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PREFACE

The concepts of noncommutative space-time and quantum groups have found
growing attention in quantum field theory and string theory. The mathematical
concepts of quantum groups have been far developed by mathematicians and
physicists of the Eastern European countries. Especially, V. G. Drinfeld from
Ukraine, S. Woronowicz from Poland and L. D. Faddeev from Russia have been
pioneering the field. It seems to be natural to bring together these scientists with
researchers in string theory and quantum field theory of the Western European
countries. From another side, supersymmetry, as one of examples of noncom-
mutative structure, was discovered in early 70’s in the West by J. Wess (one
of the co-Directors) and B. Zumino and in the East by physicists from Ukraine
V. P. Akulov and D. V. Volkov. Therefore, Ukraine seems to be a natural place to
meet.

Supersymmetry is a very important and intriguing mathematical concept
which has become a basic ingredient in many branches of modern theoretical
physics. In spite of its still lacking physical evidence, its far-reaching theoret-
ical implications uphold the belief that supersymmetry plays a prominent role
in the fundamental laws of nature. At present the most promising hope for a
truly supersymmetric unified and finite description of quantum field theory and
general relativity is superstring theory and its latest formulation, Witten’s M-
theory. Superstrings possess by far the largest set of gauge symmetries ever found
in physics, perhaps even large enough to eliminate all divergences in quantum
gravity. Not only does superstring’s symmetry include that of Einstein’s theory of
general relativity and the Yang-Mills theory, it also includes supergravity and the
Grand Unified Theories.

One of the exciting new approaches to nonperturbative string theory involves
M-theory and duality, which, in fact, force theoretical physicists to reconsider the
central role played by strings in supersymmetry. In this revised new picture all
five superstring theories, which on first glance have entirely different properties
and spectra, are now seen as different vacua of a same theory, M-theory. This
unification cannot, however, occur at the perturbative level, because it is precisely
the perturbative analysis which singles out the five different string theories. The
hope is that when one goes beyond this perturbative limit, and takes into account
all non-perturbative effects, the five string theories turn out to be five different
descriptions of the same physics. In this context a duality is a particular relation
applying to string theories, which can map for instance the strong coupling re-
gion of a theory to the weak coupling region of the same theory or of another
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PREFACE ix

one, and vice versa, thus being an intrinsically non-perturbative relation. In the
recent years, the structure of M-theory has begun to be uncovered, with the es-
sential tool provided by supersymmetry. Its most striking characteristic is that it
indicates that space-time should be eleven dimensional. Because of the intrinsic
non-perturbative nature of any approach to M-theory, the study of thep-brane
solitons, or more simply ‘branes’, is a natural step to take. The branes are extended
objects present in M-theory or in string theories, generally associated to classical
solutions of the respective supergravities.

Quantum groups arise as the abstract structure underlying the symmetries of
integrable systems. Then the theory of quantum inverse scattering gives rise to
some deformed algebraic structures which were first explained by Drinfeld as
deformations of the envelopping algebras of the classical Lie algebras. An analo-
gous structure was obtained by Woronowicz in the context of noncommutative
C∗-algebras. There is a third approach, due to Yu. I. Manin, where quantum
groups are interpreted as the endomorphisms of certain noncommutative algebraic
varieties defined by quadratic algebras, called quantum linear spaces. L. D. Fad-
deev and his collaborators had also interpreted the quantum groups from the point
of view of corepresentations and quantum spaces, furnishing a connection with
the quantum deformations of the universal enveloping algebras and the quantum
double of Hopf algebras. From the algebraic point of view, quantum groups are
Hopf algebras and the relation with the endomorphism algebra of quantum linear
spaces comes from their corepresentations on tensor product spaces. The usual
construction of the coaction on the tensor product space involves the flip operator
interchanging factors of the tensor product of the quantum linear spaces with the
bialgebra. This fact implies the commutativity between the matrix elements of
a representation of the endomorphism and the coordinates of the quantum lin-
ear spaces. Moreover, the flip operator for the tensor product is also involved
in many steps of the construction of quantum groups. In the braided approach
to q-deformations the flip operator is replaced with a braiding giving rise to the
quasi-tensor category ofk-modules, where a natural braided coaction appears.

The study of differential geometry and differential calculus on quantum
groups that Woronowicz initiated is also very important and worthwile to investi-
gate. Next step in this direction is consideration of noncommutative space-time as
a possible realistic picture of how space-time behaves at short distances. Starting
from such a noncommutative space as configuration space, one can generalize
it to a phase space where noncommutativity is already intrinsic for a quantum
mechanical system. The definition of this noncommutative phase space is derived
from the noncommutative differential structure on the configuration space. The
noncommutative phase space is aq-deformation of the quantum mechanical phase
space and one can apply all the machinery learned from quantum mechanics.
If one demands that space-time variables are modules or co-modules of theq-
deformed Lorentz group, then they satisfy commutation relations that make them

kievarwe.tex; 12/03/2001; 3:49; p.6
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elements of a non-commutative space. The action of momenta on this space is
non-commutative as well. The full structure is determined by the (co-)module
property. It can serve as an explicit example of a non-commutative structure for
space-time. This has the advantages that theq-deformed Lorentz group plays
the role of a kinematical group and thus determines many of the properties of
this space and allows explicit calculations. One can explicitly construct Hilbert
space representations of the algebra and find that the vectors in the Hilbert space
can be determined by measuring the time, the three-dimensional distance, theq-
deformed angular momentum and its third component. The eigenvalues of these
observables form aq-lattice with accumulation points on the light-cone. In a way
physics on the light-cone is best approximated by thisq-deformation. One can
consider the simplest version of aq-deformed Heisenberg algebra as an example
of a noncommutative structure, first derive a calculus entirely based on the algebra
and then formulate laws of physics based on this calculus.

Bringing together scientists from quantum field theory, string theory and quan-
tum gravity with researchers in noncommutative geometry, Hopf algebras and
quantum groups as well as experts on representation theory of these algebras
had a stimulating effect on each side and will lead to new developments. In
each field there is a highly developed knowledge by experts which can only be
transformed to another field only by having close personal contact through dis-
cussions, talks and reports. We hope that common projects can be found such that
working in these projects the detailed techniques can be learned from each other.
The Workshop has promoted the development of new directions in the field of
modern theoretical and mathematical physics combining the efforts of scientists
from NATO, East European countries and NIS.

We are greatly indebted to the NATO Division of Scientific Affairs for funding
of our meeting and to the National Academy of Sciences of Ukraine for help in its
local organizing. It is also a great pleasure to thank all the people who contributed
to the successful organization of the Workshop, especially members of the Local
Organizing Committee Profs. N. Chashchyn and P. Smalko. Finally, we would
like to thank all the participants for creating an excellent working atmosphere and
for outstanding contributions to this volume.

Editors
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GAUGE THEORIES BEYOND GAUGE THEORY

JULIUS WESS
Sektion Physik der Ludwig-Maximilians-Universität Theresienstr.
37, D-80333 M̈unchen, Germany
and
Max-Planck-Institut f̈ur Physik (Werner-Heisenberg-Institut)
Föhringer Ring 6, D-80805 M̈unchen, Germany

1. Algebraic preliminaries

In gauge theories we consider differentiable manifolds as base manifolds and fi-
bres that carry a representation of a Lie group. In the following we shall show that
it is possible to replace the differentiable manifold by a non-commutative algebra,
ref. [1]. For this purpose we first focus our attention on algebraic properties. The
coordinatesxi

x1, . . . , xn ∈ R, (1)

are considered as elements of an algebra overC subject to the relations:

R : xixj − xjxi = 0. (2)

This characterizesRn as a commutative space. The relations generate a2-sided
ideal IR. From the algebraic point of view, we deal with the algebra freely
generated by the elementsxi and divided by the idealIR:

Ax =
C
[
[x1, . . . , xn]

]
IR

. (3)

Formal power series are accepted, this is indicated by the double bracket. The
elements of the algebra are the functions inRn that have a formal power series
expansion at the origin:

f(x1, . . . , xn) ∈ Ax, (4)

f(x1, . . . , xn) =
∞∑
ri=0

fr1...rn(x1)r1 · · · · · (xn)rn .
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2 J. WESS

Multiplication is the pointwise multiplication of these functions.
The monomials of fixed degree form a finite-dimensional subspace of the alge-

bra. This algebraic concept can be easily generalized to non-commutative spaces.
We consider algebras freely generated by elementsx̂1, . . . x̂n, again calling them
coordinates. But now we change the relations to arrive at non-commutative spaces:

Rx̂,x̂ : [x̂i, x̂j ] = iθij(x̂). (5)

Following L.Landau, non-commutativity carries a hat. Now we deal with the
algebra:

Ax̂ =
C << x̂1, . . . , x̂n >>

IRx̂,x̂
, (6)

f̂ ∈ Ax̂.
In the following we impose one more condition on the algebra: the dimension

of the subspace of homogeneous polynomials should be the same as for com-
muting coordinates. This is the so called Poincare-Birkhof-Witt property (PBW).
Only algebras with this property will be considered, among them are the algebras
whereθij is a constant:
Canonicalstructure, ref. [2]:

[x̂i, x̂j ] = iθij , (7)

whereθij is linear inx̂:
Lie structure, ref. [3]:

[x̂i, x̂j ] = iθ
ij
k x̂

k, (8)

whereθij is quadratic in̂x:
Quantum spacestructure, ref.[4]:

[x̂i, x̂j ] = iθ
ij
klx̂

kx̂l, (9)

The constantsθijk and θijkl are subject to conditions to guarantee PBW. For
Lie structures this will be the Jacobi identity, for the quantum space structure the
Yang-Baxter equation. There is a natural vector space isomorphism betweenAx
andAx̂. It is based on the isomorphism of the vector spaces of homogeneous
polynomials that have the same degree due to the PBW property.

In order to establish the isomorphism we choose a particular basis in the vec-
tor space of homogeneous polynomials in the non-commuting variablesx̂ and
characterize the elements ofAx̂ by the coefficient functions in this basis. The
corresponding element in the algebraAx of commuting variables is supposed
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GAUGE THEORIES BEYOND GAUGE THEORY 3

to have the same coefficient function. The particular form of this isomorphism
depends on the basis chosen. The vector space isomorphism can be extended to
an algebra isomorphism. To establish it we compute the coefficient function of the
product of two elements inAx̂ and map it toAx. This defines a product inA§ that
we denote as diamond product (♦ product). The algebra with this♦ product we
call ♦Ax. There is a natural isomorphism:

Ax̂ ←→ ♦Ax. (10)

The three structures that we have mentioned above have an even stronger
property than PBW. It turns out that monomials in any well-defined ordering
of the coordinates form a basis. Among them is an ordering as we have used it
before or the completely symmetrized ordering of monomials as well. For such
structures we shall denote the♦ product as * product (star product), ref. [5]. For
the canonicalstructure we obtain the Moyal-Weyl * product, ref. [6], if we start
from the basis of completely symmetrized monomials:

(f ∗ g)(x) = e
i
2
∂

∂xi
θij ∂

∂yj f(x)g(y)
∣∣∣
y⇒x

(11)

=

∫
dny δn(x− y)e

i
2
∂

∂xi
θij ∂

∂yj f(x)g(y).

For the Liestructure we can use the Baker-Campbell-Hausdorf formula:

eik·x̂eip·x̂ = ei(k+p+ 1
2
g(k,p))·x̂. (12)

This definesg(k, p).

(f ∗ g)(x) = e
i
2
x·g(i ∂

∂y
,i ∂
∂z

)
f(y)g(z)

∣∣∣y→x
z→x

. (13)

For the quantumplane we consider the example of the Manin plane

x̂ŷ = qŷx̂, (14)

(f ∗ g)(x) = q
−x′ ∂

∂x′ y
∂
∂y f(x, y)g(x′, y′)

∣∣∣x′→x
y′→y

.

It is natural to use the elements of♦Ax as objects in physics. Fields of a field
theory will be such objects.

φ(x) ∈ ♦Ax. (15)

The product of fields will always be the * product. To formulate field equations
we introduce derivatives. On the algebraAx̂ this can be done on purely algebraic
grounds. We have to extend the algebraAx̂ by algebraic elementŝ∂i, ref. [7]. A
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4 J. WESS

generalized Leibniz rule will play the role of algebraic relations.
Leibniz rule:

(∂̂if̂ ĝ) = (∂̂if̂)ĝ +Oli(f̂)∂̂lĝ : R
x̂,∂̂
. (16)

From the law of associativity inAx̂ follows that the operationO has to be an
algebra homomorphism:

Oij(f̂ ĝ) = Oil(f̂)Olj(ĝ). (17)

But we shall restrict the Leibniz rule by an even stronger requirement. The ideal
generated by theRx̂,x̂ relations has to remain a two-sided ideal in the larger
algebra generated bŷx and∂̂. This leads to so called consistency relations.

Finally R
∂̂,∂̂

relations have to be defined. As conditions we consider the∂̂
subalgebra, demand PBW and derive consistency relations fromR

∂̂,∂̂
and the

Leibniz rule as before. Derivatives defined that way induce a map fromAx̂ toAx̂:

f̂ ∈ Ax̂ , (∂̂if̂) ∈ Ax̂, (18)

(∂̂if̂) = ∂̂if̂ −Oli(f̂)∂̂l.

This algebraic concept of derivatives has been explained in ref[] and applied
to quantum planes. Following the same strategy derivatives can be defined for the
canonical structure as well.

For the rest of this talk we will restrict ourselves to the canonical case only.
The Leibniz rule for the canonical case is the usual one:

∂̂ix̂
j = δ

j
i + x̂j ∂̂i. (19)

It satisfies all the consistency relations. As explained above, the derivatives induce
a map on the algebraAx̂:

f̂ ∈ Ax̂ : f̂ → [∂̂i, f̂ ] ∈ Ax̂. (20)

This is the relation that we shall use to define derivatives on fields. For this purpose
we map∂̂ to ♦Ax. From (20) follows that it becomes the usual derivative in♦Ax:

f(x)→ ∂if(x). (21)

From the definition of the * product follows:

∂i(f ∗ g) = ∂if ∗ g + f ∗ ∂ig. (22)

This is the Leibniz rule (20) when mapped to the♦Ax algebra. As a consequence
of (20) we find that

x̂i − iθij ∂̂j (23)

kievarwe.tex; 12/03/2001; 3:49; p.11



GAUGE THEORIES BEYOND GAUGE THEORY 5

commutes with all coordinates. For invertibleθij this can be used to define the
action of the derivative entirely inAx̂

∂̂i = −iθ−1
ij x̂

j . (24)

Translated to the♦Ax algebra this implies:

∂if(x) = −iθ−1
ij [xj ∗, f ]. (25)

As a consequence we derive

∂̂j ∂̂k − ∂̂k∂̂j = −iθ−1
jk : R

∂̂,∂̂
. (26)

ThisR
∂̂,∂̂

relation satisfies all the requirements of (ref7).
To formulate a Lagrangian field theory we have to learn how to integrate.

Whereas it was easier to formulate derivatives on objects ofAx̂ it is easier to
formulate integration on objects of♦Ax. For the canonical structure we define:∫

f̂ =

∫
dnx f(x), f̂ ∈ Ax̂, f ∈ ♦Ax. (27)

This is a linear map of the algebraAx̂ intoC

S : Ax̂ → C, (28)

S(c1f̂ + c2ĝ) = c1

∫
f̂ + c2

∫
ĝ,

and it has the trace property: ∫
f̂ ĝ =

∫
ĝf̂ . (29)

This can be verified explicitely using the definition of the * product:∫
f ∗ g =

∫
g ∗ f =

∫
dnx f(x)g(x). (30)

For the quantum space structure the definition (30) for the integral does not have
the trace property. There is, however, a measure for the integration that leads to an
integral with the trace property.∫

f̂ ≡
∫
dnx µ(x)f(x) (31)

For the Manin plane we can verify explicitely that the measure

µ(x, y) =
1

xy
(32)
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6 J. WESS

has this property.
In general we can construct Hilbert space representations of the algebra and

define the integral as the trace. This will lead to infinite sums that can be inter-
preted as Riemannian sums for an integral and lead to the respective measure for
the integration.

2. Gauge theories

Our aim is to formulate gauge theories. They will be based on a Lie algebra:

[T a, T b] = ifabc T
c. (33)

In a usual gauge theorie onRn the fields will span a representation of the Lie
algebra and transform under an infinitesimal gauge transformation:

δα0ψ(x) = iα0(x)ψ(x). (34)

The transformation parameters are Lie algebra valued:

α0(x) = α0
aT

a (35)

and consequently:

(δα0δβ0 − δβ0δα0)ψ = −(β0α0 − α0β0)ψ

= i(α0 × β0)ψ = δα0×β0ψ, (36)

α0 × β0 ≡ α0
aβ

0
b f

ab
c T

c.

covariant derivatives are defined with the help of a Lie algebra valued gauge field
a:

Diψ = (∂i − iai)ψ, (37)

ai = aai Ta.

To obtain:

δα0Diψ = iα0Diψ (38)

we have to demand:

δai = ∂iα
0 + i[α0, ai], (39)

δai,a = ∂iα
0
a − α0

bf
bc
a ai,c.

To formulate a gauge theory on a non-commutative space we start with fieldsψ(x)
that are elements of♦Ax̂ and again span a representation of the Lie algebra (33).
We demand the transformation law:

δαψ(x) = iα(x) ∗ ψ(x) (40)
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GAUGE THEORIES BEYOND GAUGE THEORY 7

in analogy to (34). But now we cannot demandα to be Lie algebra valued, we
shall assume it to be enveloping algebra valued:

α(x) = α0
a(x)T a + α1

ab(x) : T aT b : + · · ·+ αn−1
a1...an(x) : T a1 · · · · · T an : + · · ·

(41)

This is in analogy to (35). We have adopted the:: notation for the basis elements
of the enveloping algebra. We shall use the symmetrized polynomials as a basis:

: T a : = T a, (42)

: T aT b : =
1

2
(T aT b + T bT a) etc.

In analogy to (36) we find

(δαδβ − δβδα)ψ = [α ∗, β] ∗ ψ. (43)

Naturally,[α ∗, β] will be an enveloping algebra valued element of♦Ax.
The unpleasant fact of the definition (41) of an enveloping algebra valued

transformation parameter is that it depends on an infinite set of parameter fields
αn(x). In physics we would have to deal with an infinite set of fields when
defining a covariant derivative, something we try to avoid. However, a gauge
transformation can be realized by transformation parameters that depend onx
via the parameter fieldα0(x), the gauge fieldai,a(x) and their derivatives only. In
the notation of eqn (41) we have

αna1...an+1
(x) = αna1...an+1

(α0
a(x), a0

i,a(x), ∂iα
0
a(x), . . . ). (44)

Transformation parameters that are restricted that way we shall denoteΛα0(x).
These parameters can be constructed in such a way that eqn (36) holds:

δα0ψ(x) = iΛα0(x)(x) ∗ ψ(x),

(δα0δβ0 − δβ0δα0)ψ = δα0×β0ψ, (45)

(α0 × β0)a = α0
bβ

0
c f

bc
a .

This together with the * product is the defining equations for the gauge transfor-
mations. That such parametersΛα0(x) can be found is not obvious, it’s rather a
miracle in our present understanding of such gauge theories. Their existence is a
consequence of the Seiberg-Witten map [2].

In the second variation ofψ we also have to account for the variation ofΛα0

as it depends onai,a:

(δα0δβ0 − δβ0δα0)ψ = i(δα0Λβ0 − δβ0Λα0) ∗ ψ + [Λα0
∗, Λβ0 ] ∗ ψ, (46)

= δα0×β0ψ = iΛα0×β0 ∗ ψ
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8 J. WESS

We shall constructΛα0 in a power series expansion inθ. To illustrate the method
we expandΛα0 to first order inθ

Λα0 = α0
aT

a + θijΛ1
α0,ij + . . . , (47)

To be consistent we expand the * product in (46) also to first order inθ and
compare powers ofθ. theθ-independent term definesα0 × β0 as we have used
it in (45). This had to be expected, this order is exactly the commutative case. To
first order we obtain the equation:

θij
(
(δα0Λ1

β0,ij − δβ0Λ1
α0,ij)− i([α0,Λ1

β0,ij ]− (48)

− [β0,Λ1
α0,ij ])

)
+

1

2
∂iα

0
a∂jβ

0
b : T aT b := θijΛ1

α0×β0,ij .

This equation has the solution:

θijΛ1
α0,ij =

1

2
θij(∂iα

0
a)aj,b : T aT b : . (49)

We see thatΛ1 is of second order in the generatorsT of the Lie algebra. The
structure of eqn (46) allows a solution whereΛn, the term in (47) of ordern − 1
in θ, is a polynomial of ordern in T .

Λα0 = α0
aT

a +
1

2
θij(∂iα

0
a)aj,b : T aT b : + . . . (50)

In a next step in the formulation of a gauge theory we introduce covariant
derivatives. Eqn (24) shows that we can relate this problem to the construction of
covariant coordinates. We try to define such coordinates with the help of a gauge
field, in the same way as we did it for derivatives in eqn (37):

Xi = xi +Ai(x), (51)

δα0Xi ∗ ψ = iΛα0 ∗Xi ∗ ψ. (52)

This leads to a transformation law for the gauge fieldAi(x):

δAi = −i[xi ∗, Λα0 ] + i[Λα0
∗, Ai]. (53)

We have to assume thatAi is enveloping algebra valued but we try to make an
ansatz where all the coefficient functions only depend onai,a and its derivatives:

Ai(x) = Ai,0a (x)T a +A
i,1
ab (x) : T aT b : + . . . (54)

+Ai,n−1
a1...an(x) : T a1 · · · · · T an : + . . . ,

Ai,n = Ai,n(ai,a, ∂ai,a, . . . ).
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Now we expand (53) inθ, demandAi,n to be a polynomial of ordern in θ and
solve eqn (53),

Ai(x) = θijVj ,

Vj(x) = aj,aT
a − 1

2
θlnal,a(∂naj,b + Fnj,b : T aT b : + . . . , (55)

Fnj,b = ∂naj,b − ∂jan,b + f cdb an,caj,d.

This together with (41) is known as Seiberg-Witten map for an abelian gauge
group. We have constructed it for an arbitrary non-abelian gauge group as well.
Covariant derivatives follow from (37)

Di ∗ ψ = (∂i − iVi) ∗ ψ, (56)

δα0Di ∗ ψ = iΛα0 ∗ Di ∗ ψ.
We now proceed with the definition of tensors as in a usual gauge theory, keeping
in mind (27)

F̃ij = Di ∗ Dj −Dj ∗ Di − iθ−1
ij . (57)

The transformation law of the tensor is

δα0F̃ij = i[Λα0
∗, F̃ij ]. (58)

This can be verified from (53) and the definition ofF̃ .
To first order inθ we find:

F̃ij = Fij,aT
a + θln(Fil,aFjn,l − (59)

1

2
al,a(2∂nFij,b + an,cFij,df

cd
e )) : T aT b : + . . . . (60)

We see that new “contact” terms appear in the field strengthF̃ .
A good candidate for a Lagrangian is

L =
1

4
TrFij ∗ F ij . (61)

The trace is taken in the representation space of the generatorsT . The Lagrangian
(61) is not invariant because the * product is not commutative:

δL =
1

4
Tr i[Λα0

∗, L]. (62)

We know, however, that the integral has the trace property (31). This allows us to
define the invariant action:

W =
1

4

∫
TrFij ∗ F ij (63)

=
1

4

∫
TrFijF

ij .
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10 J. WESS

This action depends on the gauge fieldai,a and its derivatives only. It can be
considered as a gauge-invariant object ifai,a transforms according to (39). this
implies thatW satisfies the Ward identities.

δα0(x)W = 0, (64)

δα0(x) = −α0
a(x)

(
∂

∂xi
δad + ai,b(x)fabd

)
δ

δai,d(x)
.

The Lagrangian expanded to all orders inθ, is a non-local object. It remains to be
seen if it is acceptable for a quantum field theory or if it has to be viewed as an
effective Lagrangian, ref. [8].
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SYMMETRIES WIDER THAN SUPERSYMMETRY ∗
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Abstract. We observe that supersymmetries do not exhaust all the symmetries of the super-
manifolds. On a generalization of supermanifolds (calledmetamanifolds), the “functions” form a
metaabelean algebra, i.e., the one for which[[x, y], z] = 0 with respect to the usual commutator.
The superspaces considered as metaspaces admit symmetries wider than supersymmetries. Conjec-
turally, infinitesimal transformations of these metaspaces constituteVolichenko algebraswhich we
introduce as inhomogeneous subalgebras of Lie superalgebras. The Volichenko algebras are natu-
ral generalizations of Lie superalgebras being 2-step filtered algebras. They are non-conventional
deformations of Lie algebras bridging them with Lie superalgebras.

1. Introduction: Towards noncommutative geometry

This is an elucidation of our paper [31]. In 1990 we were unaware of [42] to
which we now would like to add later papers [14], and [2], and papers cited
therein pertaining to this topic. Observe also an obvious connection of Volichenko
algebras with structures that become more and more fashionable lately, see [22];
Volichenko algebras are one of the ingredients in the construction of simple Lie
algebras over fields of characteristic 2, cf. [23]

1.1. The gist of idea. To describe physical models, the least one needs is a
triple (X,F (X), L), consisting of the “phase space”X, the sheaf of functions
on it, locally represented by the algebraF (X) of sections of this sheaf, and a
Lie subalgebraL of the Lie algebra of of differentiations ofF (X) considered

∗ Instead of J. Naudts contribution by the editor S. Duplij’s request
† D.L. is thankful to an NFR grant for partial financial support, to V. Molotkov, A. Premet and

S. Majid for help.
‡ mleites@matematik.su.se
§ serganov@math.berkeley.edu
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14 D. LEITES, V. SERGANOVA

as vector fields onX. HereX can be recovered fromF (X) as the collection
Spec(F (X)), called thespectrumand consisting of maximal or prime ideals of
F (X). Usually,X is endowed with a suitable topology.

After the discovery of quantum mechanics the attempts to replaceF (X) with
the noncommutative (“quantum”) algebraA became more and more popular. The
first successful attempt was superization [25], [5] the road to which was prepared
in the works of A. Weil, Leray, Grothendiek and Berezin, see [11]. It turns out that
having suitably generalized the notion of the tensor product and differentiation
(by inserting certain signs in the conventional formulas) we can reproduce on
supermanifolds all the characters of differential geometry and actually obtain a
much reacher and interesting plot than on manifolds. This picture proved to be
a great success in theoretical physics since the language of supermanifolds and
supergroups is a “natural” for a uniform description of bose and fermi particles.
Today there is no doubt that this is the language of the Grand Unified Theories of
all known fundamental forces.

Observe that physicists who, being unaware of [25], rediscovered super-
groups and superspaces (Golfand–Likhtman, Volkov–Akulov, Neveu–Schwartz,
Stavraki) were studying possibilities to enlarge the group of symmetries (or rather
the Lie algebra of infinitesimal symmetries) of the known objects (in particular,
objects described by Maxwell and Dirac equations). Their efforts did not draw
much attention (like our [25] and [31]) until Wess and Zumino [43] understood
and showed to others some of the whole series of wonders one can obtain by
means of supersymmetries.

Here we show that the supergroups are not the largest possible symmetries of
superspaces; there are transformations that preserve more noncommutativity than
just a “mere” supercommutativity. To be able to observe that there are symmetries
that unify bose and fermi particles we had to admit a broader point of view on
our Universe and postulate that we live on a supermanifold. Here (and in [31])
we suggest to consider our supermanifolds as paticular case ofmetamanifolds,
introduced in what follows.

How noncommutative shouldF (X) be? To define the space correspond-
ing to an arbitrary algebra is very hard, see Manin’s gloomy remarks in [33],
where he studies quadratic algebras as functions on “perhaps, nonexisting”
noncommutative projective spaces.

Manin’s idea that there hardly exists one uniform definition suitable for any
noncommutative algebra (because there are several quite distinct types of them)
was supported by A. Rosenberg’s studies; he managed to define several types of
spectra in order to interpret ANY algebra as the algebra of functions on a suitable
spectrum, see preprints of his two books [27], no. 25, and nos. 26, 31 (the latter be-
ing expanded as [35]). In particular, there IS a space corresponding to a quadratic
(or “quadraticizable”) algebra such as the so-called “quantum” deformationUq(g)
of U(g), see [12].
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Observe that in [33] Manin also introduced and studied symmetries of super-
commutative superalgebras wider than supersymmetries, but he only considered
them in the context of quadratic algebras (not all relations of a supercommu-
tative suepralgebra are quadratic or quadraticizable). Regrettably, nobody, as
far as we know, investigated consequences of Manin’s approach to enlarging
supersymmetries.

Unlike numerous previous attempts, Rosenberg’s theory is more natural; still,
it is algebraic, without any real geometry (no differential equations, integration,
etc.). For some noncommutative algebras certain notions of differential geome-
try can be generalized: such is, now well-known, A. Connes geometry, see [10],
and [34]. Arbitrary algebras seem to be too noncommutative to allow to do any
physics.

In contrast, the experience with the simplest non-commutative spaces, the su-
perspaces, tells us that all constructions expressible in the language of differential
geometry (these are particularly often used in physics) can be carried over to
the super case. Still, supersymmetry has, as we will show, certain shortcomings,
which disappear in the theory we propose.

Specifically, we continue the study started under Berezin’s influence in [25]
(later suppressed under the same influence in [5], [26]), of algebras just slightly
more general than supercommutative superalgebras, namely their arbitrary, not
necessarily homogeneous, subalgebras and quotients. Thanks to Volichenko’s the-
orem F (F is for “functions”, see [27], no. 17 and Appendix below) such algebras
are preciselymetaabeleanones, i.e., those that satisfy the identity

[x, [y, z]] = 0 (here [·, ·] is the usual commutator). (1.1)

As in noncommutative geometries, we think of metaabelean algebras as “func-
tions” on a what we will callmetaspace.

Observe that the conventional superspaces considered as metaspaces and La-
grangians on them haveadditionalsymmetries as compared with supersymmetry.

1.2. The notion of Volichenko algebras. Volichenko’s Theorem F gives
us a natural generalization of the supercommutativity. It remains to define the
analogs of the tensor product and study differentiation (e.g., Volichenko’s ap-
proach, see§3). We conjecture that the analogs of Lie algebras in the new setting
are Volichenko algebrasdefined here as nonhomogeneous subalgebras of Lie
superalgebras.

Supersymmetry had been already justified for physicists when mathemati-
cians’ attention was drawn to it by the list of simple finite dimensional Lie
superalgebras: bar one exception it was discrete and looked miraculously like the
list of simple Lie algebras. Our list of simple Volichenko algebras is similar. Our
main mathematical result is the classification (under a technical hypothesis) of
simple finite dimensional (and vectorial) Volichenko algebras, see [40], [31].
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16 D. LEITES, V. SERGANOVA

Remarkably, Volichenko algebras are just deformations of Lie algebras though
in an entirely new sense: in a category broader than that of Lie algebras or Lie
superalgebras. This feature of Volichenko algebras could be significant for paras-
tatistics because once we abandon bose-fermi statistics, there seem to be too many
ad hocways to generalize. Our classification asserts that within the natural context
of simple Volichenko algebras the set of possibilities is discrete or has at most 1-
parameter (hence, anyway, describable!). It is important because it suggests the
possibility of associating distinct types of particles to representations of these
structures.

Our generalization of supersymmetry and its implications for parastatistics
appear to be complementary to works on braid statistics in two dimensions [15]
in the context of [13], see also [19]. We expect them to tie up at some stage.

Examples of what looks like nonsimple Volichenko algebras recently appeared
in another context in [2], [36], [42] and [14].

1.3. An intriguing example: the general Volichenko algebravglµ(p|q). Let
the spaceh of vglµ(p|q) be the space of(p + q) × (p + q)-matrices divided into
the two subspaces as follows:

h0̂ =

{
A 0
0 D

}
; h1̂ =

{
0 B
C 0

}
. (1.3.1)

Hereh1̂ is a naturalh0̂-module with respect to the bracket of matrices; fixa, b ∈ C
such thata : b = µ ∈ CP 1 and define the multiplicationh1̂ × h1̂ −→ h0̂ by the
formula

[X,Y ] = a[X,Y ]− + b[X,Y ]+ for any X,Y ∈ h1̂. (1.3.2)

(The subscript− or + indicates the commutator and the anticommutator, respec-
tively.) As we sill see,h is a simple Volichenko algebra for anya, b except for
ab = 0 when it becomes isomorphic to either the Lie algebragl(p+ q) or the Lie
superalgebragl(p|q). To show thatvglµ(p|q) is indeed a Volichenko algebra, we
have to realize it as a subalgebra of a Lie superalgebra. This is done in heading 2
of Theorem 2.7.

2. Metaabelean algebra as the algebra of “functions”. Volichenko algebra as
an analog of Lie algebra

2.1. Symmetries broader than supersymmetries. It was the desire to broaden
the notion of a group that lead physicists to supersymmetry. However, in viewing
supergroups as transformations of superspaces we consider only even, “statistics-
preserving”, maps: nonhomogeneous “statistics-mixing” maps between super-
algebras are explicitly excluded and this is why and how odd parameters of
supergroups appear, cf. [3], [11].

On the one hand, this is justified: since we consider graded objects why
should we consider transformations that preserve these objects as abstract ones
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but destroy the grading? It would be inconsistent on our part, unless we decide to
consider the grading or “parity” as one considers the electric charge of a nucleon:
in certain problems we ignore it.

On the other hand, if such parity violating transformations exist, they deserve
to be studied, to disregard them is physically and mathematically an artificial
restriction.

We would like to broaden the notion of supergroups and superalgebras to allow
for the possibility of statistics-changing maps. Soon after Berezin published his
description of automorphisms of the Grassmann algebra [4] it became clear that
Berezin missed nonhomogeneous automorphisms, but the complete description of
automorphisms was unknown for a while. In 1977, L. Makar-Limanov gave us a
correct description of such automorphisms (private communication). A. Kirillov
rediscovered it while editing [3], Ch.1; for automorphisms in presence of even
variables see [28].

Recall the answer: the generic finite transformation of a supercommutative
superalgebraF of functions inn even generatorsx1, ..., xn andm odd ones
θ1, ..., θm is of the form (herepm is the parity ofm, i.e., either0 or 1)

xi 7→ [(fi +
∑
k
f i1...i2ki θi1 ...θi2k) +

∑
k
f
i1...i2k+1

i θi1 ...θi2k+1
](1 + Fiθ1...θmpm)

θj 7→ [(
∑
k
g
i1...i2k+1

j θi1 ...θi2k+1
) + gj +

∑
k
gi1...i2kj θi1 ...θi2k ](1 + g)

(2.1)

where fi, Fi and f i1...i2ki , and alsogi1...i2k+1

j are even superfields, whereas

f
i1...i2k+1

i , gj andgi1...i2kj and alsog, Fi are odd superfields. (A mathematician,
see [11], would say that the odd superfields(underlined once) represent the pa-
rameters corresponding toΛ-points with nonzero odd part of the background
supercommutative superalgebraΛ.) Notice that oneg serves all theθj . The
twice underlined factors account for the extra symmetry ofF as compared with
supersymmetry.

Comment. When the number of odd variables is even, as is usually the
case in modern models of Minkowski superspace, there is only one extra func-
tional parameter,g. Therefore, on such supermanifolds, thenotion of a boson is
coordinate-free, whereas that of a fermion depends on coordinates.

Summing up, (this is our main message to thereader)

supersymmetry is not the most broad symmetry of
supercommutativesuperalgebras

2.2. Two complexifications. Another quite unexpected flaw of supersymme-
try is that the category of supercommutative superalgebras isnot closed with
respect to complexification. It certainly is ifC is understood naively, as a purely
even space. Declaring

√−1 to be odd, we makeC into a nonsupercommutative
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18 D. LEITES, V. SERGANOVA

superalgebra. This associative superalgebra overR is denoted byQ(1;R), see
[26], [6].

The complex structure given by an odd operator gives rise to a “queer” su-
peranalogue of the matrix algebra,Q(n;K) over any fieldK. Its Lie version, the
projectivization of its queertraceless subalgebra (first discovered by Gell-Mann,
Mitchel and Radicatti, cf. [9]) is one of main examples of simple Lie superal-
gebras, whereasQ(1) corresponds to one of the two cases of Schur’s Lemma
for superalgebras. An infinite dimensional representation ofQ(1) is crucial in
A. Connes’ noncommutative differential geometry. In short, the odd complex
structure on superspaces is an important one.

How to modify definition of supermanifold to incorporate the above struc-
tures?

Conjecturally, the answer is to consider arbitrary, not necessarily homo-
geneous subalgebras and quotients of supercommutative superalgebras. These
algebras are, clearly, metaabelean algebras. But how to describe arbitrary metaa-
belean algebras? In 1975 D.L. discussed this with V. Kac and Kac conjectured (see
[26]) that considering metaabelean algebras we do not digress far from supercom-
mutative superalgebras, namely, every metaabelean algebra is a subalgebra of a
supercommutative superalgebra. Therefore, the most broad notion of morphisms
of supercommutative superalgebras should only preserve their metaabeleanness
but not parity. (SinceC, however understood, is metaabelean, we get a category
of algebras closed with respect to all algebra morphisms and complexifications.)

Volichenko proved more than Kac’ conjecture (Appendix). Namely, he proved
that any finitely generated metaabelean algebra admits an embedding into a uni-
versal supercommutative superalgebra and developed an analogue of Taylor series
expansion.

Until Volichenko’s results, it was unclear how to work with metaabelean alge-
bras: are there any analogues of differential equations, or integral, in other words,
is there any “real life” on metaspaces [26]? Thanks to Volichenko, we can now
consider pairs

(a metaabelean algebra, its ambient supercommutative superalgebra)

and corresponding projections “superspace−→ metaspace” when we consider
these algebras as algebras of functions.

It is interesting to characterize metaabelean algebras which arequotientsof
supercommutative superalgebras: in this case the corresponding metaspace can
be embedded into the superspace and we can consider the induced structures
(Lagrangeans, various differential equations, etc.).

But even if we would have been totally unable to work with metaspaces which
are not superspaces, it is manifestly useful to consider superspaces as metaspaces.
In so doing, we retain all the paraphernalia of the differential geometry for sure,
and in addition get more transformations of the same entities.
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For example, it is desirable to make use of the formula (first applied by
Arnowitt, Coleman and Nath)

Ber X = exp str log X

which extends the domain of the berezinian (superdeterminant) to nonhomo-
geneous matricesX. Then we can consider the additional nonhomogeneous
transformations, like the ones described in (2.1). All supersymmetric Lagrangeans
admit metasymmetry wider than supersymmetry.

Remark. In mathematics and physics, spaces are needed almost exclusively to integrate over
them or consider limits in analytic questions. In problems where integration is not involved we
need sheaves of sections of various bundles over the spaces rather than the spaces themselves.
Gauge fields, Lagrangeans, etc. are all sections of coherent sheaves, corresponding to sections of
vector bundles. Now, almost 30 years after the definition of the scheme of a metaabelean algebra
(metavariety or metaspace) had been delivered at A. Kirillov’s seminar ([25]), there is still no
accepted definition of nice (“morally coherent” as Manin says) sheaves over such a scheme even
for superspaces (for a discussion see [8]). As to candidates for such sheaves see Rosenberg’s books
on noncommutative geometry [27], nos. 25, 26, 31 and [35]) and§9 in [8]. This§9 is, besides all, a
possible step towards “compactification in odd directions”.

2.3. A description of Volichenko algebras. It seemed natural [26] to get for
Lie superalgebras a result similar to Volichenko’s theorem F, i.e., to describe
arbitrary subalgebras of Lie superalgebras. Shortly before his untimely death
I. Volichenko (1955-88) announced such a description (Theorem A, here A is for
(Lie) “algebra”). In his memory then, aVolichenko algebrais a nonhomogeneous
subalgebrah of a Lie superalgebrag. The adjective “Lie” before a (super)algebra
indicates that the algebra is not associative, likewise the adjective “Volichenko”
reminds that the algebra is neither associative nor should it satisfy Jacobi or super-
Jacobi identities. Thus, a Volichenko algebrah is a non-homogeneous subspace of
a Lie superalgebrag closed with respect to the superbracket ofg. How to describe
h by identities, i.e., in inner terms, without appealing to any ambient?

Theorem. A (I. Volichenko, 1987)Let A be an algebra with multiplication
denoted by juxtaposition. Define the Jordan elementsa ◦ b := ab+ ba and Jacobi
elementsJ(a, b, c) := a(bc) + c(ab) + b(ca). Suppose that

(a)A is Lie admissible, i.e.,A is a Lie algebra with respect to the new product
defined by the bracket(not superbracket)[a, b] = ab− ba;

(b) the subalgebraA(JJ) generated by all Jordan and Jacobi elements belongs
to the anticenter ofA, in other words

ax+ xa = 0 for any a ∈ A(JJ), x ∈ A;

(c) a(xy) = (ax)y + x(ay) for anya ∈ A(JJ), x, y ∈ A.
Then
(1) Any (not necessarily homogeneous)subalgebrah of a Lie superalgebrag

satisfies the above conditions(a) — (c).
(2) If A satisfies(a) — (c), then there exists a Lie superalgebraSLie (A) such

thatA is a subsuperalgebra (closed with respect to the superbracket) ofSLie (A).
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Heading (1) is subject to a direct verification.
Clearly, the parts of conditions (b) and (c) which involve Jordan (resp. Jacobi)

elements replace the superskew-commutativity (resp. Jacobi identity). Condition
(a) ensures thatA is closed inSLie(A) with respect to the bracket in the ambient.

Discussion. If true, Volichenko’s theorem A would have disproved a pes-
simistic conjecture of V. Markov cited in [26]:the minimal set of polynomial
identities that single out nonhomogeneous subalgebras of Lie superalgebras is
infinite. I. Volichenko did not investigate under which conditions a finite di-
mensional Volichenko algebraA can be embedded into a finite dimensional Lie
superalgebrag; which is, perhaps, the quotient ofSLie(A) modulo an ideal.

Volichenko’s scrap papers were destroyed after his death and no hint of his
ideas remains. Several researchers tried to refute it and A. Baranov succeeded. He
showed [1] that Volichenko’s theorem V is wrong as stated: one should add at least
one more relation of degree 5. First, following Volichenko, Baranov introduced
instead ofJ(a, b, c) more convenient linear combinations of the Jacobi elements

j(a, b, c) = [a, b ◦ c] + [b, c ◦ a] + [c, a ◦ b] for a, b, c ∈ A.

Then Baranov rewrote identities (a)–(c) in the following equivalent but more
transparent form (i)–(v):

(i) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0;
(ii) a ◦ b ◦ c = 0;
(iii) j(a, b, c) ◦ d = 0;
(iv) [a ◦ b, c ◦ d] = [a ◦ b, c] ◦ d+ [a ◦ b, d] ◦ c;
(v) [j(a, b, c), c ◦ d] = [j(a, b, c), c] ◦ d+ [j(a, b, c), d] ◦ c.
Baranov’s new identity independent of (i) – (v) is of degree 5 and is somewhat

implicit; it involves 49 monomials and no lucid expression for it is found yet.
True or false, Volichenko’s theorem A does not affect our results, since we do

not appeal to an intrinsic definition of Volichenko algebras.
2.4. On simplicity of Volichenko algebras. As we will see, the notion of

Volichenko algebra is a totally new type of deformation of the usual Lie algebra.
It also generalizes the notion of a Lie superalgebra in a sence that the Lie super-
algebras areZ/2-graded algebras (i.e., they are of the formg = ⊕

i=0̄,1̄
gi such that

[gi, gj ] ⊂ gi+j) whereas Volichenko algebras are only 2-step filtered ones (i.e.,
they are of the formh = ⊕

i=0̂,1̂
hi asspacesandh0̂ is a subalgebra. There are,

however, several series of examples when Volichenko algebras areZ/2-graded
(e.g.,vglµ(p|q)).

Hereafterg is a Lie superalgebra overC andh ⊂ g a subspace which is not a
subsuperspace closed with respect to the superbracket ing. For notations of simple
complex finite dimensional Lie superalgebras, the list of known simpleZ-graded
infinite dimensional Lie superalgebras of polynomial growth overC andR, and
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their gradings see [20], [38], [27], [37], [30]. A Volichenko algebra is said to be
simpleif it has no two-sided ideals and its dimension is6= 1.

Remark. P. Deligne argued that for an algebra such as a Volichenko one, modules over which

have no natural two-sided structure, the above definition seems to be too restrictive: one should

define simplicity by requiring the absence ofone-sidedideals. As it turns out, none of the simple

Volichenko algebras we list in what follows has one-sided ideals, so we will stick to the above (at

first glance, preliminary) definition: it is easier to work with.

Lemma. For anysimpleVolichenko algebrah, h ⊂ g′, there exists asimple
Lie subsuperalgebrag ⊂ g′ that containsh.

So, we can (and will) assume that the ambientg of a simple Volichenko al-
gebra is simple. In what follows we will see that under a certain condition for a
simple Volichenko algebrah its simple ambient Lie superalgebrag is unique. here
is this condition:

2.5. The “epimorphy” condition . Denote bypi : g −→ gi, wherei = 0̄, 1̄,
the projections to homogeneous components. A Volichenko algebrah ⊂ g will be
calledepimorphicif p0(h) = g0̄. Not every Volichenko subalgebra is epimorphic:
for example, the two extremes, Volichenko algebras with the zero bracket and free
Volichenko algebras, are not epimorphic, generally. All simple finite dimensional
Volichenko algebras known to us are, however, epimorphic.

Hypothesis. Every simple Volichenko algebra is epimorphic.
A case study of various simple Lie superalgebras of low dimensions reveals

that they do not contain non-epimorphic simple Volichenko algebra. Still, we can
not prove this hypothesis but will adopt it for it looks very natural at the moment.

Lemma. Let h ⊂ g be an epimorphic Volichenko algebra andf : g0̄ −→ g1̄ a
linear map that determinesh, i.e.,

h = hf := {a+ f(a) | a runs over g0̄}.
Then

1) f is a1-cocycle fromC1(g0̄; g1̄);
2) f can be uniquely extended to a derivation ofg (also denoted byf ) such

thatf(f(g0̄)) = 0.
Example. Recall, that the odd elementx of any Lie superalgebra is called a

homologicone if [x, x] = 0, cf. [41]. Letx ∈ g1̄ be such that

[x, x] ∈ C(g), (2.5.1)

whereC(g) is the center ofg. Clearly, the mapf = ad (x) satisfies Lemma 2.4 if
x satisfies(2.5.1), i.e., is homologic modulo center.

A homologic modulo center elementx will be said toensure nontriviality(of
the algebra

hx = {a+ [a, x] | a runs over g0̄}) (2.5.2)

if
[[g0̄, x], [g0̄, x]] 6= 0,
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i.e., if there exist elementsa, b ∈ g0̄ such that

[[a, x], [b, x]] 6= 0. (2.5.3)

The meaning of this notion is as follows. Leta, b ∈ h, a = a0 + a1, b = b0 + b1,
wherea1 = [a0, x], b1 = [b0, x] for somex ∈ g1̄. Notice that forx satisfying
(2.5.1) we have

[[a1, b1], x] = 0. (2.5.4)

If (2.5.3) holds, we have

[a, b] = [a0, b0] + [a1, b1] + [a0, b1] + [a1, b0] = ([a0, b0] + [a1, b1]) + [[a0, b0], x].
(2.5.5)

It follows from (2.5.4) and (2.5.5) that ifx is homologic modulo center, thenhx
is closed under the bracket ofg; if this x does not ensure nontriviality, thenhx is
just isomorphic tog0̄.

In other words, an epimorphic Volichenko algebra is a deformation of the Lie
algebrag0̄ in a totally new sence: not in the class of Lie algebras, nor in that of Lie
superalgebras but in the class of Volichenko algebras whose intrinsic description
is to be given. (To see that an epimorphic Volichenko algebrahx is a result of a
deformation of sorts, multiplyx by an even parameter,t. If t were odd, we would
have obtained a deformation ofg0̄ in the class of Lie superalgebras.)

Remark. It is easy to show making use of formula (2.5.5) why it is impossible
to consider any other (inconsistent with parity)Z/2-grading (call itdeg) of g and
deform in a similar way the Lie subsuperalgebra of elements of degree 0 with
respect todeg.

Any epimorphic Volichenko algebrahx ⊂ g is naturally filtered: it contains as
as subalgebra the Lie algebraann (x) = {a ∈ g0̄ | [x, a] = 0}.

Problems. 1) We have a sandwich: between Hopf (super)algebras,U(hx)
andU(g), a non-Hopf algebra,U(h) (the subalgebra ofU(g) generated byh),
is squeezed. How to measure its “non-Hopfness”? This invariant seems to be of
interest.

2) It is primarily real algebras and their representations that arise in applica-
tions. So what are these notions for Volichenko algebras?

We do not know at the moment the definition of arepresentation of a
Volichenko algebraeven for epimorphic ones. To say “arepresentation of a
Volichenko algebrais a through map: the composition of an embeddingh ⊂ g
into a minimal ambient and a representationg −→ gl(V )” is too restrictive: the
adjoint representation and homomorphisms of Volichenko algebras are ruled out.

3) If we abandon the technical hypothesis on epimorphy, do we obtain any
simple Volichenko algebras? (Conjecture: we do not.)

4) Describe Volichenko algebras intrinsically, via polynomial identities. This
seems to be a difficult problem.
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5) Classify simple Volichenko subalgebras of the other known simple Lie
superalgebras of interest, e.g., of polynomial growth, cf. [16], [17].

2.6. Vectorial Volichenko superalgebras. For a vector fieldD =
∑
fr∂r

from vect(m|n) = derC[x, θ], define itsinverse orderwith respect to the nonstan-
dard (ifm 6= 0) grading induced by the grading ofC[x, θ] (for whichdeg xi = 0
anddeg θj = 1 for all i and j) and inv.ord(fr) is the least of the degrees of
monomials in the power series expansion offr.

There are two major types of Lie (super)algebras and their subalgebras: the
ones realized by matrices and the ones realized by vector fields. The former ones
will be refered to as matrix ones, the latter ones as vectorial algebras.

2.6.1. Lemma. Let h ⊂ g be a simple epimorphic vectorial Volichenko
algebra, i.e., a subalgebra of a simple vectorial Lie superalgebra. Then in the
representationh = hf we havef(·) = [·, x], where x is homologic and
inv.ord(x) = −1.

2.6.2. Lemma. LetG be the Lie group with the Lie algebrag0̄, letG0 be the
Lie group with the Lie algebrag0 of linear vector fields with respect to the stan-
dard (see [37]) grading; letAut G0 be the group of automorphisms ofG0. Table
2.7.2 contains all, up to(Aut G0)-action, homologic elements of the minimal
inverse order in the vectorial Lie superalgebras. In particular, forsvect′(2n) there
are none.

2.7. Theorem. A simple epimorphic finite dimensional Volichenko algebra
h ⊂ g can be only one of the followingh = hx, where:

1) x is an element from Table2.7.2 or an element from Table2.7.1 satisfying
the condition ensuring non-triviality ifg 6= psq(n);

2) if g = psq(n), then eitherx is an element from Table2.7.1 satisfying the
condition ensuring non-triviality orx = antidiag (X,X), where

X = diag (a1p, b1n−p) with ap+ b(n− p) = 0.

Now, the final touch:
Proposition. Simple epimorphic Volichenko algebras from Tables1, 2 have

no one-sided ideals.
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Table 2.7.1. Homologic elementsx and the condition when x ensures
nontriviality of h for matrix Lie superalgebras g

g x

(whendoesx ensure nontriviality)

sl(m|n),m ≤ n xpq = antidiag(B,C), whereB = diag(1p, 0)

C = diag(0, 1q) (p, q > 0, p+ q ≤ m)

psl(n|n) same as forsl(n|n) and alsoantidiag(1n, 1n) (as above)

osp(2m|2n) the image of the abovexpp ∈ sl(m|n) ⊂ osp(2m|2n)

2p ≤ min (m,n) (p > 0)

osp(2m+ 1|2n) the image of the abovex

under the embeddingosp(2m|2n) ⊂ osp(2m+ 1|2n)

spe(n) antidiag(B,C), whereB = diag(1p, 0n−p),
C = diag(0n−2q, J2q), p+ 2q ≤ n (p, q > 0)

psq(n) antidiag(X,X),

whereX = diag(J2(0), ..., J2(0), 0, ..., 0)

with k-manyJ2(0)’s, where

J2(0) = antidiag (1, 0), 2k ≤ n (k > 0)

ag2, ab3, the root vector correspondingto

osp(4|2;α) an isotropic (odd) simple root(never)

In Table 2.7.2 we have listed not only homologic elements — that is to say
Volichenko subalgebras — of finite dimensional simple Lie superalgebras of vec-
tor fields but also simple Volichenko subalgebras of all nonexceptional simple Lie
superalgebras of vector fields, for their list see [30].

Table 2.7.2. Homologic elementsx of minimal inverse order in simple Lie
superalgebrasg of vector fields

vect(m|n), wheremn 6= 0, n > 1 orm = 0, n > 2; ∂
∂θ1

svect(m|n), le(n), sleo(n) for n > 1

k(2m+ 1|n), wheren > 1 Kθ1

h(2m|n), wheremn 6= 0, n > 1 andsh(n), n > 3 ∂
∂θ1

and ∂
∂θ1

+
√−1 ∂

∂θ2

m(n), n > 1, andsmλ(n), λ 6= 0, n > 1 M1 andM1+θ1...θ2k for smλ(2k)

svect(0|2n+ 1), n > 1 ∂
∂θ1

and(1 + tθ2...θ2n+1) ∂
∂θ1

, t ∈ C
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3. Appendix. Volichenko’s theorem F and elements of Calculus on
matamenifolds

3.1. In what follows all the algebras are associative with unit over a fieldK,
char K 6= 2. We will deal with two important PI-varieties of algebras (the
varieties singled out by polynomial identities):

– the varietyC of supercommutative superalgebras;
– the varietyG generated (by tensoring and passing to quotients) by the Grass-

mann algebraΛ(∞) of countably many indeterminates (its naturalZ/2-grading
ignored).

The varietyG plays a significant role in the theory of varieties of associative
algebras ([21]). It is known that ifchar K = 0 it is distinguished by the identity
(1.1). If char K 6= 0, the identityXp = 0 should be added.

I. Volochenko wrote: “As pointed out by D. Leites [26], in the conventional
supermanifold theoryit seems too restrictive that not all subalgebras or quotients
of superalgebras are considered as algebras of functions on supermanifolds but
only the graded (homogenous) ones. It is tempting to construct a variant of Calcu-
lus which enables one to operate with arbitrary subalgebras, ideals and quotients.
... Definition of the category of topological spaces ringed by such general algebras
is obvious, cf. [25], where the algebraic case is considered.

It remained unclear, however, how to uniformly describe such algebras. For
instance, do they constitute a variety? Leites recalls a conjecture of Kac (1975)
that such algebras aremetaabelean, i.e., satisfy the identity(1.1). The conjecture
is a well-known fact of the theory of varieties of associative algebras, cf. [24].
From the context of [25], however, it is clear that the actual problem is, first of
all, how to describe a variety of not necessarily homogeneous subalgebras which
a priori can be less thanG.

Actually, I will not only prove that any algebraG ∈ G can be embedded into
a commutative superalgebra but will also prove the existence of a universal (in a
natural sence) enveloping algebraUC(G) from the classC of all the supercommu-
tative superalgebras and give an explicit realization ofUC(G). Therefore, we can,
in principle, reduce the study of homomorphisms of algebras fromG to that of
their enveloping superalgebras fromC.

I hope that this is (at least partly) an answer to Leites’ questionhow towork
with algebras fromG and the corresponding ‘supermanifolds’”.

3.2. LetKC [X,Y ] be the algebra determined by the system of indeterminates
X ∪ Y = (Xi)i∈I ∪ (Yj)j∈J and relations

Xi1Xi2 −Xi2Xi1 = 0, XiYj − YjXi = 0, Yj1Yj2 + Yj2Yj1 = 0

for i, i1, i2 ∈ I, andj, j1, j2 ∈ J . This algebra possesses a natural parity:p(Xi) =
0̄, p(Yj) = 1̄ for i ∈ I, j ∈ J .
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Let I = J ; letKG [Z] be a non-graded subalgebra inKC [X,Y ] generated by
all the elementsZi = Xi + Yi (i ∈ I).

Statement. KG [Z] is a free algebra in the varietyG and the elementsZi
(i ∈ I) are its free generators. In other words, letKA[T ] be a free associative
algebra with free generatorsT1, T2, . . . . If f(Z1, . . . , Zn) = 0 in KG [Z] for some
f(T1, . . . , Tn) ∈ KA[T ], thenf(a1, . . . , an) = 0 for anya1, . . . , an ∈ KC [X,Y ].

3.3. Setd =
∑
i∈I

Yi
∂
∂Xi

.

Statement. The polynomialf(X,Y ) ∈ KC [X,Y ] belongs toKG [Z] if and
only if df = f1̄, or, equivalently,df0̄ = f1̄.

3.4. A relation between ideals ofKG [Z] andKC [X,Y ].
Statement. LetA be an ideal ofKG [Z] andĀ the ideal ofKC [X,Y ] generated

byA0̄ ∪A1̄ = {f0̄, f1̄ : f ∈ A}. ThenĀ ∩KG [Z] = A.
Now, letG̃ = G0̄⊕G1̄ be a linear superspace, where eachGi is a copy of our

algebraG from G. Consider the subalgebraKG [G] ⊂ KC [G̃] generated by all the
elementsg0̄ + g1̄, whereg ∈ G. Clearly,KC [G̃] ' KC [X,Y ], whereX andY
are bases inG0̄ andG1̄, respectively, andKG [G] ' KG [Z]. ThenG is isomorphic
to the quotient ofKG [Z] modulo the idealA generated by all the elements of the
form

(g0̄ + g1̄)(h0̄ + h1̄)− ((gh)0̄ + (gh)1̄) .

TheuniversalC-enveloping ofG is the quotientUC [G] of KC [G̃] modulo the
idealĀ generated by the elements of the form

g0̄h0̄ + g1̄h1̄ − (gh)0̄, g0̄h1̄ + g1̄h0̄ − (gh)1̄ .

Any elementg ∈ G is identified with the image ofg0̄ + g1̄ under the canonical
epimorphismKC [G̃]→ UC [G].

In KC [G̃], same as inKC [X,Y ], there is defined the derivation:d(g0̄) = g1̄,
d(g1̄ = 0 for any g ∈ G. SinceĀ is d-invariant, it follows thatd induces a
canonical derivation ofUC [G] which we will also denote byd.

Proposition. The elementf of UC [G] belongs toG if and only if df0̄ = f1̄.
3.5. An explicit description of the supercommutative envelope: Theorem

F. The universalC-envelopingUC(G) of the algebraG of G is isomorphic to
the supercommutative superalgebraS = G(+)⊕Ω1

G(+)/C
whose even component

G(+) isG considered with the Jordan productx◦y = 1
2(xy+yx) and the odd com-

ponentΩ1
G(+)/C

considered as aG(+)-module is the module of differentials, i.e.,

the quotient of the freeG(+)-module with basis(dx)x∈G modulo the submodule
generated by

d(x+ y)− dx− dy, d(x ◦ y)− xdy − yd for x, y ∈ G(+), and dc for c ∈ C,
whereC be the subalgebra (with unit) inG and inG(+) generated by the elements
of the form[x, y] for x, y ∈ G.The product of odd elements is determined by the
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formula

dx · dy =
1

2
[x, y] (x, y ∈ G) .

3.6. The Taylor formula. Hereafterchar K = 0, the set of indicesI is either
N or {1, 2, . . . , n}. For arbitraryc1, . . . , cp ∈ KG [Z] (p ∈ N) set

symm(c1, . . . , cp) =
1

p!

∑
σ∈Sp

cσ(1) . . . cσ(p).

The expressions of this form will be called ans-monomial(in c1, . . . , cp).
Determine also ana-monomialin c1, . . . , c2q by setting

alt(c1, . . . , c2q) =
1

(2q)!

∑
τ∈S2q

(−1)signτ cτ(1) . . . cτ(2q) = 2−q[c1, c2] . . . [c2q−1, c2q].

(The last equality is a nontrivial statement.) LetM be the set of all the pairs of the
formm = (α, β), where

α = (α1, . . . , αp), α1 ≤ . . . ≤ αp, αν ∈ I for 1 ≤ ν ≤ p

β = {β1, . . . , β2q}, β1 < . . . < β2q, βµ ∈ I for 1 ≤ µ ≤ 2q.

In these notations for an arbitrary familyc = (ci)i∈I of elements fromKG [Z] set

cm = symm(cα1 , . . . , cαp)alt(cβ1 , . . . , cβ2q) .

The elements of the formcm (m ∈M) will be calledsa-monomialsin ci (i ∈ I).
Proposition Thesa-monomialsZm (m ∈M ) constitute a basis ofKG [Z].
Set

∂

∂Zi
=

∂

∂Xi
+

∂

∂Yi
(i ∈ I)

and for an arbitrarym ∈M set

∂m

∂Zm
= symm

(
∂

∂Zα1

, . . . ,
∂

∂Zαp

)
alt

(
∂

∂Zβ1

, . . . ,
∂

∂Zβ2q

)
.

Hereafter we assume thatI = {1, 2, . . . , n}. Form = (α, β) setδ(m) = q
and letm! = (−1)δ(m)d1! . . . dn!, wheredi is the degree ofsymm(Zα1 , . . . , Zαp)
in Zi (i ∈ I).

Theorem (The Taylor series expansion.)For an arbitraryf(Z) ∈ KG [Z] and
an arbitrarya = (a1, . . . , an) ∈ Kn we have

f(Z) =
∑
m∈M

1

m!

∂mf0̄(a)

∂Zm
(Z − a)m .
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Abstract. We show how the Randall-Sundrum geometry, which has been proposed as a scenario
for the universe realized as a 3-brane embedded in a 5-dimensional spacetime, arises naturally as an
S5 dimensional reduction of a supersymmetric 3-brane of type IIB supergravity. However, a closer
inspection of theD = 10 delta-function sources for this solution reveals a more complex situation:
in addition to the anticipated positive and negative shells of 3-brane source, there is also a non-brane
stress-tensor delta-function. The latter singularity may be interpreted as arising from a patching of
two discs ofD = 10 spacetime coincident with the inner and outer brane locations.

The idea that our universe might be realized as a 3-brane embedded in a
higher-dimensional spacetime has been considered at various times in recent
years [1–5]. In the context of string duality, it was specifically the construction
of Hořava and Witten [6, 7] realizing heterotic to M-theory duality via an orbifold
compactification that set a pattern for this scenario. In particular, one may obtain
a 3-brane solution to M-theory reduced on a Calabi-Yau manifold down to five
spacetime dimensions [8–10]. This solution has parallel 3-brane universes facing
each other across a transverse fifth dimension, located at the fixed planes of the
Hořava-WittenS1/Z2 orbifold. The 3-branes are magnetically charged and satu-
rate a BPS bound, so are supersymmetric. The solution is supported by aD = 5
scalar field which has a higher-dimensional interpretation as the volume modulus,
or “breathing mode” of the compactifying space. This scalar field acquires a po-
tential as a result of 4-form fluxes being turned on in the compactified dimensions.
The dimensional reduction is thus an example of a generalized (aka Scherk-
Schwarz) reduction with non-trivial field strengths turned on in the compactifying
space.

Interest in such pictures became very much heightened when Randall and Sun-
drum showed [11, 12] that in such a brane-world universe, gravity could behave
as if it were effectively 4-dimensional even though the distance between the two
3-branes might be taken to infinity, provided the bulk geometry near the brane we
live on is aD = 5 anti de Sitter space. Specifically, a model was consideredthat

∗ k.stelle@ic.ac.uk
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involved two segments of a pure AdS5 spacetime patched together,

ds2
5 = e

−2|z|
L dxµdxµ + dz2 (1)

with a “kink” at z = 0 corresponding to a positive-tensionδ-function stress-tensor
source. In Ref. [12] it was shown that this gives rise to a “binding” of gravity to the
D = 5 spacetime region near the (3+1) dimensional braneworld, with an effective
Newtonian gravitational potential plus eventual measurable corrections,

Vgrav ∼ 1

r
+
L2

r3
. (2)

It was the potential measurability of these corrections to Newtonian gravity that
attracted such strong attention within the scientific community.

No specific supergravity realization of such a construction was given, although
clearly it seems natural to try to embed the RS braneworld into aD = 5 dimen-
sional reduction of type IIB supergravity. Realizing the RS brane in a supergravity
context ran into certain difficulties, however, primarily concerning the behavior of
the scalar field that would need to be used to support the 3-brane solution. No
known scalar field in any of the dimensionally-reduced versions ofD = 5 su-
pergravity has the properties needed to flow correctly to a fixed point at locations
far from the RS brane, and this was encoded in a “no-go theorem” [13, 14]. As
is frequently the case with no-go theorems, however, the main result may be to
direct attention towards the underlying assumptions that need to be relaxed. The
key one in this case concerns the nature of the supporting scalar.

Even before the Randall-Sundrum work on our universe as a braneworld em-
bedded in aD = 5 spacetime, a general study had been made [15] of the spherical
dimensional reductions of various supergravity theories and of the branes and
domain walls that exist in these reduced theories. For the specific case of the
S5 reduction of type IIB supergravity down toD = 5, it was shown that the
familiar D3-brane geometry ofD = 10 type IIB theory dimensionally reduces
to a 3-brane inD = 5, supported by the “breathing mode” scalar modulus that
determines the volume of the compactifyingS5. This works in a very similar
way to the breathing-mode supported 3-brane in the Calabi-Yau reduction of M-
theory [8–10]. It should be noted, however, that the breathing mode for anS5

reduction does not itself belong to the massless supergravity multiplet. Instead, the
breathing mode belongs to a massive spin-two multiplet, as is appropriate, since
the dimensional reduction turns on a flux in the internalS5 directions, and this
gives the breathing modeϕ a scalar potential that allows this mode to support a
3-brane solution. Without this potential, the breathing mode could not support a 3-
brane solution. But the massive character of this mode places it outside the class of
modes normally considered inD = 5 compactifications of supergravity theories.
The importance of this mode for realizing the Randall-Sundrum braneworld as a
supergravity construction was recognized in Refs [16, 17], although a main focus
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was still on the difficulty of realizing RS geometries as a fully “smoothed-out”
solitonic solution.

To see how a construction analogous to the M-theory 3-brane solution can be
made inS5 reduced type IIB theory, consider a simplified theory just retaining the
D = 10 metric and the self-dual 5-form field strengthH[5],

Rµν =
1

96
(H[5])

2
µν

H [5] = ∗H[5] dH[5] = 0 , (3)

where the equations of motion for the five-form are implied by the Bianchi identity
dH ≡ 0 taken together with theH[5] = ∗H[5] duality relation. Dimensionally
reducing onS5, one makes the Kaluza-Klein ansatz

ds2
10 = e2αϕds2

5 + e2βϕds2(S5) (4)

H[5] = 4me8αϕε[5] + 4mε[5](S
5) (5)

α =
1

4

√
5

3
β =

−3α

5
.

This reduction yields theD = 5 bosonic theory

L5 = eR− 1
2e∂µϕ∂

µϕ− 8m2ee8αϕ +R5ee
16αϕ

5 + more (6)

where the terms represented by “more” include bosonic fields that are not relevant
for the 3-brane solution, plus all the fermions. Note that there are two potential
terms in (6): the one with coefficient−8m2 comes from theH[5] fluxes turned on
in the reduction ansatz (5), while the one with the coefficientR5 comes from the
Einstein-Hilbert action in the five compactified directions, sinceS5 is not Ricci-
flat. The coefficientR5 is equal to the constant Ricci scalar of the internalS5.

The presence of two potential terms in (6) with opposite signs enables a partic-
ularly simple and maximally symmetric solution to theD = 5 reduced theory. In
this case, one can find a solution with a constant breathing-mode scalarϕ = ϕ∗,
with

e
24αϕ∗

5 =
R5

20m2
Rµν = −4m2e8αϕ∗gµν . (7)

Solving thisD = 5 Einstein equation with a cosmological term, one finds the
AdS5×S5 “vacuum” of theS5 compactified theory. The existence of this vacuum
makes this a simpler situation than the one obtained in M-theory reduced on a
Calabi-Yau manifold, where only a single potential term is obtained, and where
no maximally-symmetric solution inD = 5 is found.

In addition to the AdS5 × S5 solution (7), one can also search for brane so-
lutions with less symmetry, but which tend asymptotically in appropriate regions

kievarwe.tex; 12/03/2001; 3:49; p.40



34 K. STELLE

to the above solution. Before pursuing this search, let us make a small change
to the reduction ansatz (5) which is frequently made when considering domain-
wall solutions (i.e. for codimension-one branes). The original type IIB theory in
D = 10 has aZ2 symmetry (actually, it is just a discreteD = 10 proper Lorentz
transformation) that couples an orientation-reversing transformation on theS5

coordinates together with a sign flip on one of the lowerD = 5 coordinates, say
y → −y. This symmetry is broken by the original ansatz (5), but will be restored
if one generalizes the ansatz by inclusion ofθ functions (θ(y) = 1 for y > 0 and
θ(y) = −1 for y < 0):

H[5] = 4mθ(y)e8αϕε[5] + 4mθ(y)ε[5](S
5) . (8)

Note that both terms in (8) need to haveθ functions in order to satisfy theH[5] self-
duality condition in (3). With this modified ansatz, one has traded in translation
invariance in they coordinate for this preservedZ2 symmetry. Although the field
strengthH[5] is discontinuous in (8), the underlying four-form gauge potentialA[4]

can still be continuous. We shall adopt a basic boundary condition requirement of
continuity for the metric and the gauge potentials at such “kink” locations.

Adopting the ansatz (8) and searching for a domain-wall solution, one finds
the following [15]:

ds2
5 = e2Adxµdxνηµν + e2Bdy2

e4A = e−B = b̃1H
2
7 + b̃2H

5
7

e
−7ϕ√

15 = H = e
−7ϕ0√

15 + k|y|
b̃1 = ±28m

3k
b̃2 = ± 14

15k

√
5R5 . (9)

Of the sign choices allowed in (9), we shall pickb̃2 > 0, b̃1 < 0 in order to
ensure reality of the metric and to permit ak → 0 limit so as to recover the pure
AdS Randall-Sundrum bulk spacetime [18]. We shall also choose the integration

constantϕ0 so thatH(0) > H∗ = e
−7ϕ∗√

15 and we shall take the slope parameter
k to be negative. Then the “kink” aty = 0 faces downward, so that the function
H(y) reachesH∗ at some finite valuey∗. The solution (9) may then be considered
to be a “semi-interpolating soliton” in the sense that, although the pointy = 0 at
which the domain-wall kink is located is not null,i.e. not a horizon, the solution
evolves as one moves away fromy = 0 through either positive or negativey
values towards the AdS5 × S5 vacuum solution (7) aty = y∗. With the “kink-
down” structure selected here, the surface aty = 0 corresponds to an extended
object of positive tension.

The solution (9) is a fully supersymmetric solution, despite its kink singularity.
The bulk geometry admits a 16-component Killing spinor, since it is none other
than the regular D3-brane geometry of type IIB theory. Moreover, theZ2 invariant

kievarwe.tex; 12/03/2001; 3:49; p.41



TENSIONS IN SUPERGRAVITY BRANEWORLDS 35

structure of (9) is precisely what is needed for the Killing spinor equation to be
valid at all points, including at the kink locationy = 0, with a continuous Killing
spinor. The flip of sign in the 5-form flux valuem as given in the modified Kaluza-
Klein ansatz (8) is essential for the Killing spinor equations to be solved in this
way.

The positive-tension nature of they = 0 surface and the approach to the
AdS5 × S5 vacuum solution aty∗ suggests that one should be able to take a limit
of the solution (9) and obtain the Randall-Sundrum spacetime [18]. This limit
needs to be taken conjointly in both the integration constantsϕ0 andk. We let

H0 = e
−7ϕ0√

15 = H∗ + β|k| and then take the limitk → 0−. In this conjoint limit,
factors ofk−1 cancel against factors ofk, and the limiting metric becomes

ds2 =
2√
L

(β − |y|) 1
2dxµdxνηµν +

L2

16

dy2

(β − |y|)2
, L = m−1

(
20m2

R5

) 5
6

..

(10)

This solution is a patchedD = 5 anti de Sitter space with the horizon aty = y∗ =
±β. To recognize it in a more standard form, make a final coordinate change:

β − |y| = βe
−4|ỹ|
L , thus obtaining AdS5 spacetime in Poincaré coordinates:

ds2 = e
−2|ỹ|
L dxµdxνηµν + dỹ2 . (11)

Let us now consider how this Randall-Sundrum metric has been successfully
obtained as a solution of type IIB supergravity theory, despite the apparent impli-
cations of the various “no-go” theorems for the necessary scalar flows [13, 14].
Consider a theory consisting of gravity coupled to a scalar fieldφ with a potential
V (φ):

L = e[R− 1
2∇µφ∇µφ− V (φ)] , (12)

where the minimum of the potential is taken to occur atφ = φ0. Then expand
V (φ) nearφ0: V (φ) = −12g2 + 1

2µ
2(φ− φ0)2 + . . . (the constantg is chosen to

make the AdS curvature equal to−g2(gMP gNQ − gMQgNP ). Writing the metric
asds2 = e2A(y)dxµdxνηµν + e2B(y)dy2 and solving the Einstein equations up to
linear order inφ, one findsA(y) = ±gy. Then one finds for staticφ(y) nearφ0

the approximate field equation

φ′′ ± 4gφ′ − µ2φ ≈ 0 . (13)

This equation has two solutions:

φ ≈ φ0 + ce−E0A(y) (14)

φ ≈ φ0 + ce−(4−E0)A(y) (15)

E0 = 2 +

√(
µ

g

)2

+ 4 ≥ 2 (16)

kievarwe.tex; 12/03/2001; 3:49; p.42



36 K. STELLE

whereE0 is the AdS energy. Requiring a stable infrared flow to the vacuum value
φ0 asA → −∞ (i.e. e2A → 0, so one moves in to the horizon), one must take
the second solution (15) and also impose a restriction that the scalar field’s AdS
energy be bounded below by 4:E0 > 4. Now, the AdS energy is a fixed constant
for a given field, determined by the Lagrangian. General fields inD = 5 AdS
spacetime carry AdS representationsD(E0, j1, j2), wherej1 andj2 are spins. For
“standard” supergravities inD = 5 (i.e. supergravities containing the massless
graviton and vector multiplets, plus hypermultiplets and tensor multiplets), one
finds scalarsD(E0, 0, 0) with E0 = 2, 3, 4 only, so an infrared stable flow of the
above type is not possible. However, the solution (9) is supported by the breathing-
mode scalarφ, obtained from theS5 dimensional reduction down fromD = 10.
This mode belongs to a short massive multiplet ofD = 5, N = 4 supergravity,
which contains a massive spin-two mode, so it does not belong to one of the
supermultiplets customarily considered inD = 5 massless supergravity models.

Comparison of the breathing-mode potentialV (φ) = 8m2e8αϕ − e 16αϕ
5 R5, α =

1
4

√
5
3 , with the formula (16) forE0 givesE0 = 8, clearly satisfying the required

bound for a stable flow toϕ0 = ϕ∗.
Since the Kaluza-Klein ansatz (4,8) constitutes a consistent truncation of the

D = 10 theory down toD = 5, one may automatically oxidize the solution (9)
back up toD = 10 and consider its structure there. In this case, it becomes a
patched set of domains of a standard type IIB D3-brane geometry. Each patch
runs from a horizon at isotropic-coordinate radiusr = 0 ↔ y = y∗ out to

an outer radiusr = rRS ↔ y = 0, whererRS =
√

20
R5

[e−
√

3
5
ϕ0 − e−

√
3
5
ϕ∗ ].

At this outer radiusr = rRS, the solution is patched onto aZ2 mirror solution
on another sheet of spacetime, corresponding to theD = 5 region withy < 0.
The Randall-Sundrum limitk → 0−, ϕ0 → ϕ∗ corresponds to shrinking down
to zero the radiusrRS at which the patch to the second sheet is made. Alternately,
one could take a limitm → ∞ for the flux parameter in the reduction ansatze
(4,8). In either case, one obtains a spacetime that has a uniform AdS structure: in
the first case, because one is restricting the spacetime ever more narrowly down
to a solid annulus around the horizon, which is asymptotically AdS5 × S5; in the
second case because this asymptotic region spreads out to fill the whole spacetime.
Regardless of the perspective one takes on this limit, the proper length running
from a given radius0 < r < rRS down to the horizon atr = 0 diverges. So,
in this sense, the horizon is an infinite proper distance away along a radial (i.e.
spacelike) geodesic. However, as is generally the case with extremal geometry
horizons, one may also reach the horizon along a timelike or lightlike geodesic
within a finite affine parameter interval. So the question of whether this Randall-
Sundrum spacetime is really infinite or not requires careful interpretation.

At the horizon itself, one has a choice of interpretations for the structure of
the solution (9) when oxidized back up toD = 10. The D3 brane geometry is

kievarwe.tex; 12/03/2001; 3:49; p.43



TENSIONS IN SUPERGRAVITY BRANEWORLDS 37

actually non-singular andZ2 symmetric at ther = 0 horizon [19]. If one takes
the horizons in the two sheets patched together atr = rRS to be distinct, then
one considers a patched-brane realization of RSII geometry [12], which inD = 5
consists of a single kinked warp-factor AdS metric as in (11), extending out then
to infinite proper distances in they > 0 andy < 0 regions. On the other hand, if
one decides to exploit theZ2 symmetry of the D3 brane solution at the horizon,
one may alternatively make a second patch of the horizon aty = y∗ onto the
second sheet horizon aty = −y∗. This produces a second, upwards-facing kink in
theD = 5 geometry, corresponding to an extended object of negative tension, re-
producing the RSI geometry [11] with two branes of opposite tension, facing each
other across a compact dimension. This situation is clearly a type IIB analogue of
the M-theory 3-brane solution obtained in a Calabi-Yau compactification [8–10].
The second patching surface can equally well be moved off from the horizon by
moving the inner patching radius away fromr = 0, corresponding to moving the
secondD = 5 brane in to a finite proper distance from they = 0 surface.

Whatever the interpretation given to the horizon region, the kink surface at
y = 0 ↔ r = rRS possesses the essential properties of the Randall-Sundrum
solution. This surface has a positive tensionσRS > 0, as can be verified using the
Israel matching conditions

∆Kµν = K+
µν −K−µν = −8πG

3
σRSgµν , (17)

for the discontinuity in the extrinsic curvatureKµν = 1
2n

λ∂λgµν , wherenλ is the
outward-pointing surface normal. Consequently, in accordance with the results of
Ref. [12] this surface has the property of “binding” gravity to it: matter on this
3+1 dimensional surface gravitationally interacts as if the theory were inD = 4.

The above picture of the Randall-Sundrum spacetime as a patching of type IIB
3-brane geometries leaves some important questions unaddressed. The principal
one of these is the nature of the singular sources that must be present as a result
of the curvature delta-functions arising from the patching process. An immediate
appreciation of this may be had by considering the signs of the source brane delta
functions. The bulk geometry between the inner and outer patching radii in the
D = 10 perspective is a normal D3-brane geometry with a positive energy. At
the same time, if the outermost source is of positive tension, as it must be in
order to agree with the Randall-Sundrum tension as obtained from (17) inD = 5,
then the inner source would have to be of opposite,i.e. negative, tension. This
is clearly inconsistent with the positive-energy D3-brane geometry in the solid
annulus between the inner and outer sources. A related problem is that not only the
sign, but also the magnitude of the tensions do not agree with D3-brane tensions:
the D3-brane tension is only23 of the Randall-Sundrum value as determined by
(17) [20].

Both of the above problems are resolved by a recognition that the sources at
the inner and outer radii inD = 10 cannot simply be D3-brane sources alone
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[21]. A brane stress tensor inD = 10 would have nonzero componentsonly in
the brane worldvolume directions,̂Tµν = −σgµνδ(z). However, theD = 5 stress
tensor for the limiting solution (10) oxidizes up toD = 10 in the form

T̂µν = −56m2β

(
20m2

R5

)−25
12

δ(y)gµν + Reg.

T̂55 = 0 + Reg.

T̂ab = −224

3
m2β

(
20m2

R5

)− 25
12

δ(y)gab + Reg., (18)

where thea, b indices lie in the compactS5 directions. It is immediately apparent
that this is not of the form of a brane stress tensor, notwithstanding the fact that the
surrounding spacetime is a limit of a normal type IIB 3-brane solution. One may
understand what is going on by taking the difference between the stress tensor
(18) and that expected from the 3-brane bulk geometry. Alternatively (and this
is much simpler in practice), one may find the structure of the difference stress
tensor by keeping the general domain-wall form of theD = 5 solution (9, 10)
with the|y|modulus, but turning off the magnetic flux parameterm. The result of
this analysis is a stress tensor of the form

T̂Diff.
µν = 3κδ(y)gµν

T̂Diff.
55 = 0

T̂Diff.
ab =

12

5
κδ(y)gab , (19)

whereκ is a constant. This singular stress tensor occurs even in the absence of the
3-brane,i.e. it is a singularity occurring between patches of flat space. TheD = 5
interval−β < y < β ∼ −∞ < ỹ < ∞ lifts to two copies of a disc in the flat
D = 10 spacetime, with an outermost patch corresponding toy = 0, and another
patch at the horizon,y = y∗ = ±β.

Although the stress-tensor (19) is not of the form of a brane stress tensor, one
can still compare itŝT00 component to that of the 3-brane. Comparing the value
of κ obtained with that of the D3 brane source for the bulk geometry shows that
the stress-tensor (19) has an effective “tension” related to that of a 3-brane by

σflatpatch = −5

2
σD3 . (20)

This explains what is happening in the relationship between the type IIB 3-brane
solution and the Randall-Sundrum solution. TheD = 5 Randall-Sundrum solu-
tion (prior to taking the pure AdS limit) lifts to aD = 10 solution that is composed
of two copies of the 3-brane geometry, patched together at a radiusrRS and at the
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horizon. The extra stress-tensor component (19), related to that of the 3-brane by
(20), combines with the 3-brane stress tensor to make a composite singular stress-
tensor which when viewed from aD = 5 viewpoint appears to be a brane stress
tensor of signoppositeto that of the 3-brane inD = 10, and with a magnitude32
that of the 3-brane, explaining the discrepancy noted in Ref. [20].

The overall solution lifted toD = 10 is still Z2 symmetric, and if one demands
that this discrete symmetry be respected, together with theS5 spherical symmetry
required for a spherical dimensional reduction down toD = 5, then the location
of the “patch” stress-tensor singularity (19) is fixed by the symmetry. This is
not the case, however, with the 3-brane itself. There is no symmetry principle
that restricts this to be superposed on the patch singularity (19) – it may freely
move inwards from the patch. For static solutions, this has the effect of joing the
D3 brane spacetime continuously onto an outermost solid annulus of flat space.
In generalized solutions, however, this boundary may also become dynamical.
Owing to the sign flip inherent in (20), it is clear that what looks like a positive
tension brane from theD = 5 perspective actually contains anegativetension 3-
brane from theD = 10 perspective. Establishing the stability or otherwise of this
configuration clearly remains an essential task for future analysis of braneworld
scenarios like that of Randall and Sundrum.
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Abstract. We introduce and completely describe the analogues of the Riemann curvature tensor for
the curved supergrassmannian of the passing through the origin(0|2)-dimensional subsuperman-
ifolds in the (0|4)-dimensional supermanifold with the preserved volume form. The underlying
manifold of this supergrassmannian is the conventional Penrose’s complexified and compacti-
fied version of the Minkowski space, i.e. the Grassmannian of2-dimensional subspaces in the
4-dimensional space.

The result provides with yet another counterexample to Coleman–Mandula theorem.

1. New supertwistors. Penrose suggested an unusual description of our space-
time, namely to compactify the Minkowski space-time model of the Universe
(nontrivially: with a light cone at the infinity) and complexify this compactifi-
cation. The final result isGr4

2, the Grassmanian of 2-dimensional subspaces in
the 4-dimensional (complex) space (of so-called twistors). There are many papers
and several monographs on advantages of this interpretation of the space-time
in various problems of mathematical physics; we refer the reader to Manin’s
book [5], where an original Witten’s idea to incorporate supervarieties and con-
sider infinitesimal neighborhoods for interpretation of the “usual”, i.e., non-super,
Yang-Mills equations is thouroghly investigated together with several ways to
superize Minkowski space. Ours is one more, distinct, way.

Observe that the supermanifold of(0|2)-dimensional subsuperspaces in the
(0|4)-dimensional superspace is identical withGr4

2, only the tautological bundle
is different: the fiber is purely odd. In this work we consider not subsuperspaces
but subsupermanifolds.

We considered the structure functions — analogs of the Riemann tensor — for
thecurved supergrassmannianCGr0|4

0|2 of (0|2)-dimensional subsupermanifoldsin
the (0|4)-dimensional supermanifold. Recall that the “usual” grassmannian con-
sists of linear subspaces of the linear space passing through the originwhereas

‡ We gratefully acknowledge partial financial support of The Swedish Institute and an NFR
grant, respectively.
† mleites@matematik.su.se
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the curved one consists of submanifolds, in other words, nonlinear embeddings
are allowed and the submanifolds do nothave to pass through a fixed point.
Obviously, the curved Grassmannian is infinite dimensional, but the curvedsu-
pergrassmannianCGr0,n

0,k is of finite superdimension: it is a quotient of the
supergroup of superdiffeomorphisms of the linear supermanifoldC0,n (the Lie
superalgebra of this Lie supergroup isvect(0|n) = derC[θ1, . . . , θn]). For the
list of classical superspaces including curved supergrassmannians see [4].) The
underlying manifold ofCGr0|4

0|2 is the conventionalGr4
2 but CGr0,4

0,2 has also odd
coordinates.

On CGr0|4
0|2, we have expanded the curvature supertensor in components with

respect to the (complexification of the) Lorentz group and saw that it does not
contain the components used for the ordinary Einstein equations (EE), namely,
there is no Ricci curvatureRic and no scalar curvatureScalar (in what follows
R(22) andR(00), respectively).

So we decided to amend the initial model and consider the supergrassmanian
CGr0|4

0|2(0) of subsupermanifolds through the origin. It turns out that this does not
help: noRic andScalar, either.

We decided not to give up, and took for the model of Minkowski superspace
the supergrassmannianSCGr0|4

0|2(0) of subsupermanifolds through the origin with
the volume element of the ambient and the subsupermanifolds preserved. On
SCGr0|4

0|2(0), the expansion of the curvature supertensor does containR(22) and
R(00)! There are no analogs of conformal (off shell) structure functions.

Our model and its supergroup of motion — an analogue of the Poincaré group
— do not contradict the restrictions of the famous no-go theorems by Haag–
Łopuszanski–Sohnius and Coleman–Mandula (for further discussions see [1])
and provides us with a new, missed so far, version of the Poincaré supergroup.
The analogues of Einstein equations we suggest are a totally new version of
SUGRA. Equating to zero other conformally non-invariant components we get
extra conditions; we do not know how to interprete them.

We do not see any reason for discarding this and similar models. In particular,
we suggest to analyze the structurre functions (definition below) onCGr0|4

0|2 and

CGr0|4
0|2(0) which we have abandoned above.

The conventional reading of Coleman–Mandula’s theorem (cf. [6]) assumes
that the complexified Lorentz Lie algebraL = sl(2)L ⊕ sl(2)R commuteswith
the Lie algebra of internal symmetriesi (for us i is equal tosl(2)L ⊗ Cξ1ξ2, see
sec. 4).

In our caseL acts oni and forms a semidirect sum with it; the bracket oni
is identically zero. This possibility does not contradict assumptions of Coleman–
Mandula’s theorem but was not considered.

kievarwe.tex; 12/03/2001; 3:49; p.49



AN UNCONVENTIONAL SUPERGRAVITY 43

The odd parameters have a correct statistics with respect to the Lorentz Lie
algebra.

We represent Einstein’s equations as conditions on conformally noninvariant
components of the analog of the Riemann tensor, and represent the Riemann
tensor as a section of the bundle on the (locally) Minkowski space whose fiber
is certainLie algebra cohomology. This is a more user-friendly description of
the Riemannian tensor than the classical treatment of obstructions to nonflatness
in differential geometry. We have in mindSpencer homology, cf. [7], where the
case of anyG-structure, not onlyG = O(n) is considered. Superization of the
definitions from [7] is the routine straightforward application of the Sign Rule.

Remark. It is interesting to test the whole list of curved supergrassmannians
with the simple Lie supergroup of motion (see Tables in [4]) and similarly to
the above sacrify the simplicity of the supergroup of motion in order to get EE.
Grozman’s package SuperLie (see [2]) is a useful tool in this research problem:
without a computer (and a good code) this task is hardly feasible.

2. Structure functions: recapitulation ([7]). LetF (M) be the frame bundle
over a manifoldM , i.e., the principalGL(n)-bundle. LetG ⊂ GL(n) be a Lie
group. AG-structure onM is a reduction of the principalGL(n)-bundle to the
principalG-bundle.

The simplestG-structure is theflat G-structure defined as follows. LetV be
Rn (orCn) with a fixed frame. The flat structure is the bundle overV whose fiber
overv ∈ V consists of all frames obtained from the fixed one under theG-action,
V being identified withTvV by means of the parallel translation byv.

Examples of flat structures. The classical spaces, e.g., compact Hermi-
tian symmetric spaces, provide us with examples of manifolds with nontrivial
topology but flatG-structure.

In [7] the obstructions to identification of thekth infinitesimal neighbour-
hood of a pointm on a manifoldM with G-structure with thekth infinitesimal
neighbourhood of a point of the flat manifoldV with the above described flatG-
structure are calledstructure functions of orderk. In [7] it is shown further that the
tensors that constitute these obstructions are well-definedprovidedthe structure
functions of all orders< k vanish. (In supergravity the conditions that structure
functions of lesser orders vanish are calledWess-Zumino constraints.)

The classical description of the structure functions uses the notion of the
Spencer cochain complex. Let us recall it. LetSi denote the operator of thei-
th symmetric power. Setg−1 = TmM , let g0 be the Lie algebra ofG; for i > 0
set:

gi = {X ∈ Hom (g−1, gi−1) | X(v0)(v1, . . . , vi) = X(v1)(v0, . . . , vi)
for any v0, v1, . . . , vi ∈ g−1}. (2.1)

Finally, set (g−1, g0)∗ = ⊕
i≥−1

gi. This is the Lie algebra ofall transforma-

tions that preserve ong−1 the same structure which is preserved by the linear
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transformations fromg0.
Suppose that theg0-moduleg−1 is faithful, i.e., each nonzero element from

g0 acts nontrivially. Then, clearly,

(g−1, g0)∗ ⊂ vect(n) = derR [x1, ..., xn],

wheren = dim g−1, with

gi = {X ∈ vect(n)i : [X,D] ∈ gi−1for anyD ∈ g−1}
for i ≥ 1. It is easy to check that(g−1, g0)∗ is a Lie subalgebra ofvect(n).

The Lie algebra(g−1, g0)∗ will be called theCartan’s prolong(the result of
Cartan’s prolongation) of the pair(g−1, g0).

Let Ei be the operator of thei-th exterior power; set (prime denotes
dualization)

C
k,s
(g−1,g0) = gk−s ⊗ Es(g′−1).

Define the differential∂s : C
k,s
(g−1,g0) −→ C

k,s+1
(g−1,g0) by setting for any

v1, . . . , vs+1 ∈ V (as usual, the slot with the hatted variable is to be ignored):

(∂sf)(v1, . . . , vs+1) =
∑

(−1)i[f(v1, . . . , v̂s+1−i, . . . , vs+1), vs+1−i]. (2.2)

As expected,∂s∂s+1 = 0, and the homologyHk,s
(g−1,g0) of the bicomplex

⊕
k,s
C
k,s
(g−1,g0) is called the(k, s)-th Spencer cohomologyof (g−1, g0)∗. (Observe

that we use a grading of the Spencer complex different form that in [7]. Ours is a
more natural one.)

Proposition ([7]) The structure functions of orderk constitute the space of the
(k, 2)-th Spencer cohomology of the(g−1, g0)∗.

3. Spencer cohomology in terms of Lie algebra cohomology. We observe
that

⊕
k
H
k,2
(g−1,g0) = H2(g−1; (g−1, g0)∗). (3)

The advantage of this reformulation: the Lie algebra cohomology (the right hand
side of (3)) is easier to compute (e.g., by means of the package SupeLie when the
general theory fails, or with the help of various theorem). At the same time the
fine grading of Spencer homology is not lost: theZ-grading of(g−1, g0)∗ which
induces the grading(3) of H2(g−1; (g−1, g0)∗) coincides (up to a shift) with the
oder of the structure functions.

Analogs of Weyl and Riemann tensors. Supposeg0 contains a center (like in
the case when a metric is preserved up to a conformal factor). Then the elements
of H2(g−1; (g−1, g0)∗) are analogs of the Weyl tensor.

Let ĝ0 be the semisimple part ofg0 and letĝ∗ be a shorthand for(g−1, ĝ0)∗.
The elements ofH2(g−1; ĝ∗) are analogs of the Riemann tensor.
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The relation between̂H = H2(g−1; ĝ∗) andH = H2(g−1; (g−1, g0)∗) is
more intricate for the generalĝ0 than in the Riemannian case (ĝ0 = o(n)) when
Ĥ strictly containsH. In general, these spaces have common components (con-
formally invariant, “on shell” ones) and have other components, analogs of “off
shell” components, cf. [3].

In the Riemann case, there are two “off shell” components: with the highest
weights(2, 2) (the traceless Ricci tensor) and(0, 0) (the scalar curvature). Here
the highest weights are given with respect to the complexificationL = sl(2)L ⊕
sl(2)R of theo(1, 3). The Einstein equaton (in vacum) is a vanishing condition of
these components. Remarkably, there are no structure functions of lesser order. If
they had existed, we would have to impose analogs of Wess-Zumino constraints
to be able to define the usual Riemann curvature tensor.

4. The description of (g−1, g0)∗ for the curved supergrassmannians. For
the general curved supergrassmannian of(0, k)-dimensional subsupermanifolds
S in the(0, n)-dimensional supermanifoldT let ξ1, ..., ξk be the coordinates ofS
andθ1, ..., θn−k the remaining coordinates ofT . Then settingdeg xii = 0 for all
i anddeg θj = 1 for all j we get aZ-grading ofvect(0|n) of the form

g0 = (gl(V )⊗ C[ξ])⊃+ vect(ξ); g−1 = V ⊗ C[ξ]; (4)

whereV = Span( ∂
∂θ1

, ..., ∂
∂θn−k ) is the identitygl(V )-module, and⊃+ is the sign

of a semidirect sum of algebras:a⊃+ b with the ideala.
Forn = 4 we computedH2(g−1; (g−1, g0)∗) in the following cases:
(a) the general curved supergrassmannians;
(b) the supergrassmannians of subspaces through0, i.e., we removed fromvect

all partial derivatives (since this is not an invariant formulation, it is better to say:
we only considered the vector fields that vanish at the origin);

(c) in case (b) we only considered volume-preserving transformations, i.e., we
diminishedg0 as well:

g0 = (sl(V )⊗ C[ξ])⊃+ sl(Span(ξ)); g−1 = V ⊗ Cξ.
In particular, sinceg−1 is isomorphic to the tangent space at a point of the curved
supergrassmannian, we see that its even part in cases (a) – (c) is the sameGr4

2

while the tangent space to the whole supermanifold at the “origin” isSpan(ξi
∂
∂θj

:

1 ≤ i, j ≤ 2). So the number of odd coordinates of our model varies from 4 in
case (a) to 2 in cases (b) and (c).

Table. In the first line there are indicated the degrees, i.e., orders, of all
nonzero structure functions and the rest of the table lists their the weights (with
respect toL) (superscript denotes the multiplicity of the weight the subscript the
degree of the corresponding structure function). Theg0-action is nontrivial and
glues distinct irreducible(g0)0̄-modules. (We did not show the action though we
have computed it.)
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Odd structure functions Even structure functions

−2 −1 0

(11) (01)2 (11)
(13) (23)

(03)
(21)

0 1 2

(00)2 (10) (00)
(02) (12) (02)
(04)2 (14) (04)
(22) (32) (22)
(24)
(40)

The(g0)0̄-modules whose highest weights are given in the table are glued into
g0-modules as follows (an arrow indicates a submodule). The even tensors:

(00)2
0 −→ (02)2;

↘ (12)1 ↗;
(04)0 −→ (04)2;
↘ (14)1 ↗;

(22)0 −→ (14)1 −→ (22)2; (22)0 −→ (32)1 −→ (22)2;

(24)0 −→ (32)1; (12)1 −→ (04)2; (40)0 −→ (32)1; (12)1 −→ (22)2.

The odd tensors:

(11)−2 −→ (23)−1; (01)2−1 −→ (11)0;
(13)−2 −→ (23)−1.

5. The Einstein equations. The conventional EE in vacum are the conditions
on the two tensors of degree 2 and weight(00) and(22), namely,

R(22) = 0 and R(00) = λg, (5)

whereλ ∈ C is interepreted in terms of the cosmological constant andg is the
metric preserved.

For an analog of the Einstein equations on the curved supergrassmannian we
may take the same vanishing conditions of the 2-nd order structure functions of
weights(00) and(22) with respect toL. However, unlike the Einstein’s case, we
have to vanish the constraints, the structure functions of lesser orders, both even
and odd. The meaning of these analogs of Wess-Zumino constraints is unclear to
us.
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Abstract. We review the construction of actions with supersymmetry on spaces with a domain
wall. The latter objects act as sources inducing a jump in the gauge coupling constant. Despite these
singularities, supersymmetry can be formulated, maintaining its role as a square root of translations
in this singular space. The setup is designed for the application in five dimensions related to the
Randall–Sundrum (RS) scenario. The space has two domain walls. We discuss the solutions of the
theory with fixed scalars and full preserved supersymmetry, in which case one of the branes can be
pushed to infinity, and solutions where half of the supersymmetries are preserved.

1. Introduction

It is not obvious how supersymmetry can be implemented in a space with domain
walls. The wall is at a fixed place and its presence seems to lead to a breaking
of translations orthogonal to the plane. Supersymmetry, being the square root of
translations, seems rather difficult to realize in this context. It is interesting to see
how this obstacle has been avoided in [1], which we summarize here.

The work is mostly motivated by the Randall–Sundrum (RS) scenarios [2].
The simplest form of the situation that is under investigation consists of a 3-brane
in a 5-dimensional bulk. The solution can be generalized e.g. to 8-branes inD =
10, but the full implementation of that situation is still under investigation.

When the RS scenarios appeared, supersymmetrisation was soon investigated.
After initial attempts, it was found that no smooth supersymmetric RS single-
brane scenario is possible [3]. This scenario with one brane was put forward as an
alternative to compactification.
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Figure 1. Two-brane scenario. The fifth dimension is a circle with branes at opposite ends and a
Z2 identification of points symmetric w.r.t.x5 = 0.

This lead us to the original RS setup with two branes. The 2-brane scenario has
a compactified fifth dimension,x5 ' x5 + 2x̃5, with two branes fixed atx5 = 0
andx5 = x̃5. There is moreover an orbifold condition relating pointsx5 and−x5.
Thus, the five-dimensional manifold has the formM = M4×S1

Z2
. This is similar to

the Hǒrava–Witten [4] scenario. The latter one embeds 10-dimensional manifolds
in an 11-dimensional space. They obtain the supersymmetry by a cancellation
between anomalies of the bulk theory and a non-invariance of the classical brane
action. Lukas, Ovrut, Stelle and Waldram [5] reduced this on a Calabi–Yau man-
ifold to five dimensions, and further developed this setup in five dimensions.
Further steps have been taken by [6–9]. In [7, 9] the gauge coupling constant
does not change when crossing the branes, while in [6, 8] this coupling constant
changes sign. In that respect, our approach is most close to the latter. In these
papers, the action in the bulk is modified, such that it is not supersymmetric any
more by itself, but the non-invariance is compensated by the brane action to obtain
invariance of the total action. We [1] obtain separate invariance of bulk and brane
action.

The first part of this report will treat the construction of the action with local
supersymmetry on the singular space. In that part, we will show how the bulk
and brane action are separately invariant under supersymmetry. The supersym-
metry that we are considering is the one with 8 real components, i.e. minimal
(N = 2) supersymmetry in 5 dimensions. The algebra is preserved despite the
discontinuity. The second part treats background solutions. The Killing spinors
are discussed. There are solutions with fixed scalars and 8 Killing spinors, and
solutions of1/2 supersymmetry, i.e. with 4 Killing spinors. Finally a summary is
given, discussing open issues.

2. The action for bulk and brane

The construction of the action involves three steps. First, we consider the bulk
action. That is the action of supergravity inD = 5 with matter couplings. A quite
general action has been given in [10] based on the general methods developed in
4 dimensions in [11]. But it may not be excluded that further generalizations are
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possible [12]. We will restrict ourselves to the couplings of vector multiplets, for
which the general couplings were found in [13]. One can separate the ungauged
part, and the part dependent on a gauge coupling constantg. We will consider only
the gauging of aU(1) R-symmetry group.

In the second step, the gauge coupling constantg is replaced by a fieldG(x).
A Lagrange multiplier field, a(D− 1)-form (4-form for our application), is intro-
duced, whose field equation imposes the constancy ofG(x) such that effectively
it is still a constant.

The third step introduces the brane action. That action has extra terms for the
Lagrange multiplier(D−1)-form, which allowsG(x) to vary crossing the brane.
We will show how every step preserves the supersymmetry!

Before embarking on that programme, we want to repeat the fundamental
algebraic relation between the cosmological constant and the gauge coupling
constant ofR-symmetry. The super-anti-de Sitter algebra forN = 2 in D = 5
is SU(2, 2|1). It involves the anti-de Sitter algebraSO(4, 2) ' SU(2, 2) with
translationsPa and Lorentz rotationsMab, the supersymmetriesQi, with i = 1, 2,
a symplectic Majorana spinor, and aU(1) generator asR-symmetry. The most
characteristic (anti)commutator relations are{

Qi, Qj
}

= 1
2ε
ijγaP

a + igQijγabMab + iεijU ,[
U,Qi

]
= gQij Q

j ,

[Pa, Pb] = g2QijQ
j
iMab ,[

Pa, Q
i
]

= iγagQ
i
jQ

j . (1)

Qij satisfies

Qij = Qji , Qij ≡ εikQkj = i (q1σ1 + q2σ2 + q3σ3) ,

q1, q2 , q3 ∈ R , (q1)2 + (q2)2 + (q3)2 = 1 . (2)

This matrix determines the embedding ofU(1) in the automorphism group of
the supersymmetriesSU(2). This choice is not physically relevant in itself. The
second of the commutators in (1) implies thatg is the coupling constant of
R-symmetry. But the third equation says thatg2 determines the curvature of
spacetime, i.e. it determines the cosmological constant. This fact is the corner-
stone of the situation that we describe. The gauge coupling and the cosmological
constant are related. However, one can change the coupling constant from+g
to −g, not affecting the cosmological constant. That is what will happen going
through the branes. This jump in the sign ofg will thus occur together with the
action of theZ2. ThisZ2 acts on the fields, which therefore live on an orbifold.
One can distinguish odd and even fields. The circle condition on the fields and the
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orbifold condition are then

Φ(x5) = Φ(x5 + 2x̃5) ,

Φeven(−x5) = Φeven(x5) , Φodd(−x5) = −Φodd(x5) . (3)

These conditions imply that odd fields vanish on the branes: atx5 = 0 and at
x5 = x̃5.

Also the supersymmetries split. Half of them are even, and half are odd. There-
fore, on the brane one has 4 supersymmetries, i.e.N = 1 in 4 dimensions. This
splitting of the fermions requires a projection matrix inSU(2) space. Now the
relative choice of this projection matrix andQ in (2) matters. If they anticommute,
the choice that has been taken in [7, 9], theng does not change when one crosses
the brane. If they commute, as in [6, 8], theng jumps over the brane. And the
latter is what we will take further.

After these general remarks, we come tostep 1. We thus consider the action
of supergravity coupled ton vector multiplets [13]. The fields are

eaµ , ψ
i
µ , A

I
µ , ϕ

x , λix , (4)

i.e. the graviton, gravitini,n + 1 gauge fields (I = 0, 1, . . . , n), including the
graviphoton,n scalars (x = 1, . . . , n), andn doublets of spinors. The scalars
describe a manifold structure that has been called very special geometry [14].
That geometry, and the complete action, is determined by a symmetric tensor
CIJK . The scalars are best described as living in ann-dimensional scalar manifold
embedded in an(n + 1)-dimensional space.hI are the coordinates of this larger
space. The submanifold is defined by an embedding condition such that thehI as
functions of the independent coordinatesϕx should satisfy

hI(ϕ)hJ(ϕ)hK(ϕ)CIJK = 1 . (5)

The metric and all relevant quantities of this bulk theory is thus so far only
dependent onCIJK .

Then we add the gauging of aU(1) group. That means that we take a lin-
ear combination of the vectors as gauge field for thisR-symmetry. The linear
combination is defined by real constantsVI :

A(R)
µ ≡ VIAIµ . (6)

The action and the transformation laws are then modified by terms that all depend
ongQij .

In step 2, the coupling constantg is replaced by a coupling fieldG(x). In
the G̈unaydin–Sierra–Townsend (GST) action, the coupling constant appears up
to terms ing2. We thus replace

SGST (g) = S0 + gS1 + g2S2 ⇒ SGST (G(x)) = S0 +G(x)S1 +G(x)2S2 .
(7)
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Another term is added to the bulk action that forcesG(x) to be a constant, using
a Lagrange-multiplier 4-formAµνρσ:

Sbulk = SGST (G(x)) +

∫
d5x e

1

4!
εµνρστAµνρσ∂τG(x)

= S0 −
∫

d5x e V −
∫

d5x e F̂ (x)G(x) + fermionic terms. (8)

In the second line, the terms have been reordered. The potentialV originates from
S2 in (7), and leads to the potential

V = −6G2

[
W 2 − 3

4

(
∂W

∂ϕx

)2
]
, W ≡

√
2
3h

IVI , (9)

where the linear combinationW appears, analogous to (6). The third term in (8)
appears from integrating by part the term with the Lagrange multiplier, leading to
the flux

F̂ ≡ 1
4!e
−1εµνρστ∂µAνρστ + covariantization. (10)

The covariantization terms come fromS1 in (7). This method of describing a
constant using a(D − 1)-form is in fact an old method that was already used
in [15].

It is easy to understand how supersymmetry is preserved. Indeed, the GST
action is known to be invariant:

δ(ε)SGST (g) = 0 . (11)

Therefore, the only non-invariance forSGST (G(x)) appears, if we defineδ(ε)G =
0, from the x-dependence ofG(x). It is thus proportional to its spacetime
derivative

δ(ε)SGST (G(x)) = Bµ ∂µG(x) , (12)

whereBµ is some expression of the other fields and parameters, whose exact form
is not important for the argument here. One immediately sees then that invariance
of (8) is obtained by defining the transformation law of the 4-form as

δ(ε) 1
4!ε

µνρστAµνρσ = Bτ =

e
[
−i3

2ψ
i
µγ

µτ εjW − ψiµγµτρεjA(R)
ρ + 3

2λ
i
xW

,xγτ εj
]
Qij ,

(13)

where we gave also the explicit form for our case. However, it is clear that the
method is also valid in other theories.

Step 3introduces the brane action, such that the total action is

Snew = Sbulk + Sbrane . (14)
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Figure 2. The coupling constantg jumps atx5 = 0 and atx5 = x̃5.

The brane action has the form

Sbrane = −2g

∫
d5x

(
δ(x5)− δ(x5 − x̃5)

) (
e(4)3W + 1

4!ε
µνρσAµνρσ

)
= Sbrane,1 − Sbrane,2 . (15)

Underlined indices refer to the values in the brane directions:µ = 0, 1, 2, 3. The
action is presented as an integral over 5 dimensions, but the delta functions imply
that it is a four-dimensional action for each brane separately. The action of each
brane consists of a Dirac–Born–Infeld (DBI) term and a Wess–Zumino (WZ)
term. However, both parts depend only on the pullback of the bulk fields to the
branes. There are no fields living on the brane. The functionW appears in the DBI
term, and plays the role of the central charge of the brane. But most importantly,
the 4-form Lagrange multiplier appears in the WZ term, and this thus modifies its
field equation. The new field equation is

∂5G(x5) = 2g
(
δ(x5)− δ(x5 − x̃5)

)
, (16)

and leads to the solution (taking into account the cyclicity condition)

G(x) = g ε(x5) . (17)

The functionε(x5) jumps as well atx5 = 0 as atx5 = x̃5, see figure 2. It is clear
from this picture that we need the second brane. Indeed, one has to come back to
the original value ofg, in order that total derivatives inx5 do not contribute to the
action. The flux, which is determined by the field equation ofG(x), is

F̂ = 12G

[
W 2 − 3

4

(
∂W

∂ϕx

)2
]

+ fermionic terms. (18)
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The overall factor changes when crossing each brane due to (17). These jumps
imply that thewall acts as a sink for the fluxes.

That supersymmetry is still preserved by the addition of the brane is less
obvious and is the non-trivial part of the construction. It turns out that the super-
symmetry is preserved thanks to the projections. One finds (indicesm are tangent
space indices in brane directions)

δSbrane = −3g
∫
d5x

(
δ(x5)− δ(x5 − x̃5)

)
e(4)

[
Wε̄iγme

µ
m

(
ψµi − iγ5Qijψ

j
µ

)
+

+W,xε̄
i
(
iλxi − γ5Qijλ

xj
)]
.(19)

The combinations of the gravitino and the gauginos that are in brackets are the
components that are odd under theZ2 projection, and thus vanish on the brane.
This leads to the invariance. Remark that in each case one of the two terms comes
from the DBI (mass) term and the other from the WZ (charge) term. This therefore
determines the relative weight of the two terms, and is the mass= charge relation,
that says that the brane is BPS. We thus see, indeed, that the brane action is
separately invariant. Note, that if we would not use (or eliminate) the Lagrange
multiplier, then this would relate bulk and brane, and only the sum would be
invariant.

3. The background: BPS solutions

We consider solutions with a warped metric, i.e.

ds2 = a2(x5) dxµdxνηµν + (dx5)2 . (20)

The energy density for solutions that depend only onx5 is

E(x5) = −6a2a′2 + 1
2a

4(ϕx′)2 + a4V − 1
4!ε

µνρσ5AµνρσG
′ +

+ 2g
(
δ(x5)− δ(x5 − x̃5)

) (
3a4W + 1

4!ε
µνρσAµνρσ

)
, (21)

where the prime denotes a derivative w.r.t.x5. The first three terms come from
the GST action, the last one on the first line from the term that we added with the
Lagrange multiplier. The second line comes from the brane action. For this type
of brane actions, one can rewrite it using squares and total derivatives:

E =
1

2
a4
{[
ϕx′ − 3GW ,x]2 − 12[

a′

a
+GW ]2

}
+ 3[a4GW ]′ +

+
[
2g
(
δ(x5)− δ(x5 − x̃5)

)
−G′

] (
3a4W + 1

4!ε
µνρσAµνρσ

)
. (22)

The expression in square brackets in the second line is the field equation of the
Lagrange multiplier, and this line can thus be omitted. The last term of the first
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line is a total derivative inx5 and thus also does not contribute to the energy due
to the continuity of the fields. The vanishing of the squared terms gives thus the
minimum of the energy, and this minimum is even zero, as the zero energy of a
closed universe. The BPS conditions are thus

ϕx′ = 3GW ,x ,
a′

a
= −GW . (23)

These equations are also called stabilization equations. These equations are im-
portant to investigate the preserved supersymmetries. The transformations of the
fermions are

δ(ε)λxi = −i1
2γ5ϕ

x′εi − 3
2GQijW

,xεj ,

δ(ε)ψµi = ∂µεi + 1
2δ
m
µ γm

(
a′γ5εi + iaGQijWεj

)
,

δ(ε)ψ5i = ε′i + 1
2 iGQijWγ5ε

j . (24)

To solve these, we split the supersymmetries in their even and odd parts:

εi = ε+i + ε−i , ε±i = 1
2

(
εi ± iγ5Qijε

j
)

= ±iγ5Qijε
±j . (25)

The vanishing of the last transformation of (24) determines thex5 dependence
of both parts. We haveε±i = a±1/2ε±i (xµ). The transformations of the other
components of the gravitino then determines the dependence on the other four
spacetime variables. This gives the general solution,

εi = a1/2ε
+(0)
i + a−1/2

(
1− a′

a
xµγµγ5

)
ε
−(0)
i , (26)

as function ofε±(0)
i , which are constant spinors with each only 4 real components.

