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Preface to Second Edition

The first edition of this book appeared eight years ago. Since then
the banking industry experienced a lot of change and challenges. The
most recent financial crisis which started around May 2007 and lasted
in its core period until early 2009 gave rise to a lot of scepticism about
whether credit risk models are appropriate to capture the true nature
of risks inherent in credit portfolios in general and structured credit
products in particular. In a recent article we discuss common credit
risk modeling approaches in light of the most recent crisis and invite
readers to participate in the discussion; see [26].

A key observation in a discussion like the one in [26] is that the
universe of available models and tools is sufficiently rich for doing a
good job even in a severe crisis scenario as banks recently experienced
it. What seems to be more critical is an appropriate model choice,
parameterization of models, dealing with uncertainties, e.g., based on
insufficient data, and communication of model outcomes to decision
makers and executive senior management. These are the four main
areas of challenge where we think that a lot of work and rethinking
needs to be done in a “post-crisis” reflection of credit risk models.

In the first edition of this book we focused on the description of com-
mon mathematical approaches to model credit portfolios. We did not
change this philosophy for the second edition. Therefore, we left large
parts of the book unchanged in its core message but supplemented the
exposition with new model developments and with details we omit-
ted in the first edition. The aforementioned four areas of challenge
in a “post-crisis” reflection of credit risk models would justify another
separate exposition in book form and it should be clear that a second
edition of an existing book cannot be an appropriate substitute for that.
However, we included a few comments in the text where appropriate.

A brief outline of the track record of changes and updates is as follows.

Chapter 1 is updated in line with developments over the last eight
years. We also included more details in the case of some topics. For

ix



x

instance, the sections on the probability of default (PD), exposure-at-
default (EAD) and loss-given-default (LGD) are still brief compared to
what could be said but have been extended in comparison to the first
edition of this book. The brief section on regulatory capital has also
been changed and updated.

Chapter 2 has been updated where necessary but is left unchanged
in large parts. What is new is a longer section on techniques for the
generation of loss distributions. Because such techniques rely on a
bunch of tools from probability theory we included for the convenience
of the reader an introductory section on “prerequisites from probabil-
ity theory” in order to keep the survey on calculation and simulation
techniques self-contained as much as possible. Readers will also ben-
efit from the probability toolkit in Chapter 4 on CreditRisk+ where
generating functions play a major role.

Chapter 3 is left unchanged except for the correction of typos.

Chapter 4 is enhanced by a new section on technical details regard-
ing the calculation of the loss distribution in CreditRisk+.

Chapter 5 has been updated and some new developments are in-
cluded now. For instance, spectral risk measures and an axiomatic
approach to capital allocation are introduced.

Chapter 6 is left unchanged except for a brief section on term
structures of default probabilities based on non-homogeneous Markov
chains. This new approach has been included because it fits models far
better than the time-homogeneous Markov chain approach.

Chapter 7 is left unchanged except for the correction of typos.

Chapter 8 is updated to some extent as well as enhanced. We kept
the presentation of cash flow structures because the basic principles and
structures remain unchanged. During the most recent crisis, structured
products came under pressure and markets dried up. However, we are
convinced that securitization as well as portfolio structuring remain a
core competence and major tool of banks’ financial engineering depart-
ments. Therefore, we extended Chapter 8 by a section on multi-period
models and a brief section on recent developments. However, we keep
the presentation short because we have dedicated a separate book [24]
to the topic of CDO modeling and it would not have made much sense
to carry sections from [24] over to this book.



xi

We need to make a disclaimer regarding data in examples. In all cases
we used data for illustrative purposes only. Therefore, we decided not
to re-run all examples with more recent data. Interested readers can
find in [24] many more examples with up-to-date data.

Altogether we can say that doing math in the context of credit risk
modeling still means a lot of personal satisfaction to us. Credit risk in
particular and finance in general are great fields to apply mathematical
concepts to real life situations.

However, when doing this one should never forget that senior man-
agement, regulators, investors, etc. rely in their decision making on
models and valuation outcomes. The most recent crisis showed that
it is important to appropriately communicate model outcomes and to
make sure that the variation in results is made transparent to decision
makers in ways that they can understand.

A last remark we want to make concerns model choice and model risk.
It is not recommended to use one and only one model for a particular
problem. Instead, we recommend using various models to shed some
light on different aspects of the true nature of a credit risk problem. In
this way, the problem is viewed from different angles. The most recent
crisis showed that more modeling and more analysis are superior to just
one model relying on various simplifying assumptions. Regulators, for
instance, talk a lot about stress testing. From our perspective, stress
testing should already be part of the model. What people consider as
stress, for example a market scenario where banks lose several billion
euros, is historically seen not as stress but as a 10-year (give or take)
regular event. It should be treated as such.

Munich and Giessen, April 2010

Christian Bluhm, Ludger Overbeck, Christoph Wagner



xii

Acknowledgements

Christian Bluhm would like to thank his wife Tabea, and his children
Sarah and Noa for their continuous support. Various book projects in
the last years consumed a significant amount of time and it is just
great to have a patient and understanding family. Ludger Overbeck is
grateful to his wife Bettina and his children Leonard, Daniel, Clara,
and Benjamin for their ongoing support.

We had great feedback, support, and comments on the first edition
of this book by many colleagues, friends and readers from all over the
world. We are grateful they let us know of typos, mistakes, and errors
and we are happy about input on how the exposition can be improved.
We hope that readers will continue to let us know if they find errors
or unclear passages in the book and we apologize for still undiscovered
shortfalls of the manuscript. Feedback and input can be sent to the
contact email addresses at

http://www.christian-bluhm.net
http://www.uni-giessen.de/∼gc1156.

Disclaimer

This book reflects the view of the authors and not the opinion of their
current or former employers. The content of the book has been written
for educational purposes only. The authors are by no means liable for
any damage arising from any application of the theory, examples or
data presented in this book.



Preface

In banking, especially in risk management, portfolio management, and
structured finance, solid quantitative know-how becomes more and
more important. We had a two-fold intention when writing this book.
First, this book is designed to help mathematicians and physicists

leaving the academic world and starting a profession as risk or portfolio
managers to get quick access to the world of credit risk management.
Second, our book is aimed at being helpful to risk managers looking
for a more quantitative approach to credit risk.
Following this intention on one side, our book is written in a lecture

notes style very much reflecting the keyword “introduction” already
used in the title of the book. We consequently avoid elaborating on
technical details not really necessary for understanding the underlying
idea. On the other side, we kept the presentation mathematically pre-
cise and included some proofs as well as many references for readers
interested in diving deeper into the mathematical theory of credit risk
management.
The main focus of the text is on portfolio rather than single obligor

risk. Consequently, correlations and factors play a major role. More-
over, most of the theory in many aspects is based on probability theory.
We, therefore, recommend that the reader consult some standard text
on this topic before going through the material presented in this book.
Nevertheless, we tried to keep it as self-contained as possible.
Summarizing our motivation for writing an introductory text on

credit risk management one could say that we tried to write the book we
would have liked to read before starting a profession in risk management
some years ago.

Munich and Frankfurt, August 2002

Christian Bluhm, Ludger Overbeck, Christoph Wagner
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Chapter 1

The Basics of Credit Risk
Management

Why is credit risk management an important issue in banking? To
answer this question let us construct an example which is, although
simplified, nevertheless not too unrealistic: Assume a major building
company is asking its house bank for a loan in the size of 100 million
Euro. Somewhere in the bank’s credit department a senior analyst has
the difficult job of deciding if the loan will be given to the customer
or if the credit request will be rejected. Let us further assume that
the analyst knows that the bank’s chief credit officer has known the
chief executive officer of the building company for many years, and to
make things even worse, the credit analyst knows from recent default
studies that the building industry is under hard pressure and that the
bank-internal rating1 of this particular building company is just on the
way down to a low subinvestment grade (low credit quality).

What should the analyst do? Well, the most natural answer would
be that the analyst should reject the deal based on the information
she or he has about the company and the current market situation. An
alternative would be to grant the loan to the customer but to insure the
loss potentially arising from the engagement by means of some credit
risk management instrument (e.g., a so-called credit derivative).

Admittedly, we intentionally exaggerated in our description, but sit-
uations like the one just constructed happen from time to time and it
is never easy for a credit officer to make a decision under such difficult
circumstances. A brief look at any typical banking portfolio will be suf-
ficient to convince people that defaulting obligors belong to the daily
business of banking the same way as credit applications or ATM ma-
chines. Banks therefore started to think about ways of loan insurance

1A rating is an indication of creditworthiness; see Section 1.1.1.1.
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many years ago, and the insurance paradigm will now directly lead us
to the first central building block of credit risk management.

1.1 Expected Loss

Situations as the one described in the introduction suggest the need
of a loss protection in terms of an insurance, as one knows it from car or
health insurances. Moreover, history shows that even good customers
have a potential to default on their financial obligations, such that an
insurance for not only the critical but all loans in the bank’s credit
portfolio makes much sense.

The basic idea behind insurance is always the same. For example,
in health insurance the costs of a few sick customers are covered by
the total sum of revenues from the fees paid to the insurance company
by all customers. Therefore, the fee that a man at the age of thirty
has to pay for health insurance protection somehow reflects the insur-
ance company’s experience regarding expected costs arising from this
particular group of clients.

For bank loans one can argue exactly the same way: Charging an ap-
propriate risk premium for every loan and collecting these risk premi-
ums in an internal bank account called expected loss reserve will create
a capital cushion for covering losses arising from defaulted loans.

1.1.1 Remark Note that for many banks the paradigm of an expected
loss reserve in the sense of saving money in good times for spending it in
bad times is just a theoretical concept. For instance, US-GAAP2 banks
like Deutsche Bank or Credit Suisse who are both exchange-listed at
Wall Street need to build loss reserves like, for instance, the so-called
FAS-5 reserve, in a period-conform manner which means they can not
be used in the afore-mentioned sense of an expected loss reserve.

But the paradigm of a reserve for expected losses is still used as a
theoretical concept even in US-GAAP banks and, as it will be explained
in a moment, expected loss is then applied as part of the risk premium
charged to the borrower.

2US-GAAP stands for United States Generally Accepted Accounting Principles.
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In probability theory the attribute expected always refers to an ex-
pectation or mean value, and this is also the case in risk management.
The basic idea is as follows: The bank assigns to every customer a
probability of default (PD), a loss fraction called the loss given default
(LGD), describing the fraction of the loan’s exposure expected to be
lost in case of default, and the exposure at default (EAD) subject to
be lost in the considered time period. The loss of any obligor is then
defined by a loss variable

L̃ = EAD× LGD× L with L = 1D, P(D) = PD, (1.1)

where D denotes the event that the obligor defaults in a certain period
of time (most often one year), and P(D) denotes the probability of D.

The constituents of formula (1.1) are random variables. Although we
will not go too much into technical details, we should mention here that
underlying our model is some probability space (Ω,F ,P), consisting of
a sample space Ω, a σ-Algebra F , and a probability measure P. The
elements of F are the measurable events of the model, and intuitively
it makes sense to claim that the event of default should be measurable.
Moreover, it is common to identify F with the information available,
and the information if an obligor defaults or survives should be included
in the set of measurable events.

Note that the quantities PD, LGD, EAD and all quantities derived
from those three are measured w.r.t. a specified time horizon. We drop
the time aspect for now but will come back to it later in the text.

In the setup we just described it is very natural to define the expected
loss (EL) of any customer or, more general, credit-risky asset as follows.

1.1.2 Definition Given a loss variable L̃ as in (1.1), its expectation

EL = E[L̃]

is called the expected loss of the underlying credit-risky asset.

A common well-known formula for the EL appears in the following
special situation.



4 An Introduction to Credit Risk Modeling

1.1.3 Proposition If the constituents of L̃ in (1.1) are independent,
the expected loss can be written as

EL = E[EAD]× E[LGD]× PD. (1.2)

Moreover, if EAD and LGD are constant values the formula reads as

EL = EAD× LGD× PD. (1.3)

Proof. The expectation of any Bernoulli random variable like 1D is
its event probability. If the three factors in (1.1) are independent the
expectation of their product is the product of their expectation. �

Note that making the assumption that EAD and LGD are constant
values can be a good starting point for a back-of-the-envelope calcu-
lation to assign fixed values to EAD and LGD. However, in realistic
situations EAD has to be modeled as a random variable due to uncer-
tainties in payment profiles like, for instance, amortization, usage, and
other drivers of EAD up to the chosen planning horizon.

In Section 1.1.4 we will briefly touch on the question of independence
of PD, LGD and EAD. In fact, the independence assumption indeed is
rather questionable and very much simplifying. Altogether one can say
that (1.3) is the most simple representation formula for the expected
loss one can have. The more simplifying assumptions are dropped the
more one moves away from closed formulas like (1.3).

Although our focus in the book is pretty much on portfolio risk rather
than on single obligor risk we briefly describe the three constituents of
Formula (1.3) in the following paragraphs.

1.1.1 Probability of Default (PD)

The derivation of default probabilities is the “bread and butter” of a
credit risk analytics team. There are situations where the assignment of
default probabilities is straightforward and there are situations where
it seems almost impossible to come up with a reasonable approach.

First of all we want to mention that later in Chapter 6 we will find
that it is not sufficient to have default probabilities w.r.t. one particular
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time horizon. For instance, it is not enough to know for each credit-
risky asset in the portfolio what its likelihood is to default within one
year. Instead, one needs a whole term structure

(pt)t≥0

of default probabilities where t denotes time and for each point t in
time the likelihood pt is the default probability of the considered asset
or client w.r.t. the time interval [0, t]. Note that in the literature PD
term structures are often called credit curves. We dedicated the whole
Chapter 6 in this book to this topic. In this section we focus on some
basic remarks regarding PDs w.r.t. a fixed time horizon, say, one year.
We also speak of ‘clients’ mostly in this section but what we essentially
mean is any kind of credit-risky asset.

1.1.1.1 Ratings

Let us start with an upfront remark. Originally ratings were not
developed for the derivation of PDs but only for the discrimination
of credit quality on an ordinal scale. And in case of rating agencies
which we will introduce later it still is the case that they do not assign
PDs directly to rated clients but assign ratings in the sense of Table
1.1. So one has to be careful to put ratings and PDs in one bucket
without keeping in mind that they are in fact different objects, as
we will point out in a moment. However, because PDs are assigned
to ratings and PDs are a main driver of the portfolio loss as well as
all kinds of important ratios in banking, including regulatory capital
related quantities, it is a common pattern that ratings and PDs are
associated. Having said that, we continue our presentation from the
viewpoint of the practitioner who uses ratings in the sense explained
in the sequel.

The assignment of default probabilities to clients typically functions
via so-called rating systems. A rating system can be thought of as a
discretization of PDs on an ordinal scale which is called the rating scale.
Discretization of a continuous metric quantity like a PD to an ordinal
scale makes life in large organizations easier although one could argue
that discretization seems a bit artificial and in the context of pricing
introduces unnecessary jumps in pricing grids.

Well-known discretizations of PDs are the rating scales by the rating
agencies Moody’s, Standard & Poor’s, and Fitch. Readers unfamiliar
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with the term “rating agency” can access background information on
rating agencies, their work and their publications via their websites.

• For Moody’s Investors Service go to: www.moodys.com;

• for Standard & Poor’s go to: www.standardandpoors.com;

• for Fitch Ratings go to: www.fitchratings.com.

Rating scales of rating agencies look as follows. Standard & Poor’s and
Fitch use AAA, AA, A, BBB, BB, B, CCC, CC, C as a rating scale
for rating best credit quality (AAA), 2nd-best credit quality (AA),
and so on, until worst credit quality (C). The default state indicating
that a company already failed in some payment obligation is denoted
by D. Moody’s uses Aaa, Aa, A, Baa, Ba, B, Caa, etc. to denote a
comparable rating scale, again in decreasing order of credit quality.
Each of the rating agencies has a finer rating scale in place to allow
for a finer distinction of credit quality among obligors. Standard &
Poor’s and Fitch, for instance, refine AA in AA+, AA and AA− where
AA+ and AA− have lower respectively higher PDs than AA. Later in
Section 1.1.1.2 we will work with the fine rating scale from Moody’s. As
an example and to underline what we just explained, Table 1.1 shows
a definition of rating grades as it is used by Standard & Poor’s. The
wording in the table makes explicit that a rating grade and its assigned
default probability address the creditworthiness of a client. The table
in the upper half of Figure 1.1 shows a discretization of PDs to rating
grades, this time w.r.t. Moody’s ratings and their data history. The
procedure of discretization of PDs, namely the assignment of a PD to
every rating grade in the given rating scale is called a rating calibration;
see Section 1.1.1.2. But before we come to that we want to briefly
discuss rating systems in general.

One can divide the universe of rating systems into four broad cate-
gories which we will briefly describe in the sequel. It is important to
note that the rating type categories as we introduce them are not fully
disjoint. In many cases a rating system has a main flavor but combines
it with technology from some other rating model type. For instance, a
rating model could be causal in principal but also use elements from
scoring theory and regression.
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TABLE 1.1: S&P Rating Categories [172].
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Causal Rating Systems

We consider this type of rating system as superior to all other ap-
proaches. Whenever possible, this should be the way to proceed. As
the name indicates, causal rating systems rely in their mechanism on a
causal relationship between underlying credit risk drivers and the de-
fault event of an asset or borrower. To mention an example, ratings
assigned to tranches in collateralized debt obligations (CDO; see [24])
typically are of causal type because the CDO model derives scenarios
where the considered tranche is hit by a loss as well as the loss severity
of the tranche as a direct consequence of “turbulences” in the underly-
ing reference portfolio of credit-risky instruments. The model-derived
hitting probability, for instance, can then be mapped onto a rating scale
such that, for instance, a tranche with low hitting probability might
have a letter combination like AAA or AA whereas a tranche with a
low capital cushion below might get a rating letter combination of B
or even in the C-range.

Why do we think that causal rating models are the best way to think
about ratings? The reason is that a causal model approach forces the
modeler to extensively analyze, understand and model the “true” mech-
anism of default. This is under all circumstances the best a modeler
can do. For instance, a CDO model requires a fully-fledged model for
both the cash flow structure of the CDO as well as the credit risk of
the underlying reference portfolio. Causal models force the modeling
team to really understand how defaults can happen and how losses will
accumulate under certain circumstances.

As another important example let us briefly touch on causal ratings
for public companies. The most famous representative of this type of
rating systems is the concept of Expected Default Frequencies (EDF)
from Moody’s KMV3. An example of how Moody’s KMV proceeds in
their model is summarized in Section 1.2.3 and in Chapter 3. Note that
Moody’s KMV is continuously updating and improving their model
framework and, therefore, our outline of their approach is indicative
and illustrative only.

As a last example for default probabilities with a causal background
based on market data we mention spread-implied default probabilities
for companies with public debt outstanding. Spread-implied means

3See: www.moodyskmv.com; see also www.creditedge.com.
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that default probabilities are derived from credit spreads of traded
products like corporate bonds and credit derivatives; see Chapter 7.

Balance Sheet Scorings

In some situations a causal approach is rather difficult to follow or
maybe it is even impossible to directly model the default mechanism. In
such cases one can switch to scoring systems which are a good choice
and well-established in rating units in banks across the globe. For
instance, whereas for stock exchange-listed corporate clients a causal
modeling of PDs is market standard as mentioned before, it is hardly
thinkable to follow a causal approach for private corporates. Moreover,
there are many companies which do not have a so-called external rating,
which is a rating assigned by the afore-mentioned rating agencies. In
such cases, a balance sheet scoring model is the usual approach to assign
a bank-internal4 rating to such companies. This is typically done by the
credit analysts of the bank based on the rating tools developed by the
rating quant team. For rating assignment the credit analysts consider
various different quantitative and qualitative drivers of the considered
firm’s economic future like, for instance,

• Future earnings and cashflows,

• debt, short- and long-term liabilities, and financial obligations,

• capital structure (e.g., leverage),

• liquidity of the firm’s assets,

• situation (e.g., political, social, etc.) of the firm’s home country,

• situation of the market (e.g., industry), in which the company has
its main activities,

• management quality, company structure, etc.

4Without going into details we would like to add that banks always should base the
decision about creditworthiness on their bank-internal rating systems. As a main
reason one could argue that banks know their customers best. Moreover, it is well
known that external ratings do not react quickly enough to changes in the economic
health of a company. Banks should be able to do it better based on their long-term
relationship with their customers.
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From this by no means exhaustive list it can be read-off that rating
drivers can be quantitative as well as qualitative. To mention another
important example, succession planning can be important for smaller
firms but can not be captured as a solid quantitative figure like, for
instance, a debt-equity relation.

It is best practice in banking that ratings as an outcome of a sta-
tistical tool are always re-evaluated by the credit analyst who makes
the credit decision which leads to “approved” or “rejected”. Credit
analysts typically have, in line with their credit decision competence,
the right to overrule or override the calculated rating. In most of the
cases this will be an override to a better or worse rating grade by not
more than one or two notches. The overruling quote which measures
the relation of overruled ratings compared to overall assigned ratings
is a good measure of the acceptance of a rating system by the practi-
tioners in the credit unit, namely, the credit analysts who distinguish
themselves from the rating quants who developed the rating system.
An example for a “no-concern” value of an overruling quote is 5−10%
give or take, depending on the considered client segment. Overruling
competence is crucial because especially for smaller firms one can ex-
pect that certain aspects driving the ability to pay of the client might
not be captured by a standardized statistical tool.

The afore-mentioned quantitative drivers of the rating are taken from
the balance sheet and annual report of the borrowing company. These
sources of information are important for the lending credit institute
because it is pretty much all one can get if a company is not listed at
an exchange and has no public debt outstanding. Because the balance
sheet is the primary source of information the name of the approach,
balance sheet scoring, does not come much as a surprise. The afore-
mentioned rating drivers are then grouped and set in relation to form a
list of balance sheet ratios which are mapped into so-called scores as a
metric-scale measure of default remoteness. The total score of a client
is then based on a weighted sum of ratio transformation functions,
often involving a lot of regression analysis in the development process.
The score of a client is then calibrated to a PD based on the history of
default frequencies; see Section 1.1.1.2. A typical calibration function
in this context could look as follows,

PDclient =
1

1 + exp(−SCORE client)
, (1.4)
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where SCOREclient represents the final score based on the afore-mentioned
sum of transformed ratios. Readers interested in a deeper dive into
internal rating systems should read the the article from Fritz, Lux-

enburger and Miehe [72]. Equation (1.4) is a representative of the
class of so-called logit calibration functions which is a common trans-
formation approach to get PDs out of scores in balance sheet scorings.

An industry example for an off-the-shelf model to obtain ratings for
private companies is the RiskCalc5 model by Moody’s KMV.

Private Client Scorings

In the same way as one can build scoring systems for private compa-
nies one can derive scoring systems for private individuals, for instance,
for clients which borrow money in the context of a residential mortgage.
The basic mechanism is exactly the same but the rating score drivers
are different. For instance, personal wealth, income situation, family
context, etc. are typical drivers for a private client scoring. Moreover,
practitioners know that the main drivers for default in a residential
mortgage lending context and, more general, in any lending to private
individuals are unemployment, divorce, and poor health.

Expert Rating Systems

There are portfolios where over many years hardly any default oc-
curred. For example, municipalities in Switzerland can be grouped into
a portfolio where almost no defaults occurred. In such situations it is
difficult to work with balance sheet scorings because the number of
defaults in the portfolio is too low for deriving statistically sound con-
clusions. This deficiency gave such portfolios a name. They are called
low default portfolios; see Wilde and Lee [188] for more information
and for ideas about how one could treat such portfolios. When objec-
tive data is missing, expert opinion is requested to come up with at
least something. A common approach then is to overcome the problem
of missing defaults by involving groups of experts in the considered seg-
ment in the bank to assign manual ratings to test cases. The modeling
team then can apply techniques like ordinal response methods to estab-
lish a ranking of default remoteness (in the same way as rating grades)
and later also a calibration to PDs for the client segment. Because of

5See: www.moodyskmv.com
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the expert involvement, such rating approaches are called expert rating
systems.

In general, and for all four approaches which we briefly outlined, one
can measure the quality of a rating system by means of its so-called
discriminatory power, a concept which goes beyond the purpose of this
exposition. A beginner’s crash course can be found in [16], pages 36 to
41. Readers interested in the topic should ask some web search engine
with the keyword “discriminatory power” which will give them a large
list of papers on the predictive power of rating systems, how predictive
power is measured, how it can be improved and even what it means
for a pricing system if discriminatory power can be increased due to a
rating revision.

1.1.1.2 Calibration of Default Probabilities to Ratings

As mentioned several times before, the process of assigning a default
probability to a rating grade (say, a letter combination in the sense of
the rating agencies) is called a calibration. In this paragraph we will
demonstrate how such a calibration works in principal. In a true-life
situation the process is a bit more complex but for illustrative purposes
our outline will be sufficient.

The end product of a calibration of default probabilities to ratings is
a mapping of letter combinations (ratings) to default probabilities,

R 7→ PD(R),

such that to every rating R a certain default probability PD(R) is as-
signed. For example, the domain of such a mapping in case of Standard
& Poor’s letter ratings would be {AAA,AA, ..., C} and, because we are
dealing with probabilities, the range of the calibration function is in all
cases the unit interval [0, 1].

In the following, we explain by means of Moody’s data how a cali-
bration of default probabilities to external ratings can be done. From
Moody’s website or from other resources it is easy to get access to their
study [141] of historic corporate bond defaults. There one can find a
table like the one shown in Table 1.2 (see [141] Exhibit 40) showing
historic default frequencies for the years 1983 up to 2000. The same
exercise we are doing now can be done with Moody’s most recent de-
fault study [167] or with comparable data from Standard & Poor’s
[171].



The Basics of Credit Risk Management 13

TABLE 1.2: Moody’s Historic Corporate Bond Default Frequencies.

Rating 1983 1984 1985 1986 1987 1988

Aaa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Baa1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Baa2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Baa3 0.00% 1.06% 0.00% 4.82% 0.00% 0.00%

Ba1 0.00% 1.16% 0.00% 0.88% 3.73% 0.00%

Ba2 0.00% 1.61% 1.63% 1.20% 0.95% 0.00%

Ba3 2.61% 0.00% 3.77% 3.44% 2.95% 2.59%

B1 0.00% 5.84% 4.38% 7.61% 4.93% 4.34%

B2 10.00% 18.75% 7.41% 16.67% 4.30% 6.90%

B3 17.91% 2.90% 13.86% 16.07% 10.37% 9.72%

Rating 1989 1990 1991 1992 1993 1994

Aaa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa3 1.40% 0.00% 0.00% 0.00% 0.00% 0.00%

A1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Baa1 0.00% 0.00% 0.76% 0.00% 0.00% 0.00%

Baa2 0.80% 0.00% 0.00% 0.00% 0.00% 0.00%

Baa3 1.07% 0.00% 0.00% 0.00% 0.00% 0.00%

Ba1 0.79% 2.67% 1.06% 0.00% 0.81% 0.00%

Ba2 1.82% 2.82% 0.00% 0.00% 0.00% 0.00%

Ba3 4.71% 3.92% 9.89% 0.74% 0.75% 0.59%

B1 6.24% 8.59% 6.04% 1.03% 3.32% 1.90%

B2 8.28% 22.09% 12.74% 1.54% 4.96% 3.66%

B3 19.55% 28.93% 28.42% 24.54% 11.48% 8.05%

Rating 1995 1996 1997 1998 1999 2000

Aaa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aa3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

A3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Baa1 0.00% 0.00% 0.00% 0.00% 0.00% 0.29%

Baa2 0.00% 0.00% 0.00% 0.32% 0.00% 0.00%

Baa3 0.00% 0.00% 0.00% 0.00% 0.34% 0.98%

Ba1 0.00% 0.00% 0.00% 0.00% 0.47% 0.91%

Ba2 0.00% 0.00% 0.00% 0.61% 0.00% 0.66%

Ba3 1.72% 0.00% 0.47% 1.09% 2.27% 1.51%

B1 4.35% 1.17% 0.00% 2.13% 3.08% 3.25%

B2 6.36% 0.00% 1.50% 7.57% 6.68% 3.89%

B3 4.10% 3.36% 7.41% 5.61% 9.90% 9.92%
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As said earlier, note that in our illustrative example we choose the
fine ratings scale of Moody’s, making finer differences regarding the
creditworthiness of obligors.

Now, an important observation is that for best ratings no defaults
at all have been observed. This is not as surprising as it looks at first
sight: For example rating class Aaa is often calibrated with a default
probability of 2 bps (“bp” stands for “basispoint” and means 0.01%),
essentially meaning that one expects a Aaa-default on average twice
in 10, 000 years. This is a long time to go; so, one should not be
surprised that quite often best rating grades are lacking any default
history. Nevertheless we believe that it would not be correct to take
the historical zero-balance as an indication that these rating classes are
risk-free opportunities for credit investment. Therefore, we have to find
a way to assign small but positive default probabilities to those ratings.

Figure 1.1 shows our “quick-and-dirty working solution” of the prob-
lem, where we use the attribute “quick-and-dirty” because, as men-
tioned before, in a true life situation one would try to do the calibration
a little more sophisticatedly6.

Summarized in a recipe-like style, the calibration has three steps:

1. Denote by hi(R) the historic default frequency of rating class
R for year i, where i ranges from 1983 to 2000. For example,
h1993(Ba1) = 0.81%. Then compute the mean value and the
standard deviation of these frequencies over the years, where the
rating is fixed, namely

m(R) =
1

18

2000∑

i=1983

hi(R) and

s(R) =

√√√√ 1

17

2000∑

i=1983

(
hi(R)−m(R)

)2
.

The mean value m(R) for rating R is our first guess of the poten-
tial default probability assigned to rating R. The standard devia-
tion s(R) gives us some insight about the volatility and therefore
about the error we eventually make when believing that m(R)

6For example, one could look at investment and sub-investment grades separately.
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is a good estimate of the default probability of R-rated obligors.
Figure 1.1 shows the values m(R) and s(R) for the considered
rating classes. Because even best rated obligors are not free of
default risk, we write “not observed” in the cells corresponding
tom(R) and s(R) for ratings R=Aaa,Aa1,Aa2,A1,A2,A3 (ratings
where no defaults have been observed) in Figure 1.1.

2. Next, we plot the mean values m(R) into a coordinate system,
where the x-axis refers to the rating classes (here numbered from
1 (Aaa) to 16 (B3)). One can see in the chart in Figure 1.1
that on a logarithmic scale the mean default frequencies m(R)
can be fitted by a regression line. Here we should add a comment
that there is strong evidence from various empirical default stud-
ies that default frequencies grow exponentially with decreasing
creditworthiness. For this reason we have chosen an exponential
fit (linear on logarithmic scale). Using standard regression the-
ory, see, e.g., [155] Chapter 4, or by simply using any software
providing basic statistical functionality, one can easily obtain the
following exponential function fitting our data:

PD(x) = 3× 10−5 e 0.5075 x (x = 1, ..., 16).

3. As a last step, we use our regression equation for the estimation
of default probabilities PD(x) assigned to rating classes x ranging
from 1 to 16. Figure 1.1 shows our result, which we now call a
calibration of default probabilities to Moody’s ratings. Note that
based on our regression even the best rating Aaa has a small
but positive default probability. Moreover, we can hope that our
regression analysis has smoothed out sampling errors from the
historically observed data.

Although there would be much more to say about default probabil-
ities, we stop the discussion for now and turn our attention to EAD
and LGD from Formula (1.3).

1.1.2 The Exposure at Default

EAD is the quantity in Equation (1.3) specifying the exposure the
bank does have to its borrower. In practice, banks grant to obligors so-
called credit lines which function like a credit limit for the single-obligor
exposure.
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FIGURE 1.1: Calibration of ratings to default probabilities.
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For the sake of a better understanding let us introduce a working ex-
ample which will accompany us through this whole section on EAD. Let
us assume that a credit analyst assigns to a borrower, say, a medium-
sized firm, a credit line with a total limit of EUR 20m. Let us assume
that the credit line is structured in the following way:

• Total credit line is EUR 20m.

• The borrower can draw EUR 12m as cash and can use the remain-
ing EUR 8m of the credit line for so-called contingent liabilities,
e.g., guarantees or comparable credit constructs but not for cash.

Now let us assume the borrower has drawn EUR 10m already. This
part of the credit line is then called the outstandings of the client’s
exposure. The remaining open EUR 10m of the credit line are called
commitments. In other words, the outstandings refer to the portion
of the overall client exposure the obligor is already using. There is no
randomness involved, drawn is drawn, and if the obligor defaults then
the outstandings are subject to recovery and in a worst case situation
could potentially be lost in total.

Of course, there is some time dynamics involved in outstandings.
For instance, if the obligor pays back borrowed amounts over time
then it makes a big difference whether an obligor defaults today or
sometime in the future. Especially in mortgages where one often finds
pre-determined amortization schemes the timing of default has a direct
impact on the EAD. In our example one would need to accurately
evaluate incoming cash from repayments versus newly opened parts
of the credit line of the obligor which are subject to be drawn again,
depending on the lending contract framework the bank and the obligor
agreed to and signed.

The commitments, i.e., the remaining open EUR 10m of the bor-
rower’s credit line, are rather tricky to take into account. There is no
other way than considering the exposure arising from the open part of
the credit line as a random variable. So in our particular example we
have EUR 10m open in the credit line but only EUR 2m can be drawn
as cash. The other 8m can only be used for contingent liabilities. The
two parts of the open line address different random effects:

• The EUR 2m which can be drawn as cash are driven by the likeli-
hood that the borrower draws on them as well as by the fraction
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quantifying how much of the 2m she or he draws. Describing the
situation by a simple equation we could write

EADcash = 1D ×X × [2m] (EUR) (1.5)

for the random exposure adding to current outstandings. Here,
D describes the event (in the σ-field F) that the obligor draws on
the open cash credit line and X is a random variable defined on
the underlying probability space (Ω,F ,P) with X(ω) ∈ [0, 1] for
each ω ∈ Ω quantifying the random fraction describing how much
of the open 2m line is drawn. Altogether we are dealing with two
random variables here. The equation could be made significantly
more complex if one wants to take a stepwise drawing behavior
into account, say, the obligor draws a partial amount in the future
and another amount even later, and so on.

• The remaining EUR 8m which can be used for contingent liabili-
ties are also subject to various random effects. First of all, there
are again one or more indicator variables reflecting the option-
ality of usage of free parts of the credit line. Second, there is
randomness in the fact that contingent liabilities not necessarily
lead to cash exposure. A guarantee has no real exposure as of
today but might converge into exposure in the future. Such ran-
dom effects are typically treated by so-called conversion factors.

Let us put the pieces together for EAD calculation. We assume that
the bank has a huge loss database useful for the calibration of exposure
parameters. One common exposure parameter is the so-called draw-
down factor (DDF). In our example it could be the case that the bank
is able to say that the given type of obligor tends to draw on the free
part of the credit line (EUR 2m) in 80% of the cases and on average uses
60% of the available cash. In other words, based on historic experience
the bank obtains parameters in (1.5) like

P(D) = 80% and E[X] = 60%.

Assuming independence of 1D and X, this leads to an expected cash
exposure for the unused part of the cash credit line of

E[EADcash] = P(D)× E[X]× [2m] (EUR) = 48% × [2m] (EUR).
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The 48% would then be used as the DDF for this particular situation.
Note that the DDF is one particular common example for conversion
factors. For the contingent liability part of the credit line we assume
again the existence of a rich database which allows for the calibration of
a DDF of, say, 40% for the contingent liability part and a so-called cash
equivalent exposure factor (CEEF) of 80% which is another conversion
factor quantifying the conversion of the specific contingent liability,
say, a guarantee, into a cash exposure. Altogether we obtain (assuming
independence) the following representation for the EAD in our example:

E[EAD] = [10m] + 48% × [2m] + 32%× [8m] (EUR) (1.6)

= [10m+ 0.96m+ 2.56m] (EUR)

= [13.52m] (EUR)

where 32% = 40%×80%. So altogether our (expected) EAD is between
the already utilized 10m and the overall committed 20m but higher than
the committed cash line of 12m.

Our example provided some flavor on how complicated EAD calcu-
lations can be and in real life it actually is even more complex. For
example, commitments of banks to clients often include various so-
called covenants, which are embedded options which, for example, may
force an obligor in times of financial distress to provide more collateral7

or to renegotiate the terms of the loan.

A problem is that often the obligor has some informational advantage
in that the bank recognizes financial distress of its borrowers with some
delay. In case of covenants allowing the bank to close committed lines
triggered by some early default indication, it really is a matter of tim-
ing whether the bank picks up such indications early enough to react
before the customer has drawn on her or his committed lines. Bankers
here often speak of a race to default which addresses the problem that
distressed clients tend to exhaust their lines just before they default as
much as possible.

The Basel Committee on Banking Supervision8 provides conversion
factors for banks who are unable or not allowed by their regulator to

7Collateral means assets securing a loan, e.g., mortgages, bonds, guarantees, etc. In
case a loan defaults, the value of the collateral reduces the realized loss.
8The Basel Commitee coordinates the rules and guidelines for banking supervision.
Its members are central banks and other national offices or government agencies
responsible for banking supervision.
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calibrate their own internal conversion factors like DDFs and CEEFs;
see [149].

We stop here and come to the last of the three EL-relevant quantities,
namely, the loss-given-default (LGD).

1.1.3 The Loss Given Default

A first distinction we need to make when it comes to LGDs is that of
LGD as an amount of money and LGD as a percentage quote. The first
mentioned is often denoted as $LGD which means loss given default in
monetary units. The concept of LGD is best demonstrated by means
of an example in the same way as we proceeded for EAD.

Let us assume that a client has m credit products with the bank and
pledged n collateral securities to the bank which can in case of default
be used for recovery purposes in order to mitigate the realized loss
arising from the client’s default. Each credit product gets assigned an
EAD such that form credit products we get EAD1, ..., EADm as well as
expected recovery proceeds from the n collateral securities. We denote
such recovery proceeds by $REC1, ..., $RECn. Such a constellation,
having m credit products and n collateral securities is called an m-to-n
situation. It can be difficult to get the interdependence and relation
between products and collateral right, especially in cases where we have
to deal with dedicated collateral which can be used for certain purposes
under certain circumstances only. Here we assume that we can simply
collect “good cash” (recovery proceeds) and “bad cash” (loss exposure)
together in two separate buckets which we then compare to obtain our
net balance with the defaulted client. What we get from that approach
is the following:

$LGD = max
(
0, (EAD1 + · · ·+ EADm) (1.7)

− ($REC1 + · · · + $RECn)
)

which leads to a percentage LGD of

LGD =
$LGD

EAD1 + · · ·+ EADm
. (1.8)

Note that we easily wrote down the quantities $RECi but, in fact,
their derivation can be quite complex and needs a rich database stor-
ing historic proceeds from collateral security categories, collected with
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sufficient granularity. A typical discussion point in such calculations
is, for instance, the time value of money. Recovery proceeds coming in
later in time should be discounted in order to reflect the time value of
money. The determination of an appropriate discount rate is just one
out of many questions one has to solve in this context.

Summarizing one can say that LGD calibration is a long story and
far from being trivial. The current regulatory framework forces banks
with approval to use their internal PD, EAD and LGD calibrations to
come up with good ideas on LGD calibration but we believe there is
still a lot of ground to cover.

1.1.4 A Remark on the Relation between PD, EAD, LGD

Proposition 1.1.3 is based on the assumption that PD, EAD and
LGD are independent. In real life this assumption is not realistic.
When making such an assumption one should keep awareness that ev-
ery calculation based on such an assumption creates a laboratory-like
model environment in the same way as physicists make simplifying as-
sumptions and create simplified environments in their laboratory.

Why is the independence assumption questionable? Let us focus on
LGD and PD first. A fundamental principle in any market is the prin-
ciple of supply and demand. Put in the context of defaults and losses
this means the following. In a recession scenario one can expect that
default rates increase. As a consequence, banks will be forced to sell
collateral securities related to defaulted loans or assets to the market.
This will increase supply for certain goods, for instance, in a residential
mortgage crisis the market will be swampled with private homes offered
for sale. A situation like this occurred in the subprime mortgage crisis
in the US two years ago. Now, the principle of supply and demand leads
to a price drop of such collateral securities which are now over-supplied
in the market. But this in turn reduces recovery proceeds achievable
by selling collateral to the market. Formula (1.7) shows that this leads
to higher LGDs. So altogether we found that higher PDs in a recession
can lead to higher LGDs which, neglecting time lagging, means that
default rates and realized losses are positively related. One could also
reformulate this statement and simply say that defaults and recoveries
to some extent are influenced by the same underlying systematic risk
drivers so that they can not be independent. A study by Altman et
al. [3] shows empirical evidence for the comments we just made. What
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about EAD and PD? We mentioned before that in times of financial
distress firms tend to draw on their open credit lines. This increases
EADs in times where default rates are going high systematically. So
even EAD can not safely be considered as independent from default
rates and default rates are the basis for PD estimation.

For a nice approach to dependent LGD modeling we refer to the
paper by Hillebrand [92].

1.2 Unexpected Loss

At the beginning of this chapter we introduced the EL of a transac-
tion and imagined it as an insurance or loss reserve in order to cover
losses the bank expects from historical default experience. But a focus
on expected losses is not enough. In fact, the bank should in addition
to the expected loss also make sure that thay have a good understand-
ing on how much money would be necessary for covering unexpected
losses where the attribute ‘unexpected’ addresses losses exceeding the
historic average observed in the past. As a measure for the magnitude
of the deviation of losses from the EL, the standard deviation of the
loss variable L̃ as defined in (1.1) is a natural first choice.

1.2.1 Definition The standard deviation

UL =
√

V[L̃] =
√

V
[
EAD× LGD× L

]

of the loss variable L̃ from (1.1) is called the unexpected loss of the
underlying loan or asset.

In analogy to Proposition 1.1.3 one can prove the following represen-
tation formula for the UL of a loan.

1.2.2 Proposition Under the assumption that EAD is deterministic
and that LGD and the default event D are independent, the unexpected
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loss of a loan is given by

UL = EAD×
√

V[LGD]× PD + E[LGD]2 × PD(1− PD) .

Proof. First, we square UL and get

UL2 = V
[
EAD× LGD× L

]

= EAD2 × V
[
LGD× L

]
.

From the identity V[X] = E[X2]− E[X]2 we get

V
[
LGD× L

]
= E

[
LGD2 × L2

]
− E

[
LGD× L

]2

= E
[
LGD2

]
× E

[
L2
]
− E[LGD]2 × E[L]2

because LGD and L are independent by assumption. Because L = 1D
is a Bernoulli variable we have E[L2] = E[L] = P[D] = PD such that

V
[
LGD× L

]
= E

[
LGD2

]
× PD− E[LGD]2 × PD2.

Now we add 0 = PD× E[LGD]2 − PD× E[LGD]2 and find

V
[
LGD× L

]
= PD×V[LGD] + E[LGD]2 × PD(1− PD).

Collecting the pieces together we have our proof. 2

We are now ready for a major step forward. So far we always looked
at the credit risk of a single facility although banks have to manage
large portfolios consisting of many different products with different risk
characteristics. We therefore will now indicate how one can model the
total loss of a credit portfolio.

For this purpose we consider a family of m loans

L̃i = EADi × LGDi × Li , (1.9)

with Li = 1Di , P(Di) = PDi .

which we call a portfolio from now on.

1.2.3 Definition A portfolio is a collection of loss variables L̃i as in
(1.9). The portfolio loss is then defined as the random variable

L̃PF =

m∑

i=1

L̃i =

m∑

i=1

EADi × LGDi × Li . (1.10)
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Similar to the “standalone” quantities EL and UL we now obtain
portfolio quantities ELPF and ULPF , defined as follows.

1.2.4 Definition Given a portfolio of m loss variables as in (1.9), the
expected and unexpected loss of the portfolio are given by

ELPF = E[L̃PF ] and ULPF =

√
V[L̃PF ].

We briefly call them portfolio EL and portfolio UL in the sequel.

For the portfolio EL one has the following representation.

1.2.5 Proposition Given a portfolio of m loss variables as in (1.9),
the portfolio EL is always given by

ELPF =

m∑

i=1

ELi =

m∑

i=1

EADi × LGDi × PDi (1.11)

where ELi denotes the EL of the single loss L̃i.

Proof. The assertion follows directly from the linearity of E[ · ]. 2

In case of the portfolio UL, linearity in general holds only if the loss
variables L̃i are pairwise uncorrelated (see Bienaymé’s Theorem in [12]
Chapter 8). If the loss variables are correlated we can no longer expect
that variance behaves linearly. Unfortunately, correlated loss variables
are the standard case and the modeling of correlated variables is what
this book is all about. So the portfolio UL is the first risk quantity we
meet where correlations (say, covariances) between single-name risks
play a fundamental role.

1.2.6 Proposition Given a portfolio of m loss variables as in (1.9)
with deterministic EAD’s, the portfolio UL is given by

ULPF =

√√√√
m∑

i=1

m∑

j=1

EADi × EADj × Cov[LGDi × Li , LGDj × Lj ] . (1.12)
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Proof. The proposition is a direct consequence of the formula

V

[ m∑

i=1

ciXi

]
=

m∑

i=1

m∑

j=1

cicjCov[Xi,Xj ]

for square-integrable random variables X1, ...,Xm and arbitrary con-
stants c1, ..., cm. 2

1.2.7 Proposition Given a portfolio of m loss variables as in (1.9)
with deterministic EADs and deterministic LGDs we have

UL2
PF =

m∑

i,j=1

EADi × EADj × LGDi × LGDj ×

×
√

PDi(1− PDi)PDj(1− PDj) ρij

where ρij = Corr[Li, Lj ] = Corr[1Di ,1Dj ] denote the so-called default
correlation between counterparties (or assets) i and j.

Proof. The proof follows from the representation of the portfolio UL
according to Equation 1.12, from

Cov[Li, Lj ] =
√

V[Li]V[Lj ] Corr[Li, Lj]

and from V[Li] = PDi(1− PDi) for each i = 1, ...,m. 2

Before continuing we want to spend a moment with thinking about
the meaning and interpretation of correlation. For simplicity let us con-
sider a portfolio consisting of two loans with LGD= 100% and EAD= 1.
We then only deal with Li for i = 1, 2, and we set ρ = Corr[L1, L2] and
pi = PDi. Then, the squared UL of our portfolio is given by

UL2
PF = p1(1−p1)+p2(1−p2)+2ρ

√
p1(1− p1)

√
p2(1− p2) . (1.13)

We consider three possible cases regarding the default correlation ρ:

• ρ = 0. In this case, the third term in (1.13) vanishes. Although
unusual in this context, one could say that ρ = 0 stands for
optimal diversification. The concept of diversification is easily
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explained. Investing in many different assets generally reduces
the overall portfolio risk, because usually it is very unlikely to
see a large number of loans defaulting all at once. The less the
loans in the portfolio have in common, the higher the chance
that default of one obligor does not mean a lot to the economic
future of other loans in the portfolio. The case ρ = 0 refers
to a situation where the loans in the portfolio are completely
unrelated. Interpreting the UL as a substitute9 for portfolio risk,
we see that this case minimizes the risk of joint defaults.

• ρ > 0. In this case our two counterparties are interrelated in
that default of one counterparty increases the likelihood that the
other counterparty will also default. We can make this precise by
looking at the conditional default probability of counterparty 2
under the condition that obligor 1 already defaulted:

P[L2 = 1 | L1 = 1] =
P[L1 = 1, L2 = 1]

P[L1 = 1]
=

E[L1L2]

p1
(1.14)

=
p1p2 +Cov[L1, L2]

p1
= p2 +

Cov[L1L2]

p1
.

So we see that positive correlation respectively covariance leads to
a conditional default probability higher (because Cov[L1, L2] > 0)
than the unconditional default probability p2 of obligor 2. In
other words, in case of positive correlation any default in the port-
folio has an important implication on other facilities in the port-
folio, namely that there might be more losses to be encountered.
The extreme case in this scenario is the case of perfect correlation
(ρ = 1). In the case of p = p1 = p2, Equation (1.13) shows that
in the case of perfect correlation we have ULPF = 2

√
p(1− p),

essentially meaning that our portfolio contains the risk of only
one obligor but with double intensity (concentration risk). In
this situation it follows immediately from (1.14) that default of
one obligor makes the other obligor defaulting almost surely.

• ρ < 0. This is the mirrored situation of the case ρ > 0. We
therefore only discuss the extreme case of perfect anti-correlation
(ρ = −1). One then can view an investment in asset 2 as an

9Note that in contrast to the EL, the UL is the “true” uncertainty the bank faces
when investing in a portfolio because it captures the deviation from the expectation.



The Basics of Credit Risk Management 27

almost perfect hedge against an investment in asset 1, if (addi-
tionally to ρ = −1) the characteristics (exposure, rating, etc.) of
the two loans match. Admittedly, this terminology makes much
more sense when following amarked-to-market10 approach to loan
valuation, where an increase in market value of one of the loans
immediately (under the assumption ρ = −1) would imply a de-
crease in market value of the other loan. However, from (1.13) it
follows that in the case of a perfect hedge the portfolio’s UL com-
pletely vanishes (ULPF = 0). This means that our perfect hedge
(investing in asset 2 with correlation −1 w.r.t. a comparable and
already owned asset 1) completely eliminates (neutralizes) the
risk of asset 1.

We now turn to the important notion of economic capital.

1.2.1 Economic Capital

We have learned so far that banks should hold some capital cushion
against unexpected losses. However, defining the UL of a portfolio as
the risk capital saved for cases of financial distress is not the best choice,
because there might be a significant likelihood that losses will exceed
the portfolio’s EL by more than one standard deviation of the portfolio
loss. Therefore one seeks other ways to quantify risk capital, hereby
taking a target level of statistical confidence into account.

The most common way to quantify risk capital is the concept of
economic capital11

1.2.8 Definition Let a portfolio (L̃i)i=1,...,m be given. The economic
capital (EC) w.r.t. a prescribed level of confidence α is defined as the
α-quantile of the portfolio loss L̃PF minus the EL of the portfolio:

ECα = qα − ELPF (1.15)

where qα is the α-quantile of L̃PF given as

qα = inf{q > 0 | P[L̃PF ≤ q] ≥ α} . (1.16)

10In a marked-to-market framework loans do not live in a two-state world (default
or survival) but rather are evaluated w.r.t. their market value.
11Synonymously called Capital at Risk (CaR) in the literature; the quantile qα from
Definition 1.2.8 sometimes is called the (credit)Value-at-Risk (VaR).
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For example, if the level of confidence is set to α = 99.98%, then
the risk capital ECα will (on average) be sufficient to cover unexpected
losses in 9,998 out of 10,000 years, hereby assuming a planning horizon
of one year. Unfortunately, under such a calibration one can on the
other side expect that in 2 out of 10,000 years the economic capital
EC99.98% will not be sufficient to protect the bank from insolvency.
This is the downside when calibrating risk capital by means of quan-
tiles. However, today most major banks use an EC framework for their
internal credit risk model.

The reason for reducing the quantile qα by the EL is due to the
“best practice” of decomposing the total risk capital (i.e., the quantile)
into a first part covering expected losses and a second part meant as
a cushion against unexpected losses. Altogether the pricing of a loan
typically takes several cost components into account. First of all, the
price of the loan should include the costs of administrating the loan
and maybe some kind of upfront fees. Second, expected losses are
charged to the customer, hereby taking the creditworthiness captured
by the customer’s rating into account. More risky customers have to
pay a higher risk premium than customers showing high credit quality.
Third, the bank will also ask for some compensation for taking the risk
of unexpected losses coming with the new loan into the bank’s credit
portfolio. The charge for unexpected losses is often calculated as the
contributory EC of the loan in reference to the lending bank’s portfolio;
see Chapter 5. In contrast to the EL which is priced in completely, the
EC often is only partially charged in form of

EC-charge = ECcontributory ×HR [%]

where HR denotes some hurdle rate, e.g., 25%.

Note that there is an important difference between the EL and the
EC charges: The EL charge is independent from the composition of
the reference portfolio, whereas the EC charge strongly depends on the
current composition of the portfolio in which the new loan will be in-
cluded. For example, if the portfolio is already well diversified, then
the EC charge as a price for taking unexpected risk does not have to
be as high as it would be in the case for a portfolio in which, for ex-
ample, the new loan would induce or increase some concentration risk.
Summarizing one can say the EL charges are portfolio independent,
but EC charges are portfolio dependent. This makes the calculation
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FIGURE 1.2: The portfolio loss distribution.

of the contributory EC in pricing tools more complicated, because one
always has to take the complete reference portfolio into account. Risk
contributions will be discussed in Chapter 5.

An alternative to EC is a risk capital based on Expected Shortfall
(ES). A capital definition according to ES very much reflects an insur-
ance point of view of the credit risk business. Today it is known that
ES is superior to EC as a risk capital measure for various reasons. We
will come back to ES and its properties in Chapter 5.

1.2.2 The Loss Distribution

All risk quantities on a portfolio level are based on the portfolio loss
variable L̃PF . Therefore it does not come much as a surprise that
the distribution of L̃PF , the so-called loss distribution of the portfolio,
plays a central role in credit risk management. In Figure 1.2 it is
illustrated that all risk quantities of the credit portfolio can be identified
by means of the loss distribution of the portfolio. This is an important
observation, because it shows that in cases where the distribution of
the portfolio loss can only be determined in an empirical way one can
use empirical statistical quantities as a proxy for the respective “true”
risk quantities.
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In practice there are various ways to generate a loss distribution; see
Section 2.8. The first method is based on Monte Carlo simulation; the
second is based on a so-called analytical approximation. We describe
both methods in short in the following section but come back to the
topic of generating loss distributions in greater detail in Section 2.8.

1.2.2.1 Monte Carlo Simulation of Losses

In a Monte Carlo simulation, losses are simulated and tabulated in
form of a histogram in order to obtain an empirical loss distribution
of the underlying portfolio. The empirical distribution function can be
determined as follows:

Assume we have simulated n potential portfolio losses L̃
(1)
PF , ..., L̃

(n)
PF ,

hereby taking the driving distributions of the single loss variables and
their correlations12 into account. Then the empirical loss distribution
function is given by

F (x) =
1

n

n∑

j=1

1[0,x](L̃
(j)
PF ) . (1.17)

Figure 1.3 shows the shape of the density (histogram of the randomly

generated numbers (L̃
(1)
PF , ..., L̃

(n)
PF )) of the empirical loss distribution of

some test portfolio.

From the empirical loss distribution we can derive all of the portfolio
risk quantities introduced in the previous paragraphs. For example,
the α-quantile of the loss distribution can directly be obtained from

our simulation results L̃
(1)
PF , ..., L̃

(n)
PF as follows:

Starting with the order statistics of L̃
(1)
PF , ..., L̃

(n)
PF , say

L̃
(i1)
PF ≤ L̃

(i2)
PF ≤ · · · ≤ L̃

(in)
PF ,

the α-quantile q̂α of the empirical loss distribution for any confidence
level α is given by

q̂α =

{
αL̃

(i[nα])

PF + (1 − α)L̃
(i[nα]+1)

PF if nα ∈ N

L̃
(i[nα])

PF if nα /∈ N

(1.18)

12We will later see that correlations are incorporated by means of a factor model.
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FIGURE 1.3: An empirical portfolio loss distribution obtained by
Monte Carlo simulation. The histogram is based on a portfolio of 2.000
middle-size corporate loans.
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where [nα] = min
{
k ∈ {1, ..., n} | nα ≤ k

}
.

The economic capital can then be estimated by

ÊCα = q̂α − 1

n

n∑

j=1

L̃
(j)
PF . (1.19)

In an analogous manner, any other risk quantity can be obtained by
calculating the corresponding empirical statistics.

Approaching the loss distribution of a large portfolio by Monte Carlo
simulation always requires a sound factor model; see Section 1.2.3. The
classical statistical reason for the existence of factor models is the wish
to explain the variance of a variable in terms of underlying factors.
Despite the fact that in credit risk we also wish to explain the variability
of a firm’s economic success in terms of global underlying influences,
the necessity for factor models comes from two major reasons.

First of all, the correlation between single loss variables should be
made interpretable in terms of economic variables, such that large losses
can be explained in a sound manner. For example, a large portfolio
loss might be due to the downturn of an industry common to many
counterparties in the portfolio. Along this line, a factor model can also
be used as a tool for scenario analysis. For example, by setting an
industry factor to a particular fixed value and then starting the Monte
Carlo simulation again, one can study the impact of a down- or upturn
of the respective industry.

The second reason for the need of factor models is a reduction of
the computational effort. For example, for a portfolio of 100,000 trans-
actions, 1

2 × 100, 000 × 99, 999 correlations have to be calculated. In
contrast, modeling the correlations in the portfolio by means of a factor
model with 100 indices reduces the number of involved correlations by
a factor of 1,000,000. We will come back to factor models in 1.2.3 and
also in later chapters.

1.2.2.2 Analytical Approximation

Another approach to the portfolio loss distribution is by analytical
approximation. Roughly speaking, the analytical approximation maps
an actual portfolio with unknown loss distribution to an equivalent
portfolio with known loss distribution. The loss distribution of the
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equivalent portfolio is then taken as a substitute for the “true” loss
distribution of the original portfolio.

In practice this is often done as follows. Choose a family of dis-
tributions characterized by its first and second moment, showing the
typical shape (i.e., right-skewed with fat tails13) of loss distributions as
illustrated in Figure 1.2.

From the known characteristics of the original portfolio (e.g., rating
distribution, exposure distribution, maturities, etc.) calculate the first
moment (EL) and estimate the second (centered) moment (UL2).

Note that the EL of the original portfolio usually can be calculated
based on the information from the rating, exposure, and LGD distri-
butions of the portfolio.

Unfortunately the second moment can not be calculated without
any assumptions regarding the default correlations in the portfolio;
see Equation (1.13). Therefore, one now has to make an assumption
regarding an average default correlation ρ. Note that in case one thinks
in terms of asset value models, see Section 2.4.1, one would rather guess
an average asset correlation instead of a default correlation and then
calculate the corresponding default correlation by means of applying
Proposition 2.5.1 to the definition of the default correlation. However,
applying Equation (1.13) by setting all default correlations ρij equal to
ρ will provide an estimated value for the original portfolio’s UL.

Now one can choose from the parametrized family of loss distribu-
tion the distribution best matching the original portfolio w.r.t. first
and second moments. This distribution is then interpreted as the loss
distribution of an equivalent portfolio which was selected by a moment
matching procedure.

Obviously the most critical part of an analytical approximation is the
determination of the average asset correlation. Here one has to rely on
practical experience with portfolios where the average asset correlation
is known. For example, one could compare the original portfolio with
a set of typical bank portfolios for which the average asset correlations
are known. In some cases there is empirical evidence regarding a rea-
sonable range in which one would expect the unknown correlation to be

13In our terminology, a distribution has fat tails, if its quantiles at high confidence are
higher than those of a normal distribution with matching first and second moments.
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FIGURE 1.4: Analytical approximation by some beta distribution.

located. For example, if the original portfolio is a retail portfolio, then
one would expect the average asset correlation of the portfolio to be a
small number, maybe contained in the interval [1%, 5%]. If the original
portfolio contains loans given to large firms, then one would expect the
portfolio to have a high average asset correlation, maybe somewhere
between 40% and 60%. Just to give another example, the new Basel
Capital Accord (see Section 1.3) assumes an average asset correlation of
20% for corporate loans; see [148]. In Section 2.7 we estimate the aver-
age asset correlation in Moody’s universe of rated corporate bonds to
be around 25%. Summarizing, we can say that calibrating14 an average
correlation is on one hand a typical source of model risk, but on the
other hand nevertheless often supported by some practical experience.

As an illustration of how the moment matching in an analytical ap-
proximation works, assume that we are given a portfolio with an EL
of 30 bps and an UL of 22.5 bps, estimated from the information we
have about some credit portfolio combined with some assumed average
correlation.

Now, in Section 2.5 we will introduce a typical family of two-parameter
loss distributions used for analytical approximation. Here, we want to
approximate the loss distribution of the original portfolio by a beta

14The calibration might be more honestly called a “guestimate”, a mixture of a
guess and an estimate.
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distribution, matching the first and second moments of the original
portfolio. In other words, we are looking for a random variable

X ∼ β(a, b) ,

representing the percentage portfolio loss, such that the parameters a
and b solve the following equations:

0.003 = E[X] =
a

a+ b
and (1.20)

0.002252 = V[X] =
ab

(a+ b)2(a+ b+ 1)
.

Hereby recall that the probability density ϕX of X is given by

ϕX(x) = βa,b(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 (1.21)

(x ∈ [0, 1]) with first moment and second (centered) moment

E[X] =
a

a+ b
and V[X] =

ab

(a+ b)2(a+ b+ 1)
.

Equations (1.20) represent the moment matching addressing the “cor-
rect” beta distribution matching the first and second moments of our
original portfolio. It turns out that a = 1.76944 and b = 588.045 solve
equations (1.20). Figure 1.4 shows the probability density of the so
calibrated random variable X.

The analytical approximation takes the random variableX as a proxy
for the unknown loss distribution of the portfolio we started with. Fol-
lowing this assumption, the risk quantities of the original portfolio can
be approximated by the respective quantities of the random variable
X. For example, quantiles of the loss distribution of the portfolio are
calculated as quantiles of the beta distribution. Because the “true”
loss distribution is substituted by a closed-form, analytical, and well-
known distribution, all necessary calculations can be done in fractions
of a second. The price we have to pay for such convenience is that
all calculations are subject to significant model risk. Admittedly, the
beta distribution as shown in Figure 1.4 has the shape of a loss dis-
tribution, but there are various two-parameter families of probability
densities having the typical shape of a loss distribution. For example,
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some gamma distributions, the F-distribution, and also the distribu-
tions introduced in Section 2.5 have such a shape. Unfortunately they
all have different tails, such that in case one of them would approximate
really well the unknown loss distribution of the portfolio, the others au-
tomatically would be the wrong choice. Therefore, the selection of an
appropriate family of distributions for an analytical approximation is a
remarkable source of model risk. Nevertheless there are some families
of distributions that are established as best practice choices for partic-
ular cases. For example, the distributions in Section 2.5 are a very
natural choice for analytical approximations, because they are limit
distributions of a well understood model.

In practice, analytical approximation techniques can be applied quite
successfully to so-called homogeneous portfolios. These are portfolios
where all transactions in the portfolio have comparable risk character-
istics, for example, no exposure concentrations, default probabilities
in a band with moderate bandwidth, only a few (better: one single!)
industries and countries, and so on. There are many portfolios satisfy-
ing such constraints. For example, many retail banking portfolios and
also many portfolios of smaller banks can be evaluated by analytical
approximations with sufficient precision.

In contrast, a full Monte Carlo simulation of a large portfolio can
last several hours, depending on the number of counterparties and the
number of scenarios necessary to obtain sufficiently rich tail statistics
for the chosen level of confidence.

The main advantage of a Monte Carlo simulation is that it accurately
captures the dependencies inherent in the portfolio instead of relying
on a whole bunch of assumptions. Moreover, a Monte Carlo simulation
takes into account all the different risk characteristics of the loans in the
portfolio. However, in Section 2.8 we also touch on valuable alternatives
to the Monte Carlo approach.

1.2.3 Modeling Correlations by Means of Factor Models

Factor models are a well established technique from multivariate
statistics, applied in credit risk models, for identifying underlying drivers
of correlated defaults and for reducing the computational effort regard-
ing the calculation of correlated losses. We start by discussing the basic
meaning of a factor.
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FIGURE 1.5: Correlation induced by an underlying factor.

Assume we have two firms A and B which are positively correlated.
For example, let A be DaimlerChrysler and B stand for BMW. Then,
it is quite natural to explain the positive correlation between A and
B by the correlation of A and B with an underlying factor; see Fig-
ure 1.5. In our example we could think of the automotive industry
as an underlying factor having significant impact on the economic fu-
ture of the companies A and B. Of course there are probably some
more underlying factors driving the riskiness of A and B. For example,
DaimlerChrysler is to a certain extent also influenced by a factor for
Germany, the United States, and eventually by some factors incorporat-
ing Aero Space and Financial Companies. BMW is certainly correlated
with a country factor for Germany and probably also with some other
factors. However, the crucial point is that factor models provide a way
to express the correlation between A and B exclusively by means of
their correlation with common factors. As already mentioned in the
previous section, we additionally wish underlying factors to be inter-
pretable in order to identify the reasons why two companies experience
a down- or upturn at about the same time. For example, assume that
the automotive industry gets under pressure. Then we can expect that
companies A and B also get under pressure, because their fortune is
related to the automotive industry. The part of the volatility of a com-
pany’s financial success (e.g., incorporated by its asset value process)
related to systematic factors like industries or countries is called the
systematic risk of the firm. The part of the firm’s asset volatility that
can not be explained by systematic influences is called the specific or
idiosyncratic risk of the firm. We will make both notions precise later
on in this section.
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FIGURE 1.6: Correlated processes of obligor’s asset value log-
returns.

In the sequel we introduce an example of a typical factor model as it
has been used by two industry leaders, namely, Moody’s KMV and the
RiskMetrics Group in their models for years. The companies behind
the models continue to contribute in the area of credit risk research
and modeling. Readers interested in information about the two firms
can consult their websites

• www.moodyskmv.com

• www.riskmetrics.com

and will find a lot of information including research articles. Both firms
continuously develop and improve their models so that one has to read
through their most recent documentation in order to get a fresh taste
on the current state of their models. However, our exposition of a
typical factor model is meant as an illustrative example only which has
the sole purpose to demonstrate how such a model works in principal.

Both models incorporate the idea that every firm admits a process
of asset values, such that default or survival of the firm depends on the
state of the asset values at a certain planning horizon. If the process
has fallen below a certain critical threshold, called the default point of
the firm, then the company has defaulted. If the asset value process
is above the critical threshold, the firm survives. Asset value models
have their roots in Merton’s seminal paper [137] and will be explained
in detail in Chapter 3 and also to some extent in Section 2.4.1.
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Figure 1.6 illustrates the asset value model for two counterparties.
Two correlated processes describing two obligor’s asset values are shown.
The correlation between the processes is called the asset correlation. In
case the asset values are modeled by geometric Brownian motions (see
Chapter 3), the asset correlation is just the correlation of the driving
Brownian motions. At the planning horizon, the processes induce a bi-
variate asset value distribution. In the classical Merton model, where
asset value processes are correlated geometric Brownian motions, the
log-returns of asset values are normally distributed, so that the joint
distribution of two asset value log-returns at the considered horizon is
bivariate normal with a correlation equal to the asset correlation of the
processes, see also Proposition 2.5.1. The dotted lines in Figure 1.6 in-
dicate the critical thresholds or default points for each of the processes.
Regarding the calibration of these default points we refer to Crosbie

[36] for an introduction.

Now let us start with the model used for years by Moody’s KMV.
They named it the Global Correlation ModelTM. A highly readable
summary of the model can be found in Crouhy, Galai, and Mark

[38]. Our approach to describe the model is slightly different than
other presentations because we want to have the relevant formulas in
a way supporting a convenient algorithm for the calculation of asset
correlations.

