf(-.t) € C%(0, co); L'(R™)), it follows that u(-.r) €
CO([0. co); L}, (R™)). This completes the proof.

6.4 Solutions as Trajectories of a Contraction Semigroup

For ¢t € [0, o0), consider the map S(¢) that carries 1y € L™(R") N LY to
the admissible weak solution u of (6.1.1), (6.1.2) restricted to 1, i.e., S(t)uo(+) =
u(-, t). By virtue of the properties of admissible weak solutions demonstrated in
the previous two sections, S(t) is well-defined as a map from L=(R™)N LY(R™)
to L=(R")N L'(R™) and

6.4.1) S() =1 (the identity) ,
6.4.2) S(t+ 1) = S(S(r), foranytand in[0,00).
(6.4.3) S()ug € C°([0, 00); L'(R™)) .

(6.4.4)  (IS()uo — SOl ny < llug — Holl 1wy . for any 1 in [0, 00) .

Consequently, S(:) is a L'-contraction semigroup on L>*(R™) N LY(R™).

Naturally, the question arises whether one may construct S(-) ab initio, through
the theory of nonlinear contraction semigroups in Banach space. This would pro-
vide a direct, independent proof of existence of admissible weak solutions of
(6.1.1), (6.1.2) as well as an alternative derivation of their properties.
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To construct the semigroup, we should realize (6.1.1) as an abstract differential
equation

d
(6.4.5) d—': + A(u) 30,

for a suitably defined nonlinear transformation A, with domain & (A) and range
.#2(A) in L'(R™). This operator may, in general, be multivalued, i.e., for ¥ €
& (A), A(u) will be a nonempty subset of L'(R™) that may contain more than
one point.

For u smooth, one should expect A(u) = Y 9,g.(1). However, the task of
extending &/ (A) to u that are not smooth is by no means straightforward, because
the construction should reflect somehow the admissibility condition encoded in
Definition 6.2.1. First we perform a preliminary extension. For convenience, we
normalize the g, so that g,(0) =0, ¢ =1,-.. m.

Definition 6.4.1 The (possibly multivalged) transformation A, with domain .’/(A)
C L'(R™), is determined by u € (A) and w € A(u) if v, w and g, (1), @ =
1,--+,m, are all in L'(R") and the inequality

(6.4.6) / lza Y (xX)qa (1 (x)) + Y () @@)w(x) f dx >0

holds for any convex entropy function n, such that 5’ is bounded on R, with associ-
ated entropy flux (qy, - - -, g,,) determined through (6.2.1), and for all nonnegative
Lipschitz continuous test functions ¥ on R", with compact support.

Applying (6.4.6) for the entropy-entropy flux pairs +u, g, (), =1,---,m
verifies that

?

6.4.7) A = Zaaga(u)

a=|

holds, in the sense of distributions, for any u € < (A) In particular, Ais single-
valued. Furthermore, the identity

(6.4.8) /l; lz ¥ q. (1) + ¥y’ (1) Z 8 dx =0 .
" | e=1 a=]

which is valid for any u € Cy(R™) and every entropy-entropy flux pair, implies
that C'(R'") C J(A) In partlcular J(A) is dense in L'(R™). For u € C0 (R™),
A(u) is given by (6.4.7). Thus A is indeed an extension of 6.4.7).

The reader may have already noticed the similarity between (6.4.6) and (6.2.3).
Similar to (6.2.3), to verify (6.4.6) it would suffice to test it just for the entropies
Zu and the family (6.2.5) or (6.2.6) of entropy-entropy flux pairs.
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Definition 6.4.2 The (possibly multivalued) transformation A, with domain & (A)
C L'(R™), is the graph closure of A e, ue Z(A) and w € Au) if (. .w) is
the limit in L'(@R™) x L'(R™) of a sequence {(u, wy)} such that u; € &/ (A) and
wy € A(uy).

The following propositions establish properties of A, |mplymg that it is the
generator of a contraction semigroup on L'(R").

Theorem 6.4.1 The transformation A is accretive, that is if u and U are in 2/ (A),
then

(6.4.9) (e + Aw) ~ (0 + AW Loy = N1 =10 1 mem)
A>0, weAl), weAWw.

Proof. It is the property of accretiveness that renders the semigroup generated by
A contractive. Consequently, the proof of Theorem 6.4.1 bears close resemblance
to the demonstration of the L'-contraction estimate (6.2.9) in Theorem 6.2.2.

In view of Definition 6.4.2, it would suffice to show that the “smaller” trans-
formatlon A is accretive. Accordingly, fix u,u in _/(A) and let w = A(u),
w = A(@0). Consider any nonnegative Lipschitz continuous function ¢ on R” x R"™,
with compact support. Fix ¥ in R™ and write (6.4.6) for the entropy-entropy flux
pair n(u: u(X)), g, (u; u(x)) of the Kruzkov family (6.2.6) and the test function
Y(x) = ¢{(x,X) to obtain

(6.4.10) / sgn [u(x) — H()T)]l Y 0, B (x, Dgau(x)) ~ gu (@EF))]
R =

+¢(X..T)w(x)]d.r >0.

We may interchange the roles of « and i and derive the analog of (6.4.10), for
any fixed x in R™:

(6.4.11) / sgnfu(x) —u (X)]l Z 3, ¢ (x, D)[go (1 (X)) — gulu(x))]
B -

+¢(x.f)ﬁ(7)ldf >0.

Integrating over R” (6.4.10), with respect to X, and (6.4.11), with respect to x,
and then adding the resulting inequalities yields

(6.4.12)/ / sgn[u(x)-n(x)]lZ(a,u+3;,)¢(x.f)[ga(u(x))—ga(ﬁ(f))]
R JR a=|

+ ¢ (x, D[w(x) — T(E)]]dxd.? >0.

Fix a smooth nonnegative function p on R with compact support fmd total
mass one, (6.2.15). Take any nonnegative Lipschitz continuous test function ¥ on
R", with compact support. For positive small &, write (6.4.12) with
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x+ X\ F Xy — Xy
(6.4.13) (. X)=¢"Y < ) 0 < ) .
2 ‘1:[1 2¢e

and let ¢ | 0. Noting that

(6.4.14) (B, + )0 (1, %) = ™" ¥ <x H) [1e (xa —xa) !

2 2¢e

a=|

(6.4.15)
/ o(x) [Zautlf(x)[ga(u(x)) — g (U(xN] + Y () [w(x) — E(x)]l de >0,

a=}
where o is some function such that
=1 if u(x) > u(x)
(6.4.16) o(x){ €[-1,1] if u(x) =u(x)
=—1 if u(x) <u(x).

In particular, choosing ¢ with ¢(x) = 1 for |x| < R, y(x) = | + R — |x| for
R<|x!<R+1land ¢(x) =0 for R+ 1 < |x| < 0o, and letting R — o0, we
obtain

(6.4.17) / o(x)[w(x) —w(x)]dex >0,

for some function o as in (6.4.16).
Take now any A > 0 and use (6.4.17), (6.4.16) to conclude
(6.4.18)

I+ 20) = @+ 3D v = [ oColute) = 706) + M) = Tl
Rﬂl
> [ ol ~Twlds = lu =l

This completes the proof.

An immediate consequence (actually an alternative, equivalent restatement) of
the assertion of Theorem 6.4.1 is

Corollary 6.4.1 For any » > 0, (I + AA)7! is a well-defined, single-valued, L'-
contractive transformation, defined on the range . #2(I + LA) of I + XA.

Theorem 6.4.2 The transformation A is maximal, that is
(6.4.19) A2 +2A)=L"(R™), forany A>0.
Proof. By virtue of Definition 6.4.2 and Corollary 6.4.1, it will suffice to show that

(I + LA) is dense in L'(R™); for instance that it contains L‘A(R’") N L (R™).
We thus fix f € L'(R™)N L*(R™) and seek solutions u € & (A) of the equation
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(6.4.20) w4+ rA@W) = f .

Recall that A(u) admits the representation (6.4.7), in the sense of distributions.
Thus solving (6.4.20) amounts to determining an admissible weak solution of a
first order quasilinear partial differential equation, namely the stationary analog of
(6.1.1).

Motivated by the method of vanishing viscosity, discussed in Section 6.3, we
shall construct solution to (6.4.20) as the 4 | 0 limit of solutions of the family of
elliptic equations

n

(6.4.21) u(x) + lZBaga(Ll(x)) —phux)y=f(x), xeR™.

a=I|

For any fixed p > 0, (6.4.21) admits a solution in H>(R™). We have to show that,
as pu | 0, the family of solutions of (6.4.21) converges, boundedly a.e., to some
function 1 which is the solution of (6.4.20). The proof will be partitioned into the
following steps.

Lemma 6.4.1 Let u and it be solutions of (6.4.21) with respective right-hand sides
f and f that are in L' (R™) and take values in a compact interval [a,b]. Then

(6.4.22) / [u(x) —u(x)]Tdx < | [f(x) = feo)ltdx,
Rm

Rm
(6.4.23) e — &l gn < 0f = fllogn -

Furthermore, if

(6.4.24) . f(x) < f(x), ae onR"
then
(6.4.25) u(x) <u(x). onR".

In particular, the range of both 1 and u is contained in [a,b].

Proof. It is very similar to the proof of Theorem 6.3.2 and so it shall be left to
the reader.

Lemma 6.4.2 Let u, denote the solution of (6.4.21), with right-hand side f in
L®@®R™)y N L'(R™). Then, as it | 0, {u,} converges boundedly a.e. to the solution
u of (6.4.20).

Proof. For any y € R™, the function uy, _cleﬁned by i, (x) = u,(x + ), is a
solution of (6.4.21) with right-hand side f, f(x) = f(x + y). Hence, by (6.4.23),

(6.4.26) / Ju, (x +¥) —uyu(x)|dx < / If(x+y)— f(x)ldx .
Rm Rm
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Thus the family {u,} is uniformly bounded and uniformly equicontinuous in L.
It follows that every sequence {uy}, with yy — 0 as & — oo, will contain a
subsequence, labeled again as {4}, such that

6.4.27) u, — u, boundedly ae. on R™

where u is in L=(R™) N L'(R™).
Consider now any smooth convex entropy function 7, with associated entropy

flux (g, -, gm), determined by (6.2.1). Then u,, will satisfy the identity
(6.4.28)
n(uu. + X Z BeGuty) — wAD(u) + un’ (1) Z(aa”y)z =n'()f .
a=l1 a=|

Multiplying (6.4.28) by any nonnegative smooth test function ¥ on R™, with
compact support, and integrating over R™ yields

(6.4.29) / [xZa‘,wqa(,,#)+,/,,7/(u“)(f - u#)l dx > —u/ Ayndx .
L ot R

From (6.4.27) and (6.4.29),

m

Lo b
(6.4.30) / Z V() + ¥ (w)=(f — u)] dx >0,
i a:] A.
which shows that « is indeed a solution of (6.4.20).

By virtue of Corollary 6.4.1, the solution of (6.4.20) is unique and so the entire
family {u,} converges to u, as u | 0. This completes the proof.

Once accretiveness and maximality have been established, the Crandall-Liggett
theory of semigroups in nonreflexive Banach space ensures that A generates a
contraction semigroup S(-) on ¢ (A) = L'(R™). S(-)uy can be constructed by
solving the differential equation (6.4.5) through the implicit difference scheme

!
(6.4.31) D) = et = )]+ Aue®) 30, 1 >0,
”5(’)=u0, t<0.

For any € > 0, a unique solution u, of (6.4.31) exists on [0, o0), by virtue of
Theorem 6.4.2 and Corollary 6.4.1. It can be shown, further, that Corollary 6.4.1
provides the necessary stability to ensure that, as £ | 0, 1. () converges, uniformly
on compact subsets of [0, 00), to some function that we denote by S(-)uy.

The general properties of S(-) follow from the Crandall-Liggett theory: When
ug € 7 (A), S(Huy stays in & (A) for all 1 € [0, 0). In general, S(¢)uo may fail
to be differentiable, with respect to ¢, even when 1y € 2/ (A). Thus S(-)ug should
be interpreted as a weak solution of the differential equation (6.4.5).

The special properties of S(-) are consequences of the special properties of
A induced by the propositions recorded above (e.g. Lemma 6.4.1). The following
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theorem, whose proof can be found in the references cited in Section 6.9, summa-
rizes the properties of S(-) and, in particular, provides an altemative proof for the
existence of a unique admissible weak solution to (6.1.1), (6.1.2) (Theorem 6.2.1)
and its basic properties (Theorems 6.2.2 and 6.2.3).

Theorem 6.4.3 The transformation A generates a contraction semigroup S(-) in
LY(R™), namely, a family of maps S(t) : L'"(R™) — L'(R™), t € [0, o0), which
satisfy the semigroup property (6.4.1), (6.4.2); the continuity property (6.4.3), for
anv ug € L'(R™); and the contraction property (6.4.4), for any ugy. ug in LY(R™).
If

(6.4.32) g <up. ae onR™,
then
(6.4.33) S(Hug < SOy, ae onR™ .

For | < p < o, the sets LP(R") N LY(R™) are positively invariant under S(t)
and, for any t € [0, 00),

(6.4.34) IS(uollLe@ny < luollzr@m , for all ug € LP(R™)y N L' (R™) .

Ifug € L=@®R™) N L' (R™), then S(-)uq is the admissible weak solution of (6.1.1),
(6.1.2), in the sense of Definition 6.2.1.

The reader should note that the approach via semigroups suggests a notion
of admissible weak solution to (6.1.1), (6.1.2) for any, even unbounded, i, in
L'(R™). These are not necessarily distributional solutions of (6.1.1), unless the
fluxes g, exhibit linear growth at infinity.

6.5 The Layering Method

The admissible weak solution of (6.1.1), (6.1.2) will here be determined as the
h | 0 limit of a family {u,,} of functions constructed by patching together classical
solutions of (6.1.1) in a stratified pattern, In addition to providing another method
for constructing solutions and thereby an altemative proof of the existence The-
orem 6.2.1, this approach also offers a different justification of the admissibility
condition, Definition 6.2.1.

The initial data ug are in L>(R™), taking values in a compact interval [a, b].
The construction of approximate solutions will involve mollification of functions
on R™ by forming their convolution with a kemel A, constructed as follows. We
start out with a nonnegative, smooth function p on R, supported in [—1, 1], which
is even, p(—&) = p(£) for & € R, and has total mass one, (6.2.15). For & > 0,
we set

(6.5.1) )= (™ [e (;—‘;) .

a=l
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with
(6.5.2) p=mqyluolli~zn)

where g denotes the total variation of the function p and y is the maximum of
18" ()| over the interval [a, b]. We employ A, to mollify functions f € L*(R"):

(653 Gar DW= [ dnx=foIy . xeRT.

From (6.5.3) and (6.5.1) follows easily

(6.5.4) inf(L, % f) > essinf f . sup(k, * f) <esssup f ,
(6.5.5) 2a * fllvge<r) < U SfNersi<reymipny » forany R >0,
(6.5.6) 1300 ¢ Dllexean < 2l s« a= Lo

A somewhat subtler estimate, which depends crucially on that X, is an even
function, and whose proof can be found in the references cited in Section 6.9,
is

2
< chlixllicramll f oy

6.5.7) V X[ ) — f))dx
Rm

for all x € CF(R™).
The construction of the approximate solutions proceeds as follows. After the
parameter £ > 0 has been fixed, R" x [0, c0) is partitioned into layers:

(6.5.8) R™ x [0,00) = |_JR" x [¢h, £h +h) .

t=0

up (-, 0) is determined by
(6.5.9) (-, 0) = Ay * up() .

By virtue of (6.5.6) and (6.5.2), uy(-, 0) is Lipschitz continuous, with Lipschitz
constant w = 1/py. Hence, by Theorem 6.1.1, (6.1.1) with initial data u(-, 0)
admits a classical solution u, on the layer R™ x [0, h).

Next we determine uy(-, k) by mollifying the limit u, (-, h—) of ws(-, 1) as
tth:

(6.5.10) (R = Ay *up(c, h=) .

We extend uy to the layer R™ x [A, 2k) by solving (6.1.1) with data u,(-, k) at
t=nh.

Continuing this process, we determine 1, on the general layer [£h, £h + h) by
solving (6.1.1) with data

(6.5.11) up (-, Eh) = Xy % uy(-, £h—)
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at t = £h. We thus end up with a measurable function «;, on R™ x [0, oc) which
takes values in the interval [a. b]. Inside each layer 2" x [€h.€h + h). uy, is a
classical solution of (6.1.1). However, as one crosses the border r = £/ between
adjacent layers, u, experiences jump discontinuities, from w,, (-, £h—) to u,(-. ¢h).

Theorem 6.5.1 As hh | 0, the fumilv {u} constructed ubove converges boundedly
almost everywhere on R™ x [0. 00) to the admissible solution u of (6.1.1). (6.1.2).

The proof is an immediate consequence of the following two propositions and
uniqueness of the admissible solution, Corollary 6.2.1. The fact that the limit of
classical solutions yields the admissible weak solution provides another justifica-
tion of Definition 6.2.1.

Lemma 6.5.1 (Consistency). Assume that for some sequence {h}. with hy — 0 as
k — o0,

(6.5.12) tp (x, 1) = ulx,t), ae onR" x[0,00).

Then u is an admissible weak solution of (6.1.1), (6.1.2).

Proof. Consider any convex entropy function n with associated entropy flux
(91, -+, q,) determined through (6.2.1). In the interior of each layer, u; is a
classical solution of (6.1.1) and so it satisfies the identity

(6.5.13) anun(x.0) + Y 8ugalun(x.0) =0 .
a=|
Fix any nonnegative smooth test function ¥ on R™ x [0, T), with compact
support. Multiply (6.5.13) by v, integrate over each layer, integrate by parts, and
then sum the resulting equations over all layers to get

(6.5.14)/ /[3,1//17(11;,)-&-2Batlfqa(u;,)]dxdr-i-/ ¥ (x, 0)p(usy(x, 0))dx
o Jen R™

a=1

o0
= =3 [ Wi thlnuntx, €)= nus(x. th-)lds
t=1 VR"
Combining (6.5.11) with Jensen’s inequality and using (6.5.7) yields

(6.5.15) Yx, En)[n(un(x, Eh)) — nlup(x, Eh—=))]dx
Rm

< [ Wt o las x nun) . £h=) = s (e, h=)))dx < ChE
Rm

The summation on the right-hand side of (6.5.14) contains O (1/k) many nonzero
terms. Therefore, passing to the & — oo limit along the sequence {h} in (6.5.14})
and using (6.5.12), (6.5.9), and (6.5.15), we conclude that u satisfies (6.2.3). This
completes the proof.
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Lemma 6.5.2 (Compactness). There is a sequence {hi}, with hy — 0 as k — oo,
and a L™ function u on R™ x [0, o0) such that (6.5.12) holds.

Proof. The first step is to establish the weaker assertion that for some sequence
{h:}, by — 0 as k — oo, and a function u,

(6.5.16) up (- t)y > u(-, 1), ask-—>o00, in L*(R™) weak* ,

for almost all ¢ in [0, o0). To this end, fix any smooth test function x on R™, with
compact support, and consider the real-valued function v, on [0. 00):

(6.5.17) v, () =/ X (xX)up(x. t)dx .
Rm

Notice that v, is smooth on [£A, £k + h) and satisfies

th+h th+h
(6.5.18) / dt = /
th ¢h

th+h m
= / f D dax (X)galu(x, )dx
th R" 401

On the other hand, v, experiences jump discontinuities across the points ¢ = £h
which can be estimated with the help of (6.5.11) and (6.5.7):

—vn(t) dt

dt

—/ X(6) D Bugalu(x. )dx
R a=|

dt < Ch .

(6.5.19) v, (£h) — vy (Eh=)| = ‘/ X (O[up(x, £h) —~ uy(x, Eh—)]dx| < chH?.
Rm

From (6.5.18) and (6.5.19) follows that the total variation of v;, over any compact
subinterval of [0, oo) is bounded, uniformly in A. Therefore, by Helly’s theorem
(cf. Section 1.7), there is a sequence {h;}, by — 0 as k — oo, such that vy, (1)
converges for almost all ¢ in [0, 00).

By Cantor’s diagonal process, we may construct a subsequence of {h,}, which
will be denoted again by {A;], such that the sequence

(6.5.20) I/ X (X)up (x, t)dx
Rm

converges for almost all ¢, where x is any member of any given countable family
of test functions. Consequently, the sequence (6.5.20) converges for any x in
L'(R™). Thus, for almost any ¢ in [0, co) there is a bounded measurable function
on R”, denoted by u(-, t), such that (6.5.16) holds.

We now strengthen the mode of convergence in (6.5.16). For any v € R™, the
functions u,, and iy, [, (x, 1) = up(x +y, t), are both solutions of (6.1.1) in every
layer. Let us fix t > 0 and R > 0. Suppose ¢ € [£4, £h + h). Applying repeatedly
(6.2.9) and (6.5.5) (recalling (6.5.11)), we conclude
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(6.5.21)
/ lp(x + ¥ t) —up(x. Ddx < / ltp(x + ¥, €h) — up(x. Ch)ldx
Jx|<R x| <R+s(t—E€h)
< / liug (5 + v, €h=) — uy(x, £h=)ldx
|x[<R+s(t—Eh)+/mph
<...< / ltg(x + ¥) — ug(x)|dx .
x| <R+st+/mp(t+h)

It follows that the family {u (-, 1)} is equicontinuous in the mean on every com-
pact subset of R™. Therefore, the convergence in (6.5.16) is upgraded to strongly
in LI'OC(]R”'). Thus, passing to a final subsequence we arrive at (6.5.12). This com-

pletes the proof.

6.6 A Kinetic Formulation

Our discussion thus far has been guided by the perspective of Continuum Physics,
which, as we have seen, derives systems of field equations by combining balance
laws with constitutive relations. An alternative approach is motivated by the ki-
netic theory of matter. In the classical kinetic theory of gases, the state at the
point x and time ¢ is described by the density function f(v, x, t) of the molecular
velocity v. The evolution of f is governed by the Boltzmann equation, which mon-
itors the changes in the distribution of molecular velocities due to transport and
collisions. The connection between the kinetic and the continuum (or phenomeno-
logical) approach is established by identifying intensive quantities, like density,
velocity, pressure, temperature, heat flux etc., with appropriate moments of the
density f and showing that these fields satisfy the balance laws of Continuum
Physics presented here. Thus, in principle, one could establish existence and other
properties of solutions of (at least certain) hyperbolic systems of balance laws via
the corresponding kinetic formulation. This worthwhile research program, which
is currently in the stage of active development, lies outside the scope of the present
book. However, in order to get at least a taste of the flavor of this approach, we
shall discuss here a simple, artificial, kinetic model which is related to the scalar
conservation law and may be used to establish existence and other properties of
solutions of the initial-value problem (6.1.1), (6.1.2).

In the spirit of the kinetic theory, 1 should be the mean of a “density” function
f, which, however, is allowed to take also negative values. We thus introduce a
scalar-valued artificial “velocity” v, and write

(6.6.1) u(x,t) =/ f(u, x,t)dv .

The function f will be determined as the u | O limit of solutions of the transport
equation

m l
(6.6.2) of(v,x,t)y+ Zg;(v)aaf(v, x,t) = ;[Xu(.lur)(v) - fv,x, 0],
a=}
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where u is a small positive parameter and we are employing the notation
| f0<v<w

(6.6.3) Xu(0) = —1 fw<v<0
0  otherwise .

Readers familiar with the kinetic theory will recognize in (6.6.2) a model of the
BGK approximation to the classical Boltzmann equation. Formally at least, the
i | 0 limits of solutions of (6.6.2) will satisfy

(6.6.4) fw.x,t) = xpuennv), veR, xeR", rel0, 00),

so that f will be uniformly distributed on the interval bordered by 0 and u, with
value —1 or +1.

Before verifying that the above procedure does indeed yield admissible weak
solutions of (6.1.1), let us discuss the properties of solutions of (6.6.2), (6.6.1).

Theorem 6.6.1 Assume ug € L>®(R™) N LY(R™). For any u > 0, there exist
bounded measurable functions (f, u), with

fC 1) € C%([0,00); L'(R x R™),  u(-,1) € C°([0, 00); L'(R™) ,
which provide the unique solution of (6.6.2), (6.6.1) under the initial condition
(6.6.5) f@,x,0)=xuun®), veR, xeR".

Moreover,
(6.6.6) O0<fwx,n) <l forv=0, —-1<f(v,x,t)<0 forv<0.

Ifug € L¥(R")N LY (R™) are other initial data inducing the solution (f, @), then,
Joranyt > 0,

667 NfC D)= FC - Dlo@ern < NFC 0 = FC Ol g
(6.6.8) Neeleo t) = (-, Ol prmey < ltto() = wo()ll L1 gem) -

Furthermore, if

(6.6.9) ug(x) <uglx), xeR",

then

(6.6.10) fw,x.)< fw,x,t), veR, xeR", re[0,00),
(6.6.11) u(x,t) <u(x,t)y, xeR", 1e[0,00).

Proof. Let us realize the g,, @ = |, - - -, m, as components of a m-vector g. Taking

existence of solutions to (6.6.2), (6.6.1), (6.6.5) for granted, we integrate (6.6.2)
along characteristics dx/dt = g'(v), dv/dt = 0, to get
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!

— L ’ l — =
(6.6.12) f(v.x.0)=e€ ¥ f(x ~tg'(v),v,0)+ 1_4/8 " Xutx~(r-0)g' (v).0) (V)T .
0

By virtue of (6.6.5) and the definition (6.6.3) of x,., (6.6.12) immediately yields
(6.6.6).
If (f, u) is another solution generated by initial data i7;, we have

(6.6.13) f(v.x.1)— f(v.x,1) = e w[f(x,18'(v), v.0) — F(x — tg'(v), v. 0)]

‘
+ ;l /0 e Dute—t-ergtnn(v) = Xatx~t=og .o (V)]dT
whence
(6.6.14) £ G0 = FC D@,
<e T If 1 0) = FC - Ol azm)

|
+ ; / e ”Xu(E(r).r)(') - Xﬁ(E(r).r)(')||L‘(RxR'")dT
0

< e N fC0) = FCu - Oz ez
+ (1 - e‘ﬁ)ong?i(l HFC )= FC Ol @xrn)-

Clearly, (6.6.14) implies (6.6.7) and this in turn yields (6.6.8). In particular, there is
at most one solution to (6.6.2), (6.6.1), (6.6.5). Furthermore, the estimate (6.6.14)
implies that Picard iteration applied to the family of integral equations (6.6.12)
converges and generates the solution of (6.6.2), (6.6.1). (6.6.5).

By its definition, x,. is an increasing function of w. Therefore, it follows easily
from (6.6.13), (6.6.1) that (6.6.9) implies (6.6.10) and (6.6.11). This completes the
proof.

We now turn to the limiting behavior of solutions as u | 0.

Theorem 6.6.2 For u > 0, let (f,,u,) denote the solution of (6.6.2), (6.6.1),
(6.6.5) with ug € L*@R")y N LY(R™). As u | 0, the family (f,,u,) converges
in L} to bounded measurable functions (f, u) such that f satisfies the transport
equation

, _ v
(6.6.15) B,f(v,x,t)+az=lga(v)8af(v.x,t)—a—v ,
for some nonnegative measure v on R x R™ x [0, 00); (6.6.1) and (6.6.4) hold;
and u is the admissible weak solution of (6.1.1), (6.1.2).

Proof. The first step is to show that the family (f,,u,) is equicontinuous in the
mean. That this is the case in the v and x directions, is an immediate consequence
of the contraction property (6.6.7), (6.6.8): For any w € R and y € R", the
functions (f,.u,), f,(v.x.0) = fu(v+w, x + ¥, 0), Gu(x, ) = uu(x + 3, 1),
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provide a solution of (6.6.2), (6.6.1) with initial data ?‘,(v. X, 0) = Xupr+wy (VFHW),
and so

(6.6.16) / / | fu@@+w.x +y.1)~ fu(v,x, 1)|dvdx
R JR

< / / |Xuo(.r+y)(v + lU) - Xuo(.r)(v)ldvdx ,
" R

(6.6.17) / ly(x+ y,t) —uu(x, t)ldx < / |ug(x + y) —uo(x)idx .
o R"l

Equicontinuity in the ¢-direction is easily verified with the help of the transport
equation; the details are omitted.
Next we consider the function

(66'l8) wu(v"r' t) = / »[Xll,‘(.\’,!)(w) - fu(wv X, [)]dw .

Let us fix (x,¢), assuming for definiteness u,(x,t) > 0 (the other cases being
similarly treated). Clearly, w,(—o00, x,t) = 0. By virtue of (6.6.3) and (6.6.6),
wy (-, x, t) is nondecreasing on the interval (~o0, u,(x, t)) and nonincreasing on
the interval (u,(x, ), 00). Finally, by account of (6.6.1), w, (0, x,t) = 0. Con-
sequently, we may write

1 v
6.6.19 —[xe. — =2
( ) IJ~[X " fu] 3v

where v, is a nonnegative measure on R x R™ x [0, 00), which is bounded uni-
formly in u > 0.

It follows that from any sequence {u;}, uy — 0 as k — oo, we may extract
a subsequence, denoted again by {u;}, so that (f,,,u,,) converges in L] _ to
functions ( f, u) and v, converges weakly in the space of measures to a bounded
nonnegative measure v, Clearly, (6.6.1), (6.6.4) and (6.6.15) hold.

It remains to show that u is the admissible weak solution of (6.1.1), (6.1.2). To-
wards that end, fix any convex entropy 7, with associated entropy flux (g1, - - -, gm)
determined through (6.2.1), and take any nonnegative Lipschitz continuous test
function ¥ on R™ x [0, 0o), with compact support. Without loss of generality
(since u is bounded) assume 7(0) = 0 and 5’ is bounded on (—o0, 00). Fix
some C* function # on (—~00, 00) with support contained in [—2, 2] and equal
to 1 on [—1,1]. For k > {lugliz~, set A (v) = h(v/k). Multiply (6.6.15) by
he (V) (V)Y (x, 1), integrate over R x R™ x [0, 00) and integrate by parts. Notic-
ing that, for any continuous function p on (~00, 00) and every w € (—00, %0)

(6.6.20) / Xw(U)P(U)dU=/ p(§)ds ,
— 0

(o]

we deduce, by virtue of (6.6.4), (6.6.5) and (6.2.1),
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(6.6.21) / /R[B,l/fn(u)+Zaa'ﬁqa(u)]dxdt+/ Y (x. 0)n(uo(x))dx
0 u=1 3

=/ / /xlf[n"(v)/u(v)+n’(v)h;(u)]du(v)dxdr.
0 R JR

On the right-hand side of (6.6.21), ¥"h > 0 while A, — 0, as k — co. Hence,
letting & — oo we arrive at (6.2.3) thus verifying that u is an admissible weak
solution of (6.1.1), (6.1.2). In particular, since 1 is unique so is f. But then the
entire family (f,. u,) must be convergent, as 4 | 0. This completes the proof.

In setting up the transport equation (6.6.2), the role of the stiff term p ="' (), — f)
is to enforce, in the limit, (6.6.4) while at the same time accounting for entropy
dissipation by generating the term dv/dv on the right-hand side of (6.6.15). Any
other “collision” mechanism with the same features may be used to construct
solutions of (6.1.1), (6.1.2). In fact the following proposition is established in the
references cited in Section 6.9;

Theorem 6.6.3 A bounded measurable function u on R™ x [0, 00), with u(-, t) €
C°([0, oc); LY(R™)), is the admissible weak solution of (6.1.1), (6.1.2) if and only
if the function f defined through (6.6.4) satisfies the transport equation (6.6.15),
Jor some nonnegative measure v, together with the initial condition (6.6.5).

Up to this point we have been facing nonlinearity as an agent that provokes
the development of discontinuities in solutions starting out from smooth initial
data. It turns out, however, that nonlinearity may also play the opposite role, of
smoothing out solutions with rough initial data. In the course of the book, we
shall encounter various manifestations of such behavior. The kinetic formulation
discussed above provides valuable insight in the compactifying and smoothing
effects of nonlinearity in scalar conservation laws. Whenever the g, are constant,
i.e., (6.1.1) is linear, soluttons are as smooth as the initial data. This follows from
the discussion of Section 6.1 but also from the kinetic formulation: f is transported
along characteristics, uniformly in v (cf. (6.6.12)). By contrast, when the g, vary
with 1, mixing occurs which, averaged through (6.6.1), may improve the regularity
of u. This is quantified in the following deep theorem, whose (hard and technical)
proof is given in the references cited in Section 6.8.

Theorem 6.6.4 Assume there is r € (0, 1] and C > 0 such that

T+ i £ag, (V)

a=I

58] < Cé

(6.6.22) meas [v svl < lluolle~,

forall § € (0, 1), T € R & € R" with t? + |£|> = |. Then the admissible weak
solution 1t of (6.1.1), (6.1.2) satisfies

(6.6.23) u(-, 1) € C°(0, 00); Wil (R™))

Jor any s € (0, ﬁ).
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1t is condition (6.6.22) that encodes the aspect of nonlinearity responsible for
the regularizing effect. For example, (6.6.22) fails, for any r, when the g, are
finear, but it is satisfied, with r = 1, when the g, are uniformly convex functions,

ga(u) > 0.

6.7 Relaxation

Another interesting method for constructing admissible weak solutions of (6.1.1)
is through relaxation. The point of departure is a semilinear system of m + 1
equations,

(6.7.1)
m 1 n
Bu(x. 1) + ) Cadav(x.1) = a D fawx 1) ~ 2alx, 1)]
a=l1 a=l

0 2o (X, t) = CoOaZalx, ) = i[fa(v(.r. -], a=1-.-.m,

in the m 4+ 1 unknowns (v, 21, -+, 2m), Where u is a small positive parameter
while, for @ = 1,---,m, the c, are given constants and the f, are specified
smooth functions such that

(6.7.2) fiv) <0, —oo<v<oo, a=l-.-.m,
(6.7.3) fa0) =0, fo(v)>xoo asv— Foo, a=1,---m.

Notice that solutions of (6.7.1) satisfy the conservation law

m

(6.7.4) & [v(x,t) — Z L (x, D]+ anaa[v(x, 1)+ za(x, )] =0.
a=1 a=1

Due to the form of the right-hand side of (6.7.1), one should expect that, as u | 0.
the variables z, “relax™ to their equilibrium states f,(v), in which case (6.7.4)
reduces to a scalar conservation law (6.1.1) with!

(6'75) u=v—2fa(v) s ga(H)=Cu[U+fa(U)] » a = 11"'7’" .
a=l

The above considerations suggest a program for constructing solutions of
(6.1.1) as asymptotic limits of solutions of (6.7.1). The reader may have already
noticed the similarity of this approach with the kinetic formulation presented in
Section 6.6. In fact the analogy is not merely formal: It is possible (references
in Section 6.9) to interpret (6.7.1) as a system governing, at a mesoscopic scale,

! Ey virtpe of (6.7..2), the transformation (6.7.5), may be inverted to express v as a smooth,
increasing function of «, and it is in that sense that g,, defined by (6.7.5)z, should be
realized as function of u.
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the evolution of an ensemble of interacting particles. In that connection, the small
parameter u plays the role of mean free path.

In realizing our program, the first step is to examine the Cauchy problem for
the system (6.7.1), under assigned initial conditions

6.7.6) v(x.0) =vy(x), zg(x.0)=240(x), a=1l..--.m. xeR".

Since (6.7.1) is semilinear hyperbolic, the classical theory guarantees that when-
ever the initial data (v, 2y9, -+, Zmo) are in Cé(R’") there exists a unique classi-
cal solution (v, 2y, -+, Zn) of (6.7.1), (6.7.6), defined on a maximal time interval
[0,T), with 0 < T < oo. For any ¢ € [0, T), the functions (v(-. ), z1(-, ¢),--",
Zm(+, 1)) are in CJ(R™). Furthermore, when T < oo,

(6.7.7) o€ Ollex@m + D hzals Olli@m > 00, ast 1T .
a=1
Here we need (possibly weak) solutions, under a broader class of initial data,
which exist globally in time. Such solutions do indeed exist because, due to our
assumptions (6.7.2), (6.7.3), the effect of the right-hand side in (6.7.1) is dissipa-
tive. This is manifested in the following proposition, which should be compared
with Theorems 6.3.2 and 6.6.1:

Theorem 6.7.1 For any initial data (v, 210, * , Zmo) in LY(R™) N L®(R™), there
exists a unique weak solution (v, 2y, -+, zm) of (6.7.1), (6.7.6) on R™ x [0, o)
such that (v(-, 1), 21, 8), -+, Zm (-, £)) are in C%([0, 00); L'(R™)). If
(6.7.8)

ﬂfl’o(x)sb, fa(b)SZaO(x)Sfa(a)q Ol=l,~-,m, XERM,

then
(6.7.9) a<vx,t)<b, fob)<z(x,t) = fola),
a=1,---,m, (x,t)€R" x[0,00).
Furthermore, if (U,%1, -+, Zm) is another such solution, with initial data (o, Z10,

-+, Tmo) in LY(R™) N L®(R™), then, for any t € [0, 00),
(6.7.10) / l[v(x, 1 —T(x, 0]+ Z[Ea(x, 1) = za(x, 01" }dx
R a=1

< / l[vo(X) ~ Bo(O]* + D _[Zao(x) = 20 (0)]" }d-\' :
R a=l

(6.7.11) oG ) = ¢, Ol + Z lza (o 8) = Ta o Ol zm
a=]

< w06) = TG limm + ) 1za0() = Zoo Ol -

a=]
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In particular, if

(6.7.12)  vo(x) <To(x) . zgo(x) = Zeolx), a=1,.--,m x€eR",
then

(6.7.13)

v(x, 1) ST, 1), Zo(x 1) 2Ze(x,8), a=1,---,m, (x,1) € R"x[0,00).

Proof. The first objective is to establish (6.7.10) under the assumption that
both solutions (v.z;y,--.2,) and (T,Z7,---.Z,) are classical, with initial data
(V0. 210+ *» Zmo) and (To. Zy0. - -+, Imo) in Cy(R™). For ¢ > 0, we recall the
function 7, defined through (6.3.8) and note that

(6.7.14) 8,[775(11 -v)+ Z Ne(Za — Za)] + anaa[rle(v - T0) = ne(Go — Za)]
a=!

a=!
l m . _ _
= ; Z[r);(v —-v) - U;(Ea = 2 fe (V) ~ fu (D) + 2 — Za]
a=1

follows readily from (6.7.1). For fixed values of v, 7, 24, Zs, of any sign, the
right-hand side of (6.7.14) has a nonpositive limit as £ | 0. Therefore, integrating
(6.7.14) over R™ x (0, ) and letting & | 0 we arrive at (6.7.10).

When (6.7.12) holds, (6.7.10) immediately implies (6.7.13). Notice that, for any
constants a and b, (a, fi(a), - -, fn(a)) and (b, fi(b),---, fm(b)) are particular
solutions of (6.7.1) and hence (6.7.8) implies (6.7.9). In particular, blow-up (6.7.7)
canot occur for any T and thus the solutions exist on R™ x [0, 00).

To derive (6.7.11), it suffices to rewrite (6.7.10) with the roles of (v, 21, * -+, 2w)
and (U,Z1,- -+, Zn) reversed and then add the resulting inequality to the original
(6.7.10).

We have now verified all the assertions of the theorem, albeit within the context
of classical solutions, with initial data in C§(R™). Nevertheless, by virtue of the
L'-contraction estimate (6.7.11), weak solutions, with any initial data in L' (R™)N
L®(R™), satisfying the asserted properties, may readily be constructed as L' limits
of sequences of classical solutions. This completes the proof.

Our next task is to investigate the limiting behavior of solutions of (6.7.1) as
i 4 0. The mechanism that induces the z, to relax to their equilibrium values
fo(v) will be captured through an entropy-like inequality. We define the family

(6.7.15) Bulia) = —f Ll wdw, a=1,-.m

0
of nonnegative, convex functions on (—00, 00). Assuming (v, zy,---,Zm) IS a
classical solution of (6.7.1), with initial data (vg, z10, -, 2Zmo) in CH(R™), we

readily verify that
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l m n I
(6.7.16) 8,[51)2 +;¢a(za)] +Z_;ca8a |:§'-'2—¢a(:a):|

1 & _
== Y v = £ ) fa(¥) = 2l
K a=|
Since v — f;7!(za) = f;' (fu(¥)) = £;'(24), the mean-value theorem implies

6.7.17) =[v = £ @) fu V) — 24] 2 El[fa(v) -] .

where k is any upper bound of — £, over the range of v. Therefore, upon integrating
(6.7.16) over R™ x [0, o0) we deduce the inequality

(6.7.18) / f 3 1 (0) = zaFedxdt < ki / Bvé+2¢a<zm)]dx.
0 " a=] R a=1

As explained in the proof of Theorem 6.7.1, weak solutions of (6.7.1) are con-
structed as L' limits of sequences of classical solutions. and hence the inequality
(6.7.18) will hold even for weak solutions with initial data in L'(R"™) N L*(R").

Theorem 6.7.2 Let (v*, z‘,l, .-+, 2) denote the family of solutions of the initial-
value problem (6.7.1), (6.7.6), with parameter u > 0, and initial data (vy, f1(ve),
-+, fu(vg)), where vg is in LY(R™)NL> (R™). Then there is a bounded measurable
Junction v on R™ x [0, 00) such that, as p { 0,

6.7.19) v (x,t) — v(x,0), L. — fulox.)), a=1,.--,m,

almost everywhere on R" x [0, 00). The function
(6.7.20) u(x, ) =v(x, 0 — > falvlx, 1))
a=l

is the admissible weak solution of the conservation law (6.1.1), with flux functions
gu defined through (6.7.5), and initial data

(6.7.21) ug(x) = vo(x) — Z falvo(x)), xe€R™.
a=1
Proof. Let us set, for (x,t) € R" x [0, c0),
(6.7.22) Wh (e, 0) = vR ) = DD,
a=1
(6.7.23) gh(x, 1) = ca[v*(x, ) + 25 (x, )] -

By virtue of (6.7.4),

(6.7.24) But(x, 1) + ) gk (x.0)=0.

a=l|
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First we show that there is a bounded measurable function « on R” x [0, c0)
and some sequence {u,}, 1, | 0 as n — 00, such that

(6.7.25) (- 1)y — u(-, 1), n-—->o00,

in L*(R™) weak*, for all t € [0, 00). To that end, let us fix any test function
x € C¥(R™) and define the family of functions

(6.7.26) w (1) =[ x(u(x,dx , t€[0,00),

which, by account of (6.7.24), are continuously differentiable with derivative
(6.7.27) iw“(t) = i[ B x (X)gh(x, 1)
dt = o ot

bounded, uniformly in u > 0. It then follows from Arzela’s theorem that there
is a sequence (u,}, with u, { 0 as n — oo, such that {w#"} converges for all
t € [0,00). By Cantor’s diagonal process we may construct a subsequence of
{1, ), denoted again by {u,}, such that the sequence

(6.7.28) I[ x (xut(x, t)dx}
R!u

is convergent for all t € [0, 00) and every member x of any given countable family
of test functions. Consequently, (6.7.28) is convergent for any x € L!(R™). Thus,
for each ¢ € [0, 00) there is a bounded measurable function on R™, denoted by
u(-, t), such that (6.7.25) holds in L™ (R™) weak™.

Next we note that, by the L' contraction estimate (6.7.11), for any fixed ¢ €
[0, o0), the family of functions (v*(-, ), 2\ (-, 1), - -, T (-, 1)) is equicontinuous in
the mean. Hence, the convergence in (6.7.25) is upgraded to strongly in L'(R™).
In particular,

(6.7.29) wh(x, 1) — u(x,t), n— o0,

almost everywhere on R” x [0, 00).
We now apply (6.7.18) for our solutions (v, z}",---, z") and, passing if
necessary to a subsequence, denoted again by {u,}, we obtain

(6.7.30) JaW*" (X, 1) =" (x, ) >0, noo0, a=1,---,m,

almost everywhere on R™ x [0, 00).
Combining (6.7.22), (6.7.29) and (6.7.30), we deduce

(6.7.31) vHr(x, t) — Zfa(v“"(x,t)) - u(x,t), n-— o0,

a=1

almost everywhere on R" x [0, c0). Because of the monotonicity assumption
(6.7.2), (6.7.31) implies that the sequence {v#} itself must be convergent, say
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(6.7.32) v ) — v(x.t) . n—o o0,

almost everywhere on R™ x [0, oc), where v is a function related to u through
(6.7.20). Furthermore, (6.7.30) and (6.7.32) together imply
(6.7.33) e, ) > folv(x. 1)), n—>o00. a=1,---.m

’ s

almost everywhere on R™ x [0, 00).

By virtue of (6.7.22), (6.7.23), (6.7.24), (6.7.32) and (6.7.33), u is a weak
solution of (6.1.1), with fluxes g, defined through (6.7.5). We proceed to show
that this solution is admissible. We fix any constant T and write (6.7.14) for
the two solutions (v*r, z}". .-+, zn") and (T, fi(D), - -. fin(T)). We apply this
(distributional) equation to any nonnegative Lipschitz continuous test function
¥, with compact support on R" x [0. oc) and let € | 0. Recalling that the ¢ | 0
limit of the right-hand side of (6.7.14) is nonpositive, this calculation gives

(6.7.34) / / a,w[(v“" — T+ ) (fu®) — i) |dxdr
o Jr, por |
+/ | / D caba¥ [0 = T — (ful®) — k) * |dxdt
0 Lt

R»

+ [ i 0)[(U0 — T+ D ful®) = falto))* [dx 2 0.
a=1 -

Letting n — oo and using (6.7.32) and (6.7.33), (6.7.34) yields

(6.7.35) / / 3 [(v =)+ Y (fa(®) — fa@)* |dxdr
0 Em oy _
[ ] Y atule-9* - L@ - o) ldxd
0 " a=1

+ [ e 0)[(vo —o + Y ful®) fa(Uo))+]dX 20.
R a=l1

By account of (6.7.2), v—v and f,(T) — fo(v) have the same sign. Furthermore, if
we set ¥ = T — Y f,(¥), then v —T and u — ¥ have also the same sign. Therefore,
upon using (6.7.20), (6.7.21), and (6.7.5), we may rewrite (6.7.35) as

(6.7.36) / / [a,wn(u:m+Zaawqa(u;m]dxdt
0 JRe oy .

+ | ¥x,0n(ug; w)ydx 20,
Rm
where (n(u; @). q(u; @) is the entropy-entropy flux pair defined py £6.2.§). As
noted in Section 6.2, the set of entropy-entropy flux pairs (6.2.5), with i arbitrary,
is “complete” and hence (6.7.36) implies that (6.2.3) will hold for any entropy-
entropy flux pair (1, g) with 5 convex. This verifies that u is the admissible weak
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solution of (6.1.1), with initial data u, given by (6.7.21). Since u is unique, the
convergence in (6.7.29), (6.7.32) and (6.7.33) applies not only along the particular
sequence {u,} but also along the whole family {u}, as u § 0. This completes the
proof.

Theorem 6.7.2 demonstrates how, starting out from a given system (6.7.1), one
may construct, by relaxation, admissible solutions of a particular scalar conserva-
tion law induced by (6.7.1). Of course, we are interested in the reverse process,
namely to determine the appropriate system (6.7.1) whose relaxed form is a given
scalar conservation law (6.1.1). This may be accomplished when, given the fluxes
ga(u), it is possible to select constants ¢, in such a way that the transformations
(6.7.5) determine implicitly functions f,(v) that satisfy the assumptions (6.7.2)
and (6.7.3). Let us normalize the given fluxes by g,(0) =0, @ = I, --., m. Since
our solutions will be a priori bounded, let us assume, without loss of generality,
that the g, (1) are uniformly bounded on (—o0, 00). From (6.7.5),

m 1
(6.7.37) (m + 1)L*=u+Z:—gu(u) .
a=| ¥
Therefore, the first constraint is to fix the |c,| so large that
dv < 1
(6.7.38) (m+ D=1+ a; R ACES

in order to secure that the map v + u will possess a smooth inverse. Next we
note '

y I , du m+ 1 mor o, 1,
(6.7.39) ja(v)=—1+aga(u)5=—l+ py |:1+;agﬂ(u)] 8. (u),

so that, by selecting the |c,| sufficiently large, we can satisfy the assumptions
(6.7.2) and (6.7.3). Restrictions on ¢, which maintain that the convective char-
acteristic speeds ¢, should be high relative to the characteristic speeds g/, of the
relaxed conservation law are called subcharacteristic conditions.

6.8 The L' Theory for Systems of Balance Laws

The successful treatment of the scalar conservation law, based on L' and L>®
estimates, that we witnessed in the preceeding sections, naturally raises the expec-
tation that a similar approach may also be effective for systems of conservation
laws. Unfortunately, this does not seem to be the case. In order to gain some
insight of the difficulty, let us consider the initial-value problem (5.1.1), (5.1.2)
for a homogeneous symmetric system of conservation laws in canonical form,
on some neighborhood ¢ of the origin. In analogy to Definition 6.2.1, for the
scalar case, we shall call admissible those weak solutions of (5.1.1), (5.1.2) that
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satisfy the inequality (4.3.4) for any convex entropy 7 with associated entropy flux
... qm). The first test should be to investigate whether admissible solutions
satisfy the relatively modest stability estimate

(6.8.1) UG O erge<ry < €pllUo( Lrqxi<r4sr)

namely, the analog of (6.2.26).

Since (5.1.1) is endowed with the uniformly convex entropy n(U) = |U|?,
(6.8.1) is satisfied for p = 2, by virtue of Theorem 5.2.1. The question is whether
(6.8.1) may also hold for any p # 2, the cases p = | and p = oo being of
particular interest.

When the system (5.1.1) is linear, it is known that the following three state-
ments are equivalent: (a) (6.8.1) is satisfied for some p # 2; (b) (6.8.1) holds for
all 1 < p < o0; and (c) the Jacobians of the G, commute:

(6.8.2) DGGDGﬂ=DGﬂDGa. a‘ﬂzl....,m.

It has also been shown that if (6.8.1) is satisfied by all solutions of a quasilinear
system (5.1.1) then it must also hold for solutions of the system resulting from
linearization of (5.1.1) about any constant state. It thus follows that (6.8.2) is
necessary for (6.8.1) in the quasilinear case as well. Finally, it has been proved
that, in systems of two conservation laws, n = 2, condition (6.8.2) is also sufficient
for (6.8.1) to hold, for any 1 < p < 2, and, under additional assumptions on the
system, even for p = oc.

The above discussion suggests that only systems in which the commutativity
relation (6.8.2) holds offer any hope for treatment in the framework of L'. This
special class includes the scalar case, n = |, already considered here, and the
case of a single space dimension, m = 1, which will be discussed at length in
subsequent chapters; but beyond that it contains very few systems of (even modest)
physical interest. An example is the system with fluxes

(6.8.3) Ga(U) =g (IUHU , a=1,--.m,

which governs the flow of a fluid in an anisotropic porous medium. It would be
interesting to know whether the initial-value problem for this system is well-posed
in L.

6.9 Notes

More extensive discussion on the breakdown of classical solutions of scalar con-
servation laws can be found in Majda [3]. Theorem 6.1.1 is due to Conway [1]. For
a systematic study of the geometric features of shock formation and propagation,
see [zumiya and Kossioris [|].

There is voluminous literature on weak solutions of the scalar conservation law.
The investigation was initiated in the 1950’s, in the framework of the single space
dimension, stimulated by the seminal paper of Hopf [1], already cited in Section
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4.6. References to this early work will be provided, as they become relevant, in
Section 11.9.

The first existence proof in several space dimensions is due to Conway and
Smoller [1], who recognized the relevance of the space BV and constructed solu-
tions with bounded variation through the Lax-Friedrichs difference scheme. The
definitive treatment in the space BV was later given by Volpert [1], who was
apparently the first to realize the L' contraction property. Building on Volpert's
work, Kruzkov [1] proposed the characterization of admissible weak solutions
recorded in Section 6.2, derived the L' contraction estimate and established the
convergence of the method of vanishing viscosity along the lines of our discussion
in Section 6.3. More delicate treatment is needed when the flux is merely contin-
uous in u; see Bénilan and Kruzkov [1]. On the other hand, the analysis extends
routinely to inhomogeneous systems of balance laws (3.3.1), though solutions may
blow up in finite time when the production grows superlinearly with u; see Natal-
ini, Sinestrari and Tesei {1]. In particular, the inhomogeneous conservation law of
“transport type,” with flux g,(i,x) = f(i)ve(x), has interesting structure, espe-
cially when divv = 0; see Caginalp [1] and Otto [2]. The existence of solutions
to the initial-boundary value problem has also been established by the method of
vanishing viscosity; see Bardos, Leroux and Nédélec [1] for the BV space, Otto
[1] for the L™ space, as well as the book of Malek, Necas and Rokyta [1].

The theory of nonlinear contraction semigroups in general, not necessarily
reflexive, Banach space is due to Crandall and Liggett [1]. The application to the
scalar conservation law presented in Section 6.4 is taken from Crandall [1].

The construction of solutions by the layering method, discussed in Section 6.5,
was suggested by Rozdestvenskii [1] and was carried out by Kuznetsov [1] and
Douglis [1].

The kinetic formulation described in Section 6.6 is due to Perthame and Tadmor
[1] and Lions, Perthame and Tadmor [2]. For related results, see Brenier [1], James,
Peng and Perthame [1]. Natalini [2], Perthame (1] and Perthame and Pulvirenti
[1]. The mechanism that induces the regularizing effect stated in Theorem 6.6.4
plays a prominent role in the theory of nonlinear transport equations in general,
including the classical Boltzmann equation (cf. DiPerna and Lions [1]). Cheverry
[4] discusses regularity, in detail, by a different approach.

Relaxation phenomena are widely studied in Continuum Physics. The program
of constructing solutions to hyperbolic conservation laws via relaxation schemes
is undergoing active development. The presentation in Section 6.7 follows Kat-
soulakis and Tzavaras [1]. See also Natalini [2], and Jin and Xin [1]. Further
discussion of relaxation algorithms is found in Chapter XV.

There are several other methods for constructing solutions, most notably by
fractional stepping, spectral viscosity approximation, or through various difference
schemes that may also be employed for efficient computation. See, for example,
Bouchut and Perthame [1], Chen, Du and Tadmor [ 1], Coquel and LeFloch [1] and
Crandall and Majda [1]. For references on the numerics the reader should consult
LeVeque [1], Kroner [1] and Godlewski and Raviart [1,2].
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In addition to L' and BV, other function spaces are relevant to the theory.
DeVore and Lucier [1] show that solutions of (6.1.1) reside in Besov spaces.

The large time behavior of solutions of (6.1.1), (6.1.2) is discussed in Conway
[1]. Engquist and E [1], Bauman and Phillips [1], and Feireisl and Petzeltova [1].
Chen and Frid [1,3,4,5,7] set a framework for investigating, in general systems of
conservation laws, decay of solutions induced by scale invariance and compact-
ness. In particular, this theory establishes the long time behavior of solutions of
(6.1.1), (6.1.2) when u is either periodic or of the form uo(x) = v(|x|™'x)+w(x),
with w € L'(R™).

The proof that (6.8.2) is necessary and sufficient for (6.8.1) to hold, in sym-
metric linear systems, is due to Brenner [1]. Rauch [I] demonstrated that (6.8.2)
is necessary for (6.8.1) in the quasilinear case as well. Dafermos [19] proved that
(6.8.2) is also sufficient for (6.8.1), at least when n =2 and | < p < 2.






Chapter VII. Hyperbolic Systems of Balance Laws
in One-Space Dimension

The remainder of the book will be devoted to the study of systems of balance
laws in one-space dimension. This narrowing of focus is principally dictated by
necessity: At the present time the theory of multidimensional systems is terra
incognita. Eventually, research should turn to that vastly unexplored area, which is
replete with fascinating problems. In any event, the reader should bear in mind that
certain multidimensional phenomena, with special symmetry, like wave focussing,
may be studied in the context of the one-space dimensional theory.

This chapter introduces many of the concepts that serve as foundation of the
theory of hyperbolic systems of balance laws in one space dimension: Strict hyper-
bolicity; Riemann invariants and their relation to entropy; simple waves; genuine
nonlinearity and its role in the breakdown of classical solutions.

7.1 Balance Laws in One-Space Dimension

When m = 1, the general system of balance laws (3.1.1) reduces to
a.1.H JHWUMx, ), x. )+ 3 FU(x,t). x,t)=TU(x,1),x,1) .

Systems (7.1.1) naturally arise in the study of gas flow in ducts, vibration
of elastic bars or strings, etc., in which the medium itself is modeled as one-
dimensional. The simplest examples are homogeneous systems of conservation
laws, beginning with the scalar conservation law

(7.1.2) du+d fu)=0.

A very important example is the one-space dimensional version of the system
of balance laws (3.3.4) of adiabatic thermoelasticity, in Lagrangian coordinates.
The deformation gradient is now scalar-valued and will be denoted by u. By
virtue of (2.3.3), # = 1/p. Thus when the medium is fluid it is natural to view u
as specific volume. On the other hand, when the medium is solid, that is an elastic
bar undergoing longitudinal oscillation, 1 measures the strain. The scalar-valued
stress will be denoted by o. Note that the physical range of u is (0, 00), with o
becoming unbounded as u | 0. In this notation and under the assumption of zero
body force and heat source, (3.3.4) takes the form
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du—90,v=0
(7.1.3) v—20.0(u.s)=0

0 [s(u, s)+ %vz] — o [vo(u,s)] =0,
with
(7.1.4) o(u,s)=¢,0t.5), O(u,s)=¢;us).
The conditions (3.3.6), (3.3.7) for hyperbolicity here reduce to
(7.1.5) es(u.8) >0, &euu,s)>0,

i.e., the absolute temperature # is positive and the internal energy ¢ is convex in
u. Equivalently, ¢ is increasing in u. 0, (u, s) > 0. When the medium is fluid, it
is customnary to use pressure p = —o in the place of stress o.

In the isentropic case, (7.1.3) reduces to

ot —d,v=0
ov — 0o(u) =0,

(7.1.6)

which is hyperbolic when o’(x#) > 0. Again, in the context of gas dynamics, the
stress o in (7.1.6) is replaced by —p. This results in the so called “p-system”. As
with (7.1.3), when (7.1.6) is interpreted as governing the longitudinal oscillation
of elastic bars, the natural range of u is (0, 00), with o becoming unbounded as
u | 0. However, system (7.1.6) governs equally well the shearing motion of an
elastic layer, where v, o and u stand for velocity, shear stress and shearing, in
the direction of the motion. In that context, u is no longer constrained by u > 0
but may take any value in (—o0, 00). Accordingly, in our use of (7.1.6) as a
mathematical model we shall be assuming that ¢ is defined as a smooth monotone
increasing function on (—00, 00).

The system of conservation laws of one-dimensional isentropic flow of a ther-
moelastic fluid, in Eulerian coordinates, namely the m = 1 version of (3.3.17),
with zero body force reads

l&p+&mw=0
7.1.7)
3 (pv) + 0c[pv? + p(P)] =0,

which is hyperbolic when p’(p) > 0. In particular, when the fluid is a polytropic
gas (3.3.20), then (7.1.7) reduces to

l&p+&mw=0

(7.1.8)
3 (pv) + 0 [ov: +xp¥] =0

Another instructive example is provided by the system that governs the os-
cillation of a flexible, extensible elastic string. The reference configuration of the
string lies along the x-axis, and is assumed to be a natural state of density one.
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The motion x = x(x,) is monitored through the velocity V = 9,5 and the
stretching W = 8, x, which take values in R® or in R?, depending on whether
the string is free to move in 3-dimensional space or is constrained to undergo
planar oscillations. The tension 7 of the string is assumed to depend solely on
the length of W, which measures the stretch, v = |W|. Since the string cannot
sustain any compression, the natural range of v is [1. 20) and t is assumed to
satisfy 7(v) > 0.[z(v)/v] > 0, for v > 1. The compatibility relation between V
and W together with balance of momentum, in Lagrangian coordinates, yield the
hyperbolic system

oW -90,V=0

7.19
( ) o,V -9, [LV)W]=0.
v

Systems with interesting features govern the propagation of planar electro-
magnetic waves through special isotropic dielectrics in which the electromagnetic
energy depends on the magnetic induction B and the electric displacement D
solely through the scalar r = (B- B+ D - D)%; i.e., in the notation of Section
3.3 (), n(B, D) = ¥ (r), with ¥'(0) = 0,¢"(0) > 0, and ¥'(r) > 0, ¥"(r) > O
for r > 0. Waves propagating in the direction of the 3-axis are represented by
solutions of Maxwell’s equations (3.3.22), with J = 0, in which the fields B, D, E
and H depend solely on the single spatial variable x = x3 and on time ¢. In par-
ticular, (3.3.22) imply B; = 0 and D3 = 0 so that B and D should be regarded
as vectors in R? satisfying the hyperbolic system

aB—&[w(”AD]=0
r
(7.1.10) -
&D+&[w(rAB]=0.
r
where A denotes the alternating 2 x 2 matrix, with entries A;; = Az = 0,
Ap=-Ayn =1

Returning to the general balance law (7.1.1). it should be noted that A and/or
F may depend explicitly on x, to account for inhomogeneity of the medium. For
example, isentropic gas flow through a duct of (slowly) varying cross section a(x)
is governed by the system

! dla(x)p] + d[a(x)pv] =0

(7.1.11) ,
3 [a(x)pv] + 8, [a(x)pv? +a(x)p(p)] = a'(x)p(p)

which reduces to (7.1.7) in the homogeneous case a = constant. On the other
hand, explicit dependence of H or F on ¢, indicating “ageing” of the medium, is
fairly rare. By contrast, dependence of /T on ¢ is not uncommon, because external
forcing is generally time-dependent.

One-space dimensional systems (7.1.1) also derive from multi-space dimen-
sional systems (3.1.1), in the presence of symmetry (planar, cylindrical, radial. etc.)
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that reduces spatial dependence to a single parameter. In that case, even when the

parent, multidimensional system is homogeneous, the resulting one-dimensional

system may be inhomogeneous, to reflect multidimensional geometric effects. For

example, the one-space dimensional system governing radial, isentropic gas flow,

that results from the homogeneous Euler equations (3.3.17) is inhomogeneous:
o+ 8,00 + 220 =0

(7.1.12)

8,(ov) + 3 [0v? + p(0)] + ”—" =0.

In particular, certain multidimensional phenomena, like wave focusing, may be
investigated in the framework of one-space dimension.

7.2 Hyperbolicity and Strict Hyperbolicity

As in earlier chapters, to avoid inessential technical complications, the theory
shall be developed in the context of homogeneous systems of conservation laws
in canonical form:

(7.2.1) UM, )+ 0 F(U(x,1))=0.

F is a smooth map from an open convex subset /~ of R" to R".

Often in the applications, systems (7.2.1) govern planar front solutions U =
U(v-x,1), in the spatial direction v €. "}, of multispace-dimensional systems
of conservation laws (4.1.1). In that connection,

(7.2.2) FWU)=Y vGu(U), Uer .

a=l

Referring to the examples introduced in Section 7.1, in order to cast the system
(7.1.3) of thermoelasticity to canonical form, we have to switch from (u, v, 5) to
new state variables (u, v, e), where e = g + 3 v is the total energy. Similarly, the
system (7.1.7) of isentropic gas flow is wrltten in canonical form in terms of the
state variables (p, m), where m = pv is the momentum.

By Definition 3.1.1, the system (7.2.1) is hyperbolic if for every U € ¢ the
n x'n Jacobian matrix DF(U) has real eigenvalues ,(U) < --- < 4,(U) and

n lineary independent eigenvectors R, (U),---, R,(U). For future use, we also
introduce left (row) eigenvectors L,(U). .-, L, (U) of DF(U), normalized by
0 if i #j
(7.2.3) Li(U)YR;(U) =
Lifi=j.

Notice that the multispace-dimensional system (4.1.1) is hyperbolic if and only
if all one-space dimensional systems (7.2.1) resulting from it through (7.2.2), for
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arbitrary v € . "™~!, are hyperbolic. Thus hyperbolicity is essentially a one-space
dimensional notion.

For the system (7.1.6) of one-dimensional isentropic elasticity, in Lagrangian
coordinates, which will serve throughout as a demo for illustrating the general
concepts, we have

(7.2.4) A= —a’(u)”2 , A=dwht.
1 [ —a'()™17? ~o'(u)~"/?
(725) Rl = - , RZ = 'l' ) s
2 -1 2 1
(7.2.6) Li=(=c'w)'? =), Ly=(-a'"1).
The eigenvalue A; of DF,i = 1,-.-, n, is called the i-characteristic speed of

the system (7.2.1). The term derives from the following

Definition 7.2.1 An i-characteristic,i = 1, - - - n, of the system (7.2.1), associated

with a classical solution U, is a C! function x = x(t). with graph contained in

the domain of U, which is an integral curve of the ordinary differential equation
dx

(7.2.7) o =,U(x. 1)) .

The standard existence-uniqueness theory for ordinary differential equations
(7.2.7) implies that through any point (¥, 7) in the domain of a classical solution
of (7.2.1) passes precisely one characteristic of each characteristic family.

Characteristics are carriers of waves of various types. For example, Eq. (1.6.1),
for the general system (1.4.3) of balance laws, specialized to (7.2.1), implies that
weak fronts propagate along characteristics. As a result, the presence of multiple
eigenvalues of DF may induce severe complexity in the behavior of solutions,
due to resonance. It is thus natural to single out systems that are free from such
complication:

Definition 7.2.2 The system (7.2.1) is strictly hyperbolic if for any U € ¢ the
Jacobtan D F(U) has real, distinct eigenvalues

(7.2.8) MUY < < d(U).

By virtue of (7.2.4), the system (7.1.6) of isentropic elasticity in Lagrangian
coordinates is strictly hyperbolic. The same is true for the system (7.1.3) of adia-
batic thermoelasticity, for which the characteristic speeds are

(7.2.9) M=o, u.)?, =0, A= a,,(u,s)'/2 .
The system (7.1.8) for the polytropic gas has characteristic speeds

- -1
(7.2.10) M=v— (k) 20T . =v+kp) T,
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and so it is strictly hyperbolic on the part of the state space with p > 0. However
(strict) hyperbolicity fails at the vacuum state, p = 0.

In view of the above examples, the reader may form the impression that strict
hyperbolicity is the norm in systems arising in Continuum Physics. However,
this is not the case. It has been shown that in one-space dimensional systems
(7.2.1), of size n = %2, £3, 4 (mod 8), which result from parent three-space
dimensional systems (4.1.1) through (7.2.2), strict hyperbolicity necessarily fails,
at least in some spatial direction v € .% 2. In fact, failure of strict hyperbolicity
has been documented in many important systems, including the system governing
planar fronts in isentropic isotropic thermoelasticity, the system modelling flow in
porous media, and the system of equations of magnetohydrodynainics.

In systems of size n = 2, strict hyperbolicity typically fails at isolated umbilic
points, at which D F reduces to a multiple of the identity matrix. Even the presence
of a single umbilic point is sufficient to create havoc in the behavior of solutions.
This will be demonstrated in following chapters by means of the simple demo
system

l Bt + 3 [ +vHul =0
(7.2.1D)

o,v+ 8,\-[(112 +vHv] =0,

which is a caricature of the system (7.1.9). The characteristic speeds of (7.2.11)
are

(7.2.12) M=+t =30+ 0,

with corresponding eigenvectors

(7.2.13) R.:(_"”) : Rzz(‘;) ,

so this system is strictly hyperbolic, except at the origin (0, 0) which is an umbilic
point.

We close this section with the derivation of a useful identity. We apply D to
both sides of the equation DFR; = A, R; and then multiply, from the left, by R} ;
also we apply D to DF R, = AR, and then multiply, from the left, by RjT. Upon
subtracting the resulting two equations, we deduce

12,14 (DM ROR; — (DMR))Ry
= DF[R;, Ry] -~ };DR;R + M DRiR; , j k=1,---,n,

where [R;, R;] denotes the Lie bracket:

(7.2.15) [R;. Ri]= DR;jR, — DRR; .

In particular, at a point U € ¢* where strict hyperbolicity fails, say A;(U) = A (U).
(7.2.14) yields

(7.2.16) (DA R)R; — (DM R)Ry = (DF — A D[R;, Ri] .
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Upon multiplying (7.2.16), from the left, by L;(U) and by L,(U), we conclude
from (7.2.3):

(7.2.17) DA (UYR(U) = DA (U)R;(U)=0.

7.3 Riemann Invariants

Consider a hyperbolic system (7.2.1) of conservation laws on ¢ C R". A very
important concept is introduced by the following

Definition 7.3.1 An i-Riemann invariant of (7.2.1) is a smooth scalar-valued func-
tion w on ¢ such that

(7.3.1) DwU)Ri(Uy=0, Uecr .
For example, recalling (7.2.5), we readily verify that the functions
(1.3.2) w=—f a’(w)%dw+v , z=—f 0'(w)%dw—v

are, respectively, 1- and 2-Riemann invariants of the system (7.1.6). Similarly, it
can be shown that
1
(7.3.3) w=v+2(L)l/2pL;—I . z=v—g—(£l/—)—/ipL1__I
y -1 y—1
are 1- and 2-Riemann invariants of the system (7.1.8) of isentropic flow of a
polytropic gas.

By solving the first order linear differential equation (7.3.1) for w, one may
construct in the vicinity of any point U € ¢~ n — 1 i-Riemann invariants whose
gradients are linearly independent and span the orthogonal complement of R;. For
example, the reader may verify as an exercise that the three pairs of functions

s, _f a,,(w,s)%dw+v
(7.3.4) v,o(u,s)
s, —f 0,,(w,s)%dw—v

are, respectively, 1-, 2-, and 3-Riemann invariants of the system (7.1.3) of adiabatic
thermoelasticity.

Riemann invariants are particularly useful in systems with the following special
structure:

Definition 7.3.2 The system (7.2.1) is endowed with a coordinate system of Rie-
mann invariants if there exist n scalar-valued functions (wy, - -+, w,) on ¢ such
that, forany i, j = 1,---,n, with i # j, w; is an i-Riemann invariant of (7.2.1).
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An immediate consequence of Definitions 7.3.1 and 7.3.2 is

Theorem 7.3.1 The functions (w;. - - -, w,) form a coordinate system of Riemann
invariants for (1.2.1) if and only if

=0 ifi#j
(1.3.5) Dw;(U)R; (U) o
#£0if i=j
ie., ifand only if. for i = 1,---.n, Dw;(U) is a left eigenvector of the matrix

D F(U), associated with the characteristic speed );(U).

Assuming (7.2.1) is endowed with a coordinate system (w, - - -, w,) of Rie-
mann invariants and multiplying, from the left, by Dw;,i =1, ---, n, we reduce
this system to diagonal form:

(7.3.6) owi+rodw, =0, i=1t-.-- n

L]

which is equivalent to the original form (7.2.1), albeit only in the context of
classical solutions. The left-hand side of (7.3.6) is just the derivative of w; in the
i-characteristic direction. Therefore,

Theorem 7.3.2 Assume (w,, - -+, w,) form a coordinate system of Riemann invari-
ants for (12.1). For i = 1, --. n, w; stavs constant along every i-characteristic
associated with any classical solution U of (7.2.1).

Clearly, any hyperbolic system of two conservation laws is endowed with a
coordinate system of Riemann invariants. By contrast, in systems of size n > 3
coordinate systems of Riemann invariants will exist only in the exceptional case
where the formally overdetermined system (7.3.5), with n(n — 1) equations for the
n unknown (wj, - - -, w,), has a solution. Notice that the geometric interpretation
of (7.3.5) is that, for every fixed i = 1, ---, n, the level surface of w; at any U
is spanned by the n — | vectors R\(U),- -, Ri_1(U), Rix1(U), ---, R, (U). By
the Frobenius theorem, this may happen if and only if, for i # j # k # i, the
Lie bracket [R;, Ri] (cf. (7.2.15)) lies in the span of {Ry, -+ -, Ri_y, Riy, -+, Ru).
Consequently, the system (7.2.1) is endowed with a coordinate system of Riemann
invariants if and only if

(7.3.7) [Rj,Rk]=ajRj—akRk . Jk=1,---,n,
where «;. - - -, o, are scalar fields.
When a coordinate system (w,.---.w,) of Riemann invariants exists for
(7.2.1), it is convenient to normalize the eigenvectors R, ---, R, so that
0if i #j
(7.3.8) Dw()R;(U) =
Vifi=j.

In that case we note the identity
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Dw; DR; R = D(Dw;R)) Ry ~ R D*w; Ry

(7.3.9) =“R_,-TD21L','RA . oijk=1,-n,
which implies, in particular, Du;[R;, Ry] =0,i =1.-.- n, ie.,
(7.3.10) [Ri,R1=0. jk=1,---.n.

Recalling the identity (7.2.14) and using (7.2.15), (7.3.10), we deduce that
whenever A;(U) # A (U), DR;(U)R(U) lies in the span of {R;(U), R (U)}.
This, together with (7.3.8) and (7.3.9) yields

(71.3.11) RJ.TDZw,»Rk=—Dw,-DRij=O, i#j#k#i.
When (7.2.1) possesses a coordinate system (w, - -, w,) of Riemann invari-
ants, the map that carries U to W = (w, -+, w,)” is locally a diffeomorphism.

It is often convenient to regard W rather than U as the state vector. To avoid
proliferation of symbols, we shall be using, when there is no danger of confusion,
the same symbol to denote fields as functions of either U or W. By virtue of
(7.3.8), 3U/3w; = R; and so the chain rule yields, for the typical function ¢,

3¢

(7.3.12) ™

=D¢R, . i=1,-,n.

For example, (7.3.10) reduces to 3R, /3wy = dRy/dw; = 3?U/dw;dwy.

We proceed to derive certain identities that will help us later to establish other
remarkable properties of systems endowed with a coordinate system of Riemann
invariants. Upon combining (7.2.14), (7.2.15), (7.3.10) and (7.3.12), we deduce

IR, . .
(7.3.13) _W’i_—-gijj‘*'gijkv k=1 n; j#Fk.

where we have set

1 A,
7.3.14 & = L jk=1t,-n; j#k.
( ) 8k N — e B J J#
Notice that g;; may be defined even when A; = A, because at such points

9A;/dwy = 0, by virtue of (7.2.17) and (7.3.12). From (7.3.13),

3R, g1
~3 ,_aj = %Rf — &k (giR; + 8ijRi)
(7.3.15) Wi G . _
+ %Rk — 8 (8ki Re + gix Ri) -
Ti

Since R;, R;, R, are linearly independent for i # j# k#i,and the right-hand
side of (7.3.15) has to be symmetric in (i, k), we deduce

0gjx _ 0gji . .
(1.3.16) %=aiujk’ i#jEk#E,
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0g;; L .
(1.3.17) a—i:"-+gijgjk—gijgik+gikgkj =0, i#£j#£k#I.
k
Of the hyperbolic systems of conservation laws of size » > 3 that arise in the
applications, few possess coordinate systems of Riemann invariants. A noteworthy

example is the system of electrophoresis:

i U; .
(7.3.18) Ui + 0x— L =0, i=1,---,n,
U
j=1
where ¢} < ¢; < -+ < ¢, are positive constants. This system governs the pro-

cess used to separate n ionized chemical compounds in solution by applying an
electric field. In that context, U; denotes the concentration and ¢; measures the
electrophoretic mobility of the i-th species. In particular, U; > 0. As an exercise,
the reader may verify that the characteristic speeds of (7.3.18) are given by

(73.19) A,izﬂizl_f‘ [‘_—_l‘-..yn‘
j=1 ,

where u,, = 0 while, fori = 1,-..,n — 1, the value of u; at U is the solution of
the equation

n U n
(7.3.20) f! L=y

lying in the interval (c;, ¢;+1). Moreover, (7.3.18) is endowed with a coordinate

system (wy, - -+, w,) of Riemann invariants where

1
(7.3.21) w, = —U;

e~ ¢

j=v
while, fori =1,---,n — 1, the value of w; at U is the solution of the equation

n U

7.3.22 J =0
(1.3.22) > po—

j=1

that lies in the interval (¢;, ¢;41). In following sections we shall see that the system
(7.3.18) has very special structure and a host of interesting properties.

Another interesting system endowed with coordinate systems of Riemann in-
variants is (7.1.10), which, as we recall, governs the propagation of planar elec-
tromagnetic waves through special isotropic dielectrics. This is seen by passing
from (By, By, Dy, D7) to the new state vector (p, ¢, a, b) defind through

V2pexplia) = B, + D, — i(B, — D)

(7.3.23)
V2gexp(ib) = —B, + Dy + (B, + Dy) .
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In particular, p>+¢2 = r2. A simple calculation shows that, at least in the context
of classical solutions, (7.1.10) reduces to

o p+ 0y [‘/f ) p] =0
r

(7.3.24) )
0, — Oy [V/ (r)z/] =0,
r
o,a + w—(r—)a,u =0
(7.3.25) !
b — ‘/’r(r)axb =0.

Notice that (7.3.24) constitutes a closed system of two conservation laws, from
which p,q, and thereby r, may be determined. Subsequently (7.3.25) may be
resolved, as two independent nonhomogeneous scalar conservation laws, to deter-
mine a and b. In particular, a and b together with any pair of Riemann invariants
of (7.3.24) will constitute a coordinate system of Riemann invariants for (7.1.10).

7.4 Entropy-Entropy Flux Pairs

Entropies play a central role in the theory of hyperbolic systems of conservation
laws in one-space dimension. Adapting the discussion of Section 3.2 to the present
setting, we infer that functions n and ¢ on ¢~ constitute an entropy-entropy flux
pair for the system (7.2.1) if

(7.4.1) Dq(U) = Dp(U)DF(U). Uel .
Furthermore, the integrability condition (3.2.4) here reduces to
(7.4.2) D*p(U)DF(U) = DFWU)"D*p(U)y, Uer .

Upon multiplying (7.4.2) from the left by R;(U)7 and from the right by R.(U),
J # k, we deduce that (7.4.2) is equivalent to

(7.4.3) R DR (U) =0, jk=1.---.n; j#k,

with the understanding that (7.4.3) holds automatically when A;(U) # A«(U) but
may require renormalization of eigenvectors R; associated with multiple charac-
teristic speeds. Note that the requirement that some entropy 7 is convex may now
be conveniently expressed as

(7.4.4) - R D'n(UHR;j(U) >0, j=1,---,n.
When the system (7.2.1) is symmetric,

(7.4.5) DFUY =DFWU), Uec,
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it admits two interesting entropy-entropy flux pairs:

(7.4.6) n= %UTU ., g=UTFWU)-hU),

1
(7.4.7) n=hU), q=3FOFU),
where 4 is defined by the condition
(74.8) Dh(U) = F(U)" .

As explained in Chapter III, our model systems (7.1.3), (7.1.6). (7.1.8) are
endowed with entropy-entropy flux pairs, respectively,

(7.4.9) n=-s. q=0,
(7.4.10) n= %vz + W), g=-vo@), X@u)= f o(wdw ,

I 1 Ky
4.11 — —p1? v = —ov +
7 ) n 2/01 + lp S 2/0 0

prv.

induced by the Second Law of thermodynamics. When expressed as functions of
the canonical state variables, that is (i, v, e) for (7.4.9), (u.v) for (7.4.10), and
(p, m) for (7.4.11), the above entropies are convex.

In developing the theory of systems (7.2.1), it will be very useful to be able to
construct entropies with given specifications. These must be solutions of (7.4.2),
which is a linear, second order system of %n (n — 1) partial differential equations in
a single unknown 7. Thus, when n = 2, (7.4.2) reduces to a single linear hyperbolic
equation that may be solved to produce an abundance of entopies. By contrast, for
n > 3, (7.4.2) is formally overdetermined. Notwithstanding the presence of special
solutions like (7.4.6) and (7.4.7), one should not be expecting an abundance of
entropies, unless (7.2.1) is special. It is remarkable that the overdeterminacy of

(7.4.2) is nullified when (7.2.1) is endowed with a coordinate system (w, - - -, w,)
of Riemann invariants. In that case it is convenient to seek n and g as functions
of the state vector W = (w), - - -, w,)". Upon multiplying (7.4.1), from the right,
by R;(U) and using (7.3.12), we deduce that (7.4.1) is now equivalent to
(7.4.12) 8—q=kja—”, j=11-.n.

8wj 8wj

The integrability condition associated with (7.4.12) takes the form

2

°n an an
7.4.13 + g — i — =0, jk=1l,---.n; j#k,
( ) dw;dwy Bik ow; + 8 dwy J " /#

where gji, gi; are the functions defined through (7.3.14). An alternative, useful
expression for g;; obtains if one derives (7.4.13) directly from (7.4.3). Indeed, for
k=1 n,
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R} D*nR. = D(DnR;)R. — DnDR;R,
7.4.14
(7.4.14) = D(DnR;)Ry — Z—”Dw,DR Re .

Combining (7.4.3), (7.3.12), (7.3.10) and (7.3.9), we arrive at an equation of the
form (7.4.13) with

(7.4.15) gk =RTD'wiRe, jk=1V,---n; j#k.

The reader may verify directly, as an exercise, with the help of (7.2.14), (7.3.8),
(7.3.11), (7.3.10), (7.3.9) and (7.3.12) that (7.3.14) and (7.4.15) are equivalent.

Applying (7.4.14) with k = j, using (7.3.12), (7.3.9) and recalling (7.4.4),
we deduce that, in terms of Riemann invariants, the convexity condition on 7 is
expressed by the set of inequalities

n & an
7.4. — v . J=bLeen,
(7.4.16) 07 +;“faw,» 20, j=1-n
where
(74.17) aj =RID’w;R;, i, j=1--.n.

The system (7.4.13) contains %n(n — 1) equations in the single unknown 75
and thus looks overdetermined when 1 > 3. It turns out, however, that this set
of equations is automatically compatible. To see this, differentiate (7.4.13) with
respect to w;, i # j # k £ i, to get

¥n _ dgix I dn e 377)
Bwiawjaw,\ ow; E)wJ ~ &k g”a| an:

dgij O an 377)
+ —'"—‘ 8kj | ki T 3w + 8ik Bw, .

(7.4.18)

The system (7.4.13) will be integrable if and only if, for i # j # k # i, the
right-hand side of (7.4.18) is symmetric in (i, j, k). But this is always the case, by
account of the identities (7.3.16) and (7.3.17). Consequently, in a neighborhood of
any given point W= (w,, . W,)" in state space, there exists a umque entropy
n with arbitrarily prescribed values {n(w,, Wz, -, Wy). n(W1, W2. -+, Wa), -
ny, -, Wyp—y, wy,)) along straight lines parallel to the coordinate axes. When
n = 2, this amounts to solving a classical Goursat problem.

We have thus shown that systems endowed with coordinate sets of Riemann
invariants are also endowed with an abundance of entropies. For this reason, such
systems are called rich. In particular, the system (7.3.18) of electrophoresis and
the system (7.1.10) of electromagnetic waves are rich, The reader will find how
to construct the family of its entropies in the references cited in Section 7.9.
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7.5 Genuine Nonlinearity and Linear Degeneracy

The feature distinguishing the behavior of linear and nonlinear hyperbolic systems
of conservation laws is that in the former, characteristic speeds being constant,
all waves of the same family propagate with fixed speed; while in the latter wave
speeds vary with wave-amplitude. As we proceed with our study, we will en-
counter various manifestations of nonlinearity and in every case we shall notice
that its effects will be particularly pronounced when the characteristic speeds A;
vary in the direction of the corresponding eigenvectors R;. This motivates the
following

Definition 7.5.1 For the hyperbolic system (7.2.1) of conservation laws on ¢~ , U €
7 is called a point of genuine nonlinearity of the i-characteristic family if

(7.5.1) DL (YR (U)Y#0,
or a point of linear degeneracy of the i-characteristic family if
(7.5.2) DM (U)R(U)=0.

When (7.5.1) holds for all U € ¢, i is a genuinely nonlinear characteristic
Jamily while if (7.5.2) is satisfid for all U € ¢, then i is a linearly degenerate
characteristic family. When every characteristic family is genuinely nonlinear,
(7.2.1) is a genuinely nonlinear system.

It is clear that the i-characteristic family is linearly degenerate if and only if
the i-characteristic speed A; is constant along the integral curves of the vector
field R;.

The scalar conservation law (7.1.2), with characteristics speed A = f'(u), is
genuinely nonlinear when f has no inflection points: f”(u) # 0. In particular, the
Burgers equation (4.2.1) is genuinely nonlinear.

Using (7.2.4) and (7.2.5), one readily checks that the system (7.1.6) is gen-
uinely nonlinear when o” () # 0. As an exercise, the reader may verify that the
system (7.1.7) is genuinely nonlinear if 2p’(p) + pp”(p) > 0 so, in particular, the
system (7.1.8) for the polytropic gas is genuinely nonlinear.

By account of (7.2.9), the 2-characteristic family of the system (7.1.3) of
thermoelasticity is linearly degenerate. It turns out that the other two characteristic
families are genuinely nonlinear, provided oy, (i, s) # 0.

The system (7.1.9) of planar oscillations of elastic strings possesses four char-
acteristic families. Two of them, associated with transverse oscillations with char-
acteristic speeds +./7 (v)/v are linearly degenerate. The other two, associated
with longitudinal oscillations with characteristic speeds +./7'(v) are genuinely
nonlinear when 7”(v) # 0 and linearly degenerate when T is a linear function
of v. Similarly, the l-characteristic family of the system (7.2.11) is linearly de-
generate, while the 2-characteristic family is genuinely nonlinear, except at the
origin.
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Finally, in the system (7.3.18) of electrophoresis the n-characteristic family is
linearly degenerate while the rest are genuinely nonlinear.

Quite often, linear degeneracy results from the loss of strict hyperbolicity.
Indeed, an immediate consequence of (7.2.17) is

Theorem 7.5.1 In the hyperbolic system (7.2.1) of conservation laws, assume that
the j- and k-characteristic speeds coincide: };(U) = M\ (U), U € ¢-. Then both
the j- and the k-characteristic families are linearly degenerate.

When the system (7.2.1) is endowed with a coordinate system (w,, -- -, w,)
of Riemann invariants and we use W = (w,---, w,)7 as our state vector, the
conditions of genuine nonlinearity and linear degeneracy assume an elegant and
suggestive form. Indeed, upon using (7.3.12), we deduce that (7.5.1) and (7.5.2)
are respectively equivalent to

oA
(1.5.3) =20
8u',»
and
(7.5.4) % _
Bw,

7.6 Simple Waves

In the context of classical solutions, the scalar conservation law (7.1.2), with
characteristic speed . = f’(u), takes the form

(7.6.1) oulx, )+ A(u(x,t))ou(x,t)=0.

