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Lecture 1

Linear Groups and
Linear Representations

1. Basic Concepts and Definitions

Definitions 1. A topological (resp. Lie) group consists of a group structure
and a topological (resp. differentiable) structure such that the multiplication
map and the inversion map are continuous (resp. differentiable).

2. A topological (resp. Lie) transformation group consists of a topological
(resp. Lie) group G, a topological (resp. differentiable) space X and a contin-
uous (resp. differentiable) action map ®: G x X — X satisfying ®(1,2) = =,
®(g1,®(g2, 7)) = ¥(9192, T).

3. If the above space X is a real (resp. complex) vector space and, if for all
g € G, the maps ®(g) : X - X : z — ®(g, z) are linear maps, then G is called
a real (resp. complex) linear transformation group.

Notation and Terminology 1. A space X with a topological (resp. dif-
ferentiable, linear) transformation of a given group G shall be called a topo-
logical (resp. differentiable, linear) G-space. In case there is no danger of
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ambiguity, we shall always use the simplified notation, g- z, to denote ®(g, z).
In such a multiplicative notation, the defining conditions of the action map @
become the familiar forms of 1 -z = z and g1 - (92 - ) = (g142) - =

2. Amap f: X = Y between two G-spaces is called a G-map if for all
g€Gandallze X, f(g-z) =g f(z).

3. A linear transformation group ® : G x V — V, or equivalently, a ho-
momorphism ¢ : G — GL(V), is also called a linear representation of G' on
V. Two linear representations of G on Vi and V, are said to be equivalent
if V| and V, are G-isomorphic, namely, there exists a linear isomorphism A:
Vi = V, such that for all g € G and all z € V1, A - @4(g,z) = ®2(g, Az), or
equivalently, one has the following commutative diagrams:

G X V1 L’ V1 GL(VI)
2
1,xA A G O
¢2 X
GXV,————»V, GL(V)

where 04 (B) = ABA™! for B € GL(W,).
4. For a given G-space X, we shall use G to denote the isotropy subgroup
of a point z and use G(z) to denote the orbit of x, namely

G, ={geG:g-z=za},
Gx)={9-z:9€G}.

It is clear that Gy.; = gG,¢9™* and the map g — g - z induces a bijection of
G /G onto G(z).

Definitions 1. A (linear) subspace U of a given linear G-space V is called
an invariant (or G-) subspace, if

G U={g-z:9eGzecU}CU.

2. A linear G-space V (or its corresponding representation of G on V) is
said to be irreducible if {0} and V are the only invariant subspaces.
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3. A linear G-space V (or its corresponding representation of G on V) is
called completely reducible if it can be expressed as the direct sum of irreducible
G-subspaces.

4. The following equations define the induced linear G-space structures of
two given linear G-spaces V and W.

(i) direct sum: V @ W with g - (z,y) = (gz, gy).

(if) dual space: V* with (z,g-z') = (¢~ ! - z,2’'). (Notice that the inverse
in the above definition is needed to ensure that (z,g; - (g2 - ') =
(z,(g1-92) &) forallze V, 2/ € V*)

(iii) tensor product: VW withg - (z®y)=g-z2®g-y.

(iv) Hom(V,W): A € Hom(V,W), (g- A)z = gA(¢g~! - z).

It follows from the above definition that the usual canonical isomorphisms
such as

Hom(V,\W) = V*Q@W,
VW) =V oW,
U(VeW)2UeV)se (UeW)

are automatically G-isomorphisms. Moreover, an element A € Hom(V, W) is
a fixed point if and only if it is a G-linear map. g7!- A= A & for all g € G,
g 1A(gz) = A(z), i.e. A(gz) = gA(x).

Of course, one may also define the induced G-space structure for the other
linear algebra constructions such as A*(V'), S%¥(V), etc., and again the canoni-
cal isomorphisms such as V®V = A2(V)@® S%(V) will also be G-isomorphisms.

Schur Lemma Let V, W be irreducible (linear) G-spaces and A: V — W
be a G-linear map. Then A is either invertible or A = 0.

