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Series preface

The Masters series of textbooks is aimed squarely at students taking
specialised options in topics within the primary areas of physics and
astronomy, or closely related areas such as physical chemistry and envi-
ronmental science. Appropriate applied subjects are also included. The
student interest group will typically be studying in the final year of their
first degree or in the first year of postgraduate work. Some of the books
may also be useful to professional researchers finding their way into new
research areas, and all are written with a clear brief to assume that the
reader has already acquired a working knowledge of basic core physics.

The series is designed for use worldwide in the knowledge that wher-
ever physics is taught at degree level, there are core courses designed for
all students in the early years followed by specialised options for those
consciously aiming at a more advanced understanding of some topics in
preparation for a scientific career. In the UK there is an extra year for the
latter category, leading to an MPhys or MSc degree before entry to post-
graduate MSc or PhD degrees, whereas in the USA specialisation is often
found mainly in masters or doctorate programmes. Elsewhere the pre-
cise modulations vary but the development from core to specialisation is
normally part of the overall design.

Authors for the series have usually been able to draw on their own
lecture materials and experience of teaching in preparing draft chapters. It
is naturally a feature of specialist courses that they are likely to be given by
lecturers whose research interests relate to them, so readers can feel that
they are gaining from both teaching and research experience.

Each book is self-contained beyond an assumed background to be found
in appropriate sections of available core textbooks on physics and use-
ful mathematics. There are of course many possibilities, but examples
might well include Richard P. Feynman’s three-volume classic Lectures on
Physics (first published byAddison-Wesley in the 1960s) andMary L. Boas’
Mathematical Methods in the Physical Sciences (Wiley, 1983). The primary
aim of books in this series will be to enhance the student’s knowledge
base so that they can approach the research literature in their chosen field
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with confidence. They are not intended as major treatises at the forefront
of knowledge, accessible only to a few world experts; instead they are
student-oriented, didactic in character and written to build up the confi-
dence of their readers.Most volumes are quite slimand they are generously
illustrated.

Different topics may have different styles of questions and answers, but
authors are encouraged to include questions at the end of most chapters,
with answers at the end of the book. I am inclined to the view that simple
numerical answers, though essential, are often too brief to be fully satis-
factory, particularly at the level of this series. At the other extreme, model
answers of the kind that examination boards normally require of lecturers
would make it too easy for a lazy reader to think they had understood
without actually trying. So the series style is to include advice about dif-
ficult steps in calculations, lines of detailed argument in cases where the
author feels that readers may become stuck, and any algebraic manipula-
tion which might get in the way of proceeding from good understanding
to the required answer. Broadly, what is given is enough help to allow the
typical reader to experience the feelgood factor of actually finishing ques-
tions, but not so much that all that is needed is passive reading of a model
answer.

David S. Betts
University of Sussex



Preface

The application of quantum theory to solids has revolutionised our under-
standing ofmaterials and their applications. This understanding continues
todrive thedevelopmentof the functionalmaterialswhich formthebasis of
modern technology. This book aims to describe the physics of the electronic
structure of these materials.

There are alreadymany excellent texts that provide a first introduction to
solid state physics, and others that develop a more advanced understand-
ing of the subject. Why, then, another text? This book is based on final year
undergraduate and first year postgraduate lectures that I have presented
over the last twelve years, originally in the Department of Physics at the
University of Surrey and now in University College Cork. My motivation
for the book was based primarily on there being no one text that I found
suitable for the lecture courses I was presenting. The lecture courses aimed
to provide a self-contained description that focuses on electronic structure,
and addresses three of the most important topics in solid state physics:
semiconductors, magnetism and superconductivity.

As an advanced undergraduate text, this book assumes pre-knowledge
in several of the main areas of physics, including quantum mechanics,
electromagnetism, thermal physics and an introductory course in the prop-
erties of matter. However, the first time I gave the course, I assumed not
just that the students had covered such material in lectures but also that
they were still familiar with it, in many cases over a year after the pre-
vious lecture courses had finished. This was a mistake, and convinced
me in subsequent years to begin by reviewing quantum concepts rele-
vant to an undergraduate solid state physics course, going from the basics
through to a relatively advanced level, and including techniques such as
the variational method and perturbation theory.

This initial revision of quantum mechanics provides some of the key
foundations for the remainder of the book. The variationalmethod justifies
many of the approximations that we use to describe electronic structure,
and to understand the electronic band structure and chemical bonding
trends in isolated molecules and in crystalline solids. As examples, the
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main trends in molecular bonding are developed by considering a dou-
ble square well. The nearly-free-electron and tight-binding methods are
both introduced by using the Kronig–Penneymodel with an infinite linear
chain of square wells, which is then also used to explain the concept of a
pseudopotential.

The material in the book extends in several places topics covered in the
lecture courses at Surrey andCork.Material from thefirst five chapterswas
used originally as a 30-hour undergraduate and then a 20-hour postgrad-
uate introduction to the electronic structure and applications of advanced
semiconductor materials. Selected material from Chapters 1, 2 and 5 was
also combined with the last three chapters to present a self-contained
20-hour final year undergraduate course on the “Quantum Theory of
Solids.”

The content of this book is more limited than others with this title. With
the focus on functional materials, less emphasis is placed on the electronic
properties of metals. There is also little consideration of the vibrational
and dynamical properties of solids, nor of their dielectric response. These
were all omitted to keep the book to a reasonable length (and cost). Finally,
although Bloch’s theorem and the wavevector k underpin much of the
analysis, less emphasis is placed on the concept of reciprocal lattice and
its use for determining structural properties through diffraction studies.
This omission was deliberate. I have found that it is difficult to visualise
how a reciprocal lattice relates to its real-space counterpart, particularly
in three dimensions; this difficulty can then distract from understanding
many trends in the electronic structure of solids. When possible, the recip-
rocal lattice is, therefore, used predominantly in one- and two-dimensional
examples, where it is generally more straightforward to picture how the
real-space and reciprocal lattices relate to each other.

I am very grateful to all those who have helped in the preparation and
production of this book. These include many students at Surrey, in par-
ticular Martin Parmenter, Andy Lindsay and Gareth Jones, who worked
through and helped to develop several of the problems. I thank JoyWatson
for her help with copyright requests, Patricia Hegarty for help in produc-
ing the index, and Vincent Antony at Newgen for his efficient and helpful
handling of the proofs. I thank Dave Faux, Betty Johnson, Fedir Vasko and
David Betts for their careful reading and comments on the complete text,
and James Annett, Dermot Coffey andMaurice Rice for their feedback and
comments on the chapter on superconductivity. Much of the material on
electronic structure and semiconductors developed from extended discus-
sions and interactionswith Alf Adams. Last but not least I thankAnne and
my family for their support and encouragement while I was writing this
book.



Chapter 1

Introduction and review of
quantum mechanics

1.1 Introduction

The application of quantum theory to solids has revolutionised our
understanding of materials and played a pivotal role in the information
revolution of the last fifty years. At the most basic level, quantum theory
enables us to understandwhy some solids aremetals, some insulators, and
some semiconductors. It also allows us to understand trends in the prop-
erties of different materials and to engineer materials to the properties we
desire.

The exact features of the electronic band structure of semiconductor
materials, for instance, play a key role in determining their electronic
and optoelectronic properties, and their usefulness for devices such as
lasers, detectors, and electronic integrated circuits. Details of the exchange
interaction between electrons on neighbouring atoms determine the dif-
ferences between ferromagnets, antiferromagnets and ferrimagnets and
their applicability for data storage or transformer applications. Quantum
mechanical properties are measurable on amacroscopic scale in supercon-
ductors, allowing both the determination of fundamental constants and
the commercial development of technologies such as magnetic resonance
imaging.

Theunderstanding anddevelopment of the functional solidswhich form
the basis of modern technology has been achieved through a synergy
between physicists, material scientists, and engineers. As the title implies,
this book is primarily concerned with the physicist’s story: we first review
the basic concepts of quantum mechanics and quantum mechanical tech-
niques, in order to use them later to understand some of the wide variety
of electronic properties of solids and their applications.

The remainder of this chapter is concerned with a review of quantum
mechanics: much of the material may be familiar from previous courses
and can certainly be found in many other textbooks, some of which are
listed at the end of this chapter. Providing an overview here should at
least refresh some of the key concepts in quantum mechanics. It may
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also introduce techniques and examples which have not previously been
studied, and which are particularly useful towards understanding trends
in the quantum theory of solids.

1.2 Wave–particle duality

The idea that light could be described either as a wave or as a particle was
formally introducedbyEinstein in1906.Hededuced fromthephotoelectric
effect that light waves also have particle-like properties, with the energy E
of an individual light packet, or photon, given by

E = hν (1.1)

where h is Planck’s constant and ν is the frequency of the light. It is rel-
atively easy to demonstrate experimentally that light has both wave-like
and particle-like properties: the diffraction patterns seenwith Young’s slits
or in a Michelson interferometer are characteristic of wave interference,
while effects such as Compton scattering or the existence of an absorption
edge in a semiconductor are best explained by regarding a light beam as
made up of individual packets, photons, each of which has particle-like
properties.

It is less obvious that objects which we regard as particles can also have
wave-like properties. It took nearly twenty years after the discovery of
the photoelectric effect before de Broglie postulated in 1924 that particles
can also have wave-like properties. He associated a wavelength λ with
a particle of momentum p, with the two being related through Planck’s
constant:

λ = h/p (1.2)

If we consider amacroscopic object ofmass 1 kgmovingwith unit velocity,
1m s−1, then its de Broglie wavelength, 6 × 10−34 m is clearly of a length
scale which will not be readily detectable, and so the object’s motion can
be treated classically, without regard for the wave-like properties. If, how-
ever, we consider an electron with massm of order 10−30 kg, whose kinetic
energy p2/2m is comparable to the room temperature thermal energy,
kT(≈25meV), then the de Broglie wavelength, λ = h/(2mkT)1/2, is of order
12Å, comparable to the typical interatomic spacing in a solid (≈3Å). We
might, therefore, expect and indeeddofindwave-likeproperties, including
reflection anddiffraction, playing a large role in determining the behaviour
of electrons in solids.

What is the property of matter which behaves as a wave? We call the
quantity, whose variation makes up matter waves, the wavefunction, sym-
bolised as �(x, y, z, t), giving the amplitude of the wave at a given point in
space and time. It is reasonable to expect the wavefunction � to be related
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y = A cos(2���� t)

t

y

Figure 1.1 The time-dependent variation in the amplitude of a cosine wave at a fixed
position in space (x = 0).

to the probability P of finding the particle at (x, y, z) at time t. As � is the
wave amplitude and amplitudes can be greater or less than zero, while a
probability P always lies between 0 and 1, we cannot associate � directly
with P. Born postulated in 1926 that the probability of finding the particle
at (x, y, z) at time t is proportional to the value of |�(x, y, z, t)|2, as |�|2 ≥ 0.
The wavefunction is therefore sometimes more properly referred to as
the probability amplitude �, and may indeed be described by a complex
function, as |�|2 = �∗� ≥ 0 for complex numbers.

As quantum mechanics treats particles as waves, it is also useful at this
point to review some of the key properties of waves.

The simplest equation for the variation in the amplitude y of a wave as
a function of time t is

y(t) = A cos(2πνt) (1.3)

which is illustrated in fig. 1.1, where ν is the frequency of the wave and A
its maximum amplitude. The period T over which the wave repeats itself
is equal to 1/ν. Such a wave may also be written as

y(t) = A cos(ωt) (1.4)

where ω is the angular frequency. Whenwe talk about a wave propagating
along the x-axis with velocity u, we mean that a particular crest moves a
distance x = ut in time t, so that the displacement y at position x and time
t is then the same as the displacement at x = 0 at time t− x/u, which from
eq. (1.3) is given by

y(x, t) = A cos 2πν(t − x/u)

= A cos 2π(νt − νx/u) (1.5)

As the velocity u = νλ, the displacement in eq. (1.5) is also given by

y(x, t) = A cos(2πνt − 2πx/λ) (1.6)

which can be written in more compact form by introducing the wave-
number k = 2π/λ, to give

y(x, t) = A cos(ωt − kx) (1.7)
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This can be generalised to a plane wave propagating along the direction n
in three dimensions as

y(r, t) = A cos(ωt − k · r) (1.8)

where the magnitude of the wavevector k is determined by the wave-
length, |k| = 2π/λ, while the direction along which k is pointing equals
the propagation direction n.

1.3 Wave quantisation

While a wave propagating in free space may in principle have any wave-
length, once it is confined within a finite region it must satisfy definite
boundaryconditions, so thatonly certainmodesare supported, as is indeed
found for vibrations on a string or in musical instruments. If we consider
a particle of mass m confined by an infinite potential between x = 0 and
x = L, we expect its amplitude to go to zero at the boundaries, as for
a vibration on a string. The allowed wavelengths λn are then given by

λn = 2L
n

(1.9)

where n is a positive integer, n = 1, 2, 3, . . . . The first three allowed states
are illustrated in fig. 1.2. But, de Broglie postulated that the momentum of
a particle with wavelength λ is given by p = h/λ, so we find for the nth
allowed state that

pn = hn
2L

(1.10)

�3 ��= 2L /3

�= L

�= 2L
x = 0 x = L

�2

�1

Figure 1.2 The first three allowed standing waves for a particle in a box of width L
(or vibrational modes of a string of length L).
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and the energy is then quantised, with only certain discrete energies
allowed:

En = p2n
2m

= h2n2

8mL2
(1.11)

It is because of this quantisation of wavelength and energy that the wave-
like description of matter is generally referred to as ‘wave mechanics’ or
‘quantum mechanics’.

1.4 Heisenberg uncertainty principle

Once we adopt a wave-like description of matter, it is then no longer pos-
sible to describe a particle as being just at one particular point in space.
A particle must now be described by a wavepacket, and any wavepacket
is always spread over some region of space. Figure 1.3 illustrates twowave
packets with similar wavelength (and therefore similar average momen-
tum): one wavepacket is confined within a small region �x of space, of
order one wavelength long, while the second wavepacket is defined over
a much larger region, and therefore has a far greater uncertainty, �x, in
its position. Each of these packets can be defined as a sum (strictly an
integral) over plane waves with different wavevectors, k. To achieve a
tightly defined wavepacket, such as the upper wave in fig. 1.3, it is nec-
essary to include waves with a wide range of wavevectors k; the range of
wavevectors in the upper case, �k, is then much larger than for the lower
wavepacket. It can in fact be proved for any wavepacket that

�x�k ≥ 1
2 (1.12)

∆x

∆x

Figure 1.3 Two wavepackets of comparable wavelength, but different spatial extent,
�x. We need to include many components with different wavevectors, k,
in the upper, compact, wavepacket, so that �k is large for small �x. By
contrast, the lower wavepacket extends over several wavelengths, so the
range of wavevectors, �k, is small in this case for large �x.
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Replacing λ in eq. (1.2) by thewavenumber k, we find that themomentum,
p, of a wave is directly related to its wavenumber by

p = hk/2π = �k (1.13)

where we introduce � = h/2π . Substituting eq. (1.13) in (1.12), we derive
Heisenberg’s uncertainty principle, one of the most widely quoted results
in quantum mechanics:

�x�p ≥ �/2 (1.14)

namely that it is impossible to know the exact position and exact momen-
tum of an object at the same time.

A similar expression can be found relating energy E and time t. We
saw that the energy E is related to a frequency ν by E = hν. The uncer-
tainty in measuring a frequency ν depends on the time �t over which the
measurement is made

�ν ∼ 1/�t (1.15)

so that the uncertainty in energy �E = h�ν ∼ h/�t, which can be
re-arranged to suggest �E�t ∼ h. When the derivation is carried out
more rigorously, we recover a result similar to that linking momentum
and position, namely

�E�t ≥ �/2 (1.16)

so that it is also impossible to determine the energy exactly at a given
moment of time.

1.5 Schrödinger’s equation

Although it is impossible to derive the equation which determines the
form of the wavefunction �, Schrödinger was nevertheless able to deduce
or postulate its form. We discussed above how �(x, t) may be given by
a complex function. We assume we can choose

�(x, t) = A e−i(ωt−kx) (1.17)

for a wave propagating in the x-direction with angular frequency ω and
wavenumber k. Using eqs (1.1) and (1.2), we can rewriteω and k, and hence
� in terms of the energy E and momentum p, respectively:

�(x, t) = A e−i/�(Et−px) (1.18)

We can then take the partial derivative of the wavefunction with respect
to time, t, and find

∂�

∂t
= − iE

�
�
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which can be re-arranged to give

E� = i�
∂�

∂t
(1.19)

while taking the second derivative with respect to position x, we find

∂2�

∂x2
= −p2

�2
�

or

p2� = −�
2 ∂2�

∂x2
(1.20)

Classically, the total energy E of a particle at x is just found by adding the
kinetic energy T = p2/2m and potential energy V at x:

E = p2

2m
+ V (1.21)

Schrödinger assumed that if you multiply both sides of eq. (1.21) by the
wavefunction �, the equation still holds:

E� =
(
p2

2m
+ V

)
� (1.22)

Then substituting eqs (1.19) and (1.20) into (1.22), Schrödinger postu-
lated that the wavefunction � obeys the second order partial differential
equation

i�
∂�

∂t
= − �

2

2m
∂2�

∂x2
+ V� (1.23)

This is referred to as Schrödinger’s time-dependent (wave) equation; the
‘proof’ of its validity comes from the wide range of experimental results
which it has predicted and interpreted.

Formanyproblemsof interest, thepotentialV(x)doesnot varywith time
and so we can separate out the position- and time-dependent parts of �:

�(x, t) = ψ(x) e−iEt/� (1.24)

Substituting eq. (1.24) in (1.23), and then dividing through by e−iEt/� gives

− �
2

2m
d2ψ(x)
dx2

+ V(x) ψ(x) = Eψ(x) (1.25a)
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�(x)

x x

(i)(b)(a) (ii) (iii)

Figure 1.4 (a) A ‘well-behaved’ (=allowed) wavefunction is single-valued and smooth
(i.e. ψ and dψ/dx continuous). (b) This is certainly not a wavefunction,
as it is (i) multiple-valued, (ii) discontinuous, and (iii) has discontinuous
derivatives.

often rewritten as

Hψ(x) = Eψ(x) (1.25b)

where H = (−�
2/2m)d2/dx2 + V(x) is referred to as the Hamiltonian

operator. (The name arises because it is a function which acts, or
‘operates’ on ψ .) Equation (1.25) is referred to as the time-independent, or
steady-state Schrödinger equation. It is a second order ordinary differen-
tial equation. We expect solutions of such an equation to generally behave
‘sensibly’, which can be expressed mathematically, and is illustrated in
fig. 1.4, as requiring that

1 ψ is a single-valued function (otherwise, there would be a choice of
values for the probability function |ψ(x)|2);

2 ψ is continuous; and
3 dψ/dx is continuous.

Similar conditions generally apply to the solutions of other second order
differential equations, such as that describing the vibrational modes of
a fixed string. As with the vibrational modes of a fixed string, which
occuronlyat certainwell-defined frequencies, Schrödinger’s equationonly
has allowed solutions for certain well-defined energies E in a potential
well, V(x).
There are remarkably few potentials V(x) in which Schrödinger’s equa-

tion is analytically soluble: those which exist are therefore very useful and
instructive to study. Examples where analytical solutions can be found
include free space, the infinite squarewell andfinite squarewell, thehydro-
gen atom, and the simple harmonic oscillator. All of these, and related
examples, are used later to elucidate aspects of the quantum theory of
solids.
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1.6 Expectation values and the momentum operator

Schrödinger’s equation can inprinciple be solved for an arbitrarypotential,
V, giving a set of allowed energy levels En with associated wavefunc-
tions,ψn. Aswewish to associate |ψn(x)|2 with the probability distribution
of the particle, and the particle has a 100 per cent chance (probability = 1)
of being somewhere along the x-axis, it is customary to ‘normalise’ the
wavefunction ψn(x) so that∫ ∞

−∞
|ψn(x)|2 dx = 1 (1.26)

and the probability of finding a particle in the nth state between x and
x + dx is then given by

Pn(x)dx = |ψn(x)|2 dx (1.27)

as illustrated in fig. 1.5. The expectation (or average) value 〈xn〉 of the posi-
tion x for a particle with wavefunction ψn(x), is then found by evaluating
the integral

〈xn〉 =
∫ ∞

−∞
x|ψn(x)|2 dx (1.28a)

which can also be written as

〈xn〉 =
∫ ∞

−∞
ψ∗
n (x)xψn(x)dx (1.28b)

Although both forms of eq. (1.28) give the same result, it can be shown that
the second form is the correct expression to use. The expectation value for
an arbitrary function G(x) is then given by

〈Gn〉 =
∫ ∞

−∞
ψ∗
n (x)G(x)ψn(x)dx (1.29)

x x + dx

Pn(x)

Figure 1.5 Plot of the probability distribution function, Pn(x) = |ψn(x)|2 for a nor-
malised wavefunction, ψn(x). The total area under the curve,

∫ ∞
−∞ Pn(x)dx,

equals 1, and the probability of finding the particle between x and x+ dx is
equal to the area of the shaded region.
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The average momentum, 〈p〉, can be calculated in a similar way, if we
identify the operator, −i�∂/∂xwith the momentum p. This is suggested by
the wavefunction�(x, t) = Ae−i(Et−px)/� for a particle in free space. Taking
the partial derivative of thiswavefunctionwith respect to position, x, gives

−i�
∂�

∂x
= p� (1.30)

The expectation value of themomentum, 〈pn〉, is then found by calculating

〈pn〉 =
∫ ∞

−∞
ψ∗
n (x)

(
−i�

∂

∂x

)
ψn(x) dx (1.31)

This expression is used later, in describing the k·p technique for calculating
semiconductor band structure, and also when considering current flow in
superconductors.

1.7 Some properties of wavefunctions

There are several ‘tricks’ based on the general properties of wavefunctions
which are useful when solving and applying Schrödinger’s equation. It is
not intended to derive these properties here, but it is nevertheless useful
to review them for later applications, and to provide the weakest type of
‘proof’ for each of the properties, namely proof by example.

Even and odd symmetry: If we have amirror plane in the potential, chosen at
x = 0, such thatV(x) = V(−x) in one dimension, orV(x, y, z) = V(−x, y, z)
in three dimensions, then all of the wavefunctions ψn(x) which are solu-
tions of Schrödinger’s equation can be chosen to be either symmetric,
that is, even, with ψ(x) = ψ(−x), or antisymmetric, that is odd, with
ψ(x) = −ψ(−x), as illustrated in fig. 1.6.

In such a symmetric potential, there should be equal probability of
finding a particle at x, or at −x, which requires that

|ψ(x)|2 = |ψ(−x)|2 (1.32)

This requirement is clearly obeyedwhen the wavefunctions are even, with
ψ(x) = ψ(−x), or odd, with ψ(x) = −ψ(−x). It can also be shown that
the wavefunction for the ground state is always an even function in a
symmetric potential. We shall see later that symmetry also simplifies the
form of the wavefunctions in periodic solids.

Completeness of wavefunctions: The wavefunctions ψn(x) which are solu-
tions to Schrödinger’s equation for a particular potential, V(x), form
a complete set, that is, any other well-behaved function f (x) defined in
the same region of space can be written as a linear combination of the
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V(x)

�o(x)

�e (x)

x = 0
Position, x

Figure 1.6 A wavefunction, ψe(x) of even symmetry and a wavefunction, ψo(x) of odd
symmetry, in a symmetric potential, (V(x) = V(−x)).

wavefunctions ψn(x):

f (x) =
∞∑
n=1

anψn(x) (1.33)

This is easily seen for the infinite square well potential, whose lowest
energy wavefunctions are illustrated in fig. 1.2. There is a standard proof
in Fourier analysis that any well-behaved function f (x) defined between
0 and L can be expressed in terms of the Fourier sine series

f (x) =
∞∑
n=1

an sin
nπx
L

(1.34)

But the nth wavefunction in an infinite square well is just given byψn(x) =
(2/L)1/2 sin(nπx/L), and so the Fourier series proof immediately implies
that the infinite well wavefunctions ψn(x) also form a complete set.
Orthogonality of wavefunctions: Two energy states with wavefunctions

ψm and ψn are said to be degenerate if they have the same energy, Em = En.
If two states are not degenerate, then it can be shown that their averaged
‘overlap’, defined by the product ψ∗

m(x)ψn(x), is always zero:∫ ∞

−∞
ψ∗
m(x)ψn(x) dx = 0 (1.35)

That is, the two wavefunctions are said to be orthogonal to each other.
Given a set of degenerate states, it is also always possible to choose wave-
functions for the degenerate states which are orthogonal to each other, so
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that for a complete set of normalised wavefunctions, we can always write∫ ∞

−∞
ψ∗
m(x)ψn(x) dx = δmn (1.36)

where δmn, the Kronecker delta, equals 1 if m = n, and is zero other-
wise. This result is again readily demonstrated for the wavefunctions
(2/L)1/2 sin(nπx/L) in an infinite well.

1.8 The variational principle

As the Schrödinger equation cannot be solved analytically for most poten-
tials, it is useful if we can develop techniques which allow straightforward
estimates of material properties. The variational method is a particularly
important approximation technique, which can be used to estimate the
ground state energy of a Hamiltonian H where we do not know the exact
wavefunctions, ψn(x). It can also be used to estimate the energy of the first
excited state in a symmetric potential.

For a given arbitrary potential, V(x), it is generally possible to make
a reasonable guess, say f (x), for the overall shape and functional formof the
ground state wavefunction, ψ1(x), knowing that the amplitude should be
largest near the potentialminimum, decaying away to zero as the potential
increases (see fig. 1.7). In practice, it is most unlikely that f (x) will be
an exact guess for ψ1(x). But, because of the completeness of the exact
wavefunctions, f (x) can always be expressed as in eq. (1.33) in terms of the
exact wavefunctions, and the estimated expectation value of the ground
state energy, 〈E〉, can be calculated as

〈E〉 =
∫ ∞
−∞ f∗(x)Hf (x) dx∫ ∞
−∞ f∗(x)f (x) dx

(1.37)

which is the generalisation of eq. (1.29) for a function f (x) which has not
been normalised.

Potential, V(x) Trial function,  
f(x)

x

Figure 1.7 The trial wave function f (x) should be a reasonable guess at the estimated
shape of the ground state wavefunction in the arbitrary potential V(x),
peaking about the minimum of V(x) and decaying to zero at large x.
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The numerator in eq. (1.37) can be expanded using eq. (1.33) in terms of
the wavefunctions ψn(x), as∫ ∞

−∞
f∗(x)Hf (x) dx =

∫ ∞

−∞

(∑
m

a∗
mψ∗

m(x)

)(
H

∑
n

anψn(x)

)
dx

=
∫ ∞

−∞

∑
n

∑
m

a∗
manψ

∗
m(x)Enψn(x) dx (1.38)

where we use Hψn = Enψn. Using eq. (1.36) for the orthonormality of the
wavefunctions, this can be further simplified, giving∫ ∞

−∞
f∗(x)Hf (x)dx =

∑
m,n

a∗
manEnδmn =

∑
n

|an|2En

≥ E1
∑
n

|an|2 (1.39)

as the ground state is by definition the lowest energy state, so that En ≥ E1
for all values of n ≥ 1. Using the orthogonality condition, eq. (1.36), it can
be readily shown that the denominator of eq. (1.37) is given by∫ ∞

−∞
f∗(x)f (x)dx =

∑
n

|an|2 (1.40)

Substituting (1.39) and (1.40) in eq. (1.37), we have then proved for the
estimated ground state energy that

〈E〉 ≥ E1 (1.41)

so that the variational method can always estimate an upper limit for the
ground state energy in an arbitrary potential V(x). Clearly, the more accu-
rately the variational trial function, f (x), is chosen, the closer the estimated
variational energy 〈E〉 will be to the true ground state energy, E1.

1.9 The variational method in an infinite square well

We illustrate the application of the variational method by considering the
infinite square well of fig. 1.2. We know that the exact ground state in this
case is given by ψ1(x) = (2/L)1/2 sin(πx/L), but want to choose a different
trial function, f (x), as a simple test of the variational method. The trial
function f (x) must be chosen in this case so that its amplitude goes to zero
at the two boundaries, f (0) = f (L) = 0, with the maximum expected in the
centre, at x = L/2, and the function symmetric about x = L/2. The simplest
polynomial function f (x) to choose is the parabola

f (x) = x(L − x) (1.42)
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for which we calculate that

Hf (x) = − �
2

2m
d2

dx2
[x(L − x)] = �

2

m

with the variational ground state energy then estimated as

〈E〉 =
∫ L
0 x(L − x)�2

m dx∫ L
0 x2(L − x)2dx

=
(
1
6

)
(�2/m)(
1
30

)
L2

= 0.12665
�
2

mL2
(1.43)

This compares very well with the exact ground state energy calculated
earlier using eq. (1.11) as E1 = 0.125h2/(mL2), and demonstrates that the
variational method works effectively, given a suitable choice of trial func-
tion. The accuracy with which we choose f (x) can often be significantly
improved by including a free parameter, say γ , in f (x), and then calculat-
ing the variational energy 〈E〉 as a function of γ . When d〈E〉/dγ = 0, we
have generally minimised 〈E〉, and thereby achieved the best possible esti-
mate of E1 for the given f (γ , x). This is described further in Appendix A,
where we use the trial function e−γ x to estimate the electron ground state
energy in the hydrogen atom.

As the ground state wavefunction is always even in a symmetric poten-
tial, choosing an odd function g(x) allows an estimate of the first excited
state energy. This is considered further in the problems at the end of this
chapter, wherewe estimate the energyof thefirst excited state in the infinite
square well potential, using a cubic function, g(x), chosen as the simplest
polynomialwhich is odd about the centre of thewell, and zero at the edges.

1.10 The finite square well

As the finite square well proves useful for illuminating a wide range of
problems in solid state physics, we complete this chapter by calculating
the energy levels in a squarequantumwell of depthV0 andwidth a, defined
between x = −a/2 and x = +a/2, so that the potential is then symmetric
about the origin (see fig. 1.8). We first review the conventional calculation
of the confined state energies, which takes full advantage of the symmetry.
We then present an alternative, less frequently seen derivation, which will
prove useful later when we use a double quantum well to model bond-
ing in molecules, and when we use an infinite array of quantum wells to
model a periodic solid, using what is referred to as the Kronig–Penney
(K–P) model.
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x

x = 0

�1(x)

Potential, V (x)
B cos (kx)

D e–��x

Figure 1.8 The thick solid line indicates a square well potential centred at the origin.
The thinner curve shows the position dependence, ψ1(x), of the ground
state wavefunction, while the thin horizontal line indicates the energy E1
of the state.

We choose the zero of energy at the bottom of the quantum well so that,
within the well, Schrödinger’s equation is given by

− �
2

2m
d2ψ(x)
dx2

= Eψ(x) (1.44)

which has the general solution

ψ(x) = A sin kx + B cos kx |x| ≤ a/2 (1.45)

where we have defined k2 = 2mE/�
2. Although classically a particle with

energy E ≤ V0 cannot penetrate into the barrier, there is a finite probability
of finding theparticle there in quantummechanics; Schrödinger’s equation
in the barrier takes the form

− �
2

2m
d2ψ(x)
dx2

+ V0ψ(x) = Eψ(x) (1.46)

which has the general solution

ψ(x) = Ceκx + De−κx x ≥ a/2

= Feκx + Ge−κx x ≤ −a/2 (1.47)

with κ2 = 2m(V0 − E)/�
2.

The allowed solutions of Schrödinger’s equation are those which satisfy
the necessary boundary conditions, namely,

1 that the amplitude of ψ → 0 as x → ±∞, requiring C = 0 and G = 0
(otherwise there would be an exponentially increasing probability of
finding the particle at large |x|);
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2 the wavefunction ψ and its derivative dψ/dxmust also be continuous
at all x.

This holds automatically within the well from eq. (1.45) and within the
barrier from eq. (1.47); in order to be satisfied everywhere, we then
require ψ and dψ/dx to be continuous at the well/barrier interfaces, at
x = ±a/2. This gives rise to four linear equations involving the four
unknown parameters A, B, D, and F:

ψ(a/2) : A sin(ka/2) + B cos(ka/2) = D e−κa/2 (1.48a)

ψ ′(a/2) : Ak cos(ka/2) − Bk sin(ka/2) = −κD e−κa/2 (1.48b)

ψ(−a/2) : − A sin(ka/2) + B cos(ka/2) = F e−κa/2 (1.48c)

ψ ′(−a/2) : Ak cos(ka/2) + Bk sin(ka/2) = κF e−κa/2 (1.48d)

These four equations can be solved directly, as we do below, to find
the allowed energy levels, En, for states confined within the quantum
well. However, because the potential is symmetric, it is easier to calculate
separately the even and odd allowed states.

For the even states (fig. 1.8), D = F, and ψ(x) = B cos(kx) within the
well, giving as boundary conditions at x = a/2

B cos(ka/2) = D e−κa/2 (1.49a)

−Bk sin(ka/2) = −Dκe−κa/2 (1.49b)

with two identical boundary conditions obtained at x = −a/2. Dividing
(1.49b) by (1.49a), we obtain for the even states within the quantum
well that

k tan(ka/2) = κ

or

k sin(ka/2) − κ cos(ka/2) = 0 (1.50)

We obtain the odd states by letting D = −F and ψ(x) = A sin(kx) within
the well, so that

k cot(ka/2) = −κ

or

k cos(ka/2) + κ sin(ka/2) = 0 (1.51)
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The allowed energy levels are then determined by finding those values
of E = �

2k2/2m for which either of the transcendental equations (1.50) or
(1.51) can be satisfied.

We could have ignored the symmetry properties of the quantum well,
allowing all confined states to have the general form given by eq. (1.45) in
the well, and then found the allowed energy levels by directly solving the
four linear equations in (1.48); that is, requiring that⎛

⎜⎜⎝
sin(ka/2) cos(ka/2) −1 0
k cos(ka/2) −k sin(ka/2) κ 0
− sin(ka/2) cos(ka/2) 0 −1
k cos(ka/2) k sin(ka/2) 0 −κ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A
B

D e−κa/2

F e−κa/2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ (1.52)

Non-trivial solutions of eq. (1.52) are obtained when the determinant of
the 4 × 4 matrix is zero; it can be explicitly shown that the determinant is
zero when

[k sin(ka/2) − κ cos(ka/2)][k cos(ka/2) + κ sin(ka/2)] = 0 (1.53)

which, not surprisingly, is just a combination of the separate conditions in
eqs (1.50) and (1.51) for allowed even and odd states. When we multiply
out the two terms in eq. (1.53) anduse the standard trigonometric identities
cos θ = cos2(θ/2) − sin2(θ/2) and sin θ = 2 cos(θ/2) sin(θ/2), we obtain an
alternative transcendental equation which must be satisfied by confined
states in a square well, namely

(κ2 − k2) sin ka + 2kκ cos ka = 0

or

cos ka + 1
2 (κ/k − k/κ) sin ka = 0 (1.54)

This less familiar form of the conditions for allowed states in a finite square
well potential will be very useful when investigating the allowed energy
levels in a ‘diatomic’, or double quantumwell in Chapter 2, and also when
using the Kronig-Penney model for periodic solids in Chapter 3.
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Problems

1.1 Show that in a quantum well of depth V0 and width a the energies of
states of oddparity are given by−k cot(ka/2) = κ , where k2 = 2mE/�

2

and κ2 = 2m(V0 − E)/�
2.

1.2 Normalise the wavefunctions, ψn(x) = an sin(nπx/L), of the infinite
square well, for which V(x) = 0, for 0 < x < L, and = ∞ otherwise.
Show that the wavefunctions are orthogonal to each other, that is,∫ L

0
ψ∗
n (x)ψm(x)dx = δmn

1.3 A trial function, f (x), differs from the ground state wavefunction,
ψ1(x), by a small amount, which we write as

f (x) = ψ1(x) + εu(x)

where ψ1(x) and u(x) are normalised, and ε � 1. Show that 〈E〉, the
variational estimate of the ground state energy E1, differs from E1
only by a term of order ε2, and find this term. [This shows that the
relative errors in the calculatedvariational energy canbe considerably
smaller than the error in the trial function used.]

1.4 Consider an infinite square well between −L/2 and +L/2.
a Use the variational method to estimate the ground state energy

in this well assuming f (x) = (L/2)n − xn, where n is an even
integer, ≥2. Comment why the function becomes an increasingly
unsuitable starting function with increasing n.

b Justify the choice of the cubic function g(x) = (2x/L) − (2x/L)3 to
estimate the energy of the first excited state. Use g(x) to estimate
E2 and compare your result with the exact solution.

c Suggest a suitable polynomial form for the variational function
which might be chosen to estimate the energy of the second and
higher excited states.

1.5 Consider a particle moving in the one-dimensional harmonic
oscillator potential, V(x) = 1

2kx
2. By using the trial function, f (x) =

exp(−αx2), estimate the ground state energy of the harmonic oscilla-
tor. We can use g(x) = x exp(−βx2) as a trial function to estimate the
lowest state of odd parity, that is, the first excited state. Estimate this
energy.



Chapter 2

Bonding in molecules and solids

2.1 Introduction

Many trends in the properties of solids follow directly from trends in the
properties of the constituent atoms. The semiconductors germanium (Ge),
gallium arsenide (GaAs) and zinc selenide (ZnSe) are all formed from
atoms in the same row of the periodic table: they all have the same crystal
structure andapproximately the same lattice constant, but the fundamental
band gap increases on going from the covalently bonded group IV semi-
conductorGe to the polar III–V compoundGaAs, and again on going to the
evenmorepolar II–VI compoundZnSe. Silicon (Si) is fourfold-coordinated,
with four nearest neighbour atoms in almost all of the compounds which
it forms, while nitrogen (N) is generally three-coordinated, as in ammonia
(NH3) or silicon nitride (Si3N4), where each Si has fourN and eachN three
nearest Si neighbours.

The observation of such properties and their classification through the
Periodic Table of the elements predated the Schrödinger equation by over
fifty years, but it took the development of quantum mechanics to first
explain the structure of the periodic table, and the trends in atomic proper-
ties with increasing atomic number. It took longer still to explain how the
atomic trends give rise to the observed trends in the chemical and physical
properties of matter.

Some of the observed properties, such as high temperature supercon-
ductivity, have still to be fully understood, but there have been many
significant advances in recent years in the development of both approx-
imate and first principles methods to explain and predict a wide range of
material properties, each of which is the subject in its own right of major
text books and review papers.

We are largely concerned in this chapter with understanding the ori-
gins of chemical bonding in molecules and solids: how, as we bring atoms
closer together the atomic energy levels play a significant and predictable
role in determining the electronic energy levels of the resultantmolecule or
solid. We illustrate this by first taking the square well as a prototype atom
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and investigating analytically the evolution of the energy level spectrum
as the separation, b, between two square wells is decreased to give a
diatomic, or double square well potential. We then apply a variational
method to the same problem, showing that linear combinations of the
‘atomic orbitals’ (i.e. wavefunctions) of the isolated square wells enable a
good description of the double quantumwell energy level spectrum up to
surprisingly small values of the well separation, b. The square well illus-
tratesmany, but not all, properties of atomic bonding, as it obviously omits
factors such as nucleus–nucleus repulsion. Having used the square well
to establish the applicability of a variational method, we then consider
the hydrogen molecule, H2, followed by an ionic molecule, chosen to be
LiH, to illustrate the effects of bonding between dissimilar atoms. This
analysis provides a model which is widely applicable, explaining bonding
trends for instance in crystalline semiconductors and insulators, disor-
dered solids, large polymer chains and smallmolecules. It should however
be remarked that the bondingmodel developed here, based on linear com-
binations of atomic orbitals, at best, only partly explains the origins of and
trends in bonding in metals: a fuller understanding requires consideration
of the evolution from isolated energy levels in atoms to energy bands in
solids, which will be discussed further in Chapter 3. A particularly good
and more extended description of much of the material in this chapter can
be found in Harrison (1980, 2000).

2.2 Double square well potential

The solid line in fig. 2.1 shows the potential V(x) associated with two
square quantumwells, each ofwidth a anddepthV0, separated by a barrier

Potential, V(x)

Ground state
wavefunction,
�(x) (even about
x = 0)

–b/2 – a b/2 + a

V0

‘atom 2’

Position, x

‘atom 1’

–b/2 b/2

Figure 2.1 The solid line shows two square quantum wells of width a and depth V0
separated by a barrier of width b. This potential is chosen to model the
interaction between two ‘atoms’ whose ‘nuclei’ are a distance a + b apart,
and with each ‘atom’ modelled by a square well potential. The dashed line
illustrates the wavefunction for the lowest eigenstate, which is symmetric
about x = 0.
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of width b. We choose the origin at the centre of this barrier, so that the
potential is then symmetric about x = 0, with the right-hand well then
between x = b/2 and b/2+a, and the left-handwell between x = −(b/2+a)
and−b/2.With this symmetry, thedoublewellwavefunctionswill be either
even or odd about x = 0. The wavefunction for the lowest symmetric state
is illustrated by the dashed line in fig. 2.1, and can be written down in
terms of four unknown parameters A, B, C and D:

1 Within the central barrier, Schrödinger’s equation takes the form of
eq. (1.46):

− �
2

2m
d2ψ

dx2
+ V0ψ = Eψ (2.1)

for which the even solution is

ψ(x) = A(eκx + e−κx) − b
2

< x <
b
2

(2.2)

with κ2 = 2m(V0 − E)/�
2.

2 Within the right-hand well, Schrödinger’s equation is given by
eq. (1.44)

− �
2

2m
d2ψ

dx2
= Eψ (2.3)

and we choose as our general solution

ψ(x) = B cos
(
k
(
x − a + b

2

))
+ C sin

(
k
(
x − a + b

2

))
b
2

< x <

(
a + b

2

)
(2.4)

where k2 = 2mE/�
2, with the phase of the sine and cosine functions

chosen so that they are, respectively, odd and even about the well
centre, (a + b)/2.

3 Schrödinger’s equation has the same form in the right hand as in the
central barrier; and in order that ψ → 0 as x → ∞, we choose

ψ(x) = D e−κ(x−(b/2+a)) x >

(
a + b

2

)
(2.5)

Because of the symmetry, the wavefunctions in the left-hand well and
barrier depend on the same unknown coefficients B, C, and D.
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We require for allowed solutions of Schrödinger’s equation that the
wavefunctionψ and its derivative dψ/dx be continuous at thewell/barrier
interfaces; namely,

ψ(b/2) : A(eκb/2 + e−κb/2) = B cos(ka/2) − C sin(ka/2) (2.6a)

ψ ′(b/2) : κA(eκb/2 − e−κb/2) = kB sin(ka/2) + kC cos(ka/2) (2.6b)

ψ(a + b/2) : D = B cos(ka/2) + C sin(ka/2) (2.6c)

ψ ′(a + b/2) : − κD = −kB sin(ka/2) + kC cos(ka/2) (2.6d)

We could find the conditions for allowed energy levels by solving the 4×4
determinant involving the four unknowns A, B, C, and D, as was done
with eq. (1.52) in Chapter 1. Alternatively (or equivalently) we can first
use (2.6c) and (2.6d) to determine B and C in terms of D:

C = D
(
sin(ka/2) −

(κ

k

)
cos(ka/2)

)
(2.7a)

B = D
(
cos(ka/2) +

(κ

k

)
sin(ka/2)

)
(2.7b)

and then by substituting the values for B and C in (2.6a) and (2.6b), and
using the double angle identities, we obtain

A(eκb/2 + e−κb/2) = D((κ/k) sin(ka) + cos(ka)) (2.8a)

A(eκb/2 − e−κb/2) = D((k/κ) sin(ka) − cos(ka)) (2.8b)

Dividing (2.8b) by (2.8a) we find

tanh
(

κb
2

)
= (k/κ) sin(ka) − cos(ka)

(κ/k) sin(ka) + cos(ka)
(2.9a)

which can be rewritten as

(
κ2 tanh

(
κb
2

)
− k2

)
sin(ka) + kκ

(
tanh

(
κb
2

)
+ 1

)
cos(ka) = 0

(2.9b)

A similar analysis shows that the energy levels for the double well states
of odd parity are found as solutions of

(
κ2 coth

(
κb
2

)
− k2

)
sin(ka) + kκ

(
coth

(
κb
2

)
+ 1

)
cos(ka) = 0

(2.10)
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We consider means of solving eqs (2.9) and (2.10) in the problems at the
end of this chapter. Even without solving exactly, we can deduce sev-
eral important results concerning coupled quantum wells and molecular
bonding from these equations:

(1) Isolated well limit: As b → ∞, and the square quantum wells become
widely separated from each other, we expect the energy levels to approach
those for an isolated well. This is confirmed by noting that both tanh(κb)
and coth(κb) → 1, as b → ∞, so that both eq. (2.9) and eq. (2.10) then take
the form

(κ2 − k2) sin(ka) + 2κk cos(ka) = 0 (2.11)

which is just the condition (eq. (1.54)) to determine the energy levels of an
isolated quantum well.

(2) Bonding and anti-bonding levels: Conversely, we see from eqs (2.9) and
(2.10) that as the interwell separation b decreases the coupled well energy
levels evolve continuously from the isolated single quantum well levels.
This is illustrated in fig. 2.2(a) and (b) where we plot the evolution of
energy levels in a shallow well and a deep well as a function of b. As b
decreases, the doubly degenerate levels start to move apart, one going up
and the other down in energy, with the splitting increasing for decreas-
ing separation b. This splitting explains the origins of chemical bonding.
Two electrons (of opposite spin) can occupy each energy level in an atom
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Figure 2.2 Variation of allowed energy levels as a function of the separating barrier
width b for (a) two coupled ‘shallow’ quantum wells (each of width a = 6 Å
and depth V0 = 1.0 eV), and (b) two ‘deep’ quantum wells (also of width
a = 6 Å, but of depth V0 = 6.0 eV). As the separation b → ∞, each of
the shallow wells has one confined energy level, while each of the deeper
wells in (b) has three confined states.
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or molecule, with the lowest energy levels being filled first. If each of the
quantum wells or ‘atoms’ in fig. 2.2(a) has one electron in the level bound
in the quantum well, then the overall energy will be reduced by form-
ing the coupled quantum well, where the two electrons can occupy the
lowest energy level, as in the diatomic hydrogen molecule, H2. This level
is referred to as the bonding level. By contrast, if there are already two
electrons in the highest filled level of each isolated well or atom, as for
helium (He), the second element in the Periodic Table, it will cost energy
to form a molecule, with two of the electrons going into the lower (bond-
ing) level and the other two into the upper (anti-bonding) level. Hence He
gas is made up of isolated He atoms rather than He2 or more complicated
molecules.

(3) Core and valence levels: Returning to the deep well in fig. 2.2(b), we
see for moderate b that the splitting between the highest energy levels is
considerably larger than is the case for the lower energy levels. This can
be understood from eqs (2.9) and (2.10) if we note that the magnitude of
κ = {2m(V0 − E)/�

2}1/2 increases as the energy decreases, going towards
the bottom of the quantum well. In this situation, tanh(κb) and coth(κb)
are much closer to 1 for the lower energy levels than for those nearer to
the well maximum, and so the deep states are far less perturbed from their
isolated well values compared to the higher levels. The same is true in
molecules and solids where the deeper energy levels, referred to as core
levels, are largely unperturbed and do not take part in bonding. Hence,
despite having different numbers of core electrons, gaseous flourine (F),
chlorine (Cl) and iodine (I) all exist as diatomic molecules, F2, Cl2 and I2,
as all have the same number of valence electrons.

(4) Linear combinations of atomic orbitals: Figure 2.3(a) and (b) show the
wavefunctions (solid lines) for the shallow-well bonding and anti-bonding
energy levels at selected values of interwell separation, b. It can be seen
even for small b that the wavefunctions are virtually indistinguishable
from symmetric and anti-symmetric combinations of the isolated quantum
well functions (indicated by the dotted lines). We may write the coupled
well wavefunction ψ(x) as

ψs(x) = α(φL(x) + φR(x))

ψa(x) = β(φL(x) − φR(x))
(2.12)

for the symmetric and anti-symmetric cases, respectively, where φL(x) and
φR(x) are eigenstates of an isolated left-hand and right-hand well respec-
tively, and α = β = 1/

√
2 for large separation. We see from fig. 2.3 that this

linear combination of isolated well wavefunctions (i.e. ‘atomic orbitals’)
should act as a good variational guess at the molecular wavefunctions up
to relatively smallwell separations b. This is indeed confirmed by fig. 2.4(a)
and (b), which compare the exact doublewell energy levels of fig. 2.2 (solid
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Figure 2.3 The wavefunctions of the (a) symmetric and (b) anti-symmetric confined
state in the coupled shallow wells of fig. 2.2(a), calculated for central barrier
widths of (i) b = 5 Å and (ii) b = 2 Å. The solid lines show the exact wave-
functions, while the dashed lines are a variational estimate assuming each
wavefunction to be a linear combination of isolated well wavefunctions.

lines) with the energy levels calculated using eq. (1.37) and the variational
wavefunctions of eq. (2.12) (dotted lines): agreement between the two
remains good to small well separation b. This ability to use isolated atomic
wavefunctions as basis states in variational calculations explains in large
part why atomic properties play such a major role in determining trends
in the observed chemical and physical properties of molecules and solids.

We note that the variational method does break down here as b → 0,
particularly for the excited states in the deeper well (fig. 2.4(b)). This is not
surprising as at b = 0, eqs (2.9) and (2.10) reduce to

k tan(ka) = κ

and

k cot(ka) = −κ (2.13)

respectively, which are just the equations determining the even and odd
energy levels in a well of width 2a.

In summary, through the example of the double quantumwell, we have
shown

1 how molecular energy levels evolve continuously from those of
isolated atoms, as the atoms are brought closer together;

2 how repulsion between energy levels on neighbouring atoms can lead
to the formation of bonding and anti-bonding states;
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Figure 2.4 Comparison of the exact double well energy levels of fig. 2.2 (solid lines)
with the energy levels calculated using the variational method, where the
double well variational functions are taken to be a linear combination of
exact isolated well wavefunctions.

3 that core levels play no part in molecular bonding, and
4 that the molecular wavefunctions can often be well approximated by

linear combinations of atomic orbitals.

We turn in the next section to look more closely at the hydrogen molecule,
H2, and then at molecules such as LiH, formed from two atoms which are
not identical.

2.3 The hydrogen molecule, H2

For an isolated hydrogen atom, the Schrödinger equation is given by

Hψ(r) =
(

− �
2

2m
∇2 − e2

4πε0r

)
ψ(r) = Eψ(r) (2.14)

with the ground state energy, EH, shown in Appendix A to be equal to
−13.6 eV and the electron wavefunction given by φ(r) = C exp(−r/a0),
referred to as the ground state atomic orbital. If we bring two hydrogen
atoms, a and b, together to form a molecule, then the isolated atomic
orbitals, φa(r) and φb(r), are no longer eigenfunctions of the combined
Hamiltonian

Hψ(r) =
(

− �
2

2m
∇2 − e2

4πε0ra
− e2

4πε0rb
+ e2

4πε0r12

)
ψ(r) (2.15)



Bonding in molecules and solids 27

wherewe take ra to be the electron distance fromnucleus a, rb fromnucleus
b, and r12 the electron–electron separation. Our solution of eq. (2.15) uses
what is referred to as the one-electron approximation, where we assume
that each of the electrons effectively sees an average potential due to
the other electron. We also assume, as we did above, that the molecular
wavefunction can bewritten as a linear combination of the atomic orbitals,
which we now write as

ψ(r) = αφa(r) + βφb(r) (2.16)

Schrödinger’s equation then takes the form

H(αφa(r) + βφb(r)) = E(αφa(r) + βφb(r)) (2.17)

and the parameters α and β need to be determined in order to find the
allowed molecular energy levels, Ei. We can determine the ground state
energy by applying the variational method as described in Chapter 1 but,
in order to estimate the magnitude of some of the integrals involved, we
break the calculation down into several steps. We first multiply eq. (2.17)
from the left by φ∗

a (r) and integrate over all space:

α

∫
d3r(φ∗

a (r)Hφa(r))+ β

∫
d3r(φ∗

a (r)Hφb(r))

I II

= αE
∫

d3r(φ∗
a (r)φa(r)) + βE

∫
d3r(φ∗

a (r)φb(r)) (2.18)

III IV

We must next estimate the magnitude of the four terms I, II, III and IV in
eq. (2.18). We note that the first term can be split into two parts:

I :
∫

d3rφ∗
a (r)

(
− �

2

2m
∇2 − e2

4πε0ra

)
φa(r)

+
∫

d3rφ∗
a (r)

(
− e2

4πε0rb
+ e2

4πε0r12

)
φa(r) (2.19)

where the first part is just the Schrödinger equation for an electron in an
isolated hydrogen atom, and is of magnitude EH, while the second part
involves an integral over the sum of the attractive electron–nucleus b and
repulsiveelectron–electronpotentials, whichshouldapproximately cancel,
leaving the value of the second term close to zero.