There remains the transformations of the gaugino, which lead to

ϕx′ε−(0)
i = 0 . (27)

This leaves two possibilities. The first factor can be zero, which implies that we
have constant scalars. In that case 8 Killing spinors survive. The other possibility
allows non-constant scalars. Then the second factor should be zero, and this thus
eliminates 4 supersymmetries. There remain 4 Killing spinors,ε

+(0)
i , which are

the 4 that are non-vanishing also on the brane.
We consider both possibilities. First, let us look at the situation withfixed

scalars. The BPS equations are then

(ϕy)′ = 0 ,

(
∂W

∂ϕx

)
crit

= 0 ,
a′

a
= −gε(x5)W . (28)
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The constancy ofW is translated by formulae of very special geometry in a
‘supersymmetric attractor equation’

CIJK h̄
J h̄K = qI , h̄K ≡ √Wcrith

K , qI ≡
√

2
3VI . (29)

This equation is well-known from black-hole physics [16]. A solution gives rise
to a metric of the form

ds2 = e−2gWcrit|x5|dxµdxνηµν + (dx5)2 , or a = e−2gWcrit|x5| . (30)

In this case, the negative-tension brane can be pushed to infinity. Indeed, there is
no obstruction asa never vanishes.

To consider supersymmetric domain walls withnon-constant scalars, we use
another coordinate,y, such that ∂

∂x5 = a2 ∂
∂y . The metric is then

ds2 = a2(y)dxµdxνηµν + a−4(y)dy2 . (31)

The stabilization equations take the form

a2 d

dy
ϕx = 3G(y)W ,x , a

d

dy
a = −G(y)W . (32)

Thesen+ 1 equations are combined, using relations of very special geometry, to

d

dy
(CIJK h̃

J h̃K) = −2G(y)qI where h̃I ≡ a(y)hI , (33)

whose solutions are given in terms of harmonic functionsHI(y):

CIJK h̃
J h̃K = HI(y) = cI − 2gqI |y| , (34)

wherecI are integration constants, whileqI are the constants that were introduced
in the gauging (VI up to a normalization). They are harmonic in the sense that

d

dy

d

dy
HI = −4gqI [δ(y)− δ(y − ỹ)] . (35)

The warp factor is

a2(y) = hIHI . (36)

In this case the distance between the branes is restricted. There can be two types
of restrictions:

1. There can be fundamental restrictions due to the origin of the functionshI .
E.g. these are in various applications related to integrals over Calabi–Yau
cycles. Their vanishing can put a restriction on the distance.
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2. The vanishing of the harmonic functions also puts a restriction. Indeed, these
harmonic functions enter in the warp factor, which should be non-vanishing.

In each case this restricts the distance to be smaller than a critical distance

|ỹ| < |y|sing . (37)

4. Summary and outlook

The RS scenario in 5 dimensions can be made supersymmetric despite the singu-
larities of the space. The action and transformation laws can be obtained using a
4-form, such that bulk and brane are separately supersymmetric. Supersymmetric
solutions exist with fixed scalars or 1/2 supersymmetry.

Half of the supersymmetries vanish on the branes. Also the translation gen-
erator in the fifth direction vanishes on the brane. That is how the algebra can be
realized. These algebraic aspects could still be clarified further. Also the extension
to hypermultiplets deserves further study. The same mechanism could be applied
to study 8-branes inD = 10 and other similar situations. It is furthermore an
intriguing question how supersymmetric matter can live on the branes.
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K. Behrndt and M. Cvetǐc, Anti-de Sitter vacua of gauged supergravities with 8 supercharges,
Phys. Rev.D61, 101901 (2000) [hep-th/0001159].
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Abstract. The superstring/M-theory suggests the Born-Infeld type modification of the classical
gauge field lagrangian. We discuss how this changes topological issues related to vacuum periodic-
ity in theSU(2) theory in four spacetime dimensions. A new feature, which is due to the breaking of
scale invariance by the non-Abelian Born-Infeld (NBI) action, is that the potential barrier between
the neighboring vacua is lowered to a finite height. At the top of the barrier one finds an infinite
family of sphaleron-like solutions mediating transitions between different topological sectors. We
review these solutions for two versions of the NBI action: with the ordinary and symmetrized
trace. Then we show the existence of sphaleron excitations of monopoles in the NBI theory with
the triplet Higgs. Soliton solutions in the constant external Kalb-Ramond field are also discussed
which correspond to monopoles in the gauge theory on non-commutative space. A non-perturbative
monopole solution for the non-commutativeU(1) theory is presented.

1. Introduction

Recent development in the superstring theory [1, 2] suggests that the low-energy
dynamics of aDp-brane moving in a flat D-dimensional spacetimezM =
zM (xµ), M = 0, ..., D − 1, µ = 0, . . . p is governed by the Dirac-Born-Infeld
(DBI) action

Sp =

∫ (
1−

√
− det(gµν + Fµν)

)
dp+1x, (1)

∗ galtsov@grg.phys.msu.su
† rkf@mail.ru
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where

gµν = ∂µz
M∂νz

NηMN , (2)

is an induced metric on the brane andFµν is aU(1) gauge field strength. Using
the gauge freedom under diffeomorphisms of the world-volume, one can choose
coordinateszM = (xµ, Xm), whereXm are transverse to the brane, and rewrite
the action as

Sp =

∫ (
1−

√
− det(ηµν + ∂µXm∂νXm + Fµν)

)
dp+1x. (3)

A trivial solution to this action isXm = 0, Fµν = 0, what means that thep-
brane is flat and there is no electromagnetic field. Because of the symmetryXm →
−Xm, the planar solution remains true whenFµν does not vanish, in which case
the electromagnetic field is governed by the Born-Infeld (BI) action. Moreover, as
was noticed by Gibbons [3], the only regular static source-free solution of the BI
electrodynamics which falls off at spatial infinity is a trivial one.

This is no longer true in the case ofN coincidentDp-branes whose low-
energy dynamics is described by the non-Abelian generalization of the DBI action
involving theSU(N) Yang-Mills (YM) field. Namely, for flatD3-branes the reg-
ular sourceless finite energy configurations of the YM field were found to exist
[4, 5]. The topological reason for this lies in the vacuum periodicity of theSU(2)
gauge field in four dimensions. Neighboring YM vacua are separated by potential
barriers which in the case of the BI action are lowered down to a finite height
due to the breaking of the scale invariance in the BI theory. This removes the
well-known obstruction for classical glueballs [6–8], which can be summarized
as follows. Scale invariance of the usual quadratic Yang-Mills action implies that
the YM field stress–energy tensor is traceless:Tµµ = 0 = −T00 + Tii, where
µ = 0, ..., 3, i = 1, 2, 3. Since the energy density is positive,T00 > 0, the sum of
the principal pressuresTii is also everywhere positive,i.e. the Yang–Mills matter
is repulsive. Consequently, mechanical equilibrium within the localized static YM
field configuration is impossible [9]. In the spontaneously broken gauge theories
scale invariance is broken by scalar fields, what opens the possibility of particle-
like solutions: magnetic monopoles (in the theory with the real triplet Higgs) and
sphalerons (in the theory with the complex doublet Higgs).

The role of the Higgs field in these two cases is somewhat different. For
monopoles the topological significance of the Higgs field is essential: indeed,
monopoles interpolate between the unbroken and broken Higgs phases. In the case
of sphalerons, the Higgs field plays mostly a role of an attractive agent which is
able to glue the repulsive YM matter. Historically, topological significance of the
Dashen-Hasslacher-Neveu (DHN) solution in theSU(2) theory with the doublet
Higgs [10] was first explained by Manton [11] as a consequence of non–triviality
of thethird homotopy group of the Higgs broken phase manifoldπ3(G/H). This
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is equivalent to existence of non-contractible loops in the space of field configura-
tions passing through the vacuum. Then by the minimax argument one finds that a
saddle point exists on the energy surface which is a proper place for the sphaleron.
Later it became clear that similar solutions arise in some models without Higgs,
such as Einstein-Yang-Mills [12] or Yang-Mills with dilaton [13] (for a review and
further references see [14]). The main common feature of these theories is that the
conformal invariance of the classical YM equations is broken, what removes the
”mechanical” obstruction for existence of particle-like configurations. As far as
the topological argument is concerned, it is worth noting thatH = 1 for the DHN
solution, so the same third homotopy group argument applies to the gauge group
G itself, that is, it works equally in the theories without Higgs.

Breaking of the scale invariance in the NBI theory also gives rise to sphaleron
glueballs which mediate transitions between different topological sectors of the
theory. Their mass is related to the BI field-strength parameter which for the D-
branes is2πα′. We will discuss here the difference between glueball solutions in
two versions of the NBI theory: with the ordinary and symmetrized trace. We also
show that, when the triplet Higgs field is added, the theory admits, apart from
the usual magnetic monopoles, the hybrid solutions which can be interpreted as
sphaleron excitations of monopoles. At the end we briefly discuss monopole so-
lutions in gauge theories on non-commutative spaces and give an explicit solution
for theU(1) monopole with Higgs in the D-brane picture with the Kalb-Ramond
field.

2. NBI action with ordinary and symmetrized trace

A precise definition of the NBI action was actively discussed during past few
years [15–20], for an earlier discussion see [21]. An ambiguity is encoded in
specifying the trace operation over the gauge group generators. Formally a number
of possibilities can be envisaged. Starting with the determinant form of theU(1)
Dirac-Born-Infeld action

S =
1

4π

∫ {
1−

√
− det(gµν + Fµν)

}
d4x, (4)

one can use the usual trace, the symmetrized or antisymmetrized [15] ones, or
evaluate the determinant both with respect to Lorentz and the gauge matrix indices
[19]. Alternatively one can start with the ’square root’ form, which is most easily
derived from (4) using the identities

det(gµν + Fµν) = det(gµν − Fµν) = det(gµν + iF̃µν) =

= det(gµν − iF̃µν) =
[
det(gµν − F 2

µν)(gµν + F̃ 2
µν)
]1/4

, (5)
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whereF 2
µν = FµαF

α
ν (similarly for F̃µν), and

FµαF
α
ν − F̃µαF̃αν =

1

2
gµνFαβF

αβ ,

FµαF̃
α
ν = −1

4
gµνFαβF̃

αβ . (6)

This gives the relation

√
− det(gµν + Fµν) =

√
− det(g)

√
1 +

1

2
F 2 − 1

16
(FF̃ )2, (7)

with F 2 = FµνF
µν , F F̃ = FµνF̃

µν .
For a non-Abelian gauge group the relations (6) are no longer valid, so there is

no direct connection between the ’determinant’ and the ’square root’ form of the
lagrangian. Therefore the latter can be chosen as an independent starting point for
a non-Abelian generalization.

There is, however, a particular trace operation – symmetrized trace – under
which generators commute, so both forms of the lagrangian remain equivalent.
This definition is favored by the no-derivative argument, as was clarified by
Tseytlin [15]. Restricting the validity of the non-Abelian effective action by
the constant field approximation, one has to drop commutators of the matrix-
valuedFµν since these can be reexpressed through the derivatives ofFµν . This
corresponds to the following definition

S =
1

4π
Str

∫ {
1−

√
− det(gµν + Fµν)

}
d4x, (8)

where symmetrization applies to the field strength (not to potentials). This action
reproduces an exact string theory result for non-Abelian fields up toα′2 order.
Although there is no reason to believe that this will be true in higher orders in
α′, theStr action is an interesting model providing minimal generalization of the
Abelian action [15].

An explicit form of the SU(2) NBI action with the symmetrized trace for static
SO(3)-symmetric magnetic type configurations was found only recently [5]. One
starts with the definition

LNBI =
β2

4π
Str

(
1−

√
− det

(
gµν +

1

β
Fµν

))
= k

β2

4π
Str(1−R), (9)

where

R =

√
1 +

1

2β2
FµνFµν − 1

16β4
(FµνF̃µν)2, (10)
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andβ of the dimension of length−2 is the BI ’critical field’. The normalization of
the gauge group generators is unusual and is chosen as follows

Fµν = F aµνta, tr tatb = δab. (11)

The symmetrized trace of the product ofp matrices is defined as

Str(ta1 . . . tap) ≡
1

p!
tr
(
ta1 . . . tap + all permutations

)
, (12)

and it is understood that the general matrix function like (9) has to be series
expanded. It has to be noted that under theStr operation the generators can be
treated as commuting objects, and the gauge algebra should not be applied, (e.g.
the square of the Pauli matrixτ2

x 6= 1) until the symmetrization in the series
expansion is completed.

A generalSO(3) symmetricSU(2) gauge field is described by the Witten’s
ansatz

√
2A = a0t1 dt+ a1t1 dr + {w2 t2 − (1− w) t3} dθ + (13)

{(1− w) t2 + w̃ t3} sin θ dφ,

where the functionsa0, a1, w, w̃ depend onr, t and
√

2 is introduced to maintain
the standard normalization. Here we use a rotating basisti, i = 1, 2, 3 for the
SU(2) generators defined as

t1 = naτa/
√

2, t2 = ∂θt1, sin θt3 = ∂ϕt1, (14)

wherena = (sin θ cosϕ, sin θ sinϕ, cos θ), with τa being the Pauli matrices.
These generators obey the commutation relations[ti, tj ] = 1√

2
εijktk.

From four functions entering this ansatz one can be gauged away. In the static
case we can further reduce the number of independent functions to two, while
the static purely magnetic configurations are fully described by a single function
w(r):
√

2Aθ = −(1− w)t3,
√

2Aϕ = sin θ(1− w)t2. At = Ar = 0. (15)

The field strength tensor has the following non-zero components
√

2Frθ = w′t3,
√

2Frϕ = − sin θw′t2,
√

2Fθϕ = sin θ(w2 − 1)t1, (16)

where prime denotes derivatives with respect tor.
For purely magnetic configurations the second term under the square root is

zero, and the substitution of (16) gives

R2 = 1 +
(1− w2)2

β2r4
t21 +

w′2

β2r2
(t22 + t23). (17)
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To find an explicit expression for the lagrangian one has to expand the square
root in a triple series in terms of the even powers of generatorst1, t2, t3, then
to calculate the symmetrized trace of the powers of generators in all orders, and
finally to make a resummation of the series. The result reads

LNBI =
β2

4π

(
1− 1 + V 2 +K2A√

1 + V 2

)
, (18)

where

V 2 =
(1− w2(r))2

2β2r4
, K2 =

w′2(r)

2β2r2
,

A =

√
1 + V 2

V 2 −K2
arctanh

√
V 2 −K2

1 + V 2
. (19)

Here we assumed thatV 2 > K2, otherwise anarctan form is more appropriate.
Note that when the differenceV 2 = K2 changes sign, the k functionA remains
real valued. It can be checked that whenβ → ∞, the standard Yang-Mills la-
grangian (restricted to monopole ansatz) is recovered. In the strong field region
our expression differs essentially from the square root/ordinary trace lagrangian.

The corresponding explicit action defined in a square root form with an
ordinary trace reads:

LNBI =
β2

4π

(
1−

√
1 + V 2 + 2K2

)
(20)

3. Topological vacua and sphalerons

As is well-known, vacuum in theSU(2) YM theory in the four-dimensional
spacetime splits into an infinite number of disjoint classes which can not be
deformed into each other by ’small’ (contractible to a point) gauge transforma-
tions. Writing the pure gauge vacuum YM potentials asA = iUdU−1, where
U ∈ SU(2) and imposing an asymptotic condition

lim
r→∞U(xi) = 1, (21)

we can interpretU(xi) as mappingsS3 → SU(2). All sets of suchU’s falls into
the sequence of homotopy classes characterized by the winding number

k[U] =
1

24π2
tr

∫
R3

UdU−1 ∧UdU−1 ∧UdU−1. (22)
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A representative of thek-th class can be chosen as

Uk = exp{iα(r)t1/
√

2}, where α(0) = 0, α(∞) = −2πk. (23)

The corresponding potential will be given by the Witten ansatz witha =
0, w = exp(iα(r)). The asymptotic condition (21) leads to the following fall-off
requirements.

Aa = o(r−1) for r →∞. (24)

The representatives of different vacuum classes with differentk cannot be
continuously deformed into each other within the class of the purely vacuum
fields. But there exists an interpolating sequence of nonvacuum field configu-
rations of finite energy (the latter can be defined on shell and then continued
off-shell) satisfying the required boundary conditions (24) that connects different
vacuum classes. Finite energy solutions for the actions (18) or (20) should satisfy
the following boundary conditions near the origin

w = 1 + b r2 +O(r4), (25)

and at the infinity

w = ±1 +
c

r
+O(

1

r2
), (26)

whereb andc are free parameters. (The valuew(∞) = 0 together with finiteness
of the energy implies thatw ≡ 0.) The leading terms are the same as required for
the vacuum configurations. These solutions, if exists, can be shown to lie on the
path in the solution space connecting two topologically distinct vacua. Consider a
one-parameter sequence of field configurations (off shell generally) depending on
a continuous parameterλ ∈ [0, π] [22]

A[λ] = i
1− w

2
U+dU−1

+ + i
1 + w

2
U−dU−1

− , (27)

where

U± = exp
{
iλ(w ± 1)t1/

√
2
}
. (28)

This field vanishes forλ = 0, whereas forλ = π it can be represented as

A[π] = iUdU−1, with U = exp{iπ(w − 1)t1/
√

2}. (29)

In view of the above boundary condition forw, in the casew(∞) = −1 one has
thek = 1 vacuum. Now, the crucial thing is that forλ = π/2 we come back to
the configuration (15). So if the solution to the classical field equations with the
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required asymptotics exists indeed, this can be interpreted as a manifestation of
the finiteness of the potential barrier between distinct vacua.

Note that the same reasoning holds for the ordinary Yang–Mills system. But
due to the scale invariance of this theory there is no functionw which minimizes
the energy functional.

Both the analysis of the equations following from NBI lagrangians (18,20)
using the methods of dynamical systems [4] and numerical experiments [5] shows
that such solutions exist in both NBI models — with ordinary and symmetrized
trace. They form a discrete sequence labeled by the number of nodes of the
functionw(r), and the lower one-node solution is similar to the sphaleron of the
Weinberg-Salam theory.

In the NBI theoryβ is the only dimensionful parameter giving a natural scale
of length, i.e. theories with different values ofβ are equivalent up to rescaling.
Settingβ = 1 we obtain the equations of motion for the symmetrized trace NBI
model

d

dr

{
w′

2(V 2 −K2)

(
K2
√

1 + V 2

1 +K2
− (2V 2 −K2)A√

V 2 −K2

)}
(30)

=
wV (K2A− V 2)

(V 2 −K2)
√

1 + V 2
.

For the ordinary trace model one has

d

dr

{
w′√

1 + V 2 + 2K2

}
= − w V√

1 + V 2 + 2K2
, (31)

We are looking for the solutions satisfying the boundary conditions (25,26).
For larger both equations reduce to that of the usual YM theory, so the solutions
are not much different in the far zone. Near the origin the equations are different,
more careful analysis reveals that the nature of stationary points associated with
the origin is different for two versions of the theory.

A trivial solution to these equations (valid for both models) is an embedded
abelian monopolew = 0. In the BI theory it has the finite energy. From the
general analysis, as discussed in [14] for the ordinary trace, one finds thatw can
not have local minima for0 < w < 1, w < −1 and can not have local maxima
for −1 < w < 0, w > 1. The same remains true for the symmetrized trace. Thus
any solution which starts at the origin on the interval−1 < w < 1 must remain
within the strip−1 < w < 1. Oncew leaves the strip, it diverges in a finite
distance. Regular solutions exist for a discrete sequence ofb shown in the table I
together with corresponding massesMn for the first sixn which is the number of
zeroes ofw(r). Then = 1 solution is analogous to the sphaleron known in the
Weinberg-Salam theory [10, 11], it is expected to have one decay mode. Higher
odd-n solutions may be interpreted as excited sphalerons, they are expected to
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Figure 3. Sphaleron glueball solutionswn for n = 1, 2, 3 in the symmetrized trace (solid line)
and ordinary trace (dashed line) models

haven decay directions. Even-n solutions are topologically trivial, they can be
regarded as sphaleronic excitation of the vacuum. Qualitatively picture is the same
as for the ordinary trace [4], but the discrete values ofb are rather different.

Numerical solutions for both models are shown in the figure 3. It is surprising
that the solutions with the ordinary and the symmetrized trace are rather similar
in spite of the substantial difference of the lagrangians. They have however some-
what different behavior near the origin: those with the symmetrized trace leave
the vacuum valuew = 1 faster and stay longer in the intermediate region where
w(r) is close to zero. In this region the magnetic charge is almost unscreened, so
this is the particle core. Thus for alln solutions are more compact in the ordinary
trace case. For both models the parametersbn grow infinitely with increasing node
numbern. This means that there is no limiting solution asn→∞ contrary to the
EYM case where such solutions do exist.

4. Magnetic monopoles and hybrid solutions

Magnetic monopoles are associated with the deformed D3-branes with non zero
transverse coordinatesXm interpreted as Higgs scalars. The deformation can be
thought of as caused by an open string attached to the brane. In the BPS limit
the solutions are the same as for the quadratic YM theory [17, 18] Monopoles
for the ordinary trace model were constructed by Grandi, Moreno and Schaposnik
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TABLE I. Values ofb andM for first six glueball solutions in NBI models
with ordinary and symmetrizedtraces

Ordinary trace Symmetrizedtrace

n btr Mtr bStr MStr

1 1.27463× 101 1.13559 1.23736× 102 1.20240

2 8.87397× 102 1.21424 5.05665× 103 1.234583

3 1.87079× 104 1.23281 1.67739× 105 1.235979

4 1.27455× 106 1.23572 7.11885× 106 1.236046

5 2.65030× 107 1.23603 4.94499× 108 1.2360497

6 1.80475× 109 1.23604 4.52769× 1010 1.2360497

[23]. For monopoles the functionw monotoneously varies from the valuew = 1
at the origin to the asymptotic valuew = 0 at infinity. Note, that assuming the
asymptotic valuew = 0 for pure gauge NBI theory we will get only embedded
abelian solutionw ≡ 0. Our aim here is to show that, in addition, there are hybrid
NBI-Higgs solutions for which the functionw(r) oscillates in the core region. In
other words, starting from the vacuumw = 1 at the origin the functionw(r) tries
to follow the sphaleronic behavior, but finally turns back to the monopole regime.

Adding to the NBI action the Higgs termS = SNBI + SH whereSH is taken
in the usual form

SH =
1

8π

∫ (
Dµφ

aDµφa − λ

2

(
φaφa − v2

))
, (32)

one obtains the NBI-Higgs theory, containing, apart fromβ, the second parameter
λ (without loss of generality we put the gauge coupling constant equal to unity).
For spherically symmetric static purely magnetic configurations the YM ansatz
remains the same , while for the Higgs field

φa =
H(r)

r
na. (33)

For simplicity we consider here the square root form of the NBI action (20).
Performing an integration over spherical angles one obtains the energy functional
(equal to minus action for static configurations)

E = 4π

∫
dr r2

{
2β2(R− 1) +

1

2r2

(
(H ′ − H

r
)2 +

2

r2
H2w2

)
+ V

}
, (34)
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where

R =

√
1 +

1

β2r4
(r2w′2 +

1

2
(w2 − 1)2), V =

λ

4

(
H2

r2
− 1

)2

. (35)

Varying this functional one finds the equations of motion

r2w′′ = w(RH2 + w2 − 1) + r2R′
R w ′, (36)

r2H ′′ = 2Hw2 − λH(r2 −H2) . (37)

Boundary conditions at infinity for a solution with a unit magnetic charge read

lim
r→∞w(r) = 0, lim

r→∞
H(r)

r
= 1, (38)

while at the origin

w(0) = 1, H(0) = 0. (39)

Starting with (39) one can construct the following power series solution
converging in a non-zero domain around the origin:

w = 1− br2 +
βb2

(
22b2 + β2

)
+ d2

(
6b2 + β2

) 3
2

10β (2b2 + β2)
r4 +O(r6) (40)

H = d r2 −
(

1

10
λd+

2

5
d b

)
r4 +O(r6), (41)

whereb andd are free parameters. Forβ →∞ the theory reduces to the standard
YMH-theory, admitting monopoles. In [23] it was shown that monopole solutions
to the Eqs.(36, 37) continue to exist up to some limiting valueβcr.

Now we have to explain why one can expect to have also the hybrid solutions.
Near the origin the Higgs field is close to zero, so the influence of the termH2KR
is negligible, and the YM field behaves like in the pure NBI case. As was argued
in [4], NBI theories with differentβ are equivalent up to rescaling, and so forβ
large enough the solution starts forming just near the origin. But for largerr the
role of Higgs is increased, so one can expect that some solutions can be trapped
to the monopole asymptotic regime. More precisely, in the region ofr ≈ 1/

√
β,

the functionw(r) is similar to the sphaleron solution of [4]: starting withw = 1 it
passes throughw = 0 and then tends to the valuew = 1. After leaving this region
the solution enters the region where it has properties of the NBI monopole and
at r → ∞ both field functions tend to their asymptotical values (38). The Higgs
fieldH(r) for these hybrid solutions behaves qualitatively in the same way as for
the monopoles.
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Figure 4. Magnetic monopole and first two hybrid solutions in the ordinary trace model for
β = 30, λ = 1/2. Solid line —w, dashed line —H/r

To obtain hybrid solutions numerically we introduce the logarithmic variable
t = ln(r) and apply a shooting strategy to find the values of parametersb andd
ensuring the monopole asymptotic conditions (40-41) after several oscillations of
w . As an initial guess forb one can take the (appropriately rescaled for givenβ)
glueball values found in [4]. Another parameterd turns out to be weakly sensitive
on β for β large enough. The resulting solutions forn = 1, 2 andλ = 1/2 are
shown on Fig. 1,2 together with the ground state monopole (n = 0). The masses
increase withn and converge rapidly to the mass of an embedded Abelian solution
with frozen Higgs:

w(r) ≡ 0, H(r) ≡ r. (42)

Although this singular solution does not satisfy the boundary conditions (39)
it has finite energy within the NBI-Higgs theory, which can be obtained by
substituting the Eq. (42) into the Eq. (34):

Elim = 2

∫
β2(R− 1)r2dr =

√
β

∫ (√
4 +

2

x4
− 2

)
x2dx = 1.467338

√
β.

(43)

With decreasingβ, the discrete values of the parameterbn also decrease until
relatively small values ofβ. Then, withβ further decreasing both parametersb and
d start growing until some critical value ofβcr n is reached near which parameters
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bn anddn tend to infinity and monopole solutions with given number of zeroes
cease to exist. The lowest of these critical values isβcr 0 ≈ 0.45 for unexcited
monopole solution. The excited solutions disappear at greater values ofβ. The
mass of excited monopoles is well described by the formula (43), even for the
lowest excited solution the difference with the exact numerical value is less then
4% for all values ofβ. The figure 4 shows the behavior of functionsw, H for
some intermediate value ofβ. Note, that at criticalβ all branches of monopole
solutions (including unexcited branches) converge to the limiting Abelian solution
(42) (with different rate).

The excited monopole solutions also exist in the Einstein-Yang-Mills-Higgs
theory [24]. There the role of non-linear excitations is played by Bartnick-
McKinnon gravitating sphalerons of EYM theory [12]. The phase diagram
(regions of existence in parameter space) is somewhat different in our case, the
details will be given elsewhere.

5. Non-commutative monopoles

Here we discuss another aspect of the D-brane picture of gauge theories, which is
the direct subject of the present workshop. Recently it was discovered that gauge
theories on noncommutative manifolds

[xµ, xν ] = iθµν (44)

are connected with the gauge theories on D-branes with the constant background
Kalb-Ramond fieldB turned on [25]

Bµν = − θµν

(2πα′)2
. (45)

The relation between these two versions is non-local and is defined perturbatively
through the Seiberg-Witten map [26] (for a more recent discussion see [27, 28]).
Namely, the YM theory on a noncommutative four-dimensional space

Ŝ = Tr

∫ (
1

4ĝ2
F̂µν ∗ F̂µν + ...

)
d4x, (46)

defined using the star-product

F (x) ∗ G(x) = exp

(
iθµν

2
∂µ∂

′
ν

)
F (x)G(x′)|x′=x, (47)

and the D-brane theory withAµ, Fµν are related perturbatively via

Âµ = Aµ − θαβ

4
{Aα, ∂βAµ + Fβµ}+ +O(θ2). (48)
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The issue of magnetic monopoles in both treatments of the non-commutative
YM was discussed recently in a number of papers [29–32, 30]. It was argued that
BPS-saturated monopoles exist in the non-commutative case as well. Apart from
the BPS bound most of the previous discussion was perturbative in terms of the
non-commutativity parameterθµν .

Adding the constantB-field spoils the spherical symmetry of monopoles and
therefore their non-perturbative treatment in the D-brane picture becomes rather
complicated. At best one can construct an axially symmetric model usingBµν as
a Kalb-Ramond analog of the homogeneous magnetic (electric) field. Even in this
case the NBI model is still too complicated both for Tr and Str versions. Here we
give a non-perturbative monopole solution in the simplest case of theU(1) gauge
field with Abelian Higgs. As was shown by Gibbons [3], the system of BIU(1)
and Higgs fields possesses the boost symmetry (in the mixed space of coordinates
and the field variables) which can be used as a solution generating technique to add
a constant magnetic field to the pointlike magnetic monopole (resp. electric field
to the electric BIon). Reinterpreted as the Kalb-Ramond field, this homogeneous
field may be accounted for the parameter of non-commutativity.

We start with the DBI action

SDBI = −
∫

d4x
√
− det (ηµν + ∂µy∂νy + Fµν) (49)

with one external coordinatey (playing the role of the Higgs field) and introduce
the magnetic potentialχ

H = −∇χ, (50)

whereH is the magnetic field strength — canonical conjugate to the magnetic
inductionB:

H = − ∂L
∂B

. (51)

Performing the corresponding Legendre transformation we obtain the follow-
ing hamiltonian functional

H =

∫
d3x

√
1− (∇χ)2 + (∇y)2 + (∇χ)2(∇y)2 − (∇χ · ∇y)2, (52)

which can be interpreted as the volume of the three-dimensional hypersurface
parametrized by coordinatesxi in the five-dimensional pseudoeuclidean space
{xi, y, χ} with the metricdiag(+,+,+,+,−) (minus corresponds toχ). We
use the symmetries of this functional to generate first the scalar charge from the
monopole charge and then to generate a constant background field which will
be then interpreted as theB field. So we start with the spherically symmetric
configurations. The field equations are then reduced to

y′′ = 2
y′
(
χ′2 − y′2 − 1

)
r

, χ′′ = 2
χ′
(
χ′2 − y′2 − 1

)
r

, (53)
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where prime denotes the derivative with respect to the radial variabler. It is easy
to see that two potentials should be proportional. Depending on which potential
dominates, one can find three different types of behaviour:

1. The spacelike vector in the{y, χ} plane. By some rotation the magnetic field
can be removed. This is the catenoidal solution [3]. Since it does not exist for
all r, we will not consider it further.

2. The timelike vector in the{y, χ} plane. By a rotation it can be reduced to a
U(1) monopole without excitations of the transverse degrees of freedom. The
potential for this particular solution (with unit charge) is

χ0(r) =

r∫
dr√

1 + r4
, (54)

and could be written explicitly in terms of elliptic integrals.
3. The lightlike vectory = ±χ. This is the BPS monopole:

χBPS(r) = ±yBPS(r) =
1

r
. (55)

To obtain the non-BPS monopole solution that also has a nonzero Higgs
counterparty(r) one can simply perform a boost in the{χ, y} plane:

χ(r) = coshψ χ0(r) y(r) = sinhψ χ0(r). (56)

The next step is to perform a boost in the{χ, z} plane to generate the constant
background magnetic field. To understand why this field may be equally inter-
preted as aB field one should notice that the field equations do not change if we
replaceFµν by Fµν +Bµν with constantB.

So, if we denoteχ = g(ρ, z), then after the second boost we obtain:

coshφ g + sinhφ z = coshψ χ0

(√
ρ2 + (coshφ z + sinhφ g)2

)
, (57)

whereρ =
√
x2 + y2 andχ0 is defined by the Eq.(54).

This nonlinear equation cannot be solved explicitly but it is simple to explore
it numerically. The key point is to note that for a giveng, ρ, z, using equations
(54),(57), one can find the vectorF + B (magneticinduction plus B-field).
Then the monopole field is obtained by subtracting the constant background.
Note that, depending on the values of the boosts parametersφ andψ, the so-
lution can become double-valued. Let us consider this feature in more detail.
For magnetic monopole without excitations of the transversal component the
three-dimensional hypersurfaceχ0(x, y, z) is spacelike everywhere except for the
origin where it touches the lightcone. When we boost in the{χ, y} directions, the
surfaceχ(x, y, z) acquires the timelike piece which can cause multivaluedness
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Figure 5. Non-commutativeU(1) monopole: constant|F| curves

 

  

Figure 6. Non-commutativeU(1) monopole: constanty curves

after boosting in the{χ, z} directions. (When treated as a hypersurface in the
five-dimensional space{r, χ, y} it remains of course spacelike). This effect is
interpreted from the string theory point of view as tilting the D-brane, but from
the point of view of 3-dimensional field theory this multivaluedness should be
interpreted as a signal that no well defined solution exists. It is worth noting that
for BPS solution such multivaluedness emerges for any value of the background
field.

In the figures 5,6 the sections of level surfaces of constanty and constant|B|
are shown. The full solution is axially symmetric and is obtained by rotating the
pictures along the symmetry axis.
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6. Discussion

We have discussed some new issues associated with the D-brane picture of gauge
theories. Apart from giving a nice geometric framework, D-branes suggest a modi-
fication of dynamics of the YM field introducing the Born-Infeld type lagrangian.
This latter breaks the conformal invariance of the YM equations removing the
obstruction for existence of classical glueballs in the SU(2) theory in four di-
mensions. Topological reason for existence of such glueballs lies in the vacuum
periodicity which holds equally in the ordinary YM theory and in the NBI theory,
with an important difference that in the latter case the potential barriers between
neighboring vacua have finite heights. Classical NBI glueballs (more precisely,
half of them) are sphalerons mediating the topological transitions. We have found
that they exist both for the ordinary trace and the symmetrized trace versions of the
NBI theory with somewhat different core structure. We have also shown that in the
NBI theory with the triplet Higgs one encounters, apart from the usual magnetic
monopoles, the hybrid solutions which can be regarded as sphaleronic excitations
of monopoles. Finally, adding the constant Kalb-Ramond field, one is able to
account for non-commutative monopoles. We presented a new nonperturbative
axisymmetric solution for the U(1) non-commutative monopole with Higgs.
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P. MAŚLANKA
Institute of Physics, University of Lód́z,
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Abstract. We review shortly present status of quantum deformations of Poincaré and conformal
supersymmetries. After recalling theκ–deformation of D=4 Poincaré supersymmetries we describe
the corresponding star product multiplication for chiral superfields. In order to describe the de-
formation of chiral vertices in momentum space the integration formula overκ–deformed chiral
superspace is proposed.

1. Introduction

The noncommutative space–time coordinates were introduced as describing al-
gebraically the quantum gravity corrections to commutative flat (Minkowski)
background (see e.g. [1, 2]) as well as the modification ofD–brane coordinates
in the presence of external background tensor fields (e.g.Bµν in D = 10 string
theory; see [3]–[5]). We know well that both gravity and string theory have better
properties (e.g. less divergent quantum perturbative expansions) after their super-
symmetrization. It appears therefore reasonable, if not compelling, to consider the
supersymmetric extensions of the noncommutative framework.

The generic relation for the noncommutative space–time generatorsx̂µ

[x̂µ, x̂ν ] = iΘµν(x̂) = i
(
Θµν + Θρ

µν x̂ρ + . . .
)

(1)

∗ lukier@ift.uni.wroc.pl
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has been usually considered for constant value of the commutator (1), i.e. for
Θµν(x̂) = Θµν . In such a case the multiplication of the fieldsφk(x̂) de-
pending on the noncommutative (Minkowski) space–time coordinates can be
represented by noncommutative Moyal∗–product of classical fieldsφk(x) on
standard Minkowski space

φk(x̂)φl(x̂)←→ φk(x) ∗ φl(x) = φk(y)e
i
2

Θµν ∂
∂yµ

∂
yν φl(z)|x=y (2)

It appears that the relation (1) with constantΘµν can be consistently supersym-
metrized (see e.g. [6]–[9]) by supplementing the standard relations for the odd
Grassmann superspace coordinates (further we chooseD = 4 N = 1 SUSY and
α, β = 1, 2).

{θα, θβ} = {θα, θβ̇} = {θα̇, θβ̇} = 0 [x̂µ, θα] = [x̂µ, θα̇] = 0 (3)

Such a choice of superspace coordinates (x̂µ, θα, θα̇) implies that the supersym-
metry transformations remain classical:

x̂′µ = x̂µ − i
(
εσkθα − θσkε

)
θ′α = θα + εα θ

′α̇ = θα̇ + εα̇ (4)

i.e. the covariance requirements of deformed superspace formalism do not require
the deformation of classical Poincaré supersymmetries1.

Our aim here is to consider the case when the standard Poincaré supersymme-
tries can not be preserved. For this purpose we shall consider the case with linear
Lie–algebraic commutator (1). Its supersymmetrization leads to the deformed

superspace coordinatesẑA = (x̂µ, θ̂α, θ̂β̇) satisfying Lie superalgebra relation:

[ẑA, ẑB] = iΘC
AB ẑC (5)

whereΘC
AB satisfies graded Jacobi identity:

Θ D
AB Θ E

CD + graded cycl.(A,B,C) = 0 (6)

It appears that in such a case for some choices of the “structure constants”
Θ C
AB one can find the deformed quantumD = 4 Poincaŕe supergroup, which

provide the relations (5) as describing the deformed translations and deformed
supertranslations.

1 It should be stressted, however, that the introduction of constant tensorΘµν in (1) leads to
breaking (O(3, 1) → O(2) × O(1, 1))) of D = 4 Lorentz symmetry. The way out is to consider
Θµν as a constant field, with generator of Lorentz subalgebra containing contribution which rotates
theΘµν components (see e.g. [10]). The relation (1) can be made covariant only forD = 2 (Θµν ≡
εµν for D = 2); for 2+1 Euclidean case see [11]
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The plan of the paper is following: In Sect. 2 we shall briefly review the
considered in literature quantum deformations of Poincaré and conformal su-
persymmetries. The list of these deformations written in explicit form as Hopf
algebras is quite short, and only the knowledge of large class of classicalr–
matrices shows that many quantum deformations should be still discovered. As
the only nontrivial quantum deformation ofD = 4 supersymmetry given in the
literature is the so–calledκ–deformation, obtained in 1993 [12]–[14].

In Sect. 3 we consider the Fourier supertransform of superfields in classical
(undeformed) andκ–deformed form. We present also the integration formula over
κ–deformed superspace, which provides the description in supermomentum space
leading to theκ–deformed Feynmann superdiagrams.

In Sect. 4 we consider theκ–deformed superfield theory in chiral superspace.
We introduce the∗–product multiplication ofκ–deformed superfields. It appears
that there are two distinguished∗–products, which both can be written in closed
form: one described by standard supersymmetric extenion of CBA formula and
other physical, providing the addition of fourmomenta and Grassmann momenta
in terms of the coproduct formulae. In such a way we obtain the supersymmetric
extension of two∗–products, considered recently in [15].

In Sect. 5 we shall present some remarks and general diagram describing the
deformation scheme of superfield theory.

2. Quantum Deformations of Space–Time Supersymmetries

There are two basic space–time symmetries in D dimensions:
- Conformal symmetriesO(D, 2), having another interpretation as anti–de–

Sitter symmetries inD + 1 dimensions
- Poincaŕe symmetriesTD−1,1+⊃O(D − 1, 1).
i) Quantum deformations of conformal supersymmetries.
The conformal symmetries can be supersymmetrized without introducing

tensorial central charges inD = 1, 2, 3, 4 and 6. One gets:

D = 1 : O(2, 1) −→ OSp(N ; 2|R) or SU(1, 1 : N)

D = 2 : O(2, 2) = O(1, 2)⊗O(1, 2) −→ OSp(M ; 2|R)⊗OSp(N ; 2|R)

D = 3 O(3, 2) −→ OSp(N ; 4|R)

D = 4 O(4, 2) −→ SU(2, 2;N)

D = 6 O(6, 2) −→ UαU(4;N |H)
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All conformal supersymmetries listed above are described by simple Lie su-
peralgebras. It is well–known that for every simple Lie superalgebra one can
introduce theq–deformed Cartan–Chevaley basis describing quantum (Hopf–
algebraic) Drinfeld–Jimbo deformation [16, 17]. Theseq–deformed relations have
been explicitly written in physical basis of conformal superalgebra in different di-
mensions (see e.g. [18]). It is easy to see that the deformation parameterq appears
as dimensionless.

It follows, however, that there is another class of deformations of conformal
and superconformal symmetries, with dimensionfull parameterκ, playing the role
of geometric fundamental mass. ForD = 1 one can show that the Jordanian defor-
mation ofSL(2;R) ' O(2, 1) describes theκ–deformation ofD = 1 conformal
algebra [22]. This result can be extended supersymmetrically, with the following
classical̂r–matrix describing Jordanian deformationUκ(OSp(1; 2|R) [23]

r =
1

κ
h ∧ e SUSY

=⇒ r =
1

κ

(
h ∧ e+Q+ ∧Q+)

Jordanian deformation Jordanian deformation
of Sp(2;R) ' O(2; 1;R) of OSp(1, 2;R)

(D = 1 conformal) (D = 1 superconformal) (7)

TheOSp(1; 2;R) Jordanian classical̂r–matrix can be quantized by the twist
method. Semi–closed form for the twist function has been obtained in [24].

It appears that one can extend the Jordanian deformations ofD = 1 con-
formal algebra toD > 1; for D = 3 andD = 4 the extended Jordanian
classicalr–matrices were given in [22]. It should be also mentioned that the
generalized Jordanian deformation ofD = 3 conformalO(3, 2) algebra has been
obtained in full Hopf–algebraic form [25]. The extension of Jordanian deforma-
tion ofOSp(1, 2;R) for D > 1 superconformal algebras is not known even in its
infinitesimal form given by classicalr–matrices.

ii) Quantum deformations of Poincaré supersymmetries.
Contrary to DJ scheme for simple Lie (super)algebras it does not exist a

systematic way of obtaining quantum deformations of non–semisimple Lie (su-
per)algebras. A natural framework for the description of deformed semi–direct
products, like quantum Poincaré algebra, are the noncocommutative bicrossprod-
uct Hopf algebras (see e.g. [26]). It appears however that in the literature it has not
been formulated any effective scheme describing these quantum bicrossproducts.

One explicit example of quantum deformation ofD = 4 Poincaŕe super-
algebra and its dualD = 4 Poincaŕe group in form of graded bicrossproduct
Hopf algebra was given in [14]. By means of quantum contraction ofq–deformed
N = 1 anti–de–Sitter superalgebraUq (OSp(1|4)) there was obtained in [12] the
κ–deformedD = 4 Poincaŕe subalgebraUκ(P4;1). Subsequently by nonlinear
change of generators the quantum superalgebraUκ(P4;1) was written in chiral
bicrossproduct basis [13]. Theκ–deformed Poincaré subalgebra is given by the
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deformation of the following graded cross–product2

p4;1 =
(
SL(2;C)⊕ (SL(2;C)+⊃T 0;2

)
n T4;2 (8)

where the generators ofSL(2;C) are given by two–spinor generatorsMαβ =
1
8(σµν)αβMµν , the generators of(SL(2;C) by Mα̇β̇ = M∗αβ = 1

8σ
µν

α̇β̇
Mµν ,

T 0;2 describes two antichiral superchargesQα̇, and T4;2 the graded Abelian
superalgebra

T4;2 : [Pµ, Pν ] = [Pµ, Qα] = {Qα, Qβ} = 0 (9)

The relations (9) describe the algebra of generators of translations and supertrans-
lations in chiral superspace. The algebra(SL(2; c) ⊕ (SL(2; c)+⊃T 0;2) has the
form

sl(2; c) : [Mαβ ,Mγδ] = εαγMβδ − εβγMαδ (10a)

+ cβδMαγ − εαδMβγ

sl(2; c)+⊃T 0;2 : [Mα̇β̇ ,Mγ̇δ̇] = εα̇γ̇Mβ̇δ̇ − εβ̇γ̇Mα̇δ̇

+ εβ̇δ̇Mα̇γ̇ − εα̇δ̇Mβ̇γ̇

[Mα̇β̇ , Qγ̇ ] = εα̇γQβ̇ − εβ̇γ̇Qα̇
{Qα̇, Qβ̇} = 0 (10b)

It should be observed that in the cross-product (8) the basic supersymmetry
algebra{Qα, Qβ̇} = 2(σµpµ)αβ̇ is the one belonging to the cross–relations.

Theκ–deformed bicrossproduct is given by the formula

Uκ(p4;2) = (SL(2; c)⊕ SL(2; c)+⊃T 0;2) BJT κ4;2 (11)

The relations (9) and (10a) remain valid butT κ4;2 describes now the Hopf algebra
with deformed coproducts:

∆P0 = P0 ⊗ 1 + 1⊗ P0

∆Pi = Pi ⊗ e−
P0
κ + 1⊗ Pi

∆Qα = Qα ⊗ e−
P0
2κ + 1⊗Qα (12)

The cross–relations are the following(Mi = 1
2εijkMjk, Ni = Mi0):

2 In [13] for the crossproduct formula describingD = 4 superPoincaŕe algebra the following
notation was used:p4;1 = O(1, 3; 2) n T4,2. In the notation (8) proposed in present paper the
extension of Lorentz algebra by odd generators is described more accurately.
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[Mi, Pj ] = iεijkPk [Mi, P0] = 0

[Ni, Pj ] = iδij [
κ

2
(1− e− 2P0

κ +
1

2κ

⇀
P

2
) +

1

κ
PiPj ]

[Ni, P0] = iPi (13)

and

[Mi, Qα] = −1

2
(σi)

β
α Qβ

[Ni, Qα] =
1

2
i e−

P0
κ (σi)

β
α Qβ +

1

2κ
εijkPj(σk)

β
α Qβ

{Qα, Qβ̇} = 4κδαβ̇ sinh
P0

2κ
− 2e

P0
2κ pi(σi)αβ̇ (14)

The notion of bicrossproduct (11) implies also the modification of primitive
coproducts forSL(2; c)⊕ SL(2; c)+⊃T 0;2 generators. One gets:

∆Mi = Mi ⊗ 1 + 1⊗Mi

∆Ni = Nl ⊗ 1 + e−
P0
κ ⊗Ni +

1

κ
εijk Pj ⊗Mk

− i

4κ
(σi)αβ̇ Qα ⊗ e

P0
κ Qβ̇

∆Qj = Qα̇ ⊗ 1 + e
P0
2κ ⊗Qα̇ (15)

It appears that the classicalN = 1 D = 4 Poincaŕe superalgebra can be put as
well in the form

p4;1 = (SL(2; c)+⊃T0;2)⊕ (SL(2; c)n T 4;2 (16)

whereT
0

4;2 describe the translation and supertranslation generators (Pκ, Qα̇). Sub-
sequently theκ–deformation ofD = 4 N = 1 Poincaŕe superalgebra can be
obtained by deforming (16) into graded bicrossproduct Hopf superalgebra

Uκ(p4;1) = (SL(2; c)+⊃T0;2)⊕ (SL(2; c) BJT κ
4;2 (17)

In order to describe theκ–deformed chiral superspace one should consider the
Hopf superalgebrãT κ

4;2 obtained by dualization of the relations (9) and (12), and

describing by functionsC(ẑA) on κ–deformed chiral superspaceẑA = (ẑµ, θ̂α),
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whereẑµ denotes the complex space–time coordinates. One obtains the following
set of relations:

[ẑ0, ẑi] =
i

κ
ẑi [ẑi, ẑj ] = 0

[ẑ0, θ̂α] =
i

2κ
θ̂α [ẑi, θ̂α] = 0

{θ̂α, θ̂β} = 0 (18a)

and the primitive coproducts:

∆ẑµ = ẑµ ⊗ 1 + 1⊗ ẑµ ∆θ̂α = θ̂α ⊗ 1 + 1⊗ θ̂α (18b)

The κ–deformed chiral superfield theory is obtained by cosidering suitably or-
dered superfields. In the following Section we shall consider the superFourier
transform of deformed superfields and consider theκ–deformed chiral superfield
theory.

3. Fourier Supertransforms andκ–deformed Berezin Integration

i) Fourier supertransform on classical superspace.
The superfields are defined as functions on superspace. Here we shall restrict

ourselves toD = 4 chiral superspacezA = (zµ, θα) (µ = 0, 1, 2, 3;α = 1, 2) and
to chiral superfieldsΦ(z, θ).

The Fourier supertransform of the chiral superfield and its inverse take the
form:

Φ(x, θ) =
1

(2π)2

∫
d4p d2η Φ̃(p, η)ei(px+ηθ) (19a)

Φ̃(p, η) =
1

(2π)2

∫
d4x d2θΦ(x, θ)e−i(px+ηθ) (19b)

The Fourier supertransforms were considered firstly in [29, 30]. It appears that
the set of even and odd variables (zµ, θα; pµ, ηα) describes the superphase space,
with Grassmann variablesηα describing “odd momenta”. The Berezin integration
rules are valid in both odd position and momentum sectors:∫

d2θ =

∫
d2θ θα = 0

1

2

∫
d2θ θα θ

α = 1 (20a)

∫
d2η =

∫
d2η ηα = 0

1

2

∫
d2θ ηα η

α = 1 (20b)
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whereηα = εαβηβ andηαηα = 2η1η2. It is easy to see thatθ2 = 1
2θαθ

α η2 =
1
2ηαη

α play the role of Dirac deltas, because∫
d2θ θ2 Φ(z, θ) = Φ(z, θ) |θ=0 (21a)

∫
d2η η2 Φ̃(p, η) = Φ̃(p, η) |η=0 (21b)

The formulae (19a)–(19b) in component formalism

Φ(z, θ) = Φ(z) + Ψα(z)θα + F (z)θ2 (22a)

lead to

Φ̃(p, η) = F̃ (p)− Ψ̃ν(p)ην − Φ̃(p)η2 (22b)

Let us consider for example the chiral vertexΦ3(z, θ), present in Wess–Zumino
model. This vertex can be written in momentum superspace as follows:∫

d4z d2θΦ3(z, θ) =

∫
d4p1 . . . d

4p3 d
2η1 . . . d

2η3

·Φ(p1, η1) Φ(p2, η2) Φ(p3, η3)δ4(p1 + p2 + p3)(η1 + η2 + η3)2 (23)

We see therefore that in Feynmann superdiagrams the chiral vertex (23) will be
represented by the product of Dirac deltas describing the conservation at the vertex
of the fourmomenta as well as the Grassmann odd momenta.

ii) Fourier supertransform onκ–deformed superspace.
Following the formulae (18a)–(18b) we obtain the supersymmetric extension

of of κ–deformed Minkowski space toκ–deformed superspacêxµ −→ (x̂µ, θ̂α).
The ordered superexponential is defined as follows:

: ei(pµẑ
µ+ηαθ̂α) := e−ip0ẑ0 ei(~p~z+η

αθ̂α) (24)

where(pµ, θα) satisfy the Abelian graded algebra )9), i.e.

[pµ, pν ] = [pµ, ηα] = {ηα, ηβ} = 0 (25)

From the formulae (8) and (24)–(25) follows that:

: ei(pµẑ
µ+ηαθ̂α) : : ei(p

′
µẑ
µ+η′αθ̂α) :=: ei∆

(2)
µ (p,p′)ẑµ+∆

(2)
α (η,η′)θ̂α : (26)

where

∆0(p, p′) = p0 + p′0
∆i(p, p

′) = pi + e−
p0
κ p′i
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∆α(η, η′) = ηα + e−
p0
2κ η′α (27)

Theκ–deformed Fourier supertransform can be defined as follows:

Φ(ẑ, θ̂) :=
1

(2π)2

∫
d4p d2η Φ̃κ(p, η) : ei(pẑ+ηθ̂) : (28)

If we define inverse Fourier supertransform

Φ̂(p, η) =
1

(2π)2

∫
d4ẑ d2θ̂Φ(ẑ, θ̂) : e−i(pẑ+ηθ̂) : (29)

under the assumption that(θ̂2 = 1
2 θ̂αθ̂

α)∫
d2 θ̃ θ̃2 = 1 (30a)

or equivalently (η2 ≡ 1
2ηαη

α)

1

(2π)4

∫∫
d4ẑ d2θ̂ : ei(pẑ+ηθ̂) := δ4(p) · η2 (30b)

one gets

Φ̂κ(p, η) = e−
4p0
κ Φ̃

(
e
p0
κ ~p, p0, e

p0
2κ ηα

)
(31)

Forκ–deformed chiral fields one can consider their local powers, and perform
theκ–deformed superspace integrals. One gets

∫∫
d4ẑ d2θ̂ : Φ(ẑ, θ̂) = Φ̂(0, 0)∫∫
d4ẑ d2θ̂Φ2(ẑ, θ̂) =

∫
d4p1 d

4p2 d
2η1 d

2η2 (32a)

Φ̃κ(p1, η1) Φ̃κ(p2, η2) δ(p01 + p02)δ(3)
(
~p1 + e

p01
κ ~p2

)
(η1 + e

p01
2κ η2)2

∫∫
d4ẑ d2θ̂Φ3(ẑ, θ̂) =

∫ 3∏
i=1

d4pi d
2ηi · Φ̃κ(pi, ηi)

· δ(p01 + p02 + p03) · δ(3)
(
~p1 + e

p01
κ ~p2 +

p0 + p02

κ
~p3

)
·
(
η1 + e

p02
2κ
η2 + e

p01+p02
κ

η3

)2

(32b)

The formulae (32a) can be used for the description ofκ–deformed vertices in
Wess–Zumino model for chiral superfields.

kievarwe.tex; 12/03/2001; 3:49; p.94



88 P. KOSIŃSKI, J. LUKIERSKI, P. MA ŚLANKA

4. Star Product for κ–deformed Superfield Theory

In this section we shall extend the star product for the functions onκ–deformed
Minkowski space given in [15] to the case of functions onκ–deformed chiral
superspace, described by the relations (18a)–(18b).

The CBH?–product formula for unordered exponentials takes the form

eipµz
µ+ηα̇θ

α̇ · eip′νzν+η′
β̇
θ
β̇

= eiγµ(p,p′)zµ+σα̇(p,p′,η,η′)θα̇ (33)

where

γ0 = p0 + p′0 (34a)

γk =
pk e

p′0
κ f

(p0

κ

)
+ p′kf

(
p′0
κ

)
f
(
P0+p′0
κ

) (34b)

σα̇ =
ηα̇ e

p′0
2κ f

( p0

2κ

)
+ η ′̇αf

(
p′0
2κ

)
f
(
P0+p′0

2κ

) (34c)

andf(x) ≡ ex−1
x . The star product multiplication reproduces the formula (33).

eipµz
µ+ηα̇θ

α̇

? e
ip′νzν+η′

β̇
θ
β̇

= eiγµ(p,p′)zµ+σα̇(p,p′,η,η′)θα̇ (35)

For arbitrary superfieldsφ(z, θ) andχ(z, θ) one gets

φ(z, θ) ? χ(z, θ) =

= φ

(
1

i

∂

∂pµ
,
∂

∂ηα̇

)
χ

(
1

i

∂

∂p′µ
,
∂

∂η ′̇α

)
eiγµ(p,p′)zµ+σα̇(p,p′,η,η′)θα̇

∣∣∣∣∣∣∣∣∣∣
p=0
p′=0
η=0
η′=0

(36)

or equivalently

φ(z, θ) ? χ(z, θ) = e
izµ
(
γµ

(
∂
∂y
, ∂
∂y′
)
− ∂
∂yµ
− ∂
∂y′µ

)
−θα̇

(
σα̇
(
∂
∂y
, ∂
∂y′ ,

∂
∂ω
, ∂
∂ω′
)
− ∂
∂ωα̇
− ∂

∂ω′
α̇

)
·φ(y, ω)χ(y′, ω′)

∣∣∣∣∣y=y′=z
ω=ω′=θ

(37)

In particular we get

kievarwe.tex; 12/03/2001; 3:49; p.95



QUANTUM DEFORMATIONS OF SPACE-TIME SUSY 89

zi ? zj = zizj

z0 ? zi = z0zi +
i

2κ
zi

zi ? z0 = z0zi − i

2κ
zi

zi ? θ
α̇

= ziθ
α̇

θ
α̇
? zi = ziθ

α̇

z0 ? θ
α̇

= z0θ
α̇

+
i

4κ
θ
α̇

θ
α̇
? z0 = z0θ

α̇ − i

4κ
θ
α̇

θ
α̇
? θ

β̇
= θ

α̇
θ
β̇

(38)

Star product~ corresponding to the multiplication of ordered exponentials (24)
takes the form:

eipµz
µ+ηα̇θ

α̇

~ eip′µzµ+η′α̇θ
α̇

= ei(p0+p′0z
0+i(e

p′0
κ pκ+p′κ)zκ+(e

p′0
2κ ηα̇+η′α̇)θ

α̇

(39)

The superalgebra (18a) ofκ–deformed superspace is obtained from the
following relations:

zk ~ θα̇ = θ
α̇ ~ zk = zkθ

α̇

θ
α̇ ~ θβ̇ = θ

α̇
θ
β̇

zk ~ zi = zkzi

z0 ~ zi = z0zi

zi ~ z0 = z0zi − i

κ
zi

z0 ~ θα̇ = z0θ
α̇

θ
α̇ ~ z0 = z0θ

α̇ − i

2κ
θ
α̇

(40)

Similarly like in nonsupersymmetric case the star–product (39) is more phys-
ical because reproduces the composition law of even and odd momenta consistent
with coalgebra structure.
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5. Final Remarks

In this lecture we outlined present status of quantum deformations of space–time
supersymmetries3, and for the case ofκ–deformation ofD = 4 supersymmetries
proposed the corresponding deformation of chiral superfield theory. It appears
that only theκ–deformed chiral superspace generators describe a closed sub-
algebra ofκ–deformedD = 4 Poincaŕe group. At present it can be obtained
theκ–deformation of superfield theory on real superspace can be obtained. The
deformation of chiral superfield theory can be described by the following diagram:

Classical local
superfield theory
on standard
superspace

deformationκ−

κ-deformation

Fourier supertransform

Classical nonlocal
κ-deformed superfield theory
on standard superspace

standard inverse
Fourier
supertransform

κ-deformed
theory on graded
commutative momentum
superspace

local κ-deformed
superfield theory
on κ-deformed
Minkowski
superspace

∗

1

4

3

2

  -multiplication

κ-deformed superfield

Figure 7. κ–deformation of local superfield theory

The star product~ given by formula (39) (see4©on Fig. 1) is selected by
the choice of superFourier transform (28), with ordered Fourier exponential de-
scribed by (24). Equivalently, the~–product multiplication can be obtained by
the following three consecutive steps:

i) Deformation of local superfield theory (see1©on Fig. 1)
ii) κ–deformed superfield transform (28) (see2©on Fig. 1)
iii) inverse classical Fourier transform (see3©on Fig. 1)

Φ(z, θ) =
1

(2π)2

∫
d4p d2θ e−i(pµz

µ+ηαθα)Φ̃(p, η) (41)

obtained in the limitκ→∞ from the inverse Fourier transform(29).

3 We did not consider here however, the quantum deformations of infinite – parameter super-
conformal symmetries in1 + 1 dimensions, described by superVirasoro algebras as well as affine
OSp(N ; 2)–superalgebras
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Finally it should be observed that for the deformation (1) with constantθ̂µν
there were calculated some explicit corrections to physical processes, in particular
for D = 4 QED [29]–[31]. We would like to stress that these calculations should
be repeated for Lie algebraic deformations of space–time and superspace, in par-
ticular in theκ–deformed framework. The preliminary results in this direction has
been obtained in [32, 33].
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THE HOWE DUALITY AND LIE SUPERALGEBRAS
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Abstract. Howe’s duality is considered from a unifying point of view based on Lie superalgebras.
New examples are offered. In particular, we construct several simplest spinor-oscillator representa-
tions and compute their highest weights for the “stringy” Lie superalgebras (i.e., Lie superalgebras
of complex vector fields (or their nontrivial central extensions) on the supercircleS1|n and its
two-sheeted cover associated with the Möbius bundle).

In our two lectures we briefly review, on the most elementary level, several
results and problems unified by “Howe’s duality”. Details will be given elsewhere.
The ground field in the lectures isC.

1. Introduction

In his famous preprint [24] R. Howe gave an inspiring explanation of what can
be “dug out” from H. Weyl’s “wonderful and terrible” book [55], at least as far
as invariant theory is concerned, from a certain unifying viewpoint. According
to Howe, much is based on a remarkable correspondence between certain ir-
reducible representations of Lie subalgebrasΓ and Γ′ of the Lie algebrao(V )
or sp(V ) provided Γ and Γ′ are each other’s “commutants”, i.e., centraliz-
ers. This correspondence is known ever since asHowe’s correspondenceor
Howe’s duality. In [24] and subsequent papers Howe gave several examples of
such a correspondence previously known, mostly, inadvertently. Let usremind

‡ We gratefully acknowledge financial support of an NFR grant and RFBR grant 99-01-00245,
respectively. D.L is thankful to B. Feigin, E. Poletaeva, V. Serganova and Xuan Peiqi for helpful
discussions.
† mleites@matematik.su.se
§ ira@paramonova.mccme.ru
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some of them (omitting important Jacquet-Langlands-Shimizu correspondence,
S. Gelbart’s contributions, etc.) :

1) decomposition ofo(V )-moduleS.
(V ) into spherical harmonics;

2) Lefschetz decompositionof sp(V )-module Λ
.
(V ) into primitive forms

(sometimes this is called Hodge–Lépage decomposition);
3) a striking resemblance betweenspinor representationof o(n) andoscillator

(Shale–Segal–Weil–metaplectic–... ) representation ofsp(2n).
As an aside Howe gives the “shortest possible” proof of thePoincaŕe lemma.

(Recall that this lemma states that in any sufficiently small open star-shaped neigh-
borhood of any point on any manifold any closed differential form is exact.) In this
proof, Lie superalgebras, that lingered somewhere in the background in the pre-
vious discussion but were treated rather as a nuisance than help, are instrumental
to reach the goal. This example shows also that the requirement of reductivity
of Γ andΓ′ to form a “dual pair” is extra. Elsewhere we will investigate what
are the actual minimal restrictions onΓ andΓ′ needed to reach one of the other
problems usually solved by means of Howe duality: decompose the symmetric
or exterior algebra of a module overΓ ⊕ Γ′. Howe’s manuscript was written at
the time when supersymmetry theory was being conceived. By the time [24] was
typed, the definition of what is nowadays calledsuperschemes([34]) was not yet
rewritten in terms to match physical papers (language of points was needed; now
we can recommend [5]) nor translated into English and, therefore, was unknown;
the classification of simple finite dimensional Lie superalgebras overC had just
been announced. This was, perhaps, the reason for a cautious tone with which
Howe used Lie superalgebras, although he made transparent how important they
might be for a lucid presentation of his ideas and explicitly stated so.

Since [25], the published version of [24], though put aside to stew for 12 years,
underwent only censorial changes, we believe it is of interest to explore what do
we gain by using Lie superalgebras from the very beginning (an elaboration of
other aspects of this idea [4] are not published yet). Here we briefly elucidate
some of Howe’s results and notions and give several new examples of Howe’s
dual pairs. In the lectures we will review the known examples 1) – 3) mentioned
above but consider them in an appropriate “super” setting, and add to them:

4) a refinement of the Lefschetz decomposition — J. Bernstein’s decomposi-
tion ([2]) of the spaceΩ.

~ of “twisted” differential forms on a symplectic manifold
with values in a line bundle with connection whose curvature form differs by a
factor~ from the canonical symplectic form;

5) a decomposition of the space of differential forms on a hyper-Kählerian
manifold similar to the Lefschetz one ([53]) but withsp(4) instead ofsp(2) =
sl(2) and its refinement associated with theosp(1|4).

6) Apart from general clarification of the scenery and new examples even in
the old setting, i.e., on manifolds, the superalgebras introducedab ovomake it
manifest that there are at least two types of Howe’s correspondence: the conven-
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tional one and several “ghost” ones associated with quantization of the antibracket
[40].

7) Obviously, ifΓ⊕ Γ′ is a maximal subalgebra ofosp, then(Γ,Γ′) is an ex-
ample of Howe dual pair. Section 6 gives some further examples, partly borrowed
from [49], where more examples can be found.

We consider here only finite dimensional Lie superalgebras with the invariant
theory in view. In another lecture (§§3,4) we consider spinor-oscillator represen-
tations in more detail. In these elementary talks we do not touch other interesting
applications such as Capelli identities ([30],[43]), or prime characteristic ([47]).
Of dozens of papers with examples of Howe’s duality in infinite dimensional cases
and still other examples, we draw attention of the reader to the following selected
ones: [12], and various instances of bose-fermi correspondence, cf. [13] and [26].
Observe also that the Howe duality often manifests itself forq-deformed algebras,
e.g., in Klimyk’s talk at our conference, or [6]. To treat thisq-Howe duality in a
similar way, we first have to explicitlyq-quantize Poisson superalgebraspo(2n|m)
(formn = 0 this is straightforward replacement of (super)commutators from [39]
with q-(super)commutators.

2. The Poisson superalgebrag = po(2n|m)

2.1. CertainZ-gradings of g. Recall thatg is the Lie superalgebra whose super-
space isC[q, p,Θ] and the bracket is thePoisson bracket{·, ·}P.b. is given by the
formula

{f, g}P.b. =
∑
i≤n

(
∂f
∂pi

∂g
∂qi
− ∂f

∂qi

∂g
∂pi

)
−

(−1)p(f) ∑
j≤m

∂f
∂θj

∂g
∂θj

for f, g ∈ C[p, q,Θ].
(2.1)

Sometimes it is more convenient to redenote theΘ’s and set

ξj = 1√
2
(Θj − iΘr+j); ηj = 1√

2
(Θj + iΘr+j)

for j ≤ r = [m/2] (here i2 = −1), θ = Θ2r+1

and accordingly modify the bracket (ifm = 2r, there is no term withθ):

{f, g}P.b. =
∑
i≤n

(
∂f
∂pi

∂g
∂qi
− ∂f

∂qi

∂g
∂pi

)
−

(−1)p(f)

[ ∑
j≤m

( ∂f∂ξj
∂g
∂ηj

+ ∂f
∂ηj

∂g
∂ξj

) + ∂f
∂θ

∂g
∂θ

]
.

SettingdegLie f = deg f − 2 for any monomialf ∈ C[p, q,Θ], wheredeg pi =
deg qi = deg Θj = 1 for all i, j, we obtain thestandardZ-grading ofg:
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degree off −2 −1 0 1 . . .

f 1 p, q, θ f : deg f = 2 f : deg f = 3 . . .

Clearly, g = ⊕
i≥−2

gi with g0 ' osp(m|2n). Consider now another, “rough”,

grading ofg. To this end, introduce:Q = (q, ξ), P = (p, η) and set

degQi = 0, deg θ = 1, degPi =

{
1 if m = 2k
2 if m = 2k + 1.

(∗)

Remark. Physicists prefer to use half-integer values ofdeg for m = 2k + 1 by
settingdeg θ = 1

2 anddegPi = 1 at all times.
The above grading(∗) of the polynomial algebra induces the followingrough

grading of the Lie superalgebrag. Form = 2k just delete the columns of odd
degrees and delete the degrees by 2:

m = 2k + 1:
degree . . . 2 1 0 −1 −2

elements . . . C[Q]P 2 C[Q]Pθ C[Q]P C[Q]θ C[Q]

2.2. Quantization. We call the nontrivial deformationQ of the Lie super-
algebrapo(2n|m) quantization(for details see [40]). There are many ways to
quantizeg, but all of them are equivalent. Recall that we only considergwhose el-
ements are represented by polynomials; for functions of other types (say, Laurent
polynomials) the uniqueness of quantization may be violated.

Consider the following quantization, so-calledQP -quantization, given on
linear terms by the formulas:

Q : Q 7→ Q̂, P 7→ ~
∂

∂Q
, (∗)

whereQ̂ is the operator of left multiplication byQ; an arbitrary monomial should
be first rearranged so that theQ’s stand first (normal form) and then apply(∗)
term-wise.

The deformed Lie superalgebraQ(po(2n|2k)) is the Lie superalgebra of dif-
ferential operators with polynomial coefficients onRn|k. Actually, it is an analog
of gl(V ). This is most clearly seen forn = 0. Indeed,

Q(po(0|2k)) = gl(Λ
.
(ξ)) = gl(2k−1|2k−1).

In general, forn 6= 0, we have

Q(po(2n|2k)) = “gl”(F(Q)) = diff(Rn|k).

For m = 2k − 1 we considerpo(0|2k − 1) as a subalgebra ofpo(0|2k); the
quantization sendspo(0|2k − 1) into q(2k−1). For n 6= 0 the image ofQ is an
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infinite dimensional analog ofq, indeed (forJ = i(θ + ∂
∂θ ) with i2 = −1):

Q(po(2n|2k − 1)) = qdiff(Rn|k) = {D ∈ diff(Rn|k) : [d, J ] = 0}.
2.3. Fock spaces and spinor-oscillator representations. The Lie superalge-

brasdiff(Rn|k) andqdiff(Rn|k) have indescribably many irreducible representa-
tions even forn = 0. But one of the representations, the identity one, in the
superspace of functions onRn|k, is the “smallest” one. Moreover, if we con-
sider the superspace ofdiff(Rn|k) or qdiff(Rn|k) as theassociativesuperalgebra
(denotedDiff(Rn|k) or QDiff(Rn|k)), this associative superalgebra has onlyone
irreducible representation — the same identity one. This representation is called
the Fock space.

As is known, the Lie superalgebrasosp(m|2n) are rigid for(m|2n) 6= (4|2).
Therefore, the through map

h −→ g0 = osp(m|2n) ⊂ g = po(2n|m)
Q−→ diff(Rn|k)

sends any subsuperalgebrah of osp(m|2n) (for (m|2n) 6= (4|2)) into its iso-
morphic image. (One can also embedh into diff(Rn|k) directly.) The irreducible
subspace of the Fock space which contains the constants is called thespinor-
oscillator representationof h. In particular cases, form = 0 or n = 0 this
subspace turns into the usualspinor or oscillator representation, respectively.
We have just given a unified description of them. (A more detailed description
follows.)

2.4. Primitive alias harmonic elements. The elements ofosp(m|2n) (or its
subalgebrah) act in the space of the spinor-oscillator representation by inhomo-
geneous differential operators of order≤ 2 (order is just the filtration associated
with the “rough”grading):

m = 2k:

degree −1 0 1

elements P̂ 2 P̂ Q̂ Q̂2

m = 2k + 1:

degree −2 −1 0 1 2

elements P̂ 2 P̂ θ̂ P̂ Q̂ Q̂θ̂ Q̂2

The elements from(C[Q])P̂
2

for m = 2k or (C[Q, θ])P̂ θ̂ for m = 2k + 1
are calledprimitive or harmonicones. More generally, leth ⊂ osp(m|2n) be
a Z-graded Lie superalgebra embedded consistently with the rough grading of
osp(m|2n). Then the elements from(C[Q])h−1 for m = 2k or (C[Q, θ])h−1 for
m = 2k + 1 will be calledh-primitiveor h-harmonic.

2.4.1. NonstandardZ-gradings of osp(m|2n). It is well known that one
simple Lie superalgebra can have several nonequivalent Cartan matrices and
systems of Chevalley generators, cf. [20]. Accordingly, the corresponding divi-
sions intopositiveandnegativeroot vectors are distinct. The following problem
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arises:How the passage to nonstandard gradings affects the highest weight of the
spinor-oscillator representation defined in sec. 3?(Cf. [44])

2.5. Examples of dual pairs. Two subalgebrasΓ,Γ′ of g0 = osp(m|2n) will
be called adual pair if one of them is the centralizer of the other ing0.

If Γ ⊕ Γ′ is a maximal subalgebra ing0, then, clearly,Γ,Γ′ is a dual pair.
A generalization: consider a pair of mutual centralizersΓ,Γ′ in gl(V ) and embed
gl(V ) into osp(V ⊕V ∗). ThenΓ,Γ′ is a dual pair (inosp(V ⊕V ∗)). For a number
of such examples see [49]. Let us consider several of these examples in detail.

2.5.1. Γ = sp(2n) = sp(W ) andΓ′ = sp(2) = sl(2) = sp(V ⊕ V ∗). Clearly,
h = Γ⊕ Γ′ is a maximal subalgebra ino(W ⊗ (V ⊕ V ∗)). The Fock space is just
Λ

.
(W ).
The following classical theorem and its analog 5.2 illustrate the importance of

the above notions and constructions.
Theorem. TheΓ′-primitive elements ofΛ.

(W ) of each degreei constitute an
irreducibleΓ-moduleP isp, 0 ≤ i ≤ n.

This action ofΓ′ in the superspace of differential forms on any symplectic
manifold is well known:Γ′ is generated (as a Lie algebra) by operatorsX+ of left
multiplication by the symplectic formω andX−, application of the bivector dual
to ω.

2.5.2. Γ = o(2n) = o(W ) andΓ′ = sp(2) = sl(2) = sp(V ⊕ V ∗). Clearly,
h = Γ ⊕ Γ′ is a maximal subalgebra insp(W ⊗ (V ⊕ V ∗)). The Fock space is
justS.

(W ).
Theorem. TheΓ′-primitive elements ofS.

(W ) of each degreei constitute an
irreducibleΓ-moduleP io , i = 0, 1, . . . .

This action ofΓ′ in the space of polynomial functions on any Riemann mani-
fold is also well known:Γ′ is generated (as a Lie algebra) by operatorsX+ of left
multiplication by the quadratic polynomial representing the metricg andX− is
the corresponding Laplace operator.

Clearly, a mixture of Examples 2.5.1 and 2.5.2 corresponding to symmetric
or skew-symmetric forms on a supermanifold is also possible:the space ofΓ′-
primitive elements ofS.

(W ) of each degreei is an irreducibleΓ-module, cf. [44]
and Sergeev’s papers [51], [52].

In [24], [25] the dual pairs had to satisfy one more condition: the through
action of bothΓ andΓ′ on the identityg0-module should be completely reducible.
Even for the needs of the First Theorem of Invariant Theory this is too strong a
requirement, cf. examples with complete irreducibility in [51, 52] with our last
example, in which the complete reducibility ofpe(n) is violated. Investigation of
the requiremets onΓ andΓ′ needed for the First Theorem of Invariant Theory will
be given elsewhere.

2.5.3. Bernstein’s square root of the Lefschetz decomposition. LetL be the
space of a (complex) line bundle over a connected symplectic manifold(M2n, ω)
with connection∇ such that the curvature form of∇ is equal to~ω for some
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~ ∈ C. This~ will be called atwist; the space of tensor fields of typeρ (hereρ :
sp(2n) −→ gl(U) is a representation which defines the spaceΓ(M,U) of tensor
fields with values inU ), and twist~ will be denoted byT~(ρ). Let us naturally
extend the action ofX+,X− from the spaceΩ of differential forms onM onto the
spaceΩ~ of twisted differential forms using the isomorphism ofspacesT~(ρ) '
T (ρ)⊗ Γ(L), whereΓ(L) = Ω0

~ is the space of sections of the line bundleL, i.e.,
the space of twisted functions.

Namely, setX+ 7→ X+ ⊗ 1, etc. LetD+ = d+ α be the connection∇ itself
andD− = [X−, D+]. OnΩ~, introduce a superspace structure settingp(ϕ⊗ s) =
degϕ (mod 2), for ϕ ∈ Ω, s ∈ Ω0

~.
Theorem. ([2]) On Ω~, the operatorsD+ and D− generate an action of

the Lie superalgebraosp(1|2) commuting with the action of the group̂G of
∇-preserving automorphisms of the bundleL.

Bernstein studied thêG-action, more exactly, the action of the Lie algebra
po(2n|0) corresponding tôG; we are interested in the part of this action only: in
sp(2n) = po(2n|0)0-action.

In Example 2.5.1 the spaceP i consisted of differential forms with constant
coefficients. Denote byP i = P i ⊗ S

.
(V ) the space of primitive forms with

polynomial coefficients. The elements of the space
√P i~ = KerD− ∩ P i~ will

be called∇-primitive formsof degreei (and twist~).
Bernstein showed that

√P i~ is an irreducibleg = po(2n|0)-module. It could

be that over subalgebrag0 the module
√P i~ becomes reducible but the general

theorem of Howe (which is true forosp(1|2n)) states that this is not the case,
it remains irreducible. Shapovalov and Shmelev literally generalized Bernstein’s
result for (2n|m)-dimensional supermanifolds, see review [37]. In particular,
Shapovalov, who consideredn = 0, “took a square root of Laplacian and the
metric”.

2.5.4. Inspired by Bernstein’s construction, let us similarly define a “square
root” of the hyper-K̈ahler structure. Namely, on a hyper-Kählerean manifold
(M,ω1, ω2) consider a line bundleL with two connections:∇1 and∇2, whose
curvature forms are equal to~1ω1 and ~2ω2 for some~1, ~2 ∈ C. The pair
~ = (~1, ~2) will be called atwist; the space of tensor fields of typeρ and twist~
will be denoted byT~(ρ). Verbitsky [53] defined the action ofsp(4) in the space
Ω of differential forms onM . Let us naturally extend the action of the generators
X±j for j = 1, 2 of of sp(4) from Ω onto the spaceΩ~ of twisted differential forms
using the isomorphismT~(ρ) ' T (ρ) ⊗ Γ(L), whereΓ(L) = Ω0

~ is the space of
sections of the line bundleL; hereX+

j is the operator of multiplication byωj and
X−j is the operator of convolution with the dual bivector.

Define the space of primitivei-forms (with constant coefficients) on the hyper-
Kählerean manifold(M,ω1, ω2) by setting

P i = KerX−1 ∩ KerX−2 ∩ Ωi. (HK)
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According to the general theorem [25] this space is an irreduciblesp(2n;H)-
module.

SetD−i = [X−i , D
+
i ]. The promised square root of the decomposition (HK) is

the space
P i~ = KerD−1 ∩ KerD−2 ∩ Ωi

~. (
√

HK)

The operatorsD±i , whereD+
i = ∇i, generateosp(1|4).

2.6. Further examples of dual pairs. The following subalgebrasg1(V1) ⊕
g2(V2) are maximal ing(V1 ⊗ V2), hence, are dualpairs:

g1 g2 g

osp(n1|2m1) osp(n2|2m2) osp(n1n2 + 4m1m2|2n1m2 + 2n2m1)
o(n) osp(n2|2m2) osp(nn2|2nm2), n 6= 2, 4
sp(2n) osp(n2|2m2) osp(2mn2|4nm2)
pe(n1) pe(n2) osp(2n1n2|2n1n2), n1, n2 > 2

osp(n1|2m1) pe(n2) pe(n1n2 + 2m1n2) if n1 6= 2m1

spe(n1n2 + 2m1n2) if n1 = 2m1

o(n) pe(m) pe(nm)
sp(2n) pe(m) pe(2nm)

In particular, on the superspace of polyvector fields, there is a naturalpe(n)-
module structure, andpe(1), its dual partner inosp(2n|2n), is spanned by the
divergence operator∆ (“odd Laplacian”), called theBRST operator([1]), the
even operator ofpe(1) beingdegx− degθ, whereθi = π( ∂

∂xi
), π being the shift

of parity operator.
For further examples of maximal subalgebras ingl andq see [49]. These subal-

gebras give rise to other new examples of Howe dual pairs. For the decomposition
of the tensor algebra corresponding to some of these examples see [51, 52], some
of the latter are further elucidated in [3]. Some further examples of Howe’s duality,
considered in a detailed version of our lectures, are: (1) over reals; (2) dual pairs
in simple subalgebras ofpo(2n|m) distinct from osp(m|2n); in particular, (3)
embeddings intopo(2n|m; r), the nonstandard regradings of the Poisson super-
algebra, cf. [50]; (4) a “projective” version of the Howe duality associated with
embeddings into the Lie superalgebra of Hamiltonian vector fields, the quotient of
the Poisson superalgebra, in particular, the exceptional cases in dimension(2|2),
cf. [40]. It is also interesting to consider the prime characteristic and an “odd”
Howe’s duality obtained from quantization of the antibracket (the main objective
of [4]), to say nothing ofq-quantized versions of the above.
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3. Generalities on spinor and spinor-like representations

3.1. The spinor and oscillator representations of Lie algebras. The importance
of the spinor representation became clear very early. One of the reasons is the fol-
lowing. As is known from any textbook on representation theory, the fundamental
representationsR(ϕ1) = W , R(ϕ2) = Λ2(W ), . . . , R(ϕn−1) = Λn−1(W ) of
sl(W ), wheredimW = n andϕi is the highest weight ofΛi(W ), are irreducible.
Any finite dimensional irreduciblesl(n)-moduleLλ is completely determined by
its highest weightλ =

∑
λiϕi with λi ∈ Z+. The moduleLλ can be realized as

a submodule (or quotient) of⊗
(
R(ϕi)

⊗λi
)
.

Similarly, every irreduciblegl(n)-moduleLλ, whereλ = (λ1, . . . λn−1; c)
and c is the eigenvalue of the unit matrix, is realized in the space of tensors,
perhaps, twisted with the help ofc-densities, namely in the space⊗

i

(
R(ϕi)

⊗λi
)
⊗

trc, wheretrc is the Lie algebraic version of thecth power of the determinant, i.e.,
infinitesimally, trace, given for anyc ∈ C by the formulaX 7→ c · tr(X) for any
matrixX ∈ gl(W ). Thus, all the irreducible finite dimensional representations
of sl(W ) are naturally realized in the space of tensors, i.e., in the subspaces or
quotient spaces of the spaceT pq = W ⊗ · · · ⊗W︸ ︷︷ ︸

p

⊗W ∗ ⊗ · · · ⊗W ∗︸ ︷︷ ︸
q

, whereW is

the space of the identity representation. Forgl(W ), we have to consider the space
T pq ⊗ trc.

Forsp(W ), the construction is similar, except the fundamental moduleR(ϕi)
is now apart of the moduleΛi(id) consisting of theprimitive forms.

Foro(W ), the situation is totally different: not all fundamental representations
can be realised as (parts of) the modulesΛi(id). The exceptional one (or two, for
o(2n)) of them is called thespinor representation; for o(W ), wheredimW = 2n,
it is realized in the Grassmann algebraE.

(V ) of a “half” of W , whereW = V ⊕
V ∗ is a decomposition into the direct sum of subspaces isotropic with respect to
the form preserved byo(W ). FordimW = 2n+1, it is realized in the Grassmann
algebraE.

(V ⊕W0), whereW = V ⊕ V ∗ ⊕W0 andW0 is the 1-dimensional
space on which the orthogonal form is nondegenerate.

The quantization of the harmonic oscillator leads to an infinite dimensional
analog of the spinor representation which after Howe we calloscillator repre-
sentation ofsp(W ). It is realized inS.

(V ), where as above,V is a maximal
isotropic subspace ofW (with respect to the skew form preserved bysp(W )). The
remarkable likeness of the spinor and oscillator representations was underlined in
a theory ofdual Howe’s pairs, [23].

The importance of spinor-oscillator representations is different for distinct
classes of Lie algebras and their representations. In the description of irreducible
finite dimensional representations of classical matrix Lie algebrasgl(n), sl(n) and
sp(2n) we can do without either spinor or oscillator representations. We can not
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do without spinor representation foro(n), but a pessimist might say that spinor
representation constitutes only1n th of the building bricks. Our, optimistic, point
of view identifies the spinor representations as one of the two possible types of
the building bricks.

For the Witt algebrawitt and its central extension, the Virasoro algebravir,
everyirreducible highest weight module is realized as a quotient of a spinor or,
equivalently, oscillator representation, see [8], [10]. This miraculous equivalence
is known in physics under the name ofbose-fermi correspondence, see [18], [26].

For the list of generalizations ofwitt andvir, i.e., simple (or close to simple)
stringy Lie superalgebras or Lie superalgebras of vector fields onN -extended
supercircles, often called by an unfortunate (as explained in [21]) name “super-
conformal algebras”, see [21]. The importance of spinor-oscillator representations
diminishes asN grows, but for the most interesting —distinguished([21]) —
stringy superalgebras it is high, cf. [11], [46].

3.2. Semi-infinite cohomology. An example of applications of spinor-
oscillator representations: semi-infinite (or BRST) cohomology of Lie superalge-
bras. These cohomology were introduced by Feigin first for Lie algebras ([9]);
then he extended the definition to Lie superalgebras via another construction,
equivalent to the first one for Lie algebras ([7]). For an elucidation of Feigin’s
construction see [14], [31] and [54]. Feigin rewrote in mathematical terms and
generalized the constructions physicists used to determine thecritical dimensions
of string theories, i.e., the dimensions in which the quantization of the superstring
is possible, see [42], [18]. These critical dimensions are the values of the cen-
tral element (central charges) on the spinor-oscillator representation constructed
from the adjoint representation; to this day not for every central element of all
distinguished simple stringy superalgebras their values are computed on every
spinor-oscillator representation, not even on the ones constructed from the adjoint
representations.

4. The spinor-oscillator representations and Lie superalgebras

4.1. Spinor (Clifford–Weil–wedge– . . . ) and oscillator representations. As
we saw in [40],po(2n|m)0

∼= osp(m|2n), the superspace of elements of degree
0 in the standardZ-grading ofpo(2n|m) or, which is the same, the superspace
of quadratic elements in the representation by generating functions. At our first
lecture we defined thespinor-oscillator representationas the through map (here
k = [m2 ] andQ is the quantization)

g −→ po(2n|m)
Q−→
{
diff(n|k) if m = 2k
qdiff(n|k) if m = 2k − 1,

where Im(g) ⊂ po(2n|m)0 = osp(m|2n). Actually, such requirement is too
restrictive, we only need that the image ofg under embedding intopo(2n|m)
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remains rigid under quantization. So various simple subalgebras ofpo(2n|m) will
do as ambients ofg.

This spinor-oscillator representation is called thespinor representationof g
if n = 0, or theoscillator representationif m = 0. We will denote this rep-
resentationSpin(V ) and setOsc(V ) = Spin(Π(V )), whereV is the standard
representation ofosp(m|2n). In other words, ifSpin(V ) is a representation of
osp(m|2n), thenOsc(V ) is a representation ofosp(2n|m), soOsc(V ) only exists
for m even.

If V is ag-module without any bilinear form, but we still want to construct a
spinor-oscillator representation ofg, consider the moduleW = V ⊕V ∗ (where in
the infinite dimensional case we replaceV ∗ with therestricteddual ofV ; roughly
speaking, ifV = C[x], thenV ∗ = C[[ ∂∂x ]], whereas the restricted dual isC[ ∂∂x ])
endowed with the form (forv1, w1 ∈ V , v2, w2 ∈ V ∗) symmetric for the plus sign
and skew-symmetric otherwise:

B((v1, v2), (w1, w2)) = v2(w1)± (−1)p(v1)p(w2)w2(v1).

Now, inW , select a maximal isotropic subspaceU (not necessarilyV or V ∗) and
realize the spinor-oscillator representation ofg in the exterior algebra ofU .

Observe that the classical descriptions of spinor representations differ from
ours, see, e.g., [17], where the embedding ofg (in their caseg = o(n)) into the
quantized algebra (namely intoQ(po(0|n− 1))) is considered, not intopo(0|m).
The existence of this embedding is not so easy to see unless told, whereas our
constructions are manifest and bring about the same result.

To illustrate our definitions and constructions, we realize the orthogonal Lie
algebrao(n) as the subalgebra in the Lie superalgebrapo(0|n).

Caseo(2k). Basis:

X+
1 = ξ2η1, . . . , X+

k−1 = ξkηk−1, X+
k = ηkηk−1;

X−1 = ξ1η2, . . . , X−k−1 = ξk−1ηk, X−k = ξk−1ξk;

H1 = ξ1η1 − ξ2η2, . . . , Hk−1 = ξk−1ηk−1 − ξkηk, Hk = ξk−1ηk−1 + ξkηk.

ForR(ϕk) take the subspacespace functionsC[ξ]ev which contains the constants
C · 1̂, where1̂ is just the constant function1; clearly,1̂ is the vacuum vector.

Quantization (see above) sends:ξi into ξ̂i, andηi into ~ ∂
∂ξi

, soX±i 1̂ = 0 for

i < k, hence,Hi1̂ = [X+
i , X

−
i ]1̂ = 0 for i < k. Contrariwise,

Hk1̂ = [X+
k , X

−
k ]1̂ = [∂k∂k−1, ξ̂k−1ξ̂k]1̂ = ∂k(−ξ̂k−1∂k−1 + 1)ξ̂k1̂ = 1̂.

So we see that the spinor representation is indeed a fundamental one.
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Caseo(2k + 1). Basis:

X+
1 = ξ2η1, . . . , X+

k−1 = ξkηk−1, X+
k =

√
2ηkθ;

X−1 = ξ1η2, . . . , X−k−1 = ξk−1ηk, X−k =
√

2θξk;

H1 = ξ1η1 − ξ2η2, . . . , Hk−1 = ξk−1ηk−1 − ξkηk, Hk = 2ξkηk.

For R(ϕk) consider the space of even functionsC[ξ1, . . . , ξk, θ]ev and realize
o(2k + 1) so thatξi 7→ ξ̂i, ηi 7→ ~ ∂

∂ξi
, θ 7→ ~(θ̂ + ∂

∂θ ). As above foro(2k),
set~ = 1.

Then, as above,Hiv = [X+
i , X

−
i ]1̂ = 0 for i < k, whereas

Hk1̂ = [X+
k , X

−
k ]1̂ =

2

2

(
∂k(θ̂ +

∂

∂θ
)2ξ̂k + ξ̂k(θ̂ +

∂

∂θ
)2∂k

)
1̂ = 1̂.

So 1̂ is indeed the highest weight vector of thekth fundamental representation.
4.2. Stringy superalgebras. Casevir. For the basis ofvir takeei = ti+1 d

dt ,
i ∈ Z, and the central elementz; let the bracket be

[ei, ej ] = (j − i)ei+j − 1

12
δij(i

3 − i)z. (∗)

We advise the reader to refresh definitions of stringy superalgebras and various
modules over them, see [21], where we also try to convince physicists not to use
the term “superconformal algebra” (except, perhaps, forkL(1|1) andkM (1|1)). In
particular, recall thatFλ,µ = Span(ϕi = tµ+i(dt)λ | i ∈ Z).

Statement. The only instances whenFλ,µ possesses an invariantsymmetric
nondegenerate bilinear form are the space of half-densities,

√
Vol = F1/2,0, and

its twisted version,F1/2,1/2 and in both cases the form is:

(f
√
dt, g
√
dt) =

∫
fg · dt;

the only instances whenFλ,µ possesses an invariantskew-symmetricforms are
the quotient space of functions modulo constants,dF = F0,0/C ·1, and 1

2 -twisted
functions,

√
tF = F0,1/2 and in both cases the form is:

(f, g) =

∫
f · dg.

Let∂i = ∂
∂ϕi

(whereϕi = tµ+i(dt)λ). Letosc(
√

Vol) be thevir-submodule of

theexterioralgebra onϕi for i < 0 containing the constant1̂. Since the generators
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ei of vir acts onFλ,µ as (sums overi ∈ Z)

e1 =
∑

(µ+ i+ 2λ)ϕi+1∂i =
∑
iϕi+1∂i,

e−1 =
∑

(µ+ i+ 1)ϕi∂i+1 =
∑

(i+ 1)ϕi∂i+1;

e2 =
∑

(µ+ i− λ)ϕi+1∂i =
∑
iϕi+1∂i,

e−2 =
∑

(µ+ i+ 3λ)ϕi∂i+1 =
∑

(i+ 1)ϕi∂i+1,

and representinge0 andz as brackets ofe±1 ande±2 from (∗) we immediately
deduce that the highest weights(c, h) of osc(

√
Vol) is (−1

3 , 0).
For the spinor representationsspin(

√
tF) andspin(dF) (realized on thesym-

metricalgebra ofϕi for i < 0) we similarly obtain that the highest weights(c, h)
are(1

6 ,
1
2) for spin(

√
tF) and(−1

6 , 0) for spin(dF).
Observe that the representationsspin(

√
tF), spin(dF) and osc(

√
Vol) are

constructed on a half of the generators used to constructSpin(Fλ;µ).
4.3. The highest weights of the spinor representations ofkL(1|n) and

kM (1|n). In the following theorem we give the coordinates(c, h;H1, . . . ) of the
highest weight of the spinor representationsSpin(Fλ;µ) of the contact superal-
gebrakL(1|n) with respect toz (the central element),Kt, and, after semicolon,
on the elements of Cartan subalgebra, respectively. ForkM (1|n) we write h̃; H̃i.
(Observe that forn > 4 the Cartan subalgebra has more generators than just
H1 = Kξ1η1 , . . . ,Hk = Kξkηk which generate the Cartan subalgebra ofk(1|2k),
the algebra of contact vector fields with polynomial coefficients.)

n 0 1 2 ≥ 3

c 12λ2 − 12λ+ 2 −12λ+ 3 6 0

h (µ+ 2λ)(µ+ 1) µ+ 2λ 2µ+ 2λ+ ν 2n−1(µ+ λ) + 2n−3

h̃ – 2µ+ 3λ− 1
4 2µ+ 2λ− 1

2 2n−1(µ+ λ)

Theorem. Let (c, h;H1, . . . ) be the highest weight of the spinor representa-
tion Spin(Fλ;µ) of kL(1|n). The highest weight of the oscillator representation
Osc(Fλ;µ) = Spin(Π(Fλ;µ)) is (−c, h;H1, . . . ) and similarly forkM (1|n).

Forn 6= 2, all the coordinates of the highest weight other thanc, h vanish. For
n = 2 the value ofH on the highest weight vector fromSpin(Fλ,ν;µ) is equal to
ν.

The values ofc andh (or h̃) on modulesSpin(Fλ;µ) are given in the above
table.
Up to rescaling, these results are known for smalln, see [29], [28] and refs.

Remark. For the contact superalgebrasg on the1|n-dimensional supercircle
our choice ofg-modulesV = Fλ;µ from which we constructedSpin(V ⊕ V ∗) is
natural for smalln: there are no other modules! For largern it is only justified if
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we are interested in semi-infinite cohomology ofg and not in representation theory
per se. For the superalgebrasg of seriesvect andsvect the adjoint moduleg is of
the formT (id∗), i.e, it is either coinduced from multidimensional representation
(vect), or is a submodule of such a coinduced module (svect). Spinor-oscillator
representations of this type were not studied yet, cf. sec. 5.

4.4. Other spinor representations. 1) Among various Lie superalgebras for
which it is interesting to study spinor-oscillator representations, the simple (or
close to them) maximal subsuperalgebras ofpo are most interesting. The list of
such maximal subalgebras is being completed; various maximal subalgebras listed
in [48] distinct from the sums of mutual centralizers also provide with spinor
representations.

As an interesting example consider A. Sergeev’s Lie superalgebraas, the
nontrivial central extension of the Lie superalgebraspe(4) preserving the odd
bilinear form and the volume on the(4|4)-dimensional superspace, see [49, 50].
Namely, considerpo(0|6), the Lie superalgebra whose superspace is the Grass-
mann superalgebraΛ(ξ, η) generated byξ1, ξ2, ξ3, η1, η2, η3 and the bracket is
the Poisson bracket. Recall also that the quotient ofpo(0|6) modulo center is
h(0|6) = Span(Hf | f ∈ Λ(ξ, η)), where

Hf = (−1)p(f)
∑

(
∂f

∂ξj

∂

∂ηj
+
∂f

∂ηj

∂

∂ξj
).

Now, observe thatspe(4) can be embedded intoh(0|6). Indeed, settingdeg ξi =
deg ηi = 1 for all i we introduce aZ-grading onΛ(ξ, η) which, in turn, induces
aZ-grading onh(0|6) of the formh(0|6) = ⊕

i≥−1
h(0|6)i. Sincesl(4) ∼= o(6), we

can identifyspe(4)0 with h(0|6)0.
It is not difficult to see that the elements of degree−1 in the standard gradings

of spe(4) andh(0|6) constitute isomorphicsl(4) ∼= o(6)-modules. It is subject to
a direct verification that it is really possible to embedspe(4)1 into h(0|6)1.

A. Sergeev’s extensionas is the result of the restriction ontospe(4) ⊂ h(0|6)
of the cocycle that turnsh(0|6) into po(0|6). The quantization (with parameter
λ) deformspo(0|6) into gl(Λ(ξ)); the through mapsTλ : as −→ po(0|6) −→
gl(Λ(ξ)) are representations ofas in the 4|4-dimensional modulesSpinλ. The
explicit form ofTλ is as follows:

Tλ :

(
a b
c −at

)
+ d · z 7→

(
a b− λc̃
c −at

)
+ λd · 14|4,

where14|4 is the unit matrix and̃cij = ckl for any skew-symmetric matrixcij =
Eij−Eji and any even permutation(1234) 7→ (ijkl). Clearly,Tλ is an irreducible
representation for anyλ andTλ 6' Tµ for λ 6= µ.

2) Maximal subalgebras (for further examples see [48]) and a conjecture.
Let V1 be a linear superspace of dimension(r|s); let Λ(n) be the Grassmann
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superalgebra withn odd generatorsξ1, . . . , ξn andvect(0|n) = derΛ(n) the Lie
superalgebra of vector fields on the(0|n)-dimensional supermanifold.

Letg = gl(V1)⊗Λ(n)⊃+ vect(0|n) be the semidirect sum (the ideal at the open
part of⊃+) with the natural action ofvect(0|n) on the idealgl(V1)⊗Λ(n). The Lie
superalgebrag has a natural faithful representationρ in the spaceV = V1⊗Λ(n)
defined by the formulas

ρ(X ⊗ ϕ)(v ⊗ ψ) = (−1)p(ϕ)p(ψ)Xv ⊗ ϕψ,
ρ(D)(v ⊗ ψ) = −(−1)p(D)p(v)v ⊗Dψ

for anyX ∈ gl(V1), ϕ,ψ ∈ Λ(n), v ∈ V1, D ∈ vect(0|n). Let us identify the
elements fromgwith their images underρ, so we considerg embedded intogl(V ).

Theorem ([48]) 1) The Lie superalgebragl(V1) ⊗ Λ(n)⊃+ vect(0|n) is max-
imal irreducible insl(V1 ⊗ Λ(n)) unlessa) dimV1 = (1, 1) or b) n = 1 and
dimV1 = (1, 0) or (0, 1) or (r|s) for r 6= s.

2) If dimV1 = (1, 1), thengl(1|1) ∼= Λ(1)⊃+ vect(0|1), so

gl(V1)⊗ Λ(n)⊃+ vect(0|n) ⊂ Λ(n+ 1)⊃+ vect(0|n+ 1)

and it is the bigger superalgebra which is maximal irreducible insl(V ).
3) If n = 1 anddimV1 = (r|s) for r > s > 0, theng is maximal irreducible

in gl(V ).
Conjecture. Supposer+s = 2N . Then,dimV coincides withdim Λ(W ) for

some spaceW . We suspect that this coincidence is not accidental but is occasioned
by the spinor representations of the maximal subalgebras described above. The
same applies toq(V1) ⊗ Λ(n)⊃+ vect(0|n), a maximal irreducible subalgebra in
q(V1 ⊗ Λ(n)).

4.5. Selected problems. 1) The spinor and oscillator representations are real-
ized in the symmetric (perhaps, supersymmetric) algebra of the maximal isotropic
(at least forg = sp(2k) and o(2k)) subspaceV of the identity g-module
id = V ⊕ V ∗. But one could have equally well started from anotherg-module.
For an interesting study of spinor representations constructed fromW 6= id, see
[45].

To consider in a way similar to sec. 2 contact stringy superalgebrasg =
kL(1|n) and kM (1|n), as well as other stringy superalgebras from the list [21],
we have to replaceFλ,µ with modulesTµ(W ) of (twisted) tensor fields on the
supercircle and investigate how does the highest weight of1̂ ∈ Osc(Tµ(W ))

or 1̂ ∈ Spin(Tµ(W )) constructed from an arbitrary irreducibleco(n)-module
W = V ⊕ V ∗ depend on the highest weight ofW . (It seems that the new and
absolutely remarkable spinor-like representation Poletaeva recently constructed
[46] is obtained in this way.)

To give the reader a feel of calculations, we consider here the simplest non-
trivial caseo(3) = sl(2). The results may (and will) be used in calculations of
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Spin(Tµ(W )) for g = kL(1|n) andkM (1|n) for n = 3, 4. As is known, for every
N ∈ Z+ there exists an irreducible(N + 1)-dimensionalg-module with highest
weightN . This module possesses a natural nondegenerateg-invariant bilinear
form which is skew-symmetric forN = 2k + 1 and symmetric forN = 2k.
The corresponding embeddingsg −→ o(2k + 1) andg −→ sp(2k) are called
principal, see [19] and references therein. Explicitly, the images of the Chevalley
generatorsX± of sl(2) are as follows:X− 7→∑

X−i ,

X+ 7→


N(N + 1)X+

N +
∑

1≤i≤N−1
i(N + 1− i)X+

i for N = 2k + 1

N2X+
N +

∑
1≤i≤N−1

i(2N − i)X+
i for N = 2k.

From the commutation relations betweenX+ andX− we derive that only
X±N give a nontrivial contribution to the highest weightHW of thesl(2)-module
Spin(LN ); we have:

HW =

 N(N + 1) if N = 2k + 1

−1
2N

2 if N = 2k.

2) Observe, that the notion of spinor-oscillator representation can be broad-
ened to embrace the subalgebras of the Lie superalgebrah of Hamiltonian vector
fields and their images under quantization; we call the through map theprojective
spinor-oscillator representation. Since the Lie superalgebrah has more deforma-
tions thanpo ([40]), and since the sets of maximal simple subalgebras ofpo and
h are distinct, the set of examples of projective spinor-oscillator representations
differs from that of spinor-oscillator representations.
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holm, Roslagsv. 101, Kräftriket hus 6, S-106 91, Stockholm, Sweden;
mleites@matematik.su.se (On leave of absence from Balakovo In-
stitute of Technique of Technology and Control, Branch of Saratov
Technical University, Balakovo, Saratov Region, Russia)

Abstract. LetA be an associative algebra overC andL an invariant linear functional on it (trace).
Let ω be an involutive antiautomorphism ofA such thatL(ω(a)) = L(a) for anya ∈ A. Then
A admits a symmetric invariant bilinear form〈a, b〉 = L(aω(b)). ForA = U(sl(2))/m, wherem
is any maximal ideal ofU(sl(2)), Leites and I have constructed orthogonal basis whose elements
turned out to be, essentially, Chebyshev and Hahn polynomials in one discrete variable.

Here I takeA = U(gl(3))/m for the maximal idealsm which annihilate irreducible highest
weightgl(3)-modules of particular form (generalizations of symmetric powers of the identity rep-
resentation). In whis way we obtain multivariable analogs of Hahn polynomials. Clearly, one can
similarly considergl(n) andgl(m|n) instead ofgl(3) but the amount of calculations is appalling.

§1. Background

1.1. Lemma. LetA be an associative algebra generated by a setX. Denote by
[X,A] the set of linear combinations of the form

∑
[xi, ai], wherexi ∈ X, ai ∈ A.

Then[A,A] = [X,A].
Proof. Let us apply the identity ([3], p.561)

[ab, c] = [a, bc] + [b, ca]. (1.1.1)

Namely, leta = x1 . . . xn; let us induct onn to prove that[a,A] ⊂ [X,A].
For n = 1 the statement is obvious. Ifn > 1, thena = xa1, wherex ∈ X and
due to (1.1.1) we have

[a, c] = [xa1, c] = [x, a1c] + [a1, cx].

‡ I am thankful to D. Leites for encouragement and help and to ESI, Vienna, for hospitality and
support.
† sergeev@bittu.org.ru
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1.2. Lemma. LetA be an associative algebra anda 7→ ω(a) be its involutive
antiautomorphism (transposition forA = Mat (n)). LetL be an invariant func-
tional onA (like trace, i.e.,L([A,A]) = 0) such thatL(ω(a)) = L(a) for any
a ∈ A. Define the bilinear form onA by setting

〈u, v〉 = L(uω(v)) forany u, v ∈ A. (1.2.1)

Then
i) 〈u, v〉 = 〈v, u〉;
ii) 〈xu, v〉 = 〈u, ω(x)v〉;
iii) 〈ux, v〉 = 〈u, vω(x)〉;
iv) 〈[x, u], v〉 = 〈u, [ω(x), v]〉.
Proof. (Clearly, iii) is similar to ii)).

i) 〈u, v〉 = L(uω(v)) = L(ω(uω(v))) = L(vω(u)) = 〈v, u〉.
ii) 〈xu, v〉 = L(xuω(v)) = L(uω(v)x) = L(uω(ω(x)v)) = 〈u, ω(x)v〉.
iv) 〈[x, u], v〉 = 〈xu, v〉 − 〈ux, v〉
〈u, ω(x)v〉 − 〈u, vω(x)〉 = 〈u, [ω(x), v]〉.

1.3. Traces and forms onU(g). Let g be a finite dimensional Lie algebra,
Z(g) the center of(U(g),W the Weyl group ofg andh a Cartan subalgebra ofg.
The following statements are proved in [1].

1.3.1. Proposition. i) U(g) = Z(g)⊕ [U(g), U(g)].
ii) Let ] : Z(g)⊕ [U(g), U(g)] −→ Z(g) be the natural projection. Then

(uv)] = (vu)] and (zv)] = z(v)] for any u, v ∈ U(g) and z ∈ Z(g).

iii) U(g) = S(h)W ⊕ [U(g), U(g)].
iv) Letλ be the highest weight of the irreducible finite dimensionalg-module

Lλ andϕ the Harish-Chandra homomorphism. Then

ϕ(u])(λ) =
tr(u|Lλ)

dimLλ
.

1.3.2. OnU(g), define a form with values inZ(g) by setting

〈u, v〉 = (uω(v))], (∗)
whereω is the Chevalley involution inU(g).

Lemma The form(∗) is nondegenerate onU(g).
Proof. Let 〈u, v〉 = 0 for anyv ∈ U(g). By Proposition 1.3.1

tr(uω(v)) = ϕ((uω(v))])(λ) · dimL(λ) = ϕ(〈u, v〉)(λ) · dimL(λ) = 0;
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hence,u = 0 onL(λ) for any irreducible finite dimensionalL(λ), and, therefore,
u = 0 in U(g).

1.3.3. Lemma. For anyλ ∈ h∗ define aC-valued form onU(g) by setting

〈u, v〉λ = ϕ(〈u, v〉)(λ).

The kernel of this form is a maximal ideal inU(g).
Proof. The form 〈·, ·〉λ arises from a linear functionalL(u) = ϕ(u])(λ);

hence, by Lemma 1.2 its kernel is a twosided idealI in U(g). OnA = U(g)/I,
the form induced is nondegenerate. Ifz ∈ Z(g), then

〈z, v〉λ = L(zω(v)) = L(z)L(ω(v));

hence,z−L(z) ∈ I. Therefore, the onlyg-invariant elements inA are those from
Span (1).

Let J be a twosided nontrivial (6= A, 0) ideal inA andJ = ⊕
µ
Jµ be the

decomposition into irreducible finite dimensionalg-modules (with respect to the
adjoint representation). SinceJ 6= A, it follows thatJ0 = 0. Hence,L(J) = 0
and〈J,A〉. Thus,J = 0.

1.4. Gelfand–Tsetlin basis and transvector algebras. (For recapitulation on
transvector algebras see [7].)

Let Eij be the matrix units. Ingl(3), we fix the subalgebragl(2) embedded
into the left upper corner and leth denote the Cartan subalgebra ofgl(3) =
Span (Eii : i = 1, 2, 3).

There is a one-to-one correspondence between finite dimensional irreducible
representations ofgl(3) and the sets

(λ1, λ2, λ3) such that λ1 − λ2, λ2 − λ3 ∈ Z+.

Such sets are called highest weights of the corresponding irreducible representa-
tion whose space is denotedLλ. With each suchλ we associate a Gelfand–Tsetlin
diagramΛ:

λ31 λ32 λ33

λ21 λ22

λ11

(1.4.1)

where the upper line coincides withλ and where “betweenness” conditions hold:

λk,i−λk−1,i ∈ Z+; λk−1,i−λk,i+1 ∈ Z+ forany i = 1, 2; k = 2, 3. (1.4.2)

Set
z21 = E21, z12 = E12; z13 = E13, z32 = E32;

z31 = (E11 − E22 + 2)E31 + E21E32,

z23 = (E11 − E22 + 2)E23 − E21E13.

(1.4.3)
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Set(Lλ)+ = Span (u : u ∈ Lλ, E12u = 0).
1.4.1. Theorem. (see [4])Letv be a nonzero highest weight vector inLλ, and

Λ a Gelfand–Tsetlin diagram. Set

vΛ = zλ21−λ11
21 zλ31−λ21

31 zλ32−λ22
32 v

and letlki = λki − i+ 1. Then
i) The vectorsvΛ parametrized by Gelfand–Tsetlin diagrams form a basis in

Lλ.
ii) Thegl(3)-action on vectorsvΛ is given by the following formulas

E11vΛ = λ11vΛ;

E22vΛ = (λ21 + λ22 − λ11)vΛ;

E33vΛ = (
3∑
i=1

λ3i −
2∑
j=1

λ2j)vΛ;

E12vΛ = −(l11 − l21)(l11 − l22)vΛ+δ11 ;

E21vΛ = vΛ−δ11 ;

E23vΛ = −(l21 − l31)(l21 − l32)(l21 − l33)

(l21 − l22)
vΛ+δ11−

(l22 − l31)(l22 − l32)(l22 − l33)

(l22 − l21)
vΛ+δ22 ;

E32vΛ =
(l21 − l11)

(l21 − l22)
vΛ−δ11 +

(l22 − l11)

(l22 − l21)
vΛ−δ22 ,

whereΛ ± δki is obtained fromΛ by replacingλki with λki ± 1 and we assume
thatvΛ = 0 if Λ does not satisfy conditions on GTs-diagrams.

iii) The vectorsvΛ corresponding to the GTs-diagrams withλ21 = λ11 form a
basis of(Lλ)+.

§2. Formulations of main results

2.1. ModulesSα(V ). Let g = gl(3) be the Lie algebra of3× 3 matrices overC.
For anyα ∈ C denote bySα(V ) the irreducibleg-module with highest weight
(α, 0, 0).

If α ∈ Z+, thenSα(V ) is the usualα-th symmetric power of the identity
g-moduleV . Namely:

Sα(V ) = Span (xk1
1 x

k2
2 x

k3
3 : k1 + k2 + k3 = α; k1, k2, k3 ∈ Z+).

Forα 6∈ Z+ we have (like in semi-infinite cohomology of Lie superalgebras)

Sα(V ) = Span (xk1
1 x

k2
2 x

k3
3 : k1 + k2 + k3 = α; k2, k3 ∈ Z+).

kievarwe.tex; 12/03/2001; 3:49; p.123



ALGEBRA OF GL(3) AND ORTHOGONAL POLYNOMIALS 117

Remark. The expressionxk for k ∈ C is understood as a formal one,
satisfying∂x

k

∂x = kxk−1.
OnSα(V ) theg = gl(3)-action is given byEij 7→ xi

∂
∂xj

.