Proof: Both kerA C V and ImA C W are clearly G-subspaces; it
follows from the irreducibility assumption that

ker A = {{0} ImA= {{0}
w.

b

Therefore, the only possible combinations are exactly either (i) ker A = {0}
and ImA = W, ie. A is invertible, or (ii) kerA = V and ImA = {0},
ie. A=0. O
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In the special case of V = W and the base field C, one has the following
refinement.

Special Form If V is an irreducible G-space over C and A is a G-linear
self-map of V, then A is a scalar multiple, i.e. A = A¢- I for a suitable Ay € C.

Proof: It is obvious that A — Al is also G-linear for any A € C. Let A\ be
an eigenvalue of A; this exists because C is algebraically closed. Then A — Aol
is not invertible and hence must be zero, i.e. A = Apl. 0

Corollary A complex irreducible representation of an Abelian group G
is always one-dimensional.

Proof: Let ¢ : G — GL(V) be a complex irreducible representation.
Since G is commutative, ¢(g) - #(go) = #(go) - #(g) for all gy, g € G. Hence,
for each g, ¢(g) is a G-linear self-map of V' and therefore ¢(g) = A(g) - I for
a suitable A(g) € C. g, however, is an arbitrary element of G, thus Im¢ =
{#(9) : g € G} C C*-1I, the set of nonzero scalar multiples. Therefore any
subspace of V' is automatically G-invariant, and hence it can be irreducible
only when dimV = 1. 0

2. A Brief Overview

Before proceeding to the technical discussion of linear representation theory,
let us pause a moment to reflect on some of the special features of linear
transformation groups, to think about what are some of the natural problems
that one might pursue and to have a brief overview of the fundamental results
of such a theory.

Among all kinds of mathematical models, vector space structure is un-
doubtedly one of the most basic and most useful type; it is a kind of ideal
combination of straightforward algebraic operations and simple, natural geo-
metric intuitions. Correspondingly, linear transformation groups also inherit
many advantageous nice features. For example, they are conceptually rather
elementary and concrete; they are easily accessible to algebraic computations;
they can be readily organized by the canonical constructions of linear algebra,
e.g., direct sum, tensor product, dual space, etc., and moreover, they also en-
joy the beneficial help of geometric interpretation and imagination. Therefore,
they are a kind of ideal material to serve as the “films” for taking “reconnai-
sance pictures”.
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The theory of representations of groups by linear transformation was cre-
ated by G. Frobenius, here in Berlin during the years 1896-1903. His basic
idea is that one should be able to obtain a rather wholesome understanding of
the structure of a given group G by a systematic analysis of the totality of its
“linear pictures”. Next, let us try to formulate some natural problems along
the above lines of thinking.

1. Problem on complete reducibility

If all representations of a given group G happen to be automatically com-
pletely reducible, then the study of linear G-spaces can easily be reduced to
that of irreducible ones. Therefore, it is natural to ask “What type of groups
have the property that all representations of such groups are automatically
completely reducible”?

2. Problem on irreducibility criterion
How to determine whether a given representation is irreducible?

3. Problem on classification
How to classify irreducible representations of a given group G up to equiv-
alence?

Finally, let us have a preview of some of the remarkable answers to the
above basic problems obtained by G. Frobenius and I. Schur.

Theorem 1. If G is a compact topological group, then any real (resp.
complex) representation of G is automatically completely reducible.

The key to the classification theory of linear representations of groups is
the following invariant introduced by G. Frobenius.

Definition Let ¢ : G — GL(V) be a given complex representation of G.
The complex valued function

Xo: G 3 GL(V) B C: g tr(g)

is called the character (function) of ¢.