Following Merton’s model15, the Global Correlation ModelTM focuses
on the asset value log-returns ri of counterparties (i = 1, ...,m) at a
certain planning horizon (typically 1 year), admitting a representation

ri = βiΦi + εi (i = 1, ...,m). (1.22)

Here, Φi is called the composite factor of firm i, because in multi-factor
models Φi typically is a weighted sum of several factors. Equation
(1.22) is nothing but a standard linear regression equation, where the
sensitivity coefficient, βi, captures the linear correlation of ri and Φi.
In analogy to the capital asset pricing model (CAPM) (see, e.g., [38])
β is called the beta of counterparty i. The variable εi represents the
residual part of ri, essentially meaning that εi is the error one makes

15Actually, although the Global Correlation ModelTM in principal follows Merton’s
model, it does not really work with Gaussian distributions but rather relies on an
empirically calibrated framework; see Crosbie [36] and also Chapter 3.
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when substituting ri by βiΦi. Merton’s model lives in a log-normal
world, so that r = (r1, ..., rm) ∼ N(µ,Γ) is multivariate Gaussian with
a correlation matrix Γ. The composite factors Φi and εi are accord-
ingly also normally distributed. Another basic assumption is that εi is
independent of the Φi’s for every i. Additionally the residuals εi are
assumed to be uncorrelated16. Therefore, the returns ri are exclusively
correlated by means of their composite factors. This is the reason why
Φi is thought of as the systematic part of ri, whereas εi due to its in-
dependence from all other involved variables can be seen as a random
effect just relevant for counterparty i. Now, in regression theory one
usually decomposes the variance of a variable in a systematic and a
specific part. Taking variances on both sides of Equation (1.22) yields

V[ri] = β2i V[Φi]︸ ︷︷ ︸
systematic

+ V[εi]︸︷︷︸
specific

(i = 1, ...,m). (1.23)

Because the variance of ri captures the risk of unexpected movements of
the asset value of counterparty i, the decomposition (1.23) can be seen
as a splitting of total risk of firm i in a systematic and a specific risk.
The former captures the variability of ri coming from the variability
of the composite factor, which is β2i V[Φi]; the latter arises from the
variability of the residual variable, V[εi]. Note that some people say
idiosyncratic instead of specific.

Alternatively to the beta of a firm one could also look at the co-
efficient of determination of the regression Equation (1.22). The co-
efficient of determination quantifies how much of the variability of ri
can be explained by Φi. This quantity is usually called the R-squared,
R2, of counterparty i and constitutes an important input parameter
in all credit risk models based on asset values. It is usually defined
as the systematic part of the variance of the standardized17 returns
r̃i = (ri − E[ri])/

√
V[ri], namely

R2
i =

β2i V[Φi]

V[ri]
(i = 1, ...,m). (1.24)

The residual part of the total variance of the standardized returns r̃i is
then given by 1 −R2

i , thereby quantifying the percentage value of the
specific risk of counterparty i.

16Recall that in the Gaussian case uncorrelated is equivalent to independent.
17That is, normalized in order to have mean zero and variance one.
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FIGURE 1.7: Three-level factor structure in the Global Correlation
ModelTM; see also comparable presentations in the literature, e.g., Fig-
ure 9.9. in [38] and Figure 1.7 in [24].

Now we will look more carefully at the composite factors. The de-
composition of a firm’s variance in a systematic and a specific part
is the first out of three levels in the Global Correlation ModelTM; see
Figure 1.7. The subsequent level is the decomposition of the firm’s
composite factor Φ in industry and country indices.

Before writing down the level-2 decomposition, let us rewrite Equa-
tion (1.22) in vector notation18 which is more convenient for further
calculations. For this purpose denote by β = (βij)1≤i,j≤m the diagonal
matrix in R

m×m with βij = βi if i = j and βij = 0 if i 6= j. Equation
(1.22) then can be rewritten in vector notation as follows:

r = βΦ + ε , (1.25)

ΦT = (Φ1, ...,Φm) , εT = (ε1, ..., εm) .

18Note that in the sequel we write vectors as column vectors.
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For the second level, the Global Correlation ModelTM decomposes every
Φi w.r.t. an industry and country breakdown,

Φi =

K∑

k=1

wi,kΨk (i = 1, ...,m), (1.26)

where Ψ1, ...,ΨK0 are industry indices and ΨK0+1, ...,ΨK are country
indices. The coefficients wi,1, ..., wi,K0 are called the industry weights
and the coefficients wi,K0+1, ..., wi,K are called the country weights of
counterparty i. It is assumed that wi,k ≥ 0 for all i and k, and that

K0∑

k=1

wi,k =
K∑

k=K0+1

wi,k = 1 (i = 1, ...,m).

In vector notation, (1.25) combined with (1.26) can be written as

r = βWΨ + ε , (1.27)

where W=(wi,k)i=1,...,m; k=1,...,K denotes the matrix of industry and
country weights for the counterparties in the portfolio, and ΨT =
(Ψ1, ...,ΨK) means the vector of industry and country indices. This
constitutes the second level of the Global Correlation ModelTM.

At the third and last level, a representation by a weighted sum of
independent global factors is constructed for representing industry and
country indices,

Ψk =
N∑

n=1

bk,nΓn + δk (k = 1, ...,K), (1.28)

where δk denotes the Ψk-specific residual. Such a decomposition is typ-
ically done by a principal components analysis (PCA) of the industry
and country indices. In vector notation, (1.28) becomes

Ψ = BΓ + δ (1.29)

where B=(bk,n)k=1,...,K; n=1,...,N denotes the matrix of industry and
country betas, ΓT = (Γ1, ...,ΓN ) is the global factor vector, and δT =
(δ1, ..., δK ) is the vector of industry and country residuals. Combining
(1.27) with (1.29), we finally obtain

r = βW (BΓ+ δ) + ε . (1.30)
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So in the Global Correlation ModelTM the vector of the portfolio’s re-
turns rT = (r1, ..., rm) can conveniently be written by means of under-
lying factors. Note that for computational purposes Equation (1.30)
is the most convenient one, because the underlying factors are inde-
pendent. In contrast, for an economic interpretation and for scenario
analysis one would rather prefer Equation (1.27), because the industry
and country indices are easier to interpret than the global factors con-
structed by PCA. In fact, the industry and country indices have a clear
economic meaning, whereas the global factors arising from a PCA are
of synthetic type. Although they admit some vague interpretation as
shown in Figure 1.7, their meaning is not as clear as is the case for the
industry and country indices.

As already promised, the calculation of asset returns in the model as
introduced above is straightforward now. First of all, we standardize
the asset value log-returns,

r̃i =
ri − E[ri]

σi
(i = 1, ...,m)

where σi denotes the volatility of the asset value log-return of coun-
terparty i. From Equation (1.30) we then obtain a representation of
standardized log-returns,

r̃i =
βi
σi

Φ̃i +
ε̃i
σi

where E[Φ̃i] = E[ε̃i] = 0 . (1.31)

Now, the asset correlation between two counterparties is given by

Corr[r̃i, r̃j ] = E
[
r̃ir̃j

]
=

βi
σi

βj
σj

E
[
Φ̃iΦ̃j

]
(1.32)

because the Global Correlation ModelTM assumes the residuals ε̃i to be
uncorrelated and independent of the composite factors. For calculation
purposes it is convenient to get rid of the volatilities σi and the betas
βi in Equation (1.32). This can be achieved by replacing the betas by
the R-squared parameters of the involved firms. From Equation (1.24)
we know that

R2
i =

β2i
σ2i

V[Φi] (i = 1, ...,m). (1.33)

Therefore, Equation (1.32) combined with (1.33) yields

Corr[r̃i, r̃j ] =
Ri√
V[Φi]

Rj√
V[Φj]

E
[
Φ̃iΦ̃j

]
(1.34)
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=
Ri√
V[Φ̃i]

Rj√
V[Φ̃j]

E
[
Φ̃iΦ̃j

]

because by construction we have V[Φi] = V[Φ̃i].

Based on Equation (1.30) we can now easily compute asset correla-
tions according to (1.34). After standardization, (1.30) changes to

r̃ = β̃W (BΓ̃+ δ̃) + ε̃ , (1.35)

where β̃ ∈ R
m×m denotes the matrix obtained by scaling every diagonal

element in β by 1/σi, and

E
[
Γ̃
]
= 0, E

[
ε̃
]
= 0, E

[
δ̃
]
= 0 .

Additionally, the residuals δ̃ and ε̃ are assumed to be uncorrelated and
independent of Γ̃. We can now calculate asset correlations according
to (1.34) just by computing the matrix

E
[
Φ̃Φ̃

T ]
= W

[
BE

[
Γ̃Γ̃

T ]
BT + E

[
δ̃δ̃

T ]]
W T (1.36)

because the matrix of standardized composite factors is given by Φ̃ =
W (BΓ̃ + δ̃). Let us quickly prove that (1.36) is true. By definition,
we have

E
[
Φ̃Φ̃

T ]
= E

[
W (BΓ̃+ δ̃)

(
W (BΓ̃+ δ̃)

)T]

= W E

[
(BΓ̃+ δ̃)(BΓ̃+ δ̃)T

]
W T

= W
(
BE

[
Γ̃Γ̃

T ]
BT +BE

[
Γ̃δ̃

T ]
︸ ︷︷ ︸

= 0

+E
[
δ̃(BΓ̃)T

]
︸ ︷︷ ︸

= 0

+E
[
δ̃δ̃

T ])
W T .

The two expectations above vanish due to our orthogonality assump-

tions. This proves (1.36). Note that in equation (1.36), E
[
Γ̃Γ̃

T ]
is a

diagonal matrix (because we are dealing with orthogonal global factors)

with diagonal elements V[Γn] (n = 1, ..., N), and E
[
δ̃δ̃

T ]
is a diagonal

matrix with diagonal elements V[δk] (k = 1, ...,K). Therefore, the cal-
culation of asset correlations according to (1.36) can conveniently be
implemented in case one knows the variances of global factors, the vari-
ances of industry and country residuals, and the beta of the industry
and country indices w.r.t. the global factors.
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The factor model used by the RiskMetrics Group is quite similar to
the Global Correlation ModelTM just described. So there is no need to
start all over again, and we refer to the documentation which, in case
of RiskMetrics, is called the CreditMetricsTM Technical Document [88].
However, there are two fundamental differences between the models
which are worthwhile and important to be mentioned.

First, the Global Correlation ModelTM is calibrated w.r.t. asset value
processes, whereas the factor model of CreditMetricsTM uses equity pro-
cesses instead of asset value processes, thereby taking equity correla-
tions as a proxy for asset correlations; see [88], page 93. We consider
this difference to be fundamental, because a very important feature of
the model world owned by Moody’s KMV is that it really manages the
admittedly difficult process of translating equity and market informa-
tion into asset values; see Chapter 3.

Second, the framework CreditMetricsTM uses indices19 referring to
a combination of some industry in some particular country, whereas
the Global Correlation ModelTM considers industries and countries sep-
arately. So a German automotive company in the CreditMetricsTM fac-
tor model would get a 100%-weight w.r.t. an index describing the Ger-
man automotive industry, whereas in the Global Correlation ModelTM

this company would have industry and country weights equal to 100%
w.r.t. an automotive index and a country index representing Germany.
Both approaches are quite different and have their own advantages and
disadvantages.

1.3 Regulatory Capital and the Basel Initiative

It is worthwhile to mention that in the first edition of this book we
started with the remark that the regulatory capital approach currently
is under review. Today, eight years later, this statement is true again.
The most recent crisis gave rise to uncountably many discussions on
the current regulatory approach. Because regulation is an ongoing is-
sue and frameworks are subject to change it does not make sense in a

19MSCI indices; see www.msci.com.
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book like this to spend too much time with a topic like regulatory cap-
ital. However, it does make sense to provide at least some remarks and
some flavor on how regulatory capital is calculated. We concentrate
on the calculation aspects of regulatory capital. Topics like disclosure
or reporting are left out intentionally. The currently valid regulatory
framework can be found in the document [149] and its supplementary
papers on www.bis.org. So let us start with a bit of history and then
let us briefly present examples of capital formulas in the current frame-
work.

In 1983 the banking supervision authorities of the main industrialized
countries (G7) agreed on rules for banking regulation, which should be
incorporated into national regulation laws. Since the national regula-
tors discussed these issues, hosted and promoted by the Bank of In-
ternational Settlement (www.bis.org) located in Basel in Switzerland,
these rules were called The Basel Capital Accord.

The best known rule therein is the 8-percent rule. Under this rule,
banks have to prove that the capital they hold is larger than 8% of their
so-called risk-weighted assets (RWA), calculated for all balance sheet
positions. This rule implied that the capital basis for banks was mainly
driven by the exposure of the loans to their customers. The RWA were
calculated by a simple weighting scheme. Roughly speaking, for loans
to any government institution the risk weight was set to 0%, reflecting
the broad opinion that the governments of the world’s industrial nations
are likely to meet their financial obligations. The risk weight for loans
to OECD banks was fixed at 20%. Regarding corporate loans, the
committee agreed on a standard risk weight of 100%, no matter if the
borrowing firm is a more or less risky obligor. The RWA were then
calculated by adding up all of the bank’s weighted credit exposures,
yielding a regulatory capital of 8% × RWA.

The main weakness of this capital accord was that it made no dis-
tinction between obligors with different creditworthiness. In 1988 an
amendment to this Basel Accord opened the door for the use of in-
ternal models to calculate the regulatory capital for off-balance sheet
positions in the trading book. The trading book was mostly seen as
containing deals bearing market risk, and therefore the corresponding
internal models captured solely the market risk in the trading business.
Still, corporate bonds and derivatives contributed to the RWA, since
the default risk was not captured by the market risk models.
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In 1997 the Basel Committee on Banking Supervision allowed the
banks to use so-called specific risk models, and the eligible instruments
no longer fell under the 8%-rule. Around that time regulators recog-
nized that banks already internally used sophisticated models to handle
the credit risk for their balance sheet positions with an emphasis on
default risk. These models were quite different from the standard spe-
cific risk models. In particular, they produced a loss distribution of
the entire portfolio and did not so much focus on the volatility of the
spreads as in most of the specific risk models.

At the end of the 20th century, the Basel Committee started to look
intensively at the models presented in this book. However, in the fi-
nally agreed regulatory framework [149], shortly called Basel II, they
do not allow the use of internal credit risk models for the calculation
of regulatory capital. Instead, they use a more or less complicated
risk-weighting scheme for bank’s credit risk positions. The Basel II
approach was switched live in most banks worldwide on January 1st in
2007. In the sequel, we briefly outline the currently used approach.

A major improvement of Basel II compared to the former approach
(shortly called Basel I) is that the new capital rules are much more risk
sensitive. As already mentioned, the standard risk weight under Basel
1 was 100%, which led to a regulatory capital of

[risk weight]× [solvability coefficient] = 100% × 8% = 8%

for various assets originated (and later often securitized) by banks.
In the Basel II framework, often called the new capital accord, risk
weights are working in the way they are supposed to work, namely,
by weighting positions w.r.t. their credit risk. Depending on the level
of sophistication a bank operates, the Basel II accord offers different
approaches to regulatory capital. The most sophisticated approach a
bank can implement is the so-called internal ratings-based approach
(IRB). In this approach, banks calculate the risk weight of an asset in
the following way20 (see [149], §271-272):

RWA = 12.5× EAD× LGD×K(PD)×M(PD,MAT)

K(PD) = N

[
N−1[PD] +

√
̺(PD) q99.9%(Y )√

1− ̺(PD)

]
− PD

20Note that the function K is the quantile function (here, with respect to a confi-
dence level of 99.9%) of the limit distribution in Formula (2.54).
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̺(PD) = 0.12 × 1− e−50×PD

1− e−50
+ 0.24 ×

(
1− 1− e−50×PD

1− e−50

)
.

The meaning of the parameters in the formula is as follows:

• M(PD,MAT) is an adjustment factor depending on the effective
maturity MAT of the asset and its PD.

• N [ · ] is the standard normal distribution function and N−1[ · ] is
its inverse.

• The quantity q99.9%(Y ) is the 99.9%-quantile of a standard nor-
mal random variable Y .

• The quantity ̺ has the meaning of a correlation parameter; see
Formula (2.54).

• The formula for the correlation parameter ̺ is an interpolation
between 12% and 24% quantifying the systematic risk (“R-squared”;
see Formula 1.23 and the discussion thereafter) of an asset as a
function of its PD.

Different asset classes get different parameterizations in the Basel II
world. For instance, for SMEs21 some firm size adjustment is applied
([149], §273-274); for retail exposures, e.g., residential mortgages or
revolving retail exposures, other correlation parameterizations are pre-
scribed ([149], §327-330), and so on. The RWA formula as presented
by us refers to a standard corporate loan.

A good question one could ask is why the correlation parameter
̺ = ̺(PD) is chosen in dependence on the PD. A mathematical answer
to this question is that there really are no good reasons for introduc-
ing such a functional relation between the parameters. A practitioner
would probably argue that one expects on average to have better ratings
for larger firms (e.g., multi-nationals like Nestle, Novartis, Deutsche
Bank, IBM, etc.) and “large” often is associated with higher system-
atic risk so that lower PD corresponds to higher systematic risk and,
therefore, a higher correlation parameter. However, reducing a two-
parameter distribution model (see Formula (2.54)) to a one-parameter
model by making one of the parameters a function of the other param-
eter is a questionable approach, like it or dislike it.

21Small- and medium-sized enterprises.
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The Basel II approach has its strengths and weaknesses. Clearly a
strength is that IRB-banks can use their internal ratings, LGDs and
EADs as an input into the RWA-function. This is a huge progress in
Basel II compared to Basel I. It basically means that regulatory and
economic approaches exhibit high convergence for single-name risks.

A true weakness is that Basel II does neither penalize concentration
nor award diversification. The approach is based on a simple but fully-
fledged portfolio model but does not use the model itself and instead
relies on a risk-weighting scheme which is not portfolio context sensi-
tive. As an illustration imagine a loan in a first scenario in the credit
portfolio of Deutsche Bank and in a second scenario the same loan in
the credit portfolio of Credit Suisse. Although both credit books are
fundamentally different the RWA-formula does not reflect those differ-
ences, the capital calculation according to Basel II is not sensitive to
the surrounding credit portfolio.

This disadvantage becomes even more dramatic when one consid-
ers the way Basel II treats securitizations. Here one can safely say
that Basel II simply fails to capture effects and risks of such so-called
correlation products. We will briefly touch on the topic of regulatory
arbitrage in structured credit products in Chapter 8.

What comes next from Basel? Nobody really knows yet. But it is
certain that the accord will be revised again although the timing of
a new accord and its final content are still open. However, there are
many smaller changes and addenda which are published on continuous
base on the website www.bis.org. Visiting this website and scanning
available documentation and press releases is a must for every credit
risk professional. We can only recommend to visit it.

Further Reading

As a general guide to quantitative risk management we recommend
the book by McNeil, Frey and Embrechts [136]. Their book is
a rich source for quantitative model techniques, not only for credit
but also for other risks. Another book on risk management which
contains also non-quantitative aspects is the book by Crouhy, Galai

and Mark [38]. A book dealing with the integration of credit and
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interest rate risk is [45] by van Deventer, Imai and Mesler [45].
There are many other books on credit risk modeling available where
each book has its own focus and flavor. To mention a few examples we
refer to Ammann [5], Duffie and Singleton [51], Lando [120] and
Schmid [161]

As a reference to Section 1.3 we refer to the Basel capital accord in
its original form [149]. There are some books in the market where the
Basel II standards are not only explained but also illustrated by means
of examples. For this we refer to the book by Ong [151]. Another book
which provides guidance regarding all quantitative aspects of the Basel
II capital accord is the book by Engelmann and Rauhmeier [57].



Chapter 2

Modeling Correlated Defaults

In this chapter we will look at default models from a more abstract
point of view, hereby providing a framework in which today’s industry
models can be embedded. Let us start with some general remarks.

Regarding random variables and probabilities we repeat our remark
from the beginning of the previous chapter by saying that we always
assume that an appropriate probability space (Ω,F ,P) has been cho-
sen, reflecting the “probabilistic environment” necessary to make the
respective statement.

Without loss of generality we will always assume a valuation horizon
of one year. Let’s say we are looking at a credit portfolio with m coun-
terparties. Every counterparty in the portfolio admits a rating Ri as of
today, and by means of some rating calibration as explained in Section
1.1.1.1 we know the default probability pi corresponding to rating Ri.
One year from today the rating of the considered counterparty may
have changed due to a change in its creditworthiness. Such a rating
change is called a rating migration. More formally we denote the range
of possible ratings by {0, ..., d}, where d ∈ N means the default state,

Ri ∈ {0, ..., d} and pi = P[Ri → d] ,

where the notation R→ R′ denotes a rating migration from rating R to
rating R′ within one year. In this chapter we will focus on a two-state
approach, essentially meaning that we restrict ourselves to a setting
where

d = 1, Li = Ri ∈ {0, 1}, pi = P[Li = 1].

Two-state models neglect the possibility of rating changes; only default
or survival is considered. However, generalizing a two-state to a multi-
state model is straightforward and will be done frequently in subsequent
chapters.

In Chapter 1 we defined loss variables as indicators of default events;
see Section 1.1. In the context of two-state models, an approach by

51



52 An Introduction to Credit Risk Modeling

means of Bernoulli random variables is most natural. In fact, most
common industry models (e.g., the models by Moody’s KMV and the
RiskMetrics Group mentioned in Chapter 1) as well as most of the
bank-internal models follow this approach. An alternative approach
is the modeling of defaults by Poisson random variables. CreditRisk+

(see Section 2.4.2) is based on this approach. There is a minority among
the major banks who use CreditRisk+ as their internal model but this
does not mean that the Poisson approach is not a reasonable way to
go. As we will later see the Poisson approach has its strengths and
weaknesses and so does the Bernoulli approach. The question of which
approach is better for a bank is based on individual judgement and
depends on various criteria, for instance, the kind of business a bank
is doing, the composition of their credit book, strategic preferences,
conditions on the robustness of the model as well as conditions on the
ease of portfolio calculations, etc.

There are attempts to bring Bernoulli and Poisson models in a com-
mon mathematical framework (see, e.g., Gordy [83] and Hickman

and Koyluoglu [115]) and to some extent there are indeed relations
and common roots of the two approaches; see Section 2.3. However, in
[25] it is shown that the models are not really compatible, because the
corresponding mixture models (Bernoulli respectively Poisson variables
have to be mixed in order to introduce correlations into the models)
generate loss distributions with significant tail differences. See Section
2.5.3.

Today we can access a rich literature investigating general frame-
works for modeling correlated defaults and for embedding the existing
industry models in a more abstract framework. See, e.g., Crouhy,

Galai and Mark [37], Gordy [83], Frey and McNeil [68], and
Hickman and Koyluoglu [115], just to mention a few references.
For the sequel we make a notational convention. Bernoulli random
variables will always be denoted by L, whereas Poisson variables will be
denoted by L′. In the following section we first look at the Bernoulli1

model, but then also turn to the case of Poissonian default variables.
In Section 2.3 we briefly compare both approaches.

1Note that the Bernoulli model benefits from the convenient property that the mix-
ture of Bernoulli variables again yields a Bernoulli-type random variable.
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2.1 The Bernoulli Model

A vector of random variables L = (L1, ..., Lm) is called a (Bernoulli)
loss statistics, if all marginal distributions of L are Bernoulli:

Li ∼ B(1; pi), i.e., Li =

{
1 with probability pi
0 with probability 1− pi

.

The loss resp. percentage loss of L is defined2 as

L =
m∑

i=1

Li resp.
L

m
.

The probabilities pi = P[Li = 1] are called default probabilities of L.

The reasoning underlying our terminology is as follows:

According to Definition 1.2.3, a credit portfolio is nothing but a col-
lection of, say, m, transactions or deals with certain counterparties or,
more general, a collection of m credit-risky assets. Whatever is said
in the sequel applies to both types of credit risks and we use “coun-
terparty” or “asset” as exchangeable keywords. Every counterparty
involved creates basically (in a two-state model) two future scenarios:
Either the counterparty defaults3, or the counterparty survives4. In
the case of default of obligor i the indicator variable Li equals 1; in the
case of survival we have Li = 0. In this way, every portfolio generates a
natural loss statistics w.r.t. the particular valuation horizon (here, one
year). The variable L defined above is then called the portfolio loss, no
matter if quoted as an absolute or percentage value.

Before we come to more interesting cases we should for the sake of
completeness briefly discuss the quite unrealistic case of independent
defaults.

2Note that in the sequel we sometimes write L for denoting the gross loss as well as
the percentage loss of a loss statistics. But from the context the particular meaning
of L will always be clear.
3Note that there exist various default definitions in the banking world; as long
as nothing different is said, we always mean by default a payment default on any

financial obligation.
4Meets the financial expectations of the bank regarding contractually promised cash
flows.
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The simplest type of a loss statistic can be obtained by assuming
a uniform default probability p and the lack of dependence between
counterparties. More precisely, under these assumptions we have

Li ∼ B(1; p) and (Li)i=1,...,m independent.

In this case, the absolute portfolio loss L is a convolution of i.i.d.
Bernoulli variables and therefore follows a binomial distribution with
parameters m and p, L ∼ B(m; p).

If the counterparties are still assumed to be independent, but this
time admitting different default probabilities,

Li ∼ B(1; pi) and (Li)i=1,...,m independent,

we again obtain the portfolio loss L as a convolution of the single loss
variables, but this time with first and second moments

E[L] =

m∑

i=1

pi and V[L] =

m∑

i=1

pi(1− pi) . (2.1)

This follows from E[Li] = pi, V[Li] = pi(1 − pi), and the additivity of
expectations resp. variances5.

Now, it is well known that in probability theory independence makes
things easy. For example the strong law of large numbers works well
with independent variables and the central limit theorem in its most
basic version lives from the assumption of independence. If in credit
risk management we could assume independence between counterpar-
ties in a portfolio, we could – due to the central limit theorem – assume
that the portfolio loss (approximable) is a Gaussian variable, at least
for large portfolios. In other words, we would never be forced to work
with Monte Carlo simulations, because the portfolio loss would conve-
niently be given in a closed (namely Gaussian) form with well-known
properties.

Unfortunately in credit risk modeling we can not expect to find in-
dependency of losses. Moreover, it will turn out that correlation is the
central challenge in credit portfolio risk. Therefore, we turn now to
more realistic elaborations of loss statistics.

5For having additivity of variances it would be sufficient that the involved random
variables are pairwise uncorrelated and integrable (see [12], Chapter 8).
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One basic idea for modeling correlated defaults (by mixing) is the ran-
domization of the involved default probabilities in a correlated manner.
We start with a so-called standard binary mixture model; see Joe [107]
for an introduction to this topic.

2.1.1 A General Bernoulli Mixture Model

Following our basic terminology, we obtain the loss of a portfolio
from a loss statistics L = (L1, ..., Lm) with Bernoulli variables Li ∼
B(1;Pi). But now we think of the loss probabilities as random variables
P = (P1, ..., Pm) ∼ F with some distribution function F with support
in [0, 1]m. Additionally, we assume that conditional on a realization
p = (p1, ..., pm) of P the variables L1, ..., Lm are independent. In more
mathematical terms we express the conditional independence of the
losses by writing

Li|Pi=pi ∼ B(1; pi), (Li|P=p)i=1,...,m independent.

The (unconditional) joint distribution of the Li’s is then determined
by the probabilities

P[L1 = l1, ..., Lm = lm] (2.2)

=

∫

[0,1]m

m∏

i=1

p li
i (1− pi)

1−lidF (p1, ..., pm) ,

where li ∈ {0, 1}. The first and second moments of the single losses Li

(i = 1, ...,m) are given by

E[Li] = E[Pi], V[Li] = E[Pi] (1− E[Pi]) (2.3)

The first equality is obvious from (2.2). The second identity can be
seen as follows:

V[Li] = V
[
E[Li|P ]

]
+ E

[
V[Li|P ]

]
(2.4)

= V[Pi] + E[Pi(1− Pi)]

= E[Pi] (1− E[Pi]) ,

Note that the first line of the equation for V[Li] is the well-known law
of total variance which is a variance decomposition formula based on
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conditioning. Readers not familiar with this formula can look it up in
any book on probability. The covariance between single losses equals

Cov[Li, Lj ] = E[LiLj]− E[Li]E[Lj] = Cov[Pi, Pj ] . (2.5)

Therefore, the default correlation in a Bernoulli mixture model is

Corr[Li, Lj ] =
Cov[Pi, Pj ]√

E[Pi] (1− E[Pi])
√

E[Pj ] (1− E[Pj ])
. (2.6)

Equation (2.5) respectively and Equation (2.6) show that the depen-
dence between losses in the portfolio is fully captured by the covariance
structure of the multivariate distribution F of P . Section 2.4 presents
some examples for a meaningful specification of F .

2.1.2 Uniform Default Probability and Uniform Correlation

For portfolios where all exposures are of approximately the same
size and type in terms of risk, it makes sense to assume a uniform
default probability and a uniform correlation among transactions in
the portfolio. As already mentioned in Section 1.2.2.2, retail portfolios
and some portfolios of smaller banks are often of a quite homogeneous
structure, such that the assumption of a uniform default probability
and a simple correlation structure does not harm the outcome of cal-
culations with such a model. In the literature, portfolios with uniform
default probability and uniform default correlation are called uniform
portfolios. Uniform portfolio models generate perfect candidates for
analytical approximations. For example, the distributions in Section
2.5 establish a typical family of two-parameter loss distributions used
for analytical approximations.

The assumption of uniformity yields exchangeable6 Bernoulli vari-
ables Li ∼ B(1;P ) with a random default probability P ∼ F , where
F is a distribution function with support in [0, 1]. We assume condi-
tional independence of the Li’s just as in the general case. The joint
distribution of the Li’s is then determined by the probabilities

P[L1 = l1, ..., Lm = lm] =

∫ 1

0
pk(1− p)m−kdF (p), (2.7)

6That is, (L1, ..., Lm) ∼ (Lπ(1), ..., Lπ(m)) for any permutation π.
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where k =

m∑

i=1

li and li ∈ {0, 1}.

The probability that exactly k defaults occur is given by

P[L = k] =

(
m

k

)∫ 1

0
pk(1− p)m−kdF (p) . (2.8)

Of course, Equations (2.3) and (2.6) have their counterparts in this
special case of Bernoulli mixtures: The uniform default probability of
borrowers in the portfolio obviously equals

p = P[Li = 1] = E[Li] =

∫ 1

0
p dF (p) (2.9)

and the uniform default correlation of two different counterparties is
given by

ρ = Corr[Li, Lj ] (2.10)

=
P[Li = 1, Lj = 1]− p2

p(1− p)

=

∫ 1
0 p

2dF (p)− p2

p(1− p)
..

Note that in the course of this book we typically use “ρ” to denote
default correlations and “̺” for denoting asset correlations.

We now want to briefly discuss some immediate consequences of
Equation (2.10). First of all it implies that

Corr[Li, Lj ] =
V[P ]

p(1− p)
(recall: P ∼ F ).

This shows that the higher the volatility of P , the higher the default
correlation inherent in the corresponding Bernoulli loss statistics. Ad-
ditionally, it implies that the dependence between the Li’s is either
positive or zero, because variances are nonnegative. In other words, in
this model we can not implement some negative dependencies between
the default risks of obligors.

The case Corr[Li, Lj ] = 0 happens if and only if the variance of F
vanishes to zero, essentially meaning that there is no randomness at
all regarding P . In such a case, F is a Dirac measure εp, concentrated
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in p, and the absolute portfolio loss L follows a binomial distribution
with default probability p.

The other extreme case regarding (2.10), Corr[Li, Lj ] = 1, implies
a “rigid” behavior of single losses in the portfolio: Either all counter-
parties default or all counterparties survive simultaneously. The corre-
sponding distribution F of P is then a Bernoulli distribution, such that
P = 1 with probability p and P = 0 with probability 1−p. This means
that sometimes (such events occur with probability p), all counterpar-
ties default and the total portfolio exposure is lost. In other scenarios
(occurring with probability 1−p), all obligors survive and not even one
dollar is lost. The rigidity of loss statistics is ‘perfect’ in this situation.

Realistic scenarios live somewhere between the two discussed extreme
cases Corr[Li, Lj ] = 0 and Corr[Li, Lj] = 1.

2.2 The Poisson Model

In the case of the Poisson approach, defaults of counterparties i =
1, ...,m are modeled by Poisson-distributed random variables

L′
i ∼ Pois(λi), L′

i ∈ {0, 1, 2, ...}, pi = P[L′
i ≥ 1] , (2.11)

where pi again denotes the default probability of obligor i. Note that
(2.11) allows for multiple defaults of a single obligor. The likelihood of
the event that obligor i defaults more than once is given by

P[L′
i ≥ 2] = 1− e−λi(1 + λi) ,

which is typically a small number. For example, in the case of λi = 0.01
we would obtain P[L′

i ≥ 2] = 0.5 basispoints. In other words, when
simulating a Poisson-distributed default variable with λi = 0.01 we can
expect that only 1 out of 20,000 scenarios is not applicable because of
a multiple default. On the other side, for obligors with good credit
quality (for example, a AAA-borrower with a default probability of
2 basispoints), a multiple-default probability of 0.5 basispoints is a
relatively high number.

The intensity λi is typically quite close to the default probability pi
which is due to

pi = P[L′
i ≥ 1] = 1− e−λi ≈ λi (2.12)
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for small values of λi. Equation (2.12) shows that the one-year default
probability equals the probability that an exponential waiting time with
intensity λi takes place in the first year.

In general, the sum of independent variables L′
1 ∼ Pois(λ1), L

′
2 ∼

Pois(λ2) has distribution
7 Pois(λ1+λ2). Assuming independence, the

portfolio’s total number of losses would be given by

L′ =

m∑

i=1

L′
i ∼ Pois

( m∑

i=1

λi

)
. (2.13)

Correlation is introduced into the model by again following a mixture
approach, this time with Poisson variables (see Joe [107], Section 7.2).

2.2.1 A General Poisson Mixture Model

Now the loss statistics is a random vector L′ = (L′
1, ..., L

′
m) of Poisson

random variables L′
i ∼ Pois(Λi), where Λ = (Λ1, ...,Λm) is a random

vector with some distribution function F with support in [0,∞)m. Ad-
ditionally, we assume that conditional on a realization λ = (λ1, ..., λm)
of Λ the variables L′

1, ..., L
′
m are independent:

L′
i|Λi=λi

∼ Pois(λi), (L′
i|Λ=λ)i=1,...,m independent .

The (unconditional) joint distribution of the variables L′
i is given by

P[L′
1 = l′1, ..., L

′
m = l′m] (2.14)

=

∫

[0,∞)m
e−(λ1+···+λm)

m∏

i=1

λ
l′i
i

l′i !
dF (λ1, ..., λm) ,

where l′i ∈ {0, 1, 2, ...}. Analogously to the Bernoulli case we obtain

E[L′
i] = E[Λi] (i = 1, ...,m) (2.15)

for the expectation. For the variance we get

V[L′
i] = V

[
E[L′

i|Λ]
]
+ E

[
V[L′

i|Λ]
]

= V[Λi] + E[Λi].

7More generally, (Pois(λ))λ≥0 is a convolution semigroup; see, e.g., [12].
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Again we have Cov[L′
i, L

′
j] = Cov[Λi,Λj ], and the correlation between

defaults is given by

Corr[L′
i, L

′
j ] =

Cov[Λi,Λj ]√
V[Λi] + E[Λi]

√
V[Λj ] + E[Λj ]

. (2.16)

In the same manner as in the Bernoulli model this shows that correla-
tion is exclusively induced by means of the distribution function F of
the random intensity vector Λ.

2.2.2 Uniform Default Intensity and Uniform Correlation

Analogously to the Bernoulli model, one can introduce a Poisson
uniform portfolio model by restriction to one uniform intensity and
one uniform correlation among transactions in the portfolio. More
explicitly, the uniform portfolio model in the Poisson case is given by
Poisson variables L′

i ∼ Pois(Λ) with a random intensity Λ ∼ F , where
F is a distribution function with support in [0,∞), and the Li’s are
assumed to be conditionally independent. The joint distribution of the
Li’s is given by

P[L′
1 = l′1, ..., L

′
m = l′m] =

∫ ∞

0
e−mλ λ

(l′1+···+l′m)

l′1! · · · l′m!
dF (λ) . (2.17)

Because (see the beginning of Section 2.2) conditional on Λ = λ the
portfolio loss is again a Poisson distribution with intensity mλ, the
probability of exactly k defaults equals

P[L′ = k] =

∫ ∞

0
P[L′ = k | Λ = λ] dF (λ) (2.18)

=

∫ ∞

0
e−mλ m

kλk

k !
dF (λ)..

Again, note that due to the unbounded support of the Poisson dis-
tribution the absolute loss L′ can exceed the number of “physically”
possible defaults. As already mentioned at the beginning of this sec-
tion, the probability of a multiple-defaults event is small for typical
parametrizations. In the Poisson framework, the uniform default prob-
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ability of borrowers in the portfolio is defined by

p = P[L′
i ≥ 1] (2.19)

=

∫ ∞

0
P[L′

i ≥ 1 | Λ = λ] dF (λ)

=

∫ ∞

0
(1− e−λ) dF (λ).

The counterpart of Formula (2.16) is

Corr[L′
i, L

′
j ] =

V[Λ]

V[Λ] + E[Λ]
(i 6= j). (2.20)

Formula (2.20) is especially intuitive if seen in the context of dispersion,
where the dispersion of a distribution is its variance to mean ratio

DX =
V[X]

E[X]
for any random variable X. (2.21)

The dispersion of the Poisson distribution is equal to 1. Therefore,
the Poisson distribution is kind of a benchmark when deciding about
overdispersion (DX > 1) respectively underdispersion (DX < 1). In
general, nondegenerate8 Poisson mixtures are overdispersed due to (2.15).
This is a very important property of Poisson mixtures, because before
using such a model for credit risk measurement one has to make sure
that overdispersion can be observed in the data underlying the calibra-
tion of the model. Formula (2.20) can be interpreted by saying that the
correlation between the number of defaults of different counterparties
increases with the dispersion of the random intensity Λ. For proving
this statement we write Formula (2.20) in the form

Corr[L′
i, L

′
j ] =

DΛ

DΛ + 1
(i 6= j). (2.22)

From (2.22) it follows that an increase in dispersion increases the mix-
ture effect, which, in turn, strengthens the dependence between obligor’s
defaults.

8The random intensity Λ is not concentrated in a single point, PΛ 6= ελ.
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2.3 Bernoulli versus Poisson Mixture

The law of small numbers9 implies that for large m and small p

B(m; p) ≈ Pois(pm).

Setting λ = pm, this shows that under the assumption of independent
defaults the portfolio absolute gross loss L =

∑
Li of a Bernoulli loss

statistics (L1, ..., Lm) with a uniform default probability p can be ap-
proximated by a Poisson variable L′ ∼ Pois(λ). But the law of small
numbers is by no means an argument strong enough to support the un-
fortunately widespread opinion that Bernoulli and Poisson approaches
are more or less compatible. In order to show that both approaches
have significant systematic differences, we turn back to the default cor-
relations induced by the models; see (2.6), combined with (2.4), and
(2.16). In the Bernoulli case we have

Corr[Li, Lj ] = (2.23)

=
Cov[Pi, Pj ]√

V[Pi] + E[Pi(1− Pi)]
√

V[Pj ] + E[Pj(1− Pj)]
,

whereas in the Poisson case we obtain

Corr[L′
i, L

′
j ] =

Cov[Λi,Λj ]√
V[Λi] + E[Λi]

√
V[Λj ] + E[Λj ]

. (2.24)

Looking only at the driving random variables Pi, Pj respectively Λi,Λj ,
we see that in the denominators of (2.23) and (2.24) we compare

V[Pi] + E[Pi(1− Pi)] = V[Pi] + E[Pi]− E[P 2
i ] (2.25)

with V[Λi] + E[Λi] .

Now, analogous to the deterministic case (2.12), we can – even in the
random case – expect Pi and Λi to be of the same order of magnitude.
To keep things simple, let us for a moment assume that Pi and Λi

have the same first and second moments. In this case Equation (2.25)
combined with (2.23) and (2.24) shows that the Bernoulli model al-
ways induces a higher default correlation than the Poisson model. But

9That is, approximation of binomial distributions by means of Poisson distributions.
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higher default correlations result in fatter tails of the corresponding
loss distributions. In other words, one could say that given equal first
and second moments of Pi and Λi, the expectations of Li and L

′
i will

match, but the variance of L′
i will always exceed the variance of Li,

thereby inducing lower default correlations.

So there is a systematic difference between the Bernoulli and Poisson
mixture models. In general one can expect that for a given portfolio
the Bernoulli model yields a loss distribution with a fatter tail than a
comparably (e.g., by a first and second moment matching) calibrated
Poisson model. In Section 2.5.3 we come back to this issue.

2.4 An Overview of Common Model Concepts

In over a decade of time, various industry models for measuring credit
portfolio risk have been developed. In the first edition of this book we
spent some time on explaining the differences of industry models as
they come “off-the-shelf”. Today most banks have their internal model
implemented and do not solely rely on an externally developed model
framework for the valuation of their credit book. Moreover, in Section
1.3 we outlined “Basel II” as the current regulatory regime banks have
to comply with today. Practical experience makes very clear that for
regulators not only the “standalone quality” of a model but also its
embedding into the bank and its systems are major criteria. In case
of large and sophisticated banks, off-the-shelf models are often mainly
used for benchmarking internal against external model calculations.
When dealing with the question “make or buy” banks often find out
that the efforts to embed an external bought credit risk model are not
significantly lower than just developing their own model right within
the bank’s system environment, tailor-made for the situation of the
bank. For these reasons we changed the presentation of this section
in this new edition and focus now more on the concepts underlying
common models rather than on the way they come to the client off-
the-shelf.

However, for most of the industry models it is easy to find some kind
of technical documentation describing the mathematical framework of
the model and giving some idea about the underlying data and the
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FIGURE 2.1: Common industry models.

calibration of the model to the data. Readers interested in such de-
tails can approach the company behind the model. It is our experience
over the last 10+ years that companies like Moody’s KMV, RiskMet-
rics or Kamakura will do everything to be helpful in providing support
ranging from technical papers to tailor-made inhouse training and ed-
ucation. It is in the interest of these companies to communicate their
models to potentially new users and very often the quant team inside
the bank and the quant specialists working for the model company get
along with each other very well and have mutual benefit from sharing
their insights. Before presenting four common but different concepts
for modeling credit risk we want to make some brief upfront remarks.
Figure 2.1 shows the four main types of industry models and indicates
the companies behind them.

CreditRisk+ could alternatively be placed in the group of intensity
models, because it is based on a Poisson mixture model incorporat-
ing random intensities. Nevertheless, in Figure 2.1 we prefer to stress
the difference between CreditRisk+ and the dynamic intensity models,
based on intensity processes instead of on a static intensity.

Dynamic intensity models will be briefly discussed in Section 2.4.4
and to some extent in the context of securitizations. From a math-
ematician’s point of view they provide a ‘mathematically beautiful’
approach to credit risk modeling, but from the introductory point of
view we adopted for writing this book, we must say that an appropri-
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ate presentation of dynamic intensity models is beyond the scope of
the book. We therefore decided to provide the reader only with some
references to the literature combined with introductory remarks about
the approach; see Section 2.4.4

2.4.1 Moody’s KMV’s and RiskMetrics’ Model Approach

In Section 1.2.3 we already presented some material regarding the
topic of this section. Note that in our presentation we focus on the
“default-only mode”, hereby ignoring the fact that the two models in-
corporate a mark-to-model approach. In the default-only mode, both
models are of Bernoulli type, deciding about default or survival of a
firm by comparing the firm’s asset value at a certain horizon with some
critical threshold. If the firm value at the horizon is below this thresh-
old, then the firm is considered to be in default. If the firm value is
above the threshold, the firm survived the considered time period. In
more mathematical terms, form counterparties denote their asset value

at the considered valuation horizon t = T by A
(i)
T . It is assumed that

for every company i there is a critical threshold Ci such that the firm

defaults in the period [0, T ] if and only if A
(i)
T < Ci. In the framework

of Bernoulli loss statistics AT can be viewed as a latent variable driving
the default event. This is realized by defining

Li = 1{A(i)
T <Ci}

∼ B
(
1;P[A

(i)
T < Ci]

)
(i = 1, ...,m). (2.26)

In both models it is assumed that the asset value process is depen-
dent on underlying factors reflecting industrial and regional influences,
thereby driving the economic future of the firm. For the convenience
of the reader we now recall some formulas from Section 1.2.3. The
parametrization w.r.t. underlying factors typically is implemented at
the standardized10 log-return level, i.e., the asset value log-returns

log(A
(i)
T /A

(i)
0 ) after standardization admit a representation11

ri = RiΦi + εi (i = 1, ...,m). (2.27)

10Shifted and scaled in order to obtain a random variable with mean zero and
standard deviation one.
11Note that for reasons of a simpler notation we here write ri for the standardized
log-returns, in contrast to the notation in Section 1.2.3, where we wrote r̃i.
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Here Ri is defined as in (1.33), Φi denotes the firm’s composite factor,
and εi is the firm-specific effect or (as it is also often called) the id-
iosyncratic part of the firm’s asset value log-return. In both models,
the factor Φi is a superposition of many different industry and country
indices. Asset correlations between counterparties are exclusively cap-
tured by the correlation between the respective composite factors. The
specific effects are assumed to be independent among different firms
and independent of the composite factors. The quantity R2

i reflects
how much of the volatility of ri can be explained by the volatility of
the composite factor Φi. Because the composite factor is a superposi-
tion of systematic influences, namely industry and country indices, R2

i

quantifies the systematic risk of counterparty i.

In both models the basic assumption is that asset value log-returns
are assumed to be normally distributed although we already mentioned
that in the real-life implementation of the Moody’s KMV model one
finds empirically best-fitting distributions beyond the Gaussian world.
The distribution assumption just made and standardization yield

ri ∼ N(0, 1), Φi ∼ N(0, 1), and εi ∼ N
(
0, 1 −R2

i

)
.

We are now in a position to rewrite (2.26) in the following form:

Li = 1{ri<ci} ∼ B (1;P[ri < ci]) (i = 1, ...,m), (2.28)

where ci is the threshold corresponding to Ci after exchanging A
(i)
T by

ri. Applying (2.27), the condition ri < ci can be written as

εi < ci −RiΦi (i = 1, ...,m). (2.29)

Now, in both models, the standard valuation horizon is T = 1 year. De-
noting the one-year default probability of obligor i by pi, we naturally
have pi = P[ri < ci]. Because ri ∼ N(0, 1) we immediately obtain

ci = N−1[pi] (i = 1, ...,m), (2.30)

where N [·] denotes the cumulative standard normal distribution func-
tion. Scaling the idiosyncratic component towards a standard deviation
of one, this changes (2.29) into

ε̃i <
N−1[pi]−RiΦi√

1−R2
i

, ε̃i ∼ N(0, 1). (2.31)
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Taking into account that ε̃i ∼ N(0, 1), we altogether obtain the fol-
lowing representation for the one-year default probability of obligor i
conditional on the factor Φi:

pi(Φi) = N


N

−1[pi]−RiΦi√
1−R2

i


 (i = 1, ...,m). (2.32)

The only random part of (2.32) is the composite factor Φi. Conditional
on Φi = z, we obtain the conditional one-year default probability by

pi(z) = N


N

−1[pi]−Riz√
1−R2

i


 . (2.33)

Combined with (2.28) this shows that we are in a Bernoulli mixture set-
ting exactly the same way as elaborated in Section 2.1.1. More formally
we can – analogously to (2.2) – specify the portfolio loss distribution
by the probabilities (here we assume again li ∈ {0, 1})

P[L1 = l1, ..., Lm = lm] (2.34)

=

∫

[0,1]m

m∏

i=1

q lii (1− qi)
1−lidF (q1, ..., qm),

where the distribution function F is now explicitly given by

F (q1, ..., qm) = Nm

[
p−1
1 (q1), ..., p

−1
m (qm); Γ

]
, (2.35)

where Nm[ · ; Γ] denotes the cumulative multivariate centered Gaussian
distribution with correlation matrix Γ, and Γ = (̺ij)1≤i,j≤m means the
asset correlation matrix of the log-returns ri according to (2.27).

In the case that the composite factors are represented by a weighted
sum of industry and country indices (Ψj)j=1,...,J of the form

Φi =
J∑

j=1

wijΨj (2.36)

(see Section 1.2.3), the conditional default probabilities (2.33) equal

pi(z) = N


N

−1[pi]−Ri(wi1ψ1 + · · ·+ wiJψJ)√
1−R2

i


 , (2.37)
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with industry and country index realizations (ψj)j=1,...,J. By varying
these realizations and then recalculating the conditional probabilities
(2.37) one can perform simple scenario stress testing, in order to study
the impact of certain changes of industry or country indices on the
default probability of some obligor.

2.4.2 Model Approach of CreditRisk+

CreditRisk+ is a credit risk model developed by Credit Suisse Finan-
cial Products (CSFP). It is more or less based on a typical insurance
mathematics approach, which is the reason for its classification as an
actuarial model. Regarding its mathematical background, the main
reference is the CreditRisk+ Technical Document [35]. In light of this
chapter one could say that CreditRisk+ is a typical representative of
the group of Poisson mixture models. In this paragraph we only sum-
marize the model, focusing on defaults only and not on losses in terms
of money, but in Chapter 4 a more comprehensive introduction (taking
exposure distributions into account) is presented.

The mixture distribution adopted by CreditRisk+ incorporates the
gamma distribution. Recall that the gamma distribution is defined by
the probability density

γα,β(x) =
1

βαΓ(α)
e−x/βxα−1 (x ≥ 0),

where Γ(·) denotes12 the gamma function. The first and second mo-
ments of a gamma-distributed random variable Λ are

E[Λ] = αβ, V[Λ] = αβ2 ; (2.38)

see Figure 2.2 for an illustration of gamma densities.

Instead of incorporating a factor model (as we have seen it in the
case of the models by Moody’s KMV and RiskMetrics in Section 1.2.3),
CreditRisk+ implements a so-called sector model. However, somehow
one can think of a sector as a ‘factor-inducing’ entity, or – as the
CreditRisk+ Technical Document [35] says it – every sector could be

12We will also write X ∼ Γ(α, β) for any gamma-distributed random variable X
with parameters α and β. Additionally, we use Γ to denote the correlation matrix
of a multivariate normal distribution. However, it should be clear from the context
which current meaning the symbol Γ has.



Modeling Correlated Defaults 69

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIGURE 2.2: Shape of gamma distributions for parameters (α, β) ∈
{(2, 1/2), (5, 1/5)}.

thought of as generated by a single underlying factor. In this way, sec-
tors and factors are somehow comparable objects. From an interpreta-
tional point of view, sectors can be identified with industries, countries,
or regions, or any other systematic influence on the economic perfor-
mance of counterparties with a positive weight in this sector. Each
sector s ∈ {1, ...,mS} has its own gamma-distributed random intensity
Λ(s) ∼ Γ(αs, βs), where the variables Λ(1), ...,Λ(mS ) are assumed to be
independent.

Now let us assume that a credit portfolio of m loans to m different
obligors is given. In the sector model of CreditRisk+, every obligor i
admits a breakdown into sector weights wis ≥ 0 with

∑mS
s=1wis = 1,

such that wis reflects the sensitivity of the default intensity of obligor i
to the systematic default risk arising from sector s. The risk of sector
s is captured by two parameters: The first driver is the mean default
intensity of the sector,

λ(s) = E[Λ(s)] = αsβs ;

see also (4.18) in Chapter 4. The second driver is the default intensity’s
volatility

σ(s) = V[Λ(s)] = αsβ
2
s .

In Section 4.3.2 we indicate some possible approaches for calibrating
the sector parameters λ(s) and σ(s). Every obligor i admits a random
default intensity Λi with mean value E[Λi] = λi, which could be cali-
brated to the obligor’s one-year default probability by means of Formula
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(2.12). The sector parametrization of Λi is as follows:

Λi =

mS∑

s=1

wisλi
Λ(s)

λ(s)
(i = 1, ...,m); (2.39)

see also Formula (4.29). This shows that two obligors are correlated if
and only if there is at least one sector such that both obligors have a
positive sector weight with respect to this sector. Only in such cases two
obligors admit a common source of systematic default risk. Note that
(2.39) is consistent with the assumption that λi equals the expected
default intensity of obligor i. Default risk of obligor i is then modeled
by a mixed Poisson random variable L′

i with random intensity Λi.

Note that in accordance with (2.12) any conditional default intensity
of obligor i arising from realizations θ1, ..., θmS

of the sector’s default
intensities Λ(1), ...,Λ(mS ) generates a conditional one-year default prob-
ability pi(θ1, ..., θmS

) of obligor i by setting

pi(θ1, ..., θmS
) = P[L′

i ≥ 1 | Λ1 = θ1, ...,ΛmS
= θmS

] (2.40)

= 1− e−λi
∑mS

s=1 wisθs/λ(s) .

Let L′ denote the random variable representing the number of defaults
in the portfolio. We already mentioned that CreditRisk+ is a Poisson
mixture model. More explicitly, it is assumed that L′ is a Poisson
variable with random intensity Λ(1) + · · · + Λ(mS ). Additionally, it is
naturally required to obtain the portfolio’s defaults as the sum of single
obligor defaults, and indeed (2.39) obviously is consistent with L′ =
L′
1 + · · ·+ L′

m when defining the sector’s mean intensity by

λ(s) =

m∑

i=1

wisλi ;

see also Formula (4.30) in Section 4.3.2.

Now, on the portfolio level, the “trick” CreditRisk+ uses in order
to obtain a nice closed-form distribution of portfolio defaults is sector
analysis. Given that we know distribution of defaults in every single
sector, the portfolio’s default distribution then just turns out to be
the convolution of the sector distributions due to the independence of
the sector variables Λ(1), ...,Λ(mS ). So we only have to find the sector’s
default distributions.
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When focusing on single sectors, it is a standard result from elemen-
tary statistics (see, e.g., [160] Section 8.6.1) that any gamma-mixed
Poisson distribution follows a negative binomial distribution. See Fig-
ure 2.7 in Section 2.5.2. Therefore, every sector has its own individ-
ually parametrized negative binomial distribution of sector defaults,
such that the portfolio’s default distribution indeed can be obtained
as a convolution of negative binomial distributions. As a consequence,
the generating function of the portfolio loss can be explicitly written in
a closed form; see Formula (4.35) in Chapter 4.

So far we have only discussed the distribution of defaults. The cor-
responding loss distributions for a single sector are given as the com-
pound distribution arising from two independent random effects, where
the first random effect is due to the uncertainty regarding the number
of defaults (negative binomially distributed) in the sector and the sec-
ond random effect arises from the uncertainty regarding the exposures
affected by the sector defaults; see Section 4.3.2. On the portfolio level
the loss distribution again is the convolution of sector loss distribu-
tions. The final formula for the generating function of the portfolio
loss is presented in (4.36).

2.4.3 CreditPortfolioView

We keep our exposition in a summarizing style. Readers interested
in more details should study the papers by Wilson [189, 190], and
the technical documentation [135] of CPV in its recent version13. Both
sources and the overview in Crouhy et al. [38], Section 8.10, have been
valuable references for writing this paragraph. Until now we restricted
the discussion in this chapter to default modeling. For our summary of
CreditPortfolioView (CPV) we will now also include rating migrations.

CPV has its roots in two seminal papers byWilson [189, 190]. Based
on these two papers, McKinsey & Company14 developed CreditPortfo-
lioView during the years since then as a tool for supporting consulting
projects in credit risk management. Summarizing, one could say that
CPV is a ratings-based portfolio model incorporating the dependence
of default and migration probabilities on the economic cycle. Con-

13We are grateful to McKinsey & Company for sending us the technical documen-
tation [135] of CPV as a source for writing this section.
14McKinsey & Company is an international management consulting firm.
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sequently default probabilities and migration matrices are subject to
random fluctuations.

Let us start with some general remarks regarding migration matrices.
Mathematically speaking a migration matrix is a stochastic15 matrix in
R
n×n, where n depends on the number of rating classes incorporated.

For example, the rating agencies (Moody’s or S&P) typically publish
migration matrices w.r.t. two different dimensions, namely n = 8 (stan-
dard case) and n substantially larger than 8, reflecting the finer rating
scale as shown in Figure 1.2. Migration matrices will be extensively
studied later on when discussing the term structure of default probabil-
ities; see Section 6.3.3.

The basic observation underlying CPV is that migration probabilities
show random fluctuations due to the volatility of the economic cycle.
Very much reflecting the terminology in this chapter, CPV calls any
migration matrix observed in a particular year a conditional migration
matrix, because it is sampled conditional on the economic conditions of
the considered year. Calculating the average of conditional migration
matrices sampled over a series of years will give us an unconditional
migration matrix reflecting expected migration paths. Such average mi-
gration matrices can be found in the rating agency reports, or can be
calculated from bank-internal data.

Now let us assume that an unconditional migration matrix has been
chosen. We denote this matrix by M = (mij) where i, j range from
1 to 8. Compatible to the notation at the beginning of this chapter
we denote rating classes by Ri. Rating class R1 stands for the best
possible credit quality, whereas R8 is the default state, such that mi8 =
P[Ri → R8] denotes the probability that obligors with rating Ri at the
beginning of a year go into default until the end of that year. In general
it is assumed that Ri is more creditworthy than Rj if and only if i < j;
compare also to Figure 1.2. Because the default state is absorbing16,
we additionally have m8j = 0 for j = 1, ..., 7 and m88 = 1. Note that in
this notation mi8 takes over the role of pi in previous paragraphs, where
pi denoted the one-year default probability of some customer i. Also
recall that default probabilities are often rating-driven so that there is

15A matrix (mij) is called stochastic if
∑

j mij = 1 for every row i.
16Absorbing means that the default state is a trap with no escape.
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no need to distinguish between two obligors with the same rating when
interested in their default probabilities; see also Section 1.1.1.

CPV assumes that there are several risk segments differently reacting
to the overall economic conditions. For example, typical risk segments
refer to industry groups. In our presentation we will not be bothered
about the interpretation of risk segments; so, we just assume that there
are mS such segments. Moreover, to keep our presentation free from
index-overloading we restrict ourselves to a one-year view. For each
segment CPV simulates a conditional migration matrix based on the
average migration matrix M and a so-called shift algorithm. The shift
algorithm works in three steps:

1. A segment-specific conditional default probability ps is simulated
for every segment s = 1, ...,mS . The probability ps is the same
for all rating classes, and we will later explain the simulation
method CPV uses for generating those probabilities. Any sim-
ulated vector (p1, ..., pmS

) can be considered as an aggregated
(second-level) scenario in a Monte Carlo simulation of CPV. Un-
derlying the generation of such a scenario is the simulation of
macroeconomic factors driving (p1, ..., pmS

).

2. A so-called risk index rs representing the state of the economy
seen in light of segment s is calculated by means of the ratio

rs =
ps
ps

(s = 1, ...,mS), (2.41)

where ps denotes the unconditional default probability of segment
s, incorporating the average default potential of segment s.

3. Last, a conditional migration matrix M (s) = (m
(s)
ij ) for segment

s w.r.t. a scenario (p1, ..., pmS
) is defined by

m
(s)
ij = αij(rs − 1) +mij (s = 1, ...,mS). (2.42)

The shift coefficients αij have to be calibrated by the user of CPV,
although CPV contains some standard values that can be chosen
in case a user does not want to specify the shift factors individu-
ally. The shift factors depend on the considered migration path
Ri → Rj , hereby expressing the sensitivity of P[Ri → Rj ] w.r.t. a
change in the segment’s risk index rs. Because they are intended
to reflect rating class behavior rather than a segment’s reaction
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to macroeconomic conditions, they are uniform w.r.t. different
segments. Calculating the row sums of the shifted migration ma-
trices we obtain

8∑

j=1

m
(s)
ij = (rs − 1)

8∑

j=1

αij +

8∑

j=1

mij .

Therefore, in order to guarantee that the shifted matrix M (s) is
stochastic, CPV assumes

∑8
j=1 αij = 0. If a concrete realization

of (2.42) results in a migration probability m
(s)
ij shifted to the

negative, CPV performs a correction by setting such negative
values to zero. In such cases a renormalization of the rows of
M (s) is necessary in order to obtain a stochastic matrix.

For some reasons to be explained later the shift matrix (αij) is
supposed to satisfy some more conditions, namely

αij ≥ 0 for i < j and αij ≤ 0 for i > j . (2.43)

This assumption is compatible to the condition that the shift
matrix has row sums equal to zero. Because the upper (lower)
triangle matrix of a migrating matrix contains the probabilities
for a rating downgrade (upgrade), the conditions on the shift
matrix are not as arbitrary as it seems at first glance. Just below
we come back to this issue.

Any conditional migration matrix M (s) is relevant to all obligors in
segment s. Thinking about Formula (2.42) and applying the conditions
in (2.43) we see that one can distinguish between three different types
of scenarios:

• rs < 1 :
In such situations the simulation suggests an expansion of the
economy, admitting a potential for a lower number of downgrades
and a higher number of upgrades, reflecting favourable economic
conditions.

• rs = 1 :
This is the average macroeconomic scenario. Formula (2.42)
shows that in such cases the impact of the shift coefficients van-

ishes to zero such that the shifted migration probability m
(s)
ij

agrees with the unconditional migration probability mij for all
combinations of i and j.
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• rs > 1 :
This scenario refers to a recession. Downgrades are more likely
and the potential for upgrades is reduced when compared to av-
erage conditions.

Note that because CPV treats different segments differently, the con-
cept of segment-specific risk indices allows for a great flexibility. In
CPV terminology the process of generating macro-scenarios in a Monte-
Carlo simulation is called the systematic risk model.

Based on any outcome of the systematic risk model, CPV constructs
a conditional loss distribution for the considered portfolio. In a last
step all conditional loss distributions are aggregated to an uncondi-
tional portfolio loss distribution. The details of how CPV tabulates
losses for obtaining scenario-specific and unconditional distributions
are rather technical and can be found in the technical documentation
[135] of CPV. There one also finds information about other special as-
pects of the model, for example the implementation of country risk or
the method for discounting cash flows to a present value. A nice and
CPV-unique feature is the ability to incorporate stressed tails in the
systematic risk model (to be used in the CPV Direct mode, see our dis-
cussion on CPV-Macro and CPV-Direct later in this section) in order
to study the impact of heavy recessions.

Remaining to be done in this section is a brief description of how CPV
manages to simulate the segment-specific conditional default probabil-
ities ps. Here CPV supports two distinct modes of calibration:

• CPV Macro
If CPV is run in the macro mode, default and rating migration
shifts are explained by a macroeconomic regression model. The
macroeconomic model underlying systematic influences on the
economic future of obligors is calibrated by means of time series
of empirical data; see the original papers by Wilson [189, 190].
The calibration of CPV Macro is more complicated than the al-
ternative CPV Direct. The difficulties in calibrating CPV Macro
are mainly due to the many parameters that have to be estimated;
see Formula (2.44) and (2.45).

• CPV Direct
In this mode of CPV, the segment-specific conditional default
probabilities ps are directly drawn from a gamma distribution. In
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other words, the conditional probability determining a segment’s
risk index is not implied by some underlying macroeconomic fac-
tor model. Working with CPV Direct, the user can avoid all the
difficulties some macroeconomic regression model incorporates.
The effort in sector calibration is reduced to the calibration of
two parameters of a gamma distribution for each risk segment.

Originally CPV contained only the macro approach. CPV Direct was
developed later on in order to make the calibration of the model easier.

2.4.3.1 CPV Macro

In CPV Macro, macroeconomic variables drive the distribution of de-
fault probabilities and migration matrices for each risk segment. Typ-
ical candidates for macroeconomic factors are the unemployment rate,
the growth rate of the Gross Domestic Product (GDP), interest or cur-
rency exchange rates, and other variables reflecting the macroeconomy
of a country. The regression model underlying CPV Macro can be
described as follows.

Let us again assume we work with mS risk segments. Every risk
segment s is represented by a macroeconomic index Ys,t where t refers
to the particular time the index is considered. The index Ys,t itself is
represented by a weighted sum of macroeconomic variables,

Ys,t = ws,0 +
K∑

k=1

ws,kXs,k,t + εs,t , (2.44)

where Xs,k,t are macroeconomic variables at time t, relevant to the
economic performance of segment s, (ws,k)k=0,...,K are coefficients that
have to be calibrated w.r.t. segment s, and εs,t describes the residual
random fluctuation of Ys,t not explainable by the fluctuation of the
Xs,k,t’s. For every segment s, a calibration analogous to (2.44) has to
be done. Typically for such regression models the residual variables
εs,t, s = 1, ...,mS , are assumed to be i.i.d. normally distributed and
independent of the variables Xs,k,t.

The macroeconomic variables Xs,k,t are parametrized by an autore-
gressive model with time lag t0, where t0 has to be specified in the
model. More explicitly, it is assumed that the macroeconomic vari-
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ables can be written as

Xs,k,t = θk,0 +

t0∑

j=1

θk,jXs,k,t−j + γs,k,t . (2.45)

In his original papers Wilson used an AR(2)-process (t0 = 2). The
conditional default probability for obligors in segment s is specified in
terms of the segment-specific macroeconomic index conditioned on its
respective realization Ys,t = ys,t and is given by the logit function

ps,t =
1

1 + exp(ys,t)
. (2.46)

Once the logit function has been calculated for a scenario, the sys-
tematic risk model will calculate the shifted migration matrix as a
preparation for the tabulation of the conditional loss distribution.

2.4.3.2 CPV Direct

CPV Direct models the overall macroeconomy (represented by the
probabilities ps) by a multivariate gamma distribution

Γ =
(
Γ(γ1,1, γ1,2), ...,Γ(γmS ,1, γmS ,2)

)
,

where the parameter pairs (γs,1, γs,2) have to be calibrated to each seg-
ment. A main issue is the calibration of the correlation matrix of Γ. In
general these challenges are much easier to master than calibrating the
macroeconomic indices by means of an autoregression as it is suggested
by CPV Macro.

The parameters of the gamma distribution of a segment are cali-
brated by specifying the mean and the volatility of the random vari-
able generating the segment’s default probability ps. The parameters
(γs,1, γs,2) are then determined by a moment matching based on (2.38).

Note that the support of the gamma distribution is R+, so that it
theoretically can happen to draw a number ps > 1, which obviously can
not be interpreted as a probability. This is an unpleasant side effect
when drawing a random number that is supposed to be a probability
from a gamma distribution. However, to some extent this very much
reminds us of the comparably unpleasant possibility of obtaining a
multiple default of a single obligor in the CreditRisk+ framework; see
Section 2.4.2 and Chapter 4. In practice such scenarios are not very
likely and will be ‘thrown away’ by the Monte Carlo engine of CPV.
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2.4.4 Basic Remarks on Dynamic Intensity Models

We already mentioned that this section is intended to be not more
than a brief “remark” with some references. Dynamic intensity models
have been extensively studied by Duffie and Singleton [49, 50]. In
Duffie and Gârleanu [47] intensity models are applied to the valua-
tion of collateralized debt obligations. The theory underlying intensity
models has much in common with interest rate term structure models,
which are mathematically complex and beyond the scope of this book.
For readers interested in the theory we refer to the already mentioned
papers by Duffie et al. and also to Jarrow, Lando, and Turnbull

[103] and Lando [119].

In the sequel we briefly summarize some basics of one representative
of the group of intensity models. First of all, the basic assumption is
that every obligor admits a default time such that default happens in
a time interval [0, T ] if and only if the default time of the considered
obligor appears to be smaller than the planning horizon T . The default
times are driven by an intensity process, a so-called basic affine process,
whose evolution is described by the stochastic differential equation

dλ(t) = κ(θ − λ(t))dt+ σ
√
λ(t)dB(t) + ∆J(t) , (2.47)

where (B(t))t≥0 is a standard Brownian motion and ∆J(t) denotes the
jump that occurs – if it occurs – at time t. Hereby J is a pure jump
process, independent of B, whose jump sizes are independent, positive
and exponentially distributed with mean µ and admitting jump times
according to an independent Poisson process with mean jump arrival
rate l. The parameter set (κ, θ, σ, µ, l) can be adjusted to control the
manner in which default risk changes over time, e.g., one can vary the
mean reversion rate κ, the long-run mean m̄ = θ+ lµ/κ, or the relative
contributions to the total variance of λ(t) that are attributed to the
jump risk and diffusion volatility.

