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Preface

This volume contains the written versions of sixteen of the original eigh-
teen addresses presented at the American Mathematical Society’s Centennial
Symposium Mathematics into the Twenty-first Century held from August 8-
12, 1988. These talks, delivered at the Providence Performing Arts Center,
were the principal component of the Scientific Program at the Centennial
Celebration. Attendance at this meeting was unprecedented for AMS Sum-
mer Meetings with 1,949 members of the Society and a total of 2,502 in
attendance including spouses, guests, etc.

The Centennial Celebration was organized by the Centennial Committee
with the following members: Felix E. Browder, Rutgers University; Harold
M. Edwards, Courant Institute of Mathematical Sciences, New York Uni-
versity; Andrew M. Gleason, Harvard University, a former President of the
American Mathematical Society; George Daniel Mostow, Yale University,
then current President of the American Mathematical Society; and Everett
Pitcher, Chairman, Lehigh University.

The Symposium was organized by the Centennial Program Committee
whose members were: Hyman Bass, Columbia University; Felix E. Browder,
Chairman,; Phillip A. Griffiths, Duke University; John W, Milnor, Institute
for Advanced Study; Cathleen S. Morawetz, Courant Institute of Mathemat-
ical Sciences, New York University.

Dr. Edward E. David, Jr., Keynote Speaker, delivered the general ad-
dress entitled Renewing U.S. Mathematics: an Agenda to Begin the Sec-
ond Century. By invitation of the AMS-MAA Joint Program Committee,
three retrospective talks were given by Raoul Bott, Peter Lax, and Saunders
Mac Lane. The written versions of these talks have been published in 4
Century of Mathematics in America, Parts 11 and III.

The Centennial Committee thanks the National Science Foundation for
its support of the symposium Mathematics into the Twenty-first Century
(Grant #DMS8716887), and the Department of Energy (Grant #DE-FG02-
88ER25056), the Office of Naval Research (Grant #N00014-88-J-1096), and
the United States Army Research Office (Grant #DAAL03-88-G-0022) for
grants supporting travel and subsistence for young mathematicians attending
the Centennial.
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Introduction

The 1988 Symposium Mathematics into the Twenty-first Century, of which
the present volume is the Proceedings, was organized to celebrate the hun-
dredth anniversary of the founding of the American Mathematical Society
(AMS). It was developed on a set of principles which differed in a number
of respects from other commemorative celebrations, in particular from the
1938 Semi-centennial Celebration of the AMS. Though the Centennial gave
rise to a series of three historical volumes, the Symposium was not historical
in character nor did it itself contain speeches of reminiscence or celebration.
Three talks of this sort (by Bott, Lax, and Mac Lane) were indeed delivered
during the week of the Symposium, but the speakers and their commission
were chosen by an entirely separate AMS-MAA organizing committee.

The main principles on which the Symposium was organized can be sum-
marized as follows:

I. The talks should cover as many as possible of the most important
central directions of contemporary mathematical research.

II. As far as we could choose, the speakers should be individuals of
stature in these directions who have done their principal work in the United
States and who are likely to be principal contributors after the year 2000.

III. The central topics of the talks should include not only pure mathe-
matics in its classical forms but also the development of the rapidly develop-
ing interaction of sophisticated mathematics with front line areas in science
and engineering—in physics, fluid dynamics, computational science, biology,
statistics, and computer science.

IV. The talks ought to have an expository intent to make it possible for a
broad audience of mathematicians and mathematical practitioners to under-
stand as much as possible of the spirit of what mathematics has accomplished
in the last fifty years and of what it hopes to accomplish in the next fifty years.

The Symposium took place with eighteen speakers (culled from an original
list of twenty-four) and in the judgment of most people to whom we have
spoken, it was an overwhelming success. In the middle of the summer in
Providence, 2000 mathematicians came and actually listened to the talks.
The speakers tried to be understood and often succeeded. Morale was high,
indeed exceptionally so, and the intent of the celebration was vigorously
fulfilled.

ix



X INTRODUCTION

What we can say of the present volume of Proceedings in terms of the
principles outlined above?

Sixteen of the eighteen speakers contributed to the Proceedings, albeit with
a lot of coaxing in the process. In the case of Thurston and Tarjan, the two
who did not, we got what we would reasonably expect. Thurston is almost a
mythical figure in terms of his erratic record in publication, and Tarjan (as he
remarked from the beginning) is clearly overcommitted by several hundred
percent. There is one shortcoming in the volume that arises from Tarjan’s
defection: the lack of any contribution involving theoretical computer science
and its combinatorial substructure.

The remaining fourteen speakers fulfilled their commitments. In one case,
that of Roger Howe, some might say that by writing an “article” which is an
expository book in itself on Lie theory and its applications, he has overful-
filled his commitment. My answer to objectors on grounds of uniformity, is:
What is the harm? If every speaker had devoted as much effort and men-
tal energy to writing up his talk, we might have used up enormously more
paper for this volume (or rather volumes) with an even more useful result.
Certainly the expository intent was well fulfilled by Howe’s contribution.

The subjects treated in this volume are a reasonable selection of what
should be in it. The speakers appeared in alphabetical order and are pre-
sented in that order followed by their general areas of study: Michael As-
bacher, finite group theory; Luis Caffarelli, nonlinear elliptic partial differen-
tial equations; Persi Diaconis, statistics and group invariance; Charles Feffer-
man, analysis in mathematical physics; Michael Freedman, low-dimensional
topology; Harvey Friedman, mathematical logic; Benedict Gross, algebraic
number theory; Joseph Harris, algebraic geometry; Roger Howe, Lie theory;
Vaughn Jones, knot theory and von Neumann algebras; Victor Kac, Kac-
Moody algebras; Andrew Majda, computational fluid mechanics and nonlin-
ear analysis; Charles Peskin, computational methods in biological models;
Dennis Sullivan, dynamics and Riemann surfaces; Karen Uhlenbeck, dif-
ferential geometry, nonlinear elliptic equations and gauge theory; Edward
Witten, geometry and quantum field theory.

Aside from the regrettable omission of computer science, the papers pre-
sented here form a significant panorama of most of the most vital mathe-
matics of the present epoch. In 1990 Jones and Witten, two of the speakers,
received Fields medals at the International Congress of Mathematicians at
Kyoto.

We look upon this volume as an obvious symbol of the central role of
American mathematics on the world mathematical scene, including the many
vital contributors to American mathematics who have come to the U.S. from
other lands, especially since the 1930s. The intense vitality of mathematics
to which we can all testify owes a great deal to this dynamic synergy between
America and the rest of the mathematical world. The American Mathemati-
cal Society has been one of the principal agents of this synergy and is one of
its most prominent symbols.



Symposium Speakers

Michael Aschbacher

Professor of Mathematics

California Institute of Technology
Ph.D., University of Wisconsin, 1969

2:00 p.m.
Monday, August 8

Representations of finite groups as permutation groups
The classification of the finite simple groups in 1981 changed the landscape of finite group theory
and led to an increased effort to describe the structure and representations of the simple groups.
Together with the classification, this effort has made possible unexpected applications of finite
group theory in other branches of mathematics.

Introduced by Daniel Gorenstein.

Luis A. Caffarelli

Professor of Mathematics

Institute for Advanced Study

Ph.D., University of Buenos Aires, 1972

3:15 p.m.
Monday, August 8

The geometry of solutions to nonlinear problems
This talk will discuss geometric techniques to study the shape and regularity of solutions to
nonlinear elliptic equations and their level surfaces.

Introduced by Louis Nirenberg.

Reprinted from the Notices of the AMS, July/August 1988, pages 833-836.
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xit SYMPOSIUM SPEAKERS

Persi Diaconis

Professor of Mathematics
Harvard University

Ph.D., Harvard University, 1974

8:30 a.m.
Tuesday, August 9

Sufficiency as statistical symmetry
To judge what parts of a data set are worth saving, statisticians have developed a useful tool called
sufficiency, which can be seen as an extension of the invariants of a group. Sufficiency allows a
unified construction of statistical models, sheds light on the factorization of generating functions
in combinatorics, and provides the underpinnings for recent work in statistical mechanics. This
talk will explain the concept of sufficiency and survey these applications.

Introduced by Gian-Carlo Rota.

Charles L. Fefferman

Professor of Mathematics
Princeton University

Ph.D., Princeton University, 1969

9:45 a.m.
Tuesday, August 9

Problems from mathematical physics

This talk will cover two problems in mathematical physics. The first is from quantum mechanics

and concerns the question of how large numbers of electrons combine with large numbers of

protons to form large numbers of atoms. The second is from general relativity and concerns a

proof that some small initial disturbance will not concentrate and become a black hole.
Introduced by Felix E. Browder.

Michael H. Freedman

Charles Lee Powell Chair Professor
University of California, San Diego
Ph.D., Princeton University, 1973

2:00 p.m.
Tuesday, August 9

Working and playing with the two-dimensional disk

The conformal structure of the disk is useful in studying the topology of (real) surfaces. A more
combinatorial-topological study of maps of a disk has illuminated the study of three-dimensional
manifolds. This talk will briefly survey the role of the disk in the theory of high-dimensional
manifolds, and go on to address the special problems of a disk mapped into a four-dimensional
manifold. This is the point at which the topological and smooth theories diverge, and some
discussion of the disparities between them will be given.

Introduced by William Browder, President-Elect of the AMS.
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Harvey M. Friedman

Professor of Mathematics

Ohio State University

Ph.D., Massachusetts Institute of Technology, 1967

3:15 p.m.
Tuesday, August 9

The incompleteness phenomena

By 1922, the formalization of mathematics in terms of axiomatic set theory had emerged. The
axioms and rules of inference of this formalism are collectively known as Zermelo-Frankel
set theory with the axiom of choice (ZFC). The incompleteness phenomena—assertions which
cannot be proved or refuted with ZFC—have not yet necessitated a reassessment of ZFC, but the
twenty-first century may see debate on which axioms and rules of inference should be allowed.
This talk will provide a historical perspective on the incompleteness phenomena.

Introduced by Saunders Mac Lane, former President of the AMS.

Benedict H. Gross

Professor of Mathematics
Harvard University

Ph.D., Harvard University, 1978

8:30 a.m.
Wednesday, August 10

Modular forms and elliptic curves

This talk will survey some major developments in the theory of elliptic curves. The theory
of elliptic functions and modular forms, created in the nineteenth century, concerns the real
and complex solutions of cubic equations and their moduli. In the last fifty years, the original
arithmetic viewpoint has once again emerged. The problem of counting the number of solutions
(mod p) to equations with integral coefficients is related to certain Fourier expansions in the
classical theory of modular forms. This relationship has led to some progress on the problem of
constructing rational points.

Introduced by John T. Tate.

Joseph Harris

Visiting Scholar in Mathematics
Harvard University

Ph.D., Harvard University, 1977

9:45 am.
Wednesday, August 10

Developments in algebraic geometry

One of the oldest branches of mathematics, algebraic geometry is concerned with the geometry
of curves, surfaces, and higher-dimensional objects defined by polynomial equations—conic sec-
tions, quadric surfaces, and so on. Over the last two centuries, algebraic geometry has undergone
a series of transformations in which its basic objects of study were redefined, the most recent
being the introduction of the concept of “schemes.” This talk will describe these stages in the
evolution of the subject and indicate how they arose as outgrowths of classical problems.

Introduced by Phillip A. Griffiths.




Xiv SYMPOSIUM SPEAKERS

>  Roger E, Howe
' Professor of Mathematics
Yale University
Ph.D., University of California, Berkeley, 1969

S 2:00 p.m.
..« Wednesday, August 10

R

A century of Lie theory

The subject called Lie theory (the study of Lie groups, Lie algebras, algebraic groups, and their

applications) is, like the AMS, just about one hundred years old. In that century, Lie theory has

established itself as a central area of mathematics, using tools from many sources and having

implications for many other fields. This talk will attempt to give a feeling for the diversity of

applications of Lie theory and for the rich internal structure that supports the applications.
Introduced by George Mackey.

Vaughan F. R. Jones

Professor of Mathematics

University of California, Berkeley

Ph.D., Université de Gengve, Switzerland, 1979

3:15 p.m.
Wednesday, August 10

A von Neumann algebra excursion: From quantum theory to knot theory and back

A surprising result in von Neumann algebras suggested representations of the braid group into
an abstract algebra discovered in statistical mechanics. The result allows one to associate. to
each braid a number which turns out to depend only on the knot obtained by closing the braid.
The resulting new knot invariant stimulated the discovery of many more such invariants. These
invariants are being used to study the way enzymes “untie” knotted strands of DNA in the
process of replication,

Introduced by Joan S. Birman.

Victor G. Kac

Professor of Mathematics
Massachusetts Institute of Technology
Ph.D., Moscow State University, 1968

4:30 p.m.
Wednesday, August 10

Modular invariance in mathematics and physics

This talk will focus on some beautiful, recently discovered connections between the represen-
tation theory of infinite dimensional Lie algebras and the theory of modular functions, and on
related progress in theoretical physics. The basic examples covered will be: affine Kac-Moody
algebra, the central extension of the loop group of a compact Lie group; and Virasoro algebra,
the central extension of the Lie algebra of vector fields on the circle. The “modular invariant”
representations of these algebras have been playing a fundamental role in recent developments
of conformally invariant quantum field theories and in string theory.

Introduced by Nathan Jacobson, former President of the AMS.




SYMPOSIUM SPEAKERS xv

Andrew J. Majda

Professor of Mathematics
Princeton University

Ph.D., Stanford University, 1973

8:30 a.m.
Thursday, August 11

Mathematical fluid dynamics: The interaction of nonlinear analysis and modern applied
mathematics

The rapid evolution of applied mathematics through large-scale computation reveals new fluid
flow phenomena that are far beyond the capability of experimental measures. To explain and
control these complex phenomena, new mathematical ideas from nonlinear analysis, differential
equations, probability theory, and geometry must interact with computational methods and more
traditional tools of applied mathematics. This talk will present a survey of several examples of
this new mode of interdisciplinary research in mathematical fluid mechanics,

Introduced by Peter D. Lax, former President of the AMS.

Charles S. Peskin

Professor of Mathematics

Courant Institute of Mathematical Sciences,
New York University,

Ph.D., Albert Einstein College of Medicine, 1972

9:45 a.m.

Thursday, August 11

Mathematics and computing in physiology and medicine: Examples from the past,
present, and future

The examples considered are the Hodgkin-Huxley equations for the nerve impulse, computed
tomography, a mathematical model for blood flow in the heart, and the robotics of large biolog-
ical molecules. Computation is a key ingredient in all of these examples, and future success is

tied to the development of large-scale computers and efficient numerical algorithms.
Introduced by Cathleen S. Morawetz.

Dennis P. Sullivan

Professor of Mathematics

Graduate School and University Center,
City University of New York,

Ph.D., Princeton University, 1966

2:00 p.m.
Thursday, August 11

Progress on the renormalization conjectures in dynamical systems

Computation has led theoretical physicists to the discovery that, in certain dynamical systems,

the geometrical structure at successively smaller scales is asymptotically constant. Moreover, the

structure is universal in the sense that inequivalent systems have the same limiting structure. This

talk will summarize the progress in the theoretical understanding of this numerical discovery.
Introduced by Stephen Smale.



xvi SYMPOSIUM SPEAKERS

Robert E. Tarjan

James S. McDonnell

Distinguished University Professor

of Computer Science

Princeton University and Distinguished Member
of Technical Staff AT&T Bell Laboratories
Ph.D., Stanford University, 1972

8:30 a.m.
Friday, August 12

Mathematics in computer science
This talk will explore the interdependencies between mathematics and computer science as
illustrated in the variety of mathematical ideas used to derive results in computer science theory
and the use of computation in the proof of mathematical theorems.

Introduced by Ronald L. Graham.

William P. Thurston

Professor of Mathematics

Princeton University

Ph.D., University of California, Berkeley, 1972

9:45 a.m.
%= Friday, August 12

Three-dimensional geometry and topology

Three dimensions is the crossroad for geometry and topology. In dimensions higher than 3,
topology becomes much more arbitrary, while geometry becomes much more restricted and
rigid. In dimensions lower than 3, topology is more limited, while geometric constructions are
more flexible. This talk will describe several instances of the close match between the geometry
and topology of 3-dimensional objects, including the theory of polyhedra, the theory of knots,
and the theory of 3-dimensional manifolds.

Introduced by Lipman Bers, former President of the AMS.

Karen K. Uhlenbeck

Professor of Mathematics
University of Texas at Austin
Ph.D., Brandeis University, 1968

11:00 a.m.
{ . Friday, August 12

Instantons and their relatives
Instantons are geometric objects which were discovered by theoretical high energy physicists as
a result of failed attempts to understand strong interactions. The instanton equation—of which
instantons are solutions—derives from the nonlinear version Maxwell’s equations formulated
by Yang and Mills in 1954, The importance of the instanton equation in mathematics was
recognized only in the past decade. Vortices and monopoles are only two of the many related
geometric objects having elegant, interesting, and useful mathematical properties. This talk
will attempt to describe some of the more colorful properties and uses of instantons and some
conjectures for the future.

Introduced by Shiing S. Chern.
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Edward Witten

Professor of Physics

Institute for Advanced Study
Ph.D., Princeton University, 1976

2:00 p.m.
Friday, August 12

Quantum field theory and Donaldson polynomials

When Simon Donaldson initiated a program of using the self-dual Yang-Mills equations to
study smooth four-manifolds, the relationship of his work to physical ideas was something of
an enigma. Since then, it has become clear that relativistic quantum field theory provides a very
natural setting for understanding Donaldson theory and its relationship to Floer theory, elliptic
cohomology, conformal field theory, and possibly to other subjects, including string theory and
the Jones polynomial. This talk will survey some of these developments.

Introduced by Clifford Taubes.

AMS-MAA Invited Addresses
By invitation of the AMS-MAA Joint Program Committee, the following speakers will speak on
the history and development of mathematics.

Raoul H. Bott

William Caspar Graustein Professor of Mathematics
Harvard‘University

D.Sc., Carnegie Institute of Technology, 1949

11:00 a.m.
Tuesday, August 9

The topological constraints on analysis
This topic has been at the center of one of the two great American schools of topology. Some
of its achievements during this century will be discussed.

Introduced by Andrew M. Gleason.

Peter D. Lax
Professor of Mathematics
Ph.D., New York University, 1949

11:00 a.m.
Wednesday, August 10

Mathematics: Applied and pure
In this century, some have viewed mathematics as separated into pure and applied. Today more
and more mathematicians realize that mathematics does not “trickle down” to application areas,
but is an equal partner with other sciences, Modern computers have linked mathematics with
other sciences.

Introduced by George Daniel Mostow.



xviii SYMPOSIUM SPEAKERS

Saunders Mac Lane
Professor Emeritus, University of Chicago
Ph.D., University of Gottingen, 1934

11:00 a.m.
Thursday, August 11

Some major research departments of mathematics

In the last century, the development of mathematics has been led by a number of outstanding

research departments. The tradition was developed in the U.S. by Moore, Birkhoff, Veblen,

Stone, and others. This talk will describe several mathematics research departments.
Introduced by Leonard Gillman, President of the MAA.



Proceedings of the AMS Centennial Symposium
August 8-12, 1988

Representations of Finite Groups
as Permutation Groups

MICHAEL ASCHBACHER

In 1860 the Paris Academy offered its Grand Prix des Mathematiques for
a contribution to the solution of the following problem:1

For given n, what are the possible indices m of subgroups of the symmetric
group of degree n, and given m, what are the subgroups of index m?

Three manuscripts were submitted to the Academy in the prize compe-
tition; the contributers were Kirkman, Jordan, and Mathieu. None of the
contributions were judged worthy of the prize.

I believe it is fair to say that there was little significant progress on this
problem until about 1955, when dramatic developments in the study of finite
simple groups began to make the possiblity of a solution more realistic. The
classification of the finite simple groups in 1981 and the continued expansion
of our knowledge of the finite simple groups themselves have now brought at
least a weak solution to the problem within reach.

The effort to solve the problem is one of the current active areas of research
in finite group theory and touches most of the other active areas of the subject.
I propose to discuss this effort and to use that discussion as a focus for a more
general discussion of the major developments in finite group theory of the
last few decades and for speculation on the future of the subject.

Let us begin by restating our problem in modern language. A representa-
tion of agroup G on an object X isa group homomorphism 7 : G — Aut(X)
of G into the group of automorphisms or symmetries of X . Most mathe-
maticians are familar with linear representations, where X is a vector space
over a field. But for finite groups a more basic class of representations are
the permutation representations, where X is a set. Thus a permutation rep-
resentation of G is a group homomorphism 7 : G — Sym(X) of G into the
symmetric group on a set X .

1980 Mathematics Subject Classification (1985 Revision). Primary 20B05, 20D05.

1My (limited) knowledge of the early history of finite groups comes from a set of lectures
given by Peter Neumann at Oxford in 1983 and from an expository article by Walter Feit [6].

© 1992 American Mathematical Society
0-8218-0167-8 $1.00 + $.25 per page



2 MICHAEL ASCHBACHER

In the mid-nineteenth century the term “group” meant “permutation
group” or “group of transformations”. The notion of an abstract group did
not yet exist and hence one could not speak of group representations. Each
group came equipped with a permutation representation. However today we
can restate our problem in the following form:

Describe up to equivalence all permutation representations of finite groups.

When stated in this form we see that we have not really posed the right
question. For one thing the problem is not realisticc We cannot hope to
completely describe all finite groups, much less their permutation representa-
tions. What we can do is decompose our representation and our group into
indecomposables and irreducibles and attempt to describe the irreducibles.

A permutation representation 7 : G — Sym(X) is indecomposable if it is
transitive; that is, for all x, y in X there is a permutation in Gn mapping
x to y. It is a fact that any transitive permutation representation of G
is equivalent to a representation of G by right multiplication on the set
G/H of cosets of the subgroup H of G fixing x in X . Thus the study of
permutation representations is equivalent to the study of subgroup structure.

A transitive representation is irreducible if it is primitive; that is, G pre-
serves no nontrivial equivalence relation on X . This is equivalent to re-
quiring that H be a maximal subgroup of G. Many problems on finite
permutation groups can be reduced to a problem about primitive groups.
Thus we are lead to reformulate our problem as follows:

Determine up to equivalence all injective primitive permutation representa-
tions of finite groups.

I contend this is the right formulation of our problem. It is right because
the hypotheses are on the one hand sufficient for most applications and on
the other hand restrictive enough to admit a solution, at least in a weak sense,
which is strong enough for our applications. For example the theory of groups
began in the nineteeth century, where permutation groups were used to study
the solutions to polynomial equations. Today the classification of the finite
simple groups and our knowledge of the subgroup structure of the simple
groups has made possible the solution to problems in areas of mathematics
as diverse as model theory, number theory, topology, and combinatorics.
Most of these applications arise by reducing the model-theoretic or number-
theoretic problem to a problem on primitive permutation groups. A more
complete description of primitive permutation representations of the finite
groups should lead to even more applications.

The reason that our new problem admits a solution is that most finite
groups do not admit an injective primitive permutation representation. In-
deed in [2] it is shown that each such group has one of five general structures.
The most interesting structure occurs when G is almost simple; thatis, G has
a unique minimal normal subgroup L and L is a nonabelian simple group.
Equivalently, Inn(L) < G < Aut(L). Thus we have our final formulation of
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our problem:

Determine up to conjugation the maximal subgroups of each almost simple
finite group.

This formulation focuses attention on the simple groups and their sub-
groups. Thus I will interrupt our discussion of primitive groups to recall the
statement of the Classification, to discuss the simple groups, and to make a
few brief remarks about the history of the subject.

CLASSIFICATION THEOREM. FEach finite simple group is isomorphic to one
of the following:

(1) A group of prime order.

(2) An alternating group.

(3) A group of Lie type.

(4) One of 26 sporadic simple groups.

Of course there is a unique group of order p for each prime p. The
alternating group &/ of degree n is the normal subgroup of all even per-
mutations in the symmetric group of degree »n. The groups of Lie type are
analogues of the simple Lie groups. Finally we have the twenty-six sporadic
groups, which fall into no known naturally defined infinite family.

Roger Howe will be discussing Lie theory in more detail in a later talk in
this series. Lie theory plays an important role in the study of finite simple
groups. The simple Lie groups were classified by Killing and Cartan in the
late nineteenth century; associated to each is a simple Lie algebra. In 1955,
Chevalley [3] showed that each simple Lie algebra X over C possesses a
Chevalley basis with respect to which the structure constants of X are in-
tegers. Then the basis elements can be exponentiated and reduced modulo
p for each prime p to produce a Chevalley group X(F) over any field F.
When F is finite X(F) is finite and esssentially simple. Chevalley’s work
was extended to produce other groups of Lie type: the twisted Chevalley
groups analogous to real forms of Lie groups. The Lie theory also gives im-
portant information about these groups such as their automorphism groups
and certain subgroups. Borel, Ree, Springer, Steinberg, and Tits made im-
portant contributions here. The finite simple groups of Lie type are divided
into two classes: the classical groups and the exceptional groups. The classical
groups are the special linear group plus the isometry groups of nondegenerate
bilinear and hermitian symmetric sesquilinear forms. The exceptional groups
correspond to the exceptional simple Lie algebras.

The sporadic groups are fascinating discrete objects. Each group, by the na-
ture of its existence, corresponds to a number of pathological group-theoretic,
combinatorial, and number-theoretic phenomena. I will say more about the
sporadic groups in a moment.

The appearance of the Chevalley groups and twisted Chevalley groups was
one of the important group theoretic events occurring in the midfifties. The
other was the beginning of modern local group theory. Local group theory
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studies a finite group G via its p-subgroups and the normalizers in G of
these p-subgroups. Sylow’s Theorem is perhaps the earliest result in local
group theory. Philip Hall proved his extended Sylow theorem for solvable
groups in 1937 and Brauer introduced his program for characterizing sim-
ple groups by the centralizers of involutions in the fifties. However the first
spectacular success of the local theory was Thompson’s verification of the
Frobenius conjecture in his thesis in the late fifties, followed several years
later by the verification by Feit and Thompson of the old conjecture of Burn-
side that groups of odd order are solvable. The local theory was the principal
tool used to establish the Classification. While many mathematicians made
major contributions to the local theory, I believe it is fair to say that Thomp-
son had the largest role in its creation.

The next major event in finite group theory was the appearance of the
sporadic groups. The first five sporadic groups were discovered by Mathieu
(remember he made one of the contributions to the 1860 Paris Prize) in
the nineteeth century as multiply transitive permutation groups. The next
sporadic group was not discovered until 1965 by Janko, using the local theory.
After that sporadic groups were discovered at the rate of about two or three
a year until Janko also discovered the last of the groups in 1976.

The largest sporadic group (known as the Monster) was discovered inde-
pendently by Fischer and Griess in 1974. There are a number of mysteries
involving the Monster. For example it is conjectured [4] that there is a series
X;» 1 < i < oo, of characters (Thompson series) of the Monster such that
1/q + 3, x,(1)¢" is the elliptic modular function and 1/g + ¥, xi(gp)q’ is
a generator for the function field of genus O of a congruence subgroup for
the prime p, as g, ranges over elements of prime order p in the Monster.
Moreover Frankel, Lepowsky, and Meurman [7] have shown that the Mon-
ster is a symmetry group of a holomorphic two-dimensional quantum field
theory.

In finite group theory, the seventies was the decade of the push toward
the Classification. As a new Ph.D. entering the field at the beginning of the
seventies, I can vouch for the excitement created by the regular appearance
of sporadic groups and the stream of wonderful theorems that appeared at
that time. Many finite group theorists participated in the effort, but the most
influencial figure in the movement, both through his mathematical contribu-
tions and his orchestration of the program, was Danny Gorenstein.

I would like to say a few words about the complexity of the proof of the
Classification and its implications for mathematics. The existing proof of
the Classification is very long (Gorenstein estimates 10,000 pages), compli-
cated, and messy. There are efforts to shorten and clean up the proof, but
in the absence of some totally new idea, such efforts will still leave us with a
complicated proof. I personally do not believe the proof will ever be simple.
For one thing, the existence of the sporadic groups insures that the set of
examples is rather complex. The groups of Lie type of small rank over small
fields also exhibit sporadic behavior.
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Many mathematicians seem to be uncomfortable with complicated proofs
and pathological mathematical objects. I feel the sporadic groups are beauti-
ful; without them, finite group theory would be less interesting. I also feel the
Classification is a wonderful theorem. In discrete mathematics, assumptions
of symmetry provide the structure which distinguishes interesting objects
from the mundane and takes the place of the analytic or algebraic structure
of classical mathematics. The Classification is a means for compactly encod-
ing this structure. I believe it will come to be viewed as one of the most
important results in discrete mathematics and as indispensible. If such a
result requires a difficult proof, so be it.

After this long digression on simple groups, it is time to return to our
problem. Recall we seek to describe the maximal subgroups of each finite
simple group G. To do so we realize G as the group of automorphisms of
a suitable mathematical object X(G). We then seek to prove:

STRUCTURE THEOREM FOR G. A4 proper subgroup H of G either stabi-
lizes some member of a set € (G) of natural structures on X(G), or is almost
simple and irreducible on X(G).

Such a structure theorem reduces our problem to the study of structures on
X(G) and to the irreducible representation theory of simple groups in the cat-
egory of X(G). Our structures include substructures, coproduct structures,
and product structures; I will give an example soon.

If G is a classical group of Lie type over a field F then X(G) is the pair
(V, f), where V is an FG-module, f is a bilinear or sesquilinear form
on V,and G is the isometry group of f. A Structure Theorem exists for
G [1] and it is conjectured that, with a short explicit list of exceptions, if
H is almost simple and absolutely irreducible on ¥ with the representation
writable over no proper subfield of F , preserving no bilinear form other than
f, and preserving no tensor product structure, then the normalizer in G of
H is maximal in G . If this conjecture is established then in a weak sense we
have determined the maximal subgroups of G. To do more would require an
enumeration of the irreducible linear representations of finite simple groups
over all finite fields.

Extending work of Dynkin on Lie groups [5], Seitz [10] has established
the conjecture for algebraic groups and used his theorem to establish the
conjecture when H is of Lie type with the same characteristic as G .

Clearly the study of the maximal subgroups of the classical groups impinges
on another active area of finite group theory: the study of linear representa-
tions of finite groups. I do not have time to discuss this activity.

I believe the correct object X(G) for an exceptional group G over F is a
minimal dimensional F G-module together with a three- or four-linear form
on F. This approach has been successful with groups of type G, and E,
but much work remains to be done.

The maximal subgroups of twenty-three of the twenty-six sporadic groups
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have been enumerated. However the treatments are ad hoc and often involve
extensive machine calculation, so the situation is not entirely satisfactory.

I will close by considering the alternating group G = &, on a set X
of order n as an example. We take X(G) to be X. Let n = |X| and
S =Sym(X). Except when n =6, S is Aut(G). We have:

STRUCTURE THEOREM FOR &/, (O’Nan-Scott [9]). Let H be a proper
subgroup of S. Then one of the following holds:

(1) H preserves a proper nonempty subset of X . (Substructure)

(2) H preserves a nontrivial partition of X . (Coproduct structure)

(3) H preserves a nontrivial realization of X as a set product. (Product
Structure)

(4) H preserves an affine space structure on X .

(5) The socle of H is the direct product of k copies of some nonabelian
simple group L with n = |L|"_1 . (Diagonal structure)

(6) H is almost simple and primitive on X .

Moreover it has been shown that, with known exceptions, the stabilizers
of the structures listed in (1)~(5) and the normalizers of primitive almost
simple subgroups are indeed maximal [8]. Thus, in a weak sense, we know
the maximal subgroups of the alternating and symmetric groups.

As I have tried to show, it seems possible that within this century we will be
able to completely describe in a weak sense all primitive finite permutation
groups. Our present knowledge of such groups has already been applied
effectively in various areas of mathematics. As the theory becomes more
complete and as mathematicians become aware of its potential, I believe
many more applications will be discovered.
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of Elliptic Equations
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In many instances, the regularity theory of solutions to second-order equa-
tions may be thought of as a stability question; that is, as how a perturbation
propagates along a solution surface.

For instance, it is well known that if one slightly perturbs a solution of the
wave equation, for instance by changing the data in part of the boundary, the
perturbation propagates only on certain directions or regions and therefore
one may not expect local regularization effects. That is, regularity, in the few
instances in which it can be proven, has to come from somewhere else, i.e.,
from a regular data.

On the other hand, for uniformly elliptic linear equations, small pertur-
bations propagate all over the surface, in fact in a quantitative fashion, and
that implies regularity and stability of such surfaces.

I would like to discuss today a series of nonlinear problems where degen-
eracies and discontinuities make the question of regularity of solutions and
level surfaces (and this associated idea of propagation of perturbations) a
very challenging one.

Elliptic equations and interior regularity. We start by discussing the notion
of ellipticity, and the circle of ideas surrounding Harnack type inequalities.

In the nonvariational context one may loosely say that a continuous func-
tion u or surface is an elliptic equation if one may control the smallest (more
negative) eigenvalue of its Hessian D,u buy its largest one. For instance, in
the sense that

|’1min| < F(’lmax’ x)'

Of course, a continuous function has not necessarily a Hessian but one may
avoid that by using the “viscosity method, i.e., requiring that such control
exists for any C? function ¢ , whose graph manages to touch” the graph of
u by above at Xx,.
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Of course, u is a solution if both # and —u are subsolutions.
A remarkable theorem of Krylov-Safonov (the Harnack inequality) states
that if the equation is “uniformly elliptic with a right-hand side in L",” i.e

_ o F(,x)
ﬂx)‘i‘iﬁ’ A+1

belongs to L", then, for any ball B, in the domain of definition of u,
sup, u < Cinf, u+R (3, 1 min

This is a very powerful theorem that implies, for instance, the Holder
continuity of # at a point given the appropriate controlled growth of [ fr

In fact, this theorem is in turn very much inspired in its character and
proof by DeGiorgi’s work on the regularity of solutions of variational prob-
lems which is one of the great papers on partial differential equations. There,
the ellipticity condition is given in “energy” terms, i.e., instead of considering
functions u for which the eigenvalues of the Hessian are somewhat compa-
rable, one looks at functions # whose energy is locally under control for the
function and its truncations, i.e., for all A,

/( (- < CR™ /[ ) 1B, + R

One may wonder at this point what is the relation between the first and
second family of functions.
In the first case one is trying to say that at each point x

[Aginl S CApa + (%)) and A, < C(A;, + f(x)),

or fixing coordinates
la;;(x)D;ul < Cf(x)
for a, j(x) a positive definite matrix changing discontinuously from point to
point.
In the second case, one is saying that
|Dy(a;;Du)| < Cf(x)

i

with f of controlled growth.

The power of these regularity results can be understood when one applies
them to the study of nonlinear equations of respectively nondivergence or
divergence type, i.e., equations of the form

F(D’u)=0 or D,(F,(Vu))=0.

In the first case, we say that the relation is elliptic if F(M) is monotone
in the space of symmetric matrices, and strictly elliptic if we have the further
quantitative estimate (for N positive definite)

F(M)+C\||N|| < F(M + N) < F(M) + G|N]|.
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In the second case, if the vector field is coercitive, then

(F(p)-F(q),p—q) 20,

or if it is strictly coercitive, then

2 = = 2
Cille —4qll” 2 (F(p) - F(q), p—q) 2 C,lp—qll".

If one is allowed to derivate u, both definitions correspond to classical
nonlinear equations F”D, (1) = 0, where, in the first case F"/ = F" (D*u)
and in the second case F"/ = F”(Du) are strictly positive definite bounded
matrices.

Here, the DeGiorgi and Krylov theorems become interesting when applied
to first derivatives of the functions under consideration.

Indeed, the definitions of both divergence and nondivergence nonlinear
equations embody a comparison principle, i.e., two solutions, #, and u,,
of the equation F (Dzu) = 0 cannot “touch,” i.e., if u, < u, for X # X
anel u;(Xp) = uy(X,) , then at such a point D,;u; < D, u,, contradicting the
strict monotony of F .

Of course, this is not entirely correct, but it is so if for instance

F(Dzul) =0, F(D2u2) < -

for some positive ¢ (so one may perform the old trick of looking at u, —
el XP).

Now, it has been noted many times that a comparison principle for solu-
tions of a translation invariant operator is related to a maximum principle
for the first derivatives.

In our example of F (Dzu) ,

Uy p = u(X + he) +Ah

is again a solution of F (D u) = 0 and therefore if Uy > u along the
boundary of B, a ball in the domain of definition of both functions, then
u Ao > u in the interior of B, .

Indeed this is true for A very large, and the comparison principle tells us
that there is no “first 17 (4 > 4;) for which », , may touch u.

It follows that the supremum of the incremental quotient

—u(X + he) + u(X)
h

is attained at the boundary of B, . One may think of this as the fact that

F(D’u, ,) = F(D'u) = F7(D*u(£))D, (A, u).

That is, A,u satisfies an elliptic equation with discontinuous coeflicients.

But then Krylov’s theorem says much more. It not only says that Ay
is positive but that it is comparable at any two points of any smaller ball
B, p < B,.

= Ahu
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That is, Harnack’s inequality is a very strong, quantitative form of the
maximum principle.

It tells us not only that the solution surfaces u and u, , separate, but
that they do so uniformly and hence one can further translate u (to u Ak o)
and still this translation will remain above the graph of u.

An iteration of this argument implies the Holder continuity of the first
derivatives of u, i.e., bounded weak solutions of F (Dzu) = 0 are locally
che.

Let me stress the perturbation view of this result. We have “modified” the
boundary data of u (to those of u Ano slightly larger), and this perturbation
propagated all over the domain in some uniform way. Since the operator
under consideration is translation invariant, this implies C Lo regularity of
solutions.

If one wants to push this idea further, to second derivatives, a structural
condition (concavity of F) is necessary to ensure that pure second-order in-
cremental quotients are formally subsolutions of the “linearized” differential
equations. Then (Evans, Krylov) one combines the fact that D?u lies in a
Lipschitz, elliptic hypersurface with this fact to control its oscillation.

One may view this approach geometrically the following way: If F is
concave and (possibly degenerate) elliptic, and one envelopes the solution
surface u by above by paraboloids of fixed quadratic part (or spheres of
fixed radius), then the new surface % is a subsolution of the same equation.

Hence, if D, U are bounded above at the boundary, then % = u for a
narrow enough choice of paraboloids, i.e., D, ; are bounded above in the
interior. This is the maximum principle part of the argument.

The Harnack inequality may then be thought of as taking envelopes of the
variable quadratic part, so as to improve control of the second derivatives.
We will come back to this point later.

Free boundary problems and harmonic analysis in Lipschitz domains. Let
us now look at problems where the solution completely degenerates past a
certain value of u. For instance, the simplest example is that of minimizers
of

J(u) = / (Vu)? + X, dx.

Such a minimizer is harmonic when positive, or negative, i.e., F (Dzu) =
0 with F =Trace, and therefore perturbations propagate “elliptically” in
regions where u keeps a “strict sign.”

But in view of the previous discussion, the interesting phenomena to study
is how a perturbation crosses the surface of discontinuity (for Vu) {u = 0},
i.e., how would a perturbation of order ¢ displace this surface? Would the
new surface {u, = 0} separate uniformly from {u = 0} in the interior of the
domain of definition? If so, does this “ellipticity” property of free boundaries
imply its regularity?



REGULARITY OF SOLUTIONS 1l

In thinking about such a problem, we may naturally divide it into two
parts.

The first part asks: How does this perturbation reach the boundary? At
first the sets {u > 0} and {u < 0} are completely amorphous. Even for a
C* function u there is not much you can say about how narrow or cuspidal
a level set may become—the most elementary geometric obstructions one
may find for our perturbation to effectively reach the free boundary.

At this point a beautiful link between the basic geometric properties of
minimizers to these variational problems and the theory of harmonic measure
in Lipschitz domains occurs.

In terms of perturbations of solutions, this theory says that if you have
locally a domain that is, say, the intersection of a Lipschitz surface S (or
more generally, a surface with a Harnack chain property (Jerison and Kenig)),
then if you have a function u, harmonic and nonnegative, vanishing on S,
and you perturb it, this perturbation arrives to the boundary in full. That
is, if we have two harmonic functions and u < u,, u,(X))/u(X,) > 1+e¢,
then u,/u > 1+ Cé¢ uniformly along (any compact subset of) S. That is,
(u,), = (1 +(e)u, .

From the free boundary context, the nondegeneracy properties of ut and
a curious monotonicity formula (Alt, Friedman, and myself) allow you to
assert that the above domain satisfies exactly the Harnack chain condition.

Since the variational term x, _, translates into a jump relation between
uj and u, , this makes u, a strict subsolution of the free boundary problem.

The second part of the problem answers the question: How is this per-
turbation, whose influence is felt fully along the free boundary, forcing it to
drift away.

That is, we are thinking of the perturbation as occurring in two steps. First
we lift ut somewhere, but force S to stay fixed, and then we let S drift to
S, , so that the energy attains equilibrium.

Since the free boundary still has almost no shape, it appears very difficult
to construct such a perturbation. (As a parallel, a general strict comparison
theorem for generalized minimal surfaces, due to L. Simon, is recent and
delicate.)

Here we return to the question of variable parallel surface perturbation,
to which we hinted at the end of the previous section.

Given a solution u to a general translation invariant equation

F(Dzu, Du,u)=0,

then
uh(X )= sup u
B, (X)
is a subsolution to the same equation, and it is (heuristically) correct that u"
is also a subsolution to an “elliptic” free boundary jump condition since it
increases u, and decreases u, .
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Therefore if u, v are solutions of a free boundary problem
F(Dzu, Du,u)=0 for|u/>0

and u: = G(u, , v) with F elliptic (monotone in Dzu), G elliptic (mono-
tone in u,), and u" <wvon 3B, then u" <wv all over B,.

But this is only a maximum principle, with no quantitative separation
among u" and v.

Suppose further that (1+ a)uh < v somewhere away from the free bound-
ary. Can we now assert that the surfaces {uh =0} and {v =0} are ¢-away?

The answer is (in very loose terms) yes, provided that F has a Harnack
inequality “up to boundary,” and G is strictly monotone. This is done
by what we could call variable level surface perturbations; that is, defining
u’ = SUp,, yy U and asking when it is true that u° is again a subsolution of
F(Dzu, Du, u).

If F is uniformly elliptic with a Harnack inequality, one can see that it
is enough for ¢ to satisfy an inequality of the type (L a Pucci extremal
operator)

2
pLg > C|Vy|
for u’ to be a solution on the region u > 0.
This allows us to choose a ¢ = & near 9Q (where we have only our

original information) and a ¢ > & (where we know that u, is strictly less
than (1 — ¢)v), and solve the inequality

oLy > C|V|’

in between, allowing the perturbation to travel across the free boundary. (¢
variable distorts the free boundary relation, and #” has to be corrected using
the “up to the boundary” Harnack inequality.)

The common setting. What is, then, the common setting for these prob-
lems? It is easy to approximate free boundary problems and problems of
generalized surfaces of prescribed curvature relations by one-parameter fam-
ilies of solutions of operators,

FA(Dzu, Du,u)=0,

that degenerate along a level surface u = 0. (For instance, solutions of Au =
B,.(u) with g, properly chosen, converge for & going to zero to solutions of

the obstacle problem, i.e., minimizers of [ (Vu)2 + u*, or the cavitational
flow problem, i.e., minimizers of

2
/ (V)" + Xy »

or of sets of minimal perimeter, i.e., characteristic functions x, that locally
minimize “ [ |Vx,|dx.”
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Further, the operation u' = supp u constructs a new function u” , whose
level surfaces are parallel surfaces to those of u, i.e., the level surface u;, =t
is the surface of those points in {u < ¢t} whose distance to {u = t} is exactly
h, ie., is the h-level surface of the distance function to {u = t}, and it is
well known that the tangential Hessian increases along level surfaces of the
distance function. In fact, it does so dramatically (recall the formula x:' =
x;/(1—x;h) for the curvatures of the level surfaces of the distance function)
if the curvatures of the original surface are large. Can we then, by looking
at variable supremums u’ or, what is related, looking at variable normal
perturbations d(X, S) = g(X), study how a smoothing effect propagates
uniformly along level surfaces of u, (solution of F)) independently of 47

Is it possible to infer regularity for level surfaces of F, independently of
A?

How elliptic (or hyperbolic) is a problem in A ; which type of perturbations
travel in which direction?

How does a transient problem behave: Do perturbations travel fully in
finite time to a free boundary. And many other questions related to Liouville
type problems of elliptic or parabolic equations that would answer, after ap-
propriate scaling, the fine structure of free boundaries, surfaces of prescribed
curvature relations, and conservation laws.

To close, many efforts are under way that seem to indicate that there is
indeed some substance behind these general comments.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY
08540
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Sufficiency as Statistical Symmetry

PERSI DIACONIS

Abstract. Sufficiency is a theoretical tool that has grown up in mathematical
statistics. It may be described crudely as the theory of how much data can
be thrown away. This paper reviews the basic achievements of the theory in
statistical problems and sketches applications in other areas of mathematics.
It is shown how the idea gives a suitable framework for exchangeability
(an important piece of the Bayesian theory of statistics) and Gibbs states
(the rigorous theory of phase transitions in statistical mechanics). In these
last settings, sufficiency may be seen as a sweeping generalization of group
invariance.

1. Introduction to sufficiency. One of the basic problems of statistics is
this: one begins with a space 2 and a family of probability measures & on
&Z . Itis assumed that an observation x € £ is drawn from a fixed, unknown
P e P. We are shown x and required to guess P. For example, the usual
formulation for n flips of a coin takes x as the space of binary n-tuples. For
each # € [0, 1], a probability P, is defined on x by Py(x) = 6'(1— )"
where ¢ =t(x) = x, +---+x,. The family & is taken as {Py}y. ;o ;- We
are shown x and required to guess 8.

In the example, the observation consists of the binary n-tuple x. It is
natural to ask if all of this is required or if x can be compressed to ¢ =
X, +---+x, without essential loss. This is the subject matter of sufficiency.

In the general set-up a function T : & — % is called sufficient for the
family P if the conditional probability

(1.1) Px|T(x)=1¢)

is the same for each P € & . In (1.1) the definition of conditional probability
is the natural extension of the elementary notion P(A4|B) = P(ANB)/P(B).
Thus, P(x|T(x) = t) is defined as zero unless T(x) = ¢. It is taken as
proportional to P(x) if T(x) = t with normalizing constant making it a
probability distribution.
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16 PERSI DIACONIS

This leaves aside technical fine points which can be found in any standard
graduate text in probability (e.g., Billingsley [5]).

EXAMPLE 1: COIN TOSSING. For coin tossing, the sum T(x) = x, +---+x,
is a sufficient statistic. Indeed,

P{xand T(x)=1}  0'(1-6)"" 1
P{T(x) = 1} M- ()

The right side does not depend on £ . This can also be seen from the following

symmetry argument: P,(x|T(x) = t) is the chance of observing the sequence

x = (x,---x,) given T(x) =t. Imagine someone flipping a weird, biased

coin. They announce that there have been two heads out of the first ten tosses.

Whatever the bias, those two heads are equally likely to have appeared in any
of (120) possible places.

P{x|T(x)=1}=

Here is a different interpretation of sufficiency for coin tossing as a fact
about symmetric functions. Let e,(x,, X,, ..., X,) be the ith elementary
symmetric function in variables x,, x,,...,x,. Thus ¢, = > Xx;, e, =
i<j X% » €tC. The generating function for e, is

n . n
1
> et =[](1+x).
i=0 =1
The factorization of this generating function is equivalent to the sum being
sufficient for coin tossing. To see this, divide both sides of the identity above

by (1+6)", and multiply and divide e, by (?):

R
(N (146" L (1+0)
On the right is the generating function for n flips of a coin with probability
of heads 6/(1+6). On the left, (7)0'/(1+0)" is the chance that » flips of
such a coin lead to i heads. The term e;/(?) is the generating function for
n flips given that i of them are heads. In the language of random variables
the identity appears

EtHxJ'.Yf =EE (fofl Y ox;= t) .
The inner expectation is free of 6 because ij is sufficient for 6.

Many of the identities of symmetric function theory can be put into similar
language. There is much of interest to do in fitting Schur functions into this
picture. See, e.g., Macdonald [39].

Often, sufficiency is clear via symmetry. The point is that the notion
is useful without an underlying group. As an example, consider n binary
outcomes in which the chance of 1 increases over time. If the chance of
a 1 in place i is taken as e" /(1 + ") with n € [0, c0), this gives a
family of probabilities & = {pﬂ}ﬂe[o’m) on binary n-tuples. The statistic
T(x)=3." ,ix; is easily seen to be sufficient for 2.
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The next example shows sufficiency in a continuous setting.
EXAMPLE 2. Take X = R"” and & the family of all probability measures
on R" invariant under the orthogonal group O,. Thus P € & satisfies

P(A) = P(TA)

for every Borel set A and orthogonal matrix I".

The sum of squares T(x) = xl2 +- 4 xi is sufficient for & . Indeed
P{x|T(x) = t} is uniform on the sphere of radius /¢ for every P € #.
This example will reappear several times in later sections. The final example

shows sufficiency in a less standard setting.

EXAMPLE 3: CONVEX SETS. Let & be the class of compact convex subsets
in R?. For c € % , define a probability P, as the uniform measure inside
¢. Define Pc" as n-fold product measure. Take

x=RY, P={P). e

This is a mathematical model for: “pick » points at random from inside
an unknown convex, compact subset.” This problem arises in estimating
volumes of convex polyhedra. See, e.g., Deyer, Freize, and Kannen [10]. It is
natural to ask what aspects of the data x, ---x, arerequired to learn about c.
It is not hard to see that only the extreme points T(x) of the convex hull are
required. Indeed, given T'(x), the rest of the data is uniformly distributed
inside the convex hull, no matter what convex set ¢ underlies the selection
process. It follows that T(x) is sufficient.

The next section reviews the history and main mathematical results of
sufficiency. Section 3 introduces exchangeability as part of the Bayesian view
of statistics. Section 4 shows how sufficiency ideas give a natural foundation
for exchangeability, allowing a theory where there is no natural symmetry.
The final section contains pointers to open problems and related subjects.

2. Basic results of sufficiency. Sufficiency began, as with so much else in
mathematical statistics, with a paper of R. A. Fisher [18]. Fisher was com-
paring two different estimates for the scale parameter of the normal curve.
The estimators were appropriate multiples of

1< or2 1 & .
Eg(Xi_X) and — §|Xi—X|.

Here the observation consists of X = (x,,...,x,) and X =1 37 Xx,.
Fisher showed that the first estimator was 15% more accurate and indeed
that any estimate based on the sum of the absolute deviations would loose
some of the information in the full observation. Fisher’s argument intro-
duced the ideas of sufficiency which were evident due to the invariance of
the normal distribution under the orthogonal group. Later, Fisher [19] ab-
stracted the idea away from invariance and outlined a general theory. This
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history is discussed by Stigler [48] who also reports how an earlier giant,
Laplace, missed the idea of sufficiency in his work on a very similar problem.

Fisher and Jerzy Neyman [42] developed techniques for finding sufficient
statistics and quantifying in what sense a sufficient statistic contains all of
the information in a sample. Basically, given T(x) = ¢, with no knowledge
of which P € & generated x, a new observation x" distributed just like
the original x can be created by independent randomization. Of course, the
distribution of T depends on the underlying P, but that is all.

Another sense in which a sufficient statistic captures the information is
given by the Rao-Blackwell theorem. This considers an estimator P(x) of
the measure P. If ﬁ(x) does not depend on x through a sufficient statistic,
then a more accurate estimator can be found, no matter what notion of
accuracy is being used. This necessarily vague statement is made precise
in any of the standard graduate texts on mathematical statistics of which
Lehmann [38] is recommended.

Modern work on the mathematics of sufficiency began with Halmos-Savage
[25] and Bahadur [2]. They developed a rigorous general framework using
o-algebras and the Radon-Nikodym theorem. They began the love affair that
mathematical statistics has had with refined measure theory. This continues
to the present day.

Group theory was also being employed to reduce the dimensionality of
statistical problems. If a problem is invariant under a group, the data can be
reduced to a so-called maximal invariant (a report of which orbit of the group
contains the data point). It might also be possible to reduce by sufficiency
and the question of whether these reduction operations commute is natural.
Charles Stein gave natural conditions for commutation which were expanded
in Hall, Wijsman, and Ghosh [24].

Sufficient statistics arise easily in connection with so-called exponential
families of measures. These have densities proportional to 7™ with re-
spect to a dominating measure which does not depend on £. For such a
family, given a sample of size n, T(x,)+ T(x,)+ -+ T(x,) is a sufficient
statistic. Conversely, if a family of measures admits a lower-dimensional
sufficient statistic B. O. Koopman, E. J. G. Pitman, and G. Darmois gave
conditions under which the family is exponential. To appreciate the problem,
consider & as the set of all measures on R x R. There are 1-1 continuous
functions from R x R into R. Any of these gives a sufficient statistic for
P, which is not any sort of exponential form. To rule out such behavior,
some notion of smoothness must be assumed. The best modern version due
to Hipp [26] proves a theorem assuming T is locally Lipshitz.

Exponential families constitute convenient families which include most of
the classically studied examples. A unified theory is summarized in Lehman
[37, 38], Barndorf-Neilson [3], or Johanson [28].

Exponential families are quite a restricted family of measures. Modern
statistics deals with far richer classes of probabilities. This suggests a kind of
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paradox. If statistics is to be of any real use it must provide ways of boiling
down great masses of data to a few humanly interpretable numbers. The
Koopman-Pitman-Darmois theorem suggests this is impossible unless nature
follows highly specialized laws which no one really believes.

There are two ways out of this conundrum. First, the Koopman-Pitman-
Darmois theorem depends on reduction to fixed dimension. If the dimension
of the reduction is allowed to grow with »# a theory may be possible. As an
illustration, in the convex set example of §1, the extremal points of the sample
were a sufficient statistic. As the sample size grows, a polyhedral convex set
has order (logn) extremal points. See Gréenboom [23] for recent work. I
do not know of a theory that uses these ideas.

The second way around the conundrum uses the idea of approximate suf-
ficiency. This idea has been developed in a comprehensive fashion by Lucian
Lecam. As an example, a statistic T is approximately sufficient for a family
P if

sup d(P(-\T =1), Q(|T =1))
P,Qe#

is small, where d is a metric on measures such as Hellinger’s distance or
total variation. Le Cam has shown that if a family admits an approximately
sufficient statistic, then the best one can do using all of the data is only
a small bit better than what is achievable using only the statistic. This is a
small part of a dazzling body of work. Le Cam and Yang [36] is an accessible
introduction.

There are several interesting aspects of sufficiency not described in this
brief review. The elegant theory of completeness and sufficiency connects the
analytic properties of a family of measure with the distribution of “what’s left
over after a sufficient reduction.” See Lehmann [38] for a recent review. The
theory of minimal sufficiency asks about the existence of smallest reductions.
There are still fascinating open problems here. See Landers and Rogge [30].

Of course, one need not throw away what is left over. These “ancillary
statistics” can be used to investigate if the family of measures under con-
sideration is really a reasonable match to the data being considered. This is
apparent in Fisher’s early work. Diaconis and Smith [15] give examples and
a review of the literature.

3. Introduction to exchangeability and equivalence of ensembles.

A. de Finetti’s theorem. Let Z, = {0, 1}. Let Z;° be the infinite product
space. A probability P on Z° is exchangeable if it is permutation invariant:
PO,1,x%---)=P(1,0,*x%---), etc. An example is coin tossing measure
with parameter 0 : P,(t) = 0'(1 - )", t = x, + -+ x,. Here and
above {x;, x,---x,,**---} denotes the cylinder set in Z§° which begins
X, X,---X,, where x, are binary digits.

One version of de Finetti’s basic result is the following theorem.
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THEOREM (de Finetti). The set of all exchangeable probabilities on Z;" is
a convex simplex with extreme points the coin tossing measures {Py}oco ;-

The theorem says that for each exchangeable P there is a unique proba-
bility 4 on [0, 1] such that the following integral representation holds:

(3.1) P{xl,xzmxn}:/{)’(l—9)""u(d{)), f=x 4+ X,

This holds for every n and binary sequence x, ---x, with the same u.

de Finetti’s motivation was philosophical. Statisticians have used expres-
sions like the right-hand side of (3.1) since Bayes and Laplace. The term
6'(1 — )" is the likelihood of observing X, ---x, . The measure u(d#) is
the prior distribution. The integral represents the probability of observing
x, ---x, averaging over different values of 6.