Because we have normalised the wavefunctions, the integral in the term
III is equal to one, that is

∫
d3rφ∗

a (r)φa(r) = 1, while the term IV describes
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Figure 2.5 Variation of (a) the two isolated atomic wavefunctions, φa and φb, and
(b) the electron potential, V(r) along the axis joining the two hydrogen
nuclei in a H2 molecule.

the overlap between atomic orbitals centred on atoms a and b (see fig. 2.5).
We introduce the overlap parameter S,∫

d3rφ∗
a (r)φb(r) = S (2.20)

where 0 < S < 1, and we expect for moderate overlap that S is generally
significantly less than 1.

Finally, we consider the term II which describes the interaction via the
Hamiltonian H between an atomic orbital on site a and one on site b. We
introduce the parameter U such that∫

d3rφ∗
a (r)Hφb(r) = U (2.21)

where, from fig. 2.5, U < 0, and is a measure of the strength of the interac-
tion between an electron on a and an electron on b, with the magnitude of
U increasingwith decreasing separation between the two atoms. Equation
(2.18) can then be rewritten as

αEH + βU = αE + βES (2.22)

If we multiply eq. (2.17) from the left by φ∗
b(r) and then integrate over all

space, we get a second equation involving α and β, namely

αU + βEH = αES + βE (2.23)

We can rewrite eqs (2.22) and (2.23) as

α(EH − E) + β(U − ES) = 0

α(U − ES) + β(EH − E) = 0
(2.24)
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These simultaneous equations can be solved for an arbitrary value of S,
but the solution is simplifed if we assume the overlap S ≈ 0, in which case
the allowed energy levels are at

E = EH ± U (2.25)

with the molecular variational wavefunctions then given by

ψ±(r) = 1√
2
(φa(r) ± φb(r)) (2.26)

We note that as the amplitude of the atomic orbitals φa and φb decays
exponentially with increasing distance, the overlap interaction U and
hence the splitting between the bonding and anti-bonding levels also
decreases exponentially with increasing separation between atoms a and
b, as was also observed for the double quantum well energy levels in
fig. 2.2(a) and (b).

The sum of the binding energies of two isolated hydrogen atoms is
2|EH|. In a H2 molecule, the two electrons go into the lowest energy
level, where, from the simple model here, the binding energy becomes
2(|EH| + |U|), as illustrated in fig. 2.6, so that the total binding energy
is then increased by 2|U| by forming H2. This explains why hydrogen
normally exists as the diatomic molecule H2 rather than as isolated atoms.

It might appear from the above analysis and eq. (2.25) that the lowest
energy state would be achieved when the magnitude of U is maximised,
and the two atomic nuclei are at the same point. However, the esti-
mate of the total binding energy here double-counts the electron–electron
repulsion, while ignoring the nuclear–nuclear repulsion. At moderate
separations, these two errors approximately cancel, but as the separa-
tion decreases the distance between the two nuclei becomes smaller than
the average electron–electron distance, leading to an underestimate of
the repulsion energy, and hence to a maximum binding energy at finite
separation, as illustrated in fig. 2.7.
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gy

EH– U

EH+ U

EHH H

Figure 2.6 Schematic energy level diagram, illustrating how the interaction between
two hydrogen atoms, each with isolated orbital energy, EH, gives rise to
a doubly filled bonding state at EH + U and empty anti-bonding state at
EH − U.
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Figure 2.7 Schematic variation of the bonding (labelled E+) and lowest anti-bonding
energy level (labelled E−) in a hydrogen molecule, H2, as a function of
interatomic separation, R. The equilibrium separation is at R = R0.

2.4 The diatomic LiH molecule

We turn now to consider bonding in a diatomic molecule made up of two
different atoms, such as LiH.We can go through a similar variational argu-
ment as before, guessing that the lowest energy molecular wavefunctions
are a linear combination of a hydrogen atomic orbital, φH(r), and a lithium
atomic orbital, φLi(r):

ψi(r) = αφH(r) + βφLi(r) (2.27)

If we nowmultiply eq. (2.27) from the left by φ∗
H(r) or φ∗

Li(r) and integrate
over all space, we again get two linear equations which must be satisfied

α(EH − E) + βU = 0

αU + β(ELi − E) = 0
(2.28)

The bonding E+ and anti-bonding E− energy levels are then calculated to
lie at

E+ = EH + ELi

2
−

√
(EH − ELi)2

4
+ U2

and

E− = EH + ELi

2
+

√
(EH − ELi)2

4
+ U2 (2.29)

respectively, as illustrated in fig. 2.8.
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Figure 2.8 Energy level diagram for a diatomic molecule formed between lithium (on
the left) and hydrogen (on the right). The isolated-atom energy levels
interact to give bonding and anti-bonding energy levels at E+ and E−
respectively, where E+ and E− are defined by eq. (2.29).

The energy gap, Eg, between the highest occupied molecular orbital
(known as the HOMO) and the lowest unoccupied molecular orbital
(LUMO) is then given by

Eg = 2

√
U2 + (EH − ELi)2

4

or

E2
g = (2U)2 + (EH − ELi)

2 (2.30)

We rewrite this as

E2
g = E2

h + C2 (2.30a)

to emphasise that there are two contributions to the energy gap, the cova-
lent bonding contribution E2

h = (2U)2 (where the subscript ‘h’ denotes
homopolar), and the ionic contribution, C2 = (EH − ELi)

2, due to the dif-
ference in atomic orbital energy, which is often described by chemists in
terms of the difference in electronegativity of the two atoms. For any bond,
we can then define the bond covalency, αc, and polarity, αp, by

αc = 2U√
(2U)2 + (Ea − Ec)2

= Eh

Eg

and

αp = |Ea − Ec|√
(2U)2 + (Ea − Ec)2

= C
Eg

(2.31)

where Ea and Ec refer to the orbital energies of the two atoms. We then
have for all bonds that

α2
c + α2

p = 1 (2.32)
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Figure 2.9 (a) In the purely covalent hydrogen molecule, the bonding and anti-bonding
wavefunctions are both shared equally between the two hydrogen atoms.
(b) In a polar molecule, the amplitude of the bonding state shifts towards
the more electronegative site, with the anti-bonding state shifting towards
the less electronegative site (where electrons are less tightly bound).

so that αc = 1 for a purely covalent bond, such as in H2 or a Si crystal.
More interestingly, there is a continuous transition from covalent to ionic
bonding. As the ionicity increases, the bonding state shifts predominantly
towards the more electronegative site, that is, the site with more tightly
bound valence electrons, which is referred to as the anion. At the same
time, the anti-bonding state shifts to the less electronegative site, referred
to as the cation. This is illustrated in fig. 2.9. The values of α and β can be
calculated in eq. (2.27) to find that

ψ+ =
√
1 + αp

2
φa +

√
1 − αp

2
φc

while

ψ− =
√
1 − αp

2
φa −

√
1 + αp

2
φc (2.33)

where φa and φc refer to orbitals on the anion and cation with energies
Ea and Ec, respectively. There is, therefore, a continuous transition from
purely covalent bonding, as in Si or Ge, to polar bonding, as in GaAs,
and to ionic bonding, as in sodium chloride, NaCl – common salt – where
most of the binding energy is associated with the electrostatic attraction
due to the transfer of one electron from each sodium to each chlorine atom,
givingNa+Cl−. Wediscuss in the next sections how trends in the electronic
properties of tetrahedrally bonded semiconductors can be understood in
terms of trends in the covalent and ionic contributions to their bonding.



Bonding in molecules and solids 33

2.5 Tetrahedral bonding in Si crystals

The elements in the right hand columns of the Periodic Table have four
valence atomic orbitals: one s-state which is spherically symmetric, and
three p-states, which can be described as having x-, y- and z-like symmetry,
as described in Appendix B. Such orbitals are illustrated in fig. 2.10, where
we have drawn surfaces on which the magnitude of the amplitude of each
atomic orbital is constant.

The crystal lattice structure of Si is shown in fig. 2.11. Each Si atom
has four nearest neighbours, with the neighbours forming a tetrahedron
about the central atom. The Si lattice in fig. 2.11 is often described as being
made up of two interpenetrating face-centred-cubic (FCC) lattices: one
of these can be reasonably clearly seen by marking the atoms on each
corner of the cube shown and also on the face centres. This description
is of little relevance here but will be useful later when considering polar
semiconductors, such as GaAs, and when considering the crystal band
structure in more detail in Chapter 3.

To get a simple understanding of bonding in a tetrahedral semicon-
ductor such as Si, we convert from the atomic orbital basis of one s and
three p states to a basis of directional hybrid orbitals, referred to as sp3

orbitals. Hybrid states are formed by taking linear combinations of the
atomic orbitals on an atom, and can be chosen to give highly directional
orbitals whose amplitude is maximised along the direction to a specific
nearest neighbour. Consider for instance an s-state, φs and a px-state, φx,

(a) (b)y

x

(c)

Figure 2.10 Surface of constant amplitude for (a) an s-state, (b) a px-state, and (c) a py -
state. The third p state (not illustrated) is directed along the z-direction
(out of the page).

Figure 2.11 Crystal lattice structure of Si. Each Si atom has four nearest neighbours,
with the neigbours forming a tetrahedron about the given atom. (From
H. P. Myers (1997) Introductory Solid State Physics, 2nd edn.)



34 Bonding in molecules and solids

(a)

(b)

(c)

Position

�s

�x

1/√2(�s+ �x)

Figure 2.12 A hybrid orbital (c) formed as a linear combination of an s-state (a) and
a px-state (b) can have greater amplitude along the x-direction than that
of either of the states from which it is formed.

whose amplitudes vary along the x-axis as shown in fig. 2.12(a) and (b).
Adding the two together, as 1/

√
2(φs(r) + φx(r)), gives the hybrid state

shown in fig. 2.12(c), which has a maximum amplitude for x > 0 that is
larger than that of either of the constituent atomic orbitals.

The four relevant hybrid orbitals for the Si atom in the bottom corner of
the crystal structure of fig. 2.11 are

ψ1(r) = 1
2 [φs(r) + φx(r) + φy(r) + φz(r)]

ψ2(r) = 1
2 [φs(r) + φx(r) − φy(r) − φz(r)]

ψ3(r) = 1
2 [φs(r) − φx(r) + φy(r) − φz(r)]

ψ4(r) = 1
2 [φs(r) − φx(r) − φy(r) + φz(r)]

(2.34)

An isolated Si atom has four valence electrons, two in the atomic s state, at
energy Es, and two in p states at a higher energy, Ep. The hybrid orbitals
are not eigenstates (wavefunctions) of the isolated atom, but instead are
at an energy Eh, which can be calculated, for example, for the hybrid state
ψ1(r) as

Eh =
∫

d3r ψ∗
1 (r)H0ψ1(r)

= 1
4

∫
d3r[φ∗

s (r) + φ∗
x (r) + φ∗

y (r) + φ∗
z (r)]

× H0[φs(r) + φx(r) + φy(r) + φz(r)] (2.35)
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where H0 is the Hamiltonian for the isolated atom. Because the s- and
p-orbitals are allowed energy levels of the isolated atomandare orthogonal
to each other, most of the terms in eq. (2.35) disappear and we are left with

Eh = 1
4

∫
d3r[φ∗

s (r)H0φs(r)

+ φ∗
x (r)H0φx(r) + φ∗

y (r)H0φy(r) + φ∗
z (r)H0φz(r)]

= 1
4 (Es + 3Ep) (2.36)

The energy of four electrons in the lowest available atomic stateswas 2Es+
2Ep, while that of four electrons, one in each of the four sp3 hybrids is
Es + 3Ep, as illustrated in fig. 2.13. It therefore costs energy to form the
directional sp3 hybrids but, once they are formed, each hybrid interacts
strongly with one hybrid on a neighbouring atom, to form filled bonding
and empty anti-bonding states, thereby gaining a bonding energy of 4|U|
per atom, where U is the hybrid interaction energy, and a net increase in
the binding energy per atom of 4|U| + |Ep| − |Es| in tetrahedrally bonded
Si. Of course, there aremanymore interactions between the hybrid orbitals
than the onewe have just focussed on here betweeen two hybrids pointing
towards each other. The interactions which we have ignored broaden the
bonding levels into a filled valence band of states, and the anti-bonding
levels into the empty conduction band. Nevertheless, the hybrid orbital
picture presented here provides a convincing explanation for the crystal
structure of tetrahedrally bonded semiconductors, and can also provide
insight into trends in a variety of semiconductor properties, some of which
we discuss in more detail below.
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Figure 2.13 (a) An isolated Si atom has two electrons in an s-like valence level (at
energy Es here) and two electrons in p states (at energy Ep). (b) It costs
energy to form four hybrid orbitals, each at energy Ehy, and each contain-
ing one electron. However each hybrid orbital can then interact strongly
with a hybrid orbital on a neighbouring Si atom (d) to form a strongly
bonding state at energy Ehy − |U| (c).



36 Bonding in molecules and solids

En
er

gy

Ep,Ga

Es,Ga

Es, As

Ep, As

Figure 2.14 Tetrahedral bonding in GaAs can be explained through the formation
of sp3 hybrid orbitals on each Ga and As site (left- and right-hand side
of figure respectively ). Each Ga sp3 hybrid then overlaps and interacts
strongly with an sp3 hybrid on a neighbouring As atom, to give strong
polar bonding in GaAs.

2.6 Bonding in gallium arsenide

The crystal structure of GaAs is similar to that of Si, shown in fig. 2.11.
The gallium (Ga) atoms occupy one of the FCC lattices which make up
the crystal structure, with the arsenic (As) atoms on the other FCC lattice,
so that now each Ga has four As nearest neighbours, and each As four Ga
neighbours. An isolatedAs atomhas five valence electrons, two in s-states,
and three in p-states, while an isolated Ga has three valence electrons,
two in the s level and one in a p level, as illustrated in fig. 2.14. We can
again form hybrid orbitals on the Ga and As atoms, with the Ga hybrids
lying above the As hybrids, because As, with tighter bound valence states,
is more electronegative than Ga. Just as bonding in Si is akin to that in
H2, so we can compare GaAs with LiH, as shown in fig. 2.8, where the
splitting between the bonding and anti-bonding levels has both a covalent
contribution, due to the interhybrid interaction,U, andapolar contribution
due to thedifference inelectronegativity.Wenotehowever that there is little
net charge transfer between the Ga and As sites in polar-bonded GaAs, as
the As atoms contribute in any case 5

4 electrons and the Ga atoms 3
4 of an

electron to each bond.

2.7 Trends in semiconductors

The trends in band gap with covalency and ionicity predicted by eq. (2.30)
are generally observed across the full range of semiconducting and insulat-
ing materials. Figure 2.15 shows as an example several rows and columns
of the Periodic Table from which the sp3-bonded, fourfold-coordinated
semiconductors are formed. The Periodic Table is discussed in more detail
in Appendix B. The number at the top of each column in fig. 2.15 indicates
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Figure 2.15 Selected elements from columns II to VI of the Periodic Table. The number
at the top of each column indicates the number of valence electrons which
the atoms in that column can contribute to bonding. Tetrahedral bonding
can occur in group IV, III–V, and II–VI compounds, as the average number
of valence electrons per atom is four in each of these cases.

the number of valence electrons which the given atom can contribute to
bonding. The electronegativity tends to increase as we move along each
row towards the right-hand end, due to increasingly large atomic orbital
binding energies. The covalent radius (atomic size) is relatively constant
within each row, but increases on going down to lower rows, because of
the extra core electrons in the lower rows. The electronegativities also tend
to be larger at the top of the Periodic Table than in lower rows because,
with the increase in core radius in the lower rows, the electrons are less
tightly bound to the nuclei.

As the magnitude of the covalent interaction, (U or Eh in eq. (2.30))
decreases with increasing atomic separation, we can predict that the band
gap will decrease going down the series of purely covalent group IV semi-
conductors, fromdiamond (C) through Si andGe to β-tin (Sn). We likewise
expect it to decrease going down the series of polar III–V compounds, alu-
minium phosphide (AlP) through GaAs to indium antimonide (InSb). On
the other hand, if we take a set of tetrahedral semiconductors from the
same row of the Periodic Table (where the covalency is constant), then we
would expect the band gap to increase with increasing ionicity, going for
instance fromGe to GaAs and on to the II–VI semiconductor, zinc selenide
(ZnSe). These general trends are indeed confirmed in fig. 2.16, where we
plot the low temperature band gap (in electron volts) against the bond
length for various group IV, III–V and II–VI compounds.

Tetrahedrally bonded III–V compounds span a very wide range of
energy gaps, from 0.17 eV for InSb up to 6.2 eV in aluminiumnitride (AlN).
We note here a very useful relation between the band gap energy, Eg, in
electron volts, and emission wavelength λ in microns, namely

λEg = 1.24µmeV (2.37)
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Figure 2.16 Plot of the low temperature energy gap (in eV) and the bond length (in Å)
for various group IV, III–V, and II–VI compounds.

As light emission tends to occur due to transitions across the energy gap in
semiconductors, we find that by varying the covalent and ionic contribu-
tions to bonding we can achieve light emission from bulk semiconductors
at wavelengths ranging from the ultra-violet through to about 10µmat the
infra-red end of the spectrum.
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Problems

2.1 Show that for two quantumwells of depthV0 andwidth a separated
by a barrier of width b, the energies of states of odd parity are found
as solutions of eq. (2.10):(

κ2 coth
(

κb
2

)
− k2

)
sin(ka) + kκ

(
coth

(
κb
2

)
+ 1

)
cos(ka) = 0

2.2 Show, by using eqs (1.53) and (1.54) that we can rewrite eq. (2.9) as

k sin(ka/2) − κ cos(ka/2) = κ2 sin(ka) + κk cos(ka)
k cos(ka/2) + κ sin(ka/2)

sech(κb/2)e−κb/2

(2.38)
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This reduces to eq. (1.50), the equation for even confined states in an
isolated well, when the right-hand side equals zero. By re-arranging
eq. (2.38) in the form

f (E) = sech(κb/2) exp(−κb/2) (2.39)

and then expanding f (E) in a Taylor Series about E0 (the isolated
well ground state energy) show that Egs(b), the ground state energy
in a coupled quantum well, varies for large barrier width b as
Egs(b) = E0 − C e−κb, where C is a constant which can in principle
be determined from eqs (2.38) and (2.39).

2.3 Derive an equivalent expression to eq. (2.38) for the first excited state
in adouble quantumwell, andhence show that the splitting between
the ground and first excited state varies as 2Ce−κb for two weakly
coupled square quantum wells.

2.4 The ground state energy level in a square well of width a and depth
V0, centred at the origin, is given by ψ(x) = A cos(kx), |x| ≤ a/2,
and ψ(x) = D e−κ|x| for |x| ≥ a/2, where k and κ have their usual
meanings. By evaluating

∫ ∞
−∞ dx|ψ(x)|2, calculate the magnitude of

the normalisation constants A and D in terms of k, κ and a. [This
result can be useful when applying the variational method, as in the
next question.]

2.5 Using the variational wavefunction ψ(x) = αφL(x) + βφR(x), where
φL(x) and φR(x) are the isolated quantum well ground state wave-
functions defined in eq. (2.12), calculate each of the integrals I, II and
IV in eq. (2.18) for the double square well potential. Hence show
that the variational method also predicts that the splitting between
the ground and first excited state energy varies as 2Ce−κb for two
weakly coupled square quantum wells.

2.6 Show that the value ofC calculated in problem 2.2 is the same as that
calculated in problem (2.5)!!

2.7 We can write the wavefunctions for an s-state and for three p
states on an isolated atom as φs(r) = fs(r), φz(r) = fp(r) cos θ ,
φx(r) = fp(r) sin θ cosφ and φy(r) = fp(r) sin θ sin φ, where (r, θ , φ)

are spherical polar coordinates centred on the atomic nucleus, and
fs(r) and fp(r) describe the radial variation of the s and p wave-
functions. Assuming that fs(r) ∝ fp(r), show that the hybrid orbital
φh(r) = 1

2 [φs(r) + φx(r) + φy(r) + φz(r)] has maximum amplitude
along the (111) direction (θ = cos−1(1/

√
3),φ = π/4).

2.8 As well as forming sp3-bonded diamond crystals, carbon can also
formsp2-bondedgraphite, where each carbonatomhas threenearest
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neigbours, lying in the same plane as the carbon atom, with a bond
angleof 120◦ betweeneachpair of neighbours. Determine the formof
the sp2 hybrid orbitals on the central carbon atom if its three nearest
neighbours all lie in the xy-plane, and one of the three neighbours is
along the +x direction.

2.9 N identical atoms each have a single electron at energyEa. The atoms
are brought together to form an N-membered ring, in which each
atom interacts with its two neighbouring atoms, with an interaction
of strength U (U < 0). It can be shown that the eigenstates, ψn(r) of
this ring can be expressed in the form

ψn(r) =
N∑

m=1

ei2πmn/Nφm(r)

where n = 0, 1, . . . ,N − 1, and φm(r) is the atomic orbital on the mth
atom. Show that the allowed energy levels in the N-membered ring
are given by

En = Ea + 2U cos(2πn/N).

Given that each energy level can contain two electrons, calculate
the ground state binding energy per atom for all ring sizes between
N = 3 and N = 8, and for N = ∞. The model here is appropriate
to describe the interactions between neighbouring pz orbitals in sp2-
bonded carbon. Hence, provide two reasons why 6-membered sp2-
bonded carbon rings are strongly favoured (e.g. as in benzene, C6H6)

compared to other ring sizes.

2.10 Show thatλEg = 1.24µmeV,whereEg is a photon energy in electron
volts and λ is its wavelength in microns. The III–V alloy InAsxSb1−x
has a fraction x of the group V sites occupied by arsenic (As) atoms,
and a fraction (1− x) occupied by antimony (Sb) atoms. The energy
gap of InAsxSb1−x (measured in eV) has been determined to vary
with composition at room temperature as

Eg(x) = 0.17 + 0.19x + 0.58x(x − 1)

Determine the composition of the alloy with the lowest room tem-
perature energy gap, and hence estimate an upper limit on the
room temperature emission wavelength of conventional bulk III–V
semiconductors.



Chapter 3

Band structure of solids

3.1 Introduction

We saw in the last chapter how we can build a good understanding of
molecules and solids by describing the electronic structure using linear
combinations of atomic orbitals. This method gives a very useful picture,
particularly of trends in bonding properties. However, our earlier discuss-
sion gave at best a partial description of the electronic structure of solids.
In particular, we only stated that isolated atomic and molecular energy
levels broaden into bands of allowed energy states in solids, separated
by forbidden energy gaps. In this chapter we consider in more detail the
structure of these allowed energy bands.

There are about 1023 valence electrons which contribute to the bonding
in each cubic centimetre of a typical solid. This implies that the calculation
of the electronic structure should be a complexmany-body problem, as the
exact wavefunction and energy of each electron depend on those of all the
others. However, there are at least two factorswhich considerably simplify
the calculation of the energy spectrum.

First, it is found that in many cases each electron effectively sees a sim-
ilar average potential as all the others, so that instead of having to solve
something like a 1023 body problem, we can use an ‘independent electron
approximation’, and calculate the energy spectrum using the one-electron
Schrödinger equation introduced in Chapter 1. While we may not know
the exact form of this average potential we expect that it should be closely
related to the isolated atomic potentials of the atoms which form the solid.

Second, many interesting solid state materials are crystalline, with a
periodic lattice. Because the ground state electronic structure must also be
periodic, with the same charge distribution in each unit cell, we find that
the potential V(r) is periodic, with

V(r + R) = V(r) (3.1)

where R is a vector joining the same point in two different unit cells,
as illustrated in fig. 3.1. It can be shown that the individual electron



42 Band structure of solids

R

V = 0

V(r)

Figure 3.1 The variation in potential, V(r), through a line of atoms in a periodic solid,
with each atom separated by the vector R from its nearest neighbour in
the line.

wavefunctions must reflect this periodicity, satisfying a condition referred
to as Bloch’s theorem.

We introduce Bloch’s theorem in the next section, and describe how
its application considerably simplifies the calculation and description of
the electronic structure of crystalline solids. This is further illustrated in
the following section where we extend the square well model of previous
chapters to calculate the band structure of a one-dimensional (1-D)periodic
array of square wells, using what is known as the Kronig–Penney (K–P)
model.

There are several different techniques commonly used to calculate and
develop an understanding of the electronic structure of solids. We provide
an overview of three of these later in this chapter, using the K–P model
to demonstrate their validity and applicability. We have already consid-
ered the tight-binding (TB) method in Chapter 2, based on isolated atom
properties, and extend it in Section 3.4 to periodic solids. A very different
approach is provided by the nearly free electron (NFE)model, described in
Section 3.5. This starts from the assumption that the potential in a periodic
solid is inmanyways little different to that seen by an electron in free space,
and calculates the band structure by treating the crystal potential as though
it were only slightly perturbed from the constant, free space, potential. We
show using the K–P model that, surprising as it may seem, there are sit-
uations where the two extremes, the TB and NFE models, each provide a
good description of the electronic structure. This is for instance the case
for tetrahedrally bonded semiconductors, as we illustrate in Section 3.6.

It is highly surprising that the NFE model should ever work in solids,
as the electron–nucleus interaction has very sharp singularities, where
the potential deviates very strongly from the flat, free space potential.
We conclude this chapter by introducing in Section 3.7 the concept of
a pseudopotential, showing how it is possible to modify the true poten-
tial to a much smoother ‘pseudo’ potential, which has the same calculated
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valence energy levels as the true potential and for which the NFE model
then works remarkably well.

3.2 Bloch’s theorem and band structure for
a periodic solid

3.2.1 Bloch’s theorem

We consider a solid with the periodic potentialV(r +R) = V(r), as defined
in eq. (3.1). Bloch’s theorem states that the wavefunctions of the one-
electron Hamiltonian H = −(�2/2m)∇2 + V(r) can be chosen to have the
form of a plane wave times a function with the periodicity of the lattice:

ψnk(r) = eik·runk(r) (3.2a)

where

unk(r + R) = unk(r) (3.3)

and where the subscript n refers to the nth state associated with the
wavevector k. Combining eqs (3.2a) and (3.3) we can restate Bloch’s
theorem in an alternate (but equivalent) form

ψnk(r + R) = eik·Rψnk(r) (3.2b)

A full proof of Bloch’s theorem can be found in several texts (e.g. Ashcroft
and Mermin, Ibach and Lüth). We do not prove Bloch’s theorem here but
rather make its proof plausible by noting two consequences of eq. (3.2).

(1) Periodic electron density: We expect in a periodic solid that the electron
probability density, |ψnk(r)|2, can vary between different points within a
given unit cell. This is allowed by eq. (3.2), as

|ψnk(r)|2 = |eik·r |2|unk(r)|2 = |unk(r)|2 (3.4)

and the function, unk(r), although periodic, is not required to be constant,
so can varywithin a given unit cell. We also expect that the overall electron
density should be equal at a given point r within one unit cell and the
equivalent point r + R within another unit cell. This also follows from
Bloch’s theorem, as from eq. (3.2b)

Pnk(r + R) = |ψnk(r + R)|2 = |eik·R|2|ψnk(r)|2 = Pnk(r) (3.5)

so that there is equal probability of finding a given electron at r or at r + R,
implying equal charge density at the two points.
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(2) Empty lattice model: The wavefunctions for electrons in free space
(where V(r) ≡ 0) can be chosen to take the form of plane waves, with the
unnormalised wavefunction ψk(r) = eik·r describing a state with energy
E = �

2k2/(2m). If we divide free space into a periodic array of identical
boxes (giving what is referred to as the ‘empty lattice’), then we can write
each of the free space wavefunctions as the product of a plane wave times
a constant (and therefore periodic) function:

ψk(r) = eik·r · 1 (3.6)

Hence Bloch’s theorem describes wavefunctions which reduce, as one
would hope, to the correct form in the case where the periodic potential
V(r) → 0.

3.2.2 Electronic band structure

From Bloch’s theorem, we can associate a wavevector k with each energy
state Enk of a periodic solid. It is often useful to plot a diagram of the
energies Enk as a function of the wavevector k, which is then referred
to as the band structure of the given solid. Figure 3.2(a) shows the band
structure for an electron in free space, which is described by the parabola
E = �

2k2/(2m).
The free electron band structure ismodified in several ways in a periodic

solid. In particular, the wavevector k associated with a given energy state
is no longer uniquely defined. This can be shown by considering a 1-D
periodic structure, with unit cell of length L. We write the wavefunction
for the nth state with wavenumber k as

ψnk(x) = eikxunk(x) (3.7)

where eikx is a plane wave of wavenumber k, and unk(x) is a periodic
function, with unk(x) = unk(x + L). To show that the wavenumber k is
not uniquely defined, we can multiply eq. (3.7) by a plane wave with the
periodicity of the lattice, ei2πmx/L, and by its complex conjugate, e−i2πmx/L,
where m is an integer. This gives

ψnk(x) = eikxei2πmx/Le−i2πmx/Lunk(x)

= ei(k+2πm/L)x
(
e−i2πmx/Lunk(x)

)
(3.8)

where ei(k+2πm/L)x is a different plane wave to the original choice, and
e−i2πmx/Lunk(x) is still a periodic function, with period L. We refer to Gm =
2πm/L as a reciprocal lattice vector, and note that the wavenumber k is then
equivalent to the wavenumber k +Gm in the given 1-D periodic structure.
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Figure 3.2 (a) The ‘band structure’ for a free electron, showing how the energy E
varies quadratically with wavevector k. (b) In a 1-D lattice with period L, the
wavenumbers k and k+2πn/L are equivalent. In the repeated zone scheme,
we then include in the band structure plot all wavenumbers k + 2πn/L
associated with each energy state. (c) In the reduced zone scheme, we
choose the wavenumber for each energy state such that the magnitude of
k is minimised. This then implies −π/L < k ≤ π/L for the 1-D lattice with
period L.

If we now consider dividing 1-D free space into unit cells of length L,
to create an empty lattice, we have several choices of how to plot the free
electron band structure:

1 In the extended zone scheme, we try to associate a single, ‘correct’
wavenumber k with each state, as in fig. 3.2(a). While this is probably
the best approach to take in the empty lattice, it becomes very difficult
to assign a unique, ‘correct’ k to each state in a periodic crystal.
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2 In the repeated zone scheme, we include on the plot several (in principle
all) wavenumbers k associated with a given energy state. This gets
over the difficulty of choosing the ‘correct’ k for each state, but it can
be seen from fig. 3.2(b) that the repeated zone scheme contains a lot of
redundant information.

3 Finally, in the reduced zone scheme, we choose the wavenumber k for
each state such that themagnitude of the wavenumber k is minimised.
This scheme has the advantage of providing a simple rule for assign-
ing a preferred k value to each state, and gives a simple prescription
for plotting the band structure, as in fig. 3.2(c). We will always use
the reduced zone scheme for plotting band structure in this book. The
reduced zone is also widely referred to as the first Brillouin zone for the
given crystal structure.

3.3 The Kronig–Penney model

3.3.1 Full band structure

We can illustrate many of the basic properties of electrons in a periodic
solid by using the K–P model, where we calculate the band structure of
a periodic array of square wells, each of width a, separated by barriers of
height V0 and width b from each other (fig. 3.3).

From Bloch’s theorem, we know the wavefunctions must be of the form

ψnq(x) = eiqxunq(x) (3.9a)

where

unq(x) = unq(x + a + b) (3.9b)

andwherewe have chosen the letter q to symbolise the Blochwavenumber.
Wefirst solve Schrödinger’s equationwithin the firstwell to the right of the

Position, x

V0

a0

V(x)

–b

Figure 3.3 The K–P potential: a periodic array of square wells. We choose the wells
here to be of width a, each separated by a barrier of height V0 and width b
from its immediate neighbours.
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origin, where we choose to write the general solution for a state at energy
E in the form

ψ(x) = A eikx + B e−ikx 0 < x < a (3.10)

with k2 = 2mE/�
2, as before. The general solution to Schrödinger’s

equation in the first barrier to the left of the origin is given by

ψ(x) = C eκx + D e−κx − b < x < 0 (3.11)

where κ2 = 2m(V0 − E)/�
2, and we assume E < V0.

We now introduce four boundary conditions to determine the allowed
solutions of Schrödinger’s equation. The first two are easily chosen, requir-
ing that thewavefunctionψ and its derivative dψ/dx are continuous at the
well/barrier interface at x = 0:

ψ(0) : A + B = C + D (3.12a)

ψ ′(0) : ikA − ikB = κC − κD (3.12b)

The two remaining boundary conditions are derived using Bloch’s theo-
rem. We apply eq. (3.2b) at x = a, so that ψw(a) = ψb(−b)eiq(a+b) and
likewise for the derivatives ψ ′

w(a) = ψ ′
b(−b)eiq(a+b):

ψw(a) : A eika + Be−ika = (C e−κb + D eκb)eiq(a+b) (3.12c)

ψ ′
w(a) : ikA eika − ikB e−ika = (κC e−κb − κD eκb)eiq(a+b) (3.12d)

We can then derive the condition for allowed energy levels by solving the
4 × 4 determinant involving the four unknowns A, B, C, and D, as was
done with eq. (1.52) in Chapter 1. The energy levels associated with Bloch
wavenumber q are then found to be solutions of the equation

cos(q(a+b)) = cos(ka) cosh(κb)+ 1
2

(
κ

k
− k

κ

)
sin(ka) sinh(κb) (3.13)

We can deduce one particularly important result from this equation,
namely, that there will always be energy gaps between the allowed energy
bands in the K–P model. To see this, we first note that the left-hand side of
eq. (3.13), cos(q(a+b)), can only take values between−1 and 1. Ifwe choose
ka = nπ , then the right-hand side reduces to ± cosh(κb), as sin(nπ) = 0
and cos(nπ) = ±1. The magnitude of cosh(κb) is always greater than 1 for
states which are bound within the well. Hence, there can be no solutions
to eq. (3.13) for k = nπ/a, implying no solutions are possible with energy
E = (�2/2m)(nπ/a)2, and likewise for neighbouring values of the energy.
This is illustrated in fig. 3.4(a), where we plot an example of the variation
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Figure 3.4 (a) The horizontal dashed lines at +1 and at −1 show the upper and lower
limits of the left-hand side of eq. (3.13). The smooth curve shows how the
right-hand side of eq. (3.13), fR(E), varies with energy E for the case where
a = 5 Å, b = 1.5 Å and V0 = 10 eV. It can be seen that there are only
certain bands of energy where there can be allowed solutions of eq. (3.13)
(around 1, 4, and 8 eV in this case), separated from each other by energy
gaps where there are no allowed solutions. (b) shows the band structure
in the K–P model, with energy plotted against wavenumber q for the case
considered in (a) (a = 5 Å, b = 1.5 Å and V0 = 10 eV). It can be seen that
the band edges occur at q = 0 or π/(a + b), that is, where the left-hand
side of eq. (3.13) equals ±1.

with energy, E, of the right-hand side of eq. (3.14), fR(E), superimposed
on a graph of the range of allowed values of the left-hand side, showing
clearly the existence of allowed and forbidden energy regions.

Figure3.4(b) shows the calculatedbandstructure for theK–Pmodel, with
E plotted against q in the first Brillouin zone (for which |q| ≤ π/(a + b)),
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for the case with well width a = 5Å, barrier width, b = 1.5Å, and barrier
height V0 = 10 eV. The energies vary continuously with q within each
band, and the band edges always occur at high symmetry points: either
at the centre of the Brillouin zone (q = 0), or else at the Brillouin zone
edge (q = π/(a + b)). Although derived using the K–P model, this result
is general for 1-D periodic structures, where the band extrema and band
gaps are always associated with these two high symmetry points. We will
see below that in two and three dimensions band extremamay in addition
occur also at lower symmetry points, due to bandmixing and anti-crossing
effects (see fig. 3.14).

Wewould hopewith eq. (3.13) that as κb → ∞, the allowed energy levels
should approach those for an isolated finite quantumwell. Equation (3.13)
can be rewritten as

cos(ka) + 1
2

(
κ

k
− k

κ

)
sin(ka) tanh(κb) = cos(q(a + b))

cosh(κb)
(3.14)

As κb → ∞, tanh(κb) → 1, while cosh(κb) → ∞, so that eq. (3.14) then
reduces to

cos(ka) + 1
2

(
κ

k
− k

κ

)
sin(ka) = 0 (3.15)

But we saw in Chapter 1 (eq. (1.54)) that this is just the condition
to determine the energy levels for an isolated well. Hence, as for the
double quantum well in Chapter 2, we expect that we should be able
to use the TB (linear combination of atomic orbitals) method to deter-
mine the energy levels in crystalline solids. We also expect that only
the higher energy (valence) levels will contribute to the bonding, while
the deeper (core) levels will be largely unperturbed by the neighbouring
atoms.

3.3.2 High symmetry energy states

We saw in Chapter 1 howwe can use symmetry arguments to simplify the
calculation of the confined state energies in an isolated square well, with
the energy levels for even states given by eq. (1.50):

k tan(ka/2) = κ (3.16a)

and for odd states by eq. (1.51)

k cot(ka/2) = −κ (3.16b)

We can also use symmetry in the K–P model to simplify the calcula-
tion of the confined state energies for the Bloch wavevectors q = 0 and
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Figure 3.5 The wavefunctions of the zone centre (q = 0) states in the K–P model are
either (a) even about the centre of each well and about the centre of each
barrier or (b) odd about the centre of each well and barrier. At the zone
edge (q = π/(a + b)) the wavefunctions can be either (c) even about the
well centre and odd about the barrier centre or (d) odd about the well
centre and even about the barrier centre.

q = π/(a + b). It can be shown that the states at q = 0 are either symmetric
about the centre of the well and the centre of the barrier (as in fig. 3.5(a))
or else anti-symmetric about the centre of the well within one unit cell,
while having the same value at x and at x+ (a+b) (fig. 3.5(b)). The allowed
symmetries of the states at q = π/(a + b) are illustrated in fig. 3.5(c) and
(d). Because of the symmetry, we canwrite the wavefunctionψw(x)within
the well region in fig. 3.5(a) as

ψw(x) = A cos(k(x − a/2)) 0 < x < a (3.17a)

where ψw(x) is chosen to be symmetric about x = a/2. Likewise the wave-
function ψb(x) within the barrier to the left of the origin can be chosen to
be symmetric about x = −b/2:

ψb(x) = C cosh(κ(x + b/2)) − b < x < 0 (3.17b)
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If we then require the wavefunction and its derivative to be continuous at
the origin, we find

ψ(0) : A cos(ka/2) = C cosh(κb/2) (3.18a)

ψ ′(0) : kA sin(ka/2) = κC sinh(κb/2) (3.18b)

Dividing (3.18b) by (3.18a) we obtain for the states in fig. 3.5(a) that

k tan(ka/2) = κ tanh(κb/2) (3.19a)

A similar analysis gives, respectively, for the states in fig. 3.5(b)–(d)

k cot(ka/2) = −κ coth(κb/2) (3.19b)

k tan(ka/2) = κ coth(κb/2) (3.19c)

k cot(ka/2) = −κ tanh(κb/2) (3.19d)

The results of eq. (3.19) are particularly elegant. They illustrate clearly
how the band edge energies in the solid evolve both from the isolated well
values (b = ∞) and at the opposite extreme from the ‘empty lattice’ results
(b = 0).

3.4 The tight-binding method

We outline in this section how the TB method can be used to success-
fully calculate the band structure of the K–P model from ‘first principles’.
The calculation provides an excellent description of the energy spectrum
for bound states up to relatively small interwell separations, b, and also
illustrates several general features of the TB method. We will see how the
magnitude of the Hamiltonian matrix elements linking the atomic levels
in neighbouring quantum wells decreases both with increasing well sepa-
ration, and also as a state becomesmore tightly boundwithin a givenwell.
We shall also see that the TBmethodworks best for the lowest lying energy
levels, becoming less acccurate for higher-lying excited states. This again
is a general feature of the method.

We consider the periodic array of square wells, illustrated in fig. (3.3),
with the nth well defined in the region nL < x < nL + a, where L = a + b.
We first solve Schrödinger’s equation to find the energy levels Em and
normalised wavefunctions, φm(x) for an isolated quantum well defined
between 0 < x < a. We presume that the states in the mth energy band of
the K–Pmodel can be formed using a linear combination of themth energy
states in each of the wells. In order to satisfy Bloch’s theorem (eq. 3.2), the
wavefunction, ψmq(x), for the state in the mth band with wavenumber q is
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then given by

ψmq(x) =
∞∑

n=−∞
einqLφm(x − nL) (3.20)

where φm(x−nL) is the ‘atomic orbital’ associated with themth state in the
nth quantum well. Schrödinger’s equation is then given by

Hψmq(x) = Emqψmq(x) (3.21)

We evaluate Emq using a similar technique to that used in Section 2.3 for the
H2 molecule. We multiply both sides of eq. (3.21) from the left-hand side
by φ∗

m(x), the mth state in the zeroth well, and then integrate with respect
to x, to find

∞∑
n=−∞

einqL
∫ ∞

−∞
dx φ∗

m(x)Hφm(x − nL)

= Emq

∞∑
n=−∞

einqL
∫ ∞

−∞
dx φ∗

m(x)φm(x − nL) (3.22a)

To make this and subsequent equations more manageable, we introduce
a compact notation at this point, rewriting eq. (3.22a) using Dirac notation
(see Appendix D) as

∞∑
n=−∞

einqL〈φm0|H|φmn〉 = Emq

∞∑
n=−∞

einqL〈φm0|φmn〉 (3.22b)

where |φmn〉 = φm(x−nL). Because each of the basis functions |φmn〉 decays
exponentially outside its own well, the overlap integrals 〈φm0|H|φmn〉 and
〈φm0|φmn〉 decrease very rapidly with increasing n, so we need only retain
the on-site terms (n = 0), and the two nearest neighbour terms (n = 1
and −1) in eq. (3.22) (see fig. 3.6). We can also show from symmetry that
〈φm0|H|φm1〉 = 〈φm0|H|φm,−1〉, and that 〈φm0|φm1〉 = 〈φm0|φm,−1〉. As eiqL +
e−iqL = 2 cos(qL), eq. (3.22) then reduces to

〈φm0|H|φm0〉 + 2〈φm0|H|φm1〉 cos(qL) = Emq{1 + 2Sm cos(qL)} (3.23)

where we have defined Sm = 〈φm0|φm1〉 as the overlap integral between
the mth basis functions centred on well zero and on well 1.

We can in principle calculate exactly the overlap interaction between
neighbouring sites, 〈φm0|H|φm1〉 on the left-hand side of eq. (3.23). We
introduce the interaction parameter, Vm, as in Chapter 2, such that

〈φm0|H|φm1〉 =
∫

d3r φ∗
m0(x)Hφm1(x) = Vm (3.24)



Band structure of solids 53

�m(i)

H00

∆H0

V0

–V0

Position, x

(a)

(b)

(c)

Figure 3.6 (a) In the TB method, we write each wavefunction as a linear combination of
isolated quantum well wavefunctions. Because these basis functions decay
exponentially with distance we generally need only consider the on-site and
nearest neighbour interactions. The thick solid line shows the basis function
associated with the 0th site. For the TB calculations, we can express the
total K–P potential of fig. 3.3 as the sum of (b) the potential H00 due to an
isolated quantum well, plus (c) �H0, the difference in potential between
the full K–P potential and the isolated well potential, H00.

where Vm is a measure of the strength of the interaction between atomic
orbitals centred on neighbouring wells, with the magnitude ofVm increas-
ing exponentially with decreasing separation between the wells.

〈φm0|H|φm0〉 is evaluated in a similar manner to that used in Chapter 2.
We first writeH = H0p +�Hp, whereH0p is the isolated square well poten-
tial associated with the pth well (p = 0 or 1), and �Hp is the difference in
potential between the full K–P model and the isolated pth well (fig. 3.6(c)).
Then

Hφm(x − pL) = H0pφm(x − pL) + �H0pφm(x − pL)

= Emφm(x − pL) + �Hpφm(x − pL) (3.25)

Substituting eq. (3.25) into 〈φm0|H|φm0〉 we find

〈φm0|H|φm0〉 = Em〈φm0|φm0〉 + 〈φm0|�H0|φm0〉
= Em + 〈φm0|�H0|φm0〉
= Em + �Em (3.26)

where�Em = 〈φm0|�H0|φm0〉 is often defined as the self-energy shift of the
given level, and reflects the change in energy of the orbital φm(x) on going
from an isolated well to the crystalline potential (fig. 3.6). Substituting
eqs (3.24) and (3.26) back in eq. (3.23) we then calculate Emq, the energy of
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Figure 3.7 Comparison of the exact band structure for the K–P potential (solid lines)
and the band structure calculated using the TB method (dashed lines).
(a) Widely separated wells (a = 5 Å, V0 = 5 eV, b = 3 Å), where agree-
ment is excellent. Note that the TB method is used here to fit the two
lowest bands only, as the next band cannot be formed as a linear combina-
tion of states confined in an isolated quantum well. (b) Moderate barrier
widths (b = 1.5 Å), where the agreement is still very good, although it can
be seen that the two sets of results are beginning to diverge for the second
band.

the state with wavevector q in the mth band as

Emq = Em + �Em + 2Vm cos(qL)

1 + 2Sm cos(qL)
(3.27a)

= Em + 2Vm cos(qL) (3.27b)

where we assume that the overlap term Sm and the self-energy shift �Em
are sufficiently small that they can be neglected.

Figure 3.7 compares the exact K–P and the TB band structure calcu-
lated using eq. (3.27a) for two particular cases, first, where the wells are
widely separated (large b) and second, when the wells have been brought
closer together (moderate b). It is clear that the TB band structure (dashed
lines) is in excellent agreement with the exact solution (solid lines) for the
large b case. The agreement still remains very good in the second case, for
moderate b, particularly for the lowest band.

The agreement in fig. 3.7(b) could be further improved by ’parameteris-
ing’ the model, that is, choosing TB interaction parameters Vm and orbital
self-energy shifts,�Em such that the TB band structure is thenfitted to be in
goodagreementwith the exact bands. This iswhat generally occurs inprac-
tical applications in solid state physics, where neither the basis functions
nor interaction parameters are calculated exactly but are instead found



Band structure of solids 55

by fitting to experimentally determined band structures. This approach is
justified because the trends in the fitted parameters generally do show the
expected behaviour. The TB method has been widely used to successfully
analyse trends in the band structure and electronic properties of a broad
range of solids [see for instance the texts by Harrison and by Pettifor].

We have demonstrated the principle of the TBmethod here by consider-
ing an example where a given orbital on a particular site had a significant
interaction with only one orbital on each neighbouring site. More orbitals
must generally be included for practical applications: we saw for instance
in Chapter 2 how at least one s and three p orbitals need to be included per
site to describe the electronic properties of tetrahedrally bonded semicon-
ductors. The extension of the TBmethod to include several orbitals per site
is in principle straightforward. Further details can be found, for instance,
in Harrison.

3.5 The nearly free electron method

We can also view an infinite set of quantum wells from the opposite
extreme. Figure 3.8 shows how the potential approaches the free space
potential, V = 0 everywhere, as the interwell separation b → 0. We
might expect for such narrow barriers that we could treat the energy
states using the ‘nearly free electron’ (NFE) model, where we build up the
wavefunctions using linear combinations of free electron energy states.

We consider the infinite set of squarewells shown in fig. 3.8, where again
the period L = a + b, but b is now small. The solid lines in fig. 3.9 show
the free space band structure for the ‘empty lattice’ with period L. We can
associate an integer n with each free electron state at wavevector q, with
the energy of the nth state given by

Enq = �
2

2m

(
q + 2πn

L

)2

(3.28)

V(x)

Position, x

V0

–b/2 b/2 a + b/2

Figure 3.8 The K–P potential for a very narrow barrier width, b. As b → 0, the K–P
potential approaches the free space potential (V = 0 everywhere).
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Figure 3.9 The solid curves show the free-electron band structure for the ‘empty lat-
tice’ with period L. In the NFE model, we assume that the wavefunctions
of, for example, the two lowest states at a value of q near π/L can be
approximated by a linear combination of the two free electron wavefunc-
tions (• and �) at that q-value. The dotted lines illustrate the resulting
band structure in the NFE model.

and the wavefunction by

ψ0
nq = 1√

L
ei(q+(2πn/L))x = 1√

L
eiqxei2πnx/L (3.29)

wherewe have chosen to normalise thewavefunctionwithin each unit cell,
and we have also deliberately separated each wavefunction into the plane
wave exp(iqx) times a cell-periodic function, φn(x) = L−1/2 exp(i2πnx/L).
The set of periodic functions φn(x) form a complete set, as defined in
Section1.7, so that anyperiodic function f (x)withperiodL canbeexpanded
in terms of the complete set φn(x):

f (x) =
∞∑

n=−∞
anφn(x) (3.30)

Returning to the periodic potential, V(x), of fig. 3.8, where

V(x) = V0
−b
2

< x <
b
2

V(x) = 0
b
2

< x < a + b
2

(3.31)

the ‘NFE’method assumes that the exact wavefunctionsψnq for this poten-
tial can be written efficiently as linear combinations of the free electron
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wavefunctions

ψnq(x) = 1√
L
eiqx

∞∑
m=−∞

amnqei2πmx/L (3.32)

In calling this an ‘efficient’ expansion method, we mean that most of the
coefficients amnq will be of order zero, and only free electron states close in
energy to the given state will contribute significantly to its wavefunction.

We illustrate this using the two lowest states at a wavevector q close to
the Brillouin zone edge at π/L. We presume that the NFE wavefunctions
for these two states can be made up as a linear combination of the two free
electron wavefunctions, with wavevectors q and q − 2π/L (labelled by •
and �, respectively in fig. 3.9):

ψq(x) = α/L1/2 eiqx + β/L1/2 ei(q−2π/L)x (3.33)

We wish to find the values of the coefficients α and β to satisfy
Schrödinger’s equation

Hψq(x) = H(α eiqx + β ei(q−2π/L)x)/L1/2

= E(α eiqx + β ei(q−2π/L)x)/L1/2 (3.34)

We can write

H = H0 + V(x) (3.35)

where H0 is the free-space Hamiltonian and V(x) the change in the free-
space potential due to the barriers, given by eq. (3.31). We can solve the
Hamiltonian equation (3.34) using exactly the same approach as was used
for the LiH molecule in Section 2.4. If we multiply eq. (3.34) from the left
by e−iqx/L1/2 and integrate over a unit cell between −b/2 and a + b/2, we
get the first of two linear equations which must be solved:

1
L

∫ a+b/2

−b/2
dx e−iqx(H0 + V(x))(α eiqx + β ei(q−2π/L)x)

= E
L

∫ a+b/2

−b/2
dx e−iqx(α eiqx + β ei(q−2π/L)x) (3.36)

Using the orthonormality properties of the two wavefunctions, this
equation reduces to

α

(
�
2q2

2m
+ b

L
V0

)
+ β

V0

π
sin

(
πb
L

)
= αE (3.37a)
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while pre-multiplying by e−i(q−2π/L)x gives as the second linear equation

α
V0

π
sin

(
πb
L

)
+ β

[
�
2(q − 2π/L)2

2m
+ b

L
V0

]
= βE (3.37b)

The two lowest energy levels at wavevector q close to π/L are then
calculated by solving eq. (3.37), which gives

E = b
L
V0 + �

2

2m

[(π

L

)2 +
(
q − π

L

)2]±
√

�4π2

m2L2

(π

L
− q

)2 + V2
0

π2 sin2
πb
L

(3.38)

as illustrated by the dotted lines in fig. 3.9. Hence, the introduction of
the periodic potential V(x) of eq. (3.31) introduces an energy gap at the
Brillouin zone boundary, at q = π/L, with the energy gap, Eg, between
the two lowest lying states calculated by setting q = π/L in eq. (3.38), in
which case

Eg = 2V0

π
sin

(
πb
L

)
(3.39a)

It can be shown that the nth gap at q = ±π/L is given by

Eg = 2V0

(2n − 1)π
sin

(
(2n − 1)πb

L

)
(3.39b)

while the nth gap at q = 0 is given by

Eg = V0

nπ sin(2nπb/L)
(3.39c)

Figure 3.10 compares the exact band structure and the NFE band struc-
ture for two particular cases, first for a very thin barrier (b close to zero)
and second when the wells have been moved further apart to the same
intermediate value of b used in fig. 3.7(b) for the TB method. The NFE
band structure (dotted lines)was calculated by assuming that only two free
electron states contribute to the NFEwavefunction for each state. The NFE
results are in excellent agreement with the exact solution (solid lines) for
the small b case and, interestingly, remain in surprisingly good agreement,
at least for the higher levels, in the second, intermediate b case.