Conditional on a realization (λ(t))t≥0 of the stochastic process solv-
ing (2.47), the default times of obligors are independent Poisson ar-
rivals with intensities λ(t). From this point of view the dynamic in-
tensity model can be considered as a time-continuous extension of the
CreditRisk+ framework.

The unconditional survival probability q(t) is given by

q(t) = E

[
e−

∫ t
0 duλ(u)

]
.
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The conditional survival probability for a time interval of length s ≥ 0
given survival up to time t can be calculated by

q(s+ t | t) = Et

[
e−

∫ t+s
t duλ(u)

]
= eα(s)+β(s)λ(s),

where the explicit solutions for the coefficients α(s) and β(s) can be
found in the above-mentioned papers by Duffie et al.

Because the sum of independent basic affine processes with common
parameters κ, σ, and µ, governing respectively the mean-reversion rate,
diffusive volatility, and mean jump size, again yields a basic affine pro-
cess, one can introduce dependencies between the default times of the
counterparties in a considered portfolio. Each obligor’s default inten-
sity can thus be represented by means of a one-factor Markov model

λi = Xc +Xi ,

where Xc and X1, . . . ,XN are independent basic affine processes with
respective parameters (κ, θc, σ, µ, lc) and (κ, θi, σ, µ, li). The so con-
structed process λi then again is a basic affine process with parameters
(κ, θ, σ, µ, l), where θ = θc + θi and l = lc + li. One could interpret
Xc as a state variable governing the common aspects of performance,
whereas Xi, seen as a state variable, contributes the obligor-specific or
idiosyncratic risk. Obviously, this can be extended to handle multi-
factor models by introducing additional basic affine processes for each
of a collection of sectors. Each obligor then admits an intensity process

λi = Xc +Xi +Xs(i) ,

where the sector factor Xs(i) is common to all obligors in that sector.
Here s(i) denotes the sector in which obligor i takes place

A possible simulation algorithm to generate default times τ1, . . . , τn
up to some time horizon T with given intensities λi, . . . , λn is the multi-
compensator method. In this method it is assumed that the com-
pensator Λi(t) =

∫ t
0 λi(u)du can be simulated for all i and t. Then

n independent unit-mean exponentially distributed random variables
Z1, . . . , Zn are drawn. For each i one has τi > T if Λi(T ) < Zi. In
this case the obligor survived the time interval [0, T ]. Otherwise, the
default time of the obligor is given by τi = min{t : Λi(t) = Zi} (see the
references for more details).
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Here we stop our discussion and hope that, although we kept our
introduction to the basics of dynamic intensity models rather short,
the reader nevertheless got some flavor of what these models are all
about.

2.5 One-Factor/Sector Models

In Sections 2.1.2 respectively 2.2.2 we discussed portfolios admitting a
uniform default probability respectively intensity and a uniform default
correlation for Bernoulli respectively Poisson mixture models. In this
paragraph we look in more detail at portfolios with uniform dependency
structure, namely one-factor respectively one-sector models.

2.5.1 One-Factor Models in the Asset Value Model Setup

The one-factor model in the context of the models by Moody’s KMV
and the RiskMetrics Group is completely described by specializing
equations (2.27) and (2.32) to the case of only one single factor com-
mon to all counterparties, hereby assuming that the asset correlation
between obligors is uniform. More explicitly, this means that the com-
posite factors Φi of all obligors are equal to one single factor, usually
denoted by Y ∼ N(0, 1). Moreover, instead of (2.27) one can write17

ri =
√
̺ Y +

√
1− ̺Zi (i = 1, ...,m), (2.48)

where
√
1− ̺Zi, with Zi ∼ N(0, 1), takes over the role of the resid-

ual εi and ̺ is the uniform asset correlation between the asset value
log-returns ri ∼ N(0, 1). In one-factor models, the uniform asset cor-
relation ̺ equals the R-squared as described in (1.24), uniform to all
obligors. As before, it is assumed that the residuals Zi constitute an
independent family, also independent of the factor Y .

Under the assumption of a single factor and a uniform ̺, Equation
(2.32) turns into

pi(Y ) = N

[
N−1[pi]−

√
̺ Y√

1− ̺

]
(i = 1, ...,m). (2.49)

17Note that here one could more generally work with ̺i instead of ̺. Note also that
the term

√
̺ takes over the role of Ri in Equation (2.27).
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FIGURE 2.3: Asset Value One-Factor Model: Conditional default
probability as a function of the factor realizations Y = y.

Figure 2.3 illustrates the dependence of the conditional default proba-
bility pi(y) on realizations y of the single factor Y .

Figure 2.4 shows for three fixed states of economy Y = −3, 0, 3 the
conditional default probability pi(y) as a function of the average one-
year default probability pi arising in formula (2.49), which we denoted
by PDi in the introductory Chapter 1. Figures 2.3 and 2.4 also give
an interpretation of the behavior of conditional default probabilities in
terms of the economic cycle captured by the single factor Y .

Before proceeding, we calculate the joint default probability (JDP) of
two obligors.

2.5.1 Proposition In a one-factor portfolio model with uniform asset
correlation ̺ and loss statistics (L1, ..., Lm) with Li ∼ B(1; pi(Y )),
where pi(Y ) is defined as in (2.49), the joint default probability (JDP)
of two obligors is given by the bivariate normal integral

JDPij = P[Li = 1, Lj = 1] = N2

[
N−1[pi], N

−1[pj]; ̺
]
,

where N2 [ ·, · ; ̺] denotes the cumulative bivariate normal distribution
function with correlation ̺.
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FIGURE 2.4: Asset Value One-Factor Model: Conditional default
probability as a function of the average 1-year default probability PDi.

Proof. The joint default probability can be calculated as

P[Li = 1, Lj = 1] = P(ri < N−1[pi], rj < N−1[pj]) .

By construction, the correlation between the asset value log-returns
ri, rj ∼ N(0, 1) is ̺. This proves the proposition. 2

We now want to prove that with increasing portfolio size m (“size” in
terms of the number of loans in the portfolio) the portfolio loss distri-
bution converges to a closed-form limit distribution. References for the
sequel are Finger [61], Gordy [84], Schönbucher [163], Vasicek
[182], and Ong [150], Example 9.2. In the following we denote by

Ei = EADi × LGDi

the exposure that is lost in case obligor i defaults; see Chapter 1 for
the meaning of EADi and LGDi. Here we allow for random LGDs but
deterministic (i.e., fixed) EADs. Moreover, we will not exclude that the
LGDs also depend on the state of economy Y in some (not necessarily
more detailed specified) way. Such a dependence of the default and the
recovery rates on the same underlying factor is certainly reasonable,
because historic observations show that recovery rates tend to decrease
in times where default rates rise up sharply; see, e.g., Altman et al.

[3] and Frye [74, 75] for a more detailed discussion of recoveries and
their relation to default rates.
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Altogether we are looking at a Bernoulli mixture model18, such that
the counterparties are modeled by random variables

EiLi , Li ∼ B(1; pi(Y )) , Y ∼ N(0, 1) , (2.50)

(
(LGDi × Li)|Y =y

)
i=1,...,m

independent ,

where we assume that all involved random variables are defined on a
common probability space; see Remark 2.5.6. The last condition in
(2.50) means that we assume conditional independence of losses rather
than independence of default indicators. For reasons of a shorter and
more convenient notation we write in the sequel ηi for LGDi,

ηi = LGDi .

For a portfolio of m obligors19, the portfolio loss relative to the port-
folio’s total exposure is given by

L = L(m) =

m∑

i=1

wiηiLi where wi =
EADi∑m
j=1 EADj

. (2.51)

We now want to prove that with increasing number of obligors m some
limit behavior of the portfolio loss L(m) can be established. For this we
first of all need some technical assumption, essentially taking care that
in the limit the portfolio is free of any dominating single exposures.

2.5.2 Assumption In the following we consider an infinite number of
loans with exposures EADi. We assume that the following holds:

m∑

i=1

EADi ↑ ∞ (m → ∞),

∞∑

m=1

( EADm∑m
i=1 EADi

)2
< ∞.

18Note that the following notation, although intuitive, is not mathematically rigor-
ous. Later on in the proof of Proposition 2.5.4 we will follow a mathematically more
precise notation.
19Here we make the simplifying assumption that the number of loans in the portfolio
equals the number of obligors involved. This can be achieved by aggregating different
loans of a single obligor into one loan. Usually the PD, EAD, and LGD of such an
aggregated loan are exposure-weighted average numbers.
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The first condition says that the total exposure of the portfolio strictly
increases to infinity with increasing number of obligors. The second
condition implies that the exposure weights shrink very rapidly with
increasing number of obligors. Altogether this makes sure that the
exposure share of each loan in the portfolio tends to zero.

Condition 2.5.2 is by no means a strict assumption. As an example
consider the following situation:

2.5.3 Example Assuming a ≤EADi ≤ b for some 0 < a ≤ b and all i,
we obtain

m∑

i=1

EADi ≥ ma ↑ ∞ (m→ ∞),

∞∑

m=1

( EADm∑m
i=1 EADi

)2
≤

∞∑

m=1

b2

m2a2
=

b2

a2

∞∑

m=1

1

m2
< ∞,

such that Assumption 2.5.2 is fulfilled in this case.

Now we are in a position to prove the following statement.

2.5.4 Proposition Assumption 2.5.2 is sufficient to guarantee that in
the limit the percentage portfolio loss L(m) defined in (2.51) and the
conditional expectation E[L(m)|Y ] are equal almost surely, such that

P

[
lim

m→∞

(
L(m) − E[L(m)|Y ]

)
= 0
]

= 1.

Proof. Fix y ∈ R. Define the conditional probability measure Py by

Py(·) = P[ · | Y = y].

Consider the random variable

Xk = EADk(ηkLk − E[ηkLk|Y ]).

With respect to Py, the random sequence (Xk)k≥1 is independent due
to (2.50) and centered by definition. We now define τm =

∑m
i=1 EADi,

such that (τm)m≥1 is a positive sequence strictly increasing to infinity
due to Assumption 2.5.2. If we could prove that

∞∑

k=1

1

τ2k
E
[
X2

k

]
< ∞ , (2.52)
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then a version20 of the strong law of large numbers (see [12]) would
yield

lim
m→∞

1

τm

m∑

k=1

Xk = 0 Py − almost surely. (2.53)

We therefore prove (2.52) next. From Assumption 2.5.2 we get

∞∑

k=1

1

τ2k
E
[
X2

k

]
≤

∞∑

k=1

4× EAD2
k

τ2k
< ∞

due to the uniform boundedness of (ηkLk − E[ηkLk|Y ]). So we have
established (2.53) for every y ∈ R. We can now write

P

[
lim

m→∞
(L(m) − E[L(m)|Y ]) = 0

∣∣∣ Y = y
]

= 1 for every y ∈ R.

But then almost sure convergence also holds unconditionally,

P

[
lim

m→∞
(L(m) − E[L(m)|Y ]) = 0

]
=

=

∫
P

[
lim

m→∞
(L(m) − E[L(m)|Y ]) = 0

∣∣∣ Y = y
]
dPY (y) = 1.

Therefore the proposition is proved. 2

2.5.5 Corollary In the case that (ηiLi)i≥1 are not only conditionally
independent but also identically distributed, Proposition 2.5.4 can be
reformulated as follows:
There exists some measurable function p : R → R such that for m→ ∞
the portfolio loss L(m) converges to p◦Y almost surely. Moreover, p◦Y
equals E[η1L1|Y ] almost surely.

Proof. Because the conditional expectation E[L(m)|Y ] is by definition
σ(Y )-measurable, where σ(Y ) denotes the σ-Algebra generated by Y ,
there exists some measurable function p : R → R with E[L(m)|Y ] =
p◦Y ; see [111], Lemma 1.13. Combined with Proposition 2.5.4 and the

20This version of the LLNs is based on Kronecker’s Lemma (see [12]), saying
that whenever (xk)k≥1 and (τk)k≥1 are sequences with the latter being positive
and strictly increasing to infinity, such that

∑∞

k=1 xk/τk converges, we obtain
limm→∞ τ−1

m

∑m
k=1 xk = 0.
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assumption that all losses are identically distributed this concludes the
proof of Corollary 2.5.5. 2

The important conclusion from the convergence results above is that
in the limit the randomness of the portfolio loss L(m) solely depends on
the randomness of the factor Y . By increasing the number of obligors
in the portfolio, the specific risk is completely removed, such that in
the limit only systematic risk arising from the volatility of the factor
Y remains in the portfolio.

2.5.6 Remark The proof of Proposition 2.5.4 does not rely on the
particular distribution we use for the factor Y . To make this more
precise let us look at a probability space suitable for uniform portfolios.
We need a factor Y and residual variables Z1, Z2, ..., which are random
variables in R defined on some not necessarily more specified probability
spaces (ΩY ,FY , PY ), (Ω1,F1, P1), (Ω2,F2, P2), and so on. A suitable
probability space for Proposition 2.5.4 is the product space

(Ω,F , P ) = (ΩY ,FY , PY )⊗ (Ω1,F1, P1)⊗ (Ω2,F2, P2)⊗ · · · ,

because we always assume the variables Y,Z1, Z2, ... to be independent.
For every ω = (y, z1, z2, ...) ∈ Ω the loss variables Li(ω) are given by
latent variable indicators evaluated w.r.t. the realization ω,

Li(ω) = 1{√̺ y+
√
1−̺ zi<ci} .

It is not difficult to argue that the proof of Proposition 2.5.4 only relies
on the conditional independence of the variables Zi w.r.t. Y and the
asymptotics of the portfolio weights according to Assumption 2.5.2. In
the case that the factor Y and the residuals Zi are normally distributed,
(Ω,F , P ) turns out to be an infinite dimensional Gaussian space, but
due to the more generally applicable proof we can use the same conver-
gence argument for distributions other than normal. For example, the
t-distribution is a natural candidate to replace the normal distribution;
see Section 2.6.1.

Now let us apply our findings to uniform portfolios by assuming that
pi = p for all obligors i, such that the assumptions of Proposition
2.5.5 are fulfilled. In the asset value model as we introduced it, the
factor Y and the residual variables Z1, Z2, ... follow a standard normal
distribution. For reasons of simplicity we assume constant LGDs (ηi =
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100%). In this framework, the function p from Proposition 2.5.5 can be
explicitly derived by applying Equation (2.49), and taking into account
that we are in a Bernoulli framework,

E[L(m)|Y ] =

m∑

i=1

wiE[Li|Y ] = N

[
N−1[p]−√

̺ Y√
1− ̺

]
=: p(Y ) ,

such that Proposition 2.5.4 guarantees that

L(m) m→∞−→ p(Y ) = N

[
N−1[p]−√

̺ Y√
1− ̺

]
almost surely. (2.54)

So for portfolios with a sufficiently large portfolio size m satisfying
Assumption 2.5.2, the percentage quote of defaulted loans for a given
state of economy Y = y is approximately equal to the conditional
default probability p(y). In the limit we obtain a portfolio loss variable
p(Y ) describing the fraction of defaulted obligors in an infinitely fine-
grained credit portfolio.

We now want to derive the cumulative distribution function and the
probability density of the limit loss variable p(Y ), Y ∼ N(0, 1), with
p(·) as in (2.54). Denote the portfolio’s percentage number of defaults
in an infinitely fine-grained portfolio (again assuming constant LGDs
of 100%) by L. We then have for every 0 ≤ x ≤ 1

P[L ≤ x] = P[p(Y ) ≤ x] (2.55)

= P

[
−Y ≤ 1√

̺

(
N−1[x]

√
1− ̺−N−1[p]

)]

= N

[
1√
̺

(
N−1[x]

√
1− ̺−N−1[p]

)]
.

In the sequel we will denote this distribution function by

Fp,̺(x) = P[L ≤ x] (x ∈ [0, 1]). (2.56)

The corresponding probability density can be derived by calculating
the derivative of Fp,̺(x) w.r.t. x, which is

fp,̺(x) =
∂Fp,̺(x)

∂x

=

√
1− ̺

̺
exp

(
− 1

2̺

(
(1 − 2̺)

(
N−1[x]

)2

−2
√
1− ̺N−1[x]N−1[p] +

(
N−1[p]

)2)
)

=

√
1− ̺

̺
exp

(
1

2

(
N−1[x]

)2− 1

2̺

(
N−1[p]−

√
1− ̺N−1[x]

)2)
. (2.57)
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Figure 2.5 shows the loss densities fp,̺ for different values of p and ̺.

2.5.7 Proposition The density fp,̺ admits four extreme cases in-
duced by the extreme values of the parameters p and ̺, namely

1. ̺ = 0 :
This is the correlation-free case with loss variables

Li = 1{ri=Zi<N−1[p]} ∼ B(1; p) ,

taking (2.48) into account. In this case, the absolute (size-m)
portfolio loss

∑
Li follows a binomial distribution,

∑m
i=1 Li ∼

B(m;mp), and the percentage portfolio loss Lm converges by ar-
guments analogous to Proposition 2.5.4 (or just by an application
of the Law of Large Numbers) to p almost surely. Therefore, fp,0
is the density of a degenerate distribution (i.e., a Dirac measure)
concentrated in p. This is illustrated by the first plot in Figure
2.5, where an almost vanishing correlation (̺=1 bps) yields an
fp,̺, which is almost just a peak in p=30 bps.

2. ̺ = 1 :
In this case one has perfect correlation between all loss variables
in the portfolio (see also Section 1.2, where the term “perfect
correlation” was mentioned the first time). In this case we can
replace the percentage portfolio loss Lm by L1 ∼ B(1; p), which
is no longer dependent on m. Therefore, the limit (m → ∞)
percentage portfolio loss L is also Bernoulli B(1; p), such that
P[L = 1] = p and P[L = 0] = 1− p. The case of (almost) perfect
correlation is illustrated in the fourth plot (p=30 bps, ̺=99.99%)
of Figure 2.5, clearly showing the shape of a distribution concen-
trated in only two points, yielding an “all or nothing” loss.

3. p = 0 :
All obligors survive almost surely, such that P[L = 0] = 1.

4. p = 1 :
All obligors default almost surely, such that P[L = 1] = 1.

Proof. A proof is straightforward. 2
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FIGURE 2.5: The probability density fp,̺ for different combinations
of p and ̺ (note that the x-axes of the plots are differently scaled).
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For the infinitely fine-grained limit portfolio (encoded by the portfo-
lio’s percentage loss variable L) it is very easy to calculate quantiles at
any given level of confidence.

2.5.8 Proposition For any given level of confidence α, the α-quantile
qα(L) of a random variable L ∼ Fp,̺ is given by

qα(L) = p
(
− qα(Y )

)
= N

[
N−1[p] +

√
̺ qα(Y )√

1− ̺

]

where Y ∼ N(0, 1) and qα(Y ) denotes the α-quantile of the standard
normal distribution.

Proof. The function p(·) is strictly decreasing, as illustrated by Figure
2.3. Therefore it follows that

P[L ≤ p(−qα(Y ))] = P[p(Y ) ≤ p(−qα(Y ))]

= P[Y ≥ −qα(Y )] = P[−Y ≤ qα(Y )] ,

taking (2.55) into account. This proves the proposition. 2

By definition (see Section 1.2) the Unexpected Loss (UL) is the stan-
dard deviation of the portfolio loss distribution. In the following propo-
sition the UL of an infinitely fine-grained uniform portfolio is calcu-
lated.

2.5.9 Proposition The first and second moments of a random vari-
able L ∼ Fp,̺ are given by

E[L] = p and V[L] = N2

[
N−1[p], N−1[p]; ̺

]
− p2 ,

where N2 is defined as in Proposition 2.5.1.

Proof. That the first moment equals p follows just by construction
of Fp,̺. Regarding the second moment, we write V[L] = E[L2]−E[L]2.
We already know E[L]2 = p2. So it only remains to show that E[L2] =
N2[N

−1[p], N−1[p]; ̺]. For proving this, we use a typical “conditioning
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trick.” For this purpose, let X1,X2 ∼ N(0, 1) denote two independent
standard normal random variables, independent of the variable

X =
N−1[p]−√

̺ Y√
1− ̺

∼ N(µ, σ2)

with µ =
N−1[p]√
1− ̺

, σ2 =
̺

1− ̺
.

We write gµ,σ2 for the density of X. Then, we can write E[L2] as

E[L2] = E[p(Y )2] = E[N(X)2]

=

∫

R

P[X1 ≤ X | X = x]P[X2 ≤ X | X = x] dgµ,σ2(x)

=

∫

R

P[X1 ≤ X, X2 ≤ X | X = x] dgµ,σ2(x)

= P[X1 −X ≤ 0, X2 −X ≤ 0] .

The variables Xi −X are normally distributed with

E[Xi −X] = −N
−1[p]√
1− ̺

and V[Xi −X] = 1 +
̺

1− ̺
=

1

1− ̺
.

Moreover, the vector (X1 −X,X2 −X) is bivariate Gaussian. Because
X1 and X2 are independent and independent of X, we obtain

Corr[X1 −X,X2 −X] = V[X] =
̺

1− ̺
.

Denote by X̃1 and X̃2 the standardation of X1 −X and X2 −X:

X̃1 =
(X1 −X)−

(
−N−1[p]√

1−̺

)

√
1

1−̺

and X̃2 =
(X2 −X)−

(
−N−1[p]√

1−̺

)

√
1

1−̺

.

Due to standardization we obtain the equivalence

X1 −X ≤ 0 ⇐⇒ X̃1 ≤ N−1[p]

and analogously for X2 −X and X̃2. From this we can conclude that

P(X1−X,X2−X)(0, 0) = P(X̃1,X̃2)

(
N−1[p] , N−1[p]

)
.
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FIGURE 2.6: Dependence of economic capital ECα on the chosen
level of confidence α.

Putting pieces together we obtain

E[L2] = P(X̃1,X̃2)

(
N−1[p] , N−1[p]

)

with (X̃1, X̃2) Gaussian. By construction, X̃1 and X̃2 are standardized.
What remains to be considered is the correlation between the two:

Corr[X̃1, X̃2] = (1− ̺)Corr[X1 −X,X2 −X] = ̺.

This finally proves that E[L2] = N2[N
−1[p], N−1[p]; ̺]. 2

2.5.10 Proposition The higher moments of L ∼ Fp,̺ are given by

E [Lm] = Nm

[
(N−1[p], ..., N−1[p]),Γ̺

]

where Nm[· · · ] denotes the m-dimensional normal distribution function
and Γ̺ ∈ R

m×m is a matrix with 1 on the diagonal and ̺ off-diagonal.

Proof. The proof relies on the same argument as the proof of Propo-
sition 2.5.9. A generalization to m > 2 is straightforward. 2
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TABLE 2.1: Economic Capital ECα for an infinitely

fine-grained portfolio (portfolio loss L ∼ Fp,̺) w.r.t. p and ̺,
for α = 99.5%.
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TABLE 2.2: Economic capital ECα for an infinitely

fine-grained portfolio (portfolio loss L ∼ Fp,̺) w.r.t. p and ̺,
for α = 99.98%.
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TABLE 2.3: Unexpected loss UL for an infinitely

fine-grained portfolio (portfolio loss L ∼ Fp,̺) w.r.t. p and ̺.
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Given a uniform one-year average default probability p and a uni-
form asset correlation ̺, Tables 2.1 and 2.2 report on the Economic
Capital (EC) w.r.t. confidence levels of α = 99, 5% and α = 99, 98% for
an infinitely fine-grained portfolio (described by the distribution Fp,̺),
hereby assuming an LGD of 100% (see Section 1.2.1 for the definition
of EC). Analogously, Table 2.3 shows the Unexpected Loss for a given
pair (p, ̺).

Figure 2.6 illustrates the sensitivity of the EC w.r.t. the chosen con-
fidence level. It can be seen that at high levels of confidence (e.g., from
99,9% on) the impact of every basispoint increase of α on the portfolio
EC is enormous.

Another common portfolio-dependent quantity is the so-called cap-
ital multiplier (CMα); see also Chapter 5 on capital allocation. It is
defined as the EC w.r.t. confidence α in units of UL (i.e., in units of
the portfolio standard deviation). In pricing tools the CM is sometimes
assumed to be constant for a portfolio, even when adding new deals to
it. The contribution of the new deal to the total EC of the enlarged
portfolio is then given by a multiple of the CM. In general, the CM
heavily depends on the chosen level of confidence underlying the EC
definition. Because for given p and ̺ the CM is just the EC scaled by
the inverse of the UL, Figure 2.6 additionally illustrates the shape of
the curve describing the dependency of the CM from the assumed level
of confidence.

For example, for p=30 bps (about a BBB-rating) and ̺=20% (the
Basel II suggestion for the asset correlation of the benchmark risk
weights for corporate loans) the (rounded!) CM of a portfolio with loss
variable L ∼ Fp,̺ is given by CM99% ≈ 4, CM99,5% ≈ 6, CM99,9% ≈ 10,
and CM99,98% ≈ 16 (in this particular situation we have an UL of 59
bps, as can be read from the Figure 2.3).

Now, as a last remark in this section we want to refer back to Sec-
tion 1.2.2.2, where the analytical approximation of portfolio loss distri-
butions is outlined. The distribution Lp,̺, eventually combined with
some modifications (e.g., random or deterministic LGDs), is extremely
well suited for analytical approximation techniques in the context of
asset value (or more generally latent variable) models.
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FIGURE 2.7: Negative binomial distribution with parameters
(α, β) = (1, 30).

2.5.2 The CreditRisk+ One-Sector Model

We already discussed CreditRisk+ in Section 2.4.2 and will come back
to it in Chapter 4. Therefore this paragraph is just a brief “warming-
up” for the next paragraph where we compare the uniform portfolio
loss distributions from an asset value model with the corresponding
distribution in the CreditRisk+ world.

Assuming infinitely many obligors and only one sector, we obtain a
situation comparable to the uniform portfolio model based on an asset
value model.

Under these assumptions, the portfolio loss is distributed accord-
ing to a negative binomial distribution NB(α, β) due to a gamma-
distributed random intensity. The derivation of the negative binomial
distribution in the CreditRisk+ framework is extensively discussed in
Chapter 4. Denoting the portfolio loss by L′ ∼ NB(α, β), the loss
distribution is determined by

P[L′ = n] =

(
n+ α− 1

n

)(
1− β

1 + β

)α( β

1 + β

)n
, (2.58)

where α and β are called the sector parameters of the sector; see For-
mula (4.26). The expectation and the variance of L′ are given by

E[L′] = αβ and V[L′] = αβ(1 + β) , (2.59)
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as derived in Formula (4.27). Figure 2.7 illustrates the shape of the
probability mass function of a negative binomial distribution, here with
parameters α = 1 and β = 30. The expected loss in a portfolio admit-
ting such a loss distribution is

EL = E[L′] = 1× 30 = 30,

and the unexpected loss (volatility of the portfolio loss) is

UL =
√

V[L′] =
√

1× 30× (1 + 30) = 30.5.

We are now prepared for the next section.

2.5.3 Comparison of One-Factor and One-Sector Models

Recalling the discussion about general mixture models at the be-
ginning of this chapter one could say that in this section we compare
Bernoulli and Poisson mixture models by means of a typical example.

As a representative for the Bernoulli mixture models we choose the
random variable L ∼ Fp,̺ describing the percentage loss of an infinitely
fine-grained portfolio with uniform default probability p and uniform
asset correlation ̺; see (2.55). Such portfolios typically arise in analyt-
ical approximations in the asset value model framework.

The one-sector model of CreditRisk+ as described in the previous
paragraph will serve as a representative for Poisson mixture models.

A very natural way to calibrate the two models on a common basis is
by moment matching. One problem we face here is that L takes place
in the unit interval and L′ generates random integers. We overcome
this problem by fixing some large m, say 20,000, such that the tail
probability P[L′ > m] is negligibly small, and transforming L′ into a
variable

L̃′ =
L′

m
.

So we take L̃′ as a proxy for the percentage portfolio loss in the one-
sector model in CreditRisk+. The moment matching procedure is based
on the conditions

E[L] = E[L̃′] and V[L] = V[L̃′] .
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Hereby we always start with some p and ̺ specifying the distribution
of L. We then set

E[L̃′] = p , V[L̃′] = N2

[
N−1[p], N−1[p]; ̺

]
− p2 ,

applying Proposition 2.5.9. As a last step we solve (2.59) for α and β.
One always has

α =
m× E[L̃′]2

m× V[L̃′]− E[L̃′]
, β =

m× V[L̃′]− E[L̃′]

E[L̃′]
, (2.60)

e.g., for p=30 bps, ̺=20%, and m=20,000 we apply 2.5.9 for

V[L] = N2

[
N−1[0.003], N−1[0.003]; 0.2

]
− 0.0032 = 0.000035095.

The unexpected loss of L therefore turns out to be UL=59 bps. Ap-
plying Formulas (2.60), we get

α = 0.26 and β = 232.99,

so that the distribution of L̃′ is finally determined.

In Table 2.4 high-confidence quantiles of one-factor respectively one-
sector models with different parameter settings are compared. It turns
out that the Bernoulli mixture model always yields fatter tails than the
Poisson mixture model, hereby confirming our theoretical results from
Section 2.3. A more detailed comparison of the two model variants can
be found in [25].

2.6 Loss Dependence by Means of Copula Functions

Copula functions have been used as a statistical tool for construct-
ing multivariate distributions long before they were rediscovered as a
valuable technique in risk management. Currently, the literature on
the application of copulas to credit risk is growing every month, so
that tracking every single paper on this issue starts being difficult if
not impossible. A small and by no means exhaustive selection of pa-
pers providing the reader with a good introduction as well as with
a valuable source of ideas about how to apply the copula concept to
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TABLE 2.4: Comparison of Bernoulli and Poisson mixture models by

means of one-factor respectively one-sector models.

portfolio p rho sigma

9 :;:9< 9:< :;:=<
= :;:9< =:< :;:><
? :;:9< ?:< :;:@<
> :;?:< 9:< :;?A<
A :;?:< =:< :;AB<
@ :;?:< ?:< :;C@<
D 9;::< 9:< :;B@<
C 9;::< =:< 9;AA<
B 9;::< ?:< =;9><

portfolio alpha beta Q_[99.98%] (KMV) Q_[99.98%] (CR+)

9 :;?D A;?C 0.31% 0.19%

= :;:C =A;?A 0.85% 0.59%

? :;:? DC;9D 9;@D< 9;>=<
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A :;=@ =?=;BB B;@A< @;C><
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standard problems in credit risk is Li [124, 125], Frey and McNeil

[68], Frey, McNeil, and Nyfeler [70], Frees and Valdez [67], and
Wang [185].

In a recent book [24] two of us explain the concept of copula functions
in detail and apply different copulas to various modeling problems in
the field of structured credit portfolios. It turns out that especially
structured credit products like collateralized debt obligations (CDOs)
and other asset-backed securities are very sensitive to the choice of the
particular underlying copula function.

When analyzing the most recent crisis (see also [26]) one finds that
the mis-specification of dependency models is one reason why banks
were caught more or less by surprise regarding the large losses accu-
mulated by structured credit products. For credit risk modelers who
applied different copula functions in their models for testing what could
happen to structured credit markets, it was at all times clear that there
was a huge potential for losses in certain products. However, because
the model results that made it into official reports and infokits for ex-
ecutive management were based in many cases on the standard copula
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we introduce in a moment (namely, the Gaussian copula), such loss
potential remained unrevealed to decision makers in many cases. It is
important that credit risk modeling in the future does consider certain
types of copulas not only as a “modeling toy” for quants but uses them
to demonstrate what can happen to a tail of a portfolio loss distribu-
tion under certain eventually unfortunate circumstances; see also the
discussion on copula choice impact included in Chapter 8.

We start our exposition with the following definition.

2.6.1 Definition A copula (function) is a multivariate distribution
(function) such that its marginal distributions are standard uniform.
A common notation for copulas we will adopt is

C(u1, ..., um) : [0, 1]m → [0, 1]

if considered in Rm (e.g., m obligors, m assets, m latent variables, etc.).

The most commonly applied copula function (e.g., in common asset
value models) is the normal or Gaussian copula, defined by

C(u1, ..., um) = Nm

[
N−1[u1], ..., N

−1[um]; Γ
]
, (2.61)

with Nm( · ; Γ) as in Section 2.4.1. In this section we also elaborated
that asset value models in the classical original setup implicitly incor-
porate copula functions based on the multivariate Gaussian distribu-
tion of asset value processes. For example, Proposition 2.5.9 says that
the bivariate normal copula determines the second moment of the loss
distribution of an infinitely fine-grained portfolio. So we implicitly al-
ready met copulas in previous paragraphs. Before continuing, we need
to quote a Theorem by Sklar [168, 169], saying that copulas are a
universal tool for studying multivariate distributions.

2.6.2 Theorem (Sklar [168]) Let F be a multivariate m-
dimensional distribution function with marginals F1, ..., Fm. Then
there exists a copula C such that

F (x1, ..., xm) = C
(
F1(x1), ..., Fm(xm)

)
(x1, ..., xm ∈ R).
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Moreover, if the marginal distributions F1, ..., Fm are continuous, then
C is unique.

Proof. For a comprehensive proof see Sklar [168], or, alternatively,
the textbook [144] by Nelsen. However, the basic idea (which is already
the heart of the proof) of deriving a copula from a given multivariate
distribution F with marginals F1, ..., Fm is by imitating what we pre-
viously have seen in case of the normal copulas, namely

C(u1, ..., um) = F
(
F−1
1 (u1), ..., F

−1
m (um)

)
. (2.62)

Now one only has to confirm that C defined by (2.62) does the job. 2

The converse of Proposition 2.6.2 is also true:

2.6.3 Proposition For any copula C and (marginal) distribution
functions F1, ..., Fm, the function

F (x1, ..., xm) = C
(
F1(x1), ..., Fm(xm)

)
(x1, ..., xm ∈ R)

defines a multivariate distribution function with marginals F1, ..., Fm.

Proof. The proof is straightforward. One just has to apply the defin-
ing properties of copulas. 2

Summarizing Theorem 2.6.2 and Proposition 2.6.3, one can say that
every multivariate distribution with continous marginals admits a uni-
que copula representation. Moreover, copulas and distribution func-
tions are the building blocks to derive new multivariate distributions
with prescribed correlation structure and marginal distributions.

The copula representation of multivariate distributions according to
Sklar’s theorem indicates why copulas became so prominent and om-
nipresent in credit risk modeling and finance in general. One could
argue that the overall purpose of fitting a credit model to data remains
the old fashioned problem of finding a best fitting multivariate distri-
bution, no matter if one looks at copula and marginals in joint or sepa-
rate ways. However, separating marginals and copula of a multivariate
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distribution is especially useful in situations where the marginals are
known (which is often the case) but the multivariate dependence is still
to be determined. In such cases it makes a lot of sense to focus on the
copula part of a multivariate distribution; see also [26].

2.6.1 Copulas: Variations of a Scheme

In this section we are mainly interested in giving some examples of
how the copula approach can be used for constructing loss distributions
with fatter tails than it would be for normally distributed asset value
log-returns. For this section we focus on normal and t-copulas, because
they are most common in the credit risk context. Many more classes
of copulas can be found in the book by Nelsen [144].

For our example we look at a Bernoulli mixture model but replace
the multivariate normal asset value log-return vector by a multivariate
t-distributed log-return vector. For the convenience of the reader we
first recall some basic test distributions from statistics (see, e.g., [155]):

The Chi-Square Distribution

The χ2-distribution can be constructed as follows: Start with an i.i.d.
sample X1, ...,Xn ∼ N(0, 1). Then, X2

1 + · · · + X2
n is said to be χ2-

distributed with n degrees of freedom. The first and second moments
of a random variable X ∼ χ2(n) are

E[X] = n and V[X] = 2n .

In some sense the χ2 distribution is a “derivate” of the gamma-distribution
(see 2.4.2), because the χ2(n)-distribution equals the gamma-distribution
with parameters α = n/2 and β = 2. Therefore we already know the
shape of χ2-densities from Figure 2.2.

The (Student’s) t-Distribution

The building blocks of the t-distribution are a standard normal vari-
able Y ∼ N(0, 1) and a χ2-distributed variable X ∼ χ2(n), such that Y
and X are independent. Then the variable Z defined by Z = Y/

√
X/n

is said to be t-distributed with n degrees of freedom. The density of Z
is given by

tn(x) =
Γ((n+ 1)/2)√
πnΓ(n/2)

(
1 +

x2

n

)−(n+1)/2

(x ∈ R).
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FIGURE 2.8: t(3)-density versus N(0, 1)-density.

The first and second moments of a variable Z ∼ t(n) are given by

E[Z] = 0 (n ≥ 2) and V[Z] =
n

n− 2
(n ≥ 3).

For large n, the t-distribution is close to the normal distribution. More
precisely, if Fn denotes the distribution function of a random variable
Zn ∼ t(n), then one can show that Fn converges in distribution to
the distribution function of a standard normal random variable Z ∼
N(0, 1); see [155].

This convergence property is a nice result, because it enables us to
start in the following modification of the classical asset value model
with a parameterization close to the normal case by looking at a large n.
By systematically decreasing the degrees of freedom we can transform
the model step-by-step towards a model with fatter and fatter tails.

In general the t-distribution has more mass in the tails than a normal
distribution. Figure 2.8 illustrates this by comparing a standard normal
density with the density of a t-distribution with 3 degrees of freedom.

The Multivariate t-Distribution:

Given a multivariate Gaussian vector Y = (Y1, ..., Ym) ∼ N(0,Γ)
with correlation matrix Γ, the scaled vector ΘY is said to be multi-
variate t-distributed with n degrees of freedom if Θ =

√
n/X with
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X ∼ χ2(n) and Θ is independent of Y . We denote the distribution of
such a variable ΘY by t(n,Γ). The matrix Γ is explicitly addressed as
the second parameter, because ΘY inherits the correlation structure
from Y :

Corr[ΘYi,ΘYj ] = Corr[Yi, Yj ] .

This can be easily verified by a conditioning argument (w.r.t. Θ).

Now let n ≥ 3 and Fn be a t-distribution function with n degrees of
freedom. Denote the inverse or quantile function of Fn by F−1

n . For
the multivariate t-distribution function with n degrees of freedom and
correlation matrix Γ we write Fn,Γ ∼ t(n,Γ). Then we can define a
t-copula function Cn,Γ by applying formula (2.62),

Cn,Γ(u1, ..., um) = Fn,Γ

(
F−1
n (u1), ..., F

−1
n (um)

)
(2.63)

where u1, ..., um ∈ [0, 1].

The copula Cn,Γ incorporates a multivariate t-dependency that we can
now combine with any marginal distributions we like. For example,
a multivariate distribution function with t-dependency and Gaussian
marginals can be defined (for x1, ..., xm ∈ R) by

Φn,Γ(x1, ..., xm) = Cn,Γ(N [x1], ..., N [xm]) (2.64)

where N [·] denotes the standard normal distribution function. That
indeed Φn,Γ defines a multivariate distribution function with standard
normal marginals is a direct consequence of Proposition 2.6.3. Replac-
ing a normal by a t-dependency will – in accordance with the fact that
t-tails are fatter than Gaussian tails – significantly shift mass into the
tails of the loss distribution arising from a corresponding asset value
model. The fatness of tails strongly depends on the chosen degrees of
freedom, so that the calibration of an appropriate n in Formula (2.64)
is an essential challenge when dealing with t-copulas. Although there
is much literature about the calibration of non-normal distributions to
financial time series in general (see, e.g., Eberlein [54]), so far we do
not know about an established standard calibration methodology for
fitting t-copulas to a credit portfolio. Here we believe that some further
research is necessary.

The impact of different dependency structures can be best illustrated
by means of a scatterplot. In Figure 2.9 we look at four different
variations:
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• Bivariate Gaussian copula with normal marginals:
We randomly generated points (X1,X2) with

Xi =
√
̺ Y +

√
1− ̺Zi (i = 1, 2)

with Y,Z1, Z2 ∼ N(0, 1) i.i.d. and ̺ = 40%.

• Bivariate t-copula with t-distributed marginals:
Here we plotted randomly generated pairs (X1,X2) with

Xi =
√
3(
√
̺ Y +

√
1− ̺Zi)/

√
W (i = 1, 2)

with Y,Z1, Z2 ∼ N(0, 1) i.i.d., W ∼ χ2(3), and ̺ = 40%.

• Bivariate t-copula with normal marginal distributions:
The points (X1,X2) are generated according to

Xi = N−1[F3(
√
3(
√
̺ Y +

√
1− ̺Zi)/

√
W )] (i = 1, 2)

with Y,Z1, Z2 ∼ N(0, 1) i.i.d., W ∼ χ2(3), W independent of
Y,Z1, Z2, ̺ = 40%, and F3 denoting the t-distribution function
with 3 degrees of freedom. Generalizing for m instead of 2 di-
mensions we obtain a multivariate distribution function F with

F (x1, ..., xm) = P[X1 ≤ x1, ...,Xm ≤ xm]

= P
[
T1 ≤ F−1

3 (N [x1]), ..., Tm ≤ F−1
3 (N [xm])

]

with (T1, ..., Tm) ∼ t(3,Γ̺) and Γ̺ denoting the ̺-uniform corre-
lation matrix in R

m×m. Therefore, we finally see that

F (x1, ..., xm) = C3,Γ̺(N [x1], ..., N [xm]) = Φ3,Γ̺(x1, ...., xm).

This shows that indeed we simulated copula (2.64) for n = 3.

• Independence copula with normal marginal distributions:
We randomly generated points (X1,X2) with

X1,X2 ∼ N(0, 1) i.i.d.

The independence copula is defined by C(u1, ..., um) = u1 · · · um.
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Bivariate t-Copula with Normal Marg.

Bivariate t-Copula with t-Marginals Independence Copula

Gaussian Copula with Normal Marginals

FIGURE 2.9: Normal versus t-dependency with same linear correla-
tion.
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TABLE 2.5: Uniform portfolio calculations with t-copulas w.r.t. default
probabilities of 50, 80, and 150 basispoints, correlations of 5% and 20%, and

degrees of freedom of 10,000, 40, and 10. Quantiles are calculated w.r.t. a

confidence of 99%.

Mean 5% 20% Mean 5% 20%

0.5% 0.5000% 0.5000% 0.5% 0.5002% 0.4983%

0.8% 0.8000% 0.8000% 0.8% 0.8028% 0.8037%

1.5% 1.5000% 1.5000% 1.5% 1.5034% 1.4944%

Quantile 5% 20% Quantile 5% 20%

0.5% 1.7470% 4.3017% 0.5% 1.7605% 4.3060%

0.8% 2.6323% 6.2997% 0.8% 2.6351% 6.3342%

1.5% 4.5250% 10.3283% 1.5% 4.5287% 10.1864%

Std.Dev. 5% 20% Std.Dev. 5% 20%

0.5% 0.3512% 0.8926% 0.5% 0.3522% 0.8946%

0.8% 0.5267% 1.2966% 0.8% 0.5283% 1.3045%

1.5% 0.8976% 2.1205% 1.5% 0.8964% 2.0988%

Mean 5% 20% Mean 5% 20%

0.5% 0.4959% 0.4992% 0.5% 0.4990% 0.4973%

0.8% 0.8006% 0.8009% 0.8% 0.7999% 0.8051%

1.5% 1.5030% 1.4970% 1.5% 1.5023% 1.5003%

Quantile 5% 20% Quantile 5% 20%

0.5% 2.9674% 5.3814% 0.5% 6.0377% 7.9295%

0.8% 4.2611% 7.6405% 0.8% 8.0921% 11.2434%

1.5% 6.6636% 11.9095% 1.5% 11.7042% 16.5620%

Std.Dev. 5% 20% Std.Dev. 5% 20%

0.5% 0.6145% 1.1201% 0.5% 1.2535% 1.7135%

0.8% 0.8802% 1.5726% 0.8% 1.6574% 2.3104%

1.5% 1.3723% 2.4653% 1.5% 2.3889% 3.3475%

simulated, 100,000 scenarios simulated, 100,000 scenarios

T-Copula with df = 10,000

T-Copula with df = 40 T-Copula with df = 10

Gaussian Copula (not simul.)

not simulated simulated, 100,000 scenarios
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Figure 2.9 clearly illustrates the impact of different copula variations.
For example, the t-copula with normal marginals more or less keeps the
Gaussian “tightness” of the point cloud but tends to have greater tail
dependency.

We now want to investigate the impact of a change from a normal to
a t-copula on the loss distribution of a Bernoulli mixture model based
on a uniform asset value model. For this purpose we choose a default
probability p, an asset correlation ̺, and fix n degrees of freedom. Our
starting point is Formula (2.48),

ri =
√
̺ Y +

√
1− ̺Zi (i = 1, ...,m).

By scaling this equation with
√
n/W , W ∼ χ2(n), W independent of

Y,Z1, ..., Zm, we transform the normal copula into a t-copula yielding
t-distributed asset value log-returns (r̃1, ..., r̃m) ∼ t(n,Γ̺),

r̃i =
√
n/W ri =

√
n/W

√
̺ Y +

√
n/W

√
1− ̺Zi ∼ t(n)

for i = 1, ...,m. Again denoting the t-distribution function of t(n)
by Fn we can write the default point of the model as F−1

n (p). The
Bernoulli loss variables are given by Li = 1{r̃i≤F−1

n (p)}. The uniform
default probability conditional on Y = y and W = w has the following
representation:

p(y,w) = P[Li = 1 | Y = y,W = w]

= P[r̃i ≤ F−1
n (p) | Y = y,W = w]

= P
[√

n/W
√
̺ Y +

√
n/W

√
1− ̺Zi ≤ F−1

n (p) | Y = y,W = w
]

= N

[√
W/nF−1

n (p)−√
̺ Y√

1− ̺
| Y = y,W = w

]

= N

[√
w/nF−1

n (p)−√
̺ y√

1− ̺

]
.

Analogous to the conclusion in (2.55), not only the single obligor’s
conditional default probability but in the limit also, the portfolio’s
percentage loss is described by p(y,w) given Y = y and W = w. We
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therefore can simulate the portfolio loss in a t-copula model by looking
at the distribution of, say, 100,000 samples

N

[
F−1
n [p]

√
Wi/n−√

̺ Yi√
1− ̺

]
, (2.65)

W1, ...,W100,000 ∼ χ2(n), Y1, ..., Y100,000 ∼ N(0, 1) independent.

We have done this exercise for different p’s, ̺’s, and n’s, and the result
is shown in Table 2.5. In the table one can see that for 10,000 degrees
of freedom the difference of the portfolio statistics compared to a nor-
mal copula is very small and just due to stochastic fluctuations in the
simulation. But with decreasing n the portfolio statistics significantly
changes. For example, there is a multiplicative difference of almost a
factor of 2 between the 99%-quantiles w.r.t. (p, ̺) = (0.8%, 5%) and
degrees of freedom of 40 and 10. If we would calculate the quantiles
in Table 2.5 w.r.t. higher levels of confidence, the differences would be
even higher. Therefore one can easily increase the potential for ex-
treme losses in a uniform t-copula portfolio model by just decreasing
the degrees of freedom of the underlying multivariate t-distribution.
Unfortunately, a decision of how fat the tails really should be is never
easy and sometimes purely subjective. Maybe this is the reason why
people very often rely on asset value models based on the Gaussian
copula. Gaussian distributions are uniquely determined by their expec-
tation vector and their covariance matrix, such that more complicated
calibrations are not necessary. Moreover, as we already indicated, of-
ten even the estimation of linear correlations is a great challenge and
far from being obvious. We believe that more research combined with
empirical evidence is necessary before other than normal copulas will
become “best practice” in credit risk management.

Our last point in this section is the following proposition.

2.6.4 Proposition Given a Bernoulli loss statistics (L1, ..., Lm) based
on an asset value respectively (more general) latent variables model
in the form Li = 1{ri≤ ci}, the gross loss distribution of (L1, ..., Lm),
defined as the distribution of the variable L =

∑
Li, is uniquely deter-

mined by the set of one-year default probabilities pi = P[ri ≤ ci] and
the respective copula function C of (r1, ..., rm).
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Proof. The distribution of gross losses arising from the loss statistics
(L1, ..., Lm) is determined by the joint default probabilities

P[Li1 = 1, ..., Lik = 1] = P[ri1 ≤ ci1 , ..., rik ≤ cik ] =

= Ci1,...,ik(pi1 , ..., pik ), with {i1, ..., ik} ⊆ {1, ...,m},
where Ci1,...,ik denotes the respective k-dimensional marginal distribu-
tion of the copula C of (r1, ..., rm). 2

Given the standard case of a one-year time horizon asset value model,
Proposition 2.6.4 says that besides the one-year default probabilities
the used copula function completely determines the portfolio loss dis-
tribution. In a Gaussian world, the asset correlation as a second pa-
rameter in uniform asset value models is the main driver of fat tails.
For people allowing for other than normal copulas, changing the copula
has an even stronger impact than just increasing the asset correlation
in a Gaussian model.

We will come back to that point in Chapter 8.

2.7 Working Example on Asset Correlations

We conclude this chapter with a working example regarding the es-
timation of a proxy for asset correlations from historic default frequen-
cies. It remains difficult in practical situations to get some indication
about the order of magnitude of asset correlations. Here, we illustrate
a back-of-the-envelope kind of way to gain some idea on how asset cor-
relations can look like. The procedure we are going to elaborate is not
a substitute for a full statistical evaluation of data which we would
recommend in a real-life situation. However, it nicely illustrates how
one can obtain quick estimates from easily accessible and public data.

We already saw in Table 1.2 rating agency data from Moody’s report-
ing on historic default frequencies of corporate bond defaults. In the
same report [141], Exhibit 39, we also find Table 2.6, showing one-year
default rates by year and letter rating from 1970–2000.

What one can clearly see is that observed default frequencies are quite
volatile, and a natural interpretation of such volatility is the existence
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TABLE 2.6: Moody’s Historic Corporate Bond Default

Frequencies from 1970 to 2000.
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of an economic cycle. Although it is the simplest approach, the uniform
portfolio model as introduced in Section 2.5.1 already provides us with
a useful parametric framework in order to estimate the systematic risk
inherent in Moody’s corporate bond portfolio. As a reference for the
sequel we mention [20], where several approaches for estimating asset
correlations are elaborated.

As already indicated above, we use the uniform portfolio model (see
Proposition 8 and the discussion thereafter) as a parametric framework.
Table 2.6 includes R1=Aaa, R2=Aa, ...., and R6=B, altogether six
rating grades. For every rating class Ri we can calculate the mean pi
and the corresponding volatility from the historic default frequencies
of class Ri over the years from 1970 to 2000. The result is shown in
Tables 2.7 and 2.8 in the mean and standard deviation column.

With Table 2.6 we have the same problem we already faced in Section
1.1.1: There is no default history for upper investment grade bonds. We
therefore again fit the historic data by a linear regression on logarithmic
scale. Hereby we distinguish two regression methods:

• Regression I:
Here we just set R1=Aaa to “not observed” and fit the mean
default frequencies p2, ..., p6 by an exponential function yielding
fitted default probabilities µ1, ..., µ6 for all rating classes (class
Aaa is extrapolated). After that we repeat the same procedure
with the volatilities of the default frequency time series of rating
classes R2, ..., R6, this time yielding volatilities σ1, ..., σ6 (class
Aaa again extrapolated). The results are shown in Table 2.7.

• Regression II:
Regression method II is motivated by the observation that class
Aa possibly constitutes an outlier, due to the spike arising from
just one observed default frequency in the year 1989. So here
we decide to exclude not only Aaa but also Aa from the regres-
sion. At the end the default probabilities for Aaa and Aa are
extrapolated. Table 2.8 shows the result.

We could continue in this way for rating class A, because in this class
we also have only one observation different from zero, namely in year
1982. However, our example is purely illustrative, such that two differ-
ent regression approaches should be enough to demonstrate the effect.
The reason for presenting two approaches is that it shows very clearly
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TABLE 2.7: Calibration Results due to Regression I.

Rating Mean Stand.Dev. µµµµ σσσσ ρρρρ
Aaa 0.000% 0.000% 0.0010% 0.0149% 35%

Aa 0.020% 0.110% 0.0055% 0.0442% 32%

A 0.008% 0.047% 0.0288% 0.1313% 28%

Baa 0.145% 0.277% 0.1510% 0.3902% 23%

Ba 1.201% 1.330% 0.7916% 1.1597% 18%

B 6.507% 4.762% 4.1496% 3.4469% 12%

Mean 1.31% 1.09% 0.85% 0.86% 25%

Mean Default Rate

Default Rate Volatility
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TABLE 2.8: Calibration Results due to Regression II.

Rating Mean Stand.Dev. µµµµ σσσσ ρρρρ
Aaa 0.000% 0.000% 0.0001% 0.0023% 34%

Aa 0.020% 0.110% 0.0012% 0.0110% 28%

A 0.008% 0.047% 0.0113% 0.0514% 24%

Baa 0.145% 0.277% 0.1027% 0.2406% 19%

Ba 1.201% 1.330% 0.9348% 1.1270% 14%

B 6.507% 4.762% 8.5040% 5.2788% 10%

Mean 1.31% 1.09% 1.59% 1.12% 22%

Mean Default Rate

Default Rate Volatility
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that subjective opinions very often play a crucial role in bank-internal
calibrations. In fact, there are various ways in which a regression could
have been done in order to obtain reasonable default probabilities for
every rating class. So people have to make a decision as to which
method best reflects their “expert opinion” and their “analytical hon-
esty.” The ρ-columns in Tables 2.7 and 2.8 contain estimated average
asset correlations for the considered rating classes, and one can see that
the different regression approaches are reflected by differences in esti-
mated asset correlations. For example, people relying on Regression I
would believe in an overall average asset correlation of 25%, whereas
people relying on Regression II would believe that the overall average
asset correlation in Moody’s corporate bond universe is at the lower
level of 22%.

Now, it remains to explain how we came up with the asset corre-
lation columns in Tables 2.7 and 2.8. For this purpose let us fix a
rating class, such that we can drop the index i referring to rating class
i. For the chosen rating class, we know that in year j some default
frequency pj has been observed. The time series p1, ..., p31, addressing
the historically observed default frequencies for the chosen rating class
in the years 1970 up to 2000, is given by the respective row in Table
2.6. In the uniform portfolio model as we introduced it in (2.55) as a
consequence of Proposition 2.5.4, it is assumed that for every year j
some realization yj of a global factor Y drives the realized conditional
default probability observed in year j. According to Equation (2.49)
we can write

pj = p(yj) = N

[
N−1[p]−√

̺ yj√
1− ̺i

]
(i = 1, ...,m)

where p denotes the “true” default probability of the chosen rating
class, and ̺ means the unknown asset correlation of the considered
rating class, which will be estimated in the following. The parameter
p we do not know exactly, but after a moment’s reflection it will be
clear that the observed historic mean default frequency p provides us
with a good proxy of the “true” mean default rate. Just note that
if Y1, ..., Yn are i.i.d.21 copies of the factor Y , then the law of large

21Here we make the simplifying assumption that the economic cycle, represented by
Y1, ..., Yn, is free of autocorrelation. In practice one would rather prefer to work with
a process incorporating some intertemporal dependency, e.g., an AR(1)-process.
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numbers guarantees that

1

n

n∑

j=1

p(Yj)
n→∞−→ E

[
p(Y )

]
= p a.s.

Replacing the term on the left side by

p =
1

n

n∑

j=1

pj ,

we see that p should be reasonably close to the “true” default prob-
ability p. Now, a similar argument applies to the sample variances,
because we naturally have

1

n− 1

n∑

j=1

(
p(Yj)− p(Y )

)2 n→∞−→ V
[
p(Y )

]
a.s.

where p(Y ) =
∑
p(Yj)/n. This shows that the sample variance

s2 =
1

n− 1

n∑

j=1

(pj − p)2

should be a reasonable proxy for the “true” variance V
[
p(Y )

]
. Recall-

ing Proposition 2.5.9, we obtain

V
[
p(Y )

]
= N2

[
N−1[p], N−1[p]; ̺

]
− p2 , (2.66)

and this is all we need for estimating ̺. Due to our discussion above
we can replace the “true” variance V

[
p(Y )

]
by the sample variance

σ2 and the “true” default probability p by the sample mean p. After
replacing the unknown parameters p and V

[
p(Y )

]
by their correspond-

ing estimated values p and s2, the asset correlation ̺ is the only “free
parameter” in (2.66). It only remains to solve (2.66) for ̺. The ̺-
values in Tables 2.7 and 2.8 have been calculated by exactly this pro-
cedure, hereby relying on the regression-based estimated values µi and
σ2i . Summarizing, one could say that we estimated asset correlations
based on the volatility of historic default frequencies.

As a last calculation we want to infer the economic cycle y1, ..., yn
for Regression I. For this purpose we used an L2-solver for calculating
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y1, ..., yn with
√√√√

n∑

j=1

6∑

i=1

|pij − pi(yj)|2 = min
(v1,...,vn)

√√√√
n∑

j=1

6∑

i=1

|pij − pi(vj)|2 ,

where pij refers to the observed historic loss in rating class Ri in year
j, and pi(vj) is defined by

pi(vj) = N

[
N−1[pi]−

√
̺i vj√

1− ̺i

]
(i = 1, ..., 6; j = 1, ..., 31).

Here, ̺i refers to the just estimated asset correlations for the respec-
tive rating classes. Figure 2.10 shows the result of our estimation of
y1, ..., yn. In fact, the result is very intuitive: Comparing the economic
cycle y1, ..., yn with the historic mean default path, one can see that any
economic downturn corresponds to an increase of default frequencies.

We conclude our example by a brief remark. Looking at Tables 2.7
and 2.8, we find that estimated asset correlations decrease with de-
creasing credit quality. Going back to Section 1.3 one finds that this
is the assumption of the Basel 2 regulatory capital model when they
enforce a strict relationship between PDs and the correlation (or, sys-
tematic risk parameter) in the risk-weighting function for RWA. Based
on our calculations here, can one say that the regulatory assumption
that ̺ should depend on credit quality is reasonable after all?

We think still no, the uniform portfolio model as we introduced it
in this chapter truly is a two-parameter model without dependencies
between p and ̺. All possible combinations of p and ̺ can be applied
in order to obtain a corresponding loss distribution. The rough cal-
culations we made in this section do not support a function between
PD and ̺ as it is implemented in the current capital accord because
under such strict relationship one gives up the (important!) flexibility
to parameterize firms where PD and ̺ are both high or both low.

2.8 Generating the Portfolio Loss Distribution

So far, we mainly talked about how to set up a model for correlated
defaults and have spoken only little, apart from simple cases like the
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Factor Y (Interpretation: Economic Cycle)

Moody's Mean Historic Default Rates
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FIGURE 2.10: Estimated economic cycle (top) compared to Moody’s
average historic default frequencies (bottom).
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brief discussion in Chapter 1 on Monte Carlo simulation and analytical
approximation, about how to construct an actual loss distribution of a
portfolio based on these correlation models. Eventually, we are inter-
ested in the portfolio risk in form of a loss distribution and functions
on the distribution like risk measures or, e.g., a call loss function like
max(L−K, 0) for a certain threshold K as in Chapter 8. Furthermore,
before actively managing a credit portfolio it is a major prerequisite
to know about single-name contributions to the overall portfolio risk.
In other words, an allocation of the portfolio risk to the portfolio con-
stituents is required before one can make decisions regarding portfolio
optimization; see also Chapter 5. In this section we discuss some tech-
niques regarding the generation of the portfolio loss distribution of a
given portfolio. Each of the techniques has advantages and disadvan-
tages and the best choice depends very much on the objective one has
in mind. Note that some techniques used by practitioners allow for a
direct computation of some function of losses without having to make
the detour of constructing the whole loss distribution first, but we will
only treat the generation of whole loss distributions here.

2.8.1 Some Prerequisites from Probability Theory

As a prerequisite for reading this book we mentioned knowledge of
concepts from probability. For the sequel we need some techniques
used in probability theory to transfer a problem into another space,
solving the problem there and then doing the transfer back into the
original space. For instance, problems in probability are sometimes
translated into the language of Fourier transforms, then they are solved
in so-called Fourier space and, thereafter, they are translated back from
Fourier space into the original space where the problem was formulated.
A necessary precondition for doing such a problem shift is that the way
from a function or measure to its Fourier transform and back again
is unique so that one can be sure that if two objects are the same
in Fourier space they are also the same in the original space. This
principle is crucial for the sequel.

For the convenience of the reader and for the sake of introducing the
proper notation for our presentation we briefly recall some facts from
probability theory before we start with with our topic of this section. It
is beyond the scope of this section to provide proofs for all results in the
sequel. Readers not familiar with the collection of facts we are going to
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present are asked to consult an introductory textbook on probability
theory for proofs and more details.

The Probability Generating Function

Let (Ω,F ,P) be a probability space and let X be a random variable
in N0. The (probability) generating function GX of X is defined as

GX(z) = E[zX ] =

∞∑

n=0

P[X = n]zn

for values z for which the series converges. Everything one knows about
power series can be carried over to generating functions. For instance,
there is a radius of convergence such that the series converges absolutely
if z is within this radius. In case of generating functions the series
has only nonnegative coefficients and their sum equals 1 because they
represent the probability mass function of a random variable. As a
consequence, the series defining the generating function converges at
least for all z ∈ R with |z| ≤ 1.

In accordance with our introductory remarks for this section the gen-
erating function is a concept for translating a random variable into an
object (a function) in some other space. The question is: can we get
X back from its generating function? The answer is yes, and again it
is the general theory about power series which gives the answer. In the
same way as for power series one gets back X from GX via

P[X = n] =
1

n!
G

(n)
X (0) (2.67)

where f (n) denotes the n-th derivative of a function f . So we have a
unique and reversable way to represent a discrete random variable x by
its (unique!) generating function which is a convenient and compact
form of X carrying exactly the same information as X.

What can we do with generating functions, why is it worth the effort
to introduce the concept? A typical answer to that question is that
in the other (function) space some operations are easier to carry out.
Take two independent random variables X and Y defined in (Ω,F ,P).
The distribution of their sum X+Y is the convolution PX ∗PY of their
individual distributions PX and PY . But PX ∗ PY is a more or less
complicated object. Well, the following theorem shows that life will be
much easier if one switches into the space of generating functions.
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2.8.1 Theorem Let X and Y be independent random variables in
(Ω,F ,P) with values in N0. Then,

GX+Y (z) = GX(z)GY (z)

for all z for which the generating functions are defined.

Proof. If X,Y are independent then so are zX and zY for any fixed
z. For independent random variables the expectation of the product is
the product of the individual expectations. Therefore,

GX(z)GY (z) = E[zX ] E[zY ] = E[zXzY ] = E[zX+Y ] = GX+Y (z)

which is the assertion of the theorem. 2

So the generating function of X + Y (in case of independence) is
the product of the individual generating functions of the summands.
Products are easy to calculate so life is easier when considered from
the point of view of generating functions. From (2.67) we know how to
calculate the distribution PX ∗ PY from GX+Y .

Theorem 2.8.1 can be easily generalized to the sum of finitely many
random variables by induction.

We intentionally discussed the concept of generating functions in
detail to make the concept of transformation of variables into another
space and vice versa as explicit as possible. We conclude our section on
generating functions with the two examples which are most important
to us given the fact that many credit portfolio models have either the
Bernoulli or the Poisson distribution as their basic building block.

2.8.2 Example Let L ∼ B(1; p) be a Bernoulli random variable. Then
its generating function is given by

GL(z) = 1 + p(z − 1).

Proof. By definition we have

E[zL] = P[L = 0]z0 + P[L = 1]z .

But P[L = 0] = (1− p) and P[L = 1] = p. 2
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2.8.3 Example Let L′ ∼ Pois(λ) be a Poisson random variable. Then
its generating function is given by

GL′(z) = eλ(z−1) .

Proof. We have

E[zL
′

] =
∞∑

n=0

P[L′ = n]zn =
∞∑

n=0

e−λλn

n!
zn = e−λ

∞∑

n=0

(λz)n

n!

which proves the formula. 2

The Moment Generating Function

Another very useful transform of random variables for solving prob-
lems in a transform function space is the moment generating function
of a random variable X defined in (Ω,F ,P). It is defined by

MX(z) = E[ezX ]

for all z ∈ R where the expectation on the right-hand side exists. This
is a kind of sloppy formulation which we already used in case of the
generating function GX . It is time to be a bit more formal here. For
this we introduce the domain DX of MX for given X as

DX = {z ∈ R : E[ezX ] <∞}.

Let us see what we can find out about DX . Because of

MX(0) = E[1] = 1

we immediately find that 0 ∈ DX for any random variable X. For
general X this is it already because one can easily construct an example
where DX = {0}. Just take a random variable X in Z\{0} with a
(symmetric) probability mass function as follows:

pn =
c e−z|n|

|n| with
∑

n∈Z\{0}
pn = 1

where c is a normalizing constant. For every z ∈ R\{0} we obtain

E[ezX ] = c

∞∑

n=1

( 1
n
+
e−2zn

n

)
> c

∞∑

n=1

1

n
= +∞
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because the harmonic series diverges. So for this particular random
variable X we have DX = {0}. In Proposition 2.8.4 we will see that
the ideal case is (−r, r) ⊂ DX for some r > 0.

For X with range in N0 we find that the discrete version

MX(z) =
∞∑

n=0

P[X = n]enz

of the moment generating function is related to the generating function
GX of X via

MX(z) = GX(ez). (2.68)

If X is continuous and fX is its density (w.r.t. Lebesgue measure) then
the moment generating function is given by

MX(z) =

∫

D

ezxfX(x)dx (2.69)

where D denotes the domain of fX .

The moment generating function MX is related to the (two-sided)
Laplace transform

LX(z) = E[e−zX ]

of X by the simple relation

LX(z) = MX(−z) (2.70)

for all z where LX(z) and MX(z) are defined.

The attribute “moment generating” of the name of MX is due to the
fact that one can obtain all moments (if existent) of X from MX . The
proof is not difficult and is included here.

2.8.4 Proposition Let X be a random variable in (Ω,F ,P) and as-
sume that there exists some r > 0 such that (−r, r) ⊂ DX which means
that MX is finite in an open interval around 0. Then, the q-th deriva-
tive of MX for all orders q ∈ N exists and one has

E[Xq] = M
(q)
X (0).

Recall that f (q) denotes the q-th derivative of a function f .
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Proof. We start with a heuristic argument. We would have

M
(1)
X (z) =

d

dz
E[ezX ] = E

[ d
dz

ezX
]

= E

[
XezX

]

if we knew that expectation and differentiation operators can be inter-

changed. For z = 0 we would then obtain M
(1)
X (0) = E[X]. We could

then continue this procedure inductively, for instance

M
(2)
X (z) =

d

dz
M

(1)
X (z) = E

[ d
dz

(XezX)
]

= E

[
X2ezX

]

which shows M
(2)
X (0) = E[X2], and so on. Now, the good news is that

interchanging expectation and differentiation can be justified by an
integration theorem based on the theorem of dominated convergence;
see, e.g., [13], 16.2. So our heuristic argument becomes a true proof. 2

We could have followed an alternative route in the proof of Propo-
sition 2.8.4 which we will briefly sketch now. We can use the power
series expansion of the exponential function to get

MX(z) = E[ezX ] = E

[ ∞∑

n=0

zn

n!
Xn
]

=

∞∑

n=0

zn

n!
E[Xn] (2.71)

which is a power series representation of the moment generating func-
tion. Again we need to justify the interchange of the expectation oper-
ator and the limit of partial sums of the exponential series but, again,
this can be solved by an application of the theorem of dominated con-
vergence. Applying the theory of power series we again obtain

M
(q)
X (0) = E[Xq]

for all q ∈ N (Taylor series expansion).