As noted already in Section 6.1, by virtue of (7.6.1) u stays constant along charac-
teristics and this, in turn, implies that each characteristic propagates with constant
speed, i.e., it is a straight line. It turns out that general hyperbolic systems (7.2.1)
of conservation laws admit special solutions with the same features:

Definition 7.6.1 A classical, C' solution U of the hyperbolic system (7.2.1) of
conservation laws is called an i-simple wave if U stays constant along any i-
characteristic associated with it.

Thus a C' function U, defined on an open subset of R? and taking values in
(7, is an i-simple wave if it satisfies (7.2.1) together with

(7.6.2) U, )+ 2 (U(x.1))o,U(x,t)=0.

In particular, in an i-simple wave each i-characteristic propagates with constant
speed and so it is a straight line.
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If U is an i-simple wave, combining (7.2.1) with (7.6.2) we deduce
o Ux.t)=a(x, R (U(x,1))

(7.6.3)
3 U(x, 1) = —alx, DL (U, )R(U(x, 1)),

where a is a scalar field. Conversely, any C' function U that satisfies (7.6.3) is
necessarily an /-simple wave.

It is possible to give still another characterization of simple waves, in terms
of Riemann invariants:

Theorem 7.6.1 A classical, C' solution U of (1.2.1) is an i-simple wave if and
only if every i-Riemann invariant is constant on each connected component of the
domain of U.

Proof. For any i-Riemann invariant w, 9, w = Dwd, U and o,w = Dwo,U. If
U is an i-simple wave, d,w and 8,w vanish identically, by virtue of (7.6.3) and
(7.3.1), so that w is constant on any connected component of the domain of U.

Conversely, recalling that the gradients of /-Riemann invariants span the or-
thogonal complement of R;, we infer that when 8,w = Dwd, U vanishes iden-
tically for all i-Riemann invariants w, 9,U must satisfy (7.6.3);. Substituting
(7.6.3); into (7.2.1) we conclude that (7.6.3); holds as well, i.e. U is an i-simple
wave. This completes the proof.

Any constant function U = U qualifies, according to Definition 7.6.1, to be
viewed as an i-simple wave, for every i = |, ---, n. It is expedient, however, to
refer to such trivial solutions as constant states and reserve the term simple wave
for solutions that are not constant on any open subset of their domain. The follow-
ing proposition, which demonstrates that simple waves are the natural neighbors
of constant states, is stated informally, in physical rather than mathematical ter-
minology. The precise meaning of assumptions and conclusions may be extracted
from the proof.

Theorem 7.6.2 Any weak front moving into a constant state propagates with con-
stant characteristic speed of some family i. Furthermore, the wake of this front is
necessarily an i-simple wave.

Proof. The setting is as follows: The system (7.2.1) is assumed strictly hyperbolic.
U is a classical, Lipschitz solution which is C' on its domain, except along the
graph of a C' curve x = x(¢). U is constant, U, at any point of its domain
lying on one side, say to the right, of the graph of x. By contrast, 3,U and 8,U
attain nonzero limits from the left along the graph of x. Thus, according to the
terminology of Section 1.6, x is a weak front propagating with speed x = dx/dt.
In particular, (1.6.1) here reduces to

(7.6.4) (DF(U) - x HD[3U/3N]1 =0,

which shows that x is constant and equal to A;(U) for some i.
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Next we show that to the left of, and sufficently close to, the graph of x
the solution U is an i-simple wave. By virtue of Theorem 7.6.1, it suffices to
prove that n — | independent i-Riemann invariants, which will be denoted by
Wy, e, Wimy, Wiy, -+, Wy, are constant.

For U near U, the n — | vectors {Dw(U). - -, Duw;_(U), Dw; . (U). -,
Dw,(U)} span the orthogonal complement of R;(U/) and so do the vectors
{LyU),---, Liy(U), Ly (U), -+, Ly(U)}. Consequently, there is a nonsingular
(n — 1) x (n — 1) matrix B(U) such that

(7.65)  LiU)=)Y Bp(U)Dw(U), j=1-i=1i+1,--,n.
ki

Multiplying (7.2.1), from the left, by L;(U) yields
(7.6.6) Ly U + 2L U=0, j=1,---,n.
Combining (7.6.5) with (7.6.6), we conclude

(1.67) Y Bydwe+ Y ABpdewe =0, j=1 - i—Li+l---.n.
ki ki .

We regard (7.6.7) as a first order linear inhomogeneous system of n— 1 equations in
the n—1 unknowns wy, - - -, wj_y, Wiy, - - -, wy. In that sense, (7.6.7) is strictly hy-
perbolic, with characteristic speeds A, -+ -, Ai_1, Aiy1, -+ -, A,. Along the graph of
X, the n — | Riemann invariants are constant, w,(U), - - -, wj-1(U). wi 1, (U). - - -,
w, (U). Also the graph of x is non-characteristic for the system (7.6.7). Con-
sequently, the standard uniqueness theorem for the Cauchy problem for linear
hyperbolic systems implies that (7.6.7) may admit only one solution compatible
with the Cauchy data, namely the trivial one: w; = w; @), -+, wi—y = wi—1({U),
Wiy = wi (U), -+, w, = wy(U). This completes the proof.

At any point (x,¢) in the domain of an i-simple wave U of (7.2.1) we let
&(x, ) denote the slope at (x, £) of the i-characteristic associated with U, i.e.,

(7.6.8) E(x, 1) =X (Ulx,0)) .
The derivative of § in the direction of the line with slope £ is zero, that is
(7.6.9) QE+EDE=0.

Thus & satisfies the Burgers equation (4.2.1).

In the vicinity of any point (x,7) in the domain of U, we shall say that
the i-simple wave is an i-rarefaction wave if 9.£(x,t) > 0, i.e., when the i-
characteristics diverge, or an i-compression wave if 3,£(x,f) < 0, i.e,, when
the i-characteristics converge. This terminology originated in the context of gas
dynamics.

Since in an i-simple wave U stays constant along i-characteristics, on a small
neighborhood .#" of any point (X, 7) where 3,£(x, 7) # 0 we may use the single
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variable £ to label U, i.e., there is a function V;, defined on some open interval
(€ — &, E +¢). with £ = A (U(X, 1)), taking values in ¢ and such that

(7.6.10) U(x,t) = Vi(§(x, 1)), (x,)e .2 .
Furthermore, by account of (7.6.3) and (7.6.8), V; satisfies
(7.6.11) ViE)=bER(VE), tecE—ceE+e),
(7.6.12) MVig) =¢. teE-ek+o),

where b is a scalar function and an overdot denotes derivative with respect to &.

Conversely, if V; satisfies (7.6.11), (7.6.12) and § is any classical C' solution
of the Burgers equation (7.6.9) taking values in the interval (E — &, + ¢), then
the composition U = Vi(§(x, 1)) is an i-simple wave. The above considerations
motivate the following

Definition 7.6.2 An i-rarefaction wave curve in the state space R", for the hyper-
bolic system (7.2.1), is a curve U = V;(-), where the function V; satisfies (7.6.11)
and (7.6.12).

Rarefaction wave curves will be one of the principal tools for solving the
Riemann problem in Chapter IX. The construction of these curves is particularly
simple in the neighborhood of points of genuine nonlinearity:

Theorem 7.6.3 Assume U € € is a point of genuine nonlinearity of the i-
characteristic family of the hyperbolic system (1.2.1) of conservation laws. Then
there exists a unique i-rarefaction wave curve V; through U. If R; is normalized
on a neighborhood of U through

(7.6.13) DLMUHRU) =1,

and V; is reparametrized by T = £ — E, where € = A;(U), then V; is the solution
of the ordinary differential equation

(7.6.14) Vi = Ri(V)

with initial condition Vi(0) = U. The more complicated notation Vi(v; U) shall
be employed when one needs to display the point of origin of this rarefaction wave
curve.

Proof. Any solution V; of (7.6.14) clearly satisfies (7.6.11) with b = |. At £ =E,
ie. T =0,A(V)) = &(U) = &. Furthermore, A;(V;) = DA;(Vi)V; = 1, by virtue
of (7.6.14) and (7.6.13). This establishes (7.6.12) and completes the proof.

By contrast, when the i-characteristic family is linearly degenerate, differenti-
ating (7.6.12) with respect to £ and combining the resulting equation with (7.6.11),
yields a contradiction: 0 = 1. In that case, i-characteristics in any i-simple wave
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are necessarily parallel straight lines. It is still true, however, that any i-simple
wave takes values along some integral curve of the differential equation (7.6.14).

Motivated by Theorem 7.6.1, we may characterize rarefaction wave curves in
terms of Riemann invariants:

Theorem 7.6.4 Every i-Riemann invariant is constant along any i-rarefaction wave
curve of the system (1.2.1). Conversely, if U is any point of genuine nonlinearity of
the i-characteristic family of (7.2.1) and wy, - - . w;_ —1+ Wiy, -+ -, Wy are indepen-
dent {-Riemann invariants on some nelghborhood of U, then the i-rarefaction curve
through U is determined lmplzcztlv by the system of equations w;(U) = u ,(U ),
j=1,li-1i+1],

Proof. Any i-rarefaction curve V; satisfies (7.6.11). If u is an i-Riemann invariant
of (7.2.1), multiplying (7.6.11), from the left, by Du(V;(£)) and using (7.3.1)
yields w(V;(§)) = 0, i.e., w stays constant along V;.

Assume now wy, -+, Wiy, W4+, -+, W, are i-Riemann invariants with Duw;,
, Dwi_1, Dwiy, - -+, Dw,I linearly independent. Then the n — I surfaces
w;(U) = wy(U), j =1,---.i—1,i+1,---.n, intersect transversely to form

a C! curve V; through U parametnzed by arc-length s. whose tangent V, must
satisfy, by account of Definition 7.3.1, V (8) = c(s)R;(V (s)), for some nonzero
scalar function c. For as long as V; is a point of genuine nonlinearity of the
i-characteristic field, A;(Vi) = D\; V,.' = ¢DMR; # 0. We may thus find the
proper parametrization s = s(§) so that V; satisfies both (7.6.11) and (7.6.12).
This completes the proof.

As an application of Theorem 7.6.4, we infer that the 1- and 2-rarefaction
wave curves of the system (7.1.6) through a point (. 7), with ¢”() # 0, are
determined, in terms of the Riemann invariants (7.3.2), by the equations

(7.6.15) v="7 +f_ Vo'(wdew, v=1 ——‘/_ Vo'(wdoe .

When the system (7.2.1) is endowed with a coordinate system (w;.---. w,)
of Riemann invariants and we use W = (w,.---,wy,)7, instead of U, as our
state variable, the rarefaction wave curves assume a very simple form. Indeed,
by virtue of Theorem 7.6.4, the i-rarefaction wave curve through the point W =
(@y, -+, Wa)T is the straight line w; = w;, j # i, parallel to the i-axis.

7.7 Breakdown of Classical Solutions

When the system (7.2.1) is equiped with a convex entropy, Theorem 5.1.1 guaran-
tees the existence of a unique, locally defined, classical solution, with initial data
Us in the Sobolev space H?. In one-space dimension, however, there is a sharper
existence theory which applies to quasilinear hyperbolic systems in general, not
necessarily conservation laws, and does not rely on the existence of entropies:
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Theorem 7.7.1 Let Uy be a C' function, defined on (—o0, o0) and taking values in
a ball of R" with closure contained in - . Assume, further, that dUy/dx is bounded
on (—00, 00). Then there exists a unique C' function U defined on (—00. 00) x
[0, Tso), for some To., 0 < To. < o0, and taking values in *, which satisfies
(7.2.1) on (=00, 00) x (0, Ty) together with the initial condition U (x, 0) = Uy(x)
on (—o0, 00). Furthermore, the interval [0, Tx) is maximal in the sense that if
Too < 00, then, as t 1 Tx, 8. UC, D)llex — oo and/or the range of U(-.1)
escapes from every compact subset of (- .

The proof of the above theorem, which may be found in the references cited in
Section 7.9, relies on pointwise bounds for U and 9, U obtained by monitoring the
evolution of U and its derivatives along characteristics. Estimates of this nature wilt
be established below but they will not be employed for establishing the existence
of classical solutions but rather for demonstrating that classical solutions break
down in finite time.

In Section 6.1, we saw that, in any number of space dimensions, classical
solutions of the scalar conservation law generally break down in finite time, as
a result of collisions of characteristics. This effect is particularly pronounced in
one-space dimension, in which characteristics have less room to manoeuver and
are thus forced to collide. Breakdown of this nature is not peculiar to scalar
conservation laws but occurs in general systems (7.2.1) as well. Indeed, in Section
7.6 we saw that (7.2.1) admits i-simple wave solutions U which obtain by taking
the composition (7.6.10) of a (smooth) solution V; to the ordinary differential
equation (7.6.11) with a classical solution & to Burgers’ equation (7.6.9). When
the solution of (7.6.9) breaks down, so does the i-simple wave. Below we shall
look into this phenomenon more closely and, in particular, we shall investigate
the effect of interactions of simple waves of different characteristic families.

Any classical, C? solution U of (7.2.1) on (=00, 00) x [0, T) may be written
as

.U =) a;Ri(U)
(7.7.1) =t
QU == a;d;(U)R;(U)
j=1
with
(71.7.2) a=LUWU, j=1,--,n.

In view of (7.6.3), one may interpret (7.7.1) as a decomposition of U into simple
waves, one for each characteristic family, with respective strength a;, - - -, a,. Our

aim is to study the evolution of a; along the i-characteristics associated with U.
We let

d
(7.1.3) i 0, + Ai0x
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denote differentiation in the i-characteristic direction. Combining (7.7.2) with
(7.7.1) yields
da; = L;8,0,U +93,UTDLT3,U

= 8:(L;3,U) - 3,UT DL, U +3,.U" DLT 3,U

(7.7.4) )
=3.(Lid,U) + Y _ (4; — MIR! DL] Reajay
jk=l
Aidea; = O (A LideU) — (DA, UY(L;8,U)
7.1.5 d
( ) = 0,(;L;9,U) - Z (D) R))éiajay
jk=1

where §;; is the Kronecker deita. From (7.2.1), L;3,U + A;L;8,U = 0. Also, by
virtue of (7.2.3), RY DLT R = — L; DR; Ry Therefore, combining (7.7.3), (7.7.4),
(7.7.5) and symmetrizing we conclude

da,~ 1 '
(7.7.6) = Z_ ¥ijka;ax
J.k=1
with
|
(7.7.7 Yijk = —E(lj = M)Li[R;, Re] — (DA Rj)éi

where [R;, R;] denotes the Lie bracket (7.2.15). Note, in particular, that
(7.7.8) Yii = —DMR;

It is clear that in any argument showing blow-up of a; through (7.7.6), the
coefficient y,; will play a pivotal role. By virtue of (7.7.8), yiu never vanishes
when the /-characteristic family is genuinely nonlinear, and vanishes identically
when the i-characteristic family is linearly degenerate.

To gain some insight, let us consider first the case where U is just an {-simple
wave, i.e., a; # 0 and a; = 0 for j # i. In that case, (7.7.6) reduces to
(7.7.10) ‘% = yiia? .

Furthermore, since U is constant along characteristics, y;;; in (7.7.10) is a constant.
When y;;; # 0 and a; has the same sign as y;;;, (7.7.10) induces blow-up of a; in
a finite time.

Another noteworthy special case is when the system (7.2.1) is endowed with
a coordinate system (w, - - -, w,) of Riemann invariants. In that case L; = Dw;
and so, by (7.7.2),

(1.7.11) aj = d,w; .
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Moreover, in virtue of (7.7.7), (7.3.10) and (7.3.12), (7.7.6) reduces to

dai u 8).,
(7.7.12) - = —j; a0, 4

We seek an integrating factor for (7.7.12). If ¢ is any smooth scalar function of
U, we get from (7.7.1):

d
d_‘f’ = DPBU +Aid U)= Y (ki — };)(DPR))a;

(7.7.13) # 8¢
= Z(K, - A.j)ﬂﬂj .
i# i
Combining (7.7.12) with (7.7.13) yields
d ax; oA ¢
(7.7.14) Z(e‘”a,») = —e‘”—ai2 - Ze"’ [— ~ (& — A.j)a—wj] aia; .

Bw,» per 3wj
From (7.3.14) and (7.3.16), follows that there exists ¢ which satisfies

80 1 AN

7.7.15 = —.
( ) Bwj A.,‘ - A.j 8wj

Jj=1i=1i+1,--- n.
For that ¢, (7.7.14) reduces to

(1.7.16) %(e‘”ai) = —e‘_"’s—:;'i(e“”ai)2 .

When the i-characteristic family is genuinely nonlinear, dX,/dw; % 0. Whenever
e~?9);/dw; is bounded away from zero, uniformly on the range of the solution,
(7.7.16) will induce blow-up of g;, in finite time, along any characteristic ema-
nating from a point X of the x-axis where a; has the opposite sign of dX;/dw;.
Uniform boundedness of e™?3A;/0w; is maintained, because, by Theorem 7.3.2,
the range of any classical solution in the state space of Riemann invariants coin-
cides with the range of its initial values. We have thus established

Theorem 7.7.2 Assume (7.2.1) is endowed with a coordinate system (w), - -, wy)
of Riemann invariants. Suppose the i-characteristic family is genuinely nonlinear.
Then any classical solution U with initial data Uy taking values in a compact
subset of ¢ and satisfying, at some point X € (—00, 00),

dw, (Vo)) 9

7.7.17
( ) dx ow;

<0,
breaks down in finite time.

We now return to the general situation. When the i-characteristic field is gen-
uinely nonlinear, and thus, by (7.7.8), ¥ # 0, the term y;;;a? in (7.7.6) will have
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a destabilizing effect. Any expectation that this may be neutralized by the remain-
ing terms in (7.7.6), which account for the effect of the other characteristic fields,
is not likely to be fulfilled, at least when the initial data have compact support,
for the following reasons. Equation (7.7.9) rules out the possibility of selfinter-
actions of the remaining characteristic fields: All interactions, other than y;;a?,
involve two distinct characteristic families. Now, when the initial data have com-
pact support, mutual interactions eventually become insignificant, because waves
of distinct characteristic families propagate with different speeds and thus eventu-
ally separate. Consequently, in the long run the term ymfl? becomes the dominant
factor and drives a; to infinity in finite time. The above heuristic arguments can
be formalized and lead to the following

Theorem 7.7.3 Assume (7.2.1) is a genuinely nonlinear strictly hyperbolic system
of conservation laws. When the initial data Uy are C*, have compact support,
and max |dUp/dx| is sufficiently small, the classical solution of the initial-value
problem breaks down in finite time.

The long and technical proof of Theorem 7.7.3, together with various exten-
sions, addressing the situation where some (or all) of the characteristic fields are
linearly degenerate or weakly linearly degenerate, may be found in the references
cited in Section 7.9.

7.8 Weak Solutions

In view of the breakdown of classical solutions, demonstrated in the previous
section, to solve the initial-value problem in the large, for nonlinear hyperbolic
systems of conservation laws, one has to resort to weak solutions. As explained
in Chapter 1V, the issue of the admissibility of weak solutions will have to be
addressed.

In earlier chapters, we mainly considered weak solutions that are merely
bounded measurable functions. Existence in that function class will indeed be
established, for certain systems, in Chapter XV through the functional analytic
method of compensated compactness. Nevertheless, the function class of choice
for hyperbolic systems of conservation laws is BV, which provides the natural
framework for envisioning the most important features of weak solutions, namely
shocks and their interactions.

The finite domain of dependence property for solutions of hyperbolic systems
combined with the fact that our system (7.2.1) is invariant under uniform stretching
of coordinates: x = X +ay, t = + at, a > 0, suggests that the admissibility
of BV weak solutions may be decided locally, through examination of shocks
and wave fans. These issues will be discussed thoroughly in the following two
chapters.
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7.9 Notes

The general mathematical framework of the theory of hyperbolic systems of con-
servation laws in one-space dimension was set in the seminal paper of Lax [2],
which distills the material collected over the years in the context of special sys-
tems. The notions of Riemann invariants, genuine nonlinearity, simple waves and
rarefaction wave curves, at the level of generality considered here, were introduced
in that paper. The books of Smoller [1] and Serre [9] contain expositions of these
topics, iltustrated by interesting examples.

A systematic, rigorous exposition of the theory of one-dimensional elastic
continua (strings, rods, etc.) is found in the book of Antman [1]. See also Antman
[2]. The system (7.1.10) for planar electromagnetic waves was studied thoroughly
by Serre [4].

The failure of strict hyperbolicity in one-space dimensional systems deriving
from three-space dimensional parent systems is discussed by Lax [6]. The system
(7.2.11) has been used extensively as a vehicle for demonstrating the features of
non-strictly hyperbolic systems of conservation laws, beginning with the work of
Keyfitz and Kranzer [1].

Riemann invariants were first considered by Earnshaw [1] and by Riemann
[1], in the context of the system (7.1.7) of isentropic gas dynamics. Conditions
for existence of coordinate systems of Riemann invariants and its implications
on the existence of entropies were investigated by Conlon and Liu [1] and by
Sévennec [1]. The calculation of the characteristic speeds and Riemann invariants
of the system (7.3.18) of electrophoresis is due to Alekseyevskaya [1] and Fife
and Geng [1]. A detailed exposition of the noteworthy properties of this system
is contained in Serre [9]. Serre [4], shows that the system (7.1.10) is equivalent
to (7.3.24), (7.3.25) even within the realm of weak solutions.

As already mentioned in Section 1.10, the special entropy-entropy flux pair
(7.4.6), for symmetric systems, was noted by Godunov [1,2,3] and by Friedrichs
and Lax [1]. Over the years, a great number of entropy-entropy flux pairs with
special properties have been constructed, mainly for systems of two conservation
laws, beginning with the pioneering paper of Lax [4]. We shall see some of that
work in later chapters. The characterization of systems of size n > 3, endowed with
an abundance of entropies is due to Tsarev [1], who calls them semi-Hamiltonian,
and Serre [6], who named them rich. A comprehensive exposition of their theory
is contained in Serre [9].

Theorem 7.5.1 is due to Boillat [2].

The earliest example of a simple wave, in the context of the system of isother-
mal gas dynamics, appears in a memoir by Poisson [1]. See also Earnshaw [1].
Theorem 7.6.2 is taken from Lax [2], who attributes the proof to Friedrichs.

Local existence of C' solutions to the initial-value problem in one-space di-
mension was first established by Schauder [1] and Friedrichs [1]. For a compre-
hensive treatment of the initial as well as the initial-boundary value problem see
the monograph by Li Ta-tsien and Yu Wen-ci [1].
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The breakdown of classical solutions was first noticed by Challis [1], in the
context of the compressible simple wave solution of the system of isothermal gas
dynamics derived by Poisson [1]. 1t is this paper that provided the stimulus for
the introduction of weak solutions with shocks, by Stokes [1] (see Sections 1.10
and 4.6). The earliest result on generic breakdown of solutions is due to Lax [3],
who proved directly the case n = 2 of Theorem 7.7.2. This work was extended in
several directions: Klainerman and Majda [1] established breakdown in the case
n = 2 so long as none of the two characteristic families is linearly degenerate. John
[1] derived' (7.7.6) and used it to prove Theorem 7.7.3. Liu [9] gives an extension
of Theorem 7.7.3 covering the case where some of the characteristic families are
linearly degenerate. Li Ta-tsien, Zhou Yi and Kong De-xing [1] consider the case
of weakly linearly degenerate characteristic families. A direct proof of Theorem
7.7.2, for any n, is found in Serre [9]. Additional results are presented in the
monograph of Alinhac [t]. It is also possible (John [2]. Sideris [1]) to establish
blow-up in the Sobolev norm of solutions, by use of energy methods, and some of
that work extends to systems of conservation laws in several space dimensions. A
class of systems, with applications to elastodynamics, for which the breakdown of
smooth solutions may be averted is studied in Li Ta-tsien [1]. For global classical
solutions to the Euler equations, see Serre [11] and Grassin and Serre [1].

! John's formula for y;j; is different from (7.7.7) but. of course, the two expressions are
equivalent.






Chapter VIII. Admissible Shocks

Shock fronts were introduced in Section 1.6, for general systems of balance laws,
and were placed in the context of BV solutions in Section 1.8. They were en-
countered again, briefly, in Section 3.1, where the governing Rankine-Hugoniot
condition was recorded.

Since shock fronts have codimension one, important aspects of their local
behavior may be investigated, without loss of generality, within the framework of
systems in one-space dimension. This will be the object of the present chapter.
The discussion will begin with an exploration of the geometric features of the
Rankine-Hugoniot condition, leading to the introduction of the Hugoniot locus.

The necessity of imposing admissibility conditions on weak solutions was
pointed out in Chapter ['V. These in turn induce, or at least motivate, admissibility
conditions on shocks. Indeed, the prevailing view is that the issue of admissibility
of general BV weak solutions should by resolved through a test applied to every
point of the shock set. In particular, the shock admissibility conditions associated
with the entropy condition of Section 4.3 and the vanishing viscosity approach of
Section 4.4 will be introduced and will be compared with each other as well as
with other important shock admissibility conditions proposed by Lax and by Liu.

8.1 Strong Shocks, Weak Shocks,
and Shocks of Moderate Strength

For the system

(8.1.1) U+ o, F(U)=0,

in one-space dimension, the Rankine-Hugoniot jump condition (3.1.3) reduces to
(8.1.2) F(Uy)-FWU.)=s(Us=-U-) .

Actually, (8.1.2) is as general as the multi-space dimensional version (3.1.3). once
the direction N of propagation of the shock has been fixed and F has been defined
through (7.2.2).

When (8.1.2) holds, we say that the state U_, on the left, is joined to th_e
state U, on the right, by a shock of speed s. Note that “left” and “right” may
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be interchanged in (8.1.2), in consequence of the invariance of (8.1.1) under the
transformation (x.t) + (—x.—t). Nevertheless, later on we shall introduce ad-
missibility conditions inducing irreversibility, as a result of which the roles of U.
and U, cannot be reversed.

The jump U, — U_ is the amplitude and its size |, — U_] is the strength
of the shock. Properties established without restriction on the strength, are said
to hold even for strong shocks. Quite often, however, we shall have to impose
limitations on the strength of shocks: |U, —U_| < 8, with § positive small which
depends typically on DF(U-), D?*F(U_) and the modulus of continuity of D*F
at U_. In that case the shock is called weak. When the bound § on the strength
depends solely on DF(U-) and the modulus of continuity of DF at U_, we say
the shock has moderate strength.

Notice that (8.1.2) may be written as

(8.1.3) [AU_.U,) —sINU, —U_) =0,

where we are using the notation
1
(8.1.4) AV, U)=/ DF(zU+ (1 —1)V)dr .
0

Fori =1,.--,n, we let u;(V,U) denote the eigenvalues and S;(V, U) the cor-
responding eigenvectors of A(V,U). In particular, A(U,U) = DF(U) and so
wi(U, Uy = L), Si(U,U) = R;(U). Note that A(V,U), and thereby also
ui(V, U), $;(V, U) are symmetric in (V, U). Therefore, (finite) Taylor expanding
of these functions about the midpoint %(V + U) yields

(8.1.5) wi(V.U) =GV +U)N+0(V -UP) ,
(8.1.6) Si(V.U)=RG(V+U)+0(V-UP) .
Clearly, (8.1.3) will hold if and only if
(8.1.7) s=u;(U_,U,),
(8.1.8) Uy, -U_=¢tSWU_,U,) ,
for somei = 1.---,n and some ¢ € R. In particular, the speed s of any shock of

moderate strength must be close to some characteristic speed A;. Such a shock is
then called an i-shock.

An interesting implication of (8.1.5), (8.1.7) is the useful identity
1
8.1.9) s =5MU)+ XU+ O(U- = U .

In special systems it is possible to associate even strong shocks with a particutar
characteristic family. For example, the Rankine-Hugoniot condition
Uy ~—voFs(uy —u_)=90
(8.1.10) " (s —u-)
o(uy)~o@-)+s(vy—v)=0
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for the system (7.1.6) of isentropic elasticity implies

(8.1.11) s= g (Tl mol)
N - Uy —u_ ’

In view of the characteristic speeds (7.2.4) of this system, it is natural to call
shocks propagating to the left (s < 0) l-shocks and shocks propagating to the
right (s > 0) 2-shocks.

8.2 The Hugoniot Locus

The set of points U in state space that may be joined to a fixed point U by a weak
shock is called the Hugoniot locus of U. It has a simple geometric structure. so
long as U is a point of strict hyperbolicity of the system.

Theorem 8.2.1 For a given state U € -, assume that the characteristic speed
»(U)isa simple eigenvalue of DF(U). Then there is a C? curve U = Wi(t)
in state space, called the i-shock curve through U, and a C? Sunction s = s;(1),
both defined for t in some neighborhood of 0, with the following propertv: A state
U can be joined to U by a weak i-shock of speed s if and only if U = W;(1),
s = s;(1), for some 1. Furthermore, W;(0) = U and

(8.2.1) 5i0) = x(U) ,
(8.2.2) 5(0) = DA (O)Ri(T) ,
(8.2.3) Wi(0) = Ri(T)
(8.2.4) Wi(0) = DR (U)R:(T) .

The more complicated notation W;(t: U), s;(t; U) shall be employed when one
needs to display the point of origin of this shock curve.

Proof. Recall the notation developed in Section 8.1 and, in particular, Equations
(8.1.7), (8.1.8). A state U may be joined to U by an i-shock of speed s if and
only if

(8.2.5) U=U+1S(U.U),
(8.2.6) s=pui(U,U) .
Accordingly, we consider the function

(8.2.7) HU,t)y=U-U-15(T,U),

defined on © x R, and note that H(U,0) = 0, DH(U,0) = I. Consequently,
by the implicit function theorem, there is a curve U = W;(1) in state space. with
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W, (0) = U. such that H(U, ) = 0 for r near 0 if and only if U = W;(r). We
then define

(8.2.8) si(r) = w; (U, Wi(1)) .

In particular, 5;(0) = u; (U, U) = 1 (U). Furthermore, differentiating (8.2.5) with
respect to T and setting T = 0, we deduce W;(0) = S;(U,U) = R;(U). To
establish the remaining equations (8.2.2) and (8.2.4). we appeal to (8.1.5) and
(8.1.6) to get

(8.2.9 s,~(r)=l,-(§(U+ Wi(r))) + O(z?)
29 = 2:(U) + 31DL (TR, (U) + O(z?) ,
Wir) =T + tR(3(U + Wi(1))) + O(z?)

(8.2.10) _ E N \
=T+ tR(O) + {*DR,OR,(0) + 0(7) .

This completes the proof.

In particular, if U is a point of strict hyperbolicity of the system (8.1.1),
Theorem 8.2.1 implies that the Hugoniot locus of U is the union of n shock
curves, one for each characteristic family.

The shock curve constructed above is generally confined in the regime of weak
shocks, because of the use of the implicit function theorem, which applies only
when the strength of the shock, measured by |z, is sufficiently small: |z| < &
with § depending on the Lipschitz constant of S;, which in turn depends on D?F.
Nevertheless, in special systems one may often use more delicate analytical or
topological arguments or explicit calculation to extend shock curves to the range
of shocks of moderate strength or even to the range of strong shocks. For example,
in the case of the system (7.1.6), combining (8.1.10) with (8.1.11) we deduce that
the Hugoniot locus of any point (i, ¥) in state space consists of two curves

(8.2.11) v=T%[oW) —o@](u—1u,

defined on the whole range of u.

The i-shock curves introduced here have common features with the i-rare-
faction wave curves defined in Section 7.6. Indeed, recalling Theorems 7.6.3 and
8.2.1, and, in particular, comparing (7.6.14) with (8.2.3), (8.2.4), we deduce

Theorem 8.2.2 Assume U € ¢ is a point of genuine nonlinearity of the i-
characteristic family of the hyperbolic system (8.1.1) of conservation laws, and
Ai(U) is a simple eigen_v_a[ue of DF (U). Normalize R; so that (7.6.13) holds on
some neighborhood of U. Then the i-rarefaction wave curve V;, defined through

Theorem 7.6.3, and the i-shock curve W;, defined through Theorem 8.2.1, have a
second order contact at U.

Recall that, by Theorem 7.6.4, i-Riemann invariants are constant along i-
rarefaction wave curves. At the same time, as shown above, i-shock curves are
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very close to i-rarefaction wave curves. It is then to be expected that /-Riemann
invariants vary very slowly along i-shock curves. Indeed,

Theorem 8.2.3 The jump of any i-Riemann invariant across a weak i-shock is of
third order in the strength of the shock.

Proof. Assume X; (Q) is a simple eigenvalue of DF(U) and consider the i-shock
curve W; through U. For any i-Riemann invariant w, differentiating along the
curve W;(-),

(8.2.12) = DwW, ,
(8.2.13) i = W D*wW, + DwW, .

By virtue of (8.2.3) and (7.3.1), w =0 at t = 0.
We now apply D to (7.3.1) and then multiply the resulting equation from the
right by R; to deduce the identity

(8.2.14) RTD*wR; + DwDR,R; =0 .
Combining (8.2.13), (8.2.3), (8.2.4) and (8.2.14), we conclude that w» = 0 att = 0.

This completes the proof.

In the special case where the system (8.1.1) is endowed with a coordinate
system (wj, - - -, w,) of Riemann invariants, we may calculate the leading term in
the jump of w; across a weak i-shock, i # j, as follows. The Rankine-Hugoniot
condition reads

(8.2.15) F(W;(1)) = F(U) = si(0)[Wi(x) - U] .

Differentiating with respect to 7 yields

(8.2.16) [DF(W;(1)) = si (1) IWi () = §:(0)[Wi(z) = U] .
Multiplying (8.2.16), from the left, by Dw;(W;) gives

(8.2.17) (Aj — s)w; = §; Dw;[W; - U] .

Next we differentiate (8.2.17), with respect to 7, thus obtaining

(8.2.18) (A — si)t; + (b — 25wy = & Dw;[W; — U1+ §; W[ D*w;[W; = T) .

We differentiate (8.2.18), with respect to 7, and then set 7 = 0. We use (8.2.1),
(8.2.2), (8.2.3), (7.3.12) and that both 1; and w; vanish at 0, by virtue of Theorem
8.2.3, to conclude
. 11 OAi 1.2

== L RTD*w;R; ,
BT 3y — how

(8.2.19)

where w; is evaluated at 0 and the right-hand side is evaluated at U.
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Returning to the general case, we next investigate how the shock speed function
si(7) evolves along the i-shock curve. We multiply (8.2.16), from the left, by
L;(Wi(7)) to get

(8.2.20) [Li(Wi(1)) — si(r)]Li(Wi(f))W.'(f) = §(DL (W) [W;(x) - T] .
For t sufficiently close to 0, but 7 # 0,
(8.2.21) Li(Wi(x)W;(x) >0, tL(W;x)[Wi(x)-T]>0,

by virtue of (8.2.3). In the applications it turns out that (8.2.21) continue to hold
for a broad range of 1, often extending to the regime of strong shocks. In that
case, (8.2.20) and (8.2.16) immediately yield the following

Theorem 8.2.4 Assume (8.2.21) hold. Then
(8.2.22) $i(r) > 0 if and only if T[A;(Wi(1)) — 5i(7)] > 0,
(8.2.23) $i(r) = 0ifand only if };(Wi(7)) = 5:(7) .
Moreover, s;(t) = 0 implies that Wi(r) is collinear to R;(W;(1)).
In particular, s; constanf implies that the i-shock curve is an integral curve
of the vector field R;, along which A; is constant. Consequently, all points along

such a shock curve are states of linear degeneracy of the i-characteristic family.
The converse of this statement is also valid:

Theorem 8.2.5 Assume the i-characteristic family of the hyperbolic system (8.1.1)
of conservation laws is linearly degenerate and 3;(U) is a simple eigenvalue of
DF(U). Then the i-shock curve W; through U is the integral curve of R; through
U. In fact, under the proper parametrization, W; is the solution of the differential
equation

(8.2.24) W, = Ri(W))

with initial condition W;(0) = U. Along W;, the characteristic speed X\; and all
i-Riemann invariants are constant. The shock speed function s; is also constant:

(8.2.25) (1) = A (Wi(r)) = A(0) .

Proof. Let W; denote the solution of (8.2.24) with initial condition W;(0) = U.
Then

(8.2.26) [DF(Wi(1)) — M(W;(x)IIWi(r) =0 .

Since DX (U)R;(U) =0, &; = 0 and so A;(W;(r)) = A;(U). Integrating (8.2.26)
from 0 to 7 yields

(8.2.27) F(Wi(t)) — F(U) = ,(D)[Wi(x) = U],

which establishes that W; is the i-shock curve through U, with corresponding
shock speed function s; given by (8.2.25). This completes the proof.
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[t is natural to inquire whether an i-shock curve may be an integral curve of
the vector field R; in the absence of linear degeneracy. It turns out that this may
only occur under very special circumstances:

Theorem 8.2.6 For the hyperbolic system (8.1.1), assume U is a state of genuine
nonlinearity for the i-characteristic family and 7;(U) is a simple eigenvalue of
DF (U). The i-shock curve through U coincides with the integral curve of the field
R;, i.e. the i-rarefaction wave curve, through U if and only if the latter is a straight
line in state space.

Proof. If the i-shock curve W; through U coincides with the integral curve of
R; through U, then W, (r) must be collinear to R;(W;(z)). In that case, (8.2.16)
imples

(8.2.28) [A: (W; (7)) = si(D)IWi (1) = § (1) [Wi(z) = U] .

For 7 near 0, but t # 0, it is A;(W; (7)) # si(1), by genuine nonlinearity. There-
fore, (8.2.28) implies that the graph of W; is a straight line through U.

Conversely, assume the integral curve of R; through U is a straight line. which
may be parametrized as U = W;(r), where W; is some smooth function satisfying
W;(0) = U, as well as (8.2.3) and (8.2.4) (note that DR;(U)R;(U) is necessarily
collinear to R; (U)). We may then determine a scalar-valued function s;(t) such
that

F(W.-(r))~F(U)=/ DF (W (E)Wi(¢)d¢g
(8.2.29) o _
=/ L(WiOIWi(0)dE = si(n)[Wi(z) = U] .
0

Thus W; is the i-shock curve through U. This completes the proof.

Special as it may be, the class of hyperbolic systems of conservation laws
with coinciding shock and rarefaction wave curves of each characteristic family
includes some noteworthy examples. Consider, for instance, the system (7.3.18)
of electrophoresis. Notice that, for i = 1,.-., n, the level surfaces of the i-
Riemann invariant W;, determined through (7.3.21) or (7.3.22), are hyperplanes.
In particular, for i = 1,..-, n, the integral curves of the vector field R; are the
straight lines produced by the intersection of the level hyperplanes of the n — 1
Riemann invariants wy, -+, w;_y, wi, |, -+ -, w,. Consequently, the conditions of
Theorem 8.2.6 apply to the system (7.3.18).

In the presence of multiple characteristic speeds. the Hugoniot locus may
contain multi-dimensional varieties, in the place of shock curves. In that connection
it is instructive to consider the model system (7.2.11), for which the origin is an
umbilic point. When a state (&7, ¥) is joined to a state (1. v) by a shock of speed
s, the Rankine-Hugoniot condition reads
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(2 + vu — (@ + V)0 = s(u — )

(8.2.30) W+ v — @+ =s(v—7) .
Notice that when (u L) # (0, 0), the Hugoniot locus of (i, v) consists of the
circle u? + v? = Ii* + v?, along which the shock speed is constant, s = w4+
and the straight line Tn = @y, which connects (i, T) with the origin. Thus, the
1-characteristic family provides an example of the application of Theorem 8.2.5
while the 2-characteristic family satisfies the assumptions of Theorem 8.2.6. On
the other hand, the Hugoniot locus of the umbilic point (0, 0) is the entire plane
because any point (u. v) can be joined to (0, 0) by a shock of speed s = u?+v?

Not all systems in which strict hyperbolicity fails exhibit the same behavxor
For instance, for the system

B + 0 [2u’ +vPHu] =0

(8.2.31)
B v+ 8 [(u® +v¥Hv] =0,

in which strict hyperbolicity also fails at the origin, the Hugoniot locus of (0, 0)
consists of two lines, namely the u-axis and the v-axis.

8.3 The Lax Shock Admissibility Criterion

An i-shock of speed s which joins the state U_, on the left, to the state Uy, on
the right, is said to satisfy the Lax E-condition if

(8.3.1) AUy =25 2 2(Uy) .

In particular, when the left or the right part of (8.3.1) is satisfied as an equality,
the shock is called a left or a right i-contact discontinuity; and when both parts
of (8.3.1) hold as equalities, the shock is called an i-contact discontinuity. For
example, by account of Theorem 8.2.5, any weak shock associated with a linearly
degenerate characteristic family is necessarily a contact discontinuity. Notice that,
with the exception of contact discontinuities, (8.3.1) induces an irreversibility
condition that fixes the roles of U_ and U, as left and right states of the shock.

When the above shock is embedded in an otherwise smooth solution, the mean-
ing of (8.3.1) is that i-characteristics from the left catch up with i-characteristics
from the right and they collide at the shock. Thus “information” from the past
propagating along i -characteristics is absorbed and lost into admissible shocks. In
contrast, shocks that violate (8.3.1) become sources of new “information” which is
then carried along i-characteristics into the future. Postulating the Lax E-condition
may appear ad hoc at this point, but justification is provided by its implications on
stability of weak solutions as well as through its connection with other, physically
motivated, shock admissibility criteria. These issues will be discussed at length in
following sections.

Let us begin the investigation with the scalar conservation law (7.1.2). The
characteristic speed is A(u) = f'(u) and so (8.3.1) takes the form
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(8.3.2) fw)y=s>=f'(uy),

where s is the shock speed computed through the Rankine-Hugoniot jump condi-
tion:

fluy) = fluo)
S§=——.

Uy —U_

(8.3.3)

The reader will immediately realize the geometric interpretation of (8.3.2) upon
noticing that f'(«_) and f'(u,) are the slopes of the graph of f at the points
(u—, f(u.)) and (u,. f(uy)) while s is the slope of the chord that connects
(u_, f(u2)) with (uy, f(uy)). In particular, when (7.1.2) is genuinely nonlinear,
i.e., f’(u) # 0 for all 4, then (8.3.2) reduces to u_ < u, if f”(u) < 0, and
u_>u, if f"(u) > 0.

Next we consider the system (7.1.6) of isentropic elasticity. The characteristic
speeds are recorded in (7.2.4) and the shock speeds in (8.1.11), so that (8.3.1)
assumes the form

(8.3.4)

o) < o(uy) ~o(u)

<o'(uy)oro’(u.) > M

Uy —u_ Uy —u_

>o'(uy)

for 1-shocks or 2-shocks, respectively. The geometric interpretation of (8.3.4) is
again clear. When (7.1.6) is genuinely nonlinear, i.e., o”(u) # 0 for all u, (8.3.4)
reduces to u_ < u, oru_ > u, if o”(u) > 0, and u_ > wy or u_ < u, if
o”(u) < 0. Equivalently, in terms of velocity, by virtue of (8.1.10): v.. < v, if
o”(u) > 0 and v_ > v, if 0”(u) < 0, for both shock families.

A similar analysis applies to the system (7.1.8) of isentropic flow of a poly-
tropic gas, with characteristic speeds given by (7.2.10), and yields that a 1-shock
(or 2-shock) that joins the state (p_, v-), on the left, to the state (o, v, ). on the
right, satisfies the Lax E-condition if and only if p_ < p, (or p_ > p,). In other
words, the passing of an admissible shock front compresses the gas. Because clas-
sical gas dynamics has served as the prototype for the development of the general
theory, shocks that satisfy the Lax E-condition (8.3.1) as strict inequalities are
often called compressive.

When 4; is a simple eigenvalue of DF and we are dealing with i-shocks of
(at most) moderate strength, the remaining characteristic speeds are well-separated
and do not interfere, i.c., (8.3.1) may be extended into

(8.3.5) A(Us) > M(UZ) =5 2 0(Uy) > M(Us) . j>i>k.

In many special systems, like those considered above, (8.3.5) may hold even in
the realm of strong shocks. On the other hand, in the presence of umbilic points
and/or strong shocks, one may encounter the situation in which a shock satisfies
the Lax E-condition simultaneously for two distinct characteristic families i and

J, say
(8.3.6) LU > MU2) > s > A (U,) > AUy .



156 VIII. Admissible Shocks

Such shocks are called overcompressive. An example is provided by our model
system (7.2.11). Recalling the form of the Hugoniot locus, described in Section
8.2, we consider a shock of speed s, joining, on the left, a state (u_.v_), lying
on the unit circle, to a state (u.,v.) = a(u_.v_), on the right, where a is
some constant. From (7.2.12), A (u_. v_) = 1, Aa(ue_. v2) = 3, Ay(uy.vy) = a?,
Aa2(uy. v4) = 3a°. Furthermore, the Rankine-Hugoniot condition (8.2.30) yields
s =a® +a+ 1. Therefore, if a € (—1,0),

8.3.7) Moo, v2) > A(uo,v2) >85> A(uy. vy) > A(u, vy) .

i.e., the shock is overcompressive.

The occurrence of overcompressive shocks raises serious difficulties in the
theory, which, at the time of this writing, have only been partially resolved. To
avoid such complications, we shall limit our investigation to the range of shock
strength in which the assumptions of Theorem 8.2.2 are satisfied. In particular, this
will encompass the case of weak shocks. Thus, with reference to the system (8.1.1),
let us consider a state U_, on the left, which is joined to a state U, on the right,
by an i-shock of speed s. Assuming A, (U_) is a simple eigenvalue of DF(U_), let
W; denote the i-shock curve through U_ (cf. Theorem 8.2.1), so that U_ = W;(0)
and U, = W;(r). Furthermore, A,(U.) = 5;(0) and 5 = s;(r). We show that if
Tt < 0and §;(-) > 0on (z, 0), then the shock satisfies the Lax E-condition. Indeed,
5i(-) = 0 implies s = s;(r) < 5;(0) = A;(U_), which is the left half of (8.3.1).
At the same time, so long as (8.2.22) and (8.2.23) hold at 7, §;(-) > 0 implies, by
virtue of Theorem 8.2.4, that s = s;(7) > A;(W;(r)) = X;(U,), namely, the right
half of (8.3.1). A similar argument demonstrates that the Lax E-condition also
holds when 7 > 0 and §;(-) < 0 on (0, t), but it is violated if either r < 0 and
5i(-) <0on(7,0)ort > 0and3;() > 0on (0, 7). The implications of the above
statements to the genuine nonlinear case, in which, by virtue of (8.2.2), $;(-) does
not change sign across 0, are recorded in the following

Theorem 8.3.1 Assume U_ is a point of genuine nonlinearity of the i -characteristic
Jamily of the system (8.1.1), with DX, (U_)R;(U_) > 0 (or < 0). Suppose »;(U_)
is a simple eigenvalue of DF(U_) and let W; denote the i-shock curve through
U_, with U_ = W(0). Then a weak i-shock that joins U_ to a state U, = W,(t)
satisfies the Lax E-condition if and only if t < 0 (or T > 0).

Thus, in the genuinely nonlinear case, one half of the shock curve is compatible
with the Lax £-condition (8.3.1), as strict inequalities, and the other half is incom-
patible with it. When U_ is a point of linear degeneracy of the i -characteristic field,
so that §;(0) = 0, the situation is more delicate: If §;(0) < 0, §;(t) is positive for
7 < 0 and negative for r > 0, so that weak i-shocks that join U_ to U, = W;(1)
are admissible, regardless of the sign of . On the other hand, if 5 (0) > 0, 5;(1)
is negative for T < 0 and positive for T > 0, in which case all (sufficiently) weak
i-shocks violate the Lax E-condition. As noted above, when the i-characteristic
family itself is linearly degenerate, i-shocks are i-contact discontinuities satisfying
(8.3.1) as equalities.
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Experience indicates that the primary role of the Lax E-condition is to se-
cure the stability of the interaction of the shock, as an entity, with its adjacent
“smoother” parts of the solution. This view is corroborated by the following

Theorem 8.3.2 Assume the system (8.1.1) is strictly hyvperbolic and the i-charac-
teristic family is genuinely nonlinear. Consider initial data Uy such that Uy(x) =
Uy(x) for x € (—00.0) and Uy(x) = U,(x) for x € (0, 00), where U, and U,
are smooth functions which are bounded, together with their first derivatives, on
(—00, 00). Assume, further, that the state U_ = U,(0), on the left. is joined to the
state Uy = U,(0), on the right, by a weak i-shock of speed s, which satisfies the
Lax E-condition (8.3.1), as strict inequalities. Then there are: T > 0; a smooth
Sfunction x = x(t) on [0, T); and a function U on (—o0, 00) x [0, T) with the
Jollowing properties. U is smooth and satisfies (8.1.1), in the clussical sense, for
any (x,t), with t € [0, T) and x # x(t). Furthermore, for t € [0, T) one-sided
limits U(x(t)—,t) and U(x(t)+,t) exist and are joined by a weak i-shock of
speed x (1), which satisfies the Lax E-condition.

The proof employs techniques similar to those involved in the proof of Theo-
rem 7.7.1 and can be found in the references cited in Section 8.7. One may get a
rough idea through the considerably simpler, special case n = 1.

We thus consider the scalar conservation law (7.1.2), assuming it is genuinely
nonlinear, say f”(u) > 0 for u € (—00, 00). We assign initial data 1y such that
ug(x) = uy(x) for x € (—o00,0) and uy(x) = u,(x) for x € (0, 00), where u,
and u, are bounded and uniformly Lipschitz continuous functions on (—20. oc).
Furthermore, v = u,(0) and u, = u,(0) satisfy v_ > u, . Let u_(x.¢) and
u, (x,t) be the classical solutions of (7.1.2) with initial data u; and u,. respec-
tively, which, by virtue of Theorem 6.1.1, exist on (—20, 00) x [0, T), for some
T > 0.0n [0, T') we define the function x as solution of the ordinary differential
equation

de  flui(x, 1) — flu_(x.1))

8.3.8 — =
(8.3.8) dt wy(x.t) —u_(x,t)

with initial condition x(0) = 0. Finally, we define the function « on (—oc. o0) %
[0,7) by

u_(x,t). tef0.7), x<x(t)
(8.3.9) u(x.t) =
uy(x.t). tel0.7), x>x().

Clearly, u satisfies (7.1.2), in the classical sense, for any (v.r) with t € [0.T)
and x # x(r). Furthermore, u(x (¢+)—. t) and u(x (+)+. t) are joined by a shock of
speed x(¢). Finally, for T sufficiently small, the Lax E-condition u(x(f)—.t) >
u(x (t)+. ) holds by continuity, since it is satisfied at + = 0. Notice that it is due
to the Lax condition that the solution « solely depends on the initial data. i.e.. it
is independent of the “extraneous” information carried by u,(x) for x > 0 and
u,(x) forx <0.
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Another serious issue of concern is the internal stability of shocks. It turns
out that the Lax E-condition is effective in that direction as well, so long as the
system is genuinely nonlinear and the shocks are weak; however, it is insuffi-
cient in more general situations. For that purpose, we have to consider additional,
more discriminating shock admissibility criteria, which will be introduced in the
following sections.

8.4 The Liu Shock Admissibility Criterion

The Liu shock admissibility test is more discriminating than the Lax E-condition
and strives to capture the internal stability of shocks. By its design, it only makes
sense in the context of shocks joining states that may be connected by shock
curves. Thus, for general systems, its applicability is limited to weak shocks.
Nevertheless, in special systems it also applies to shocks of moderate strength or
even to strong shocks.

For a given state U_, assume A;(U_) is a simple eigenvalue of DF(U_) so that
the i-shock curve W; through U_ is well defined, by Theorem 8.2.1, and satisfies
W;(0) = U_. An i-shock that joins U/_, on the left, to a state U, = W;(z), on the
right, of speed s = s, (1), satisfies the Liu E-condition if

8.4.1) s <s;(§), forall § between O and 7 .

Similar to the Lax E-condition, the justification of the above admissibility
criterion will be established a posteriori, through its connection to other, physically
motivated, shock admissibility criteria, as well as by its role in the construction
of stable solutions to the Riemann problem, in Chapter 1X.

We proceed to discuss the relationship between the Liu E-condition and the
Lax E-condition:

Theorem 8.4.1 Assume, in the notation above, the state U_ = W;(0), on the lefi, is
Jjoined to the state U, = W, (1), on the right, by an i-shock of speed s, satisfying the
Liu E-condition (8.4.1). Suppose (8.2.21) hold at t. Then the shock also satisfies
the Lax E-condition.

Proof. By (8.4.1), s < s5;(0) = X;(U_) which is the left half of (8.3.1). Further-
more, since 5 = 5;(t), (8.4.1) implies 5;(r) < 0. It then follows from Theorem
8.2.4 that s = 5;(7) = A;(Wi(1)) = A;(U,), namely the right half of (8.3.1). This
completes the proof.

We have thus shown that the Liu E-condition implies the Lax E-condition.
Indeed, when the system is genuinely nonlinear, these two criteria coincide, at
least in the realm of weak shocks:
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Theorem 8.4.2 Assume the i-characteristic familv is genuinely nonlinear and X;
is a simple characteristic speed. Then weak i-shocks satisfy the Liu E-condition if
and only if they satisfv the Lax E-condition.

Proof. The Liu E-condition implies the Lax E-condition by Theorem 8.4.1. To
show the converse, assume the state U_, on the left, is joined to the state U,
on the right, by a weak i-shock of speed s, which satisfies the Lax E-condition
(8.3.1). Suppose, for definiteness, DA;(U_)R;(U_) > 0 (the case of the opposite
sign is similarly treated). By virtue ot Theorem 8.3.1, 7 < 0. Since the shock is
weak, by Theorem 8.2.1, 5;(£) > 0 on the interval (7, 0). Then s = 5,(7) < 5;(§)
for & € (7, 0), i.e., the Liu E-condition holds. This completes the proof.

When the system is not genuinely nonlinear and/or the shocks are not weak,
the Liu E-condition is stricter than the Lax E-condition. This will be demonstrated
by means of the following examples.

Let us first consider the scalar conservation law (7.1.2). The shock curve is
the u-axis and we may use u« as the parameter £. The shock speed is given by
(8.3.3). It is then clear that a shock joining the states u#_ and u, will satisfy the
Liu E-condition (8.4.1) if and only if

fluo)y— flu) - Sy — flu) - fluy) — fug)

g —u_ Hy, —u_ U, — g

(8.4.2)

holds for every uy between u _ and u .. This is the celebrated Oleinik E-condition.
It is easily memorized as a geometric statement: When u_ < u, (or u_ > u,) the
shock that joins u#_, on the left, to u ., on the right, is admissible if the arc of the
graph of f with endpoints (1, f(u_-)) and (u,, f(u,)) lies above (or below) the
chord that connects the points (u_, f(u_)) and (u,, f(u,)). Letting uy converge
to u_ and to u ., we deduce that (8.4.2) implies (8.3.2). The converse, of course,
is generally false, unless f is convex or concave. We have thus demonstrated
that in the scalar conservation law the Liu E-condition is stricter than the Lax
E-condition when f contains inflection points. In the genuinely nonlinear case,
the Liu and Lax E-conditions are equivalent.

We now turn to the system (7.1.6) of isentropic elasticity. The shock curves
are determined by (8.2.11) so we may use u as parameter instead of &. The shock
speed is given by (8.1.11). Therefore, a shock joining the states (u_, v_) and
(114, v4) will satisfy the Liu E-condition (8.4.1) if and only if

o(upg) —o(u_) < o(uy)y—o(u-) < o(us) — o(up)

o — u_ > u, —u_ >

(8.4.3)

Uy — Ug

holds for all uy between u_ and u,, where “<” applies for 1-shocks and “>”
applies for 2-shocks. This is called the Wendroff’ E-condition. In geometric terms,
it may be stated as follows: When s(u, — u_) < 0 (or > 0) the shock that joins
(u-,v_), on the left, to (u,,vy), on the right, is admissible if the arc of the
graph of o with endpoints (u_, o(u_)) and (u,, o (1)) lies below (or above) the
chord that connects the points (u_, o (1_)) and (u.., o (u..)). Clearly, there is close
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analogy with the Oleinik E-condition. Letting u( in (8.4.3) converge to u_ and to
u_, we deduce that the Wendroff E-condition implies the Lax E-condition (8.3.4).
The converse is true when o is convex or concave, but false otherwise. Thus, for
the system (7.1.6) the Liu E-condition is stricter than the Lax E-condition when
o contains inflection points. In the genuinely nonlinear case, the Liu and Lax
E-conditions are equivalent.

As we shall see, the Oleinik E-condition and the Wendroff E-condition fol-
low naturally from other admissibility criteria. To a great extent these special
E-conditions provided the motivation for postulating the general Liu E-condition.

8.5 The Entropy Shock Admissibility Criterion

The idea of employing entropy inequalities to weed out spurious weak solutions
of general hyperbolic systems of conservation laws was introduced in Section
4.3 and was used repeatedly in Chapters IV, V, and VI. It was observed that
in the context of BV weak solutions the entropy condition reduces to the set of
inequalities (4.3.9), to be tested pointwise at every point of the shock set. For the
system (8.1.1), in one-space dimension, (4.3.9) assumes the form

8.5.1) —=s[nWUy) - nWUI)]+qU)—qU-) <0,

where (n, q) is an entropy-entropy flux pair satisfying (7.4.1), Dg = DnDF.
The quantity on the left-hand side of (8.5.1) will be called henceforth the entropy
production across the shock.

The fact that the entropy condition reduces to a pointwise test on shocks has
played a dominant role in shaping the prevailing view that admissibility need only
be tested at the level of shocks, i.e., that a general BV weak solution will be
admissible if and only if each one of its shocks is admissible.

In setting up an entropy admissibility condition (8.5.1), the first task is to
designate the appropriate entropy-entropy flux pair (n, g). Whenever (8.1.1) arises
in connection to physics, the physically appropriate entropy should always be
designated. In particular, the pairs (7.4.9), (7.4.10) and (7.4.11) must be designated
for the systems (7.1.3), (7.1.6) and (7.1.8), respectively'.

In the absence of guidelines from physics or when the entropy-entropy flux
pair supplied by physics is inadequate to rule out all spurious shocks, additional
entropy-entropy flux pairs must be designated (whenever available), motivated by
other admissibility criteria, like viscosity. In that connection, we should bear in
mind that, as demonstrated in earlier chapters, convexity of the entropy function
is a desirable feature.

! 1n applying (8.5.1) to the system (7.1.3). with entropy-entropy flux pair (7.4.9), one
should not confuse s in (7.4.9), namely the physical entropy, with s in (8.5.1), the shock
speed.‘ Since ¢ = 0, (8.5.1) here states that “after a shock passes. the physical entropy
must increase.” The reader is warned that this statement is occasionally misinterpreted
as a general physical principle and is applied even when it is no longer relevant,
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Let us begin the investigation with the scalar conservation law (7.1.2). The
shock speed s is given by (8.3.3). In accordance with the discussion in Chapter
VI, admissible shocks must satisfy (8.5.1) for all convex functions 5. However,
as explained in Section 6.2, (8.5.1) need only be tested for the family (6.2.5) of
entropy-entropy flux pairs, namely

(8.5.2) N =w-ut, qguu)=sgn(u~-m*[fw) - f@].

It is immediately seen that (8.5.1) will be satisfied for every (5, ¢) in the family
(8.5.2) if and only if (8.4.2) holds for all u, between u_ and u,. We have thus
rederived the Oleinik E-condition encountered in Section 8.4. This implies that,
for the scalar conservation law, the entropy admissibility condition, applied for all
convex entropies, is equivalent to the Liu E-condition.

[t is generally impossible to recover the Oleinik E-condition from the entropy
condition (8.5.1) for a single entropy-entropy flux pair. Take for example

(8.5.3) nGy = %uz .ogqu) = / of (w)dw .
)

By virtue of (8.3.3) and after a short calculation, (8.5.1) takes the form
(8.5.4) %[f(u+) + flu)(uy —us) — f flw)dw <0 .

Notice that the entropy production across the shock is here measured by the
signed area of the domain bordered by the arc of the graph of f with endpoints
(u—, f(u-)y, (uy, f(uy)), and the chord that connects (u—. f(u_)), (4, f(1,)).
Clearly, the Oleinik E-condition (8.4.2) implies (8.5.4) but the converse is gener-
ally false. Moreover, neither (8.5.4) generally implies the Lax E-condition (8.3.2)
nor the other way around. However, when f is convex or concave, (8.5.4), (8.4.2)
and (8.3.2) are all equivalent.

Next we turn to the system (7.1.6) of isentropic elasticity. We employ the
entropy-entropy flux pair (n, g) given by (7.4.10). An interesting, rather lengthy,
calculation, which involves the Rankine-Hugoniot condition (8.1.10), shows that
(8.5.1) here reduces to

(8.5.5) s %[o(u+) +ou)uy —us)~ f ’ o(w)da)] <0.

-

The quantity in braces on the left-hand side of (8.5.5) measures the signed area
of the domain bordered by the arc of the graph of o with endpoints (i, o (4_)),
(uy,0(uy)) and the chord that connects (u_,o(u-)), (14, 0(uy,)). Hence, the
Wendroff E-condition (8.4.3) implies (8.5.5) but the converse is generally false.
Neither (8.5.5) necessarily implies the Lax E-condition (8.3.4) nor the other way
around. However, when o is convex or concave, (8.5.5). (8.4.3) and (8.3.4) are
all equivalent. Of course, the system (7.1.6) is endowed with a rich collection of
entropies so one may employ additional entropy-entropy flux pairs to recover the
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Wendroff E-condition from the entropy condition, but this shall not be attempted
here.

We now consider the entropy shock admissibility condition (8.5.1) for a general
system (8.1.1), under the assumption that U_ and U, are connected through a
shock curve. In particular, this will encompass the case of weak shocks. We thus
assume X;(U_) is a simple characteristic spced, we consider the i-shock curve W;
through U_, with U_ = W;(0), and we let U, = W;(1), s = si(t), for some 7.
The entropy production along the i-shock curve is given by

(8.5.6) E() = =s;(O)mWi()) = n(U)] + q(W; () —qU-) .
Differentiating (8.5.6) and using (7.4.1) yields

8.5.7)  E=—s[n(W;) — n(U-)] = si Dn(W) Wi + Dn(W;) DF (W)W, .
Combining (8.5.7) with (8.2.16) (for U = U_), we deduce

(8.5.8) E = —5{n(W;) — n(U-) = Dn(Wi)[W; ~ U-1} .

Notice that the right-hand side of (8.5.8) is of quadratic order in the strength
of the shock. Therefore, the entropy production E(t) across the shock, namely
the integral of E(-) from 0 to 7, is of cubic order in 7. We have thus established
the following

Theorem 8.5.1 The entropy production across a weak shock is of third order in the
strength of the shock.

When U_ is a point of linear degeneracy of the i -characteristic family, s;(0) =
0 and so the entropy production across the shock will be of (at most) fourth order in
the strength of the shock. In particular, when the i-characteristic family is linearly
degenerate, s; vanishes identically, by Theorem 8.2.5, and so

Theorem 8.5.2 When the i-characteristic family is linearly degenerate, the entropy
production across any i-shock (i-contact discontinuity) is zero.

Turning now to the issue of admissibility of the shock, we observe that when
n is a convex function the expression in braces on the right-hand side of (8.5.8)
is nonpositive. Thus E and $; have the same sign. Consequently, the entropy
admissibility condition E(t) < 0 will hold if 7 < 0 and §;(-) = 0 on (7, 0), or if
7 > 0 and 5;(-) < 0 on (0, t); while it will be violated when either T < 0 and
5i() < 0on (7,0) or 7 > 0 and $;(-) > 0 on (0, 7). Recalling our discussion
in Section 8.3, we conclude that the entropy admissibility condition and the Lax
E-condition are equivalent in the range of 7, on either side of 0, where §;(z) does
not change sign. In particular, this will be the case when the characteristic family
is genuinely nonlinear and the shocks are weak:



8.6 Viscous Shock Profiles 163

Theorem 8.5.3 When the i-characteristic family is genuinely nonlinear and i,
is a simple characteristic speed, the entropy admissibility condition and the Lax
E-condition for weak i-shocks are equivalent.

In order to escape from the realm of genuine nonlinearity and weak shocks,
let us consider the condition

(8.5.9) EWTE)D (W, ENIW:(6) —U_1>0.

Recalling (7.4.3), (7.4.4) and Theorem 8.2.1, we conclude that when the entropy
n is convex (8.5.9) will always hold for weak i-shocks: it will also be satisfied for
shocks of moderate strength when i-shock curves extend into that regime; and may
even hold for strong shocks, so long as W; and W; ~ U_ keep pointing roughly
in the direction of R;.

Theorem 8.5.4 Assume that the i-shock curve W;(-) through U_ = W;(0), and
corresponding shock speed function s;(-), are defined on an interval (a, B) con-
taining 0, and satisfy (8.5.9) for & € (a, B), where n is a convex entropy of the
system. Then any i-shock joining U_, on the left, to U. = W;(1), on the right,
with speed s = s;(t). which satisfies the Liu E-condition (8.4.1) also satisfies the
entropy admissibility condition (8.5.1).

Proof. We set

(8.5.10) Q&) = n(W;(€)) — n(U-) — Dn(W; ENIW;(€) - U-].
By virtue of (8.5.9),
(8.5.11) £EQE) <0.

Integrating (8.5.8) from 0 to r, integrating by parts and using (8.5.10), (8.5.11)
and (8.4.1) we obtain

E() =~ / 5(E)0@)dE = —s,(1)O(0) + / S(E)0(E)dE
(8.5.12) 0 0

< —SQ(r)+S/ OE)de =0,
0

which shows that the shock satisfies (8.5.1). This completes the proof.

8.6 Viscous Shock Profiles

The idea of using the vanishing viscosity approach for identifying admissible weak
solutions of hyperbolic systems of conservation laws was introduced in Section
4.4. In the present setting of one-space dimension, for the system (8.1.1), Equation
(4.4.1) reduces to
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(8.6.1) QU (x, ) + 0 F(U(x, 1) = pud[BWU(x,0))3.U(x,1)] .

As already explained in Section 4.4, the selection of the # x r matrix-valued
function B may be suggested by the physical context of the system or it may just
be an artifact of the analysis. Consider for example the dissipative systems

(8.6.2) duut + B fu) = udlu .
ot —o,v =0
1
(863) B,U - 3,‘0(11) = uax ('L"'a\ ”) s
B+ 3. [(e® + vHu] = udlu
(8.6.4) , , ”
v+ 3, [(u* + v)v] = uojv .

associated with the hyperbolic systems (7.1.2), (7.1.6), and (7.2.11). In so far as
(7.1.6) is interpreted as the system of isentropic gas dynamics, the selection of
viscosity in (8.6.3) is dictated by physics®. On the other hand, in (8.6.2) and (8.6.4)
the viscosity is artificial.

In contrast to the entropy criterion, it is not at all clear that admissibility of
weak solutions by means of the vanishing viscosity criterion is decided solely at
the leve! of the shock set. Taking, however, that premise for granted, it will suffice
to test admissibility in the context of solutions in the simple form

U_, x <st
(8.6.5) U(x,t) = ‘

Uy, x >st,

namely a shock of constant speed s joining the constant state U_, on the left, to
the constant state U, on the right. Presumably, functions (8.6.5) may be approx-
imated, as u | 0, by a family of solutions U, of (8.6.1) in the form of traveling
waves, namely functions of the single variable x — st. Taking advantage of the
scaling in (8.6.1), we seek a family of solutions in the form

(8.6.6) UAL0=V(x—“).
u

Substituting in (8.6.1), we deduce that V should satisfy the ordinary differential
equation

(8.6.7) [BV(WV(D)] = F(V(r)) - sV (1) .

where the overdot denotes differentiation with respect to T = p~!(x ~ 5¢). We are
interested in solutions in which V vanishes at V = U_ and so, upon integrating
(8.6.7) once with respect to t:

2 Compare with (4.4.2). The variable viscosity coefficient p/u is adopted so that in the
spatial setting, where measurements are usually performed, viscosity will be constant ..
Of course this will make sense only when u > 0.
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{(8.6.8) B(V)V = F(V)y—- F(U.)—s[V -U_].

Notice that the right-hand side of (8.6.8) vanishes on the set of V that may be
joined to U_ by a shock of speed s. This set contains, in particular, the state U,.

We say that U_, on the left, is connected to U, on the right, by a viscous
shock profile if there is a smooth arc joining U_ to U, which is an invariant set
for the differential equation (8.6.8) and, in addition, at any point where there is
motion, the flow is directed from U_ to U,.

The shock that joins U_, on the left, to U, on the right, is said to satisfy the
viscous shock admissibility criterion if U_ can be connected to U. by a viscous
shock profile.

Determining viscous shock profiles is important not only because they shed
light on the issue of admissibility but also because they provide information (at
least when the matrix B is physically motivated) on the nature of the sharp tran-
sition modelled by the shock, the so called structure of the shock. Indeed, the
stretching of coordinates involved in (8.6.6), as u | 0, allows us, so to say, to
observe the shock under the microscope.

Any contact discontinuity associated with a linearly degenerate characteristic
family satisfies the viscous shock admissibility criterion. [ndeed, in that case, by
virtue of Theorem 8.2.5, the shock curve itself serves as the viscous shock profile
and all of its points are equilibria of the differential equation (8.6.8). The opposite
extreme arises when U_ and U, are the only equilibrium points on the viscous
shock profile, in which case U_ is the a-limit set and U, is the w-limit set of
an orbit of the differential equation (8.6.8). In the general situation, the viscous
shock profile may contain a (finite or infinite) number of equilibrium points with
any two consecutive ones connected by orbits of (8.6.8).

Let us illustrate the above through the scalar conservation law (7.1.2) and
the corresponding dissipative equation (8.6.2). System (8.6.8) now reduces to the
single equation

(8.6.9) = fw)y— f(u-) —s(u —u_).

It is clear that u_ will be connected to w, by a viscous shock profile if and
only if the right-hand side of (8.6.9) does not change sign between «_ and u,
and indeed it is nonnegative when v_ < u, and nonpositive when u_ > u,.
Recalling (8.3.3), we conclude that in the scalar conservation law (7.1.2) a shock
satisfies the viscous shock admissibility criterion if and only if the Oleinik E-
condition (8.4.2) holds. When (8.4.2) holds as a strict inequality for any uy (strictly)
between u_ and u,., then u_ is connected to 1, with a single orbit. By contrast,
when (8.4.2) becomes equality for a set of intermediate g, we need more than
one orbit and perhaps even a number of contact discontinuities in order to build
the viscous shock profile. In that case one may prefer to visualize the shock as a
composite of several shocks and/or contact discontinuities, all travelling with the
same speed.

Next we turn to the system (7.1.6) and the corresponding dissipative system
(8.6.3). In that case (8.6.8) reads
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=—~v4uv_ —s(u—u_)

(8.6.10) 1
—v=—0o0W)to(u_)—s(v—v_).
u

The reason we end up here with a combination of algebraic and differential equa-
tions rather than just differential equations is that B is a singular matrix. In any
event, upon eliminating v between the two equations in (8.6.10), we deduce

(8.6.11) s%=cr(u)—cr(u_)—s2(u—u_).

Since u > 0, (u_, v_) will be connected to (., v,) by a viscous shock profile
if and only if the right-hand side of (8.6.11) does not change sign between u_
and u, and is in fact nonnegative when s(u; — u_) > 0 and nonpositive when
s(uy —u_) < 0. In view of (8.1.11), we conclude that in the system (7.1.6) of
isentropic elasticity a shock satisfies the viscous shock admissibility criterion if
and only if the Wendroff E-condition (8.4.3) holds.

It was the Oleinik E-condition and the Wendroff E-condition, originally de-
rived through the above argument, that motivated the general Liu E-condition. We
now proceed to show that the viscous shock admissibility criterion is generally
equivalent to the Liu E-condition, at least in the range of shocks of moderate
strength. For simplicity, only the special case B = I will be discussed here; the
case of more general B is treated in the references cited in Section 8.7.

Theorem 8.6.1 Assume A; is a simple eigenvalue of DF. Then an i-shock of
moderate strength satisfies the viscous shock admissibility criterion, with B = I,
if and only if it satisfies the Liu E-condition.

Proof. Assume the state U_, on the left, is joined to the state U,, on the right,
by an i-shock of moderate strength and speed s. In order to apply the viscous
shock admissibility test, the first task is to construct a curve in state space which
connects U, with U_ and is invariant under the flow generated by (8.6.8), for
B = I. To that end, we embed (8.6.8) into a larger system, by introducing a new
(scalar) variable r:

V=FV)-FU)-r[V-U._
(3.6.12) [ (VY- FWU-)-r[V-U_]

F=0.
Notice that the Jacobian matrix of the right-hand side of (8.6.12), evaluated at the

equilibrium point V= U_, r = X;(U_) is

DF(U_)y — \(U-
(8.6.13) J:( (W-) =AU 0>,

0 0

with eigenvalues A;(U_) —A;(U_), j = 1,---, n, and 0; the corresponding eigen-
vectors being
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R;j(U-) 0
(8.6.14) 0 . j=1,---.n, and N

We see that J has two zero eigenvalues, associated with a two-dimensional
eigenspace, while the remaining eigenvalues are nonzero real numbers. The center
manifold theorem then implies that any trajectory of (8.6.12) which is confined
in a small neighborhood of the point (U_. &;(U_)) must lie on a two-dimensional
manifold . /4, which is invariant under the flow generated by (8.6.12), and may
be parametrized by

(8.6.15) V=0 ry=U_+¢RUY+S&.r), r=r,
with
(8.6.16) SO.4,WUN=0. S0O,,UN=0, S50,1U-)=0.

In particular, the equilibrium point (U, , s) of (8.6.12) must lie on. /#, say U, =
@(p.s), for some p near zero. Thus U_ and U, are connected by the curve
V = @(¢.s), for ¢ between 0 and p, and this curve is invariant under the flow
generated by (8.6.8), for B = 1.

Next we note that the flow induced by (8.6.12), along the invariant curve
V = @(-.r) is governed by a function { = £(-) which satisfies the scalar ordinary
differential equation

(8.6.17) ¢ =2g@.r),

with g defined through

(8.6.18) 8. NP (5. r)= F(@¢.r)— FU) —r[®(¢,n-U-].
In particular, recalling (8.6.15) and (8.6.16),

(8.6.19) g0, =0, gOrN=xU)-r.

Clearly, the viscous shock admissibility criterion will be satisfied if and only if
pg(¢.s) > 0 for all ¢ between 0 and p.

Suppose now the shock satisfies the Liu E-condition. Thus, if W; denotes the
i-shock curve through U_ and s; is the corresponding shock speed function, so
that U_ = W;(0), U, = W;(1), s = s;(t). we must have s;(§) > s for £ between
0 and p. For definiteness, let us assume U, — U_ points in the general direction
of R;(U-), in which case both p and t are positive.

We fix r < s, with s — r very small, consider the curve ®(-,r) and identify
k > 0 such that [@(k,r) — U,]" R;(U.) = 0. We show that g(¢.r) > 0. and
0 < ¢ < . Indeed, if g(¢,r) = O for some ¢, 0 < ¢ < k, then, by virtue of
(8.6.18), the state @ (. r) may be joined to the state U_ by a shock of speed r.
Thus, ®(Z. r) lies on the shock curve W;, say @ (g, r) = W;(§), for some £. By
the construction of i, since 0 < ¢ < k, it is necessarily 0 < £ < r. However.
in that case r = s5;(§) = s, which is a contradiction to our assumption r < 5.
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This establishes that g(¢, ) does not change sign on (0. k). At the same time,
by account of (8.6.19), g;(0,r) = 5(0) —r > s —r > 0, which shows that
gt.ry > 0,0 <t < «. Finally, we let r 1 s, in which case ¥ — p. Hence
g(¢,5) = 0 for ¢ € (0, p).

By a similar argument one shows the converse, namely that pg({. s) > 0, for
¢ between 0 and p, implies s;(§) > s, for § between 0 and 7. This completes the
proof.

Combining Theorems 8.4.1, 8.4.2 and 8.6.1, we conclude that the viscous shock
admissibility criterion generally implies the Lax E-condition but the converse is
generally false, unless the system is genuinely nonlinear and the shocks are weak.

Our next task is to compare the viscous shock admissibility criterion with
the entropy shock admissibility criterion. We thus assume that the system (8.1.1)
is equipped with an entropy-entropy flux pair (/. ¢). The natural compatibility
condition between the entropy and the viscosity matrix B was already discussed
in Section 4.4. We write (a weaker form of) the condition (4.4.4) in the present,
one-dimensional setting:

(8.6.20) HTD*'n(U)B(U)H >0, HeR', Uer.

As already noted in Section 4.4, when B = [, (8.6.20) will hold if and only if n
is convex.

Theorem 8.6.2 When (8.6.20) holds, anv shock that satisfies the viscous shock
admissibility criterion also satisfies the entropy shock admissibilitv criterion.

Proof. Consider a shock of speed s which joins the state U_, on the left, to the
state U, on the right, and satisfies the viscous shock admissibility condition.

Assume first U_ is connected to U, with a single orbit of (8.6.8), i.e., there
is a function V which satisfies (8.6.8), and thereby also (8.6.7), on (—o0, 00),
together with the conditions V(r) — Uy, as T — Fo0. We multiply (8.6.7), from
the left, by Dn(V (7)) and use (7.4.1) to get

(8.6.21) [Dn(V)B(V)V] = VIDIn(V)B(V)V = g(V) — si(V) .

Integrating (8.6.21) over (—o0, o0) and using (8.6.20) we arrive at (8.5.1). We
have thus proved that the shock satisfies the entropy condition.

In the general case where the viscous shock profile contains intermediate equi-
librium points, we realize the shock as a composite of a (finite or infinite) number
of simple shocks of the above type and/or contact discontinuities, all propagat-
ing with the same speed s. As shown above, the entropy production across each
simple shock is nonpositive. On the other hand, by Theorem 8.5.2, the entropy
production across any contact discontinuity will be zero. Therefore, combining the
partial entropy productions we conclude that the total entropy production (8.5.1)
is nonpositive. This completes the proof,

The converse of Theorem 8.6.2 is generally false. Consider for example the sys-
tem (7.1.6) of isentropic elasticity, with corresponding dissipative system (8.6.3)
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and entropy-entropy flux pair (7.4.10), which satisfy the compatibility condition
(8.6.20). As shown in Section 8.5, the entropy shock admissibility criterion is
tested through the inequality (8.5.5), which follows from, but does not generally
imply, the Wendroff E-condition (8.4.3).

One may plausibly argue that mere existence of a viscous shock profile should
not constitute grounds for admissibility of the shock unless the profile itself is
stable under perturbations of the states Uy and perhaps even under perturbations
of the flux function F. For simplicity, let us focus attention to the case B = [
and let us consider weak shocks, of speed s, joining U_, on the left, to U,, on
the right, with shock profile consisting of a single connecting orbit of (8.6.8).
Clearly, the shock profile must lie on the intersection of the unstable manifold
/¢ of (8.6.8) at U_ and the stable manifold . of (8.6.8) at U, . For stability of
the profile, 74 and . must intersect transversely. In particular, we would need
dim 72 +dim. > n 4+ 1. Now the Jacobian of the right-hand side of (8.6.8) at
V is the matrix DF(V) — s, with eigenvalues A (V) —s,---, A, (V) — s, and
corresponding eigenvectors Ry(V), - - -, R,(V). Therefore, 7/ is equidimensional,
and tangential at U_, to the subspace spanned by R;(U.) forall j = [.-.. n with
A(U-) > s; and .¥ is equidimensional, and tangential at U, to the subspace
spanned by Ry (Uy) forall k =1, ... n with A, (U,) < s. In a strictly hyperbolic
system with weak shocks, we have A (Uy) < 3(Uy) < --- < A, (Uz) and so the
stability condition dim 24 + dim.% = n + | can be met if and only if

(8.6.22) MmUY > o> 05U >s > XUyp) > - > A (Uy)

holds for some i. This provides additional support to the thesis that the Lax
E-condition is principally a guarantee that the interaction of the shock with its
adjacent states is stable. The reader may find in the references cited in Section
8.7 how the above ideas extend to the case of more general dissipative viscosity
matrices B.

One may argue, further, that viscous shock profiles employed to test the ad-
missibility of shocks must derive from traveling wave solutions of the system
(8.6.1) that are asymptotically stable. This issue has been investigated thoroughly
in recent years and a complete theory has emerged, warranting the writing of a
monograph on the subject. A detailed presentation would lie beyond the scope
of the present book so only the highlights shall be reported here. For details and
proofs the reader may consult the references cited in Section 8.7.

For simplicity, we limit our discussion to viscosity matrix B = / and rescale
(8.6.1) so that = 1. We consider a weak i-shock, joining the states U., on the
left, and U, . on the right, which admits a viscous shock profile V. A change of
variable x — x + st renders the shock stationary. The viscous shock profile V
is called asymptotically stable if the solution U (x, t) of (8.6.1) with initial values
U(x.0) = V(x) + Up(x), where U, is a “small” perturbation decaying at *oc,
satisfies

(8.6.23) U, t)y > Vx+h), ast— oc.

for some appropriate phase shift # € R.
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Motivated by the observation that the total mass of solutions of (8.6.1) is
conserved, it seems natural to require that the convergence in (8.6.23) be in
L'(—o00, 00). In particular, this would imply that V(x + h) carries the excess
mass introduced by the perturbation:

o> x
(8.6.24) / Up(x)dx =/ [V(x+h)—V(x)ldx =h[U; -U_].
—oo -

In the scalar case, n = 1, any viscous shock profile is asymptotically stable in
L!(=00, 00), under arbitrary perturbations Uy € L'(—00, 00), with & determined
through (8.6.24).

For systems, n > 2, the single scalar parameter # is generally inadequate
to balance the vectorial equation (8.6.24), in which case (8.6.23) cannot hold in
L'(—00, 00), as no h-translate of V alone may carry the excess mass. Insightful
analysis of the asymptotics of (8.6.1) suggests that, for large ¢, the solution U
should develop a viscous shock profile accompanied by a family of so called
diffusion waves, which share the burden of carrying the mass:

(8.6.25) U,y ~V(x+h)+ W, 0+ D 6i(x,DR; .

J#i
The j-term in the summation on the right-hand side of (8.6.25) represents a de-
coupled Jj dszuszon wave, with amplitude collinear to R;, evaluated at U_, for
i=1, —lL,oratU,, for j=i+1,---.n The scalar function 0; is a
self-51mllar solutlon,

(8.6.26) 0;(x.1) = %¢, (x }:\") ,

of the nonlinear diffusion equation
1
(8.6.27) 30; + 8x [x,e,— + E(ijRj)BJ?'] = 9% .

In (8.6.26) and (8.6.27), 4;, DA; and R; are again evaluated at U_, for j =
I.-v,i—=1l,oratU,, forj=i+1,---,n Thus the j-diffusion wave has a bell-
shaped profile which propagates at charactenstlc speed A;, its peak decays like
O(t‘i), while its mass stays constant, say m;R;. The remaining term W on the
right-hand side of (8.6.25) represents the coupled diffusion wave, which satisfies
a complicated linear diffusion equation, not to be recorded here, decays at the
same rate as the uncoupled diffusion waves, but carries no mass. Therefore, mass
conservation as t — o0 yields, in lieu of (8.6.24), the equation

[e ]
(8.6.28) / Uy(x)dx = ijRj(U_) +h[U, —U_1+ ijRj(U+) ,
- Jj<i j>i
which dictates how the excess mass is distributed among the viscous shock profile
and the decoupled diffusion waves. Since U, —U_ and R, (Uy) are nearly collinear,

(8.6.28) determines explicitly and uniquely the phase shift 4 of the viscous shock
profile as well as the masses m; of the j-diffusion waves.
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On the other hand, it has been established that the viscous shock profile V
is asymptotically stable (8.6.23) in L™(—00. 00}, for the & determined through
(8.6.28), under any perturbation U, € H'(—0cc. o0) of V with

(8.6.29) / |U0(.\-)|d.\'+/ (0 + U dy < 1,

o -2C

provided only that the eigenvalue A; is simple and the shock satisfies the strict
form of the Lax E-condition. It should be noted that the assertion holds even when
the i-characteristic family fails to be genuinely nonlinear.

The orderly structure depicted above disintegrates when dealing with strong
shocks and/or systems that are not strictly hyperbolic. In order to get a glimpse
of the geometric complexity that may arise in such cases, let us discuss the con-
struction of viscous shock profiles for 2-shocks of the simple system (7.2.11), with
dissipative form (8.6.4). The properties of shocks were already discussed in Section
8.3. Taking advantage of symmetry under rotations and scaling propertics of the
system, we may fix, without loss of generality, the left state («_, v_) at the point
(1,0). The right state (x4, v, ) will be located at a point (a. 0), with a € (-1, 0).
In that case, as shown in Section 8.3, the shock speed is s = a> +a + | and the
shock is overcompressive (8.3.7). Notice that the state (b. 0), where b = —1 — g,
is also joined to (1, 0) by a 2-shock of the same speed s, which satisfies the Lax
E-condition, is not overcompressive, but does not satisfy the Liu E-condition.

The system (8.6.8) associated with (8.6.4) reads:

(8.6.30)

= —s(u— D +u@?+vH) -1
U= —sv+v@? 402

or, equivalently, in polar coordinates (p.0), u = pcosf, v = psinf:

p = p(p* —5)+ (s~ l1)cosh
(8.6.31)

pb = —(s — )sin@ .

Notice that (8.6.30) possesses three equilibrium points: (a) (1, 0) which is an
unstable node; (b) (a, 0) which is a stable node; and (c) (b, 0) which is a saddle.
The phase portrait, that may be easily determined through elementary analysis of
(8.6.30) and (B8.6.31), is depicted in Fig. 8.6.1.