Subjective Bayesians like de Finetti prefer not to focus on unobservable
parameters like 6. They are perfectly willing to assign probabilities to ob-
servable outcomes like the next n flips of a coin. de Finetti’s theorem shows
that a simple invariance condition characterizes the classical assignments.
The theorem does more: starting from an exchangeable measure on observ-
ables, the theorem builds a “parameter space” [0, 1], and the likelihood and
prior as part of its representation.

A clear, readable introduction to de Finetti’s point of view appears in de
Finetti [9]. Exchangeability is of interest in many areas of probability. de
Finetti’s theorem can be shown to be easily equivalent to Hausdorff’s moment
problem. See Feller [17]. The survey by Aldous [1] gives a splendid treatment
with many other applications.

It is natural to try to develop parallel characterizations of the classical
parametric models of statistics. As will be seen, symmetry can only go part
of the way. The next section uses sufficiency to build a satisfactory general
theory. We begin by changing the space and group.

B. Freedman’s theorem. In 1962, David Freedman gave a version of de
Finetti’s theorem suitable for the normal distribution. Call a probability P
on R orthogonally invariant if

(3.2) P(Axx---)=PTAxx---)

for every cylinder set 4 % ---x with 4 c R" for some n and I in the
orthogonal group O(n).

THEOREM (Freedman). The orthogonally invariant probabilities on R™

are a convex simplex with extreme points {P}, ., . where P_ is the prod-

. 2 .
uct measure on R™ of a mean 0, variance o~ Gaussian measure.

The theorem says for every orthogonally invariant P on R™ there is a
unique probability x4 on [0, o) such that

1

— (2 etxD) 20
PlAxs-- V= | —— ™ n do).
(dxx) /A (a\/in)"e udo)
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The present version of the theorem arose in Bayesian statistics. Earlier,
equivalent versions arose in Schoenberg’s [47] answer to a question in func-
tional analysis: When can a metric space be isometrically imbedded in & 29
Berg, Christensen, and Ressell [4] and Graham [22] give recent surveys of
this line of work. The theorem can also be phrased as a description of all
natural measures on ¢>—this space is too big to have translation invariant
measures but orthogonally invariant measures are widely used as a substitute.
Choquet [7] contains an extensive discussion.

Perhaps the oldest version in widespread use is a theorem in geometry.
This result goes back at least to Mehler [41]:

Let S, , ={(x;---x,) € R” :xl2 + e +x5 = n}. Pick a point from the
uniform distribution U on S, _, . The theorem says that the first coordinate
of such a point has an approximate Gaussian distribution: for every real
a < b, as n tends to infinity

2
U{xeS, ,:a<x <b}~ e *dx.

b
/a V2n
A proof is easy by calculus. One is required to calculate the surface area of
a sphere between a pair of parallel planes. Mehler derived the result while
looking at orthogonal expansions on high-dimensional spheres.

An extension of the result implies Freedman’s theorem: Indeed, the or-
thogonally invariant probabilities on R” form a convex set. The extreme
points are the uniform distribution on spheres.

U{a, <x, <b,---a, <x, < b}

b, by 1 2 2
— (P 4x) /2
~ . ——— dx.---dx .
/al /ak (V2m)* ! "

This shows that the extreme points are approximately products of Gaussian
measures and, for measures arising from orthogonally invariant probabilities
P on R, must be exactly product Gaussian.

A careful version of this argument with error estimates appears in Diaconis
and Freedman [13] or in Diaconis, Eaton, and Lauritzen [11]. The latter
authors discuss the following variant: pick I' at random (Haar measure)
in O(n). The joint distribution of Fl.j , 1,] K n'/? , are approximately
independent product normal variables.

As a final variant, the result appears in the statistical mechanics literature
phrased as a simple example of the equivalence of ensembles. Here, a system
is constrained to move on a constant energy hypersurface in 6n-dimensional
space. In the easiest case (with no interaction) this surface can be taken as
the sphere:

2 2

X+ 4 X, = C.
In statistical mechanics, the chance of finding the system in some portion
of phase space is given by the uniform distribution (the microcanonical
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ensemble). Physicists routinely calculate with a different measure (the macro-

canonical ensemble) supported on all of R% . In the simple example consid-

2 2 2 2
ered here, this has density proportional to e ™12+ +%:)/2" with 62 cho-

sen to make the average energy equal to ¢. The equivalence of ensembles
says that for certain sets the calculation under the macrocanonical ensemble
is approximately equal to the calculation under the microcanonical distribu-
tion. Usually the bounds are fairly crude—enough to show that sets which
are small under one measure are small under the second. In this simple
setting, the quantitative versions of Freedman’s theorem give more precise
results. The microcanonical ensemble is approximately product normal for
sets which only depend on o(n) coordinates. See Diaconis and Freedman
[13] for a precise statement.

The equivalence of ensembles holds for very general energy functions.
Lanford [31] or Ruelle [46] give further details. The general set-up is closely
related to the general versions of de Finetti’s theorem explained in the next
section.

4, Sufficiency and exchangeability. The work on de Finetti’s theorem de-
scribed in §3 can be summarized as the study of measures invariant under a
group. In the examples, the extreme points were identified and parametrized
by a nice set: [D, 1] for exchangeable binary sequences and [0, co) for
orthogonally invariant processes. These are special situations. In contrast,
the basic set-up of ergodic theory considers processes indexed by Z, with
Z acting by translation. Now there is no neat description of the extreme
points—instead they are dense in the space of all invariant measures.

The problem of finding a generalization of the examples which would han-
dle the standard families of mathematical statistics was solved using the lan-
guage of sufficiency. To explain, observe that the exchangeable processes can
either be characterized as measures invariant under the permutation group
or as measures for which the sum is a sufficient statistic. Thus a measure is
exchangeable if and only if, for each #n,

P(xy--x,|x, ++x,=10)

is uniform on all binary n-tuples with ¢ ones.
Similarly, a measure is orthogonally invariant if and only if

2, 2 2
Plofxi +x;+---+x, =1t}

is uniform on the +/f sphere. The following abstraction covers most cases
of interest in statistics.

For each i, there is a space 2, (usually taken as a Polish space with
its Borel g-algebra). Let Q = [];°, Q,. For each n, there is a “sufficient
statistic” T, : Hl'.'zl Q, — W, , where W, is some range space. The analog of
the uniform distribution on the inverse image of T, is played by a family of

pre-specified measures Q, , on H;’=1 Q,.
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Given T, and Gy i» define the class of partially exchangeable processes
M, r asall P on Q such that

PLT, (- x,) = 1} = Q, ().
More technically, a regular conditional distribution for P on the first »n
coordinates given T, =¢ is Qn,t.
The Q’s and T ’s are required to fit together as follows:
() Q, T, '} =1.
(2) If /

T (x,- X )=T(x;---xn),

n n n
then
! !
T (XX ¥) =T, (6,0 X, ).
(3) Foreach se W, , te W,

n+l1°?
Qn+1,t(xl o 'xann(xl ’ "xn) =3, xn+1) = Qn,s(xl ""xn)'
As an example, for coin tossing, Q, = {0, 1}, T,(x;, ..., X,) =X+ +
x,,and @ , istaken as uniform over all x, ..., x, with X;+---+x, =1.

Conditions (1)-(3) are easy to check. For example, (3) says that if one is told
there are s ones in the first n places and told x, o then Q, “ assigns equal
conditional probability to all compatible strings.

It is easy to see that the partially exchangeable processes M, r form a con-
vex set. The first problem is to find a description of the extreme points. This
involves an excursion to infinity. Let X = ﬂ:‘;l X, with ¥ the g-algebra gen-
erated by T, (X, --X,), X,,,» X,,,> ... . This X is called the partially ex-
changeable g-algebra. The first result is the following abstract version of de
Finetti’s theorem due to Diaconis and Freedman [12].

THEOREM. If Q, and T, satisfy (1-3) above, then there is an E € X
such that P(E) =1 for each E € M, ;. and such that

(a) Qn,Tn( x,..x,) converges weak-star to a limit Q(w) as n — oo, for each
wek.
(b) {Q,},cr ranges over the extreme points of the convex set M, 0.T"

(c) Foreach P e M, 1, there is a unique y on E such that

P() = /E 0, (Vu(dw).

The theorem evolved over generations. It begins in the group invariant
case with Krylov and Bogulyov. See Oxtoby [43] and Farrell [16]. Hunts’ [27]
axiomatic treatment of the Martin Boundary of a Markov chain is very close
to giving the full result. The crucial conditions (2) and (3) were abstracted
in early work of Freedman [20] and Bahadhur [2].

A general version in rather different language was sketched by Martin-Lof
[40] and Lauritzen [32-34] in Denmark. These authors worked in a more
general setting of projective limits rather than with the product description
of Q.
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In developing the modern approach to statistical mechanics, Dobrushin,
Lanford, and Ruelle developed a similar theory and conditions (1), (2), and
(3) are known as the D-L-R conditions in statistical mechanics. Preston [44]
or Georgii [21] contain recent presentations.

The theorem presents the extreme points in a rather abstracted form and
further work is required to massage this presentation into a classical mold.
Diaconis and Freedman [12] present dozens of examples which have occu-
pied researchers in Bayesian statistics for the past thirty years. Aldous [1],
Lauritzen [34] and Ressell [45] also present unified pictures from different
points of view. The latter is interesting in presenting a large class of exam-
ples where the sufficient statistics are sums with values in a semigroup and
the extreme points are indexed by the dual semigroup.

As one example of recent progress, here is a result of Kiichler-Lauritzen
[29] and Diaconis-Freedman [14]: Suppose one begins with an exponential
family through a sufficient statistic 7. One can then form the @, , as
the conditional laws determined by the family. This gives the ingredients
of the general set-up and one can ask if the extreme points of MQ’T cor-
respond with the original exponential family. While it is easy to construct
counterexamples, a natural sufficient condition has been found which gives
the answer “yes” for any reasonable continuous or discrete family. The argu-
ment involves a delicate measure-theoretic extension of Cauchy’s functional
equation to partially defined functions. It gives infinitely many natural ex-
amples of Q’s and T ’s where the extreme points have a simple description.
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Atoms and Analytic Number Theory

C. FEFFERMAN

In this brief, expository article I will explain some recent work on a math-
ematical problem arising from the elementary quantum mechanics of atoms
and molecules. That problem is to compute the ground-state energy of a single
atom with large atomic number Z . To account for chemical phenomena,
one wants a very accurate determination of the ground-state energy E(Z)
and its analogue for molecules. Unfortunately, such great accuracy is more
than we can achieve today. Nevertheless, there has been interesting recent
progress. In particular, L. Seco and I have rigorously computed E(Z) with a
percentage error o(Z ~2 3) ; and Ivrii and Sigal have rigorously computed the
analogue of E(Z) for a molecule with a percentage error o(Z -l 3). This
article picks out one aspect of the recent work, namely the connection of the
asymptotics of E(Z) to analytic number theory. More generally, number-
theoretic questions arise whenever one asks for precise asymptotics for a
quantum-mechanical problem with many particles. Let us see this in the
simplest possible quantum system, namely N free particles in a box. Then
we will return to atoms.

Imagine, then, N free particles in a box Q = [-~, 7t]3 Cc R®. We as-
sume the particles obey Fermi statistics. What is the lowest possible kinetic
energy KE(N) for the N particles? The problem is an exercise in elemen-
tary mathematics. We are trying to minimize fQN(—Ay/)W dx ---dx, over

all wave functions w(x,, ..., xy) € LZ(QN) of norm 1, which satisfy the
antisymmetry condition l//(xal y s xaN) = (sgn o)y(x,, ..., xy) for per-
mutations ¢ . (Here we ignore spin. This simplifies notation and changes a
few coefficients, but does not affect the essential ideas.)

The problem is easily solved by separation of variables and the lowest ki-

netic energy is simply the least possible sum of the form |€1|2 +o 4 |§N|2 ,

where &, ..., ¢, are distinct lattice points in R, Moreover, it is geo-
metrically obvious how to place N lattice points to minimize the sum of
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the squares of their norms. We simply pick a ball B(0, R) C R} , contain-
ing at least N lattice points in its closure, but at most N in its interior.
Our ¢, ..., £y merely consist of all the lattice points in the interior of the
ball, together with just enough on the bounding sphere to make a total of N
points. If we are satisfied with crude asymptotics for N large, then we need
only remark that the number of lattice points is approximately equal to the
volume, so that

N =~ number of lattice points in B(0, R) ~ %nR3 , and
Min. Kinetic Energy ~ Sum of the squares of the norms
of the lattice points in B(0, R) ~ [,cpq g IEI'dVol(€) =

(const)R5 .
Consequently,
Min. Kinetic Energy ~ (const')N 313 ,

as is well known to anyone interested in quantum mehanics. However, if
we want to know more precise information on the minimum Kinetic energy,
then clearly we need to know the number of lattice points in a ball of radius
R. This is a classical problem of analytic number theory. So, already for
free particles in a box, we encounter number theory if we ask for precise
information. In more complicated quantum-mechanical systems such as a
large atom, number-theoretic issues are still present.

Let me recall very briefly what is known about lattice points in a ball.,
Trivially, a ball B(0, R) inR" contains w R" + O(R™™") lattice points,
where w, is the volume of the unit ball. The error term simply counts the
number of lattice points within distance O(1) of the boundary. However, the
trivial error term can be improved. Hardy showed in 1913 that the number of
lattice points in a disc of radius R is 7R>+ O(Rz/ 3) . The best error term in
two dimensions is conjectured to be O(Rl/ 2H) , but only slight improvements
on Hardy’s result are known at present. All we need for our present work
on quantum mechanics is to improve the trivial error term to O(R"™'7%).
Thus, Hardy’s result is enough for the moment.

Hardy’s work relies crucially on the fact that the circle is curved. If we
try to count the lattice points in a large square of side R, then the obvious
estimate R® + O(R) will be best possible. Hardy’s result generalizes from
the circle to any domain in R” with a smooth boundary whose principal
curvatures never vanish. Improvements over Hardy’s theorem are special for
the circle.

Now I will return to atoms, and sketch the heuristic picture of a large atom,
discovered by the physicists. We are trying to find the lowest eigenvalue E(Z)
of the Hamiltonian

. = Z( ) R

X.
i<j<k<Z | j
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acting on antisymmetric functions y(x,, ..., x,) € LZ(R3Z) . This problem
is hard because of the term 3 1/|x; — x|, in which the electrons interact. If
our Hamiltonian had the form

z ,
(2) H, = g(—Axk +V(x)

for a one-electron potential V', then by separation of variables the problem
would reduce from 3Z to three dimensions. In fact, exploiting the sphereical
symmetry, we would really be dealing merely with one-dimensional problems
(ODEs). The main idea used to study atoms in physics and chemistry is to
approximate (1) by (2), with ¥ (x) picked as follows: Pretend for a moment
that we know the particle density p(x) for the electrons. Thus, p(x) is
defined on R® , and the integral of p over a set Q C R’ is equal to the
expected number of electrons found in €, according to the full probability
density

d Prob = |y(x, ..., xN)lzdxl cedxy.
Here y is the ground-state eigenfunction for H .
Once we know p, we can cook up a potential V(x) for which H; is a
good approximation for H . In fact, we just take
_Z p(x)dy
x|~ Jr2 (X =V

(3) Vix)=

If the electrons act more or less independently, then each electron x, feels
the repulsion from all other electrons approximately as if it were being re-
pelled by a fixed, continuous charge distribution p. Hence it is plausible
that H should be well approximated by H,. (Actually, H should be ap-
proximated not by H,, but by H,— (Large Constant). We suppress a careful
discussion of this point.)

The Hartree-Fock approximation approximates the ground-state eigenfunc-
tion for H by that of H,. The ground-state eigenfunction for H, which
we call y(x;,..., xy), can of course be written explicitly as an anti-
symmetrized product of the eigenfunctions ¢,(x), ..., ¢,(x) for the three-
dimensional Schrédinger operator —A + V' (x).

Once we have a guess y,; for the ground-state eigenfunction, we can then
produce a guess for the lowest eigenvalue E(Z), merely by taking

Ehf(Z) = <H'//hfa '//hf)-

This is an immense simplification over the original problem, because we are
dealing with a three-dimensional problem instead of a 3Z-dimensional one,
To make it work, we need to decide which density p(x) to start with. For-
tunately, the Hartree-Fock approximation leads to a natural equation for p.
In fact, the Hartree-Fock wave function w,.(x,,..., xy) gives rise to its

own particle density p,.(x) on R®. In terms of the eigenfunctions ¢, of
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—A+V(x) on R?, Pys 18 simply

Pre(X Z |y (x

We call this the Hartree-Fock den51ty arising from p. To get a self-consistent
approximation, we demand that p,(x) = p(x), i.e., the density we produce
must equal the density we started with. This is the Hartree-Fock equation.
To recapitulate, p(x) gives rise to V' (x) by (3); from V(x) we produce the
eigenfunctions ¢,(x), ..., ¢N( ) of —A+V(x); and we demand that p be
picked so that p, . = Ek ) |¢k| will be equal to p. This is a rather strange
equation. It certainly is not a partial differential equation or an integral equa-
tion in the usual sense. To solve it in practice, physicists and chemists use
the following successive approximation scheme: Suppose we can produce
a reasonable initial guess p, for the unknown particle density. Then we
can successively define p,, p,,... by taking p, , to be the Hartree-Fock
density arising from p,. This appears in practice to lead to satisfactory
approximate solutions to the Hartree-Fock equation after a few steps. It is
certainly not immediately obvious why it should work. It is also not imme-
diately obvious how to produce a good initial guess p,. One way to find a
p, 1s to use the Thomas-Fermi theory, which we now describe.

Thomas-Fermi theory is based on approximations to the density and eigen-
value sum of a three-dimensional Schrodinger operator —A + V(x). If E,
are the negative eigenvalues of —~A + ¥ (x) and ¢, (x) are the correspond-
ing eigenfunctions then we want to approximate sneg(V) = >, E, and
Pre(X) = 20, o, (x |2. These are the important quantities for us, since
sneg(V) is the lowest possible energy for the Hamiltonian (2), and p, ; is one
side of the Hartree-Fock equation that determines the density. The semiclas-
sical approximations are

(4) sneg(V) =~ —(const)/ |V|5/2 dx,
V<0

(5) Pue(x) = (const) |V ()™ 2y <o
These approximations work well when V(x) is large and rather slowly vary-
ing, e.g., V(x) = AZVO(X) , with V;(x) fixed and smooth and 4 > 1. To
prove (4) and (5), one can follow the same ideas introduced by H. Weyl to
prove that the number of eigenvalues < A for the Laplacian on a domain
Q CcR” is asymptotic to cnl"/ 2volQ when A — .

Using the semiclassical approximations, we can rewrite the Hartree-Fock
equation p,. = p in the much more pleasant form

(6) p(x) = (const) - (=¥ (x))*/%.

(We expect that ¥ (x) will be negative on R® , 50 (5) leads to (6).) Equations
(3) and (6) make up a coupled system of equations for the potential
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and density p. It is trivial to eliminate either ¥ or p from the equation
using (6), so that we get a single integral equation for (say) p. Taking the
Laplacian of both sides, we then get a (nonlinear) partial differential equation
for p. Since p is expected to be spherically symmetric, equations (3) and
(6) finally reduce to an ordinary differential equation. Thus, the density p
and potential ¥ may be read off from ordinary differential equations. These
p and V represent the semiclassical approximations to the Hartree-Fock
approximation to the real atom. They are called the Thomas-Fermi density
prg and the Thomas-Fermi potential V.. The parameter Z in equations
(3) and (6) may be removed by a trivial scaling, and therefore

(7) pre(x) = Zp (2" ),

(8) Vep(x) = 20 (2P x)

for universal functions p, and V|, which may be found by solving ordi-
nary differential equations. Putting (8) into (4), we obtain sneg(Vi.) =~
—(const)Z7/ 3. Thus we have computed the ground-state energy for the
Hamiltonian (2). After taking into account the additive constant mentioned
just after (3), we obtain the Thomas-Fermi approximation to the ground-state
energy of an atom, namely

(9) E(Z)~—c Z'".

As noted in the introduction, we need highly accurate approximations to
E(Z). The Thomas-Fermi approximation (9) is very crude. Using heuristic
methods, physicists found a closer approximation than (9) to the Hartree-
Fock energy, namely

(10) E(Z)~ .

—cTFZ7/3 + %Zz —cpgZ
Of course, the Hartree-Fock energy itself is only an approximation to the
true ground-state energy E(Z).
I will not take the time to give a complete account of the ideas that led to
(10), but I want to single out one part of the argument, namely a proposed
refinement of (4) and (5) due to Schwinger [6]. Schwinger’s formulas are as

follows:

(11)  sneg(V) = —(const) /

WP dx + (const')/ APV dx,
V<0

V<0

. 3/2 -1/2
Pue(X) = Xy (xy<0 - {(const]|V (x)| g (const')(AV) - [V (x)] /
— (const”)|VV |V (x)| ).
Schwinger found these formulas by trying to guess the general case from
the example of the harmonic oscillator —d> /dx2 +A%x* in one dimension.
Formula (11) has to be modified when ¥V contains a Coulomb singularity.
This concludes our sketch of the atom according to physicists.

(12)
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Next we turn to rigorous results. An excellent survey of what was known
up to about 1980 is contained in Lieb [3]. The main result then known on
atoms was the theorem of Lieb-Simon [5] that E(Z) = —cZ (ot oz%
with an explicit a between % and 2. The proof was very much in the
spirit of Weyl’s work on eigenvalues. It applies also to molecules. An im-
portant unsolved problem was to prove the “Scott conjucture,” i.e., E(Z) =
—cpZ"? + 177 + 0(Z%) with a < 2. This was settled by Hughes [2] and
Siedentop-Weikard [7] in the mid-1980s. Recently, there has been further
progress. Specifically, Ivrii and Sigal have proven the analogue of the Scott
conjecture for a molecule; and L. Seco and I have proven [1] that

7/3 5/3

(12a) E(Z)=—cpZ P+ 427 — ¢, 2”7 + 0(Z°)

foran a < % for atoms, justifying (10). It would be very interesting to com-
bine the two results into a rigorous computation of the energy of a molecule
modulo o(Z 5 3). It would also be interesting to write down the next cor-
rection term beyond Z*"? in the asymptotic behavior of E(Z). Our work
suggests the form of the next term, but is not strong enough to prove it. The
next term in E(Z) is not Z 3 as one might expect, but rather a series from
analytic number theory. That series is closely related to lattice point prob-
lems. It fluctuates as a function of Z, and is not proportional to any power
of Z . Similar fluctuations occur already for free particles in a box.

How can one produce rigorous upper and lower bounds for E(Z)? In
principle, upper bounds are easy. Starting from the Thomas-Fermi den-
sity ppr and its potential Vi, we form the Hartree-Fock wave function'
Wie(X,» ..., Xy) by taking the antisymmetrized product of the eigenfunc-
tions ¢ (x), ..., py(x) of —A+ V, on R®. We think but do not know
that y,. is close to the true ground-state. To make an upper bound for
E(Z), we have only to calculate the inner product (Hy,, ¥, ), with H
given by (1). Minimax tells us that this inner product is a rigorous upper
bound for E(Z), whether or not y,; is close to the true ground-state. If our
opinions are correct, our upper bound will turn out to be quite sharp.

Producing lower bounds for E(Z) is much harder. Instead of computing
(Hy, w) for a single wave function y, we need to prove a lower bound
for (Hy, y) with an arbitrary antisymmetric y . The usual starting point,
which goes back to Lieb [4], is to prove an inequality of the form

(13) ZﬁZZW(xi)—CO

for a suitable one-electron potential W and constant C,,.
Once such an inequality is known, it follows that the true Hamiltonian H

1Ac’tually, it is enough to form y,; by guessing the eigenfunctions of —A+ V.
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in (1) satisfies
z z
H>>" (—Axk " + W(xk)) - G,
k=1

The right-hand side contains no interactions, and hence may be understood
by separation of variables. Thus, E(Z) > sneg(—-Z/|x| + W) — C, so that
we have a rigorous lower bound for the ground-state energy. Whether this
lower bound is sharp or useless depends on our skill in picking and proving
a good inequality of the form (13). I will explain one way to prove (13) that
leads to reasonable results. The starting point is an elementary observation,
namely

r— 1 dydR !
(14) |x — x| 1=5/VERJ Xx,x’eB(y,R)JI;—s for x, x eR’.

R>0

Except for the fact that the coefficient here is % , this equation follows merely
by noting that both sides have the same invariance under translations, rota-
tions, and dilations. Taking x = X;, x = X, in (14) and summing over all
possible pairs of particles, we see that

—1_ 1 N(y, R)(N(y, R) — 1) dydR
(15) le"_xﬂl:;/yeml o, R)( 2(y ) )25

i<j R>0

for any x,,...,x, € R3, with N(y, R) = number of x; € B(y, R) =
2 Xy, ry) (X)) - _

The next step is to make a guess N(y, R) for the number of electrons in
B(y, R). For instance, we may take

(16) N, R)= / Prp.
B(y,R)

We believe (but do not know) that this guess is a good one. Using N(¥, R),
we rewrite the integrand in (15) as

IN(y, R(N(y, R)- 1) = L[N(y, R) - N(y, R)]’
+[N(y, R) - LIN(y, R) - {[N(», R)I'.

When we substitute (17) into (15), the term [N(y, R) — 1IN(y, R) con-
tributes something of the form };, W(x,) to the energy, because N(y, R) =
2k Xy Ry %) and N(y,R) are independent of the x,. The term

(17)

—-iN(@, R)I* in (17) is also independent of the x, , and hence merely con-
tributes an additive constant to the energy.

The part of (17) that is hard to understand is [N(y, R) — N(y, R)]*. We
can get a cheap lower bound, simply by discarding this positive term and
writing

(18) 4N, RIN(p, R) - 11> [Ny, R) - }IN(, R) - {[N(y, R)I".



34 C. FEFFERMAN

If our guess N(y, R) was intelligent and if B(y, R) is likely to contain many
electrons, then [N(y, R) — N(y, R)] should be negligibly small compared
to 1N(y, R)[N(y, R) — 1]. Hence (18) may provide useful information.

However, if B(y, R) is small enough, then it will probably contain either
0 or 1 electrons. In this case, N(y,R) < 1, N(y,R) = 0 or 1, and
[Ny, R)—N(y, R)] is not negligible compared to %N(y , R[N(y, R)—1],
so that using (18) is a bad idea. For small B(y, R) it is better just to use
the trivial lower bound %N (¥, R[N(y, R) — 1] > 0. Therefore, we set

E={(y,RIN(y, R) > 1}
(say), and we conclude from (15) and (18) that

- — 1 dydR
S xl T, R)- 3| N 2
i<j (y,R)EE
1 2dydR
- / SN, R 2R,
(v,R)EE
The first integral on the right has the form )7, W(x,), and the second in-

tegral is an additive constant C;,. Hence we have succeeded in proving an
inequality of the form (13). If we define N(y, R) intelligently, e.g., by (16),
then the resulting inequality (13) leads to a lower bound for E(Z) strong
enough to prove the Scott conjecture.

Let us summarize the preceding discussion. Upper bounds for E(Z) are
proved by using the Hartree-Fock approximate ground-state y,, as a trial
wave function. Lower bounds are proved by invoking (13) to obtain an in-
equality H > 3 k(_Axk +V(x;))—C,. The right-hand side can be understood
by separation of variables. Of course, it takes lots of hard work to understand
-A+V(x) on R® with enough precision to carry this out. For atoms, the
hard work deals with ODE’s since V'(x) is spherically symmetric. To get the
Scott conjecture for a molecule, one needs instead to understand a genuinely
three-dimensional problem.

In a sense, we have been lucky so far. The original problem is 3Z-dimen-
sional with Z — oo, yet we have not had to look seriously at any quantum-
mechanics problem in dimension greater than 3. The reason for the good
luck is that we could drop the only difficult term, [N(y, R)—N(y, R)]2 , from
(17), and thus bound the true Hamiltonian from below by a noninteracting
one. The contribution of that term to the total energy is of the order of
magnitude z3 , when N(y, R) is picked optimally. Hence, we can reduce
matters from 3Z dimensions to three, provided we are willing to ignore
€rrors O(ZS/ 3) in the energy. This is good enough for the Scott conjecture,
but not for (12a). In proving (12a) we are forced for the first time to come to
grips with the quantum mechanics of an interacting system. This is perhaps
the main point in our proof of (12a), but we will not discuss it further here.

Instead, we turn to the Schwinger formulas (11) and (12), which must be
rigorously understood before one can hope to derive (12a). It would be very



ATOMS AND ANALYTIC NUMBER THEORY 35

interesting to give a rigorous discussion of the Schwinger formulas for rather
general ¥ in three dimensions. What Seco and I did was much easier. We
understood the spherically symmetric case by making a very precise analysis
of the eigenvalues and eigenfunctions of ordinary differential equations. This
is of course good enough for an atom, but not for a molecule. The details of
our work on ODE’s are long and complicated. In the end, we derive formulas
for sneg(}) and p,, analogous to (11) and (12). However, in addition to
the terms displayed on the right in (11) and (12), there are number-theoretic
series related to the lattice-point problem. We are not surprised to see such
series, in view of the example of N free particles. Thus, (11) and (12) are
correct, provided the number-theoretic terms are negligibly small. In (12),
this is simply not the case. The number-theoretic terms actually dominate
over Schwinger’s correction terms, and (12) is wrong, at least for radial po-
tentials. One important point in our proof of (12a) is therefore to use only
relatively crude asymptotics for p,., in order to get away without (12).

The role of the number-theoretic series in (11) is less destructive. If we
estimate it by trivial methods, analogous to the trivial nR* + O(R) for the
number of lattice points in a disc, then we see that the series is at most of
the same order of magnitude as Schwinger’s correction term in (11). So to
prove (11), we need to make a small improvement over the trivial estimate
of the number-theoretic sum. The analogue of Hardy’s 0(R2/ %) result will
be enough for our purposes. However, to apply Hardy’s theorem, we need
nonzero curvature. The condition that plays the role of nonzero curvature
here turns out to be the following.

PERIODIC ORBIT CONDITION. Form the classical Hamilitonian H = |7 -+

V(q) for f, € R®. Then the set of periodic zero-energy orbits for H, has
measure zero in the set of all zero-energy orbits.

The number-theoretic term in (11) can be dropped if and only if the pe-
riodic orbit condition is satisfied. Hence, Schwinger’s formula for the eigen-
value sum holds for a radial potential V' if and only if the periodic orbit
condition is satisfied. The connection of sharp eigenvalue asymptotics to pe-
riodic orbits is of course an old story in the context of the Laplacian on a
manifold. The connection to periodic orbits clearly points to wave equation
methods in any future attempt to understand nonradial V.

The periodic orbit condition fails with a vengeance for the harmonic os-
cillator, where the whole Hamiltonian flow is periodic. Thus (11) fails there
also, as the reader may check by elementary computation. It is remarkable
that Schwinger correctly guessed (11) by thinking hard about one of the few
examples in which it is false.

After repeatedly discussing unspecified number-theoretic sums, we close by
writing down the series that we believe forms the next term in E(Z) beyond
VALS

Let Vig(r) be the Thomas-Fermi potential for atomic number Z. For
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1>0,set V,(r)=I(I+1)/r* + Vo.(r). Then define
) TF

—1/2 1 1/2
m=/ LA md@:-/ win [ ar.
{¥;<0} T Jyv<0}

Let B(t) =t - k|2 — {3, where k is the integer nearest to ¢. Our conjecture
is that

1

B2y~ e 2"+ 1,2 o2 + (const) 3 Mp(@),

8
>1
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Working and Playing with the 2-Disk

MICHAEL H. FREEDMAN

This article is simply a written lecture and what philosophy it contains
should not necessarily be taken seriously. However, it is much easier to learn
a whole story than a single theorem, so many of the latter are woven into
the former. Our hero, for fun, is the two-dimensional disk which seems to
intrude at many important junctures of geometric topology. Also, there is
the theme that ideas of great importance can be enormously simple. As the
Centennial recalls to each of us our small mortal places and seems to threaten
even mathematics with a certain loss of youth—computer proofs, proofs too
long to write (or think), the joint power and vacuity of abstration—I enjoy
recalling a few forceful but simple ideas in the subject I know best. I have
no prediction for the next century but am content to express the hope that
mathematics will still, from time to time, be extraordinarily easy—that the
last simple idea is still far off.

By now, topologists have learned to watch developments in analysis with
an opportunistic eye. In 1913, I do not know how much attention was given
to the topological implications of:

THEOREM (C. Carathéodory [Car] and, independently, W. F. Osgood and
E. M. Taylor [OT]). If & is a Jordan domain, then any Riemann mapping
of the unit disk U — 2 extends to a homeomorphism of the closures U — & .

It follows that every imbedding of the circle S ! into the plane extends to
an imbedding of the disk:

gl R
rl A
d 7
2 2
D
The hooked arrows are 1-1 maps—in general not supposed to be more

than continuous. The dotted arrow is the conclusion, whereas the solid arrows
are hypotheses. (The diagram is commutative.)
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FIGURE 1. (S3 , B3) /Cantor set of arcs = ( $*, horned ball).

Let & be the interior domain of i (Sl) . The theorem finds a continuous
(and, in fact, conformal on the interior) extension j of some other param-
etrization i’ of i(S'). The one-dimensional problem of isotoping i is i is
not hard and this leads to j.

Carathéodory’s proof was an application of his recently developed theory
of prime ends—a subject which is still a source of topological arguments (e.g.,
Sullivan’s solution [S] of the Wandering Domain Problem). The other proof,
while of less long-term importance, was discovered after W. F. Osgood had
served (1905-1906) as President of the American Mathematical Society and
is a striking example of life after bureaucratic service.

In 1922, J. Alexander, one of the founders of homology theory, announced
(unpublished) a similar result regarding imbeddings of the two-dimensional
spheres $? in R®. The argument was short-lived, for in 1924 Alexander
published [A] the seminal counterexample, the Alexander Horned Sphere.
Here we described it in a possibly unfamiliar way—but the usual image of
infinitely interlocking horns can be retrieved with some scrutiny.

Imagine S® = R* Uoo. Attached to the horizontal plane P are a nested
collection of solid cylinders as pictured in Figure 1.

At the “ nth level” there are 2" solid cylinders and these are arranged so
that the intersection of all levels is a Cantor set’s worth of arcs which braid
as they move upward. (The components of the intersection are arranged to
be arcs by making each intersect horizontal planes in at most one point.) The
braiding is increasingly rapid toward the upper end points and they are not
topologically tame but wild.

Consider the quotient space (with the weak or quotient topology) s? / arcs
wherein each of these arcs is declared to be a point. The Alexander horned
sphere is n(P) and the Alexander horned ball is n (upper half-space). By
taking a limit of homeomorphisms, s - s , it is possible to find a map
9: S — S* whose nonpoint (usually called nontrivial) point preimages are
exactly these arcs. The composition 7o 6™ ': §* — §° % §° / arcs is a home-
omorphism (in spite of the fact that 67! isa relation!). In this way it is seen
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FIGURE 2

that these wild objects are actually subspaces of S*. In fact, understanding
this homeomorphism leads to the usual “horned” picture.

The horned sphere had intellectual descendants of two lineages. First
it suggested two conjectures—repairs for the damage done by the counter-
example—which became theorems during the following fifty-eight years. An
imbedding of a space X is collared if it extends as X x % to an imbedding
of X x [0, 1]. The theorems are:

ScHOENFLIES THEOREM (Proved by B. Mazur with finishing touches by M.
Morse and slightly later by M. Brown, 1959; see [M], [Br]). Any collared
(topological) imbedding of S"~' — S" extends to an imbedding of B" .

ANNULUS THEOREM (R. Kirby + € for n > 4, 1968, and F. Quinn for
n=4,1982, see [K], [Q). Any collared imbedding of (S" ' [[$" ") — "
extends to an imbedding of S"™' x [0, 1].

See Figure 2.

The other chain of descent attempted to explore rather than to define away
the phenomenon. A key development came in 1952 when R. H. Bing [Bi]
found that the double of the horned ball, DHB, is homeomorphic to the
3-sphere S* . The double is defined by

DHB =HB x {0, 1}/(x,0) ~ (x', 1),

where (x,0) ~ (x', 1) iff x =x’ and x € frontier (HB). Bing’s argument
may be cast in the previous form by saying that he constructs a sequence of

homeomorphisms S° 25 8 whose limit $> % §* has as its nontrivial point

preimages the doubly wild Cantor set of arcs made by reflecting Figure 1 in
the horizontal plane.

If n:8° - (S3 /doubly wild Cantor set of arcs)= DHB is the projec-
tion to the quotient space, the desired homeomorphism is 7 o 6~ . Unlike
the earlier example, the shrinking homeomorphisms @, are of extraordinary
subtlety. They are generated by successive shears defined near the bound-
aries of the pictured tori (Figure 3 on next page). To get a feel, notice that
rotation by roughly 90  in the angular coordinate of the large solid tori re-
duces the diameters of the smaller solid tori contained within them. Such
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FIGURE 3

diameter reductions are painstakingly composed to reduce the diameter of
each component of the oco-stage—that is, each doubly wild arc—to zero.

The piéce de résistance of such shrinking arguments is the unpublished
theorem of R. Edwards (1978; see [Dal]). It gives a sharp criterion for when
a quotient map of a high-dimensional topological manifold is approximable
by homeomorphisms.

THEOREM (Edwards). Let n: M" — X, n > 5, be a C.E. map from
a topological manifold onto a finite-dimensional ANR. Then n is approx-
imable by homeomorphisms iff any map of the two-dimensional disk into the
quotient f: D’ X is approximable by an imbedding.

A map is “C.E.” if every point inverse is null homotopic within any neigh-
borhood of itself. All the hypotheses are now known to be indispensible.
Roughly, we think of the theorem as saying that a quotient which might be a
manifold is a manifold, provided it has manifold-like general position with
respect to maps of the two-dimensional disk.

The proof is beautiful but too long to summarize here except to say that
the two disks enter as the important parts of the dual to the (n — 3)-skeleton
of M. Experts know that (n — 3) is the critical dimension for engulfing. I
will not dwell on engulfing but later will spend a little time on its close cousin
the h-cobordism theorem for which the 2-disk is also the key.

To redeem my promise that important results can be simple I now give
a rather complete sketch of Brown’s proof of B. Mazur’s Schoenflies the-
orem [M]. It is that proof which, transfigured, reappears in the study of
four-dimensional manifolds. First T should say that the stunning advances
of algebraic, differential, and combinatorial topology in the forties and fifties
together with the stunning stasis of the Schoenflies problem and its many
relatives had led to a deep and well-informed pessimism on the prospects for
naive geometric arguments in topology. It must have been a wonderful day
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when Barry Mazur, then a graduate student at Princeton, cast the first bright
light through the gloom.

PROOF-SKETCH OF THE SCHOENFLIES THEOREM ACCORDING TO BROWN.

Let A and B be the (closed) complementary pieces of $"\S" ' x (0, 1).
A subset on S” is cellular if it can be written as a nested intersection of
balls N2, B , B,, CintB} . The key is to show that A (or B) is cellular,
for then a simple limiting argument shrinks A4 to a point and in the process
stretches the product collar lines of $" ' x (0, 1) into the radial lines of some
polar coordinate system on one of the closed complementary components of
§"! x 1—identifying it as a disk.

Remove a small open disk from "' x (0, 1) to obtain the picture shown
in Figure 4.

The following lemma almost applies to the n in Figure 4.

LeMMA. If f: D" — D" has a single nontrivial point preimage f~'(c) =
C for ¢ € intD", then C is cellular. (Note that we do not assume f is
onto.)

ProoF. Consider A =“ f 1 squeeze of ” where squeeze is a “reimbed-
ding” of D" into a small neighborhood of ¢, which is the identity on a still
smaller neighborhood. The quotient marks mean the imbedding which can
be easily fashioned out of the relation that the notation literally describes.
These imbeddings, associated to progressively stronger squeezes, show C is
cellular. See Figure 5. O



42 MICHAEL H. FREEDMAN

To conclude the Brown proof, observe that “ f ~1, squeeze, o f 7 : D" -
D" has A as its only nontrivial preimage. By the lemma, A is cellular. O

The Annulus Theorem could not be proved until manifold theory had
reached maturity. It then required a brillant device—the torus trick. The
Schoenflies theorem can be used to replace the annulus conjecture with the
conjecture that all homeomorphisms are stable. A homeomorphism 4: R" —
R" is stable if it is a finite composition of homeomorphisms g;, each of
which is differentiable or piecewise linear on at least some open set U; C R".
This said, the pseudogroup of stable homeomorphisms and stable structures
can be studied. It was known that all #: R” — R” stable implies the annulus
conjecture in S” .

By a marvelous device which I cannot describe here, Kirby showed that
any germ of A determines a potentially exotic triangulation of the rn-torus
Tr" . The problem became the: “Hauptvermutung for Tori.” That is, given
T¢ find a P.L. homeomorphism k: Tg, .. . — Ty . If this could be done
“idek = TS';andard < can be constructed. Any self-homeomorphism of
Tgandara MUSt be stable (by the controlled behavior of its lift to R") and
since k is P.L. it is a formality that “id”: T} — Tg, .., and, therefore,
h: R" — R" are stable.

Finding k involves deep manifold theory and actually cannot be done
before a (harmiess) passage to a 2"-fold covering space. The idea to pass
to a cover was L. Siebenmann’s; the construction of k (after covering) was
carried out independently by T. Farrell, by W.-C. Hsiang and J. Shaneson,
and by C.T.C. Wall.

It is in the depths of manifold theory that the 2-disk reenters the story. I
began with the Riemann mapping theorem, skipped dimension = 3 perma-
nently (the fundamental technical tool in three-manifold topology, Dehn’s
lemma—Ioop theorem—is a theorem for imbedding two-dimensional disks,
however, an entire hour will be devoted to three-manifolds in a later lecture)
and dimension = 4 temporarily, and we are now discussing the tools of high
dimensional (n > 5) smooth (or P.L.) manifold topology. This theory does
more than help solve the annulus problem, but in this lecture we are oblivious
to the rest.

We need to construct k. The method, rather odd at first glance, is to stick
some P.L. manifold W inbetween T and Tg, ..., and then to try to sim-
plify W so that the two inclusions of boundary components Tli' — W and
TS"tanda 4 — W are (simple) homotopy equivalences. Then one establishes a
P.L. product structure on W . Following the product structure from bottom
to top would give k. The process of simplification is called surgery. The
construction of product structures is s-cobordism theorem. See Figure 6.

Surgery began with J. Milnor’s discovery of new differentiable structures
on the seven-sphere S” and was extensively developed by the mid-1960s
through the work of J. Milnor, M. Kervaire, W. Browder, S. P. Novikov,
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C.T.C. Wall, and others (for more details see the books of W. Browder and
C.T.C. Wall [Br, Wa)). It is an obstruction to surgery on W that necessitates
the passage to a finite cover.

The s-cobordism theorem was developed in the simply connected setting
(where the letter /2 replaces s ) by S. Smale in 1959, It remains the most pow-
erful method in topology for constructing isomorphisms between manifolds.
D. Barden, B. Mazur, and J. Stallings worked out the obstructions which
arise in the nonsimply connected setting. (These vanish for the fundamental
group of an n-torus.)

In both of these major developments the 2-disk plays a key role in fit-
ting geometry to algebra. The process is called the Whitney trick after H.
Whitney’s use of it [W] to construct imbeddings of #-manifolds in R™ . See
Figure 7 on next page.

In surgery theory manifolds are changed by manipulating spheres disjointly
imbedded in them. The imbedding and disjointness information (when n
is even and the spheres have dimension = n/2) arrives in algebraic form:
a total number of crossing points sums to zero. It must be converted into
geometric information (disjointness and imbeddedness) by pushing portions
of spheres across Whitney disks which pair crossings of opposite sign. In
the h-cobordism theorem, the bubbling bouncing flow of a “gradient-like”
vector field must be shifted and simplified to the greatest extent consistent
with homology. This is also accomplished by standard moves guided by two-
dimensional Whitney disks.

Most (but not all) of standard high-dimensional topological theory can now
be brought down to dimensions #» = 4. Quinn’s proof of the annulus con-
jecture is a prime example of this. A crucial step was finding an imbedding
theorem for 2-disks—Whitney 2-disks—to aid in simplifying s-cobordisms.
Technically imbedded disks are not enough. The Whitney disk guides an
isotopy and transverse coordinates are needed to write it down. So what is
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sought is a theorem for imbedding 2-handles H = (D2 x R , dD* x Rz)
when presented with a Whitney problem arising from surgery or in a five-
dimensional s-cobordism.

In 1974 A. Casson found these handles [Cas] (in many important cases
where n, = 0) but they looked like Figure 8, and not like —.
His infinite construction gave smooth manifolds which we denote CH for
“Casson Handle” which plausibly might be homeomorphic or diffeomorphic
to H.

My contribution (in 1981) was to recognize (any) CH as homeomorphic
to H by finding a common quotient:

HS cH/9 £ cH.

The projection o is shown to be approximable by homeomorphisms by a
difficult shrinking argument in the spirit of R. H. Bing with essential details
supplied by R. Edwards, as explained in my paper [F]. The projection f§ is
only known indirectly but, by the first step, its quotient is well in hand (i.e.,
homeomorphic to H ). Following the spirit of M. Brown’s Schoenflies argu-
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ment S is also shown to be approximable by homeomorphisms. At this point
our story has come to a full circle, the two reactions to Alexander’s horned
sphere—one leading to o and the other to f—are united in establishing
H = CH, with the outcome joining usefully with the waiting machinery of
manifold theory. But neither of these was to be the most surprising conflu-
ence.

The next year (1982) it became evident from S. Donaldson’s work [Do]
that at least many CH , though homeomorphic, were not diffeomorphic to
H . From this came exotic structures on H and then R* and a whole world
of four-dimensional subtlety.

In the last few years, it has been necessary to look back to the most resistant
settings where the starting material, Casson Handles, have not been found—
and may not exist. An algebraic obstruction has been formulated in terms of
Poincaré transversality [F'] and may be studied using the secondary theory of
link invariants. This has been started by X.-S. Lin and me [FL] but talking
about it is too much work. However, whether or not you can find disks
where you want them, you can always play games on them. To set the mood,
consider the necklace puzzie in Figure 9.

A topologist presents the above fragments to a jeweler and asks that they be
hooked up into a necklace. He says: “I’ll charge you one dollar for each link
I must open and close so that will be four dollars, please.” The topologist, of
course, sees how to do it for three dollars.

In another game, suppose we consider a barber pole shear of infinite cylin-
der:

s Rx8' - Rx '
(£, 0) — (¢, 0 + ko).

The map s, is linear and given by the matrix M = |} *|. The largest
characteristic vale of M (eigenvalue of vV M™M ) measures the factor by
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which s, can distort distance. For k large this eigenvalue is quite close to
k.

Suppose (at some rather specialized place of business) that for a charge of
$1 any homeomorphism of distortion roughly 10 or less can be performed
on R x S'. How much does it cost to make 8510t ?

Well,
1 10“”_}1 104
0 1 0 1]’
so maybe $1, 000. However,
10 [|1 101 0‘_‘1 10*
0 1/10([0 1| |0 10|"]0 1|’

so S,,« can be realized for five dollars.

The analytic theory (the Beltrami equation) for conformal distortion finds
an even more graceful version of this factoring trick. The distortion discretely
follows a geodesic in the Poincaré upper half-plane from (1, 104) to (1, 0),
the upper half-space being the Tiechmiiller space for R x S! relative to its
ideal boundary.

There is a conformal isomorphism

RxS'S U\(0}
(t,0)— (e”', 0)

and conjugating s, by e”! sends it to the logarithmic spiral S5.(p,0) =
(p, 0+ klogp). Thus we may see explicitly how logarithmic spirals can be
quickly (in fact logarithmically) factored into compositions of quasiconfor-
mal maps of smaller conformal distortion. It is a joint result with Z.-X. He
[FH] that no such rapid factoring exists for 5, on D* when small metri-
cal distortion of the factors is required. Our result, in this example, says
that if, s, is to be written as a composition of n factors, each of which
produces a metrical distortion of less than or equal to the distortion of s,,,
then n > 996. One wonders if # must actually be > 1,000. The general
problem, in which no real progress has yet been made, is to understand the
behavior of metrical distortion on the 2-disk under composition and factor-
ing. For example, it appears not to be known that a K-quasi-isometry of D?
can be factored into a composition of L-quasi isometries for any constant L
which is smaller than KX .
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The Incompleteness Phenomena

HARVEY FRIEDMAN

The incompleteness phenomena have been a principal topic of research of
the foundations of mathematics since the work of Kurt Gédel in the 1930’s.
Incompleteness refers to the following property of most, but not all, formal
systems (i.e., set of axioms and rules of inference): that there remain sen-
tences expressed within its language that are neither provable nor refutable
within that formal system. Such a sentence is said to be independent of the
given formal system. The incompleteness phenomena discussed here are dis-
tinguished by the variety of mathematical contexts and levels of abstraction
represented by the independent sentences, as well as the scope or strength of
the formal systems from which the sentences are independent.

To put the incompleteness phenomena in some historical perspective, note
that two of the most celebrated revelations in the history of mathematics can
be couched in its terms. The irrationality of v/2 corresponds to the fact that
(E!x)(x2 = 2) is independent of the order field axioms, and the existence
of non-Euclidean geometries corresponds to the independence of the parallel
postulate from a suitable formal system for Euclidean geometry in which the
parallel postulate is not present.

However, the incompleteness phenomena in the modern sense of the term,
relates to formal systems surrounding those strictly mathematical concepts
that are currently viewed as the basic notions from which all others are de-
fined. Thus the focus has been on formal systems for natural numbers, and
for sets, and also for restricted concepts of set.

The modern incompleteness phenomena obviously have the potential for
forcing a reassessment of the foundations of mathematics. However, such a
forced reassessment by the mathematics community has not occurred, despite
the presently known incompleteness phenomena. We give a brief indication
of why this is so.

The currently accepted foundation for mathematics is in terms of the for-
mal system referred to as Zermelo Frankel set theory with the axiom of
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choice, abbreviated ZFC. This system seems to contain all of the easily iden-
tified and intuitive axioms about sets that stem from the usual explanation
(story) about the universe of sets (as represented by the so-called cumula-
tive hierarchy). The axiom of choice is a bit of a sore point in that, unlike
the other axioms, it unavoidably asserts the existence of sets without naming
them explicitly in terms of given sets. But the axiom of choice still has a
pretty reasonable story.

It seems that there are no such additional axioms meeting these stringent
criteria. Unfortunately, at present there is no theorem to this effect. However,
as we discuss later, there certainly are additional proposed axioms, but the
stories are comparatively far-fetched. Even for one of the most mild of all
such proposed axioms—that of the existence of inaccessible cardinals—the
story is already pretty strained.

All but one of the axioms of ZFC hold in the universe of (hereditarily)
finite sets. The exception is of course the axiom of infinity. In fact, if one
writes down all the obvious natural and intuitive principles about the universe
of hereditarily finite sets that do not directly contradict the axiom of infinity,
you wind up with a system (more or less) equivalent to ZFC without the
axiom of infinity. Thus, in some profound sense that is not yet understood,
the usual axioms for set theory (ZFC) are a straightforward adaptation of the
usual axioms for finite set theory to an infinite context.

On a more general note, the entire issue of what constitutes an axiom
about, say, natural numbers or sets, versus what constitutes merely a fact,
is shrouded in mystery. It seems clear that induction is an axiom about the
natural numbers, yet “x* 4 y3 = z° fails universally” is a fact and not an
axiom.

Further evidence that mathematicians are complacently satisfied with ZFC
as the foundation for mathematics (to the extent that they think about foun-
dations) is that every proof put forth in mathematics to date by mainstream
mathematicians is straightforwardly formalizable in even small portions of
ZFC, with rather rare, minor, and easily removable exceptions. On those
rare occasions when mathematicians use something outside of ZFC—most
commonly the continuum hypothesis—they state the outside assertion as a
hypothesis to the theorem in question, thus staying within ZFC,

On the other hand, the continuum hypothesis is independent of ZFC [Gol,
Co]. Furthermore, the continuum hypothesis is just about the most basic and
fundamental question that can be raised in the context of set theory. In fact,
the question was raised by Georg Cantor early in his initiation of set theory,
and appears as the first problem on Hilbert’s famous problem list.

So why has the independence of such a fundamental question not caused
a crisis in the foundations of mathematics, and rendered ZFC obsolete?

We believe that the fundamental reason is the relative intellectual distance
from the continuum hypothesis to finitary problems in mathematics.
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To make the point in an extreme way, suppose that, instead of the contin-
uum hypothesis, the twin prime conjecture (or some similar question about
the infinitude of the prime pairs) was shown to be independent from ZFC.
The mathematical community would be thrown into a foundational crisis. If,
as is likely, such a result would be accompanied by a proof (of the conjecture
about prime pairs) from some understandable extension of the ZFC axioms,
then great interest would attach to the question of whether the additional
axioms should be adopted. Having different answers or no answers to such
questions about prime pairs according to which extensions of the ZFC ax-
ioms you postulate, would be regarded as wholly undesirable, and a uniform
response would be widely sought.

It is not simply a matter of the independent sentence being about finite
objects such as natural numbers. Thanks to Kurt Gdédel, we already know
that for any system such as ZFC there are sentences which are independent
and which are, in a sense, even more finitary than twin prime conjectures. In
fact, the consistency of ZFC itself is one such. (The latter result, known as
the Godel second incompleteness theorem, has terribly profound meaning for
the foundations of mathematics in another direction.) Furthermore, it is also
known that in systems such as ZFC there are always Diophantine equations
over the integers such that the existence of solutions is independent of ZFC,
using work of Goédel and Matijacevic [Mat], yet any such known example is
truly gargantuan in size. It is clearly also a matter of subject matter.

To encampsulate: The continuum hypothesis is too infinitary. The con-
sistency of ZFC is not a basic mathematical question (though it is a basic
metamathematical or logical question). No remotely reasonable Diophan-
tine equation is anywhere near being shown to display any kind of indepen-
dence. And no twin prime conjecture is anywhere near being shown to be
independent of ZFC.

The fundamental issue is this: Is there a basic mathematical problem about
standard finite objects such as, say, natural numbers or rational numbers or
polynomial rings over finite extensions of the rationals, etc., with a clear and
intuitive meaning, conveying interesting mathematical information, that is
readily graspable, and which is independent of ZFC?

We speculate that sometime during the twenty-first century, someone will
answer the above question in the affirmative, and there will be nearly universal
agreement in the mathematics community that this has been accomplished.
Furthermore, there will be proofs of such mathematical problems accompa-
nying such independence results using some of the extensions of ZFC that
have already been explored in the set theory community. The current state
of the art regarding this conjecture is discussed in the Appendix.

Before beginning the detailed discussion of various incompleteness phe-
nomena, we give an informal description of the axioms of ZFC for the
reader’s convenience.
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In ZFC, every object is a set, and the primitive relations between sets are
that of equality and membership.
Informally, the axioms are as follows.

(1) Extensionality. Two sets are equal if and only if they have the same
elements.

(2) Pairing. For any two sets x, y, {x, ¥} exists.

(3) Union. For any set x, |Jx exists, which is the set of all elements of
elements of x.

(4) Power set. For any set x, the power set ”(x) exists, which is the
set of all subsets of x.

(5) Separation (comprehension). For any set x, {y € x:A(y)} exists,
where A is any set theoretically describable predicate; A is allowed
to mention specific sets called parameters.

(6) Infinity. There are many equivalent forms this axiom can take but the
following is customary: There is a set w which contains the empty
set @ as an element, and for every x € w, we have x U {x} € w.

(7) Axiom of choice. Again there are many equivalent forms this can take,
and the following is customary: For every set of pairwise disjoint
nonempty sets, there is a set which meets each of these nonempty
sets at exactly one place.

(8) Replacement. This asserts that for any set x and any function from
Xx into sets that is set-theoretically described (with parameters as in
5 above), the range of this function exists as a set.

(9) Foundation. Every nonempty set possesses an ¢-minimal element,
i.e., an element which is disjoint from the given set.

Mathematicians seldom use axioms (8) or (9).

Some good works on set theory include [Je2] and [Levy].