In analogy to generating functions we obtain a convolution repre-
sentation for moment generating functions. The proof is essentially
the same as the one for Theorem 2.8.1 and uses just the property
ea+b = eaeb of the exponential function plus the product formula for
the expectation of independent random variables.



126 An Introduction to Credit Risk Modeling

2.8.5 Theorem Let X and Y be independent random variables in
(Ω,F ,P). Then,

MX+Y (z) = MX(z)MY (z)

for all z ∈ DX ∩ DY .

Proof. We can write

MX+Y (z) = E[ez(X+Y )] = E[ezX ]E[ezY ] = MX(z)MY (z)

for z ∈ DX ∩ DY due to independence of X and Y . 2

2.8.6 Proposition Let X be a random variable in (Ω,F ,P) and set
Y = aX + b for constants a, b ∈ R. Then,

MY (z) = ebzMX(az)

for all z ∈ DY = {x/a : x ∈ DX}.

Proof. We can write

MY (z) = E[ez(aX+b)] = ebzE[eazX ] = ebzMX(az).

We have MY (z) <∞ if z = x/a and x ∈ DX . 2

In the section on generating functions we emphasized the usefulness
of solving a problem not in “random variable space” but in the function
space based on the generating function. Here we have the same in
mind, e.g., by application of Theorem 2.8.5 where we saw how easy it
is to obtain the convolution of two independent random variables in the
function space based on moment generating functions. However, the
mechanism to translate a problem from one environment into another
environment is only useful as the relationship between random variables
and moment generating functions is unique. The next theorem makes
this precise and confirms our approach.

The proof makes use of the following fact which is worth mentioning
in the floating text outside of the proof too.
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2.8.7 Lemma Let X be a random variable in (Ω,F ,P) and assume
E[er|X|] <∞ for some r > 0. Then, (−r, r) ⊂ DX .

Proof. Based on the inequality

ea|x| ≤ er|x| for all a ∈ (−r, r)

we can write

E[eaX ] ≤ E[er|X|] < ∞ for all a ∈ (−r, r).

This yields (−r, r) ⊂ DX . 2

2.8.8 Theorem Let X be a random variable in (Ω,F ,P) and assume
that there exists some r > 0 such that E[er|X|] < ∞. Then, MX

uniquely determines the distribution PX of X and the distribution PX

is uniquely determined by the moments (E[Xn])n∈N of X.

Sketch of Proof. Collecting everything said so far on moment gener-
ating functions we find that under the conditions of the theorem MX

is an analytic function on (−r, r) with power series expansion

MX(z) =
∞∑

n=0

zn

n!
E[Xn]

(see (2.71)) whose coefficients are determined by the moments of X.
Combining this with the fact that the Laplace transform (see (2.70))
is injective we can conclude the assertion of the theorem. 2

In the proof of Theorem 2.8.8 we mentioned that the Laplace trans-
form is injective. In fact, under certain conditions there are inversion
formulas for integral transforms. For instance, if X takes only nonneg-
ative values and is continuous (w.r.t. Lebesgue measure) with a density
fX we can write the (one-sided) Laplace transform (cp. also (2.69)) as

LX(z) =

+∞∫

0

e−zxfX(x)dx. (2.72)
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Recall from Equation (2.70) that the moment generating function and
the Laplace transform are essentially the same objects so that in our
example we can focus on Laplace transforms. Under suitable conditions
we can then recover fX from LX via the inversion formula

fX(x) =
1

2πi

γ+i∞∫

γ−i∞

extLX(t)dt (2.73)

always assuming that every object involved exists and is suitably de-
fined, etc. The constant γ in (2.73) has to be chosen appropriately
and it is beyond the scope of our discussion to go into detail here. In
convenient cases we can choose γ = 0.

We stop the discussion at this point and conclude this section by
continuing Examples 2.8.2 and 2.8.3.

2.8.9 Example Let L ∼ B(1; p) be a Bernoulli random variable. Then
its moment generating function is given by

ML(z) = 1 + p(ez − 1).

Proof. We know that GL(z) = 1 + p(z − 1) from Example 2.8.2. We
also know from Equation 2.68 that MX(z) = GX(ez) for discrete X.
This proves the statements. 2

2.8.10 Example Let L′ ∼ Pois(λ) be a Poisson random variable.
Then its generating function is given by

ML′(z) = eλ(e
z−1) .

Proof. We have GL′(z) = eλ(z−1) and ML′(z) = GL′(ez). 2

The cumulant generating function

Consider a random variable X in a probability space (Ω,F ,P). The
cumulant generating function KX of X is defined as the (natural) log-
arithm of the moment generating function MX of X:

KX(z) = lnMX(z) for all z ∈ DX .

The cumulant generating function is convenient if in case of indepen-
dent random variables one prefers a sum at function space side instead
of a product because Proposition 2.8.5 immediately yields

KX+Y (z) = lnMX+Y (z) = ln(MX(z)MY (z)) = KX(z) +KY (z)
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for independent variablesX,Y and z ∈ DX∩DY . In the same way as for
MX we find that KX is an analytic function under certain conditions
(see the proof of Theorem 2.8.8) with a power series representation

KX(z) =
∞∑

n=1

zn

n!
K

(n)
X (0).

Here, the derivatives K
(n)
X are called cumulants. The first cumulant is

always the expectation of X. To see this, just write

d

dz
lnMX(z) =

d
dzMX(z)

MX(z)
=

E[XezX ]

E[ezX ]

which equals E[X] for z = 0. Of course, this again needs certain con-
ditions to be fulfilled. We stop here and continue with our next topic.

The Characteristic Function (Fourier Transform)

The most commonly used integral transform in probability theory is
the Fourier transform. For a bounded positive measure µ on R it is
defined as

µ̂(z) =

∫

R

eizxdµ(x).

Now let X be a random variable in a probability space (Ω,F ,P). Then,
the Fourier transform

ϕX(z) = P̂X(z) = E[eizX ] =

∫

R

eizxdPX(x) (2.74)

of the distribution PX of X is called the characteristic function of X.
The notation ϕX for the characteristic function of a random variable X
is very common and we adopt this notation for the sequel. Obviously,
the characteristic function ϕX of a random variable X and its moment
generating function MX are related via the equation

ϕX(z) = MX(iz).

In this way we can, for instance, carry over the results from Examples
2.8.9 and 2.8.10 to Examples 2.8.17 and 2.8.18.

Characteristic functions and Fourier transforms have many conve-
nient properties which are widely known. Therefore, we make only a
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few remarks here and add more properties “on the fly” in the sequel
whenever they are needed.

As mentioned at the beginning of this section, Fourier transforms
are the role model for the kind of space switching we indicated in the
sections on generating functions and moment generating functions. In
many situations, probabilists solve problems in Fourier space and later
carry the result over to the original environment of random variables
or stochastic processes.

For doing so one again needs uniqueness of the characteristic function
and inversion formulas. The convolution formula which we encountered
in the previous two sections remains also valid. We briefly go through a
few results in the sequel without going too much into the details. First
let us mention that in case X in R has a density fX the characteristic
function equals

ϕX(z) =

+∞∫

−∞

eizxfX(x)dx (2.75)

and its Stieltjes integral form is given by

ϕX(z) =

+∞∫

−∞

eizxdFX(x) (2.76)

where FX denotes the (cumulative) distribution function of X.

For the moment generating function MX we talked about its domain
DX . What about characteristic functions, do they always exist? The
answer is simple: because of

eizx = cos(zx) + i sin(zx) (2.77)

and because sin(·) and cos(·) are bounded functions we find that the
characteristic function always exists.

We start our collection of results with the convolution formula.

2.8.11 Theorem Let X and Y be independent random variables in
(Ω,F ,P). Then,

ϕX+Y (z) = ϕX(z)ϕY (z) for all z ∈ R.
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Proof. Again it is the functional property of the exponential function
which enables the convolution formula. One has

ϕX+Y (z) = E[eiz(X+Y )] = E[eizX ]E[eizY ] = ϕX(z)ϕY (z)

due to independence of X and Y . 2

2.8.12 Theorem Let X and Y be random variables in (Ω,F ,P). If
for their characteristic functions ϕX and ϕY we have

ϕX(z) = ϕY (z) for all z ∈ R

then the distributions of X and Y coincide: PX = PY .

Proof. Can be found in any book on probability. We skip it here
because it needs advanced results beyond the scope of this book. 2

Interestingly, the converse of Proposition 2.8.11 also holds. For the
proof we need the just presented uniqueness theorem.

2.8.13 Theorem Let X and Y be random variables in (Ω,F ,P) with

ϕX+Y (z) = ϕX(z)ϕY (z) for all z ∈ R.

Then, X and Y are independent.

Proof. Choose independent random variables X̃ and Ỹ with

PX = PX̃ and PY = PỸ .

Because X̃ and Ỹ are independent we obtain from Proposition 2.8.11

ϕX̃+Ỹ = ϕX̃ ϕỸ . (2.78)

The characteristic function of a random variable Z does (by definition)
only depend on its distribution PZ . Therefore,

ϕX = ϕX̃ and ϕY = ϕỸ .
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Equation (2.78) then implies

ϕX̃+Ỹ = ϕX̃ ϕỸ = ϕX ϕY = ϕX+Y

where the last equality is the assumption of the theorem. Theorem
2.8.12 then yields that PX+Y = PX̃+Ỹ . From this we can conclude that

the (joint) distributions of (X,Y ) and (X̃, Ỹ ) coincide. Because X̃ and
Ỹ are independent the same must be true for X and Y . 2

2.8.14 Proposition Let X be a random variable in (Ω,F ,P) and set
Y = aX + b for constants a, b ∈ R. Then,

ϕY (z) = eibzϕX(az) for all z ∈ R.

Proof. As in the proof of Proposition 2.8.6 we write

ϕY (z) = E[eiz(aX+b)] = eibzE[eiazX ] = eibzϕX(az)

which proves the assertion. 2

The characteristic function has nice properties. One is the following:

2.8.15 Theorem Let X be a random variable in (Ω,F ,P) and de-
note the characteristic function of X by ϕX . Then, ϕX is uniformly
continuous.

Proof. Writing the characteristic function as

ϕX(z) = E[cos(zX)] + iE[sin(zX)]

by an application of the Euler identity (2.77) we immediately find
by an application of the theorem of dominated convergence that the
characteristic function ϕX is continuous. But more is true. Writing

|ϕX(z + δ) − ϕX(z)| =
∣∣E[ei(z+δ)X ]− E[eizX ]

∣∣

=
∣∣E[ei(z+δ)X − eizX ]

∣∣
=
∣∣E[eizX(eiδX − 1)]

∣∣
≤ E[|eiδX − 1|]
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and the right-hand side converges to zero (uniformly in z) for δ → 0
due to the theorem of dominated convergence. 2

As a last result before we revisit our two main examples (Bernoulli
and Poisson distributions) we state a Fourier inversion theorem.

2.8.16 Theorem LetX be a random variable in (Ω,F ,P) with density
fX and denote its characteristic function by ϕX . If ϕX is integrable on
R (w.r.t. Lebesgue measure) one can recover the density fX from ϕX

by means of the following inversion formula:

fX(x) =
1

2π

∫

R

e−ixtϕX(t)dt for almost every x ∈ R.

Proof. See the results on spectral synthesis in Section III.2 in [129].
2

2.8.17 Example Let L ∼ B(1; p) be a Bernoulli random variable.
Then its characteristic function is given by

ϕL(z) = 1 + p(eiz − 1).

Proof. Consider Example 2.8.9 and ϕX(z) =MX(iz). 2

2.8.18 Example Let L′ ∼ Pois(λ) be a Poisson random variable.
Then its generating function is given by

ϕL′(z) = eλ(e
iz−1) .

Proof. Consider Example 2.8.10 and ϕX(z) =MX(iz). 2

Remark: Extension to the Multivariate Case

In the previous four sections we briefly introduced four transforma-
tions for random variables. We always restricted the exposition to the
one-dimensional case, say, X being a random variable in R. However,
the results presented so far can be generalized for random variables Y
in R

m without difficulties. One just has to do the usual modifications,
for instance, instead of

ezX with z ∈ R, X ∈ R
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one has to write

exp(zTY )with z ∈ R
m, Y ∈ R

m .

Recall from Section 1.2.3 that we denote vectors in R
m as column

vectors such that zTY is the usual scalar product in the Euclidean
vector space R

m.

We are now ready and well prepared for our discussion on techniques
for generating loss distributions. We will keep the presentation in a
style such that the topics mentioned provide an overview but do not
cover details, proofs or fully-fledged calculations. Intention of the fol-
lowing discussion is that readers get a first impression on relevant tech-
niques, e.g., for reducing the variance of outcomes in simulations, etc.

2.8.2 Conditional Independence

Mixture models as we introduced them in this chapter rely on a
conditional independence framework. Going back to Sections 2.1.1 and
2.2.1 we find that involved Bernoulli and Poisson random variables are
independent conditional on a realization of the mixture distribution for
the default probabilities or default intensities. We denoted the mixture
distribution by F . Let us assume that a portfolio with m obligors is
given. In the Bernoulli model the mixing worked via a random vector

P = (P1, ..., Pm) ∼ F

of default probabilities (jointly) drawn w.r.t. the mixture distribution
F . In the Poisson model the mixing was based on a random vector

Λ = (Λ1, ...,Λm) ∼ F

of default intensities with (joint) law F . Obviously, F is a different
object in the two different models.

In the sequel we follow a slightly different notation. In most cases we
find that mixing is not directly done at the level of default probabilities
or default intensities but at the level of some latent variables which are
then transformed via some mapping into random default probabilities
or default intensities. For instance, in the Bernoulli mixture one-factor
model (see Equation (2.49)) we have a latent variable Y which is trans-
formed into a random default probability via

Y 7→ N
[N−1[p]−√

̺ Y√
1− ̺

]
.
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So the randomness occurs at the level of the latent variable Y and not
directly at the level of the random default probability.

Along these lines, we assume for the rest of this section that the
mixing distribution F corresponds to a vector Y of latent variables
which are transformed into random default probabilities or random
default intensities by some suitable transformations

Y 7→ pi(Y ) ∈ [0, 1] (i = 1, ...,m)

in case of the Bernoulli model and

Y 7→ λi(Y ) ∈ [0,∞) (i = 1, ...,m).

in case of the Poisson model. The Bernoulli mixture model can then
be written down as

Li ∼ B
(
1; pi(Y )

)
(i = 1, ...,m) with Y ∼ F

and the Poisson mixture model reads as

L′
i ∼ Pois

(
λi(Y )

)
(i = 1, ...,m) with Y ∼ F

where we again keep in mind that Y and F in the Bernoulli framework
differ from Y and F in the Poisson framework.

For the sake of an easier presentation we collect EAD and LGD in
the sequel into one constant factor Ei for each obligor (i = 1, ...,m).
For instance, in a Bernoulli model the loss of obligor i is then given by
EiLi with Li ∼ B

(
1; pi(Y )

)
. One can think of Ei as the loss amount

in monetary units in case of default which corresponds to Li = 1.

Now, when it comes to the generation of the loss distribution we can
read the formulas in Sections 2.1.1 and 2.2.1 as follows.

• Step 1. Randomly draw realizations y of Y ∼ F .

• Step 2. Generate the portfolio loss distribution

L|Y =y =
m∑

i=1

Ei(Li|Y =y) (2.79)

conditional on Y = y. Because L is a sum of independent vari-
ables we find that PL|Y =y

is a convolution. For instance, in a

uniform exposure Bernoulli model we get a binomial distribution.
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• Step 3. Integrate the conditional portfolio loss distributions
L|Y =y w.r.t. F over the space of all realizations y of Y .

In the sequel we will not spend much time on Step 3. Integration
over the latent factors is a numerical problem and we refer to the rich
literature on quadrature techniques for this topic; see, e.g., [156].

So we will focus on Step 2, say, for a given realization of latent
variables. This means that in the following we will typically assume
independence of single-name risks. We ask readers to keep in
mind that the discussion that follows is only one out of three steps in
the generation procedure of the loss distribution.

2.8.3 Technique I: Recursive Generation

Let us start with a portfolio with m homogeneous exposures

Ei = E for all i = 1, ...,m. (2.80)

In line with the remark at the end of the previous section we assume in-
dependence of single-name risks in the portfolio which basically means
that we are studying a convolution problem.

Let us look at the Bernoulli framework first. In case of

pi = p for all i = 1, ...,m

we already pointed out in Section 2.1 that in this case the convolution
is a binomial distribution B(n; p) which is easy to handle.

For the case of heterogeneous exposures we are at least able to calcu-
late the portfolio EL and portfolio UL as we did in Equation (2.1). The
distribution itself is a bit more tricky and we postpone the discussion
of a very useful recursive algorithm for a moment.

For the Poisson framework we have no problem calculating the con-
volution even in case of heterogeneous intensities λi because of the
convolution property of independent Poisson random variables:

L′
i ∼ Pois(λi), L

′
j ∼ Pois(λj)

L′
i, L

′
j independent =⇒ L′

i + L′
j ∼ Pois(λi + λj).

This is the justification for the so-called Poisson convolution semigroup
which is the basis for the definition of Poisson processes. We used this
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convolution property already in Section 2.2 but can here now quickly
prove it based on our results about generating functions. From Exam-
ple 2.8.3 we know that

GL′
i
(z) = eλi(z−1) and GL′

j
(z) = eλj(z−1) ..

From Theorem 2.8.1 we know that

GL′
i+L′

j
(z) = GL′

i
(z)GL′

j
(z) = e(λi+λj)(z−1)

which is the generating function of a variable L ∼ Pois(λi + λj). Be-
cause the correspondence between distributions and generating func-
tions is one-on-one we found a simple proof for the convolution formula.

Altogether we get for a portfolio with homogeneous exposures but
heterogeneous default intensities a Poisson convolution as follows:

L′ =

m∑

i=1

EiL
′
i = E × L̃ with L̃′ ∼ Pois

( m∑

i=1

λi
)
.

The CreditRisk+ model (see Section 4) makes use of this convolution
property and combines it with an exposure grouping algorithm.

Now let us come back to the Bernoulli model (Li ∼ B(1; pi)) with
heterogeneous default probabilities which we postponed until now. In
this situation the portfolio loss distribution can be obtained by use of
the following recursive algorithm where the uniform exposure E has
been factored out such that we can without loss of generality assume
that all single-name risks have unit exposure. Again, it is crucial that
we assumed independence of assets in line with our remark at the end
of the previous section.

• Step 1. We start with m = 1 which means that we have just
one obligor or asset in the portfolio. We denote the portfolio loss
distribution by P

(1). Then,

P
(1)[L = 0] = (1− p1) , P

(1)[L = 1] = p1.

This constitutes the start of the recursion.

• Step 2. We extend the portfolio to m = 2 by including another
asset with default probability p2. The portfolio loss distribution
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is now P
(2). We have the following cases.

P
(2)[L = 0] = (1− p1)(1− p2)

= P
(1)[L = 0](1 − p2)

P
(2)[L = 1] = p1(1− p2) + (1− p1)p2

= P
(1)[L = 1](1 − p2) + P[L = 0] p2

P
(2)[L = 2] = p1p2

= P
(1)[L = 1] p2 .

In this form we can generalize it to arbitrary m as follows.

• Step m. For m > 2 we have the following recursion formula:

P
(m)[L = k] = P

(m−1)[L = k](1 − pm) + P
(m−1)[L = k − 1] pm

with k ∈ {0, 1, 2, ...,m}. A proof is straightforward (induction).

Based on this recursion formula one can construct the portfolio loss
distribution starting with one asset and then adding assets successively
up to the target number m of assets.

If we want to drop the assumption (2.80) of homogeneous exposures
the recursion formula can still be applied in approximative terms. One
can introduce a loss unit u and postulate that the loss risk of obligor (or
asset) i refers to ni units of loss where ni is called a loss unit multiple.
In other words, we replace the original Ei’s by

Ẽi = ni × u (i = 1, ...,m; ni ∈ N0).

The challenge in this approach is to determine u in a way such that the
rounding error from replacing the true exposure vector (E1, ..., Em) by
(Ẽ1, ..., Ẽm) is in an acceptable order of magnitude. Factoring out the
loss unit u we get the same recursion formula as before,

P
(m)[L = k] = P

(m−1)[L = k](1 − pm) + P
(m−1)[L = k − nm] pm ,

but now with states k ∈ {0, 1, 2, ..., n1 + · · · + nm} and boundary con-
ditions P(0)[L = 0] = 1, P(0)[L 6= 0] = 0.

Note that our writing is a bit sloppy here because L can only move
along a grid generated by partial sums of loss unit multiples. However,
because the probability that L falls in-between such effective grid points



Modeling Correlated Defaults 139

is zero, there is no harm in writing the recursion a bit sloppy but in
turn less complex.

The calculation effort of the recursion formula is roughly proportional
to m2 and also depends on the chosen granularity of the exposure dis-
cretization (i.e., the choice of the loss unit u). Therefore, it does not
make sense to apply the recursion formula to large portfolios. A typi-
cal field of application of the recursive algorithm are collateralized debt
obligations (CDOs) with a moderate number of underying credit risks,
say, not more than 200 assets. Another advantage of the recursive ap-
proach is that it can also be directly formulated for some functions of
the portfolio loss, e.g., a tranche attachment point exceedance function
like max(L−K, 0) where K is the attachment point (lower threshold)
of a CDO tranche; see, e.g., [29].

We now turn our attention to the Poisson model again. Unfortu-
nately, the convolution of Poisson distributed loss variables with in-
homogeneous exposures can not be treated by a simple summation of
Poisson intensities. However, with help of the aforementioned exposure
coarsening one can find a useful recursion formula again.

After exposure coarsening and factoring out the loss unit u the Pois-
son loss variable of obligor i equals niLi. Applying Equation (2.68),
Proposition 2.8.6 and Example 2.8.3 we obtain

GniL′
i
(z) = MniL′

i
(ln z) = ML′

i
(ni ln z) = GL′

i
(zni) = eλi(zni−1).

Application of the convolution property (Theorem 2.8.1) yields

GL′(z) = exp
( m∑

i=1

λi(z
ni − 1)

)
.

for the generating function of the portfolio loss. We can now apply
Formula (2.67) which translates into our context as

P[L′ = k] =
1

k!
G

(k)
L′ (0). (2.81)

Note again that the loss unit multiples define a grid of possible loss
states but we can (without doing wrong) simply write k in (2.81). In

the following we use the notation dk

dzk
for the order-n differentiation
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operator. One obtains

P(L′ = k) =
1

k!

dkGL′(z)

dzk

∣∣∣∣
z=0

=
1

k!

dk−1

dzk−1

(
GL′(z)

d

dz

( m∑

i=1

λiz
ni

))∣∣∣∣∣
z=0

=
1

k!

k−1∑

j=0

(
k − 1

j

)
dk−j−1

dzk−j−1
GL′(z)

dj+1

dzj+1

(
m∑

i=1

λiz
ni

)∣∣∣∣∣∣
z=0

.

But one also has

dj+1

dzj+1

m∑

i=1

λiz
ni =

{
λi(j + 1) if j + 1 = ni for some i
0 otherwise

,

such that altogether

P(L′ = k) =
k−1∑

j≤k−1

∃ i: j=ni−1

(k − j − 1)!

k!

(
k − 1

j

)
P(L′ = k − j − 1)λi(j + 1)!

=
∑

i:ni≤k

niλi
k

P[L′ = k − ni] . (2.82)

Equation (2.82) now allows to recursively construct the portfolio loss
distribution starting from the zero loss probability

P[L = 0] = exp
(
−

m∑

i=1

λi

)
.

The recursion formula we just developed and discussed is in fact a
version of the well known Panjer-recursion and is also the basic idea for
constructing the portfolio loss distribution in the CreditRisk+ model
(see Chapter 4).

2.8.4 Technique II: Fourier Transformation

In our section on prerequisites from probability theory we discussed
the characteristic function of a random variable X as the Fourier trans-
form of its distribution PX . The mapping

F : PX 7→ P̂X
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of a distribution (or, more general, a bounded positive measure) to
its Fourier transform can be introduced as an operator. We will not
go into detail here regarding its precise definition, domain, range and
properties but will use the Fourier transform in the sequel as an op-
erator (denoted by F) which can be inverted in line with the Fourier
inversion theorem 2.8.16.

We start by going back to the unconditional loss

L =

m∑

i=1

EiLi .

Using the convolution theorem for Fourier transforms (Theorem 2.8.11)
we can write

P[L = x] =

∫

D
F−1

{
F

(
m⊗

i=1

P

[
EiLi|

∑

i

EiLi = x,Y = y

])}
dF (y)

=

∫

D
F−1

{
m∏

i=1

F

(
P

[
EiLi|

∑

i

EiLi = x,Y = y

])}
dF (y)

= F−1

{∫

D

m∏

i=1

F

(
P

[
EiLi|

∑

i

EiLi = x,Y = y

])
dF (y)

}
.

The last step is due to the linearity of the Fourier transformation with
the consequence that the calculation of the inverse Fourier transforma-
tion has to be performed only once.

The Fourier transfoms and its inverse are usually computed numer-
ically using the Fast Fourier Transformation algorithm [156]. As this
algorithm works on a lattice, we are left with the problem of discretiz-
ing the distribution function where concessions have to be made when
balancing accuracy and performance.

In case of conditionally independent Bernoulli loss variables EiLi|Y =y

the Fourier transform of the conditional portfolio loss

L =

m∑

i=1

EiLi|Y =y

(Example 2.8.17, Theorem 2.8.11 and Proposition 2.8.14) is given by

ϕL(z)|Y =y =
m∏

i=1

(
1 + pi(y)(e

iEiz − 1)
)
.
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In case of Poisson losses EiL
′
i|Y =y we get (Example 2.8.18)

ϕL′(z)|Y =y = exp
( m∑

i=1

λi(y)(e
iEiz − 1)

)
.

This concludes our discussion of Fourier techniques.

2.8.5 Technique III: Saddle-Point Approximation

Although introduced not too long ago to the field of credit risk mod-
eling by Martin et al. [132] the saddle point method has quite a long
history through its applications in statistics by Daniels [39, 40] and
its use for asymptotic expansions of integrals in physics. For a more
fundamental reading we refer to Jensen [106] or Dembo and Zeitouni

[42].

The basic idea of the saddle-point approximation is an expansion
of the cumulant generating function. For the sequel it is useful to
recall what has been said in Section 2.8.1 about cumulants, moment
generating functions and Laplace transforms.

The cumulant generating function of the portfolio loss L =
∑

iEiLi

is given by

KL(z) = lnML(z) = lnE[ezL]

= ln
m∏

i=1

MEiLi(z) =
m∑

i=1

lnMEiLi(z) (2.83)

In case of Bernoulli loss variables KL(z) has the simple form

KL(z) =

m∑

i=1

ln(1− pi + pie
Eiz) (2.84)

(see Example 2.8.9). The probability density function can then be
recovered via inversion of the Laplace transformation

P[L = x] =
1

2πi

∫ γ+i∞

γ−i∞
eKL(s)−sxds, (2.85)

(see also Formula (2.73) and take into account that the cumulant gen-
erating function is a logarithm so that the integrand in (2.73) needs
an exponential (outer) function). Expanding KL(z) up to second order
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around z = 0 we get the Gaussian approximation of the loss distribu-
tion which matches the first two moments. However, z = 0 is not the
optimal point to expand the cumulant generating function. Analyzing
the leading contribution to the inverse Laplace transform integral one
finds that a better choice for the origin of the expansion is the real
stationary point of the exponent, i.e., the root z0 with

K ′
L(z0)− x = 0. (2.86)

As K is convex and analytic the stationary point z0 is in fact a local
minimum of KL(z) − zx on the real axis and a local maximum on the
imaginary axis, hence a saddle point in the complex plane. Note that
we are still in the conditional independence framework, i.e., the root
of Equation (2.86) is a function of the latent factor, z0(Y ). Expanding
now the integrand of Equation (2.85) around z0 followed by integration
while keeping only the leading term and the first order corrections
eventually leads to the approximation

P[L = x] ≈ eKL(z0)−z0x

√
2πK ′′

L(z0)

[
1 +

(
K(4)(z0)

8K ′′(z0)2
− 5K(3)(z0)

2

24K ′′(z0)3

)]
. (2.87)

For the integration it is again necessary that K is analytic as the inte-
gration contour has to be deformed in the complex plane. As it usually
is the case with expansions of higher order, corrections will not neces-
sarily yield to improvements in accuracy. In the case of Bernoulli loss
variables the cumulants can conveniently be computed: the first two
read

K ′
L(z) =

m∑

i=1

Eipie
zEi

1− pi + piezEi
and

K ′′
L(z) =

m∑

i=1

E2
i pi(1− pi)e

zEi

(1− pi + piezEi)2
. (2.88)

The great advantage of the saddle-point approximation is the fact that
for some functions of interest of the loss distribution like P[L ≥ l],
E[L|L ≥ l] or E[(L − l)+] we do not need to approximate the density
function first and then integrate appropriately, but we can rather apply
the saddle-point method directly to the required objects, [8, 192]. Note
that the saddle-point approximation remains a continuous approxima-
tion, hence it will fail to capture any discrete features of the true loss
distribution.
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For a portfolio of independent Poisson-distributed loss variables with
integer-valued exposures ni the cumulant generating function is

KL′(z) = ln (GL′(ez)) =

m∑

i

λi(e
niz − 1)

with derivatives

K
(j)
L (z) =

m∑

i

λin
j
ie

niz.

But in case of gamma-distributed random intensities as latent variables
one can do even better since here the unconditional probability generat-
ing function is given in closed form (see Chapter 4). So, one can apply
the saddle-point method directly to the unconditional distribution22,
[82].

Finally, we would like to touch briefly on another derivation of the
saddle-point approximation since it is related to the technical trick
presented in the next section. For estimating the distribution of inde-
pendent random variables the best known approximation is the Central
Limit Theorem and beyond that the Edgeworth expansion. But both
approximations perform poorly in the tail of the distribution and are
only a good fit at the center of the distribution. The idea now is to
change the measure by “tilting” the density to the region of interest.
Denote by fL(x) the density of the portfolio loss variable L, then we
change it by multiplication with esx

f̃L(x) =
fL(x)e

zx

ML(z)
,

where the division by ML(z) just serves the purpose of renormalizing
the new density f̃ . It can be easily verified that under the new measure
P̃ the loss variable L has mean Ẽ[L] = K ′

L(z) and Ṽ[L] = K ′′
L(z). If we

now choose a z0 (z0 is unique since K is convex) such that the tilted
mean is at the loss level of interest x, i.e.,

K ′
L(z0) = x,

we can argue that L (due to the Central Limit Theorem) is roughly
normal under the tilted measure P̃ and hence its probability density

22Martin and Ordovás [131] call this the direct approximation, as opposed to the
indirect method when conditioned.
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can be approximated at its mean by f̃L(x) ≈ 1/
√

2πK ′′
L(z0). Tilting

back, we obtain

fL(x) = eKL(z0)−z0xf̃L(x) ≈
eKL(z0)−z0x

√
2πK ′′

L(z0)
,

which is the leading term in Equation (2.87). We stop here and refer to
the rich literature if readers are interested in details and applications.

2.8.6 Technique IV: Importance Sampling

The Monte Carlo approach (see also the corresponding section in
Chapter 1) in financial engineering is often considered as the method
of last resort for problems that are not tractable otherwise. This ap-
proach essentially boils down to simulating the risk factors (random
variables) of the problem and reading off the required results from the
output statistics. Advances in computing power, but also in Monte
Carlo methods (see e.g. [79, 101]) have made it by now a widely ac-
cepted approach to pricing and risk modeling. But it is by no means
as simple as it seems, sophisticated techniques have been developed
over the last years to enhance convergence of the simulation and im-
prove the reliability of the sampling results. We will not elaborate on
general techniques of the Monte Carlo method here but rather turn to
an aspect specific to credit risk. As single defaults, and even more,
multiple defaults are typically low probability events we are faced with
the problem of a rare-event simulation. This is even more severe if
we are interested in the tail statistic where we usually obtain only a
couple of events of interest. This challenge makes the problem a very
good candidate for importance sampling which is a technique that tries
to sample particularly in the region of interest by means of a change
of measure, hereby reducing the variance of the estimator. Before we
go into details we briefly explain the underlying idea by means of the
one-factor model of Section 2.5.1. Here, the conditional default prob-
ability as a function of the latent factor realization Y = y is given by
the function

y 7→ N

[
N−1[pi]−

√
̺ y√

1− ̺

]
..

This function decreases with increasing y and increases with decreasing
y; see Figure 2.3. This means that if we would sample the factor Y
not from N(0, 1) but rather from a shifted normal distribution N(µ, 1)
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with some suitably chosen µ < 0 then we would generate more adverse
scenarios y of Y and hence more portfolio events with large losses.

Obviously, such an artificial shift will result in a bias of the final loss
statistics. To correct such bias we have to attach to each scenario a
new likelihood ratio and use this as a weight when calculating the loss
statistics. The likelihood ratio23 is simply the ratio of probabilities of
the sampled scenario y before and after the shifting, i.e. Φ(y)/Φ(y−µ).
In the sequel we follow Glasserman and Li [81] in a more systematic

exposition of importance sampling for Gaussian mixed Bernoulli loss
variables. Denote by FL(x) our quantity of interest in the tail loss,
say, FL(x) = 1{L>x} or FL(x) = L1{L>x}, and F̂L(x) = E[FL̂(x)] the
estimator of F on the loss statistics. Then we can decompose the
variance of the estimator according to

V[F̂L(x)] = E[V[F̂L(x)|Y ]] + V[E[F̂L(x)|Y ]]. (2.89)

This fits nicely into the conditional independence framework because
we can reduce the variance of the estimator in two steps.

Let us begin with the first term. Conditional on the common factors
Y the Bernoulli loss variables EiLi are independent, hence by expo-
nentially twisting the conditional default probabilities according to

pi,s(Y ) =
pi(Y )esEi

1 + pi(Y )(esEi − 1)
(2.90)

we arrive at a likelihood ratio of

m∏

i=1

(
pi(Y )

pi,s(Y )

)Li
(

1− pi(Y )

1− pi,s(Y )

)1−Li

= exp(−sL+KL(s)), (2.91)

where KL(θ) is the cumulant generating function of L, see Equation
(2.84), conditional on Y . From Equation (2.90) we see that for s > 0
the exponentially twisted default probabilities are increased and Equa-
tion (2.91) shows that this is equivalent to exponentially twisting the
portfolio loss variable L itself. The unbiased estimator for FL(x) under
the twisted measure is now

FL(x)e
−sL+KL(s).

23This more heuristic approach has been put forward by Xiao [191] and extended
to several common factors by Kalkbrener et al. [110].
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It remains to choose a suitable value for s such that the variance, or
equivalently the second moment, of the estimator is minimized. If FL

is the indicator function, FL(x) = 1{L>x}, we can estimate the second
moment with an upper bound as

Es[1{L>x}e
−2sL+2KL(s)] ≤ e−2sL+2KL(s) (2.92)

and then minimize the upper bound, i.e., minimize KL(s) − sx for
s ≥ 0. We know that K is convex and passes through the origin so
that a minimum is obtained for

K ′
L(s0) = x.

It can easily be verified that Es[L] = K ′
L(s), i.e., we again shifted

the distribution of L to have now a mean of x. Note that L is still
conditioned on the factors Y meaning that the optimal shift value is
in fact a function of the common factor, namely, s0(Y ). Furthermore,
note that x < E[L] entails s0 < 0, hence the exponential twist actually
reduces the default probabilities.

Now, we can further reduce the variance in Equation (2.89) through
the second term. To this end we consider a shifting of the mean of
Y ∼ N(0,Σ) from the origin to some point µ, say, Y ∼ N(µ,Σ). The
likelihood ratio of such a change of measure is then

exp

(
−µTY +

µTµ

2

)
.

The two-step importance sampling estimator for FL is

FL exp

(
−s0(Y )L+KL|Y (s0(Y ))− µTY +

µTµ

2

)
(2.93)

and the importance sampling algorithm proceeds as follows:

1. Sample Y ∼ N(µ,Σ).

2. Compute s0(Y ) and the twisted conditional default probabilities
pi,s0(Y ).

3. Generate losses under the twisted conditional distribution.

4. Return the estimator of Equation (2.93).
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It remains to find the right µ for the common factors Y . In case of
the quantile function FL = 1{L>x}, Glasserman and Li [81] suggest
choosing the shift by solving the optimization problem

µ = max
y

P[L > x|Y = y]e−yT y/2,

which then has to be approximated further for tractability. Kalk-

brener et al. [110] propose to use an infinitely fine-grained portfolio
under the one-factor approach (see section 2.5.1), L∞ ∼ F (p, ̺), with
suitably chosen parameters as a proxy to find the optimal value of the
shift. In this case, the loss distribution is in analytic form so that
we can search the minimum of the second moment of the estimator
directly:

µ = min
x

∫ ∞

−∞

(
FL∞

p,̺(Y )e
−Y x+x2

)2
dNx,0(Y ).

The found scalar value for µ is then appropriately lifted up to the
higher dimensional shift µ according to the variance contributions of
the factors in the factor space.

Similarly to the Bernoulli case we can also set up an importance
sampling algorithm for the Poisson mixture model. Let us again first
condition on the mixing variables. Then, we exponentially twist the
conditional intensities of the independent Poisson variables as24

λi(s) = λie
wis (2.94)

which leads to the likelihood ratio

m∏

i=1

e−λiλ
l′i
i /l

′
i!

e−λi(s)λi(s)
l′i/l′i!

= exp (−sL+KL(s)) . (2.95)

In a second step we could again move to the latent factors and twist
their distributions. Glasserman and Li [80] investigated this model

24The choice of the exponential twisting of pi and λi is motivated by the fact
that Bernoulli and Poisson random variables form an exponential family of dis-
tributions. If K(s) is the cumulant generating function of a distribution F then
Fs(x) =

∫ x

−∞
esu−K(s)dF (u) are again distributions and form an exponential family

in s for all s such that K(s) < ∞. If F has a density f then Fs has the density
fs(x) = esx−K(s)f(x).
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type for gamma-distributed mixing variables as in CreditRisk+. Sup-
pose for simplicity that the intensities of all Poisson variables L′

i are
driven by only one factor that is gamma-distributed, say, λi = ci + λ,
λ ∼ Γ(α, β). The cumulant generating function of a gamma-distributed
random variable is given by

Kλ(t) = −α log(1− βt)

Hence the likelihood ratio of that measure change is

exp (−tλ− α log(1− βt)) .

The twisted λt is again gamma-distributed with λt ∼ Γ(α, β/(1− βt)),
with t < 1/β. The likelihood ratio of the two steps is the product of
the individual likelihood ratios:

exp

(
−sL+

m∑

i=1

λi(e
wis − 1)− tλ− α log(1− βt)

)
.

In principle we have to find the optimal values for the two parameters
s and t but by choosing t =

∑m
i=1(e

wis − 1) the combined likelihood
ratio can be cast into the form

exp(−sL+KL(s))

where KL(s) now is the cumulant generating function of the uncondi-
tional portfolio loss, i.e. the unconditional loss gets twisted. As in the
conditional Bernoulli case we find the optimal shift by solving

K ′
L(s0) = x

and then use the appropriate estimator.

We close this whole section with a last remark. We only scratched
the surface of the techniques which one can use to generate loss distri-
butions. It can not be more than a first taste. We also had quite some
effort in the section on “prerequisites from probability theory” to pro-
vide some basics on tools which are necessary to follow the presentation.
Altogether one can say that the content of the last four sections really
is advanced material which needs a lot of math and a lot of patience
when going through the literature. A good and established way to dive
deeper into the techniques just explained is to start implementing algo-
rithms in a suitable programming environment. A textbook can never
replace self-made experience and we therefore encourage readers to do
their own experiments.
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Further Reading

A mathematical introduction to mixture models an be found in the
book by Joe [107]. Mixture models applied to problems in finance
and risk management are intensively discussed in the book [136] by
McNeil, Frey and Embrechts. As references for copulas we refer
to Nelsen [144], Cherubini, Luciano and Vecciato [31], Rank

[158] and Lipton and Rennie [126]. As references for the saddle
point method we refer to Dembo and Zeitouni [42], Jensen [106]
and Martin [130]. As a source for variance reduction techniques and
importance sampling we refer to Glasserman [79] and Jäckel [101].
Another reference is Egloff et al. [55].



Chapter 3

Asset Value Models

The asset value model (AVM) is an important contribution to mod-
ern finance. In the literature one can find a tremendous amount of
books and papers treating the classical AVM or one of its various mod-
ifications. See, e.g., Crouhy, Galai and Mark [38] (Chapter 9),
Sobehart and Keenan [170], and Bohn [27], just to mention a very
small selection of especially nicely written contributions.

As already discussed in Section 1.2.3 and also in Chapter 2, two of
the most widely used credit risk models are based on the AVM, namely
the model by Moody’s KMV as well as the model CreditMetricsTM from
the RiskMetrics Group; see also Section 1.2.3.

The roots of the AVM are the seminal papers by Merton [137] and
Black and Scholes [19], where the contingent claims approach to
risky debt valuation by option pricing theory is elaborated.

3.1 Introduction and a Brief Guide to the Literature

The AVM in its original form goes back to Merton [137] and Black

and Scholes [19]. Their approach is based on option pricing theory,
and we will frequently use this theory in the sequel. For readers not
familiar with options we will try to keep our course as self-contained
as possible, but refer to the book by Hull [94] for a practitioner’s
approach and to the book by Baxter and Rennie [15] for a highly
readable introduction to the mathematical theory of financial deriva-
tives. Another excellent book more focusing on the underlying stochas-
tic calculus is the one by Lamberton and Lapeyre [118]. For readers
without any knowledge of stochastic calculus we recommend the book
by Mikosch [139], which gives an introduction to the basic concepts
of stochastic calculus with finance in view. To readers with a strong
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background in probability we recommend the books by Karatzas and
Shreve [112, 113]. Besides these, the literature on derivative pricing is
so voluminous that one can be sure that there is the optimal book for
any reader’s taste. All results presented later on can be found in the
literature listed above. We therefore will – for the sake of a more fluent
presentation – avoid the quotation of particular references but instead
implicitly assume that the reader already made her or his particular
choice of reference including proofs and further readings.

3.2 A Few Words about Calls and Puts

Before our discussion of Merton’s model we want to briefly prepare
the reader by explaining some basics on options. The basic assumption
underlying option pricing theory is the nonexistence of arbitrage, where
the word “arbitrage” essentially addresses the opportunity to make a
risk-free profit. In other words, the common saying that “there is no free
lunch” is the fundamental principle underlying the theory of financial
derivatives.

In the following we will always and without prior notice assume that
we are living in a so-called standard1 Black-Scholes world. In such a
world several conditions are assumed to be fulfilled, for example

• stock prices follow geometric Brownian motions with constant
drift µ and constant volatility σ;

• short selling (i.e., selling a security without owning it) with full
use of proceeds is permitted;

• when buying and selling, no transaction costs or taxes have to be
deducted from proceeds;

• there are no dividend payments2 during the lifetime of a financial
instrument;

1In mathematical finance, various generalizations and improvements of the classical
Black-Scholes theory have been investigated.
2This assumption will be kept during the introductory part of this chapter but
dropped later on.
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• the no-arbitrage principle holds;

• security trading is continuous;

• some riskless instrument, a so-called risk-free bond, can be bought
and sold in arbitrary amounts at the riskless rate r, such that,
e.g., investing x0 units of money in a bond today (at time t = 0)
yields xt = x0e

rt units of money at time t;

• the risk-free interest rate r > 0 is constant and independent of
the maturity of a financial instrument.

As an illustration of how the no-arbitrage principle can be used to
derive statements about asset values we want to prove the following
proposition.

3.2.1 Proposition Let (At)t≥0 and (Bt)t≥0 denote the value of two
different assets with AT = BT at time T > 0. Then, if the no-arbitrage
principle holds, the values of the assets today (at time 0) also agree,
such that A0 = B0.

Proof. Assume without loss of generality A0 > B0. We will show
that this assumption contradicts the no-arbitrage principle. As a con-
sequence we must have A0 = B0. We will derive the contradiction by
a simple investment strategy, consisting of three steps:

1. short selling of A today, giving us A0 units of money today;

2. buying asset B today, hereby spending B0 units of money;

3. investing the residual A0 −B0 > 0 in the riskless bond today.

At time T , we first of all receive back the money invested in the bond,
so that we collect (A0 −B0)e

rT units of money. Additionally we have
to return asset A, which we sold at time t = 0, without possessing
it. Returning some asset we do not have means that we have to fund
the purchase of A. Fortunately we bought B at time t = 0, such that
selling B for a price of BT just creates enough income to purchase A
at a price of AT = BT . So for clearing our accounts we were not forced
to use the positive payout from the bond, such that at the end we have
made some risk-free profit. 2
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The investment strategy in the proof of Proposition 3.2.1 is “risk-
free” in the sense that the strategy yields some positive profit no matter
what the value of the underlying assets at time T might be. The
information that the assets A and B will agree at time T is sufficient
for locking-in a guaranteed positive net gain if the asset values at time
0 differ.

Although Proposition 3.2.1 and its proof are almost trivial from the
content point of view, they already reflect the typical proof scheme in
option pricing theory: For proving some result, the opposite is assumed
to hold and an appropriate investment strategy is constructed in order
to derive a contradiction to the no-arbitrage principle.

3.2.1 Geometric Brownian Motion

In addition to our bond we now introduce some risky asset A whose
values are given by a stochastic process A = (At)t≥0. We call A a
stock and assume that it evolves like a geometric Brownian motion
(gBm). This means that the process of asset values is the solution of
the stochastic differential equation

At −A0 = µA

t∫

0

As ds+ σA

t∫

0

As dBs (t ≥ 0), (3.1)

where µA > 0 denotes the drift of A, σA > 0 addresses the volatility of
A, and (Bs)s≥0 is a standard Brownian motion; see also (3.14) where
(3.1) is presented in a slightly more general form incorporating dividend
payments. Readers with some background in stochastic calculus can
easily solve Equation (3.1) by an application of Itô’ s formula yielding

At = A0 exp
(
(µA − 1

2
σ2A) t+ σABt

)
(t ≥ 0). (3.2)

This formula shows that gBm is a really intuitive process in the context
of stock prices respectively asset values. Just recall from elementary
calculus that the exponential function f(t) = f0 e

ct is the unique solu-
tion of the differential equation

df(t) = cf(t)dt , f(0) = f0 .

Writing (3.1) formally in the following way,

dAt = µAAt dt+ σAAt dBt , (3.3)
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shows that the first part of the stochastic differential equation describ-
ing the evolution of gBm is just the “classical” way of describing expo-
nential growth. The difference turning the exponential growth function
into a stochastic process arises from the stochastic differential w.r.t.
Brownian motion captured by the second term in (3.3). This differ-
ential adds some random noise to the exponential growth, such that
instead of a smooth function the process evolves as a random walk with
almost surely nowhere differentiable paths. If price movements are of
exponential growth, then this is a very reasonable model. Figure 1.6
actually shows a simulation of two paths of a gBm.

Interpreting (3.3) in a naive nonrigorous way, one can write

At+dt −At

At
= µA dt+ σA dBt .

The left side can be identified with the relative return of asset A w.r.t.
an “infinitesimal” small time interval [t, t+dt]. The equation then says
that this return has a linear trend with “slope” µA and some random
fluctuation term σA dBt. One therefore calls µA the mean rate of re-
turn and σA the volatility of asset A. For σA = 0 the process would be
a deterministic exponential function, smooth and without any fluctu-
ations. In this case any investment in A would yield a riskless profit
only dependent on the time until payout. With increasing volatility σA,
investments in A become more and more risky. The stronger fluctua-
tions of the process bear a potential of higher wins (upside potential)
but carry at the same time a higher risk of downturns respectively
losses (downside risk). This is also expressed by the expectation and
volatility functions of gBm, which are given by

E[At] = A0 exp(µAt) (3.4)

V[At] = A2
0 exp(2µAt)

(
exp(σ2At)− 1

)
.

As a last remark we should mention that there are various other stochas-
tic processes that could be used as a model for price movements. In
fact, in most cases asset values will not evolve like a gBm but rather
follow a process yielding fatter tails in their distribution of log-returns
(see e.g. [54]).

3.2.2 Put and Call Options

An option is a contract written by an option seller or option writer
giving the option buyer or option holder the right but not the obligation
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to buy or sell some specified asset at some specified time for some
specified price. The time where the option can be exercised is called
the maturity or exercise date or expiration date. The price written in
the option contract at which the option can be exercised is called the
exercise price or strike price.

There are two basic types of options, namely a call and a put. A
call gives the option holder the right to buy the underlying asset for
the strike price, whereas a put guarantees the option holder the right
to sell the underlying asset for the exercise price. If the option can be
exercised only at the maturity of the option, then the contract is called
a European option. If the option can be exercised at any time until the
final maturity, it is called an American option.

There is another terminology in this context that we will frequently
use. If someone wants to purchase an asset she or he does not possess
at present, she or he currently is short in the asset but wants to go
long. In general, every option contract has two sides. The investor who
purchases the option takes a long position, whereas the option writer
has taken a short position, because he sold the option to the investor.

It is always the case that the writer of an option receives cash up
front as a compensation for writing the option. But receiving money
today includes the potential liabilities at the time where the option
is exercised. The question every option buyer has to ask is whether
the right to buy or sell some asset by some later date for some price
specified today is worth the price she or he has to pay for the option.
This question actually is the basic question of option pricing.

Let us say the underlying asset of a European call option has price
movements (At)t≥0 evolving like a gBm, and the strike price of the call
option is F . At the maturity time T one can distinguish between two
possible scenarios:

1. Case: AT > F
In this case the option holder will definitely exercise the option,
because by exercising the option he can get an asset worth AT for
the better price F . He will make a net profit in the deal, if the
price C0 of the call is smaller than the price advantage AT − F .

2. Case: AT ≤ F
If the asset is cheaper or equally expensive in the market com-
pared to the exercise price written in the option contract, the
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TABLE 3.1: Four different positions are possible in plain-vanilla option

trading.

l seller/writer of option

l receiver of option price

l obligation upon request of option

holder to buy the asset

l payoff:

l buyer/holder of option

l payer of option price

l option to sell the asset

l payoff:

PUT

l seller/writer of option

l receiver of option price

l obligation upon request of option

holder to deliver the asset

l payoff:

l buyer/holder of option

l payer of option price 

l option to buy the asset

l payoff:

CALL

SHORTLONG

T
A

T
A

T
A

T
A

F F

FF

)0,max( FAT −

)0,max( TAF −

)0,min( TAF −

)0,min( FAT −
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option holder will not exercise the option. In this case, the con-
tract was good for nothing and the price of the option is the
investor’s loss.

Both cases can be summarized in the payoff function of the option,
which, in the case of a European call with strike F , is given by

π : R → R, AT 7→ π(AT ) = max(AT − F, 0) .

There are altogether four positions in option trading with calls and
puts: long call, short call, long put, and short put. Table 3.1 summa-
rizes these four positions and payoffs, clearly showing that for a fixed
type of option the payoff of the seller is the reverse of the payoff of the
buyer of the option. Note that in the table we have neglected the price
of the option, which would shift the payoff diagram along the y-axis,
namely into the negative for long positions (because the option price
has to be paid) and into the positive for short positions (because the
option price will be received as a compensation for writing the option).

It is interesting to mention that long positions have a limited down-
side risk, because the option buyer’s worst case is that the money in-
vested in the option is lost in total. The good news for option buyers
is the unlimited upside chance. Correspondingly, option writers have
an unlimited downside risk. Moreover, the best case for option writers
is that the option holder does not exercise the option. In this case the
option price is the net profit of the option writer.

At first glance surprising, European calls and puts are related by
means of a formula called the put-call parity.

3.2.2 Proposition Let C0 respectively P0 denote the price of a Eu-
ropean call respectively put option with strike F , maturity T , and
underlying asset A. The risk-free rate is denoted by r. Then,

C0 + Fe−rT = P0 +A0 .

This formula is called the put-call parity, connecting puts and calls.

Proof. For proving the proposition we compare two portfolios:

• a long call plus some investment Fe−rt in the risk-free bond;
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• a long put plus an investment of one share in asset A.

According to Proposition 3.2.1 we only have to show that the two
portfolios have the same value at time t = T , because then their values
at time t = 0 must also agree due to the no-arbitrage principle. We
calculate their values at maturity T . There are two possible cases:

AT ≤ F : In this case the call option will not be exercised such that
the value of the call is zero. The investment Fe−rT in the bond at
time t = 0 will payout exactly the amount F at t = T , such that the
value of the first portfolio is F . But the value of the second portfolio
is also F , because exercising the put will yield a payout of F − AT ,
and adding the value of the asset A at t = T gives a total pay out of
F −AT +AT = F .

AT > F : In the same manner as in the first case one can verify that
now the value of the first and second portfolio equals AT .

Altogether the values of the two portfolios at t = T agree. 2

The put-call parity only holds for European options, although it is
possible to establish some relationships between American calls and
puts for a nondividend-paying stock as underlying.

Regarding call options we will now show that it is never optimal to
exercise an American call option on a nondividend-paying stock before
the final maturity of the option.

3.2.3 Proposition The price of a European and an American call op-
tion are equal if they are written w.r.t. the same underlying, maturity,
and strike price.

Proof. Again we consider two portfolios:

• one American call option plus some cash amount of size Fe−rT ;

• one share of the underlying asset A.

The value of the cash account at maturity is F . If we forced a payout
of cash before expiration of the option, say at time t, then the value of
the cash account would be Fe−r(T−t). Because American options can
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be exercised at any time before maturity, we can exercise the call in
portfolio one in order to obtain a portfolio value of

At − F + Fe−r(T−t) < At for t < T .

Therefore, if the call option is exercised before the expiration date,
the second portfolio will in all cases be of greater value than the first
portfolio. If the call option is treated like a European option by exer-
cising it at maturity T , then the value of the option is max(AT −F, 0),
such that the total value of the first portfolio equals max(AT , F ). This
shows that an American call option on a nondividend-paying stock
never should be exercised before the expiration date. 2

In 1973 Fischer Black and Myron Scholes found a first analytical
solution for the valuation of options. Their method is not too far from
the method we used in Propositions 3.2.1 and 3.2.2: By constructing a
riskless portfolio consisting of a combination of calls and shares of some
underlying stock, an application of the no-arbitrage principle etablished
an analytical price formula for European call options on shares of a
stock. The pricing formula depends on five parameters:

• the share or asset price A0 as of today;

• the volatility σA of the underlying asset A;

• the strike price F of the option;

• the time to maturity T of the option;

• the risk-free interest rate r > 0.

Here we should mention that a key concept leading to the option pric-
ing formulas presented below is the so-called risk-neutral valuation. In a
world where all investors are risk-neutral, all securities earn the risk-free
rate. This is the reason why the Black-Scholes formulas do not depend
on the drift µA of (At)t≥0. In an arbitrage-free complete market, arbi-
trage prices of contingent claims equal their discounted expected values
under the risk-neutral martingale measure. Because we will just apply
the option pricing formulas without being bothered about their deeper
mathematical context, we refer to the literature for further reading.
A comprehensive treatment of the mathematical theory of risk-neutral
valuation is the book by Bingham and Kiesel [17].

The pricing formula for European calls is then given by
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3.2.4 Proposition The Black-Scholes price of a European call option
with parameters (A0, σA, F, T, r) is given by

A0N [d1]− e−rTFN [d2], where

d1 =
log(A0/F ) + (r + σ2A/2)T

σA
√
T

,

d2 =
log(A0/F ) + (r − σ2A/2)T

σA
√
T

= d1 − σA
√
T .

As usual, N [·] denotes the cumulative standard normal distribution
function. In the sequel we write C0(A0, σA, F, T, r) to denote this price.

Proof. A proof can be found in the literature mentioned at the be-
ginning of this chapter. 2

Because the prices of a European and an American call option agree
due to Proposition 3.2.3, Proposition 3.2.4 also provides the pricing
formula for American calls on a nondividend-paying stock. For Euro-
pean put options, the pricing formula follows by an application of the
put-call parity.

3.2.5 Proposition The Black-Scholes price of a European put option
with parameters (A0, σA, F, T, r) is given by

e−rTFN [−d2]−A0N [−d1] , where

d1 =
log(A0/F ) + (r + σ2A/2)T

σA
√
T

,

d2 =
log(A0/F ) + (r − σ2A/2)T

σA
√
T

= d1 − σA
√
T .

In the sequel we write P0(A0, σA, F, T, r) to denote this price.

Proof. The put-call parity from Proposition 3.2.2 yields

P0(A0, σA, F, T, r) = C0(A0, σA, F, T, r) + Fe−rT −A0 .



162 An Introduction to Credit Risk Modeling

Evaluating the right side of the equation proves the proposition. 2

For American put option prices one has to rely on numerical methods,
because no closed-form analytic formula is known.

3.3 Merton’s Asset Value Model

In this chapter we describe the “classical” asset value model intro-
duced by Merton. As always we assume all involved random variables
to be defined on a suitable common probability space. Additionally
we make some typical economic assumptions. For example, we assume
that markets are frictionless with no taxes and without bankruptcy
costs. The no-arbitrage principle is assumed to hold. The complete
set of conditions necessary for the Merton model can be found in the
literature.

3.3.1 Capital Structure: Option-Theoretic Approach

Let’s say we consider a firm with risky assets A, such that its asset
value process (At)t≥0 follows a gBm. The basic assumption now is that
the firm is financed by means of a very simple capital structure, namely
one debt obligation and one type of equity. In this case one can write

A0 = E0 +D0 , (3.5)

where (Et)t≥0 is a gBm describing the evolution of equity of the firm,
and (Dt)t≥0 is some stochastic process describing the market value
of the debt obligation of the firm, which is assumed to have the cash
profile of a zero coupon bond with maturity T and interest-adjusted face
value F . By “interest-adjusted” we mean that F already includes some
accrued interest at a rate reflecting the borrowing company’s riskiness.
The cash profile of debt is then very simple to describe: Debt holders
pay a capital of D0 to the firm at time t = 0, and at time t = T they
receive an amount equal to F , where F includes the principal D0 plus
the just-mentioned interest payment compensating for the credit risk
associated with the credit deal. From the point of view of debt holders,
credit risk arises if and only if

P[AT < F ] > 0 ,
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TABLE 3.2: Credit protection by a suitable put option.

asset debt holder’s debt holder’s
value cash flows payout

t = 0 A0 −D0 (lend money) −D0 − P0

−P0 (purchase put)
t = T AT < F AT (recovery) F

F −AT (apply put)
t = T AT ≥ F F (receive face value) F

0

meaning that with positive probability the value of the borrowing com-
pany’s assets at the debt’s maturity is not sufficient for covering the
payment F to debt holders. In case this default probability is greater
than zero, one immediately can conclude that

D0 < Fe−rT ,

where r denotes the risk-free interest rate. This inequality must hold
because debt holders want some compensation for the credit respec-
tively default risk of its obligor. Such a risk premium can be charged
implicitly by means of discounting the face value F at a rate higher
than the risk-free rate. The payout of debt to the obligor at time t = 0
will then be smaller the more risky the obligor’s business is.

A typical strategy of debt holders (e.g., a lending bank) is the at-
tempt to neutralize the credit risk by purchasing some kind of credit
protection. In our case a successful strategy is to buy a suitable deriva-
tive. For this purpose, debt holders take a long position in a put option
on A with strike F and maturity T ; see also Figure 3.1. Table 3.2 shows
that purchasing the put option guarantees credit protection against the
default risk of the borrowing company, because at the maturity date
t = T the debt holder’s payout equals F no matter if the obligor de-
faults or not. Therefore, the credit risk of the loan is neutralized and
completely hedged. In other words, buying the put transforms the
risky corporate loan3 into a riskless bullet loan with face value F . This
brings us to an important conclusion: Taking the hedge into account,
the portfolio of debt holders consists of a put option and a loan. Its
value at time t = 0 is D0 + P0(A0, σA, F, T, r). The risk-free payout of

3Which will be a bond in most cases.
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asset

value AT
F = face value + Interest
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at default

full repayment+interest

at survival

risk position of debt holders:

payoff like a short put with

strike F and maturity T
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A
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long put with

- underlying AT

- strike price F

- maturity T

purchasing a derivative

neutralizing default risk

FIGURE 3.1: Hedging default risk by a long put.

this portfolio at time t = T is F . Because we assumed the no-arbitrage
principle to hold, the payout of the portfolio has to be discounted to
its present value at the risk-free rate r. This implies

D0 + P0(A0, σA, F, T, r) = Fe−rT ,

so that the present value of debt,

D0 = Fe−rT − P0(A0, σA, F, T, r) , (3.6)

is the present value of the face value F discounted at the risk-free rate
r corrected by the price for hedging the credit risk by means of a put
option.

3.3.1 Corollary [Option-theoretic interpretation of debt]
From the company’s point of view, the debt obligation can be described
by taking a long position in a put option. From the debt holder’s point
of view, the debt obligation can be described by writing a put option
to the company.

Proof. Using the notation above, at time t = T the company has to
pay debt back to debt holders. This yields a cash flow

max(F −AT , 0)︸ ︷︷ ︸
long put payoff

−F
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from the company’s point of view. From the debt holder’s point of
view, the cash flow can be written as

F +min(AT − F, 0)︸ ︷︷ ︸
short put payoff

units of money at time t = T . 2

So we have found an interpretation of one component of the capital
structure of the company in terms of options. But the other compo-
nent, equity, can also be embedded in an option-theoretic concept: The
equity or share holders of the firm have the right to liquidate the firm,
i.e., paying off the debt and taking over the remaining assets. Let’s say
equity holders decide to liquidate the firm at the maturity date T of
the debt obligation. There are two possible scenarios:

• AT < F :
This is the default case, where the asset value at maturity is not
sufficiently high for paying back debt holders in full. There are
no assets left that could be taken over by the equity holders, such
that their payoff is zero.

• AT ≥ F :
In this case, there is a net profit to equity holders of AT −F after
paying back the debt.

Summarizing both cases we see that the total payoff to equity holders
is max(AT − F, 0), which is the payoff of a European call option on A
with strike F and maturity T ; see Table 3.1. Due to Proposition 3.2.1
the present value of equity therefore is given by

E0 = C0(A0, σA, F, T, r) . (3.7)

We conclude as follows:

3.3.2 Corollary [Option-theoretic interpretation of equity]
From the company’s point of view, equity can be described by selling
a call option to equity holders. Consequently, the position of equity
holders is a long call on the firm’s asset values.



166 An Introduction to Credit Risk Modeling

Proof. The proof follows from the discussion above. 2

Combining (3.5) with Conclusions (3.6) and (3.7) we obtain

A0 = E0 +D0 = C0(A0, σA, F, T, r) + Fe−rT − P0(A0, σA, F, T, r) .

Rearranging, we get

A0 + P0(A0, σA, F, T, r) = C0(A0, σA, F, T, r) + Fe−rT ,

which is nothing but the put-call parity we proved in Proposition 3.2.2.

Note that Conclusion 3.3.2 will not be harmed if one allows equity
holders to exercise the option before the maturity T . As a justification
recall Proposition 3.2.3, saying that the price of a call option is the
same no matter if it is European or American.

Our discussion also shows that equity and debt holders have contrary
risk preferences. To be more explicit, consider

C0(A0, σA, F, T, r) = A0 − Fe−rT + P0(A0, σA, F, T, r) .

As can be found in the literature, increasing the riskiness of the in-
vestment by choosing some asset A with higher volatility σA will also
increase the option premium C0 and P0 of the call and put options.
Therefore, increased volatility (higher risk) is

• good for equity holders, because their natural risk position is
a long call, and the value of the call increases with increasing
volatility;

• bad for debt holders, because their natural risk position4 is a
short put, whose value decreases with increasing volatility.

Note the unsymmetry in the position of equity holders: Their downside
risk is limited, because they can not lose more than their invested
capital. In contrast, their upside potential is unlimited. The better the
firm performs, the higher the value of the firm’s assets, the higher the
remaining of assets after a repayment of debt in case the equity holders
liquidate the firm.

4Which could only be neutralized by a long put.
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3.3.2 Asset from Equity Values

The general problem with asset value models is that asset value pro-
cesses are not observable. Instead, what people see every day in the
stock markets are equity values. So the big question is how asset val-
ues can be derived from market data like equity processes. Admittedly,
this is a very difficult question. We therefore approach the problem
from two sides. In this section we introduce the classical concept of
Merton, saying how one could solve the problem in principle. In the
next section we then show a way how the problem can be tackled in
practice. We follow the lines of a paper by Nickell, Perraudin and
Varotto [146]. In fact, there are certainly more working approaches
for the construction of asset values from market data. For example,
in their published papers (see, e.g., Crosbie [36]) Moody’s KMV in-
corporates the classical Merton model, but it is well known that in
their commercial software (see Section 1.2.3) they have implemented a
different, more complicated, and undisclosed algorithm for translating
equity into asset values.

The classical approach is as follows: The process of a firm’s equity
is observable in the market and is given by the company’s market cap-
italization, defined by

[number of shares] × [value of one share] .

Also observable from market data is the volatility σE of the firm’s equity
process. Additional information we can get is the book value of the
firm’s liabilities. From these three sources,

• equity value of the firm,

• volatility of the firm’s equity process, and

• book value of the firm’s liabilities,

we now want to infer the asset value process (At)t≥0 (as of today).
Once more we want to remark that the following is more a “schoolbook
model” than a working approach. In contrast, the next paragraph will
show a more applicable solution.

Let us assume we consider a firm with the same simple capital struc-
ture5 as introduced in (3.5). From Conclusion 3.3.2 we already know

5Actually it is in part due to the assumption of a simple capital structure that the
classical Merton model is not really applicable in practice.
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that the firm’s equity can be seen as a call option on the firm’s assets,
written by the firm to the equity or share holders of the firm. The
strike price F is determined by the book value of the firm’s liabilities,
and the maturity T is set to the considered planning horizon, e.g., one
year. According to (3.7) this option-theoretic intepretation of equity
yields the functional relation

Et = Ct(At, σA, F, (T − t), r) (t ∈ [0, T ]) (3.8)

This functional relation can be locally inverted, due to the implicit
function theorem, in order to solve (3.8) for At. Therefore, the asset
value of the firm can be calculated as a function of the firm’s equity
and the parameters F, t, T, r, and the asset volatility σA. If, as we
already remarked, asset value processes are not observable, the asset
volatility also is not observable. It therefore remains to determine the
asset volatility σA in order to obtain At from (3.8).

Here, we actually need some insights from stochastic calculus, such
that for a brief moment we are now forced to use results for which an
exact and complete explanation is beyond the scope of the book. How-
ever, in the next section we will provide some “heuristic” background
on pathwise stochastic integrals, such that at least some open questions
will be answered later on. As always we assume for the sequel that
all random variables respectively processes are defined on a suitable
common probability space.

Recall that we assumed that the asset value process (At)t≥0 is as-
sumed to evolve like a geometric Brownian motion (see Section 3.2.1),
meaning that A solves the stochastic differential equation

At −A0 = µA

t∫

0

As ds+ σA

t∫

0

As dB
(A)
s .