Even though the shock joining (i, 0) to (b, 0) violates the Liu E-condition,
these states are connected by two viscous shock profiles, symmetric with respect to
the u-axis. By contrast, the states (I, 0) and (a, 0) are connected by infinitely many
viscous shock profiles. To test the asymptotic stability of any one of these viscous
shock profiles, say ((z), T(t)), in the light of our discussion above, we introduce
a small perturbation (up(x), vo(x)) and inquire whether the solution (i, v)(x, f)
of (8.6.4) with initial values

(8.6.32) (u, v)(x,0) = (i? (%) + ug(x), v (5) + vo(x)>
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satisfies

(8.6.33) (. V)(x. 1) — (ﬁ (x_”),ﬁ (*'_“)) _ ast— 00,
L L

where (ii(r), 0(r)) is a (generally different) viscous shock profile. Because
no diffusion waves are possible here, the convergence in (8.6.33) must be in
L'(—o0, oc). In particular, the v-component of the excess mass conservation yields

(8.6.34)

/00 vp(x)dx = /m I:ﬁ (x—st) -3 (X—St)] dx = u/x [0(r) — v(r)]dr .
e —00 H H -

It may be shown that the integral on the right-hand side of (8.6.34) is uniformly
bounded, independently of the choice of ¥ and 0. Consequently, when vy is fixed
so that f vodx # 0, (8.6.34) cannot hold when  is sufficiently small. Thus, in so
far as shock admissibility hinges on stability of the connecting shock profiles, the
overcompressive shocks of the system (7.2.11) should be termed inadmissible.

8.7 Notes

The study of shock waves originated in the context of gas dynamics. The book
by Courant and Friedrichs [1], already cited in Section 3.4, presented a coherent,
mathematical exposition of material from the physical and engineering literature,
accumulated over the past 150 years, paving the way for the development of a
general theory by Lax [2].

For as long as gas dynamics remained the prototypical example, the focus of
the research effort was set on strictly hyperbolic, genuinely nonlinear systems. The
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intricacy of shock patterns in nonstrictly hyperbolic systems was not recognized
until recently, and this subject is currently undergoing active development.

Expositions of most of the topics covered in this chapter are also contained in
the books of Smoller [1] and Serre [9].

The notion of Hugoniot locus, in gas dynamics, is traced back to the work of
Riemann [1] and Hugoniot [1]; but the definition of shock curves in the general
setting is due to Lax [2], who first established the properties stated in Theorems
8.2.1, 8.2.2 and 8.2.3. The elegant proof of Theorem 8.2.1 is here taken from
Serre [9]. The significance of systems with coinciding shock and rarefaction wave
curves was first recognized by Temple [1], who conducted a thorough study of
their noteworthy properties. A detailed discussion is also contained in Serre [9].

For gas dynamics, the statement that admissible shocks should be subsonic
relative to their left state and supersonic relative to their right state is found in
the pioneering paper of Riemann [1]. This principle was postulated as a general
shock admissibility criterion, namely the Lax E-condition, by Lax [2], who also
proved Theorem 8.3.1. A proof of Theorem 8.3.2 is given in Li and Yu [!]. See
also Hsiao and Chang [!]. A multi-space dimensional version of Theorem 8.3.2,
in a Sobolev space setting, was established by Majda [2] by methods akin to
those used in the proof of Theorem 5.1.1. Extensive literature has derived from
this seminal work, see e.g. Godin [1]. The important issue of linearized stability
of multi-space dimensional shock fronts is addressed in Majda [1]. A detailed,
systematic presentation, based on the Lopatinski condition, is contained in Serre
[9]. See also Corli and Sablé-Tougeron [1]. A different connection between the
Lax E-condition and stability is established in Smoller, Temple and Xin [1].

Shock admissibility in the absense of genuine nonlinearity was first discussed
by Bethe [1] and Weyl [1]. for the system of gas dynamics. The Liu E-condition
and related Theorems 8.2.4, 8.4.1, 8.4.2 and 8.5.4 are due to Liu [2]. The moti-
vation was provided by the Oleinik E-condition, derived in Oleinik [4], and the
Wendroff E-condition, established in Wendroff [1]. This admissibility criterion
seems to have been anticipated in the 1960’s by Chang and Hsiao [1,2] (see also
Hsiao and Zhang [1]) but their work was not published until much later.

The entropy shock admissibility condition has been part of the basic theory
of Continuum Thermomechanics since the turn of the century. The form (8.5.1),
for general systems (8.1.1), was postulated by Lax [4], who established Theorems
8.5.1, 8.5.3, and 8.6.2. The proofs of Theorems 8.5.1, 8.5.2, 8.5.3 and 8.5.4 here,
based on Equation (8.5.8), are taken from Dafermos [10].

The notion of viscous shock profile was introduced to gas dynamics by Rank-
ine [1] and by Rayleigh [3]. For the physical background, see e.g. Zeldovich and
Raizer [1]. A seminal reference is Gilbarg [1]. The general form (8.6.8), for sys-
tems (8.1.1), was postulated by Gelfand [1]. Theorem 8.6.1 is due to Majda and
Pego [1]. An earlier paper by Foy [1] had established the result in the special case
where the system is genuinely nonlinear and the shocks are weak. Also Mock
[1] has proved a similar result under the assumption that the system is genuinely
nonlinear and it is endowed with a uniformly convex entropy. The issue of char-
acterizing appropriate viscosity matrices B has been discussed by several authors,
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including Conley and Smoller [1,2]. Majda and Pego [1]. Pego [1] and Serre [9].
For a detailed study of viscous shock profiles in isentropic (or isothermal) elastody-
namics, under physically appropriate assumptions, see Antman and Malek-Madani
[1]. The case of general, nonisentropic gas dynamics, with nonconvex equation of
state, was investigated by Pego [2], who established that strong shocks satisfying
the Liu E-condition do not necessarily admit viscous shock profiles when heat
conductivity dominates viscosity. For viscous shock profiles in quadratic systems
of conservation laws that are not strictly hyperbolic, see Cani¢ and Plohr [1].

The literature on asymptotic stability of viscous shock profiles is so vast that
it would be impossible to provide here a comprehensive list of references. Of the
seminal papers in that area, it will suffice to cite Ilin and Oleinik [1], on the scalar
case; Goodman [1], on systems for perturbations with zero excess mass; Liu [12],
which introduces the decoupled diffusion waves; and Szepessy and Xin [1], which
adds the coupled diffusion waves. For further developments, including the case
of contact discontinuities, overcompressive shocks and boundary shock layers, see
Gardner and Zumbrun [1], Goodman, Szepessy and Zumbrun [1], Hubert and Serre
[1], Kawashima and Matsumura [1], Liu [17], Liu and Nishihara [!], Liu and Xin
[2,3], Liu and Yu [1]. Liu and Zeng [1,2]. Liu and Zumbrun [1], Xin [1,3], Zeng
[1,2,3] and Zumbrun and Howard [1]. Multidimensional shocks are considered in
Serre and Zumbrun [1]. Profiles obtained via relaxation are discussed in Luo and
Serre [1]. For a systematic exposition, the reader may consult the book of Serre
[9]. In reference to the specific results reported here, the definitive treatment of
the scalar case is in Freistithler and Serre [1] (see also Serre [11]); the stability
of (not necessarily genuinely nonlinear) weak shocks, satisfying the strict form of
the Lax E-condition, is established in Fries [1,2]; and the study of the stability of
overcompressive shocks for the system (7.2.11) is taken from Liu [16].

The class of hyperbolic systems of conservation laws with rotational invariance
has interesting mathematical structure as well as applications to elasticity and mag-
netohydrodynamics. Various aspects of the existence and stability of shock waves
in that class are discussed in Brio and Hunter [1], Freistiihler [1,3], Freistiihler
and Liu [I] and Freistiihler and Szmolyan [1].

The question of admissibility of jump discontinuities, representing phase
boundaries, also arises in systems of conservation laws of mixed type which model
phase transitions. Entropy, viscosity and viscosity-capillarity admissibility criteria
have been tried in that context, in combination with a new criterion based on
“kinetic relations” motivated by considerations at the microscale. See Abeyaratne
and Knowles [1,2], Benzoni-Gavage [2], Hagan and Slemrod [1], R.D. James [1],
Keyfitz [2], LeFloch [3], Rosakis [1], Slemrod [1,2] and Truskinovsky [1,2].

There is no unique, natural way of defining weak solutions with jump discon-
tinuities for systems that are not in divergence form. However, jump relations ex-
tending the Rankine Hugoniot conditions to such systems may be motivated either
by physical applications or by purely mathematical considerations. A framework
of such theories was introduced by LeFloch [2] and Dal Maso, LeFloch and Murat
[1]. For developments and applications of these ideas, see Amadori, Baiti, LeFloch

and Piccoli [1], Hayes and LeFloch [1,2] and LeFloch and Tzavaras [1]. For a
survey, see LeFloch [4].



Chapter IX. Admissible Wave Fans
and the Riemann Problem

The property of systems of conservation laws to be invariant under uniform stretch-
ing of the space-time coordinates induces the existence of self-similar solutions,
which stay constant along straight-line rays emanating from some focal point in
space-time. Such solutions depict a collection of waves converging to the focal
point and interacting there to produce a jump discontinuity which is in turn re-
solved into an outgoing wave fan,

This chapter investigates the celebrated Riemann problem, whose object is the
resolution of jump discontinuities into wave fans. A solution will be constructed by
the classical method of piecing together elementary centered solutions encountered
in earlier chapters, namely, constant states, shocks joining constant states, and
centered rarefaction waves bordered by constant states or contact discontinuities. A
vanishing viscosity method will also be considered, which employs time-dependent
viscosity so that the resulting dissipative system is invariant under stretching of
coordinates, just like the original hyperbolic system.

The issue of admissibility of wave fans will be raised and the role of entropy
and viscosity will be discussed. It will be shown that under certain conditions the
resolution of a jump discontinuity into an admissible wave fan minimizes the total
entropy production.

Finally, the interaction of two wave fans will be considered and the resultant
wave fan will be determined.

9.1 Self-similar Solutions and the Riemann Problem

The system of conservation laws
9.1.hH U+, F(U)y=0

is invariant under uniform stretching of coordinates: (x,t) — (xx,at); hence it
admits self-similar solutions, defined on the space-time plane and constant along
straight-line rays emanating from the origin. Since (9.1.1) is also invariant under
translations of coordinates: (x,t) = (x + X, t + ), the focal point of self-similar
solutions may be translated from the origin to any fixed point (%, ) in space-time.

If U is a (generally weak) self-similar solution of (9.1.1), focused at the origin,
its restriction to ¢ > 0 admits the representation
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x
9.1.2) U(x.t)=V(7). —<x<0, 0<t<oo,

where V is a bounded measurable function on (—o0, 00), which satisfies the
ordinary differential equation

9.1.3) [F(VE) —EVIEOI +V(E) =0,

in the sense of distributions. Indeed, if U is given by (9.1.2) and ¢ is any C>
test function with compact support on (—o0. oc) x (0, 00), then, after a short
calculation,

/ / B (x, HYU (x, 1) + 30 (x, HF(U(x, t))]dxdt
0 —oC

9.1.4) %
=f WEF(VE) — EVE)] — VEV (E)IE .
where
(9.1.5) V() = /xqﬁ(st,t)dt . —co<E<oo.
0

The restriction of U to ¢t < 0 similarly admits a representation like (9.1.2), for a
(generally different) function V, which also satisfies (9.1.3).

From (9.1.3) we infer that F(V) — €V is Lipschitz continuous on (—oo, 00)
and (9.1.3) holds, in the classical sense, at any Lebesgue point £ of V.

Henceforth, we shall consider self-similar solutions U of class BVj,.. In that
case, the function V, above, has bounded variation on (—oc, 00). We assume V is
normalized, as explained in Section 1.7, so that one-sided limits V(§+) exist for
every £ € (—oo, 00) and V(§) = V(§—) = V(£+) except possibly on a countable
set of &.

By account of Theorem 1.7.4, (9.1.3) may be written as

(9.1.6) [DF(V) —€IV =0,

in the sense of measures, with

— |
9.1.7) DF(V)(¢) = / DFTVEY+ (1 -V (E+)dT .
0

Furthermore, as a function of bounded variation V is differentiable almost every-
where on (—oc0, 00) and (9.1.6) will be satisfied at any point £ of continuity of V
where V(S) exists.

In view of the above, (—00, 00) is decomposed into the union of three pairwise
disjoint sets ¥, . and 7/ as follows:

¢ is the maximal open subset of (—o0, 00) on which the measure V vanishes,
i.e., the complement of the support of V. It is the (at most) countable union of
disjoint open intervals, on each of which V is constant.

- is the (at most) countable set of points of jump discontinuity of V. The
Rankine-Hugoniot jump condition

(9.1.8) F(V(E+) - F(V(E-) =§[VEH - V(E-)]
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holds at any & € .. This may be inferred from the (Lipschitz) continuity of
F(V) — £V, noted above, or it may be deduced by comparing (9.1.6), (9.1.7) with
(8.1.3), (8.1.4).

7/ is the (possibly empty) set of points of continuity of V that lie in the
support of the measure V. When & € 77, then

9.1.9) r(V(E) =&,

for some i € {1,---,n}. Indeed, if & is the limit of a sequence {&,} in .¥, then
V(En+t) — V(En—) — 0, as m — o0, and (9.1.9) follows from the Rankine-
Hugoniot condition (9.1.8). On the other hand, if £ is in the interior of the set of
points of continuity of V, and (9.1.9) fails fori = 1, .- -, n. then A;(V(¢)) # ¢ for
te(E—e, E+e)andi =1, ---,n,in which case, by virtue of (9.1.6), the measure
V would vanish on (§ — ¢, £ +¢), contrary to our hypothesis that & € sptV. If g
is a point of differentiability of V, (9.1.6) implies

(9.1.10) VE) =bER(VE)) ,
where the scalar (£) is determined by combining (9.1.9) with (9.1.10):
9.1.11) [Dr(VE)R(VENILE) =1 .

In particular, V () is a point of genuine nonlinearity of the i-characteristic family

We have thus shown that self-similar solutions are composites of constant
states, shocks, and centered simple waves. The simple waves will be centered
rarefaction waves, when V is an outgoing wave fan, or centered compression
waves, when V depicts a focusing collection of waves. The two configurations are
differentiated by time irreversibility, induced by admissibility conditions on weak
solutions. More stringent conditions are imposed on outgoing wave fans, so these
are generally simpler.

Of central importance will be to understand how a jump discontinuity at the
origin, introduced by the initial data, is resolved into an outgoing wave fan. This
is the object of the

Riemann Problem. Determine a self-similar (generally weak) solution U of (9.1.1)
on (—o0, 00) x (0, 00), with initial condition
Uy, forx <0
9.1.12) U(x,0) =
U, forx>0,
where U, and U, are given states in ¢~ .

Following our discussion, above, we shall seek a solution of the Riemann
problem in the form (9.1.2), where V satisfies the ordinary differential equation
(5.1.3), on (—o0, 00), together with boundary conditions

(9.1.13) V() =U,, V(x)=U,.

The specter of nonuniqueness raises again the issue of admissibility, which will
be the subject of discussion in the following sections.
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9.2 Wave Fan Admissibility Criteria

Various aspects of admissibility have already been discussed, for general weak
solutions, in Chapter IV, and for single shocks, in Chapter VIII. We have thus en-
countered a number of admissibility criteria and we have seen that they are strongly
interrelated but not quite equivalent. As we shall see later, the most discriminating
among these criteria, namely viscous shock profiles and the Liu E-condition, are
sufficently powerful to weed out all spurious solutions, so long as we are confined
to strictly hyperbolic systems and shocks of moderate strength. However, once we
move to systems that are not strictly hyperbolic and/or to solutions with strong
shocks the situation becomes murky. The question of admissibility is still open.

Any rational new admissibility criterion should adhere to certain basic princi-
ples, the fruits of the long experience with the subject. They include:

(a) Localization. The test of admissibility of a solution should apply individually
to each point (X, 7) in the domain and only involve the restriction of the solution to
an arbitrarily small neighborhood of (X, 7), say the circle {(x, t) : |x—X|*+|t—7|2 <
r?} where r is fixed but arbitrarily small. This is compatible with the general
principle that solutions of hyperbolic systems should have the local dependence

property.

(b) Evolutionarity. The test of admissibility should be forward-looking into the
future, without regard for the past. Thus, admissibility of a solution at the point
(%, 7) should depend solely on its restriction to the semicircle {(x,?) : |x — x|* +
|t ~7]2 < r2, ¢t > 7}. This is in line with the principle of time irreversibility, which
pervades the admissibility criteria we have encountered thus far, like entropy,
viscosity, etc. '

(c) Invariance Under Translation_s: /lsolution U will be admissible at (%, 7) if
and only if the translated solution U, U(x,t) = U(x + X, t + 1), is admissible at
the origin (0, 0).

(d) Invariance Under Dilations. A solution U will be admissible at (0, 0) if
and only if, for each o > 0, the dilated solution U,, Uq(x,1) = U(ax,at), is
admissible at (0, 0).

Let us focus attention to weak solutions U with the property that, for each
fixed point (x, 7) in the domain. the limit

9.2.1) Ux.t) = lifg UF+ax,T+at)

exists for almost all (x,7) € (~00, 00) x [0, 00). Notice that in that case U is
necessarily a self-similar solution of (9.1.1). In the spirit of the principles listed
above, one may use the admissibility of U at the origin as a test for the admissi-
bility of U at the point (%, 7). Since U depicts a fan of waves radiating from the
origin, such tests constitute wave fan admissibility criteria.
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Passing to the limit in (9.2.1), amounts to observing, so to say, the solution
U under a microscope focused at the point (¥.7). The limit certainly exists if
U is piecewise smooth: When the stretching is performed about a point (%, 7) of
continuity, the resulting U will be the constant state U (%, 7). When the stretching
is performed about a point (X, 7) lying on a shock, the resulting T will consist of
a single shock joining the constant states U(X—, 7) and U (x+, 7). More complex
wave fans U will emerge when the stretching is effected about a point (X.7) of
wave interactions. The issue whether the limit (9.2.1) exists for general BV solu-
tions will be addressed in Chapter X1, for genuinely nonlinear scalar conservation
laws, in Chapter XII, for genuinely nonlinear systems of two conservation laws,
and in Chapter XIV, for general genuinely nonlinear systems of conservation laws.

As we saw in Section 9.1, the wave fan U is generally a composite of constant
states, shocks, and centered rarefaction waves. The simplest wave fan admissibility
criterion postulates that the fan is admissible if each one of its shocks, individually,
satisfies the shock admissibility conditions discussed in Chapter VIII. As we shall
see in the following section, this turns out to be adequate in many cases. Other
fan admissibility criteria, which regard the wave fan as an entity rather than as a
collection of individual waves, include the entropy rate condition and the viscous
fan profile test. These will be discussed later.

9.3 Solution of the Riemann Problem with Admissible Shocks

The aim here is to construct a solution of the Riemann problem by piecing to-
gether constant states, centered rarefaction waves, and shocks that satisfy the Liu
E -condition. We limit our investigation to the case where wave speeds of different
characteristic families are strictly separated. This will cover waves of small am-
plitude in general strictly hyperbolic systems as well as waves of any amplitude in
special systems like (7.1.6) in which all 1-waves travel to the left and all 2-waves
travel to the right.

Let us then consider an outgoing wave fan (9.1.2), of bounded variation. Fol-
lowing the discussion in Section 9.1, (—o0, o0) is decomposed into the union
of the shock set ., the rarefaction wave set 7/ and the constant state set % .
Since the wave speeds of distinct characteristic families are strictly separated,
&=L A and = |J_, %, where .% is the (at most countable) set of
points of jump discontinuity of V that are i-shocks and 7/ is the (possibly empty)
set of points of continuity of V in the support of the measure V that satisfy (9.1.9).
The set.% | 7 is closed and contains points in the range of wave speeds of the
i-characteristic family.

We now assume that the shocks satisfy the Lax E-condition, i.e., for all £ € S,

(9.3.1) Mi(VE-) =& 2 Li(VEH)) .

Then . |J 7 is necessarily a closed interval [o;, §;]. Indeed, suppose .4 |J 74
is disconnected. Then there is an open interval (£, &) C ¢ with endpoints &, and
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&, contained in .% |J 7. In particular, V(§,+) = V(&—). On the other hand,
by virtue of (9.1.9) and (9.3.1), & = Ai(V(&i+), & < A4i(V(£,-)), which is a
contradiction to &, < &. Notice further that any £ € .5 with § > o; (or § < ;)
is the limit of an increasing (or decreasing) sequence of points of 74 and so
Xi(V(E=)) =& (or A,;(V(E+)) = &). We have thus established the following

Theorem 9.3.1 Assume the wave speeds of distinct characteristic families are
strictly separated. Any self-similar solution (9.1.2) of the Riemann Problem (9.1.1),
(9.1.12) comprises n + | constant states Uy = Upg,Uy,--- . Upy, U, = U,. For
i=1,..-,n,Ui_, isjoined to U; by an i-wave fan, namely a composite of centered
i-rarefaction waves and/or i-shocks with the property that i-shocks bordered from
the left (and/or the right) by i-rarefaction waves are left (and/or right) i-contact
discontinuities (Fig. 9.3.1).

Fig. 9.3.1.

It will be shown below that the locus of states that may be joined on the
right (or left) of a fixed state U € ¢ by an admissible i-wave fan, composed of
i-rarefaction waves and admissible i-shocks, as prescribed by Theorem 9.3.1, is
a C? curve @;(t; U) (or ¥;(t; U)), called the forward (or backward) i-wave fan
curve through U, which may be parametrized so that

(9.3.2) ®;0;0)=U, &;0;U)=R:U),
(9.3.3) v0;0)=TU, ¥(0.0)=RT).

Taking, for the time being, the existence of wave fan curves with the above
properties for granted, we note that to solve the Riemann problem we have to
determine an n-tuple ¢ = (g, - - -, g,), realized as a vector in R”", such that, starting
out from Uy = U, and computing successively U; = &;(e;; Ui—y), i =1,--+ n,
we end up with U, = U,. Accordingly, we define the function

(9.3.4) 2 U) = Pu(en: Ouot(Ency; -+ Pr(e; U)-+)

Clearly,
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(9.3.5) R0;0)=T .

Furthermore, since £2(0,---,0,&,0,---,0; U) = &, (g2 0),

)

(94 — —
(9.3.6) -Z;T(O: Uy=RU), 1<i<n
;

22 —
¥
Finally, for j < k, £2(0,---.0.£;,0,---,0,,0,---,0: U) = &y(ex; D (g5 U))
and hence

2

2 — — —
O, U)=DRy(U)R;(U), I<j<k=<n.

9.3.8
( ) 0¢;0¢ek

In particular, from (9.3.5), (9.3.6) and the implicit function theorem follows that
when U, is sufficiently close to U, there exists a unique ¢ near 0 with £2(¢; Up) =
U,. This generates a solution to the Riemann problem, which is unique within the
class of self-similar solutions with weak waves. The wave fan joining U, with U,
is conveniently described through its left state U, and the n-tuple € = (¢y, - -, &,).
The value of ¢; determines the i-wave amplitude. In particular, |¢;| measures the
i-wave strength while sgne; provides information on the nature of the i-wave
(shock, rarefaction wave, etc.). When F is C*, 2 is in W>*® and, by virtue of
(9.3.6), (9.3.7) and (9.3.8):

n l n 2
U =U+ ;ei&(un +5 ;ei DR;(U)R:(Uy)
9.3.9) n T =
+3 Y e DR(UIR;(Up) + O(leP) .
j=1 k=j+1

Clearly, we may also synthesize the solution of the Riemann problem in
the reverse order, starting out from U, = U, and computing successively
Ui =;(g;; U, i =n,---, 1, until we reach Uy = U,. Under certain circum-
stances, a mixed strategy may be advantageous. For example, the most efficient
procedure for solving the Riemann problem for a system of two conservation
laws, n = 2, is to draw the forward 1-wave curve @, (¢,: U,) through the left state
U, and the backward 2-wave curve ¥;(e;; U,) through the right state U,. The
intersection of these two curves will determine the intermediate constant state:
Un = @1(e1; Up) = Wa(e; Uy).

Our next project is to construct the wave fan curves. We begin our investigation
with systems in which fans are particularly simple. When the i-characteristic family
is linearly degenerate, no centered i-rarefaction waves exist and hence, by Theorem
8.2.5, any i-wave fan is necessarily an i-contact discontinuity. In that case the
forward and backward i-wave fan curves coincide with the shock curve W; in
Theorem 8.2.5, i.e., @;(t; U) = ¥i(z; U) = W(t; fl_).
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When the i -characteristic family is genuinely nonlinear, i-contact discontinu-
ities are ruled out by Theorem 8.2.1, and so any i-wave fan of small amplitude
must be either a single centered i -rarefaction wave or a single compressive i-shock.
Let us normalize the field R; so that (7.6.13) holds, DA; R; = |. The states that
may be joined to U by a weak i-shock lie on the i-shock curve W;(r: U) described
by Theorem 8.2.1. On account of Theorem 8.3.1, the shock that joins U, on the
left, with W;(z; U), on the right, is _compressive if and only if T < 0. On the other
hand, by Theorem 7.6.3, the state U may be joined on the right (or left) by cen-
tered i-rarefaction waves to states V;(t: U) for t > 0 (or t < 0). It then follows
that we may construct the forward i-wave fan curve by @;(z; U) = W(r; U), for
7 < 0, and &;(r: U) = Vi(z; 0), for > 0. Similarly, the backward i-wave fan
curve is defined by ¥;(r; U) = Vi(1: U), for t < 0, and W¥;(r; U) = Wi(: U),
for t > 0. These curves are C>, by account of Theorem 8.2.2, and satisfy (9.3.2).
(9.3.3), by Theorem 8.2.1.

In view of the above discussion, we have now established the existence of
solution to the Riemann problem for systems with characteristic families that are
either genuinely nonlinear or linearly degenerate:

Theorem 9.3.2 Assume the system (9.1.1) is strictly hyperbolic and each charac-
teristic family is either genuinely nonlinear or linearly degenerate. For \U, — Uy|
sufficiently small, there exists a unique self-similar solution (9.1.2) of the Riemann
problem (9.1.1), (9.1.12), with small total variation. This solution comprises n + 1
constant states Uy = Uy, Uy, -+, Up_y, Uy = U,. When the i-characteristic fam-
ily is linearly degenerate, U; is joined to U;_, by an i-contact discontinuity, while
when the i-characteristic family is genuinely nonlinear, U; is joined to U;_y by
either a centered i-rarefaction wave or a compressive i-shock.

In particular, Theorem 9.3.2 establishes the existence of solutions, with small
total variation, to the Riemann problem for the system (7.1.7) of isentropic gas
dynamics, when 2p'(p) + pp”(p) > 0, so that both characteristic families are
genuinely nonlinear; also for the system (7.1.3) of adiabatic thermoelasticity, under
the assumption oy, (1, s) # 0, in which case the |- and the 3-characteristic families
are genuinely nonlinear while the 2-characteristic family is linearly degenerate. As
noted earlier, shock and rarefaction wave curves for the above systems exist even
in the range of strong shocks and thus one may attempt to construct solutions of
the Riemann problem even when U, and U, are far apart. The range of U, and U,
for which the construction is possible depends on the asymptotic behavior of shock
and rarefaction wave curves as the state variables p and u approach the boundary
points of their physical range, namely zero and infinity. An exhaustive discussion
of these issues is contained in the literature cited in Section 9.7 so it will not be
necessary to reproduce the analysis here. However, in order to illustrate the above
ideas by means of a simple example, let us consider the system (7.1.6), assuming
that o (1) is defined on (—o0,00) and 0 < a < o'(u) < b < 00, 0" (1) < 0. It is
convenient to reparametrize the wave curves, employing u as the new parameter. In
that case, the forward [-wave curve @, and the backward 2-wave curve ¥, through
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the typical point (i1, T) of the state space may be represented as v = ¢(u; 7, 7) and
v = ¥ (u; &, T), respectively. Recalling the form of the Hugoniot locus (8.2.11)
and rarefaction wave curves (7.6.15) for this system, we deduce that

T—Jlo)—o@(u-7). u<i

(9.3.10) ¢u; i, V) = “
ﬁ+/; Vo'(wydw >
T+ VoW —o@](u—-1), u<u
9.3.11) Y(u, i, v) =

u
v —/ Vo'(wydw u>u.
n

2-shock { -rarefaction

(), Uy)

(. vp) (4. 0,)

(a) (b)
Fig. 9.3.2.

Figure 9.3.2 depicts a solution of the Riemann problem which comprises a
compressive 1-shock and a centered 2-rarefaction wave. The intermediate constant
state (i, Uy,) is determined on the u-v plane as the intersection of the forward
1-wave fan curve @, through (u,, v¢) with the backward 2-wave fan curve ¥,
through (u,, v,), namely by solving the equation

9.3.12) Um = @(Upm: g, Vg) = Y (Ups Uy, Uy .

For systems of two conservation laws it is often expedient to perform the
construction of the intermediate constant state on the plane of Riemann invariants
rather than in the original state space. The reason is that, as noted in Section 7.6,
in the plane of Riemann invariants rarefaction wave curves become straight lines
parallel to the coordinate axes. This facilitates considerably the task of locating
the intersection of wave curves of different characteristic families. Figure 9.3.3
depicts the configuration of the wave curves of Fig. 9.3.2 in the plane w-z of
Riemann invariants.

Our next task is to describe admissible wave fans, and construct the corre-
sponding wave fan curves, for systems with characteristic families that are neither
genuinely nonlinear nor linearly degenerate. In that case, the Lax E-condition is
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Fig. 9.3.3.

no longer sufficiently selective to single out a unique solution to the Riemann
problem so the more stringent Liu E-condition will be imposed on shocks.

We begin with the scalar conservation law (7.1.2), where f(u) may have
inflection points. The Liu E-condition is now expressed by the Oleinik £-condition
(8.4.2). By Theorem 9.3.1, the solution of the Riemann problem comprises two
constant states u, and u, joined by a wave fan which is a composite of shocks
and/or centered rarefaction waves. There exists precisely one such wave fan with
shocks satisfying Oleinik’s E-condition, and it is constructed by the following
procedure: When u, < u, (or u, > u,), we let g denote the convex (or concave)
envelope of f over the interval [ug, u,] (or [u,, u/]); namely, g is the maximal
(or minimal) element of the partially ordered set {# : h convex, h(u) < f(u),
ug < u < u,} (or (h : b concave, h(u) > f(u), u < u < uy}). Thus the
graph of g may be visualized as the configuration of a flexible string anchored
at the points (i, f(ug)), (u,, f(u,)) and stretched under (or over) the “obstacle”
{,v) tueg = u < upyv > f) (or {(u,v) 1 4, < u < ugv < flW).
The slope £ = g’(u) is a continuous nondecreasing (or nonincreasing) function
whose inverse 4 = w(£) generatés the wave fan u = w(x/t). In particular, the
flat parts of g’(u) give rise to the shocks while the intervals over which g’(u) is
strictly monotone generate the rarefaction waves. Figure 9.3.4 depicts an example
in which the resulting wave fan consists of a centered rarefaction wave bordered
by one-sided contact discontinuities.

To prepare the ground for the investigation of systems, we construct wave fans,
and corresponding wave fan curves, for the simple system (7.1.6), where o (1)
may have inflection points. The Liu E-condition here reduces to the Wendroff
E-condition (8.4.3). Similar to the genuinely nonlinear case, we shall employ u
as parameter and determine the forward 1-wave fan curve @, and the backward
2-wave fan curve ¥, through the state (i7, %), in the form v = ¢(u; %, V) and
v = Y(u; u, V), respectively. Recalling the equations (8.2.11) for the Hugoniot

locus, the equations (7.6.15) for the rarefaction wave curves, and (8.4.3), we easily
verify that

9.3.13) du;u, V) =7+ / Ve (wu,)dw ,



9.3 Solution of the Riemann Problem with Admissible Shocks 185

Fig. 9.3.4.

(9.3.14) Y, u,v)=79— / Ve (o u nde ,

where g’(w; u, i) is the derivative, with respect to w, of the monotone increas-
ing, continuously differentiable function g(w; u, i) which is constructed by the
following procedure: For fixed u < & (or « > u), g(-, u, u) is the convex (or
concave) envelope of o (-) over the interval [u, it] (or [i, u]). Indeed, as in the
case of the scalar conservation law discussed above, the states (i, v) and (u, v),
v = ¢(u; u,T), are joined by a 1-wave fan (w(x/t), v(x/t)), where w(£) is the

inverse of the function § = /g'(w; u, 1) and

w(§)

(9.3.15) v(€)=7+ i Ve (w,n wydw .

u

Again, the flat parts of g’ give rise to shocks while the intervals over which g’ is
strictly monotone generate the rarefaction waves. In the genuinely nonlinear case,
o”(u) <0, (9.3.13) and (9.3.14) reduce to (9.3.10) and (9.3.11). Once ¢ and
have been determined, the Riemann problem is readily solved, as in the genuinely
nonlinear case, by locating the intermediate constant state (u,, v,) through the
equation (9.3.12).

After this preparation, we continue with a somewhat sketchy and informal
description of the construction of wave fan curves for general systems. To avoid
aggravating complications induced by various degeneracies, we limit the investi-
gation to {-characteristic families that are piecewise genuinely nonlinear in the
sense that if U is any state of linear degeneracy, DX, (U)R;(U) = 0, then
D(DX);(UYR(UYR;(U) # 0. This implies, in particular, that the set of states
of linear degeneracy of the i-characteristic family is locally a smooth manifold
of codimension one, which is transversal to the vector field R;. The scalar con-
servation law (7.1.2) and the system (7.1.6) of isentropic elasticity will satisfy
this assumption when the functions f(u) and o (1) have isolated, nondegenerate
inflection points, i.c., f”'(1) and o"(x) are nonzero at any point u where f”(it)
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and ¢ " (u) vanish. Even after these simplifications, the construction is very com-
plicated. The ideas may become more transparent if the reader employs the mode!
system (7.1.6) to illustrate each step.

Assuming the i~characteristic family is piecewise genuinely nonlinear, we con-
sider the forward i-wave fan curve @;(z; U) through a point U of genuine non-
linearity, say DA; (U)R (U) = 1. Then &; starts out as in the genuinely nonlinear
case, namely, for T positive small it coincides with the i-rarefaction wave curve
Vi(t; U) through U, while for T negative, near zero, it coincides with the i-shock
curve W;(r: U) through U. In particular, (9.3.2) holds. We shall follow &; along
the positive t-direction; the description for T < 0 is quite analogous.

For t > 0, ®;(t; U) will stay with the i-rarefaction wave curve V;(t; U) for as
long as the latter sojourns in the region of genuine nonlinearity: DA; (V) R;(V;) >
0. Suppose now V;(r; U) first encounters the set of states of linear degeneracy of
the i-characteristic family at the state U= Vi(T; U) : DA,-(U)R;(U) = 0. The
set of states of linear degeneracy in the vicinity of U forms a manifold ./ of
codimension 1, transversal to the vector field R;; see Fig. 9.3.5a,b.

)
Fig. 9.3.5.

The extension of @; beyond U is constructed as follows: For t* < 7, with 7 —
t* small, we draw the i-shock curve W;(z; U*) through the state U* = V;(z*, U).
By account of (8.2.1), 5;(0; U*) = A;(U*) and since DA;(U*)R;(U*) > 0, (8.2.2)
implies that for ¢ negative, near 0, 5,(¢; U*) > 0 and 5;(Z; U*) < A (W;(Z; U*)).
However, after crossing /4, W;(¢; U*) enters the region where DA, (U)R; (U) <
0 and thus A;(W;(¢; U*)) will become decreasing. Eventually, £* will be reached



9.3 Solution of the Riemann Problem with Admissible Shocks 187

where 5;(¢*: U*) = A (Wi(¢*: U*)). For & < ¢*, by virtue of Theorem 8.2.4,
si(C U > (Wi U*)) and $i (¢, U*) < 0. Finally, a value {* will be attained
with 5;(¢7; U*) = A,(U*). Then the state U* = W;(£": U*), on the right, is joined
to U*, on the left, by a left /-contact discontinuity with speed X; (U*). This shock
satisfies the Liu E-condition, since 5;(£: U*) > A, (U*) for £ < ¢, In particular,
Ai(U*y = 5;(¢5: U*) > A;(U?). Consequently, U, on the left, is joined to U-,
on the right, by an admissible i-wave fan, comprising the i-rarefaction wave that
joins U* to U and the admissible left i-contact discontinuity that joins U* to U*.
It can be shown that as UU* moves along the curve V;(r: U) from U towards U,
the corresponding U~ traces a smooth curve, say I". If U* = U, then U = U
so I' starts out from U. Also " at U is tangential to R; (U) We adJom I to
Vi(r: U) and consider it as the continuation of @;(7: U) beyond U. with the
proper parametrization.

@;(r: U) will stay with " up until a state U is reached at which one of the
following two events first occurs:

One possibility is depicted in Fig. 9.3.5(a): I" crosses another manifold . / °
of states of linear degeneracy of the /-characteristic family, entering the region
D)’ (U)YR;(U) > 0, and eventually U= backs up to a position U® so that the
corresponding U=, denoted by U satisfies A; (U) = A; (UO) In that case, ®;(t; U)
is extended beyond U as the i-rarefaction curve V;(¢: U) through L U, properly
reparametrized. Any state U on that curve is joined, on the right, to U by a wave
fan comprising an i-rarefaction wave that joins U® to U, an i-contact discontinuity
that joins U to U® and a second i-rarefaction wave that joins U to U.

The other possibility is depicted in Fig. 9.3.5(b): U* backs up all the way to
U and the corresponding U*, denoted by U, satisfies 2; (U) < 2;(U). In that case
U lies on the i-shock curve through U, say [ U= Wi (T; U). Since 5;(£: U) =
2:(U) > x;(0), Theorem 8.2.4 implies s,(t U) < 0. Then &;(t; U) is extended
beyond U along the i-shock curve W;(t; U). Any state U on this arc of the curve
is joined, on the right, to U by a single shock that satisfies the Liu E-condition.

By continuing this process we complete the construction of @;(z; U) within
the range of weak waves, and for certain systems within the range of waves of
moderate strength or even for strong waves. Furthermore, careful review of the
construction verifies that the graph of @; contains all states in a small neighborhood
of U that may be joined to U by an admissible i-wave fan.

Once wave fan curves satisfying (9.3.2) are in place, we may employ the
construction of the solution to the Riemann problem, described above, thus arriving
at the following generalization of Theorem 9.3.2:

Theorem 9.3.3 Assume the system (9.1.1) is strictly hyperbolic and each charac-
teristic family is either piecewise genuinely nonlinear or linearly degenerate. For
|U, — Uy} sufficiently small, there exists a unique self-similar solution 9.1.2) of
the Riemann problem (9.1.1), (9.1.12), with small total variation. This solution
comprises n + | constant states U, = Uy, Uy, -+ -, Uy_y, Uy = U,. When the i-
characteristic family is linearly degenerate, U; is joined to U;_ by an i-contact
discontinuity. When the i-characteristic family is piecewise genuinely nonlinear,
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U; is joined to U;_, by an admissible i-wave fan, composed of a finite number of
i-rarefaction waves and i-shocks that satisfy the Liu E-condition.

The orderly picture painted by the above theorem breaks down when one leaves
the realm of strictly hyperbolic systems and waves of small amplitude. The Liu
E-condition in no longer sufficiently discriminating to single out a unique solution.
To illustrate this, let us consider the Rieman problem for the model system (7.2.11),
with data (u¢, ve) = (1, 0) and («,, v,) = (a, 0), where a € (—3. 0). One solution
comprises the two constant states (1, 0) and (a, 0) joined by an overcompressive
shock, of speed s = 1 +a + a?, which satisfies the Liu E-condition. There is,
however, another solution comprising three constant states, (1,0),(~1,0) and
(a, 0), where (—~1,0) is joined to (I,0) by a l-contact discontinuity of speed |
and (a, 0) is joined to (—1, 0) by a 2-shock of speed s = | —a + a®. Both shocks
satisfy the Liu E-condition. Following the discussion at the end of Section 8.6, one
may be inclined to disqualify overcompressive shocks for this system, in which
case the second solution of the Riemann problem emerges as the admissible one.
This of course hinges on the assumption that (8.6.4) is the proper dissipative form
of (7.2.11).

9.4 The Entropy Rate Admissibility Criterion

Here a wave fan admissibility condition will be introduced, which is a logical ex-
tension of the entropy shock admissibility criterion discussed in Section 8.5. We
thus assume that our system (9.1.1) is endowed with a particular entropy-entropy
flux pair (5, ¢), which is designated to satisfy an entropy inequality, express-
ing the Second Law of thermodynamics or motivated by alternative physical or
mathematical considerations.

The entropy production of a shock of speed s that joins the state U,, on the
right, to the state U_, on the left, is given by the left-hand side of (8.5.1). Conse-
quently, the total entropy production contributed by all the shocks contained in a
wave fan U = V(x/¢), with V(&) a function of bounded variation on (—00, 00),
is given by

041 Pr=) (q(VEH) —q(V(E-) — El(VEH) = n(VE-DT,
£

where the summation runs over the at most countable set of points & of jump
discontinuity of V.

The entropy rate admissibility criterion stipulates that a wave fan U = V(x/1)
is admissibh.e if Pv < Py, for any other wave fan U = V(x/t) with the same
end-states: V(+o00) = V(£o0). The term derives from the observation that the

rate of change of the total entropy associated with a wave fan U = V(x/1) is
given by

d+ 1
94.2) I .[_. n(Ux, )dx|i=o = Py + g(V(—00)) — g(V(+00)) .
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To see this, note first that

I 1/t

d d
& [ e = d—tf_mrn(V(s»ds

(9.4.3)

1/t 1 |
=f n(V(£)ds - 7n(V(t“')) - 7n(V(—t")) .
—-1/t

Now, in the sense of measures,

(9.4.4) (V) =[En(V(E) —q(VENT +q(V(E) - En(V(E)) .

The generalized chain rule, Theorem 1.7.4, yields
(9.4.5) §(v) = &a(V) = [Dg(V) = Dy(V)]V .

From (9.4.5), (7.4.1), and (9.1.6) follows that the measure ¢(V) — £n(V) is con-
centrated in the set of points of jump discontinuity of V. Therefore, combining
(9.4.3) with (9.4.4) and letting ¢ | 0 we arrive at (9.4.2).

In its connections to Continuum Physics, the entropy rate admissibility crite-
rion is a more stringent form of the Second Law of thermodynamics: Not only
should the physical entropy increase but in fact it should be increasing at the
maximum rate allowed by the balance laws of mass, momentum and energy. The
kinetic theory seems to provide some support to that thesis, at least for waves of
small amplitude (references in Section 9.7). However, the efficacy of the entropy
rate admissibility criterion may only be established by examining its implications
in the context of familiar systems, and by comparing it with other, established,
admissibility conditions.

We begin our investigation by testing the entropy rate criterion on the scalar
conservation law:

Theorem 9.4.1 For the scalar conservation law (7.1.2), with designated entropy-
entropy flux pair (8.5.3), a wave fan satisfies the entropy rate admissibility criterion
if and only if every shock satisfies the Oleinik E-condition.

Proof. Let us fix some wave fan u = (&), with bounded variation on (—o0, oc).
As £ runs from —o0 to +00, ¥ = w(§) traces, on the graph of y = f(u). a
(finite or infinite) number of “arcs”, separated by gaps induced by the shocks:
When & is a point of jump discontinuity of w, f(w) jumps from f(w(&-)) to
f(w(&+)). We produce a continuous curve by filling these gaps with the chord
that connects (w(&—), f(w(&E-)) with (@(&+), f(w(&+))). This may be effected
by the following procedure: We let v(£) denote the variation of w over the in-
terval (—oo, ). Note that v is a left-continuous nondecreasing function. We now
construct the curve y = ¥,(7), T € [0, v(c0)], as follows: If T = v(£), for some
£ € (—00, 00), then ¥, (1) = f(w(£)). On the other hand, if v(€—) < T < v(E+),
for some £ € (—00, 00), then
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v(E+) — T (S )
—= N+ ————— flwE+
v($+)—v($—)f(w(E ) ($+)— f( 40

(9.4.6)  y.(1)=
Notice that y,, is a (possibly self-intersecting) curve with endpoints (w(400),
f(w(+o00))) having the property that, as T runs from 0 to v(00). the u-slope
d*y,/du = (d*y,/dt)(du/dt)"" is nondecreasing.

We recall, from Section 8.5, that the entropy production of a shock that
joins u_, on the left, to uy, on the right, is given by the left-hand side of
(8.5.4), which measures the signed area of the domain bordered by the arc of
the graph of f with endpoints (u_, f(«_)), (4. f(1y)), and the chord that con-
nects (u_, f(u-)), (g, f(uy)). It follows that the entropy production P, of the
wave fan w is measured by the signed area of the domain bordered by the arc of
the graph of f with endpoints (w(—00), f(w(—00))), (w(+00), f(w(+00))) and
the graph of the curve y,. Consequently, the difference P, — P; in the entropy
production of two wave fans u = w(x/t) and 1 = @&(x/t) with the same end-
states, @(400) = w(+00), is measured by the signed area of the domain bordered
by the corresponding curves y,, and y;. We conclude that a wave fan 1 = w(x/¢)
with given end-states u, and u,, such that v, < u, (or uy > u,), minimizes the
total entropy production if and only if the curve y, is the convex (or concave)
envelope of f over the interval [u,. 1, ] (or [i,, u,]). As we saw already in Section
9.3, this is the unique wave fan whose shocks satisfy the Oleinik E-condition. The
proof is complete,

It is interesting that just one entropy suffices to rule out all spurious solutions.
The situation is similar with the system (7.1.6) of isentropic elasticity:

Theorem 9.4.2 For the system (7.1.6), with designated entropy-entropy flux pair
(7.4.10), a wave fan satisfies the entropy rate admissibility criterion if and onlv if
every shock satisfies the Wendroff E-condition.

The proof of the above theorem, which can be found in the references cited
in Section 9.7, is based on the observation that the entropy production of a shock
is given by the left-hand side of (8.5.5) and thus, similar to the scalar case, may
be interpreted as an area.

We now turn to general strictly hyperbolic systems but limit our investigation
to shocks with small amplitude:

Theorem 9.4.3 For any strictly hyperbolic system (9.1.1) of conservation laws,
with designated entropy-entropy flux pair (1. q), where 1 is (locally) uniformly
convex, a wave fan with waves of moderate strength may satisfy the entropy rate
admissibility criterion only if every shock satisfies the Liu E-condition.

Proof. The assertion is established by contradiction: Assuming some shock in a
wave fan U = V(x/t) violates the Liu E- condmon one constructs another wave
fan U = V(x/1), with the same end- -states, V (£o00) = V (400), but lower entropy
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production, P; < Pi-. Here it will suffice to illustrate the idea in the special case
where V comprises one i-shock joining constant states U_, on the left, and U,
on the right. The general proof is found in the literature cited in Section 9.7.

Let W;(-) denote the i-shock curve through U_ and let s;(-) be the correspond-
ing shock speed function, with properties listed in Theorem 8.2.1. In particular,
U_ = W;(0), Uy = W;(1) and the speed of the shock is s = 5;(7). For definite-
ness, assume v > 0. When the shock violates the Liu E-condition, there are &
in (0, T) with s5;(§) < 5. The case where 5;(§) < s for all £ € (0. 7) is simpler;
so let us consider the more interesting situation where there is & e (0. t) such
that s;(&) > s for & € (0, &)). 5;(&) = s, and 5;(§)) < 0. We identify the state
U,, = W;(&)). Since U_ may be joined to both U,, and U, by shocks of speed s,
it follows that U,, and U, can also be joined by a shock of speed 5. Consequently,
one may visualize the shock that joins U_ and U, as a composite of two shocks,
one that joins U_ and U, and one that joins U,, and U, both propagating with
the same speed s. The plan of the proof is to perform a perturbation that splits
the original shock into two shocks, one with speed slightly less than s, the other
with speed slightly more than s, and to show that the resulting wave fan has lower
entropy production.

To that end, we construct n + 2 families of constant states Ug(e) = U_. U, (&),

S UiZi(e). U.(e), Ui(e), - - -, Uy (&), depending smoothly on the parameter ¢ that
takes values in a small neighborhood (—a, a) of 0, having the following properties:
Uj0y=0U_,for j=0.--,i = L:U,(0) = Up: Uj(0) = Uy, for j =i.- -, n.
Forj=1,---,i—1,i+1,---.n, Uj_i(e) is joined to U;(¢) by a (not necessarily
admissible) j-shock of speed o;(g); U;_i(e) is joined to U,(¢) by an i-shock of
speed s_(g); and U.(e) is joined to U;(e) by an i-shock of speed s, (g). The
corresponding Rankine-Hugoniot conditions read

9.4.7)
FUje)—FWUi—i(®) =a;e)[Uj(e)-U;_(e)], j=1,--- i=li+l.--,n,

(9.4.8) F(U.(&)) — FUi-1(8)) = s-(&)[Ua(e) — Vi1 (8)] .
(9.4.9) F(Ui(e)) — F(U(e)) = 5, (&)[Ui(e) — Us(8)] -

In particular, 6;(0) = A;(U_), for j = 1,---,i —1; 5-(0) = 5+(0) = 5; and
0;(0)y = A;(U,), for j =i, -, n. The construction may be effected by the method
employed in Section 9.3 for constructing solutions to the Riemann problem, with
j-shock curves playing here the role of the wave fan curves @; used there. The
implicit function theorem here yields a one-parameter family of states (rather
than a single state, as in Section 9.3), due to the additional degree of freedom,
namely the intermediate state U,. We choose the parametrization in such a way
that s' (0) = —1. Here and below the prime denotes differentiation with respect
to €.

Our first task is to show that, for & positive small, the constant states
Up(e), - -+, Ui_i(e), Us(8), Ui(e), - - -, U, (&), together with the connecting shocks,
may be assembled into a wave fan V,. For that purpose it suffices to prove that



192 IX. Admissible Wave Fans and the Riemann Problem

s_(€) < s4+ (). We differentiate (9.4.7), (9.4.8), (9.4.9) with respect to & and set
e =0 to get

(9.4.10) [DFU-)—,;UHNU[O U] =0, j=1,---,i-1,

(9.4.11) [DF(Uy) — MWUDINUO) = U_ ()] =0, j=i+]1,---,n,

(9.4.12) [DF(Un) —sINU(0) = [DF(U-) = sT1U;_{(0) = s_(O)[U,, — U_],
(9.4.13) [DF(Uy) = sINU/(0) — [DF(Up) — s11U,(0) = 5, (0)[Uy — Un] .

Upon combining (9.4.12) with (9.4.13) we deduce

sLOUn — U1+ s, (O[Us — Ugl

(9.4.14)
= [DF(U,) — sI]U}(0) — [DF(U_) — sT1U/_,(0) .

Both vectors on the left-hand side of (9.4.14) are almost collinear to R;(Uy). On
the other hand, by virtue of (9.4.10), U;_,(0) lies in the span of {R,(U_), -,
R;_1(U-)}, while by account of (9.4.11), U/(0) lies in the span of {R;4(U,),
-++, Ry(U4)). Therefore, the right-hand side of (9.4.14) is almost orthogonal to
L;(Uy). Let us set £ = |U, — U_|. Recalling that s’ (0) = —1, we deduce that in
(9.4.14) both terms on the right-hand side are o(¢) and thus the two terms on the
left-hand side must cancel each other out to leading order. In particular, s/, (0) > 0
so that, for & positive small, s_(¢) < 5 < 5. (¢), which establishes the desired
separation of shocks.
The total entropy production of the wave fan V, is

P(e) =Y {q(U;(&)) — q(U;-1(e) — 0;(&)[n(U;(e)) — n(Uj_1(e)]}
J#i
(9.4.15) +q(U,(8)) — qUi—1(6)) — s_(&)[n(Un(£)) — n(Ui_ (e))]
+ q(U;i(€)) — q(Us(e)) — 51 (e)[n(U;(e)) — n(U.(e))] .

To establish that for & positive small the wave fan V, dissipates entropy at a higher
rate than V, it suffices to show that P'(0) < 0. The derivative, with respect to
&, of the summation term on the right-hand side of (9.4.15), evaluated at & = 0,
reduces to

i—l
Y [Dg(U-) = 3;(U_) Dy(U_)J[U;(0) — U;_, (0)]

(9.4.16) =t

n

+ Y [Dq(U,) — &;(Us) Dn(UDIUJ(0) — U], (0)]

j=i+l

which vanishes by virtue of (7.4.1), (9.4.10) and (9.4.11). We evaluate, at ¢ =0,
the derivative of the remaining terms on the right-hand side of (9.4.15). After
a straightforward calculation, making use of (7.4.1), (9.4.12) and (9.4.13), we
conclude
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P'(0)= —s_(O)[nUm) = n(U-) = Dn(Un)(Up — U)]
=5, MUy = 9(Up) = D(Un) (U ~ Up)]
+ [Dn(Un) — Dn(U)IIDF(U) = s1]U/_,(0)
+ [Dn(U4) = Dn(Un)IIDF(Uy) = 511U/ (0) .

We examine the four terms on the right-hand side of (9.4.17), in the light of the
scaling analysis of (9.4.14), discussed earlier in the proof. Since n is convex,
s2(0) = —1,5,(0) > 0 and |U, — U_| = ¢, it follows that the first term is
majorized by —B¢? and the second term is majorized by —g¢|U, — U,,|, for
some 8 > 0. On the other hand, the third term is o(£)¢ and the fourth term is
o(®)|U, — Upy|. Consequently, for £ sufficiently small, P'(0) < 0. This completes
the proof.

(9.4.17)

Beyond the range of shocks of moderate strength, the entropy rate admissibility
criterion is no longer generally equivalent to the Liu E-condition. The issue has
been discussed in detail (references in Section 9.7) in the context of the system
(7.1.3) of adiabatic thermoelasticity for a polytropic gas with internal energy ¢ =
e‘u'"7, which induces, through (7.1.4), pressure p = —6 = (y — 1)e*u7. The
designated entropy-entropy flux pair is given by (7.4.9), namely (—s, 0). For this
system, with 1- and 3-characteristic families that are genuinely nonlinear and 2-
characteristic family that is linearly degenerate, the Lax E-condtion and the Liu
E-condition are equivalent.

It has been shown that when y > 5/3 a wave fan, of arbitrary strength, satisfies
the entropy rate admissibility criterion if and only if its shocks satisfy the Lax E-
condition. The reader should note that 5/3 is the value for the adiabatic exponent
y predicted by the kinetic theory in the case of a monatomic ideal gas.

When y < 5/3 (polyatomic gases), the situation is different. Consider a
wave fan comprising three constant states (u¢, Uy, S¢). (i, Um, Sp) and (i, vy, 5,),
where the first two are joined by a stationnary 2-contact discontinuity, while
the second and the third are joined by a 3-rarefaction wave. In particular,
Uy = Uy, P(ttm, Sm) = D¢, S¢), Sm = Sy, and 2(t, Un. Sm) = z(u,, vy, 5r), where
z(u, v, s) denotes the second 3-Riemann invariant listed in (7.3.4). The total en-
tropy production of this wave fan is of course zero. For u, /u, in a certain range,
there is a second wave fan with the same end-states, which comprises four con-
stant states (i, vy, S¢), (g, V1, 51), (02, v2, 52) and (u,. v, s,), where the first two
are joined by a I-shock that satisfies the Lax E-condition, the second is joined to
the third by a 2-contact discontinuity, while the last two are joined by a 3-shock
that violates the Lax E-condition. It turns out that when u,,/u, is not too large,
i.e., the contact discontinuity is not too strong, the total entropy production of
the second wave fan is positive and hence the first wave fan has lower entropy
rate. By contrast, when u,, /i, is sufficiently large, the total entropy production of
the second wave fan is negative and so the first wave fan no longer satisfies the
entropy rate criterion.

Similar issues arise for systems that are not strictly hyperbolic. Let us consider
our model system (7.2.11). Recall the two wave fans with the same end-states



194 IX. Admissiblc Wave Fans and the Riemann Problem

(1.0) and (a.0), a € (—%. 0), described at the end of Section 9.3: The first one
comprises the states (1,0) and (a, 0), joined by an overcompressive shock of
speed | + a + a®. The second comprises three states, (1,0). (—1.0) and (a, 0),
where the first two are joined by a l-contact discontinuity of speed 1, while the
second is joined to the third by a 2-shock of speed 1 — a + a. If we designate
the entropy-entropy flux pair

1 3 ,
(9418) n= E(uz + vz) s qg= Z(MZ + UZ)_ )

the entropy production of the overcompressive shock is +(a?—1)(1 —a)? while the
entropy production of the second wave fan is 1 (a? — 1)(1 +a)?. Thus the entropy
rate criterion favors the overcompressive shock, even though, as we saw in Section
8.6, this is incompatible with the stable shock profile condition. The reader should
bear in mind, however, that these conclusions are tied to our selections for artificial
viscosity and entropy. Whether (8.6.4) is the proper dissipative form, and (9.4.18)
is the natural entropy-entropy flux pair for(7.2.11) may only be decided when this
system is considered in the context of some physical model.

9.5 Viscous Wave Fans

The viscous shock admissibility criterion, introduced in Section 8.6, characterizes
admissible shocks for the hyperbolic system of conservation laws (9.1.1)as i | 0
limits of travelling wave solutions of the associated dissipative system (8.6.1). The
aim here is to extend this principle from single shocks to general wave fans. The
difficulty is that, in contrast to (9.1.1), the system (8.6.1) is not invariant under
uniform stretching of the space-time coordinates and thus it does not possess
travelling wave fans as solutions. To remedy this, it has been proposed that in the
place of (8.6.1) one should employ a system with time-varying viscosity,

(9.5.1) QUM )+ F(U(x, 1)) = wdU(x, 1),

which is invariant under the transformation (x,t) — (ax,at). Clearly, U =
Viu(x/t) is a self-similar solution of (9.5.1) if and only if V,(§) satisfies the
ordinary differential equation

(9.5.2) 1Vu(E) = F(V(§) — EV,(8) .

A self-similar solution U = V(x/t) of (9.1.1) is said to satisfy the viscous
wave fan admissibility criterion if V is the almost everywhere limit, as u | 0, of
a uniformly bounded family of solutions V,, of (9.5.2).

In addition to serving as a test of admissibility, the wave fan criterion suggests
an alternative approach for constructing solutions to the Riemann problem (9.1.1),
(9.1.12). Towards that end, one has to show that for any fixed u > O there exists
some solution V,, (&) of (9.5.2) on (—00, 00), with boundary conditions
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(9.5.3) V(=) = U . Vu(+00) = U, |

and then prove that the family {V,,(§) : 0 < u < 1} has uniformly bounded varia-
tion on (—o0, 0o). In that case, by Helly’s theorem (cf. Section 1.7), a convergent
sequence {V,, } may be extracted, with w,, | 0 as m — oo, whose limit V induces
the solution U/ = V(x/t) to the Riemann problem.

The above program has been implemented successfully under a variety of
conditions. One may solve the Riemann problem under quite general data U,
and U, albeit for special systems, most notably for pairs of conservation laws,
Alternatively, one may treat general systems but only in the context of weak
waves, requiring that |U, — Uy| be sufficiently small. It is this last situation that
will be discussed here. The analysis is lengthy and technical so only the main
ideas will be outlined. For the details, the reader may consult the references cited
in Section 9.7.

The crucial step is to establish a priori bounds on the total variation of V,,(§)
over (~00, 00), independent of u. To prepare the ground for systems, let us begin
with the scalar conservation law (7.1.2). Setting A(1t) = f'(«) and V,, &) =a(§),
we write (9.5.2) in the form

9.5.4) na+[& - a(V,(E)]je=0.
The solution of (9.5.4) is a(§) = t¢ (&) with

exp[—;8(6)]

9.5.5) $(E) = == ,
7 expl-Le(0)lds

§

The lower limit of integration s is selected so that g(§) > 0 for all & in
(—00, 0c). The amplitude 7 is determined with the help of the boundary con-
ditions V,,(—00) = ¢, V,,(00) = ut,. T = u, — u,. From (9.5.5) follows that the
L! norm of a(&) is bounded, uniformly in 4, and so the family {V, : 0 < u < 1}
has uniformly bounded variation on (—o00, 00).

Turning now to general strictly hyperbolic systems (9.1.1), we realize V (§)
as the composition of wave fans associated with distinct characteristic families,
by writing

(9.5.7) AGEDIHTIACAIN
j=1

We substitute V,, from (9.5.7) into (9.5.2). Upon multiplying the resulting equation,
from the left, by L;(V,(&)), we deduce

9.5.8) i + €=M (Vu@Nai =1 Y Bp(VuE)aja

jk=I
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where
(9.5.9 Bijx(U) = —Li(U)DR;(U) R (U) .

In (9.5.8), the left-hand side coincides with the left-hand side of (9.5.4), for the
scalar conservation law, while the right-hand side accounts for the interactions
of distinct characteristic families. The reader should notice the analogy between
(9.5.8) and (7.7.6). It should also be noted that when our system is endowed with a
coordinate system (wy, - - -, w,) of Riemann invariants, a; (&§) = w;(V,(£)). In that
case, as shown in Section 7.3, for j # k, DR; Ry lies in the span of {R;, Rk} and
50 (9.5.9) implies B;;x = 0 wheni 3 j # k # i. For special systems, like (7.3.18),
with coinciding shock and rarefaction wave curves, DR;R; is collinear to R; and
so Bijx = 0 even when i # j = k so that the equations in (9.5.8) decouple. In
general, the thrust of the analysis is to demonstrate that in the context of solutions
with small oscillation, i.e., a; small, the effect of interactions, of quadratic order,
will be even smaller.
The solution of (9.5.8) may be partitioned into

(9.5.10) a;i(§) = ugi(§) +6:(&) ,
where

exp[—,8i(6)]
S expl—1&i(D1de

(9.5.11) $i(§) =

3
95.12) 2i(6) = f £ — M (VaE)Ide |

and 6;(£) satisfy the equations
(9.5.13) ub;+[E—1i(V,(E)]6 = 1 Z Biit (Vi (E))[T;0;(5)+6;1[trpn (§) +6,] .
Jk=t

The differential equations (9.5.13) may be transformed into an equivalent sys-
tem of integral equations by means of the variation of parameters formula:

(9.5.14) ;
6;(§) = ¢i($)f &7 OBk (V@)1 (2) + 6,;(D)][Te (§) + 6:()]1dT .

Careful estimation shows that
(9.5.15) 6:E) < c(rf +-+1D) Y ¢;8)
j=1

which verifies that, in (9.5.10), 6; is subordinate to T;¢;, i.e., the characteristic
families decouple to leading order.

It can bq shown, by means of a contraction argument, that for any fixed
(ti,--+, 7x) in a small neighborhood of the origin, there exists some solution
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Vu(§) of (9.5.2) on (—00, 00), which satisfies (9.5.7). (9.5.10) and (9.5.15). To
solve the boundary-value problem (9.5.2), (9.5.3), the (7, - - -, 1,) have to be se-
lected so that

(9.5.16) > f [56) §) + 6;(E)IR; (Vo (E))dE = U, — U, .
FETR A

It has been proved that (9.5.16) admits a unique solution (ty,-:-, 1,), at least
when |U, — U,| is sufficiently small. The result is summarized in the following -

Theorem 9.5.1 Assume the system (9.1.1) is strictly hyperbolic on ¢ and fix any
state U_ € . There is § > O such that for any U, € ¢ with |U, — U;| < §
and every p > 0 the boundary-value problem (9.5.2), (9.5.3) possesses a solution
V. (&), which admits the representation (9.5.7), (9.5.10) with (z,---, 1,) close to
the origin and 6; obeying (9.5.15). Furthermore, the family {V,(8) 1 0 < u < 1}
of solutions has uniformly bounded (and small) total variation on (—o0, 00). In
particular, one may extract a sequence {V,, (§)}, with ,, | 0 as m — oo, which
converges, boundedly almost everywhere, to a function V(&) such that the wave
Jan U = V(x/t) solves the Riemann problem (9.1.1), (9.1.12).

It should be noted that the above theorem establishes the existence of solu-
tions to the Riemann problem, with waves of small amplitude, for general strictly
hyperbolic systems of conservation laws, without any restrictions, like piecewise
genuine nonlinearity required in Theorem 9.3.3.

Careful analysis of the process that generates V(&) as the limit of the se-
quence {V,,, (§)} reveals that V(&) has the structure described in Theorem 9.3.1.
Furthermore, for any point £ of jump discontinuity of V, V(§—), on the left, is
connected to V(£+), on the right, by a viscous shock profile, and so the viscous
shock admissibility criterion is satisfied (with B = I), as discussed in Section 8.6.

Following up on the discussion in Section 8.6, one may argue that wave fan so-
lutions of the Riemann problem, with end-states U, and U,, should not be termed
admissible unless they are captured through the t+ — oc asymptotics of solutions of
parabolic systems (8.6.1), under initial data Uy(x) which decay sufficiently fast to
U, and U,, as x — Foo. In fact, the results reported in Section 8.6 on the asymp-
totic stability of viscous shock profiles address a special case of the above issue.
The complementary special case, the asymptotic stability of rarefaction waves, has
also been studied extensively (references in Section 9.7). The task of combining
the above two ingredients so as to synthesize the full solution of the Riemann
problem, has not yet been accomplished in a definitive manner.

9.6 Interaction of Wave Fans

Up to this point, we have exploited the invariance of systems of conservation
laws under uniform rescaling of the space-time coordinates in order to perform
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stretchings that reveal the local structure of solutions. However, one may also
operate at the opposite end of the scale by performing contractions of the space-
time coordinates that will provide a view of solutions from a large distance from
the origin. It is plausible that initial data Uy (x) which converge sufficiently fast to
states U, and U,, as x — Foo, generate solutions that look from afar like centered
wave fans joining the state Uy, on the left, with the state U,, on the right. Actually,
as we shall see in later chapters, this turns out to be true. Indeed, it seems that the
quintessential property of hyperbolic systems of conservation laws in one-space
dimension is that the Riemann problem describes the asymptotics of solutions at
both ends of the time scale: instantaneous and long-term.

Our present purpose is to discuss a related question, which, as we shall see
in Chapter XIIl, is of central importance in the construction of solutions by the
random choice method. We consider three wave fans: the first, joining a state U,,
on the left, with a state U,,, on the right; the second, joining the state U,,, on the
left, with a state U,, on the right; and the third, joining the state U,, on the left,
with the state U,, on the right. These may be represented, with the help of the
function £2 (cf. (9.3.4)), as explained in Section 9.3. by their left states U,, U,, and
Uy together with the respective n-tuples & = (. ---.«@,). B = (B1. -+, B;) and
& = (g1, -, &) of wave amplitudes. Based on the arguments presented above, it is
natural to regard the wave fan ¢ as the result of the interaction of the wave fan o, on
the left, with the wave fan 8, on the right. From U,, = Q(«; Uy), U, = 2(8; Up,)
and U, = 2(&; U,) we deduce

(9.6.1) (e, U) = 2(B; 2(a: Uy,
which determines implicitly the relation
(9.6.2) e=E(u;8;U,) .

Our task is to study the properties of E in the vicinity of (0; 0; U;). By virtue of
(9.3.5),

(9.6.3) E(;00U)=a. EO;BU)=8.
whence
AE, IE,
9.6.4 —(0: 0: = 6;1 —(0; 0; =34;
( ) aa; (0:0: Uy) = b, 3}3,' (0. 0: Ue) 51k ,

namely, the Kronecker delta.
Starting from the identity

E(@: 8:Uy) — E(@: 0; Uy) ~ E(0; B; Ue) + E(0; 0: Uy

= Z{E(al,"',011'.0.'--,0;0,--~‘0,}3j+l,"'vﬂu2Ut‘)

9.6.5 o=
( ) —E(@, -, 0.0+ ,0:0,---,0, Bjp1r--, Bui Up)

—Elo -, 0,0,-04,0;0,-+4,0,8j, -, Bas Ue)
+E(al,...’a’-_l’(),...'0;0‘...’0’ﬂj’...,ﬂ";Ul)}'
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one immediately deduces

E@:BU)=a+p

(966) . + a,ﬂ j j -,a,_l.paho'...’o;
i,jz=:l ! da; 3/3,
0,08, Bi+1, -+ Bu: Undpdo .

Let us focus attention to the case where each characteristic family is either
genuinely nonlinear (7.6.13) or linearly degenerate (7.5.2). We say the waves «;
and B; are approaching when either (a) i > j or (b) i = j, the i-characteristic
family is genuinely nonlinear, and at least one of «;, §; is negative, that is corre-
sponds to a shock. The amount of wave interaction of a and 8 will be measured
by the quantity

(9.6.7) D@, By =Y _laill;l .

app

where Zapp denotes summation over all pairs (i. j) with a;, 8; approaching. The
crucial observation is that when the wave fans @ and 8 do not contain any ap-
proaching waves, i.e.. D(a, B) = 0, then the wave fan ¢ is synthesized by “glueing
together” the wave fan «, on the left, and the wave fan 8, on the right; that is,
e =« + B. In particular, whenever «; and f; are not approaching, either because
i < j or because i = j and both «; and §; are positive, i.e., rarefaction waves,
then

E(@. -, a;,0.--,0;0,--,0.8j,--. B: Up)

9.6.8
( ) =(a, 0.0, 0)+ (0., 0,8, B .

whence it follows that the corresponding (i, j)-term in the summation on the
right-hand side of (9.6.6) vanishes. Thus (9.6.6) reduces to

(969 e=a+f+ ) a

app

ﬂ;a aﬂ, (0; 0; Ue) + D(a, YO (lae| + |BD) -

The salient feature of (9.6.9), which will play a key role in Chapter XIIL, is that
the effect of wave interaction is induced solely by pairs of approaching waves and
vanishes in the absence of such pairs. In order to determine the leading interaction
term, of quadratic order, we first differentiate (9.6.1) with respect to §; and set
B = 0. Upon using (9.3.6), this yields

(9.6.10) Z%(a 0; Ug)—(E(a 0; Up); Uo) = R;(2(e; Uyp)) -
k=1 ]

Next we differentiate (9.6.10) with respect to @; and set & = 0. Recall that we
are only interested in the case where «; and §; are approaching, so 1n particular

i > j. Therefore, upon using (9.6.3), (9.6.4), (9.3.6), (9.3.7), (9.3.8) and (7.2.15),
we conclude
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n 2
(9.6.11) Z E“ s, OO U Re(Up) = ~[R:(Up), Ry (Up] ,
whence
96.12) SEL 0:0: U0 = =L UDIRAU. RV
9P

In particular, when the system is endowed with a coordinate system of Riemann
invariants, under the normalization (7.3.8) the Lie brackets [R;, R;] vanish (cf.
(7.3.10)) and hence the quadratic term in (9.6.9) drops out.

Upon combining (9.6.9) with (9.6.12) we arrive at

Theorem 9.6.1 For systems with characteristic families that are either genuinely

nonlinear or linearly degenerate, let ¢ = (g4, -+ -, &,) be the wave fan generated
by the interaction of the wave fan a = (a1, - - -, @), on the lefi, with the wave fan
B = (B -, Bun), on the right. Then
(9.6.13) e=a+B-) aBLR, R+ D BO(a|+I8D),

i>j

where L denotes the n x n matrix with k-row vector the left eigenvector Ly, and
D(a, B) is the amount of wave interaction of a and 8. When the system is endowed
with a coordinate system of Riemann invariants, the quadratic term vanishes.

9.7 Notes

The Riemann problem was originally formulated, and solved, in the context of the
system (7.1.7) of isentropic gas dynamics, in the pathbreaking paper of Riemann
[1], already cited in earlier chapters. Early research on the Riemann problem for
the equations of isentropic or adiabatic gas dynamics, surveyed in Courant and
Friedrichs [1], was stimulated by the need to analyze wave interactions and shock
tube experiments. The distillation of this work led to the solution, by Lax [2], of
the Riemann problem, with weak waves, for general genuinely nonlinear strictly
hyperbolic systems of conservation laws (Theorem 9.3.2).

The Riemann problem with large data has been studied extensively, mainly
in the context of systems of two conservation laws and the system of adiabatic
thermoelasticity (gas dynamics), in Lagrangian or Eulerian coordinates. A new
type of nonuniqueness arising in that system is reported by Smith [1]. The reader
may find detailed expositions and references in the book of Smoller [1], and the
monograph by Chang and Hsiao [3]. This last book contains, in particular, refer-
ences to early work by Chinese authors that did not circulate in the international
scientific community until much later, e.g. Chang and Hsiao [1,2] and Hsiao and
Zhang [1].

Riemann problems for special systems that are not genuinely nonlinear were
considered by several authors. In particular, the elegant geometric description of
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the solution for the scalar conservation law was presented by Gelfand [1] and
the construction for the system (7.1.6) of isentropic elasticity, presented here, is
due to Leibovich [I]. Research in that direction culminated in the paper of Liu
[1]. which solves the Riemann problem, with waves of moderate strength, for
general piecewise genuinely nonlinar strictly hyperbolic systems of conservation
laws (Theorem 9.3.3).

For a novel, variational approach to the Riemann problem, see Heibig and
Serre [1].

The following aspects of the theory of the Riemann problem are presently
under investigation (for an expository survey, see Glimm [2]):

(a) Systems that are not strictly hyperbolic, with applications to elasticity and
multi-phase flows. The reader has already got a taste of the difficulties stemming
from nonuniqueness. For the classification of such systems and the construction of
admissible solutions to the Riemann problem, that may contain compressive as well
as overcompressive or undercompressive shocks, see Azevedo, Marchesin, Plohr
and Zumbrun [1], Freistihler [2], Isaacson, Marchesin and Plohr [1], Isaacson,
Marchesin, Plohr and Temple [ 1], Isaacson and Temple [1], Schaeffer and Shearer
[1], Schecter, Marchesin and Plohr [1,2], M. Shearer [1,2,3], Shearer and Schaeffer
[1], Shearer, Schaeffer, Marchesin and Paes-Leme []], Tang and Ting [1] and Zhu
and Ting [1]. Existence is also an issue, requiring extension of the notion of
solution to wave fans comprising singular shocks, oscillations or Dirac masses
(the so called delta-shocks). For a sample of recent work see Canié¢ and Peters
[1], Peters and Canié [1], Ercole [1], Keyfitz and Kranzer [2,3], Tan [1] and Tan,
Zhang and Zheng [1].

(b) Systems of mixed type, elliptic-hyperbolic, employed to model phase tran-
sitions. A prototypical example is the system (7.1.6) with nonmonotone o (u); in
particular the classical van der Waals fluid. See Canié [1]. Keyfitz [1], Hsiao and
DeMaottoni [1], Holden [1] and Frid and Liu [1].

(c) Systems of conservation laws in two-space dimensions. The self-similar
solutions are now functions of two variables (x,/¢, x2/t). Even for the scalar
conservation law, the resulting wave patterns are very intricate. See Guckenheimer
[2], Wagner [1], Lindquist [1], Zhang and Zheng [1], Tan and Zhang [I], Chen, Li
and Tan [1], Canié and Keyfitz [1,2] and Zhang and Zhang [1]. Surveys of known
solutions are given in the monographs by Chang and Hsiao [3], Li, Zhang and
Yang [1] and Y. Zheng [1].

The entropy rate admissibility criterion was proposed by Dafermos [3]. For
motivation from the kinetic theory, see Ferziger and Kaper [1], §5.5, and Kohler
[1]. Theorems 9.4.1 and 9.4.2 are taken from Dafermos [3], while Theorem 9.4.3
is found in Dafermos [15]. In the context of the system of adiabatic gas dynamics,
the entropy rate criterion is discussed by Hsiao [1]. The efficacy of the entropy
rate criterion has also been tested on systems that change type, modelling phase
transitions (Hattori [1,2,3,4], Pence [1]). See also Sever [1].

The study of self-similar solutions of hyperbolic systems of conservation laws
as limits of self-similar solutions of dissipative systems with time-dependent arti-
ficial viscosity was initiated, independently, by Kalasnikov [1], Tupciev [1.2], and
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Dafermos [4]. This approach has been employed to solve the Riemann problem
for systems of two conservation laws that may be strictly hyperbolic (Dafermos
[4,5], Dafermos and DiPerna [1]. Kim [1], Slemrod and Tzavaras [1,2]. Tzavaras
[1,2]), nonstrictly hyperbolic (Ercole [1]. Keyfitz and Kranzer [2,3], Tan [I] and
Tan, Zhang and Zheng [1]), or of mixed type (Slemrod [3], Fan [1,2]). See also
Slemrod [4], for solutions with spherical symmetry to the system of isentropic
gas dynamics. The treatment of general strictly hyperbolic systems of conserva-
tion laws outlined in Section 9.5 follows Tzavaras [2]. It is in that paper that the
reader may find additional information, including the details of the proofs omitted
here.

The construction of a single rarefaction wave via the standard vanishing vis-
cosity approach, with time-independent viscosity, is effected in Lin and Yang [1].

For self-similar, spherically symmetric solutions representing cavitation in elas-
todynamics and gas dynamics, see Pericak-Spector and Spector [1,2] and Yan [1].

The asymptotic stability of viscous rarefaction waves is discussed in Liu, Mat-
sumura and Nishihara [1], Liu and Xin [1], Szepessy and Zumbrun [1], and Xin
[2]. The asymptotic stability of viscous wave fans, containing both shocks and
rarefaction waves, is under investigation by Liu and Yu [2].

The study of interactions of wave fans and the original proof of Theorem 9.6.1,
for genuinely nonlinear systems, is due to Glimm [1]. The derivation presented
here is taken from Yong [1]. For a description of actual wave interactions, see
Greenberg [1,2].



Chapter X. Generalized Characteristics

As already noted in Section 7.8, the function space of choice for weak solutions
of hyperbolic systems of conservation laws in one-space dimension is BV. since
it is within its confines that one may discern shocks and study their propagation
and interactions. The notion of characteristic, introduced in Section 7.2 for clas-
sical solutions, will here be extended to the framework of BV weak solutions. It
will be established that generalized characteristics propagate with either classical
characteristic speed or with shock speed. In particular, it will be shown that the
extremal backward characteristics, emanating from any point in the domain of an
admissible solution, always propagate with classical characteristic speed. The im-
plications of these properties to the theory of weak solutions will be demonstrated
in following chapters.

10.1 BV Solutions

We consider the strictly hyperbolic system
(10.1.1) dU +3,FU)=0

of conservation laws. Throughout this chapter, U will denote a bounded measur-
able function on (—00, 00) x (0, 00), of class BV, which is a weak solution
of (10.1.1). Following the general theory of BV functions in Section 1.7, we in-
fer that (—oo, 00) x (0,00) = ¥ | J 7 |J.7 where 7 is the set of points of
approximate continuity of U, 7 denotes the set of points of approximate jump
discontinuity (shock set) of U, and .7 stands for the set of irregular points of U.
The one-dimensional Hausdorff measure of .7 is zero : . %' (.7) = 0. The shock
set 7 is essentially covered by the (at most) countable union of C' arcs. With
any (X,f) € 7 are associated one-sided approximate limits Ux and a “tangent”
line of slope (shock speed) s which, as shown in Section 1.8, are related by the
Rankine-Hugoniot jump condition (8.1.2).

We shall be assuming throughout that the Lax E-condition, introduced in Sec-
tion 8.3, holds here in a strong sense: each shock is compressive but not overcom-
pressive. That is, if Uy are the one-sided limits and s is the corresponding shock
speed associated with any point of the shock set, then there is i € {I,---., 2} such
that
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(10.1.2) Aici(Ug) < 4(Uy) <5 <A(U2) < i (Ug)

In (10.1.2), the first inequality is not needed when i = I and the last inequality is
unnecessary when i = n. Moreover, since (10.1.1) is strictly hyperbolic, the first
and the last inequalities will hold automatically whenever the oscillation of U is
sufficiently small.

For convenience, we normalize U as explained in Section 1.7. In particular, at
every point (¥,7) € ¥, U(X, 1) equals the corresponding approximate limit Us.
Recalling that .#!(.7) = 0 and using Theorem 1.7.1, we easily conclude that there
is a subset . / " of (0, 00), of measure zero, having the following properties. For
any fixed 7 ¢. ! °, the function U (-, f) has locally bounded variation on (—00, 00),
and (¥, 7) € ¢ ifand only if U(X—, ) = U(X+, 1), while (x,7) € 7 if and only
if U(X—,7) # UT+,7). In the latter case, U_ = U(X—,7) and Uy = UT+,7).

The above properties of U follow just from membership in BV. The fact
that U is also a solution of (10.1.1) should induce additional structure. Based
on experience with special systems, to be discussed in later chapters, it seems
plausible to expect the following: U should be (classically) continuous on ¢ and
the one-sided limits U4 at points of Z should be attained in the classical sense.
Moreover, .7 should be the (at most) countable set of endpoints of the arcs that
comprise 7. Uniform stretching of the (x,t) coordinates about any point of 7
should yield, in the limit, a wave fan with the properties described in Section 9.1,
i.e., .7 should consist of shock generation and shock interaction points. To what
extent the picture painted above accurately describes the structure of solutions of
general hyperbolic systems of conservation laws will be discussed in later chapters.

10.2 Generalized Characteristics

Characteristics associated with classical, Lipschitz continuous, solutions were in-
troduced in Section 7.2, through Definition 7.2.1. They provide one of the principal
tools of the classical theory for the study of analytical and geometric properties
of solutions. It is thus natural to attempt to extend the notion to the framework of
weak solutions.

Here we opt to define characteristics of the i-characteristic family, associated
with the weak solution U, exactly as in the classical case, namely as integral
curves of the ordinary differential equation (7.2.7), in the sense of Filippov:

Definition 10.2.1 A generalized i-characteristic for the system (10.1.1), associated
with the (generally weak) solution U, on the time interval [o, 7] C [0, ), is a
Lipschitz function & : [0, T] — (—00, 00) which satisfies the differential inclusion

(10.2.1) E(t) e Ais(),1), ae.on|o, 1],
where
(10.2.2) Ai(X ) = D)[[.‘refes.ylgl AU, 1)), [gis?tip:] A,-(U(x,f)] .
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From the general theory of contingent equations like (10.2.1), one immediately
infers the following

Theorem 10.2.1 Through any fived point (x, 1) € (—00, 00) x [0, 00) pass two (not
necessartly distinct) generalized i-characteristics, associated with U and defined
on [0, 00), namely the minimal £_(-) and the maximal £.(-), with £_(t) < E.()
Jor t € [0,00). The funnel-shaped region confined between the graphs of £_(-)
and £,(-) comprises the set of points (x,t) that may be connected to (%X,1) by a
generalized i-characteristic associated with U .

Other standard properties of solutions of differential inclusions also have useful
implications to the theory of generalized characteristics: If {&,(-)} is a sequence
of generalized i-characteristics, associated with U and defined on [o, t], which
converges to some Lipschitz function £(-), uniformly on [o, 7], then £(-) is nec-
essarily a generalized i-characteristic associated with U. In particular, if &,,(-) is
the minimal (or maximal) generalized i-characteristic through a point (x,,, f) and
Xm 1 X (or x,, | X), as m — oo, then {&, ()} converges to the minimal (or
maximal) generalized i-characteristic £_(-) (or &.(-)) through the point (X, 7).

In addition to classical i-characteristics, i-shocks that satisfy the Lax E-
condition are obvious examples of generalized i-characteristics. In fact, it turns
out that these are the only possibilities. Indeed, even though Definition 10.2.1
would seemingly allow £ to select any value in the interval A;, the fact that U is
a solution of (10.1.1) constrains generalized i-characteristics associated with U to
propagate either with classical i-characteristic speed or with i-shock speed:

Theorem 10.2.2 Let £(-) be a generalized i-characteristic, associated with U and
defined on [0, t]. The following holds for almost all t € [o,t] : When (§(t).t) €
« , then £(t) = A;(Up) with Uy = U(E(t)%, t). When (£(t),1) € Z,then (1) =35,
where s is the speed of the i-shock that joins U_, on the lefi, to U, on the right,
with Uy = U(E(1)%, t). In particular, s satisfies the Rankine-Hugoniot condition
(8.1.2) as well as the Lax E-condition (10.1.2).

Proof. Let us recall the properties of BV solutions recorded in Section 10.1. It is
then clear that for almost all 1 € [0, T] with (£(¢), 1) € # the interval A;(&(t), ¢)
reduces to the single point [A;(U(£(¢)%, 1))] and so E(t) = M (UEMmE, 1)), by
virtue of (10.2.1).

Applying the measure equality (10.1.1) to arbitrary subarcs of the graph of &,
and using Theorem 1.7.5 (in particular Equation (1.7.17)), yields

(10.2.3) FUEWD+, 1) — FUEW)—, 1) = EOUED+, ) —UEnH—-.D],

almost everywhere on [o, t]. Consequently, for almost all + € [a, 7] Wwith
((H,1) € 7, we have E(1) = s, where s is the speed of a shock that joins
the states U_ = U(&(t)—, t) and U, = U(&(¢t)+, t). By our assumptions on the
structure of solutions, there is j € {l,---, a} such that x;_(Uz) < A;(Uy) =
s < A(U-) < Aj41(Us). On the other hand, (10.2.1) implies that s lies in the
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interval with endpoints A; (U_) and A;(U4). Therefore, j =i and (10.1.2) holds.
This completes the proof.

The above theorem motivates the following terminology:

Definition 10.2.2 A generalized i -characteristic £ (), associated with U and defined
on [o, 7], is called shock free if (§(1), 1) € ¢ or, equivalently, U(&(t)—,t) =
U(E(t)+, 1), for almost all ¢ € [0, 7].

A consequence of the proof of Theorem 10.2.2 is that (10.2.1) is equivalent to
(10.2.4) Er) € M(UED+, 1), ,(UEW)—,1)], ae. on[o1].

In what follows, an important role will be played by the special generalized char-
acteristics that manage to propagate at the maximum or minimum allowable speed:

Definition 10.2.3 A generalized i-characteristic £(-), associated with U and defined
on [o, 7], is called a left i-contact if

(10.2.5) . E(t)=MUEW®—-. 1), aeonlo.1],

and/or a right i-contact if

(10.2.6) E =2 WUEM+,1), ae. onfo,1].

Clearly, shock free i-characteristics are left and right i-contacts. Note that,
since they are generalized i-characteristics, left (or right) i-contacts should also
satisfy the assertion of Theorem 10.2.2, namely & () = s for almost all ¢ € [o, 7]
with (§(f).t) € Z. Of course this is impossible in systems that do not admit left
(or right) contact discontinuities. In any such system, left (or right) contacts are
necessarily shock free. In particular, recalling Theorem 8.2.1, we conclude that
when the i-characteristic family for the system (10.1.1) is genuinely nonlinear
and the oscillation of U is sufficiently small, then any left or right i-contact is
necessarily shock free.