1. x¢(g) = tr ¢(g) is the sum with multiplicities of the eigenvalues of ¢(g).
Hence, it is quite obvious that equivalent representations have identical char-
acter functions, namely, the character function is an invariant of equivalent
classes of representations.
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2. If g1, g2 are conjugateplus in G, i.e. there is some ¢ € G such that
91 = 9929~ then

Xo(91) = X6(99297") = tr(p(9)d(g2)p(9) ") = trd(g2) = x4(g2) -

Hence, the character function of an arbitrary representation ¢ of G has the
special property of constancy on each conjugacy class of G.
3. If y» = ¢ @ ¢, then it is easy to see that for all g € G,

x9(9) = X¢1(9) + X42(9)

namely, Xy = X¢, + X¢. as functions.
The most remarkable result of Frobenius-Schur theory is the following clas-
sification theorem.

Theorem 1. IfG is a compact topological group, then two representations
¢ and ¢ are equivalent if and only if Xy = Xy as functions.

3. Compact Groups, Haar Integral and the
Averaging Method

Let G be a finite group and V' be a given linear G-space. Then, to each point
x € V, the center of mass of the orbit G(z) is clearly a fixed point of V. Hence,
the map

z — T = the center of mass of G(z) = |G| Z gz
9€G

is a canonical projection of V onto V&, the subspace of fixed points in V.
In terms of a chosen coordinate system, the ith coordinate of Z is simply the
average value of the ith coordinate of {g -z : g € G}. We shall proceed to
generalize the above useful method of producing fixed elements, namely, the
averaging method, to the general setting of compact topological groups. Of
course, the key step is to establish the correct meaning of the average value of
a given continuous function f : G — R.

3.1. Haar integral of functions defined on compact groups

Let G be a given compact topological group and C(G) be the linear space
of all (real valued) continuous functions of G equipped with the sup-norm
topology. It is not difficult to show that every continuous function f € C(G)
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is automatically uniformly continuous, i.e. to any given & > 0, there exists a
neighborhood U of the identity in G such that zy~! € U = |f(z) — f(y)| < 4.
The translational transformation of G X G on G, namely,

T:(GxG)xG—G:(g1,92) T+ g17g;5"
naturally induces a continuous linear transformation of Gx G on C(G), namely,

[(91,92) - fl(x) = f91'zg2),  feC(G), (g91,92) € GxQG.

Theorem 3. There exists a unique G-projection I : C(G) — R (the
subspace of constant functions). [I(f) is called the average value, or Haar

integral, of f.]

Proof: (a sketch) i. Let A be a finite subset of G x G with multiplicities
and f € C(G). Set I'(A, f) to be the center of mass of A - f, namely,

N4, )= g Somia)-a- ],
a€A
where m(a) is the multiplicity of ¢ and |4| = }_m(a) is the total weight. For
two finite subsets A, B of G x G with multiplicities, A- B is again a finite subset
with multiplicities and it is easy to check that I'(A,I'(B, f)) =T'(4- B, f).
ii. Set Ay = {I'(A, f) : A is a finite subset with multiplicities of G x G}.
For each h € C(G), set

w(h) = max{h(z) : z € G} — min{h(z) : z € G}.

Let C(f) be the greatest lower bound of {w(h) : h € As} and {h,} be a
minimizing sequence, namely, w(h,) — C(f) as n — oo. It is straightforward
to check that Ay is a family of equicontinuous functions, namely, to any given
d > 0, there exists a neighborhood U of the identity in G such that

(Vhe Ap)zy™' € U = |h(zx) — h(y)| < 4.

Therefore, there exists a converging subsequence of {h,} and hence one may
assume that {hy} is itself convergent to begin with.

iii. Set & = lim h,,. Then it is clear that w(h) = C(f). Finally, one proves
by contradiction that w(k) = C(f) = 0! For otherwise, one can always choose
a suitable finite subset A € G x G such that

w(L(4,F) < w(k) = C(f).
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Moreover, it is straightforward to check that I'(A, h,,) converges to I'(4, h) and
lim w(['(4, hn)) = w(T'(4,})). But all ['(4, h,) are obviously also element of
Ay, which contradicts the fact that C(f) is the greatest lower bound for all
w(h). (We refer to L. S. Pontriagin’s book Topological Groups for the details
of the above proof due to von Neumann.) J

The above continuous G x G-equivariant, linear functional I : C(G) —» R
uniquely determines a G x G-invariant measure of total measure 1 on G (called

the Haar measure) such that I(f) = [ f(g)dg for all f € C(G).
3.2. Existence of invariant inner (resp. Hermitian) product

As the first application of the averaging method, let us establish the following
basic fact which includes Theorem 1 as an easy corollary.