An important line of research that goes in a different direction than that
emphasized here is the work on the projective hierarchy of sets (of real num-
bers). This hierarchy begins with the Borel sets and then grows upward in
complexity through the operations of projection and complementation. The
goal is to understand the properties and structure of the projective sets as
thoroughly as we understand the Borel sets (in the sense of classical descrip-
tive set theory). After a couple of levels or so in the hierarchy, we know
that ZFC is not sufficient to do anything interesting along these lines. How-
ever, under the additional axiom of constructibility (or in the constructible
universe of sets), all appropriate questions about the projective sets are an-
swered. Alternatively, using axioms for large cardinals, again all appropriate
questions are answered, but typically with different answers. See [Mar] and
[MS].

1. General incompleteness phenomena. These are the incompleteness prop-
erties that apply to a very wide class of formal systems. The major such results
are due to Kurt Godel [Go3, Smo]:
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FIRsT INCOMPLETENESS THEOREM. [In any formal system such as ZFC,
there always are sentences which are neither provable nor refutable.

SECOND INCOMPLETENESS THEOREM. In any formal system such as ZFC,
the consistency of the system itself is not provable in the system.

For the first incompleteness theorem, we need to know that the system is
effectively axiomatized, is consistent (i.e., free of contradiction), and contains
a small amount of basic integer arithmetic.

For the second incompleteness theorem, we additionally need to know that
provability in the system can be adequately formalized within the system. In
fact, the modern formulations of the theorem assert that no adequate formal-
ization of the consistency of the system will itself be provable in the system,
and give particular families of adequate formalizations, which include usual
intuitively based ones.

As spectacular as these results are, they do not provide examples of math-
ematically motivated problems which cannot be proved or refuted in ZFC,
as discussed in the introduction here. This came later.

But these results did put an end to Hilbert’s program, one of whose goals
was to secure the consistency of mathematics within weak principles of inte-
ger arithmetic.

However, one of the most interesting of all the completeness phenomena
is the result of [Tarski] that the axioms of real closed fields are complete.
These axioms augment the ordered field axioms by the axioms which assert
that every single variable polynomial of odd degree (with leading coefficient
1) has a zero, and every positive element has a square root. The system
is effectively axiomatized, and so appears to violate the first incompleteness
theorem. However, note that the real closed field axioms do not contain basic
integer arithmetic (only real number arithmetic).

Another general incompleteness phenomenon is obtained by combining
work of Godel and Turing with the result of [Mat] on the nonrecursiveness
of the solvability of Diophantine equations over the integers (Hilbert’s 10th
problem). Also see [DMR]. The following result is from the folklore:

THEOREM. In any formal system satisfying the usual hypotheses for the first
incompleteness theorem such as ZFC, there always is a Diophantine equation
over the integers which is unsolvable, yet cannot be proved to be unsolvable in
the system.

As mentioned in the introduction, this theorem does not give any reason-
able example of such a Diophantine equation. It is an open question whether
for any system such as ZFC, there is such a Diophantine equation that can
be written down on a page or so with all coefficients and exponents written
out in base 10.

2. Independence results via forcing. The forcing method was introduced
in [Co] and provides a general method for obtaining new models of ZFC
from given ones by adjoining new objects. The resulting new models will in
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general satisfy different sentences than the given models, and, therefore, one
can show that certain sentences are independent of ZFC in this way.

More specifically, in the modern treatment of forcing one begins with a
countable model of ZFC, called the ground model. One chooses a partially
ordered set from this ground model, called the “notion of forcing.” Then
one defines a family of sets called the generic sets with respect to the notion
of forcing. If the notion of forcing satisfies some minimal conditions, then
there are continuumly many such generic sets. Then one proves that if any
generic set is adjoined to the ground model, the resulting model is a model
of ZFC. Models of ZFC obtained in this way are called generic extensions.
Furthermore, there are methods which are useful in determining whether
sentences hold in generic extensions in terms of whether related sentences
hold in the ground model about the notion of forcing. To apply the method
in order to show that some particular sentence of interest is consistent with
ZFC, one chooses a suitable ground model and delicately adjusts the notion
of forcing in order that the generic extensions satisfy the given sentence.

The method has been extensively developed, streamlined, and unified by
set theorists since [Co], and has been quite successful in establishing inde-
pendence results of a certain kind. However, the method has inherent limi-
tations, particularly for establishing the independence of sentences of more
than a certain level of concreteness as we presently indicate.

Firstly, every generic extension has the same ordinals as the ground model.
In particular they have the same integers, and in fact the same basic arith-
metical operations. From this it is clear that any sentence about the natural
numbers must hold in the generic extension if and only if it holds in the
ground model. The same assertion holds for any sentence about finite ob-
jects. Therefore we cannot hope to establish the independence of any sentence
about finite objects through (at least a direct application of) the method of
forcing.

Secondly, every generic extension also has the same functions on ordinals
defined by transfinite recursion as the ground model. It is known that every
sentence about natural numbers and (possibly infinite) sets of natural num-
bers that is not too complicated can be reduced in ZFC to a corresponding
sentence about ordinals and functions on ordinals defined by transfinite re-
cursion. Therefore, in the same way as we saw in the previous paragraph,
we cannot hope to establish the independence of any sentence about finite
objects and sets of finite objects at or below a certain level of complexity,
through (at least a direct application of) the method of forcing. The precise
result we are using is that every H; sentence that holds in the generic exten-
sion must also have held in the ground model, and so one cannot prove the
consistency of a H; sentence directly through the method of forcing (see,
e.g., [Je2, pp. 530-531]).

The method of forcing in its original form was also used to obtain models
of ZF in which the axiom of choice fails. This aspect of the forcing method
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has not been given as neat a streamlining and unification as it has in the
context of ZFC models. Nevertheless, most of the important independence
results about ZF without the axiom of choice can be proved by constructing
appropriate generic extensions satisfying ZFC, and then taking a suitable
submodel to obtain the desired model satisfying ZF in which the axiom of
choice fails.

The first application of the forcing method was the independence of the
continuum hypothesis which we state as follows:

ProrosiTiON 2.1. Every uncountable set of real numbers is in one-one
correspondence with all of the real numbers.

The consistency of the above with ZFC is from [Gol] and the consistency
of the negation of the above with ZFC is from [Co].

Another application is to Souslin’s hypothesis which we formulate as fol-
lows. The consistency is from [ST] and the consistency of the negation is
from [Jel]:

PROPOSITION 2.2.  Every nonseparable linearly ordered set has an uncount-
able subset in which every element is isolated.

Another application is to Whitehead’s group conjecture, which has been
proved in the case of countable groups (see [Fu]). The independence is from
[Sh}:

ProrosITION 2.3. If Ext(G, Z) =0 then G is free (for Abelian G).

Another application is to Kaplansky’s conjecture which we state as follows.

(For the consistency of the negation, see [Dales], where the negation is
actually proved from the continuum hypothesis. For the consistency, see
[DW}].)

PROPOSITION 2.4. Any homomorphism from the Banach algebra C[0, 1]
into any (separable) Banach algebra is continuous.

Yet another application is to a generalization of Fubini’s theorem, in which
the hypothesis of two-dimensional measurability is relaxed. The consistency
of its negation is clear since the generalization is refutable using the contin-
uum hypothesis (folklore). For the consistency of this and other strenghthen-
ings see [Ship].

ProrosiTION 2.5. If F : [0, ].]2 — [0, 1] has almost all F_, F” mea-
surable, then [([ F(x,y)dx)dy = [([F(x,y)dy)dx.

All of the above examples should be regarded as set-theoretic in that they
involve unrestricted selections from uncountable domains. For example, in
the statement of the continuum hypothesis above, we refer to arbitrary sets
of real numbers. We can be more specific about the kinds of sets of real
numbers to be considered by imposing a regularity condition. The most
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common regularity conditions on subsets of separable metric spaces are that
of measurability, Borel measurability, and various strengthenings of Borel
measurability. Measurability works well in contexts in which measure 0 sets
are regarded as equivalent. If they are not regarded as such, then obviously
one really does not have a regularity condition per se, since the measure 0
sets are as badly behaved as arbitrary sets.

From the logical point of view, Borel measurability makes sense as a kind
of minimal regularity condition to impose. The Borel measurable subsets of
complete separable metric spaces form a very wide class of objects for the vast
majority of mathematical purposes and in an appropriate sense constitute
(or at least include all) those subsets which are constructed via sequential
processes.

Thus, in essence, the imposition of the regularity condition of Borel mea-
surability removes mathematically undesirable and irrelevant pathology from
the context. In §4, we explore the effect this “Borel point of view” has on the
incompleteness phenomena.

We mention an independence result involving set-theoretically definable
sets of real numbers. The consistency of the negation with ZFC follows from
[Gol, Go3], and the consistency with ZFC is from [Sol]:

PROPOSITION 2.6. Every cross section of every definable set of real numbers
is measurable and has the property of Baire. If the cross section is uncountable
then it has a perfect subset.

We can consistently add measurability, the Baire property, and uncount-
ability implies perfect subsets for al/ sets to ZF (i.e., ZFC without the axiom
of choice). But this is not so interesting without also having some choice.
Fortunately, in [Sol] dependent choice is added to ZF for this result, which
is enough choice to prove the basic facts about measurability, the property
of Baire, and uncountability.

3. The constructible point of view. Needless to say, the incompleteness phe-
nomena involving ZFC are not desirable features of the commonly accepted
foundation for mathematics. It is natural to explore possible remedies for
the situation short of overhauling ZFC.

We have already hinted at one possible remedy which will be explored
in the next section. That is the remedy of imposing the regularity of Borel
measurability on the objects considered. Of course, this does not make the
original sentences any less independent of ZFC than they were before, but it
does give a general process for removing the offending pathology that might
be responsible for the difficulties while preserving the essential mathematijcal
content of the original sentences.

In this section we explore a different remedy. We consider the effect of
placing a general regularity condition of a logical nature on the set concept
itself.

The usual modern description of the universe of sets is in terms of the
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cumulative hierarchy. This hierarchy associates a family of sets to every
ordinal o . The sets are just the sets that appear somewhere in the hierarchy.
Of course there is a circularity here since it is also customary to define the
ordinals as certain kinds of sets, but this is usually ignored since the hierarchy
is used as an informal description to motivate the axioms of ZFC.

This cumulative hierarchy is given as follows: V, = @, V |, = p(V),
and V, = | p<i Vg for limit ordinals 4. Here gp stands for the power set
operation—the family of all subsets of the set to which it is being applied. It
is provable in ZFC that every set appears somewhere in this hierarchy. The
class of all sets is denoted by V.

Now observe that there are really two quite different operations that drive
this cumulative hierarchy. One is the ordinals and the process of transfinite
recursion, and the other is the power set operation.

From the constructible point of view it is the power set operation that
is suspect. All objects should be constructed on the basis of some general
form of transfinite recursion, where “events take place on the basis of ear-
lier events.” In this sense, the power set operation must be derived from
something more fundamental; every set that exists must be constructed from
earlier constructed sets in some way. ‘

The constructible point of view originated with Kurt Godel in his proof
of the consistency of the continuum hypothesis, where he introduces the so-
called constructible hierarchy. Although he did briefly hold at least some
variant of the constructible point of view, he quickly renounced it in favor
of a strongly Platonist point of view now common among specialists in set
theory (see [Go2]).

The constructible hierarchy is given as follows: Ly=2, L, , = thesetof
all subsets of L _ that are explicitly definable over L (allowing parameters
for elements of L), and L, = U, , Lg. The class of all constructible sets
(i.e., sets that appear somewhere in this hierarchy) is denoted by L.

L has many desirable properties. Within ZFC, we can prove that L obeys
all of the axioms of ZFC. We can prove this even within ZF. This latter fact
is what allowed Gddel to conclude that the axiom of choice was consistent
with ZF. Put somewhat differently: L obeys the axiom of choice for a good
reason, whereas V' obeys it by conventional wisdom.

If the constructible hierarchy is modified in small ways, then we still prov-
ably get the same class of sets.

If we start with the constructible hierarchy as the point of departure in
motivating the axioms of ZFC, we can use the same story that we use for
motivating ZFC from the cumulative hierarchy (in fact, the story for the
axiom of choice is much improved), except for the power set axiom. This is
not surprising since the power set axiom is explicitly part of the mechanism
of the cumulative hierarchy. However, reasonable extensions of the story
for the replacement axiom in the constructible hierarchy can be given which
will motivate the power set axiom in the constructible hierarchy. To more
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fully clear up the philosophical issues here we need to develop an appropriate
general theory of transfinite iteration which applies to contexts much more
general than set theory. It is likely that this can be done.

Regardless of these philosophical niceties, we can now effectively regard
constructibility (i.e., membership in L) as a kind of regularity condition on
sets.

But what happens to our mathematical proofs if we restrict all mathemat-
ical objects to constructible objects?

From what we have said above, it is clear that if we start with a proof in
ZFC, then the result of this uniform restriction to L is still a proof in ZFC.
We just have to attach proofs of the L-restricted forms of the axioms of ZFC
that are used in the original proof; these attached proofs can be themselves
given in ZFC. And since these attached proofs have already been given by
Godel in [Gol], there is no need for anyone to do anything other than what
they are doing now.

Now that it is clear that restricting to constructible sets is not of any real
operational consequence for mathematicians (other than some set theorists
who operate outside of ZFC), conceptually speaking how much of a restric-
tion is constructibility?

It follows from what has been said above that it is consistent with ZFC
that ¥V = L, i.e., all sets are constructible. Thus there is no way to con-
struct a nonconstructible set within ZFC. This effectively reduces the level of
restriction for mathematicians other than some set theorists to nil.

On the other hand, what is the advantage of everybody simply declaring
that they are using only constructible sets, functions, numbers, etc.?

The advantage is that if, e.g., Propositions 2.1-2.6 are reinterpreted as
being about constructible sets (functions, and numbers, etc.), then the inde-
pendence results associated with them disappear.

More specifically, the following is proved in [Gol]:

THEOREM 3.1. Proposition 2.1 holds in the constructible universe.

The following is due to [Jensen] (and see [Je2, pp. 226-229]):

THEOREM 3.2. Proposition 2.2 fails in the constructible universe.

The following is proved in [Sh]:

THEOREM 3.3. Proposition 2.3 holds in the constructible universe.

For the following see [Dales] since the continuum hypothesis holds in L:
THEOREM 3.4, Proposition 2.4 fails in L.

The following is a consequence of the continuum hypothesis holding in
L:

THEOREM 3.5. Proposition 2.5 fails in the constructible universe.

The following is proved in [Gol, Go3]:
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THEOREM 3.6. Proposition 2.6 fails in the constructible universe.

In fact, virtually all sentences that have been proved to be independent
from ZFC by a direct application of the forcing method have now been
decided when restricted to the constructible universe.

The axiom of constructibility asserts that V' = L, i.e., all sets are con-
structible. Although it is not as obvious as it sounds, Gédel proved that the
axiom of constructibility holds in the constructible universe.

From a purely operational point of view, there is no functional difference
between assuming the axiom of constructibility and deciding to restrict one-
self to constructible sets only.

However, it is not a tenant of the constructible point of view that the
axiom of constructibility is somehow evidently true, or is even true at all.
This would be like saying that a mathematician who imposes the regularity
condition of differentiability of functions in his work somehow believes that
all functions are differentiable. Constructibility is merely intended to be a
regularity condition,

This author is quite sympathetic to the constructible point of view. We
would like to go even further. We believe that the usual description of the set-
theoretic universe is not sufficiently clear to “determine” an answer to even
such a set-theoretically fundamental question such as the continuum hypoth-
esis. The unrestricted power set of infinite (and especially uncountable) sets
become a vague blur when examined too intensely.

We also believe that the constructible point of view is not going to prove
to be sufficiently powerful to avoid all of the foundational difficulties that we
suspect will arise. In particular, it is obviously helpless in dealing with the
status of sentences about finite objects since they are already constructible. It
is also of no use in dealing with the status of not too complex sentences about
sets of natural numbers ( Hé sentences) since they are provably equivalent to
their restrictions to the constructible universe. In fact, we later discuss exam-
ples of sentences about Borel functions on groups and graphs which remains
independent of ZFC even when restricted to the constructible universe.

4, The Borel measurable point of view. The Borel measurable point of view
is based on a quite natural mathematical regularity condition.

We start with a complete separable metric space. The Borel measurable
sets constitute the least o-algebra containing the open sets. (Henceforth we
omit the word “measurable.”) The Borel functions are those functions for
which the inverse image of every open set is Borel.

The Borel functions can be arranged in a tower of length @, where we
start with the class of continuous functions, and at every nonzero ordinal
we take the class of all everywhere defined sequential limits of functions
from the earlier classes. These concepts and this construction have obvious
generalizations to the case of Borel functions between two spaces, and also
Borel functions of finite or even countably infinitely many arguments (using
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product constructions for metric spaces). It is natural to also consider par-
tially defined Borel functions, which are merely the restrictions of Borel func-
tions to Borel subsets of the relevant space. Recall that there is a one-one
onto Borel function with Borel inverse between any two uncountable com-
plete separable metric spaces.

Throughout mathematics, one works with structures in the sense of a
nonempty set endowed with distinguished elements, relations, and (partial)
functions. A structure is said to be a Borel structure if its domain is a Borel
set of real numbers, and its relations and functions are all Borel. (Sometimes
it is convenient to allow equality to be represented by a Borel equivalence
relation.) Most of the important structures in mathematics are naturally iso-
morphic to Borel structures. Separable Banach spaces form a natural family
of such structures.

The Borel point of view takes the position that all mathematical structures
to be considered are Borel structures (or naturally equivalent to such) and all
sets and functions to be considered are Borel sets and Borel functions in and
between Borel structures.

How severe is such a regularity condition?

Upon examination, it appears not to be very restrictive. Virtually all of
the more important and intensively studied mathematical structures are Borel
and the same is true of particular examples of sets and functions.

The typical case of where one goes beyond Borel in mainstream mathe-
matics is where one is developing a general theory, say of groups or fields.
A lot of useful facts simply can be proved without restricting the algebraic
objects in some nonalgebraic way, such as being Borel representable. How-
ever, if one imposes the Borel regularity condition, then the theory is not
generally any easier, and no mathematical content is lost in the theory. In
particular, all of the examples one normally applies the theory to that are of
central interest are generally relatively concrete in nature and meet the Borel
regularity condition.

What is the advantage of imposing Borel regularity conditions?

In many cases, sentences independent of ZFC have straightforward rein-
terpretations using Borel regularity. Typically, the resulting sentence is no
longer independent of ZFC. This is the case for Propositions 2.1-2.6 as fol-
lows:

The following is implicit in, e.g., [Luzin]:

THEOREM 4.1. Every uncountable Borel set of real numbers is in Borel
one-one correspondence with the set of all real numbers.

The following is proved in [HMS]:

THEOREM 4.2. Every nonseparable Borel linear ordering of the reals has
an uncountable Borel subset in which every element is isolated.

The following is proved in [Sp] (that G is not Borel free is in the folklore):
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THEOREM 4.3. G s free, but G is not Borel free, where G is the group
of bounded infinite sequences of integers.

In the above, Borel free means that there exists a Borel set of independent
generators. The connection with Proposition 2.3 is that a free group G al-
ways has Ext(G, Z) = 0. However, we can still ask whether Proposition 2.3
is true for Borel groups, with the usual (non-Borel) notion of free group.

The following is proved in [Ajtai], but goes back to Laurent Schwartz:

THEOREM 4.4. Any Borel homomorphism from one separable Banach
space to another is continuous.

The following is classical:

THEOREM 4.5. Fubini’s theorem for Borel functions from the square into
itself.

The following is classical (see, e.g., [Luzin]):

THEOREM 4.6. Borel sets are measurable, have the property of Baire, and
if uncountable have perfect subsets.

We are also sympathetic to the Borel point of view. It raises an interesting
issue as to the proper role of generality in mathematics.

The rest of the discussion of the incompleteness phenomena will almost
exclusively focus on the independence of sentences that are admissible from
the Borel point of view.

Many of the independence results discussed are not independence results
from the full ZFC axioms, but rather from significant fragments of ZFC. In
fact, these independence results from fragments of ZFC that are discussed
here are in fact theorems of ZFC.

It is natural to inquire as to the significance of such independence results
since mathematicians generally accept all of ZFC. We give two replies.

Firstly, as noted above, virtually all of mathematics done outside of set
theory is easily formalizable in surprisingly weak fragments of ZFC. This
immediately raises the important and interesting question of whether and to
what extent the axioms of ZFC (beyond such weak fragments) are useful or
relevant to mathematics.

Secondly, we are still very far from a really convincing mathematically
basic and interesting example of a theorem of ZFC about finite objects which
uses more than, say, the part of ZFC that applies to countable sets; e.g., such
a theorem of ZFC which cannot be proved in ZFC with the power set axiom
deleted. It is only since 1977 that we have had a pretty convincing such
example which cannot be proved in finite set theory (ZFC without the axiom
of infinity), and since 1981 that we have gone beyond significant parts of
countable set theory. Such fragments of ZFC form significant barriers to
progress towards ZFC and beyond, and also have intrinsic interest.
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5. Cantor’s theorem and the discrete topology. We now discuss a theorem
from [Frl] about Borel functions which arises from an examination of the
proof of Cantor’s fundamental theorem that the reals are uncountable. This
is an example of a basic theorem about Borel functions whose proof rather
noticeably must take one quite far from the context in which it is expressed.
In particular its proof cannot be given in what may be called separable math-
ematics. In separable mathematics, all of the objects one works with are
countable, or at least can be described completely in countable terms. This
allows for complete separable metric spaces, since they can be specified by
the restriction of the metric space to any countable dense set. Elements in
complete separable metric spaces are also admissible since they can be spec-
ified by any sequence from the countable dense subset that converges to it.
Continuous functions between complete separable metric spaces can be spec-
ified by their restriction to any countable dense set. Borel functions can be
specified by the countable process from which they are built (Borel codes).

From the axiomatic point of view, an appropriate system that reflects the
above conception of separable mathematics is obtained by deleting the power
set axiom from ZFC. The resulting system is written as ZFC\p. The (hered-
itarily) countable sets form a model of this system.

Cantor’s theorem can be stated as follows. Let x,, x,, ... € I, where [
is the closed unit interval. Then there exists y € I, y # X5 Xy aee

Standard methods for constructing Borel functions establish rather easily
that there is a Borel F : I°° — I such that for all x € I°, F(x) is not a
coordinate of x. For example, the following function obeys this property
and is Borel: Take F(x) =), J,, where each J, , is the first closed dyadic
rational interval of length at most 2" contained in J,, which is disjoint
from {x,,...,x,},and J, =1. (Any listing of the closed dyadic rational
intervals will do for this construction.)

However, note that the value of F at a sequence may depend on the
order in which that sequence is given, not just on the image of the sequence
(even if multiplicities are counted). This leads to the following question:
Is there such a Borel function which is permutation invariant, i.e., obeying
F(ox) = F(x), for all permutations ¢ ?

The answer is no. The following is proved in [Frl]:

THEOREM 5.1. Every permutation invariant Borel F : I — I sends some
point to a coordinate of itself.

The proof uses the topology (I)™, where I is the closed unit interval
endowed with the discrete topology, i.e., the product of countably infinitely
many copies of I. The Baire category theorem can be stated and proved in
this context. One can also prove a 0, 1-law for Baire category which states
that every permutation invariant Borel subset of I is meager or comeager.
Since every Borel subset of I (with the usual separable topology) is also a
Borel subset of I, we see that every permutation invariant Borel subset of I
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is meager or comeager in the sense of I. One can then prove by standard
techniques that there is a ¢ € I such that the given function F is constantly
¢ on a comeager set in the sense of I. (So far we have not really used the
nonseparability of I.) But by heavy use of the nonseparability of I, we see
that comeagerly many x contain ¢ as a coordinate in the sense of I. (The
latter is false for Baire category or measure on the-usual 7). Hence for at
least one x, F(x) is a coordinate of x.
The following is also proved in [Frl]:

THEOREM 5.2. Theorem 5.1 cannot be proved in ZFC\gp . Hence, in the
appropriate sense, the theorem cannot be proved within “separable mathemat-
ics.”

We sketch some of the ideas in this proof.

It suffices to prove that there is a model of ZFC\p from the axioms
of ZFC\p together with Theorem 5.1. For then, if ZFC\p were to prove
Theorem 5.1, then ZFC\p would prove the existence of a model of ZFC\p,
and hence by Godel’s second incompleteness theorem, ZFC\p would be
inconsistent, which it is not.

Next, we introduce a system called second-order arithmetic, and written
as Z,. Despite its name, it is an ordinary first-order formal system like all
of the ones we have been discussing. It has variables over natural numbers
and over sets of natural numbers, contains the usual arithmetic of addition
and multiplication, the axiom scheme of induction, and most importantly,
the comprehension scheme which asserts that each {n|¢(n)} exists, where ¢
may mention numbers and sets of numbers as parameters, and have quan-
tifiers over all numbers and over all sets of numbers. It is known how to
build a model of ZFC\p from a model of Z, directly, and in particular
within ZFC\p. Models in general do not have to have only standard in-
tegers (they may have nonstandard ones), but if the original model of Z,
has only standard integers then the resulting model of ZFC\p also has only
standard integers.

Combining the above two paragraphs, we now see that it suffices to con-
struct a model of Z, with only standard integers using only ZFC\p and
Theorem 5.1.

There are still real difficulties in obtaining such a model relating to the
parameters that are allowed in the comprehension axiom scheme above. So
the crucial next step, carried out in detail in [Frl], is the consideration of
p — Z,, which is the same as Z, except no parameters are allowed in the
comprehension scheme. It is shown in [Frl] how to go from a model of
p—Z, with only standard integers to a submodel] with only standard integers
obeying Z,. Again this construction can be done explicitly within ZFC\p.

Combining the above three paragraphs, it is clear that it suffices to con-
struct a model of p—Z, with only standard integers using only ZFC\p and
Theorem 5.1.
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Now to every sequence x € I we can associate a family of sets of natu-
ral numbers M (x), which can be viewed as an attempted model of p — Z,
with only standard integers. We can use any Borel correspondence of I with
p(w) for this purpose, taking M(x) to be the image of x under this corre-
spondence. Of course we can assume that M(x) is viewed as being equipped
with numbers and arithmetic. Thus the only possible reason that M (x) does
not satisfy the desired p—Z, is that the parameterless comprehension axiom
scheme might fail.

We now let F(x) be obtained by looking up the first instance of parame-
terless comprehension that fails in M(x) and taking the image of the missing
set under the above chosen Borel correspondence to be F(x). (If parame-
terless comprehension holds, i.e., if M(x) satisfies Z,, then we are done
anyway, but in this case let F(x) be 0 by default.)

Careful consideration of the construction of F reveals that it is a permu-
tation invariant Borel function.

Applying Theorem 5.1, there is an x such that F(x) is a coordinate of
x . Tracing through the construction of F , we see that the only way this can
happen is the default case above, and hence M (x) must satisfy p — Z, as
desired.

The following two related results are proved in [Fr2]: Let K be the Cantor
space consisting of the infinite sequences of 0’s and 1’s. The important shift

map is given by s(x) = (x,, X3, ...), where x = (x,, X,, X5, ...), L.€., shift
deletes the first term. We say that F : K — K is shift invariant if it obeys
Fsx = Fx. We also let x' = (X5 Xgs Xg,y..0).

THEOREM 5.3. Every shift invariant Borel function F : K — K is some-
where its “square,” i.e., for some x, F(x)= x?.

THEOREM 5.4. Theorem 5.3 cannot be proved in ZFC\p. Hence in an
appropriate sense, it cannot be proved within “separable mathematics.”

Theorems 5.1 and 5.3 can be proved just beyond ZFC\p. For example,
if we add the existence of p(w) to ZFC\p, then the resulting system is
powerful enough to prove these two theorems.

Theorems 5.1 and 5.3 are examples of what we call Borel diagonaliza-
tion theorems. Such theorems assert that there are no Borel diagonalization
functions with certain invariance properties.

Looking at such theorems conversely, they illustrate the following general
principle which we do not know how to formulate in anything like full gen-
erality:

GENERAL THEME. Every “invariant” Borel function from one “space” into
another sends some element to a “simpler” element.

6. Borel diagonalization on equivalence relations, linear orders, groups, and
graphs. In this section we present some more powerful Borel diagonalization
theorems than the basic Theorem 5.1 above. They very clearly illustrate the
General Theme.
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These diagonalization theorems fall into three basic categories:

CLAss A. These are the theorems of ZFC which, like Theorems 5.1 and
5.3, can be proved just beyond countable set theory (e.g., in ZFC\p + p(w)
exists), but not within ZFC\gp (or separable mathematics).

CLass B. These are the theorems of ZFC which can be proved just beyond
ZC but not within ZC itself. For instance, they can be proved within systems
such as ZC +V(w + w) exists, or ZFC\p + V(w + w) exists. Here ZC is
Zermelo set theory with the axiom of choice, which is obtained from ZFC by
the removal of the replacement axiom scheme (and optionally, removal also
of the formulation axiom).

Crass C. These are the theorems of ZFC which can be proved using un-
countably many iterations of the power set operation, but not using any (ex-
plicitly given) countable number of such iterations. In particular they cannot
be proved within Zermelo set theory with the axiom of choice, ZC.

The phrase “iterations of the power set operation” needs some explanation.
Recall the cumulative hierarchy as presented in §3. The stages in the hierarchy
represent iterations of the power set operation. The ordinal number of the
stage represents the number of iterations. Thus when we say that we have
uncountably many iterations of the power set operation, we mean that we
have, for each countable ordinal a, the stage V. The system ZC is easily
seen to correspond to having w + w iterations of the power set operation,
i.e., having each ¥, , where n is finite.

We first consider a direct generalization of Theorem 5.1. Let E be any
equivalence relation on I. We use [ ] for the equivalence classes under F .
For § C I, we write [S] for {[x]:x € S}.

We say that the Borel diagonalization theorem holds for E if there is
no Borel function F : I — I such that (a) if [rng(X)] = [rng(¥)] then
[F(®)] = [F(7)], and (b) [F(X)] £ [mg(®)], for all %.

The following is proved in [Frl]:

THEOREM 6.1. The Borel diagonalization theorem holds for any Borel
equivalence relation E . Furthermore, this theorem is in class C .

A set E C I" is called analytic if it is of the form {x : for some y,
{x,y) €S} for some Borel set S C I el Analytic sets go well beyond Borel
sets from a conceptual point of view since they are obviously not constructed
by any countable limit process. Analytic sets form the next natural step up
in abstraction or complexity from Borel sets in what is called the projective
hierarchy, which we discussed briefly at the end of the introduction.

The relevance here of analytic sets is that Theorem 6.1 was extended in
[St] as follows:

THEOREM 6.2. The Borel diagonalization theorem holds for any analytic
equivalence relation E . Furthermore, this theorem is in class C.
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The coanalytic sets are just the complements of the analytic sets. On the
other hand, the following can be proved:

THEOREM 6.3. There is a coanalytic equivalence relation on I for which
the Borel diagonalization theorem fails.

There are many interesting equivalence relations (on Borel subsets of com-
plete separable metric spaces) that are analytic. Thus Theorem 6.2 applies
to them. Theorem 6.2 was used in [St] to obtain the following: Let S(Q)
be the Cantor space of subsets of Q, where Q is the rational numbers.
Clearly every set A C Q can be viewed as a linear ordering inherited from
the linear ordering of Q. We say that two elements of S(Q) are isomorphic
if they are isomorphic as linear orderings. We say that F : S(Q) — S(Q)
is isomorphically invariant if isomorphic arguments are sent to isomorphic
values.

THEOREM 6.4. Every isomorphically invariant Borel function on S(Q)
sends some argument to an isomorphic copy of an interval in that argument.
Furthermore, this theorem is in class C.

Theorem 6.4 can be modified in many different minor ways while remain-
ing in class C . For instance, we can insist that the interval in the argument
have endpoints in the argument, or that the interval be bounded from above
and below in the argument.

We now let G be alternatively the space of all binary operations, semi-
groups, or groups on the natural numbers N . (This just means that the field
of points is N.) These are Borel subspaces of the Baire space NY . We
also let Gf be the subspace of, respectively, finitely generated operations,
semigroups, or groups. We say that a subset of an operation on N is finitely
equationally defined if it is the set of all solutions of some finite set of equa-
tions in one variable with parameters allowed from N . In the case of groups,
we allow the inverse operation to be used in these equations.

The following is proved in [St]:

THEOREM 6.5. Every isomorphically invariant Borel function on G sends
some group (semigroup, operation) to an isomorphic copy of a subgroup (sub-
semigroup, suboperation). Furthermore, this theorem is in class A for each one
of the three choices for G.

Mappings F : G;" — Gf are also considered in [St]. The following is
proved there:

THEOREM 6.6. Every isomorphically invariant Borel function F :G‘}0 -
G, sends some sequence of finitely generated groups (semigroups, operations)
to a finitely generated group (semigroup, operation) which is embeddable in
one of its coordinates. Furthermore, this theorem is in class B for each one of
the three choices for G .
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For our purposes, a graph consists of a subset of N called vertices, and
a set of unordered pairs of vertices called edges. Infinite graphs are allowed,
but no multiple edges. The space of graphs is naturally a Cantor space.

The detached subgraphs of a graph are taken to be the unions of connected
components of the graph.

We have been able to prove the following:

THEOREM 6.7. Every isomorphically invariant Borel function on graphs
sends some graph to an isomorphic copy of a detached subgraph. Furthermore,
this theorem is in class C.

All of the examples given thus far in this section clearly illustrate the
general theme stated at the end of the previous section. We conclude this
section with an example that does not really fit into the general theme, but
which is closely tied up with the so-called axiom of determinacy, which figures
so prominently in the work on the projective hierarchy discussed at the end
of the introduction.

By way of background, the following is well known to be false:

PSEUDOTHEOREM. Every Borel set E C I x I contains or is disjoint from
the graph of a Borel function on I .

However, the following is proved in [Frl] (we call a set E C I x I sym-
metric if (x, y) € E if and only if (y, x) € E):

THEOREM 6.8. Every symmetric Borel set E C I x1I contains or is disjoint
Sfrom the graph of a Borel (or even left continuous) function on I. Every
symmetric Borel set E C K x K contains or is disjoint from the graph of a
continuous function on K (K is the Cantor set). Furthermore, both theorems
are in class C.

7. Strong Borel diagonalization on groups and graphs. In this section we
present some extensions of Theorem 6.6 which are not provable in ZFC. They
are, however, theorems of one of the most intensively studied extensions of
ZFC by set theorists, i.e., ZFC + “there exists a measurable cardinal.” We
abbreviate this system by ZFM.

This additional axiom is most simply stated as follows: There exists a
countably additive measure on the class of all subsets of some set where the
measure of every set is either 0 or 1, and the measure of points is zero.

So clearly these extensions of Theorem 6.6 are consistent with ZFC if ZFM
is consistent. But is ZFM consistent?

Unfortunately, this question has a confusing answer. It seems to be
consistent in the sense that the set theorist’s use of ZFM has not led
to any inconsistencies. On the other hand, the number of man hours de-
voted to testing ZFM is insignificant compared to that devoted to general
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mathematics, and set theorists have had a vested interest in ZFM being con-
sistent for many years now.

Of course, it would be best if one could prove that ZFM is consistent if
and only if ZFC is consistent, and carry out this relative consistency proof
within ZFC.

Unfortunately the second incompleteness theorem creates an obstacle to
this ever happening. The reason is that ZFM itself proves that ZFC is con-
sistent. Hence if we could carry out this desired proof within ZFC (or even
within ZFM) then we would have a proof within ZFM that ZFM is consis-
tent. The second incompleteness theorem says this is impossible unless ZFM
is inconsistent! Such is the legacy of Kurt Godel.

Should we accept the consistency of ZFM on faith? Or should we regard
this question as not meaningful? Or perhaps meaningful but perhaps forever
beyond our grasp to decide?

These are deep questions about which there is no consensus among logi-
cians. There is the background question which in this context is critical. Is
it important whether or not ZFM is consistent?

The importance of an extension of ZFC such as ZFM is dependent on what
you can do with it that you cannot do in ZFC. An ultimate illustration of
the importance of the consistency of ZFM would be afforded by a dramatic
result such as the following, which is by no means ruled out at this point
(but of course could be ruled out at any time): I am not making this as a
conjecture.

POSSIBLE BUT WILDLY SPECULATIVE. There is a specific simple variant of
the twin prime conjecture which is true if and only if ZFM is consistent. This
equivalence is provable well within ZFC.

If some result anywhere near this was obtained, then clearly questions
about the status of systems like ZFM would assume central importance in
the history of mathematics.

It has been our view for many years that a first step towards obtaining this
kind of stunning result is to first obtain such a result for a statement that at
least fits into the Borel point of view. This already proved to be a difficult
obstacle and there is still the expectation of much better results along these
lines that fit into the Borel point of view.

Recall the definition of graph and detached subgraph that we used in the
previous section. We say that a graph is embeddable in another graph if there
is a one-one map from the vertices of the first into the vertices of the second
such that every edge in the first is sent to an edge in the second. We say
that a graph is completely embeddable if the same holds with the additional
requirement that two vertices are connected by an edge in the first graph if
and only if their images are connected by an edge in the second graph. Also,
we say that a graph is locally finite if every vertex is joined to at most finitely
many vertices.

The following propositions are discussed in [St]:
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PRrOPOSITION 7.1. Every isomorphically invariant Borel F : G;" — Gf
sends all of the infinite subsequences of some sequence G to a group (semi-
group, operation) which is embeddable in one of the coordinates of G .

ProrosiTiON 7.2. Every isomorphically invariant Borel F : G;" - G
sends all of the infinite subsequences of some sequence G 1o a group (semi-
group, operation) which is embeddable in some direct limit of G.

The following is proved in [St]:

THEOREM 7.3. Propositions 7.1 and 1.2 are provable in ZFM but not in
ZFC. This is true for any of the three choices (groups, semigroups, operations)
Jor G.

Alternatively, graphs can be used in the following way instead of groups,
semigroups, and operations:

ProrosiTION 7.4. Every isomorphically invariant Borel function on the
locally finite graphs sends all of the detached subgraphs of some G to graphs
embeddable (completely embeddable) into G .

THEOREM 7.5. Proposition 7.4 is provable in ZFM but not in ZFC. This
is true for both kinds of embeddability.

THEOREM 7.6. Propositions 7.1, 7.2, and 7.4 imply the consistency of ZFC.
Furthermore this fact can be proved well within ZFC.

We now discuss the implications that the results cited in this section have
for the constructible point of view.

Recall that the axiom of constructibility is known to decide the set-theoretic
propositions that have been shown to be independent of ZFC by direct use
of the forcing method such as Propositions 2.1-2.6.

However, here the propositions in question are not decided by the axiom
of constructibility. In fact, the axiom of constructibility has a clear meaning
in the context of weaker systems than ZFC, and so the same point can be
made with regard to the results cited in §§5 and 6. More specifically:

THEOREM 7.7. Theorems 5.1, 5.3, 6.1, 6.2, 6.4-6.8 and Propositions 7.1,
7.2, 7.4 remain unprovable in the same systems in which they were originally
stated to be unprovable, even if the axiom of constructibility is added to those

respective systems.

Also recall that the constructible point of view does not assert that the
axiom of constructibility is true, but only proposes that all mathematical
statements be relativized to the constructible sets, i.e., that the mathematical
universe be taken to be the constructible sets in the sense of a regularity
condition. What happens when the assertions cited in Theorem 7.7 are so
relativized?
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THEOREM 7.8. If any of Theorems 5.1, 5.3, 6.1, 6.2, 6.4-6.8 and Propo-
sitions 7.1, 1.2, 7.4 are relativized to the constructible sets, then their meta-
mathematical status as cited remains unchanged, i.e., the resulting statements
are provable in the same systems in which they were stated to be provable,
and remain unprovable in the same systems in which they were stated to be
unprovable.

This important point can be taken further. There are various natural short
initial segments and fragments of the constructible hierarchy of sets that have
been studied. One purpose of examining such fragments is that, to varying
extents, they constitute more explicit universes of sets which do not depend
on the acceptance of any concept of abstract ordinal which is necessary in
the case of the full constructible hierarchy of sets. Aside from the smallest
of these fragments, the sets of integers present are closed under the hyper-
jump operation. Most of Theorem 7.8 depends only on the closure of the
constructible sets under this operation:

THEOREM 7.9. If any of Theorems 5.1, 5.3, 6.1, 6.5, 6.6, and 6.7 and
Propositions 7.1, 1.2, 7.4 are relativized to any given universe of sets closed
under hyperjump, then their metamathematical status as cited remains un-
changed.

The original propositions about Borel functions that exhibit these strong
metamathematical properties appeared in [Fr1]. The versions discussed here
are more natural.

8. The predicative point of view. The comprehension axiom scheme in ZFC
allows one to construct a set by writing down {x € a: A(x)}, where A(x)
is any set-theoretic property of sets x that is expressible in the language of
ZFC. Of course, A(x) may have side parameters. Here we discuss some
philosophical aspects of this set existence principle in case the set a is N,
the set of all natural numbers. Thus we are concerned with proofs of the
existence of sets of natural numbers.

The issue is this. Suppose we assert the existence of {n € N : A(n)}.
Suppose also that the property A refers to all sets of natural numbers in its
expression in the language of set theory. Have we really constructed a set of
natural numbers? Why do we accept the existence of such a set of natural
numbers?

If we take the position that this set of natural numbers is constructed by
writing down {n € N : A(n)} in the sense that it did not exist before anybody
wrote this down (unless it coincidentally happened to have the same members
as some such set that was written down earlier), then there is the real question
of the meaning of, say, A(1). Do the references in 4 to all sets of natural
numbers refer to the set allegedly under construction? How about sets that
have not been so constructed, but will be so constructed in the future? If it
is not clear what sets are being referred to in 4 then in what sense is this a



THE INCOMPLETENESS PHENOMENA 71

construction? In what sense is 4 meaningful?

The most natural position to take on such matters, assuming one wishes
to accept this set existence principle, is that all sets of natural numbers exist
independently of how humans construct them, view them, or understand
them. They are just there, independently of our mental processes, and we use
our mental processes to observe them, study them, and use them. Through
our mental processes we have observed that {n € N : A(n)} exists, and was
there before any human thought about it or thought about 4.

A problem with this so-called Platonistic approach is that it is unclear how
far it can be reasonably taken. If a purely external objective reality of all sets
of natural numbers exists for us to observe and study, then why not such a
reality of all sets of sets of natural numbers? But then we seem stuck with ac-
cepting the point of view that the continuum hypothesis is a matter of objec-
tive reality that simply awaits additional observation and study. As discussed
earlier, the continuum hypothesis is not only independent of ZFC, but at this
point the discovery of any new fundamental principles about the cumula-
tive hierarchy of sets that would settle it seems very remote. It seems hard to
merely accept that what is needed is simply some hard work or clever idea, as
has proved to be the case for so many hard open mathematical problems that
eventually get solved. Most mathematicians are quite uncomfortable with the
concept of objective external reality when pushed as far as to include sen-
tences such as the continuum hypothesis. They are even more uncomfortable
in the context of such sentences as “there are measurable cardinals.”

As discussed earlier, many specialists in set theory wish to take this Pla-
tonistic approach to the extreme; that the entire cumulative hierarchy of sets
has an objective external reality awaiting our observation and study, and that
any well-formed assertion about this hierarchy is objectively true or false.

But for those who do not accept this extreme view, the question of where
the objective external reality ends and human intervention begins is a real
issue.

It seems to us that, ultimately, there is no such good dividing line, and
that a certain kind of relativism is emerging: That there is no such thing as
an objective external reality anywhere outside the most extreme basic con-
text (such as the study of the integers from 1 to 100). Instead, there are
degrees or levels of external objective reality, running the spectrum from
{1,2,..., 100} to the entire cumulative hierarchy of sets (or even maybe
beyond). On this view, the really interesting thing to do is to analyze the
relationships between these contexts and to obtain definite mathematical re-
sults which shed light on these degrees or levels. The incompleteness results
discussed in this manuscript do just that. Other types of results, such as con-
sistency proofs, which are not discussed here, also contribute to this general
aim. ’

Let us return to our discussion of {n € N : A(n)}. The predicative point of
view accepts an objective external reality of the totality of natural numbers,
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but rejects any objective external reality of the totality of sets of natural
numbers. On this view, sets of natural numbers do not exist independently of
their construction. All constructions of sets of natural numbers must in some
sense be grounded in the natural numbers themselves. On the predicative
point of view, all such constructions are admissible.

The most typical case of a construction of a set of natural numbers from
the predicative point of view is that of {n € N : A(n)}, where A is arith-
metical. In other words, when all quantifiers in 4 range over the natural
numbers. If side parameters exist for sets of natural numbers, then the con-
struction is relative to those side parameters. If the side parameters have
been constructed, i.e., given a predicative meaning, then the expression is
then a predicatively meaningful construction. This amounts to what is called
the arithmetical comprehension axiom scheme.

Life would be very simple if one could merely identify predicativity with
the arithmetical comprehension axiom scheme. However, consider the fol-
lowing situation. One may have an explicit assignment to each natural num-
ber n of an arithmetical formula 4, (k), say, with no side parameters. Then
we may wish to construct, say, {n € N :(3k)(4,(k))}. This cannot be done
within arithmetical comprehension, but seems to be arguably within the scope
of predicativity.

There has been considerable effort devoted to codifying the predicative
point of view into appropriate formal systems, with some theorems suggest-
ing, in some way, that such formal systems completely capture predicativity.
We do not believe that the point of view naturally lends itself to such char-
acterization, although there clearly are constructions such as the ones cited
above which obviously fall within the predicative, as well as constructions
which obviously do not fall within the predicative. It is possible that one
may be able to amplify on the usual description of the predicative point
of view, maintaining its fundamental philosophical flavor, so that the view
would naturally lend itself to such characterization. But even this has not
been accomplished in any convincing way.

We think that, under these circumstances, the really fruitful investigation
is to see what consequences the predicative point of view has on actual math-
ematics.

Fortunately, in nearly all known interesting mathematical situations, a
given proof of a theorem is either obviously predicative or obviously im-
predicative. Usually, a given theorem either can be given a proof which is
obviously predicative, or a recursion-theoretic result is known which implies
that it obviously has no predicative proof. The typical case of the former
is that the arithmetical comprehension scheme is enough, and the typical
case of the latter is that the theorem is shown to be false in the universe of
hyperarithmetical sets of natural numbers.

Typical cases of theorems which are known to not be predicatively prov-
able by the above method are (1) the order comparability of well-orderings
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of the natural numbers, (2) the presence of perfect sets within uncountable
closed sets of real numbers, and (3) the least upper bound principle for (even
arithmetically defined) sets of real numbers.

However, notice that all three examples assert the existence of some set of
natural numbers (perhaps disguised as a real number, a function on the nat-
ural numbers, or a perfect set as the complement of the union of a sequence
of rational open intervals). It is perhaps not too surprising that there would
be such basic examples, since the predicative point of view severely restricts
the set existence axioms allowed.

A crucial issue about the predicative point of view is whether there are such
basic mathematical theorems that do not assert the existence of infinite sets of
natural numbers, even under disguise, yet can only be proved impredicatively.
It is to be expected that mathematicians advocating the predicative point of
view are likely to believe that there are no such significant examples.

However, in the next section we present such examples, which have only
been discovered in the 1980’s.

Strong advocates of the predicative point of view include such great math-
ematicians as Hermann Weyl and Henri Poincaré. It would have been inter-
esting to see how their advocacy of predicativity would have been affected by
the discovery of these examples.

For more discussion on predicativity, see work of S. Feferman; e.g. [Fel]
and [Fe2]. In the next section we use the formal system ATR , as a working
model for the upper limit of predicativity. This is generally accepted in light
of its connection with hyperarithmetic sets and the proof theoretic ordinal
T,.

9. Finite trees and finite graphs. In this section we present the examples
mentioned at the end of §8 of theorems not involving the existence of infinite
sets of natural numbers, yet which cannot be predicatively proved. Some of
the examples have the stronger property that they do not even mention infinite
sets of natural numbers, even in disguise.

The first such example was the celebrated theorem of J. B. Kruskal in
1960 concerning the embeddability of finite trees in infinite sequences of
finite trees. It was not until 1981 that anyone observed that it cannot be
predicatively proved, despite the fact that the original proof was blatantly
predicative and Kruskal had called attention to the peculiar nature of the
proof.

The proof was later greatly simplified and streamlined by Nash-Williams.
This new proof spawned a whole new interesting field of combinatorics called
wqo theory. The Nash-Williams proof is sufficiently simple and the crucial
impredicative step is sufficiently easy to identify, that we give a sketch of it
here.

A tree consists of a nonempty set ¥ called vertices, together with a partial
ordering < on V such that (a) there is a (unique) least element called the
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root, and (b) the set of predecessors of every vertex under < is linearly
ordered under <. We have the obvious sup and inf operations on sets of
vertices provided that the tree is finite (i.e., has a finite number of vertices).

The crucial notion of embedding / from one finite tree 7| into another
T, is this: & is a one-one mapping from the vertices of the first into the
vertices of the second, and #4 is inf preserving in the sense that s(ainfd) =
h(a)inf A(b) . These conditions imply that % is order preserving in the strong
sense that a <, b if and only if A(a) <, h(b). We write T; < T, if and only
if there exists such an embedding from 7| into T7,.

The following is proved in [Kr]:

THEOREM 9.1. In any infinite sequence T,, T,, ... of finite trees, there
are i < j such that T, < T;. In any infinite set of finite trees, one of the
elements is embeddable into another.

The following is proved in [Sil]:

THEOREM 9.2. Theorem 9.1 cannot be proved in the formal system ATR ,
and hence cannot be given a predicative proof. This holds for either of the two
Jorms given.

Before we sketch the Nash-Williams proof of Theorem 9.1, we give some
other variants which may be a little more natural from a graph theorist’s
viewpoint.

We can alternatively define a tree to be a connected graph with no cycles.
Note there is no root in this treatment. The relevant concept of embedding
is that of a one-one mapping /2 from vertices in the first tree into vertices
in the second tree such that if ab and ac are edges in the first tree, a #
b # c, then the unique simple path from 4(a) to A(b) in the second tree
does not cross the unique simple path from 4(a) to A(c) in the second
tree (except of course at 4(a)). Or, alternatively, we may view graphs as
topological spaces (l-dimensional complexes), and we merely require that
the embeddings be homeomorphic mappings (continuous and one-one). The
latter does not require that vertices go to vertices. If we did require that, then
it would be identical to the graph-theoretic definition we have just given.

We have looked into these alternative definitions and found that the dif-
ferences are inessential from the metamathematical point of view:

THEOREM 9.3. Theorems 9.1 and 9.2 hold for infinite sequences of graph-
theoretic finite trees, under any of the notions of embedding discussed above.

We now sketch the proof of Theorem 9.1 given in [Na]. The method is
called the minimal bad sequence argument.

A quasiordering is merely a nonempty set under a transitive and reflexive
relation (i.e., if a < b and b <c then a <c, and also a < a). A well quasi
ordering is a quasi ordering with the crucial property that for all infinite
sequences a,, d,, ... , there are { < j such that g; < a;. It is interesting
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and well known that this is equivalent to the requirement that within any
infinite set A there are a, b€ 4 suchthat a<b.

Note that Theorem 9.1 can be restated as asserting that the finite trees
under embeddability constitute a well quasi ordering.

Let (Q, <) be a quasi ordering. Then we form the new quasi ordering
FIN(Q) consisting of the finite subsets of Q under the following quasi order:
A <" B if and only if there is a one-one mapping % : A — B such that for
each ac€ 4, a< h(a).

Let us assume for the moment the following theorem from [Hi] known as
Higman’s lemma:

THEOREM 9.4. If Q is a well quasi ordering then so is FIN(Q).

We continue the sketch of the proof of Theorem 9.1.

By way of contradiction we let T;, T,, ... be a counterexample to (the
first form of) Theorem 9.1. Such a counterexample is called an infinite bad
sequence. We want to prove that there is no infinite bad sequence.

We first need to construct what is called a minimal bad sequence. Let
S, be any finite tree of minimal possible size (as measured by the number
of vertices) such that S, starts some infinite bad sequence. Let S, be any
finite tree of minimal possible size such that S|, S, starts some infinite bad
sequence. Continue in this way to obtain the minimal bad sequence S|,
A

There are two not very explicit aspects to this construction. Firstly, the
axiom of choice is used since we did not specify which of the several possible
finite trees is to be chosen at each stage. But this is truly a minor point. We
can enumerate all the finite trees up to isomorphism in some reasonable order
before the construction begins in order to avoid this problem (using canonical
representations from the equivalence classes in a standard and routine way).
Secondly, there is a blatant impredicativity in the construction since at each
stage we refer to unrestricted infinite sets of natural numbers (finite trees),
including the one being constructed. This is just the kind of construction that
is criticized by predicativists. This second point is the crux of the matter.
Theorem 9.2 explains why this aspect is unavoidable.

Now that we have our minimal bad sequence, we let Q be the set of all
upwardly closed subtrees of the S’s whose roots lie right above the roots of
the §’s. In other words, each S, is the joining together of several disjoint
subtrees by the root of S, ; such subtrees are called the immediate subtrees.
Q consists of all such immediate subtrees. We make Q into a quasi ordering
by our notion of embeddability.

It is not difficult to see that because of the minimal badness of the S’s, Q
must be a well quasi ordering. For, if @ had an infinite bad sequence, then
that sequence could be used to obtain a new infinite bad sequence which
agrees with S for a while, and then uses subtrees of the §S’s; this would
violate the minimality of the S’s at the spot where the subtrees of the S’s
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start, and where the copying of the S’s themselves end.

Now by Higman’s lemma, the finite sequences from Q are also well quasi
ordered. From this we obtain i < j such that the set of all immediate
subtrees of S; is < * the set of all immediate subtrees of S ;- But this
immediately implies that S, < S B which is the contradiction we have been
seeking.

Higman’s lemma itself (Theorem 9.4) can also be proved by a (simpler)
minimal bad sequence argument. However, in contrast to Theorem 9.1, it can
be given an alternative proof within the arithmetical comprehension scheme.

Note that although Theorem 9.1 does not state the existence of infinite
mathematical objects, it does mention them (universally). We now discuss a
finite reformulation of Theorem 9.1 which does not involve infinite mathe-
matical objects at all.

The idea is simple and natural. We first weaken the statement by placing
bounds on the number of vertices, |T|, of the trees 7. Thus we can consider
the following: ‘

(*) For all k and finite trees 7, 7,, ..., with each |T;| < k + 1, there
are [ <j such that T; < Tj

Note that the collection of infinite sequences of finite trees satisfying this
growth condition (for a fixed k) is a compact space. Hence as is standard
in such situations, this is true for infinite sequences of such trees if and only
if it is true for sufficiently long finite sequences of such trees. Thus we are
naturally led to the following:

THEOREM 9.5. For r >> k and finite trees T, ..., T, obeying |T,| <
k +1i, thereare i < j suchthat T; < Tj

The following is proved in [Sil] and [Smith]:

THEOREM 9.6. Theorem 9.5 cannot be proved in ATR ;, and hence cannot
be given a predicative proof. This is true even if graph-theoretic trees are used.

An obvious question is: how large must r be as a function of & in The-
orem 9.57 It is clear that this is a recursive function, since we can just look
for a big enough r and check to see that we have it. However, the following
is proved in [Sil], which obviously strengthens Theorem 9.6:

THEOREM 9.7. No provably recursive function of ATR, is sufficient to
bound the required size of r as a function of k in Theorem 9.5.

We mention an alternative finite form of Theorem 9.5 that may be viewed
as being even more natural (see [Smith]):

THEOREM 9.8. If r >> k then every sequence T, ..., T, of finite trees
obeying |T,| < i contains an increasing subsequence of length k. This is not
provable in ATR , and hence does not have a predicative proof. Furthermore,
no provably recursive function of ATR , is sufficient to bound the required size
of r as a function of k. Again, graph-theoretic trees can be used.
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In [Smith] yet another finite form is considered which involves only the
growth condition |7;} < i asin Theorem 9.8. Only this time the k represents
the number of labels. Kruskal also considered finite trees with labels from a
finite set. The embeddability condition is strengthened to demand that the
embedding be label preserving. The following is implicit in [Smith]:

THEOREM 9.9. If r >>k and T,, ..., T, are finite trees with k labels
obeying |T,| < i, then there are i < j such that T, < Tj (label preserving).
This theorem has the same properties cited in Theorem 9.8.

The independence results stated in Theorems 9.2-9.3 and 9.6-9.9 are un-
derstated in that they hold for sysiems somewhat stronger than ATR ,. The
optimal system to use is the somewhat stronger system I'I; — BI,. However,
certainly ATR , is a more natural system, representing, in a sense, the bor-
der of the usual formalisms for predicativity, and being equivalent to basic
mathematical facts such as the comparability of well-orderings, as in reverse
mathematics (see [Si2]).