2.2. Theorem. i) Sα(V ) is an irreducibleg-module for anyα.
ii) The kernelJα of the corresponding toSα(V ) representation ofU(g) is a

maximal ideal ifα 6∈ Z<0.
SetAα = U(g)/Jα and let θ be the highest weight of the adjoint rep-

resentation ofg. Now considerAα as g-module with respect to the adjoint
representation.

iii) Aα =
∞⊕
k=0

Lkθ if α 6∈ Z≥0.

iv) Aα =
α⊕
k=0

Lkθ if α ∈ Z≥0.

v) The form〈u, v〉α = ϕ(uω(v)])(α, 0, 0) is nondegenerate onAα for α 6∈
Z<0.

2.3. Let h = Span (E11, E22, E33) be Cartan subalgebra ing andε1, ε2, ε3

the dual basis ofh∗. LetQ = {∑ kiεi :
∑
ki = 0} be the root lattice ofg. For

anyµ ∈ Q define

(Aα)µ = {u ∈ Aα : [h, u] = µ(h)u for any h ∈ h}. (2.3.1)

Clearly,Aα isQ-graded:
Aα = ⊕

µ∈Q
(Aα)µ.

Theorem 2.5 below shows that(Aα)µ = Ruµ, whereuµ ∈ Aα is defined uniquely
up to a constant factor andR = C[E11, E22, E33]/(E11 + E22 + E33 − α).

Denote by(Aα)+ the subalgebra ofgi consisting of vectors highest with
respect to the fixedgl(2):

(Aα)+ = {u ∈ Aα : [E12, u] = 0}. (2.3.2)

The algebra(Aα)+ also admitsQ-grading:

(Aα)+ = ⊕
ν∈Q

(Aα)+
ν . (2.3.3)

Denote:Q+ = {ν ∈ Q : (Aα)+
ν 6= 0}.

Theorem 2.4 below shows that(Aα)+
ν = C[E33]u+

ν , whereν ∈ Q+. For
f, g ∈ C[E33] andν ∈ Q+ set

〈f, g〉+ν = 〈fu+
ν , gu

+
ν 〉α. (2.3.4)

Forf, g ∈ R andµ ∈ Q set

〈f, g〉µ = 〈fuµ, guµ〉α. (2.3.5)
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Fork ≥ 0 andν ∈ Q+ set

fk,ν(E33)uν =

{
(ad z31)k(uν+k(ε1−ε3)) for ν(E33) ≤ 0

(ad z23)k(uν+k(ε3−ε2)) for ν(E33) ≥ 0

((2.3.6)
(2.3.7)

)
Fork, l ≥ 0 andν ∈ Q+ set

fνl,k(E11, E22, E33)uν ={
(ad z21)l(ad z31)k(uν+k(ε1−ε3)+l(ε1−ε2)) for ν(E33) ≤ 0

(ad z21)l(ad z23)k(uν+k(ε3−ε2)+l(ε1−ε2) for ν(E33) ≥ 0

((2.3.8)
(2.3.9)

)

2.4. Theorem. 0) (Aα)+
ν = C[E33]u+

ν , whereuν is determined uniquely up to
a constant factor.

1) 〈(Aα)+
ν ,A

α)+
ν 〉α = 0 for ν 6= µ.

2) The polynomialsfk,ν(E33) are orthogonal relative〈·, ·〉+ν .
3) The polynomialsfk,ν(E33) satisfy the difference equation

(E33 − ν(E33) + 1)(E33 + ν(E11)− α)∆f − E33(E33 + ν(E22)− α− 2)∇f =
k(k + 2ν(E11) + 2)f if ν(E33) < 0;

(E33 + 1)(E33 + ν(E11)− α)∆f − (E33 − ν(E33))(E33 + ν(E22)− α− 2)∇f =
k(k − 2ν(E11) + 2)f if ν(E33) ≥ 0.

4) Explilcitely,fk,ν(E33) is of the form

fk,ν(E33) = const× 3F2

 −k, k + 2ν(E11) + 2, −E33

1− ν(E33), ν(E11)− α
| 1
 ,

where

3F2

(
α1, α2, α3

β1, β2
| z
)

=
∞∑
i=0

(α1)i(α2)i(α3)i
(β1)i(β2)i

zi

i!

is a generalized hypergeometric function,(α)0 = 1 and(α)i = α(α+ 1) . . . (α+
i− 1) for i > 0.

2.5. Theorem. 0) (Aα)ν = C[E11, E22, E33]uν , whereuν is determined
uniquely up to a constant factor.

1) 〈(Aα)ν ,A
α)ν〉α = 0 for ν 6= µ.

2) The polynomialsfνl,k(E11, E22, E33) form an orthogonal basis ofR relative
〈·, ·〉ν .

3) The polynomialsw(fl,k)(E11, E22, E33) for w ∈ W form an orthogonal
basis ofR relative 〈·, ·〉w(ν) provided polynomialsfl,k(E11, E22, E33) form an
orthogonal basis ofR relative〈·, ·〉ν .
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4) The polynomialsfνl,k(E11, E22, E33) for ν ∈ Q+ andν(E33) ≤ 0 satisfy
the system of two difference equations (whereH1 = E11 − E22,H2 = E33)

[f(H1 + 2,H2)− f(H1,H2)] · 1
4(H1 −H2 + α+ 1)(H1 +H2 − α)−

[f(H1,H2)− f(H1 − 2,H2)] · 1
4(H1 −H2 + α− ν(E11))(H1 +H2 − α− 1+

ν(E22)) = [l2 + l(ν(E11) + ν(E22) + 1)) + ν(E22)− ν(E11)]f ;

[2α− ν(H2)(α+ 2 + ν(H2)) +H2(2α+ 1 + 2ν(H2))− 2H2
2 ]f(H1,H2)−

1
2(H2 + 1− ν(H2))(H1 −H2 + α− 2ν(E11))f(H1 − 1,H2 + 1)−
1
2H2(H1 −H2 + α+ 2)f(H1 + 1,H2 + 1)−
1
2(H2 + 1− ν(H2))(α−H1 −H2)f(H1 + 1,H2 + 1)−
1
2H2(α−H1 −H2 + 2− 2ν(E22))f(H1 − 1,H2 − 1) =

[2k2 + 4kl + 4k(1 + ν(E11)) + 2l(1 + ν(E11)− ν(E22))+

ν(E11)2 − ν(E22)2 + 4ν(E11)]f(H1,H2).

§3. Proof of Theorem 2.2

i) The moduleSα(V ) is irreducible if and only if it has no vacum vectors (i.e,
vectors annihilated byE12 andE23. This is subject to a direct verification.

ii) Follows from Exercise 858 of Ch. 8 of [1].
iii) Let A3 be the Weyl algebra (i.e., it is generated by thepi andqi for i =

1, 2, 3 satisfying

pipj − pjpi = qiqj − qjqi = 0; piqj − qjpi = −δij . (3.1)

SettingEij 7→ piqj we see that the homomorphismϕ : U(g) −→ End (Sα(V ))

factors throughA3 andA3 acts onSα(V ) so thatpi 7→ xi andqi 7→ ∂
∂xi

. Let us
describe the image ofϕ. To this end, onA3, introcude a grading by setting

deg pi = 1 deg qi = −1 for i = 1, 2, 3. (3.2)

Now it is clear thatIm ϕ is the algebraB3 of elements of degree 0.
To describe highest weight elements inB3, it suffices to describe same in

Sk(V ) ⊗ Sk(V ∗). Let us identifySk(V ) ⊗ Sk(V ∗) with End (Sk(V )), let u ∈
End (Sk(V )) commutes with the action ofE12 andE23 on Sk(V ). But thenu
is uniquely determined by its value on the lowest weight vectorxk3 ∈ Sk(V );
moreover,E12x

k
3 = 0. Hence,

u(xk3) = a0x
k
3 +

k∑
i=0

aix
i
1x
k−i
3 ,
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so

u(xk3) =
1

k
a0(

k∑
i=0

xi
∂

∂xi
)xk3 +

k∑
i=0

(k − i)!
k!

ai(x1
∂

∂x3
)ixk3.

This shows that the algebra of highest weight vectors inB3 is generated byp1q3

andz = p1q1 + p2q2 + p3q3. If α 6∈ Z≥0, thenAα is the quotient ofB3 modulo
(z − α). This proves iii).

iv) In this caseAα = End (Sk(V )) and the proof follows from the arguments
at the end of the above paragraph.

v) By 1.3.3 the kernel of〈·, ·〉α in U(g) is a maximal ideal. ButAα =
U(g)/Jα, whereJα is maximal due to i). SoJα coincides with the kernel of
〈·, ·〉α in U(g) and the form is nondegenerate onAα.

§4. Proof of Theorem 2.4

0) Direct computations show that the set of elements fromA3 commuting with
E12 is a subalgebra generated byp1, q2, p3, q3 andz = p1q1 + p2q2 + p3q3. So
this algebra is the linear span of the elements of the form

u = pk1
1 q

k2
2 p

k3
3 q

k4
3 z

k5 .

If u ∈ B3, thenk1 + k3 = k2 + k4, so

u =

{
pk1

1 q
k2
2 p

k3−k4
3 pk4

3 q
k4
3 z

k5 if k3 ≥ k4

pk1
1 q

k2
2 p

k3
3 q

k3
3 q

k4−k3
3 zk5 if k3 ≤ k4.

(4.1)

Hence, setting forν =
∑
kiεi such that

∑
ki = 0, k1 ≥ 0 andk2 ≤ 0

u+
ν =

{
pk1

1 q
−k2
2 pk3

3 if k3 ≥ 0

pk1
1 q
−k2
2 q−k3

3 if k3 ≤ 0
(4.2)

we obtain the statement desired.
1) Letu ∈ (A+

α )µ, v ∈ (A+
α )ν , andh ∈ h. Then by heading iv) of Lemma 1.2

we obtain:

〈[h, u], v〉 = µ(h)〈u, v〉 = 〈u, [h, v]〉 = ν(h)〈u, v〉.
So〈u, v〉 = 0 if µ 6= ν.

2) Letν(E33) ≤ 0. We have:

fk,νu
+
ν = (ad z31)k(u+

ν+k(ε1−ε3)) = ad z31(ad z31)k−1(u+
ν+(k−1)(ε1−ε3)+(ε1−ε3)) =

(ad z31)fk−1,ν+(ε1−ε3)u
+
ν+(ε1−ε3).
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Direct verification shows that (hereh = E33)

(ad z31)(fu+
ν ) = {(E33 − ν(E33))[(E33 − α)ν(E11) + (ν(E11)− 1)ν(E11)]f(h)−

E33[(E33 − α)ν(E11)− (ν(E22) + 2)ν(E11)]f(h− 1)}uν−(ε1−ε3).

(4.3)
It easily follows from Lemma 1.2 that for anyz ∈ U(g) we have

〈(ad z)(u), v〉 = 〈u, (ad ω(z))(v)〉,

but

ω(z31) = ω((E11 −E22 + 2)E31 +E21E32) = E13(E11 −E22 + 2) +E23E12.

Sincefuν is a highest weight vector with respect to the fixedgl(2), it follows
that

(ad ω(z31))(fuν) = (ad (E13(E11 − E22 + 2))(fuν) =

(ν(E11)− ν(E22) + 2)∆f · uν+(ε1−ε3).

Now, let us induct onk. For k = 0 the statement is obvious. Fork > 0 and
deg g < k we have

〈fk,ν , g〉ν = 〈fk,νu+
ν , gu

+
ν 〉 =

〈fk−1,ν+(ε1−ε3)u
+
ν+(ε1−ε3), (ad (ω(z31)))(gu+

ν )〉 =

〈fk−1,ν+(ε1−ε3), (ν(E11)− ν(E22) + 2)∆g〉ν+(ε1−ε3) = 0

by inductive hypothesis.
The caseν(E33) ≥ 0 is similar.
3) Observe thatz = E13E31 + E23E32 belongs to the centralizer ofgl(2) in

U(g). Let ν(E33) ≤ 0. Thenu+
ν = pk1

1 q
k2
2 q

k3
3 as in (4.1.2). Having appliedad z
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to fu+
ν we obtain:

(ad z)(fu+
ν ) = E13E31fu

+
ν + fu+

ν E31E13 − E13fu
+
ν E31 − E31fu

+
ν E13+

E23E32fu
+
ν + fu+

ν E32E23 − E23fu
+
ν E32 − E32fu

+
ν E23 =

E11(E33 + 1)fu+
ν + fu+

ν E33(E11 + 1)−
f(E33 + 1)u+

ν E11(E33 + 1)− f(E33 − 1)E33(E11 + 1)u+
ν + E22(E33 + 1)fu+

ν +

fu+
ν E33(E22 + 1)− f(E33 + 1)E22u

+
ν (E33 + 1)− f(E33 − 1)E33u

+
ν (E22 + 1) =

(E11 + E22)(E33 + 1)fu+
ν +

(E33 − ν(E33))(E11 + 1− ν(E11) + E22 + 1− ν(E22))fu+
ν −

f(E33 + 1) · (E33 + 1− ν(E33))(E11 + E22 − ν(E11))u+
ν −

f(E33 − 1)E33(E11 + E22 − ν(E22) + 2)u+
ν =

[f(E33 + 1) · (E33 + 1− ν(E33))(E33 − α+ ν(E11))+

f(E33 − 1)E33(E33 + ν(E22)− α− 2)−
(E33 − α)(E33 + 1)f − (E33 − ν(E33))(E33 + ν(E11) + ν(E22)− α− 2)f ]u+

ν .

This gives us the right hand side of the first equation of heading 3).
Sincead z commutes with thegl(2)-action and preserves the degree of poly-

nomialf , it follows that(ad z)(fuν) = c · (fuν). Counting the constant factor,
we arrive to the first equation of heading 3).

The proof of the second equation is similar.

§5. Proof of Theorem 2.5

0) Recall thatB3 is the subalgebra ofA3 of the elements of degree 0 relative
grading (3.2).

Fork ∈ Z setrki =

{
= pki if k ≥ 0

, q−ki if k ≤ 0
. Forγ =

∑
kiεi, where

∑
ki = 0, set

uγ = rk1
1 r

k2
2 r

k3
3 .

Clearly,B3 is the linear span of the elements of the form

pm1
1 ql11 p

m2
2 ql22 p

m3
3 ql33 , where m1 +m2 +m3 = l1 + l2 + l3.

It is also clear that each such element can be represented in the form

f(E11, E22, E33)rk1
1 r

k2
2 r

k3
3 .

This completes the proof of heading 0).
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1) Proof is similar to that from sec. 4.2.
2) Let ν(E33) ≤ 0. By settingH1 = E11 − E22, H2 = E22 − E33 we

identifyR = C[E11, E22, E33]/(E11 +E22,+E33−α) with C[H1,H2]. Let Λ is
a Gelfand–Tsetlin diagram of the following form:

ν(E11) + k + l 0 −(ν(E11) + k + l)

ν(E11) + l −(ν(E22) + l)

ν(E11)

From the explicit formula forfνk,l we derive that

fνk,luν = vΛ. (5.1)

Now, consider the following operators from the maximal commutative subal-
gebra ofU(g):

E11, E22,

Ω2 = E2
11 + E2

22 + E11 − E22 + 2E21E12,

Ω3 = E2
11 + E2

22 + E2
33 + E11 − E22 + E11 − E33 + E22 − E33+

2E21E12 + 2E31E13 + 2E32E23.

(5.2)

Then we have:

E11vΛ = ν(E11)vΛ; E22vΛ = −ν(E22)vΛ;

Ω2vΛ = [2l2 + 2l(ν(E11) + ν(E22) + 1)+

ν(E11)2 + ν(E22)2]vΛ;

Ω3vΛ = 2(ν(E11) + k + l)(ν(E11) + k + l + 2]vΛ.

(5.3)

It is easy to check that the operators (5.2) satisfy

ω(E11) = E11; ω(E22) = E22; ω(Ω2) = Ω2; ω(Ω3) = Ω3

and, therefore, they are selfadjoint relative the form〈·, ·〉. Formula (5.3) makes
it manifest that operators (5.2) separate the vectorsvΛ, hence, these vectors are
pairwise orthogonal. Moreover, it is easy to see thatfνk,l is of the form

fνk,l = H l
1H

k
2 + . . . ,

where the dots designate the summands of degrees≤ k + l of the formHa
1H

b
2,

where(a, b) < (l, k) with respect to the lexicographic ordering. Thus, thefνl,k
constitute a basis ofC[H1,H2].
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3) The statement follows from the fact that the Weyl group acts onAα and
preserves the form〈·, ·〉.

4) Since the polynomialsfνl,kuν are elements of a Gelfand–Tsetlin basis, they
are eigenvectors forΩ2 andΩ3 with respect to the adjoint action ofg = gl(3) on
Aα. As we have shown in sec 5.2, we have

Ω2f
ν
l,kuν = [2l2 + 2l(ν(E11) + ν(E22) + 1)+

ν(E11)2 + ν(E22)2]fνl,kuν ;

Ω3f
ν
l,kuν = 2(ν(E11) + k + l)(ν(E11) + k + l + 2]fνl,kuν .

To derive the corresponding equations, we have to explicitly compute the actions
of Ω2 and Ω3 on fuν . These straightforward computations imply the second
equation.
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Abstract. The categories with noninvertible morphisms are studied analogously to the semisuper-
manifolds with noninvertible transition functions. The concepts of regularn-cycles, obstruction and
the regularization procedure are introduced and investigated. It is shown that the regularization of
a category with nonivertible morphisms and obstruction form a 2-category. The generalization of
some related structures to the regular case is given.

1. Introduction

In the supermanifold noninvertible generalization approach [1–3] we study here
the obstructed cocycle conditions in the category theory framework and extend
them to such structures as categories, functions, (co-) algebras, (co-) modules etc.
This approach is connected with the higher regularity concept [4] and reconsid-
ering the role of identities [5]. The introduced category regularization together
with obstruction form a2-category. Similar abstract structure generalizations were
considered in topological QFT [6, 7], forn-categories [8–10], near-group cate-
gories [11, 12] (with noninvertible elements) and weak Hopf algebras [13, 14]
in which the counit does not satisfyε (ab) = ε (a) ε (b) or satisfy first order (in
our classification) regularity conditions [15, 16]. We first show how to deal with
noninvertibility in the supermanifold theory [17, 18] and then apply this approach
to more generalstructures.
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2. Supermanifolds and semisupermanifolds

In the supermanifold theory [17–19] the phenomenon of noninvertibility obvi-
ously arises from odd nilpotent elements and zero divisors of Grassmann algebras
(also in the infinite dimensional case [20]). Despite the invertibility question is
quite natural, the answer is not so simple and in some cases can be nontrivial,
e.g. in some superalgebras one can introduce invertible analog of an odd symbol
[21], or construct elements without number part which are not nilpotent even
topologically [22]. Several guesses concerning inner noninvertibility inherent in
the supermanifold theory were made before, e.g. “...there may be no inverse pro-
jection0 at all” [23], “...a general SRS needs not have a body0 ” [24], or “...a body0

may not even exist in the most extreme examples” [25]. It were also considered
pure odd supermanifolds [26, 27] which give an important counterexample to the
Coleman-Mandula theorem “...and provides us with a new, missed so far, version
of the Poincaŕe supergroup” [28], exotic supermanifolds with nilpotent even co-
ordinates [29] and supergravity with noninvertible vierbein [30]. Some problems
with odd directions and therefore connected with noninvertibility in either event
are described in [31, 32], and a perspective list of supermanifold problems was
stated by D. Leites in [33].

The patch definition of a supermanifoldM0 in most cases differs from the
patch definition of an ordinary manifold [34, 35] by “super-” terminology only
and is well-known [36]. Let

⋃
α
{Uα, ϕα} is an atlas of asupermanifoldM0, then

its gluing transition functionsΦαβ = ϕα ◦ ϕ−1
β satisfy the cocycle conditions

Φ−1
αβ = Φβα, Φαβ ◦ Φβγ ◦ Φγα = 1αα (1)

on overlapsUα ∩ Uβ and on triple overlapsUα ∩ Uβ ∩ Uγ respectively, where

1αα
def
= id (Uα). To obtain a patch definition of an object analogous to superman-

ifold we try to weaken demand of invertibility of coordinate mapsϕα. Consider
a generalized superspaceM covered by open setsUα asM =

⋃
α
Uα. We assume

here that the mapsϕα : Uα → Vα ⊂ Rn|m are not all homeomorphisms, i.e.
among them there are noninvertible maps1.

Definition 1. A semisupermanifoldis a noninvertibly generalized superspaceM
represented as a semiatlasM =

⋃
α
{Uα, ϕα} with invertible and noninvertible

coordinate mapsϕα : Uα → Vα ⊂ Rn|m.

We do not concretize here the details, how the invertibility appears here,
but instead we will describe it by some general relations betweensemitransition

0 number part.
1 UnderRn|m we imply some its noninvertible generalization [3].
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functions and other objects. We The noninvertibly extended gluingsemitransition
functionsof a semisupermanifold are defined by the equations

Φαβ ◦ ϕβ = ϕα, Φβα ◦ ϕα = ϕβ (2)

instead ofΦαβ = ϕα◦ϕ−1
β , which obviously extends the class of functions to non-

invertible ones. Then we assume that instead of (1) the semitransition functions
Φαβ of a semisupermanifoldM satisfy the following relations

Φαβ ◦ Φβα ◦ Φαβ = Φαβ (3)

onUα ∩ Uβ overlaps (invertibility is extended to regularity) and

Φαβ ◦ Φβγ ◦ Φγα ◦ Φαβ = Φαβ , (4)

Φβγ ◦ Φγα ◦ Φαβ ◦ Φβγ = Φβγ , (5)

Φγα ◦ Φαβ ◦ Φβγ ◦ Φγα = Φγα (6)

on triple overlapsUα ∩ Uβ ∩ Uγ and

Φαβ ◦ Φβγ ◦ Φγρ ◦ Φρα ◦ Φαβ = Φαβ , (7)

Φβγ ◦ Φγρ ◦ Φρα ◦ Φαβ ◦ Φβγ = Φβγ , (8)

Φγρ ◦ Φρα ◦ Φαβ ◦ Φβγ ◦ Φγρ = Φγρ, (9)

Φρα ◦ Φαβ ◦ Φβγ ◦ Φγρ ◦ Φρα = Φρα (10)

onUα ∩ Uβ ∩ Uγ ∩ Uρ . We can write similar cycle relations to infinity and call
themtower relationswhich satisfy identically in the standard invertible case [36].

REMARK 1. In any actions with noninvertible functionsΦαβ we are not allowed
to cancel by them, because the semigroup ofΦαβ ’s is a semigroup without can-
cellation, and we are forced to exploit the corresponding semigroup methods
[37, 38].

Conjecture 2. The functionsΦαβ satisfying the relations (3)–(10) can be viewed
as some noninvertible generalization of the transition functions as cocycles in the
correspondingČech cohomology of coverings [39, 40].

3. Obstructedness and additional orientation on semisupermanifolds

The semisupermanifolds defined above belong to a class of so called obstructed
semisupermanifolds [1, 3] in the following sense. Let us rewrite relations (1) as
the infinite series

n = 1 : Φαα = 1αα, (11)
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n = 2 : Φαβ ◦ Φβα = 1αα, (12)

n = 3 : Φαβ ◦ Φβγ ◦ Φγα = 1αα, (13)

n = 4 : Φαβ ◦ Φβγ ◦ Φγδ ◦ Φδα = 1αα (14)

· · · · · ·
Definition 3. A semisupermanifold is calledobstructed, if some of the cocycle
conditions (11)–(14) are broken.

It can happen that starting from somen = nm all higher cocycle conditions
hold valid.

Definition 4. Obstructedness degreeof a semisupermanifold is a maximalnm for
which the cocycle conditions (11)–(14) are broken. If all of them hold valid, then

nm
def
= 0.

Obviously, that ordinary manifolds [35] (with invertible transition functions)
have vanishing obstructedness, and the obstructedness degree for them is equal to
zero, i.e.nm = 0.

REMARK 2. The obstructed semisupermanifolds may have nonvanishing ordinary
obstruction which can be calculated extending the standard methods [17] to the
noninvertible case.

Therefore, using the obstructedness degreenm, we have possibility to clas-
sify semisupermanifolds properly. Moreover, the pure soul supernumbers do not
contain unity. Obviously that obstructed semisupermanifolds cannot have identity
semitransition functions.

The orientation of ordinary manifolds is determined by the Jacobian sign of
transition functionsΦαβ written in terms of local coordinates onUα∩Uβ overlaps
[34, 35]. Since this sign belong toZ2 , there exist two orientations onUα. Two
overlapping charts areconsistently oriented(or orientation preserving) if Φαβ

has positive Jacobian, and a manifold isorientableif it can be covered by such
charts, thus there are two kinds of manifolds: orientable and nonorientable [35].
In supersymmetric case the role of Jacobian plays Berezinian [17] which has a
“sign” belonging toZ2 ⊕ Z2, and so there are four orientations onUα and five
corresponding kinds of supermanifold orientability [41, 42].

Definition 5. In case a nonvanishing Berezinian ofΦαβ is nilpotent (and so has
no definite sign in the previous sense) there exists additionalnilpotent orientation
onUα of a semisupermanifold.
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A degree of nilpotency of Berezinian allows us to classify semisupermanifolds
having nilpotent orientability (see e.g. [43, 44]).

4. Higher regularity and obstruction

The above constructions have the general importance forany set of noninvert-
ible mappings. The extension ofn = 2 cocycle given by (3) can be viewed as
some analogy with regular [45] or pseudoinverse [46] elements in semigroups
or generalized inverses in matrix theory [47], category theory [48] and theory of
generalized inverses of morphisms [49]. The relations (4)–(10) and with other
n can be considered as noninvertible analogue of regularity for higher cocycles.
Therefore, by analogy with (3)–(10) it is natural to formulate the general

Definition 6. An noninvertible mappingΦαβ is n-regular, if it satisfies on

overlaps

n︷ ︸︸ ︷
Uα ∩ Uβ ∩ . . . ∩ Uρ to the following conditions

n+1︷ ︸︸ ︷
Φαβ ◦ Φβγ ◦ . . . ◦ Φρα ◦ Φαβ= Φαβ + perm. (15)

The formula (3) describes3-regular mappings, the relations (4)–(6) corre-
spond to4-regular ones, and (7)–(10) give5-regular mappings. Obviously that
3-regularity coincides with the ordinary regularity.

Let us consider a series of the selfmapse
(n)
αα : Uα → Uα of a semisupermani-

fold defined as

e(1)
αα = Φαα, (16)

e(2)
αα = Φαβ ◦ Φβα, (17)

e(3)
αα = Φαβ ◦ Φβγ ◦ Φγα, (18)

e(4)
αα = Φαβ ◦ Φβγ ◦ Φγδ ◦ Φδα (19)

· · · · · ·

We will call e
(n)
αα ’s tower identities (or obstruction ofUα). From (11)–(14)

it follows that for ordinary supermanifolds obstruction coincide with the usual
identity map

e(n),ordinary
αα = 1αα. (20)
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So the obstructedness degree can be treated as a maximaln = nm for which
tower identities differ from the identity, i.e. (20) is broken. The obstruction gives
the numerical measure of distinction of a semisupermanifold from an ordinary
supermanifold. When morphisms are noninvertible (a semisupermanifold has a
nonvanishing obstructedness), we cannot “return to the same point”, because in
generale(n)

αα 6= 1αα,and we have to consider “nonclosed” diagrams due to the fact
that the relatione(n)

αα ◦ Φαβ = Φαβ is noncancellative now (see REMARK 1).
Summarizing the above statements we propose the following intuitively con-

sistent changing of the standard diagram technique as applied to noninvertible
morphisms. In every case we get a new arrow which corresponds to the additional
multiplier, and so forn = 2 we obtain

Invertible morphisms

Φαβ

Φβα

=⇒

Noninvertible morphisms

Φβα

Φαβ

n=2

which describes the transition from (12) to (3) and presents the ordinary regularity
condition for morphisms [48, 49]. The most intriguing semicommutative diagram
is the triangle one

Invertible morphisms Noninvertible morphisms

Φαβ

Φγα

=⇒ + perm.
Φβγ Φγα

Φαβ

Φβγ

n=3

which generalizes the cocycle condition (1).
The highern-regular semicommutative diagrams can be considered in the

framework of generalized categories [9, 12, 50] in the following way.

5. Categories and2-categories

There is an algebraic approach to the formalism considered in previous sections
based on the category theory [5, 4]. A categoryC contains a collectionC0 of
objects and a collectionhom (C) of arrows (morphisms) (see e.g. [51]). The

kievarwe.tex; 12/03/2001; 3:49; p.137



SEMISUPERMANIFOLDS AND CATEGORIES 131

collectionhom (C) is the union of mutually disjoint setshomC(X,Y ) of arrows

X
f−→ Y from X to Y defined for every pair of objectsX,Y ∈ C. It may

happen that for a pairX,Y ∈ C the sethomC(X,Y ) is empty. The associative
composition of morphisms is also defined. By an equivalence inC we mean a
class of morphismshom′(C) =

⋃
X,Y ∈(C0) hom′C (X,Y ) wherehom′C(X,Y ) is a

subset ofhomC(X,Y ). Two objectsX,Y of the categoryC is equivalent if and
only if there is an morphismX s−→ Y in hom′C(X,Y ) such that

s−1 ◦ s = idX , s ◦ s−1 = idY (21)

LetX = (X1, · · · , Xn) be a sequence of objects ofC. Our category can con-
tains a class ofnoninvertiblemorphisms [48, 4]. A (strict)2-categoryC consists of
a collectionC0 of objects as0-cells and two collections of morphisms:C1 andC2

called1-cells and2-cells, respectively [52]. For every pair of objectsX,Y ∈ C0

there is a categoryC(X,Y ) whose objects are1-cell f : X → Y in C1 and whose
morphisms are2-cells. For a pair of1-cellsf, g ∈ C1 there is a2-cell s : f → g
in C2. For every three objectsX,Y, Z ∈ C0 there is a bifunctor

c : {C(X,Y )× C(Y,Z) −→ C(X,Z)} (22)

which is called a composition of1-cells. There is an identity1-cell idX ∈
C(X,X) which acts trivially onC(X,Y ) or C(Y,X). There is also2-cell ididX
which acts trivially on2-cells.

Let C be a category with equivalence. Then one can see that collection of all
equivalence classes of objects ofC forms a2-categoryC(C). These classes are0-
cells ofC(C), 1-cells are classes of morphisms ofC. and2-cells are maps between
these classes. Observe that1-cells ofC(C) can be represented by morphisms of
the underlying categoryC, but such representation is not unique. One equiva-
lence class can be represented by several equivalent morphisms. One can define
2-morphisms on equivalence classes, andC(C) becomes a 2-category. If the cate-
goryC is equipped with certain additional structures, then one can transform them
into C(C). If for instanceC is monoidal category with product⊗ : C × C −→ C,
thenC(C) becomes the so-called semistrict monoidal2-category. This means that
the product⊗ (under some natural conditions) is defined for all cells of the2-
categoryC(C). In the case of braided categories one can obtain the semistrict
braided monoidal category [52]. Algebras, coalgebras, modules and comodules
can be also included in this procedure. We apply such method to regularize
categories with noninvertible morphisms and obstruction [5, 4].

6. Categories and regularization

Let C be a category with invertible and noninvertible morphisms [5] and equiva-
lence. The equivalence inC is here defined as the class of invertible morphisms in
the categoryC.
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Definition 7. A sequence of morphisms

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ X1 (23)

such that there is an (endo-)morphisme(3)
X1

: X1 −→ X1 defined uniquely by the
following equation

e
(n)
X1

:= fn ◦ · · · ◦ f2 ◦ f1 (24)

and subjects to the relationf1 ◦ fn ◦ · · · ◦ f2 ◦ f1 = f1 is said to be aregular
n-cycleonC and it is denoted byf = (f1, . . . fn).

The (endo-)morphismse(n)
Xi

: Xi −→ Xi corresponding fori = 2, . . . , n are
defined by a suitable cyclic permutation of above sequence.

Definition 8. The morphisme
(n)
X is said to be an obstruction ofX. The mapping

e(n) : X ∈ C0 → e
(n)
X ∈ hom(X,X) is called a regularn-cycle obstruction

structure onC.
If

X1
g1−→ X ′2

g2−→ · · · gn−1−→ X ′n
gn−→ X1

is an anothern-tuple of morphisms such thate(n)
X1

: gn ◦ · · · ◦ g2 ◦ g1, then we
assume thatX ′i is equivalent toXi, for i = 2, . . . , n.

Definition 9. A maps : f ⇒ g which sends the objectXi into equivalent object
X ′i and morphismfi into gi is said to be obstructionn-cycle equivalence.

We have the diagram

X2
f2−→ · · · fn−1−→ Xn

f1↗
fn↘

X1 ⇓ s X1
g1↘

gn↗
X ′2

g2−→ · · · gn−1−→ X ′n

(25)

Lemma 10. There is a one to one correspondence between equivalence classes
of regularn-cycles and regularn-cycle obstruction structures.

If f = (f1, . . . fn) is a class of regularn-cycles, then there is the correspond-
ing regularn-cycle obstruction structuree : X ∈ C0 → eX ∈ hom(X,X) such

that the relation (24) holds true. Lete(n) : X ∈ C0 → e
(n)
X ∈ hom(X,X) be a

regularn-cycle obstruction inC.
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Definition 11. A morphismα : X −→ Y of the categoryC such that

α ◦ e
(n)
X = e

(n)
Y ◦ α (26)

is said to be a regularn-cycle obstruction morphism fromX to Y .

It follows from (23) that the morphismα is in fact a sequence of morphism
α := (α1, . . . , αn) such that the diagram

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ X1

α1 ↓ ↓ ↓ ↓ α1

Y1
g1−→ Y2

g2−→ · · · gn−1−→ Yn
gn−→ Y1

(27)

is commutative.

Definition 12. A collection of all equivalence classes of objectsC0 with obstruc-
tion structurese(n) : X ∈ C0 → e

(n)
X ∈ hom(X,X) is denoted by<egn(C) and

called an obstructionn-cycle regularization ofC. The class of all regularn-cycle
morphisms fromX to Y is denote by<egn(C)(X,Y ).

Corollary 13. It follows from the Lemma 10 that the maps : α −→ β which
sends an arbitrary regularn-cycle morphismsα ∈ <egn(C)(X,X ′) into a reg-
ular n-cycle morphismsβ ∈ <egn(C)(X,X ′) is a regular obstructionn-cycle
equivalence.

One can define2-morphisms and an associative composition of2-morphisms
such that<egn(C)(X,Y ) becomes a category for every two objectsX,Y ∈ C0. If
α : X −→ Y andβ : Y −→ Z are twon-cycle morphisms, then the composition
β ◦α : X → Z is also an-cycle morphism. In this way we obtain the composition
as bifunctors

c<egn := {<egn(C)(X,Y )×<egn(C)(Y,Z) −→ <egn(C)(X,Z)} (28)

We summarize our considerations in the following lemma:

Lemma 14. The class<egn(C) forms a (strict)2-category whose0-cells are
equivalence classes of objects ofC with obstructions, whose1-cells are regular
n-cycle obstruction morphisms, and whose2-cells are regular obstructionn-cycle
2-morphisms.
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7. Regularization of monoidal categories functions and Yang-Baxter
equation

Let C = C(I,⊗) be a monoidal category, whereI is the unit object and⊗ :
C × C −→ C is the monoidal product [53, 54]. If the following relation

e
(n)
X ⊗ e

(n)
Y = e

(n)
X⊗Y . (29)

holds true, then we have

Proposition 15. The monoidal product of two regularn-cyclesX1, . . . , Xn and
Y1, . . . , Yn with obstructione(n)

X1
, ande

(n)
Y , respectively, is the regularn-cycle

X1 ⊗ Y1,⊗ · · · ⊗Xn ⊗ Yn
with the obstructione(n)

X⊗Y .

One can see that in this case<egn(C) is the so-called semistrict monoidal
category [52].

Let C andD be two monoidal categories and let<egn(C),<egn(D) be their
regularization2-categories. We can introduce the notion of regular2-functions,
pseudonatural transformations and modifications. All definitions do not changed,
but the preservation of the identity can be replaced by the requirement of preserva-
tion of obstruction morphismse(n)

X and the invertibility is replaced by regularity.
If, for instance, there is a regular2-functorF : <egn(C) −→ <egn(C), then in
addition to the standard definition [51] we have the following relation

F(eX) = eF(X). (30)

In the same manner we can “regularize” pseudo-natural transformations and
modifications [50]. Let<egn(C) be a semistrict monoidal2-category. A pseudo-
natural transformationsB = {BX,X′ : X ⊗ X ′ → X ′ ⊗ X} and two regular
modificationsBX⊗Y,Z ,BX,Y⊗Z such that

BX⊗Y,Z
X ⊗ Y ⊗ Z −→ Y ⊗ Z ⊗X

BX,Y ⊗ eZ ↘ ↗ eY ⊗BX,Z
Y ⊗X ⊗ Z

(31)

and

BX,Y⊗Z
X ⊗ Y ⊗ Z −→ Z ⊗X ⊗ Y

eX ⊗BY,Z ↘ ↗ BX,Z ⊗ eY
X ⊗ Z ⊗ Y

(32)
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and

BX,X′ ◦ eX⊗X′ = eX′⊗X ◦BX,X′ , (33)

are said to be a regularn-cycle braiding. Obviously, these operations must sat-
isfying all conditions of [52] with two changes indicated at the beginning of
this section. Then the2-category<egn(C) is called a semistrict regularn-cycle
braided monoidal category. This allows us to obtain here the following regular
n-cycle Yang–Baxter equation [5, 4]

B
(1)
Y,Z,X ◦B

(2)
Y,X,Z ◦B

(1)
X,Y,Z = B

(2)
Z,X,Y ◦B

(1)
X,Z,Y ◦B

(2)
X,Y,Z , (34)

where the notation

B
(1)
X,Y,Z = BX,Y ⊗ eZ , B

(2)
X,Y,Z = eX ⊗BY,Z

has been used and the obstructioneX is exploited instead of the identityIdX .
Solutions of the regularn-cycle Yang–Baxter equation (34) can be found by
application of the endomorphism semigroup methods used in [55, 16].

8. Regularization of algebras, coalgebras, modules and comodules

Let (C) be a monoidal category and<egn(C) be its regularization . It is known that
an associative algebra in the categoryC is an objectA of this category such that
there is an associative multiplicationm : A⊗A → A which is also a morphism
of this category. If the multiplication is in addition a regularn-cycle morphism,
then the algebraA is said to be a regularn-cycle algebra. This means that we have
the relation

m ◦ (eA ⊗ eA) = eA ◦m. (35)

Obviously such multiplication not need to be unique. Denote by<egn(C)(A⊗
A,A) a class of all such multiplications. We can see that a regularn-cycle 2-
morphismss : m ⇒ n which send the multiplicationm into a new onen should
be an algebra homomorphism. One can define regularn-cycle coalgebra or bial-
gebra in a similar way. A comultiplication4 : A −→ A⊗A can be regularized
according to the relation

4 ◦ eA = (eA ⊗ eA) ◦ 4. (36)

In this case we obtain a class<egn(C)(A,A⊗A) of comultiplications.
Let AC be a category of all leftA -modules, whereA is a bialgebra. For the

regularization<egn(AC) of theA–module actionρM : A ⊗M −→ M we use
the following formula

ρM ◦ (eA ⊗ eM ) = eM ◦ ρM , (37)
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whereρM : A ⊗ M −→ M is the left module action ofA on M . The class
of all such module actions is denoted by<egn(AC)(A⊗M,M). The monoidal
operation in this category is given as the following tensor product ofA-modules

ρM⊗N := (idM ⊗ τ ⊗ idN ) ◦ (ρM ⊗ ρN ) ◦ (4⊗ idM⊗N ), (38)

whereτ : A ⊗M → M ⊗ A is the twist, i. e.τ(a ⊗ m) := m ⊗ a for every
a ∈ A,m ∈M .

Lemma 16. For the tensor product of module actions we have the following
formula

ρM⊗N ◦ (eA ⊗ eM⊗N ) = eM⊗N ◦ ρM⊗N . (39)

This lemma means that the tensor product of two module actions satisfy our
regularity condition if and only if these two actions also satisfy the regularity
condition (37).

Observe that there is also a categoryCA of rightA-comodules, whereA is an
algebra. We can regularize this category in the following way. For the coaction we
have

ρ ◦ eA = (eM ⊗ eA) ◦ ρM , (40)

and

ρM⊗N := (idM ⊗mA) ◦ (idM ⊗ τ ⊗ idN ) ◦ (ρM ⊗ ρN ), (41)

whereτ : M ⊗N → N ⊗M is the twist,mA : A⊗A → A is the multiplication
in A.

Conclusions

Thus noninvertible extension of many abstract structures can be done in common
general way: by introduction of the obstructions (orn-cycles)e which are analogs
of units of the invertible case. In search of possible analogies we observe that
“ ln e” can play the role of first “fundamental group” for “space” of categories
and vanishes for invertible morphisms, while its difference from “zero” can be
treated as nontrivial “noninvertible topology” of such “space”. We also note that
“nil-” extension of supermanifolds – semisupermanifolds [56, 3] – can be com-
pared with the “meta-” extension of supermanifolds– metamanifolds [57–59] – to
find their complementarity or additivity and possibly for further generalizations
simultaneously in both ways.
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Abstract. An overview of new 4d supersymmetric gauge theories with 2-form gauge potentials
constructed by various authors during the past five years is given. The key rôle of three particular
types of interaction vertices is emphasized. These vertices are used to develop a connecting per-
spective on the new models and to distinguish between them. One example is presented in detail to
illustrate characteristic features of the models. A new result on couplings of 2-form gauge potentials
to Chern-Simons forms is presented.

1. Introduction

During the past five years, several new 4d supersymmetric gauge theories have
been constructed by various authors [1]–[13]. Common to all these models is the
presence of 2-form gauge potentials and a complicated (nonpolynomial) structure
of interactions and symmetry transformations (gauge symmetries, supersymme-
try). The initial motivation to construct such models came from string theory and
focused the attention first on the vector-tensor (VT) multiplet [14, 15] of N=2
supersymmetry. Namely, in N=2 supersymmetric 4d heterotic string vacua, the
dilaton is believed to reside in a VT multiplet (see, e.g., section 3 of the review
[16]). In order to couple this multiplet to N=2 supergravity, its so-called central
charge must be gauged and this leads inevitably to the structures characteristic
of the new models (cf. remarks at the end of section 3). Only two of the works
[1]–[13] are not devoted to the VT multiplet: in [11] a rather general class of
new supersymmetric gauge theories with 2-form gauge fields is constructed, and
[13] deals with the double tensor (TT) multiplet of N=2 supersymmetry andits

∗ fbrandt@aei-potsdam.mpg.de
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couplings to vector and hyper multiplets. The TT multiplet is believed to be the
dilaton-multiplet of N=2 supersymmetric type IIB superstring vacua [16] and thus
it should play there a rôle analogous to the VT multiplet in heterotic vacua.

The purpose of this contribution is to give an overview of the new models
and to emphasize the key rôle of three types of cubic interaction vertices in these
models. To this end, first a brief excursion to consistent interactions ofp-form
gauge potentials in general is made in section 2. This will also show how the
new models fit in the recent classification [17–19] of interactions betweenp-form
gauge potentials. The three particular types of interaction vertices are identified
and discussed in some detail in section 3, including a new result on couplings
of 2-form gauge potentials to Chern-Simons forms. Then these vertices and the
supersymmetry multiplet structure are used to characterize the various models and
to distinguish between them. In section 4, an explicit example is treated in detail
to illustrate characteristic features of the new models. The example is an N=2
supersymmetric model found in [13], coupling the TT multiplet mentioned above
to two N=2 vector multiplets. Section 5 contains a selection of open problems and
possible future developments.

2. Interactions of p-form gauge potentials

Gauge invariance restricts the possible interactions ofp-form gauge fields quite
severely. In the simplest case, the gauge transformation of ap-form gauge poten-
tial A = (1/p!)dxµ1 ∧ · · · ∧ dxµpAµ1...µp is a natural generalization of the gauge
transformation of the electromagnetic gauge field:

δ(0)
gaugeA = dω ⇔ δ(0)

gaugeAµ1...µp = p∂[µ1
ωµ2...µp] , (1)

whereωµ1...µp−1 are arbitrary gauge parameter fields. Analogously to the electro-
magnetic case, corresponding gauge invariant field strengths are thus

F = dA ⇔ Fµ0...µp = (p+ 1)∂[µ0
Aµ1...µp] , (2)

and the standard Lagrangian for a set of freep-form gauge fields is a linear
combination of Maxwell-type kinetic termsFµ0...µpF

µ0...µp .
A systematic investigation of the possible interaction vertices which can be

added consistently to such a free LagrangianL(0) was carried out by Hen-
neaux and Knaepen [17–19]. They studied consistent deformations of the free
LagrangianL(0) and of the gauge transformationsδ(0)

gauge,

L = L(0) + gαV (1)
α + gαgβV

(2)
αβ + . . . (3)

δgauge = δ(0)
gauge + gαδ(1)

gaugeα + gαgβδ(2)
gaugeαβ + . . . , (4)

wheregα are continuous coupling constants (deformation parameters), such that
the deformed LagrangianL is invariant under the deformed gauge transformations
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δgauge modulo a total derivative,

δgauge L = ∂µK
µ. (5)

To first order in the coupling constants, (5) requires that theV
(1)
α be δ(0)

gauge-
invariant on-shell in the free theory modulo a total derivative. Furthermore,
without loss of generality, one may neglect allV

(1)
α which vanish on-shell in the

free theory modulo a total derivative because they can be removed by field redef-
initions (such vertices are therefore called trivial ones). Henneaux and Knaepen
found the following result for the remaining first-order vertices:

Category 1:Vertices that areδ(0)
gauge-invariant off-shell modulo a total deriva-

tive and therefore do not modify the gauge transformations to first order. There
are two types of such vertices (modulo total derivatives). Those of the first type
depend onp-form gauge fields only via the field strengthsFµ0...µp and their deriva-
tives. Of course, there are infinitely many vertices of this type. Those of the second
type are vertices of the Chern-Simons type

A ∧ F ∧ · · · ∧ F (6)

where theF ’s may have different form-degrees and all form-degrees must sum
up to the spacetime dimension. These vertices areδ

(0)
gauge-invariant only modulo a

total derivative.
Category 2:Vertices that areδ(0)

gauge-invariant only on-shell in the free theory
modulo a total derivative. These vertices are of particular interest because they are
accompanied by deformations of the gauge transformations. A remarkable result
is that, when ordinary gauge fields (1-form gauge potentials) are absent, all these
vertices can be brought to the following form (modulo trivial vertices and vertices
of category 1):

A ∧ F ∧ · · · ∧ F ∧ ∗F ∧ · · · ∧ ∗F︸ ︷︷ ︸
at least one∗F

(7)

where∗F denotes the Hodge dual ofF and there must be at least one∗F because
otherwise the vertex would be of the Chern-Simons type (6). Again, theF ’s may
have different form-degrees and all form-degrees must sum up to the spacetime
dimension. Therefore there are only finitely many vertices (7) for a finite number
of p-form gauge fields. The first order deformations of the gauge transformations
which correspond to a vertex (7) take the form

δ(1)
gaugeA = ω ∧ F ∧ · · · ∧ F ∧ ∗F ∧ · · · ∧ ∗F (8)

where one of the∗F ’s that occurs in (7) is omitted (for instance, when (7) con-
tains only one∗F , then (8) contains no∗F ). When 1-form gauge potentials are
present, (7) still gives nontrivial first-order vertices of category 2, but then there
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may be additional vertices of category 2 which cannot be brought to the form (7).
In particular, when at least three 1-form gauge potentials are present, there are
Yang-Mills cubic vertices which differ from (7) because they contain two ‘naked’
gauge potentials instead of only one (the structure of Yang-Mills cubic vertices is
A ∧ A ∧ ∗F where theA’s are 1-form gauge potentials andF is a 2-form field
strength).

In four-dimensional spacetime there are three different types of cubic vertices
(7) involving 1-form gauge potentialsA1, 2-form potentialsA2 and corresponding
field strengthsF2 = dA1 andF3 = dA2:

A2 ∧ ∗F 3 ∧ ∗F 3 (9)

A1 ∧ ∗F 2 ∧ ∗F 3 (10)

A1 ∧ F2 ∧ ∗F 3 . (11)

These are the vertices mentioned in the introduction.

3. Overview of the new models

In accordance with commonly used nomenclature (which is actually somewhat
unfair, see remarks at the end of this section), the vertices (9), (10) and (11) will
be referred to as “Freedman-Townsend” (FT), “Henneaux-Knaepen” (HK) and
“Chapline-Manton” (CM) vertices, respectively. Each of the new supersymmetric
models reviewed here contains at least one of these vertices. We label 1-form
potentials and 2-form potentials by indicesa = 1, 2, . . . and i = 1, 2, . . . re-
spectively, and denote their component fields byAaµ andBi

µν = −Bi
νµ. The field

strengths ofAaµ are denoted byF aµν = ∂µA
a
ν − ∂νAaµ, the Hodge-dualized field

strengths ofBi
µν by H iµ = 1

2ε
µνρσ∂νB

i
ρσ. The vertices (9), (10) and (11) read

explicitly, using a suitable normalization,

FT vertices:
1

4
fijkH

i
µH

j
νB

k
ρσ ε

µνρσ (12)

HK vertices: TiabH
i
µF

aµνAbν (13)

CM vertices:
1

2
SiabH

i
µF

a
νρA

b
σ ε

µνρσ (14)

where thefijk, Tiab andSiab are constant coefficients, with

fijk = −fjik , Siab = Siba .

[Siab = Siba can be imposed without loss of generality becauseSi[ab] can be
removed from the vertices (14) by subtracting trivial vertices.] These coefficients
are subject to conditions imposed by (5) at second order in the coupling constants
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(deformation parameters). ViewingTiab andSiab as the entries of matricesTi and
Si, these conditions read

fijlfklm + fjklfilm + fkilfjlm = 0 (15)

[Ti, Tj ] = fijk Tk (16)

(SiTj − SjTi) + (SiTj − SjTi)> = fijk Sk . (17)

To derive these conditions, it was assumed that the zeroth order Lagrangian is
L(0) = −(1/2)HµiH i

µ − (1/4)F aµνF
µνa, and that (9), (10) and (11) are the only

vertices of category 2 with non-vanishing coefficients (vertices of category 1 do
not modify these conditions, but switching on other vertices of category 2 might
cause modifications or lead to additional conditions).

(15) and (16) were already found in [17] and require that thefijk be structure
constants of a Lie algebra and that theTi be representation matrices of that Lie
algebra, respectively. (17) was not derived in a previous work, to my knowledge.
It requires that the symmetric parts of the matrices2(SiTj − SjTi) be equal to
fijk Sk. This is fulfilled, for instance, ifSi = NTi+T

>
i N whereN is an arbitrary

symmetric matrix (i.e.,Siab = NacTicb +NbcTica with Nab = Nba), but there are
other solutions as well.

The corresponding first order deformations of the gauge transformations are

δ(1)
gaugeB

i
µν = −fijk(Hj

µω
k
ν −Hj

νω
k
µ)− 1

2
εµνρσTiabF

ρσaωb + SiabF
a
µνω

b

δ(1)
gaugeA

a
µ = −TiabH i

µω
b. (18)

The following table gives an overview of the new supersymmetric models.
The vertices discussed above are used to distinguish between the various models.
In addition the number of supersymmetries (N=1 or N=2 supersymmetry) and the
supersymmetry multiplets are given. In the case of N=1 supersymmetry, T and
V stand for tensor multiplets (also called linear multiplets) and vector multiplets
respectively. In the case of N=2 supersymmetry, VT, TT and V stand for vector-
tensor multiplets, double-tensor multiplets and vector multiplets respectively.
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susy multiplets interactions papers

N=2 VT ,V HK , CM [1, 2, 7, 8,10]

N=2 VT ,V CM [3–5,9]

N=2 VT CM [6]

N=1 T ,V FT , HK , CM [11]

N=2 VT HK [12]

N=2 TT ,V FT , HK [13]

Of course, this table characterizes the various models only very roughly. The
example in the next section is to illustrate characteristic features of these models.
It is beyond the scope of this paper to review the various models in greater detail
but I would like to add at least a few remarks: (a) Among all these models only
those in [7] are locally supersymmetric, the other ones are globally supersym-
metric. (b) The works on the VT multiplet overlap in part because some of these
works rederive models which had already been found by means of other methods
in previous works. (c) Models in the same row of the table may of course still
differ. For instance, CM vertices in two models with the same multiplet content
may contain different Chern-Simons forms (in the literature, this has led to a
distinction between “linear” and “nonlinear” VT multiplets [2]). Different CM
couplings correspond to different solutions to Eq. (17). Of course, analogous state-
ments apply to the FT and HK vertices. (d) Some of the models in [11] possess
extended (N ≥ 2) supersymmetry. For instance, it has been pointed out in [12]
that the model constructed there can be obtained from [11]. However, it is not
clear how to sieve out systematically those models in [11] which have extended
supersymmetry.

Finally a few comments on the history may be in order. Models with FT inter-
actions were constructed already by Ogievetsky and Polubarinov [20] a long time
before the work by Freedman and Townsend [21]. CM interactions have a long
history too. It seems that they appeared first in the early 80’s [22–24] and, again,
the work by Chapline and Manton was not the first one with such interactions.
CM interactions attracted particular attention because of their crucial rôle in the
Green-Schwarz anomaly cancellation mechanism [25] (the anomaly cancellation
is made possible by the deformation of the gauge transformations associated with
CM vertices, see section 2).

HK interactions (in four-dimensional spacetime) were discovered much later.
However, the first models with such interactions were not found by Henneaux
and Knaepen. Rather, it seems that HK interactions occurred for the first time in
[1] where the central charge of the VT multiplet was gauged. The connection of
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that gauging to HK vertices is the following. Gauging the central charge (e.g.,
via the Noether method) gives rise to a vertexVµj

µ whereVµ is a 1-form gauge
field andjµ is the Noether current corresponding to the central charge symmetry.
That Noether current isjµ = HνF

νµ, and thus the vertexVµjµ is a HK vertex.
Combined FT and HK interactions, and the relation to Lie algebras, were found
afterwards by Henneaux and Knaepen [17]. It seems that the first and so far only
work with models containing simultaneously FT, HK and CM vertices is [11].

4. Example

The example is an N=2 supersymmetric model coupling one TT multiplet to two
V multiplets and involves HK vertices but no FT or CM vertices. A TT multiplet
contains two 2-form gauge potentialsBi

µν (i = 1, 2), two real scalar fieldsai and
two Weyl fermionsχ andψ. Each V multiplet contains a 1-form gauge potential
Aµ, a complex scalar fieldφ and two Weyl fermionsλi. The V multiplets are
labeled by the indexa = 1, 2. This field content is supplemented with auxiliary
fieldshiµ which are embedded in the TT multiplet. These auxiliary fields allow
one to construct the model in a compact polynomial form. In fact, it would be
very cumbersome to construct the model without these auxiliary fields because of
the complicated nonpolynomial structure which arises then, see below. Note that,
in contrast to other supersymmetric models, the auxiliary fields do not lead to an
off-shell closed supersymmetry algebra. On the contrary, the auxiliary fields make
the supersymmetry algebra even “more open” (a formulation of the TT multiplet
with an off-shell closed supersymmetry algebra is not known).

bosons Weyl-fermions

TT Bi
µν ai (hiµ) χ ψ

Va Aaµ φa λai

Thanks to the inclusion of the auxiliary fields, the Lagrangian takes the fol-
lowing simple form (using conventions as [26] adapted to the Minkowski metric
diag(1,−1,−1,−1)),

L = ∂µa
i∂µai + hiµh

µi + 2hiµH
µi − iχ∂χ̄− iψ∂ψ̄

−1

4
F̂ aµνF̂

aµν +
1

2
D̂µφ

aD̂µφ̄a − 2iλiaD̂λ̄ia (19)

where

F̂ aµν = D̂µA
a
ν − D̂νA

a
µ = ∂µA

a
ν + gihiµε

abAbν − (µ↔ν)

D̂µφ
a = ∂µφ

a + gihiµε
abφb

D̂λ̄ia = σµ(∂µλ̄
ia + gihiµε

abλ̄ib).
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Thegi are real coupling constants (deformation parameters). Note thatD̂µ has the
form of a covariant derivative even though the auxiliary fields cannot be viewed as
gauge fields (in fact, they substitute for field strengths, as the equations of motion
givehiµ = −H i

µ+. . . ). The auxiliary fields also simplify the structure of the gauge
and supersymmetry transformations considerably. The gauge transformations read

δgaugeA
a
µ = D̂µω

a = ∂µω
a + gihiµε

abωb

δgaugeB
i
µν =

1

4
giωaεabεµνρσF̂

bρσ + ∂µω
i
ν − ∂νωiµ

δgauge = 0 on other fields

whereωa andωiµ are the gauge parameter fields associated withAaµ andBi
µν

respectively. The supersymmetry transformations read, with constant anticom-
muting Weyl-spinorsξi as transformation parameters,

δsusy A
a
µ = εijξiσµλ̄

ja − ξiΓiεabAbµ + c.c.

δsusy φ
a = 2 ξiλia − (ξiΓi + ξ̄iΓ̄i)εabφb

δsusy λ
ia =

i

2
(εijξjσµνF̂ aµν − ξ̄iσ̄µD̂µφ

a)− (ξjΓj + ξ̄jΓ̄j)εabλib

δsusy B
i
µν = −εijξjσµνχ+ ξiσµνψ

+igiεab(φ̄aξjσµνλ
jb + εjkAa[µξ

jσν]λ̄
kb) + c.c.

δsusy a
i =

1

2
(ξiχ− εijξjψ) + c.c.

δsusy χ = −ξ̄iσ̄µ(εijhjµ + i ∂µa
i)

δsusy ψ = −ξ̄iσ̄µ(hiµ + i εij∂µa
j)

δsusy h
i
µ =

i

2
∂µ(ξiψ − εijξjχ) + c.c.

where

Γi =
i

2
gj(εijχ+ δijψ).

The commutator algebra of the supersymmetry and gauge transformations is
rather complicated off-shell but on-shell it is quite simple,

[δsusy, δ
′
susy] ≈ δtranslation + δgauge (20)

[δsusy, δgauge] ≈ δ′gauge (21)

[δgauge, δ
′
gauge] ≈ 0, (22)

where≈ is equality on-shell. (20) is the standard N=2 supersymmetry algebra
on-shell (modulo gauge transformations), with vanishing central charge. I remark
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that the gauge transformations which appear on the right hand side of (20) involve
explicitly the spacetime coordinates, see [13] and [27] for details and comments
on this point. (21) illustrates a feature typical of many of the new models, namely
that gauge and supersymmetry transformations do not commute (not even on-
shell). Explicitly, the gauge parameter fieldsωa′ andωi′µ of δ′gauge on the right
hand side of (21) read

ωa′ = (ξiΓi + ξ̄iΓ̄i)εabωb

ωi′µ = − i

2
giεabεjkωa(ξjσµλ̄

kb − λkbσµξ̄j)

where theξ’s andω’s are supersymmetry parameters and gauge parameter fields
of δsusy andδgauge on the left hand side of (21). According to (22), the gauge trans-
formations commute on-shell which is also typical of the new models [note: the
algebra of the gauge transformations is not related to the Lie algebra underlying
Eqs. (15) through (17)!].

Let me finally discuss the nonpolynomial structure which arises when one
eliminates the auxiliary fields. The Lagrangian (19) contains the auxiliary fields
at most quadratically,

L = −1

4
F aµνF

aµν + ∂µa
i∂µai +

1

2
∂µφ

a∂µφ̄a

−iχ∂χ̄− iψ∂ψ̄ − 2iλia∂λ̄ia + 2hiµHµi + hiµK
µi,νjhjν

where

Hµi = Hµi − giεab(1
2F

aµνAbν + 1
4φ

a
↔
∂µ φ̄b + iλjaσµλ̄jb)

Kµi,νj = ηµνδij + 1
2g
igj [ηµν(φaφ̄a −AaρAaρ) +AaµAaν ]

The auxiliary fields can be eliminated by solving their algebraic equations of
motion. The solution is

hiµ = −(K−1)µi,νjHνj , (23)

whereK−1 is the inverse of the field dependent matrixK, (K−1)µi,ρkK
ρk,νj =

δνµδ
j
i . Note thatK does not involve derivatives of the fields and thereforeK−1

is nonpolynomial in the fields but still local. Hence, using (23), the Lagrangian,
gauge and supersymmetry transformations become nonpolynomial but remain
strictly local. Expanding the resulting Lagrangian in the coupling constants, one
finds at first order HK vertices as well as vertices of category 1 which complete
the HK vertices such that the sum is supersymmetric on-shell in the free theory
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modulo a total derivative,

L = −1

4
F aµνF

aµν + ∂µa
i∂µai +

1

2
∂µφ

a∂µφ̄a

−iχ∂χ̄− iψ∂ψ̄ − 2iλia∂λ̄ia −Hµi (K−1)µi,νj Hνj

= L(0) + giεabH i
µF

aµνAbν︸ ︷︷ ︸
HK vertices

+ giεabH i
µ(

1

2
φa
↔
∂µ φ̄b + 2iλjaσµλ̄jb)︸ ︷︷ ︸

category 1 vertices
(susy completion of HK vertices)

+ . . .(24)

It was mentioned already that nonpolynomial structures as in this example are
typical of the new gauge theories. They cannot be avoided in models with FT or
HK vertices because they are necessary consequences of these vertices, already
in the non-supersymmetric case. The use of appropriate auxiliary fields that sim-
plify the construction is an almost indispensable tool for constructing complicated
models of this type, especially supersymmetric ones. The finding of such auxiliary
fields and their embedding in supersymmetry multiplets is in general a nontrivial
and subtle ingredient of the construction. In contrast, models which contain CM
vertices but no FT or HK vertices are simpler and the issue of auxiliary fields
is less involved. In particular, such models are not necessarily nonpolynomial
although supersymmetry often enforces a nonpolynomial dependence on scalar
fields even in such models.

5. Comments

The following is a selection of open problems which may point to possible further
developments in the field:

(i) In my opinion, the r̂ole of the matter fields (scalar fields, fermions) in the
new supersymmetric models has not been fully understood yet. In particular, the
relation of scalar fields to the underlying geometry (Lie algebra) is somewhat
mysterious. A better understanding of this issue might be a key to a deeper under-
standing of the supersymmetry structure of the models and to a more systematic
construction of such models.

(ii) Systematic classifications of the possible consistent and supersymmetric
interactions involvingp-form gauge potentials, analogous to the classification
[17–19] of non-supersymmetric interactions, are largely missing. An exception
is the classification of the lowest dimensional interaction vertices involving a TT
multiplet in [13]. Supersymmetry supplements (5) with the additional requirement
δsusyL = ∂µM

µ whereδsusy are the deformed supersymmetry transformations.
This restricts the possible interactions as compared to the non-supersymmetric
case, and relates coefficients of various interaction terms. A typical example is
(24) where the coefficients of the HK vertices are related to coefficients of inter-
action vertices of category 1. In fact, supersymmetry can even completely forbid
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interactions which would be allowed if supersymmetry were not imposed. An
example is the absence of N=2 supersymmetric CM couplings of the TT multiplet
[13]. Furthermore, it depends on the supersymmetry multiplet structure which
interactions are possible. For instance, it was just mentioned that there are no
N=2 supersymmetric CM couplings involving the TT multiplet, whereas such
couplings do exist for the VT multiplet (cf. table in section 3). Such results could
be relevant in the context of string theory when comparing properties of different
superstring vacua.

(iii) Locally supersymmetric models with FT or HK couplings are almost
completely missing so far. In fact, the only exception is the work [7] where N=2
supergravity models with VT multiplets were constructed. The construction of lo-
cally supersymmetric extensions of some of the other models could be of interest
in the string theory context. In particular this applies to supergravity models with
the TT multiplet because of the conjectured importance of this multiplet to type
IIB superstring vacua (cf. introduction).

(iv) Recall that FT, HK and CM vertices are special cases of vertices (7). Non-
supersymmetric models in spacetime dimensions> 4 with such vertices have
been constructed already [17, 28]. Analogous globally or locally supersymmetric
models in higher spacetime dimensions have not been constructed so far. In fact it
seems that the only vertices (7) which have been used in supersymmetric models
in spacetime dimensions> 4 so far are the familiar CM vertices (14). For instance,
these vertices occur in 10-dimensional supergravity in connection with the Green-
Schwarz anomaly cancellation mechanism (cf. remarks at the end of section 3).
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SUPERSYMMETRIC R4 ACTIONS AND QUANTUM CORRECTIONS

TO SUPERSPACE TORSION CONSTRAINTS
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Abstract. We present the supersymmetrisation of the anomaly-relatedR4 term in eleven dimen-
sions and show that it induces no non-trivial modifications to the on-shell supertranslation algebra
and the superspace torsion constraints before inclusion of gauge-field terms.1

1. Higher-derivative corrections and supersymmetry

The low-energy supergravity limits of superstring theory and D-brane effective
actions receive infinite sets of correction terms, proportional to increasing pow-
ers ofα′ = l2s and induced by superstring theory massless and massive modes.
At present, eleven-dimensional supergravity lacks a corresponding microscopic
underpinning that could similarly justify the presence of higher-derivative cor-
rections to the classical Cremmer-Julia-Scherk action [1]. Nevertheless, some
corrections of this kind are calculable from unitarity arguments and super-Ward
identities in the massless sector of the theory [2] or by anomaly cancellation
arguments [3, 4].

Supersymmetry puts severe constraints on higher-derivative corrections. For
example, it forbids the appearance of certain corrections (like, e.g,R3 corrections
to supergravity effective actions [5]), and groups terms into various invariants [6–
9]. The structure of the invariants that contain anomaly-cancelling terms is ofgreat

1 Based on talks given by K.P. at the SPG meeting, Cambridge, February 2000, by A.W. at the
Nordic Network Meeting, Copenhagen, May 2000, and by P.V. at the Fradkin Memorial Conference,
Moscow, June 2000, and at the ARW Conference, Kiev, September 2000.
∗ k.peeters,p.vanhove@damtp.cam.ac.uk, a.westerberg@nordita.dk
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importance due to the quantum nature of the anomaly-cancellation mechanism
and is the main concern of this note.

Higher-derivative additions to the supergravity actions are in general compati-
ble with supersymmetry only if the transformation rules for the fields also receive
higher-derivative corrections:(

δ0 +
∑
n

(α′)nδn
)(

S0 +
∑
n

(α′)nSn
)

= 0 . (1)

As a consequence, the field-dependent structure coefficients on the right-hand side
of the supersymmetry algebra,

[δsusy
1 , δ

susy
2 ] = δtranslation + δsusy + δgauge + δLorentz , (2)

will be modified as well. When the theory is formulated in superspace the structure
of the algebra is related to the structure of the tangent bundle, the link being
provided by the constraints on the superspace torsion. In particular, corrections
to the parameters modify the superspace constraints. However, since some cor-
rections are reabsorbable by suitable rotations of the tangent bundle basis, not all
corrections are physical.

We report here on the supersymmetrization of the anomaly-related terms
(α′)2B ∧ F 4 for super-Maxwell theory coupled toN=1 supergravity in ten di-
mensions and(α′M )3C ∧ t8R4 (where(α′M )3 = 4π (lP )6) in eleven dimensions
performed in [10]. In both cases, these superinvariants do not imply any modifica-
tions to the superspace constraints. We present here only the more salients aspect
of the analysis and refer to the article [10] for computational and bibliographical
details.

Our main motivation to look for non-trivial corrections to superspace con-
straints comes from the link between these constraints and the kappa symmetry
of M-branes [11–13] and D-branes [14–16]. Classical kappa invariance of the
M- and D-brane world-volume actions — a key requirement for these objects to
be supersymmetric — imposes the on-shell constraints on the background super-
space supergravity fields, among them the superspace torsion. For this reason, any
non-trivial modification to the constraints is expected to require new terms in the
world-volume actions for the branes in order for kappa symmetry to be preserved.

2. Construction of an abelianF 4 superinvariant in D=10

As a first step in our analysis of the implications of higher-derivative correc-
tions to the supersymmetry algebra, we discuss the construction of the abelian
(α′)2(t8F

4 − B ∧ F 4) for N=1 super-Maxwell theory coupled to gravity in ten
dimensions.

The field content of the on-shell super-Maxwell theory comprises an abelian
vectorAµ and a negative-chirality Majorana-Weyl spinorχ. Since we are inter-
ested in local supersymmetry invariance we have to take into account also the
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interactions with the zehnbeineµr, the negative-chirality Majorana-Weyl grav-
itino ψµ and the two-formBµν from the supergravity multiplet. The classical
action (leaving out the gravitational sector)

SF 2 =

∫
d10x e

[− 1

4
FµνF

µν − 8 χ̄ 6D(ω)χ+ 2 χ̄ΓµΓνρψµ Fνρ
]

(3)

is invariant under the local supersymmetry transformations

δAµ = −4 ε̄Γµχ , δχ =
1

8
ΓµνεFµν , (4)

For local supersymmetry we have to consider the transformations of the super-
gravity multiplet fields as well (neglecting terms proportional to the two-form
Bµν and the corresponding field strength,Hµνρ):

δeµ
r = 2ε̄Γrψµ, δψµ = Dµ(ω)ε+ · · · , δBµν =

1√
2
ε̄Γ[µψν] . (5)

The F 4 action invariant under the local supersymmetry transformations listed
above is [17, 18, 10]:

SF 4 = (α′)2

32

∫
d10x

[
1
6e t

(r)
8 Fr1r2 · · ·Fr7r8 + 1

3
√

2
ε

(r)
10 Br1r2Fr3r4 · · ·Fr9r10

−32
5 e t

(r)
8 ηr2r3(χ̄Γr1Dr4(ω)χ)Fr5r6Fr7r8 + 12·32

5 e(χ̄Γr1Dr2(ω)χ)F r1mFm
r2

−16
5! ε

(r)
10 (χ̄Γr1···r4Γr5Dr6(ω)χ)Fr7r8Fr9r10 + 16

3 e t
(r)
8 (ψ̄r1Γr2χ)Fr3r4Fr5r6Fr7r8

+8
3e (ψ̄mΓmr1···r6χ)Fr1r2 · · ·Fr5r6

]
. (6)

Note that our string-amplitude based analysis has allowed us to group also the
fermionic terms using the well-knownt8 tensor. The local supersymmetry in-
variance of the combined actionSF 2 + SF 4 requires that the supersymmetry
transformations be modified according to (F 2 := FmnFnm)

δAµ = −4 ε̄Γµχ− (α′)2
[1

4
(ε̄Γµχ)F 2

− (ε̄Γmχ)F 2
mµ −

1

8
(ε̄Γr1···r4µχ)Fr1r2Fr3r4

]
,

δχ =
1

8
ΓµνεFµν +

1

768
(α′)2

[
t
(r)
8 Γr7r8ε− Γr1···r6ε

]
Fr1r2Fr3r4Fr5r6 . (7)

It can be verified that the structure of the supersymmetry algebra is not modified
by the order-(α′)2 corrections [17, 18, 10]:[

δ(α′)0

ε1 + δ(α′)2

ε1 , δ(α′)0

ε2 + δ(α′)2

ε2

]
Aµ =

[
δ(α′)0

ε1 , δ(α′)0

ε2

]
Aµ +O((α′)4) . (8)
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Consequently, the structure of the superspace torsion constraints will be the same
as for the classical theory to this order. This observation is related to the fact that
it is possible to supersymmetrise the Dirac-Born-Infeld actions while imposing
only the classical constraints [19].

3. Construction of theC ∧R4 superinvariant in D=11

Noticing the close parallel between the classical supersymmetry transformations
for the super-Maxwell and the supergravity fields

δχ = 1
8Γµνε Fµν , δψrs =

1

8
ΓµνεRµνrs + · · · , (9)

δFµν = −8D[µ(ε̄Γν]χ) , δRµν
rs = −8D[µ(ε̄Γν]ψ

rs)

+4D[µ(ε̄Γν]ψ
rs + 2 ε̄Γ[rψs]ν]) + · · · ,

it is tempting to make the following substitution in the super-Maxwell action:

Fr1r2 → Rr1r2s1s2 , χ→ ψs1s2 , Drχ→ Drψs1s2 . (10)

Unfortunately, the difference in structure between the equations of motion for the
gauge potential and the spin connection implies that the previous mapping does
not commute with supersymmetry, as can be seen by the presence of the second
line in the supersymmetry transformation of the Riemann tensor above. Another
crucial difference between the super-Maxwell and supergravity cases is that, when
subtracting all the lowest-order equations of motions, it is necessary to make the
following substitution for the Riemann tensor:

Rmn
pq →Wmn

pq − 16

d− 2
δ[m

[p(ψ̄|r|Γ|r|ψn]
q] − ψ̄|r|Γq]ψn]r) . (11)

Taking all these facts into account, as well as the information from string-
amplitude analysis that the extras-type indices in (10) should be contracted with
an additionalt(s)8 tensor, we arrive at the following M-theoryC ∧ R4 invariant
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after lifting to eleven dimensions [10]:

(α′M )−3LΓ[0] = +
1

192
et

(r)
8 t

(s)
8 Wr1r2s1s2 · · ·Wr7r8s7s8 (12)

+
1

(48)2
εt1t2t3r1···r8t(s)8 Ct1t2t3Wr1r2s1s2 · · ·Wr7r8s7s8 ,

(α′M )−3LΓ[1] = − 4e t
(s)
8 (ψ̄s1s2Γr1Dr2ψs3s4)Wr1r3s5s6Wr3r2s7s8

− 1

4
e t

(s)
8 (ψ̄r1Γr2ψs7s8)Wr1r2s1s2Wmns3s4Wnms5s6

− e t
(s)
8 (ψ̄r1Γr2ψs7s8)Wr1ms1s2Wmns3s4Wnr2s5s6

+ e t
(s)
8 (ψ̄r1Γs7ψr2s8)Wr1r2s1s2Wmns3s4Wnms5s6

− 4e t
(s)
8 (ψ̄r1Γs7ψr2s8)Wr1ms1s2Wmns3s4Wnr2s5s6

+
2

9
e t

(s)
8 (ψ̄mΓnψms8)Wpqs1s2Wqps3s4Wns7s5s6

− 8

9
e t

(s)
8 (ψ̄mΓnψms8)Wnps1s2Wpqs3s4Wqs7s5s6 ,

(α′M )−3LΓ[3] = + 2e t
(s)
8 (ψ̄s5s6Γr1r2r3Dr4ψs7s8)Wr1r2s1s2Wr3r4s3s4

− 1

8
e t

(s)
8 (ψ̄mΓmr1r2ψs7s8)Wr1r2s1s2Wpns3s4Wnps5s6

+
1

2
e t

(s)
8 (ψ̄mΓmr1r2ψs7s8)Wr1ps1s2Wpns3s4Wnr2s5s6

+ e t
(s)
8 (ψ̄mΓr1r2r3ψs7s8)Wr1r2s1s2Wmns3s4Wnr3s5s6 ,

(α′M )−3LΓ[5] = +
1

8
e t

(s)
8 (ψ̄r6Γr1···r5ψs7s8)Wr1r2s1s2Wr3r4s3s4Wr5r6s5s6 ,

(α′M )−3LΓ[7] = +
1

48
e t

(s)
8 (ψ̄mΓmr1···r6ψs7s8)Wr1r2s1s2Wr3r4s3s4Wr5r6s5s6 .

Even if the elfbein supersymmetry transformation rule receives(α′M )3 modifi-
cations, by computing the closure of the supersymmetry algebra (2), we find [10]
that the translation parameter doesnot receive corrections that cannot be absorbed
by field redefinitions.

kievarwe.tex; 12/03/2001; 3:49; p.164



158 K. PEETERS, P. VANHOVE, A. WESTERBERG

4. Superspace approach

It can be argued that in the completely general Ansatz for the dimension zero
torsion constraint

Tab
r = (CΓr1)abX

r
r1 +

1

2!
(CΓr1r2)ab X

r
r1r2 +

1

5!
(CΓr1···r5)ab X

r
r1···r5 ,

(13)

the coefficientXr
r1 can be set equal toδrr1 , and all fully antisymmetric tensors

contained inXr
r1r2 andXr

r1···r5 to zero by a choice of tangent bundle basis (see,
e.g., [21]). This leaves as the only candidates for non-trivial M-theory corrections
the SO(1,10) representations429 and4290of the Γ[2] andΓ[5] coefficients, re-
spectively. Therefore, from the component analysis of the previous section we
conclude that the higher-order invariant (12) does not induce any modifications to
the torsion constraint (13).

Howe showed in [20], that imposingonly the constraint

Tab
r = (CΓr)ab (14)

on the dimension-zero component of the superspace torsion, the classical, on-
shell, eleven-dimension supergravity theory of [1] followswithout having to
introduce a four-form superfield. An analysis of the superspace Bianchi iden-
tities for this superfield would necessitate a more complete analysis of theR4

invariant (12) with the inclusion of higher powers of the four-form field strength.
In this context, let us also mention that in parallel with our component-space

based approach to uncover the superspace underlying M-theory, a complementary
line of attack based on an analysis of the superspace Bianchi identities has been
initiated by Cederwall et al. in [21].
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MASSIVE SUPERPARTICLE WITH SPINORIAL CENTRAL CHARGES
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Abstract. We construct the manifestly Lorenz-invariant formulation of theN = 1 D = 4 massive
superparticle with spinorial central charges. The model possesses from one to threeκ-symmetries.
The local transformations ofκ-symmetry are written out. The using of index spinor for construction
of the tensorial central charges is considered. The equivalence at the classical level between the
massiveD = 4 superparticle with oneκ-symmetry and the massiveD = 4 spinning particle is
obtained.

1. Introduction

Recently it became clear that some interesting supersymmetric theories admit
besides scalar central charges which are presented in conventionalD = 4
Poincare supersymmetry [1, 2] also nonscalar central charges: tensorial [3]-[7]
or spinor [8, 9] ones. Although the tensorial central charges in the supersymmetry
algebra are usually associated with topological contributions of the extended ob-
jects it is attractive to consider the pure superparticle models having symmetry of
this kind. Such models were firstly obtained in massless case [10] forD = 4 with
two or three localκ-symmetries.

Central charge is a quantity which is inert with respect to SUSY but transforms
under internal or Lorentz groups.

We construct the model of the massiveD = 4 nonextended superparticle with
spinorial central charges possessing one or two localκ–symmetries1. In particular
in such a way we obtain the superparticle with a singleκ-symmetry which is
equivalent to the usual spinning (spin1/2) particle [12, 13] in the spinorial central
chargebackground.

1 The Lagrangian of the massive superparticle with vector central charge and with two
κ–symmetries has been presented already in [11]
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162 S. FEDORUK, V. G. ZIMA

Generalized central extension ofN = 1 4–dimensional supersymmetry
algebra {

Q,Q
}

= 2(γµ)Pµ (1)

with Majorana superchargesQ+ = Q, energy–momentum vectorP and γ–
matrices in Majorana representation, so thatC = γ0 = C−1 and as in any
representation we haveCT = −C, can be written in the form

{Q,Q} = 2Z (2)

whereZT = Z is the most general symmetric matrix of Abelian generalized
central charges with a total of ten real entries. In decomposition of this matrix on
the basis defined by products ofγ–matrices we have tensorial central charges as
coefficients

ZC = (γµ)Pµ +
i

2
(γµν)Zµν (3)

whereP is (in general) a linear combination of the energy–momentum vectorP
and a “string charge”. Six real chargesZµν = −Zνµ are related to the symmetric
complex Weyl spin–tensorZαβ = Zβα by the relation

Zµν =
1

2
(Z̄α̇β̇σ̃

α̇β̇
µν − Zαβσαβµν ) . (4)

The spin–tensorsZαβ and Z̄α̇β̇ = (Zαβ) represent the self–dual and anti–self–
dual parts of the central charge matrix. The tensorial central charges commute
with four–momentum and transform as components of a tensor under the Lorentz
group transformations.

There are two types of model with central charges. Some of them have ex-
act SUSY due to presence of special tensorial central charge coordinates which
transform together with Grassmannian spinorθ and space–time vectorx. Their
derivative with respect to development parameterτ absorbs the tensorial part in
SUSY variation of productθθ̇ in complete analogy with absorption of the vector
part in the variation by the space–time vectorx under ordinary SUSY transforma-
tions. Other models have no similar coordinates and their SUSY is reached only on
the mass shell. Here we examine namely the second type model which is obtained
by adding to coordinates of nonextended massive superparticle certain dynamical
even spinorζ. This spinor parameterizes [15] in the rest frame of particle the
compact group manifold of quantum–theory rotation groupSU(2).

In this paper we use theD = 4 spinor conventions of [2]. Majorana and
Weyl odd spinors are denoted by the same literal. One can easy identifies the
meaning of a denotation viewing its nearest encirclement. Bispinor expressions
with Majorana spinors are written, as a rule, in conventional form which makes
obvious a transition to Weyl spinors.

kievarwe.tex; 12/03/2001; 3:49; p.169



LORENTZ SPINORIAL CENTRAL CHARGES 163

2. Action and its symmetries

2.1. SUPERPARTICLE LAGRANGIAN

Let us take for superparticle Lagrangian the expression

L = Lsuper + LSCC

≡ pẋ+ iθ̄ZCθ̇ − e

2
(p2 +m2) + LSCC

≡ pẋ+ iPαβ̇(θα ˙̄θ
β̇ − θ̇αθ̄β̇)

+iZαβθ
αθ̇β + iZ̄α̇β̇ θ̄

α̇ ˙̄θ
β̇ − e

2
(p2 +m2) + LSCC . (5)

Here e is Lagrange multiplier for mass constraintp2 + m2 ≈ 0. Let us take
spinorial central charge LagrangianLSCC, i.e. a part of Lagrangian (5) containing
kinetic term for commuting spinor coordinatesζα , ζ̄α̇ = (ζα) and generating
constraint on these variables, in the form

LSCC = ζ̇v + v̄ ˙̄ζ − λ(ζp̂ζ̄ − j) . (6)

wherev is canonical conjugate momentum forζ andλ is Lagrange multiplier for
”spin constraint”

r − j ≡ ζp̂ζ̄ − j ≈ 0 (r ≡ ζp̂ζ̄) . (7)

This constraint gives us atj 6= 0 the completeness condition

rδβα = ζα(ζ̄ p̃)β + (p̂ζ̄)αζ
β and c. c. (8)

for spinorsζ, p̂ζ̄. Here matriceŝp and p̃ are the contractions of the space–time
momentump andσ–matrices with lower and upper spinor indices, respectively.
Similar to j numerical constant plays the role of “classical spin” in the index
spinor formalism [14, 11, 15] which is attractive in task of particle spin description
with commuting spinors. In what follows it is important that some equations of
motion following from the Lagrangian (5) read as

ζ̇ = 0 , ṗ = 0 . (9)

We can construct the vector and tensor central chargesZ in the Lagrangian (5)
with the spinorsζ , p̂ζ̄ without derivatives inτ . So on shell, due to (9), these
quantities will be constants. Such constructions for central chargesZ in terms of
spinorial ones do not modify the equations (9) and are specified below.
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2.2. SUPERSYMMETRY

SUSY transformations can be viewed as global translations in odd spinor coor-
dinatesθ accompanied translations in space–time vectorx and possibly some
scalar or tensorial even central charge coordinatesy which leave invariant certain
differential 1–forms. Mentioned forms covariantly transform under global Lorentz
and internal groups and are invariant under space–time translations. These forms
are sums of corresponding even coordinate differentials and terms which are
bilinear in odd spinor coordinates and their differentials. Using such forms one
can construct theories with exact off–shell SUSY but in absence of some central
charge coordinates and corresponding differential forms it is possibly to reach
SUSY only on shell. In the case under consideration we have unique fundamental
vectorial superform

ωµ ≡ ω̇µ dτ = dx+ idθ̄γµθ = dx+ iθσµdθ̄ − idθσµθ̄ (10)

and usual SUSY transformations are

δxµ = −iθ̄γµδθ = +iθσµδθ̄ − iδθσµθ̄ (11)

with constantδθ. Supercharges can be obtained as coefficients at the derivative
(δθ). in the integrand of the local variation of the action in Hamiltonian form. The
variation of the Lagrangian (5) is

δL = iP(θσ(δθ̄). − (δθ).σθ̄)− 2i(Zαβ(δθα).θβ + Z̄α̇β̇(δθ̄α̇).θ̄β̇)−
i(Żαβδθ

αθβ + ˙̄Zα̇β̇δθ̄
α̇θ̄β̇) + (iZαβδθ

αθβ + iZ̄α̇β̇δθ̄
α̇θ̄β̇). +

P(δω). − (p− P).δx+ ((p− P)δx). . (12)

We see thatδL = 0 if (δθ). = 0 up to surface terms in absence of tensorial central
charge coordinates. Equations of motion (9) are twice used for this conclusion.
In the first place we use these equations to change multiplierp at ẋ by P and as
consequence to collect variations ofx andθ at vectorial part ofZ in variation of
superform (10). In the second place we use equations (9) to represent variation
with tensorial part ofZ as total derivative. Constancy ofδθ is used as well.
The price for the presence of the supersymmetry is the infinite number of the
spin states in the spectrum. At the restriction of the bosonic spinor sector to the
index spinor one [14, 11, 15] the number of the states in spectrum becomes finite
but the supersymmetry disappears. But in both cases the models possess local
κ-symmetries.

In coordinate representation for odd variables one obtains as generators of
SUSY transformations

Q =
∂

∂θ
+ Zθ . (13)

kievarwe.tex; 12/03/2001; 3:49; p.171



LORENTZ SPINORIAL CENTRAL CHARGES 165

In terms of Weyl spinor we have

Qα =
∂

∂θα
+ (P̂ θ̄)α + θβZβα , (14)

Q̄α̇ =
∂

∂θ̄α̇
+ (θP̂)α̇ + Z̄α̇β̇ θ̄

β̇ . (15)

So generators of SUSY contain “anomalous” extra pieces with central charges.
The algebra (2) of SUSY generators

{Qα, Qβ} = 2Zαβ ,
{
Qα, Q̄β̇

}
= 2Pαβ̇ (16)

is theN = 1 D = 4 SUSY algebra extended by tensorial central charges.
One can introduce terms with derivatives of central charge coordinatesy to

the multipliers at central charges in the Lagrangian (5). Then the model becomes
SUSY invariant not only quasi-invariant.

2.3. κ–SYMMETRY

Grassmannian constraints of the model (5) are

dθ ≡ −ipθ −Zθ ≈ 0 . (17)

In terms of Weyl spinor we have

dθα ≡ −ipθα − (P̂ θ̄)α − θβZβα ≈ 0 , (18)

d̄θα̇ ≡ −ip̄θα̇ − (θP̂)α̇ − Z̄α̇β̇ θ̄β̇ ≈ 0 . (19)

Poisson brackets algebra of constraints (17) is

{dθ, dθ} = 2iZ . (20)

In terms of Weyl spinors it is

{dθα, dθβ} = 2iZαβ ,
{
d̄θα̇, d̄θβ̇

}
= 2iZ̄α̇β̇ ,

{
dθα, d̄θβ̇

}
= 2iPαβ̇ . (21)

Let us analyze all possibilities of different numbers ofκ–symmetries. The
number of κ–symmetries is defined rank of Poisson bracket matrix for the
fermionic constraints. In considered case

detZ = (P2)
2 − Pαα̇Pββ̇ZαβZ̄α̇β̇ +

1

4
ZαβZαβZ̄α̇β̇Z̄

α̇β̇ . (22)
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The characteristic polynomial, which is obtained by substitutionp0 → p0 − λ
in (22), has the form

λ2(λ2 − 4p0λ+A) + 2Bλ+ detZ
where

A = 4(p0)
2 − 2P2 − σ0

αα̇σ
0
ββ̇
ZαβZ̄α̇β̇ ,

B = 2p0P2 − σ0
αα̇Pββ̇ZαβZ̄α̇β̇ .

Thus ifA = 0, B = 0, detZ = 0 we have three fermionic first class constraints
and superparticle model with3/4 conserved SUSY. In caseB = 0, detZ = 0
butA 6= 0 two eigenvaluesλ among four ones are zero and superparticle model
conserves1/2 SUSY. Only in casedetZ = 0 butA 6= 0, B 6= 0 we have system
with 1/4 conserved SUSY.

Noted that some superparticle model associated with superalgebra with tenso-
rial central charges was considered in [16]. Bosonic constraints of the model [16]
are generalized mass shell condition

ZCZ = 0 (23)

which in Weyl spinor notation reads

Zα
βZβ

γ = P2δα
γ , Z̄α̇β̇Z̄

β̇
γ̇ = P2δα̇γ̇ , Zα

βPβα̇ + Pαβ̇Z̄ β̇ α̇ = 0 . (24)

It is easy to see that the model [16] preserves two supersymmetries or more.
Preserving of one supersymmetry is not possible in that model. From (24) we
haveB = 0, detP = 0 and thus necessarily two eigenvaluesλ among four ones
are zero. Thus the condition (24) are too much strong to have system with1/4
conserved SUSY.

3. Equivalence between massive spinning particle and superparticle with
oneκ–symmetry

3.1. SPINNING PARTICLE IN THE PSEUDOCLASSICAL APPROACH

In the pseudoclassical approach the Lagrangian of spinning particle has the
following form [12, 13]

L1/2 = pµẋµ +
i

2
(ψµψ̇µ + ψ5ψ̇5)− e

2
(p2 +m2)− iχ(pψ +mψ5) . (25)

The spin variables in this description are the Grassmannian (pseudo)vectorψµ and
the Grassmannian (pseudo)scalarψ5. Besides mass constraintT ≡ p2 + m2 ≈ 0
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in Hamiltonian formalism the physical sector of the model is subjected to the
Grassmannian constraints from which one Dirac constraint

D ≡ pµψµ +mψ5 ≈ 0 (26)

plays the role of the first class constraint and five self-conjugacy condition for the
Grassmannian variables

gµ ≡ pµψ −
i

2
ψµ ≈ 0 , g5 ≡ pψ5 − i

2
ψ5 ≈ 0 (27)

are the second class constraints. Thus the number of physical odd degrees of
freedom in the model (25) is [number of (ψµ, ψ5, pψµ, pψ5)] – [number of the
second class constraints (gµ, g5)] – 2[number of the first class constraint (D)] = 3.

The usual model of the massive CBS superparticle [22] with Grassmannian
spinor coordinatesθα, θ̄α̇ has only the fermionic spinor constraints

dθα ≡ −ipθα − (p̂θ̄)α ≈ 0 , d̄θα̇ ≡ −ip̄θα̇ − (θp̂)α̇ ≈ 0

which all are the second class constraints. Here the number of the physical odd
degrees of freedom is [number of (θα, θ̄α̇, pθα, p̄θα̇)] – [number of (dθ, d̄θ)] =
4. In order to obtain desired three physical fermionic degrees of freedom it is
necessary that from fermionic four spinor constraints three constraints are of the
second class whereas one constraint should be of the first class. Such situation
with nonsymmetric separation of the fermionic constraints into the ones of first
and second class has been proposed in massless superparticle models [10] as well
as in the massive particle case [23]. Precisely the situation with one first class
fermionic constraint has been presented in [23] in the construction ofN = 4 →
N = 1 PBGS ind = 1. The relation between that model and our one will be
given below. Thus in the massive case the equivalence of spinning particle and
superparticle with tensorial central charges with oneκ-symmetry is expected. Let
us note that in massless case [24, 25] the spinning particle is equivalent, at least
on classical level, to the usual CBS superparticle without any central charges.
This fact of identifying the local fermionic invariances of spinning particle and
κ-symmetries of superparticle is essential for superfield formulation of massless
superparticle theory [24, 25] and consequent generalizations on superbranes [26].

Accounting above mentioned preliminary arguments for the possible relation
between massive spinning particle and massive superparticle with tensorial central
charges we take the following way for construction of the superparticle model. We
shall realize the covariant transition, under preservation of the physical content,
from the model of the massive spinning particle to the system with Grassmannian
spinor variables. As result of this procedure we arrive at model of theN = 1
D = 4 massive superparticle with tensorial central charges possessing one gauge
fermionic invariance (κ-symmetry).
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Covariant transition from the Grassmannian vectorψµ and scalarψ5 to the
Grassmannian spinorsθα, θ̄α̇ requires using of the commuting spinor variables
ζα, ζ̄α̇.

The total system which we consider as initial under transition to Grassman-
nian spinors is in fact the sum of the two sectors coupled through the space-time
momentum. One of these sectors is the usual massive spinning particle with
Lagrangian (25) whereas the second is the sector of the bosonic spinor with
Lagrangian (6). Thus the Lagrangian of the initial system has the following form

L = L1/2 + LSCC

= pẋ+
i

2
(ψψ̇ + ψ5ψ̇5)− e

2
(p2 +m2)− iχ(pψ +mψ5)

+ ζ̇v + v̄ ˙̄ζ − λ(ζp̂ζ̄ − j) . (28)

As result of the constraintζp̂ζ̄ = j the sign of the constantj defines the sign of
the energy. In following we consider the positive energy sector wherej > 0.

3.2. CONVERSION OF SPINNING PARTICLE TO SUPERPARTICLE WITH
TENSORIAL CENTRAL CHARGES

The conversion of spinning particle model described by the Grassmannian vari-
ablesψµ, ψ5 to the model with the Grassmannian spinor variablesθα, θ̄α̇ is
realized by the general resolution [11] of the form

ψµ = r−1/2(θσµp̃ζ + ζ̄ p̃σµθ̄)−mρζσµζ̄ , (29)

ψ5 = r−1/2m(ζθ + θ̄ζ̄) + rρ+ ψ̃5 . (30)

The initial Grassmannian variablesψµ, ψ5 (5 variables) are expressed in terms
of two Grassmannian scalarsρ, ψ̃5 and three components of spinorθ. Just for
projections ofψµ ≡ −1

2 σ̃µ
α̇αψ̂αα̇ in the basis formed by spinorsζα, (ζ̄ p̃)α we

have

ζψ̂ζ̄ = 2r1/2(ζθ + θ̄ζ̄) , ζ̄p̃ψ̂p̃ζ = 2mr2ρ , (31)

ζψ̂p̃ζ = 2r1/2(ζp̂θ̄) , ζ̄p̃ψ̂ζ̄ = 2r1/2(θp̂ζ̄) , (32)

whereψ̂ = ψµσµ. The fourth component of the spinor

φ = i(θζ − ζ̄ θ̄) (33)

does not participate in the expression forψ-variables. The inversion of (29), (30)
and (33) looks as follows

θα =
1

4
r−3/2

[
(ζψ̂ζ̄)(p̂ζ̄)α + 2(ζ̄ p̃ψ̂ζ̄)ζα

]
+
i

2
r−1φ(p̂ζ̄)α ,

kievarwe.tex; 12/03/2001; 3:49; p.175



LORENTZ SPINORIAL CENTRAL CHARGES 169

θ̄α̇ =
1

4
r−3/2

[
(ζψ̂ζ̄)(ζp̂)α̇ + 2(ζψ̃p̂ζ)ζ̄α̇

]
− i

2
r−1φ(ζp̂)α̇ ,

ρ =
1

2m
r−2(ζ̄ p̃ψ̂p̃ζ) ,

ψ̃5 =
1

m
(pµψµ +mψ5)− (2mr)−1(ζψ̂ζ̄)(p2 +m2) .

In the new variables the Dirac constraint takes a simple form. On mass shell
p2 +m2 = 0 we have

D = pψ +mψ5 = mψ̃5 ≈ 0 . (34)

Moreover, we can extract from the new variables a pure gauge degree of free-
dom for fermionic local symmetry of the spinning particle [12, 13] (world-line
supersymmetry)

δχ = ε̇ , δe = −2iεχ , δψµ = −εpµ , δψ5 = −εm , δxµ = iεψµ .

In the new variables this transformation takes the form

δθα = −1

4
εr−1/2(p̂ζ̄)α , δθ̄α̇ = −1

4
εr−1/2(ζp̂)α̇ ,

δρ = −1

2
εmr−1 , δψ̃5 = − 1

2m
ε(p2 +m2) ≈ 0 .

Thus, the only transformed are the variableρ and one component of spinorθ

δ(θζ + ζ̄ θ̄) =
1

2
εr1/2 .

Subsequently the combinationρ+mr−3/2(θζ + ζ̄ θ̄) of this componentθ andρ is
invariant under the gauge transformations,δ[ρ+mr−3/2(θζ + ζ̄ θ̄)] = 0, whereas
the variable

ρ−mr−3/2(θζ + ζ̄ θ̄) (35)

is the pure gauge degree of freedom,δ[ρ−mr−3/2(θζ + ζ̄ θ̄)] = −mr−1ε.
Accounting the equation of motion for bosonic spinorζ̇ = 0 and substituting

the resolving expressions (29), (30) forψµ, ψ5 in the Lagrangian (28) we arrive at
the Lagrangian

L = p(ẋ− iθ̇σθ̄ + iθ̇σ ˙̄θ)− im2r−1(θζζ̄ ˙̄θ − θ̇ζζ̄θ̄)
+
i

2
r2
[
ρ+mr−3/2(θζ + ζ̄ θ̄)

] [
ρ̇+mr−3/2(θ̇ζ + ζ̄ ˙̄θ)

]
+
i

2
r
[
ρ−mr−3/2(θζ + ζ̄ θ̄)

]
˙̃
ψ5 +

i

2
rψ̃5

[
ρ̇−mr−3/2(θ̇ζ + ζ̄ ˙̄θ)

]
+
i

2
ψ̃5

˙̃
ψ5 − imχψ̃5 − e

2
(p2 +m2)

+ ζ̇v + v̄ ˙̄ζ − λ(ζp̂ζ̄ − j) . (36)
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It should be stressed that the equationζ̇ = 0 for bosonic spinor, which has
been used for derivation of the Lagrangian (36), is reproduced by the same La-
grangian (36). As we see from the Lagrangian, the gauge variable (35) is the cor-
responding conjugate variable for̃ψ5 which generates the local transformations.
The simpler gauge fixing condition for it

ρ−mr−3/2(θζ + ζ̄ θ̄) = 0

gives us the possibility to resolve the scalarρ in term of spinor projection(θζ +
ζ̄ θ̄). We take the more general condition of this type

ρ−mr−3/2(θζ + ζ̄ θ̄) = 2(k − 1)mr−3/2(θζ + ζ̄ θ̄) (37)

which is the gauge fixing condition at allk exceptk = 0. At k = 0 (37) is reduced
to the condition on gauge invariant variable

ρ+mr−3/2(θζ + ζ̄ θ̄) = 0

and of course it is not a gauge fixing.
Substituting in the Lagrangian (36) the constraint conditionψ̃5 = 0 (the

equation of motion for the Lagrange multiplierχ) and the expression

ρ = (2k − 1)mr−3/2(θζ + ζ̄ θ̄) (38)

(following from the gauge fixing condition (37) ) we obtain the Lagrangian

L = pω̇θ + iZαβθ
αθ̇β + iZ̄α̇β̇ θ̄

α̇ ˙̄θ
β̇

+ iZαβ̇(θα ˙̄θ
β̇ − θ̇αθ̄β̇)− e

2
(p2 +m2)

+ ζ̇v + v̄ ˙̄ζ − λ(ζp̂ζ̄ − j) . (39)

In this expressionωθ ≡ ω̇θ dτ = dx − idθσθ̄ + iθσdθ̄ is the usualN = 1
superinvariantω-form. The quantitiesZαβ = Zβα, Z̄α̇β̇ = (Zαβ) andZαβ̇ =

(Zβα̇) are expressed in terms of bosonic spinorζ (for similar formula see [10])

Zαβ = 2k2m2j−1ζαζβ , Zαβ̇ = (2k2 − 1)m2j−1ζαζ̄β̇ . (40)

Zαβ andZ̄α̇β̇ are tensor central charges (types(1, 0) and(0, 1)) andZαβ̇ is vector
one (type(1/2, 1/2)) for theD = 4 N = 1 supersymmetry algebra [17]-[21].

The same result is obtained if we consider the connection of the systems (28)
and (5) in the Hamiltonian formalism. Precisely there is the canonical transfor-
mation which connect the models with each other. Now in order to make equal
the number of Grassmannian variables in the models we introduce pure gauge
variableφ in the initial model of the spinning particle. Its pure gauge nature is
achieved by the presence of the first class constraint

pφ ≈ 0 (41)
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in the initial model. So in the canonical transformation we imply that the term
pφφ̇ − µpφ is added to the Lagrangian (28). Hereµ is Lagrange multiplier. The
resolution ofφ in terms of the spinors is given by the expression (33).

As the generating function of the canonical transformation from system with
coordinatesψµ, ψ5, φ, xµ, ζα, ζ̄α̇ to the system with coordinatesθα, θ̄α̇, ρ, ψ̃5,
x′µ, ζ ′α, ζ̄ ′α̇ we take

F = −pµψψµ(pµ, ζ, θ, ρ)− pψ5ψ5(ζ, θ, ρ, ψ̃5)− pφφ(ζ, θ)

+ ζαv′α + v̄′α̇ζ̄
α̇ − pµx′µ . (42)

Here the expressions for old variables in term of new ones from the right hand
side of the equations (29), (30), (33) have been used. That construction of the
generating function (42) reproduces, by definition of the canonical transformation,
the resolution (29), (30), (33) of the initial Grassmannian coordinates in spinors
ψµ = −∂lF/∂pµψ, ψ5 = −∂lF/∂pψ5, φ = −∂lF/∂pφ and leaves invariable

bosonic spinor coordinatesζ ′α = ∂F/∂v′α = ζα, ζ̄ ′α̇ = ∂F/∂v̄ ′̇α = ζ̄α̇ and the
momentum vectorp′µ = −∂F/∂x′µ = pµ. The expression of new Grassmannian
momenta in terms of initial ones are

pθα = −∂rF/∂θα = r−1/2(σµp̃ζ)αp
µ
ψ −mr−1/2ζαpψ5 + iζαpφ ,

p̄θα̇ = −∂rF/∂θ̄α̇ = r−1/2(ζ̄ p̃σµ)α̇p
µ
ψ −mr−1/2ζ̄α̇pψ5 − iζ̄α̇pφ ,

pρ = −∂rF/∂ρ = −m(ζσµζ̄)pµψ + rpψ5 , pψ̃5 = −∂rF/∂ψ̃5 = pψ5 .

The expressions of the initial bosonic spinor momentavα = ∂F/∂ζα, v̄α̇ =
∂F/∂ζ̄α̇ and space-time coordinatexµ = −∂F/∂pµ in terms of the new phase
space coordinates contain besides corresponding new phase variables the addi-
tional terms depending on the new Grassmannian phase space variables. These
terms arise because of the dependence of the resolution expressions (29), (30),
(33) onζ, ζ̄ andp. Here we do not need the expressions forv′,v̄′ andx′ in the
explicit form due to independence of all constraints on these phase variables.

Now we eliminate the variables̃ψ5, pψ̃5 by means of the Dirac constraint (26)
and gauge fixing condition for Dirac constraint

pψ̃5 − i(k − 1)mr−1/2 [θζ + ζ̄ θ̄
] ≈ 0 (43)

at k 6= 0 2. After fulfillment of the additional canonical transformationpρ →
pρ′ = pρ − ikmr1/2

[
θζ + ζ̄ θ̄

]
, which leads to resolving formpρ′ ≈ 0 of one

2 The diagonalized Dirac constraintD′ ≡ D− ipµgµ− img5 = −i[pµ(pµψ+ i
2
ψµ)+m(pψ5 +

i
2
ψ5)] ≈ 0 has in new variables the formD′ = i

4
r−1/2

[
ζ̄p̃pθ + p̄θ p̃ζ

]− i
2
mr−1pρ+ 1

2
mψ̃5 ≈ 0.

The Poisson bracket of the condition (43) andD′ is equal to(km)/2, i.e. atk = 0 the condition (43)
does not fix the gauge for the Dirac constraint.
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Fermi-constraint from (27), we eliminate the variablesρ, pρ with the help of two
from five second class Fermi-constraints (27). Because of the resolving form of
the constraints with respect to eliminated variables,ψ̃5 ≈ 0 andpρ′ ≈ 0, the Dirac
brackets for remaining variables are the same as their Poisson brackets. After that
the remaining Grassmannian constraints take the following form

ζ̄ p̃pθ − p̄θp̃ζ ≈ 0 , (44)

[
ζ̄ p̃pθ + p̄θp̃ζ

]− 4ik2m2 [θζ + ζ̄ θ̄
] ≈ 0 , (45)

ζ
[−ipθ − p̂θ̄] ≈ 0 , [−ip̄θ − θp̂] ζ̄ ≈ 0 (46)

which are the same as the projections on spinorsζ, p̂ζ̄ of the Grassmannian spinor
constraints

dθα ≡ −ipθα − (p̂θ̄)α − θβZβα − Zαβ̇ θ̄β̇ ≈ 0 , (47)

d̄θα̇ ≡ −ip̄θα̇ − (θp̂)α̇ − Z̄α̇β̇ θ̄β̇ − θβZβα̇ ≈ 0 (48)

with quantitiesZαβ ,Zαβ̇ defined in (40). From invariance of the variablesζα, ζ̄α̇,

pµ under the canonical transformation, all bosonic constraints, i.e.p2 + m2 ≈ 0
and ζp̂ζ̄ − j ≈ 0, are not changed. The system with remaining variables
and the constraints is described by the above mentioned Lagrangian (5). The
Lagrangian (5) reproduces accurately this set of the constraints and nothing else.

Thus we establish that the model described by LagrangianL = L1/2 +Lb.s. is
equivalent physically to the model with LagrangianL = Lsuper +Lb.s. at classical
level. HereL1/2 is the Lagrangian (25) of the massive spinning particle (spin1/2)
whereasLsuper is Lagrangian of the massiveN = 1 superparticle with tensorial
central charges (40)

Lsuper = pω̇θ + iZαβθ
αθ̇β + iZ̄α̇β̇ θ̄

α̇ ˙̄θ
β̇

+ iZαβ̇(θα ˙̄θ
β̇ − θ̇αθ̄β̇)− e

2
(p2 +m2) .

(49)

LagrangiansLb.s. of the bosonic spinor in the both equivalent models are quite
identical.

It should be noted that the value of constantk in the formula (40) for central
charges of the superparticle is nonzero,k 6= 0, in the case of its equivalence to
the spinning particle. But in general the valuek = 0 is not forbidden in model of
superparticle with central charges. Next we consider the cases both withk 6= 0
andk = 0. As we see below atk 6= 0 andk = 0 we have superparticle models
with one and twoκ-symmetries respectively.
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3.3. ANALYSIS ON LEVEL OF PHYSICAL DEGREES OF FREEDOM

Alternative way for a proof of classical equivalence of the massive spin1/2
particle (25) and the massive superparticle with central charges (49), atk 6= 0,
possessing oneκ-symmetry is the reduction of both models to physical degrees
of freedom [27]. In the examining positive energy sector after choice of gauge
ψ− = ψ0−ψ5 = 0 for Dirac constraint and exclusion ofψ+ = ψ0 +ψ5 by means
of the constraint condition we obtain for the physical odd degrees of freedom of

spinning particle [28, 27] the Lagrangian in the form ofL
(ph)
1/2,Gr = i

2
~ψ ~̇ψ. On the

other hand the Grassmannian part of the superparticle LagrangianLsuper takes the
form

L
(ph)
super,Gr = iq̄q̇ − iq ˙̄q + 2k2iηη̇

after using of the variables

η = mr−1/2(θζ + ζ̄ θ̄) , σ = −imr−1/2(θζ − ζ̄ θ̄) , (50)

q = r−1/2(θp̂ζ̄) , q̄ = r−1/2(ζp̂θ̄) . (51)

Setting

q = (ψ1 + iψ2)/2 , q̄ = (ψ1 − iψ2)/2 , η = ψ3/2k

we obtain exactly the same Grassmannian part of the Lagrangian

L
(ph)
super,Gr = L

(ph)
1/2,Gr =

i

2
~ψ ~̇ψ . (52)

Such Lagrangian for the physical odd variables comes out also from work [23]
in non-Lorentz covariant Grassmannian sectorN = 4 → N = 1 PBGS. In first
order formalism the target space action of this work has the Lagrangian

L = ~P ~Π− P 0Π0 +
e

2
(P 02 − ~P 2 − 1)−ΘΘ̇− ~Ψ~̇Ψ (53)

whereΠ0 = Ẋ0 + ΘΘ̇ + ~Ψ~̇Ψ, ~Π = ~̇Y − Θ̇~Ψ + Θ~̇Ψ (we remain here the notations
of [23]). In accounting the last expressions, the Lagrangian (53) takes the form

L = ~P ~̇Y − P 0Ẋ0 +
e

2
(P 02 − ~P 2 − 1)

−(P 0 + 1)

[
~Ψ− 1

P 0 + 1
~PΘ

] [
~Ψ− 1

P 0 + 1
~PΘ

]·
.

After using of the variables

~ψ =
√

2(P 0 + 1)1/2
[
~Ψ− 1

P 0 + 1
~PΘ

]
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we obtain exactly the Lagrangian (52) for Grassmannian variables.

3.4. SUPERPARTICLE WITH INDEX SPINOR

In order to analyze the properties of the obtained massive superparticle with ten-
sorial central charges let us consider the model of spinning particle with index
spinor [14, 11, 15] as additional bosonic coordinates. It is naturally because we
have used for bosonic spinor the relationζp̂ζ̄ − j ≈ 0 which is inherent in the
index spinor approach. In the Hamiltonian formalism the index spinor sector is
restricted by the spinor self-conjugacy conditions

dζ ≡ ipζ − p̂ζ̄ ≈ 0 , d̄ζ ≡ −ip̂ζ − ζp̂ ≈ 0 (54)

which are the second class constraints in the massive case. It is achieved in above
model (28) by the substitutionv = −ip̂ζ̄, v̄ = iζp̂. ThenLb.s. (6) takes the form
of the index spinor Lagrangian [14]

Lindex = −iζ̇p̂ζ̄ + iζp̂ ˙̄ζ − λ(ζp̂ζ̄ − j) . (55)

The constraintζp̂ζ̄ − j ≈ 0 included in the Lagrangian generates in Hamiltonian
formalism the spin constraint

i

2
(ζpζ − p̄ζ ζ̄)− j ≈ 0 (56)

which together with second class constraints (54) leads [14] to the particle state
of the single spin associated with given sector of index spinor. Spin of the particle
in the quantum spectrum is the value of the constantj renormalized by ordering
constants (thusj can be named “classical spin”).

The realization of the previously considered canonical transformation to the
model with LagrangianL′ = L1/2 +Lindex, i.e.Lindex insteadLb.s. in (28), leads
to the Lagrangian

L′ = pω̇ +iZαβθ
αθ̇β + iZ̄α̇β̇ θ̄

α̇ ˙̄θ
β̇

+ iZαβ̇(θα ˙̄θ
β̇ − θ̇αθ̄β̇)

+ iYαβζ
αζ̇β + iȲα̇β̇ ζ̄

α̇ ˙̄ζ
β̇

+ iYαβ̇(ζα ˙̄ζ
β̇

+ ζ̇αζ̄ β̇)

− iN(ζ̇ p̂ζ̄ − ζp̂ ˙̄ζ)

− e

2
(p2 +m2)− λ(ζp̂ζ̄ − j) . (57)

Here the formω ≡ ω̇ dτ = dx−idζσζ̄+iζσdζ̄−idθσθ̄+iθσdθ̄ is invariant with
respect to the transformations of the usualN = 1 supersymmetry with Grass-
mannian spinor parameter and “bosonic supersymmetry” withc-number spinor
parameter [14, 11, 15]. The central chargesZαβ , Zαβ̇ have the same form (40).
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So the kinetic terms of the space-time coordinate and Grassmannian spinor inL′
(57) are identical to the corresponding terms inL (5) and hence the algebras of
the fermionic constraints in both models are identical. But the kinetic terms of the
index spinor in LagrangianL′ are different from the kinetic terms of the bosonic
spinor in LagrangianL by additional terms with quantities

Yαβ = 2k(k − 2)m2j−1θαθβ , Ȳα̇β̇ = −(Yαβ) ,

Yαβ̇ = −(2k2 − 4k + 1)m2j−1θαθ̄β̇ (58)

which can be regarded as the central charges of the “bosonic SUSY” as well as

N ≡ j−1
[
(θp̂θ̄) + 2(2k − 1)m2j−1(θζ)(ζ̄ θ̄)

]
. (59)

The appearance of these extra terms is the result of modification of index spinor
momentapζ , p̄ζ under the canonical transformation and, as consequence, the mod-
ification of the spin constraint (56) and bosonic spinor constraints (54) expressed
by new variables.