Theorem 4. Let V be a given real (resp. complex) linear G-space. If G
is a compact topological groups, then there exists a G-invariant inner (resp.
Hermitian) product on V, namely

(9-z,9-y)=(z,y) forallz,yecV,ge G

Proof: Let {z,y) be an arbitrary inner (resp. Hermitian) product on V.
Set

(x,y)=/c(g-m,g‘y>dg-

It is straightforward to verify that (z,y) is again an inner (resp. Hermitian)
product on V| and moreover

(a-x,a-y):/G(ga-x,ga-y)dg.

Letting ¢’ = ga, dg’ = dg, then
(a-x,a-y)=/G(g'-w,g'-y)dg'=(x,y)-

O

Definition A real (resp. complex) linear G-space with an invariant in-
ner (resp. Hermitian) product is called an orthogonal (resp. unitary) G-space,
and the corresponding representation is called an orthogonal (resp. unitary)
representation.
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In an orthogonal (resp. unitary) G-space V, the perpendicular subspace to
an invariant subspace is automatically also an invariant subspace.

Proof of Theorem 1: By Theorem 4, one may equip V with an in-
variant inner (resp. Hermitian) product. Let U by a positive dimensional
irreducible sub-G-space of V and U~ be its perpendicular subspace. Then
V = U @ U is a decomposition of V into the direct sum of sub-G-spaces,
dim UL < dim V. From here, the proof of Theorem 1 follows by a simple
induction on dim V. O

Exercises 1. Let O(n) C GL(n,R) (resp. U(n) C GL(n,C)) be the
subgroup of orthogonal (resp. unitary) matrices. Show that they are compact.

2. Let G C GL(n,R) (resp. GL(n,C)) be a compact subgroup. Show that
there exists a suitable element A in GL(n,R) (resp. GL(n, C)) such that

AGA™! C O(n) (resp. U(n)).

3. Show that O(n) (resp. U(n)) is a mazimal compact subgroup of GL(n, R)
(resp. GL(n,C)) and any two maximal compact subgroups of GL(n,R)
(resp. GL(n,C)) must be mutually conjugate.

4. Let ¢, ¢ be two complex representations of a compact group G. Then

Xo@w(9) = Xp(9) - xu(g) for all g € G. (Thanks to Theorem 4, $(g) and ¥(g)
are always diagonalizable.)

4. Frobenius-Schur Orthogonality and the
Character Theory

Now let us apply the averaging method to analyze the deep implications of the
Schur lemma.

Case 1: Let ¢ : G —» GL(V), ¥ : G —» GL(W) be two non-equivalent,
wrreducible complex representations of a compact group G. Then it follows
from the Schur lemma that

Homg (V, W) = Hom(V, W)€ = {0}.

(Recall that X denotes the fixed point set of a G-space X.) Therefore, it
follows from the averaging method that for all A € Hom(V, W)

/g-Adg=/w(g>-A-¢»(g>—1dg=o,
G G
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because fG g - Adg is the center of mass of G(A) and, of course, it is always a
fixed point!

By Theorem 4, one may equip both V' and W with invariant Hermitian
products and compute the above powerful equation in its matrix form with
respect to chosen orthonormal bases in V' and W. Let E;; be the linear map
which maps the kth base vector of V to the ith base vector of W and all the
other base vectors of V' to zero.