It is clear that all of the theorems about trees discussed from Theorem
9.5 and beyond in this section are of the form V3 over the natural numbers.
Actually, technically speaking, they are presented in form V3V, since they
assert that for all k there is a ¢ such that for all r > ¢, something holds.
However, it is obvious for the statements under question that if any r works
then trivially any larger r works. Thus the statements are actually of the
form: for all £ thereisan r.

If we specialize the outermost quantifier £ of an V3 statement, then we
get an 3 statement. Such a statement is always provable in any reasonable
system if and only if it is true. But the interesting question, under these
circumstances, is: how large is the least possible r? And, how large is the
least possible proof that there is an r?

From the point of view of the incompleteness phenomena, the second
question is what really is interesting. If one can show that the least possible
proof that there is an r is ridiculously large, then one has exhibited an in-
completeness phenomena that is different from what we have discussed up
to this point.

Let 2" be a stack of n two’s iteratively exponentiated; e.g., ol4 _ 916

The following is proved in [Smith]:

THEOREM 9.10. In Theorem 9.9, if k issetto 6 then the resulting 3 state-
ment cannot be proved within ATR , without using at least 211000} symbols.
Hence it cannot be proved predicatively without using a humanly unreasonable
number of symbols: in this sense, it is unprovable predicatively.

Similar results can be given for all of the V3 statements considered in this
section.

Kruskal’s theorem with finitely many labels can be strengthened so as to
obtain independence results such as the above from yet stronger systems. We
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did discover such natural strengthenings by adding an additional condition
on the embeddings. The added condition is called the gap condition.

The idea is as follows. Suppose h is an inf preserving embedding from S
into 7', and assume that the trees are labeled from the finite set {1, ..., n}
and are label preserving. If b is an immediate sucessor vertex to a in S,
then h(b) may not be an immediate sucessor vertex to h(a) in 7. Of
course, h(b) does lie above h(a) in T . But there might be a gap of vertices
strictly in between. The additional condition asserts that all of the labels of
the vertices in this gap in 7' must be numerically at least as large as the label
of b (or h(b)). We write <, for this quasi ordering.

The following is proved in [Sil]:

THeOREM 9.11. Each <, is a well quasi ordering. This theorem can be

proved in I'I} —CA but not in H: — CA,, or in what is called finitely iterated
inductive definitions.

The proof that each <, is a well quasi ordering involves an iteration of the
minimal bad sequence construction n times. One way of looking at the proof
is as follows: assume that the result is false, and then construct an appropriate
minimal bad sequence. From this sequence, construct a new quasi ordering
and another minimal bad sequence through that. Iterate this procedure n
times until finally one obtains a bad sequence through some quasi ordering
which ostensibly is a well quasi ordering, obtaining the desired contradiction.
Such a proof would involve (roughly) »n iterated inductive definitions. The
union of » iterated inductive definitions corresponds to Hi -C4,.

We conjectured that < is a well quasi ordering, where the domain is the
finite tree labeled from @ and the embedding is required to be inf preserv-
ing, nowhere label decreasing, and the gap condition holds (in the gap, the
labels are all numerically at least that of 4(b)). In fact, we made the more
general conjecture that this was true for each < for any ordinal . This
conjecture has been recently proved in [Kriz]. It is interesting to observe that
the proof is given in H; — CA, even for a = w. It is known that for each
o this must take at least about o iterated inductive definitions to prove that
<, is well quasi ordered. So the lower and upper bounds are wildly far apart
at this time,

The fact that the <, is a well quasi ordering was subsequently used several
places in the very lengthy proof that the finite graphs are well quasi ordered
under the relation of minor inclusion, written <, (see [RS]). We say that
G is minor included in H if G can be obtained from H by successive
applications of the following operations: (1) removing an edge, (2) removing
a vertex (and all edges coming out of it), and (3) contracting an edge to a
vertex.

THEOREM 9.12. The relation <, on the finite graphs is a well quasi

ordering, i.e, for all G, G,, ..., there are i < j such that G, <m0
The following is proved in [FRS] by showing that “ <~ is a well quasi
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ordering” implies “each <, is a well quasi ordering.”

THEOREM 9.13. Theorem 9.12 cannot be proved within I'Ii - CA,. It can

be proved in I'Ii — CA + BI. In particular, there is no predicative proof of
Theorem 9.12.

We can give a number of finite forms of this graph minor theorem which
also cannot be proved in such systems just as we did for Kruskal’s theorem.
Let |G| be the sum of the number of vertices and edges of G. We give two
such forms as discussed in [FRS]:

THEOREM 9.14. If r >> k and G, ..., G, are finite graphs with each
|G,| <k +1, then there are i < j suchthat G, <,G,. If r >>k then every
sequence G, ..., G, of finite graphs obeying |G| < i contains an increasing
subsequence of length k under minor inclusion. Neither of these theorems are
provable in I'Ii — CA, and hence do not have predicative proofs. Furthermore,
no provably recursive function of I'Ii — CA, is sufficient to bound the required
size of r as a function of k.

10. Finite Ramsey theory. Ramsey theory has become an established
branch of combinatorics of extensive scope (see [GRS]). In this section we
will be discussing the original Ramsey theorems that form the basis of the
subject. In [PH] a modified form of the original finite Ramsey theorem was
given and shown to be unprovable within Peano arithmetic (or finite set the-
ory). It is provable from the original infinitary Ramsey theorem, which in
turn is provable by, for instance, augmenting Peano arithmetic with functions
defined by arithmetical recursion. Putting it more simply, the modified finite
Ramsey theorem is not provable in finite set theory or Peano arithmetic, but
can be proved just beyond them.

The modified finite Ramsey theorems were the first examples of interest-
ing mathematical theorems about finite objects which were shown to have
substantial independence properties. They predate the earliest results of this
kind from §9 by four years (1977 versus 1981). There was considerable expec-
tation that the examples would blossom into further examples which would
exhibit much stronger independence properties such as having no predica-
tive proof. However, for this purpose the direct approach via Ramsey theory
turns out to be an apparant dead end.

Here is the original infinitary Ramsey theorem from [Ramsey]:

THEOREM 10.1. If all of the k-element subsets of a countably infinite set
are colored from a finite set, then there is an infinite subset all of whose k-
element subsets are assigned the same color.

The proof of this theorem is by induction on k. The case k = 1 is
obvious. The case k& + 1 is reduced to case k as follows. Observe that if
we fix any element x then we obtain an induced coloring of the k-element
subsets of the set without x. Thus we fix x,. We choose A4, to be any
infinite set excluding x, such that all k-element subsets of 4, are assigned



80 HARVEY FRIEDMAN

the same color induced by x,. Then choose x, to be any element of A,
and A, to be any infinite subset of 4, excluding x, such that all n-element
subsets of 4, are assigned the same color induced by x, . Continue in this
way indefinitely. This results in an infinite sequence of x’s. It is clear that
the color assigned to any subset of the x°’s of size K+ 1 depends only on the
identity of the earliest x in the subset. Since there are only finitely many
colors, there is an infinite set £ of x’s such that all subsets of the x’s
whose first x is from E must be assigned the same color. In particular,
clearly every subset of E of size k + 1 must be assigned the same color.
The original finite form of Theorem 10.1 is as follows [Ramsey]:

THEOREM 10.2. If r >> k,n, m and all k-element subsets of an r-
element set are colored from an n-element set, then there is an m-element
subset all of whose k-element subsets are assigned the same color.

The easiest proof of this theorem is to derive it from Theorem 10.1. Fix
k, n,and m, and assume Theorem 10.2 is false. Then for each r thercis a
counterexample coloring of the r-element set {1,2,...,r}. One can now
construct counterexample colorings C, for each r, such that each coloring is
extended by the next coloring. The union of the C’s form a coloring of the
n-element subsets of all of N. Applying Theorem 10.1, we obtain an infinite
set all of whose n-element subsets are assigned the same color by the C’s.
But note that the first m elements of this infinite set satisfies the condition
in Theorem 10.2 for the coloring C,, where ¢ is the last of these first m
elements. Hence C, was not a counterexample coloring after all. This is the
desired contradiction.

Note that this proof gives no information about how large r must be
relative to k, n, and m. It is clear that the proof is highly inexplicit.

However, in this case there is an explicit proof. In fact, Ramsey’s original
proof in [Ramsey] was explicit and gave iterated exponential bounds for how
large r must be relative to k, n,and m.

In [PH] an additional clause is added to the conclusion of Theorem 10.2,
We say that a set 4 C N is relatively large if the number of elements in 4
is numerically at least as large as the minimum element of A.

The following is proved and studied in [PH]:

THEOREM 10.3. If r >> k, n, m and all k-element subsetsof {1, ..., r}
are colored from an n-element set, then there is a > m-element subset of
{1, ..., r} all of whose k-element subsets are assigned the same color, and
which is relatively large.

Note that this is just as easy a corollary of Theorem 10.1 as is Theorem
10.2, since, trivially, every infinite subset of N contains arbitrarily large
finite relatively large subsets.

It is shown in [PH] that Theorem 10.3 is not provable in Peano arithmetic
(PA), but can be proved just beyond it in, e.g., arithmetic comprehension
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(ACA). Furthermore, no provably recursive function of PA is sufficient to
bound the required size of r as a function of k, n, m.

The concept of relatively large uses integers simultaneously in the role
of “elements” and of “number of elements.” This dual role is sufficiently
unusual in mathematics as to prompt a search for alternatives to Theorem
10.3 that do not use concepts such as relatively large. A particularly attractive
alternative is through what we call a function value theorem. We first give the
infinitary form.

THEOREM 10.4. Let F be a function from all < k-element subsets of N
into N and m € N. Then there is an infinite set AC{m, m+1,...} such
that F takes on at most k + 1 values < min(A4).

And here is the straightforward finite form.

THEOREM 10.5. Let r >> k,n, m and F be a function from all < k-
element subsets of {1, ...,r} into {1, ..., r}. Then thereis a > n-element
AC{m, ..., r} such that F takes on at most k + 1 values < min(A4).

Theorem 10.5 has the same metamathematical properties as Theorem 10.3
(in fact, the two can be shown to be equivalent within a weak fragment of
PA).

We close the discussion by presenting some function congruence theorems.

THEOREM 10.6. For any F: N* — N* there are X <X, < - <
Xpyp With F(x , X%y, ..., %) = F(xy, X3, ..., X, ;) mod 2. Furthermore,
a bound can be placed on x, ., which depends on k but not on F .

THEOREM 10.7. For any F: N* — N* there are 1 < X <Xy <0 <
X, With F(x;, %, ..., %) = F(x;, X3, ..., Xp,1) mod x, . Furthermore,
a bound_ can be placed on x,, which depends on k but not on F .

Theorem 10.6 has a bound involving approximately k& iterated exponen-
tials, and no fewer.

Theorem 10.7 cannot be bounded with a provably recursive function of
PA.

Appendix. Progress towards the construction or discovery of basic math-
ematical problems about finite objects, with a clear and intuitive meaning,
conveying interesting mathematical information, that is readily graspable,
and which is independent of ZFC, has been incremental. Here we indicate
the current state of the art.

The most convincing independence results in this vein are currently stated
in terms of countably infinite functions or sets. Nevertheless, one proves,
well within ZFC, that the independent sentences are equivalent to sentences
involving only the ring of integers. Unfortunately, we do not know how to
directly put the sentences into such finite terms without causing unacceptable
complications.
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Let  : Ax A — Q, where Q is the rationals. We say that RC QO x Q is
®-Boolean if R can be defined by a quantifier free formula in (Q, <, ®);
i.e., if R can be defined in terms of conjunction, disjunction, negation, and
inequalities between expressions built up from ®, variables, and constants
from Q.

ProrositioN 1. Thereisa ® : Q x Q — Q such that for all ®-Boolean
R OxQ and a€ Q, thereisa b b <a®a such that forall x <b®b
and y<a®a, if R(x,y) then R(x, (b®b)®x).

The following is proved in [Fr3].

THEOREM 2. Proposition 1 can be proved in ZFC with the use of Mahlo
cardinals of every finite order, but cannot be proved in ZFC. In fact, Proposition
1 is provably equivalent to the consistency of ZFC + {there is a Mahlo cardinal
of order n},, (within RCA).

Let F: N = N and 4 be any set. We write F_[4] for {x: F(y,,...,y;)
= x for some y,, ..., y, <Xx chosen from A}.

By way of background, note that the following is easily provable and com-
pactly expresses the fundamental principle of definition by induction on the
natural numbers.

THEOREM 3. Forall F: N* — N thereisan A C N with N = AAF_[4].
A is necessarily infinite.

However, the following proposition is provably false (within RCA,) .

PROPOSITION 4. Forall n>>k and F: N* — N, there is an infinite set
1,ne ACN with N = AAF_[A].

Now consider the following weakening of Proposition 4.

PROPOSITION 5. Forall n>>k and F: N* = N, there are infinite sets
l,ned CA,C---CA CN with A;+ A4, C A, AF_[A4,,], i<k.

It can be shown that Proposition 5 can be proved in ZFC with Mahlo
cardinals of every finite order, but not in ZFC. In fact, Proposition 5 can
be shown to be equivalent to the 1-consistency of ZFC + {there is a Mahlo
cardinal of order n},, (within ACA). Proposition 5 can be proved for each
fixed k (with ACA). The rate of growth associated with n >> & is bounded
by a recursive function but not any provably recursive function of ZFC (even
with Mahlo cardinals of any given finite order).

It can also be shown (within ACA) that Propositions 1 and 5 are true if
and only if they are true in the arithmetic sets.
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Elliptic Curves and Modular Forms

BENEDICT H. GROSS

An elliptic curve E over the field k has a nonsingular plane model of the
form

2 3 2
Yy taxy+ay=x +a,x +ax+ag,

where the coefficients a; liein k. The set E(k) of solutions to this equation
(in the projective plane) has the structure of an abelian group: the unique
point on the line at infinity is taken as the origin and any three collinear points
sum to zero. When k = C is the field of complex numbers, the theory of
elliptic functions identifies E(C) with a complex torus, so—as a topological
group—with the product of two circles. When the field &k is finite, E(k)
is clearly a finite group. When k is a number field (an extension of finite
degree of the field Q of rational numbers) the famous theorem of Mordell
and Weil states that the group E(k) is finitely generated.

We will focus our attention on the case when & = Q. Since E(Q) is
finitely generated, we have an isomorphism

EQ~ZoT,

where r > 0 is an integer and 7T is a finite group. The torsion subgroup
T is easily determined in any given case, and the proof of the Mordell-Weil
theorem yields an effective upper bound for the rank r of E. To determine
if this upper bound is sharp requires a search for rational points.

The following example has been investigated by Bremner and Cassels. Let
g be a prime number with ¢ = 5 (mod 8), and let E be defined by the
equation

¥ =x+gx.
Then the subgroup 7 of E(Q) is cyclic of order 2, generated by the point
P = (0, 0), and the rank r satisfies r < 1. One suspects that r = 1 in all

cases, although this is only known for ¢ < 20,000. Occasionally, the search
for a solution is quite time consuming: for example, when g = 2437 the
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smallest point P = (x, y) of infinite order in E(Q) has coordinates

X = 1058218655773369472688280687468828399922014718555143690966617841
275081987041241794421770856177032513092966187596374600583396900 °

— 443090331670870476765298567239328435425666485280521498925653374541937139166973694383354835903889
y 4562398640636267034178360393354742958207189280664086915767660421227708280931775118586314953000 *

One approach to the determination of the rank is to study the number
of solutions to the equation modulo p. Choose a plane model for E with
integral coefficients and minimal discriminant A. Let A, denote the number
of solutions of the reduced equation (including the point at infinity) over
Z/pZ, and write A,=p+l-a - The L-function of E, which packages this
information into an analytic function of the complex variable s, is defined
by the Euler product

LE, ) =] -ap™) " [T -ap~ +p' ™)
rla ofa

which converges in the half-plane PR(s) > 3/2. Expanded out, this product
is a Dirichlet series ) . a, - n~* with integral coefficients a, .

If we formally set s = 1 in the Euler product, we find the formal product
]'[(p/Ag) , where Ag is the number of nonsingular points on E modulo p.
Motivated by the expectation that a large value of r should lead, on the
average, to a large number of solutions modulo p, Birch and Swinnerton-
Dyer conjectured that the order of vanishing of L(E, s) at the point s =1 is
equal to the rank r. Aided by Cassels and Tate, they also gave an arithmetic
interpretation for the leading term in its Taylor expansion there.

To begin to attack this conjecture, one needs the analytic continuation of
L(E, s) to a neighborhood of s = 1. Following Taniyama, Shimura, and
Weil, one now hopes to prove that the function L(E, s) is entire by showing
that it is the Mellin transform of a modular form. More precisely, let N
be the conductor of the curve E. This is an integer, with the same prime
factors as the minimal discriminant A, which measures the ramification in
the division fields of E .

CONJECTURE. The function f(1) = 3,5, anez"i"’, for t in the upper

half-plane, is a cusp form of weight 2 for the congruence subgroup T'y(N) of
SL,(Z).

The group I'y(N) consists of integer matrices (‘; 3) with ad — bc =1
and ¢ =0 (modulo N), and f(7) is modular of weight 2 if for every such
matrix we have the identity f((at+0b)/(ct+d)) = (ct+ d)zf(r) LI f(r) s
a cusp form, its Mellin transform

A, s) = /0 ” f(z'y)y”i—y = @m) T()L(E, 5)

is entire. Moreover, Carayol has shown that f is then a “newform” of
level N, and hence an eigenfunction for the Fricke involution: f(—1/N71) =
A-NT°f (tr), with A = 1. This implies that A(f, s) satisfies the functional
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equation
Af,9)=e-NTA(f,2-9)

with ¢ = -4,

There is now a great deal of theoretical and computational evidence in
favor of the conjecture that f(7) is modular, and for a given curve F it
can be checked using a finite amount of computation. For example, the
conjecture is true for the curves y2 =x + gx mentioned above; its truth for
all elliptic curves over Q implies Fermat’s Last Theorem, by recent work of
Ribet. In all that follows, we will assume the conjecture is true for the curve
E , and will derive some geometric and arithmetic consequences.

Let X,(N) be the modular curve over Q which classifies elliptic curves
with a cyclic subgroup of order N . The work of Eichler and Shimura shows
that the newform f(r) determines an elliptic quotient E, of the Jacobian of
Xy(N) over Q, and Faltings’ results on the isogeny conjecture show that E,
is isogeneous to E . Hence there is a nonconstant regular map ¢: Xy(N) —
E over Q which takes the cusp oo of X, (N) to the origin of E. The
differential 27if(t) dt on the upper half-plane is invariant under I'j(N) and
defines a regular differential on X,(N) over Q. Once ¢ has been chosen,
there is a unique invariant differential @ on E which satisfies ¢p*(w) =
2rif(t)dt on Xy(N).

The following method of constructing points on E over number fields is
due to Birch. Let K be an imaginary quadratic field of discriminant —D,
where all prime factors of N are split. Let H be the Hilbert class-field of
K (the maximal abelian unramified extension, which has finite degree equal
to the class-number of K). Using the theory of complex multiplication, one
can construct Heegner points x on X,(N) over H. We then define P, as
the trace of the point ¢(x) from E(H) to E(K); this trace is calculated
by adding @(x) to its conjugates, using the group law on E. Zagier and I
found a formula for its canonical height h , which measures the amount of
paper required to record P, , in terms of the derivative of the L-function of
E over K:

_Jggore (P

== 5 )

This formula implies that the point P, has infinite order in E(K) if and
onlyif L'(E/K,1)#0.

The precise conjecture of Birch and Swinnerton-Dyer predicts that when
P, has infinite order, the group E(K) has rank 1, and that the finite index
[E(K) : ZP;] annihilates the Tate-Safarevi¢ group of E over K. Kolyvagin
has recently made a great advance, which essentially proves this. His work
brings us close to a proof of the full conjecture of Birch and Swinnerton-Dyer,
for modular elliptic curves E over Q where the order of L(E,s) at s=1
is either 0 or 1. But the conjecture for those curves where the L-function
vanishes to order > 2 remains completely mysterious, as does the central

L'(E/K, 1)
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problem of why the function f(7) attached to an elliptic curve E over Q
is a modular form,
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Developments in Algebraic Geometry

JOE HARRIS

Ishould say at the outset that I have no claim to any particular insight into
the future of algebraic geometry. What I thought I would do, accordingly, is
to talk a little bit about the history of the subject, leading up to its present
incarnations, and leave it to you to extrapolate.

Algebraic geometry is a subject whose development has been marked by
fundamental changes in the basic objects studied, and in the approach to
their study. For example, one possible definition of the subject—admittedly
an extreme one—would be to say that algebraic geometry is “the study of the
geometry of those loci defined by polynomial equations.” If we adopt this
point of view, we could say that the subject is over two millennia old: the
conic sections and quadric surfaces studied by the ancient Greeks happen to
be such objects.

A more balanced definition of the subject might be to say that it is the
study of the relations between the algebra of polynomials and the geometry
of the loci that they define. In this sense, the subject is much younger; it traces
its origins back to the introduction by Descartes of the notion of coordinates
in the plane, making it possible to describe a conic as the zero locus of a
quadratic polynomial f(x, y), and relate the algebraic manipulation of that
polynomial to geometric operations on the curve itself.

Of course, to Descartes and to mathematicians for some time afterward,
“polynomial” meant polynomials f (x,, ..., x,) with real coefficients, and
“locus” meant the set of real solutions, that is, the subset X of R” of vec-
tors x = (x;, ..., x,) such that f (x) = 0. The basic set-up of algebraic
geometry from the time of Descartes until the early nineteenth century was
this: one had a collection of polynomials f (x,,...,x,) € R[x,, ..., x,]
with real coefficients, and one studied their common zeros in n-space R".
This was a time when the techniques of the subject were pretty rudimentary,
but the problems studied were completely intelligible, even to nonexperts.

For example, consider the simplest type of algebraic variety: a plane curve,
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or in other words the zero locus X of a single polynomial f(x, y) of degree
d in two variables. If we assume the curve C is smooth, in the sense that f
does not vanish simultaneously with its two partial derivatives, then X will
be areal 1-manifold, that is, a disjoint union of copies of R and S! , the latter
of which were called “ovals” in the classical language. We may then ask how
many arcs and ovals a plane curve may have; and what sort of configuration
they may form—that is, which pairs of ovals may be nested. For example, a
plane quartic—that is, the zero locus of a fourth-degree polynomial in x and
y—without arcs may have any number of ovals from none to four; if there
are two, they may be nested or not, as in diagrams (c) and (d). The main tool
here is simply the fact that no line may meet a quartic curve more than four
times, and more generally that another plane curve of degree ¢ may meet
it in at most 4e points; thus, if a quartic contains two nested ovals it can
contain no other points, since a line joining such a point to a point interior
to the inner of the two nested ovals would meet the curve at least five times.

Of course, we may make further distinctions, e.g., between convex and
nonconvex ovals; for example, the outer oval of two nested ovals forming a
quartic may be either convex or nonconvex, as in figure (d) (the inner one
must always be convex; otherwise there would exist a line meeting the curve
six times).

The answer to the first of the questions posed above is Harnack’s theorem,
which says that a plane curve X of degree d may have any number of ovals
Jrom none to (d — 1)(d —2)/2+ 1. It is proved in elementary fashion using
the fact that a curve C passing through a point P lying on an oval of X
must meet that oval at least twice. For example, in the case above suppose
that a quartic curve had five ovals. We could then choose a point p; on each
of five ovals of C, and then find a conic curve Q passing through each of
these points; @ would then have to meet C in at least ten points, violating
the fact that a conic and a quartic can meet in at most eight points. In fact,
the bound given by Harnack’s theorem is sharp, as may readily be seen by
example.
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The second question above—what configurations the ovals of a plane curve
may form—is, by contrast, still unanswered to this day, even in the case of
curves of degree 6, though progress has been made by the Russian school.

To give another example of a problem examined and solved during this
period, consider Poncelet’s theorem. The original question asks when, given
two ellipses C and D in the plane, there is a polygon inscribed in one and
circumscribed about the other; the answer is a surprising one. To construct
such a polygon, starting with a given vertex P, on the outer ellipse D, is
easy: we just take the first side L, to be one of the two tangent lines to C
through F,; take P, to be the other point of intersection of this line with
D, L, the other tangent line to C through P,, and so on. The question
is then when this process repeats after a finite number of steps; Poncelet’s
theorem is that it does or does not independently of the choice of initial
point F,, so that the pair (C, D) will either admit a continuous family of
inscribed-and-circumscribed polygons or none at all.
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The “classical” period. The next transformation of the subject of algebraic
geometry occurred around the beginning of the nineteenth century. It con-
sisted of two changes in the basic objects considered: the introduction of
projective varieties, and of complex coordinates. The effect of the first was
that seemingly different varieties in ordinary Euclidean space, or affine space
as it is called, might in fact behave the same when completed in projective
space: for example, the three types of smooth conics in R’ all look like sin-
gle ovals in RP?; the difference lies simply in the situation of the “line at
infinity” with respect to the projective conic.

~

ellipse parabola hyperbola

"line at oo"

/ \/_\

Thus, we could say, to understand ordinary plane conics, we should first
understand projective conics, whose behavior is more uniform; then consider
the different ways in which they may meet a line in RPF’. Somewhat more
generally, in relation to the question posed above about arcs and ovals, we
may see that a smooth curve of degree d in RP? will consist entirely of ovals;
the arcs of the curve in R* will arise when the line at infinity intersects some
of the ovals of the curve.

Similarly, looking at the locus of complex zeros of a polynomial, rather
than just the real, has the effect of making uniform their behavior: for ex-
ample, the polynomials 1 — x? - y2 , 1+ x? - y2 ,and 1+ x4 y2 all have
isomorphic zero loci in C*—after all, they differ only by a complex linear
change of variables—even though their zeros in R? look different like a cir-
cle, a hyperbola, and the empty set, respectively. Again, the implicit idea is
to understand conics over C first, and then to ask what conics over R may
give rise to the same conic over C.

The effect of this change is striking when we consider again the question
about the topology of a plane curve X . If we denote by X(C) C CP? the clo-
sure in CP* of the locus of complex solutions of f(x,y) = 0—equivalently,
the locus of the corresponding homogeneous polynomial—we see that all
smooth curves of a given degree d are homeomorphic: they are compact
orientable surfaces of genus (d — 1)(d — 2)/2, and indeed are isotopically
embedded in CP.

We can use this information to say something about the real zeros of a real
polynomial. The locus X(R) C RP? of real points of X in RP? is just the set
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of fixed points of the action of complex conjugation acting on X(C). Thus, if
X(R) has J ovals, the quotient X(C)/t will be a 2-manifold with boundary
consisting of & copies of s! ; if we add & discs D? we may complete this
to a compact 2-manifold Y. We may then compute the topological Euler
characteristic of Y as

x(Y)=x(X(C)/t) +d = x(X(C))/2+=—-d(d—-3)/2+6.
But of course x(Y) <2, and we deduce that

d(d - 3)

3 +2.

6 <

Poncelet’s theorem similarly appears in a new light when viewed from this

vantage point. In fact, it admits a very simple proof, first observed to me

by Phillip Griffiths. We look at the incidence correspondence, consisting of
pairs:

I'={(P,L): PeD, Listangentto C, and P € L}.

This is again an algebraic curve, and when we look at its complex points we
find that it is a torus, that is, it is isomorphic to the complex plane C modulo
alattice A. Inthese terms, we can readily describe the action of passing from
one pair (P, L, ) to the next (P, L, ,): it is just a translation in the
plane. If this translation has finite order modulo the lattice, every polygon
closes up; if not, none do; and so we get Poncelet’s theorem.

In this way, the main focus of the subject shifted, in the first half of the
19th century, from varieties in real Euclidean space—real affine varieties—
to complex projective ones. It is worth remarking as well that one of the
main motivations for this shift was another sort of uniformity of behavior.
It was felt by Poncelet, who was instrumental in bringing about both of these
changes, that as a general rule intersections of varieties ought to be preserved.
Thus, if two lines in general meet in a point, they should continue to do so
even if they become parallel; thus the passage to projective space. By the
same token, if a line and a conic meet in two points, they should continue to
do so, even if we pull them apart; thus the introduction of complex numbers.

\ /
7/
7




94 JOE HARRIS

Arguments like the ones above about the number of ovals of a plane curve
or Poncelet’s theorem represent, from one point of view, the completion of a
bargain struck when first passing from the fairly natural environment of real
plane curves to complex projective ones: you make life easier for yourself
by dealing with better-behaved (if less readily visualizable) objects, with the
implicit promise of eventually going back and applying what you learn in this
way to the original problem. (This bargain has not always been so faithfully
kept; new objects tend to suggest new problems, and old ones are easily
forgotten. It is embarrassing, for example, when a mathematician working
with a hyperbolic PDE in three variables asks a question about real plane
curves, how little we know to this day about them.) Without question, these
changes opened the door to a new era in algebraic geometry, that culminated
in the work of Noether, Segre, Castelnuovo, Enriques, Severi, and others of
the Ttalian school.

“Abstract” algebraic geometry. The basic change from real affine variety
to the complex projective one revolutionized the way people thought about
algebraic geometry, and there was no going back. One of the reasons these
changes stuck was that, while the mental image geometers had of algebraic
varieties was altered radically, the formal structure of the subject was much
less dramatically altered. Thus, while the words “algebraic curve” conjured
up the image of what we would now call a compact Riemann surface, rather
than what most people would identify as a curve, many of the old theorems
and techniques could still be reproduced word for word in the new context.

Let me explain this in a little more detail, since it is an essential point.
Given a collection of polynomials f € C[x,, ..., x,]—or equivalently the
ideal I C C[x,, ..., x,] they generate—we associate to them their common
zero locus X = V(I). In the other direction, if X C C" is an algebraic
variety we let I(X) C C[x,, ..., x,] be the ideal of polynomials vanishing
on X . We thus have a two-way correspondence

1
{subvarieties of C"} f {ideals I C C[x,, ..., x,]}.

Note that this is not by any means bijective: in one direction, the composi-
tion of the two is the identity—the definition of a variety X C A" amounts
to the statement that V' (I(X)) = X—but going the other way the composi-
tion is neither injective or surjective. We can fix this up by simply restricting
our attention to the image of the map V', and happily there is a nice char-
acterization of this image (and indeed of the composition 7 o V); for any
ideal 7 C C[x_, ..., x,], the ideal of functions vanishing on the common
zero locus of I is the radical of I, i.e.,

I(V (D)) = rad(I).

Thus, there is a bijective correspondence between subvarieties X ¢ C" and
radical ideals I C C[x,, ..., x,].
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(Note also that if we replace C by R, the correspondence breaks down a
little further: even a radical ideal in R[x,, ..., x,] may be nontrivial and
still have no common zero locus. Instead, we use this correspondence in
effect to define the notion of variety over R.)

Now, let X C C" be a variety and I(X) its ideal. The quotient ring 4 =
A(X) =C[x,, ..., x,]/1 is then called the ring of regular functions on X , or
the coordinate ring of X . (Note that the condition / = rad(/) is equivalent
to saying that the ring Cl[x,, ..., x,]/I has no nilpotent elements.) Since
X is the common zero locus of the polynomials f € I, X is determined
by the ring 4; and indeed virtually every property of X may be expressed
directly in terms of A4 rather than of the locus X . For example, a point of
X is a maximal ideal in A(X) (in the case of a real variety it is an ideal
with residue field R); a map between two such varieties X and Y is exactly
a ring homomorphism A4(Y) — A(X) over C; the dimension of X is the
transcendence degree of the quotient ring of A(X) over C, and so on. The
point is, pretty much the entire subject can be expressed in terms of the algebra
of the rings A(X). Given that, it is no longer so surprising that the passage
from R to C involves so little actual reworking of the theory: we would
expect homomorphisms between R-algebras 4 and B to be closely related
to homomorphisms between 4®C and B®C, even though the corresponding
varieties may be completely different in appearance.

I do not mean, of course, that this passage from the geometric to the al-
gebraic description of algebraic geometry was simply a matter of obvious
algebraic analogues of geometric constructions and properties. In fact, it
involved a large number of new ideas and techniques. To give you one ex-
ample, in dealing with compact Riemann surfaces, an object of fundamental
importance is its Jacobian variety J(X). This is defined classically as the
quotient of complex g-space C° by alattice A C C® obtained by integrating
a basis of holomorphic 1-forms on X over a collection of cycles forming a
basis of the first homology H,(X, Z). The problem of giving an algebraic
construction of this essential object is a serious challenge, and was not solved
until Andre Weil. In general, the algebraization of the subject was initiated
in earnest in the work of Zariski, starting in the 1920s, and was carried out
over a number of decades, reaching in some sense its culmination in the work
of Serre.

Of course, having reworked the subject of algebraic geometry in this new
context, it may be applied over far more fields than just R and C. Indeed,
this is true to an extent that may seem remarkable at first. After all, a variety
over a finite field k = IF‘p will consist simply of a finite collection of points;

you will not see much difference in the picture of a curve in k> and the
picture of a surface in k*. You could argue that this is at least in part
because the field k is not algebraically closed, but the fact is that a curve

in 3-space over the algebraic closure k& of F, still does not look that much
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different from a surface; both are just countably infinite collections of points.

Nonetheless, geometric statements about real and complex varieties will,
for the most part, still be true in this general setting. For example, there is
even a Lefschetz fixed point theorem: we can define a cohomology theory
(étale cohomology, developed by M. Artin and Grothendieck) for varieties
X over F, that mimics the ordinary topological cohomology of a variety
over C (albeit with coefficients in the /-adic numbers Q,); and then it will
be the case that the number of fixed points of an automorphism 7 of X will
be expressed in terms of the traces of the action of 7 on the cohomology
groups of X .

Indeed, this is fundamentally related to one of the main constructions of
number theory, that of the zeta-function. For X a variety over the field
]Fp of p elements, we let N, be the number of points of X over the field
F, with ¢ = p" elements. We may then encode this information in the
zeta-function of X , defined to be the power series in ¢:

t"
‘ Z(X,t):exp(ZNr-7).
If we take the special case where T is the Frobenius endomorphism, sending

each coordinate to its p th power, then the number N, is just the number of

fixed points of the rth power of 7. If 7 has eigenvalues {4, .} on H "X ),
then,

N, = Z(—n"Tr(ﬂH"(X)) =221

YN, ==Y (-1 Z( 1) log(1 -4, ;1)

r i,j,r

SO

and

( 1! P([).P([)....
Z(X,1) H(l W,

where P,(t) = det(1l — 'ri - t) is the characteristic polynomial of the action
7, of T on H'(X). We may see in this way that the zeta-function Z is
a rational function, a theorem first proved by Dwork; Deligne carried this
further to prove the analogue of the Riemann hypothesis for varieties over

finite fields, that the P, were polynomials with integer coeflicients and roots

of absolute value p_i/ 2,

Actually, I may be overstating the extent to which one should feel surprised
that the Lefschetz fixed point theorem holds in this context. After all, the
one key ingredient of the Lefschetz theorem is the notion of intersection of
cycles on a manifold: the essential step in the proof is the calculation of
the intersection of the diagonal in a product X x X with the graph of a
map f: X — X, though it is often couched in the language of cup products.
At the same time, intersection of cycles is a theory that existed in algebraic

geometry some time before it existed in topology; indeed, it was the presence
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of this notion in algebraic geometry that supposedly motivated Lefschetz to
make the definition in the topological setting.

Finally, in all this talk of the algebraization of the subject, I am ignoring
another fundamental shift in the subject: the change from consideration of
affine or projective varieties—zero loci of polynomials—to abstract algebraic
varieties. This was actually a change common to many branches of math-
ematics in the early twentieth century: for example, while a group in the
nineteenth century meant a subset of either the symmetric or general linear
group closed under composition and inverse, the twentieth century intro-
duced the notion of abstract group. Group theory was thus split up into the
analysis of abstract groups—what we now think of as group theory—and the
study of ways in which a given abstract group could be mapped to the general
linear group, or in other words representation theory. Similarly, the notion of
abstract algebraic variety—an object locally isomorphic, in a suitable sense,
to affine varieties—became the basic object of algebraic geometry.

This did not make for a change so much in the objects studied as in the
way they were studied; analogously to the development of group theory, the
study of varieties was “factored” into the study of abstract varieties, and then
the ways in which a given abstract variety could be embedded in projective
space.

Schemes. We come now to the latest of the revolutions in the subject of al-
gebraic geometry, the introduction of the theory of schemes by Grothendieck
in the 1950s and 1960s. The notion of scheme has had tremendous impact,
both in a purely geometric and in an arithmetic setting. To a certain extent,
it is possible to describe this impact separately in the two settings, and I will
try to do this here.

To describe a scheme in the geometric context, recall the basic corre-
spondence introduced earlier between varieties X c C" and ideals I C
Clx,, ..., x,]. If one is going to fix up the above correspondence so as to
make it bijective, there are naively two ways of going about it: we can either
restrict the class of objects on the right, or enlarge the class of objects on the
left. In classical algebraic geometry, as we have just said, we do the former; in
scheme theory, we do the latter. Thus, we more or less define an affine scheme
X c C" to be an object associated to an arbitrary ideal I C Clx;s ..., x,].
To put it differently, given a finitely generated ring over C—that is, a ring of
the form 4 = C[x,, ..., x,]/I—we create an object, called Spec 4, whose
ring of functions is the ring 4. ,

What sense can this possibly make? Just as before, this makes sense to
the extent that most of the notions that we actually deal with in algebraic
geometry may be defined in terms of rings and ideals. For example, if X ¢ C"
is the subscheme with ideal I = I{X), we define a function on X to be an
element of the ring A(X) = C[x,, ..., x,1/I; the intersection of two such
varieties X, Y c C" is given by the join of their ideals; the data of a map
between two such varieties X and Y is equivalent to the data of a map
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¢: A(Y) — A(X); a point of X is a prime ideal p in A(X); the fiber of
the map X — Y given by ¢: A(Y) — A(X) over a point p € X is the
subscheme of Y corresponding to the ring A(Y)/ q)_l(p) , and so on. The
point is, all these things make as much sense whether or not I is a radical
ideal.

In these circumstances, for example, if we wanted to intersect the line
(¥ = 0) with the conic curve (y = x2) , we would take the intersection to be
the object X = SpecClx, y]/(y, x2) C C? in the affine plane defined by the
ideal (y,y — x2) =(y, x2) . This object has only one point, but it is not the
same as the point defined by the ideal (x, y): we simply declare a function
on X tobe an element of the quotient ring C[x, y1/(y, x2) = CoC-x—that
is, an expression of the form a+ bx . In other words, we say that a function
f(x,y) on the plane vanishes on X if and only if it vanishes at the point
(0, 0) and has normal derivative 8 f/8x zero at (0, 0) as well.

It is interesting to note that one justification for this generalization of the
notion of variety comes from the same source as Poncelet’s. Again, consider
aline and a conic in the plane, and suppose now that the line becomes tangent
to the conic. As before, we would like to say that there are still two points of
intersection of the two. Classically, it was just said that the line and the conic
intersected at the one point “with multiplicity 2,” but this is unsatisfactory
from a number of points of view. Scheme theory gives us a way of refining
it: we say that the intersection of the line (x) with the conic (x — y2) is
the scheme given by the ideal (x, x — y2) =(x, y2) . This not only conveys
the multiplicity of intersection in the fact that the ideal is not radical, it tells
us also the direction from which the two points that coalesced into this one
point came.

The second, arithmetic, impact of the notion of scheme arises from a fur-
ther generalization. To put it simply, we may observe that in the construction
of the scheme Spec A there does not need to be a ground field at all. the ring
A in general need not contain any field. Thus, for example, we have a funda-
mentally important scheme SpecZ , whose points (except for (0)) correspond

to the prime numbers.
— o &

® *——o
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In effect, then, we are treating the integers as variables—as functions on our
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space SpecZ. This turns out to be one of the most crucial points in the appli-
cation of schemes to number theory. For example, a diophantine problem—
in other words, a variety defined by polynomials with integer coefficients such
as y2 = x> + 1—will give rise to a scheme X = Spec(Z[x, y]/(y2 —x - 1)).
The inclusion Z C Z[x, y]/(y2 —x} - 1) then gives a map X — Spec(Z),
whose fibers (as loosely defined above) are exactly the reductions of the orig-
inal equation modulo the primes. Nor does the ring have to be finitely gen-
erated; geometric objects associated to rings such as power series rings are
extremely useful as auxiliary objects in algebraic geometry.

Needless to say, for every “why not” I toss off blithely here, a tremendous
amount of foundational work is implicit. For example, consider again the
Jacobian of a curve: now that we have described a curve as an object fibered
over SpecZ, its Jacobian should be one as well. Actually constructing such
an object—showing it exists and has the functorial properties we want—is
a project of major proportions (it took Steve Kleiman essentially a semester
to describe his solution of this problem in a course I attended). The need
for this sort of foundational material has given the subject, unavoidably, a
reputation for technical difficulty and inaccessibility. On the other hand,
it would be hard to overestimate the power of the ideas implicit in these
notions. After all, it is worth bearing in mind, to most mathematicians of
the early 19th century the notion of a complex projective variety must have
seemed more than a little forbidding as well.

Let me finish by considering what may lie ahead. If you are comfortable
with the thesis presented here, that progress in algebraic geometry is reflected
as much in its definitions as in its theorems, the natural question to ask is what
objects algebraic geometers will be studying in the next century. Currently
there are two notions abroad that make a claim to be the natural successor
of the notion of scheme (and Manin has even suggested that they should be
amalgamated).

The first is the notion of compactified arithmetic scheme, developed by
Arakelov, Faltings, and others. In this, we take a scheme of finite type over
Z and add additional structure to it: we throw in the data of a Kihler metric
on the “fiber at infinity.” This additional structure in some sense addresses
the problem that there is no “compactification” of SpecZ to a projective
scheme and allows us to tie together many of the phenomena associated to
individual primes. For example, the classical fact that the total degree of a
rational function on a projective curve—that is, the same number of zeros
minus the number of poles—is zero translates into the product formula, that
the product of the valuations of an element of a number field at all primes
(including the infinite ones) is one. The notion of arithmetic scheme is, as
you might expect, of special interest to number theorists, and indeed played
a role in Faltings’ proof of the Mordell conjecture.

The second new notion is that of a superscheme. This is a generalization
of the notion of scheme, in which we loosen still further the strictures on
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the rings we consider: we no longer require that it be commutative. This is
not to say that we look at arbitrary noncommutative rings; rather, we look at
rings with a Z/2-grading and require that they be skew-commutative, in the
sense that for x and y homogeneous, x -y = (—1)%EXED)y, Thys,
a commutative ring represents the special case where the grading is trivial;
and in general (if we are not in characteristic 2) the odd graded piece will
consist of nilpotents, though nilpotents that behave very differently than those
considered in the context of “classical” schemes. Much of the motivation
for the study of superschemes comes from physics, though the questions that
arise in trying to carry standard algebraic geometry over into this new context
seem interesting in their own right.

Does either of these two notions embody the future of algebraic geometry;
does it lie in some other direction altogether, or will the future bring about a
return to the classical questions of the subject? The only general pattern to
the development of the subject thus far seems to be a gradual but consistent
trade-off of naive geometric intuition for a formal unity (in each case, met
with cries of, “It may be a pretty theory, but it’s not geometry!”). Whether
this continues, how far and in what direction, is anybody’s guess.

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE IsLAND 02912

Current address: Department of Mathematics, Harvard University, Cambridge, Mass-
achusetts 02138



Proceedings of the AMS Centennial Symposium
August 8-12, 1988

A Century of Lie Theory
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The origins of a subject are frequently difficult to trace. The extent to
which precursor fields and early investigations, later perceived to have antic-
ipated the emergence of a field or to fit naturally into it, should be annexed
to the field can be a matter for vigorous debate. In the case of Lie theory,
Sophus Lie was already studying “continuous, finite groups of transforma-
tions” in the 1870s, and one could even make a case for including Euclidean
geometry as part of Lie theory [Crtn7]. However, in 1888 the first volume
of Theorie der Transformationsgruppen by “S. Lie unter Mitwirkung von Dr.
F. Engel” [LiEnl] was published by Teubner in Leipzig; and also Killing’s
classification [Kill] of complex semisimple Lie algebras appeared in Mathe-
matische Annalen. These events are the basis for the title of this article.

My assignment, roughly, is to report on the development of Lie theory
over the past 100 years, and to extrapolate it into the future. To do this in
a uniform, systematic way is, for me and I suspect for anyone, impossible.
So this account will be frankly idiosyncratic; I make here a blanket apology
to the many investigators whose interesting results will be slighted or ignored
completely; or maybe worse, treated clumsily. All I can offer by way of
consolation is the remark that it has happened to me too. Similarly, although
the bibliography is extensive, it is not at all comprehensive. References are
only intended to provide the reader with representative sources of further
information. Again I offer apologies to the many authors who will find that
I have neglected to mention relevant work of theirs.

1. The first example of a Lie group is Euclidean space R” with vector
addition as the group operation, but it is too simple-minded a group to re-
veal the essential features of Lie theory. Almost as well known, and much
more interesting structurally, is GL,(R), the group of real invertible n x n
matrices, with matrix multiplication as the group operation. It serves as the
basic template for Lie theory in the following sense: any subgroup of GL, (R)
which is closed (with respect to the standard topology on »n x n matrices) is
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a Lie group; and conversely, modulo some relatively subtle caveats ignorable
at this point (see §2.5), any Lie group is realizable as a closed subgroup of
GL,(R) forsome n (cf. [Hoch]). Of course, GL, (R) contains discrete, even
finite, subgroups, but Lie theory, in its most basic form, ignores these. The
subgroups of GL, (R) which are the immediate subjects of Lie theory are the
ones which are the opposite of discrete; the connected ones. The first miracle
of Lie theory is that the extremely weak topological hypothesis—closed and
connected, when combined with the algebraic condition—subgroup, yields a
subset which is a smooth (even analytic) surface (i.e., submanifold). If one
then looks at the tangent space to this surface at the identity matrix, one finds
it is endowed with a certain algebraic structure, the Lie bracket (which as an
operation on matrices is simply commutator). This is the Lie algebra. The
second miracle of Lie theory is that, except for the caveats ignored above, this
Lie algebra, a vector space with a bilinear nonassociative product, completely
determines the group from which it comes.

Without discussing in detail yet the foundational results of Lie theory, we
can observe that its essential feature seems to be the enrichment of the al-
gebraic notion of group by the topological notion of continuity: a Lie group
is an object which carries in a compatible way the structure of group and
of differentiable manifold (in fact analytic manifold; by Hilbert’s Sth Prob-
lem, finally solved in the early 1950s [Glea, MoZil, Yamal, Yama2, MoZi2,
Kapl1], it is enough to require a Lie group to be locally homeomorphic to Eu-
clidean space—no smoothness need be explicitly assumed). Thus continuity,
indeed smoothness, seems to be a sine qua non of the theory. Therefore, it is
interesting to observe that Lie theory has intimate and fruitful interactions
with the theory of discrete, in particular finite, groups.

1.1. An important aspect of the connection can be illustrated by a careful
study of the bread-and-butter topic of elementary linear algebra, Gaussian
elimination. Let 4 be an n x n matrix with entries {aij 11 <1i,j<n},

andlet z = (z,, z,, ..., zn)T be a column vector of length n. Consider the
system of linear equations

(1.1.1) Ax =z,

from which we want to solve another column vector of length n for x.
We will assume A is invertible, so that the solution x exists and is unique.
Gaussian elimination is a standard method for solving system (1.1.1). We
will discuss it in its naive form, untouched by worries about round-off error.
Writing the system (1.1.1) out long-hand we obtain:

Xy +apXy+ -+ a,x, =2,

Ay Xy + Ay Xy +---+a, X =Z
(1.1.2) 21t 2-2 2 2n'n .2

anlxl + an2x2 +-t annxn =Zn
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Suppose a,, # 0. Thenfor k=2, 3, ..., n, we can subtract a,,/a,, times
the first equation from the kth equation to arrive at an equivalent system:
1] 1] / 1] !
A XA Xy + A Xt Ay, X, = 24

! ! / !
AyyXy + Apa Xyt o+ +dy X, = Z
(113) 22772 23 3' .2n n ‘2

1] 1] ) ’ ! .I
an2x2 + an3x3+ e +annxn =z,

h o ' d ' -1 r -1
where a,;, = a,;, z) =z, and 4, = &, — 44,4y 5 2 = Zp — 4 214y
k>2.

Since the last » — 1 equations of system (1.1.3) involve only the n — 1
unknowns Xx,, X,, ..., X, , we evidently have a recursive procedure for solv-
ing the system (1.1.1)-(1.1.2). Providing that a,, # 0, we may subtract
a,,/d,, times the second equation in system (1.1.3) from the third through
nth equations to obtain a third equivalent system with a subsystem of n — 2

equations in n — 2 unknowns. And soon, after n — 1 steps, we will arrive at
a triangular system:

byxy +byx,+-+ b x, =y,
byyXy+ -+ byX, =,
(1.1.4) by +--+ by, X, =,

bnnxn = y n
This system can of course be solved by “back-substitution.” Of the several
slight variants of this procedure, we select the following. First, divide each

equation by its leading coefficient to obtain:

! ! ! !
Xy +bpxy +bisxy+--+ byx, =y

!

! !
Xy +byXs+--+ by x, =y,

(1.1.5) 2
!

xn = yn
where b; ;= b;lbij , y; =b; ! y;. Now observe we have already solved for
X :

n
(1.1.6a) X, =Y.
We can therefore compute x,_, by the simple recipe
(1.1.6b) Xyy = Vpoy = bl 1,%,
and so on. If we know x,,x,_,,..., X, then we compute x; by the
formula
h

(1.1.6¢) X =V;— Y bx,

j=i+l
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Thus, under some mild assumptions about the nonvanishing of certain num-
bers, we have a systematic procedure for performing matrix inversion by
means of ordinary (i.e., scalar) arithmetic.

Let us formulate this procedure in terms of matrix manipulations. Let L,
be the matrix.

1 00 07
al‘lia12 10 0
a,a,, 0 1 0

(1.1.7) L =

Then in terms of matrices, the passage from the system (1.1.2) to the system
(1.1.3) amounts to the multiplication of both sides of equation (1.1.1) by
L,: equation (1.1.1) is the matrix version of (1.1.2) and the matrix version
of (1.1.3) is

(1.1.8) LAx=Ly.

Similarly, the second stage of the procedure is equivalent to multiplying the
system (1.1.8) by the matrix

1 0 0 .- 07
0 1 0 - 0
0 (—aéz)—laél 1 0 -~ 0
(1.1.9) L=
0 (-dy)'a;y 0 1 0
0 0 0
L0 (~a))7'a,, 0 0 - 1.

Of the matrices L,, we may observe

(i) Each L, has all entries zero above the diagonal; that
is, L, is lower triangular.
(1) Additionally each L, has all its diagonal entries equal
(1.1.10) to 1. Since for a lower triangular matrix the diagonal
entries equal the eigenvalues, this is the same as say-
ing all the eigenvalues of L; are equalto 1. A matrix
with all eigenvalues equal to 1 is called unipotent.

Thus the matrices L; are unipotent lower triangular matrices. Let us
denote the set of all unipotent lower triangular matrices by % . We can easily
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check that

(i) The product of two matrices in # is also in Z .
(ii) The inverse of a matrix in % is in % (the analo-
gous fact for unipotent upper triangular matrices is
(L.1.11) implicit in equations (1.1.6a)—(1.1.6¢)). Thus % is
a group. In particular, the successive multiplications
of our system (1.1.1) by the L; may be achieved by
multiplication by a single appropriate element of % .

The result of these modifications by lower triangular unipotent matrices is
the system (1.1.4) which, in contrast to the L, , is the system corresponding to
an upper triangular matrix. Thus passage from (1.1.2) to (1.1.4) is expressed
in matrix terms by the equation

(1.1.12) LA=B,

where L isa unipotent lower triangular matrix and B is an upper triangular
matrix. Further, the passage from (1.1.4) to (1.1.5) corresponds to a matrix
factorization

(1.1.13) B=DU,

where D is a diagonal matrix and U is a unipotent upper triangular matrix.
Combining (1.1.12) and (1.1.13) gives us

(1.1.14) LA=DU
which we can convert to a factorization
(1.1.15) A=LDU,

where L (= .Z‘l) is lower triangular unipotent, D is diagonal, and U is
upper triangular unipotent.

Thus, Gaussian elimination produces, and is equivalent to, the factoriza-
tion (1.1.15) of a “generic” matrix A4 into a product of upper and lower
triangular unipotent matrices and a diagonal matrix. This equivalence is
well known and can be found in elementary textbooks [Hill, Stra].

1.2. However, as we have noted, this procedure will not always work. !
We can ask what to do when it does not. One can observe that it is always
possible to permute the equations so that, after rearrangement, the desired
diagonal coefficient is nonzero, and the elimination can proceed. This pro-
vides an algorithm that will always work, so elementary texts usually stop
their discussion with this, or a similar remark.

However, it is interesting to see what one can do in as systematic a fashion
as possible. Let us look again at the system (1.1.1) or (1.1.2), admitting the
possibility that a;, = 0. Then we may search down the first column until
we find a nonzero coefficient. (There must be one if A is nonsingular.)
Suppose the first row with a nonzero first entry is row i, . Then we may add
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a multiple of the i,th row to the rows below to make zeros of all entries of the
first column, except for a,- To describe this precisely, let E, ; denote the
“matrix unit” which has 1 in the ith row, jth column, and zeros everywhere
else. Then the process of eliminating all but one entry in the first column
amounts to multiplying 4 on the left by the matrix

(1.2.1) L =1- Za” a,E
j>t1

Here I is the identity matrix. Because i; was the index of the first row to
have a nonzero entry, this matrix will be unipotent lower triangular. Also,
note that if a,, # 0, then i, = 1, and the matrices L, of (1.1.7) and (1.2.1)
coincide.

So now we have a matrix

(1.2.2) A=L4

which has only one nonzero entry in the first column, in the #;th row. Look
at the second column. Choose the index i, so that

(i) iy # ).
(1.2.3) (ii) a;,# 0,
(iii) 7, is as small as possible subject to (i) and (ii).

With i, so chosen, we can eliminate all entries in the second column below
row i, by multiplying by the matrix

—1 1
(1.2.4) 2 =1-) a,,d,E,
jzi .

The matrix L, is unipotent lower triangular. The resulting product
(1.2.5) A" =14
has the properties

(i) Only row i, has a nonzero entry in the first column;

only rows i, and i, have nonzero entries in the first

(1.2.6) and second columns.

(ii) In the second column, all rows below row i, have a
ZETO.

Note that, with regard to condition (1.2.6)(ii), we should distinguish two
cases: if i, > i, , then (1.2.6)(ii) says that a; 2 =0, so the second column of
A" will have only one nonzero entry, viz. a2 but if i, < i,, then row i

of A' passes unchanged to 4", and it may happen that axz £0.
It should now be evident that we can continue this process of multiplying
A by unipotent lower triangular matrices until we produce

(1.2.7) B=14
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with the properties:

(i) For each j, 1 < j < n, the matrix B has exactly j
rows with nonzero entries in the first j columns.

(if) If i; is the row which has its first nonzero entry in
the jth column, then b, = Oifk>1i i

(1.2.8)

These properties are the analogs for general i of properties (1.2.6) for the
case i =2.

Given a matrix B satisfying conditions (1.2.8) we can produce from it an
upper triangular matrix B simply by permuting its rows: we move row i
torow 1, row i, to row 2, and so forth. This also amounts to a matrix
multiplication:

(1.2.9) B=PB,

where P is a permutation matrix—a matrix with all entries zero except for
one 1 in each row and column, whose effect on a column n-vector is simply
to permute its entries. (Precisely, P will take the jth entry to the jth entry.)

Finally, we can factor the upper triangular matrix B as in (1.1.13). Com-
bining (1.1.13), (1.2.7), and (1.2.9) gives the following result.

THEOREM 1.2.10. Given an arbitrary invertible n x n matrix A there is
a factorization

(1.2.11) A=LPDU,
Where
(i) L is unipotent lower triangular,
(i) P is a permutation matrix,
(iii) D is diagonal, and
(iv) U is unipotent upper triangular.

The factors P and D are uniquely determined. Further, U can be made

to satisfy the following condition:
Let p be the permutation of {1, 2,..., n} corresponding
(1.2.12)  to the permutation matrix P. If k </, but p(k) > p(l),
then u,, (the (k, [)th entry of U) is zero.
If U satisfies condition (1.2.12), then L and U are also uniquely deter-
mined. _

REMARKS. (a) The factor L in (1.2.11) is related to L in (1.2.7) by L =
L' The factor P in (1.2.11) is related to P in (1.2.9) by P=P~'.