Specific peculiarity of the model (57) with index spinor is an interconnec-
tion between usual fermionic supersymmetry and “bosonic one” and at present
its meaning is not yet quite clear. Some duality appears in the invariance under
permutation of Grassmannian and bosonic spinors bothω-form and certain terms
with central charges of different types.

4. Gauge symmetries of massive superparticle with tensorial central charges

For local transformation of the Grassmannian spinor

δθα = iκ(ζ̄ p̃)α , δθ̄α̇ = −iκ̄(p̃ζ)α̇ (60)

and standard Siegel transformation [29, 30] of the space-time coordinate

δxµ = −iθσµδθ̄ + iδθσµθ̄ (61)

with local complex Grassmannian parameterκ(τ) the variation of the Lagrangians
up to a total derivative is

δL = −2k2m2(θζ + ζ̄ θ̄)(κ− κ̄)· + 2k2m2(θζ + ζ̄ θ̄)·(κ− κ̄)

− 4km2j−1[(θp̂ζ̄)ζζ̇ + (ζp̂θ̄) ˙̄ζζ̄](κ− κ̄) . (62)

As we see,δL = 0 for realκ = κ̄ at arbitrary values of constantk. But atk = 0
we haveδL = 0 for arbitrary complex parameterκ. Thus atk 6= 0 when the
tensor central chargeZαβ is present the models have oneκ-symmetry with real
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Grassmannian parameterκ = κ̄. But atk = 0 when there is only the vector central
chargeZαβ̇ we have twoκ-symmetries with complex Grassmannian parameterκ.

A first class constraint is associated to each gauge symmetry in Hamilto-
nian formalism. As is already noted our systems are described by the fermionic
constraints (covariant derivatives) (47), (48). Their Poisson brackets algebra is

{dθα, dθβ} = 2iZαβ ,
{
d̄θα̇, d̄θβ̇

}
= 2iZ̄α̇β̇ ,

{
dθα, d̄θβ̇

}
= 2i

(
pαβ̇ + Zαβ̇

)
(63)

with central charges (40). Covariant separation of the fermionic first and second
class constraints is achieved by the projection on the spinorsζα, (p̂ζ̄)α. Let us put

χθ ≡ ζdθ = −iζpθ − ζp̂θ̄ ≈ 0 , χ̄θ ≡ d̄θ ζ̄ = −ip̄θ ζ̄ − θp̂ζ̄ ≈ 0 , (64)

gθ ≡ ζ̄ p̃dθ + d̄θp̃ζ = −i(ζ̄ p̃pθ + p̄θp̃ζ)− 4k2m2(θζ + ζ̄ θ̄) ≈ 0 , (65)

fθ ≡ i(ζ̄ p̃dθ − d̄θp̃ζ) = ζ̄ p̃pθ − p̄θp̃ζ ≈ 0 . (66)

The nonzero Poisson brackets of these projections are

{χθ, χ̄θ} = 2ij , {gθ, gθ} = 16k2m2ij . (67)

Thus the constraintsχθ, χ̄θ are always the second class constraints whereas the
constraintfθ is always the first class constraint generating oneκ-symmetry with
local parameter(κ+ κ̄) on variable(θζ− ζ̄ θ̄), {fθ, θζ − ζ̄ θ̄} = 2r, δ(θζ− ζ̄ θ̄) =
ir(κ+ κ̄). The constraintgθ is the second class constraint atk 6= 0. But atk = 0
the constraintgθ becomes the first class constraint and generates additionalκ-
symmetry with local parameteri(κ− κ̄) on variable(θζ + ζ̄ θ̄),

{
gθ, θζ + ζ̄ θ̄

}
=

−2ir, δ(θζ + ζ̄ θ̄) = ir(κ− κ̄).
Thus we obtain the models of theD = 4 N = 1 massive superparticle

with tensorial central charges possessing one or two Siegelκ-symmetries. In the
language of the brane theories these models correspond to the BPS superbrane
configurations preserving1/4 or 1/2 of supersymmetry (see [21] and references
therein).

It should be noted that constantk in the construction of the superparticle
appears in the gauge fixing condition under transition from the spinning particle.
Therefore at allk 6= 0 the superparticle has quite similar systems of the con-
straints and the same number of physical degrees of freedom. The models at all
k 6= 0 are equivalent. Under transformations which can be considered as canonical
transformations

θα → θα + br−1(θζ + ζ̄ θ̄)(ζ̄ p̃)α , θ̄α̇ → θ̄α̇ + br−1(θζ + ζ̄ θ̄)(p̃ζ)α̇ (68)
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whereb is real number the LagrangianL (or L′) transforms into the same La-
grangian withak in place ofk wherea ≡ 1 + 2b. As final result at level of
the free superparticle we have two substantially different models of the massive
superparticle with tensorial central charges. First of them atk = 1/

√
2 has only

tensor central chargeZαβ and possesses oneκ-symmetry. Second model atk = 0
has only vector central chargeZαβ̇ and possesses twoκ-symmetries.

5. Quantum spectrum of the models

In process of the construction it is established the equivalence at classical level
between the massiveD = 4 N = 1 superparticle with oneκ-symmetry and the
massiveD = 4 n = 1 spinning particle. But they may lead to distinct quantum
theories [27]. Below we establish that the spinning particle and superparticle with
tensorial central charges, which have index spinor as additional one, have iden-
tical state spectrum. By analogy with results in paper [12–14] the first operator
quantization of the spinning particle with index spinor described by Lagrangian
L1/2 +Lindex is immediate. Wave function in the model is defined by Dirac spinor
with (anti)holomorphic dependence in index spinor of homogeneity degree2J
whereJ is the classical spinj renormalized by the ordering constant. Writing
Dirac spinor in terms of Weyl spinors as

(
ψ
χ

)
, in according to analysis carried

out in [14] we have in holomorphic case two multispinor fieldsψα1...α2Jβ and
χα1...α2J β̇

which are symmetrical in2J indicesαs. Hereβ andβ̇ correspond to
bispinor index. These fields are connected with each other by Dirac equation(

0 p̃

p̂ 0

)(
ψ

χ

)
= m

(
ψ

χ

)
(69)

(quantum counterpart of the Dirac constraint (26)). Comparison with superparticle
model is more immediate if we take the fieldχα1...α2J β̇

as basic one. But the field
ψα1...α2J−1α2Jβ = φ(α1...α2Jβ) + φ(α1...α2J−1

εα2J )β exhibits simply that two spins
J ± 1

2 are presented in spectrum at fixedJ as it should be when one adds spinJ
which is given by index spinor and spin12 which corresponds to the Grassmannian
variablesψµ, ψ5 of the pseudoclassical mechanics under quantization.

The quantization of the superparticle (57) is suitable to carry out in vari-
ables (50), (51) in term of which the fermionic constraints (64)-(66) take the
extremely simple forms

ipq + q̄ ≈ 0 , ip̄q + q ≈ 0 ,

ipη + 2k2η ≈ 0 , (70)

pσ ≈ 0 .
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We gauging out the variableσ, the introduce the Dirac brackets for taking into
account of the fermionic second class constraints and the represent the remaining
fermionic variablesq, q̄, η (in fact ~ψ) by means of the usual Pauliσ-matrices.
Thus the wave function of this problem has two components depending appropri-
ately on index spinor and space-time variables. The quantization of the bosonic
spinor sector shows certain difference with [14]. Additional term of the formqq̄
in spin constraint (56) arising due to interaction of bosonic and fermionic sectors
leads to different homogeneity degrees (which correspond to different represen-
tations of Lorentz group) for two components of wave function. Bosonic spinor
constraints (54) ((anti)homogeneity conditions) acquire the additional terms both
with qq̄ and alsoqη (or q̄η). These last terms, which are proportionalσ+ (or σ−),
σ± ≡ (σ1 ± iσ2)/2 in matrix realization of odd variables, connect two compo-
nents of wave function. As result the irreducible(2J + 1)-component spinor field
φα1...α2J+1 , in term of which one component of wave function is determined, is
expressed by Dirac equation

pγβ̇χα1...α2J

β̇ = mφα1...α2Jγ (71)

via field χα1...α2J β̇
which determines second component of wave function. This

last field χα1...α2J β̇
can be identified with basic field of the spinning particle

spectrum.
In case of models (28) and (5), when there is not present the truncation of

bosonic spinor sector to the index one because of absence of bosonic spinor con-
straints, the quantum equivalence apparently remains too. One can expect it from
the quite identity of bosonic sectors of the models (28) and (5) and identifying of
physical fermionic degrees of freedom which has been demonstrated in Sec. 2.

In case of the Lagrangian (5) one can include vector central chargeZµ into
vector of space-time momentum by the shiftpµ → pµ + Zµ after taking into
account the bosonic spinor equation of motionζ̇ = 0. Therefore atk = 0, when
there is vector central charge only, it disappears completely from the action and
superparticle model reduces in fact to massless case. Unlike this in the particle
model (57) with index bosonic spinor atk = 0 the redefinition of momentum does
not exclude vector central charge due to accompanying modification of bosonic
spinor and spin constraints. In this case the wave function contains two usual
spin-tensor fieldsφα1...α2J±1 , satisfying massive Klein-Gordon equation and dis-
connected with each other because of missing terms withqη in bosonic spinor
constraints.

6. Conclusion

In this work we presented the manifestly Lorentz-invariant formulation of the
D = 4 N = 1 free massive superparticle with tensorial central charges. The
tensorial central charges are construct by commuting bosonic spinor and also by
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index spinor. The model possesses in general one or twoκ-symmetries. In particu-
lar case the model contains a real parameterk and atk 6= 0 it has oneκ-symmetry
while at k = 0 the number ofκ-symmetries is two. The local transformations
of κ-symmetry are written out. It is obtained the equivalence at classical level
between the massiveD = 4 superparticle with oneκ-symmetry and the massive
D = 4 spinning particle.
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ROTATING SUPER BLACK HOLE AS SPINNING PARTICLE

ALEXANDER BURINSKII ∗
NSI, Russian Academy of Sciences, Moscow, Russia

1. Introduction

The Kerr rotating black hole solution displays some remarkable features indicat-
ing a relation to the structure of the spinning elementary particles. In particular, in
the 1969 Carter [1] observed, that if three parameters of the Kerr-Newman metric
are adopted to be (~=c=1 ) e2 ≈ 1/137, m ≈ 10−22, a ≈ 1022, ma =
1/2, then one obtains a model for the four parameters of the electron: charge,
mass, spin and magnetic moment, and the gyromagnetic ratio is automatically the
same as that of the Dirac electron. Investigations along this line [2–6] allowed
to find out stringy structures in the real and complex Kerr geometry and to put
forward a conjecture on the baglike structure of the source of the Kerr-Newman
solution. The earlier investigations [2, 13, 5] showed that this source represents a
rigid rotator ( a relativistic disk ) built of an exotic matter with superconducting
properties. Since 1992 black holes have paid attention of string theory. In 1992
the Kerr solution was generalized by Sen to low energy string theory [7], and it
was shown [17] that near the Kerr singular ring the Kerr-Sen solution acquires a
metric similar to the field around a heterotic string. The point of view has appeared
that black holes can be treated as elementary particles [8]. On the other hand,
a description of a spinning particle based only on the bosonic fields cannot be
complete, and involving fermionic degrees of freedom is required. Therefore, the
spinning particle must be based on a super-Kerr-Newman black hole solution [18]
representing a natural combination of the Kerr spinning particle and superparticle
model. Angular momentumL of spinning particles is very high| a |= L/m ≥ m,
and the horizons of the Kerr metric disappear. There appears a naked ring-like
singularity which has to be regularized being replaced by a smooth matter source.
In this review we consider a source representing a rotating superconducting bag
with a smooth domain wall boundary described by a supersymmetric versionof

∗ bur@ibrae.ac.ru
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182 A. BURINSKII

theU(I)×U ′(I) field model [23]. In fact, this model of the Kerr-Newman source
represents a generalization of the Witten superconducting string model [16] for
the superconducting baglike sources [6].

2. Complex source of Kerr geometry and its stringy interpretation

The Kerr-Newman solution can be represented in the Kerr-Schild form

gµν = ηµν + 2he3
µe

3
ν , (1)

whereηµν is metric of an auxiliary Minkowski spaceηµν = diag(−1, 1, 1, 1),
andh is a scalar function. Vector fielde3 is null, e3

µe
3µ = 0, and tangent to PNC

( principal null congruence ) of the Kerr geometry. The Kerr PNC is twisting i.e.
corresponding to a vortex of a null radiation.1 One of the main peculiarities of the
Kerr geometry is singular ring representing a branch line of the Kerr space on the
‘positive’ (r > 0) and ‘negative’(r < 0 ) sheets which are divided by the diskr =
0 spanned by this ring. The Kerr singular ring is exhibited as a pole of the function

h(r, θ) = mr−e2/2
r2+a2 cos2 θ

, wherer andθ are the oblate spheroidal coordinates. The
Kerr PNC is in-going on the ‘negative’ sheet of space, it crosses the diskr = 0 and
turns into out-going one on the ‘positive’ sheet. Appearance of the Kerr singular
ring on the real space-time can also be observed in the Coulomb solutionf = e/r̃
when its point-like source is shifted in complex region(x0, y0, z0) → (0, 0, ia).
Radial distancẽr becomes complex in this case and can be expressed asr̃ =
r+ ia cos θ ( Appel, 1987 ! ). Similarly, the source of Kerr-Newman solution can
be considered from complex point of view as a ”particle” propagating along a
complex world-line [9, 12] parametrized by complex time.

The objects described by the complex world-lines occupy an intermediate
position between particles and strings. Like the strings they form the two-
dimensional surfaces or the world-sheets in the space-time. It was shown that
the complex Kerr source may be considered as a complex hyperbolic string which
requires an orbifold-like structure of the world-sheet. In many respects this string
is similar to the ‘mysterious’N = 2 string of superstring theory shedding a light
on the puzzle of its physical interpretation. As we have already mentioned, there is
one more stringy structure in the Kerr geometry connected with the Kerr singular
ring. In fact the both these stringy structures are different exhibitions of some
membrane-like source. This source has a complex interpretation alongside with
some real image in the form of a rotating bubble which will be discussed further.

The Kerr PNC may be obtained from the complex source by a retarded-time
construction. The rays of PNC are the tracks of null planes of the complex light
cones emanated from the complex world line [11, 12]. The complex lightcone

1 Besides, the Kerr PNC is geodesic and shear free, it represents a bundle of twistors and can be
described by the Kerr theorem [10, 11, 9, 12].
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with the vertex at some pointx0 of the complex world linexµ0 (τ): (xµ−x0µ)(xµ−
x
µ
0 ) = 0, can be split into two families of null planes: ”left” planes spanned by

null vectorse1 ande3, and”right”planes spanned by null vectorse2 ande3. The
Kerr PNC arises as the real slice of the family of the ”left” null planes of the
complex light cones which vertices lie on the straight complex world linex0(τ).

Only the cones lying on the strip|Imτ | ≤ |a| have a real slice. Therefore, the
ends of the resulting complex string are open. To satisfy the complex boundary
conditions, an orbifold-like structure of the worldsheet must be introduced [9, 12],
which is closely connected with the above mentioned Kerr’s twosheetedness.

3. Super-Kerr-Newman geometry

A supergeneralization of the Kerr-Newman solution can be obtained as a natural
combination of the Kerr spinning particle and superparticle [18]. In fact, the com-
plex structure of the Kerr geometry suggests the way of its supergeneralization.

Note, that any exact solution of the Einstein gravity is indeed a trivial solution
of supergravity field equations. The supergauge freedom allows one to turn any
gravity solution into a form containing spin-3/2 fieldψi satisfying the supergravity
field equations. However, since this spin-3/2 field can be gauged away by the
reverse transformation, such supersolutions have to be considered astrivial . The
hint how to avoid this triviality problem follows from the complex structure of
the Kerr geometry. In fact, from the complex point of view the Schwarzschild and
Kerr geometries are equivalent and connected by atrivial complex shift.

The non-trivial twisting structure of the Kerr geometry arises as a result of
the complexshift of the real sliceconcerning the center of the solution [11, 9].
Similarly, it is possible to turn atrivial super black hole solution into anon-trivial.
The trivial supershiftcan be represented as a replacement of the complex world
line by a superworldlineXµ

0 (τ) = x
µ
0 (τ) − iθσµζ̄ + iζσµθ̄, parametrized by

Grassmann coordinatesζ, ζ̄, or as a corresponding coordinate replacement in
the Kerr solution

x′µ = xµ + iθσµζ̄ − iζσµθ̄; θ′ = θ + ζ, θ̄′ = θ̄ + ζ̄, (2)

Assuming that coordinatesxi before the supershift were the usual c-number
coordinates one sees that coordinates acquire nilpotent Grassmann contributions
after supertranslations. Therefore, there appears a natural splitting of the space-
time coordinates on the c-number ‘body’-part and a nilpotent part - the so called
‘soul’. The ‘body’ subspace of superspace, or B-slice, is a submanifold where the
nilpotent part is equal to zero, and it is a natural analogue to the real slice of the
complex case.

Reproducing the real slice procedure of the Kerr geometry in superspace one
has to use the replacements:

a/ complex world line→ superworldline,
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b/ complex light cone→ superlightcone,
c/ real slice→ body slice.
Performing the body-slice procedure to superlightcone constraints

s2 = [xµ −X0µ(τ)][xµ −Xµ
0 (τ)] = 0, (3)

one selects the body and nilpotent parts of this equation and obtains three equa-
tions. The first one is the discussed above real slice condition of the complex Kerr
geometry claiming that complex light cones can reach the real slice. The nilpotent
part of (3) yields two B-slice conditions

[xµ − xµ0 (τ)](θσµζ̄ − ζσµθ̄) = 0; (4)

(θσζ̄ − ζσθ̄)2 = 0. (5)

These equations can be resolved by representing the complex light cone equa-
tion via the commuting two-component spinorsΨ andΨ̃: xµ = x0µ + ΨσµΨ̃.
”Right” (or ”left”) null planes of the complex light cone can be obtained keeping
Ψ constant and varying̃Ψ (or keepingΨ̃ constant and varyingΨ.) As a result
we obtain the equations̄Ψθ̄ = 0, Ψ̄ζ̄ = 0, which in turn are conditions of
proportionality of the commuting spinors̄Ψ(x) determining the PNC of the Kerr
geometry and anticommuting spinorsθ̄ andζ̄, these conditions providing the left
null superplanes of the supercones to reach B-slice. It also leads toθ̄θ̄ = ζ̄ ζ̄ = 0,
and equation (5) is satisfied automatically.

Thus, as a consequence of the B-slice and superlightcone constraints we obtain
a non-linear submanifold of superspaceθ = θ(x), θ̄ = θ̄(x). The original four-
dimensional supersymmetry is broken, and the initial supergauge freedom which
allowed to turn the super geometry into trivial one is lost. Nevertheless, there is a
residual supersymmetry based on free Grassmann parametersθ1, θ̄1.

The above B-slice constraints yield in fact the non-linear realization of broken
supersymmetry introduced by Volkov and Akulov [20, 21] and considered in N=1
supergravity by Deser and Zumino [19]. It is assumed that this construction is
similar to the Higgs mechanism of the usual gauge theories andζα(x), ζ̄α̇(x)
represent Goldstone fermion which can be eaten by appropriate local supertrans-
formationε(x) with a corresponding redefinition of the tetrad and spin-3/2 field.
Complex character of supertranslations in the Kerr case demands to use in this
scheme the N=2 supergravity. We omit here details referring to [18] and mention
only that in the resulting exact solution the torsion and Grassmann contributions
to tetrad cancel, and metric takes the exact Kerr-Newman form. However there
are the extra wave fermionic fields on the bosonic Kerr-Newman background
propagating along the Kerr PNC and concentrating near the Kerr singularity.
Solution contains also an extra axial singularity which is coupled topologically
with singular ring threading it.
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4. Baglike source of the Kerr-Newman solution

The above consideration of super-Kerr-Newman solution is based on the massless
fields providing description of the rotating super-black-hole. It could be the end
of story since the source of a rotating black hole is hidden behind the horizons.

However, the value of angular momentum for spinning particles is very high
regarding the mass parameter and the horizons disappear uncovering the Kerr
singular ring. To get a regularized solution the massless fields of the black hole
solution have to get a mass in the core region forming a matter source removing
the Kerr singularity and twosheetedness of the Kerr space.2

Obtaining a regular Kerr source represents an old problem. In the first disk-like
model given by Israel [2] a truncation of the negative sheet was used. As a result
there appeared a source distribution on the surface of the diskr = 0. Analyzing
the resulting stress-energy tensor Hamity showed [13] that this disk has to be in a
rigid relativistic rotation and built of an exotic matter having zero energy density
and negative pressure. In the development of this model given by López [5] the
truncation is placed at the coordinate surfacer = re = e2

2m ( whereh = 0 ),
and the regionr < re is replaced by Minkowski space. As a result the source
takes the form of the highly oblate and infinitely thin elliptic shell of the Compton
radiusa = 1

2m and of the thickness of the classical Dirac electron radiusre. For
small angular momentum the source takes the form of the Dirac electron model,
a charged sphere of the classical sizere. The fields out of the shell have the exact
Kerr-Newman form. Interior of the shell is flat. The shell is charged and rotating,
and built of a superconducting matter. In corotating space one sees that matter has
a negative pressure and zero energy density.

The López source represents a bubble with an infinitely thin domain wall
boundary. In the paper [6] an attempt was undertaken to get the source of the
Kerr-Newman solution with a smooth matter distribution. Retaining the metric
in the Kerr-Schild form (1) and the form and properties of the Kerr PNC, it
was assumed that functionh(r, θ) takes a more general formh = f(r)

r2+a2 cos2 θ
,

where the functionf(r) is continuous and takes the usual Kerr-Newman form
fKN (r) = mr− e2/2 in the external region. In the same time, in a neighborhood
of the Kerr diskr ≤ r0 ( the core region ) including the Kerr singularity, the
functionf(r) has to satisfy some conditions of regularity to provide finiteness of
the metric and the stress-energy tensor of source.

It was shown that this regularity is achieved for the functionf(r) ∼ rn

with n ≥ 4. In the casen = 4, f(r) = f0(r) = αr4, ( in the nonrotational
casea = 0 ) space-time has a constant curvature in the core and generated by
a homogeneous matter distribution with energy densityρ = 1

8π6α. Therefore,
assuming that matter in the core has a homogenous distribution one canestimate

2 This problem is actual for black hole physics, too. See for example [22] and references therein.
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the boundary of the core regionr0 as a point of intersection off0(r) andfKN (r).
Regularity of the stress-tensor demands continuity of the functionf(r) up to first
derivative, therefore, the resulting smooth functionf(r) must be interpolating
between functionsf0(r) andfKN (r) near the boundary of the corer ≈ r0.

Let us now mention that general metric (1) can be expressed via orthonormal
tetrad as follows [6]gµν = mµmν + nµnν + lµlν − uµuν , and the corresponding
stress-energy tensor of the source ( following from the Einstein equations ) may be
represented in the formT (af)

µν = (8π)−1[(D+2G)gµν−(D+4G)(lµlν−uµuν)],
whereuµ is the unit time-like four-vector,lµ is the unit vector in radial direction,
andnµ,mµ are two more space-like vectors. Here

D = −f ′′/(r2 + a2 cos2 θ), (6)

G = (f ′r − f)/(r2 + a2 cos2 θ)2, (7)

and the Boyer-Lindquist coordinatest, r, θ, φ are used.
Like to the results for singular (infinitely thin) shell-like source [13, 5], the

stress-energy tensor can be diagonalized in a comoving coordinate system show-
ing that the source represents a relativistic rotating disk. However, in this case,
the disk is separated into ellipsoidal layers each of which rotates rigidly with its
own angular velocityω(r) = a/(a2 + r2). In the comoving coordinate system the
tensorTµν takes the form

Tµν =
1

8π


2G 0 0 0
0 −2G 0 0
0 0 2G+D 0
0 0 0 2G+D

 , (8)

that corresponds to energy densityρ = 1
8π2G, radial pressureprad = − 1

8π2G,
and tangential pressureptan = 1

8π (D + 2G).
Settinga = 0 for the non-rotating case, we obtainΣ = r2, the surfaces

r = const. are spheres and we have spherical symmetry for all the above rela-
tions. The region described byf(r) = f0(r) is the region of constant value of
the scalar curvature invariantR = 2D = −2f ′′0 /r2 = −24α, and of a constant
value of energy density. If we assume that the region of a constant curvature is
closely extended to the boundary of sourcer0 which is determined as a root of the
equation

f0(r0) = fKN (r0), (9)

then, smoothness of thef(r) in a small neighborhood ofr0, say |r − r0| < δ,
implies a smooth interpolation for the derivative of the functionf(r) between
f ′0(r)|r=r0−δ andf ′KN (r)|r=r0+δ. Such a smooth interpolation on a small distance
δ shall lead to a shock-like increase of the second derivativef ′′(r) by r ≈ r0.
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In charged case forα ≤ 0 ( AdS internal geometry of core) there exists only
one positive rootr0, and second derivative of the smooth functionf ′′(r) is positive
near this point. Therefore, there appears an extra tangential stress nearr0 caused
by the termD = −f ′′(r)/(r2 + a2 cos2 θ)|r=r0 in the expression (8). It can be
interpreted as the appearance of an effective shell ( or a domain wall ) confining
the charged ball-like source with a geometry of a constant curvature inside the
ball. The caseα = 0 represents the bubble with a flat interior which has in the
limit δ → 0 an infinitely thin shell. It corresponds to the López model.

The internal geometry of the ball is de Sitter one forα > 0, anti de Sitter one
for α < 0 and flat one forα = 0.

Let us consider peculiarities of the rotating Kerr source. In this case the sur-
facesr = const. are ellipsoids described by the equationx2+y2

r2+a2 + z2

r2 = 1. Energy
density inside the core will be constant only in the equatorial planecos θ = 0.
Therefore, the Kerr singularity is regularized and the curvature is constant in
string-like regionr < r0 andθ = π/2 near the former Kerr singular ring. The
ratio stress|θ=0

stress|θ=π/2 < (re/a)4 = e8 < 10−8 shows a strong increase of the stress

near the string-like boundary of the disk.

5. Field model: From superconducting strings to superconducting bags

The known models of the bags and cosmic bubbles with smooth domain wall
boundaries are based on the Higgs scalar fieldφ with a Lagrange density of the
form L = −1

2∂µφ∂
µφ − λ2

8 (φ2 − η2)2 leading to the kink planar solution ( the
wall is placed inxy-plane atz = 0 ) φ(z) = η tanh(z/δ), whereδ = 2

λη is
the wall thickness. The kink solution describes two topologically distinct vacua
< φ >= ±η separated by the domain wall.

The stress–energy tensor of the domain wall isT νµ =
λ2η4

4 cosh−4(z/δ)diag(1, 1, 1, 0), indicating a surface stress within the plane
of the wall which is equal to the energy density. When applied to the spherical
bags or cosmic bubbles [27, 28], the thin wall approximation is usually assumed
δ � r0, and a spherical domain wall separates a false vacuum inside the ball
(r < r0) < φ >in= −η from a true outer vacuum< φ >out= η.

In the gauge string models, the Abelian Higgs field provides confinement of
the magnetic vortex lines in superconductor. Similarly, in the models of supercon-
ducting bags, the gauge Yang-Mills or quark fields are confined in a bubble ( or
cavity ) in superconducting QCD-vacuum.

A direct application of the Higgs model for modelling superconducting prop-
erties of the Kerr source is impossible since the Kerr source has to contain the
external long range Kerr-Newman electromagnetic field, while in the models of
strings and bags the situation is quite opposite: vacuum is superconducting in
external region and electromagnetic field acquires a mass there from Higgs field
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turning into a short range field. An exclusion represents theU(I)× Ũ(I) cosmic
string model given by Vilenkin-Shellard and Witten [15, 16] which represents a
doubling of the usual Abelian Higgs model. The model contains two sectors, say
A andB, with two Higgs fieldsφA andφB, and two gauge fieldsAµ andBµ
yielding two sorts of superconductivityA andB. It can be adapted to the bag-like
source in such a manner that the gauge fieldAµ of theA sector has to describe a
long-range electromagnetic field in outer region of the bag while the chiral scalar
field of this sectorφA has to form a superconducting core inside the bag which
must be unpenetrable forAµ field.

The sectorB of the model has to describe the opposite situation. The chiral
field φB must lead to aB-superconductivity in outer region confining the gauge
fieldBµ inside the bag.

The corresponding Lagrangian of the WittenU(I)×Ũ(I) field model is given
by [16]

L = −(DµφA)(DµφA)− (D̃µφB)(D̃µφB)− 1

4
F
µν
A FAµν − 1

4
F
µν
B FBµν − V,

(10)

whereFAµν = ∂µAν − ∂νAµ andFBµν = ∂µBν − ∂νBµ are field stress tensors,
and the potential has the form

V = λ(φ̄BφB − η2)2 + f(φ̄BφB − η2)φ̄AφA +m2φ̄AφA + µ(φ̄AφA)2. (11)

Two Abelian gauge fieldsAµ andBµ interact separately with two complex scalar
fields φB andφA so that the covariant derivativeDµφA = (∂µ + ieAµ)φA is
associated withA sector, and covariant derivativẽDµφB = (∂µ + igBµ)φB is
associated withB sector. The model fully retains the properties of the usual bag
models which are described byB sector providing confinement ofBµ gauge field
inside bag, and it acquires the long range electromagnetic fieldAµ in the outer-to-
the-bag region described by sectorA. The A and B sectors are almost independent
interacting only through the potential term for scalar fields. This interaction has
to provide synchronized phase transitions from superconducting B-phase inside
the bag to superconducting A-phase in the outer region. The synchronization of
this transition occurs explicitly in a supersymmetric version of this model given
by Morris [23].

5.1. SUPERSYMMETRIC MORRIS MODEL

In Morris model, the main part of Lagrangian of the bosonic sector is similar to
the Witten field model. However, model has to contain an extra scalar fieldZ
providing synchronization of the phase transitions inA andB sectors.3

3 In fact the Morris model contains five complex chiral fieldsφi = {Z, φ−, φ+, σ−, σ+}. How-
ever, the following identification of the fields is assumedφ = φ+; φ̄ = φ− andσ = σ+; σ̄ = σ−.
In previous notationsφ ∼ φA andσ ∼ φB .
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The effective Lagrangian of the Morris model has the form

L = −2(Dµφ)(Dµφ)− 2(D̃µσ)(D̃µσ)− ∂µZ∂µZ̄
−1

4
FµνFµν − 1

4
FµνB FBµν − V (σ, φ, Z), (12)

where the potentialV is determined through the superpotentialW as

V =
5∑
i=1

|Wi|2 = 2|∂W/∂φ|2 + 2|∂W/∂σ|2 + |∂W/∂Z|2. (13)

The following superpotential, yielding the gauge invariance and renormalizability
of the model, was suggested4

W = λZ(σσ̄ − η2) + (cZ +m)φφ̄, (14)

where the parametersλ, c,m, andη are real positive quantities.
The resulting scalar potentialV is then given by

V = λ2(σ̄σ − η2)2 + 2λc(σ̄σ − η2)φφ̄+ c2(φ̄φ)2 + (15)

2λ2Z̄Zσ̄σ + 2(cZ̄ +m)(cZ +m)φ̄φ.

5.1.1. Supersymmetric vacua
From (13) one sees that the supersymmetric vacuum states, corresponding to the
lowest value of the potential, are determined by the conditions

Fσ = −∂W̄/∂σ̄ = 0; (16)

Fφ = −∂W̄/∂φ̄ = 0; (17)

FZ = −∂W̄/∂Z̄ = 0, (18)

and yieldV = 0. These equations lead to two supersymmetric vacuum states:

I) Z = 0; φ = 0; |σ| = η; W = 0; (19)

and

II) Z = −m/c; σ = 0; |φ| = η
√
λ/c; W = λmη2/c. (20)

We shall take the stateI for external region of the bag, and the stateII as a state
inside the bag.

The treatment of the gauge fieldAµ andBµ in B is similar in many respects
because of the symmetry betweenA andB sectors allowing one to considerthe

4 Superpotential is homomorphic function of{Z, φ, φ̄, σ, σ̄}.
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stateΣ = η in outer region as superconducting one in respect to the gauge field
Bµ. FieldBµ acquires the massmB = gη in outer region, and thẽU(I) gauge
symmetry is broken, which provides confinement of theBµ field inside the bag.
The bag can also be filled by quantum excitations of fermionic, or non Abelian
fields. The interior space of the Kerr bag is regularized in this model since the Kerr
singularity and twofoldedness are suppressed by functionf = f0(r). However,
a strong increase of the fields near the former Kerr singularity can be retained
leading to the appearance of traveling waves along the boundary of the disk.

5.2. SUPERSYMMETRIC BUBBLE BASED ON THE MORRIS FIELD MODEL

It is shown in [6] that in the planar thin wall approximation, and by neglecting
the gauge fields there is a supersymmetric BPS-saturated domain wall solution
interpolating between supersymmetric vacua I) and II). This domain wall displays
the usual structure of stress-energy tensor with a tangential stress. The non-zero
components of the stress-energy tensor take the form

T00 = −Txx = −Tyy =
1

2
[δij(Φ

i,z )(Φj ,z ) + V ]; (21)

Tzz =
1

2
[δij(Φ

i,z )(Φj ,z )− V ], (22)

whereΦi = {Z, φ−, φ+, σ−, σ+}. One can estimate the mass and energy of a
bubble formed by such a domain wall in global supersymmetry setting vacuum
I) as external one and vacuum II) as an internal vacuum. Using the Tolman rela-
tion M =

∫
dx3√−g(−T 0

0 + T 1
1 + T 2

2 + T 3
3 ), replacing coordinatez on radial

coordinater, and integrating over sphere one obtains

Mbubble = −4π

∫
V (r)r2dr = −4π

∫
(Φi,r )2r2dr. (23)

The resulting effective mass is negative, which is caused by gravitational contri-
bution of the tangential stress. The repulsive gravitational field was obtained in
many singular and smooth models of domain walls [32, 25, 30, 31]. One should
note, that similar gravitational contribution to the mass caused by interior of the
bag will beMgr.int =

∫
Dr2dr = −2

3Λr3
0. It depends on the sign of curvature

inside the bag and will be negative in de Sitter case and positive in AdS one.
The total energy of a uncharged bubble forming from the supersymmetric BPS

saturated domain wall is

E0bubble = Ewall = 4π

∫ ∞
0

ρr2dr ≈ 4πr2
0εmin, (24)

where r0 is radius of the bubble, andεmin = W (0) − W (∞) = λmη2/c.
Corresponding total mass following from the Tolman relation will be negative
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M0bubble = −Ewall ≈ −4πr2
0εmin. It is the known fact showing that the

uncharged bubbles are unstable and form the time-dependent states [30, 31].
For charged bubbles there are extra positive terms: contribution caused by the

energy and mass of the external electromagnetic fieldEe.m. = Me.m. = e2

2r0
, and

contribution to mass caused by gravitational field of the external electromagnetic
field ( determined by Tolman relation for the external e.m. field)Mgrav.e.m. =

Ee.m. = e2

2r0
. As a result the total energy for charged bubble is

Etot.bubble = Ewall + Ee.m. = 4πr2
0εmin +

e2

2r0
, (25)

and the total mass will be

Mtot.bubble = M0bubble +Me.m. +Mgrav.e.m. = (26)

−Ewall + 2Ee.m. = −4πr2
0εmin +

e2

r0
. (27)

Minimum of the total energy is achieved byr0 = ( e2

16πεmin
)1/3, which yields the

following expressions for total mass and energy of the stationary state

M∗tot = E∗tot =
3e2

4r0
. (28)

One sees that the resulting total mass of charged bubble is positive, however, due
to negative contribution ofM0bubble it can be lower than BPS energy bound of the
domain wall forming this bubble. This remarkable property of the bubble models (
‘ultra-extreme’ states for the Type I domain walls in [30] ) allows one to overcome
BPS bound [33] and opens the way to get the ratiom2 � e2 which is necessary
for particle-like models.

5.3. BAGLIKE SOURCE IN SUPERGRAVITY

In supergravity the scalar potential has a more complicate form [21, 30, 31, 29]

Vsg = ek
2K(Kij̄DiWDjW − 3k2WW̄ ), (29)

whereK is Kähler potentialKij̄ = ∂2K
∂Φi∂Φ̄j

, andk2 = 8πGN , GN is the Newton

constant. In the smallkW limit, this expression turns into potential of global susy.
In this approximation, the above treatment of the charged domain wall bubble
will be valid in supergravity. The preserving supersymmetry vacuum state has to
satisfy the conditionDiW ≡ Wi + k2KiW = 0. This condition is satisfied for
the internal vacuum state II) only in the limitk2 → 0 sinceW = λmη2/c inside
the bag, andDiW ≈ k2KiW there. In the orderk2 the vacuum state II) does not
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preserve supersymmetry. There appears also an extra contribution to stress-energy
tensor having the leading term

Tµν = 3(k2/8π)ek
2K |W |2gµν , (30)

and yielding the negative cosmological constantΛ = −3k4ek
2K |W |2 and to

anti-de Sitter space-time for the bag interior. General expression for cosmological
constant inside the bag has the form

Λ = k4ek
2K
∑
i

{k2|KiW |2 − 3|W |2}. (31)

It yields AdS vacuum ifk2|KiW |2 − 3|W |2 < 0.
In the same time the vacuum state I) in external region hasW = 0 andΛ = 0,

and it preserves supersymmetry for strong chiral fields.

6. Conclusion

A regularized source of the Kerr-Newman solution is considered having the struc-
ture of a rotating bag with AdS interior and a smooth domain wall boundary. It
is shown that the Witten superconducting string model can be generalized and
adapted forming a charged superconducting bag with AdS interior and a long
range external gauge field which is necessary for description of charged black
holes. Since 1968 a successive accumulation of evidences is observed relating the
structure of Kerr geometry with physics of elementary particles.

Acknowledgments. We would like to thank organizers of this Workshop for
kind invitation and financial support.
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5. C. A. López, Extended model of the electron in general relativity, Phys. Rev.D30 (1984)

313.
6. A. Burinskii, Supersymmetric superconducting bag as a core of Kerr spinning particle, e-

print hep-th/0008129 .
7. A. Sen,Rotating charged black hole solution in heterotic string theory, Phys.Rev.Lett.,

69(1992)1006-1009.
8. A. Sen, Extremal black holes and elementary string states, Modern Phys. Lett.A

10(1995)2081.
C. Holzhey and F. Wilczek,Black holes as elementary particles, Nucl. Phys.B380(1992)447,
hep-th/9202014

kievarwe.tex; 12/03/2001; 3:49; p.199



ROTATING SUPER BLACK HOLE 193

9. A. Burinskii, String - like structures in complex Kerr geometry, in Relativity Today, ( R.P.
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CLASSIFYING N -EXTENDED 1-DIMENSIONAL SUPER SYSTEMS

FRANCESCO TOPPAN∗
CBPF, DCP, Rua Dr. Xavier Sigaud 150,
cep 22290-180 Rio de Janeiro (RJ), Brazil

1. Introduction

In this talk I will report some results obtained in a joint collaboration with A.
Pashnev, concerning the classification of the irreducible representations of the
N -extended Supersymmetry in1 dimension and which find applications to the
construction of Supersymmetric Quantum Mechanical Systems [1].

This mathematical problem finds immediate application to the theory of di-
mensionally (to one temporal dimension) supersymmetric4d theories, which gets
4 times the number of supersymmetries of the original models (theN = 8 su-
pergravity being e.g. associated with the aN = 32 Supersymmetric Quantum
Mechanical theory). Due to a lack of superfield formalism forN > 4, only partial
results are known [2] and [3].

More recently, Supersymmetric and Superconformal Quantum Mechanics
have been applied in describing e.g. the low-energy effective dynamics of a certain
class of black holes, for testing theAdS/CFT correspondence in the case of
AdS2, in investigating the light-cone dynamics of supersymmetric theories.

In this report of the work with Pashnev, two main results will be presented. At
first a peculiar property of supersymmetry in one dimension is exhibited, namely
that any finite dimensional multiplet containingd bosons andd fermions in dif-
ferent spin states are put into classes of equivalence individuated by irreducible
multiplets of just two spin states, where all bosons and all fermions are grouped
in the same spin. Later it is shown that all irreducible multiplets of this kind
are in one-to-one correspondence with the classification of real-valued Clifford
Γ matrices of Weyl type.

This classification refines (in the case of “non-Euclidean” supersymmetry, see
below) the results obtained in [4] and [5]. Another reference where someaspects

∗ toppan@cbpf.br
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of the theory of the representation of1-dimensional supersymmetry are discussed
is given by [6].

The mathematical problem we are investigating can be stated as follows,
finding the irreducible representation of the supersymmetry algebra

{Qi, Qj} = ωijH, (1)

whereQi, i = 1, 2, · · · , N are supercharges and

H = −i ∂
∂t

(2)

is the Hamiltonian. The constant tensorωij can be conveniently diagonalized
and normalized in such a way to coincide with a pseudo-Euclidean metricηij
with signature(p, q). Usually the eigenvalues are all assumed being positive (i.e.
q = 0), however examples can be given (see [7]), of physical systems whose
supersymmetry algebra is characterized by an indefinite tensor. In the following I
will discuss the simplest example of this kind.

Any given finite-dimensional representation multiplet of the above superalge-
bra can be represented in form of a chain ofd bosons andd fermions

Φ0
a0
, Φ1

a1
, · · · , ΦM−1

aM−1
, ΦM

aM
(3)

whose componentsΦI
aI

, (aI = 1, 2, · · · , dI) are real and alternatively bosonic
and fermionic (d = d0 + d2 + d4 + ... = d1 + d3 + d5 + ...). For such a multiplet
the short notation{d0,d1, · · · ,dM} will also be employed.

Due to dimensionality argument thei− th supersymmetry transformation for
theΦI

aI components is given by

δεΦ
I
aI

= εi(CIi )aI
aI+1ΦI+1

aI+1
+ εi(C̃Ii )aI

aI−1 d

dτ
ΦI−1
aI−1

, (4)

and it simplifies for the end-components (due to the absence of theI = −1 and
I = M + 1 components).

In one dimension it is therefore possible to redefine the last components
according to

ΦM
aM

=
d

dτ
ΨM−2
aM

(5)

in terms of some functionsΨM−2
aM

. The initial supermultiplet of lengthM + 1 is
now re-expressed as the{d0,d1, · · · ,dM−2 + dM,dM−1,0} supermultiplet of
lengthM . By repeatingM times the same procedure the shortest supermultiplet
{d,d} of length 2 can be reached. The above argument outlines the proof of
the statement that all supermultiplets are classified according to the irreducible
representations of supermultiplets of length2.
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2. Extended supersymmetries and real valued Clifford algebras

The main result of the previous Section is that the problem of classifying allN -
extended supersymmetric quantum mechanical systems is reduced to the problem
of classifying the irreducible representations of length2. Having this in mind let
us simplify the notations. Let the indicesa, α = 1, · · · , d number the bosonic (and
respectively fermionic) elements in the SUSY multiplet. All of them are assumed
to depend on the time coordinateτ (Xa ≡ Xa(τ), θα ≡ θα(τ)).

In order to be definite and without loss of generality let us take the bosonic
elements to be the first ones in the chain{d,d}, which can be conveniently
represented also as a column

Ψ =

(
Xa

θα

)
, (6)

the supersymmetry transformations are reduced to the following set of equations

δεXa = εi(Ci)a
αθα ≡ i(εiQiΨ)a

δεθα = εi(C̃i)α
b d

dτ
Xb ≡ i(εiQiΨ)α (7)

where, as a consequence of (1),

CiC̃j + CjC̃i = iηij (8)

and

C̃iCj + C̃jCi = iηij (9)

Sinceεi, Xa, θα are real, the matricesCi’s, C̃i’s have to be respectively imaginary
and real. If we set (just for normalization)

Ci =
i√
2
σi

C̃i =
1√
2
σ̃i (10)

and accommodateσi, σ̃i into a single matrix

Γi =

(
0 σi
σ̃i 0

)
, (11)

they form a set of real-valued CliffordΓ-matrices of Weyl type (i.e. block
antidiagonal), obeying the (pseudo-) Euclidean anticommutation relations

{Γi,Γj} = 2ηij . (12)
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Therefore the classification of irreducible multiplets of representation of a(p, q)
extended supersymmetry is in one-to-one correspondence with the classification
of the real-valued Clifford algebrasCp,q with the further property that theΓ
matrices can be realized in Weyl (i.e. block antidiagonal) form.

Real-valued Clifford algebras have been classified in [8] for compact (q = 0)
case, and in [9] for the non-compact one. I follow here the exposition in [10].

Three cases have to be distinguished for real representations, specified by the
type of most general solution allowed for a real matrixS commuting with all the
Clifford Γi matrices, i.e.
i) the normal case, realized whenS is a multiple of the identity,
ii) the almost complex case, forS being given by a linear combination of the
identity and of a realJ2 = −1 matrix,
iii) finally the quaternionic case, forS being a linear combination of real matrices
satisfying the quaternionic algebra.

Real irreducible representations of normal type exist whenever the condition
p − q = 0, 1, 2 mod 8 is satisfied (their dimensionality being given by2[N

2
],

whereN = p+q), while the almost complex and the quaternionic type representa-
tions are realized in thep−q = 3, 7 mod 8 and in thep−q = 4, 5, 6 mod 8
cases respectively. The dimensionality of these representations is given in both
cases by2[N

2
]+1.

We further require the extra-condition that the real representations should ad-
mit a block antidiagonal realization for the CliffordΓ matrices. This condition is
met forp − q = 0 mod 8 in the normal case (it corresponds to the standard
Majorana-Weyl requirement),p − q = 7 mod 8 in the almost complex case
andp − q = 4, 6 mod 8 in the quaternionic case. In all these cases the real
irreducible representation is unique.

It is therefore possible to furnish the dimensionality of the irreducible repre-
sentations of the of the supersymmetry algebra or, conversely, the allowed(p, q)
signatures associated to a given dimensionality of the bosonic and fermionic
spaces. The latter result is conveniently expressed by introducing the notion
of maximally extended supersymmetry. TheCp,q (p − q = 6 mod 8) real
representation for the quaternionic case can be recovered from the7 mod 8
almost complexCp+1,q representation by deleting one of theΓ matrices; in its
turn the latter representation is recovered from theCp+2,q normal Majorana-
Weyl representation by deleting anotherΓ matrix. The dimensionality of the
three representations above being the same, the normal Majorana-Weyl repre-
sentation realizes the maximal possible extension of supersymmetry compatible
with the dimensionality of the representation. In search for the maximal exten-
sion of supersymmetry we can therefore limit ourselves to consider the normal
Majorana-Weyl representations, as well as the quaternionic ones satisfying the
p− q = 4 mod 8 condition.

Let us therefore introduce a parameterε, which assumes two values and is
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used to distinguish the Majorana-Weyl (ε = 0) with respect to the quaternionic
case (ε = 1). A space ofd = 2t bosonic andd = 2t fermionic states can carry the
following set of maximally extended supersymmetries

(p = t− 4z + 5− 3ε, q = t+ 4z + ε− 3) (13)

where the integerz = k − l must take values in the interval

1

4
(3− t− ε) ≤ z ≤ 1

4
(t+ 5− 3ε) (14)

in order to guarantee thep ≥ 0 andq ≥ 0 requirements.

3. An application and conclusions.

One of the most significant application of extended supersymmetric quantum
mechanics concerns the1-dimensionalσ models evolving in a target spacetime
manifold presenting both bosonic and fermionic coordinates. In general such
models present a non-linear kinetic term and the extended supersymmetries put
constraints on the metric of the target. In this section let us present here a very
simplified model, which however is illustrative of how invariances under pseudo-
Euclidean supersymmetry can arise. Let us in fact consider a model ofd bosonic
fieldsXa andd spinorsψα freely moving in a flatd-dimensional target manifold,
not necessarily Minkowskian or Euclidean, endorsed of a pseudo-euclideanηab.
Let us furthermore introduce the free kinetic action being given by

SK =

∫
dtL =

1

2

∫
dt
(
ẊaẊbη

ab + iδψ̇αψβη
αβ
)
, (15)

where the metricηαβ for the spinorial part is assumed to have the same signature
as the metricηab, andδ is just a sign normalization (δ = ±1).

A natural question to be asked is which supersymmetries are invariances of
the above free kinetic action. The answer is furnished by accommodating thed
bosonic andd fermionic coordinates into a (maximally extended) irreducible rep-
resentation of the extended supersymmetries, and later counting how many such
transformations survive as invariances of the action. The first non-trivial example
concerns a2-dimensional target(d = 2), whose two bosonic and two fermionic
degrees of freedom carry the{2,2} representation of(2, 2) extended supersym-
metry. However, only half of these supersymmetries are realized as invariances
of the action. The action indeed is invariant under either the(2, 0) or the(1, 1)
extended supersymmetries, whether the target space is respectively Euclidean
or Minkowskian. Therefore already in the2-dimensional Minkowskian case we
observe the arising of a pseudo-Euclidean supersymmetry invariance. The next
simplest example is realized by a4-dimensional target. The four bosonic and four
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fermionic coordinates can be accommodated into three irreducible representations
of maximally extended supersymmetry, according to formula (13), namely the
(4, 0), the(0, 4) and the(3, 3) extended supersymmetries. The action (15) turns
out to be invariant, for Euclidean(4 + 0), Minkowskian (3 + 1) and (2 + 2)
signature for the metricη, according to the followingtable

(4, 0) (0, 4) (3, 3)

(4 + 0) (4, 0) (0, 0) (3, 0) δ = +1

(4 + 0) (0, 0) (0, 4) (0, 3) δ = −1

(3 + 1) (1, 0) (0, 0) (1, 0) δ = +1

(3 + 1) (0, 0) (0, 1) (0, 1) δ = −1

(2 + 2) (2, 0) (0, 2) (2, 1) δ = +1

(2 + 2) (2, 0 (0, 2) (1, 2) δ = −1

which should be understood as follows. The central entries denote how many
supersymmetries are realized as invariances of the (15) action for each one of
the three irreducible representations of maximally extended supersymetry, in cor-
respondence with the given signature of spacetime and sign forδ. In this particular
case invariance under pseudo-Euclidean supersymmetry is guaranteed for the
target of signature(2 + 2).

In this talk I have presented some results concerning the representation theory
for irreducible multiplets of the one-dimensionalN = (p, q) extended super-
symmetry. A peculiar feature of the one-dimensional supersymmetric algebras
consists in the fact that the supermultiplets formed byd bosonic andd fermionic
degrees of freedom accommodated in a chain withM + 1 (M ≥ 2) different spin
states uniquely determines a2-chain multiplet of the form{d,d} which carries a
representation of theN extended supersymmetry. Furthermore, it is shown that all
such2-chain irreducible multiplets of the(p, q) extended supersymmetry are fully
classified; when e.g. the conditionp−q = 0 mod8 is satisfied, their classification
is equivalent to that one of Majorana-Weyl spinors in any given space-time, the
numberp+q of extended supersymmetries being associated to the dimensionality
D of the spacetime, while the2d supermultiplet dimensionality is the dimension-
ality of the correspondingΓ matrices. The more general case for arbitrary values
of p andq has also been fully discussed.

These mathematical properties can find a lot of interesting applications in con-
nection with the construction of Supersymmetric and Superconformal Quantum
Mechanical Models. These theories are vastly studied due to their relevance in
many different physical domains, to name just a few it can be mentioned the
low-energy effective dynamics of black-hole models, the dimensional reduction
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of higher-dimensional superfield theories, which are a laboratory for the investi-
gation of the spontaneous breaking of the supersymmetry, and so on.

Acknowledgments.It is a pleasure for me to acknowledge A. Pashnev. The re-
sults reported in this talk are fruit of our collaboration. I wish also acknowledge
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Abstract. We consider the problem of bosonizing supersymmetric quantum mechanics (SSQM)
and some of its variants, i.e., of realizing them in terms of only boson-like operators without
fermion-like ones. In the SSQM case, this is realized in terms of the generators of the Calogero-
Vasiliev algebra (also termed deformed Heisenberg algebra with reflection). In that of the SSQM
variants, this is done by considering generalizations of the latter algebra, namely theCλ-extended
oscillator algebras, whereCλ is the cyclic group of orderλ.

1. Introduction

Supersymmetry has established an elegant symmetry between bosons and
fermions and is one of the cornerstones of modern theoretical physics. Its applica-
tion to quantum mechanics has provided a powerful method of generating solvable
quantum mechanical models. On the other hand, exotic quantum statistics have
received considerable attention due to their possible relevance to the fractional
quantum Hall effect and anyon superconductivity.

By combining both concepts within the framework of quantum mechanics,
one gets variants of SSQM: paraSSQM [1–3], pseudoSSQM [4, 5], and or-
thoSSQM [6]. They can be realized in terms of bosons and parafermions [7],
pseudofermions [4, 5], or orthofermions [8], respectively.

By using the Calogero-Vasiliev algebra [9], Plyushchay showed [10] that
SSQM can be described in terms of only boson-like operators without fermion-
like ones (see also [11]).

In the present communication, we shall consider generalizations of the
Calogero-Vasiliev algebra, namely theCλ-extended oscillator algebras (where
Cλ = Zλ is the cyclic group of orderλ) [12–14]. We shall show that they have

∗ cquesne@ulb.ac.be
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some interesting applications to variants of SSQM [12, 14], as they provide a
bosonization of the latter analogous to that obtained by Plyushchay for SSQM.

2. Generalized deformed andG-extended oscillator algebras

The generalized deformed oscillator algebras (GDOAs) (see e.g. Refs. [15, 16]
and references quoted therein) arose from successive generalizations of the Arik-
Coon [17] and Biedenharn-Macfarlane [18, 19]q-oscillators. Such algebras,
denoted byAq(G(N)), are generated by the unit, creation, annihilation, and

number operatorsI, a†, a, N , satisfying the Hermiticity conditions
(
a†
)†

= a,

N † = N , and the commutation relations[
N, a†

]
= a†, [N, a] = −a,

[
a, a†

]
q
≡ aa† − qa†a = G(N), (1)

whereq is some real number andG(N) is some Hermitian, analytic function.
On the other hand,G-extended oscillator algebras, whereG is some finite

group, appeared in connection withn-particle integrable models. For the Calogero
model [20], for instance,G is the symmetric groupSn [21, 22].

For two particles, theS2-extended oscillator algebraA(2)
κ , where S2 =

{ I,K | K2 = I }, is generated by the operatorsI, a†, a, N , K, subject to

the Hermiticity conditions
(
a†
)†

= a,N † = N ,K† = K−1, and the relations

[
N, a†

]
= a†, [N,K] = 0, K2 = I,[

a, a†
]

= I + κK (κ ∈ R), a†K = −Ka†, (2)

together with their Hermitian conjugates.
When theS2 generatorK is realized in terms of the Klein operator(−1)N ,

A(2)
κ becomes a GDOA characterized byq = 1 andG(N) = I + κ(−1)N , and

known as the Calogero-Vasiliev oscillator algebra [9].
The operatorK may be alternatively considered as the generator of the cyclic

groupC2 of order two, since the latter is isomorphic toS2. By replacingC2 by the
cyclic group of orderλ, Cλ = { I, T, T 2, . . . , T λ−1 | T λ = I }, one then gets a
new class ofG-extended oscillator algebras [12–14], generalizing that describing
the two-particle Calogero model.
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3. Cλ-extended oscillator algebras

Let us consider the algebras generated by the operatorsI, a†, a, N , T , satisfying

the Hermiticity conditions
(
a†
)†

= a,N † = N , T † = T−1, and the relations[
N, a†

]
= a†, [N,T ] = 0, T λ = I,[

a, a†
]

= I +
λ−1∑
µ=1

κµT
µ, a†T = e−i2π/λ Ta†, (3)

together with their Hermitian conjugates [12]. HereT is the generator of (a unitary
representation of) the cyclic groupCλ (whereλ ∈ {2, 3, 4, . . . }), andκµ, µ = 1,
2, . . . ,λ−1, are some complex parameters restricted by the conditionsκ∗µ = κλ−µ
(so that there remain altogetherλ− 1 independent real parameters).

Cλ hasλ inequivalent, one-dimensional matrix unitary irreducible represen-
tations (unirreps)Γµ, µ = 0, 1, . . . , λ − 1, which are such thatΓµ (T ν) =
exp(i2πµν/λ) for anyν = 0, 1, . . . , λ− 1. The projection operator on the carrier
space ofΓµ may be written as

Pµ =
1

λ

λ−1∑
ν=0

e−i2πµν/λ T ν , (4)

and converselyT ν , ν = 0, 1, . . . , λ− 1, may be expressed in terms of thePµ’s as

T ν =
λ−1∑
µ=0

ei2πµν/λPµ. (5)

The algebra defining relations (3) may therefore be rewritten in terms ofI, a†,
a,N , andPµ = P †µ, µ = 0, 1, . . . , λ− 1, as

[
N, a†

]
= a†, [N,Pµ] = 0,

λ−1∑
µ=0

Pµ = I,

[
a, a†

]
= I +

λ−1∑
µ=0

αµPµ, a†Pµ = Pµ+1 a
†, PµPν = δµ,νPµ, (6)

where we use the conventionPµ′ = Pµ if µ′ − µ = 0 modλ (and similarly for
other operators or parameters indexed byµ, µ′). Equation (6) depends uponλ real
parametersαµ =

∑λ−1
ν=1 exp(i2πµν/λ)κν , µ = 0, 1, . . . , λ − 1, restricted by

the condition
∑λ−1
µ=0 αµ = 0. Hence, we may eliminate one of them, for instance

αλ−1, and denoteCλ-extended oscillator algebras byA(λ)
α0α1...αλ−2 .
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The cyclic group generatorT and the projection operatorsPµ can be realized
in terms ofN as

T = ei2πN/λ, Pµ =
1

λ

λ−1∑
ν=0

ei2πν(N−µ)/λ, µ = 0, 1, . . . , λ− 1, (7)

respectively. With such a choice,A(λ)
α0α1...αλ−2 becomes a GDOA,A(λ)(G(N)),

characterized byq = 1 andG(N) = I +
∑λ−1
µ=0 αµPµ, wherePµ is given in

Eq. (7).
For any GDOAAq(G(N)), one may define a so-called structure func-

tionF (N), which is the solution of the difference equationF (N+1)−qF (N) =
G(N), such thatF (0) = 0 [15]. ForA(λ)(G(N)), we find

F (N) = N +
λ−1∑
µ=0

βµPµ, β0 ≡ 0, βµ ≡
µ−1∑
ν=0

αν (µ = 1, 2, . . . , λ− 1).

(8)

At this point, it is worth noting that forλ = 2, we obtainT = K, P0 =

(I + K)/2, P1 = (I − K)/2, andκ1 = κ∗1 = α0 = −α1 = κ, so thatA(2)
α0

coincides with theS2-extended oscillator algebraA(2)
κ andA(2)(G(N)) with the

Calogero-Vasiliev algebra.
In Ref. [14], it was shown thatA(λ)(G(N)) (and more generallyA(λ)

α0α1...αλ−2)
has only two different types of unirreps: infinite-dimensional bounded from below
unirreps and finite-dimensional ones. Among the former, there is the so-called
bosonic Fock space representation, whereina†a = F (N) andaa† = F (N + 1).
Its carrier spaceF is spanned by the eigenvectors|n〉 of the number operatorN ,
corresponding to the eigenvaluesn = 0, 1, 2, . . . , where|0〉 is a vacuum state,
i.e.,a|0〉 = N |0〉 = 0 andPµ|0〉 = δµ,0|0〉. The eigenvectors can be written as

|n〉 = N−1/2
n

(
a†
)n |0〉, n = 0, 1, 2, . . . , (9)

whereNn =
∏n
i=1 F (i). The creation and annihilation operators act upon|n〉 in

the usual way, i.e.,

a†|n〉 =
√
F (n+ 1) |n+ 1〉, a|n〉 =

√
F (n) |n− 1〉, (10)

while Pµ projects on theµth componentFµ ≡ { |kλ + µ〉 | k = 0, 1, 2, . . . } of
theZλ-graded Fock spaceF =

∑λ−1
µ=0⊕Fµ. It is obvious that such a bosonic Fock

space representation exists if and only ifF (µ) > 0 for µ = 1, 2, . . . , λ− 1. This
gives the following restrictions on the algebra parametersαµ,

µ−1∑
ν=0

αν > −µ, µ = 1, 2, . . . , λ− 1. (11)
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In the bosonic Fock space representation, one may consider the bosonic
oscillator Hamiltonian, defined as usual by

H0 ≡ 1
2

{
a, a†

}
. (12)

It can be rewritten as

H0 = a†a+
1

2

I +
λ−1∑
µ=0

αµPµ

 = N +
1

2
I +

λ−1∑
µ=0

γµPµ, (13)

whereγ0 ≡ 1
2α0 andγµ ≡∑µ−1

ν=0 αν + 1
2αµ for µ = 1, 2, . . . , λ− 1.

The eigenvectors ofH0 are the states|n〉 = |kλ + µ〉, defined in Eq. (9), and
their eigenvalues are given by

Ekλ+µ = kλ+ µ+ γµ + 1
2 , k = 0, 1, 2, . . . , µ = 0, 1, . . . , λ− 1.

(14)

In eachFµ subspace of theZλ-graded Fock spaceF , the spectrum ofH0 is
therefore harmonic, but theλ infinite sets of equally spaced energy levels, cor-
responding toµ = 0, 1, . . . , λ − 1, may be shifted with respect to each other by
some amounts depending upon the algebra parametersα0, α1, . . . , αλ−2, through
their linear combinationsγµ, µ = 0, 1, . . . , λ− 1.

For the Calogero-Vasiliev oscillator, i.e., forλ = 2, the relationγ0 = γ1 =
κ/2 implies that the spectrum is very simple and coincides with that of a shifted
harmonic oscillator. Forλ ≥ 3, however, it has a much richer structure. According
to the parameter values, it may be nondegenerate, or may exhibit some (ν+1)-fold
degeneracies above some energy eigenvalue, whereν may take any value in the
set{1, 2, . . . , λ − 1}. In Ref. [13], the complete classification of nondegenerate,
twofold and threefold degenerate spectra was obtained forλ = 3 in terms ofα0

andα1.
In the remaining part of this communication, we will show that the bosonic

Fock space representation ofA(λ)(G(N)) and the corresponding bosonic oscilla-
tor HamiltonianH0 have some useful applications to variants of SSQM.

4. Application to parasupersymmetric quantum mechanics of orderp

In SSQM with two supercharges, the supersymmetric HamiltonianH and the

superchargesQ†, Q =
(
Q†
)†

, satisfy the sqm(2) superalgebra, defined by the
relations

Q2 = 0, [H, Q] = 0,
{
Q,Q†

}
= H, (15)

together with their Hermitian conjugates. Such a superalgebra is most often
realized in terms of mutually commuting boson and fermion operators.
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Plyushchay [10], however, showed that it can alternatively be realized in terms
of only boson-like operators, namely the generators of the Calogero-Vasiliev alge-
braA(2)(G(N)) (see also Ref. [11]). The SSQM bosonization can be performed
in two different ways, by choosing eitherQ = a†P1 (so thatH = H0− 1

2(K+κ))
or Q = a†P0 (so thatH = H0 + 1

2(K + κ)). The first choice corresponds to
unbroken SSQM (all the excited states are twofold degenerate while the ground
state is nondegenerate and at vanishing energy), and the second choice describes
broken SSQM (all the states are twofold degenerate and at positive energy).

SSQM was generalized to parasupersymmetric quantum mechanics (PSSQM)
of order two by Rubakov and Spiridonov [1], and later on to PSSQM of arbitrary
orderp by Khare [2]. In the latter case, Eq. (15) is replaced by

Qp+1 = 0 (with Qp 6= 0),

[H, Q] = 0,

QpQ† +Qp−1Q†Q+ · · ·+QQ†Qp−1 +Q†Qp = 2pQp−1H, (16)

and is retrieved in the case wherep = 1. The parasuperchargesQ, Q†, and
the parasupersymmetric HamiltonianH are usually realized in terms of mutually
commuting boson and parafermion operators.

A property of PSSQM of orderp is that the spectrum ofH is (p + 1)-fold
degenerate above the (p−1)th energy level. This fact and Plyushchay’s results for
p = 1 hint at a possibility of representingH as a linear combination of the bosonic
oscillator HamiltonianH0 associated withA(p+1)(G(N)) and some projection
operators.

In Ref. [14] (see also Ref. [12]), it was proved that PSSQM of orderp can
indeed be bosonized in terms of the generators ofA(p+1)(G(N)) for any allowed
(i.e., satisfying Eq. (11)) values of the algebra parametersα0, α1, . . . , αp−1. For
such a purpose, ansätze of the type

Q =
p∑

ν=0

σνa
†Pν , H = H0 + 1

2

p∑
ν=0

rνPν , (17)

were chosen. Hereσν andrν are some complex and real constants, respectively,
to be determined in such a way that Eq. (16) is fulfilled. It was found that
there arep + 1 families of solutions, which may be distinguished by an index
µ ∈ {0, 1, . . . , p} and from which one may choose the following representative
solutions

Qµ =
√

2
p∑

ν=1

a†Pµ+ν ,

Hµ = N + 1
2(2γµ+2 + rµ+2 − 2p+ 3)I +

p∑
ν=1

(p+ 1− ν)Pµ+ν , (18)
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where

rµ+2 =
1

p

[
(p− 2)αµ+2 + 2

p∑
ν=3

(p− ν + 1)αµ+ν + p(p− 2)

]
. (19)

The eigenvectors ofHµ are the states (9) and the corresponding eigenvalues
are easily found. All the energy levels are equally spaced. Forµ = 0, PSSQM is
unbroken, otherwise it is broken with a (µ + 1)-fold degenerate ground state. All
the excited states are (p+ 1)-fold degenerate. Forµ = 0, 1, . . . , p−2, the ground
state energy may be positive, null, or negative depending on the parameters,
whereas forµ = p− 1 or p, it is always positive.

Khare [2] showed that in PSSQM of orderp, H has in fact2p (and not only
two) conserved parasupercharges, as well asp bosonic constants. In other words,
there existp independent operatorsQr, r = 1, 2, . . . , p, satisfying withH the
set of equations (16), andp other independent operatorsIt, t = 2, 3, . . . , p + 1,
commuting withH, as well as among themselves. In Ref. [14], a realization of all
such operators was obtained in terms of theA(p+1)(G(N)) generators.

As a final point, let us note that there exists an alternative approach to PSSQM
of orderp, which was proposed by Beckers and Debergh [3], and wherein the
multilinear relation in Eq. (16) is replaced by the cubic equation[

Q,
[
Q†, Q

]]
= 2QH. (20)

In Ref. [12], it was proved that forp = 2, this PSSQM algebra can only be
realized by thoseA(3)(G(N)) algebras that simultaneously bosonize Rubakov-
Spiridonov-Khare PSSQM algebra.

5. Application to pseudosupersymmetric quantum mechanics

Pseudosupersymmetric quantum mechanics (pseudoSSQM) was introduced by
Beckers, Debergh, and Nikitin [4, 5] in a study of relativistic vector mesons
interacting with an external constant magnetic field. In the nonrelativistic limit,
their theory leads to a pseudosupersymmetric oscillator Hamiltonian, which can
be realized in terms of mutually commuting boson and pseudofermion operators,
where the latter are intermediate between standard fermion andp = 2 parafermion
operators.

It is then possible to formulate a pseudoSSQM [4, 5], characterized by a
pseudosupersymmetric HamiltonianH and pseudosupercharge operatorsQ, Q†,
satisfying the relations

Q2 = 0, [H, Q] = 0, QQ†Q = 4c2QH, (21)

and their Hermitian conjugates, wherec is some real constant. The first two rela-
tions in Eq. (21) are the same as those occurring in SSQM, whereas the third one
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is similar to the multilinear relation valid in PSSQM of order two. Actually, for
c = 1 or 1/2, it is compatible with Eq. (16) or (20), respectively.

In Ref. [14], it was proved that pseudoSSQM can be bosonized in two different
ways in terms of the generators ofA(3)(G(N)) for any allowed values of the
parametersα0, α1. This time, the ans̈atze

Q =
2∑

ν=0

(
ξνa+ ηνa

†)Pν , H = H0 + 1
2

2∑
ν=0

rνPν , (22)

were chosen, and the complex constantsξν , ην , and the real onesrν were
determined in such a way that Eq. (21) is fulfilled.

The first type of bosonization corresponds to three families of two-parameter
solutions, labeled by an indexµ ∈ {0, 1, 2},

Qµ(ηµ+2, ϕ) =
(
ηµ+2a

† + eiϕ
√

4c2 − η2
µ+2 a

)
Pµ+2,

Hµ(ηµ+2) = N + 1
2(2γµ+2 + rµ+2 − 1)I + 2Pµ+1 + Pµ+2, (23)

where0 < ηµ+2 < 2|c|, 0 ≤ ϕ < 2π, and

rµ+2 =
1

2c2
(1 + αµ+2)

(
|ηµ+2|2 − 2c2

)
. (24)

Choosing for instanceηµ+2 =
√

2|c|, andϕ = 0, hencerµ+2 = 0 (producing an
overall shift of the spectrum), leads to

Qµ = c
√

2
(
a† + a

)
Pµ+2,

Hµ = N + 1
2(2γµ+2 − 1)I + 2Pµ+1 + Pµ+2. (25)

A comparison between Eq. (23) or (25) and Eq. (18) shows that the pseudosu-
persymmetric andp = 2 parasupersymmetric Hamiltonians coincide, but that
the corresponding charges are of course different. The conclusions relative to the
spectrum and the ground state energy are therefore the same as in Sec. 4.

The second type of bosonization corresponds to three families of one-
parameter solutions, again labeled by an indexµ ∈ {0, 1, 2},

Qµ = 2|c|aPµ+2,

Hµ(rµ) = N + 1
2(2γµ+2 − αµ+2)I + 1

2(1− αµ+1 + αµ+2 + rµ)Pµ

+ Pµ+1, (26)

whererµ ∈ R changes the Hamiltonian spectrum in a significant way. The levels
are indeed equally spaced if and only ifrµ = (αµ+1 − αµ+2 + 3) mod 6. If rµ
is small enough, the ground state is nondegenerate, and its energy is negative for
µ = 1, or may have any sign forµ = 0 or 2. On the contrary, ifrµ is large
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enough, the ground state remains nondegenerate with a vanishing energy in the
former case, while it becomes twofold degenerate with a positive energy in the
latter. For some intermediaterµ value, one gets a two or threefold degenerate
ground state with a vanishing or positive energy, respectively.

6. Application to orthosupersymmetric quantum mechanics of order two

Mishra and Rajasekaran [8] introduced order-p orthofermion operators by replac-
ing the Pauli exclusion principle by a more stringent one: an orbital state shall not
contain more than one particle, whatever be the spin direction. The wave function
is thus antisymmetric in spatial indices alone with the order of the spin indices
frozen.

Khare, Mishra, and Rajasekaran [6] then developed orthosupersymmetric
quantum mechanics (OSSQM) of arbitrary orderp by combining boson oper-
ators with orthofermion ones, for which the spatial indices are ignored. OS-
SQM is formulated in terms of an orthosupersymmetric HamiltonianH, and2p
orthosupercharge operatorsQr,Q†r, r = 1, 2, . . . , p, satisfying the relations

QrQs = 0, [H, Qr] = 0, QrQ
†
s + δr,s

p∑
t=1

Q
†
tQt = 2δr,sH, (27)

and their Hermitian conjugates, wherer ands run over 1, 2,. . . , p.
In Ref. [14], it was proved that OSSQM of order two can be bosonized in

terms of the generators of some well-chosenA(3)(G(N)) algebras. As ansätze,
the expressions

Q1 =
2∑

ν=0

(
ξνa+ ηνa

†)Pν , Q2 =
2∑

ν=0

(
ζνa+ ρνa

†)Pν ,
H = H0 + 1

2

2∑
ν=0

rνPν , (28)

were used, and the complex constantsξν , ην , ζν , ρν , and the real onesrν were
determined in such a way that Eq. (27) is fulfilled. There exist two families of
two-parameter solutions, labeled byµ ∈ {0, 1},

Q1,µ(ξµ+2, ϕ) = ξµ+2aPµ+2 + eiϕ
√

2− ξ2
µ+2 a

†Pµ,

Q2,µ(ξµ+2, ϕ) = −e−iϕ
√

2− ξ2
µ+2 aPµ+2 + ξµ+2a

†Pµ,

Hµ = N + 1
2(2γµ+1 − 1)I + 2Pµ + Pµ+1, (29)

where0 < ξµ+2 ≤
√

2 and0 ≤ ϕ < 2π, provided the algebra parameterαµ+1 is
taken asαµ+1 = −1. As a matter of fact, the absence of a third family of solutions
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corresponding toµ = 2 comes from the incompatibility of this condition (i.e.,
α0 = −1) with conditions (11).

The orthosupersymmetric HamiltonianH in Eq. (29) is independent of the
parametersξµ+2, ϕ. All the levels of its spectrum are equally spaced. Forµ =
0, OSSQM is broken: the levels are threefold degenerate, and the ground state
energy is positive. On the contrary, forµ = 1, OSSQM is unbroken: only the
excited states are threefold degenerate, while the nondegenerate ground state has
a vanishing energy. Such results agree with the general conclusions of Ref. [6].

For p values greater than two, the OSSQM algebra (27) becomes rather com-
plicated because the number of equations to be fulfilled increases considerably. A
glance at the 18 independent conditions forp = 3 led to the conclusion that the
A(4)(G(N)) algebra is not rich enough to contain operators satisfying Eq. (27).
Contrary to what happens for PSSQM, for OSSQM thep = 2 case is therefore
not representative of the general one.

7. Conclusion

In this communication, we showed that theS2-extended oscillator algebra, which
was introduced in connection with the two-particle Calogero model, can be ex-
tended to the whole class ofCλ-extended oscillator algebrasA(λ)

α0α1...αλ−2 , where
λ ∈ {2, 3, . . . }, andα0,α1, . . . ,αλ−2 are some real parameters. In the same way,
the GDOA realization of the former, known as the Calogero-Vasiliev algebra, is
generalized to a class of GDOAsA(λ)(G(N)), whereλ ∈ {2, 3, . . . }, for which
one can define a bosonic oscillator HamiltonianH0, acting in the bosonic Fock
space representation.

Forλ ≥ 3, the spectrum ofH0 has a very rich structure in terms of the algebra
parametersα0, α1, . . . , αλ−2. This can be exploited to provide a bosonization of
PSSQM of orderp = λ− 1, and, forλ = 3, a bosonization of pseudoSSQM and
OSSQM of order two.
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SUPERSYMMETRIC ODD MECHANICAL SYSTEMS AND HILBERT

Q-MODULE QUANTIZATION

ANDRZEJ FRYDRYSZAK∗
Institute of Theoretical Physics, University of Wroclaw,
pl. Borna 9, 50-204 Wroclaw, Poland

1. Introduction

Supersymmetry can be implemented within a particle model in two ways. The
first one is commonly exploited and assumes that we use conventional graded
Lie algebra approach in the sense that on the classical level we have aZ2-graded
Lie-Poisson algebra of observables which after quantization is replaced by aZ2-
graded Lie algebra of operators. Both, graded Poisson bracket andZ2-graded
commutator are even mappings. The second way of realization of supersymmetry
in a particle model is related to the anti-bracket algebras. In this case Lagrangian
as well as Hamiltonian of the supersymmetric system is an odd Grassmann algebra
valued function and the Grassmannian parity of canonical momenta is opposite to
the parity of related coordinates. The anti-bracket is an odd mapping. Realizations
of the mentioned type we shall call the even supersymmetric mechanics and the
odd supersymmetric mechanics, respectively [1, 2]. The odd mechanics allows
particular deformation of geometry of the configuration superspace. The realiza-
tion of the supersymmetry algebra after the passage to phase superspace in terms
of the Dirac anti-bracket remains conventional [3]. The canonical quantization of
both types of models can be done in parallel but in the case of the odd systems
one can introduce a newZ2-graded algebra generalizing complex numbers in such
a sense that we introduce additional imaginary unit of the odd Grassmannian
parity [4, 5]. Such a structure we shall call oddons (referring to the name of
quaternions, octonions etc.). The formalism, in both cases, allows to mimic the
approach known from the harmonic analysis on the Heisenberg group [6]. Inthe

∗ amfry@ift.uni.wroc.pl
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even sector it is done for a pair - Heisenberg group and Fermionic Heisenberg
group. In the odd sector it is done for so called Odd Heisenberg group.

In this presentation we shall briefly describe classical aspect of the even
and odd models on the example ofZ2-graded supersymmetric oscillators and
moreover we shall display some issues of their quantization.

2. Supersymmetric (Superfield) Classical Mechanics.

To discuss even and odd mechanical systems on the same footing let us de-
fine the following notion of the superfield supersymmetric classical mechanics
(SSCM) [7, 3]. Let(N0, N1) be a fixed pair of non-negative integers.(N0, N1)-
dimensional SSCM is quadruple(Υ; {Qα, Dβ , T}; (M,J,G);S) consisting of:

(a) Υ - a ”supersymmetrized time”(t, θα), α = 1, 2
(b) {Qα, Dβ , T} - super Lie algebra of supertranslations

and respective covariant derivatives onΥ

{Qα, Qβ} = 2iδαβT, {Dα, Dβ} = −2iδαβT (1)

{Qα, T} = 0 = {Dα, T}, {Qα, Dβ} = 0 (2)

(c) M - Z2-graded configuration spacedimM=(N0, N1) with gradation map-
ping

J : M −→M, M = M0 +M1 J(
s
φ) = (−1)s

s
φ,

s
φ∈Ms, s = 1, 2

(d) G - Z2-graded metric inM

<
s
φ,

s
φ>=

Ns∑
i,j=1

s
G
ij s
φi

s
φj , <

s
φ,

s′
φ>= 0 for s 6= s′

s
G
ij

= (−1)s
s
G
ji

(e) S - an action. The actionS is invariant under supertranslations

Trajectories inM are superfields with the following expansion

0
φj(t, ϑ) = xj(t) + iϑαx

α
j (t) +

1

2
ϑ2bj(t) (3)

1
φj(t, ϑ) = yj(t) + ϑαy

α
j (t) +

1

2
ϑ2fj(t) (4)

The actionS has the form

S =

∫
L(Dαφ, φ)dtdϑ1dϑ2 (5)
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and yields the following equations of motion

δL

δ
s
φ
− (−1)sDα

δL

δDα

s
φ

= 0. (6)

It is worth mentioning that the mappingJ in the above definition is the counter-
part of the fermionic number operator(−1)F known in supersymmetric quantum
mechanics.

Such SSCM has two natural realizations inZ2-graded configuration space.
Namely,
Even realization: Graded Superfield Oscillator (GSO) [7].
LetN1 = 2k.

S =

∫
1

4
(εαβ < Dαφ,Dβφ > −2ω < φ, φ >)dtdϑ1dϑ2 (7)

in components it gives

S =
1

2

∫
dt

0
G
ij

[(ẋiẋj − bibj)− (δαβxαiẋ
β
j )− ω(xibj + bixj + iεαβx

α
i x

β
j )

1

2

∫
dt

1
G
ij

[−(ẏiẏj + fifj) + (δαβ yαiẏ
β
j )− ω(yifj + fiyj + iεαβy

α
i y

β
j ). (8)

We can summarize the component content of the model as follows:

− GSO consists of system of bosonic oscillators and rotators and system of
fermionic oscillators and rotators

− full GSO has additional symmetry (mixing both sectors)
− momenta have the same grade as conjugate coordinates⇒ Z2-graded Pois-

son bracket in phase space is an even mapping. The phase space of this
model we shall denote(P(0,0) ⊕ P(1,1); {., .}0), where(p, q) ∈ P(0,0) and
(Π,Θ) ∈ P(1,1) Moreover the pair(p, q) describes even coordinates and
their conjugated momenta and similarly(Π,Θ) denotes pairs of the odd
coordinates and momenta.

Odd realization: Odd Graded Superfield Oscillator (OGSO) [3].
Let N1 = N0. Here we introduce the odd extension of covariant derivatives, in
the sense that instead of consideringDα ⊗ idM we define

Dα ⊗Π, Π2 = idM ⇒ Πα =

(
0 q−1

α

qα 0

)
, (9)

wherecα ∈ R. Now

S =

∫
(
1

2
< Dαφ,Π

αβDβφ > −ω < φ,Πφ >)dtdϑ1dϑ2 (10)
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and

ΠαβDβ

0
φi= εαβq−1

β Dβ

1
φi (11)

ΠαβDβ

1
φi= εαβqβDβ

0
φi . (12)

In components this action has the following form

S =

∫
dt
∑
s=1,2

s
G
ij

{1

2
[Tr

s
δq (ẋiẏj − bifj)+

1

2
(
s
δq
α

βxαiẏ
β
j −

s
δq
β

αẋ
α
i yβj)] + (−1)sω(xifj + iεαβx

α
i y

β
j + biyj)}. (13)

The component content of this model can be characterized as follows:

− OGSO consists of system of bosonic oscillators and rotators and system of
fermionic oscillators and rotators

− momenta have opposite grade with respect to the grade of conjugate coor-
dinates⇒ ”Poisson” bracket in odd phase space i.e. anti-bracket is an odd
mapping with shifted grade properties i.e.

{A,B}1 = −(−1)(A+1)(B+1){B,A}1 (14)

∑
cycl

−(−1)(A+1)(C+1){A, {B,C}1}1 = 0 (15)

The canonical relations for component fields, in this case, have the form

{FA, pFB} = (−)|F
A|(|FA|+1)δAB , (16)

whereF is generic component field andpF is its momentum. Here, in analogy
to the previous case we shall denote phase space for this system as(P(0,1) ⊕
P(1,0); {· , ·}1), where(p,Θ) ∈ P(0,1) and(Π, q) ∈ P(1,0). As before Greek letters
denote odd entities.

3. Generalization of the Heisenberg group

The Heisenberg group is connected to the structure of usual phase space. We shall
need two generalizations of this object. For the even mechanics: a generalization
related to the(P(1,1), {· , ·}0) and for the odd mechanics: a generalization related
to the(P(0,1), {· , ·}1).
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Fermionic Heisenberg Group [8].We shall consider here the odd part of the
phase space i.e.P(1,1) extended by the time dimension. Hence, letPn be the free
Q-modulePn = Q2n,1 with the fixed basis{ei}2ni=0, |e0| = 0, |ei| = 1, i =
1, 2, ..., 2n (Q is the Banach -Grassmann algebra and| · | denotes Grassmannian
parity of an element [9]). Moreover, letB(· , ·) be the graded symplectic even
form defined onQ2n,0 with values inQ. In our basis

v =
n∑
i=1

Πiei +
n∑
i=1

Θien+i (17)

and we fix the form ofB(· , ·) as follows

B(ei, ej+n) = δij . (18)

Hence

B(v, v′) = −
n∑
i=1

(ΠiΘi
′ + ΘiΠ

i′), (19)

where|Πi| = |Θi| = 1. Now we consider the moduleP with coordinates

(v, t) ≡ (Π,Θ, t) =
(
Π1, ...,Πn,Θ1, ...,Θn, t

)
(20)

(wheret ∈ Q0) and with the following multiplication law

(v, t) ◦ (v′, t′) =

(
v + v′, t+ t′ +

1

2
B(v, v′)

)
. (21)

P equipped with this multiplication forms a group. It is called the Fermionic
Heisenberg group and denoted byFHn. As in the conventional case, this group
has a matrix realization. For given(Π,Θ, t) ∈ Q2n,1 we define the matrix
µ (Π,Θ, t) ∈Mn+2(Q) by

µ (Π,Θ, t) =


0 Π1 . . . Πn t
0 0 . . . 0 Θ1
...

...
...

...
0 0 . . . 0 Θn

0 0 . . . 0 0

 (22)

We have
expµ (Π,Θ, t) expµ

(
Π′,Θ′, t′

)
= expµ

(
Π + Π′,Θ + Θ′, t+ t′ − 1

2

(
ΠΘ′ + ΘΠ′

))
, (23)
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what gives the multiplication law.
The elementsµ (Π,Θ, t) form a graded Lie algebra with one even generator

T and 2n odd generatorsei = Π̂i andei+n = Θ̂i and with the following structural
relations [

Π̂i, Π̂j

]
+

=
[
Θ̂i, Θ̂j

]
+

= 0[
Π̂i, T

]
− =

[
Θ̂i, T

]
− = 0 (24)[

Π̂i, Θ̂j

]
+

= δijT.

Odd Heisenberg Group [5].To describe the Odd Heisenberg group we shall
use a new structure replacing the complex numbers i.e. the algebra of oddons. It
provides the odd multiplication in the set of observables. The definition of oddons
and some of their properties are collected in the Appendix. Let us consider as an
extension of the phase spaceP(0,1) by the time dimension the freeQRO-module

Tn = Q
n|n+1
RO with the basis{Ei, ei, e0}ni=1, where|ei| = |e0| = 0, |Ei| = 1

; i = 1, 2, . . . , n. LetB(· , ·) be the odd symplectic form defined onQn,nRO with
values inQRO. We shall consider vectors of the form

v =
∑n

i=1
piEi +

∑n

i=1
Θiei (25)

and we fixB(· , ·) as follows

B(Ei, ei) = δij (26)

ThereforeB(v, v′) =
∑n
i=1(piΘ′i−Θip

′i). Now letOHn be the set of vectors of
the form

(v, τ) = (p,Θ, τ) = (p1, p2, . . . , pn,Θ1,Θ2, . . . ,Θn, τ) (27)

whereτ = t · 1̂, t ∈ QR0 , Θi ∈ QR1 , pi ∈ QRO0 . In the setOHn we define the
action in the following form

(v, τ) ? (v′, τ ′) = (v + v′, τ + τ ′ +
1

2
B(v, v′)) (28)

The(OHn, ?) is a group, we shall call it the Odd Heisenberg group. Its matrix
realization can be written in the following form, for the(p,Θ, τ) we define matrix
µ(pi,Θi, τ) ∈Mn+2(QCO)

µ (p,Θ, τ) =


0 p1 . . . pn τ
0 0 . . . 0 Θ1
...

...
...

...
0 0 . . . 0 Θn

0 0 . . . 0 0

 (29)
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The odd product of odd exponents gives the following relation

exp? µ (p,Θ, τ) ? exp? µ
(
p′,Θ′, τ ′

)
= exp? µ

(
p+ p′,Θ + Θ′, τ + τ ′ +

1

2

(
pΘ′ −Θp′

))
(30)

Elementsµ(p,Θ, τ) form a graded anti-bracket algebra with even generatorsêi, ê0

and odd generatorŝEi [
Êi, êj

]
1

= δij ê0 (31)

4. Hilbert Q-module Quantization

To describe the quantization of the supersymmetric model we shall use the
formalism of the Hilbert Q-modules.

Q-representations of the Fermionic Heisenberg Group.As in the case of
the Heisenberg group, it is possible to consider the Schrödinger representation
for FHn. However, due to the nature of the Berezin integral [10] the essentially
functional content of it is trivial and the analog of the representation in function
space arising in this way is finite dimensional and of an algebraic kind. LetSn be
the set ofQC valued functions of n = 2k real Grassmann variablesηi ∈ QnR,1. Let
”∗” denote conjugation in theQC - algebra extending complex conjugation. InSn

we introduce theQC - scalar product

〈f, g〉S =

∫
dη f∗(η)g(η) (32)

dη = dηn . . . dη1

(Sn, 〈· , ·〉S) is the HilbertQ-module [6,10]. This is the counterpart of the con-
ventional Hilbert space of square integrable functions. In this space the Hermitian
conjugate operators to the differentiation and multiplication operators are

∂

∂ηi
≡ ∂η, ∂η

† = i∂η (33)

η̂ ≡ η · η̂† = −iη · (34)

This operators are not self-adjoint inSn. However, for the construction of theQ-
representation ofFHn we need the following LetD = −i∂η, X i = ηi. The
operatorΠiDi + ΘiX

i is self-adjoint inSn and

exp i (t+ ΘX + ΠD) f(η) = exp i

(
t+ Θη +

1

2
ΘΠ

)
f (η + Π) (35)

kievarwe.tex; 12/03/2001; 3:49; p.228



222 A. FRYDRYSZAK

or equivalently

ei(ΘX+ΠD) = e
i
2

ΘΠeiΘXeiΠD. (36)

The multiplication ofeiA
′
eiA yields theFHn group multiplication (6). There

exists a homomorphism
π1 : FHn 7→ Op(Sn)

π1(Π,Θ, t) = exp i(t+ ΘX + ΠD) (37)

which gives theQ - representation ofFHn onSn, n = 2k. π1 given by

π1 (Π,Θ, t) f(η) = ei(t+Θη+ 1
2

ΘΠ) f(η + Π) (38)

is aQ - irreducibleQ - unitary representation ofFHn. The matrix coefficients of
the representationπ1 for f, g ∈ Sn are defined by

M (Π,Θ) = 〈f, π1 (Π,Θ) g〉 (39)

Analogously to the conventional theory we can introduce the functionV (f, g) on
theSn by

V (f, g)(Π,Θ) = M(Π,Θ) = 〈f, ei(ΘX+ΠD)g〉 =

∫
dη f∗(η − 1

2
Π)eiΘηg(η +

1

2
Π) (40)

The mappingV : Sn × Sn 7→ S2n is the Grassmannian version of the
Fourier- Wigner transform (the GFW-transform). In particular, GFW-transform
for Grassmannian Gaussianω0 ∈ Sn, n = 2k, can be written in the following
form

V (ω0, f)(Π,Θ) = (Pf)−
1
2 e−

i
4
z∗G−1z

∫
dηe

1
2
ηGη−ηz− 1

4
zG−1z f(η), (41)

with a new variablez defined as

zk = GkjΠ
j + iΘk, (42)

and

ω0 = (Pf G)−
1
2 e

1
2
ηGη, (43)

whereG = (Gij) is an anti-symmetric matrix andPf G its Pfaffian and

〈ω0, ω0〉S = 1. (44)
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This allows us to define the Grassmannian Bargmann transform (GB - transform)
as

(Bf)(z) ≡ 2−
n
4

∫
dη e

1
2
ηGη−ηz− 1

4
zG−1z f(η). (45)

For further convenience we shall denote

‖z‖2 =
i

2
z∗G−1z. (46)

One can write theFHn group multiplication for(z, t) in the form

(z, t) ◦ (z′, t′) =

(
z + z′, t+ t′ +

1

2
Im(−z∗ i

2
G−1z)

)
, (47)

The transferred representationβ can be defined as

β(z, t) ◦B = B ◦ π1(Π,Θ, t) (48)

where

V (ω0, f)(Π,Θ) = e−
1
2
‖z‖2 (Bf)(z) (49)

Let us define the Grassmannian Bargmann-Fock space as

Fn = {f | f is holomorphic onQnC,1 and‖f‖2F =

∫
|dz| e−‖z‖2 f∗(z)f(z)}

(50)

The basis in this space is formed by polynomials{zIk}Ik,k, whereIk is a strongly
ordered multi-index (with increasing entries). TheQ - scalar product inFn is
defined as

〈f, g〉F =

∫
|dz| e−‖z‖2 f∗(z)g(z), (51)

where

|dz| ≡ −(
i

2
)ndzdz∗.

(Fn, 〈 , 〉F ) is a HilbertQ - module. The operator Hermitian conjugate to the
differentiation∂z in Fn is

(∂z)
† = − i

2
G−1z. (52)

We can write representationβ explicitly. Letw = Gρ+ iσ, for f ∈ Sn we have

(β(w)Bf) (z) = (Bπ1(ρ, σ)f) (z) = e
1
2
‖z‖2 V (ω0, π1(ρ, σ)f)(Π,Θ) (53)
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what gives

(β(w)Bf) (z) = e−
i
2
‖w‖2 e−

i
2
zG−1w∗Bf(z) . (54)

For the Heisenberg group the Bargmann transform relates two distinguished
bases in the Schrödinger representation space and in the Fock space. This property
also holds for theFHn. The Grassmannian Hermite polynomials are related to
thezIk polynomials forming the basis of the FockQ - module. The Grassmannian
Hermite [11] polynomials can be taken in the form [12]

hi1...ikk = Kk e
− 1

2
ηGη∂αk . . . ∂α1 eηGη (55)

whereKk are numerical factors. Then theGB transform ofhk , 0 ≤ k ≤ n, yields

(Bhk)i1...ik(z) = 2
n
4KkzIk . (56)

TheGFW transform of the Grassmannian Hermite function gives a Grassman-
nian Laguerre polynomial [8]

〈zIk , β(w)zI′
k
〉 = e−

1
2
‖w‖2 L(0)

Ik
, L

(0)
Ik

=
∑

m,Im⊂Ik
N
I′m
Im

w∗Ik−mwI′k−m . (57)

Q-representations of the Odd Heisenberg Group [5].The construction of
the Schr̈odingerQ-representation known for the Fermionic Heisenberg group
can be extended to theQCO-representation of the Odd Heisenberg group (we
consider here only the sector(p,Θ)). Appropriate Grassmannian odd transforms
and generalized Grassmannian odd polynomials fall to this scheme as well.

Let SnOD be the set of functions onQn1 with values in theQCO, let theQCO
valued scalar product be given in the form

〈f, g〉S =

∫
dη f?(η)g(η), dη = dηn . . . dη1, ηi ∈ Q1 (58)

(Sn, 〈· , ·〉S) forms the HilbertQCO- module.
Let Dj = −ı̂ ∂

∂ηj
andXi = ηi then the following relations give rise to the

definition of representationπ

exp? ı̂ (t+ ΘX + pD) f(η) = (59)

exp? ı̂

(
t+ Θη +

1

2
Θ ? p

)
f
(
η + 1̂p

)
= π(p,Θ, t)

Let pi = 1̂Πi, Πi ∈ Q1. Therefore algebraic form of relations obtained in the
first part of the report for the Fermionic Heisenberg group will be here preserved
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modulo odd exponents and odd units.
The Grassmannian Fourier-Wigner odd transform takes the following form

V (f, g)(p,Θ) =

∫
dη f?(η − 1

2
1̂p)eı̂Θη? g(η +

1

2
1̂p) (60)

Let ω̂O be a Grassmann odd Gaussian of the form

ω̂0 = Ae
1
2
ηĜη

? , (61)

whereA is a normalization factor and̂G = 1̂(Gij) with G = (Gij) being an
anti-symmetric matrix in orthogonal form. Defining the new variablez as

zk = Gklp
l + ı̂Θk (62)

we can introduce the Grassmannian Bargmann odd transform as follows

(B̂f)(z) ≡ 2−
n
4

∫
dη e

1
2
ηĜη−ηz− 1

4
zĜ−1z

? f(η). (63)

Analogously as for theFHn the group product of theOHn can be expressed as

(z, t) ? (z′, t′) =

(
z + z′, τ + τ ′ +

1

2
ImOD(z?Ĝ−1z)

)
, (64)

whereImOD denotes the oddonic imaginary part.
Modification of Grassmannian Hermite polynomials to the odd case is given by
the formula

ĥi1...ikk = Hk e
− 1

2
ηĜη

? ∂ik . . . ∂i1 eηĜη? (65)

where in comparison to the fermionic case, here the odd exponents enter the defi-
nition.Hk are normalization factors.
Grassmannian Bargmann odd transform relates Grassmannian Hermite odd poly-
nomials to thezIk basis of the FockQCO-module. Grassmannian Laguerre odd
polynomials take values in complex Oddons as well and have the form

L̂Ik =
∑

m,Im⊂Ik
W

I′m
Im

z?Ik−mzI′k−m , zIk−m , zI
′
k−m ∈ QCO (66)

whereW I′m
Im
∈ QCO are normalization factors.
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5. Final Remarks

We have discussed some issues of theQ-module quantization of theZ2-graded
mechanical systems, taking as the example, realizations of the same supersym-
metry in the even (GSO) and odd (OGSO) superfield model yielding the phase
superspace with even superPoisson-bracket and anti-bracket, respectively. The
formalism for the odd system can be developed analogously to the one known for
the even systems, provided that in the odd case we introduce an odd multiplication
of observables. This has been done here by means of the algebra of oddons.

Appendix

Real Oddons.Let 1̂ be an element such that, for homogeneousqs ∈ QRs
11̂ = 1̂ 1̂2 = 1 qs1̂ = (−1)s1̂qs (67)

The expressions of the form

r = q + 1̂q′, q, q′ ∈ QR (68)

we shall call the real oddons. They form a graded algebraQRO. This algebra in
not graded commutative. Despite the extension of the usual product we can define
a new odd product

r ? r′ ≡ r · 1̂ · r′ (69)

The 1̂ is a unit with respect to the?-multiplication, having the same parity as the
multiplication.
Complex Oddons. Similarly we can consider the complexification of above
structure, in the sense thatQCO ≡ QC ⊕ ı̂QC and

ı̂2 = −1, ı̂ · 1 = ı̂, ı̂ · 1̂ = i ı̂ · qs = (−1)sqsı̂, (70)

whereqs ∈ QCs . Obviouslŷı · i = −1̂. The product of two homogeneous complex
oddons takes the form

zs · z′r = asa
′
r − (−1)s+1bsb

′
r + ı̂((−1)sasb

′
r + bsa

′
r) 6= (−1)rsz′r · zs, (71)

wherezr = ar + ı̂br ∈ QCOr . The componenta we shall call the oddonic real part
and theb - the oddonic imaginary part. TheQCO can be considered as an algebra
with the odd? product. The even mapping

∗ : QCO −→ QCO (72)

such that

z = a+ ı̂b −→ z∗ = a∗ − b∗ı̂ (73)
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we shall consider as oddonic conjugation. Note that we use the same symbol for
the extension of complex conjugation in theQC.
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Abstract. We outline the the geometry of locally anisotropic (la) superspaces and la–supergravity.
The approach is backgrounded on the method of anholonomic superframes with associated non-
linear connection structure. Following the formalism of enveloping algebras and star product
calculus we propose a model of gauge la–gravity on noncommutative spaces. The corresponding
Seiberg–Witten maps are established which allow the definition of dynamics for a finite number of
gravitational gauge field components on noncommutative spaces.

1. Introduction

Locally anisotropic supergravity was developed as a model of supergravity with
anholonomic superframes and associated nonlinear connection (N–connection)
structure [13]. This model contain as particular cases supersymmetric Kaluza–
Klein and generalized Lagrange and/or Finsler gravities and for nontrivial curva-
tures the N–connection describes splittings from higher to lower dimensions of
(super) spaces and generic anholonomic local anisotropies.

In order to avoid the problem of formulation of gauge theories on noncommu-
tative spaces [3, 10, 5, 7] with Lie algebra valued infinitesimal transformations and
with Lie algebra valued gauge fields the authors of [6] suggested to use enveloping
algebras of the Lie algebras for setting this type of gauge theories and showed that
in spite of the fact that such enveloping algebras are infinite–dimensional one can
restrict them in a way that it would be a dependence on the Lie algebra valued
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parameters and the Lie algebra valued gauge fields and their spacetime derivatives
only.

A still presented drawback of noncommutative geometry and physics is that
there is not yet formulated a generally accepted approach to interactions of
elementary particles coupled to gravity. There are improved Connes–Lott and
Chamsedine–Connes models of nocommutative geometry [2] which yielded ac-
tion functionals typing together the gravitational and Yang–Mills interactions and
gauge bosons the Higgs sector (see also the approaches [4] and [8]).

In this paper we outline the geometry of locally anisotropoc supergravity
and follow the method of restricted enveloping algebras [5, 6] and construct
gauge gravitational theories by stating corresponding structures with semisimple
or nonsemisimple Lie algebras and their extensions. We consider power series
of generators for the affine and non linear realized de Sitter gauge groups and
compute the coefficient functions of all the higher powers of the generators of
the gauge group which are functions of the coefficients of the first power. Such
constructions are based on the Seiberg–Witten map [10] and on the formalism
of ∗–product formulation of the algebra [18] when for functional objects, being
functions of commuting variables, there are associated some algebraic noncom-
mutative properties encoded in the∗–product. The concept of gauge gravity theory
on noncommutative spaces is introduced in a geometric manner [7] by defining the
covariant coordinates without speaking about derivatives and this formalism was
developed for quantum planes [17]. We prove the existence for noncommutative
spaces of gauge models of gravity which agrees with usual gauge gravity theories
[14] being equivalent, or extending, the general relativity theory (see works [9, 11]
for locally isotropic spaces and corresponding reformulations and generalizations
respectively for anholonomic frames [15] and locally anisotropic (super) spaces
[16]) in the limit of commuting spaces.

2. Locally Anisotropic Supergravity

Let us consider a vector superbundle (vs–bundle)Ẽ over a supermanifold (s–
manifold)M̃ with surjective projectionπE : Ẽ → M̃ (for simplicity, all construc-
tions are locally trivial). The local supersymmetric coordinates (s–coordinates)
on Ẽ andM̃ are denoted respectivelyu = (x, y) = {uα =

(
xI , yA

)
, where

x = {xI =
(
xi, x̂i

)
} are (even,odd) coordinates oñM andy = {yA =

(
ya, yâ

)
}

are (even,odd) coordinates in fibers ofπE (indices run values defined by even and
odd dimensions of corresponding submanifolds). Latin s–indicesI, J,K,L,M, ...
andA,B,C,D, ... will be used respectively for base and fiber components.

A nonlinear connection (N–connection) structure which defines a global
decomposition ofTẼ into horizontal,HẼ, and vertical parts,V Ẽ,

N : TẼ = HẼ ⊕ V Ẽ. (1)
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The coefficients of a N–connectionNA
I (u) determine the locally adapted s–frame

(basis, in brief la–frame)

δα = δ/δuα =
(
δI = δ/δxI = ∂I −NB

I (u) ∂B, ∂A
)
, (2)

where∂I = ∂/∂xI , ∂A = ∂/∂yA are partial s–derivatives, and the dual s–frame

δα = δuα =
(
dI = δxI = dxI , δA = δyA = dyA +NA

I (u) dxI
)
. (3)

The s–frame (2) is anholonomic

[δJ , δK} = δJδK − (−)|JK|δKδJ = ΩA
JK∂A,

where|JK| = |J | · |K| is defined by the parity of indices and we write(−)|JK|
instead(−1)|JK|,with anholonomy coefficients coinciding with the N-connection
curvature

ΩA
JK = δKN

A
J − (−)|JK|δJNA

K .

The geometrical objects oñE are given with respect to la–basis (2) and (3)
or their tensor products and called ds–tensors, ds–connections (for some addi-
tional linear connections), d–spinors and so on. For instance, a metric ds–tensor
is written

g̃ = gαβδ
α ⊗ δβ = gIJd

I ⊗ dJ + gABδ
A ⊗ δB. (4)

The Lagrange and Finsler ds–metrics can be modeled on a locally anisotropic
superspace if vs–bundlẽE over a s–manifoldM̃ is substituted by the tangent
s–bundleTM̃ and the coefficients of ds–metric (4) are taken respectively

gIJ(u) =
1

2

∂2L(u)

∂yI∂yL
andgIJ (u) =

1

2

∂2F 2(u)

∂yI∂yL

where the s–LagrangianL :TM̃ → Λ is a s–differentiable function onTM̃, and
F is a Finsler s–metric function onTM̃.

A linear distinguished connectionD, d–connection, in sv–bundlẽE is a lin-
ear connection which preserves by parallelism the horizontal (h) and vertical (v)
distribution (1).

A d–connectionDΓ = {Γαβγ =
(
L, L̃, C̃, C

)
}, is determined by its invariant

hh-, hv-, vh- and vv–components, where

D(δK)δJ = LIJK (u) δI , D(δK)∂B = LABK (u) ∂A, (5)

D(∂C)δJ = CIJC (u) δI , D(∂C)∂B = CABC (u) ∂A.
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There is a canonical d–connection(c)Γ defined by the coefficients of d–metric
(4) and of N–connection and satisfying the metricity conditionDg̃ = 0,

(c)LIJK =
1

2
gIH (δKgHJ + δJgHK − δHgJK) ,

(c)LABK = ∂BN
A
K +

1

2
hAC

(
δKHBC − (∂BN

D
K )hDC − (∂CN

D
K )hDB

)
,

(c)CIJC =
1

2
gIK∂CgJK ,

(c)CABC =
1

2
hAD (∂ChDB + ∂BhDC − ∂DhBC) .

The torsionTαβγ of a d–connection,T (X,Y ) = [X,DY }−[X,Y },whereX
andY are ds–vectors and by[...}we denote the s–anticommutator, is decomposed
into hv–invariant ds–torsions

hT (δK , δJ) = T IJKδI , vT (δK , δJ) = T̃AJKδI , hT (∂A, δJ) = P̃ IJAδI ,

vT (∂B, δJ) = PAJB∂A, vT (∂C , ∂B) = SABC∂A,

with coefficients

T IJK = LIJK − (−)|JK|LIKJ , T̃
A
JK = δKN

A
J − (−)|KJ |δJNA

K , (6)

P̃ IJA = CIJA, P
A
JB = ∂BN

A
J − LABJ , SABC = CABC − (−)|BC|CACB.

The even and odd components of ds–torsions (6) can be specified in explicit form
by using decompositions of indices into even and odd parts,I = (i, î), A = (a, â)
and so on.

The curvatureRαβγτ of a d–connection,R (X,Y )Z = D[XDY }Z−D[X,Y }Z,
whereX,Y, Z are ds–vectors, splits into hv–invariant ds–torsions

R (δK , δJ) δH = RIHJKδI , R (δK , δJ) ∂B = RABJK∂A, (7)

R (∂C , δK) δJ = P̃ IJKCδI , R (∂C , δK) ∂B = PABKC ,

R (∂C , ∂B) δJ = S̃IJBCδI , R (∂D, ∂C) ∂B = SABCD∂A

where the coefficients are computed

RIMJK = δ[KL
I
|M |J} + LWMJL

I
WK − (−)|KJ | LWMKL

I
WJ + CIKAW

A
JK

R̂ABJK = δ[KL
A
|B|J} + LCBJL

A
CK − (−)|KJ | LCBKL

A
CJ + CABCW

C
JK

S̃IJBC = ∂CC
I
JB − (−)|BC| ∂BCIJC + CHJBC

I
HC − (−)|BC|CHJCC

I
HB

SABCD = ∂DC
A
BC − (−)|CD| ∂CCABD + CEBCC

A
ED − (−)|CD|CEBDC

A
EC

P̃ IJKA = ∂AL
I
JK − CIJA|K + CIJBP

B
KA

PABKC = ∂CL
A
BK − CABC|K + CABDP

D
KC

where, for instance,

δ[KL
I
|M |J} = δKL

I
MJ − (−)|KJ | δJLIMK ,

CIJA|K = δKC
I
JA + LIMKC

M
IA − LMJKCIMA − LBAKCIJB .
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The even and odd components of ds–curvatures are computed by splitting indices
into even and odd parts.

The torsion and curvature of a d–connectionD on a sv–bundle satisfy the
identities ∑

SC

[(DXT )(Y,Z)−R(X,Y )Z + T (T (X,Y ), Z)] = 0,∑
SC

[(DXR)(U, Y, Z)−R(T (X,Y ), Z)U ] = 0,

where
∑
SC means supersymmetric cyclic sums over ds–vectorsX,Y, Z andU,

from which the generalized Bianchi and Ricci identities follow [1-3].
The Ricci ds–tensorRβγ = Rαβγα has hv–invariant components

RIJ = RKIJK , RIA = − (2)PIA = −(−)|KA|P̃KIKA, (8)

RAI = (1)PAI = PBAIB , RAB = SCABC = SAB .

If a ds–metric (4) is defined oñE, we can introduce the supersymmetric scalar
curvature

R̂ = gαβRαβ = R+ S,

whereR = gIJRIJ andS = hABSAB .
The simplest model of locally anisotropic supergravity (la–supergravity) was

constructed by postulating a variant of supersymmetric Einstein--Cartan theory
on locally anisotropic superspacẽE, which in invariant hv–components has the
fundamental s–field equations

RIJ − 1

2
(R+ S − λ) gIJ = k1ΥIJ ,

(1)PAI = k1ΥAI , (9)

SAB − 1

2
(R+ S − λ)hAB = k1ΥAB ,

(2)PIA = −k1ΥIA,

and

Tαβγ + δαβT
τ
γτ − (−)|βγ|δαγ T

τ
βτ = k2Q

α
βγ ,

whereλ is the cosmological constant,k1,2 are respective interaction constants
Υαβ is the energy–momentum ds–tensor andQαβγ is defined by the supersym-
metric spin–density.

The bulk of theories of locally isotropic s–gravity are formulated as gauge
supersymmetric models based on supervielbein formalism. Similar approaches
to la–supergravity on vs–bundles can be developed by considering arbitrary s–
framesBα (u) =

(
BI (u) , BC (u)

)
adapted to the N–connection structure on a

vs-bundleẼ = Ẽm,l over s–manifold̃M = M̃n,k where(m, l) and(n, k) are re-
spective (even, odd) dimensions of s–manifolds. A s–frameBα (u) is related with
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a standard la–frame (2) via transformsδα = A
α
α (u)Bα (u) , where s–matrices

A
α
α (u) =

(
A
I
I 0

0 A
C
C

)
take values into a super Lie groupGLm,ln,k (Λ) =

GL (n, k,Λ)⊕GL (m, l,Λ) (on superspaces the graded Grassmann algebra with
Euclidean topology, denoted byΛ, substitutes the real and complex number
fields).

We denote byLN
(
Ẽ
)

the set of all adapted to N–connection s–frames in all

points of vs–bundlẽE and consider the s–bundle of linear adapted s–frames onẼ
defined as the principal s–bundle

LN
(
Ẽ
)

=
(
LN

(
Ẽ
)
, πL : LN

(
Ẽ
)
→ Ẽ,GL

m,l
n,k (Λ)

)
,

for a surjective s–mapπL. The canonical basis of standard distinguished s–

generatorsIα̂ → I
α
β =

(
I
I
J 0

0 I
A
B

)
for the super Lie algebraGLm,ln,k (Λ) of the

structural s–groupGLm,ln,k (Λ) satisfy s–commutation rules[Iα̂, Iβ̂} = f
γ̂

α̂β̂
Iγ̂ .

OnLN
(
Ẽ
)

we consider the d–connection 1–form

F = Γ
α
βγ (u) I

β
αδu

γ ,

where

Γ
α
βγ (u) = A α

α A
β
βΓαβγ +A

α
β δγA

β
β , (10)

Γαβγ are the components of canonical variant of d–connection (5) and the s–matrix

A
β
β is inverse toA α

α .

The curvatureB of the d–connection (10)

B = δF + F ∧ F = R
β
αγτI

α
β δu

γ ∧ δuτ (11)

has the coefficientsR
β
αγτ = Aαα (u)A

β

β (u)Rβαγτ , whereRβαγτ are defined by
ds–curvatures (7).

Aside fromLN
(
Ẽ
)

with vs–bundleẼ is naturally related another s–bundle,
the bundle of adapted to N–connection affine s–frames

AN
(
Ẽ
)

=
(
AN

(
Ẽ
)
, πA : AN

(
Ẽ
)
→ Ẽ, AF

m,l
n,k (Λ)

)
,

with the affine strucural s–groupAFm,ln,k (Λ) = GL
m,l
n,k (Λ)� Λn,k ⊕ Λm,l.

The d–connectionF (10) inLN
(
Ẽ
)

induces in a linear Cartand–connection

F = (F , χ) , in AN
(
Ẽ
)
,whereχ = eα ⊗ A α

α (u) δuα, eα is the standard basis
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in Λn,k⊕Λm,l, and, in consequence, the curvatureB (11) inLN
(
Ẽ
)

induces the

pair (curvature,torsion)B = (B, T ) in AN
(
Ẽ
)
,where

T = δχ+ [F ∧ γ} = T αβγeαδuβ ∧ δuγ ,
whenT αβγ = A

α
α Tαβγ is defined by the coefficients of d–torsions (6) .

By using the ds–metric (4) iñE one defines the (dual for s–forms) Hodge
operator∗g̃. Let the operator∗−1

g̃
be inverse to∗g̃ and δ̂g̃ be the adjoint to the

absolute derivation̂δ (associated to the scalar product of ds–forms) specified for
(r,s)–formsδ̂g̃ = (−1)r+s ∗−1

g̃
◦δ̂ ◦ ∗g̃.