Since the above equation is linear with respect to the parameter A and
{Ei :1<i<dimW,1< k< dim V} already forms a basis of Hom(V, W),
one needs only to compute the special cases of A = Ej;. Set

o(9) = (ui(9)),  ¥(9) = (¥i5(9))-
(#k1(9), ¥ij(g) € C(G) are called representation functions.) One has

0= /G 9 Eapdg = /G (¥i5(9)) - Eas - ($u1(9))'dg

- / (ia(9) - Prb(9))dg .
G

Hence
/G Vial9) - Bis(9)dg = 0,

for1<i,a<dimW,1<k, b<dimV.
Case 2: The special form of the Schur lemma asserts that

Homg(V,V) = Hom(V, V)¢ = {A. T : X € C*}.
Hence, it again follows from the averaging method that
| o-Big= [ 60)-B-6(0) dg = a1,

where Ap is a yet-to-be-determined complex number solely depending on B.
Exploiting the linearity and the conjugate invariance of the trace, one has

Ap-dimV =trAg-I=tr /Gqs(g) B ¢(g)"'dg

- / tr(¢(g) B - dlg)"")dg = / tr Bdg
G G

=trB

which determines the value of Ag, namely
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1
AB = al—rn—vtI'B

From here, the same computation as that of Case 1 will yield the following set
of equations, namely

- 1
/G $i;(g) - Pri(9)dg = e V5ik5jz,

for1<i,7,k, 1 <dimV.
Summarizing the above fundamental results, we state them as the following
theorem:

Theorem 5. Let ¢(g9) = (¢xi1(9)), ¥(9) = (¥i;(g)) be two nonequivalent
irreducible unitary representations of a compact group G. Then

[ vi0)- Buta)da =0,
- 1
/G $i;(9) - dri(g)dg = m&'k%‘z-

Corollary 1.

/ x$(9) - Xo(9)dg =1,
G

/ xv(9) - Xp(9)dg = 0.
G

Proof: By Definition,

dim ¢ dim ¢

xe(9) = D k(). xu(9) = D vil9)-
k=1 i=1

Hence, the above statements follow from a direct application of Theo-
rem 5. O

Let G be the set of equivalence classes of complex irreducible representations
of a given compact group G. It follows from Theorem 1 that every complex
representation p of G can be expressed as the direct sum of irreducible ones,
namely

p=>_ om(p;¢)- ¢,
¢€G
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where m(p; ¢) is the multiplicity of irreducible representations of the equiva-
lence class ¢ in the decomposition of p.

Corollary 2.
m(p; ¢) = /G Xp(9) - X¢(9)dg ,

/G Xor (8) - Xpa(9)dg = 3 (13 8) - mipa; 6) .

o€CG
Proof:
Xo(9) = ) _ m(p; $)xs(9) -
F1de]
Hence, the above two equations follow immediately from Corollary 1. 0

Theorem 2 follows easily from Corollary 2; we restate it in the following
slightly more precise from.

Theorem 2. Two complex representations p, ¥ of a compact group G
are equivalent if and only if x, = xy (as functions). A complex representation
p 18 irreducible if and only if

/ Xo(9) - Xp(g)dg = 1.
G

Proof: It is obvious that p ~ ¥ = x,(9) = xy(g), namely
Xp(9) = trp(g) = tr(Ap(9)A™") = trip(9) = xu(9) -
Conversely, x, = X (as functions) implies that
m(p; ¢) = /G Xo(9) - Xp(9)dg = /G Xy (9) - Xe(9)dg = m(¢; ¢),
for all ¢ € G. Hence p ~ ¢. Finally,

[ xl0) %) = 3 mloi o7 =1

FYde]
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simply means that there is exactly one m(p; ¢) = 1 and the rest of them are
all zero! Hence p is itself irreducible. O

A classical example G = S! = {€?;0 < 6 < 27}. To each integer
n € Z, there is a one-dimensional complex representation

¢:S!xC! 5 Cl:e?. 2 =emy,

or equivalently,
ST RU)=5", e einf,

In this special case, the above results specialize into the well-known facts in
the Fourier series, namely that {e'"® : n € Z} forms an orthonormal basis of

Lo(SY).

Exercises 1. Use the completeness of {€™ : n € Z} in Ly(S!) to show
that the above collection of representations of S! already forms a complete set
of representatives of S,

2. Generalize the above result of S! to products of several copies of S1,
namely, the torus group of rank k:

Tk=8'%x 81 x...x 8" (k copies).