(b) Condition (1.2.12) is just a translation of property (1.2.8)(ii) because,
in the notation of (1.2.8), the permutation p will send j to i T If k<! and
i, > i;, condition (1.2.8)(ii) says b, = 0; but b, ; = by, = bu,,. (Here
the i)i ; are the entries of B, and likewise for B and U .} In particular, the
reduction algorithm we have described will produce the factorization (1.2.11)
of A4 with U satisfying condition (1.2.12).
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1.3. The algorithm we have described is always feasible (at least theoret-
ically, ignoring ill-conditioning) and it leaves nothing to chance or choice.
Thus it, and the resulting decomposition (1.2.11), refines the decomposition
(1.1.15) of the “generic” matrix A. It yields a partition of the set of all
invertible matrices, i.e., the group GL,, into a finite number of sets indexed
by permutations. In particular, it yields a precise description of the set of
“nongeneric” matrices (those for which the factorization (1.1.15) does not
exist). Further, the set of matrices of form (1.2.11) for which P is a fixed
matrix has a very simple structure. Thus Theorem 1.2.10 suggests GL, is
sort of a “fattened up” version of S, , the permutation group on n letters. In
fact the relation, hinted at in Theorem 1.2.10, between GL, and S, is quite
intimate, and generalizes to all semisimple Lie groups. This is the first of the
connections between Lie groups and finite groups promised at the outset of
this section. TPhis linkage was first brought out in the work of Weyl [Weyll],
so S, and its generalizations are called Weyl groups.

1.3.1. To strengthen the reader’s belief in the importance of the S, —~ GL,
connection, we point out that the decomposition (1.2.11) has a straightfor-
ward and satisfying group-theoretic interpretation. We introduced the group
% of unipotent lower triangular matrices. Let % be the group of unipotent
upper triangular matrices.

Then the set of A for which a fixed P and D appear in (1.2.11) is
simply a (%, %) double coset. Further, the condition (1.2.12) is simply an
irredundancy condition to guarantee that no element of the double coset is
written twice. To see this, let {u;; : 1 <i < j < n} be the above diagonal
coordinates of a typical element U of % . Then we can check that

% N (PD) ' PD)=% NP TP

={UeZ:u;=0if p(i) >p(j)}-
This condition is precisely complementary to condition (1.2.12) and only the
identity element of % can satisfy both.

We can carry this further. Let & be the group of invertible diagonal
matrices. Then 2 normalizes both # and %, and

(1.312a) =2 - #%={DU:DeP,Ue%}={UD:DeZ,uc#%}
is the group of arbitrary (invertible) upper triangular matrices, and similarly
(1.3.1.2b) B =Y

is the group of lower triangular invertible matrices.
Let W denote the (Weyl) group of permutation matrices. Observe that
W normalizes & . Therefore

(1.3.1.3) P ={PD:DcP}={DP:DecD}=DP

forany P in W. Therefore, we see that if we only fix P in (1.2.11) and let
L, D,and N vary, then we obtaina (¥, #),ora (#,%),ora (% ,%)

(1.3.1.1)
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double coset. Again, we put D on one side only of P in (1.2.11) to eliminate
redundancy.
Thus (1.2.11) implies the double coset decompositions
GL,=BWB =UWHB =BWUY
(1.3.1.4) =JZrz=|)%Pz=\) ZPZ.
PEW PewW Pew

We may also observe that % and %, and & and & are conjugate in GL,, .
Explicitly, if

0 1

: 1
(1.3.1.5) w, =

1 :

1 0
is the permutation matrix corresponding to the permutation which exactly
reverses order {1, 2, ..., n}, then we see easily that w, = w, ! and
(1.3.1.6) 7 =wHw,, B=uwBuw,
Since w, € W, we can combine (1.3.1.4) and (1.3.1.6) to obtain
(1.3.1.7) GL,=BWH =UWE=\|) #PZ.

PeW

This double coset decomposition of GL, into (# , %) double cosets param-
etrized by the (finite) group W is commonly called the Bruhat decomposition.
Its analog in a general semisimple or reductive group is a central fact of
modern Lie theory. It was described by F. Bruhat [Bruh] for several classes
of groups. He was motivated by questions in representation theory. It was
also observed in several cases by Gelfand and Naimark [GeNa]. Its existence
in a general semisimple group was established by Harish-Chandra [HaCh1],
and it is a central feature of the theory of (B — N)-pairs developed by Tits
[Bour, Crtr]. We will give below some examples of its applications.

1.3.2. Another piece of evidence for the importance of S, = W in the
study of GL, comes from consideration of the dimensions of the double
cosets % P . Use of the term “generic” for the elements of the identity
coset suggests the following:

(i) The identity coset #<% is an open subvariety of
GL, , of dimension equal to n’ , the same as the di-
(L.3.2.1) mension of GL, .
(i) The other cosets Z P, P # I, are subvarieties of
strictly smaller dimensions.

These statements are true. Further, the codimension of a coset ZPZ is a
familiar combinatorial function on S, .



110 ROGER HOWE

To check statement (1.3.2.1)(i), simply count the number of parameters
involved. Elements of the group Z have n(n—1)/2 lower triangular entries
which vary arbitrarily; it has dimension n(n—1)/2. Similarly Z has dimen-
sion n(n —1)/2, and since the diagonal entries of & are arbitrary subject
to being nonzero, it has dimension n. So the dimension of % = %2 %
is 2(n(n—1)/2)+n=n".

On the other hand, in describing the coset Z P.% , we restrict certain of
the upper triangular entries U, 1<i<j<n, of U (asin (1.2.11)) to
be zero, according to condition (1.2.12). Condition (1.2.12) says we should
set u,;, [ < j, equal to zero whenever p(i) > p(j), i.e., when p reverses
the order of the pair (i, j). Thus the total number of parameters needed
to describe the coset Z PF is n* minus the number of pairs (i, j) whose
order is reversed by p; in other words, the number of pairs reversed by
p is the codimension of ZP% . But the number of pairs (i, j) whose
order is reversed by p is a familiar quantity, usually called the length of p
[Bour, Hill], and denoted /(p), or also /(P). Here P is, as it has been, the
permutation matrix representing p . In summary:

(1.32.2) The codimension of the coset ZP% in GL, is I(P), the
o length of the permutation associated to P.

Note that /(P) is also the dimension of the subgroup % N P 'ZP, as de-
scribed in (1.3.1.1).

1.4. We give here an example of how Theorem 1.2.10 fits into modern
mathematics. Consider the set GZ of k-dimensional linear subspaces of
n-space. The set GZ is called a Grassmann variety or Grassmannian, after
Hermann Grassmann (1809-1877), a German Gymnasiumlehrer whose deep
geometrical insight was radically under-appreciated during his lifetime. Note
that G;’ is the space of lines in n-space, so is better known as (n — 1)-
dimensional projective space; which of course is the backdrop for classical
algebraic geometry. The Grassmannians G, also play a prominent role in
classical algebraic geometry [HoPe]. But we will discuss here a more recent
development.

If Z is a k-dimensional subspace of n-space, and A4 isin GL,, then

(1.4.1) A(Z)={A(u):ue Z}

is another k-dimensional subspace. Hence, GL, acts by permutations on
the Grassmannian GZ of all k-dimensional spaces. It is an elementary fact
in linear algebra that any k-dimensional subspace can be transformed into
any other by recipe (1.4.1), for an appropriate choice of 4 in GL, . Thus
the action of GL, on GZ is transitive, or in other words, GZ is a homoge-
neous space or coset space for GL, . Thus, if we choose a base point V, in
G, , we have an identification

(1.4.2) G, ~GL, /Z,,
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where %, is the stabilizer of ¥, —the subgroup of P € GL, such that
P(V,) =V,

Let us choose for V) the obvious space of vectors—spanned by the first
k standard basis vectors—of the form

[xl,xz,...,xk,0,0,...,O]'.

The stabilizer &, of this V) is easily checked to be the group of matrices
of the form

(1.4.3) [Al X

0 Az] ’ A1eGLk’AZGGLn—k’XEMk’"—k'

This group &%, contains the group % of upper triangular matrices. It
follows from the Bruhat decomposition (1.3.1.7) that GL, consists of a
finite number of ((%Z, &,) double cosets. Under the projection mapping
n:GL, - GL,/%, ~ G,,a (%,,) double coset maps to a #-orbit.
Hence we can conclude from (1.3.1.7) that, under the action of %, the
Grassmannian GZ breaks up into a finite number of orbits.

A finer analysis, amounting to a continuation of the arguments which led
to (1.2.11), (1.3.1.7), and (1.3.2.2), yields the following conclusions.

THEOREM 1.4.4. (a) Set W, = W NP, (note that via the isomorphism
W ~S, wehave W, ~S, xS, ). Then the natural inclusion

(1.4.5) W /W, - %\GL, /%,

is a bijection. Hence, under the action of % , the Grassmannian G, consists
of the (}}) orbits

(1.4.6) Zn(w), weW/W,.

Here m(w) is the image of w € W in G, under the projection n: GL, —
G} ~GL, /%, .

(b) Each orbit Z n(w) is a cell, i.e., may be parametrized in a natural way
by a vector space. The dimension of the orbit Z n(w) is [(wW,), the length,

as an element of S, , of the shortest element in the coset wW, . 2

Theorem 1.4.4 has the following consequence. So far the reader may
have been thinking of the field of scalars as R, the real numbers. We now
want them to be C, the complex numbers. Then the #%-orbits # n(w) are
parametrized by complex vector spaces, so their dimensions over R are even.
Thus in the case of a complex Grassmannian, GZ (C), Theorem 1.4.4(b) pro-
vides a decomposition into even-dimensional cells. General results in alge-
braic topology [Mass] then guarantee that these cells define a basis for the
(rational) homology of GZ (C). In other words, Theorem 1.4.4(b) provides di-
rect and detailed information on the topology of the complex Grassmannians;
it says we may describe the topology of GZ (C) in terms of the combinatorics
of S,.
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This is an interesting result in itself, but it acquires still more significance
in view of the basic role that Grassmannians and their cohomology play in
the theory of vector bundles. We recall [Atil, Huse] that a k-dimensional
vector bundle

v
(1.4.7) 1

X
over a compact Hausdorff space X gives rise to a map (the “classifying map”)
(1.4.8) Vi X = G,

for large 7. (Observe there is an obvious injection of G, into G;'', so if

we have a map (1.4.8) for n = n, we have such a map for all larger n by

composition with these inclusions.) Further, if #n is sufficiently large, then

the isomorphism class of V' is determined by the homotopy class of y,, .
The pullback map of cohomology

(1.4.9) vy H'(Gy) — H'(X)

is thus an invariant of the isomorphism class of ¥ . The inverse images un-
der y, of certain elements of H™(G)) are the “characteristic classes” (Chern
classes, Pontrjagin classes, Todd class, etc.) that figure prominently in the
Riemann-Roch formula [Hirz], the index formula [AtSi, Gilk] and such mat-
ters. These brief indications must suffice for now to suggest how the Bruhat
decomposition, which arises in very elementary, classical mathematics, leads
directly into sophisticated modern topics.

The discussion given here for GZ extends to all “flag varieties”, homo-
geneous spaces of the form GL, /%, where & is any subgroup containing
% . Such a variety may be thought of as the set of all nested sequences
{0} =V, SV, SV, S CV, of subspaces of specified dimensions. There
is an analogous theory for all semisimple groups.

1.5. To begin an account of Lie theory with the Bruhat decomposition,
though it is consonant with modern views, is unhistorical in the extreme.
In particular, the Bruhat decomposition embodies two aspects of Lie theory
which were totally lacking at the outset, but which have come to be seen as
essential aspects of the theory as it exists today.

First, it is global. The main point of Theorem 1.2.10 is to refine the
“generic” analysis leading to the LDU decomposition to an analysis that de-
scribes all of GL,. The global aspect of the decomposition (1.2.11) (or
(1.3.1.7)) was brought out clearly in the previous remark, when the cosets of
the Bruhat decomposition were seen to give rise directly to the homology of
the Grassmann varieties. By contrast, the original emphasis of Lie theory was
local; only the group in a neighborhood of the identity was considered and
calculations were mainly carried out in terms of the “infinitesimal group,”
now called the Lie algebra. Attention to global features of Lie groups began
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to be emphasized in the work of Weyl [Weyll, Weyl2], who also coined the
term “Lie algebra.”

Second, it is completely algebraic. The alert reader will have noticed that
nowhere in the derivation of decomposition (1.2.11) was anything assumed
about the nature of the scalars, except that they formed a field, so the usual
operations of addition, subtraction, multiplication, and division could be
performed. Further, all the groups we dealt with were algebraic groups, i.e.,
were defined by algebraic equations, and likewise, the double cosets of the
Bruhat decomposition, and the corresponding cells in the Grassmann vari-
eties, are all algebraic varieties, and all our constructions were valid over any
field.

Appreciation of the importance of the essentially algebraic nature of the
theory of semisimple Lie groups did not develop fully until around 1950.
The algebraic viewpoint was developed during the 1950s into the theory of
algebraic groups by Chevalley, Borel, Tits, and others [Borell, 3, 4, Chevl-5,
Bour, Tits].

This development had at least two major consequences, both of which were
important for the theme of this section, the connection between Lie groups
and discrete groups.

1.5.1. First, Chevalley [Chevl] realized that an algebraic version of Lie
theory provided a construction of many simple finite groups. If, in our dis-
cussion of Gaussian elimination, we take our scalars to belong to a finite field
F, of g elements, then we are talking about the finite group GL, (F, ) > This
is not a simple group, but it almost is. If we restrict the determinant to be
1, then divide out by the group of scalar matrices, we obtain PSL, (F, q) , the
projective special linear group, which is simple. It had been realized since the
19th century that classical groups (orthogonal, symplectic, unitary, as well as
GL,, ) have forms over finite fields and that, after elimination of some small
abelian groups, these groups give rise to finite simple groups. Also, Dickson
[Dick] had constructed finite groups corresponding to the exceptional Lie
group G,. However, Chevalley was first to realize the systematic connection
between Lie theory, in its incarnation as the theory of algebraic groups, and
the construction of finite simple groups. Refinements of his work yielded all
infinite series of finite simple groups, leaving out only what are now known
to be 26 “sporadic” simple groups. (Some of these, including the largest, the
Fischer-Griess “Monster,” have very recently been found also to be related
to Lie theory in a more subtle way [FrLM].)

1.5.2. Second, the algebraic point of view led to the conception of a very
broad class of discrete groups, known as the arithmetic groups. Arithmetic
groups are important in algebraic geometry and, especially, are an essential
part of a vastly generalized formulation of the theory of automorphic forms
that developed during the 1950s and 1960s (see §4.2). The precise definition
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of arithmetic group is technical and not especially enlightening,4 but the
rough idea is that it is a group like GL, or SL,, but whose matrices have
integer entries. Thus SL,(Z) is a good example. The point is that arithmetic
groups are constructed in a methodical way using algebraic groups.

Consider, by contrast, the simple, abstract condition of being a lattice. A
subgroup I" of a Lie group G is called a lattice if

(i) T is discrete.
(1.5.2.1) (ii) The coset space G/I" carries a finite measure invari-
ant under the permutation action of G.

We observe that if one desires to compare abstract groups with Lie groups,
conditions (1.5.2.1) naturally suggest themselves. Imagine we have an ab-
stract group I', whose structure we would like to compare with a Lie group
G . To make the comparison, we would want to find a homomorphism 4 of
I' into G. We may as well assume / is an embedding, for G will teach
us nothing about ker/. But if A is an injection, we may as well identify
I' with A(T") and simply consider I'" as a subgroup of G. As a condition
of coherence or compatibility between G and TI', to ensure G is really ex-
ercising some control over I', we should require I" to be closed in G. But
if T is countable, in particular if I" is finitely generated, this is equivalent
to requiring I" to be discrete. Finally, finiteness of volume of G/I" is some
guarantee that I" is big enough to “see” all of G. 3 To take a very simple
example, any abelian group can be embedded in R”, provided only that it
is torsion-free and of cardinality not greater than the continuum. But, to be
embedded discretely, it must be a free group of k& generators, with k < n;
and, to be a lattice, it must be free of rank #, i.e., isomorphic to Z" .

Amazingly, it turns out that the abstract concept “lattice in a Lie group”
and the concrete construction “arithmetic group” are, though not identical,
very closely related. Thus Borel and Harish-Chandra [BoHC] proved that if
certain obvious conditions are met, then an arithmetic group is a lattice. For
example, GL,(Z) is not a lattice in GL,(R), essentially because GL,(Z) =
{£1} is not a lattice in GL,(R) = R™; but SL,(Z) is a lattice in SL,(R).
This fact, though nontrivial, is already implicit in the “reduction theory” of
Hermite [Borl3], and the proof of Borel and Harish-Chandra may be regarded
as a refinement and generalization of this theory.

It is natural to wonder to what extent the converse is true.® It clearly is
not true, for a very famous reason—the moduli of Riemann surfaces. Every
compact Riemann surface X (or surface with a finite number of punctures)
can be represented in an essentially unique way (i.e., up to conjugacy of I')
as a double coset space

(1.5.2.2) X ~ SO,\SL,(R)/T",
where

SLZ(R)={[?Z] ;a,b,c,deR,ad—bc:l}
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is the group of 2 x 2, real, determinant one matrices,

cosf —sin@
SOZ_{[sinO cos0]'0€R}

is the subgroup of rotations, and I is an appropriate lattice in SL,(R). But
it is well known that the compact Riemann surfaces of a given genus g form
a continuous family which fills out a much studied complex manifold of
dimension 3g — 3 (the Teichmuller space) [Bers]. As the surface X moves
around continuously, so must the corresponding group I (as in (1.5.2.2)).
In particular, there are uncountably many of them. Since there are only
countably many arithmetic groups—for essentially the same reason that there
are only countably many algebraic numbers—most lattices in SL,(R) are not
arithmetic.

However, again quite amazingly, this phenomenon of “deformation of
lattices” is essentially limited to SL, . Mostow [Mestl] showed that if G isa
semisimple Lie group, containing no factors (locally) isomorphic to SL,(R),
then a lattice I in G is rigid, that is, if T is another lattice in G and s
sufficiently close (in a fairly straightforward sense) to I", then I’ is actually
conjugate to I" in G.

Thus if we exclude SL,(R), we can at least wonder if all lattices are per-
haps arithmetic. But it is not true. However, Margulis [Margl] (see also
[Zimm1]) showed that it is very often true. He showed there is a simple
condition (that all simple factors have rank at least two) on a semisimple Lie
group that guarantees all its lattices are arithmetic. In some sense, “most”
Lie groups satisfy Margulis’ criterion. For example, any lattice in SL, (R),
n > 3, is arithmetic. Thus, the theory of algebraic groups has led to a rather
deep understanding of the geometric properties of discrete subgroups of Lie
groups. I should mention, however, that the question of which semisimple
groups contain nonarithmetic lattices is not yet precisely settled. See [GrPS,
Most2] for examples. This is one problem for the future.

Endnotes. 1. We can in fact formulate precisely the condition that it will
work for a given n x n matrix 4. Let 4 i be the leading j x j submatrix
of A4:

18y, - Gy

y )8y &y
P :

4j1 4y

Observe that multiplication of 4 on the left by a lower triangular unipotent
matrix does not change detA;. Thus if {d;} are the diagonal entries of
the matrix D in (1.1.15), we have detd; = det(DU); = []/_, d,. But in
order to carry out the reduction process to achieve the factorization, we need
d; # 0 for each i. From our formula relating det 4 ; to the d; , we see this
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condition may be expressed directly in terms of 4 by the requirement that
detd; #0,j=1,2,...,n

2. There is a very beautiful way to count the number of cells of a given
dimension. Consider the “Poincaré polynomial”

PG;(q) = Z quj ’
20
where bj is the number of cells (i.e., % -orbits) of dimension j. Consider
also the Poincaré polynomial

)
Ppla)=Ps (@)= ¢
wew

whose coefficients count the number of elements of W of given length. It
turns out that Py, divides Py, , and
k
Pgy = Py /Py, =P [(Pg -Pg ).

Explicitly, one has

nqi_
_,-1:[1‘1_

Hence .
k qn—k+1 _ 1)

pP,= .
k :1[[ q’ -1
The PG,, are well known in combinatorics as the “Gaussian polynomials”
[Procl, Zell3]
3. In th1s situation, the double coset % P.%# of (1.3.17) can be seen to have
order ¢ n(n=1)/ 2(q g 1®) , where /(P) is the length of the permutation P.
Summing over P gives the formula

# P
(GL,(F) =4¢"@-1"Y d"" =4"(a-1)"Ps (@),
peS”
where m = n(n—1)/2 and P is the Poincaré polynomial of S, . Compar-
ison with the easily derived formulas

n—1 .
*oL,(F) =[]@" - 4"
i=0

gives a formula for Pg (g). A similar method applies to the Poincaré poly-
nomial for Grassmannians (cf. note 2).

This is a very modest example of the transferral of information from char-
acteristic p to characteristic zero—a method which, thanks to recent devel-
opments in algebraic geometry, has become extremely powerful. Some spec-
tacular examples of it are the Deligne-Lusztig construction of representations
of finite Chevalley groups [DeLu], and the Beilinson-Bernstein and Brylinski-
Kashiwara proofs of the Kazhdan-Lusztig conjectures [BeBe, BrKa].
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4. For the ’satiably curious, here it is: A (linear) algebraic subgroup of
GL,(C) is a subgroup which is also an algebraic subvariety, i.e., the set of
zeros of a collection of polynomials in X, jo the coordinate functions on M, ,

and in det™', the reciprocal of the determinant function. Thus SL,(C), the
special linear group, is defined by the equation detg = 1; and O,(C), the
complex orthogonal group, is defined by the equation g‘g = 1, which can
be regarded as the collection of n’ scalar equations

13
> 88 =0y forl<i,k<n.

Let G € GL,(C) be an algebraic subgroup, and let I; be the ideal of
polynomials vanishing on G. If we can find a generating set {Pj};."=1 of
polynomials for 7 such that the coefficients of the P; are real, we say G is
defined over R. If we can find such P; with coefficients in Q, we say G is
defined over Q. If G is defined over R, then

Gg = GNGL,(R)

is called the real points of G . Similarly for Q.

If G is a linear algebraic group defined over Q, then GNGL, (Z) =
GpNGL,(Z) is called the subgroup of integral points of G. Two subgroups
I',, T, of a group G are called commensurable if I') NT', has finite index
inboth T'; and T, .

Let G, be a Lie group, and I' C G, a discrete subgroup. We say I is
arithmetic if there exist

(i) alinear algebraic group G € GL,(C) defined over Q, and
(11) a homomorphism ¥: G, — Gy, such that
ii) ker¥ is compact,
(iv) im ¥ is normal in Gy
(v) Gi/im ¥ is compact, and most importantly,
) ¥

(vi ! (GNGL,(Z))/ ker'Y is commensurable with (T"-ker¥)/ker¥.

5. It might be thought one should demand that G/I" be compact; but
this would exclude important examples including SL,(Z). The relaxation of
compactness to finiteness of covolume has been very fruitful..

6. A precise question of this nature was formulated by Selberg [Selb1].

2. An outline of Lie theory.

2.1. The glue that binds Lie theory together is the notion of a one-param-
eter group and its infinitesimal generator. For expository purposes, we will
consider the one-parameter group first, although this is a revisionist way of
proceeding. This discussion can be found in many texts (e.g., [Ster, Gilm,
Pont, Hoch, Vara], etc.). But it is so basic, it seems necessary to include it.

Let M be a manifold. (You can just think of an open set in R” if you
wish.) The set Diff(M) of diffeomorphisms (smooth, smoothly invertible
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eter group and its infinitesimal generator. For expository purposes, we will
consider the one-parameter group first, although this is a revisionist way of
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Let M be a manifold. (You can just think of an open set in R" if you
wish.) The set Diff(M) of diffeomorphisms (smooth, smoothly invertible
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mappings) of M is a group with composition of mappings as the product.
The most perspicuous way to think of a one-parameter group of diffeomor-
phisms of M is simply as a homomorphism

é: R — Diff(M)
t— (}5[.

However, technical considerations require certain smoothness conditions.
These may most conveniently be formulated by requiring that the map

(2.1.2) O:Rx M- M, O, m)=¢,(m), teR,meM,

(2.1.1)

be smooth,
Consider a one-parameter group of diffeomorphisms ¢, of M. Fix m €
M , and consider the curve

(2.1.3) T (l) = ¢, (m).

Conditions (2.1.2) guarantee this is a smooth curve. It passes through m at
t = 0. At that point (in time and space), the tangent vector to the curve is

(2.1.4) v(m) = 7,,(0) = %fﬁt(m)l,:o-

The map v: m — v(m) is a vector field on M—it assigns to each point m
the tangent vector v(m); condition (2.1.2) guarantees it is a smooth vector
field.

REMARK. The intuitive geometric connection between the one-parameter
group ¢, and the vector field v is most easily seen by taking, temporarily at
least, M to be an open set in R”. Then equation (2.1.4) is equivalent to

¢,(m) =m+tv(m) + t2£(t , m),

where £(¢) is a smooth function of ¢ and m. Thus, for small times, the
motion ¢, displaces m approximately by the vector tv(m); this approxi-
mation becomes more accurate as ¢ — 0. Thus, if we allow ourselves the
language of infinitesimals, we may say that after an infinitesimal time €, the
point m moves to m + ev(m). This was standard parlance in the 19th cen-
tury, and the actual motion m — ¢,(m) was thought of as being composed
of a very large number of these very small motions m — m + ev(m) . (This
intuition is justified rigorously by Euler’s approximation scheme for solving
O.D.E. [GuNi, Zill], etc.) For this reason the vector field v was called the
“infinitesimal generator” of the one-parameter group ¢, .

Now consider the tangent vectors to the curve y, at other times. We
compute

T(s) = 4,y = LBy 3 )My

(2.1.5) d
= a"t'¢,(¢s(m))|z=o = V(¢ (m)).
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Thus, the tangent vector to the curve y, at any point is the vector assigned
by the vector field v of (2.1.4). In other words, the mapping ¢ — y, (f) is a
solution of the differential equation

(2.1.6a) %(t) =v(y(1)).

Since y,,(0) = m, we see that y, is the solution of equation (2.1.6a) with
initial condition

(2.1.6b) y (0) = m.

The above reasoning applies for all times ¢ and all m in M. Thus we see
that having the one-parameter group ¢, gives us solutions, for all time ¢,
and for all initial conditions m, of the differential equation (2.1.6a).

On the other hand, suppose we start with the differential equation (2.1.6a).
The classical (nineteenth century—contemporaneous with Lie) Existence and
Uniqueness Theorem for ordinary differential equations (see, for example,
[Ster, LoSt, BiRo]) tells us that given any m , there is some &(m) > 0 such
that for |¢| < &(m), there is a solution y, (f) of equation (2.1.6a) with initial
condition (2.1.6b). Moreover, this solution is unique. An easy extension
of this basic result shows that in fact, for each m, there is some minimum
number ¢~ (m) < 0 and some maximum number ¢*(m) > 0 such that Y (£)
can be defined for 1™ (m) < t < t*(m), and if t"(m) < oo, then as t —
t*(m), the curve P (1) “drops off the edge of the world” in the sense that
¥,,(t) has no limit points in M as ¢ — ¢"(m); similarly if ¢ (m) > ~c0.

Consider a particular solution curve y, (#) of (2.1.6a) with initial condi-
tion (2.1.6b). At time ¢ = s, the curve passes through y, (s). Consider the
curve y, obtained from y, by shifting the time variable:

(2.1.7) ym,s(t) =y, (s +1).
Then we can compute

G o) = Epls +1) = 00 (5 + 1) = 03y (0.

Thus y,, , also satisfies the differential equation (2.1.6a); but P, s satisfies

the initial condition y, (0) = 7,(s). From the uniqueness part of the
Existence and Uniqueness Theorem, we conclude

(2.1.8) V(S 1) =V (O) =7, ()

Let us now assume that y, (¢) is defined for all ¢ and all m. ! Then for
each ¢, we can define a map

(2.1.9) b M — M

by the recipe
¢, (m) = 7,(0).
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With this change of notation, the relation (2.1.8) turns into

bps(m) = ¢, (ds(m)),

thatis, ¢, = ¢ o@,. Since @, is clearly the identity, we conclude ¢, and
¢_, are mutually inverse mappings. Hence each map ¢, is actually bijective
and the map ¢ — ¢, is a homomorphism from R to the group of permuta-
tions of the points of A/ . Further, the Existence and Uniqueness Theorem
has some standard complements concerning smoothness in the initial condi-
tions which guarantee that the maps ¢, are smooth, hence diffeomorphisms,
and even that the map ¢ defined as in (2.1.2) is smooth. Hence the ¢, form
a one-parameter group of diffeomorphisms of A7 .

To sum up, we can enunciate the following correspondence principle,
which amounts to a geometric/group theoretic interpretation of the Existence
and Uniqueness Theorem for O.D.E.

To every one-parameter group ¢, of diffeomorphisms of a
manifold M is associated a vector field v, the “infinitesimal
(2.1.10)  generator” of ¢,, by equation (2.1.4). Knowledge of ¢, is
equivalent to the ability to solve, for all initial values m and
all times ¢, the differential equations (2.1.6) associated to v .

Thus there is a one-to-one correspondence between one-parameter groups
acting on M and certain vector fields on A, namely those for which the
equations (2.1.6) can be integrated for all time. (If M is compact, this will
be all vector fields.) In Lie’s time, one was not so fastidious about the global
requirement “for all m for all time,” so one considered simply that there
was a one-to-one correspondence between “one-parameter groups” (in the
19th century sense) and vector fields. Today, one achieves this one-to-one
correspondence by replacing the one-parameter group by the one-parameter
“local group” or “pseudo-group” [GuSt2]. This is not a group but a collection
of mappings trying to fit together to be a group. It is the obvious formalization
of what you get from the Existence and Uniqueness Theorem. It is a rather
cumbersome technical notion which attempts, with only partial success, to
restore to us the Eden we lost when we achieved awareness of global problems.

2.2. A fundamental class of examples of one-parameter groups is obtained
by taking M simply to be a vector space, and requiring the ¢, to be linear
transformations. Since the infinitesimal generator v of ¢, is obtained as a
limit,

(2.2.1) v(m)=limw=lim (¢‘t_1)(m), meM,

t—0 t t—0

we see that m — v(m) is likewise a linear transformation. Let us call it A.
Thus

~1
(2.2.2) A =lim % .
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where this limit is taken in the algebra End(M) of matrices on M . With
this notation, the differential equations (2.1.6) specialize to
dy

(2.2.3) = AQ).

Equation (2.2.3) will be recognized as a system of constant-coefficient ho-
mogeneous linear differential equations, such as occupy a large chunk of
introductory courses on ordinary differential equations [GuNi, BoDP, Zill],
and form the basis of linear system theory [TiBo, ZaDe].

We know how to solve equations (2.2.3) explicitly in terms of the matrix
A. We form exp A, the exponential of 4, by means of the familiar power
series for exp:

A4 4 A*
(2.2.4) eXpA_1+A+7+T+M+F+”"
Then termwise differentiation of the function ¢t — exptA4 yields the equation

(2.2.5) %(exp tA) = AexptA.
It follows that
(2.2.6) V(1) = exp tA(m)

is a solution of (2.2.3) with initial value m at ¢ = 0. Thus, in this special
case, we can recover the one-parameter group from 4 defined by (2.2.2) by

(2.2.7) ¢, = exptA.

Because of formula (2.2.7), one often abuses terminology and calls A4 (rather
than the associated vector field which assigns A(v) to v) the infinitesimal
generator of ¢,. Also, because of strong analogies between this special case
and the general one-parameter group, one often refers to the procedure of
constructing a one-parameter group from the vector field which is its in-
finitesimal generator as exponentiating the vector field.

2.3. We now have a grasp of the bedrock of Lie theory, the connection
between a one-parameter group and its infinitesimal generator. The next
step, which is the fundamental insight of Lie theory, is how to combine
several one-parameter groups into a multi- (but finite!) parameter group—a
Lie group. Roughly speaking, one finds that a Lie group is a very coherent
collection of one-parameter subgroups.

To firm up ideas, we imagine, in analogy with formula (2.1.2), that we
have a manifold M, and an auxiliary manifold G, which is parametrizing
a group of diffeomorphisms of M . Thus we have a mapping

(2.3.1) O:Gx M- M,
which we take to be smooth, such that for each g € G the map
(23.2) i MM, ¢ (m)=(g,m),
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is a diffeomorphism of A/, and such that the maps ¢g form a group; the
composition of two of them is a third one, the identity is one, the inverse
of one is one, etc. An important example of such a G occurs when M is a
vector space, and G = GL(M) is the group of all invertible linear transfor-
mations of M . )

Inside the group G there will be various one-parameter subgroups, to
each of which corresponds a unique infinitesimal generator. A priori these in-
finitesimal generators are just a set of vector fields. Let us call this set Lie(G).
The magic comes in realizing that in fact this seemingly rather unwieldly ob-
ject, the collection of infinitesimal generators of one-parameter subgroups of
G, has a very precise structure: it is, first, a real vector space; and in addition,
it has defined on it a skew-symmetric product—the Lie bracket. (The modern
approach to Lie groups, which defines Lie(G) as the space of left-invariant
vector fields on G, makes these facts virtually automatic. It is commendable
in its efficiency, but it takes a lot of the wonder out of the story.)

The piece of algebraic structure on Lie(G) that is easiest to understand
is scalar multiplication. If ¢ — ¢, is a one-parameter group of diffeomor-
phisms, with infinitesimal generator v, then t — ¢, s € R, is obviously also
a one-parameter group of diffeomorphisms, and its infinitesimal generator is
easily checked to be sv. Thus the set Lie(G) is closed under multiplication
by scalars.

The next observation is that the infinitesimal analog of multiplication of
one-parameter groups is simply addition of vector fields. This is easily seen
by the following formal, purely local computation. Let ¢, and y, be two
one-parameter groups, with infinitesimal generators v(m) and u(m), acting
on a region M in R". Then for small ¢, we have

$,(m)=m+to(m)+fe(m, 1),  w(m)=m+tu(m)+te,(m, 1.
Hence

(, 0 $,)(m) = w,(m + w(m) + e (m, 1))

(2.3.3) = m+to(m) + e (m, 1)

+ tu(m + to(m) + e (m, 1) + e,
= m + t((m) + u(m)) + L'e(m, 1).

Thus ¢ — y,0¢,(m) is a curve whose tangent vector at m is v(m)+u(m). Of
course, t — y, o ¢, is not usually a one-parameter group, but this calculation
leads us to hope that, if {¢t} and {y,} are subgroups of the group G of
(2.3.1), then there would also be within G a one-parameter group with v +u
as infinitesimal generator. It is indeed so. In the case when G is the group
GL(V) of a real vector space V (or any closed subgroup thereof), this is
guaranteed by the Trotter product formula [Howe7]:

(2.3.4) exp(A+ B) = '}Lngo(exp(A/n) exp(B/n))".
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The correspondence between “infinitesimal composition” and addition of
infinitesimal generators is very nice, but it leaves us with an enigma. Vector
addition is a very faceless operation; for example, the only isomorphism
invariant of vector spaces is their dimension. The simple-minded operation
of vector addition cannot begin to reflect the extremely rich possibilities for
group laws of Lie groups.

Thus we need to put more structure on our infinitesimal generators. A
way to do this is suggested by the observation that an obvious way in which
vector addition fails to capture general group laws is that it fails to be non-
commutative. We could thus ask for a way to reflect the noncommutativity
of a group in the infinitesimal generators of its one-parameter subgroups.

A plausible way to do this is to study the commutators of one-parameter
groups. This turns out to be an excellent choice. It essentially involves refin-
ing calculation (2.3.3) to second order:

W, 0 ¢,(m) = w,(m+ tw(m) + e (m, 1))
=m+ tv(m) + e (m, t) + tu(m + to(m) + e,(m, 1))
(2.3.5) + ey (m + to(m) + e, (m, 1))
=m+ tv(m) + tu(m) + t28v(m)u(m) + t2al(m , §)
+e,(m, 1)+,
where # is an appropriate smooth function and

(2.3.6) 0, () = lim u(m + tv(r:1)) — u(m)

is the directional derivative of u at m in the direction of v(m). The term

av(m)(u)(m) is not the only second order term, but it is the first term which

reflects the interaction between y, and ¢,, and in particular is the only
second order term which depends on the order of composition of ¢, and
w, . Thus, when we compute the commutator, we find

2 3,
(2.3.7) w,o¢,0ow_0d_(m)=m+t (av(m)(u)(m) - au(m)(v)(m)) + 7.

Thus, although the curve ¢t — y,0¢,0w_, oy _, is not necessarily smooth (it
may have a cusp at ¢ = 0), its geometric tangent vector at ¢t =0 is

(2.3.8) By (W)(1) = B,y (0)(1).

A more rigorous result valid for pairs of matrices is the commutator formula
[Howe7]:

(2.3.9) ’}ingo(exp(A/n) exp(B/n)exp(—A/n) exp(—B/n))"2 =exp[A, B],
where
(2.3.10) [4, B]=AB — BA

is the commutator of A and B.
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We can see from (2.3.3) and (2.3.7), in a formal way (which was good
enough for Lie), that if we have a group with the structure of a differentiable
manifold acting on another manifold, then the set of infinitesimal genera-
tors of its one-parameter groups should be a vector space endowed with an
antisymmetric product, given by (2.3.8) (which is now generally referred to
as the Lie bracket of the vector fields ¥ and v ). With more work than we
have done here, this can be shown rigorously. From formulas (2.3.4) and
(2.3.9), we can confidently make the more modest assertion that the set of
infinitesimal generators (in the sense of formula (2.2.7) and the remark fol-
lowing) of one-parameter groups of a closed subgroup of GL,(R) forms a
linear subspace of the space M, (R) of n x n matrices, and is closed under
the commutator operation (2.3.10). In other words, the set of infinitesimal
generators of a Lie group (of the concrete sorts we have been discussing)
forms what is now called a Lie algebra. (This terminology was introduced by
Hermann Weyl; the original term was “infinitesimal group.”)

2.4. The incredible thing is that this bilinear product, the Lie bracket or
commutator, virtually determines the group that gives rise to it. When one
considers this, and then the tight control that Lie theory exercises over finite
group theory (briefly described in §1.5), the tight control that finite reflection
groups exercise over Lie theory (briefly described below in §§2.9, 2.10), and
the manifold applications of Lie theory within mathematics and to physics
(see §§3.1 and 4), it is hard to avoid a sense of awe.

To see how the commutator controls the group law, consider the following
elementary calculations in A, (R). For matrices 4, B, set

L,B)=AB, R, (B)=BA,
ad,(B) =[A4, Bl=(L,— R,)(B).
Observe that the maps

(2.4.2) L:A-L,, R: A—- R,

(2.4.1)

are, respectively, a homomorphism and an antihomomorphism of M, (R)
into End(M,(R)). In particular, if P is any polynomial in one variable,
then

(2.4.3) P(L,) = LP(A), PR, = RP(A).
These identities extend to convergent power series. In particular,
(2.4.4) Lexp(tA)Rexp(tB): C — exp(t4) Cexp(tB), CeM,(R),

is a one-parameter group of linear transformations of Af,(R). One easily
computes that its infinitesimal generator is

(2.4.5) L,+ Ry
Taking B = —A gives the famous formula

(2.4.6) exp(t4) Cexp(t4)”" = exp(ad ,)(C).
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If we follow the common practice of denoting the action of GL, on M, by
conjugation as Ad:

(2.4.7) Adg(B)=gBg ',
then we can write
(2.4.8) Adexp(t4) = exp(tad ).

Consider the nth power mapping 4 — 4" . This is a smooth mapping
from M (R) to itself. Consider its derivative, which we will denote by DA" .
For each point 4, DA" is a linear map from M, (R) to itself, defined in the
standard way (cf. [Lang2, LoSt], etc.),

(A+tB)" — 4"
—
By a computation redolent of freshman calculus, we find

n k —k—
(2.4.10) DA" =3 LR i =Y (LR
Multiplying by ad 4 gives
(2.4.11) (adA)(DA") =L, » — R .

(2.4.9) DA"(B) = lim

Taking linear combinations over various n gives
(2.4.12) ad A(DP) = LP(A) — Rp(4

for any one-variable polynomial P. This identity extends to convergent
power series. In particular,

(ad4)(DexpAd) =L, ,— R, =(
= (exp(ad,) — 1)R

-1

Lexp A (Rexp A) -1 )Rexp A

(2.4.13)
exp 4’
Formulas (2.4.11)-(2.4.13) are simply a convenient means to express some

formal identities in power series in R, and L,. Consequently, we may
divide (2.4.13) by ad 4 to obtain

(2.4.14) DexpA=n(ad )R, 4>

where
(x)_exDx_1_1+£+x_2+...+—xm +--
M=% T 'T27% m+1 T

Consider a product exp Bexp 4 for two matrices 4, B. Since exp is analytic
and invertible near 1, we know that if 4, B are small enough, there is an
analytic function C(4, B) such that

(2.4.15) expC(4, B) = expBexp 4.
Differentiate (2.4.15) with respect to B near B = 0. This gives
Dexp A(85C(4, 0)) = Bexp 4.
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Using formula (2.4.14) for Dexp 4 gives
(2.4.16) 8,C(4,0) = n(ad4)” ' (B).

Formula (2.4.16) has a very important consequence. The maps Lexp /B
define a one-parameter group of linear maps of M, (R), with associated in-
finitesimal generator v(X) = BX . Formula (2.4.16) says, if we use coordi-
nates around 1 (the identity matrix) obtained by pushing forward the usual
linear coordinates around 0 via exp (so-called exponential coordinates or
canonical coordinates), then the infinitesimal generator of L has the
form

(2.4.17) #(X) = nad X)~"(B).

exp th

2

But we observe this vector field is expressible solely in terms of X, B, and the
commutator operation. It follows that we can express the function C(4, B)
of (2.4.15) as a power series in multiple commutatorsin 4 and B. The terms
in this power series can be found explicitly by successive differentiation of
(2.4.17). The first few terms are

C(4,B)=A+ B+ }[B, A1+ L([4[4, Bll+[B, [B, 41}
+ %[B,[4,[B, ANl +---.

The full formula, known as the Baker-Campbell-Hausdorff’ formula can be
found in many places [Jacol, Serr2, HaSc].

From formulas (2.4.14)-(2.4.17) we can make the following somewhat
technical but crucial observation:

Suppose g C M, (R) is a Lie subalgebra, i.e., a subspace
of M, (R) closed under the commutator operation. Then, if

(2.4.18) A, B arein g and close enough to 0, the element C(A4, B)
of formula (2.4.15) is also in g, and can be computed strictly
in terms of the commutator operation in g.

Thus, in particular, if U is a small neighborhood of 0 in g, then expU
defines a “local group.” For the general Lie group, 3 this can be established
by appealing to Darboux’s Theorem [Ster, Chev3, Vara], a general qualitative
result on systems of first order P.D.E., of the same vintage as Lie’s work.

2.5. Let us now stand back and see what we have found out. Let G be
a Lie group. By the Lie algebra of G we understand the set of infinitesimal
generators of one-parameter subgroups of G, endowed with a structure of
vector space by means of formula (2.3.3) or (2.3.4), and with the bilinear
skew-symmetric Lie bracket by means of formula (2.3.8) or (2.3.10).4 As
above, we denote the Lie algebra of G by Lie(G). Formulas (2.3.3), (2.3.4),
(2.3.7), and (2.3.9) show that the assignment G — Lie(G) is functorial in the
following sense. Let g and h be Lie algebras. * A homomorphism from g to
h is alinear map a: g — h which takes Lie bracket to Lie bracket. Let G and
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H be Lie groups, and let y: G — H be a (smooth) group homomorphism.
Define a mapping

(2.5.1) dy: Lie(G) — Lie(H)

by the obvious rule: if g, is a one-parameter subgroup of G, with infinites-
imal generator x, then dy(x) is the infinitesimal generator of the one-
parameter subgroup y(f,). Formulas (2.3.3), (2.3.4), (2.3.7), and (2.3.9)
show that dy is a homomorphism of Lie algebras. Clearly a composition
¥’ oy of group homomorphisms gives rise to a composition of Lie algebra
homomorphisms:

(2.5.2) d(y oy)y=dy ody.

Thus we have two classes of structures—one, Lie groups, with both geo-
metric and algebraic aspects, and the other, Lie algebras, which are purely al-
gebraic objects. Each of these classes has a notion of homomorphism between
objects, and so forms a category. We have a correspondence between the two
classes of objects, taking a Lie group G to its Lie algebra Lie(G). This cor-
respondence takes homomorphisms to homomorphisms and preserves com-
position, so it is a functor [Jaco2]. It follows from results of Lie or from
Ado’s Theorem (see Endnote 4) that G — Lie(G) is surjective—every Lie
algebra is the Lie algebra of some Lie group.

Thus to complete our understanding of the correspondence G — Lie(G)
we need to know how many different groups correspond to the same Lie alge-
bra (or isomorphic Lie algebras). To determine this, we use a key technical
lemma [Chev3, Serr2, Ster].

LEMMA 2.5.3. Suppose G is a Lie group, with Lie algebra g, and hC g
is a Lie subalgebra. Then there is a connected Lie group H with Lie algebra
h, and an injective homomorphism j: H — G such that dj: h — g is simply
the inclusion map.

The delicate aspect of this result, of course, is that j(H), the subgroup
generated by exph, may not be closed in G'. Lines of irrational slope in a
torus are the familiar example. Thus, to have the correct topological struc-
ture, H must be constructed outside of &, then injected into G . The proof
of Lemma 2.5.3 is an elaboration of observation (2.4.18). The argument
requires some care and is somewhat tedious, but is basically straightforward.

Now consider two connected Lie groups G, and G, whose Lie algebras
are isomorphic. We will abuse notation and denote them by the same letter,
g. Then the Lie algebra of the product group G, x G, is just the sum g+ g
of two copies of g. The diagonal

(2.5.4) g,=1{(x,x):xeg}

is a Lie subalgebra of g+ g. Let G, be the group and j: G, — G, x G,
be the homomorphism provided by Lemma 2.5.3 for the subalgebra g, .
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Let p, be the projection map from G, x G, onto G;, i = 1,2. The
composition p; o j is a homomorphism from G, to G,, and the associated
map d(p; o j) is obviously an isomorphism of Lie algebras. It follows that
p;oJj is a diffeomorphism in the neighborhood of the identity. Since it is a
homomorphism, we find by translating from the identity to a general point
that p, o j is locally a diffecomorphism at every point of G. Hence p;oj is
a covering map (cf. [Hu, Tits, Hoch], etc.).

It follows that, if G, is simply connected (cf. [Hu, Tits, Hoch], etc.),
then p,oj must be an isomorphism. If both G, are simply connected, then
G, ~ G, ~ G,. Thus up to isomorphism there is a unique simply connected
group with Lie algebra g.

On the other hand, given any connected group G with Lie algebra g, it
is routine to check that the standard construction (cf. [Hu, Hoch], etc.) of
the universal cover G of G allows one _to define a group structure on G
such that the natural projection map =: GoGisa group homomorphism,
The kernel of © must be a discrete and normal subgroup of G: a simple
argument implies that a discrete normal subgroup of a connected group is
central.

The above discussion has outlined the main considerations in the proof of
the following theorem, which summarizes the main foundational facts of Lie
theory (Lie’s Theorems 1, 2, 3 and their converses [Gilm, Tits, Vara), etc.).

THEOREM 2.5.5. (a) For each Lie algebra g, there is a unique (up to
canonical isomorphism) connected and simply connected Lie group G with
Lie(G) =

(b) Further, if g and h are Lie algebras with associated connected and
simply connected groups G and H, and B:g — h is a homomorphism of
Lie algebras, then there is a unique homomorphism of groups «: G — H such
that

B
—_—

(2.5.6) exp

QN —

h
lexp
— H

commutes, i.e, B =da. Conversely, given a we have seen how to construct
B=da.
(¢) If G is another Lie connected group with Lie algebra g, then

(2.5.7) G~G/L
where L is a discrete subgroup of the center of G; given any such L, the
quotient group G/L is a Lie group with Lie algebra g

REMARKS. (a) Parts (a) and (b) can be more cryptically summarized as:
the functor G — L1e(G) from (the category of) connected, simply connected
Lie groups to (the category of) Lie algebras is an equivalence of categories.
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(b) Although Ado’s Theorem guarantees that any Lie algebra can be em-
bedded in M, (R), it is not true that any Lie group can be embedded in
GL,(R). For a given simply connected group é, it may happen that only
proper quotients of G will embed in GL,(R), or it may happen that only G
itself, and no proper quotients of it, will embed in GL,(R). For example,
SL,,(C) is simply connected. Its center is Z/mZ. Any group covered by
SL, (C) may be embedded in GL,(C) for some #. The group Z of unipo-
tent upper triangular real matrices is simply connected. Its center is R. No
group properly covered by % can be embedded in GL, (R). The compact
orthogonal group SO,  has a fundamental group equal to Z/2Z; its univer-
sal cover is the spin group Spin, , constructed by means of Clifford algebras
[Huse, Jaco2]. The symplectic group Sp,,(R) in 2m variables (the isome-
try group of a nondegenerate, skew-symmetric form, cf. §3.2, [Helg2, Arti],
etc.) has fundamental group Z. No proper cover of it can be embedded in
GL,(R) forany n.

(c) The construction which associates to a Lie group G its Lie algebra
Lie(G) is akin to differentiation: formulas (2.3.3) and (2.3.7) show that the
vector space structure on Lie(G) reflects first derivatives and the Lie bracket
is somehow built from second derivatives. Theorem 2.5.5 reveals the re-
markable extent to which the essentially linear object Lie(G) determines the
nonlinear object G'. The faithfulness with which Lie(G) reflects the struc-
ture of G allows one in many situations to replace a calculation on G with
a much simpler calculation on Lie(G). This is a key to the power of Lie
theory.

(d) Since typically we think of commutativity (as opposed to non-
commutativity) as contributing to simplicity, it is interesting to note that
in many places in the foundations of Lie theory the presence of commutativ-
ity makes life difficult. Existence of a nontrivial center is what makes Ado’s
Theorem difficult (since when the center is trivial, the adjoint representation
ad is faithful). Theorem 2.5.5(c) makes clear the role of the center of G in
the nonbijectivity of the correspondence G — Lie(G). The failure of Lie
subgroups of a given Lie group to be closed is likewise essentially an abelian
phenomenon: the standard example of a winding line on a torus captures its
essence.

(e) The classical exponential map exp: R — R™™ is of course an isomor-
phism of groups. Thus in Lie theory the distinction between the additive
group R and the multiplicative group R™ is blurred. This blurring is es-
sential to the theory. However, in the theory of algebraic groups, the dis-
tinction between additive groups, out of which one builds unipotent groups,
and multiplicative groups, which are associated with full reducibility, is very
important.

2.6. The first application of the theory summarized in Theorem 2.5.5 is
to the structure of Lie groups themselves. One proves structural facts about



130 ROGER HOWE

Lie algebras, then transfers them to Lie groups by means of Theorem 2.5.5.
For example, if g is a Lie algebra, and j C g is a Lie subalgebra such that
[g,j]1Ci,wesay j isanidealin g. If G isa connected Lie groupand J C G
is a connected normal Lie subgroup, then Lie(J) is an ideal in Lie(G); the
obvious converse also holds. If j C g is an ideal, then the quotient space g/j
inherits a natural Lie algebra structure from g.

Here are the basic structural facts about Lie algebras. A Lie algebra g is
simple if it has no ideals other than 0 and itself. The commutator ideal is

(2.6.1) C(g) =g =[g, g] = span of {[x, y]: X,y € g}.
The commutator series C i( ) is defined by

(2:6.2) C’“(g) = C(C'(g))-

The descending central series g is defined by

(2.6.3) g =g, 8"1.

The Lie algebra g is called solvable (in i—1 steps) 1f C' ( = {0} for some

; and g is called nilpotent (in i — 1 steps) if g = {0} for some i. If
g(z) = C(g) = {0}, then g is called commutative or abelian. For a general
Lie algebra g, the radical of g, R(g), is the maximum solvable ideal in g
(this exists); and the nilradical of g, N(g), is the maximum nilpotent ideal
(this also exists). Clearly N(g) C R(g).

The reader may assume that all the terminology above is parallel to the
similar group-theoretic terminology.

THEOREM 2.6.4 (cf. [Hump, Jacol, Serr2, Vara), etc.). Let g be a Lie
algebra.
(1) We can write

(2.6.5) g=R(g)+s +s,+8;+  +s,

where the s, are simple nonabelian Lie subalgebras of g and the sum is direct.
Then

(2.6.6) g/R(8) =8, +8,+ - +5,

and the s; are exactly the minimal simple ideals in g/R(g).
(i1) R(g)/N(g) is abelian; equivalently R(g ) C N(g).

2.7. To flesh out this structure theorem, we would like to describe R(g)
and the s,. It turns out that the structure of solvable Lie algebras is too
flabby to permit a detailed description of all of them. However, we have
a standard example of a solvable Lie algebra, namely b, the Lie algebra of
upper triangular matrices (which of course is the Lie algebra of & , the group
of invertible upper triangular matrices). (Note that the commutator ideal of
b is u, the Lie algebra of strictly upper triangular matrices (which is the Lie
algebra of % , the group of unipotent upper triangular matrices).) In general,
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we content ourselves with showing that a general solvable Lie algebra “looks
like” b in the following sense. (For the following result we use complex
scalars rather than real scalars for the same reason one uses complex scalars
in discussing Jordan canonical form. Thus, let b, denote the Lie algebra of
upper triangular matrices with complex entries.)

THEOREM 2.7.1 (Lie’s Theorem). Let g C M, (C) be a solvable Lie sub-

algebra. Then g is conjugate, by an element of GL,(C), to a subalgebra of
b
-

REMARKS. (a) Lie’s Theorem plays an important role in the representation
theory of semisimple Lie algebras. See §3.5, especially Lemma 3.5.3.7.

(b) The group-theoretic version of this, known as the Lie-Kolchin Theorem
[Kolc, Serr2], is that a connected solvable Lie subgroup of GL,(C) can be
conjugated to be upper triangular. The generalization of this to algebraic
groups is the Borel Fixed Point Theorem: a connected algebraic group acting
rationally on a complete algebraic variety has a fixed point. This result plays
a pivotal role in the theory of algebraic groups, especially the classification
of simple algebraic groups [Chev2].

2.8. In contrast to the somewhat loose situation for solvable Lie algebras,
the situation for simple Lie algebras is extremely rigid, and the classification
of simple complex Lie algebras, due mainly to Killing, is just 100 years old.
It is an absolutely gorgeous chapter of mathematics and it continues today
to inspire research. There are several excellent accounts of this currently
available (cf. [Hump, Jacol, Serrl], etc.). Here we will discuss its outline,
in order to bring to the fore the role played by sl,, and to emphasize the
dominant influence of the geometry of finite reflection groups.

The smallest nonabelian simple Lie algebra is sl,, the 2 x 2 matrices of
trace zero (sometimes known also as the three-dimensional simple Lie algebra
or TDS). It has a basis

+_ [0 1 - _[0 0 _[1 0
(2.8.1a) e —-[0 O]’ e —[1 O]’ h_[o _1]
which satisfy commutation relations
(2.8.1b) [h,e'1=2e", [h,e 1=-2¢", [e ,e 1=h.

The algebra sl, with its associated group SL, (the group of 2 x 2 matrices
of determinant 1) is basic to understanding the whole family of simple Lie
algebras. In fact, a careful approach to the structure theory of simple Lie
algebras would first provide a detailed analysis of the linear representations
of sl,. We will not do this (see, however, §3.5.1, especially Proposition
3.5.1.9), but let us at least remark that if we set

(2.8.2a) w= [0

10 ] =exp(n(e’ —e)/2) € SL,
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then conjugation by w interchanges et and e~ and reverses the sign of 4:
(2.8.2b) Adw(e)=—-e", Adw(e )=-e", Adw(h)=-h.

It is probably not too extravagant to say that, just as a general Lie group can
be regarded as a coherent family of one-parameter groups, so a (semi)simple
Lie group is a very coherent constellation of copies of SL,. Since SL,(R)
is much less malleable than R itself, the corresponding list of simple Lie
algebras (as opposed to all Lie algebras) is rather short and highly structured.