10.3 Extremal Backward Characteristics

With reference to some point (x,7) € (—00, 00) x [0, 00), a generalized char-
acteristic through (¥,7) is dubbed backward when defined on [0, f], or forward
when defined on [f, 0o). The extremal, minimal and maximal, backward and for-
ward generalized characteristics through (X, f) propagate at extremal speeds and
may thus be considered natural candidates for being contacts. This turns out to be

true, at least for the backward extremal characteristics, in consequence of the Lax
E-condition:

Theorem 10.3.1 The minimal (or maximal) backward i-characteristic, associated

with U, emanating from any point (%, t) of the upper half-plane is a left (or right)
i-contact.
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Proof. Let £(-) denote the minimal backward i -characteristic emanating from (¥, 7)
and defined on [0, 7]. We fix & > 0 and determine numbers f = 75 > 7; > +-- >
7, = 0, for some & > 1, through the following algorithm: We start out with
79 = 7. Assuming 7, > 0 has been determined, we let £, (-) denote the minimal
backward i-characteristic emanating from the point (§(7,,) —¢, ). If &, (1) < £(7)
for0 <t < 1,, we set 1,41 =0, m + | =k and terminate. Otherwise, we locate
the number .41 € (0, 7,,) with the property &, (f) < &(t) for 1,4 <t < T and
En(Tmst) = E(Tm41). Clearly, this algorithm will terminate after a finite number of
steps. Next we construct a left-continuous, piecewise Lipschitz function & (-) on
[0, 7]. with jump discontinuities (when k > 2) at 7y, - - -. 74—, by setting & (t) =
En(t)for vy <t < tTp,m=0,1,--. .k —1, and £.(0) = &_,(0). Then

Tm

k=t T
(103.1) & —&O) = (k- De+ Y | &a()dr z/ AU &)+, n)dr .

Trel

By standard theory of contingent equations like (10.2.1), &(t) 1 &(t) as € | O,
uniformly on [0, 7]. Therefore, letting ¢ | 0, (10.3.1) yields

(10.3.2) E(t) —£(0) 2/ Ai(UE@)—, t)de .
0

On the other hand, é(t) < L(UE@)—, 1)), almost everywhere on [0, 7], and so
E(t) = A (U(E@t)~, 1)) for almost all ¢ € [0, 7], i.e., £(-) is a left i-contact.

Similarly one shows that the maximal backward i-characteristic emanating
from (x,7) is a right i-contact. This completes the proof.

In view of the closing remarks in Section 10.2, Theorem 10.3.1 has the fol-
lowing corollary:

Theorem 10.3.2 Assume the i-characteristic family for the system (10.1.1) is gen-
uinely nonlinear and the oscillation of U is sufficiently small. Then the minimal
and the maximal backward i-characteristics, emanating from any point (x.1) of
the upper half-plane, are shock free.

The implications of the above theorem will be seen in following chapters.
For future use, it will be expedient to introduce here a special class of backward
characteristics emanating from infinity:

Definition 10.3.1 A minimal (or maximal) i-separatrix, associated with the solution
U, is a Lipschitz function & : [0,7) = (—00, 00) such that £(t) = limu— 0 & (1),
uniformly on compact time intervals, where &,(-) is the minimal (or maximal)
backward i-characteristic emanating from a point (X, fm), With t, — 7, as m —
oo. In particular, when T = oo, the i-separatrix £(-) is called a minimal (or
maximal) i-divide.
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Note that the graphs of any two minimal (or maximal) i-characteristic§ may
run into €ach other but they cannot Cross. Consequently, the graph of a mlnlmal
(or maximal) backward {-characteristic cannot cross the grz?pp of any mml'mal (qr
maximal) i-separatrix. Similarly, the graphs gf any two mlqlmal (or.n}amm.al.) i-
separatrices cannot cross. In particular, any minimal (or maximal) i-divide le}de?s
the upper half-plane into two parts in such a way 'that no forward 7-characteristic
may cross from the left to the right (or from the right to the left). ‘

Minimal or maximal i -separatrices are necessarily generalized i -characteristics,
which by virtue of Theorem 10.3.1, are left or right i-contacts. In particular,
when the i-characteristic family is genuinely nonlinear and the oscillation of U is
sufficiently small, Theorem 10.3.2 implies that minimal or maximal {-separatrices
are shock free.

One should not expect that all solutions possess i-divides. An important class
that always do, are solutions which are periodic in x, U(x + L, 1) = U(x,¢) for
some L > 0 and all (x,¢) € (—00, 00) x (0, 0o0). Indeed, in that case, given any
sequence {f,}, with tn — 00 as m — oo, it is always possible to locate {xy)
with the property that the minimal or maximal backward i-characteristic &,(-)
emanating from (x,, t») will be intercepted by the x-axis at a point lying inside
any fixed interval of length L, say £,(0) € [0,L), m = 1,2,.--. The Arzela
theorem then implies that {£,(-)} contains convergent subsequences whose limits
are necessarily i-divides.

10.4 Notes

The presentation of the theory of generalized characteristics in this chapter follows
Dafermos [16]. An exposition of the general theory of differential inclusions is
found in the monograph by Filippov [1]. An early paper introducing generalized
characteristics (for scalar conservation laws) as solutions of the classical charac-
teristic equations, in the sense of Filippov, is Wu [I]. See also Hormander [1].
Glimm and Lax [1] employ an alternative definition of generalized characteristics,
namely Lipschitz curves propagating either with classical characteristic speed or
with shock speed, constructed as limits of a family of “approximate characteris-
tics”. In view of Theorem 10.2.2, the two notions are closely related. This will be
discussed in Chapter XIII.

The notion of divide was introduced in Dafermos [18].

Generalized characteristics in several space dimensions are considered by
Poupaud and Rascle [1], in the context of linear transport equations with dis-
continuous coefficients.



Chapter XI. Genuinely Nonlinear
Scalar Conservation Laws

Despite its apparent simplicity, the genuinely nonlinear scalar conservation law in
one-space dimension possesses a surprisingly rich theory, which deserves attention,
not only for its intrinsic interest, but also because it provides valuable insight in
the behavior of systems. The discussion here will employ the theory of generalized
characteristics developed in Chapter X. From the standpoint of this approach, the
special feature of genuinely nonlinear scalar conservation laws is that the extremal
backward generalized characteristics are essentially classical characteristics, that
is straight lines along which the solution is constant. This property induces such
a heavy constrain that one is able to derive very precise information on regularity
and large time behavior of solutions.

Solutions are (classically) continuous at points of approximate continuity and
locally Lipschitz continuous in the interior of the set of points of continuity.
Points of approximate jump discontinuity lie on classical shocks. The remaining,
irregular, points are at most countable and are formed by the collision of shocks
and/or the focussing of compression waves. Generically, solutions with smooth
initial data are piecewise smooth.

Genuine nonlinearity gives rise to a host of dissipative mechanisms which af-
fect the large time behavior of solutions. Entropy dissipation induces O(t~71)
decay of solutions with initial data in L”(~20, 00). When the initial data have
compact support, spreading of characteristics generates N-wave profiles. Confine-
ment of characteristics under periodic initial data induces O(¢ ') decay in the total
variation per period and the formation of sawtoothed profiles.

Another important feature of admissible weak solutions of the genuinely non-
linear scalar conservation law is that they are related explicitly to their initial data,
through the Lax function. This property, which will be established here by the
method of generalized characteristics, may serve alternatively as the starting point
for developing the general theory of solutions.

The chapter will close with the derivation of properties extracted by comparing
solutions. It will be shown that the lap number of any admissible solution is non-
increasing with time. Moreover, the L' distance of any two solutions is generally
nonincreasing, but potentially conserved, whereas a properly weighted L' distance
is strictly decreasing.
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11.1 Admissible BV Solutions and Generalized Characteristics

We consider the scalar conservation law
(L1 Ju(x, t) + 3 flu(x, 1)) =0,

which is genuinely nonlinear, f”(u) > 0, —00 < u < 00. Throughout this chapter
we shall be dealing with admissible weak solutions u on (—00, 00) % [0, 00) whose
initial data uo are bounded and have locally bounded variation on (—o00, 00). By
virtue of Theorem 6.2.3, u is in BV),. and for any ¢ € [0, 00) the function u(:, ¢)
has locally bounded variation on (—o0, 00).

As noted in Section 8.5, the entropy shock admissibility criterion will be sat-
isfied almost everywhere (with respect to one-dimensional Hausdorff measure) on
the shock set Z of the solution «, for any entropy-entropy flux pair (7, g¢) with
n convex. This in turn implies that the Lax E-condition will also hold almost
everywhere on Z. Consequently, we have

(11.1.2) ux+,t) <u(x-—,t),

for almost all r € (0, 00) and all x € (—o0, 00).

By account of Theorem 10.2.2, a Lipschitz curve &£(-), defined on the time
interval [o, t] C [0, 00), will be a generalized characteristic, associated with the
solution u, if for almost all ¢ € [o, 7]

(11.1.3)

' fluEmx,1), when u(E()+, 1) = u(g()—, 1),

M =1 fE®n+ 1) — fluE@®)-,n)
uEWM+, ) —uEn)—-,t

The special feature of genuinely nonlinear scalar conservation laws is that gener-
alized characteristics that are shock free are essentially classical characteristics:

when u(E()+,t) <u(E()—,1) .

Theorem 11.1.1 Let £(-) be a generalized characteristic for (11.1.1), associated
with the admissible solution u, on the time interval [o, T, which is shock free. Then
there is a constant u such that

(11.1.4) uE+, 1) < <uE)-, 1),
(11.1.5) wEO+, ) =0 =uE)~-,1), o<t<rt,
(11.1.6) u(g(o)—,0) < < u(E(6)+, o) .

In particular, the graph of £(-) is a straight line with slope f'(i).

Proof. Fix r and s, 0 <r <5 < t. For ¢ > 0, we integrate the measure equality

(1L.1.1) over the set {(x,1) 1 r <t <5, (1) —¢ < x < £(t)} and use Green’s
theorem to get
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£(s) &(r)
/ u(x,s)dx —/ u(x, r)dx
3

aen Ow e
/ FWE@) = s+ 0) — F@E@®) - 1)

—EM[uEW@) — e+, 1) — u(E(O)—, )])dr .

By virtue of Definition 10.2.2, £(t) = f'(u(&(t)—, 1)), ae. on [r, s]. Since f is
convex, this implies that the right-hand side of (11.1.7) is nonnegative. Conse-
quently, multiplying (11.1.7) by 1/¢ and letting ¢ | 0 yields

(11.1.8) uE@s)—,s)=ulE@r)—,ry, o<r<s=<r.

Next we apply (11.1.1) to the set {(x,¢) : r < ¢t <5,&(t) < x < E(t) +€) and
repeat the above procedure to deduce

(11.1.9) ugs)+,s) <uEr)+,r), o<r<s<r.

We now fix t, £, 6 < 4 < t7 < 7, such that u(&(s))—, ;) = u(&@)+, 1),
u(E()—, ) = u(E(t)+, n); then fix any ¢ € (¢, ). We apply (11.1.8) and
(11.1.9) first with r = 1, s = f, then with r = 1, s = ¢, and finally with
r =t,s = t;. This yields (11.1.5). To complete the proof, we apply (I1.1.8),
(11.1.9) for s = 7,r € (o, 1), to obtain (11.1.4), and for r = 5, s € (5, 71), to
deduce (11.1.6).

Corollary 11.1.1 Assume £(-) and ¢ (-) are distinct generalized characteristics for
(11.1.1), associated with the admissible weak solution u, on the time interval [0, ],
which is shock free. Then £(-) and {(-) cannot intersect for any t € (0, T).

The above two propositions have significant implications on extremal backward
characteristics:

Theorem 11.1.2 Let £_(-) and £.(-) denote the minimal and maximal backward
characteristics, associated with some admissible solution u, emanating from any
point (X,1) € (—00,00) x (0, 00). Then

[ uE_()—, ) =ux—, 1 = uE-()+,1) _
(11.1.10) B 0<t<t,
uE (@)=, ) =ulx+, ) =uE )+, 1)
[ up(E-(0)=) < u(x—, 1) < up(5-(0)+) ,
(11.L.11) _
up(E+(0)=) < u(X+,1) < ug(E+(0)+) .

In particular, u(X+,7) < u(X—, 1) holds for all (Z,T) € (—00, 00) x (0, 00) and
£_(-), £.() coincide if and only if u(X+,1) = u(x—, 1).

Proof. By virtue of Theorem 10.3.2, both £_(-) and £, (-) are shock free. We may
then apply Theorem 11.1.1, with 6 = 0 and r = 7. On account of (11.1.4), if
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UEHT) = w@E 7), then ¥ = u(¥%, 1) and th}xs &_(-), 4 (-) coincide. In .the
general case. consider an increasing (or decreasing) sequence {x,), converging
to X, such that u(x,+,7) = w(x,—,t),n = _l 2,.-.. Let &(-) denote the ur_]ique
backward characteristic emanating from (x,, 7). Then u(&(t)%, 1) = u(x,%, ) for
all £ € (0, 7). As noted in Section 10.2, the sequence {£,(-)} converges from below
(or above) to &_(-) (or £4+(-)). Consequently, u(6_(1)—,¢) = limu(x,%,7) =
u(X=,7) (or u(ty (1)+, ) = limu(x, %, 1) = u(x+,1)). The proof is complete.

We now turn to the properties of forward characteristics:

Theorem 11.1.3 4 unique forward generalized characteristic, associated with an
admissible solution u, issues from any point (X, 1) € (—00, 00) x (0, 00).

Proof. Suppose two distinct forward characteristics ¢ (-) and ¥ () issue from (X, 1),
such that ¢(s) < ¥(s) for some s > 7. Let £(-) denote the maximal backward
characteristic emanating from (¢(s), s) and ¢(-) denote the minimal backward
characteristic emanating from (y(s), s), both being shock free. For ¢ € [t.s],
E(t) > ¢(t) and £(t) < ¥ (¢); hence £(-) and £ (-) must intersect at some ¢ € [7, 5),
in contradiction to Corollary 11.1.1. This completes the proof.

Note that, by contrast, multiple forward characteristics may issue from points
lying on the x-axis. In particular, the focus of any centered rarefaction wave must
necessarily lie on the x-axis.

The next proposition demonstrates that, once they form, jump discontinuities
propagate as shock waves for eternity:

Theorem 11.1.4 Let x(-) denote the unique forward generalized characteristic,
associated with the admissible solution u, issuing from a point (X, 1) such thatt > 0
and u(x+,1y < u(X—,1). Then u(x(s)+,s) < u(x(s)—, s) forall s € [t, ).

Proof. Let £_(-) and &, (-) denote the minimal and maximal backward characteris-
tics emanating from (X, 7). Since u(X+,7) < u(¥—, 1), £_(-) and &, (-) are distinct:
£-(0) < §:(0).

Fix any s € [f, 00) and consider the minima! and maxima! backward char-
acteristics {_(-) and £, (-) emanating from (x(s), s). For ¢ € [0, 7], necessarily
$-(1) < &-(r) and £y (t) = £1.(¢). Thus £_(0) < £,.(0) so that ¢_(-) and £;.(-) are
distinct. Consequently, u(x (s)+, s) < u(x(s)—, s). This completes the proof.

In view of the above, it is possible to identify the points from which shocks
originate:

Definition 11.1.1 We call (¥,7) € (—00, 00) x [0, 00) a shock generation point if
some forward generalized characteristic x(-) issuing from (¥,7) is a shock, i.e.,
u(x(O+,1) < u(x(t)—,¢), for all ¢+ > 7, while every backward characteristic
emanating from (X, 7) is shock free.
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When (X, 7) is a shock generation point with I > 0, there are two possibilities:
u(X+, 1) = u(¥—,1) or u(x+,1) < u(¥—,1). In the former case, the shock starts
out at (X,r) with zero strength and develops as it evolves. In the latter case,
distinct minimal and maximal backward characteristics £_(-) and £,(-) emanate
from (X, ). The sector confined between the graphs of £_(-) and £+(-) must be
filled with characteristics, connecting (X, r) with the x-axis, which, by definition,
are shock free and hence are straight lines. Thus in that case the shock is generated
at the focus of a centered compression wave so it starts out with positive strength.

11.2 The Spreading of Rarefaction Waves

We are already familiar with the destabilizing role of genuine nonlinearity: Com-
pression wave fronts get steeper and eventually break generating shocks. It turns
out, however, that at the same time genuine nonlinearity also exerts a regularizing
influence by inducing the spreading of rarefaction wave fronts. [t is remarkable
that this effect is purely geometric and is totally unrelated to the regularity of the
initial data:

Theorem 11.2.1 For any admissible solution u,

(11.2.1)
fluly£,0) — fulxs,0)

y—x

1
57, -0 <x<y<oo, O0<t<oo.

Proof. Fix x,y and r with x < y and r > 0. Let £(-) and ¢(-) denote the
maximal or minimal backward characteristics emanating from (x, f) and (y, ),
respectively. By virtue of Theorem 11.1.2, £(0) = x — ¢f (u(x%, 1)), £{0) =
y—tf'(u(y=x, t)). Furthermore, £(0) < ¢(0), on account of Corollary 11.1.1. This
immediately implies (11.2.1). The proof is complete.

Notice that (11.2.1) establishes a one-sided Lipschitz condition for f'(u(-, 1)),
with Lipschitz constant independent of the initial data. By the general theory of
scalar conservation laws, presented in Chapter VI, admissible solutions of (11.1.1)
with initial data in L>*(—o00, c0) may be realized as a.e. limits of sequences
of solutions with initial data of locally bounded variation on (—oc, 00). Conse-
quently, (11.2.1) should hold even for admissible solutions with initial data that are
merely in L*(—00, 00). Clearly, (11.2.1) implies that, for fixed ¢t > 0, f(u(-. 1)),
and thereby also u(-, ¢), have bounded variation over any bounded interval of
(—00, 00). We have thus shown that, due to genuine nonlinearity, solutions are
generally smoother than their initial data:

Theorem 11.2.2 Admissible solutions of (11.1.1), with initial data in L% (—00. 00),
are in BVioc on (—00. 00) x (0, 00) and satisfy the one-sided Lipschitz condition
(11.2.1).
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11.3 Regularity of Solutions

The properties of generalized characteristics established in the previous section
lead to a precise description of the structure and regularity of admissible weak
solutions.

Theorem 11.3.1 Let x(-) be the unique forward generalized characteristic and
£_(), £.(-) the extremal backward characteristics, associated with an admissible
solution u, emanating from any point (%,1) € (—00, 00) x (0, 0c). Then (X, 1) is
a point of continuity of the function u(x—,t) relative to the set {(x,¢) : 0 <t <
Lx <E.(t)ort <t <o00,x < x(t)} and also a point of continuity of the function
u(x+,t) relative to the set {(x, 1) :0 <t <f,x =&, (H)ort <t <00,x > x(r)).
Furthermore, x(-) is differentiable from the right at t and

+ f/(u(fi- 7)) y if Ll(f-}-,;) = u(f—‘ 7) ,
L3 —x® =1 fu@E+, D) - fuE=,D)
uX+,0 —ux-,1

L if ux+,0) <ul(x—,1) .

Proof. Take any sequence {(x,,(,)} in the set {(x,¢) : 0 <t <7,x <E_(f) or
t <t <00,x < x(1)}, which converges to (¥, ) as n — o0o. Let &,(-) denote the
minimal backward characteristic emanating from (x,, £,). Clearly, &,(f) < E_(t)
for ¢ <. Thus, as n — 00, {§,(-)) converges from below to £_(-). Consequently,
{u(x,—, t,)} converges to u(x—, f).

Similarly, one shows that for any sequence {(x,, )} in the set {(x,¢) : 0 <
t <tfx>&()orf <t <00,x > x(r)), converging to (X, f), the sequence
{u(x,+, 1)) converges to u(x+, 7).

Fore > 0,

1 _ _ 7+£
(113.2) ;ua+w—xan=£[ Xt |

where x(t) is determined through (11.1.3), with £ = x. As shown above, x(¢)
is continuous from the right at 7 and so, letting & | 0 in (11.3.2), we arrive at
(11.3.1). This completes the proof.

The above theorem has the following corollary:
Theorem 11.3.2 Let u be an admissible solution and assume u(X+.,1) = u(¥—, t),
Jor some (X, 1) € (—00, 00) x (0, 00). Then (X, 1) is a point of continuity of u. A
unique generalized characteristic x (-), associated with u, defined on [0, 00), passes

through (X, 1). Furthermore, x (-) is differentiable at T and x (f) = f'(u(X%,7)).

Next we focus attention on points of discontinuity.
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Theorem 11.3.3 Let u be an admissible solution and assume u(X+,1) < u(x—, 1),
for some (X, t) € (—00, 00) x (0, 00). When the extremal backward characteris-
tics £_(-), &4 () are the only backward generalized characteristics emanating from
(X, 1) that are shock free, then (X,7) is a point of jump discontinuity of u in the
following sense: There is a generalized characteristic x(-), associated with u, de-
fined on [0, 00) and passing through (X, 1), such that (X.1) is a point of continuity
of the function u(x—,t) relative to the set {(x,t) : 0 <t < 00, x < x(1))
as well as a point of continuity of the function u(x+.t) relative to the set
((x.t) : 0 <t < 00,x = x(t)). Furthermore, x(-) is differentiable at t and

fuE+,0) — fu(x~, 1)

(11.3.3) %) = T i G—T

Proof. Fix any point on the x-axis, in the interval (£_(0), £,(0)), and connect it
to (X, 7) by a characteristic x(-). Continue x(-) to [f, 00) as the unique forward
characteristic issuing from (X, 7).

Take any sequence {(x,.¢,)} in the set {(x,¢) : 0 < 1 < 00, x < x(1)},
which converges to (¥,7), as n — oo. Let &,(-) denote the minimal backward
characteristic emanating from (x,,#,). As n — o0, {£,(-)}, or a subsequence
thereof, will converge to some backward characteristic emanating from (X,7),
which is a straight line and shock free. Since &,(r) < x(¢), this implies that
{&,(-)) must necessarily converge to &_(-). Consequently, {u(x,—,(,)} converges
tou(x—,7r), as n = 00.

Similarly, one shows that for any sequence {(x,,t,)} in the set {(x,¢) : 0 <
t < 00, x > x()}, converging to (x, ), the sequence {u(x,+,t,)} converges to
u(®@+, ).

To verify (11.3.3), we start out again from (11.3.2), where now ¢ may be
positive or negative. As shown above, ¢ is a point of continuity of x(¢) and so,
letting € — 0, we arrive at (11.3.3). This completes the proof.

Theorem 11.3.4 The set of irregular points of any admissible solution u is (at
most) countable. (X,1) € (—00,00) x (0,00) is an irregular point if and only
if u(x+,1) < u(x—,t) and, in addition to the extremal backward characteristics
E_(-), £4("), there is at least another, distinct, backward characteristic £(-), as-
sociated with u, emanating from (X,t), which is shock free. Irregular points are
generated by the collision of shocks and/or by the focussing of centered compres-
sion waves.

Proof. Necessity follows from Theorems 11.3.2 and 11.3.3. To show sufficiency,
consider the subset .#" of the interval [£_(0), £.(0)] with the property that, for
x € .#, the straight line segment connecting the points (x,0) and (X,7) is a
characteristic associated with «, which is shock free.

When .#° = [£_(0), £.(0)], (F,7) is the focus of a centered compression
wave and the assertion of the theorem is clearly valid. In general, however, .2~
will be a closed proper subset of [£_(0), £,(0)], containing at least the three
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points £_(0). £(0) and & (0). The complement of .2 relative to [£_(0), £.(0)]
will then be the (at most) countable union 'of disjoint open intervals. Let (o_, ory)
be one of these intervals, contained say in (£-(0), £(0)). _The straight-line seg-
ments connecting the points (-, 0) and (a,, 0) with (¥,7) will be shock free
characteristics ¢_(-) and ¢, (-) along which u is constant, say «_ and u, . Neces-
sarily, u(X—,7) > u_ > us > u(x+, 7). Consider a characteristic x (-) connecting
a point of (a_, o) with (£, 7). Then £_(r) < x(t) < {+(1), 0 <t < 7. Take any
sequence {(x,, t,)} in the set {(x, 1) : 0 < ¢ <1, {_(r) < x < x(t)}, converging to
(%,7), as n — oo. If &,(-) denotes the minimal backward characteristic emanating
from (x,, fn), the sequence {&,(-)} will necessarily converge to {_(-). In particular,
this implies u(x,—, t,) — u-, as n — 00. Similarly one shows that if {(xa, t))
is any sequence in the set {(x,¢) : 0 < ¢ < t, x(t) < x < (1)) converging to
(%.7), then u(x,+,t,) — uy, as n — o00. Thus, near ¢ x(-) is a shock, which is
differentiable from the left at 7 with

iy JUs) = fluo)

dt Uy —H_

(11.3.49)

Since f'(u-) > ’fi—;x(?) > f'(uy), we conclude that (X, ) is an irregular point
of u.

We have thus shown that (X, 1) is a point of collision of shocks, one for each
open interval of the complement of .2, and centered compression waves, when
the measure of .#" is positive.

For fixed positive &, we consider irregular points (x, ), as above, with the
additional property £, (0) — £(0) > ¢, £(0) — £_(0) > ¢. It is easy to see that one
may fit an at most finite set of such points in any bounded subset of the upper
half-plane. This in turn implies that the set of irregular points of any admissible
solution is (at most) countable. The proof is complete.

The next proposition provides another indication of the regularizing effect of
genuine nonlinearity:

Theorem 11.3.5 Assume the set € of points of continuity of an admissible solution
u has nonempty interior ¢ °. Then u is locally Lipschitz on € °.

Proof. Fix any point (X,7) € #° and assume that the circle .7, of radius r,
centered at (X, 1), is contained in #°°. Consider any point (x, ) at a distance p < r
from (¥, ). The (unique) characteristics, associated with u, passing through (¥, 7)
and (x, ¢) are straight lines with slopes f'(u(xX,7)) and f'(u(x,t)), respectively,
which cannot intersect inside the circle .#,. Elementary trigonometric estimations
then imply that | f'(u(x, £))— f'(u(x%, 1))| cannot exceed cp/r, Where ¢ is an upper
bound of | + f'(u)? over ./3,. Hence, if @ > 0 is a lower bound of f”(u) over
Sy, lu(x, t) — u(X, 1)| £ % p. This completes the proof.

The reader should be aware that admissible solutions have been constructed
whose set of points of continuity has empty interior.
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We now investigate the regularity of admissible solutions with smooth initial
data. In what follows, it will be assumed that f is C**! and u is the admissible
solution with C* initial data uy, for some k € {1,2,---, 00}.

For (x,t) € (—00,00) x (0,00), we let y_(x,¢) and y,(x,t) denote the
interceptors on the x-axis of the minimal and maximal backward characteristics,
associated with u, emanating from the point (x, ¢). In particular,

(11.3.5) x=y_(x.0) +tf (uo(y-(x,0) =y (x. 0) + tf (up(y4(x, 1)) .
(11.3.6) wlx—, t) =ugly-(x,8)), ulx+,1) =up(y4(x.0)) .

For fixed ¢+ > 0, both y_(-,¢) and y, (-, t) are monotone nondecreasing and the
first one is continuous from the left while the second is continuous from the right.
Consequently,

d
(11.3.7) 1+ rd—yf’(uo(y)) 20, y=ygx10),
holds for all (x, ) € (—00, 00) x (0, 00).

Any point (¥,7) € (—00, 00) x (0, 00) of continuity of u is necessarily also
a point of continuity of y.(x,t) and y_(X,7) = y; (%, 7). Therefore, by virtue of
(11.3.5), (11.3.6) and the implicit function theorem we deduce
Theorem 11.3.6 If (x,7) € (—00, 00) x (0, 00) is a point of continuity of u and

_d -
(11.3.8) | + tEf wo(y) >0, y=ys(x. 1),
then u is C* on a neighborhood of (%, 7).

Referring to Theorem 11.3.3, if (¥,7) is a point of jump discontinuity of «,
then (x,7) is a point of continuity of y_(x,¢) and y,(x,¢) relative to the sets
{(x,) :0 <t <00, x < x(#)) and {(x,¢) : 0 <t <00, x > x(t)), respectively.
Consequently, the implicit function theorem together with (11.3.5) and (11.3.6)
yield
Theorem 11.3.7 If (11.3.8) holds at a point (%, ) € (—00, 00) X (0, 00) of jump
discontinuity of u, then, in a neighborhood of (X, ), the shock x (-) passing through
(X, 1) is C**' and u is C* on either side of the graph of x(-).

Next we consider shock generation points, introduced by Definition [1.1.1.
Theorem 11.3.8 If (X,7) € (—00, 00) x (0, 00) is a shock generation point, then

_d _ _
(11.3.9) 1 +t5f’(uo(y)) =0, yxn=<y=<yFn.

Furthermore, when k > 2,
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2 _ _
(11.3.10) ;—Zf’(uo(y)) =0, y(xn=sy=zyG&0n.
¥

Proof. Recall that there are two types of shock generation points: points of con-
tinuity, in which case y_(x,7) = y,(x.7), and focusses of centered compression
waves, with y_(%,7) < y4+(, 7). When (x,7) is a point of continuity, (11.3.9)
is a consequence of (11.3.7) and Theorem 11.3.6. When (x,7) is the focus of a
compression wave, X = y + I f'(uo(y)) for any y € [y_(X, 1), y,(X.7)] and this
implies (11.3.9).

When y_(X,7) < y.(X,1), differentiation of (11.3.9) with respect to y yields
(11.3.10). To establish (11.3.10) for the case (x,7) is a point of continuity, we
take any sequence {x,} which converges from below (or above) to X. Then
{¥_(x,, )} will converge from below (or above) to y.(X. 7). By virtue of (11.3.7),
| +?(-1‘% f'(uo(y)) = 0 for y = y_(x,, 1) and this together with (11.3.9) imply that
v+ (¥.7) is a critical point of di‘_f’(uo(y)). The proof is complete.

For k > 3, the set of functions ug in C* with the property that (;—’vf’(uo(y))
has infinitely many critical points in a bounded interval is of the first category.
Therefore, generically, initial data uy € C*, with k > 3, induce solutions with a
locally finite set of shock generation points and thereby with a locally finite set
of shocks. In other words, generically, solutions with initial data in C*, k > 3,
are piecewise C* smooth functions, and do not contain any centered compres-
sion waves. In particular, solutions with analytic initial data are always piecewise
smooth.

11.4 Divides, Invariants and the Lax Formula

The theory of generalized characteristics will be used here to establish interesting
and fundamental properties of admissible solutions of (11.1.1). The starting point
will be a simple but, as we shall see, very useful identity.

Let us consider two admissible solutions # and u*, with corresponding initial
data ug and g, and trace one of the extremal backward characteristics £(-), asso-
ciated with u, and one of the extremal backward characteristics £*(-), associated
with u*, that emanate from any fixed point (x, 1) € (=00, 00) x (0, o). Thus, &(-)
and £*(-) will be straight lines, and along £(-) u will be constant, equal to u{x—, t)
or u(x+, t), while along £*(-) u* will be constant, equal to u*(x—, 1) or u*(x+, t).
In particular, £(t) = f'(u(x%, 1)) and £*(1) = f'(u"(x£, 1)), 0 <1 < 1.

We write (11.1.1), first for u then for u*, we subtract the resulting two equa-
tions, we integrate over the triangle with vertices (x, f), (£(0), 0), (¢*(0), 0), and
apply Green’s theorem thus arriving at the identity
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/Ol{f(u(xi. 0) = FuE@-, 1)
= fllulcx, eNfulxt, t) — u*(E(r)—, 1)]}dt
(11.4.1) + /Ol!f(u*(xi, n) = fuE*(r)-, 1))
= [l (x£, )[u*(x£, 1) — u(E*(r)—, v)]}d7

£(0)
- / [o(y) — ul(»)]dy .
3

“0)

The usefulness of (11.4.1) lies in that, due to the convexity of f, both integrals
on the left-hand side are nonpositive.

As a first application of (11.4.1), we use it to locate divides associated with an
admissible solution u. The notion of divide was introduced by Definition 10.3.1.
In the context of the genuinely nonlinear scalar conservation law, following the
discussion in Section 10.3, divides are shock free and hence, by virtue of Theorem
11.1.1, straight lines along which u is constant.

Theorem 11.4.1 A divide, associated with the admissible solution u, with initial
data wy, along which u is constant i, issues from the point (¥,0) of the x-axis if
and only if

(11.4.2) -/j[uo(y)—ﬁ]dyzo, -0 <7 <00 .

Proof. Assume first (11.4.2) holds. Apply (11.4.1) with u* = 7, + € (0, 00),
X = X + ¢tf'(w). In particular, §*(r) = ¥ + tf'() and £§*(0) = X. Hence the
right-hand side of (11.4.1) is nonnegative, by account of (11.4.2). But then both
integrals on the left-hand side must vanish, so that u(x=, t) = . We have thus
established that the straight line x = X 4 7f'(u) is a shock free characteristic on
[0, 00), that is a divide associated with u.

Conversely, assume the straight line x = X +¢f"(u) is a divide associated with
u. Take any z € (—00, 00) and fix & such thatsi < ifz>xandit > uwifz < x.
The straight lines z + ¢f’(#) and X + ¢f'(7t) will then intersect at a point (x,¢)
with r > 0. We apply (11.4.1) with u* = i, in which case £(0) = X, £*(0) = z.
The left-hand side is nonpositive and so

(11.4.3) / fuo(y) —uldy <0.
Letting & — u we arrive at (11.4.2). This completes the proof.

The above proposition has implications on the existence of important time
invariants of solutions:
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Theorem 11.4.2 Assume uy is integrable over (—00, 00) and the maxima

-0 o
(11.4.4) max/ up(v)dy =q_ , m?x/ ug(y)dy = q4

exist. If u is the admissible solution with initial data uy, then, for any t > 0,
-0 oxc
(11.4.5) max/ u(y,)dy =q_, mfx/ u(y,dy =q4 .

Proof. Notice that g_ exists if and only if g, exists and in fact, by virtue of
Theorem 11.4.1, both maxima are attained on the set of X with the property that
the straight line x = X + ¢f’(0) is a divide associated with u, along which u
is constant, equal to zero. But then, again by Theorem 11.4.1, both maxima in
(11.4.5) will be attained at x =X + ¢f'(0).

We now normalize f by f(0) = 0 and integrate (11.1.1) over the sets {(y, 7) :
O<t<t,—-00<y<X+rf/®)and {(y,7): 0 <7 <6, T+7f(0) <
y < oo}. Applying Green’s theorem, and since # vanishes along the straight line
x=xX+tf'(0),

-0 —00 o0 o,
(11.4.6) / u(y,dy = / uo(y)dy / u(y, ydy = / up(y)dy
x X i ¥
which verifies (11.4.5). The proof is complete.
One of the most striking features of genuinely nonlinear scalar conservation
laws is that admissible solutions may be determined explicitly from the initial data

through the following procedure. We start out with the Legendre transform

(11.4.7) g(v) =max[uv— fu)l,

noting that the maximum is attained at u = [ f’]~"(v). With given initial data u,(-)
we then associate the Lax function

y X =y
(11.4.8) G(y; x,t) = up(z)dz +1tg - )
0
defined for (x, 1) € (—00, 00) x (0, 00) and y € (—00, 00).

Theorem 11.4.3 For fixed (x, 1) € (—00, 00) x (0, 00), the Lax function G (y; x, t)
is minimized at a point y € (—00, 00) if and only if the straight line segment that
connects the points (x, t) and (¥, 0) is a generalized characteristic associated with
the admissible solution u with initial data uy, which is shock free.

PrO(_)f. We fix y and ¥ in (—o0, 00), integrate (11.1.1) over the triangle with
vertices (x, 1), (y,0), (7, 0) and apply Green’s theorem to get
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(11.4.9)
/' uo(Z)dZ+/ [x:yu y x:"'i.r)—f(u(.\_'+rx—y:i:.r))]dr
0 0
=/' Ho(Z)dZ+/ [x:yu(y+rx_’v:t,r)—f(u(.\'+rx_y:t,r))]dr .
0 0

By virtue of (11.4.7) and (11.4.8), the left-hand side of (11.4.9) is less than, or
equal to G(3; x,t), with equality if and only if f'(u(¥ + 15X+ 7)) = —l,
almost everywhere on (0, ¢), i.e., if and only if the straight lme segment that
connects the points (x.¢) and (¥, 0) is a shock free characteristic. Similarly, the
right-hand side of (11.4.9) is less than, or equal to Gi(y; x, ), with equality if
and only if the straight line segment that connects the points (x, t) and (y,0) is a
shock free characteristic. Assuming then that the straight line segment connecting
(x.t) with (¥,0) is indeed a shock free characteristic. we deduce from (11.4.9)
that G(3; x, t) < G(y: x,t) for any y € (—oc, 00).

Conversely, assume G(y; x,¢) < G(y:x,1), for all y € (—o0, 00). In par-
ticular, pick v so that (v, 0) is the intercept by the x-axis of the minimal back-
ward characteristic emanating from (x, ). As shown above, y is a minimizer of
G(-:x,t)and so G(y; x.t) = G(3 x, t). Moreover, the right-hand side of (11.4.9)
equals G(y; x, t) and hence so does the left-hand side. As explained above, this
implies that the straight line segment connecting (x, t) with (¥, 0) is a shock free
characteristic. The proof is complete.

The above proposition may be used to determine the admissible solution u
from its initial data uo: For fixed (x,¢) € (—o00, 00) x (0, 00), we let y_ and y.
denote the smallest and the largest minimizer of G(-; x.t) over (~00, 00). We
then have

(11.4.10) u(xt, 1) = [f']"(ﬁ) :

t
By account of Theorems 11.3.2, 11.3.3 and 11.3.4, we conclude that (x, ¢) is a point
of continuity of u if and only if y_ = y,; a point of jump discontinuity of « if and

only if y_ < y, and y_, y; are the only minimizers of G(-; x, ¢); or an irregular
point of u if and only if y_ < y; and there exist additional minimizers of G(-; x, ¢)
in the interval (y_, y;+). One may develop the entire theory of genuinely nonlinear
scalar conservation laws on the basis of the above construction of admissible
solutions, in lieu of the approach via generalized characteristics.

The change of variables 4 = 3, v, reduces the conservation law (11.1.1) to the
Hamilton-Jacobi equation

(11.4.11) guix, )+ f(dv(x, 1)) =0.

in that context, 1 is an admissible weak solution of (I1.1.1) if and only if v is
a viscosity solution of (11.4.11); (references in Section 11.9). In fact, Theorems
11.4.2 and 11.4.3 reflect properties of solutions of Hamilton-Jacobi equations rather
than of hyperbolic conservation laws, in that they readily extend to the multi-space
dimensional versions of the former though not of the latter.



222 XI. Genuinely Nonlincar Scalar Conservation Laws

11.5 Decay of Solutions Induced by Entropy Dissipation
Genuine nonlinearity gives rise to a multitude of dissipative mechanisms which,
acting individually or collectively, affect the large time behavior of solutions. In

this section we shall get acquainted with examples in which the principal agent of
damping is entropy dissipation.

Theorem 11.5.1 Let u be the admissible solution with initial data uy such that

(15.1) /Muo(y)dy =0@), asf— oo,

for some r € [0, 1), uniformly in x on (—00, 00). Then

(11.5.2) urk, =0 ("), ast—> o0,

uniformly in x on (—00, 00).

Proof. We fix (x, () € (—00, 00) x (0, 00) and write (11.4.1) for u* = 0. Notice

that £(0) — £*(0) = ¢[f'(u(xx, #)) — f'(0)]. Also recall that both integrals on the
left-hand side are nonpositive. Consequently, using (11.5.1), we deduce

(11.5.3) Su(xt, ) =00, ast— o0,
uniformly in x on (—o00, 00), where we have set

FO) = f)y+uf'wy [y vf’(v)dv
11.5.4 d(u) = =0 _
( ) w |f'(u) = f (O | fo fr)dvl

A simple estimation yields @ (u) > K|u|>", with K > 0, and so (11.5.3) implies
(11.5.2). This completes the proof.

In particular, when 1y € L?, by virtue of Holder’s inequality, (11.5.1) holds
withr =1 — ﬁ Therefore, Theorem 11.5.1 has the following corollary:
Theorem 11.5.2 Let u be the admissible solution with initial data u, €
LP(~00,0), | < p < 0. Then

—~ L

(11.5.5) u(x:i:,t):O(t I'H) , ast— oo,
uniformly in x on (—00, 00).

In the above examples the comparison function was the trivial solution u* = 0.
Next we consider the case where the comparison function is the solution of a
Riemann problem comprising two constant states u_ and u,, u_ > u,, joined by
a shock, namely,



[1.5 Decay of Solutions Induced by Entropy Dissipation 223

Uu_, x < st
(11.5.6) ux,t) =

Up, x >st.

where

= fluy) — fluo) _

Uy —U_

(11.5.7)

Theorem 11.5.3 Let u denoote the admissible solution with intial data uy such
that the improper integrals f_x[uo(y) —u_ldy and j;;“[uo(y) —u,]dy exist, with
u_ > uy. Normalize the origin x = 0 so that

0 20
(11.5.8) / [o(y) —u_]dy +/ [o(y) —usldy =0.
—o0 0
Consider any forward characteristic x (-) issuing from (0, 0). Then, as t — 00,
(11.5.9) x(t) = st +o(l)
with s given by (11.5.7), and

u_ +o(="%) , uniformly for x < x(t) ,
(11.5.10) u(xk, 1) = ormly f X
uy, +0@"?), uniformly forx > x(t) .

Proof. Fix any (x,¢) € (—00,00) x (0, 00) and write (11.4.1) for the solution
u, with initial data uy, and the comparison solution u* given by (11.5.6). Since
fu) >s > fl(uy), as t = 00, £*(0) = —oo, uniformly in x on (—o00, st),
and £*(0) — oo, uniformly in x on (s¢, 00). Observe that, similarly, as ¢t — oc,
£(0) - —oo, uniformly in x on (—o0, x(¢)), and £(0) — oo uniformly in x
on (x(t), 00). Indeed, in the opposite case one would be able to find a sequence
{(x4, 1)}, with £, = 00 as n — 00, such that the intercepts &,(0) of the minimal
backward characteristics &,(-) emanating from (x,. f,) are confined in a bounded
set. But then some subsequence of {&,(-)} would converge to a divide issuing from
some point (X, 0). However, this is impossible, because, since . > uy, (11.5.8)
is incompatible with (11.4.2), for any ¥ € (—00, 00) and every i € (—00, 090).

In view of the above, (11.5.8) implies that the right-hand side of (11.4.1) is
o(1), as t — 00, uniformly in x on (—o00, co). The same will then be true for
each integral on the left-hand side of (11.4.1), because they are of the same sign
(nonpositive).

Consider first points (x, t) € (—00, 00) x (0, 00) with x < min{x (), st}. Then
E(1) < st, 0 < 1 < ¢, and so the first integral on the lefti-hand side of (11.4.1)
yields

(11511 e fulxx, 0)) — fu-) — fluxx, e)uxx, ) —ul)=o0(l) .

Since £ is uniformly convex, (11.5.11) implies u(x+, 1) — u_ = o(t™"/?).
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A similar argument demonstrates that for points (x, ) € (—00, 00) x (0, 00)
with x > max{x (¢), st} we have u(x£.1) —u, = o(t™'/2).

Next, consider points (x, 1) € (—00,00) x {0, 00) with st < x < x(¢). Then
£(-) will have to intersect the straight line x = sv, say at t = r, r € [0,¢], in
which case the first integral on the left-hand side of (11.4.1) gives

(11.5.12) (¢ =r){fuxx, 0))— flug) — fluxx, ))uExx,0)—uy]) =o(l),
(1.5.13)  riflaGxx,0) — fluo) = et )u@x, ) ~u_]} =o(l) .

For x < x(¢), it was shown above that £(0) — —oo, as r — oc, and this in
turn implies r — oo. It then follows from (I11.5.13) and the convexity of f
that u(x%,t) = u_ + o(l). Then (11.5.12) implies that ¢ — r = o(l) so that
x(t) —st = o(1) and (11.5.13) yields (11.5.11). From (11.5.11) and the convexity
of f we deduce, as before, u(x=, 1) —u_ = o(t='2).

A similar argument establishes that for points (x, ¢) € (—o0, 00) x (0, 00) with
x(t) < x < st we have u(x=+, 1) —u, = o(r~'/?) and also x(t) — st = o(1). This
completes the proof.

11.6 Spreading of Characteristics
and Development of N-Waves

Another feature of genuine nonlinearity, affecting the large time behavior of solu-
tions, is spreading of characteristics. In order to see the effects of this mechanism,
we shall study the asymptotic behavior of solutions with initial data of com-
pact support. We already know, by account of Theorem 11.5.2, that the amplitude
decays to zero as O (+~'/2). The closer examination here will reveal that asymptot-
ically the solution attains the profile of an N-wave, namely, a centered rarefaction
wave flanked from both sides by shocks whose amplitudes decay like O (r~'/2).

Theorem 11.6.1 Let u be the admissible solution with initial data u,, such that
uo(x) = 0 for |x| > £. Consider the minimal forward characteristic x_(-) issuing

SJrom (—£,0) and the maximal forward characteristic x,(-) issuing from (£,0).
Then

(11.6.1) uxx, ) =0, fort>0andx < x_(¢t) orx > x.(t) .
Ast — o0,
(11.6.2)  f'u(x%, 1) = ; +0 (%) ., uniformly for x_(t) < x < x4+(t) ,
(11.6.3)
u(x+x t)=-—l—[£—f'(0 o ! j ly fc
, 7o) Lz )] + (-[- . uniformly for x_(t) < x < x4(t) ,
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xX—(t) = tf(0) — [2q-tf" (M2 + O(l) ,
X+(1) = tf(0) + g+t (O)]'2 + 0(1) ,
with g_ and q, given by (11.44),

(11.6.4)

Proof. Since x_(-) is minimal and x.(-) is maximal, the extremal backward char-
acteristics emanating from any point (x, t) witht > Oandx < x_(f) or x > x,(¢)
will be intercepted by the x-axis outside the support of . This establishes (11.6.1).

On the other hand, the minimal or maximal backward characteristic £(-) ema-
nating from a point (x, ) with t > 0 and x_(f) < x < x4 (t) will be intercepted
by the x-axis inside the interval [—£, £], i.e., £(0) € [—¢, £]. Consequently, as
t - 00, x —tf'(u(x%x, t)) = £(0) = O(1), which yields (11.6.2).!

By account of Theorem [1.5.2, u is O(t~'?),as t — 00, and thus, assuming f
is C3. f'(u) = f(O)+ f"(0)u+0(t™"). Therefore, (11.6.3) follows from (11.6.2).

To derive the asymptotics of x4 (1), as t — o0, we first note that 0 > x_(r) —
£ =0¢7),0< x:()— f/(0) < 0@ '?) and s0 0 > x_(1) — tf'(0) >
0@t'?), 0 < x.(t) — tf(0) < O(t"?). Next we appeal to Theorem 11.4.2: A
divide x =X + ¢f'(0) originates from some point (X, 0), with X € [—¢, £], along
which u is zero, and for any ¢ > 0,

x-(n x+(1)
(11.6.5) / u(y,t)dy =q-, / u(y,tydy =gq, .
X+1f(0) X+ £(0)
In (11.6.5) we insert u from its asymptotic form (11.6.3) and after performing the
simple integration we deduce

(11.6.6) (X)) —tf' OP =1+ 0¢""?

1
29+t7(0)
whence (11.6.4) follows. The proof is complete.

11.7 Confinement of Characteristics and Formation
of Sawtoothed Profiles

The confinement of the intercepts of extremal backward characteristics in a
bounded interval of the x-axis induces bounds on the decreasing variation of char-
acteristic speeds and thereby, by virtue of genuine nonlinearity, on the decreasing
variation of the solution itself.

Theorem 11.7.1 Let x_(-) and x () be generalized characteristics on [0, c<),
associated with an admissible solution u, and x_(t) < y.(t) fort € [0, oc). Then,

! As 1 — o0, the £(0) accumulate at the set of points from which divides originate. In the
generic case where (11.4.2) holds, with 7 = 0, at a single point X, which we normalize so
that ¥ = 0, the £(0) accumulate at the origin and hence in (11.6.2) O(t™') is upgraded to
o(1™'). When, in addition, «, is C' and 1},(0) > O, then in (11.6.2) O(+~") is improved
to O(t™%) and, for 1 large, the profile u(-. 1) is C' on the interval (x-(/), x+(1)).
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Sfor any t > 0, the decreasing variation of the function f'(u(-, 1)) over the interval
(X= (1), x+ (1)) cannot exceed [x+(0) = x-(0))t~". Thus the decreasing variation
of u(-, t) over the interval (x— (1), x+(1)) is O(t™") as t — oco.

Proof. Fix t > 0 and consider any mesh x_(¢) < x1 < x2 < +-+ < Xyp_| < X2m <
x+(t) such that (x;, ) is a point of continuity of u and u(x_1,t) > u(xn,t),
k=1,.-.,m. Let &(-) denote the (unique) backward characteristic emanating
from (x;, ). Then x_(0) < &(0) < -+ < &,(0) < x4+ (0). Furthermore, & (0) =
xi —tf (u(x;, t)) and so

m

(11.7.1) Dt ezt 09) = f ez, )] < x4(0) ~ x-(0)

k=1

whence the assertion of the theorem follows. This completes the proof.

In particular, referring to the setting of Theorem 11.6.1, we deduce that the
decreasing variation of the N-wave profile u (-, t) over the interval (x_(¢), x,(¢))
is O(t™"), as t = oo.

Another corollary of Theorem 11.7.1 is that when the initial data ug, and
thereby the solution «, are periodic in x, then the decreasing variation, and hence
also the total variation, of u(-, f) over any period interval is O(t™') as t — oo.
We may achieve finer resolution than O(¢~') by paying closer attention to the
initial data:

Theorem 11.7.2 Let u be an admissible solution with initial data uy. Assume
X-(t) = x_+ tf'(0) and x,.(t) = x, +tf' (W), x_ < x,, are adjacent divides
associated with u, that is (11.4.2) holds for X = x_ and X = x but for no other
X in the interval (x_, x,). Then

x+(0) Xy
(11.7.2) / u(x, )dx =/ up(y)dy = (x;. —x)u, te€[0,00).
x-(0) X

Consider any forward characteristic Y (-) issuing from the point (*5%,0). Then,
ast — 0o,

1
(11.7.3) 1#(’)=5[X—(t)+)(+(t)]+0(1) ,
(11.7.4)
=, x—x@ I .
Ut —————Fo| -], uniformly for x_(t) <x < Y1),
f@) t (f>
u(xt, t) =

_ 1 -
u+4 Wi#z +o (;) , uniformly for y(t) < x < x.(t) .

Moreover, the decreasing variation of u(-, t) over the intervals (x_(t), ¥ (1)) and
(W@, x+(t)) is o(t™") as t - 0.
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Proof. To verify the first equality in (11.7.2), it suffices to integrate (11.1.1) over
the paralielogram {(x,7) : 0 < v < £, x_(r) < x < x4+(7)} and then apply
Green’s theorem. The second equality in (11.7.2) follows because (11.4.2) holds
for both x = x_ and X = xy4.

Fort > 0, we let §' (-) and &' (-) denote the minimal and the maximal backward
characteristics emanating from the point (x(¢).1). As t 1 00,£°(0) | x_ and
£'(0) 1 x4, because otherwise there would exist divides originating at points (x, 0)
with X € (x_, x,), contrary to our assumptions. It then follows from Theorem
11.7.1 that the decreasing variation of f'(u(-, £)). and thereby also the decreasing
variation of u(-,t) itself, over the intervals (x_(f). ¥ (¢)) and (Y (), x.(t)) is
o(t™) as t > oo,

The extremal backward characteristics emanating from any point (x. ¢) with
x-(8) <x <y¥@t) (or ¥(r) < x < x4 () will be intercepted by the x-axis inside
the interval [x_, ' (0)] (or [£%(0), x4 ]) and thus

(11.7.5) 1
_to(t™"), uniformly for y_(¢ ,
x = tf (e 1)) = X yfor x (1) <x < (1)
X4 +o(t™Yy, uniformly for ¥ (1) <x < x,.(r) .

Since u{x-(t),#) = u(x4+(t),t) = U, Theorem 11.7.1 implies u — &t = O@™")
and so, as t — oo, f'(u) = f'(u) + f"@)(u —u) + O(t~?). This together with
(11.7.5) yield (11.7.4).

Finally, introducing « from (11.7.4) into (11.7.2) we arrive at (11.7.3). The
proof is complete.

We shall employ the above proposition to describe the asymptotics of periodic
solutions:

Theorem 11.7.3 When the initial data uy are periodic, with mean W, then, as
t — 0o, the admissible solution u tends, at the rate o(t™"), to a periodic serrated
profile consisting of wavelets of the form (11.7.4). The number of wavelets (or teeth)
per period equals the number of divides per period or, equivalently, the number
of points on any interval of the x-axis of period length at which the primitive of
ug — U attains its minimum. In particular, in the generic case where the minimum
of the primitive of ug — Ut is attained at a unique point on each period interval, u
tends to a saw-tooth shaped profile with a single tooth per period.

Proof. It is an immediate corollary of Theorems 11.4.1 and 11.7.2. If uq is periodic,
(11.4.2) may hold only when % is the mean of «( and is attained at points X where
the primitive of up — i is minimized. The set of such points is obviously invariant
under period translations and contains at least one (generically precisely one) point
in each interval of period length.
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11.8 Comparison Theorems and L' Stability

The assertions of Theorem 6.2.2 will be reestablished here, in sharper form, for the
special case of genuinely nonlinear scalar conservation laws (11.1.1), in one-space
dimension. The key factor will be the properties of the function

fw)=f) - M[v—u], ifuzw,

FW) = fa) = f'w)v—ul, ifu=w,

defined for «, v and w in R. Clearly, Q(u, v, w) = @(w, v, u). Since f is uni-
formly convex, Q(u, v, w) will be negative when v lies between « and w, and
positive when v lies outside the interval with endpoints « and w. In particular, for
the Burgers equation (4.2.1), Q(u, v, w) = %(v —u)(v —w).

The first step is to refine the ordering property:

(11.8.1) Qu,v.w) =

Theorem 11.8.1 Let u and W be admissible solutions of (11.1.1), on the upper
half-plane, with respective initial data uy and Wy such that

(11.8.2) up(x) <uplx), forallx e (y,y).

Let Y (-) be any forward characteristic, associated with the solution u, issuing from
the point (y, 0), and + (-) be any forward charg_cteristic, associated with W, issuing
Srom (3,0). Then, for any t > 0 with ¥ (t) < ¥ (1),

(11.8.3) u(x,t) <u(x,t), forallx e (), ¥ ().

Proof. We fix any interval (z,7) with ¥ (t) < z < Z < ¥ (r) and consider the
maximal backward characteristic £(-), associated with the solution u, emanating
from the point (z, t), and the minimal backward characteristic £ (-), associated with
%, emanating from the point (Z, f). Thus, £(0) > y and £(0) < 7.

Suppose first £(0) < (0). We integrate the equation

(11.8.4) Olu—ul+a[f(w)~ fa)] =0
over the trapezoid {(x,7) : 0 < t < 1, () < x < z(r)} and apply Green’s

theorem to get

70y
/ [u(x,t) —u(x, t))dx —/ [uo(x) — Tg(x))dx
&

(]

(11.8.5) / Qu((r), 1), u(r), 1), u(§(1), 1))dr

—/0 QG (1), 7), u (7). 7), WE (1), T)dT .

Both integrals on the right-hand side of (11.8.5) are nonnegative. Hence, by virtue
of (11.8.2), the integral of u(-, £) — @(-. ) over (z. Z) is nonpositive.
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Supppose now £(0) > Z(0). Then the straight lines £(-) and 7 (-) must intersect
at some time s € [0, f). In that case we integrate (11.8.4) over the triangle {(x, 7) :
s <t <t &) <x < (1)} and employ the same argument as above to deduce
that the integral of u(-, t) — u(-. t) over (z, 7) is again nonpositive.

Since (z, Z) is an arbitrary subinterval of (¥ (r), ¥ (), we conclude (I 1.8.2).
The proof is complete.

As a corollary of the above theorem, we infer that the number of sign changes
of the function u(-, t) — (-, t) over (—o0, 00) is nonincreasing with time. Indeed,
assume there are points —00 = yp < ¥| < --+ < ¥, < ¥4 = 00 such that, on
each interval (i, yi+1), 2#o(-) —1o(-) is nonnegative when 7 is even and nonpositive
when i is odd. Let ¢, (-) be any forward characteristic, associated with the solution
u, issuing from the point (y;,0) with i odd, and -, () any forward characteristic,
associated with &, issuing from (y;, 0) with i even. These curves are generally
assigned finite life spans, according to the following prescription. At the time
t; of the earliest collision between some y; and some EJ-, these two curves are
terminated. Then, at the time £, of the next collision between any (surviving) ¥
and 1, these two curves are likewise terminated; and so on. By virtue of Theorem
11.8.1, the function u(-, r) — u(-, t) undergoes n sign changes for any ¢ € [0, ¢|),
n — 2 sign changes for any ¢ € [, #;), and so on. In particular, the so called /ap
number, which counts the crossings of the graph of the solution u(-, #) with any
fixed constant i, is nonincreasing with time.

By Theorem 6.2.2, the spatial L' distance of any pair of admissible solutions
of a scalar conservation law is nonincreasing with time. In the present setting, it
will be shown that it is actually possible to determine under what conditions is
the L' distance strictly decreasing and at what rate:

Theorem 11.8.2 Let u and W be admissible solutions of (11.1.1) with initial data ug
andiip in L' (=00, 00). Thus |lu(-, t)—1u(-, 1)| LY(~oc.oc) IS @ nonincreasing function
of t which is locally Lipschitz on (0, 00). For any fixed t € (0, 00), consider the
(possibly empty and at most countable) sets

Z ={ye(-00,00):uy <l <U-<u-},
(11.8.6) o
Z ={ye(—00,00):liy <uy <u_<u_},

where uy and . stand for u(yx, t) and u(y=, t), respectively. Let

uy ifu, =u_, B B

u_ ifu, <u_ and fluy) — fu) > f(u:) —f(“—) ’
(11.8.7) u,= Uy —U_ U, — -
fluy)— flu) - fai) - fuo)

U, —u_ Ii+—ﬁ_

uy ifu, <u_ and
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uy ifiy, =u_,
: = o — fly) = f@u) f(ll+)—f(u_)
u_ ifu, <u_ and )
(1187)2 ﬁ',, = u -l Uy —U_

fU) = f@)  fluy) = fluo)
u, ifu, <u- and < .
u,—u_ Uy —u.
Then
(11.8.8)
d+
TN — B D ooy =2 ) Qo T tt) +2 ) QG W)
ye7 ye g

Proof. First we establish (11.8.8) for the special case where u(-, ) — W(-, 1)
undergoes a finite number of sign changes on (—o0, 00), i.e., there are points
—00 = ¥y < ¥y < -+ < ¥ < ynp1 = oo such that, on each interval
(¥i» Yis1), u(-, 1) — U(-, 1) is nonnegative when i is even and nonpositive when
i is odd. In particular, any y € 7 must be one of the y;, with i odd, and any
y € Z must be one of the y;, with i even.

Let ;(-) be the (unique) forward characteristic, associated with the solution u,
issuing from the point (y;, t) with i odd, and \_1/',.(-) be the forward characteristic,
associated with %, issuing from (y;,¢) with i even. We fix s > ¢ with s — ¢ so
small that no collisions of the above curves may occur on [z, s], and integrate
(11.8.4) over the domains {(x,7) 1t <1 <, ¥i(7) < x < ¥, (1)}, for i odd,
and {(x,7) 1t <1 <5, ¥;(r) < x < Yip1 (1)}, for i even. We apply Green’s
theorem and employ Theorem 11.8.1, to deduce

(11.8.9)

Nt 8) = BC )Lt (—00.00) = ety 8) = T, D L1 (=00.00)

Viri(s) Ve (s)
= Z /~ [u(x,s) —u(x,s)ldx + Z/ [@(x,s) —u(x, s)ldx
ievenvV

i(s) i odd ¥ ¥ (s)
- / 6 — T 0)dx - }:/"H[zz(x,r)—u(x.t)]dx
i even i oddY ¥
= / (Q (WD) =, ). E(Wi(t)=. 1), u (i ()4 7))

i odd

+ Q@i (O)+, 0, T (1)+, 1), u(yi (1) —, T)}dT
+ 3 | QEF (D)= 1), u@ ()=, ), W (D)+. 7))

i evenV!

+ QW (D), 1), u(P (D) +, 1), 7(F, (1) —, 1) }dT .
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By virtue of Theorem 11.3.1, as s | ¢ the integrand in the first integral on the
right-hand side of (11.8.9) tends to zero, ify, ¢ 7.orto2Qu_, ¥, uy), if
y; € 7. Similarly, the integrand in the second integral on the right-hand side of
(11.8.9) tends to zero, if y; € 7, or to 2Q(i_, u..uy), if 3; € 7 Therefore,
upon dividing (11.8.9) by s — ¢ and letting s | ¢, we arrive at (11.8.8).

We now turn to the general situation, where u(-.¢) — (-, r) may undergo
infinitely many sign changes over (—00, 00). In that case, the open set {x €
(—00,00) : u(xt,t) — u(xx,t) < 0} is the countable union of disjoint open
intervals (y;,¥%;). Form = 1,2,.--, we let u,, denote the admissible solution of
our conservation law (11.1.1) on (—00, 00) X [r, 00), with

u(x.t), xe€ U(_\',-.)_‘i)

i=m

u(x.t), otherwise .

(11.8.10) U (x, 1) =

Thus u,,(-,¢) — u(-, ¢) undergoes a finite number of sign changes over (—o0, <)
and so, forr > 1, Z—:Mum(-, 7) —u(-, )|/, 1s evaluated by the analog of (11.8.8).
Moreover, the function 7 > Z—:"um(-, T) —u(-. t)|l. is right-continuous at ¢ and
the modulus of right continuity is independent of m. To verify this, note that the
total contribution of small jumps to the rate of change of |lu, (-, t) —#(-. )| .1
is small, controlled by the total variation of u(-,¢) and #(:, ) over (—oo, X},
while the contribution of the (finite number of) large jumps is right-continuous,
by account of Theorem 11.3.1. Therefore, by passing to the limit, as m — oo, we
establish (11.8.8) for general solutions » and &. The proof is complete.

According to the above theorem, the L! distance of u(-,t) and @(-,t) may
decrease only when the graph of either one of these functions happens to cross
the graph of the other at a point of jump discontinuity. More robust contraction is
realized in terms of a new metric which weighs the L' distance of two solutions
by a weight specially tailored to them.

For v and 7 in BV (—o00, 00), let

(11.8.11)
p(v, V)= / [(V(x) + V(00) = V) [e(x) = 501"
+ (V(x) + V(00) = V(O)[B(x) — v(0)] ldx
where the superscript + denotes “positive part”, w™ = max{w,0}, and V or

V denotes the variation function of v or T, i.e., V(x) = TVcoonyv(:), V(x) =
TV(—oo.x)v(')-

Theorem 11.8.3 Let u and i be admissible solutions of (11.1.1) with initial data
ug and iy in BV (—00, 00). Then, for any fixed t € (0. 00),
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‘%p(u(.,z).m-, 0)
< ~/-co Qulx, ), u(x, ), u(x,))dV/, (x)

(11.8.12) —/ Q@ (x, 1), u(x, 1), W(x, ))dV, (x)

- Z (e —up) Q- Ty tty) — Z (- — ) QW uy, Ty)

=P A YA

+ (V,(00) +V,(oo))[2 QUu_. ity 1) + ) Q(ii_,u.,ii+)] ,
ey veJ

where V, or V, is the variation function of u(-, t) or (-, 1); V° or V;' denotes the
continuous part of V, or V., us or T+ stand for u(y%,t) or u(y%, 1) while u,
and &, are again determined through (11.8.7); and (11.8.7);; the sets 7 and 7
are defined by (11.8.6) and .7 or .7 denotes the set of jump points of u(-,t) or
uQ,n:

[ T =1y €(—00,00):u, <u-},
(11.8.13)

.7J—={ye(—-oo,oo):ﬁ+<ﬁ_}.

Proof. We begin as in the proof of Theorem 11.8.2: We assume there are points
—00 = ¥ < ¥y < -+ < yp < Yue1 = 00 such that, on each interval
(¥i, Yie1), u(-, 8) — u(-, 1) is nonnegative when i is even and nonpositive when
i is odd. We consider the forward characteristic y;(-), associated with u, issuing
from each point (y;, ¢), with i odd, and the forward characteristic E,.(-), associated
with 77, issuing from each (y;, ¢), with i even.

We focus our attention on some (y;, yi+1) With i even. Let us assume —oo <
Yi < Yis1 < 00, as the other cases are simpler. With the exception of _1/7,-(-), all
characteristics to be considered below will be associated with the solution . The
argument varies soomewhat, depending on whether the forward characteristic
issuing from (y;,?) lies to the left or to the right of 1—//—,-(-); for definiteness, we
shall treat the latter case, which is slightly more complicated.

We fix € positive and small and identify all ;,---,zn, y; <21 <+ < 2Zy <
Yigr, such that u(z;—, ) —u(z;+,t) > e, I = 1,---, N. We consider the forward
characteristic x,(-) issuing from the point (z;,¢), / = 1,---, N. Then we select
s > t with s —¢ so small that the following hold: (a) No intersection of any two of
the characteristics xo, x1.---, x» and y;,; may occur on the time interval [t, s].
(b)ForI =1,--- N,if{;(-) and &, (-) denote the minimal and the maximal back-
ward characteristics emanating from the point (x;(s), s), then the total variation
of u(-, 1) over the intervals (£;(¢), z;) and (z,, & (¢)) does not exceed &/N. (c)
If £(-) denotes the minimal backward characteristic emanating from (¥;,(s),s),
then the total variation of u(-, ¢) over the interval (£(¢), y;;1) does not exceed
€. (d) If {o(-) is the minimal backward characteristic emanating from (y;(s), 5)
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and £(-) is the maximal backward characteristic emanating from (xo(s), s), then
the total variation of u(-, t) over the intervals ({o(¢), y;) and (y;, &(z)) does not
exceed €.

For I = 0,---,N — 1, and some & to be fixed later, we set a mesh on the

interval [x;(8), xsi+1()]: xi(s) =x¥ <x} <--. < X< xf*’ = X1+1(s); and
likewise for the interval [xN(s), Yie1 ] : XN(S) =13 < xho< o< xk <
=Yia(s). For I =0,.-- Nand j = , k, we consider the maximal

backward characterlstlc ;-', (-) emanating from the pomt (x,,s) and identify its
intercept z, = §, (t) by the t-time line. We also set z0 = ¥,y = Yiy1 and
=N =z,1=1,-..,N.

We now note the identity
(11.8.14) R-S=-D,
where

Xo(s)
R= /:_ Vily)[u(x, s) —u(x,s)]ldx
(11.8.15) e

+ZZ/' Vi@ Dl 5) = e, )
1=0 j=0 ]
(11.8.16) S= Z/ V,(z,+)[u(r )=, 0)dx
=0
(11.8.17) ”

N
D= ZOZI/[V,(Z,H Vil ']
- J.l_ . . .
x Q& (), 1), 1] (1), 1), u(g] (x), T))d7

N s
+ Z/ [Vi(zr+) — Vu@&h_ )]
1=1v1
X Q(“(XI(T)_» T)vﬁ(xl(r)—s T)v u(XI(TH', T))d'[
+ / Vi) — Vi1 Qe (xo(T) =, ©), Flxo() =, 7). u(xo(T)+, 1))

- / Vi Q@@ ()=, 1), u(F; (1) +. 1), BT (1)+, 1))d

- / Vo) O (Wit (D)=, 1), B2 (D)= 1) 2 (Pt (D, T

3
To verify (11.8.14), one first integrates (11.8.4) over the domains {(x,7) :
T <5, P (1) <x <D}, ((x,7) it <1 <, §, T)<x< g“"(t)} {(x, T)
t<t<s, x@m <x <@Lt <1t <s, §,(T) <x < x(Dh
{(x,7) : t < T < s, E4(1) < x < Yi.1(1)} and applies Green’s theorem;
then forms the weighted sum of the resulting equations, with respective weights
Vi), V2 +), Vel +), Vizh+), Vizh+).
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To estimate R, we note that V,(3) = Vi(xo(s)), and Vizl4) = Vilx]+),

I=0,..-,N,j=0,-- .k Hence, if we pick the x{“ — x] sufficiently small,

we can guarantee

Vet (5)
(11.8.18) R > / Vi(x)[ulx,s) —u(x,s)ldx — (s —t)e .
¥, (5)

To estimate S, it suffices to observe that V,(-) is nondecreasing, and so

Vier (1)
(11.8.19) S 5/ V() [u(x,t) —u(x, t)]dx .

g ()

To estimate D, the first remark is that, due to the properties of @, all five terms
are nonnegative. For / = 0,-.-, N and j = I,.-- k, V,(z{+) - V,(z{"'+) >
VE(z)) = Ve(zl™"). Furthermore,

Qu&] (1), ). HE] (T)—, 1), u(E] (1), 1))
(11.8.20) . ) )
= Q(M(Zf,t),ﬁ(Pr(Zf)J)‘ u(z), 1),

where the monotone increasing function p, is determined through
(11.8.21) pex)=x+ @ = D[f (ulx,0)— f@(p:(x),1))] .

Upon choosing the x; *! — x/ so small that the oscillation of V£ (-) over each one
of the intervals (z], zJ*') does not exceed ¢, the standard estimates on Stieltjes

integral imply

(11.8.22)
N k ) ) ) ) )
Y Ve +) = Vgl T PR (1), 1), W (1)—, 1), u @] (1), )
1=0 j=1
Yi+l
2 [ Qx, 0 H(p(x), 1), ulx, AV (x) = ce .

Y

We now combine (11.8.14) with (11.8.18), (11.8.19), (11.8.17) and (11.8.22),
then we divide the resulting inequality by s — ¢, we let s | ¢; and finally we let
£ | 0. This yields

d+ Vivi (1)
—/ Vi [u(x, ) —i(x, 1)]dx
df v_,"_([)

Yivl

(11.8.23) =- Qulx, 1), u(x, 1), u(x, ))dV,(x)

¥

- Z(u_ —u)Qu_,u,,uy)
FVeODQG - ua, W) + Vi) QU T uy)
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where the summation runs over all y in .7 (¥, yi+1), plus y; if y; € .77 and
xo lies to the right of ¥;, as assumed above. The 4.+, u, and &, are of course
evaluated at the corresponding y.

Next we focus on intervals (y;, yi+1) with i odd. A completely symmetrical
argument yields, in the place of (11.8.23),

dt (Vo
—/ (Vi(oo) = Vi) (x, ) —u(x, 0)]dx
dt Jy,u

<~ [ Q. 0. T(x. 0, u(x. )AVE ()
(11.8.24) v

=D (- —u)Qu-, Hyyu)
+ (Vi(00) = V(i 4) QU . u )
+ (Vi(00) = Vi (yip N Q- 1, 1)

where the summation runs over all y in .7 ((¥i, yi+1), plus yiy if yip €.
and the forward characteristic, associated with u, issuing from the point (y;;1, )
lies to the left of v, ;.

We thus write (11.8.23), for all ; even, then (11.8.24), for all i odd, and sum
overi =0,---, n. This yields

(11.8.25)

d+ oc
E/ (Vie)[u(x, 1) —(x, ] + (Vi(oo) = Ve (x))[a(x, 1) — ulx, H)]*}dx

- [ 00,70, (V) = T (- =) QT )

yer'

+ v,(oo)[}: Q- Tup) + Y. Qaz_,u.,zm] .
yeJ _VE7

By employing a technical argument, as in the proof of Theorem 11.8.2, one
shows that (11.8.25) remains valid even when u(-, t) —u(-, ) is allowed to undergo
infinitely many sign changes on (—o0, 00).

Upon writing the inequality resulting from (1 1.8.25) by interchanging the roles
of u and %, and combining it with (11.8.25), one arrives at (11.8.12). The proof
is complete.

The estimate (11.8.12) is sharp, in that it holds as equality, at least for
piecewise smooth solutions. All terms on the right-hand side of (11.8.12) are
negative, with the exception of —(u_ — u,)Q(u_,#,.uy), for y € Z, and
~(_ —u.)Q@-, us, iy), for y € 7. However, even these positive terms are
offset by the negative terms V;(00)Q(u -, Ii,, u,) and V,(00) Q(u_, uy, iiy). Thus,
p(u(-, 1), u(-, 1)) is generally strictly decreasing.
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An analog of the functional p will be employed in Chapter XIV for establishing
L! stability of solutions for systems of conservation laws.

11.9 Notes

There is voluminous literature on the scalar conservation law in one-space dimen-
sion, especially the genuinely nonlinear case, beginning with the seminal paper of
Hopf [1], on the Burgers equation, already cited in earlier chapters.

[n the 1950’s, the qualitative theory was developed by the Russian school,
headed by Oleinik [1,2,4], based on the vanishing viscosity approach as well as
on the Lax-Friedrichs finite difference scheme (Lax [1]). It is in that context that
Theorem 11.2.2 was originally established. The reader may find an exposition in
the text of Smoller [1]. The culmination of that approach was the development of
the theory of scalar conservation laws in several spaces dimensions, discussed in
Chapter VI.

In a different direction, Lax [2] discovered the explicit representation (11.4.10)
for solutions and employed it to establish the existence of invariants (Theorem
11.4.2), the development of N-wave under initial data of compact support (The-
orem 11.6.1) as well as the formation of saw-tooth profiles under periodic initial
data (Theorem 11.7.3). The original proof, by Schaeffer [1], that generically so-
lutions are piecewise smooth was also based on the same method. This approach
readily extends (Oleinik [1]) to inhomogeneous, genuinely nonlinear scalar conser-
vation laws, which may also be casted as Hamilton-Jacobi equations. A thorough
presentation of the theory of viscosity solutions for Hamilton-Jacobi equations is
found in the monograph by Lions [I].

The approach via generalized characteristics, pursued in this chapter, is taken
from Dafermos [7]. One of its advantages is that it may be readily extended not
only to inhomogeneous conservation laws but even to inhomogeneous balance laws
(Dafermos [8]) as well as to conservation laws that are not genuinely nonlinear
(Dafermos [11], Jenssen [2]).

The property that the lap number of solutions of conservation laws (8.6.2)
with viscosity is nonincreasing with time was discovered independently by Nickel
[1] and Matano [1]. The L' contraction property for piecewise smooth solutions
in one-space dimension was noted by Quinn [1]. The functional (11.8.11), in
alternative, albeit completely equivalent form, was designed by Liu and Yang [3],
who employ it to establish Theorem 11.8.3, for piecewise smooth solutions.

So much is known about the scalar conservation and balance law in one-space
dimension that it would be pointless to attempt to provide comprehensive coverage.
What follows is just a sample of relevant results.

Let us begin with the genuinely nonlinear case. For a probabilistic interpre-
tation of generalized characteristics, see Rezakhanlou [1]. Regularity and generic
regularity for inhomogeneous balance laws is investigated, by the method of gen-
eralized characteristics, in Dafermos [8]. The same method is used to study the
effects of inhomogeneity and source terms on the large time behavior of solutions,
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in Dafermos [14], Lyberopoulos [1,2], Fan and Hale [1,2], Hirterich [1], Mascia
and Sinestrari [1] and Fan, Jin and Teng [1]. Problems of this type are also treated
by different methods in Liu [15] and Sinestrari [1]. For an interesting application of
the method of generalized characteristics in elastostatics, under incompressibility
and inextensibility constraints, see Choksi [1].

An explicit representation of admissible solutions on the quarter-plane, anal-
ogous to Lax’s formula for the upper half-plane, is presented in LeFloch [1].
An analog of Lax’s formula has also been derived for the special systems with
coinciding shock and rarefaction wave curves; see Benzoni-Gavage [1].

The analog of (11.2.1) holds for scalar conservation laws (6.1.1), in several
space variables, if g,(u) = f(u)vy, where v is a constant vector (Hoff [1]).

For a Chapman-Enskog type regularization of the scalar conservation law, see
Shochet and Tadmor [1]. '

A kinetic formulation, different from the one discussed in Section 6.6, is pre-
sented in Brenier and Corrias [1].

The connection of the scalar conservation law with the system of “pressureless
gas,” that is (7.1.7) with p = 0, and the related model of “sticky particles” is
investigated in E, Rykov and Sinai [1], Brenier and Grenier [1] and Bouchut and
James [1]. The interesting theory of the pressureless gas is developed in Wang
and Ding [1] and Wang, Huang and Ding [1].

Homogenization effects under random periodic forcing are demonstrated in E
[2,3], E and Serre [1] and E, Khanin, Mazel and Sinai [1].

The case where f(u, x) is piecewise constant in x is discussed in Lyons [1],
Klingenberg and Risebro [1] and Diehl [1].

Regularity of solutions in Besov spaces is established in Lucier [2]. For the
rate of convergence of numerical schemes see e.g. Nessyahu and Tadmor [|] and
Osher and Tadmor [1].

When f has inflection points, the structure of solutions is considerably more
intricate, due to the formation of contact discontinuities, which become sources
of signals propagating into the future. For the construction of solutions, see Bal-
lou [I]. Regularity is discussed in Ballou [2], Guckenheimer [1], Dafermos [11]
and Cheverry [4]. The large time behavior is investigated in Dafermos [1,11],
Greenberg and Tong [1], Conlon [1], Cheng [1,2,3], Weinberger [1], Sinestrari
[2], Cheverry [4] and Mascia [1].

In the special case f(u) = u™, the properties of solutions may be studied
effectively with the help of the induced self-similarity transformation; see Bénilan
and Crandall [1] and Liu and Pierre [1]. This last paper also considers initial data
that are merely measures. The limit behavior as m — oo is discussed in Xu [1].






Chapter XII. Genuinely Nonlinear Systems
of Two Conservation Laws

The theory of solutions of genuinely nonlinear, strictly hyperbolic systems of
two conservation laws will be developed in this chapter at a level of precision
comparable to that for genuinely nonlinear scalar conservation laws, expounded
in Chapter XI. This will be achieved by exploiting the presence of coordinate
systems of Riemann invariants and the induced rich family of entropy-entropy flux
pairs. The principal tools in the investigation will be generalized characteristics
and entropy estimates.

The analysis will reveal a close similarity in the structure of solutions of scalar
conservation laws and pairs of conservation laws. Thus, as in the scalar case, jump
discontinuities are generally generated by the collision of shocks and/or the fo-
cussing of compression waves, and are then resolved into wave fans approximated
locally by the solution of associated Riemann problems.

The total variation of the trace of solutions along space-like curves is controlled
by the total variation of the initial data, and spreading of rarefaction waves affects
total variation, as in the scalar case.

The dissipative mechanisms encountered in the scalar case are here at work
as well, and have similar effects on the large time behavior of solutions. Entropy
dissipation induces O(r~'/?) decay of solutions with initial data in L!(—00, 00).
When the initial data have compact support, the two characteristic families asymp-
totically decouple, the characteristics spread and form a single N-wave profile for
each family. Finally, as in the scalar case, confinement of characteristics under
periodic initial data induces O(¢~') decay in the total variation per period and
formation of sawtoothed profiles, one for each characteristic family.

12.1 Notation and Assumptions

We consider a genuinely nonlinear, strictly hyperbolic system of two conservation
laws,

(12.1.1) QU0+ 8. FU(x,0) =0,

on some disk ¢* centered at the origin. The eigenvalues of DF (characteristic
speeds) will here be denoted by A and p, with A(U) < 0 < u(U) for U € ¢, and
the associated eigenvectors will be denoted by R and §.



240 XII. Genuinely Nonlinear Systems of Two Conservation Laws

The system is endowed with a coordinate system (2, w) of Riemann invariants,
vanishing at the origin U = 0, and normalized according to (7.3.8):

(12.1.2) D:R=1, DzS=0, DwR=0, DwS=1.

The condition of genuine nonlinearity is now expressed by (7.5.3), which here
reads

(12.1.3) A-<0, up>0.

The direction in the inequalities (12.1.3) has been selected so that z increases across
admissible weak 1-shocks while w decreases across admissible weak 2-shocks.

For definiteness, we will consider systems with the property that the interaction
of any two shocks of the same characteristic family produces a shock of the same
family and a rarefaction wave of the opposite family. Note that this condition is
here expressed by

(12.1.4) §STD*:§>0. RTD*wR>0.

Indeed, in conjunction with (8.2.19), (12.1.3) and Theorem 8.3.1, the inequalities
(12.1.4) imply that z increases across admissible weak 2-shocks while w decreases
across admissible weak 1-shocks. Therefore, the admissible shock and rarefaction
wave curves emanating from the state (Z, w) have the shape depicted in Fig.
12.1.1. Consequently, as seen in Fig. 12.1.2(a), a 2-shock that joins the state
(ze, we), on the left, with the state (z,,, wn), on the right, interacts with a 2-shock
that joins (2, wn), on the left, with the state (z., w,), on the right, to produce a
l-rarefaction wave, joining (z¢, we), on the left, with a state (2o, wy), on the right,
and a 2-shock joining (zo, wy), on the left, with (z,, w,), on the right, as depicted
in Fig. 12.1.2(b). Similarly, the interaction of two I-shocks produces a 1-shock
and a 2-rarefaction wave.
Also for definiteness, we assume

(12.1.5) Ay <0, u, >0,

(W)

N

b4

Fig. 12.1.1.
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(Zp. W)

(2, W)

: (a) * (b
Fig. 12.1.2a,h.

or equivalently, by virtue of (7.3.14) and (7.4.15),
(12.1.6) R"D*2§>0, STD'wR>0.

The prototypical example is the system (7.1.6) of isentropic thermoelasticity,
which satisfies all three assumptions (12.1.3), (12.1.4) and (12.1.6), with Riemann
invariants (7.3.2), provided o”(u) < 0, i.e., the elastic medium is a soft spring or
a gas. When the medium is a hard spring, i.e., 0”(x) > 0, the sign of the Riemann
invariants in (7.3.2) has to be reversed.

12.2 Entropy-Entropy Flux Pairs

As explained in Section 7.4, our system is endowed with a rich family of entropy-
entropy flux pairs (55, g), which may be determined as functions of the Riemann
invariants (z, w) by solving the system (7.4.12), namely

(12.2.1) q: =An;, qu=Uny .

The integrability condition (7.4.13) now takes the form

Ay K
(12.2.2) New + N+ nw=0.
A—u u—Ax

The entropy n(z, w) will be a convex function of the original state variable U

when the inequalities (7.4.16) hold, that is,
(122.3) N:: + (RTD*2R)n, + (RTD*wR)ny 2 0,
o Nuw + (ST D281 + (ST D*wS)e > 0 .

In the course of our investigation, we shall face the need to construct entropy-
entropy flux pairs with prescribed specifications, by solving (12.2.1) or (12.2.2)
under assigned side conditions. To verify that the constructed entropy satisfies
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the condition (12.2.3), for convexity, it usually becomes necessary to estimate the
second derivatives 7:; and 1y in terms of the first derivatives 7. and 7,,. For that
purpose, one may employ the equations obtained by differentiating (12.2.2) with

respect to z and w:

A (=2 o + Ahy, — 2010 -
Nzzw + A-“#n::= O — ) n-
(= m)pho: — A + 202
2 w s
(12.2.4) N
U (iu’ - A-)A-wu' - A-uuuw + Zki,
Nuww: + " — A.nww = (1~ A.)z YR
+ (A~ wpoy + Bl — 2App:
(u—1)? v

As an illustration, we consider the important family of Lax entropy-entropy
Sflux pairs

(1225) TI(Z, w>=ek:[¢(3, U))—}-%x(z. w)+0([12)],
2. q(z,w) = ez, w)[¥(z, w) + %9(2, w) + 0(;11)] ,
(12.2.6) [ 1z w) = (s, w) + 1AG, w) + O],
2. gz, w) = e u(z, Wy (z, w) + 18z w) + O()] .

where k is a parameter. These are designed to vary stiffly with one of the two
Riemann invariants so as to be employed for decoupling the two characteristic
families. To construct them, one substitutes 7 and g from (12.2.5) or (12.2.6) into
the system (12.2.1), thus deriving recurrence relations for the coefficients, and then
shows that the remainder is O (k~2). The recurrence relations for the coefficients
of the family (12.2.5) read as follows:

(122.7 v=¢,
(12.2.8) A0+ (AY). =Ax +Ao:
(1229) (Aw)w = ;U~¢w .

Combining (12.2.7) with (12.2.9) yields
(12.2.10) B =X)pw =Aud |
which may be satisfied by selecting

v Az, w)
12.2.11) w) = / _ o)
( vew=ep | e Y

In particular, this ¢ is positive, uniformly bounded away from zero on compact
sets. Hence, for k sufficiently large, the inequalities (12.2.3) will hold, the second
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one by virtue of (12.1.4). Consequently, for k large the Lax entropy is a convex
function of U.
Important implications of (12.2.7) and (12.2.8) are the estimates

(12.2.12) q—An:%J{—M¢+0(%ﬂ,

(12.2.13) q—(k+e)n=—ek: |:€¢+0(}<l->] ,

whose usefulness will become clear later.

12.3 Local Structure of Solutions

Throughout this chapter, U will denote a function of locally bounded variation,
defined on (—o0, 00) x [0, 0o) and taking values in a disk of small radius, centered
at the origin, which is a weak solution of (12.1.1) satisfying the Lax E-condition,
in the sense described in Section 10.1. In particular,

(12.3.1) anUx, 1)) +3qU(x, 1)) <0

will hold, in the sense of measures, for any entropy-entropy flux pair (7, ), with
1 convex.

The notion of generalized characteristic, developed in Chapter X, will play a
pivotal role in the discussion.

Definition 12.3.1 A Lipschitz curve, with graph . ¥ embedded in the upper half-
plane, is called space-like relative to U when every point (X,7) € . / has the
following property: The set {(x,1) : 0 <t < £, {(t) < x < &(¢)} of points con-
fined between the graphs of the maximal backward 2-characteristic ¢(-) and the
minimal backward 1-characteristic §(-), emanating from (x, ), has empty inter-
section with . 4.

Clearly, any generalized characteristic, of either family, associated with U, is
space-like relative to U. Similarly, all time lines, t = constant, are space-like.