Following almost literally the arguments in Merton’s approach, we as-
sume for the equity of the firm that (Et)t≥0 solves the stochastic dif-
ferential equation

Et − E0 =

t∫

0

µE(s)Es ds+

t∫

0

σE(s)Es dB
(E)
s . (3.9)
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Here, (B
(A)
t )t≥0 and (B

(E)
t )t≥0 denote standard Brownian motions. Ap-

plying Itô’ s lemma to the function6

f(t, At) = Ct(At, σA, F, (T − t), r)

and comparing7 the martingale part of the resulting equation with the
martingale part of Equation (3.9) yield in informal differential notation

σEEtdB
(E)
t = f2(t, At)σAAtdB

(A)
t , (3.10)

where f2(· , ·) denotes the partial derivative w.r.t. the second com-
ponent. But the coefficients of stochastic differential equations are
uniquely determined, such that from (3.10) we can conclude

σE
σA

=
Atf2(t, At)

Et
. (3.11)

Solving (3.11) for σA and inserting the solution into Equation (3.8)
yields At for t ∈ [0, T ].

This concludes our discussion of the classical Merton model. We
now proceed to a more mathematical as well as more applicable ap-
proach. For this purpose, we explicitely define the stochastic integral
for a specific class of integrands in Section 3.4.1. Then, in Section 3.4.2,
we present a more accurate derivation of the Black-Scholes partial dif-
ferential equation due to Duffie [46]. Additionally, we introduce a
boundary condition going back to Perraudin et al. [146] which spec-
ifies a reasonable relation between asset values and equities.

3.4 Transforming Equity into Asset Values: A Working
Approach

Let us begin with a few words on pathwise Itô Calculus (see Revuz

and Yor [159], and Foellmer [63]). The following treatment is rather
self-contained because no difficult prerequisites from measure theory
are required. Unfortunately, the pathwise calculus is only valid for a
specific type of trading strategies, as we will later see.

6We refer to the literature for checking that the conditions necessary for applying
Itô’ s lemma are satisfied in our case.
7Such a comparison is justified, because the components of so-called Itô processes

are uniquely determined.
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3.4.1 Itô’ s Formula “Light”

In this paragraph we want to establish the existence of a pathwise
stochastic integral by an argument based on elementary calculus, thereby
avoiding the usual requirements from measure theory.

Let ω be a real-valued continuous function of time t with finite
quadratic variation

〈
ω
〉
, and F ∈ C 2. Denoting by Zn a sequence of

partitions of the interval [0, t) with mesh(Zn) → 0, a Taylor expansion
up to second order yields

F (ωt)− F (ω0) = lim
n→∞

( ∑

(ti)∈Zt
n

F ′(ωti)(ωti+1 − ωti) (3.12)

+
∑

(ti)∈Zt
n

1

2
F ′′(ωti)(ωti+1 − ωti)

2 + o
(
(∆ω)2

) )
.

From the existence of the quadratic variation of ω we conclude that the
second term in (3.12) converges to

1

2

∫ t

0
F ′′(ωs)d

〈
ω
〉
s
.

Hence the limit of the first term in (3.12) also exists. It is denoted by

∫ t

0
F ′(ωs)dωs

and called a stochastic integral. In this context, the Itô formula is just
a by-product of the Taylor expansion (3.12), and can be obtained by
writing (3.12) in the limit form

F (ωt)− F (ω0) =

∫ t

0
F ′(ωs)dωs +

1

2

∫ t

0
F ′′(ωs)d

〈
ω
〉
s
. (3.13)

The just-derived stochastic integral can be interpreted in terms of trad-
ing gains. The discrete approximation

∑

ti∈Zt
n

F ′(ωti)(ωti+1 − ωti)

of the stochastic integral is the gain of the following trading strategy:

Buy F ′(ωti) shares of a financial instrument with value ωt at time ti.
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The gain over the time interval [ti, ti+1) then equals

F ′(ωti)(ωti+1 − ωti) .

The stochastic integral is just the limit of the sum over all these trad-
ing gains in the interval [0, t). From these observations it becomes
also clear why the stochastic integral as introduced above sometimes
is called non-anticipating. This terminology just refers to the fact that
the investment took place at the beginning of the intervals [ti, ti+1).

For a thorough introduction to the stochastic integral in the more
general measure-theoretic setting we refer to the literature mentioned
at the beginning of this chapter. However, the intuitive interpretation
of the stochastic integral as the gain of a (non-anticipating) trading
strategy and the basic structure of the Itô formula remain both valid
in the measure-theoretic approach.

3.4.2 Black-Scholes Partial Differential Equation

In this paragraph we follow the approach outlined in Duffie [46]. As
in the previous paragraphs, we assume that the asset value process A =
(At)t≥0 follows a geometric Brownian motion driven by some Brownian
motion B. But this time we include dividend payments, such that A is
the solution of the stochastic differential equation

At −A0 =

∫ t

0
(µAAs − CA,s)ds + σA

∫ t

0
AsdBs , (3.14)

where CA,s is the dividend paid by the firm at time s. In the literature
the following, more intuitive differential notation of (3.14) is also used

dAt = (µAAt − CA,t)dt+ σAAtdBt .

In previous paragraphs the capital structure of the considered firm
contained one debt obligation. Here we assume that the market value
of debt Dt at time t is just a nonstochastic exponential function,

Ds = D0e
µDs .

By Itô’ s formula (3.13), any process (Et)t≥0 represented by a smooth
function E(x, y, t) applied to the processes A and D,

Et = E(At,Dt, t), E ∈ C 2,1,1,
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solves the integral equation

Et − E0 =

∫ t

0
[∂tE(As,Ds, s) + (µAAs − CA,s)∂xE(As,Ds, s)

+ µDDs∂yE(As,Ds, s) +
1

2
σ2AA

2
s∂xxE(As,Ds, s)]ds

+ σA

∫ t

0
As∂xE(As,Ds, s)dBs .

We now want to construct a so-called self-financing trading strategy
(ηt, θt) such that

• ηtAt + θtKt = Et

• Kt = ert,

where Kt denotes the value of a risk-free investment (e.g., some trea-
sury bond) earning interest at the risk-free rate r. The attribute self-
financing means that the value of the portfolio, at time t consisting
of ηt shares of A and θt shares of K, has a value equal to the initial
investment plus trading gains. More explicitly,

ηtAt + θtKt = η0A0 + θ0K0 + (3.15)

+

∫ t

0
ηsdAs +

∫ t

0
ηsCA,sds+

∫ t

0
θsdKs .

The assumption that there is a self-financing strategy8 that perfectly
replicates Et then leads to

∫ t

0
[ηsµAAs + θsKsr]ds+

∫ t

0
ηsσAAsdBs = (3.16)

=

∫ t

0
[∂tE(As,Ds, s) + (µAAs − CA,s)∂xE(As,Ds, s)

8A straightforward application of Itô’ s formula would imply that

ηtAt − η0A0 =

∫ t

0

Asdηs +

∫ t

0

ηsdAs+ <η,A>t .

This result would not lead to the Black-Scholes PDE. “Self-financing” therefore is
essential from a mathematical point of view.
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+ µDDs∂yE(As,Ds, s) +
1

2
σ2AA

2
s∂xxE(As,Ds, s)]ds

+ σA

∫ t

0
∂xE(As,Ds, s)AsdBs . (3.17)

The unique decomposition of an Itô process into a stochastic integral
with respect to B and a drift leads to

ηt = ∂xE(At,Dt, t)

taking (3.16) and (3.17) into account. Since the trading strategy repli-
cates Et we necessarily have

θt =
1

Kt
[Et − ∂xE(At,Dt, t)At] .

The comparison of the coefficient of dt implies the equation

0 = ∂tE(As,Ds, s) + (rAs − CA,s)∂xE(As,Ds, s) (3.18)

+ µDDs∂yE(As,Ds, s) +
1

2
σ2AA

2
s∂xxE(As,Ds, s)− rEs .

As in Nickell, Perraudin and Varotto [146], let us now specify
the dividend by CA,s = δAs. Then, E solves Equation (3.18) if it solves
the partial differential equation

0 = ∂tE(x, y, s) + (rx− δx)∂xE(x, y, s) + µDDs∂yE(x, y, s) (3.19)

+
1

2
σ2Ax

2∂xxE(x, y, s)− rE(x, y, s) .

For δ = 0 and D0 = 0, the last equation becomes the celebrated Black-
Scholes formula. It should be clear that we have to specify boundary
conditions for (3.19).

As a first approach, let us assume that the firm has an earnings flow
δ(A −D), which entails ∂tE = δ(A −D), and hence, Equation (3.19)
becomes an ordinary differential equation.

Analogous to the lines in [146] we now assume that the firm is de-
clared to be in bankruptcy as soon as the ratio of assets to liabilities
At/Dt hits some low level for the very first time. We call this critical
threshold γ and assume the equity-holders to receive no money in case
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of a bankruptcy settlement. Then, the value of the firm’s equity, E, sat-
isfies the differential equation (3.19) subject to the following boundary
conditions:

E(A,D)|A/D=γ = 0 and lim
A/D→∞

E(A,D) = A− δ

r
D .

For some background on differential equations, refer to [195].
Now let us present the solution of (3.19) under these boundary con-

ditions. It is given by

E(A,D) = D
[A
D

− δ

r − µD
−
(
γ − δ

r − µD

)(A/D
γ

)λ]
, (3.20)

where λ is defined in dependence on σA by

λ = λ(σA) =

=
1

σ2A

[(σ2A
2

+ δ + µD − r

)
−
√

(r − σ2A
2

− δ − µD)2 + 2σ2A(r − µD)
]
.

In this model, the level of the bankruptcy trigger γ is chosen by the
equity holders, since the firm will continue to operate until equity hold-
ers are unwilling to absorb more than the already occurred losses.
The threshold γ therefore is determined by the first order condition
∂γE = 0, from which it follows that

γ =
λ

λ− 1

δ

r − µD
.

Figure 3.2 shows the asset-equity relation from Equation (3.20) for
some parameter sets.

Now, if A were an observable variable and σA were known, E would
be specified by (3.20). But in “option terminology” we observe the
price of an option, namely the equity price. Therefore, we can only
estimate the volatility of the changes in the price of the option. From
this we have to find the value of the underlying instrument A and its
volatility σA. This means for determining A and σA we need a second
equation. Since E is an Itô process, its quadratic variation

〈
E
〉
can be

read off from Equation (3.17) as

〈
E
〉
t
=

∫ t

0
σ2E,sds = σ2A

∫ t

0
A2

s [∂xE(As,Ds, s)]
2 ds . (3.21)
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FIGURE 3.2: Asset-Equity relation, Equation (3.20), for parameter
sets (δ, r, γ, µ, σA) and D = 1: (-) solid (0.1, 0.05, 1, 0.0, 0.1), (–) dashed
(0.1, 0.05, 1, 0.03, 0.1), (-.) dashed-dotted (0.0, 0.05, 1, 0.03, 0.1).
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Therefore A and σA have to solve the two equations (3.19 and 3.21),
which are strictly speaking pathwise equations, since E has a stochastic
volatility. Nevertheless Equation (3.21) can be replaced by

σ2E,t = σ2AA
2
t [∂xE(At,Dt)]

2 .

Let us define

E′(A,D, σA) = ∂xE(A,D, σA) (3.22)

= 1−D
(
γ − δ

r − µD

)( 1

Dγ

)λ(σA)
λ(σA)A

λ(σA)−1 .

If we observe E at time t and know the estimate σE,t for the equity
volatility, then A and σA have to solve the equations

E = D

[
A

D
− δ

r − µD
−
(
γ − δ

r − µD

)(
A/D

γ

)λ(σA)
]

(3.23)

σE,t = σAA

[
1−D

(
γ − δ

r − µD

)(
1

Dγ

)λ(σA)

λ(σA)A
λ(σA)−1

]
.

(3.24)
As a further simplification it is often assumed that E locally evolves
like a geometric Brownian motion, which leads to σE,t = σEE for some
σE .

In the implementation one usually starts with some σA = σ0A. For ex-
ample, the equity volatility is used to generate two time series (As)s≥0

and (Es)s≥0. Then, the volatility of E is estimated, and the param-
eter σ1A is adjusted to a higher or lower level, trying to best match
the estimated volatility of E with the observed equity volatility. One
proceeds that way until the σnE , implied by σnA, is close to the observed
σE . Observe also that the set of equations (3.23) and (3.24) can be
generalized to any contingent claim approach for the asset values, once
a functional relationship E = E(A,D, σA, t) is specified between assets
A, debt D, and equity E. Conceptually, they look like

E = E(A,D, σA) , σEE = σAAE
′(A,D, σA) .

This concludes our discussion of asset value models.
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Further Reading

In the classical Merton approach to credit risk the default can only
occur at the debt’s maturity and the firm’s default probability is the
likelihood that the firm’s asset value at maturity is below the face
value of the debt. Several authors extended this simplistic approach by
defining the default as the first time the asset value falls below a (pos-
sibly stochastic) barrier, which leads to the so-called first-passage-time
models, Black and Cox [18] and Zhou [194]. Similar to Black and
Cox, Leland [121] and Leland and Toft [123] use first-passage-time
models to investigate the optimal capital structure by maximizing the
equity value. Default risk together with interest rate risk is treated in
Longstaff and Schwartz [122]. An important aspect of the struc-
tural approach is that it allows to formulate a link between equity
correlations, asset-value correlations and default correlations, see, e.g.,
Zhou [194], Frey and McNeil [68] and Giesecke [77, 78].





Chapter 4

The CreditRisk+ Model

In Section 2.4.2 we already described the CreditRisk+ model as a Pois-
sonian mixture with gamma-distributed random intensities for each
sector. In this section we will explain CreditRisk+ in some greater
detail. The justification for another and more exhaustive chapter on
CreditRisk+ is its broad acceptance by many credit risk managing in-
stitutes. Even in the new Capital Accord (some references regarding
the Basel II approach are Gordy [84], Wilde [187], and the IRB con-
sultative document [148]), CreditRisk+ was originally applied for the
calibration of the so-called granularity adjustment in the context of
the Internal Ratings-based Approach (IRB) of regulatory capital risk
weights. The popularity of CreditRisk+ has two major reasons:

• It seems easier to calibrate data to the model than is the case for
multi-factor asset value models. Here we intentionally said “it
seems” because from our point of view the calibration of bank-
internal credit data to a multi-sector model is in general neither
easier nor more difficult than the calibration of a multi-factor
model on which an asset value model can be based.

• The second and maybe most important reason for the popularity
of CreditRisk+ is its closed-form loss distribution. Using prob-
ability generating functions, the CreditRisk+ model offers (even
in case of more than one sector) a full analytic description of the
portfolio loss of any given credit portfolio. This enables users
of CreditRisk+ to compute loss distributions in a quick and still
“exact” manner. For many applications of credit risk models, this
is a “nice-to-have” feature, e.g., in pricing or ABS structuring.

Before going into the details of the CreditRisk+ model, we like to
present a quotation from the CreditRisk+ Technical Document [35] on
page 8. There we find that

CreditRisk+ focuses on modeling and managing credit default risk.

179
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In other words, CreditRisk+ helps to quantify the potential risk of
defaults and resulting losses in terms of exposure in a given portfolio.
Although it incorporates a term structure of default rates (more ex-
plicitly yearly marginal default rates) for implementing multi-year loss
distributions (see [35], A5.2), it is not an appropriate choice if one is
interested in a mark-to-market model of credit risk.

4.1 The Modeling Framework of CreditRisk+

Crucial in CreditRisk+ is the use of probability-generating func-
tions1. Recall that the generating function of a Poisson random variable
L′ with intensity λ is given by

G(z) =

∞∑

k=0

P[L′ = k] zk = e−λ
∞∑

k=0

λk

k!
zk = eλ(z−1) . (4.1)

In order to reduce the computational effort, CreditRisk+ groups the
individual exposures of the obligors in a considered portfolio into ex-
posure bands. This is done as follows:

Choose an exposure unit amount E. Analogously to Chapter 1, de-
note for any obligor i its Expected Loss by ELi, its Exposure At Default
by EADi, and its Loss Given Default by LGDi. The exposure that is
subject to be lost after an obligor’s default is then

Ei = EADi × LGDi , (4.2)

assuming a nonrandom LGD. The exposure νi respectively the Ex-
pected Loss εi of obligor i in multiples of the exposure unit E is given
by

νi =
Ei

E
, εi =

ELi

E
.

1In probability theory there are three concepts of translating a probability distribu-
tion into a functional context, namely the Fourier transform, the Laplace transform

(which is in case of distributions on R
d
+ often more convenient), and the probability-

generating function (often preferably used for distributions on Z+). The latter is
defined by the function z 7→ E[zX ] for a random variable X. Regarding basic prop-
erties of generating functions we refer to Section 2.8.1.
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From this point on, CreditRisk+ “forgets” the exact exposures from
the original portfolio and uses an approximation by means of exposure
bands by rounding the exposures νi to the nearest integer number. In
other words, every exposure Ei is replaced by the closest integer mul-
tiple of the unit exposure E. Already one can see that an appropriate
choice of E is essential in order to end up at an approximation that is
on one hand “close” enough to the original exposure distribution of the
portfolio in order to obtain a loss distribution applicable to the origi-
nal portfolio, and on the other hand efficient enough to really partition
the portfolio into mE exposure bands, such that mE is significantly
smaller than the original number of obligors m. An important “rule-
of-thumb” for making sure that not too much precision is lost is to at
least take care that the width of exposure bands is “small” compared
to the average exposure size in the portfolio. Under this rule, large
portfolios (containing many loans) should admit a good approximation
by exposure bands in the described manner.

In the sequel we write i ∈ [j] whenever obligor2 i is placed in the
exposure band j. After the exposure grouping process, we have a par-
tition of the portfolio into mE exposure bands, such that obligors in a
common band [j] have the common exposure ν[j]E, where ν[j] ∈ N0 is
the integer multiple of E representing all obligors i with

min{|νi − n| : n ∈ N0} = |νi − ν[j]|
where i = 1, ...,m; i ∈ [j]; j = 1, ...,mE .

In cases where νi is an odd-integer multiple of 0.5, the above minimum
is not uniquely defined. In such cases (which are obviously not very
likely) one has to make a decision, if an up- or down-rounding would
be appropriate. In the sequel we only consider ν[j] ∈ N, excluding 0.

Now let us discuss how to assign a default intensity to a given ex-
posure band. Because CreditRisk+ plays in a Poissonian world, every
obligor in the portfolio has its individual (one-year) default intensity λi,
which can be calibrated from the obligor’s one-year default probability
PDi by application of (2.12),

λi = − log(1− PDi) (i = 1, ...,m). (4.3)

2Here we make the simplifying assumption that the number of loans in the portfolio
equals the number of obligors involved. This can be achieved by aggregating different
loans of a single obligor into one loan. Usually the PD, EAD, and LGD of such an
aggregated loan are exposure-weighted average numbers.
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Because the expectation of L′
i ∼ Pois(λi) is E[L′

i] = λi, the expected
number of defaults in exposure band [j] (using the additivity of expec-
tations) is given by

λ[j] =
∑

i∈[j]
λi . (4.4)

The Expected Loss in band [j] will be denoted by ε[j] and is calculated
by multiplying the expected number of defaults in band [j] with the
band’s exposure,

ε[j] = λ[j]ν[j] . (4.5)

Here, the CreditRisk+ Technical Document suggests making an adjust-
ment of the default intensities λi (which so far have not been affected
by the exposure band approximation process) in order to preserve the
original value of the obligor’s Expected Losses. This could be done by
defining an adjustment factor γi for every obligor i by

γi =
Ei

ν[j]E
(i ∈ [j], j = 1, ...,mE) . (4.6)

Replacing for every obligor i the original default intensity λi by γiλi
with γi as defined in (4.6) preserves the original ELs after approximat-
ing the portfolio’s exposure distribution by a partition into exposure
bands. In the following we assume without loss of generality that the
default intensities λi already include the adjustment (4.6). From (4.4)
respectively (4.5) it is straightforward to write down the portfolio’s
expected number of default events (respectively the portfolio’s overall
default intensity), namely

λPF =

mE∑

j=1

λ[j] =

mE∑

j=1

ε[j]

ν[j]
. (4.7)

After these preparations we are now ready to describe the construction
of the CreditRisk+ loss distribution. We will proceed in two steps,
starting with a portfolio of independent obligors and then mixing the
involved Poisson distributions by means of a sector model as indicated
in Section 2.4.2.
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4.2 Construction Step 1: Independent Obligors

We begin with a portfolio of m independent obligors whose default
risk is modeled by Poisson variables L′

i. As already mentioned in Sec-
tion 2.2.1, Poisson models allow for multiple defaults of a single obligor.
This is an unpleasant, but due to the small occurrence probability,
mostly ignored feature of all Poisson approaches to default risk.

Involving the (nonrandom) exposures Ei as defined in (4.2), we obtain
loss variables

EiL
′
i where L′

1 ∼ Pois(λ1) , ... , L
′
m ∼ Pois(λm) (4.8)

are independent Poisson random variables. Grouping the individual
exposures Ei into exposure bands [j] and assuming the intensities λi to
incorporate the adjustments by the factors γi as described in the intro-
duction, we obtain new loss variables ν[j]L

′
i, where losses are measured

in multiples of the exposure unit E. Because obligors are assumed to be
independent, the number of defaults L′ in the portfolio respectively L′

[j]
in exposure band j also follow a Poisson distribution, because the con-
volution of independent Poisson variables yields a Poisson distribution.
We obtain

L′
[j] =

∑

i∈[j]
L′
i ∼ Pois(λ[j]) , λ[j] =

∑

i∈[j]
λi , (4.9)

for the number of defaults in exposure band [j], j = 1, ...,mE , and

L′ =
mE∑

j=1

∑

i∈[j]
L′
i ∼ Pois

( mE∑

j=1

λ[j]

)
= Pois(λPF ) (4.10)

(see (4.7)), for the portfolio’s number of defaults. The corresponding
losses (counted in multiples of the exposure unit E) are given by

L̃′
[j] = ν[j]L

′
[j] respectively L̃′ =

mE∑

j=1

ν[j]L
′
[j] =

mE∑

j=1

L̃′
[j] . (4.11)

Due to grouping the exposures ν[j] ∈ N together, we can now conve-
niently describe the portfolio loss by the probability-generating func-
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tion of the random variable L̃′ defined in (4.11), applying the convolu-
tion theorem3 for generating functions,

GL̃′(z) =

mE∏

j=1

GL̃′
[j]
(z) =

mE∏

j=1

∞∑

k=0

P[L̃′
[j] = ν[j]k] z

ν[j]k (4.12)

=

mE∏

j=1

∞∑

k=0

P[L′
[j] = k] zν[j]k =

mE∏

j=1

∞∑

k=0

e−λ[j]
λk[j]

k!
zν[j]k

=

mE∏

j=1

e−λ[j]+λ[j]z
ν[j]

= exp
( mE∑

j=1

λ[j](z
ν[j] − 1)

)
.

So far we assumed independence among obligors and were rewarded by
the nice closed formula (4.12) for the generating function of the port-
folio loss. In the next section we drop the independence assumption,
but the nice feature of CreditRisk+ is that, nevertheless, it yields a
closed-form loss distribution, even in the case of correlated defaults.

4.3 Construction Step 2: Sector Model

A key concept of CreditRisk+ is sector analysis. The rationale un-
derlying sector analysis is that the volatility of the default intensity of
obligors can be related to the volatility of certain underlying factors
incorporating a common systematic source of credit risk. Associated
with every such background factor is a so-called sector, such that every
obligor i admits a breakdown into sector weights wis ≥ 0,

∑mS
s=1wis = 1,

expressing for every s = 1, ...,mS that sector s contributes with a frac-
tion wis to the default intensity of obligor i. Here mS denotes the num-
ber of involved sectors. Obviously the calibration of sectors and sector
weights is the crucial challenge in CreditRisk+. For example, sectors
could be constructed w.r.t. industries, countries, or rating classes.

3For independent variables, the generating function of their convolution equals the
product of the corresponding single generating functions.
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In order to approach the sector model of CreditRisk+ we rewrite
Equation (4.12):

GL̃′(z) = exp
( mE∑

j=1

λ[j](z
ν[j] − 1)

)
(4.13)

= exp
(
λPF

( mE∑

j=1

λ[j]

λPF
zν[j] − 1

))
,

where λPF is defined as in (4.7). Defining functions

GL′(z) = eλPF (z−1) and GN (z) =

mE∑

j=1

λ[j]

λPF
zν[j] , (4.14)

we see that the generating function of the portfolio loss variable L̃′ can
be written as

GL̃′(z) = GL′ ◦GN (z) = eλPF (GN (z)−1) . (4.15)

Therefore, the portfolio loss L̃′ has a so-called compound distribution,
essentially meaning that the randomness inherent in the portfolio loss is
due to the compound effect of two independent sources of randomness.
The first source of randomness arises from the uncertainty regarding
the number of defaults in the portfolio, captured by the Poisson random
variable L′ with intensity λPF defined in (4.10). The function GL′(z)
is the generating function of L′; recall (4.1). The second source of
randomness is due to the uncertainty about the exposure bands affected
by the L′ defaults. The function GN (z) is the generating function of a
random variable N taking values in {ν[1], ..., ν[mE ]} with distribution

P[N = ν[j]] =
λ[j]

λPF
(j = 1, ...,mE). (4.16)

For some more background on compound4 distributions, refer to the
literature. For example in [86] the reader will find theory as well as

4Compound distributions arise very naturally as follows: Assume X0, X1, X2, ... be
i.i.d. random variables with generating function GX . Let N ∈ N0 be a random
variable, e.g., N ∼ Pois(λ), independent of the sequence (Xi)i≥0. Denote the
generating function of N by GN . Then, the generating function of X1 + · · ·+XN is
given by G = GN ◦GX . In the case where the distribution of N is degenerate, e.g.,
P[N = n] = 1, we obtain GN (z) = zn and therefore G(z) = [GX(z)]n, confirming
the convolution theorem for generating functions in its most basic form.
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some interesting examples. Later on we will obtain the generating
function of sector losses in form of an equation that, conditional on the
sector’s default rate, replicates Equation (4.15).

Let us assume that we have parametrized our portfolio by means of
mS sectors. CreditRisk+ assumes that a gamma-distributed random
variable

Λ(s) ∼ Γ(αs, βs) (s = 1, ...,mS)

is assigned to every sector; see Figure 2.2 for an illustration of gamma
densities. The number of defaults in any sector s follows a gamma-
mixed Poisson distribution with random intensity Λ(s); see also Section
2.2.2. Hereby it is always assumed that the sector variables Λ(1), ...,Λ(mS )

are independent.

For a calibration of Λ(s) recall from (2.38) that the first and second
moment of Λ(s) are

E[Λ(s)] = αsβs, V[Λ(s)] = αsβ
2
s . (4.17)

We denote the expectation of the random intensity Λ(s) by λ(s). The

volatility of Λ(s) is denoted by σ(s). Altogether we have from (4.17)

λ(s) = αsβs, σ(s) =
√
αsβ2s . (4.18)

Knowing the values of λ(s) and σ(s) determines the parameters αs and

βs of the sector variable Λ(s).

For every sector we now follow the approach that has taken us to
Equation (4.15). More explicitly, we first find the generating function of
the number of defaults in sector s, then obtain the generating function
for the distribution of default events among the exposures in sector s,
and finally get the portfolio-loss-generating function as the product5 of
the compound sector-generating functions.

4.3.1 Sector Default Distribution

Fix a sector s. The defaults in all sectors are gamma-mixed Poisson.
Therefore, conditional on Λ(s) = θs the sector’s conditional generating
function is given by (4.1),

GL′
(s)
|Λ(s)=θs(z) = eθs(z−1) . (4.19)

5Recall that we assumed independence of sector variables.
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The unconditional generating function also is explicitly known, because
fortunately it is a standard fact from elementary statistics that gamma-
mixed Poisson variables follow a negative binomial distribution (see,
e.g., [160], 8.6.1.) The negative binomial distribution usually is taken
as a suitable model for a counting variable when it is known that the
variance of the counts is larger than the mean. Recalling our discussion
in Section 2.2.2 we know that the dispersion of Poisson variables is
equal to 1 due to the agreement of mean and variance. Mixing Poisson
variables with gamma distributions will always result in a distribution
with a conditional dispersion of 1 but unconditionally overdispersed.

At this point we make a brief detour in order to provide the reader
with some background knowledge on negative binomial distributions.
There are two major reasons justifying this. First, the negative bino-
mial distribution is probably not as well known to all readers as the
(standard) binomial distribution. Second, the negative binomial distri-
bution is differently defined in different textbooks. We therefore believe
that some clarification about our view might help to avoid misunder-
standings.

One approach to the negative binomial distribution (see, e.g., [86])
is as follows: Start with a sequence of independent Bernoulli default
indicatorsXi ∼ B(1; p). Let T be the waiting time until the first default
occurs, T = min{i ∈ N | Xi = 1}. We have

P[T = k] = P[T > k − 1]− P[T > k]

= (1− p)k−1 − (1− p)k = p(1− p)k−1.

Therefore, T has a geometric distribution. If more generally we ask
for the waiting time Tq until the q-th default occurs, then we obtain
the negative binomial distribution with parameters p and q. The mass
function of Tq obviously is given by

P[Tq = k] =

(
k − 1

q − 1

)
pq(1− p)k−q (k ≥ q). (4.20)

For q = 1 the negative binomial and the geometric distributions agree.
Moreover,

Tq =

q∑

i=1

T ′
i where T ′

1 = T1, T
′
i = Ti − Ti−1 for i = 2, ..., q, (4.21)
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where T ′
1, ..., T

′
q are independent geometric variables with parameter p.

For i ≥ 2 the variable T ′
i is the waiting time until the next default

following the (i − 1)-th default. Because the mean and the variance
of a geometric random variable T with parameter p are E[T ] = 1/p
respectively V[T ] = (1− p)/p2, (4.21) yields

E[Tq] =
q

p
and V[Tq] =

q(1− p)

p2
. (4.22)

The generating function of a geometric variable T with parameter p is

GT (z) =

∞∑

k=1

p(1− p)k−1zk =
pz

1− (1− p)z
(|z| < 1/(1 − p)).

Therefore the convolution theorem for generating functions immedi-
ately implies

GTq (z) =
( pz

1− (1− p)z

)q
(|z| < 1/(1 − p)). (4.23)

Application of the relation
(
x
k

)
= (−1)k

(
k−x−1

k

)
(x ∈ R, k ∈ N0) and

the symmetry property
(
n
m

)
=
(

n
n−m

)
yields

P[Tq = k] =

( −q
k − q

)
pq(p − 1)k−q ,

which explains the name negative binomial distribution.

So far, this is what many authors consider to be a negative binomial
distribution. Now, some people consider it a technical disadvantage
that the (according to our discussion above very naturally arising) neg-
ative binomial distribution ranges in {k ∈ N | k ≥ q}. For reasons also
applying to the situation in CreditRisk+ one would rather like to see Tq
ranging in N0. We can adopt this view by replacing Tq by T̃q = Tq − q,
again applying the symmetry property

(
n
m

)
=
(

n
n−m

)
, and substituting

n = k − q in Equation (4.20):

P[T̃q = n] = P[Tq = n+ q] (4.24)

=

(
n+ q − 1

n

)
pq(1− p)n (n ≥ 0).

The variable T̃q obviously describes the number of survivals until the
q-th default has occurred.
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Because CreditRisk+ requires it in this way, we from now on mean by
a negative binomial distribution with parameters q and p the distribu-
tion of T̃q defined by (4.24). It is well known (see, e.g., [160], 8.6.1) that
any Γ(α, β)-mixed Poisson variable L′ follows a negative binomial dis-
tribution with parameters α and 1/(1 + β). This concludes our detour
and we return to the actual topic of this section.

The conditional distribution of the sector defaults is given by (4.19).
The mixing variable is Λ(s) ∼ Γ(αs, βs). According to our discussion
above, the unconditional distribution of sector defaults (denoted by
L′
(s)) is negative binomial with parameters αs and 1/(1 +βs); in short:

L′
(s) ∼ NB(αs, 1/(1+βs)). We can now easily obtain the unconditional

generating function GL′
(s)
(z) = Gs(z) of the sector defaults by evalu-

ating Formula (4.23) with Tq replaced by T̃q = Tq − q and taking the
parametrization q = αs and p = 1/(1 + βs) into account. Replacing Tq
by T̃q = Tq − q changes (4.23) to

GT̃q
(z) =

( pz

1− (1− p)z

)q 1

zq
=
( p

1− (1− p)z

)q
.

Inserting q = αs and p = 1/(1 + βs) finally yields

GL′
(s)
(z) =

∫ ∞

0
[GL′

(s)
|Λ(s)=θs

](z) γαs ,βs(θs) dθs (4.25)

=

(
1− βs

1+βs

1− βs

1+βs
z

)αs

,

where γαs,βs denotes the density of Γ(αs, βs) and αs, βs are calibrated
to the sector by means of (4.18). We included the integral in the center
of (4.25) in order to explicitly mention the link to Section 2.2.1.

Formula (4.25) can be found in the CreditRisk+ Technical Docu-
ment [35] (A8.3, Equation (55)). The probability mass function of L′

(s)

follows from (4.24),

P[L′
(s) = n] =

(
n+ αs − 1

n

)(
1− βs

1 + βs

)αs
(

βs
1 + βs

)n
. (4.26)

The first and second moments of the distribution of defaults in sector s
directly follow from the general results on Poisson mixtures; see (2.15)
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in Section 2.2. They depend on the mixture distribution only and are
given by

E[L′
(s)] = E[Λ(s)] = αsβs and (4.27)

V[L′
(s)] = V[Λ(s)] + E[Λ(s)] = αsβs(1 + βs)

(see also (4.17)), hereby confirming our previous remark that the un-
conditional distribution of sector defaults is overdispersed. In (4.28)
we see that we always have βs ≥ 0 and that βs > 0 if and only if
the volatility of the sector’s default intensity does not vanish to zero.
Figure 2.7 in Section 2.5.2 graphically illustrates (4.26).

Alternatively, the first and second moments of L′
(s) could have been

calculated by application of (4.22), taking the shift Tq → Tq − q and
the parametrization of q and p into account. It is a straightforward
calculation to show that the result of such a calculation agrees with
the findings in (4.27).

4.3.2 Sector Compound Distribution

As a preparation for the compound approach on the sector level we
begin this section with a remark regarding the calibration of αs and βs.
Solving Equations (4.18) for αs and βs gives us the mixing parameters
in terms of the sector parameters λ(s) and σ(s):

αs =
λ2(s)

σ2(s)
and βs =

σ2(s)

λ(s)
. (4.28)

Most often λ(s) and σ(s) will be calibrated from obligor data. As al-
ready mentioned before, in the sector model every obligor i admits a
breakdown into sector weights wis such that

mS∑

s=1

wis = 1 (wis ≥ 0; i = 1, ...,m).

Moreover, any obligor i admits a random default intensity defined by

Λi =

mS∑

s=1

wisλi
Λ(s)

λ(s)
(i = 1, ...,m). (4.29)

The expected intensity then obviously equals λi, which is consistent
with the case of independent obligors where λi denoted the nonran-
dom default intensity of obligor i. The expected intensities λi can be
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calibrated to one-year default probabilities by application of Formula
(4.3). Due to the additivity of expectations it is then very natural to
define the expected sector intensity λ(s) by

λ(s) =
m∑

i=1

wisλi =

mE∑

j=1

∑

i∈[j]
wisλi , (4.30)

where the right side expresses the grouping into exposure bands. Note
that an exposure band j takes part in sector s if and only if there exists
some obligor i ∈ [j] such that wis > 0. The sector volatility σ(s) can be
either calibrated from empirical data related to the meaning of sector
s or calculated from the single obligor’s default intensity volatilities.
An example for the first case would be an industry sector, where the
volatility of a historical time series of insolvency quotes for that par-
ticular industry could be taken as a proxy for σ(s). An example for the
latter case would be a portfolio where, in addition to the default rate,
the default rate volatility is also known for every obligor. Such esti-
mates usually depend on the creditworthiness of obligors. For example,
denoting the default rate volatility for obligor i by σi and assuming that
the sectors perform a partition of the portfolio’s set of obligors (more
explicitly: wis = 1 for a unique sector s = s(i) for every obligor i) one
obtains from (4.29) and (4.30) for every sector s the following identity:

∑

i:wis=1

σi =
∑

i:wis=1

√
V

[
wisλi

Λ(s)

λ(s)

]
=

∑

i:wis=1

wisλi
σ(s)

λ(s)
= σ(s) ,

where the sum takes all obligors i in sector s into account. So in this
particular example, the volatility of the sector default intensity can
be directly estimated from the volatility of the default intensities of
obligors collected into that sector. The calibration of a sector variable
Λ(s) can then be finalized by applying (4.28).

For the general case where obligors are allowed to be influenced
by more than one sector, the CreditRisk+ Technical Document [35]
(A12.2) suggests an analogous approach by estimating the sector volatil-
ity σ(s) by the weighted contribution of the default rate volatilities of
obligors influenced by the sector, namely σ̂(s) =

∑m
i=1 wisσi. Again

note that only obligors i with wis > 0 contribute to sector s.

Based on our calculations above we can now just follow the lines of
(4.14), (4.15), and (4.16). Analogously to (4.16) we first of all define a
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random variable Ns by

P[Ns = ν[j]] =
1

λ(s)

∑

i∈[j]
wisλi (j = 1, ...,mE). (4.31)

Equation (4.30) shows that (4.16) really defines a probability distribu-
tion on the set of exposures {ν[1], ..., ν[mE ]}. The generating function
of Ns is given by a polynomial analogous to (4.14),

GNs(z) =

mE∑

j=1

( 1

λ(s)

∑

i∈[j]
wisλi

)
zν[j] . (4.32)

Instead of GL′ as in (4.14) we now use the generating function GL′
(s)

of the sector defaults as described in (4.25). Because the generating
function GNs does not depend on realizations of the random intensity
Λ(s), the arguments leading to Formula (4.25) are not affected when
replacing the variable z in (4.25) by GNs(z). We therefore obtain the
compound generating function of the distribution of losses L̃′

(s) in sector
s by writing

GL̃′
(s)
(z) = GL′

(s)
◦GNs(z) =

(
1− βs

1+βs

1− βs

1+βs
GNs(z)

)αs

(4.33)

=


 1− βs

1+βs

1− βs

1+βs

1
λ(s)

∑mE
j=1

∑
i∈[j]wisλiz

ν[j]



αs

.

Note that this is the same two-step randomness we previously derived in
the case of independent obligors leading to Formula (4.15). The bridge
between the independent case and (4.33) is just a simple conditioning
argument. Conditional on a sector intensity realization θs, the condi-
tional compound probability-generating function analogous to (4.15) is
given by

[GL̃′
(s)
|Λ(s)=θs

](z) = eθs(GNs (z)−1) . (4.34)

Integration of the right side w.r.t. the mixing gamma distribution gives
(4.33), taking into account that GNs(z) does not depend on the inte-
gration variable θs. Therefore the integral can be calculated by means
of exactly the same argument as in (4.25).
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4.3.3 Sector Convolution

The portfolio loss L′ = L′
1 + · · · + L′

m is a mixed Poisson variable
with random intensity Λ = Λ1 + · · · + Λm. Grouped into sectors, the
intensity Λ of L′ can also be written as the sum of sector intensities,

Λ = Λ(1) + · · ·+ Λ(mS ).

This follows from Formulas (4.29) and (4.30). Because sectors are as-
sumed to be independent, the distribution of defaults in the portfolio
is the convolution of the sector’s default distributions. Therefore, due
to (4.25) the generating function of L′ is given by

GL′(z) =

mS∏

s=1

(
1− βs

1+βs

1− βs

1+βs
z

)αs

. (4.35)

The generating function of the portfolio losses is determined by the
convolution of compound sector distributions as elaborated in (4.33),

GL̃′(z) =

mS∏

s=1

GL̃′
(s)
(z)

=

mS∏

s=1


 1− βs

1+βs

1− βs

1+βs

1
λ(s)

∑mE
j=1

∑
i∈[j]wisλiz

ν[j]



αs

. (4.36)

So we see that in CreditRisk+ the portfolio loss distribution can be
described in an analytical manner by means of a closed-form generating
function. Remarkable is the fact that this nice property even holds in
the most general case of a sector model where complex dependence
structures are allowed. In the general sector model of CreditRisk+

leading to Formula (4.36), obligors i1 and i2 will be correlated if and
only if there exists at least one sector s such that wi1s > 0 and wi2s > 0.

4.3.4 Calculating the Loss Distribution

Because probability distributions and generating functions are uni-
quely associated with each other, Formula (4.36) allows for a direct
computation of loss distributions. For completeness, we will present
here the original derivation of the loss distribution as shown in the
CreditRisk+ Technical Document [35]. The calculation scheme for the
loss amount distribution of portfolios is again a variation of the well
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known Panjer recurrence relation, similar to the one presented in Sec-
tion 2.8.3.

From Section 2.8 we know that the generating function of a discrete
probability distribution is

GL(z) = E[zL] =

∞∑

n=0

P[L = n]zn =

∞∑

n=0

Anz
n. (4.37)

Suppose now that the generating function G(z) also satisfies the differ-
ential equation

d

dz
(log(G(z))) =

1

G(z)

G(z)

dz
=
A(z)

B(z)
, (4.38)

where A(z) = a0+ · · ·+arzr and B(z) = bo+ · · ·+bszs are polynomials.
Then, for the coefficients An of the powerseries expansion (4.37) holds
the following recurrence relation:

An+1 =
1

b0(n + 1)




min(r,n)∑

i=0

aiAn−i −
min(s−1,n−1)∑

j=0

bj+1An−j(n− j)


 .

(4.39)
Proof. Rearranging Equation (4.38) as

B(z)G′(z) = A(z)G(z)

and differentiating G leads to
(

s∑

i=0

biz
i

)( ∞∑

n=0

(n+ 1)An+1z
n

)
=

(
r∑

i=0

aiz
i

)( ∞∑

n=0

Anz
n

)

Equating coefficients of zn, n ≥ 0 on both sides yields

min(s,n)∑

j=0

bjAn+1−j(n+ 1− j) =

min(r,n)∑

i=0

aiAn−i

and after rearranging, we obtain

b0(n+ 1)An+1 =

min(r,n)∑

i=0

aiAn−i −
min(s−1,n−1)∑

j=0

bj+1An−j(n− j).
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It remains to express the logarithmic derivative of GL̃′(z) from Equa-
tion (4.36) as a rational function. To this end we write

d

dz

(
log(GL̃′(z))

)
=

mS∑

s=1

G′
L̃′
(s)

(z)

GL̃′
(s)
(z)

=

mS∑

s=1

βsαs

1+βs

1
λ(s)

∑mE
j=1

∑
i∈[j]wisλiz

ν[j]

1− βs

1+βs

1
λ(s)

∑mE
j=1

∑
i∈[j]wisλiz

ν[j]
, (4.40)

where the summation has to be performed explicitly by adding up
the rational summands for each sector. Once the coefficients of the
polynomials A(z), B(z) are obtained, we can use the recurrence relation
(4.39) to calculate the probability distribution.

Unfortunately, for practical cases the algorithm turns out to be nu-
merically fragile. Its numerical instability arises from an accumulation
of numerical round-off errors due to the summation of numbers of sim-
ilar magnitude but opposite sign.

Further Reading

There would be more to say about CreditRisk+ but due to the in-
troductory character of this book we will not go any further. The
Technical Document [35] contains some more detailed information on
the management of credit portfolios, the calibration of the model, and
the technical implementation. Additionally, we would like to point to
the collection of papers on CreditRisk+ in [87], where, among others,
alternatives to the recurrence relation for generating the loss distribu-
tion are discussed. Both [35] and [87] address, for example, the question
of risk contributions (see also Chapter 5) and the role of correlations
in CreditRisk+. Risk contributions in CreditRisk+ are also extensively
studied in Tasche [175]. In [35], A12.3, the introduction of a sector
for incorporating specific risk is discussed. As a last remark we should
mention that because the sector distributions are Poisson mixtures, the
general results from Section 2.2 can also be applied.





Chapter 5

Risk Measures and Capital
Allocation

The definition of economic capital as introduced in Chapter 1 appears
fully satisfactory at first glance. Starting with the path-breaking paper
by Artzner et al. [11], several studies revealed a number of method-
ological weaknesses in the VaR concept by drawing up a catalog of
mathematical and material attributes that a risk measure should ful-
fill, and proving that the VaR concept only partly fulfills them. Risk
measures that satisfy these axioms are called coherent. Before we de-
scribe their basic features in the next section, we briefly reiterate the
main notations (cf. Chapters 1 and 2):

The portfolio loss variable (compare Equation (2.51)) is given by

L =

m∑

i=1

wiηiLi,

where

wi =
EADi∑m
i=1 EADi

are the exposure weights, so all portfolio quantities are calculated in
percent of the portfolio’s total exposure. The severity is abbreviated
to ηi = LGDi; Li = 1Di are Bernoulli random variables with default
events Di. Accordingly, the default probability (e.g., for a one-year
horizon) for obligor i is given by

PDi = P(Di) .

Default correlations are denoted as

ρij = Corr[Li, Lj ] = Corr[1Di ,1Dj ] .

In this chapter we assume a deterministic severity, ηi, but, if severities
are assumed to be independent of defaults, then it is straightforward to

197
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extend the following to random severities. For notational convenience
we denote by

L̂i := ηiLi

the loss variable of some obligor i.

5.1 Coherent Risk Measures and Expected Shortfall

Denote by L∞ = L∞(Ω,F ,P) the space of bounded real random
variables, defined on a probability space (Ω,F ,P). The definition of a
coherent risk measure as suggested by Artzner et al. [10, 11] can then
be stated in the following way:

5.1.1 Definition A mapping ρ : L∞(Ω,F ,P) → R is called a coherent
risk measure if the following properties hold:

(i) Subadditivity ∀X,Y ∈ L∞: ρ(X + Y ) ≤ ρ(X) + ρ(Y )

(ii) Monotonicity ∀X,Y ∈ L∞ with X ≤ Y a.s.: ρ(X) ≤ ρ(Y )

(iii) Positive homogeneity ∀λ > 0, ∀ X ∈ L∞: ρ(λX) = λρ(X)

(iv) Translation invariance ∀x ∈ R, ∀X ∈ L∞:
ρ(X + x) = ρ(X) + x.

Note that the definition here slightly differs from the original set
of axioms as they were introduced by Artzner et al. [10, 11]. Our
definition equals the one given by Frey and McNeil in [69], because
we want to think about X in terms of a portfolio loss and about ρ(X)
as the amount of capital required as a cushion against the loss X,
according to the credit management policy of the bank. In the original
approach by Artzner et al., X was interpreted as the future value of
the considered portfolio. Let us now briefly explain the four axioms in
an intuitive manner:

Subadditivity: Axiom (i) reflects the fact that due to diversification
effects the risk inherent in the union of two portfolios should
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be less than the sum of risks of the two portfolios considered
separately. We will later see that quantiles are not subadditive
in general, such that the economic capital (EC) as introduced in
Chapter 1 turns out to be not coherent.

Monotonicity: Let us say we are considering portfolios A and B with
losses XA and XB . If almost surely the losses of portfolio A are
lower than the losses of portfolio B, i.e., XA ≤ XB a.s., then the
required risk capital ρ(XA) for portfolio A should be less than
the required risk capital ρ(XB) of portfolio B. Seen from this
perspective, monotonicity is a very natural property.

Homogeneity: Axiom (iii) can best be illustrated by means of the
following example. Consider a credit portfolio with loss X and
scale all exposures by a factor λ. Then, of course, the loss X
changes to a scaled loss λX. Accordingly, the originally required
risk capital ρ(X) will also change to λρ(X).

Translation invariance: If x is some capital which will be lost/gained
on a portfolio with certainty at the considered horizon, then the
risk capital required for covering losses in this portfolio can be in-
creased/reduced accordingly. Translation invariance implies the
natural property ρ(X − ρ(X)) = 0 for every loss X ∈ L∞.

From convex analysis follows that a sub-additive positive homogeneous
function ρ can be point-wise written as the maximal value of all linear
function which are below ρ, i.e.

ρ(X) = max{l(X) | l < ρ, l linear function}

Conceptually this is similar to the gradient of the function ρ evaluated
at the point X as the best linear approximation of ρ which coincides
with ρ at X. We will later see that this gives rise to a sensible capital
allocation.

Based on this thread of thoughts the proposition below provides an-
other interpretation of coherency and can be found in [11].
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5.1.2 Proposition Let the underlying probability space Ω be finite.
Then a risk measure ρ is coherent if and only if there exists a family P
of probability measures such that

ρ = ρP ,

where ρP is defined by

ρP(X) = sup
Q∈P

EQ[X] for all X ∈ L∞ .

The probability measures in P are called generalized scenarios. 1

The challenge underlying Proposition 5.1.2 is to find a suitable set
P of probability distributions matching a given coherent risk measure
ρ such that ρ = ρP . We will recall the set of scenarios in the example
on Expected Shortfall.

Typical risk measures discussed by Artzner et al. are the value-at-
risk and expected shortfall capital, which will be briefly discussed in the
sequel.

Value-at-Risk Value-at-risk (VaR) has already been mentioned in
Section 1.2.1 as a synonymous name for EC. Here, VaR will be defined
for a probability measure P and some confidence level α as the α-
quantile of a loss random variable X,

VaRα(X) = inf{x ≥ 0 | P[X ≤ x] ≥ α} .

VaR as a risk measure defined on L∞ is

• translation invariant, because shifting a loss distribution by a
fixed amount will shift the quantile accordingly,

• positively homogeneous, because scaling a loss variable will scale
the quantile accordingly,

• monotone, because quantiles preserve monotonicity, but

• not subadditive, as the following example will show.
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Because VaR is not subadditive, it is not coherent. Now let us give a
simple example showing that VaR is not subadditive.

Consider two independent loans, represented by two loss indicator
variables 1DA

,1DB
∼ B(1; p) with, e.g., 0.006 ≤ p < 0.01. Assume

LGDs equal to 100% and exposures equal to 1. Define two portfolios
A and B, each consisting of one single of the above introduced loans.
Then, for the portfolio losses XA = 1DA

and XB = 1DB
we have

VaR99%(XA) = VaR99%(XB) = 0 ,

Now consider a portfolio C defined as the union of portfolios A and B,
and denote by XC = XA +XB the corresponding portfolio loss. Then

P[XC = 0] = (1− p)2 < 99% .

Therefore, VaR99%(XC) > 0, so that

VaR99%(XA +XB) > VaR99%(XA) + VaR99%(XB) .

This shows that in general VaR is not a coherent risk measure.

Tail Conditional Expectation The tail conditional expectation, or
expected shortfall, w.r.t. a confidence level α is defined as

TCEα(X) = E[X | X > VaRα(X)] .

In the literature one can find several slightly different versions of TCE
definitions. Tasche [176] showed that Tail Conditional Expectation
to a great extent enjoys the coherence properties; for further reading
see also [11, 105]. For example, Tail Conditional Expectation is co-
herent when restricted to loss variables X with continuous distribution
function. It then coincides with expected shortfall measure, [2],

ESα (X) =
1

1− α

(
E

[
X 1{X>VaRα(X)}

]

+VaRα(X) (P [X ≤ VaRα(X)]− α)
)
. (5.1)

The second term in the above equation takes care of a possible posi-
tive probability mass at the quantile itself. If the distribution of X is
continuous, the second term in the definition of ESα vanishes, and the
expected shortfall coincides with TCE in this case. It is shown in [2]
that expected shortfall ES (5.1) is a coherent risk measure.
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FIGURE 5.1: Tail conditional expectation E[X | X > VaRα(X)].

5.1.1 Expected Shortfall

The most useful representation of ES is as a mixture of VaR measures.

ESα(X) =
1

1− α

∫ 1

α
VaRβ(X)dβ (5.2)

Instead of fixing a quantile at a particular confidence level α, the
Expected Shortfall averages VaR across the entire tail specified by α.
The mixing or weight function has a very simple form, it is zero from
the 0-quantile up to the (1-α)-quantile and has equal positive weight
from 1− α to 1. This weight function can be viewed as a risk aversion
function and gives rise to a much wider class of coherent risk measures,
the so-called spectral risk measures which we will introduce in the next
section.

But let us first give a simple interpretation of ES. Figure 5.1 illus-
trates the definition of expected shortfall capital. From an insurance
point of view, expected shortfall is a very reasonable measure: Defining
by c = VaRα(X) a critical loss threshold corresponding to some con-
fidence level α, expected shortfall capital provides a cushion against
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the mean value of losses exceeding the critical threshold c. In other
words, ES focusses on the expected loss in the tail, starting at c, of
the portfolio’s loss distribution. The critical threshold c, driven by the
confidence level α, has to be fixed by the senior management of the
bank and is part of the bank’s credit management policy.

Economic capital, based on shortfall risk, can be defined as the mean
loss above a threshold c minus the expected loss:

ECTCE(c) = E[X | X > c]− E[X].

This calculation method for risk capital also includes events above the
critical loss threshold c, e.g., c = VaRα, and answers the question “how
bad is bad” from a mean value’s perspective. If c = VaRα(X), we write

ECTCEα = ECTCE(VaRα(X))

in the sequel in order to keep the notation simple.

Quantiles The following table shows a comparison of expected short-
fall EC and VaR-EC over the 99%-quantile for different distributions.
For example, one can see that if X had a normal distribution, the
expected shortfall EC would not much differ from the VaR-EC. In con-
trast, for a t-distribution and the loss distribution Fp,̺ defined by a
uniform (limit) portfolio as introduced right before Proposition 2.5.7,
the difference between the ECs is quite significant.

t(3) N(0,1.73) LN(0,1) N(1.64,2.16) Weil(1,1) N(1,1)
std 1.73 1.73 2.16 2.16 1 1

ECVaR(0.99) 4.54 4.02 8.56 5.02 3.6 2.32
ECTCE(0.99) 6.99 4.61 13.57 5.76 4.6 2.66
rel.diff. (%) 54 15 58 15 27 14

F0.003,0.12

std 0.0039
ECVaR(0.99) 0.0162
ECTCE(0.99) 0.0237
rel.diff. (%) 46

This table highlights the sensitivity of the determination of economic
capital w.r.t. its definition (VaR-based or shortfall-based) and the
choice of the underlying probability measure. Here, the probability
measures are given by the following distributions:
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• the t-distribution t(3) with 3 degrees of freedom,

• three normal distributions with different parameter pairs,

• the (0, 1)-log-normal distribution,

• the (1, 1)-Weibull distribution, and

• the uniform portfolio distribution Fp,̺ with uniform default prob-
ability p = 30bps and uniform asset correlation ̺ = 12%.

In the table, the first row contains the respective standard deviations,
the second row shows the EC based on VaR at the 99%-confidence
level, and the third row shows the EC based on expected shortfall with
threshold c = VaR99%. The fourth row shows the relative difference
between the two EC calculations.

5.1.2 Spectral Risk Measures

As already indicated in the Section 5.1.1, one might associate a risk
aversion function with ES, which we now introduce formally [1, 2]. The
risk aversion weight function associated with ESα turns out to be

wESα(u) = (1− α)−11{u>α}. (5.3)

From a risk management point of view there might be many other
weights given to some confidence levels u. If the weight function is
increasing, which is reasonable since higher losses should have larger
risk aversion weight, then we arrive at spectral risk measures.

5.1.3 Definition Let w be an increasing function on [0, 1] such that∫ 1
0 w(u)du = 1, then the map ρw defined by

ρw(X) =

∫ 1

0
w(u)VaRu(X)du

is called a spectral risk measure with weight function w.

The name “spectral risk measure” comes from the representation
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ρw(X) =

∫ 1

0
ESα(1− α)µw(dα) (5.4)

=

∫ 1

0

∫ 1

α
VaRu(X)duµw(dα)

=

∫ 1

0
VaRu(X)

∫ u

0
µw(dα) du

=

∫ 1

0
VaRu(X)w(u)du

with the spectral measure µ((0, b]) = w(b).

There might be several pragmatic approaches to calibrate the risk
aversion function:

1. As a first step in the application of spectral risk measures one
might think to give to different loss probability levels different
weight. This is a straightforward extension of expected shortfall.
One might view Expected Shortfall at the 99%-level view as a
risk aversion which ignores losses below the 99%-quantile and all
losses above the 99%-quantile have the same influence. From an
investor’s point of view this means that only senior debts are
cushioned by risk capital. One might, on the other hand, also be
aware of losses which occur more frequently, but of course with a
lower aversion than those appearing rarely.

As a concrete example one might set that losses up to the 50%
confidence level should have zero weights, losses between 50% and
99% should have a weight w0 and losses above the 99%-quantile
should have a weight of k1w0 and above the 99.9% quantile it
should have a weight of k2w0. The first tranche from 50% to 99%
correspond to an investor in junior debt, and the tranche from
99% to 99.9% to a senior investor and above the 99.9% a super
senior investor or the regulators are concerned. This gives a step
function for w:

w(u) = w01{0.99>u>0.5} + k1w01{0.999>u>0.99} + k2w01{1>u>0.999}

The parameter w0 should be chosen such that the integral over
w is still 1.
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2. A more continuous form of this is an exponential function starting
at a point u0 between 0 and 1 and then increasing up to 1

w(u) = 1{u>u0} exp(κu)

with some constant κ.

3. One can also try to derive the risk aversion function from the
traded tranches, e.g. from the iTRAXX or CDX credit indices.
The value of a tranche can be viewed as the expectation of the
loss in Tranche T under the valuation measure EQ,

EQ[LT ].

As explained below the risk aversion can be converted to a density
Qw. All tranches of the credit index are valued under the same
measure Q = Qw with w = wIndex. Hence the prices reveal
information about the traded risk aversion on the Index portfolio.
A first attempt to back out a function wIndex can be found in
[138].

5.1.3 Density of a Risk Measure

In most cases it can actually be proved that the supremum in the
representation of a coherent risk measure in terms of generalized sce-
narios P (Prop. 5.1.2) is attained. One has the general representation
from Proposition 5.1.2

ρP(X) = sup
Q∈P

EQ[X]

= E[λX,PX], (5.5)

since the supremum is a maximum and whereby λX,P denotes the den-
sity of the maximal generalized scenario. For an explicit version see
theorem 5.1.4 Theorem below.

This is a very useful result if it comes to allocation. Notice however,
that the density λX,P = λρ,X depends on the risk measure ρ and the
loss variable X.

For expected shortfall the dependency of the density λ as a function
of X is explicitely given by the representation ESα(X) = E[Xgα(X)]]
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with the function, cf. (5.1),

gα(X) := (1− α)−1(1{X>V aRα(X)} + βX1{X=V aRα(X)}), (5.6)

where βX is

βX :=
P(X ≤ V aRα(X))− α

P(X = V aRα(X))
if P(X = V aRα(X)) > 0.

The density of the associated maximal scenario, as a measure in P, is
therefore equal to the random variable gα(X). Note that ESα(Y ) =
E(Y · g(Y )) and ESα(X) ≥ E(X · g(Y )) for every pair of random
variables X,Y .

Qualitatively, this is the density which assigns equal mass to all events
which lead to a loss above the quantile and zero mass to all events below
the quantile. The probability mass of all events above the α-quantile
equals by definition 1 − α. The set of generalized scenarios consists
of all measures whose density is bounded by 1

1−α , cf. e.g. [1]. This
includes the elementary conditional expectations defined E[·|A] with
P[A] ≤ 1 − α, i.e., the expectation conditioned on a set of probability
less than 1− α.

The density of spectral risk measures can be obtained by their rep-
resentation as a convex combination of Expected Shortfall Measures as
in the following theorem (cf. [153])

5.1.4 Theorem The density of the scenario associated with the spec-
tral risk measure with risk aversion function w equals

λw := gw(X) :=

∫ 1

0
gα(X)(1 − α)µ(dα). (5.7)

Here, gα(·) is defined in formula (5.6). In particular

ρw(X) = E[Xλw]. (5.8)
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Proof: We have

ρw(X) =

∫ 1

0
ESα(X)(1 − α)µ(dα)

=

∫ 1

0
E[Xgα(X)](1 − α)µ(dα)

=

∫ 1

0
max{E[Xgα(Y )]|Y ∈ L∞}}(1 − α)µ(dα)

≥ max{E[X
∫ 1

0
gα(Y )(1 − α)µ(dα)]|Y ∈ L∞}

= max{E[Xgw(Y )]|Y ∈ L∞}
≥ E[Xgw(X)]

From the second line we deduce by exchanging integration and ex-
pectation that ρw(X) = E[Xgw(X)], hence

ρw(X) = max{E[Xgw(Y )]|∀Y ∈ L∞} = E[Xgw(X)]. 2

The last equation in the proof also shows how to identify the set of
generalized scenarios Pρ associated with a spectral risk measure ρ = ρw
with weight function w, namely

Pρw = {Q|dQ
dP

= gw(Y ), Y ∈ L∞}

and
sup {E[Xgw(Y )]|∀Y ∈ L∞} = E[Xgw(X)].

As mentioned in Section 1.1.3, this coincides for Expected Shortfall
with

sup

{
EQ[X]|dQ

dP
≤ 1

1− α

}
,

or intuitively with

sup{EP [X|A]|P [A] ≤ α}.

5.2 Contributory Capital

If the economic capital EC of the bank is determined, one of the
main tasks of risk management is to calculate contributory economic
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capital for each business division of the bank. Such a contributory EC
could be interpreted as the marginal capital a single transaction respec-
tively business unit adds or contributes to the overall required capital.
Tasche [174] showed that there is only one definition for risk contribu-
tions that is suitable for performance measurement, namely the deriva-
tive of the underlying risk measure in direction of the asset weight of
the considered entity, (i.e., the gradient or Euler principle). Addition-
ally, Denault [43] showed by arguments borrowed from game theory
that in the case of a so-called 1-homogeneous risk measure its gradient
is the only “allocation principle” that satisfies some “coherency” con-
ditions. A third approach, in the spirit of the axioms on risk measures
(cf. Def.(5.1.1)), was introduced by Kalkbrener [109], see also [110]
and the survey paper [53]. There, it is shown that capital allocation
can be viewed as a generalized (sub-)gradient of the risk measure as a
convex and positive homogenous function and that the Euler principle
is an immediate consequence of the proposed axioms.

5.2.1 Axiomatic Approach to Capital Allocation

A prerequisite of portfolio optimization is the ability to measure the
total portfolio risk and attribute this risk to the portfolio constituents
on possibly several hierarchical levels. From an abstract point of view
assume that a risk measure ρ has been fixed and that X is a portfolio
which consists of subportfolios X1, . . . ,Xn with X = X1 + . . . Xn. The
objective is to distribute the risk capital k := ρ(X) of the portfolio
X to its subportfolios, i.e. to compute risk contributions k1, . . . , kn of
X1, . . . ,Xn such that k = k1 + · · ·+ km.

The basis of the axiomatic approach is the assumption that the risk
allocated to subportfolio Xi should only depend on Xi and X but not
on the remainder X − Xi. Hence, capital allocation can be viewed
as a real valued function on the space of random variables identified
with the portfolio loss variables, Λ : V × V → R and V denoting a
subspace of L∞. Λ(X,Y ) is then interpreted as the capital allocated
to X considered as a subportfolio of Y .

Naturally, the required capital or associated risk of a portfolio viewed
as its own subportfolio is the (standalone) risk of the portfolio. There-
fore Λ(X,X) should be a risk measure in the sense of the previous
sections, i.e. the risk measure associated with the capital allocation is

ρΛ(X) = Λ(X,X).
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Of course it is even more natural to look for a capital allocation Λ
which is associated with a given risk measure ρ, i.e. find Λρ such that
Λρ(X,X) = ρ(X).

Let us now start with the intuitive simple requirements that the
capital allocated to X, viewed as a subportfolio Y , should fulfill.

1. Linearity. For a given overall portfolio Z the capital allocated
to a union of subportfolios is equal to the sum of the capital
amounts allocated to the individual subportfolios. In particular,
the risk capital of a portfolio equals the sum of the risk capital
of its subportfolios. More formally, Λ is called linear if

∀a, b ∈ R,X, Y, Z ∈ V Λ(aX + bY, Z) = aΛ(X,Z) + bΛ(Y,Z).

2. Diversification. The capital allocated to a subportfolio X of a
larger portfolio Y never exceeds the risk capital of X considered
as a stand-alone portfolio: Λ is called diversifying if

∀X,Y ∈ V Λ(X,Y ) ≤ Λ(X,X).

3. Continuity. A small increase in a position does only have a
small effect on the risk capital allocated to that position: Λ is
called continuous at Y ∈ V if

∀X ∈ V lim
ǫ→0

Λ(X,Y + ǫX) = Λ(X,Y ).

Now we turn to the relation between the natural risk measure as-
sociated with a capital allocation Λ, which is established through the
following two theorems:

5.2.1 Theorem If Λ is a linear, diversifying capital allocation with
associated risk measure ρ = ρΛ defined by

ρΛ(X) = Λ(X,X)

then ρ is positively homogeneous and subadditive.
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Proof: The subadditivity follows from

ρ(X + Y ) = Λ(X + Y,X + Y )

= Λ(X,X + Y ) + Λ(Y,X + Y )

≤ Λ(X,X) + Λ(Y, Y ),

where we have used linearity in the second equality and diversifying in
the third. For the positive homogeneity we see for positive a that on
the one-hand side we have

ρ(aX) = Λ(aX, aX) = aΛ(X, aX) ≤ aΛ(X,X)

and on the other hand

ρ(aX) = Λ(aX, aX) ≥ Λ(aX,X) = aρ(X). 2

But also the converse can be proved, however, with some convex
analysis, cf. [109]:

5.2.2 Theorem If ρ is positively homogeneous and subadditive then
its subgradient Λρ as defined in (5.9) below is a linear, diversifying
capital allocation with associated risk measure ρ.

Sketch of Proof: Consider a fixed (portfolio) loss variable Y . Let l̃Y
be defined on the linear subspace {bY |b ∈ R} of V by l̃Y (bY ) = bρ(Y ).
By the positive homogeneity and subadditivity of ρ it can be shown
that l̃Y is smaller than ρ on its domain of definition {bY |b ∈ R}. By
the Hahn-Banach Theorem (cf. [52], Ch II, 3.10) this can be extended
to a function lY on V which is smaller than ρ on V and satisfies by
definition

ρ(Y ) = lY (Y ) = max{l(U)|l ∈ L, l ≤ ρ}
where L is the set of linear functionals on V .
Simplifying this result to elementary school mathematics, this is the

statement that for a nice convex function like x2 we can draw at each
point (x0, x

2
0) of its graph the tangent. The tangent through (x0, x

2
0)

lies always below the graph and all other straight lines below the graph
will always be smaller at x0 than the tangent at x0. Thus, the linear
functional lX can be viewed as the tangent, which is of course nothing
else as the derivative (subgradient) of the function ρ at point Y .
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Now, it is obvious that we can define Λ(·, Y ) to be this function lY ,
in other words:

Λρ(X,Y ) = lY (X). (5.9)

Linearity is then clear since lY is linear and the same line of arguments
as in the proof above will give the property “diversifying.” 2

If Λ satisfies an additional smoothness property (Axiom 3), namely
continuity in the second entry,

Λ(X,Y ) = Λ(X,Y + ǫX), (5.10)

then already Gateux-differentiability of the diagonal ρΛ, i.e. of the as-
sociated risk measures, follows and

Λ(X,Y ) = lim
ǫ→0

ρΛ(Y + ǫX)− ρΛ(Y )

ǫ
. (5.11)

5.2.1.1 Expected Shortfall Contribution

In line with the theorem 5.2.2 and formula (5.6) above, we see that
the capital allocation rule with respect to expected shortfall equals

Λα(X,Y ) = E[ga(Y )X] (5.12)

= E
[(
(1− α)−11{Y >V aRα(Y )} + βY 1{Y=V aRα(Y )}

)
X
]

= E
[(
(1− α)−11{Y >V aRα(Y )}

)
X
]
,

where the last equation only holds if there is no point mass at the
α-quantile, in particular if Y has a continuous distribution.