The supersymmetric variant of the Killing form of the s–group
AF

m,l
n,k (Λ) is degenerate. In order to generate a metric structureg̃A in the total

spaces of the s–bundleAN
(
Ẽ
)

we use and auxiliary nondegenerate bilinear s–
form which gives rise to the possibility to define the Hodge operator∗g̃A and

δ̂g̃A. Applying the operator of horizontal projection̂H one defines the operator

4 .
= Ĥ ◦ δ̂g̃A which does not depend on components of auxiliary biliniar s–form

in the fiber.
Following an abstract geometric calculus, by using operators∗g̃, ∗g̃A , δ̂g̃, δ̂g̃A

and4 one computers

4B = (4B,Rt+Ri) , (12)

where the one s–forms

Rt = δ̂g̃T + ∗−1
g̃

[F , ∗g̃T },
Ri = ∗−1

g̃
[χ, ∗g̃B} = (−1)n+k+l+mRαβg

αβ̂e
β̂
δuβ

are constructed respectively by using the ds–torsions (6) and Ricci ds–tensors (8).
Let us introduce the locally anisotropic supersymmetric mattersourceJ con-

structed by using the same formulas from (12) when instead ofRαβ is taken

k1(Υαβ − 1
2gαβΥ)−λ

(
gαβ − 1

2gαβδ
τ
τ

)
. By straightforward calculations we can

proof [3,4] that the Yang–Mills equations

4B = J (13)

for d–connectionF = (F , χ) in s–bundleAN
(
Ẽ
)
, projected on the base

s–manifold, are equivalent to the Einstein equations (9) onẼ. We emphasize
that the equations (13) were introduced in a ”pure” geometric manner by using
operators∗, δ̂ and the horizontal projection̂H but such gauge s–field equations
are not variational because of degeneration of the Killing s–form. To construct a

kievarwe.tex; 12/03/2001; 3:49; p.242



236 S. VACARU, I. CHIOSA, N. VICOL

variational gauge like supersymmetric la–supergravitational model is possible, for
instance, by considering a minimal extension of the gauge s–groupAF

m,l
n,k (Λ) to

the de Sitter s–groupSm,ln,k (Λ) = SO
m,l
n,k (Λ) , acting on the s–spaceΛm,ln,k ⊕Λ and

formulating a nonlinear version of de Sitter gauge s–gravity.
There are analyzed models of supergravity with generic local anisotropy [13]

when instead of s–field equations and constraints (9) there are considered an
anholonomic generalization of the Wess–Zumino supergravity and some vari-
ants induced in low energy limit from superstring theory. The N–connection
s–field allows us to model generic la–interactions with dynamics and constraints
induced by nontrivial (not only via toroidal compactifications) from higher di-
mensions and this results in a geometrical unification of the so–called generalized
Finsler–Kaluza–Klein theories.

3. *–Products and Enveloping Algebras
in Noncommutative Spaces

For a noncommutative space the coordinatesûi, (i = 1, ..., N) satisfy some
noncommutative relations of type

[ûi, ûj ] =


iθij , θij ∈ IC, canonical structure;
if
ij
k û

k, f
ij
k ∈ IC, Lie structure;

iC
ij
klû

kûl, C
ij
kl ∈ IC, quantum plane structure

(14)

where IC denotes the complex number field.
The noncommutative space is modeled as the associative algebra of IC; this

algebra is freely generated by the coordinates modulo idealR generated by the re-
lations (one accepts formal power series)Au = IC[[û1, ..., ûN ]]/R. One restricts
attention [6] to algebras having the (so–called, Poincare–Birkhoff–Witt) property
that any element ofAu is defined by its coefficient function and vice versa,

f̂ =
∞∑
L=0

fi1,...,iL : ûi1 . . . ûiL : whenf̂ ∼ {fi} ,

where: ûi1 . . . ûiL : denotes that the basis elements satisfy some prescribed order
(for instance, the normal orderi1 ≤ i2 ≤ . . . ≤ iL, or, another example, are totally
symmetric). The algebraic properties are all encoded in the so–called diamond(♦)
product which is defined by

f̂ ĝ = ĥ ∼ {fi}♦ {gi} = {hi} .
In the mentioned approach to every functionf(u) = f(u1, . . . , uN ) of com-

muting variablesu1, . . . , uN one associates an element of algebraf̂ when the
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commuting variables are substituted by anticommuting ones,

f(u) =
∑

fi1...iLu
1 · · ·uN → f̂ =

∞∑
L=0

fi1,...,iL : ûi1 . . . ûiL :

when the♦–product leads to a bilinear∗–product of functions (see details in [7])

{fi}♦ {gi} = {hi} ∼ (f ∗ g) (u) = h (u) .

The∗–product is defined respectively for the cases (14)

f ∗ g =


exp[ i2

∂
∂ui
θij ∂

∂u′j ]f(u)g(u′)|u′→u, canonical str.;
exp[ i2u

kgk(i
∂
∂u′ , i

∂
∂u′′ )]f(u′)g(u′′)|u′→uu′′→u, Lie str.;

q
1
2

(−u′ ∂
∂u′ v

∂
∂v

+u ∂
∂u
v′ ∂
∂v′ )f(u, v)g(u′, v′)|u′→uv′→v , quantum plane,

where there are considered values of type

eiknû
n
eipnlû

n
= ei{kn+pn+ 1

2
gn(k,p)}ûn , (15)

gn (k, p) = −kipjf ijn +
1

6
kipj (pk − kk) f ijmfmkn + ...,

eAeB = eA+B+ 1
2

[A,B]+ 1
12

([A,[A,B]]+[B,[B,A]]) + ...

and for the coordinates on quantum (Manin) planes one holds the relationuv =
qvu.

A non–abelian gauge theory on a noncommutative space is given by two al-
gebraic structures, the algebraAu and a non–abelian Lie algebraAI of the gauge
group with generatorsI1, ..., IS and the relations

[Is, Ip] = if
sp

t I
t. (16)

In this case both algebras are treated on the same footing and one denotes the
generating elements of the big algebra byûi,

ẑi = {û1, ..., ûN , I1, ..., IS},
Az = IC[[û1, ..., ûN+S ]]/R,

and the∗–product formalism is to be applied for the whole algebraAz when there
are considered functions of the commuting variablesui (i, j, k, ... = 1, ..., N) and
Is (s, p, ... = 1, ..., S).

For instance, in the case of a canonical structure for the space variablesui we
have

(F ∗G)(u) = e
i
2

(
θij ∂

∂u′i
∂

∂u′′j +tsgs(i ∂∂t′ ,i
∂
∂t′′ )

)
F
(
u′, t′

)
G
(
u′′, t′′

) |u′→u,u′′→ut′→t,t′′→t .

(17)
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This formalism was developed in [6] for general Lie algebras. In this paper we
shall consider those cases when in the commuting limit one obtains the gauge
gravity and general relativity theories.

4. Enveloping Algebras for
Gravitational Gauge Connections

To define gauge gravity theories on noncommutative space we first introduce
gauge fields as elements the algebraAu that form representation of the genera-
tor I–algebra for the de Sitter gauge group. For commutative spaces it is known
[9, 11, 16] that an equivalent reexpression of the Einstein theory as a gauge like
theory implies, for both locally isotropic and anisotropic spacetimes, the non-
semisimplicity of the gauge group, which leads to a nonvariational theory in the
total space of the bundle of locally adapted affine frames (to this class one be-
long the gauge Poincare theories; on metric–affine and gauge gravity models see
original results and reviews in [12]). By using auxililiary biliniear forms, instead
of degenerated Killing form for the affine structural group, on fiber spaces, the
gauge models of gravity can be formulated to be variational. After projection on
the base spacetime, for the so–called Cartan connection form, the Yang–Mills
equations transforms equivalently into the Einstein equations for general relativity
[9]. A variational gauge gravitational theory can be also formulated by using a
minimal extension of the affine structural groupAf3+1 (R) to the de Sitter gauge
groupS10 = SO (4 + 1) acting onR4+1 space. For simplicity, in this paper we
restrict our consideration only with the even components of frames, connections
and curvatures of gauge la–supergavity outlined in previous section.

Let now consider a noncommutative space. In this case the gauge fields are
elements of the algebrâψ ∈ A(dS)

I that form the nonlinear representation of the

de Sitter Lie algebraso(η) (5) when the whole algebra is denotedA(dS)
z . Under a

nonlinear de Sitter transformation the elements transform as follows

δψ̂ = iγ̂ψ̂, ψ̂ ∈ Au, γ̂ ∈ A(dS)
z .

So, the action of the generators on̂ψ is defined as this element is supposed to
form a nonlinear representation ofA(dS)

I and, in consequence,δψ̂ ∈ Au despite

γ̂ ∈ A(dS)
z . It should be emphasized that independent of a representation the object

γ̂ takes values in enveloping de Sitter algebra and not in a Lie algebra as would
be for commuting spaces. The same holds for the connections that we introduce
(similarly to [7]) in order to define covariant coordinates

Ûν = ûv + Γ̂ν , Γ̂ν ∈ A(dS)
z .

The valuesÛνψ̂ transforms covariantly,δÛνψ̂ = iγ̂Ûνψ̂, if and only if the
connection̂Γν satisfies the transformation law of the enveloping nonlinear realized
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de Sitter algebra,

δΓ̂νψ̂ = −i[ûv, γ̂] + i[γ̂, Γ̂ν ],

whereδΓ̂ν ∈ A(dS)
z . The enveloping algebra–valued connection has infinitely

many component fields. Nevertheless, it was shown that all the component fields
can be induced from a Lie algebra–valued connection by a Seiberg–Witten map
([10, 5, 6] and [1] forSO(n) andSp(n)). In this subsection we show that similar
constructions could be proposed for nonlinear realizations of de Sitter algebra
when the transformation of the connection is considered

δΓ̂ν = −i[uν ,∗ γ̂] + i[γ̂,∗ Γ̂ν ].

For simplicity, we treat in more detail the canonical case with the star product
(17). The first term in the variationδΓ̂ν gives

−i[uν ,∗ γ̂] = θνµ
∂

∂uµ
γ.

Assuming that the variation of̂Γν = θνµQµ starts with a linear term inθ we have

δΓ̂ν = θνµδQµ, δQµ =
∂

∂uµ
γ + i[γ̂,∗ Qµ].

We follow the method of calculation from the papers [7, 6] and expand the star
product (17) inθ but not inga and find to first order inθ,

γ = γ1
aI
a + γ1

abI
aIb + ..., andQµ = q1

µ,aI
a + q2

µ,abI
aIb + ... (18)

whereγ1
a andq1

µ,a are of order zero inθ andγ1
ab andq2

µ,ab are of second order in

θ. The expansion inIb leads to an expansion inga of the∗–product because the
higher orderIb–derivatives vanish. For de Sitter case asIb we take the genera-
tors, see commutators (16), with the corresponding de Sitter structure constants

f
bc
d ' f

αβ

β (in our further identifications with spacetime objects like frames and

connections we shall use Greek indices).
The result of calculation of variations of (18), by usingga to the order given

in (15), is

δq1
µ,a =

∂γ1
a

∂uµ
− f bca γ1

b q
1
µ,c,

δQτ = θµν∂µγ
1
a∂νq

1
τ,bI

aIb + ...,

δq2
µ,ab = ∂µγ

2
ab − θντ∂νγ1

a∂τq
1
µ,b − 2f bca {γ1

b q
2
µ,cd + γ2

bdq
1
µ,c}.

Next we introduce the objectsε, taking the values in de Sitter Lie algebra and
Wµ, being enveloping de Sitter algebra valued,

ε = γ1
aI
a andWµ = q2

µ,abI
aIb
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with the variationδWµ satisfying the equation [7, 6]

δWµ = ∂µ(γ2
abI

aIb)− 1

2
θτλ{∂τε, ∂λqµ}+ i[ε,Wµ] + i[(γ2

abI
aIb), qν ]. (19)

The equation (19) has the solution (found in [7, 10])

γ2
ab =

1

2
θνµ(∂νγ

1
a)q1

µ,b, andq2
µ,ab = −1

2
θντq1

ν,a

(
∂τq

1
µ,b +R1

τµ,b

)
whereR1

τµ,b = ∂τq
1
µ,b−∂µq1

τ,b+f
ec
d q

1
τ,eq

1
µ,e can be identified with the coefficients

Rα βµν of de Sitter nonlinear gauge gravity curvature if in the commutative limit

q1
µ,b '

(
Γ
α
β l−1

0 χα

l−1
0 χβ 0

)
.

The presented procedure can be generalized to all higher powers ofθ [6].

5. Noncommutative Gauge Gravity Covariant Dynamics

The constructions from the previous section are summarized by the conclusion
that the de Sitter algebra valued objectε = γ1

a (u) Ia determines all the terms in
the enveloping algebra

γ = γ1
aI
a +

1

4
θνµ∂νγ

1
a q

1
µ,b

(
IaIb + IbIa

)
+ ...

and the gauge transformations are defined byγ1
a (u) andq1

µ,b(u), when

δγ1ψ = iγ
(
γ1, q1

µ

)
∗ ψ.

For de Sitter enveloping algebras one holds the general formula for compositions
of two transformations

δγδς − δςδγ = δi(ς∗γ−γ∗ς)

which holds also for the restricted transformations defined byγ1,

δγ1δς1 − δς1δγ1 = δi(ς1∗γ1−γ1∗ς1).

Applying the formula (17) we computer

[γ,∗ ζ] = iγ1
aζ

1
b f

ab
c I

c +
i

2
θνµ{∂v

(
γ1
aζ

1
b f

ab
c

)
qµ,c

+
(
γ1
a∂vζ

1
b − ζ1

a∂vγ
1
b

)
qµ,bf

ab
c + 2∂vγ

1
a∂µζ

1
b }IdIc.

Such commutators could be used for definition of tensors [7]

Ŝµν = [Ûµ, Ûν ]− iθ̂µν , (20)
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where θ̂µν is respectively stated for the canonical, Lie and quantum plane
structures. Under the general enveloping algebra one holds the transform

δŜµν = i[γ̂, Ŝµν ].

For instance, the canonical case is characterized by

Sµν = iθµτ∂τΓν − iθντ∂τΓµ + Γµ ∗ Γν − Γν ∗ Γµ

= θµτθνλ{∂τQλ − ∂λQτ +Qτ ∗Qλ −Qλ ∗Qτ}.
By introducing the gravitational gauge strength (curvature)

Rτλ = ∂τQλ − ∂λQτ +Qτ ∗Qλ −Qλ ∗Qτ , (21)

which could be treated as a noncommutative extension of de Sitter nonlinear
gauge gravitational curvature one computers

Rτλ,a = R1
τλ,a + θµν{R1

τµ,aR
1
λν,b −

1

2
q1
µ,a

[
(DνR

1
τλ,b) + ∂νR

1
τλ,b

]
}Ib,

where the gauge gravitation covariant derivative is introduced,

(DνR
1
τλ,b) = ∂νR

1
τλ,b + qν,cR

1
τλ,df

cd
b .

Following the gauge transformation laws forγ andq1 we find

δγ1R1
τλ = i

[
γ,∗R1

τλ

]
with the restricted form ofγ.

Such formulas were proved in references [6, 10] for usual gauge (nongravita-
tional) fields. Here we reconsidered them for gravitational gauge fields.

Following the nonlinear realization of de Sitter algebra and the∗–formalism
we can formulate a dynamics of noncommutative spaces. Derivatives can be in-
troduced in such a way that one does not obtain new relations for the coordinates.
In this case a Leibniz rule can be defined [6] that

∂̂µû
ν = δνµ + dντµσ û

σ ∂̂τ

where the coefficientsdντµσ = δνσδ
τ
µ are chosen to have not new relations when

∂̂µ acts again to the right hand side. In consequence one holds the∗–derivative
formulas

∂τ ∗ f =
∂

∂uτ
f + f ∗ ∂τ ,

[∂l,
∗ (f ∗ g)] = ([∂l,

∗ f ]) ∗ g + f ∗ ([∂l,
∗ g])
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and the Stokes theorem
∫

[∂l, f ] =
∫
dNu[∂l,

∗ f ] =
∫
dNu ∂

∂ul
f = 0, where, for

the canonical structure, the integral is defined,∫
f̂ =

∫
dNuf

(
u1, ..., uN

)
.

An action can be introduced by using such integrals. For instance, for a tensor
of type (20), whenδL̂ = i

[
γ̂, L̂

]
, we can define a gauge invariant action

W =

∫
dNu TrL̂, δW = 0,

were the trace has to be taken for the group generators.
For the nonlinear de Sitter gauge gravity a proper action is

L =
1

4
RτλR

τλ,

whereRτλ is defined by the even part of (11). In this case the dynamic of noncom-
mutative space is entirely formulated in the framework of quantum field theory of
gauge fields. The method works for matter fields as well to restrictions to the
general relativity theory (see references [11, 9]).
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Abstract. Finite Unified Theories (FUTs) areN = 1 supersymmetric GUT’s which have the
remarkable feature of being all-loop finite beyond the unification point. They also have impressive
predictive power. We present here a review of the recent developments of the softly broken sector
of N = 1 FUTs. The new characteristic predictions of FUTs are: 1) The lightest Higgs boson mass
is predicted to be in the window 120-130 GeV, in case the LSP is neutralino, while in case the LSP
is theτ̃ (which can be consistently accommodated in presence of bilinear R-parity violating terms)
it can be as light as 111 GeV. 2) The s-spectrum starts above several hundreds of GeV.

1. Introduction

In recent years new frameworks have been developed aiming to provide a unified
description of all interactions including gravity. Theories based on superstrings,
non-commutative geometry and quantum groups, although at a different stage
of development in each area, have common unification targets and share sim-
ilar hopes for exhibiting improved renormalization properties in the ultraviolet
as compared to ordinary field theories. Moreover, recent progress shows that all
above theoretical endeavors could be related and thus they might beunderstood
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in a unified manner too. However in spite the importance of having frameworks
to discuss quantum gravity in a self consistent way, the main goal expected from
a unified description of interactions by the particle physics community is to un-
derstand the present day free parameters of the Standard Model (SM) in terms of
a few fundamental ones, or in other words to achievereduction of couplingsat a
more fundamental level. Unfortunately all the above theoretical frameworks did
not offer anything in the understanding of the free parameters of the SM, and in the
best case they have managed to accommodate earlier tools such as supersymmetry
and ideas like Grand Unified Theories (GUTs) but without providing any further
predictive power in these constructions.

In our recent studies [1]-[6], [7] we have developed a complementary strategy
in searching for a more fundamental theory possibly at the Planck scale, whose
basic ingredients are GUTs and supersymmetry, but its consequences certainly
go beyond the known ones. Our method consists of hunting for renormalization
group invariant (RGI) relations holding below the Planck scale, which in turn
are preserved down to the GUT scale. This programme, called Gauge–Yukawa
unification scheme, applied in the dimensionless couplings of supersymmetric
GUTs, such as gauge and Yukawa couplings, had already noticable successes by
predicting correctly, among others, the top quark mass in the finite and in the
minimalN = 1 supersymmetric SU(5) GUTs. An impressive aspect of the RGI
relations is that one can guarantee their validity to all-orders in perturbation theory
by studying the uniqueness of the resulting relations at one-loop, as was proven
in the early days of the programme ofreduction of couplings[8]. Even more
remarkable is the fact that it is possible to find RGI relations among couplings
that guarantee finiteness to all-orders in perturbation theory [9, 10].

Although supersymmetry seems to be an essential feature for a successful real-
ization of the above programme, its breaking has to be understood too, since it has
the ambition to supply the SM with predictions for several of its free parameters.
Indeed, the search for RGI relations has been extended to the soft supersymmetry
breaking sector (SSB) of these theories [4, 11], which involves parameters of
dimension one and two. More recently a very interesting progress has been made
[12]- [17] concerning the renormalization properties of the SSB parameters based
conceptually and technically on the work of ref. [18]. In ref. [18] the powerful
supergraph method [19] for studying supersymmetric theories has been applied
to the softly broken ones by using the “spurion” external space-time independent
superfields [20]. In the latter method a softly broken supersymmetric gauge theory
is considered as a supersymmetric one in which the various parameters such as
couplings and masses have been promoted to external superfields that acquire
“vacuum expectation values”. Based on this method the relations among the soft
term renormalization and that of an unbroken supersymmetric theory have been
derived. In particular theβ-functions of the parameters of the softly broken theory
are expressed in terms of partial differential operators involving the dimensionless
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parameters of the unbroken theory. The key point in the strategy of refs. [15]-[17]
in solving the set of coupled differential equations so as to be able to express
all parameters in a RGI way, was to transform the partial differential operators
involved to total derivative operators. This is indeed possible to be done on the
RGI surface which is defined by the solution of the reduction equations.

On the phenomenological side there exist some serious developments too.
Previously an appealing “universal” set of soft scalar masses was asummed in the
SSB sector of supersymmetric theories, given that apart from economy and sim-
plicity (1) they are part of the constraints that preserve finiteness up to two-loops
[21, 22], (2) they are RGI up to two-loops in more general supersymmetric gauge
theories, subject to the condition known asP = 1/3 Q [11] and (3) they appear
in the attractive dilaton dominated supersymmetry breaking superstring scenarios
[23]. However, further studies have exhibited a number of problems all due to
the restrictive nature of the “universality” assumption for the soft scalar masses.
For instance (a) in finite unified theories the universality predicts that the lightest
supersymmetric particle is a charged particle, namely the superpartner of theτ
leptonτ̃ (b) the MSSM with universal soft scalar masses is inconsistent with the
attractive radiative electroweak symmetry breaking [24] and (c) which is the worst
of all, the universal soft scalar masses lead to charge and/or colour breaking min-
ima deeper than the standard vacuum [25]. Therefore, there have been attempts
to relax this constraint without loosing its attractive features. First an interesting
observation was made that inN = 1 Gauge–Yukawa unified theories there exists
a RGI sum rule for the soft scalar masses at lower orders; at one-loop for the
non-finite case [5] and at two-loops for the finite case [6]. The sum rule manages
to overcome the above unpleasant phenomenological consequences. Moreover it
was proven [17] that the sum rule for the soft scalar masses is RGI to all-orders
for both the general as well as for the finite case. Finally the exactβ-function
for the soft scalar masses in the Novikov-Shifman-Vainstein-Zakharov (NSVZ)
scheme [26] for the softly broken supersymmetric QCD has been obtained [17].
Armed with the above tools and results we are in a position to study the spectrum
of the full finite and minimal supersymmetric SU(5) models in terms of few free
parameters with emphasis on the predictions for the masses of the lightest Higgs
and LSP and on the constraints imposed by having a largetanβ.

2. Reduction of Couplings and Finiteness inN = 1 SUSY Gauge Theories

A RGI relation among couplings,Φ(g1, · · · , gN ) = 0, has to satisfy the partial
differential equation (PDE)µdΦ/dµ =

∑N
i=1 βi ∂Φ/∂gi = 0, whereβi

is theβ-function of gi. There exist (N − 1) independentΦ’s, and finding the
complete set of these solutions is equivalent to solve the so-called reduction equa-
tions (REs),βg (dgi/dg) = βi , i = 1, · · · , N , whereg andβg are the primary
coupling and itsβ-function. Using all the(N − 1) Φ’s to impose RGI relations,
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one can in principle express all the couplings in terms of a single couplingg.
The complete reduction, which formally preserves perturbative renormalizability,
can be achieved by demanding a power series solution, whose uniqueness can be
investigated at the one-loop level. The completely reduced theory contains only
one independent coupling with the correspondingβ-function. This possibility of
coupling unification is attractive, but it can be too restrictive and hence unrealistic.
In practice one may use fewerΦ’s as RGI constraints.

It is clear by examining specific examples, that the various couplings in
supersymmetric theories have easily the same asymptotic behaviour. Therefore
searching for a power series solution to the REs is justified. This is not the case in
non-supersymmetric theories.

Let us then consider a chiral, anomaly free,N = 1 globally supersym-
metric gauge theory based on a group G with gauge coupling constantg. The
superpotential of the theory is given by

W =
1

2
mij Φi Φj +

1

6
Cijk Φi Φj Φk , (1)

wheremij andCijk are gauge invariant tensors and the matter fieldΦi transforms
according to the irreducible representationRi of the gauge groupG.

The one-loopβ-function of the gauge couplingg is given by

β(1)
g =

dg

dt
=

g3

16π2
[
∑
i

l(Ri)− 3C2(G) ] , (2)

wherel(Ri) is the Dynkin index ofRi andC2(G) is the quadratic Casimir of the
adjoint representation of the gauge groupG. Theβ-functions ofCijk, by virtue of
the non-renormalization theorem, are related to the anomalous dimension matrix
γ
j
i of the matter fieldsΦi as

β
ijk
C =

d

dt
Cijk = Cijp

∑
n=1

1

(16π2)n
γk(n)
p + (k ↔ i) + (k ↔ j) . (3)

At one-loop level theγji are given by

γ
j(1)
i =

1

2
Cipq C

jpq − 2 g2C2(Ri)δ
j
i , (4)

whereC2(Ri) is the quadratic Casimir of the representationRi, andCijk = C∗ijk.
As one can see from Eqs. (2) and (4) all the one-loopβ-functions of the theory

vanish ifβ(1)
g andγj(1)

i vanish, i.e.

∑
i

`(Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2δji g
2C2(Ri) . (5)
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A very interesting result is that the conditions (5) are necessary and sufficient
for finiteness at the two-loop level.

The one- and two-loop finiteness conditions (5) restrict considerably the pos-
sible choices of the irreps.Ri for a given groupG as well as the Yukawa couplings
in the superpotential (1). Note in particular that the finiteness conditions cannot
be applied to the supersymmetric standard model (SSM), since the presence of a
U(1) gauge group is incompatible with the condition (5), due toC2[U(1)] = 0.
This naturally leads to the expectation that finiteness should be attained at the
grand unified level only, the SSM being just the corresponding, low-energy,
effective theory.

A natural question to ask is what happens at higher loop orders. There exists
a very interesting theorem [9] which guarantees the vanishing of theβ-functions
to all orders in perturbation theory, if we demand reduction of couplings, and that
all the one-loop anomalous dimensions of the matter field in the completely and
uniquely reduced theory vanish identically.

3. Soft Supersymmetry Breaking-Sum Rule of soft scalar masses

The above described method of reducing the dimensionless couplings has been
extended [4] to the soft supersymmetry breaking (SSB) dimensionful parameters
of N = 1 supersymmetric theories. In addition it was found [5] that RGI SSB
scalar masses in Gauge-Yukawa unified models satisfy a universal sum rule. Here
we will describe first how the use of the available two-loop RG functions and the
requirement of finiteness of the SSB parameters up to this order leads to the soft
scalar-mass sum rule [6].

Consider the superpotential given by (1) along with the Lagrangian for SSB
terms

−LSB =
1

6
hijkφiφjφk +

1

2
bijφiφj +

1

2
(m2)jiφ

∗ iφj +
1

2
Mλλ+ h.c., (6)

where theφi are the scalar parts of the chiral superfieldsΦi,λ are the gauginos and
M their unified mass. Since we would like to consider only finite theories here,
we assume that the gauge group is a simple group and the one-loopβ-function of
the gauge couplingg vanishes. We also assume that the reduction equations admit
power series solutions of the form

Cijk = g
∑
n=0

ρ
ijk
(n)g

2n . (7)

According to the finiteness theorem of ref. [9], the theory is then finite to all orders
in perturbation theory, if, among others, the one-loop anomalous dimensionsγ

j(1)
i

vanish. The one- and two-loop finiteness forhijk can be achieved by

hijk = −MCijk + · · · = −Mρ
ijk
(0) g +O(g5) . (8)
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With the above assumptions (and a couple of minor ones [6]) we find the
following soft scalar-mass sum rule

( m2
i +m2

j +m2
k )/MM † = 1 +

g2

16π2
∆(1) +O(g4) (9)

for i, j, k with ρijk(0) 6= 0, where∆(1) is the two-loop correction

∆(1) = −2
∑
l

[(m2
l /MM †)− (1/3)] T (Rl), (10)

which vanishes for the universal choice in accordance with the previous findings
of ref. [22].

If we know higher loopβ-functions explicitly, we can follow the same pro-
cedure and find higher loop RGI relations among SSB terms. However, the
β-functions of the soft scalar masses are explicitly known only up to two loops. In
order to obtain higher loop results, we need something else instead of knowledge
of explicit β-functions, e.g. some relations amongβ-functions.

The recent progress made using the spurion technique [19, 20] leads to the
following all-loop relations among SSBβ-functions [12]-[16],

βM = 2O
(
βg
g

)
, (11)

β
ijk
h = γilh

ljk + γj lh
ilk + γklh

ijl

−2γi1lC
ljk − 2γj1lC

ilk − 2γk1 lC
ijl , (12)

(βm2)ij =

[
∆ +X

∂

∂g

]
γij , (13)

O =

(
Mg2 ∂

∂g2
− hlmn ∂

∂C lmn

)
, (14)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃ lmn

∂

∂C lmn
, (15)

where(γ1)ij = Oγij , Clmn = (C lmn)∗, and

C̃ijk = (m2)ilC
ljk + (m2)j lC

ilk + (m2)klC
ijl . (16)

It was also found [16] that the relation

hijk = −M(Cijk)′ ≡ −MdCijk(g)

d ln g
, (17)

among couplings is all-loop RGI. Furthermore, using the all-loop gaugeβ-
function of Novikovet al. [26] given by

βNSVZ
g =

g3

16π2

[∑
l T (Rl)(1− γl/2)− 3C(G)

1− g2C(G)/8π2

]
, (18)
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it was found the all-loop RGI sum rule [17],

m2
i +m2

j +m2
k = |M |2{ 1

1− g2C(G)/(8π2)

d lnCijk

d ln g
+

1

2

d2 lnCijk

d(ln g)2
}

+
∑
l

m2
l T (Rl)

C(G)− 8π2/g2

d lnCijk

d ln g
. (19)

In addition the exactβ-function form2 in the NSVZ scheme has been obtained
[17] for the first time and is given by

βNSVZ
m2
i

=

[
|M |2{ 1

1− g2C(G)/(8π2)

d

d ln g
+

1

2

d2

d(ln g)2
}

+
∑
l

m2
l T (Rl)

C(G)− 8π2/g2

d

d ln g

]
γNSVZ
i . (20)

4. Finite Unified Theories

In this section we examine two concreteSU(5) finite models, where the reduction
of couplings in the dimensionless and dimensionful sector has been achieved. A
predictive Gauge-Yukawa unifiedSU(5) model which is finite to all orders, in
addition to the requirements mentioned already, should also have the following
properties:

1. One-loop anomalous dimensions are diagonal, i.e.,γ
(1) j
i ∝ δji .

2. Three fermiongenerations,5i (i = 1, 2, 3), obviously should not couple to
24. This can be achieved for instance by imposingB − L conservation.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of
Higgs quintet and anti-quintet, which couple to the third generation.

In the following we discuss two versions of the all-order finite model.
A: The model of ref. [1].
B: A slight variation of the modelA, whose differences fromA will become clear
in the following.

The superpotential which describes the two models takes the form [1, 6]

W =
3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i ] + gu23 102103H4 (21)

+gd23 10253H4 + gd32 10352H4 +
4∑

a=1

gfa Ha 24Ha +
gλ

3
(24)3 ,

whereHa andHa (a = 1, . . . , 4) stand for the Higgs quintets and anti-quintets.
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The non-degenerate and isolated solutions toγ
(1)
i = 0 for the models{A , B}

are:

(gu1 )2 = {8

5
,
8

5
}g2 , (gd1)2 = {6

5
,

6

5
}g2 , (gu2 )2 = (gu3 )2 = {8

5
,

4

5
}g2 , (22)

(gd2)2 = (gd3)2 = {6

5
,
3

5
}g2 , (gu23)2 = {0, 4

5
}g2 , (gd23)2 = (gd32)2 = {0, 3

5
}g2 ,

(gλ)2 =
15

7
g2 , (gf2 )2 = (gf3 )2 = {0, 1

2
}g2 , (gf1 )2 = 0 , (gf4 )2 = {1, 0}g2 .

According to the theorem of ref. [9] these models are finite to all orders. After the
reduction of couplings the symmetry ofW is enhanced [1, 6].

The main difference of the modelsA and B is that three pairs of Higgs
quintets and anti-quintets couple to the24 for B so that it is not necessary to
mix them withH4 andH4 in order to achieve the triplet-doublet splitting after the
symmetry breaking ofSU(5).

In the dimensionful sector, the sum rule gives us the following boundary
conditions at the GUT scale [6]:

m2
Hu + 2m2

10 = m2
Hd

+m2
5

+m2
10 = M2 for A , (23)

m2
Hu + 2m2

10 = M2 , m2
Hd
− 2m2

10 = −M
2

3
,

m2
5

+ 3m2
10 =

4M2

3
for B, (24)

where we use as free parametersm5 ≡ m53
andm10 ≡ m103 for the modelA,

andm10 for B, in addition toM .

5. Predictions of Low Energy Parameters

Since the gauge symmetry is spontaneously broken belowMGUT, the finite-
ness and Gauge-Yukawa unification conditions do not restrict the renormalization
property at low energies, and all it remains are boundary conditions on the gauge
and Yukawa couplings (22), theh = −MC relation (8) and the soft scalar-mass
sum rule (9) atMGUT, as applied in the various models. So we examine the
evolution of these parameters according to their renormalization group equations
at two-loop for dimensionless parameters and at one-loop for dimensionful ones
with the relevant boundary conditions. BelowMGUT their evolution is assumed to
be governed by the MSSM. We further assume a unique supersymmetry breaking
scaleMs so that belowMs the SM is the correct effective theory.

The predictions for the top quark massMt are∼ 183 and∼ 174 GeV in
modelsA andB respectively. Comparing these predictions with the most recent
experimental valueMt = (173.8 ± 5.2) GeV, and recalling that the theoretical
values forMt may suffer from a correction of less than∼ 4% [7], we see that
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Figure 8. mh as function ofm10 for M = 0.8 (dashed)1.0 (solid) TeV for the finite modelB.

they are consistent with the experimental data. In addition the value oftanβ is
obtained astanβ = 54 and 48 for modelsA andB respectively.

In the SSB sector, besides the constraints imposed by reduction of couplings
and finiteness, we also look for solutions which are compatible with radiative
electroweak symmetry breaking.

Concerning the SSB sector of the finite theoriesA andB, besides the gaug-
ino mass we have two and one more free parameters respectively, as previously
mentioned. Thus, we look for the parameter space in which the lighterτ̃ mass
squaredm2

τ̃ is larger than the lightest neutralino mass squaredm2
χ (which is the

LSP). In the case where all the soft scalar masses are universal at the unification
scale, there is no region ofMs = M belowO(few) TeV in whichm2

τ̃ > m2
χ is

satisfied. But once the universality condition is relaxed this problem can be solved
naturally (provided the sum rule). More specifically, using the sum rule (9) and
imposing the conditions a) successful radiative electroweak symmetry breaking
b)mτ̃2 > 0 and c)mτ̃2 > mχ2 , we find a comfortable parameter space for both
models (although modelB requires largeM ∼ 1 TeV).

In Tables 1 and 2 we present representative examples of the values obtained for
the sparticle spectra in each of the models. The value of the lightest Higgs physical
massmh has already the one-loop radiative corrections included, evaluated at the
appropriate scale [27].

Finally, we calculateBR(b → sγ) [28], whose experimental value is1 ×
10−4 < BR(b→ sγ) < 4× 10−4. The SM predictsBR(b→ sγ) = 3.1× 10−4.
This imposes a further restriction in our parameter space, namelyM ∼ 1 TeV if
µ < 0 for all three models. This restriction is less strong in the case thatµ > 0. For
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TABLE II. A representative example of the predictions for
the s-spectrum for the finite modelA with M = 1.0 TeV,
m5 = 0.8 TeV andm10 = 0.6 TeV.

mχ = mχ1 (TeV) 0.45 mb̃2
(TeV) 1.76

mχ2 (TeV) 0.84 mτ̃ = mτ̃1 (TeV) 0.63

mχ3 (TeV) 1.49 mτ̃2 (TeV) 0.85

mχ4 (TeV) 1.49 mν̃1 (TeV) 0.88

m
χ±

1
(TeV) 0.84 mA (TeV) 0.64

m
χ±

2
(TeV) 1.49 mH± (TeV) 0.65

mt̃1
(TeV) 1.57 mH (TeV) 0.65

mt̃2
(TeV) 1.77 mh (TeV) 0.122

mb̃1
(TeV) 1.54

TABLE III. A representative example of the predictions of
the s-spectrum for the finite modelB with M = 1 TeV and
m10 = 0.65 TeV.

mχ = mχ1 (TeV) 0.45 mb̃2
(TeV) 1.70

mχ2 (TeV) 0.84 mτ̃ = mτ̃1 (TeV) 0.47

mχ3 (TeV) 1.30 mτ̃2 (TeV) 0.67

mχ4 (TeV) 1.31 mν̃1 (TeV) 0.88

m
χ±

1
(TeV) 0.84 mA (TeV) 0.73

m
χ±

2
(TeV) 1.31 mH± (TeV) 0.73

mt̃1
(TeV) 1.51 mH (TeV) 0.73

mt̃2
(TeV) 1.73 mh (TeV) 0.118

mb̃1
(TeV) 1.56
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example, the minimal model withM = 1 TeV leads toBR(b→ sγ) = 3.8×10−4

for µ < 0.

6. Conclusions

The programme of searching for exact RGI relations among dimensionless cou-
plings in supersymmetric GUTs, started few years ago, has now supplemented
with the derivation of similar relations involving dimensionful parameters in the
SSB sector of these theories. In the earlier attempts it was possible to derive RGI
relations among gauge and Yukawa couplings of supersymmetric GUTs, which
could lead even to all-loop finiteness under certain conditions. These theoretically
attractive theories have been shown not only to be realistic but also to lead to a
successful prediction of the top quark mass. The new theoretical developments
include the existence of a RGI sum rule for the soft scalar masses in the SSB
sector ofN = 1 supersymmetric gauge theories exhibiting gauge-Yukawa uni-
fication. The all-loop sum rule substitutes now the universal soft scalar masses
and overcomes its phenomenological problems. Of particular theoretical interest
is the fact that the finite unified theories, which could be made all-loop finite
in the supersymmetric sector can now be made completelyfinite. In addition it
is interesting to note that the sum rule coincides with that of a certain class of
string models in which the massive string modes are organized intoN = 4 super-
multiplets. Last but not least in ref. [17], the exactβ-function for the soft scalar
masses in the NSVZ scheme was obtained for the first time. On the other hand the
above theories have a remarkable predictive power leading to testable predictions
of their spectrum in terms of very few parameters. In addition to the prediction of
the top quark mass, which holds unchanged, the characteristic features that will
judge the viability of these models in the future are 1) the lightest Higgs mass is
found to be around 120 GeV and the s-spectrum starts beyond several hundreds
of GeV. Therefore the next important test of Gauge-Yukawa and Finite Unified
theories will be given with the measurement of the Higgs mass, for which these
models show an appreciable stability, which is alarmingly close to the IR quasi
fixed point prediction of the MSSM for large tanβ [29]. Our preliminary search
in the available parameter space of the above models shows that in case we relax
the requirement that the mass of the s-tau should be smaller than the neutrali-
nos masses, we obtain a wider window in the prediction of the lightest Higgs
mass starting from 111 GeV. This possibility has no obvious problem in case
we introduce bilinear R-parity violating terms that preserve finiteness. Actually,
the introduction of such terms might be unavoidable given that it is a necessary
ingredient of the only known mechanism to introduce neutrino masses in these
models [30].
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WORLD VOLUME REALIZATION OF AUTOMORPHISMS

JOAN SIMON∗
Departament of Particle Physics, The Weizmann Institute of Science,
2 Herzl Street, 76100 Rehovot, Israel

Abstract. The relation among spacetime supersymmetry algebras and the world volume approach
to string theory is reviewed. The realization of some of the automorphism transformations of these
superalgebras on the world volume theory is discussed. We distinguish among linear realizations
and non-local ones. The consistency of the latter with duality in M/string theory is checked.

1. Introduction

Our contribution to the NATO Advanced Research Workshop on ’NonCommu-
tative Structures in Mathematics and Physics’ is devoted to the relation among
supersymmetry algebras and reparametrization invariant field theories describ-
ing the low energy dynamics of branes. In particular, we shall concentrate on
branes propagating in SuperPoincaré, and consequently, on maximally extended
SuperPoincaŕe algebras.

The study of M/String theory spectrums can be done along purely alge-
braic methods or field theory ones. Thealgebraic approachis based on the
assumption that theN = 1 supersymmetry in eleven dimensions (or the cor-
respondingN = 2 supersymmetries in ten dimensions) is valid at any energy,
so that the M-theory (string theory) spectrum must be organized into represen-
tations of the SuperPoincaré algebra. This approach entirely characterizesBPS
states, those preserving some amount of supersymmetry, thus filling in short
irreducible representations of the forementioned algebra. Given a maximally
extended supersymmetry algebra [1], [2]

{Qα , Qβ} = −M Iαβ + Γ(Z)αβ , (1)

where Γ(Z)αβ stands for the traceless part of the supersymmetry anticom-
mutation relations, and given any state|α >, the positivity of the matrix<

∗ jsimon@weizmann.ac.il
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α|{Qα , Qβ}|α > 1 implies a bound on the rest massM. When the latter is satu-
rated, there is a linear combination of the supersymmetry generators annihilating
the state. This means that the symmetric matrix{Qα , Qβ} has at least one zero
eigenvalue(det {Qα , Qβ} = 0). Thus, generically, the search for such BPS states
is equivalent to the resolution of the eigenvalue problem [4]

Γ(Z) |α >=M|α > . (2)

Any solution to equation (2) describes a Clifford valued BPS state|α > by its
massM and the amount of supersymmetry preserved(ν), which will generically
be determined by some set of mutually commuting constant operators{Pi} such
that Pi|α >= |α > ∀i. Both depend on the chargesZ carried by|α >. A
partial analysis of equation (2) was done in [5], where a whole family of BPS
states, called factorizable states, were classified. We refer the reader to [5] for a
discussion on equation (2) and some of their solutions.

Theworld volume approachis based on brane effective actions, which are sup-
posed to describe the low energy dynamics of string theory when the string scale
vanishes(α′ → 0) and gravity decouples. The dynamics of branes propagating in
SuperPoincaŕe are described by reparametrization susy-kappa invariant field theo-
ries providing us with a field theory realization of the previous superalgebras. The
algebraic saturation of the BPS bound has its field theory counterpart in the satu-
ration of the Bogomolny’ type bound derived from the energy density computed
on the brane [6]. Only certain field theory configurations do saturate such bounds,
these are the so calledBPS configurations. One way of systematically looking for
such configurations is the resolution of thekappa symmetry preserving condition.
This method is based on the search for the subset of supersymmetry transfor-
mations that leave bosonic configurations(θ = 0) invariant. Since fermions do
transform inhomogeneously in brane effective actions,

δθ = ε+ (1 + Γκ)κ+ O(θ) (3)

whereε is the global supersymmetry parameter (the Killing spinor of the back-
ground geometry) andκ is the local kappa symmetry one, the above invariance
requirement is satisfied whenever [7]

Γκε = ε . (4)

Γκ is a spinor valued matrix being field and background dependent. It satisfies
Γ2
κ = I and trΓκ = 0, conditions that allow kappa symmetry to remove half

of the fermionic degrees of freedom on the brane, a necessary condition to get a
supersymmetric field theory on the brane, but not a sufficientone.

1 It is assumed thatQα satisfies the necessary requirements for this positivity to hold. In M-
theory, the Majorana charges do certainly satisfy them. See [3], for a discussion on this point in
arbitrary spacetime signatures.
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In the case of SuperPoincaré backgrounds,ε is a 32 constant spinor. In
less symmetric background superspaces, it will generically depend on the point.
Solving equation (4) gives rise to

1. some constraints on the configuration spacefi[φ
j ] = 0

2. some supersymmetry preserving conditionsPiε = ε ∀ i

wherefi[φj ] stands for some functional relation involving the dynamical fields on
the brane{φi} and their derivatives{∂φi , ∂∂φi , . . . }. On the other hand,Pi is a
constant spinor valued matrix satisfyingP2

i = 1 and trPi = 0. If Pi = Γ[a1...ai]

equals the antisymmetrized product of gamma matrices, we shall call it single
projector.

Constraints 1. becomeBPS equations. This can be checked by computing the
energy density functional of the field theory which can always be written as2

E2 = (E0 + Z)2 +
∑
i

(
tifi[φ

j ]
)2

(5)

if we are describing a BPS state at threshold (intersection of branes) or as

E2 = E2
0 + Z2 +

∑
i

(
tifi[φ

j ]
)2

(6)

for a non-threshold BPS state. Both expressions show the BPS equation character
of the constraintsfi[φj ] = 0.

Conditions 2. determine the amount of supersymmetry preserved(ν) and the
kind of branes involved in the state due to the one to two correspondence among
single branes and single projectors3.

Thus, all in all, one gets a field theory realization of the previous algebraic
BPS states(|α >). They are indeed the same because they are characterized by
the same supersymmetry projection conditions(Pi) and they do have the same
energy(M = E).

Once the connection among brane effective actions and supersymmetry alge-
bras has been established, it is natural to ask about the extent of such a connection
regarding the maximal automorphism groups of SuperPoincaré algebras. In partic-
ular, theN = 1 D = 11 superalgebra admits aGL(32, R) automorphism group
[5][8][9][10][11]. One of the first consequences of such automorphism structure
is the existence ofSO(32) transformations relatingν = 1

2 non-threshold bound
states withν = 1

2 bound states at threshold, having the same mass4. Without loss

2 We have assumed the existence of a singleZ charge in the above derivation, but the exten-
sion to more general configurations is straightforward.E0 stands for the vacuum energy of the
configuration.

3 This is because given any single projectorPi, there always exists̃Pi such thatPiP̃i = I. So,
if Piε = ε⇒ P̃iε = ε.

4 there exist similar phenomena for less supersymmetric BPS states, see [5].
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of generality, consider a non-threshold bound state described by

(cosβ Γ1 + sinβ Γ2) |α > = |α > , {Γ1,Γ2} = 0 (7)

M =
√
Z2

1 + Z2
2 (8)

whereΓi i = 1, 2 satisfies analogous properties to those ofPj andβ is a constant
parameter. There always existsUβ = eβΓ2Γ1/2 ∈ SO(32), such that (7) becomes

Uβ Γ1 U
t
β |α >= |α > ⇔ Γ1|α′ >= |α′ > , (9)

which allows us to reinterpret it in terms of an SO(32) related BPS state|α′ > at
threshold having the same mass (8).

Motivated by the previous discussion, it seems rather natural to look for world
volume realizations of such automorphisms. Since the Lorentz group in eleven
dimensions can be seen as a subgroup ofGL(32, R), it is obvious that such
subgroup will be linearly realized on the brane (before any gauge fixing). This
is because any brane effective action propagating in SuperPoincaré is manifestly
(quasi-)invariant under the superisometries of the background [12]. In section
2, we will discuss a particular example of such linear realizations and the way
they act on BPS configurations, showing explicitly the connection among non-
threshold and threshold bound states illustrated in the algebraic approach. Besides
this linear realizations, the analysis done in [5] shows that central chargesZ ’s
are generically ’rotated’ among themselves under automorphism transformations.
Since for bosonic configurations, such topological charges are given by world
space integrals involving derivatives of the brane dynamical fields, one should
also expect, if any, the existence of non-local transformations leaving certain brane
theories invariant. We review the results of [13] concerning that point in section 3.
Starting from the non-local transformations leaving the D3-brane action invariant
[14], which are the world volume realization of the S-duality automorphism for
theN = 2D = 10 type IIB SuperPoincaré algebra, we perform a T-duality along
a world volume direction to get some new non-local transformations of the D2-
brane in type IIA. The latter have a natural M-theory interpretation as rotations
involving the world volume scalar(y) which becomes a one form(V(1)) after
the world volume dualization relating both effective theories in three dimensions
[15, 16]. This dualization explains the origin of such non-local transformations in
type IIA theory.

These results illustrate that part of the automorphism group is realized on the
world volume field theory, either as linear realizations or as non-local ones. It
would be interesting to clarify which is the symmetry structure that is being real-
ized on brane effective actions. Along the same lines, it would also be interesting
to understand the existing relation among the automorphism group and U-duality
groups. As it was pointed out in [13], theN = 2 D = 10 type IIB SuperPoincaré
algebra admitsSL(2, R) in its maximal automorphism group, the latter being
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the U-duality group for type IIB superstring theory. When compactifying several
dimensions and using T-duality adequately, one may suspect of deriving some
relation among the corresponding U-duality group and the automorphism group
of the dimensionally reduced superalgebra.

2. Linear realizations

Given any brane effective actionS[φi], the set of dynamical fields can always be
splitted into{φi} = {xm , θ , V(p)}, xm andθ being superspace coordinates and
V(p) some p-form degrees of freedom on the brane. These actions are invariant
(δS[φi] = 0) under some set of global and local transformations. We shall con-
centrate on the global ones. These include the superisometries of the background
geometry, so since we are considering SuperPoincaré backgrounds, it certainly
includes the SO(1, D − 1) Lorentz transformations

δθ =
1

4
ωmnΓmnθ , δxm = ωmnηnpx

p , δV(p) = 0 . (10)

Let us concentrate on M2-brane effective actions in M-theory. We are thus
considering three dimensional field theories probing eleven dimensional Super-
Poincaŕe space [17]. To illustrate previous ideas, we shall look for a world volume
soliton on an M2-brane corresponding to the non-threshold bound state

M2 : 1 2
M2 : 2 3
M2 : 1 3 .

By setting the static gauge(xµ = σµ µ = 0, 1, 2) and exciting one transverse
scalar(x3 = x), one can check that the kappa symmetry preserving condition (4)
is solved by

x = tanα
(
cosβσ1 + sinβσ2

)
, (11)

whereα andβ are arbitrary constants, wheneverε satisfies

{cosαΓ012 + sinα (cosβΓ023 + sinβΓ013)}ε = ε , (12)

which indeed corresponds to the forementionedν = 1
2 non-threshold bound state.

According to our discussion in the introduction, there must exist anSO(32)
transformation relating such a configuration with aν = 1

2 bound state at threshold,
corresponding in this particular case, to a single membrane lying in the12-plane.
We will explicitly check that this is indeed the case by considering the following
SO(32) group element

U = Uα Uβ = e−αΓ13/2e−βΓ12/2 . (13)
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By computing its finite transformation on the scalar coordinates, we derive

x̃2 = cosβ σ2 + sinβ σ1 , x̃1 = cosβ
cosασ

1 − sinβ
cosασ

2

x̃ = 0 , (14)

which shows there is no transverse scalar excited in the rotated configuration(x̃ =
0). This is understood as having no more membranes in the configuration than
just the defining one. This interpretation is further confirmed by rewriting the
supersymmetry projection condition in terms of the transformed Killing spinor

Γ012ε
′ = ε′ , ε′ = U tε . (15)

Equation (15) describes a single membrane in the 12-plane, as expected.

3. Non-local realizations

In this section we shall review the results reported in [13]. We shall start our analy-
sis by studying D3-brane effective actions. These provide a field theory realization
of some truncation ofN = 2 D = 10 type IIB SuperPoincaré algebra [3]

{Qi, Qj} = P+ΓMY ij
M + P+ 1

3!
ΓMNP εijYMNP

+P+ 1

5!
ΓM1...M5Y

+ij
M1...M5

, (16)

where the central charges are given byY ij
M = δijY

(0)
M + τ

ij
1 Y

(1)
M + τ

ij
3 Y

(3)
M and

Y
+ij
M1...M5

= δijY
+(0)
M1...M5

+ τ
ij
1 Y

+(1)
M1...M5

+ τ
ij
3 Y

+(3)
M1...M5

.

If we consider anSL(2, R) transformationQ̃i = (U Q)i, Uλ = eλ iτ2/2 ∈
SL(2, R), the latter belongs to the type IIB automorphism group if the charges
transform as

Z̃ ij =
(
U Z U t

)ij
. (17)

Notice thatUλ ∈ SO(2) subgroup ofSL(2, R) which rotates
(
Y

(1)
M , Y

(3)
M

)
and(

Y
+(1)
M1...M5

, Y
+(3)
M1...M5

)
as doublets, whereasYmnp andY +(0)

m1...m5 remain invariant.
This is consistent with the S-duality interpretation ofUπ/2, which interchanges
D-strings and fundamental strings, D5-branes and NS5-branes, while leaving D3
and KK5B monopoles self-dual.

This SO(2) transformation is reminiscent of the electro-magnetic duality in
four dimensions, and it was indeed proved in [14] that the off-shell transforma-
tions giving rise to such a rotation are given by

δxm = 0 , δθ = λ
2 iτ2θ (18)

δFµν = λKµν , δKµν = −λFµν (19)
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whereKµν = −1
2εµνρσK̃

ρσ 5 and K̃ρσ = 1√
−detG

∂LD3
∂Fρσ

, LD3 being the La-

grangian density for an abelian D3-brane propagating in SuperPoincaré [18–21].
It is remarkable that the infinitesimal transformation for the fermionic field agrees
with the infinitesimal transformation of the supersymmetry generator. Notice
that it is F = d V the one entering in previous linear transformations (19).
So, when rewritten in terms of the gauge potentialV , they become non-local
transformations [22].

To get a more physical understanding of these transformations, we shall eval-
uate them on-shell; in particular, on Bion configurations [23, 24]. These are
ν = 1/4 solitons representing fundamental strings ending on the brane. As all
BPS configurations, they are characterized by some BPS equationsF0a = ∂ay
a = 1, 2, 3 and some supersymmetry conditions

Γ0123 iτ2 ε = ε (20)

Γ0y τ3 ε = ε (21)

corresponding to the array

D3 : 1 2 3
F1 : 4 .

If we computeKµν when we are on-shell, we getK0a = 0,Kab = εabcF0c, which
give rise toδEa = 0 andδBa = λEa, whose finite form generates anSO(2)
rotation Ẽa = cosλEa , B̃a = sinλEa, whereEa andBa correspond
to the electric and magnetic fields, respectively. Thus the rotated configuration
is both electrically and magnetically charged: it is a dyon. This interpretation is
further confirmed by rewriting the supersymmetry condition (21) in terms of the
transformed Killing spinor,̃ε = U tε

Γ0y (cosα τ3 + sinα τ1) ε̃ = ε̃ , (22)

which indeed describes a non-threshold bound state of fundamental strings (τ3

factor) and D-strings (τ1 factor).
We could have also analyzed the energy of such configurations. The starting

BIon verifiesEBIon = ED3+Y
(3)

4 , whereY (3)
4 =

∫
D3

~E·~∇y is the charge carried
by the fundamental string along they (x4) direction, whereasED3 stands for the
energy of an infinite planar D3-brane. After the SO(2) transformation,Edyon =

EBIon = ED3 +

√(
Ỹ

(3)
4

)2
+
(
Ỹ

(1)
4

)2
, whereỸ (3)

4 =
∫
D3 cosλ ~E · ~∇y and

Ỹ
(1)

4 =
∫
D3 sinλ ~B · ~∇y. In this way, we check that the field theorySO(2)

5 εµνρσ denotes the covariantly constant antisymmetric tensor with indices raised and lowered
by Gµν .
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transformations (18-19) indeed rotate the charges of the spacetime supersymmetry
algebra.

In the following we shall check the consistency of the previous set of trans-
formations with the known web of dualities in M/string theory. The first step will
be to perform a longitudinal T-duality transformation, that is, along one of the
D3-brane world volume directions, to study the corresponding symmetry struc-
ture in type IIA. Finally, the M-theory origin for such type IIA symmetry will
be explained. As before, these checks can be studied either from an algebraic
perspective or from a field theory one.

The realization of T-duality at the level of superalgebras is known to be a
mapping relating the supersymmetry charges as follows

Q+ = Q2 , Q− = ΓsQ
1 , (23)

whereQ± are the type IIA supercharges ands stands for the spacelike direction
along we perform the transformation. Such a mapping, does change the chirality
of one of the generators and induces some transformation on the chargesZ ’s [3]
which agrees with the known T-duality rules among BPS single branes. In this
way, the previousUλ automorphism can be rewritten asUs = eλ/2 ΓsΓ11 , which
indeed belongs to SO(32), the subgroup of type IIA automorphisms preserving
energy. The latter statement can be straightforwardly derived from the M-algebra
analysis done in [5]. Notice thatΓ11 is the ten dimensional chirality operator, so
thatUs can not be interpreted as an spacetime rotation. This transformation will
“rotate” several doublets of charges appearing in type IIA, while keeping some
others invariant. In particular, chargesZsm andZm corresponding to D2-branes
and fundamental strings will form an SO(2) doublet underUs transformations.

Moving back to the world volume approach, the analysis done in [25, 26]
will be used to derive the symmetry structure inherited on the D2-brane after
performing the longitudinal T-duality. Sinceδxm = 0 in (18), there will be no
compensating diffeomorphism transformation coming from the partial gauge fix-
ing locally identifying(xs = ρ) one world volume direction(ρ) with one target
space direction(xs). It is then straightforward to derive a set of non-local trans-
formations leaving the D2-brane invariant, just by double dimensional reduction
of (18-19)

δθ = λ
2 ΓmΓ11θ , (24)

δKm
µ̂ν̂ = −λmFµ̂ν̂ , δFµ̂ν̂ = λmKm

µ̂ν̂ (25)

δKµ̂ρ = −λm∂µ̂x̃m , δ∂µ̂x̃
m = λmKµ̂ρ (26)

whereKm
µ̂ν̂ andKµ̂ρ where computed explicitly in [13].

Notice that whereas in type IIB there was a single transformation(λ), in type
IIA we have a set of them(λm). This enhancement of symmetry is typical of T-
duality on symmetric backgrounds. The performance of T-duality is manifestly
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non-covariant, but in the limitR → ∞, the isometries of the background allow
us to recover target space covariance. A much more algebraic way to reach the
same conclusion is to compute the commutator of a rotation(ω) with our previous
non-local transformation(λs)

[δω , δλs ] = δλs̃ s̃ 6= s , (27)

which generates all the forementioned transformations. Another difference be-
tween this set of transformations and type IIB ones, is that bosonic matter fields
do transform(δxm 6= 0), its origin being the component of the original gauge
field (Vρ) along which we perform the T-duality.

Just as for the D3-brane case, we shall analyze the behaviour of some partic-
ular BPS configuration under these new transformations. We shall consider the
T-dual configuration of a type IIB dyon. This is given by the array

D2 : 1 2
F1 : 4
D2 : 3 4 .

This supersymmetric configuration is described by the BPS equations

Eâ = cosα∂ây (28)

εâb̂∂
b̂
x̃3 = sinα δâb̂∂

b̂
y â, b̂ = 1, 2 (29)

and supersymmetry projection conditions

Γ012ε = ε (30)

(cosαΓ0yΓ11 + sinαΓ03y) ε = ε . (31)

The further conditionF12 = 0 states that there are no D0-branes being described
by our configuration as can be seen from inspection of equations (30-31). Notice
that whenα = 0, we recover the usual BIon describing a fundamental string
ending on the D2-brane, whereas forα = π

2 , we recover the Cauchy-Riemann
equations describing the intersection of two D2-branes at a point,D2 ⊥ D2(0).
Both configurations are related to each other by application of transformations
(25) and (26). Computing them when (28)-(29) are satisfied we get

δ ~E = −λ ?∇x̃3 , δ
(
?∇x̃3

)
= λ~E , (32)

where we are using the standard two dimensional calculus notation, that is,~∇ =
(∂1 , ∂2) and?~∇ = (∂2 ,−∂1). Its finite transformation is

~E′ = cos (α+ λ) ~∇y , ?~∇x̃′3 = sin (α+ λ) ~∇y (33)
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Thus, as expected, by fine tuning the global parameterλ, we interpolate between
BIon configurations andD2 ⊥ D2(0) intersections.

The SO(2) rotation described by (32) fits with the supersymmetry algebra
picture. In this case, the charge carried by the fundamental string is given by the
worldspace integralZy =

∫
D2

~E · ~∇y, whereas the charge carried by the second
D2-brane admits the field theory realizationZ3y =

∫
D2 ?

~∇x3 · ~∇y. Thus we see
thatZy, Z3y are indeed rotated under (32) transformations, as the pure algebraic
digression was suggesting to us.

We shall conclude with the M-theory interpretation of the latter set of trans-
formations. Since the eleven dimensional supersymmetry generator decomposes
asQ = Q+ + Q−, it is pretty clear that the previous type IIA automorphism
transformations become rotations in eleven dimensions, and as such, they should
be linearly realized on the membrane effective action as in (10). It is actually quite
simple to understand the relation among these linear transformations and the non-
local ones found in the D2-brane action. As it is known [15, 16], the world volume
dualization of a scalar in three dimensions gives rise to a one form. When doing
such a dualization on the membrane action, the relation among their field strengths
is given by∂µ̂y = Kµ̂ρ. Thus, linear transformations among eleven dimensional
scalar fields generate linear transformations amongKµ̂ρ and∂µ̂xm. The above
relation explains the origin of the non-local symmetries in type IIA. Furthermore,
it matches with the enhancement of symmetry derived previously from T-duality.

We shall conclude by analyzing the uplifted configuration corresponding to
the type IIA one discussed above. This is described by the array

M2 : 1 2
M2 : 4 5
M2 : 3 4 .

Setting the static gaugexµ = σµ µ = 0, 1, 2 and exciting three transverse scalars
xi i = 3, 4, 5 one can check that a solution to the kappa symmetry preserving
condition is found when the following BPS equations are satisfied

cosα ~∇x4 = ?~∇x5 , sinα ~∇x4 = ?~∇x3 , (34)

wheneverε satisfies

Γ012ε = ε (35)

(cosαΓ045 + sinαΓ034) ε = ε . (36)

Notice that (34) interpolate amongM2 ⊥ M2(0) configurations in definite
directions forα = 0, π2 .

It is straightforward to check that the rotation in the 35-plane generated by
U = eαΓ35/2 relates the previous configuration with one in whichx̃3 has a con-
stant value, and is no longer excited. Such a configuration corresponds to two
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membranes intersecting at a point. This interpretation can also be checked by
rewriting equation (36) in terms of the transformed Killing spinorε′ = U t ε

Γ045ε
′ = ε′ , (37)

which indeed corresponds to a membrane along 45-plane, while equation (35)
is not modified(Γ012ε

′ = ε′). Furthermore, all previous results on the D2-brane
can be easily recovered from M-theory, this being the last check of consistency
between the presented non-local transformations and dualities in M/string theory.
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26. K. Kamimura and J. Siḿon, T-duality Covariance of SuperD-branesNucl. Phys.B585(2000)
219-252, hep-th/0003211.

kievarwe.tex; 12/03/2001; 3:49; p.277



SOME METRICS ON THE MANIN PLANE

GAETANO FIORE∗
Dip. di Matematica e Applicazioni, Fac. di Ingegneria
Universit̀a di Napoli, V. Claudio 21, 80125 Napoli

MARCO MACEDA †
Laboratoire de Physique Théorique et Hautes Energies
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1. Introduction and notation

LetA be a∗-algebra with differential calculusΩ1(A) [1] and suppose that it has
a frame [2], a set of 1-formsθi dual to a set of inner derivationsei = adλi and
which therefore commutes with the elements of the algebra:

θif = fθi. (1)

The differential calculus will be real [4] if theλi are anti-hermitian. Using the
frame we can set

df = eifθ
i (2)

from which it follows that the module structure ofΩ1(A) is given by

fdg = (feig)θi, dgf = (eig)fθi.
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If a frame exists the moduleΩ1(A) is free of rankn as a left or right module. It
can therefore be identified with the direct sum

Ω1(A) =
n⊕
1

A (3)

of n copies ofA. In this representationθi is given by the element of the direct
sum with the unit in thei-th position and zero elsewhere. We shall refer to the in-
tegern as the dimension of the geometry. Using the frame formalism we consider
some possible metrics on the Manin plane. We require that the metric be real and
symmetric. In practice this means that we use the freedom of noncommutative
geometry to impose a different ‘σ-symmetry’, which is chosen so that a complex
metric is hermitian and an un-symmetric metric isσ-symmetric. The notion of
reality and symmetry are changed so that the definition of hermitian does not
change. We refer to a longer article [3] for more details as well as for a comparison
with other definitions of metrics.

Let π be the product inΩ∗(A) and set

π(θi ⊗ θj) = P ijklθ
k ⊗ θl, P ijkl ∈ Z(A).

Sinceπ is a projection we have

P ijmnP
mn

kl = P ijkl (4)

and the productθiθj satisfies

θiθj = P ijklθ
kθl. (5)

If the θi anti-commute then

P ijkl =
1

2
(δikδ

j
l − δjkδil ). (6)

Since the exterior derivative ofθi is a 2-form it can necessarily be written as

dθi = −1

2
Cijkθ

jθk.

where, because of (5), the structure elements can be chosen to satisfy the
constraints

CijkP
jk
lm = Cilm.

From the generatorsθi we can construct a 1-form

θ = −λiθi (7)

in Ω1(A) which plays the role [1] of a Dirac operator:

df = −[θ, f ].
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From the identityd2 = 0 one finds that

d(θf − fθ) = [dθ, f ] + [θ, [θ, f ]] = [dθ + θ2, f ] = 0.

It follows that if we write

dθ + θ2 = −1

2
Kijθ

iθj (8)

the coefficientsKij must lie inZ(A). Again from (5) they can be chosen to satisfy
the constraints

KjkP
jk
lm = Klm.

It will also be convenient to introduce the quantities

Cijkl = δikδ
j
l − 2P ijkl. (9)

Then from (4) we find that

CijklC
kl
mn = δimδ

j
n. (10)

From the conditiond2 = 0 it can be shown that

2P ijklλKλl − F iklλi −Kij = 0

for some array of numbersF ijk.
We introduce a flipσ:

Ω1(A)⊗A Ω1(A)
σ−→ Ω1(A)⊗A Ω1(A). (11)

In terms of the frame it is given bySijkl ∈ Z(A) defined by

σ(θi ⊗ θj) = Sijklθ
k ⊗ θl

and which must satisfy the constraint

(Sjikl)
∗Slkmn = δimδ

j
n. (12)

We useσ to impose the reality condition

Sijklg
kl = (gji)∗ (13)

on the metric. This is a combination of a ‘twisted’ symmetry condition and the
ordinary condition of hermiticity on a complex matrix. A covariant derivative on
the moduleΩ1(A) must satisfy both a left and a right Leibniz rule. We use the
ordinary left Leibniz rule and define the right Leibniz rule as

D(ξf) = σ(ξ ⊗ df) + (Dξ)f (14)
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for arbitraryf ∈ A andξ ∈ Ω1(A). Usingσ one can also impose [5] a reality
condition on the curvature.

For every differential calculus and flip one can construct the linear connection

ωijk = λl(S
il
jk − δljδik). (15)

The connection 1-form is given by

ωik = λlS
il
jkθ

j + δikθ. (16)

WhenF ijk = 0 the curvature of the covariant derivativeD defined in (15) can be
readily calculated. One finds the expression

1

2
Rijkl = SimrnS

np
sjP

rs
klλmλp − 1

2
δijKkl.

This can also be written in the form

1

2
Rijkl = −SimrnSnpsjSrsuvP uvklλmλp − 1

2
δijKkl.

The relation (18) suggests that we define a Ricci map by the action

Ric(θi) =
1

2
Rikθ

k, Rik = Rijklg
lj

on the frame.
In complete analogy with the commutative case a metricg can be defined as

anA-bilinear, nondegenerate map [6]

Ω1(A)⊗A Ω1(A)
g−→ A (17)

and as such it can [7] be used to define a ‘distance’ between ‘points’. It is impor-
tant to notice here that the bilinearity is an alternative way of expressing locality.
In ordinary differential geometry ifξ andη are 1-forms then the value ofg(ξ⊗ η)
at a given point depends only on the values ofξ andη at that point. Bilinearity is
an exact expression of this fact. In general the algebra introduces a certain amount
of non-locality via the commutation relations and it is important to assure that all
geometric quantities be just that nonlocal and not more. Without the bilinearity
condition it is not possible to distinguish for example in ordinary space-time a
metric which assigns a function to a vector field in such a way that the value at a
given point depends only on the vector at that point from one which is some sort
of convolution over the entire manifold.

We define frame components of the metric by

gij = g(θi ⊗ θj).
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They lie necessarily in the centerZ(A) of the algebra. The condition that (15) be
metric-compatible can be written as

Simlng
npSjkmp = gijδkl . (18)

One can understand this odd condition by introducing a ‘covariant derivative’
DiX

j of a constant ‘vector’ by the formula

DiX
j = ωj ikX

k.

The covariant derivativeDi(X
jY k) of the product of two such ‘vectors’ must be

defined as
Di(X

jY k) = DiX
jY k + SjlimX

mDlY
k

since there is a ‘flip’ as the index on the derivation crosses the index on the first
‘vector’. The condition (18) becomes then simply

Dig
jk = 0.

We shall require that the metric be symmetric in the sense

g ◦ π = 0 (19)

that it annihilates the 2-forms. We shall impose also the condition

π ◦ (σ + 1) = 0 (20)

that the antisymmetric part of a symmetric tensor vanish. This can be considered
as a condition on the product or on the flip. In ordinary geometry it is the defi-
nition of π; a 2-form can be considered as an antisymmetric tensor. Because of
this condition the torsion is a bilinear map [6]. The most general solution can be
written in the form

1 + σ = (1− π) ◦ τ (21)

whereτ is arbitrary. Suppose thatτ is invertible. Then because of the identity

1 = π + (1 + σ) ◦ τ−1

one can identify the second term on the right-hand side as the projection onto the
symmetric part of the tensor product. The choiceτ = 2 yields the valueσ =
1− 2π. If τ is not invertible then there arises the possibility that part of the tensor
product is neither symmetric nor antisymmetric.

It is sometimes convenient to write the metric as a sum

gij = g
ij
S + g

ij
A
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of a symmetric and an antisymmetric part (in the usual sense of the word) The
inverse matrix we write as a sum

gij = ηij +Bij

of a symmetric and an antisymmetric term. We shall choose as normalization
when possible the condition thatηij be the standard Minkowski or euclidean form.

2. The Wess-Zumino calculus

The extended quantum plane is the∗-algebraA generated by the hermitian
elementsu andv with their inversesu−1 andv−1 and the relation

uv = qvu, q = eiα (22)

as well as the usual relations between inverses. We define, forq4 6= 1,

λ1 =
q4

q4 − 1
u−2v2, λ2 = − q2

q4 − 1
u−2.

The important fact is that theλa are singular in the limitq → 1 and that they are
anti-hermitian ifq is of unit modulus. We find forq2 6= −1

e1u = − q2

(q2 + 1)
u−1v2, e1v = − q4

q2 + 1
u−2v3,

e2u = 0, e2v =
q2

q2 + 1
u−2v.

(23)

These derivations are again extended to arbitrary polynomials in the generators by
the Leibniz rule. Using them we find

du = − q2

(q2 + 1)
u−1v2θ1, dv = − q2

q2 + 1
u−2v(q2v2θ1 − θ2) (24)

and solving for theθi we obtain

θ1 = −q2(q2 + 1)uv−2du, θ2 = −(q2 + 1)u(uv−1dv − du).

The module structure which follows from the condition (1) that theθi commute
with the elements of the algebra is given by [8]

udu = q2duu, udv = qdvu+ (q2 − 1)duv,

vdu = qduv, vdv = q2dvv.
(25)

One can show that they are invariant under the coaction of the quantum group
SLq(2,C). This invariance was encoded in the choice ofλa.
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Consider the change of generators defined by

u = ũ−2, v = q̃2ũ−2ṽ2.

If one sets alsoq = q̃−4 then one finds that the Wess-Zumino relations (25) written
using the generators̃u andṽ become

udu = qduu, udv = qdvu,

vdu = q−1duv, vdv = q−1dvv.
(26)

What we have done in fact is use theλa as generators of the algebra and the
differential calculus; otherwise nothing has been changed. Properly renormalized
then we have

λ1 =
q1/2

q − 1
v, λ2 = − q1/2

q − 1
u.

and solving for theθi one obtains

θ1 = −q−1/2(u−1v)−1d(u−1), θ2 = q1/2(u−1v)d(v−1).

It follows that the volume element is an exact form:

θ1θ2 = −d(u−1)d(v−1).

This formula has been obtained by a straight-forward change of generators and, in-
dependent of the perhaps not-too-convincing arguments of the following sections,
suggests thatu−1 andv−1 are light-cone coordinates in the commutative limit.
The frame is singular along the light cone through the origin. If in a representation
one forces the original̃u andṽ to be hermitian then theu andv must be positive
operators. One concludes then that|t| > |x| andx must therefore be a bounded
operator.

The structure of the differential algebra is given by the relations

(θ1)2 = 0, (θ2)2 = 0, θ1θ2 + qθ2θ1 = 0.

This can be written in the form (5) withC12
21 = q andC21

12 = q−1. The reality
of the differential implies that the structure elements must satisfy the conditions

((Cijk)
∗ + Cijk)P

jk
lm = 0

from which follows that

(Ci21)∗ = −Ci12 = q−1Ci21, (Ci12)∗ = −Ci21 = qCi12.

are given by

C1
12 = (q−1 − 1)λ2, C2

12 = (q−1 − 1)λ1.
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With the change of generators

t =
1√
2

(u−1 − v−1), x =
1√
2

(u−1 + v−1). (27)

the commutation relation can be written as

[t, x] = −i tan(α/2)(t2 − x2).

3. The metrics and their connections

With our index conventions the metric is written asgij = (g1, g2, g3, g4) and so
the condition (18) can be written in the matrix form

S1
1 S1

2 S1
3 S1

4

S2
1 S2

2 S2
3 S2

4

S3
1 S3

2 S3
3 S3

4

S4
1 S4

2 S4
3 S4

4

(S(g)

)
=


g1 0 g3 0
0 g1 0 g3

g2 0 g4 0
0 g2 0 g4

 (28)

where we have introduced the matrixS(g) defined by

S(g) =


S1

1g
1 + S1

2g
3 · · · · · · S3

3g
1 + S3

4g
3

S1
1g

2 + S1
2g

4 · · · · · · S3
3g

2 + S3
4g

4

S2
1g

1 + S2
2g

3 · · · · · · S4
3g

1 + S4
4g

3

S2
1g

2 + S2
2g

4 · · · · · · S4
3g

2 + S4
4g

4

 . (29)

If we introduce the matrix

P =
1

2


0 0 0 0
0 1 −q 0
0 −q−1 1 0
0 0 0 0

 (30)

of frame components forπ then the condition (19) is equivalent to the relation

g2 = qg3. (31)

The consistency condition (20) is equivalent to the conditions

S1
3 = qS1

2, S2
3 = q(S2

2 + 1), S3
3 = qS3

2 − 1, S4
3 = qS4

2.
(32)

The equations to be solved then are Equations (28), (31) and (32). We are
especially interested in real solutions, which satisfy therefore also (13). We have
found that there are several types of solutions [3], four of which we shall describe
in the following subsections. One can show that there are no solutions withτ = 2.

kievarwe.tex; 12/03/2001; 3:49; p.285



METRICS ON THE MANIN PLANE 279

A complete classification has been given [9] of the solutions to the braid equation
as well [10, 11] as of those which satisfy a weaker modified equation. In any case
to within four arbitrary constants we can write the coefficients of the metric with
respect to the basisdũ anddṽ. If we introduce the components̃gij = g(dũi⊗dũj)
then we find from (24) that in the limitq → 1

g̃ij =
1

4
ũ−4ṽ4

(
g1ũ2 ũ(g2ṽ + g3ṽ−1)

ũ(g2ṽ + g3ṽ−1) g2ṽ2 − 2g3 + g4ṽ−2

)
.

The line element is determined by the inverse of this matrix. A metricg′ defined
by setting

g̃′ij =

(
1 0

0 1

)
necessarily then cannot be bilinear.

3.1. SOLUTION I

A family of solutions can be found with a Minkowski-signature metric. These are
the most interesting solutions. With the convenient normalization of the metric so
thatg3 = q−1/2 the flip is given by the matrix

S =


q −q−1/2(q − 1)g1 −q1/2(q − 1)g1 q−1(q + 1)−1(q − 1)(q2 + 1)

0 0 q −q−1/2(q − 1)g1

0 q−1 0 q−3/2(q − 1)g1

0 0 0 q−1

 .
It tends to the ordinary flip asq → 1 and forg1 = 0 is a solution to the braid
equation. The corresponding metric given by

gij =

(
g1 q1/2

q−1/2 0

)
. (33)

From (31) one sees that it isσ-symmetric for allg1 and hermitian ifg1 = 0. In
this caseσ is given by

S =


q 0 0 0
0 0 q 0
0 q−1 0 0
0 0 0 q−1

 . (34)

Theσ andπ are related as in (21) with (using the same conventions)

T =


1 + q 0 0 0

0 2 0 0
0 0 2 0
0 0 0 1 + q−1

 . (35)
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The fact thatT is not proportional to the identity is due to the fact that the map
(1 + σ)/2 is not a projector and that we would like it to act as such and be
the complementary toπ. The metric is of indefinite signature and in ‘light-cone’
coordinates. If we use the expressionq = eiα we find that

g
ij
S = cos(

α

2
)

(
0 1
1 0

)
, g

ij
A = i sin(

α

2
)

(
0 1
−1 0

)
. (36)

The inverse metric components are defined by the equation

gijg
jk = δki .

This matrix also can be split. If we rescale so that the symmetric part is of the
standard form we find

ηij =

(
0 1
1 0

)
, Bij = i tan(

α

2
)

(
0 1
−1 0

)
.

The metric connection has vanishing curvature. The linear connection (15) is
given by

ωij = (1− q)
(

1 0

0 −q−1

)
θ.

Because of the identities
dθ = 0, θ2 = 0

the curvature vanishes; with the choice (34) of flip the quantum plane is flat. In
the commutative limit the line element is given by

ds2 = gijθ
i ⊗S θb = 2θ1 ⊗S θ2 = d(u−1)⊗S d(v−1) = dt2 − dx2.

The subscriptS indicates a symmetrized tensor product.

3.2. SOLUTION II

A family of solutions defined by flips which are not solutions to the braid equation
is given by

S =


−q2 0 0 0

0 0 q 0

0 −q−2 −1− q−1 0

0 0 0 q−1

 (37)

The metric is given again by (33). The curvature Curv is defined by

Ωi
j = −(q2 − 1)q−3(1 + q + q2)

(
0 0
1 0

)
(λ1)2θ1θ2.
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It diverges as(q − 1)−1 whenq → 1. This is then the case of a regular metric
which has a singular metric connection.

3.3. SOLUTION III

A third family satisfies no reality conditions

S =
1

q2 + 1


2q 0 0 1− q2

0 1− q2 2q 0
0 2q q2 − 1 0

q2 − 1 0 0 2q

 . (38)

A σ-symmetric metric is given by

S12
21 = S21

12 =
2q

q2 + 1
.

In the limit q → 1 this becomes

Ωi
j =

(
0 −1

1 0

)
(u2 + v2)θ1θ2.

3.4. NON-SOLUTIONS

There are a certain number of partial solutions which are unsatisfactory for some
reason or other. As an example, to underline the possibility of exotic metrics
which are neither symmetric nor anti-symmetric according to our definitions, we
considerσ defined by the matrix

S =


0 0 0 γ

0 −1 0 0

0 0 −1 0

γ−1 0 0 0


whereγ ∈ R is a parameter. This value ofS is a solution to the braid equation.

Theσ andπ are related as in (21) with (using the same conventions)

T =


1 0 0 γ
0 0 0 0
0 0 0 0
γ−1 0 0 1

 . (39)

This means thatτ is not invertible and the case is degenerate. The problem here is
that(1 + σ)/2 cannot even be twisted to a projector. The metric is given by

gij = i

(
1 0
0 −γ−1

)
. (40)
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One hasτ = 1 + σ and the flip is degenerate. Instead of interchangingg2 andg3

as does the ordinary flip, it interchangesg1 andg4. It also changes the sign, which
accounts for thei in the metric components. Alsog ◦ (1 + σ) = 0 so in a certain
sense the metric has vanishing symmetric as well as antisymmetric parts. We refer
to σ nonetheless as a ‘flip’ because it satisfies (20). The curvature is given by

Ωi
j = q−1(q2 − 1)δijλ1λ2θ

1θ2

It is singular in the commutative limit.
Finally we notice that here is no solution using theR̂-matrix to constructσ.

A similar problem was found by Cotta-Ramusino & Rinaldi in trying to construct
holonomy groups [12].

Acknowledgment

The authors would like to thank A. Chakrabarti for enlightening conversations.
One of them (JM) would like to thank Dieter Lüst for his hospitality at the Institut
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COHERENCE ISOMORPHISMS FOR A HOPF CATEGORY

VOLODYMYR LYUBASHENKO ∗
Institute of Mathematics, Kyiv, Ukraine

Crane and Frenkel proposed a notion of a Hopf category in [1]. It was moti-
vated by Lusztig’s approach to quantum groups – his theory of canonical bases.
In particular, Lusztig obtains braided deformationsUqn+ of universal envelop-
ing algebrasUn+ for some nilpotent Lie algebrasn+ together with canonical
bases of these braided Hopf algebras [2–4]. The elements of the canonical basis
are identified with certain objects of equivariant derived categories, contained in
semisimple abelian subcategories of semisimple complexes. Conjectural proper-
ties of these categories were collected into a system of axioms of a Hopf category,
equipped with functors of multiplication and comultiplication, isomorphisms of
associativity, coassociativity and coherence which satisfy four equations [1].
Crane and Frenkel gave an example of a Hopf category resembling the semisim-
ple category encountered in Lusztig’s theory corresponding to one-dimensional
Lie algebran+ – nilpotent subalgebra ofsl(2). The mathematical framework and
some further examples of Hopf categories were provided by Neuchl [5].

We discuss an example of a related notion – triangulated Hopf category –
the whole equivariant derived category equipped with operations-functors and
structure isomorphisms. The additive relations between operations proposed in [1]
are replaced with distinguished triangles. The preliminary study of the subject can
be found in [6, 7]. In the present paper we construct the coherence isomorphisms
in full required generality. The essential ingredient – the equation for coherence
isomorphisms is still not proven.

1. Operations in a graded Hopf algebra

Let Q+ be a commutative monoid additively generated by elements of a finite
setI. DenoteR = Z[q, q−1]. LetH be aQ+-graded braided HopfR-algebra, for
instance, the algebraUqn+ of Lusztig [4]. The comultiplication inH = ⊕v∈Q+Hv
∗ lub@imath.kiev.ua
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can be written as

∆ =
∑

u,v∈Q+

∆u,v, ∆u,v : Hu+v → Hu ⊗R Hv.

Similarly for iterated comultiplication∆(b) = (∆(b−1) ⊗ 1) ◦∆ : H → H⊗b,

∆(b) =
∑

vj∈Q+

∆(b)
v1,...,vb

, ∆(b)
v1,...,vb

: Hv1+···+vb → Hv1 ⊗R · · · ⊗R Hvb .

The associativity, the coassociativity and the bialgebra axiom imply the equation

∆(b)(x1) · . . . ·∆(b)(xa) = ∆(b)(x1 · . . . · xa) (1)

for arbitrary elementsxi ∈ H. Note that the multiplication in the left hand side
uses the braiding. Apply equation (1) to homogeneous elementsxi of degreevi

and write down its homogeneous component of multidegree(v1, . . . , vb) ∈ Qb+:∑∑
j
vij=v

i∑
i
vij=vj

∆
(b)

v1
1 ,...,v

1
b

(x1) · . . . ·∆(b)
va1 ,...,v

a
b
(xa) = ∆(b)

v1,...,vb
(x1 · . . . · xa). (2)

Each summand in the left hand side can be viewed as an operation witha inputs
andb outputs. These operations are not distinguished in algebra setup. However,
in graded Hopf categories their explicit use seems advantageous.

2. The main ingredients

Categories will be equivariant derived categoriesX
G := D

b,c
G (X), whereX is a

complex algebraic variety, equipped with the action of a complex algebraic group
G, as defined by Bernstein and Lunts [8].

The functors will be compositions of functors of the three types (see [8]). Let
φ : G→ H be a group homomorphism, letX be aG-space, letY be anH-space,
and letf : X → Y be aφ-equivariant map. Then there are
— the inverse image functorfφ

∗
: YH → X

G ,
— if φ : G → H is surjective,K = Ker(φ), X is K-free, andY = K\X, the
direct image functor (in this case it is an equivalence)f

φ∗ : XG → Y
H .

— if φ = 1 : G = H is the identity, the direct image functor with proper supports
f
1 !

: XG → Y
G .

Quiver. Let (H, I) be a finite oriented graph with the set of verticesI, the set of
edgesH, the structure mapH → I × I, h 7→ (h′, h′′), whereh′ ∈ I is the source
of h ∈ H, andh′′ ∈ I is the target ofh ∈ H, such thath′ 6= h′′.
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Let V be a finite dimensionalI-gradedC-vector space, (a functionV : I →
ObC -vect, i 7→ V (i)). Its automorphism group is

GV = AutI -grad -vect V =
∏
i∈I

GL(V (i)).

Define a linear space

EV = ⊕h∈H HomC(V (h′), V (h′′)).

The union of allEV is the class of representations of the quiver. The groupGV
acts onEV by (g.x)h = gh′′xhg

−1
h′ . The union of allGV \EV is the set of iso-

morphism classes of representations of the quiver. We consider the collection of
equivariant derived categoriesEVGV as our Hopf category.

Filtrations. To introduce operations we need to consider decompositions ofV

V : V 1 ⊕ V 2 ⊕ · · · ⊕ V k = V

into I-graded subspaces. Associate with it a filtration ofV

0 = V (0) ⊂ V (1) ⊂ · · · ⊂ V (k) = V, V (m) = V 1 ⊕ · · · ⊕ V m.

Associate with it the parabolic groupPV

PV = {g ∈ GV | ∀m g(V (m)) ⊂ V (m)}.
The unipotent radical ofPV is denotedUV . The group

LV = {g ∈ GV | ∀m g(V m) ⊂ V m} =
k∏

m=1

GVm ' PV/UV

is a Levi subgroup ofPV .
LetFV be the linear subspace ofEV respecting the filtration:

FV = {x ∈ EV | ∀m,h xh(V (m)(h′)) ⊂ V (m)(h′′)}.
The groupPV acts inFV .

Operations. Let two decompositions ofV into a direct sum be given:

V : V 1 ⊕ V 2 ⊕ · · · ⊕ V k ∼→ V,

W : W1 ⊕W2 ⊕ · · · ⊕Wl
∼→ V.
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LetO ⊂ GV be a leftPW -invariant and rightPV -invariant subset. We associate
with it an operation

XIO;V
W =

V 1 V 2 V k

O

W1 W2 Wl

=

V 1 V 2 V k

O

W1 W2 Wl

=tVW ◦ΨO;V
W .

The components of it are the generalized multiplication and comultiplication
functors.

Multiplication half. The multiplication half operation is
V 1 V 2 V k

O = ΨO;V
W

=

(∏k
i=1EV i

LV
φ∗→ O× FV

PW × PV
π∗→ O×PV FV

PW
α!→ EV

PW

)
.

The scheme of multiplication is similar to that of Lusztig [2–4]:

k∏
i=1

EV i ←φ O × FV π→ O×PV FV
α→ EV ,

whereφ(o, f) = κ(f) is the forgetful map,κ : FV → ∏k
i=1EV i is the natural

projection,π is the canonical projection,α(o, f) = o.ι(f) is induced from the
action map, andι : FV → EV is the natural embedding.

Comultiplication half. The comultiplication half operation functoris

W1 W2 Wl

=tVW

=

(
EV
PW

ι∗→ FW
LW

κ!→
∏l
j=1EW j

LW
τ→

∏l
j=1EW j

LW

)
,

whereτ is the shift

τL = L[2
∑
r>s;h

dimW r(h′) · dimW s(h′′)].

The scheme of comultiplication is made of the natural embeddingι and the natural
projectionκ (as in Lusztig [2–4]):

EV ←ι
FW

κ→
l∏

j=1

EW j .
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Braiding. For a moduleM overGA1 × · · · ×GAk and a moduleN overGB1 ×
· · ·×GBl whereAm,Bn are someI-graded vector spaces, we define the braiding
as the functor

M ×N∏
GAm ×

∏
GBn

τ−→ M ×N∏
GAm ×

∏
GBn

σ∗−→ N ×M∏
GBn ×

∏
GAm

,

whereσ is the permutation isomorphism of groups and modules and the functorτ
is the shift

τ(L) = L
[
−2

∑
m,n
i∈I

dimAm(i) dimBn(i) + 2
∑
m,n
h∈H

dimAm(h′) dimBn(h′′)
]
.

Distinguished triangles. To clarify the meaning of operationsXIO, notice that the
orbits of the action ofPW × PV in GV are in natural bijection with the orbits of
the action ofGV in the space of pairs of filtrationsPW\GV × GV /PV . By [9]
these orbits are in bijection witha× b-matrices(vij) with elements inQ+ = ZI+,
such that

∑
j v

i
j = vi is the dimension ofV i and

∑
i v
i
j = vj is the dimension of

Wj . Thus, the orbits are in bijection with the summands in the left hand side of
equation (2). ThePW × PV -invariant subsets are unions of orbits, thereby, they
are represented by sums of several summands in (2).

The additive relation (2) in algebra is replaced for our Hopf category by a
system of functorial distinguished triangles

XIOU → XIOX → XIOF →
given for any bi-invariant subsetOX ⊂ GV and a bi-invariant closed subsetOF ⊂
OX withOU = OX−OF . The following diagram made with given distinguished
triangles is an octahedron

XIOR → XIOW

d

= XIOZ
←

1
←

=

d

XIOQ

1

↑

←
1

→

XIOF
↓→

XIOR → XIOW

=

d XIOU

→
→

d

=

XIOQ

1

↑

←
1

←
XIOF
↓

1
←

for any pair of closed embeddingsOF ⊂ OZ ⊂ OW , whereOU = OW − OF ,
OQ = OZ − OF , OR = OW − OZ . This means commutativity of two squares
formed by diagonal maps and of the four triangles marked “=”.

Coherence isomorphism.Both associativity isomorphism and coassociativity
isomorphism of [7] are particular cases of the general coherence isomorphism.
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For any collection of indices and for any collection of bi-invariant subsets
(O′1, . . . ,O′a,O′′1 , . . . ,O′′b ), which may occur in the following diagram, there
exists a bi-invariant subsetO and a coherence isomorphism

O′1 O′a
b b b

σa,b

O′′1 a a O′′
b

a

≡

O′1 O′a

O′′1 O′′
b

coher→ O .

Hereσa,b = (sa,b)
∼
+ is the braid, corresponding to the permutationsa,b of the set

{1, 2, . . . , ab},

sa,b(1 + r + kb) = 1 + k + ra for 0 ≤ r < b, 0 ≤ k < a,

under the standard splittingSab → Bab, which maps the elementary transpositions
to the generators of the braid group. The subsetO is computed as follows

O = UV ·
∏
m

O′m =
∏
m

O′m · UV ⊂ PV ,

O = UW ·
∏
r

O′′r =
∏
r

O′′r · UW ⊂ PW ,

O = OPU ×PU O = O ×PW∩PU O = O · O ⊂ GV .

The general coherence isomorphism is built as the composition

Y
V O′1 O′a
U

X
W O′′1 O′′

b

Z

=

O′1 O′aPV1 PVa

O′′1 O′′
bPZ1

PZb

coher→

O′1PV1
O′a

PVa
OPU

PZ

PZ1
PZb

assoc

coass
→

O

PZ
= O .
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The three components of the coherence isomorphism are defined next.∏
EYms∏
LYm

φ∗→
∏O′m×FYm∏
PVm×PYm

π∗→
∏O′m×PYmFYm∏

PVm
α! →

∏
EVm∏
PVm

O×FY
PZ×PY

φ∗↓
π∗→ OPU×O×FY

PZ×PU×PY

φ∗↓
π∗→ OPU×O×PYFY

PZ×PU

φ∗↓
1× α!→ OPU×FV

PZ×PU

φ∗↓

O×FY
PZ×PY

π∗↓
π∗ →

Id

========⇀⇁
O×PYFY

PZ

π∗↓
β!→ OPU×PU FV

PZ

π∗↓

assoc

EV
PZ

α!↓α! →

EV
PZ

ι∗→ FW∏
r
PZr

κ!→
∏
r
EWr∏
r
PZr

FZ
LZ

ι∗
↓

κ!→
ι∗ → ∏

r
FZr∏

r
LZr

ι∗↓

coass

∏
n,r

EZnr
LZ

κ!↓κ! →

The isomorphismcoher is presented in Figure 9, where the numbers

A =
∑

m<n;r>s

∑
i∈I

dimV m
r (i) · dimV n

s (i),

B =
∑

m>n;r>s

∑
h∈H

dimV m
r (h′) · dimV n

s (h′′)

are, actually, dimensions of the spaces

A = UW/(UW ∩ PV) = ⊕m<n;r>s Hom(V m
r , V n

s ),

B = ⊕h∈H;m>n;r>s HomC(V m
r (h′), V n

s (h′′)) ⊂ FW ∩ FV ,
and we use the notationF = FW ∩ FV/B.

The whole coherence isomorphism is presented in Figure 10.

3. Elementary isomorphisms.

The coherence isomorphisms are pastings of isomorphisms and their inverses of
the following 10 types:
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Figure 9. The isomorphismcoher.
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Figure 10. The whole coherence isomorphism.
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a) gψ
∗ f
φ

∗ ∼−→ ( f
φ
g
ψ

)∗
; b) fφ∗

g
ψ ∗

∼−→ ( f
φ
g
ψ

)
∗; c) f1 !

g
1 !

∼−→ (f
1
g
1

)
!
;

d) base change isomorphism, whereW = X×Y Z, andh, j are the projections

X
G

f
1 ! → Y

G

W
H

h
φ

∗
↓ j

1 ! →⇐==
==

==
==

=

Z
H

g
φ
∗

↓

e) the isomorphism ofXG

f
φ ∗→ Y

H

g
ψ
∗

→ Z
B with X

G

h
ξ

∗

→ W
K

j
χ ∗→ Z

B , where
W = X ×Y Z, K = Gφ ×

H
ψB andh, j, ξ, χ are the projections; it is given by

the pasting

X
G

f
φ∗ → Y

H

X
G

ε⇐=��

www f
φ

∗

← Z
B

g
ψ
∗

↓

W
K

h
ξ

∗
↓

j
χ∗

→←

~w~w
j
χ

∗
← Z

B

η⇐=��

www

f) the isomorphism ofXG

f
1 !→ Y

G

g
φ ∗→ Z

H with X
G

j
φ ∗→ W

H

h
1 !→ Z

H , where
K = Ker(φ : G → H), W = K\X, h = K\f : W = K\X → K\Y =
Z, andj is the quotient map; it is given by the pasting

X
G =======⇀⇁

X
G

f
1 ! → Y

G

ε−1�
wwwww

W
H

j
φ∗

↓
h
1 !

→

j
φ

∗

→

Z
H

�

wwwwwwwwwwwwww
=======⇀⇁

g
φ
∗

→

η−1�
wwwwww

Z
H

g
φ∗

↓

And 4 more types of elementary isomorphisms:
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i) wheneverj|φ is an induction map andπ, q = π ◦ (j|φ) are quotient maps,
there is an isomorphism

H×GX
H

j
φ

∗
→ X

G

H×GX
H

η−1⇐=
��

wwwww
π∗
→

j
φ∗

←
Y
B

⇐= q∗
↓

q) wheneverπ : XG → Y
H is a quotient map, there is an isomorphism

X
G ←

π∗ Y
H

Y
H

η⇐=��

www
π∗ →

s) whenever̃P is a split extension of̃L, U = Ker(P
p
. L) is contractible

andẼ is aP̃ -space, on whichU acts trivially, then1
p

∗
: Ẽ
L̃
→ Ẽ

P̃
is an equivalence

and there is an isomorphism

Ẽ
L̃

Ẽ
P̃

====================⇀⇁

1
i

∗ →�
wwww

Ẽ
P̃

1
p

∗

→

v) wheneverG-maph : E → B is a vector bundle, there is an isomorphism

B
G

E
G ⇐=========

h∗

←

B
G

T−2 dimC h

↓h! →

Theorem 17. The 2-category formed by

— objects: equivariant derived categories;
— 1-morphisms: compositions of functors of 3 types: inverse image functors,
direct image functors for quotient maps, direct image functors with proper
supports;
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— 2-morphisms: compositions of isomorphisms of 6 types a)–f) or their
inverses

is a 2-groupoid, that is, for any 1-morphismsF andG with the common source
and target the setHom(F,G) either is empty or has exactly one element (and all
2-morphisms are invertible).

If the above theorem would hold for all 10 types of isomorphisms, it would
mean that all equations between coherence isomorphisms, which can be written,
hold true. Such a generalization is not proven yet.
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FUSION RINGS AND TENSOR CATEGORIES

ALEXANDER GANCHEV ∗
INRNE, Tsarigradsko chausse 72, BG 1784 Sofia

The definition of a fusion ringF [1], [2], [3] is an abstraction of the properties
of the Grothendieck ringK0(C) of a rigid braided semisimple monoidal category
C. For certain issues it is convenient to pass to an algebra (over the complex
numbers) thus a fusion algebraF is a unital associative and commutative algebra
with a chosen basisI such that the fusion rulesN c

ab, a, b, c ∈ I, i.e., the structure
constants in this basis,a · b =

∑
cN

c
abc, are inZ+ and their is an involutive

automorphisma → ā such thatN1
ab = δā,b. The setI corresponds to the sectors,

i.e., the equivalence classes of simple objects or irreps, the monoidal structure in
C is responsible for the structure of unital associative ring, the braiding for the
commutativity, while the rigidity translates in the involutative automorphism.

Fusion rings/algebras appear in many occasions (we consider only finite di-
mensional ones) : the categoryC in K0(C) could beRep(finite (quantum) group);
Rep(Uq(g))/Z with qp = 1, g a simple Lie algebra, andZ the ideal of zero
quantum dimensional modules ; AlsoC could be the Moore-Siberg category of 2-
dimensional rational conformal field theory (2D-RCFT) or the Doplicher-Roberts
category of localizable automorphisms of the algebra of observables of a 2D-QFT
(quantum field theory) withI labeling the superselection sectors (the generalized
charges). The last three are typically non Tannakian categories and in particular
the statistical dimensions(=ranks) of the sectors are in general only algebraic inte-
gers. Most generallyC is the rep category of a quasitriangular weak Hopf algebra
(or quantum gropoid). On many occasions (2D-RCFT, 2D-QFT) one has more
structure withC being ribbon(=tortile) and in fact a Turaev modular category with
I comprising a representation of the modular groupSL2(Z) with modularS and
T matrices. TheS plays the role of characters and diagonalizes the fusion rules
(Verlinde’s famous formula) whileT is diagonal with the balancing phases on the
diagonal.

Now I briefly mention several in my view important problems: structure theory
of fusion rings and tensor categories, classification of particular cases offusion

∗ ganchev@inrne.bas.bg
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rings and tensor categories, categorification, i.e., reconstructing a tensor category
from its fusion ring and finally explicit formulas for certain fusion rings.

Fusion rules with a generator of dimension< 2 are classified in [1]. For
modular fusion algebras (i.e., reps ofSL2(Z) with Verlinde giving fusion rules)
there are initial steps towards a classification [4]. Most anything else is open.

Fusion algebras are particular cases of table algebras [5]. For a table algebra
the requirements that the structure constantsN c

ab are positive integers andN1
ab =

δā,b are relaxed toN c
ab ∈ R+ andN1

ab 6= 0 iff ā = b. Table algebras have
been extensively studied by Arad, Blau and coworkers. Particular cases of table
algebras with generators of dimension 2 or 3 have been classified. Though they
are not directly relevant to fusion rule algebra classification one again encounters
for the fusion graphs a 1-dimensional structure (affine Dynkin diagrams) for the
case of a dimension 2 generator and a 2-dimensional structure (the fusion graph of
the fundamental irrep ofsl(3), a tringular tesselation of the corresponding Weyl
chamber, or foldings of it) [6].

For finite groups it is clear that simple groups have fusion rules algebras which
have no notrivial subfuison rule algebras, hence such fusion rule algebras is nat-
ural to call simple. More generally if a groupG has a normal subgroupH then
K0(G/H) is a subfusion rule algebra ofK0(G). This extends to Hopf algebras
[7] and [8]. For table algebras there is a more developed structure theory [9] –
in particular one has composition series for table algebras. What is the theory of
extensions for fusion rule algebras is an open subject. SinceK0 is only half exact
one will probably have to use the higherK functors and the long exact sequence
inK theory to relate information about the structure of tensor categories and their
fusion rule algebras.

Categorification, i.e., reversing theK0 functor, is a very challenging problem.
Some very initial “experimental” work of solving the pentagon equations to ob-
tain categories from given fusion rules was done in [10]. For the fusion rules of
truncatedsl(n) with the relevant Hecke algebra the corresponding braided tensor
categories were reconstructed in [11]. The pentagon is a (in general a nonabelian)
3-cocycle condition – a preliminary sketch of how to attack the relevant non-
abelian cohomology problem is given in [12]. For the case of abelian fusion rules
(F is the group algebra of an abelian group) it is an ordinary group cohomology
problem solved in [1]. The categorification of the fusion rules of the quaternionic
or the rank 8 dihedral group and their generalizations (where all but one of the
sectors are abelian) was done in [13]. In general, for a tensor category with a
nontrivial abelian subfusion algebra one can characterize all6j symbols involv-
ing an abelian lable in terms of abelian group cohomology and moreover there
is also an action on all6j symbols by the abelian group (work in preparation).
One would like to characterize the image ofK0 in the category of all fusion rule
algebras and find “moduli” distinguishing categories with the same fusion rules.
In the case of modular categories one is tempted to conjecture that the balancing
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phases (theT matrix) separates categories with the same fusion rules (=“character
table”=modularS matrix) and thatK0 is a bijection from (equivalent classes of)
modular categories to modular fusion algebras [14]. Since it seems to be the case
that two different simple finite groups cannot have the same fusion rules one can
try to explore a conjecture that if a simple fusion rule algebra has a categorification
than it is unique.

For certain classes of fusion rules, e.g. fusion rules of WZW models based
on affine Kac-Moody algebraŝgk at integer levelsk (same as truncatedUq(g) for
qk+h∨ = 1) one has nice formulas forN c

ab generalizing a classical formula of
Weyl [15], [16], [17]. For the much harder and less studied case of fractiona level
WZW one knows the fusion rules only forg = sl(2) andsl(3) ([18] and [19]
respectively). Very little is known for the fusion rules of more general models
of 2D-RCFT. In particular one would like to know the fusion rules of fractional
level affinesl(n) and on the other hand to relate them to the fusion rules of
W -algebras obtained from these models by quantum hamiltonian reduction or
cosetting. Even for the case of the Polyakov-BershadskiW

(2)
3 which is obtained

as the nonprincipal reduction ofsl(3) at fractional levels the fusion rules are not
known in general. A better understanding of the structure theory of fusion rules
hopefully could help in such problems. On the other hand the fusion rules of
fractionalsl(3) do not look like anything coming from a known algebraic object
(finite group, Lie (super) algebra) hence it is interesting to try to categorify these
fusion rules.
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ON CATEGORIES OF GELFAND-ZETLIN MODULES

VOLODYMYR MAZORCHUK ∗
Göteborg University, Sweden

1. The origins

Although the theory of Gelfand-Zetlin modules can be developed for all serial
complex simple finite-dimensional Lie algebras and their (non-standard) quantum
analogs, in this paper we will discuss the most classical case of the Lie algebra
g = gl(n,C) and will give a short overview of known results in other cases in the
end of the paper. We will denote byei,j , 1 ≤ i, j ≤ n, the matrix units and will
always abbreviate Gelfand-Zetlin by GZ.

This theory starts from the famous original paper [9] by Gelfand and Zetlin, in
which, using a step by step reduction to the smaller subalgebras, the authors con-
structed a very special and nice basis in each simple finite-dimensionalg-module.
It is well-known that simple finite-dimensionalg-modules are parametrized by
the vectorsm = (m1,m2, . . . ,mn) with complex coefficients, satisfyingmi −
mi+1 ∈ N. These vectors represent the (shifted) highest weight of the correspond-
ing simple module with respect to the standard Cartan subalgebrah of g consisting
of diagonal matrices. We will denote the simple module, which corresponds to
m, by V (m). To formulate the result of Gelfand and Zetlin we have to introduce
the notion of tableau. By atableau, [l], we will mean a doubly-indexed complex
vector(li,j), where1 ≤ i ≤ n and1 ≤ j ≤ i.

Theorem 18. V (m) possesses a basis, indexed by all tableaux[l], satisfying the
following conditions:ln,j = mj , 1 ≤ j ≤ n, andli,j ≥ li−1,j > li,j+1, 1 < i ≤ n,
1 ≤ j < i. Moreover, the action of the generators ofg in this basis is given bythe

∗ volody@math.chalmers.se
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followingGelfand-Zetlinformulae:

ei,i+1[l] = −
i∑

j=1

i+1∏
k=1

(li,j − li+1,k)∏
k 6=i

(li,j − li,k)
[l + δi,j ],

ei+1,i[l] =
i∑

j=1

i−1∏
k=1

(li,j − li−1,k)∏
k 6=i

(li,j − li,k)
[l − δi,j ],

ei,i[l] =

 i∑
j=1

li,j −
i−1∑
j=1

li,j

 [l].

2. Generic Gelfand-Zetlin modules

The idea to use Theorem 18 to construct newg-modules goes back to Drozd,
Ovsienko and Futorny ([4, 5]). This was based on the observation that GZ-
formulae contain only rational functions in parameters, so, if one takes a set of
tableaux, closed under the shifts, coming from the action of generators, such that
all functions in GZ-formulae will be well-defined, the resulting space should be a
g-module. This can be formally presented in the following statement.

Theorem 19. Let [t] be a tableau satisfyingti,j − ti,k 6∈ Z for all 1 ≤ i < n and
1 ≤ j 6= k ≤ i. Denote byP ([t]) the set of all tableaux[l] satisfyingln,j = tn,j ,
1 ≤ j ≤ n andli,j− ti,j ∈ Z for all possiblei, j. LetV ([t]) denote a vectorspace,
whereP ([t]) is a basis. Then GZ-formulae define onV ([t]) the structure of a
g-module of finite length.

Idea of the proof of the first statement.To prove the first part of the theorem (that
V([t]) is a g-module) it is sufficient to check that any relation inU(g) is satisfied
on V ([l]). In our fixed basisP ([t]) this relation can be rewritten as a collec-
tion of rational functions in entries of tableaux, which have to be shown to be
zero. The last is easy cause finite-dimensional modules give sufficiently many
points, in which these functions take zero values. The last argument uses crucially
Theorem18.

To prove the second part we need to recall one more property of the GZ-basis
of V (m), which will lead us to the notion of Gelfand-Zetlin subalgebra.
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3. Gelfand-Zetlin subalgebra

As we have already mentioned, Theorem 18 was obtained using step by step
reduction to the smaller subalgebras. Now we make this statement more precise.
We consider a chain of subalgebras

gl(1,C) ⊂ gl(2,C) ⊂ · · · ⊂ gl(n,C)

embedded with respect to the left upper corner. This chain induces the chain of
the corresponding universal enveloping algebras

U(gl(1,C)) ⊂ U(gl(2,C)) ⊂ · · · ⊂ U(gl(n,C)).

Denote byZk the centerZ(gl(k,C)) of the algebraU(gl(k,C)), 1 ≤ k ≤ n.
The idea to get the GZ-basis ofV (m) was the following: we takeV (m) and

consider it asgl(n − 1,C)-module. The last is completely reducible and we can
consider all components asgl(n − 2,C)-module, decompose them and proceed
till gl(1,C). Now we recall that simple finite-dimensionalgl(k,C)-modules are
completely determined by their central character. It is also important that, if we
decompose a simple finite-dimensionalgl(k,C)-module into a direct sum of sim-
ple gl(k − 1,C) submodules, all latter will occur with multiplicity1. Altogether
this mean that the resulting GZ basis will be an eigenbasis for all algebrasZk, or,
in other words, for the commutative subalgebraΓ ⊂ U = U(gl(n,C)), generated
by all Zk. Moreover, the remark about the multiplicities implies thatΓ in fact
separates the elements of the GZ-basis ofV (m).

Drozd, Ovsienko and Futorny calledΓ the Gelfand-Zetlin subalgebra ofU .
It is well-known thatΓ is a polynomial algebra inn(n + 1)/2 variables. It was
observed by Zhelobenko ([22]), that there is a set of generators,γi,j , 1 ≤ i ≤ n,
1 ≤ j ≤ i, of Γ such that the eigenvalue of the action ofγi,j on a tableaux,
[l], occurring inV (m), should be computed as thej-th symmetric polynomial in
variables(li,1, li,2, . . . , li,i). Using the arguments analogous to that, presented in
Section 2, one gets that the same is true in allV ([t]).

Idea of the proof of the second statement of Theorem 19.As we saw, the basis
P ([t]) of V ([t]) is an eigenbasis forΓ. Moreover, it is easy to get thatΓ in fact
separates the elements ofP ([t]). Hence, any submodule ofV ([t]) has a basis,
which is a subset ofP ([t]). Now if one draws a graph with elements ofP ([t])
as vertices and joins thous pairs, who mutually appear with non-zero coefficients
in GZ-formulae, one gets a graph with a finite number of connected components
(this number can be easily computed). This finishes theproof.

Remark that a complete proof of Theorem 19 can be found in [16].
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4. Category of Gelfand-Zetlin modules

The introduction of GZ-subalgebra caused a natural definition of an abstract no-
tion of Gelfand-Zetlin modules, analogous to the notion of the weight module.
This was also done by Drozd, Ovsienko and Futorny. They proposed to call a
Gelfand-Zetlin moduleanyg-module,V , which decomposes into a direct sum of
finite-dimensional modules, when viewed asΓ-module. Then by the category,GZ,
of Gelfand-Zetlin modules it is natural to understand the full subcategory of the
category of allg-modules, consisting of all GZ-modules. As examples of Gelfand-
Zetlin modules one can take finite-dimensional modules,h-weight modules with
finite-dimensional weight spaces (in particular, all highest weight modules) or
generic Gelfand-Zetlin modules.

Now we recall that tableaux naturally parameterize (not bijectively!) sim-
ple finite-dimensionalΓ-modules, moreover, non-isomorphicΓ-simples do not
have non-trivial extensions. Hence, any GZ-module,V , comes together with
its Gelfand-Zetlin support, gzsupp(V ), i.e. the set of all tableaux parameter-
izing all simpleΓ-modules, occurring inV . We have to note that the product
G = S1 × S2 × · · · × Sn of symmetric groups naturally acts on the space of
all tableaux permuting the components in the rows. Any fundamental domain of
this action bijectively parameterizesΓ-simples and, by definition,gzsupp(V ) is
invariant under this action. Hence the orbits ofG acting ongzsupp(V ) bijectively
parameterizeΓ-simples appearing inV .

Call two tableaus,[l] and[t], equivalent providedln,j = tn,j andli,j− ti,j ∈ Z
for all i, j. Let D denote the set of equivalence classes of tableaux. First basic
result about the category of Gelfand-Zetlin modules was the following statement,
due to Drozd, Ovsienko and Futorny ([6]).

Theorem 20. The categoryGZ decomposes into a direct sum,

GZ = ⊕P∈DGZP ,

of full subcategories, where the categoryGZP consists of all Gelfand-Zetlin
modulesV such thatgzsupp(V ) ⊂ G ◦ P .

Proof. Is not difficult if one reminds that GZ-formulae preserve the equivalence
classes oftableaux.

In fact, Drozd, Ovsienko and Futorny embedded this special case ofU − Γ
relative situation in a wide framework ofHarish-Chandra subalgebras, which is
very convenient (and very general) for study of the whole category of Gelfand-
Zetlin modules. It is not our aim to discuss this approach and we refer the reader
to the original paper [5].
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5. A few theorems of Ovsienko

As soon as one has formulated the notion of a GZ-module, there is a natural and
basic question arising: Is it true that each character ofΓ can be continued to a
g-module. Equivalently: is it true that eachGZP is not empty. It is easy to answer
“yes” for n = 1, 2. Forn = 3 the same was prooved in [4]. The general case was
recently completed by Ovsienko ([21]), but the paper has not appeared yet.