The solution U will be conveniently monitored through its induced Riemann
invariant coordinates (z, w). In Section 12.5, it is shown that the total variation of
the trace of z and w along space-like curves is controlled by the total variation of
their initial data. In anticipation of that result, we shall be assuming henceforth that,
for any space-like curve t = £*(x), z(x%, t*(x)) and w(x=, t*(x)) are functions
of bounded variation, with total variation bounded by a positive constant #. Since
the oscillation of the solution is small and arguments will be local, we may assume
without further loss of generality that € is small.

In order to describe the local structure of the solution, we associate with the
generic point (X, 7) of the upper half-plane eight, not necessarily distinct, curves
(see Fig. 12.3.1) determined as follows:
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Fig. 12.3.1.

For ¢t < f: &_(-) and &,(-) are the minimal and the maximal backward 1-
characteristics emanating from (X, f); similarly, {_(-) and ¢, (-) are the minimal
and the maximal backward 2-characteristics emanating from (x, f).

For t > . ¢.(-) is the maximal forward l-characteristic and ¥_(-) is the
minimal forward 2-characteristic issuing from (¥, 7). To determine the remaining
two curves ¢_(-) and ¥, (-), we consider the minimal backward 1-characteristic
£(-) and the maximal backward 2-characteristic £(-) emanating from the generic
point (x, ) and locate the points £(f) and {(f) where these characteristics are
intercepted by the 7-time line. Then ¢_(¢) is determined by the property that
£(f) < ¥ when x < ¢_(t) and £(F) > X when x > ¢_(¢). Similarly, ¥, (¢) is
characterized by the property that {(7) < X¥ when x < ¥, (¢) and {(f) > X when
x > ¥ (f). In particular, ¢_(¢) < ¢, (¢) and if ¢_(#) < x < ¢, (¢) then £(F) =X.
Similarly, ¥_(¢) < ¢, (r) and ¥_(¢) < x < ¥, (¢) implies {(f) = X.

We fix 7 > 7 and let &, (-) denote the minimal backward 1-characteristic ema-
nating from the point (¢_(7), 7). We also consider any sequence {x,} converging
from above to ¢_(t) and let &,(-) denote the minimal backward 1-characteristic
emanating from (x,, 7). Then the sequence {&,(-)}, or some subsequence thereof,
will converge to some backward 1-characteristic é‘,(-) emanating from (¢_(1), 7).
Moreover, forany f <t < t, itis & (1) < ¢_(1) < &.(¢). In particular, this implies
that ¢_(-) is a Lipschitz continuous space-like curve, with slope in the range of
A. Similarly, ¥, (-) is a Lipschitz continuous space-like curve, with slope in the
range of u.

Referring again to Fig. 12.3.1, we see that the aforementioned curves border
regions:

(12.3.2) S ={.0:x <%, ') <t<ol(0)},
(12.3.3) F={x0:x>%, &) <t<y'0},
(12.3.9) A=t >T, ¢ () <x <¥_(D},
(12.3.5) F={x, 0t <T, () <x<E-(D)}.
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Definition 12.3.2 The solution is called locally regular at the point (x, 7) of the
upper half-plane when the following hold:

(a) As (x,?) tends to (x,7) through any one of the regions .4y, .%¢, .% or
S, (zlxk, 1), wixs, 1)) tend to respective limits (zw, ww), (zg, wg), (zn. ww)
or (zs, ws). In particular, zw = 2(X—. 1), ww = w(X~, 1), zg = 2(x+. D), wg =
w(x+,17).

(b)1 If p¢(-) and p, () are any two backward |-characteristics emanating from
(. 1), with £_(t) < py(t) < p,(¢) < E.(2), for t <7, then

(12.3.6),
zs = limyz 2(§- (D%, 1) < limy7 2(pe(t)—, 1) < limyy7r 2(pe(t)+, 1)
< limg7z(p(t)—, 1) < limrﬁ z(p,()+,1) < lim1ﬁz(§+(t):tv 1) =z,
(12.3.7),
ws = limy; wE- (D%, 8) = limg; wlpe()—, 1) = lim,y; w(pe(t)+, )
2 limy; w(p,(0)—, 1) = lim; w(p, )+, 1) = limg; w(E (DL, 1) = we .

(b): If g¢(-) and q,(-) are any two backward 2-characteristics emanating from
(F.0), with £_(#) < qu(1) < g (t) < Z,(1), for t <1, then

(12.3.6);
wy = limy; w(§- (=%, 1) = limg; w(ge(t)—, £) = lim,y; w(ge()+, 1)
> limyg7 w(g () —, 1) = lim; w(g, (O+, £) = limy; W (OE, 1) = ws

(12.3.7);
2w = limggz 2§ (D%, 1) < limy; 2(qe(®)—, 1) < limy; 2(qe()+, 1)
< limyr 2(q, ()=, 1) < limy; 2(q () +, 1) < limy72(8(DE 1) = 25

(cy If p_(t) = ¢, (1), for T <t < 7+s, then zw < zy, ww > wy. On the
other hand, if ¢_(#) < ¢4+ (1), for7 <t <+, then ww = wy and as (x, t) tends
to (X, ) through the region ((x,#) : ¢ > 7, ¢_(t) < x < ¢, (t)}, w(x%, ¢) tends to
wy . Furthermore, if p,(-) and p,(-) are any two forward 1-characteristics issuing
from (X,7), with ¢_(1) < p(t) < p,(t) <@, (1), forT <t <7 +s, then

(12.3.8),
zw = lim, 7 2(p- ()%, ) 2 limy 7 2(pe(t)—, £) = lim, ;7 2(pe (1) +, 1)
2 lim; 2(p, ()=, 1) = lim,; 2(p, ()4, 1) = lim, 7 2(@p (DF, 1) = 2y

() fy_(t) =y, @), forf <t <7+s,then wy > wg, zy < zg. On the
other hand, if ¥_(t) < ¥, (¢), for7 <t <7+, then zy = z¢ and as (x, 1) tends
to (¥, 7) through the region {(x, 1) 1 ¢ > 7, Y_(¢) < x < ¥, ()}, z{x%, 1) tends to
zg. Furthermore, if g,(-) and g,(-) are any two forward 2-characteristics issuing
from (X,7), with ¥_(1) < qe(t) £ q,(t) < Y. (1), forf <t <7 +s, then

(12.3.8);
wy = lim, 7 w(y_ (O£, 1) < lim, ;; w(g,(1)—, ¢) = lim, ;7 wige()+, 1)

< limy; wig, ()=, 1) = lim,; w(g,()+, 1) < lim,;; w(y, ()£, 1) = we .
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The justification of the above definition lies in

Theorem 12.3.1 For 0 sufficiently small, the solution is locally regular at any point
of the upper half-plane.

The proof will be provided in the next section. However, the following re-
marks are here in order. Definition 12.3.2 is motivated by experience with piece-
wise smooth solutions. Indeed, at points of local regularity incoming waves of
the two characteristic families collide to generate a jump discontinuity, which is
then resolved into an outgoing wave fan. Statements (b); and (b), regulate the in-
coming waves, allowing for any combination of admissible shocks and focussing
compression waves, Statements (c); and (c), characterize the outgoing wave fan.
In particular, (c), implies that the state (zw. ww), on the left, may be joined with
the state (zy.wn), on the right, by a |-rarefaction wave or admissible |-shock;
while (c); implies that the state (zy, wy), on the left, may be joined with the
state (zg, wg), on the right, by a 2-rarefaction wave or admissible 2-shock. Thus,
the outgoing wave fan is locally approximated by the solution of the Riemann
problem with end-states (z(x—,7), w(Xx—, 1)) and (z(X+, 1), w(X+,7)).

A simple corollary of Theorem 12.3.1 is that ¢_(-) is a |-characteristic while
¥4+ (-) is a 2-characteristic.

Definition 12.3.2 and Theorem 12.3.1 apply even to points on the initial line,
t = 0, after discarding the irrelevant parts of the statements, pertaining to r < 7. It
should be noted, however, that there is an important difference between 7 = 0 and
t > 0. In the former case, (z(X+£, 0), w(x=%, 0)) are unrestricted, being induced
arbitrarily by the initial data, and hence the outgoing wave fan may comprise any
combination of shocks and rarefaction waves. By contrast, when 7 > 0, statements
(b); and (b)z in Definition 12.3.2 induce the restrictions zw < zg and wy > wg.
This, combined with statements (c); and (c);, rules out the possibility that both
outgoing waves may be rarefactions.

12.4 Propagation of Riemann Invariants Along Extremal
Backward Characteristics

The theory of the genuinely nonlinear scalar conservation law, expounded in Chap-
ter XI, owes its simplicity to the observation that extremal backward generalized
characteristics are essentially classical characteristics, namely straight lines along
which the solution stays constant. It is thus natural to investigate whether solu-
tions U of systems (12.1.1) exhibit similar behavior. When U is Lipschitz con-
tinuous, the Riemann invariants z and w stay constant along 1-characteristics and
2-characteristics, respectively, by virtue of Theorem 7.3.2. One should not ex-
pect, however, that this will hold for weak solutions, because Riemann invariants
generally jump across shocks of both characteristic families. In the context of
piecewise smooth solutions, Theorem 8.2.3 implies that, under the current nor-
malization conditions, the trace of : (or w) along shock free 1-characteristics (or
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2-characteristics) is a nonincreasing step function. The jumps of z (or w) occur
at the points where the characteristic crosses a shock of the opposite family, and
are of cubic order in the strength of the crossed shock. It is remarkable that this
property essentially carries over to general weak solutions:

Theorem 12.4.1 Let £(-) be the minimal (or maximal) backward |-characteristic
(or 2-characteristic) emanating from any fixed point (X,7) of the upper half-plane.
Set

(12.4.1) () =z(5()=. 1), w)=wE@+.r), 0<r<T.

Then Z() (or W(-)) is a nonincreasing saltus function whose variation is concen-
trated in the set of points of jump discontinuity of W(-) (or Z(-)). Furthermore, if
7 € (0,7) is any point of jump discontinuity of Z(-) (or W(-)), then

(12.4.2), Z(r—) — Zt+) < a[W(t+) — W),
or
(12.4.2), W(r—-) ~ wW(r+) < alz(z+) — 2(2)])

where a is a positive constant depending solely on F.

The proof of the above proposition will be intermingled with the proof of
Theorem 12.3.1, on local regularity of the solution, and will be partitioned into
several steps. The assumption that the trace of (z, w) along space-like curves has
bounded variation will be employed only for special space-like curves, namely,
generalized characteristics and time lines, ¢+ = constant.

Proposition 12.4.1 When £(-) is the minimal (or maximal) backward |-character-
istic (or 2-characteristic) emanating from (X, 1), Z(-) (or W(-)) is nonincreasing on
[0, 7).

Proof. The two cases are quite similar, so it will suffice to discuss the first one,
namely where £(-) is a |-characteristic. Then, by virtue of Theorem 10.3.2, £§(-)
is shock free and hence

(12.4.3) Ey=AUE@E, 1), ae on[0,7].

We fix numbers 7 and s, with 0 < t < s < 7. For ¢ positive and small, we let
& (-) denote the minimal Filippov solution of the ordinary differential equation

dx
(12.4.4) e AU, )+ ¢,

on [z, s], with initial condition &:(s) = £(s) — ¢. Applying (12.1.1), as equality of
measures, to arcs of the graph of £.(-) and using Theorem 1.7.5, we deduce

(12.4.5) '
FUG @+, 0)— FUEWG—, ) - 50UE @O+ - UE@O—-0)]=0,
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almost everywhere on [T, s]- Thus, & () propagates with speed A(U (§,(¢) %, £))+&.
at points of approximate continuity, or with |-shock speed, at points of approxi-
mate jump discontinuity. In particular, A(U (&:(1)+, 1)) < AU (& (£)—, 1)), almost
everywhere on [7, 5], and so, by the definition of Filippov solutions of (12.4.4),

(12.4.6) E.() = MUEM+. 1)) +&, ae on[r,s).

For any entropy-entropy flux pair (1, g), with n convex, integrating (12.3.1)
over the region {(x,1) : T <t <5, &() < x < ()} and applying Green’s
theorem yields

£(s) £(t)
/ nU(x, s))dx — / nW(x, 1))dx
E.(5) E(1)

(12.4.7) <- / (QUED— 1) — EORUED -, ))dr
+ / QUG O+, 1) — E(ONUE O+ )Mt .

In particular, we write (12.4.7) for the Lax entropy-entropy flux pair (12.2.5).
For k large, the right-hand side of (12.4.7) is nonpositive, by virtue of (12.4.3),
(12.4.6), (12.2.12), (12.1.3) and (12.2.13). Hence

§(s) §(r)
(12.4.8) / n(z(x,s), wx, s))dx < / niz(x, 1), wx, t))dx .
£ (5) Ee(T)

We raise (12.4.8) to the power 1/k and then let k — oo. This yields

(12.4.9) esssup z(-,s) < esssup z(-, 7).
(:(5).(s) & (T)E(T)

Finally, we let ¢ | 0. By standard theory of Filippov solutions, the family {£.(-)}
contains a sequence which converges, uniformly on [z, 5], to some Filippov solu-
tion &(-) of the differential equation dx/dt = A(U(x, t)), with initial condition
&o(s) = &(s). But then &(-) is a backward l-characteristic emanating from the
point (§(s), s). Moreover, &(t) < £(¢), for T <t < s. Since £(-) is minimal, £(-)
must coincide with &£(-) on [, 5]. Thus (12.4.9) implies Z(s) < z(r) and so Z(-) is
nonincreasing on [7, s]. The proof is complete.

Propositon 12.4.2 Let §(-) be the minimal (or maximal) backward |-characteristic
(or 2-characteristic) emanating from (x,t). Then, for any T € (0, f),

(12.4.10); z2(5(r)—, 1) £ 2(r=) L z2E(D)+, 1)
or
(12.4.10), wE@) - 1) 2W(r-) > wE(T)+. 7).

In particular,
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(12.4.11)
zx= ) < z(x+1), whE—H)zwkt+,t), —o<x<oo, 0<t<ox.

This will be established in conjunction with

Proposition 12.4.3 Ler £(.) be the minimal (or maximal) backward |-characteristic
(or 2-characteristic) emanating from (X, ). For any T and s with0 <t <5 <7,

(12.4.12), z2(§(t)+, 1) — 2(§(s)+,5) S boscpew () TV qw(:) ,
or
(12.4.12); wE ()=, 1) —wE(s)—,5) Sboscr i) TV gZ() ,

where b is a positive constant depending solely on F. Further, if wW(t+) > W(r)
(or Z(t+) > (1)), then (12.4.2); (or (12.4.2)2) holds.

Proof. It suffices to discuss the case where £(-) is a |-characteristic. Consider
any convex entropy 5 with associated entropy flux g. We fix & positive and small
and integrate (12.3.1) over the region {(x,f) : 7 <t < s, &(t) <x < &E(t) + ¢&).
Notice that both curves x = £§(r) and x = §(r) +¢& have slope A(Z(r), w(¢)), almost
everywhere on (7, s5). Therefore, Green’s theorem yields

§(T)+e

E(s)+e
/$ n(z(x,s), w(x, s))dx —/ n(z(x, ), wix, t))dx
(12.4.13)

(s) §(r)

< - /: H(z(E@) + e+, 0, wE@) + e+, 1), Z(r), w(n))dr .
under the notation
(124.14) H(z,w,7,w) = q(z, w) — q(Z. W) — AT, W)[n(z, w) = nZ, W] .

One easily verifies, with the help of (12.2.1), that

(12.4.15) H.(z,w, 7, W) = [Az, w) = Mz, D)]n:(z, w) ,
(12.4.16) Hy(z,w, 7, W) = [u(z, w) — AZ, D)]nu(z, w) ,
(12.4.17)  H..(z, w, 2, W) = A:(z, win.(z, w) + [A(z, w) — MZ, W) ]nz: (2. w),
(12.4.18) Hou(z, 0,7, W) = Au(z, wIn:(z, w) + [A(z, w) = AEZ, D]z w)
(12.4.19) Hyw(z, w, 2, W) = py (2, wInw (2, w) + [p(z. w) — AT, W) Nwu (2. w).

We introduce the notation zo = z(£(1)+, 1), wy = w(&()+, 1) = W(r),
71 = 2(E(®)+. 5), wi = wE($)+, s) = W(s) and set § = oscpr.)W(-). We then
apply (12.4.13) for the entropy 7 constructed by solving the Goursat problem for
(12.2.2), with data
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n(z. wo) = —(z — 20) + B(z — 20)% .

(12.4.20) 2
n(zo. w) = =388(w ~ wo) + B(w — wo)* ,

where 8 is a positive constant, sufficiently large for the following to hold on a
small neighborhood of the point (Zg. wo):

(12.4.21) n is a convex function of U ,
(12.4.22) n(z. w) is a convex function of (z. w) ,
(12.4.23) H(z, w.Z, W) is a convex function of (z, w) .

It is possible to satisfy the above requirements when |z — zol; [w — wol
and § are sufficiently small. In particular, (12.4.21) will hold by virtue of
(12.2.3), (12.1.4), (12.4.20), (12.2.2) and (12.2.4). Similarly, (12.4.22) follows
from (12.4.20), (12.2.2) and (12.2.4). Finally, (12.4.23) is verified by combining
(12.4.17), (12.4.18), (12.4.19), (12.4.20), (12.2.2) and (12.2.4).

By virtue of (12.4.23), (12.4.15) and (12.4.16),

(12.4.24) H(z,w,Z,W) > [u(EZ, W) — AT W) @, W)[w — W]

One may estimate 7,,(Z(¢), w(t)) by integrating (12.2.2), as an ordinary dif-
ferential equation for n,,, along the line w = w(¢t), starting out from the ini-
tial value 75, (zo, W(t)) at z = zo. Because |W(t) — wy| < §, (12.4.20) gives
=588 < nu(ze, wW(t)) < —B8 < 0. Since A, < 0 and 5. < 0, (12.2.2) then
implies 1, (z, wW(t)) < 0, for z < zo. In anticipation of (12.4.10),, we now assume
20 = Z(r), which we already know will apply for almost all choices of 7 in (0, s),
namely when z(§(r)—, ) = z2(§(t)+, 7). By Proposition 12.4.1, Z(t) < Z(t) and
$O 1w (Z(7), w(t)) <0, fort <t <s.

(E(ry+e.n)

Fig. 12.4.1.
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Fort € [z, s]. let £,(-) denote the maximal backward 2-characteristic emanating
from the point (§(r) + €. ¢) (Fig. 12.4.1). We also draw the maximal forward 2-
characteristic ¥ (-), issuing from the point (§(t). ), which collides with the curve
x =&(t) + ¢ at time r, where 0 <r — 1 < ¢g¢.

For ¢ € (r,s), the graph of {(-) intersects the graph of £(-) at time o,. By
Proposition 12.4.1,

(12.4.25)
w(E) + e+, 1) = w(& ()+, 1) S w((o)+. 0,) = wE(o)+, 0;) = T(a,) .

Since n,.(Z(1), wW(t)) < 0, (12.4.24) and (12.4.25) together imply
(12.4.26) HEE@) +e+.0), wEE) +e4,0).201). W)

o 2 [u@O). () =A@, W) 0. @), W) [W(o:) ~ W(e)]
Because the two characteristic speeds A and u are strictly separated, we deduce
0 <t—o0, <ce andso (12.4.26) yields
- [ HGEW +ex.0. w60 + o400, 50, T

S eEsup |, GO WEN NV, wi() ,

(12.4.27)

with NV denoting negative (i.e., decreasing) variation.
Next, we restrict ¢ to the interval (z, r). Then, ¢, (-) is intercepted by the 7-time
line at & (1) € [§(7), £(7) + ¢). By virtue of Proposition 12.4.1,

(12.4.28)
wED e+ ) =w&@O+, ) Sw@G@)+.r)=wo+o(l), asel0.

On the other hand, setting z, = z(r+), w, = W(r+), we have Z(¢r) = z4 + o(1),
wW(t) = wy +0(1), as ¢ | 0. Therefore, combining (12.4.24) with (12.4.28) yields

(12.4.29)

—/ H@EEE@ +e+, 0, wE@) +e+,0),2(e), w(t))de
< —[p(z4, wy) ~ Mzy, w ) (@s. w)[wy — w l(r — 1) +0(8) .«

We now multiply (12.4.13) by | /e and then let ¢ | 0. Using (12.4.27), (12.4.28)
and recalling that 0 < » — 7 < ¢pe, we obtain

(12.430)  n(zi, wi) — n(zo, wo) < c3sUP(, 7w (Z(), WENIN Ve W() -

In particular, s is the limit of an increasing sequence of r with the prop-
erty z(§(t)—, 1) = z(§(r)+, r), for which (12.4.30) is valid. It follows that
n(z, wi1) < n(z(s—), w(s—)). Now applying (12.4.25) for ¢+ = s, and letting
el 0,yields wy <w(s—-). Also, n, <0, . < 0. Hence, Z(s—) < z;. By Proposi-
tion 12.4.1, Z(s) < Z(s—) and so z(§(s)—, 5) = 2(s) < Z(s—) < 21 = 2(&($)+, 5).
Since s is arbitrary, we may write these inequalities for s = t and this verifies
(12.4.10),. Proposition 12.4.2 has now been proved. Furthermore, zo = Z(z) has

been established and hence (12.4.30) is valid forall t and s with0 <7 <s <T.
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From (12.4.22) and (12.4.20) follows
(12.4.31) n(zi, wi) — n(zo, wo) = 20 — 21 — 3B8(w) — wo) .
Combining (12.4.30) with (12.4.31),
(12.432)  zo—z1 < 3B8(w; — wo) + c35up(; [N (Z(), WENI NV W() .

To establish (12.4.12), for general t and s, it would suffice to verify it just for
7 and s with s — t so small that T V|, ;jw(-) < 24. For such 7 and s, (12.4.32) gives
the preliminary estimate zo—z; < c48, and in fact zo—Z(f) < c46, forall t € (7, 5).
Then, since |n..(zo. W(r))| < 586, (12.2.2) implies sup, ) |7, (Z(). W) < 5.
Inserting this estimate into (12.4.32), we arrive at (12.4.12),, with b = 38 + c¢3cs.

Finally, we assume w(tr+) > w(r), say wy — wp = §o > 0, and proceed to
verify (12.4.2),. Keeping 7 fixed, we choose s — 7 so small that T V}; ;jw(-) < 24,
and hence § < 28p. We need to improve the estimate (12.4.29) and thus we restrict
t to the interval [z, r].

By account of (12.4.22), (12.4.15) and (12.4.16),

H@EE@ +e+, 0, wE@) +e+,1),2(0), w(t))
> H(zy, wo, 2(t), w(t))
= [A(z4, wo) — AZ(), W25 () + e+, 1) — z4]
—3B68[u(z4, wo) — A@(), W) [w(E(r) + e+, 1) — wo] .

We have already seen that, as ¢ | 0,2(f) = z4+ + o(1), W(f) = w, + o(l).
In particular, for & small, A(z4, wo) — A(Z(r), W(r)) > O, by virtue of (12.1.5).
Furthermore, if £(-) denotes the minimal backward 1-characteristic emanating
from any point (x, £) with §(t) < x < &§(¢) + 2¢, Proposition 12.4.1 implies that
2(x—,t) < z(§ ()=, 1) = zo+ o(l), as € | 0. On the other hand, (12.4.12);, with
s | 7, implies zo—z, < b8}. Therefore, as e | 0, z(§(t)+e+, 1) < z, +b83+o(l).
Finally, we recall (12.4.28). Collecting the above, we deduce from (12.4.33):

(12.4.33)

HzE@) + e+, 1), wE@) + e+, 0),2(), W(H)

(12.4.34) 3
= H(zy, wo, 24, wy) —ceby +0(1), ase l 0.

To estimate the right-hand side of (12.4.34), let us visualize g as a function
of (z, n). By the chain rule and (12.2.1), we deduce g, = &, oy = Muw/Nw. For
w € [wo, wy], gp, < 0. Hence

(12.4.35)
H(zy, wo. 24, wy) = [U(zy, wo) — Az, w)lln(zs, wo) — n(z4, wy)] .
The next step is to show
r—-t |
=
€ m(zo, wy) — A(z4, wy)

To see this, let us begin with

(12.4.36)

+o(l), aselO.
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e=w(r>—s(r)=/ [¥ () — E()]dr
(12.4.37) r T
5/ ez @) —. 0, wi )=, 1)) — AZ(r), W(t)))dr .

As shown above, z(¥ (¢)—, 1) < z9+o0(1),ase | 0. On the other hand, the maximal
backward 2-characteristic {(-), emanating from any (x, ¢) with §(¢) < x < ¥ (),
will intersect the graph of £(-) at time o € (t, r] and so, by Proposition 12.4.1,
w(x+,t) <W(o). In particular, w(¥(t)—,t) < w, +o(l),as ¢ | 0. Since u, > 0
and py > 0, (12.4.37) implies & < (r — 7)[1 (20, w4) ~ A(z4. w;) +0(1)] whence
(12.4.36) immediately follows.

Once again we multiply (12.4.13) by 1/e, let ¢ | 0 and then also let s | 7.
Combining (12.4.27), (12.4.34), (12.4.35) and (12.4.36), we conclude:

(12.4.38)
#(z0. wy) — p(zy, wo) 3
—_ - < <+ - Z
n(z4, wo) — n(zo, wp) < (o Wy) — Aza, w+)[l7(~+. wo) ~ n(z4+, wi)l+ 78y .

By virtue of (12.4.20), n(z4+, wo) — n(zo. wo) = zo — z4. The right-hand side of
(12.4.38) is bounded by aéa, because 7, = O(8y). Therefore, z9 — z4 < aég.
Now Z(t—) < z¢, by account of (12.4.10);. Hence Z(r—) — z(t+) < aég, which
establishes (12.4.2),.

Since total variation is additive, we deduce immediately

Corollary 12.4.1 /n (12.4.12), (or (12.4.12)), 0scr.fW(-) (0r 05C[c512(")) may
be replaced by the local oscillation of W(-) (or Z(-)) in the interval [t, 5], which
is measured by the maximum jump of W(:) (or Z(-)) in [z, s]. In particular, 7(-)
(or W(-)) is a saltus function whose variation is concentrated in the set of points
of jump discontinuity of W(-) (or Z(-)).

We have thus verified all the assertions of Theorem 12.4.1, except that (12.4.2)
has been established under the extraneous assumption wW(r) < w(r+). By Propo-
sition 12.4.2, w(r) = w((r)+.1) < w((r)—, 1). On the other hand, when
(&(t), r) is a point of local regularity of the solution, Condition (c); of Definition
12.3.2 implies w(r+) = w(§(r)—, t). Hence, by establishing Theorem 12.3.1, we
will justify, in particular, the assumption W(r) < wW(r+).

We thus turn to the proof of Theorem 12.3.1. Our main tool will be the estimate
(12.4.12). In what follows, § will denote an upper bound of the oscillation of z
and w on the upper half-plane. We fix any point (¥, 7) of the upper half-plane and
construct the curves §.(-), {+(-), ¢+(-) and ¥4 (-), as described in Section 12.3
and sketched in Fig. 12.3.1. The first step is to verify the part of Condition (a) of
Definition 12.3.2 pertaining to the “western” sector .%y.

Proposition 12.4.4 For 0 sufficiently small, as (x,t) tends to (X, 1) through the
region. Yy, defined by (12.3.2), (z2(x%. 1), w(x+, 1)) tend to (2w, ww), where zw =
2(x-. 1), ww = wXx-,1).
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Proof. We shall construct a sequence xo < x| < x < --- < x such that, for
m=0,1,2,---,
(12.4.39) 05Cinixmtn)l < (300)"8 . 0SCy s, W < (3b0)7S

where b is the constant appearing in (12.4.12). Clearly, (12.4.39) will readily imply
the assertion of the proposition, provided 368 < I.

For m = 0, (12.4.39) is satisfied with xo = —oc. Arguing by induction, let us
assume xp < x; < --- < xx—| < x have already been fixed so that (12.4.39) holds
form=0,---,k — 1. We proceed to determine x;. We fix f € (0,7) with f — ¢
so small that {_(f) > x4_; and the oscillation of z({_(z)%, t) over the interval
[, 7) does not exceed (3b0)*8. Next we locate £ € (xx—1. ¢~ (F)) with £ (F) — %
so small that the oscillation of w(y—, f) over the interval (¥, ¢_(f)] is similarly
bounded by 1(3b6)*s.

By the construction of ¢_(-), the minimal backward |-characteristic £(-) ema-
nating from any point (x, ¢) in.%y N{x > x;) stays to the left of the graph of ¢_(-).
At the same time, as (x, t) tends to (¥, r) through .4y, the maximal backward 2-
characteristic ¢£(-) emanating from it will tend to some backward 2-characteristic
emanating from (X, f), which necessarily lies to the right of the minimal charac-
teristic {_(-) or coincides with {_(-). It follows that when X — x; is sufficiently
small, £(-) will have to cross the graph of {_(-) at some time t* € (f, ), while
¢(-) must intersect either the graph of £_(-) at some time 7 € (,7) or the /-time
line at some £ € (&, £_(f)].

By virtue of Propositions 12.4.1 and 12.4.2,

(12.4.40) 2(x=,0) < z2EUED)— ") =26 (") = ") Sz () +. 1) .

By account of (12.4.39), for m = k — 1, and the construction of ¢, the oscillation
of w(§()+, 7) over the interval [r*, ] does not exceed (360)*~'8 + 5 (3b6)*8,
which in turn is majorized by 2(366)*~'6. Then (12.4.12), yields

(12.4.41)
2
2(x+,8) = 2(EE*)+, t*) = 260(3b6Y 18 = z(L_ () +, t*) — 5(3b9)"¢s )
Recalling that the oscillation of z({_()+, 7) over [f, ) is bounded by §(3b6)*s,

(12.4.40) and (12.4.41) together imply the bound (12.4.39) on the oscillation of z,
form = k.

The argument for w is similar: Assume, for example, that £(-) intersects the

f-time line, rather than the graph of ¢_(-). By virtue of Propositions 12.4.1 and
12.4.2,

(12.4.42) wx+, 1) Sw@E)+, 1) = wE+,f) < w@E-, 7).

The oscillation of z(£(t)—, T) over the interval [, t] does not exceed (3b6)*~!§,
by account of (12.4.39), for m = k — 1. Then (12.4.12); implies

R ]
(12.443) w(x—,¢) > w ()=, F) - bOBbO 16 = w(E—,F) — 5(3b9)“5 .
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The bound (12.4.39) on the oscillation of w, for m = k. now easily follows from
(12.4.42), (12.4.43) and the construction of / and . The proof is complete.

The part of Condition (a) of Definition 12.3.2 pertaining to the “eastern” sector
% is validated by a completely symmetrical argument. The next step is to check
the part of Condition (a) that pertains to the “southern™ sector ..

Proposition 12.4.5 For 6 sufficiently small, as (x. t) tends to (X, 1) through the re-
glon %, defined by (12.3.5), (z(x%, t). w(x%, 1)) tend to a constant state (Is. ws).

Proof. Similar to the proof of Proposition 12.4.4, the aim is here to determine
tp <1 <--- <t such that

(12.4.44) 0SC.hnfr>1,12 < (4DB)"8 | 0SCpnpsr W < (4O)"S

form =0,1.2,--.. For m = 0, (12.4.44) is satisfied with fp = 0. Arguing by
induction, we assume fy < fj < --- < f{_; < ¢ have already been fixed so
that (12.4.44) holds for m = 0, ...,k — 1, and proceed to determine ;. We fix
{ € (ty—y, 1) with T~ so small that the oscillation of z(z_(7)—, 7). w(Zy (T)+, T),
2(¢-(1)—, 1), w(&-(r)+, ) over the interval [f.7) does not exceed §(4b8)*s.
Next we fix £ and & in the interval (£,.(f), 5_(f)) with = ¢, (f) and £&_(f ) — X so
small that the oscillation of z(y—, ) over the interval (¥.£_(f )] and the oscillation
of w(y+, ) over the interval [{,(7), £) do not exceed 4 (4b6)*8.

Since &_(-) is the minimal backward l-characteristic and ¢, (-) is the maximal
backward 2-characteristic emanating from (X, ), we can find t; € (f,7) with 7 — 1,
so small that the following hold for any (x, ) in .% N {t > 1}): (a) the minimal
backward 1-characteristic £(-) emanating from (x, t) must intersect either the -
time line at x’' € (%,&_(f)] or the graph of &_(-) at time ¢’ € (f.7); and (b) the
maximal backward 2-characteristic {(-) emanating from (x, t) must intersect either
the /-time line at x* € [{,.(7). X) or the graph of ¢, (-) at some time t* € (f,T).
One then repeats the argument employed in the proof of Proposition 12.4.4 to
verify the (12.4.44) is indeed satisfied for m = k, with £ determined as above.
The proof is complete.

To conclude the validation of Condition (a) of Definition 12.3.2, it remains to
check the part pertaining to the “northern” sector .%.

Proposition 12.4.6 For 6 sufficiently small, as (x,t) tends to (X,f) through
the region %, defined by (12.3.4), (z(x%, 1), w(x%, 1)) tend to a constant state
(zv, wy).

Proof. For definiteness, we treat the configuration depicted in Fig. 12.3.1, where

Y_ = v, so that Y_(-) is a 2-shock of positive strength at 1 =7, while ¢_(t) <

¢+(t), for t > 1, in which case, as we shall see in Proposition 12.4.8, it is

l,ii? (P (D)=, 1) = lli{? 2(¢p+()+,¢) and liFJ w(p,(t)—. 1) = liFJ w(g-(1)+,1).
tyt tit
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Only slight modifications in the argument are needed for the case of alternative

feasible configurations. ~
The aim is to find tp > 1 > -+ >t such that

(12.4.45) 05 Coprir <t < a(@b0)"8 . 0SConpr <t < 3(abB)TS

form=0,1,2,---, where a is a constant, @ > |, independent of m and 6, to be
specified below. Clearly, (12.4.45) is satisfied for m = 0, with rp = oo. Arguing
by induction, we assume fy > t; > - >l > t have already been fixed so that
(12.4.45) holds for m =0, ---, k — 1, and proceed to determine #.

We select £y € (7, ty—) with £ — so small that the oscillation of z (¢, ()—~, T)
over the interval (7,1) does not exceed a(abB)*~'s, the oscillation of
w(¢,.(t)—, 7) over (f,#) is bounded by (ab6)*s, and the oscillation of
U(y-(t)—, 1) over (7, 1) is majorized by (ab8)*8>.

The bound (12.4.45) on the oscillation of w, for m = k, will be established by
the procedure employed in the proof of Proposition 12.4.4 and 12.4.5. We thus fix
any (x,t) in.% N {t < #} and consider the maximal backward 2-characteristic
¢ () emanating from it, which intersects the graph of ¢, (-) at some time 7 € (7, ;).
By virtue of Propositions 12.4.1 and 12.4.2:

(12.4.46) wlx+, 1) S wE O+, 0) = w@+(O+,1) S w(pe (D, 1) .

By account of (12.4.45), for m = k—1, and the construction of #;, the oscillation of
z(¢(t)—, T) over the interval [f, t] does not exceed 2a(ab8)*~'5. Then (12.4.12),
implies

(12447)  w(x—, 1) 2 wC (D)=, 1) — 2(abb)*s = w(p, ()=, 1) — 2(abb)*s .

The inequalities (12.4.46), (12.4.47) coupled with the condition that the oscillation

of w(g,(r)—, 1) over (7,#) is majorized by (ab6)*§ readily yield the bound
(12.4.45) on the oscillation of w, for m = k.

To derive the corresponding bound on the oscillation of z requires an entirely

different argument. Let us define U = liFJ U(y-(t)—, 1), with induced values
tyt

(Z, w) for the Riemann invariants, and then set Az = z — 7, Aw = w — w. On
SN {t < 1), as shown above,

(12.4.48) |Aw| < 3(abh)*s .

We construct the minimal backward 1-characteristic £(-), emanating from
any point (y, ) of approximate continuity in .% N {t < #}, which is inter-
cepted by the graph of y_(-) at time +* € (7, #;). Proposition 12.4.1 implies that
2(y, 1) < 2(8(t*) =, 1*) = z(Y- (t*)—, +*) and this in conjunction with the selection
of 1 yields

(12.4.49) Az(y, 1) < ci(abB)*8?

for some constant ¢; independent of k and 6.
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We now fix any point of approximate continuity (x,¢) in .% N {r < ;). We
consider, as above, the minimal backward l-characteristic £(-) emanating from
(x, 1), which is intercepted by the graph of ¥_(-) at time ¢* € (7, 1), and integrate
(12.1.1) over {(y, 1) : t* <7 <, (1) < y < Yy_(1)}. By Green’s theorem,

(12.4.50)
y-(1) _
/ [U(y. 1) - Tldy

+/_ (FUW- ()= 1) = FT) =y () U @ (2)—. 1) ~ Tlide

- / (FIUGE@)+. 1) — FO) = A\UE@+ oNUED)+ 1) = T)dr =0 .

Applying repeatedly (7.3.12), we obtain, for U = U(z, w),
(12.4.51) U=U+ AzR(U) + AwS(U) + 0(AZ2 + AwY) ,
F(U) - FU) = MU)U = U] = Aw[p@) - A([U)1ST)

(12.4.52) T o
= 542%(O)RU) - 828wA(U)SO) + o(Av’ + |4zP) .

We also note that the oscillation of w(&(z)+, 7) over the interval (¢*, ¢] is bounded
by 3(ab8)*8 and so, by account of (12.4.12); and Proposition 12.4.2, we have

(12.4.53) 0 < Az(E(1)4+. 1) — Az(x, 1) < 3b0(abb)*§ < 3(abh)*s ,
for any t € (¢*,1).
We substitute from (12.4.51), (12.4.52) into (12.4.50) and then multiply the

resulting equation, from the left, by Dz(U). By using (12.1.2), (12.4.49), (12.4.48),
(12.1.3), (12.4.53) and the properties of #;, we end up with

(12.4.54) AZ*(x, 1) < c(abB)*&?

where ¢ is a constant independent of (x, t), k and 6. Consequently, upon selecting
a = max(1, 2./c}, we arrive at the desired bound (12.4.45) on the oscillation of
z, for m = k. This completes the proof.

To establish Condition (b) of Definition 12.3.2, we demonstrate

Proposition 12.4.7 Let p,(-) and p,(-) be any backward 1-characteristics ema-
nating from (X, 1), with py(t) < p,(t), for t < 1. If' 8 is sufficiently small, then

(12.4.55) limz(pe(t)+, 1) <limz(p,(t)—=,¢) .
t1t 1t

(12.4.56) lip) w(pe(t)+,t) > lipg w(p,(t)—,1).
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Proof. Consider any sequence {(x.,t,)} with £, 1 7, as n — oo, and x, €
(pe(ta), pr(12)) so close to p(1,) that lim [w(x,+.8) — w(p(ta)=. )] = 0.
Let £,(-) denote the maximal backward 2-characteristic emanating from (x,. t,),
which intersects the graph of p¢(:) at time ¢y. By virtue of Proposition 12.4.1,
W+ ) < W)+ 67) = wp(ty)+.47). Since £y 1 1, as n — 00, this
establishes (12.4.56).

To verify (12.4.55), we begin with another sequence {(x,, 1,)}, where #, 1 7,
as n — oo, and x, € (p:(t,), p:(t,)) is so close to py(t,) that we now have
lim [z(x,—, t;) — 2(pe(t)+, t,)] = 0. We construct the minimal backward 1-
'c':hao:acteristics &,(-) and §7(-), emanating from the points (x,, 1,) and (p,(t,). t,).
respectively. By minimality, &§,(t) < &7(t) < p (1), fort < t,. Asn — oo,
{&,(-)} and (§2(-)} will converge, uniformly, to shock free minimal 1-separatrices
(in the sense of Definition 10.3.1) x(.) and x*(-), emanating from (X, I), such that
x(t) < x*(t) < p.(t), for t <T. In particular, x(f—) > %*(f—) and so

(12.4.57) lipg Az(x(x. D, w(x ()£, 1) = lipg Az(x*(OE D, wix*()x, ) .

Applying (12.4.56) with x(-) and x*(-) in the roles of p,(-) and p,(-) yields

(12.4.58) lip} w(x )+, 8) = limw(x*()—,1) .
[ e

Since A, < 0 and &, <0, (12.4.57) and (12.4.58) together imply
(12.4.59) lmz(x (N, 1) <limz(x*()x, 1) .
t1t 1t

By virtue of Proposition 12.4.1, z(§,(t)—, t) and z(§}(t)—, t) are nonincreasing
functions on [0, ¢,] and so

(12.4.60) lip) WL = lipg 2(pe(+.1)
(12.4.61) lip) 2(x* ()£, 1) = limz(p, (1)~ 1) .
it t1e

Thus, to complete the proof of (12.4.55), one has to show

(12.4.62) Iipg 2(x*)E 1) =limz(p, ()~ 1) .
1 47

Since (12.4.62) is tr_ivially true when x* = p,, we take up the case where
X'y < pr(0), fore <t Weset. = {(x,1):0<t<T, x*(t) < x < p,(1)}.
We shall verify (12.4.62) by constructing ty < t; < --- < f such that

(12.4.63) 05Cy (151,12 X (366)78 ,  0sCy A, w < (360)™S

form=0,1,2,.--

For m = 0, (12.4.63) is satisfied with 7o = 0. Arguing by induction, we
assume fo < fj < .- < fr_y <t have already been fixed so that (12.4.63) holds
form=0,---,k—1, and proceed to determine #,. We fix 7 € (tx_;, ) with 7 —f
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so small that the oscillation of z(x*(t)%. ) and w(x*(t)—, ) over the interval
[f,7) does not exceed 3(3h6)*8. Next we locate £ € (x*(7), p,(f)) with £ — x*(F)
so small that the oscillation of z(y+.7) over the interval [x*(7), %) is similarly
bounded by 1(366)*s.

By the construction of x*(-), if we fix # € (f.T) with f — t, sufficiently small,
then the minimal backward 1-characteristic £(-), emanating from any point (x, ¢) in
% N{t > 1}, will intersect either the graph of x*(-) at some time t* € (£, ) or the
f-time line at some x* € (x*(7). £); while the maximal backward 2-characteristic
£(-), emanating from (x. r), will intersect the graph of x*(-) at some time ¢ € (, 7).

Assume, for definiteness, that £(-) intersects the f-time line. By virtue of Propo-
sitions 12.4.1 and 12.4.2,

(12.4.64) x= D) <zEE)—, [y =z(x"—. 1) < z(x*+.7) .

By account of (12.4.63), for m = k — 1, the oscillation of w(§(r)+, t) over the
interval [£. t] does not exceed (3b0)*~!5. It then follows from (12.4.12),

R . ' N 1 '
(124.65)  z(x+,1) = 2(E(E)+.7) —bOBO)Y '8 = z(x*+.1) - 5(3[;9)‘5 :
Recalling that the oscillation of z(y+,f) over [x*(f), £) and the oscillation of
z(x*(1)+. t) over [{, T) are bounded by %(3b9)"'6, (12.4.64) and (12.4.65) together
imply the bound (12.4.63) on the oscillation of ¢, for m = k.

The argument for w is similar: On the one hand, Propositions 12.4.1 and 12.4.2
give

(12.4.66) wx+, ) <w@O+. 0D =w O+, <wx -1 .

On the other hand, considering that the oscillation of z({(z)—, t) over the in-
terval [7,¢] is bounded by (3b6)*~'8 + ;(3b9)*8, which in tumn is smaller than
2(3b69)5718, (12.4.12); yields

. - .2
(12.4.67) w(x—, 1) > w () —, 1)—2b0(3bO) 16 = w(x'(t)—,t)—§(3b9)"5.

Since the oscillation of w(x*(z)—, r) over [f,7) does not exceed §(3b6)*8, the
inequalities (12.4.66) and (12.4.67) together imply the bound (12.4.63) on the
oscillation of w, for m = k. The proof of the proposition is now complete.

In particular, one may apply Proposition 12.4.7 with &(-) and/or §*(-) in the
role of py(-) or p,(-), so that, by virtue of Proposition 12.4.2, the inequalities
(12.3.6); and (12.3.7); follow from (12.4.55) and (12.4.56). We have thus ver-
ified condition (b); of Definition 12.3.2. Condition (b); may be validated by a
completely symmetrical argument.

It remains to check Condition (c) of Definition 12.3.2. It will suffice to verify
(c)1, because then (c); will readily follow by a similar argument. In the shock
case, ¢_ = ¢, the required inequalities zw < zy and wy = wy are immediate
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corollaries of Proposition 12.4.2. Thus, one need only consider the rarefaction
wave case.

Proposition 12.4.8 Suppose ¢_(t) < ¢..(t), for t > 1. For 0 sufficiently small, as
(x, 1) tends to (X, 1) through the region 7/ "= {(x,t) : t > T, ¢_(t) < x < ¢, (1)},
w(x+, t) tend to ww. Furthermore, (12.3.8); holds for any \-characteristics py(-)
and p,(-), with ¢_(t) < p(t) < pr(1) < @, (1), for t > 1.

Proof. Consider (x, t) that tend to (X, ) through 7/". The maximal backward
2-characteristic ¢£(-) emanating from (x,t) is intercepted by the 7-time line at
£(f), which tends from below to x. It then follows from Proposition 12.4.1 that
limsup w(x=+, t) < wy. To verify the assertion of the proposition, one needs to
show that liminfw(x=,¢) = wy. The plan is to argue by contradiction and so
we make the hypothesis liminfw(x+, t) = ww — 8, with § > 0.

We fix f > 7 with f — F so small that

(124.68) wy —28 <wxt, 1) <ww+pg, T<t<f, ¢_(t)<x <¢p(n)

and also the oscillation of the functions z(¢—(¢)%, 1) and w(¢_(¢)=, t) over the
interval (7, f) does not exceed 3 5.

We consider the maximal backward 2-characteristic £(-) emanating from any
point (%,f), with T < F < f, ¢_(f) < x < ¢, (), and intersecting the graph
of ¢_(-) at time t* € (F,f). We demonstrate that, when @ is sufficiently small,
independent of 8, then

(12.4.69) w(@)—, ) —wE—,1 < %ﬂ , tf<t<rl.

Indeed, if (12.4.69) were false, one may find 1, 1;, with t* < 1t <t < ¢ and
t; — t; arbitrarily small, such that

(12.4.70) 2t 1) — 2 ()%, )] > £§ .

In particular, if &,(-) and &(-) denote the minimal backward |- characteristics,
which emanate from the points (£(¢4).#) and (¢(f2), 12), respectively, and thus
necessarily pass through the point (¥, 7), then | and 1, may be fixed so close that

0< / ()=, 1), W)~ 1)t
(12.4.71) 0

L
- /O AzE @)=, D, wE ()=, n)dr < pro .
By virtue of (12.4.68), |w(§2(t)—, t) —w(& (r)—, t)| < 38, forall ¢ in (7, 1,). Also,
by account of Proposition 12.4.1, (12.4.12), and (12.4.68), we have

(12.4.72)
’ G =, 0) < 2 ()=, 1) = 2(&1(1)+, 1) < 2@ )+, 1) + 3668,

2(8(2)=, ) S 2&2(t)—, 1) = 252 () +, 1) < z(L(r2)+, £2) + 3BbO
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for almost all ¢ in (7, £y). It is now clear that, for 8 sufficiently small, (12.4.72)
renders the inequalities (12.4.70) and (12.4.71) incompatible. This provides the
desired contradiction that verifies (12.4.69).

By Proposition 12.4.4, and the construction of f,

(12.4.73) lim 2(p-(1)=.1) = 2w , limw(@-()=,0) = ww .
tif tir

(124.74)  |2(p-(t")=, ") —zw| < %ﬂ o w(e-()—, ") —ww| < %ﬂ .
The next step is to establish an estimate

(12.4.75) (- (M) = 1) — !lf{“ W=, ni<ap .

for some constant ¢ independent of 8 and 8. Let

(12.4.76) Ii?g p-()+.D)=zw+y,
tet

with y > 0. We fix t; € (¢*.1) and x3 € (p_(13), 9. (13)), with x3 — ¢_(13) so
small that

(12.4.77) lz(at. ) ~—zw —y|<8B.

By also choosing 13 — r* sufficiently small, we can guarantee that the mini-
mal backward |-characteristic §(-), emanating from the point (x3, ), will in-
tersect the graph of {(-) at time t4, arbitrarily close to +*. By Proposition 12.4.1,
2(¢(ts)—, t4) = z(x3—,t3). On the other hand, by virtue of (12.4.68), Proposi-
tion 12.4.3 implies z({ (t4)+, t4) < z(x3+, 13) + 3b68. Hence, for 6 so small that
6b0 < |, we have |zw +y —H,ltn 2 @®—-.nl < %,B. In conjunction with (12.4,74),

this yields
(12.4.78) [z(p_(t*)—, t*) — ]flf,“ zEW—-n|<28+vy.
Thus, to verify (12.4.75), one has to show y < 8.
The characteristic §(-) lies to the right of ¢_(-) and passes through the point

(X,7), so ¢_(T+) < E(f+). By account of (12.4.73), (12.4.76), (8.2.1), (8.2.2),
(7.3.12), (8.2.3), and (12.1.2), we conclude

o |
(12.4.79) $-(1+) = AGw, ww) + Sh:(zw, ww)y + o’ .

To estimate £(7+) = lim A(z(E(t)—, t), w(&(t)—, 1)), recall that 1. < 0, A, < 0,
20—, 1) = 2(x3—, t;;lz w+vy — B, wE(t)—.t) = ww — 2P, and so
(12.4.80)

EF+) < Azw + v — B, ww — 2B) = Azw, ww) + A:(zw, ww)y + OB +7Y) .
Therefore, y = O(B) and (12.4.75) follows from (12.4.78).
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By virtue of Proposition 12.4.3, (12.4.75) yields
(12.4.81) w(p_(t*)—.t") — lllr{n w(C(t)—, 1) < abbp .

Hence, if 8 < (8ab)~', then (12.4.69), (12.4.81) and (12.4.74) together imply
ww — w(E—.1) < %,B, for all (%,f) in %/ N {t < f). This provides the desired
contradiction to the hypothesis liminfw(x+.t) = ww — 8, with § > 0, thus
verifying the assertion that, as (x,t) tends to (X,1) through 7/, w(x%, 1) tend
to wy.
We now focus attention on ¢, (). We already have “FJ w(PL(1)—, 1) = wy,
tit

Hm z(¢4(1)+.t) = zn, lim w(P, (1)+.1) = wy. We set 79 = IiFJ 2P ()=, 1).
tlt e tLr

Then A(zg, ww) = ¢4 (T+) = A(zn. wy). We shall show ¢, (F+) = A(zo, ww) so
as to infer zy = zo. wy = wy. We consider the minimal backward 1-characteristic
£(-) emanating from the point (¢, (f5), t5), where t5—1 is very small. The assertion
Zy = 20, Wy = wy Is clearly true when § = ¢, so let us assume §(t) < ¢, (¢)
for t € (f,ts). Then |w(&(t)+.1) — wyw| is very small on (7, t5). Moreover, by
Proposition 12.4.3, the oscillation of z(&(r)+, t) over the interval (7, 5) is very
small so this function takes values near zo. Hence, t5 — 1 sufficiently small renders
§(t+) arbitrarily close to A(zo, ww). Since £(f+) < ¢, (7+), we conclude that
¢+(t+) > A(20, ww) and thus necessarily ¢+(t+) = A(zg, ww).
Consider now any forward |-characteristic x(-) issuing from (X,7), with
O_(1) < x(t) < ¢, (1), fort > 1. Since liFJ w(x ()—,t) and liFJ w(x (t)+, 1) take
tlr tlt

the same value, namely wy, we infer that lim z(x(+)—, ) and lim z(x (t)+, 1)
tit an

must also take the same value, say z,. In particular, x (r+) = A(zy, ww). Hence,
if p¢(-) and p,(-) are any |-characteristics, with ¢_(t) < p, (t) < pr(t) < 94(1),
for t > f, the mequalmes $_(f+) < p(@+) < p,(1+) < ¢, (1+), ordering the
speeds of propagation at f, together with A < 0, imply (12.3.8),. The proof is
complete.

We have now completed the proof of Theorem 12.3.1, on local regularity, as
well as of Theorem 12.4.1, on the laws of propagation of Riemann invariants
along extremal backward characteristics. These will serve as the principal tools
for deriving a priori estimates leading to a description of the long time behavior
of solutions.

Henceforth, our solutions will be normalized on (—o0, 00) x (0, 00) by defining
(z(x, 1), w(x, 1)) = (zs, ws), namely the “southern” limit at (x, t). The trace of the
solution on any space-like curve is then defined as the restriction of the normalized
(z, w) to this curve. In particular, this renders the trace of (z, w) along the minimal
backward 1-characteristic and the maximal backward 2-characteristic, emanating
from any point (X, ), continuous from the left on (0, 7].
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12.5 Bounds on Solutions

We consider a solution, normalized as above, bounded by
(12.5.1) Iz, )]+ |wx. ] <28, —oo<x<oo, 0<t<oo.

where § is a small positive constant. It is convenient to regard the initial
data as multi-valued functions, allowing (z(x.0), w(x, 0)) to take as values
any state in the range of the solution of the Riemann problem with end-states
(z(x=%, 0), w(x=, 0)). The supremum and total variation are measured for the se-
lection that maximizes these quantities. We then assume

(12.5.2) SUP_sc.00) 1305 0} + SuUp_g o) W (. 0} <6,
(12.5.3) TV 2002 0) + T Voo my'(-,0) < ad™! |

where a is a small constant, to be fixed later, independently of §. Thus, there is
a tradeoff, allowing for arbitrarily large total variation at the expense of keeping
the oscillation sufficiently small. The aim is to establish bounds on the solution.
[n what follows, ¢ will stand for a generic constant that depends solely on F. The
principal result is

Theorem 12.5.1 Consider any space-like curve t = t*(x), xy < x < x,, in the
upper half-plane, along which the trace of (z, w) is denoted by (=*, w*). Then

T Vix, 5137 () = TVig 016, 002(, 0)

(12.5.4), ¢
+ 83T Vig, 016,002 C¢, 0) + T Vi 0y.6, 0w (-5 0)}

T Vi s qw* (1) < T Vg 0y, 0qw(-, 0)

(12.5.4); !
+ 8T Vi, 016,002 0) + T Vg, 0y.5,0qw(-. 0},

where &,(-), £.(-) are the minimal backward 1-characteristics and {(-), {-() are
the maximal backward 2-characteristics emanating from the endpoints (x¢. t,) and
(x;,t,) of the graph of t*(-).

Since generalized characteristics are space-like curves, one may combine the
above proposition with Theorem 12.4.1 and the assumptions (12.5.1), (12.5.3) to
deduce the following corollary:

Theorem 12.5.2 For any point (x. t) of the upper half-plane:
(12.5.5), SUP(_s0.00y 2( 0) = 2(x, 8) = infi_oc.00y 2(-, 0) — cad ,

(12.5.5); SUD| .00y W(+» 0) 2 wlx, 1) = inf_x o) W(, 0) — casd .

Thus, on account of our assumption (12.5.2) and by selecting a sufficiently
small, we secure a posteriori that the solution will satisfy (12.5.1).
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The task of proving Theorem 12.5.1 is quite arduous and will require exten-
sive preparation. In the course of the proof we shall verify that certain quantities
measuring the total amount of wave interaction are also bounded.

Consider a l-shock joining the state (z—, w_), on the left, with the state
(z4» w4), on the right. The jumps Az = z4 —z- and Aw = w, — w_ are
related through an equation

(12.5.6), Aw = f(Az; 2, w_)

resulting from the reparametrization of the 1-shock curve emanating from the state
(z-, w_). In particular, f and its first two derivatives with respect to Az vanish
at Az = 0 and hence f as well as 3f/3z_ and 3f/3w_ are O(AzZ%) as Az — 0.

Similarly, the jumps Aw = w, — w_ and Az = z; — z_ of the Riemann
invariants across a 2-shock joining the state (z—, w_), on the left, with the state
(z4, wy), on the right, are related through an equation

(12.5.6); Az = g(Aw; 24, wy)

resulting from the reparametrization of the backward 2-shock curve (see Section
9.3) that emanates from the state (z,, w,). Furthermore, g together with dg/dz,
and 3g/dw, are O(Aw>) as Aw — 0.

For convenience, points of the upper half-plane will be labelled by single cap-
ital letters 7, J, etc. With any point / = (X, r) we associate the special character-
istics ¢4, w1, &L, ¢l emanating from it, as discussed in Section 12.3 and depicted
in Fig. 12.3.1, and identify the limits (zly, wl), (2%, wh), (2%, wh), (2L, wh) as
I is approached through the sectors .%,/, .%/, %/, .%!. From I emanate mini-
mal 1-separatrices p, and maximal 2-separatrices g/ constructed as follows: p’
(or g1) is simply the minimal (or maximal) backward 1-characteristic £/ (or 2-
characteristic /) emanating from /; while p! (or g’) is the limit of a sequence of
minimal (or maximal) backward 1-characteristics &, (or 2-characteristics ¢,) em-
anating from points (x,, t,) in .75’ (or .Yw’), where (x,, ;) = (X, 1), as n — 00.
We introduce the notation

(12.5.7), F={x,0):0<t<t, pliysx=<pl®),
(12.5.7); Y ={x,0):0<r <1, gl(n=<x=<ql®}.

By virtue of Theorems 12.3.1 and 12.4.1,

(12.5.8), lipgz(pi(t),r)=z§, limz(pl (1), 1) = z& ,
it t1e

(12.5.8); l,i?? wgl), n=wy, limwgle),n=uwi.
i1t

The cumulative strength of 1-waves and 2-waves, incoming at /, is respectively
measured by

(12.5.9) Al =zp~zk | Aw' =wl—wl, .
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If the incoming 1-waves alone were allowed to interact, they would produce an
outgoing 1-shock with w-amplitude

(12.5.10), Aw! = f(AZ'; 25, wi)

together with an outgoing 2-rarefaction wave. Consequently, |Aw!| exceeds the
cumulative w-strength |[wt — wf| of incoming 1-waves. Similarly, the interaction
of incoming 2-waves alone would produce an outgoing 2-shock with z-amplitude
(12.5.10), Az] = g(Aw'; 2§, wi)y |

exceeding their cumulative z-strength z} — z},. Note that if z{ =z}, wi = wl,
then Aw! = wi — w}, while if z§ =z, w} = w] then Az =z} — 2.

We visualize the upper half-plane as a partially ordered set under the relation
induced by the rule / < J whenever J is confined between the graphs of the mini-
mal 1-separatrices p! and p! emanating from /. In particular, when J lies strictly
to the right of the graph of p’, then I lies on the graph of the l-characteristic
¢! emanating from J. Thus / < J implies that / always lies on the graph of
a forward l-characteristic issuing from J, that is either ¢ or p/. This special
characteristic will be denoted by x7.

We consider 1-characteristic trees .#¢ consisting of a finite set of points of
the upper half-plane, called nodes, with the following properties: ./ contains a
unique minimal node /p, namely the root of the tree. Furthermore, if J and K are
any two nodes, then the point / of confluence of the forward 1-characteristics x/
and xX, which pass through the root I, is also a node of ./#Z. In general, ./
will contain several maximal nodes (Fig. 12.5.1).

.
\ N M '

Fig. 12.5.1.

Every node J # Iy is consecutive to some node I, namely, its strict greatest
lower bound relative to /2. The set of nodes that are consecutive to a node /
is denoted by ¢;. When J is consecutive to I, the pair (/, J) is called a link.
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A finite sequence {fo. 1, -+, In} of nodes such that /;,, is consecutive to [;,
for j=0,---.m—1, which connects the root / with some maximal node 1,
constitutes a chain of . /4. o

If (1, J) is a link of . /, so that I = (x (f), 1), we set

(12.5.11), = liTrpz(xf(f):I:.t) , wh = li{p w(x!(nt, 1,
Tt e
(12.5.12), Al = - Aw =w!! Wl

In particular,
(12.5.13), aw' = fa ;2 wy .

With (/, J) we associate minimal 1-separatrices p}’, emanating from /, con-
structed as follows: p’’ is the ¢+ 1 T limit of the family & of minimal back-
ward 1-characteristics emanating from the point (x7(¢),r); while p’/ is the limit
of a sequence of minimal backward 1-characteristics §, emanating from points
(Xn, ;) such that, as n — 00, ty t I, Xy — x2(t) 1 0, 20ta—,tn) = 2V,
w(x,—, ;) — w/’. Notice that the graphs of p}’/ are confined between the graph
of p! and the graph of p!; see Fig. 12.5.1. In tum, the graphs of pZ, as well as
the graphs of pX, for any K > J, are confined between the graph of p// and the
graph of p}’. Furthermore,

(12.5.14), limz(p” (1), )=z, limz(p} (1), 1) =2 .
1t 11t

Indeed, the first of the above two equations has already been established in the
context of the proof of Proposition 12.4.7 (under different notation; see (12.4.62));
while the second may be verified by a similar argument.

We now set
(12.5.15), A = — Z [Aw,’, - Z Aw”] ,
le /. Je?;
(12.5.16), Gey=Y 3 1aw - awl].
le./l Jel;
By virtue of (12.3.7),,
(12.5.17), o aw" > wl—wh > Aw!,

Je¥;

so that both o/ and ¢4 are nonnegative.
With subsets .7 of the upper half-plane, we associate functionals

(12.5.18), A(F) = sup ; Z A
e
(12.5.19), Q(F)=sup, Y G(H),

LHET
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where 7 denotes any (finite) collection of l-characteristic trees .//4 contained
in .7, which are disjoint, in the sense that the roots of any pair of them are
non-comparable. One may view {(. %) as a measure of the amount of |-wave
interactions inside .7, and {A(-¥) as a measure of strengthening of 1-shocks
induced by interaction with 2-waves.

We introduce corresponding notions for the 2-characteristic family: I < J
whenever J is confined between the graphs of the maximal 2-separatrices g’
and ¢! emanating from /. In that case, / lies on the graph of a forward 2-
characteristic x/ issuing from J, namely either ¥/ or /. One may then construct
2-characteristic trees . } °, with nodes, root, links and chains defined as above. In
the place of (12.5.11)(, (12.5.12) and (12.5.13),, we now have

(12.5.11); ! =limzxlnt. 0y, wl —hmw(x+(t):l: n,
1

(12.5.12), : a7l = = Aw =l —w!

(12.5.13) a7l =gaw'; Y wly .

With links (1 J) we associate maximal 2-separatrices g1/, emanating from I, in
analogy to p}’. The graphs of ¢} are confined between the graphs of ¢/ and g..
On the other hand, the graphs of g7 are confined between the graphs of ¢’/ and
q"’. In the place of (12.5.14),

(12.5.14), limw(g” (), 0) =w!’, llmw(q”(t) n=uw’.
(&1

Analogs of (12.5.15); and (12.5.16), are also defined:

(12.5.15), A=Y [421 -5 Azu] ,

fe. |’ Jev,
(12.5.16), Gy = Y 14 ~ad]
le. | Je?,
which are nonnegative since
(12.5.17), YAl szp-oy <A

Je?r;

This induces functionals analogous to = and {4:

(12.5.18), AT )=sup, » AL,
de7
(12.5.19); G(F)=swpy Y (1),
ez
Proposition 12.5.1 Let .77, - - - .. %%, be a collection of subsets of a set . ¥ contained

in the upper half-plane. Suppose that for any 1 € .7 and J € .% which are
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comparable, say I < J, the arc of the characteristic x? (or x !y which connects
J to [ is contained in F . Then

(12.5.20), D AR + G(R)) < AT ) + GF)]
i=l

or

(12.5.20); D AAT) + G D)) < AT + G F))
i=1

where k is the smallest positive integer with the property that any k + | of
T -+, T have empty intersection.

Proof. It will suffice to verify (12.5.20);. With each { = 1,---, m, we associate
a family Z of disjoint 1-characteristic trees ../ contained in .%. Clearly, by
adjoining if necessary additional nodes contained in .7, one may extend the
collection of the 7 into a single family 7 of disjoint trees contained in .% . The
contribution of the additional nodes may only increase the value of =4 and (4.
Therefore,

(12521) Y D AAMO+GAOY <k Y AA(A) + GAD)

i=l. /e 7, 7y

where the factor k& appears on the right-hand side because the same node or link
may be counted up to &k times on the left-hand side. Recalling (12.5.18); and
(12.5.19),, we arrive at (12.5.20);. The proof is complete.

Proposition 12.5.2 Consider a space-like curve t = [(x),X < x < X, in the
upper half-plane. The trace of (z, w) along T is denoted by (Z, W). Let p(-) and
PC) (or () and §(-)) be minimal (or maximal) 1-separatrices (or 2-separatrices)
emanating from the left endpoint (%, ) and the right endpoint (%, ) of the graph
of t. The trace of z (or w) along p and p (or § and §) is denoted by 7 and Z (or
W and w). Let & (or ‘¥ stand for the region bordered by the graphs of p, p (or
4, 4), t and the x-axis. Then

Z2(f—) — 2(i=)| < |2(0+) — Z(0+)| + ¢8°T Viz 5yW(-)

(12.5.22),
+ AB(F)+ G(F)
or
[(F—) — W(F—)| < |[@D(0+) — DO+)| + c8*T Vi 51Z()
(12.5.22),

+ ALY+ G(7) .

Proof. It will suffice to verify (12.5.22),. We write
(12.5.23) 1(F-)—2(f=) = [Z(0+) =2 (0+)]+[Z(F=) - Z(0-H)]—[2(F—=)—2(0+)] .
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By virtue of Theorem 12.4.1,
2(i-) — 20+) = Y[2(r+) — 2z )],
(=) — 2(04+) = Y [Z(r+) = Z(r )],

where the summations run over the countable set of jump discontinuities of z(-)
and Z(-).

By account of Theorem 12.3.1, if Z() is the trace of z along any minimal
1-separatrix which passes through some point K = (x, t), then

(12.5.24)

(12.5.25) XK <zr-) -2t < ALF .

Starting out from points K of jump discontinuity of Z(-) on the graph of p,
we construct the characteristic $X and extend it until it intersects the graph of
either p or 7. This generates families of disjoint 2-characteristic trees . § °, with
maximal nodes Ky = (x1, 71), -, Kin = (X, Tn,) lying on the graph of p and
root Ky = (xo. 19) lying on the graph of either p or 7. In the former case, by
account of (12.5.25), (12.5.15), and (12.5.16);,

(12.5.26) <A+ G .

Hro+) — Uto—) — D_[2(TeH) — 2(1e-)]
£=1

On the other hand, if K, lies on the graph of 7,
(12.5.27) AR <t < 8wl - wil,

JE/KO

and so

(12.5.28) |= ) [E(re+) — 2(re0)]| < 8 lws® — wy'| + ABAY + G ).

Suppose that on the graph of j still remain points Ko of jump discontinuity of
Z(-) which cannot be realized as roots of trees with maximal nodes on the graph of
p. We then adjoin (trivial) 2-characteristic trees .4 which contain a single node,
namely such a Ky = (xg, 1), in which case

(12.5.29) Z(to+) — Z(t0—)| < AN+ CA(A) .

Recalling (12.5.23) and tallying the jump discontinuities of z,(-) and z2(-), as
indicated in (12.5.24), according to (12.5.26), (12.5.28) or (12.5.29), we arrive at
(12.5.22),. The proof is complete.

Proposition 12.5.3 Under the assumptions of Theorem 12.5.1,

(12.5.30),
T Vs 12 () 2 TVie0.6,012(, 0) + 682 T Vi gy () + 2{HA(F) + Go(F)}
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(12.5.30);
T Vi o' () < T Vg 00000 0) + 82T Vi o12°() + 2ACE ) + GG}

where .57 denotes the region bordered by the graphs of &, &,,t*, and the x-axis
while & stands for the region bordered by the graphs of &y, {,. t*, and the x-axis.

Proof. It will suffice to establish (12.5.30),. We have to estimate

m

(12.5.31) TV[x‘.,r,]Z*(') = SUPZ IZ? _ zéf-ll i

=]

where the supremum is taken over all finite sequences {Lg,---.Ln} of points
along ¢* (Fig. 12.5.2).

(x. )

Fig. 12.5.2.

We construct the minimal backward 1-characteristics §; emanating from L; =
(xi,4), i = 0,-.-,m, and let z;(-) denote the trace of z along §;(-). We apply
Proposition 12.5.2 with 7 the arc of +* with endpoints L;_; and L;; £ = x;_;
¥=x;p=¢&-1; p=&;and F =.7Z, namely the region bordered by the
graphs of §;_1, &, t*, and the x-axis. The estimate (12.5.22), then yields

(12.5.32)

|Zsl/ - zéi_ll =< |zl(0+) - zl'—l(0+)| + CazTV[x,_l.x,]w*(') + J/f(Z) + (&(7!) .
Combining (12.5.31), (12.5.32) and Proposition 12.5.1, we arrive at (12.5.30),.
The proof is complete.

Proposition 12.5.4 Ler . /4 (or . | ') be a \-characteristic (or 2-characteristic)
tree rooted at ly. Then

ACA) + G A8 < 81+ V)TV o) 2+ 0)
+ AF) + G (F))

(12.5.33),

or
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ACADY+ G ) = B0+ W) TVng g wi-, 0)

(12.5.33);
+ A4 + (%,

where V. 4 (or W ;) denotes the maximum of

m—1
(12.5.34)[ Z“z’_""' ZSH} + Iw’ lwr wgﬂ I}
or
(12534)2 Z“ ”*' :+|| + Iw’ i1 _ u_;:-l I}

over all chains {Iy, -+, I} of ./¢ (or . }").

Proof. It will suffice to validate (12.5.33),, the other case being completely anal-
ogous. By virtue of (12.5.15); and (12.5.16),

AA < = ) [Aw] =~ 3 Awl]+ G #)
Ie./ Jer,

12.5.35
( ) = Z Awk —Avh + G ) .
maximal

Since AwX < 0, to establish (12.5.33), it is sufficient to show

(12.5.36) —Aw) < 8TV g, i gyils 0) + A + G T}

(12.5.37) G(A) < 8+ V. )TV faq o 02( 0+ AF0) + Co(F)} -
To demonstrate (12.5.36), we first employ (12.5.10), to get
(12.5.38) —Awl = —f(Az"; 28, wl) < c8?AZ"

and then, to estimate Az”, we apply Proposition 12.5.2, with (%,7) = (X, ) = Iy,
p=pland p=pl.

We now turn to the proof of (12.5.37), recalling the definition (12.5.16); of
(4 (/). For any nodes I € ./ and J € &;, we use (12.5.10); and (12.5.13); to

get
(12.5.39) Aw' — Awl = f(az'; 2 wl?) - f(ads o wy)
- + fazt; d, wl - faddi g wi) .

By account of the properties of the function f,
|f(az'; 2wy — f(az'’; 25, wi)

(12.5.40)
< c82AZ ()21 ~ )+ 1w —wgl},
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(12.5.41) If(Az: 2t wi) — fads 2, wil < e8?|a’’ - aZ’).
Thus, to verify (12.5.37) we have to show

33 A g+ el - win
(12.5.42) Te. # Je¥,
SVulad® + Ye 4 X ger, 1827 — A1),

(12.5.43)
S Y15 = 4512 TV g 0+ AT + TR
Ie. /4 .’GZ[

We tackle (12.5.42) first. We perform the summation starting out from the
maximal nodes and moving down towards the root of ./Z. For L € .72, we let
/(1 denote the subtree of ../ which is rooted at L and contains all / € ./£ with
L < 1. For some K € .7, assume

303 A =+ w! - wil)

le. My JE;

Vo [AzL+ > Y 1A - ad)
le. .y Je?;

(12.5.44)

holds for every L € €. Since Azl < AzKL 4+ |AZKL — Azly and

(12.5.45) Y Akt <Ak,
LGZK
(12.5.44) implies
Z Z A2 =+ 1w - wl))
le. My Je¥,;

= >0 AKERE 2l 4wk~ wh 4V )

7
(12.5.46) bet
+ 3 Vi llazkt — Azt + 37 S 14! — a7
Lery le. /W Je7,;
SVudad®+ 37 34’ - ad)).

Te /iy Jet,

Thus, proceeding step by step, we arrive at (12.5.42).
It remains to show (12.5.43). We note that
IJ] .

(12.5.47) Az — A = -1+ 1 -2

\A{e estimate the right-hand side by applying Proposition 12.5.2 twice: First with
(:V,f) = J,_(f'f) =1, p=p], p=pl, and then with (£,7) =1, (£, §) = J,
p = p’, p = p’. In either case, the arc of X; joining I to J serves as 7.
We combine the derivation of (12.5.22); for the two cases: The characteristic ¢pX
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issuing from any point K on the graph of pi is always intercepted by the graph
of p}/; never by the graph of x;. On the other hand, ¢X issuing from points
K on the graph of p’/ and crossing the graph of x;, may be prolonged until
they intersect the graph of pi’ . Consequently, the contribution of the common 7
cancels out and we are left with the estimate

Azl - Al | < T Vi1 0).p2 01202 0) + T Vi 0y, 1 012C 0)

(12.5.48)
+ ACFHN + C(F)) .

with .7, defined through
(12.5.49) F={,n:0<t <y, pY)y<x<pyn.7C .

When (I,J) and (K, L) are any two distinct links (possibly with I =
K), then the intervals (p’’(0), p7(0)), (p1(0), pi’(0)), (pX*(0), pL(0)) and
(pL(0), pXL(0)) are pairwise disjoint; likewise, the interiors of the sets .7, and
Zx . are disjoint. Therefore, by virtue of Proposition 12.5.1, tallying (12.5.48)
over J € ¢; and then over I € ./4 yields (12.5.43). The proof is complete.

Propesition 12.5.5 Under the assumptions of Theorem 12.5.1, if .# denotes the
region bordered by the graphs of {¢, ., t*, and the x-axis, then

AF) + A(FE) + AB(FE) + Ch(F)

(12.5.50) )
< 8T Vig0.6,002(¢2 0) + T Vg 015w (-, 0)}

Proof. Consider any family Z of disjoint 1-characteristic trees ..// contained
in .. If I and J are the roots of any two trees in Z, (p’ (0), pi(0)) and
(p(0), p1(0)) are disjoint intervals contained in (£;(0). &(0)); also .% and
are subsets of .7 with disjoint interiors. Consequently, by combining Propositions
12.5.1 and 12.5.4 we deduce

AF) + GU(F)

12.5.51 ;
( 4 < 8 (1 + V)T Vg, 018 02C, 0) + A(F) + CA(F)}

where V3, denotes the supremum of the total variation of the trace of (z, w) over
all 2-characteristics with graph contained in .7%.
Similarly,

A(F) + C(F)

12.5.51 ~
( )2 < 8% (1 + Wa T Vi, 006 0w (, 0) + ACHFE) + G(FD) .

where W 3, stands for the supremum of the total variation of the trace of (2. w)
over all 2-characteristics with graph contained in .#.
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The constants in (12.5.30); and (12.5.30); do not depend on the particular ¢*,
so long as . % remains fixed. In particular, we may apply these estimates for ¢*
any l-characteristic or 2-characteristic, contained in .7% . Therefore,

(1 = 8%V < TVie00.6,012C, 0) + T Vg, 0.5, 0 w(-, 0)

(12.5.52) / '
| + 2{A(H) + G (F) + ACF) + CG(F)}
(12.5.52) (1 = c8H W < TV, 0).6,012C, 0) + T Ve 0.4, 0y w(-, 0)
le 2

+2{A(F) + CU(F) + A(F) + CA(F)) .

Combining (12.5.51), (12.5.51)2, (12.5.52), (12.5.52); and recalling (12.5.3),
we deduce (12.5.50), provided § is sufficiently small. This completes the proof.

We now combine Propositions 12.5.3 and 12.5.5. Since . and !4 are subsets
of F, (12.5.30),, (12.5.30); and (12.5.50) together imply (12.5.4); and (12.5.4),.
The assertion of Theorem 12.5.1 has thus been established.

In addition to serving as a stepping stone in the proof of Theorem 12.5.1,
Proposition 12.5.5 reveals that the amount of self-interaction of waves of the first
and second characteristic family, measured by -} and 3, respectively, as well as
the amount of mutual interaction of waves of opposite families, measured by ¢4
and ¢4, are bounded and controlled by the total variation of the initial data.

In our derivation of (12.5.4), the initial data were regarded as multi-valued and
their total variation was evaluated for the “most unfavorable” selection of allowable
values. According to this convention, the set of values of z(x, 0) is either confined
between z(x—, 0) and z(x+, 0) or else it lies within clw(x+, 0) — w(x—, 0)) dis-
tance from z(x+, 0); and an analogous property holds for w(x, 0). Consequently,
(12.5.4) will still hold, with readjusted constant ¢, when (z(-, 0), w(-, 0)) are renor-
malized to be single-valued, for example continuous from the right at &,(0) and
at {-(0) and continuous from the left at any other point.

12.6 Spreading of Rarefaction Waves

In Section 11.2 we saw that the spreading of rarefaction waves induces one-sided
Lipschitz conditions on solutions of genuinely nonlinear scalar conservation laws.
Here we shall encounter a similar effect in the context of our system (12.1.1) of
two conservation laws. We shall see that the spreading of 1- (or 2-) rarefaction
waves acts to reduce the falling (or rising) slope of the corresponding Riemann
invariant z (or w). Due to intervening wave interactions, this mechanism is no
longer capable to sustain one-sided Lipschitz conditions, as in the scalar case;
it still manages, however, to induce bounds on the total variation of solutions,
independently of the initial data.

Let us consider again the solution (z, w) discussed in the previous section,
with small oscillation (12.5.1). The principal result is
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Theorem 12.6.1 Forany —oco <x <y < oo and t > 0,
—-x
(12.6.1) TViess2o 1) + TV 1) < b5—= + B8 ,

where b and B are constants that may depend on F but are independent of the
initial data.

The proof of the above theorem will be partitioned into several steps. The
notation introduced in Section 12.5 will be used here freely. In particular, as before,
¢ will stand for a generic constant that may depend on F but is independent of 5.

Proposition 12.6.1 Fix > 0 and consider any —00 < x, < x, < 00, wWith X, — X¢
small compared 10 1. Construct the minimal (or maximal) backward 1- (or 2-)
characteristics §(-), §,(-) (or &e(), & (-)) emanating from (x¢,1). (x,, 1), and let
F (or ‘&) denote the region bordered by the graphs of &, &, (or {y, {,) and the
time lines t =1 and t =1/2. Then

Xr — Xy

(12.6.2), 2(xe, 1) — 2(x,, ) < Eexp(c8V) -

+ AF)+O(F) .

or

(12622 wixe, D) — w(xe, 7) < Eexp@8V)— ;x‘ + AL+ G(F)

where V denotes the total variation of the trace of w (or z) along &(-) (or £-(-))
over the interval [37,7].

Proof. It will suffice to establish (12.6.2),. We let (z¢(-), we(+)) and (z,(-), w,(-))
denote the trace of (z, w) along &:(-) and &, (-), respectively.

We consider the infimum /i and the supremum T of the characteristic speed
u(z, w) over the range of the solution. The straight lines with slope ji and &
emanating from the point (§,(¢),1), t € [%?, f], are intercepted by &.(-) at time
f(t) and g(r), respectively. Both functions f and g are Lipschitz with slope
1 + O() and

(12.6.3) 0<g(t)— f(ry <cidl& () = &(fFUN] .

The map that carries (£, (1), 1) to (§.(f(t)), f(r)) induces a pairing of points
of the graphs of & and &,. From

(12.6.4) E() = &(f)=alr— fO].
we obtain
R 1 . .

12.6.5 =1 = ——[&(t) — ,
(12.6.5) o ﬂ—&(f(t))[g (1) = &(f ()]

d i . .
12.6.6 —[&(t) — =0 JE()— E(fUN] .
( ) dt[&(t) E(f()] ﬂ_&(f(r))[s(r) E(f ()]
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almost everywhere on [%?, f]. In order to bound from below the right-hand side
of (12.6.6), we begin with

E(0) = E(f (D)= Mz (), wr (1)) — Aze(£ (1)), we(f(1)))
= X:[zr(r) - ZZ(f([))] + Xw[wr(r) - wl(f([))] .
By virtue of Theorem 12.4.1,
(126.8)  z(0) = 2(f (")) S 20, D) = 2(xe, D) = ) [z (14) — 2,(r )],

where the summation runs over the set of jump points of z,(-) inside the interval
(¢, £). As in the proof of Proposition 12.5.2, with each one of these jump points ¢
one may associate the trivial 2-characteristic tree . / ~ which consists of the single
node (£.(1), ) so as to deduce

(12.6.9) =Y [t H) ~ 2 ()] < ABF) + G(F) .

(12.6.7)

For t € [§1,7], we construct the maximal backward 2-characteristic emanating
from (&,(¢), t), which is intercepted by &.(-) at time A(t), f(r) < h(t) < g(1). By
account of Theorem 12.4.1, w¢(h(t)) > w,(t) and so

(12.6.10)  w, (1) — we(f (1)) < we(h(1)) — we(f(D) = V(F () = V(g(®),

where V(1) measures the total variation of w,(-) over the interval [r, ?)._
We now integrate (12.6.6) over the interval (s,f). Recalling that A, < 0,

Ay < 0, upon combining (12.6.7), (12.6.8), (12.6.9) and (12.6.10), we deduce
(12.6.11)
§(s) = §&(f(5)) <& () - &(f(1)
+e7 (= )[2(x, ) — 2(xe, T) + ABCF) + G(F))]

+o f V() — Vg(r)ldr .

By interchanging the order of integration,

T 0]
f V() ~ V(g)lde = — f f dv(t)ds
s s Jf@)
g(0)

f®
(12.6.12) s—f [f"(r)—g"(r)]dV(r>—f [F—g~'(1)]dV ()

f(s) [
=- f T[r - ' (v (f(1) - ff ::)[? -7 (Mav(r) .
By account of (12.6.3),
(12.6.13) =87 () < cadl&r (1) ~ E(F U] %7 <tst,
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(12.6.14) 1—g7 (1) < sl (D) = &(fEN], fO) <t <80,
and hence (12.6.11) yields

(12.6.15) _
&,(s) — &e(f(5)) < exp(c3cad VI[E, (1) — &e(f (1))

+ M=)z, D) — 2(xe, 1) + AT ) + (7))
.y [ [&, () — £ (S INIAV(F () .

for any s € [%7, t]. Integrating the above, Gronwall-type, inequality, we obtain

£:(s) — E(f(5)) < expRe3cad VI[E, (D) — &(f(1))]

(12.6.16) +c3! [[ exp{c3cad[V(f(s)) — V(f(t))]}dt]

X [2(x, F) — 2(xe, ) + AT ) + G(F)] .

We apply (12.6.16) for s = 37. The left-hand side of (12.6.16) is nonnegative.
Also, &(f) — &(f()) < cs(x, — x¢). Therefore, (12.6.16) implies (12.6.2), with
T = 2¢3¢4, € = 4c3cs. The proof is complete.

__ In what follows, we shall be operating under the assumption that the constants
V appearing in (12.6.2); and (12.6.2), satisfy

(12.6.17) T8V < €n2 .

This will certainly be the case, by virtue of Theorem 12.5.1, when the initial
data satisfy (12.5.3) with a sufficiently small. Furthermore, because of the finite
domain of dependence property, (12.6.17) shall hold for f sufficiently small, even
when the initial data have only locally bounded variation and satisfy (12.5.2) with
§ sufficiently small. It will be shown below that (12.6.17) actually holds for any
t > 0, provided only the initial data have sufficiently small oscillation, i.e., § is
small.

Proposition 12.6.2 Forany —oo <X <y < oo andt > 0,

NViz 312 1) + PVsw( T) < 462=

(12.6.18)
+ 68 | T Vo542 3D + T Ve g i} .
- - y—X
TV[;'y]z(-, t) + TV[;.y]w(~, r <8 7 + 88
(12.6.19)
+ 68 | TV 5o 420 10 + TV g i i} .
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where X is the infimum of A(z, w) and T is the supremum of jt(z, w) over the range
of the solution.

Proof. By combining (12.6.2);, (12.6.2);, (12.6.17) and Proposition 12.5.1, we
immediately infer

NVizsz(. 1) + PVryyw(, 1)

(12.6.20) -3 _
S A== +2LA(F) + G(F) + A(F) + (W(F)] ,

t

where .7 denotes the region bordered by the graph of the minimal backward
1-characteristic &£(-) emanating from (¥, ), the graph of the maximal backward
2-characteristic ¢(-) emanating from (X, r), and the time lines f = ¢ and f =1/2.

We estimate A (F) + (4 (F) + A(F) + (4(.F) by applying Proposition
12.5.5, with the time origin shifted from ¢ = 0 to t = ¢/2. This yields (12.6.18).

Since total variation is the sum of negative variation and positive variation,
while the difference of negative variation and positive variation is majorized by the
oscillation, (12.6.18) together with (12.5.1) yield (12.6.19). The proof is complete.

Proof of Theorem 12.6.1 To verify (12.6.1), we first write (12.6.19) with f = ¢,
X = x and ¥ = y. To estimate the right-hand side of the resulting inequality, we
reapply (12.6.19), for = 11, X = x — 17t and ¥ = x — 4r. This yields

T Vo tzy-1502C 30 + TViem 1y 150wy 30)

y -
f

+ c8? [TV["_%H"),_%X’]Z(', %t) + TV[x—%Hr,y—%Xr]w('v Tlf)l .

(12.6.21) <1662"2 1 8¢ — 1) + 88

_Similarly, to estimate the right-hand_side of (12.6.21), we apply (12.6.19) with
f=3t,X=x— 3 and y = y — 3Xr. We thus obtain

1
T Vi3 - 33020 30 + T Vieag - 35q w0 31

y -
f

(12.6.22) <3262 7% 4 2ae -7 + 88
+ c8? [Tv[x_%ﬁ,_y_%x,]z(., W+ TV g1l gf)] .

Continuing on and passing to the limit, we arrive at (12.6.1) with

(12.6.23) b8 g8 Beld(E—X)
1 —2c8? 1—c8 " (1—c8?)(l — 2c8?)
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The above derivations hinge on the assumption that (12.6.17) holds; hence,
in order to complete the proof, we now have to verify this condition. Recalling
the definition of V in Pr0posmon 12.6.1 and applying Theorem 12.5.1, with time
origin shifted from 0 to 1r, we deduce

(12624 V =eswp [TV e 7026 30 + T Vi gz g, ) .

We estimate the right-hand side of (12.6.24) by means of (12.6.1), which yields
(12.6.25) V <ch(—X)+cBs ,

so that (12.6.17) is indeed satisfied, provided 8 is sufficiently small. The proof is
complete.