The basic strategy of the classification is to investigate the structure im-
posed on a simple Lie algebra by its action on itself by conjugation. Thus let
g be a simple complex nonabelian Lie algebra, with Lie bracket [ , ]. For
x € g, recall (cf. formula (2.4.1) or Endnote 4))

adx(y) =[x, y].

The first observation is this: the (generalized) eigenspace decomposition of
adx gives a grading on g. Thus suppose y,, y, are eigenvectors for adx,
with eigenvalues 4;. Using the Jacobi identity (Endnote 4) we find

adx([y,, ¥,]) =[x, vy v,11=1lx, ¥, 1, y,1+ [, [x, ¥,]]
= (/11 + /12)[)’1 s y2]-

That is, the bracket [y,, y,] is an eigenvector for adx, with eigenvalue
A, + 4, . With slightly more work, one sees that if

(2.8.3) g=) g(x,4)
A

is the decomposition of g into generalized eigenspaces for ad x, then

(2.8.4) [8(x, ), g(x, w)] Cglx, A+ u).

Thus the Jacobi identity imposes strong consistency conditions on the Lie
bracket. In particular, g(x, 0) is a Lie subalgebra of g, and each g(x, 4) is
a module for g(x, 0).

To make maximum use of observation (2.8.4), we would like to find an
x for which the decomposition (2.8.3) is as fine as possible. In fact, there
are many such x and they are easy to find. Consider the characteristic
polynomial

I
(2.8.5) det(ad(x) - Al)=>_ A oy(x), x€g,
i=0

where / = dimg and the «;(x) are appropriate polynomials on g. If
a(x) =0 for 0 < i<k, but op(x) # 0, then dimg(x, 0) = k (here
g(x, 0) is asin (2.8.3) for A =0). Let r be the smallest number such that
the polynomial «, on g is not identically zero. We call r the rank of g,
and we say x € g is regular if « (x) # 0, equivalently if dimg(x, 0) is as
small as possible.
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Suppose x € g is regular. Consider y € g(x, 0). We know ady (g(x, 4))
C g(x, A) for each eigenvalue A of ad x. Since ad x|y, 5 is invertible for
all A # 0, we see that if y is sufficiently close to x, then also ad y|g(x, »
is invertible. (Or, to keep the discussion algebraic, we could observe
ad(x + ty)|g(x, P will be invertible for all but a finite number of scalars ¢.)
Since dimg(y, 0) > dimg(x, 0), if ady|g(x P is invertible for all A # 0,
we must have g(y,0) D g(x,0). Since th1s is true for an open set of
y € g(x, 0), it is true for all y € g(x, 0). Hence ady|gx 0) is nilpotent
for all y € g(x, 0). Hence by Engel’s Theorem (cf. [Hump, Jacol], etc.)
g(x, 0) is a nilpotent Lie algebra. It can also easily be checked to be its
own normalizer in g. Such subalgebras are called Cartan subalgebras. An
elementary argument (using the fact that a polynomial equation p(v) = 0
in a complex vector space has a solution set of real codimension 2, hence
the complement of the solution set must be connected), shows that, for a
complex Lie algebra, all Cartan subalgebras are conjugate (by the adjoint ac-
tion of the associated Lie group). Hence, although this construction appears
to depend on choosing some arbitrary element of g, in fact it is essentially
canonical.

By an argument like that for finding simultaneous generalized eigenspaces
for commuting operators, we find we can refine decomposition (2.8.3) to a
decomposition 5

(2.8.6) g=a+) g,

where a is a Cartan subalgebra of g, and g, is a simultaneous generalized
eigenspace for all x € a.

Precisely, this means that we have labeled g, by a linear functional « €

, the dual of a, with the property that, if I denotes the identity map

on g, then a(x)l, g, ~ ad x| ., is nilpotent for all x €a. The g are called

root spaces, and the a € a*, a # 0, such that g_ # {0}, are called roots. We
denote the set of roots by X.

To see how sl, can emerge from this situation, suppose we have a pair of
elements x € g, and y € g__ . To keep things as simple as possible, sup-
pose that x, y are both simultaneous eigenvectors (as opposed to generalized
eigenvectors) for a. Consider the bracket [x, y]. By (2.8.4) it belongs to
g, - Consider the three (exhaustive and mutually exclusive) following possi-
bilities:

(i) a(lx, ¥ #0,
(2.8.7) (1) e([x, y]) = O but [x, y] #0,
(iii) [x, y] =
If possibility (iii) holds, then x and y span a two-dimensional abelian subal-

gebra of g. Observe that, since ad x and ad y commute and are individually
nilpotent, the product ad x ady will also be nilpotent. If possibility (ii) holds,
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then z = [x, y] will commute with x and y. Hence x, y, and z span
a three-dimensional, two-step nilpotent Lie algebra /4, commonly known as
a Heisenberg Lie algebra (see §3.1.3). Further, we observe that since adx
and ady are individually nilpotent, and % is nilpotent (hence solvable), the
action of ads on g consists of nilpotent operators. In particular, it fol-
lows that B([x, ¥]) = 0 for all roots B, not just «. Finally, suppose that
(i) holds. By scaling x or y or both, we can arrange that a([x, y]) = 2.
Then comparison with formulas (2.8.1) shows that x, y, and [x, y] form
a standard basis for a copy of sl, .

Up to here, our discussion has been completely general and applies to any
Lie algebra. A key point is to show that if g is simple and nonabelian then of
the three alternatives (2.8.7), only alternative (i) is possible. The usual way
to do this is via Cartan’s criterion (cf. [Hump, Jaco, Serr2, Vara], etc.). This
involves the Killing form. This is the symmetric bilinear form on g defined
by

(2.8.8) By (x, y)= trace (adxady), X,VEQg.

Cartan’s criterion says that the Killing form on a simple nonabelian Lie alge-
bra is nondegenerate. One then sees that when g is decomposed as in (2.8.6),
the Killing form must be nondegenerate on a, must be trivial on each g_,
and must pair g, and g__, nondegenerately. From these basic observations
(and a thorough grasp of sl, ) one can eliminate the occurrence of possibili-
ties (2.8.7)(ii) and (iii). At the same time, one concludes that —« is a root
if « is, that dimg =1 for all roots «, and (hence) that a is commutative
and the action of a on g by ad is diagonalizable.

Thus, for each root «, one finds that the Lie subalgebra of g generated
by g, ,and g__ isa copy of sl,; the interaction between these various sl,’s
defines the structure of g. We should remark that the proof [Hump, Jacol,
Serr2] of Cartan’s criterion, which underlies the analysis described above,
also is based on the anticipation that sl, will appear inside g in the ways
that it does. One could avoid the use of Cartan’s criterion by developing
more fully the consequences of the trichotomy (2.8.7). Thus at all stages in
the analysis of the structure of g, we are relying on properties of sl, .

2.9. To get a strong grasp on g, we need to understand the structure of
the set Z of roots. This set turns out to have a very tight, highly symmetric
structure, imposed by the sl, ’s generated by opposing pairs g_,g_, , a2 € X,
of root spaces. Let L be the subgroup of a" generated by X; the standard
name for L is the root lattice. The nondegeneracy of the Killing form implies
that L is a discrete subgroup of a*, of rank equal to dima" (= dima =
rankg). (Also, £ spans a*.) Since the Killing form on a is nondegenerate,
we can use it to identify a and a". Then we can transfer the Killing form
to a", and restrict it to L. Thus L is equipped in a natural way with an
inner product. Denote the dualized Killing form by BI*( .
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For a € X, consider the copy of sl, generated by g, and g__ and con-
sider the corresponding copy of SL, obtained by exponentiation, which acts
on g by conjugation. Let w, be the element in this copy of SL, correspond-
ing to the element w of formula (2.8.2). Then w_ acts on g, preserving
a, so by duality w,_ acts on a", preserving X, hence preserving L. A
computation shows that

2By(A, a) x
wa(i)—i—ma, iELQa.
(Recall By is the dualized Killing form on 4*.) In geometrical terms, this
says w_ is reflection in the hyperplane perpendicular to «. Let W; =W
be the group generated by the w, . It is called the Weyl group (of the pair
(g, a),orjustof g,since a is unique up to conjugation). Since W preserves
the finite set of roots X, it must be a finite group. For the example g=sl ,
as described in Endnote 5, the group W is just S, , the symmetric group on
n letters.

Thus we have associated to g a finite group W, which is generated by
reflections, and which acts on a lattice L, preserving a distinguished finite
set X. These very elementary data determine g.

2.10. In fact, just the group W, acting not on the lattice L but on its
real span a; , comes very close to determining g, and the classification of
finite groups of orthogonal transformations generated by reflections is very
beautiful and intimately related to the classification of simple Lie algebras.
Since most accounts of the classification mix together the Weyl group and
the root system, we would like to make explicit here how much depends on
the Weyl group alone.

The idea behind the classification of finite reflection groups is as elemen-
tary as it is elegant. Also, it is geometric to its core. Let W be a finite group
acting on R”, and generated by reflections in hyperplanes. Let R C W
denote the set of reflections. For each reflection r € R, let H, be the hyper-
plane fixed by r. We call the H, the reflection hyperplanes of W . The set
R" — U,cx H obtained by deleting the H_ is a finite union of open convex
cones. One such cone C is called an open Weyl chamber; its closure C is
called a closed Weyl chamber. Choose one such Weyl chamber C,, and call
it the fundamental chamber. The intersection of 60 with the hyperplane H,
will be some closed cone in H,. Call H, a face plane of C, if H N Fo has
relative interior in H,. The intersection H,N'C, will be called a face of C,
(or of C;). An easy argument shows that the reflections in the face planes
of C, generate W . (More precisely, if C is any other Weyl chamber, and
a line from a general point of C; to a general point of C passes through /
hyperplanes, then C; can be moved to C by a product of / reflections in
the faces of C,. Hence the group generated by reflections in the face planes
of C, acts transitively on the Weyl chambers, hence contains reflections in
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all hyperplanes, hence equals W . A more careful argument, proceeding by
induction on word length, shows that W acts simply transitively on the Weyl
chambers [Bour, Hilr].)

Thus we want to understand the relations between the reflections in the
various face planes of C,. Consider two face planes H, and H, of C,.
Then H N H_ has codimension 2, and the group generated by r and s fac-
tors to the plane R"/(H NH,). The planar situation can easily be completely
analyzed. The reflections r and s generate a dihedral group of order 2m,
m > 2, and the lines L, = H, /(H NH) and L = H /(H NH) meet at an
angle n/m. See Figure 2.10.1

All the lines in the figure are the images modulo H N H, of hyperplanes
H,, ¥ € R, since they are transforms by the group generated by r and s
of L, and L . The angle between any two adjacent lines (which is also the
dihedral angle between the corresponding hyperplanes) is always n/m. If
H_and H, are both to bound a common Weyl chamber, the lines L, and
L, must be adjacent.

In particular, the dihedral angle between H, and H_ is always acute or a
right angle. Thus, if u, and u_ are the normal unit vectors to H, and H_,
pointing outward from C, the angle between u, and u_ is obtuse, a fact
which can be expressed by saying that the dot product % -u_ is nonpositive.
From this observation, an easy argument shows that the set of all u,, for H,
a face of C;, are independent. Thus, if we assume, without essential loss
of generality, that there are no vectors fixed by all of W, the vectors u,,
for H_a face plane of C, form a basis for R". Thus ?0 is a simplicial
cone; precisely, it is the cone generated by the vectors —u: , where u: is the
basis of R” dual to the basis u,, H_a face plane of C;,. Since the dihedral
angles between the faces of C, are acute, we call C, an acute simplicial
cone. This geometry of a Weyl chamber is important in other places besides
the classification of simple Lie algebras. For example, it is a key ingredient in
the Langlands-Vogan classification of irreducible admissible representations
[Knap2, Vogal, Wall] (cf. §3.6.4).

We now have the key to the classification of finite reflection groups. Since
the external unit normals u, to the faces of ?0 are a basis for R”, the

n/4

Figure 2.10.1
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geometry of C, and hence W itself, is entirely determined by the inner
products u, - u,  between pairs of external normals. On the other hand, we
have seen from our analysis above of the planar case that these inner products
are related to the structure of W via the formula

(2.10.2) u -u =-—-cos(n/m,),

where m__ is the order of the product rs (see Figure 2.10.1).

The problem is to find out what the numbers m_ can be. An obvious
restriction is that the Gram matrix of the u ’s, whose entries are the inner
products u, - u,, should be positive definite. Here yet another miracle oc-
curs: this simple necessary condition is sufficient to completely determine all
possibilities for W . Moreover, the list of possibilities is quite short, and the
computations necessary to limit the list to the actual possibilities are quite
easy [Coxe, GrBe].

The result is usually expressed in terms of Coxeter graphs. For each face
plane H_ of C, one creates a node; then the nodes for H, and H_ are
connected by m, — 2 lines. Alternatively, if m > 3, one labels the line
between node r and node s by the number m . If two nodes are not
connected, then the corresponding reflections commute with each other. If
the Coxeter graph of W is disconnected, then W is a direct product of the
group corresponding to the two pieces. Thus it is only necessary to record
the connected Coxeter graphs. Doing so produces the list in Figure 2.10.3.

AZ:O—O—O o—0 (! 2 1 nodes)

4
B:0—0—0 - o—0—0 (I =22 nodes)

D;: 0—0—0 - - o—o<g (I 2 4 nodes)

Lp): 020 (p=50rp27)

Figure 2.10.3. List of Coxeter graphs.
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From our discussion of simple Lie algebras we know that their Weyl groups
are contained in this list. However, not all these groups are Weyl groups,
because, as we saw, the Weyl groups must leave invariant a lattice L, and
not all the groups in the list above do this. 6 Additionally, for a simple Lie
algebra g, we have the data of the root system X (see (2.8.6) et infra).
From the discussion of the connection between the root system X and its
Weyl group W, we see that the elements of X are normal to the reflection
hyperplanes. But since X is contained in the lattice L, the elements of
X may not be unit vectors. Instead, they are characterized as the shortest
vectors in L normal to the reflection hyperplanes of W . 7 1t turns out (from
considerations of conjugacy) that for the simple root systems only two root
lengths are possible, and a change of root length can occur only between
nodes which are connected by an even number of lines. To record this extra
structure, one refines the Coxeter graph to what is usually called the Dynkin
diagram, which puts an arrow across junctions with even numbers of lines,
pointing in the direction of the longer roots. The resulting list (see Figure
2.10.4) contains four infinite sequences, corresponding to classical groups,
and five more “exceptional” groups.

A :O—O0—=0 =---- e} Classical name: s1__,
(n nodes)

2 2 2 2 1 ) )
B:0—0—0 ----- O—a0 Classical name: 80, 4

1 1 1 1 2 .
C:0—0—=0 ----- Oo—»—0 Classical name: sp,

1

1 i 1 1 .

D:0—O0—0 =-=-=-- Classical name: so,
n 1 n

1 3

G, : O—»—0O

!

(o]

(@]

o—C
q

(@]

O

Iy
oo

o

ﬂ)
o—0
D)

D)

O

FIGURE 2.10.4. List of Dynkin diagrams.



A CENTURY OF LIE THEORY 139

2.11, We have travelled quite a long way in this brief tour of Lie theory.
Let us sum up the major landmarks by means of a flow diagram (Figure
2.1L.1).

Here rectangular blocks contain the main classes of objects involved in the
theory. Ovals contain important structural information. Arrows proceeding
between boxes indicate flow of information. Arrows going in opposite direc-
tions between two boxes means the objects in the boxes are each recoverable
from the other.

v |

Lie Simply connected Fundamental
groups Lie groups groups

Darboux's

Campbell-Hausdorff

Theorem formula
Lie ;
Existence .
E 1
algebras uniqueness xpglt;entla
T for O.D.E. P
Main

Structure |
Theorem

Representation
theory, highest weight
theory, complete

v reducibility
Solvable Simple Lie
Lie algebras algebras
Lie's Root D E— Dynkin il
Theorem systems —» diagram
|
v v
Weyl Root
groups lattice ]
Coxeter
graph

Figure 2.11.1
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2.12. To emphasize that a given simple Lie algebra is recoverable from its
root system (understood as a certain generating subset of a lattice L equipped
with an inner product) we state the theorem of Serre [Hump, Serrl] describing
the structure of simple g in terms of generators and relations based on the
structure of the root systems.

The data we need are three sets of symbols X_, Y ,and H_ . Each triple
is a standard basis for a copy of sl,. The triples are labeled by a set of
SJundamental roots: one chooses a fundamental Weyl chamber in a; , and the
root vectors perpendicular to the face planes of the Weyl chamber are the
fundamental roots. For each fundamental root a, one chooses X € g, and
Y eg_ _ suchthatif H =[X_, Y], then these three elements of g are a
standard basis of sl, (see the discussion following (2.8.7)). To describe how
these sl, ’s fit together, we at least need to know the eigenvalues of the X 5
under the action of H : set
(2.12.1) adHa(Xﬂ):naﬂ X
From the representation theory of sl,, one knows the n, p are integers; and
of course n,, = 2. For a # B, the integer n_ 5 is nonpositive, and is
computed in terms of the geometry of the root system [Hump, Jacol, Serrl].
The array of integers {n_ s} 1s called the Cartan matrix of g orof X. Serre’s
result says this is essentially all the data we need to specify g.

THEOREM 2.12.2 (Serre). Let X be the root system of a simple Lie algebra
g. Let F ={a} be a set of fundamental roots for X, and let g be defined
by equation (2.12.1). Let {X_,Y ,H :a € F} be a set of symbols. Let g
be the Lie algebra generated by the X, Y , and H_, subject to the following
commutation relations:
(a) [X,, Y,1=H,, [H,, H)]=0,

[Xa, Yﬂ]=03 a# p,
(b) [Ha’Xﬂ]=naﬂXﬂ’ [H,, Yﬂ]= —N.p Y,

ﬂ b
(c) ad X, ™ (X,) =0, ad¥, "™ (¥,) =0.

(2.12.3)

Then g~g.

2.13. ReMARKS. (a) Descriptions, much more involved than Theorem
2.12.2 but in a similar spirit, of the Chevalley groups (over various fields)
associated to simple Lie algebras have been given [Crtr, Steil, 2].

(b) Serre’s Theorem has assumed considerable significance in connection
with Kac-Moody Lie algebras. In [Kac2] and [Mood1], Kac and Moody inde-
pendently observed that one could take a “generalized Cartan matrix” of inte-
gers n,, (satisfying n_ =2, n, s < 0) and define a Lie algebra g by means
of relations (2.12.3). The resulting Lie algebras are infinite dimensional un-
less the n_, p came from the known list of finite-dimensional simple Lie alge-
bras, but they share many of the important properties of finite-dimensional
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simple Lie algebras. In particular, each Lie algebra has an associated root
system X (which will usually be infinite) and a Weyl group W, which is a
reflection group with respect to a (possibly indefinite, even degenerate) inner
product. Somewhat later, these infinite-dimensional algebras, especially the
“affine” ones, whose associated inner product is positive semidefinite, were
realized to be related with a range of fascinating phenomena, including power
series identities (the Macdonald identities, Rogers-Ramanujan identities, etc.
[Macd2, Kac4, Kost3, LeMi, Lepo2]); completely integrable Hamiltonian sys-
tems (Korteweg-de Vries equation, Toda lattice, etc. [AdvM, DJKMI1, 2,
GoWal, 2, Symel, 2, Kost2]); the Fischer-Griess “Monster,” the largest spo-
radic group [CoNo, FrLLM, Kac5]; the representations of graphs [DIRi, Ring,
Gabr, Kac6, 7], etc.; and two-dimensional conformal field theories [BePZ,
Gawe, Witt]. Work on these various topics is currently proceeding at a furi-
ous pace.

(c) Reflection groups, and especially root systems, figure significantly in a
variety of contexts outside the classification of simple Lie algebras, some of
them quite surprising. We will list a sample of these appearances.

(1) Coxeter [Coxe] was interested in reflection groups because of their con-
nection with regular polytopes. It has long been understood that the symme-
try groups of the platonic solids are reflection groups. The famous tesselations
of the sphere associated to the regular polyhedra just show the intersection
of the sphere with the Weyl chambers for the corresponding reflection group.
Similarly, in higher dimensions, one can construct regular polytopes using re-
flection groups. Especially attractive is the four-dimensional polytope whose
three-dimensional faces are 120 regular dodecahedra. Its symmetry group is
H, in the list (2.10.3). (However, H, is not a Weyl group; Weyl groups are
associated only to the more mundane regular solids.)

(ii) Reflection groups have an honored place in invariant theory, owing
to Chevalley’s theorem [Helg, BeGr, Chev6] complemented by Shephard and
Todd [ShTo]:

THEOREM 2.13.1 (Chevalley, Shephard-Todd). Let the finite group G act
on the real vector space V. Let P(V) be the algebra of polynomials on V,
and let P(V)G be the subalgebra of polynomials invariant under the action of
G. Then P(V)G is a polynomial algebra (necessarily in dim V variables) if
and only if G is generated by reflections.

The classical example of course is the action of the symmetric group on
R" by permutation of the coordinates. For this action, Lagrange’s Theorem
[Jaco2, Lang3, Macd1] says the invariant polynomials, usually called sym-
metric polynomials, are all expressible in terms of the “elementary symmetric
polynomials”

(2.13.2) 0, (x) = doox X

i
t
1<i | <ip<e-<iy<n
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In addition to Theorem 2.13.2 there is a very beautiful description of
P(V) as a G-module in terms of “harmonic polynomials” [Helgl, Chev6].
This structure is involved in significant ways in the representation theory of
semisimple groups, and the ideal theory of the universal enveloping algebras
of simple Lie algebras. In particular, Theorem 2.13.2 guarantees that the cen-
ter of the universal enveloping algebra of a simple Lie algebra is a polynomial
ring (cf. [Helg2, Wall2, Hump], etc.).

(iii) Much more recent is the application of root systems and reflection
groups to problems in linear algebra defined by “representations of graphs”.
Let T" be a directed graph: a collection of nodes joined by edges with a
sense of direction, i.e., which proceed from one node to another node, but
not backwards. (We also permit an edge to connect a node to itself.) A
representation of the graph I' is an assignment of a vector space V; to each
node 7, and a linear transformation Tl.j: vV, — V; to each edge from i to
j. There is an obvious notion of equivalence for two such representations:
if {U,, S, j} is another representation of I', it is equivalent to the first one
if there are linear isomorphisms J;: U; — ¥; such that the diagrams

s,
v — Uj

5| 19

T,
v, =
commute. There is also an obvious notion of direct sum, so the represen-
tations of I" form an abelian category. The problem of representations of
graphs is to describe (up to equivalence) the indecomposable objects in the
category.

We note that several standard problems of linear algebra are formulable as
graph representation problems. For example, the solution of linear equations,
solved by Gaussian elimination, the essence of which is the notion of rank
of a linear transformation, amounts to the representation problem for graph
(a), and Jordan canonical form amounts to the solution of the representation
problem for the one node graph (b).

Gabriel [Gabr] discovered that a graph I' has only a finite number of inde-
composable representations precisely when the associated undirected graph is
a Dynkin diagram of type 4, D, or E. This is remarkable, but the relation
goes deeper: the indecomposables are naturally labeled by elements of the
root system associated to the Dynkin diagram. Further, Bernstein, Gelfand,
and Ponomarev [BeGP] showed there were functors, between representation
categories of various I" with the same Dynkin diagram as undirected graph,
which imitated the action of the Weyl group. Kac [Kac6, 7] showed that the
representations of more complicated graphs could also be analyzed in terms
of root systems and Weyl groups of Kac-Moody Lie algebras.

(iv) The Dynkin diagrams (or Coxeter graphs) of types 4, D, E also make
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O - O
(@)

(b)
Figure 2.13.3

a fascinating appearance in algebraic geometry, in connection with the classi-
fication of isolated singularities of algebraic surfaces. To analyze such a sin-
gularity, the algebraic geometer “blows it up” until he achieves a non-singular
surface [Lauf, Hirzl, Koda]. In the process, the singular point is replaced by
a system of curves. In the case of isolated singularities, the curves are all just
projective lines (Riemann spheres—we use “curve” in the sense of a complex
one-dimensional (hence real two-dimensional) manifold). To describe the
resulting array of curves, one constructs a graph by creating a node for each
projective line, and connecting two nodes by the negative of the intersection
number of the two associated curves. (A p-manifold and a g-manifold inside
a (p + gq)-manifold can be expected “generically” to intersect transversally in
a finite number of points. To each point of intersection, one can associate
a *1 according as the orientation provided by local coordinates on the sub-
manifolds agrees or disagrees with the orientation of the ambient manifold.
The sum of these 2=1’s, over all points of intersection, is the intersection
number.) It turns out that in the case of simple isolated singularitites, the
resulting graph is always a Coxeter graph of type 4,,D,, E., E,, or E;
[Arno3, Looi].

This remarkable result has been analyzed in two different ways. One is in
terms of finite subgroups of SU, . These have been understood since Klein
[Klei, GrBe, Miln] and are of course themselves closely related to three-
dimensional reflection subgroups. For any g # 1 in SU,, the only point of
C? fixed by g is the origin. Hence, for any finite G C SU, the image of the
origin in the quotient space C? /G is an isolated singularity. All the isolated
surface singularities arise in this way. Further, it is possible to recapture the
Coxeter graph of the singularity directly from the representation theory of
G. Let G be the unitary dual of G—the set of its (equivalence classes of)
irreducible (unitary) representations. Let p, be the given representation of
G on C?. Define a graph whose nodes are the elements of G, and such
that o, and o, are connected if and only if o, is a component of o, ® p,,.
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(This is a symmetric relation.) The resulting graph is the graph associated
geometrically to the singularity c? /G [Lamo, Loei].

There is also a direct connection between the simple Lie algebra g with
graph of type 4,, D, , or E, , and the singularity with the same graph. We
call an element x of g nilpotent if ad x is nilpotent. The set of nilpotent
elements forms an algebraic subvariety 5 of g, of codimension equal to the
rank of g. Let G be the Lie group associated to g, and let Ad be the action
of G on g by conjugation. Then 5 may be characterized as the set of zeros
of the Ad G-invariant polynomials which vanish at the origin. Further, 7
consists of only finitely many Ad G-orbits. (For g = gl _, these are described
by Jordan canonical form.) There is one G-orbit which is open-and-dense,
consisting of the so-called regular nilpotent elements. The complement in 7
of the regular nilpotent elements is the singular set of 7, and has codimension
2. Denote it by #, . If one takes a two-dimensional slice in #, at a typical
point of #, and transverse to #,, this two-dimensional variety will have
an isolated singularity, of the type corresponding to the Coxeter graph of g
[Brie, Slod].

(v) Finally, to emphasize how innocently, and from what seemingly meager
contexts, the root system of simple Lie groups can arise, consider the question
of integral quadratic forms. Let V' be a real vector space, L C V' a lattice,
and B(,) a (positive-definite) inner product on ¥V, such that B(/, [') is an
integer if /, !’ € L. The question is to describe the isometry classes of such
forms, modulo automorphisms of L.

Suppose [, € L has B-norm equal to 1 : B(/,, ;) = 1. Then for any
I € L the difference [ — B(l, [))/, is orthogonal to /,. Hence if U, is the

line through /;, and Uol is the hyperplane orthogonal to U, then
L
L=(LNnUy)+(LNnyy)

(orthogonal direct sum).

Hence for purposes of our classification problem, we may as well assume
there are no vectors in L of length 1. Consider next the possibility of vectors
[ such that B(/,[)=2. Let L, C L be the lattice spanned by such vectors.
Then L, decomposes into an orthogonal direct sum of lattices, each one
of which is naturally isometric to the root lattice (with appropriately scaled
Killing form) of one of the simple Lie algebras, of type 4, D, or E; and
the vectors [ with B(/, [) =2 form the root system of the appropriate type.

The root lattice of E; is particularly significant in this context. Given
V., L, B as above, define

(2.13.4) L'={veV:Bw,)eZforalllec L}.

Then L" is a lattice, and L™ = L. By our assumption on L, we have
L C L". The quotient group L*/L is clearly an invariant of the isometry
class of L. Of particular interest are the self~dual or unimodular lattices,
for which L = L*. Of course Z", with its usual inner product, is self-dual;
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but a more interesting problem is to find an even unimodular lattice, i.e.,
one for which B(I, [) is even for all / € L. It turns out there are none in
dimensions less than 8, and that the root lattice of E is the unique example
in dimension 8 [FrLM, Sloa, CoSh].

To reinforce the opinion that the facts just recited are not merely curiosi-
ties, but are worthy of contemplation, we recall that the Leech lattice, which
is the unique even unimodular lattice in 24 dimensions such that B(/, /) > 4
for all [ # 0, is deeply involved with the sporadic simple groups, especially
the Conway groups and the Monster [CoNo, FrL.M, Thom].

(d) The classification of simple Lie algebras over fields of positive char-
acteristic is much more delicate than in characteristic zero, because of the
failure of Lie’s Theorem (Theorem 2.7.1) and related problems. Although,
the last word has not been said on this, nearly the last is contained in [StWi],
which shows that the types 4 — G, plus a family of other algebras, analogous
to Lie algebras in characteristic zero which are infinite dimensional, consti-
tute all simple Lie algebras over an algebraically closed field of characteristic
p=>T7.

Endnotes. 1. In other words, t*(m) = 400 and ¢ (m) = ~co for all m.
Note that equation (2.1.8) implies that ti(ys(m)) = ti(m) — 5. Hence if
there exists ¢ > 0 such that ¢~ (m) < —e and t"(m) > ¢ for all points m,
then ti(m) = +oo for all m. That is, if we can solve (2.1.6) in a uniform
interval for all initial conditions, we can solve it for all time.

2. The function

o0

-1 2n X
M) ==L B3

where the B, are the Bernoulli numbers (cf. [Hirz, Lang5], etc.).

3. Some readers may be bothered by the fact that we have not given a
formal definition of Lie group. We present one here for them. A Lie group
is a smooth manifold G endowed with a group structure such that the maps

GxG—- G, G- G,
(x,») = xy, x-x

of multiplication and inversion (or, equivalently, the single map (x, y) —
xy—1 ) are smooth. Clearly, by letting G act on itself by left translations, we
can realize G as a group of diffeomorphisms of a smooth manifold.

4. The question presents itself: will any skew-symmetric product on a
vector space define a Lie algebra, in the sense that it arises as the set of
infinitesimal generators of a Lie group? The answer is negative. There is an
additional identity that needs to be satisfied, the Jacobi identity:

[4,[B, Cl1+[B, [C, A]l+[C,[4, Bll=0.

This is easy to verify for either of our concrete Lie algebras (of vector fields



146 ROGER HOWE

or matrices). It is an infinitesimal analog of the associative law for group
multiplication.

Lie showed that given a vector space with a skew-symmetric product satis-
fying the Jacobi identity he could construct a group (or what is now called a
“local group”) with that Lie algebra. Later Ado [Hump, Jace, Vara], showed
a vector space with a skew-symmetric product satisfying the Jacobi identity
could be realized as a Lie algebra of matrices, i.e., a subspace of M, (R),
closed under the commutator operation. Thus we see that a satisfactory defi-
nition of abstract Lie algebra, without reference to a group, is: a vector space
endowed with a skew-symmetric bilinear form satisfying the Jacobi identity.

The efficiency with which the Jacobi identity captures the essence of Lie
algebra structure is shown by the following two observations. First, given a
Lie algebra g with bracket operation [, ], define

adx:g— g,
adx(y)=[x,y], Xx,yes
Then ad: g — End(g) is a linear map. The Jacobi identity says
[adx, ady] = ad[x, y]

(where the [, ] on the left-hand side is the commutator of operators (2.3.10)).
That is, the map ad preserves Lie bracket, and so is a representation of g
on itself. (From formula (2.4.8), we see ad is the infinitesimal version of
conjugation.) In particular, if g has no center (i.e., no nonzero elements x
such that [x, y] = 0 for all y € g), then ad gives an isomorphism of g
with a Lie algebra of matrices (Ado’s Theorem for such g). In particular,
if g is a nonabelian simple Lie algebra, then ad provides a faithful matrix
representation of g.
Second, the Jacobi identity also says

adx([y, z]) = [ad x(y), z]+ [y, adx(z)].

This says that ad x is a derivation [Lang3] of g. It follows from purely for-
mal properties of exp that exp(ad x) must be an automorphism. Thus a Lie
algebra structure always comes with a group of automorphisms, provided by
conjugation by the associated group. This implies that the more complicated
the Lie algebra structure, the more symmetrical it must be. If this observa-
tion is too vague to produce the very clean list of simple Lie algebras, at least
it is consistent with the existence of such a list.

5. The standard example is gl, = M, (R). One can take for a the diagonal
matrices. Then the g ’s are the lines generated by the matrix units E; ; (cf.
formula (1.2.1)). If we use the usual coordinates a; on a, then the roots «
are a,—a;.

6. This issue, like so many others, is settled simply by considering the
pairwise relations between generators. It is easy to see that a reflection group
in the plane generated by r and s can only preserve a lattice if m, =
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2,3,4,0r 6. Comparison of lists (2.10.3) and (2.10.4) reveals it is exactly
the Coxeter graphs which have an m  other than 2, 3, 4, or 6 which do
not survive to become Dynkin diagrams.

7. This is for “reduced” root systems, which is what is encountered in
classifying simple complex Lie algebras. For real Lie algebras, nonreduced
root systems, e.g., BC, , can also occur [Helg2, Serrl].

3. Representation theory. Research into representations (actions on vector
spaces via linear transformations) of Lie groups, motivated on one hand by
physics [FISz, Mack1, ITGT1-17, Barg3] and on the other by the theory of
automorphic forms [GGPS, JaLa, Weill, BoCa] with deep roots in classical
analysis and with strong ties to differential equations, and of course also pro-
pelled by its internal dynamics, has been a major part of the mathematical
enterprise since roughly World War II. Considering the diversity of motiva-
tions, goals, people, and methods involved, the subject displays a remarkable
amount of unity. A major source of the unity is the philosophy of the orbit
method (also known by the more fashionable term geometric quantization
[Blat, Kiri, Kostl, Seur]). Although we can only sample from the wide range
of results that have been established, the overall coherence provided by the
viewpoint of the orbit method allows us to convey much more of the subject
than would otherwise be possible. An interesting technical point, however,
is that the orbit method is almost exclusively a method of interpretation, a
way of organizing results into a coherent (and often very beautiful) pattern.
It provides little in the way of technical tools for proofs or computations.
Thus, for example, several of the major results of Harish-Chandra on repre-
sentations of semisimple groups have found elegant interpretations in terms
of the orbit method [Ress1, 2, DuVe, DuHV]. However, these interpretations
have provided no short-cuts to Harish-Chandra’s proofs of these results.

A proper discussion of representation theory requires an aggravatingly long
technical preparation. We are going to try to ignore that here. For the conve-
nience of the reader, basic definitions and constructions have been summa-
rized in Appendix 1. The discussion below refers to Appendix 1 as necessary.
The reader who finds these references too distracting may wish to acquaint
himself, at least in a rough way, with Appendix 1 before reading the main
body of this section.

3.1. An example: the quantum harmonic oscillator. To illustrate the poten-
tial uses of representation theory, and its attraction, I can produce no better
example than the spectral analysis of the quantum mechanical harmonic os-
cillator. This is elementary almost to the point of simple-mindedness, yet it
contains the seeds of extremely varied developments that form subjects of
active current research. In particular, it is basic for the orbit method to be
discussed later. Also, it exhibits the extreme elegance of the best Lie algebraic
computations.
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3.1.1. A quantum mechanical system is defined by a selfadjoint operator
called the Hamiltonian operator on a Hilbert space /# [Mack3]. Analysis
of the system involves describing the spectral decomposition, especially the
eigenvalues and eigenvectors, of the Hamiltonian. For the one-dimensional
quantum harmonic oscillator, the Hilbert space is LZ(R) , and the Hamilto-
nian is [Shan]

3.1.1.1 T=—-—x".
( ) e
To find the spectrum of T, consider the operators p, g on LZ(R) defined
by

6112 W =Tw, e =i

for f sufficiently nice in L? (X). It is easy to check that the four operators
T,p,q,and 1, the identity operator, span a four-dimensional Lie algebra:
the commutators

(3.1.1.3) [4, B]= AB — BA

of two of these operators is a linear combination of some or all of them.
Indeed, easy computations show

(3.1.1.4) @1, q) =1,

and of course the commutator of 1 with anything is zero.
Let us set

+

(3.1.1.5a) a=d—x+x=p—zq, a =E—x=p+zq.
Then we observe
(3.1.1.5b) [a*, a]=2,
(3.1.1.5¢) at=-a",
where a" indicates the operator on LZ(R) adjoint to a, and
(3.1.1.5d) T=4i(a%a+aa").
Further we can see that the vector
2
(3.1.1.5¢) vo=e*"
is annihilated by a:
(3.1.1.5f) ay, = 0.

Now let us forget we are dealing with specific operators on I? (R). Let
us simply suppose we have some Hilbert space on which are defined two
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operators, a and a', satisfying relations (3.1.1.5b,c), such that there is a
vector v, annihilated by the operator a. Define

(3.1.1.6) v,=@"Y () =a"(v,_), Jj=1,2,3,....
I claim
(3.1.1.7) a(v;) = -2jv;_,.
This may be easily verified by use of the commutator identity
k-1 . ,
[a, @)=Y @"[a, a"@") " = ~2k@")* .
j=0

Using (3.1.1.6) and (3.1.1.7) we can verify that, if T is defined by formula
(3.1.1.5d) then

(3.1.1.8) T(v;) = —(2j + D,

Thus the v ; are eigenvectors for 7. Since T is selfadjoint, this means the
v, are mutually orthogonal. We can even determine the Hilbert space norms
of the v i ’s. If the inner product is denoted by ( , ) we can compute

(’Uj > ’Uj) = (a+vj_1 > a+'uj_1) = —(aa+vj_1 > ’Uj_l) = 2j(vj_1 > ’Uj_l).
Hence
(3.1.1.9) (v;,v;) =2 ji(vy, vy)-
It follows that if we put
i ~1/2
(3.1.1.10) u, =2 jivy, vp)
then the ; form an orthogonal sequence of eigenvectors for 7', and
172 . 1/2
(3.1.1.11) au,=—(2) "u,_, atuy= 0+ 1) Puy,,.

If we now return to the concrete situation which gave rise to equations
(3.1.1.5), we see that the commutation relations (3.1.1.4) (which follow from
(3.1.1.5a,b,d) allow us to construct what can be shown to be an orthonormal
eigenbasis for 7', and in particular to determine its spectrum.

3.1.2. The structure revealed by the calculations above has significance far
beyond its application to the determination of the spectrum of the harmonic
oscillator. In particular, the commutation relations (3.1.1.4a) between p and
g, or(3.1.1.5a) between a and a*, which are known as Heisenberg’s Canoni-
cal Commutation Relations (CCR for short) (cf. [Mack3, Shan, Weyl3], etc.),
have been found to be fundamental to quantum mechanics. They imply
the uncertainty principle, which asserts that no particle state (i.e., vector in
LZ(R) ) can exist for which momentum and position are simultaneously well
defined (i.e., which is a simultaneous eigenvector for p, the “momentum
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operator,” and ¢, the “position operator”). See [DyMc, Folll, Korn, Shan],
etc.

Further, equation (3.1.1.7) shows that a triple (a, a®, v,) consisting of
two operators a,a’ satisfying (3.1.1.5b,c) together with a vector v, sat-
isfying (3.1.1.5f) is essentially unique. This may be taken as a version of
another foundational result of quantum mechanics, the Stone-von Neumann
Theorem (cf. Theorem 3.3.2.4 and [Cart, Foll, Mack3, Howed, vNeu], etc.),
which asserts the uniqueness, under appropriate technical hypotheses, of the
canonical commutation relations. (We note that some sort of condition, such
as (3.1.1.5f), is needed to supplement the CCR (3.1.1.5a) in order to guar-
antee uniqueness. The possibilities for nonuniqueness were exploited by J.
Bernstein to obtain interesting results in distribution theory [Bernl, Bern2,
Borl2].)

3.1.3. The uniqueness result of §3.1 has an easy extension to larger systems
of operators. Let {p Iz qj};;l be a collection of 2n operators satisfying the
following relations (known again as the Canonical Commutation Relations):

(3.1.3.1) [p;, 0 1=0=1[4;, 41 [p;,q]=1id,.

Then the p’sand ¢q’s, together with 1, the identity operator, spana (2n+1)-
dimensional Lie algebra, now widely known as the Heisenberg Lie algebra.
The Heisenberg algebra may be realized on Lz(R") by taking g; to be mul-
tiplication by ix ; and p ; to be partial differentiation with respect to x iz
The Stone von-Neumann Theorem applies also to these systems and asserts,
again under some natural hypotheses, that the realization of the p’s and ¢°’s
by ixj ’s and % ’s is essentially unique. One form of this result amounts

to a classification of the irreducible unitary representations (see §A.1.7) of
a certain nilpotent Lie group, known as the Heisenberg group (see §3.3 and
also [Cart, Foll, Howed4, Moor], etc.). This is a basic step in the classification
of the unitary dual (see §A.1.7) of nilpotent and solvable Lie groups [AuKo,
Kiri, Moor, Puka3].

The Heisenberg Lie algebra is closely connected not only with the har-
monic oscillator, but with many other important equations of physics, both
classical and quantum [Sthr, Howe6, Engl]. Extended to infinite numbers of
variables, it plays a key role in quantum field theory [Segal, Shal, Thir] and
the theory of “loop groups” and vertex algebras [Garl, FrLm, FrKa, Kacl-7,
KaPe, Lepol, Lepo2].

In addition to these applications to physics, mathematical structures at-
tached to the CCR are important in algebraic geometry (invariant theory
[Howel], abelian varieties [Cart, Igus, Mumf]), number theory (theory of
@-series [Cart, Gelb2, Howe5, HoPS, KuMil, 2, 3, LiVe, ToWal, 2], etc., K-
theory [Rama)), and differential equations (Hamiltonian systems [Olve] (cf.
§3.2), pseudo-differential and Fourier integral operators [FePh, Folll, GuSt1,
Howe3, 4], several complex variables [Foll2, FoSt, Stan], and D-modules
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[Borll, Bernl, Bern2]). Some of these topics will be touched on in the dis-
cussion which follows.

3.2. The orbit method. The philosophy which describes a large portion
of the representation theory of Lie groups is a descendant of the correspon-
dence principle of early quantum mechanics [Bohr, Iken, Jamm]. Since it
is a philosophy and not a theorem, it is difficult to formulate in such a way
that is not clearly false in some cases, but still appears to have content. But
roughly the idea is that, if G is a connected Lie group, then for each “clas-
sical dynamical system” for G, there should be a corresponding “quantum
dynamical system,” which would be a unitary representation.

3.2.1. What could this mean? The key to the matter is symplectic geometry
[AbMa, Grom, GuSt, Wein]. This is geometry based on a skew-symmetric
bilinear form, in contrast to Euclidean or Riemannian geometry, which is
based on a symmetric bilinear form. It is a slippery, less tangible kind of ge-
ometry; there is no notion of “distance” or “angles” in symplectic geometry.
However, somewhat latterly because of its elusive nature, symplectic geom-
etry has come to be seen to be of fundamental importance. Lie theory in
particular seems to be steeped in symplecticism, owing to the anti-symmetry
of the Lie bracket.

Let V be a finite-dimensional real vector space. A symplectic form { , )
on V is a nondegenerate skew-symmetric bilinear form. Nondegeneracy
means that the map «a: ¥V — V" defined by

(3.2.1.1) a@)(@) =@, v), v,v ev,

is an isomorphism. Standard elementary arguments [Lang3, Jaco2] show that
for V to have a symplectic form, ¥ must have even dimension, say 2n.
Further, given n, there is essentially just one symplectic form. Precisely, we
can, again by very elementary arguments, always find a symplectic basis for
V', that is, a basis {e;, f;},.;<,, such that

(32.12) (e, e)=0=(f,,f), (fie)=6,, 1<i,j<n,

where J, ; is Kronecker’s delta. If x,, y; are the coordinates with respect to
the symplectic basis (we call them symplectic coordinates), then

n
(3.2.1.3) W, v)=>" Xy, - %y,

i=1

From a symplectic form on ¥, we can construct a Lie algebra structure

on C*(¥V,R), the real-valued smooth functions on ¥V ; the Lie bracket in
this case is known as the Poisson bracket. In formulas, in the coordinates of
(3.2.1.3), we have

(3.2.1.4) {P,Q}=) +— S T A Ay P,QeCT(W).
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There are at least three conceptual ways of thinking about this formula. Much
of the richness of Hamiltonian mechanics stems from the fact that they all
yield the same answer, formula (3.2.1.4).

First, recall that the derivative or differential

(3.2.1.5) dP = Z — d ,+ ‘95 dy,
1
is a function on ¥V with values in V. We know the symplectic form defines

an isomorphism « from ¥V to V*. Thus we can consider a_l(dP) and
! (dQ), which are V-valued functions on ¥ . We can compute

n
. oP oP
(3.2.1.6) a (dP)= ; ay, i bx, %

and from this that the Poisson bracket may be expressed as

(3.2.1.7) {P, Q}=(a”'(dP), 2" (dQ)).

Second, we can regard the V/-valued function o ! (d P) as defining a vector
field on V. (Indeed, this is the correct thing to do from the point of view of
differential geometry.) We can then differentiate a function with respect to

-1 (dP). The Poisson bracket can also be expressed in these terms:

(3.2.1.8) {P, Q}=a ' (dP)(Q).

Third, if we think of both a_l(dP) and a—l(dQ) as vector fields, then
we can consider their Lie bracket, as in formula (2.3.8), and we have

(3.2.1.9) [o”'(dP), a ' (dQ)] = o~ '(d{P, Q}).
This formula shows that the map
(3.2.1.10) P—a '(dP)

is a Lie algebra homomorphism from C*(V ; R), equipped with the Poisson
bracket, to the space of vector fields on V', w1th their natural Lie bracket.

This third interpretation of Poisson bracket leads one to ask what the image
of the map (3.2.1.10) looks like. From the form (3.2.1.6) of o '(dP) it is
clear that it cannot be an arbitrary vector field; its coefficients must satisfy the
obvious “integrability conditions” imposed by the equality of mixed partial
derivatives, namely, if we write a vector field

(3.2.1.11a) v:Zaiel._q_bl.fi,

then if v = a_l(dP) for some P € C(V; R) we must have
da; 0Oa;  da, ob;,  ab, 0b;

o9q4; _ 7% 9% _ 9% _ 7%

oy; 0y, ’ 0x; ay ox; 0x,
Conversely, the Poincaré Lemma [Gold, Ster] tells us the conditions
(3.2.1.11b) do guarantee that v will be of the form o '(dP). But of more
interest are the following equivalent geometric interpretations of the integra-
bility conditions.

(3.2.1.11b)
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PROPOSITION 3.2.1.12. A vector field v is in the image of map (3.2.1.10)
if and only if

(i) the natural action of v on C* (V) is a derivation of the Poisson bracket,
ie.,

(3.2.1.13) v({P, @}) = {v(P), @} +{P, v(Q)},

or
(ii) the natural action of v on exterior forms on V annihilates the form

n
(3.2.1.14) w=Y dx;Ady,

i=1

In terms of the one-parameter group ¢, (or local group) generated by v,
as described in §2.1, condition (3.2.1.13) says that the ¢, will be automor-
phisms of the Poisson bracket, and the equivalent condition (3.2.1.14) says
the ¢, will preserve the differential form w. Clearly the diffeomorphisms
satisfying either of these conditions will form a group, which is sometimes
called the group of symplectomorphisms. (A more traditional term is canoni-
cal transformation.) Roughly speaking, the vector fields satisfying the equiv-
alent conditions of Proposition 3.2.1.12 form the Lie algebra of this group;
consequently we will denote the space of them by Vectsp(V) . This allows
us to summarize the discussion just above by saying the map (3.2.1.10) takes
C*(V;R) to Vectg (V).

An important technical point about the map (3.2.1.10) is that it is almost
but not quite an isomorphism: it has a one-dimensional kernel, consisting
of the constant functions. Also, it is easy to check from formula (3.2.1.4)
(by letting P be a fixed function, and letting Q vary through the coordinate
functions Xx;, y;) that the constants are precisely the center of the Lie algebra
C”(V; R) with Poisson bracket. Thus we have an exact sequence

(3.2.1.15) 0-R—C*(V;R) 2o Vectg (V) — 0

which exhibits C™(FV;R) as a one-dimensional central extension of
Vectg, (V).

To illustrate the difference the central extension (3.2.1.15) makes, consider
the Lie algebra generated by the coordinate functions x;, y;. It is easy to
check that

(3.2.1.16) o ldx)=—f, o (dy)=e,

Hence the vector fields o~ (dA), A € V", are just the directional derivatives
on V ; they form an abelian Lie algebra, whose corresponding group is just
V', acting on itself by translations. However, under Poisson bracket, the x;
and y, generate a nonabelian Lie algebra: we have

(32117) {xlaxj}z():{yl, y]}a {yj,xl}zéu
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These are simply a version of the CCR (see (3.1.3.1); the normalization here
is slightly different from (3.1.3.1)).

Hence the Lie algebra generated by V™ under {, } is a (2n + 1)-dimen-
sional, two-step nilpotent Heisenberg algebra

(3.2.1.18) h(V)=V"®R.

Although when realized via the Poisson bracket, the Heisenberg Lie algebra
is described in terms of V™, it is more natural to describe it in terms of ¥,
which is easy to do since we have identified V' and V" via the map a of
formula (3.2.1.1). Thus we prefer to write

(3.2.1.19a) , h(V)=V &R
Then the Lie bracket looks like
(3.2.1.190)  [(v, 1), (W ,)]=(0, (w,v")), w,veV,t,{eR.

Finally, to conclude this subsection, we note that the space SZ(V*) of
homogeneous quadratic polynomials forms a Lie algebra under the Poisson
bracket. This algebra normalizes the Heisenberg Lie algebra h(7") discussed
just above, and via the map (3.2.1.10) it is sent isomorphically to the Lie
algebra sp(V’) of the symplectic group Sp(V') of linear transformations of
V' which preserve { , ). (See §3.5.5 for more discussion of this remarkable
realization of sp(V).)

3.2.2. We can use the discussion of §3.2.1 to define a symplectic manifold
M in a manner entirely analogous to the usual definition ([Gold, Helg2,
AbMa, Ster], etc.) of smooth manifold: one covers the underlying point
set of the manifold M with local coordinate patches, such that the local
coordinate functions are the coordinates with respect to a standard symplectic
basis of a symplectic vector space; instead of letting the coordinate changes
on overlapping charts be arbitrary diffeomorphisms, one requires them to be
symplectomorphisms. Then if one interprets Proposition 3.2.1.12 using the
standard language of differentiable manifolds (see references just above), one
sees M has the following properties:

(i) There is a distinguished closed exterior 2-form @ on
M, ie., a section of A’T*(M), with the property
that the alternating bilinear form induced by w on
the tangent space at each point of M is a symplectic
form. (The 2-form w will have the form (3.2.1.14)
in each local chart.)

(ii) The space C”(M) is endowed with a Lie algebra
structure, called the Poisson bracket, and denoted
{, }. This will satisfy the appropriately coordinate-
free versions of properties (3.2.1.7), (3.2.1.8), and
(3.2.1.9). (On each coordinate patch, the bracket
{, } will be given by formula (3.2.1.4).)

(3.2.2.1)
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Alternately, one could define a symplectic manifold M as one having a
distinguished closed 2-form, as in (3.2.2.1)(i), or as having a Poisson bracket
structure on C(M ; R), as in (3.2.2.1)(ii). Some basic lemmas (Darboux’s
Theorem) then guarantee that M can be covered by local coordinate charts,
in the way we imagined to begin with ([AbMa, Olve, Ster]).

In any case, the Poisson bracket gives us a homomorphism of Lie algebras

C*™(M; R) — Vectg (M),

where again Vectg, (M) is the Lie algebra of vector fields which generate
(local) one-parameter groups of symplectomorphisms. The kernel of the map
is the space of locally constant functions on M . Since the characteristic
functions of the connected components of M form a canonical basis for
this space, we may identify it with the Oth cohomology group HO(M ). Also,
we have seen that via the map o of formula (3.2.1.1), the space Vectg,(M)
is identified with the closed 1-forms on M , and the map from C°° (M ; R) is
simply exterior differentiation. Hence the cokernel of this map is identified
to the first deRham cohomology group H l(M ). Thus we have an exact
sequence

(3.2.2.2) 0 — H°(M) — C%(M; R) — Vecty (M) — H (M) — 0.

There are three main sources of examples of symplectic manifolds.

(a) Cotangent bundles: If M is any manifold, then 77(M), the cotangent
bundle of M, isin a natural way a symplectic manifold [AbMa, Blat, Ster].

(b) Kdhler manifolds [LaBe, Hart, Weil3]: Let U be a complex vector
space, and let ( , ) be a Hermitian inner product on U. Then the imagi-
nary part of ( , ) defines a symplectic form on the real vector space obtained
from U by restricting scalars. A Kihler manifold is a complex manifold
M which is endowed with a Hermitian metric on its holomorphic tangent
bundle, whose imaginary part is a closed (1, 1)-form, and which thus de-
fines a symplectic structure on M . Kihler manifolds are significant because
they include all nonsingular projective algebraic varieties: complex projective
space CP” possesses a Kihler metric, the Fubini-Study metric [GrHa), the
unique metric invariant under the action of the unitary group U,_, on Cp";
and any nonsingular projective subvariety of CP" inherits this metric by re-
striction. For purposes of obtaining symplectic manifolds, one can equally
well consider “pseudo-Kiéhler” manifolds, defined in the same way as Kdhler
manifolds, except the Hermitian “metric” need not be positive definite.

(c) Coadjoint orbits: For us, this is the most important class of examples.
Let G be a Lie group, write Lie(G) = g, and let g* be the dual space to g.
The group G acts on g via Ad, the adjoint action, and therefore acts on g"
via the contragredient to Ad, called the coadjoint action, and denoted Ad™.
Consider A€ g". Let

(3.2.2.3) R,={g€G:Ad"g(A) =1}
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be the stabilizer or isotropy group of A, the subgroup of G which leaves A
fixed. Its Lie algebra is

(3.2.2.4) r,={x eg:ad (x)(4) = 0}.
The map
(3.2.2.5) e:g— Ad g(4)

defines a surjective, G-equivariant map from the coset space G/R; to
(3.2.2.6) g,={Ad"g(A): g € G},

the Ad"G orbit through A. Differentiating the map e, at the origin gives
an isomorphism

(3.2.2.7) g/r, =2 T(F),

of the quotient g/r, with the tangent space to &, at 4.
Consider on g the antisymmetric bilinear form

(3.2.2.8) (x, y), =Alx, y).

One can easily check that the radical of the form ( , ),—defined as
{xeg:(x,y),=0forall g eg},

that is, the vectors which are orthogonal to everything with respect to the
form (, ), on g—is precisely r, . Hence the form ( , ), factors to define
a non-degenerate form on the quotient g/r, . In view of the isomorphism
(3.2.2.7), we can push { , ) ; forward to define a symplectic form on the
tangent space 7(¢&), to &, at A. Since this can be done at every point of
g", and since it is a canonical construction, this will produce a G-invariant
differential 2-form which induces a symplectic form on the tangent space to
@, at every point. A computation shows [GuSt, AbMa] that this canonically
defined 2-form is in fact closed. (It should not be surprising that this is
essentially a consequence of the Jacobi identity.) Hence &, is a symplectic
manifold; further G acts transitively on &, via symplectomorphisms.

Some coadjoint orbits are isomorphic to cotangent bundles, and others
support Kihler or pseudo-Kihler metrics.

Lie [LiEn, vol. 2, p. 294] was apparently aware of the symplectic structure
on coadjoint orbits, or at least the associated Poisson bracket, but it was
subsequently forgotten until the 1960s when its importance for representation
theory was appreciated [Bere, Blat, Kiri, Kost1].