Theorem 21. EachGZP is not empty.

Idea of the proof.The proof is hard and technical. In fact, the result appears as
a biproduct to a special geometrical statement. One should look at the image of
Γ in gr(U). This image of{γi,j} defines a certain algebraic variety, which is the
variety of the so-calledstrongly nilpotent matrices(i.e. matrices, all main minors
of which are nilpotent). The statement will follow from abstract nonsense if one
proves that the sequence{γi,j} is regular. The last can be derived if one proves
that the variety of strongly nilpotent matrices is a complete intersection, i.e. that
all the irreducible components of it have the same dimension. The last is the most
difficult and technical part of the proof and is the main result of the mentioned
paper of Ovsienko.

From Theorem 21 it follows that for any tableau[l] there exists a simple GZ-
module,V , such that[l] ∈ gzsupp(V ). Using the convenient technique of Harish-
Chandra subalgebras, mentioned above, Ovsienko managed to give much more
useful information about simple GZ-modules.

Theorem 22. 1. For each[l] there exists only finitely many (up to isomorphism)
simple GZ-modulesV with [l] ∈ gzsupp(V ).

2. Let V be a simple finite-dimensionalg-module andF be a simple finite-
dimensionalΓ-module. Then the multiplicity ofF in V (the last is viewed
asΓ-module) is finite.

I have also to note that [21] contains a complete proof of the statement that
Γ is a maximal commutative subalgebra ofU(g). This statement can be found
(without proof!) in all classical monographs (e.g. [22]). The proof in [21] is the
first complete I have seen.

6. Generalized Verma modules and Gelfand-Zetlin modules

It seems that the first time, when it was understood that generic Gelfand-Zetlin
modules are very convenient for computations was the paper [18], where the
authors investigated the question about the structure of the so-called generalized
Verma modules. Consider the inclusiongl(k,C) ⊂ gl(n,C) = g with respect to
the left upper corner. LetP denote the parabolic subalgebra ofg, generated by
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gl(k,C) and the standard Borel subalgebra op upper-triangular matrices. Take a
simplegl(k,C)-module,V , set that the rest of the Cartan subalgebra acts on it
via some character, sayλ, and the rest of the Borel subalgebra annihilates it. Thus
V becomes aP-module. The induced moduleM(V, λ) = U ⊗U(P) V is called
a generalized Verma module. It turned out that takingV to be a simple generic
GZ-module,V ([t]), the structure ofM(V ([t]), λ) can be described in terms of
the Weyl group acting on the space of parameters, as it was done for the classical
Verma modules by Bernstein, I.Gelfand and S.Gelfand ([2]).

It is trivial thatM(V ([t]), λ) is a GZ-module overg. One can also see that
it is generated by the elements (annihilated by the nilpotent radical ofP), cor-
responding to the tableaux[l], satisfying the following condition:li,j = li−1,j ,
k < i ≤ n. The Weyl groupSn acts naturally on the set of such tableaux,
permuting the elements of the upper row (which also causes the corresponding
changes in all rows withi > k). For a transposition,(i, j) ∈ Sn, i < j, write
(i, j)[l] ≤ [l] providedln,i − ln,j ∈ Z+ and close the relation≤ transitively. The
next statement is the main result of [18].

Theorem 23. Let [l] (resp. [l′]) be the tableau of a canonical generator of
M(V ([t]), λ) (resp.M(V ([t′]), λ′)). Assume thatli,j = l′i,j for all i < k and
all j. Then the following statements are equivalent:

1. M(V ([t]), λ) ⊂M(V ([t′]), λ′).
2. The unique irreducible quotient ofM(V ([t]), λ) is a composition subquotient

ofM(V ([t′]), λ′).
3. [l] ≤ [l′].

The proof of this theorem, presented in [18] goes the general line of the
original proof in [2], but uses some calculations with generic GZ-modules. In
particular, one of the mains things one needs here is a more or less precise descrip-
tion of M(V ([t]), λ) as agl(k,C)-module. This question easily reduces to the
calculation ofF⊗V ([t]), whereF is a simple finite-dimensionalgl(k,C)-module.
If one recalls that simple generic GZ-modules correspond to certain characters of
Γ and the last one is generated by a sequence of centers, one can use the famous
Theorem of Kostant ([12]), which tells how one can compute the action of the
center onF ⊗ V ([t]). In this way one easily derives all potential subquotients of
F ⊗ V ([t]). This (and existence of some of them, which is easy) was enough for
the goals of Theorem 23.

7. Categories ofgl(n,C)-modules generated by a simple generic Gelfand-
Zetlin module

The necessity to studyF ⊗ V ([t]) deeper was understood in [8], where some
categories of Lie algebra modules where constructed, which are based on the cate-
gories of modules behaving well under tensoring with finite dimensional modules.
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As the main example of the latter, a category, generated by a simple generic GZ-
module, was presented. LetV ([t]) be a simple generic GZ-module. Denote by
C([t]) the full subcategory, consisting of all subquotients of modulesF ⊗ V ([t]),
whereF is simple finite-dimensional. It turned out that this category has relatively
easy structure.

Theorem 24. C([t]) decomposes into a direct sum of full subcategories, each of
which is equivalent to the module category of a finite-dimensional associative and
local algebra. In particular,C([t]) has enough projective objects.

Idea of the proof.One of the main ingredients of the proof is the following
lemma:

Lemma 25. The moduleF ⊗ V ([t]) has lengthdim(F ), all simple subquotients
of it are simple generic GZ-modules and the multiplicity ofV ([s]) in F ⊗ V ([t]),
wheresi,j = ti,j , i < n, equals

∑
dim(Fµ), where the sum is taken over allµ such

that the vector(tn,j)j=1,...,n + µ coincides with a permutation of(sn,j)j=1,...,n.

Lemma 25 is proved by a direct calculation, using GZ-formulae and the
Littelwood-Richardson rule. It also represents a “generic behaviour” of simple
generic GZ-modules in contrast with finite-dimensional modules.

After Lemma 25 one can first describe all simple modules inC([t]). These will
beV ([s]), with si,j − ti,j ∈ Z. Then it is easy to find among them a projective
module and prove the existence of projectives using the exactness osF ⊗ −.
Decomposition with respect to central characters completes theproof.

In two subsequent papers ([13, 14]) it was noticed that the categoryC([t])
closely connected to various categories ofg-modules, independently appeared in
different contexts. The results of these two papers can be collected in the following
statement.

Theorem 26. Assume thattn,j ∈ Z for all j. Then the following categories of
g-modules are equivalent:

1. The categoryC([t]).
2. The category of complete (in the sense of Enright, [7]) weight extensions of

highest weight modules with integral support.
3. A certain category of algebraic Harish-Chandra bimodules in the sense of

Bernstein and S.Gelfand ([1]).

Idea of the proof.The equivalence of the first and the second categories is the
content of [13]. It is based on a precise construction of the equivalence functor,
which is a generalization of the Mathieu’s twist functor ([15]). The equivalence
of the second and the third categories is proved in [14], using an intermediate
equivalence of the second category with a category of injectively copresented
modules in the Bernstein-Gelfand-Gelfand categoryO ([3]).
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8. Case of classical and quantum algebras and open problems

An analogue of Theorem 18 for orthogonal algebras (simple finite dimensional
complex Lie algebras of typeBn andDn) was obtained also by Gelfand and
Zetlin in [10]. The corresponding generic modules were constructed in [17]. For
symplectic Lie algebras (typeCn) an analogue of Theorem 18 is a recent result
of Molev, [20]. ForUq(gln) the classical result was obtained by Jimbo ([11]) and
generic modules were constructed by Turowska and the author ([19]). For non-
standard quantum deformations of orthogonal algebras the classical construction
of Gelfand-Zetlin basis in finite-dimensional modules can be found in a series of
recent papers by Klimyk and Jorgov, available at “xxx.lanl.gov”, where one can
also find information about corresponding results for root of unity case.

Finally, we want to give a list of some questions and open problems related to
Gelfand-Zetlin modules:

1. Classify and give a precise construction of all simple GZ-modules.
2. Find a criterion, when a given character ofΓ has only one extension to a

simpleg-module.
3. LetF be a simple finite dimensionalgl(n,C)-module. Consider two Gelfand-

Zetlin basis of it, with respect to the inclusions of subalgebras into left upper
and into right lower corners. What will be the transformation matrix?

4. LetV be a simple Gelfand-Zetlin module andF be a finite-dimensional mod-
ule. DoesV ⊗ F have a finite length? Is it possible to compute composition
subquotients and multiplicities ofV ⊗ F?

5. Are there any analogues of Gelfand-Zetlin construction for exceptional Lie
algebras?

6. Extend all already known forgl(n,C) results to the case of orthogonal and
symplectic algebras. Also find in those cases solutions to the above problems.
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HIDDEN SYMMETRY OF SOME ALGEBRAS OF
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1. Introduction

Let us explain the meaning of the words ”q-differential operators” and ”hidden
symmetry”. LetC[z]q be the algebra of polynomials inz over the field of rational
functionsC(q1/2) (we assume this field to be the ground field throughout the
paper). We denote byΛ1(C)q theC[z]q-bimodule with the generatordz such that

z · dz = q−2dz · z.
Let d be the linear mapC[z]q → Λ1(C)q given by the two conditions:

d : z 7→ dz,

d(f1(z)f2(z)) = d(f1(z))f2(z) + f1(z)d(f2(z)).

(The later condition is just the Leibniz rule). The bimoduleΛ1(C)q (together with
the mapd) is a well known first order differential calculus over the algebraC[z]q.
The differentiald allows one to introduce an operator of ”partial derivative”ddz in
C[z]q:

d(f(z)) = dz · df
dz

(z).

Let us introduce also the notation̂z for the operator inC[z]q of multiplication by
z:

ẑ : f(z) 7→ zf(z).

∗ sinelshchikov@ilt.kharkov.ua
† vaksman@ilt.kharkov.ua
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Let D(C)q be the subalgebra in the algebraEndC(q1/2)(C[z]q) (of all endomor-

phisms of the linear spaceC[z]q) containing1 and generated byddz , ẑ. It is easy
to check that

d

dz
· ẑ = q−2ẑ · d

dz
+ 1.

Thus the algebraD(C)q is an analogue of the Weyl algebraA1(C).
Let λ ∈ C(q1/2). One checks that the map

ẑ 7→ λ · ẑ, d

dz
7→ λ−1 · d

dz

is extendable up to an automorphism of the algebraD(C)q. Such automorphisms
are ”evident” symmetries ofD(C)q. It turn out that they belong to a wider set of
symmetries ofD(C)q. This set does not consists of automorphisms only. Let us
turn to precise formulations.

To start with, we recall one the definition of the quantum universal enveloping
algebraUqsl2 [5]. It is

i)the algebra given by the generatorsE, F ,K,K−1, and the relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK,

EF − FE =
K −K−1

q − q−1
;

ii) the Hopf algebra : the comultiplication∆, the antipodeS, and the counitε
are determined by

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F, ∆(K) = K ⊗K,
S(E) = −K−1E, S(F ) = −FK, S(K) = K−1,

ε(E) = ε(F ) = 0, ε(K) = 1.

There is a well known structure ofUqsl2-module in the spaceC[z]q. Let us
describe it explicitly:

E : f(z) 7→ −q1/2z2 f(z)− f(q2z)

z − q2z
,

F : f(z) 7→ q1/2 f(z)− f(q−2z)

z − q−2z
,

K±1 : f(z) 7→ f(q±2z).

It can be checked thatC[z]q is aUqsl2-module algebra, i.e. for anyξ ∈ Uqsl2,
f1, f2 ∈ C[z]q

ξ(1) = ε(ξ) · 1, (1)
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ξ(f1f2) =
∑
j

ξ′j(f1)ξ′′j (f2), (2)

with ∆(ξ) =
∑
j ξ
′
j ⊗ ξ′′j .

REMARK. This observation is an analogue of the following one. The group
SL2(C) acts onCP1 via the fractional-linear transformations. Thus the universal
enveloping algebraUsl2 acts via differential operators in the space of holomorphic
functions on the open cellC ⊂ CP1.

Let V be aUqsl2-module. Then the algebraEnd(V ) admits a ”canonical”
structure ofUqsl2-module: forξ ∈ Uqsl2, T ∈ End(V )

ξ(T ) =
∑
j

ξ′j · T · S(ξ′′j ), (3)

where∆(ξ) =
∑
j ξ
′
j ⊗ ξ′′j , S is the antipode, and the elements in the right-hand

side are multiplied within the algebraEnd(V ). It is well known that this action of
Uqsl2 in End(V ) makesEnd(V ) into aUqsl2-module algebra (i.e. forξ ∈ Uqsl2,
T1, T2 ∈ End(V ) (1), (2) hold withf1, f2 being replaced byT1, T2, respectively).

The objects considered above are the simplest among ones we deal with in the
present paper. In this simplest case our main result can be formulated as follows:
the algebraD(C)q is a Uqsl2-module subalgebra in theUqsl2-module algebra
EndC(q1/2)(C[z]q) (where theUqsl2-action is given by (3)). ThisUqsl2-module
structure in the algebraD(C)q is what we call ”hidden symmetry” ofD(C)q.

REMARK. In the setting of the previous Remark the analogous fact is evident:
for ξ ∈ sl2 the action (3) is just the commutator of the differential operatorsξ
andT in the space of holomorphic functions onC. The commutator is again a
differential operator.

We can describe theUqsl2-action inD(C)q explicitly:

E(ẑ) = −q1/2ẑ2, F (ẑ) = q1/2, K±1(ẑ) = q±2ẑ,

E(
d

dz
) = q−3/2(q−2 + 1)ẑ

d

dz
, F (

d

dz
) = 0, K±1(

d

dz
) = q∓2 d

dz
.

(The action ofUqsl2 on an arbitrary element ofD(C)q can be produced via the
rule (2).)

The paper is organized as follows.
In Section 2 we recall one definitions of the quantum universal enveloping

algebraUqslN , aUqslN -module algebraC[Matm,n]q of holomorphic polynomi-
als on a quantum matrix spaceMatm,n, and a well known first order differential
calculusΛ1(Matm,n)q overC[Matm,n]q (in this Introduction the casem = n = 1
was considered). Then we introduce an algebraD(Matm,n)q of q-differential
operators inC[Matm,n]q and formulate a main theorem concerning a hidden
symmetry of this algebra.

Section 3 contains a sketch of the proof of the main theorem.
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In Section 4 we discuss briefly possible generalizations of our results. Specif-
ically, the spaceMatm,n is an example of a prehomogeneous vector space of
commutative parabolic type [6]. In [9] q-analogs of all such vector spaces were
introduced. Our results admit a generalization on the case of an arbitrary quantum
prehomogeneous vector space of commutative parabolic type.

We take this opportunity to thank Prof. H. P. Jakobsen and Prof. T. Tanisaki
who attracted our attention to other approaches to the notion of quantum
differential operators.

This research was partially supported by Award No.UM1-2091 of the U.S.
Civilian Research and Development Foundation.

2. The main theorem

In this Section we deal with a well known q-analogue of the polynomial algebra
on the spaceMatm,n ofm×nmatrices (in the Introduction we considered the case
m = n = 1). Let the ground field be the field of rational functionsC(q1/2). The
algebraC[Matm,n]q is the unital algebra given by its generatorszαa , a = 1, . . . n,
α = 1, . . .m, and the following relations
zαa z

β
b =

=


qz
β
b z

α
a , a = b & α < β or a < b & α = β

z
β
b z

α
a , a < b & α > β

z
β
b z

α
a + (q − q−1)zβa z

α
b , a < b & α < β

, (4)

The Hopf algebraUqslN is determined by the generatorsEi, Fi, Ki, K
−1
i ,

i = 1, . . . , N − 1, and the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1, KiEj = qaijEjKi,

KiFj = q−aijFjKi, EiFj − FjEi = δij(Ki −K−1
i )/(q − q−1)

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0, |i− j| = 1 (5)

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0, |i− j| = 1

[Ei, Ej ] = [Fi, Fj ] = 0, |i− j| 6= 1.

The comultiplication∆, the antipodeS, and the counitε are determined by

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ∆(Ki) = Ki ⊗Ki,

(6)

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i , (7)
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ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

The algebraC[Matm,n]q possesses a structure ofUqslN -module algebra with
N = m + n. Explicit formulae for the action ofUqslN in C[Matm,n]q are as
follows (see [7]):

Knz
α
a =


q2zαa , a = n & α = m
qzαa , a = n & α 6= m or a 6= n & α = m
zαa , otherwise

, (8)

Fnz
α
a = q1/2 ·

{
1 , a = n & α = m
0 , otherwise

, (9)

Enz
α
a = −q1/2 ·


q−1zma z

α
n , a 6= n & α 6= m

(zmn )2 , a = n & α = m
zmn z

α
a , otherwise

, (10)

and withk 6= n
Kkz

α
a =

=


qzαa , k < n & a = k or k > n & α = N − k
q−1zαa , k < n & a = k + 1 or k > n & α = N − k + 1
zαa , otherwise

, (11)

Fkz
α
a = q1/2 ·


zαa+1 , k < n & a = k
zα+1
a , k > n & α = N − k
0 , otherwise

, (12)

Ekz
α
a = q−1/2 ·


zαa−1 , k < n & a = k + 1
zα−1
a , k > n & α = N − k + 1
0 , otherwise

. (13)

REMARKS.i) In the classical case the corresponding action ofUslN in the
space of holomorphic functions onMatm,n can be produced via an embedding
Matm,n into the GrassmanianGrm,N as an open cell (we describe a q-analogue
of the embedding in [7]).

ii) Using the structure ofUqslN -module inC[Matm,n]q we can define the
structure ofUqslN -module algebra inEndC(q1/2)(C[Matm,n]q) via (3) with ξ ∈
UqslN , T ∈ EndC(q1/2)(C[Matm,n]q).

Now let us recall a definition of a well known first order differential calculus
overC[Matm,n]q. Let Λ1(Matm,n)q be theC[Matm,n]q-bimodule given by its
generatorsdzαa , a = 1, . . . n, α = 1, . . .m, and the relations

kievarwe.tex; 12/03/2001; 3:49; p.320



314 D. SHKLYAROV, S. SINEL’SHCHIKOV, L. VAKSMAN

z
β
b dz

α
a =

m∑
α′,β′=1

n∑
a′,b′=1

R
β′α′
βα Rb

′a′
ba dzα

′
a′ · zβ

′
b′ , (14)

with

Rb
′a′
ba =


q−1 , a = b = a′ = b′
1 , a 6= b & a = a′ & b = b′

q−1 − q , a < b & a = b′ & b = a′
0 , otherwise

. (15)

The mapd : zαa 7→ dzαa can be extended up to a linear operatord :
C[Matm,n]q → Λ1(Matm,n)q satisfying the Leibniz rule. It was noted for the first
time in [8], that there exists a unique structure of aUqslN -module inΛ1(Matm,n)q
such that the mapd is a morphism ofUqslN -modules. The pair

(
Λ1(Matm,n)q, d

)
is the first order differential calculus overC[Matm,n]q.

Let us introduce an algebraD(Matm,n)q of q-differential operators on
Matm,n. For this purpose, we define the linear operators∂∂zαa in C[Matm,n]q via
the differentiald:

df =
n∑
a=1

m∑
α=1

dzαa ·
∂f

∂zαa
, f ∈ C[Matm,n]q,

and the operatorŝzαa by

ẑαa f = zαa · f, f ∈ C[Matm,n]q.

ThenD(Matm,n)q is the unital subalgebra inEndC(q1/2)(C[Matm,n]q) generated

by the operators∂∂zαa , ẑαa , a = 1, . . . n, α = 1, . . .m.

To start with, we describeD(Matm,n)q in terms of generators and relations.

Proposition 2.1. The complete list of relations between the generatorsẑαa , ∂
∂zαa

,
a = 1, . . . n, α = 1, . . .m, ofD(Matm,n)q is as follows

ẑαa ẑ
β
b =

=


qẑ
β
b ẑ

α
a , a = b & α < β or a < b & α = β

ẑ
β
b ẑ

α
a , a < b & α > β

ẑ
β
b ẑ

α
a + (q − q−1)ẑβa ẑ

α
b , a < b & α < β

, (16)
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∂

∂z
β
b

∂
∂zαa

=

=


q ∂
∂zαa

∂

∂z
β
b

, a = b & α < β or a < b & α = β

∂
∂zαa

∂

∂z
β
b

, a < b & α > β

∂
∂zαa

∂

∂z
β
b

+ (q − q−1) ∂

∂z
β
a

∂
∂zα
b
, a < b & α < β

,

(17)

∂

∂zαa
ẑ
β
b =

n∑
a′,b′=1

m∑
α′,β′=1

Rb
′a
ba′R

β′α
βα′ ẑ

β′
b′

∂

∂zα
′

a′
+ δabδ

αβ , (18)

with δab, δαβ being the Kronecker symbols, andRb
′a
ba′ given by (15).

Now we present the main result of the paper

Theorem 2.2. i) The algebraD(Matm,n)q is aUqslN -module subalgebra in the
UqslN -module algebraEndC(q1/2)(C[Matm,n]q).

ii) The UqslN -module structure inD(Matm,n)q is described explicitly as
follows:

UqslN acts on the generatorŝzαa via formulae (8)-(13) (wherezαa should be
replaced bŷzαa ); for the generators ∂

∂zαa
the formulae are

Kn
∂

∂zαa
=


q−2 ∂

∂zαa
, a = n & α = m

q−1 ∂
∂zαa

, a = n & α 6= m or a 6= n & α = m
∂
∂zαa

, otherwise

, (19)

Fn
∂

∂zαa
= 0 a = 1, . . . n, α = 1, . . .m, (20)

En
∂
∂zαa

= q−3/2·

·



n∑
b=1

ẑmb
∂

∂zm
b

+
m∑
β=1

ẑβn
∂

∂z
β
n

+ (q−2 − 1)
n∑
b=1

m∑
β=1

ẑ
β
b

∂

∂z
β
b

, a = n & α = m∑m
β=1 ẑ

β
n

∂

∂z
β
a

, a 6= n & α = m∑n
b=1 ẑ

m
b

∂
∂zα
b

, a = n & α 6= m

0 , otherwise

,

(21)
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and withk 6= n
Kk

∂
∂zαa

=

=


q−1 ∂

∂zαa
, k < n & a = k or k > n & α = N − k

q ∂
∂zαa

, k < n & a = k + 1 or k > n & α = N − k + 1
∂
∂zαa

, otherwise

, (22)

Fk
∂

∂zαa
= −q3/2 ·


∂

∂zαa−1
, k < n & a = k + 1

∂
∂zα−1
a

, k > n & α = N − k + 1

0 , otherwise

, (23)

Ek
∂

∂zαa
= −q−3/2 ·


∂

∂zαa+1
, k < n & a = k

∂
∂zα+1
a

, k > n & α = N − k
0 , otherwise

. (24)

3. Sketch of the proof

Let us outline an idea of the proof of the main theorem. To prove the statement i)
of the theorem we have to explain why for arbitraryξ ∈ UqslN , T ∈ D(Matm,n)q

ξ(T ) ∈ D(Matm,n)q. (25)

The mapzαa 7→ ẑαa , a = 1, . . . n, α = 1, . . .m, is extendable up to an
embedding of algebrasJ : C[Matm,n]q ↪→ EndC(q1/2)(C[Matm,n]q). Evidently,
J intertwines the actions ofUqslN in C[Matm,n]q andEndC(q1/2)(C[Matm,n]q)

(this is a corollary of the fact thatC[Matm,n]q is aUqslN -module algebra). This
observation proves (25) forT of the formJ(f), f ∈ C[Matm,n]q, as well as the
first part of the statement ii) of the theorem. What remains is to prove (25) for
T = ∂

∂zαa
, a = 1, . . . n, α = 1, . . .m.

The spaceEndC(q1/2)(C[Matm,n]q) can be made into a leftC[Matm,n]q-
module as follows:

zαa (T ) = ẑαa · T,
with a = 1, . . . n, α = 1, . . .m, T ∈ EndC(q1/2)(C[Matm,n]q). This structure is
compatible with the action ofUqslN . Define theUqslN -module

Λ1(Matm,n)q
⊗

C[Matm,n]q

EndC(q1/2)(C[Matm,n]q).
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The differentiald : C[Matm,n]q → Λ1(Matm,n)q is a morphism of theUqslN -
modules. This impliesUqslN -invariance of the element

n∑
a=1

m∑
α=1

dzαa ⊗
∂

∂zαa
∈ Λ1(Matm,n)q

⊗
C[Matm,n]q

EndC(q1/2)(C[Matm,n]q),

i.e. for all ξ ∈ UqslN
n∑
a=1

m∑
α=1

∑
j

ξ′jdz
α
a ⊗ ξ′′j

∂

∂zαa
= ε(ξ)

n∑
a=1

m∑
α=1

dzαa ⊗
∂

∂zαa
(26)

with ε being the counit ofUqslN , ∆(ξ) =
∑
j ξ
′
j ⊗ ξ′′j (∆ is the coproduct in

UqslN ). As was proved in [7],Λ1(Matm,n)q is the free rightC[Matm,n]q-module
with the generatorsdzαa , a = 1, . . . n, α = 1, . . .m. Thus, forξ ∈ UqslN there
exists a unique setf b,αβ,a(ξ) ∈ C[Matm,n]q, a = 1, . . . n,α = 1, . . .m, b = 1, . . . n,
β = 1, . . .m, such that

ξdzαa =
n∑
b=1

m∑
β=1

dz
β
b f

b,α
β,a(ξ).

Using the later equality, we can rewrite (26) as follows:

n∑
a,b=1

m∑
α,β=1

∑
j

dz
β
b ⊗ f b,αβ,a(ξ′j)ξ

′′
j

∂

∂zαa
= ε(ξ)

n∑
a=1

m∑
α=1

dzαa ⊗
∂

∂zαa
. (27)

Now one can obtain formulae (19) - (24) (and thus prove (25) forT = ∂
∂zαa

,

a = 1, . . . n, α = 1, . . .m) via applying (27) to the generatorsEi, Fi,Ki,K
−1
i of

UqslN .

4. Concluding notes

The spaceMatm,n of m× n matrices considered in the present paper is the sim-
plest example of a prehomogeneous vector space of commutative parabolic type
[6]. Such vector spaces are closely related to non-compact Hermitian symmetric
spaces. Specifically, any non-compact Hermitian symmetric space can be realized
(via the so-called Harish-Chandra embedding) as a bounded symmetric domain in
some prehomogeneous vector space of commutative parabolic type.

In [9] a q-analogue of an arbitrary prehomogeneous vector space of commuta-
tive parabolic type was constructed. More precisely, letU be a bounded symmetric
domain,g−1 the corresponding prehomogeneous vector space, andg the Lie al-
gebra of the automorphism group ofU . In the paper [9] aUqg-module algebra
C[g−1]q and a covariant first order differential calculus

(
Λ1(g−1), d

)
overC[g−1]q
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were introduced. Using the first order differential calculus, one can produce a
definition of q-differential operators inC[g−1]q just as it was done in Section 2 in
the caseg−1 = Matm,n.

Let D(g−1)q be the algebra of q-differential operators inC[g−1]q. In this
general setting it can also be proved thatD(g−1)q is aUqg-module subalgebra in
theUqg-module algebraEnd(C[g−1]q). Indeed, it easy to see that the proof of our
main theorem (Section 3) does not use a specific nature of the caseg−1 = Matm,n.

5. Appendix: q-Differential operators in holomorphic q-bundles.

In this Appendix ’C[Matm,n]q-module’ means rightC[Matm,n]q-module.
Let Γ be a finitely generated freeC[Matm,n]q-module, i.e. there exists an

isomorphism of theC[Matm,n]q-modules

π : Γ→ V
⊗
C[Matm,n]q,

with V being a finite dimensional vector space. The isomorphismπ will be called
a trivialization ofΓ. Elements ofΓ are q-analogs of sections of a holomorphic
bundle onMatm,n. Let us consider two suchC[Matm,n]q-modulesΓ1, Γ2 to-
gether with their trivializationsπ1 : Γ1 → V1

⊗
C[Matm,n]q, π2 : Γ2 →

V2
⊗
C[Matm,n]q. Set

D(Γ1,Γ2)q =

{D ∈ Hom(Γ1,Γ2)|π2 ·D · π1
−1 ∈ Hom(V1, V2)

⊗
D(Matm,n)q}.

Elements ofD(Γ1,Γ2)q can be treated as q-analogues of differential operators in
sections of holomorphic bundles.

To see thatD(Γ1,Γ2)q is well defined, we need to verify its independence
of the choice of trivializations. Letπ′1 : Γ1 → V ′1

⊗
C[Matm,n]q, π′2 : Γ2 →

V ′2
⊗
C[Matm,n]q be other trivializations ofΓ1 andΓ2, respectively. Evidently,

it is sufficient to prove, that for an arbitraryD′ ∈ Hom(V1, V2)
⊗
D(Matm,n)q

the mapπ′2 · π−1
2 ·D′ · π1 · (π′1)−1 belongs toHom(V ′1 , V ′2)

⊗
D(Matm,n)q. But

this follows from the fact thatπ1, π2, π′1, π′2 are morphisms of theC[Matm,n]q-
modules, and, thus,π1 · (π′1)−1 ∈ Hom(V ′1 , V1)

⊗
J(C[Matm,n]q) and π′2 ·

π2
−1 ∈ Hom(V2, V

′
2)
⊗
J(C[Matm,n]q) (with J(C[Matm,n]q) being the unital

subalgebra inD(Matm,n)q generated bŷzαa , a = 1, . . . n, α = 1, . . .m).
In applications finitely generated freeC[Matm,n]q-modules with some addi-

tional properties arise. We will discuss two special types of suchC[Matm,n]q-
modules.

The first type consists of those finitely generated freeC[Matm,n]q-modulesΓ
which, in addition, areUqslN -module. It means thatΓ is aUqslN -module and the
multiplication mapΓ

⊗
C[Matm,n]q → Γ is a morphism of theUqslN -modules.

ForC[Matm,n]q-modules of this type a result analogous to the main theorem
(Section 2) can be obtained. Let us turn to precise formulations.
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If V1, V2 are modules over a Hopf algebraA then the spaceHom(V1, V2)
admits the following ”canonical” structure of anA-module: forξ ∈ A, T ∈
Hom(V1, V2)

ξ(T ) =
∑
j

ξ′j · T · S(ξ′′j ), (28)

where∆(ξ) =
∑
j ξ
′
j⊗ξ′′j (∆ is the coproduct),S is the antipode, and the product

in the right-hand side means the composition of the mapsS(ξ′′j ) ∈ End(V1), T ∈
Hom(V1, V2), ξ′j ∈ End(V2). It is well known that this action makesHom(V1, V2)
into anA-module leftEnd(V2)-module and anA-module rightEnd(V1)-module,
i.e. the composition map

End(V2)
⊗

Hom(V1, V2)
⊗

End(V1)→ Hom(V1, V2)

is a morphism of theA-modules.
We can use the above construction to equipHom(Γ1,Γ2) (whereΓ1, Γ2 are

UqslN -module finitely generated freeC[Matm,n]q-modules) with the structure of
aUqslN -module. Using our main theorem, one can prove that

the subspaceD(Γ1,Γ2)q ⊂ Hom(Γ1,Γ2) is UqslN -invariant; thus, the
composition map

D(Γ2)q
⊗

D(Γ1,Γ2)q
⊗

D(Γ1)q → D(Γ1,Γ2)q

(hereD(Γ)q denotesD(Γ,Γ)q) makesD(Γ1,Γ2)q into a UqslN -module left
D(Γ2)q-module and aUqslN -module rightD(Γ1)q-module.

The second type ofC[Matm,n]q-modules consists of thoseUqslN -module
C[Matm,n]q-modules which admitgood trivializations. LetUq(f + p−) be the
Hopf subalgebra inUqslN generated byFi, K

±1
i , i = 1, . . . N − 1, andEj ,

j = 1, . . . n − 1, n + 1, . . . N − 1. Suppose that a finitely generated free
C[Matm,n]q-moduleΓ isUqslN -module (in particular,Γ is aUq(f+ p−)-module
C[Matm,n]q-module). A trivializationπ : Γ → V

⊗
C[Matm,n]q is called good

trivialization if it satisfies the following conditions: i)V is a finite dimensional
Uq(f+p−)-module with the propertyFnv = 0 for anyv ∈ V ; ii) π is a morphism
of theUq(f+ p−)-modules (hereV

⊗
C[Matm,n]q is endowed withUq(f+ p−)-

module structure via the coproduct∆ : Uq(f + p−) → Uq(f + p−)
⊗
Uq(f +

p−)).
It turn out that the set of good trivializations of aC[Matm,n]q-moduleΓ is not

too wide: if π1 : Γ → V1
⊗
C[Matm,n]q, π2 : Γ → V2

⊗
C[Matm,n]q are two

good trivializations, then

π2 · π−1
1 = T ⊗ 1 (29)

with T ∈ HomUq(f+p−)(V1, V2).
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We distinguish this type ofC[Matm,n]q-modules because for them the notion
of a q-differential operator with constant coefficients is well-defined. Specifically,
letD(Matm,n)0

q be the unital subalgebra inD(Matm,n)q generated by ∂∂zαa , a =

1, . . . n, α = 1, . . .m. Suppose thatΓ1, Γ2 areUq(f + p−)-moduleC[Matm,n]q-
modules with good trivializationsπ1 : Γ1 → V1

⊗
C[Matm,n]q, π2 : Γ2 →

V2
⊗
C[Matm,n]q. We set

D(Γ1,Γ2)0
q = {D ∈ D(Γ1,Γ2)q|π2 ·D ·π1

−1 ∈ Hom(V1, V2)
⊗

D(Matm,n)0
q}.

Elements ofD(Γ1,Γ2)0
q can be treated as q-analogues of the differential opera-

tors with constant coefficients in sections of holomorphic bundles. Independence
D(Γ1,Γ2)0

q of trivializations directly follows from the relationship (29) between
two arbitrary good trivializations of aC[Matm,n]q-module.
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A FAMILY OF ∗-ALGEBRAS ALLOWING WICK ORDERING: FOCK
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Abstract. We consider an abstract Wick ordering as a family of relations on elementsai and define
∗-algebras by these relations. The relations are given by a fixed operatorT : h⊗ h→ h⊗ h, where
h is one-particle space, and they naturally define both a∗-algebra and an inner-product spaceHT ,
〈 · , · 〉T . If a∗i denotes the adjoint, i.e.,〈aiϕ,ψ〉T = 〈ϕ, a∗iψ〉T , then we identify when〈 · , · 〉T
is positive semidefinite (the positivity question!). In the case of deformations of the CCR-relations
(theqij-CCR and the twisted CCR’s), we work out the universalC∗-algebrasA, and we prove that,
in these cases, the Fock representations of theA’s are faithful.

1. Introduction

In recent papers [1–6], the applications of Lie superalgebras, quantum groups,q-
algebras in mathematical physics have stimulated interest in the∗-algebras defined
by generators and relations and their representations by Hilbert space operators.
For example, the representations of various deformations of canonical commu-
tation relations (CCR), in particular Fock representaion, were used to construct
non-classical models of theoretical physics and probability, such as the free quon
gas (see [7]),q-Gaussian processes (see [8])etc.
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† prosk@imath.kiev.ua
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The constructions are interesting from both physical and mathematical points
of view. They give a canonical realisation of a given deformed relation like the
Fock representation, or a realisation by differential operators. When the rela-
tions can be realised by bounded operators, it is useful to study the universal
envelopingC∗-algebras for them and the stability of isomorphism classes of these
C∗-algebras on parameters (see for example [9, 10]). The stability question [10]
refers to how theC∗-isomorphism classes depend on variations in the deformation
variables; in some cases there are open regions in parameter space where the
C∗-isomorphism class is constant.

In the present paper we give a review of some results concerning a wide class
of deformed relations of the following form

a∗i aj = δij1 +
d∑

k,l=1

T klij ala
∗
k, i, j = 1, . . . , d, (1)

whereT klij ∈ C, such thatT klij = T̄ lkji . These relations generate a∗-algebra al-
lowing Wick ordering orWick algebra (see [4, 11–13]). The∗-algebraAT has a
naturally defined Fock vacuum “state” or functional and there is a corresponding
inner-product spaceHT , 〈 · , · 〉T , such that, in the associated GNS-representation,
the identity〈aiϕ,ψ〉T = 〈ϕ, a∗iψ〉T holds. But the vacuum functional is generally
not positive, and the operators in the representation not bounded, and therefore the
Hermitian inner product〈 · , · 〉T is then generally not positive semidefinite. The
positivity question, and the faithfulness of the Fock representation, are the foci of
this paper.

Note that (1) generalizes some well-known types of deformed commutation
relations, quantum groups, etc. (see [1, 3, 5, 6, 8, 12, 14, 15]). The basic exam-
ples for us will be theqij-CCR introduced and studied by M. Bożejko and R.
Speicher (see [8, 12]), and the twisted canonical commutation relations (TCCR)
constructed by W. Pusz and S.L. Woronowicz (see [6]). They were further studied
in [16] where the traditional Cuntz algebra of [17] was considered as a base-point,
corresponding toqij = 0, and the variation of theC∗-isomorphism class was
considered as a function ofqij .

EXAMPLE 1. qij-CCR,2d generators:

C〈ai, a∗i | a∗i aj = δij1 + qijaja
∗
i , i, j = 1, . . . , d,

qji = qij ∈ C, |qij | ≤ 1〉
EXAMPLE 2. The Wick algebra for TCCR:

a∗i ai = 1 + µ2aia
∗
i − (1− µ2)

∑
k<i

aka
∗
k, i = 1, . . . , d

a∗i aj = µaja
∗
i , i 6= j, 0 < µ < 1
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We present some sufficient conditions on the coefficients{T klij } for the exis-
tence of the Fock representation, and we describe the structure of the Fock space.
We also give conditions for the faithfulness of Fock representation and describe
its kernel in the degenerated case (see Sec. 3).

Further we consider the universalC∗-algebras for the examples above. Specif-
ically we show that the universalC∗-algebras forqij-CCR (TCCR) can be
generated by isometries (partial isometries) satisfying a certain algebraic relation.
The description of theC∗-isomorphism classes for different values of parameters
is presented.

We also show that the Fock representations ofqij-CCR for some values of
parameters, and TCCR for any value of parameter, are faithful on theC∗-level,
i.e., the Fock representations of the correspondingC∗-algebras are faithful (see
Sec. 4).

The complete proofs of all results presented here can be found in [4, 10, 11,
18, 19]. For detailed information about∗-representations of finitely generated∗-
algebras see [20].

2. Basic definitions

Firstly let us construct a canonical realization of Wick algebra, i.e., the∗-algebra
on the relations (1), with coefficients{T klij }: we denote it byW (T ). To do it
consider a finite-dimensional Hilbert spaceH = 〈e1, . . . , ed〉. Construct the full
tensor algebra overH, H∗, denoted byT (H,H∗). Then

W (T ) ∼= T (H,H∗)/〈e∗i ⊗ ej − δij1−
∑

T klij ei ⊗ e∗j 〉, (2)

dividing out by the two-sided ideal on the relations (1). Note that in this realization
the subalgebra ofW (T ) generated by{ai} is identified with theT (H).

The following operators were presented in [11] as a useful tool for computa-
tion with Wick algebras and their Fock representations.

T : H⊗H 7→ H⊗H, T ek ⊗ el =
∑
i,j

T
lj
ikei ⊗ ej , T = T ∗

Ti : H⊗n 7→ H⊗n, Ti = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗T ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i−1

,

Rn : H⊗n 7→ H⊗n, Rn = 1 + T1 + T1T2 + · · ·+ T1T2 · · ·Tn−1,

Pn : H⊗n 7→ H⊗n, P2 = R2, Pn+1 = (1⊗ Pn)Rn+1. (3)

The sequences of operatorsP0 = 1vac, R1 = 1 + T , P1 = (1 ⊗ 1)(1 + T ) ∼=
1 +T ,R2, . . . , Pn are defined recursively. It is the sequencePn which enters into
the positivity question. The other one is only intermediate. The Hermitian inner
product〈 · , · 〉T onTn(H) is then

〈φ, ψ〉Tn(H) := 〈ϕ,Pnψ〉tensor (4)
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where〈 · , · 〉tensor is just the usual inner product onTn(H) induced by〈 · , · 〉 on
H. Hence, we need conditions onT : H⊗H → H⊗H which make the operators
Pn positive for alln. For example, in terms of these operators we can describe the
procedure of Wick ordering, i.e., the commutation formula for fixed generatora∗i
and any homogeneous polynomial inak, k = 1, . . . , d (see [21]).

Proposition 27. LetX ∈ H⊗n. Then

e∗i ⊗X = µ(e∗i )RnX + µ(e∗i )
d∑

k=1

T1T2 · · ·Tn(X ⊗ ek)e∗k, (5)

whereµ(e∗i ) : T (H) 7→ T (H) is defined as follows

µ(e∗i )1 = 0, µ(e∗i )ei1 ⊗ · · · ⊗ ein = δii1ei2 ⊗ · · · ⊗ ein .
For our examples the operatorT have the following form:

EXAMPLE 3.

Tei ⊗ ej = qijej ⊗ ei, i, j = 1, . . . , d.

EXAMPLE 4.

Tei ⊗ ei = µ2ei ⊗ ei
Tei ⊗ ej = µej ⊗ ei , i < j

Tei ⊗ ej = −(1− µ2)ei ⊗ ej + µej ⊗ ei , i > j.

Note that for both examples, the operatorT satisfies abraid condition , i.e.,
on theH⊗3 we have

T1T2T1 = T2T1T2. (6)

The operators presented above appear naturally in construction of Fock represen-
tation ofW (T ). This notion is induced in the obvious way from the classical one
for CCR, however, in general, the Fock space is not always symmetric (see [11]).

Definition 28. The representationλ0 acting on the spaceT (H) by formulas

λ0(ai)ei1 ⊗ · · · ⊗ ein = ei ⊗ ei1 ⊗ · · · ⊗ ein , n ∈ N ∪ {0}
λ0(a∗i )1vac = 0

where the action ofλ0(a∗i ) on the monomials of degreen ≥ 1 is determined
inductively using the basic relations, is called the Fock representation.

It is easy to see thatλ0(ai) are the classical creation operators andλ0(a∗i ) are
twisted annihilation ones. Evidently in this way we have constructed a representa-
tion ofW (T ), but not yet a∗-representation. To do it one has to supply theT (H)
by the appropriate inner product (see [11]). This is where formula (4) comes in.
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Definition 29. The Fock inner product (see [11]) is the unique semilinear
Hermitian form〈 , 〉T onT (H) such that

〈λ0(ai)X,Y 〉T = 〈X,λ0(a∗i )Y 〉T , X, Y ∈ T (H).

Similarly to the definition of Fock representation, the Fock inner product on
T (H) can be computed inductively. It is easy to see that forX ∈ H⊗m,Y ∈ H⊗n,
n 6= m, we have〈X,Y 〉T = 0. On the components of powers0, 1, the Fock inner
product concides with the standard one. For anyX,Y ∈ H⊗n, n ≥ 2, we have

〈X,Y 〉T = 〈X,PnY 〉,
which agrees with (4) above. The operatorPn = Pn(T ) are given in (3).

Evidently, if we want to extend the Fock representation ofW (T ) to the∗-
representation by Hilbert-space operators, we should require that all the operators
Pn, n = 2, . . . , be positive semidefinite, and that the subspace

I =
⊕
n≥2

KerPn

determines the kernel of the Fock inner product. Consequently the Hilbert-space
structure of the Fock space emerges.

3. The structure of the Fock representation

In this section we present some sufficient conditions posed on the operatorT for
the positive-definite property of the Fock inner product, and we show that the
kernel of the Fock representation is generated as a∗-ideal by the kernel of the
Fock inner product. In particular, when the Fock inner product is strictly positive
definite (i.e., when it has zero kernel), the Fock representationπF is faithful, i.e.,
Ker(πF ) = 0.

There are several sufficient conditions on the operatorT for the Fock inner
product to be positive. It was shown in [10] that for sufficiently small coefficients
we have strict positivity of the Fock inner product. This result is a corollary of the
stability of the universal envelopingC∗-algebra for the Wick algebra around the
zero base point (see Sec. 4).

Theorem 30. If the operatorT satisfies the norm bound‖T‖ < √2 − 1, then
Pn > 0, n ≥ 2, where> refers to strict positivity.

Another kind of sufficient condition is positivity of operatorT (see [11]).

Theorem 31. If T ≥ 0 thenPn > 0, n ≥ 2.

In the present paper we will suppose that the operatorT satisfies thebraid
condition (6). It was shown by M. Bożejko and R. Speicher (see [12]) that, in
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this case, the operatorsPn, n ≥ 2, have a natural description in terms of quasi-
multiplicative operator-valued mappings on the Coxeter groupSn. The following
is a corollary of a much more general result proved in [12] for mappings on the
general Coxeter group.

Theorem 32. Let T satisfy the braid condition(6) and suppose−1 ≤ T ≤ 1.
ThenPn ≥ 0. Moreover, if‖T‖ ≤ 1, thenPn > 0, and the operators of the Fock
representation are bounded, i.e., the Fock representation is by bounded operators.
(Recall, the Fock representation of the undeformed CCR-algebra is unbounded.)

We present a more precise version of this theorem. Namely, we give the de-
scription of kernel ofPn in the degenerate case. As an immediate corollary of
this result we have the strict positivity ofPn, n ≥ 2, for braidedT satisfying the
inequality−1 < T ≤ 1 (see [4]).

Theorem 33. LetW (T ) be a Wick algebra with braided operatorT satisfying
the norm bound‖T‖ ≤ 1. Then for anyn ≥ 1,

KerPn+1 =
∑

k+l=n−1

H⊗k ⊗ Ker(1 + T )⊗H⊗l =
n∑
k=1

Ker(1 + Tk).

Let us illustrate this result on the examples.

EXAMPLE 5. Forqij-CCR we have the alternatives:

− |qij | < 1 for anyi, j = 1, . . . , d.
In this case−1 < T < 1 and the Fock inner product is strictly positive.
− |qij | = 1, i 6= j.
For these values of parameters we have−1 ≤ T ≤ 1 and

Ker(1 + T ) = 〈ajai − qijaiaj , i < j〉.
EXAMPLE 6. For the TCCR Wick algebra, we have−1 ≤ T ≤ 1, and

Ker(1 + T ) = 〈ajai − µaiaj , i < j〉.
The following proposition shows that, for algebras with braided operatorT ,

the kernel of the Fock representation is generated as a∗-ideal by the kernel of the
Fock inner product, i.e.,

I =
⊕
n≥2

KerPn.

Proposition 34. LetW (T ) be a Wick algebra with braided operatorT and let the
Fock representationλ0 be positive(i.e., the Fock inner product is positive definite).
Then

Kerλ0 = I ⊗ T (H∗) + T (H)⊗ I∗.
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Combining this proposition with Theorem 33, we get:

Theorem 35. LetW (T ) be a Wick algebra with the braided operatorT , −1 ≤
T ≤ 1. Then the kernel of the Fock representation is generated as a∗-ideal by
Ker(1 + T ).

This theorem implies that, forqij-CCR, |qij | < 1, the Fock representation is
faithful. For the TCCR Wick algebra, and forqij-CCR, the kernels of the Fock
representations are generated by the familiesajai − µaiaj , i < j, andajai −
qijaiaj , i < j, respectively; and hence the Fock representations of quotients of
these algebras by the∗-ideals generated by these families are faithful.

4. Universal bounded representation

In this section we discuss universal envelopingC∗-algebras forqij-CCR and Wick
TCCR.

Let us recall that the universalC∗-algebra for a certain∗-algebraA is also
called the universal bounded representation. It is theC∗-algebraA with natural
homomorphismψ : A → A such that, for any homomorphismϕ : A → B, where
B is aC∗-algebra, there exists a unique homomorphismθ : A → B satisfying
θ ◦ ψ = ϕ. It can be obtained by the completion ofA/J with the following
C∗-seminorm onA:

‖a‖ = sup
π
‖π(a)‖,

wheresup is taken over all bounded representations ofA, andJ is the kernel of
this seminorm. Obviously this process requires thatsupπ ‖π(a)‖ < ∞ for any
a ∈ A. Note that for our examples this condition is satisfied.

The universal bounded representation forqij-CCR was studied in [9, 10]. The
following proposition follows from the main result of paper [10].

Proposition 36. LetA{qij} be the universal envelopingC∗-algebra forqij-CCR,

|qij | <
√

2− 1. Then there exists the natural isomorphism

A{qij} ∼= A0,

whereA0 is aC∗-algebra generated by the isometriessi, i = 1, . . . , d, satisfying

s∗i sj = 0, i 6= j

i.e., isomorphism with the Cuntz-Toeplitz algebra.

This implies that the Fock representation ofA{qij} is faithful.
Let us consider theA{qij}, |qij | = 1, for any i 6= j andqii := qi, |qi| < 1

(i.e., unimodular off-diagonal terms). In this case, we do not have stability on the
whole set of parameters (see [18]).
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Proposition 37. If for any i 6= j we have|qij | = 1, thenA{qij} is isomorphic to
theC∗-algebraA0,{qi} generated by isometries{si, i = 1, . . . , d} satisfying

s∗i sj = qijsjs
∗
i , sjsi = qijsisj , i 6= j,

and the Fock representation ofA{qij} is faithful.

Finally for the universalC∗-algebraAµ for the Wick TCCR, we have the
isomorphismAµ

∼= A0 for any−1 < µ < 1, where theC∗-algebraA0 is
generated by the partial isometries{si, i = 1, . . . , d} satisfying the relations

s∗i sj = δij

1−∑
k<i

sks
∗
k

 , i, j = 1, . . . , d.

The Fock representation ofAµ is faithful also (see [19]).
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NONSTANDARD QUANTIZATION OF THE ENEVLOPING ALGEBRA

U(so(n)) AND ITS APPLICATIONS

A. U. KLIMYK ∗
Institute for Theoretical Physics, Kiev, Ukraine

1. Introduction

Quantum orthogonal groups, quantum Lorentz groups and their corresponding
quantum algebras are of special interest for modern mathematical physics (see,
for example, [1] and [2]). M. Jimbo [3] and V. Drinfeld [4] definedq-deformations
(quantum algebras)Uq(g) for all simple complex Lie algebrasg by means of Car-
tan subalgebras and root subspaces (see also [5] and [6]). Reshetikhin, Takhtajan
and Faddeev [7] defined quantum algebrasUq(g) in terms of the quantumR-
matrix satisfying the quantum Yang–Baxter equation. However, these approaches
do not give a satisfactory presentation of the quantum algebraUq(so(n,C)) from a
viewpoint of some problems in quantum physics and representation theory. When
considering representations of the quantum groupsSOq(n + 1) andSOq(n, 1)
we are interested in reducing them onto the quantum subgroupSOq(n). This
reduction would give an analogue of the Gel’fand–Tsetlin basis for these represen-
tations. However, definitions of quantum algebras mentioned above do not allow
the inclusionsUq(so(n + 1,C)) ⊃ Uq(so(n,C)) andUq(son,1) ⊃ Uq(son). To
be able to exploit such reductions we have to considerq-deformations of the Lie
algebraso(n+1,C) defined in terms of the generatorsIk,k−1 = Ek,k−1−Ek−1,k

(whereEis is the matrix with elements(Eis)rt = δirδst) rather than by means
of Cartan subalgebras and root elements. To construct such deformations we have
to deform trilinear relations for elementsIk,k−1 instead of Serre’s relations (used
in the case of Jimbo’s quantum algebras). As a result, we obtain the associative
algebra which will be denoted asU ′q(so(n,C)). Thisq-deformation was first con-
structed in [8]. It permits one to construct the reductions ofU ′q(so(n+ 1,C) onto
U ′q(so(n,C).

∗ aklimyk@bitp.kiev.ua
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In the classical case, the imbeddingSO(n) ⊂ SU(n) (and its infinitesimal
analogue) is of great importance for nuclear physics and in the theory of Rieman-
nian symmetric spaces. It is well known that in the framework of Drinfeld–Jimbo
quantum groups and algebras one cannot construct the corresponding embedding.
The algebraU ′q(so(n,C)) allows to define such an embedding [9], that is, it is
possible to define the embeddingU ′q(so(n,C)) ⊂ Uq(sln), whereUq(sln) is a
Drinfeld-Jimbo quantum algebra.

As a disadvantage of the algebraU ′q(so(n,C)) we have to mention the diffi-
culties with Hopf algebra structure. Nevertheless,U ′q(so(n,C)) turns out to be a
coideal inUq(sln) (see [9]) and this fact allows us to consider tensor products of fi-
nite dimensional irreducible representations ofU ′q(so(n,C)) for many interesting
cases (see [10] for the caseU ′q(so(3,C))).

For convenience, below we denote the Lie algebraso(n,C) by son and the
q-deformed algebraU ′q(so(n,C)) byU ′q(son).

Finite dimensional irreducible representations of the algebraU ′q(son) were
constructed in [8]. The formulas of action of the generators ofU ′q(son) upon the
basis (which is aq-analogue of the Gel’fand–Tsetlin basis) are given there. A
proof of these formulas and some their corrections were given in [11]. However,
finite dimensional irreducible representations described in [8] and [11] are rep-
resentations of the classical type. They areq-deformations of the corresponding
irreducible representations of the Lie algebrason, that is, atq → 1 they turn into
representations ofson.

The algebraU ′q(son) has other classes of finite dimensional irreducible rep-
resentations which have no classical analogue. These representations are singular
at the limitq → 1. They are described in [12]. Note that the description of these
representations for the algebraU ′q(so3) is given in [10].

As in the case of Drinfeld–Jimbo quantum algebras, whenq is a root of unity,
then the representation theory ofU ′q(son) is much more rich. In this case all ir-
reducible representations ofU ′q(son) are finite dimensional. The corresponding
theorem is proved by means of an analogue of the Poincaré–Birkhoff–Witt theo-
rem forU ′q(son) (this analogue was announced in [13]) and use central elements
of this algebra forq a root of unity (they are derived in [14]).

2. Theq-deformed algebraU ′q(son)

The universal enveloping algebraU(son) of the Lie algebrason has two different
structures. The first one is determined by roots and root elements of the Lie algebra
son. A deformation ofU(son) equipped with this structure leads to the Drinfeld–
Jimbo quantum algebraUq(son). The second structure ofU(son) is related to
the basis of the Lie algebrason consisting of skew-symmetric matrices. A de-
formation ofU(son) equipped with this structure leads to the algebraU ′q(son)
considered in this paper.

kievarwe.tex; 12/03/2001; 3:49; p.339



NONSTANDARD QUANTIZATION OF U(so(n)) 333

In order to obtainU ′q(son) we have to take determining relations for the gener-
ating elementsI21, I32, · · · , In,n−1 of U(son) and to deform these relations. The
elementsI21, I32, · · · , In,n−1 belong to the basisIij , i > j, of the Lie algebra
son. The matricesIij , i > j, are defined asIij = Eij − Eji, whereEij is the
matrix with entries(Eij)rs = δirδjs. The universal enveloping algebraU(son) is
generated by a part of the basis elementsIij , i > j, namely, by the elementsI21,
I32, · · · , In,n−1. These elements satisfy the relations

I2
i,i−1Ii+1,i − 2Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 = −Ii+1,i,

Ii,i−1I
2
i+1,i − 2Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 = −Ii,i−1,

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i− j| > 1.

The following theorem is true [15] for the enveloping algebraU(son).

Theorem 1.The universal enveloping algebraU(son) is isomorphic to the com-
plex associative algebra (with a unit element) generated by the elementsI21,
I32, · · · , In,n−1 satisfying the above relations.

We make theq-deformation of these relations by2→ [2] := (q2− q−2)/(q−
q−1) = q+ q−1. As a result, we obtain the complex associative algebra generated
by elementsI21, I32, · · · , In,n−1 satisfying the relations

I2
i,i−1Ii+1,i − (q + q−1)Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 = −Ii+1,i, (1)

Ii,i−1I
2
i+1,i − (q + q−1)Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 = −Ii,i−1, (2)

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i− j| > 1. (3)

This algebra was introduced by us in [8] and is denoted byU ′q(son). Hereq takes
any complex value such thatq 6= 0,±1.

Let us formulate for the algebraU ′q(son) an analogue of the Poincaré–
Birkhoff–Witt theorem. For this we determine (see [16] and [17]) inU ′q(son)
elements analogous to the matricesIij , i > j, of the Lie algebrason. In order
to give them we use the notationIk,k−1 ≡ I+

k,k−1 ≡ I−k,k−1. Then fork > l + 1
we define recursively

I+
kl := [Il+1,l, Ik,l+1]q ≡ q1/2Il+1,lIk,l+1 − q−1/2Ik,l+1Il+1,l, (4)

I−kl := [Il+1,l, Ik,l+1]q−1 ≡ q−1/2Il+1,lIk,l+1 − q1/2Ik,l+1Il+1,l.

The elementsI+
kl, k > l, satisfy the commutation relations

[I+
ln, I

+
kl]q = I+

kn, [I+
kl, I

+
kn]q = I+

ln, [I+
kn, I

+
ln]q = I+

kl for k > l > n, (5)

[I+
kl, I

+
nr] = 0 for k > l > n > r and k > n > r > l, (6)
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[I+
kl, I

+
nr]q = (q − q−1)(I+

lr I
+
kn − I+

krI
+
nl) for k > n > l > r. (7)

For I−kl, k > l, the commutation relations are obtained from these relations by
replacingI+

kl by I−kl andq by q−1.
The algebraU ′q(son) can be considered as an associative algebra (with unit

element) generated byI+
kl, 1 ≤ l < k ≤ n, satisfying the relations (5)–(7).

Similarly, U ′q(son) is an associative algebra generated byI−kl, 1 ≤ l < k ≤ n,
satisfying the corresponding relations. Now the Poincaré–Birkhoff–Witt theorem
for the algebraU ′q(son) can be formulated as follows.

Theorem 2.The elements

I+
21
m21I+

31
m31 · · · I+

n1
mn1I+

32
m32I+

42
m42 · · · I+

n2
mn2 · · · I+

n,n−1
mn,n−1 , mij ∈ N,

form a basis of the algebraU ′q(son). This assertion is true ifI+
ij , i < j, are

replaced by the corresponding elementsI−ij .

The proof of this theorem is given in [18].

3. The embeddingU ′q(son)→ Uq(sln)

The algebraU ′q(son) can be embedded into the Drinfeld–Jimbo quantum algebra
Uq(sln) (see [9]). This quantum algebra is generated by the elementsEi, Fi,
K±1
i = q±Hi , i = 1, 2, · · · , n− 1, satisfying the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEjK
−1
i = qaijEj , KiFjK

−1
i = q−aijFj , [Ei, Fj ] = δij

Ki −K−1
i

q − q−1
,

E2
i Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0,

F 2
i Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i = 0,

[Ei, Ej ] = 0, [Fi, Fj ] = 0 for |i− j| > 1,

whereaij are elements of the Cartan matrix of the Lie algebrasln.
Let us introduce the elements

Ĩj,j−1 = Fj−1 − qq−Hj−1Ej−1, j = 2, 3, · · · , n,
of Uq(sln). It is proved in [9] that there exists the algebra homomorphismϕ :

U ′q(son) → Uq(sln) uniquely determined by the relationsϕ(Ii+1,i) = Ĩi+1,i,
i = 1, 2, · · · , n − 1. The following theorem states that this homomorphism is an
isomorphism.

Theorem 3. The homomorphismϕ : U ′q(son) → Uq(sln) determined by the

relationsϕ(Ii+1,i) = Ĩi+1,i, i = 1, 2, · · · , n− 1, is an isomorphism ofU ′q(son) to
Uq(sln).
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In [16] the authors of that paper state that this homomorphism is an isomor-
phism and say that it can be proved by means of the Diamond Lemma. However,
we could not restore their proof and found another one in [18]. Theorem 3 has the
following important corollary, proved in [18]:

Corollary. Finite dimensional irreducible representations ofU ′q(son) separate
elements of this algebra, that is, for anya ∈ U ′q(son) there exists a finite
dimensional irreducible representationT ofU ′q(son) such thatT (a) 6= 0.

This corollary is true forq not a root of unity as well as forq a root of unity.

Problems:We think that the algebraU ′q(son) is connected with some extension of
the Drinfeld–Jimbo quantum algebraUq(son). This conjecture is proved in [10]
for the casen = 3. It is shown there that there is an isomorphismϕ : U ′q(so3) →
Ûq(sl2), whereÛq(sl2) is an extension of the quantum algebraUq(sl2).

4. Central elements ofU ′q(son)

Let us form the elements

J±k1,k2,... ,k2r
= q∓

r(r−1)
2

∑′

s∈S2r

εq±1(s)I±ks(2),ks(1)
I±ks(4),ks(3)

· · · I±ks(2r),ks(2r−1)
, (8)

of the algebraU ′q(son) (see [13]), where1 ≤ k1 < k2 < · · · < k2r ≤ n and
summation runs over all permutationss of indicesk1, k2, · · · , k2r such that

ks(2) > ks(1), ks(4) > ks(3), . . . , ks(2r) > ks(2r−1),

ks(2) < ks(4) < . . . < ks(2r).

The symbolεq±1(s) ≡ (−q±1)`(s) stands for theq-analogue of Levi–Chivita an-
tisymmetric tensor,̀(s) means the length of permutations. Note that in the limit
q → 1 both sets in (8) reduce to the set of components of rank2r antisymmetric
tensor operator of Lie algebrason.

Theorem 4.The elements

C(2r)
n =

∑
1≤k1<k2<...<k2r≤n

qk1+k2+...+k2r−r(n+1)J+
k1,k2,... ,k2r

J−k1,k2,... ,k2r
, (9)

wherer = 1, 2, · · · , {n/2} ({a} means the integral part ofa), are Casimir ele-
ments ofU ′q(son), that is, they belong to the center of this algebra. Ifn is even,

then the elementsC(n)+
n ≡ J+

1,2,··· ,n andC(n)−
n ≡ J−1,2,··· ,n also belong to the

center ofU ′q(son).

Central elements of this theorem are found in [13]. It was conjectured in [13]
that forq not a root of unity the set of central elementsC(2r)

n , r = 1, 2, · · · , {(n−
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1)/2}, and the elementC(n)+
n (if n is even) generates the center of the algebra

U ′q(son).
Let us give explicitly some central elements. ForU ′q(so3) andU ′q(so4) we have

C
(2)
3 = q−1I2

21 + I+
31I
−
31 + qI2

32 = qI2
21 + I−31I

+
31 + q−1I2

32,

C
(2)
4 = q−2I2

21 + I2
32 + q2I2

43 + q−1I+
31I
−
31 + qI+

42I
−
42 + I+

41I
−
41,

C
(4)+
4 =C

(4)−
4 =q−1I21I43 − I+

31I
+
42 + qI32I

+
41=qI21I43 − I−31I

−
42 + q−1I32I

−
41.

The quadratic central element ofU ′q(son) is of the form

C(2)
n =

∑
1≤i<j≤n

qi+j−n−1I+
jiI
−
ji .

If q is a root of unity, then (as in the case of Drinfeld–Jimbo quantum alge-
bras) there exist additional central elements ofU ′q(son) which are given by the
following theorem, proved in [14]:

Theorem 5.Let qk = 1 for k ∈ N andqj 6= 1 for 0 < j < k. Then the elements

C(k)(I+
rl ) =

{(k−1)/2}∑
j=0

(
k − j
j

)
1

k − j
( i

q − q−1

)2j
I+
rl
k−2j

, r > l, (10)

where{(k − 1)/2} is the integral part of the number(k − 1)/2, belong to the
center ofU ′q(son).

It is well-known that a Drinfeld–Jimbo algebraUq(g) for q a root of unity
(qk = 1) is a finite dimensional vector space over the center ofUq(g). The same
assertion is true for the algebraU ′q(son). By Theorem 5, any element(I+

ij )
s, s ≥ k,

can be reduced to a linear combination of(I+
ij )

r, r < k, with coefficients from
the centerC of U ′q(son). Now our assertion follows from this sentence and from
Poincaŕe–Birkhoff–Witt theorem forU ′q(son). Using this assertion, it is proved
the following theorem [18]:

Theorem 6.If q is a root of unity, then any irreducible representation ofU ′q(son)
is finite dimensional.

It can be proved more strong assertion: there exists a fixed positive integerr such
that dimension of any irreducible representation ofU ′q(son) at q a root of unity
does not exceedr. Of course, the numberr depends onk (recall thatk is defined
by qk = 1).

5. Irreducible representations ofU ′q(son)

We first assume thatq is not a root of unity. Then the algebraU ′q(son) has two
types of irreducible finite dimensional representations:
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(a) representations of the classical type (atq → 1 they give the corresponding
finite dimensional irreducible representations of the Lie algebrason);

(b) representations of the nonclassical type (they do not admit the limitq → 1
since in this point the representation operators are singular).

Let us describe the classical type representations of the algebrasU ′q(son),
n ≥ 3, which areq-deformations of the finite dimensional irreducible repre-
sentations of the Lie algebrason. As in the case of irreducible representations
of the Lie algebrason, they are given by setsmn consisting of{n/2} numbers
m1,n,m2,n, ...,m{n/2},n (here{n/2} denotes integral part ofn/2) which are all
integral or all half-integral and satisfy the dominance conditions

m1,2p+1 ≥ m2,2p+1 ≥ ... ≥ mp,2p+1 ≥ 0, (11)

m1,2p ≥ m2,2p ≥ ... ≥ mp−1,2p ≥ |mp,2p| (12)

for n = 2p + 1 andn = 2p, respectively. These representations are denoted
by Tmn . For a basis in a representation space we can take theq-analogue of the
Gel’fand–Tsetlin basis which is obtained by successive reduction of the represen-
tationTmn to the subalgebrasU ′q(son−1), U ′q(son−2), · · · , U ′q(so3), U ′q(so2) :=
U(so2). As in the classical case, its elements are labeled by Gel’fand–Tsetlin
tableaux

{ξn} ≡


mn

mn−1

. . .
m2

 , (13)

where the components ofmr andmr−1 satisfy the betweenness conditions

m1,2p+1 ≥ m1,2p ≥ m2,2p+1 ≥ m2,2p ≥ ... ≥ mp,2p+1 ≥ mp,2p ≥ −mp,2p+1,
(14)

m1,2p ≥ m1,2p−1 ≥ m2,2p ≥ m2,2p−1 ≥ ... ≥ mp−1,2p−1 ≥ |mp,2p|. (15)

The explicit formulas for the operatorsTmn(Ij,j−1), j = 2, 3, · · · , n, of the
representationTmn of U ′q(son) and their proofs are given in [11].

The representations, described above, are called representations of the classi-
cal type, since under the limitq → 1 the operatorsTmn(Ij,j−1) turn into the corre-
sponding operatorsTmn(Ij,j−1) for irreducible finite dimensional representations
with highest weightsmn of the Lie algebrason.

Let us give the explicit expressions for Casimir operators (corresponding to
the central elements, described in Theorem 4) in the classical type irreducible
representations ofU ′q(son). For this we define the generalized factorial elementary
symmetric polynomials. Fixing an arbitrary sequence of complex numbersa =
(a1, a2, · · · ), for eachr = 0, 1, 2, · · · , N , we introduce these polynomials inN
variablesz1, z2, · · · , zN by the formula

er(z1, z2, . . . , zN |a) =
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=
∑

1≤p1<p2<···<pr≤N
(zp1 − ap1)(zp2 − ap2−1) . . . (zpr − apr−r+1).

By Schur Lemma, Casimir operators in the irreducible finite dimensional rep-
resentations, characterized by the numbers(m1,n, m2,n, . . . , mN,n),N = {n/2},
are multiple to the identity operator:Tmn(C

(2r)
n ) = χ

(2r)
mn 1.

Theorem 7[13]. The eigenvalue of the operatorTmn(C
(2r)
n ) is

χ(2r)
mn

= (−1)rer([l1,n]2, [l2,n]2, . . . , [lN,n]2|a),

wherea = ([ε]2, [ε + 1]2, [ε + 2]2, . . . ), lk,n = mk,n + N − k + ε. (Hereε = 0
for n = 2N andε = 1

2 for n = 2N + 1.) If n = 2N is even, then

Tmn(C(n)+
n ) = Tmn(C(n)−

n ) =
(√−1

)N
[l1,n][l2,n] . . . [lN,n]1.

The algebraU ′q(son) has also irreducible finite dimensional representations
T of nonclassical type, that is, such that the operatorsT (Ij,j−1) have no clas-
sical limit q → 1. They are given by setsε := (ε2, ε3, · · · , εn), εi = ±1,
and by setsmn consisting of{n/2} half-integral (but not integral) numbers
m1,n,m2,n, · · · ,m{n/2},n (here {n/2} denotes the integral part ofn/2) that
satisfy the dominance conditions

m1,2p+1 ≥ m2,2p+1 ≥ ... ≥ mp,2p+1 ≥ 1/2,

m1,2p ≥ m2,2p ≥ ... ≥ mp−1,2p ≥ mp,2p ≥ 1/2

for n = 2p + 1 andn = 2p, respectively. These representations are denoted by
Tε,mn .

For a basis in the representation space we can use an analogue of the basis
(13). Its elements are labeled by the tableaux

{ξn} ≡


mn

mn−1

. . .
m2

 ,
where the components ofm2p+1 andm2p satisfy the betweenness conditions

m1,2p+1 ≥ m1,2p ≥ m2,2p+1 ≥ m2,2p ≥ ... ≥ mp,2p+1 ≥ mp,2p ≥ 1/2,

m1,2p ≥ m1,2p−1 ≥ m2,2p ≥ m2,2p−1 ≥ ... ≥ mp−1,2p−1 ≥ mp,2p.

Explicit formulas for the operatorTε,mn(Ij,j−1), j = 2, 3, · · · , n, of the
representationTε,mn of Uq(son) are given in [12].

Theorem 8. The representationsTε,mn are irreducible. The representations
Tε,mn and Tε′,m′n are pairwise nonequivalent for(ε,mn) 6= (ε′,m′n). For any
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admissible(ε,mn) and m′n the representationsTε,mn and Tm′n are pairwise
nonequivalent.

The algebraU ′q(son) has non-trivial one-dimensional representations. They
are special cases of the representations of the nonclassical type. They are de-
scribed as follows. Letε := (ε2, ε3, · · · , εn), εi = ±1, and let mn =
(m1,n,m2,n, · · · ,m{n/2},n) = (1

2 ,
1
2 , · · · , 1

2). Then the corresponding represen-
tationsTε,mn are one-dimensional and are given by the formulas

Tε,mn(Ik+1,k)|ξn〉 =
εk+1

q1/2 − q−1/2
|ξn〉.

Thus, to everyε := (ε2, ε3, · · · , εn), εi = ±1, there corresponds a one-
dimensional representation ofU ′q(son).

Conjecture. If q is not a root of unity, then every irreducible finite dimensional
representation ofU ′q(son) is equivalent to one of the representationsTmn of the
classical type or to one of the representationsTε,mn of the nonclassical type.

This conjecture is proved for the algebraU ′q(so3) (see [19]).

Irreducible representations of the algebraU ′q(son) for q a root of unity are
described in [18]. For construction of these irreducible representations ofU ′q(son),
it is used the method of D. Arnaudon and A. Chakrabarti [20] for construction of
irreducible representations of the quantum algebraUq(sln) when q is a root of
unity. If qp = 1 andp is an odd integer, then there exists the series of irreducible
representations ofU ′q(son) which act onpN -dimensional vector space (whereN is
the number of positive roots of the Lie algebrason) and are given byr = dim son
complex parameters. These representations are irreducible for generic values of
these parameters. These representations constitute the main class of irreducible
representations ofU ′q(son). For some special values of the representation param-
eters inCr the representations are reducible. These reducible representations give
many other classes of (degenerate) irreducible representations which are given
by less number of parameters or by parameters, values of which cover subsets of
Cr of Lebesgue measure 0. As in the case of irreducible representations of the
quantum algebraUq(sln), it is difficult to enumerate all irreducible representa-
tions of these classes. However, the most important classes of these degenerate
representations can be constructed. In particular, in [18] we give2n−1 classes of
these representations, which are an analogue of the nonclassical type irreducible
representations ofU ′q(son) for q not a root of unity.
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6. Restriction of representations ofUq(sln) to U ′q(son)

In this section we assume thatq is not a root of unity. The algebraU ′q(son) is
a subalgebra of the quantum algebraUq(sln). Therefore, we may restrict irre-
ducible finite dimensional representations of the algebraUq(sln) to the subalgebra
U ′q(son). Generally speaking, such a restriction leads to reducible representations
of the subalgebra. It was proved in [16] that each irreducible finite dimensional
representation ofUq(sln) under restriction toU ′q(son) decomposes into a direct
sum of irreducible representations of this subalgebra. N. Iorgov has proved (will
be published) that such a decomposition contains only irreducible representations
of the classical type. However, explicit formula for the decomposition is known
only for the restrictionUq(sl3)→ U ′q(so3).

Irreducible finite dimensional representations ofUq(sl3) are given by three
integers̀ = (l1, l2, l3) such thatl1 ≥ l2 ≥ l3. We denote such the representation
byR`. Irreducible finite dimensional classical type representations ofU ′q(so3) are
denoted byTk, wherek is a nonnegative integral or half-integral number.

In order to find which irreducible representations ofU ′q(so3) are contained in
the decomposition ofR` ↓U ′q(so3) we split in [21] the spectrumSpec R`(I21) of
the representation operatorR`(I21) into spectra of operatorsTk(I21) of irreducible
representationsTk of U ′q(so3). (It is proved in [21] that such splitting is unique.)
As a result, we have that

R` ↓U ′q(so3)=
∑
s

′ s+l2−l3∑
k=s

Tk

if l1 − l2 is odd and

R` ↓U ′q(so3)=
∑
s

′ s+l2−l3∑
k=s

Tk ⊕
∑
r

′
Tr

if l1− l2 is even, where
∑′
s means the summation over the valuesl1− l2, l1− l2−

2, l1 − l2 − 4, · · · , 1 (or 2) and the last sum
∑′
r is over the valuesl2 − l3, l2 −

l3−2, l2− l3−4, · · · , 0 (or 1). Note that these decompositions coincide with the
corresponding decompositions for the reductionSU(3)→ SO(3).

7. Applications

There are the following main applications of the algebraU ′q(son) and its irre-
ducible representations:

1. The theory of orthogonal polynomials and special functions (especially, the
theory of q-orthogonal polynomials and basic hypergeometric functions). This
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direction is not good worked out. Some ideas of such applications can be found in
[22].

2. The algebraU ′q(son) (espesially its particular caseU ′q(so3)) is related to the
algebra of observables in 2+1 quantum gravity on the Riemmanian surfaces (see
the papers [23]–[25]).

3. A q-analogue of the Riemannian symmetric spaceSU(n)/SO(n) is con-
structed by means of the algebraU ′q(son). This construction is fulfilled in the
paper [9].

4. A q-analogue of the theory of harmonic polynomials (q-harmonic polyno-
mials on quantum vector spaceRnq ) is constructed by using the algebraU ′q(son).
In particular, aq-analogue of different separations of variables for theq-Laplace
operator is given by means of this algebra and its subalgebras. This theory is
contained in the papers [16] and [26].

5. The algebraU ′q(son) also appear in the theory of links in the algebraic
topology (see [27]).
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CAN THE CABIBBO MIXING ORIGINATE FROM

NONCOMMUTATIVE EXTRA DIMENSIONS?

ALEXANDRE GAVRILIK ∗
Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

Abstract. Treating hadronic flavor symmetries with quantum algebrasUq(sun) leads to interesting
consequences such as: new mass sum rules for hadrons1−, 1

2

+
, 3

2

+
of improved accuracy; possi-

bility to label different flavors topologically - by torus winding number; properly fixed deformation
parameterq in case of baryons is linked in a simplest way to the Cabibbo angleθC, that suggests
for θC the exact valueπ

14
. In this connection, we discuss the possibility that this angle and the

Cabibbo mixing as a whole take its origin in noncommutativity of some additional, with regard to
3+1, space-time dimensions.

1. Introduction

The problem of fermion flavors, mixings and masses (see e.g., [1]) belongs to
most puzzling ones in particle physics. The Cabibbo mixing first introduced for
three lightest flavors in the context of weak decays [2] involves the angleθC.
Importance of this concept was further confirmed after its generalization to mixing
of 3 families [3]. Due to Wolfenstein parametrization [4] of CKM matrix, the
Cabibbo angle now plays a prominent role: not only CKM matrix elementsVij ,
but also the quark (and even lepton) mass ratios are often expressed as powers
of small parameterλ = sin θC ≈ 0.22. No doubt, it is necessary to know the
value ofλ as precise as possible. In this respect, the main bonus of our approach
to flavor symmetries, based on quantum algebras, is that it suggeststheoretically
motivatedexact value forθC, namely,θC = π

14 . As further implication, it leads
us to a conjecture of possible noncommutative-geometric origin of the Cabibbo
mixing, and our aim here is to argue this may indeed be the case. Below, when
treating baryon masses, we restrict ourselves with 4 flavors including u-, d-, s-, and
c- quarks. Basic tool of the approach used is the representation theory of quantum
algebras [5]Uq(sun) adopted, instead of conventionalSU(n), to describe flavor
symmetries classifying hadrons intomultiplets.

∗ omgavr@bitp.kiev.ua
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344 A. GAVRILIK

2. Vector meson masses:q-deformation replaces (singlet) mixing

We use1 Gelfand-Tsetlin basis vectors for meson states from(n2− 1)-plet of
’n-flavor’ Uq(un) embedded into{(n+1)2−1}-plet of ’dynamical’Uq(un+1);

construct mass operator̂Mn invariant under the ’isospin+hypercharge’q-algebra
Uq(u2) from generators of ’dynamical’ algebraUq(un+1) (e.g.,M̂3 = M01 +

γ3A34A43 + δ3A43A34); calculate the expressions for massesmVi ≡ 〈Vi|M̂3|Vi〉
- these involve symmetry breaking parametersγ3, δ3 and theq-parameter. In
particular, forn = 3 we obtain

mρ = Mo, mK∗ = Mo − γ3, mω8 = Mo − 2
[2]q
[3]q

γ3, (1)

where[x]q ≡ qx−q−x
q−q−1 is theq-number that ’deforms’ a numberx and, to have equal

masses for particles and their anti’s,δ3 =γ3 was set.q-Dependence appears only
in the mass ofω8 (isosinglet inUq(su3)-octet). ExcludingM0, γ3, theq-analog of
Gell–Mann - Okubo (GMO) relation is [8] :

mω8 +

(
2

[2]q
[3]q
− 1

)
mρ = 2

[2]q
[3]q

mK∗ . (2)

In the limit q = 1 (i.e., at [2]
[3] = 2

3 ), this reduces to usual GMO formula3mω8 +

mρ = 4mK∗ which needs singlet mixing [9]. However, it also yields

mω8 +mρ = 2mK∗ if q = eiπ/5 (then, [2]q = [3]q) . (3)

With mω8 ≡ mφ, and no mixing, eq.(3) coincides with nonet mass formula of
Okubo [10] agreeingideallywith data [11].

For 3 ≤ n ≤ 6 mass operator is constructed analogously. Again, calcula-
tions show: only isosingletsω15, ω24, ω35 of (n2 − 1)-plets ofUq(un) contain
q-dependence. As result, we get theq-deformed mass relations [8, 6, 7]:

[n](q) mωn2−1
+ (bn;q + 2n− 4) mρ = 2 mD∗n + (cn;q + 2)

n−1∑
r=3

mD∗r , (4)

bn;q ≡ n cn;q − 6 [n]2(q) +

(
24

[2]q
− 1

)
[n](q), cn;q ≡ 2 [n]2(q) −

8

[2]q
[n](q),

where[n](q) ≡ [n]q/[n−1]q. Then, natural fixation by setting[n]q = [n−1]q,
n = 4, 5, 6, leads to the higher analogs of Okubo’s sum rule:

mω15 + (5− 8/[2]q4)mρ = 2 mD∗ + (4− 8/[2]q4)mK∗

(5)

1 For more details concerning this approach see refs. [6, 7, 13].
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mω24 + (9− 16/[2]q5)mρ = 2 mDb
∗ + (4− 8/[2]q5)(mD∗ +mK∗)

(6)

mω35 + (13− 24/[2]q6)mρ = 2 mDt
∗ + (4− 8/[2]q6)(mDb

∗ +mD∗ +mK∗).
(7)

Hereqn = eiπ/(2n−1) are the values that solve eqns.[n]q − [n−1]q = 0. Like in
the case withmω8 ≡ mφ, it is meant in (5)-(7) thatJ/ψ is put in place ofω15, Υ
in place ofω24, toponium in place ofω35 (i.e., nomixing!).

Theq-polynomials[n]q − [n−1]q have a topological meaning.

3. Torus knots and topological labelling of flavors

Polynomials[n]q− [n−1]q ≡ Pn(q), by their roots, reduceq-analogs (2), (4) to
realistic mass sum rules (MSR) (3), (5)-(7). And, due to property(i) Pn(q) =
Pn(q−1), (ii) Pn(1) = 1, they coincide [8, 7] with such knot invariants as
Alexander polynomials∆(q){(2n−1)1} of (2n− 1)1-torus knots. E.g.,

[3]q − [2]q = q2 + q−2 − q − q−1 + 1 ≡ ∆(q){51},

[4]q − [3]q = q3 + q−3 − q2 − q−2 + q + q−1 − 1 ≡ ∆(q){71}
correspond to the51- and71-knots. Since theq-deuce in (4) can be linked to the
trefoil (or 31-) knot: [2]q − 1 = q + q−1 − 1 ≡ ∆(q){31}, all the q-dependence
in masses ofωn2−1 and in coefficients in (2),(4) is expressible through Alexander

polynomials. Namely,[3]q
[2]q

= 1 + ∆{51}
[2]q

= 1 + ∆{51}
∆{31}+1 ,

[n]q
[n− 1]q

= 1 +
∆{(2n− 1)1}

[n− 1]q
= 1 +

∆{(2n− 1)1}
1 +

∑n−1
r=2 ∆{(2r − 1)1}

, n = 4, 5, 6.

(8)

The valuesqn are thus roots of respective Alexander polynomials. For eachn, the
’senior’ (numerator) polynomial in[3]q

[2]q
and (8) is specified: by its root, it ’singles

out’ the corresponding MSR fromq-deformed analog.
Thus, theq-parameter for eachn is fixed in a rigid way as a rootqn of ∆{(2n−

1)1}, contrary to the choice ofq by fitting in other phenomenological applications
[12]. Moreover, using flavorq-algebras along with ’dynamical’q-algebras accord-
ing toUq(un) ⊂ Uq(un+1), we gain: the torus knots51, 71, 91, 111 are put into
correspondence [6, 7] with vector quarkoniass̄, cc̄, bb̄, andtt̄ respectively. In a
sense, the polynomialPn(q) ≡ [n]q− [n−1]q by its rootq(n) determines the value
of q (deformation strength) for eachn and thus serves asdefining polynomial
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for the MSR/quarkonium/flavor corresponding ton. Hence, the applying ofq-
algebras suggests a possibility oftopological labeling of flavors: fixed numbern
corresponds to2n−1 overcrossings of 2-strand braids whose closure gives these
(2n − 1)1-torus knots. With the form(2n−1, 2) of same torus knots this means
the correspondencen↔ w ≡ 2n− 1, w being the winding number around tube
of torus (winding number around hole is 2).

4. Definingq-polynomials for octet baryon mass sum rules

Analogous scheme was applied to baryons1
2

+
too. Excluding undetermined con-

stantsM0, α, β from final obtained expressions forMN , MΞ, MΛ, MΣ leads to
theq-deformed mass relations (MRs) of the form [6, 7, 13]

[2]MN +
[2]

[2]− 1
MΞ = [3]MΛ +

(
[2]2

[2]− 1
− [3]

)
MΣ

+
Aq
Bq

(
MΞ + [2]MN − [2]MΣ −MΛ

)
(9)

whereAq andBq are certain polynomials of[2]q with non-overlapping sets of
zeros. It is important that different dynamical representations produce differing
pairsAq, Bq. Any Aq possesses the factor([2]q − 2) and thus the ’classical’ zero
q = 1. In the limit q = 1 eachq-deformed mass relation reduces to the standard
GMO sum ruleMN + MΞ = 1

2MΣ + 3
2MΛ for octet baryons (its accuracy is

0.58%). At some values ofq which are zeros of particularAq other thanq = 1,
we obtain MSRs which hold with better accuracy than the GMO one. The two
new MSRs

q = eiπ/6 ⇒ MN +
1+
√

3

2
MΞ =

2√
3
MΛ +

9−√3

6
MΣ (0.22%) (10)

q = eiπ/7 ⇒ MN +
1

[2]q7−1
MΞ =

1

[2]q7−1
MΛ +MΣ (0.07%) (11)

result [6,7,13] from two different dynamical representationsD(1) andD(2) whose
respective polynomialsA(1)

q andA(2)
q possess zerosq = eiπ/6 andq = eiπ/7. The

choice withq = eiπ/7 turns out to be the best possible one.2

The sum rule (10) was first derived [6] from a specific dynamical representa-
tion (irrep)D(1) ofUq(u4,1). However, the ’compact’ dynamicalUq(u5) is equally
well suited. Among the admissible dynamical irreps there exist an entire seriesof

2 In sec. 8 we argue that this value ofq is linked to the Cabibbo angle:θ8 = π
7

=2θC.
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irreps (numbered by integerm, 6 ≤ m < ∞) which produce the corresponding
infinite set of MSRs:

MN +
1

[2]qm − 1
MΞ =

[3]qm
[2]qm

MΛ +
( [2]qm

[2]qm − 1
− [3]qm

[2]qm

)
MΣ (12)

with qm = eiπ/m. Each of these shows better agreement with datathan the clas-
sical GMO one. Few of them, including the MSRs (10), (11) and the ’classical’
GMO which corresponds toq∞ = 1, are shown in thetable.

θ = π
m (RHS−LHS),MeV

|RHS−LHS|
RHS ,%

π/∞ 26.2 0.58

π/30 25.42 0.56

π/12 20.2 0.44

π/8 10.39 0.23

π/7 3.26 0.07

π/6 -10.47 0.22

Comparing (12) with (9) shows that the vanishing ofAq
Bq

is crucial for obtaining
this discrete set of MSRs and for providing a kind of ’discrete fitting’. Hence,Aq
serves asdefiningpolynomial for the corresponding MSR.

Since[2]q7 = q7 + 1
q7

= 2 cos π7 , the MSR (11) takes the equivalent form

MΞ −MN +MΣ −MΛ = (2 cos
π

7
)(MΣ −MN ) (13)

which exhibits some similarity with decuplet mass formula given below.

5. Decuplet baryons: universalq-deformed mass relation

In the case ofSU(3)-decuplet baryons32
+

, the convensional 1st order symmetry
breaking yields [9] equal spacing rule (ESR) for isoplet members in10-plet. Em-
pirical data show forMΣ∗−M∆, MΞ∗−MΣ∗ andMΩ−MΞ∗ noticeable deviation
from ESR:152.6 MeV ↔ 148.8 MeV ↔ 139.0 MeV . Use of theq-algebras
Uq(sun) instead ofSU(n) provides natural improvement. From evaluations of
decuplet masses in two particular irreps of the dynamical algebraUq(u4,1), the
q-deformed mass relation

(1/[2]q)(MΣ∗ −M∆ +MΩ −MΞ∗) = MΞ∗ −MΣ∗ , [2]q ≡ q + q−1,
(14)

was derived [14]. As proven there, this mass relation is universal - it results from
each admissible irrep (which containsUq(su3)-decuplet embedded in20-plet of
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Uq(su4)) of the dynamicalUq(u4,1). With empirical masses [11], the formula
(14) is successful if[2]q ' 1.96. Pure phaseq = eiθ (or [2]q = 2 cos θ) with
θ = θ10 ' π

14 provides excellent agreement with data (below, we argue that
θ10 = θC). Notice a similarity of eq.(14) with the MR

(1/2)(MΣ∗ −M∆ +MΩ −MΞ∗) = MΞ∗ −MΣ∗ (15)

obtained earlier in diverse contexts [15]: by tensor method, in additive quark
model with general pair interaction, in a diquark–quark model, in modern chi-
ral perturbation theory. Such model-independence of (15) stems because each of
these approaches accounts 1st and 2ndorder ofSU(3)-breaking.

The q-deformed MSR (14) is universal even in a wider sense: it results
from admissible irreps (containingUq(su4) 20-plet) of bothUq(su4,1) and the
’compact’ dynamicalUq(su5). Say, within a dynamical irrep{4000} of Uq(su5)
calculation yields:M∆ = M10 + β, MΣ∗ = M10 + [2]β + α, MΞ∗ =
M10 + [3]β + [2]α, MΩ = M10 + [4]β + [3]α, from which (14) stems. On
the other hand, these four masses can be comprised by single formula

MDi = M
(
Y (Di)

)
= M10 + α[1−Y (Di)] + β[2−Y (Di)] (16)

with explicit dependence onY (hypercharge). Ifq = 1, this reduces toMDi =
M̃10 +a Y(Di), i.e.,linear dependence on hyperchargeY (or strangeness) where
a = −α− β, M̃10 = M10 + α+ 2β.

6. NonpolynomialSU(3)-breaking effects in baryon masses

Formula (16)involves highly nonlinear dependenceof mass on hypercharge (it is
Y that causesSU(3)-breaking for decuplet). Since forq-number[N ] we have
[N ] = qN−1 + qN−3 + . . . + q−N+3 + q−N+1 (N terms) this shows expo-
nential Y -dependence of masses. Such high nonlinearity makes (14) and (16)
radically different from the abovementioned result (15) of traditional treatment
that accounts for effects linear and quadratic inY .

For octet baryon masses, high nonlinearity (nonpolynomiality) in SU(3)-
breaking effectively accounted by the model was demonstrated in [13]. For this,
the expressions for (isoplet members of) octet masses with explicit dependence
on hyperchargeY and isospinI, throughI(I + 1), are used. The typical matrix
element (µ1, µ2 are functions of irrep labelsm15,m55):

〈Bi|A34A45A54A43|Bi〉 = [2]−1[3]−1
(
[Y/2][Y/2+1]− [I][I+1]

)
µ1(m15,m55)

−[2]−1[5]−1
(
[Y/2− 1][Y/2− 2]− [I][I + 1]

)
µ2(m15,m55),
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contributing to octet baryon masses, illustrates the dependence. From definition of
q-bracket[n] = sin(nh)

sin(h) , q=exp(ih), it is clearly seen that baryon masses depend
on hyperchargeY and isospinI (hence, onSU(3)-breaking effects) in highly
nonlinear -nonpolynomial- fashion.

The ability to take into account highly nontrivial symmetry breaking effects by
applyingq-analogsUq(sun) of flavor symmetries is much alike the fact demon-
strated in [16] that, by exploiting appropriatefreeq-deformed structure one is able
to efficiently study the properties of (undeformed) quantum-mechanical systems
with complicated interactions.

7. To use or not to use the Hopf-algebra structure

An alternative, as regards (9), version ofq-deformed analog can be derived [13]
using for the symmetry breaking part of mass operator a component ofq-tensor
operator- this clearly implies [17] the Hopf algebra structure (comultiplication,
antipode) of theUq(sun) quantum algebras. Let us briefly discuss such version.
We useq-tensor operators(V1, V2, V3) resp.(V1̄, V2̄, V3̄) formed from elements
of Uq(su4) and transforming as3 resp.3∗ under the adjoint action ofUq(su3).
With H1,H2 as Cartan elements and with notation[X,Y ]q ≡ XY − qY X, the
components(V1, V2, V3) read

V1 = [E+
1 , [E

+
2 , E

+
3 ]q]qq

−H1/3−H2/6, V2 = [E+
2 , E

+
3 ]qq

H1/6−H2/6,

V3 = E+
3 q

H1/6+H2/3, (17)

and similarly for(V1̄, V2̄, V3̄) (see [13]), of which we here only give

V3̄ = qH1/6+H2/3E−3 . (18)

Clearly,Uq(su3) is broken toUq(su2). Like in the nondeformed case ofsu(3)
broken to its isospin subalgebrasu(2), the form of mass operator is

M̂ = M̂0 + M̂8 (19)

whereM̂0 is Uq(su3)-invariant andM̂8 transforms asI = 0, Y = 0 component
of tensor operator of8-irrep ofUq(su3). If |Bi〉 is a basis vector of carrier space
of 8 which corresponds to some baryonBi, the mass ofBi is given byMBi =

〈Bi|M̂ |Bi〉. The irrep8 occurs twice in the decomposition of8⊗8. This, and the
Wigner-Eckart theorem forUq(sun) [18] applied toq-tensor operators under irrep

8 of Uq(su3), lead to the mass operator of the form̂M = M01 + αV
(1)

8 + βV
(2)

8

and thus to

MBi = 〈Bi|(M01 + αV
(1)

8 + βV
(2)

8 )|Bi〉 (20)
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whereV (1)
8 andV (2)

8 are two dictinct tensor operators which both transform as
I=0, Y =0 component of irrep8 of Uq(su3);M0, α, β - undetermined constants
depending on details of dynamics. From3 ⊗ 3∗ = 1 ⊕ 8, 3∗ ⊗ 3 = 1 ⊕ 8 it
is seen that the operatorsV3V3̄ andV3̄V3 from (17),(18) are just the isosinglets
needed in eq.(20). As result, mass operator in (20) with redefinedM0, α, β is
M̂ = M01 + αV3V3̄ + βV3̄V3, or

M̂ = M01 + αE+
3 E
−
3 q

Y + βE−3 E
+
3 q

Y (21)

whereY = (H1 + 2H2)/3 is hypercharge. Matrix elements (20) witĥM from
(21) are evaluated by embedding8 in a particular representation ofUq(su4). Say,
if one takes the adjoint15 of Uq(su4), the evaluation of baryon masses yields:

MN = M0 + βq, MΣ = M0, MΛ = M0 + [2]
[3](α + β), MΞ = M0 + αq−1.

ExcludingM0, α andβ, we finally obtain

[3]MΛ +MΣ = [2](q−1MN + qMΞ). (22)

This alternativeq-analog of octet mass relation looks much simpler than the for-
merq-analog (9). This sameq-relation (22) results from embedding8 in any other
admissible dynamical representation. What concerns empirical validity [11] of
(22), there is no other way to fix theq-parameter as by usual fitting (for each
of the valuesq1,2 = ±1.035, q3,4 = ±0.903

√−1, theq-MR (22) indeed holds
within experimental uncertainty). This is in sharp contrast with theq-analogs (9)
for which there exists an appealing possibility to fixq in a rigid way by zeros of
relevant polynomialAq.

Summarizing we should stress that, although the use of Hopf-algebra structure
leads to simple and mathematically appealing result eq.(22), from the physical
(phenomenological) viewpoint the version (9) ofq-analog obtained by apply-
ing only the tools of representation theory of quantum algebras and not strictly
q-covariant symmetry breaking part in mass operator, provides much more inter-
esting results. Among these is the degeneracy lifting and the possibility to choose
among a variety of dynamical representations, defining polynomials and, thus,
within discrete set of viable mass sum rules. That led us to the best MSR (11) (or
(13)) for octet baryons.

8. On the connection: deformation parameter↔ Cabibbo angle

In 3-flavor case of vector mesons, the deformation angleπ
5 that determinesφ-

meson in (3) coincides remarkably withω-φ mixing angle (known [11] to be
θωφ = 36◦) of traditionalSU(3)-based scheme. In other words, the concept of
q-deformed flavor symmetriesis closely relatedwith the issue of singlet mixing.

For pseudoscalar (PS) mesons, the generalization [19] of GMO-formula

f2
πm

2
π + 3f2

ηm
2
η = 4f2

Km
2
K with 1/f2

π + 3/f2
η = 4/f2

K , (23)
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involves decay constants as coefficients. Presented in the equivalent form3

m2
π +

9f2
K/f

2
π

4− f2
K/f

2
π

m2
η = 4

f2
K

f2
π

m2
K , (24)

it is to be compared with ourq-analog(2) of GMO rewritten for PS mesons (with
masses squared), namely

m2
π +

[3]

2[2]− [3]
m2
η8

=
2[2]

2[2]− [3]
m2
K . (25)

Without singlet mixing, it is satisfied for (the mass of)physicalη-meson put
instead ofη8 at properly fixedq = qPS, and just this is meant below.

The two generalizations (24) resp. (25) yield the standard GMO mass formula
in the corresponding limit of single parameter,fK

fπ
→ 1 resp.q → 1. Moreover,

the following identification is valid:

f2
K

f2
π

←→
1
2 [2]

2[2]− [3]
,

3f2
K/f

2
π

4− f2
K/f

2
π

←→
1
3 [3]

2[2]− [3]
, (26)

from which, using[3]q = [2]2q − 1, we get

[2]± = 1− ξπ,K ±
√(

1− ξπ,K
)2

+ 1 , ξπ,K ≡ (4f2
K/f

2
π)−1. (27)

The ratiofK/fπ is related to the Cabibbo angle. This is evident either from the

formula (see [20]):tan2 θC = m2
π

m2
K

[
fK
fπ
− m2

π

m2
K

]−1
, or from the formula

ΓK→µν
Γπ→µν

= (tan θC)2 f
2
K

f2
π

MK

Mπ

(
1− (Mµ/MK)2

1− (Mµ/Mπ)2

)2

for the ratio of weak decay rates usually applied to determine [21, 11]fK/fπ in
terms of the Cabibbo angle, with known empirical data on decay rates and masses.
Thus, the value offK/fπ is expressible throughθC. Together with (26), (27) this
implies: within our scheme, the (realistic valueqPS of) deformation parameter is
directly connected with the Cabibbo angle.

Similar conclusion can be arrived at in another, more general context. In [22],
theq-deformed lagrangian for gauge fields of the Weinberg - Salam (WS) model
invariant under the quantum-group valued gauge transformations was constructed.
The obtained formula [22]

F 0
µν = Trq(Fµν) [2(q2 + q−2)]−1/2 = Bµν cos θ + F 3

µν sin θ, (28)

3 Note that having used the additional constraint in (23) we are led to the single dimensionless
quantity fK

fπ
involved in the multipliers of masses.
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F 3
µν = ∂µA

3
ν − ∂νA3

µ + ieab3(AaµA
b
ν −AaνAbµ) + [A3

µ, Bν ]− [A3
ν , Bµ],

Bµν = ∂µBν − ∂νBµ + [Bµ, Bν ] + [Aaµ, A
a
ν ]

where

tan θ = (1− q2)/(1 + q2), (29)

exhibits a mixing of theU(1)-componentBµ with nonabelian componentsAaµ
(the third one). Introducing the new potentials̃Aµ = Bµ cos θ + A3

µ sin θ,

Zµ = −Bµ sin θ + A3
µ cos θ yields nothing but definition of physical photon

Ãµ and Z-boson of WS model, whereθ coincides with the Weinberg angle,
θ = θW. Since atθ = 0 the potentialsBµ andA3

µ get completely unmixed
whereas nonzeroθ (i.e., nontrivialq-deformation) provides proper mixing as a
characteristic feature of the WS model, it is thus seen that theweak mixing is
adequately modelled by theq-deformation. Moreover, formula analogous to (29),
i.e., tan θW = q

√
[4]/([2][3]) [1/2] [3/2] , was obtained [23] within somewhat

different approach toq-deforming the standard model.
Hence, theq-deformation realizes proper mixing in the sector of gauge fields,

thus providing explicit connection between the weak angle and the deformation
parameterq.

On the other hand, the relation found in [24], namely

θW = 2(θ12 + θ23 + θ13), (30)

connectsθW with the Cabibbo angleθ12 ≡ θC (and two other Kobayashi-Maskawa
anglesθ13, θ23; as we deal with two lightest families, we have to discardθ13, θ23).
The importance of (30) consists in that it links two apparently different mixings:
one involved inbosonic(interaction) sector, the other infermionic(matter) sector
of the electroweak standard model.

Combining (29) and (30) (θ23, θ13 omitted) we conclude: the Cabibbo angle
should be connectedwith the q-parameter of a quantum-group (or quantum-
algebra) based structure applied in the fermionsector.

It remains to recall that all our treatment in secs.4-7 using theq-algebras
Uq(sun) concerned just the fermion sector although at the level of baryons as 3-
quark bound states of fundamental fermions. Hence, it is natural to assert that there
exists direct connection of theq-parameter involved in (13), (14) with fermion
mixing angle. Settingθ10 = g(θC) andθ8 = h(θC) we find for the functions
g(θC) andh(θC) remarkably simple explicit form:

θ10 = θC, θ8 = 2 θC. (31)

With θ8 = π
7 (see (11)) this suggests for Cabibbo angle the exact valueπ

14 .
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9. Discussion

Quantum groups and their Hopf dual counterpart - quantum universal envelop-
ing algebras (QUEA) incorporate transformation/covariance properties of related
quantum vector spaces [25]. In the context of quantum homogeneous spaces (see
e.g., [26]) the corresponding quantum groups act (say, on their noncommuting
’coordinates’) in a nonlinear way, as it was exemplified [27] with quantumCPq

n.
Both quantum groups and their dual QUEA provide necessary tools in construct-
ing [28, 17] covariant differential calculi and particular noncommutative geometry
on quantum spaces.

In the case at hand theinternal symmetries, underlying our treatment of
baryon mass sum rules in secs. 4-7 and based on the brokenUq(sun) (n ≥ 3) as
well as unbroken isospinUq(su2) q-algebras, are closely related to certain internal
or extra (as regards the Minkowski spaceM3,1) spacetime dimensions. From this
we infer the following. The above justified direct link (31) between the Cabibbo
angleθC = π

14 and theq-parameter, which measures strength ofq-deformation
for the q-algebrasUq(sun) of flavor symmetry, can be viewed as an indication
of noncommutative-geometric origin of fermion mixing. In this context, the value
θC = π

14 of the Cabibbo angle would serve as the noncommutativity measure of
relevant quantum space (responsible for the mixing and explicitly as yet unknown)
in extra dimensions. Concerning the latter, one can assert that their number is not
less than 2.
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NONCLASSICAL TYPE REPRESENTATIONS OF NONSTANDARD

QUANTIZATION OF ENVELOPING ALGEBRAS U(so(n)), U(so(n,1))

AND U(iso(n))

NIKOLAI IORGOV ∗
Bogoliubov Institute for Theoretical Physics, Kiev, Ukraine

1. Introduction

Quantum orthogonal groups, quantum Lorentz group and their corresponding
quantum algebras are of special interest for modern physics [1]. M. Jimbo [2] and
V. Drinfeld [3] definedq-deformations (quantum algebras)Uq(g) for all simple
complex Lie algebrasg by means of Cartan subalgebras and root subspaces (see
also [4]). However, this approach does not give a satisfactory presentation of the
quantum algebraUq(so(n,C)) from a viewpoint of some problems in quantum
physics and representation theory. When considering representations of the quan-
tum algebrasUq(son+1) andUq(son,1) we are interested in reducing them onto
the quantum subalgebraUq(son). This reduction would give the analogue of the
Gel’fand-Tsetlin basis for these representations. However, definitions of quan-
tum algebras mentioned above do not allow the inclusionsUq(so(n + 1,C)) ⊃
Uq(so(n,C)) andUq(son,1) ⊃ Uq(son). To be able to exploit such reductions
we have to considerq-deformations of the Lie algebraso(n + 1,C) defined in
terms of the generatorsIk,k−1 = Ek,k−1 − Ek−1,k (whereEis is the matrix with
elements(Eis)rt = δirδst) rather than by means of Cartan subalgebras and root
elements. To construct such deformations we have to deform trilinear relations
for elementsIk,k−1 instead of Serre’s relations (as in the case of Jimbo’s quantum
algebras). As a result, we obtain the associative algebra which will be denoted as
U ′q(so(n,C)).

Theseq-deformations were first constructed in [5]. They permit one to con-
struct the reductions ofU ′q(son+1) andU ′q(son,1) ontoU ′q(son). Theq-deformed

∗ mmtpitp@bitp.kiev.ua
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algebraU ′q(so(n,C)) leads forn = 3 to theq-deformed algebraU ′q(so(3,C))
defined by A. Odesskii [6] and D. Fairlie [7].

In the classical case, the embeddingSO(n) ⊂ SU(n) (and its infinitesimal
analogue) is of great importance for nuclear physics and in the theory of Rieman-
nian symmetric spaces. It is well known that in the framework of Drinfeld–Jimbo
quantum groups and algebras one cannot construct the corresponding embedding.
The algebraU ′q(so(n,C)) allows to define such an embedding [8,9], that is, it is
possible to define the embeddingU ′q(so(n,C)) ⊂ Uq(sln), whereUq(sln) is the
Drinfeld–Jimbo quantum algebra.

As a disadvantage of the algebraU ′q(so(n,C)) we have to mention the diffi-
culties with Hopf algebra structure. Nevertheless,U ′q(so(n,C)) turns out [8,9] to
be a coideal inUq(sln).

Finite dimensional irreducible representations of algebraU ′q(so(n,C)) were
constructed in [5]. The formulas of action of the generators of the algebra upon
the q-analogue of the Gel’fand–Tsetlin basis are given there. A proof of these
formulas and some their corrections were given in [10]. However, finite dimen-
sional irreducible representations described in [5] and [10] are representations
of the classical type. They areq-deformations of the corresponding irreducible
representations of the Lie algebraso(n,C), that is, atq → 1 they turn into
representations ofso(n,C).

The algebraU ′q(so(n,C)) has other classes of finite dimensional irreducible
representations which have no classical analogue. These representations are sin-
gular at the limitq → 1. They were described in [11]. Note that the description of
these representations for the algebraU ′q(so(3,C)) is given in [12]. A classification
of irreducible∗-representations of real forms of the algebraU ′q(so(3,C)) is given
in [13].

There exists an algebra, closely related to the algebraU ′q(so(n,C)), which is a
q-deformation of the universal enveloping algebraU(ison) of the Lie algebraison
of the Euclidean groupISO(n) (see [14]). It is denoted asUq(ison). Irreducible
representations of the classical type of the algebraUq(ison) were described in
[14]. A proof of the corresponding formulas was given in [15]. However, the
algebraUq(ison), q ∈ R, has irreducible representations of the nonclassical
type. A description of these representations is the aim of this paper. Note that
the description of these representations forUq(iso2) is given in [16]. The second
aim of this paper is to describe irreducible representations of nonclassical type
of the algebraU ′q(son,1) which is a real form of the algebraU ′q(so(n + 1,C)).
Representations of the classical type of this algebra are described in [5] and [17].

We assume throughout the paper thatq is a fixed positive number. Thus, we
give formulas for representations for these values ofq. However, these representa-
tions can be considered for any values ofq not coinciding with a root of unity. For
this we have to treat appropriately square roots in formulas for representations or
to rescale basis vector in such a way that formulas for representations would not
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contain square roots.
For convenience, we denote the Lie algebraso(n,C) by son and the algebra

U ′q(so(n,C)) byU ′q(son).

2. Theq-deformed algebrasU ′q(son) andUq(ison)

In our approach [5] to theq-deformation of the algebrasU(son) we define the
q-deformed algebraU ′q(so(n,C)) as the associate algebra (with a unit) generated
by the elementsIi,i−1, i = 2, 3, ..., n satisfying the defining relations

Ii,i−1I
2
i−1,i−2− (q+ q−1)Ii−1,i−2Ii,i−1Ii−1,i−2 + I2

i−1,i−2Ii,i−1 = −Ii,i−1, (1)

I2
i,i−1Ii−1,i−2− (q+ q−1)Ii,i−1Ii−1,i−2Ii,i−1 + Ii−1,i−2I

2
i,i−1 = −Ii−1,i−2, (2)

Ii,i−1Ij,j−1 = Ij,j−1Ii,i−1, |i− j| > 1. (3)

In the limit q → 1 formulas (1)–(3) give the relations defining the universal
enveloping algebraU(son). Note also that relations (1) and (2) principally differ
from theq-deformed Serre relations in the approach of Jimbo [2] and Drinfeld [3]
to quantum orthogonal algebras by a presence of nonzero right hand side and by
possibility of the reduction

U ′q(son) ⊃ U ′q(son−1) ⊃ · · · ⊃ U ′q(so3).

Recall that in the standard Jimbo–Drinfeld approach to the definition of quantum
algebras, the algebrasUq(so2m) and the algebrasUq(so2m+1) are distinct series
of quantum algebras which are constructed independently of each other.

Various real forms of the algebrasU ′q(son) are obtained by imposing cor-
responding∗-structures. The compact real formU ′q(so(n)) is defined by the
∗-structure

I∗i,i−1 = −Ii,i−1, i = 2, 3, ..., n.

The noncompactq-deformed algebrasU ′q(sop,r) wherer = n− p are singled out
respectively by means of the∗-structures

I∗i,i−1 = −Ii,i−1, i 6= p+ 1, i ≤ n, I∗p+1,p = Ip+1,p.

Among the noncompact realq-algebrasU ′q(sop,r), the algebrasU ′q(son−1,1) (a
q-analogue of the Lorentz algebras) are of special interest.

We also define the algebraUq(ison) which is a nonstandard deformation of the
universal enveloping algebra of the Lie algebraison of the Euclidean Lie group
ISO(n). It is the associative algebra (with a unit) generated by the elements
I21, I32, · · · , In,n−1, Tn such that the elementsI21, I32, · · · , In,n−1 satisfy the
defining relations of the subalgebraU ′q(son) and the additional defining relations
are

I2
n,n−1Tn − (q + q−1)In,n−1TnIn,n−1 + TnI

2
n,n−1 = −Tn,
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T 2
nIn,n−1 − (q + q−1)TnIn,n−1Tn + In,n−1T

2
n = 0,

Ik,k−1Tn = TnIk,k−1 if k < n

(see [14]). Ifq = 1, then these relations define the classical algebraU(ison).
Let us note that the defining relations forUq(ison) can be expressed by bilinear
relations [15].

3. Finite dimensional classical type representations ofU ′q(son)

In this section we describe (in the framework of aq-analogue of Gel’fand–Tsetlin
formalism) irreducible finite dimensional representations of the algebraU ′q(son),
n ≥ 3, which areq-deformations of the finite dimensional irreducible representa-
tions of the Lie algebrason. They are given by the setsmn consisting ofbn/2c
numbersm1,n,m2,n, ...,mbn/2},n (herebn/2c denotes integral part ofn/2) which
are all integral or all half-integral and satisfy the dominance conditions

m1,2p+1 ≥ m2,2p+1 ≥ ... ≥ mp,2p+1 ≥ 0,

m1,2p ≥ m2,2p ≥ ... ≥ mp−1,2p ≥ |mp,2p|
for n = 2p + 1 andn = 2p, respectively. These representations are denoted by
Tmn . For a basis in a representation space we take theq-analogue of Gel’fand–
Tsetlin basis which is obtained by successive reduction of the representationTmn

to the subalgebrasU ′q(son−1), U ′q(son−2), · · · , U ′q(so3), U ′q(so2) := U(so2). As
in the classical case, its elements are labelled by Gel’fand–Tsetlin tableaux

{ξn} ≡


mn

mn−1

. . .

m2

 ≡ {mn, ξn−1} ≡ {mn,mn−1, ξn−2}, (4)

where the components ofmk andmk−1 satisfy the “betweenness” conditions

m1,2p+1 ≥ m1,2p ≥ m2,2p+1 ≥ m2,2p ≥ ... ≥ mp,2p+1 ≥ mp,2p ≥ −mp,2p+1,

m1,2p ≥ m1,2p−1 ≥ m2,2p ≥ m2,2p−1 ≥ ... ≥ mp−1,2p−1 ≥ |mp,2p|.
The basis element defined by tableau{ξn} is denoted as|ξn〉.