We now show that the L> bound (12.5.1), which has been assumed throughout
this section, is induced by initial data of sufficiently small oscillation, regardless
of the size of their total variation.

Theorem 12.6.2 There is a positive constant y, depending solely on F, such that
solutions generated by initial data with small oscillation

(12.6.26) lz(x, 0)] + |w(x,0)] < y8%, —~oc0o<x <00,

but unrestricted total variation, satisfy (12.5.1).

Proof. Assuming (12.6.26) holds, with y small, we shall demonstrate that
-8 < z(x,1) < § and —8 < w(x,t) < & on the upper half-plane. Arguing
by contradiction, suppose any one of the above four inequalities is violated at
some point, say for example z(x,f) > 4.

We determine y through 8¢(y — X) = 81, where ¢ is the constant appearing in
(12.6.2),, and apply (12.6.18). The first term on the right-hand side of (12.6.18) is
here bounded by “;8; the second term is bounded by 82, on account of (12.6.1).
Consequently, for 8 sufficiently small, the negative (decreasing) variation of z(-, 7)
over the interval {X, 7] does not exceed %8. It follows that z(x,?) > %8, for all
x € [x,¥]. In particular,

¥ - - 3 | R
(12.627) [ Uzt D1+ bt Dl > G- = 7507

We now appeal to the L' estimate (12.8.3), which will be established in Section

12.8, Proposition 12.8.1, and combine it with (12.6.26) to deduce

v 8 -
(12.6.28) ﬁ [z(x, )|+ |w(x, flldx < 4[G—f)+2c?]y82'= y [-2—5 + SC] 81 .

It is clear that for y sufficiently small (12.6.27) is inconsistent with (12.6.28), and
this provides the desired contradiction. The proof is complete.
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In conjunction with the compactness properties of BV functions, recounted
in Section 1.7, the estimate (12.6.1) indicates that, starting out with solutions
with initial data of locally bounded variation, one may construct, via completion,
BV, solutions under initial data that are merely in L>, with sufficiently small
oscillation. Thus, the solution operator of genuinely nonlinear systems of two
consesrvation laws regularizes the initial data by the mechanism already encoun-
tered in the context of the genuinely nonlinear scalar conservation law (Theorem
11.2.2).

12.7 Regularity of Solutions

The information collected thus far paints the following picture for the regularity
of solutions:

Theorem 12.7.1 Let U(x, t) be an admissible BV solution of the genuinely non-
linear system (12.1.1) of two conservation laws, with the properties recounted in
the previous sections. Then

(a) Any point (X, f) of approximate continuity is a point of continuity of U.

(b) Any point (X, 1) of approximate jump discontinuity is a point of (classical)
Jjump discontinuity of U.

(c) Any irregular point (X,t) is the focus of a centered compression wave of
either, or both, characteristic families, and/or a point of interaction of shocks of
the same or opposite characteristic families.

(d) The set of irregular points is (at most) countable.

Proof. Assertions (a), (b) and (c) are immediate corollaries of Theorem 12.3.1. In
particular, (¥, 1) is a point of approximate continuity if and only if (zw, ww) =
(zg, wg), in which case all four limits (zw, ww), (z&, we), (zn, wy) and (zs, ws)
coincide. When (zw, ww) # (zg, wg), then (x, ) is a point of approximate jump
discontinuity in the 1-shock set if (zw, ww) = (25, ws), (ze, we) = (zy, wy);
or a point of approximate jump discontinuity in the 2-shock set if (zw, wy) =
(zy, wy), (ze, we) = (25, ws); and an irregular point in all other cases.

To verify asssertion (d), assume the irregular point I = (X,7) is a node of
some 1-characteristic tree ./ or a 2-characteristic tree . }*". If I is the focussing
point of a centered 1-compression wave and/or point of interaction of 1-shocks,
then, by virtue of (12.5.15), I will register a positive contribution to =4 (.#2).
Similarly, if I is the focussing point of a centered 2-compression wave and/or
point of interaction of 2-shocks, then, by acocunt of (12.5.15),, I will register a
positive contribution to =/3(. /). Finally, suppose I is a point of interaction of
a l-shock with a 2-shock. We adjoin to ../ an additional node K lying on the
graph of x! very close to I. Then |Awk/ — Aw!| > 0 and so, by (12.5.16),, we
get a positive contribution to 4 (..//). Since the total amount of wave interaction
is bounded, by virtue of Proposition 12.5.5, we conclude that the set of irregular
points is necessarily (at most) countable. This completes the proof.
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An analog of Theorem 11.3.5 is also in force here:

Theorem 12.7.2 Assume the set ¢ of points of continuity of the solution U has
nonempty interior ¥ . Then U is locally Lipschitz continuous on % °.

Proof. We verify that z is locally Lipschitz continuous on 7 9. Assume (%,7) € Z ©
and ¥ contains a rectangle {(x, ) : [x = X| < kp, |t —f| < p}, with p > 0 and &k
large compared to |A| and p. By shifting the axes, we may assume, without loss
of generality, that 7 = p. We fix ¥ > X, where ¥ — X is small compared to p,
and apply (12.6.2)(, with x, = X, x, = ¥. Since the solution is continuous in the
rectangle, both .3(.7") and £4(.%) vanish and so, recalling (12.6.17),

~

_ - _ - _2,_ _
(12.7.1) 2(x,nH -z, < —;(y -X).

The functionsA(i, w)(x, 1) = (z, w)(X+¥—x, 2p—t) are Riemann invariants of
another solution U which is continuous, and thereby admissible, on the rectangle
[(x,0): |x =¥ < kp, |t — 7| < p}. Applying (12.7.1) to ? yields

(12.7.2) 3.0 -:x,H=2x,0H-:F.0H < %(y—n.

We now fix § > f, with § —f small compared to p. We construct the minimal
backward 1-characteristic & emanating from (¥, 5), which is intercepted by the
7-time line at the point ¥ = £(f), where 0 < ¥ — X < —A(5 — ). By Theorem
12.4.1, z(x, s) = z(¥, 1) and so, by virtue of (12.7.1) and (12.7.2),

. 2¢ 2A¢ -
(12.73) 2% 5 — 2® D] < ;C(y—f) < ——p—C(E—!) :

Thus z is Lipschitz.
A similar argument shows that w is also Lipschitz in ¢ °. This completes the
proof.

12.8 Initial Data in L'

Recall that, by virtue of Theorem 11.5.2, initial data in L' induce decay of so-
lutions of genuinely nonlinear scalar conservation laws, as + — 00, at the rate
0(!‘%). The aim here is to establish an analogous result in the context of gen-
uinely nonlinear systems of two conservation laws. Accordingly, we consider a
solution (z(x, ), w(x, t)) of small oscillation (12.5.1), with initial data of unre-
stricted total variation, which lie in L'(—o0, 00):

(12.8.1) L =/ [1z(x, 0)] + lw(x, 0)|}dx < > .

The principal result is
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Theorem 12.8.1 As t — 00,
(12.8.2) (2x, 0, wx, ) = 0(™1)
uniformly in x on (—00, 00).

The proof will be partitioned into several steps.

Proposition 12.8.1 For any t € [0,00), and —00 <X <y < 00,

Y+t

(12.8.3) [_ [lz(x, D! + [w(x. D]dx 54[_ Iz, 0] + Jw(x, 0)]]dx .

-t
In particular, (z(-,T), w(-, 1)) are in L' (=00, 00).

Proof. We construct a Lipschitz continuous entropy n by solving the Goursat
problem for (12.2.2) with prescribed data

7(z,0) = |zl +@z?, —oc0<zi<o00,
(12.8.4)

700, w) = lw| +az?, —00 <w <00,
where « is a positive constant. From (12.2.3) it follows that, for o sufficiently
large, n is a convex function of U on some neighborhood of the origin containing
the range of the solution.
Combining (12.2.2) and (12.8.4), one easily deduces, for § small,
(12.8.5)

1
5(|Z| +lwh) <nlz,w) <2(zl +|w)), —-28<z<28, -2<w<?26.

Furthermore, if ¢ is the entropy flux associated with n, normalized by (0, 0) = 0,
(12.2.1) and (12.8.5) imply

(12.8.6) lgz,w)| <=enplz,w), —-28<z<28, —-286<w<?25.

We now fix f > 0, —00 <X < ¥ < oo and integrate (12.3.1), for the entropy-
entropy flux pair (n, g) constructed above, over the trapezoid {(x,1) : 0 <t <1,
X~cf—t) <x <¥+c(f —1)}. Upon using (12.8.6), this yields

y Vol
(12.8.7) / n(z(x, D), w(x, 1))dx 5/_ n(z(x, 0), w(x, 0))dx .

x —cf

By virtue of (12.8.5), (12.8.7) implies (12.8.3). The proof is complete.
Proposition 12.8.2 Let (Z(-), W(-)) denote the trace of (z, w) along the minimal

(or maxirrial) backward 1- (or 2-) characteristic £(-) (or £(-)) emanating from any
point (¥, t) of the upper half-plane. Then
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(12.8.8), /[Ez(t)+|ﬂ)'(t)|]dt <¢L,
0

or

(12.8.8); [ [Z()| + W ())dr < L .
[1]

Proof. 1t will suffice to verify (12.8.8);. Suppose n is any Lipschitz continuous
convex entropy associated with entropy flux ¢ and n(0.0) = 0, ¢(0,0) = 0. We
fix X <y and integrate (12.3.1) over {(x,1):0 <t <1.¥ < x < £(1)} to get

¥ _ §(0)
/_ n(z{x, D), w(x, ))dx — /_ n(z(x,0). w(x, 0))dx
(12.8.9) * *

1 7
+/ G(E(t).w(t))dt—/ qz(x+, ). w&+,))dt <0,
[1] [1]

where G is defined by
(12.8.10) Giz,wy=q(z.w) — Az. wn(z. w) .

We seek an entropy-entropy flux pair that renders G(z, w) positive definite on
(—28, 28) x (=28, 28). By account of (12.2.1),

(12.8.11) G.=-xn,

(12.8.12) Gy =[x — M0l — pun

which indicate that G decays fast, at least quadratically, as z — 0, but it may
decay more slowly, even linearly, as w — 0.
We construct an entropy n by solving the Goursat problem for (12.2.2) with
data
Nz, 0 =2z+az2, —oo<z<00,

(12.8.13)
nO,w) = |w +aw?, —00o<w<00.

For « sufficiently large, it follows from (12.2.3) that 5 is a convex function of U
on some neighborhood of the origin containing the range of the solution. From
(12.8.12), (12.2.2) and (12.8.13) we deduce

(12.8.14) G(0, w) = [1£(0. 0) — A(0, O)]|w| + O(w?) .
(12.8.15) 0z, w) =2z +|wl+ 0 +wh .,

for (z. w) near the origin. Combining (12.8.14) with (12.8.11) and (12.8.15), we
conclude

(12.8.16) G(z, w) = [1(0, 0) — A(0, 0)]|w| — A.(0, 0)2% + O(w? + |zw| + |zI*) .
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We now return to (12.8.9). By account of Proposition 12.8.1, (z(-, 1), w(-, 1))
are in L!(—~o0, 00), for all 1 € [0, 7], and hence

T

(12.8.17) liminf| | gq(z(x+,8), w@E@+,))dt| =0.
X——=OC 0

Therefore, (12.8.9), (12.8.17), (12.8.15), (12.8.3) and (12.8.1) together imply

(12.8.18) [ G@E), w()dt < 12L
0

provided (12.5.1) holds, with & sufficiently small. The assertion (12.8.8); now
follows easily from (12.8.18), (12.8.16) and (12.1.3). This completes the proof.

R

Proposition 12.8.2 indicates that along minimal backward 1-characteristics z
is O(t‘%) and w is O(t~"), while along maximal backward 2-characteristics z
is 0(t™!) and w is O(t‘%). In fact, recalling that Z(-) and W(-) are nonincreas-
ing along minimal and maximal backward - and 2-characteristics, respectively,
we infer directly from (12.8.8); and (12.8.8), that the positive parts of z(x, )
and w(x, t) are O(t'%), as t — 00. The proof of Theorem 12.8.1 will now be
completed by establishing 0@ 1) decay on both sides:

Propesition 12.8.3 For 8 sufficiently small,

(12.8.19), 2,1 < %E ,
(12.8.19); wix, 1) < Sj—L .

hold, for all —00 < x < 00,0 < t < 00, where ¢ is the constant in (12.8.8); and
(12.8.8);.

Proof. Arguing by contradiction, suppose the assertion is false and let f > 0 be the
greatest lower bound of the set of points 1 on which (12.8.19), and/or (12.8.19),
is violated for some x. According to Theorem 12.3.1, the continuation of the
solution beyond f is initiated by resolution of Riemann problems along the f-time
line. Consequently, since (12.8.19), and/or (12.8.19), fail for ¢ > f, one can find
¥y € (=00, o¢) such that

4L
(12.8.20), 260 > 4% ,
and/or

o 4iL
(12.8.20), W@, D) > —j— .

For definiteness, assume (12.8.20); holds.
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Let (Z(-), W(-)) denote the trace of (z, w) along the minimal backward 1-
characteristic £(-) emanating from (¥, f). By applying Theorem 12.5.1, with the
time origin shifted from r = 0 to r = r/2, we deduce

(12.8.21)
TVig @0 < & {T Vo

IH

726 A+ TV sy w40

%
where X stands for the infimum of A(z, w) and [ denotes the supremum of u(z, w)
over the range of the solution. We estimate the right-hand side of (12.8.21) with
the help of Theorem 12.6.1 thus obtaining

(12.8.22) TV[ qU) < b ~ x) + B8).

By hypothesis,

(12.8.23) ) <

16¢L t -
= , <t <f.
f 2

We also have [z(r)] < 28. Therefore, by applying (12.4.2); we deduce

_ L
(12.8.24) 2(7-) — 32() < 534% ,

with ¢ = 64aé[b(it — A) + B8]
Since Z(f—) = z(J, 1), combining (12.8.20); with (12.8.24) yields

L T _
(12.8.25) 2(1) > 4%(1 —2) | % <t <7,
From (12.8.25),
r
(12.8.26) [ 72 (r)dt > 26L(1 —¢8) ,

2

which provides the desired contradiction to (12.8.8);, when & is sufficiently small.
The proof is complete.

12.9 Initial Data with Compact Support

Here we consider the large time behavior of solutions, with small oscillation
(12.5.1), to our genuinely nonlinear system (12.1.1) of two conservation laws under
initial data (z(x, 0), w(x, 0)) which vanish outside a bounded mterval [—¢, £]. We
already know, from Section 12.8, that (z(x, 1), w(x,t)) = O@t~ !) The aim is to
examine the asymptotics in finer scale, establishing the analog of Theorem 11.6.1
on the genuinely nonlinear scalar conservation law. -
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Theorem 12.9.1 Employing the notation introduced in Section 12.3, consider the
special forward characteristics $—(-), Y- () issuing from (¢, 0) and ¢, (), ¥, ()
issuing from (£, 0). Then

(a) For t large, ¢_, ¥, ¢, and ¥ propagate according to

(12.9.1), é_(t) = A(0.0)t — (p-)T + O(1) ,
(12.9.1), Yo (0) = 10,00 + (g4)F + O(1)
(12.9.2), 6.(6) = A0, 0)t + (o) + OUF)
(12.9.2) V- (0) = (0,0 ~ (gD} + O(3) .

where p_, p..q- and q, are nonnegative constanis.
(b) For t > 0 and either x < ¢_(t) or x > Y, (1),

(12.9.3) (e, )=0, wx,t)=0.
(c) For t large,
(12.9.4) TV w1260+ TVip. gy w, ) = 0G4 .

(d) For ¢ large and ¢_(t) < x < ¢, (1),
X 1
(12.9.5), A(z(x,1),0) = t_ + 0 (7) s
while for y_(t) < x < ¥, (¢),

(12.9.5)2 1O, wix, ) = f;— +0 (;) .

(e) For t large and x > ¢, (t), if p, > 0 then
(12.9.6), 0 < —z(x, 1) < c[x — A0, 0n]"? ,
while for x < y_(t), if g- > O then

(12.9.6); 0 < —w(x,t) <c[p,0)—x]"?.

According to the above proposition, as ¢t — oo the two characteristic families
decouple and each one develops a N-wave profile, of width O(I%) and strength
0(:‘%), which propagates into the rest state at characteristic speed. When one of
P-. P+ (or g_, q.) vanishes, the - (or 2-) N-wave is one-sided, of triangular pro-
file. If both p_, p, (or g_, g, ) vanish, the 1- (or 2-) N-wave is absent altogether.
In the wake of the N-waves, the solution decays at the rate O(t‘%), so long as
P+ > 0and g_ > 0. In cones properly contained in the wake, the decay is even
faster, O(t‘i).
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Statement (b) of Theorem 12.9.1 is an immediate corollary of Theorem 12.5.1.
The remaining assertions will be established in several steps.

Proposition 12.9.1 As t — oo, the total variation decays according to (12.9.4).

Proof. We fix ¢ large and construct the maximal forward l-characteristic y_(-)
issuing from (¢+(r§), t1) and the minimal forward 2-characteristic X+() issuing
from (¢_(I§). t%).

To estimate the total variation over the interval (x_(¢), x+(¢)), we apply The-
orem 12.5.1, shifting the time origin from 0 to ti. The minimal backward 1-
characteristics as well as the maximal backward 2-characteristics emanating from
points (x, t) with x_(¢) < x < x,(¢t) are intercepted by the t1-time line outside
the support of the solution. Furthermore, the oscillation of (z, w) along the (-
time line is 0(!‘%) so that in (12.5.4), and (12.5.4), one may take § = 0(!‘%).
Therefore,

(12.9.7) TVir 0rnein 2o )+ TV o W 1) = 077

To estimate the total variation over the intervals [¢_(t), x—(¢)] and [x,(t),
¥, ()], we apply Theorem 12.6.1, shifting the time origin from 0 to %t. The
oscillation of (z, w) along the %r-time line is 0(!‘%) so that in (12.6.1) we may
take & = 0(!‘5). Since x_(t) — ¢ (t) and ¥, (1) — x.(¢) are 0(!%), this yields

TVio-r- 0120 + TV o w00 = 0G|
(12.9.8) [g-(0-x-0] [¢- (). x-(1)] |
TVietngen 26D+ TV g 1) = 0071

Combining (12.9.7) with (12.9.8), we arrive at (12.9.4). This completes the
proof.

Proposition 12.9.2 Let X be any fixed strict upper bound of i(z, w) and W any
fixed strict lower bound of 11(z, w), over the range of the solution. Then, for t large
and x > At,

(12.9.9), 2(x, )= 0™}y,
while for x < ut,

(12.9.9); wix, )= 0(t™1) .

Proof. We fix ¢ large and x > At. Since A is a strict upper bound of A(z, w), the
minimal backward I-characteristic £(-) emanating from (x, ¢) will be intercepted
by the graph of ¥, at time ¢, > «t, where « is a positive constant depending solely
on x. If (Z(-), W(-)) denotes the trace of (z, w) along £(-), then the oscillation of
w(-) over [4, t]is ou 4. Applying Theorem 12.5.1, with time origin shifted to 1,
and using Proposition 12.9.1, we deduce that the total variation of W(-) over [#1, f]



288 XII. Genuinely Nonlinear Systems of Two Conservation Laws

is likewise O(¢~1). 1t then follows from Theorem 12.4.1 that Z(r—) = O(r?).
Since z(x, t) = Z(t—), we arrive at (12.9.9).

In a similar fashion, one establishes (12.9.9),, for x < fit. The proof is com-
plete.

Proposition 12.9.3 Assertion (d) of Theorem 12.9.1 holds.

Proof. By the construction of ¢_ and ¢, the minimal backward I-characteristic
£(-) emanating from any point (x, t) with ¢_(t) < x < ¢, (t) will be intercepted
by the x-axis on the interval [—¢, £]. Therefore, if (Z(-), w(-)) denotes the trace
of (z, w) along §(.),

=/ AGE(T), W(n))dr + &(1)
(12.9.10) ! ,
=m(z(x,r),0)+/ (-[2(0) = Z(t=)] + AW (D)}dT + O(1) .
1

By account of Proposition 12.9.2, w(r) = o ?). Applying Theorem 12.5.1,
with time origin shifted to t, and using Proposition 12.9.1, we deduce that the
total variation of w(-) over [r, ] is O(t"%). It then follows from Theorem 12.4.]
that Z(r) — Z(t—) is 0(‘[—%). In particular, the integral on the right-hand side of
(12.9.10) is O (1) and this establishes (12.9.5);.

A similar argument shows (12.9.5),. The proof is complete.

Proposition 12.9.4 For ¢ large, ¢_(t) and v, (t) satisfy (12.9.1); and (12.9.1),.

Proof. For ¢ large, ¢_(¢) joins the state (z(¢-(r)—, 1), w(P_(t)—, 1)) = (0,0),
on the left, with the state (z(¢-(r)+, ). w(p_(¢t)+,¢)), on the right, where
w(g_(0)+,1) = O@~?), while z(¢_(t)+, 1) satisfies (12.9.5), for x = ¢_(1).
The jump accross ¢_(¢) is 0(1‘%). Consequently, by use of (8.1.9) we infer

. | 1 1
2.9.11 _ = = — _
(12.9.11) b-(1) 2x<o,0>+2,¢_(1>+o(,) ,

almost everywhere.
We set ¢_(r) = (0, 0)t —v(¢). By the admissibility condition ¢_(¢) < A(0, 0),
we deduce that v(¢) > 0. Substituting into (12.9.11), yields

(12.9.12) () = —l-v(l) +0 (1) .
2t t

If v(r) = O(1), as t > oo, we obtain (12.9.1); with p_ = 0. On the other hand,

if v(r) 1 00, as + — oo, then (12.9.12) implies v(t) = (p-r)? + O(1), which
establishes (12.9.1); with p_ > 0.

One validates (12.9.1); by a similar argument. The proof is complete.
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Proposition 12.9.5 For t large, ¢, (t) and ¥_(t) satisfy (12.9.2); and (12.9.2),.
Furthermore, Assertion (e) of Theorem 12.9.1 holds.

Proof. For ¢ large, ¢, (1) joins the state (z(¢,(1)—, 1), w(¢p,(t)—. 1)), on the left,
with the state (z(¢, (1)+, 1), w(@,(1)+, 1)), on the right, where both w(¢..(1)+, 1)
are O(t“g), while z(¢,(t)—, 1) satisfies (12.9.5); for x = ¢, (¢). The jump across
¢ (1) is O(t‘%). Hence, by use of (8.1.9) we obtain

. 1 1
(12.9.13) $(1) = SAEBO+,0,0+ 5600+ 0 (;) .

Since ¢, (-) is maximal, minimal backward !-characteristics {(-) emanating
from points (x,¢) with x > ¢, (¢) stay strictly to the right of ¢,(-) on [0, ¢] and
are thus intercepted by the x-axis at £(0) > ¢. By virtue of Theorem 12.4.1, it
follows that z (¢, (¢)+.t) < 0 and so A(z(¢,(t)+, 1), 0) > 1(0, 0).

We now set ¢, (t) = X(0,0)t + v(2), A(z(¢,(t)+.1).0) = X(0.0) + g(¢). As
shown above, g(r) = 0. Furthermore, by virtue of the admissibility condition
G4 (1) = Mz ()+, 1), w(p, (1)+, 1)) we deduce v(r) > g(t) + 0(t~1). When
v(t) = O(l), as t — oo, we obtain (12.9.2),, with p, = 0, corresponding to the
case of one-sided N-wave. This case is delicate and shall not be discussed here,
so let us assume v(t) — 00, as t — 00.

Substituting ¢, () into (12.9.13), we obtain

) 1 1 1

Since g(t) > 0, (12.9.14) yields v(t) > at%, with ¢ > 0. On the other hand, we
know that v(t) = O(t1) and so (12.9.14) implies

v 1 1 _3
(12.9.15) — > 4 BT+ 0@,
v~ 2t
It is clear that (12.9.15) induces a contradiction to v(r) = O(r%) unless
o
(12.9.16) / g(1)t7idt <00 .
1

We now demonstrate that, in consequence of (12.9.16), there is T > 0 with
the property that

(12.9.17) inf[t%g(t): <t st] < %a , forallet>T.

N~

Indeed, if this assertion were false, we could find a sequence (¢}, With tmy1 = 2m,
m =1,2.--., along which (12.9.17) is violated. But then

12.9.18 T emyrtde > | L
(12.9.18) s I—Ea; Miriated

in contradiction to (12.9.16).
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Let us fix (x,f), with ¢ > T and x > ¢,(¢). The minimal backward |-
characteristic {(-) emanating from (x,¢) stays strictly to the right of ¢, (). We
locate 7 € [§¢, ] such that

.- - |
(12.9.19) Az (@ (D+,0),0) —21(0,0) =g(f) < Zat 2

and consider the minimal backward l-characteristic §(-) emanating from a point
(%, 1), where X lies between ¢,.(7) and £(r) and is so close to ¢, (¢) that

- 1 __
(12.9.20) A:(X,0),0) —1(0,0) < Zat ?

Let (Z(-), W(-)) denote the trace of (z. w) along §(-). By virtue of Theorgm 12.4.1,
Z(-) is a nonincreasing function on (0, 7) so that Z(r) < z(f—) = z(x, ). Conse-
quently, by account of (12.9.20),

£(1) = MZ(1), W(1)) < M(X, 7). W(1))

(12.9.21) .
< 10, 0) + saf F +EB(D)] -

The integral of [W(-)| over [0, 7] is O(1), by virtue of Proposition 12.8.2. Moreover,

Pt—

(12.9.22) E() =X > ¢ (f) = L(0,0)f + ar

Therefore, integrating (12.9.21) over [0, 1] yields

(12.9.23) £(0) > %a7%+0(1)37‘?at%+0(1).

Since {(-) stays to the right of £(-), (12.9.23) implies, in particular, that the graph
of ¢(-) will intersect the graph of () at time / = O(t%).

Let (Z(-), w(-)) denote the trace of (z, w) along £(-). The oscillation of w(-)
over[{,?) is O(t‘%). Furthermore, by account of Theorem 12.5.1, with time origin
shifted to 7, and Proposition 12.9.1, we deduce that the total variation of Ww(-) over
[£,¢) is also 0(!‘5). It then follows from Theorem 12.4.1 that z(t—) = 0(1’%).

By virtue of the above result, (12.9.21) now implies

(12.9.24) £(1) < X(0,0) + O(t™3) +&lw(r)|
which, upon integrating over [0, t], yields
(12.9.25) E0) = x — A(0,0)t + O(t%) > %[x — 2(0,0)t] .

Thus, f > ¢'[x — A(0, 0)¢]. But then the oscillation and total variation of (-)

over [, ¢] is bounded by &[x — A(0, 0)¢]%, in which case (12.9.6), follows from
Theorem 12.4.1.
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Finally, we return to (12.9.14). Since z(¢,(1)+.7) is O(¢~1), we get that
g(t) = O(t~1) and this in tumn yields v(t) = (py1)? + O(r3), with p, > 0. We
have thus verified (12.9.2);.

A similar argument establishes (12.9.6);, for x < ¥_(t), and validates
(12.9.2);. This completes the proof of Proposition 12.9.5 and thereby the proof of
Theorem 12.9.1.

It is now easy to determine the large time asymptotics of the solution U (x, t)
in L'(—00, o0). Starting out from the (finite) Taylor expansion

(12.9.26) U(z, w) = zR(0, 0) + wS(0, 0) + O(Z2 + w?) ,

and using Theorem 12.9.1, we conclude

Theorem 12.9.2 Assume p, > 0 and q_ > 0. Then, as t — 00,

(12.9.27)
1
WU, 1) =M(x. r: p-, pr)R(O0,0) = N(x, 1;¢-. ¢1)S0. Ol 11 (-c.0) = O(7) ,

where M and N denote the N-wave profiles:

(12.9.28),
x — (0,0 for — ( r)l < 2(0,0)¢ < ( t)l
—_, —-(p_)i <x—=A(0,0)r < :
M, t;p_, py) = X:(0, Oy p P+
0 otherwise ,
(12.9.28);
x — (0, 0)t ! 1
— for —(g-£)7 < x — p(0.0)r < (gy1):
N(x. t;g-.q:) = 1y (0, 0)r 1 ® 9+
0 . otherwise .

12.10 Periodic Solutions

The study of genuinely nonlinear hyperbolic systems (12.1.1) of two conservation
laws will be completed with a discussion of the large time behavior of solutions
with small oscillation, which are periodic,

(12.10.1) Ux+en=0Ux1), -0o<x<oo, >0,

and have zero mean':

v+t
(12.10.2) / Ux,Ndx =0, —-oco<y<oo, t>0.

! If the initial value problem has unique solution, initial data that are periodic with zero
mean necessarily generate solutions with the same property.
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The confinement of waves resulting from periodicity induces active interactions
and cancellation. As a result, the total variation per period decays at the rate
ou"):

Theorem 12.10.1 For any x € (60, 00), as t — oo,

bt
(12.10.3) TVierr) 20, ) + T Ve ergqw(e, 1) < 7

Proof. We apply (12.6.1) with y = x+n&; then we divide by n and we let n — oo,
This completes the proof.

We now investigate the asymptotics at the scale O(+~'). The mechanism en-
countered in Section 11,7, in the context of genuinely nonlinear scalar conservation
laws, namely the confinement of the intercepts of extremal backward characteris-
tics in intervals of the x-axis of period length, is here in force as well and generates
similar, serrated asymptotic profiles. The nodes of the profiles are again tracked
by divides, in the sense of Definition 10.3.1.

Theorem 12.10.2 The upper half-plane is partitioned by minimal (or maximal) 1-
(or 2-) divides along which z (or w) decays rapidly to zero, O(t™%), ast — 0. Let
X-(-) and x.(-) be any two adjacent 1- (or 2-) divides, with x_(t) < x4 (t). Then
X+(t) — x_(t) approaches a constant at the rate O(t™'), as t — 00. Furthermore,
between x_ and y, lies a 1- (or 2-) characteristic  such that, as t — 00,

1
(12.10.4) Y(@) = E[X_(t) + x+ (O] +o(l),

t 1
D, (:) X-0) <x <y,
(12.10.5)1  A:(0,0)z(x, 1) X - X+(’) I 10
(7) <x < x40,

or

"%X-(’)-ro(%) L X <x <y,

x = Xi ()
t

(12.10.5);  pu(0,0)wix,t) = I
+0(7) v V(@) <x < xe ().

The first step towards proving the above proposition is to investigate the large
time behavior of divides:

Proposition 12.10.1 Along minimal (or maximal) 1- (or 2-) divides, 7 (or w)
decays at the rate O(t%), as t — oo. Furthermore, if x_(-) and x,(-) are any
two minimal (or maximal) - (or 2-) divides, then, as t = o0,
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1

(12.10.6) X+ —x- () =heo + O (-,-) .

X+ (1) l
(12.10.7), / 2(x,tdx =0 (—E) .

x-(1) t
or

x4 (1) l
(12.10.7)2 / w(x,Ndx =0 (—2) .

x-() t

Proof. Assume x(-) is a minimal l-divide, say the limit of a sequence {£,(-)}
of minimal backward 1-characteristics emanating from points {(x,,?,)}, with
t, = 00, as n —> 00. Let (z,(-), w,(-)) denote the trace of (z, w) along §,(-). Ap-
plying Theorem 12.5.1, with time origin shifted to 7, and using Theorem 12.10.1,
we deduce that the total variation of w, () over any interval [z, 7 + 1] C [0, #,] is
O(t™"), uniformly in n. Therefore, by virtue of Theorem 12.4.1, z,(-) is a nonin-
creasing function on [0, ¢,] whose oscillation over [z, T + 1] is O(t?), uniformly
in n. It follows that the trace Z(-) of z along x(-) is likewise a nonincreasing func-
tion with O(t ~3) oscillation over [z, T+ 1]. By tallying the oscillation of Z(-) over
intervals of unit length, from ¢ to infinity, we verify the assertion Z(t) = O(t™2).

A similar argument shows that the trace Ww(-) of w along maximal 2-divides
is likewise O(t7?), as t — oo.

Assume now x_(-) and y, (-) are two minimal I-divides with y,(t) — x-(¢) =
h(t) = 0, for 0 < r < 0o. Note that, because of periodicity, h(0) < k¢, for some
integer &, implies A(r) < k€,0 <t < o0. Letting (z_(-), w—(-)) and (z4+(:), wy(+))
denote the trace of (z, w) along x_(-) and x,(-), respectively, we have

(12.10.8) h(T) = Mzy (1), wy (1)) — Az (1), w_(T)) ,

for almost all 7 in [0, c0).

The maximal backward 2-characteristic ¢;(-) emanating from the point
(x4+(7), T) is intercepted by the graph of x_(-) at time t — f(1). If (Z(-), w(-))
denotes the trace of (z, w) along ¢ (-), Theorems 12.5.1 and 12.10.1 together im-
ply that the total variation of Z(-) over the interval [t — f(t), 7] is O(z7"), as
7 — 00. It then follows from Theorem 12.4.1 that the oscillation of W(-) over
[t = f(r),t]is O(z73). Hence

(12.10.9) w,()=w_(t - f@)+ 0.
Since z+ (1) = O(t72), (12.10.8) yields
. 1
(12.1010)  h(x) =20, w_(t — f(1)) = A0, u_ (D)) + O (;5) .
From A(t) = O(z~") and ¢; = u(0, 0) + O(r "), we infer that the oscillation

of f(-) over the interval [t, 7 + 1] is O(z™"). The total variation of w_(-) over
[z, 7 + 1] is likewise O(z~'). Then, for any t < t' < 20,
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(12.10.11) / (0. w_(t — f(1)) = M0, w-(z)}d7| <

c
t

Upon combining (12.10.10) with (12.10.11), one arrives at (12.10.6).
Let U_(:) and U, (-) denote the trace of U along x_(-) and y.(-), respectively.
Integration of (12.1.1) over {{(x.7) 1t < T < 00, x_(7) <x < x,(1)} gives

X1 x
(12.10.12) /X_m U(x")d-\‘=[ (FUL(D)) = MU+ (t)Uo(7)
= F(U_(1)) + MU- () U_(1)}dT .

We multiply (12.10.12), from the left, by the row vector Dz(0). By account of
(7.3.12), U. = R and U,, = S so that, using (12.1.2), we deduce

(12.10.13) Dz(O)U =z + O(Z2 + w?) ,
(12.10.14) Dz(0)[F(U)— A(U)U] = Dz(0)F (0)+aw? + O(z* + |zw| + w]®)

where the constant a is the value of (A — #)STD?z§ at U = 0. By virtue of
z(7) = O(x72), w(r) = O(r~") and (12.10.9), we conclude

+() ¢
a21045 [ atndx=a | [wf(t—f(t))—wi(t)]dt+0(tiz).

x-(0)

As explained above, over the interval [z, T+ 1] the oscillation of f(-)is O(r ')
and the total variation of w? (-) is O(r~2). Then, the integral on the right-hand
side of (12.10.15) is O(t7?%), as t — oo, which establishes (12.10.7);.

When y_(-) and x,(-) are maximal 2-divides, a similar argument verifies
(12.10.6) and (12.10.7),. The proof is complete.

The remaining assertions of Theorem 12.10.2 will be established through the
following

Proposition 12.10.2 Consider any two adjacent minimal (or maximal) 1- (or 2-)
divides x_(-), x4+ (), with x_(t) < x+(t),0 < t < 0o. The special forward 1- (or
2-) characteristic ¢_(-) (or ¥,(-)), in the notation of Section 12.3, issuing from
any fixed point (x,0), where x_(0) <X < x..(0), is denoted by y(-). Then (-)
satisfies (12.10.4). Furthermore, (12.10.5); (or (12.10.5);) holds.

Proof. It will suffice to discuss the case x_, x, are 1-divides. We consider minimal
backward |-characteristics £(-) emanating from points (x, ), with ¢ > 0 and
X-(t) < x < x4 (t). Their graphs are trapped between the graphs of x_ and ..
The intercepts £(0) of such &, by the x-axis, cannot accumulate to any £ in the open
interval (x-(0), x,(0)), because in that case a minimal 1-divide would issue from
the point (x, 0), contrary to our assumption that y_, y, are adjacent. Therefore,
by the construction of ¥(-) we infer that, as t — o0,£(t) — x—(1), when
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X € (x-(1), ¥ (D], or &(r) — x4(v), when x € (¥ (r). x4 (r)], the convergence
being uniform on compact subsets of [0, c0).

We now fix £(-) emanating from some point (x,t), with x_(¢) < x < ¥ (1),
and set h(t) = &(t) — x-(7),0 < v <. Then, for almost all t € [0, 7] we have

(12.10.16) h(7) = L(Z(1), W(1)) — Az-(1), w_(T)) .

where (Z(-), W(-)) denotes the trace of (z. w) along £(-), while (z_(-), w_())
stands for the trace of (z, w) along x_(.).

By virtue of Theorems 12.5.1 and 12.10.1, the total variation of W(-) on any
interval [s, s+ 1] C [0, ] is O(s™'). It then follows from Theorem 12.4.1 that the
oscillation of Z(-) over [s, s + 1] is O(s~*) and hence

_ 1
(12.10.17) z(t)=z(x.t)+0(?5) .

Furthermore, by Proposition 12.10.1, z_(t) = O(t?). Also, z(x.1) = O(t™") so,
a fortiori, z(x,t) = O(z~"). By account of these observations, (12.10.16) yields

(12.10.18)  A(t) = A-(0, 0)z(x, t) + A(0, W(T)) — A0, w_()) + O (%) .

For any fixed t >> 0, we consider the maximal backward 2-characteristic
() emanating from the point (§(t), t), which is intercepted by the graph of
x—() at time T — f(1). If (2(-), @(-)) denotes the trace of (z, w) along {;(-),
Theorems 12.5.1 and 12.10.1 together imply that the total variation of z(:) over
the interval [t — f(z), t]is O(z~"). It then follows from Theorem 12.4.1 that the
oscillation of W(-) over [t — f(1), 7] is O(r~>*). Hence

1
(12.10.19) ib‘(r):w_(z_f(t)).,_o(;) ,

and so (12.10.18) implies
(12.10.20) |
h(t) = 100, 0)z(x, ) + A(0, w_(t — f(7))) = MO0, w_(T)) + O (?) )

As in the proof of Proposition 12.10.1, on any interval [z.7 + 1] C [0.7]
the oscillation of f(-) is O(r~') and the total variation of w_(-) is also O(z ™).
Therefore, upon integrating (12.10.20) over the interval [s,1].0 < s < ¢, we
deduce

1 1
(12.10.21) x — x—(1) — 1.(0, 0)z(x, t)t = &(s) — x-(5) + O (;) +s0 (7) .

With reference to the right-hand side of (12.10.21), given & > 0, we first fix s so
large that O(s™") is less than %e. With s thus fixed, we determine 7 such that, for



296 XII. Genuinely Nonlinear Systems of Two Conservation Laws

t > 7, s0(t™") does not exceed ;& while at the same time §(s) — x_(s) < ie,
for all x € (x_(t), ¥(8)]. Clearly, this last condition need only be checked for
t =1{, x = y(). We have thus verified that the left-hand side of (12.10.21) is
o(l), as t — oo, uniformly in x on (x_(t). ¥(¢)), which verifies the upper half
of (12.10.5);. The lower half of (12.10.5); is established by a similar argument.
This completes the proof.

12.11 Notes

There is voluminous literature addressing various aspects of the theory of genuinely
nonlinear systems of two conservation laws. The approach in this chapter, via the
theory of generalized characteristics, is principally due to the author, and some of
the proofs are recorded here in print for the first time. Most of the results were
derived earlier in the framework of solutions constructed by the random choice
method, which will be presented in Chapter X111. The seminal contribution in that
direction is Glimm and Lax [1].

The Lax entropies, discussed in Section 12.2, were first introduced in Lax [4].

A somewhat stronger version of Theorem 12.3.1 was established by DiPemna
[1], for solutions constructed by the random choice method. Theorem 12.4.1 im-
proves a proposition in Dafermos [16].

Theorems 12.5.1, 12.6.1 and 12.6.2 were originally established in Glimm and
Lax [1], for solutions constructed by the random choice method, by use of the the-
ory of approximate conservation laws and approximate characteristics, which will
be outlined in Section 13.3. The treatment here employs and refines methodology
developed by Dafermos and Geng [1,2], for special systems, and Trivisa [1], for
general systems, albeit when solutions are “countably regular”.

The results of Section 12.7 were established earlier by DiPema [1], for solu-
tions constructed by the random choice method.

For solutions with initial data in L', Temple [3] derives decay at the rate
O(1/+/Togt). The O(t1) decay rate established in Theorem 12.8.1, which is
taken from Dafermos [16], is sharp.

The mechanism that generates N-wave profiles was understood quite early,
through formal asymptotics (see Courant and Friedrichs [11), even though a rig-
orous proof was lacking (Lax [2]). In a series of papers by DiPema [2,4] and
Liu [5,6,14], decay to N-waves of solutions with initial data of compact sup-
port, constructed by the random choice method, was established at progressively
sharper rates, not only for genuinely nonlinear sytems of two conservation laws
but even for systems of n conservation laws with characteristic families that are
either genuinely nonlinear or linearly degenerate. The decay rates recorded in The-
orem 12.9.1 are sharp. Relatively little is known for systems that are not genuinely
nonlinear; see Zumbrun [1,2].

Theorem 12.10.1 is due to Glimm and Lax [1], while Theorem 12.10.2 is taken
from Dafermos [18].
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For applications of the theory of characteristics in investigating uniqueness,
regularity and large time behavior of solutions of special systems with coinciding
shock and rarefaction wave curves (Temple [1]), see Serre [7,9], Dafermos and
Geng [1,2], Heibig 2], Heibig and Sahel [1] and Ostrov [l]. BV solutions for
such systems have been constructed by the Godunov difference scheme (LeVeque
and Temple [1]) as well as by the method of vanishing viscosity (Serre [1,9]).






Chapter XIII. The Random Choice Method

The endeavor of solving the initial-value problem for the scalar conservation law,
in Chapter V1, owes its spectacular success to the L'-contraction property. which
applies not only to the solutions themselves but even to their approximations by
means of vanishing viscosity, layering, relaxation, etc. For systems, however, the
situation is different: L'-contraction no longer applies; in its place, L!-Lipschitz
continuity will eventually be established, in Chapter X1V, albeit under substantial
restrictions on the initial data. Furthermore, at the time of this writing, the requisite
stability estimates have been established solely in the context of highly specialized
approximating schemes that employ as building blocks the solution of the Riemann
problem.

It is desirable to design approximating schemes that do not smear the shocks
of the exact solution. It tums out, however, that this feature may be in conflict
with the requirement of consistency of the algorithm. The random choice method,
developed in this chapter, succeeds in striking the delicate balance of safeguarding
consistency without smearing the sharpness of propagating shock fronts. This
algorithm will be employed to establish the existence of admissible BV solutions
under any initial data with sufficiently small total variation.

The important notions of approximate conservation laws and approximate char-
acteristics will be introduced. The device of wave partitioning, which renders the
issue of consistency of the construction scheme deterministic, will be briefly con-
sidered. A discussion will follow on how the algorithm shall be modified in order
to handle inhomogeneity and source terms involved in hyperbolic systems of bal-
ance laws.

The chapter will close with a demonstration that, in systems of at least three
conservation laws, when the total variation of the initial data is large, repeated
collisions of shocks in resonance may drive the oscillation and/or total variation
of solutions to infinity, in finite time.

13.1 The Construction Scheme

We consider the initial-value problem for a strictly hyperbolic system of conser-
vation laws, defined on a ball 7~ centered at the origin:
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UK. )+ FUx,)=0, —-oo<x<oo, 0=t<oco,
(13.1.1)

U,0)=0Up(x), —-00<x<00.
The initial data U, are functions of bounded variation on (—o0, c0). The ultimate
goal is to establish the following

Theorem 13.1.1 There are positive constants 8o and &y such that if
(13.1.2) SUP,_ o050y [Un()] < 80,
(13.1.3) TV _x.oplUo(:) <41,

then there exists a solution U of (13.1.1), which is a function of locally bounded
variation on (—00,00) x [0, 00) taking values in . This solution satisfies the
entropy admissibility criterion for any entropy-entropy flux pair (1, q) of the system,
with n(U) convex. Furthermore, for each fixed t € [0, 00), U(-, t) is a function of
bounded variation on (—00, 00) and

(13.1.4) SUP, _oo.00) U, )] < COSUP o o) IUO()], 0=t <00,
(13.1.5) TVico.pUC 1) < 1T VicooyUn() , 0=t <00,
(13.1.6)

o0

/ [Ux, ) =Ux, D)ldx < calt = T]TVicaoo)Un(r) , 0T <t <00,
—-00

where co,c1 and c; are constants depending solely on F. When the system is
endowed with a coordinate system of Riemann invariants, 8; in (13.1.3) may be
fixed arbitrarily large, so long as

(13.1.7) (SUP(~o0,00) [Uo(INT Vi—s0,00 U0 (1)) < 82,
with 8; sufficiently small, depending on §,.

The proof of the above proposition is quite lengthy and shall occupy the entire
chapter. Even though the assertion holds at the level of generality stated above,
certain steps in the proof (Sections 13.3, 13.4 and 13.6) will be carried out under
the simplifying assumption that each characteristic family of the system is either
genuinely nonlinear (7.6.13) or linearly degenerate (7.5.2). The solution U will be
attained as the # | 0 limit of a family of approximate solutions Uy constructed by
the folowing process.

We fix a spatial mesh-length h, which will serve as parameter, and a cor-
responding temporal mesh-length A~'h, where A is a fixed upper bound of the
characteristic speeds |A;(U)|, for U € ¢ and i = I,---,n. Setting x, = rh,
r=0,x1,%2,---and t, = sA~'h, s = 0,1, 2, -, we build the staggered grid
of mesh-points (x,,t;), with s =0,1,2,---, and r + s even.

Assuming now Uy has already been defined on {(x,) : —00 < x < o0,
0 <t < £}, we determine U, (-, ;) as a step function that is constant on intervals
defined by neighboring mesh-points along the line ¢ = ¢,
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(13.1.8) Unx, 1) =U] , x1<x <Xy . r-+sodd,

and approximates the function Uy (., 1;,—). The major issue of selecting judiciously
the constant states U] will be addressed in Section 13.2,

Next we determine Uy on the strip {(x,7) : —00 < x < 00, f; <t < t;,1} as
a solution of our system, namely,

(13.1.9) 3 Us(x, )+ 0 F(Up(x,1)) =0, —oo<x<o0o, <t <y,

under the initial condition (13.1.8), along the line ¢ = t,. Notice that the solution
of (13.1.9), (13.1.8) consists of centered wave fans issuing from the mesh-points
lying on the t.-time line (Fig. 13.1.1). The wave fan centered at the mesh point
(x;, &), r+35 even, is constructed by solving the Riemann problem for our system,
with left state U7~" and right state U’+'. We employ admissible solutions, with
shocks satisfying the viscous shock admissibility condition (cf. Chapter [X). The
resulting outgoing waves from neighboring mesh-points do not interact on the
time interval [¢;, t;11), due to our selection of the ratio A of spatial and temporal
mesh-lengths.

| \/ O\ \/ e \/ up
\/ ' \/ y ; ' \/ @) \/
<4k, 0) (=24, 0) 0.0) @h.0) @0 x
Fig. 13.1.1.

To initiate the algorithm, at s = 0, we employ the initial data:
(13.1.10) Uy(x,0-)=0p(x), —o0o<x<o0.

The construction of U, may proceed for as long as one may solve the resulting
Riemann problems. As we saw in Chapter IX, this can be effected, in general, so
long as the jumps |U/*! — U] stay sufficiently small.

After considerable preparation, we shall demonstrate, in Sections 13.5 and
13.6, that the U, satisfy estimates

(13.1.11) SUD,_ o000y |Un ()] S €0 SUP_op.00) [D() . 0= <00,

(13.1.12) TVicoooyUn( 1) < 1 TVicoooqUo(), 0t <00,



302 XIII. The Random Choice Method

(1%61'13)
/ |Un(x, ) =Un(x, Ddx S c2(lt =TI +MT Vicso oy Up(-), 0<T <t <00,

oo
In particular, (13.1.11) guarantees that when (13.1.2) holds with & sufficiently
small, U, may be constructed on the entire upper half-plane.

13.2 Compactness and Consistency

Deferring the proof of (13.1.11), (13.1.12) and (13.1.13) to Sections 13.5 and 13.6,
we shall take here these stability estimates for granted and will examine their
implications. By virtue of Theorem 1.7.1, (13.1.12) and (13.1.13) imply that U,
is in BVj, and its total variation over any compact subset of (—o0, c0) x [0, 00)
is bounded, uniformly in A. It then follows from Theorem 1.7.2 that there is a
sequence {4}, with A, — 0 as m — oo, such that

(13.2.1) Up,(x,t) > U(x,t), asm— o0, ae on(—00,00)x[0,00),

where U is a function in B Vi, on (—o0, 00) % [0, 00). Furthermore, by account of
(13.1.11), (13.1.12) and (13.1.13), for each fixed ¢ € [0, 00), U(-, ¢) is a function
of bounded variation on (—o0, 00), which satisfies (13.1.4), (13.1.5) and (13.1.6).

We now turn to the question of consistency of the algorithm, investigating
whether U is a solution of the initial-value problem (13.1.1). By its construction,
U, satisfies the system inside each strip {(x,f) : —00 < x < 00,8 <t < ts11}.
Consequently, the errors are induced by the jumps of Uy across the dividing lines
t = t;. To estimate the cumulative effect of these errors, we fix any C™ test
function ¢, with compact support on (—o0, ) x [0, o©), we apply the measure
(13.1.9) to ¢ on the rectangle {(x,¢) : x,—) <X < X,41, & < < tyy, ¥ + 5 odd}
and sum over all such rectangles in the upper half-plane. After an integration by
parts, and upon using (13.1.8) and (13.1.10), we obtain

/ / [8,6U + 3, F(Up)Jdxdt + / 6(x, O)Up(x)dx
0 -0 -50

=> 3 / T e U x, (-) — Ul

$=0 r+s odd

(13.2.2)

Therefore, U will be a weak solution of (13.1.1), i.e., the algorithm will be con-
sistent, if U, approximates the function U, (-, t,—), over the interval (x,—1, x,41),
in such a manner that the right-hand side of (13.2.2) tends to zero, as & | 0.
One may attain consistency via the Lax-Friedrichs scheme:
Kril

(13.2.3) U/

s = T - Up(x, t;—)dx

, r+sodd.

Indeed, with that choice, each integral on the right-hand side of (13.2.2) is ma-
jorized by A% max [9cploscic,_, 5.\ Un(-, t;—). The sum of these integrals over r
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is then majorized by h? max |8.4|T V(- oo,00)Un(-, ts—), Which, in turn, is bounded
by ¢18h? max |3,¢|, on account of (13.1.12) and (13.1.3). The summation over s,
within the support of ¢, involves O(h~") terms, and so finally the right-hand side
of (13.2.2) is O(h),as 1 } 0.

Even though it passes the test of consistency, the Lax-Friedrichs scheme stum-
bles on the issue of stability: It is presently unknown whether estimates (13.1.12)
and (13.1.13) hold within its framework. One of the drawbacks of this scheme is
that it smears, through averaging, the shocks of the exact solution. This feature
may be vividly illustrated in the context of the Riemann problem for the linear,
scalar conservation law,

Qux,t)+a)du(x,t) =0, —-ow<x<ox, 0<t<oo

(13.2.4) 0, —0o<x<0
u(x,0) =
1, O<x <o

where a is a constant in (—1, 1) (recall that A denotes the ratio of the spatial
and temporal mesh-lengths). The solution of (13.2.4) comprises, of course, the
constant states u = 0, on the left, and 4 = 1, on the right, joined by the shock
x = ait. The first four steps of the construction of the approximate solution u,
according to the Lax-Friedrichs scheme are depicted in Fig. 13.2.1. The smearing
of the shock is clear.

/ 8([ a) / (I-a) (2+a)l/8(l a)(7+4a+a/
/ 4(l a) 4(l a)(3+a)/
0 / 1(!—}1)/1
2

0 1

0 ' I x
Fig. 13.2.1.

In order to prevent the smearing of shocks, we try a different policy for eval-
uating the U7. We start out with some sequence g = {ao,a,az, -}, Where
as € (=1, 1), we set y7 = x, + ash, and build, on the upper half-plane, another
staggered grid of points (y’, t;), with s = 0,1,2,--- and r + 5 odd. We employ
(¥, t5) as a sampling point for the interval (x,_i, xr4+1), on the f-time line, by
selecting

(13.2.5) U =lmUy(y;—,1), r+sodd.

II,
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To test this approach, we consider again the Riemann problem (13.2.4). The
first few steps of the construction of the approximate solution u are depicted in
Fig. 13.2.2. We observe that according to the rule (13.2.5), as one passes from
t =t to t = t;,1, the shock is preserved but its location is shifted by 4, to the
left, when a; > a, or to the right, when a, < a. Consequently, in the limit 2 | 0
the shock will be thrown off course, unless the number m_ of indices s < m with
a; < a and the number m, of indices s < m with a; > a are related through
m_ —m, ~ am, as m — 0o. Combining this with m_ 4+ m = m, we conclude
that u, will converge to the solution of (13.2.4) if and only if m_/m — 1(1+a)
and my/m — 5'(1 — a), as m — oo. For consistency of the algorithm, it will be
necessary that the above condition hold for arbitrary a € (-1, 1). Clearly, this will
be the case only when the sequence g is equidistributed on the interval (1, 1),
that is, for any subinterval 7 C (-1, I) of length p(/):

(13.2.6) lim 3[number of indices s < m witha, € I1= pu(l),
m-»0C m

uniformly with respect to /.

0 1
. — /l .
‘ l 0 1
—+ ! ' } -
Fig. 13.2.2.

Later on, in Section 13.7, we shall see that the algorithm based on (13.2.5),
with any sequence g which is equidistributed in (—1, 1), is indeed consistent,
for the general initial-value problem (13.1.1); but this may only be established
by paying the price of tracking the global wave pattern. The objective here is
to demonstrate a slightly weaker result, whose proof however relies solely on the
stability estimate (13.1.5). Roughly, it will be shown that if one picks the sequence
g at random, then the resulting algorithm will be consistent, with probability one.
It is from this feature that the method derives its name: random choice.

We realize sequences g as points in the Cartesian product space . ¢ =
[To2y(=1,1). Each factor (~1, 1) is regarded as a probability space, under
Lebesgue measure rescaled by a factor 1/2, and this induces a probability measure
v on .4 as well. In connection to our earlier discussions on consistency, it may
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be shown (references in Section 13.10) that almost all sequences p € . / are
equidistributed in (—1. I). The main result is

Theorem 13.2.1 There is a null subset . | * of . -4 with the property that the algo-
rithm induced by any sequence © € . 4\. } " is consistent. That is, when the U’
are evaluated through (13.2.5), with y] = x, + a.h, then the limit U in (13.2.1) is
a solution of the initial-value problem (13.1.1).

Proof. The right-hand side of (13.2.2) is completely determined by the spatial
mesh-length A, the sequence g and the test function ¢, so it shall be denoted by
e(p; ¢. k). By virtue of (13.2.5),

o0

(13.2.7) elpid )= el 6. h)
s=0

where

(13.2.8) e(p: ¢, h) = Z /'r+ & (x, t)[Un(x, t,—) — Up(y;, t:;—)]dx .

r+sodd V¥

Note that the integral on the right-hand side of (13.2.8) is majorized by
2h max |@|osce,_,.x,.Un(, t;—) and hence e;(p; ¢, h) itself is majorized by
2h max |@|T V(—oo.00)Up (¢, ts—). By virtue of (13.1.12) and (13.1.3),

(13.2.9) les(9; ¢, h)| < 2ci61hmax|g|, s=0,1,2,.--.

In the summation (13.2.7), the number of nonzero terms, lying inside the
support of @, is O~y and so the most one may extract from (13.2.9) is
e(; ¢, h) = O(l), as h | 0. This again indicates that one should not expect
consistency for an arbitrary sequence g. The success of the random choice method
stems from the fact that, as & | 0, the average of ¢;(p; ¢. #) decays to zero faster
than e;(g; ¢, A) itself. Indeed,

1 Xrel
/ ¢ (x, ) Un(x, ts—=) — Uy (yf, ts_)]dXda.\-
(13.2.10) B

Vx|

1 Lr 4l Trel

= ; / O(x, 1) Un(x, t,—) — Un(y, 45 —)ldxdy
R Xr—1

is majorized by 2A% max |8:@losc, , x,.Un(, ts—). The sum over r of these inte-

grals is then majorized by 242 max |8,4|T V_oc.00)Un (-, ts—). Recalling (13.1.12)

and (13.1.3), we finally conclude

1
(13.2.11 U es(9; @, h)das| < 2¢8ih* max |3, . s=0,1.2,--- .
-1

Next we demonstrate that, for0 < s < 6 < 00, ,(g; ¢, h) and e, (9; ¢, 1t) are
“weakly correlated” in that their inner product in. £ decays to zero very rapidly,
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O(h®), as h | 0. In the first place, e;(¢: ¢, k) depends on g solely through the
first s + 1 components (ag. - - -, a;) and, similarly, e, (g; ¢, #) depends on g only
through (ao. - - - . a,). Hence, upon using (13.2.9) and (13.2.11),

V es(p;¢,h)ea(p:¢.h)dv(p)‘
A

i ! 1
(13.2.12) ={2—a—1f f e, (f eada,)dao---dag_l
-1 -1 -1

< 2¢?83h® max |¢| max |3, .

By virtue of (13.2.7),

(13.2.13) le|? —Zle‘lz-f-ZZ Z eses .

§=0 o=s5+1

Since ¢ has compact support, on the right-hand side of (13.2.13) the first summa-
tion contains O(h~') nonzero terms and the second summation contains O (h~")
nonzero terms. Consequently, on account of (13.2.9) and (13.2.11),

(13.2.14) f le(@; ¢, W)2dv(p) = O(h), ash ) O.
.

This implies the existence of a null subset . /, of . 4 such that e(g; ¢, hy) — 0,
as m — oo, for any p €. 4\. Jy. If {¢) is any countable set of test functions,
which is dense in C' in the set of all test functions with compact support in
(—00, 00) x [0, 00), the null subset. " = U;. J; of . £ will obviously satisfy the
asssertion of the theorem. The proof is complete.

To conclude this section, we discuss the admissibility of the constructed solu-
tion.

Theorem 13.2.2 Assume the system is endowed with an entropy-entropy flux pair
(1, q), where n(U) is convex in ¢ . Then there is a null subset . § ~ of . ¢ with the
Jollowing property: When the U are evaluated via (13.2.5), with y! = x, + a;h,
Jorany @ € . ¢\. |, the limit U in (13.2.1) is a solution of (13.1.1) which satisfies
the entropy admisstbtltty criterion.

Proof. Inside each strip {(x,¢) : —00 < x < 00, #; <t < ts41). Uy is a solution
of (13.1.9), with shocks that satisfy the viscous shock admissibility condition and
thereby also the entropy shock admissibility criterion, relative to the entropy-
entropy flux pair (, ¢) (cf. Theorem 8.6.2). Therefore, we have
(13.2.15)

INWn(x,0)+0:q(Up(x,£)) <0, —o0<x<00, Il <It<ly,

in the sense of measures.
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Consider any nonnegative C™ test function ¢ with compact support on
(—00,00) x [0,00). We apply the measure (13.2.15) to ¢ on the rectangle
{(x.8) : Xr_) < X < Xpyqs by St < Ly, r + 5 odd} and sum over all such
rectangles in the upper half-plane. After an integration by parts, and upon using
(13.1.8) and (13.1.10), this yields

x

=2 ¥ [ e @it = s

s=0 r+sodd Y

ffA[ald”l(uh)+ax¢¢I(Uh)]dxd[+f & (x, 0)n(Up(x)dx
az2.16 % -

Retracing the steps of the proof of Theorem 13.2.1, we deduce that there is a
null subset. /, of. ¢ with the property that, when o €. #\. /,, the right-hand side
of (13.2.16) tends to zero, along the sequence {h,,}, as m — oo, Consequently,
the limit U in (13.2.1) satisfies the inequality

(13.2.17) f f [0:pn(U) + 8cpq(U)]dxdt +f ¢ (x, 0)n(Up(x))dx = 0.
0 - -

We now consider any countable set {¢;} of test functions, which is dense in C'
in the set of all test functions with compact support in (—00, 00) x [0, 00), and
define. J "= Uy, Jg,. It is clear that if one selects any g €. 4\.J "then (13.2.17)
will hold for all test functions ¢ and hence U will satisfy the entropy admissibility
condition. This completes the proof.

In the absence of entropy-entropy flux pairs, or whenever the entropy admis-
sibility criterion is not sufficiently discriminating to rule out all spurious solutions
(cf. Chapter VIII), the question of admissibility of solutions constructed by the
random choice method is subtle. It is plausible that the requisite shock admissibil-
ity conditions will hold at points of approximate jump discontinuity of the solution
U, so long as they are satisfied by the shocks of the approximate solutions Uj.
Proving this, however, requires a more refined treatment of the limit process that
yields U from Uj,. This may be attained by the method of wave partitioning which
is outlined in Section 13.7.

13.3 Wave Interactions, Approximate Conservation Laws
and Approximate Characteristics

We now embark on the long journey that will lead eventually to the stability
estimates (13.1.11), (13.1.12) and (13.1.13). The first step is to estimate local
changes in the total variation of the approximate solutions Uy. For simplicity, we
limit the discussion to systems with characteristic families that are either genuinely
nonlinear (7.6.13) or linearly degenerate (7.5.2). The general case is considerably
more complicated; see Remark 13.4.1, in the next section.



308 XIII. The Random Choice Method

According to the construction scheme, a portion of the wave fan emanating
from the mesh-point (x,_;. 7). 7 + 5 even, combines with a portion of the wave
fan emanating from the mesh-point (x,, t,_1) to produce the wave fan that em-
anates from the mesh-point (x..1,). This is conveniently illustrated by enclosing
the mesh-point (x,,f,) in a diamond-shaped region A} with vertices at the four
surrounding sampling points, (3" ~". ;). (37_,, ts=1). (37+1, 1) and (¥eyqe fi1); sEE
Fig. 13.3.1.

r
(¥eers tost)

(Xpepe )

Fig. 13.3.1.

A wave fan emanating from (x,_,.t_;) and joining the state U_[", on the
left, with the state U/_|, on the right, enters A’ through its “southwestern™ edge.
It may be represented, as explained in Sections 9.3 and 9.6, by the n-tuple

= (o, -+, a,) of its wave amplitudes. A second wave fan, emanating from
(xr+1.£5-1), joining the state U]_,, on the left, with the state U;*', on the right,
and similarly represented by the n-tuple 8 = (8, -, B,) of wave amplitudes,

enters 4; through its “southeastern” edge. Needless to say, depending on the rel-
ative location of mesh-points and sampling points, waves of certain families may
be missing from the & or 8 fan, in which case the corresponding amplitude is set
equal to zero.

The output from A} consists of the full wave fan which emanates from (x,, t,),
joins the state U’~', on the left, with the state U!*!, on the right, and is represented
by the n-tuple £ = (), - - - . &,) of wave amplitudes. A portion 8’ = (B, -~ ﬁ’)
of ¢ exits through the “northwestern” edge of Al and enters the diamond AZ RE
while the balance o’ = (a]. - - -, &) exits through the “northeastern” edge of Aj
and enters the diamond A:i: Clearly, &; = o + ﬁi’,i = 1,-.-, n. Furthermore,
there is j = 1,---,n such that @/ = O fori = I,.--,j — | and B! = 0 for
i=j+1,.-- n Both a; and B; may be nonzero, but then necessarily o8 > 0.

If the waves o and ﬁ were allowed to propagate freely, beyond the 1,-time
line, the resulting wave interactions would generate a very intricate wave pattern.
Nevertheless, following the discussion in Section 9.6, it should be expected that
as t — oo this wave pattern will reduce to a centered wave fan which is none
other than e. Thus the essense of our construction scheme is that it replaces
real, complicated, wave patterns by their time-asymptotic, simpler, forms, In that
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connection, the role of “random choice” is to arrange the relative location of the
wave fans in such a manner that “on the average” the law of “mass” conservation
is realized.

According to the terminology of Section 9.6. the wave fan ¢ shall be regarded
as the result of the interaction of the wave fan «, on the left, with the wave fan
B. on the right. It is convenient to realize £, o and B as n-vectors normed by the
¢/ norm, in which case Theorem 9.6.1 yields the estimate

(13.3.1) le — (@ + B) =< [e3 + calla| + 1BD]Z (A7)

with ¢3 and ¢4 depending solely on F. In particular, ¢c3 = 0 when the system is
endowed with a coordinate system of Riemann invariants. The symbol £/ (A7) is
here being used, in the place of D(w. B) in Section 9.6, to denote the amount of
wave interaction in the diamond A7, namely,

(13.3.2) T(AD =) lullfl

app

Formula (13.3.1) will serve as the vehicle for estimating how the total variation
and the supremum of the approximate solutions U, change with time, as a result
of wave interactions.

By (13.3.1), when o; and 8; have the same sign, the total strength |«;| +|8;| of
i-waves leaving the diamond A approximately equals the total strength |o; |+ | 8i|
of entering i-waves. However, when o; and B; have opposite signs, cancellation
of i-waves takes place. To account for this phenomenon, which greatly affects the
behavior of solutions, certain notions will now be introduced.

The amount of i-wave cancellation in the diamond A} is conveniently measured
by the quantity

\
(13.3.3) “i(4g) = E(Iail +18:| =l + BiD) -

In order to account separately for shocks and rarefaction waves, we rewrite (13.3.1)
in the form

(13.3.4) ef =af + 85— 7.(A) + [s0() + O(D)]Z(4)) ,

where the superscript plus or minus denotes positive or negative part of the am-
plitude, and 7 is the oscillation of U,.

Upon summing (13.3.4) over any collection of diamonds, whose union forms
a domain A in the upper half-plane, we end up with equations

(13.3.5) LE(A) = EF(A) — 2(A) + [;0() + O(D)]< (4)

where E; (or E;) denotes the total amount of i-shock (or i-rarefaction wave)
that enters A, L[ (or Li*) denotes the total amount of i-shock (or i-rarefaction
wave) that leaves A, %;(A) is the amount of j-wave cancellation inside A and
&/ (A) is the amount of wave interaction inside A. The equations (13.3.5) express
the balance of i-waves relative to A and, accordingly, are called approximate
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conservation laws for i-shocks (with minus sign) or i-rarefaction waves (with

plus sign). ) ) )
The total amount of wave cancellation in the diamond A’ is naturally measured
by
n

(13.3.6) AVREDINAV. N

i=l

Notice that (13.3.1) implies
(13.3.7) &1+ 18| = lel < la] + B8] = 22 (A7) + [c3 + callal + [BD]Z (4)) .

An approximate i-characteristic associated with the approximate solution
Uy, and defined on the time interval [#, 1,,), is a sequence x*'. ... x™~" of
straight line segments, such that, for s = €,---,m — 1, x* is either a clas-
sical i-characteristic or an i-shock for U),, emanating from some mesh-point
(x,, 1), r + s even, and defined on the time interval [r,, £;,). Furthermore, for
s=L+41,---,m—1, x is a proper sequel to x“~", according to the following
rules: x“~! must enter the diamond A’ centered at (x,, t,). Whenever the interac-
tion of /-waves entering A7 produces an i-shock, x *) is that shock. On the other
hand, when the interaction of the i-waves entering A} produces an i-rarefaction
wave, then x‘* is a classical /-characteristic identified by the requirement that the
amount of /-rarefaction wave that leaves A’ on the left (right) of x© does not
exceed the amount of i -rarefaction wave that enters A’ on the left (right) of x**~ 1.
In applying the above rule, we tacitly assume that £; = «; + §;, disregarding the
potential (small) contribution to i-rarefaction wave by wave interactions.

NA-

. IL\’)
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(a) (b) {c)
Fig. 13.3.2.

Figure 13.3.2 depicts three representative configurations. Only i-waves are
illustrated and the approximate i-characteristic is drawn as a dotted line. In case
(a), an i-shock interacts with an i-rarefaction wave to produce an i-shock. x
is a classical i-characteristic but x*) will be the outgoing 7-shock. In case (b),
x¥1 is an i-shock whose interaction with an i-rarefaction wave produces an
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j-rarefaction wave. Since the amount of i-rarefaction wave that enters A7 on the
jeft of x©~1 is nil, x'*' must be the left edge of the outgoing rarefaction wave.
Finally, in case (c¢) two i-rarefaction waves interact to produce an i-rarefaction
wave. Then x® is selected so that the amount of i-rarefaction wave on its left
equals the amount of i-rarefaction wave that enters A7 on the left of x“~!. This
will automatically assure that the amount of i-rarefaction wave that leaves A’ on
the right of x' equals the amount of i-rarefaction wave that enters A” on the
right of x“~1, provided one neglects potential contribution to i-rarefaction wave
by wave interactions. )

The above construction of approximate characteristics has been designed so
that the following principle holds: Rarefaction waves cannot cross approximate
characteristics of their own family. Consequently, approximate conservation laws

(13.3.8) L7 (Ay) = Ef(AL) — Zi(Ay) +[60(]) + O(D)]Z (As) .

for i-rarefaction waves, hold for the domains A in which the diamond A7 is
divided by any approximate i-characteristic (Fig. 13.3.3).

"
’

Fig. 13.3.3.

The corresponding approximate conservation laws for i-shocks assume a more
complicated form, not recorded here, depending on how one apportions between
A_ and A, the strength of i-shocks that lie on the dividing boundary of A_
and A,.

One may immediately extend the approximate conservation laws for i-rare-
faction waves from the single diamond to any domain A formed by the union of
a collection of diamonds and thus write (13.3.8) for the domains A+ into which
A is divided by any approximate {-characteristic.

Approximate conservation laws may be employed to derive fine properties of
approximate solutions, at least for systems of two conservation laws, which yield,
in the limit, properties of solutions comparable to those established in Chapter
XII by the method of generalized characteristics. Indeed, the & | O limit of any
convergent sequence of approximate i-characteristics is necessarily a generalized
i -characteristic, in the sense of Chapter X.
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13.4 The Glimm Functional

The aim here is to establish bounds on the total variation of approximate solutions
U, along curves in a certain family. We are still operating under the assumption
that each characteristic family is either genuinely nonlinear (7.6.13) or linearly
degenerate (7.5.2).

A mesh curve, associated with Uy, is a polygonal graph with vertices that form
a finite sequence of sample points (v', )., (¥, 5,), Where rep g = re + 1
and sgq) = s¢ — | or sp41 = se+ 1 (Fig. 13.4.1). Thus the edges of any mesh curve
I are also edges of diamond-shaped regions considered in the previous section.
Any wave entering into a diamond through an edge shared with the mesh curve
I is said to cross 1.

r
(."'H-l' t.\'+|)

-+

() (o ts21)

Fig. 13.4.1.

A mesh curve J is called an immediate successor of the mesh curve I when
J\I is the upper (i.e., “northwestern” and “northeastern”) boundary of some di-
amond, say A7, and /\J is the lower (i.e., “southwestern” and “southeastern”)
boundary of Al. Thus J has the same vertices as I, save for one, i_1 ts-1),
which is replaced by (y],,, fc41). This induces a natural partial ordering in the
family of mesh curves: J is a successor of I, 1 < J, whenever there is a finite

sequence I = Iy, I},---, I, = J of mesh curves such that /, is an immediate
successor of Iy_q, foré =1,.-. m.
With mesh curves I we associate the functionals
13.4.1) S (1) = max |y,
(13.4.2) Ly=Y Iy,

where both the maximum and the summation are taken over all waves y that cross
1. Clearly, . (I) measures the oscillation and % (I) measures the total variation
of Uy along the curve I. We shall estimate the supremum and total variation of
Uy by monitoring how .% and £ change as one passes from [ to its successors.
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Assume J is an immediate successor of [, as depicted in Fig. 13.4.1. Wave
fans @ = (ay, -, o,) and B = (B,---, B,) enter the diamond A’ through its
“southwestern” and “southeastern” edge, respectively, and interact to generate, as
discussed in Section 13.3, the wave fan ¢ = (g, - - -, &,). In turn, ¢ splits into two
wave fans 8’ = (8{,---. B,) and &’ = (o[, - - -, @, ), as explained in Section 13.3,
which exit A} through its “northwestern” and “northeastern™ edge, respectively.
Clearly, I and J are crossed by the same family of waves, with the exception of
(ar, -+ vau. Br.- -, Ba), which cross I only, and (8,.---, B,. o}, - -, a)), which
cross only J. Consequently, by virtue of (13.3.1) we deduce

(13.4.3) SIS D)+ [ + e (D)2 (AT,
(13.4.4) L)< L)+ + el (DL (A,

where ¢3 and ¢4 are the constants that appear also in (13.3.1). In particular, when
the system is endowed with a coordinate system of Riemann invariants, ¢3 = 0.
Clearly, . and ~ may increase as one passes from / to J and thus (13.4.3),
(13.4.4) alone are insufficient to render the desired bounds (13.1.11), (13.1.12).

What saves the day is the realization that ¥ may only increase as a result of
interaction by approaching waves, which, after crossing paths, separate and move
away from each other, never to meet again. Consequently, the potential for future
interactions is embodied in the initial arrangement of waves and may thus be
anticipated and estimated in advance. To formalize the above heuristic arguments,
we shall associate with mesh curves I a functional ¢/ (/) which measures the
potential for increase in the total variation due to future interactions by waves that
cross 1.

Suppose that a k-wave ¢ and a j-wave £ are crossing the mesh curve I, with ¢
lying to the left (i.e., “west”) of &. The waves ¢ and & are said to be approaching
if either (a) k > j or (b) k = j, the j-characteristic family is genuinely nonlinear
and at least one of ¢ and & is a shock. The reader should note the close analogy
with the notion of approaching waves in two interacting wave fans, considered in
Section 9.6. After this preparation, we set

(13.4.5) o=y ItiEl,

app

where the summation runs over all pairs (. &) of approaching waves that cross
I. Clearly,

(13.4.6) o) < %[%(1)]2.

In order to see how the potential for future wave interactions may change as
one passes from / to its successors, let us estimate, from above, &/ (J) — £/(1),
where, as before, J is the immediate successor of / depicted in Fig. 13.4.1. The
contributions of different categories of pairs of approaching waves shall be tallied
separately:
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Pairs of waves ¢ and &, both of which cross [ as well as J, contribute equally
to /(1) and ¢(J) and hence their net contribution to ¢/(J) — ¢/(/) is nil.

By virtue of (13.3.2), the waves (ay, -+, 0n, Bi.«++, Bx), which cross I but
not J, mutually interact to contribute & (A7) to (/). By contrast, the family
(B).---. B,. ).~ a,) of waves, which cross J but not /, contributes nothing to

¢ (J), through mutual interactions.

It remains to consider pairs of waves ¢ and & where ¢ crosses both / and
J while & is only crossing one of / or J. Hence £ must be one of a;, ﬁ, ﬁ or
a;. Various possibilities arise, for instance, (. &), (¢, B;). (¢, ﬁ ) and (; o ') may
all be approaching, or ({, ;) and (¢, B;) may be approaching whlle a = 0 and
(¢. B;) are not approaching, etc. By exammmg, however, all possible combmatlons
one easily deduces, with the help of (13.3.1), that the combined contribution to
QW) = ¢ of (L.a)). (L. B, (;.ﬂjf) and (;,aj’-), for j = 1,---, n, cannot
exceed [c3 + . (D]|C | (47). Summing up over all qualified ¢, we conclude
that the overall contribution to 7 (J) — £(I) by pairs of waves in the above
category does not exceed [c; + 4. (N1 X (1) (A)).

Collecting the above pieces together, we finally reach the conclusion

(13.4.7) O - [+ (D2~ 117 (48,

where ¢; and ¢, are the same constants appearing in (13.4.3) and (13.4.4). Recall
that c; = 0 when the system is endowed with a coordinate system of Riemann
invariants.

Remark 13.4.1 Similar estimates are valid for general systems, in which char-
acteristic families are not necessarily genuinely nonlinear or linearly degenerate.
However, & (A7) and ¢/ (/) have to be defined in a more delicate manner. Elemen-
tary i-waves are now i-wave fans, composed of i-rarefaction waves and i-shocks
(possibly one-sided or two-sided contact discontinuities; cf. Section 9.3). Consider
a k-wave ¢ approaching from the left a j-wave &, crossing the mesh curve /. The
contribution of the pair (¢, &) to £ (/) and/or & (A”) remains the same as in the
genuinely nonlinear case, namely |¢||&], when either (a) k > j or (b) k = j,
the j-characteristic family is not linearly degenerate and ¢&§ < 0. However, when
k = j and ¢& > 0, the contribution of (¢, &) to (1) and/or & (A7) is taken
B|¢1151, where € denotes the angle (difference in wave speeds) between the fastest
shock in the wave fan { and the slowest shock in the wave fan £. Employing the
weighting factor @ is motivated by the following argument. Consider, as before,
the mesh curve / and its immediate successor J, depicted in Fig. 13.4.1. Assume
for simplicity that all waves crossing / are j-shocks. In particular, j-shocks a;
and B; enter the diamond A; and interact to produce the outgoing j-shock ¢;. To
leading order in wave strength, we have ¢; ~ a; + ;. Let 0_, o and gy denote,

respectively, the speed of propagation of «;, 8; and &;. A simple calculation shows
that

(13.4.8) 500 ~ ajo_ + B0, |



13.4 The Glimm Functional 315

again to leading order in wave strength. Suppose now ¢ is another j-shock. cross-
ing I (and J) on the left of ; and propagating with speed 0,0 > o_ > ay > 0.
The contribution of the pair ({,¢;) to &(J) is (¢ — ag)Le;. On the other
hand, the combined contribution of the pairs (¢, ;) and ({.B;) to /(I) is
(0 —o_)a;j+ (o —o,)¢B;. With the help of (13.4.8), we now arrive at the desired
conclusion that the net contribution of (£, &), (¢, B;) and (¢, &;) to @ (J)— 2 (I)
vanishes to linear order in wave strength. The detailed proof of (13.4.7) for general
systems is too laborious to be included here; it may be found in the references
cited in Section [3.10.

An important consequence of (13.4.7) is that when £ (/) is suffiently small
the potential (¥ for future wave interactions will decrease as one passes from
the mesh curve / to its immediate successor J. We shall exploit this property to
compensate for the possibility that . and £ may be increasing, to the extent
allowed by (13.4.3) and (13.4.4). Towards that end, we associate with mesh curves
I the Glimm functional

(13.4.9) S = L)+ 2,

where « is some fixed upper bound of ¢3 +¢4.¥ (I), independent of I and /i. Even
though ‘¢ majorizes | it is actually equivalent to ¥ by account of (13.4.6).

Theorem 13.4.1 Let [ be a mesh curve with 4x £ (1) < 1. Then, for any mesh
curve J that is a successor of I,

(13.4.10) Lo,
(13.4.11) LIy <2%) .

Furthermore, the amount of wave interaction and the amount of wave cancellation
in the diamonds confined between the curves | and J are bounded:

(13.4.12) PRACREI VAU
(13.4.13) PRACUERAUR

Proof. Assume first J is the immediate successor of / depicted in Fig. 13.4.1.
Upon combining (13.4.9) with (13.4.4) and (13.4.7), we deduce

(13.4.14) W < e+kcie - 11747 .
By virtue of (13.4.9), (13.4.6) and 4k £ (I) < |, we obtain
(13.4.15) <22,

so that 2«4 (/) < 1, in which case (13.4.14) yields (13.4.10). '
Assume now J is any successor of /. lterating the above argument, we establish
(13.4.10) for that case as well. Since ¥ (J) < % (J), (13.4.11) follows from
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(13.4.10) and (13.4.15). Summing (13.4.7) over all diamonds confined between
the curves / and J and using (13.4.11), we obtain

1 r
(13.4.16) EZQ(A_T)SC/(/)—C/(J%

which yields (13.4.12), by virtue of (13.4.6).
We sum (13.3.7) over all the diamonds confined between the curves / and J,
to get

(13.4.17) 2) @A) < LU - LD+ YL (A

Combining (13.4.17) with (13.4.11) and (13.4.12) we arrive at (13.4.13). This
completes the proof.

The above theorem is of fundamental importance. In particular, the estimates
(13.4.10) and (13.4.11) shall provide the desired bounds on the total variation
while (13.4.12) and (13.4.13) embody the dissipative effects of nonlinearity and
have significant implications to regularity and large time behavior of solutions.

A first application of (13.4.12) is the following

Theorem 13.4.2 Assume that the system is endowed with a coordinate system of
Riemann invariants. Let I be a mesh curve with 4ic £ (1) < 1. Then, for any mesh
curve J that is a successor of I,

(13.4.18) () < exples £ (DN () .

Proof. Assume first J is the immediate successor of / depicted in Fig. 13.4.1.
Since ¢; =0, (13.4.4) yields

(13.4.19) D) <[ +aZ (AN U) .
Iterating the above argument, we deduce that if J is any successor of /, then
(13.4.20) LD =[]0+ ez @Dl ),

where the product runs over all the diamonds confined between the curves / and
J. Combining (13.4.20) with (13.4.12), we arrive at (13.4.18). This completes the
proof.

To apply Theorems 13.4.1 and 13.4.2, one needs to assume that « £ (/) is
sufficiently small. For general systems this means that (/) itself should be
sufficiently small, while for systems endowed with a coordinate system of Riemann
invariants c3 = 0 and so it would suffice that . (/) ¥ (/) be sufficiently small.

There is a very special class of systems of two conservation laws in which,
under proper normalization, ¢ itself is decreasing as one passes from a mesh
curve to its successors and hence we may bound ¥ (J) even when ¥ (/) is large.
The only interesting representative of that class is the system
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du—0o,v=0
(13.4.21) 1
v+ 0 (—-) =0,
H
namely the special case of (7.1.6) with o (u) = —u~'. In classical gas dynamics,

this system governs the isothermal process of an ideal gas.

13.5 Bounds on the Total Variation

Here we prove the estimates (13.1.12) and (13.1.13), always operating under the
assumption that the oscillation of U}, is bounded. uniformly in 4. The vehicle will
be the following corollary of Theorem 13.4.1:

Theorem 13.5.1 Fix0 <1 <t <00 and =00 < a < b < 20. Assume that k times
the total variation of U, (-. t) over the interval [a —A(t ~ 1) —6h, b+ A(t — 1) +6h]
is sufficiently small." Then

(13.5.1) TViun)Un (- t) < 1T Vigoau—vy—shbrie—ti+6m Un (. T)

where ¢ depends solely on F. Furthermore, if x is a point of continuity of both
Un(-, t) and U, (-, t), and x times the total variation of Uy (-, t) over the interval
[x = A(t — 1) — 6h, x + A(t — 1) + 6h] is sufficiently small, then

(13.5.2) |Un(x, t) = Up(x, T)| < 5T Vieoap—ry=6hx+rie—t)+6mUn G T)

where cs depends solely on F.

Proof. First we determine nonnegative integers ¢ and s such that t; < 1t < t,4

and ¢, <t < t;4,. Next we identify integers r; and »; such that yx'+l <acx \:":,3

and ):+_1 <b< y'z ' We then set rn=r—-(—o)andry=r+ (s —o).

We now construct two mesh curves [ and J, as-depicted in Fig. 13.5.1, by
the following procedure: / originates at the sampling point (¥, ,), and zig-zags
between f, and 1, , | until it reaches the sampling point (y/*, t,) where it terminates.
J also originates at (y}*.1,), takes s — o steps to the “northeast™, reaching the
sampling point (y!', t;), then it zig-zags between ¢, and £, until it arrives at the
sampling point (72, t;), and finally takes s —o steps to the “southeast” terminating
at (y7', ta).

Clearly,

(1353) TV[u b]Uh( t) < C6 (J)
It is easy to see that ¥y} > a—A(r—1)~6h and y7* < b+A(t—1)+6h. Therefore,
(13.5.4) L) < 1T Vigoag-nr-shbari—nr+6mUn(, T) -

' As before, A here denotes the ratio of spatial and temporal mesh-lengths.
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Fig. 13.5.1.

Also, J is a successor of | and hence, if 4« ¥ (I) < |, Theorem 13.4.1 implies
Y (J) < 2% (1). Combining this with (13.5.3) and (13.5.4), we arrive at (13.5.1),
with ¢ = 2¢ec.

Given x, we repeat the above construction of / and J witha = b = x. We
can identify a point (y', t') on I with U,(y'. t') = Ux(x, r) as well as a point
(x’, t')y on J with U (x', t") = U (x, t). Hence

(13.5.5) |Un(x, ) = Up(x, D) < cs[ £ (D) + L (D] <34 () .

From (13.5.5) and (13.5.4), with a = b = x, we deduce (13.5.2) with c5 = 3csc3.
This completes the proof.

Upon applying (13.5.1) for t = 0, a —» —o0, b — o0, and then using that
TVico0,00)Un (-, 0) < TV(_o0.00)U (), we verify (13.1.12).

Finally, we integrate (13.5.2) over (—o0, 00), apply Fubini’s theorem, and use
(13.1.12) to get

(13.5.6)
o0 o0
f WUn(x, t) = Un(x, T)|dx < Csf T Vicsi-vy=6hx+at-r1+6n Un (-, T)dx
oo oo

= 2(‘5[)\([ -7+ 6h]TV(—oo,oo)Uh('y T)
= 2c1e5[A(t — 1) + 6h]T Vi_oc. 00\ Un(:)
which establishes (13.1.13).

13.6 Bounds on the Supremum

One may readily obtain a bound on the L* norm of U, from (13.5.2), with r = 0:

(13.6.1) SUP(—co.00) [Un(++ )] < SUP(_ g 00) U0 + 5T Vi—oo.00 Un (+)
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This estimate is not as strong as the asserted (13.1.11), because, in addition to the
supremum, it involves the total variation of the initial data. Even so, combining
(13.6.1) with the estimates (13.1.12) and (13.1.13), established in Scction 13.5,
allows us to invoke the results of Section 13.2 and thus infer the existence of a
solution U to the initial-value problem (13.1.1), which is constructed as the limit
of a sequence of approximate solutions; cf. (13.2.1). Clearly, U satisfies (13.1.5)
and (13.1.6). by virtue of (13.1.12) and (13.1.13). We have thus verified all the
assertions of Theorem 13.1.1, save (13.1.4). Despite the fact that it is incssential for
demonstrating existence of solutions, (13.1.4) has intrinsic interest, as a statement
of stability, and also plays a useful role in deriving other qualitative properties of
solutions. [t is thus important to discuss how the estimate (13.1.11), from which
(13.1.4) derives, may be established.