5.2.1.2 Spectral Capital Allocation

It follows from theorem 5.1.4 and formula (2.7) that the allocation
with respect to a spectral risk measure can be written as a mixture of
Expected Shortfall allocations

Λw(X,Y ) = E[gw(Y )X] (5.13)

=

∫ 1

0
E
[(
(1− α)−11{Y >V aRα(Y )} + βY 1{Y=V aRα(Y )}

)
X
]
(1− α)µw(dα)

=

∫ 1

0
E
[(
1{Y >V aRα(Y )}

)
X
]
µw(dα),
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where the last equation again only holds if there is no point mass at
the α-quantile.

If we assume a continuous distribution of Y and have mixture of
three Expected Shortfall, i.e.

ρw(Y ) = ESα1w̃(α1) + ESα2w̃(α2) + ESα3w̃(α3),

then the capital allocation with respect to this spectral risk measure,
is such the same weighted sum of the capital allocation with respect
to the three Expected Shortfall contributions. This enables the risk
management of the financial institution to formulate its risk appetite
in terms of weights given to some well chosen quantiles of its loss dis-
tribution. For example it used to be an ongoing discussion whether to
really only allocate capital with respect to tail events and ignore the
volatility of the loss distribution for the capital allocation. Spectral
Capital Allocation allows the risk manager to take care of the entire
loss distribution by considering or approximating volatility by a lower
quantile. Thus even relatively frequent events can be used, although
with a smaller weight, in the capital allocation process.

Figure 5.2 shows expected shortfall contributions for a set of portfolio
assets at increasing confidence levels. These shortfall contributions are
then used to build contributions to a spectral risk measure as an equally
weighted sum (white triangles). Obviously, the assets contribute in very
different percentage amounts of their exposures to the various shortfall
measures, which can be composed to a spectral measure according to
a given risk appetite.

5.2.2 Capital Allocation in Practice

So when talking about capital allocation, we are therefore faced with
the problem of differentiability of some considered risk measure.

It turns out that the standard deviation as a risk measure has nice dif-
ferentiability properties. This observation is the “heart” of Markovitz’s
classical portfolio theory (var/covar approach). Now, VaR-based EC
is a quantile-based quantity, and only in case of normal distributions,
quantiles and standard deviations are reconcilable from a portfolio op-
timization point of view. Because we know from previous chapters that
credit portfolio loss distributions are typically skewed with fat tails, the
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FIGURE 5.2: Expected shortfall contributions (in percent of the ex-
posure) at various confidence levels (EL, 70%, 90%, 99%, 99.9%, with
increasing darkness of shading) for a set of assets. The white triangles
indicate the contributions to a spectral risk measure, composed of an
equally weighted sum of the different ES-contributions.
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“classical” approach can not be applied to credit risk in a straightfor-
ward manner without “paying” for the convenience of the approach by
allowing for inconsistencies.

Fortunately, the var/covar approach for capital allocation, adapted
to credit risk portfolios, in many cases yields acceptable results and is,
due to its simplicity, implemented in most standard software packages.
The following section explains the details.

5.2.3 Variance/Covariance Approach

At the core of var/covar is the question of what an individual credit or
business unit contributes to the portfolio’s standard deviation ULPF .
To answer this question, the classical var/covar approach splits the
portfolio risk ULPF into risk contributions RCi in a way such that

m∑

i=1

wi × RCi = ULPF .

In this way, the weighted risk contributions sum-up to the total risk of
the portfolio, where “risk” is identified with volatility. It follows from
Proposition 1.2.7 that

ULPF =
1

ULPF

m∑

i=1

wi ·
m∑

j=1

wjηiηjσDiσDjρij

=
1

ULPF

m∑

i=1

wi ·
m∑

j=1

wjULiULjρij,

where σDi =
√

PDi(1− PDi) denotes the standard deviation of the
default indicator and ULi = ηiσDi . Thus,

RCi =
ULi

ULPF

m∑

j=1

wjULjρij

is a plausible quantity measuring the “risk portion” of credit i in a way
such that all weighted risks sum-up to the portfolio’s UL. It is straight-
forward to show that the quantity RCi corresponds to the covariance
of credit (business unit) i and the total portfolio loss, divided by the
portfolio’s volatility respectively UL. The definition of RCi obviously
is in analogy to beta-factor models used in market risk. Furthermore,
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RCi is equal to the partial derivative of ULPF w.r.t. wi, the weight of
the i-th credit in the portfolio, i.e.,

RCi =
∂ULPF

∂wi
.

In other words, an increase in the weight of the considered credit by a
small amount h in the portfolio, implies a growth of ULPF by h×RCi.
Coming from this side, it can in turn be easily shown that the total
sum of weighted partial derivatives again equals ULPF .

Regarding the ratio between risk contributions and the standard de-
viation of the individual exposure, it is true in most cases that

RCi

ULi
≤ 1.

This quantity is known as the retained risk of unit i. It is the portion
of risk of the i-th entity that has not been absorbed by diversification
in the portfolio. In contrast, the quantity

1− RCi

ULi

is often called the corresponding diversification effect.

Capital multiplier Since the total risk capital is typically deter-
mined via quantiles, i.e.,

ECVaRα = VaRα(L)− E[L] ,

the individual risk contributions have to be rescaled with the so-called
capital multiplier

CMα =
ECVaRα

ULPF

in order to imitate the classical approach from market risk. The con-
tributory capital for credit i then equals

δi = CMα × RCi, with

m∑

i=1

wiδi = ECVaRα .

The quantity δi is called the analytic capital contribution of transaction
i to the portfolio capital. For a business unit in charge for credits 1 to
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l, where l < m, the capital requirement is

CMα

l∑

j=1

wj RCj.

Note that the capital multiplier is an auxiliary quantity depending on
the particular portfolio, due to the fact that, in contrast to the normal
distribution, the quantiles of credit portfolio loss distributions not only
depend on the standard deviation, but also on other influences like
correlations, default probabilities, and exposure weights. Therefore it
is unrealistic, after changing the portfolio, to obtain the same capital
multiplier CMα as originally calculated.

In the next two sections we discuss capital allocation with respect to
EC based on VaR and expected shortfall respectively.

5.2.4 Capital Allocation w.r.t. Value-at-Risk

Calculating risk contributions associated with the VaR risk measure
is a natural but difficult attempt, since in general the quantile func-
tion will not be differentiable with respect to the asset weights. Under
certain continuity assumptions on the joint density function of the ran-
dom variables Xi, differentiation of VaRα(X), where X =

∑
iwiXi, is

guaranteed. One has (see [176])

∂VaRα

∂wi
(X) = E[Xi | X = VaRα(X)]. (5.14)

Unfortunately, the distribution of the portfolio loss L =
∑
wiL̂i, as

specified at the beginning of this chapter, is purely discontinuous.
Therefore the derivatives of VaRα in the above sense will either not
exist or will vanish to zero. In this case we could still define risk con-
tributions via the right-hand side of Equation (5.14) by writing

γi = E[L̂i | L = VaRα(L)]− E[L̂i] . (5.15)

For a clearer understanding, note that

∂E[L]

∂wi
= E[L̂i] and

m∑

i=1

wiγi = ECVaRα .

Additionally observe, that for a large portfolio and on an appropriate
scale, the distribution of L will appear to be “close to continuous.”
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Unfortunately, even in such “approximately good” cases, the loss dis-
tribution often is not given in an analytical form in order to allow for
differentiations.

Remark For the CreditRisk+ model, an analytical form of the loss
distribution can be found; see Section 2.4.2 and Chapter 4 for a dis-
cussion of CreditRisk+. Tasche [175] showed that in the CreditRisk+

framework the VaR contributions can be determined by calculating the
corresponding loss distributions several times with different parame-
ters. Martin et al. [132] suggested an approximation to the partial
derivatives of VaR via the so-called saddle point method.

Capital allocation based on VaR is not really satisfying, because in
general, although (RCi)i=1,...,m might be a reasonable partition of the
portfolio’s standard deviation, it does not really say much about the
tail risks captured by the quantile on which VaR-EC is relying. Even if
in general one views capital allocation by means of partial derivatives
as useful, the problem remains that the var/covar approach completely
neglects the dependence of the quantile on correlations. For example,
var/covar implicitely assumes

∂VaRα(X)

∂ULPF
= const = CMα,

for the specified confidence level α. This is true for (multivariate) nor-
mal distributions, but generally is not the case for loss distributions
of credit portfolios. As a consequence it can happen that transactions
require a contributory EC exceeding the original exposure of the con-
sidered transaction. This effect is very unpleasant. Therefore, we now
turn to expected shortfall-based EC instead of VaR-based EC.

5.2.5 Capital Allocations w.r.t. Expected Shortfall

At the beginning we must admit that shortfall-based risk contri-
butions bear the same “technical” difficulty as VaR-based measures,
namely the quantile function is not differentiable in general. But, we
find in Tasche [176] that if the underlying loss distribution is “suffi-
ciently smooth,” then TCEα is partially differentiable with respect to
the exposure weights. One finds that

∂TCEα

∂wi
(X) = E[Xi | X > VaRα(X)].
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In case the partial derivatives do not exist, one again can rely on the
right-hand side of the above equation by defining shortfall contributions
for, e.g., discontinuous portfolio loss variables L =

∑
wiL̂i by

ζi = E[L̂i | L > VaRα(L)]− E[L̂i] , (5.16)

which is then also the natural capital allocation rule with respect to
Expected Shortfall. The proof that this definition of capital alloca-
tion coincides with the theoretical capital allocation derived in Section
(5.2.1) has still to be carried out. Analogous to what we saw in case of
VaR-EC, we can write

m∑

i=1

wiζi = ECTCEα ,

such that shortfall-based EC can be obtained as a weighted sum of the
corresponding contributions.

Remarks With expected shortfall we have identified a coherent (or
close to coherent) risk measure, which overcomes the major drawbacks
of classical VaR approaches. Furthermore, shortfall-based measures
allow for a consistent definition of risk contributions. We continue
with some further remarks:

• The results on shortfall contributions together with the findings
on differentiability in [152] indicate that the proposed capital al-
location ζi can be used as a performance measure, as pointed out
in Theorem 4.4 in [176], for example. In particular, it shows that
if one increases the exposure to a counterparty having a RAROC
above portfolio RAROC, the portfolio RAROC will be improved.
Here RAROC is defined as the return over (contributory) eco-
nomic capital.

• We obtain ζi < L̂i, i.e., by construction the capital is always less
than the exposure, a feature that is not shared by risk contribu-
tions defined in terms of covariances.

• The definition of shortfall contributions reflects a causality rela-
tion. If counterparty i contributes higher to the overall loss than
counterparty j in extreme loss scenarios, then, as a consequence,
business with i should be more costly (assuming stand-alone risk
characteristics are the same).
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• Capital allocation rules according to shortfall contributions can
easily be extended to the space of all coherent risk measures as
shown in this chapter. If the density LY of the maximal general-
ized scenario associated with the portfolio Y is known then the
capital allocation to transaction Li equals

E[LY Li].

5.2.6 A Simulation Study

In the simulation study we want to compare the two different alloca-
tion techniques, namely allocation based on VaR and allocation based
on expected shortfall. We first tested it on a transaction base. In a
subsequent test case we considered the allocation of capital to business
units. There are at least two reasons justifying the efforts for the sec-
ond test. First, it might not be reasonable to allocate economic capital
that is based on extreme loss situations to a single transaction, since
the risk in a single transaction might be driven by short-term volatility
and not by the long-term view of extreme risks. The second reason
is more driven by the computational feasibility of expected shortfall.
In the “binary world” of default simulations, too many simulations
are necessary in order to obtain a positive contribution conditional on
extreme default events for all counterparties.

The basic result of the simulation study is that analytic contributions
produce a steeper gradient between risky and less risky loans than tail
risk contributions. In particular, loans with a high default probabil-
ity but moderate exposure concentration require more capital in the
analytic contribution method, whereas loans with high concentration
require relatively more capital in the shortfall contribution method.

Transaction View The first simulation study is based on a credit
portfolio considered in detail in [152]. The particular portfolio consists
of 40 counterparties.

As capital definition, the 99% quantile of the loss distribution is
used. Within the Monte-Carlo simulation it is straightforward to eval-
uate risk contributions based on expected shortfall. The resulting risk
contributions and its comparison to the analytically calculated risk con-
tributions based on the volatility decomposition are shown in Figure
5.3.
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FIGURE 5.3: The bar chart depicts the different risk contributions
for every counterparty in the portfolio. The dark bars belong to the
counterparty contribution measured by the shortfall; the white ones
correspond to the analytic Var/Covar-contribution.
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In the present portfolio example the difference between the contrib-
utory capital of two different types, namely analytic risk contributions
and contributions to shortfall, should be noticed, since even the order
of the assets according to their risk contributions changed. The asset
with the largest shortfall contribution is the one with the second largest
var/covar risk contribution, and the largest var/covar risk contribution
goes with the second largest shortfall contribution. A review of the
portfolio shows that the shortfall contributions are more driven by the
relative asset size. However, it is always important to bear in mind
that these results are still tied to the given portfolio.

It should also be noticed that the gradient of the EC is steeper for the
analytic approach. Bad loans might be able to breech the hurdle rate in
a RAROC-Pricing tool if one uses the expected shortfall approach, but
might fail to earn above the hurdle rate if EC is based on var/covar.

Business Unit View The calculation of expected shortfall contri-
butions requires a lot more computational power, which makes it less
feasible for large portfolios. However, the capital allocation on the busi-
ness level can accurately be measured by means of expected shortfall
contributions. Figure 5.4 shows an example of a bank with six busi-
ness units. Again we see that expected shortfall allocation differs from
var/covar allocation.

Under var/covar, it sometimes can even happen that the capital al-
located to a business unit is larger if considered consolidated with the
bank than capitalized standalone. This again shows the non-coherency
of VaR measures. Such effects are very unpleasant and can lead to
significant misallocations of capital. Here, expected shortfall provides
the superior way of capital allocation. We conclude this chapter with
a simple remark about how one can calculated EC on VaR-basis but
allocate capital shorfall-based.

If a bank calculates its total EC by means of VaR, it still can allocate
capital in a coherent way. For this purpose, one just has to determine
some threshold c < VaRα such that

ECTCE(c) ≈ ECVaRα .

This VaR-matched expected shortfall is a coherent risk measure pre-
serving the VaR-based overall economic capital. It can be viewed as
an approximation to VaR-EC by considering the whole tail of the loss
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FIGURE 5.4: The bar charts depict the different risk contributions
(top: 99% quantile, bottom: 99.9% quantile) of the business areas of
a bank. The black bars are based on a Var/Covar approach; the white
ones correspond to shortfall risk.
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distribution, starting at some threshold below the quantile, such that
the resulting mean value matches the quantile. Proceeding in this way,
allocation of the total VaR-based EC to business units will reflect the
coherency of shortfall-based risk measures.

Further Reading

In order to round off the discussion on risk measures and capital al-
location we would like to point to further literature and research. The
concept of coherent risk measures is widely accepted by now, but a
serious criticism to the necessity of subadditivity and positive homo-
geneity arises when liquidity risk is taken into account. This risk arises
when the market cannot be assumed to be infinitely deep, i.e., when
large positions cannot easily be absorbed by the market and a dou-
bling of a position results in more than doubling the risk. To address
these problems Heath and Kuhn [91], Föllmer and Schied [64, 65]
and Fritelli and Gianin [71] introduce convex risk measures by re-
placing the axioms on positive homogeneity and subadditivity by the
weaker requirement of convexity. A representation theorem for gener-
alized spectral risk measures can be found in Kusuoka [117], Acerbi

[1] and Tasche [177], Föllmer and Schied [65] and Weber [186].



Chapter 6

Term Structure of Default
Probability

So far, default has mostly been modeled as a binary event (except
the intensity model), suited for single-period considerations within the
regulatory framework of a fixed planning horizon. However, the choice
of a specific period like one year is more or less arbitrary. Even more,
default is an inherently time-dependent event. This chapter serves to
introduce the idea of a term structure of default probability. This
credit curve represents a necessary prerequisite for a time-dependent
modeling as in Chapters 7 and 8. In principle, there are three different
methods to obtain a credit curve: from historical default information,
as implied probabilities from market spreads of defaultable bonds, and
through Merton’s option theoretic approach. The latter has already
been treated in a previous chapter, but before introducing the other
two in more detail we first lay out some terminology used in survival
analysis (see [28, 33] for a more elaborated presentation).

6.1 Survival Function and Hazard Rate

For any model of default timing, let S(t) denote the probability of
surviving until t. With help of the time-until-default τ (or briefly “de-
fault time”), a continuous random variable, the survival function S(t)
can be written as

S(t) = P[τ > t], t ≥ 0 .

That is, starting at time t = 0 and presuming no information is avail-
able about the future prospects for survival of a firm, S(t) measures the
likelihood that it will survive until time t. The probability of default
between time s and t ≥ s is simply S(s)− S(t). In particular, if s = 0,

225
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and because S(0) = 1, then the probability of default F (t) is

F (t) = 1− S(t) = P[τ ≤ t], t ≥ 0. (6.1)

F (t) is the distribution function of the random default time τ . The
corresponding probability density function is defined by

f(t) = F ′(t) = −S′(t) = lim
∆→0+

P[t ≤ τ < t+∆]

∆
,

if the limit exists. Furthermore, we introduce the conditional or forward
default probability

p(t|s) = P[τ ≤ t|τ > s], t ≥ s ≥ 0 ,

i.e., the probability of default of a certain obligor between t and s
conditional on its survival up to time s, and

q(t|s) = 1− p(t|s) = P[τ > t|τ > s] = S(t)/S(s), t ≥ s ≥ 0,

the forward survival probability. An alternative way of characterizing
the distribution of the default time τ is the hazard function, which
gives the instantaneous probability of default at time t conditional on
the survival up to t. The hazard function is defined via

P[t < τ ≤ t+∆t|τ > t] =
F (t+ δt) − F (t)

1− F (t)
≈ f(t)∆t

1− F (t)

as

h(t) =
f(t)

1− F (t)
.

Equation (6.1) yields

h(t) =
f(t)

1− F (t)
= −S

′(t)
S(t)

,

and solving this differential equation in S(t) results in

S(t) = e−
∫ t
0 h(s)ds . (6.2)

This allows us to express q(t|s) and p(t|s) as

q(t|s) = e−
∫ t
s
h(u)du , (6.3)

p(t|s) = 1− e−
∫ t
s
h(u)du . (6.4)
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Additionally, we obtain

F (t) = 1− S(t) = 1− e−
∫ t
0 h(s)ds ,

and

f(t) = S(t)h(t) .

One could assume the hazard rate to be piecewise constant, i.e., h(t) =
hi for ti ≤ t < ti+1. In this case, it follows that the density function of
τ is

f(t) = hie
−hit1[ti,ti+1[(t),

showing that the survival time is exponentially distributed with pa-
rameter hi. Furthermore, this assumption entails over the time interval
[ti, ti+1[ for 0 < ti ≤ t < ti+1

q(t|ti) = e
−

∫ t
ti
h(u)du

= e−hi(t−ti) .

Remark The “forward default rate” h(t) as a basis of a default risk
term structure is in close analogy to a forward interest rate, with zero-
coupon bond prices corresponding to survival probabilities. The hazard
rate function used to characterize the distribution of survival time can
also be called a “credit curve” due to its similarity to a yield curve. If h
is continuous then h(t)∆t is approximately equal to the probability of
default between t and t+∆t, conditional on survival to t. Understand-
ing the first arrival time τ as associated with a Poisson arrival process,
the constant mean arrival rate h is then called intensity and often de-
noted by λ1. Changing from a deterministically varying intensity to
random variation, and thus closing the link to the stochastic intensity
models [50], turns Equation (6.3) into

q(t|s) = Es

[
e−

∫ t
s
h(u)du

]
,

where Es denotes expectation given all information available at time s.

1Note that some authors explicitly distinguish between the intensity λ(t) as the
arrival rate of default at t conditional on all information available at t, and the
forward default rate h(t) as arrival rate of default at t, conditional only on survival
until t.
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6.2 Risk-Neutral vs. Actual Default Probabilities

When estimating the risk and the value of credit-related securities we
are faced with the question of the appropriate probability measure, risk-
neutral or objective probabilities. But in fact, the answer depends on the
objective we have. If one is interested in estimating the economic capi-
tal and risk charges, one adopts an actuarial-like approach by choosing
historical probabilities as underlying probability measure. In this case
we assume that actual default rates from historical information allow
us to estimate a capital quota protecting us against losses in worst case
default scenarios. The objective is different when it comes to pricing
and hedging of credit-related securities. Here we have to model under
the risk-neutral probability measure. In a risk-neutral world all indi-
viduals are indifferent to risk. They require no compensation for risk,
and the expected return on all securities is the risk-free interest rate.
This general principle in option pricing theory is known as risk-neutral
valuation and states that it is valid to assume the world is risk-neutral
when pricing options. The resulting option prices are correct not only
in the risk-neutral world, but in the real world as well. In the credit risk
context, risk-neutrality is achieved by calibrating the default probabil-
ities of individual credits with the market-implied probabilities drawn
from bond or credit default swap spreads. The difference between ac-
tual and risk-neutral probabilities reflects risk-premiums required by
market participants to take risks. To illustrate this difference suppose
we are pricing a one-year par bond that promises its face value 100
and a 7% coupon at maturity. The one-year risk-free interest rate is
5%. The actual survival probability for one year is 1− PD = 0.99; so,
if the issuer survives, the investor receives 107. On the other hand,
if the issuer defaults, with actual probability PD = 0.01, the investor
recovers 50% of the par value. Simply discounting the expected payoff
computed with the actual default probability leads to

(107 × 0.99 + 50%× 100 × 0.01)

1 + 5%
= 101.36 ,

which clearly overstates the price of this security. In the above example
we have implicitly adopted an actuarial approach by assuming that the
price the investor is to pay should exactly offset the expected loss due
to a possible default. Instead, it is natural to assume that investors
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are concerned about default risk and have an aversion to bearing more
risk. Hence, they demand an additional risk premium and the pricing
should somehow account for this risk aversion. We therefore turn the
above pricing formula around and ask which probability results in the
quoted price, given the coupons, the risk-free rate, and the recovery
value. According to the risk-neutral valuation paradigm, the fact that
the security is priced at par implies that

100 =
(107× (1− PD∗) + 50% × 100 × PD∗)

1 + 5%
.

Solving for the market-implied risk-neutral default probability yields
PD∗ = 0.0351. Note that the actual default probability PD = 0.01
is less than PD∗. Equivalently, we can say that the bond is priced as
though it were a break-even trade for a “stand-in” investor who is not
risk adverse but assumes a default probability of 0.0351. The difference
between PD and PD∗ reflects the risk premium for default timing risk.
Most credit market participants think in terms of spreads rather than in
terms of default probabilities, and analyze the shape and movements
of the spread curve rather than the change in default probabilities.
And, indeed, the link between credit spread and probability of default
is a fundamental one, and is analogous to the link between interest
rates and discount factors in fixed income markets. If s represents a
multiplicative spread over the risk-free rate one gets

PD∗ =
1− 1

1+s

1−REC
≈ s

1−REC
,

where the approximation is also valid for additive spreads.

“Actuarial credit spreads” are those implied by assuming that in-
vestors are neutral to risk, and use historical data to estimate default
probabilities and expected recoveries. Data from Fons [66] suggest that
corporate yield spreads are much larger than the spreads suggested by
actuarial default losses alone. For example, actuarially implied credit
spreads on a A-rated 5-year US corporate debt were estimated by Fons
to be six basis points. The corresponding market spreads have been in
the order of 100 basis points. Clearly, there is more than default risk
behind the difference between “actuarial credit spreads” and actual
yield spreads, like liquidity risk, tax-related issues, etc. But even after
measuring spreads relative to AAA yields (thereby stripping out trea-
sury effects), actuarial credit spreads are smaller than actual market
spreads, especially for high-quality bonds.
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6.3 Term Structure Based on Historical Default Infor-
mation

Multi-year default probabilities can be extracted from historical data
on corporate defaults similarly to the one-year default probabilities.
But before going into details we first show a “quick and dirty” way to
produce a whole term structure if only one-year default probabilities
are at hand.

6.3.1 Exponential Term Structure

The derivation of exponential default probability term structure is
based on the idea that credit dynamics can be viewed as a two-state
time-homogeneous Markov-chain, the two states being survival and de-
fault, and the unit time between two time steps being ∆. Suppose a
default probability PDT for a time interval T (e.g., one year) has been
calibrated from data; then the survival probability for the time unit ∆
(e.g., one day) is given by

P[τ > t+∆|τ ≥ t] = (1− PDT )
∆/T , (6.5)

and the default probability for the time t, in units of ∆, is then

PDt = 1− (1− PDT )
t/T . (6.6)

In the language of survival analysis we can write for the probability of
survival until T

1− PDT = q(T |0) = e−
∫ T
0 h(u)du = e−h̄T ,

where the last equation defines the average default rate h̄,

h̄ = − log (1− PDT ) /T.

Assuming a constant default rate over the whole lifetime of the debt,
Equation (6.6) reads

F (t) = q(t|0) = 1− p(t|0) = 1− e−h̄t.
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6.3.2 Direct Calibration of Multi-Year Default Probabilities

Rating agencies also provide data on multi-year default rates in their
reports. For example, Moody’s [141] trailing T +1-month default rates
for month t and rating universe k are defined as

Dk,t =

∑t
i=t−T Yk,i

Ik,t−11
. (6.7)

k, for example, could be all corporate issuers, US speculative grade
issuers, or Ba-rated issuers in the telecom sector. The numerator is the
sum of defaulters, Y , in month t that were in the rating universe k as of
t−T . The denominator, Ik,t, is the number of issuers left in the rating
universe k in month t− T , adjusted to reflect the withdrawal from the
market of some of those issuers for noncredit-related reasons (e.g., ma-
turity of debt). The adjustment for withdrawal is important because
the denominator is intended to represent the number of issuers who
could potentially have defaulted in the subsequent T +1-month period.
Underlying Equation (6.7) is the assumption that defaults in a given
rating universe are independent and identically distributed Bernoulli
random variables, i.e., the number of defaults w.r.t. a certain pool, rat-
ing, and year follow a binomial distribution. Note that this assumption
is certainly not correct in a strict sense; in fact, correlated defaults are
the core issue of credit portfolio models.

Moody’s employs a dynamic cohort approach to calculating multi-
year default rates. A cohort consists of all issuers holding a given
estimated senior rating at the start of a given year. These issuers are
then followed through time, keeping track of when they default or leave
the universe for noncredit-related reasons. For each cumulation period,
default rates based on dynamic cohorts express the ratio of issuers who
did default to issuers who were in the position to default over that time
period. In terms of Equation (6.7) above, this constitutes lengthening
the time horizon T (T = 11 in the case of one-year default rates). Since
more and more companies become rated over the years, Moody’s and
S&P use an issuer weighted average to averaged cumulative default
rates. To estimate the average risk of default over time horizons longer
than one year, Moody’s calculates the risk of default in each year since
a cohort was formed. The issuer-weighted average of each cohort’s one-
year default rate forms the average cumulative one-year default rate.
The issuer-weighted average of the second-year (marginal) default rates
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FIGURE 6.1: Cumulative default rate for A-rated issuer. Weighted
average default rates smooth economic cycles’ effects on individual co-
horts, from [141].

(default in exactly the second year) cumulated with that of the first year
yields the two-year average cumulative default rate, and so on. Figure
6.1 shows how different cohorts produce a different credit history in
response to different economic and market conditions.

Table 6.1 gives the average cumulative default rates as reported by
Moody’s [141]. A closer look reveals some unpleasant features in this
table. For example, one would expect column monotony for each year,
i.e., high credit quality should never show a higher default rate than low
credit quality, which is violated at various entries. Furthermore, some
marginal default rates are zero, even for non-triple A rated corporates,
which is unrealistic. Clearly, these problems stem from a lack of suffi-
cient data for a reliable statistical analysis, and, obviously, pooling on
a more aggregated level produces more satisfactory results w.r.t. these
plausibility conditions; see Table 6.2. In the next section we show a
way to avoid these deficiencies by use of migration analysis.

One can argue that the issuer-weighted arithmetic mean is perhaps
not the right thing to do. Since more and more corporates are rated
during the last years, issuer-weighted averaging means that recent years
have much more impact than years further back in history and the re-
sult does not reflect a typical year as averaged over economic cycles.
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TABLE 6.1: Average cumulative default rates from 1 to 10 years –

1983–2000, from [141].

TABLE 6.2: Average cumulative default rates by letter rating from 1

to 10 years – 1970–2000, from [141].
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Having now extracted cumulative default probabilities at discrete
points in time, PDi, we might be interested in a continuous version
of this term structure. The simplest answer is an adroit linear inter-
polation of the multi-year default probability table (the interpolation
between rating classes ought to be done on a logarithmic scale).

A slightly more sophisticated method can be formulated with the
help of the forward default rate h. The forward default probability
between ti and ti+1 is given by

p(ti+1|ti) =
PDi+1 − PDi

1− PDi
= 1− exp

(
−
∫ ti+1

ti

h(u)du

)
.

Note that PDi = F (ti). Define for the time interval [ti, ti+1] an average
forward default rate by

h̄i =
1

ti+1 − ti

∫ ti+1

ti

h(u)du, for i = 0, . . . , n.

In terms of the multi-year default probabilities the forward default rate
for period i is

h̄i = − 1

ti+1 − ti
log

(
1− PDi+1

1− PDi

)
.

Two hazard rate functions obtained from the multi-year default prob-
abilities in Table 6.2 are depicted in Figure 6.2 and show a typical
feature: investment grade securities tend to have an upward sloping
hazard rate term structure, whereas speculative grades tend to have a
downward sloping term structure.

The cumulative default probability until time t, ti ≤ t < ti+1 boils
down to

PDt = F (t) = 1− q(ti|0)q(t|ti)

= 1− (1− PDi)

(
1− PDi+1

1− PDi

)(t−ti)/(ti+1−ti)

.

For 0 < t < 1 we obtain again the exponential term structure. For
t > tn the term structure can be extrapolated by assuming a constant
forward default rate h̄n−1 beyond tn−1,

PDt = 1− (1− PDn−1)

(
1− PDn

1− PDn−1

)(t−tn)/(ti+1−ti)

.
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FIGURE 6.2: Hazard rate functions for ratings A and B, calculated
from Moody’s cumulative default rates.

6.3.3 Migration Technique and Q-Matrices

The reliability of the default frequencies reported in Table 6.1 strongly
depends on the quality of the underlying data. In the previous section
we pointed out that the amount of data used for the calibration de-
creases with increasing time horizon. As a consequence, the quality
of the calibration suffers from a lack of sufficient data for a reliable
statistical analysis, especially at larger time horizons. For this reason,
we now discuss a different approach to multi-year default probabilities,
whose key idea is the use of migration analysis.

According to migration frequency tables reported by Moody’s, S&P,
and other rating agencies it is quite likely that corporates experience
changes in credit quality over the years. This phenomenon is called
credit migration, and the likelihoods of transitions from a given rating
category to another are collected in migration matrices.

The migration technique can be treated best within the mathemat-
ical framework of Markov chains, i.e., we assume the existence of a
credit migration process controlled solely by the transition probabili-
ties given in the one-year migration matrix. More precisely, we define
the finite state space of the chain covering possible bond ratings, e.g.,
Ω = {AAA,AA,A,BBB,BB,B,CCC,Default} and assign to every
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pair (i, j) of states a transition or migration probability

mij = P [i→ j] (i = 1, ..., 7; j = 1, ..., 8),

where P [i→ j] denotes the probability of change from rating class i at
the beginning of a year to rating class j at year’s end. In the present
context the Markov property represents the assumption that the evo-
lution of credit migration is independent of the past credit migration
history. Through the homogeneity we assume the migration rates to be
independent of time, i.e., the probability of a one-year migration i→ j
does not depend on the considered year.

Remark Both the assumptions of time-homogeneity and of the Markov
property give rise to lively discussions among practitioners and experts
regarding how realistic such assumption can possibly be. In Section
6.3.4 we consider a recently developed model where the assumption of
time-homogeneity is dropped.

Now we collect the migration probabilities into a one-year migration
(or transition) matrix M = (mij)i,j=1,...,8 where the 8th row is given
by the vector (0, 0, 0, 0, 0, 0, 0, 1). The following properties of M follow
immediately:

(i) M has only nonnegative entries: mij ≥ 0 for i, j = 1, ..., 8.

(ii) All row sums of M are equal to 1:
∑8

j=1mij = 1 for i = 1, ..., 8.

(iii) The last column contains the 1-year default probabilities: mi,8 =
PD(1, i) for i = 1, ..., 7.

(iv) The default state is absorbing: m8,j = 0 for j = 1, ..., 7, and
m8,8 = 1.
This means that there is no escape from the default state.

Rating agencies publish transition matrices for one, two, or more years,
usually with an additional column representing the no-longer rated
debts. Since this primarily occurs when a company’s outstanding debt
issue expires, this portion is typically distributed along the rows pro-
portionally to the probability weights in the rated states. Moody’s
average one-year migration matrix [141], for example, is
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Aaa Aa A Baa Ba B C Default WR
Aaa 0.8617 0.0945 0.0102 0.0000 0.0003 0.0000 0.0000 0.0000 0.0333
Aa 0.0110 0.8605 0.0893 0.0031 0.0011 0.0001 0.0000 0.0003 00346
A 0.0006 0.0285 0.8675 0.0558 0.0066 0.0017 0.0001 0.0001 0.0391
Baa 0.0006 0.0034 0.0664 0.8100 0.0552 0.0097 0.0008 0.0016 0.0523
Ba 0.0003 0.0006 0.0054 0.0546 0.7550 00818 0.0053 0.0132 0.0838
B 0.0001 0.0004 0.0020 0.0056 0.0592 0.7593 0.0303 0.0641 0.0790
C 0.0000 0.0000 0.0000 0.0087 0.0261 0.0562 0.5701 0.2531 0.0858























and reads after adjustment for rating withdrawal

MMoody′s =


Aaa Aa A Baa Ba B C D
Aaa 0.8914 0.0978 0.0106 0.0000 0.0003 0.0000 0.0000 0.0000
Aa 0.0114 0.8913 0.0925 0.0032 0.0011 0.0001 0.0000 0.0003
A 0.0006 0.0297 0.9028 0.0581 0.0069 0.0018 0.0001 0.0001
Baa 0.0006 0.0036 0.0701 0.8547 0.0582 0.0102 0.0008 0.0017
Ba 0.0003 0.0007 0.0059 0.0596 0.8241 0.0893 0.0058 0.0144
B 0.0001 0.0004 0.0022 0.0061 0.0643 0.8244 0.0329 0.0696
C 0.0000 0.0000 0.0000 0.0095 0.0285 0.0615 0.6236 0.2769
D 0 0 0 0 0 0 0 1



.

A useful consequence of the Markovian property and the time-homo-
geneity is the fact that the n-year transition matrix is simply given by
the nth power of the one-year transition matrix,

Mn =Mn
1 ,

where again the cumulative nth year default probabilities for rating
classes are given by the last column of Mn.

Properties (i), (ii) make M a stochastic matrix. Furthermore, one
might want to impose the following plausibility constraints to reflect
our intuition.

(v) Low-risk states should never show a higher default probability
than high-risk states, i.e., Mi8 ≤Mi+18, i = 1, . . . , 7.

(vi) It should be more likely to migrate to closer states than to more
distant states (row monotony towards the diagonal),

Mii+1 ≥Mii+2 ≥Mii+3 . . .

Mii−1 ≥Mii−2 ≥Mii−3 . . .
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(vii) The chance of migration into a certain rating class should be
greater for more closely adjacent rating categories (column monotony
towards the diagonal).

Mi+1i ≥Mi+2i ≥Mi+3i . . .

Mi−1i ≥Mi−2i ≥Mi−3i . . .

Insofar as a lower rating presents a higher credit risk, Jarrow et al.
[103] formulated the condition:

(viii)
∑

j≥kmij is a nondecreasing function of i for every fixed k,

which is equivalent to requiring that the underlying Markov chain be
stochastically monotonic. Note that row and column monotony towards
the diagonal (properties (vi) and (vii)) implies stochastic monotony but
not vice versa.

The problem with this wish list is that one cannot expect these
properties to be satisfied by transition matrices sampled from histor-
ical data; so, the question remains how to best match a transition
matrix to sampled data but still fulfill the required properties. Ong

[150] proposes to solve this optimization problem, with the plausibility
constraints stated as “soft conditions,” through a simulated-annealing
approach, where perturbed matrices are produced through additional
random terms and tested to find an optimal solution. At this point we
do not want to dive into the vast world of multidimensional optimiza-
tion algorithms, but rather turn to another approach for obtaining a
suitable migration matrix, namely via generators.

Generator Matrix The shortest time interval from which a transi-
tion matrix is estimated is typically one year. Data quality of rating
transition observations within a shorter period is too poor to allow for
a reliable estimate of a migration matrix. Nevertheless, for valuation
purposes or loans that allow for the possibility of under-year interven-
tion, we are interested in transition matrices for shorter time periods.
One might be tempted to approach this problem by fractional pow-
ers of M , but unfortunately the roots of transition matrices are not
stochastic in general nor is it clear which root to choose when more of
them exist. The idea is now to try to embed the time-discrete Markov
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chain in a time-continuous Markov process, the latter being totally con-
trolled by its generator. Collecting the rates of migration in a matrix
Q, a time-dependent transition matrix M(t), t ≥ 0 then satisfies the
matrix-valued (backward) differential equation

dM(t) = QM(t)dt.

Under the boundary condition M(0) = I, where I is the identity ma-
trix, the formal solution of the differential equation is the matrix ex-
ponential

M(t) = etQ =

∞∑

k=0

(tQ)k

k!
. (6.8)

Furthermore, the following theorem holds [147]:

6.3.1 Theorem M(t) defined by (6.8) is a stochastic matrix for all
t ≥ 0 if and only if Q = (qij) satisfies the following properties:

(i) 0 ≤ −qii <∞ for all i = 1, ..., 8;

(ii) qij ≥ 0 for all i 6= j;

(iii)
∑8

j=1 qij = 0 for all i = 1, ..., 8.

In Markov chain theory such matrices are called Q-matrices or gen-
erators. Unfortunately, this theorem is not that much of a help. Since
we only have a single-period transition matrix available, the existence
of the true generator is not necessarily guaranteed. The problem of
finding generators for empirical transition matrices has been compre-
hensively treated by Israel et al. [99]. They rediscovered some known
results and derived some new findings. In the following we freely cite
the most useful ones for our purposes and refer for proofs to the liter-
ature.

Equation (6.8), nevertheless, can give us some guidance on how to
find a valid, or at least construct an approximate, generator, i.e., the
matrix logarithm.
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6.3.2 Theorem ([99]) Let M = (mij) be an n×n strictly diagonally
dominant Markov transition matrix, i.e., mii > 1/2 for all i. Then the
series

Q̃ =

l∑

k=1

(−1)k+1 (M − I)k

k

converges geometrically quickly for l → ∞, and gives rise to an n × n
matrix Q̃ having row-sums zero, such that exp(Q̃) =M exactly.

Note that the condition of strictly diagonal dominance is only a suf-
ficient one. It is usually satisfied by credit migration matrices. For
theorems on the (non-)existence of true generators see [99] and the ref-
erences therein. The main problem of the log-expansion is that the
matrix Q̃ is not guaranteed to have nonnegative off-diagonal entries,
which we need by the first theorem. However, any negative off-diagonal
entries of Q̃ will usually be quite small. Therefore, we try to correct the
matrix simply by replacing these negative entries by zero, and redis-
tribute the values by some appropriate ad hoc rules to the other entries
to preserve the property of having vanishing row sum, in the hope that
the thus obtained Q-matrix yields an, in some sense close, embedding.

One version is to define a Q-matrixQ from Q̃ as (see also Stromquist
[173])

qij = max(q̃ij, 0), i 6= j; qii = q̃ii +
∑

i6=j

min(q̃ij, 0), (6.9)

i.e., the sum of the negative off-diagonal entries is allotted in full to the
diagonal element of the respective row.

A different Q-matrix is obtained by adding the negative values back
to all entries of the same row that have the correct sign, proportional
to their absolute values (see also Araten [9] for a closely related algo-
rithm), i.e., let

gi = |q̃ii|+
∑

i6=j

max(q̃ij , 0); bi =
∑

i6=j

max(−q̃ij, 0)

and set

q̂ij =





0, i 6= j and q̃ij < 0
q̃ij − bi|q̃ij|/gi, otherwise if gi > 0
q̃ij, otherwise if gi = 0.

(6.10)
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In both cases the new matrix will still have by construction row sum
zero, but now with nonnegative off-diagonals. Clearly, it will no longer
satisfy exp(Q) = M. Other, more refined “redistribution” choices are
conceivable; however, they would rarely induce substantial difference
to the distance of exp(Q) and M. Note that it is possible that a valid
generator exists even if the Q̃ computed by the series expansion is not
a valid one. Furthermore, it may be possible that there exist more than
one valid generator for a given transition matrix M.

Assuming that there is at most one migration per year Jarrow et
al. [103] derived the following formula for a suitable generator:

q̌ii = log(mii), q̌ij = mij log(mii)/(mii − 1) for i 6= j. (6.11)

Let us now consider some examples. From the Moody’s one-year tran-
sition matrix MMoody′s we arrive with Equation (6.11) at the Q-matrix

Q̌Moody′s =


−0.1150 0.1035 0.0112 0.0000 0.0003 0.0000 0.0000 0.0000
0.0121 −0.1150 0.0979 0.0034 0.0012 0.0001 0.0000 0.0003
0.0007 0.0312 −0.1023 0.0611 0.0072 0.0019 0.0001 0.0001
0.0007 0.0039 0.0757 −0.1570 0.0629 0.0111 0.0009 0.0018
0.0004 0.0007 0.0065 0.0655 −0.1935 0.0982 0.0064 0.0158
0.0001 0.0005 0.0024 0.0067 0.0707 −0.1930 0.0362 0.0765
0.0000 0.0000 0.0000 0.0119 0.0358 0.0771 −0.4722 0.3473

0 0 0 0 0 0 0 0




with the matrix exponential

exp(Q̌Moody′s) =


0.8919 0.0925 0.0146 0.0006 0.0004 0.0000 0.0000 0.0000
0.0108 0.8933 0.0882 0.0057 0.0015 0.0003 0.0000 0.0003
0.0008 0.0282 0.9063 0.0540 0.0080 0.0023 0.0002 0.0003
0.0007 0.0045 0.0670 0.8585 0.0535 0.0120 0.0010 0.0028
0.0003 0.0009 0.0079 0.0556 0.8288 0.0816 0.0060 0.0189
0.0001 0.0005 0.0026 0.0078 0.0591 0.8284 0.0262 0.0753
0.0000 0.0001 0.0006 0.0099 0.0282 0.0570 0.6247 0.2797
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000



.

Using instead Equation (6.10) we obtain

Q̂Moody′s =


−0.1159 0.1095 0.0061 0.0000 0.0003 0.0000 0.0000 0.0000
0.0128 −0.1175 0.1032 0.0002 0.0009 0.0000 0.0000 0.0003
0.0005 0.0330 −0.1066 0.0660 0.0056 0.0014 0.0001 0.0000
0.0007 0.0027 0.0797 −0.1621 0.0690 0.0084 0.0007 0.0009
0.0003 0.0005 0.0039 0.0708 −0.2003 0.1082 0.0054 0.0111
0.0001 0.0004 0.0021 0.0042 0.0773 −0.1990 0.0456 0.0692
0.0000 0.0000 0.0000 0.0114 0.0359 0.0834 −0.4748 0.3440
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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with

exp(Q̂Moody′s) =


0.8912 0.0976 0.0105 0.0003 0.0003 0.0000 0.0000 0.0000
0.0114 0.8913 0.0925 0.0032 0.0011 0.0001 0.0000 0.0003
0.0006 0.0297 0.9028 0.0581 0.0069 0.0018 0.0001 0.0001
0.0006 0.0036 0.0701 0.8547 0.0582 0.0102 0.0008 0.0017
0.0003 0.0007 0.0059 0.0596 0.8241 0.0893 0.0058 0.0144
0.0001 0.0004 0.0022 0.0061 0.0643 0.8244 0.0329 0.0696
0.0000 0.0000 0.0005 0.0095 0.0285 0.0614 0.6234 0.2766
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000



.

Computing the L1-norm2 yields ||MMoody′s−exp(Q̌Moody′s)||1 = 0.10373

and ||MMoody′s − exp(Q̂Moody′s)||1 = 0.00206, i.e., the generator ob-
tained from the log series expansion seems to be a better approximation
in this case. Note that some, but not all entries violating the monotony
conditions have been smoothed out.

Kealhofer et al. [114] question that rating changes are a good in-
dicator for credit quality changes. In particular, they claim that rating
agencies are too slow in changing ratings and therefore the probability
of staying in a given grade overstates the true probability of keeping
approximately the same credit quality. Suppose firms are classified
according to KMV’s respective expected default frequencies (EDF),
based upon non-overlapping ranges of default probabilities. Each of
these ranges corresponds then to a rating class, i.e., firms with default
rates less than or equal to 0.002% are mapped to AAA, 0.002% to
0.04% corresponds to AA, etc. The historical frequencies of changes
from one range to another are estimated from the history of changes
in default rates as measured by EDFs. This yields the following KMV
one-year transition matrix.

MKMV =


0.6626 0.2222 0.0737 0.0245 0.0086 0.0067 0.0015 0.0002
0.2166 0.4304 0.2583 0.0656 0.0199 0.0068 0.0020 0.0004
0.0276 0.2034 0.4419 0.2294 0.0742 0.0197 0.0028 0.0010
0.0030 0.0280 0.2263 0.4254 0.2352 0.0695 0.0100 0.0026
0.0008 0.0024 0.0369 0.2293 0.4441 0.2453 0.0341 0.0071
0.0001 0.0005 0.0039 0.0348 0.2047 0.5300 0.2059 0.0201
0.0000 0.0001 0.0009 0.0026 0.0179 0.1777 0.6995 0.1013
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000



.

2The L1-norm of a matrix M is defined as ||M ||1 =
∑

i,j |mij |.
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Estimating an appropriate generator according to Equation (6.10) yields

Q̂KMV =


−0.4941 0.4512 0.0043 0.0290 0.0006 0.0087 0.0002 0.0001
0.4503 −1.1663 0.6945 0.0000 0.0180 0.0009 0.0025 0.0001
0.0000 0.5813 −1.2204 0.6237 0.0025 0.0122 0.0000 0.0007
0.0217 0.0000 0.6583 −1.3037 0.6119 0.0000 0.0109 0.0009
0.0000 0.0314 0.0000 0.6355 −1.2157 0.5418 0.0000 0.0070
0.0013 0.0000 0.0235 0.0000 0.4805 −0.8571 0.3463 0.0054
0.0000 0.0010 0.0000 0.0118 0.0000 0.3004 −0.4276 0.1145
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




with ||MKMV −exp(Q̂KMV )||1 = 0.5717, whereas Equation (6.11) gives

Q̌KMV =


−0.4116 0.2711 0.0899 0.0299 0.0105 0.0082 0.0018 0.0002
0.3206 −0.8430 0.3823 0.0971 0.0295 0.0101 0.0030 0.0006
0.0404 0.2976 −0.8167 0.3357 0.1086 0.0288 0.0041 0.0015
0.0045 0.0417 0.3366 −0.8547 0.3499 0.1034 0.0149 0.0039
0.0012 0.0035 0.0539 0.3348 −0.8117 0.3582 0.0498 0.0104
0.0001 0.0007 0.0053 0.0470 0.2765 −0.6349 0.2781 0.0272
0.0000 0.0001 0.0011 0.0031 0.0213 0.2113 −0.3574 0.1205
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




with ||MKMV − exp(Q̌KMV )||1 = 1.289, again showing that the log-
expansion approximation is superior in this case. We therefore conclude
that, despite the awkward ad hoc transformation from Q̃ to Q̌ resp. Q̂,
the L1-error based on a log-expansion is smaller than the error based
on the method proposed by Jarrow et al. for the given examples.

Adjustment of the default column Clearly, any approximate gen-
erator results in a more or less modified default column. Additionally,
one might have some exogenously given default master scale and still
want to represent the dynamics of rating migration by a given Markov
generator. The following property allows adjusting the generator ap-
propriately.

6.3.3 Proposition Let Q be a 8× 8 generator matrix and define Λ ∈
R
8×8 as

(Λ)i,j =

{
0 if i 6= j
λi > 0 if i = j

.

Then ΛQ is again a generator matrix, i.e., row scaling by constant
positive factors is a closed operation in the space of Q-matrices.
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The proof is obvious by the properties of Q-matrices. We can now
use this proposition to successively adjust the generator to reproduce
a given default column according to the following algorithm:

1. Choose Λ(1) with λ1 > 0 and λi6=1 = 1 such that(
exp

(
Λ(1)Q

))
1,8

= m1,8.

2. Choose Λ(2) with λ2 > 0 and λi6=2 = 1 such that(
exp

(
Λ(2)Λ(1)Q

))
2,8

= m2,8.

...
...

...
...

...

7. Choose Λ(7) with λ7 > 0 and λi6=7 = 1 such that(
exp

(
Λ(7) · · · · · Λ(1)Q

))
7,8

= m7,8.

8. Scaling a row of a Q-matrix has some impact on every single entry
in the exponential of that matrix. This means, for example, that
after we achieved the right AAA-PD (step 1), step 2 produces the
right AA-PD but slightly changes the just calibrated AAA-PD.
Therefore one has to repeat steps 1-7 until the default column of
the respective matrix exponential agrees with the default column
of M within some error bars.

The factors λi as described in the algorithm can be found by a simple
trial-and-error method, e.g., using dyadic approximation. The above
algorithm converges due to the fact that the mappings λ 7→ exp(Λ(i)Q),
i = 1, ..., 7, are continuous. This follows from the power series repre-
sentation (6.8). Furthermore, from (6.8) follows that exp(Di,λQ) ≈
I+Λ(i)Q indicating that multiplication of the i-th row of Q by a factor
λi mainly affects the i-th row of the corresponding matrix exponential.
For example, starting from Q̂KMV the modified adjusted generator Q̄
reads

Q̄KMV =


−0.4965 0.4535 0.0043 0.0291 0.0006 0.0087 0.0002 0.0001
0.4151 −1.0752 0.6403 0.0000 0.0166 0.0008 0.0023 0.0001
0.0000 0.5764 −1.2100 0.6184 0.0025 0.0121 0.0000 0.0007
0.0239 0.0000 0.7253 −1.4364 0.6742 0.0000 0.0120 0.0010
0.0000 0.0273 0.0000 0.5526 −1.0571 0.4711 0.0000 0.0061
0.0014 0.0000 0.0253 0.0000 0.5180 −0.9239 0.3733 0.0058
0.0000 0.0010 0.0000 0.0127 0.0000 0.3243 −0.4616 0.1235
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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with corresponding matrix exponential

exp(Q̄KMV ) =


0.6587 0.2290 0.0693 0.0256 0.0093 0.0063 0.0016 0.0002
0.2090 0.4482 0.2420 0.0688 0.0230 0.0064 0.0023 0.0004
0.0548 0.2177 0.4301 0.2025 0.0727 0.0171 0.0041 0.0010
0.0224 0.0736 0.2378 0.3576 0.2333 0.0589 0.0138 0.0026
0.0070 0.0249 0.0716 0.1915 0.4575 0.1974 0.0430 0.0071
0.0023 0.0077 0.0232 0.0546 0.2173 0.4754 0.1993 0.0201
0.0005 0.0017 0.0050 0.0125 0.0415 0.1732 0.6642 0.1013
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000




and ||MKMV − exp(Q̄KMV )||1 = 0.6855.

Remark Before closing this section we briefly mention a theorem on
the non-existence of a valid generator.

6.3.4 Theorem ([99]) LetM be a transition matrix and suppose that
either

(i) det(M) ≤ 0; or

(ii) det(M) >
∏

imii; or

(iii) there exist states i and j such that j is accessible from i, i.e.,
there is a sequence of states k0 = i, k1, k2, . . . , km = j such that
mklkl+1

> 0 for each l, but mij = 0.

Then there does not exist an exact generator.

Strictly diagonal dominance of M implies det(M) > 0; so, part (i)
does usually not apply for credit migration matrices (for a proof, see ref-
erences). But case (iii) is quite often observed with empirical matrices.
For example, MMoody′s has zero Aaa default probability, but a transi-
tion sequence from Aaa to D is possible. Note that if we adjust a gen-
erator to a default column with some vanishing entries the respective
states become trapped states due to the above theorem (exp(Q̌Moody′s)

and exp(Q̂Moody′s) are only accurate to four decimals), i.e., states with
zero default probability and an underlying Markov process dynamic are
irreconcilable with the general ideas of credit migration with default as
the only trapped state.



246 An Introduction to Credit Risk Modeling

Remark Strictly diagonal dominance is a necessary prerequisite for
the logarithmic power series of the transition matrix to converge [99].
Now, the default state being the only absorbing state, any transition
matrix M risen to the power of some t > 1, M t, loses the property of
diagonal dominance, since in the limit t → ∞ only the default state is
populated, i.e.,

M(t) =M t →




0 . . . 0 1
. . . . . . . . . . . .
0 . . . 0 1


 as t→ ∞,

which is clearly not strictly diagonally dominant. Kreinin and Sidel-

nikova [116] proposed regularization algorithms for matrix roots and
generators that do not rely on the property of diagonal dominance.
These algorithms are robust and computationally efficient, but in the
time-continuous case are only slightly advantageous when compared to
the weighted adjustment. In the time-discrete case, i.e., transition ma-
trices as matrix-roots, their method seems to be superior for the given
examples to other known regularization algorithms.

6.3.4 A Non-Homogeneous Markov Chain Approach

In a recent paper [23] and also in the book [24], Section 2.3.2, a
continuous-time Markov chain approach without making the assump-
tion of time-homogeneity is presented. Calculations with rating agency
data (see [24], Figure 2.11) nicely illustrate that the non-homogeneous
continuous-time Markov chain (NHCTMC) approach results in an al-
most perfectly fitted model. We do not repeat the calculations from
[23] and [24] here but want to briefly explain the NHCTMC approach
in principal so that readers can do their own experiments.

The starting point for our construction is again a generator Q =
(qij)1≤i,j≤8. But now we no longer assume that the transition rates
qij are constant over time but replace the time-homogeneous generator
Q leading to migration matrices exp(tQ) for time intervals [0, t] by a
time-dependent generator

Qt = Φt ∗Q (6.12)

where ∗ denotes matrix multiplication and Φt = (ϕij(t))1≤i,j≤8 is a
diagonal matrix in R

8×8 with

ϕij(t) =

{
0 if i 6= j

ϕαi,βi
(t) if i = j

(6.13)
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To see that Qt is a generator, note that Φt is a diagonal matrix, and
that scaling the rows of a Q-matrix leads to a Q-matrix again. The
functions ϕα,β with respect to parameters α and β are defined in [23]
as follows. Set

ϕα,β : [0,∞) → [0,∞), t 7→ ϕα,β(t) =
(1− e−αt)tβ−1

1− e−α

for nonnegative constants α and β.

Let us summarize some basic properties of the functions ϕα,β(t).

1. ϕα,β(1) = 1 (“normalized” functions).

2. t 7→ tϕα,β(t) is increasing in the time parameter t ≥ 0.

3. The first part of tϕα,β, namely (1 − e−αt), is the distribution
function of an exponentially distributed random variable with in-
tensity α. The second part of tϕα,β , namely tβ, can be considered
as a time-slowing-down (β < 1) or time-accelerating (β > 1) ad-
justment term. The scaling factor (1− e−α)−1 is the normalizing
multiplier forcing ϕα,β(1) = 1.

In the sequel we denote rating letters by R. For instance, row(R) for
R = AA refers to the second row in a migration matrix.

In analogous way as we did before we can now define migration ma-
trices for given time periods [0, t] via

Mt = exp(tQt) (t ≥ 0). (6.14)

The corresponding PD term structures are defined by

(
(Mt)row(R),8

)
t≥0;R=AAA,AA,...,CCC

.

Since the functional form of (Qt)t≥0 is given by Equation (6.13), genera-
tors Qt are solely determined by two vectors (α1, ..., α8) and (β1, ..., β8)
in [0,∞)8. We can now try to find α- and β-vectors such that

distance
[
(p̂

(t)
R )t;R,

(
(Mt)row(R),8

)
t;R

]
!
= small. (6.15)

Here, (p̂
(t)
R )t;R denotes the time series of historically observed (empir-

ical) multi-year default frequencies. The optimization task for a good
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fit is then to find α- and β-vectors such that the distance or approxima-
tion error (6.15) attains its minimum value. Note that α8 and β8 have
no meaning in the approach and can be fixed at some arbitrary value,
e.g., α = β = 1. As distance measure for the optimization problem
(6.15) we use the mean-squared distance.

A major difference between homogeneous and non-homogeneous ap-
proaches is that the homogeneous approach relies on observed migra-
tion rates only whereas the non-homogeneous approach relies on ob-
served migration rates for the calibration of the generator Q as well as
on observed multi-year default frequencies for finding α- and β-vectors
such that the NHCTMC approach best possible approximates observed
multi-year default frequencies.

Arguments from probability theory, why the NHCTMC approach
really makes sense can be found in [24], Section 2.3.2. There it is
proven that the approach can be embedded in well understood general
Markov process theory. The overall conclusion is that Markov chain
techniques can yield excellently fitted models if the very much restricting
assumption of time-homogeneity is dropped.

6.4 Term Structure Based on Market Spreads

Alternatively, we can construct an implied default term structure by
using market observable information, such as asset swap spreads or
defaultable bond prices.

This approach is commonly used in credit derivative pricing. The
extracted default probabilities reflect the market agreed perception to-
day about the future default tendency of the underlying credit; they are
by construction risk-neutral probabilities. Yet, in some sense, market
spread data presents a classic example of a joint observation problem.
Credit spreads imply loss severity given default, but this can only be
derived if one is prepared to make an assumption as to what they are
simultaneously implying about default likelihoods (or vice versa).

In practice, one usually makes exogenous assumptions on the recovery
rate, based on the security’s seniority. In any credit-linked product
the primary risk lies in the potential default of the reference entity:
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absent any default in the reference entity, the expected cash flow will
be received in full, whereas if a default event occurs the investor will
receive some recovery amount. It is therefore natural to model a risky
cash flow as a portfolio of contingent cash flows corresponding to the
different scenarios weighted by the probability of these scenarios.

The time origin, t = 0, is chosen to be the current date and our
time frame is [0, T ], i.e., we have market observables for comparison
up to time T . Furthermore, assume that the event of default and
the default-free discount factor are statistically independent. Then the
present value for a risky payment X promised for time t (assuming no
recovery) equals

B(0, t)S(t)X

where B(0, t) is the risk-free discount factor (zero bond prices) and
S(t) as usual the cumulative survival probability as of today. Consider
a credit bond from an issuer with notional V , fixed coupon c, and
maturity Tn, and let the accrual dates for the promised payments be
0 ≤ T1 < T1 < · · · < Tn. We assume that the coupon of the bond
to be paid at time Ti is c∆i where ∆i is the day count fraction for
period [Ti−1, Ti] according to the given day count convention. When the
recovery rate REC is nonzero, it is necessary to make an assumption
about the claim made by the bond holders in the event of default.

Jarrow and Turnbull [104] and Hull and White [96] assume
that the claim equals the no-default value of the bond. In this case
value additivity is given, i.e., the value of the coupon-bearing bond
is the sum of the values of the underlying zero bonds. Duffie and
Singleton [48] assume that the claim is equal to the value of the bond
immediately prior to default. In [97], Hull and White advocate that
the best assumption is that the claim made in the event of default equals
the face value of the bond plus accrued interests. Whilst this is more
consistent with the observed clustering of asset prices during default
it makes splitting a bond into a portfolio of risky zeros much harder,
and value additivity is no longer satisfied. Here, we define recovery as
a fraction of par and suppose that recovery rate is exogenously given
(a refinement of this definition is made in Chapter 7), based on the
seniority and rating of the bond, and the industry of the corporation.
Obviously, in case of default all future coupons are lost.



250 An Introduction to Credit Risk Modeling

The net present value of the payments of the risky bond, i.e., the
dirty price, is then given as

dirty price =
∑

Ti>0

B(0, Ti)∆iS(Ti)+ (6.16)

+V
[
B(0, Tn)S(Tn) +REC

∫ Tn

0 B(0, t)F (dt)
]
.

The interpretation of the integral is just the recovery payment times
the discount factor for time t times the probability to default around t
summed up from time zero to maturity.

Similarly, for a classic default swap we have spread payments ∆is at
time Ti where s is the spread, provided that there is no default until
time Ti. If the market quotes the fair default spread s the present value
of the spread payments and the event premium V (1−REC) cancel each
other:

0 =

n∑

i=1

B(0, Ti)s∆iS(Ti)− V (1−REC)

∫ Tn

0
B(0, t)F (dt). (6.17)

Given a set of fair default spreads or bond prices (but the bonds have
to be from the same credit quality) with different maturities and a
given recovery rate, one now has to back out the credit curve. To this
end we have to specify also a riskless discount curve B(0, t) and an
interpolation method for the curve, since it is usually not easy to get a
smooth default curve out of market prices. In the following we briefly
sketch one method:

Fitting a credit curve Assuming that default is modeled as the
first arrival time of a Poisson process we begin by supposing that the
respective hazard rate is constant over time. Equations (6.16) and

(6.17), together with Equation (6.2) S(t) = e−
∫ t
0
h(s)ds = e−ht, allow

us then to back out the hazard rate from market observed bond prices
or default spreads. If there are several bond prices or default spreads
available for a single name one could in principle extract a term struc-
ture of a piece-wise constant hazard rate. In practice, this might lead
to inconsistencies due to data and model errors. So, a slightly more
sophisticated but still parsimonious model is obtained by assuming a
time-varying, but deterministic default intensity h(t). Suppose, for ex-
ample, that

∫ t
0 h(s)ds = Φ(t) · t, where the function Φ(t) captures term
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structure effects. An interesting candidate for the fit function Φ is the
Nelson-Siegel [145] yield curve function:

Φ(t) = a0 + (a1 + a2)

(
1− exp(−t/a3)

t/a3

)
− a2 exp (−t/a3) . (6.18)

This function is able to generate smooth upward sloping, humped and
downward sloping default intensity curves with a small number of pa-
rameters, and, indeed, we have seen in Figure 6.2 that investment grade
bonds tend to have a slowly upward sloping term structure whereas
those of speculative grade bonds tend to be downward sloping. Equa-
tion (6.18) implies that the default intensity of a given issuer tends
towards a long-term mean. Other functions like cubic or exponential
spline may also be used in Equation (6.18), although they might lead
to fitting problems due to their greater flexibility and the frequency
of data errors. The parameter a0 denotes the long-term mean of the
default intensity, whereas a1 represents its current deviation from the
mean. Specifically, a positive value of a1 implies a downward sloping in-
tensity and a negative value implies an upward sloping term structure.
The reversion rate towards the long-term mean is negatively related to
a3 > 0. Any hump in the term structure is generated by a nonzero
a2. However, in practice, allowing for a hump may yield implausible
term structures due to overfitting. Thus, it is assumed that a2 = 0,
and the remaining parameters {a0, a1, a3} are estimated from data.
The Nelson-Siegel function can yield negative default intensities if the
bonds are more liquid or less risky than the default-free benchmark, or
if there are data errors.

Using Equations (6.2) and (6.18) the survival function S(t) can then
be written as

S(t) = exp

[
−
(
a0 + a1

(
1− exp(−t/a3)

t/a3

))
· t
]
. (6.19)

Now, we construct default curves from reference bond and default swap
prices as follows: Consider a sample of N constituents which can be
either bonds or swaps or both. To obtain the values of the parameters
of the default intensity curve, {a0, a1, a3}, we fit equations (6.16, 6.17),
and with the help of Equation (6.19), to the market observed prices by
use of a nonlinear optimization algorithm under the constraints a3 > 0,
S(0) = 1, and S(t)−S(t+1) ≥ 0. Mean-Absolute-Deviation regression
seems to be more suitable than Least-Square regression since the former
is less sensitive to outliers.
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Risk-neutral approach in asset value models (In this section we
follow to some extent the presentation in Crouhy et al. [38], 9.5 and
9.6.) Under the Merton-style approach, the actual cumulative default
probability from time 0 to time t in a real, risk averse world (cf. Chapter
3) is given by

PDreal
t = N

(
− log(A0/C) + (µ− σ2/2)t

σ
√
t

)
, (6.20)

where A0 is the market value of the firm’s asset at time 0, C is the
firm’s default point, σ the asset volatility, and µ the expected return
of the firm’s assets. In a world where investors are neutral to risk,
all assets should yield the same risk-free return r. So, the risk-neutral
default probabilities are given as

PDrn
t = N

(
− log(A0/C) + (r − σ2/2)t

σ
√
t

)
, (6.21)

where the expected return µ has been replaced by the continuous time
risk-free interest rate r. Because investors refuse to hold risky assets
with expected return less than the risk-free base rate, µ must be larger
than r. It follows that

PDrn
t ≥ PDreal

t .

Substituting Equation (6.20) into Equation (6.21) and rearranging, we
can write the risk-neutral default probability as:

PDrn
t = N

(
N−1(PDreal

t ) +
µ− r

σ

√
t

)
. (6.22)

From the continuous time CAPM we have

µ− r = βπ with β =
Cov(ra, rm)

V(rm)
= ρa,m

σa
σm

as beta of the asset w.r.t. the market. Here, ra and rm denote the con-
tinuous time rate of return on the firm’s asset and the market portfolio,
σa and σm are the respective volatilities, ρa,m denotes the correlation
between the asset and the market return, and π means the market risk
premium, defined by

π = µm − r ,
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where µm denotes the expected return on the market portfolio. Putting
all together leads to

PDrn
t = N

(
N−1(PDreal

t ) + ρa,m
π

σm

√
t

)
. (6.23)

The correlation ρa,m is estimated from a linear regression of the asset
return against the market return. The market risk premium π is time
varying, and is much more difficult to estimate statistically. Moody’s
KMV uses a slightly different mapping from distance-to-default to de-
fault probability than the normal distribution. For these reasons, the
risk-neutral default probability is estimated by calibrating the market
Sharpe ratio, SR = π/σm and some power θ, replacing the power 1/2
(for

√
time), in the following relation by means of bond data:

PDrn
t = N

(
N−1(PDreal

t ) + ρa,m SR tθ
)
. (6.24)

From (6.16) we obtain for the credit spread s of a risky zero bond

e−(r+s)t = [(1− PDrn
t ) + (1− LGD)PDrn

t ] e−rt. (6.25)

Combining Equation (6.24) and Equation (6.25) yields

s = −1

t
log
[
1−N(N−1(PDreal

t ) + ρa,m SR tθ)LGD
]
,

which then serves to calibrate SR and θ in the least-square sense from
market data.