We thus have the apparent paradox that at intermediatewell separations
we can get a gooddescription of the true band structure either by assuming
that thewavefunctions areNFE-like, or by presuming that they can be built
up using linear combinations of tightly bound atomic orbitals. The fact that
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Figure 3.10 Comparison of the exact band structure for the K–P potential (solid
lines) and the band structure calculated using the simplest form of the
NFE model (dotted lines). (a) Very thin barrier (a = 5 Å, V0 = 5 eV,
b = 0.5 Å), where agreement is excellent, and (b) for moderate barrier
width (b = 1.5 Å), where the agreement is poor for the lowest band,
but still good for the higher bands. In each case, states with |q| < π/2L
were calculated using zone centre free-electron states, while states with
π/2L < |q| < π/L were calculated using zone edge free-electron states.

bothmodelswork sowell at the same time is a testament to the effectiveness
of the variational method. Figure 3.11 compares the exact wavefunction
(solid line) for the lowest state at q = π/L in themoderate barrier case with
the wavefunctions used in the NFE and TB methods (dotted and dashed
lines respectively). Both trial functions showgoodagreementwith theexact
function, andwe have seen in Chapter 1 that the accuracy of the calculated
energy levels is generally better than that of the assumed wavefunctions
used in the variational method.

Figure 3.12 examines further the range of validity of the NFE and TB
methods. The solid lines indicate the calculated variation of the band edge
energies as a function of barrier width b for the case of a well of width
a = 5Å and depth V0 = 5 eV. The dashed lines show the calculated ener-
gies using the TB model, where the band edge energies are assumed from
eq. (3.27) to vary as

E = Em + �Em ± 2Vm

1 ± 2Sm
(3.27)

while the dotted lines show the calculated NFE results, using eq. (3.39).
It is quite remarkable to realise that the accuracy of both models could
be further improved by including interactions between more basis states
in the energy level calculations, so that there can clearly be a significant
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Figure 3.11 Comparison of the lowest K–P wavefunction at q = π/L (solid line)
with the wavefunctions used (a) in the TB (dashed) and (b) NFE (dotted)
models, for the case of a moderate barrier width (b = 1.5 Å, a = 5 Å,
V0 = 5 eV), for which case both the TB and NFE methods give good
agreement with the exact result.

2.0

1.5

1.0

En
er

gy
 (

eV
)

0.5

0.0
0.0 1.0 2.0

Well separation (Å)
3.0 4.0 5.0

Full
TB
NFE

Figure 3.12 Calculated variation of the band edge energies as a function of barrier
width, b, for the K–P potential with well width a = 5 Å and barrier height
V0 = 5 eV. The solid lines show the exact results while the dashed and
dotted lines show the energies calculated using the TB and NFE methods,
respectively.
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range of well separations where the K–P model can be solved using either
the TB or NFE model. The same is also true of the electronic properties of
many materials. As a general rule, many simple metals such as sodium
or aluminium are best described by the NFE model. The properties of
insulators such as silica (SiO2) and small molecules are often most easily
understood using the TB method. There is also, however, a wide range of
materials which can be described equally effectively using the NFE or TB
method, as we illustrate below for the semiconductor, germanium.

3.6 Band structure of tetrahedral semiconductors

We saw in Chapter 2 how the crystal structure of silicon or germanium
can be described in terms of a face-centred-cubic (FCC) lattice, with two
atoms in each unit cell of the lattice. The unit cell is the basic building
block of the lattice: we can construct an FCC lattice by fitting together a
set of blocks shaped as in fig. 3.13(a). For silicon or germanium, each of
these blocks contains two atoms, one located say at the origin and the other
at (a/4, a/4, a/4), where a is the length of the side of the cube in the FCC
lattice. It can be shown that the reciprocal lattice of an FCC lattice is a body-
centred-cubic (BCC) lattice, with the first Brillouin zone for the reciprocal
lattice then given by a truncated octahedron (fig. 3.13(b)). Because the
FCC lattice is widespread and of such importance, several high symmetry
points and lines in its first Brillouin zone have received specific names.
The Brillouin zone centre, where the wavevector k = 0, is referred to as
the � point, while the zone edge along the [001] and related directions
(at k = (0, 0,π/2a)) is the X point, with the zone edge along [111] (at k =
(π/4a, π/4a,π/4a)) called the L point. The line of k points joining � and
X are referred to as the � direction, and the line from � to L as the �

direction.
We cannot plot the band structure for every wavevector k in the first

Brillouin zone of a 3-D solid, as it is impossible to project every point in
three dimensions onto a 2-D plot. What do we do instead? Usually we plot
the band structure along a number of high symmetry lines, such as the �

direction from � to X (associated with waves propagating along the cubic
axes directions) or the�direction from� to L (associatedwithwaves prop-
agating along body-diagonal directions such as along the (1, 1, 1) direction
in the cube).

The band structure of germanium is illustrated in fig. 3.14(a) and (b),
calculated in (a) using the TB method, with four atomic orbitals per
site, and in (b) using a NFE-type calculation. Both band structures were
obtained empirically, choosing interaction parameters to enable a good fit
to experimental data. There are eight valence electrons in each unit cell
of germanium. Each band in fig. 3.14 can take two electrons from each
unit cell (one with ‘up’ spin and one with ‘down’ spin). The four lowest
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Figure 3.13 (a) The unit cell (basic building block) of a FCC lattice: the FCC lattice
can be constructed by filling all space with a set of blocks identical to that
shown. (b) The first Brillouin zone for the reciprocal lattice of an FCC
lattice. Several high symmetry points in this Brillouin zone have been
given specific names, some of which are indicated in the figure. The shape
shown is the unit cell for a BCC lattice, because the reciprocal lattice of
an FCC lattice is a BCC lattice. (From H. P. Myers (1997) Introductory Solid
State Physics, 2nd edn.)

bands then form the filled valence (bonding) bands, and are separated
by the energy gap, Eg, from the empty conduction bands. It can be seen
that the two calculations are in very good agreement with each other for
the valence bands, confirming the validity of either approach, although
clearly the agreement becomes less good at higher energy, in the conduc-
tion bands. This problem is related to the use of only a small number of
basis states in the TBmodel, and can be overcome, at least in part, by using
more basis states and including extra interactions in the Hamiltonian.

Figure 3.14(c) gives the free-electron band structure for an empty germa-
nium lattice. Each free-electron state has been shifted into the first Brillouin
zone, as was done earlier in fig. 3.2(c). It is clear that there are many
similarities between the true bands of fig. 3.14(b) and the free-electron
bands, further justifying and motivating the use of NFE-type models.
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Figure 3.14 The energy band structure of germanium, calculated (a) using the TB method,
and (b) using a NFE-type method. It can be seen that there is very good agree-
ment between the four lowest bands in the two cases (at energy E < 0 eV).
Part (c) shows for comparison the free-electron band structure for an empty
germanium lattice. (Reproduced from Harrison (1989) with permission.)

3.7 The use of ‘pseudo’ potentials

The truepotential in any solidvaries very rapidlynear eachatomicnucleus,
becoming strongly attractive due to the Coulomb interaction between the
nucleus and electrons. Because the electron total energymust be conserved
at every point, the kinetic energy then becomes very large near the nuclei,
implying rapid oscillation of the valence wavefunctions, as illustrated in
fig. 3.15. It is, therefore, very surprising that the band structure of any
solid could ever be calculated using a small number of low energy plane
waves – how can such plane waves reproduce the true wavefunction near
a nucleus?

The answer is they cannot. We could, however, have provided an alter-
native argument as to why the wavefunctions oscillate so rapidly near
the atomic nuclei. Most atoms have tightly bound core energy levels, εci,
with their associated atomic orbital wavefunctions, φci(r), as discussed in
Appendix B.We know that for any potential the solutions of Schrödinger’s
equationmust be orthogonal to each other. The valence states, which dom-
inate the solid’s electronic properties, must then be orthogonal to the core
states. We can therefore construct the valence states from orthogonalised
plane waves (the OPWmethod), given by

φk
v(r) = eik·r +

∑
i

aikφci(r) (3.40)
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Figure 3.15 The valence wavefunctions in a solid are expected to oscillate rapidly
near each nucleus, because of the strong Coulomb interaction between
the nucleus and the electron. How then can the valence wavefunction be
approximated by a small number of plane waves when we use the NFE
model?

where the coefficients aik are chosen to ensure the valence basis functions
φk
v (r) are orthogonal to the core states within each unit cell, that is,∫

d3r φ∗
ci(r)φ

k
v(r) = 0 (3.41)

This can be achieved by choosing the aik values such that

aik = −
∫

d3r φ∗
ci(r)e

ik·r (3.42)

The orthogonalised plane waves of eq. (3.40) are, therefore, constructed
to have the necessary rapid oscillations in the core regions while having a
slow plane-wave-like variation in the remainder of the structure. It is then
possible to calculate the band structure using a relatively small number of
OPW basis functions.

We do this by using linear combinations of orthogonalised plane waves
to solve the full crystal Hamiltonian for the valence states

H
∑
m

αmnφ
km
v (r) = Ekn

∑
m

αmnφ
km
v (r) (3.43)

where theφkm
v (r) are a finite set ofOPWsand theHamiltonianH is given by

H = − �
2

2m
∇2 + V(r) (3.44)

where V(r) is the full crystal potential.
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It is not immediately obvious why the solutions of eq. (3.43) should
be NFE-like, requiring only a small number of OPW states to determine
the valence energy levels. When we expand the Schrödinger equation,
by substituting eq. (3.40) into (3.43), we find two different types of large
terms in the expansion, the first type associated with the full potential
acting on the plane wave part of the OPWs, V(r)eik·r , and the second type
associated with the full Hamiltonian acting on the core state part of the
OPWs, H

∑
aikφci(r) = ∑

εciaikφci(r).
Fortunately, the effect of the two types of terms largely cancel each

other. If we consider a nucleus centred at the origin (r = 0), then the
first term, V(r)eik·r , is large and negative near r = 0, while the second
term,

∑
εciaikφci(r) can be shown to be large and positive. We can re-write

eq. (3.43) to take advantage of this cancellation, effectively replacing the
true potential V(r) by a much weaker pseudopotential Vps(r) and the true
basis states φkm

v (r) by plane-wave pseudobasis states, eik(m)x. This gives
a new, so-called pseudoHamiltonian, whose eigenvalues are identical to
the valence eigenvalues of the true Hamiltonian, and with the pseudo-
Hamiltonian basis states given by linear combinations of a small number
of plane wave pseudofunctions.

To illustrate how the two types of term cancel, leaving a weaker
pseudopotential with a smooth pseudowavefunction, we take an exam-
ple based on the K–P model (Weaire and Kermode 1985). We consider a
series of square wells and barriers of equal width (a = b = 6Å), with
the zero of energy at the bottom of the well and the barrier of height
V0 = 2.0 eV (fig. 3.16a). The solid lines in fig. 3.16(b)–(d) show the exact
wavefunctions for the three lowest zone centre (q = 0) states, which have
energies E1 = 0.47 eV, E2 = 1.82 eV and E3 = 2.50 eV.

The dashed line in fig. 3.16(d) shows that the exact wavefunction for the
third state can be well approximated by a single plane wave with k = 0
(fig. 3.16e) orthogonalised to the lowest energy level:

φOPW
3 (x) = 1√

2a
− ψ1(x)

∫ a

−a
dx′ 1√

2a
ψ1(x′)

= 1/(2a)
1
2 − α1ψ1(x) (3.45)

We see from fig. 3.16(d) that φOPW
3 (x) is then a good variational estimate

of the true wavefunction. We can, therefore, substitute the orthogonalised
state (eq. (3.45)) into the exact Schrödinger equation,Hψ = Eψ , to estimate
the energy, E3, of the third state. We show below how HφOPW

3 = E3φ
OPW
3

can be re-arranged to give a new equation with the same eigenvalue, E3,
but with a weaker pseudopotential and smoother wavefunction. To do so,
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Figure 3.16 (a) The K–P potential with a = b = 6 Å, and barrier height V0 = 2.0 eV.
The solid lines in (b)–(d) show the exact wavefunctions for the three
lowest zone centre states in this potential. The exact wavefunction ψ3(x)
for the third state (solid line in (d)) is well approximated by the dashed
line φOPW

3 (x) in (d), formed from a single plane wave (with wavevector
k = 0, (e)) orthogonalised to the lowest state, as described in the text.

we first expand the left-hand side,HφOPW
3 (x), as the sum of several terms:

HφOPW
3 (x) = H

1√
2a

− Hα1ψ1(x)

= − �
2

2m
d2

dx2
1√
2a

+ V(x) − 1√
2a

− α1E1ψ1(x) (3.46)

while the right-hand side is given by

EφOPW
3 (x) = E

(
1√
2a

− α1ψ1(x)
)

(3.47)

We can equate eqs (3.46) and (3.47), the two sides of the true Schrödinger
equation, and then re-arrange terms to give a modified second order wave
equation, where we set φPS

3 (x) = 1/
√
2a to give[

− �
2

2m
d2

dx2
+ V(x) + α1(E3 − E1)

√
2aψ1(x)

]
φPS
3 (x) = E3φ

PS
3 (x)
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Figure 3.17 Comparison of (a) the original K–P potential and (b) of the (weaker)
pseudopotential introduced through eq. (3.49) to determine the energy
of the third state in the K–P potential of fig. 3.16.

that is,

Hpsφ
ps
3 (x) = E3φ

ps
3 (x) (3.48)

where the pseudopotential, Vps(x) is made up of two large terms of
opposite sign, which approximately cancel,

Vps(x) = V(x) + α1(E3 − E1)
√
2aψ1(x) (3.49)

as illustrated in fig. 3.17. We can then use the variational method, with
φ
ps
3 (x) = (2a)−1/2 as trial function, to estimate the energy of the third

zone centre state as 2.52 eV, the average value of the ‘smooth’ potential in
fig. 3.17. Figure 3.18 illustrates the general applicability of the pseudopo-
tential method, showing that the trial function, φ

ps
3 (x), provides a very

good estimate of E3 over a wide range of barrier heights.
It must be admitted that the potential in fig. 3.17 is not significantly

smoother than that of the original K–P potential. This however is because
the original K–P potential was reasonably smooth anyway. Figure 3.16(e)
shows however that we have achieved the smoothest possible pseudo-
wavefunction, φPS

3 (x). When the pseudopotential method is applied to
atoms in solids, it does genuinely smooth the potential: we can replace
the 1/r singularity at each nucleus by a slowly varying, or even constant
potential.

Hundreds if not thousands of man-years of research have already gone
into the development and refinement of the pseudopotential method, so
that themost sophisticated, ab initio, pseudopotentials can now predict the
static, ground-state, properties of very complex structures, and are also
used to investigate dynamic behaviour such as atomic diffusion in solids,
crack propagation at grain boundaries and phase transitions.
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Figure 3.18 Energy of the third state in the K–P potential where a = b = 6 Å,
calculated as a function of the barrier height V0. Solid line: exact energy;
dashed line: energy estimated using the pseudopotential method.

We have only scratched the surface here in describing some of the differ-
ent general methods used to determine the electronic properties of solids.
We develop some of these ideas further in the next chapter, and then use
them to investigate someof the key features of semiconductors, magnetism
and superconductivity in the remainder of the book.
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Problems

3.1 Consider a linear chain of atoms, distance L apart, for which the
band structure is given by

Esq = Es + 2V cos(qL) (3.50)

where Es is the self-energy of the single orbital on an isolated atom,
and V is the nearest neighbour interaction in the chain. Suppose
that each orbital can accommodate two electrons. Calculate from
eq. (3.50) the average band-structure energy gained per atom if there
are y electrons per atom on the linear chain.
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3.2 The linear chain of atoms in problem 3.1 undergoes a distortion so
that the even-numbered atoms move to the right, doubling the unit
cell size to 2L, and leading to an interaction of strength V + �V
between the 2nth and (2n + 1)th site, and an interaction of strength
V − �V between the 2nth and (2n − 1)th site. By writing the wave-
function within a given unit cell as a linear combination of the two
orbitals in that cell, and then applying Bloch’s theorem, show that
the band structure in the distorted lattice is given by

Esq = Es ± 2
√
V2 cos2(qL) + (�V)2 sin2(qL) (3.51)

and hence show that the distortion can be regarded as opening an
energy gap of magnitude 4(�V) at q = π/2L in the band structure of
problem 3.1. Estimate the average band-structure energy gained per
atom when this distortion, referred to as a Peierls distortion, occurs
in a linear chain with one electron per atom on the chain.

3.3 Show for the K–P potential of eq. (3.31) that the magnitude of the
nth energy gap at q = ±π/L is given in the NFE model by

Eg = 2V0

(2n − 1)π
sin

(
(2n − 1)πb

L

)
(3.39b)

while the nth gap at q = 0 is given by

Eg = V0

nπ
sin(2nπb/L) (3.39c)

3.4 Show for the K–P potential of eq. (3.31) that the NFE wavefunction,
ψn,l(x), of the lower state at the nth gap at q = ±π/L is given by

ψn,l =
√
2
L

sin
(

(2n + 1)πx
L

)

while that of the upper state, ψn,u(x), is given by

ψn,u =
√
2
L

cos
(

(2n + 1)πx
L

)

Hence justify why the NFEmethod provides a better estimate of the
energy, to larger values of b, for the lower state than for the upper
state.

3.5 We can improve the accuracy of the NFEmethod by including more
basis states in the NFE calculation of the K–P band structure. We
see from the previous question that the four lowest basis states at
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Figure 3.19 Calculated variation of the two lowest band edge energies at q = π/L for
the K–P potential with well width a = 5 Å and barrier height V0 = 5 eV.
The solid lines show the exact results. The dotted lines show the energies
calculated using the simplest form of the NFE method (eq. (3.38)). The
dashed lines include extra basis states in the NFE method, as described
in problem 3.5.

q = ±π/L can be chosen as α sin(πx/L), α cos(πx/L), α sin(3πx/L)

and α cos(3πx/L), where α = (2/L)1/2. By considering separately the
basis functions which are even and odd about the origin, show that
when we include the extra basis states, the two lowest energy states
at q = π/L are given by

E = 5h2

8mL2
+ bV0

L
∓ V0

2π

(
sin

πb
L

+ 1
3
sin

3πb
L

)

−
√[

h2

mL2
∓ V0

2π

(
1
3
sin

3πb
L

− sin
πb
L

)]2
+ V2

0
π2

(
sin

πb
L

∓ 1
2
sin

2πb
L

)2

Figure 3.19 shows how the inclusion of the extra basis states allows
the NFE method to work to considerably larger values of b.

3.6 Consider the complex wave of amplitude

ψ(x, y, t) = exp(i(kxx + kyy − ωt))

where kx = k cos θ and ky = k sin θ . Calculate the wavelength λ, the
phase velocity v and the direction of motion of this wave. Consider
the square region

0 < x < L
0 < y < L



Band structure of solids 71

and let kx = ky = 8π/L. Draw out (i) for t = 0 and (ii) for t = π/ω,
the lines along which ψ(x, y, t) = 1. Calculate the repeat distance of
the wave along the x-direction, the y-direction, and its direction of
motion.

3.7 Show that a1 = (0, a/2, a/2), a2 = (a/2, 0, a/2) and a3 = (a/2, a/2, 0)
are a set of primitive (i.e. basis) vectors for the FCC lattice, mean-
ing any lattice site R can be generated as a linear combination of an
integer times each of these three vectors:

R = n1a1 + n2a2 + n3a3

3.8 Each reciprocal lattice vector G for a given crystal lattice defines the
wavevector of a plane wave which has the same periodicity as the
lattice, that is if R is a vector joining the same point in two differ-
ent unit cells of the crystal lattice, then we require eiG·R = 1, or
G · R = 2πn, where n is an integer. A particular crystal lattice is
defined by the three primitive vectors, a1, a2 and a3. Show that the
reciprocal lattice can then be defined in terms of the three primitive
vectors b1, b2 and b3, where

b1 = 2π(a2 × a3)

a1 · (a2 × a3)
; b2 = 2π(a3 × a1)

a1 · (a2 × a3)
; b3 = 2π(a1 × a2)

a1 · (a2 × a3)

3.9 Using the FCC basis vectors of problem 3.7, calculate the basis vec-
tors for the FCC reciprocal lattice, and hence show that the reciprocal
lattice of an FCC lattice is a BCC lattice (and vice versa).

3.10 A 2-D triangular lattice is defined by the basis vectors a1 = (a, 0);
a2 = (a/2,

√
3a/2). Determine the reciprocal lattice basis vectors for

this triangular lattice, and hence show that the reciprocal lattice of
a triangular lattice is itself a triangular lattice.

3.11 The triangular lattice of problem 3.10 contains one atom per unit
cell, which has a single orbital with self-energy Es. Show that if this
orbital has an interaction V(V < 0) with each of its six neighbours,
then the triangular lattice band structure is given by

Esk = Es + 2V
(
cos(kxa) + 2 cos(kxa/2) cos(

√
3kya/2)

)
Show that the lower and upper band edges are then at energies
EsL = Es − 6|V| and EsU = Es + 2|V|, respectively. Justify why the
most strongly bonding state, EsL, is in this case shifted considerably
further down in energy than EsU is shifted upwards.



Chapter 4

Band structure and defects in
bulk semiconductors

4.1 Introduction

The exact features of the band structure of semiconductor materials play
a crucial role in determining their electronic and optoelectronic properties
and their usefulness for devices such as transistors, microwave oscillators,
lasers, light emitting diodes, and detectors. For this reason a great deal of
effort hasbeengiven tofindingways to engineer thebandstructure, includ-
ing the use of alloys, heterojunctions, quantum confinement, and strain.
Some of themost advanced devices now employ all of these techniques. In
this chapter, we examine some of the main features of the electronic band
structure of bulk semiconductors, including the influence of defect atoms
on the band structure. The next chapter discusses the physics and appli-
cations of some of the more advanced low-dimensional semiconductor
structures.

Figure 4.1 shows the band structures of bulk gallium arsenide (GaAs)
and silicon (Si), which are two of the most important semiconductors. We
are oftenparticularly interested in thebandsnear the energygap, Eg, which
separates the filled valence (bonding) bands from the empty conduction
(anti-bonding) bands. As can be seen in fig. 4.1(a), the lowest energy state
in theGaAs conduction band, Ec, is at the� point, at the Brillouin zone cen-
tre, directly above the highest energy state in the valence band, Ev, and so
GaAs is called a direct gap semiconductor. This has the very important con-
sequence that an electron which has relaxed to its lowest possible energy
in the conduction band can recombine directly with a hole at the top of
the valence band simply with the emission of a photon. (Note that on the
scale of fig. 4.1 a photon has negligible momentum.) Semiconductors with
a direct band gap, therefore, make efficient light emitting devices such as
lasers and light emitting diodes.

Figure 4.1(b) shows the band structure of Si. It is described as an indirect
band gap semiconductor, because the bottom of the conduction band is not
directly above the valence band maximum at �. In fact there are six equiv-
alent conduction band minima in Si, along the six equivalent � directions,
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Figure 4.1 The band structure of (a) GaAs and (b) Si, as calculated by Chelikowsky
and Cohen (1976) using the empirical pseudopotential method (© 1976 by
the American Physical Society). The zero of energy is at the valence band
maximum, Ev. The conduction band minimum is at energy Ec ≈ 1.5 eV in
GaAs and at Ec ≈ 1.1 eV in Si, giving an energy gap of magnitude Eg ≈ 1.5
and 1.1 eV respectively.

near to the X points. It is possible for an electron at the bottom of a �

minimum to recombine with a hole at the top of the valence band with the
emissionof aphotonbut, inorder to conservemomentum, theprocessmust
be accompanied by the emission or absorption of a phonon. (By analogy
with photon and electron, a phonon is the name given to a quantised lattice
vibration. Because themass of anucleus is very large compared to that of an
electron, phonons can have negligible energy but significant momentum
on the scale of fig. 4.1.) Because light emission from indirect gap materials
requires the simultaneous occurrence of two processes, it is intrinsically
less efficient than in the direct gap case. Besides Si, the other main group
IV semiconductors are also indirect gap materials, with the conduction
band minimum near the X point in diamond (C) and at the L point in
germanium. Many III–V semiconductors are direct gap and therefore suit-
able for optoelectronic applications. Table 4.1 lists some of the important
material properties of several technologically interesting semiconductor
materials.

The valence band maximum is always at the � point in tetrahedrally
bonded semiconductors. If we ignored the interaction between each elec-
tron’s spin and its orbital motion (the spin–orbit interaction), the valence
band maximum would consist of three degenerate p-like bonding states
(six states in fact when we allow for electrons with spin ‘up’ and spin
‘down’). However, consider the electrons in the outermost p states of an
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Table 4.1 Selected properties of group IV and III–V tetrahedrally bonded semicon-
ductors. [Data compiled from Madelung (1982); estimates of GaN effective
masses from Meney et al. (1996)]

Bond
length
d(Å)

Direct
gap
Eg(eV)

Indirect
gap
Eind

g (eV)

Electron
relative
mass m∗

cr

LH relative
mass m∗

lr

HH
relative
mass m∗

hr

Dielectric
constant εr

C 1.54 6.5 5.5 0.36 1.08 5.7
Si 2.35 4.2 1.17 0.153 0.54 12.1
Ge 2.44 0.90 0.74 0.038 0.043 0.35 16.5
GaN 1.94 3.5 0.15 0.21 0.90 10
GaP 2.36 2.88 2.35 0.17 0.67 9.1
InP 2.54 1.42 0.079 0.12 0.6 9.6
AlAs 2.43 3.13 2.23 0.26 0.5 9.1
GaAs 2.45 1.52 0.067 0.082 0.45 12.8
InAs 2.61 0.42 0.023 0.026 0.41 12.3
AlSb 2.66 2.32 1.69 0.11 0.5 10.2
GaSb 2.65 0.81 0.041 0.05 0.4 14.4
InSb 2.8 0.235 0.0139 0.018 0.4 15.7

Table 4.2 Spin–orbit splitting energy (in meV) at the valence band
maximum in III–V zinc-blende (upper part of table) and
group IV tetrahedrally bonded semiconductors. (III–
V data from Krijn (1991); nitride data from Wei and
Zunger (1996) and group IV data from Madelung (1982))

N P As Sb
Al 19 70 280 650
Ga 15 80 340 820
In 6 110 380 810

C Si Ge
6 45 290

isolatedatom. Theatomicp states there are alsodegeneratewhenwe ignore
the electron spin. In reality, the electrons experience an additional potential
due to the interaction of the spinmagneticmomentwith the vector product
of the velocity and electric field. This effect, spin–orbit coupling, splits the
p states in an isolated atom. It persists in solids and splits the degeneracy of
the valence band maximum (as well as splitting other degenerate states in
the band structure). Two of the six p states at the valence band maximum
are split off from the other four, and shifted down to lie at an energy Eso
below the valence band maximum. Table 4.2 lists the spin–orbit splitting,
Eso, for the group IV and III–V semiconductors. It can be seen how the
magnitude of the spin–orbit splitting, Eso, increases with atomic number
and is determined primarily by the group V element in III–V materials.
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Figure 4.2 The band structure of a direct gap bulk semiconductor in the vicinity of
the band gap and near the centre of the Brillouin zone. (a) Assuming the
spin–orbit splitting energy, Eso = 0, and (b) for finite Eso. The lowest
conduction state (at energy Ec) is separated by the band-gap energy Eg
from the highest valence state, at energy Ev. The labels CB, HH, LH and
SO indicate the conduction band, heavy-hole, light-hole and spin-split-off
bands, respectively.

Figure 4.2 illustrates the band structure of a direct gap bulk
semiconductor in the vicinity of the energy gap. Because the energy varies
quadratically with wavevector k near the zone centre, we can, for instance,
describe the conduction band dispersion near the band edge, ECB(k), by

ECB(k) = Ec + �
2k2

2m∗
c

(4.1a)

where we introduce the electron effective mass, m∗
c as the constant of pro-

portionality linking E to k. The concept of a carrier ‘effective mass’ turns
out to be a very useful idea. Although it is introduced phenomenologically
here, we shall show in Section 4.3 that for many purposes we can treat, for
example, an electron at the bottom of the conduction band as if it were a
particle in free space, with a mass m∗

c .
The twohighest valencebandsare referred toas theheavy-hole (HH)and

light-hole (LH) bands, because the dispersion of the highest band always
varies slowly away from the zone centre, and can be described as if the
highest band has a heavy effective mass, m∗

HH

EHH(k) = Ev − �
2k2

2m∗
HH

(4.1b)

while the dispersion of the next band varies considerably more rapidly
near the zone centre, as if the band had a light effective mass, m∗

LH

ELH(k) = Ev − �
2k2

2m∗
LH

(4.1c)
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The third valence band is generally called the spin-split-off band. The
lowest conduction band in a direct gap semiconductor always has a low
effective mass; m∗

c is always smaller than m∗
LH, as can be seen in Table 4.1.

It can also be observed that m∗
c and m∗

LH increase with increasing energy
gap, Eg.
Clearly, these trends in semiconductor band structuremust have a phys-

ical basis, which could be elucidated using either the tight-binding or
pseudopotential method introduced in Chapter 3. In practice, however,
the observed trends are best explained using a semi-empirical technique,
called k ·p theory, whichwill also prove very useful when considering top-
ics such as doping and low-dimensional semiconductor structures later in
this and in the next chapter.

4.2 k · p theory for semiconductors

k ·p theory is a perturbationmethod, whereby if we know the exact energy
levels at one point in the Brillouin zone (say k = 0, the� point) thenwe can
use perturbation theory to calculate the band structure near that k value.
The zone centre energy levels have been determined experimentally for
many semiconductors, as listed in Tables 4.1 and 4.2. A general introduc-
tion to first and second order perturbation theory is given in Appendix C,
while the k · p model is summarised here and described in more detail in
Appendix E.

From Bloch’s theorem, Schrödinger’s equation in a periodic solid can be
written as

H0ψnk(r) = Enkψnk(r) (4.2)

whereH0 is thek-independentHamiltonianactingonψnk, thek-dependent
wavefunction eik·runk(r) associated with the state with energy Enk. We
show in Appendix E how it is possible to transform eq. (4.2) to give a
k-dependent Hamiltonian, Hk = e−ik·rH0eik·r , acting on the wavefunction
unk(r). Hk is given by

Hk = H0 + H ′
k

= H0 + �

m
k · p + �

2k2

2m
(4.3)

where p is the momentum operator, p = −i�∇. We expect for small values
of k that the energy levels Enk ofHk will be very close to the known energy
levels En0 ofH0. We can then use standard perturbation theory to estimate
that the dispersion along the i-direction near the band edge at energy En0
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is given by

Enk = En0 + �
2k2

2m
+ �

2k2

m2

∑
n′ �=n

|i · pnn′ |2
En0 − En′0

(4.4a)

where i is a unit vector pointing along the direction i, and pnn′ is the
momentum matrix element linking the nth and n′th basis state of H0 (see
Appendix E). From the definition of m∗ above, we can then estimate the
effective mass along the direction i in the nth band, m∗

i , as

1
m∗

i
= 1

m
+ 2

m2

∑
n′ �=n

|i · pnn′ |2
En0 − En′0

(4.4b)

For real semiconductors, we should take account of the spin–orbit interac-
tion and also of band degeneracies, neither of which were included in the
derivation of eq. (4.4). The practical application of the k·pmodel, therefore,
looks rather complicated. However, two main reasons help to ensure its
usefulness (Kane 1966; Bastard 1988):

1 Inmost cases, we only have to dealwith a very small number of bands,
whichare close to eachother in energy, andcan ignorehigher and lower
bands, where the denominator in the summation terms of eq. (4.4) is
large.

2 When we restrict the number of bands in eq. (4.4), and then start
to fit experimental data, such as measured effective masses, m∗,
and measured energy gaps En0 − En′0 it is found that the momen-
tum matrix elements pnn′ are remarkably constant between different
semiconductors, with pnn′ identically zero for many pairs of bands n
and n′.

We can consider a very simple (but not totally unrealistic) model of
a direct-gap semiconductor, with zero spin–orbit splitting. The conduc-
tion band consists of a single s-like anti-bonding state at k = 0, while the
top of the valence band has pure p-like symmetry, so is threefold degener-
ate. We choose the three p states to point along the three crystal axes, and
label them px, py and pz, respectively.
It can be shown from symmetry considerations that the matrix elements

pij linking any pair of the p states are identically zero, while themomentum
matrix element linking swith each p level points along the direction of that
p state, so that psx = Pi say, with psy = Pj and psz = Pk, where i, j, and k
are unit vectors along the three crystal axes.

If we assume that thewavevector k points along the x-direction, then the
matrix elements k · pnn′ corresponding to k · psy and k · psz are identically



78 Band structure and defects in bulk semiconductors

CB

HH (Four-band)

LH

Wavevector k
En

er
gy

Figure 4.3 Band structure of a direct gap tetrahedral semiconductor calculated using
the 4-band k · p model (1 conduction; 3 valence bands) and assuming
Eso = 0. The dashed lines show the HH dispersion in the 4-band model;
the solid lines immediately below indicate how interactions with higher
conduction bands push the HH bands downwards.

zero. Therefore, eq. (4.4) gives for the py and pz bands that

1
m∗

y
= 1

m∗
z

= 1
m

(4.5)

along the x-direction. These are the two HH bands, whose effective mass
m∗

HH then equals the free-electron mass, m, as illustrated by the dashed
lines in fig. 4.3. Interactions with higher conduction bands, which we have
ignored, will tend to push the bands further downwards (solid lines), giv-
ing them the typical dispersion observed for HH bands in figs 4.1 and 4.2.
The LH band arises from the interaction between the s and px states, for
which |k · psx| = kP, so that eq. (4.4b) then gives the LH effective mass,
m∗

LH, as

1
m∗

LH
= 1

m∗
x

= 1
m

− 2P2

m2Eg
(4.6)

along the x-direction. For the conduction band, the sign of the energies is
reversed in the denominator, and we have

1
m∗

c
= 1

m
+ 2P2

m2Eg
(4.7)

In fact, the value of the second term on the right-hand side of eqs (4.6) and
(4.7) is much larger than the first term, 1/m, so that m∗

c ≈ |m∗
LH| for zero

spin–orbit interaction. We can rewrite eq. (4.7) as

m
m∗

c
= 1 + Ep

Eg
(4.8)
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where we have set Ep = 2P2/m. When we include the spin–orbit
interaction, the expressions for thevalenceandconductioneffectivemasses
are modified to account for the revised interactions between the conduc-
tion band and the spin-split-off band, with the effective masses for the
conduction and three valence bands then given by

m
m∗

c
= 1 + Ep

3

(
2
Eg

+ 1
Eg + Eso

)
(4.9a)

m
m∗

LH
= 1 − 2Ep

3Eg
(4.9b)

m
m∗

so
= 1 − Ep

3(Eg + Eso)
(4.9c)

and m/m∗
HH = 1, as before.

We can use eq. (4.9a) along with the quoted values of Eg, Eso, and m∗
c in

Tables 4.1 and 4.2 to estimate the value ofEp for a range ofmaterials. This is
left as an exercise to the endof the chapter, where it can be observed that the
magnitude of Ep is reasonably constant throughout the III–V semiconduc-
tors. It is further possible, using eq. (4.9b) and the calculated values ofEp to
estimate the magnitude of the LH masses, m∗

LH, which are then observed
to be in generally good agreement with the experimentally determined
values listed in Table 4.1.

The above calculations serve to show the value of k · p theory when
applied to tetrahedrally bonded semiconductors. As a further example,
we consider the highest valence and lowest conduction band along the �

and � directions, linking X and L respectively to �. There is no k · p inter-
action between the conduction and valence band along these directions.
Therefore, the highest valence and lowest conduction band are approxi-
mately parallel for much of �–X and �–L, as illustrated in fig. 4.1. The
effective mass along this (longitudinal) direction, m∗

l , is then large at the
X and L points (of the order of the free electron mass), and consequently
there is a much larger density of states associated with the lowest X and L
conduction band minima compared to the lowest � minimum.

By contrast, there is a large k · p interaction in the transverse direction
at X and L (moving perpendicular to the � and � directions), so that
the transverse effective mass, m∗

t is then comparatively small at X and L.
Surfaces of constant energy near X and L are then described by ellipsoids,
as illustrated in fig. 4.4.

4.3 Electron and hole effective masses

We introduced the electron effective mass phenomenologically in
Section 4.1, claiming, for example, that for many purposes we can treat
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kz

ky

kx

Figure 4.4 Surfaces of constant energy are described by ellipsoids near the lowest
conduction band X points. This occurs because there is a large effective
mass m∗

l along the � directions (pointing towards �, the Brillouin zone
centre), with a smaller effective mass, m∗

t perpendicular to the � direction.

an electron at the bottom of the conduction band as if it were a particle
in free space, with an effective mass m∗

c . If we apply an external electric
field E, such that the electron experiences a force F = −eE this implies the
electron will move with an acceleration a given by m∗

ca = −eE; that is,

a = F
m∗

c
= −eE

m∗
c

(4.10)

For small effective mass, the electron then accelerates more rapidly in the
solid than in free space. This is at first surprising, but reflects the fact
that the electron is acted on not only by the external field E but also by
the periodic field of the lattice. If we took explicit account of both fields
in discussing the dynamics of the electron it would exhibit its ordinary
mass.

In order to derive the correct form for the electron effective mass, we
consider an electron represented by a wave packet near the bottom of the
conduction band, so that the electron velocity is then given by the group
or energy velocity, vg, defined as

vg = dω

dk
= 1

�

dE
dk

(4.11)

where k is the Blochwavevector associatedwith the electron state of energy
E, and for simplicity we only consider motion in one dimension. In the
applied field E, the electron experiences a force F such that its energy E
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increases by

δE = F δx = Fvg δt

= F
1
�

dE
dk

δt (4.12)

But we can also relate δE to the change in wavevector δk, as

δE = dE
dk

δk (4.13)

By comparing the right hand sides of eqs (4.12) and (4.13) we then find that

F = �
dk
dt

(4.14)

This holds irrespectively of whether the electron is in free space or in
a periodic potential. We can use eq. (4.11) to determine the electron
acceleration a as

a = dvg
dt

= 1
�

d2E
dk dt

= 1
�

d2E
dk2

dk
dt

(4.15)

Substituting eq. (4.14) into eq. (4.15) we find

a = 1
�2

d2E
dk2

F (4.16)

By comparisonwithNewton’s law (eq. (4.10)), we see that the electron then
behaves as if it has an effective mass, m∗

eff given by

1
m∗

eff
= 1

�2
d2E
dk2

(4.17)

This broadens the definition of effective mass for a parabolic band in
eq. (4.1) to the more general case of a non-parabolic band dispersion.

We see from eq. (4.17) and elsewhere that an electron can acceleratemore
rapidly in a solid than in free space. How does this happen? We note that
in free space the potential energy is constant and so only the kinetic energy
varies with wavevector k. By contrast, in a solid the total energy of any
state is the sumof a k-dependent kinetic and a k-dependent potential energy
contribution.We use theNFEmethod to show in the problems at the end of
this chapter that the average potential energy seen by a conduction electron
can decrease as the electron wavevector k shifts away from the conduction
bandminimum. This decrease in average potential energy with increasing
k then enables the electron to accelerate more rapidly in the periodic solid
than in free space.
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We also see from eqs (4.17) and (4.9b) that an electron near the top of
the valence bandwill behave as if it has a negative effective mass, implying
that the electron will be accelerated in the direction opposite to an applied
force. This is both surprising, and counter-intuitive.

Whycananelectronbeacceleratedagainst the applied force? Theanswer
is again because the electron is acted on both by the external field and the
periodic field of the lattice. From eq. (4.14) we have, both in free space and
in a periodic solid, that an applied force acting in the positive direction
will lead to the wavevector k associated with a given state becoming more
positive. Because both kinetic and potential energy depend on k in the
periodic solid, there can be several ranges of k where the kinetic energy
decreases as themagnitude of k increases. Relative to the externally applied
force, the electron then behaves as if it has a negative effective mass. In
addition, if we consider a one-dimensional structure with period a then
we have seen from Bloch’s theorem that we can associate the wavenumber
k or k − 2π/a with each state, so that the wavevectors π/a and −π/a are
equivalent. The periodic potential then enables the Bragg reflection of the
wave-like electrons in the direction opposite to the applied force.

It can be shown (see problem 4.10) that the electrons in a filled band
experience zero net acceleration: effectively for every electron accelerated
to the left, another is accelerated to the right. Hence a filled band will not
contribute to the current flow in a solid.

Suppose that we now excite one electron from near the top of a filled
valence band to near the bottom of an empty conduction band. The single
excited conduction band electron will then behave, as already discussed,
like a free carrier with positive effective mass given by eq. (4.17).

Howwill the almost filled valence band respond to an external force, F?
Before itwas excited into the conductionband, the electronnear thevalence
band maximum had a negative effective mass, implying that in its contri-
bution to the total current itwas being accelerated against the applied force.
(Because the electron charge is negative, the electron was, therefore, being
accelerated along the direction of current flow, with its negative charge,
therefore, tending to reduce the net current.) Because the total current is
zero in a filled band, when the negatively charged electron is removed,
the net current due to the remaining electrons must be equal and oppo-
site to that associated with the missing electron. The remaining electrons
then experience a net acceleration in the direction of the applied force, that
is, against the direction of current flow. Because the negatively charged
electrons are being accelerated against the direction of current flow, their
motion, therefore, tends to increase the net current.

When a negatively charged electron is removed from an otherwise filled
band, the empty state left behind is often referred to as a ‘hole’ state.
We argued above that removing an electron with negative effective mass
increases the net current flow in the direction of the applied field E. We can,
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therefore, treat this contribution to the current as though it were due to
a positively charged carrier, referred to as a hole, with a (positive) effective
mass, m∗

h equal and opposite to that of the missing electron:

1
m∗

h
= − 1

�2
d2E
dk2

(4.18)

We then have the choice to describe the incomplete valence band either in
terms of the (very many) filled electron states or the (few) hole states. The
latter description is particularly appropriate when considering semicon-
ductor valence bands and will be used later in this and in the next chapter.

4.4 Trends in semiconductors

4.4.1 Alloying

We saw in fig. 2.16 how the energy gaps, Eg, and bond lengths, d, of the
III–V semiconductors span awide range, from d = 2.81Å andEg = 0.17 eV
for InSb to d = 1.89Å and Eg = 6.2 eV for AlN. It is, in addition, possi-
ble to form a wide range of semiconductor alloys, such as AlxGa1−xAs,
where we have replaced a fraction, x, of the group III gallium atoms by
aluminium atoms. When we do so, the lattice constant and band struc-
ture of tetrahedrally bonded semiconductors generally vary smoothly as
the alloy composition is varied. This is in fact also the case for the elec-
tronic structure of most solid alloys. Figure 4.5 illustrates the variation

GaAs
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E g
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Γ
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Figure 4.5 Variation of the energy gaps at 300 K between the valence band maximum
and conduction band minima as a function of aluminium composition, x,
in AlxGa1−xAs. E� is the direct energy gap, while EL and EX are the
energy gaps to the lowest conduction band states near the L and X points,
respectively. (After Casey and Pannish, 1978.)
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of the different energy gaps in AlxGa1−xAs, as a function of aluminium
composition, x. It can be seen that AlxGa1−xAs is a direct gap semicon-
ductor for low aluminium concentrations, with the energy gap becoming
indirect for x > 0.45, beyond which the lowest conduction states lie along
the � direction, near the X point. This smooth variation of the bond length
and electronic properties enables the band structure engineering described
in the next chapter, whereby it is possible to tailor the band gap and related
properties for a wide range of applications.

4.4.2 Hydrostatic pressure

As a further example of the variation of material properties, we can con-
sider applying hydrostatic pressure to a bulk semiconductor. This reduces
the bond length and hence increases the strength of the covalent bonding
interaction between neighbouring sites, but will have little effect on the
bond ionicity. Wewould, therefore, expect the semiconductor band gaps to
increase smoothly with pressure. This is indeed observed experimentally,
with the direct energy gap at the � point typically increasing by 10meV
per kilobar of applied hydrostatic pressure in III–V semiconductors.

We can estimate the bond length dependence of covalent interactions
using the free-electron ‘empty lattice’ band structure of fig. 3.14(c). The
magnitude of thewavevectorsk at theBrillouin zone edges scales inversely
with bond length, as 1/d in fig. 3.14(c). As the free electron band ener-
gies vary as �

2k2/2m, we, therefore, expect the zone edge (and zone
centre) energies to scale as 1/d2. The splitting between the bonding and
anti-bonding levelswill then also scale as 1/d2, suggesting that the nearest-
neighbour interatomic covalent interactions scale as (bondlength)−2 in
tetrahedrally bonded semiconductors. This assumption has underpinned
the development of semi-empirical tight-binding methods which have
proved remarkably successful in predicting trends in a wide range of
semiconductor electronic properties (Harrison 1989; Vogl et al. 1983).

4.5 Impurities in semiconductors

Wehaveso far consideredperfect semiconductor crystals, withevery lattice
site in a Si crystal, for instance, occupied by a Si atom. This ideal is never
achieved inpractice. Therewill always be some impurity atoms introduced
during crystal growth, either intentionally or otherwise. Some impurity
atoms can be positively beneficial, introducing shallow defect levels in the
bandgap, close to the band edges. Such impurities canbeused to ‘dope’ the
semiconductor. Replacing a Si atom by an arsenic atom will introduce an
extra electron into the conduction band, givingwhat is referred to as n-type
conduction (‘n’ for negative). By contrast, replacing a Si atom by boron
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removes a negatively-charged electron from the filled valence band. This
is equivalent to introducing a positively-charged ‘hole’. Boron is referred
to as a p-type dopant (‘p’ for positive). Atoms which contribute an extra
electron are often referred to as ‘donors’, while those which remove an
electron from the valence band are called ‘acceptors’.

In addition, there are other impurity atoms suchasnitrogen, which intro-
duce defect states in the Si energy gap, well away from the band edges.
These are referred to as deep levels. They can often act as non-radiative
recombination centres, trapping free carriers moving through the crys-
tal, and hence nullifying the effect of any shallow impurities present. The
control of impurity dopant atoms is the key to almost all semiconductor
technology. Many of the key characteristics of shallow and deep impu-
rity levels can be understood based on the models developed in earlier
chapters.

4.5.1 Shallow impurities

Consider addinganextra electron to a semiconductor. The electron is free to
move, with an effective mass,m∗

c , at the bottom of the conduction band. In
practice the extra electron is introduced via an impurity atom, for example,
by replacing a Si atomwith an arsenic atom in a Si crystal. A neutral arsenic
atom has five valence electrons which can contribute to bonding. Four of
the electrons can form bonds with the neighbouring Si atoms, leaving one
electron free to move through the crystal. This electron will then see a
net positive charge associated with the arsenic impurity atom, and will
experience a potential −e2/4πε0εrr due to that positive charge, where εr is
the dielectric constant of the Si crystal. It can be shown that we can write
the Hamiltonian H describing the motion of the electron as

Hψ(r) =
(

− �

2m∗
c
∇2 − e2

4πε0εrr

)
ψ(r) = Eψ(r) (4.19)

that is, treating the electron as if it were a particle with massm∗
c moving in

the impurity potential, with the zero of potential in eq. (4.19) taken to be
at the bottom of the conduction band.

Equation (4.19) is identical to the Hamiltonian for an electron in an
isolated hydrogen atom discussed in Appendix A, if we replace the free
electron mass m by the effective mass, m∗

c , and the free space permittivity
ε0 by the semiconductor permittivity ε0εr in eq. (A.2). The energy of the nth
bound state of an isolated hydrogen atom,EH

n , is given in Appendix B by

EH
n = − me4

8(ε0hn)2
(4.20)
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with the ground state energy, EH
1 = −13.6 eV. By analogy, we would,

therefore, expect the binding energy of the nth shallow impurity bound
state, Eimp

n , to be given by

Eimp
n = m∗

rc

ε2r
EH
n (4.21)

where m∗
rc is the relative effective mass, m∗

c/m.
Consider for instance bound electron states in GaAs. From Table 4.1

the relative electron effective mass, m∗
rc = 0.067 and dielectric constant

εr = 12.8, then the shallow impurity ground state binding energy will be
of order 6meV. As the thermal energy, kT, at room temperature equals
25meV, we expect the impurity level to be almost certainly ionised, with
the electron then free to contribute to the room temperature conductivity
of the semiconductor.

The impurity ground state should become occupied at lower tempera-
tures, as T → 0. However the electron can still be relatively delocalised.
The ground state wavefunction in a hydrogen atom decays away from the
nucleus as exp(−r/a0), where a0, referred to as the Bohr radius, is given by

a0 = ε0h2

πme2
(4.22)

We should expect the wavefunction associated with the impurity ground
state level to decay away from the impurity site in a similar manner, as
e−r/a∗ , where a∗ is the defect electron effective Bohr radius, related to a0 by

a∗ = εr

m∗
rc
a0 (4.23)

As a0 = 0.53Å, this gives a∗ ∼ 100Å(10−6 cm). Hence neighbouring impu-
rity levels will interact with each other and the levels will broaden into an
impurity band for doping densities, Nd, of order 1/(10−6)3 cm−3, that is,
Nd ∼ 1018 cm−3. As each impurity contributes one electron to the band,
the band will be half-filled, and for sufficiently high doping densities,
metallic-type conduction can occur at low temperatures in this impurity
band.

The study of conduction in such impurity bands has been very fruitful
in a number of research areas. These include the investigation of the tran-
sition from insulating (low doping density) tometallic behaviour at higher
doping densities, referred to as the metal–insulator transition (Mott 1974).
Impurity bands have also been used to investigate features of the conduc-
tivity of random systems, taking advantage of the fact that the impurity
atoms do not lie on a regular array of sites, and so form a random lattice.
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4.5.2 Deep impurities

As well as donors and acceptors, it is also possible to find deep impurities
in semiconductors. Archetypal examples include N in GaP and Se in Si,
for both of which the impurity levels lie deep in the energy gap, well
away from the band edges. We aim to review here some of the origins and
trends in such deep impurities. We concentrate on sp3-bonded defects,
typically formed by atoms from columns III to VII in the Periodic Table.
We do not consider transition metal impurities, although these also form
an important class of deep levels in semiconductors. An impurity atom
can alter the periodic crystal potential in three main ways, as illustrated in
fig. 4.6:

1 by attracting electronsmore (or less) strongly than the host atoms, that
is, having a different electronegativity;

2 by introducing lattice distortions, which alter the bond length, and
hence the strength of the covalent interactions; and

3 shallow impurity states in particular can add a long-range Coulomb
potential about the defect site.

Thefirst of these three, thedifference inelectronegativity, is themost impor-
tant factor in determining trends in deep impurity levels, with local lattice
distortions, however, also playing a significant role.