3.2.3. Let G be a Lie group and let M be a connected symplectic man-
ifold. Suppose G acts on M by symplectomorphisms. Differentiating the
action of G yields a homomorphism g from Lie(G) to Vectg (M) . De-
note the image of Lie(G) in Vectg, (M ) by g. We would like to lift g to
a subalgebra of C™°(M). According to the sequence (3.2.2.2) there are two
obstructions to doing this. The first is that g may not be in the image of
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the map from C®(M) to Vectg, (M), that is, some elements of g may rep-

resent nontrivial cohomology in H 1(M ). If M is simply connected, then
H' (M) = 0 [Mass], so we can eliminate this obstruction by passing to a cov-
ering of M if necessary. So suppose g is in the image of C™(M). Denote
the inverse image of g in C™ (M), via the sequence (3.2.2.2), by g. Then
we have a diagram:

Lie(G)

Bl

0 - R — g — g - 0

The Lie algebra g is a central extension of g by R, and thus defines a
certain cohomology class y in Hz(g; R) (see [Jacol, Kostl]). We can lift
the homomorphism £ to a homomorphism

B: Lie(G) - §C C*°(M; R)
if and only if the pullback 8*(y) € HZ(Lie(G); R) vanishes. If this happens,
then there is a choice of liftings # of B, corresponding to the homomor-
phisms of Lie(G) to R (which form the group H'(Lie(G); R) ~ (g/g™)*).

By a Hamiltonian action 8 of G on M, we mean an action of G on M
by symplectomorphisms, together with a compatible homomorphism

B: Lie(G) —» C*(M; R)
such that the diagram
i Lie(G)
(3.2.3.1) |
0 - C - COO(M; R) — VCCT.SP(M) - 0
commutes [GuSt 1, Kirw, Kost1].

REMARKS. (a) A standard basic fact about a semisimple Lie algebra s is
that H(s;R) = H'(s;R) = 0 [Jacol]. Thus if G is semisimple, then
any action of G by symplectomorphisms is automatically Hamiltonian, in a
unique way.

(b) For a general Lie group G, a symplectic action of G may be re-
garded as a Hamiltonian action of an appropriate central extension of G;
thus the action of a symplectic vector space on itself by translations comes

from a Hamiltonian action of the associated Heisenberg group, as in formulas
(3.2.1.16)-(3.2.1.19).

Suppose we have a Hamiltonian action B of G on the symplectic mani-
fold Af. By duality, the homomorphism f: Lie(G) — C*(M ; R) gives us
a mapping

My M- g* s
By(m)x) = Bx)(m),  me M, xeg.

It is easy to see that the mapping u 5 is equivariant for the action of G.
Because u 8 describes the angular momentum of a particle in a particular
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case (the action of 0, on R’ x R* ~ T*(R’) [AbMa, GuStl]), it is called
the moment map.

The geometry of the moment map for a general Hamiltonian action is quite
interesting, and quite relevant for representation theory [Ati2, GuSt3, Kirw2,
DuHYV]. But right now we focus on the case when G acts transitively on M .
In this case, the image of u 5 is clearly a single coadjoint orbit. Further, an
elementary argument shows that u p must be locally a diffeomorphism. Thus
any homogeneous Hamiltonian G-action must be a covering space of some
coadjoint orbit [GuSt1, Kostl]. Or in other words, up to coverings, coadjoint
orbits provide the universal examples of transitive Hamiltonian G-actions.

3.2.4. At the start of §3.2 we made a vague reference to the notion of a
“classical dynamical system” for G . Now we can specify that we will take this
to mean a Hamiltonian G-action. The rationale for this choice comes from
the Hamiltonian version of classical mechanics, which shows that a classical
conservative dynamical system satisfying Newton’s Laws can be expressed as
a Hamiltonian action of R [AbMa, Arne]; besides this it has been observed
to work.

Given this meaning of “classical dynamical system,” the discussion of
§3.2.3 can be taken as showing that the irreducible, i.e., transitive, classi-
cal dynamical systems for G correspond to coverings of coadjoint orbits.
Thus the principle enunciated rather imprecisely at the start of §3.2 can now
be stated more clearly: we hope to be able to associate irreducible unitary
representations to (covers of) coadjoint orbits for . The extent to which
this hope is realized will be surveyed in the next subsections.

3.3. Nilpotent groups. The hope expressed in §3.2.4 is realized perfectly for
nilpotent groups, as was discovered by Kirillov [Kiri, Pukal, Moor]. (Stat-
ing things this way is, in historical terms, to put the cart before the horse;
Kirillov’s work was a primary inspiration for the philosophy expressed in
§3.2.)

3.3.1. A key notion in Kirillov’s construction is that of polarization. Recall
the discussion of coadjoint orbits in §3.2.2. Let G be a Lie group, g =
Lie(G), 4 € g, R, = the stabilizer of 2 under Ad™, and r, = Lie(R,).
By a polarization for A, or polarizing subalgebra, or maximal subordinate
subalgebra we mean a Lie subalgebra p of g such that

(3.3.1.1) p is a maximal isotropic subspace for the form( , ),.

Isotropic means that (x,y), = 0 for all x,y € p. Maximal isotropic of
course then means that there is no subspace of g which properly contains p
and which also is isotropic for ( , ),. The duality theorems of basic linear
algebra imply that if p is a polarization then

(i) r,]_ gps

(3.3.1.2) o ae L/ .
(ii) dimp = 5(dimr, + dimg).



A CENTURY OF LIE THEORY 159

Thus the single condition of (3.3.1.1) could be replaced by the two conditions:
(i) p2r,,and (ii) p/r, is maximal isotropic for the symplectic form defined
by (, ), on g/r;.

Before stating Kirillov’s results, we should note that for a connected, sim-
ply connected nilpotent group N, the exponential map exp: Lie(N) — N is
a diffeomorphism [Malc, CoGr, Dixm2].

THEOREM 3.3.1.3 (Kirillov). Let N be a connected and simply connected
nilpotent Lie group. Set Lie(N) =n.

(a) There is a natural bijection between the unitary dual N and the set
n"/ Ad" N of coadjoint orbits for N .

(b) Pick A € n". The representation p, corresponding to the coadjoint
orbit @, through 2. may be realized as follows. Let p C n be a polarization
Jor A. (These exist.) Let P = expp be the connected subgroup of N with
Lie algebra equal to p. It is a closed subgroup of N. Because p is isotropic
Jor (, ), the formula

(3.3.1.4) w,(expx) = P X€EDp,

defines a unitary character of P. The unitarily induced representation (see
§8A.1.14 and A.1.16)

(3.3.1.5) 2—indJy, ~ p,

is the representation we are looking for.
(c) Every element of N is strongly trace class (see §A.1.18). For an Ad*N-
orbit @ C n*, the character ﬁpy of the corresponding representation p, can

be computed as follows. On @, there is an Ad" N-invariant measure, unique
up to multiples. Denote it by d u. For f € C°(N), let foexpe C°(n) be
the pullback to m of f via the exponential map. Define the Fourier transform
from functions on n to functions on n"* in the usual way:

(3.3.1.6) d(2) = / p(x)e D gx peL'(m),

where dx is a Haar measure on n. Then for appropriate normalization of
the invariant measure d,u on &, we have

(3.3.1.7) 0, ()= [(foew) Wdon,  feCTN).

3.3.2. REMARKS. (a) The proof of Theorem 3.3.1.3 proceeds by induc-
tion on the dimension of N, using the tools of the “Mackey Machine” (see
[FeDo, Mack4, Rief]) for computing representations of group extensions. In
fact, the necessary computations are quite limited and depend mainly on un-
derstanding the Heisenberg group, the basic group of quantum mechanics,
whose Lie algebra is described in formula (3.1.3.1) or (3.2.1.19).

(b) As well as being important for the proof of Theorem 3.3.1.3, the
Heisenberg group provides a good illustration of it. Let V' be a symplec-
tic vector space. If we again use the isomorphism (3.2.1.1) between V and
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V", we can write
(3.3.2.1) h(V)'=(VeR) '~V oR.

Using the expression (3.2.1.19b) for the Lie bracket in h(}V'), and formula
(2.4.8) for the adjoint action, we can compute that
(3.3.2.2)
Ad exp(v, H(v', )= +1v, 1), (v, 1) eh(V), (v, {) eh(V)".

Denote the connected, simply connected group whose Lie algebra is h(V)
by H(V). From formula (3.3.2.2), we can easily verify the following de-
scription of Ad*H (V) orbits.

The Ad*H(V) orbits in h(V) are

(3.3.2.3) (i) the points (v, 0), v' € V,
(ii) the hyperplanes {(v', {):v' €V}, ¢ e R-0.

If we plug this data in Theorem 3.3.1.3 we obtain a complete description
of the representations of , H(V). There are one-dimensional representations
2, (exp(v, 1)) = ") v e ¥, which factor to the abelian quotient
H(V)/ZH(V). Here ZH(V) is the one-dimensional center of H(V); it
is also the commutator subgroup. The non-one-dimensional representations
correspond to the hyperplanes (3.3.2.3)(ii), and so Theorem 3.3.1.3 special-
izes to the following classical result (cf. [CoGr, Folll, Howe2, Neum], etc.).

THEOREM 3.3.2.4 (Stone-von Neumann). For each nontrivial character y
of ZH(V) (~R), there is up to unitary equivalence exactly one irreducible
unitary representation p, of H(V) with central character y (see §A.1.7.4).
The representation p, may be realized as an induced representation

(3.3.2.5) py~2—ind; 7,

where A C H(V) is any maximal abelian connected subgroup, and } is any
extension of x from ZH(V) to A.

It is worthwhile to give a concrete description of the representations Py >
to emphasize how close we are here to the heart of classical harmonic analysis
[FePh, Foll1, Howe2, 3]. For this we can first observe that for s € R™, the
map

(3.3.2.6) dh(V) = h(V),
d(,t)=(sv,571), (v,t)ehV),

is an automorphism of h(¥). The corresponding automorphisms of H(V)
will permute almost transitively (there will be two orbits which are mutual
complex conjugates) the characters of ZH(V'). Thus up to the action of the
d, and complex conjugation, there is only one (infinite dimensional unitary
irreducible) representation of H(}). So we only need to describe one such
representation. But this is in fact given by the realization of h(R" @ (R")")
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via the operators z2- and ix; on L*(R"), as described in §3.1.3. Thus,
J

via this representation, the universal enveloping algebra % (h(R" oR" )) will
be sent to the algebra of polynomial-coefficient differential operators on R” .
(See §A.1.13 for an explanation of how to derive a representation of the
enveloping algebra.)

3.4. Solvable groups. Kirillov’s results appeared in 1960 [Kiri]. Through a
lot of hard work since then, the basic principles embodied in Kirillov’s theory
have been extended to encompass a large portion of representation theory of
Lie groups. The next class of groups to be analyzed was solvable groups. We
briefly outline this development.

Inspection of Theorem 3.3.1.3 makes clear that the bijection of part (a)
between orbits and representations is implemented in two quite distinct ways:
first, by an explicit construction of the representations, and second by a de-
scription of the character of a representation in terms of the orbit. It might
seem that a construction of the representation is very much to be preferred
to just a description of the character. However, it should be noted that the
construction of the representation involves a noncanonical intermediate con-
struction between the orbit and the representation, namely a polarization.
While it is always possible to find a polarization, there may in fact be many,
and the choice of a particular one is arbitrary. However, one shows that
all the representations one constructs by means of various polarizations are
equivalent. (A key fact used to do this is the Stone-von Neumann Theorem).
This “independence of polarization™ allows the construction to succeed. On
the other hand, the description of the character via formula (3.3.1.7) is canon-
ical. There is even an a priori description of the proper normalization of the
measure d,u [Moor, Puka2]. Below we will discuss the generalizations of
both parts (b) and (c) to other classes of Lie groups.

3.4.1. For solvable Lie groups, the situation is more complicated, but quite
satisfactory. Kirillov’s work was generalized almost immediately [Bert] to the
class known as exponential solvable groups, which are characterized as those
solvable groups G whose simply-connected cover G is such that the expo-
nential map exp: Lie(G) — G is a diffeomorphism [Moor, Dixm3]. For
exponential solvable groups the bijection between orbits and representations
holds, and can be realized using induced representations by an explicit con-
struction using polarizations, just as in the nilpotent case. However, two
difficulties arise:

(i) Not all polarizations yield the same representation, or even an irre-
ducible representation;
(ii) Not all representations are strongly trace class.

3.4.1.1. Both difficulties are already illustrated by the two-dimensional
“ax + b group”—the group of affine transformations of the line. This may
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be realized as the set of 2 x 2 matrices of the form

(3.4.1.1.1) G={[g 11)] :beR,aeR+x}.

(We restrict a to be positive in order to have a connected group.) The Lie
algebra of this group is the space of matrices

a B
(3.4.1.1.2) [0 0] , a, feR,
and its dual may be realized as the space

A0
(3.4.1.1.3) [Il 0] , A, ueR.

The pairing between the matrices (3.4.1.1.2) and (3.4.1.1.3) is given by taking
the trace of products. The coadjoint orbits are

A0
(3.4.1.1.4) @={[0 0]} for each A € R,

é’+={[i g]:leR,u>0}, é":{[i g]:leR,u<0}.

The representations corresponding to the one-point orbits are the linear char-
acters (one-dimensional representations) of the group. These are trivial on
the commutator subgroup G',

(3.4.1.1.5) G‘={[(1) 11’] :beR}.

There are two non-one-dimensional irreducible representations, correspond-
ing to the orbits & and @~ . The Lie algebra of the group G'isa polar-
ization for any element in either of these orbits, and we have

(3.4.1.1.6) por =2 —indg 1, [2] eo”,

where x u([(l) g 1) = e?™**  However, the group

(3.4.1.1.7) A= {[g (1)] 4 €R+x}

also defines a polarization of any element of o* . If x is any character of
A, then the unitary representation of G induced from y is equivalent to
the sum p . @ p,- .

The representations p,+ are also not strongly trace class. In fact, if f €
C."(G) is such that x,(f) # 0 for some A, then p = (f) will not be trace
class. Here y, indicates the character of G corresponding to the orbit &,

of (3.4.1.1.4). Precisely
a b\ _ 2z
Lllg 1|)=9
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3.4.1.2. Despite these two complications, the situation for exponential
solvable groups is quite well understood. There is a simple criterion first
formulated by Pukanszky [Moor, PukaS] to guarantee that a polarization
will produce the appropriate irreducible representation. Further there is a
clean description of the representation produced by any polarization [Moor,
Vergl].

With regard to generalizing the trace formula (3.3.1.7), one must recog-
nize that it will not generalize completely because not all representations are
strongly trace class. Roughly speaking, it will be closed orbits which corre-
spond to strongly trace class representations. (Observe that the orbits &* of
(3.4.1.1.4) are not closed.) Even for orbits for which there is a trace formula,
a new phenomenon enters: it is necessary to multiply a function by an ap-
propriate normalizing factor, which depends on the orbit. Thus for an orbit
@ for which it is valid, the trace formula takes the form

Ga121) 8,0 = [(Feem) L) Wdpn,  [eCTO),

where L, is an analytic function on Lie(G) [Moor, Dufll, Pukad]. The
need to introduce L, stems from two sources:
(i) For a general exponential solvable group G, the exponential map

exp: Lie(G) — G

will not take Haar measure on Lie((G) to Haar measure on G.

(ii) The modular function of (the connected subgroup of G whose Lie
algebra is) a polarization of 1 € & may not agree with the restriction of the
modular function of G.

3.4.2. For general solvable groups, one encounters several difficulties which
did not arise in the exponential solvable case.

3.4.2.1. (i) The representations of solvable groups can be badly behaved:
these groups need not be type 1 in the sense of C~-algebras [Dixml1].

(ii) Not all representations are realizable as monomial representations,
i.e., as induced representations from linear characters—in terms of the orbit
method, this means there are elements A € Lie(G)* for which there is no
polarizing subalgebra in Lie(G). An example is provided below.

(iii) Orbits @ C Lie(G)" may not be simply connected—equivalently,
their isotropy groups in G , the simply-connected cover of G, may not be
connected (consider E,, the isometry group of the Euclidean plane). Also,
orbit structure may be highly irregular—orbits may not even be locally closed.
(A semidirect product R x R*, where R acts on R* by a sum of mutually
irrational rotations, provides the simplest example. It was first noted by
Mautner.)

These phenomena force a substantial revision in the orbit method, and
a naive one-to-one correspondence between coadjoint orbits and representa-
tions no longer exists. However, there still exists a highly satisfactory, detailed
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theory which retains much of the flavor of Theorem 3.3.1.3 [AuKo, Moor,
Puka3, Puka6]. We will describe how the new features of this theory solve
the problems 3.4.2.1.

First one must lump coadjoint orbits into equivalence classes of “quasior-
bits.” Two orbits define the same quasiorbit if their closures in Lie(G)* are
equal. It turns out that a quasiorbit in Lie(G)" is an orbit for a slightly larger
group G' 2 G such that the quotient G'/G is abelian [Puka3].

Second, one must seek to parametrize, not representations, but primitive
ideals in C*(G) (see [Dixm2]). Here C*(G) is the group C*-algebra (cf.
8A.1.12, especially definition (A.1.12.6)). Recall that if the group G is type
I, then there is a natural bijection between equivalence classes of irreducible
unitary representations and primitive ideals in C*(G) [Dixm2]. But if G
is not type I, there may be infinitely many irreducible representations whose
kernel in C*(G) is a given primitive ideal. (This is in fact fairly typical
behavior. The easiest examples may be induced representations of the rank
3 integral Heisenberg group.)

Third, the mapping to quasiorbits from primitive ideals is many-to-one.
The fibers are quotients of the duals of subgroups of the component groups
of the isotropy groups [Puka6].

Let us state the result precisely. Let G be a connected and simply con-
nected solvable Lie group, with Lie algebra Lie(G). Consider A in Lie(G)*.
Let R, C G be the stabilizer of 4 under the coadjoint action Ad*G, and
let Rg be the identity component of R,. Recall that r, = Lie(Rg) is the
radical of the form { , ), associated to A (cf. (3.2.2.4)). There is a unique

character x, on Rg defined by
(3.4.2.2) xexpr)=e* rer,

It is easy to see that the component group R, /Rg is abelian. Also, since R,
stabilizes 4, the character x, on Rg is clearly invariant under conjugation
by all of R;. Hence the quotient group R / ker x, is a central extension of
R, /Rg by the group Rg / ker A, which we may identify to the unit circle T
by means of x. Thus R,/kery, is a two-step nilpotent group (or possibly
abelian—the extension may split), and we have an exact sequence

(3.4.2.3) 1 -T—R,/ker x, — R,/R) — 1.

Let S, be the image in R, /Rg of the center of R, /kery, .

THEOREM 3.4.2.4 [Puka6). Let G be a connected, simply connected solv-
able Lie group. Let P(C*(G)) = P(G) denote the space of primitive ideals of
C*(G). Let (Lie(G)"/Ad*G)™ be the space of coadjoint quasiorbits. There is
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a mapping
P(G)
(3.4.2.5) xl
(Lie(G)* /Ad* G)~

such that the fiber x'l(é’) above a quasiorbit & C Lie(G") can be identified
with a quotient of S, forany A €@ .

The most subtle aspect of this result is to understand which quotient of :S‘;
gives the fiber. This is closely related to the group G' mentioned above for
which the G-quasiorbit becomes an ordinary orbit. If the quasiorbit consists
of a single G-orbit, then the fiber is all of S, .

We can also use the notions just formulated to give the criterion of
Auslander-Kostant that a solvable group be type 1.

THEOREM 3.4.2.6 [AuKo]. The group G is typel if and only if

(i) all coadjoint quasiorbits consist of a single coadjoint orbit, equiva-
lently, the coadjoint orbits are locally closed, and
(ii) forevery 4, S, = Rl/Rg, i.e., the extension (3.4.2.3) is trivial.

3.4.3. The correspondence (3.4.2.5) is again described in the two ways
indicated by Theorem 3.3.1.3—by explicit construction of induced repre-
sentations, and by character formulas. However, both these constructions
must be more sophisticated. The character formula is similar to the formula
(3.4.1.2.1) for exponential groups, except one must restrict the functions f
to have support in a certain neighborhood of the identity, and the formula
does not distinguish between different elements in the fibers of the map x of
(3.4.2.5) [Puka3]. By considering integrals over quasiorbits rather than orbits,
Pukanszky [Puka3] has formulated an extension of the character formula to
the non-type I case.

Although polarizations no longer exist for an arbitrary 4 € Lie(G)", there
is still a fairly direct construction of the representation associated to an or-
bit as a representation induced from a special class of representations of
subgroups. Here again the Heisenberg group, and somewhat more general
two-step nilpotent groups, play a key role.

One can preserve the geometric flavor that polarizations give to the con-
structions by considering complex polarizations. In essence, a complex po-
larization is a complex Lie subalgebra of Lie(G)., the complexification of
Lie(G) , which satisfies condition (3.3.1.1), where A now means the complex-
linear extension of A € Lie(G)" to Lie(G). . In order for a complex polariza-
tion in the above sense to be usable for constructing representations, it should
also satisfy some other technical conditions [Moor, p. 21; AuKo], which are
usually incorporated into the definition of complex polarization. One can
show that complex polarizations always exist. Indeed, Auslander-Kostant
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establish the existence of complex polarizations satisfying an additional con-
dition called positivity. The existence of positive complex polarizations is,
once again, essentially a phenomenon associated with the Heisenberg group
[AuKo, Moor].

Having a positive complex polarization for A € Lie(G)" allows one to
construct the representation associated to the coadjoint orbit through 4 on
a space of partially holomorphic sections of a complex line bundle. The ba-
sic example is the “Fock model” (cf. [Barg, Foll, Howe2, Sega], etc.), for
the representations of the Heisenberg group. More recently, several authors
[Carm, MoVe, Penn, Rose] have considered using nonpositive complex polar-
izations. This leads to the realization of representations on spaces of higher
cohomology of the associated line bundles, rather than sections ( = degree
zero cohomology). Although these constructions using higher cohomology
are not necessary to construct the representations of our solvable G, they es-
tablish a parallel between solvable groups and semisimple groups, for which
realizations on cohomology are necessary (see §§3.5.5, 3.6.3, 3.6.5).

3.4.4. To conclude our discussion of solvable groups, we will give the basic
example showing that polarizations may not exist for all 4 € Lie(G)", and,
correspondingly, that representations of G may not be monomial (i.e., in-
duced from one-dimensional representations of subgroups). The reason not
all representations of solvable groups are monomial is related to the age-old
fact that not all real matrices are diagonalizable, or even triangularizable,
over the real numbers. The four-dimensional Lie algebra described in for-
mula (3.1.1.4) typifies the problem. It may be realized as a Lie algebra of
4 x 4 matrices:

0 x y 2z
)10 0 -t y |
(3.4.4.1) g= 0 ¢ 0 —x it,x,y,zeR
00 0 o

The three-dimensional subalgebra of elements of g with ¢ = 0 is a Heisen-
berg Lie algebra. Denote it by h. The center of h consists of the elements
of h with x =0=y. Denote it by z(h). Then h/z(h) is abelian, and it is
easily seen that the adjoint action of g/h on h/z(h) is irreducible (over R—
when complexified it will of course break up into a sum of two eigenlines).
Consider any A in g* whose restriction to z(h) is nonzero. Simple compu-
tations show that the coadjoint orbit &, =@ through 4 is two-dimensional.
Thus the isotropy subalgebra r, of A is also two-dimensional, and any po-
larization of A must have dimension 3. However, the projection of &,
into h* is also two-dimensional (see (3.3.2.3)), hence dim(r,nh)=1,s0 1,
projects onto g/h. Since g/h acts irreducibly on h/z(h), there are no three-
dimensional subalgebras of g containing r,. So A has no polarizations.
On the other hand, the calculations of §3.1.1 produce a representation
of g, acting on the same space as the canonical representation of h, de-
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scribed by the Stone-von Neumann Theorem (Theorem 3.3.2.4). Using this
extension of representations from h to g, one can verify a one-to-one corre-
spondence between orbits and representations for the simply-connected group
G associated to g. Similar, somewhat more general, constructions involving
Heisenberg-like groups suffice to construct factor representations correspond-
ing to arbitrary primitive ideals of C*(G) for general solvable groups G.

3.5. Compact groups. The representation theory of compact Lie groups is
equivalent, via the process of differentiating a representation (see §A.1.13),
to the representation theory of complex semisimple (actually, reductive) Lie
algebras. The bare essence of this is Cartan’s theory of the highest weight,
and is a key chapter in his foundational work on Lie theory [Crtn2]. (For
an interesting account of some history of this, see [Hawk1].) Weyl [Weyll,
PeWe], provided the analytic apparatus to make the connection between the
two theories, and provided important supplements (complete reducibility,
character formula), Harish-Chandra [HaCh8] made a connection with the
orbit method by providing an orbital interpretation of the Weyl character
formula. It is interesting that this work, which is a key to Harish-Chandra’s
later construction of the discrete series for noncompact semisimple groups,
precedes Kirillov’s [Kiri] by several years. The other aspect of the orbit
method, construction of representations via polarizations, is provided by the
Borel-Weil-Bott Theorem [Bott, Warn, Voga 1], which is also a development
of the 1950s. It too provided important guidance to the noncompact case.
In the sections below, we will review these developments more closely.

3.5.1. To start, let us review the representations of sl, , the unique simple
Lie algebra over C of minimal dimension, namely three. This is a simple and
attractive topic, with numerous applications, both within Lie theory proper
(cf. §2.8) and in many other parts of mathematics (cf. [Langl, HoTa, Howel,
§4(b); Proc], etc.) and physics (cf. [BiLol, 2, Hame, Jone, Shan], etc.).

Recall (see formulas (2.8.1)) that sl, has a basis 4, e, e, satisfying the
commutation relations

(3.5.1.1) [h, e ]=+2", [e",e ]=h

REMARK. We note that the compact group whose complexified Lie algebra
is sl, is SU,, the special unitary group in two variables. A basis for su, is
provided by the famous Pauli spin matrices [Shan]

_Jo 1 _Jo —i 10
%=1 0] %T|i o] %T|o -1]
The basis 4, et of sl, is expressed in terms of the spin matrices as follows:
h=0,, e =}, + ig)), e =3(o, ~ig).

The passage from SU, to su, to sl, is typical of the flexibility permitted
by Lie theory.
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The first basic fact about representations of sl, stems directly from the first
of these relations. Suppose we have a triple of operators #, e* on a vector
space V', and suppose #, et satisfy the commutation relations (3.5.1.1).
Suppose v is an eigenvector for 4, with eigenvector A:

(3.5.1.2) h(v) = Av.

We compute

(3.5.1.3)  h(eT())=([h, e’ 1+e h)(v) =2¢ () + e ()
= (A+2)e" (v).

Thus e*(v) is again an eigenvector for /4, with eigenvalue A + 2, the
eigenvalue of v plus two. A similar computation shows e (v) is also an
h-eigenvector, with eigenvalue A — 2. Thus the effect of e* is to shift the
eigenspaces of £ to higher eigenvalues; ¢~ shifts the A-eigenspaces toward
lower eigenvalues. This phenomenon is commonly described by calling e* a
raising operator and e~ a lowering operator. We may summarize the above
computation as follows.

LemMa 3.5.1.4. If V isa module for sl,, and V, C V is the A-eigenspace
Jor h, then the sum 3, _, V., of h-eigenspaces is invariant under sl,.

More precisely, we have
+

e (Vo) € Viaar)

The above discussion shows that the product e e’ preserves A-eigen-
spaces. For a sharper understanding of the structure of representations of
sl, , we investigate the structure of the operator e e (or e’e” ;but efe” =
e e +h).

To analyze e e’ we consider the Casimir operator
(3.5.1.5) F=h*+2(eTe +e e )=h +2h+de et =h —2h+4dete.

A straightforward computation shows that & commutes with all of sl,.
Thus & is in the center of the universal enveloping algebra of sl, . In fact,
it generates the center (cf. [Langl, Hump], etc.).

Since ¥ commutes with sl, , its eigenspaces will be invariant under sl, .
If V' consists of a single eigenspace for & , we will say the action of sl, on
V is quasisimple. Clearly all finite-dimensional irreducible representations
are quasisimple by Schur’s Lemma (cf. [HeRo, Lang3, Jaco2, Knap2] etc.).

Suppose the action of sl, on V' is quasisimple, so that % actson V by
a scalar, which we will denote by u. Again let V, be the A-eigenspace for
h. Then if v € V, equation (3.5.1.5) says

(3.5.1.6) e etw)=t(u-A -2, e'e () =L(u- A +24)w).

Thus, if V is quasisimple, the operator ¢ e* acts as a scalar on each Vi,
and this scalar will be nonzero unless we have the quadratic relation

(3.5.1.7a) u+1=@A+1>%
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Similarly, ete” actsasa scalar, which is nonzero unless
(3.5.1.7b) p+l=A-1)>%

Note that (3.5.1.7a) becomes (3.1.5.7b) under the translation 4 — 4 + 2.
These equations imply that in a sum ZkeZ V, .ok » there are at most two
values of k& for which either of the maps

+ —_—
e Vi = Visakszo e Vi~ Ve

fails to be an isomorphism.
Now suppose V is irreducible and finite dimensional. Then necessarily

V=3 ez Vi for some fixed A, and clearly V, , = {0} for k large

enough. By replacing 4 by A+ 2k for appropriate k, we can assume V, #

{0} but ¥, = {0} for k > 0. Choose v, € V;, and set v, = (¢”)’ v;.

Then we have the formulas

(3.5.1.8) e (v)=v et =jA—j+1p

- U+ j-1

The first formula amounts to the definition of v I and the second follows
from formulas (3.5.1.6). Since V is finite dimensional, we must have e~ (v j)
= 0 for some j. Then also e*e”(v;) = e*(v;,,) = 0. From the second
of formulas (3.5.1.8), we see that necessarily j = A. Hence A must be a
nonnegative integer. We then further see that formulas (3.5.1.8) define a
unique sl,-module structure on the span of the v B 0 < j < A. This span
must thus be all of V. We conclude dim V' = A4 1, and that the v ; ’s are a
basis for V. The following result summarizes our analysis.

ProPOSITION 3.5.1.9. For each positive integer n, there is up to isomor-
phism a unique irreducible representation of sl, of dimension n. The space
of this representation allows a basis {v ;:0<j<n- 1} with respect to which
the action of s, is described by (3.5.1.8), with A = n — 1. In particular, the
eigenvalues of h are

{m:—(n-1)<m<n-1,m=n-1 (mod2)}
and these eigenvalues all have multiplicity one.

ReMArk. The above arguments can easily be adapted to describe all irre-
ducible representations, finite- or infinite-dimensional, of the group SL,(R)
(cf. [Bargl, Langl, HoTa], etc.).

3.5.2. The very precise picture presented by Proposition 3.5.1.9 has an
analog for a general (semi-) simple complex Lie algebra g. The basic results
are due to Cartan [Crtn2] but understanding of the structure behind them has
been refined considerably since 1913. We will give a fairly modern account,
based roughly on [HaChl, Jacol, Hump, BGG1-3].

To set the mood for this construction, consider the following description
of the finite-dimensional representations of sl,. If V" is an sl,-module and
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v € V, call v a highest weight vector if e*(v) = 0 and A(v) = Av for
some number A. The eigenvalue of A is then called a highest weight. The
vector v, of the basis v i in (3.5.1.8) is a highest weight vector with highest
weight 4. An sl,-module which is generated by a highest weight vector is
called a highest weight module. Tt is easy to see that if we have a vector space
V(A) with basis {vj :0 < j < oo}, and we define an action of sl, on V(4)
by formulas (3.5.1.8), then we obtain a highest weight module, with v, a
highest weight vector of weight A. Further, an easy argument, again based
on formulas (3.5.1.6), shows V(1) is the universal highest weight module
with highest weight A in the sense that if U(A) is any highest weight with
highest weight A, there is a surjective sl-module morphism from V(1) to
Ud).

We can do this for any number A. Typically V' (4) isirreducible. However,
if A is a nonnegative integer, then the quantity j(1—j+ 1) will be zero not
only for j =0, but also when j =4+ 1. In this case, v, , will be a highest
weight vector, with highest weight —A — 2. Thus, when A is a nonnegative
integer, the module V(-4 — 2) is a submodule of V' (1). One sees that the
quotient V(4)/V(—4—2) is the finite-dimensional irreducible representation
of dimension A4 + 1. Another way of saying this is to observe that we have
an exact sequence

(3.5.2.1) 0— V(~A-2)— V(@A) — F(i) -0,

where F () is the finite-dimensional irreducible representation with highest
weight A.

3.5.3. The description (3.5.2.1) of the finite-dimensional irreducible rep-
resentation of sl, has a generalization to all complex semisimple (finite-
dimensional) Lie algebras [Jacol, Hump, BGG1-3]. We will describe it. Let
g be a complex semisimple Lie algebra, and let a C g be a Cartan subalgebra.
Consider the decomposition (2.8.6) of g into root spaces for a:

g=a0) g.

a€X

Here X denotes the set of roots of a acting on g. As we remarked in §2.8,
if g, is a root space, then sois g__, and g and g__ together generate an
algebra s_ isomorphicto sl,. Let #_ in s_Na be the element corresponding
to the element # as in formulas (2.8.1). In other words, the element A_ is
determined by the conditions

(3.5.3.1) h,€ans_, ah,)=2.

The element ha is frequently called a coroot.

It follows from the description in Proposition 3.5.1.9 of the representations
of sl, that f(h ) € Z for all roots f. Thus if we denote by ap the real
span of the A_ for all roots a, we see that the roots take real values on ag .
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Choose any £, € ap such that a(h,) # 0 forall a € . Set
(3.532) T ={acX: a(hy) > 0}, 2 =3 = {a: a(hy) < 0}

The sets =* and T~ are called, respectively, the positive roots and the neg-
ative roots. Further, set

(3.5.3.3) n=> g, n = g.

acZt a€X”

Then n* and n~ are maximal nilpotent Lie subalgebras of g, and we have
the decomposition

(3.5.3.4) g=aon on .
Further, the algebras
(3.5.3.5) b"=a®n’, b =aen

are maximal solvable subalgebras of g. They are called Borel subalgebras.
The commutator subalgebra of bt is n*

Suppose we have a representation of g on a vector space V. Since the
algebra a is commutative, it is possible to have simultaneous eigenvectors
for a in V. Suppose v is such a vector, i.e., suppose that for all g in a
we have a(v) = A(a)v for some number A(g). It is trivial to check that the
function

(3.5.3.6) Aia— Ma)

depends linearly on a, so that A belongs to a*. The linear functional A
is called the weight of v, and v is called a weight vector of weight A. The
span of all weight vectors of weight A4 is called the A weight space. Suppose
v is not just an eigenvector for a, but for all of b™; that is, suppose v is
a weight vector for a, and additionally n(v) = 0 for n € n*. Then v is
called a highest weight vector, and the weight A of v is a highest weight. If
V is generated as a g-module by a highest weight vector, then V' is called a
highest weight module. Just as for sl, we can prove

LeMMA 3.5.3.7. Every finite-dimensional irreducible representation of g
is a highest weight module. More precisely, a finite-dimensional irreducible
representation contains a unique highest weight vector.

ProOOF. Let V' be the space of the representation. Since V is irreducible,
to show it is a highest weight module it suffices to show it contains a highest
weight vector. This is done in completely elementary fashion just as for sl, .
If h, € a is the element used to construct n* , observe that if ne€g C nt,
then n transforms an eigenvector for 4, of eigenvalue A into an eigenvector
of eigenvalue A + a(h,), which has larger real part than does 4. Hence if
4 has maximal real part among the eigenvalues of A, acting on V', then
any eigenvector for 4, with eigenvalue 4 must be annihilated by n" . Since
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a is commutative and V is finite dimensional, we may find within the A-
eigenspace for 4, a weight vector for a. It is necessarily then a highest
weight vector.

To show there is only one highest weight vector, we appeal to the Poincaré-
Birkhoff-Witt Theorem (cf. [Jacol, Serr2], etc.). From equations (3.5.3.4)
and (3.5.3.5) we see that

g=b"on .
Let Z (g) be the universal enveloping algebra of g (cf. [Jacol, Serr2], etc.),

and similarly for b*, n™ . Multiplication inside % (g) induces a linear map-
ping

(3.5.3.8) Y ) QU b) - %(g).

The PBW Theorem tells us that the mapping (3.5.3.8) is a linear isomor-
phism.

Let v € V be a highest weight vector. Denote by Cv the line through v .
Then using PBW we find

% (8)(Cv) =% (m )% (b")(Cv) =% (@ )(Cw).

For each a € £, choose a nonzero element n € g, . Then #(n") is

spanned by monomials in the n_, i.e., by products ROV An easy

inductive calculation shows that, if v has weight A, then n_ SO (v) is
i

also a weight vector, of weight 4 + Zle a,;. We note that since a(h,) < 0

for all o in X, no sum ZLI a; can be zero unless k = 0. Thus we have
the following result.

LeEMMA 3.5.3.9. If V is a highest weight module with highest weight A,
then:

(1) V is a direct sum of its weight spaces;
(ii) all weights of V have the form A+ 3 s n o, where the n, are
nonnegative integers; and
(iii) the A-weight space is one-dimensional, that is, it is Cv, where v is
the highest weight vector of weight A.

Now suppose V is an irreducible highest weight module, with highest
weight A, and suppose V' contains a highest weight vector v, in addition
to the highest weight vector v of weight 4. Then by Lemma 3.5.3.9(ii) and
(iii), the weight of v, is 443 ;- m_a, with some of the m s positive. By
Lemma 3.5.3.9(ii) the g-module 7/(g)(v,) is the span of weight spaces with
weights A+ 3 .- (m, + n )a, with the n’s nonnegative. It follows that
v cannot belong to %(g)(v,), contradicting the irreducibility of V. This
proves Lemma 3.5.3.7.

In fact, during the argument, we showed a more general fact about highest
weight modules, which we will state explicitly.
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CoroLLARY 3.5.3.10. Let V be a highest weight module, generated by
the highest weight vector v with highest weight 1. Then

(1) V is irreducible if and only if V contains no other highest weight
vector, and

(ii) V contains a unique maximal proper submodule U such that VU
is irreducible and nontrivial. (In particular, v ¢ U.) U is generated
by all highest weight vectors other than v .

Thus we have identified irreducible finite-dimensional representations as
members of a larger family of irreducible highest weight modules. We will
now proceed by describing this larger class, then identifying the subclass
consisting of finite-dimensional subrepresentations.

First, we show that, as for sl,, there is a highest weight module with
highest weight A for any A € a". Indeed, given A € a*, consider the left
ideal .Z] in % (g) generated by n" and by elements a—A(a) for g € a. Note
that A defines a character (a one-dimensional representation) of % (b*), and
that n* and the elements a — A(a) generate the kernel of the corresponding
homomorphism from % (b*) to C. Thus they generate a two-sided ideal A
of codimension one in % (b*), and %, is the left ideal in %/(g) generated
by 7 . It follows from PBW that .Z; = % (n" )7, and that the natural map

(3.5.3.11) U ) > %)~ %8)/Z
is a linear isomorphism.

CoRrOLLARY 3.5.3.12. (a) The g-module
(3.5.3.13) V,=%(g)]=

is a highest weight module, with highest weight A, generated by the image v,
of 1, the identity element of % (g) .

(b) V, is freeas a % (n”) module.

(c) Any highest weight module with highest weight 1 is a quotient of V.

(d) Consequently, for every weight A € a*, there exists a unique irreducible
highest weight module M, with highest weight .

The modules V, are usually called Verma modules [Hump, BGG3].

Thus we have an irreducible highest weight module M, for every A€ a”.
It remains to decide when M, is finite dimensional. We can deduce some
restrictions on A from our knowledge of sl,. Suppose M, is finite dimen-
sional. For a positive root a € =¥, consider the copy s of sl, generated by
g, .- The highest weight vector v, of M, generates a highest weight module
for s_, and this highest weight module is necessarily finite dimensional. It
follows from §3.5.2 that A(h,) is a nonnegative integer. Let us say 4 € a
is integral if A(h_ ) is an integer for all o € T*. Let us say A € a* is domi-
nant if A(h,) > 0 for all a € Z*. (This is equivalent to saying A is in the
positive or fundamental Weyl chamber, cf. §2.10.) Then, for 4 € a* to be
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the highest weight of an irreducible finite-dimensional representation of g,
we can say it must be dominant and integral. The main result of Cartan’s
highest weight theory is that these conditions on 4 suffice to guarantee M,
is finite dimensional.

THEOREM 3.5.3.14. The irreducible module M, of highest weight 2 is
finite dimensional if and only if 1 is dominant and integral.

REMARKS. (a) This theorem reminds us again of the strong control sl,
exerts over the phenomena of semisimple Lie algebras. This control is evident
even more in the proof of the theorem given below.

(b) The dominant integral A in a" clearly forms a semigroup under
addition—the intersection of a lattice with a cone. If M, and M , are
irreducible highest weight modules with highest weight vectors v, , v n then
the tensor product v, ® v p will generate a highest weight module, of highest
weight A+ u , inside the tensor product module M, ® M, - Hence, if M, M#
are finite dimensional, so must M, u be. Thus the set of highest weights of
finite-dimensional representations is also a semigroup. To prove that all dom-
inant integral A4 define finite-dimensional highest weight modules, it suffices
to exhibit finite-dimensional M, for a set of A which generate the semigroup
of dominant integral weights. This is essentially what Cartan did [Crtn2],
and in fact the procedure, though heavily computational for the exceptional
groups, is illuminating, and for the classical groups is quite elegant, involving
the exterior powers of the standard representations. From general structure
theory [Jacol, Hump] one can show that the dominant integral weights actu-
ally form a free semigroup on a unique set of rank(g) = dima generators.
The representations corresponding to these generators are called the funda-
mental representations of g. For g = sl , the fundamental representations
are just the natural action on the A’(C"), the exterior powers of C", for
1 < j < n—1. For orthogonal and symplectic Lie algebras, the fundamental
representations (except for the spin representations of the orthogonal alge-
bras [Arti, BeTu, Jaco2]) are also constructed fairly easily from the exterior
powers of the basic representation.

We will briefly sketch the approach of [HaChl] (see also [Jacol, Hump])
to showing that, if A is dominant integral, then Af, is finite dimensional.
Consider the fundamental positive roots in X' (cf. §2.12). Let o be a
fundamental positive root. From the general structure theory, we know that
p, , defined by

(3.5.3.15) p,= b" +g_,= nz;) ©kerads,,
where ni) = ;.5 .8, and kera = {h : a(h) = 0} C a, is a Lie

subalgebra of g. It is called a parabolic subalgebra. The subspace n(z)
ideal in p, . In particular, we have

(3.5.3.16) [nf ,s]Cn’

(@)’ Pad = Vo

1s an
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Consider the Verma module ¥, with highest weight vector v, . Suppose
that A(h,) is a nonnegative integer. Then formulas (3.5.1.8) show that if
e_, belongsto g__ ,and e  belongs to g, , the vector

Ak )+1
= e_a ) (

y v,)

is annihilated by e_ . Also, the commutation relations (3.5.3.16) imply that y
will be annihilated by n/, . Since nt = n&@ga , it follows that y is a highest
weight vector, of weight A — (A(h,) + 1)a. It will generate a highest weight
submodule of V,. Since n™ acts freely on V,, we see that y generates a
module isomorphic to Vl—(l(ha) ta - In other words, under the hypothesis
that A(h,) is a nonnegative integer, we obtain an embedding of ¥,_ Ak, + e
in V.

If A is dominant integral, then we get an embedding of VA—(A(ha) )a in
V, for every fundamental root «. This already suffices to show that A, ,
the irreducible quotient of ¥, , must be finite dimensional. Indeed, for each
fundamental root a, M, will be a quotient of VA/VA_(MQ)H)Q = V,(a). The
image in V)(a) of the highest weight vector v, generates a finite-dimensional
s, ‘module. Since the adjoint action of g on #%/(g) is a sum of finite-
dimensional g-modules, hence s_-modules, it follows that any element of
Vi(a) = 7% (g)(v,) generates a finite-dimensional s -module. It follows that
S, = exps,, the group obtained by exponentiating s_, acts on Vj(a). In
particular, the Weyl group reflection w, contained in S, acts on V(a). It
is easy to see this fact remains true in any quotient g-module of V,(a). In
particular, w,_ acts on M,. Since the w_ generate the full Weyl group W
(cf. §2.9), we see that W acts on M.

Since W normalizes a, the effect of W on M, is to permute weight
spaces. Precisely, for u € a", let M} denote the u weight space of M, .
Then for p € W, we have

(3.5.3.17) p(MY) = MI®,

where p(u) denotes the standard action of p on u as an element of a*.
Thus, in particular, one sees that the set of weights u for which Mf # {0}
is invariant under W . Since also the weights of M, , being contained in
the weights of V,, are bounded above, as described by Lemma 3.5.3.9(ii),
it follows easily from the geometry of the action of W on a* that the set
of weights u for which Mf # 0 must be bounded, hence finite in number.
Since each weight space of M, (indeed, of V)) is finite dimensional, we
conclude M, is finite dimensional.

Although the argument above gives us the desired finite dimensionality of
M, when A is dominant integral, it does not give us a very precise picture
of M, . A refinement of the above considerations yields a description of M,
analogous to (3.5.2.1) [BGG1-3, Dixm1].
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Let p denote the element of a* such that

(3.5.3.18) p(h,) =1
for each fundamental root . Then we may write
(3.5.3.19) A=(Ah)+Da=w (A+p)—p,

where again w,, is the Weyl group reflection corresponding to the fundamen-
tal root «.

As we have noted, the Weyl group W is generated by the reflections w,, .
Let the length of p € W be the shortest product of the w_’s equaling p
[Hill, Bour]. Denote it by [(p). If

O‘[wa[_l .. -’u)al 5 l = l(p),

is a shortest possible product expressing p , then

p=w

I
pEw,p=w, W

—1 @
has length / — 1. From a systematic study of the geometry of a root system
and its Weyl group, one can see that if A is dominant, then p'(/l)(hal) >0.
It follows by the argument given above that 7} embeds in Votap)—p *
The embedding is unique up to multiples.

By induction, we find that when A is dominant integral, we can embed
Vw(l p)=p in ¥V, for every element w of the Weyl group W . It is shown in
[BGG2] that these embeddings can be organized into an exact sequence, as
follows. For k > 0, set

(A+p)—p

(k) _
(3.5.3.20) 27 = 3 Vatanp
(w)=k
We have seen that whenever w has length kK — 1 and w_w has length k,
there is an embedding Vwaw(l o—p Vw(z )= defined up to multiples. By

taking linear combinations of these embeddings, we can construct mappings
from Vl(k) to Vl(k"l) . If we choose these mappings correctly, we will get an
exact sequence

3.5321) 0" oy Vo svP v Sy oM o0,

where m is the largest possible length of an element of W . In fact, m =
dimn™ . In the case of sl,, this exact sequence is simply the sequence
(3.5.2.1).

REMARKsS. (a) The exact sequence (3.5.3.21) implies the Weyl character
formula (cf. §3.5.4) by means of the Euler-Poincaré principle. The alternating
sum of the highest weights of the Vw(z +p)—p provides the numerator for the

formula, while the character of ¥, (~ n as an a-module) provides the
celebrated “Weyl denominator.”

(b) The multiplicities of the weight spaces of }, ~n are easily seen by
PBW to be given by the Kostant partition function [Kost5, Jacol, Hump],
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P(2) = # of ways of expressing A as an integral linear combination of neg-
ative roots. Given this observation, Kostant’s multiplicity formula [Kost5,
Jacol, Hump] for the multiplicities of weights of finite-dimensional repre-
sentations follows immediately from (3.5.3.21). Indeed, Kostant’s formula
is basically a variant way of expressing the Weyl character formula, so when
we can deduce one, we should be able to deduce the other.

(c) Also from the exact sequence (3.5.3.21), one can fairly directly deduce
Kostant’s description [Kostd, Warn, Knapl, Voga2, Arib] of the Lie algebra
cohomology groups H k(n+ , M, )-cohomology of n* with coefficients in the
module M, . We will discuss this in §3.5.5.

(d) The “p-shift” seen in the highest weights of the Vw(a p-p> and in the
Weyl character formula, and elsewhere is in some sense explained by the
Harish-Chandra homomorphism (cf. Theorem 3.5.5.23)).

3.5.4. WEYL’s CHARACTER FORMULA. In [Weyll], (see also [Weyl2, Wall2,
Knap]), Hermann Weyl gave a radically different approach to the representa-
tion theory of complex semisimple Lie algebras through the equivalent theory
of representations of compact semisimple groups. (Part of his achievement
was to make explicit the equivalence. This is the origin of the celebrated “uni-
tary trick.”) This approach yields not only the classification of irreducible
representations but also a formula for their characters, the Weyl character
formula. (We note that the Weyl character formula for U, (and also for
O, ) is due to Schur [Schul].)

We will illustrate the method with the unitary group U, in order not. to
become too involved with the notation necessary for the general case.

We think of U, as a set of n x n matrices. The subgroup (a Cartan
subgroup)

z, 0
(3.5.4.1) A= 1z;€C, |z =1

0
of unitary diagonal matrices is abelian and isomorphic to T", the n-fold
power of T, the unit circle in C. The unitary characters (irreducible repre-
sentations) of 4 define a group isomorphic to Z". They may be explicitly

described by the formula

n
(3.5.4.2) xm@=1] 2",
n=1
where m = (m,, m,, ..., m,) is an n-tuple of integers, and
a=a(z)=diag(z, z,, ..., z,)

is the diagonal matrix with diagonal entries z, € T. The characters yx, (a)
form an orthonormal basis for L? (A) with respect to Haar measure on A
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(assuming, as we will, that the Haar measure is normalized so that the total
volume of A4 is 1).

Spectral theory for unitary matrices (cf. [Lang3, Stra], etc.) tells us that
every unitary matrix is conjugate to a diagonal matrix. Thus the map
(3.5.4.3) r:4xU,—-U,, T(a,g) =gag"
is surjective. It is clear that I'(a, gb) =T(a, g) for b € A. Hence the map
T" actually factors to N

I''ax(U,/4)-U,.
The factored map I is generically finite-to-one. On the open dense set of
matrices with »n distinct eigenvalues, it is an #n!-to-one covering map: two
diagonal matrices define the same conjugacy class in U, if and only if one
can be turned into the other by permuting its diagonal entries. One can think
of T as defining a system of “polar coordinates” on U, .

Let dg denote Haar measure on U, . Since 7 is finite-to-one, up to sets
of measure zero we can use it to lift dg up to 4 x (U,/4). Thus we can
find a unique measure du(a, &) on Ax(U,/A) such that the set where T is

singular has measure zero and such that on the set where I" is finite-to-one,
we have the formula

Gsad) [ e pdia, =] | T f0]ds
Ax(U, /A) u, =
x€I'™ ' (g)
for f a function on 4 x (U, /4).

The coset space U, /4 also possesses a left-invariant measure dg . Since
Haar measure on U, is also conjugation invariant, we see du must be a
product measure of the form

du(a, &) =dv(a)dg.
Since we are in a context of smooth manifolds and smooth maps, we can
easily believe that dv is absolutely continuous with respect to Haar measure
da on A:
dv(a)=v(a)da
for an appropriate function v on 4.

If we think of the map I' as partitioning U, into a family, parametrized
(redundantly) by 4, of fibers which are copies of U, /4, then v(a) tells us
the volume of the fiber through a. This volume can be computed, up to
a constant factor, as the determinant of an appropriate Jacobian mapping,
which can be identified with the action (1-Ad a)laL of a acting by conjuga-

tion on a* , the orthogonal complement to a in u, . (Note that, concretely,
a’ is the space of skew-adjoint n x n matrices with zeros on the diagonal.)
It is easy to compute that [Wall2, Knap2, HoTa]

y(a) = c|det(1 — ada|aL)| =c ]._.[ |Zi B Zjlz

1<i<j<n
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for an appropriate constant ¢. Here the z, are the diagonal entries of a, as
in formula (3.5.4.2). We will write

(3.5.4.5) D= [[ (z-2).
1<i<j<n
(The function D is known as the discriminant; in our context it will play

the role of the denominator in Weyl’s character formula for U, .) Then our
formula for v(a) can be written as

(3.5.4.6) v(a) = cD(a)D(a).

Here D(a) denotes the complex conjugate of D(a).
In formula (3.5.4.4), let us take the function f to be a pull-back from U,

by T':
. = . . .—1
fla, §) =9¢(T(a, §)=9¢(gag )
for some function ¢ on U, . Taking into account the discussion above, we
see

#(W) / $(g) dg = / d(gag " w(a)dadz,
u, Ax(U, /)

where W ~ § here indicates the group of permutations—the Weyl group
of U,. Suppose further that ¢ is invariant under conjugation. Then our
formula simplifies to become

(3.5.4.7) /| 9l)dg = 7 | #(@D(@)D(@) da.

This formula has a nice interpretation in terms of L2-spaces. Let 9,, 0,
be two conjugation invariant functions. Setting ¢ = ¢,9, gives

(3.5.4.8) /U 9,(8)9,(8)dg = #_(%V_)/A((”ID)((I)((/’ZD)(‘I) da.

Let LZ(Un)Ad Y» be the space of conjugation-invariant L?-functions on

U, . The restriction of ¢ € LZ(Un)AdU" to A will be invariant under the
Weyl group W = §, of permutations of the diagonal coordinates. On the
other hand, the discriminant function D is easily seen to be completely
antisymmetric in the z,; more precisely we have

(3.5.4.9) D(p(a)) = sgn(p)D(a), acA,peS,,

where sgn: §, — %1 is the sign character: sgn(p) is 1 if p is an even
permutation, and sgn(p) is —1 if p is odd. Thus the mapping

(3.5.4.10) M, :9 — Do

will take W-invariant or “symmetric” functions to “skew-symmetric” func-
tions, i.e., functions transforming under W by the sign character. Let
L2(A4)"*® denote the subspace of skew-symmetric functions in L*(4). Let

(3.5.4.11) res, : f — fi4
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denote the restriction map from functions on U, to functions on 4. With
this notation, we may express formula (3.5.4.8) as follows:

(3.5.4.12) The map M, o Tes L‘Z(Un)AdU'" — LZ(A)W’Sgn is, up to a
scalar factor, a unitary isomorphism.

The discriminant function D is distinguished among all skew-symmetric
functions by the property that it divides any one of them. More precisely, if
f is a smooth skew-symmetric function on A4, then we can write f = Dg
and the quotient ¢, which will obviously be a symmetric function, will also
be smooth. To see this, it suffices to consider two variables at a time: to
show, say, that if f changes sign when z, and z, are interchanged, then f
is divisible by z, — z,. This can be done, for example, in terms of Fourier
series. The basic formula is

n n n—1 n-2 n—1
z,—zy =(zy—z)(z] +2zy "Z+-+2zZy ).
This argument shows that, in fact, if f has a finite Fourier series, then ¢
will also.

One way to create skew-symmetric functions is to take an arbitrary func-
tion f on A and skew-symmetrize it. Thus given f, we define

(3.5.4.13) skew(f)(@) = 3 sen(p)f(p(a)).
DPEW
It is simple to check that skew(f) is skew-symmetric, and if f is already
skew-symmetric, then skew(f)=#(W)f.
Consider skew(y,,) for some character x, of A4, asin formula (3.5.4.2).
The Weyl group also acts naturally on characters, by permuting the coordi-
nates of the n-tuple m labeling yx,, . Specifically we have

w(m) = (mw_l(l), My=1)s o> mw_l(n))
and
Xy (W(@)) = X
From these formulas, it is clear that
(3.5.4.14) skew(xw(m)) = sgn(w) skew(x,, ).

Thus in constructing the functions skew(y,, ) , we need only consider m mod-
ulo the action of W . Thus let us define

(3.5.4.15) AT ={y, im>my>--->m)}.
It is easy to check that any character can be transformed by some element of
W to a unique element of 41 . Thus we need only consider skew(y,,) for
s T
Xy, In AT,
We can also see from equation (3.5.4.14) that if any two coordinates of

m are equal, then skew(x, ) = 0. Thus in fact it is sufficient to consider
skew(y,,) for x, belonging to

(3.5.4.16) /T++={)(m:m1 >my,>--->m, L



A CENTURY OF LIE THEORY 181

Using elementary facts about Fourier series, we can see

The functions #(W)™ /% skew(y, ), m € A**, define an or-

3.5.4.17
( ) thonormal basis for L*(4)" ",

Let us remark that 4™ has a minimal element. That is, if we define

(3.5.4.18) p=n-1,n-2,...,1,0)
then

T+ T+ . 1t
(3.5.4.19) A =pr ={xpxm=xp+m.xmeA 1.