Hint: Exhibit a collection of explicit irreducible complex representations of
T* (notice that they must all be one-dimensional!) and then apply the above
theory on representation functions to check whether you have already obtained
a complete collection of representatives of T*,

5. Classification of Irreducible Complex
Representations of §3

Among all compact connected non-Abelian topological groups, the multiplica-
tive group of unit quaternions, S2, is certainly the simplest one and is also
one of the most basic ones. As a preliminary application of the character the-
ory of Sec. 4, let us work out the classification problem of irreducible complex
representations of S as follows.

Let H = {a + jb : a,b € C} be the skew field of quaternions and S® =
{a+jb: aa+bb = 1} be the multiplicative group of unit quaternions. We shall
consider H as a right C-module and let S® acts on H via left multiplications.
(In this setting, the associative law of H shows that the S3-action on H is
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indeed C-linear.) Choose {1, j} as the C-basis of H. Then the above S3-action
gives a two-dimensional representation:

a —b
¢1:S3——->U(2):¢»(a+jb)=(b d)'
(Note (a+3b)-j = aj+jbj = —b+ja.) In fact, the above map is an isomorphism
of S* onto SU(2), the subgroup of U(2) with determinant 1.
We can interpret the above matrix as the following linear substitution:

21 a b 2 )
—> )
29 b a 22
and hence it induces a linear transformation on the space of polynomials
(o o)
Clzr, 2] = Y ®Vk,
k=0

where Vj is the subspace of homogeneous polynomials of degree k. Each V}, is
clearly an invariant subspace of the above SU(2)-action and it is of dimension
k + 1. Thus, the restricted SU(2)-action on Vi produces a complex represen-
tation of dimension k + 1 for each k =0,1,2,....

Theorem 6. Let ¢y be the above complez representation of S* on Vj.
Then each ¢y, is irreducible and they form a complete set of representatives of
G for G = S3.

Proof: i. Since all character functions are automatically constant along
each conjugacy class of G, a good understanding of the orbital geometry of the
adjoint transformation, namely

Ad :GxG —G:(g,z) — gxg™!

will be very helpful in the actual computation of integration of such functions
over G.

Consider H as a four-dimensional real vector space with inner product and
let S3 act on it as follows:

1

SBxH-H:(g,2)—>g-x-g (quaternion multiplication) .

It leaves the line of real numbers pointwise fixed and it preserves the norm.
Hence it is an orthogonal representation of the form 1 @ ¢ where 1 denotes
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Ai

1) cH=R*
Fig. 1.

the trivial representation acting on the real line and v is the restriction of the
above S3-action on the R?® of pure quaternions. Therefore

¥ : S® - S0(3),

and it is easy to see ker¢p = {£1}. Since dimSO(3) = 3 = dim S3/{£1}, it is
clear that i is an epimorphism.

The adjoint transformation of S is exactly the restriction of the above
S3-action of H to the unit sphere S3(1). Hence, every conjugacy class of
S3 intersects the subgroup S! of unit complexes perpendicularly at conjugate
points and the conjugacy class of et is the “latitude” two-sphere passing
through e*%, which is intrinsically a two-sphere of radius sin §. (See Fig. 1.)

ii. Since

¢1(e"‘9)-z1 zew_zl’ ¢1(ei0)_z2=e—-i0.22’
it is easy to see that

k k-1 k—3 _j k
Zl,z 22,...,21 22,...,Z2
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are eigenvectors of ¢g(e*) with

ek oik=200 (i(k~2))0 —ike

ey
as their respective eigenvalues. Hence
k18 _ o—i(k+1)8

0 i0
) = xgu (€)= e _ g—i0

X, (e

iii. The total volume of §3(1) is 272. Let do be the volume element of the
Riemannian manifold S3(1) and dg be the normalized Haar measure. Then
dg = -2—71;7d0.

iv. The nice orbit geometry of (i) enables us to exploit the orbital constancy
property of the character functions to simplify the integrations over $3, namely