To understand trends in deep levels, we first consider the hypothetical
diatomic molecule, HX, where the atomic energy level, EX , of the X atom
is variedwith respect to the hydrogen level, EH. Recall fromChapter 2 that
in the hydrogen molecule, H2, the atomic orbitals on neighbouring atoms
interact with each other to give a bonding and anti-bonding level at EH+V

x

V(x)

(a)

(b)

(c)

Figure 4.6 An impurity centre can alter a periodic potential by (a) introducing a deeper
(or shallower) local potential; (b) distorting the nearest neighbour separa-
tion; or (c) if charged, introducing a long range Coulomb potential about
the impurity centre. The potential due to the impurity centre is in each
case indicated by the heavy solid line.
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and at EH − V, respectively, where V is negative and is a measure of the
strength of the covalent interaction between the neighbouring orbitals. By
comparison with the LiH molecule in Chapter 2, the two lowest energy
levels in the HX molecule are given by

E = EX + EH

2
±

√(
EX − EH

2

)2

+ V2 (4.24)

The variation in the energy levels of the HX molecule with the X atom
self-energy, EX , is plotted in fig. 4.7(a). On the upper left-hand side of the
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Figure 4.7 (a) Variation in the energy levels of the HX molecule as the X atom
self-energy, EX , is varied with respect to the H atom value, EH. (b) In a semi-
conductor, the bonding and anti-bonding levels are broadened into bands.
For small electronegativity differences, defect-related resonant states are
found in the bands (dashed lines), which shift into the energy gap (solid
lines) as the electronegativity difference increases.
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figure, the anti-bonding level approaches the isolated hydrogen atom self-
energy, EH, as the X atom electronegativity increases (EX decreases). On
the lower right-hand side, the bonding level approaches EH, from below,
as EX increases and the X atom becomes significantly less electronegative
than the H atom. In summary, as |EH − EX|, and the electronegativity dif-
ference increases, one of the energy levels always approaches the isolated
hydrogen atom self-energy, EH.
We can now apply the same picture to a tetrahedral semiconductor,

where the host atom electronegativity is fixed (as was EH above) while
the impurity electronegativity depends on the impurity considered. In
semiconductors, the bonding and anti-bonding levels have broadened
into bands. For sufficiently large electronegativity difference, the defect-
associated state can lie in the bandgap, giving adeep level, as illustrated by
the thick solid lines in fig. 4.7(b), while for smaller electronegativity differ-
ences the defect stateswill lie in the bands, as indicated by the dashed lines.
Such defect-related levels in the bands are referred to as ‘resonant’ levels.
Because the resonant level is degenerate with the conduction or valence
band, an electron will not remain bound in such a level but can instead
escape into the extended band states. Hydrostatic pressure can be a very
useful tool to study impurity states. The � conduction band edge shifts
upwards with pressure, and can thereby induce transitions from resonant
to deep states, as for example with Si donors in GaAs. Such transitions can
also be observed in semiconductor alloys as a function of alloy composi-
tion: Si is a resonant state in AlxGa1−xAs for x < 0.2, but becomes deep at
higher aluminium compositions.
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Figure 4.8 Comparison of calculated and experimentally determined defect energy
levels for a range of substitutional donors in Si (figure after Vogl, © 1984
by Academic Press, reproduced by permission).
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Figure 4.8 shows as an example the good agreement which can be
obtained using this model between calculated energies and experimental
data for a range of substitutional donors in Si. The theory omits the
long range Coulomb potential, hence all the shallow impurities have zero
binding energy.

4.6 Amorphous semiconductors

So far we have considered only crystalline solids. It is also possible to form
amorphous semiconductors, in which each atom has a similar, covalently-
bonded, local environment but there is no long range order. Figure 4.9
shows a computer-generated model of amorphous silicon (a-Si), where
each atom is tetrahedrally bonded, as in the crystalline case, but no two
atoms shown have exactly the same longer range environment.

In the absence of long range order, the concept of a unit cell becomes
less clear-cut. Bloch’s theorem no longer holds. We cannot then make the
simplification of associating a wavevector k with each wavefunction or
even assume that each wavefunction is spread uniformly throughout the
solid.

Should we expect a band gap in a-Si? We used Bloch’s theorem ear-
lier to introduce the concept of a band gap, or forbidden energy range,
in a solid. The existence of a band gap does not however depend com-
pletely on having a periodic structure. We saw in Chapter 2 that Si forms
tetrahedral bonds because of the energy gained due to the strong inter-
actions between sp3 orbitals on neighbouring atoms. These interactions
lead to widely separated bonding and anti-bonding levels, which are then

Figure 4.9 Computer-generated model of a-Si : H each atom is tetrahedrally bonded,
but (unlike in crystalline Si) there is no long range order. Courtesy of
M. F. Thorpe and Ming Lei – unpublished using the coordinates from
Djordjevic, Thorpe and Wooten (1995).
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broadened by further interactions into the valence and conduction band,
respectively. The samemodel can clearly be applied to a-Si and it is indeed
found that a-Si has an energy gap of about 1.8 eV separating the valence
and conduction band. However, whereas Bloch’s theorem implies that the
forbidden energy range is very well defined in a crystalline solid, this is no
longer true in the amorphous case. Because different atoms have slightly
different local environments, including small variations in the nearest
neighbour bond lengths and bond angles, the band edge energy can now
vary through the solid. Figure 4.10 compares the situation in a crystalline
and amorphous semiconductor: the density of allowed energy states goes
to zero at a specific band edge energy in the crystalline case, but decreases
approximately exponentially into the band gap in the amorphous case.

The states in the exponential tail can be regarded as defect levels,
with each level localised in a particular region of the solid. Well away
from the band edges, deep into the bands, we expect that the states can
be extended throughout the solid, as in the crystalline case. Consider-
able effort has been devoted to studying the transition from localised to
extended states in disordered systems. It has been shown that this transi-
tion takes place at a well-defined energy (the ‘localisation edge’, EL, in fig.
4.10(b)), with the character of the localised states and localisation transition
also depending on whether conduction is taking place in a three- , two- ,
or one-dimensional system (Elliott 1990).

The computer-generated model of a-Si in fig. 4.9 is highly idealised,
with each Si atom having four Si neighbours. In practice, a-Si contains
a high density of defects, with about 1 in 103 Si atoms having only three Si

Ev

Energy

Ec

ELv

g(E)(a)

(b) g(E)

ELc

Figure 4.10 Density of allowed energy states, g(E), in (a) a crystalline semiconductor,
where the band edges (Ev, Ec) and energy gap are well defined, com-
pared to (b) an amorphous semiconductor, where the density of states
decreases approximately exponentially into the energy gap. The states
between ELv and ELc are localised; below and above these ‘localisation’
or ‘mobility’ edges, the electronic states extend through the solid.
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neighbours, which leaves one unbonded sp3 ‘dangling bond’ on the defect
sites. This leads to a large density of deep defect states in the band gap, so
that pure a-Si has little practical use.

The high density of deep defect levels can be eliminated by forming
a-Si in a hydrogen-rich atmosphere, so that hydrogen atoms bond to the
dangling bonds, eliminating the non-bonding defect levels in the band
gap. Hydrogenated a-Si (a-Si :H) can also be doped both p- and n-type
using boron andphosphorus, respectively. The carriermobility and overall
conductivity are substantially lower than in crystalline Si, both because of
the disorder and also because of a lower doping efficiency. Nevertheless,
a-Si :H has several important applications, chiefly because thin films of
the material can be grown relatively cheaply over large areas, making it
suitable both for solar cell manufacture and also to provide the switching
elements for large-area, flat screen, liquid crystal displays.

In summary, we have described here some of the key features related
to the electronic band structure of bulk semiconductors. We introduced
the concept of effective mass and also the concept of positively-charged
holes. We showed how the k · p method can be used to understand com-
mon features and trends in the electronic properties, including the effects
of alloying and hydrostatic pressure. We also considered the effects of
impurity atoms andwhat happens when the crystalline periodicity breaks
down, giving an amorphous semiconductor. Several of these results will
be used further in the next chapter when we turn to consider band struc-
ture engineering and its applications in low-dimensional semiconductor
structures.
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Problems

4.1 Use eq. (4.9a) to estimate the value of the energy parameter Ep for the
direct gap semiconductors listed in Table 4.1. Can you observe any
trends in the calculated Ep values?

4.2 Use eq. (4.9b) and the values of Ep calculated in problem 4.1 to
estimate the light-hole relative effectivemasses of the direct gap semi-
conductors listed in Table 4.1. Compare the calculated masses with
the experimentally determined values listed in the table.

4.3 Use the data in Table 4.1 to calculate the donor ground state binding
energy, Eimp

1 , and defect electron effective Bohr radius, a∗, in InSb,
InP and GaN. Hence estimate the donor doping density Nd required
to achieve impurity band conduction at low temperatures in each of
these compounds.

4.4 We use the k · p method in Section 4.2 and Appendix E to determine
the band structure in the neighbourhood of k = 0 using the zone
centre (k = 0) wavefunctions and energies, and the k-dependent per-
turbation Hamiltonian of eq. (4.3). Show that we can generalise the
k ·p method to determine the band structure in the neighbourhood of
an arbitrary wavevector k0 by introducing the wavevector q = k−k0
and then re-arrangingSchrödinger’s equation so that theq-dependent
HamiltonianHq = e−iq·r H0 eiq·r acts on the q-independentwavefunc-
tion, exp(ik0 ·r)unk(r). Show that the dispersion along direction i near
the state at energy En(k0) is then given in second order perturbation
theory by

En(k) = En(k0) + �
2q2

2m
+ �

2q2

m2

∑
n′ �=n

|i · p′
nn′ |2

En(k0) − En′(k0)

4.5 Consider the Kronig–Penney (K–P) potential of fig. 3.8 with period
L and a thin barrier of height V0 and width b centred on the ori-
gin. We saw in Chapter 3 that the NFE wavefunction for the lower
state at the nth energy gap is given by ψLn(x) = (2/L)1/2 sin(nπx/L),
while the NFE wavefunction for the upper state is given by ψUn(x) =
(2/L)1/2 cos(nπx/L). Show that the magnitude of the momentum
matrix element PLUn linking the nth upper and lower state varies
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as the inverse of the lattice constant L and is given by

PLUn = i� nπ/L.

4.6 Use the k · p method and the matrix element PLUn to determine the
band dispersion of the upper and lower band near the nth energy
gap in the K–P potential of problem 4.5. Compare the calculated k · p
dispersion with that obtained using the NFE method in Chapter 3.

4.7 Consider the lowest zone centre energy gap for the K–P potential
of problem 4.6, for which the NFE wavefunctions of the upper and
lower states are given by ψU(x) = (2/L)1/2 cos(2πx/L) and ψL(x) =
(2/L)1/2 sin(2πx/L) respectively. Use thek·pmethodandperturbation
theory to calculate the first order correction to the wavefunction for
wavevectors k near the Brillouin zone centre (k = 0). Hence calculate
the average potential energy, U, of the upper and lower states at
wavevector k close to the zone centre. Show that U decreases with k
for the upper state, and increases with k for the lower state. Knowing
the total energy E(k) of each state from problem 4.8, and that the
total energy is the sum of the kinetic and potential energy, E(k) =
T(k) + U(k), calculate the variation of the kinetic energy T(k) for the
upper and lower bands, respectively, showing that the upper band
has a positive and the lower band a negative effective mass.

4.8 Consider a filled band in a 1-D crystal with lattice constant L. An
electronwithwavevector k andenergyEwhen subject to an externally
applied force F = −eE experiences an acceleration a given by

a = 1
�2

d2E
dk2

F (4.16)

By integrating over all states in the filled band, show that the average
electron acceleration is zero, and hence that a filled band does not
contribute to the current flow in a periodic solid.



Chapter 5

Physics and applications of
low-dimensional semiconductor
structures

5.1 Introduction

Much of the recent interest in semiconductormaterials has focussed on the
ability to alter the composition and hence the band structure on the atomic
scale, layer by layer. This has opened the possibility of ‘band structure
engineering’ and even ‘wavefunction engineering’, whereby the composi-
tion and hence electronic and optoelectronic properties can be tailored and
optimised for specific applications, introducing band structure features
which would be impossible to achieve in any bulk semiconductor.

The development of molecular beam epitaxy (MBE) and metal-organic
vapour phase epitaxy (MOVPE) has made it possible to produce semi-
conductor ‘quantum well’ structures, where the composition changes
on the scale of an atomic layer, with the band edge energies and
carrier effective masses, consequently, changing on the same length
scale. Figure 5.1 shows a high-resolution transmission electron micro-
graph (TEM) of several periods of a gallium indium arsenide–aluminium
indium arsenide (GaInAs–AlInAs) quantum cascade laser structure,
which demonstrates the growth control which can now be achieved.
The white lines represent layers of GaInAs and the black lines lay-
ers of AlInAs. We shall discuss the workings of such a laser at the
end of this chapter but emphasise here that the thinnest layers in this
device structure are about 1 nm (three atomic layers) wide. The picture
illustrates vividly the possibility of using epitaxial growth techniques,
where atoms are deposited layer-by-layer to reproducibly create uni-
form, thin layers, controlling the composition over a very short length
scale.

Such sharp changes in composition allow the energy gap to change
abruptly from one layer to the next. Figure 5.2 illustrates schematically
the variation of the conduction and valence band edge energies, Ec and
Ev, through three layers of such a structure. The allowed energy regions
for both the electrons and holes form a square well potential, similar to
that considered earlier in the review of quantum mechanics in Chapter 1.
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Figure 5.1 High resolution transmission electron micrograph (TEM) of a GaInAs/
AlInAs quantum cascade laser structure grown by molecular beam epi-
taxy. The TEM contrast is set so that GaInAs and AlInAs layers appear
in a light and in a dark shade, respectively. The picture illustrates both
the layer reproducibility which can be achieved with epitaxial growth
techniques and also the ability to vary the composition atomic layer by
atomic layer. (Picture courtesy of Claire Gmachl and Federico Capasso,
Bell Laboratories.)

For well widths of order 100Å or less, both the electrons and holes expe-
rience significant quantum confinement effects. The energy levels are
quantised along the growth direction. The carriers are then confined in this
dimension, although they remain free tomove in the other twodimensions,
in the plane perpendicular to the growth axis.

The motion may in principle be further restricted to one dimension by
ultrafine lithography on quantum well structures or by the growth of the
alloy in V-shaped grooves, as illustrated in fig. 5.3(a) (Biasiol and Kapon
1998). If the carriers are further restricted to a quantum box or dot (see
fig. 5.3(b)), the allowed energy levels and density of states resemble those
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Figure 5.2 Variation of the conduction and valence band edge energies, Ec(z) and
Ev(z) along the growth direction through three layers of a GaAs/AlGaAs
multilayer structure.

for electrons in a large isolated atom. At each stage the likelihood of an elec-
tron or hole occupying an energy state other than the lowest is decreased,
so allowing the possibility of more efficient semiconductor lasers. As a fur-
ther example, the ability to physically separate dopant atoms from the
layers where conduction occurs, so-called modulation doping, can lead
to faster electronic devices, with improved transport characteristics. New
physical effects are also found in low-dimensional structures, including
the quantum Hall effect and fractional quantum Hall effect.

We can describemany of these effects using effectivemass theory, where
we presume the carriers behave as free particles with an effective mass,
m∗, as we did when considering shallow impurity levels in Section 4.5. We
begin first by considering carrier confinement and the dependence of the
electron density of states on the dimensionality of a system.

5.2 Confined states in quantum wells, wires, and dots

A layered structure grown along the z-direction, such as that in fig. 5.1,
remains periodic in the x–y plane. Bloch’s theorem still holds in two
dimensions, and we can describe the energy states in terms of the two-
dimensional wavevector (kx, ky), as E = E(kx, ky). If we consider the
states at the centre of the two-dimensional Brillouin zone (kx = ky = 0),
the band edge mismatch implies that both the electrons and holes see a
quantum well potential. In the effective mass approximation, the allowed
energy levels for the electrons are then found by solving Schrödinger’s
equation:

[
− �

2

2m∗
c

d2

dz2
+ V(z)

]
ψ(z) = Eψ(z) (5.1)
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Figure 5.3 (a) TEM micrograph of a quantum wire structure, achieved by growing
a multilayer structure in a V-shaped groove. Variation of alloy growth rate
on the side walls and base of the groove lead to the formation of quantum
wires at the bottom of the groove, in which carriers are free only to move
along the direction of the groove (from Biasiol and Kapon, © 1998 by the
American Physical Society). (b) TEM of a quantum dot structure: when,
for example, InP is grown on GaInP under appropriate growth conditions,
the lattice-mismatch between the InP and GaInP leads to the formation of
‘self-ordered’ InP islands in the GaInP matrix (from Eberl 1997).

where ψ(z) is the electron envelope function and V(z) is the band edge
potential distribution, given in the quantumwell case of fig. 5.2 by V(z) =
Ec(z). To calculate the electron (and hole) states in such a square well, we
require at the interface between the well, W, and barrier, B, layers that

ψW = ψB (5.2a)
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and
1

m∗
W

dψW

dz
= 1

m∗
B

dψB

dz
(5.2b)

This second relation is a generalisation of the earlier condition inChapter 1,
that dψW/dz = dψB/dz, to the casewhere themass changes on crossing the
boundary. Equation (5.2b) ensures what is referred to as the ‘conservation
of probability current density’ between different layers (Bastard 1988). The
confinement energies are then found by solving

k tan
(
kL
2

)
= m∗

W
m∗

B
κ (5.3a)

for states of even parity, while for states of odd parity

−k cot
(
kL
2

)
= m∗

W
m∗

B
κ (5.3b)

where L is the well width, with k2 = 2m∗
WE/�

2 and κ2 = 2m∗
B(�Ec −E)/�

2.
�Ec is the conduction band offset, and the zero of energy is at the bottom
of the well.

We can extend the analysis to quantumwires and dots. If we assume an
infinite confining potential (V = ∞ in barrier) and rectangular wires and
dots, then the allowed energy states of the confined electrons are given by

Ei(kx, ky) = h2i2

8m∗L2z
+ �

2

2m∗ (k2x + k2y) Quantum well

Ei,j(kx) = h2

8m∗

(
i2

L2z
+ j2

L2y

)
+ �

2k2x
2m∗ Quantum wire

Ei,j,k = h2

8m∗

(
i2

L2z
+ j2

L2y
+ k2

L2x

)
Quantum box

(5.4)

where Lz, Ly, and Lx are the confining dimensions, i, j, k = 1, 2, . . . are
the quantum confinement numbers, kx, ky are the wavevector components
along the unconfined directions, m∗ is the carrier effective mass, and we
assume the zero of energy at the confined layer conduction band edge.

5.3 Density of states in quantum wells, wires, and dots

Limiting the electron motion to fewer dimensions dramatically modifies
the electron energy spectrum, leading to an enhancement of the density of
states near the band edge. To see this, we need to calculate the electronic
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density of states for a D-dimensional crystal, whose sides are of length L,
and in which the dispersion near a band edge is given by the parabolic
dispersion,

E = �
2k2

2m∗ (5.5)

Not all values of k are allowed in eq. (5.5). We require that the allowed
solutions of Schrödinger’s equation satisfy theboundary conditions appro-
priate to the given potential. For a given crystal, we therefore require that
the wavefunctions decay to zero at the crystal surfaces. The existence of
the surface implies that, strictly speaking, Bloch’s theorem should not be
applied within a finite crystal. But we know that Bloch’s theorem works
and is very useful for describing many crystal properties. We would like
to maintain Bloch’s theorem, while still recognising that we have a finite
crystal of size L. We can do so by introducing periodic boundary condi-
tions on the crystal, requiring that the amplitude and derivative of each
wavefunction are equal at x = 0 and x = L, so that

eikxL = 1 (5.6)

with the allowed values of kx then given by

kxL = 2πn (5.7a)

or

kx = 2πn/L (5.7b)

where n is an integer. Likewise, in a cube of side L, we have ky = 2πp/L
and kz = 2πq/L, where p and q are both integers.
We can then define the density of states function, n(E), such that the

number of allowed energy states, dN, between energy E and E + dE is
given by

dN = n(E)dE (5.8)

The number of allowed states in this energy range will depend directly on
the number of states whose allowed wavevectors fall in this range, that is,

n(E)dE = n(k)dk (5.9)

where n(k) is the density of allowed k points.
Re-arranging eq. (5.9), the density of electronic states, n(E), is then

given by

n(E) = n(k)
dk
dE

= n(k)
dE/dk

(5.10)
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Figure 5.4 The grid of allowed k-points (2πn/L, 2πp/L) form a reciprocal lattice asso-
ciated with a 2-D crystal of size L2. The two circles of radius k and k + dk
describe contours of constant energy, with E = �

2k2/2m∗ on the inner
circle.

This makes sense: if the energy, E, is changing rapidly with wavevector
k (dE/dk large), then there will be fewer states in a given energy range
than when dE/dk is small. From eq. (5.5), we have for a parabolic band
that dE/dk = �

2k/m∗, so that

n(E) = m∗

�2k
n(k) (5.11)

As the density of k-states, n(k), depends on the dimensionality of the
structure, so too will the density of states, n(E).

Figure 5.4 shows the grid of allowed k-points (2πn/L, 2πp/L), near the
origin in twodimensions. The two circles of radius k and k+dk are contours
of constant energy, with E = �

2k2/2m∗ on the inner circle.
In D dimensions, each k-point occupies a volume (2π/L)D, so that the

number of k-statesperunit volumeof k-space is then1/(2π/L)D = (L/2π)D.
With two allowed electron states per k-value (one spin up, and one spin
down), the density of allowed states is 2(L/2π)D.

Turning first to the two-dimensional case of fig. 5.4, the area between
the two rings of radius k and k + dk equals 2πk dk, so that the number of
allowed states between k and k + dk, dN(k), is given by

dN(k) = 2(L/2π)2 2πk dk = n2D(k)dk (5.12)
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That is, n2D(k) = kL2/π . Substituting this into eq. (5.11), we find that the
density of allowed electron states near a band edge in a 2-D structure of
area L2 is given by

n2D(E) = m∗

π

(
L
�

)2

(5.13)

with the density of states per unit area, g2D(E), then given by

g2D(E) = 4πm∗

h2
(5.14)

We can go through a similar analysis in both the 1-D and 3-D cases. The
density of states per unit volume, g3D(E), in a bulk crystal is given by

g3D(E) = 4π
(
2m∗

h2

)3/2

E1/2 (5.15)

while in 1-D, the density of states per unit length, g1D(E) is given by

g1D(E) = 2(2m∗)1/2

h
E−1/2 (5.16)

Figure 5.5 illustrates schematically the change in the density of states, g(E),
as the electron motion is limited to fewer dimensions in a semiconduc-
tor structure. The most striking feature observed as the dimensionality is

Bulk

E E

g(E) g(E) g(E) g(E)

E E

Quantum well Quantum wire Quantum box

Figure 5.5 The change in the density of states, g(E), as the number of confining dimensions
is increased.
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reduced is the build-up in the density of states near the band edge. This has
significant potential benefits for semiconductor lasers: a greater proportion
of the injected carriers can then inprinciple be in states contributing to band
edge population inversion and gain. The development of lasers containing
a uniform array of quantumboxes or quantumwires presents considerable
growth and fabrication problems; however, quantum well lasers are well
established and widely available commercially.

5.4 Modulation doping and heterojunctions

The conductivity, σ , in a bulk semiconductor, depends on the carrier
density per unit volume, n, and the carrier mobility, µ, as

σ = neµ (5.17)

The obvious route to increasing conductivity, then is, to increase the carrier
density by increasing the doping density,Nd. However, this also increases
thenumberof ionised impurity scattering centres (= Nd), thereby reducing
the mobility, particularly at lower temperatures.

By contrast, the areal carrier density, ns, can be increased in a low-
dimensional system without significantly degrading the mobility. This
can be achieved through modulation doping, where the dopant atoms are
placed in a different layer to that in which conduction is occurring. This
is illustrated in fig. 5.6a, where donor atoms are placed in the barrier lay-
ers adjacent to a quantumwell. The excess donor electrons are transferred

Ec(z)

Confined
states

(a)

(c)(b)

Figure 5.6 (a) When donor atoms are placed in the barrier layers adjacent to a quan-
tum well, the excess electrons (−) can transfer into the quantum well,
leaving the positively charged ionised impurity centres (⊕) in the barrier.
(b) A modulation-doped heterojunction can be formed by doping a thin
region of a wide-gap semiconductor close to the interface with a narrower
gap material. (c) It is then energetically favourable for the electrons to
transfer into the narrower gap material. The electrons become confined
at the heterojunction because of the electrostatic potential due to the
positively charged ionised impurity sites (⊕).
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into the quantum well, leaving the ionised impurity centres in the barrier,
typically over 100Å from the well.

It is also possible by modulation doping to achieve 2-D conduction at
a heterojunction between two layers of differing band gap. Consider, for
instance, doping a thin layer of AlGaAs with an areal doping density, Ns,
with the doping layer separated by an undoped spacer layer of width w
from a neighbouring GaAs region (fig. 5.6b).

It is energetically favourable to transfer the doping electrons into the
narrower band gap GaAs layer. If ns electrons are transferred across per
unit area, this will leave a fixed positive charge associated with the ionised
impurity atoms, and induce a built-in electric field, E, in the spacer layer,
of magnitude

E = ens
ε0εr

(5.18)

with a consequent linear variation in potential across the spacer layer
(fig. 5.6c).

The heterojunction potential and confined state energies should be
determined self-consistently, as the confined electron states, and their
wavefunctions, ψ(z), will depend on the potential V(z), while the poten-
tial variation is in turn determined by the electron spatial distribution
(proportional to

∑ |ψ(z)|2) at the heterojunction.
It is beyond our scope to calculate these confined state energies self-

consistently, but we can get a qualitative understanding of the behaviour
of carriers at a heterojunction by approximating to the potential and using
the variational method introduced in Chapter 1 and Appendix A.

We presume the electrons are confined wholly within the narrow band-
gap layer, and so set V = ∞ at the interface (z = 0). Near the interface, the
electric field due to the fixed charge, eq. (5.18), is largely unscreened, and
so we let the conduction band edge energy, V(z), vary as

V(z) = e2nsz
ε0εr

z > 0 (5.19)

The trial wavefunction, f (z), must satisfy the conditions f (0) = 0, and
f (z) → 0 as z → ∞. We choose

f (z) = 0 z ≤ 0

=
√
b3

2
z e−bz/2 z > 0 (5.20)

where the normalisation constant, (b3/2)1/2 is chosen so that∫ ∞

−∞
dz f∗(z) f (z) = 1 (5.21)
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This is referred to as the Fang–Howard wavefunction (Fang and Howard
1966; Bastard 1988).

To estimate the lowest confined state energy E1(b), we need first to find
the value of b for which the total energy of the system per electron, E1(b),
is minimised. We must be careful to avoid double-counting the electron–
electron interactions when evaluating E1(b).

The ground state total energy per electron, E1(b), is found byminimising

E1(b) = b3

2

∫ ∞

0
dz ze−bz/2

(
− �

2

2m∗
d2

dz2
+ 1

2
e2nsz
ε0εr

)
z e−bz/2 (5.22)

The factor 1
2 in the potential term here follows by realising that while the

potential experienced by a charge q in a capacitor is, say, qφ, the total work
done and, therefore, average energy per electron in building that potential
is 1

2qφ. Evaluating eq. (5.22), we find that

E1(b) = �
2b2

8m∗ + 1
2
3e2nsoverε0εrb (5.23)

which is minimised when

bmin =
(
6m∗e2ns
�2ε0εr

)1/3

(5.24)

The one-electron confined state energies, E1(bmin) are then found by eval-
uating eq. (5.22) with 1

2V(z) replaced by V(z) in the potential energy term.
This gives

E1 =
(
62/3

8
+ 3

61/3

)(
e2ns
ε0εr

)2/3 (
�
2

m∗

)1/3

(5.25)

We see from eq. (5.25) that the confined state energies then depend on the
carrier density per unit area, that is, the areal carrier density, ns, as n

2/3
s .

We therefore expect the separation between the first two confined states,
E1 and E2 to vary as

E2 − E1 ∼ n2/3s (5.26)

Because the carriers at the heterojunction are still free to move in two
dimensions, the density of states will be constant, and so the Fermi energy
EF will increase linearly with respect to the band minimum energy, E1 as

EF − E1 ∼ ns (5.27)
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We thus expect that for sufficiently high carrier density, ns, the Fermi level
will enter the second sub-band. This is indeed observed experimentally. It
can lead for instance to a drop in electron mobility at low temperatures,
due to the additional scattering associated with electron transfer between
the first and second sub-bands (see fig. 5.7).

At very low temperatures and in very purematerials, the electronmobil-
ity atGaAs/AlGaAsheterojunctions canexceed106 cm2/(V s), threeorders
of magnitude larger than in low-doped bulk material, due to the virtual
elimination of ionised impurity scattering. The effect is much less marked
at room temperature, where other scattering mechanisms dominate, in
particular scattering by polar-optic phonons. Nevertheless, the room
temperaturemobility inmodulation-dopedheterojunctionfield effect tran-
sistors is typically double that of the doped GaAs used in metal-gate
field-effect transistors. This has two important consequences for the per-
formance of high-speed transistors: first, the resistances are reduced, and
with them the RC time constants, so that devices of a given size are faster
and second, largely because of the reduced resistance, the levels of noise
generated by the device (due to scattering processes) are much reduced.
The lowest noise transistors presently available are, therefore, based on
modulation-doped heterojunctions, which find widespread application,
for instance, in the amplifier circuits of domestic satellite dish receivers.

5.5 Quantum Hall effect

The Hall effect provides a well-established technique to determine the
mobility and carrier density per unit area in bulk semiconductor sam-
ples (Hook and Hall 1991). It was, therefore, an obvious technique to
apply to low-dimensional semiconductor structures. However, when such
measurementswere carried out at low temperatures, the results were com-
pletely unexpected (von Klitzing 1986). The measured Hall resistance was
quantised in units of h/e2, where h is Planck’s constant, and e is the electron
charge. As a consequence, a basic semiconductor experiment has become
the standard for defining resistance and, more interestingly, has opened
a wide field of fundamental research, including analogies that we do not
pursue here but which can aid in the understanding of superconductivity
(Kivelson et al. 1996).

Weconsiderfirst the classicalHall effect in a2-Dsample, with the current,
I, given by

I = wnsev (5.28)

where ns is the areal carrier density, v the average carrier velocity, and w is
the width of the sample, as illustrated in fig. 5.8.

When a magnetic field, B, is applied perpendicular to the sample, it
causes a force on each carrier, F = e(v × B), whose magnitude is then evB,
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Figure 5.7 Variation in the low-temperature mobility with increasing carrier density
at a heterojunction interface. The mobility decreases markedly when the
carrier density increases to the point where carrier scattering becomes
possible between the first and second sub-band. The carrier density was
changed by varying the gate voltage across a field effect transistor structure
(from Stormer, © 1982 by Elsevier Science, reproduced by permission of
the publisher).
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Figure 5.8 Plan view of a two-dimensional structure of width w with a magnetic field
B applied perpendicular to the structure (into the page). If the current flow
is due to positive charges moving from left to right, the magnetic field will
deflect the carriers towards the bottom face in the diagram, leading to a net
build-up of positive charge on this face, and negative charge on the opposing
face, giving a measurable voltage, VH across the sample. Equilibrium is
reached when the electric field EH associated with the charge build-up
balances the force associated with the magnetic field.

directed towards the side of the sample. This leads to a build-up of charge
on the two sides of the sample, until the induced electric field, EH, exactly
balances the magnetic force, eEH = evB, with a measurable Hall voltage,
VH, across the sample then given by

VH = EHw = vBw (5.29)

Combining eqs (5.28) and (5.29), we can use the Hall voltage VH to
determine the areal carrier density ns, as

VH = B
nse

I (5.30)

with the Hall resistance, RH, defined as

RH = VH

I
= B

nse
(5.31)

The Hall effect is widely used to measure the carrier density, ns, and also
the carrier mobility, µ, which can be determined knowing the current, I,
carrier density and applied longitudinal voltage, V.

How then does the Hall effect become quantised in two dimensions?We
recall from eq. (5.4) that the energy levels in the ground state sub-band of
a 2-D electron gas (2DEG) satisfy the relation

E(kx, ky) = E0 + �
2

2m∗ (k2x + k2y) (5.4)

where E0 is the ground state zone centre confinement energy and the
electrons are free to move in the x–y plane.
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When a strong magnetic field, B, is applied perpendicular to the 2DEG,
the electrons move in cyclotron orbits in the 2-D plane. Classically, the
centripetal force, F, on each electron is given by

F = evB = m∗v2

r
(5.32)

where r is the radius of the cyclotron orbit. The cyclotron frequency, ωc,
then depends directly on the applied field, B, as

ωc = v/r = eB/m∗ (5.33)

Classically, all values of the orbital radius, r, and electron energy, E, are
allowed. However, when quantisation effects are taken into account, it can
be shown that the only allowed orbital energies depend directly on ωc as
En = (n + 1

2 )�ωc, where n is an integer and the quantised energy levels are
referred to as Landau levels. The energy levels of the 2DEG are then given
by

En = E0 + (n + 1/2) �ωc + gµBB · s (5.34)

where the last term describes the interaction between the electron spin and
the applied magnetic field, and is described in more detail in Chapter 6.

The form of the density of states then changes in an applied magnetic
field from the constant density of states of fig. 5.5 to a series of discrete
allowed energy levels, as illustrated in fig. 5.9. The total number of electron
states is, however, conserved per unit energy range. We saw earlier that in
zero field, the total number of states, N, per unit area between energy E
and E + dE is given by N = g2D(E)dE = 4πm∗/h2 dE. All the states lying
within an energy range dE = �ωc are gathered into each pair of spin up
and spin down Landau levels. The number of states,N, in each individual
Landau level is then given by

N = 1
2

(
4πm∗

h2

)
�ωc = eB

h
(5.35)

When j Landau levels are fully occupied, the areal carrier density ns = Nj,
and the Hall resistance is given by

RH = B
nse

= h
je2

(5.36)

It can be shown that the resistance, RI, to the applied voltage should go
to zero when the Landau levels are fully occupied and �ωc � kBT (i.e. at
high fields and low temperatures). RI = 0 in this case, first, because the
electrons cannot scatter to other (empty) states with the same energy, and,
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Figure 5.9 When a magnetic field B is applied perpendicular to a two-dimensional
structure the form of the density of states changes from a continuous
spectrum (a) to a series of discrete allowed energy levels (b), due to quan-
tization associated with the circular motion of the electrons in the plane
perpendicular to the applied magnetic field. For simplicity, the electron spin
energy, gµBB · s is ignored in (b).

second, because when �ωc � kBT the electrons will not be scattered to
other Landau levels. Given ns carriers per unit area, we then expect that
RI = 0 when ns = Nj = jeB/h.
In practice, it is found for many samples that RI = 0, and the Hall

resistance is quantised at RH = h/je2 over a finite range of field in the
neighbourhood of B = hns/je, as illustrated in fig. 5.10.
The step heights in the quantum Hall effect can be measured to better

than one part in 106 and lead to an extremely accurate determination of
h/e2 = 25 813�. A basic semiconductor experiment can, therefore, be
used in defining fundamental constants (h or e), and also as a resistance
standard, to define the ohm.

The model of the quantum Hall effect here is greatly oversimplified.
It does not, for example, account for the width of the plateaux in RH in
fig. 5.10. The plateauxwidth can be explained in terms of broadening of the
Landau levels, for example, by impurities and the localisation of electron
states in thewings of the broadenedLandau levels, as illustrated infig. 5.11.
Conduction occurs through the extended states and so, when the Fermi
energy lieswellwithin thebandof localised states, the conductionelectrons
again see no states close in energy to which they can scatter.

Once the magnetic field is sufficiently large that all electrons are in
the lowest Landau level, there should be no further plateaux in the Hall
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Figure 5.11 Model for the broadened density of states of a 2-D electron gas in a
strong magnetic field. Mobility edges close to the centre of the Landau
levels separate extended states from localised states.

resistance, RH or zeros in RI. It was, therefore, a further big surprise when
plateaux and zeros were seen when the lowest level was one-third and
two-thirds full, and then, as the material quality improved at further frac-
tions such as 1

5 ,
2
5 ,

2
7 ,

2
9 etc. (see fig. 5.12). The theory for these plateaux
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Figure 5.12 The fractional quantum Hall effect, showing evidence of a rich variety of many-
body effects in a two-dimensional electron gas in a strong magnetic field (after
Willett et al. © 1987 by the American Physical Society).

requires many-electron effects which cause energy gaps to open up within
the Landau levels: there are bound states containing, for example, three
electrons whose excitations have an effective charge of 1

3 , and which
then account for the plateaux at 1

3 and 2
3 . The theory of the fractional

quantum Hall effect has several parallels with that of superconductivity,
and analogies between the two processes have significantly furthered the
understanding of the quantum Hall effect (Kivelson et al. 1996).

5.6 Semiconductor laser action

Optical sources generally require a direct gap semiconductor, where the
lowest energy state in the conduction band, Ec, is directly above the highest
energy state in the valence band, Ev. This has the very important conse-
quence that an electron which has relaxed to its lowest possible energy in
the conduction band can recombine directly with a hole at the top of the
valence band and emit a photon.
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Direct gap semiconductors can, therefore, make efficient light sources,
such as lasers, light emitting diodes, and optical amplifiers. Although Si is
themainstay of the electronics industry, accounting for the vastmajority of
semiconductor production, its indirect band gap (described in Chapter 4)
has so far ruled it out as an optical source material. Instead, optoelec-
tronic devices are basedpredominantly ondirect gap III–V semiconductors
such as GaAs and InP. The energy gap in such semiconductors varies from
about 0.1 eV in InSbAs alloys to over 6 eV in AlN, and this, in principle,
enables semiconductor direct gap optical emission from about 10µm in
the mid-infra-red right through the visible spectrum to about 20 nm in the
ultra-violet. Quantum well structures play a major role throughout this
full spectral range.

Even in a direct band gap semiconductor, a typical electron–hole recom-
bination lifetime is 10−9 s while the typical time for an electron or hole to
undergo scattering with a phonon is much shorter (10−13−10−11 s). Thus it
is possible to assume that electrons in the conduction band are in thermal
equilibriumwith each other at the lattice temperature T and that similarly
holes in the valence band are in thermal equilibriumwith each other, even
when electrons and holes are not in equilibriumwith one another. Wemay,
therefore, describe the energy distribution of electrons and holes using
Fermi–Dirac statistics. That is, the probability, fc, of a state at an energy Ee
in the conduction band being occupied by an electron is

fc = 1
exp[(Ee − Fc)/kT] + 1

(5.37)

and the probability, fv, of a state at energy Eh in the valence band being
occupied by an electron is

fv = 1
exp[(Eh − Fv)/kT] + 1

(5.38)

where Fc and Fv are called the quasi-Fermi levels for electrons and holes,
respectively, and k is Boltzmann’s constant.

In order to achieve population inversion at the band edge in a semi-
conductor, and thence optical gain, we require that the probability of
stimulated emission exceeds the probability of absorption. It can be shown
that this occurs when the quasi-Fermi level separation exceeds the energy
gap, that is, to obtain gain we need to pump electrons and holes into the
semiconductor until

Fc − Fv ≥ Eg (5.39)

This is known as the Bernard–Duraffourg relationship (Bernard and
Duraffourg 1961). The semiconductor then exhibits optical gain in the
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Figure 5.13 Material gain, g, as a function of photon energy in a semiconductor
medium. Successive curves show the gain spectrum as the injected cur-
rent I and hence the carrier density is increased. In each case, g = 0 at an
energy E = Fc − Fv, the quasi-Fermi level separation for the given drive
current.

energy range from Eg to Fc − Fv and is absorbing at higher energies as
illustrated in fig. 5.13. One of themajor aims of band structure engineering
in semiconductor lasers is to obtain transparency (when Fc −Fv = Eg) and
gain for the lowest possible injected carrier and current densities.

As the current injected into the laser is increased, initially the electron
and hole densities also increase and so the separation of the quasi-Fermi
levels, Fc − Fv, increases (see fig. 5.13), leading to an increase in the peak
gain value. This continues until the maximum gain is equal to the total
losses from the laser cavity. Loss mechanisms within the cavity include
photon scattering due to imperfections and also reabsorption mechanisms
associated perhaps with defect states in the laser structure. In addition,
the gain must overcome the loss of photons from the end mirrors of the
laser.

The characteristics of III–V semiconductor lasers are in large part deter-
mined by the valence band structure, which is complicated even in the
unstrained case (fig. 5.14a). We saw in Chapter 4 how the Light- (LH) and
Heavy-Hole (HH)bands aredegenerate at the zone centre,�, with the spin-
split-off band lyingat an energyEso below the twohighest bands. Although
semiconductors are among the most efficient of laser materials there are
several drawbacks associated with the band structure of fig. (5.14a). First,
the conductionbandeffectivemass is small, while thehighest (HH)valence
band always has a large effective mass, leading to a large valence band
density of states and hence requiring a large carrier density and a large
spread in electron energies at population inversion. If the conduction and
valence bands had more similar shapes, a lower density of both holes and
electrons, which must be equal to maintain charge neutrality, would be
required. Second, in bulk lasers, cubic symmetry means that the states at
the valence band maximum are made up in equal part of px, py and pz-like
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Figure 5.14 (a) Schematic representation of the band structure of an unstrained direct
gap tetrahedral semiconductor. (b) Under biaxial compression, the axial strain
component splits the degeneracy of the valence band maximum, and introduces
an anisotropic band dispersion, with the highest band heavy along k⊥, the strain
axis (= growth direction), but light along k‖ (in the growth plane). (c) Under
biaxial tension, the valence band splitting is reversed, with the highest band
now light along k⊥ and comparatively heavy along k‖ (from O’Reilly (1989)
with permission of the Institute of Physics).

orbitals. The holes are distributed equally between the three types of states
and are equally likely to produce light which is linearly polarised in the
x, y, or z directions. Therefore only one-third of even those holes at the
correct energy are in the right polarisation state to contribute to the lasing
mode, which will be polarised along one specific direction.

The semiconductor band structure also determines the dominant loss
mechanisms. At longer wavelengths (1.3µm and beyond) Auger recom-
bination becomes an increasingly important loss mechanism. In Auger
recombination, an electron and hole recombine across the band gap but
instead of emitting a photon give their energy and momentum to excite a
third carrier, such as the electron in fig. 5.15. Because Auger recombination
involves three carriers, the recombination current varies with carrier den-
sity, n, asCn3, whereC is referred to as theAuger recombination coefficient.
It can be shown for the case considered in fig. 5.15 that the Auger coeffi-
cient, C depends on the energy gap, Eg, and electron and hole effective
masses, m∗

c and m∗
v approximately as

C(T) = C0 exp
(

− m∗
cEg

m∗
c + m∗

v

/
kT

)
(5.40)
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Figure 5.15 An example of an Auger recombination process in a semiconductor,
where the energy and momentum released when an electron and hole
recombine across the band gap is used to excite another carrier; in this
case exciting an electron from near the conduction band minimum to a
higher conduction state.

Auger recombination then becomes increasingly important as Eg → 0,
and in fact ultimately limits the room-temperature application of con-
ventional semiconductor lasers at longer wavelengths (about 3µm and
beyond).

Several strategies are available to improve on the unstrained bulk band
structure offig. 5.14(a). Thegrowthof quantumwell, wire, ordot structures
modifies the density of states, as shown in fig. 5.5. At each stage in going
from bulk to quantum dot the likelihood of an electron or hole occupying
an energy state other than the lowest is decreased, and the current required
for lasing action is in principle reduced.

Quantumbox and quantumwire lasers still present considerable growth
and fabrication problems but quantumwell lasers are well established and
widely available commercially. In addition, the laser characteristics can
be further improved by the introduction of strain in the quantum well
layer.

5.7 Strained-layer lasers

It is now possible to grow high-quality, strained-layer structures, in which,
for example, a single layer is composed of a semiconductor which would
normally have a significantly different lattice constant to the substrate
material. The lattice mismatch is accommodated by a tetragonal distor-
tion of the layer, as illustrated in fig. 5.16, giving a built-in axial strain. The
stored strain energy is linearly dependent on the thickness while a cer-
tain minimum energy is associated with the formation of a dislocation
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Figure 5.16 (a) Biaxial compression occurs when a layer has a larger lattice-constant
than the substrate on which it is grown: the layer is compressed in the
growth plane and relaxes by expanding along the growth direction. (b)
Energy stored per unit area versus layer thickness h in a strained layer
(Est), and in a dislocation network relieving the strain (Edis). The strained
layer is thermodynamically stable for h < hc (from O’Reilly (1989) with
permission of the Institute of Physics).

and plastic relaxation. Therefore, below a certain critical thickness, hc, the
elastically strained layers are thermodynamically stable and high quality
pseudomorphic growth can be achieved.

The growth of strained-layer structures has several advantages. Strained
layers allow newmaterial combinations on established substrates, includ-
ing, for instance, InGaAs alloys on GaAs or InP. With the independent
variation of band gap and lattice constant, it is possible to access new
band regimes not otherwise achievable, such as the InGaAs/GaAs lasers
emitting at 1µm which are used to pump optical fibre amplifiers. The
built-in strain also introduces newphysical effects, significantlymodifying
the electronic properties of the semiconductor materials. The combi-
nation of new emission wavelengths and improved characteristics at
existing wavelengths has led to widespread application of strained-layer
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lasers and amplifiers (Adams and O’Reilly 1992; Adams, O’Reilly and
Silver 1998).

To understand the effects of strain on the band structure, we need to
return to the band structure of fig. 5.14(a). The LH and HH bands are only
degenerate because of the cubic symmetry of the lattice and they are split
apart by strain. This splitting arises because the z-like valence state now
sees a different environment to the x- and y-like states due to the change
in unit cell dimensions. In addition, the resulting band structure is highly
anisotropic (fig. 5.14(b) and (c)), with the band which is heavy along the
strain axis, k⊥, being comparatively light perpendicular to that direction,
k‖, and vice-versa. This anisotropy can be understood from the k · p theory
introduced in Chapter 4, where we saw that the interaction between the
conduction band and a z-like state gives rise to a valence band with a low
effective mass along the z-direction, and heavymass perpendicular to that
direction.

When the layer is grown in compressive strain, the bandwith lower hole
mass in the quantum well plane moves to the valence band maximum, as
shown in the LHSof fig. 5.14(b). There is nowamuch bettermatch between
the carrier effective masses in the conduction and valence bands and the
threshold current and carrier density are reduced.

The band splitting is reversed in layers under tensile strain (LHS of
fig. 5.14(c)). A marked reduction in threshold current has also been
observed in tensile-strained lasers. Adifferentmechanismmustbe invoked
to explain these improvements. We have alreadymentioned how the holes
in a bulk laser are distributed equally between states that would produce
light polarised in the x, y, or z directions, so that only one in three holes
contribute to the lasing mode. However, the reduced symmetry in the
tensile-strained layer shifts the z-like valence states up in energy compared
to the x- and y-like states; for sufficient tensile strain, most of the holes then
have z-like character and are in the right polarisation state to contribute to
the lasing mode, which is indeed found to have its electric field polarised
along the growth (TM) direction.

Figure 5.17 shows a compilation by Thijs et al. (1994) of the measured
straindependenceof threshold current densityperwell in longwavelength
(1.5µm) InGaAs(P) quantum well lasers. The reduction in threshold cur-
rent with both tensile (LHS) and compressive strain (RHS) is clearly seen.
The maximum threshold current occurs in layers with a small tensile mis-
match, rather than in lattice-matched, unstrained quantum wells. This
occurs because strain and quantum confinement each split the HH and
LH states at the valence band maximum. The splittings add to each other
for compressive strain but are in opposite directions for tensile strain: the
largest threshold current density is then found about the point where the
strain- and confinement-induced splittings are equal and opposite, leaving
the HH and LH bands degenerate.
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Figure 5.17 Summary of threshold current density, Jth, per well deduced for infinite
cavity length 1.5 µm lasers versus the strain in the InGaAs(P) quantum
wells, using data reported in the literature (after Thijs et al. © 1994 IEEE).

5.8 Tunnelling structures and devices

When a classical particle is incident on a barrier of height V, it has a 100
per centprobabilityof transmission if its energyE > V, andwill be reflected
with 100 per cent probability if E < V. By contrast, this is not the case in
quantum mechanics where, because of its wave-like nature, an incident
electron has a finite probability of tunnelling through a thin barrier even
when E < V.

The requirements for creating tunnelling structures in III–V semiconduc-
tors are not very different to those for quantum wells: a single barrier for
tunnelling can be formed by sandwiching a thin layer of wide band gap
material between two narrower gap regions, as illustrated in fig. 5.18(a).
Because the tunnelling probability, and hence the current, varies expo-
nentially with both barrier height and width, and can also be modified
by impurities, careful growth control is considerably more critical for
tunnelling structures than for quantum well devices, so that tunnelling
devices have not been as widely commercialised. Nevertheless, much ele-
gantphysics andmanyuseful effects havebeendemonstrated in tunnelling
structures, both for electronic and optoelectronic applications (Kelly 1995).

We first review here the principles of quantum mechanical tunnelling
calculations and then conclude this chapter by describing briefly two
of the most significant tunnelling devices: first, double barrier resonant
tunnelling devices, which can display negative differential resistance
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Figure 5.18 (a) Variation of the conduction band edge energy through a single barrier
tunnelling structure. A plane wave eikz incident from the left has a finite
probability of being reflected from (r e−ikz) or transmitted (t eikz) through
the barrier. (b) Variation of the transmission coefficient t(E) as a function
of incident electron energy, E, for an electron in GaAs (m∗ = 0.067)
incident on a barrier 60 Å wide and 0.3 eV high (equivalent to x ∼ 0.35
in an AlxGa1−xAs barrier).

over a wide temperature range, and, second, quantum cascade laser
structures, where population inversion is achieved by engineering the
electron confined state energies and tunnelling rates in multiple barrier
structures.

We consider in fig. 5.18(a) an electron of energy E incident from the left,
withwavefunction eikz on a barrier of heightV (>E) and thickness d, where
we have again defined k2 = 2m∗E/�

2. When reflection and transmission
are included at each interface, the wavefunction takes the form

ψ(z) = eikz + re−ikz z < 0

= A eκz + B e−κz 0 < z < d

= t eikz z > d (5.41)

where r e−ikz then describes the wave reflected to the left, t eikz is the trans-
mitted wave, and A eκz + B e−κz describes the wave in the barrier region,
with κ2 = 2m∗(V − E)/�

2, and assuming the same effective mass m∗ in
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Figure 5.19 (a)–(c) The variation in the conduction band line-up with increasing
applied bias in a double barrier structure. (d) The current–voltage char-
acteristic for such a structure. The current is peaked about the point B
where resonant tunnelling is possible, and can show a strong negative
differential resistance as the bound state moves off-resonance in (c).
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each region.We have four unknown coefficients in eq. (5.41), whichwe can
determine by requiring the wavefunction, ψ , and its derivative, dψ/dz to
be continuous at z = 0 and z = d, the two interfaces. The most important
quantity for us is the transmission coefficient, t(E), which, it can be shown
(e.g. Schiff 1968), is given by

t(E) = exp(−ikd)(1 − φ2)

exp(κd) − φ2 exp(−κd)
(5.42)

with φ = (κ + ik)/(κ − ik). This is dominated for E < V by the eκd term in
the denominator, so that the transmission amplitude then decreases with
increasing V − E, as illustrated in fig. 5.18(b).
We now consider a double barrier structure, where the two barriers are

separated by a thin layer of narrow band gapmaterial, as illustrated in fig.
5.19(a). If the barriers are wide enough, we can clearly view the central
region as a quantum well, with a set of confined state energies at E1, E2
etc. Even with narrow barriers, there will be resonant states in the well
region. We can calculate the tunnelling probability through the double
barrier structure as a function of incident energy, E. The tunnelling rate
again decreases exponentially with increasing V − E, except that near the
confined state energies, E1 etc. resonant tunnelling occurs. For a symmetric
structure such as in fig. 5.19(a), the tunnelling probability equals 1 at the
confined state energies.

Figure 5.19 illustrates how this effect can be used to achieve negative
differential resistance (NDR). Thedouble barrier structure is designedwith
n-doped layers on either side of the undoped double barrier region. For
zero applied bias, electrons incident, for example, from the left are off-
resonance (fig. 5.19(a)).When a voltage is applied, much of the applied bias
is dropped across the undoped barrier region, so that resonant tunnelling
becomes possible, leading to a sharp increase in current (fig. 5.19(b)). With
further appliedbias, the incident electronsmoveoff-resonance (fig. 5.19(c)),
giving a NDR region, where the current decreases for increasing applied
voltage.

The current–voltage characteristics ofNDRdevices are unstable, switch-
ing between high and low current values. As the resonant tunnelling
process is extremely fast, veryhighspeedoscillation ispossible inelectronic
devices: resonant tunnelling diodes have been demonstrated operating at
frequencies of over 700GHz (Brown et al. 1991).

Turning now to optical devices, itwas first realised in the early 1970s that
it should be possible to achieve lasing by exciting a population inversion
between two confined sub-bands in a quantum well structure (Kazarinov
and Suris 1971). The chief difficulty is to maintain the population inver-
sion. This problemcanbeovercome through the clever designof tunnelling
structures. The wavelength in such a structure is then determined by
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Figure 5.20 Conduction band edge profile of the key section of the first quantum cascade
laser to be demonstrated. The structure is designed so that electrons can
tunnel efficiently from the left into level 3, leading to a build-up of carriers in
this level. Tunnelling between 3 and 2 is slow. Electrons also tunnel efficiently
out of levels 2 and 1, leaving them effectively empty and resulting in a population
inversion between levels 3 and 2.

the spacing between the confined energy levels, which can be controlled
through the layer thicknesses. A tunnelling-based laser was first demon-
strated by Federico Capasso and co-workers at Bell Laboratories in New
Jersey in 1994 (Faist et al. 1994). Laser emission has since been achieved
over a wide wavelength range (at least between 4 and 11µm), including
room temperature operation.