It is convenient to introduce the so-calledl-coordinates

lj,2p+1 = mj,2p+1 + p− j + 1, lj,2p = mj,2p + p− j, (5)

for the numbersmi,k. In particular,l1,3 = m1,3 + 1 andl1,2 = m1,2. The operator
Tmn(I2p+1,2p) of the representationTmn of U ′q(son) acts upon Gel’fand–Tsetlin
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basis elements, labeled by (4), by the formula

Tmn(I2p+1,2p)|ξn〉 =
p∑
j=1

A
j
2p(ξn)

qlj,2p + q−lj,2p
|(ξn)+j

2p 〉 −
p∑
j=1

A
j
2p((ξn)−j2p )

qlj,2p + q−lj,2p
|(ξn)−j2p 〉

(6)
and the operatorTmn(I2p,2p−1) of the representationTmn acts as

Tmn(I2p,2p−1)|ξn〉 =
p−1∑
j=1

B
j
2p−1(ξn)

[2lj,2p−1 − 1][lj,2p−1]
|(ξn)+j

2p−1〉

−
p−1∑
j=1

B
j
2p−1((ξn)−j2p−1)

[2lj,2p−1 − 1][lj,2p−1 − 1]
|(ξn)−j2p−1〉+ iC2p−1(ξn)|ξn〉. (7)

In these formulas,(ξn)±jk means the tableau (4) in whichj-th componentmj,k in
mk is replaced bymj,k±1. The coefficientsAj2p, B

j
2p−1, C2p−1 in (6) and (7) are

given by the expressions

A
j
2p(ξn) =

(∏p
i=1[li,2p+1 + lj,2p][li,2p+1 − lj,2p − 1]∏p

i 6=j [li,2p + lj,2p][li,2p − lj,2p]

×
∏p−1
i=1 [li,2p−1 + lj,2p][li,2p−1 − lj,2p − 1]∏p
i 6=j [li,2p + lj,2p + 1][li,2p − lj,2p − 1]

)1/2

, (8)

and

B
j
2p−1(ξn) =

 ∏p
i=1[li,2p + lj,2p−1][li,2p − lj,2p−1]∏p−1

i 6=j [li,2p−1+lj,2p−1][li,2p−1−lj,2p−1]

×
∏p−1
i=1 [li,2p−2 + lj,2p−1][li,2p−2 − lj,2p−1]∏p−1

i 6=j [li,2p−1+lj,2p−1−1][li,2p−1−lj,2p−1−1]

1/2

, (9)

C2p−1(ξn) =

∏p
i=1[li,2p]

∏p−1
i=1 [li,2p−2]∏p−1

i=1 [li,2p−1][li,2p−1 − 1]
, (10)

where numbers in square brackets meanq-numbers defined by

[a] :=
qa − q−a
q − q−1

.

It is seen from (5) thatC2p−1 in (10) identically vanishes ifmp,2p ≡ lp,2p = 0.
A proof of the fact that formulas (6)-(10) indeed determine a representation of
U ′q(son) is given in [10].
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4. Finite dimensional nonclassical type representations ofU ′q(son)

The representations of the previous section are called representations of the
classical type, because atq → 1 the operatorsTmn(Ij,j−1) turn into the corre-
sponding operatorsTmn(Ij,j−1) for irreducible finite dimensional representations
with highest weightsmn of the Lie algebrason.

The algebraU ′q(son) also has irreducible finite dimensional representationsT
of nonclassical type, that is, such that the operatorsT (Ij,j−1) have no classical
limit q → 1. They are given by setsε := (ε2, ε3, · · · , εn), εi = ±1, and by sets
mn consisting ofbn/2c half-integral numbersm1,n, m2,n, . . . , mbn/2c,n (here
bn/2c denotes integral part ofn/2) that satisfy the dominance conditions

m1,2p+1 ≥ m2,2p+1 ≥ ... ≥ mp,2p+1 ≥ 1/2,

m1,2p ≥ m2,2p ≥ ... ≥ mp−1,2p ≥ mp,2p ≥ 1/2

for n = 2p + 1 andn = 2p, respectively. These representations are denoted by
Tε,mn .

For a basis in the representation space we use the analogue of the basis of the
previous section. Its elements are labeled by tableaux

{ξn} ≡


mn

mn−1

. . .
m2

 ≡ {mn, ξn−1} ≡ {mn,mn−1, ξn−2}, (11)

where the components ofmk andmk−1 satisfy the “betweenness” conditions

m1,2p+1 ≥ m1,2p ≥ m2,2p+1 ≥ m2,2p ≥ ... ≥ mp,2p+1 ≥ mp,2p ≥ 1/2,

m1,2p ≥ m1,2p−1 ≥ m2,2p ≥ m2,2p−1 ≥ ... ≥ mp−1,2p−1 ≥ mp,2p.

The basis element defined by tableau{ξn} is denoted as|ξn〉.
It is convenient to introduce thel-coordinates as in (5) The operator

Tε,mn(I2p+1,2p) of the representationTε,mn of Uq(son) acts upon our basis
elements, labeled by (11), by the formulas

Tε,mn(I2p+1,2p)|ξn〉 = δmp,2p,1/2
ε2p+1

q1/2 − q−1/2
D2p(ξn)|ξn〉

+
p∑
j=1

A
j
2p(ξn)

qlj,2p − q−lj,2p |(ξn)+j
2p 〉 −

p∑
j=1

A
j
2p((ξn)−j2p )

qlj,2p − q−lj,2p |(ξn)−j2p 〉,

where the summation in the last sum must be from 1 top− 1 if mp,2p = 1/2, and
the operatorTmn(I2p,2p−1) of the representationTmn acts as

Tε,mn(I2p,2p−1)|ξn〉 =
p−1∑
j=1

B
j
2p−1(ξn)

[2lj,2p−1 − 1][lj,2p−1]+
|(ξn)+j

2p−1〉
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−
p−1∑
j=1

B
j
2p−1((ξn)−j2p−1)

[2lj,2p−1 − 1][lj,2p−1 − 1]+
|(ξn)−j2p−1〉+ ε2pĈ2p−1(ξn)|ξn〉,

where

[a]+ =
qa + q−a

q − q−1
.

In these formulas,(ξn)±jk means the tableau (11) in whichj-th componentmj,k

in mk is replaced bymj,k ± 1. Matrix elementsAj2p andBj
2p−1 are given by the

same formulas as in (6) and (7) (that is, by the formulas (8) and (9)) and

Ĉ2p−1(ξn) =

∏p
s=1[ls,2p]+

∏p−1
s=1[ls,2p−2]+∏p−1

s=1[ls,2p−1]+[ls,2p−1 − 1]+
.

D2p(ξn) =

∏p
i=1[li,2p+1 − 1

2 ]
∏p−1
i=1 [li,2p−1 − 1

2 ]∏p−1
i=1 [li,2p + 1

2 ][li,2p − 1
2 ]

.

Theorem 1. The representationsTε,mn are irreducible. The representations
Tε,mn and Tε′,m′n are pairwise nonequivalent for(ε,mn) 6= (ε′,m′n). For any
admissible(ε,mn) and m′n the representationsTε,mn and Tm′n are pairwise
nonequivalent.

The algebraU ′q(son) has non-trivial one-dimensional representations. They
are special cases of the representations of the nonclassical type. They are
described as follows.

Let ε = (ε2, ε3, · · · , εn), εi = ±1, and let mn =(m1,n, m2,n, · · · ,
mbn/2c,n) = (1

2 ,
1
2 , · · · , 1

2). Then the corresponding representationsTε,mn are
one-dimensional and are given by the formulas

Tε,mn(Ik+1,k)|ξn〉 =
εk+1

q1/2 − q−1/2
|ξn〉.

Thus, to everyε := (ε2, ε3, · · · , εn), εi = ±1, there corresponds a one-
dimensional representation ofU ′q(son).

5. Definition of representations ofU ′q(son,1) andUq(ison)

Let us recall that we assume thatq is a positive number. We give the following
definition of infinite dimensional representations of the algebrasU ′q(son,1) and
Uq(ison) (we denote these algebras byA). It is a homomorphismR : A → L(H)
of A to the spaceL(H) of linear operators (bounded or unbounded) on a Hilbert
spaceH such that

(a) operatorsR(a), a ∈ A, are defined on an invariant everywhere dense
subspaceD ⊂ H;
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(b) R ↓ U ′q(son) decomposes into a direct sum of irreducible finite dimen-
sional representations ofU ′q(son) (with finite multiplicities if R is irreducible);

(c) subspaces of irreducible representations ofU ′q(son) belong toD.

Two infinite dimensional irreducible representationsR andR′ of A on spaces
H andH′, respectively, are called (algebraically) equivalent if there exists an
everywhere dense invariant subspacesV ⊂ D andV ′ ⊂ D′ and a one-to-one
linear operatorA : V → V ′ such thatAR(a)v = R′(a)Av for all a ∈ A and
v ∈ V .

Remark that our definition of infinite dimensional representations ofU ′q(son,1)
andUq(ison) corresponds to the definition of Harish-Chandra modules for the
pairs(son,1, son) and(ison, son), respectively. Thus, modules determined by rep-
resentations of the above definition can be calledq-Harish-Chandra modules of
the pairs(U ′q(son,1), U ′q(son)) and(Uq(ison), U ′q(son)), respectively.

6. Representations ofUq(ison)

There are the following classes of irreducible representations ofUq(ison):

(a) Finite dimensional irreducible representationsR of U ′q(son). They are
irreducible representations ofUq(ison) with R(Tn) = 0.

(b) Infinite dimensional irreducible representations of the classical type.
(c) Infinite dimensional irreducible representations of the nonclassical type.
RepresentationsRλ,m of class (b) are given in [14,15]. Let us describe rep-

resentations of class (c), that is, representationsR for which there exists no
limit q → 1 for the operatorsR(Tn) andR(Ii,i−1). These representations are
given by ε := (ε2, ε3, · · · , εn+1), non-zero complex parameterλ and by num-
bersm = (m2,n+1,m3,n+2, · · · ,mb(n+1)/2c,n+1), m2,n+1 ≥ m3,n+2 ≥ · · · ≥
mb(n+1)/2c,n+1 ≥ 1/2, describing irreducible representations of the nonclassical
type of the subalgebraU ′q(son−1) (see section 4). We denote the corresponding
representations ofUq(ison) byRε,λ,m.

In order to describe the space of the representationRε,λ,m we note that

Rε,λ,m ↓ U ′q(son) =
⊕
mn

Tε′,mn , mn = (m1,n, · · · ,mbn/2c,n), (12)

where ε′ = (ε2, · · · , εn) is the part of the setε, the summation is over all
irreducible nonclassical type representationsTε′,mn of U ′q(son) for which the
components ofmn satisfy the “betweenness” conditions

m1,2k ≥ m2,2k+1 ≥ m2,2k ≥ ... ≥ mk,2k+1 ≥ mk,2k ≥ 1/2 if n = 2k,

m1,2k−1 ≥ m2,2k ≥ m2,2k−1 ≥ ... ≥ mk−1,2k−1 ≥ mk,2k if n = 2k − 1.

kievarwe.tex; 12/03/2001; 3:49; p.371



NONCLASSICAL REPS OF NONSTANDARD QUANTIZATION 365

The carrier spacêHε,m of the representationRε,λ,m decomposes aŝHε,m =⊕
mn
Hε′,mn , where the summation is such as in (12) andHε′,mn are the sub-

spaces, where the representationsTε′,mn of U ′q(son) are realized. We choose a
basis in every subspaceHε′,mn as in section 4. The set of all these bases gives
a basis of the spacêHε,m. We denote the basis elements by|mn,M〉, whereM
are the corresponding tableaux. The numbersmij from |mn,M〉 determine the
numberslij as in section 3. The numbersmi,n+1 determine the numbers

li,2k+1 = mi,2k+1 + k − i+ 1, n = 2k, li,2k = mi,2k + k − i, n = 2k − 1.

The operatorsRε,λ,m(Ii,i−1) are given by formulas of the nonclassical type rep-
resentations of the algebraU ′q(son) from section 4. For the operatorsRε,λ,m(T2k)
andRε,λ,m(T2k−1) we have the expressions

Rε,λ,m(T2k−1)|m2k−1,M〉 = λ
k−1∑
j=1

B̃
j
2k−1(m2k−1,M)

[2lj,2k−1 − 1][lj,2k−1]+
|m+j

2k−1,M〉

+λ
k−1∑
j=1

B̃
j
2k−1(m−j2k−1,M)

[2lj,2k−1 − 1][lj,2k−1 − 1]+
|m−j2k−1,M〉

+iε2kλĈ2k−1(m2k−1,M)|m2k−1,M〉,
Rε,λ,m(T2k)|m2k,M〉 = iλδmp,2p,1/2

ε2k+1

q1/2 − q−1/2
D2k|m2k,M〉

+λ
k∑
j=1

Ã
j
2k(m2k,M)

qlj,2k − q−lj,2k |m
+j
2k ,M〉+ λ

k∑
j=1

Ã
j
2k(m

−j
2k ,M)

qlj,2k − q−lj,2k |m
−j
2k ,M〉,

where the summation in the last sum must be from 1 tok− 1 if mk,2k = 1/2, and

Ã
j
2k(m2k,M) =

(∏k
i=2[li,2k+1 + lj,2k][li,2k+1 − lj,2k − 1]∏

i 6=j [li,2k + lj,2k][li,2k − lj,2k]

×
∏k−1
i=1 [li,2k−1 + lj,2k][li,2k−1 − lj,2k − 1]∏
i 6=j [li,2k + lj,2k + 1][li,2k − lj,2k − 1]

)1/2

, (13)

B̃
j
2k−1(m2k−1,M) =

( ∏k
i=2[li,2k + lj,2k−1][li,2k − lj,2k−1]∏

i 6=j [li,2k−1 + lj,2k−1][li,2k−1 − lj,2k−1]

×
∏k−1
i=1 [li,2k−2 + lj,2k−1][li,2k−2 − lj,2k−1]∏

i 6=j [li,2k−1 + lj,2k−1 − 1][li,2k−1 − lj,2k−1 − 1]

)1/2

, (14)

Ĉ2k−1(M) =

∏k
s=2[ls,2k]+

∏k−1
s=1 [ls,2k−2]+∏k−1

s=1 [ls,2k−1]+[ls,2k−1 − 1]+
, (15)
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D2k =

∏k
i=2[li,2k+1 − 1

2 ]
∏k−1
i=1 [li,2k−1 − 1

2 ]∏k−1
i=1 [li,2k + 1

2 ][li,2k − 1
2 ]

. (16)

Theorem 2. The representationsRε,λ,m are irreducible. The representations
Rε,λ,m andRε′,λ′,m′ are equivalent if and only ifε = ε′, m = m′ andλ = ±λ′.
The operatorsRε,λ,m(Tn) are bounded. The representationRε,λ,m is equivalent
to no of the representationsRλ′,m′ of classical type.

7. Representations ofU ′q(son,1)

Irreducible representations of classical type of algebraU ′q(son,1) are given in
[5,17]. Here we describe irreducible representations of nonclassical type (that
is, representationsR for which there exists no limitq → 1 for the operators
R(Ii,i−1)). These representations are given by the setε := (ε2, ε3, · · · , εn+1), by a
complex parameterc and by the setm = (m2,n+1,m3,n+1, · · · ,mb(n+1)/2c,n+1),
m2,n+1 ≥ m3,n+2 ≥ · · · ≥ mb(n+1)/2c,n+1 ≥ 1/2, describing irreducible rep-
resentations of the nonclassical type of the subalgebraU ′q(son−1) (see section 4).
We denote the corresponding representations ofUq(son,1) byRε,c,m.

In order to describe the space of the representationRε,c,m we note that

Rε,λ,m ↓ U ′q(son) =
⊕
mn

Tε′,mn , mn = (m1,n, · · · ,mbn/2c,n), (17)

whereε′ = (ε2, · · · , εn), the summation is over all irreducible nonclassical type
representationsTε′,mn of the subalgebraU ′q(son) for which the components of
mn satisfy the “betweenness” conditions

m1,2k ≥ m2,2k+1 ≥ m2,2k ≥ ... ≥ mk,2k+1 ≥ mk,2k ≥ 1/2 if n = 2k

m1,2k−1 ≥ m2,2k ≥ m2,2k−1 ≥ ... ≥ mk−1,2k−1 ≥ mk,2k if n = 2k − 1.

The carrier spacêHε,m of the representationRε,c,m decomposes aŝHε,m =⊕
mn
Hε,mn , where the summation is such as in (17) andHε′,mn are the sub-

spaces, where the representationsTε′,mn of U ′q(son) are realized. We choose the
basis in every subspaceHε,mn as in section 4. The set of all these bases gives
a basis of the spacêHε,m. We denote the basis elements by|mn,M〉, whereM
are the corresponding tableaux. The numbersmij from |mn,M〉 determine the
numberslij as in section 3. The numbersmi,n+1 determine the numbersli,n+1

as in section 6. The operatorsRε,c,m(Ii,i−1), i ≤ n, are given by formulas of the
nonclassical type representations of the algebraU ′q(son) as in section 4. For the
operatorsRε,c,m(I2k+1,2k) if n = 2k andRε,c,m(T2k,2k−1) if n = 2k−1 we have
the expressions

Rε,c,m(I2k,2k−1)|m2k−1,M〉
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=
k−1∑
j=1

([c+ lj,2k−1][c− lj,2k])1/2 B̃
j
2k−1(m2k−1,M)

[2lj,2k−1 − 1][lj,2k−1]+
|m+j

2k−1,M〉

−
k−1∑
j=1

([c+ lj,2k−1 + 1][c− lj,2k + 1])1/2 B̃
j
2k−1(m−j2k−1,M)

[2lj,2k−1 − 1][lj,2k−1 − 1]+
|m−j2k−1,M〉

+ε2k[c]+Ĉ2k−1(m2k−1,M)|m2k−1,M〉,

Rε,c,m(I2k+1,2k)|m2k,M〉

= δmk,2k,1/2 [c− 1/2]
ε2k+1

q1/2 − q−1/2
D2k(m2k,M)|m2k,M〉

+
k∑
j=1

([c+ lj,2k][c− lj,2k − 1])1/2 Ã
j
2k(m2k,M)

qlj,2k − q−lj,2k |m
+j
2k ,M〉−

−
k∑
j=1

([c+ lj,2k − 1][c− lj,2k])1/2 Ã
j
2k(m

−j
2k ,M)

qlj,2k − q−lj,2k |m
−j
2k ,M〉,

where the summation in the last sum must be from 1 tok− 1 if mk,2k = 1/2, and
Ã
j
2k, B̃

j
2k−1, Ĉ2k−1,D2k are such as in (13)–(16).

Theorem 3.The representationRε,c,m ofU ′q(so2k,1) is irreducible if and only ifc
is not half-integer or one of the numbersc, 1−c coincides with one of the numbers
lj,2k+1, j = 2, 3, · · · , k. The representationRε,c,m of U ′q(so2k−1,1) is irreducible
if and only if c is not half-integer or|c| coincides with one of the numberslj,2k,
j = 2, 3, · · · , k, or |c| < lk,2k.
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QUASIPARTICLES IN NON-COMMUTATIVE FIELD THEORY

KARL LANDSTEINER ∗
Theory Division CERN, 1211 Geneva 23, Switzerland

Abstract. After a short introduction to the UV/IR mixing in non-commutative field theories we
review the properties of scalar quasiparticles in non-commutative supersymmetric gauge theories at
finite temperature. In particular we discuss the appearance of superluminous wave propagation.

1. Introduction

Given the experience of quantum mechanics it seems a rather natural idea that
spacetime at very small distance-scales might be described by non-commuting
coordinates [1, 2]. Keeping the example of quantum mechanics in mind one is
lead to write down a commutation relation for the coordinates such as

[xm, xn] = iθmn . (1)

In order to study quantum field theory on such non-commuting spaces it is useful
to make some further simplifying assumptions, in particular we will takeθmn to
be an element of the center of the algebra defined by (1).

A convenient way of thinking about non-commutativity is by deformation
of the product on the space of ordinary function. Usingθmn as deformation
parameter we define the so-called Moyal product (or star-product) by

f(x) ∗ g(x) := lim
y→x e

i
2
θmn∂xm∂

y
nf(x)g(y) . (2)

In momentum space it takes the form

f(x) ∗ g(x) =

∫
dnk

(2π)n

∫
dnq

(2π)n
f̃(k)g̃(q)e−i(k+q)xe−

i
2
kmθmnqn . (3)

An immediate consequence is that we can always delete one star under the integral
because the additional terms by which the Moyal product differs from theusual

∗ karl.landsteiner@cern.ch
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k1

k2 k3

k4

= exp(g Π2 
a<b

k θ kb)a
i
2
--

Figure 11. Feynman rule for non-commutativeΦ4 vertex.

k2

k1

k3

k4

(a)

k1

k2 k3

k4

(b)

Figure 12. Corrections to the two-point function can be either planar as in (a) or non-planar as in
(b)

product are total derivatives thanks to the antisymmetry ofθmn∫
f(x) ∗ g(x)dnx =

∫ (
f(x).g(x) +

i

2
θmn∂mf(x)∂ng(x) + · · ·

)
dnx . (4)

This furthermore implies cyclic symmetry under integral∫
f ∗ g ∗ h =

∫
f.g ∗ h =

∫
g ∗ h.f =

∫
g ∗ h ∗ f . (5)

We have now all the ingredients do start discussing field theory. Before doing
so we will introduce one further simplification, namely we will assume from that
time is an ordinary commuting coordinate, i.e.θm0 = 0. This has the advantage
that we are still dealing with a system with a finite number of time derivatives.
Although a canonical formalism for theories with an infinite number of time
derivatives can be developed [3] it turns out that quantum field theory on spaces
with time-space non-commutativity are not unitary at the one-loop level [4]1.

Non-commutative field theories can be viewed as non-local deformations of
local field theories. For fields of spin zero or one-half we can take a Lagrangian of
an ordinary field theory and deform the product of fields according to the Moyal
product (4), i.e. we replace the ordinary product by the star product. For spin
one-fields we also have to consider that the gauge symmetry is deformed,δAm =
∂mλ+i{Am, λ}∗, where{., .}∗ denotes the Moyal bracket{f, g}∗ = f ∗g−g∗f .
The non-commutative field strength of a gauge field is defined accordingly as
Fmn = ∂mAn − ∂nAm + i{Am, An}∗ and the covariant derivative asDm. =
∂m.+ i{Am, .}∗ [5].

1 This applies to the time-like case, i.e. in all coordinate systems withθmn = const the
commutator (1) involves the time coordinate.
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Let us consider now a scalarΦ4 theory on in four dimensions. Without further
loss of generality we assumeθ23 = −θ32 = θ. Because one can drop one star-
product in the Lagrangian the free theory is unchanged with respect to the one on
ordinaryIRn. The tree level propagator is then the usual one

〈Φ(p)Φ(−p)〉 =
i

p2 −m2
. (6)

The one-loop corrections to the two point function that arise from theΦ4 vertex
are shown in figure 2(a) and 2(b). Because of the cyclic symmetry of the vertex
we have two distinct classes of graphs [6]. If we connect neighbouring lines of the
vertex in figure (1) the dependence of the exponential on the internal momentum
k = k1 = −k2 cancels. Thus the diagram 2(a) gives rise to a quadratic divergence
in the same way as it happens in ordinaryΦ4 theory.

If we contract however non-neighbouring lines the dependence on the internal
momentum of the exponent does not cancel. The distinct classes of Feynman
diagrams in non-commutative field theories are called planar if they are of type
2(a) and non-planar if they are of type 2(b).

The divergence is regulated by the rapid oscillation of the exponential function
at large internal momentum and we find

4g2
∫

d4k

(2π)4

eip̃k

k2 −m2
=

ig2

4π2p̃2
+ · · · , (7)

Where we introduced the notatioñpn = pmθ
mn and the dots indicate terms that

are less singular for̃p → 0. Resummation gives rise to a corrected two-point
function on the one loop level of the form

Γ2(p) = p2 −m2
R +

g2

π2p̃2
. (8)

The quadratic divergence in the planar graph gives rise to a renormalization of the
mass. The non-planar graph results in a dramatic change of the infrared behaviour
of the theory. On a technical level the origin of this infrared divergence is easily
understood. The non-planar diagram is regulated by the phase factor stemming
from the star product. This phase is absent if the external momentum flowing
into the diagram vanishes. Thus the ultraviolet divergence has been converted into
an infrared divergence. This phenomenon UV/IR mixing has first been discussed
in [7] and has been further investigated in [9]- [33]. Notice also that the IR-
singularity is present even in the massive theory. Since it is induced by modes
in the far UV circling in the loop it is insensitive to the presence of a massterm.

It should be emphasized that there are usually also subleading logarithmic
infrared divergencies. In the infrared these become important at momenta of

the order ofp = O(e
− 1
g2 ). Down to these non-perturbatively small momenta
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the infrared behaviour is dominated by the effects stemming from the quadratic
divergencies. In the following we will always concentrate on the leading order
IR-behaviour and thus neglect the contributions from the logarithms.

In supersymmetric theories quadratic divergencies in four dimensions are ab-
sent. However at finite temperature supersymmetry is broken and the one-loop
dispersion relation will again show effects from UV/IR mixing in non-planar
graphs. Because temperature acts as a cutoff no IR-singularities are to be expected.
The next section reviews these effects in the example ofN = 4 supersymmetric
Yang-Mills theory.

2. Quasiparticles in non-commutativeN =4 SYM

We limit ourselves to the study of a non-commutativeU(1) N = 4 gauge theory.
The spectrum of the theory consists of six scalars, four Majorana Fermions and a
vector field. The Lagrangian takes the form

L = 1
g2

∫ (−1
4FmnF

mn + 1
2DmΦabDmΦab + 1

4{Φab,Φcd}∗{Φab,Φcd}∗ +

+iλaσ
mDmλ̄

a + i{λa, λb}∗Φab + i{λ̄a, λ̄b}∗Φab

)
.

(9)

The theory has a globalSU(4) symmetry under which the fermions transform
under the4, 4̄. The 6 scalars transform in the antisymmetric. This symmetry is
indicated by indicesa, b.

We will study the dispersion relation of theN =4 scalars at finite temperature
and one loop level. Finite temperature is implemented in the Matsubara formalism
by considering the theory onS1 × IR × IR2

nc. The last factor indicates the two-
dimensional non-commutative plane. The fermions are taken to have antiperiodic
boundary conditions on theS1 factor. Non-commutative field theories at finite
temperature have been investigated in [34]-[37]

The scalar self-energy is given by

ΣT = 32g2
∫

d3k

(2π)3

sin2 p̃·k
2

k
(nB(k) + nF (k)) + 4g2P 2Σ̄ , (10)

nB(k) andnF (k) denote Bose-Einstein and Fermi-Dirac distributions. Four mo-
mentum is denoted byP 2 = p2

0 − p2, lowercase denotes three-momentum.
Momenta along the non-commutative directions as will be called transverse.

The first term in (10) vanishes atT = 0 because of supersymmetry. The
second term contributes to the finite temperature wave-function renormalization
of the scalar field. It affects the position of the pole only toO(g4) and we will
drop it in the sequel.
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Figure 13. Dispersion relation for scalars inN = 4 Yang-Mills for different temperatures. The
momentump is taken to lie entirely in the non-commutative directions. The dashed line shows the
light coneω = p. The dotted line shows the momentumpc below which the group velocity∂ω

∂p
is

bigger than one.

Using the relationsin2 p̃k
2 = 1

2(1 − cos p̃k) we can separate the planar and
non-planar contributions to the self-energy. The dispersion relation becomes

ω2 = p2 + 2g2T 2 − 4g2T

π|p̃| tanh
π|p̃|T

2
. (11)

A plot of the dispersion relation is shown in figure (3). The hyperbolic tangent
arises solely from the non-planar contribution to the dispersion relation.

For large transverse external momenta the non-planar contribution is sublead-
ing with respect to the planar one,

ω2 ≈ p2 + 2g2T 2 − 4g2 T

π|p̃| , T p̃� 1. (12)

The second term comes from the planar diagrams and gives a mass to the scalar
excitations. The subdominant term linear inT arises solely from soft bosons in
non-planar diagrams. These are modes with characteristic momentumk � T and
large occupation numbernB ≈ T/k � 1,

Σnp ∼
∫
d3k

1

k
cos p̃k

T

k
∼ T

p̃
. (13)

In usual space-time the approximationnB ≈ T/k � 1 results in the well
known ultraviolet catastrophe of classical field theory. In the non-planar sector
of non-commutative space this does not happen as long asp̃ is different from
zero. This is yet another manifestation of the UV/IR mixing of non-commutative
field theories: to leading order at high temperature, the non-planar contribution is
effectively purely classical [36].

At low transverse external momenta, the non-planar contribution tends to
cancel the planar one. For zero external transverse momentum the interaction
switches off. The theory becomes a free, gaplessU(1) gauge theory withω2 ≈ p2

3.
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Let us consider now the case where the momentum lies along the non-
commutative directions. Sinceω(0) = 0 and for largep, ω(p) ≈ √p2 + 2g2T 2,
which lies above the lightcone, there is a region in between with∂ω(p)

∂p > 1. Thus
the group velocity must exceed the speed of light for small transverse momenta!

ω2 ≈
(

1 +
g2π2T 4θ2

6

)
p2 . (14)

The low momentum excitations are massless, but propagate with an index of re-
fraction n = p/ω smaller than one. Because the interactions switch off at low
momenta, we expect these modes to be long-lived. In figure (3) the momentum
pc below which the group velocity exceeds one is depicted by a dotted line. The
dashed line shows the light coneω = p.

Let us emphasize that these qualitative features should be quite general and
not an artifact of our one loop approximation, as they simply arise from the fact
that the theory is non-interacting at zero transverse momentum and develops a
mass gap otherwise2.

We now investigate the consequences of the dispersion relation (14) for wave
propagation. Imagine that some disturbance of the scalar field is created in the
thermal bath at timet = 0. To simplify matters we will consider only a one
dimensional problem with momentum pointing in a non-commutative direction.
The fastest moving modes are the ones with longest wavelength. These are also the
modes which are long lived in the thermal bath. For these it is possible to obtain
the exact asymptotic behaviour by noting that the dispersion relation aroundk = 0
is

ω(k) = c0k − γk3 +O(k5) , (15)

with c0 =
√

1 + g2π2T 4θ2

6 andγ = g2π4θ4T 6

120c0
. This is the dispersion relation of the

linearised Korteweg-deVries equation whose solution is expressed in terms of the
Airy function Ai(z). We can express the solution for the head of a wavetrain by
[38]

Φ =
A

2(3γt)
1
3

Ai

(
x− c0t

(3γt)
1
3

)
. (16)

The Airy function has oscillatory behaviour for negative argument and decays
exponentially for positive argument. Thus the wavetrain decays exponentially
ahead ofx = c0t. Behind the wave becomes oscillatory. In this region onecan

2 One might also be worried if these effects are gauge dependent. A model without gauge sym-
metry can be obtained if one sets the gauge field and one fermion (the field content of anN = 1
vector multiplet)to zero. This would result in aN = 1 Wess-Zumino model with Moyal bracket
interactions. It would only change the overall factor in (10).
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match the Airy function with the asymptotics obtained from a stationary wave
approximation. In between the oscillatory region and the exponential decay there
is a transition region of width proportional to(γt)

1
3 aroundx = c0t. In this

region the wavetrain has its first crest which therefore is moving with a velocity
approximately given byc0.

Group velocities faster than the speed of light do also appear in conventional
physics, e.g. it is well-known that this happens for light propagation in media
close to an absorption line. Since the dispersive effects are however large, the
group velocity loses its meaning as the velocity of signal transportation. In our
case, it is interesting to notice that as the temperature increases, not onlyc0 but
alsoγ grows. This implies that at high temperatures the soft transverse momenta
become very dispersive. In such situations it is useful to introduce the concept
of a front velocity which is the velocity of the head of the wavetrain. For the
propagation of light in a medium it can be shown that this front velocity never
exceeds the speed of light even if the group velocity can be faster than the speed
of light [39]. In our case the front velocity can be defined as the velocity of the
first crest of the wavetrain. According to (14) and (15) this is always bigger that
the speed of light. The advance of the first crest with respect to an imagined light
front is (c0 − 1)t. Since its spread grows as(γt)

1
3 , the first crest is well defined

outside the lightcone for large enough time,t > t0 wheret0 =
√

γ
(c0−1)3 .

The question arises if this superluminosity implies a violation of causality.
This is not necessarily the case. Violation of causality needs both ingredients:
superluminosity and the relativity principle. Imagine an observer A emitting some
signal with superluminous velocityc0. If the relativity principle is valid another
observer B in a boosted frame relative to A could then catch the signal. B could
send an answer also with superluminous speedc0. The answer would reach ob-
server A before he sent out the original signal. The crucial point is of course that in
the non-commutative space-time we are considering boosts are not anymore sym-
metries. In particular only in the frame of observer A time is ordinary, commuting
time. Any other frame involving a boost in a non-commutative direction implies
that also time is non-commutative. To obtain an answer if causality is violated
one would have to calculate the dispersion relation also in such a frame and study
wave propagation then. Finite temperature field theory with non-commutative
time is however difficult to formulate due to the infinite number of time derivatives
appearing in the star product. This is an open question though progress could
possibly be achieved along the lines in [3].

3. Discussion and Outlook

We have concentrated on reviewing the properties of scalar quasiparticles at fi-
nite temperature in non-commutativeN = 4 gauge theory. Another system that
has been studied in [37] is the non-commutative Wess-Zumino model with star-
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product interactions instead of Moyal-brackets. The one-loop self-energy is given

by a similar expression as (10) except thatsin
p̃k
2 is substituted bycos

p̃k
2 . It turns

out that this has the effect that for temperaturesT > T0 ≈ 1√
gθ

the minimum of

the dispersion relation is displaced fromp = 0! It has been argued that this makes
Bose-condensation of scalar modes impossible for temperatures higher thanT0

[37] 3.
Another system that has been studied in [37] wasN =2 gauge theory at finite

density. The results are qualitatively analogous to the case with temperature. The
role of the temperature is then played by the chemical potential.

Non-commutative field theories in the setup discussed here appear also in
string theory. In [41] it was shown that the physics of D-branes in aB-field back-
ground in a particular scaling limit withα′ → 0 is described by non-commutative
supersymmetric gauge theories. It has been suggested that the effects of UV/IR
mixing could be understood from a string perspective [7]. The UV/IR mixing in
this stringy context has been considered in [43]-[49]. Since the model considered
here arises as the scaling limit of a D-3-brane in aB-field background it would
be very interesting to reconsider the one-loop dispersion relations from a string
theory perspective.
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TIME DEPENDENCE AND (NON)COMMUTATIVITY

OF SYMMETRIES OF EVOLUTION EQUATIONS

ARTUR SERGYEYEV∗
Mathematical Institute, Silesian University at Opava,
Bezrǔcovo ńam. 13, 746 01 Opava, Czech Republic

1. Introduction

Nearly all known today integrable systems are homogeneous with respect to some
scaling. For such systems no generality is lost in assuming the homogeneity of
symmetries, master symmetries, recursion operators, etc., and this considerably
simplifies their finding and study, see e.g. [1]–[10].

In the present paper we combine this well-known idea with our new results
on the structure oftime-dependent(cf. e.g. [6, 11–14] for the time-independent
case) formal symmetries for a natural generalization of the systems, considered in
[11, 12, 15], namely, for (1+1)-dimensional nondegenerate weakly diagonalizable
(NWD) evolution systems with constraints. This enables us to find simple
sufficient conditions for the commutativity and time-independence of higher
order symmetries and for the existence of infinite number of such symmetries for
homogeneousNWD systems with constraints. Note that the majority of known
[8, 10, 12] and recently found, see e.g. [7, 16, 17], integrable evolution systems
in (1+1) dimensions fit into this class. Moreover, our results, unlike the majority
of already known ones, are valid for the systems with time-dependent coefficients
as well, cf. e.g. [18], and are not restricted to scalar equations.

Let us stress that the proofs and the application of our results involve just
an easy verification of some weight-related conditions and donot rely on the
existence of a master symmetry or e.g. (hereditary) recursion operator. Hence,
the results of present paper (except for those on existence of infinitely many
symmetries) can be applied to non-integrable systems as well. On the other hand,
the simplicity of use makes our results particularly helpful in the study of new

∗ artur.sergyeyev@math.slu.cz, arthurser@imath.kiev.ua
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integrable systems for which only a few higher order symmetries and (sometimes)
a ‘candidate’ for the master symmetry are known, but no recursion operator is yet
found. Indeed, we show that the check of a small number of conditions for the low
order symmetries can replace tedious checks, cf. [19], that time-independent sym-
metries of sufficiently high order commute, that a ‘candidate’ for master symmetry
is a nontrivial master symmetry and that its action yields the symmetries being
well-defined (cf. [10] for recursion operators andlocal symmetries) functions of
local variablesx, t,u,u1, . . . and of nonlocal variablesωγ defined below.

Note that, unlike [4, 5, 19], in order to prove the existence of infinitely many
symmetries we do not makea priori extra assumptions, say, about the existence
of “negative” master symmetriesτ j , j < 0 [19]: all we need is a suitable
‘candidate’ τ for the master symmetry and a higher order time-independent
symmetry. We also show that in order to verify the commutativity ofall higher
order time-independent homogeneous symmetries at once, it suffices to check
only a small number of conditions for the time-independent symmetries of order
lower than two. Moreover, checks of this kind are almost entirely algorithmic, so
computer algebra software can be readily applied to perform them.

The paper is organized as follows. In Section 2 we give some definitions
and facts, being the straightforward extension of those from [11, 12, 15] to the
case of explicitly time-dependent evolution systems with constraints. In Section
3 we present the sufficient conditions of well-definiteness of the symmetries
generated by means of master symmetry for the general evolution systems with
constraints. In Section 4 we define nondegenerate weakly diagonalizable (NWD)
systems with constraints and present some results on structure of their formal
symmetries. In Section 5 we find the sufficient conditions for commutativity and
time-independence of higher order symmetries and for the existence of infinite
hierarchies of time-independent higher order symmetries for homogeneous NWD
systems with constraints.

2. Basic definitions and structures

Let us consider a system of evolution equations with constraints (cf. [15])

∂u/∂t = F(x, t,u, . . . ,un′ , ~ω) (1)

for the vector functionu = (u1, . . . , us)T . Hereuj = ∂ju/∂xj ,u0 ≡ u and
F = (F 1, . . . , F s)T ; ~ω = (ω1, . . . , ωc)

T ; T denotes the matrix transposition. The
nonlocal variablesωα are defined here by means of the relations [15, 20]

∂ωα/∂x = Xα(x, t,u,u1, . . . ,uh, ~ω), (2)

∂ωα/∂t = Tα(x, t,u,u1, . . . ,uh, ~ω). (3)

We shall denote byΩ the set of nonlocal variablesωγ , γ = 1, . . . , c.
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Let Aj,k(Ω) be the algebra of all locally analytic scalar functions of
x, t,u,u1, . . . ,uj , ω1, . . . , ωk with respect to the standard multiplication,
A ≡ A(Ω) =

⋃c
k=1

⋃∞
j=0Aj,k(Ω), and letAloc = {f ∈ A | ∂f/∂~ω = 0} be the

subalgebra oflocal functions inA. Note that we do not exclude the casec = ∞.
The operators of totalx- andt-derivatives onA have the form

D ≡ Dx =
∂

∂x
+
∞∑
i=0

ui+1
∂

∂ui
+

c∑
α=1

Xα
∂

∂ωα
,

Dt =
∂

∂t
+
∞∑
i=0

Di(F)
∂

∂ui
+

c∑
α=1

Tα
∂

∂ωα
.

Following [15, 20], we require that[Dx, Dt] = 0 or, equivalently,
Dt(Xα) = Dx(Tα) for α = 1, . . . , c.

We shall denote byImD the image ofA underD. Throughout this paper
except for Section 3 we make ablanket assumptionthat the kernel ofD in A
consists solely of functions oft.

Consider the setMatp(A)[[D−1]] of formal seriesin powers ofD of the form
H =

∑q
j=−∞ hjDj , wherehj arep × p matrices with entries fromA, cf. e.g.

[11, 12]. We shall write for shortA[[D−1]] instead ofMat1(A)[[D−1]].
The greatestm ∈ Z such thathm 6= 0 is called thedegreeof H ∈

Matp(A)[[D−1]] and is denoted asm = degH. We assume thatdeg 0 = −∞,
cf. e.g. [1]. The formal seriesH of degreem is callednondegenerate[12], if
dethm 6= 0. ForH =

∑m
j=−∞ hjDj ∈ A[[D−1]], hm 6= 0, its residueandloga-

rithmic residueare defined asresH = h−1 andres lnH = hm−1/hm [11, 12].
The setMatp(A)[[D−1]] is an algebra under the multiplication law, given by

the “generalized Leibniz rule”, cf. [1],

aDi ◦ bDj = a
∞∑
q=0

i(i− 1) · · · (i− q + 1)

q!
Dq(b)Di+j−q

for monomialsaDi, bDj , a, b ∈ Matp(A), and extended by linearity to the
whole Matp(A)[[D−1]]. The commutator[A,B] = A ◦ B − B ◦ A makes
Matp(A)[[D−1]] into a Lie algebra. Below we omit◦ if this is not confusing.

G ∈ As is called, see e.g. [1–3], asymmetryfor (1)–(3), if

∂G/∂t+ [F,G] = 0, (4)

where[·, ·] is the Lie bracket[K,H] = H′[K]−K′[H]. The directional derivative
of any (smooth) functionf ∈ Aq alongH ∈ As is defined here asf ′[H] =
(df(x, t,u + εH,u1 + εDx(H), . . . )/dε)ε=0. Extending the technique of [15] to
the case of time-dependent systems (1)–(3), we can easily show that for anyf ∈ A
we havef ′ ∈ A[[D−1]].

For anyf ∈ Aq we shall define itsformal orderas ford f = deg f ′. This
naturally generalizes the notion of order for local functions, cf. e.g. [1, 12].
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LetSF (A) be the set of all symmetriesG ∈ As for (1)–(3),S(k)
F (A) = {G ∈

SF (A) | ford G ≤ k}, AnnF (A) = {G ∈ SF (A) | ∂G/∂t = 0}. In general,
for A 6= Aloc neitherAs nor SF (A) are closed under the Lie bracket, but if
[P,Q] ∈ As for someP,Q ∈ SF (A), then we have[P,Q] ∈ SF (A).

A formal seriesR =
∑r
j=−∞ ηjDj ∈ Mats(A)[[D−1]] is called [1, 11, 15]

theformal symmetryof rankm for (1) (or, rather, for (1)–(3)), provided

deg(Dt(R)− [F′,R]) ≤ deg F′ + degR−m. (5)

The derivativeDt(R) is defined here asDt(R) =
∑r
j=−∞Dt(ηj)D

j .

The setFS(q)
F (A) of all formal symmetries of rank not lower thanq of system

(1)–(3) is a Lie algebra, because for the formal symmetriesP andQ of ranksp
andq we have[P,Q] ∈ FS(r)

F (A) for r = min(p, q), cf. [12].
Eq.(4) is well known to be nothing but the compatibility condition for (1)

and ∂u/∂τ = G. ProvidedG ∈ As, we have∂(∂u/∂τ)∂t = Dt(G) and
∂(∂u/∂t)∂τ = F′[G]. Hence Eq.(4) may be rewritten asDt(G) = F′[G].

Let F′ ≡ n∑
i=−∞

φiD
i andn0 =

{
1− j, if φi = φi(x, t), i = n− j, . . . , n,
2 otherwise.

SinceDt(G) = F′[G] implies Dt(G
′) − [F′,G′] − F′′[G] = 0, and

deg F′′[G] ≤ deg F′ + n0 − 2, we readily see thatG′ ∈ FS(ford G−n0+2)
F (A).

3. Action of master symmetries on time-independent symmetries

As we have already mentioned above, forP,Q ∈ As in general[P,Q] 6∈ As.
In particular, when we repeatedly commute a master symmetryτ ∈ As with
some time-independent symmetryQ ∈ AnnF (A), it is by no means obvious
thatQi = adiτ (Q) = [τ ,Qi−1] belong toAs, except for the caseA = Aloc. In
some cases we can make the conditions[τ ,Qi] ∈ As or [P,Q] ∈ As hold by
introducing new nonlocal variables̃ωκ and thus replacingA by a larger algebra
Ã. But in order that[P,Q] ∈ As for P,Q ∈ As it obviously suffices to require
thatω′µ[P] ∈ A for thoseωµ on whichQ actually depends andω′ν [Q] ∈ A for
thoseων on whichP actually depends, cf. Ch. 6 in [20].

Moreover, we have

Proposition 1. Let τ ,Q ∈ As, ω′γ [Q] ∈ A andω′γ [τ ] ∈ A for γ = 1, . . . , c.

ThenQl = adlτ (Q) ∈ As for all l = 1, 2, . . . .

Proof. Let us use induction. To prove that[τ ,Ql] ∈ As, if
Ql = [τ ,Ql−1] ∈ As, it suffices to prove thatω′ν([τ ,Ql−1]) ∈ A for all ων
which τ depends on and thatω′δ[τ ] ∈ A for all ωδ which [τ ,Ql−1] depends on.
As ω′ν([τ ,Ql−1]) = (ω′ν [Ql−1])′[τ ]− (ω′ν [τ ])′[Ql−1], it suffices thatω′γ [τ ] ∈ A
for all ωγ , which [τ ,Ql−1] andω′ν [Ql−1] depend on, andω′κ[Ql−1] ∈ A for all
ωκ whichτ andω′ν [τ ] depend on, in order that[τ ,Ql] ∈ As.�
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It appears that nearly all known master symmetries of integrable systems
(1)–(3) satisfy the conditions of Proposition 1 for a suitably chosen setΩ of
nonlocal variablesωγ , so their action indeed yields the symmetries fromAs. For
instance, if∂F/∂~ω = 0 andA = A(ΩUAC,F ), then by virtue of the results of
[20] Proposition 1 holds true for anyτ ,Q ∈ SF (A). HereΩUAC,F is the set of
all nonlocal variablesωγ associated with the universal abelian covering (see [20]
for its definition) over (1). Let us stress that Proposition 1 is valid for anyτ and
Q meeting the relevant requirements, no matter whetherτ is a master symmetry
andQ is a symmetry for (1)–(3).

Note that Proposition 1 is obviously valid for more general systems of PDEs
with constraints than (1)–(3), if we suitably redefine for them the Lie bracket, the
directional derivative and the algebraA.

4. The structure of formal symmetries for NWD systems

Consider a particular class of evolution systems with constraints (1)–(3) such
that n ≡ ford F ≥ 2 and the leading coefficientΦ of the formal seriesF′
(i.e., F′ ≡ ΦDn + . . . ) hass distinct eigenvaluesλi and can be diagonalized
by means of a matrixΓ = Γ(x, t,u, . . . ,un′ , ~ω), i.e., the matrixΛ = ΓΦΓ−1

is diagonal, cf. [11, 12]. For these systems there exists a unique formal series
T = Γ + Γ

∑∞
j=1 ΓjD

−j ∈ Mats(A)[[D−1]] such that all coefficients of the
formal seriesV = TF′T−1 +(Dt(T))T−1 are diagonal matrices and the diagonal
entries of matricesΓj , j = 1, 2, . . . , are equal to zero. The proof is essentially the
same as for Proposition 3.1 from [11]. We shall call the systems with constraints
(1)–(3) having the above properties and such thatdet Φ 6= 0 nondegenerate
weakly diagonalizable (NWD). Note that whenu is scalar, i.e.,s = 1, any system
(1)–(3) with n ≡ ford F ≥ 2 obviously is an NWD system with constraints,
havingT = 1 andV = F′.

Below in this section (1)–(3) will be an NWD system with constraints.
Eq.(5) yields [11, 12]deg(Dt(R̃) − [V, R̃]) ≤ degV + deg R̃ −m, where

R̃ = TRT−1, whence we find (cf. [6, 12, 13]) that anyR ∈ FS(n+1)
F (A) can be

represented in the form

R = T−1

(
r∑

j=r−n+1
cj(t)V

j/n

)
T+

1

n
T−1

(
D−1

(
ċr(t)Λ

−1/n

−rcr(t)Dt(Λ
−1/n)

))
V

r−n+1
n T+N, degN < r − n+ 1.

(6)

Likewise, forR ∈ FS(m)
F (A) with m = 2, . . . , n we have

R = T−1

(
r∑

j=r−m+2
cj(t)V

j/n

)
T+N, degN < r −m+ 2. (7)
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Here r = degR, N = bDν + · · · ∈ Mats(A)[[D−1]] is some formal
series,ν = r − n in (6) andν = r − m + 1 in (7); cj(t) and ΓbΓ−1 are
diagonals × s matrices; forV ≡ diag(V1, . . . ,Vs), Vi ∈ A[[D−1]], we set

Vj/n = diag(V
j/n
1 , . . . ,V

j/n
s ) [11]; dot stands for thepartial derivative w.r.t.t.

In this section we assume that any functionh̃+a(t), wherea(t) is an arbitrary
function oft, can be taken forD−1(h), if h = D(h̃) andh, h̃ ∈ A.

Form = 2, . . . , n + 1 Eqs. (6), (7) represent a general solution of (5) for any
NWD system with constraints (1)–(3). Hence, if at least one entry of the matrix
(ċr(t)Λ

−1/n − rcr(t)Dt(Λ
−1/n)) does not belong toImD, then (1)–(3) has no

formal symmetries fromFS(n+1)
F (A) with a givencr(t).

For anyP ≡ T−1cp(t)V
p/nT+ · · · andQ ≡ T−1dq(t)V

q/nT+ · · · we have

[P,Q] = T−1(1/n)(pcp(t)ḋq(t)− qdq(t)ċp(t))V
p+q−n
n T+ K (8)

by virtue of (6), providedP,Q ∈ FS
(n+1)
F (A). HereK ∈ Mats(A)[[D−1]] is

some formal series,degK < p+ q − n.
Let P,Q ∈ As, R ≡ [P,Q]. ThenR′ = Q′′[P] − P′′[Q] − [P′,Q′]. If

P,Q ∈ SF (A), then (5) and (6) forR = P′ andR = Q′ imply deg P′′[Q] ≤
p+n0−2 < p+q−n anddeg Q′′[P] ≤ q+n0−2 < p+q−n for p, q > n+n0−2,
p ≡ ford P, q ≡ ford Q. This result and (8) forP = P′,Q = Q′ yield

[P,Q]′ = −T−1(1/n)(pcp(t)ḋq(t)− qdq(t)ċp(t))V
p+q−n
n T+ K̃, (9)

whereK̃ ∈ Mats(A)[[D−1]] is some formal series,deg K̃ < p+ q − n.
So, ifP,Q ∈ SF (A), p, q > n+n0−2, thenford R ≤ p+q−n. If R ∈ As,

thenR ∈ S(p+q−n)
F (A), andR ∈ S(p+q−n−1)

F (A), if pcp(t)ḋq(t) = qdq(t)ċp(t).
Let (1)–(3) have a nondegenerate formal symmetryR ∈ Mats(A)[[D−1]],

r ≡ degR 6= 0, of rank q > n. Then Dt(ρ
a
j ) ∈ ImD, i.e., ρaj are

conserved densities, fora = 1, . . . , s and j = −1, 0, . . . , q − n − 2, where
ρa0 = res ln((TRT−1)1/r)aa andρaj = res((TRT−1)j/r)aa for j 6= 0, cf. [11].
Forn0 < 2 we haveρaj ∈ ImD for all a = 1, . . . , s andj = −1, 0, . . . ,−n0.

Proposition 2. Let an NWD system with constraints (1)–(3) have a nondegenerate
formal symmetryR ∈ Mats(A)[[D−1]], r ≡ degR 6= 0, q ≡ rankR > n; let for
a = 1, . . . , s there existma ∈ {−1, 1, 2, . . . , min(n − 2, q − n − 2)} such that
ma 6= 0, ρama 6∈ ImD andρaj ∈ ImD for j = −1, 1 . . . ,ma − 1, j 6= 0. Then for

eachP ∈ FS(m+n+2)
F (A), m = max

a
ma, there exists a constants × s diagonal

matrix c such thatP = T−1cRp/rT+ · · · , p ≡ degP.
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Proof. SinceR ∈ FS(n+1)
F (A), by (6) we haveR = T−1h(t)Vr/nT + · · · .

For anyP ∈ FS(n+1)
F (A) we can (cf. [6, 14] and (6)) representP̃ ≡ TPT−1 as

P̃ =
p∑

j=p−n+1
cj(t)R̃

j/r +
1

n

(
D−1

(
ċp(t)(h(t))n/rρ−1

))
R̃

p−n+1
r + Ñ. (10)

HereÑ ≡ ∑p−n
j=−∞ b̃jDj ∈ Mats(A)[[D−1]], cj(t), h(t), b̃p−n are diagonals× s

matrices,ρ−1 ≡ diag(ρ1−1, . . . , ρ
s−1), R̃ = TRT−1; the fractional powers̃Rj/r

are defined so that their firstr coefficients are diagonal, cf. [11, 12].
ForP ∈ FS

(d)
F (A) we havedeg(Dt(P̃) − [V, P̃]) ≤ n + p − d, and thus

deg(Dt(P̃i) − [V, P̃i]) ≤ n + p + i − min(q, d) for P̃i ≡ P̃R̃i/r. Hence, for
−p− 2 < i < min(q, d)− n− p− 1 we haveres(Dt(P̃i)− [V, P̃i]) = 0.

Let us plug (10) into this equality for−p−2 < i < min(q, d, 2n)−n−p−1
and break it intos scalar equations. Sinceres([V, P̃i])aa ∈ ImD by Adler’s
formula, see e.g. [12], andDt(ρ

a
j+i) ∈ ImD by assumption, we easily find that

for anyP ∈ FS(m+n+2)
F (A) we have(ċp(t))aaρ

a
ma = 0 modulo the terms from

ImD for all a = 1, . . . , s. So,ċp(t) = 0, and the result follows.�

Corollary 1. Under the assumptions of Proposition 2, for anyG ∈ SF (A), k ≡
ford G ≥ m + n + n0, we haveG′ = T−1cRk/rT + · · · , wherec is a constant
s× s diagonal matrix.

5. Symmetries of homogeneous NWD systems

Let (1)–(3) possess a scaling symmetryD = αtF + xu1 + βu, whereβ =
diag(β1, . . . , βs) is a diagonal matrix,α, βj = const, and let the determining
equations (2), (3) forωγ , γ = 1, . . . , c, be homogeneous with respect toD. Then
we shall call the evolution system with constraints (1)–(3)homogeneousw.r.t. D,
cf. e.g. [7, 8, 10, 20]. If a formal vector fieldG∂/∂u is homogeneous of weightκ
w.r.t. D, then we shall say for short thatG ∈ As itself is homogeneous of weight
κ and writewt(G) = κ.

For homogeneous systems (1)–(3) there usually exists a basis inSF (A) made
of homogeneous symmetries, and hence the requirement of homogeneity ofP,Q
andτ below is by no means restrictive. So, the phrase like “for all (homogeneous)
H ∈M the conditionP is true” below means that there exists a basis inM such
that all its elements are homogeneous w.r.t.D, and for all of them the condition
P holds true. We have an obvious

Lemma 1. Let (1)–(3) be a homogeneous system with constraints, and
homogeneousP,Q ∈ SF (A) be such that[P,Q] ∈ M, whereM is a
subspace ofAs. Suppose thatwt(G) 6= wt([P,Q]) = wt(P) + wt(Q) for all

(homogeneous)G ∈ S(p+q)
F (A)∩M, p ≡ ford P, q ≡ ford Q. Then[P,Q] = 0.
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This result, as well as other results below, allows to prove the commutativity
for large families of symmetries at once. Examples below show that we can
usually choose the subspaces likeM large enough so that the condition
[P,Q] ∈ M can be verified for all symmetries in the family without actually
computing[P,Q]. On the other hand, by proper choice of these subspaces we
can considerably reduce the number of weight-related conditions to be verified,
and thus make the application of our results truly efficient.

Below in this section we assume that (1)–(3) is a homogeneous NWD
system with constraints andP,Q ∈ SF (A) are itshomogeneoussymmetries,
p ≡ ford P, q ≡ ford Q. Note that if p, q > n + n0 − 2, then by (9) we
should verify the conditions of Lemma 1 only forG ∈ S(p+q−n)

F (A) ∩M (for

G ∈ S(p+q−n−1)
F (A) ∩M, if in additionpcp(t)ḋq(t)− qdq(t)ċp(t) = 0).

5.1. COMMUTATIVITY AND TIME DEPENDENCE OF SYMMETRIES

Corollary 2. Letα 6= 0, ∂Φ/∂t = 0 and∂Xγ/∂t = ∂Tγ/∂t = 0, γ = 1, . . . , c.
Let homogeneousP,Q ∈ AnnF (A) be such that[P,Q] ∈ L, whereL is
a subspace ofAs. Let p, q ≥ bF ≡ min(max(n0, 0), n + n0 − 1), where
p ≡ ford P, q ≡ ford Q. Suppose thatwt(G) 6= (p + q)α/n for all

(homogeneous)G ∈ S(n0−1)
F (A) ∩AnnF (A) ∩ L. Then[P,Q] = 0.

Proof. If P,Q ∈ AnnF (A), [P,Q] ∈ As, p, q ≥ bF , then, using (6), (7) and (9),

we find that[P,Q] ∈ N ≡ S(p+q−1)
F (A)∩AnnF (A). Eqs. (6) or (7) forR = G′

imply wt(G) = kα/n 6= wt([P,Q]) = (p+ q)α/n for all homogeneousG ∈ N
with k ≡ ford G ≥ n0. Hence, under our assumptionswt(G) 6= (p+ q)α/n for
all homogeneousG ∈ N ∩ L ≡M, and thus by Lemma 1[P,Q] = 0.�

For instance, for the integrable [21] equationut = D2(u
−1/2
1 ) + u

3/2
1 ≡ K

with n0 = 2 andα = 3/2 the spaceS(1)
K (Aloc) ∩ AnnK(Aloc) is spanned by 1

andu1, andwt(1),wt(u1) ≤ 1 < α(p + q)/n = (p + q)/2 for p, q ≥ bK = 2.
Hence, by Corollary 2 all (homogeneous) time-independent local generalized
symmetries of formal orderp > 1 for this equation commute.

Likewise, using Corollary 2, we can easily show that for anyλ-homogeneous
integrable evolution equation withλ ≥ 0 from [8] all its x, t-independent
homogeneous local generalized symmetries of formal orderk > 0 commute.

If n0 ≤ 0 and, in addition to the conditions of Corollary 2 forP andQ, the
commutator[P,Q] ∈ SF (Aloc), [P,Q] is x, t-independent andwt([P,Q]) 6= 0,
then[P,Q] = 0. The weight-related conditions are automatically satisfied, as the

only x, t-independent symmetries inS(n0−1)
F (Aloc) are constant ones, and their

weight is zero. In particular, forany homogeneous (withα 6= 0) NWD system
of the formut = Φ(x)un + Ψ(x, t)un−1 + f(x, t,u, . . . ,un−2), whereΦ, Ψ are
s × s matrices,all homogeneousx, t-independent local generalized symmetries
of formal orderk > 0 commute.
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Let R ∈ FS
(2)
F (A) be a nondegenerate formal symmetry for (1)–(3),

r ≡ degR 6= 0. Then by (7)R = Γ−1h(t)Λr/nΓDr + · · · , where
h(t) ≡ diag(h1(t), . . . , hs(t)) is a s × s diagonal matrix. Assume that
h(t) is homogeneous w.r.t.D and ζR ≡ (α/n + wt(h(t))/r) 6= 0. Let
ZF,R(A) = {G ∈ SF (A) | k ≡ ford G ≥ n0; there exists a diagonal
matrixc(t), wt(c(t)) = 0, such thatG′ = Γ−1c(t)(h(t))k/rΛk/nΓDk + · · · }.
We set here (h(t))k/r ≡ diag((h1(t))k/r, . . . , (hs(t))

k/r). Let also

StF,R(A) = {G ∈ ZF,R(A) | c(t) is a constant matrix}, and N
(j)
F,R(A) be

the set of symmetriesG ∈ SF (A) such thatk ≡ ford G ≥ n0, k ≤ j, and
G′ = Γ−1c(t)(h(t))k/rΛk/nΓDk + · · · , wherec(t) is ans × s diagonal matrix,
different for differentG andk, and the entries ofc(t) are linear combinations
of functions oft, say,ψb(t), such that for allb we havewt(ψb(t)) < ζR(j − k)
for ζR > 0 and wt(ψb(t)) > ζR(j − k) for ζR < 0. For any homogeneous

G ∈ N
(j)
F,R(A) we havewt(G) < jζR for ζR > 0 andwt(G) > jζR for ζR < 0,

sowt(H) 6= wt(P) for any homogeneousP ∈ ZF,R(A) andH ∈ N
(ford P)
F,R (A).

Let P,Q ∈ SF (A) be homogeneous, and[P,Q] ∈ L1 ∪ L2, whereL1 is

a subspace ofN(j)
F,R(A) for somej andR, andL2 is a subspace ofS(d)

F (A) for
somed. Assume thatR satisfies the above conditions,wt([P,Q]) ≥ jζR for
ζR > 0 andwt([P,Q]) ≤ jζR for ζR < 0, andwt(H) 6= wt([P,Q]) for all

(homogeneous)H ∈ L2/(L2 ∩N
(j)
F,R(A)). Then by Lemma 1[P,Q] = 0.

Suppose that, in addition to the above conditions for[P,Q], we haved < 0,
wt([P,Q]) > 0 for ζR > 0 andwt([P,Q]) < 0 for ζR < 0, and[P,Q] belongs
to SF (Aloc) and can be represented (as function oft andx) as a polynomial in
variablesχ(t) andξ(x) such thatwt(χ(t)) < 0 andwt(ξ(x)) < 0 for ζR > 0,
andwt(χ(t)) > 0 andwt(ξ(x)) > 0 for ζR < 0. Then[P,Q] = 0, and there is

no further weight-related conditions to verify. Indeed,S
(d)
F (Aloc) for anyd < 0 is

spanned by the symmetries of the formG = G(x, t), and for any homogeneous
symmetryH = H(x, t) being a polynomial inχ(t) andξ(x) we obviously have
wt(H) 6= wt([P,Q]).

Note that under the assumptions of Proposition 2 allG ∈ SF (A) with
ford G ≥ m+n+n0 belong toStF,R(A) by Corollary 1. Suppose thatR satisfies
the conditions, given above. Letd = min(m+ n+ n0 − 1, p+ q). Then for any

P,Q ∈ SF (A) such that[P,Q] ∈ As we have[P,Q] ∈ N
(p+q)
F,R (A) ∪ S(d)

F (A).
Then[P,Q] = 0 for homogeneousP,Q ∈ ZF,R(A), oncewt(H) 6= wt([P,Q])

for all (homogeneous)H ∈ S(d)
F (A)/(S

(d)
F (A)∩N

(p+q)
F,R (A)). If p, q > n+n0−2,

then by (9) we can taked = min(m + n + n0 − 1, p + q − n) (or
d = min(m+ n+ n0 − 1, p+ q − n− 1), if pcp(t)ḋq(t)− qdq(t)ċp(t) = 0).

If ∂F/∂t = ∂Xγ/∂t = ∂Tγ/∂t = 0, γ = 1, . . . , c, thenF ∈ SF (A), and

∂P/∂t = [P,F] ∈ S(p)
F (A) for P ∈ SF (A). So, takingQ = F and imposing the
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extra conditiond ≤ p in three previous paragraphs yields valid results.
We also have the following

Proposition 3. Let α 6= 0 and ∂F/∂t = 0, ∂Xγ/∂t = ∂Tγ/∂t = 0,
γ = 1, . . . , c; let homogeneousP ∈ SF (A) be such thatp ≡ ford P ≥ n0,
ford ∂P/∂t < p and [P,F] ∈ L, whereL is a subspace ofAs. Suppose that

wt(G) 6= (p + n)α/n for all (homogeneous)G ∈ S
(p−1)
F (A) ∩ L such that

G 6∈ N
(p+n)
F,F′ (A). Then[P,F] = 0, and thus∂P/∂t = 0 andP ∈ AnnF (A).

Proof.As ford ∂P/∂t < p, we have∂P/∂t = [P,F] ∈ S(p−1)
F (A)∩L ≡M.

The conditionsford ∂P/∂t < p andp ≥ n0 by virtue of (6) or (7) forR = P′
readily imply wt(P) = pα/n. Hencewt([P,F]) = (p + n)α/n, and thus by
Lemma 1[P,F] = 0.�

Let α > 0, ∂F/∂t = 0, ∂Xγ/∂t = ∂Tγ/∂t = 0, γ = 1, . . . , c,
and homogeneousP,Q ∈ StF,F′(A), p, q ≥ n0, be polynomials int. If
we take the space of symmetries fromSF (A) polynomial in time t, for L̃,

and setL1 = N
(p+q)
F,F′ (A) ∩ L̃, L2 = S

(n0−1)
F (A) ∩ L̃, d = n0 − 1, then

[P,Q] ∈ L1 ∪ L2 ≡ M, and thus the weight-related conditions of Lemma 1,
Corollary 2, Proposition 3, etc., are to be checked only for (homogeneous)
G ∈ L2. Furthermore, ifn0 ≤ 0, thenS(n0−1)

F (Aloc) contains only the symme-
tries G = G(x, t), and soany homogeneous local generalized symmetryK of
formal orderk > 0 being polynomial int andx and such that∂2K/∂uk∂t = 0
is in fact time-independent, and any two such symmetries commute. This result
applies e.g. toany homogeneous NWD system withα > 0 having the form
ut = Φ(x)un + Ψ(x)un−1 + f(x,u, . . . ,un−2), whereΦ, Ψ ares× s matrices.

5.2. MASTER SYMMETRIES OF HOMOGENEOUS NWD SYSTEMS

Corollary 3. Letα 6= 0, ∂Φ/∂t = 0 and∂Xγ/∂t = ∂Tγ/∂t = 0, γ = 1, . . . , c.
Suppose that there exist a homogeneousQ ∈ AnnF (A) and a homogeneous
τ ∈ As such that∂τ/∂t = 0, ∂[τ ,F]/∂t = 0, K = τ + t[τ ,F] ∈ SF (A),
q ≡ ford Q > n + n0 − 2, b ≡ ford[τ ,F] > max(ford τ , n), the formal
series([τ ,F])′ is nondegenerate,[[τ ,F],Q] ∈ L, whereL is a subspace of
As, [τ ,Q] ∈ As. Let wt(H) 6= (b + q)α/n for all (homogeneous)H ∈
L ∩ S(n0−1)

F (A) ∩AnnF (A). ThenQ1 = [τ ,Q] ∈ AnnF (A), andford Q1 > q.

Proof. From (4) with G = K it clear that [τ ,F] ∈ AnnF (A), so by
Corollary 2 [[τ ,F],Q] = 0, whence, using[F,Q] = 0 and the Jacobi identity,
we find that[F, [τ ,Q]] = 0, so[τ ,Q] ∈ AnnF (A). By (9) the nondegeneracy of
([τ ,F])′ readily impliesford[τ ,Q] = ford[K,Q] = b+ q − n > q.�

Theorem 1. Let the conditions of Corollary 3 be satisfied,adj[τ ,F](Q) ∈ Lj ,
whereLj are some subspaces ofAs, Qj ≡ adjτ (Q) ∈ As, and wt(H) 6=
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((b−n)j+ q+n)α/n for all (homogeneous)H ∈ Lj ∩S(n0−1)
F (A)∩AnnF (A),

j = 2, . . . , i. ThenQj ∈ AnnF (A) andford Qj > ford Qj−1, j = 1, . . . , i.

The proof of the theorem consists in replacing in Corollary 3 the symmetry
Q by Qj = adjτ (Q) and repeated use of this corollary forj = 2, . . . , i. Note that
we can easily verify thatadjτ (Q) ∈ As, using Proposition 1.

Thus, Proposition 1, Corollary 3 and Theorem 1 enable us to ensure thatτ
indeed is a nontrivial master symmetry, producing a sequence of symmetries
of infinitely growing formal orders, without assuminga priori the existence of
hereditary recursion operator [5] or e.g. of “negative” master symmetriesτ j ,
j < 0 [19]. So, our results provide a useful complement to the known general
results on master symmetries, cf. e.g. [3–5, 19].

It is important to stress that in general the symmetriesQi are not obliged
to commute pairwise. The check of their commutativity and picking out the
commutative subset in the sequence ofQi can be performed using either the
results of present paper or other methods, see e.g. [1, 4, 5, 19].

We often can take[τ ,F] or F for Q, and then in order to use Theorem 1 it
suffices to know only a suitable ‘candidate’τ for the master symmetry.

For instance, integrable Harry Dym equationut = u3u3 ≡ H, see e.g. [1, 14],
satisfies the conditions of Proposition 1 and of Theorem 1 for alli = 2, 3, . . . with
α = 3, b = 5, A = A(ΩUAC,H), τ = u3D3(uω1) ≡ τ 0 + u3u3ω1, τ 0 ∈ Aloc,
Q = [τ , u3u3] = 3u5u5+· · · ∈ AnnH(A). In particular, the nonlocal variableω1

in τ is defined by means of the relations∂ω1/∂t = −uu2−u2
1/2, ∂ω1/∂x = u−1

(informally,ω1 = D−1(u−1)). Thus, by Theorem 1Qj = adjτ (Q) ∈ AnnH(A),
j = 1, 2, . . . , together withQ−1 ≡ u3u3 ∈ AnnH(Aloc) andQ0 ≡ Q form the
infinite hierarchy of time-independent symmetries for the Harry Dym equation.
The commutativity ofQj , j = −1, 0, 1, . . . , readily follows from Corollary 2.
Note that it is possible to show thatQj , j = 0, 1, . . . , are in factlocal generalized
symmetries of Harry Dym equation and coincide with the members of hierarchy
generated by means of the recursion operatorR = u3D3 ◦ u ◦ D−1 ◦ u−2 from
the seed symmetryu3u3, up to the constant multiples.
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Abstract. Some possible connections betweenp-adic string theory and noncommutativity are
considered. Their relation to the uncertainty in space measurements at the Planck scale is discussed.
Existence of newp-adic string amplitudes is pointed out. Some similarities betweenp-adic solitonic
branes and noncommutative scalar solitons are emphasized. More explicit and deeper connections
between string field theory andp-adic string theory could emerge in the near future.

1. Introduction

It is well-known (for a recent review, see [1]) that the interplay between quantum-
mechanical and general relativity principles gives an uncertainty∆x on the
measurements of distancesx in the form

∆x ≥ `0 =

√
~G
c3
∼ 10−33cm, (1)

where`0 is the Planck length. This fact requires reconsideration of many our
basic concepts about the spacetime structure at the Planck scale. It leads to the
investigation of some new and more fundamental mathematical notions. To this
end, we will consider here two very natural approaches. From the one point of
view, the uncertainty (1) means at least restriction on the dominance of real num-
bers and archimedean geometry in their applications at the Planck scale. Namely,
this formula has been derived with the implicit use of the real numbers and any
archimedean geometry. In this way we see that the usual physical theory predicts
its breakdown at the Planck scale. A graceful exit from this situation should be
in the use of adeles and adelic topology, which contain archimedean as well as
nonarchimedean geometries. From the other point of view, the uncertainty (1)has

∗ dragovic@mi.ras.ru
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to be a consequence of some noncommutativity between space coordinates. This
conclusion follows from the analogous situation in ordinary quantum mechanics:
the uncertainty∆x∆k ≥ ~

2 is a direct consequence of the noncommutativity in
the form of the Heisenberg algebra[x̂, k̂] = i~ between coordinatesx and k
of the phase space. Thus, we see that the uncertainty (1) leads to consider also
noncommutative geometry at the Planck scale. M-theory is the best candidate to
describe physics at this scale. It contains strings and branes. By now, it seems
that an employment of nonarchimedean geometry based onp-adic numbers and
noncommutative geometry given by the commutation relation

[x̂i, x̂j ] = i~θij (2)

is unavoidable in a further progress of the ”theory of everything”. In the sequel
we will mainly consider some aspects ofp-adic strings and their possible connec-
tion with noncommutative geometry. A notion ofp-adic string was introduced
in [2], where the hypothesis on the existence of nonarchimedean geometry at
the Planck scale was made, and string theory withp-adic numbers was initiated.
In particular, generalization of the usual Veneziano and Virasoro-Shapiro ampli-
tudes with complex valued multiplicative characters over various number fields
was proposed andp-adic valued Veneziano amplitude was constructed by means
of p-adic interpolation. Very successfulp-adic analogues of the Veneziano and
Virasoro-Shapiro amplitudes were proposed in [3] as the corresponding Gel’fand-
Graev [4] beta functions. Using this approach, Freund and Witten obtained [5] an
attractive adelic formula, which states that the product of the crossing symmetric
Veneziano (or Virasoro-Shapiro) amplitude and its allp-adic counterparts equals
unit (or a definite constant). This gives possibility to consider an ordinary four-
point function, which is rather complicate, as an infinite product of its inverse
p-adic analogues, which have simple forms. These first papers induced an inter-
est in various aspects ofp-adic string theory (for a review, see [6, 7]). A recent
interest inp-adic string theory has been mainly related to the generalized adelic
formulas for four-point string amplitudes [8], the tachyon condensation [9], and
the new promising adelic approach [10]. In addition to the expression (1), one can
motivate the application ofp-adic numbers in physics by the fact that the field of
rational numbersQ is dense not only inR but also in the field ofp-adic numbers
Qp (p denotes any prime number). Another motivation may be a conjecture that
fundamental physical laws should be invariant under changeR ←→ Qp [11].
One of the very interesting and fruitful recent developments in string theory (for
a reviev, see [12, 13]) has been noncommutative geometry and the corresponding
noncommutative field theory. This subject started to be very actual after Connes,
Douglas and Schwarz shown [14] that gauge theory on noncommutative torus
describes compactifications of M-theory to tori with constant background three-
form field. Noncommutative field theory (see, e.g. [15]) may be regarded as a
deformation of the ordinary one in which field multiplication is replaced by the
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Moyal (star) product

(f ? g)(x) = exp

[
i~
2
θij

∂

∂yi
∂

∂zj

]
f(y)g(z)|y=z=x, (3)

wherex1, x2, · · · , xd denote coordinates of noncommutative space, andθij =
−θji are noncommutativity parameters. There are many properties of D-brane
dynamics which may be studied by noncommutative field theory. In particular,
it enables to investigate a mixing of the UV and IR effects, and the tachyon
condensation. Replacing the ordinary product between coordinates by the Moyal
product (3) we have

xi ? xj − xj ? xi = i~θij , (4)

which resembles the usual Heisenberg algebra. In the next Section we provide
reader with some very basic facts onp-adic analysis. Section 3 is devoted to thep-
adic string amplitudes. After that we consider an effective field theory of bosonic
p-adic strings and its connection with noncommutative scalar solitons. At the end
we discuss the obtained results and possible prospects.

2. p-Adic numbers and their functions

When we wish to introducep-adic numbers it is instructive to start fromQ, since
Q is the simplest field of numbers of characteristic0 and it contains results of all
physical measurements. Any non-zero rational number can be presented as infinite
expansions into the two quite different forms. The usual one is to the base10, i.e.

−∞∑
k=n

ak10k, ak = 0, · · · , 9, (5)

and the other one is to the basep (p is a prime number) and reads

+∞∑
k=m

bkp
k, bk = 0, · · · , p− 1, (6)

wheren andm are some integers. These representations have the usual repetition
of digits, but, in a sense, expansions are in the mutually opposite directions. The
series (5) and (6) are convergent with respect to the usual absolute value| · |∞
andp-adic absolute value| · |p, respectively. Allowing arbitrary combinations for
digits, we obtain standard representation of real numbers (5) andp-adic numbers
(6). R andQp exhaust all number fields which containQ as a dense subfield.
They have many distinct geometric and algebraic properties. Geometry ofp-adic
numbers is the nonarchimedean one. For much more onp-adic numbers andp-
adic analysis one can see, e.g. [4, 7, 16]. There are mainly two kinds of analysis
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onQp based on two different mappings:Qp → Qp andQp → C. We use both
of them, in classical and quantump-adic models, respectively. Elementaryp-adic
functions are given by the same series as in the real case, but their regions of
convergence are usually different. For instance,expx =

∑∞
n=0

xn

n! and lnx =∑∞
n=1(−1)n+1 (x−1)n

n converge if|x|p < |2|p and |x − 1|p < 1, respectively.
Derivatives ofp-adic valued functions are also defined as in the real case, but using
p-adic norm instead of the absolute value. As a definitep-adic valued integral we
take difference of the corresponding antiderivative in end points. Usual complex-
valuedp-adic functions are:(i) an additive characterχp(x) = exp 2πi{x}p, where
{x}p is the fractional part ofx ∈ Qp, (ii) a multiplicative characterπs(x) = |x|sp,
wheres ∈ C, and(iii) locally constant functions with compact support, like, e.g.
Ω(|x|p) = 1 if |x|p ≤ 1 andΩ(|x|p) = 0 otherwise. There is well defined Haar
measure and integration. For example,∫

Qp
χp(αx

2 + βx)dx = λp(α)|2α|−
1
2

p χp

(
−β

2

4α

)
, α 6= 0, (7)

whereλp(α) is an arithmetic function [7]. An adelex [4] is an infinite sequence

x = (x∞, x2, · · · , xp, · · · ),
wherex∞ ∈ R andxp ∈ Qp with the restriction that for all but a finite setS of
primesp we havexp ∈ Zp . Componentwise addition and multiplication can be
applied to adeles. It is useful to present the ring of adelesA in the following form:

A = ∪SA(S), A(S) = R×∏
p∈S

Qp ×
∏
p 6∈S

Zp,

whereZp = {x ∈ Qp : |x|p ≤ 1} is the ring ofp-adic integers.A is also
locally compact topological space. There are two kinds of analysis overA, which
generalize the corresponding analysis overR andQp.

3. p-Adic string amplitudes

Like in the ordinary string theory, the starting point in an investigation ofp-adic
strings is a construction of the corresponding scattering amplitudes. Recall that
the ordinary crossing symmetric Veneziano amplitude can be presented in the
following forms:A∞(k1, · · · , k4) ≡

A∞(a, b) = g2
∫
R
|x|a−1
∞ |1− x|b−1

∞ dx (8)

= g2
[

Γ(a)Γ(b)

Γ(a+ b)
+

Γ(b)Γ(c)

Γ(b+ c)
+

Γ(c)Γ(a)

Γ(c+ a)

]
(9)
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= g2 ζ(1− a)

ζ(a)

ζ(1− b)
ζ(b)

ζ(1− c)
ζ(c)

(10)

= g2
∫
DX exp

(
− i

2π

∫
d2σ∂αXµ∂αX

µ

) 4∏
j=1

∫
d2σj exp

(
ik(j)
µ Xµ

)
, (11)

where~ = 1, T = 1/π, anda = −α(s) = −1− s
2 , b = −α(t), c = −α(u) with

the conditions+ t+ u = −8, i.e.a+ b+ c = 1. To introduce the corresponding
p-adic Veneziano amplitude there is a sense to considerp-adic analogs of all the
above four expressions.p-Adic generalization of the first expression was proposed
in [3] and it reads

Ap(a, b) = g2
p

∫
Qp
|x|a−1

p |1− x|b−1
p dx, (12)

where | · |p denotesp-adic absolute value. In this case only string world-sheet
parameterx is treated asp-adic variable, and all other quantities maintain their
usual (real) valuation. An attractive adelic formula of the form

A∞(a, b)
∏
p

Ap(a, b) = 1 (13)

was found [5], whereA∞(a, b) denotes the usual Veneziano amplitude (8). A sim-
ilar product formula holds also for the Virasoro-Shapiro amplitude. These infinite
products are divergent, but they can be successfully regularized. Unfortunately,
there is a problem to extend this formula to the higher-point functions.p-Adic
analogs of (9) and (10) were also proposed in [2] and [17], respectively. In these
cases, world-sheet, string momenta and amplitudes are manifestlyp-adic. Since
string amplitudes arep-adic valued functions, it is not so far enough clear their
physical interpretation. Expression (11) is based on Feynman’s functional integral
method, which is generic for all quantum systems and has successfulp-adic gen-
eralization [18]. Itsp-adic counterpart, proposed in [10], has been elaborated [19]
and deserves further study. Note that in this approach,p-adic string amplitude is
complex valued, while not only the world-sheet parameters but also target space
coordinates and string momenta arep-adic variables. Suchp-adic generalization
is a natural extension of the formalism ofp-adic [20] and adelic [21] quantum
mechanics to string theory. In the framework of this new approach we will present
here some results concerning thep-adic Veneziano amplitude. Instead of the start
with the very expression (11) we will take in the real case as a starting point the
following formula

A∞(k1, · · · , k4) = g2
∞

4∏
j=1

∫
dxj exp

 2

hT

∑
i<j

kikj ln |xi − xj |∞
 , (14)
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which can be derived from (11), and after some standard evaluation [22] one has

A∞(k1, · · · , k4) = g2
∞
∫
Q∞

dx|x|
2k1k2
hT∞ |1− x|

2k2k3
hT∞ . (15)

In the construction ofp-adic amplitude we takep-adic analogue of (14), which is

Ap(k1, · · · , k4) = g2
p

∫
Qp
dx χp

 1

hT

∑
i<j

kikj ln(xi − xj)
 . (16)

Note that from (16) one cannot obtain (12) since logarithmic functionln is p-adic
valued and additive characterχp is complex valued function. Thus, we have here a

new type ofp-adic string amplitudes. WhenkikjhT ∈ Qp\Zp additive character will
be different from1 and we have non-trivialp-adic amplitude. The corresponding
adelic string amplitude is

A(k(1), · · · , k(4))

= A∞(k(1)
∞ , · · · , k(4)

∞ )
∏
p∈S

Ap(k
(1)
p , · · · , k(4)

p )
∏
p 6∈S

Ap(k
(1)
p , · · · , k(4)

p ), (17)

wherek(i) is an adele, i.e.

k(i) = (k(i)
∞ , k

(i)
2 , · · · , k(i)

p , · · · ) (18)

with the restriction thatk(i)
p ∈ Zp for all but a finite setS of primesp. The

topological ring of adelesA provides a framework for simultaneous and unified
consideration of real andp-adic numbers. Rational numbers are also embedded in

the space of adeles. Ifk
(i)
p k

(j)
p

hT ∈ Zp for all primesp thenAp(k
(1)
p , · · · , k(4)

p ) =

g2
p

∏4
j=1

∫
dxj , sinceχp(a) = 1 whena ∈ Zp. In this case,p-adic effects con-

tribute only to the effective coupling constant, and adelic amplitude is equal to

the ordinary one. Whenk
(i)
p k

(j)
p

hT ∈ Qp \ Zp then additive character may give non-
trivial contributions to adelic amplitude, what also depends on adelic state of the
world-sheet.

4. p-Adic solitonic branes and noncommutative scalar solitons

There is an effective tachyon field theory in terms of real numbers with an exact
action which describesp-adic strings with amplitude (12). The corresponding
Lagrangian [23, 24] ind-dimensional Minkowski space (~ = 1) is

L =
1

g2

p2

p− 1

[
−1

2
ϕp−

1
2
�ϕ+

1

p+ 1
ϕp+1

]
, (19)
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where� denotes the Laplacian,ϕ is the tachyon field andp is an arbitrary prime
number. Note that this Lagrangian has been recently considered in the context
of tachyon condensation and brane descent relations [9]. The above Lagrangian
yields the equation of motion

p−
1
2
�ϕ = ϕp. (20)

In addition to solutionsϕ = 0 andϕ = 1 there is also solution of the form

ϕ(x) = p
n

2(p−1) exp

(
− p− 1

2p ln p

n∑
i=1

x2
i

)
, (21)

wheren ≤ d − 1. This configuration can be called thep-adic solitonicq-brane
solution, whereq = d− n− 1. In particular case,n = 2 andp = 2, one has

ϕ(x1, x2) = 2 exp

(
− 1

4 ln 2
(x2

1 + x2
2)

)
. (22)

On the other hand there is a noncommutative scalar soliton [25]

φ(x1, x2) = 2 exp

(
−1

θ
(x2

1 + x2
2)

)
(23)

which is the simplest nontrivial (trivial solutions areφ = 0 andφ = 1) solution
of the equation

(φ ? φ)(x) = φ(x), (24)

where? denotes the Moyal product (3) withθij = θεij . The solution (23) of the
equation (24) extremises energy in noncommutative scalar field theory [25] with
the potential

V (φ) =
1

2
m2φ ? φ− 1

3
φ ? φ ? φ, (25)

wherem = 1 and the kinetic term is neglected in the limitθ −→ ∞. It is evident
that the above solitonic solutions (22) and (23) are equal ifθ = 4 ln 2 . This
noncommutative scalar field model can be extended to the more general case with

V (φ) =
1

2
m2φ2 − ck+1

k + 1
φk+1, (26)

where fields are multiplied by the star product, andφ ≡ φ(x1, · · · , xn) with even
n spatial directions. The corresponding equation

ck+1φ
k(x) = m2φ(x) (27)
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has the solution

φ(x) = 2
n
2

(
m2

ck+1

) 1
k

exp

(
−1

θ

n∑
i=1

x2
i

)
. (28)

The solutions (21) and (28) may be identified taking the corresponding values
for massm and noncommutativity parameterθ. Thus, we see that there is an
intriguing similarity betweenp-adic solitonic branes and noncommutative scalar
solitons.

Discussion and concluding remarks

In the previous Section we considered two nonlocal scalar field theories. Their
potentials involve infinitely many derivatives. The corresponding differential
equations are of the infinite order, and they extremize the action and the energy,
respectively. It seems that there is a sense to expect something noncommutative
in the effectivep-adic Lagrangian (19), as well as somethingp-adic (nonar-
chimedean) in noncommutative scalar field theory with potential (26). Moreover,
some more explicit relations between string field theory andp-adic string theory
could be found in the coming years (see also comments in [9]). We believe that
there is an underlying principle, which connects the following three space proper-
ties: noncommutativity, nonarchimedean geometry and the uncertainty relation
(1). Let us also mention that various aspects of possible connection between
quantum groups, nonarchimedean geometry andp-adic strings are discussed in
[26, 27]. On q-deformation of the Veneziano amplitude one can see [28] and
references therein. It is worth noting that one can introduce [29] the Moyal product
in p-adic quantum mechanics and it reads (h = 1)

(f̂ ∗ ĝ)(x) =

∫
Qdp

∫
Qdp
dkdk′ χp(−(xiki + xjk′j) +

1

2
kik
′
jθ
ij)f̃(k)g̃(k′), (29)

whered denotes spatial dimensionality.
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Box 91, 18001 Niš, Yugoslavia
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Abstract. We present a short review of adelic quantum mechanics pointing out its non-
Archimedean and noncommutative aspects. In particular,p-adic path integral and adelic quantum
cosmology are considered. Some similarities betweenp-adic analysis and q-analysis are noted. The
p-adic Moyal product is introduced.

1. Introduction

There is now a common belief that the usual picture of spacetime as a smooth
pseudo-Riemannian manifold should breakdown somehow at the Planck length
lp ∼ 10−33cm, due to the quantum gravity effects. We consider here two
possibilities, which come from modern mathematics and mathematical physics:
non-Archimedean geometry related top-adic numbers, and noncommutative
geometry with space coordinates given by noncommuting operators

[x̂i, x̂j ] = i~θij (1)

∗ gorandj@junis.ni.ac.yu

kievarwe.tex; 12/03/2001; 3:49; p.408
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or by q-deformationxixj = qxjxi. Some noncommutativity of configuration
space should not be a surprise in physics since quantum phase space with the
canonical commutation relation (9) is the well-known example of noncommu-
tative geometry. We will mostly review our recent results concerning adelic
quantum mechanics. We illustrate some features of adelic quantum mechanics by
its application in quantum cosmology. A few remarkable similarities between non-
Archimedean and noncommutative structures are noted. The usual Moyal product
is extended top-adic and adelic quantum mechanics. Since 1987, there have been
many interesting applications ofp-adic numbers and non-Archimedean geometry
in various parts of modern theoretical and mathematical physics (for a review,
see [1–3]). However we restrict ourselves here top-adic and adelic quantum
mechanics as well as to some related topics. In particular, we review Feynman’s
p-adic path integral method. A fundamental role of integral approach top-adic and
adelic quantum mechanics (and adelic quantum cosmology) is emphasized. The
obtainedp-adic probability amplitude for one-dimensional systems with quadratic
Lagrangians has the form as that one in ordinary quantum mechanics. It is well
known that measurements give rational numbersQ, whereas theoretical models
traditionally use realR and complexC number fields. A completion ofQ with
respect to thep-adic norms gives the fields ofp-adic numbersQp (p is a prime
number) in the same way as completion with absolute value yieldsR. The paper
of Volovich [4] initiated a series of articles onp-adic string theory and many
other branches of theoretical and mathematical physics. The metric introduced
by p-adic norm is the non-Archimedean (ultrametric) one. Possible existence
of such space around the Planck length is the main motivation to studyp-adic
quantum models. However,p-adic analysis also plays a role in some areas of
”macroscopic physics” as, for example: spin glasses, quasicrystals and some other
complex systems. In order to investigate possiblep-adic quantum phenomena it
is necessary to have the corresponding theoretical formalism. An important step
in this direction is a formulation ofp-adic quantum mechanics [5, 6]. Because of
total disconnectedness ofp-adic spaces and different valuations of variables and
wave functions, the quantization is performed by the Weyl procedure. A unitary
representation of the evolution operatorUp(t) on the Hilbert spaceL2(Qp) of
complex-valued functions of a p-adic argument is an appropriate way to describe
quantum dynamics ofp-adic systems. Recently formulated adelic quantum me-
chanics [7] successfully unifies ordinary and allp-adic quantum mechanics. The
appearance of space-time discreteness in adelic formalism (see, e.g. [8]) is an
encouragement for the further investigations. This paper is organized as follows.
We start with a short introduction top-adic numbers, adeles and their functions.
After that,p-adic and adelic quantum mechanics based on the Weyl quantization
and Feynman’s path integral are presented. In Section 4 we review our previuos
results concerning one-dimensionalp-adic propagator. In Section 5 we will see
how adelic quantum mechanics can be useful in investigation of the very early

kievarwe.tex; 12/03/2001; 3:49; p.409



ADELIC QUANTUM MECHANICS 403

universe, where in a natural way space-time discreteness emerges in minisuper-
space models of adelic quantum cosmology. In the last Section we give some
of interesting relations between non-Archimedean and noncommutative analysis.
We also define and discuss the correspondingp-adic Moyal product.

2. p-Adic numbers and adeles

Any x ∈ Qp can be presented in the form [9]

x = pν(x0 + x1p+ x2p
2 + · · · ) , ν ∈ Z, (2)

wherexi = 0, 1, · · · , p − 1 are digits.p-Adic norm of any termxipν+i in the
canonical expansion (2) is| xipν+i |p= p−(ν+i) and the strong triangle inequality
holds,i.e. | a + b |p≤ max{| a |p, | b |p}. It follows that | x |p= p−ν if x0 6= 0.
There is no natural ordering onQp. However one can introduce a linear order on
Qp by the following definition:x < y if | x |p<| y |p or when| x |p=| y |p
there exists such indexm ≥ 0 that digits satisfyx0 = y0, x1 = y1, · · · , xm−1 =
ym−1 , xm < ym. Derivatives ofp-adic valued functionsϕ : Qp → Qp are
defined as in the real case, but with respect to thep-adic norm. There is no in-
tegral

∫
ϕ(x)dx in a sense of the Lebesgue measure [2], but one can introduce∫ b

a ϕ(x)dx = Φ(b)−Φ(a) as a functional of analytic functionsϕ(x), whereΦ(x)
is an antiderivative ofϕ(x). In the case of mapf : Qp → C there is well-defined
Haar measure. We use here the Gauss integral∫

Qυ
χυ(ax2 + bx)dx = λυ(a) | 2a |−

1
2

υ χv
(− b2

4a

)
, a 6= 0, (3)

where indexυ denotes real (υ =∞) andp-adic cases,i.e.υ =∞, 2, 3, 5, · · ·.χυ is
an additive character:χ∞(x) = exp(−2πix), χp(x) = exp(2πi{x}p), where
{x}p is the fractional part ofx ∈ Qp. λυ(a) is the complex-valued arithmetic
function [2]. An adele [10] is an infinite sequencea = (a∞, a2, ..., ap, ...), where
a∞ ∈ R ≡ Q∞, ap ∈ Qp with a restriction thatap ∈ Zp for all but a finite setS of
primesp. The set of all adelesAmay be regarded as a subset of direct topological
productQ∞ ×∏pQp whose elements satisfy the above restriction,i.e.

A = ∪SA(S), A(S) = R×
∏
p∈S

Qp ×
∏
p/∈S

Zp. (4)

A is a topological space, and can be considered as a ring with respect to the com-
ponentwise addition and multiplication. An elementary function on adelic ringA
is

ϕ(x) = ϕ∞(x∞)
∏
p

ϕp(xp) =
∏
v

ϕv(xv) (5)
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404 G. DJORDJEVI Ć, B. DRAGOVICH, L. NE ŠIĆ

with the main restriction thatϕ(x) must satisfyϕp(xp) = Ω(|xp|p) for all but a
finite number ofp, where

Ω(| x |p) =

{
1, 0 ≤| x |p≤ 1,
0, | x |p> 1,

(6)

is a characteristic function on the set ofp-adic integersZp = {x ∈ Qp : |x|p ≤ 1}.
It should be noted that the Fourier transform of the characteristic function (vacuum
state)Ω(|xp|) is Ω(|kp|). All finite linear combinations of elementary functions
(5) make the setD(A) of the Schwartz-Bruhat functions. The Fourier transform
of ϕ(x) ∈ D(A) (that mapsD(A) ontoD(A)) is

ϕ̃(y) =

∫
A
ϕ(x)χ(xy)dx =

∫
R
ϕ∞(x)χ∞(xy)dx

∏
p

∫
Qp
ϕp(x)χp(xy)dx, (7)

wheredx = dx∞dx2 . . . dxp . . . is the Haar measure onA. The Hilbert space
L2(A) is a space of complex-valued functionsψ1(x), ψ2(x), . . . , with the scalar
product and norm

(ψ1, ψ2) =

∫
A
ψ̄1(x)ψ2(x)dx, ||ψ|| = (ψ,ψ)1/2 <∞. (8)

A basis of the above space may be given by the orthonormal eigenfunctions of an
evolution operator [7].

3. Adelic quantum mechanics

In foundations of standard quantum mechanics (overR) one usually starts with a
representation of the canonical commutation relation

[q̂, k̂] = i~, (9)

whereq is a coordinate andk is the corresponding momentum. It is well known
that the procedure of quantization is not unique. In formulation ofp-adic quantum
mechanics [5, 6] the multiplication̂qψ → xψ has no meaning forx ∈ Qp and
ψ(x) ∈ C. Also, there is no possibility to definep-adic ”momentum” or ”Hamil-
tonian” operator. In the real case they are infinitesimal generators of space and
time translations, but, sinceQp is disconnected field, these infinitesimal transfor-
mations become meaningless. However, finite transformations remain meaningful
and the corresponding Weyl and evolution operators arep-adically well defined.
For the one dimensional systems which classical evolution can be described by

zt = Ttz, zt =

(
q(t)
k(t)

)
, z =

(
q(0)
k(0)

)
, (10)
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whereq(0) andk(0), are initial position and momentum, respectively, andTt is a
matrix. Canonical commutation relation inp-adic case can be represented by the
Weyl operators (h = 1)

Q̂p(α)ψp(x) = χp(αx)ψp(x) (11)

K̂p(β)ψ(x) = ψp(x+ β). (12)

Now, to the relation (9) in the real case, corresponds

Q̂p(α)K̂p(β) = χp(αβ)K̂p(β)Q̂p(α) (13)

in thep-adic one. It is possible to introduce the family of unitary operators

Ŵp(z) = χp(−1

2
qk)K̂p(β)Q̂p(α), z ∈ Qp ×Qp, (14)

that is a unitary representation of the Heisenberg-Weyl group. Recall that this
group consists of the elements(z, α) with the group product

(z, α) · (z′, α′) = (z + z′, α+ α′ +
1

2
B(z, z′)), (15)

whereB(z, z′) = −kq′ + qk′ is a skew-symmetric bilinear form on the phase
space. Dynamics of ap-adic quantum model is described by a unitary operator
of evolutionU(t) without using the Hamiltonian. Instead of that, the evolution
operator has been formulated in terms of its kernelKt(x, y)

Up(t)ψ(x) =

∫
Qp
Kt(x, y)ψ(y)dy. (16)

The next section will be devoted to the path integral formulation and calculation of
the quantum propagatorKt(x, y) onp-adic spaces. In this way [5]p-adic quantum
mechanics is given by a triple

(L2(Qp),Wp(zp), Up(tp)). (17)

Keeping in mind that standard quantum mechanics can be also given as the cor-
responding triple, ordinary andp-adic quantum mechanics can be unified in the
form of adelic quantum mechanics [7]

(L2(A),W (z), U(t)). (18)

L2(A) is the Hilbert space onA, W (z) is a unitary representation of the
Heisenberg-Weyl group onL2(A) andU(t) is a unitary representation of the
evolution operator onL2(A). The evolution operatorU(t) is defined by

U(t)ψ(x) =

∫
A
Kt(x, y)ψ(y)dy =

∏
v

∫
Qv
K

(v)
t (xv, yv)ψ

(v)(yv)dyv. (19)

kievarwe.tex; 12/03/2001; 3:49; p.412
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The eigenvalue problem forU(t) reads

U(t)ψαβ(x) = χ(Eαt)ψαβ(x), (20)

whereψαβ are adelic eigenfunctions,Eα = (E∞, E2, ..., Ep, ...) is corresponding
energy, indicesα andβ denote energy levels and their degeneration. Note that any
adelic eigenfunction has the form

Ψ(x) = Ψ∞(x∞)
∏
p∈S

Ψp(xp)
∏
p 6∈S

Ω(| xp |p), x ∈ A, (21)

whereΨ∞ ∈ L2(R), Ψp ∈ L2(Qp). Adelic quantum mechanics takes into ac-
count alsop-adic quantum effects and may be regarded as a starting point for
construction of a more complete superstring and M-theory. In the low-energy limit
adelic quantum mechanics becomes ordinary one.

4. p-Adic path integrals

A suitable way to calculate propagator inp-adic quantum mechanics is byp-adic
generalization of Feynman’s path integral. For the classical actionS̄(x′′, t′′;x′, t′)
which is a polynomial quadratic inx′′ andx′ it is well known that in ordinary
quantum mechanics the Feynman path integral is

K(x′′, t′′;x′, t′) =

(
i

h

∂2S̄

∂x′′∂x′

)1/2

exp

(
2πi

h
S̄(x′′, t′′;x′, t′)

)
. (22)

p-Adic generalization of the Feynman path integral was suggested in [5] and can
be written on ap-adic line as

Kp(x
′′,t′′;x′,t′) =

∫
χp

(
−S[q]

h

)
Dq =

∫
χp

(
− 1

h

∫ t′′

t′
L(q, q̇, t)dt

)∏
t

dq(t).

(23)

In (23) we takeh ∈ Q andq, t ∈ Qp. This path integral is elaborated, for the first
time, for the harmonic oscillator [11]. It was shown that there exists the limit

Kp(x
′′, t′′;x′, t′) = lim

n→∞K
(n)
p (x′′, t′′;x′, t′) = lim

n→∞N
(n)
p (t′′, t′)

×
∫
Qp
· · ·
∫
Qp
χp

(
− 1

h

n∑
i=1

S̄(qi, ti; qi−1, ti−1)

)
dq1 · · · dqn−1 , (24)

whereN (n)
p (t′′, t′) is the corresponding normalization factor for the harmonic os-

cillator. The subdivision ofp-adic time segmentt0 < t1 < · · · < tn−1 < tn
is made according to linear order onQp and | ti − ti−1 |v→ 0 for every
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i = 1, 2, · · · , n, whenn → ∞. In the similar way we have calculated path
integrals for: a particle in a constant external field [12], some minisuperspace
cosmological models and a relativistic free particle [8], as well as for a harmonic
oscillator with a time-dependent frequency [12].p-Adic classical mechanics has
the same analytic form as in the real case. Ifq(t) = q̄(t) + y(t) denotes a possible
quantum path, with conditionsy(t′) = y(t′′) = 0, whereq̄(t) is ap-adic classical
path withδS[q̄] = 0, we have the following action for quadratic Lagrangians:

S[q] = S[q̄] +
1

2!
δ2S[q̄] = S[q̄] +

1

2

∫ t′′

t′

(
y
∂

∂q
+ ẏ

∂

∂q̇

)(2)

L(q, q̇, t)dt. (25)

Putting (25) into (23), and using condition∫
Qp
K∗p(x′′, t′′;x′, t′)Kp(z, t

′′;x′, t′)dx′ = δp(x
′′ − z), (26)

with quadratic expansion of action as well as the general form of the normalization
factor

Np(t
′′, t′) =| Np(t

′′, t′)|∞Ap(t′′, t′),
we obtain general expression for the propagator (for some details, see [13])

Kp(x
′′, t′′;x′,t′) =λp

(
− 1

2h

∂2S̄

∂x′′∂x′

)1

h

∂2S̄

∂x′′∂x′
 1

2

p
χp

(
− 1

h
S̄(x′′, t′′;x′,t′)

)
.

(27)

This result exhibits some very important properties. For instance, replacing an
index p with v in (27) we can write quantum-mechanical amplitudeK in or-
dinary and allp-adic cases in the same compact form. It points out a generic
behaviour of quantum propagation in Archimedean and non-Archimedean spaces
and emphasizes the fundamental role of the Feynman path integral method in
quantum theory. Also, considering the most general quadraticp-adic Lagrangian
L(x, ẋ, t) = a(t)ẋ2 +2b(t)ẋx+c(t)x2 +2d(t)ẋ+2e(t)x+f(t) with analytic co-
efficients, we found a connection [14] between these coefficients and the simplest
p-adic quantum stateΩ(|x|p), that is necessary for existence of adelic quantum
dynamics. For space-time discreteness in adelic models, see [8]. It is worth men-
tioning that this approach can be extended to systems with the two, three and
more dimensions, and results will be presented elsewhere. The above results are
also a starting point for a further elaboration of adelic quantum mechanics and
for a semiclassical computation of thep-adic path integrals with non-quadratic
Lagrangians.

5. Adelic quantum cosmology

Adelic quantum cosmology [15] is an application of adelic quantum mechanics to
the universe as a whole. It unifies ordinary andp-adic quantum cosmology. Here,
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path integral formalism occurs to be quite appropriate tool to take integration
over both Archimedean and non-Archimedean geometries on the equal footing.
In this approach we introduceυ-adic complex-valued cosmological amplitudes
by a functional integral

〈h′′ij , φ′′,Σ′′|h′ij , φ′,Σ′〉υ =

∫
D(gµν)υD(Φ)υχυ(−Sυ[gµν ,Φ]). (28)

In practice, it is not possible to deal with full superspace (the space of all 3-
metrics and matter field configurations). Instead, one exploits minisuperspace (a
finite number of coordinates(hij , φ)). After this simplification,υ-factors of adelic
minisuperspace propagator are given by the relation

〈qα′′|qα′〉υ =

∫
dNKυ(qα′′, N |qα′, 0), (29)

whereKυ is an ordinary quantum-mechanical propagator with fixed minisuper-
space coordinatesqα and the lapse functionN . We illustrate adelic quantum
cosmology by Bianchi I model(k = 0). Using Lorentz metric [16]

ds2 = σ2

[
−N

2(t)

a2(t)
dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2

]
(30)

and replacements:

x =
bc+ a2

2
, y =

bc− a2

2
, ż2 = a2ḃċ, (31)

we obtain the corresponding action

Sp[x, y, z] =
1

2

∫ 1

0
dt

[
− 1

N

(
ẋ2 − ẏ2

2
+ ż2

)
− λN(x+ y)

]
, (32)

and equations of motion

ẍ+ λN2 = 0, ÿ − λN2 = 0, z̈ = 0. (33)

Taking into account conditionsx(0) = x′, y(0) = y′, z(0) = z′, x(1) =
x′′, y(1) = y′′, z(1) = z′′, the quantum transition amplitude can be written
as

Kp(x′′, y′′, z′′, N |x′, y′, z′, 0) =
λp(−2N)∣∣∣4 1

3N
∣∣∣ 32
p

χp
(−S̄(x′′, y′′, z′′, N |x′, y′, z′, 0)

)
.

(34)
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Conditions for the existence of the vacuum stateΩ(|x|p)Ω(|y|p)Ω(|z|p) can be
calculated from the equality∫

|x′|p≤1

∫
|y′|p≤1

∫
|z′|p≤1

Kp(x′′, y′′, z′′, N |x′, y′, z′, 0)dx′dy′dz′

= Ω(|x′′|p)Ω(|y′′|p)Ω(|z′′|p),
and the simplest vacuum state is

Ψp(x, y, z,N ) =

{
Ω(|x|p)Ω(|y|p)Ω(|z|p), |N |p ≤ 1, |λ|p ≤ 1, p 6= 2,
Ω(|x|2)Ω(|y|2)Ω(|z|2), |N |2 ≤ 1

2 , |λ|2 ≤ 2, p = 2.

(35)

According to (21) adelic wave functionΨ(x, t) offers more information on a
physical system than only its standard partΨ∞(x, t). In quantum-mechanical
experiments, as well as in all measurements, numerical results belong to the field
of rational numbersQ. For the Bianchi I model, as well as for any adelic quan-
tum model, according to the usual interpretation of the wave function we have to
consider|Ψ(x, t)|2∞ at rational space-time points. In the above adelic case we get

|Ψ(x, y, z,N )|2∞ = |Ψ∞(x, y, z,N )|2∞
∏
p

Ω(|x|p)Ω(|y|pΩ(|z|p)

=

{ |Ψ∞(x, y, z,N )|2∞ , x, y, z ∈ Z ,
0 , x, y, z ∈ Q \ Z. (36)

Here we used the following properties of theΩ-function: Ω2(|x|p) = Ω(|x|p),∏
p Ω(|x|p) = 1 if x ∈ Z, and

∏
p Ω(|x|p) = 0 if x ∈ Q \ Z. Thus, it means

that positionsx, y, z may have only discrete values:x = 0,±1,±2, .... Since
theΩ-function is invariant under the Fourier transformation, there is also discrete
momentum space. When system is in some excited state, the sharpness of the dis-
crete structure disappears and space demonstrates usual continuous properties. It
is worth mentioning that a space-time discreteness is also noted in the framework
of q-deformed quantum mechanics [17].

6. p-Adic analysis and q-analysis. The Moyal product

Some connections betweenp-adic analysis and quantum deformations has been
noticed [18] in a variety of cases during the last ten years or so. It was shown
[19] that the two parameter Sklyanin quantum algebra and its generalizations
provide a promising connection between thep-adics and quantum deformation. A
similar connection has been indicated by Macdonald’s paper [20] on orthogonal
polynomials associated with the root systems. In [19] it was also pointed out that
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elliptic quantum group and its generalizations unify thep-adic and real versions
of a Lie group (e.g.SL(2)). This result is connected with adelic approach and
the possibility of establishing q-deformed Euler products. In some other contexts
it has been observed that the Haar measure onSUq(2) coincides with the Haar
measure on the field ofp-adic numbersQp if q = 1

p [21]. Namely, Tomea-Jackson
integral in q-analysis∫ 1

0
f(x)dqx = (1− q)

∞∑
n=0

f(qn)qn, (37)

and the integral inp-adic analysis∫
|x|p≤1

f(|x|p)dx = (1− 1

p
)
∞∑
n=0

f(p−n)p−n, (38)

are equal ifq = 1
p , i.e.∫ 1

0
f(x)d1/px =

∫
|x|p≤1

f(|x|p)dx. (39)

In q-analysis there is the following differential operator (related to the q-deformed
momentum in the coordinate representation [21])

∂qf(x) =
f(x)− f(qx)

(1− q)x . (40)

In p-adic analysis, when one considers a complex-valued functionf(x) depending
on ap-adic variablex we are not able to use standard definition of differentiation.
Instead of that it is possible to use Vladimirov’s operator

Dαψ(x) =
p− 1

1− p−1−α

∫
f(x)− f(y)

|x− y|α+1
p

dy (41)

which in a sense resembles (40). Moreover, there is a potential such that the
spectrum of thep-adic Schr̈odinger- like ( diffusion ) equation [22]

Dψ(x) + V (|x|p)ψ(x) = Eψ(x) (42)

is the same one as in the case ofq-deformed oscillator found by Biedenharn [23]
and Macfarlane [24] forq = 1/p. For more details, see [21]. Recently [25],
it has been proposed a new pseudodifferential operator with rational part ofp-
adic numbers{x}p. In such case, energy levels forp-adic free particle exhibit
discrete dependence on the corresponding momentum:{E}p = {k}2p. Note also
a proposal for q-deformation of Vladimirov’s operator [26]. We see that there
are some interesting relations betweenp-adic and q-analysis, and in a sense be-
tween adelic quantum mechanics and noncommutative one. It would be fruitful
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to find some deeper reasons for these connections, between theories which pre-
tend to give us more insights on the space-time structure at the Planck scale. By
now it is not enough understood. It seems to be reasonable to formulate a non-
commutative adelic quantum mechanics that may connect non-Archimedean and
noncommutative effects and structures. As the first step in this direction one has
to consider ap-adic and adelic generalization of the Moyal product. Let us con-
sider D-dimensional classical space with coordinatesx1, x2, · · · , xD. Let f(x)
be a classical functionf(x) = f(x1, x2, · · · , xD). Then, with the respect to the
Fourier transformations, we have

f̃(k) =

∫
QDυ

dx χv(kx)f(x), (43)

f(x) =

∫
QDυ

dk χv(−kx)f̃(k). (44)

According to the usual Weyl quantization

f̂(x) =

∫
QD∞

dk χ∞(−kx̂)f̃(k) ≡ f(x̂). (45)

Let us now have two classical functionsf(x) andg(x) with

f̂(x) =

∫
QD∞

dk χ∞(−kx̂)f̃(k), (46)

ĝ(x) =

∫
QD∞

dk χ∞(−kx̂)g̃(k). (47)

In the coordinate representation we can write the same above expressions replac-
ing x̂ by x and extend it to allp-adic cases. Now we are interested in product
f̂(x)ĝ(x). In the real case this operator product is of the form

(f̂ · ĝ)(x) =

∫ ∫
dkdk′ χ∞(−kx̂)χ∞(−k′x̂)f̃(k)g̃(k′). (48)

Using the Baker-Campbell-Hausdorff formula, the relation (1) and then the
coordinate representation one finds the Moyal product in the form

(f ∗ g)(x) =

∫ ∫
dkdk′ χυ

(
−(k + k′)x+

1

2
kik
′
jθ
ij

)
f̃(k)g̃(k′), (49)

where we already used our generalization fromQ∞ to Qυ. Note that in the real
case we useki → −(i/2π)(∂/∂xi) and obtain the well known form

(f ∗ g)(x) = χ∞

(
− θij

2(2π)2

∂

∂yi
∂

∂zj

)
f(y)g(z)|y=z=x. (50)
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Thus, as thep-adic Moyal product we take

(f̂ ∗ ĝ)(x) =

∫
QDp

∫
QDp

dkdk′ χp(−(xiki + xjk′j) +
1

2
kik
′
jθ
ij)f̃(k)g̃(k′). (51)

As the first step in adelization one can consider the Moyal product onR×∏p∈S Qp
×∏p 6∈S Zp space. Various adelic aspects of the Moyal product will be presented
elsewhere.
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GIBBS STATES OF A LATTICE SYSTEM OF QUANTUM

ANHARMONIC OSCILLATORS

YURI KOZITSKY ∗ †
Institute of Mathematics, Marie Curie-Sklodowska University,
Lublin 20-031, Poland

1. Introduction

Gibbs states of interacting quantum lattice systems are constructed as positive
functionals on von Neumann algebras whose elements (observables) represent
physical quantities [8], [13]. For the systems, the algebra of observables of every
subsystem in a finite subset of the lattice may be represented as theC∗-algebra of
bounded operators on a Hilbert space, the theory of Gibbs states is quite well
elaborated [8]. But if one needs to include into consideration also unbounded
operators, the situation becomes much more complicated. In 1975 an approach to
the construction of Gibbs states, which uses the integration theory in path spaces,
has been initiated [1] (see also [5], [6], [7], [11], [13], [15]). Here the state at
a temperatureT = β−1 is defined by means of a probability measureµβ on a
certain infinite-dimensional space, analogously to the Euclidean quantum field
theory. That is the reason whyµβ is known asthe Euclidean Gibbs state.