/ Xi(9) - X (9)dg
G

1
= — Y da_
272 Jgsy X (9) - X, (9)
—1 " i6 o i0 .2
) o X (€7) - X, (€) - 47 sin® 6d6
1 2w 0 0 . .
= 47/0 X, (€) - %, (") - |e*® — e7¥|2dg

1 21T . .
— 4_7r ]e‘l(k'i"l)e _ e-—l(k+l)0|2d0
0

=1.
Hence, by Theorem 2, ¢y is irreducible!
v. Finally, we shall prove the completeness of {¢} by contradiction. Sup-

pose ¢ is an irreducible complex representation of dimension k + 1 but it is
non-equivalent to ¢x. Then

0=/0X¢(9)'>2,(9)dg

— 4_7r A Xd)(ew) . Xl(ew) A IeiB _ e—i0|2d9

1 2

Xy (€?) - (e — e~10) . (el+ D)8 _ e—i+D)dg
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for all non-negative integers [ because 1 is not equivalent to any ¢;. (Note
that dim ¢; # dim ¢ if [ # k.)

Observe that x(e¥) = xy(e and hence it is an even function of 6.
Therefore xy () - (¥ — e~) is a nonzero odd function of @ which, by the
above equation, is orthogonal to all {(e®(+1)¢ _e—i+1)0) ;. [ = 0,1,2,...}. This
is a contradiction to the well-known fact that they already form a basis of the
subspace of odd Lo-functions of S*. Hence, such an irreducible representation
1 can not possibly exist. This proves that the family {¢x} already constitutes
a complete representatives of G for G = §3 = SU(2). O

—i0)

Exercise Using the fact SO(3) = S$3/{+1}, every irreducible represen-
tation ¢ : SO(3) — GL(V) can always be “pulled back” to an irreducible
representation with ker ¢ D {+1}, namely

$:5°5803) B GL(V), $=¢om,

Conversely, every irreducible representation of S® whose ker contains {41} can
be considered as such a pull-back. Use the above relation to classify complex
irreducible representations of SO(3).

6. L,(G) and Concluding Remarks

The results of Frobenius-Schur theory clearly indicate that Ly(G) should be
a proper setting for further development of representation theory of compact
groups. Therefore, we shall conclude our rather brief discussion on represen-
tation theory by mentioning some pertinent results along this line.

1. Theorem 5 proves that

{,/dim ¢ i d€G,1<14,j<dim ¢}
is a natural collection of orthonormal vectors in Lo(G) and
{xs: b€ G}

is a natural collection of orthonormal vectors in La(G)A4 = Ly(G/Ad). Of
course, it would be nice if they actually formed orthonormal bases of Ly(G)
and L2(G/Ad) respectively. Indeed, this is exactly the assertion of the Peter—
Weyl theorem. We refer to Pontriagin’s book Topological Groups for a proof
of this basic theorem.
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2. Let G = G; X G3 and ¢;, ¢2 be complex irreducible representations of
G, G on Vi, V; respectively. Then G has a natural induced action on V1 ® V5,
namely

(91,92) - (z1 ® x2) = d1(g1)71 ® P2(g2)z2 .

We shall call it the outer tensor product of ¢; and ¢2 and will be denoted by
$1®¢2. It is easy to check that

X¢1®¢2(g11g2) = X$.(91) - X¢2(92) -

Hence

/ 1X .00, (91, 92)1?dg = / X1 (91)17 - X9, (92)|?dg1 - dg2
G1xG2 G1xG2

- / 1o (92)Pdlgs - / Xpa (92) g5
Gl GZ
=1-1=1.

This proves that the outer tensor product of two complex irreducible represen-
tations of Gy, G is always an irreducible complex representation of G; x Gs.

Caution: Notice the difference between the outer tensor product and the
previous tensor product defined for two representations of the same group. In
fact, if ¢ and i are two representations of the same group G, then one has the
following commutative diagram of homomorphisms:

G WA

d GL(V® W)

/ d(g) = (8. 8)
oSOy

3. We just showed that

GxG

peGy,peCGy= d&p e GXG,y.