Since the functions skew(y,,) span the skew-symmetric functions, we must
be able to express D (cf. (3.5.4.5)) as a linear combination of the skew(y,,).
In fact, by considering which characters could possibly occur in the expansion
of the product defining D, we can conclude

(3.5.4.20) D = skew(,)

with p as in (3.5.4.18). This identity, which is equivalent to the evaluation
of the Vandermond determinant

1 z, zf z;'_l
1z Z% Z;—l n(n—1)/2
det | = Il z-2z)=(-1 D,
: ) 31 1<i<j<n
e
1z, z, - z,

is one of the most fertile in mathematics. In [Macd2], I. G. Macdonald
discovered a class of identities attached to afine root systems that turned out
to be analogs of (3.5.4.20) for affine Kac-Moody Lie algebras [Kacl]. The
developments of this theme are still proceeding at a rapid pace (cf. [KaPe,
Lepol, 2, LeMi, Macd3, Gust, Heck 1-3, Morr, HeOp, Opdal-3, Zeil], etc.).

Before continuing, let us note one consequence of the identity (3.5.4.20):
it allows us to explicitly determine the constant ¢ in formulas (3.5.4.7) and
(3.5.4.8). Indeed, formula (3.5.4.20) tells us that D is the sum of n! charac-
ters of A, with coefficients +1. Since characters are orthonormal in L2(A) ,
we conclude

/ ID|(a) da = n! = #(W).
A

Using this and ¢ = 1, the constant function, in (3.5.4.7) tells us that c=1.
Hence formula (3.5.4.8) reads simply

(3.5.4.21) | oiepaeids - w7 | (0D @, D@ da,

for ¢,, 0, € LZ(Un)AdU" .
Now turn to consideration of the irreducible characters of U, . These are
the functions

(3.5.4.22) ch (g) = trace p(g),
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where p: U, — GL(V) is an irreducible representation of U, on a finite-
dimensional vector space V' . Evidently a similar definition can be made for
any compact group. The significance of the characters for the representation
theory of compact groups is summarized by the Peter-Weyl Theorem (cf.
[HeRo, Knap2, PeWe, Loom], etc.). To state it we need some notation.

Let G be a compact group. Let dg be Haar measure on G, normalized
so that G has total mass equal to 1. Let LZ(G) be the Lz-space of G
with respect to dg, and let LZ(G)AdG denote the subspace of conjugation-
invariant functions.

We can convolve elements of LZ(G) (cf. 8A.1.12). It is easy to check,
for any locally compact group, that the convolution of two L*-functions is
continuous. Since we have G compact, continuous functions are L? , SO )
is an algebra under convolution. In fact,

15+ 5= | [ fl(g)(Lgfz)dgHZ < /G 1@ 15, dg
ARTARITAN AN

Here, | f]|, denotes the L,-norm of a function on G. The last inequality

follows since G has total mass 1. It is easy to check that LZ(G)AdG is the
center of L’ (G).

Let V' be a finite-dimensional vector space, and p: G — GL(V') a repre-
sentation of G on V. We can define the character of p, ch > by formula
(3.5.4.22).

Recall that G denotes the set of irreducible unitary representations of G.

THEOREM 3.5.4.23 (Peter-Weyl). Let G be a compact group.

(a) Every continuous irreducible representation a of G is finite dimensional
and unitary (i.e., given irreducible ¢ acting on V, there is a G-invariant
hermitian inner product on V).

(b) Every irreducible representation of G can be realized as a subrepresen-
tation of the left regular representation on LZ(G).

(c) The irreducible characters ch , o € G, constitute an orthonormal basis
for L}(G)*€.

(d) The functions e, = (dimo)ch_, ¢ € G, are idempotents for the con-
volution algebra structure on LZ(G) . They are precisely the minimal central
idempotents in LZ(G). Thus we have a decomposition

LG =Y e «L}(G) =Y e xL*(G)xe,
0eG 0eG

=Y oed

of LZ(G) into mutually orthogonal, minimal, two-sided ideals. Each ideal
e, * L? (G) x e, is isomorphic to a matrix algebra of rank dima, and as a
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G x G module under left and right translation, is isomorphic to ¢ ® ¢* , where
c* indicates the contragredient of o .

REMARKS. (i) Part (b) is proved by considering matrix coefficients (see
§A.1.11). Given part (b), part (a) is an application of the theory of integral
operators and the spectral theorem for compact selfadjoint operators [Lang?2,
RiNa] (or for selfadjoint algebras of compact operators). Parts (c) and (d) are
analogs of the Schur orthogonality relations for finite groups, and are proved
in essentially the same way, via Schur’s Lemma [HeRo, Knap2, Lang3].

(ii) To quote the Peter-Weyl Theorem in the derivation of the Weyl char-
acter formula is unhistorical as [PeWe] appeared several years after [Weyll].
However, it is natural.

With these preparations, we are ready to state
(3.5.4.24) Weyl character formula for U, : The characters of the irre-
ducible representations of U, are the functions

skew(xm+p) B skew (2, ,)
skew(y,) - D ’
Here skew(y,,) is defined in formula (3.5.4.13).
ProoF. Indeed, we know that if ¢ is a representation of U, , then %4 will
be a direct sum of irreducible representations, i.e., characters, of 4. Thus
(cha)| 4= ch(aIA) will be a positive integer linear combination of elements of

med”.

A. Also, of course, ch_ is conjugation invariant, so chalA is symmetric. Thus
the product D(Cha|A) will be an integer linear combination of characters of
A, and will be skew-symmetric. It follows easily that D(chalA) is an integer

linear combination of the functions skew(y, ), m € AT

On the other hand, we know from Schur orthogonality, Theorem 3.5.4.23
(c), that the norm of ch_ in LZ(Un) is 1. It follows from (3.5.4.21) that the

norm of D(Ch0|A) in LZ(A) is #(W)]/ 2 | Combining this with the previous
paragraph forces D(chalA) to be +skew(y,,) for a single x, . The sign can
be checked by inspecting the coefficient of Xm—p in skew(y,, )/ skew(x p) ,

and seeing it is positive (in fact, it is 1). The fact that all y, in A"
are needed to express the characters follows from the completeness part of
Theorem 3.5.4.23(c).

REMARKS. (a) To me, this proof is simply magical. If you attempt to ana-
lyze it, it dissolves into a few simple calculations and some general nonsense-
airy nothing,.

(b) One can recognize the same objects appearing here as in §3.5.3. The
set AT is the collection of dominant integral weights, p is the half-sum of
the positive roots, the alternating sum in (3.5.4.24) mirrors the Euler char-
acteristic of the exact sequence (3.5.3.21), there is the same phenomenon of
shifting by p, etc.
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(c) A remarkable feature of this proof is that it simply identifies the ir-
reducible characters. What the representations associated with these charac-
ters might be is, for the purposes of this argument, irrelevant and ignored.
Of course, what the modules are was known well before this argument was
given, from the highest weight theory described in §3.5.3. However, for non-
compact groups the situation was reversed: Harish-Chandra [HaCh19, 20]
gave a construction of discrete series characters using methods extending
those explained in §3.5.6, well before these modules were constructed [OkOz,
Schm1-3, Hott, Partl, Walld]. Further, the early explicit constructions of dis-
crete series modules all depended on knowing the character. It was not until
[AtSc, FlJe, Wall2] that the existence of discrete series representations was
established independently of character theory.

(d) Of course, the representation with character skew(y,, . ) / skew(x p) is
the representation with highest weight x, .

(e) By a 'Hopital’s Rule argument as @ € 4 approaches the identity, one
obtains from the character formula a formula for dima (cf. [Weyl2, Knap2,
Jacol], etc.).

(f) In the case of U, , the character formula is due to L. Schur, who used
rather different arguments [Schu].

3.5.5. The highest weight theory (cf. Theorem 3.5.3.14) and the Weyl char-
acter formula (3.5.4.24) are the main constituents of our understanding of
representations of compact Lie groups. Both were in place by the mid-1920s,
well before the invention of the orbit method. However, both have been given
interpretations consistent with the orbit picture. Even these interpretations,
which date mainly from the 1950s, preceded the formulation of the orbit
picture, and they provided guidance for the development of the representa-
tion theory of noncompact semisimple groups. In this section we will discuss
the realization of representations by means of cohomology of line bundles
over flag varieties. This is often called the Borel-Weil theory, but its full
articulation is due to Borel-Weil [Serr3], Bott [Bott], and Kostant [Kostd4].

An essential aspect of the BWBK theory is the double interpretation of
flag manifolds as homogeneous spaces, either for compact groups, or for
their complexifications. We will describe this in general terms and illustrate
it for the special unitary group SU, .

We will discuss the BWBK theory for a connected, simply-connected,
semisimple compact Lie group K. This is the essential case; allowing K
to be disconnected, non-simply-connected, or to be nonsemisimple (i.e., to
have a positive-dimensional center) has mainly nuisance value: it complicates
the discussion without requiring any essential ideas. It is for this reason that
we use SU, rather than U, for our example.

Let K be a connected, simply-connected, semisimple compact Lie group
with Lie algebra k, let g = k. ~ k® C be the complexification of k,
and let G be the simply-connected Lie group with Lie algebra g. Since g



A CENTURY OF LIE THEORY 185

is complex, G likewise will carry a complex structure. We may think of
K as the subgroup of G whose Lie algebra is k C g. If K = SU,_, then
G =SL,(C). Let T C K be a maximal abelian subgroup (a Cartan subgroup,
also called a maximal torus since it is a product of circles). This notation
is inconsistent with that of the preceding and following sections; but here
we have another use for 4. Let t be the Lie algebra of T, a = t its
complexification. For K = SU, , we may take a to be the complex diagonal
matrices of trace zero, and t the pure imaginary ones. The algebra a is a
Cartan subalgebra of g, and we have the root space decomposition of g, as
described in formula (2.8.6). We may make a choice of positive roots, and
the corresponding Borel subalgebra b™ (cf. formulas (3.5.3.2)-(3.5.3.5)).
Let B C G be the connected subgroup whose Lie algebra is b*. Since b*
is its own normalizer in g, B is necessarily closed. For K = SU, , we may
take B to be the complex upper triangular matrices of determinant 1.

The Iwasawa decomposition [Knap2, Wall2] and §A.2.3.5 for G says that

(3.5.5.1a) G=KB, BNnK=T.

For G = SL,(C), this amounts to the Gram-Schmidt orthonormalization
procedure in C”. We also have the factorization

(3.5.5.1b) B=AN",

where 4 and NV are the connected subgroups of G whose Lie algebras are
a and n* (cf. formula (3.5.3.5)). The group 4 is the complexification of
T; it is called a Cartan subgroup or maximal torus of G . Every character
x of T extends in a unique way to a holomorphic character (i.e., a group
homomorphism which is holomorphic with respect to the complex structures
on 4 and C™):

(3.5.5.2) y:A4-C~.

The complexification process described above also establishes, by a pro-
cess of differentiation and analytic continuation just as discussed above for
T,t,a,and A, bijections among the following sets:

{irreducible unitary representations of K}

~ {irreducible complex representations of k}

~ {irreducible complex linear representations of g}

~ {irreducible holomorphic representations of G}.
By a complex linear representation of g we mean a complex linear homo-
morphism ¢ : g — End(}V) of g into the endomorphisms of some complex
vector space V. Complex linearity of ¢ guarantees that ¢ is determined by
its restriction to the real form k of g. Similarly, a holomorphic representa-

tion ¢ : G — GL(V) is a representation which is holomorphic as a mapping
of complex manifolds. It is easy to check that the representation g of G
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is holomorphic if and only if the associated representation of g is complex
linear.

Given a character y of T, consider the induced representation
CX(T\K; x) (cf. §A.1.14). (Since K is compact, the subscript ¢ in C.° is
superfluous.) There is a geometric interpretation of C™°(T\K; x) in terms
of line bundles [FeDo, Huse, GrHa]; we will review it. The quotient mapping

K

(3.5.5.3) J

T\K
can be thought of as a principal fiber bundle [Huse] with fiber 7. Given
a representation p of T on a space V, we can form the associated vector
bundle V x,K. If p = x is one-dimensional, then we simply have a line
bundle. Comparison of the definition of V X, K with the definition of
induced representation shows that the functions in C*(T\K; p) may be
thought of as sections of the vector bundle V X, K.
The decomposition (3.5.5.1a) shows that

(3.5.5.4) T\K ~ B\G.

Since B\, being a quotient space of complex groups, is a complex manifold,
we may use identification (3.5.5.4) to think of 7\K as a complex manifold.
In the case G = SL,(C), it is the set of all “complete flags” in C": se-
quences of nested spaces {D} = Vo,V c---cV, = C", with dim VJ =7j.
In general, T\K is called the (complete) flag variety of G. The action by
right translations of K on T\K extends holomorphically to an action of
G . Further, given a character y € f’, we may extend y holomorphically
to A, then to a character of B trivial on N*. Having done that, we may
consider the induced representation C*°(B\G; x) (see §A.1.14). Decompo-
sition (3.5.5.1a) then shows that by restricting elements of C*°(B\G; x) to
K, we obtain an isomorphism

(3.5.5.5) C™(B\G; x) =~ C™(T\K; x).

On the other hand, the line bundle C X, G is a holomorphic line bundle
over B\G. Denote it by Lx' In these circumstances, it is natural to look
at the space I'(B\G; L,) = HO(B\G; L,) of holomorphic sections of L, ;
and more generally, one can consider the (Dolbeault or, equivalently, sheaf)
cohomology groups H”(B\G; Lx) [GrHa, Hart]. Since G acts holomor-
phically on L, , the spaces HY(B\G; L) will all be G-modules. Note that
H°(B\G; L,) is a subspace of C*(B\G; x)—the kernel of the § operator;
however, the higher cohomology groups are not subspaces of C*(B\G; x).
The BWBK theory describes the spaces H”(B\G; L,) as G-modules, and
relates this to Lie algebra cohomology.
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The group T of characters of T is a lattice, isomorphicto Z', r =dim T .
Given y € T, let Dy be the derivative of y at the identity. Then Dy €
t* Ca*, and the map y — Dy identifies T with a lattice inside te=a". We
will pass back and forth between y and Dy without comment. Holomor-
phic extension to 4 further identifies 7 to a group of quasicharacters (ie.,
homomorphisms into C*) of 4. The differentials of these quasicharacters
are elements of a*, the same elements Dy, x € T, previously obtained.
Denote by ag the real linear span of the lattice of Dy . Then a; is a real
form of a, that is, we have the decomposition

(3.5.5.6) a’ =agp ® iag
of a* as a real vector space. In the corresponding decomposition
(3.5.5.7) a=ay® iag

we have t = iap; that is, the elements of ay are purely imaginary on t.
For K = SU,, the Lie algebra a consists of complex diagonal matrices of
trace zero, ag is the subspace of real diagonal matrices, and t is the space
of purely imaginary diagonal matrices.

The Weyl group of A4 is the normalizer of 4 in G, modulo A4:

(3.5.5.8) W ~ N(A4)/A,

where N(A) is the normalizer of 4 in G. We may also describe W as the
normalizer of T in K, modulo T:

(3.5.5.9) W ~ N(T)/T.

The group W actson A, hence on a, by pullback via the exponential map—
this action is via linear transformations. By duality, W acts on a*. Under
these related actions, 7', t, ap, ag, and the lattice T c ap are all pre-
served by W . The action of W on t or a; is generated by reflections in
hyperplanes—these reflections are the elements of W contained in the copies
of SL, generated by root subspaces g , g__,, as described in §2. Also as
described there, the reflection hyperplanes divide ap and a; into convex
cones, the Weyl chambers, which are permuted simply transitively by W.
The positive Weyl chamber in ag, relative to b*, or B is

(3.5.5.10) ag={aca:a(a)>0, allg b},
and the corresponding positive chamber in a; is
(3.5.5.11) (ag)" = {A> 0 on ag}.

For K = SU,,, the Weyl group is S, , the symmetric group, which acts by
permuting the diagonal entries of elements of ap , which consists of traceless
real diagonal matrices, and a; is the cone in ap consisting of matrices whose
diagonal entries @, decrease with i:a, > q; 1
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Write
3.5.5.12 T =Tn(a&y".
R

Then T consists of the dominant characters, or dominant integral weights—
the highest weights of finite-dimensional representations, as described in
§3.5.3.

The result of Borel and Weil describes the cohomology of line bundles
defined by inverses of dominant characters [Serr, Warn, Knap2].

THEOREM 3.5.5.13 (Borel-Weil). (a) Let x~ ' e T* be a dominant char-
acter. (We then say y is antidominant.) Then the space HO(B\G; Lx) of
global holomorphic sections of the line bundle L, over B\G defined by x is
an irreducible G- (or K-) module, isomorphic to the dual of the representation
whose highest weight is x_l .

(by For p >0, H*(B\G; L )=0.
X

REMARKS. (a) Theorem 3.5.5.13 is connected to the orbit method through
a double interpretation of the complexification of the Lie algebra of k: one
as the (real) Lie algebra of the complexified group G, i.e., real right-invariant
vector fields on G, and one as complex right-invariant vector fields on XK.
For functions which are holomorphic on (, these two interpretations coin-
cide. Thus, for a holomorphic section f of Lx , left invariance of f by N*,
as a function on G, can be interpreted in terms of fl x as a condition of be-
ing annihilated by the complex vector fields on K defined by n* C k.. Put
another way, a function in C*(T\K ; x) will extend to a holomorphic N*-
left-invariant function on G if and only if it is annihilated by the vector fields
from n* C k., which may be seen to define a system of Cauchy-Riemann
type equations. Thus, interpreted on K, the holomorphy condition becomes
a condition of being an eigenfunction for the algebra b* =n" +a C k.. The
algebra b' is seen to be a complex polarization for the element iy € t* C k™,
and this use of complex polarizations is closely analogous to the way they are
used in [AuKo] to produce representations of solvable groups. Although the
Auslander-Kostant construction can be replaced by a construction involving
only the real group, but inducing from representations of Heisenberg groups,
not just from characters, there does not seem to be any escape from infinites-
imal constructions involving complex polarizations in the case of semisimple
groups.

(b) The presence of inverses and duals in this result makes it somewhat
confusing. Perhaps the quickest way to verify the proper formulation is to
consider the element of H' (B\G; Lx )* defined by the Dirac J at the identity

in G. If p denotes the action of G on HO(B\G; Lx) by right translations,
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then

P BYO)(f) =d(p(b) " 1)
=p®) (W) = s Y =27 B ) = (B,
(beB, fe HO)

whence
P (b)S) = 1~ (b)o.

In other words, & is a highest weight vector for H 0(B\G; L x)* , with weight
-1

Part (a), the positive part of this result, is essentially a restatement of
the highest weight theory. The main observation is that H (B\G; L,) can
contain at most one N -invariant function. (Indeed, all of C*(B\G; )
contains only one N -invariant function.) This is because N has a dense
orbit on B\G. This follows from the Bruhat decomposition (see §1.1 and
[HaChl, Knap2, Wall2]) which says G = BWN * 5o that, in particular, there
are only finitely many N orbits on B\G, one of which is open and dense;
but the fact that there is an open N -orbitin B\G is more elementary than
the Bruhat decomposition.

The fact that H 0(B\G; Lx) consists of holomorphic functions means that

the G-invariant subspaces of H 0(B\G; L) are the same as the K-invariant

subspaces—in particular H 0(B\G; L,) must be a direct sum of irreducible
finite-dimensional G-modules. The theorem of the highest weight means that
any G-irreducible subspace of HO(B\G; Lx) must contain an N -invariant
vector. Hence, there can be at most one subspace. On the other hand, if
Vx is the irreducible g-module with highest weight —Dy and highest weight
vector v, , then by exponentiating the action of g we obtain an action of G
on V_ D, and the matrix coefficients (cf. §A.1.11)

¢1,vl(g_l)=l(g"l(vx)) A€ V:Dz

define a G-equivariant embedding of V" p 1into, hence an isomorphism with,
x

H(B\G; L).

The complementary part (b) of Theorem 3.5.5.13 is a consequence of the
Kodaira Vanishing Theorem [GrHa, Hart].

Theorem 3.5.5.13 provides a “geometric” realization of the irreducible
representations of K (or g). However, it also raises an issue that it only
partially resolves: although we can form the line bundles L, over B\G
for all y in f’, Theorem 3.5.5.13 only describes the cohomology groups
HP(B\G; Lx) for y antidominant. The highest weight theory guarantees

that HO(B\G; L)= {0} if x is not antidominant, but it is silent about
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higher cohomology. The structure of the higher cohomology groups was clar-
ified by Bott [Bott]. To state Bott’s result (conjectured by Borel and Hirze-
bruch), we need to introduce the character

(3.5.5.14) 5(a) = det(Ad(a),+) = [] 2,(8).

>0

Here yx, is the character of 4 whose derivative Dy_ is equal to the positive
root a. Thus J is the character of 4 whose derivative at the identity is the
sum of the positive roots. We observe that ¢ is a holomorphic square root
of the modular function of B,

(3.5.5.15) d(Ad(a)n) = |6(a)|* dn

if dn is Haar measure on N* . It is a somewhat subtle point in the struc-
ture theory of compact groups that, under our assumption that K is simply
connected, & itself has a square root in 7 ; we will denote this by PRENS
is not hard to check that & and hence 6% is dominant. For example, if
G = SL,(C), and we use the usual diagonal coordinates {a,} on 4, then

(355163)) 5((11 e s an) — H(aiaj—l) — a;l+1—2j

i<J J
n+l 2
— —=J
J J
Thus for SL, , we have

1/2 —j —j
(3.5.5.16b) 6'"ay,...,a)=T]a;’ =T[4}

J J

Note that 6'/2 is essentially identical with the y ) used in §3.5.4 (cf. formula
(3.5.4.18)).

THEOREM 3.5.5.17 (Bott). Consider x € T, and form the associated holo-
morphic line bundle L, over B\G.

(a) If 16-1/ 2 s singular (i.e., fixed by a nontrivial element of W), then
HY(B\G; L)=0.

(b) If x(S_l/ % is not singular, then there is a unique w in W such that
w(x"lél/z) is dominant, i.e., w(xci_l/z) is antidominant. In this case, set

(3.5.5.18) w=w(y 67" "%

Let [(w) =1 be the length of w as an element of W (cf. [Hilr, Bour]). Then
H°(B\G; L,)=0 for p#1, and

(3.5.5.19) H'(B\G; L)~ (¥,),



A CENTURY OF LIE THEORY 191

where V,, is the irreducible representation of G with highest weight v, with
w given by (3.5.5.18).

Bott’s proof of Theorem 3.5.5.17 used spectral sequences. However, Bott
noted that, by some elementary yoga in sheaf cohomology, this theorem is
equivalent to a statement about the Lie algebra cohomology of the Lie al-
gebra n* of N¥ with coefficients in a g-module V,, ¥ € T*. Since the
Cartan subgroup A4 acts on n* by automorphisms, one sees from the stan-
dard construction [BoWa, Jacoel, Knap1] of Lie algebra cohomology that each
cohomology group H”(n*, V,) naturally has the structure of an A-module.
Kostant [Kost4] gave a direct explicit description of H”(n", Vw) as an A-
module, obtaining Bott’s result as a corollary. To state Kostant’s Theorem,
we introduce the notation Cx for the one-dimensional irreducible represen-
tation of 4 whose associated character is y .

THEOREM 3.5.5.20 (Kostant). Let w € T be a dominant character of
A, and let v, be the associated finite-dimensional irreducible representation.
Then there is an A-module isomorphism
(3.5.5.21) H'(n", V)~ Y Cyuyp

l(w)=q
where W(y) = w(wél/z)é_l/z.

The essential, and originally the most difficult, part of the proof is to show
that only the C,, can appear in the H(n", V,). (Aribaud [Arib] gave
a simplified argument based on the Weyl character formula.) This is now
understood to be an aspect of the Harish-Chandra homomorphism [Hump,
Knap2, Wall2], which also accounts for the “p-shifts” in the (). This basic
result gives a precise description of the center of the universal enveloping
algebra of k, or g. The direct sum decomposition (cf. (3.5.3.4))

+ +
g=n ®aon

of g leads via the Poincare-Birkhoff-Witt Theorem (cf. [Hump, Jacol, Serr2],
etc.) to the decompositions
Z@=%n )% (a)e#(n")

~#m )% @) o #(gn".
For u € 7(g), denote by p(u) the component of » in Z(n ) ® #Z(a), the
first summand of decomposition (3.5.5.22).

THEOREM 3.5.5.23 (Harish-Chandra homomorphism). (a)If ue% (g)AdA,
the subalgebra of % (g) of elements invariant under Ad A, then p(u) € Z(a).

(b) The mapping u — p(u) defines an algebra homomorphism from
% @) to %(a).

(c) If we make the identifications

% (a) ~ S(a) ~ P(a"),

(3.5.5.22)
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where S(a) denotes the symmetric algebra on a and P(a") the algebra of
polynomials on a*, then the map

(3.5.5.24(1)) P:Z U — Pa")
defined by

(ii) pw)(A) =pu)a—-p), iea,
where

(iif) 2p=D,,

ie, pis % of the sum of the positive roots, is an isomorphism

(3.5.5.25) P ZUE) =P

from the center of % (g) to the algebra of Weyl group invariant functions
on a”.

Parts (a) and (b) of this theorem are proved by easy computations, while
part (¢) may be seen using the Verma module approach to the highest weight
theory, as described in §3.5.3.

In an illustration, and in some sense the crucial case, of Theorem 3.5.5.23,
we recall the formula

F=h"+20ete +e e ) =h'+2h+4e e”
—(h+ 1) —1+4dee"

for the Casimir element in #(sl,) (cf. §3.5.1). Note that 1 = (})a™(h),
where o is the positive root in sl,, since [#, e*]=a*(h)e" = 2¢".

The Harish-Chandra homomorphism impinges on Theorem 3.5.5.20 as
follows. Given a representation p of g on a vector space V, the images
p(2), z € Z%(g), are operators which commute with p(x), x € g, and
in particular with p(n*). It follows from the standard construction [Jacol,
BoWa, Knapl] of Lie algebra cohomology that p(Z %(g)) will induce oper-
ators on the cohomology groups H?(n*, V). Thus the n* cohomology of
a g-module may be regarded as a joint .Z°Z(g) and #%(a)-module. (The
% (a)-module structure is of course obtained as the infinitesimal version of
the action of 4.) Denote this action by p™ .

THEOREM 3.5.5.26 (Casselman-Osborne [CaOs, Knapl, Voga2]). The ac-
tion p* of Z%(g) on H'(n", V) factors through the Harish-Chandra ho-
momorphism.

(3.5.5.27) p* ()= p* (B(w))
with p as in formula (3.5.5.25).

This result follows from the general machinery of cohomology, if one
observes that the standard resolution of V' as a g-module [Jacol, BoWa,
Knapl] is also a resolution of ¥ as an n*-module, since %(g) is free as
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a module over %(n+) by Poincaré-Birkhoff-Witt [Hump, Jacol, Serr2]. Its
relevance for Theorem 3.5.5.20 is that, if ¥ is irreducible, then p(Z Z(g))
consists of scalars, and via p* will obviously act by the same scalars. Thus
formula (3.5.5.27) constrains the action of %(a"). Indeed, it immediately
implies that the only characters of 4 which could possibly appear in formula
(3.5.5.21) are the ones which do. As mentioned above, this is the essential
step in the proof of Theorem 3.5.5.20, which in turn implies the “geometric
realization” Theorems 3.5.5.13 and 3.5.5.17.

3.5.6. In this subsection we complete the geometric quantization version of
the basic representation theory of compact groups by giving Harish-Chandra’s
orbit method interpretation of the Weyl character formula [HaCh3]. With
hindsight one can see in this remarkable paper the seeds of a large fraction
of nonabelian harmonic analysis as it has developed in the ensuing 30 years.
Besides Harish-Chandra’s own work on the construction of the discrete series,
it foreshadows the whole orbit method and also implicitly uses the oscillator
representation [Folll, Howe3, Shal, Weill]. Our account will make this last
connection explicit. (The first explicit use of the connection is [Verg2]).

As in §3.5.4, we will present only the example of the unitary group U, ,
to save notation and preparation. The Lie algebra u, of U, is the space of
skew-adjoint n x n complex matrices. To be definite we recall

(3.5.6.1) u ={TeM(C):T=1[t,l; tkj=—7jk},

where the overbar denotes complex conjugation, and {¢ jk} , 1<j,k<n,
are the entries of the n x n matrix 7. The unitary group U, acts on u,
by conjugation. As usual, we denote this action by Ad:

Ad g(T)=ng_1, Teu,geU,.

On u, we can define a positive definite inner product ( , ) by the formula

(S, T) = trace(ST") = —trace(ST) (S, T €u,)

= — Z S. 7
Jjk*jk

(3.5.6.2) 1<j,k<n

==Y s;t;+2 Y, (ResuRet, +Ims;Im¢,).

1<j<k<n

This inner product is easily seen to be invariant under Ad U, . Using ( , )
we can define a Fourier transform on functions on u, by one of the usual
recipes

(3.5.6.3) f(8) = / f(T)e ™Dy,

Here dT is Lebesgue measure defined by coordinates with respect to any
orthonormal basis for ( , ). For example, we could take the coordinates
itjj , 27/2Re Lis and 272 Im Li s 1 € j < k < n. With this normalization
of Lebesgue measure, the Fourier transform is unitary.
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Let a C u, be the subspace of diagonal matrices

ib

11

(3.5.6.4) a= : b €R

p ib,,

We denote the typical element of a by B, and the typical entries of B will
be ib;;. The restriction of the inner product ( , ) of formula (3.5.6.2)
defines an inner product on a; in fact, it is just the standard Euclidean inner
product with respect to the coordinates bjj . The orthogonal complement a’
of a with respect to ( , ) is the space of skew-adjoint matrices with zeros
on the diagonal. We can define the Fourier transform for functions on a by
an analog of formula (3.5.6.3).

We know by spectral theory for self-adjoint matrices [Lang3] that every
T in u, is conjugate by U, to an element of a. Thus we have a surjective
mapping

(3.5.6.5) viaxU, —u,
-1
y(B,g)=gBg , Bea, geU,.
This map is an infinitesimal analog of the map I' of formula (3.5.4.3), and
it has a basic theory parallel to the theory for I'. First, it factors to a “polar
coordinates” map
7rax(U,/4) - u,

which is generically n!-to-one. Second, there is a polar-coordinates integra-
tion formula analogous to formula (3.5.4.21) :

(3.5.6.6a) /U 0, (T (T dT = co/(plD(B)(pzD(B)dB.

Here ¢, is an appropriate constant and D is, as before, the discriminant
function

(3.5.6.6b) DB)= ][] ;-b;), Bea

1<i<j<n

The constant ¢, can be determined explicitly (see [HaCh3, HoTa]). As op-
posed to the situation in §3.5.4, here D(B) is not to be thought of as a sum
of characters, but as a polynomial function. Its structural interpretation is
that it is the product of the positive roots for a. The proof of formula
(3.5.6.7) is parallel to that for (3.5.4.21). In particular the calculation of the
volume |D2(B)| for the orbit AdU, (B) is a Jacobian determinant compu-
tation slightly simpler than but quite similar to the volume factor v(a). See
the discussion preceding formula (3.5.4.5).
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Also in parallel to §3.5.4, we may define the spaces Lz(un)AdU" of con-

jugation invariant L? functions on u_,and Lz(a)W’sgn of skew-symmetric
functions on a. We may define a map

(3.5.6.7) Myores, : L*(u,)*Y - L}@)" %"

with notation parallel to statement (3.5.4.12), and it will again be true that
this map (multiplied by c;/ 2, with ¢, asin (3.5.6.6a)) is a unitary isomor-
phism,

Since conjugation by U, preserves the inner product ( , ), it will com-
mute with the Fourier transform. Consequently, the space Lz(un)AdU" will

be invariant under the Fourier transform on u, . Similarly L*@)” = will
be invariant under the Fourier transform on a. Since we will now be con-
sidering the Fourier transform on u, and on a at the same time, we will use
the notations " and " respectively for them in order to be definite about
which one is meant.

Harish-Chandra’s discovery about the map M, o res, was that it inter-
twines the two Fourier transforms.

THEOREM 3.5.6.8 (Harish-Chandra Restriction Theorem). The mapping
(3.5.6.7) satisfies

—n(n—1)/2 A,

A
|| J—
Mpo res,o =1 o Mpores,.

In other words,
D(B)(p™)(B) = i """V (Dg )" (B).

Since the Fourier transform is a nonlocal operator, a result like Theorem
3.5.6.8 is quite surprising. We will see shortly how special the circumstances
are which give rise to this phenomenon.

To appreciate the structure underlying the Harish-Chandra Restriction
Theorem, consider the Laplace operator on u dual to the inner product
(3.5.6.2). It is the second-order, constant coefficient operator A, or A, when
more specificity is needed, given by the formula

Z": 8% 1 5 8*  8?

(3.5.6.9) A=A = 5 T35 (—2 +t— 1>

T105; 2 \<Gden \OT O

where we take Lig =T + isjk , i.e., Tik and S are respectively the real
and imaginary parts of i - The factor % occurs because, as noted above
(see formulas (3.5.6.2) to (3.5.6.4)), the coordinates for which ( , ) looks

like the standard Euclidean inner product are s i 271/2 Tik for j <k, and

212 Sik for j < k. The operator A, is the standard Laplacian with respect
to these coordinates.
Let us write

(3.5.6.10) P(T) = (T, T).
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Alsolet r* denote the operation of multiplication by P2 Ttis easy to compute
the commutator

7] 2
, ] = S, = | +2n
(35611) ] (Z JJ JJ Z Jkar Jkasjk)

1<j<k<n
=4E + n* ,

where E is the standard Euler degree operator on u, , which multiplies poly-
nomials of degree m by m.

For R", consider the operators

. - IA 1\ 2

5.6.12 t = mir®, =2 =E —).
(3.5.6.12) e =mir e 47 h +{5)n
Analogous operators may be defined for any space endowed with an inner
product, as we have done above for u, , and the statements below will hold
also for such spaces. Using formula (3.5.6.11) and some other simple calcu-

lations, we can check that e and h form a standard basis for a copy of the
Lie algebra sl, .

__THEOREM 3.5.6.13 (Shale [Shal]). There is a unique representation  of
SL,(R), the two-fold cover of SL,(R), on L*R") such that the image of
the associated representation of sl, (see §A.1.13) is the span of the operators
(3.5.6.12).

REMARKs. (a) The operators (3.5.6.12) are a Lie subalgebra of the Lie
algebra of all polynomial-coefficient differentials of total order (= polynomial

degree + order of differentiation) two on R". These operators are the span
of

. 1/ 8 @ o Oy i 8
(3.5.6.14)  mix;x; f(xfa_xk + a—xkx ) X; axk t5 W
This algebra is isomorphic to the symplectic Lie algebra in 2n variables,
denoted sp,,. Shale actually showed there is a unitary representation of
§f)2n(R) , the two-fold cover of the real symplectic group in 2z variables,
such that the image of the associated representation of the Lie algebra is the
span of the operators (3.5.6.14).

(b) Shale’s interest was quantum field theory. Shortly after Shale, Weil
[Weill], motivated by Segal’s work on automorphic forms, independently
showed the existence of this representation. Weil also established the exis-
tence of an analogous representation for Sp, (F), the symplectic group in
2n variables with values in a p-adic field F . Weil showed that this represen-
tation underlies the classical theory of §-series, one of the most widely used
means for constructing automorphic forms (cf. [Igus, Shmz1, 2, KuMil-3,
ToWal-2, Shim, Shin2, Niwa], etc.).

(c) I call this representation the oscillator representation, because of its
close association with the quantum harmonic oscillator (see §3.1). Other
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names in use are the Weil representation, the Segal-Shale-Weil representation,
the harmonic representation, etc.

(d) In some sense the oscillator representation is the quintessential example
of geometric quantization, and it is derelict not to present its construction in
detail. On the other hand, the construction gets rather involved and involves
some special ideas, and so would constitute a sizeable digression. Also, I
have written quite a bit about it [Howe1-6], and do not wish to repeat myself
here. Detailed accounts of it, from the viewpoint of geometric quantization,
can be found for example in [Blat, LiVe]. My own account, which takes a
somewhat different viewpoint, is [Howe3].

(e) In fact, we do not need the full Theorem 3.5.6.13 for this discussion.
We only need to exponentiate the operator % —nr? , which is a multivariable
variant of the Hamiltonian for the quantum harmonic oscillator discussed in
§3.1. It can be handled by the same techniques. Thus our discussion is more
or less complete on this point. However, Theorem 3.5.6.13 seems to identify
the natural relevant structure for this situation. This connection was pointed
out by Vergne in [Verg2].

The relevance of Theorem 3.5.6.13 to the Harish-Chandra Restriction The-
orem is that the Fourier transform is almost an element of w(SL,(R)). Con-
sider the element

_ ) A
5.6. —et—e =L (m -~
(3.5.6.15) k=e¢e -e 2(an 5
in our copy of sl,. An easy computation shows that k generates the stan-
dard maximal compact subgroup SO, inside SL,. On the other hand, from
calculations just like those of §3.1, we know the eigenvalues and eigenvectors
of k. From the standard formulas for the Fourier transform on R" | viz.,

2

A
Ve —nr '—rz
af) =2mix,f, () =&,

. A J a4
2mix, = - , —
@aix,f ) = =) (axj
we can deduce that the eigenvectors for k are also eigenvectors for the Fourier
transform, and further that the Fourier transform can be written as

(3.5.6.16) N = i exp(nk/2).

See for example [HoTa, Howe3].

REMARK. The scalar factor i~"/* in equation (3.5.6.16) comes from the
fact that the smallest eigenvalue of k is i rather than zero. This fact is
interpreted in quantum mechanics as the Uncertainty Principle [Shan], and in
quantum electrodynamics as the zero-point energy, or energy of the vacuum
[Thir]. It also reflects the fact that @ is a representation of SL,(R), and not

of SL,(R).

In view of formula (3.5.6.16), Theorem 3.5.6.8 follows from
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THEOREM 3.5.6.17. The mapping M, o res, of formula (3.5.6.7) inter-
twines the restriction of the oscillator representations w, and w, of §sz(R)
on Lz(un)AdU" and L*(a)" " respectively. It defines a unitary (up to mul-
tiples) equivalence of §VLz(R) modules.

REMARKS. We should note that the operators (3.5.6.12) are all invariant
under conjugation by orthogonal transformations, and therefore the oscil-
lator representation, whose existence is asserted by Theorem 3.5.6.13, will
commute with orthogonal transformations. Since both spaces Lz(un)AdU"

and Lz(a)W’sgn are defined by how their elements transform under certain
orthogonal transformations, each is invariant under the relevant oscillator
representation. Hence the assertion of Theorem 3.5.6.17 at least makes sense.

We will sketch a proof of this theorem.

Since in both representations the image of the operator k has discrete
spectrum with finite-dimensional eigenspaces, as is revealed by the compu-
tations of §3.1, easy technical arguments reveal it is enough to show that
Theorem 3.5.6.17 is true infinitesimally, i.e., that the map M), ores, inter-
twines the operators (3.5.6.12) for u, with their counterparts for a. To do
this for the operator e is trivial: one needs only the facts that restriction is
a homomorphism for pointwise multiplication, and that pointwise multipli-
cation of complex-valued functions is commutative. To check it for h is also
very simple: it uses the fact that a is invariant under scalar multiplication
in u,, and that D is homogeneous of degree %(dim u, — dima).

Thus the crucial calculation is to show that the map M, ores, intertwines
the two Laplacians A, and A,. We would like to perform this calculation
in a moderately general context, to illustrate the issues involved. Related
calculations are given in [Helg3, Helg4]. See also [HoTa].

Consider R” C R"™™. Use coordinates x,,...,x, on R", and let
V1s¥Y3s--+>¥, be the remaining coordinates on R™™ . Imagine we are
giving a “nonlinear orthogonal projection”

(3.5.6.18) @®:R™™" -R",
D(x, y)=(¢,(x,¥), dy(x,¥), ..., §,(x, ¥)).

Precisely, the points of R” should be fixed by ®, and the fibers o’ (x), x €
R", should intersect R" orthogonally. In formulas, these conditions are

(3.5.6.19a) d(x,0) =x,
oD
(3.5.6.19b) a—y(x, 0)=0.

J
For the calculations below, we need only that ® be defined on some open
set intersecting R” .

Our prototype for @ is of course the map from u,  to a which takes T to
an element in a conjugate to 7 . Globally, this map is not well defined, but
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in a neighborhood of any regular point of a it is well defined, and satisfies
conditions (3.5.6.19).

We want to take a function f on R", pull it back by ® to a function on
R™™  apply the Laplacian on R™"™, then restrict the result to R". Let A,
be the Laplacian in the x variables, and Ay the Laplacian in the y variables,

s AL+ A, . We compute, for x € R",

A(f o ®)(x, 0) = (A, +A))(f o D)(x, 0)

so the full Laplacian on R

(3.5.6.20) 92 99,04, af 0%
=A (f)(x)+ (1212 (?xk(?x (?yj ay’; a—g (?ylzj (x,0)
=A( +ZA¢ xO)g){()

We want to compare this w1th the result of conjugating the Laplacian on

R” by a function. Thus we select a function ¥ on R" and we compute
(3.5.6.21)

(W AWS) =¥ (AW )(x)
=y ANEWE) + 20T )Y

j J J

-1

+u 7 (%) A (w)(x)

—a w42 WO,

A (¥)(x)
v ax ax ’

) w(x)

Comparing formulas (3.5.6.20) and (3.5.6.21), we see that if these two
operations are going to be equal, the equations

2 oy
(3.5.6.22a) v 6x =A,4,(x,0),
(3.5.6.22D) A (y)=0

must hold. But equation (3.5.6.22a) already determines y up to a scalar
multiple. It will only be by some lucky accident that we find the w so
determined to be harmonic, i.e., that condition (3.5.6.22b) also holds. (In
addition, the A, need to satisfy an integrability condition in order for
(3.5.6.22a) to have a solution.)

Let us compute the y satisfying (3.5.6.22a) for the case of the eigenvalue
projection of the unitary group. Here R” = a, and the orthogonal space is
a’, on which we may take coordinates 272y & and 27 %. ke 157 < k <
n, where ¢ & = j +is; are the off-diagonal entnes ofa skew-adjomt matrix

T. Let E be the matrix with all entries zero except for ones in the (j, k)th
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and (k, j)th places. Let B be a diagonal matrix, with eigenvalues ib,. To
compute the right-hand side of formula (3.5.6.22a), we need to compute
d2
—b,(B + £E k)je=0>
&?
where here ib,(B +E i) indicates the /th eigenvalue of B+E ik » Dot the /th
diagonal entry, which of course does not depend on ¢.
It is easy to see that b does not change unless / = j or [ = k, and
that the computation of b and b, only involves the 2 x 2 matrix formed

from the entries in the jth and kth rows and columns of B + ¢E ik Thus
the computation comes down to a 2 x 2 matrix problem, viz, to find the
eigenvalues of

We find that they are

% (/11 +ay (-2 + 482)

2
%(/1 + A, (A, — A (1+L2+--->.
(11_12)

From this result, we easily find that

Ab, =23 T /1
k#tj T
From this formula, we can see that w = D, the discriminant, will solve the
system (3.5.6.22a). Further, it is well known that D, as the skew-symmetric
polynomial of smallest possible degree, is necessarily harmonic. Thus D
satisfies equations (3.5.6.22). Combined with our previous remarks, this
establishes Theorem 3.5.6.17.

We now discuss the connection between Harish-Chandra’s Restriction The-
orem and the Weyl character formula. Consider the Schwartz spaces .~(u,,)
and “(a) of rapidly decreasing smooth functions on u, and a. (See [Foll,
CoGr, Lang2], etc. for the basic facts on Schwartz spaces.) From Theo-
rem 3.5.6.8 or Theorem 3.5.6.17 one can conclude that the unitary (up to
scalars) map M, ores, of formula (3.5.6.7) is also an isomorphism between
the Schwartz spaces % (un)AdU" and .%(a)” **®" . Dual to this map, we have
a pullback map on tempered distributions:

(35623) (MD ° resa)* :y*(a)W,Sgn R y*(un)AdU”.

Among the conjugation-invariant distributions on u, , probably the most
important are the orbital integrals: given T € u, , the orbital integral defined
by the conjugacy class AU, (T) is

(3.5.6.24) I0) = [ fiade(n)dg.
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Note that to get all possible orbital integrals, one need only consider T in a.
Every conjugation-invariant distribution on u, is expressible as some sort of
superposition of orbital integrals.

The analog of orbital integrals in the space %*(a)” **" are the skew-
symmetric sums

(3.5.6.25) skew(d,) = Z sgn(w)&w(B) , Bea,

wew
where &, indicates the Dirac delta at B. Note that skew(dy) # 0 if and
only if D(B) # 0. From the elementary computation

(M, ores,) (skew(8,))(f ) = skew(d,) (M, o res,(f))
= skew 8,(Df) = #(W)D(B)f(B), feFm )" Bea,
we conclude

(3.5.6.26) (M, otes,)" (skew(dy)) = #(W)D(B)5.

We want to combine this formula with Theorem 3.5.6.8. Consider the
Fourier transform of the orbital integral .%;, B € a. Since .%; has compact
support, its Fourier transform has the form

(3.5.6.27) F =(%)’dT

where dT is Lebesgue measure on U, and (f;)o is an analytic function
which is Ad U, -invariant, hence determined by its values on a. Combining
formulas (3.5.6.26) and (3.5.6.6) with Theorem 3.5.6.8, we conclude
(3.5.6.28) (7)°(B") = c(D(B)D(B')) " skew x_p(B) B ea

for an appropriate constant ¢, . Here we have written x, (B') = ez’”(B’B’) .
(An extra computation shows that ¢, = ([Tr_; k(&)™ with m =
nn—1)/2.)

Using this formula, we can give an orbit-theoretic interpretation of the
Weyl character formula. Let exp: T — exp(T’) be the natural exponentiation
map. The map exp allows us to identify a lattice in a with the character group
of the torus 4 = expa. Specifically, the restriction of exp to a is a group
homomorphism. If B € a is such that kery, D kerexp, then x, may be
pushed forward to A4, where it will define a character. Let us call B € a
integral if x, factors through exp on a. In terms of coordinates, we can see
that if B € a has diagonal entries ibj , then B is integral if and only if the
bj ’s are integers. Further, if we identify B with its n-tuple of coordinates,
then our notation x, for characters is consistent with the notation of §3.5.4.

The Weyl group W of permutations acts on a in the obvious way, and
this action commutes with exp. We have the notion of positive Weyl chamber
in a (cf. §2.10). In this case the positive Weyl chamber is

a'={Bea:b >b,}
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Let us call B dominant if B € a*. Denote by p the element of a whose
Jjth diagonal entry is i(n — j). (The parallel with formulas (3.5.4.18) and
(3.5.5.16) will be evident. The need to multiply by i here comes simply
from the concrete form of the Cartan subalgebra a.)

With these notations, we can state a formula which combines the Weyl
character formula with the Harish-Chandra restriction formula.

THEOREM (3.5.6.29) (Harish-Chandra-Weyl character formula). The irre-
ducible characters of U, as functions on the maximal torus A = expa, have
the form:

D(B,,,

)D(B')(;, )'(~B)

3.5.6.30 B =

b

where B, is an appropriate dominant integral element of a.

REMARKS. (a) This formula is the analog for compact groups of the Kir-
illov character formula (3.3.1.7). A parallel for solvable groups which in-
volves multiplication of the Fourier transform of the orbital integral by a
correction factor is formula (3.4.1.2.1).

(b) Here again, as in the Verma module description of finite-dimensional
representations (§5.3.3), and in the Weyl character formula (§5.3.4), we see a
“p-shift” between the highest weight of the representation and the parameter
we attach to the representation. Thus the AdU  -orbit associated to the trivial
representation of U, is not the origin, but rather the orbit through p. This
phenomenon of p-shifts pervades the orbit method for semisimple groups.
It is bookkeeping forced on us by the Harish-Chandra homomorphism (cf.
Theorem 3.5.5.23).

(c) The argument given here for the Harish-Chandra Restriction Theorem
and formula (3.5.6.30) looks quite different from the ones based on [HaCh3]
(cf. [Helgl, Wall2]). Harish-Chandra first studies radial components of in-
variant differential operators, then uses them to deduce formula (3.5.6.30),
then finally proves the Restriction Theorem. We established the Restriction
Theorem first, then deduced formula (3.5.6.30). We could easily also deduce
the results on radial components from the Restriction Theorem. However,
although the order of main results is different, the crucial step in both de-
velopments is the computation of the radial component of the Laplacian
(formula (3.5.6.20) and the discussion following it). In [HaCh3], the oscilla-
tor representation appears only implicitly, in the use of taking commutators
with the Laplacian to convert an invariant polynomial into the dual constant
coeflicient operator.

3.6. Noncompact semisimple groups. Noncompact semisimple groups have
received the bulk of researchers’ attention in representation theory since
World War 11, beginning with the papers of Wigner [Wign], Bargmann [Bargl],
Gelfand-Naimark [GeNa], and Harish-Chandra [HaCh0]. Until the late
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1960s, Harish-Chandra was a fairly lonely pioneer, but since then the field has
attracted a substantial number of workers. Fundamental progress has been
made, including Harish-Chandra’s Plancherel Formula [HaCh22], and the
classifications of Bernstein-Beilinson [BeBe], Langlands [Lgld4], and Vogan
[Vogad] of the nonunitary irreducible representations. But many interesting
and even basic problems, such as the determination of the unitary dual, re-
main to be solved (see, however, [Voga$5, Barb, Tadi]), and much of the work
already done sits undigested and unapplied.

In this account, we can only summarize some of the high points. We try to
emphasize analogies with the easier classes of groups already discussed, and in
particular we try to formulate results in terms of the orbit method. However,
we emphasize that the structure of geometric quantization is for the most
part imposed a posteriori, and played little role in the original arguments.
Nevertheless, David Vogan currently is trying to create an understanding of
the unitary dual more or less explicitly based on an appropriate version of
the orbit method [Voga6].

Due to the greater length and technical involvement of the arguments es-
tablishing results about noncompact semisimple groups, we must for the most
part omit them, and be content with stating results. Two very useful books
for learning a large portion of the theory in its current form are [Knap2] and
[Wall2]. We also refer to [Vogal] for a nice overview.

3.6.1. PRINCIPAL SERIES. The main concrete objects of study in the repre-
sentation theory of noncompact semisimple groups are the principal series.
As with many things, the meaning of the term “principal series” can vary
slightly with context. We begin by describing the most elementary case.

Let G be a semisimple Lie group, and let P, C G be a minimal parabolic
subgroup (cf. §A.2.4). We have a decomposition

(3.6.1.1) Py = MyA4,N,,

where N, is the unipotent radical of P, (cf. §A.2.4), a connected, simply
connected nilpotent group; A, is an abelian group, connected and simply
connected (i.e., isomorphic to R™ for m = dim A, ), and such that under the
adjoint action, A4, acts by diagonalizable matrices with positive real eigen-
values; and M, is compact. The group N, is normal in Py, and M, and
A, centralize each other. If G =SL, (R), then N, consists of the unipotent
upper triangular matrices, A, is the group of diagonal matrices with positive
entries and determinant one, and M, is the group of diagonal matrices with
entries =1 and determinant one.

Let y be a quasicharacter of 4, (a homomorphism from 4, to C™),and
o an irreducible representation of M. Note that ¢ is finite dimensional.
If V is the space of o, define the representation ¢ ® ¥ of Py on V by

g ® w(man)(v) = w(a)e(m)(v), meM,,acAi,,

3.6.1.2
( ) neN,,vev.
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Let JPO be the modular function of P, (cf. formula (A.1.15.3)). Define
the principal series representation associated to ¢ and y to be the induced

representation (cf. §§A.1.14-16).

1/2

(3.6.1.3) PS.(o,y)= 1ndP a®(y/5 ).

The set of representations P.S.(1, w), where 1 here denotes the trivial
representation of M, , is called the spherical principal series. (From an ety-
mological viewpoint, this is a solecism: zonal principal series would be prefer-
able.) The spherical principal series are slightly simpler than the P.S.(g, v)
with ¢ nontrivial, and they have some claim to a special place: they en-
compass all irreducible representations of G which contain a nonzero fixed
vector for K, and consequently, they are the representations involved in the
spectral analysis of functions on the symmetric space G/K . These topics are
treated in detail in [Helgl] and [GaVa].

The quasicharacters of 4, form a complex vector space A of dimension

dim 4. Thus if we let y vary in A , the representations P. S (g, y) form
a famlly, which in some sense (whlch can be made precise) is continuous
or even holomorphic, of similar-looking representations. This is what the
“series” in “principal series” connotes. Of course, 6;0 12 is a point in A g ,

and so multiplying yw by 5;01/ 2 pefore forming the induced representation
does not change the family of representations constructed, it only changes
the way they are parametrized. The point of the chosen parametrization is
that it takes unitary representations to unitary representations (cf. §§A.1.3
and A.1.16). For this reason multiplying by 6;01/ 2 before inducing is called
normalized induction or unitary induction. The representations P.S.(g, y)
for w unitary are called the unitary principal series, and, by way of contrast,
the whole principal series is sometimes called the nonunitary principal series.
(We remark, however, that even for some nonunitary y , the representation
P.S.(6, w) can be given the structure of a unitary representation, though not
in straightforward fashion [Stei, Knap2, p. 653].)
EXAMPLE. As an example, consider G = SL,(R). We may take

P0=B={[g afl]:aeRx,xeR},
(3.6.1.4) Moz{:i:[(l) (1)]} A0=<[[g agl]:a>0},

w={[o 1]:wexl.

Consider the space Cl’s(Rz) of smooth functions on R* — {0} which are
homogeneous of degree A, A € C, under positive dilations, and which are
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odd or even under reflection in the origin:
C*(RY) = {f: (R ~ {0}) - C, f smooth,
(3.6.1.5) fltx, ty)=1"f(x,y) fort >0, and
fl=x, -y)= &ef(x, »)}

for A€ C, ¢ = £1. The action of SL,(R) on R’ gives rise in a natural way
to an action p on C°°(R2 — {0}) by the recipe

s an ()= )

It is easy to check that the spaces Cl’s(Rz) are invariant under p, so we
may restrict p to any one of the C**%.

Define a mapping E from functions on R*~ {0} to functions on SL,(R)
by the rule

as17) BN@ =1 (" [o]) =1 ([%])-
a b

feCPR -{0}), g= [C d] € SL,(R).

A straightforward calculation reveals that the mapping E defines an equiv-
alence of SL,(R) representations

(3.6.1.8) CM R = PS8, &Y,
where &: M, — {%1} is defined by &([ 7, °1)=¢ and

Zz'{(lg a(_)l])=al’ a>0.

Thus the Cl’s(Rz) serve as models for the principal series of SL,(R).

Because of the homogeneity conditions (3.6.1.5) defining Cl’s(Rz) , WE See
that a function in this space is determined by its restriction to the unit circle

S'={(x, ) eR: X’ +y* =1}

and this restriction must be either an even or an odd function according
as ¢ is +1 or —1. The circle S’ is an orbit for the maximal compact
subgroup K = SO, of SL,(R). Thus the Fourier series of f| ¢ describes the
decomposition of f into irreducible subspaces (in this example, eigenspaces,
since SO, is abelian) for K. In particular, we see that each representation
of K occurs with multiplicity at most one. For general groups, the Iwasawa
decomposition (cf. equation A.2.3.5) shows us that the restriction to K of
P.S.(o, w) is also an induced representation

(3.6.1.9) PS.(0, y)g = indf,0 .
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By Frobenius reciprocity ([HeRo, Knap2, Jaco2] etc.), we may conclude that
an irreducible representation 7 of K occursin P.S.(o, w) with multiplicity
equal to the multiplicity with which ¢ occurs in the restriction T\, of ©
to M, . This is certainly not more than dimt. Thus all representations of
K (= “ K-types”) occur in the principal series with finite multiplicity, which
means that the principal series are admissible (cf. §3.6.5) representations
[Knap2, Wall2].

The importance of the principal series is brought out by the following
result.

THEOREM 3.6.1.10. (a) The principal series representations P.S.(a , v) all
have finite composition series. The number of composition factors is
bounded independently of ¢ and vy . For fixed o, P.S.(o, w) is irreducible
for a dense open set of v .

(b) Let p be any t.ci. (c¢f 8§A.1.7) representation of G. Then p is
infinitesimally equivalent (cf. §A.1.20) to a subrepresentation of P.S.(a, v)
for appropriate ¢ and v .

A weaker version of part (b), only asserting that ¢ could be realized as
a constituent, i.e., subquotient, of some P.S.(g, w), was proved by Harish-
Chandra in early work [HaCh4], and later simplified by Lepowsky [Lepo3]
and Rader (see also [Wall2]). The refinement giving ¢ as a subrepresentation
was a long-standing problem, resolved by Casselman (see [CaM