Further Reading

The field of migration modeling is still developing. Very recently,
Trueck and Rachev [180] published a collection of various topics in
the context of rating-based credit risk modeling. The book contains a
very comprehensive exposition on the theory of credit migrations and
is highly recommended for readers seeking a complete discussion on
the developments of the theory over the last decade. Another very in-
teresting discussion can be found in a recent PhD thesis (in German)
by Vogl [183]. There are many research papers in the market dealing
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with various approaches to credit migrations and PD term structures.
Schuermann and Jafry [165, 166], Schuermann and Frydman [73],
Höse et al. [93], Kadam and Lenk [108] and Trueck and Oezturk-

men [179] are contributions to the field, just to mention a few out of
many examples for recent research.



Chapter 7

Credit Derivatives

Credit derivatives are instruments that help banks, financial institu-
tions, and debt security investors to manage their credit-sensitive in-
vestments. Credit derivatives insure and protect against adverse move-
ments in the credit quality of the counterparty or borrower. For ex-
ample, if a borrower defaults, the investor will suffer losses on the
investment, but the losses can be offset by gains from the credit deriva-
tive transaction. One might ask why both banks and investors do
not utilize the well-established insurance market for their protection.
The major reasons are that credit derivatives offer lower transaction
cost, quicker payment, and more liquidity. Credit default swaps, for
instance, often pay out very soon after the event of default1; in con-
trast, insurances take much longer to pay out, and the value of the
protection bought may be hard to determine. Finally, as with most fi-
nancial derivatives initially invented for hedging, credit derivatives can
now be traded speculatively. Like other over-the-counter derivative se-
curities, credit derivatives are privately negotiated financial contracts.
These contracts expose the user to operational, counterparty, liquidity,
and legal risk. From the viewpoint of quantitative modeling we here
are only concerned with counterparty risk. One can think of credit
derivatives being placed somewhere between traditional credit insur-
ance products and financial derivatives. Each of these areas has its
own valuation methodology, but neither is wholly satisfactory for pric-
ing credit derivatives. The insurance techniques make use of historical
data, as, e.g., provided by rating agencies, as a basis for valuation (see
Chapter 6).

This approach assumes that the future will be like the past, and
does not take into account market information about credit quality. In
contrast, derivative technology employs market information as a basis
for valuation. Derivative securities pricing is based on the assumption

1Especially under the ISDA master agreement, cf. [98].

255
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of risk-neutrality which assumes arbitrage-free and complete markets,
but it is not clear whether these conditions hold for the credit market
or not. If a credit event is based on a freely observable property of
market prices, such as credit spreads, then we believe that conventional
derivative pricing methodology may be applicable.

Credit derivatives are bilateral financial contracts that isolate specific
aspects of credit risk from an underlying instrument and transfer that
risk between two counterparties. By allowing credit risk to be freely
traded, risk management becomes far more flexible. There are lots of
different types of credit derivatives, but we shall only treat the most
commonly used ones. They could be classified into two main categories
according to valuation, namely the replication products, and the default
products. The former are priced off the capacity to replicate the trans-
action in the money market, such as credit spread options. The latter
are priced as a function of the exposure underlying the security, the de-
fault probability of the reference asset, and the expected recovery rate,
such as credit default swaps. Another classification could be along their
performance as protection-like products, such as credit default options
and exchange-like products, such as total return swaps. In the next
sections we describe the most commonly used credit derivatives and
illustrate simple examples. For a more elaborate introduction to the
different types of credit derivatives and their use for risk management
see [100, 157]; for documentation and guidelines we refer to [98].

7.1 Total Return Swaps

A total return swap (TRS) [102, 142] is a mean of duplicating the cash
flows of either selling or buying a reference asset, without necessarily
possessing the asset itself. The TRS seller pays to the TRS buyer the
total return of a specified asset and receives a floating rate payment plus
a margin. The total return includes the sum of interest, fees, and any
change in the value with respect to the reference asset, the latter being
equal to any appreciation (positive) or depreciation (negative) in the
market value of the reference security. Any net depreciation in value
results in a payment to the TRS seller. The margin, paid by the TRS
buyer, reflects the cost to the TRS seller of financing and servicing the
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X Bank A Bank B
7.25%

7.25% + fees
+ appreciation

Libor + 120bps
+ depreciation

FIGURE 7.1: Total return swap.

reference asset on its own balance sheet. Such a transaction transfers
the entire economic benefit and risk as well as the reference security to
another counterparty.

A company may wish to sell an asset that it holds, but for tax or
political reasons may be unable to do so. Likewise, it might hold a view
that a specific asset is likely to depreciate in value in the near future,
and wish to short it. However, not all assets in the market are easy
to short in this way. Whatever the reason, the company would like
to receive the cash flows which would result from selling the asset and
investing the proceeds. This can be achieved exactly with a total return
swap. Let us give an example: Bank A decides to get the economic
effect of selling securities (bonds) issued by a German corporation,
X. However, selling the bonds would have undesirable consequences,
e.g., for tax reasons. Therefore, it agrees to swap with bank B the
total return on one million 7.25% bonds maturing in December 2005
in return for a six-month payment of LIBOR plus 1.2% margin plus
any decrease in the value of the bonds. Figure 7.1 illustrates the total
return swap of this transaction.

Total return swaps are popular for many reasons and attractive to
different market segments [102, 100, 157]. One of the most important
features is the facility to obtain an almost unlimited amount of lever-
age. If there is no transfer of physical asset at all, then the notional
amount on which the TRS is paid is unconstrained. Employing TRS,
banks can diversify credit risk while maintaining confidentiality of their
client’s financial records. Moreover, total return swaps can also give
investors access to previously unavailable market assets. For instance,
if an investor can not be exposed to the Latin American market for
various reasons, he or she is able to do so by doing a total return swap
with a counterparty that has easy access to this market. Investors can



258 An Introduction to Credit Risk Modeling

also receive cash flows that duplicate the effect of holding an asset while
keeping the actual assets away from their balance sheet. Furthermore,
an institution can take advantage of another institution’s back-office
and documentation experience, and get cash flows that would other-
wise require infrastructure, which it does not possess.

7.2 Credit Default Products

Credit default swaps [134] are bilateral contracts in which one coun-
terparty pays a fee periodically, typically expressed in basis points on
the notional amount, in return for a contingent payment by the pro-
tection seller following a credit event of a reference security. The credit
event could be either default or downgrade; the credit event and the
settlement mechanism used to determine the payment are flexible and
negotiated between the counterparties. A TRS is importantly distinct
from a CDS in that it exchanges the total economic performance of a
specific asset for another cash flow. On the other hand, a credit default
swap is triggered by a credit event. Another similar product is a credit
default option. This is a binary put option that pays a fixed sum if
and when a predetermined credit event (default/downgrade) happens
in a given time.

Let us assume that bank A holds securities (swaps) of a low-graded
firm X, say BB, and is worried about the possibility of the firm de-
faulting. Bank A pays to firm X floating rate (Libor) and receives
fixed (5.5%). For protection bank A therefore purchases a credit de-
fault swap from bank B which promises to make a payment in the
event of default. The fee reflects the probability of default of the ref-
erence asset, here the low-graded firm. Figure 7.2 illustrates the above
transaction.

Credit default swaps are almost exclusively inter-professional trans-
actions, and range in nominal size of reference assets from a few millions
to billions of euros. Maturities usually run from one to ten years. The
only true limitation is the willingness of the counterparties to act on a
credit view. Credit default swaps allow users to reduce credit exposure
without physically removing an asset from their balance sheet. Pur-
chasing default protection via a CDS can hedge the credit exposure of
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Reference 
Asset

Bank A
protection buyer

Bank B
protection seller

Fee in  bps

Contingent

Payment

FIGURE 7.2: Credit default swap.

such a position without selling for either tax or accounting purposes.
When an investor holds a credit-risky security, the return for assum-
ing that risk is only the net spread earned after deducting the cost of
funding. Since there is no up-front principal outlay required for most
protection sellers when assuming a CDS position, they take on credit
exposure in off-balance sheet positions that do not need to be funded.
On the other hand, financial institutions with low funding costs may
fund risky assets on their balance sheets and buy default protection
on those assets. The premium for buying protection on such securities
may be less than the net spread earned over their funding costs.

Modeling For modeling purposes let us reiterate some basic termi-
nology; see [89, 90]. We consider a frictionless economy with finite
horizon [0, T ]. We assume that there exists a unique martingale mea-
sure Q making all the default-free and risky security prices martingales,
after renormalization by the money market account. This assumption
is equivalent to the statement that the markets for the riskless and
credit-sensitive debt are complete and arbitrage-free [89]. A filtered
probability space (Ω,F , (Ft)(t≥0), Q) is given and all processes are as-
sumed to be defined on this space and adapted to the filtration Ft (Ft

describes the information observable until time t). We denote the con-
ditional expectation and the probability with respect to the equivalent
martingale measure by Et(·) and Qt(·), respectively, given information
at time t.

Let B(t, T ) be the time t price of a default-free zero-coupon bond
paying a sure currency unit at time T . We assume that forward rates
of all maturities exist; they are defined in the continuous time by

f(t, T ) = − ∂

∂T
logB(t, T ).
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The default free spot rate is defined by

r(t) = lim
T→t

f(t, T ).

Spot rates can be modeled directly as by Cox et al. [34] or via
forward rates as in Heath et al. [90]. The money market account
that accumulates return at the spot rate is defined as

A(t) = e
∫ t
0 r(s)ds.

Under the above assumptions, we can write default-free bond prices as
the expected discount value of a sure currency unit received at time T ,
that is,

B(t, T ) = Et

[
A(t)

A(T )

]
= Et

[
e−

∫ T
t

r(s)ds
]
.

Now, let B̃(t, T ) be the time t price of a credit risky zero-coupon bond
promising to pay a currency unit at time T . This promised payment
may not be made in full if the firm is bankrupt at time T , i.e., only
a fraction of the outstanding will be recovered in the event of default.
Here we assume that the event premium is the difference of par and the
value of a specified reference asset after default. Let again τ represent
the random time at which default occurs, with a distribution function
F (t) = P[τ ≤ t] and 1{τ<T} as the indicator function of the event.
Then the price of the risky zero-coupon can be written in two ways:

B̃(t, T ) = Et

[
e−

∫ T
t

r(s)ds(1{τ>T} +REC(T )1{τ<T})
]

(7.1)

= Et

[
e−

∫ T
t r(s)ds1{τ>T} + e−

∫ τ
t r(s)dsREC(τ)1{τ<T}

]
. (7.2)

In the first expression the recovery rate REC(T ) is thought of as a pay-
out received at maturity, whereas in the second expression, we think
of REC(τ) as the payment made at the time of default. Given the
existence of the money market account, we can easily translate from
one representation of the recovery to the other by

REC(T ) = REC(τ)e
∫ T
τ r(s)ds.

A credit default swap now has a default leg and a premium leg. The
present value of the contingent payment 1−REC(τ) is then

Adef,t = Et

[
e−

∫ τ
t r(u)du(1−REC(τ))1{τ<T}

]
.
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The present value of the spread payments s is given by:

Afee,t = sEt

[
e−

∫ T
t

r(u)du1{τ>T}
]
.

From arbitrage-free arguments the value of the swap should be zero
when it is initially negotiated. In the course of time its present value
from the protection buyer’s point of view is Adef,t −Afee,t. In order to
calculate the value of the CDS, it is required to estimate the survival
probability, S(t) = 1− F (t), and the recovery rates REC(t).

Swap premiums are typically due at prespecified dates and the amount
is accrued over the respective time interval. Let 0 ≤ T0 ≤ T1 ≤ . . . Tn
denote the accrual periods of the default swap, i.e., at time Ti, i ≥ 1 the
protection buyer pays s∆i, where ∆i is the day count fraction for pe-
riod [Ti−1, Ti], provided that there is no default until time Ti. Assuming
furthermore a deterministic recovery rate at default, REC(τ) = REC,
and no correlation between default and interest rates we arrive at

Adef,t = (1−REC)

∫ Tn

T0

B(T0, u)F (du) (7.3)

Afee,t =

n∑

i=1

s∆iB(T0, Ti)(1 − F (Ti)). (7.4)

The integral describes the present value of the payment (1−REC) at
the time of default. For a default “at” time u, we have to discount with
B(T0, u) and multiply with the probability F (du) that default happens
“around” u.

In some markets a plain default swap includes the features of paying
the accrued premium at default, i.e., if default happens in the period
(Ti−1, Ti) the protection buyer is obliged to pay the already accrued
part of the premium payment. In this case the value of the premium
leg changes to

Afee,t =
n∑

i=1

s

[
∆B(T0, Ti)(1− F (Ti)) +

∫ Ti

Ti−1

(u− Ti−1)B(T0, u)F (du)

]
,

(7.5)
where the difference u− Ti−1 is according to the given day count con-
vention.
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Both reduced-form models (intensity models) and structural models
can in principle be applied to price default swaps. In the reduced-form
model framework the relation between the intensity process ht and the
random survival probabilities at future times t provided τ > t is given
by

q(t, T ) = P[τ > T |Ft] = Et

(
e−

∫ T
t h(s)ds

)
.

If we assume a deterministic recovery rate REC and understand the
recovery as a fraction of a corresponding riskless zero with the same
maturity, we can write the price for a risky zero bond (7.1) as (on
{τ > t}):

B̃(t, T ) = REC Et

(
e−

∫ T
t

r(s)ds
)

+(1−REC) Et

(
e−

∫ T
t
(r(s)+h(s))ds

)
. (7.6)

In the case of zero correlation between the short rate and the intensity
process both processes in the exponent would factorize when taking the
expectation value. But a really sophisticated default swap model would
call for correlated default and interest rates, which leads us beyond the
scope of this presentation. Instead, we turn in the following section
back to correlated defaults and their application to basket swaps.

7.3 Basket Credit Derivatives

Basket default swaps are more sophisticated credit derivatives that
are linked to several underlying credits. The standard product is an
insurance contract that offers protection against the event of the kth
default on a basket of n, n ≥ k, underlying names. It is similar to a
plain default swap but now the credit event to insure against is the
event of the kth default and not specified to a particular name in the
basket. Again, a premium, or spread, s is paid as an insurance fee until
maturity or the event of kth default. We denote by skth the fair spread
in a kth-to-default swap, i.e., the spread making the value of this swap
equal to zero at inception.

If the n underlying credits in the basket default swap are independent,
the fair spread s1st is expected to be close to the sum of the fair default
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swap spreads si over all underlyings i = 1, . . . , n. If the underlying
credits are in some sense “totally” dependent the first default will be
the one with the worst spread; therefore s1st = maxi(si).

The question is now how to introduce dependencies between the un-
derlying credits to our model. Again, the concept of copulas as intro-
duced in Section 2.6 can be used, and, to our knowledge, Li [124, 125]
was the first to apply copulas to valuing basket swaps by generating
correlated default times as random variables via a correlation model
and a credit curve. For more on copulas we refer to Section 2.6 and
the literature referenced there, but see also Embrechts et al. [56] for
possible pitfalls.

Modeling Dependencies via Copulas Denote by τi, i = 1, . . . , n
the random default times for the n credits in the basket, and let fur-
thermore (Fi(t))t≥0 be the curve of cumulative (risk-neutral) default
probabilities for credit i:

Fi(t) = P[τi ≤ t], t ≥ 0 ,

with Si(t) = P[τi > t] = 1 − Fi(t). F (t) is assumed to be a strictly
increasing function of t with F (0) = 0 and limt→∞ F (t) = 1. This
implies the existence of the quantile function F−1(x) for all 0 ≤ x ≤ 1.
From elementary probability theory we know that for any standard
uniformly distributed U ,

U ∼ U(0, 1) ⇒ F−1(U) ∼ F. (7.7)

This gives a simple method for simulating random variates with dis-
tribution F , i.e., random default times in our case. The cash flows
in a basket default swap are functions of the whole random vector
(τ1, . . . , τn), but in order to model and evaluate this basket swap we
need the joint distribution of the τi’s:

F (t1, . . . , tn) = P[τ1 ≤ t1, . . . , τn ≤ tn].

Similarly, we define the multivariate survival function S by

S(t1, . . . , tn) = P[τ1 > t1, . . . , τn > tn].

Note that

Si(ti) = S(0, . . . , 0, ti, 0, . . . , 0),

S(t1, . . . , tn) 6= 1− F (t1, . . . , tn).
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We exploit again the concept of copula function where, for uniform
random variables, U1, U2, . . . , Un,

C(u1, u2, . . . , un) = P[U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un]

defines a joint distribution with uniform marginals. The function C(u1,
u2, . . . , un) is called a Copula function. Remember that Ui = Fi(τi)
admits a uniform distribution on the interval [0, 1]; so, the joint distri-
bution of (τ1, . . . , τn) can be written as:

F (t1, . . . , tn) = C(F1(t1), . . . , Fn(tn)) . (7.8)

Hence, the Copula function introduces a mutual correlation by link-
ing univariate marginals to their full multivariate distribution thereby
separating the dependency structure C, i.e., the ingredients are some
credit curve for each credit as marginal distribution functions for the
default times and a suitable chosen copula function. Observe that by
Sklar’s theorem (Section 2.6) any joint distribution can be reduced to
a copula and the marginal distributions, although it may be difficult
to write down the copula explicitly.

One of the most elementary copula functions is the multivariate nor-
mal distribution

C(u1, u2, . . . , un) = Nn

[
N−1(u1), N

−1(u2), . . . , N
−1(un); Γ

]
(7.9)

where Nn is as before the cumulative multivariate normal distribution
with correlation matrix Γ and N−1 is the inverse of a univariate normal
distribution. Clearly, there are various different copulas generating all
kinds of dependencies, and the choice of the copula entails a significant
amount of model risk [68, 70]. The advantage of the normal copula,
however, is that, as we have seen in Chapter 2, it relates to the latent
variable approach to model dependent default. Assume that the default
event of credit i up to time T is driven by a single random variable ri
(ability-to-pay variable) being below a certain threshold ci(T ):

τi < T ⇔ ri < ci(T ) .

If the Zi’s admit a multivariate standard normal distribution with cor-
relation matrix Γ̃, then to be consistent with our given default curve,
we set ci(T ) = N−1(Fi(T )). The pairwise joint default probabilities
are now given in both representations by:

P [τi ≤ T, τj ≤ T ] = P [ri ≤ ci(T ), rj ≤ cj(T )]

= N2[N
−1(Fi(T )), N

−1(Fj(T )); Γ̃ij ] (7.10)
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We see that these probabilities (7.10) only coincide with those from the
normal copula approach (7.8), (7.9), if the asset correlation matrix Γ̃
and the correlation matrix Γ in the normal copula are the same. But
note that since the asset value approach can only model defaults up to a
single time horizon T , the calibration between the two models can only
be done for one fixed horizon. So, we see again that the factor model
approach to generate correlated defaults based on standard normal
asset returns is tantamount to a normal copula approach.

Remark Analogously to the default distribution we can apply Sklar’s
theorem to the survival function, i.e., when S is a multivariate survival
function with margins S1, . . . , Sn, then there exists a copula represen-
tation

S(t1, . . . , tn) = C̆(S1(t1), . . . , Sn(tn)) . (7.11)

There is an explicit, although rather complex relation between the
survival copula C̆ and the distribution copula C [76]; in the two-
dimensional case we obtain

C̆(u1, u2) = S(S−1
1 (u1), S

−1
2 (u2)) = S(t1, t2)

= 1− F1(t1)− F2(t2) + F (t1, t2)

= S1(t1) + S2(t2)− 1 + C(1− S1(t1), 1− S2(t2))

= u1 + u2 − 1 + C(1− u1, 1− u2),

where it can easily be shown that C̆ is indeed a copula function. At
this point let us state that a copula is radially symmetric if and only
if C = C̆ (proof [76]). The normal copula is radial symmetric; so, e.g.,
in two dimensions we find indeed that

C̆(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2)

= u1 + u2 − 1 +N2

[
N−1(1− u1), N

−1(1− u2); Γ
]

= N2

[
N−1(u1),+∞; Γ

]
+N2

[
+∞, N−1(u2); Γ

]

−N2 [+∞,+∞; Γ] +N2

[
−N−1(u1),−N−1(u2); Γ

]

= N2

[
N−1(u1), N

−1(u2); Γ
]

= C(u1, u2).

This property is very interesting for computational purposes, since in
the radially symmetric case it is thus equivalent to work with the dis-
tribution copula or with the survival copula.
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FIGURE 7.3: Generating correlated default times via the copula ap-
proach (illustrative: here, F1 = F2).

Summarizing, the normal copula function approach for modeling cor-
related default times is as follows (Figure 7.3):

• Specify the cumulative default time distribution Fi (credit curve),
such that Fi(t) gives the probability that a given asset i defaults
prior to t.

• Assign a standard normal random variable ri to each asset, where
the correlation between distinct ri and rj is ρij .

• Obtain the default time τi for asset i through

τi = F−1
i (N(ri)) .

Note that since Fi(t) is a strictly increasing continuous function with
limt→∞ Fi(t) = 1 there is always a default time, though it may be very
large.

In the one-period case, positively correlated defaults mean that if one
asset defaulted it is more likely that the second defaults as well, com-
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pared to independent defaults. For default times, a positive correlation
means that the time between the two default events is smaller, on av-
erage, than if they were uncorrelated. Figure 7.4 depicts the average
standard deviation of default times τi, 1 ≤ i ≤ 5, < stdi[τi] > (the av-
erage is taken over numerous scenarios), in units of the average default
time, < meani[τi] >, the average first-to-default-time < mini[τi] >,
and the average last-to-default-time < maxi[τi] >, for a uniform bas-
ket of five loans in dependence of the asset correlation with cumulative
multi-year default probabilities as in Table 7.1.

TABLE 7.1: Term structure of cumulative default probability.

year 1 2 3 4 5 6 7
PD 0.0071 0.0180 0.0320 0.0484 0.0666 0.0859 0.1060

year 8 9 10
PD 0.1264 0.1469 0.1672

Pricing In order to price basket default swaps, we need the distri-
bution of the time τkth of the kth default. The kth default time is in
fact the order statistic τ(k:n), k ≤ n, and in general, we have for the
distribution functions

S(k:n)(t) = 1− F(k:n)(t) .

The distribution of the first order statistic τ(1:n) is

F(1:n)(t) = P[τ(1:n) ≤ t] = 1− P[τ1 > t, . . . , τn > t] = 1− S(t, . . . , t),

and the one of the last order statistic (the time of the last default) is
obviously

F(n:n)(t) = P[τ1 ≤ t, . . . , τn ≤ t] = F (t, . . . , t). (7.12)

The corresponding formulas for the other distribution function F(k:n)

in terms of the copula function are much more involved (see [76]); we
only state the special cases n = 2, 3:

n=2:

F (2:2)(t) = C(F1(t), F2(t))

F (1:2)(t) = F1(t) + F2(t)− C(F1(t), F2(t))
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FIGURE 7.4: The average standard deviation of the default times
< stdi[τi] > (⋄), the average first-to-default time < mini[τi] > (+),
and the average last-to-default-time < maxi[τi] > (◦) in units of the
average default time < meani[τi] > for a uniform basket of five loans in
dependence of the asset correlation for normal distributed (solid) and
t-distributed (dashed) latent variables.
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n=3:

F (3:3)(t) = C(F1(t), F2(t), F3(t))

F (2:3)(t) = C(F1(t), F2(t)) +C(F1(t), F3(t)) + C(F2(t), F3(t))

−2C(F1(t), F2(t), F3(t))

F (1:3)(t) = F1(t) + F2(t) + F3(t)− C(F1(t), F2(t))− C(F1(t), F3(t))

−C(F2(t), F3(t)) + C(F1(t), F2(t), F3(t))

The fair spread skth for maturity Tm is then given by (compare Equa-
tions (7.3), (7.4))

0 = skth
m∑

i=1

∆iB(T0, Ti)S(k:n)(Ti)

−
n∑

i=1

(1−RECi)

∫ Tm

T0

B(T0, u)F
kth=i
(k:n) (du). (7.13)

The first part is the present value of the spread payments, which stops
at τkth. The second part is the present value of the payment at the
time of the kth default. Since the recovery rates might be different for
the n underlying names, we have to sum up over all names and weights
with the probability that the kth default happens around u and that
the kth name is just i. (We assume that there are no joint defaults
at exactly the same time.) So F kth=i

(k:n) is the probability distribution of
the kth order statistic of the default times and that kth = i. Figure
7.5 show the kth-to-default spreads for a basket of three underlyings
with fair spreads s1 = 0.009, s2 = 0.010, and s3 = 0.011, and pair-wise
equal correlation. Schmidt and Ward [162] already observed that the
sum of the kth-to-default swap spreads is greater than the sum of the
individual spreads, i.e.,

∑n
k=1 s

kth >
∑n

i=1 si. Both sides insure exactly
the same risk; so, this discrepancy is due to a windfall effect of the first-
to-default swap. At the time of the first default one stops paying the
huge spread s1st on the one side but on the plain-vanilla side one stops
just paying the spread si of the first default i. Of course this mismatch
is only a superficial one, since the sums of the present values of the
spreads on both sides are equal. Note also the two extreme cases. For
fully correlated underlyings, ρ = 1, the first-to-default spread is the
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FIGURE 7.5: kth-to-default spread versus correlation for a basket
with three underlyings: (solid) s1st, (dashed) s2nd, (dashed-dotted)
s3rd.

worst of all underlyings. Of course, in the normal copula framework
perfect linear correlation means that the state variables are identical
and that the name with the largest default probability dominates all
others (assuming the same recovery rates for all underlyings). On the
other hand, for ρ = 0, from an arbitrage-free argument one can show
that the first-to-default spread is close to the sum of the individual
spreads. If the correlation is greater than zero the underlying names
are dependent, which entails a spread widening of the remaining names
as a consequence of the default of credit i. Schmidt and Ward [162]
investigated how this implied spread widening is reflected in the copula
approach and found that given a flat correlation structure the size of the
spread widenings depends on the quality of the credit first defaulting,
i.e., the less risky the defaulting name the larger the impact. Also
the implied spread widening admits a pronounced term structure: the
earlier the first default, the larger the impact on the remaining spreads.
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Counterparty Risk So far, we have tacitly ignored the counter-
party risk of the protection seller to default. This feature could also be
dealt with in the context of the copula approach (but see also Hull

and White [95] for another approach). For simplicity we reduce the
problem to a single obligor CDS, but the generalization to baskets is
straightforward. We now have the additional risk that the protection
seller, i.e., the swap counterparty, can default, together with the refer-
ence security. So, instead of making the promised payments 1−REC
in the event of the reference default, only a fraction δ of that payment
is recovered by the protection buyer. The formulas for the default leg
(7.3) and the premium leg (7.4) change then, in informal notation, to

Adef,t =

∫ Tn

T0

B(T0, u)(1 −REC(u))(−S(du, u))

+

∫ Tn

T0

B(T0, u)(1−REC(u))δ(u)F (du, u)

=

∫ Tn

T0

B(T0, u)(1−REC(u)) [(1− δ(u))(−S(du, u))

+δ(u)Fra(du)]

Afee,t =

n∑

i=1

s∆iB(T0, Ti)S(Ti, Ti),

where Fra denotes the default curve of the reference asset. −S(du, u) =
−∂1S(u, u)du is the probability that the reference asset defaults be-
tween u and u+ du while the swap counterparty is still alive, whereas
F (du, u) = ∂1F (u, u)du is the probability that the reference asset de-
faults between u and u+du and the counterparty has already defaulted.
The bivariate survival function S can then again be represented by a
copula function C̆. Figure 7.6 shows the spread of a single-asset default
swap as a function of the correlation of the reference asset to the swap
counterparty. The risk-free rate is r = 4%, the hazard rates are sup-
posed to be constant at λra = 0.011 and λcp = 0.01, and the recovery
rate is at REC = 0.2.

Remark Obviously, the normal distribution is only one choice for a
possible copula function. See, for example, [56, 68] for possible pitfalls
in modeling dependencies via copula functions. For comparison, we
also compute default times with t-distributed latent variables for the
uniform basket of five loans (see also [133] for a use of t-copulas in
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FIGURE 7.6: Default spread versus correlation between reference as-
set and swap counterparty: (solid) δ = 0.2, (dashed) δ = 0 as fraction
of recovery payment made.
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modeling default baskets). Choosing identical linear correlations, ρn,
ρt in the normal- and t-copula function (ν = 5 degrees of freedom),
produces the results in Figure 7.4. The standard deviations and the
maxima (last-to-default) of the default times in the t-distributed case
are slightly lower over the full range of linear correlation than the ones
based on normal distributed variables. The first-to-default times are
slightly higher in the t-distributed case than in the normal distributed
one. Next, we calibrated for some cases the linear correlation parame-
ters in the t- and normal distributed case to match the one-year default
correlation, based on a one-year default probability of PD1 = 0.0071.
Note that this is not generally possible. The following table shows that
now the differences are much larger.

PD1 = 0.0071 < stdi[τi] > < mini[τi] > < maxi[τi] >
ρt = 0.1, ν = 5 0.75 0.27 2.07
ρn = 0.455 0.61 0.38 1.85
ρt = 0.2, ν = 5 0.71 0.31 2.00
ρn = 0.52 0.56 0.42 1.79
ρt = 0.1, ν = 10 0.76 0.27 2.11
ρn = 0.32 0.67 0.33 1.97
ρt = 0.2, ν = 10 0.72 0.30 2.03
ρ = 0.393 0.64 0.36 1.9

7.4 Credit Spread Products

Credit spread is the difference between the yield on a particular debt
security and a benchmark yield, usually on a government bond. Credit
spread options (CSO) can be based on various types of credit spreads,
the asset-swap spread, the default-swap spread and the yield spread
[134], and they allow investors to express a directional view on credit
spreads or to hedge risk.

In case of options on CDS spreads one speaks of a credit default
swaption. The “put/call” terminology is sometimes confusing here.
Credit default swaptions use the lingo “payer” and “receiver” instead
(see also interest rate swaptions). A payer option is the right to buy
credit default protection at a pre-specified strike level K on a future
date with a payoff equal to max(S(T )−K, 0) at maturity, where S(T )



274 An Introduction to Credit Risk Modeling

is the credit spread. A payer option is both a put on credit quality
– a bet that credit will deteriorate – and a call on spreads – a bet
that spreads will widen. Likewise, a receiver option is the right to sell
credit default protection at a pre-specified strike level on a future date,
max(K−S(T ), 0). A receiver option is both a call on credit – the buyer
makes money when credit quality improves – and a put on spreads.

One of the main characteristics of these products is that the return is
not dependent on a specific credit event. It merely depends on the value
of one reference credit spread against another. If the reference asset
owner’s credit rating goes down, and therefore the default probability
increases, the credit spread goes up and vice versa. A debt issuer can
make use of payer options (put on credit) to hedge against a rise in the
average credit spread. On the other hand, a financial institution that
holds debt securities can purchase receiver options to hedge against a
fall in the credit spread (call on credit).

Credit spread derivatives are priced by means of a variety of models.
One can value them by modeling the spread itself as an asset price. The
advantage of this approach is its relative simplicity. Longstaff and
Schwartz [128] developed a simple framework for pricing credit spread
derivatives, which we will summarize in the following. It captures the
major empirical properties of observed credit spreads. They use this
framework to derive closed-form solutions for call and put CSOs.

Let x denote the logarithm of the credit spreads, that is xt = log(S(t)).
We assume that x is given by the SDE

dx = (a− bx)dt+ sdB1,

where a, b, s are parameters and B1 is a Wiener process. This implies
that changes in x are mean-reverting and homoscedastic, which is con-
sistent with the empirical data. We assume that the default-free term
structure is determined by a one-factor-model [181], that is

dr = (α− βr)dt+ σdB2.

Again α, β, σ2 are parameters and B2 is a Wiener process. The correla-
tion coefficient between dB1 and dB2 is ρ̂. Let us assume market prices
of the risk premium are incorporated into a and α. Thus, both a and α
are risk-adjusted parameters rather than empirical ones. This assump-
tion is consistent with Vasicek [181] and Longstaff and Schwartz
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[127]. The risk-adjusted process for x is given by [128]

dx =

[
a− bx− ρ̂σs

β

(
1− e−β(T−t)

)]
dt+ sdB1. (7.14)

This SDE in (7.14) can be solved by making a change of variables and
then integrating. The resulting solution implies that xT is conditionally
normally distributed with respect to (7.14) with mean µ and variance
η2, where

µ = e−bTx+
1

b

(
α− ρ̂σs

β

)
[1− e−bT ] +

ρ̂σs

β(b+ β)
[1− e−(b+β)T ]

η2 =
s2[1− e−2bT ]

2b
.

Note that as T → ∞ the values of µ and η2 converge to fixed values,
and the distribution of xT converges to a steady-state stationary distri-
bution. With this framework we can find the price of a European call
CSO. Let C(x, r, T ) denote the value of the option. The payoff func-
tion for this option is simply H(x) = max(ex −K, 0). The closed-form
solution for the call CSO is given by

C(x, r, T ) = p(r, T )
[
eµ+η2/2N(d1)−KN(d2)

]
.

Here, N(·) is the cumulative standard normal distribution, p(r, T ) is a
riskless discount bond, and

d1 =
− log(K) + µ+ η2

η
, d2 = d1 − η.

The value of a European put CSO is

P (x, r, T ) = C(x, r, T ) + p(r, T )
[
K − eµ+η2/2

]
.

The option formula has some similarities with the Black-Scholes op-
tion pricing formula. However, the value of a call option can be less
than its intrinsic value even when the call is only slightly in the money.
This surprising result is due to the mean reversion of the credit spreads.
When the spread is above the long-run mean, it is expected to decline
over time. This can not happen in the B-S model because the un-
derlying asset must appreciate like the riskless rate in the risk-neutral
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FIGURE 7.7: Credit spread swap.

framework. The delta for a call is always positive, as in the B-S frame-
work, but the delta of a CSO call decreases to zero as the time until the
expiration increases. A change in the current credit spread is heavily
outweighed by the effects of mean reversion if the expiration date of
the call is far in the future.

An investor may combine a payer and a receiver option to create a
straddle, which is a bet on spread volatility. The buyer of the strad-
dle makes money if spreads either widen or tighten by more than the
breakeven level. Investors can also insure against rising credit spreads
by buying a payer option and reduce the cost by selling a receiver
option.

In a credit spread forward (CSF), counterparty A pays at time T a
pre-agreed fixed payment and receives the credit spread of the refer-
ence asset at time T . Conversely, counterparty B receives the fee and
pays the credit spread. The fixed payment is chosen at time t < T to
set the initial value of the credit spread forward to zero. The credit
spread forward can also be structured around the relative credit spread
between two different defaultable bonds. Credit spread forwards can
be combined to a credit spread swap (Figure 7.7) in which one coun-
terparty pays periodically the relative credit spread, (S1(t)−S2(t)), to
the other.

7.5 Credit-Linked Notes

Credit-linked notes exist in various forms in the credit derivatives
market; see [41, 143, 100, 44]. In its most common form, a credit-
linked note (CLN) is a synthetic bond with an embedded default swap
as illustrated in Figure 7.8.
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CLNs are initiated in several ways. In the following we outline four
examples of typical CLN structures.

The first case we present is the situation of an (institutional) investor
who wants to have access to a credit exposure (the reference asset) for
which by policy, regulation, or other reasons he has no direct access. In
such cases, a CLN issued by another institution (the issuer) which has
access to this particular credit exposure offers a way to evade the prob-
lems hindering the investor to purchase the exposure he is interested in.
The issuer sells a note to the investor with underlying exposure equal
to the face value of the reference asset. He receives the face value of
the reference asset as cash proceeds at the beginning of the transaction
and in turn pays interest, including some premium for the default risk,
to the investor. In case the reference asset experiences a credit event,
the issuer pays to the investor the recovery proceeds of the reference
asset. The spread between the face value and the recovery value of
the reference asset is the investor’s exposure at risk. In case no credit
event occurred during the lifetime of the reference note, the issuer pays
the full principal back to the investor. So in this example one could
summarize a CLN as a synthetic bond with an embedded default swap.

In our second example, an investor, who has no access to the credit
derivatives market or is not allowed to do off-balance sheet transactions,
wants to invest in a credit default swap, selling protection to the owner
of some reference asset. This can be achieved by investing in a CLN
in the same way as described in our first example. Note that from
the investor’s point of view the CLN deal differs from a default swap
agreement by the cash payment made upfront. In a default swap, no
principal payments are exchanged at the beginning.

Another common way to set up a CLN is protection buying. Assume
that a bank is exposed to the default risk of some reference asset. This
could be the case by means of an asset on the balance sheet of the bank
or by means of a situation where the bank is the protection seller in a
credit default swap. In both cases the bank has to carry the reference
asset’s default risk; see Figure 7.8. The bank can now issue a CLN
to some investor who pays the exposure of the reference asset upfront
in cash to the bank and receives interest, including some premium
reflecting the riskiness of the reference asset, during the lifetime of the
note. If the reference asset defaults, the bank suffers a loss for its
balance sheet asset (funded case) or has to make a contingent payment
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for the default swap (unfunded case). The CLN then compensates the
bank for the loss, such that the CLN functions as an insurance.

In this example, the difference between a CLN and just another
default swap arises from the cash proceeds the bank receives upfront
from the CLN investor. As a consequence, the bank is not exposed to
the counterparty risk of the protection selling investor. Therefore, the
credit quality of the investor is of no relevance2. The proceeds from
the CLN can be kept as a cash collateral or be invested in high-quality
collateral securities, so that losses on the reference asset will be covered
with certainty.

Our last example refers to Chapter 8, where CLNs will be discussed
as notes issued by a special purpose vehicle (SPV) in order to set up
a synthetic CDO. In this case, CLNs are used for the exploitation of
regulatory arbitrage opportunities and for synthetic risk transfer.

Besides the already mentioned reasons, there are certainly more ad-
vantages of CLNs worthwhile to be mentioned. For example, CLNs do
not require an ISDA master agreement, but rather can contractually
rely on the term sheet of the notes. Another advantage of CLNs is that
not only the investor’s credit quality but also his correlation with the
reference asset is of no relevance to the CLN, because the money for the
protection payment is delivered upfront. This concludes our discussion
of credit derivatives.

Further Reading

A reference to credit derivatives is the book by Schönbucher [164]
and a very recent book by Wagner [184], just to mention two out of
many examples.

2Of course, for a short time at the start of the CLN there could be a settlement risk.





Chapter 8

Collateralized Debt Obligations

Collateralized debt obligations constitute an important class of so-
called asset backed securities (ABS), which are securities backed by
a pool of assets. Depending on the underlying asset class, ABS in-
clude various subclasses, for example residential or commercial mort-
gage backed securities (RMBS, CMBS), trade receivables ABS, credit
card ABS (often in the form of so-called Master Trusts), consumer
loan ABS, and so on. Some years ago it started that ABS were also
structured based on pools of derivative instruments, like credit default
swaps and other derivative instruments. In the first-mentioned case
such ABS transactions are often called collateralized swap obligations
(CSO). In general, one can say that ABS can be based on any pool of
assets generating a cash flow suitable for being structured in order to
meet investor’s risk and return preferences.

When the first edition of this book appeared the CDO and – more
general – ABS markets were rapidly evolving. The development came
to a stop during the financial crisis starting in May 2007. Markets dried
up completely, liquidity basically vanished and many structured credit
instruments defaulted or at least dropped down tremendously w.r.t.
their mark-to-market. In the course of the crisis there appeared many
discussion papers and press articles about the role of the models in the
crisis. People asked themselves whether models were in general capable
of dealing with market scenarios like the current one. Some people also
blamed the credit quants and analysts for not having warned executives
and for working with overly optimistic model assumptions.

We can not explore the roots of the crisis and the model pros and
cons in an introductory text like this book but instead refer to [26] for
an extensive survey on rethinking credit risk modeling and lessons from
the crisis. However, we want to mention a few facts which fit nicely in
this chapter because the field of CDO modeling was a main motor for
model developments in credit risk during the last years.

281
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First we want to claim that the model universe is sufficiently rich to
deal with crisis scenarios like the most recent one. As mentioned in the
introduction already, it mainly is not the model itself which might need
adjustments, it is the parameterization which might need a rethinking.
And on top one can say that markets would have had much benefit from
using models at all in the past. The fact is that large parts of the ABS
and CDO market were managed basically free of stochastic modeling.
Let us focus on that statement for a moment. Roughly summarizing,
one can say that there are three stages of CDO and ABS valuation.

• Believe in agencies: market participants at this stage used no
models at all but simply relied on ratings from Moody’s, S&P
and Fitch. It is shocking how often this has been the approach
of investors in the past. A bitter wake-up for such investors was
that agency ratings did not hold during the crisis and that large
amounts of invested capital came under pressure or got lost.

• Cash flow models: market participants at this stage looked at
ratings but in addition also operated tailor-made or off-the-shelf
commercial cash flow models to understand the structures. This
is already a better stage than the “believe in agencies” approach.
However, cash flow models without an underlying model for the
uncertainties in cash flows based on the stochastics of underlying
credit assets are not sufficient for coming to meaningful conclu-
sions. Very often such cash flow models allow for certain scenarios
as an assumed model input but this can not be substitute for a
full distribution of cash flows and the corresponding distribution
of risks and returns. So in the end, information for such investors
was missing and the picture of the transaction investment re-
mained incomplete.

• Cash flow model with underlying portfolio model: sophis-
ticated market players typically followed a combined approach of
stochastic modeling of underlying credit risks and resulting (ran-
dom) cash flows at the liability side of the structure; see Figure
8.6. This is the approach we consider as a “must-have” for CDO
and ABS investors; unfortunately, it was the minority of investors
who followed this approach.

So the truth is that many market participants did their investments
basically “model-free” by just relying on the opinion of rating agencies
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and investor reports. A positive rating on a CDO tranche made such
investors feel that their money was wisely invested. But in the course of
the crisis it turned out that the situation can change very quickly and
that agency ratings did not fully reflect the range of possible outcomes
of a market heavily driven by stochastic influences.

Now, at the third afore-mentioned stage one still finds huge differ-
ences in the way market players developed models and applied them to
their investments. One finds the whole range from fully-fledged Monte
Carlo simulations to very much reduced and simplified analytic approx-
imations. And here one also finds some valid arguments for criticism of
model approaches because models were sometimes calibrated in overly
optimistic ways. We come back to this point later in Section 8.6.

Another difficult part of the discussion is communication of model
results to executive managers. Already years ago, credit risk modelers
worked with models with fatter tails of the loss distribution based on
tail dependencies which have not been used before. However, when it
then comes to the point where a three times higher than usual credit
risk quantity needs to be communicated to senior management the ex-
citement about a tail dependent model and or a more defensive parame-
terization very soon comes to an end. A fatter tail of a loss distribution
means lower return on capital and this is something which is hard to ar-
gue for just based on a re-parameterized model without corresponding
clouds visible over the markets. We believe that due to such difficul-
ties in communication and acceptance some very useful insights never
made it into the briefing kit for decision making executive managers.
Especially in a euphoric market environment as we had right before the
crisis it is very difficult to adopt the role of a “trouble smeller.”

So altogether we find a superposition of effects which one can consider
when thinking about the role of models in the most recent crisis. We
stop the discussion here but revisit it in Section 8.6.

In a recent book [24] on structured credit portfolio analysis, baskets
and CDOs two from the author team of this book already dedicated a
whole textbook to questions of CDO modeling. It does not make sense
to repeat part of the content from [24] here in this book. Everything
said in the first edition of this book remained true and valid over the
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last years1. Therefore, we decided to keep most of the material from
the first edition unchanged but extended our discussion of multi-period
modeling which is a major building block of modern CDO modeling and
added a section on recent developments in the field of structured credit.
In the latter mentioned section we also integrated our hints for further
reading and included a few remarks on model risk and the challenge of
model parameterization.

So let us start with an introduction to CDOs in a “story-telling”
style. Some references for further reading are given in the very last
section of this chapter.

8.1 Introduction to Collateralized Debt Obligations

Figure 8.1 shows a segmentation of the CDO market. There are
basically two types of debt on which CDOs are based, namely bonds
and loans, constituting

• Collateralized bond obligations (CBO):
In this case, the collateral pool contains credit risky bonds. Many
of the CBOs we currently find in the market are motivated by
arbitrage spread opportunities, see Section 8.2.1.

• Collateralized loan obligations (CLO):
Here the collateral pool consists of loans. Regulatory capital
relief, cheaper funding, and, more general, regulatory arbitrage
combined with economic risk transfer are the major reasons for
the origination of CLOs by banks all over the world, see Section
8.2.1.

Besides these two, CSOs (see the introductory remarks) are market
standard today. Their advantage is the reduction of funding costs,
because instead of funded instruments like loans or bonds, the cash
flows from credit derivatives are structured in order to generate an
attractive arbitrage spread. A second advantage of CSOs is the fact

1The only exception to that rule is the use of the binomial expansion method (see
Section 8.5) by Moody’s. This method is outdated and today rating agencies use
more sophisticated models.
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FIGURE 8.1: Classification of CDOs.

that credit derivatives are actively traded instruments, such that, based
on the fair market spread of the collateral instruments, a fair price of
the issued securities can be determined, for example, by means of a
risk-neutral valuation approach.

In Section 8.6 we will see that CDO tranches based on derivatives
constitute a very much standardized market instrument today.

Another class of CDOs gaining much attention aremultisector CDOs.
In this case, the collateral pool is a mixture of different ABS bonds,
high-yield bonds or loans, CDO pieces, mortgage-backed securities, and
other assets. Multisector CDOs are more difficult to analyze, mainly
due to cross-collateralization effects, essentially meaning that bonds
issued by a distressed company could be contained in more than one
instrument in the collateral pool. For example, “fallen angels” (like
Enron quite some years ago) typically cause performance difficulties
simultaneously to all CDOs containing this particular risk. Cross-
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collateralization can only be treated by looking at the union of all
collateral pools of all instruments in the multisector pool simultane-
ously, in order to get an idea about the aggregated risk of the combined
portfolios. Then, based on every aggregated scenario in a Monte Carlo
simulation, the cash flows of the different instruments have to be col-
lected and combined in order to investigate the structured cash flows
of the multisector CDO.

The credit risk modeling techniques explained in this book can be
used for modeling (multisector) CDOs. Of course, a sound factor
model, like the one explained in Section 1.2.3, is a necessary prerequi-
site for modeling CDOs by taking industry and country diversification
effects into account. Moreover, in many cases one additionally has to
incorporate an interest rate term structure model in order to capture
interest rate risk in case of floating rate notes.

In general, Market value CDOs are more difficult to treat from a
modeling point of view. These structures are more comparable to hedge
funds than to traditional ABS structures. In a market value CDO, the
portfolio manager has the right to freely trade the collateral. As a
consequence, the portfolio constituents of a market value CDO today
have sometimes very little overlap with the portfolio constituents a
few months later. The performance of market value CDOs completely
relies on the portfolio manager’s expertise to trade the collateral in
a way meeting the principal and interest obligations of the structure.
Therefore, investors will mainly focus on the manager’s deal track record
and experience when deciding about an investment in the structure.
The difficulties on the modeling side arise from the unknown trading
strategy of the portfolio manager and the need of the manager to react
to a volatile economic environment. Such subjective aspects are difficult
if not impossible to model and will not be treated here.

8.1.1 Typical Cash Flow CDO Structure

In this section, we explain a typical cash flow CDO transaction; see
Figure 8.2. For this purpose we focus on some of the main aspects
without going too much into details.

• At the beginning there will always be some pool of credit risky
assets. Admittedly, it will not always be the case that the pool
intended to be securitized was existent at the originating bank’s
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FIGURE 8.2: Example of a cash flow CDO transaction.
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balance sheet for a long time; instead, there are many cases
where banks purchased parts of the pool just a few months before
launching the transaction. Such purchases are typically done in
a so-called ramp-up period.

• In the next step, the assets are transferred to an SPV, which is
a company set-up especially for the purpose of the transaction.
This explains the notion special purpose vehicle. An important
condition hereby is the bankruptcy remoteness of the SPV, essen-
tially meaning that the SPV’s own bankruptcy risk is minimized
and that the SPV will not default on its obligations because of
bankruptcy or insolvency of the originator. This is achieved by a
strict legal separation between the SPV and the originator, im-
plying legal and economic independence. Additionally, an SPV’s
obligations typically involve various structural features support-
ing the bankruptcy remoteness of the SPV.

In case of cash flow structures, a “true-sale” of the assets from
the originator to the SPV completely removes the securitized as-
sets from the originator’s balance sheet. However, most often the
administration of the asset pool remains the originator’s respon-
sibility. The originator receives the principal balance of the pool
as cash proceeds, such that from the originator’s point of view
the funding of the asset pool is completed.

• After the true sale, the assets are property of the SPV. Therefore,
the SPV is the owner of all of the cash flows arising from the asset
pool. This can be used to establish a funding source for the SPV’s
purchase of assets from the originator. Note that as a special
purpose company, the SPV itself has no money for paying the
principal balance of the asset pool to the originating institution.
A way out is the issuance of securities or structured notes backed2

by the cash flow of the asset pool. In other words, the SPV now
issues notes to investors, such that the total notional of notes
reflects the principal balance of the pool. Interest and principal
for the notes are paid from interest and principal proceeds from
the asset pool. This mechanism changes the meaning of the asset
pool towards a collateral pool. From the issuance of notes, the

2This perfectly explains the name asset backed securities.
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SPV receives cash proceeds from the investors, refinancing the
original purchase of assets from the originating institution.

Because investor’s proceeds (principal and interest) are paid from
cash flows generated by the collateral pool, investors are taking the
performance risk of the collateral pool. Because different investors
have different risk appetite, the notes issued by an SPV are typically
tranched into different risk classes. The first loss piece (FLP), often
also called the equity piece3 is the most subordinated tranche, receiving
interest and principal payments only if all other notes investors received
their contractually promised payments.

The FLP is followed by junior, mezzanine, and senior tranches, re-
ceiving interest and principal proceeds in the order of their seniority:
Most senior note holders receive their payments first, more junior note
investors receive payments only if more prioritized payments are in line
with the documentation of the structure. Therefore, the most senior
tranche always is the safest investment, carrying the lowest coupon.
The more junior a tranche is, the higher the promised coupon, com-
pensating investors for the taken risk.

An exception is the equity tranche, which typically carries no promised
coupon. Instead, equity investors receive the excess spread of the struc-
ture in every payment period, where the excess spread is the cash left
over after paying all fees of the structure and all payments to notes
investors senior to the equity piece.

From the discussion above, it follows that subordination is kind of a
structural credit enhancement. For example, in a structure with only
one equity, mezzanine, and senior tranche, the senior note holders are
protected by a cushion consisting of the equity and mezzanine capital,
and the mezzanine tranche is protected by the equity tranche.

Figure 8.3 describes the interest and principal proceeds “waterfalls”
in a typical cash flow CDO. The figure also indicates the deleveraging
mechanism inherent in CDO structures, realized by overcollateraliza-
tion (O/C) and interest coverage (I/C) tests, which brings us to our
last topic in this section.

But before continuing we should mention that there are additional
parties involved in a CDO transaction, including

3The equity tranche is sometimes kept by the originating institution, therefore con-
stituting equity.
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TABLE 8.1: CDO example (illustrative only).
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• rating agencies, which assign ratings to the issued notes,

• a trustee, which takes care that the legal documentation is hon-
ored and receives monthly trustee reports regarding the current
performance of the structure,

• some swap counterparties in case interest or currency risk has to
be hedged, and

• lawyers, structuring experts, and underwriters at the beginning
of the transaction, where the latter mentioned are hired from
another investment bank or from inhouse business units.

Now, in order to explain the O/C and I/C mechanisms in a cash flow
CDO, let us consider a simple illustrative example. Let us assume we
are given a structure like the one outlined in Table4 8.1. Further we
assume that

• the collateral pool contains 100 corporate bonds with an average
default probability

PD = 3% ,

and a weighted5 average coupon (WAC) of

WAC = 10.4% ,

reflecting the risk inherent in the collateral securities;

• spreads and default probabilities are annualized values. The fol-
lowing discussion is independent of the maturity of the structure.

4In the table, LIBOR refers to the 3-month London Interbank Offered Rate, which
is a widely used benchmark or reference rate for short term interest rates.
5For reasons of simplicity, assuming that the bonds trade at par, the weighting is
done with respect to the principal values of the bonds.
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Now we are ready for explaining the O/C and I/C mechanisms. Ba-
sically these coverage tests are intended as an early warning (auto-
matically redirecting cash flows) that interest or principal proceeds are
running short for covering the notes coupons and/or repayments. In
case of a broken coverage test, principal and interest proceeds are used
for paying back the outstandings on notes sequentially (senior tranches
first, mezzanine and junior tranches later) until all tests are passed
again. This deleveraging mechanism of the structure reduces the expo-
sure at risk for tranches in order of their seniority. So one can think
of coverage tests as some kind of credit enhancement for protecting
notes investors (according to prioritization rules) from suffering a loss
(a missed coupon6 or a repayment below par).

8.1.1.1 Overcollateralization Tests

In these tests, which are done for every single tranche except equity,
the principal coverage of collateral securities compared to the required
amount for paying back the notional of the considered tranche and the
tranches senior to the considered tranche is tested. In the structure
according to Table 8.1, three O/C tests have to be done:

O/C test for class A notes: Denote the par value of the pool by
PVPool and the par value of class A notes by PVA, where par
values are taken w.r.t. the considered payment period in which
the test is done. (Synonymously to “par value” we could also say
“outstandings” on notes.) Define

(O/C)A =
PVPool

PVA
.

The O/C test for class A notes is passed if

(O/C)A ≥ (O/C)min
A = 120%

reflecting the minimum O/C ratio for class A as in Table 8.1.

O/C test for class B notes: Define

(O/C)B =
PVPool

PVA + PVB
.

6For mezzanine investors often a deferred interest is possible: If the cash flow from
the collateral securities is not sufficient for passing the coverage tests, mezzanine
investor’s coupon payments are deferred to a later payment period, where all tests
are in line again. Deferred interest is paid on an accrued basis.
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TABLE 8.2: O/C ratios example (illustrative only).
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The O/C test for class B is passed if

(O/C)B ≥ (O/C)min
B = 110% .

Note that the O/C test for class B takes into account that class
A notes have to be paid back before.

O/C test for class C notes: Set

(O/C)C =
PVPool

PVA + PVB + PVC
.

The O/C test for class C investors is passed if

(O/C)C ≥ (O/C)min
C = 105% .

Note that the O/C test for class C takes into account that the
outstandings of classes A and B have to be paid back before class
C investors get their invested money back; see also Figure 8.3.

To give an example, assume we are in a payment period where
the pool volume due to losses of 25,000,000 USD melted down to
275,000,000 USD from the previous to the current period. Table 8.2
shows the O/C ratios for the previous and the current period. One can
see that the coverage is still sufficient for class A to pass the test, but
insufficient for classes B and C. Their O/C tests are broken. This will
cause a deleveraging of the CDO until all tests are in line again.

8.1.1.2 Interest Coverage Tests

An I/C test for a tranche basically measures if the interest proceeds
from the collateral pool are sufficient for paying the fees and coupons
of the structure. In our particular example there are three tests:

I/C test for class A notes: For the considered payment period, de-
note the par value of the pool by PVPool, the par value of class
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A by PVA, the amount of required annual fees by FEES, the
weighted average coupon of the pool by WAC, and the coupon7

on class A notes by CA. Define

(I/C)A =
PVPool ×WAC× 0.5 − FEES× 0.5

PVA × CA × 0.5
.

Here, the factor 0.5 reflects that interest is calculated w.r.t. a
semiannual horizon, covering two (quarterly) payment periods.
Of course, the concrete calculation method for I/C and O/C
ratios always has to be looked up in the documentation of the
structure. The I/C test for class A notes is passed if

(I/C)A ≥ (I/C)min
A = 140%

reflecting the minimum required I/C ratio for class A notes ac-
cording to Table 8.1.

I/C test for class B notes: Define

(I/C)B =
PVPool ×WAC × 0.5 − FEES× 0.5

(PVA × CA + PVB × CB)× 0.5
.

The I/C test for class B is passed if

(I/C)B ≥ (I/C)min
B = 125% .

Analogous to the O/C tests, the calculation reflects that class A
notes have priority before class B notes regarding coupon pay-
ments.

I/C test for class C notes: Setting

(I/C)C =
PVPool ×WAC × 0.5 − FEES× 0.5

(PVA × CA + PVB × CB + PVC × CC)× 0.5
,

class C interest coverage requires classes A and B to be covered,
before C-notes investors receive coupon payments. The test is
passed if

(I/C)C ≥ (I/C)min
C = 110% .

The interest waterfall as illustrated in Figure 8.3 is clearly re-
flected by these calculations.

7In our example we are dealing with floating-rate notes. Here, the coupon on notes
is always defined as LIBOR+Spread.
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TABLE 8.3: I/C ratios example (illustrative only).
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Table 8.3 gives an example for the value of the three I/C ratios right
at the beginning of the transaction. For calculating the I/C ratios we
assumed the current 3-month LIBOR to be equal to 4%.

8.1.1.3 Other Tests

Typically, there are some more tests whose outcomes have to be
reported to the trustee and to the investors. The collection of tests
and criteria varies from deal to deal, and not all tests included in the
monthly reports automatically have immediate consequences on the
cash flow side of the structure. Some tests one frequently finds in deal
documentations are

• an average rating floor test, reporting whether the weighted av-
erage rating of the collateral pool is above a critical threshold; a
typical threshold for cash flow CDOs is Moody’s B-rating;

• industry and diversity score8 tests, alarming investors in case the
industry diversification of the collateral pool decreased more than
expected; a common range for the highest admissible industry
concentration is 8-12%;

• an obligor concentration test, measuring the highest exposure con-
centration in the collateral pool, often restricted to concentrations
below 3%,

and possibly some more tests helping the investors to identify and quan-
tify potential sources of risk and financial distress of the structure.

This concludes our description of cash flow CDOs for now.

8Diversity scores are a measure of the industry diversification of a portfolio; diversity
scores are due to Moody’s and will be explained in Section 8.5.
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8.1.2 Typical Synthetic CLO Structure

In contrast to cash flow CDOs, synthetic CDOs do not rely on the
cash flows of the collateral pool. Instead, credit derivatives, e.g., credit-
linked notes, are used to link the performance of securities issued by
an SPV to the performance, e.g., the losses, of some reference pool.
In other words, synthetic CDOs do not include a true sale, as we just
discussed it in case of cash flow deals, but rather leave the reference
assets on the originator’s balance sheet. Figure 8.4 shows a typical
synthetic CLO as we find it in the market. It could work as follows:

• The originator buys protection for super senior and junior9 pieces
of the reference portfolio by entering into two credit default swaps
with some swap counterparties (protection sellers, see Chapter 7).
The volume referring to the two swaps is called the unfunded part,
because there is no sale requiring certain sources of funding.

• An SPV, which has to be bankruptcy remote for regulatory rea-
sons, enters into a swap with the originator for the volume of the
reference portfolio which is not covered by the senior and junior
swaps.

• In order to guarantee the contingent payments to the originator
in case of credit events in the reference pool, the SPV has to in-
vest some money in collateral securities. Then, in case of a credit
event, the contingent payments from the SPV (protection seller)
to the originator (protection buyer) can be funded by selling col-
lateral securities in an amount matching the realized losses in the
reference portfolio.

• For purchasing collateral securities, the SPV needs some source of
funding. In the same way as we already saw it for cash flow deals,
the SPV issues credit-linked notes in the capital market, linked
to the performance of the reference pool. The outstandings of
the issued notes match the volume of the reference pool reduced
by the size of the junior and senior swap tranches. The SPV
invests the cash proceeds from issuing the notes in low-risk (AAA-
quality) or riskless (treasury) notes.

9Selling the FLP of a synthetic transaction to an investor often involves a so-called
interest sub-participation, essentially meaning that part of the reference pool’s in-
terest will be made available to the FLP-investor in case of losses.
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• The spreads on the notes the SPV has to pay to notes investors
match the premium the SPV receives from the originator who
bought protection from the SPV for the funded part of the refer-
ence portfolio.

• If a credit event in the reference pool occurs, who has to pay for it
depends on the already cumulated losses. Losses below the upper
limit of the junior tranche are carried by the junior swap coun-
terparty. Losses exceeding the junior piece but below the super
senior tranche are (additionally to the contingent payment made
by the junior swap protection seller) carried by the SPV from the
originator’s point of view and carried by the investor’s from the
SPV’s point of view. Indeed, because collateral securities will be
sold for funding the contingent payment the SPV has to make to
the originator, investors will not get the complete face value of
their invested money back at the final maturity of the structure.
The more junior the notes, the more likely it is that investors will
not be fully repaid. Super senior losses, which refer to loss events
far out in the tail of the reference portfolio’s loss distribution,
are taken by the super senior swap counterparty. If super senior
swap counterparties have to pay for losses, all subordinated in-
vestors already had to make their contingent payments on the
swap agreements.

Please note that in the market one finds all kinds of variations of the
illustrative synthetic CLO we just described. For example, instead of
credit default swaps some form of financial guarantee could be used. In
some cases there will be a non-cash settlement in that the protection
buyer sells the defaulted loan to the protection seller for par right after
a contractually specified credit event occurred.

Additionally, most synthetic structures involve triggers based on, e.g.,
rating distributions, diversity scores, collateral values, losses, defaults,
etc. For example, a loss trigger could be defined by saying that in
case losses exceed a critical threshold (“trigger event”), some struc-
tural features of the transaction change in a contractually pre-specified
manner. In this way, triggers are structural elements providing protec-
tion to note holders, comparable to the coverage tests discussed above.

In the last years, many new innovative structures offered interesting
investment opportunities. Due to inefficient markets and regulatory
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arbitrage (see our discussion in Section 8.2), this trend can be expected
to continue.

Because in our example there is a funded and an unfunded part of the
transaction, such a synthetic CLO is called partially funded accordingly.
Again we should remark that all variations are possible and existent in
the market: Fully funded, partially funded, and totally unfunded.

Agreements regarding the definition of credit events and the settle-
ment after the occurrence of credit events can be made based on ISDA
master agreements, see also Chapter 7.

The tranching of the reference portfolio into junior, funded, and super
senior parts follows analogous rules, as we just saw in the case of cash
flow CDOs. The more junior a note is, the higher the premium paid
for buying protection for the considered tranche. The more senior a
tranche is, the safer investors can invest, but the lower the premium
they earn on the investment. Note that this is in line with the risk-
adjusted pricing of swap contracts, see Chapter 7.

8.2 Different Roles of Banks in the CDO Market

There are in general many roles of banks in the ABS market. In
many cases, a bank will play the role of the originator or the role of the
investor. But there are certainly other roles, which will not be discussed
in this book. For example, banks also provide liquidity, guarantee for
promised cash flows, offer different types of credit enhancement, and
sell their services for structuring or underwriting ABS transactions.
Of course, different roles require different models, so that in general
one can say that parallel to the ABS market a whole range of models
is needed to measure the different risks the bank is exposed to when
participating in the ABS market. In the following section we discuss
origination, and in a short subsequent section we make some remarks
on ABS investments.

8.2.1 The Originator’s Point of View

This section discusses securitization. The original meaning of the
word “securitization” is funding by means of issuing (structured) se-
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FIGURE 8.4: Example of a synthetic CDO transaction.
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curities. Today, banks mainly do securitizations for several reasons,
including

• transferring risk,

• arbitrage spread opportunities.

• funding at better (cheaper) conditions, and

• exploitation of regulatory or tax arbitrage,

From a portfolio modeling point of view, there is a fundamental differ-
ence between the first three and the last securitization benefits: Risk
transfer, arbitrage spread opportunities, and (to some extent) better
funding are correlation-driven effects, whereas regulatory capital relief
and tax arbitrage are correlation-free effects.

8.2.1.1 Regulatory Arbitrage and Capital Relief

The keyword regulatory arbitrage refers to opportunities in the mar-
kets due to inappropriate regulation by the regulatory authorities. For
example, as indicated in Section 1.3, regulatory capital for bank loans
in line with the Basel II accord is not suitable for the treatment of
correlation products like CDOs. This results in pricing distortions, due
to the fact that the capital costs of a loan are not fully aligned with
the credit quality of the borrower.

In this section we restrict our exposition to a few remarks only. The
part of the Basel II capital accord treating securitizations is expected to
be modified in the near future because the framework is just not appro-
priate as already indicated in Section 1.3. Therefore, it does not make
sense to spend much time with a discussion on the current framework.

A recent trend in regulatory arbitrage is based on the so-called su-
pervisory formula which is part of the securitization framework of the
Basel II capital accord. In Section 1.3 we showed an example for a
corporate risk weight function which then leads to the risk-weighted as-
sets RWA of a corporate loan. Let us now assume a bank securitizes a
subportfolio of its loan book. Then, looking at the securitization a bit
simplified, the regulatory capital requirement of the subportfolio before
securitization is given by

Reg.Capbefore = 8%×
m∑

i=1

RWAi
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where m is the number of securitized loans. A securitization has a
positive capital effect if

Reg.Capbefore − Reg.Capafter > 0.

Obviously, this is not enough to make a securitization motivated by
capital relief a success because one has to balance reduced capital cost
against the cost of securitizing the assets.

The capital requirement after securitization depends on the particu-
lar type of securitization. For instance, if the tranches are rated (except
equity) then the so-called ratings-based approach (RBA) which is part
of the Basel II securitization framework determines risk weights for
tranches. The bank must hold capital for any tranche the bank is still
holding after securitization. If the securitization is based on unrated
tranches then the afore-mentioned supervisory formula is used for the
determination of RWA of tranches. It is an open secret that banks
exploit the fact that one can free-up capital comparably cheap by a re-
placement of the usual Basel II corporate risk weights by risk weights
coming from a securitization treated by means of the supervisory for-
mula. The optimization problem of such a regulatory arbitrage oppor-
tunity is to determine an optimal attachement point (lower boundary
of the tranche) and detachment point (upper boundary of the tranche)
such that for the given portfolio a single-tranche securitization gives
the optimal capital relief when balancing capital relief against securiti-
zation cost.

8.2.1.2 Economic Risk Transfer

A securitization should also reduce the credit risk of the portfolio
where credit risk can be quantified in various ways as we have seen in
Chapter 1. For instance one can consider the EL or EC before and
after securitization. Risk reduction then is in line with the insurance
paradigm which originally motivated the notion of EL many years ago.
After securitizing the portfolio there is no longer the need to have an
insurance against the full loss potential of the portfolio. Instead, the
bank is only exposed to the risk coming from kept tranches.

Moreover, the same argument conceptually also holds for the eco-
nomic capital (EC; see Section 1.2.1) of the securitized portfolio. But
because the EC involves correlations (and therefore incorporates di-
versification effects), a securitization not only impacts the securitized
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pool, but also influences the EC of the source portfolio, from which the
securitized pool has been separated. In more mathematical terms we
have the following situation

Denote by I = {1, ...,m} an index set referring to the loans in the
source portfolio, and let us assume that a subportfolio indexed by S =
{i1, ..., iq} ⊂ I has been selected for securitization by means of a CLO.
The bank now wants to quantify the securitization impact on the source
portfolio. For this purpose, the portfolio’s EL and EC have to be re-
calculated after the portfolio shrinking I → I\S.
Now, based on Monte Carlo simulation techniques, the securitization

impact is not difficult to calculate. Let us assume the bank would
manage to sell all tranches of the CLO except the equity piece, which
is then held by the bank. For reasons of simplicity we consider the one-
year period from the launch of the deal until one year later. The size
of the equity piece, FLP, is a random variable due to the uncertainty
regarding the performance of the collateral securities. Denoting the
loss statistics of the whole portfolio I by (L1, ..., Lm), see Chapter 2,
the gross portfolio loss before the securitization transaction equals

L =
m∑

i=1

Li ,

hereby assuming an LGD of 100% and exposures equal to 1 for reasons
of simplicity. The portfolio’s gross loss after securitization obviously is
given by

LSec =
∑

i∈I\S
Li + min

( q∑

k=1

Lik ,FLP
)
, (8.1)

because the securitized portfolio S is protected against losses exceeding
FLP. But the variables L and LSec can be easily simulated by use
of the Monte Carlo engine of the bank. After simulation, we have
a loss distribution of the portfolio before the transaction and a loss
distribution of the portfolio after the securitization. The expected loss
gain, respectively economic capital gain, of the transaction is given by

∆EL = E[L]− E[LSec]

and

∆ECα = ECα(L)− ECα(LSec) =
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= (qα(L)− E[L])− (qα(LSec)− E[LSec]) = ∆qα −∆EL ,

where qα denotes the α-quantile of the respective loss distribution (be-
fore and after securitization, respectively), and

∆qα = qα(L)− qα(LSec) .