Figure 5.20 illustrates the conduction band edge profile of their original
device when under forward bias. It consisted of three GaInAs quantum
wells sandwiched between fourAlInAs barriers, all grown lattice-matched
on an InP substrate. There was only one confined sub-band in each well.
Under forward bias, electrons tunnel into the first quantum well, leading
to a build-up of charge in the highest of the energy levels, E3. Tunnelling
between 3 and 2 is designed to be slow. Electrons tunnel efficiently out
of levels 2 and 1, leaving them effectively empty and giving a popula-
tion inversion between levels 3 and 2. Stimulated radiative recombination
between these levels gives laser emission at a frequency ν = (E3 − E2)/h.
Because the tunnelling rate from level 3 to 2 is still high in comparison



124 Low-dimensional semiconductor structures

with the radiative recombination rate, eachdevicemust containmany such
structures in series, giving rise to the name quantum cascade laser, with
electrons that tunnel out of level 1 in one structure then cascading on to
tunnel into level 3 in the next structure.

The initial device contained twenty five such sections in series, the com-
plete laser containing some 500 layers of precisely defined composition
and width. The quantum cascade laser is undoubtedly a tour de force
in the understanding and application of semiconductor band structure
engineering, demonstrating the growth control, physical understanding
and engineering possibilities of advanced low-dimensional semiconduc-
tor structures. It also opens up the possibility of extending semiconductor
lasers across a broad new spectral range and into applications such as
miniature radar, remote sensing, and laser-based pollution monitoring.
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Problems

5.1 Estimate themaximumwidth for a GaAs quantumwell if it is desired
that thehighestHHconfined state is separatedbyat least 40meV from
the highest LH confined state. Youmay assume that the barrier due to
the neighbouring confining layers is effectively infinite and that the
relative effective mass of GaAs heavy holes and light holes is given
by m∗

HH = 0.35 and m∗
LH = 0.082, respectively. It may also be useful

to use �
2/m = 7.62 eVÅ2.

5.2 The direct band gap of AlxGa1−xAs varies with composition x
approximately as (Lambert 1987)

Eg(x) = (1.52 + 1.34x)eV

and the ratioof the conductionband tovalencebandoffset,�Ec : �Ev,
has been determined to be about 65 : 35. By rewriting eq. (5.3a) as

L = (2/k) tan−1(κ/k)

calculate the three GaAs well widths Le,Ll, and Lh for which the
lowest confined electron, LH, andHH states, respectively, have a con-
finement energy of 25meV when x = 0.2 in the barrier. (Assume
m∗

e = 0.067,m∗
HH = 0.35, and m∗

LH = 0.082 in both the well and
barrier layers.)

5.3 It can be shown (e.g. Schiff 1968) that the energy levels of the (spher-
ically symmetric) s states in a spherical quantum dot of radius a can
be found by solving

−k cot(ka) = κ

where E = �
2k2/2m∗, (�Ec − E) = �

2κ2/2m∗, �Ec is the band offset
andm∗ the carrier effectivemass in thedot andbarrier. Showthat there
will be no bound state in a spherical quantum dot unless �Eca2 >

π2
�
2/8m∗, and that there is only one bound s state if π2

�
2/8m∗ ≤

�Eca2 < 9π2
�
2/8m∗.

5.4 Estimate theminimum radius required of an InAs spherical quantum
dot embedded in a GaAs matrix in order to ensure there will be one
bound electron state in the quantum dot. Estimate also the radius at
which a second state will become bound. You may assume that the
conduction band offset between the InAs dot and GaAs is approxi-
mately �Ec = 0.5 eV, and that the electron effective mass m∗ = 0.04
in the dot and barrier layers. (A more accurate calculation would
take account of the different electron effective masses in the dot and
barrier, but would not significantly change the estimated radii.)
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5.5 Because theHall effect involves two voltage and current components,
Ohm’sLawneeds to begeneralised to a tensor formwhen considering
the Hall effect:(
Vx
Vy

)
=

(
Rxx Rxy
Rxy Ryy

) (
Ix
Iy

)

Bycalculating the inverseof the above resistancematrix, showthat the
elements of the conductancematrix, describing how current depends
on voltage, are given by

Gxx = Ryy

RxxRyy − R2
xy
; Gxy = −Rxy

RxxRyy − R2
xy

From symmetry, we expect Rxx = Ryy, leading to the apparent para-
dox that the longitudinal conductance, Gxx = 0, at the same time as
the longitudinal resistance, Rxx = 0.

5.6 Consider a two-dimensional structure for which the conduction
(valence) band density of states per unit area, gc(v)(E) = m∗

c(v)/π�
2,

with the band edges at E = Ec and E = Ev, respectively. Use eqs
(5.37) and (5.38) for the quasi-Fermi levels to show that the conduction
electron density, n, depends on the quasi-Fermi level energy Fc as

n = m∗
ckT

π�2
ln[e(Fc−Ec)/kT + 1]

with an equivalent expression for the valence hole density, p. Invert
this expression to show that the Fermi energy varies with carrier
density n as

Fc − Ec = kT ln

[
exp

(
nπ�

2

m∗
ckT

)
− 1

]

5.7 Consider an ideal quantum well laser for which the conduction
(valence) band density of states per unit area, gc(v)(E) = m∗

c(v)/π�
2,

with the band edges at E = Ec and E = Ev, respectively. It can be
shown that the peak gain, gmax, occurs at the band edge energy, and
is given by

gmax = G0( fc − fv)

where fc and fv are the values of the quasi-Fermi functions at the
conduction and valence band edges respectively andG0 is a constant.
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Show that if charge neutrality is maintained in the laser active region
(n = p) then the peak gain depends on carrier density n as

gmax = G0

[
1 − exp

(
− π�

2n
m∗

vkT

)
− exp

(
− π�

2n
m∗

ckT

)]

Show that if m∗
c = m∗

v, then the transparency carrier density, n0, (for
which gmax = 0) is given by

n0 = m∗
ckT

π�2
ln 2

This shows that the transparency (and hence threshold, nth) carrier
density increases with the band edge effective mass in a quantum
well laser, and also that n0 increases approximately linearly with
temperature.

Justify why the transparency carrier density will vary as n0 ∼
(kBT)D/2 in a D-dimensional structure, and hence why the threshold
current density is predicted to have a lower temperature dependence
as the dimensionality D is reduced in the active region of an ideal
semiconductor laser.



Chapter 6

Diamagnetism and
paramagnetism

6.1 Introduction

When a magnetic field is applied to an isolated atom, the electrons and
nucleus will respond to the applied field, leading to an induced magneti-
sation. An isolated atom generally has only aweak response to the applied
field, with the atom displaying either diamagnetic and/or paramagnetic
behaviour, depending on the electron configuration. By contrast, solids
show a much wider variety of magnetic responses, including ferromag-
netism, antiferromagnetism, and ferrimagnetism. These last three arise
due to interactions between electrons on different atoms within the solid.

The aim of this chapter and the next one is, first, to provide an overview
of the causes of the different types of magnetic behaviour and, second, to
consider some of their consequences. We begin here by considering the
behaviour of paramagnetic and diamagnetic atoms and solids, where the
response of each atom or ion can generally be viewed as independent of
all the others. Most solids are paramagnetic or diamagnetic, with a very
weak response to an applied magnetic field. The next chapter considers
the more interesting case of ferro-, ferri-, and antiferromagnets, where the
additional interactions occurring between electrons on neighbouring ions
enable the electrons to respond in a cooperativemanner to an applied field,
allowing much stronger magnetic effects.

6.2 Magnetisation

The magnetisation, M, of a material can be defined as its magnetic dipole
moment per unit volume

M = Nm (6.1)

wherem is the averagemagnetic dipolemoment per atomormolecule, and
N is the number of atoms or molecules per unit volume. M is the magnetic
analogue of the electric polarisation P, where P is defined as the electric
dipole moment per unit volume. Just as the polarisation response of many
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materials to an electric fieldE can be described by the electric susceptibility,
χe, withP = ε0χeE, so toowedefine themagnetic susceptibilityχm relating
the magnetisation M to the magnetic field intensity H as

M = χmH (6.2)

The steady-state magnetic field intensity H can be viewed as the field due
to an externally applied current, with

∇ × H = Jf (6.3)

where Jf is the external current density. The force F on a charge q moving
with velocity v is then given by

F = q(v × B) (6.4)

where B is a directly measurable quantity, and is formally defined as the
magnetic induction, or magnetic flux density. In practice, few physicists
ever refer to the ‘magnetic induction’, preferring to talk instead about ‘the
magnetic field, B’. We shall follow this general trend here. The magnetic
field, B depends on M and H as

B = µ0(H + M) (6.5)

where µ0 is the permeability of free space. The definitions of electric sus-
ceptibility, χe, and magnetic susceptibility, χm, are not exactly equivalent.
The electric susceptibility is defined as the constant of proportionality link-
ing two directly measurable quantities, the polarisation P and the electric
fieldE. By direct analogy, wemight then expect themagnetic susceptibility
to have been defined as χB, with

µ0M = χBB (6.6)

and the susecptibility then linking the twomeasurable quantities, M andB.
It is to a certain extent easier to calculate χB than χm for both paramagnetic
and diamagnetic materials, which we do later in this chapter. It can be
shown by combining eqs (6.2), (6.5), and (6.6) that the two definitions of
magnetic susceptibility are in any case directly related to each other by

χm = χB

1 − χB
(6.7)

so that for the small values of χB found in paramagnetic and diamagnetic
solids it is in any case a reasonable approximation that χm = χB.
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m

I

A

Figure 6.1 An electron moving in a classical orbit of area A has magnetic moment
m = IA due to its orbital motion, where I is the current flowing, and the
moment points perpendicular to the loop.

6.3 Magnetic moment of the electron

Consider an electron with charge e moving in a classical circular orbit of
area A (fig. 6.1). It can be shown that the electron has a magnetic moment
m due to its motion, given by

m = IA (6.8)

where I is the current flowing in the closed loop, and the vector A has
magnitude equal to the loop area and points perpendicular to the loop,
with the current flowing clockwise when looking along the direction of A.
The current I equals the charge passing any point on the loop per unit time,
and is given by

I = −e
ω

2π
(6.9)

whereω is the angular frequencyof the electronmotion, and theminus sign
follows from the negative charge of the electron. Substituting in eq. (6.8),
the magnitude of the electron’s magnetic moment due to its orbital motion
is then given by

m = −
(
e

ω

2π

)
· (πr2)

= −e
2me

· (mer2ω) (6.10)

where me equals the electron mass and Q = mer2ω is its angular momen-
tum. This result remains true in quantum mechanics, where the angular
momentum is quantised, as shown in Appendix B, with orbital quantum
number l. If we consider an externally applied field, B, directed along the
z-direction, then the component of angular momentum Qz along the field
direction is given by

Qz = �lz (6.11)
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B

lz= 2

lz= 1

lz= 0

lz= –1

lz= –2

Figure 6.2 The total angular momentum of an electron with orbital quantum number
l = 2 equals �

√
l(l + 1) = √

6� . When placed in an applied field B, the
component of angular momentum along the field direction, lz , can take the
values −2�, −�, 0, � and 2�, as illustrated here.

where lz is an integer, and −l ≤ lz ≤ l. This is illustrated for l = 2 in fig. 6.2.
The energy, Em, of the magnetic moment in the magnetic field B depends
on the orientation of the moment with respect to the applied field both
classically and quantum mechanically as

Em = −m · B (6.12)

Substituting eqs (6.10) and (6.11) in eq. (6.12) we then find that the dipole
energy is quantised, with

Em = −m · B = e
2me

(�lz)B

= e�
2me

lzB = µBlzB (6.13)

whereµB = e�/2me, is defined as the Bohr magneton, and can be regarded
as the quantised unit of electron magnetic moment.

In addition to orbital angular momentum, an electron also has angular
momentum associated with its intrinsic spin, with the spin component, sz,
along themagnetic fielddirectiongivenby sz = ± 1

2 , dependingonwhether
the spin is alignedwith or against the applied field. The component of spin
magnetic moment, msz , along the field direction is given by

msz = −g0µBsz (6.14)
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where g0 is referred to as the splitting factor, with g0 = 2(1+ e2/4πε0hc) =
2.0023, whichwe can assume equals 2 for further analysis. The inclusion of
both c and h in the definition of g0 indicates that the spinmagneticmoment
is an effect whose explanation requires a combination of both relativity (c)
and quantum mechanics (h).

6.4 Diamagnetism in atoms and solids

The orbital motion of a single electron in an atomic orbital can be regarded
as equivalent to that of a classical current loop for which the resistance,
R = 0. We justify this point further in Chapter 8 when we consider super-
conducting materials but for now it is sufficient to note that an electron in
a particular orbital of an isolated atom continues its motion ad infinitum, as
if R = 0, until it makes a transition to a completely different state, where
its current may be different, but is again constant, with the resistance still
equal to zero.

Theapplicationof amagneticfieldB changes themagneticfluxφ through
the loop. The total flux is given by

φ =
∫
A

B · dA (6.15)

where the integral A is over the area of the loop. There will, from Lenz’s
law, be an induced back e.m.f., E(t), during the time, t, that the field B is
changing, given by

E(t) = −dφ

dt
(6.16)

This leads to a change in the current flow, and hence in the magnetic
moment, giving a (small) induced magnetic field directed opposite to the
applied field. As the loop resistance R = 0, the change in the loop current
will persist untilB is removed, giving an inducedmagneticmomentwhich
points against the applied field B. The diamagnetic susceptibility, χdia will
then be negative. From eq. (6.15) for the magnetic flux, φ, we expect that
χdia will depend on the sum of the areas of the occupied orbitals in each
atom, with the sum of the areas being dominated by the contribution from
the valence electrons, as the core electrons have considerably smaller radii.
Calculations outlined in more detail in several other textbooks (e.g. Hook
and Hall 1991; Ashcroft and Mermin 1976) show that the diamagnetic
susceptibility is independent of temperature and is given by

χdia = −µ0
Ne2

6me

nv∑
i=1

〈R2
i 〉 (6.17)
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where N is the number of atoms per unit volume, nv is the number of
valence electrons per atom, and 〈R2

i 〉 is the mean square radius of the ith
electron.

We can make an order of magnitude estimate of a typical value for χdia
by setting 〈R2

i 〉 equal to the Bohr radius squared, a20 = (5.3 × 10−10 m)2,
assuming four valence electrons per atom, and N = 1029 m−3, a typical
solid density, which gives χdia = −7 × 10−6, a number small compared
with one. All solids have a diamagnetic contribution to their magnetic sus-
ceptibility, but as this is typically of order −10−5 to −10−6, it is a very
weak effect overall, certainly in comparison with typical electric suscep-
tibilities. This explains in large part why solids generally interact with
electromagnetic waves predominantly through the electric field.

6.5 Langevin (classical) theory of paramagnetism

We saw in Section 6.3 how an individual electron has an associated mag-
netic moment. For some atoms and most solids, the sum of the magnetic
moments associatedwith all the electrons cancels exactly. The atomor solid
then has no net magnetic moment, and the material will be diamagnetic,
with a weak response to any applied field.

Consider instead the case where some atoms in a gas or solid have a net
magnetic moment, but that the interactions between these atoms are suffi-
ciently weak that they behave essentially independently of each other. In
the absence of an applied field, B, the magnetic moments will point at ran-
dom in all directions, giving no netmagnetisation, that is, M = 0 forB = 0.
When a finite field, B, is applied the magnetic moments will tend to align
with the magnetic field, to reduce their magnetic energy, Em. This align-
ment will, however, be opposed by the thermal agitation of the spins. As
the thermal energy increases with increasing temperature, we expect the
net induced magnetisation to decrease monotonically with temperature,
giving a temperature-dependent paramagnetic susceptibility, χpar(T). We
shall see below that the paramagnetic susceptibility is generally stronger
than the diamagnetic susceptibility. Nevertheless, a truly paramagnetic
material still has a very weak overall response to an applied field B.
Paramagnetism is displayed by some molecular gases and liquids,

including O2 and NO. It is also observed in transition metal and rare
earth salts, such asMnSO4(NH4)2SO4 · 6H2O, where each transitionmetal
(manganese, Mn) atom has a net magnetic moment, and the magnetic
moments are sufficiently separated that they interact onlyveryweaklywith
each other. In addition, most metals display a temperature-independent
paramagnetic susceptibility, as we discuss further in Section 6.8.

We use classical thermodynamics to first estimate the paramagnetic sus-
ceptibility of a set of classical spins, which are free to point in any direction.
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We then introduce Hund’s rules in the next section, which describe how to
determine the net magnetic moment of an isolated atom. This will enable
us to determine the susceptibility in the quantum mechanical case.

We saw in eq. (6.12) how the magnetisation energy of a magnetic dipole
with magnetic moment m aligned at an angle θ to an applied field B is
given by

Em = −mB cos θ (6.12)

implying that the energy isminimisedwhen themagneticmoment is along
the field direction. If we assume that there are N dipoles per unit volume,
then the number of dipoles per unit volume, dN, aligned between θ and
θ + dθ (i.e. in the solid angle d� = 2π sin θ dθ of fig. 6.3) is given using
Maxwell–Boltzmann statistics by

dN = CN exp(−Em/kT)(2π sin θ dθ) (6.18)

where CN is a constant of proportionality, which we must evaluate, and
exp(−Em/kT) is the Boltzmann probability function, describing how the
probability of a given state being occupied decreases exponentially with
increasing energy.Weknow that everymomentmust be aligned at an angle
θ between 0 and π with respect to the applied field. We can, therefore,
calculate the total number of moments per unit volume, N, by integrating
eq. (6.18) between 0 and π :

N =
∫ θ=π

θ=0
CNe(mB/kT) cos θ 2π sin θ dθ (6.19)

This integral can be solved by letting x = mB/kT and then making the
substitution y = x cos θ , so that dy = −x sin θ dθ , and

N = 2πCN

x

∫ x

−x
ey dy = 4πCN

x
sinh x (6.20)

Re-arranging eq. (6.20), we then calculate that the constant of proportion-
ality, CN , is given by

CN = xN
4π sinh x

(6.21)

We note that for small x(mB � kT) sinh(x) ≈ x, and CN → N/4π , with the
N spins then equally distributed over all directions. The net magnetisation
M in the field direction can be found as a function of x using

M = N〈m〉 =
∫ π

0
(m cos θ)dN

=⇒ M = xN
4π sinh x

∫ θ=π

θ=0
m cos θ ex cos θ2π sin θ dθ

(6.22)
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Figure 6.3 The magnetisation energy, Em, of a magnetic moment m aligned at an angle
θ to an applied field B is given by Em = −mB cos θ . Spins aligned between
the angles θ and θ + dθ fill a solid angle d� = 2π sin θ dθ .
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Figure 6.4 Variation with x of the Langevin function, L(x) = coth x − 1/x, which
describes the field dependence of the magnetisation in a classical paramag-
net. L(x) � 1

3 x for small x, and goes to 1 at large x.

This can again be solved by letting y = x cos θ , giving the integral of the
function y ey, from which we determine the net magnetisation M as

M = Nm(coth x − 1/x) (6.23)

where L(x) = coth x − 1/x is known as the Langevin function.
Figure 6.4 shows the variation of the Langevin function with x. L(x)

increases linearly for small values of x, when the magnetic energy is much
smaller than the thermal energy, that is, mB � kT. It can be shown that
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L(x) � 1
3x for x � 1, so that the net magnetisation, M = NmL(x), is then

given by

M = Nm
1
3
mB
kT

(6.24)

which can be rewritten as

µ0M = Nµ0m2

3kT
B = χparB (6.25)

with the paramagnetic susceptibility, χpar, then given by

χpar = Nµ0m2

3kT
(6.26)

Equation (6.26) predicts that the paramagnetic susceptibility varies
inversely with temperature, so that we often write

χpar = C
T

(6.27)

This is known as the Curie Law, with the material-dependent parameter,
C, then called the Curie constant. We can use eq. (6.26) to estimate a typical
magnitude for the paramagnetic susceptibility. If we assumeN = 1028 m−3

magneticmomentsperunit volume, eachwithmagnitudeequal to theBohr
magneton, m = µB, we then find for a typical paramagnetic susceptibility
that χpar ∼ 10−4 at room temperature, again small compared with electric
susceptibilities, χe.

We can confirm the validity of the linear approximation used in eqs
(6.25)–(6.27) by noting that the magnetic energy associated with the Bohr
magneton, µBB, is only 0.6meV even for an applied field as large as say
B = 10 T. This is indeed small compared with the thermal energy, as kT =
25meV at room temperature.

The Curie law generally breaks down at very low temperatures, both
because the parameter x = µBB/kT becomes large, and also because of
the existence of very weak interactions between neighbouring magnetic
moments, which can give rise to ferro- or antiferromagnetic effects at the
lowest temperatures. Figure 6.4 shows that even in a perfect paramagnetic
material, the magnetisation saturates at high magnetic fields. L(x) → 1
when x → ∞, so that the magnetisation is then given byM = Nm, with all
of the moments aligned with the applied field.

6.6 Magnetic moments in isolated atoms and
ions: Hund’s rules

We saw in Section 6.3 that there is amagneticmoment associatedwith each
electron in an isolated atomor ion, due to the orbital angularmomentumof
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Figure 6.5 Ground state electronic configuration of the first seven atoms in the Peri-
odic Table. The energy is minimised, first, by filling states with lowest
principal quantum number, n (labelled ‘1’ and ‘2’ here), then considering
lowest available orbital angular momentum, l (labelled ‘s’ and ‘p’ here), and
finally by applying Hund’s rules to distribute the electrons among the states
of given n and l.

the electron, and its intrinsic spin. The total magnetic moment of the atom
or ion is then determined by the way in which the electrons are distributed
among the different energy levels. For a given ion, there are often many
different ways in which the electrons could in principle be distributed
among these levels. The ground state of the atom is then determined by
the electron configuration which minimises the total energy.

Figure 6.5 shows the ground state electronic configuration of the first
seven atoms in the Periodic Table. It can be seen that the energy levels are
filled in a very well defined and systematic manner. The rules describing
the ground state electron configuration are referred to asHund’s rules, and
have been well established both from analysis of atomic spectra and from
advanced calculations. Hund’s rules state:

1 The electron spins are arranged so that as many of the electrons as
possible have spins which are parallel to each other. This alignment is
favoured because of the Pauli Exclusion Principle, one form of which
states that there is zero probability of two electrons with the same spin
being at the samepoint at the same time. Hence, electronswith parallel
spins tend to have a larger average separation distance than thosewith
anti-parallel spins. This reduces the average electron–electron repul-
sion energy, and therefore the overall energy.We can define a quantum
number, S, to characterise the resultant spin angular momentum of all
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the n electrons in the atom, with

S =
∣∣∣∣∣

n∑
i=1

szi

∣∣∣∣∣ (6.28)

and the total spin angular momentum then being of magnitude
�
√
S(S + 1).

2 Subject to the constraint of the first rule, the electrons are then distrib-
uted among the possible orbital angular momentum states. Each such
state has a quantumnumber, lz, associatedwith its angularmomentum
component along the quantisation direction. The electrons are distrib-
uted among the possible lz states so that L = |∑ lz| is maximised, with
the resultant total orbital angularmomentum then being ofmagnitude
�
√
L(L + 1).

3 The orbital and spin angular momenta are coupled to each other in an
isolated ion, and we can define a total quantum number J = L + S
associated with this total angular momentum. The magnitude of J is
given by

J = |L − S| (6.29a)

when the shell is less than half-full (in which case L and S point in
opposite directions), and

J = L + S (6.29b)

when the shell is more than half-full (inwhich case L and S point along
the same direction).

Using these rules, the ground state of any isolated ion canbedetermined,
with the z-component of the magnetic moment given by

mz = −gµB Jz (6.30)

where g is called the Landé splitting factor, and is given by

g = 3
2

+ S(S + 1) − L(L + 1)
2J( J + 1)

(6.31)

The Landé splitting factor reflects the relative contribution of spin and
orbital motion to the total angular momentum. If we have a pure spin
state, for which L = 0 and J = S, then eq. (6.31) gives g = 2, as we had
earlier in eq. (6.14), while when S = 0, and J = L, we find g = 1, as we had
in eq. (6.13) for pure orbital angular momentum.
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6.7 Brillouin (quantum mechanical) theory of
paramagnetism

The Langevin theory we considered earlier provides a good description
of the behaviour of paramagnetic materials. It describes accurately the
response to a weak magnetic field, when x = mB/kT is small, and also
reproduces the saturation behaviour for large x, where all the magnetic
moments tend to align with the applied field, B. However, it tends
to underestimate the net magnetisation M for intermediate values of x.
The behaviour in this region can be reproduced more accurately using
Brillouin theory, which takes account of the quantised nature of the angu-
lar momentum and magnetic moment. For an ion whose total angular
momentum quantum number is J, the allowed values for the compo-
nent of magnetic moment along the field direction are given by eq. (6.30),
mz = −gµBJz, where Jz is an integer or half-integer, which takes values
−J,−J+1, . . . , J−1, J.We canuse a technique similar to the oneusedbefore
to calculate the net magnetisation M in the field B. We again assume that
there are N independent paramagnetic ions per unit volume. The number
of ions, �N( Jz), with magnetic moment component mz = −gµBJz along
the field direction is given by

�N( Jz) = CNemzB/kT

=⇒ �N( Jz) = CNe−gµBJzB/kT
(6.32)

where CN is again a constant of proportionality, and exp(mzB/kT) is the
Boltzmann probability function. We find, summing over the allowed total
angular momentum values that

N = CN

J∑
Jz=−J

e−gµBJzB/kT (6.33)

which can be re-arranged to give

CN = N∑J
Jz=−J e

−gµBJzB/kT
(6.34)

The net magnetisation, M, in the field direction can then be found by
summing over the allowed energy levels

M = N〈m〉 =
J∑

Jz=−J

−gµBJz �N( Jz)
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so that

M = N∑J
Jz=−J e

−gµBJzB/kT

J∑
Jz=−J

(−gµBJz)e−gµBJzB/kT (6.35)

We leave it as an exercise at the end of the chapter to show that eq. (6.35)
can be simplified to give

M = NgµBJBJ(x) (6.36)

where x = gµBJB/kT is again a measure of the relative strength of the
magnetic and thermal energy. BJ(x) is referred to as the Brillouin function
and takes the form

BJ(x) = 2J + 1
2J

coth
(2J + 1)x

2J
− 1

2J
coth

x
2J

(6.37)

The behaviour of the Brillouin function is qualitatively very similar to the
Langevin function. BJ(x) → 1 for large x, so that the magnetisation, M,
saturates at M = NgµBJ when the magnetic energy is large compared to
the thermal energy. BJ(x) varies linearly with x for small x, where it can be
shown that

µ0M = χ( J)B (6.38)

with the paramagnetic susceptibility, χ( J), given by

χ( J) = µ0Ng2µ2
BJ( J + 1)

3kT
(6.39)

This is identical to the classical result for the susceptibility in eq. (6.26),
if we identify

m = −pµB (6.40)

where p = g[J( J + 1)]1/2 can be thought of as the effective Bohr magneton
number. Figure 6.6 compares the experimentally determined variation of
the magnetisation,M, for several paramagnetic salts with the theoretically
predicted variation, using the Brillouin function. The measurements were
all carried out at low temperature (below 5K), enabling large values of
x = mB/kT to be obtained. It can be seen that excellent agreement was
achieved in each case by assuming the net orbital angular momentum,
L = 0, so that the splitting factor, g = 2, with J = S = 3/2, 5/2, and 7/2
respectively.
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Figure 6.6 Comparison of the experimentally determined variation of the magnetic
moment m per paramagnetic ion in several salts with the theoretically
predicted variation, using the Brillouin function (solid lines) and assuming
L = 0, with S = 3/2 (I, Cr3+), 5/2 (II, Fe3+) and 7/2 (III, Gd3+), respec-
tively. (Experimental data after Henry (1952), © 1952 by the American
Physical Society.)

6.8 Paramagnetism in metals

So far we have considered only electrons bound to individual atoms. Free
electrons in metals also display paramagnetic and diamagnetic behaviour,
but their susceptibility is distinguished by being virtually independent of
temperature. We saw in Chapter 5 how the density of states for a parabolic
band structurewith effectivemassme varieswith energy, E, above the band
edge as

g(E) = 4π
(
2me

h2

)3/2

E1/2 (6.41)

In a metal at zero temperature, all states up to the Fermi energy, EF,
are filled, while the states above EF are empty. In zero magnetic field,
there are equal numbers of electrons with spin up and spin down, imply-
ing no net magnetisation. When a field B is applied, the electrons with
magnetic moment m along the field direction are shifted down in energy
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Figure 6.7 Density of states for spin up (LHS) and spin down (RHS) electrons of
a free electron metal in an applied field B. When B = 0, the bottom
of the spin up and spin down bands are at the same energy, with equal
number of spin up and down states filled to the Fermi energy, EF. In field
B, the electrons which occupied the cross-hatched states on the LHS
must be transferred into previously empty states on the RHS, giving a
net paramagnetic magnetisation.

by mB = 1
2g0µBB while states with m against the field direction shift up

by 1
2g0µBB, as illustrated in fig. 6.7. The Fermi energy must be the same

for both sets of states in thermal equilibrium. Considering the shaded area
in fig. 6.7, this occurs by moving �N = ( 12g0µBB) · ( 12g(EF)) electrons per
unit volume from states with moment aligned against the field (above the
Fermi energy) to states aligned with moment parallel to the field (below
the Fermi energy). The net magnetisation M is then given by

M = 1
2g0µB · 2�N = 1

4g
2
0µ

2
Bg(EF)B (6.42)

so that the paramagnetic susceptibility, χP, is then given by

χP ∼ µ0µ
2
Bg(EF) (6.43)

Because thermal energies kT are much smaller than the Fermi energy EF,
the same argument can be applied at finite temperature, and the paramag-
netic susceptibility of a metal, referred to as the Pauli spin susceptibility,
is then approximately independent of temperature. Because electrons near
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the Fermi energy are free to move through the metal, they also have
a diamagnetic susceptibility associated with this motion. Landau calcu-
lated that for a free-electron metal (whose density of states is given by
eq. (6.41)), the diamagnetic susceptibility, χL, is given by χL = − 1

3χP, so
that the net susceptibility for free electrons is then positive and is equal to
2
3χP. Band structure and related effects modify this result, but nevertheless
it is still found that the susceptibility is temperature independent and is,
for many metals, of comparable magnitude to that predicted by the Pauli
model.

6.9 Floating frogs

It is fascinating to see objects floating without material support or suspen-
sion. This became a familiar sight in the 1980s when pellets of the then
new high-temperature superconductors were levitated above permanent
magnets, and vice versa. We have emphasised throughout this chapter
how the magnetic response of most materials is very weak. It is, therefore,
surprising to find that ordinary diamagnetic objects can also be levitated
in achievable magnetic fields. Figure 6.8 illustrates a frog floating above
a 16T magnet.

Figure 6.8 A small frog floating above a high field superconducting magnet, due to
diamagnetic repulsion. (Photograph courtesy of A. Geim, University of
Manchester.)
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Whether an object will float or not is determined by the balance between
the magnetic force and gravity. For a diamagnetic material, the induced
magnetic moment, mdia = MV, where M is the magnetisation (given by
eq. (6.6)) and V the volume, with mdia then given by

mdia = χVB
µ0

(6.44)

By integrating the work −dmdia · B as the field is increased from zero to B
we can obtain the total magnetic energy of the object. Adding this to the
gravitational energy, mgz, where m is the mass and z the vertical position
coordinate, the total energy E is given by

E = mgz − χV
2µ0

B2 (6.45)

For the object to float, the total vertical force, Fz = −∂E/∂z, must vanish so
that

−mg + Vχ

µ0
B

∂B
∂z

= 0 (6.46)

The equilibrium condition then becomes

B
∂B
∂z

= µ0ρg
χ

(6.47)

which we note involves only the density, ρ, of the levitated object, not its
mass. Ifwe takeρ ∼ 103 kg/m3 andχ ∼ −10−5 for adiamagnetorχ ∼ 10−3

for a paramagnet, magnetic levitation then requiresB ∂B/∂z ∼ 1000 T2 m−1

or 10 T2 m−1 respectively. Taking l ∼ 0.1m as the typical size a of high field
magnet and assuming ∂B/∂z ∼ B/l, we find that fields of order 1 or 10 T
are sufficient to cause levitation of para- and diamagnets.

We have not addressed here the equilibrium against horizontal displace-
ment – this ismore complex, but has been treatedbyBerry andGeim (1997),
whoprove that a diamagnet canfloat in stable equilibriumabove amagnet,
whereas a paramagnet (which floats beneath the magnet) is always unsta-
ble to horizontal movements, accelerating away when displaced from the
vertical symmetry axis, as outlined in problems 6.6–6.8 below.

We conclude that magnetic forces are nevertheless generally small.
We think of them as significant because they can be comparable to or
even exceed gravitational forces. Yet if we assume that there are N ∼
1029atoms/m3 in a diamagnetic solid then from eq. (6.45) the energy stored
in a 10 Tfield is less than 1µeVper atom–orders ofmagnitude smaller than
the electrostatic interactions we shall be considering in the next chapter.
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Problems

6.1 Show that the Brillouin function for an ion with total angular
momentum J = 1

2 is of the form

〈µ〉 = 1
2gµB tanh(x)

where 〈µ〉 is themeanmagneticmoment and x = gµBJB/kT. Calculate
the paramagnetic susceptibility of a solid containing N such ions per
unit volume.

6.2 Establish the form of the Brillouin function for an ion whose total
angular momentum equals J:

BJ(x) = 2J + 1
2J

coth
(2J + 1)x

2J
− 1

2J
coth

x
2J

Show that this approaches the classical Langevin function as J → ∞.
Show also that the low field susceptibility is equivalent for all values
of J to the classical result if we associate the magnetic moment m =
−pµB defined in eq. (6.40) with each ion.

6.3 Use eq. (6.17) to calculate the diamagnetic susceptibility of a gas con-
sisting of N hydrogen atoms per unit volume, given that the ground
state wavefunction of a hydrogen atom is ψ(r) = (πa30)

1/2 exp(−r/a0)
where a0 is the Bohr radius (a0 = 0.529Å). Given that J = S = 1

2
for hydrogen, calculate the paramagnetic susceptibility of the gas at
room temperature and determine the temperature T forwhich the net
susceptibility is zero.

6.4 Establish that for Cr3+ with the configuration 3d3 in the unfilled 3d
shell, the experimental value 3.8 for p fits the expression 2

√
S(S + 1)

better than the expression g
√
J( J + 1). This and related experimental

data (e.g. in fig. 6.6) provides direct experimental evidence that the
orbital angular momentum is generally ‘quenched’ in paramagnetic
transition metal ions, with the magnetic moment then being due just
to spin angular momentum.

6.5 The rare earth element Dy, atomic number 66, has in addition to the
xenon configuration of filled electron states, two 6s states (6s2) and
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ten 4f (4f10) states filled. It loses the two 6s and one 4f electrons to
form the Dy3+ ion. Show that the basic level of Dy3+ is 6H15/2 and
verify that the experimentally observed value for p of 10.6 is close to
the theoretically expected value.

(Note L = 3 for an f shell, which can hold 14 electrons. The notation
nHm indicates n = 2S + 1, where S is total spin angular momen-
tum; the total orbital angular momentum is given by the capital
letter, with S,P,D,F,G,H, . . . ≡ 0, 1, 2, 3, 4, 5 . . .; and the total angular
momentum J = m.)

6.6 We stated in Section 6.9 that it is impossible for a paramagnet to float
stably in amagnetic field. Anecessary condition for stability at pointP
is that the force F is always directed back towardsP, so that

∫
A F ·dA <

0, where A is a surface surrounding P. Hence ∇ · F < 0.
a Show from eqs (6.45) and (6.46) that ∇ ·F < 0 requires χ∇2B2 < 0.

b Show, using Maxwell’s steady-state equations, ∇ · B = 0 and
∇ × B = 0, that ∇2Bx = ∇2By = ∇2Bz = 0 in a steady magnetic
field.

c Hence show that ∇2B2 = 2[|∇Bx|2 + |∇By|2 + |∇Bz|2] ≥ 0, so that
a paramagnet will never float stably in a magnetic field.

6.7 By symmetry, the magnetic field points along the axis at the centre of
a circular solenoid, B = B(0, 0, z)k, where k is the unit vector along the
z-direction. Use Maxwell’s equations and Taylor’s theorem to show
that B(x, 0, z) is given at small x by

B(x, 0, z) = − 1
2xB

(1)(0, 0, z)i + (B(0, 0, z) − 1
4x

2B(2)(0, 0, z))k

where B(n) = ∂nB(0, 0, z)/∂zn.

6.8 The sufficient condition for stability of a diamagnet at a point where
F = 0 along the axis of a solenoid is that ∂2E/∂x2 > 0 (horizontal
stability) and ∂2E/∂z2 > 0 (vertical stability). Themagnetic field along
the axis of a circular current loop varies with distance along the axis
as B(0, 0, z) = B0/[1 + (z/a)2]3/2, where a is the radius of the loop.
Show that stable equilibrium can be achieved if B0 is such that the
gravitational andmagnetic forces are balanced in the region bounded
by a/

√
7 < z < (2/5)1/2a.



Chapter 7

Ferromagnetism and
magnetic order

7.1 Introduction

Many materials possess an ordered array of magnetic moments at room
temperature and above, due to interactions between electrons on neigh-
bouring sites. In a ferromagnet, the moments align in the same direction,
as illustrated in fig. 7.1(a), so that the material has a net magnetisation, M.
In an antiferromagnet, we again get ordering but the net magnetisation is
zero, because half the moments (on one sublattice) align along one direc-
tion, while the other half align along the opposite direction (fig. 7.1(b)).
Finally, in a ferrimagnet, we have oppositely directed moments on two
sublattices, but the moments do not cancel, so giving a net magnetisa-
tion (fig. 7.1(c)). These different types of materials, in which cooperative
magnetic effects occur, display a very wide range of interesting and use-
ful properties: some respond very rapidly to an applied magnetic field,
and are therefore useful for high-power and ultra-fast transformer appli-
cations; others display strong hysteresis effects, and are therefore suited as
stable permanent magnets or for high density magnetic data storage. We
first review here the general model of magnetic ordering, before turning

(a)

(b)

(c)

Figure 7.1 Local ordering of magnetic moments in (a) a ferromagnet, (b) an anti-
ferromagnet, and (c) a ferrimagnet.
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to consider some of the features which enable the diversity of properties.
Finally, we consider some specific applications.

7.2 The exchange interaction

Magnetic ordering in a ferromagnet is not due to magnetic interactions
between neighbouring dipoles. Consider two neighbouring atoms, each
with a magnetic moment equal to the Bohr magneton, µB. The mag-
nitude of the magnetic field at one atom due to the other is given
approximately by

B ∼ µ0µB

4πr3
(7.1)

where r is the separation between the two atoms, ∼ 3Å for nearest neigh-
bours. The interaction energy �E is then of order µBB, and substituting
for µ0 and µB in eq. (7.1) we can estimate the direct magnetic interac-
tion between neighbouring atoms as �E ∼ 10−6 eV, which is considerably
less than thermal energies. Direct magnetic interactions are, therefore, too
weak to overcome thermal disordering effects, and we must seek an alter-
native explanation for magnetic ordering. This is provided by the exchange
interaction.

The exchange interaction is a quantummechanical effect – it has no clas-
sical analogue – and arises due to the electrostatic interaction between
electrons, as discussed below. We have already encountered the Pauli
Exclusion Principle, which states that no two electrons can occupy the
same energy state. An alternative expression of the exclusion principle
states that the wavefunction ψ describing two electrons with coordinates
r1 and r2 and spins s1 and s2 must be anti-symmetric when all the coor-
dinates of the two electrons are exchanged, including their position and
spin:

ψ(r1, s1; r2, s2) = −ψ(r2, s2; r1, s1) (7.2)

This immediately requires that ψ = 0 when r1 = r2 and s1 = s2, so that
there is zero probability of finding two electrons of the same spin at the
same point in space. By contrast, electrons with opposite spin can be at
the same point. We therefore expect that for two electrons on the same
atom, their average separation 〈|r1 − r2|〉 will be larger for parallel spins
(s1 = s2) than for anti-parallel spins (s1 = −s2). Hence the inter-electron
Coulomb repulsion energy 〈e2/(4πε0|r1 − r2|)〉 is smaller for parallel than
for anti-parallel spins. This effect is referred to as the exchange interaction.
It immediately explains Hund’s first rule in Section 6.6, whereby electrons
first occupy all states of the same spin in an isolated atom before they start
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Figure 7.2 Energy level diagram due to the exchange interaction between two elec-
trons on the same atom: the exchange energy, Eex = − 1

2 J when the
electron spins are parallel, while Eex = + 1

2 J when the spins are anti-parallel.

to occupy states of opposite spin.Wecan represent the exchange interaction
energy, Eex, for two electrons on the same atom by

Eex = −2J s1 · s2

= − 1
2 J when s1z = s2z = ± 1

2

= + 1
2 J when s1z = −s2z (7.3)

as illustrated in fig. 7.2.
The situation is more complicated in molecules and solids, where the

exchange interactionalsoplaysamajor role indetermining thegroundstate
energy. Consider a diatomic molecule with two electrons: the total energy
now includes interactions not only between the electrons but also between
the electrons and the two nuclei. We saw in Chapter 2 using the indepen-
dent electron approximation how the ground state wavefunction favours
a build-up of charge between the two nuclei. This is best achieved with
anti-parallel spins (see fig. 7.3), and indeed explains why most molecules
and covalent solids are diamagnetic.

Individual ions can retain a net magnetic moment in some molecules
and solids, in particular transition metal ions (e.g. Fe, Co) or rare earth
ions (e.g. Nd, Sm, Gd). The direct exchange interaction between elec-
trons on two such ions decreases very rapidly with increasing distance.
Indirect exchange interactions are, however, also possible, for example,
mediated through the electrons on a shared neighbouring atom or through
the spin of conduction electrons in a metal (fig. 7.4). Because competing
effects are present, these exchange interactions favour parallel spins and
ferromagnetism in some cases, while favouring anti-parallel spins and
antiferromagnetism in others.

The exact treatment of the spin interactions in magnetic solids, and their
temperature dependence is very complex and difficult, because we are
dealing essentially with a many-body effect, which can depend on both
local and non-local interactions. Much insight can, however, be obtained
from the Heisenberg Hamiltonian,H, which is widely used to describe the
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A

A

B

B

(a)

(b)

Figure 7.3 (a) When the electron spins are anti-parallel in a diatomic molecule, there
can be a high probability of both electrons being between the two nuclei
(A and B), maximising the electron–nuclear attractive interaction. (b) By
contrast, when the spins are parallel, the electrons tend to avoid each
other more, leading to a weaker overall electron–nuclear interaction.

Conduction
electron

Atom A Atom B

Figure 7.4 Indirect exchange interaction in a metal. The magnetic moment, for exam-
ple, on atom A has a direct exchange interaction with a free conduction
electron, influencing the spin of the conduction electron. The conduction
electron then interacts with an electron on atom B, which can enable a large
indirect exchange interaction between the magnetic moments on A and B.

spin dependence of the exchange energy of the whole solid:

H = −
∑
i

∑
i �=j

Jijsi · sj (7.4)

The contribution to the total exchange energy due to the interaction
between atoms i and j, Eex,ij, is then given by

Eex,ij = −2Jij si · sj (7.5)
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where �si and �sj are the total angular momenta of the electrons on atoms
i and j, and the factor of two arises from the double summation in eq. (7.4).
We take Jij > 0 when parallel spins are favoured, and Jij < 0 when an anti-
parallel alignment is preferred. The magnitude of Jij generally decreases
very rapidlywith increasingdistance, so that it is common to assume Jij = J
for nearest-neighbour atoms, and is equal to zero otherwise.

7.3 Ferromagnetism and the Curie temperature

We can, from eq. (7.4), define the exchange energy associated with
a particular site i, Eex,i, as

Eex,i = −
∑
j

Jij si · sj = −si ·
∑
j

Jijsj (7.6)

The magnetic moment, mi at site i depends on the total electron angular
momentum si as mi = −gµBsi where g is the Landé g-factor and µB the
Bohr magneton (eq. 6.30). We can, therefore, rewrite eq. (7.6) as

Eex,i = − mi

gµB
·
∑
j

Jijmj

gµB
= −µ0mi · H int (7.7)

where

H int =
∑

j Jijmj

µ0(gµB)2
(7.8)

has the dimensions of magnetic field intensity, and is referred to as the
‘internal field’. H int varies from site to site, because of fluctuations in the
local moments. We see, however, that the average internal field is propor-
tional to 〈mj〉, the averagemagneticmoment per ion. As themagnetisation,
M = N〈mj〉, whereN is the number ofmagneticmoments per unit volume,
we can define the mean internal field, 〈H int〉 as linearly dependent on M:

〈H int〉 = λM (7.9)

where λ is the constant of proportionality linking 〈H int〉 and M.
Using this mean field approximation, we then estimate the effects of

the neighbouring spins on a given site through the so-called internal field,
〈H int〉.

In an externally applied field H0, the net effective field F acting on the
magnetic ions is

F = H0 + λM (7.10)
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We saw in the last chapter for a paramagnetic solid that the magnetisation
M depends on the locally appliedfield F asM = χF, with the susceptibility
χ varying with temperature as χ = C/T when M is small. We, therefore,
write for a ferromagnetic solid at high temperature that

M = C
T

(H0 + λM) (7.11)

which can be rearranged to give

M = C
T − Tc

H0 (7.12)

The susceptibility χ is then equal to

χ = C
T − Tc

(7.13)

where Tc = λC is referred to as the Curie temperature.
We see from eq. (7.13) that because of cooperative interactions between

neighbouring spins the susceptibility increasesmore rapidlywith decreas-
ing temperature in a ferromagnetic material than in a true paramagnet,
where all the spins respond independently of each other. As the temper-
ature approaches Tc from above, the susceptibility diverges (χ → ∞). At
and below Tc eq. (7.13) breaks down and we get ferromagnetic ordering,
with the development of a spontaneous, finite magnetisation M even in
the absence of an applied field.

7.4 Spontaneous magnetisation

Because we are dealing with a cooperative effect involving feedback, we
have two relations between F and M. The first relation (eq. (7.10)) defines
the effective field in terms of the magnetisation, with

F = λM when H0 = 0 (7.14)

We have in addition a second equation relating how the magnetisation M
varies with effective field F and temperature T. If we use the Langevin
(classical) theory of paramagnetism, the magnetisationM depends on the
magnitude of the field as

M = Nm0

(
coth x − 1

x

)
(7.15)

whereNm0 is themaximumpossiblemagnetisationper unit volume (when
all the magnetic moments, each of magnitude m0, are aligned parallel to
each other), and

x = µ0m0F
kT

(7.16)
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Figure 7.5 The graphical method to determine the spontaneous magnetisation of a fer-
romagnet, using eqs (7.15) (curve) and eq. (7.17) (straight line). The slope
of eq. (7.17) is proportional to the temperature. At high temperatures
(T > Tc) the straight line and curve only intersect at the origin. For T < Tc,
the two curves intersect for a finite value of the magnetisation M, and
spontaneous magnetisation occurs.

We rewrite eq. (7.14) as

M = kT
µ0m0λ

x (7.17)

Equations (7.15) and (7.17) are both true so, for a chosen temperature, T, we
can plot M(x) in two ways, one from each equation. Any intersections of
the two curves indicate values ofMwhich are in fact solutions of both. This
procedure can then be repeated for a range of temperatures, resulting in a
graph representing the spontaneousmagnetisationM as a function of tem-
perature. This is illustrated in fig. 7.5. At high temperatures (T > Tc) and
with zero external field, the two curves only intersect at M = 0. But, once
T drops below Tc, the two lines cut both at M = 0 and at finite M, giving
a spontaneous net magnetisation. (The solution at the origin is unstable;
once any spontaneous magnetisation occurs, M will grow to the finite,
stable solution.) Figure 7.6 shows the calculated variation of the magneti-
sationM as a function of temperature below Tc, compared to experimental
data for Ni. The overall agreement between the two curves looks excellent,
confirming the usefulness of the mean field theory introduced here; there
are, however, minor but significant differences between the two curves
both near T = 0 and near T = Tc, to which we will return later.

7.5 Spontaneous magnetisation and susceptibility of
an antiferromagnet

The exchange interaction Jij between neighbouring sites is negative in an
antiferromagnet, favouring an anti-parallel alignment of neighbouring
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Figure 7.6 (a) The calculated variation relative to its value at T = 0 of the sponta-
neous magnetisation, M, of a ferromagnet for which J = S = 1

2 , compared
to (b) the experimentally determined temperature dependence of the mag-
netisation in Ni. (From H. P. Myers (1997) Introductory Solid State Physics,
2nd edn.)

spins. Complete antiferromagnetic ordering can be obtained at T = 0 if
we divide the crystal into two sublattices, as in fig. 7.1(b), with spins point-
ing up on the first sublattice, which we refer to as sublattice A, and spins
pointing down on the second sublattice (sublattice B). We can define a net
magnetisation MA for sublattice A and MB for sublattice B, with the total
magnetisation M then given by M = MA +MB. We introduce the effective
fields, FA and FB, as

FA = H0 − λMB (7.18a)

FB = H0 − λMA (7.18b)

describing the influence of sublattice B on A, and vice versa. At high
temperature, we can write

MA = 1
2
C
T

FA (7.19a)

MB = 1
2
C
T

FB (7.19b)

where the factor of 1
2 is introducedbecause each sublattice has 1

2Nmagnetic
ions per unit volume. Adding eqs (7.19a) and (7.19b), we find

M = 1
2
C
T

(FA + FB) (7.20)
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Substituting eq. (7.18) in (7.20) then gives

M = C
T

(
H0 − 1

2
λM

)
(7.21)

which can be re-arranged as

M = C
T + λC/2

H0 (7.22)

with the susceptibility χ now equal to

χ = C
T + TN

(7.23)

where TN = λC/2 is referred to as the Néel temperature.
The onset of spontaneous magnetisation occurs when we can get finite

sublattice magnetisation in zero applied field. Setting H0 = 0 in eqs (7.18)
and (7.19), this occurs when

MA = −1
2
C
T

λMB MB = −1
2
C
T

λMA (7.24)

Both parts of eq. (7.24) can be satisfied for finiteMA andMB if T = λC/2 =
TN, with mean field theory then predicting spontaneous ordering at the
Néel temperature, and for T < TN.

We can calculate the spontaneous magnetisation of the two sublattices
below TN using a similar method to the ferromagnetic case. We apply, for
instance, the Langevin (classical) equation for paramagnetism to one of the
two sublattices. We write

MA = N
2
m0

(
coth xA − 1

xA

)
(7.25)

with the second equation linking xA and MA derived using the fact that
MB = −MA:

xA = µ0m0FA
kT

= µ0m0(−λMB)

kT
= µ0m0λMA

kT
(7.26)

Equations (7.25) and (7.26) are equivalent to eqs (7.15) and (7.17) in the
ferromagnetic case, implying that the zero-field ordering on each sublattice
in an antiferromagnet has a similar temperature dependence to that of a
ferromagnet.

Although an antiferromagnet has no net magnetisation (M = 0 in
zero applied field), antiferromagnetic ordering has been widely studied
experimentally, particularly using neutron diffraction. Each neutron has
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Figure 7.7 The experimentally measured variation of the susceptibility χ of a single
domain sample of the antiferromagnetic crystal, MnF2. The susceptibility,
χ‖, drops to zero when the applied field is parallel to the magnetisation
direction, but remains approximately constant below the Néel temperature
when H ⊥ M. (Experimental data after Trapp and Stout, © 1963 by the
American Physical Society.)

a magnetic moment, so a spin-polarised neutron beam can detect the
additional order in a spontaneously magnetised crystal, with two dis-
tinct magnetic sublattices, compared to a disordered crystal where the two
sublattices are equivalent.

BecauseM = 0 in an antiferromagnet for zero applied field, it is still pos-
sible to define the susceptibility, χ , below the Néel temperature, TN. The
susceptibility is found to depend on the direction of the applied field H0
relative to the magnetisation direction, as illustrated in fig. 7.7. When the
applied field is perpendicular to the magnetisation direction, a net mag-
netisation can be achieved by effectively tilting the magnetic moments
slightly along the field direction. Tilting each spin through a small angle,
θ , gives a net magnetisation proportional to sin θ , that is, the magnetic
energy gained through interaction with the field ∼θ . By contrast, when
the field is applied parallel to the magnetisation direction, tilting each spin
through an angle θ would cost the same amount of energy in terms of dis-
rupting the two sublattices, but now only gains an energy proportional to
(1 − cos θ) through interaction with the applied field, that is, the energy
gained ∼θ2. This becomes progressively less advantageous as the tem-
perature decreases, so that χ‖ → 0 as T → 0, while it can be shown
that χ⊥ is approximately constant below TN. In practice, the anisotropy
in susceptibility is only observed in single domain samples, where all
spins on a given sublattice point along the same direction. Most macro-
scopic samples consist of many domains, each with its ownmagnetisation
direction. The low temperature suscepibility is then isotropic, and equal to
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1
3 (χ‖ + 2χ⊥). The susceptibility, therefore, displays a cusp at the Néel tem-
perature, providing a straightforward experimental method to determine
the onset of spontaneous antiferromagnetic ordering.