We first note that for systems endowed with a coordinate system of Riemann
invariants, (13.1.11) is an immediate corollary of Theorem 13.4.2 and thus 8, in
(13.1.3) need not be small, so long as §; in (13.1.7) is. The proof in this case is
so simple because terms of quadratic order are missing in the interaction estimate
(13.3.1), i.e., 3 = 0. By contrast, in systems devoid of this special structure, the
presence of interaction terms of quadratic order renders the situation much more
complicated. The proof of (13.1.11) hinges on the special form of the quadratic
terms, which. as seen in (9.6.13), involve the Lie brackets of the eigenvectors of
DF. The analysis is too laborious to be reproduced here in its entircty, so only
an outline of the main ideas shall be presented. The reader may find the details in
the references cited in Section 13.10. At the outset, we limit our investigation to
systems that are genuinely nonlinear.

The general strategy of the proof is motivated by the ideas expounded in
Section 13.4, that culminated in the proof of Theorems 13.4.1 and 13.4.2. Two
functionals, . and ., will be associated with mesh curves /. where .% (/)
measures the oscillation of U, over I while =#°(!) provides an estimate on how
the oscillation may be affected by future wave interactions.

Recall that . (/) has already been defined in general terms by (13.4.1), which
was adequate for the purposes of Section 13.4. Here, however, we need a more
specific characterization of .% (), analogous to the definition (13.4.2) for (1),
namely in terms of the waves that cross the mesh curve /. Whereas total variation
is estimated, as in (13.4.2), by tallying the strengths of the waves that cross /, in
order to represent oscillation, one should account for the mutual cancellations of
shocks and rarefaction waves of the same characteristic family. Accordingly, in
the definition of . (/) one should consider each characteristic family separately
and tally the signed amplitudes (rather than the strengths) of the waves.

A finite sequence & = (&, ---, &,) of waves that cross the mesh curve / is
called consecutive when, for £ = 1,..- m — 1,& and &, are separated by a
constant state, i.e., the state on the right of & coincides with the state on the left
of & 4. With such & we associate the number

Y. &

Jj—waves

n

(13.6.2) HEDS

=
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where the second summation runs over the indices £ = I, ---, m for which &, is
a j-wave. We then define

(13.6.3) S (1) = supg |§] ,

where the supremum is taken over all sequences of consecutive waves that cross
I. After a little reflection, one sees that, as long as ¥ (/) is sufficiently smali,
.7 (I) is equivalent to the oscillation of Uy over /.

As one passes from [ to its successors, .¥" changes for two reasons: First, as
waves travel at different speeds, crossings occur and wave sequences are reordered
(notice, however, that the relative order of waves of the same characteristic family
is necessarily preserved). Secondly, the amplitude of waves changes in result of
wave interactions, as indicated in (9.6.13). It turns out that the effect of wave
interactions of third or higher order in wave strength may be estimated grossly,
as in the proof of Theorem 13.4.2. However, the effect of wave interactions of
quadratic order in wave strength is more significant and thus must be estimated
with higher precision. This may be accomplished in an effective manner by realiz-
ing the quadratic terms in (9.6.13) as new virtual waves which should be accounted
for, along with the actual waves.

The above may be formalized by introducing a functional -* associated with
mesh curves /, defined by

(13.6.4) (1) = sup; sup,, |yl

In (13.6.4) the first supremum is taken over all sequences § of consecutive waves
that cross /, while the second supremum applies over all wave sequences y; that
may be generated through the following process: (a) by admissible reorderings
of the waves in the sequence &, say the k-wave &, and the j-wave &, exchange
locations if p < o and k > j; and (b) by inserting any virtual waves that potentially
may be generated from interactions of waves in the sequence &. Finally, the symbol
Iy¢| is understood in the sense of (13.6.2). The precise construction of y¢ entails a
major technical endeavor not to be undertaken here (references in Section 13.10).
As long as the total variation is small, =° is actually equivalent to . :

(13.6.5) Sy <Ay <[l +e L] U) .

The idea of the proof of (13.6.5) is as follows. Recall that the principal difference
between ¥ (/) and . (/) is that in the former we tally the (positive) strengths
of crossing waves while in the latter we sum the (signed) amplitudes of crossing
waves, thus allowing for canceliation between waves in the same characteristic
family but of opposite signs (i.e., shocks and rarefaction waves). Consider the
interaction of a single j-wave, say ¢, with a number of k-waves. Since waves in
the same characteristic family preserve their relative order, the interactions of the
k-waves with ¢ will occur consecutively and so the resulting virtual waves will also
appear in the same order. Furthermore, whenever the amplitudes of the k-waves
alternate in sign, then so do the corresponding Lie bracket terms. Consequently,
the virtual waves undergo the same cancellation as their parent waves and thus
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the contribution to .»°(/) by the interaction of ¢ with the k-waves will be like
o7 (I). Summing over all ¢ and k = 1. ---, n, we conclude that the total
contribution to (/) from interactions will be O(1) £ (I).¥ (I), whence (13.6.5)
follows. The detailed proof is quite lengthy and may be found in the references.

The next step is to show that if J is the immediate successor of the mesh
curve I depicted in Fig. 13.4.1, then

(13.6.6) ) 2 LUy + a0 (1N (A)) .

The idea of the proof is as follows. Sequences of waves crossing J are reorderings
of sequences that cross /, with the waves entering the diamond A’ through its
“southwestern” and “southeastern” edges exchanging their relative locations as
they exit A7. Furthermore, as one passes from / to J the virtual waves produced
by the interaction of the waves that enter A] are converted into actual waves,
embodied in the waves that exit Af. Again, the detailed proof is quite lengthy and
should be sought in the references.

By virtue of (13.6.5), we may substitute =°(/) for ./ (/) on the right-hand
side of (13.6.6), without violating the inequality. Therefore, upon iterating the
argument, we conclude that if J is any successor of /, then

(13.6.7) 2(J) < ]'][l + 17 (AD]2 ()

where the product runs over all the diamonds A confined between the curves /
and J.

We now assume 4« £ (I) < | and appeal to Theorem 13.4.1. Combining
(13.6.7), (13.4.12) and (13.6.5) yields

(13.6.8) () <exples LU+ o £ (D2 (D),

whence the desired estimate (13.1.11) readily follows.

13.7 Wave Partitioning

This section demonstrates that more refined information may be gleaned from
the construction scheme by examining the global wave pattern. Following up on
the discussion in Section 13.3, let us reconsider wave interactions in a diamond,
assuming temporarily that we are dealing with scalar conservation laws, n = 1.
The wave interaction estimate (13.3.1) now reduces to ¢ = o + . In one typical
situation, distinct waves & and 8 enter the diamond through its “southwestern”
and “southeastern” edge. respectively, and then merge into a single wave, say &',
which exits through the “northeastern” edge. It is instructive to regard o’ as a
composite wave, partitioned into o and 8, so that o and B retain their identities
even after they merge. In the dual situation, a single rarefaction wave o enters the
diamond through its “southwestemn” edge and then splits into distinct rarefaction
waves o’ and B, where «’ exits through the “northeastern” edge while B’ exits
through the “northwestern” edge. In that case it is again instructive to partition ¢
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into o’ and B’ so as to exhibit that the seeds of these waves predated their birth.
Of course, the speed of propagation of the composite wave should be assigned to
the parts, in order to keep them together. By carrying out this process over several
time steps, one may partition the wave & issuing from the general mesh-point
(x,, 1), r + 5 even, into waves whose ancestry may be traced back all the way
to t+ = 0. This construction renders an explicit picture of the global wave pattern,
from which fine properties of solutions may be derived.

The same approach should work for systems as well, except that now one
should take into account that each wave interaction generates new waves, in every
characteristic family. The saving grace is that, in virtue of (13.3.1), the strength of
these new waves generated in the diamond A/ is bounded by the amount of wave
interaction & (A7) and hence their cumulative effect may be controlled with the
help of (13.4.12). It is thus sufficient to perform approximate partitioning of waves,
as described below. For simplicity, we only consider systems with characteristic
families that are either genuinely nonlinear or linearly degenerate.

A partitioning of an i-shock, which joins the state U_, on the left, with the state
U, on the right, is induced by a finite sequence of states U_ = U°, U!, ... . U" =
U,,suchthat, forpu = 1,---, v, U* lies on the i-shock curve emanating from U _,
and A;(U*) < X;(U*""). Even though U*~' and U* are not joined, in general,
by a shock, we visualize the pair (U7, U*) as a virtual wave, with amplitude
V} = U*—U#*"! to which we assign speed of propagation A}, equal to the speed
of the i-shock (U_, U,).

In an analogous fashion, a partitioning of an i-rarefaction wave, which joins
the state U_, on the left, with the state U, on the right, is induced by a finite
sequence of states U_ = U°, U!,-.. U =U,, such that, for g =1,....v, U*
lies on the i-rarefaction wave curve emanating from U_, and A;(U#) > X, (U#*7).
Even though U#~! and U* are now joined by an i-rarefaction wave, we opt
to regard, as in the shock case, (U#~!, U") as a virtual wave with amplitude
V/ = U# — U~ and speed of propagation A!' = X;(U*™").

After this preparation, let us consider the approximate solution U, generated by
our construction scheme for some sequence o = {ay, a, - - -}. We shall perform a
special partitioning of the waves issuing from the mesh points, as described below.

We fix a positive integer o. We consider the total amount of wave interaction

(13.7.1) D=Y ()
and the total amount of wave cancellation
(13.7.2) C=) 7).

over all diamonds A” with 0 < s <o and » + s even.

Using the estimate (13.3.1) and after tedious examination of all possible sorts
of interactions that may occur, it can be shown (references in Section 13.10)
that for any (r,s) with 0 < s < o and r + s even, and each i = 1,---, n, the i-
wave emanating from the mesh-point (x,, £,) may be partitioned into virtual waves
{V(r, 5)}, with assigned speeds {Af (7, 5)), which satisfy the following conditions.
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The range of the parameter p is partitioned into two disjoint subsets M_ and M,
such that

(a) for € M_, the virtual waves V/'(r,s) are weak, in the sense that their
cumulative strength is bounded:

(13.7.3) Z 3 Z 3 VeI <en(C+D);

s=0 r+seven [=| ueM._

(b) for 1 € M., the virtual waves V/(r, s) may have substantial strength but their
amplitude and speed do not vary significantly over the time interval [0, ¢, ], in the
sense that forany s =0,1,---, o,

(13.7.4) 3 Z Y VA0 = VA i w) )| < D

reven =1 ueM,

(1375 Y. Z Y VRO 0) = 2 os. iy 1), ) < 13D

reven =1 peM,

where r — p(s,r, i, p) is a function relating mesh-points along the 0-time line
with mesh-points along the ¢,-time line, constructed by the rule

(13.7.6) pO,rip)y=r,

(13.7.7)
pls—1,rip)—1, if MpG—1ripw,s—1)<ah,

p(s,ri p)= .
pls—Lri,wy+1, if Apis—1.ri,w),s—1)>ah,

with A denoting, as before, the ratio of space and time mesh lengths.

It is now possible to establish the following proposition, which improves The-
orem 13.2.1 by removing the “randomness” hypothesis in the selection of the
sequence :

Theorem 13.7.1 The algorithm induced by any sequence p = {ay, aj. - - -}, which
is equidistributed on the interval (—1, 1) in the sense of (13.2.6), is consistent.

In the proof, which may be found in the references cited in Section 13.10,
one expresses the right-hand side of (13.2.2) in terms of the virtual waves that
partition U, and proceeds to show that it tends to zero, as & | 0, whenever the
sequence  is equidistributed. This happens for the following reason. Recall that in
Section 13.2 we did verify the consistency of the algorithm, for any equidistributed
sequence g, in the context of the linear conservation law 8,u + aid.u = 0, by
employing the property that every wave propagates with constant amplitude and
at constant speed. The partitioning of waves performed above demonstrates that
even nonlinear systems have this property, albeit in an approximate sense. and
this allows to extend the argument for consistency to that case as well.
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Though somewhat cumbersome to use, wave partitioning is an effective tool
for obtaining precise information on local structure, large time behavior, and other
qualitative properties of solutions; and in particular it is indispensable for deriving
properties that hinge on the global wave pattern.

13.8 Inhomogeneous Systems of Balance Laws

It is relatively easy to adapt the construction scheme to the case of inhomoge-
neous, strictly hyperbolic systems of balance laws, in the general form (7.1.1),
Inhomogeneity in the flux function and explicit dependence in ¢ are the easiest to
handle, especially when they fade away as |x| and ¢ tend to infinity. Source terms
may be more troublesome. Accordingly, to avoid cumbersome notation, we shall
illustrate the theory in the context of systems in the special form:

(13.8.1) U, )+ 0, FlU(x.))+ GU(x.t).x)=0.

The function F satisfies the standard assumptions: It is defined on a ball 7~ in
R", centered at the origin, takes values in R”", it is smooth and, for any U €
D F(U) has real distinct eigenvalues X(U) < --- < X, (U}, so that the system is
strictly hyperbolic.

The source function G is defined on 7~ x (—00, 00), takes values in R", and
satisfies G(0, x) = 0, so that U = 0 is a solution of (13.8.1). Furthermore,

(13.8.2) IDGU,x)|<b, Uel , x¢g(—00, 00),
(13.8.3) G (U, X)) <g(x), Uel , xe(—00.00),

where b is a constant and g is an integrable function on (—o0, 00), with

(13.8.4) f g(x)dx = w .

To (13.8.1) we assign initial conditions
(13.8.5) Ux,0) =Up(x), —o0<x <o0.

We shall determine solutions of the initial-value problem (13.8.1), (13.8.5) as
the 4 | O limit of approximate solutions Uj, constructed by a simple adaptation
of the algorithm developed in Sections 13.1 and 13.2. We start out again with
a “random” sequence p = {ay.a,, -}, where a, € (=1, ). We fix the space
mesh-length 4, with corresponding time mesh-length A~'4, and build, as before,
the staggered grids of mesh-points (x,, t,), for » + s even, and sampling points
(v, 1), for r +5 odd.

Assuming Uy, is already known on {(x.1): —00 < x < 00, 0 < ¢ < t,}, we
determine Uy (-, ;) through (13.1.8), namely as a step function that is constant on
intervals defined by neighboring mesh-points along the ¢,-time line. Here, however,
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in order to account for the source term in our system, instead of using (13.2.5),
we compute U/ in two steps:

(13.8.6) V) = liTm Up(y;—.t) . r-+sodd,
LT

(13.8.7) U=V =3 "GV x,) . r+sodd.

Next we determine Uj on the strip {(x,t): —00 < x <00, t, <t < t,,1} as
a solution of (13.1.9), under initial condition (13.1.8), namely, by resolving the
jump discontinuities at the mesh points, along the ¢,-time line, according to the
conservation law (13.1.9), ignoring the source term.

The algorithm is initiated, at s = 0, from the initial data, through (13.1.10).

In the above construction, the source term is handled by “operator splitting”:
To pass from ¢ =1, to t = t,,|, we first solve approximately the ordinary differ-
ential equation 3, U + G(U, x) = 0, on (¢, f,41), through (13.8.7), and then solve,
separately, the conservation law 3, U + 3, F(U) = 0. More elaborate construction
schemes have also been applied, in which one resolves the jump discontinuities at
the mesh-points according to the balance law itself. Needless to say, in the absence
of self-similarity, the resolution of jump discontinuities is a hard problem. It is not
necessary, however, to employ the exact solution; an approximation would suffice.
For that purpose, approximations have been computed, which provide a better fit
for the solution than crude operator splitting. Both approaches work and yield, in
the £ | O limit, solutions to (13.8.1), (13.8.5). One should expect that, for fixed
h, the more refined approach provides a closer approximation to the solution than
mere operator splitting, albeit at the expense of more complicated computation.

To establish the effectiveness of the algorithm, one should retrace our steps
in Sections 13.2-13.7 and adapt the analysis to the present setting. It turns out
that this is a tedious but straightforward process, not requiring major new ideas.
Consequently, a brief outline will suffice here. The reader may find the details in
the references cited in Section 13.10.

To begin with, the analogs of Theorems 13.2.1, 13.2.2 and 13.7.1, on consis-
tency of the algorithm, generalize readily to the present situation. Namely, there is
a null subset . / * of the set . £ of sequences g = {ag, a;. - - -} with the following
property. When the U/ are evaluated through (13.8.6), (13.8.7), with ¥ = x, +ah,
for o €. /\. 1 ', then the limit U of any convergent sequence {Uj,,} of the re-
sulting family {U,} of approximate solutions, with #,, — O asm — 00, is a weak
solution of the initial-value problem (13.8.1), (13.8.5), which satisfies the entropy
admissibility criterion for any entropy-entropy flux pair (17, q) with n(U) convex.
Furthermore, the class of equidistributed sequences g is necessarily contained in
AV I

The next task is to establish a priori bounds on U, and the first step in that
direction is to consider, in the present setting, the interaction of waves in the
typical diamond A’, r + s even. By virtue of (13.8.7), the jump of U across the
mesh-point (x,, f;) is
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Ut U == AT BV - v

13.8.8
( ) —A"hf G (V™' x)dx —A"hf G (V! x)dx .
where
1
(13.8.9) B! =f DGV + (1 — )V Nydr .
0

If @ and B are the wave fans entering A] through its “southwestern” and “south-
eastern” edge, respectively, and & is the wave fan generated at the mesh-points
(x,. t5), we use again, as in Section 13.3, the analysis of Section 9.6, together with
our assumptions (13.8.2), (13.8.3) to get, in the place of (13.3.1),

(13.8.10) .
le = (e + B < [e3 + calla| + |BD]Z (A + phi|a| + Iﬂ|)+c|4hf glx)dx

Xr—|
where p and ¢4 are positive constants depending solely on £ and b. Note that the
term ph(|a| + |B]) arises because G varies with U, while the last term accounts
for the dependence of G on x.

We now consider, as in Section 13.4, mesh curves /, and with them we as-
sociate the functionals % (/) and ¢/([), defined through (13.4.2) and (13.4.5).
Assuming J is an immediate successor of /, as depicted in Fig. 13.4.1, we em-
ploy (13.8.10) to derive estimates analogous to (13.4.4) and (13.4.7):

(138.11) £(J) < %(1>+x£/(A;>+uh(|a|+|ﬁ1>+c,4hf' g(x)dx |

r-

)=o)+ kL) - 1]7(A)D)
13.8.12
( ) + [uh(lal + 8D+ C|4hf g(x)d.r] sz,

where « is some fixed upper bound of ¢5 + c4(|et| + |8|), independent of I and 4.
Consequently, considering again the Glimm functional 4 defined through (13.4.9),
we deduce from (13.8.11) and (13.8.12):

Gy S () —«ll =2 £(H]Z (A7)

(13.8.13) _ e
+[1+ 2 £ ()] [uh(|a|+|ﬁ|)+cl4hf g(I)d-f:l .
In particular, if 2k £ (1) < 1, then
Xrat
(13.8.14) ‘S <o)+ 2uh(lal + |8)) + 2('|4hf g(x)dx .
Xl

Fors =0,1,2.---, we let I, denote the mesh curve, with infinite edges, which
originates at —oo, zig-zags between ¢ = ¢, and ¢ = ¢,,, and terminates at +oo.
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Thus the vertices of I, will be the sampling points (¥, r,) and (.\'_Y’Il',t_w,). for
all » with » + s odd. So long as 2« £ (I) < 1 holds for all mesh curves /, with

I,—1 <1 < I,. we may apply (13.8.14) repeatedly to get
(13.8.15) L) < (L4 2uhyi% (o)) + 2c 1400,
where w is given by (13.8.4). lterating (13.8.15) yields
(13.8.16) G (L) < €5 (L) + 2cq0[e™ — 1] .

In particular, it follows from (13.8.16) that, assuming 2« ‘% (ly) < I, one may fix
i and T so small that 2« £ (1) < 2k (Iy < | forall I suchthat [, < I < [,
and ¢, < T. This closes the loop and establishes that (13.8.16) will indeed hold
fort, € [0, T).

Next we note that (13.8.16) readily implies an estimate

(13.8.17) TVicxna U, 1) < 1€ [T Voo Uo(-) + @] |

for /i sufficiently small and ¢ € [0. T'). With the help of (13.8.17), one may derive,
as in Sections 13.5 and 13.6, a bound on sup |Uy|, over (00, oc) x [0, T), as well
as an estimate

f |Uh(x,r)_Uh(X,T)|dX

oc

(13.8.18)
< e (It — 1| + M[TVi—e.x)Us () + @] ,

valid for 0 < v <t < T. Combining (13.8.17) with (13.8.18), we infer that the
total variation of U, over (—o0, 20) x [0, T) is bounded, uniformly in A, so that
one may extract convergent sequences whose limits will be solutions of (13.8.1),
(13.8.5). We have thus sketched the proof of the following

Theorem 13.8.1 Under the assumptions (13.8.2), (13.8.3) on the source term, there
are positive constants 8y and &, such that if

(13.8.19) SUP, _ ey U0 () < 80 .
(13.8.20) TV soc)Un(-) <8y,

then there exists a solution U of (13.8.1), (13.8.5), which is a function of bounded
variation defined on (—o0,00) x [0, T) and taking values in ¢ . This solution
satisfies the entropy admissibility criterion for any entropv-entropy flux pair (1. q)
of the system, with n(U) convex. Furthermore, for each fixed t € [0.T), U(-.t) is
a function of bounded variation on (—00, 00) and

(13.8.21) TVicx o) U 1) < 1 [TVi—oo.xsUo(-) + @] .

In particular, the life span of the solution increases to infinity as TV _x ~,Uo(*)
and w shrink to zero.
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In view of the above proposition, it is useful to identify classes of source
terms for which solutions exist globally in time. Below we consider two distinct
mechanisms that may induce infinite life span.

We begin with the case where the effect of the source term is dissipative. To
motivate the natural hypothesis on G, we linearize (13.8.1) about the origin, and
then express U as a linear combination )_ V;R;(0) of the right eigenvectors of
DF(0), in which case the principal part of the system decouples,

(13.8.22) 3,Vi(x, D+ X (03 Vi(x. D+ D Ay(0)V;(x,nH=0. i=1...n,

j=1
where
(13.8.23) A(x) = [R1(0), -+, R,(0)]"'DG(0, )[R (0), - - -, Ry(0)] .

The natural condition that renders (13.8.22) stable in L'(—00.00) is that the
matrices A(x) are uniformly, strictly diagonally dominant:

(13.8.24) Ai(x) =Y A 0l 2v >0, i=1-n.
J#

Equivalently,
(13.8.25) [l —tAX)| <1-vT,

for 7 positive small, where on the left-hand side we have the norm of / — 7 A(x)
as an operator on £.

It turns out that (13.8.24) is also the natural condition for stability in BV of
the system (13.8.1). To see this, one has to return to (13.8.8) and apply more
carefully the results of Section 9.6 to get, in the place of (13.8.10), the more
precise estimate:

e=[l—X"hHJ(a + B) + O(1)/ (A])
(13.8.26)

+ OV (] + 18 + 0(h>f' 2O |

where H] is an n x n matrix which is close to A, provided Uj, takes values in a
sufficiently small neighborhood of the origin. Therefore, by using (13.8.25), we
now get, in the place of (13.8.11), the more precise estimate

| Xrgl
(13.827) % (J) < Z(l)—Evk"h(laH—|ﬂ|)+xf/(A;)+c|4hf e(x)dx .

Assuming, as before, that 2« £ (/) < 1 for I,_; < I < I,, we obtain, in lieu of
(13.8.15),

(13.8.27) 2 Us) < (1 — ph)% (1,_)) + 2crawh |

for some p > 0, whence we deduce
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(13.8.28) G (l) <e ™7 (L) +2cupw .

One may thus preserve 7 Vi_x o) Us (-, £) small, uniformly on [0, oc), provided
T Vi—oc.2)Uo(+) and w are sufficiently small.

The simplest way to keep sup _ ., |Ux (-, 1)| also small for r € [0, c0), is by
assuming that U, (-, t) has compact support, and so the final result will be stated
in that special situation:

Theorem 13.8.2 Under the assumptions (13.8.2), (13.8.3), (13.8.24) on the source
term, there are positive constants § and wy such that if (13.8.4) holds with v < wy
and the initial data Uy have compact support and satisfy

(13.8.29) TVicx.0e)Uo(") <8,

then there exists a solution U of (13.8.1), (13.8.5), which is a function of locally
bounded variation gn (—00, oc) x[0, o0), taking values in ¢ . This solution satisfies
the entropy admissibility criterion for any entropy-entropy flux pair (n, q) of the
system, with n(U) convex. Furthermore, for each fixed t € [0,T), U(-,t) is a
function of bounded variation on (—oc, 0o) and

(13.8.30) TV(—oc,co)U(', t) < c,e_’”T V(-—oo.oc)UO(') + cw ,

Jor some p > 0. In particular, when G does not depend explicitly on x,
T Vicoc.oy U (-, t) decays exponentially fast to zero, as t — 00.

We may also have global existence under an entirely different situation, namely
when the characteristic speeds of the system are all bounded away from zero and
the source term decays, as |x| — oc. The expectation is that under such conditions
the bulk of the wave originating at + = 0 shall travel at nonzero speed and thus
will eventually enter, and stay, in the region where the source term is small and
has insignificant influence. It is clear that to verfy the above conjecture, it is
imperative to exhibit the global wave pattern and track the bulk of the wave. This
may be effected by the method of wave partitioning discussed in Section 13.7.
The precise result established in the literature reads:

Theorem 13.8.3 Assume that

(13.8.3D) AW =ea>0, Uer , i=0,---,n,
(13.832) |G, )| +|DGWU.x)| =< f(x), Uel , x¢€(—00,00),
where

(13.8.33) f fx)dx=w .

There are positive constants wo and § such that if © < wy and

(13.8.34) TV _scoeUol(:) <8,
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then there exists a solution U of (13.8.1), (13.8.5), which is a function of locally
bounded variation on (—00, 00) x [0. 00), taking values in ¢~ . Furthermore, for
each fixed t € [0,00), U(-.t) is a function of bounded variation on (—oc, 00) and

(13.8.35) TVicoooyUC ) ST Vice. o) Up (1) + @] .

An interesting application of the above result is on the system (7.1.11) that
governs the isentropic flow through a duct of slowly varying cross section a(x).
We rewrite (7.1.11) as

B,v + 8, (pv) +a ' (x)a'(x)pr =0
(13.8.36) ) , i, , 5

3 (pv) + 3. [ov” + p(p)]+a™ ()’ (x)pv° =0 .
which is in the form (13.8.1). Clearly, in order to satisfy the assumption (13.8.32),
(13.8.33) of Theorem 13.8.3, one needs to assume that the cross section becomes
rapidly constant as |x| — oo.

13.9 Breakdown of Weak Solutions

We have seen that wave cancellation, together with dispersion, manage to offset
wave amplification, keeping the growth of the total variation of the solution in
check, so long as the total variation of the initial data is sufficiently small. For
genuinely nonlinear systems of two conservation laws, only the oscillation of
the initial data need be small; cf. Chapter XII. It will be demonstrated here that
such restrictions on the initial data are generally necessary: For systems of at least
three conservation laws, wave patterns exist which resonate to drive the oscillation
and/or total variation of solutions to infinity, in finite time.
Consider the system

ou+de(uv+w)=0
(13.9.1) v+ (FvH =0
Bw+ 0 —uvt —vw) =0.

The characteristic speeds are A} = —1, A, = %v, A3 = 1, so that strict hyperbolicity
holds for —8 < v < 8. The first and third characteristic families are linearly
degenerate, while the second characteristic family is genuinely nonlinear. Clearly,
the system is partially decoupled: The second, Burgers-like, equation by itself
determines v.

The Rankine-Hugoniot jump condition for a shock of speed s, joining the state
(-, v_,w_), on the left, with the state (u,, v,, w,), on the right, here read

HpVp —u v +w, —w_ =s(uy —u-)
1 1

(13.9.2 —v2 - —? = -

( ) eV ]6v_ sy —vl)

2
Uy —u- =g Vi o v —vw, Fvow.o =s(wy —w-) .



13.9 Breakdown of Weak Solutions 331

One then easily sees that I-shocks are l-contact discontinuities, with s = —1,
v = v, and

(13.9.3), wy —wo = —(ve+ Dy —u_).

Similarly, 3-shocks are 3-contact discontinuities, with s = 1, v_ = v, and
(13.9.3); w, —w_. =—(vy— D, —u_).

Finally, for 2-shocks, s = %(v- +v,), and vy < v_, in order to satisfy the Lax
E-condition.

We now construct a piecewise constant, admissible solution of (13.9.1) with
wave pattern depicted in Fig. 13.9.1: Two 2-shocks issue from the points (—1, 0)
and (1, 0), with respective speeds % and —%. On the left of the left 2-shock, v = 4;
on the right of the right 2-shock, v = —4; and v = 0 between the two 2-shocks.
A 1-shock issues from the origin (0, 0) and upon colliding with the left 2-shock it
is partly transmitted as a 1-shock and partly reflected as a 3-shock. This 3-shock,
upon impinging on the right 2-shock, is in turn partly transmitted as a 3-shock
and partly reflected as a 1-shock, and the process is repeated ad infinitum.

-1, 0 (0,0) (1,0
Fig. 13.9.1.

By checking the Rankine-Hugoniot conditions (13.9.2), one readily verifies
that, for instance, initial data

(—65.4,225) . —oo<x <—1

(15,0, —15), —1<x<0
(13.9.4) (u(x,0), v(x,0). w(x,0)) =

(—15,0,15), 0<x <l

(—63, —4, —225) , |l <x <00

generate a solution with the above structure.
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The aim is to demonstrate that each reflection increases the strength of the
shock by a constant factor. With collisions becoming progressively more frequent
as the distance between the two 2-shocks is decreasing, until they finally coalesce
at t = 4, the conclusion will then be that the oscillation of the solution explodes
as t 1 4. 1t will be convenient to measure the strength of 1- and 3-shocks by the
jump of u across them.

Let us first examine the interaction depicted in Fig. 13.9.2, where a 1-shock
hits the left 2-shock, from the right.

(), 4ow)) (it2,0, wa)

(uy,—4, wy)

(ug, 4, wp) (113, 0, w3)

(13, 0, w3) (11g. ~ 4, wy)

(i3, 0, wy) (1.0, wy)

Fig. 13.9.2. Fig. 13.9.3.

We need to compare the strength |u3 — u;| of the reflected 3-shock with the
strength |u3 — ug4l of the incident 1-shock. We write the Rankine-Hugoniot con-
ditions, (13.9.2) or (13.9.3), as applicable, for the five shocks involved in the
interaction:

w3 — wg = — (U3 — Uy)
wy —wo = =5y — o)
W3 — W2 = U3z — Uy

|
(13.9.5) o+ wa = wo = 7 (s ~ uo)

|
ug —ug + 16ug + 4wy = 4—(104 —~ wp)

1
—4u| +wy — w = Z(uz —up)

1
uy —uy + 16u) + 4w, = Z(wz —wp) -
After elementary eliminations, one arrives at
10
(1396) ll3-u2=——9—(ll3—u4) y

which shows that as the 1-shock is reflected into a 3-shock the strength increases
by a factor 10/9.
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Next we examine the interaction depicted in Fig. 13.9.3, where a 3-shock hits
the right 2-shock from the left. By writing again the Rankine-Hugoniot conditions,
completely analogous to (13.9.5), and after straightforward eliminations, one ends
up once more with Equation (13.9.6). Thus, the strength iy — u3] of the reflected
1-shock exceeds the strength [ty — u3| of the incident 3-shock by a factor 10/9.

We have now confirmed that the oscillation of the solution blows up as 1 4.
The above setting, which renders the calculation particularly simple. may appear
at first as a singular, isolated example. However, after some reflection one realizes
that the wave resonance persists under small perturbations of the equations and/or
initial data, i.e., this kind of catastrophe is sort of generic.

Catastrophes of other nature may occur as well: The total variation may blow
up even though the oscillation remains bounded. This may be demonstrated in the
context of the system

du+ o, (uvt+w)=0
(13.9.7) dv+ 0, (1zv%) =0

dow +d(u —uv® — 2wy =0,

which has the same characteristic speeds as (13.9.1), and similarly admits piece-
wise constant solutions with the wave pattern depicted in Fig. 13.9.1. It is possible
to adjust the speeds of the two 2-shocks in such a manner that after any two suc-
cessive reflections |- and 3-shocks regain their original left and right states, i.e.,
the solution takes values in a finite set of states. On the other hand, as ¢t approaches
from below the time t* of collision of the two 2-shocks, the number of shocks,
of fixed strength, that cross the t-time line grows without bound thus driving the
total variation to infinity. Details may be found in the references cited in Section
13.10.

It is not currently known whether such catastrophes may occur even in systems
arising in Continuum Physics, which, as we have seen, are endowed with special
features, such as convex entropy-entropy flux pairs.

13.10 Notes

The random choice method was developed in the fundamental paper of Glimm [1].
It is in that work that the ideas of consistency (Section 13.2), wave interactions
(Section 13.3), and the Glimm functional (Section 13.4) were first introduced,
and Theorem 13.1.1 was first established, for genuinely nonlinear systems. The
Glimm functional may be defined in the context of more general solutions; cf.
Schatzman [1]. The construction of solutions with large variation for the special
system (13.4.21) of isothermal gas dynamics is due to Nishida [1] (see also Luskin
and Temple [1], Poupaud, Rascle and Vila [1] and Ying and Wang [1]). The
notions of wave cancellation, approximate conservation laws and approximate
characteristics (Section 13.3), which were introduced in the important memoir by
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Glimm and Lax [1], provide the vehicle for deriving properties of solutions of
genuinely nonlinear systems of two conservation laws, constructed by the random
choice method (see Section 12.11). There is voluminous literature on extensions
and applications of the random choice method. For systems of mixed type, see
Pego and Serre [1]. For initial-boundary value problems, cf. Liu [7], Luskin and
Temple [1], Dubroca and Gallice [1]. Sablé-Tougeron [1] and Frid [1]. Additional
references are given in the books of Smoller [1] and Serre [9].

The extension of the random choice method to general systems that are not
necessarily genuinely nonlinear, which was just hinted in Remark 13.4.1, is treated
in great detail in Liu [11].

The derivation of bounds on the supremum, roughly outlined in Section 13.6,
is taken from the thesis of R. Young [1], where the reader may find the technical
details. In fact, this work introduces a new length scale for the Cauchy problem,
which may be used in order to relax, under special circumstances, the requirement
of small total variation on the initial data, for certain systems of more than two
conservation laws. In that direction, see Temple and Young [1,2], and Cheverry
[3]. Local or global solutions under initial data with large total variation are also
constructed by Alber [1] and Schochet [3,4].

The method of wave partitioning is developed in Liu [4], for genuinely non-
linear systems and in Liu [11], for general systems, and is used to establish the
deterministic consistency of the algorithm for equidistributed sequences (Theorem
13.7.1) as well as many important properties of solutions. Thus, for general sys-
tems with characteristic families that are either piecewise genuinely nonlinear or
linearly degenerate, Liu [11] describes the local structure of solutions and shows,
in particular, that any point of discontinuity of the solution is either a point of
classical jump discontinuity or a point of wave interaction. Furthermore, the set
of points of jump discontinuity comprise a countable family of Lipschitz curves
(shocks), while the set of points of wave interaction is at most countable (compare
with Theorem 12.7.1, for genuinely nonlinear systems of two conservation laws).
As t — oo, solutions of (13.1.1) approach the solution of the Riemann problem
with data (9.1.12), where U, = Up(—oc) and U, = Up(+0o0); cf. Liu [6,8,11].

The details of the proof of Theorems 13.8.1 and 13.8.2 are found in Dafermos
and Hsiao [1]. For an application to the system of isentropic elasticity with fric-
tional damping, see Dafermos [20]. Spherically symmetric solutions of the Euler
equations with damping are constructed in Hsiao, Tao and Yang [1]. See also Yang
[1]. Theorem 13.8.3 is taken from Liu [10].

The demonstration of the breakdown of solutions, presented in Section 13.9,
follows Jenssen [1]. Another example of a quasilinear hyperbolic system of three
equations (not in conservation form), with linearly degenerate characteristic fam-
ilies, in which the supremum of (even) smooth solutions blows up in finite time
is recorded in Jeffrey [2]. Systems of three conservation laws which exhibit phe-
nomena of instability, like amplification of solutions at a very high rate, are found
in R. Young [2]. Rapid magnification in the total variation of solutions of certain
systems is also demonstrated in Joly, Métivier and Rauch [2], by the methodology
of geometric optics (see Section 15.9). The mechanisms that induce instability
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differ from case to case, but they all involve wave interactions of three distinct
characteristic families. No instability has been detected thus far in solutions of
systems with physical interest. It is conceivable that the special features of such
systems, e.g, the presence of entropy-entropy flux pairs, may offset the agents of
instability. The work of R. Young [3,4] indicates that, for the system of nonisen-
tropic gas dynamics, solutions with periodic initial data remain bounded but do
not necessarily decay, as in the isentropic case.






Chapter XIV. The Front Tracking Method
and Standard Riemann Semigroups

A method is described, in this chapter, for constructing solutions of the initial-
value problem for hyperbolic systems of conservation laws by tracking the waves
and monitoring their interactions as they collide. Interactions between shocks are
easily resolved by solving Riemann problems; this is not the case, however, with
interactions involving rarefaction waves. The random choice method, expounded
in Chapter XIII, side-steps this difficulty by stopping the clock before the onset
of wave collisions and reapproximating the solution by step functions. In contrast,
the front tracking approach circumvents the obstacle by disposing of rarefaction
waves altogether and resolving all Riemann problems in terms of shocks only.
Such solutions generally violate the admissibility criteria. Nevertheless, consider-
ing the close local proximity between shock and rarefaction wave curves in state
space, any rarefaction wave may be approximated arbitrarily close by fans of (in-
admissible) shocks of very small strength. The expectation is that in the limit. as
this approximation becomes finer, one recovers admissible solutions.

The implementation of the front tracking algorithm, with proof that it con-
verges, will be presented here first for scalar conservation laws and then in the
context of genuinely nonlinear strictly hyperbolic systems of conservation laws of
any size.

By establishing contraction with respect to a suitably weighted L' distance,
it will be demonstrated that solutions of genuinely nonlinear systems, constructed
by the front tracking method, may be realized as orbits of the Standard Riemann
Semigroup, which is defined on the set of functions with small total variation
and is Lipschitz continuous in L'. It will further be shown that any BV solution,
which satisfies reasonable stability conditions, is also identifiable with the orbit
of the Standard Riemann Semigroup issuing from its initial data. This establishes,
in particular, uniqueness for the initial-value problem within a broad class of BV
solutions, including those constructed by the random choice method. as well as
those whose trace along space-like curves has bounded variation, encountered in
earlier chapters.

The chapter will close with a discussion of the structural stability of the wave
pattern under perturbations of the initial data.
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14.1 The Scalar Conservation Law

This section discusses the construction of the admissible solution to the initial-
value problem for scalar conservation laws by a front tracking scheme that aims at
eliminating rarefaction waves. The building blocks will be wave fans composed of
constant states, admissible “compressive” shocks, and inadmissible “rarefaction”
shocks of small strength.

The admissible solution of the Riemann problem for the scalar conservation
law 8,1 + 8, f(1) = 0, with C' flux f, was constructed in Section 9.3: The left
end-state 1, and the right end-state «, are joined by the wave fan

(14.1.1) ue, 1) =[g']" (;) ‘

where g is the convex envelope of f over [u,, u,], when u, < u,, or the concave
envelope of f over [«,, u,], when u, > u,. Intervals on which g is constant yield
shocks, while intervals over which g’ is strictly monotone generate rarefaction
waves. The same construction applies even when f is merely Lipschitz, except
that now, in addition to shocks and rarefaction waves, the ensuing wave fan may
contain intermediate constant states, namely, the jump points of g’. In particular,
when f, and thereby g, are piecewise linear, the wave fan does not contain any
rarefaction waves but is composed of shocks and constant states only (Fig. 14.1.1).
We now consider the initial-value problem

412 Su(x, )+ 0, fux,t)) =0, —-oo<x<oo, 0=<t<oo,
(14.1.2)
u(x,0) =up(x), —-oo<x <o,

for a scalar conservation law, where the flux f is Lipschitz continuous on
(—oc, oc) and the initial datum u, takes values in a bounded interval [-M, M]
and has bounded tota! variation over (—oc, oc).

To solve (14.1.2), one first approximates the flux f by a sequence {f,} of
piecewise linear functions, such that the graph of f,, is a polygonal line inscribed
in the graph of f, with vertices at the points (f, f(,%)), k € N. Next, one realizes
the initial datum u; as the a.e. limit of a sequence {uy,,} of step functions, where
uom takes values in the set 77, = {,5" 1k € N, [k] < mM}, and its total variation

LN

1y

[ 0 X

Fig. 14.L.1.
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does not exceed the total variation of uy over (—oo, oc). Finally, one solves the
initial-value problem

ou(x, )+ fmu(x, 1)) =0, —-oo<x<oo, 0<t<mo,
(14.1.3)

u(x,0) = upn(x) . —oCc<x <00,
for m = 1,2, ---. The aim is to show that the admissible solution u,, of (14.1.3)

is a piecewise constant function, taking values in #4,. which is constructed by
solving a finite number of Riemann problems for the conservation law (14.1.3),;
and that the sequence {u,,} converges to the admissible solution u of (14.1.2).

The construction of u,, is initiated by solving the Riemann problems that
resolve the jump discontinuities of wq,, into wave fans of shocks and constant
states in #7,,. In turn, wave interactions induced by shock coliisions are similarly
resolved, in the order they occur, into wave fans of shocks and constant states
in #/,, resulting from the solution of Riemann problems. It should be noted that
the admissible solution of the Riemann probiem for (14.1.3);, with end-states
in /2,, is also a solution of (14.1.2),, albeit not necessarily an admissible one,
because in that context some of the jump discontinuities may be rarefaction shocks.
Thus, in addition to being the admissible solution of (14.1.3), u,, is a (generally
inadmissible) solution of (14.1.2),.

We demonstrate that the number of shock collisions that may be encountered
in the implementation of the above algorithm is a priori bounded, and hence u,,
is constructed on the entire upper half-plane in finite steps. The reason is that
each shock interaction simplifies the wave pattern by lowering either the number
of shocks, measured by the number j,,(¢) of points of jump discontinuity of the
step function u,, (-, 1), or the number of “oscillations”, counted by the lap number
£, (1) of up (-, 1).

For the case of a step function v(-) on (—o0. 00) the lap number £, previously
encountered in Section 11.8, is set £ = 0 when v(-) is monotone, while when v(-)
is nonmonotone it is defined as the largest positive integer with the property that
there exist £ + 2 points —00 < xp < x; < -+ < Xgpq < 00 of continuity of v(-),
such that [v(x;+1) — v(x)][v(x) — v(x-)] <0, i=1,.-- L

Clearly, both j,(z) and £,(t) stay constant along the open time intervals
between consecutive shock collisions; they may only change across ¢t = 0 and as
shocks collide. When k shocks, joining (left, right) states (uo, uy), « - -, (Ug—1, Uk),
collide at one point, the ensuing interaction is called monotone if the finite sequence
{ug, uy, -~ -, ug}) is monotone. Such an interaction produces a single shock joining
the state ug. on the left, with the state u;, on the right. In particular, monotone
interactions leave £,,(t) unchanged, while lowering the value of jn.(¢) at least by
one. In contrast, across nonmonotone interactions £,,(t) decreases at least by one,
while the value of j,(¢) may change in either direction, but in any case it cannot
increase by more than s,, — 1.s,, being the number of jump points of f, over
the interval (—M, M); thus s, — | < 2Mm. It follows that the integer-valued
function p,, (t) = ju(t) + sm€n{t) stays constant along the open time intervals
between consecutive shock collisions, while decreasing at least by one across any
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monotone or nonmonotone shock collision. Across r = 0, £, (0+) = £,,(0) and
Jm(0+) < (5m + 1) jin (0). Therefore, (sm + 1)[jm(0) + £,,(0)] provides an upper
bound for the total number of shock collisions involved in the construction of up,.

As function of ¢, the total variation of u,, (-, t) over (—o0, 0c) stays constant
along time intervals between consecutive shock collisions; it does not change
across monotone shock collisions; and it decreases across nonmonotone shock
collisions. Hence,

(14.1.4)
TV x.cytm(-, 1) = TVq—oc.o:)“mO(') < TV(—oc,gc)ll()(') , 0<t<oo.

Since the speed of any shock of u,, cannot exceed the Lipschitz constant ¢ of f
over [-M, M], (14.1.4) implies

(14.1.5)

oo
f [t (X, 1) —up(x, Ddx < clt =TT Ve pito(-) , 0<T <t <00.
-0

By virtue of Theorem 1.7.1, (14.1.4) together with (14.1.5) yield that the total
varnation of u,, over any compact subset of (—oc, oc) x [0, 00) is bounded, uni-
formly in m. Hence, by account of Theorem 1.7.2, {u, )} contains a subsequence
{um,} which converges a.e. to some function « of locally bounded variation on
(—oc, 00) x [0, oc).

As discussed in Chapter VI, since u,, is the admissible solution of (14.1.3),

(14.1.6)
f f [afllfn(um) + B.r‘//'qm(l‘m)]dx‘it +f 1//(x, O)U(L‘OM(X))dx > 0,
0 -0 -0

for any convex entropy 7, with associated entropy flux ¢, = [ n'df,, and all
nonnegative Lipschitz test functions ¥ on (—oc, o) x [0, 00), with compact sup-
port. As m — 00, {ugn} converges, a.e. on (—00, 00), to 4o, and {g,) converges,
uniformly on [—M, M], to the function ¢ = [ n’df, namely, the entropy flux
associated with the entropy 7 in the conservation law (14.1.2),. Upon passing to
the limit in (14.1.6), along the subsequence {m;), we deduce

o0 o0 o0
(14.1.7) f f (3 ¥n(u) + 0 Yq(u)dxdt +f ¥ (x, 0)n(uo(x))dx 2 0,
0 -0 . -0
which implies that « is the admissible solution of (14.1.2). By uniqueness, we
infer that the whole sequence {u,,} converges to .
14.2 Front Tracking for Systems of Conservation Laws

Consider a system of conservation laws, in canonical form

(14.2.1) U+ FIU)=0,
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which is strictly hyperbolic (7.2.8), and each characteristic family is either gen-
uinely nonlinear (7.6.13) or linearly degenerate (7.5.2). The object of this section
is to introduce a front tracking algorithm which solves the initial-value problem
(13.1.1), under initial data Uy with small total variation, and provides, in particular,
an alternative proof of the existence Theorem 13.1.1.

The instrument of the algorithm will be special Riemann solvers, which will
be employed to resolve jump discontinuities into centered wave fans composed
of jump discontinuities and constant states, approximating the admissible solution
of the Riemann problem. In implementing the algorithm, the initial data are ap-
proximated by step functions whose jump discontinuities are then resolved into
wave fans. Interactions induced by the collision of jump discontinuities are in turn
resolved, in the order they occur, into similar wave fans. It will suffice to consider
the generic situation, in which no more than two jump discontinuities may collide
simultaneously. The expectation is that such a construction will produce an ap-
proximate solution of the initial-value problem in the class of piecewise constant
functions.

The first item on the agenda is how to design suitable Riemann solvers. The
experience with the scalar conservation law, in Section 14.1, suggests that one
should synthesize the centered wave fans with constant states, admissible shocks,
and inadmissible rarefaction shocks of small strength.

In an admissible i-shock, the right state U, lies on the i-th shock curve through
the left state U_, that is, in the notation of Section 9.3, U; = @;(t; U_), with
7 < 0 when the i-th characteristic family is genuinely nonlinear (compressive
shock) or with 7 < 0 when the i-th characteristic family is linearly degenerate
(contact discontinuity). The amplitude is 7, the strength is measured by |7|, and
the speed s is set by the Rankine-Hugoniot jump condition (8.1.2).

Instead of actual rarefaction shocks, it is more convenient to employ “rarefac-
tion fronts”, namely jump discontinuities which join states lying on a rarefaction
wave curve and propagate with characteristic speed. Thus, in an i-rarefaction front
(which may arise only when the i-th characteristic family is genuinely nonlinear)
the right state U, lies on the i-th rarefaction wave curve through the left state
U_,ie., Uy = &;(7; U_), with T > 0. Both, amplitude and strength are measured
by 7, and the speed is set equal to A;(U,). Clearly, these fronts violate not only
the entropy admissibility criterion but even the Rankine-Hugoniot jump condition,
albeit only slightly when their strength is small.

Centered rarefaction waves may be approximated by centered wave fans com-
posed of constant states and rarefaction fronts with strength not exceeding some
prescribed magnitude § > 0. Consider some i-rarefaction wave, centered, for defi-
niteness, at the origin, which joins the state U_, on the left, with the state U4, on the
right. Thus, U, lies on the i-rarefaction curve through U_, say U, = @i(t: U-),
for some ¢ > 0. If v is the smallest integer which is larger than /8, we set
Ul=U_,U"=U,, U* =;(us; U_), u = 1.---,v — |, and approximate the
rarefaction wave, inside the sector A; (U_) < £ < A;(U,), by the wave fan

I

(14.2.2) Ux,) =U", 2NU* ) < ; <MWU*). pm=loo v,
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We are thus naturally lead to an Approximate Riemann Solver, which resolves
the jump discontinuity between a state Uy, on the left, and U,, on the right, into a
wave fan composed of constant states, admissible shocks, and rarefaction fronts,
by the following procedure: The starting point is the admissible solution of the
Riemann problem, consisting of n + | constant states Uy = Up, Uy.---. U, = U,,
where U;_; is joined to U; by an admissible i-shock or an i-rarefaction wave.
To pass to the approximation, the domain and values of the constant states, and
thereby all shocks, are retained, whereas, as described above, any rarefaction wave
is replaced, within its sector, by a fan of constant states and rarefaction fronts of
the same family, with strength not exceeding & (Fig. 14.2.1).

Our earlier success with the scalar case may raise expectations that a front
tracking algorithm in which all shock interactions are resolved via the above ap-
proximate, though relatively accurate, Riemann solver will produce an approximate
solution of our system, converging to an admissible solution of the initial-value
problem as the allowable strength & of rarefaction fronts shrinks to zero. Unfortu-
nately, such an approach would generally fail, for the following reason: By contrast
to the case for scalar conservation laws, wave interactions in systems tend to in-
crease the complexity of the wave pattern so that collisions become progressively
more frequent and the algorithm may grind to a stop in finite time. As a remedy,
in order to prevent the proliferation of waves, only shocks and rarefaction fronts
of substantial strength shall be tracked with relative accuracy. The rest shall not
be totally disregarded but shall be treated with less accuracy: They will be lumped
together to form jump discontinuities, dubbed “pseudoshocks”, which propagate
with artificial, supersonic speed.

A pseudoshock is allowed to join arbitrary states U_ and U,. Its strength is
measured by |U, — U_| and its assigned speed is a fixed upper bound A, of
A, (U), for U in the range of the solution. Clearly, pseudoshocks are more serious
violators of the Rankine-Hugoniot jump condition than rarefaction fronts, and may
thus wreak havoc in the approximate solution, unless their total strength is kept
very small.

To streamline the exposition, i -rarefaction fronts and i-shocks (compression or
contact discontinuities) together will be dubbed i-fronts. Fronts and pseudoshocks

0 x
Fig. 14.2.1.
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will be called collectively waves. Thus an i-front will be an i-wave and a pseu-
doshock will be termed (n + 1)-wave. For notational convenience, the strength
of waves of any type will be denoted by ||, |B], [¥].---. notwithstanding that,
as postulated above, o, 8, y, - -+ could represent scalar amplitudes in the case of
fronts but vector amplitudes in the case of pseudoshocks.

Under circumstances to be specified below, the jump discontinuity generated
by the collision of two waves shall be resolved via s Simplified Riemann Solver,
which allows fronts to pass through the point of interaction without affecting
their strength, while introducing an outgoing pseudoshock in order to bridge the
resulting mismatch in the states. The following cases may arise.

Suppose that, for i < j, a j-front, joining the states U, and U,,. collides with
an i-front, joining the states U,, and U, ; see Fig. 14.2.2. Thus U,, = P;(t; Up) and
U, = &;(1,; Uy). To implement the Simplified Riemann Solver, one determines
the state U, = @;(1,; Uy) and U, = ®;(1y; U,,). Then, the outgoing wave fan will
be composed of the i-front, joining the states U, and U,. the j-front, joining the
states U, and U,, plus the pseudoshock that joins U, with U,.

Suppose next that an i -front joining the states U, and U,,, collides with another
i-front, joining the states U,, and U, (no such collision may occur unless at least
one of these fronts is a compressive shock); see Fig. 14.2.3. Thus U,, = &;(z,: Uy)
and U, = @;(1,; Up). Upon setting U, = &; (1, + 1,; U,), the outgoing wave fan
will be composed of the i -front, joining the states U, and U,, plus the pseudoshock
that joins U, with U,.

Finally, suppose a pseudoshock, joining the states U, and U, collides with
an i-front, joining the states U,, and U,; see Fig. 14.2.4. Hence, U, = @;(t: Up).
We determine U,; = ®;(1; U;). The outgoing wave fan will be composed of the
i-front, joining the states U, and U,, plus the pseudoshock that joins U, with U,.

In implementing the front tracking algorithm, one fixes, at the outset, the
supersonic speed A,,; of pseudoshocks, sets the delimiter § for the strength of
rarefaction fronts, and also specifies a third parameter o > 0, which rules how
jump discontinuities are to be resolved:

Fig. 14.2.2.
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Fig. 14.2.3.

Fig. 14.2.4.

— Jump discontinuities resulting from the collision of two fronts, with respective
amplitudes o and 8, must be resolved via the Approximate Riemann Solver if
|a]|B] > o, or via the Simplified Riemann Solver if |a]|8]| < 0.

— Jump discontinuities resulting from the collision of a pseudoshock with any
front must be resolved via the Simplified Riemann Solver.

— Jump discontinuities of the step function approximating the initial data are to
be resolved via the Approximate Riemann Solver.

14.3 The Global Wave Pattern

Starting out from some fixed initial step function, the front tracking algorithm,
described in the previous section, will produce a piecewise constant function U
on a maximal time interval [0, 7). In principle, 7 may turn out to be finite, if the
number of collisions grows without bound as t ¢ 7, so the onus is to show that
this shall not happen.

To understand the structure of U, one has to untangle the complex wave
pattern. Towards that end, waves have to be tracked not just between consecutive
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collisions but globally, from birth to extinction or in perpetuity. The waves are
granted global identity through the following convention: An i-wave involved in
a collision does not necessarily terminate there, but generally continues on as the
outgoing i-wave from that point of wave interaction. Any ambiguities that may
arise in applying the above rule will be addressed and resolved below.

Pseudoshocks are generated by the collision of two fronts, resolved via the
Simplified Riemann Solver, as depicted in Figs. 14.2.2 or 14.2.3. On the other
hand, i-fronts may be generated either at t = 0, from the resolution of some jump
discontinuity of the initial step function, or at ¢ > 0, by the collision of a j-front
with a k-front, where j # i # k, which is resolved via the Approximate Riemann
Solver.

Every wave is carrying throughout its life span a number u, identifying its
generation order, that is the maximum number of collisions predating its birth.
Thus, fronts originating at + = 0 are assigned generation order u = 0. Any
other new wave, which is necessarily generated by the collision of two waves,
with respective generation orders say p| and pu», is assigned generation order
puo=max{uy, u2}+ 1.

As postulated above, waves retain their generation order as they traverse points
of interaction. Ambiguity may arise when, in a collision of an /-rarefaction front
with a j-front, resolved via the Approximate Riemann Solver, the outgoing i-wave
fan contains two i-rarefaction fronts. [n that case, the slower of these fronts, with
strength &, is designated as the prolongation of the incoming i-front, while the
other i-front, with strength < 4, is regarded as a new front and is assigned a
higher generation order, in accordance to the standard rule. Ambiguity may also
arise when two fronts of the same family collide, since the outgoing wave fan may
include (at most) one front of that family. [n that situation, the convention is that
the front with the lower generation order is designated to get through, while the
other one is terminated. [n case both fronts are of the same generation order, any
one of them, arbitrarily, may be designated as the survivor. Of course, both fronts
may be terminated upon colliding, as depicted in Fig. 14.2.3, in the (nongeneric)
case where one of them is a compression shock, the other is a rarefaction front
of the same characteristic family and both have the same strength. Pseudoshocks
may also be extinguished in finite time by colliding with a front, as depicted in
Fig. 14.2.4, in the (nongeneric) case U, = U,.

We now introduce the following notions, which will establish a connection
with the approach pursued in Chapters X-XII.

Fori =1,---,n, an i-characteristic associated with U is a Lipschitz, polygo-
nal line x = &(¢) which traverses constant states, say U, at classical i-characteristic
speed, £ = A;(U), but upon impinging on an i-front, or a generation point thereof,
it adheres to that front, following it throughout its lifespan. Thus, in particular,
any i-front is an i-characteristic. By analogy, (n + |)-characteristics are defined
as straight lines with slope A,,;. Thus, pseudoshocks are (i + 1)-characteristics.

Consider now an oriented Lipschitz curve with graph ¥, which divides the
upper half-plane into its “positive” and “negative” side. We say 7 is nonresonant
if the set {1, ---,n, n+ 1} can be partitioned into three, pairwise disjoint, possibly
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empty, subsets . /_,. Jo'and . I, with the following properties: . /_ and . /, each

consists of up to n + 1 consecutive integers, while . /o'may contain at most one

member. For i €./ (ori €. /,) any i-characteristic impinging on 7 crosses

from the positive to the negative (or from the negative to the positive) side. On

the other hand, if i €. /o, any i-characteristic impinging upon ¢, from either its

positive or its negative side, is absorbed by 7, i.e., ¥ itself is an i-characteristic.
Noteworthy examples of nonresonant curves include:

(a) Any i-characteristic, in particular any {-wave. Inthatcase. /. = {1, --- i—I},
p=fiYand. IS =i+ 1, n+ 1)

(b) Any space-like curve. Assuming A (U) < 0 < A, , these may be represented
by Lipschitz functions ¢ = f(x), —00 < x < oo, with 1/A; < di/dx < 1/A,,,,
a.e. on (—o00, 00). In that case, . /. =(1,---.n+ 1} while both. /_"and . fy’
are empty.

The relevance of the above shall become clear in the next section.

14.4 Approximate Solutions

The following definition collects all the requirements on a piecewise constant
function, of the type produced by the front tracking algorithm, so as to qualify as
a reasonable approximation to the solution of our initial-value problem:

Definition 14.4.1 For § > 0, a 8-approximate solution of the hyperbolic sys-
tem of conservation laws (14.2.1) is a piecewise constant function U, defined on
(—00, 00) x [0, oc) and satisfying the following conditions: The domains of the
constant states are bordered by jump discontinuities, called waves, each propa-
gating with constant speed along a straight line segment x = y(¢). Any wave
may originate either at a point of the x-axis, t = 0, or at a point of collision of
other waves, and generally terminates upon colliding with another wave, unless no
such collision occurs in which case it propagates all the way to infinity. Only two
incoming waves may collide simultaneously, but any (finite) number of outgoing
waves may originate at a point of collision. There is a finite number of points of
collision, waves and constant states. The waves are of three types:

(a) Shocks. An (approximate) i-shock x = y(¢) borders constant states {/_, on the
left, and U, on the right, which can be joined by an admissible i-shock, i.e.,
Uy = Wi(r; U_), with t < 0 when the i-characteristic family is genuinely
noalinear or T > 0 when the i-characteristic family is linearly degenerate, and

propagates approximately at the shock speed s = 5;(7; U-):
(14.4.1) [¥(-)~s| <6.

(b) Rarefaction Fronts. An (approximate) {-rarefaction front x = y(¢) borders
constant states U_, on the left, and U, on the right, which can be joined by
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an i-rarefaction wave with strength < 8, i.e.. Uy = Vi(1; U_), with0 < 7 < §,
and propagates approximately at characteristic speed:

(14.4.2) [¥() =AUy <6

(c) Pseudoshocks. A pseudoshock x = y(r) may border arbitrary states U_ and
U, and propagates at the specified supersonic speed:

(1443) )() - ln-H .

The combined strength of pseudoshocks does not exceed §:
(14.4.4) DWEO+.H-UGn-.N<8. 0<t <o,

where for each ¢ the summation runs over all pseudoshocks x = y(-) which cross
the ¢-time line.

If, in addition, the step function U(-. 0) approximates the initial data Uy in L',
within distance 4,

oe
(14.4.5) f |U(x,0) — Up(x)ldx <6,
—oC
then U is called a 8-approximate solution of the initial-value problem (13.1.1).
The extra latitude afforded by the above definition in allowing the speed of
(approximate) shocks and rarefaction fronts to (slightly) deviate from their more
accurate values granted by the front tracking algorithm provides some flexibility
that may be put to good use for securing that no more than two fronts may collide
simultaneously.
The effectiveness of front tracking will be demonstrated through the following

Theorem 14.4.1 Assume Uy € BV (—o0c, 00), with TV,_s.00ylUpo(?) < a & I.
Fix any small positive 8, and approximate Uy by some step function Ugs such
that TV—s.00yUos (1) < T Vicec.oyUo () and ||Ups(-) — Uo( Il L1 (~sc.xc) < 8. Then
the front tracking algorithm with initial data Uy, fixed supersonic speed A, for
pseudoshocks, delimiter & for the strength of rarefaction fronts, and sufficiently
small parameter o (depending on § and on the number of jump points of Uos)
generates a 8-approximate solution Us of the initial-value problem (13.1.1). Any
sequence of 8's converging to zero contains a subsequence {8} such that (Us,}
converges, a.e. on (—00,00) x [0,00), to a BV solution U of (13.1.1), which
satisfies the entropy admissibility condition for any convex entropy-entropy flux
pair (, q) of the system (14.2.1), together with the estimates (13.1.5) and (13.1.6).
Furthermore, the trace of U on any Lipschitz graph on the upper half-plane which
is nonresonant relative to all Us, has bounded variation.

The above proposition reestablishes the assertions of Theorem 13.1.1. The
property that the trace of U along nonresonant curves has bounded variation es-
tablishes a connection with the class of solutions discussed in Chapter XII.
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The demonstration of Theorem 14.4.1 is quite lengthy and will be presented,
in installments, in the next three sections. However, the following road map may
prove useful at this juncture.

As already noted in Section 14.3, once the step function Ups has been des-
ignated, the front tracking algorithm will produce Uj, at least on a time interval
[0, T), which as we shall see later is [0, oc). We will be assuming throughout that
the range of Us is contained in a ball of small radius in state space, a condition that
must be verified a posteriori. The constants c;.cz. - -+, &, - - - which will appear in
the course of the proof, all depend solely on bounds of F and its derivatives in
that ball.

The first step will be to establish an estimate

(14.4.6) TVicwoayUsCo 1) 1T Vi syUp(-) . 0<t <T,

on the total variation, together with a bound on the total amount of wave interac-
tion. By account of the construction of Us, (14.4.6) will immediately imply

(14.4.7)

x0
f |Us(x,t) — Us(x, T)|dx < 2t =TT Vicoo.oyUn(-) . 0<t <t <T,

o0

with ¢; = cc;, where ¢ is any upper bound of the wave speeds; for instance c is the
maximum of A,,, and — inf X, (U). The usefulness of these estimates is twofold:
First, they will assist in the task of verifying that Us meets the requirements set
by Definition 14.4.1. Secondly, they will induce compactness that allows to pass
to the § | O limit.

In verifying that Us is a §-approximate solution, the requirements (14.4.1),
(14.4.2) and (14.4.3), on the speed of shocks, rarefaction fronts and pseudoshocks,
are patently met, due to the specifications of the construction. Moreover, the selec-
tion of the delimiter entails that the strengths of rarefaction fronts will be bounded
by 8. The remaining requirements, namely that the combined strength of pseu-
doshocks is also bounded by §, as in (14.4.4), and that the number of collisions is
finite, will be established by insightful analysis of the wave pattern. In particular,
this will furnish the warranty that Us is generated, in finite steps, on the entire
upper half-plane, ie., T = oc.

The final step in the proof will complete the construction of the solution to
(13.1.1) by passing to the § | 0 limit in Uj, via a compactness argument relying
on the estimates (14.4.6) and (14.4.7).

14.5 Bounds on the Total Variation

As in Section 13.4, T V(_ ooyUs(:. t) will be measured through

(14.5.1) L= Iyl.
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namely the sum of the strengths of all jump discontinuities that cross the 7-time
line. Clearly, L(-) stays constant along time intervals between consecutive colli-
sions of fronts and only changes across points of wave interaction. To estimate
these changes, we have to investigate the various types of collisions.

Suppose a j-front of amplitude o collides with an i-front of amplifude B.
When |a||8] = o, so that the resulting jump discontinuity is resolved, via the
Approximate Riemann Solver, into a full wave fan ¢ = (¢,---,¢,), then, by
virtue of Theorem 9.6.1",

(14.5.2) lej —al+ e = Bl + Y _ lexl = O(Dlal|B]
ki j
ifi < j,or
(14.5.3) lej = = Bl + ) _ lecl = O(D)ll|Bl
ksti
if i = j. On the other hand, when |x||8| < o, in which case the resulting jump

discontinuity is resolved, via the Simplified Riemann Solver, as shown in Fig.
14.2.2 or 14.2.3, the amplitude of the colliding fronts is conserved. The strength
of the generated outgoing pseudoshock is easily estimated from the wave diagrams
in state space:

(14.5.4) |Ur = Ugl = O(D]e||B] -

Consider next the case depicted in Fig. 14.2.4, where a pseudoshock collides
with an i-front of amplitude B. Since the amplitude of the i-front is conserved
across the collision, analysis of the wave diagram in state space, Fig. 14.2.4,
yields that the strength of the outgoing pseudoshock is related to the strength of
the incoming pseudoshock by

(14.5.5) |Ur — Ugl = |Un — Uel + O(DIBIUn — Ui -

Let 7 denote the set of r € (0, T) where collisions occur. We let A denote the
“jump” operator from ¢— to t+, for + € I. By account of the analysis of wave
interactions, above, we infer

(14.5.6) AL(t) <«xlx|lBl, tel.

where || and |8 are the strengths of the waves which collide at .

Our strategy for keeping T V| oc.oc)Us (-, t) under control is to show that any
increase of L(-) allowed by (14.5.6) is offset by the simultaneous decrease in the
amount of potential wave interaction.

A j-wave and an i-wave, with the former crossing the f-time line to the left
of the latter, are called approaching when either i < j, or i = j and at least one
of these waves is a compression shock.

' If the outgoing k-wave is a fan of k-rarefaction fronts, & denotes the cumulative ampli-
tude and |g;| stands for the cumulative strength of these fronts.
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The potential for wave interaction at ¢ € (0, t)\/ will be measured by

(14.5.7) Q@)= ILliEl, te© TN,

where the summation runs over all pairs of approaching waves, with strengths say
|¢| and |&], which cross the ¢-time line. In particular,

|
(14.5.8) Q) < EL(r)2 . 1€, TN\ .

Clearly, Q(-) stays constant along time intervals between consecutive collisions.
On the other hand, at any t+ € [ where waves with strength [«] and |8] collide,
our analysis of wave interactions implies

(14.5.9) AQ() < —|aIBl + xlafIBIL(t—=), tel.
In analogy to the Glimm functional (13.4.9), we set
(14.5.10) Gt)y=L(t)+2«Q(). te(0,TH\I.
Combining (14.5.10) with (14.5.6) and (14.5.9), yields
(14.5.11) AG(1) < k[2¢G(t=) — N|el|Bl, 1 € (0, T\I.

Assume now the total vanation of the initial data is so small that 4« L(0+) < 1.
Then, by account of (14.5.10) and (14.5.8), G(0+) < 2L(0+) < (2¢)~'. This
together with (14.5.11) and a simple induction argument yields AG(t) < 0,1 € I,
i.e., G(-) is nonincreasing. Hence

(14.5.12) L) <G@)<GO+) <2L(0+), te(0, T\,

which establishes the desired estimate (14.4.6).

Next we estimate the total amount of wave interaction. Since xL(f—) <
(14.5.9) yields

1
2

(14.5.13) AQ(r)s—%IalIﬂl, tel.

By summing (14.5.13) over all 1 € I, and upon using (14.5.8),
(14.5.14) > lellBl < LO+)?,

where the summation runs over the set of collisions in (—o0, co0) x (0, T).

Let us now consider any Lipschitz graph ¥ in (=00, o0) x [0, T), which is
nonresonant relative to Us, as defined in Section 14.3. The aim is to estimate the
total variation of the trace of Us on ¥, measured by the sum L, = Y |y| of the
strengths of al! waves that impinge on ¥.

Let J stand for the set of t € (0, 7) where some wave impinges on ¥ . For
t e (0, T\(IUJJ) we set

(14.5.15) M) =Z_|yl+ Z. |yl + Zolyl .
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where the summation X_ (or X',) runs over the i-waves, with i €. /_ (or. £,),
which cross the 7-time line on the positive (or negative) side of ¢ ; while X, runs
over all i-waves, with i € . /o. which cross the 7-time line on either side of ¥ .
Clearly,

(14.5.16) AM@)=—ly|. teJd\I.
(14.5.17) AM(t) < xlellBl, tel\J.
(14.5.18) AM(t) < |yl +«lallBl . telnd,

where || and |B| are the strengths of the waves colliding atr € 7 and |y| is the
strength of the wave that impinges on ¢ at € J. Summing the above inequalities
overall t € 1| JJ and using (14.5.14) together with 4« L(0+) < I, we conclude

(14.5.19) Lc < M(0+4) +KZ|01||/3| < 2L(04) .

Another important implication of the boundedness of the amount of wave inter-
action is that the total number of collisions is finite and bounded, independently of
7. Indeed, recall that the Approximate Riemann Solver is employed to resolve col-
lisions only when the product of the strengths of the two incoming fronts exceeds
o. By virtue of (14.5.14), the number of such collisions is bounded by L(0+)*/o.
Fronts are generated exclusively by the application of the Approximate Riemann
Solver to resolve jump discontinuities of Ups or collisions of fronts. Therefore, the
number of fronts is bounded. Any two fronts may collide at most once in their
lifetime, so the number of collisions between fronts is also bounded. Since all
pseudoshocks are generated by collisions of fronts, the number of pseudoshocks
is likewise bounded. But then, even the number of collisions between fronts and
pseudoshocks must be bounded. To summarize, the total number of collisions is
finite, bounded solely in terms of 8, o, and the number of jump points of Uy;s.
Consequently, the front tracking algorithm generates Us, in finite steps, on the
entire upper half-plane. In particular, the estimates (14.4.6) and (14.4.7) will hold
for0<t <ooand 0 <t <t < o0, respectively.

14.6 Bounds on the Combined Strength of Pseudoshocks

The final task for verifying that Us is a §-approximate solution of (14.2.1) is to
establish requirement (14.4.4). The notion of generation order was introduced in
Section 14.3. Waves of high generation order are produced after a large number of
collisions and so it should be expected that their strength is small. Indeed, the first
step in our argument is to show that the combined strength of all waves, and thus
in particular of all pseudoshocks, of sufficiently high generation order is arbitrarily
small. To that end, the analysis of Section 14.5 shall be refined by sorting out and
monitoring separately the waves according to their generation order.

We know by now that the total number of collisions is bounded, and hence
the generation order of all waves lies in a finite range, 0 < u < v. Note, however,
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that the magnitude of v depends penultimately on &, and should be expected to
grow without bounds as § | 0. For u = 0,1,---, v and ¢t € [0,00)\], we let
L, (t) denote the sum of the strengths of all waves with generation order > u
which cross the t-time line; and Q,(¢) stand for the sum of the products of the
strengths of all couples of approaching waves that cross the ¢-time line and have
generation order 41, pp with max{u,, u2} > u. Thus, in particular, Lo(r) = L(t)
and Qy(1) = Q(1). Finally, we identify the set [, of times t € I in which a wave
of generation order u collides with a wave of generation order < u.

Collisions between waves of generation order < u — 2 cannot affect waves of
generation order > 4, and so

(14.6.1) AL, ()=0, telU---Ul,_,.

Any change in L, (-) at t € I must be induced by the collision of two waves,
of which at least one is of generation order > u — |. These colliding waves,
with strengths say || and |B], are contributing |||B| to O, (r—) but nothing to
Q,-1(t+4). As in Section 14.5, the resulting drop in @, (-) can be used to offset
the potential increment of L, (-), which is bounded by «|x|(B]:

(14.6.2) AL, (1) +2AQ, (1) <0, tel, U---UI, .

By similar arguments one verifies the inequalities

(14.6.3) AQ, (1) +2kAQ()L,(t—-) <0, telU---Ul,_;,
(14.6.4) AQ () +2kAQ,\(1)L(1=) <0, t€ I,
(14.6.5) AQ,(1)<0, rel,u---UI,,

which govern the change of 0, () across collisions of various orders.
A superscript + or — will be employed below to indicate “positive” or “neg-

ative” part: wt = max{w, 0}, w~ = max{—-w, 0}. The aim is to monitor the
quantities
(14.6.6) Ly=swLyt), 0,=)[40,0]",
! tel
foru=1,---, v, and show
(14.6.7) L,<2"ga. Q,<2#9dd?,
where a is the bound on T V(_ o, Uo(-).
From (14.6.1), (14.6.2) and the “initial condition” L,O+)=0,u=1,---,v,
follows
(14.6.8) Li=2ed 04001, =1, 0.
tel

Next we focus on (14.6.3), (14.6.4) and (14.6.5), with “initial condition™
0,.(0+) = 0. Recalling (14.5.8), (14.5.12) and using
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!
(14.6.9) D [AQ(]” = 0(0+) = Q(00) < 5L(O+)? ,
tel
we deduce
(14.6.10) 0, <kLO’L, +4kLO+) ) [AQui(D]”, m=1,---,v.
tel

We combine (14.6.8) with (14.6.10). Assuming the total variation of the initial
data is so small that 10xL(0+) < 1, we deduce

A
(14.6.11) 0, < EZ[AQu_I(r)]‘ L=l 0.

tel

In particular, for u = 1 and by account of (14.6.9), O, < L(0+)2.

We finally notice that, for u = 1.---, v, since 0,(0+) =0,
(14.6.12) Y 14007 =Y TAQ, (O] — Qulo0) < 0y -

tel tel

plies 0, < 27#~'L(0+)>. This together with (14.6.9) and (14.6.10) gives
L, <27#=2L(0+). We have thus established (14.6.7).

1t is now clear that one can fix ¢ sufficiently large that the combined strength
of all waves of generation order > u(, which is majorized by iuo, does not exceed
18.
: In order to estimate the combined strength of pseudoshocks of generation order
< Mo, the first step is to estimate their number. For u = 0,---, v, let K, denote
the number of waves of generation order < u. A crude upper bound for K,, may
be derived by the following argument. The number of outgoing waves produced
by resolving a jump discontinuity, via any of the two Riemann solvers, is bounded
by a number b/§. Thus, Ky < %N, where N is the number of jump points of Up;.
Since any two waves may collide at most once in their lifetime, the number of
collisions that may generate waves of generation order 4 is bounded by K7 _,.
Therefore, i

Therefore, (14.6.11) yields 0, < 10, 1, u = 2,---,v, which in wm im-

b b
(14.6.13) K. <K+ %Kﬁ_l < EKE_I .

whence one readily deduces

b 2;1+|
(14.6.14) K, < (5) N .

Next we estimate the strength of individual pseudoshocks. Any pseudoshock
is generated by the collision of two fronts, with strengths |e| and |B] such that
l||B] < o, which is thus resolved via the Simplified Riemann Solver, as depicted
in Figs. 14.2.2 and 14.2.3. It then follows from the corresponding interaction esti-
mate (14.5.4) that the strength of any pseudoshock at birth does not exceed cy0. By
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account of (14.5.5), the collision of a pseudoshock with a front of strength |B], as
depicted in Fig. 14.2.4, may increase its strength at most by a factor 1 +«|8|. Con-
sequently, the strength of a pseudoshock may ultimately grow at most by the factor
IT(1 + x|y|), where the product runs over all fronts with which the pseudoshock
collides during its life span. Since pseudoshocks are nonresonant, the estimate
(14.5.19) here applies and implies Y~ |y| < 2L(0+4). Assuming 2xL(0+) < 1, we
thus conclude that the strength of each pseudoshock, at any time, does not exceed
3ch0.

It is now clear that by employing the upper bound for K,,_; provided by
(14.6.14), and upon selecting o sufficiently small, one guarantees that the com-
bined strength of pseudoshocks of generation order < pg is bounded by %6. In
conjunction with our earlier estimate on the total strength of pseudoshocks of
generation order > wy, this establishes (14.4.4).

14.7 Compactness and Consistency

In this section, the proof of Theorem 14.4.1 will be completed by passing to the
8 | 0 limit. Here we will just be assuming that (Us} is any family of §-approximate
solutions, in the sense of Definition 14.4.1, with é positive and small, which satisfy
estimates (14.4.6) and (14.4.7). Thus, we shall not require the special features of
the particular §-approximate solutions constructed via the front tracking algorithm,
for instance that shocks propagate with the correct shock speed.

Let us fix any test function ¢, with compact support in (—oc, o) x [0, T). By
applying Green’s theorem,

f f [3:¢U5+3x¢F(U5)]dxdt+/ ¢(x, 0)Us(x, 0)dx
0 -0 —-o0

14.7.1 *
(147D =—f0 3 (0, DI Us(y(t)+, 1) — FUs ()=, 1)

= yOWs(y )+, 1) = Us(y(t)—, H]}dt

where for each ¢ the summation runs over all jump discontinuities x = y(-) which
cross the 7-time line.

When the jump discontinuity x = y(-) is an (approximate) shock, then by
virtue of (14.4.1),
14.7.2)

[EUs(y ()4, 1) — F(Us(y(1)=, 1)) = y(O[Us(y(1)+, 1) = Us|y()—, ]|
< 8|Us(y(0)+.1) — Us(y(t)—, 1)l .

Similarly, when x = y(-) is an (approximate) rarefaction front, with strength < §,
then by account of the proximity between shock and rarefaction wave curves, and
(14.4.2),
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(14.7.3)
[F(Us(x(D+, 1) = F(Us(y ()= 0)) = ¥O[Us(y()+. 1) = Us(x(t)—, ]|
< esd|Us(y(D+. 1) — Us(y()=. )] .

Finally, when x = y(-) is a pseudoshock,

[F(Us(y(t)+., 1)) — F(Us(x(t)—. 1))

(14.7.4)
< cs|Us(y(t)+.1) — Us(x(1)~. 1] .

By combining (14.7.2), (14.7.3), (14.7.4) with (14.4.6) and (14.4.4), we deduce
that, for any fixed test function ¢, the right-hand side of (14.7.1) is bounded by
ColTV _xc.x)Uo(-) + 118 and thus tends to zero as § | 0.

By virtue of (14.4.6), (14.4.7) and Theorem 1.7.1, any sequence of §’s converg-
ing to zero contains a subsequence {§;} such that {U; } converges a.e. to some
U € BVi. Passing to the limit in (14.7.1) along the sequence [6;}, and using
(14.4.5), we conclude that U is indeed a weak solution of (13.1.1).

By passing to the § | O limit in (14.4.6) and (14.4.7), one verifies that U
satisfies (13.1.5) and (13.1.6). Furthermore, if 7 is any Lipschitz graph which is
nonresonant relative to Us, for all 8, then, as shown in Section 14.5, the trace of
Us on Z has bounded variation, uniformly in 8, and thus, passing to the § | 0
limit, yields that the trace of U on ¥ will have the same property.

To conclude the proof, assume (7. q) is an entropy-entropy flux pair for the
system (14.2.1), with n(U) convex. Let ¢ be any nonnegative test function. with
compact support in (—oc, oc) x [0, 7). By Green’s theorem,

//[3I¢U(U6)+3x¢(/(ué)]dxdf+/ ¢(x,0)r7(U$(x,0))dx
0 - -

1479 = [ 000 Dl Usty 4.9 = aWsty )=, 1)
0

— yO[WUs(y)+. 1)) — n(Us(y ()=, t))]}dt ,

where, as in (14.7.1), for each ¢ the summation runs over all jump discontinuities
x = ¥(-) which cross the r-time line.
When x = y(-) is an (approximate) shock, the entropy inequality (8.5.1) to-
gether with (14.4.1) imply
(14.7.6)
gUs(y()+. 1)) = q(Us(y(1)—=, 1)) = ¥O[n(Us(y(0)+. 1)) = n(Us(y()—. )]
< er|Us(y(O+, 1) ~ Us(y()—, Dl .
When x = y(-) is an (approximate) rarefaction front, with strength < &, The-
orem 8.5.1 together with (14.4.2) yield
(14.7.7)
lg(Us(x(1)+, 1)) — qUs(y(t)—. 1) — ¥O[nUs(y()+. D)) — n(Us(y ()= )]
< c|Us(y()+, 1) — Us(x()—, 1)| .
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Finally, when x = y(-) is a pseudoshock,

(14.7.8)
lq(Us(x(D)+. 1)) — qUs(x(t)—. 1)) — 3O [n(Us(y(@)+. 1) — n(Us(x(t)—. 1))]]
< co|Us(y()+. 1) — Us(y ()=, )] .

By combining (14.7.6), (14.7.7), (14.7.8) with (14.4.6) and (14.4.4), we deduce
that, for fixed test function ¢, the right-hand side of (14.7.5) is bounded from
below by —Cs[T Vi_x.x)Ua(-) + 118. Therefore, passing to the limit along the
{8x} sequence, we conclude that the solution U satisfies the inequality (13.2.17),
which expresses the entropy admissibility condition. The proof of Theorem 14.4.|
is now complete.

14.8 Continuous Dependence on Initial Data

The remainder of this chapter will address the issue of uniqueness and stability of
solutions to the initial-value problem (13.1.1). The existence proofs via Theorems
13.1.1 and 14.4.1, which rely on compactness arguments, offer no clue on that
question. We will approach the subject via the approximate solutions generated
by the front tracking algorithm. By monitoring the time evolution of a certain
functional, we will demonstrate that §-approximate solutions depend continuously
on their initial data, modulo corrections of order 8. This will induce stability for
solutions obtained by passing to the § | 0 limit.

Our earlier experiences with the scalar conservation law strongly suggest that
the L! topology should provide the proper setting for continuous dependence.
However, the L' distance shall not be measured via the standard L' metric but
through a functional p, specially designed for the task at hand.

Let us consider two §-approximate solutions U and U of (14.2.1). Fixing any
point (x,t) of continuity for both U and U, we shall measure the distance be-
tween the vectors U(x, t) and U(x, t) in the special curvilinear coordinate system
whose coordinate curves are the shock curves, with both the admissible and the
nonadmissible branches retained. To that end, the vector U(x, 1) — U(x, t) is rep-
resented by curvilinear “coordinates” p\(x.t),---, pa(x, 1), obtained by means of
the following process: One envisages a “virtual” jump discontinuity with left state
U (x,t) and right state U (x, 1), and resolves it into a wave fan composed of n + |
constant states joined exclusively by (admissible or nonadmissible) virtual shocks.
For |U(x,t) — U(x, t)| sufficiently small, this resolution is unigue and can be ef-
fected, via the implicit function theorem, by retracing the steps of the admissible
solution to the Riemann problem, in Section 9.3, with the wave fan curves &; here
replaced by the shock curves W;. We denote the amplitude of the resulting virtual
i-shock by pi(x, 1) and its speed by s;(x,t). The distance between U(x,t) and
U(x.,t) will now be measured by the suitably weighted sum Y_ g; (x. t)| pi(x. 1)|
of the strengths of the n virtual shocks, and accordingly the distance between the
two approximate solutions at time ¢ will be measured through the functional
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(148.1) pWen. T =Y [~ gt olpx0lds.
i=] vy—=xX

We proceed to introduce suitable weights g;. Let / and 7 denote the sets
of collision times for U and U, and consider the corresponding potentials for
wave interaction (1) and Q(t), defined through (14.5.7), for + € (0, 00)\! and
t € (0, 00)\1, respectively. For 1 € (0, c0)\({ UT) and any point of continuity x
of both U(-, 1) and U(-, 1), we define

(14.8.2) gi(x, 1) =1+ «[0(1) + 0]+ vAi(x.1),
where « and v are sufficiently large positive constants, to be fixed later, and
(1483)  Aix,n)=Z_|y|+ Z_lyl + Z 0yl + Zilyl + Zolyl + Zolyl -

In (14.8.3), X_ (or £ _) sums the strengths of all j-fronts of U (or U), with
j =i+ 1,---, n, which cross the t-time line to the left of the point x; £, (or
T ,) sums the strengths of all j-fronts of U (or U), with j = 1,---.i — I, which
cross the ¢-time line to the right of the point x; £ (or X ) sums the strengths of all
i-fronts of U (or U) which cross the ¢-time line to the left (or right) of the point x,
when p;(x, t) < 0, or to the right (or left) of the point x, when p;(x,t) > 0. Thus,
one may justifiably say that A;(x, t) represents the total strength of the fronts of
U and U that cross the r-time line and approach the virtual i-shock at (x, t).

Once « and v have been ﬁxed the total variation of the initial data shall be
restricted to be so small that 4 3 < gilx, 1) <2, Then, p(U(-, 1), U(-, 1)) will be
equivalent to the L! distance of UG-, 1) and U(-.t):

(14.8.4) ”U( t)"’U( t)”L'( ocoo)<p(U( 1), U( t))
<CIWUED =UC D =oco -

It is easily seen that in the scalar case, n = |, the functional p introduced by
(14.8.1) is closely related to the functional p, defined by (11.8.11), when the latter
is restricted to step functions.

The aim is to show that p(U (., 1), v, 1)) is nonincreasing, modulo corrections
of order &:

(14.8.5)
pUC D, UCD) —pUC ) UGt <wdlt—1). 0<T <l <00.