These calculations are sufficient for capturing the securitization impact
on the source portfolio.

“Risk transfer” refers to the possibility to reduce the required cap-
ital cushion against losses of a portfolio by means of a securitization.
Economic risk transfer happens, if the risk transfer can be measured in
terms of the EL and EC, such that ∆EL and ∆qα are positive.

Now assume that the securitized pool S belongs to some business
unit of the bank with its own profit center. Then, the securitization
impact additionally has to be measured from that profit center’s point
of view, so we additionally need to quantify EL and EC benefits for the
securitized pool only. Keeping the notation from above, the pool loss
before and after securitization is

LPool =

q∑

k=1

Lik and LSec
Pool = min

( q∑

k=1

Lik ,FLP
)
.

The pool’s EL benefit of the securitization therefore is

∆ELPool = E[LPool]− E[LSec
Pool] .

Obviously, ∆ELPool is positive if and only if there is at least one cumu-
lative loss path10 for which the cap at FLP turns out to be effective.

Regarding EC, we now have to consider the contributory economic
capital (CEC) of the securitized pool w.r.t. the source portfolio; see
also Section 5.2. The gain in CEC of the securitization is given by

∆CECα = CECPool − CECSec
Pool ,

where CECPool and CECSec
Pool denotes the CEC of the securitized pool

before and after securitization.

10Thinking in terms of a Monte Carlo simulation.
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We conclude our discussion by briefly mentioning a common perfor-
mance measure capturing the effects of economic risk transfer, namely
risk-adjusted return on capital (RAROC). There are various definitions
of RAROC measures in the literature, but here we use it just for il-
lustrative purposes and therefore keep things as simple11 as possible.
More or less, RAROC always is defined as the risk-adjusted return of
an instrument or portfolio divided by the corresponding EC. To illus-
trate the effect of securitization to RAROC benchmarks, let us assume
that the CEC of the pool before securitization was CECPool = 5%.
Let us further assume that after securitization the CEC of the pool
melted down to CECSec

Pool = 150 bps. The EL of the pool is assumed
to be reduced from E[LPool] = 50 bps to E[LSec

Pool] = 40 bps, due to the
securitization. This yields

RAROC =
NM− E[LPool]

CECPool
=

130 − 50

500
= 16%

for the portfolio before the securitization transaction, and

RAROCSec =
NM− E[LSec

Pool]− COST

CECSec
Pool

=
130 − 40− 30

150
= 40%

after securitizing the portfolio. So the securitization improves the
RAROC of the portfolio by a factor of 2.5, just due to the protection
limit of 1.5%.

Note that the discussion above was based on a one-period view, e.g.,
based on an average lifetime consideration. For measuring economic
risk transfer and securitization effects on RAROC more accurately,
much more work and modeling efforts are required, very often accom-
panied by strong assumptions, e.g., regarding the evolution of the ref-
erence pool.

8.2.1.3 Funding at Better Conditions

Funding is an important issue for banks. Because every loan needs
to be backed by regulatory capital, the capital costs associated with
a loan to a customer can be too high for making the lending business
profitable. But if loans are pooled into portfolios for securitization,

11For example, we do not take, as is often done, the capital benefit arising from risk
free interest earned on the EC into account.
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funding a loan can get significantly cheaper. The reasons why a securi-
tization makes funding cheaper, are basically given in the two sections
above: Because regulatory capital is relieved, equity costs of the se-
curitized portfolio are much lower than they used to be. Moreover, if
an economic risk transfer is achieved, EL costs and EC costs will be
reduced to an extent reflecting the amount of risk transferred to the
capital market. Both effects, and additional tax and other benefits can
help a bank to refinance a loan portfolio at much better conditions than
was the case before the securitization.

8.2.1.4 Arbitrage Spread Opportunities

Arbitrage spread opportunities are created in the following way. The
assets in the collateral pool (in our example of a cash flow CDO we
are talking about high-yield bonds) are priced on a single asset basis,
such that every bond coupon in the portfolio reflects the risk of the
bond. Of course, in general, the coupon of a bond and its price provide
the “full” information about the risks inherent in the bond. However,
assuming a bond trades at par allows for taking the coupon of the
bond as a proxy for its riskiness. So the WAC of the collateral pool
really is a weighted sum of single asset risks, ignoring the potential for
diversification effects typically inherent in a portfolio.

In contrast, on the CDO side, it is the portfolio risk which endangers
the performance of the structure. Recalling our discussion on cash flow
CDOs, we see that the tranching of notes really is a tranching of the
loss distribution of the collateral pool, taking all possible diversification
effects into account. But diversification decreases the risk of a portfolio,
so that the price of the portfolio risk must be lower than the price
obtained by just summing up exposure-weighted single risks. This is
reflected by the spreads on notes as given in Table 8.1: The spreads
paid to notes investors are much lower than the spreads earned on the
bonds in the collateral pool. Due to the risk tranching of notes, the
spreads on senior notes is even lower, due to the credit enhancement
by subordination provided from notes with lower seniority.

It is exactly the mismatch between the single asset based WAC of the
portfolio and the much lower weighted average coupon on the notes of
the CDO, which creates an arbitrage spread. This mismatch is in one
part due to diversification effects, and in another part based on struc-
tural elements like subordination or other credit enhancement mecha-
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nisms. Calling special attention to the diversification point we already
said earlier that CDOs are “correlation products.”

An example regarding arbitrage spread is given in the next section
in the context of CDO investments. Conceptually, any originator of an
arbitrage cash flow CDO keeping the CDO’s first loss piece automati-
cally takes on the role of the equity investor, earning the excess spread
of the structure in its own pockets. Therefore, we can postpone the
arbitrage spread example to the next section.

8.2.2 The Investor’s Point of View

Very often banks are on the investment side of a CDO. In many cases,
ABS bonds offer interesting and attractive investment opportunities,
but require (due to their complexity) careful analytic valuation methods
for calculating the risks and benefits coming with an ABS investment
into the bank’s portfolio. This will be made explicit by means of the
following example.

Recall the sample cash flow CDO from Table 8.1. In this example
we assumed WAC = 10.4% and PD = 3%. Assuming an LGD of
80% on the collateral securities, we obtain the portfolio’s expected loss,
EL = 3% × 80% = 2.4%.

Considering the CDO from an expected return point of view, what
would an equity investor expect to earn on an investment in the equity
tranche? A typical “back-of-the-envelope” calculation reads as follows:
From Table 8.1 we obtain the weighted average coupon WACNotes of
the structure as

WACNotes = 75% × 5% + 10% × 6.5% + 5%× 9.5% = 4.875% ,

again assuming the average 3-month LIBOR to be equal to 4%. Because
cash flow CDOs completely rely on the cash flows from the collateral
pool, the 10.4% of the pool’s par value are the complete income of
the structure. From this income, all expenses of the structure have to
be paid. Paying12 coupons to notes investors yields a gross arbitrage
spread (gross excess spread) of

[Pool Income]− [Notes Spreads] = 10.4% − 4.875% = 5.525% .

12Referring to an average scenario.
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FIGURE 8.5: Equity return distribution of a CDO.

The expected net excess spread is then defined as

[Gross Arbitrage Spread]− EL− COSTS =

= 5.525% − 2.4% − 450, 000

300, 000, 000
= 2.975% .

The equity return is then given by

[Exp. Net Excess Spread]× Pool Volume

Equity Volume
= 29.75% .

So the back-of-the-envelope calculation promises a very attractive eq-
uity return of almost 30%.

Now let us look at this seemingly attractive investment from a port-
folio modeling point of view. For this purpose we calculated the equity
return distribution of the CDO by means of a correlated default times
approach as outlined later on in this chapter; see also Chapter 7. From
a Monte Carlo simulation we obtained13 Figure 8.5. Hereby we essen-
tially followed the CDO modeling scheme as illustrated in Figure 8.3,
adapted to a default times approach according to Figure 8.10.

13Under certain assumptions regarding the maturity of the bonds and the structure.
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TABLE 8.4: Return statistics for class-A notes

investors

Return Range Relative Frequency
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Looking at the equity return distribution in Figure 8.5, it turns out
that, in contrast to the above shown back-of-the-envelope calculation,
the Monte Carlo simulation yields an average equity return of only
15.92%. Additionally, the volatility of equity returns turns out to be
9.05%, so by just one standard deviation move, the equity return can
vary between 6.87% and 24.98%. This reflects the fact that equity
investments are rather volatile and therefore very risky. Moreover, due
to tail events of the collateral pool’s loss distribution, it can happen that
the downside risks of equity investments dominate the upside chances.

We continue our example by looking at the return distribution for
class-A notes investors. Table 8.4 shows that in 94.17% of the cases
the promised coupon of 5% has been paid to A-investors. However,
in 5.83% of the cases, either not a full coupon payment or not a full
repayment resulted in a loss. Here, loss means that at least one con-
tractually promised dollar has not been paid. So the 5.83% are indeed
the (cumulative) default probability of the senior tranche of the CDO.
For an Aa2-rating, this is a very high chance for default. Additionally,
the simulation yields an expected loss of the Aa2-tranche of 50bps,
which again is very high compared to Aa2-rated bonds. Defining the
loss given default of the tranche by

LGD(TAa2) =
EL(TAa2)

PD(TAa2)
=

50

583
= 8.6% ,

shows that on the other side the LGD of the tranche is very low. This is
also due to the large volume (thickness) of the tranche. In Section 8.5
we will discuss rating agency models, and it will turn out that agency
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TABLE 8.5: Weighted average life of tranches
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ratings of senior tranches typically underestimate the tranche’s “true”
risk. This is due to the fact that rating agency models often neglect
the fat tail of credit portfolio loss distributions. In our example we can
clearly see that the Aa2-rating does not really reflect the “true” risk of
the Aa2-tranche.

Table 8.5 shows the weighted average life (WAL) of the four tranches.
For the simulation, we assumed that the CDO matures in 10 years. The
WAL for class-A notes is quite low, in part due to the amortization
structure of the collateral pool, but to some extent also due to broken
coverage tests leading to a deleveraging of the outstandings of the notes.
Because of the waterfall structure illustrated in Figure 8.3, the most
senior class has to be repaid before lower classes receive repayments.
This yields the low WAL for class A.

We conclude this section by a brief summary. In the discussion above,
our calculations showed that it is very dangerous to rely on “average
value” considerations like our back-of-the-envelope calculation. Only a
full Monte Carlo simulation, based on portfolio models as introduced
in this book, or alternative techniques as presented in the last section
of Chapter 2 will unveil the downside risks and upside chances of an
investment in a CDO.

8.3 CDOs from the Modeling Point of View

In this section, a general framework for CDO modeling is presented.
Not all structures require all elements mentioned in the sequel. In
some cases, shortcuts, approximations, or working assumptions (e.g.



310 An Introduction to Credit Risk Modeling

a fixed14, possibly stress-tested, LIBOR) can be used for evaluating a
CDO quicker than by means of implementing a simulation model where
all random elements are also drawn at random, hereby increasing the
complexity of the model.

In our presentation, we will keep a somewhat abstract level, because
going into modeling details or presenting a fully worked-out case study
is beyond the introductory scope of this chapter. However, we want
to encourage readers15 involved in ABS transactions to start modeling
their deals by means of appropriate mathematical models instead of just
following the common practice to evaluate deals by stress tests and the
assumption of fixed loss rates. At the end of Chapter 2 we introduced
some techniques which proved to be very valuable in CDO modeling.
The example in the previous section demonstrates how dangerous short-
cut models can be. Credit risk modelers should avoid shortcuts and
instead make sure all aspects of a deal are captured by the applied
model.

The evaluation of CDO transactions involves three major steps:

1. Step: Constructing a model for the underlying portfolio
Underlying the structure is always an asset pool, for example a
reference portfolio or a collateral pool. The structural elements of
the considered deal are always linked to the performance of the
underlying asset pool, so it is natural to start with a portfolio
model similar to those presented in Chapters 1-4. Additionally,
such a model should include

• multi-year horizons due to maturities longer than one year,

• a sound factor model for measuring industry and country
diversification in an appropriate manner, and

• a model for short term interest rates for capturing the inter-
est rate risk of floating rate securities and notes.

This first step is the only part involving probability theory. The
second and third step are much more elementary.

14For example, if in the documentation of a structure one finds that fluctuations of
LIBOR are limited by a predefined cap and floor, then one can think of stress testing
the impact of LIBOR variations by just looking at the two extreme scenarios.
15As far as we know, most major banks use, in addition to the cash flow approaches
and rating agency models, CDO models based on Monte Carlo simulation or tech-
niques as explained at the end of Chapter 2.
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FIGURE 8.6: CDO modeling scheme.
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2. Step: Modeling the cash flows of the structure
Based on Step 1, the cash flows of the structure conditioned
on the simulated scenario from the portfolio model representing
the performance of the collateral securities should be modeled by
taking all cash flow elements of the structure, including

• subordination structure,

• fees and hedge premiums,

• principal and interest waterfalls,

• coverage tests (O/C and I/C),

• credit enhancements (e.g. overcollateralization),

• triggers (e.g. early amortization, call options), etc.,

into account. From a programming point of view, Step 2 consists
of implementing an algorithm for “distributing money” (e.g., in
a cash flow CDO the cash income from the collateral securities)
into accounts (some specified variables reflecting, e.g., principal
and interest accounts) defined by the contract or documentation
of the deal. Such an algorithm should exactly reflect the cash
flow mechanisms specified in the documentation, because leav-
ing out just a single element can already significantly distort the
simulation results towards wrong impressions regarding the per-
formance of the structure. In addition to a cash flow model, a
discounting method (e.g., a risk-neutral valuation model in case
the risks, e.g., the default probabilities, of the collateral securities
are determined according to a risk-neutral approach) should be
in place in order to calculate present values of future cash flows

3. Step: Interpreting the outcome of the simulation engine
After the simulation, the outcome has to be evaluated and in-
terpreted. Because the performance of the structure is subject
to random fluctuations based on the randomness of the behavior
of the collateral securities, the basic outcome of the simulation
will always consist of distributions (e.g., return distributions, loss
distributions, etc.); see Figure 8.5 and the discussion there.

Figure 8.6 illustrates and summarizes the three steps by means of a
modeling scheme.

In the more formal language of mathematical modeling the three
major valuation steps discussed above can be described as follows:
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Step 1 defines a filtered probability space (Ω, (Ft),P), where:

• Ω consists of the whole universe of possible scenarios regarding
the collateral pool and the interest rate model. More precisely,
every scenario ω ∈ Ω is a vector whose components are defined
by the possible outcomes of the portfolio model, including a de-
fault/migration indicator realization for every collateral security,
a realization of LIBOR, etc.

• (Ft)t=1,...,T is a filtration of σ-algebras containing the measurable
events up to the payment period t. Any σ-algebra Ft can be in-
terpreted as the collection of events reflecting information known
up to payment period t. For example, Ft contains the event that
up to time t the portfolio loss already crossed a certain limit, etc.
Here, T represents the final maturity of the structure.

• The probability measure P assigns probabilities to the events in
the σ-algebras Ft, t = 1, ..., T . For example, the probability that
up to time t more than 20% of the collateral securities defaulted
is given by P(F ), where F ∈ Ft is the corresponding measurable
event.

Step 2 defines a random variable ~X , because as soon as a scenario ω ∈ Ω
is fixed by the simulation engine, the distribution of cash flows condi-
tional on ω follows a deterministic workflow defined by the documen-
tation of the structure. The variable ~X is a vector whose components
contain the quantities relevant for the performance of the structure,
e.g., realized returns for notes investors, the amount of realized re-
payments, the coupon payments made to notes investors, etc. The
distribution P ◦ ~X−1 of the “performance vector” ~X then is the final
output, which has to be analyzed and interpreted in Step 3. For exam-
ple, the relative frequency of scenarios in which at least one promised
dollar to a mezzanine investor has not been paid, constitutes the default
probability of that mezzanine tranche.

The filtration (Ft)t=1,...,T defines a dynamic information flow during
the simulated lifetime of the deal. For example, the simulation step
from time t to time t + 1 will always be conditioned on the already
realized path (the history up to time t). This very much reflects the
approach an investor would follow during the term of a structure: At
time t she or he will take all available information up to time t into
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account for making an analysis regarding the future performance of the
structure.

8.4 Multi-Period Credit Models

An important aspect of CDO modeling is the treatment of multi-year
horizons. Various multi-period credit models have been put forward
during the last years. They differ quite substantially in their setup and
hence it comes not as a surprise that their properties and outcomes
show quite some disparity even when calibrated to the same input
data. Some of the models are mere extensions of single period models,
and thus time-discrete by construction; other models are continuous in
time. But eventually all models have to be transformed to a discrete
time grid as in practical application all happens on consecutive payment
dates. Finger [62] already compared some approaches to multi-period
credit modeling and we will follow his presentation to some extent.

8.4.1 Migration Model

Multi-step models are natural extensions of single-period portfolio
models, like the models we discussed in previous chapters. Essentially,
a multi-step model can be thought of as many “intertemporally con-
nected” single-period models successively simulated. So, one of the
simplest extensions is to repeat the one-period default-only model of
Chapter 2.4.1 for successive periods. Suppose we have a cumulative de-
fault term structure Fi(t) for obligor i, then multiple default thresholds
are given as

ci,tk+1
= N−1

[
Fi(tk+1)− Fi(tk)

1− Fi(tk)

]
,

0 = t0 < t1 < t2 < t3 < . . . < tn. n independent standard nor-
mal random variables are drawn for obligor i, ri,tk ∼ N(0, 1), and the
obligor i defaults in period ]tk−1, tk] if ri,tl ≥ ci,tl for l = 1, . . . , k − 1
and ri,tk < ci,tk . Note that by construction there is no inter-period
correlation of defaults, only within a period the defaults of the oblig-
ors are coupled by the Normal copula with a correlation matrix Σ,
(ri,tk)i=1,...,n ∼ N(0,Σ).
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Building on the material on credit migrations in Section 6.3.3 this
framework can easily be extended to several rating classes. A Markov
state, or rating, Y ∈ {1, . . . ,K} is assigned to each single credit risky
entity i, where the default state K is an absorbing state. A default
probability term-structure Fi(t) exists for each initial credit state i to-
gether with a sequence of migration matrices Mtk that is adapted to
meet the term-structure16 17. These transition matrices are chained
together and create a discrete credit migration process for each credit
entity, Y i

tk
, on a time grid 0 = t0 < t1 < t2 < t3 < . . . < tn. In the

multi-firm context we add a dependency structure between different
credit entities, i.e. credit migrations are coupled through a Gaussian
copula function with correlation matrix Σ in each step. From each mi-
gration matrix we can now calculate migration thresholds that separate
the transition buckets, see Figure 8.7.

For some period ti the thresholds ckl,ti are obtained from

ckl,ti = N−1




K∑

j=l

Mkj,ti


 , for k, l = 1, . . . ,K, with

K∑

j=l

Mkj,ti 6= 0, 1

ckl,ti = −∞, for k, l = 1, . . . ,K, with

K∑

j=l

Mkj,ti = 0

ckl,ti = +∞, for k, l = 1, . . . ,K, with
K∑

j=l

Mkj,ti = 1.

(8.2)

For each period ]tj−1, tj] correlated normal random variables are sam-
pled,

(
ri,tj

)
i=1,...,n

∼ N(0,Σ), and credit i migrates from the initial

state l to the final state k if

clk−1,tj ≤ ri,tj < clk,tj .

16The migration matrix Mtn defines a natural discretization of Yt, but we can sub-
divide or refine the discretization arbitrarily through the introduction of a matrix
square root M

1/2
t = Mt/2 or a generator matrix Q, Mt = exp(tQ).

17The discrete Markov process Yt with time-homogeneous migration matrix does
not necessarily meet a given PD-term structure i.e.,

(

Mk
0

)

iK
6= Fi(tk), k =

1, 2, 3, . . . , (with K as default state). This can easily be rectified by adapting the
transition matrices recursively, i.e. the default column of the first matrix is set to
the term structure and the remaining entries are renormalized. With some linear
algebra the next matrix can be adjusted accordingly and so on.
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FIGURE 8.7: Migration thresholds.

There is no explicit interdependence between the steps apart from the
autocorrelation generated by the migrations, hence it is essentially an
extension of the CreditMetrics model. We also remark that this type
of correlated credit migration model is also the basis of the credit com-
ponent in some of the agency models.

But note one problem: The correlation structure of the model is not
invariant under the refinement of the time discretization. Figure 8.8
shows the tail probability P[L > x] for a sample portfolio with non-
vanishing correlation at the one year horizon under yearly, half-yearly,
and quarterly discretization. For this, we have simpled calculated ap-
propriate square-roots of the migration matrices. The fatness in the
tail of the loss distribution is significantly reduced for smaller migration
intervals. As soon as we introduce correlation to the rating transitions
a link between global correlation and discretization is generated. By
this we mean that choosing the same local correlation parameter ρ for
each time step, the joint arrival probability in the states m,n of two
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FIGURE 8.8: Refining time-discretization, migration model.

entities at time t, given they start at time 0 in states k, l

P[Y i
t = m,Y j

t = n|Y i
0 = k, Y j

0 = l]

is a function of how fine we discretize the process, while keeping the
local correlation constant. Smaller step-sizes de-correlate the processes
Y i
t and Y j

t . This can easily be seen by the fact that for smaller step sizes
the migration probabilities to the default state get smaller, but since
the Gaussian copula has no tail dependence the correlation converges
asymptotically to zero as we move the step size to zero. Obviously, the
dispersion of the transition matrix also plays a role in this link.

In order to reconstitute the original correlation over a fixed time
interval while halving the time step we have to adapt, i.e. increase the
correlation. Suppose

P[Y i
1 = K,Y j

1 = K|Y i
0 = k, Y j

0 = l]

is the joint default probability for one large step. Cutting the dis-
cretization in halves, the joint default probability is now
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FIGURE 8.9: Refining time-discretization, migration model with
adapted correlation.

P[Y i
1 = K,Y j

1 = K|Y i
0 = k, Y j

0 = l] =

=
∑

p,q

P[Y i
1 = K,Y j

1 = K|Y i
1/2 = p, Y j

1/2 = q]×

× P[Y i
1/2 = p, Y j

1/2 = q|Y i
0 = k, Y j

0 = l]. (8.3)

Instead of trying to adjust the correlation for all pairs i, j we confine
ourselves to a homogeneous state in the sense of a large pool approxi-
mation. We obtain one adjustment factor and apply it to all names in
the portfolio. For further discretization we simply nest the approach.
Figure 8.9 shows the effect of the adjustment. We use an inhomoge-
neous portfolio of 100 positions with exposures distributed uniformly in
[500, 1500], 1-year default probabilities in [10bp, 100bp], and correlation
between [10%, 30%]. As can be seen from the graph both loss distri-
bution are now commensurable. From a risk perspective this degree of
similarity seems sufficient, particularely if risk measures like expected
shortfall are used. Further improvement can be achieved by comput-
ing adjustment factors for each rating state and for each matrix in the
sequence of transition matrices (if they are different).
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8.4.2 Correlated Default Time Models

Another “best practice” approach is to generate correlated default
times of the collateral securities. We already discussed this approach
in Section 7.3. The correlated default times approach calibrates de-
fault times compatible to a given one-year horizon asset value model
by means of credit curves, assigned to the default probability of the col-
lateral securities, and some copula function, generating a multivariate
dependency structure for the single default times. It is not by chance
that this approach already has been used for the valuation of default
baskets: Focusing only on defaults and not on rating migrations, the
collateral pool (or reference portfolio) of a CDO can be interpreted as
a somewhat large default basket. The only difference is the cash flow
model on top of the basket.

From a simulation point of view, the default times approach involves
much less random draws than a multi-step approach. For example, a
multi-step model w.r.t. a collateral pool consisting of 100 bonds, would
for quarterly payments over 10 years require 100 × 10 × 4 simulated
random draws in every scenario. The same situation by means of a de-
fault times approach would only require to simulate 100 random draws
in a scenario, namely realizations of 100 default times for 100 bonds.
This saves computation time, but has the disadvantage that rating dis-
tributions (e.g., for modeling rating triggers) can not be incorporated
in a straightforward manner as it is in the case of multi-step models.

Time-consuming calculations in the default times approach could
be expected in the part of the algorithm inverting the credit curves
Fi(t) in order to calculate default times according to the formula τi =
F−1
i (N [ri]); see Section 7.3. Fortunately, for CDO models the exact

time when a default occurs is not relevant. Instead, the only relevant
information is if an instrument defaults between two consecutive pay-
ment dates. Therefore, the copula function approach for default times
can be easily discretized by calculating thresholds at each payment date
t1 < t2 < t3 < . . . < tn according to

ci,tk = N−1[Fi(tk)] ,

where Fi denotes the credit curve for some credit i, and N [·] denotes
the cumulative standard normal distribution function. Clearly one has

ci,t1 < ci,t2 < . . . < ci,tn .
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Setting ci,t0 = −∞, asset i defaults in period ]tk−1, tk] if and only if

ci,tk−1
< ri ≤ ci,tk ,

where (r1, ..., rm) ∼ N(0,Σ) denotes the random vector of standardized
asset value log-returns with asset correlation matrix Σ. This reduces
the computational efforts substantially, since the thresholds have to be
calculated only once and can then be stored in a look-up table before
the actual random events are simulated.

Semi-analytic methods like the saddle-point or the recursive tech-
nique (see the calculation techniques section at the end of Chapter
2) are also commonly used for solving the CDO pricing problem with
correlated default times.

Note further that the correlated-default-times approach with Gaussian-
copula is a rather static model. For this, we write the conditional joint
default probability at different time horizons in a one-factor setting as

P[τ1 < s, τ2 < t|Y = y] =

= P[r1 < N−1(F1(s)), r2 < N−1(F2(t))|Y = y]

= P[Z1 <
N−1(F1(s))−

√
̺y√

1− ̺
, Z2 <

N−1(F2(t))−
√
̺y√

1− ̺
]

= N

[
N−1(F1(s))−

√
̺y√

1− ̺

]
N

[
N−1(F2(t))−

√
̺y√

1− ̺

]
. (8.4)

The sample of the common factor Y is static for all time horizons; there
is no dynamics through time, see also Schönbucher [164].

Figure 8.10 illustrates the workflow of a CDO model which is (in its
portfolio scenario engine) based on default times.

8.4.3 First-Passage-Time Models

8.4.3.1 Discrete Barrier Model

Finger [62] and Hull and White [95] proposed a discrete multi-
period barrier model on a time grid t0 < t1 < . . . < tn based on
correlated Brownian processes Bi

t where the default thresholds ci(tk)
are decreasing functions of time calibrated to satisfy the marginal term
structure Fi(tk). Credit entity i defaults in period k if for the first time
Bi

tk
< ci(tk), i.e.

τi = min
{
tk ≥ 0 : Bi

tk
< ci(tk), k = 0, . . . , n

}
.
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FIGURE 8.10: CDO modeling workflow based on default times.
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The default barriers ci(tk) are to be calibrated to match Fi(tk) such
that

Fi(tk)
!
=P[τi < tk].

Denote δk = tk − tk−1, then from

P[Bi
t1 < ci(t1)] = Fi(t1)

follows that
ci(t1) =

√
δ1N

−1[Fi(t1)].

The successive thresholds are then found by solving

Fi(tk)− Fi(tk−1) =

= P[Bi
t1 > ci(t1) ∩ · · · ∩Bi

tk−1
> ci(tk−1) ∩Bi

tk
< ci(tk)]

=

∫ ∞

ci(tk−1)
fi(tk−1, u)N

[
ci(tk)− u√

δk

]
du,

where fi(tk, x) is the density of Bi
tk

given Bi
tj > ci(tj) for all j < k:

fi(t1, x) =
1√
2πδ1

exp

(
− x2

2δ1

)

fi(tk, x) =

∫ ∞

ci(tk−1)
fi(tk−1, u)

1√
2πδk

exp

(
−(x− u)2

2δk

)
du.

Hence, the calibration of the default thresholds is an iterative pro-
cess and requires the numerical evaluation of integrals with increasing
dimension, which renders the model computationally very heavy. An-
other shortcoming of the model is that it is not invariant under the
refinement of the time discretization [178]. Figure 8.11 shows the tail
probability P[L > x] of a portfolio loss with different discretizations
(yearly, half-yearly, quarterly) of the model. Obviously, the volatil-
ity and tail fatness of the loss distribution decreases with increasing
refinement, and it is not clear where the limiting distribution is.

8.4.3.2 Continuous Time-Changed Barrier Model

The above mentioned discrete barrier model is drawn from a continu-
ous version, i.e. correlated Brownian processes Bi

t with time-dependent
barriers ci(t). The default time of credit i is then the first hitting time
of the barrier ci(t) by the driving process Bi

t :

τi = inf
{
t ≥ 0 : Bi

t < ci(t)
}
.
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FIGURE 8.11: Refining time-discretization, discrete barrier model.

If ci(t) is absolutely continuous, we can write

ci(t) = ci(0) +

∫ t

0
µisds,

and the default time τi is the first hitting time of the constant barrier
ci(0) by a Wiener process with drift.

Y i
t = Bi

t −
∫ t

0
µisds

τi = inf
{
t ≥ 0 : Y i

t < ci(0)
}
. (8.5)

The problem now is to calibrate the model to the prescribed default
term structure, P[τi < t] = Fi(t). To this endOverbeck and Schmidt

[154] put forward a barrier model based on Brownian processes Bi
t with

suitably transformed time scales, (T i
t ), strictly increasing, T i

0 = 0. The
first passage time to default τi of credit entity i is defined through the
process

Y i
t = Bi

T i
t

and

τi = inf
{
s ≥ 0 : Y i

s < ci
}
,
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with a time independent barrier ci. From the strong Markov property
or the reflection principle of the Brownian motion follows (see, e.g.,
Karatzas and Shreve [112, 113]) that the first passage time of an
untransformed Brownian motion with respect to a constant barrier c

τ̃ = inf {t ≥ 0 : Bt < c}

is distributed as

P[τ̃ < t] = P

[
min
0<s<t

Bs < c

]
= 2N

[
c√
t

]
. (8.6)

As T i
t is strictly increasing we find that

P[τi < t] = P

[
min
0<s<t

Bi
T i
t
< ci

]
= P

[
min

0<s<T i
t

Bi
t < ci

]

= 2N

[
ci√
T i
t

]
(8.7)

Hence, given a default term structure Fi(t) the model is calibrated to
the marginals via the time transformation

T i
t =

[
ci

N(−1) (Fi(t)/2)

]2
. (8.8)

Since F (t) is strictly increasing this also follows for Tt. The constant
default barrier ci is then obtained by fixing a time t0 with T i

t0 = t0
which implies

ci = N(−1) (Fi(t0)/2)
√
t0. (8.9)

An obvious, but not necessarily the only sensible choice is to take t0
as the final maturity. Figure 8.12 depicts the time transformation for
various credit qualities with t0 = 1. Dependency between credits is
introduced here through the (local) instantaneous correlation matrix
Σ of the Brownian processes Bi

t . The joint default probabilities P[τi <
t, τj < t] can be written in analytical, but rather technical form (we
refer to [154]), which allows the calibration of the model to prescribed
joint default probabilities. The derivation of the JDPs is based on an
analytical representation via modified Bessel functions as described by
Zhou [193].
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FIGURE 8.12: Time transformation according to Equation (8.8) for
three different credit qualities with term structure Fi(t) = 1 − e−λt,
λ = 10bp, 100bp and 500bp.

8.4.4 Stochastic Default Intensity Models

The stochastic intensity approach [47, 49] is a time continuous model
and has already been presented in Section 2.4.4. Duffie andGârleanu

[47] studied a stochastic intensity approach to the valuation of CDOs by
considering a basic affine process for the intensity λ, solving a stochastic
differential equation of the form

dλ(t) = κ(θ − λ(t))dt+ σ
√
λ(t)dB(t) + ∆J(t), (8.10)

where B is a Wiener process and J is a pure-jump process, independent
of B. In the course of their paper, they consider a simple subordinated
structure, consisting of only three tranches: An equity piece, a mezza-
nine tranche, and a senior tranche. They experimented with different
overcollateralization levels and different correlations and showed that
correlations significantly impact the market value of individual tranches.
For example, in cases where the senior tranche has only a small cush-
ion of subordinated capital, the market value of the senior tranche
decreases with decreasing correlation, whereas the market value of the
equity piece increases with increasing correlation. Their calculations
further show that this effect can be mitigated, but not removed, by
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assuming a higher level of overcollateralization. Regarding the behav-
ior of the mezzanine tranche in dependence on a changing correlation,
they find that the net effect of the impact of correlation changes on
the market value of the senior and equity tranche is absorbed by the
mezzanine tranche. This interestingly results in an ambiguous behav-
ior of the mezzanine tranche: Increasing default correlation may raise
or lower the mezzanine spreads.

For a practical implementation, the stochastic differential equation
(2.47) has to be solved numerically by discretization methods, i.e., the
intensity is integrated in appropriately small time steps. Unfortunately,
this procedure can be quite time-consuming compared to other CDO
modeling approaches.

8.4.5 Intertemporal Dependence and Autocorrelation

The above models are all calibrated to the same marginal default
probabilities in order to ensure that

P[τi < t] = Fi(t).

Furthermore, for a meaningful comparison of single-period credit port-
folio models another calibration requirement is to equate the joint de-
fault probabilities at a given horizon, i.e.

P[τi < T, τj < T ].

But in the multi-period context, from the last condition does not neces-
sarily follow that the joint default probabilities at a horizon s different
from the calibration horizon remain equal between different models,

P[τi < s, τj < s], s 6= T.

And even more, it is clear that the properties of joint default probabil-
ities at two different maturities

P[τi < s, τj < t],

that reflect the intertemporal dependencies, are in general different for
different multi-period models. This is already a problem when we deal
with products like plain vanilla CDOs under the subjective historical
measure because the same CDO at a maturity that is not the calibra-
tion horizon leads to different results under different models. And as
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soon as we would like to model a whole book of CDOs with different
vintage years and a decent overlap in single name risks, or equally, a
time-dependent product like a Forward-Start-CDO, we should be aware
that the intertemporal properties of our model play indeed an impor-
tant role. We also refer to Andersen [6] where useful insights to port-
folio losses in factor models and their term structure and intertemporal
loss dependence can be gained. Figures 8.13 and 8.14 serve to demon-
strate these differences in the intertemporal behavior. We have taken a
sample portfolio, as in Section 8.4.1, and depict the joint 2-year/4-year
loss distribution in form of a two-dimensional heat map on a logarith-
mic scale, i.e. dark colors represent high probabilities. All four models
are calibrated to the same marginal single credit name term structure
through time and to the same joint default probabilities at the final
4-year horizon, i.e. the final loss distributions are congruent. There is
no probability mass in the upper left cone of the graph as the portfolio
loss is a monotonous function of time. High intertemporal dependence
is reflected through large joint probabilities in the middle between the
x-axis and the 45◦-line. Comparing the graphs, it is no surprise that the
correlated-default-time model (CDT) shows the highest degree of in-
tertemporal dependence (Fig. 8.13, bottom) as it is essentially a static
model; confer also Section 8.4.2. On the other end of the scale is the
Markov-Chain-Migration model (MC) (Fig. 8.13, top), where we find
high probabilities on the edges of the lower triangle. By construction
there is no interperiod correlation of default, hence most of the loss
volatility originates from cross correlation. The discrete barrier model
(HW) and time-changed barrier model (OS) show similar behavior as
their intertemporal dependence is governed by the autocorrelation of
the driving Brownian motion. But there is still a visible difference, the
joint probability distribution of the time-changed model (Fig. 8.14,
bottom) has more a drop-like shape than the one from the discrete
barrier model (Fig. 8.14, top). This means that, although all models
produce the same final portfolio loss, the various models accumulate
this loss differently over time.
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FIGURE 8.13: Joint loss distributions at the 2-year and 4-year hori-
zon for different multiperiod models: (top) migrations model (Section
8.4.1), (bottom) correlated-default-time model (Section 8.4.2).
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FIGURE 8.14: Joint loss distributions at the 2-year and 4-year hori-
zon for different multiperiod models: (top) discrete barrier model (Sec-
tion 8.4.3.1), (bottom) time-changed models (Section 8.4.3.2).
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8.5 Former Rating Agency Model: Moody’s BET

This section is a relict from the first edition of this book and we
seriously considered removing it because Moody’s no longer relies on
their “BET method” in the rating process of CDOs. However, we
decided to keep the section for two reasons. First, it shows a typical
rating agency approach from some years ago. Second, there are still
many reports in the market in which the so-called diversity score and
Moody’s BET are mentioned. For participants in the CDO market it
is still good to know how this method works. So for the rest of this
section we forget that the BET is outdated and follow the presentation
of the first edition of this book.

Moody’s rating analysis of CDOs some years ago was based on the
following idea:

Instead of calculating the loss distribution of the original collateral
portfolio of a CDO, Moody’s constructs a homogeneous comparison
portfolio satisfying the following conditions:

• All instruments have equal face values, summing up to the col-
lateral pool’s total par value.

• All instruments have equal default probability p, calibrated ac-
cording to the weighted average rating factor (WARF), assigned
to the portfolio by means of Moody’s rating analysis.

• The instruments in the comparison portfolio are independent.

Moody’s calibrates such a homogenous portfolio to any given pool of
loans or bond, taking the rating distribution, exposure distribution,
industry distribution, and the maturities of the assets into account.
Then, according to the assumptions made, the portfolio loss of the
homogeneous comparison portfolio follows a binomial distribution; see
also Chapter 2.

The crucial parameter in this setting is the number n of instruments
in the comparison portfolio. This parameter constitutes a key measure
of diversification in the collateral pool developed by Moody’s and is
therefore called Moody’s diversity score (DS) of the collateral portfolio.
Regarding diversification, Moody’s makes two additional assumptions:
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TABLE 8.6: Moody’s Diversity Score; see [140].

Number of Firms in 

Same Industry
Diversity Score

1 1.00

2 1.50

3 2.00

4 2.33

5 2.67

6 3.00

7 3.25

8 3.50

9 3.75

10 4.00

Source: Moody's Investors Services

• Every instrument in the comparison portfolio can be uniquely
assigned to one industry group.

• Two intruments in the comparison portfolio have positive corre-
lation if and only if they belong to the same industry group.

Based on this assumption, the only driver of diversification is the indus-
try distribution of the collateral pool. Table 8.6 reports the diversity
score for different industry groupings18. The diversity score of a portfo-
lio is then calculated by summing up the diversity scores for the single
industries represented in the collateral pool. For illustration purposes,
let us calculate two sample constellations.

1. Consider 10 bonds from 10 different firms, distributed over 3 in-
dustries:
2 firms in industry no. 1, yielding a diversity score of DS1 = 1.50
3 firms in industry no. 2, yielding a diversity score of DS2 = 2.00
5 firms in industry no. 3, yielding a diversity score of DS3 = 2.67
The portfolio’s total diversity score equals
DS = DS1 +DS2 +DS3 = 6.17.

2. Consider 10 bonds from 10 different firms, distributed over 10
industries:
10 times one firm in one single industry means

18For more than 10 instruments in one industry group, the diversity score is deter-
mined by means of a case-by-case evaluation.
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10 times a diversity score of 1, such that the portfolio’s total
diversity score sums up to DS = 10.

The industry distribution of Constellation 2 leads to an obviously bet-
ter industry diversification, and therefore yields a higher diversity score.
Altogether, Moody’s distinguishes between 33 industry groups, yield-
ing19 a best possible diversity score of 132 = 33× 4.

The loss distribution of the homogeneous comparison portfolio is as-
sumed to be binomially distributed with parameters DS and WARF,
L ∼ B(DS,WARF), such that the probability of k defaults in the com-
parison portfolio equals

P[L = k] =
(DS)!

k!(DS − k)!
(WARF)k (1−WARF)DS−k ,

where k ranges from 0 to DS. Based on the so-obtained loss distribu-
tion, cash flow scenarios are evaluated in order to determine the rating
of a tranche. Dependent on how many losses in the collateral pool a
tranche can bear without suffering a loss due to the credit enhance-
ment mechanisms of the structure, the tranche gets assigned a rating
reflecting its “default remoteness.” For example, senior notes have to
pass much stronger stress scenarios without suffering a loss than junior
or mezzanine notes.

From time to time CDO tranches are down- or upgraded by the rating
agencies, because their default remoteness decreased or increased. For
example, last and this year we saw many downgrades of CDO tranches,
sometimes downgraded by more than one notch on the respective rating
scale, due to the heavy recession in the global economy.

In a next step, we now want to consider the BET from a more math-
ematical point of view. For this purpose we consider a sample portfolio
of m bonds, all bonds having the same default probability p and equal
face values. Additionally we assume that the pairwise default correla-
tion20 of the bonds is uniform for the whole portfolio and given by r.
Our modeling framework is a uniform Bernoulli mixture model, with
asset values as latent variables, as introduced in Section 2.5.1. Accord-
ing to Equation 2.10 and Proposition 2.5.1, the corresponding uniform

19Ignoring deviations from Table 8.6 due to special case-by-case evaluations.
20In contrast to the rest of this book we here denote the default correlation by r.
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asset correlation ̺ of the model can be calculated by solving

r =
N2

[
N−1[p], N−1[p]; ̺

]
− p2

p(1− p)

for ̺. For example, for r = 3% and p = 1% we calculate ̺ = 23.06%.
Recall that the uniform Bernoulli mixture model is completely deter-
mined by specifying p and r (respectively ̺).

In Proposition 2.5.7 we already discussed the two extreme cases re-
garding ̺. In case of ̺ = 0, the distribution of the portfolio loss is
binomial, L ∼ B(m,mp). In case of ̺ = 1, the loss distribution is of
Bernoulli type, L ∼ B(1, p). Both extreme case distributions are bino-
mial distributions with probability p. Looking at the respective first
parameter of both distributions, we discover m bonds in the first case
and 1 bond in the second case. The idea of the BET now is to introduce
also the intermediate cases by establishing a relation between the as-
sumed level of correlation and the number of bonds in a homogeneous
comparison portfolio. More formally, for a given portfolio of m bonds,
the BET establishes a functional relation

n : [0, 1] → {0, 1, ...,m}, r 7→ n(r),

between the default correlation and the number of bonds in a homoge-
neous portfolio of independent bonds with binomial loss distribution.

The function n can be determined by a matching of first and second
moments. The first moments of both portfolios must be equal to p.
The second moment of the original portfolio can be calculated as

V
[
L(m)

]
=

1

m2
V

[ m∑

i=1

Li

]
=

1

m2

m∑

i,j=1

Cov[Li, Lj ] =

=
1

m2

(
mp(1− p) +

∑

i6=j

rp(1− p)
)

=

=
mp(1− p) +m(m− 1)rp(1− p)

m2
=

p(1− p)(1 + (m− 1)r)

m
.

The variance of the homogeneous comparison portfolio, consisting of
n(r) independent bonds, equals

V
[
L(n(r))

]
=

p(1− p)

n(r)
.
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Diversification Score in Dependence of m
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FIGURE 8.15: Diversification score as a function of m for r = 3%.

Matching both second moments finally yields

n(r) =
m

1 + r(m− 1)
. (8.11)

This number n(r) is not necessarily an integer value, so that we have to
round it to the closest integer. The so-obtained number is comparable
to Moody’s diversity score. In order to distinguish21 the two scores, we
call n(r) the diversification score of the original portfolio. Figure 8.15
shows the diversification score n(r) in dependence of m for r = 3%.
Two facts illustrated by the plot follow from Equation 8.11:

1. The diversification score is independent of the credit quality of
the pool, captured by the default probability p.

2. The diversification score is bounded from above by 1/r. For
r = 3%, the maximum diversification score is DS = 33, which
is attained for m ≥ 1, 261. The reason for an upper bound of the
diversification score w.r.t. a fixed default correlation comes from
the fact that only specific risk can be eliminated by diversifica-
tion. Systematic risk remains in the portfolio, no matter by how
many obligors we enlarge the portfolio.

We now want to compare the loss distributions of a fictitious sample
portfolio and the homogeneous portfolio of independent bonds fitted to

21Note that Moody’s diversity score purely relies on industry diversification.



Collateralized Debt Obligations 335

the original portfolio by means of the BET. We assume that the original
portfolio contains m = 100 bonds with uniform default probability
p = 1% and uniform default correlation r = 3%. As already mentioned,
these assumptions yield an asset correlation of ̺ = 23.06%.

According to Equations 2.8 and 2.49, the probability for k defaults
in the original bond portfolio is given by

P[L(100) = k] =

(
100

k

)∫ 1

0
p(y)k(1− p(y))100−kdN(y) ,

where p(y) = N
[N−1(0.01) −

√
0.2306 y√

1− 0.2306

]
.

Therefore, we can easily calculate the loss distribution of the original
portfolio. Next, we calculate the diversification score of the original
portfolio. According to Equation 8.11, we obtain

n(3%) =
100

1 + 3%(100 − 1)
=

100

1 + 2.97
= 25.19 ,

such that the diversification score after rounding equals 25. Therefore,
the loss distribution of the homogeneous comparison portfolio follows a
binomial distribution, L(25) ∼ B(25, 2.5). So here the BET claims that
25 independent bonds carry the same risk as 100 bonds with default
correlation r = 3%.

Figure 8.16 compares the original loss distribution with the BET-
fitted binomial distribution. The plot clearly shows that the BET-fit
significantly underestimates the tail probabilities of the original loss
distribution.

This does not come as much of a surprise, because due to the central
limit theorem binomial distributions tend to be approximately normal
for a large number of bonds, whereas typical credit portfolio loss dis-
tributions are skewed with fat tails. Moreover, it is generally true that
moment matching procedures do not automatically also fit the tails of
the considered distributions in an accurate manner.

Now we come to an important conclusion: Because the BET signif-
icantly underestimates the tail probabilities of the original portfolio,
the risk of senior notes will typically be underestimated by the BET
approach.
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Fit by the Binomial Expansion Technique
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FIGURE 8.16: Fitting a loss distribution by means of the BET (orig-
inal uniform portfolio: p = 1%, r = 3%, m = 100); note that the y-axis
is logarithmically scaled.
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To make this more explicit, we consider a situation as illustrated in
Figure 8.17. Assume that the plot shows the probability density of
the distribution of the cumulative net losses L of some collateral pool,
calculated over the whole term of the structure. Let us further assume
that the bank invested in an upper mezzanine tranche T[α1,α2] with
lower bound α1 and upper bound α2. Then, the default probability
(PD) of this tranche and its expected loss (EL) can be calculated22 as

PD(T[α1,α2]) = P[L > α1] ,

EL(T[α1,α2]) =
1

α2 − α1

∫
min

(
max[x− α1, 0], α2 − α1

)
dPL(x) ,

where PL denotes the probability density of L. If we now would re-
place the loss distribution PL by a binomial distribution fitted to PL

by means of the BET, we can expect that PD(T[α1,α2]) and EL(T[α1,α2])
will be significantly lower; see Figure 8.16. A moment-matched bino-
mial distribution will not appropriately capture the risk of a tranche
more outside in the tail, as it is the case for T[α1,α2].

Our discussion has far-reaching consequences. Whenever a bank in-
tends to invest in a senior note, the model the bank uses for the eval-
uation of the investment should capture the tail risk of the collateral
pool. But the tail risk of the collateral pool is driven by the correlation
inherent in the collateral portfolio. The higher the overall correlation,
the larger the tail probabilities and therefore the potential for losses in
senior pieces of the structure. Because the bank wants to be compen-
sated for taking this risk, it can not rely on the BET or other methods
ignoring the skewed fat-tailed character of credit portfolio loss distribu-
tions. Only a full Monte Carlo simulation of an appropriate portfolio
model, combined with a sound modeling of all relevant cash flow ele-
ments of the structure, will really show how much premium payment
the bank needs to be compensated for the taken risk and to make some
profit at the end.

The criticism of the BET just made is a major reason why rating
agency models are more sophisticated today than they used to be in

22Of course, certain cash flow elements in a structure can distort the direct effect of
losses on a particular tranche, as we claimed it here, but for reasons of simplicity we
ignore this greater complexity for the moment. However, in synthetic CLOs, where
the performance of notes is linked to the performance of a reference pool (e.g. by
means of credit-linked notes) this simplified view is very close to the truth.
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the early days of CDOs. But still, rating agencies make quite some
simplifying assumptions in their approaches and the most recent crisis
gave rise for a lot of scepticism w.r.t. the way rating agencies evaluate
structured credit instruments. We neither positively nor negatively
comment on that but leave the judgment to the reader.

8.6 Developments, Model Issues and Further Reading

Between the publication date of the first edition of this book and
today the CDO market rapidly evolved. In parallel the literature on
credit risk modeling as well as the focus of credit risk modeling turned
in large part towards questions of CDO modeling. This is in contrast
to the first edition of this book where we wrote that there is not much
(academic) literature available on CDOs.

A comprehensive introductory book to CDOs as capital market in-
struments is the book by Choudry [32]. It has not a particular focus
on modeling but describes common structures and mechanisms from
different angles so that readers not familiar with structured credit get
access to a nice presentation of recent developments. Another book in
this area is the book [58] by Fabozzi. There is much more literature
on the topic available and readers will find them quickly via booksellers
and webshops. On the modeling side we refer to the afore-mentioned
book [24] where readers find the necessary mathematical background
for modeling recent CDO transactions as well as many examples of
real-life transactions and deals, including an elaborated approach on
how one could model them. Another source for CDO modeling topics
are books with a primary focus on active credit portfolio management
which can be seen as a major driver of the CDO market evolvement
during the last years. For instance, the book by Felsenheimer et
al. [60], the very recent book by Gregoriou and Hoppe [85] and the
guide to active credit portfolio management with a focus on illiquid
credit by Benvegnu et al. contain rich material in the area of CDO
modeling and related fields like hedging and securitizations, quantita-
tive evaluation of investment opportunities, and so on. During the last
eight years many research papers on CDOs have been written. In the
afore-mentioned books readers will find guidance regarding papers on
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different topics. We mention four out of many papers here, namely the
one by Baxter [14], a paper on the comparison of CDO pricings mod-
els [30] by Burtschell et al., and two papers on modeling techniques
[22, 21] which turned out to be useful for modeling baskets and CDOs.

For the sequel we recall some notation. Let us assume that a portfolio
of m credit-risky assets is given. The assets can be everything bearing
credit risk, for instance, loans, bonds, asset-backed securities (like, e.g.,
RMBS, other CDOs, etc.), credit derivatives, and so on. The portfolio
can be tranched in various ways. The lower boundary of a tranche
is called its attachment point and the upper boundary of a tranche is
called its detachment point. The loss profile of a tranche, denoted by
Tα,β with attachment point α and detachment point β is described by

L
(t)
Tα,β

= min
[
max[0, L(t) − α], β − α

]
(8.12)

where L(t) denotes the portfolio loss up to time t. Over the last years
there evolved a whole market just dealing with the loss profile of single
tranches which are accordingly called single-tranche CDOs (STCDOs).
For an introduction to STCDOs and their underlyings we refer to [24],
Section 3.4, and to the research papers by Amato and Gyntelberg

[4], Andersen et al. [7] and Felsenheimer et al. [59].

Underlyings of STCDOs are just credit default swaps (CDS) so that
such deals are completely unfunded; they are pure derivative transac-
tions. Participants of the STCDO market invented a notion of implied
correlation which could be used by correlation desks to trade systematic
risk in tailor-made ways; see [24], Figures 3.37 and 3.38 and the discus-
sion there. The concept of implied correlations is a nice example for the
phenomenon that a market trend motivated a whole series of research
papers with various approaches to model the relation between STCDO
market prices and risk parameters like correlation in correspondence to
a given curve of spread-implied default probabilities.

Besides STCDOs referenced to a standardized pool (say, index) of
CDS one also finds a lot of so-called bespoke transactions where an issuer
structures a portfolio and a tranche in a tailor-made way to satisfy the
demand of a particular investor. These are bilateral transactions, often
negotiated in a non-public way in the form of a private placement.
One can say that the last years (before the crisis) revealed an almost
unlimited range of possibilities and ways to structure credit. However,
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this all came to an abrupt end with the financial crisis which started
in May 2007. We come to that in a moment.

Besides all kinds of unfunded synthetic transactions one also finds a
lot of partially funded transactions, which is the classical case for secu-
ritizations with a focus on hedging and/or balance sheet management.
Partially funded here means that the portfolio is tranched into some
funded lower tranches (including equity) and an unfunded super senior
tranche. Typically, the funded part has an attachment point at 0 and a
detachment point at some x% of the portfolio where x often is between
5 and 15, depending on the considered portfolio, the purpose of the
deal from originator view, and the current market environment (say,
investor demand and risk appetite, pricing, liquidity, and so on).

Another trend which accelerated over the last years is leverage. The
word “leverage” can mean many things and is used in many ways.
What we mean by it can best be described by the sloppy slogan “in-
vest less for more.” Consider the following illustrative (!) example
which can help to explain what that means. Assume that a portfolio
pays 150bps spread per annum. Now we tranche the portfolio into two
tranches, a junior tranche and a senior tranche:

Tjun = T0%,5% and Tsen = T5%,100% .

Because Tjun bears the first loss risk and is wiped out soon when losses
occur (because its thickness is only 5%) we have to pay to investors
in Tjun a much higher spread than the average 150bps spread which
is earned on the whole portfolio. Without going too much into details
and illustrative calculations let us assume that from the

150bps× 100% [portfolio face value]

we pay 120bps to Tjun-investors. So we have a remaining

30bps× 100% [portfolio face value]

left over for Tsen-investors. So investors in the senior tranche get much
less than the average spread on the portfolio and the underlying ra-
tionale is that Tjun provides a 5%-capital cushion which protects Tsen
against the first 5% of occurring losses. Our example is meant only in
an illustrative sense but let us see what we get in terms of return from
tranching the portfolio. For Tjun we get a return of

rjun =
spread income

invested capital
=

1.2

5
= 24%.
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For the senior tranche Tsen we get

rsen =
spread income

invested capital
=

0.3

95
≈ 32bps.

Assuming that the tranche investments are unfunded, this is a realistic
situation where equity (Tjun) earns an attractive return at the cost
of bearing the first loss risk and the senior tranche investor, which is
capital buffered and at least for the first 5% remote from losses, gets
a correspondingly low spread for a (hopefully23) low risk investment.
Coming back to leverage, our little example illustrates how a portfolio
can be leveraged in principal into a high risk investment with high
return and a low risk investment with a correspondingly low return.

The tranching example provides some flavor of what financial engi-
neering can do. It is no problem to structure portfolios in tailor-made
ways to create new credit-risky assets with given risk/return profile.
However, investment banks and portfolio arrangers did not stop after
leveraging a portfolio once. They often leveraged again and again by
collecting CDO tranches and ABS deals into new portfolios which were
then tranched and structured again.

Over time such multi-leverage led to weird situations. For instance,
one can find so-called structured finance CDOs (SFCDOs) with an em-
bedded circle reference in the market. We do not disclose actual names
of such deals here for obvious reasons but explain briefly what “em-
bedded circle reference” means. Let us give the two SFCDOs names,
say, one is SFCDOA and the other is SFCDOB. Both deals are four-
times leveraged. This means that the reference pool of the two SFCDOs
is a portfolio of SFCDOs which are referenced to SFCDOs which are
referenced to multi-sector portfolios consisting of CDO tranches and
asset-backed securities. To give it a name we can call this a CDO of
CDOs of CDOs of CDO&ABS. The very strange situation in this par-
ticular example of deals in the market is that if one looks through to the
lowest level of SFCDOA then one finds a tranche from the SFCDOB

as one of the underlying assets and if one analyzes SFCDOB then one
finds a tranche of the SFCDOA as the underlying asset of one of the
underlying reference portfolios at the lowest level. This is what we
mean by a circle reference embedded in two SCFDOs.

23The recent crisis showed that many assumed low risk tranches at senior level were
not as much remote from losses as people originally thought.
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This example demonstrates how an originally good idea, namely,
leverage and financial engineering, finally was overplayed by market
participants. In the crisis between May 2007 and December 2008
it turned out that SFCDOs and many other structured credit assets
heavily got under pressure. Distress occurred in two ways. The first
category were real (physical) defaults leading to a realized loss. For
instance, SFCDOs and ABS referenced to RMBS with underlying US
subprime mortgages belong into this category. The second category
were mark-to-market losses based on pessimistic market opinion lead-
ing to high spreads. Mark-to-market volatility bounces back as soon as
markets recover so for the second category one can expect future gains.

For a more comprehensive “lessons learned” analysis we refer to [26]
but from what has been said so far one can at least draw the conclu-
sion that multi-leverage can be dangerous and should be avoided. It is
possible to model two times leveraged CDOs (“CDO-squared”) via a
look-through approach such that the transaction is appropriately an-
alyzed, but it starts to be tremendously complex if not impossible to
apply the same analysis and model standards to CDOs with a lever-
age of three and higher. The arising tree when one climbs down the
structure from the very top CDO to the knots of the tree, say, the as-
sets underlying at lowest level, gets really complex and data gathering
becomes more than a challenge.

There are also interesting conclusions from a modeling perspective.
First of all, we would like to repeat our remark from the beginning of
this chapter, that large parts of the structured credit market existed
more or less free from stochastic modeling. However, what we are look-
ing at now is the part of the CDO market where models as explained
in this book played a serious role. To mention a few examples, rating
agencies and many sophisticated banks base their valuation of CDOs
on quantitative models as well as on qualitative criteria. It is beyond
the scope of this section to go into details regarding CDO model risk
but we want at least to give a few hints about where the challenges are.

One can divide the CDO modeling world in two parts. One part
which one can almost consider as routine because the estimation of
parameters is standard and well understood, and another part where
model choice and parameterization problems are a real challenge. Fig-
ure 8.6 depicts components of a stochastic CDO model as we would
recommend it. The routine part includes the following:



Collateralized Debt Obligations 343

• single-name risk quantities, e.g., PDs (physical or spread-implied);

• structural elements, for instance, the cash flow waterfall or the
tranching (subordination) structure;

• interest rate modeling (if interest rates are not fully hedged).

The challenging part is hidden in the keywords

• factor model and

• portfolio model

at the bottom of Figure 8.6. In other words, the modeling of depen-
dencies in the underlying reference portfolio is the truly challenging
part in a CDO model. In [24] the impact of different copula choices
on the risk/return profile of tranches is mathematically explained and
by means of examples illustrated. The conclusion is that the choice of
the dependence model, say, the portfolio copula function, really makes
a huge difference. In our discussion of different copulas in Chapter
2 we already experienced why the copula choice really matters. The
higher the dependencies the fatter will be the tail of the loss distri-
bution and the higher will be the risk for senior tranches. The more
uncoordinated risks in the portfolio behave, the lower will be the risk
of senior tranches and the higher will be the risk for lower tranches.
These and other rules of thumb can be made mathematically precise
and have immediate implications in CDO modeling and valuation.

Again we can draw a conclusion from that in order to understand
what happened in the most recent crisis. Most of the current market
CDO models rely on the Gaussian copula function (see Chapter 2). As
elaborated in [24], the Gaussian copula implicitely assumes that in a
heavy tail scenario single-name credit risks behave completely uncoor-
dinated. The mathematical term for this phenomenon is asymptotic
independence. Unfortunately, the most recent crisis as well as past cri-
sis scenarios clearly showed that the opposite is the case: in a heavy
crisis scenario we find more coordinated behavior than in a normal
market scenario. Therefore, the Gaussian copula is not the most suit-
able choice if markets are captured by a heavy crisis. Some people
conjectured that the comprehensive use of the Gaussian copula across
markets made analysts “blind” for possible scenarios in a tail event
like the crisis we just experienced. One could continue to argue and
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debate forever when it comes to copulas. What one can say is that
it is really necessary to re-think the dependence model part of CDO
models in particular and, as already indicated earlier in this book, the
modeling of economic capital and other risk measures in general. The
mathematical tools are there, banks just have to use them. An over-
all guiding principle hereby is to introduce just as much complexity
in models as necessary but sufficient complexity to avoid overlooking
important aspects of the problem. Model risk is a reality banks have
to deal with. It is important that senior credit risk modelers with ac-
cess to decision makers in banks use their face time with executives
to make this point clear whenever necessary. And, as already men-
tioned in the preface of the second edition of this book, looking at a
problem from different angles via different models also is a good idea.
Very often one particular model captures several particular aspects of
a problem but another model might help to shed some light on some
aspect the other model is overlooking. CDO modeling in the future will
remain an important subdiscipline of credit risk modeling and we hope
that the various products in the market will continue to drive model
development.



References

[1] C. Acerbi. Spectral measures of risk: A coherent representation of
subjective risk aversion. Journal of Banking & Finance, 26:1505–
1518, 2002.

[2] C. Acerbi and D. Tasche. On the coherence of expected shortfall.
Journal of Banking & Finance, 26:1487–1503, 2002.

[3] E. I. Altman, A. Resti, and A. Sironi. Analyzing and explaining
default recovery rates. A report submitted to The International
Swaps & Derivatives Association, December 2001.

[4] J. D. Amato and J. Gyntelberg. CDS index tranches and the
pricing of credit risk correlations. BIS Quarterly Review, 2005.

[5] M. Ammann. Credit Risk Valuation. Springer, 2002.

[6] L. Andersen. Portfolio losses in factor models: Term structures
and intertemporal loss dependence. http://www.defaultrisk.
com, 2006.

[7] L. Andersen, D. Baum, and B. Kologlu. Single tranche cdos.
tailored investment grade portfolio exposure. Bank of America
Securities, 2003.

[8] A. Antonov, S. Mechkov, and T. Misirpashaev. Analytical tech-
niques for synthetic CDOs and credit default risk measures.
http://www.defaultrisk.com, 2005.

[9] M. Araten and L.Angbazo. Roots of transition matrices: Applica-
tion to settlement risk. Chase Manhattan Bank, 1997. Practical
Paper.

[10] P. Artzner, F. Delbaen, J. Eber, and D. Heath. Thinking coher-
ently. RISK, 10(11):68–71, 1997.

[11] P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent mea-
sures of risk. Mathematical Finance, 9(3):203–228, 1999.

345



346 An Introduction to Credit Risk Modeling

[12] H. Bauer. Probability Theory. de Gruyter, 1996.

[13] H. Bauer. Measure and Integration Theory. de Gruyter, 2001.

[14] M. Baxter. Dynamic modelling of single-name credits and CDO
tranches. Preprint, 2006.

[15] M. Baxter and A. Rennie. Financial Calculus. An introduction
to derivative pricing. Cambridge University Press, 1996.

[16] S. Benvegnu, C. Bluhm, and C. Müller. A Guide to Active Credit
Portfolio Management. RISK Books, 2008.

[17] N. H. Bingham and R. Kiesel. Risk-Neutral Valuation. Pric-
ing and Hedging of Financial Derivatives. Springer Finance.
Springer, 3rd edition, 2000.

[18] F. Black and J. C. Cox. Valuing corporate securities: Some effects
of bond indenture provisions. Journal of Finance, 31:351–367,
1976.

[19] F. Black and M. Scholes. The pricing of options and corporate
liabilities. Journal of Political Economy, (81):637–654, 1973.

[20] C. Bluhm and L. Overbeck. Estimating systematic risk in uni-
form credit portfolios. Working paper, Deutsche Bank Group,
December 1999.

[21] C. Bluhm and L. Overbeck. Comonotonic default quote paths
for basket evaluation. RISK, 18(8):67–71, 2005.

[22] C. Bluhm and L. Overbeck. Semi-analytic approaches to CDO
modeling. Economic Notes, 33(2):233–255, 2005.

[23] C. Bluhm and L. Overbeck. Calibration of PD term structures:
to be Markov or not to be. RISK, 20(11):98–103, 2007.

[24] C. Bluhm and L. Overbeck. Structured Credit Portfolio Analysis,
Baskets & CDOs. Chapman & Hall/CRC, 2007.

[25] C. Bluhm, L. Overbeck, and C. Wagner. Irreconcilable differ-
ences. RISK, 14(10):S33–S37, October 2001.

[26] C. Bluhm and C. Wagner. Rethinking credit risk modeling. to
appear, 2010.

[27] J. R. Bohn. A survey of contingent-claims approaches to risky
debt valuation. Working paper, June 1999.



References 347

[28] N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, and
C. J. Nesbitt. Actuarial Mathematics. Schaumberg, Illinois, 2nd
edition, 1997. Society of Actuaries.

[29] H.-J. Brasch. A note on efficient pricing and risk calculation of
credit basket products. http://www.defaultrisk.com, 2004.

[30] X. Burtschell, J. Gregory, and J.-P. Laurent. A comparative
analysis of CDO pricing models, 2005.

[31] U. Cherubini, E. Luciano, and W. Vecciato. Copula Methods in
Finance. Wiley, 2004.

[32] M. Choudry. Structured Credit Products: Credit Derivatives and
Synthetic Securitization. Wiley, 2004.

[33] D. R. Cox and D. Oakes. Analysis of Survival Data. Chapman
& Hall/CRC, 1984.

[34] J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of term
structure of interest rates. Econometrica, 53:385–407, 1985.

[35] Credit Suisse Financial Products. CreditRisk+ – A Credit Risk
Management Framework, 1997.

[36] P. Crosbie. Modeling default risk. KMV Corporation, http:
//www.kmv.com, 1999.

[37] M. Crouhy, D. Galai, and R. Mark. A comparative analysis of
current credit risk models. Journal of Banking & Finance, 24:59–
117, 2000.

[38] M. Crouhy, D. Galai, and R. Mark. Risk Management. McGraw-
Hill, 2000.

[39] H. E. Daniels. Saddlepoint approximations in statistics. Annals
of Mathematical Statistics, 25(25):631–650, 1954.

[40] H. E. Daniels. Tail probability approximation. International
Statistical Review, 55(1):37–48, 1987.

[41] S. R. Das. Structured notes and derivatives embedded securities.
Euromoney Publications PLC, 1996.

[42] A. Dembo and O. Zeitouni. Large deviation techniques and ap-
plications (Applications of Mathematics). Springer, 1998.



348 An Introduction to Credit Risk Modeling

[43] M. Denault. Coherent allocation of risk capital. http://www.

risklab.ch/Papers.html, 1999.

[44] Deutsche Bank Fixed Income Research. Credit Derivatives and
Structured Credit, August 2000.

[45] D.v. Deventer, K. Imai, and M. Mesler. Advanced Financial Risk
Management: Tools & Techniques for Integrated Credit Risk and
Interest Rate Risk Management. Wiley, 2004.

[46] D. Duffie. Dynamic Asset Pricing Theory. Princeton University
Press, 1992.
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[64] H. Föllmer and A. Schied. Convex measures of risk and trading
constraints. Finance and Stochastics, 6:429–447, 2002.
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