In this paper we consider the following model. To each point of the lattice
L = Zd, d ∈ N there is attached a quantum particle (oscillator) with the reduced
massm = mph/~2 (mph is the physical mass), which has an unstable equilibrium
position at this point. Such particles performD-dimensional oscillations around
their equilibrium positions and interact via attractive potential. Similar objects
have been studied for many years as quite realistic models of crystalline substance
undergoing structural phase transitions (see e.g. [16]).

In Section 2, following [2], [3], [4], we summarize main aspects of the con-
struction of the Euclidean Gibbs state for the model considered. In Section 3,we

∗ jkozi@golem.umcs.lublin.pl
† Supported in part by the Polish Scientific Research Committee under the Grant 2 P03A 02915

kievarwe.tex; 12/03/2001; 3:49; p.422



416 Y. KOZITSKY

provide a number of assertions describing such states. In particular, we show that
strong zero-point oscillations suppress critical point anomalies. The latter result is
a strengthening of similar ones given in [2], [14].

2. Euclidean Formalism for Quantum Gibbs States

The oscillations of the particle having its equilibrium position atl ∈ L are de-
scribed by the momentum and displacement operators{pl, ql}, densely defined
on the complex Hilbert spaceHl = L2(RD). The whole system is described by
the formal Hamiltonian

H =
1

2

∑
l,l′
dll′(ql, ql′) +

∑
l

Hl, (1)

Hl =
1

2m
(pl, pl) +

1

2
(ql, ql) + V (ql), (2)

where( . , . ) stands for scalar product inRD anddll′ form a dynamical matrix.
The potentialV is chosen as follows

V (x) = v((x, x)), (3)

wherev is a polynomial, convex onR+
def
= [0,+∞). Some of our results were

obtained under assumption that

v(ξ) =
1

2
aξ +

r∑
s=2

bsξ
s, r ≥ 2, a ∈ R, bs ≥ 0, br > 0. (4)

Forp ∈ Z, let

Sp =

{
{xl, l ∈ L} |

∑
l

(1 + |l|)2p x2
l <∞

}
, (5)

where|l| is the Euclidean norm onL = Zd ⊂ Rd. Let also

S def
=

⋂Sp, S ′ def
=

⋃S−p, p ∈ N0
def
= N ∪ {0}. (6)

The dynamical matrix is supposed to be invariant under translations onL, and
attractive (dll′ ≤ 0). We also suppose that for everyl ∈ L, the sequence{dll′ , l′ ∈
L} belongs toS. Set

Λ = {l = (l1, . . . , ld) | l0j ≤ lj ≤ l1j , l0j < l1j , l
0
j , l

1
j ∈ Z, j = 1, . . . , d}.

Given a boxΛ, letL(Λ) denote the partition ofL by the boxes which are obtained
as translations ofΛ. Let alsoG be the group of all translations ofL, andG(Λ) =
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{t ∈ G | t(Λ) ∈ L(Λ)}, wheret(Λ) = {t(l), l ∈ Λ}. Then the dynamical matrix
(dΛ
ll′)l,l′∈Λ obeying periodic conditions on the boundaries ofΛ and the periodic

local HamiltonianHΛ are

dΛ
ll′ = min{dlt(l′) : t ∈ G(Λ)}, (7)

HΛ =
1

2

∑
l,l′∈Λ

dΛ
ll′(ql, ql′) +

∑
l∈Λ

Hl. (8)

The latter is an essentially self-adjoint lower bounded operator acting inHΛ =

L2
(
RD|Λ|

)
(| · | stands for cardinality).

For a boxΛ and an inverse temperatureβ = T−1, a periodic Gibbs stateγβ,Λ
is the following functional

γβ,Λ(A) =
trace(Ae−βHΛ)

trace(e−βHΛ)
, (9)

defined on theC∗-algebraAΛ of linear bounded operators onHΛ. GivenΛ and
t ∈ R, we define an automorphism ofAΛ

aΛt (A) = exp (itHΛ)A exp (−itHΛ) . (10)

A significant role in the construction of the Gibbs states of our model is played by
multiplication operators. Bounded multiplication operators form a commutative
subalgebra ofAΛ. The components of the displacement operatorq

(k)
l , l ∈ Λ are

multiplication operators, but they do not belong toAΛ since they are unbounded.
In [12] there was proved the following assertion (see also [1], [11]).

Proposition 38. Let t1, . . . , tn ∈ R andA1, . . . An be bounded continuous func-
tionsAj : RD|Λ| → C. ThenAΛ is the smallest strongly closed linear space
containing all operators of the form

aΛt1(A1)aΛt2(A2) . . . aΛtn(An).

For A1, . . . , An ∈ AΛ and t1, . . . tn ∈ R, a temporal Green function
corresponding to the periodic boundary conditions is

G
β,Λ
A1,...,An

(t1, . . . , tn) = γβ,Λ
(
aΛt1(A1) . . . aΛtn(An)

)
. (11)

For an open subsetO ⊂ Cn, letHol(O) stand for the set of all holomorphic inO
complex valued functions. Let also

Dβn def
= {(t1, . . . , tn) ∈ Cn | 0 < =(t1) < =(t2) · · · < =(tn) < β}. (12)

By means of the arguments which were used in a similar situation in [1], Sect. 3
and [12], Sect. 2, one can prove the following statement.
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Lemma 39. For everyA1, . . . , An ∈ AΛ,

(a) G
β,Λ
A1,...,An

may be extended to a holomorphic function onDβn;

(b) this extension (which will also be written asGβ,ΛA1,...,An
)

is continuous on the closureDβn ofDβn, moreover,

for all (t1, . . . , tn) ∈ Dβn,∣∣∣Gβ,ΛA1,...,An
(t1, . . . , tn)

∣∣∣ ≤ ‖A1‖ · · · · · ‖An‖, (13)

where‖ · ‖ stands for operator norm;

(c) for everyξ1, . . . , ξn ∈ R, the set

Dβn(ξ1, . . . , ξn)
def
= {(t1, . . . , tn) ∈ Dβn | <(tj) = ξj , j = 1, . . . , n},

is such that for arbitraryF,G ∈ Hol(Dβn), their equality on

Dβn(ξ1, . . . , ξn) implies thatF andG are equal on theDβn.

The restriction of the function (11) toDβn(0, . . . , 0), i.e.

Γβ,ΛA1,...,An
(τ1, . . . τn) = G

β,Λ
A1,...,An

(iτ1, . . . iτn), (14)

is a temperature (Matsubara) Green function, which has such a property

Γβ,ΛA1,...,An
(τ1 + θ, . . . τn + θ) = Γβ,ΛA1,...,An

(τ1, . . . τn), (15)

for everyθ ∈ Iβ def
= [0, β], where addition is moduloβ.

In view of Proposition 38, the Green functions, defined by (11) with bounded
multiplication operators, fully determine the stateγβ,Λ. Claim (c) of the latter as-
sertion yields in turn that this state is determined by the Matsubara functions (14).
In the Euclidean approach these functions are obtained as moments of probability
measures. We begin their construction with introducing corresponding measure
spaces. Givenβ > 0 andΛ, we set

Ωβ,Λ = {ωΛ = (ωl)l∈Λ | ωl ∈ C(Iβ → RD), ωΛ(0) = ωΛ(β)}. (16)

In the sequel,Cβ will stand forΩβ,Λ with a one-pointΛ. Let alsoXβ stand for the
real Hilbert spaceL2(Iβ → RD) equipped with scalar product and norm

〈ω, ω′〉β =

∫
Iβ

(ω(τ), ω′(τ))dτ, ‖ω‖β =
√
〈ω, ω〉β . (17)

Further

Xβ,Λ = {ωΛ = (ωl)l∈Λ | ωl ∈ Xβ}. (18)
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SinceΛ is finite,Ωβ,Λ andXβ,Λ may be equipped with the usual Banach space and
Hilbert space structures respectively. LetB(Ωβ,Λ) stand for the Borelσ–algebra
of the subsets ofΩβ,Λ. Consider the following strictly positive trace class operator
onXβ

Sβ = (−m∆β + 1)−1 1, (19)

where∆β is the Laplace operator inL2(Iβ) and1 is the identity operator inRD.
It determines onXβ aO(D)–invariant Gaussian measureχβ , for which∫

Xβ
exp {〈ϕ, ω〉β}χβ(dω) = exp

{
1

2
〈Sβϕ,ϕ〉β

}
. (20)

This measure is concentrated onCβ ⊂ Xβ [1], [11]. It describes aD-dimensional
quantum harmonic oscillator with the massm. One can show (see e.g. [1]) that for
anyτ ∈ Iβ , ∫

Xβ
exp [α(ω(τ), ω(τ))]χβ(dω) <∞, ∀α < α∗, (21)

where

α∗ = 2
√
m · exp(β/

√
m)− 1

exp(β/
√
m) + 1

. (22)

Given a boxΛ, we write

χβ,Λ(dωΛ) =
⊗
l∈Λ

χβ(dωl), (23)

EVβ,Λ(ωΛ) =
1

2

∑
l,l′∈Λ

dΛ
ll′〈ωl, ωl′〉β +

∑
l∈Λ

∫
Iβ
V (ωl(τ))dτ. (24)

Under the assumptions regardingV anddll′ , EVβ,Λ is a continuous function from
Ωβ,Λ toR. A periodic local Euclidean Gibbs measure is

µβ,Λ(dωΛ) =
1

Zβ,Λ
exp

{
−EVβ,Λ(ωΛ)

}
γβ,Λ(dωΛ). (25)

It is a probability measure on the Hilbert spaceXβ,Λ, supported onΩβ,Λ. Zβ,Λ
is the normalizing constant. Therefore, the Green functions (14) constructed with
multiplication operatorsA1, . . . An ∈ AΛ may be written follows [1], [11]

Γβ,ΛA1,...,An
(τ1, . . . , τn) (26)

=

∫
Xβ,Λ

A1(ωΛ(τ1)) . . . An(ωΛ(τn))µβ,Λ(dωΛ).
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The Gibbs states of the whole system which correspond to the periodic bound-
ary conditions are constructed as limits of the above statesγβ,Λ whenΛ ↗ L.
More precisely, letL be a sequence of boxes ordered by inclusion and such that
∪Λ∈LΛ = L. ForΛ1 ⊂ Λ2, one may introduce a natural norm-preserving embed-
dingAΛ1 ⊂ AΛ2 , which defines an increasing sequence of algebras{AΛ,Λ ∈ L}.
In a standard way [8], this sequence defines a quasi-local algebra of observables.
Two sequencesL, L′ are called equivalent if the corresponding quasi-local alge-
bras coincide. A standard sequenceL is the sequence of boxes{ΛL, L ∈ N},
ΛL = (−L,L]d ∩ Zd. In the sequel, all (thermodynamic) limitsΛ ↗ L are
taken over a sequenceL, which is equivalent to the standard one. The existence
of periodic Gibbs states for similar models was shown in [7].

The great advantage of the Euclidean approach lies in the fact that due to the
above relationship between the Green functions and local Gibbs measures one
may apply to the quantum case the machinery of conditional distributions, which
form the base of modern classical equilibrium statistical physics (see e.g. [9], [10]
and the references therein). To this end we will employ the spacesΩβ,Λ, defined
by (16), (18), also for infinite subsetsΛ. In particular,Ωβ will stand for Ωβ,Λ

with Λ = L. These spaces are equipped with the product topology and with the
σ-algebrasB(Ωβ,Λ) generated by cylinder subsets. For∆ ⊂ Λ ⊂ L, we write
ω∆ × ζΛ\∆ for the configuration(ξl)l∈Λ such thatξl = ωl for l ∈ ∆, andξl = ζl
for l ∈ Λ \ ∆. Given a sequence of boxesL, in order to have the collections
{Ωβ,Λ,Λ ∈ L} ordered by inclusion, we introduce the following mappings. For
∆ ⊂ Λ, we putω∆ 7→ ω∆ × 0Λ\∆ ∈ Ωβ,Λ, where0Λ is the zero configuration in
Ωβ,Λ. Hence we consider every configurationω∆ as an element of allΩβ,Λ with
∆ ⊂ Λ. Besides, we define

Ωβ,Λ 3 ωΛ 7→ (ωΛ)Λ′ ∈ Ωβ,Λ′ ,

as a configuration such thatωl = 0 for l ∈ Λ′ \ Λ. Let

Ωt
β

def
= {ζ ∈ Ωβ | {‖ζl‖β , l ∈ L} ∈ S ′}. (27)

For ζ ∈ Ωβ and a boxΛ, we define the local Gibbs measure, subject toζ, as the
following conditional probability measure. We put

µβ,Λ(B|ζ) = 0, ζ ∈ Ωβ \ Ωt
β , B ∈ B(Ωβ,Λ), (28)

and for everyζ ∈ Ωt
β ,

µβ,Λ(dωΛ|ζ) =
1

Zβ,Λ(ζ)
exp

{
−EVβ,Λ(ωΛ|ζ)

}
χβ,Λ(dωΛ). (29)

Here

Zβ,Λ(ζ)
def
=

∫
Ωβ,Λ

exp
{
−EVβ,Λ(ωΛ|ζ)

}
χβ,Λ(dωΛ),
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is the local partition function subject to the external boundary conditionζΛc , and

Eβ,Λ(ωΛ|ζ) =
1

2

∑
l,l′∈Λ

dll′〈ωl, ωl′〉β +
∑

l∈Λ,l′∈Λc

dll′〈ωl, ζl′〉β , (30)

EVβ,Λ(ωΛ|ζ) = Eβ,Λ(ωΛ|ζ) +
∑
l∈Λ

∫
Iβ
V (ωl(τ))dτ, (31)

whereV is given by (3). Under the assumptions regardingV and dll′ , both
Eβ,Λ(·|ζ), EVβ,Λ(·|ζ) are continuous functions fromΩβ,Λ to R for all ζ ∈ Ωt

β .
The functionEβ,Λ(·|ζ) describes the interaction of the particles inΛ between
themselves and with the fixed configurationζΛc , Λc = L \ Λ.

Thus, along with (26), one may introduce the temperature Green function
which corresponds to the external boundary conditionζΛc

Γζ,β,ΛA1,...,An
(τ1, . . . , τn) (32)

=

∫
Xβ,Λ

A1(ωΛ(τ1)) . . . An(ωΛ(τn))µβ,Λ(dωΛ|ζ).

HereA1, . . . , An are multiplication operators such that for every
τ1, . . . , τn ∈ Iβ , the function

Ωβ,Λ 3 ωΛ 7→ A1(ωΛ(τ1)) . . . An(ωΛ(τn)),

is µβ,Λ(·|ζ) integrable for everyζ ∈ Ωβ , that holds forA1, . . . , An ∈ AΛ. Note
that the above temperature Green function is defined only for multiplication op-
erators, there are noa priori information regarding its analytic and continuity
properties (except forζ = 0), even in the case of bounded operators.

ForB ∈ B(Ωβ) andω ∈ Ωβ , let δB(ω) take values 1, resp. 0, ifω belongs,
resp. does not belong, toB. Then one can introduce a family of probability kernels
{πβ,Λ | Λ ⊂ L, |Λ| <∞}, on(Ωβ ,B(Ωβ))

πβ,Λ(B|ζ)
def
=

∫
Ωβ,Λ

δB(ωΛ × ζΛc)µβ,Λ(dωΛ|ζ). (33)

They satisfy the consistency conditions (for more details see e.g. [10])

πβ,Λπβ,∆(B|ζ)
def
=

∫
Ωβ

πβ,Λ(dω|ζ)πβ,∆(B|ω) = πβ,Λ(B|ζ), (34)

which holds for arbitrary pairs of finite subsets∆ ⊂ Λ ⊂ L and anyB ∈ B(Ωβ),
ζ ∈ Ωt

β .
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Definition 40. A probability measureµ on the space(Ωβ ,B(Ωβ)) is said to be
a Euclidean Gibbs state at the inverse temperatureβ if it satisfies the Dobrushin-
Lanford-Ruelle (DLR) equilibrium equation∫

Ωβ

µ(dω)πβ,Λ(B|ω) = µ(B), (35)

for all finite Λ ⊂ L andB ∈ B(Ωβ).

3. The Results

By means of the representation (26) we extend the Green functions to unbounded
multiplication operators.

Theorem 41. Let the functionsA1, . . . , An : RD|Λ| → C be such that for
everyβ > 0 and everyτ ∈ Iβ , the functionsΩβ,Λ 3 ωΛ 7→ Aj(ωΛ(τ)),
j = 1, . . . n, are µβ,Λ–integrable. Then, for the corresponding multiplication
operatorsA1, . . . , An, the Green function (26) may be analytically continued on
the domainDβn defined by (12).

In contrast to the case of bounded operators (c.f. claim (b) of Lemma 39), one
cannot expect that such extended Green functions are uniformly boundedonDβn
and continuous on its boundaries.

Definition 42. A continuous functionA : RD|Λ| → C belongs to the familyF(D)
Λ

if for arbitraryα > 0, the function

RD|Λ| 3 xΛ 7→ |A(xΛ)| exp

−α∑
l∈Λ

|xl|2
 , (36)

is bounded onRD|Λ|.

In the case of one-point boxes, i.e. for|Λ| = 1, we writeF(D).

Corollary 43. For arbitraryA1, . . . , An ∈ F(D)
Λ , the temperature Green function

(26) may be continued analytically in accordance with Theorem 41.

Indeed, by (21), functions fromF(D)
Λ are integrable. As it has been already

mentioned, the above analyticity does not imply continuity of the temperature
Green functions. To prove it we have used the tightness of the local Gibbs
measures.

Theorem 44. Given a boxΛ, letA1, . . . , An belong toF(D)
Λ . Then for allζ ∈ Ωβ ,

the Green functions (26), (32) are continuous onInβ 3 (τ1, . . . , τn).
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Theorem 45. [FKG Inequality] GivenΛ andζ ∈ Ωβ , letµ stand for any of the

local Gibbs measures (25), (29) withD = 1. Then for any functionsF,G ∈ F(1)
Λ ,

which grow when every chosenωl(τ) increases, the following inequality holds

< FG >µ≥< F >µ< G >µ, (37)

where< · >µ stands for expectation with respect to the measureµ.

Theorem 46. [GKS Inequalities]GivenΛ, let the local Gibbs measure be de-
fined by (25) withD = 1. Let also the real valued functionsA1, . . . , An+m ∈ F(1)

Λ ,
n,m ∈ N have the following properties:

(a) everyAj depends only on the values ofxlj with certainlj ∈ Λ;

(b) everyAj is either an odd monotone growing function ofxlj
or an even positive function, monotone growing on[0,+∞).

Then for the Green functions (26), (32), the following inequalities hold for
arbitrary τ1, . . . , τn+m ∈ Iβ :

Γβ,ΛA1,...,An
(τ1, . . . , τn) ≥ 0, Γ0,β,Λ

A1,...,An
(τ1, . . . , τn) ≥ 0, (38)

Γβ,ΛA1,...,An+m
(τ1, . . . , τn+m) ≥

Γβ,ΛA1,...,An
(τ1, . . . , τn)× (39)

Γβ,ΛAn+1,...,An+m
(τn+1, . . . , τn+m)

Γ0,β,Λ
A1,...,An+m

(τ1, . . . , τn+m) ≥
Γ0,β,Λ
A1,...,An

(τ1, . . . , τn)×
Γ0,β,Λ
An+1,...,An+m

(τn+1, . . . , τn+m).

Now the model (1) - (3) withD ∈ N will be compared with the scalar model
described by the same local Hamiltonian withD = 1. In order to distinguish
vector and scalar objects we will supply the latter ones with tilde, writingH̃Λ,
γ̃β,Λ, Γ̃β,Λ. In the sequel, the polynomialv is supposed to be of the form (4).

Theorem 47. [Scalar Domination] GivenA1, . . . , An ∈ F(D)
Λ , let there exist

k = 1, . . . , D and the functions̃A1, . . . Ãn ∈ F(1)
Λ , satisfying the conditions of the

above theorem, such thatAj(xΛ) = Ãj(x
(k)
Λ ), j = 1, . . . , n. Then for arbitrary

τ1, . . . , τn ∈ Iβ
0 ≤ Γβ,ΛA1,...,An

(τ1, . . . , τn) ≤ Γ̃β,Λ
Ã1,...,Ãn

(τ1, . . . , τn). (40)
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REMARK 3. Note that allAj depend onx(k)
Λ with one and the samek. The first

above inequality is aD-dimensional version of (38). The second inequality in (40)
describes scalar domination.

In the model considered, the structural phase transition, breakingO(D)-
symmetry, is associated with the appearance of large fluctuations of displacements
of particles. To describe them we introducefluctuationoperators

QΛ =
1√|Λ|∑

l∈Λ

ql, (41)

corresponding tonormalfluctuations. If the Green functions (14) constructed with
A = Q

(k)
Λ , remain bounded whenΛ ↗ L, the fluctuations are regarded as nor-

mal. At the critical point the fluctuations become so large that to preserve the
boundedness of the Green functions one should use anabnormalnormalization,
i.e.

Qλ,Λ = λ(Λ)QΛ =
λ(Λ)√|Λ|∑

l∈Λ

ql,

where{λ(Λ) ∈ R, Λ ∈ L} is a converging to zero sequence. GivenF1, . . . , Fn ∈
F(D), letAλj stand forFj(Qλ,Λ), j = 1, . . . , n.

Definition 48. Givenβ > 0, let the convergence

Γβ,Λ
Aλ1 ,...,A

λ
n
(τ1, . . . , τn) −→ F1(0) . . . Fn(0), Λ↗ L, (42)

hold for all n ∈ N, all τ1, . . . , τn ∈ Iβ , all F1, . . . , Fn ∈ F(D), arbitraryL,
and any converging to zero sequence{λ(Λ),Λ ∈ L}. Then the fluctuations of
displacements of particles are said to be normal.

Set

J = −∑
l′
dll′ , T = H̃l + J

(
q

(1)
l

)2
, (43)

where the sum is taken over the whole latticeL. The operatorT has a purely
discrete non-degenerate spectrum. Denote

Tψn = εnψn, ∆ = min {εn+1 − εn, n ∈ N} .
Theorem 49. Let the massm, the spectral parameter∆, and the interaction
parameterJ obey the condition

m∆2 > 2J. (44)

Then for anyD ∈ N, the fluctuations of displacements of particles in theD-
dimensional model remain normal at all temperatures.
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A METRIC-AFFINE FIELD MODEL FOR THE NEUTRINO

DMITRI VASSILIEV ∗
Department of Mathematical Sciences, University of Bath,
Bath BA2 7AY, UK

1. Main result

We define space-time as a real oriented 4-manifoldM equipped with a non-
degenerate metricg (not necessarily symmetric) and an affine connectionΓ. We
write space-time as a triple{M, g,Γ}. The 16 components of the metric tensor
gµν and the 64 connection coefficientsΓλµν are the unknowns in our model, as is
the manifoldM itself.

This approach is known as the Einstein–Schrödinger metric-affine field the-
ory; see, for example, Appendix II in [1], or [2]. During the period from the 1920s
to the 1950s many mathematicians and physicists contributed to this subject, with
the list of authors containing names such as M.Born, A.S.Eddington, L.Infeld,
T.Levi-Civita and H.Weyl. In modern theoretical physics metric-affine field theo-
ries are not a mainstream subject; reviews of some of the more recent work in this
area can be found in [3], [4], [5], [6].

The immediate motivation for our paper comes from [7] where it was shown
that it is possible to give a sensible tensor interpretation of the Dirac equation
in flat Minkowski 3-space by treating the electromagnetic field as an affine con-
nection in the embedding Minkowski 4-space. The “electromagnetic” connection
suggested in [7] is the metric compatible connection corresponding to torsion

T = e ∗A
wheree is the electron charge,A is the (given) real-valued vector potential of the
electromagnetic field, and∗ is the Hodge star; here we use a system of units in
which both the speed of lightc and Planck’s constant~ have value 1. In particular,
such an interpretation of electromagnetism resolves the problem ofdistinguishing

∗ d.vassiliev@bath.ac.uk
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428 D. VASSILIEV

the electron from the positron without resorting to “negative frequencies”. Re-
garding the affine connection itself as an unknown quantity is the next obvious
step.

We construct our mathematical model for the neutrino as follows.
Firstly, we consider the Yang–Mills equation for the affine connection:

δYMR = 0 (1)

whereR is the Riemann curvature tensor (10) andδYM is the divergence on
curvatures (13).

Secondly, we consider the Einstein equation:

Ric = 0 (2)

whereRic is the Ricci curvature tensor. Equation (2) describes the absence of
sources of gravitation.

The objective of this paper is the study of the combined system (1), (2)
which is a system of 80 real non-linear partial differential equations with 80 real
unknownsgµν , Γλµν . In other words, we are combining the basic equation of
relativistic quantum mechanics (Yang–Mills equation) with the basic equation of
general relativity (Einstein equation).

REMARK 4. If the metric is symmetric and the connection is that of Levi-Civita
then (2) implies (1). In the general case (1) and (2) are independent.

We define Minkowski spaceM4 as a real 4-manifold which admits a global
coordinate system(x0, x1, x2, x3) and is equipped with the metric

gµν = diag(+1,−1,−1,−1) . (3)

Our definition ofM4 specifies two elements of the triple{M, g,Γ}, namely, the
manifoldM and the metricg, but does not specify the connectionΓ.

Our main result is

Theorem 50. Let u be a complex-valued vector function which is a plane wave
solution of the polarised Maxwell equation

∗du = ±idu (4)

inM4. LetΓ be the metric compatible connection corresponding to torsion

T λµν = Re(uλ(du)µν) . (5)

Then the space-time{M4,Γ} is a solution of (1), (2).

Note that the vector equation (4) forms the basis of the mathematical model
in [7]. It is shown in [7] that under certain circumstances equation (4) produces
effects normally attributed to spinors.
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Let us rewrite (4) as

∗du = iαdu , (6)

α = ±1. The non-trivial (du 6≡ 0) plane wave solutions of (6) can, of course, be
written down explicitly: up to a proper Lorentz transformation they are

u(x) = w e−ik·x (7)

where

wµ = C(0, 1,−iα, 0), kµ = β(1, 0, 0, 1), (8)

β = ±1, andC ∈ R+ is an arbitrary constant (amplitude).
Substitution of (7) into (5) produces

T λµν = Re(−iwλ (k ∧ w)µν e
−2ik·x ) . (9)

Thus, the space-time in Theorem 50 is a wave of torsion which, up to a proper
Lorentz transformation, is given by the explicit formulae (9), (8).

The paper has the following structure.
In Section 2 we specify our notation.
Section 3 is a brief description of Yang–Mills theory in our particular setting

(affine connection over vectors).
In Section 4 we prove Theorem 50. The crucial element of the proof is the

linearisation ansatz (17), (16).
In Section 5 we establish general invariant properties of our solutions (3)–(5).

It turns out that our Riemann curvature tensors possessall the symmetry properties
of the “usual” curvature tensors generated by Levi-Civita connections. This means
that in observing such connections we might be led to believe (mistakenly) that
we live in a Levi-Civita universe.

In Section 6 we show that the Riemann curvature tensors corresponding to
our solutions (3)–(5) have an algebraic structure which makes them equivalent
to bispinors. It turns out that these bispinors satisfy the Weyl equation (Dirac
equation for massless particle), which justifies our interpretation of space-times
(3)–(5) as the neutrino and antineutrino. We show that our model explains the
well known fact that neutrinos are always left-handed whereas antineutrinos are
always right-handed.

In Section 7 we compare our results with those of Einstein who suggested [8]
a double duality equation as a possible model for elementary particles. We show
that our space-times (3)–(5) satisfy this equation. Here the crucial point is that we
get the sign predicted by Einstein.

In Section 8 we vary the Yang–Mills Lagrangian (12) with respect to the
metric and show that our solutions (3)–(5) provide stationary points. This fact
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is highly unusual and does not follow from abstract Yang–Mills theory which
guarantees only conformal invariance.

2. Basic notation

We denote∂µ = ∂/∂xµ and define the covariant derivative of a vector function as
∇µvλ := ∂µv

λ + Γλµνv
ν . We define the torsion tensor asT λµν := Γλµν − Γλνµ,

the Riemann curvature tensor as

Rκλµν := ∂µΓκνλ − ∂νΓκµλ + ΓκµηΓ
η
νλ − ΓκνηΓ

η
µλ, (10)

and the Ricci curvature tensor asRicλν := Rκλκν .
We define the contravariant metric tensor as the solution of the linear algebraic

systemgµνgνκ = δµκ. We have to take great care when raising or lowering tensor
indices because in our statement of the problem the metric is not assumed to
be symmetric and the connection is not assumed to be metric compatible. Only
when it is clear that we are in a situation when the metric is symmetric and the
connection is metric compatible we gain the full freedom of writing any tensor
with either upper or lower indices (in any combinations), the raising or lower-
ing being achieved via contraction with the contravariant or covariant symmetric
metric tensor.

Given a scalar functionf we write for brevity∫
f :=

∫
M
f
√
|detg| dx0dx1dx2dx3 , detg := det(gµν) 6= 0 .

We define the Hodge star as(∗Q)µq+1...µ4 := (q!)−1
√|detg|Qµ1...µqεµ1...µ4

whereε is the totally antisymmetric quantity. We putε0123 := ±1, where+ or−
is taken depending on whether the orientation of the coordinate system is positive
or negative, respectively.

When dealing with a connection which is compatible with a given symmetric
metric it is convenient to introduce thecontortiontensorKλ

µν := Γλµν −
{
λ
µν

}
,

where
{
λ
µν

}
:= 1

2g
λκ(∂µgνκ + ∂νgµκ − ∂κgµν) is the Christoffel symbol. Con-

tortion has the antisymmetry propertyKλµν = −Kνµλ . A symmetric metric
and contortion uniquely determine the metric compatible connection. Torsion and
contortion are related as (see [9], formula (7.35))

T λµν = Kλ
µν −Kλ

νµ , Kλ
µν =

(
T λµν + Tµ

λ
ν + T ν

λ
µ

)
/2 . (11)

A bispinor inM4 is a column of four complex numbers
(
ξ1 ξ2 η1̇ η2̇

)T
which change under Lorentz transformations in a particular way, see Sections 18,
19 and 26 in [10] for details; a more compact exposition is given in the beginning
of Section 3 in [11]. The Pauli and Dirac matrices are

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,
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γ0 =

(
0 I
I 0

)
, γj =

(
0 −σj
σj 0

)
, γ5 = −iγ0γ1γ2γ3 =

( −I 0
0 I

)
.

3. The Yang–Mills equation

PutRκλρν := gρµRκλµν whereRκλµν is the Riemann curvature tensor (10). The
Yang–Mills Lagrangian for the affine connection is

LYM := −1

2

∫
Rκλ

ρ
ν R

λ
κ
ν
ρ . (12)

The Yang–Mills equation (1) is the Euler–Lagrange equation obtained from (12)
by varying the connection coefficientsΓλµν (but not the metric). The explicit
formula for the differential operatorδYM appearing in (1) is

(δYMR)ρ =
1

2
√|detg| (∂σ + [Γσ, · ])

(√
|detg| (gρµgνσ + gµρgσν)Rµν

)
.

(13)

In writing (13) we used matrix notation to hide two indices:Rµν = Rκλµν , Γσ =
Γκσλ, with κ enumerating the rows andλ the columns. By[ · , · ] we denote the
commutator, i.e.,[L,N ]τ λ := Lτ κN

κ
λ −N τ

κL
κ
λ.

Note that the operator (13) is invariant under the transposition of the metric,
gµν → g̃µν := gνµ. For more details concerning transposition invariance and its
possible physical significance see [1] p. 142–143.

From now on, until Section 8, we work only in Minkowski space and only
with metric compatible connections. This leads to a number of simplifications.
Connection coefficients now coincide with contortion, for which we continue
using matrix notationKσ = Kκ

σλ. Formula (10) becomes

Rµν = ∂µKν − ∂νKµ + [Kµ,Kν ] , (14)

and the Yang–Mills equation (1), (13) becomes

(∂ν + [Kν , · ])Rµν = 0 . (15)

The Yang–Mills equation (15) appears to be overdetermined as it is a system
of 64 equations with only 24 unknowns (24 is the number of independent compo-
nents of the contortion tensor). However 40 of the 64 equations are automatically
fulfilled. This is a consequence of the fact that the Lie algebra of real antisym-
metric rank 2 tensors is a subalgebra of the general Lie algebra of real rank 2
tensors.
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4. Proof of Theorem 50

The fundamental difficulty with the Yang–Mills equation (15) as well as with the
Einstein equation (2) is that these equations are non-linear with respect to the un-
known contortionK. The following lemma plays a crucial role in our construction
by allowing us to get rid of the non-linearities.

Lemma 51. LetL be a complex rank 2 antisymmetric tensor satisfying

∗L = ±iL . (16)

Then[ReL, ImL] = 0.

Proof.The result follows from the general formula[∗L,N ] = ∗[L,N ].

Lemma 51 can be rephrased in the following way: the Lie algebra of real
antisymmetric rank 2 tensors has 2-dimensional abelian subalgebras which can be
explicitly described in terms of the eigenvectors of the Hodge star.

Lemma 51 immediately implies the following linearisation ansatz.

Corollary 52. Suppose contortion is of the form

Kκ
νλ(x) = Re(Lκλ vν(x) ) (17)

whereL is a constant complex antisymmetric tensor satisfying (16) andv is a
complex-valued vector function. Then the non-linear terms in the formula for
Riemann curvature (14) and in the Yang–Mills equation (15) vanish.

Substituting (17) into (14), (15) we reduce equations (1), (2) to

δdv = 0 , (18)

Lκλ (dv)κν = 0 . (19)

Hered is the exterior derivative andδ is its adjoint, so that (18) is the Maxwell
equation.

Let us look for plane wave solutions, i.e.,

v(x) = −iw e−2ik·x (20)

wherew 6= 0 is a constant complex vector andk 6= 0 is a constant real vector.
Here we put the extra factor−i atw as well as the extra factor2 in the exponent
for the sake of convenience; the reason for doing this is to achieve agreement with
(9). Substituting (20) into (18), (19) we get

kν(k ∧ w)µν = 0 , (21)
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Lκλ (k ∧ w)κν = 0 . (22)

We have reduced our original system of partial differential equations (1), (2)
to the purely algebraic problem (16), (21), (22). Straightforward analysis shows
that the space-times described in Theorem 50 are solutions of (16), (21), (22), and,
moreover, the only non-trivial (R 6≡ 0) solutions.

5. Invariant properties of our solutions

It is known [4], [5], [6] that the 24-dimensional space of real torsions decomposes
into the following 3 irreducible subspaces: tensor torsions, trace torsions, and axial
torsions. The dimensions are 16, 4, and 4, respectively.

Lemma 53. The torsions in Theorem 50 are purely tensor.

Proof.The trace component of a torsion tensorTλµν is zero iffT λλν = 0, and
the axial component is zero iffTλµν ελµνκ = 0. These identities are established
by direct examination of the explicit formulae (9), (8).

Let us mention the following useful general result.

Lemma 54. If the axial component of a torsion is zero then this torsion coincides,
up to a natural reordering of indices, with the corresponding (see (11)) contortion:
Tλµν = Kµλν .

Lemma 54 explains why the torsion of our space-times has the simple structure
(5), (4). Our linearisation ansatz (17), (16) required us to work with contortion
rather than torsion, and in the end in order to calculate torsion we had to use
the first formula (11). We did not get a cumbersome expression for torsion only
because its axial component is zero.

Lemma 55. The Riemann curvatures of space-times from Theorem 50 have all
the symmetry properties of curvatures in the Levi-Civita setting, that is,

Rκλµν = −Rλκµν = −Rκλνµ = Rµνκλ , (23)

Rκλµν ε
κλµν = 0 . (24)

Proof.Let us define the complex Riemann curvature tensor

CRκλµν := Fκλ Fµν (25)

where

F := du (26)
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andu is from (6). Lemmas 53, 54 and Corollary 52 imply

Rκλµν = Re(CRκλµν) . (27)

Direct examination of formulae (25)–(27), (7), (8) establishes (23), (24).

6. Weyl’s equation

The torsions (and, therefore, space-times) from Theorem 50 are described, up to
a proper Lorentz transformation and a scaling factorC ∈ R+, by a pair of indices
α, β = ±1; see (9), (8). It may seem that this gives us 4 essentially different space-
times. However, formula (9) contains the operation of taking the real part and, as a
result, the transformation{α, β} → {−α,−β} does not change our torsion. Thus,
Theorem 50 provides us with only two essentially different space-times labeled by
the indexτ := αβ = ±1. The purpose of this section is to show that it is natural
to interpret these two space-times as the neutrino and antineutrino.

We base our interpretation on the analysis of the Riemann curvature tensor.
We chose to analyse curvature rather than torsion because curvature is an accepted
physical obervable.

In our analysis of the Riemann curvature tensor we will work with the com-
plex curvature (25) rather than the real curvature (27) because the complex one
has a simpler structure. Indeed, according to formula (25) the complex Riemann
curvature tensorCR factorizes as the square of a rank 2 tensorF and is, therefore,
completely determined by it.

Working with the rank 2 tensorF is much easier than with the original rank 4
tensorCR, but one would like to simplify the analysis even further by factorizing
F itself. It is impossible to factorizeF as the square of a vector but it is possible
to factorizeF as the square of a bispinor.

Lemma 56. A complex rank 2 antisymmetric tensorF satisfying

FµνF
µν = 0, (∗F )µνF

µν = 0 (28)

is equivalent to a bispinorψ, the relationship between the two being

Fµν = − i
4
ψTγ0γ2γµγνψ. (29)

Proof. Formula (29) is a special case of the general equivalence relation
between rank 2 antisymmetric tensors and rank 2 symmetric bispinors, see
end of Section 19 in [10]. Conditions (28) are necessary and sufficient for the
factorization of the symmetric rank 2 spinors as squares of rank 1 spinors.
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REMARK 5. The corresponding text in the end of Section 19 in [10] contains
mistakes. These can be corrected by replacing everywherei by−i.
REMARK 6. For a given tensorF formula (29) defines the individual spinors
ξ =

(
ξ1 ξ2

)T andη =
(
η1̇ η2̇

)T uniquely up to choice of sign. This is in
agreement with the general fact that a spinor does not have a specific sign, see the
beginning of Section 19 in [10].

REMARK 7. Conditions (28) are equivalent todetF = 0, det ∗ F = 0.

REMARK 8. Formula (29) is invariant under proper Lorentz transformations and
space inversion, but not under time inversion.

Our particular tensorF defined in accordance with formula (26) satisfies the
conditions (28). Indeed,FµνFµν = 0 is the statement that the complex scalar cur-
vature is zero (consequence of the complex Ricci curvature being zero), whereas
(∗F )µνF

µν = 0 is the statement that the complex Riemann curvature tensorCR
satisfies the cyclic sum identity, cf. (24).

Thus, the complex Riemann curvature tensor (25) has an algebraic struc-
ture which makes it equivalent to a bispinor. Direct calculations show that the
corresponding bispinor functionψ(x) satisfies the Weyl equation

γµ∂µψ = 0 (30)

as well as the additional condition

γ5ψ = −αψ (31)

whereα = ±1 is from (6). Conversely, any plane wave solution of (30), (31)
generates a complex Riemann curvature tensor of the type (25).

A non-trivial (ψ(x) 6≡ const) plane wave solution of (30), (31) can, up to

a proper Lorentz transformation, be written asψ(x) = ϕe−
i
2
k·x whereϕ is a

constant bispinor andk is given by (8). Recall that the formula fork contains
the parameterβ = ±1 which determines whether the wave vectork lies on the
forward (β = +1) or backward (β = −1) light cone.

Non-trivial plane wave solutions of (30), (31) withβ = +1 are called neutri-
nos whereas those withβ = −1 are called antineutrinos. A neutrino is said to be
left-handed ifα = −1 and right-handed ifα = +1. An antineutrino is said to be
left-handed ifα = +1 and right-handed ifα = −1.

REMARK 9. The above definitions agree with the operation of charge conjugation
(see formula (26.6) in [10]) in that the left-handed neutrino and left-handed an-
tineutrino are charge conjugates of one another, as are the right-handed neutrino
and right-handed antineutrino.

As explained in the beginning of this section, the transformation{α,β} →
{−α,−β} does not change the resulting space-time. This means that in our model
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the left-handed neutrino is identical to the left-handed antineutrino, and the right-
handed neutrino is identical to the right-handed antineutrino.

7. Einstein’s double duality equation

The onlya priori symmetry properties of the Riemann curvature tensor generated
by a connection compatible with a symmetric metric are

Rκλµν = −Rλκµν = −Rκλνµ. (32)

LetR be the 36-dimensional linear space of real rank 4 tensors satisfying (32).
We consider the following two endomorphisms inR:

R→ RT , (RT )κλµν := Rµνκλ , (33)

R→ ∗R∗, (∗R∗)κλµν := (|detg|/4) εκ′λ′κλR
κ′λ′µ′ν′εµ′ν′µν . (34)

REMARK 10. It is easy to see that the endomorphisms (33), (34) are well de-
fined even if the manifold is not orientable. In the case of (34) this observation
is a consequence of a much deeper fact established in [12]: the rank 8 tensor
(detg)εκ′λ′κλεµ′ν′µν is a purely metrical quantity in that it is expressed via the
metric tensor. This is a special feature of dimension 4.

The endomorphisms (33), (34) have the following properties: (i) they com-
mute, (ii) their eigenvalues are±1, (iii) they have no associated eigenvectors.
Therefore,R decomposes into a direct sum of 4 invariant subspaces

R = ⊕a,b=± Rab , Rab := {R ∈ R | RT = aR, ∗R∗ = bR} . (35)

The decomposition (35) was suggested in [13] and developed in [8], [12].
Actually, the papers [13], [8], [12] deal only with the case of a Levi-Civita connec-
tion, but the generalization to the case of an arbitrary affine connection compatible
with a symmetric metric is straightforward. Lanczos called tensorsR ∈ R self-
dual (respectively, antidual) if∗R∗ = −R (respectively,∗R∗ = R). Such a choice
of terminology is due to the fact that Einstein and Lanczos defined their double
duality endomorphism as

R→ (sgn detg) ∗R∗. (36)

The advantage of (36) is that this linear operator is expressed via the metric tensor
as a rational function. The endomorphism (36) is, in a sense, even more invariant
than (34) as it does not “feel” the signature of the metric.

Lemma 57. (Rainich [13])The subspacesR++ andR+− have dimensions 9 and
12, respectively.
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REMARK 11. In Rainich’s paper the dimensions are actually given as 9 and 11.
The reason behind this is that Rainich imposed on curvatures the cyclic sum con-
dition (24). This excludes fromR+− curvatures of the typeRκλµν = εκλµν and,
therefore, reduces the dimension by 1.

Lemma 58. (Einstein [8])LetR ∈ R++. Then the corresponding Ricci tensor is
symmetric and trace free. Moreover,R is uniquely determined by its Ricci tensor
and the metric tensor according to the formula

Rκλµν = (gκµRicλν + gλνRicκµ − gκνRicλµ − gλµRicκν)/2 . (37)

Einstein’s goal in [8] was to construct a mathematical model for the electron;
note that this paper was published a year before Dirac discovered his equation.
Einstein argued that the Riemann curvature tensor of the electron should lie in
an eigenspace of the endomorphism (34). As in this particular paper Einstein
restricted his analysis to the case of a Levi-Civita connection he had to make the
choice between the invariant subspacesR++ andR+−. The difference between
these two invariant subspaces is fundamental: it has nothing to do with the choice
of forward and backward light cones or the choice of orientation of the coordinate
system, and, as a consequence, it has nothing to do with the notions of “particle”
and “antiparticle” or the notions of “left-handedness” and “right-handedness”.

Lemmas 57 and 58 led Einstein to the conclusion that curvatures fromR++

are too trivial and the dimension of the subspace too low (9 instead of the expected
10 which is the number of independent components of the energy–momentum
tensor) to associate it with the electron. Einstein’s conjecture was that the Riemann
curvature tensor of the electron should lie in the invariant subspaceR+−, that is,
it should satisfy the equation

∗R∗ = −R . (38)

Formulae (25)–(27), (4) imply that our space-times (3)–(5) satisfy (38).
Our paper falls short of constructing an affine field model for the electron.

Nevertheless, we find it encouraging that our affine field model for the neutrino
agrees with Einstein’s double duality equation (38).

8. Variation of the metric

Variation of the Yang–Mills Lagrangian (12) with respect to the metric produces
the following Euler–Lagrange equation:

H − (trH/4)g = 0 (39)

whereHµσ := Rκλµν g
νρRλκρσ, trH := Hµσg

σµ. In deriving (39) we did not
make any assumptions on the symmetry of the metric.

Note the fundamental difference between our original equations (1), (2) and
equation (39): (1), (2) are linear in curvature, whereas (39) is quadratic.
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Lemma 59. Let the metric be symmetric and Lorentzian, and letR be of the
form (27) whereCR is a complex rank 4 tensor which factorises as the product
of antisymmetric rank 2 tensors,CRκλµν = FκλGµν , such that∗F = iαF ,
∗G = iα′G, α, α′ = ±1. ThenR satisfies the equation (39).

Proof.The Lemma is proved by a straightforward MapleTM calculation.

Lemma 59 and formulae (25)–(27), (4) immediately imply

Corollary 60. Our space-times (3)–(5) provide stationary points of the Yang–
Mills Lagrangian (12) with respect to the variation of the metric.

In order to illustrate how unusual Corollary 60 is let us examine what happens
in the case of the Maxwell equation, which is the simplest example of a Yang–
Mills equation. Straightforward calculations show that the Maxwell equation on a
Lorentzian manifold does not have nontrivial solutions which provide stationary
points of the Maxwell Lagrangian with respect to the variation of the metric.

We see that affine connections are very special in that they produce effects
which are not manifest in the abstract Yang–Mills theory.
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GENERALIZED TAUB-NUT METRICS AND KILLING-YANO TENSORS
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Abstract. The relation between ”hidden” symmetries encapsulated in the Stäckel-Killing tensors
and the Killing-Yano tensors is investigated. A necessary condition that a Stäckel-Killing tensor of
valence 2 be the contracted product of a Killing-Yano tensor of valence 2 with itself is re-derived for
a Riemannian manifold. This condition is applied to the generalized Euclidean Taub-NUT metrics
which admit a Kepler type symmetry. It is shown that in general the Stäckel-Killing tensors involved
in the Runge-Lenz vector cannot be expressed as a product of Killing-Yano tensors. The only
exception is the original Taub-NUT metric.

1. Introduction

It is known that spacetime isometries give rise to constants of motion along
geodesics. However not all conserved quantities along geodesics arise from
isometries of the manifold and associated Killing vector fields. Such integrals
of motion are related to ”hidden” symmetries of the manifold encapsulated in the
Sẗackel-Killing tensors.

A Stäckel-Killing tensor of valencer is a tensorKµ1...µr which is completely
symmetric and which satisfies a generalized Killing equation

K(µ1...µr;λ) = 0. (1)

On manifolds like the four-dimensional Kerr-Newman and Taub-NUT man-
ifolds, the geodesic equations are integrable because of the existence of a
Sẗackel-Killing tensorKµν of valence2 [1] allowing the construction of a constant
of motion quadratic in particle’s four-momentumpµ:

k =
1

2
Kµν(x)pµpν =

1

2
Kµν(x)ẋµẋν (2)

where the overdot denotes ordinary proper-time differentiationd
dτ .

∗ mvisin@theor1.theory.nipne.ro
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The Killing condition (1) is actually equivalent with the conservation ofK,
i.e.K commutes with the world-line Hamiltonian

H =
1

2
gµνp

µpν (3)

in the sense of Poisson brackets.
Related to this, the Klein-Gordon, Schrödinger and Dirac equations are

separable in Kerr-Newman [2, 3] and Taub-NUT spaces [4, 5].
Moreover Carter and McLenagham [6] showed the existence of a Dirac-type

linear differential operator which commutes with the standard Dirac operator in
the Kerr-Newman space. The construction of this operator depends upon the re-
markable fact that the Stäckel-Killing tensor of the Kerr-Newman geometry has a
certain root

Kµν = fµλf
λ
ν (4)

wherefµν is a Killing-Yano tensor. A tensorfµ1...µr is called a Killing-Yano
tensor of valencer [7] if it is totally antisymmetric and it satisfies the equation

fµ1...(µr;λ) = 0. (5)

The role of the Killing-Yano tensors can also be noticed for spinning man-
ifolds [8, 9]. The configuration space of spinning particles (spinning space) is
an extension of an ordinary Riemannian manifold, parametrized by local coordi-
nates{xµ}, to a graded manifold parametrized by local coordinates{xµ, ψµ},
with the first set of variables being Grassmann-even (commuting) and the
second set Grassmann-odd (anticommuting). The equations of motion of the
pseudo-classical Dirac particle can be derived from the action

S =

∫ b

a
dτ

(
1

2
gµν(x) ẋµ ẋν +

i

2
gµν(x)ψµ

Dψν

Dτ

)
. (6)

where the covariant derivative of the Grassmann-valued spin variableψµ is
defined by

Dψµ

Dτ
= ψ̇µ + ẋλ Γµλν ψ

ν . (7)

The action (6) is invariant under the supersymmetry

δxµ = −iεψµ , δψµ = ẋµε (8)

where the infinitesimal parameterε of the transformation is Grassmann-odd.
This supersymmetry transformation are obtained from the conserved super-

charge

Q = ẋµψ
µ , Q̇ = 0 (9)
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by taking the bracket

δF = iε{Q,F}. (10)

ThatQ is conserved and the above supertransformation represent a symmetry
follows from the bracket relations

{Q,Q} − −2iH , {Q,H} = 0. (11)

Additional conserved supercharges exist if the background geometry admits
a Killing-Yano tensorfµ1...µr . In such a geometry there exist an additional
superinvariant constant of motionQf defined by [10]

Qf = fµ1...µrΠ
µ1ψµ2 . . . ψµr +

i

r + 1
(−1)r+1f[µ1...µr;µr+1] · ψµ1 . . . ψµr+1 .

(12)

which is superinvariant

{Qf , Q} = 0. (13)

The existence of a new supersymmetry of this kind implies automatically the
existence of a new Grassmann-even constant of motionZ defined by the bracket
of Qf with itself

{Qf , Qf} = −2iZ. (14)

The explicit form ofZ is given in [9] for Killing-Yano tensors of valence2.
This paper is devoted to the relations between the Stäckel-Killing and the

Killing-Yano tensors for a 4-dimensional Riemannian manifold. The general re-
sults are applied to the case of the generalized Euclidean Taub-NUT metrics which
admit a Kepler-type symmetry [11].

The Euclidean Taub-NUT metric is involved in many modern studies in phy-
sics. Hawking [12] has suggested that the Euclidean Taub-NUT metric might give
rise to the gravitational analog of the Yang-Mills instanton. In this case Einstein’s
equations are satisfied with zero cosmological constant and the manifold isR4

with a boundary which is a twisted three-sphereS3 possessing a distorted metric.
The Kaluza-Klein monopole was obtained by embedding the Taub-NUT gravita-
tional instanton into five-dimensional Kaluza-Klein theory. On the other hand, in
the long-distance limit, neglecting radiation, the relative motion of two monopoles
is described by the geodesics of this space [13].

From the symmetry viewpoint, the geodesic motion in Taub-NUT space ad-
mits a “hidden” symmetry of the Kepler type if a cyclic variable is gotten rid of
[14]. Moreover in the Taub-NUT geometry there are four Killing-Yano tensors
[7]. Three of these are complex structure realizing the quaternionic algebra and
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the Taub-NUT manifold is hyper-K̈ahler [14]. In addition to these three vector-
like Killing-Yano tensors, there is a scalar one which has a non-vanishing field
strength and it exists by virtue of the metric being typeD.

For the geodesic motions in the Taub-NUT space, the conserved vector anal-
ogous to the Runge-Lenz vector of the Kepler type problem is quadratic in
4-velocities, its components are Stäckel-Killing tensors and they can be expressed
as symmetrized products of Killing-Yano tensors [14–16, 10, 17].

In the last time, Iwai and Katayama [18–20] extended the Taub-NUT metric
so that it still admits a Kepler-type symmetry. This class of metrics, of course,
includes the original Taub-NUT metric.

In what follows we investigate if the Stäckel-Killing tensors involved in the
conserved Runge-Lenz vector of the extended Taub-NUT metrics can also be
expressed in terms of Killing-Yano tensors.

The relationship between Killing tensors and Killing-Yano tensors has been
studied to the purpose of the Lorentzian geometry used in general relativity
[21, 22]. In the next section we re-examine the conditions that a Killing tensor
of valence2 be the contracted product of a Killing-Yano tensor of valence2 with
itself. The procedure is quite simple and devoted to the Riemannian geometry
appropriate to Euclidean Taub-NUT metrics.

In Section 3 we show that in general the Killing tensors involved in the Runge-
Lenz vector cannot be expressed as a product of Killing-Yano tensors. The only
exception is the original Taub-NUT metric.

Our comments and concluding remarks are presented in Section 4.

2. The relationship between Killing tensors and Killing-Yano tensors

We consider a4−dimensional Riemannian manifoldM and a metricgµν(x) on
M in local coordinatesxµ. We write the metric in terms of the local orthonormal
vierbein frameeaµ

ds2 = gµν(x)dxµdxν =
∑

a=0,1,2,3

(ea)2 (15)

whereea = eaµdx
µ. Greek indicesµ, ν, ... are raised and lowered withgµν or its

inversegµν , while Latin indicesa, b, ... are raised and lowered by the flat metric
δab, a, b = 0, 1, 2, 3. Vierbeins and inverse vierbeins inter-convert Latin and Greek
indices when necessary.

Let Λ2 be the space of two-formsΛ2 := Λ2T ∗(R4−{0}). We define self-dual
and anti-self dual bases forΛ2 using the vierbein one-formsea:

basis of Λ2
± =


λ1± = e0 ∧ e1 ± e2 ∧ e3

λ2± = e0 ∧ e2 ± e3 ∧ e1 , ∗λi± = ±λi±
λ3± = e0 ∧ e3 ± e1 ∧ e2

(16)
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Let f be a Killing-Yano tensor of valence 2 and∗f its dual. The symmetric
combination off and∗f is a self-dual two-form

f + ∗f =
∑

i=1,2,3

yiλ
i
+ (17)

while their difference is an anti-self-dual two-form

f − ∗f =
∑

i=1,2,3

ziλ
i
−. (18)

An explicit evaluation shows that

(f + ∗f)2 = − ∑
i=1,2,3

(yi)
2 · 11, (19)

(f − ∗f)2 = − ∑
i=1,2,3

(zi)
2 · 11 (20)

where11 is 4×4 identity matrix.
Let us suppose that a Stäckel-Killing tensorKµν can be written as the

contracted product of a Killing-Yano tensorfµν with itself:

Kµν = fµλ · fλν = (f2)µν , µ, ν = 0, 1, 2, 3. (21)

We infer from the last equations that:

K +
1

16

[∑
i

(y2
i − z2

i )

]2

K−1 +
1

2

∑
i

(y2
i + z2

i ) · 11 = 0. (22)

On the other hand the Killing tensorK is symmetric and it can be diagonalized
with the aid of an orthogonal matrix. Its eigenvalues satisfy an equation of the
second degree:

λ 2
α +

1

2

∑
i

(y2
i + z2

i )λα +
1

16

[∑
i

(y2
i − z2

i )

]2

= 0 (23)

with at most two distinct roots.
In conclusion a Sẗackel-Killing tensorK which can be written as the square

of a Killing-Yano tensor has at the most two distinct eigenvalues.
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3. Generalized Taub-NUT metrics

For a special choice of coordinates the generalized Euclidean Taub-NUT metric
considered by Iwai and Katayama [18–20] takes the form:

ds2
G = f(r)[dr2 + r2dθ2 + r2 sin2 θ dϕ2] + g(r)[dχ+ cos θ dϕ]2 (24)

where r > 0 is the radial coordinate ofR4 − {0}, the angle variables
(θ, ϕ, χ), (0 ≤ θ < π, 0 ≤ ϕ < 2π, 0 ≤ χ < 4π) parameterize the unit sphere
S3, andf(r) andg(r) are arbitrary functions ofr.

We decompose the metric (24) into the orthogonal vierbein basis:

e0 = g(r)
1
2 (dχ+ cos θdϕ),

e1 = rf(r)
1
2 (sinχdθ − sin θ cosχdϕ),

e2 = rf(r)
1
2 (− cosχdθ − sin θ sinχdϕ),

e3 = f(r)
1
2dr. (25)

Spaces with a metric of the form above have an isometry groupSU(2)×U(1).
There are four Killing vectors

DA = R
µ
A ∂µ, A = 0, 1, 2, 3, (26)

corresponding to the invariance of the metric (24) under spatial rotations (A =
1, 2, 3) andχ translations (A = 0).

Let us consider geodesic flows of the generalized Taub-NUT metric which has
the LagrangianL on the tangent bundleT (R4 − {0})

L =
1

2
f(r)[ṙ2 + r2(θ̇2 + sin2 θϕ̇2)] +

1

2
g(r)(χ̇+ cos θϕ̇)2 (27)

where(ṙ, θ̇, ϕ̇, χ̇, r, θ, ϕ, χ) stand for coordinates in the tangent bundle. Sinceχ is
a cyclic variable

q = g(r)(θ̇ + cos θϕ̇) (28)

is a conserved quantity. This is known in the literature as the “relative electric
charge”.

Taking into account this cyclic variable, the dynamical system for the geodesic
flow onT (R4 − {0}) can be reduced to a system onT (R3 − {0}). The reduced
system admits manifest rotational invariance, and hence has a conserved angular
momentum:

→
J=
→
r × →p + q

→
r

r
(29)
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where
→
r denotes the three-vector

→
r= (r, θ, ϕ) and

→
p= f(r)

→̇
r is the mechanical

momentum.
If f(r) andg(r) are taken to be

f(r) =
4m+ r

r
, g(r) =

16m2r

4m+ r
(30)

the metricds2
G becomes the original Euclidean Taub-NUT metric. The parameter

m can be positive or negative, depending on the application; form > 0 the four-
dimensional Taub-NUT metric represents a non-singular solution of the self-dual
Euclidean Einstein equation and as such is interpreted as a gravitational instanton.

As observed in [14], the Taub-NUT geometry also possesses four Killing-
Yano tensors of valence 2. The first three are rather special: they are covariantly
constant (with vanishing field strength)

fi = 8m(dχ+ cos θdϕ) ∧ dxi − εijk(1 +
4m

r
)dxj ∧ dxk,

Dµf
ν
iλ = 0 , i, j, k = 1, 2, 3. (31)

They are mutually anticommuting and square the minus unity:

fifj + fjfi = −2δij . (32)

Thus they are complex structures realizing the quaternion algebra. Indeed, the
Taub-NUT manifold defined by (24) and (30) is hyper-Kähler.

In addition to the above vector-like Killing-Yano tensors there also is a scalar
one

fY = 8m(dχ+ cos θdϕ) ∧ dr + 4r(r + 2m)(1 +
r

4m
) sin θdθ ∧ dϕ (33)

which has a non-vanishing component of the field strength

fY rθ;ϕ = 2(1 +
r

4m
)r sin θ. (34)

In the original Taub-NUT case there is a conserved vector analogous to the
Runge-Lenz vector of the Kepler-type problem:

→
K=

1

2

→
Kµν ẋ

µẋν =
→
p × →j +

(
q2

4m
− 4mE

) →
r

r
(35)

where the conserved energyE, from eq. (3), is

E =

→
p

2

2f(r)
+

q2

2g(r)
. (36)
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The componentsKiµν involved with the Runge-Lenz type vector (35) are
Killing tensors and they can be expressed as symmetrized products of the
Killing-Yano tensorsfi (31) andfY (33) [16, 10]:

Kiµν − 1

8m
(R0µRiν +R0νRiµ) = m

(
fY µλfi

λ
ν + fY νλfi

λ
µ

)
. (37)

Returning to the generalized Taub-NUT metric, on the analogy of eq. (35),
Iwai and Katayama [18–20] assumed that in addition to the angular momentum

vector there exist a conserved vector
→
S of the following form:

→
S=
→
p × →J +κ

→
r

r
(38)

with an unknown constantκ.
It was found that the metric (24) still admits a Kepler type symmetry (38) if

the functionsf(r) andg(r) take, respectively, the form

f(r) =
a+ br

r
, g(r) =

ar + br2

1 + cr + dr2
(39)

wherea, b, c, d are constants. The constantκ involved in the Runge-Lenz vector
(38) is

κ = −aE +
1

2
c q2. (40)

If ab > 0 andc2 − 4d < 0 or c > 0, d > 0, no singularity of the metric
appears inR4 − {0}. On the other hand, ifab < 0 a manifest singularity appears
at r = −a/b [19].

It is straightforward to verify that the components of the vector
→
S are Sẗackel-

Killing tensors in the extended Taub-NUT space (24) with the functionf(r) and

g(r) given by (39). Moreover the Poisson brackets between the components of
→
J

and
→
S are [18]:

{Ji, Jj} = εijkJk,

{Ji, Sj} = εijkSk,

{Si, Sj} = (d q2 − 2 bE)εijkJk (41)

as it is expected from the same relations known for the original Taub-NUT metric.
Our task is to investigate if the components of the Runge-Lenz vector (38) can

be the contracted product of Killing-Yano tensors of valence2. On the model of
eq.(37) from the original Taub-NUT case it is not required that a componentSi
of the Runge-Lenz vector (38) to be directly expressed as a symmetrized product

of Killing-Yano tensors. Taking into account that
→
S transforms as a vector under
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rotations generated by
→
J , eq.(41), the componentsSiµν can be combined with triv-

ial Sẗackel-Killing tensors of the form(R0µRiν +R0νRiµ) to get the appropriate
tensor which has to be decomposed in a product of Killing-Yano tensors.

In order to use the results from the previous section, we shall write the sym-
metrized product of two different Killing-Yano tensorsf ′ andf ′′ as a contracted
product off ′ + f ′′ with itself, extracting adequately the contribution off ′2 and
f ′′2. Since the generalized Taub-NUT space (24) does not admit any other non-
trivial Stäckel-Killing tensor besides the metricgµν and the componentsSiµν
of (38), f ′2 and f ′′2 should be connected with the scalar conserved quantities

E,
→
J

2
, q2 through the tensorsgµν ,

∑
A=1,2,3RAµRAν andR0µR0ν .

In conclusion we shall consider a general linear combination between a com-
ponentSi of the Runge-Lenz vector (38) and symmetrized pairs of Killing vectors
of the form

Siab + α1

3∑
A=1

RAaRAb + α2R0aR0b + α3(R0aRib +RiaR0b) (42)

whereαi are constants. We are looking for the conditions the above tensor be
the contracted product of a Killing-Yano tensor with itself. For this purpose we
evaluate the eigenvalues of the matrix (42) and we get that it has at the most two
distinct eigenvalues if and only if

α1 + α2 = 0,

α3 = − c
4
,

d =
c2

4
. (43)

Hence the constants involved in the functionsf, g are constrained, restricting
accordingly their expressions. It is worth to mention that if relation (43) between
the constantsc andd is satisfied, the metric is conformally self-dual or anti-self-
dual depending upon the sign of the quantity2 + cr [19].

Finally the condition stated for a Stäckel-Killing tensor to be written as the
square of a skew symmetric tensor in the form (21) must be supplemented with
eq.(5) which defines a Killing-Yano tensor. To verify this last condition we shall
use the Newman-Penrose formalism for Euclidean signature [23]. We introduce a
tetrad which will be given as an isotropic complex dyad defined by the vectorsl,m
together with their complex conjugates subject to the normalization conditions

lµ l̄
µ = 1, mµm̄

µ = 1 (44)

with all others vanishing and the metric is expressed in the form

ds2 = l ⊗ l̄ + l̄ ⊗ l +m⊗ m̄+ m̄⊗m. (45)
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For a Sẗackel-Killing tensorK with two distinct eigenvalues one can choose
the tetrad in such that

Kµν = 2λ2
1l(µ l̄ν) + 2λ2

2m(µm̄ν). (46)

The skew symmetric tensorfµν which enter decomposition (21) has the form

fµν = 2λ1l[µ l̄ν] + 2λ2m[µm̄ν]. (47)

Again, a standard evaluation shows that the above quantity is a Killing-Yano
tensor only if

c =
2b

a
. (48)

With this constraint, together with (43), the extended metric (24) coincides,
up to a constant factor, with the original Taub-NUT metric on settinga/b = 4m.

4. Concluding remarks

The aim of this paper is to show that the extensions of the Taub-NUT geometry
do not admit a Killing-Yano tensor, even if they possess Stäckel-Killing tensors.

This result is not unexpected. The conserved quantitiesKiµν which enter

eq.(37) are the components of the Runge-Lenz vector
→
K given in (35). In the

original Taub-NUT case these componentsKiµν are related to the symmetrized
products between the Killing-Yano tensorsfi (31) andfY (33). Adequately the

three Killing-Yano tensorsfi transform as vectors under rotations generated by
→
J

like the Runge-Lenz vector (41), whilefY is a scalar.
The extended Taub-NUT metrics are not Ricci flat and, consequently, not

hyper-K̈ahler. On the other hand the existence of the Killing-Yano tensorsfi is
correlated with the hyper-K̈ahler, self-dual structure of the metric.

The non-existence of the Killing-Yano tensors makes the study of ”hidden”
symmetries more laborious in models of relativistic particles with spin involving
anticommuting vectorial degrees of freedom. In general the conserved quantities
from the scalar case receive a spin contribution involving an even number of
Grassmann variablesψµ. For example, starting with a Killing vectorKµ, the
conserved quantity in the spinning case is

J(x, ẋ, ψ) = Kµẋµ +
i

2
K[µ;ν]ψ

µψν . (49)

The first term in the r.h.s. is the conserved quantity in the scalar case, while the
last term represents the contribution of the spin.

The generalized Killing equations on spinning spaces in the presence of a
Sẗackel-Killing tensor are more involved. Unfortunately it is not possible to write
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closed, analytic expressions of the solutions of these equations using directly the
components of the Stäckel-Killing tensors. However, assuming that the Stäckel-
Killing tensors can be written as symmetrized products of pairs of Killing-Yano
tensors, the evaluation of the spin corrections is feasible [9, 16, 10, 17].

If the Killing-Yano tensors are missing, to take up the question of the existence
of extra supersymmetries and the relation with the constants of motion we are
forced to enlarge the approach to Killing equations (5), (1). In fact, in ref.[9],
supersymmetries are shown to depend on the existence of a tensor fieldfµν sat-
isfying eq.(5) which will be referred to as thef -symbol. The general conditions
for constants of motion were derived, and it was shown that one can have new
supercharges which do not commute with the original superchargeQ (9) if one
allows thef -symbols to have a symmetric part. It was shown that in this case
the antisymmetric part does not satisfy the Killing-Yano condition (5). We should
like to remark that the general conditions of ref.[9] allow more possibilities than
Killing-Yano tensors for the construction of supercharges.

Summing up, we believe that the relation between thef -symbols and the
Killing-Yano tensors could be fruitful and that it should deserve further studies.
An analysis of thef -symbols in the generalized Taub-NUT geometry is under
way.
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AN EFFECTIVE MODEL OF THE SPACETIME FOAM

VLADIMIR DZHUNUSHALIEV ∗
Kyrgyz-Russian Slavic University, Bishkek, Kyrgyzstan

1. Introduction

The notion of a spacetime foam was introduced by Wheeler [1, 2] for the de-
scription of the possible complex structure of the spacetime on the Planck scale
(LPl ≈ 10−33cm). This hypothesized spacetime foam is a set of quantum worm-
holes (WH) (handles) appearing in the spacetime on the Planck scale level (see
Fig.1). For the macroscopic observer these quantum fluctuations are smoothed
and we have an ordinary smooth manifold with the metric submitting to Einstein
equations. The exact mathematical description of this phenomenon is very difficult
and even though there is a doubt: does the Feynman path integral in the gravity
contain a topology change of the spacetime ? This question spring upbecause

∗ dzhun@hotmail.kg

+ - +- + -

5D quantum handles

mouthes

+-

schematic designationfor quantum handles

Figure 14. At the left side of the figure is presented a hypothesized spacetime foam. If we neglect
of the cross section of handle then (at the right) hand we have a schematic designation for the
spacetime foam.
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23 3

1

4

Figure 15. Here whole spacetime is 5D but in the external spacetime (3)G55 is nonvariable and
we have Kaluza-Klein theory in its initial interpretation as 4D gravity + electromagnetism. In the
throat (2)G55 component of the 5D metric is equivalent to 4D gravity+electromagnetism+scalar
field. Near the event horizon (4) the metric is the Reissner-Nordstrom metric and the throat is a
solution of the 5D Kaluza-Klein theory. We should join these metrics on the event horizons. (1) is
the force line of the electric field.

(according to the Morse theory) the singular points must arise by the topology
change. In such points the time arrow is undefined that leads in difficulties at
definition of the Lorentzian metric, curvature tensor and so on. The main goal of
this paper is to submitan effective model of the spacetime foam.

2. Model of a single quantum wormhole

At first we present a model of a single handle in the spacetime foam, see Fig(2).
The 5D metric [3–5] for the throat is

ds2 = ηABω
AωB =

− r2
0

∆(r)
(dχ− ω(r)dt)2 + ∆(r)dt2 − dr2 −

a(r)
(
dθ2 + sin θ2dϕ2

)
, (1)

a = r2
0 + r2, ∆ = ±2r0

q

r2 + r2
0

r2 − r2
0

,

ω = ±4r2
0

q

r

r2 − r2
0

. (2)

whereχ is the 5th extra coordinate;ηAB = (±,−,−,−,∓), A,B = 0, 1, 2, 3, 5;
r, θ, ϕ are the3D polar coordinates;r0 > 0 andq are some constants. We can
see that there are two closedds2

(5)(±r0) = 0 hypersurfaces at ther = ±r0. In
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some sense these hypersurfaces are like to the event horizon and in Ref.[6] such
hypersurfaces are named as aD-holes. On these hypersurfaces we should join [7]:

− the flux of the 4D electric field (defined by the Maxwell equations) with the
flux of the 5D electric field defined byR5t = 0 Kaluza-Klein equation.

− the area of the Reissner-Nordström event horizon with the area of the
ds2

(5)(±r0) = 0 hypersurface.

It is necessary to note that both solutions (Reissner-Nordström black hole and 5D
throat) have only two integration constants1 and on the event horizon takes place
an algebraic relation between these 4D and 5D integration constants. Another
explanation of the fact that we use only two joining condition is the following (see
Ref.[8] for the more detailed explanations): in some sense on the event horizon
holds a “holography principle”. This means that in the presence of the event hori-
zon the 4D and 5D Einstein equations lead to a reduction of the amount of initial
data. For example the Einstein - Maxwell equations for the Reissner-Nordström
metric

ds2 = ∆dt2 − dr2

∆
− r2

(
dθ2 + sin2 dϕ2

)
, (3)

Aµ = (ω, 0, 0, 0)) (4)

(whereAµ is the electromagnetic potential,κ is the gravitational constant) can be
written as

−∆′

r
+

1−∆

r2
=

κ

2
ω′2, (5)

ω′ =
q

r2
. (6)

For the Reissner - Nordström black hole the event horizon is defined by the con-
dition ∆(rg) = 0, whererg is the radius of the event horizon. Hence in this case
we see that on the event horizon

∆′g =
1

rg
− κ

2
rgω
′
g

2
, (7)

here (g) means that the corresponding value is taken on the event horizon. Thus,
Eq. (5), which is the Einstein equation, is a first-order differential equations in the
whole spacetime(r ≥ rg). The condition (7) tells us that the derivative of the
metric on the event horizon is expressed through the metric value on the event
horizon. This is the same what we said above: the reduction of the amount of
initial data takes place by such a way that we have only two integration constants
(massm and chargee for the Reissner-Nordström solution andq andr0 for the
5D throat).

1 in fact, for the Reissner-Nordström black hole this leads to the “no hair” theorem.
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Figure 16. The left mouth of the quantum WH entraps the force lines of the electric field and
looks as (-) electric charge. The force lines outcome from the right mouth of WH which one looks
as (+) charge.

The 5D throat has an interesting property [9]. We see that the signs of theη55

andη00 are not defined. We remark that this 5D metric is located behind the event
horizon therefore the 4D observer is not able to determine the signs of theη55 and
η00. Moreover this 5D metric can fluctuate between these two possibilities. Hence
the external 4D observer is forced to describe such composite WH by means of
something like spinor.

Another interesting characteristic property of this solution is that we have the
flux of electric field through the throat,i.e.each mouth can entrap the electric force
lines and this leads that this mouth is like to electric charge for the external 4D
observer, see Fig.16. We can neglect the cross section of the throat and in this case
each mouth is point-like and we can try to describe these mouths with help of some
effective field. Taking into account the spinor-like properties of quantum handles,
we assume thatspacetime foam can be described with help of an effective spinor
field.

3. Approximate model of the spacetime foam

The physical meaning of the spinor field depends on the method of attaching the
quantum handles to the external space, see Fig.(17).

3.1. QUANTUM WORMHOLES WITH SEPARATED MOUTHS

In this case|ψ|2 is a density of the mouths in the external space ande|ψ|2 is a
density of the electric charge [10].
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+ - - +
+ -- +

1 2
Figure 17. At the left hand of the figure quantum handles connect two spaces. At the right hand
the mouths of quantum handles are separated in distance of the orderlPl.

Following this way we write differential equations for the gravitational +
electromagnetic fields in the presence of the spacetime foam(ψ) as follows

Rµν − 1

2
gµνR = Tµν , (8)(

iγµ∂µ + eAµ − i

4
ωāb̄µγ

µγ[āγ b̄] −m
)
ψ = 0, (9)

DνF
µν = 4πe

(
ψ̄γµψ

)
, (10)

For our model we use the following ansatz: the spherically symmetric metric

ds2 = e2ν(r)∆(r)dt2 − dr2

∆(r)
− r2

(
dθ2 + sin2 dϕ2

)
, (11)

the electromagnetic potential

Aµ = (−φ, 0, 0, 0) , (12)

and the spinor field

ψ̃ = e−iωt
e−ν/2

r∆1/4

(
f, 0, ig cos θ, ig sin θeiϕ

)
. (13)

The following isvery importantfor us: the ansatz (13) for the spinor fieldψ has
theTtϕ component of the energy-momentum tensor and theJϕ = 4πe(ψ̄γϕψ)
component of the current. Let we remind thatψ determines the stochastical gas of
the virtual WH’s which can not have a preferred direction in the spacetime. This
means that after substitution expression (11)-(13) into field equations they should
be averaged by the spin direction of the ansatz (13). After this averaging we have
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Ttϕ = 0 andJϕ = 0 and we have the following equations system describing our
spherically symmetric spacetime

f ′
√

∆ =
f

r
− g

(
(ω − eφ)

e−ν√
∆

+m

)
, (14)

g′
√

∆ = f

(
(ω − eφ)

e−ν√
∆
−m

)
− g

r
, (15)

r∆′ = 1−∆− κe
−2ν

∆
(ω − eφ)

(
f2 + g2

)
− r2e−2νφ′2, (16)

r∆ν ′ = κ
e−2ν

∆
(ω − eφ)

(
f2 + g2

)
− κ e−ν

r
√

∆
fg −

κ

2
m
e−ν√

∆

(
f2 − g2

)
, (17)

r2∆φ′′ = −8πe
(
f2 + g2

)
−
(
2r∆− r2∆ν ′

)
φ′, (18)

whereκ is some constant. This equations system was investigated in [11] and
result is the following. A particle-like solution exists which has the following
expansions nearr = 0

f(r) = f1r +O(r2), g(r) = O(r2), (19)

∆(r) = 1 +O(r2), ν(r) = O(r2), φ(r) = O(r2) (20)

and the following asymptotical behaviour

∆(r) ≈ 1− 2m∞
r

+
(2e∞)2

r2
, ν(r) ≈ const, (21)

φ(r) ≈ 2e∞
r
, (22)

f ≈ f0e
−αr, g ≈ g0e

−αr,
f0

g0
=

√
m∞ + ω

m∞ − ω , α2 = m2
∞ − ω2, (23)

wherem∞ is the mass for the observer at infinity and2e∞ is the charge of this
solution.

The solution exists for both cases(|e∞|/m∞) > 1 and (|e∞|/m∞) < 1
but for us is essential the first case with(|e∞|/m∞) > 1. In this case the clas-
sical Einstein-Maxwell theory leads to the “naked” singularity. The presence of
the spacetime foam drastically changes this result:the appearance of the vir-
tual wormholes can prevent the formation of the “naked” singularuty in the
Reissner-Nordstr̈om solution with|e|/m > 1.

Our interpretation of this solution is presented on the Fig.(18).
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e/m > 1 e/m > 1e/m < 1 e/m < 1

1

2 2

Figure 18. 1 are the quantum (virtual) WHs,2 are two solutions with|e∞|/m∞ > 1. Such object
can be named asthe wormhole with quantum throat.

+ - +-
+ -+-

Figure 19. The distance between mouths of the quantum handle is of orderlPl.

3.2. QUANTUM WORMHOLES WITH NON-SEPARATED MOUTHS

The second possibility [12] is presented on the Fig.(19).
We will consider the 5D Kaluza-Klein theory + torsion + spinor field. The

Lagrangian in this case is

L =
√−G

{
− 1

2k

(
R(5) − SABCSABC

)
+

~c
2

[
iψ̄

(
γC∇C − mc

i~

)
ψ + h.c.

]}
(24)

where∇C = ∂C − 1
4(ωĀB̄C + SĀB̄C)γ[ĀγB̄] is the covariant derivative,G is

the determinant of the 5D metric,R(5) is the 5D scalar curvature,SABC is the
antisymmetrical torsion tensor,A,B,C are the 5D world indexes,̄A, B̄, C̄ are the
5-bein indexes,γB = hB

Ā
γĀ,hB

Ā
is the 5-bein,γĀ are the 5Dγ matrices with usual
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definitionsγĀγB̄ + γB̄γĀ = 2ηĀB̄, ηĀB̄ = (+,−,−,−,−) is the signature of
the 5D metric,ψ is the spinor field which effectively and approximately describes
the spacetime foam,[] means the antisymmetrization,~, c andm are the usual
constants. After dimensional reduction we have

L =
√−g

{
− 1

2k

(
R+

1

4
FαβF

αβ

)
+

~c
2

[
iψ̄

(
γµ∇̃µ − 1

8
Fᾱβ̄γ

5̄γ[ᾱγβ̄]−
1

4
l2Pl

(
γ[ĀγB̄γC̄]

) (
iψ̄γ[ĀγB̄γC̄]ψ

)
− mc

i~

)
ψ + h.c.

]}
(25)

SĀB̄C̄ = 2l2Pl

(
iψ̄γ[ĀγB̄γC̄]ψ

)
(26)

whereg is the determinant of the 4D metric,̃∇µ = ∂µ − 1
4ωāb̄µγ

[āγ b̄] is the
4D covariant derivative of the spinor field without torsion,R is the 4D scalar
curvature,Fαβ = ∂αAβ − ∂βAα is the Maxwell tensor,Aµ = h5̄

µ is the electro-
magnetic potential,α, β, µ are the 4D world indexes,̄α, β̄, µ̄ are the 4D vier-bein
indexes,hµ̄ν is the vier-bein,γµ̄ are the 4Dγ matrices with usual definitions
γµ̄γν̄ + γν̄γµ̄ = 2ηµ̄ν̄ , ηµ̄ν̄ = (+,−,−,−) is the signature of the 4D metric.
Varying with respect togµν , ψ̄ andAµ leads to the following equations

Rµν − 1

2
gµνR =

1

2

(
−FµαFαν +

1

4
gµνFαβF

αβ

)
+

4l2Pl

[(
iψ̄γµ∇̃νψ + iψ̄γν∇̃µψ

)
+ h.c.

]
−

2l2Pl

[
Fµα

(
iψ̄γ5̄γ[νγ

α]ψ
)

+ Fνα
(
iψ̄γ5̄γ[µγ

α]ψ
)]
−

2gµν l
4
Pl

(
iψ̄γ[ĀγB̄γC̄]ψ

) (
iψ̄γ[ĀγB̄γC̄]ψ

)
, (27)

DνH
µν = 0, Hµν = Fµν + F̃µν ,

F̃µν = 4l2Pl

(
iψ̄γ5̄γ[µγν]ψ

)
= 4l2PlE

µναβ
(
iψ̄γ[αγβ]ψ

)
, (28)

iγµ∇̃µψ − 1

8
Fᾱβ̄

(
iγ5̄γ[ᾱγβ̄]ψ

)
−

1

2
l2Pl

(
iγ[ĀγB̄γC̄]ψ

) (
iψ̄γ[ĀγB̄γC̄]ψ

)
= 0, (29)

whereωāb̄µ is the 4D Ricci coefficients without torsion,Eµναβ is the 4D abso-
lutely antisymmetric tensor. The most interesting for us is the Maxwell equation
(28) which permits us to discuss the physical meaning of the spinor field. We
would like to show that this equation in the given form is similar to the electro-
dynamic in the continuous media. Let we remind that for the electrodynamic in
the continuous media two tensorsF̄µν andH̄µν are introduced [13] for which we
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have the following equations system (in the Minkowski spacetime)

F̄αβ,γ + F̄γα,β + F̄βγ,α = 0, (30)

H̄αβ
,β = 0 (31)

and the following relations between these tensors

H̄αβu
β = εF̄αβu

β , (32)

F̄αβuγ + F̄γαuβ + F̄βγuα = µ
(
H̄αβuγ + H̄γαuβ + H̄βγuα

)
(33)

whereε andµ are the dielectric and magnetic permeability respectively,uα is the
4-vector of the matter. For the rest media and in the 3D designation we have

εĒi = Ēi + 4πP̄i = D̄i, where Ēi = F̄0i, D̄0i = H̄0i, (34)

µH̄i = H̄i + 4πM̄i = B̄i, where B̄i = εijkF̄
jk, H̄i = εijkH̄

jk, (35)

wherePi is the dielectric polarization andMi is the magnetization vectors,εijk
is the 3D absolutely antisymmetric tensor. Comparing with the (28) Maxwell
equation for the spacetime foam in the 3D form

Ei + Ẽi = Di where Ei = F0i, Ẽi = F̃0i, Di = H0i (36)

Bi + B̃i = Hi whereBi = εijkF
jk, B̃i = εijkF̃

jk, Hi = εijkH
jk (37)

we see that the following notations can be introduced.

Ẽi = 4l2Plεijk
(
iψ̄γ[jγk]ψ

)
(38)

is the polarization vector of the spacetime foam and

B̃i = −4l2Plεijk
(
iψ̄γ5̄γ[jγk]ψ

)
(39)

is the magnetization vector of the spacetime foam.
The physical reason for this is evidently: each quantum WH is like to a moving

dipole (see Fig.(20) which produces microscopical electric and magnetic fields.

4. Supergravity as a possible model of the spacetime foam

From the above-mentioned arguments we see that the most important for such
kind models of the spacetime foam is the presence of the nonminimal interac-
tion term (in Lagrangian) between spinor and electromagnetic fields. Let we note
that the N=2 supergravity [14] which contains the vier-beineaµ, Majorana Rarita-
Schwinger fieldψµ, photonAµ and a second Majorana spin-3

2 field ϕµ has the
following term in Lagrangian

Lse =
κ√
2
ψ̄µ

(
eFµν +

1

2
γ5F̃

µν

)
ϕν + · · · ,

F̃µν = eµναβF
αβ (40)
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Figure 20. For the 4D observer each mouth looks as a moving electric charge. This allows us in
some approximation imagine the spacetime foam as a continuous media with a polarization.

The term like this usually occur in supergravities which have some gauge multi-
plet of supergravity and some matter multiplet. Taking into account the previous
reasonings we can suppose thatsupergravity theories can be considered as
approximate models of the spacetime foam.

5. Conclusions

Thus, here we have proposed the approximate model for the description of the
spacetime foam. This model is based on the assumption that the whole spacetime
is 5 dimensional butG55 is the dynamical variable only in the quantum topological
handles (wormholes). In this case 5D gravity has the solution which we have used
as a model of the single quantum wormhole. The properties of this solution is
such that we can assume that the quantum topological handles (wormholes) can
be approximately described by some effective spinor field.

The topological handles of the spacetime foam either can be attached to one
space or connect two different spaces. In the first case we have something like to
strings between twoD-branes (or wormhole with the quantum throat) and such
object can demonstrate a model of preventing the formation the naked singularity
with relatione > m. In the second case the spacetime foam looks as a dielectric
with quantum handles as dipoles.

Such model leads to the very interesting experimental consequences. We see
that the spacetime foam has 5D structure and it connected with the electric field.
This observation allows us to presuppose that the very strong electric field can
open a door into 5 dimension! The question is: as is great should be this field ?
The electric fieldEi in the CGSE units andei in the “geometrized” units can be
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connected by formula

ei =
G1/2

c2
Ei =

(
2.874× 10−25 cm−1/gauss

)
Ei, (41)

[ei] = cm−1, [Ei] = V/cm (42)

As we see the value ofei is defined by some characteristic lengthl0. It is possible
thatl0 is a length of the5th dimension. Ifl0 = lPl thenEi ≈ 1057V/cm and this
field strength is in the Planck region, and is will beyond experimental capabilities
to create. But ifl0 has a different value it can lead to much more realistic scenario
for the experimental capability to open door into5th dimension.

Another interesting conclusion of this paper is that supergravity theories hav-
ing nonminimal interaction between spinor and electromagnetic fileds can be
considered as approximate and effective models of the spacetime foam.
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POSSIBLE CONSTRAINTS ON STRING THEORY IN CLOSED SPACE

WITH SYMMETRIES

ATSUSHI HIGUCHI ∗
Department of Mathematics, University of York, YORK,
YO10 5DD, United Kingdom

Abstract. It is well known that certain quadratic constraints have to be imposed on linearized grav-
ity in closed space with symmetries. We review this phenomenon and discuss one of the constraints
which arise in linearized gravity on static flat torus in detail. Then we point out that the mode with
negative kinetic energy, which is necessary for satisfying this constraint, appears to be missing in
the free bosonic string spectrum.

1. Introduction

(Super)string theory is the leading candidate for a unified theory including gravity.
In particular, it contains and generalizes Einstein’s general relativity [1–3]. There-
fore, it is natural to expect that the theory incorporates diffeomorphism invariance.
However, this invariance is not manifest in the perturbative definition of string
theory starting from non-interacting string. Now, it is well known that a solution
of linearized Einstein equations (with or without matter fields) in compact back-
ground space with Killing symmetries cannot be extended to an exact solution
unless the linearized solution satisfies certain quadratic constraints [4, 5]. This
phenomenon, called linearization instability, is a consequence of diffeomorphism
invariance of the full theory. (This fact can be seen most clearly in the quantum
context.) Therefore, one may obtain some insight into how diffeomorphism in-
variance is incorporated in string theory by investigating the way linearization
instabilities manifest themselves.

In this article we review the phenomenon of linearization instability in general
relativity with emphasis on the case with static flat torus space. In particular,
we point out that in this space a mode with negative kinetic term is essential
in satisfying one of the constraints and that this mode seems to be missing in
the spectrum of free bosonic string theory. The rest of the article is organized

∗ ah28@york.ac.uk
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as follows. In Section 2 the phenomenon of linearization instability in classical
and quantum general relativity is reviewed. In Section 3 one of the constraints
occurring in flat torus space is discussed in detail and the importance of a mode
with negative kinetic term is emphasized. In Section 4 it is pointed out that this
mode is absent in a seemingly natural treatment of the zero-momentum sector of
closed bosonic string in this space. In Section 5 a summary of this article is given.
The metric signature is(−+ + · · ·+) throughout this article.

2. Linearization instabilities in general relativity

Consider classical general relativity with any bosonic matter fields. Suppose we
want to find a solution in this theory order by order in perturbation theory starting
from a (globally-hyperbolic) background spacetime satisfying the vacuum Ein-
stein equationsRab = 0. To do do so we write the metricgab and the matter fields
φi as

gab = g
(0)
ab + h

(1)
ab + h

(2)
ab + · · · ,

φi = φ
(1)
i + φ

(2)
i + · · · ,

whereg(0)
ab is the background metric and whereh(k)

ab andφ(k)
i are the fields ob-

tained as thek-th order approximation. (The fieldsφi are assumed to vanish
at zero-th order for simplicity.) The first-order approximation(h

(1)
ab , φ

(1)
i ) corre-

sponds to non-interacting waves in the background spacetime. The second-order
perturbation of the metric,h(2)

ab , can be regarded as the gravitational field generated

by the free fieldsh(1)
ab andφ(1)

i .

Let the stress-energy tensor of the fieldsh(1)
ab and φ(1)

i in the background

spacetime with metricg(0)
ab beT (1)

ab . We note first that the linear contribution to
the Einstein tensor

Eab = Rab − 1

2
gabR

with gab = g
(0)
ab + hab is

E
(L)
ab (h) =

1

2
(∇c∇bhca +∇c∇ahcb −∇c∇chab −∇a∇bhcc)

−1

2
g

(0)
ab (∇c∇dhcd −∇c∇chdd) .

Here the covariant derivatives are compatible with the metricg
(0)
ab and indices are

raised and lowered by this metric. The fieldh(2)
ab must satisfy

E
(L)
ab (h(2)) = κT

(1)
ab , (1)
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where κ is a constant. The stress-energy tensorT
(1)
ab is divergence-free, i.e.,

∇aT (1)
ab = 0, if the linear equations of motion are satisfied. On the other hand

the equation

∇aE(L)
ab (h) = 0 (2)

holds for any hab. This is a consequence of the Bianchi identity∇̃aEab = 0,
where∇̃a is the covariant derivative compatible with the full metricgab. For this
reason Eq. (2) is called the background Bianchi identity.

Now, suppose that there is a Killing vector fieldXa satisfying

∇aXb +∇bXa = 0 .

Then, it is easy to verify that the currentjaX ≡ T (1)abXb is conserved. The
corresponding conserved Noether charge is given by

QX ≡
∫

Σ
dΣnaj

a
X ,

where the integration is over any Cauchy surfaceΣ andna is the unit normal
to the Cauchy surface. (SinceQX comes from a stress-energy tensor of thefree

fields h(1)
ab andφ(1)

i , it is quadratic in these fields.) If the vectorXa is a time-
translation Killing vector, then the chargeQX is nothing but the energy. If it is a
space-translation Killing vector, thenQX is a component of the momentum. We
note that

E(L)ab(h)Xb =
1

2
∇bKab(h) ,

whereKab(h) is an anti-symmetric tensor given by

Kab(h) = Xa∇bhcc −Xb∇ahcc +Xc∇ahbc −Xc∇bhac
+Xc∇ahbc −Xc∇bhac + hca∇bXc − hcb∇aXc .

Hence, the integral ofE(L)ab(h)Xb over the Cauchy surface can be expressed as
a surface integral as∫

Σ
dΣnaE

(L)ab(h)Xb =
1

2

∫
∂Σ
dS narbK

ab(h) ,

where∂Σ is the “boundary” of the Cauchy surface at infinity andra is the unit
vector normal to the boundary along the Cauchy surface. By using this expression
and Eq. (1) one can write the Noether chargeQX as a surface integral:

QX =
1

2κ

∫
∂Σ
dS narbK

ab(h(2)) . (3)
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In asymptotically-flat spacetime this equation allows us to express energy and
momentum of an isolated system as surface integrals at spacelike infinity [6].

Now, suppose that the Cauchy surface is compact, i.e., that the space is
“closed”. Then, the right-hand side of Eq. (3) must vanish for anyhab because
there is no surface term. Hence,

QX = 0 . (4)

Thus, the conserved chargeQX is constrained to vanish. Note that this constraint
cannot be derived from the linearized theory alone. It arises in the full theory when
we try to find the correction to the linear theory. Solutions of the linearized field
equations are not extendible to exact solutions unless they satisfy this constraint.
(The background spacetime here is said to be linearization unstable because of
the existence of spurious solutions to the linearized equations. The constraint (4)
is sometimes called a linearization stability condition.)

Although we will concentrate on classical theory, it is interesting to note what
the constraint (4) implies in quantum theory. In the Dirac quantization, constraints
are imposed on the physical states. Thus, the quantum version of (4) reads

QX |phys〉 = 0 , (5)

where|phys〉 is any physical state andQX is the quantum operator correspond-
ing to the conserved Noether chargeQX . Since the operatorQX generates the
spacetime symmetry associated with the Killing vector fieldXa, the constraint
(5) implies that all physical states must be invariant under this spacetime symme-
try [7]. This requirement might seem absurdly strong at first sight. For example,
in linearized gravity in de Sitter spacetimeall physical states are required to
be de Sitter invariant.1 However, in the (formal) Dirac quantization of full gen-
eral relativity, the states are (roughly speaking) required to be diffeomorphism
invariant. The constraint (5) can be interpreted to be inforcing the part of the
diffeomorphism invariance of the physical states that has not been broken by the
background metric.

3. The Hamiltonian constraint of linearized gravity on flat torus

In this section we discuss linearized gravity in static flat(D − 1)-dimensional
torus space with all directions compactified. This spacetime has space- and time-
translation invariance. Therefore, the energy and momentum of linearized gravity
are conserved and are both constrained to vanish. Below we concentrate on the
linearization stability condition which requires that energy be zero since itwill

1 The vacuum state is the only de Sitter invariant state if one insists on using the original Fock
space of linearized gravity, but one can construct infinitely many invariant states by using a different
Hilbert space [8].
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be important later in the discussion of string theory. We find that there is a mode
with negative kinetic term and that there would be no excitation as a result of the
linearization stability condition if it were not for this mode. We consider only pure
gravity for simplicity.

Let us impose the standard (“Lorenz” or Hilbert) gauge condition

∂ah
ab =

1

2
∂bh , (6)

whereh = hcc. Then the Hamiltonian density reads

H =
1

4

[
∂th̃ab∂th̃

ab + ∂ih̃ab∂
ih̃ab

]
− D − 2

4D

[
(∂th)2 + ∂ih∂

ih
]
,

whereh̃ab = hab − 1
Dgabh is the traceless part ofhab. The indexi runs from1 to

D − 1, i.e., it is a spacelike index. The field equations are simply

�h̃ab = 0 , �h = 0 .

The modes with nonzero momentumk are proportional toe−ik0t+ik·x, where
(k0)2 − k2 = 0. On the other hand, the modes withk = 0 take the form

h̃ab , h ∝ At+B ,

whereA andB are constants.2

The Hamiltonian can be written as

H =

∫
dD−1xH = H0 +H ′ ,

whereH0 is the energy in the modes withk = 0 and whereH ′ is the energy in
the modes withk 6= 0. For the modes withk 6= 0 the traceh can be gauged away
and the physical modes have the form

h̃ab ∝ Habe
−ik0t+ik·x ,

whereHab is a constant symmetric tensor satisfyingHtb = 0, H i
i = 0 and

kiHij = 0. Then we can easily see thatH ′ ≥ 0. The situation is rather different
for the modes withk = 0. Since these modes are constant in space, they satisfy
∂ih̃ab = ∂ih = 0. Hence, the conditions coming from (6) are∂th̃ti = 0 and

∂th̃tt = −D − 2

2D
∂th .

2 Note that the energy corresponding to these modes would be infinite forA 6= 0 if the space
were not compactified. This is why these modes would not be present in uncompactified space.
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Let us write

h̃ab = h̃
(0)
ab + h̃′ab ,

h = h(0) + h′ ,

whereh̃(0)
ab andh(0) are the zero-momentum parts ofh̃ab andh. Then the zero-

momentum HamiltonianH0 is given by

H0 =

∫
dD−1x

[
1

4
∂th̃

(0)
ij ∂th̃

(0)ij − D2 − 4

8D
(∂th

(0))2

]
.

Notice that the trace modeh(0) has a negative kinetic term.
Since the Hamiltonian is the Noether charge corresponding to the time-

translation symmetry of the background spacetime, the discussion in the previous
section shows that

H = H0 +H ′ = 0 .

The solutions of the linearized equations which do not satisfy this condition
cannot be extended to exact solutions. This equation can be re-expressed as

−D
2 − 4

8D

∫
dD−1x (∂th

(0))2 +H ′′ = 0 , (7)

where

H ′′ = H ′ +
1

4

∫
dD−1x ∂th̃

(0)
ij ∂th̃

(0)ij ≥ 0 .

Now, the quantity1
2h

(0)V , whereV is the volume of the background space,
is the change in the volume of the space. Hence, Eq. (7) relates the expan-
sion/contraction rate of space to the energy due to the excitation of the system.
In fact this equation is the linearized version of a familiar equation in cosmology.
Notice that the trace modeh(0) plays a vital role in satisfying Eq. (7). If this
mode were absent, Eq. (7) would imply that there were no excitations on flat torus
compactified in all directions.

4. Massless sector of bosonic string in the position representation

Massless excitations of closed string include gravitons, i.e., linearized gravity is
present among the modes of free closed bosonic string in Minkowski spacetime.3

This fact is one of the most important features of string theory as a unified theory.
It is natural to expect that this feature persists in string theory in static flat torus
compactified in all directions. Therefore, the total energy and momentum in string
(field) theory are expected to vanish in this spacetime. We also expect thatthere

3 This fact goes beyond the linearized level as is well known[1–3].
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is a mode with negative kinetic term among the closed-string modes so that the
linearization stability condition (7) can be satisfied by non-vacuum states (in string
field theory). However, we will find in the “old covariant approach” that there is
no massless string excitation which corresponds to the zero-momentum modeh(0)

with negative kinetic energy if we treat the zero-momentum modes in a way which
seems most natural.

Let us start with a discussion of open string in flat(D− 1)-dimensional torus.
The massless states in the old covariant approach are denoted by

αa−1|0; p〉 ,
where the state|0; p〉 with momentumpa has no string excitation (see, e.g.,
Ref. [9]). The creation operatorαa−1 creates the lowest harmonic-oscillator mode
on the string in thea-direction and the annihilation operatorαa1 annihilates it. As
is well known, the physical state conditions lead top2 = 0 andp · α1|phys〉 = 0,
where[αa1, α

b−1] = gab andp · α1 ≡ paα
a
1. [Here,gab = diag(−1, 1, 1, . . . , 1).]

Let us consider a wave-packet state

|ψ〉 =

∫
dDp

(2π)D
Âa(p)α

a
−1|0; p〉 ,

where Âa(p) is a function of pa. The physical state conditions then read
p2Âa(p) = 0 and paÂa(p) = 0. Now, define the (spacetime) position repre-
sentation of this wave packet as

Aa(x) =

∫
dDp

(2π)D
Âa(p)e

−ip·x .

Then the physical state conditions become�Aa = 0 and∂aAa = 0. Thus, we
recover the equations satisfied by a non-interactingU(1) gauge field in the Lorentz
gauge. The zero-momentum modes in flat(D − 1)-dimensional torus satisfy

∂tAt = 0 , ∂2
tAi = 0 .

These imply thatAt = const andAi = Eit+A
(0)
i . The constantAt can be gauged

away, but the constantsEi (the electric field) andA(0)
i represent physical degrees

of freedom.
Next, we will apply the above procedure to a closed string on static flat torus

and examine whether or not there is a mode with negative kinetic term. The
massless excitations of a closed bosonic string are

αa−1α̃
b
−1|0; p〉 .

The operatorαa−1 (α̃a−1) creates the lowest left-moving (right-moving) mode on
the string in thea-direction, and the operatorαa1 and α̃a1 annihilate them. The
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physical state conditions lead top2 = 0 andp · α1|phys〉 = p · α̃1|phys〉 = 0,
where[αa1, α

b−1] = [α̃a1, α̃
b−1] = gab. We again consider a wave-packet state

|Ψ〉 =

∫
dDp

(2π)D
Ĥab(p)α

a
−1α̃

b
−1|0; p〉 .

(Note here that the tensor̂Hab(p) is not necessarily symmetric.) The physical state
conditions readp2Ĥab(p) = 0 andpaĤab = pbĤab = 0. In the spacetime position
representation,

Hab(x) =

∫
dDp

(2π)D
Ĥab(p)e

−ip·x ,

the physical state conditions are�Hab = 0 and

∂aHab = ∂bHab = 0 . (8)

The equation�Hab = 0 naturally come from the following Lagrangian
density:

L = −1

4
∂aHbc∂

aHbc . (9)

The constraints (8) can be imposed by hand. One finds the modes corresponding to
gravitons, anti-symmetric tensor particles and dilatons in the nonzero momentum
sector of this theory as in Minkowski spacetime. The constraints (8) for the zero-
momentum sector read

∂tHta = ∂tHat = 0

for all a. The energy in the zero-momentum sector is

E0 =
1

4

∫
dD−1x ∂tHij∂tH

ij ,

wherei, j = 1, 2, · · ·D − 1. There is no mode with negative kinetic term in this
expression, andE0 is positive definite. Thus, the negative-energy mode, which is
necessary for non-vacuum states to satisfy the constraint (7), does not appear in a
seemingly natural position representation of the massless sector of closed bosonic
string.

5. Summary

In this article, we reviewed the fact that quadratic constraints arise in linearized
gravity if the background spacetime allows Killing symmetries and has compact
Cauchy surfaces. This implies that the total energy and momentum in free string
(field) theory should be constrained to vanish in flat torus space with all directions
compactified. We examined one of these constraints in linearized gravity in this

kievarwe.tex; 12/03/2001; 3:49; p.479



STRING THEORY IN CLOSED SPACE 473

space, emphasizing that a mode with negative kinetic energy is essential in satis-
fying this constraint. Then we analyzed free closed bosonic string theory in this
space and found that this mode does not appear in a seemingly natural treatment
of the massless sector.

It is possible that the Lagrangian density (9) is wrong, and a more careful
analysis may lead to a Lagrangian density describing the usual linearized gravity,
anti-symmetric tensor gauge field and dilaton scalar field after all. It will be inter-
esting to see how this can be achieved. The situation is rather puzzling, however,
because string theory is formulated in terms of a physical object, i.e., a string, and
does not seem to allow any negative-energy mode.
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Within the scope of simple quantum mechanics we present a semiclassical theory
which is exact. While the semiclassical theory of canonical phase space path inte-
grals is now well established [1, 2] we examine here the case where the classical
phase space is the two-sphere. After summarizing some relevant features of a
classical spin, we briefly discuss the localization of classical phase space integrals
and then present an extension for a quantum spin. The semiclassical propagator is
employed to solve the Jaynes-Cummings model.

1. Classical spin

A classical spin is described by a classical Bloch vector on the two-sphere

~S ∈ S2(s) =
{

(Sx, Sy, Sz) ∈ R3 |S = s
}
.

We make use of spherical coordinates

U = {Ω = (ϑ, ϕ) | 0 < ϑ < π, 0 < ϕ < 2π} .
This coordinate system cannot be extended over the wholeS2(s). However, as
S2(s) is embedded inR3, an appropriate metricg and volume formω are induced

g = s2(dϑ⊗ dϑ+ sin2(ϑ) dϕ⊗ dϕ) ,

ω = s sin(ϑ) dϑ ∧ dϕ .
The symplectic volume form is closed and non degenerate. Hence, the pair
(S2(s), ω) generates a symplectic differential manifold. Now, Hamiltonian dy-
namics is determined by the Hamiltonian vector fieldXH

ω(XH , ·) = dH ,

∗ alscher@physik.uni-freiburg.de
† grabert@physik.uni-freiburg.de
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leading to the dynamical system

s sin(ϑ)ϑ̇ =
∂H

∂ϕ
,

s sin(ϑ)ϕ̇ = −∂H
∂ϑ

.

These classical equations of motion can also be derived by introducing the
classical action

S[Ω(t)] =

∫ T

0
dt
[
θϑϑ̇+ θϕϕ̇−H

]
,

with the symplectic potential

θ = s[cos(ϑ) dϕ+ dG] .

For classical spin dynamics the localization of oscillating phase space integrals
was observed [3]. To see this we examine the symplectic formα of the external
algebra of the cotangent bundle

α = e−iT (H−ω) ,

which is equivariantly closed. The integral over the whole sphere can be written
as

Z =

∫
S2(s)

α =

∫
S2(s)

α e−νDHβ , (1)

with the equivariant exact formDHβ = dg(XH , ·) + g(XH , XH). Now, the right
hand side of Eq. (1) does not depend onν, allowing for the localization ofZ [4]

Z = lim
ν→∞

∫
S2(s)

α e−νDHβ .

The stationary phase approximation results in the Berlinge-Vergue formula

Z = −2π
∑

Ω∈Ufp

α(0)(Ω)√
det dXH(Ω)

,

and only the sum over the fix pointsUfp = {Ω ∈ U |XH(Ω) = 0} has to be
considered. Therefore, the question arises whether there exists a similar saddle
point approximation of path integrals for quantum mechanical spins.

2. Quantum spin

Niemi and Pasanen [5] have proposed a supersymmetric formulation of a path
integral which leads to a semiclassical localization formula. However, it only
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describes correct quantum mechanics if the action is supersymmetrically exact,
leading to the necessary conditionθ(XH) = H. Another approach [6] is based on
geometric quantization. Here we make use of a path integral in the spin coherent
state representation of the quantum mechanical spin Hilbert space [7, 8]

|ψg〉 = Ds(g)|↑〉 ,
where the(2s + 1)-dimensional irreducible representation ofg ∈ SU(2) acts on
| ↑〉 = |s,m = s〉. The spin coherent states|ψg〉 and |ψg′〉 describe the same
physical state if

g ∼ g′ ⇔ g′ ∈ gU(1) ,

which gives rise to the fiber bundle representation ofSU(2) over S2(s) ≡
SU(2)/U(1). Distinct spin coherent states are canonically isomorphic to the left
cosets which becomes obvious if we parameterize anyg ∈ SU(2) with Euler
angles(ϑ, ϕ, χ):

|Ω〉 = |ψg〉 = e−isχe−iϕSze−iϑSy |↑〉 .
We make use of a section of theSU(2) bundle and choose one special member in
every left coset. In particular we fixχ = 0 for every|Ω〉. The scalar product

〈Ω′′|Ω′〉 =
[
cos(ϑ′′/2) cos(ϑ′/2)e

i
2

(ϕ′′−ϕ′) + sin(ϑ′′/2) sin(ϑ′/2)e−
i
2

(ϕ′′−ϕ′)]2s
gives rise to a gauge invariant metric and volume form which are identical to
the geometric structures ofS2(s) [9]. Hence, a representation of quantum states
is found which is useful in order to understand quantum systems with discrete
degrees of freedom in terms of classical mechanics.

We consider the most generalSU(2) model described by the Hamiltonian

H(t) = Bx(t)Sx +By(t)Sy +Bz(t)Sz . (2)

Following the lines of [10] the propagator can be represented as the limit of a
Wiener regularized phase space path integral

〈Ω′′|U(T )|Ω′〉 = lim
ν→∞

∫
dµw exp{iS[Ω(t)]} (3)

with the spherical Wiener measure

dµw = N
T∏
t=0

d cos[ϑ(t)] dϕ(t) exp

{
− 1

2sν

∫ T

0
dt
[
gϑϑϑ̇

2 + gϕϕϕ̇
2
]}

.

This enforces that only continuous Brownian motion paths contribute to the path
integral. Now, the dominant path approximation of the right hand side of Eq. (3)
can be shown to coincide with the exact quantum result [10]

exp{iScl[Ω(t)]} = 〈Ω′′|U(T )|Ω′〉 . (4)
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ForSU(2) models (2) no contributions of fluctuations around the dominant path
have to be taken into account.

Apart from an extension of the localization of classical phase space integrals
to the case of quantum propagators, the formula (4) is also useful to study spins
coupled with other degrees of freedom. Here, we apply it to an exactly solvable
model.

3. Jaynes-Cummings model

The Jaynes-Cummings model is characterized by the Hamiltonian [11, 12]

H = a†a+ (1 + ∆)Sz + λ(aS+ + a†S−) ,

wherea is the canonical annihilation operator of a bosonic field mode andS± =
Sx±iSy, Sz are operators of a spin-1

2 . It is well known that the Jaynes-Cummings
model allows apart fromH for another time independent operator [14]

N = a†a+ Sz .

Hence, the time evolution operator

U(T ) = e−iHT = e−iNT e−iCT ,

whereC = H−N . Representing the spin operators in the eigenbasis ofSz formed
by the eigenvectors|↑〉 and|↓〉

e−iNT = e−ia
†aT

(
e−

i
2
T |↑〉〈↑ |+ e+ i

2
T |↓〉〈↓ |

)
.

Introducing further the eigenkets ofa†a, invariant subspaces are distinguished. In
particular the kets| ↑ n− 1〉 ≡ |↑〉|n− 1〉 and| ↓ n〉 ≡ |↓〉|n〉 span the subspace
with N = (n − 1

2). In this subspace the time independent operatorC generates
SU(2) dynamics. In terms of the operators

Jx =
1

2

(
|↑ n− 1〉〈↓ n|+ |↓ n〉〈↑ n− 1|

)
,

Jy =
i

2

(
−|↑ n− 1〉〈↓ n|+ |↓ n〉〈↑ n− 1|

)
,

Jz =
1

2

(
|↑ n− 1〉〈↑ n− 1| − |↓ n〉〈↓ n|

)
,

we have

C = 2λ
√
nJx + ∆Jz .

Accordingly,

〈Ω′′|e−iCT |Ω〉 = lim
ν→∞

∫
dµw exp {iS[ϑ(t), ϕ(t)]} ,

kievarwe.tex; 12/03/2001; 3:49; p.485



SEMICLASSICAL DYNAMICS OFSU(2) MODELS 479

with the action

S[ϑ(t), ϕ(t)] =

∫ T

0
dt

[
1

2
cos(ϑ)ϕ̇− C(ϑ, ϕ)

]
,

where

C(ϑ, ϕ) = 〈ϑϕ|C|ϑϕ〉
= λ
√
n sin(ϑ) cos(ϕ) +

∆

2
cos(ϑ) .

Now the dominant path approximation (4) gives

exp{iScl[Ω(t)]} = exp

{
− i

∫ T

0
dtC(ϑ̄′′(t), ϕ̄′′(t))

}
〈Ω′′|Ω′〉 , (5)

Introducing the complex variables

ζ = tan

(
ϑ̄

2

)
eiϕ̄ ,

η = tan

(
ϑ̄

2

)
e−iϕ̄ , (6)

the dominant path is determined by

ζ̇ = −iλ√n(1− ζ2) + i∆ζ ,

η̇ = iλ
√
n(1− η2)− i∆η ,

with boundary conditionsζ(0) = ζ ′ andη(T ) = η′′. Hence, the endpoint of the
classical trajectory obeys

ζ(T ) =
2Ωnζ

′ cos(ΩnT ) + i [∆ζ ′ − λ√n] sin(ΩnT )

2Ωnζ ′ cos(ΩnT )− i [λ
√
n ζ ′ + ∆] sin(ΩnT )

,

η(T ) = η′′ ,

with the Rabi frequency

Ωn =

√
λ2n+

∆2

4
.

In terms of the complex variables (6) we get

C(ζ(T ), η′′) = i
d

dT
log

{
(1 + ζ ′η′′) cos(ΩnT )

− i

Ωn

[
λ
√
n(ζ ′ + η′′) +

∆

2
(1− ζ ′η′′)

]
sin(ΩnT )

}
.
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Now, the integral in Eq.(5) is readily solved and the propagator takes the form

eiScl = a(T ) cos

(
ϑ′′

2

)
cos

(
ϑ′

2

)
e
i
2

(ϕ′′−ϕ′)

+a∗(T ) sin

(
ϑ′′

2

)
sin

(
ϑ′

2

)
e−

i
2

(ϕ′′−ϕ′)

+b(T ) cos

(
ϑ′′

2

)
sin

(
ϑ′

2

)
e
i
2

(ϕ′′+ϕ′)

−b∗(T ) sin

(
ϑ′′

2

)
cos

(
ϑ′

2

)
e−

i
2

(ϕ′′+ϕ′),

where

a(T ) = cos(ΩnT )− i ∆

2Ωn
sin(ΩnT ) ,

b(T ) = −iλ
√
n

Ωn
sin(ΩnT ) .

This gives indeed the exact propagator [13] of the model.
This work was supported by a grant from the Deutsche Forschungsgemein-

schaft (DFG).
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