7.6 Ferrimagnetism

In ferrimagnetic materials, we again have two sublattices, but the two are
no longer equivalent. The exchange interaction between the sublattices is
negative, so that anti-parallel spins are favoured, as in the antiferromag-
netic case. We now find MA �= −MB, and so there is a net magnetisation
below the spontaneous ordering temperature, with M = MA + MB �= 0.
Whereas most ferromagnets are metals, many ferrimagnets are semicon-
ductors or even insulators. The combination of a very high resisitivity and
a net permanent magnetisation means that ferrimagnets such as Fe3O4
(referred to as ‘ferrite’) are particularly useful for a range of devices,
including application as high frequency transformers and aerials.

7.7 Spin waves – elementary magnetic excitations

The mean field theory fails at low temperatures for a ferromagnet because
it does not correctly predict the energy of low-lying excited states. Con-
sider for instance a closed loop of 2N spins, in which each spin is rotated
through an angle θ = π/N with respect to the direction of their immedi-
ate neighbours, as illustrated in fig. 7.8. This state has a very high energy
in mean field theory. Because the average magnetisation M is zero, mean
field theory gives E = 2NEex,i = 2N(−2Jsi · 〈sj〉) = 0, as 〈sj〉 = 0. This is
a considerably higher energy than the ground state value, Egs = −4JNs2,
in which all the spins are parallel and we assume the magnitude of each
spin equals s. We can use the Heisenberg model to evaluate directly the
energy of the state shown in fig. 7.8. The interaction energy, W , between

�=�/N

Figure 7.8 A closed loop of 2N spins, for each of which the spin directions is rotated
by π/N with respect to its immediate neighbours.



158 Ferromagnetism and magnetic order

any spin and its two neighbours is given by

W = −2Js2 cos θ (7.27)

For a sufficiently long loop, θ is small, so we can approximate cos θ as
1 − θ2/2 = 1 − (π/N)2/2. The total energy of the chain, 2NW , is then
given by

2NW = −4JNs2
(
1 − (π/N)2

2

)
= −4JNs2 + 2Js2π2

N
(7.28)

and the increase in energy over the ground state, where all spins are par-
allel, is only 2Js2π2/N, which goes to zero as N → ∞. Clearly, mean field
theory fails badly in its estimate of the energy of this simple excitation.

The classical unit of spin excitation involves flipping just one spin. (In
quantummechanics, we reduce the total angular momentum by one unit.)
We see that we have effectively flipped N spins in order to produce the
state illustrated in fig. 7.8. The net energy associated with each individual
spin flip, Eflip is therefore

Eflip =
(
2Js2π2

N

)/
N = 2Js2π2

N2 (7.29)

We can describe the state in fig. 7.8 as being formed by combining N ‘spin
waves’, each of wavelength λ = 2Na, where a is the nearest neighbour
separation. Each spin wave then has wavevector k, with k = 2π/(2Na) =
π/Na, so that ka = π/N. Substituting for π/N in eq. (7.29), we, therefore,
estimate that the energy Ek of the basic quantum unit of spin excitation,
referred to as a magnon, depends quadratically on the wavevector k, as

Ek = �ωk ≈ 2Js2(ka)2 = (2Js2a2)k2 (7.30)

We have made a couple of gross assumptions in the above analysis. First,
we presumed that the excitation energies add linearly, so that the total
energy of N spin waves (eq. (7.28)) is just N times the energy of a single
spin wave (hence eq. (7.29)). We then further presumed that the result for
a classical spin excitation in eq. (7.29) remains true when we quantise the
spins, and so derived an expression as to how the energy of a quantum of
spin excitation varies with wavevector k (eq. (7.30)).

It is perhaps surprising to find that the conclusion of eq. (7.30) is in fact
true; that is, that the energy Ek of a magnon depends on wavevector k as
Ek ∼ k2. As a consequence, even at the lowest temperatures, as T → 0,
there will always be some long wavelength excitations within an energy
kT of the ground state. By contrast, mean field theory overestimates the
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elementary excitation energies and, therefore, predicts that the spin align-
ment approaches perfect ordering more rapidly as T → 0 than is observed
experimentally. We leave it as an exercise to the end of this chapter to show
that in mean field theory the magnetisation M approaches the saturation
value, Ms as

M(T) = Ms(1 − e−β/T) (7.31)

where β is a material constant. Experimentally, it is found that M
approaches Ms much more slowly, as M(T) = Ms − αT3/2. The experi-
mental data can be understood by considering the energetics of magnon
excitation.

Using eqs (7.30) and (5.10) it can be shown that the number of allowed
magnon modes per unit volume with frequency between ω and ω + dω is
given by

g(ω)dω = 1
4π2

(
�

2Js2a2

)3/2

ω1/2 dω (7.32)

where g(ω) is the magnon density of states. The average number of
magnons, n at temperature T for a mode of frequency ω is given by the
Bose–Einstein distribution function, as

n(ω) = 1
e�ω/kT − 1

(7.33)

The number of magnons excited per unit volume, N, is then given by

N =
∫ ∞

0
n(ω)g(ω)dω

= C
∫ ∞

0

ω1/2

e�ω/kT − 1
dω (7.34)

If we make the change of variable x = �ω/kT, the integral in eq. (7.34) can
be rewritten as

N = C(kT)3/2
∫ ∞

0

x1/2

ex − 1
dx = 2.32C(kT)3/2 (7.35)

so that the number of magnons excited per unit volume increases as T3/2.
As each magnon reduces the overall magnetic moment by gµB, the net
magnetisation is indeed found to vary asM(T) = Ms − αT3/2, as observed
experimentally.

Mean field theory also breaks down near the Curie temperature, Tc.
We have seen that the susceptibility above Tc is predicted to vary as
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χ = C/(T − Tc). Below Tc the magnetisationM varies in mean field theory
asM(T) ∼ (Tc − T)1/2 (see problem 7.4). Experimentally it is found that χ

varies more typically near Tc as (T − Tc)
−γ and M(T) as (Tc − T)β , where

γ ∼ 1.33 and β ∼ 0.33. The discrepancy again arises because mean field
theory fails to take sufficient account of the short range order in a ferro-
magnet, assuming that because the mean magnetic moment 〈m〉 is zero,
there are effectively no correlations between neighbouring moments. In
practice, moments tend to be aligned locally near Tc, but the direction of
the local moment fluctuates strongly through the sample.

7.8 Ferromagnetic domains

Despite the existence of spontaneous magnetisation below the Curie tem-
perature, it is well known that ferromagnets (such as steel needles) can
apparently lose their magnetisation. This is due to the formation of
domains, whereby themagnetisationpoints indifferentdirections indiffer-
ent parts of the sample. Application of an externalmagnetic field can cause
the domain walls to move, as illustrated in fig. 7.9, leading to a net mag-
netisation of the sample. This is how a steel needle becomes magnetised
when a bar magnet is passed along the needle.

Why are domains formed in a magnetic material? Because they reduce
the overall energy of the system. If a sample has only one domain, there
will be a large external magnetic field B associated with its macroscopic
magnetisation, with the energy stored per unit volume in the external field
given by 1

2HB = B2/2µ0 in free space. With many domains, the external
field B is significantly reduced, thereby reducing the overall energy.

Although the boundaries between domains are shown as sharp lines in
fig. 7.9, there is in fact a narrow transition region, known as a Bloch wall,
between neighbouring domains, across which the magnetisation direc-
tion changes smoothly, as illustrated earlier in fig. 7.8, when discussing
spin waves. Two competing effects determine the width, w, of the domain

(a) (b) (c)

Figure 7.9 (a) Schematic domain structure for a ferromagnet in zero applied field,
where the domain pattern is tending to minimise the magnetostatic energy.
Application of an external field H can lead first to reversible domain wall
motion (b) and then (c) to irreversible elimination of domains.
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wall, namely spin wave energy, which we have already discussed, and
anisotropy energy, which we now consider.

In general, magnetic moments tend to line up along high symmetry
directions in a crystal, giving what are referred to as ‘easy’ and ‘hard’
directions of magnetisation. This means that within a crystal there are pre-
ferred directions of magnetisation, when the atomicmoments are pointing
in particular crystallographic directions. It requires work, associated with
changes in the electron charge distribution, to rotate the moments to other
directions. It is usual todescribe thismagnetocrystalline anisotropy energy,
Uc, per unit volume in terms of empirical anisotropy coefficients, K. For
cubic crystals such as Fe and Ni, we can write

Uc = K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) + K2α

2
1α

2
2α

2
3 (7.36a)

where α1, α2 and α3 are the direction cosines of the spin direction relative
to the three cube axes. For a hexagonal close-packed crystal such as Co,
where the easy axis is along the z-direction, we can write

Uc = K1 sin2 θ + K2 sin4 θ (7.36b)

where θ is the angle between the spin-direction and the z-axis.
The exchange interaction favours neighbouring spins s1 and s2 to be

parallel. The spin wave contribution to the domain wall energy, therefore,
decreases as the spin wavelength increases and the wall gets wider. By
contrast, the anisotropy energy favours narrow walls, so that as few spins
as possible are directed away from the easy direction(s).

Consider for example a simple cubic crystalwith lattice constant a, where
a domain wall is N layers thick, with the angle changing by θ = π/N
between successive layers: the spin direction is therefore reversing, chang-
ing by π across the domain wall. The increase in exchange energy for a
single line of spins across the domain wall is then equal, from eq. (7.28),
to Js2π2/N, where J is the nearest neighbour exchange interaction. The
increase in exchange energy, �Eex, per unit area of domain wall is then
given by

�Eex = Js2π2

Na2
= Eexπ

2a
6N

(7.37)

where we have used the fact that the exchange energy per unit volume,
Eex, equals 6Js2/a3 in a perfectly ordered simple cubic ferromagnet.
The total anisotropy energy Ean per unit area for a wall of width w = Na

is given approximately as

Ean = K(Na) (7.38)
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where K is a mean or average anisotropy constant. The Bloch wall energy
per unit area, EBloch = �Eex + Ean, is then minimised when

∂EBloch

∂N
= ∂

∂N

(
Eexπ

2a
6N

+ KNa

)
= 0 (7.39)

that is, when

w = Na = πa

√
Eex

6K
(7.40)

As the exchange energy,Eex, is generally several orders ofmagnitude larger
than the anisotropy energy, K, we conclude that each Bloch wall will be
many layers thick: substituting appropriate values for Fe, one finds that
N ≈ 350, with the wall thickness then ∼1000Å.

The total Blochwall energyperunit area canbe estimatedby substituting
the value of w = Na from eq. (7.40) into eq. (7.39), giving

EBloch = πa

√
2EexK

3
(7.41)

For a spherical particle of radius R, the energy to create a single Bloch wall
then scales as R2, whereas the energy stored in the external field scales as
R3. Below a critical radius Rc, the energy to create a Bloch wall therefore
exceeds that stored in the external magnetic field, so that single domain
particles become preferred.

7.9 High-performance permanent magnets

The unique attraction of permanent magnets is that (barring the even-
tual development of a room temperature superconductor) they provide
magnetic flux with no continuing expenditure of energy. Indeed their fer-
romagnetism has its origin in resistanceless electric currents circulating on
the atomic scale. Furthermore, their ability to generate complex field pat-
terns with intense spatial variations is unrivalled by any electromagnetic
device. The surface current needed to generate a flux pattern similar to
that of a long cylindrical magnet with µ0M = 1 T is 796 kA/m. Solenoids,
whether resisitive or superconducting, able to produce such fields would
have to be several centimetres in diameter to accommodate the necessary
ampere-turns.

Intrinsicmagnetic properties set the limits on the potential development
of any particular material. These properties include the magnitudes of the
saturation magnetisation, Ms, and of the magnetocrystalline anisotropy
energy,Uc, and theexistenceorotherwiseof a suitable easydirection. These
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Figure 7.10 Hysteresis loops for a permanent magnet (a) M(H) loop and (b) B(H) loop.
Virgin curves start at the origin (A). Key characteristics of the magnet
include: (i) its remanence magnetisation (Mr at H = 0), (ii) coercivity
fields, Hc and BHc, the reverse fields where M and B, respectively, return
to zero, and (iii) figure of merit, (−BH)max, the shaded area in (b).

aspects can be predicted from suitable theoretical analysis. In addition,
details of the metallurgical microstructure determine the ease or other-
wise with which domain walls will move in an applied magnetic field,
and hence ultimately determine how effective a particular sample can be
in maintaining a strong permanent magnetisation. With nanometre-sized
grains, for instance, each grain could act as a single domain, eliminating
the possibility of reversible domain wall motion (Davies 1994).
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An external magnetic field usually changes the state of magnetisation of
a ferromagnet in a way that is nonlinear and irreversible (see fig. 7.9). A
typicalmagnetisationcurveM(H) is illustrated infig. 7.10(a). Startingat the
zero field (A), an initially demagnetised sample is subject to an increasing
magnetic field. The magnetisation increases with field until the sample
becomes fully magnetised, with magnetisation Ms (B). When the field is
removed, the magnetisation decreases to a value Mr, referred to as the
remanence magnetisation. When a field H is now applied in the opposite
direction the magnetisation will return to zero at a finite field value, Hc,
referred to as the coercivity field. With further increase in the magnitude of
the field, the sample again approaches the saturationmagnetisation value,
Ms (C). Ms is an intrinsic property of the ferromagnetic phase but the
remanence Mr and coercivity Hc are not.

TheB(H) curveof fig. 7.10(b) is related to theM(H) curveof fig. 7.10(a) by
eq. (6.5), B(H) = µ0(H +M(H)). The remanenceBr in this case is justµ0Mr,
but the magnitude of the coercivity on the B–H plot of fig. 7.10(b), BHc, is
smaller than in fig. 7.10(a), because B = µ0(H + M) goes to zero when M
is still >0. Coey (1996) remarks that M(H) curves tend to be measured by
physicists interested in magnetisation, whereas B(H) curves are of more
interest to engineers. This is because we can use the B(H) curve of fig.
7.10(b) to determine the maximum potential energy which can be stored
in a magnet and hence design its performance for specific applications.

It can be shown that the maximum potential energy density is obtained
(at least for an ellipsoidal sample) at the point where the product− 1

2B ·H is
maximised. The figure of merit (BH)max, corresponding to the shaded area
in fig. 7.10(b), is equal to twice this maximum potential energy (Coey 1996;
Myers 1997). We can estimate the upper limits for the performance of any
magnet bynoting that thefigureofmerit ismaximisedwhen the remanence
has its largest possible value, Mr = Ms, and the magnetisation remains
independent of reverse field up to Hc, in which case (BH)max = ( 12µ0Ms) ·
( 12Ms), giving the following intrinsic limitations on the performance of
permanent magnets:

Br ≤ µ0Ms (7.41a)

BHc ≤ Ms (7.41b)

and

(BH)max ≤ µ0M2
s

4
(7.41c)

The major considerations in the design of high-performance magnets are,
therefore, to choose a ferromagnetwith a large value ofMs and a high coer-
civity. As stated earlier, this depends both on the alloys used and also on
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fine details of themicrostructure. The largestmagneticmoments are gener-
ally associated with the so-called rare-earth series of elements, which have
a partially filled 4f or 5f shell of electrons (see the Periodic Table in fig. B.1).
Because this f-shell has a small radius compared to the element’s valence
electron radius it can retain its total spin and orbital angular momenta in
a solid environment, giving a large magnetic moment. The small radius,
however, also means that the moment is less sensitive to its local environ-
ment, implying smaller values of the ferromagnetic coupling coefficients
andmagnetocrystalline anisotropy energy,Uc. This then limits the coerciv-
ity values, BHc. By contrast, the ferromagnetic transition metal elements
(Fe, Co, andNi) have a partially filled 3d shell, whose radius is comparable
to that of the 4s valence electrons. This explains the observation in Chapter
6 that the orbital angular momentum is quenched (L = 0) when these ele-
ments are incorporated in a solid. But the larger 3d shell radius also brings
the benefit of larger values of the ferromagnetic coupling coefficients and
anisotropy energy.

Figure 7.11 shows how the maximum energy product (BH)max has
improved over the past century, as the values of Mr and BHc have
increased in successive generations of ferromagnets. The energy product
has increased exponentially, doubling every twelve years. Alloys mainly
composed of iron have µ0Ms less than about 2 T, which from eq. (7.41c)
sets an upper limit on (BH)max of order 800 kJ/m3, placing a ceiling on
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Figure 7.11 Progress in improving the figure of merit (BH)max during the twentieth
century. The energy product increased approximately exponentially, dou-
bling every twelve years (from Skomski and Coey, 1999, by permission of
IoP Publishing).
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the progress shown in fig. 7.10. The heavy rare-earths Dy and Ho have the
largest atomic moment (10µB) of any element in the periodic table and
so could in theory show energy products as high as 3000 kJ/m3, enabling
a flux density approaching 4 T. However, prospects are poor for realising
room temperature ferromagnetic alloys based on these elements. They are
likely to be restricted to cryogenic applications, if they are ever used at all.
Nevertheless, the progress shown in fig. 7.10 has enabled the development
of a multi-billion dollar industry and the widespread use of permanent
magnets in applications such as motors and generators, actuators and
printers, loudspeakers and magnetic resonance imaging devices, as well
as a diverse range of scientific instruments from large-scale colliders to
tiny ammeters. A considerably more detailed discussion of the science
and application of high-performance magnets is given in Coey (1996).

7.10 Itinerant ferromagnetism

We have assumed throughout this chapter that the magnetisation in a fer-
romagnet is due to interactions between localised magnetic moments on
neighbouring ions. There are, in addition, severalmetals, in particular iron
and nickel, whose ferromagnetism is due to interactions between delo-
calised, so-called itinerant conduction electrons. This is entirely analogous
to the situation considered in the previous chapter, where we saw that
paramagnetism can be associated not just with isolated spins but also with
delocalised electrons in a metal (see Section 6.8).

We can divide the conduction band in a metal into spin-up and spin-
down sub-bands. Potential energy is gained due to the exchange interac-
tion if one sub-band is preferentially occupied at the expense of the other.
This preferential occupation, however, costs kinetic energy. For most met-
als the cost in kinetic energy exceeds the gain in potential energy, so that
they remain paramagnetic. There is, however, a narrow partly-filled band
associatedwith the 3d electrons inNi andFe, leading to a very largedensity
of states near the Fermi energy, g(EF). The exchange interaction can domi-
nate over kinetic energy effects in this case, leading to a net magnetisation,
as illustrated in fig. 7.12.

Thedependence of band ferromagnetismon thedensity of states near the
Fermi energy can be understood as follows. Suppose a d band possesses
equal numbers of spin-up and spin-down states. Application of an exter-
nal magnetic field H can lead to a relative shift, �E, in the two sub-bands,
with electrons transfering from spin-up to spin-down states, as in fig. 6.7.
If we now allow an exchange interaction between electrons of the same
spin, then the shift in the two sub-bands, �E = µ0µBH is increased by an
amount J�N relative to the purely paramagnetic case. �N = (N+ −N−) is
the difference in occupation of the two sub-bands, and J is an effective
exchange energy between parallel spins. We can, therefore, write the
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Figure 7.12 Schematic density of states of ferromagnetic Ni, showing the density of
spin-up states as a function of energy on the left-hand side, and spin-
down states on the right-hand side. There is a large density of states near
the Fermi energy, EF, associated with the Ni 3d electrons. The exchange
interaction shifts the spin-up and spin-down states with respect to each
other, leading here to a preferential occupation of the spin-up band and
an overall net gain in energy. The wider band in the figure, with a much
lower density of states is due predominantly to interactions between 4s
states on the Ni atoms.

shift �E as

�E = 2µ0µBH + J�N (7.42)

Since all the changes occur near the Fermi energy, we can relate �N to
�E as

�N = g(EF)�E/2 (7.43)

where g(EF) is the total density of states at the Fermi energy. We now
substitute eq. (7.42) in (7.43) to determine the induced magnetisationM =
µB�N as

M = 1
2
µBg(EF)

(
2µ0µBH + JM

µB

)
(7.44)

We can re-arrange eq. (7.44) as we did for eqs (7.11) and (7.21) to find that
M = χH, with the susceptibility χ given by

χ = µ0µ
2
Bg(EF)

1 − 1
2 Jg(EF)

(7.45)
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We have already seen that spontaneous magnetisation arises when the
susceptibility diverges (χ → ∞). This occurs here when 1

2 Jg(EF) > 1. This
relation, known as the Stoner criterion, describes the key requirement to
achieve ferromagnetism due to delocalised electrons in a metal. Further
details and analysis of the band model of ferromagnetism can be found in
several other texts, including Myers (1997) and Ibach and Lüth (1995).

7.11 Giant magnetoresistance

We saw in Chapter 5 how the development of epitaxial growth tech-
niques has enabled a wide range of novel and improved semiconductor
structures and applications. Similar techniques can be applied to grow
magnetic multilayers. The greatest interest has focussed on structures
where a thin ferromagnetic layer is separated by a non-magnetic layer
from a second thin ferromagnetic layer. Such structures can demonstrate
giantmagnetoresistance, an effectwith potentially significant applications.

It can be shown that when the indirect exchange interaction between
twomagnetic ions is mediated by free conduction electrons then the value
of the exchange interaction will decay with separation distance, r, as
(1/r3) cos(2kFr), where kF is the wavevector at the Fermi energy. Details of
this interaction, which is associated with the names of Ruderman, Kittel,
Kasuya, and Yosida (RKKY), can be found elsewhere (Kittel 1968). As a
consequence of the RKKY interaction, the sign of the exchange interaction
between two thin ferromagnetic layers oscillates as the thickness of the
intermediate non-magnetic layer is increased.

Consider a thin ferromagnetic layer where the magnetisation vector
M points in the plane of the layer. It is possible by a suitable choice of

Magnetic

Magnetic

Antiferromagnetic
alignment

Ferromagnetic
alignment

Non-magnetic

(a) (b)

Figure 7.13 (a) The ground-state magnetisation in a magnetic multilayer where anti-
ferromagnetic coupling is favoured between neighbouring magnetic layers.
(b) Application of a sufficiently strong external magnetic field aligns the
magnetisation in neighbouring layers. GMR is explained by spin-dependent
scattering of conduction electrons passing through the structure: both
spin directions are scattered in case (a), whereas only one is scattered in
case (b), resulting in a lower overall resistance in (b).
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intermediate layer thickness to growamultilayer structurewhere the inter-
action between neighbouring magnetic layers is antiferromagnetic, with
the magnetisation then given by −M in the second layer, as illustrated in
fig. 7.13(a). If a sufficiently large external magnetic field is applied within
the plane, say of order 0.5 T, then the magnetisation vectors in the two
layers will align with each other, as illustrated in fig. 7.13(b). Remarkably,
it is observed that when current is then driven along the growth direction,
the resistance of the multilayer structure can decrease by a factor of order
two between fig. 7.13(a) and (b). This exceptionally large variation of resis-
tance with applied magnetic field is referred to as giant magnetoresistance
(GMR).

A qualitative explanation of GMR can be obtained by considering the
schematic density of states in fig. 7.12, where the spin-up d band lies below
the Fermi energy and is completely filled, while the spin-down d band
cuts the Fermi energy, and is therefore only partly filled. The current in
such a ferromagnet is carried predominantly by the s electrons near the
Fermi energy. Because of the large density of unfilled spin-down d states,
a spin-down s electron can experience strong s–d scattering, limiting its
conductance. By contrastwithall spin-updstatesfilled, a spin-up s electron
will experience no s–d scattering, andwill therefore have a higher conduc-
tivity. In an antiferromagnetically alignedmultilayer structure (fig. 7.13(a))
spin-up electrons will then be scattered by one layer and spin-down elec-
trons by the second layer, so that both spin-up and spin-down electrons
have a high resistance. By contrast, when the interaction is ferromag-
netic, only one type of spin, say spin-down, is scattered by the multilayer
(fig. 7.13(b)); and the low resistance spin-up channel then effectively shorts
out the high resistance spin-down channel, leading to the large observed
decrease in resistivity.

The occurence ofGMRhas excited considerable interest, because it offers
the means to develop very responsive magnetoresistive sensors and pos-
sibly even a magnetic transistor based on magneto-resistive effects (see
Barthélémy et al. 1994). The main requirement to achieve a practical GMR
device is to reduce themagnetic field atwhich complete switching to ferro-
magnetic inter-layer alignmentoccurs, inorder todetect theweakmagnetic
fields associated with very small data storage elements.

GMR has been displayed in a wide range of magnetic multi-layer struc-
tures and considerable progress has been made both in understanding the
underlying mechanisms, and in developing materials which show sub-
stantial MR changes in modest fields. Interesting effects have also been
observed by combining ferromagneticmetals and semiconductors in a sin-
gle nanostructure. For example, when spin polarised electrons are excited
in a semiconductor by circularly polarised light, the tunnelling current into
a neighbouring ferromagnetic layer can depend on the orientation of the
magnetisation and consequent density of empty states at the ferromag-
net Fermi energy. This effect can be applied to the imaging of magnetic
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domains. Other interesting effects are expected if spin-polarised electrons
can be injected from a ferromagnetic metal into a superconductor. There is
nowconsiderable interest in this emergingfield, referred to as ‘spintronics’.
Considerable progress has beenmade through the application of quantum
theory to understand magnetic materials, which has led to the develop-
ment of materials with a wide diversity of properties, some of which we
considered in this and theprevious chapter. Nevertheless, there still remain
many fundamental problems to explore. With somany promising applica-
tionswaiting for the improved integration of information storage and logic
operations inmicroelectronics, it can be expected that research inmagnetic
nanostructureswill continue to be of considerable importance and interest.
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Problems

7.1 Consider a spin- 12 ferromagnet for which we can write the
spontaneous magnetisationM = NµB tanh(x) with x = µ0µBλM/kT.
Show that the Curie temperature Tc is given by kTc = Nµ0µ

2
Bλ.

Determine at what fraction of the Curie temperature the spontaneous
magnetisation drops to 80 per cent of its value at T = 0, and then to
50 per cent of its value at T = 0.

7.2 A ferromagnetic oxide has a transition temperature of 150K. If the
magnetic carriers have a magnetic moment of µB and spin S = 1

2 ,
determine the ratio of the magnetisation at 300K to that at 0K in
a field of 0.1 T. You may assume the effective field model outlined in
Sections 7.4 and 7.5 to be appropriate for this case.

7.3 The anisotropy energy Uc in a ferro- (or ferri-) magnet of cubic
symmetry is given by eq. (7.36a) as

Uc = K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) + K2α

2
1α

2
2α

2
3 (7.36a)
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Derive expressions for (W(110) − W(100)) and (W(111) − W(100)), where

W =
∫ Ms

0
H · dM

is the work done in magnetising a single crystal to saturation in the
directions indicated.

7.4 Consider a ferromagnet in which there are N magnetic ions per unit
volume, each with a magnetic moment of µB and spin S = 1

2 , with
g = 2. Use mean field theory and estimate the value of the Brillouin
functionB1/2(x) at large x to show that themagetisationM varieswith
temperature T at low temperatures as

M(T) = Ms(1 − e−β/T)

relating the value of β to the magnetic moment and Curie tempera-
ture. Show also by expanding B1/2(x) for small x that the magneti-
sation using mean field theory varies near the Curie temperature as
(Tc − T)1/2.

7.5 Show that ifwe use the classical (Langevin) theory of paramagnetism,
then the magnetisation M(T) in a ferromagnet will vary near T = 0
as M(T) = Ms − αT. Explain why this classical mean field result is
closer to the experimentally observed behaviour than the quantised
mean field result of problem 7.4.

7.6 The unit cell of NiFe2O4 has eight Ni2+ ions on B sites and sixteen
Fe3+ ions equally distributed between A and B sites. The dominant
exchange interaction is a negative (antiferromagnetic) AB interaction.
Orbital angular momentum is assumed to be quenched on the Ni2+
ions. Show that in the fully ordered state at low temperature, the
magnetic moment per unit cell is 16µB. What would be the magnetic
moment per unit cell in Zn0.25Ni0.75Fe2O4? The outer electronic con-
figuration of Zn2+ is 3d10, and it is found experimentally that the
Zn2+ ions go on to A sites, displacing Fe3+ ions on to B sites.

7.7 A ferrimagnetic crystal consists of two sublattices, A and B. The effec-
tive fields FA and FB associated with the two sublattices are given by
eq. (7.18), FA(B) = H0 − λMB(A), while at high temperatures we have

MA = 1
2
CA

T
FA MB = 1

2
CB

T
FB

Determine the high temperature susceptibility of the crystal, and
showthat the critical temperature,Tc, belowwhich spontaneousmag-
netisation occurs is given by Tc = λ(CACB)1/2/2. By comparing your
result with eq. (7.13) for a ferromagnet deduce how the high temper-
ature susceptibility can be used to distinguish between ferrimagnetic
and ferromagnetic crystals.



Chapter 8

Superconductivity

8.1 Introduction

Ever since its discovery in 1911, superconductivity has held out tantalising
possibilities for widespread application, including in particular highly
efficient electricity distribution, and also high field magnets. The field of
superconductivity poses several significant challenges. The first of these is
to understand the mechanisms which give rise to the phenomenon. This
cannot be done in the one-electron approximation used so far in this book,
which assumes each electron effectively acts independently of the others.
The difficulty in deducing the mechanism of superconductivity is empha-
sised by the fact that it took nearly fifty years from its first observation to
develop a satisfactory theory of the underlying processes. Guided by this
theory, a series of improved superconductors were developed through
the 1960s and 1970s, but the highest critical temperature, Tc, at which
superconductivity could be observed remained stubbornly low – about
20K – severely limiting the potential applications. Many believed, with
theoretical justification, that this was close to the maximum achievable Tc.
The discovery by Bednorz and Müller (1986) of a superconducting com-
pound, La2−xBaxCuO4 with Tc = 35K has opened up a new and exciting
phase in superconductivity research, leading to the development of new
materials with critical temperatures above liquid nitrogen temperature
(77K), but also posing the question as to the mechanism underpinning
this high-temperature (high-Tc) superconductivity. At the time of writ-
ing (2001), this question remains unresolved: the key differences between
high-Tc and conventional superconductors have been highlighted, but
the challenge remains to establish a single, widely-accepted model of the
high-Tc superconducting mechanism.
We begin this chapter with a review of some of the key experimental

features of superconductivity, and then outline the BCS theory of conven-
tional superconductivity (Bardeen, Cooper and Schrieffer 1957), and its
consequences. The chapter and book then conclude with an overview of
current progress in high-Tc superconductivity.



Superconductivity 173

Temperature, T

R
es

is
ta

nc
e,

R

Temperature, T

R
es

is
ta

nc
e,

R

Normal impure
substance

Superconducting
state

Normal
state

Pure
substance

(a) (b)

Figure 8.1 Schematic illustration of (a) the variation of resisitivity at low temperature
in a normal impure metal, and in a highly purified crystal of the same metal;
compared with (b) the superconducting transition at low temperature in
mercury.

8.2 Occurence of superconductivity

We consider first a normal metal, which has a DC electrical resistivity, ρ,
so that the current density J in an applied electric field E is given by

E = ρJ (8.1)

The resistance in such ametal has twomain components, due to (i) thermal
vibrations of the atoms, and (ii) impurities and defects in the crystal. Both
these processes scatter electrons. (Electrons are not scattered by a perfect
lattice.) As the temperature is decreased, the lattice vibrations decrease,
and it is consequently observed that the resisitivity also decreases. Figure
8.1(a) shows schematically the resisitivity of a normal, impure metal, and
of a highly purified single crystal of the same metal, near T = 0K: the
resistivity remains finite in the former case, but ρ → 0 as T → 0 in the
pure sample.

In 1911, the Dutch scientist, Heike Kamerlingh Onnes, measured the
resistance of mercury at low temperature, three years after he had first
succeeded in the liquefaction of helium. He found that mercury under-
went a dramatic transition at a finite critical temperature (Tc ∼ 4.2K) from
a normal to a superconducting state, with ρ ∼ 0 below Tc (fig. 8.1(b)).
He was unclear because of experimental uncertainties whether ρ ∼ 0 or
ρ ≡ 0 exactly. The best means to determine a low resistance R accurately
is to observe current flow in a closed loop of self-inductance, L, where the
current should decay with a time constant, τ = L/R. By observing the per-
sistent current for a year, File andMills (1963) placed a lower limit on τ in a
superconducting closed loop of 100 000 years, requiring a superconducting
resistivity ρ < 10−26�m, over 1015 times smaller than in the normal state,
thereby justifying the assumption that ρ ≡ 0 in the superconducting state.
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Many (but not all) metals are superconductors, with the observed
transition temperature ranging from Tc = 0.01K in tungsten to Tc =
9.2K for niobium (Nb). It is perhaps surprising that the establishment
of superconductivity depends only weakly on the material purity, nor
is any change in crystal structure observed below the superconducting
transition temperature. A wide range of alloys and compounds are also
superconductors. Nb3Ge was found in 1972 to have Tc = 23K, and this
was justifiably believed to be close to the highest achievable transition
temperature in a conventional superconductor. Figure 8.2 shows that fol-
lowing the discovery in 1986 of La2−xBaxCuO4 with Tc = 35K, there
was a rapid demonstration, in the following two years, of other, higher
temperature superconductors, all based on copper oxide compounds,
including Tl2Ba2Ca2Cu3O10, with Tc = 125K. This is still close to the
maximum Tc observed in any superconducting material. More recently,
the field of conventional superconductivity has been re-invigorated with
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Figure 8.2 Transition temperature of a selection of superconductors plotted against
their year of discovery (after Bednorz and Müller 1988).
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the serendipitous discovery that MgB2 has a Tc value approaching 40K
(Nagamatsu et al. 2001).

8.3 Magnetic behaviour and Meissner effect

Superconductors are not just ‘perfect conductors’. This is shown by their
behaviour in a magnetic field, which differs from that which would be
predicted for a perfect conductor. We require that the electric field, E = 0
inside a perfect conductor, as charge can re-distribute instantaneously to
cancel any non-zero field in the conductor. FromMaxwell’s equations, we
therefore have

−∂B
∂t

= ∇ × E = 0 (8.2)

in a perfect conductor, so that the magnetic field B must be time-
independent inside such a perfect conductor.

Consider a conductor with finite resistance (T > Tc) placed in a finite
applied magnetic field, Bapp. We saw in Chapter 6 that the magnetic sus-
ceptibility of such a conductor is generally very small (χ ∼ 10−5) so
the magnetic field effectively penetrates the conductor, and we can say
B = Bapp inside the conductor (fig. 8.3(i)). We now reduce the temper-
ature below the superconducting critical temperature (T < Tc). If the
superconductor were just a perfect conductor, then the magnetic field B
inside the material should remain unchanged, with B = Bapp (fig. 8.3(iia)).
This, however, is not what happens. Instead, a current is induced on the
superconductor surface, whose effect is to expel the magnetic flux from
within the superconductor, so that B = 0 inside the superconductor, and
B consequently shows a measurable increase outside the superconductor
(fig. 8.3(iib)). If we now remove the applied field with T < Tc, we would
expect an induced surface current in the perfect conductor to maintain
B = Bapp, leading to a measurable value of B outside the perfect con-
ductor (fig. 8.3(iiia)). Instead, we find B = 0 both inside and outside the
superconductor (fig. 8.3(iiib)).

The superconductor is therefore more than a perfect conductor. It also
behaves like a perfect diamagneticmaterial. This is referred to as theMeissner
effect. Inside the superconductor, the magnetic field B is given by

B = µ0(Hext + M) = 0 (8.3)

whereM is themagnetisation due to the induced surface currents andHext
the externally applied field, so that M = −Hext, and

χ = M/H = −1 (8.4)
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Perfect conductor(a) (b)

(i)

T > Tc

(ii)

T < Tc

(iii)

T < Tc
B = 0

Superconductor

Figure 8.3 Comparison of the magnetic behaviour of (a) a perfect conductor and (b)
a superconductor. (i) Above a critical temperature, Tc, both are in the
normal state, and an applied static magnetic field penetrates the metal.
(ii) On cooling below Tc the magnetic field remains unchanged inside the
perfect conductor, but is screened out inside the superconductor, due to
surface currents induced below Tc. (iii) When the applied field is turned off,
surface currents would be induced to maintain finite B inside the perfect
conductor. By contrast, the field B is then zero inside and outside the
superconductor.

8.4 Type I and Type II superconductors

The response of a superconductor to an increasing external field, Hext, can
be divided into two broad categories, referred to as Type I and Type II
superconductors. In a Type I superconductor, the magnetic flux suddenly
penetrates into the superconductor at a critical field,H = Hc, above which
field thematerial reverts from the superconducting to the normal state. For
a pure material this is a reversible transition, with the magnetisation then
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Figure 8.4 (a) Induced magnetisation, M, as a function of applied field, H, in a Type I
superconductor. At H = Hc, the superconductor reverts to the normal
state, so that above Hc, M ∼ 0. (b) Variation of critical field Bc = µ0Hc
with temperature for mercury.

behaving as in fig. 8.4(a). For a type I superconductor, the critical field at
0K is typically ∼ 10–100mT, and varies with temperature (fig. 8.4(b)) as

Hc(T) = Hc(0)

[
1 −

(
T
Tc

)2
]

(8.5)

These low values of Hc are unfortunate, because they eliminate the
possibility of applying Type I superconductors in high-field magnets.

Superconducting magnets are made from Type II superconductors,
which are generally made of alloys rather than elements. A Type II super-
conductor expels all flux, and is perfectly diamagnetic up to a critical
field, Hc1 (fig. 8.5(a)). Above Hc1, there is partial penetration of magnetic
flux through the metal, and the magnitude of the magnetisation, M, then
decreases with increasing field until an upper critical field, Hc2, beyond
which thematerial reverts fully to the normal state. The upper critical field,
Hc2, can be of order 100 T, three orders of magnitude greater than in a Type
I superconductor. BetweenHc1 andHc2, thematerial is in amixed state: the
magnetic field penetrates through thin cylindrical normal regions. These
are referred to as flux vortices. Each vortex acts like a solenoid which
encloses a single quantum of magnetic flux, �0 = h/2e; the current flow-
ing around the edges of the vortex allows the field to penetrate the vortex
region, while leavingB (and ρ)= 0 in the superconducting regions between
the vortices (fig. 8.5(b)). The current flow in a pure Type II material is dis-
sipative. When an electric current of current density, j, flows through the
material, each vortex (andhence the normal regions) experience a net force,
F = j×�0, leading to normal resistive current flow. Considerable effort has
therefore been devoted to developing imperfect materials, where the flux
lines are pinned by impurities such as dislocations and grain boundaries,
thereby eliminating the resistive current associated with the movement
of the normal vortex regions through the material. We shall return later
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Figure 8.5 (a) Induced magnetisation, M, as a function of applied field, H, in a Type II
superconductor. Above Hc1, there is partial penetration of magnetic flux into
the superconductor. Above H = Hc2, the superconductor reverts fully to the
normal state. (b) Between Hc1 and Hc2, the magnetic flux penetrates through
thin cylindrical normal regions, each of which encloses a single quantum of
magnetic flux, and is refered to as a flux vortex. (From P. J. Ford and G. A.
Saunders (1997) Contemporary Physics 38 75 © Taylor & Francis.)

to consider what determines whether a superconductor will be Type I or
Type II, but turn first to seek an explanation of the Meissner effect.

8.5 Electromagnetic momentum and
the London equation

To explain the Meissner effect, we first introduce the concept of electro-
magnetic momentum for a classical charged particle. This allows us to deal
more efficiently and elegantly with the motion of particles in an applied
magnetic field, B. Because the divergence of the magnetic field is zero,
∇ · B = 0, we can always define a vector potential, A, such that B = ∇ × A.
If we consider a particle of mass M and charge q moving with velocity v
in the applied field B = ∇ × A, then the total momentum, p, of the particle
can be defined as

p = Mv + qA (8.6)

where Mv is the kinetic momentum, and qA is referred to as the electro-
magnetic momentum.

It can be shown that the total momentum p is conserved in the presence
of time-dependent magnetic fields, evenwhen B is constant at the position
of the charged particle. The general proof is beyond the scope of this text,
but the conservation of total momentum can be readily demonstrated by
a specific example.
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Figure 8.6 A charged particle of mass M and charge q sitting outside a solenoid expe-
riences a net acceleration when the current through and field inside the
solenoid decay to zero. This is despite the fact that B = 0 at all times
outside the solenoid.

Consider a stationary particle of mass M and charge q at a distance r
from the centre of a long (effectively infinite) superconducting solenoid,
with current I at a temperature T < Tc (see fig. 8.6). We note that although
B is finite inside the solenoid, B = 0 on the loop, C, where the charged
particle is positioned outside the solenoid. If we heat the solenoid above
Tc then the current Iwill decay. Because the fieldB → 0 inside the solenoid,
themagnetic flux� through the loopCwill decrease, leading to an induced
e.m.f. (electromotive force) around the loop C, given by Faraday’s Law as∮

C
E · dl = −d�

dt
(8.7)

where the flux � through the loop is given by

� =
∫
S

B · dS =
∫
S
(∇ × A) · dS (8.8)

or, using Stokes’ theorem,

� =
∮
C

A · dl (8.9)

Substituting (8.9) in (8.7), we then find∮
C

E · dl = −
∮
C

∂A
∂t

· dl (8.10)
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and we can choose A so that

E = −∂A
∂t

(8.11)

The change in kinetic momentum of the particle between times t1 and t2 is
the impulse of the force F = qE acting on it during this interval:

[Mv]t2t1 =
∫ t2

t1
qE dt = −q

∫ t2

t1

∂A
∂t

dt = [−qA]t2t1 (8.12)

Rearranging eq. (8.12) we find

Mv1 + qA1 = Mv2 + qA2 (8.13)

so that p = Mv + qA is conserved at all times t, as the current decays. This
is then the appropriate definition of total momentum for a charged particle
in the presence of a magnetic field.

We saw in Chapter 1 that the transition from classical to quantum
mechanics is made by replacing the momentum p by the operator
−i�∇, with

pψ = −i�∇ψ (8.14)

As p is defined in terms of the gradient operator, this implies that p is com-
pletely determined by the geometry of the wavefunction (a more rapidly
varying wavefunction implies larger total momentum).

In isolated atoms, the electronic wavefunction is rigid, and unchanged
to first order in an applied magnetic field, B. We will see below that the
same must also be true for superconducting electrons. The total momen-
tum p is therefore conserved in an applied magnetic field. The average
electron velocity must be zero (〈v〉 = 0) when the applied vector potential
A = 0, giving p = 0. The conservation of total momentum then requires
Mv + qA = 0, so that for an electron of mass me and charge −e, we can
write

v = eA
me

(8.15)

in an applied vector potential A. The resulting induced current density j is
then given by

j = n(−e)v = −ne2

me
A (8.16)

wheren is thedensityof electronsperunitvolume. Byassuming thatwecan
associate a rigid (macroscopic) wavefunction with the ns superconducting
electrons per unit volume in a superconductor we derive that

j = −nse2

me
A (8.17)
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Taking the curl of both sides we find that the magnetic field B and current
density j are related in a superconductor by

∇ × j = −nse2

me
B (8.18)

This relation was deduced from the Meissner effect by Fritz and Heinz
London in 1935, and is referred to as the London equation. We have shown
here how the London equation follows from the assumption of a rigid
wavefunction, and will show below how it leads to the Meissner effect.

8.6 The Meissner effect

To determine the variation of the magnetic field, B, within a supercon-
ductor, we can combine the London equation (eq. (8.18)) with Maxwell’s
steady-state equations for the magnetic field:

∇ × B = µ0j (8.19a)

∇ · B = 0 (8.19b)

Taking the curl of the first of these Maxwell equations, we find

∇ × (∇ × B) = µ0(∇ × j) (8.20)

We use the London equation to replace ∇ × j on the right-hand side of
eq. (8.20), and use the vector identity ∇ × (∇ × B) = ∇(∇ · B) − ∇2B on the
left-hand side. This gives

∇(∇ · B) − ∇2B = −µ0nse2

me
B (8.21)

Substituting the second Maxwell equation, eq. (8.19b), into eq. (8.21), we
find a second order equation determining the behaviour of the magnetic
field, B,

∇2B = λ−2
L B (8.22)

where λL is referred to as the London penetration depth, and is given by

λ2L = me

µ0nse2
(8.23)

By taking the curl of the London equation, we can derive a similar
expression for the current density,

∇2j = λ−2
L j (8.24)
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Figure 8.7 A magnetic field decays exponentially inside the surface of a superconduc-
tor, with the decay length, λL, given by the London equation.

The Meissner effect follows immediately from eq. (8.22), because B = C is
not a solution to eq. (8.22) unless the constant, C = 0.

The London equation predicts the exponential decay of a magnetic field
Baway fromthe surfaceof a superconductor.Wecansee thisbyconsidering
a semi-infinite superconductor, defined in the half-space x > 0, and with a
constantmagnetic field,B = B0 in the vacuumregion (x < 0), with the field
B0 pointing along the z-direction (fig. 8.7). Because the field is independent
of y and z, eq. (8.22) reduces to

∂2B
∂x2

= 1
λ2L

B (8.25)

which has the general solution,

B(x) = A exp(x/λL) + B exp(−x/λL) x > 0 (8.26)

Applying the boundary conditions that B remain finite as x → ∞, and
B = B0 at x = 0, we thenfind that themagnetic fieldBdecays exponentially
into the semi-infinite superconductor as

B(x) = B0 e−x/λL (8.27)

The current density j also decays exponentially into the superconductor,
as j(x) = j0 exp(−x/λL), with a typical value of the London penetration
depth, λL, being of order 300Å.

To re-emphasise that a superconductor is more than just a perfect con-
ductor, we note that in a perfect conductor the force F on an electron of
mass me and charge −e is given by

F = me
dv
dt

= −eE (8.28)
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where E is the instantaneous electric field at any point. The current density
j = −nsev is therefore related to E by

dj
dt

= nse2

me
E (8.29)

and as ∇ × E = −∂B/∂t, we find by taking the curl of both sides of eq.
(8.29) that

d
dt

(∇ × j) = − d
dt

(
nse2

me
B

)
(8.30)

so that

d
dt

(
∇ × j + nse2

me
B

)
= 0 (8.31)

A perfect conductor therefore requires that (∇ × j + (nse2/me)B) is constant
with time. From the London equation, a superconductor requires that this
constant is zero.

8.7 Application of thermodynamics

We saw earlier that the transition from the superconducting to nor-
mal state occurs at a critical field Hc for a Type I superconductor, and
that Hc decreases with increasing temperature T (fig. 8.4(b)). Flux is
always excluded from the superconductor no matter how we approach
the superconducting state. Because the transition from the normal to the
superconducting state is reversible, we can use thermodynamic analysis
to investigate the superconducting transition. This allows us to deduce the
energy difference between the normal and superconducting states, which
turns out to be remarkably small. We can also determine the difference
in entropy, or degree of disorder, between the two states. The results of
the thermodynamic analysis then place severe constraints on the possible
models of superconductivity.

The Gibbs free energy per unit volume, G, is the thermodynamic func-
tion which must be minimised to determine the equilibrium state of any
substance at a fixed temperature T, pressure p and applied field H (see,
e.g. Finn). It is defined for a magnetic material with magnetisation M in an
applied field H by

G = U − TS + pV − µ0H · M (8.32)

whereU is the internal energy of the substance, and S the entropy, which is
a measure of the degree to which the substance is disordered. (S increases
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as the disorder increases.) Work must be carried out to create a change in
magnetisationdM in the external fieldH. The change in the internal energy
perunit volume, dU, thereforedependson temperatureT andappliedfield
H as (Zemansky and Dittman (1981))

dU = T dS + µ0H · dM(−pdV) (8.33)

Taking the differential of eq. (8.32) and ignoring the change in G or U due
to any small changes in volume or pressure we find that the Gibbs free
energy changes with applied field H and temperature T as

dG = dU − d(TS) − µ0 d(M · H)

= −µ0 M · dH − SdT (8.34)

so that for a constant temperature T, the change in Gibbs free energy per
unit volume, dG, is given by

dG = −µ0 M · dH (8.35)

We can use eq. (8.35) to determine the change in Gibbs free energy per unit
volume of a superconductor, Gsc, as a function of appliedmagnetic fieldH

Gsc(H) − Gsc(0) =
∫ H

0
(−µ0M)dH

=
∫ H

0
µ0HdH (8.36)

becauseM/H = −1 in a perfect diamagnet. We therefore conclude that the
Gibbs free energy increases with applied field H in a superconductor as

Gsc(H) = Gsc(0) + 1
2µ0H2 (8.37)

At the critical field, Hc, the Gibbs free energy of the superconducting and
normal states are equal

Gsc(Hc) = GN(Hc) (8.38)

while above Hc, GN < Gsc, and the normal state is the equilibrium state.
Because the normal state is effectively non-magnetic (M ∼ 10−5H ≈ 0),

we have

GN(0) � GN(Hc) (8.39)
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Combining equations (8.37), (8.38), and (8.39) the difference in Gibbs free
energy between the normal and superconducting states at zero field is,
therefore,

GN(0) − Gsc(0) = 1
2µ0H2

c (8.40)

Applying this equation to theexperimentallyobserved temperaturedepen-
dence ofHc (fig. 8.4a)we candeduce several important features concerning
the comparative entropy and energy of the superconducting and normal
states.

The entropy, S, of a substance is defined in terms of its Gibbs free energy
as (Finn (1993); Zemansky and Dittman (1981))

S = −
(

∂G
∂T

)
H,p

(8.41)

Applying this definition to eq. (8.40) we find that

SN(0,T) − Ssc(0,T) = −∂

∂T

(
1
2
µ0H2

c

)

= −µ0Hc
∂Hc

∂T
(8.42)

we have that Hc = 0 at the superconducting transition temperature, so
that the difference in entropy, �S, equals zero at T = Tc. Similarly, as
T → 0, ∂Hc/∂T → 0, so that �S also equals zero at T = 0, that is, the
superconducting and normal states are equally ordered at T = 0 and at
T = Tc. We note, however, that at all intermediate temperatures (0 < T <

Tc) ∂Hc/∂T < 0, so that �S > 0. The superconducting state is therefore
more ordered than the normal state (fig. 8.8).

A major challenge in developing a microscopic theory of superconduc-
tivity was to account for the very small energy difference between the
superconducting and normal states. From eq. (8.40), the energy differ-
ence per unit volume between the normal and superconducting states is
given by

�G = 1
2
µ0H2

c = B2
c

2µ0
(8.43)

where Bc is the critical field in Tesla. We take aluminium as a typical
Type I superconductor, for which Bc = 0.0105 T and in which there are
approximately N = 6 × 1028 conduction electrons per cubic metre. The
average energy difference per electron, ε1, between the superconducting
and normal states is given by ε1 = �G/N ∼ 10−8 eV per electron. This is
considerably lower than thermal energies at the critical temperature, kTc,
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Figure 8.8 Variation of the entropy, S, with temperature in the normal (N) and
superconducting (SC) states of a metal (after Keesom and van Laer 1938).

which are of order 10−4 eV, indicating it is most unlikely that all of the
electrons gain energy in the superconducting transition.

We can instead apply an argument analogous to that usedwhen estimat-
ing the paramagnetic susceptibility of a metal in Chapter 6, where we saw
that electrons within an energy µBB of the Fermi energy gained energy of
orderµBB by flipping their spin direction. We presume here that the super-
conducting transition is due to those electrons within an energy ε2 of the
Fermi energy, EF, and that each of these electrons gains energy of order ε2
through the superconducting interaction. We estimate the number of such
electrons per unit volume, nsc, as

nsc ≈ g(EF)ε2 (8.44)

where g(EF) is the density of states at the Fermi energy in the normalmetal.
It can be shown from eq. (5.15) that g(EF) = 2

3 (N/EF) for a free-electron
metal. Substituting this into eq. (8.44), we can estimate that

nsc
N

∼ ε2

EF
(8.45)

where we drop the factor of 2
3 , because we are just making an order of

magnitude estimate. The total energy gained per unit volume by these nsc
superconducting electrons equals Nε1(= 1

2µ0 B2), nsc ε2 = Nε1, so that

ε2 ∼ EFε1

ε2
(8.46)
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Re-arranging, we then find

ε2 ∼ √
ε1EF (8.47)

The Fermi energy EF ∼ 1–10 eV in aluminium, so that ε2 ∼ 10−4 eV.
This is comparable to the thermal energy at the superconducting transition
temperature, ε2 ∼ kTc.
Thermodynamic analysis, therefore, suggests that the superconducting

transition is due to those electrons within an energy range kTc of the Fermi
energy, with each of these electrons gaining ∼ kTc of energy in the super-
conducting state. Furthermore, the superconducting state contains a more
ordered arrangement of electrons than that which is found in the normal
state.