Notice that across points of I or I, Q(t) or Q(t) decreases by an amount ap-
proximately equal to the product of the strengths of the two colliding waves,
while A;(x, r) may increase at most by a quantity of the same order of magnitude.
Therefore, upon fixing «/v sufficiently large, p(U (-, 1), U, 1)) will be decreasing
across points of I or 1. Between consecutive points of TYT, pUG, 0. U, 1)
is continuously differentiable, hence to establish (14.8.5) it will suffice to show

d —
(14.8.6) E”‘U(" N UG Swb.
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From (14.8.1),
d . n
(14.8.7) TAWUCD.TC0y=373 (g1 = &Pl .
v o=l

where ) runs over all waves x = y(:) of U and U which cross the -time line,
and g, p* and 5 stand for g (y(1)%,1), p;i(y(t)£.1) and j(r). By adding and
subtracting, appropriately, the speed s = s;(y(r)=, 1) of the virtual i-shocks, one
may recast (14.8.7) in the form

d . n
(14.8.8) P, UCD) =Y D EGO.D,
y =]

where
E(y(), )= g} st —»Iptl— 8 (7 = MIp] |
(14.8.9) = (g — &) = MIp I+ 8 (s —sD)p] |
+&r 6T = napt = 1p7D

Suppose first x = v(-) is a pseudoshock, say of U. Then g;" = g
yields

- and (14.8.9)

t

n

(14.8.10) Y E(O.0 £ colUG)+, 1) = UGO- 1) -
i=1
Thus, by virtue of (14.4.4), the portion of the sum on the right-hand side of (14.8.8)
that runs over all pseudoshocks of U is bounded by c198. Of course, this equally
applies to the portion of the sum that runs over all pseudoshocks of U.
We now turn to the case x = y(-) is a j-front of U or U, with amplitude say
y. To complete the proof of (14.8.6), one has to show that

(14.8.11) Y EGO.0 < cudlyl.
i=l

What follows, is a road map to the proof of (14.8.11), which will expose the main
ideas and will explain, in particular, why the weight function g, (x, r) was designed
according to (14.8.2). The detailed proof, which is quite laborious, is found in the
references cited in Section 14.12,

Let us first examine the three terms on the right-hand side of (14.8.9) fori # ;.
By virtue of (14.8.2), g+ — g equals v|y| when j > i, or —v|y| when j < i.In
either case, the first term

(14.8.12) (&5 — & ) = MIp7 1= —vlx = Al p7 Ny

is strongly negative. The idea is that this term dominates the other two terms,
rendering the desired inequality (14.8.6). Indeed, the second term is majorized by
cizl pi"lly 1, which is clearly dominated by (14.8.12), when v is sufficiently large.
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One estimates the remaining term by the following argument. The amplitudes
(py«---.py)or (pl.---. pr) of the virtual shocks result respectively from the
resolution of the jump discontinuity between U~ and U~ or U+ and U, where
Ut =U(y(h£.1) and T- =T (y()%£.1).

Assuming, for definiteness, that x = y(-) is a front of U, we have U =T,
while the states U~ and U™ are connected, in state space, by a j-wave curve.
Consequently, to leading order. p/” = p — y while, for any k # j, p} = p;.
Indeed. a study of the wave curves easily yields the estimate

(14.8.13)

lpf = p] +vI+ 2 1p¢ = pil= OB+ Iy 1Up; I+ 1y + Y Ip vl
ksj ktj

which in turn implies

Ei(y().0) < —avlp;llyl

(14.8.14) o _
+c|2[8 +Ip P T+ 1yD + lek I]Iyl .
k#j
with @ > 0.
For i = j, the estimation of E;(y(-), t) is more delicate, as the j-front may

resonate with the virtual i-shock. The same difficulty naturally arises, and has to
be addressed, even for the scalar conservation law. In fact, the scalar case was
already treated, in Section 11.8, albeit in a different guise. For the system, one
has to examine separately a number of cases, depending on whether x = y(-)
is a shock or a rarefaction front, in conjunction with the signs of p; and pf.
The resulting estimates, which slightly vary from case to case but are essentially
equivalent, are derived in the references. For example, when either x = y(-) is a
j-rarefaction front and 0 < p;” < pf orx = y() is a j-shock and p; < p; <0,

Ej(x(),0) < —bvlp; llylp; | +1ivD

(14.8.15 _ - -
: +cu[s+|pj p7H+ Iy + D 15 |]|y| .
kstj

where b > 0.

We now sum the inequalities (14.8.14), for i # j, together with the inequality
(14.8.15). Upon selecting v sufficiently large to offset the possibly positive terms,
we arrive at (14.8.11). As noted earlier, this implies (14.8.6), which in tumn yields
(14.8.5). Recalling (14.8.4), we conclude

(14.8.16) U0 =T ()1 —ac00y < CHIU( 0) =T (-, O)llLt moc.00) + Cadt

which establishes that §-approximate solutions depend continuously on their initial
data, modulo 8. The implications on actual solutions, obtained as & | 0, will be
discussed in the following section.
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14.9 The Standard Riemann Semigroup

As a corollary of the stability properties of approximate solutions, established
in the previous section, it will be shown here that any solution to our system
constructed as the § | 0 limit of some sequence of -approximate solutions is
uniquely determined by its initial data and may be identified with a trajectory of
a L'-Lipschitz semigroup, defined on a closed subset of L'(—00, 00).

The first step in our investigation is to locate the domain of the semigroup.
This must be a set which is positively invariant for solutions. Motivated by the
analysis in Section 14.5, with any step function V (), of compact support and
small total variation over (—oc¢, o), we associate a number H(V(-)) determined
by the following procedure. The jump discontinuities of V(-) are resolved into
fans of admissible shocks and rarefaction waves, by solving classical Riemann
problems. Before any wave collisions may occur, one measures the total strength
L and the potential for wave interaction Q of these outgoing waves and then sets
H(V(:)) = L + 2« Q, where « is a sufficiently large positive constant. Suppose a
8-approximate solution U, with initial data V, is constructed by the front tracking
algorithm of Section 14.2. By the rules of the construction, all jump discontinu-
ities of V will be resolved via the Approximate Riemann Solver and so, for any
8 > 0, H(V(:)) will coincide with the initial value G(0+) of the Glimm-type
function G(r) defined through (14.5.10). At a later time, as the Simplified Rie-
mann Solver comes into play, G(¢) and H(U(-, t)) may part from each other. In
particular, by contrast to G(t), H(U(-, t)) will not necessarily be nonincreasing
with 1. Nevertheless, when « is sufficiently large, H(U(-, 1)) < H(U(-,t—)) and
HWU@G,t+)) < HU(-, t=)). Hence H(U(-,1)) < H(V(")) for any t > 0 and
so sets of step functions {V(-) : H(V(:)) < r} are positively invariant for §-
approximate solutions constructed by the front tracking algorithm. Following this
preparation, we define the set that will serve as the domain of the semigroup by

(14.9.1) & = ct{step functions V(-) with compact support : H(V()) < r},

where ¢£ denotes closure in L'(—o0, oc). By virtue of Theorem 1.7.2, the members
of & are functions of bounded variation over (—o0, o0), with total variation
bounded by c¢r. The main result is

Theorem 14.9.1 For r sufficiently small, there is a family of maps S, : &/ +— &,
t € [0, oc), with the following properties.

(a) L'-Lipschitz continuity on & x [0, 00): For any V.,V € & andt,t € [0, o),
(14.9.2) 150V () =ScoV)llLi—se.e) < kY (I =V Ot =000+ =T} .
(b) {S¢ : 1 € 0. 00)} has the semigroup property, namely
(14.9.3) Sp = identity ,

(14.9.4) Stie =85, t.t€[0,00).
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(c) If U is any solution of (13.1.1), with initial data Uy € £, which is the § } 0
limit of some sequence of 8-approximate solutions, then

(14.9.5) UG, ty=80Up(-), te[0,0ox).

Proof. Let U and U be two solutions of (13.1.1), with initial data U, and U,
which are § } 0 limits of sequences of &-approximate solutions (U;,} and [l—/-gn},
respectively. No assumption is made that these approximate solutions have nec-
essarily been constructed by the front tracking algorithm. So long as the total
variation is sufficiently small to meet the requirements of Section 14.8, we may
apply (14.8.16) to get

1Us, (- 1) = Us, . Dl 1 (=oc.c) < C2NIUs, (. 0) = Uz, (-, 0l 11 (—ox.20)

(14.9.6) -
+ Cwmax{s,.8,}t .

Passing to the limit, n — oo, we deduce
(14.9.7) U@, ~UC, Ol —e0.00) < C*Us () -UO(')“L'(—oc,oc) .

When r is sufficiently small, Theorem [4.4.1 asserts that for any U, € &/ one
can generate solutions U of (13.1.1) as limits of sequences {Uj, } of §-approximate
solutions constructed by the front tracking algorithm. Moreover, the initial values
of Us may be selected so that H(U;(-,0)) < r, in which case, as noted above,
H(Us(-, 1)) < r and thereby U(-,1) € &, forany ¢ € [0, c0). By virtue of (14.9.7),
all these solutions must coincide so that U is uniquely defined. In fact, (14.9.7)
further implies that U must even coincide with any solution, with initial data Uy,
which is derived as the § } 0 limit of any sequence of §-approximate solutions,
regardless of whether they were constructed by the front tracking algorithm.

Once U has thus been identified, we define S, through (14.9.5). The Lip-
schitz continuity property (14.9.2) follows by combining (14.9.7) with (13.1.6),
and (14.9.3) is obvious. To verify (14.9.4), it suffices to notice that for any fixed
T >0, U(-,t + ) is a solution of (13.1.1), with initial data U(-, t), which is
derived as the § } 0 limit of §-approximate solutions and thus, by uniqueness,
must coincide with S; o U (-, t). The proof is complete.

The term Standard Riemann Semigroup is commonly used for S;, as a reminder
that its building block is the solution of the Riemann problem. The question
whether this semigroup also encompasses solutions derived via alternative methods
will be addressed in the next section. :

14.10 Uniqueness of Solutions

Unigueness for the initial-value problem (13.1.1) shall be established. heret by
demonstrating that any solution in a reasonable function class can be identified
with the trajectory of the Standard Riemann Semigroup which emanates from
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the initial data. As shown in Section 14.9, this is indeed the case for solutions
constructed by front tracking.

For fair comparison one should limit, at the outset, the investigation to solutions
U for which U (-, 1) resides in the domain &/ of the Standard Riemann Semigroup,
defined through (14.9.1). As noted earlier, this implies, in particular, that U(.. )
has bounded variation over (—oc. 00):

(14.10.1) TViex UG, 1) Scr.

It then follows from Theorem 4.1.2 that t = U(-.t) is L'-Lipschitz,

x
(14.10.2) / [Ux.r)~Ux.tlldx <c'rlit —1|. O0<t<t<o0.
-

and U is in BV on (—oc. o0) x [0, o0). Hence, as pointed out in Section 10.1,
there is . / ~ C [0. 00), of measure zero, such that any (x,t) with t €./ " and
U(x—,t) = U(x+,1) is a point of approximate continuity of U while any (x.1)
with 7 €./ “and U(x—,t) # U(x+,1) is a point of approximate jump discon-
tinuity of U, with one-sided approximate limits Uy = U(xz, t) and associated
shock speed determined through the Rankine-Hugoniot jump condition (8.1.2).

It is currently unknown whether uniqueness prevails within the above class
of solutions. Accordingly, one should endow solutions with additional structure.
Here we will experiment with the

Tame Oscillation Condition: there are positive constants . and B8 such that
(14.10.3) U, t +h) = Ulxx, )] < BT Vie—anxeamU G 1)
for all x € (—o0, 00), 1 € [0, 00) and any h > 0.

Clearly, solutions constructed by either the random choice method or the front
tracking algorithm satisfy this condition, and so do also the solutions to systems

of two conservation laws considered in Chapter XII.
The Tame Oscillation Condition induces uniqueness:

Theorem 14.10.1 Any solution U of the initial-value problem (13.1.1), with
U(-,t) € &, for all t € [0, 00), which satisfies the Tame Oscillation Condi-
tion (14.10.3), coincides with the trajectory of the Standard Riemann Semigroup
Si, emanating from the initial data:

(14.10.4) UG.t)y=S50oUp(-), te€[0,00).

In particular, U is uniquelv determined by its initial data.

Proof. The demonstration will be quite lengthy. The first step is to show that at
every T &. /", U(-, 1) is tangential to the trajectory of S; emanating from U (-, 7):

. |
(14.10.5) lim sup UGt +m) =S80 UC, Lt —x0.000 =0 .
hl0

Then we shall verify that (14.10.5), in turn, implies (14.10.4).
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Fixing t €./ ', we will establish (14.10.5) by the following procedure. For
any fixed bounded interval [a, b] and € > 0, arbitrarily small, we will construct
some function U* on a strip [a, b] % [t. T + 8] such that

|
(14.10.6) lim sup ;I-IIU(-, T+h) UG M) an < care,
kL0

|
(14.10.7) lim sup

I_I”Sh o UG, t)=UC. B¢ apy < crare .
h10

Naturally, such a U* shall provide a local approximation to the solution of (13.1.1)
with initial data Uy(-) = U(-. t), and will be constructed accordingly by patching
together local approximate solutions of two types, one fitting to points of strong
jump discontinuity, the other suitable for regions with small local oscillation.

We begin by fixing A which is larger than the absolute value of all characteristic
speeds and also sufficiently large for the Tame Oscillation Condition (14.10.3) to
apply.

With any point (¥, r) of approximate jump discontinuity for U, with ap-
proximate limits Uy = U(y%, r) and shock speed s. we associate the sector

= {(x,0) : 6 > 0, |x —y| < Ao}, on which we consider the solution
U? = U, ,, defined by
) U., for x < y+so
(14.10.8) Us(x.0) =
Uy, for x>y +50.
We prove that
Y+Ah ;

(14.10.9) lim — |U(x,t +h)=U~(x.h)|dx =0.

thh y—Ah

Indeed, for 0 < o < h, let us set

y+rh
(14.10.10) ¢;,(a)=hl/ Ux,t +0)-U-(x,0)|dx .

y—ih

Suppose ¢, (h) > 0. Since 0 > U(-,t + 6) — U*(-.0) is L'-Lipschitz, with
constant say y, we infer that, for # < 1, ¢p(h) < 2y and ¢ (o) > %¢h(h)~ for
any o willh —o < %zj:h(h). Then

(14.10.11)

1 h y+Ah 1 h | 2
- U - U*(x,0)\dxdo = — (0)do = —¢j(h) .
hz/(;/_;_u, U(x,t +0) (x.0)ldxdo = o 0¢;() 4y¢;.
As h | 0, the left-hand side of (14.10.11) tends to zero, by virtue of Theorem
1.7.3, and this verifies (14.10.9).

To handle small oscillations, let us fix any interval ({. &), with midpoint say z.
On the triangle .77 = {(x,0) : 0 > 0,¢{ + Lo < x < £ — ho), we construct the
solution U® = U(b___.” of the linear Cauchy problem
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(14.10.12) QU+ AU =0,
(14.10.13) U(x,0) =U(x. 1),

where A” is the constant matrix DF (U(z, t)). The aim is to establish the estimate

E~Ah
/ |[U(x, T+ k) — U(x, h)|dx
(14.10.14) L+rh

h
< C|5[T V(;-'E)U(-, 'E)]/ TV(;-+A,,.E_.M7)U(', T +0)do .
0

Integrating (14.10.12) along characteristic directions and using (14.10.13)
yields

(14.10.15) LU, h)=LUx~-Nhty, i=1--n,

where L? = L;(U(z, 1)) is a left eigenvector of A” associated with the eigenvalue
A? = A;(U(z, t)). For fixed i, we may assume without loss of generality that
A? = 0, since this may be achieved by the change of variables x — x — A?t,

F(U) —» F(U) - A?U. In that case, since U satisfies (14.2.1) in the sense of
distributions,

E—Ah
/ ¢ (X)L[U(x, T +h) — U'(x, h)]dx
¢

+Ah

E—-h
(14.10.16) = / SLIUx, T +h) — U(x, T)]dx
¢

+Ah

B pE—Ah
=[] aswLiFwe, e +ondsds
0 Jr+rh

for any test function ¢ € C§°(¢ + Ah, £ — Lh). Taking the supremum over all such
¢ with |¢(x)| < 1, yields

E~ah
/ \Lj[U(x, T + h) — U (x, h)]|dx
¢

(14.10.17) A

h
5/ TV(,;+M,5—A;.)L?F(U('. T+0))do .
0

Given { +Ah < x < y < & — Ah, let us set, for brevity, V = U(x, t + o) and
W =U(y, t + ). Recalling the notation (8.1.4), one may write

F(V) - F(W)=A(V, W)V - W)

(14.10.18)
= A"V - W) +[A(V, W) - A"J(V = W) .

We now note that L7 A® = 0. Furthermore, A(V, W) — A is bounded in terms of
the oscillation of U inside the triangle .7, which is in turn bounded in terms of the

total variation of U (-, ) over (¢, &), by virtue of the Tame Oscillation Condition
(14.10.3). Therefore, (14.10.17) yields the estimate
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E—Ah
/ \L[U(x, T + k) — U(x, h)]jdx
¢

(14.10.19) +Ah
<celTVienUC, T)]/ TVitioe-U(C, T +0)do .
Since (14.10.19) holds fori = 1, ---, n, (14.10.14) readily follows.

We have now laid the preparation for synthesizing a function U* that satisfies
(14.10.6). We begin by identifying a finite collection of open intervals (¢;. &),
Jj=1,---,J, with the following properties:

J
(i) [a.b] C | JIg. &1
j=1
(ii) The intersection of any three of these intervals is empty.
(iii) TV e ) UG, 1) <6, forj=1,---,J.

With each (&5, &), we associate, as above, the triangle .7 and the approx1mate
solution U ;) relative to the midpoint z;. We also con51der [a, b]\ Uj=l({/’ &),
which is a ﬁnlte set {yp, . vk} contammg the points where strong shocks cross
the t-time line between a and b. With each ¥ we associate the sector .7%; and

the corresponding approximate solution U, ., (see Fig. 14.10.1). We then set

k=1

lu t)(-x h), for (x, h)G %\U 7/.(
=1
j-1

U(b.',].t)(-xy h)v fOr (x’ h) G'Z\U.Z.

=1

(14.10.20) U*(x,h) =

Clearly, for h sufficiently small U*(-, k) is defined for all x € [a, b] and
b
[ wess+m - vr e mlax

K YitAh R
(14.10.21) < Zf UGt i) = UGy o (x )l
k=1 Y ¥~

&
+Zf [U(x, T+ h) —U(:.r)(x,h)ldx .
g

j=I ) +Ak

Fig. 14.10.1.
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Upon combining (14.10.21), (14.10.9), (14.10.14) and (14.10.1), we arrive at
(14.10.6), with c14 = 2ccys.

We now note that S,_, oU(-, t) defines, for 1 > r, another solution of (14.2.1)
which has the same properties, complies with the same bounds, and has identical
restriction to + = t with U. Therefore, this solution must equally satisfy the
analog of (14.10.6), namely (14.10.7). Finally, (14.10.6) and (14.10.7) together
yield (14.10.5).

It remains to show that (14.10.5) implies (14.10.4). To that end, we fix t > 0
and any, arbitrarily small, ¢ > 0. By virtue of (14.10.5) and the Vitali covering
lemma, there is a collection of pairwise disjoint closed subintervals [r¢, v + /1],
k=1,.-- K,of [0,¢], with0 <1 <--+ < tx <1, such that 7, €. / "and

K
(14.10.22) 0<t—Y h<e,
k=1

(14.10.23) UG, i+ he) = Sp o UG, ti)llLi-o0.00) <€, k=1,--- K .
By the triangle inequality,
”U(’a 1) — Sl o UO(')”L'(-oo,oo)

K
Gat02s) S g 1S—ess © UG Teat) = Sroraie 0 UG, T + BN L1000y

K
+ ) WSimam UG, T +hi) = Si—q 0 UG, Tl (=o0.00) -

k=1
In the first summation on the right-hand side of (14.10.24), 1ty + ho is to be
interpreted as 0, and g, is to be interpreted as r. The general term in this
summation is bounded by x (1 + ¢'r)(txy1 — © — hi), on account of (14.9.2) and
(14.10.2). Hence the first sum is bounded by « (1 + ¢'r)e, because of (14.10.22).
Turning now to the second summation, since S,_r, = S;_r, —, S,»

(14.10.25)  USi—g—n, o UC, e + ht) = Si—r, o U, Tl 1t (—00.00) < KER

by virtue of (14.9.2) and (14.10.23). Therefore, the second sum is bounded by
«te. Thus the right-hand side of (14.10.24) can be made arbitrarily small and this
establishes (14.10.4). The proof is complete.

14.11 Structure of Solutions

In earlier chapters we studied in great detail the structure of BV solutions for
scalar conservation laws as well as for systems of two conservation laws. The
front tracking method, with its simplicity and explicitness, provides an appropriate
vehicle for extending the investigation to genuinely nonlinear systems of arbitrary
size. The aim of the study is to determine what features of piecewise constant
solutions are being inherited by the BV solutions generated via the limit process.
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In addition to providing a fairly detailed picture of local structure and regularity,
this approach uncovers various stability characteristics of solutions and elucidates
the issue of structural stability of the wave pattern. A sample of results will be
stated below, without proofs. The reader may find a detailed exposition in the
literature cited in the next section.

Approximation schemes, like random choice or front tracking, which employ
wave discretization, are effective because they expose the wave pattern thus allow-
ing us to measure the key quantities of wave strength and interaction potential. As
a first step towards developing a qualitative theory, one should devise an intrinsic
realization of the wave pattern, within the framework of general BV solutions.
This is done in the following way.

Consider any solution U of (14.2.1), in the same function class as in the pre-
vious sections. For fixed 7, the function U(-, t), which is of bounded variation,
induces in the standard manner a signed vector-valued measure u on (—o00. 00),
with continuous part ¢ and atomic part 4“. Then one associates with each char-
acteristic family i a (scalar-valued) measure u;, with continuous part u; defined
through

(14.11.1) /¢duf =/¢Li(U)du”,
R 2

and atomic part u{ which is supported in the countable set of points X of jump
discontinuity of U(-,t) and is evaluated according to the following prescription:
uf({x}) is the amplitude of the i-wave in the admissible wave fan that resolves
the jump discontinuity with left state U (x—, t) and right state U(x+, ). Clearly,
u; encodes the pattern of i-waves that cross the r-time line. In particular, its
negative part p; is associated with compression waves, including i-shocks, while
its positive part u7 is associated with rarefaction waves. The total strength of
i-waves is naturally measured by the total variation |u;|(R) of u;, and so

(14.11.2) L=) |mlR)
i=l1

will represent the combined strength of waves of all characteristic families that
cross the ¢-time line. The potential for wave interactions is then defined as

0= > (yl® b,y :x <yh

I<i<j<n

+ ) (7 @l x, y) i x # 3]

l<i<n

(14.11.3)

Finally, H = L + 2« Q plays the role of the Glimm-type functional H introduced
in Section 14.9. It is nonincreasing with time and thus controls the growth of L.
The following proposition describes the local structure of solutions.

Theorem 14.11.1 Let U be a solution of (14.2.1). Fix a point (X, 1) on the upper
half-plane and consider the rescaled function
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(14.11.4) Uyx, Y =UGF +ax,t+at). a>0.

Then, for anv t € (=00, 00), as & | 0, Uy(-, 1) converges in L. to U(-, 1), where
U is a self-similar solution of (14.2.1). On the upper half-plane, t > 0, U coincides
with the admissible solution of the Riemann problem for (14.2.1), with left state
U(%—,T) and right state U(X+,1). On the lower half-plane, 1 < 0,U contains
only admissible shocks and/or compression waves. Furthermore, as o | 0, the
measures uii of rarefaction and compression i-waves for U, (-, t) converge, in the
weak topology of measures, to the corresponding measures H[i Jor U(-, 1).

The next proposition states that jump discontinuities of sizable strength arrange
themselves along a finite collection of shocks.

Theorem 14.11.2 Let U be a solution of (14.2.1). For each € > 0, the set of
points of the upper half-plane where the local oscillation of U is larger than ¢
is contained in a set ., which is the union of a finite set .7, of points, and the
graphs of a finite collection {x = yx(t),t € [ax. bi] : k= 1,---, K) of Lipschitz
curves. With each k = 1, - .-, K is associated a (possibly emptv) countable subset
7 of [ax, bi] such that y(-) is differentiable on (ay, b )\.7% and t — ¥ (t) has
bounded variation over (ay, by). For any t € (a, b)\.7%, as one approaches the
point (yi(1),t) from either side of the graph of x = y.(-), U attains one-sided
classical limits Uy, where U_ and U, are joined by a shock of speed y,(t) and
strength > ce.

Applying the above proposition for a sequence of ¢’s that tends to zero, one
draws the following corollary which establishes regularity for solutions:

Theorem 14.11.3 Any solution U of (14.2.1) on the upper half-plane is continuous,
except on a set F which is the union of a countable set .7 of points and the graphs
of a countable collection {x = y,(t),! € [ax, bi]. k = 1,2, ---) of Lipschitz curves.
The derivative yi(t) exists at any t € (ay, by) with (yx(t), 1) € .7, and the function
t = yi(t) has bounded variation on (ay, b.). Furthermore, as one approaches the
point (yc(t), t) € .7 from either side of the graph of x = yi(-), U attains distinct
one-sided limits Uy, where U_ and U are joined by a shock of speed yi(t).

14.12 Notes

The front tracking method for scalar conservation laws was introduced by Dafer-
mos [2] and is developed in Hedstrom [1], Holden, Holden and Hoegh-Krohn [1],
Holden and Holden [1], Holden and Risebro {1], Risebro and Tveito [2], Gimse
and Risebro [1], Gimse [1], and Pan and Lin [1]. It has been employed, especially
by the Norwegian School, as a computational tool. In fact, a similar approach had
already been used for computations in the 1960’s, by Barker [1]. For a survey,
see the lecture notes of Holden and Risebro [2]. The method was extended to
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genuinely nonlinear systems of two conservation laws by DiPerna [3] and then to
systems of larger size, independently, by Bressan [2] and Risebro [1]. For early
applications to special systems see Alber [2], L.-W. Lin [1], Risebro and Tveito
[1] and Wendroff [2]. The presentation here, Sections 14.2-14.7, follows the ap-
proach of Bressan and employs a technical simplification due to Baiti and Jenssen
[2]. The notion of nonresonant curve is introduced here for the first time.

The Standard Riemann Semigroup was originally constructed by Bressan [1],
for linearly degenerate systems, Bressan and Colombo [1]. for genuinely nonlinear
systems of two conservation laws, and finally by Bressan. Crasta and Piccoli [1],
for systems of n conservation laws, based on estimates derived in Bressan [3]
and Bressan and Colombo [3]. The presentation in Sections 14.8—14.9 follows the
simplified approach of Bressan, Liu and Yang [1], in which the basic estimate is
derived by means of the functional p introduced by Liu and Yang [1,2]. Actually,
L' stability has now been established, by Liu and Yang [4], even via the Glimm
scheme. It should be noted that, in contrast to the scalar case, there is no standard
L'-contractive metric for systems (Temple [2]).

Uniqueness under the Tame Oscillation Condition was established by Bressan
and Goatin [1], improving an earlier theorem by Bressan and LeFloch [1] which
required a Tame Variation Condition. Uniqueness also prevails when the Tame
Oscillation Condition is substituted by the assumption that the trace of solutions
along space-like curves has bounded variation; see Bressan and Lewitska [1].
For an alternative approach, based on Haar’s method, see Hu and LeFloch [1].
Uniqueness is also discussed in Oleinik [3], Liu [3], DiPerna [5], Dafermos and
Geng [2], Heibig [1], LeFloch and Xin [1], Bressan [3] and Chen and Frid [7].

A detailed study of the regularity of solutions and the structural stability of
the wave pattern is found in Bressan and LeFloch [2].

The front tracking method is nicely presented in the lecture notes of Bressan
[4]. For further developments of this approach, for handling large initial data,
initial-boundary value problems, systems that are merely piecewise genuinely
nonlinear and inhomogeneous systems of balance laws, see Bressan [5], Bres-
san and Colombo [2], Baiti and Jenssen [1], Colombo and Risebro [1], Amadori
[1], Amadori and Colombo [1], Amadori and Guerra [1], Crasta and Piccoli [1]
and Ancona and Marson [1]. Estimates on the rate of convergence are derived by
Lucier [1], in the scalar case, and Bressan and Marso . [1]. fo.- systems.






Chapter XV. Compensated Compactness

Approximate solutions to hyperbolic systems of conservation laws may be gener-
ated in a variety of ways: by the method of vanishing viscosity, through difference
approximations, by relaxation schemes. etc. The topic for discussion in this chap-
ter is whether solutions may be constructed as limits of sequences of approximate
solutions that are only bounded in some L” space. Since the systems are non-
linear, the difficulty lies in that the construction schemes are generally consistent
only when the sequence of approximating solutions converges strongly, whereas
the assumed L” bounds only guarantee weak convergence: Approximate solutions
may develop high frequency oscillations of finite amplitude which play havoc
with consistency. The aim is to demonstrate that entropy inequalities may save
the day by quenching rapid oscillations thus enforcing strong convergence of the
approximating solutions. Some indication of this effect was alluded in Section 1.9.

The principal tools in the investigation will be the notion of Young measure
and the functional analytic method of compensated compactness. The former nat-
urally induces the very general class of measure-valued solutions and the latter
is employed to verify that nonlinearity reduces measure-valued solutions to tradi-
tional ones. Due to its heavy reliance on entropy dissipation, the method appears
to be applicable mainly to systems endowed with a rich family of entropy-entropy
flux pairs, most notably the scalar conservation law and systems of just two con-
servation laws. Despite this limitation, the approach is quite fruitful, not only
due to the wealth of important systems with such structure, but also because it
provides valuable insight in the stabilizing role of entropy dissipation as well as
in the “schizophrenic” stabilizing-destabilizing behavior of nonlinearity. Different
manifestations of these factors were already encountered in earlier chapters.

Out of a host of known applications of the method, only the simplest shall
be presented here, pertaining to the scalar conservation law, genuinely nonlinear
systems of two conservation laws, and the system of isentropic elasticity and gas
dynamics.

15.1 The Young Measure

The stumbling block for establishing consistency of construction schemes that
generate weakly convergent sequences of approximate solutions lies in that it is
generally impossible to pass weak limits under nonlinear functions. Suppose £2 is
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an open subset of R” and {U;} is a sequence in L™ (£2: R") which converges in
L™ weak* to some limit U. If g is any continuous real-valued function on R"”, the
sequence {g(Ux)} will contain subsequences which converge in L™ weak*, say to
%, but in general 8 # g(U). It turns out that the limit behavior of such sequences.
for all continuous & is encoded in a family {vx : X € £2) of probability measures
on R", which i$ constructed by the following procedure.

Let M(R") denote the space of bounded Radon measures on R”, which is
isometrically isomorphic to the dual of the space C(R") of bounded continuous
functions. With & = 1.2,--- and any X € £2, we associate the Dirac mass
uux) € M(R"): positioned at the point Uy(X), and realize the family {8y, x) :
X € £2) as an element v, of the space L2 ($2; M(R")), which is isometrically
isomorphic to the dual of L'(£2: C(R")). By virtue of standard weak compactness
and separability theorems, there is a subsequence {v;} of {v;} which converges
weakly* to some v € LF(2; M(R")). Thus, v = {vyx : X € 2] and, as j — oo,

(15.1.1) / w(x.U,-(xndx=f9<5u,m.w<X. ~)>dX—>/<vx.w(x, NdX .
2 2

for any ¥ € C(£2 x R"). The supports of the 8y x, are uniformly bounded
and hence the vx must have compact support. Furthermore, since the 8y, (x, are
probability measures, so are the vy. In particular, applying (15.1.1) for y(X, U) =
¢(X)g(U), where ¢ € C(R2) and g € C(R"), we arrive at the following

Theorem 15.1.1 Let 2 be any open subset of R”'. Then any bounded sequence
(U) in L=($2: R") contains a subsequence {U;}, together with a measurable
family {vy : X € £2) of probability measures with compact support, such that, for
any g € C(R").

(15.1.2) gll)—g, asj—o o0,

in L®™ weak*, where

(15.1.3) g8(X) = (vx. 8) =f gW)dvy(U) .

n

The collection {vx : X € £2} constitutes the family of Young measures associ-
ated with the subsequence {U;}. To gain some insight, let us consider the ball B,
in £2, with center at some X € £2, radius » and measure |B,|. On account of our
construction of Vx. it is easy to see that

R
(15.1.4) Vy = Elm]llrrg |T,I i Sy rdY . ae on £2.
where the limits are to be understood in the weak* sense. Notice that the averaged
integral on the right-hand side of (15.1.4) may be interpreted as the probability
distribution of the values of U;(Y) as Y is selected uniformly at random from B,.
Thus, according to (15.1.4), vx represents the limiting probability distribution of
the values of U near X.
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By virtue of (15.1.2) and (15.1.3), the subsequence {U;} converges, in L™
weak®, to the mean U = (vx, U) of the Young measures. The limit & of {¢(U;))
will Sat'SfY g = g(U), for all g € C(R"), if and only if vy reduces to the Dirac
mass 8 x, positioned at U(X). In that case, {|U;|} will converge to |U| which
implies that {U;} will converge to U strongly in L] (£2), forany | < p < 0,
and some subsequence of {U;} will converge to U a.e. on £2. Hence, to establish
strong convergence of {U;}, one needs to verify that the support of the Young
measure is confined to a point.

Certain applications require more general versions of Theorem 15.1.1. Young
measures vy are defined even when the sequence {U;} is merely bounded in some
LP(2;R"), with | < p < oo. If £2 is bounded, the vy are still probability
measures and (15.1.2), (15.1.3) hold for all continuous functions g which satisfy
a growth condition |g(U)| < c(1 + |U|?), for some 0 < g < p. In that case,
convergence in (15.1.2) is weakly in L"(£2), for | < r < p/q. By contrast, when
£2 is unbounded, the vy may have mass less than one, because in the process of
constructing them, as one passes to the j — 20 limit, part of the mass may leak
out at infinity.

15.2 Compensated Compactness and the div-curl Lemma

The theory of compensated compactness strives to classify bounded (weakly com-
pact) sets in L” space endowed with additional structure that falls short of (strong)
compactness but still manages to render certain nonlinear functions weakly con-
tinuous. This is nicely illustrated by means of the following proposition, the cel-
ebrated div-curl lemma, which commands a surprisingly broad gamut of applica-
tions.

Theorem 15.2.1 Given an open subset 2 of R”, let {G;) and {H;) be sequences
of vector fields in L*(£2; R™) converging weaklv to respective limits G and H. as
Jj = 00. Assume both {div G;) and {curl H;} lie in compact subsets of W~"2(£2).
Then

in the sense of distributions.

Proof. What follows is a demonstration in the special case m = 2, which is all
that will be needed for the intended applications in this book. The reader may find
alternative proofs, for general m, in the references cited in Section 15.9.

The first remark is that, for any x € C§*(£2). the sequences {x G;) and {y H;)
satisfy the same assumptions as {G;) and { F/;}. so we may assume, without loss of
generality, that {G,} and {H;} have compact support in £2. We enclose the support
in a square S, then extend the G, and the H;, first to S\§2 by zcro and thence to
all of R? by periodicity.
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Upon subtracting G from G;, we are reduced to G = 0. Moreover, since one
may subtract from H; its average value over S, we need only deal with the case
Js HidX =0.

We now perform a Helmholtz decomposition of H; into a gradient and a
solenoidal field:

(15.2.2) Hjy =01¢; + 0y . Hjpp =0 — 1Y .
The functions ¢; and y; are determined as periodic solutions of the equations
(15.2.3) Ap; =divH, . Ay =curl H;

whence it follows that {¢;} lies in a bounded set of W'2(S), while {1/;} lies in a
compact set of W'2(S).
Finally, we note the simple identity

G;-Hi =01(¢;Gj1) + 0:20¢;Gj2) — ¢; divG;

(15.2.4) ‘
—31(¥;jG2) + h(Y;G;) — ¢ curl G; .

Each term on the right-hand side of (15.2.4) tends to zero, in the sense of distri-
butions, as j — 00, and this establishes (15.2.1). The proof is complete.

In the applications, the following technical result is often helpful for verifying
the hypotheses of Theorem 15.2.1.

Lemma 15.2.1 Let 2 be an open subset of R" and (¢;} a bounded sequence in
W-LP(2), for some p > 2. Furthermore, let ¢, = xj + ¥;, where {x;} lies in a
compact set of W1-2(82), while {y;) lies in a bounded set of the space of measures
M (R2). Then {¢;} lies in a compact set of W~'(£2).

Proof. Consider the (unique) functions g; and /; in WOI'Z(Q) which solve the
equations

(15.2.5) Agi=x;j, Ahy=1y;.

By standard elliptic theory, {g;) lies in a compact set of W(,"Z(Q) while {h;} lies
in a compact set of WOI"’(Q), for | < g < ;7. Since ¢; = A(g; + hj), {¢;) is
contained in a compact set of W™'9(£2). But {¢;} is bounded in W~17(£2), with
p > 2; hence, by interpolation between W='¢ and W~!-7_ it follows that {¢;) lies

in a compact set of W~'-2(§2). The proof is complete.
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15.3 Measure-Valued Solutions for Systems
of Conservation Laws and Compensated Compactness

Consider a system of conservation laws,
(153.1) aU+0, FU)=0.

and suppose {U;} is a sequence of approximate solutions in an open subset £2 of
R?, namely

(15.3.2) QU+ 0, F(Uy) »> 0, ask— x,

in the sense of distributions on §2. For example, {U;} may have been derived via
the vanishing viscosity approach, that is U, = U,,,. with y¢; | 0 as k — 00, where
U, is the solution of the parabolic system

(15.3.3) QU + 8. F(U,) = udU, .

When {U,) lies in a bounded set of L>(£2; R"), following the discussion in
Section 15.1, one may extract a subsequence {U;}, associated with a family of
Young probability measures {v,, : (x,r) € £2} such that h(U;) — (v, h), as
J — 00, in L weak*, for any continuous k. In particular, by account of (15.3.2),

(15.3.4) B (ver, U + 0c(vy,, F(U)) =0.

One may thus interpret v, , as a new type of weak solution for (15.3.1):

Definition 15.3.1 A measure-valued solution for the system of conservation laws
(15.3.1), in an open subset £2 of R?, is a measurable family {v,, : (x,1) € 2} of
probability measures which satisfies (15.3.4) in the sense of distributions on £2.

Clearly, any traditional weak solution U & L>(£2:R") of (15.3.1) may be
identified with the measure-valued solution v, = 8y...,. However, the class of
measure-valued solutions is definitely broader than the class of traditional solu-
tions. For instance, if U and V are any two traditional solutions of (15.3.1) in
L>(£2: R"), then for any fixed @ € (0, 1),

(15.3.5) Ve = &8y ey + (1 — )8y ey

defines a measure-valued solution. which is nontraditional.

At first glance. the notion of measure-valued solution may appear too oroad to
be relevant. However, abandoning the premise that solutions should assign at each
point (x. ) a specific value to the state vector provides the means for describing
effectively a class of physical phenomena, like phase transitions, where at the
macroscopic level a mixture of phases may occupy the same point in space-time.
We shall not develop these ideas here, but rather regard measure-valued solutions
as stepping stones towards constructing traditional solutions.
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The notion of admissibility naturally extends from traditional to measure-
valued solutions. The measure-valued solution v,, on £2 is said to satisfy the
entropy admissibility condition, relative to the entropy-entropy flux pair (1, ¢) of
(15.3.1), if

(15.3.6) 3 {(Ver, NU))Y + 0 {vy,s. q(U)> <0,

in the sense of distributions on £2.

Returning to our earlier example, suppose v, , is generated through a sequence
{U,,} of solutions to the parabolic system (15.3.3). If (n. q) is any entropy-entropy
flux pair for (15.3.1), multiplying (15.3.3) by Dn(U,,) and using (7.4.1) yields the
identity

(153.7) n(U,) + 0eq(Uy) = udin(U,) — ud U] D*n(U,)8,U,, .

In particular, when 7 is convex the last term on the right-hand side of (15.3.7) is
nonpositive. We thus conclude that any measure-valued solution v, , of (15.3.1),
constructed by the vanishing viscosity approach relative to (15.3.3), satisfies the
entropy admissibility condition (15.3.6), for any entropy-entropy flux pair (7, q)
with n convex.

Lest it be thought that admissibility suffices to reduce measure-valued solu-
tions to traditional ones, it should be noted that when two traditional solutions U
and V satisfy the entropy admissibility condition for an entropy-entropy flux pair
(1, ¢), then so does also the nontraditional measure-valued solution v, , defined
by (15.3.5). On the other hand, admissibility may be an agent for uniqueness and
stability in the framework of measure-valued solutions as well. In that direction, it
has been shown (references in Section 15.9) that any measure-valued solution v, ,
of a scalar conservation law, on the upper half-plane, which satisfies the entropy
admissibility condition for all convex entropy-entropy flux pairs, and whose initial
values are Dirac masses, v, ¢ = 8, for some ug € L*(—~00, 00), necessarily re-
duces to a traditional solution, i.e., vy, = &,(,r;, Where u is the unique admissible
solution of the conservation law, with initial data u(x, 0) = ug(x). In particular,
this implies that for scalar conservation laws any measure-valued solution con-
structed by the vanishing viscosity approach, with traditional initial data, reduces
to a traditional solution.

Returning to the system (15.3.1), a program will be outlined for verify-
ing that the measure-valued solution induced by the family of Young measures
{ver @ (x,1) € L2} associated with a sequence {U;} of approximate solutions re-
duces to a traditional solution. This program will then be implemented for special
systems. As already noted in Section 1.9, when (15.3.1) is hyperbolic, approximate
solutions may develop sustained rapid oscillations, which prevent strong conver-
gence of the sequence {U;}. Thus, our enterprise is destined to fail, unless the
approximate solutions somehow embody a mechanism that quenches oscillations.
From the standpoint of the theory of compensated compactness, such a mechanism
is manifested in the condition
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(15.3.8) 3n(U;) + 8,q(U;) C compact set in W, *(£2) .

loc

for any entropy-entropy flux pair (7. ¢) of (15.3.1).

To see the implications of (15.3.8). consider any two entropy-entropy flux
pairs (n1. ¢1) and (72. g2). As j — o0, {n(Up)). {n2(Up}, {q1(U;)} and {g2(U))}
converge to 7, = (v, i}, M = (v. m). q; = {v.q;) and § = (v, ¢2), respectively,
where for brevity we set v,, = v. By (15.3.8). both div (g2(U;). n2(U;)) and
curl (n((U;). —q1(U;)) lie in compact sets of W,.!"*(£2). Hence, on account of
Theorem 15.2.1,

(1539 mUpgUy) — mUpgi(Uj) = 71g2 — 729, . as j— 20 .
in L™($2) weak*, or equivalently
(15.3.10) (omi{v. g2y = (vomd v, qi) = (v. mg: — maq1)

The plan is to use (15.3.10), for strategically selected entropy-entropy flux
pairs, in order to demonstrate that the support of the Young measure v is contined
to a single point. Clearly, such a program may have a fair chance for success only
when there is flexibility to construct entropy-entropy flux pairs with prescribed
specifications. For all practical purposes, this requirement limits the applicability
of the method to scalar conservation laws, systems of two conservation laws. and
the special class of systems of more than two conservation laws that are endowed
with a rich family of entropies (see Section 7.4). On the other hand, the method
offers considerable flexibility in regard to construction scheme, as it only requires
that the approximate solutions satisfy (15.3.8).

For illustration, let us verify (15.3.8) for the case the system (15.3.1) is en-
dowed with a uniformly convex entropy, §2 is the upper half-plane, and the se-
quence {U;} of approximate solutions is generated by the vanishing viscosity
approach, U; = U, , where U, is the solution of (15.3.3) on the upper half-plane,
with initial data

(15.3.11) Ui(x,0) =Up,(x), —-00<x <.

lying in a bounded set of L>(—00, 0o) N L3 (~oc. 5c).

Let n be a uniformly convex entropy, so that D*n(U) is positive definite. We
can assume 0 < n(U) < c|U|? since otherwise we simply substitute 7 with the
entropy n*(U) = n(U) = n(0) — Dn(0)U. Upon integrating (15.3.7) over the upper
half-plane, we obtain the estimate

oC o0
(15.3.12) “/ / 18, Uy (x, )% dxdt < C ,
0 -

where C is independent of u.

Consider now any, not necessarily convex, entropy-entropy flux pair (7. q),
and fix some open bounded subset §2 of the upper haif-plane. In reference to
(15.3.7), the left-hand side is bounded in W='-P(£2), for any 1 < p < 0. The
right-hand side is the sum of two terms: By virtue of (15.3.12), the first one tends
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to zero, as i J 0, in W~"2(§2), and thus lies in a compact set of w=1-2(2). The
second lies in a bounded set of M ($2), again by account of (15.3.12). Therefore,
(15.3.8) follows from Lemma 15.2.1.

15.4 Scalar Conservation Laws

Here we shall see how the program outlined in the previous section may be realized
in the case of the scalar conversation law

(15.4.1) A+ 8, fu)y=0.
Theorem 15.4.1 Let $2 be an open subset of E* and {ug(x. t)) a bounded sequeice
in L>(82) with

(15.4.2) 3 n(uy) + d.qlug) C compact set in W,

loc

(£2) .

for any entropyv-entropy flux pair of (15.4.1). Then there is a subsequence {u;} such
thut

(15.4.3) up—1u. f(uj))— f@). asj— o0,

in L™ weak*. Furthermore, if the set of u with f"(u) # 0 in dense in R, then (u;},
or a subsequence thereof, converges almost everywhere to u on §2.

Proof. By applying Theorem 15.1.1, we extract the subsequence {w;} and the
associated family of Young measures v = v,, so that h(u;) — (v, k), for any
continuous function A. In particular, u; — u = (v.u) and f(u;) = (v, f). We
thus have to show (v, f} = f(«); and that v reduces to the Dirac mass when there
is no interval on which f'(u) is constant.

We employ (15.3.10) for the two entropy-entropy flux pairs (u. f(u)) and
(f(u), g(u)), where

(15.4.4) gu) = fou[f’(v)lzdv :

to get

(15.4.5) (v u)(v, 8) — (v, v, f) = (v,ug — f3) .
From Schwarz’s inequality,

(15.4.6) [f@) = F@F < u—)gw) - g(@)]

we deduce

(15.4.7) v, [f@) = f@F — u—wlg) —g@]) <0.

Upon using (15.4.5), (15.4.7) reduces to
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(15.4.8) [(v. £ = f(@] <0.

whence (v, f) = f(u). In particular, the left-hand side of (15.4.7) will vanish.
Hence, (15.4.6) must hold as an equality for u in the support of r. However,
Schwarz’s inequality (15.4.6) may hold as equality only if f’ is constant on the
interval with endpoints & and #. When no such interval exists, the support of
v collapses to a single point and v reduces to the Dirac mass 8;. The proof is
complete.

As indicated in the previous section, one may generate a sequence {u;} that
satisfies the assumptions of Theorem !5.4.1 by the method of vanishing viscosity,
setting u; = u,, . gy — 0 as k — oo, where u,, is the solution of

(15.4.9) Bty + By f (1) = pduy,
on the upper half-plane, with initial data
(15.4.10) (v, 0) = ug,(x) . —0<y<x,

that are uniformly bounded in L>(—o0c. 00) N L?(—oc. o). Indeed, the resulting
{u;} will be bounded in L™, since ||u,|l¢~ < |ltig,lle~ by virtue of the maximum
principle. Moreover, (15.4.2) will hold for all entropy-entropy flux pairs (7, ¢), by
the general argument of Section 15.3, which applies here, in particular, because
(15.4.1) possesses the uniformly convex entropy «*. Finally, pudlu, — 0, as
w4 | 0, in the sense of distributions. We thus arrive at the following

Theorem 15.4.2 Suppose wg, — itg, as p } 0, in L>(—00,00) weak*. Then
there is a sequence {u;}. u; — 0 as j — oo, such that the sequence {u,,} of
solutions of (15.4.9), (15.4.10) converges in L™ weak™ to some function u, which
is a solution of (15.4.1), on the upper half-plane, with initial data u(x, 0) = uo(x)
on (—00, 00). Furthermore, if the set of u with f"(u) # 0 is dense in R, then
{u,,}, or a subsequence thereof. converges almost evervwhere to U on the upper
half-plane.

15.5 A Relaxation Scheme for Scalar Conservation Laws

The aim here is to construct solutions to the scalar conservation law (15.4.1) by
passing to the weak limit in a relaxation scheme, with the help of the theory of
compensated compactness. The present scheme will be different from the scheme
discussed in Section 6.7. '

We consider the system

Sy + 0w, =0

(15.5.1) , 1
v, +a‘d.u, = ;[.f(“u) -],
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where « is a positive constant, to be fixed later, and p is a positive relaxation
parameter. One might expect that as u | 0 the stiff term on the right-hand side
will force v, to “relax” to its equilibrium value f(u,), in which case the first
equation of (15.5.1) shall reduce to (15.4.1). Such expectation, however, shall not
materialize unless the effect of the stiff term is dissipative, preventing the v, from
“escaping” as u | 0.

To motivate the appropriate condition for dissipativeness, we set

(1552) vu = f(u;l) + #w,z

and substitute into (15.5.1). Dropping, formally, all terms of order ¢ and then
eliminating 8,1, between the resulting two equations yields

(15.5.3) wy, = [f () = az]aruu .

Upon combining (15.5.1); with (15.5.2) and (15.5.3), we conclude that, formally,
to leading order, u,, satisfies the equation

(15.5.4) By + 8 fluy) = pnd{la® — £, 18cu, ) -

Clearly, for dissipativeness, the “viscosity” on the right-hand side of (15.5.4) must
be positive, and this motivates the so called subcharacteristic condition

(15.5.5) —a< flu) <a,

stipulating that the characteristic speed of the relaxed equation must be confined
between the minimum and the maximum characteristic speed of the system.

We now examine the implications of the subcharacteristic condition on the
entropy-entropy flux pairs of (15.5.1). Since this is a system of balance (rather
than conservation) laws, the companion balance laws will generally include a
source term, like in (3.2.1):

|
(15.5.6) Sp(u,, v,) + O P(uy,. vy) = —;h(u#, v,) .

The integrability conditions, relating the entropy ¢, entropy flux ¥ and entropy
production # read as follows:

Y, v) = a’p. (. v) |
Yo(u, v) = ¢, (u,v),
(15.5.8) h(u,v) = ¢, (u, V)[v — f(w)] .

(15.5.7)

We are interested in entropy-entropy flux pairs (¢, ) which reduce on the equilib-

rium curve v = f(u) to entropy-entropy flux pairs (7, ) of the relaxed equation
(15.4.1), that is

(15.5.9) O, f@)) =nw), Y, f@)=q@).
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If one regards u as the “space” and v as the “time” variable, the subcharacteristic
condition (15.5.5) guarantees that the curve v = f(ir) is space-like for the sys-
tem (15.5.7), and hence unique (¢. ) may be determined from arbitrary Cauchy
data (15.5.9). In fact, (¢, ) may be computed explicitly as follows, The general
solution of (15.5.7) is

¢, v)=r(au+v)+s(au —v) .
(15.5.10)
Y, vy =ar(au +v) —as(au —v) .

One readily verifies that ¢ is (strictly) convex if and only if both » and s are
(strictly) convex. After a straightforward calculation, it is seen that (¢. 1) from
(15.5.10) will satisfy (15.5.9), with ¢'(«) = n’(u) f'(«), if and only if

(15.5.11) r'lau + f(u)) = s'(au ~ fu)) = El—n'(u) .
a

In particular, # convex yields ¢ convex.

Another implication of (15.5.11) is that ¢,.(u, f(1)) = 0. Combined with
convexity of ¢, this implies ¢, (i, v) > 0 for v > f(u) and ¢.(u,v) < 0 for
v < f(u), thus rendering the stiff term dissipative:

=0 if v=f(u),

(15.5.12) h(u,v) .

>0 if v# fu).
Theorem 15.5.1 Under the subcharacteristic condition (15.5.5), the Cauchy prob-
lem for the system (15.5.1), with initial data

(15.5.13) (1, (x, 0). v, (x,0)) = (g, (x), vou(x)), -0 <x<OC,

in L>(—00, 00) N L*(—00, 00), possesses a bounded (weak) solution (11, v,) on
the upper half-plane. Furthermore,

(15.5.14) ifo /_m[uﬂ - flu)Pdxdt < c/;oo[u(z)u(.t‘) + 3, (0]dx .

where ¢ is independent of u.

Proof. The system (15.5.1) being semilinear hyperbolic, a local solution exists
and may be continued for as long as it remains bounded in L. Thus, for global
existence it will suffice to establish L> bounds. We normalize v and f(«) by
F(0) = 0. We construct the entropy-entropy flux pair (¢m, ¥m) induced by
(15.5.11), for n(u) = £u®™, and normalized by ¢,(0,0) = 0, ¥(0.0) = 0.
Notice that the first derivatives of ¢, (. v) vanish at (0.0). We now integrate
(15.5.6) over (—o0, o0) X [0, ¢] to get

(15.5.15) / ¢m(”u(xq 1), vu(x, )dx < / ¢m(”0u(x)v UOu(x))dx .
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By (15.5.11). (cw)? < r,(w) < (Cw)™ and (cw)™ < s,(w) < (Cw)™.
Therefore, raising (15.5.15) to the power ﬁ and letting m — oc, we obtain bounds
for ””11('- P~ — e and ”l'u(‘- )]l 1~-x.%). in terms of ”“()u(‘)”l_\(—x.x) and
o, ()l 1~ (= x.~). and otherwise independent of ¢ and u. This establishes global
existence of bounded solutions to (15.5.1). (15.5.13).

Finally, we integrate (15.5.6) over (—00. oc) x [0, 00) to get

l x >~ x
(15.5.16) ——/ / Ay, v )dxde _<_/ @ (ug, (x). vg, (x))dx .
“ Jo - x

We apply (15.5.16) for the special entropy ¢ (. v). Using the properties of (i, v),
from (15.5.8), we deduce (15.5.14). The proof is complete.

We have now laid the preparation for passing to the relaxation limit u } 0:

Theorem 15.5.2 Consider the family {(u,.v,)} of solutions of the initial-value
problem (15.5.1), (15.5.13), with initial data {(ug,. vo,)} that are bounded in
L>(—00, 00)N L3 (—00, 00) and oy — ug, as 1 0, in L™ weak*. Then there is
a sequence {u;}, with pj — 0 as j — 00, such that {(u, , v, )} converges, in L™
weak®, to (u, f(u)), where u is a solution of (15.4.1)), on the upper half-plane,
with initial data u(x,0) = ug(x) on (—00, 00). Furthermore, if the set of u with
f7(u) # 0 is dense in R, then {(u,, . v, )}, or a subsequence thereof, converges
almost evervwhere to (u, f(u)) on the upper half-plane.

Proof. By Theorem 15.5.1, [(u,, v,)} lies in a bounded set of L>.

We fix any entropy-entropy flux pair (7, g) of (15.4.1), consider the entropy-
entropy flux pair (¢, ¥) of (15.5.1) generated by solving the Cauchy problem
(15.5.7), (15.5.9), and use (15.5.6), (15.5.8) to write

anu,) +3cq(uy)
(15.5.17) = al[¢(“y~ f(”y)) - ¢(“u- Uu)] + a.\'[’r,/(”uv f(”u)) - ’r,/(“yv Uu)]

1
- ;¢u(”;u U#)[UH - f(“;t)] .

Both ¢ (uy, flu,)) —¢u,, v,) and ¢ (u,. fu,)) — ¥ (uy, v,) tend to zero in L2,
as u | 0, by virtue of (15.5.14). Therefore, the first two terms on the right-hand
side of (15.5.17) tend to zero in W="-2 as 4 | 0. On the other hand, the third
term lies in a bounded set of L!, again by account of (15.5.14), upon recalling
that ¢, (u, f(u)) = 0.

We now fix any sequence {u4}, with u; — 0 as k — 00, and set (ug, vx) =
(4, vy,). In virtue of the above, Lemma 15.2.1 implies that (15.4.2) holds for
any entropy-entropy flux pair (7, ¢) of (15.4.1), where £2 is the upper half-plane.
Theorem 15.4.1 then yields (15.4.3), for some subsequence {uj). In tum, (15.4.3)
together with (15.5.14) imply v; — f(&), in L™ weak*. In particular, 7 is a
solution of (15.4.1), with initial data u, because of (15.5.1);.
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When the set of u with f"(u) # 0 is dense in R. {u;}, or a subsequence
thereof. converges to i almost everywhere, by account of Theorem 15.4.1. It then
follows from (15.5.14) that, likewise. {v;} converges to f(it) almost everywhere.
The proof is complete.

By combining (15.5.6), (15.5.12), (15.5.14) and (15.5.9). we infer that, at [east
in the case where {u;} converges almost everywhere, the limit i will satisfy the
entropy admissibility condition. for all convex entropy-entropy flux pairs.

Notice that Theorem 15.5.2 places no restriction on the initial values vy, of
v,. beyond the requirement that they be bounded. In particular, vy, may lic far
apart from the relaxed value f{uq,). In that situation. a boundary layer must
form along the O-time line, because according to the theorem v will have to relax
instantaneously to f{u), at t > 0.

15.6 Genuinely Nonlinear Systems of Two Conservation Laws

The program outlined in Section 15.3 will here be implemented for genuinely
nonlinear systems (15.3.1) of two conservation laws. In particular, our system will
be endowed with a coordinate system of Riemann invariants (z, w), normalized
as in (12.1.2), and the condition of genuine nonlinearity will be expressed by
(12.1.3), namely A. < 0 and p,. > 0. Moreover, the system will be equipped with
a rich family of entropy-entropy flux pairs, including the Lax pairs constructed in
Section 12.2, which will play a pivotal role in the analysis.

We show that the entropy conditions, in conjunction with genuine nonlinearity,
quench rapid oscillations:

Theorem 15.6.1 Let 2 be an open subset of R? and {U,(x. t)) a bounded sequence
in L>*($2: R?) with

(15.6.1) 3, n(Uc) + 8:q(Ux) C compact set in W% (£2) .

for any entropy-entropy flux pair (n, q) of (15.3.1). Then there is a subsequence
{U;} which converges almost everywhere on $2.

Proof. By applying Theorem 15.1.1, we extract a subsequence {U;} and identify
the associated family of Young measures v, ,. We have to show that, for almost all
(x.1), the support of v, , is confined to a single point and so this measure reduces
to the Dirac mass. It will be expedient to monitor the Young measure on the plane
of the Riemann invariants (z, w), rather than in the original state space.

We thus let v denote the Young measure at any fixed point (x, r) € §2, relative
to the (z, w) variables, and let.#2 = [z~, z*] x [w™. w*] be the smallest rectangle
that contains the support of v. We need to show z~ = z+ and w™ = w*. Arguing
by contradiction, assume z~ < z*.

We consider the Lax entropy-entropy flux pairs (12.2.5), which will be here
labeled (7« g ), so as to display explicitly the dependence on the parameter k. We
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shall use the 7, as weights for redistributing the mass of v, reallocating it near the
boundary of .#2. To that end, with each large positive integer k we associate prob-
ability measures v on .2, defined through their action on continuous functions
h(z. w):

(v. i)
15.6.2 Eony = ——=1
(15.62) i (Vo)

Because of the factor e in the definition of 7, the measure v, (or vi) is con-
centrated near the left (or right) side of .#2. As & — o0, the sequences {v; ]} and
{v{}, or subsequences thereof, will converge, weakly* in the space of measures,
to probability measures v~ and vt which are respectively supported by the left
side [z7] x [w™, w*] and the right side [z*] x [w™, w*] of . 2.

We apply (15.3.10) for any fixed entropy-entropy flux pair (5. ¢) and the Lax
pairs (nix. ¢x1) to get
(V. q+x) (v kg = NGxx)
vn=——7F—"""
(V. nxk) (V. k)

From (12.2.5) and (12.2.7) we infer

|
(15.6.4) Gtk = [)» +0 (Z):‘ Ntk -

Therefore, letting k — oo in (15.6.3) yields
(15.6.5) (v.g) — (vE A (v n) = (b5 g —An) .

(15.6.3) (v.q)y —

Next, we apply (15.3.10) for the Lax pairs (-4, g—) and (1. g1 ), thus ob-
taining
voge)  (veg-a) (v, nge — Mg
vome)  {von) (v, n—e){v, m)
By virtue of (15.6.4), the left-hand side of (15.6.6) tends to (vF.A) — (v™, A),

as k — o0o. On the other hand, the right-hand side tends to zero, because the
numerator is O(k~"') while

(15.6.6)

(15.6.7) (v, 14} = cexp[Ei(z~ +2D)] .

Hence,

(15.6.8) (VoA = (vt ).
Combining (15.6.5) with (15.6.8),

(15.6.9) (vVi.g —Any={(vt.q —An) .

We apply (15.6.9) for (1. ¢) = (m. gv). On account of (12.2.12), for k large,

- 1
(V7. gk — Ay} < C—exp(kz™)
(15.6.10) k

{
W ge—any) > o exp(kzt) ,
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which yields the desired contradiction to z~ < z*. Similarly one shows w™ = w*
so that .2 collapses to a single point. The proof is complete.

L)

The stumbling block in employing the above theorem for constructing solutions
to our system (15.3.1) is that, at the time of this writing. it has not been established
that sequences of approximate solutions, produced by any of the available schemes,
are bounded in L™. Thus, boundedness has to be imposed as an extraneous (and
annoying) assumption. On the other hand, once boundedness is taken for granted, it
is not difficult to verify the other requirement of Theorem 15.6.1, namely (15.6.1).
In particular, when the sequence of U; is generated via the vanishing viscosity
approach, as solutions of the parabolic system (15.3.3), condition (15.6.1) follows
directly from the discussion in Section [5.3, because genuinely nonlinear systems
of two conservation laws are always endowed with uniformly convex entropies.
For example, as shown in Section 12.2, under the normalization condition (12.1.4),
the Lax entropy #; is convex, for & sufficiently large. We thus have

Theorem 15.6.2 For pu > 0, let U, denote the solution on the upper half-plune of
the genuinelv nonlinear parabolic system of two conservation laws (15.3.3) with
initial data (15.3.11), where Uy, — Up in L>(—00. 00} weak®, as u | 0. Suppose
the family (U} lies in a bounded subset of L>. Then, there is a sequence {u;),
uj — Qas j — oo, such that (U, } converges, almost evervwhere on the upper
half-plane, to a solution U of (15.3.1) with initial values U(x.0) = Uy(x), for
—00 < X < 00,

One obtains entirely analogous results for sequences of approximate solutions
generated by a class of one-step difference schemes with a three-point domain of
dependence:

Ux,t + At) = U(x.t)

15.6.11
( ) = %G(U(x,r),u(x-pr.r))— (—;—G(U(x—Ax,t).U(x-t)) .
where @ = At/Ax is the ratio of mesh-lengths and G, possibly depending on «, is
a function which satisfies the consistency condition G(U.U) = F(U). The class
includes the Lax-Friedrichs scheme, with

|
(15.6.12) G(V,W):%[F(V)-f—F(W)]-f—;(V—W).

and also the Godunov scheme, where G(V. W) denotes the state in the wake of
the solution to the Riemann problem for (15.3.1), with left state V and right state
W. The condition of uniform boundedness on L™ of the approximate solutions
has to be extraneously imposed in these cases as well.
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15.7 The System of Isentropic Elasticity

The assertion of Theorem 15.6.1 is obviously false when the system (15.3.1) is
linear. On the other hand, genuine nonlinearity is far too strong a restriction: [t
may be allowed to fail along a finite collection of curves in state space, so long
as these curves intersect transversely the level curves of the Riemann invariants.
This will be demonstrated here in the context of the system (7.1.6) of conservation
laws of one-dimensional, isentropic thermoelasticity,

ou—dv=0
(15.7.1)
v —dao) =0,

under the assumption o”(u) # 0 for n # 0. but a”(0) = 0, so that genuine
nonlinearity fails along the line « = 0 in state space. Nevertheless, the analog of
Theorem 15.6.1 still holds:

Theorem 15.7.1 Let $2 be un open subset of R? and {(u;.. v;)} a bounded sequence
in L™(2: R?) with

(15.7.2) O, ntuy. vy) + 8, ¢(uy. vy) C compact set in W,;c"z(!?) .

for any entropy-entropy flux pair (5. q) of (15.7.1). Then there is a subsequence
{Quj. v))) which converges almost evervichere on £2.

Proof. As in the proof of Theorem 15.6.1, we extract a subsequence {(u;. v;)}
and identify the associated family of Young measures v, ,. We fix (x,t) in £2 and
monitor the Young measure v at (x. t) relative to the Riemann invariants

(15.7.3) z =/ [c'(@]do+v, w= —/ [0/ (@] dw+v .
0 0

We need to show that the smallest rectangle .22 = [z, z%] x [w™, w*] which
contains the support of v collapses to a single point.

By retracing the steps in the proof of Theorem 15.6.1, which do not depend
on the genuine nonlinearity of the system, we rederive (15.6.9). The remainder
of the argument will depend on the relative positions of .2 and the straight line
z = w along which genuine nonlinearity fails.

Suppose first the line z = w does not intersect the right side of .72, i.e.,
2t ¢ [w™, w*]. In that case, (15.6.10) are still in force, yielding z~ = z*. Hence
.72 collapses to [z*] x [w™, w*], which, according to our assumption, lies entirely
in the genuinely nonlinear region and so the familiar argument implies w™ = w*,
verifying the assertion of the theorem. Similar arguments apply when the line
Z = w misses any one of the other three sides of .#2.

It thus remains to examine the case where the line z = w intersects all four
sides of .2, i.e, z7 = w™ and :* = w*. Even in that situation, by virtue of
(12.2.12), gx — Any does not change sign on segments [z7] x [w™ + &, wt] and



15.7 The System of Iscntropic Elasticity 387

[27] x [w~.w™ —¢]. so that the familiar argument will still go through, showing
27 = %, unless the measures v~ and v* are respectively concentrated in the
vertices (7. w™) and (zF, w™). When that happens, (15.6.9) reduces to

(15.74) g(z" w ) =rZ o w i w ) =g w) =A™t ety .

In particular, let us apply (15.7.4) for the trivial entropy-entropy flux pair (i, ~v).

At the “southwestern™ vertex, v~ = 0 and v~ = -z~ = w~. while at the
“northeastern™ vertex, n* = 0 and v+ = ¥ = w™. Therefore, (15.7.4) yields
:” =% =w” = uwt. The proof is complete.

Smoothness of o (1) cannot be generally relaxed as examples indicate that the
assertion of the above proposition may be false when a”(u) is discontinuous at
n=0.

In particular, Theorem 15.7.1 applies when the elastic medium responds like
a “hard spring”, that is, o is concave at u < 0 and convex at i > 0:

(15.7.5) wo"(u) >0, wu#0.

For that case, it is possible to establish L> bounds on the approximate solutions
constructed by the vanishing viscosity method, namely, as solutions to a Cauchy
problem

duy — dev, = uafu
(15.7.6) e .
vy — oo (u,) = pd v, .

(15.7.7) (1, (x, 0), v, (x, 0)) = (uou(x), v (x)) . —00 <X <OC.

Theorem 15.7.2 Under the assumption (15.7.5), for any M > 0, the set 70y,
defined by

(15.7.8) oy =, v): —M<z(uv)y <M, —M <wu,v)< M),

where 2 and w are the Riemann invariants (15.7.3) of (15.7.1), is a (positively)
invariant region for solutions of (15.7.6), (15.7.7).

Proof. The standard proof is based on the maximum principle. An alternative
proof will be presented here, which relies on entropies and thus is closer to the
spirit of the hyperbolic theory. It has the advantage of requiring less regularity
for solutions of (15.7.6). Moreover, it readily extends to any other approximation
scheme, which, like (15.7.6), is dissipative under convex entropies of (15.7.1).

For the system (15.7.1), the equations (7.4.1) that determine entropy-entropy
flux pairs (7, g¢) reduce to

Clu(u, V) = —U’(u)l]u(ll, v)
(15.7.9)
qv(u* v) = — 1 (e, v) .
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Notice that (15.7.9) admits the family of solutions

(15.7.10) N (tt, v) = Yy () cosh(mv) — 1,

! Y (1) sinh(mv) ,

m m

(15.7.1DH) gm(u.v) =

where m = 1,2, .-+ and Y,, is the solution of the ordinary differential equation

(15.7.12) Y'(u) = mio ()¥nlu) . —~00 <u <00,

m

with initial conditions

(15.7.13) Y.(0)=1, Y (0)=0.

n

A simple calculation gives

a

(15714) Novwa Mnevr — 77,2”,“. = 'n2['n20,'Y2 - )/I:;-] .

- m

Moreover, by virtue of (15.7.12),
(15.7.15) (m*o’Y2 — Y2 =m?e"Y?

m m

Consequently, (15.7.5) implies that the right-hand side of (15.7.14) is positive
and hence n,, (1, v) is a convex function on R2. Furthermore, 7m(0,0) = 0 and
N (0, 0) = 0,y (0, 0) = 0, so that 7, («, v) is positive definite.

Next we examine the asymptotics of 5, (i, v) as m — oo. The change of
variables (u. Y,) — (§, X,»):

(15.7.16) £ = f [0' ()] dw ,
0

(15.7.17) Xy =(0')3Y,,

transforms (15.7.12) into

(15.7.18) X =m* X +[3(0)726" = F(6)7(0")1Xm

with asymptotics

(15.7.19) Xn(€) =[A+ O(ml)]e'"‘“ ,

asm — OQ.

Upon combining (15.7.10) with (15.7.17), (15.7.19), (15.7.16) and (15.7.3),
we deduce

explz(u, v)] , ifu=0, v>0,
explw(u,v)], ifu<0, v>0,
(157200 lim g, vy = § SPLE0V] ~

m=>2e exp[—w(u,v)], f u>0, v<0,

exp[—z(u,v)], ifu<0, v<O0.
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We now consider the solution (u,,, v,) of (15.7.6). (15.7.7), where (uq,,. oy )
lie in L?(—00. 20) and take values in the region 77, defined by (15.7.8). We
write (15.3.7), with U, = (4, v.). 7 = Nw. ¢ = ¢u. and integrate it over
(—oc. oc) x [0.1]. to get

x x

(15.7.21) f Dt (x. 1), v (x.1))dx < f N (g (). v, (X))dx .
- -

Raising (15.7.21) to the power |/m, letting m — oc and using (15.7.20). we

conclude that (u,(-.7).v, (-, 1)) takes values in the region #Zy. The proof is

complete.

The above proposition, in conjunction with Theorem 15.7.1, yields an existence
theorem for the system (15.7.1), which is free from extraneous assumptions:

Theorem 15.7.3 Let (u,, v,) be the solution of the initial-value problem (15.7.6),
(15.7.7), on the upper half-plane, where (uy,, vo,) — (uy. vp) in L™{—oc. 00)
weak*. Under the assumption (15.7.5), there is a sequence {u;}, u; — 0 as
J — 00, such that {(u,,,v,,)} converges almost everywhere on the upper half-
plane to a solution (W.v) of (15.7.1) with initial values (u(x,0).7(x,0)) =
(sp(x), vo(x)), =00 < x < 00.

The assumption (15.7.5) and the use of the special, artifical viscosity (15.7.7)
are essential in the proof of Theorem 15.7.3, because they appear to be indispens-
able for establishing uniform L> bounds on approximate solutions. At the same
time, it is interesting to know whether one may construct solutions to (15.7.1) by
passing to the zero viscosity limit in the system (8.6.3) of viscoelasticity, or at
least in the model system

Opte, — 0,v, =0
(15.7.22) s
0, v, — 0,0 (1y) = (o v, ,

which is close to it.

Even though we do not have uniform L™ estimates for solutions of (15.7.22),
as this system is not dissipative with respect to all convex entropies of (15.7.1). we
still have a number of estimates of L? type, the most prominent among them being
the “energy inequality” induced by the physical entropy-entropy flux pair (7.4.10).
It is thus natural to inquire whether the method of compensated compactness is
applicable in conjunction to such estimates. Of course, this would force us to
abandon L> and consider Young measures in the framework of L?”, a possibility
already raised in Section 15.1. It turns out that this approach is effective for the
problem at hand, albeit at the expense of elaborate analysis, so just the conclusion
shall be recorded here. The proof is found in the references cited in Section 15.9.

Theorem 15.7.4 Consider the system (15.7.22), where (a) o'(u) = oo > 0, for
—00 < u < 00; (b) ¢” may vanish at most at one point on (=00, ); (c) ¢'(u)
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grows like |u|“, as |u| — oo, for some a > 0; and (d) 0" (u) and o™ (1) grow no
faster than |u|*~'. as |u| — oo. Let (1. v,) be the solution of the Cauchy problem
(15.7.22), (15.7.7), where {(tto,.. vo,)} are functions in W'2(—00, 00), which have
uniformly bounded total energy,

x Iy
(15.7.23) f [5”5"“‘" + Z(lln;.l)] de < C,

x

have relatively tame oscillutions,
> 2
(15.7.24) ,uf [vg, ()] de—> 0. asu—0,
-

and converge, g, — g, Vo, —> Vo, as it — 0, in the sense of distributions. Then
there is a sequence {u;}, u; — 0 as j — oo, such that {(u,,, v,,)} converges
in LT, for any 1 < p < 2, to a solution (. T) of (15.7.1) with initial values
(i(x, 0). v(x, 0)) = (ug(x), vo(x)), —00 < x < 0.

15.8 The System of Isentropic Gas Dynamics

The system (7.1.8) of isentropic gas dynamics, for a polytropic gas, in Eulerian
coordinates, the first hyperbolic system of conservation laws ever to be derived,
has served over the past two centuries as proving ground for testing the theory.
It is thus fitting to conclude this work with the application of the method of
compensated compactness to that system,

It is instructive to monitor the system simultaneously in its original form
(7.1.8), with state variables density o and velocity v, as well as in its canoni-
cal form

op+0m=0

(15.8.1) m?2
om+0, | —+xp?|=0,
o

with state variables density p and momentum m = pv. The physical range for
density is 0 < p < o0, while v and m may take any values in (—00, 00).

For convenience, we scale the state variables so that x = (y — 1)2/4y, and set
0 = %(y — 1), in which case the characteristic speeds (7.2.10) and the Riemann
invariants (7.3.3) assume the form

m m
(15.8.2) A=—0p"+v==0p"+—, u=00"+v=060"+—,
p p
m m
(15.8.3) z=—p+v==p'+—, w=p'+v=p"+—.
p p
It is not difficult to construct sequences of approximate solutions taking values

in compact sets of the state space [0, 00) x (—00, 00). For example, one may
follow the vanishing viscosity approach relative to the system
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oy +dom, = Ma,‘-?p“
(15.8.4) 111/21 ’ R
dmy + 3, | == +kp) | = pdin, .
pn
which admits the tamily of (positively) invariant regions
(15.8.3) oy ={(p,m):p>=0.—M < z(p.m) <u(p.my<M}.

Furthermore, solutions of (15.8.4) on the upper half-plane, with initial data that
are bounded in L™(—oc, oc) " L2 (~2c, a¢), satisty

(15.8.6) On(p.my) + dog(p,.m,) C compact set in W,;L,"l .

for any entropy-entropy flux pair (. ¢) of (15.8.1). Approximate solutions with
analogous properties are also constructed by finite difference schemes, like the
Lax-Friedrichs scheme and the Godunov scheme. They all lead to the following
existence theorem:

Theorem 15.8.1 For any y > 1. there exists a bounded solution (p.v) of the
svstem (7.1.8) on the upper half-plane, with assigned initial data

(15.8.7) (p(x,0), v(x.0)) = (po(¥). vy(r)) . —0C <x <00,

where (py. tg) € L(—~00, 00) and py(x) > 0, for —o0 < x < oo. Furthermore,
the solution satisfies the entropy admissibility condition

(15.8.8) on(p.m)+ 0,q(p,m) <0.

for any entropy-entropy flux pair (n. q) of (15.8.1), with n(p, m) convex.

The proof employs (15.3.10) to establish that the support of the Young measure,
associated with a sequence of approximate solutions, either reduces to a single
point in state space or is confined to the axis p = 0 (vacuum state).

As function of (p, v), any entropy 5 of (7.1.8) satisfies the integrability con-
dition

(15.8.9) TNpp = 020" 0 .

The above equation is singular along the axis p = 0, and the nature of the
singularity changes as one crosses the threshold y = 3. Accordingly, different
arguments have to be used for treating the cases y <3 and y > 3.

Of relevance here are the so called weak entropies, which vanish at p = 0.
Upon setting n,(0, v) = g(v), they admit the representation

(15.8.10) n(p, v) =f X(p.& — v)gE)dE |

oc

where
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(p% — v L if p* > v?,

15.8.11 ) =
(15.8.11) x(p.v) it % <

with 5 = %3—'_1 Thus yx is the fundamental solution of (15.8.9) under initial

y—I
conditions 1(0, v) = 0. n,(0. v) = do(v).
The classical kinetic theory predicts the value y = | + % for the adiabatic

exponent of a gas with n degrees of freedom. When the number of degrees of
freedom is odd, n = 2¢ 4 |, the exponent s in (15.8.11) is the integer €. In this
special situation the analysis of weak entropies and thereby the reduction of the
Young measure is substantially simplified. However, even in that simpler case the
proof is quite technical and shall be delegated to the references cited in Section
15.9. Only the degenerate case y = 3 will be presented here.

Fory =3,i.e.8 =1, (158.2) and (15.8.3) yield A = z and u = w, in which
case the two characteristic families totally decouple. In particular, (12.2.1) reduce
to ¢. = Zn-, gu. = W, S0 that there are entropy-entropy flux pairs (37, ¢) which
depend solely on z. for example (22, z%) and (322, 22°).

Suppose now a sequence {{p,,.m,,)} of solutions of (15.8.4), with py — 0
as k — o0, induces a weakly convergent subsequence {(z;. w;}} of Riemann
invariants with associated family v, , of Young measures. We fix (x,7), setv,, = v
and apply (15.3.10) for the two entropy-entropy flux pairs (2z, z2) and (322, 22°%)
to get

(15.8.12) v, 2){(v. 2%y = 3. 2w, 2 = (v, 2% .

Next we consider the inequality

(15.8.13) H a6 4P+ = -t 20,
where Z = (v, z), and apply the measure v to it, thus obtaining

(15.8.14) (v, 2 —4(v, Y, 2) + 6(v, 2 v, 22 = 3(v. 24 > 0.
Combining (15.8.14) with (15.8.12) yields

(15.8.15) =3[~ (v, 2P =0,

whence (v, z?) = (v. 2)2. Therefore, {z;} converges strongly to Z = (v, z}. Simi-
larly one shows that {w;} converges strongly to W = (v, w). In particular, (z. W)
induces a solution (p,7) of (7.1.8) by 5= (W ~2) and T = L (W + 2).

15.9 Notes

The method of compensated compactness was introduced by Murat [1] and Tartar
[1,2]. The program of employing the method for constructing solutions to hyper-
bolic conservation laws was designed by Tartar [2,3], who laid down the funda-
mental condition (15.3.10) and demonstrated its use in the context of the scalar
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case. The first application to systems, due to DiPerna [6], provided the impetus
for intensive development of these ideas. which has produced a substantial body
of research. The presentation here only scratches the surface. A clear introduction
is also found in the lecture notes of Evans [1] and Hérmander [1], the monograph
of Malek, Necas and Rokyta [1]. as well as the treatise of Taylor [1]. For more
detailed, and deeper development of the subject the reader is referred to the book
of Serre [9] and the forthcoming monograph of G.-Q. Chen.

The Young measure was introduced in L.C. Young [1]. The presentation here
follows Ball [2], where the reader may find generalizations beyond the L™ frame-
work, as well as commentary and references to alternative constructions.

For an introduction to the theory of compensated compactness, see the lecture
notes of Tartar [1,2,3]. The div-curl lemma is due to Murat and Tartar and Lemma
15.2.1 is generally known as Murat’s lemma (Murat [2]).

The notion of a measure-valued solution is due to DiPerna [9]. For further
developments of the theory and applications to the construction of solutions to
systems of conservation laws, including those of mixed type modeling phase tran-
sitions, see Chen and Frid [2], Coquel and LeFloch [1], Demengel and Serre [1],
Frid [1], Poupaud and Rascle [1]. Roytburd and Slemrod [1], Schochet [2] and
Szepessy [1,2].

The scalar conservation law was first treated via the method of compensated
compactness by Tartar [2]. The clever argument employed in the proof of Theorem
I5.4.1 was communicated to the author by Luc Tartar, in May 1986. See also
Vecchi [1].

The competition between viscosity and dispersion is investigated in Schon-
bek [1].

The program of constructing solutions to hyperbolic conservation laws via
relaxation was initiated by Liu [13], who was motivated by the ideas of Whitham
[2]. The discussion of the scheme in Section 15.5 is adapted from Chen, Levermore
and Liu [1] and Jin and Xin [1]. Other studies of relaxation schemes include Chen
and Liu [1], Collet and Rascle [1], Coquel and Perthame [1], Klingenberg and
Lu [1], Lattanzio and Marcatti [1], Lu and Klingenberg [1]. Marcati and Natalini
[1], Marcati and Rubino [1], Natalini [1]. Tveito and Winther [1] and Yong [2].
A survey is found in Natalini [3]. Tzavaras [3] discusses the interpretation of
relaxation schemes in the context of Continuum Mechanics. -

Shonbek [1] considers a balance law with singular source.

The scalar conservation law is treated in the L” framework by Yang, Zhu and
Zhao [1].

The treatment of the genuinely nonlinear system of two conservation laws, in
Section 15.6, and the system of isentropic elasticity with a single inflection point,
in Section 15.7, follows the pioneering paper of DiPerna [6]. Counterexamples to
Theorem 15.7.1, when o” (1) is discontinuous at u = 0, are exhibited in Greenberg
[3] and Greenberg and Rascle [1].

A very efficient approach, due to Serre [2,9], has rendered the method of
compensated compactness sufficiently flexible to treat systems of two conservation
laws even when characteristic families are linearly degenerate, strict hyperbolicity
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fails, etc. The construction of solutions to many interesting systems of this type is
effected in Chen [6]. Chen and Glimm [[.2], Chen and Kan [1], Heidrich [1]. Kan.
Santos and Xin [1], Lu [1]. Marcati and Natalini [1], Rubino [1] and Zhao [1].
Since the analysis relies heavily on the availability of a rich family of entropies.
the application of the method to systems of more than two conservation laws
is currently limited to special systems in which the shock and rarefaction wave
curves coincide for all but at most two characteristic families (Benzoni-Gavage
and Serre [1]) and to the system of nonisentropic gas dynamics for a very special
equation of state (Chen and Dafermos [1]). For a variety of systems, the large time
behavior of solutions with initial values that are either periodic or L' perturbations
of Riemann data is established in Chen and Frid [1.3.4,5,7], by combining scale
invariance with compactness. See also Serre and Xiao [].

The system of isentropic elasticity was treated in the L? framework by J.W.
Shearer [1], P. Lin [1] and Serre and Shearer [1]. The theory of invariant regions
via the maximum principle is due to Chueh, Conley and Smoller [1] (see also
Hoff [2]). A systematic discussion, with several examples, is found in Serre [9].
The connection between stability of relaxation schemes and existence of invariant
regions is discussed in Serre [13]). The proof of Theorem 15.7.2 is taken from
Dafermos [13]. See also Serre [3] and Venttsel” [I].

The system of isentropic gas dynamics was first treated by the method of
compensated compactness in DiPerna [7], for the special values y = | + ,3,
n = 2¢ + 1, of the adiabatic exponent. Subsequently, G.-Q. Chen [1] and Ding,
Chen and Luo [1] extended the analysis to any y within the range (1, %]. For a
survey, see G.-Q. Chen [2]. The case y > 3 was solved by Lions, Perthame and
Tadmor [1], and finally the full range | < y < o0 is covered in Lions, Perthame
and Souganidis [1]. The argument presented here, for the special case y = 3 was
communicated to the author by G.-Q. Chen. The more general, genuinely nonlinear
system (7.1.7), for a nonpolytropic gas, was treated by Chen and LeFloch [1] under
the assumption that near the vacuum state the pressure function p(p), together with
its first four derivatives, behave like p(p) ~ xp?.

The method of compensated compactness is the only vehicle that is currently
available for establishing weak solutions to hyperbolic systems of conservation
laws via the method of vanishing viscosity; however, a more traditional approach
is applicable in the special case where the solution happens to be smooth or
piecewise smooth (Goodman and Xin [1], Lin and Yang [1] and Yu [1]).

An important test on systems of conservation laws is how the solution operator
interacts with highly oscillatory initial data, say Up:(x) = V (x. x/¢), where V(x, )
is periodic and ¢ is a small positive parameter. When the system is linear, the
rapid oscillations are transported along characteristics and their frequency and
amplitude persist for t > 0. On the opposite extreme, when the system is strictly
hyperbolic and genuinely nonlinear, the results of Sections 15.4 and 15.6 indicate
that, as ¢ — 0, the resulting family of solutions U, (x, r) contains sequences which
converge strongly to solutions with initial value the weak limit of {Up.}, that is
for t > 0 the solution operator quenches the rapid oscillations of the initial data.
It is interesting to investigate intermediate situations, where some characteristic
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families may be linearly degenerate, strict hyperbolicity fails, etc. Following the
study of many particular examples (cf. Bonnefille [1], Chen [3,4,5], E [1], Heibig
[1]. Rascle [1] and Serre [3,8]), a coherent theory of propagation of oscillations
seems to be emerging (Serre [9]).

An alternative approach to propagation of oscillations is provided by the
method of weakly nonlinear geometric optics which derives asymptotic expan-
sions for solutions of hyperbolic systems under initial data oscillating with high
frequency and small amplitude. Following the pioneering work of Landau [I],
Lighthill [1] and Whitham [1], extensive literature has emerged, of purely formal,
semirigorous or rigorous nature, dealing with the cases of a single phase, or possi-
bly resonating multiphases, etc. See, for example, Choquet-Bruhat [1], Hunter and
Keller [1,2], Majda and Rosales [1], Majda, Rosales and Schonbek [1], Pego [1],
Hunter [1], Joly, Métivier and Rauch [1,3] and Cheverry [1]. It is remarkable that
the asymptotic expansions remain valid even after shocks develop in the solution;
see DiPerna and Majda [1], Schochet [5] and Cheverry [2]. A survey is found in
Majda [4] and a systematic presentation is given in Serre [9].
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