8.8 Cooper pairs and BCS theory

The major breakthrough to explain the phenomenon of superconductiv-
ity came in the 1950s, when Leon Cooper showed that it is possible for
a net attraction between a pair of electrons in a metal to bind the elec-
trons to each other, forming a so-called ‘Cooper pair’ (1956). This idea was
built upon by Bardeen, Cooper, and Schrieffer (1957). The model which
they developed, referred to as BCS theory, provides in the main a very
satisfactory explanation of conventional superconductors, and also points
towards some of the requirements of amodel for high-Tc superconductors.
We present here a qualitative description of BCS theory. The mathemati-
cal details of the model are more advanced than we wish to consider, but
are well described in a number of other texts (e.g. Ibach and Lüth 1995;
Madelung 1978; Tinkham 1996).

An electron passing through a crystal lattice can cause a transient
distortion of the positive lattice ions as it passes them (fig. 8.9). This
vibrational distortion of the lattice can then attract another electron. The
distortion-induced attraction is opposed by the short-range Coulomb
repulsion between the two negative electrons. Broadly speaking, conven-
tional superconductivity occurs in those materials for which the transient,
lattice-mediated attraction is stronger than the Coulomb repulsion. Just as
the quantum unit of light is referred to as a photon, so the quantum unit
of vibration is referred to as a phonon, with the energy of a single phonon
with frequency ν equal to hν. Typical maximum phonon energies are of
order 20–30meV. It is reasonable to expect that only electrons within an
energy range hν of the Fermi energy, EF, are likely to be influenced by
transient lattice distortions.

The establishment of the superconducting state by cooling to below the
critical temperature, Tc, is a cooperative effect. The ground state, lowest-
energy, configuration is achieved by all the superconducting electrons
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Figure 8.9 An electron passing through a crystal can cause a transient distortion of
the neighbouring positive ions. This distortion of the lattice (= creation
of a phonon) can attract another electron, thereby giving a net attraction
between the two electrons.

forming identical Cooper pairs. The two electrons have equal and opposite
momentum and spin, so that each Cooper pair has no net momentum
or spin.

Because of the attraction between the electrons, a finite amount of energy
is needed to break a Cooper pair. BCS theory, therefore, predicts an energy
gap (whosemagnitude is defined as 2�) between the highest filled Cooper
pair and the next available (single electron) state above the energy gap.
Figure 8.10 shows schematically the density of states at zero tempera-
ture of a normal metal and of a superconductor. It should be noted,
however, that the energy gap in the superconductor has both different
origins and a different meaning to that of a semiconductor in earlier chap-
ters. The states immediately below the superconductor energy gap are not
single-particle states, as in the semiconductor. Rather they are Cooper pair
states.

Figure 8.11 shows that the superconducting energy gap, 2�, is temper-
ature dependent. This arises because of the cooperative nature of super-
conductivity: adding energy to the metal breaks some Cooper pairs, thus
making it easier to break further Cooper pairs, with the superconducting
electron density, ns varying with temperature approximately as

ns(T) = ns(0)

[
1 −

(
T
Tc

)4
]

(8.48)

This is directly analogous to the way in which the spontaneous
magnetisation varies with temperature in a ferrromagnet: a large
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Figure 8.10 Schematic diagram of the density of states at T = 0 in (a) a normal metal,
and (b) a superconductor. In both cases, all states are filled up to the
Fermi energy, EF, and are empty above EF. There is an energy gap in the
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Figure 8.11 The temperature dependence of the superconducting energy gap,
�(T)/�(0), as predicted by BCS theory (dashed line) and as measured
experimentally (after Giaever and Megerle 1961).

magnetisation is maintained until close to the Curie temperature, but the
magnetisation then decreases rapidly approaching the Curie temperature,
as the net number of spins contributing to the cooperative interaction
decreases. So too, the density of Cooper pairs drops rapidly approaching
the superconducting transition temperature.

We saw earlier that the London penetration depth, λL, varies with the
superconducting electron density, ns, as λL ∼ n−1/2

s (eq. (8.23)). Combining
this with eq. (8.48) BCS theory then predicts that λL should vary with
temperature approximately as [1 − (T/Tc)

4]−1/2. This relation is in good
agreement with experimental observation for many superconductors.
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Figure 8.12 The variation in the heat capacity, cv, of a superconducting (S) and normal
metal (N), at and below the superconducting tranisition temperature, Tc
(after Corak et al. 1956).

Further evidence for the superconducting energy gap, and its
temperature dependence, comes from a variety of sources.

1 A normal metal absorbs microwaves and far infra-red radiation, by
exciting electrons from just below to just above the Fermi energy. In
a superconductor at zero temperature, there is an absorption edge at
hν = 2�(0) below which the superconductor is perfectly reflecting to
incident photons.

2 The low-temperature electron specific heat, cv, varies exponentially
with temperature, as cv ∼ exp(−�/kT) in a superconductor, compared
to a linear variation, cv ∼ T, in a normal metal (fig. 8.12). The differ-
ence arises because energy can only be added to the electrons in the
superconductor by exciting electrons across the energy gap, breaking
Cooper pairs to create single electron states above the Fermi energy,EF.

3 Consider two normal metals separated at low temperature by a very
thin insulating layer (fig. 8.13a(i)). For a sufficiently thin insulator,
the two metals will share the same Fermi energy, EF (fig.8.13a(i)). If
a voltage, V, is now applied across the structure, most of the potential
drop will occur across the insulating layer (fig.8.13a(ii)), giving rise to
a current due to electrons tunnelling from one metal to the other. The
current is predicted, and observed, to increase linearly with applied
field, V, due to the linear shift in the the relative positions of the Fermi
energies (fig. 8.13a(iii)). By contrast, when two superconductors are
separated by a thin insulator (fig. 8.13b(i)), little current is observed at
a very low applied voltage V (fig. 8.13b(iii)), because electrons cannot
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Figure 8.13 Comparison of I–V characteristics of (a) two normal metals, and (b) two
superconductors separated by a thin insulating layer. (a)(i) When V = 0,
the two metals share a common Fermi energy, EF, and there is no net flow
of carriers. (a)(ii) When V �= 0, the voltage is dropped mainly across the
resistive insulating layer, and carriers can tunnel from filled (shaded) states
in one metal to empty states in the second metal, leading (a)(iii) to a linear
increase in current, I, with applied voltage, V . (b)(i) For V = 0, the two
superconductors also share a common EF. (b)(ii) For small applied voltage,
(eV < 2�), the voltage drop across the insulating layer is insufficient to
align filled (Cooper pair) states in one superconductor with empty (single
particle) states in the second, so that (b)(iii) the current only starts to
increase significantly when eV > 2�.

tunnel from the filled states in the first superconductor through to the
energy gap of the second. The tunnelling current is observed to switch
on sharply at an applied voltage, V such that eV = 2�, at which point
electrons can tunnel from the filled (Cooper pair) states in the first
superconductor through to the empty (single-particle) states in the
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second superconductor (fig. 8.13b(iii)). Such tunnelling experiments
can be used to determine �, and further verify the existence of the
superconducting energy gap.

BCS theory makes several specific predictions concerning the supercon-
ducting transition temperature, which are in good general agreement with
experimental observation. The superconducting transition temperature,
Tc, is predicted to depend on the energy gap at T = 0K as (see e.g. Ibach
and Lüth 1995)

2�(0) = 3.53 kTc (8.49)

More specifically, the transition temperature is given by

kTc = 1.13 hν exp
( −1
g(EF)V

)
(8.50)

where hν is a typical phonon energy in the metal (referred to as the Debye
phonon energy, see e.g. Ibach and Lüth 1995), g(EF) is the density of states
at the Fermi energy in the normal metal, andV is an interaction parameter.
g(EF)V is called the coupling constant, and is always less than 1, so that
kTc is then always much less than the Debye energy, hν.

Equation (8.50) supports the qualitative analysis presented above, which
noted that Tc should increase with increasing g(EF) and hν. Since vibra-
tional energies varywith particlemass,M, asM−1/2, eq. (8.50) then implies
that Tc ∝ M−1/2. This has been well confirmed by experimental measure-
ments of the superconducting transition temperature for different isotopes
of elements such as tin and lead. It is referred to as the isotope effect, and
is one of the key pieces of evidence supporting BCS theory.

8.9 BCS coherence length

The average distance, ξ0, between the electrons in a Cooper pair at T = 0
is of order

ξ0 = �vF
π�(0)

(8.51)

where vF is the electron velocity at the Fermi energy, and ξ0 is known
as the BCS coherence length. This definition of the coherence length is
consistent with a dimensional analysis. If the electrons each gain energy
�(0) through their interaction, then theymust be coherent with each other
at least over a timescale τ ∼ �/�(0) (eq. (1.16)). In this time, the electrons
at the Fermi energy can travel a distance vFτ , comparable to the coherence
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length. The formation of alloys, or introduction of impurities reduces the
magnitude of ξ0.

The relative magnitude of ξ0 and the London penetration depth, λL,
plays the major role in determining whether a particular superconductor
will be Type I or Type II. In general, ξ0 > λL(0) in Type I superconduc-
tors, while ξ0 < λL(0) in Type II superconductors. This occurs because
the concentration of Cooper pairs changes gradually, over a coherence
length ∼ξ0. When ξ0 < λL, it is possible for flux vortices to penetrate
through a superconductor, as the superconducting electron density can
adjust over the transition region of width λL between the normal and
superconducting states inside and outside the vortex, respectively. By
contrast, this is not possible when ξ0 > λL, the condition for a Type I
superconductor.

8.10 Persistent current and the superconducting
wavefunction

We have seen above that the number of Cooper pairs decreases with
increasing temperature, as electrons are thermally excited across the super-
conducting energy gap. It is therefore surprising, given this constant
breaking of Cooper pairs, as towhy a persistent current is found in a super-
conductor. The answer is that Cooper pairs are also continuously being
formed, as single electrons bind to each other through the superconduct-
ing interaction. Becauseof the cooperativenatureof this interaction, energy
is only gained if these newCooper pairs are in the same state as the existing
pairs. This dynamic equilibrium allows for the continued existence of the
superconducting current.

Because all the superconducting electrons are effectively in the same
state, wecandefineamacroscopic superconductingwavefunction, ororder
parameter, ψ(r), related to the superconducting electron density, ns(r) by

|ψ(r)|2 = 1
2ns(r) (8.52)

where ns/2 is the Cooper pair density.

8.11 Flux quantisation

This macroscopic order parameter has properties similar to a quantum
mechanical wavefunction. If the order parameter varies locally as

ψ(r) = ψ0 eiq·r (8.53)
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thenwe can associate amomentum2mev = �qwith eachCooper pair, with
the supercurrent density, js(r) given by

js(r) = ns
2

(−2e)
�q
2me

= −|ψ(r)|2 e
me

�q (8.54)

We must modify this definition of current density in the presence of an
applied magnetic field, B. We saw in Section 8.5 that the electromagnetic
momentum p for a particle (Cooper pair) of mass 2me and charge −2e is
given by eq. (8.6) as

p = 2mev − 2eA (8.55)

where A is the magnetic vector potential, and B = ∇ × A. The kinetic
momentum is therefore given by

2mev = p + 2eA (8.56)

and the velocity v of a Cooper pair by

v = p
2me

+
(

e
me

)
A (8.57)

To calculate the velocity v in a quantum mechanical analysis, we replace
the total momentum p by the momentum operator −i�∇. If we assume
that this is also true for the superconducting order parameter, we might
deduce from eq. (8.54) that the superconducting current density j(r) in the
presence of a magnetic field B is given by

j(r) = ψ∗(r)(−2ev)ψ(r)

= − e
me

ψ∗(r)(−i�∇ + 2eA)ψ(r) (8.58)

This analysis is only partly correct. It is possible using eq. (8.58) to find
sensible wavefunctions (e.g. ψ(r) = sin(k · r)) for which the calculated
current density is imaginary. Amore complete analysis (see e.g. Hook and
Hall 1991) shows that in order for the local current density to be real (and
therefore a measurable quantity), we must define j(r) as half the sum of
eq. (8.58) and its complex conjugate:

j(r) = i�e
2me

(ψ∗(r)∇ψ(r) − ψ(r)∇ψ∗(r)) − 2e2

me
Aψ∗(r)ψ(r) (8.59)

We can choose to write the superconducting order parameter at each point
as the product of a real number times a phase factor,

ψ(r) = |ψ(r)|eiθ(r) (8.60)
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When we do so, eq. (8.59) can be simplified to give

j(r) = −
(

e
me

)
|ψ(r)|2(�∇θ + 2eA) (8.61)

This equation is consistent with our earlier analysis. It reduces to eq. (8.54)
if we let θ = k · r, set A = 0, and replace |ψ(r)|2 by ns/2, the Cooper pair
density. Also, if we assume that |ψ(r)|2, and hence ns is constant, and take
the curl of eq. (8.61) we recover the London equation.

One remarkable consequence of eq. (8.61) is that the magnetic flux pen-
etrating a superconducting ring is quantised: we can directly measure
a quantum effect in a macroscopic sample. Consider a superconducting
ring, as in fig. (8.14), which carries a persistent supercurrent. From the
London equation, we know that the superconducting current only flows
on the outer surface of the ring, so that j(r) = 0 on the dotted path in
fig. (8.14). Because the superconducting electron density, and hence ψ(r),
is finite throughout the sample, this then requires from eq. (8.61) that

�∇θ = −2eA (8.62)

Integrating around the closed dotted path, C, within the superconductor
then gives∮

C
�∇θ · dl = −

∮
C
2eA · dl (8.63)

Because the order parameter, ψ(r), can only have one value at each point
within the superconductor the phase θ must change by an integer mul-
tiple of 2π going round the closed loop. The left-hand side of eq. (8.63)

C

Figure 8.14 Because superconducting current only flows within a distance of order λ
of the surface of the ring shown, the current density j(r) = 0 everywhere
on the dotted loop C within the body of the ring. We can use this to prove
that the magnetic flux � is quantised through the centre of the loop.
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then equals 2π�n = hn, where n is an integer, while the right-hand side
equals −2e�, where � is the magnetic flux linking the loop (eq. (8.9)).
Re-arranging eq. (8.63) we find that the magnetic flux � linking a closed
superconducting ring is quantised, with

� = hn
2e

(8.64)

where the factor of 2e arises because the electrons are bound together in
Cooper pairs. Flux quantisation has been well confirmed experimentally
for conventional superconductors.

8.12 Josephson tunnelling

We saw in Section 8.8 that when two superconductors are separated by
an insulating layer, then electrons can tunnel through the layer, allowing
current to flow for a sufficiently large applied voltage. Even more striking
effects are observed if the insulating layer is very thin, so that the super-
conducting order parameters, ψ(r) from both sides of the layer become
weakly coupled. This effect was first predicted in a short paper by Brian
Josephson, based on a theoretical analysis he carried out while still a stu-
dent at Cambridge (Josephson 1962), and for which he was awarded the
Nobel prize in 1973.

If we place an insulating layer next to a superconductor, the supercon-
ducting order parameter, ψ(r) will decay exponentially into the insulating
layer, analogous to the exponential decay of a bound state wavefunction
outside a square quantumwell (Chapter 1). If two superconducting regions
are separated by a thick insulating layer there will be no overlap between
their order parameters in the insulating layer; the two superconducting
regions will be decoupled, and act independently of each other. However,
for a sufficiently thin insulating layer (∼ 10Å) the superconducting elec-
tron density will never drop fully to zero in the insulating layer, and so
the two regions will be weakly coupled, as illustrated in fig. 8.15(a), where
the weak link is formed by oxidising a small cross-section of what would
otherwise be a superconducting ring. Because both sides of the link are
at the same temperature, the superconducting electron density, and hence
the magnitude of the superconducting order parameter should be equal
on each side of the link, with magnitude say ψ0. We define the insulating
layer in the region −b/2 ≤ x ≤ b/2, and allow for a difference in the phase,
θ , of the order parameter on either side of the link, with θ = θL on the
left-hand side and θ = θR on the right-hand side. The superconducting
order parameter then varies in the insulating layer as (fig. 8.15(b))

ψ(r) = ψ0(eiθL−κ(x+d/2) + eiθR+κ(x−d/2)) (8.65)
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Figure 8.15 (a) A weak link is formed in a superconducting loop by interrupting the loop
at one point by a very thin oxide layer (∼10 Å across). The superconducting
order parameter decays exponentially from either side into the insulating layer,
varying as shown in (b).

The order parameterψ(r) of eq. (8.65) allows a superconducting current to
flow even in the absence of an applied voltage or external magnetic field
(B = 0). We substitute eq. (8.65) into eq. (8.59), and set A = 0 to derive the
DC Josephson effect, whereby

j(r) = j0 sin(θL − θR) (8.66a)

with

j0 = e�nsκ e−κd

me
(8.66b)

The difference in the order parameter phase factor on either side of a weak
link is therefore directly related to the supercurrent density in the weak
link. Equation (8.66) indicates that a DC supercurrent can flow even in the
absence of an applied voltage or external magnetic field.

The DC Josephson effect provides a very accurate means of measur-
ingmagnetic flux, using what is known as a SQUIDmagnetometer, that is,
a SuperconductingQUantum InterferenceDevice. Consider the supercon-
ducting ring with a weak link illustrated in fig. (8.15a). The total magnetic
flux � linking this ring must at all times equal n�0, where n is an inte-
ger, and �0 is the superconducting unit of magnetic flux, h/2e (eq. (8.64)).
Let the ring sit in an external magnetic field, B, chosen such that the flux
through the ring equals n�0. If the external field is now increased, a super-
conducting current will be induced in the ring, whose magnitude varies
linearly with the change in B in order to maintain the flux n�0. How-
ever, because the superconducting carrier density, ns, is lower in the weak
link, the superconducting current can be more easily destroyed in this
region. As the current is destroyed, the flux through the loop can change,
increasing to (n+1)�0, and restoring the superconducting link. The current
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Figure 8.16 Schematic illustration of variation of screening current with external mag-
netic flux linking a superconducting loop with one weak (Josephson)
link.

circulating in the ring, therefore, varies with applied field as indicated
schematically in fig. 8.16. A more detailed analysis of the principles of the
SQUID magnetometer is provided in several text books (e.g. Myers 1997;
Hook and Hall 1991; Tanner 1995). By appropriate design of the magne-
tometer, it is possible to measure magnetic field to very high sensitivity, of
order 10−11 G or less. Such devices are now available commercially. Mag-
netometers can also be designed to measure very small changes in field
gradient, achieved by having an external double coil, where the two coils
are wound in opposite directions. A constant field then gives rise to equal
and opposite flux in each half of the coil, with the double coil then only
sensitive to changes in the field, that is, the field gradient (Tanner).

8.13 AC Josephson effect

We write the superconducting order parameter as ψ(r) because of its
similarity to the quantum mechanical wavefunctions found by solving
Schrödinger’s equation. We saw in Chapter 1 that if φn(r) is a solution of
the steady-state Schrödinger equationwith energyEn thenwe can describe
the time dependence of this state by

�n(r, t) = φn(r) exp(iEnt/�) (8.67)

Likewise the superconducting order parameter of a state with energy Ei
varies with time as

�(r, t) = |ψ(r)| exp(iθ(t)) (8.68)

where the phase factor θ(t) is given by

θ(t) = θ0 + Eit
�

(8.69)

When we apply a DC voltage, V, to a superconducting circuit containing a
Josephson junction, all of the voltage will be dropped across the weak link
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in the circuit, namely the Josephson junction, giving an energy difference
�E = 2eV across the junction, so that

θL(t) − θR(t) = θ0 + �Et
�

(8.70)

Substituting this into eq. (8.66a) we therefore deduce that a DC voltage, V,
across a Josephson junction leads to an AC current flow,

j(r, t) = j0 sin(θ0 + 2eVt
�

) (8.71)

with angular frequency ω = 2eV/� and frequency ν = 2eV/h. Measur-
ing ν for a given applied voltage has allowed the determination of the
ratio of the fundamental constants e and h to 1 part in 107, and is now
also used as a means of measuring and calibrating voltage standards. The
AC current also leads to the emission of electromagnetic radiation of fre-
quency ν. (Energy is dissipated across the junction through the emission
of a photon of energy hν = 2eV each time a Cooper pair crosses the junc-
tion.) Although the power radiated by a single junction is very low, of
order 10−10 W, Josephson junctions do nevertheless find some application
as microwave power sources: an applied voltage of order 10−4 V leads
to microwave emission about 50GHz (wavelength, λ ∼ 6mm), with the
emission wavelength also being tunable through variation of the applied
voltage.

8.14 High-temperature superconductivity

The lure of high-Tc superconductors is partly psychological. These materi-
als become virtually perfect conductorswhen plunged into liquid nitrogen
at 77K and, before one’s very eyes, become capable of levitating a magnet.
The discovery by Bednorz and Müller in late 1986 that the ceramic mate-
rial, lanthanum barium copper oxide, lost all electrical resistance when
cooled to 35K gained them the Nobel prize in Physics within a year and
unleashed an unparalleled explosion of research activity. Within eighteen
months a wide range of further material combinations had been tested,
leading to the discovery of compounds such as Tl2Ba2Ca2Cu3O10 with
a superconducting transition temperature as high as 125K. Surprisingly,
all of the high-temperature superconductors discovered to date share a
common crystal structure: they all contain lightly doped copper-oxide
layers, with other metal atoms sitting between these layers. Extensive
research to find high-Tc superconductivity in other families of materials
has been singularly unsuccessful. The cuprate family of materials con-
tinues, therefore, to be of immense theoretical and experimental interest.
Even a decade and a half after its discovery, the mechanism underpinning
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Figure 8.17 The crystal structure of La1−xBaxCuO4, an archetypal high-Tc super-
conductor. Each copper atom is bonded to four neighbouring oxygen
atoms within the plane. The copper oxide planes (the bottom, middle,
and top layers in the structure shown) are separated from each other by
layers containing La, Ba, and further oxygen atoms. Some high-Tc super-
conductors with more complex crystal structures have two or three
neighbouring copper oxide layers, with each group of copper oxide lay-
ers again separated from the next group of copper oxide layers by other
metal oxide layers. (From H. P. Myers (1997) Introductory Solid State Physics,
2nd edn.)

high-Tc superconductivity has still not been resolved, although a wide
range of measurements have established some of the key experimental
features of these materials.

Figure 8.17 shows the crystal structure of La2−xBaxCuO4, whose struc-
ture and properties are typical of all high-temperature superconductors.
Each copper atom lies in a 2D layer, bonded to four neighbouring oxygen
atoms within the layer. The copper layers are then separated from each
other by layers of lanthanum, barium, and oxygen atoms.

The electronicproperties ofLa2−xBaxCuO4 varydramatically as the alloy
composition, x, is varied. When x = 0, La2CuO4 is an antiferromagnetic
insulator, with a Néel temperature, TN = 240K. The electronic structure
can be described in terms of three electrons transferring from each lan-
thanum ion to the oxygen ions, with two electrons transferring from each
of the copper ions, to give (La3+)2Cu2+(O2−)4. The only ion which then
possesses an incomplete shell of electrons is the Cu2+ ion, which has nine
3d electrons, just one electron short of a filled 3d shell. For further dis-
cussion, it is considerably more convenient to describe the Cu2+ ion as
having one 3d hole state in an otherwise filled 3d band. This 3d hole
state has a magnetic moment. Each hole is localised on a single copper



Superconductivity 201

ion, with the exchange interaction then leading to the formation of the
anti-ferromagnetic insulator.

When lanthanum is replaced by barium, the charge balance is disturbed
and an electron-deficient structure is formed. Each barium effectively
donates an extra hole to the structure. It is thought that these extra holes
are associated primarily with the oxygen atoms in the copper oxide layers.
The holes are mobile, predominantly within the plane, so that as the bar-
ium concentration increases, the alloy becomes metallic and at the same
time theNéel temperature decreases until eventually thematerial ceases to
be an anti-ferromagnet (for x ∼ 0.05). When a little more barium is added,
thematerial becomes superconducting at low temperatures. The supercon-
ducting transition temperature, Tc, is maximised for x ∼ 0.2, when there is
about one extra hole for every five copper atoms. As x increases further, Tc
starts to decrease, and for sufficiently high x (∼0.3), the material no longer
displays superconductivity.

From the above, it is clear that a model to explain high-Tc superconduc-
tors must, probably, be radically different from the BCS theory applicable
to conventional superconductors. Early measurements of the flux quan-
tum confirmed that the superconducting charge carriers have charge 2e,
so that hole pairing must occur. Nuclear magnetic resonance Knight shift
measurements also provided evidence for anti-parallel alignment of the
hole spins, as in conventional superconductors. More recently however
it has been established that the spatial symmetry of the superconducting
order parameter is markedly different in high-Tc superconductors com-
pared to the conventional case. In a conventional superconductor, each
Cooper pair is approximately spherically symmetric: there is equal prob-
ability of finding the second electron along any direction with respect to
the first. By analogy with atomic wavefunctions, we therefore say that the
order parameter has s-like symmetry. By contrast, a recent series of ele-
gant experiments have shown the order parameter to have a markedly
different, d-like, symmetry in high-Tc superconductors, as illustrated in
fig. 8.18. The high-Tc order parameter has similar symmetry to a dx2−y2

atomic orbital: each Cooper pair lies predominantly within a single CuO2
plane; there is greatest probability of the two holes in the pair being ori-
ented along the crystal axes, and zero probability of their lying along
the (110) direction with respect to each other. Any model of high-Tc
superconductivity must account for this d-like symmetry of the order
parameter.

One testable property of d-wave symmetry is that the Cooper pairs are
more weakly bound in some directions than in others, and so the super-
conducting energy gap should be angular dependent, going to zero along
specific directions. This modifies the microwave absorption characteris-
tics, and also introduces a quadratic term to the low-temperature specific
heat. Initial measurements confirmed the angular dependence of the gap,
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Figure 8.18 (a) s-wave symmetry of the superconducting order parameter in a conventional
superconductor, where there is equal probability of finding the second electron
in a Cooper pair along any direction with respect to the first. (b) Several
experiments show that the order parameter has dx2−y2 symmetry in high-Tc
superconductors, meaning that the order parameter changes sign for a rotation
of π/2 within the x–y plane, and that there is greatest probability of the two
holes within the Cooper pair being oriented along the x- or y-axis with respect
to each other.
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but were not on their own sufficient to confirm d-wave symmetry, as they
could also have been consistent with a modified s-like state.

The key feature of the d-wave order parameter is that its phase varies
with direction, being of opposite sign along the x- and y-axes in fig. 8.18.
The first tests for d-wave symmetry, probing the angular dependence of
the energy gap, were insensitive to this phase variation, and so their results
were suggestive but not conclusive.We sawearlier in Sections 8.11 and 8.12
that themagnetic flux through a closed loop depends on the total change in
phase around the loop, and equals n�0 for a conventional superconductor,
where �0 = h/2e. The magnetic flux linking a closed loop turns out to be
a very useful probe of the order parameter symmetry, and has provided
the clearest evidence so far forunconventionald-wave symmetry. Consider
a superconducting circuit formed by linking an s-wave superconducting
element with a d-wave element, as shown in fig. 8.19. The superconduct-
ing order parameter must vary continuously round this circuit. With zero

Magnetic flux

Interface a

Interface b

s-wave superconductor

dx2– y2 high Tc superconductor



Figure 8.19 Geometry for a superconducting circuit with two weak ( Josephson) links
between a dx2−y2 high-Tc superconductor and a conventional s-wave
superconductor. With zero external field and no current flow, the super-
conducting phase, θ , is constant in the s-wave superconductor (illustrated
here as θ = 0), but changes by π between the a and b faces of the high-Tc
superconductor. The phase discontinuity of π indicated at the b interface
is inconsistent with the general assumption that phase changes continu-
ously. For continuous variation of phase, we therefore require a current
flow, and conclude that the magnetic flux linking such a loop must equal
(n + 1

2 )�0). (from James Annett, Contemporary Physics 36 433 (1995) ©
Taylor & Francis.)
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Figure 8.20 A loop in a superconducting circuit, with two Josephson junctions (labelled
as A and B) in parallel. Interference between the superconducting order
parameter on each side of the loop can lead to enhancement or can-
cellation of the total current flow, analogous to the constructive and
destructive interference observed when light passes through a double
slit. (From H. P. Myers (1997) Introductory Solid State Physics, 2nd edn.)

externalfieldandnocurrentflow, thephase changes signbetween theaand
b faces of the d-wave superconductor, while it remains constant within the
s-wave part of the loop. This is inconsistent with the earlier assumption
that the phase changes continuously. The phase can only change in a con-
tinuousmanner if themagnetic flux linking the loop equals (n+ 1

2 )�0. This
behaviour was first predicted in the late 1970s for a loop such as that in fig.
8.20. Wollman et al. (1993) found the first experimental evidence to sup-
port this behaviour in a loop formed between a high-Tc superconductor
and a conventional superconductor. Shortly afterwards, Tsuei et al. (1994)
were able to directly measure half-integer flux through a slightly differ-
ent loop arrangement (see also Kirtley and Tsuei 1996). The experimental
evidence for dx2−y2 symmetry is now well established and must be taken
into account in any theoretical model of high-Tc superconductivity (see
e.g. Annett 1995 for a further discussion).

Several theoretical approaches are being taken to develop a model
to account for the observed characteristics of high-Tc superconductors
(Orenstein and Millis 2000). One promising approach is based on the
idea of a doped resonant valence bond (RVB) state. The RVB state was
first proposed by Philip Anderson to describe a lattice of antiferromag-
netically coupled spins where the quantum fluctuations are so strong that
long-range magnetic order is suppressed. The system resonates between
states in which different pairs of spins form singlet states that have zero
spin and hence no fixed spin direction in space. Many questions remain
unanswered, however, such as how does a doped RVB state behave? And
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why does doping stabilise a RVB state when the undoped state prefers an
ordered magnetic state? A comprehensive theory is currently lacking, but
there are encouraging signs.

The RVB state is just one of many theoretical approaches to high-Tc
superconductivity. Other competing theories include those based on fluc-
tuating stripes. In certain cuprates at low temperature the doped holes are
observed to localise along parallel lines, called stripes, in the copper-oxide
planes (see e.g. Tranquada 1999). Another theory seeks to exploit the strong
coupling between electrons and phonons in oxidematerials, proposing the
formation of entitities called bipolarons, giving a mechanism related but
not identical to the pairing interaction in conventional superconductors,
effectively an extreme case of the conventional BCS attraction (Alexandrov
and Mott 1994). Finally we mention the antiferromagnetic spin fluctua-
tion exchange model (Fisk and Pines 1998), in which spin waves replace
phonons as the mediators of the attraction in a BCS-type model.

High-Tc superconductivity is a very fitting topic on which to end but
not complete a textbook such as this, as at the time of writing no final
theory exists to explain the underlying superconducting mechanism. We
can nevertheless ask what the final theory should predict. First, it should
describe the transition between the antiferromagnetic and superconduct-
ing phases as the doping is varied. Second, it should reveal the specific
conditions in the cuprates that lead to this very special behaviour. From
this should follow some suggestions for other materials that would show
similar behaviour. While it may not be possible to predict Tc accurately –
because, for instance, of a lack of precise input parameters – the final theory
should give the correct order of magnitude for Tc and explain the trends
that are observed in the cuprates. These challenges, combined with new
experimental results, are likely to keep theorists busy for years to come,
but hopefully not another decade and a half!
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Problems

8.1 We found in Section 8.5 that a charged particle outside a solenoid
experiences a transient electric field E and hence a net force F = qE
as the current decays in the solenoid. This is initially surprising, as
the magnetic field B = 0 at all times outside the solenoid, and hence
∇ × E = −∂B/∂t = 0 at all times. Why does the charged particle
nevertheless experience this transient electric field and force?

8.2 Verify by explicit derivation in Cartesian coordinates that ∇ × (∇ ×
j) = ∇(∇ · j) − ∇2j. Using this result and the continuity equation for
current density, show that the current density decays inside the plane
surface of a superconductor as |j| = j0 exp(−x/λL), where µ0j0λL =
B0, λL is the London penetration depth, and B0 is the magnitude of
the magnetic field at the superconductor surface. Show also that the
magnetic flux penetrating the superconductor per unit length is B0λL.

8.3 Combine eqs (8.5) and (8.42) to deduce the temperature dependence
of the difference in entropy, SN(T) − Ssc(T), between the normal and
superconducting state of a Type I superconductor. Show that this
difference is maximised when T = Tc/

√
3.

8.4 The heat capacity C is related to the entropy S by C = T ∂S/∂T. Cal-
culate how the difference in heat capacity between the normal and
superconducting states varies with temperature, and hence calcu-
late the magnitude of the discontinuity in the heat capacity at the
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critical temperature, Tc for aluminium and for niobium. (Tc(Al) =
1.2K;Tc(Nb) = 9.2K; Bc(Al) = 10.5mT; Bc(Nb) = 206mT).

8.5 A magnetic field B0 is applied parallel to the surface of a thin super-
conducting plate of thickness d which lies in the x–y plane. Taking
z = 0 at the centre of the plate, show that the magnetic field varies
inside the plate as

B(z) = B0 cosh(z/λL)/ cosh(d/2λL)

Hence show that if d � λL, themagnitude of themeanmagnetisation
Mav will be reduced from B0/µ0 to d2/(12λ2L)(B0/µ0). It can be shown
that this reduction in the average magnetisation leads to an enhance-
ment of the critical field Hc in a thin film, with Hc being proportional
to (λL/d)Hc0 in a thin film, where Hc0 is the critical field for a bulk
film of the same material.

8.6 Consider the superconducting circuit shown in fig. 8.20, with two
identical Josephson junctions in parallel. In the absence of a mag-
netic field, the phase difference �θ is the same for the two links,
so that the DC Josephson current is given by I = 2I0 sin�θ . When
a magnetic field is applied, this is no longer the case, so �θA �= �θB.
Show by separately integrating around the two sides of the junction
that the total difference in phase difference between junction A and
junction B equals q�/�, where � is the total magnetic flux linking
the loop, and q = 2e is the charge of a Cooper pair. Show if we set
�θ = π/2 at junctionA, then the total DC Josephson current will vary
as I = I0(1+cos(q�/�)) = 2I0 cos2(e�/�). This is the superconducting
analogue of Young’s fringes, with constructive and destructive inter-
ference leading to a sinusoidal variation of the DC Josephson current.
Show that the period of the oscillations is δ� = h/2e = �0. How
will the DC Josephson current vary if the two junctions are not iden-
tical, but instead link a high-Tc and a conventional superconductor,
as shown in fig. 8.19?



Appendix A

The variational method with
an arbitrary parameter:
the H atom

The variational method is one of the key concepts which allows the
application of quantum theory to solids. There are few or no circumstances
where there is an analytical solution to Schrödinger’s equation in a solid.
The variational method shows, however, that if we can choose a suitable
trial function, such as a linear combination of atomic orbitals, then we can
expect tomake reasonable estimates of ground state properties and of their
variation as a function, for instance, of bond length or ionicity.

We saw at the end of Chapter 1 that the ground state energy estimated
by the variational method, 〈E〉, is always greater than or equal to the true
ground state energy, E0, but that the accuracy with which we can calculate
E0 depends on how well we choose the variational trial function, f (x).
The accuracy with which we choose f (x) can be significantly improved
by including a free parameter, say γ , in f (x), choosing a function such as
f (x) = e−γ x, and calculating the variational ground state energy 〈E〉 as
a function of γ . When the derivative of 〈E〉 with respect to γ equals zero,
d〈E〉/dγ = 0, we have (usually) minimised 〈E〉 and thereby achieved the
best possible estimate of the true ground state energy, E0, for the given trial
function, f (γ , x), as illustrated in fig. A.1.

This can be very nicely illustrated by considering the electron ground
state in the hydrogen atom. The potential V(r) experienced by an elec-
tron with charge −e at a distance r from the nucleus is given by
V(r) = −e2/(4πε0r). Because the potential is spherically symmetric, the
spherical polar coordinate system ismost appropriate for solving the prob-
lem. We assume for the trial function a spherically symmetric function,
which has its maximum at the origin, r = 0, and decays in amplitude for
increasing r,

f (r) = e−γ r (A.1)

Using the spherical symmetry, Schrödinger’s equation is then given by[
− �

2

2m
1
r2

d
dr

(
r2

d
dr

)
− e2

4πε0r

]
ψ(r) = Eψ(r) (A.2)
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Figure A.1 Variational estimate of the electron ground state energy in a hydrogen
atom as a function of the arbitrary parameter γ in the trial wavefunction,
e−γ r . In this case, the lowest variational estimate equals the true ground
state energy. The energy scale (vertical axis) is in units of |E0|, the hydro-
gen ground state binding energy, with the horizontal axis in units of a−1

0 ,
(inverse Bohr radius).

The ground state variational energy can be calculated using eq. (1.37) as

〈E〉 =
∫
∞ f∗(r)[Hf (r)]dV∫

∞ f∗(r)f (r)dV
(A.3)

As the integrands in both the numerator and denominator are spherically
symmetric, we can solve eq. (A.3) by integrating outwards over spherical
shells of radius r and width dr, for which dV = 4πr2 dr. The denominator
in eq. (A.3) is given by∫ ∞

r=0
e−2γ r4πr2 dr = π

γ 3 (A.4)

where we use the standard integral
∫ ∞
0 e−arrn dr = n!/an+1 while the

numerator is given by∫ ∞

r=0
e−γ r

[
− �

2

2mr2
d
dr

(
r2

d
dr

(e−γ r)

)
− e2

4πε0r
e−γ r

]
4πr2 dr (A.5)

which it can be shown is equal to

�
2π

2mγ
− e2

ε0(2γ )2
(A.6)

with the estimated ground state energy 〈E〉 then obtained by dividing
eq. (A.6) by (A.4) to give

〈E〉 = �
2γ 2

2m
− e2γ

4πε0
(A.7)
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This expression is reasonable: if we associate γ with the wavenumber k
and 1/γ = a0 with the spatial extent of the trial function then the first term
on the right-hand side can be interpreted as the estimated kinetic energy,
and the second as the estimated potential energy:

〈E〉 = �
2k2

2m
− e2

4πε0a0
(A.8)

where a0 is referred to as the Bohr radius. To find the minimum esti-
mated ground state energy, we calculate that d〈E〉/dγ = 0 when
γ = e2m/(4πε0�

2), with the Bohr radius a0 = 1/γ = 0.53Å. Substitut-
ing the calculated γ value in eq. (A.7) gives the estimated electron ground
state energy in the hydrogen atom as

E0 = − me4

8ε20h
2

= −13.6 eV (A.9)

In this instance, the calculated minimum variational energy is equal to the
ground state energy calculated by solving Schrödinger’s equation exactly.

This example demonstrates that the variational method can work very
effectively given a suitable choice of starting function, particularly if a free
parameter is included in the function. We also observe, as derived in
Chapter 1, that the calculated variational energy, 〈E〉 ≥ E0, where E0 is the
trueground state energy, and that in fact 〈E〉 = E0 onlywhen thevariational
trial function, f (γ , r) equals the true ground state wavefunction, ψ0(r).
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The hydrogen atom and the
Periodic Table

The observed structure of the Periodic Table of the elements is due to
the ordering of the electron energy levels with increasing atomic number.
Although we cannot solve Schrödinger’s equation exactly for a multi-
electron atom, we can do so for an isolated hydrogen atom, where one
electron orbits a positively charged nucleus. The calculated ordering of the
hydrogen atom ground and excited state energy levels can then account
for the trends observed in the Periodic Table. We first outline here the
solution of the hydrogen atom Schrödinger equation and then apply it to
explain someof themain trends in thePeriodic Table. Amoredetailed solu-
tion of the hydrogen atom can be found in almost all quantum mechanics
textbooks (e.g. Davies and Betts 1994; McMurry 1993; Schiff 1968).

The potential V(r) experienced by an electron with charge −e at
a distance r from the hydrogen nucleus is given by

V(r) = −e2

4πε0r
(B.1)

Because the potential is spherically symmetric, the spherical polar coor-
dinate system (r, θ ,φ) is most appropriate for solving the problem.
Schrödinger’s equation is given by

[
− �

2

2m
∇2 − e2

4πε0r

]
ψ(r) = Eψ(r) (B.2)

with the operator ∇2 given in spherical polars by

∇2 = 1
r2

∂

∂r

(
r2

∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2 (B.3)

We separate the radial and angular parts of Schrödinger’s equation by
substituting ψ(r, θ ,φ) = R(r)�(θ)�(φ) into eq. (B.2), dividing through by
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ψ and re-arranging to give

1
R

d
dr

(
r2
dR
dr

)
+ 2mr2

�2
[E − V(r)]

= − 1
� sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
− 1

� sin2 θ

∂2�

∂φ2 (B.4)

Because the left-hand sideof eq. (B.4) dependsonlyon r, and the right-hand
side contains two terms, one of which depends only on θ and the other on
θ and φ, both sides must be equal to a constant, which we call λ. It is
important to note that the separation of variables in eq. (B.4) can be carried
out for any spherically symmetric potential; not just the hydrogen atom
potential of eq. (B.1).

The right-hand side of eq. (B.4), describing the angular variation of
the wavefunction, can be further separated into two simpler equations
by introducing an additional constant, m2, such that

d2�

dφ2 + m2� = 0 (B.5)

1
sin θ

d
dθ

(
sin θ

d�

dθ

)
+

(
λ − m2

sin2 θ

)
� = 0 (B.6)

The first of these two equations (B.5) can be solved at once; we find

�(φ) = 1√
2π

eimφ (B.7)

where m must be an integer in order that � is single-valued, with
�(2π) = �(0).

The second equation is generally solved by making the change of
variables z = cos θ , so that eq. (B.6) becomes

d
dz

[
(1 − z2)

dP
dz

]
+

(
λ − m2

1 − z2

)
P = 0 (B.8a)

which we can rewrite as(
1 − z2

) d
dz

[
(1 − z2)

dP
dz

]
+

[
λ(1 − z2) − m2

]
P = 0 (B.8b)

where P(z) = �(cos θ). Equation (B.8) is well known to mathematicians as
the associated Legendre equation. Its solution may readily be found using
the series method: full details are given, for example, in Davies and Betts
(1994). The allowed solutions are polynomial functions containing a finite
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number of terms. Here we need only note that allowed solutions will only
exist if the coefficient of each power of z in the polynomial is identically
zero when substituted into eq. (B.8).

If the leading term of the polynomial P is zn, substitution into eq. (B.8b)
shows that the leading power in the differential equation is zn+2, with
coefficient n(n−1)−λ2. Thismust vanish, so λ = n(n−1). It is conventional
to put n = l + 1, and so to write

λ = l(l + 1) (B.9)

Further detailed analysis shows that allowed solutions can only existwhen
l(l + 1) > m2, which requires

−l ≤ m ≤ l (B.10)

so that there are 2l + 1 allowed values of m for each value of l.
We now substitute eq. (B.9) for λ back into eq. (B.4) to derive the radial

Schrödinger equation

− 1
r2

�
2

2m
d
dr

(
r2
dR
dr

)
+

(
�
2

2m
l(l + 1)

r2
+ V(r)

)
R(r) = ER(r) (B.11)

The l-dependent termmaybewrittenasQ2/2mr2, and is thequantumcoun-
terpart of the classical ‘centrifugal’ potential barrier Q2/2mr2 encountered
for example in the Kepler problem of planetary orbits, where Q = mr2ω is
the angular momentum of the orbiting particle. We have thus shown that
the angular momentum is quantised in a spherically symmetric potential,
with the magnitude squared of the angular momentum Q2 = �

2l(l + 1),
where l is an integer. Further analysis reveals that if we quantise along
a particular direction (e.g. along the z-axis) then the angular momen-
tum component along that axis is also quantised, with the component Qz
projected onto that axis equal to

Qz = �m, |m| ≤ l (B.12)

We note that eq. (B.11) depends on the total angular momentum through
the term containing l(l+1), but does not depend onm, the angularmomen-
tum component along the quantisation axis. This is to be expected. The
energy should not depend on the orientation of the z-axis in a spherically
symmetric potential.

Equation (B.11) can be solved for the hydrogen atom using standard
mathematical techniques, again described in many quantum mechanics
texts. To avoid having to work with a large number of constants (e,m, �,
etc.) we introduce a change of variables

ρ = αr; α2 = −8mE
�2

; β = 2me2

4πε0α�2
(B.13)
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whereupon eq. (B.11) simplifies to[
1
ρ2

d
dρ

(
ρ2 d

dρ

)
+ β

ρ
− 1

4
− l(l + 1)

ρ2

]
R(ρ) = 0 (B.14)

It can be shown that solutions to this equation can be written in the form
F(ρ) exp(−ρ/2), where the polynomial F satisfies the differential equation

ρ2 d
2F

dρ2 + (2ρ − ρ2)
dF
dρ

+ [ρ(β − 1) − l(l + 1)]F = 0 (B.15)

In this case, if the leading term of the polynomial F is ρk , substitution into
eq. (B.15) shows that the leading power of the differential equation is ρk+1,
with coefficient β − k − 1. This term cannot cancel against lower order
terms in the polynomial, as all these have powers ρk or less; so to satisfy
eq. (B.15) we must have β = k + 1, k = 0, 1, 2, . . . , and also k ≥ l. This is
more usually written as

β = n, n = 1, 2, 3, . . . (B.16)

with n > l. Combining eqs (B.13) and (B.16) we see that the hydrogen atom
energy levels are then given by

E = En = − me4

2(4πε0)2�2n2
(B.17)

To summarise, we have thus deduced three quantum numbers associated
with each allowed energy state in the hydrogen atom, namely n, l and m.
The energy of each allowed hydrogen state depends only on n, which is
therefore referred to as the principal quantum number, with l referred to as
the angular momentum or orbital quantum number and m as the magnetic
quantum number. In addition, each electron has an intrinsic spin, which
can take the values of sz = ± 1

2 . The quantum number names, symbols,
and allowed values are summarised in Table B.1, along with the physical
property to which they are related.

The energy levels in eq. (B.17) do not depend on l, m or sz. Therefore,
each energy level in the hydrogen atom has a multiple degeneracy, with
the number N of degenerate states depending on the number of allowed
values of l and m for each principal quantum number n:

N = 2
n−1∑
l=0

(2l + 1) = 2n2 (B.18)

where the factor 2 comes from the existence of two spin states. Because all
states with the same principal quantum number n have the same energy,
we therefore say those states belong to the nth shell of states.
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Table B.1 Details of quantum numbers associated with energy levels of an isolated atom

Name Symbol Values allowed Physical property

Principal n n = 1, 2, 3, . . . Determines radial extent and energy
Orbital l l = 0, 1, . . . , (n − 1) Angular momentum and orbit shape
Magnetic m −l, −l + 1, . . . , l − 1, l Projection of orbital angular momentum

along quantisation axis
Spin sz + 1

2 and − 1
2 Projection of electron spin

along quantisation axis

Table B.2 Spectroscopic labels associated with different orbital
quantum numbers (atomic subshells) in an isolated atom

Orbital quantum number l 0 1 2 3 4 5
Spectroscopic label s p d f g h

The degeneracy we have found for states with the same principal
quantum number n, but different orbital quantum numbers l, is an
‘accidental’ consequence of thehydrogenatompotentialV(r), whichvaries
as 1/r. This ‘accidental’ l-degeneracy is removed when most other central
potentials are used in (B.11), including the potential of any multi-electron
atom. Each shell of states with particular principal quantum number n
therefore breaks up into a set of subshells in the multi-electron atom, with
a different orbital quantumnumber l associatedwith each subshell. Histor-
ically, the states in different subshells were identified using spectroscopic
techniques, and the different subshells were given the spectroscopic labels
shown in Table B.2. States with n = 1 and l = 0 are referred to as 1s states,
while states with n = 2 and l = 0 and 1 are referred to as 2s and 2p states,
respectively.

We recall from eq. (B.11) that the effect of increasing angular momentum
(increasing l) is described by an increasingly strong centrifugal potential
barrier (proportional to l(l + 1)/r2) which pushes the electron away from
the nucleus. As a consequence, the 2s wavefunction (with l = 0) will have
larger amplitude close to the nucleus than does the 2p wavefunction (with
l = 1). The 2s states therefore experience on average a stronger attrac-
tive potential, and so will be at a lower energy than the 2p states. The
energies of the different electron states in a multi-electron atom are clearly
affected by the presence of other electrons. The 1s orbital will always have
lowest energy and, because it largely experiences the full nuclear attrac-
tion (proportional to Ze for atomic number Z), its binding energy will be
close to Z4 times the binding energy of the 1s hydrogen state. The 1s states
will then partially screen the higher lying levels, modifying their energies
accordingly.
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34
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P
15

S
16
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O
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F
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2

Figure B.1 Periodic Table of the elements. The atomic number of each element is given in
the top left hand corner of its box, with the chemical symbol in the box centre.
The elements are arranged in columns predominantly reflecting the order in
which electronic subshells are filled: s states (l = 0) filling in the first two
columns; p-states (l = 1) in the six right-hand columns, with d-state (l = 2)
filling in columns 3–12, and f-state filling (l = 3) indicated in the ‘footnote’ to
the Table.

Figure B.1 presents the Periodic Table of the elements. The analysis
we have presented here accounts for most of the trends observed in the
Periodic Table, which we assume and use throughout this book:

1 In a many-electron atom, the lowest energy states typically experience
a very strong attractive potential due to the positively chargednucleus.
These states therefore have a much larger binding energy than the
highest filled levels. They are referred to as core states. They are highly
localised and make no direct contribution to bonding in a solid.

2 The core electrons screen the attractive potential seen by the higher
filled states. We can compare, for example, carbon (C,Z = 6) with
silicon (Si,Z = 14) and germanium (Ge,Z = 32). For C, the two filled
1s states at least partly cancel the attractiondue to twoof the six nuclear
protons, so that the 2s and 2p states experience an average attractive
potential equivalent to of order four protons. In Si, the filled 2s and
2p states also contribute to the screening, so that the 3s and 3p states
again experience an average attractive potential equivalent to of order
four protons. Likewise in Ge, the filled n = 3 shell (3s, 3p, 3d states)
contributes to screening, leaving a similar net attractive potential to
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that found inC and Si. Hence, the outermost valence states have similar
character for the three elements.

3 We have already noted that because of the angular-momentum-related
repulsive barrier in eq. (B.11) the valence s states will always lie below
the valence p states.

4 When we again compare C, Si and Ge, we note that in each case the
outermost valence statesmust be orthogonal to the core states. Because
there aremore core electrons aswe go further down the Periodic Table,
the outermost electrons tend to have a larger spatial extent in Ge than
in Si than in C, so that the atom size increases going down a row of the
Periodic Table. Likewise, the valence electrons have a larger binding
energy in C than in Si than in Ge.

5 Ifwenow look at a set of elements in the same rowof thePeriodic Table,
such as aluminium (Al, Z = 13), silicon (Si, Z = 14) and phosphorus
(P, Z = 15), we note that in each case there are 10 ‘core’ electrons
screening the nuclear attraction, thereby leaving a net attraction of
order three, four and five protons for Al, Si, and P, respectively. There
is also, of course, a repulsive interaction between the increasing num-
ber of valence electrons in each atom, but the increasing net nuclear
attraction dominates, so that the valence state binding energy tends to
increase with increasing atomic number, giving what is referred to as
increasing electronegativity across a row of the Periodic Table.

6 The ordering of some of the higher lying subshells does not always
follow the main shell order. Thus all subshells up to the 3p subshell
are filled for argon (Ar, Z = 18). However, the 4s subshell lies below
the 3d subshell for potassium (K,Z = 19), so that the 4s subshell first
starts to fill with increasing Z, followed by the 3d subshell and then
the 4p subshell.

7 Finally, we do not discuss here the order in which different states are
filled within a partly filled subshell of an atom. This is discussed in
Chapter 6, where we introduce Hund’s rules. They were originally
derived empirically (later justified by careful quantum mecahnical
analysis) and describe the order in which states with different val-
ues of m and sz are occupied. This is generally not of relevance when
considering bonding in solids, as in Chapters 2–5, but becomes of key
significance when considering the magnetic properties of atoms and
solids in Chapters 6 and 7.
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Appendix C

First and second order
perturbation theory

C.1 Introduction to perturbation theory

There are remarkably fewpotential energy functions forwhich it is possible
to find an exact, analytical solution of Schrödinger’s equation. The main
cases for which exact solutions exist include the infinite and the finite
square well, the hydrogen atom (discussed in Appendix A) and the simple
harmonic oscillator, for which the potential energy varies as V(r) = 1

2kr
2.

Because of their analytical solutions, all of these potentials get used
extensively throughout this and all quantum mechanics books. We have,
however, seen that even in cases where a potential has no exact solution,
we can make a very good estimate of the ground and first excited state
energies by using the variational method, where we guess the form f (x)
of the ground state wavefunction and then calculate the estimated energy
using eq. (1.37).

This is by no means the only approximation method which is useful in
quantummechanics. There aremany problemswhere the full Hamiltonian
H cannot be solved exactly, but where H can be written as the sum of two
parts,

H = H0 + H ′ (C.1)

where thefirst partH0 is of sufficiently simple structure that its Schrödinger
equation can be solved exactly, while the second part H’ is small enough
that it canbe regardedasaperturbationonH0. Anexampleof suchaproblem
is a hydrogen atom in an applied electric field (fig. C.1) for which

Hψ(r) =
(

− �
2

2m
∇2 − e2

4πε0r
+ eEz

)
ψ(r) (C.2)

where H0 is the hydrogen atom Hamiltonian

H0ψ(r) =
(

− �
2

2m
∇2 − e2

4πε0r

)
ψ(r) (C.3)
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V(z)

z

e2

4����0r
V ~

V ~ eEz

Figure C.1 Solid line: the variation in the potential seen across a hydrogen atom due
to an electric field E applied along the z-direction. (Dashed line shows the
contribution to the total potential due to the electric field.)

while H ′ is the change in potential due to the applied field

H ′ = eEz (C.4)

In such cases, we can often make a very good estimate of both the ground
and excited state energies by first solving the Hamiltonian H0 exactly and
thenusing an approximationmethodknownas perturbation theory to esti-
mate howH ′ shifts the energy levels from theirH0 values. In the following
sections, we first describe the principles of first order perturbation theory,
which is closely related to the variational method, and then consider sec-
ond order perturbation theory. Second order perturbation theory forms the
basis for the k · p description of crystal band structure, which we derive in
Appendix E and apply in Chapters 4 and 5.

C.2 First order perturbation theory

First order perturbation theory is closely related to the variational method.
To estimate the energy states of the Hamiltonian, H = H0 + H ′, we need
to make the best possible guess for the wavefunctions of H. We know and
can solve

H0ψ
(0)
k (r) = E(0)

k ψ
(0)
k (r) (C.5)

where E(0)
k is the energy and ψ

(0)
k (r) the normalised wavefunction of the

kth energy state of H0. We choose ψ
(0)
k (r) as the trial wavefunction for the

kth state of the full Hamiltonian, H, and then use the variational method
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Figure C.2 Infinite square well of width L, with a barrier of height V0 and width b
added in its centre.

to estimate the energy of that state, W (1)
k , as

W (1)
k =

∫
dVψ

∗(0)
k (r)Hψ

(0)
k (r)∫

dV ψ
∗(0)
k (r)ψ(0)

k (r)
(C.6)

where the denominator in eq. (C.6) is equal to 1. Replacing H by H0 + H ′
and splitting the integral in eq. (C.6) into two parts gives

W (1)
k =

∫
dVψ

∗(0)
k (r)H0ψ

(0)
k (r) +

∫
dV ψ

∗(0)
k (r)H ′ψ(0)

k (r)

= E(0)
k +

∫
dV ψ

∗(0)
k (r)H ′ψ(0)

k (r) (C.7)

The energy levels E(0)
k of the Hamiltonian H0 thus provide the zeroth-

order guess for the energy levels of the full Hamiltonian H, while E(1)
k =∫

dV ψ
∗ (0)
k (r)H ′ψ(0)

k (r) gives the first order correction to the estimated
energy.

C.2.1 Example: double square well with infinite outer barriers

To illustrate the application of first order perturbation theory, we consider
an infinite squarewell in the region 0 < x < L, towhich is added apotential
barrier of heightV0 andwidth b between L/2−b/2 and L/2+b/2 (fig. C.2).
The energy levels E(0)

n and wavefunctions ψ
(0)
n (x) of the unperturbed well

are given by (eq. (1.11))

E(0)
n = h2n2

8mL2
(C.8a)
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and

ψ
(0)
n (x) =

√
2
L

sin
(nπx

L

)
(C.8b)

Substituting eq. (C.8b) in eq. (C.7), the estimated first order shift
in the energy levels is given by

E(1)
n = 2

L

∫ L/2+b/2

L/2−b/2
V0 sin2

(nπx
L

)
dx

= V0

[
b
L

+ (−1)n+1

nπ
sin

(
nπb
L

)]
(C.9)

That is, E(1)
n varies linearly with the height of the perturbing potential,

V0. The solid lines in fig. C.3 show how the true energy levels vary with
the barrier height V0 in the case where the barrier width b is half of the
total infinite well width, b = L/2, while the straight dashed lines show the
estimated variation using first order perturbation theory. It can be seen that
first order perturbation theory is indeed useful for small perturbations,
but rapidly becomes less accurate as V0 increases. The accuracy of the
perturbation estimate can, however, be extended to larger values of V0
by going to second order perturbation theory, which will then introduce
further correction terms to the estimated energy of order V2

0 .
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Figure C.3 Variation of the confined state energy for the three lowest energy levels
in an infinite square well, as a function of the magnitude of the perturbing
potential, V0 introduced in fig. C.2. The barrier width b is set equal to
half of the total infinite well width, b = L/2, and V0 is plotted in units of
h2/8mL2 (the ground state energy, E1). Solid line: exact solution; dashed
(straight) lines: using first order perturbation theory; dotted (parabolic)
lines: using second order perturbation theory.
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C.3 Second order perturbation theory

In second order perturbation theory, we first estimate how the wavefunc-
tion of the kth state is changed by the additional potential H ′, and then
effectively use themodifiedwavefunction as input to a variationalmethod,
to get an improved, second order, estimate of the energy.

The assumption that the perturbation H ′ is small allows us to expand
the perturbedwavefunction and energy value as a power series inH ′. This
is most conveniently accomplished by introducing a parameter λ such that
the zeroth, first, etc. powers of λ correspond to the zeroth, first, etc. orders
of the perturbation calculation. If we replace H ′ by λH ′ in eq. (C.1) then H
is equal to the full Hamiltonian, H = H0 +H ′, when λ = 1, whileH equals
the unperturbed Hamiltonian, H = H0 when λ = 0.
We can express both the wavefunctions ψk(r) and energy levels Ek of

the Hamiltonian H as a power series in λ. For second order perturbation
theory, we require the first order approximation to ψk(r) and the second
order approximation to the energy Wk , and so write

ψk(r) = ψ
(0)
k (r) + λψ

(1)
k (r) (C.10a)

and

W (2)
k = E(0)

k + λE(1)
k + λ2E(2)

k (C.10b)

Substituting the wavefunction and energy described by eq. (C.10) into the
wave equation (C.1), we obtain

(H0 + λH ′)
(
ψ

(0)
k (r) + λψ

(1)
k (r)

)
=

(
E(0)
k + λE(1)

k + λ2E(2)
k

) (
ψ

(0)
k (r) + λψ

(1)
k (r)

)
(C.11)

We assume that the two sides of eq. (C.11) are equal to each other for all
values of λ between λ = 0 (when H = H0) and λ = 1 (when H = H0 +H ′).
This can only be true if the coefficients of the two polynomials in λ are
identical for each power of λ. Equating the terms for different powers of λ

on the two sides of eq. (C.11), we then obtain

λ0 : H0ψ
(0)
k (r) = E(0)

k ψ
(0)
k (r) (C.12a)

λ1 : H ′ψ(0)
k (r) + H0ψ

(1)
k (r) = E(0)

k ψ
(1)
k (r) + E(1)

k ψ
(0)
k (r) (C.12b)

λ2 : H ′ψ(1)
k = E(2)

k ψ
(0)
k (r) + E(1)

k ψ
(1)
k (r) (C.12c)

The first of these equations (C.12a), is just the Schrödinger equation for the
unperturbed Hamiltonian, H0, while the second equation (C.12b) can be
used to calculate the first order correction to the energy levels, E(1)

k , and
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wavefunctions, ψ
(1)
k . Finally, we can substitute the results of eq. (C.12b)

into the third equation (C.12c), to determine the second order change, E(2)
k

in the energy levels.
We wish first to consider the form of ψ

(1)
k (r), the change to ψ

(0)
k (r) due to

the perturbation H ′. We described in Chapter 1 how any function f (r) can
bewritten as a linear combination of the complete set of states, ψ(0)

n (r). The
change in thewavefunction, ψ(0)

k (r), due to the perturbationH ′ will involve
mixing (‘adding’) other states into ψ

(0)
k (r), so we expect that ψ

(1)
k (r) can be

written as a linear combination of all the other wavefunctions

ψ
(1)
k (r) =

∑
n�=k

aknψ
(0)
n (r) (C.13)

where akn is the amplitude which the nth state contributes to the modi-
fication of the kth wavefunction. Substituting eqs (C.12a) and (C.13) into
eq. (C.12b), and rearranging, we obtain

∑
n�=k

(
H0 − E(0)

k

)
aknψ

(0)
n (r) =

(
E(1)
k − H ′)ψ

(0)
k (r) (C.14)

which, as H0ψ
(0)
n (r) = E(0)

n ψ
(0)
n (r), reduces to

∑
n�=k

akn
(
E(0)
n − E(0)

k

)
ψ

(0)
n (r) =

(
E(1)
k − H ′)ψ

(0)
k (r) (C.15)

We can use eq. (C.15) to evaluate the two first order corrections, E(1)
k

and ψ
(1)
k (r). We first multiply both sides of eq. (C.15) by ψ

∗(0)
k (r), and

integrate over all space to find E (1)
k :

∑
n�=k

akn
(
E(0)
n − E(0)

k

) ∫
dV ψ

∗(0)
k (r)ψ(0)

n (r)

=
∫

dV ψ
∗(0)
k (r)

(
E(1)
k − H ′)ψ

(0)
k (r) (C.16)

The left hand side of eq. (C.16) is identically zero, because the
wavefunctionsψ

(0)
k (r) andψ

(0)
n (r) are orthogonal, andwe can rearrange the

right-hand side to give the same result for the first order energy correction
as in the previous section:

E(1)
k =

∫
dV ψ

∗(0)
k (r)H ′ψ(0)

k (r) (C.7)

We use the same technique to calculate the coefficients akm from eq. (C.13),
multiplying both sides of eq. (C.15) by ψ

∗(0)
m (r), and integrating over all
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space:

∑
n�=k

akn
(
E(0)
n − E(0)

k

) ∫
dVψ

∗(0)
m (r)ψ(0)

n (r)

=
∫

dV ψ
∗(0)
m (r)

(
E(1)
k − H ′)ψ

(0)
k (r) (C.17)

Most of the terms in this equation are again equal to zero, so that it
reduces to

akm
(
E(0)
m − E(0)

k

)
= −

∫
dV ψ

∗(0)
m (r)H ′ψ(0)

k (r)

= −〈ψ(0)
m |H ′|ψ(0)

k 〉 (C.18)

where 〈ψ(0)
m |H ′|ψ(0)

k 〉 is a commonly used ‘shorthand’ notation for the inte-

gral
∫
dV ψ

∗(0)
m (r)H ′ψ(0)

k (r) (see Appendix D). Substituting eq. (C.18) back
into eq. (C.13), the calculated first order change in the kth wavefunction,
ψ

(1)
k (r), is then given by

ψ
(1)
k (r) =

∑
n�=k

〈ψ(0)
n |H ′|ψ(0)

k 〉
E(0)
k − E(0)

n
ψ

(0)
n (r) (C.19)

We now substitute eq. (C.13) directly into eq. (C.12c) to calculate E(2)
k , the

second order correction to the kth energy level. Taking the terms involv-
ing ψ

(1)
k (r) to the left-hand side of eq. (C.12c), and substituting eq. (C.13)

for ψ
(1)
k (r) we find

∑
n�=k

(
H ′ − E(1)

k

)
aknψ

(0)
n (r) = E(2)

k ψ
(0)
k (r) (C.20)

This time, we multiply both sides of eq. (C.20) by ψ
∗(0)
k (r), and integrate

over all space to find

∑
n�=k

∫
dV ψ

∗(0)
k (r)

(
H ′ − E(1)

k

)
aknψ

(0)
n (r) = E(2)

k

∫
dV ψ

∗(0)
k (r)ψ(0)

k (r)

(C.21)

We again use the orthogonality property of the wavefunctions, to find
that the second order energy correction, E(2)

k , is given (in the ‘shorthand’
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notation of Appendix D) by

E(2)
k =

∑
n�=k

akn〈ψ(0)
k |H ′|ψ(0)

n 〉

=
∑
n�=k

〈ψ(0)
n |H ′|ψ(0)

k 〉
E(0)
k − E(0)

n
〈ψ(0)

k |H ′|ψ(0)
n 〉 (C.22)

with the perturbed energy levels, W (2)
k , then given to second order by

W (2)
k = E(0)

k + 〈ψ(0)
k |H ′|ψ(0)

k 〉 +
∑
n�=k

|〈ψ(0)
n |H ′|ψ(0)

k 〉|2
E(0)
k − E(0)

n
(C.23)

There are two consequences of eq. (C.23) which are worth noting:

1 The first order correction, 〈ψ(0)
k |H ′|ψ(0)

k 〉, describes the change in
energy due to the change in potential, H ′, seen by the unperturbed
wavefunction, ψ(0)

k (r), and can shift the energyWk upwards or down-
wards, depending on the potential change. Thus, in the example we
considered earlier, because the potential V0 increased in the barrier
region between L/2 − b/2 and L/2 + b/2, the first order correction
shifted all the levels upwards, with the size of the shift depending on
the probability of finding the kth state in the barrier region.

2 The second order correction, E(2)
k , describes the change in energy due

tomixing between states in the perturbing potential. The numerator of
eq. (C.22), |〈ψ(0)

n |H ′|ψ(0)
k 〉|2, is always positive, while the denominator

isnegative if thenth state is above the kth state (E(0)
n > E(0)

k )andpositive
ifE(0)

n is belowE(0)
k . Hence,mixingbetweenany twostates always tends

to push them apart, increasing their energy separation. Also, the effect
ofmixingwith higher levels always leads to a downward second order
shift in the ground state energy.

In deriving eq. (C.23), we made a couple of assumptions which are
not always true: first, we assumed that we were dealing only with dis-
crete energy levels (bound states), and second, we assumed that no other
state was degenerate, that is, had the same energy as E(0)

k . If, however,
we are dealing with degenerate states, so that say E(0)

m = E(0)
k , then the

above analysis needs to bemodified, to avoid the possibility of the denom-
inator of the second order term, E(0)

k − E(0)
m , becoming equal to zero. Details

of the modified analysis can be found in more advanced textbooks, such
as Schiff’s Quantum Mechanics (pp. 248ff.). We do not derive the modified
analysis here, but implicitly use it as necessary in the main text.
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C.3.1 Example: double square well with infinite outer barriers

To illustrate the application of second order perturbation theory we return
to the problem we considered earlier of an infinite square well of width L
to whose centre is added a barrier of height V0 and width b (fig. C.2). The
matrix element 〈ψ(0)

m |H ′|ψ(0)
n 〉 describing the mixing between the mth and

nth state is given by

〈ψ(0)
m |H ′|ψ(0)

n 〉 = 2
L

∫ L/2+b/2

L/2−b/2
V0 sin

(mπx
L

)
sin

(nπx
L

)
dx (C.24)

This integral can be solved using the identity sin α sin β = 1
2 (cos(α −β)−

cos(α + β)), to give

〈ψ(0)
m |H ′|ψ(0)

n 〉

= 2V0

π

[
sin

(
(n − m)πb/2L

)
n − m

− (−1)n
sin

(
(n + m)πb/2L

)
n + m

]
n + m even

= 0 n + m odd
(C.25)

The dotted (parabolic) lines in fig. C.3 show how the calculated energy
levels vary with barrier height V0 in second order perturbation theory.
It can be seen that going to second order gives a useful improvement in
the range of V0 values over which perturbation theory applies. You might
then consider extendingperturbation theory to third or evenhigher orders:
however, a law of diminishing returns rapidly sets in, and in practice no
advantage is gained by extending perturbation theory beyond the second
order.

Reference

Schiff, L. I. (1968) Quantum Mechanics, 3rd edn, McGraw-Hill, Tokyo.



Appendix D

Dirac notation

In many quantum mechanics derivations, we need to evaluate integrals
involving the product of the complex conjugate of a wavefunction, φ∗

m(r),
times an operator, say H, operating on another wavefunction, say φn(r).
The integral I is then given by

I =
∫
All space

dV φ∗
m(r)H φn(r) (D.1)

If we have such integrals on both sides of an equation, then the equa-
tion becomes very long when written out in full, as we see, for example,
for eq. (3.22a) in Chapter 3. It is, therefore, useful to introduce a short-
hand notation, which conveys the same information as eq. (3.22a), but in
a more compact form. We do so using Dirac notation, where we define the
wavefunction and its complex conjugate by

|φm〉 ≡ φm(r) (D.2a)

and

〈φm| ≡ φ∗
m(r) (D.2b)

〈φm| and |φm〉 are referred to as a bra and ket, respectively. When writ-
ten separately, as in eq. (D.2), they provide a not-very-shorthand way of
denoting the wavefunction and its complex conjugate. Likewise, we have
the ‘shorthand’ notation whereby H|φm〉 denotes the operator H acting on
the wavefunction φm(r); that is,

H|φm〉 ≡ Hφm(r) (D.3)

The Dirac notation becomes most useful when we need to write down
overlap integrals, such as that in eq. (3.22a). We define 〈φm|H|φn〉 as the
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integral of theproduct ofφ∗
m(r) timesH timesφn(r), while 〈φm|φn〉 is defined

as the integral of the product of φ∗
m(r) times φn(r); that is,

〈φm|H|φn〉 ≡
∫
All space

dV φ∗
m(r)H φn(r) (D.4)

and

〈φm|φn〉 ≡
∫
All space

dV φ∗
m(r)φn(r) (D.5)

We introduceDiracnotation for thefirst time inChapter 3, using it thereand
latermainly in caseswhere it significantly shortens the length of equations.



Appendix E

Bloch’s theorem and k · p theory

k ·p theory is a perturbationmethod, whereby if we know the exact energy
levels at one point in the Brillouin zone (say k = 0, the � point) then we
can use perturbation theory to calculate the band structure near that k
value. We use k · p theory in Chapters 4 and 5 to explain various aspects of
the electronic structure of semiconductors. A general introduction to first
and second order perturbation theory is given in Appendix C.

The Hamiltonian, H0, in a periodic solid is given by

H0 = − �
2

2m
∇2 + V(r) (E.1)

withV(r +R) = V(r), as discussed in Chapter 3. We also saw in Section 3.2
how the eigenstates, ψnk(r), can be written using Bloch’s theorem as the
product of a plane wave, eik·r , times a periodic function, unk(r), with asso-
ciated energy levels, Enk. For a particular value of k, say k0, Schrödinger’s
equation may be written as

H0ψnk0(r) =
(

− �
2

2m
∇2 + V(r)

)
(eik0·runk0(r)) = Enk0(e

ik0·runk0(r))

(E.2)

We presume that we know the allowed energy levels Enk0 at k0 and now
wish to find the energy levels, Enk, at a wavevector k close to k0, where(

− �
2

2m
∇2 + V(r)

)
(eik·runk(r)) = Enk(eik·runk(r)) (E.3)

To emphasise that we are interested in values of k close to k0, we may
rewrite eq. (E.3) as(

− �
2

2m
∇2 + V(r)

)
ei(k−k0)·r(eik0·runk(r)) = Enkei(k−k0)·r(eik0·runk(r))

(E.4)
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We would normally describe Schrödinger’s equation as a second order
differential equation acting on the full wavefunction, ψnk(r). We can also,
however, view eq. (E.4) as a second order differential equation involv-
ing the unknown function exp(ik0 · r)unk(r). If we multiply both sides of
eq. (E.4) from the left by exp[−i(k−k0)·r], we obtain amodifieddifferential
equation from which to determine Enk:

[e−i(k−k0)·rH0ei(k−k0)·r](eik0·runk(r)) = [e−i(k−k0)·rEnkei(k−k0)·r](eik0·runk(r))

= Enk(eik0·runk(r)) (E.5)

Between eqs (E.3) and (E.5), we have transformed from a k-dependent
wavefunction, ψnk, to a k-dependent Hamiltonian, which we write as Hq,
where q = k − k0. Equation (E.5) can be re-written as

Hqφnk(r) = e−iq·r
(

− �
2

2m
∇2 + V(r)

)
eiq·rφnk(r) (E.6)

where φnk(r) = exp(ik0 · r)unk(r). We now expand the term ∇2eiq·rφnk(r)
to obtain

Hqφnk(r) =
(

− �
2

2m
∇2 + �

2

m
q · 1

i
∇ + �

2q2

2m
+ V(r)

)
φnk(r)

=
[
H0 + �

m
q · p + �

2q2

2m

]
φnk(r) (E.7)

where we have used eq. (E.1), and replaced �/i∇ by the momentum
operator, p, introduced in Chapter 1.

Equation (E.7) forms the basis of the k · p method. It reduces to the
standard form of Schrödinger’s equation when q = 0, at the point k0.
For many applications, we choose k0 = 0, the � point, where we generally
knowor can estimate the values of all the relevant zone centre energies,En0.
We can then view

H ′ = �

m
q · p + �

2q2

2m
(E.8)

as a perturbation to the zone centreHamiltonian,H0, and use second order
perturbation theory to calculate the variation of the energy levels Enk with
wavevector k(=q) close to the � point.

For the case of a singly degenerate band, substituting eq. (E.8) into
eq. (C.23) gives the energy of the nth band in the neighbourhood of k = 0 as

Enk = En0 + �

m
k · pnn + �

2k2

2m
+ �

2

m2

∑
n′ �=n

|k · pnn′ |2
En0 − En′0

(E.9)
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where pnn′ is themomentummatrix element between the nth and n′th zone
centre states, un0(r) and un′0(r)

pnn′ =
∫
v
d3r u∗

n0(r)pun′0(r) = 〈un0|p|un′0〉 (E.10)

with the integration in (E.10) taking place over a unit cell of the crystal
structure.

Hence, we canwrite the energy at some generalwavevector k in terms of
the known energies at k = 0, and the interactions between the zone centre
states through the momentummatrix elements pnn′ . The term (�/m)k · pnn
is linear in k, while the other two terms in eq. (E.9) are quadratic in k.
Kane (1966) shows that the linear term is by symmetry identically equal
to zero in diamond structures and estimates that its effects are negligibly
small and can generally be ignored in III–V semiconductors.

We often describe the band dispersion near the zone centre as if the
carriers have an effective mass, m∗, with

Enk = En0 + �
2k2

2m∗ (E.11)

where 1/m∗ may depend on direction. Comparing eqs (E.9) and (E.11) we
find the effective mass m∗

i is given using k · p theory by

1
m∗

i
= 1

m∗ + 2
m2

∑
n′ �=n

|i · pnn′ |2
En0 − En′0

(E.12)

where i is a unit vector in the direction of the ith principal axis.
For practical applications, we need to include the effect of spin–orbit

interaction, particularly at the valence bandmaximum.We should also take
into account band degeneracies, such as that between the heavy-hole and
light-hole bands at the valence band maximum, where we strictly need to
use degenerate perturbation theory. We include these effects implicitly in
the discussion in Chapter 4. Amore detailed derivation and description of
the application of k ·p theory to semiconductors may be found for instance
in Kane (1963).

Reference

Kane, E. O. (1963) Semiconductors and Semimetals, Vol. 1, Ch. 3, ed. R. K. Willardson
and A. C. Beer, Academic Press, New York.



Solutions

Outline solutions to problems

Chapter 1

1.1 For odd states, the wavefunction is given by ψ(x) = A sin(kx) inside
the well; D e−κx for x > a/2. Adapt eq. (1.49) to get the answer.

1.2 First normalise by integrating a2n sin2(nπx/L) from 0 to L, giv-
ing a2nL/2, so that an = (2/L)1/2. Then integrate ψ∗

nψm using
sin(nπx/L) sin(mπx/L) = 1

2 (cos[(n − m)πx/L] − cos[(n + m)πx/L] to
show integral zero when n �= m.

1.3 Because ψ1 and u are orthogonal, we can write

〈E〉 =
∫

ψ∗
1Hψ1 dx + ε2

∫
u∗Hudx∫

ψ∗
1ψ1 dx + ε2

∫
u∗udx

Using the normalisation of the functions, we find 〈E〉 = E1 +
ε2[∫ u∗Hudx − E1] + O(ε4).

1.4 (a) We findHf (x) = (�2/m)n(n−1)xn−2. Evaluating eq. (1.37), we find

〈E〉 = 1
L2

�
2

m
(n + 1)(2n + 1)

2n − 1

The estimated value of 〈E〉 increases rapidly with n, as the
shape of the function starts to deviate significantly from the true
wavefunction.

(b) g(x) is the simplest polynomial which is odd about x = 0, and
zero at ±L/2. We again evaluate eq. (1.37) to find 〈E2〉 = 21�2/mL2,
compared to the true value 2π2

�
2/mL2.

(c) We need an even polynomial, equal to zero at ±L/2, with two
other zeros between ±L/2; so of the form f2(x) = A1 − B1x2 +
C1x4. Exercise: find A, B, C that satisfies above and also generates
a quartic polynomial orthogonal to the ground state variational
function (L/2)2−x2. Likewise next odd state of form g2(x) = A2x−
B2x3 + C2x5, and orthogonal to g(x).
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1.5 We again need to evaluate eq. (1.37). We end up in this case with two
terms in the estimated 〈E〉, one, 〈T〉, associated with the kinetic energy
term (−�

2/2m)d2/dx2 in the Hamitonian, and the other 〈V〉 from the
potential energy term, 1

2kx
2. We find

〈E〉 = 〈T〉 + 〈V〉 = �
2α

2m
+ k

8α

Differentiating with respect to α, this is minimised when α =
(km/�

2)1/2, so that 〈E〉 = 1
2 �(k/m)1/2. This is the correct ground state

energy. Likewise, using the trial function g(x), which is odd about
x = 0, gives the correct first excited state energy, 3

2 �(k/m)1/2.

Chapter 2

2.1 Follow the same procedure as in eqs (2.1)–(2.9), but replace eq. (2.2)
by ψ(x) = A(eκx − e−κx) in the central region (|x| < b/2) to derive
the solution for states of odd parity.

2.2 Replace tanh(κb/2) by 1 − 2e−κb/2 sech(κb/2) in eq. (2.9b); keep
terms involving 1 on the LHS and take the two terms involving
2 e−κb/2 sech(κb/2) to theRHS.Divideboth sidesby2. LHS isnowthe
same as eq. (1.54), so can be replaced by the product of two terms in
eq. (1.53); dividing both sides of equation by k cos(ka/2)+κ sin(ka/2)
gives required eq. (2.38).

For the second part of the question, expand f (E) = f (E0)+
(E − E0)f ′(E0). But we know f (E0) = 0. Also sech(κb/2) ∼ e−κb/2

for large b, so we can therefore say (E− E0)f ′(E0) ∼ e−κb, which can
then be re-arranged to give the required result.

2.3 Replace coth(κb/2) by 1 + 2e−κb/2 cosech(κb/2) in problem 2.1 and
then follow same procedure as for problem 2.2 to get Eex(b) = E0 +
Ce−κb.

2.4 By setting D = A cos(ka/2) exp(κa/2), and integrating |ψ(x)|2 we
find

A2

2

[
a + sin(ka)

k
+ 1 + cos(ka)

κ

]
= 1

Note that this reduces correctly toA2 = 2/a in an infinite squarewell,
where κ = ∞, and sin(ka) = 0.

2.5 We can show that I = E0 − V0
∫ b+a
b D2 e−2κx dx ∼ E0 − CIe−2κb.

Likewise, IV varies asCIVe−κb. Finally, we can show II also contains
terms that vary asCIIe−κb, whichdominate at large b. Whenwe solve
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the resulting 2 × 2 determinant, the terms in II have the dominant
effect in determining the splitting for large b, which then varies for
large b as 2CIIe−κb.

2.6 I have never attempted to prove this, but presume it is true!

2.7 We require ∂φh/∂φ = 0, and ∂φh/∂θ = 0. Evaluating ∂φh/∂φ = 0, we
find cosφ = sin φ, and φ = π/4. If we now evaluate ∂φh/∂θ = 0, we
find tan θ = −√

2, for which we can deduce cos θ = 1/
√
3. We must

also show by considering second derivatives that this solution gives
a maximum pointing along the (111) direction.

2.8 The three solutions are

ψ1 = 1√
3

(
φs + √

2φx

)
;

ψ2 = 1√
3

(
φs − 1√

2
φx +

√
3√
2
φy

)
;

ψ3 = 1√
3

(
φs − 1√

2
φx −

√
3√
2
φy

)
.

2.9 Multiply Hψn = Enψn on the left by e−i(2π jn/N)φj and integrate to
find Ea + U(ei2πn/N + e−i2πn/N) = En[1 + S(ei2πn/N + e−i2πn/N)]. If
S ∼ 0, this simplifies to the required result. For anN-membered ring,
add energies of N lowest levels (remembering double degeneracy),
and then divide byN to get average binding energy per atom. Bind-
ing energy is greatest for six-membered ring. This is also the case
where bond angle is 120◦, thereby also maximising sp2 contribution
to bonding.

2.10 Eg = hυ; λυ = c. Eliminating υ, we find Egλ = hc = 1.986 ×
10−25 Jm. Convert energy units to eV and length to µm to give
required result. dEg/dx = 0 when x = 0.336; Eg = 0.104 eV; λ ≈
12µm.

Chapter 3

3.1 First electron goes into state at q = 0; then start to fill states with
increasing |k|, until |k| = π/L, when two electrons per atom. We
therefore need to evaluate

Ebs = 2V
L
π

∫ θ

−θ

cos(qL)dq

where θ = yπ/2L. This gives Ebs = 4V/π sin( yπ/2)(=2Vy at small y;
4V/π when y = 1).
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3.2 Let thewavefunction of statewithwavevector q,ψq = αφ0+βeiqLφ1 in
the zeroth unit cell. We evaluate

∫
φ∗
0,1Hψq to get two linear equations,

the first of which is

αEs + βeiqL(V + �V) + βe−iqL(V − �V) = αEsq

Solving these equations gives the required band structure, Esq.
Because unit cell size is now doubled, Brillouin zone edges are now
at ±π/2L, where we find Esq = Es ± 2�V. The band-structure energy
gained per atom, Ebs, due to the distortion is given by the solution of
the integral

Ebs = 4
π

∫ π/2

0

(√
V2 cos2 θ + (�V)2 sin2 θ − |V| cos θ

)
dθ

This integral does not have a simple solution: its value Ebs =
4|V|/π [E((1 − a2)1/2) − E(1)], where a = �V/V and E is an ellipti-
cal integral. With considerable approximation, it can then be shown
that Ebs ∼ (�V)2/|V|.

3.3 We choose the nthNFEwavefunction at q = π/L asψ = αei(2n−1)π/L+
β e−i(2n−1)π/L. Follow the same analysis as in eqs (3.32)–(3.39) to get
required results. At the zone centre, replace 2n − 1 by 2n in analysis.

3.4 Need to show α = β for the upper state, and α = −β for the lower
state, respectively. Because the wavefunction of the lower state has
a node near x = 0, in region of Kronig–Penney (K–P) barrier, it is
less perturbed by the K–P potential, and so provides a better energy
estimate to larger b than the upper state.

3.5 We choose ψ(x) = α sin(πx/L) + β sin(3πx/L) as our trial function
for the lowest state, which we know is odd about x = 0. We then
follow the analysis of eqs (3.32)–(3.39), and choose the lower of the
two solutions obtained as our improved estimate for the lower state.
We then replace the sine by cosine functions; same analysis gives the
improved estimate for the upper level.

3.6 λ = 2π/(k2x + k2y)
1/2 = 2π/k. v = k/ω. The wave propagates along the

direction (cos θ , sin θ). For t = 0, ψ = 1when 8π/L (x+y) = 2nπ , that
is, x+y = nL/4. We can draw solutions for this in the given square for
0 ≤ n ≤ 8. We see that the repeat distance in the x(y)-direction is just
L/4 (= 2π/kx(y)), while along the propagation direction λ = √

2L/8.
Show also that at t = π/ω, the lines ψ = 1 have moved forward by
half a wavelength.

3.7 We need to show that we can generate the six second neighbours, for
example, (0, 0, a) = a1 + a2 − a3; also the other nine first neighbours,
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for example, (0,−a/2, a/2) = a2 − a3. Any other lattice point can then
readily be generated from a sum of first and second neighbours.

3.8 We can show in general that if R = n1a1 + n2a2 + n3a3 and G =
m1b1 + m2b2 + m3b3, then R · G = 2π(n1m1 + n2m2 + n3m3), so G is
a reciprocal lattice vector. Also no reciprocal basis vectors aremissing,
for example, if (n1,n2,n3) = (1, 0, 0) then R · G = 2πm1, and as m1 is
any integer, all values of 2πn are included.

3.9 Show that b1 = (2π/a)(−1, 1, 1); b2 = (2π/a)(1,−1, 1); b3 =
(2π/a)(1, 1,−1), and that these are the basis vectors of a BCC lattice
with the eight first neighbours at (2π/a)(±1,±1,±1) and six second
neighbours at (4π/a)(1, 0, 0) etc. Working in the opposite direction
one can also show reciprocal lattice of a BCC lattice is an FCC lattice.

3.10 We want to find b1 and b2 in the x–y plane, so that the reciprocal
lattice is given by G = m1b1 +m2b2. Most easily done by introducing
a3 = (0, 0, a). We find b1 = (2π/a)(1,−1/

√
3); b2 = (2π/a)(0,−2/

√
3),

which it can be shown are also the basis vectors of a triangular lattice.

3.11 Consider, for example, the atom at the origin, which has six neigh-
bours, with coordinates c1, . . . , c6 at ±a1, ±a2, ±(a1 − a2). Then
evaluate Esk = Es + ∑

j V exp(ik · cj) to get the required answer.
For the lower band edge at k = 0, wavefunction is in phase on all
sites, so we get EsL = Es − 6|V|. By contrast, one cannot get an anti-
bonding state where phase is of opposite sign on all neighbours – the
best that can be managed in a periodic wavefunction is to have effec-
tively four neighbours of opposite sign and two of same sign, giving
EsU = Es + 2|V|.

Chapter 4

4.1 Invert (4.9a) to determine values of Ep. Note that the values do not
vary strongly between the different materials.

4.2 Substituting Ep into eq. (4.9b) we calculate, for example, m∗
lr = 0.11

(0.056) for GaAs (GaSb), compared to 0.082 (0.05) in Table 4.1.

4.3 We calculate, for example, for InP that Eimp
1 = 12meV and a∗ = 64Å,

so that Nd ∼ (1/64)3 Å−3 ∼ 4 × 1018 cm−3.

4.4 Follow analysis in Appendix E to get solution.

4.5 We evaluate the integral

PLUn = 2
L

∫ L

0
sin

(nπx
L

)(
−i�

d
dx

)
cos

(nπx
L

)
dx
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to get the required result. This partly explains the relative constancy
of Ep in problem 4.1, as the bond length does not change strongly
between the materials listed.

4.6 We find for wavevectors q close to π/L that eq. (3.38) and the k · p
method give the same result, with

E = b
L
V0 + �

2

2m

[(π

L

)2 +
(
q − π

L

)2]

±
[
V0

π
sin

πb
L

+ �
4π3

2m2L2V0 sin (πb/L)

(
q − π

L

)2]

4.7 We first use the k · p method to show that first order wave-
function of the upper state varies with wavevector k as
ψUk(x) = (2/L)1/2[cos(2πx/L) + iAk sin(2πx/L)], where A =
2π2

�
2/[mLV0 sin(2πb/L)], with a related expression for ψLk(x). We

then use eq. (1.37) to estimate the average potential energy at
wavevector k in the upper and lower bands, 〈UU/L(k)〉 to find

〈UU/L(k)〉 = V0b
L

± V0

2π
sin(2πb/L)[1 − 2|A|2k2]

This shows that the potential energy, 〈UU(k)〉 decreases with increas-
ing k in the upper band, and increases with k in the lower band. As
total energy 〈E〉 = 〈T〉 + 〈U〉, we then find that the kinetic energy 〈T〉
must increase with k in the upper band, and decrease with increasing
k in the lower band. This result can be used to explain why the lower
band has a negative effective mass at the zone centre.

4.8 The average acceleration 〈a〉 is found by integrating over all wave-
vectors k between −π/L and π/L. We find

∫ π/L

−π/L
adk = 1

�2

[
dE
dk

F
]π/L

−π/L

Result then follows as dE/dk = 0 at ±π/L.

Chapter 5

5.1 We require �
2π2/(2mL2)(m∗−1

LH − m∗−1
HH ) = 40meV. We find L = 94Å.

5.2 We calculate �Ec = 0.1742 eV and �Ev = 0.0938 eV. With �
2k2/2m∗ =

25meV, we get, for example, k = 0.021Å−1 for m∗
e = 0.067, and κ/k =

2.442. Substituting in equation, we find Le = 113Å.
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5.3 The maximum possible value of k2 occurs for a confined state when
κ = 0 and �

2k2/2m∗ = �Ec (eq. A). To get a solution of −k cot(ka) = κ ,
we require that the LHS is positive, and (ka)2 > (π/2)2(eq. B). Com-
bining eqs (A) and (B) gives the required result. For the second bound
state, we require ka > 3π/2, and hence �Eca2 > 9π2

�
2/8m∗.

5.4 We require a2 > π2
�
2/(8m∗�Ec), that is, a > 21.7 Å.

5.5 This is a matrix inversion problem: either calculate directly the inverse
of the matrix R or show that the matrix product RG = I, the identity
matrix.

5.6 We need to evaluate the integral

n =
∫ ∞

Ec
dE

m∗
c

π�2
fc(E)

with fc(E) given by eq. (5.37) to get the required result. Then re-arrange
π�

2n/(m∗
ckT) = ln[exp{(Fc − Ec)kT} + 1] to determine how Fc varies

with n. Similarly for p and Fv.

5.7 First show thatwe can rewrite eq. (5.37) as fc = 1−[exp{(Fc−Ec)/kT}+
1]−1. The term in square brackets here can be shown to be equal to the
second term on the RHS of the equation for gmax, while the last term
on the RHS equals fv. We calculate the transparency carrier density by
solving the RHS of the equation for gmax = 0. The carrier density n for
a given quasi-Fermi energy, is found by integrating over the density of
states, n = ∫ ∞

0 dE g(E)fc(E) where we have set the band edge energy
to zero. As g(E) varies as E(D−2)/2 near the band edge, we can show
for Fc = 0 (i.e. at the band edge) that n varies as (kT)D/2. This is the
condition for transparency when m∗

c = m∗
v. It can be shown that the

decreased temperature dependence of n0 when the dimensionality D
is reduced leads also to a decrease in the temperature dependence of
the transparency (and hence threshold) current density.

Chapter 6

6.1 Setting J = 1
2 in eq. (6.35), and letting x = 1

2gµBB/kT, we get

〈µ〉 = 1
2
gµB

ex − e−x

ex + e−x

as required. Using tanh(x) ∼ x for small x, and with N ions per unit
volume, we have M = 1

2NgµBx, and χ = Nµ0(gµB)2/4kT.

6.2 Let y = gµBB/kT in eq. (6.35). The denominator is given by the geomet-
ric series S( y) = e−Jy[1 + ey + · · · + e2Jy] = sinh{( J + 1

2 )y}/ sinh( 12y).
We can show the numerator

∑
memy = dS/dy. Dividing gives the
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required result. As J → ∞, (2J + 1)/2J → 1, and coth(x/2J) → 2J/x,
giving the classical result. By expanding cosh and sinh to order x2,
show coth(x) = 1/x + 1

3x. The two terms in 1/x then cancel in BJ(x),
giving BJ(x) ∼ ( J + 1)x/(3J), which when substituted into eq. (6.36)
gives the required results.

6.3 We first evaluate 〈R2
i 〉 = ∫ ∞

0 r2|ψ(r)|24πr2 dr = 3a20. Substituting into
eq. (6.17) we find χdia = −5 × 10−35N, where N is the number of H
atoms perm3. The paramagnetic susceptibility χpara = Nµ0µ

2
B/kT. We

then find χpara = χdia when T ∼ 1.5× 105 K, demonstrating that a gas
of H atoms would be paramagnetic at room temperature.

6.4 For Cr3+, with three d electrons, L = ∑
m = 2 + 1 + 0 = 3, S = ∑

s =
3/2, and J = L − S = 3/2. Calculate g, and evaluate the two different
expressions to show 2(1.5 × 2.5)1/2 is the better fit.

6.5 l = 3 for f-shell. Shell over half-full, with 8th and 9th electrons have
m = 3, 2. So L = ∑

m = 5. S = 5/2. Hund’s 3rd rule gives J = L + S =
15/2. Multiplicity = 2S + 1 = 6, so notation for ground state is 6H15/2.
Predicted g = 1.33, so p = 1.33(7.5 × 8.5)1/2 = 10.645.

6.6 (a) Inequality follows from showing ∇ · F = (Vχ/µ0)∇2B2.
(b) ∇ · B = 0 ⇒ ∂Bx/∂x = −∂By/∂y − ∂Bz/∂z (eq. (1)). ∇ × B = 0 ⇒

∂Bz/∂x = ∂Bx/∂z (eq. (2)), and two equivalent equations. Take
the derivative of eq. (1) with respect to x, and use eq. (2) on the
right-hand side to show ∇2Bx = 0.

(c) We can show by double differentiation that ∇2B2
x = 2Bx∇2Bx +

2|∇Bx|2 = 2|∇Bx|2 ≥ 0. As χ > 0 for a paramagnet, must then
always have ∇ · F > 0 for a paramagnet.

6.7 WehaveBx(x, 0, z) = Bx(0, 0, z)+x∂Bx/∂x(0, 0, z)+· · · , withBx(0, 0, z) =
0 from symmetry. From rotational symmetry, ∂Bx/∂x(0, 0, z) =
∂By/∂y(0, 0, z) and these = − 1

2∂Bz/∂z(0, 0, z) (eq. (3)) using ∇ · B = 0.
For the z component, we use Bz(x, 0, z) = Bz(0, 0, z)+x∂Bz/∂x(0, 0, z)+
1
2x

2∂2Bz/∂x2(0, 0, z). The second term on the right is zero from symme-
try. Taking the derivative of eq. (3) with respect to z, and then using
eq. (2) from problem 6.6, we can show that ∂2Bz/∂x2 = − 1

2∂
2Bz/∂z2,

giving required result.

6.8 The stability conditions require ∂2B2(0, 0, z)/∂x2 > 0, and ∂2B2(0, 0, z)/
∂z2 > 0. From problem 6.7, we find retaining terms to x2 that

B2(x, 0, z) = 1
4 [B(1)(0, 0, z)]2x2 + [B(0, 0, z)]2 − 1

2B(0, 0, z)B(2)(0, 0, z)x2

Evaluating the twosecondderivatives, thefirst requires [B(1)(0, 0, z)]2−
2B(0, 0, z)B(2)(0, 0, z) > 0, that is, z < (2/5)1/2a, while the second
requires [B(1)(0, 0, z)]2+B(0, 0, z)B(2)(0, 0, z) > 0, which gives z > a/

√
7.
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Chapter 7

7.1 The magnetisation, M = Ms tanh(x) (eq. (A)), where x = µ0µBλM/kT
(eq. (B)) and Ms = NµB. At small x, eq. (A) becomes M = Msx
(eq. (C)). At T = Tc, eqs (B) and (C) have the same slope, so that
Ms = kTc/µ0µBλ, and Tc/λ = µ0µBMs/k. We can also show x =
MTc/MsT. Substituting in eq. (A), we then find (using y = tanh(x) ⇒
x = 1

2 ln[(1 + y)/(1 − y)] that M/Ms = 0.8 when 0.8 = tanh(0.8Tc/T),
or T = 0.728Tc. Likewise M/Ms = 0.5 when T = 0.910Tc.

7.2 At T = 0, x = ∞, andM = Ms. From Section (7.3), we have

M = C
T − Tc

B
µ0

(D)

Substituting for C = Tc/λ = µ0µBMs/k in eq. (D), we find that
the ratio of M at 300K to M at 0K is given by µBB/k(T − Tc) ≈
6 × 10−3 meV/12.5meV ∼ 5 × 10−4.

7.3 αi is the direction cosine with respect to the ith axis. For (100), α1 = 1;
α2,3 = 0. For (110), α1,2 = 1/

√
2; α3 = 0. For (111), α1,2,3 = 1/

√
3.

Substitute thesevalues ineq. (7.36a) tofindW = K1/4andK1/3+K2/27,
respectively.

7.4 For small T (large x), the straight line (eq. (7.17)) cuts the tanh
curve at x = MTc/MsT ∼ Tc/T as M ∼ Ms = NµB. At large x,
M = Ms tanh(x) ≈ Ms(1 − 2e−2x) = Ms(1 − 2 exp(−2Tc/T)). Near
the Curie temperature, we have for small x that M = Ms tanh(x) ≈
Ms(x − x3/3) (eq.(E)). Substituting that x = MTc/MsT in eq. (E),
and re-arranging, we can show that in mean field theory, M =√
3Ms(T/Tc)(1 − T/Tc)

1/2 → √
3Ms(1 − T/Tc)

1/2 as T → Tc.

7.5 In Langevin theory, M → Ms(1 − 1/x) as x → ∞. We also require
that x = MTc/MsT. Following the same process as in problem 7.4, we
then deriveM = Ms(1−T/Tc). The linear variation here is closer to the
experimentally observedbehaviour because lowenergy excitations are
possible in the classical model, with average spin deflection 〈θ〉 from
the field direction → 0 smoothly as T → 0.

7.6 Because Fe3+ moments cancel, we have net magnetic moment per unit
cell is due to eightNi2+. Whenorbital angularmomentum is quenched,
J = S = 1; g = 2 for Ni2+, with the net moment per Ni ion = 2µB,
giving totalmoment of 16µB.When twonon-magnetic Zndisplace two
Fe3+ to the B sites, the net moment is now due to six Ni2+ and four
unbalanced Fe3+ ions. From fig. 6.6, each Fe3+ has moment of 5µB,
giving a total moment of 32µB.
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7.7 We haveMA = 1
2 (CA/T)(H0 − λMB), and an equivalent expression for

MB. We can solve these two linear equations to see thatM = MA +MB
varies with H0 as

M = λT(CA + CB) − λ2CACB

2T2 − λ2CACB/2
H0

λ

The susceptibility, χ → ∞ when the bottom line is zero, giving Tc =
λ(CACB)1/2/2. It can be shown that the temperature dependence of the
inverse ferrimagnetic susceptibility is then markedly different to that
of a ferromagnet, for which χ−1 = (T + Tc)/C.

Chapter 8

8.1 Just because ∇ × E = 0 does not imply E = 0. You are probably
familiar with the idea that an oscillating current in an aerial generates
an electromagnetic wave, with the time-dependent E-field polarised
parallel to the aerial axis. In the same way, the decay of the current in
the solenoid gives rise to the E-field which accelerates the electron as
derived in Section 8.5.

8.2 Evaluate one (e.g. x) component of each side of the equation. We
first evaluate ∇ × j = i(∂jz/∂y − ∂jy/∂z) + j(∂jx/∂z − ∂jz/∂x) +
k(∂jy/∂x − ∂jx/∂y), where i, j and k are unit vectors along the co-
ordinate axes. The x-component of ∇ × (∇ × j) is then equal to
∂/∂y(∂jy/∂x − ∂jx/∂y) − ∂/∂z(∂jx/∂z − ∂jz/∂x). The x-component of
∇(∇ · j) = ∂/∂x(∂jx/∂x + ∂jy/∂y + ∂jz/∂z), while ∇2jx = ∂2jx/∂x2 +
∂2jx/∂y2 + ∂2jx/∂z2. Simplifying both sides of the equation, we verify
the expression. The conservation of charge relates the current density j
to the free chargedensityρ at eachpoint by∇·j = −∂ρ/∂t. As ∂ρ/∂t = 0
in steady state, we therefore require∇×(∇×j) = −∇2j. Taking the curl
of both sides of eq. (8.18) then gives −∇2j = −nse2/me(∇ × B), which
using eq. (8.19a) equals −(µ0nse2/me)j, identical to eq. (8.22) for B, so
that when solved the solutionmust be of similar form. As j = µ0∇ ×B,
we find by taking the curl of B = B0k exp(−x/λL) that µ0j0λL = B0, as
required. Finally, we find themagnetic flux penetrating per unit length
by evaluating

∫ ∞
0 B0 exp(−x/λL)dx to get the required result.

8.3 From eq. (8.5), Hc(T) = Hc(0)[1 − (T/Tc)
2], and so ∂Hc/∂T =

−2Hc(0)T/T2
c . Substituting into �S = −µ0Hc∂Hc/∂T, we obtain

�S(T) = 2µ0Hc(0)2/Tc[(T/Tc) − (T/Tc)
3]. Taking the derivative of

�S with respect to T, we find the derivative equals zero, and �S
is maximised when 1 − 3(T/Tc)

2 = 0, that is, when T = Tc/
√
3, as

required.
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8.4 We have�S(T) = 2µ0Hc(0)2/Tc[(T/Tc)−(T/Tc)
3], so that ∂(�S)/∂T =

2µ0Hc(0)2/T2
c [(T/Tc) − 3(T/Tc)

3], and �C = T∂(�S)/∂T =
2µ0Hc(0)2/Tc[(T/Tc) − 3(T/Tc)

2] = −4µ0Hc(0)2/Tc at Tc, with the
magnitude therefore equal to 4B2

c/(µ0Tc). Substituting for Nb and Al
we then find �C = 292 Jm−3 K−1 in Al, and �C = 46, 100 Jm−3 K−1

in Nb.

8.5 Thegeneral solution for themagneticfieldB(z) inside theplate isB(z) =
A exp(z/λL)+B exp(−z/λL) (eq. (8.26)). As B(d/2) = B(−d/2) = B0, we
requireA = B and soB(z) = 2A cosh(z/λL), with 2A = B0/ cosh(d/2λL)

in order that B(d/2) = B0, as required.
From eq. (8.3), the magnetisation M is given by µ0M = B − B0.

For small x, cosh x = 1 + 1
2x

2 so that using binomial expansion
B = B0(1 + 1

2z
2/λ2L − 1

2 (d/2)
2/λ2L) and µ0M = B − B0 = 1

2B0[z2 −
(d/2)2]/λ2L. Integrating from −d/2 to +d/2, and then dividing by
d, we find µ0Mav = [ 13 (d/2)3 − (d/2)3]/(dλ2L) = −d2/(12λ2L)B0, as
required. From eq. (8.36), Gsc(H) − Gsc(0) = − ∫ H

0 µ0Mav dH =
1
2µ0(d2/12λ2L)H2 = 1

2µ0H2
c0 at the critical field. We therefore deduce

that Hc(d) = 2
√
3(λL/d)Hc0 in the thin film.

8.6 When we integrate eq. (8.62) clockwise around the left-hand side of
the loop we find

�(θA1 − θB1) = −2e
∫ A1

B1
A · dl

while for the right-hand side

�(θB2 − θA2) = −2e
∫ B2

A2
A · dl

Adding these together anddividingby�gives (θB2−θB1)−(θA2−θA1) =
�θB −�θA = (−2e/�)

∮
C A ·dl = (−2e�/�), where� is the flux linking

the loop. This gives�θA = �θB+2e�/�, and I = I0 sin�θ+I0 sin(�θ+
2e�/�). The total current through the loop then oscillates as� is varied;
for example, ifweset�θ = π/2 then it canbe shown I = 2I0 cos2(e�/�).
The period of oscillation is given by eδ�/� = π , so δ� = h/2e = �0, as
required. If the two junctions are not identical, the oscillating pattern
will be shifted by a half-wavelength, as observed by Wollmann et al.
(1993) Phys. Rev. Lett. 71 2134.
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