In fact, sz = {¢®y : ¢ € Gi,v € G2}. The proof of this fact is as
follows:



Linear Groups and Linear Representations 19

{x4(g1) : ¢ € G;} forms an orthonormal basis of Ly(G1/Ad),

{x4(g2) : ¥ € G2} forms an orthonormal basis of Ly(Ga/Ad),

G1XG2

Ad > (G1/Ad) x (G2/Ad) with product measure.

Hence, it follows from the well-known general fact that

{xe(g1) - xu(g2) : 6 € G1,9 € G2}

also forms an orthonormal basis of Lo(G1/AD x Gy/Ad) = Ly(€1XC2 A’:jc ). This
proves that o
{¢®¢2¢€G1y¢602}201 XGQ.

4. The G x G-action of G given by (g1, g2) - = = g1xg; ' induces a G x G-
action on Lo(G). It is not difficult to see that Lo(G) decomposes into the direct
sum of the following irreducible G' x G-subspaces, namely, for each ¢ € G, one
has the subspace spanned by {¢;; : 1 <i,j < dim ¢}.

5. In the special case that G is a finite group, one has

(i) dim L2(G) = |G| (the order of G),
(ii) |G| = dim Ly(G/Ad) = |G/Ad]|, i.e. the number of distinct complex
irreducible representations is equal to the number of conjugacy classes.
(i) The decomposition of Ly(G) yields the following interesting equation:

G| = ) (dim ¢).

FYe]

Exercises 1. Find the relationship between the irreducible representation
¢ of G and the above irreducible representation of G x G on the subspace in
Ly(G) spanned by {¢i;(g) : 1 <14,j < dim ¢}.

2. Apply the character theory to classify complex irreducible representa-
tions of the polyhedral groups, i.e., the symmetry groups of regular solids.



Lecture 2

Lie Groups and Lie Algebras

A Lie group G is, by definition, a differentiable group; it consists of a group
structure and a manifold structure such that the multiplication map and the
inversion map are differentiable. One might say that the vector space structure
is a natural focal point of various branches of mathematics at its elementary
level. The Lie group structure is another natural focal point at its higher
ground. Intuitively speaking, the differentiability of the group structure should
provide a way to “linearize” the group structure at the “infinitesimal level” and
the “linear object” so obtained should be a useful invariant in analyzing the
original Lie group structure. This decisive step was accomplished by S. Lie in
the late nineteenth century. The linear object he obtained was originally called
the “infinitesimal group” by himself and was later renamed to “Lie algebra”
by H. Weyl.

Methodologically, it is rather interesting to note that the scheme that we
are going to use is exactly the dual of the scheme that one uses in representa-
tion theory, namely, instead of taking “reconnaissance pictures” for analyzing
a given structure, one sends “spies” into the structure to probe it directly! In
fact, even the analytical tools that one uses in the above two approaches are
also dual to each other, namely integration and averaging for the former, dif-

20
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ferentiation and existence and uniqueness of solutions of ordinary differential
equations for the latter.

1. One-parameter Subgroups and Lie Algebras

Suppose one is planning to send a probing agent to study the structure of a
given Lie group G. Of course, the success of the whole program depends on
the selection of an effective agent. It is a mere common sense that such an
agent should be both simple and flexible so that is can easily submerge itself
into almost everywhere in G without disturbing the structure of G. A moment
of reflection along this line will lead us to call for the help of our wonderful old
friend the additive group of real numbers, which is the simplest Lie group.

Definition A differentiable homomorphism of (R,+) into a given Lie
group G, ¢ : R — G, is called a one-parameter subgroup of G.

The initial velocity of ¢, %flt:o, is an element in the tangent space of G at
the identity e, T.G. One of the first natural basic questions is, of course, the
following existence and uniqueness problem.

Uniqueness Is a one-parameter subgroup ¢ : R — G uniquely deter-
mined by its initial velocity vector?

Existence Can every element of T.G be realized as the initial velocity
vector of a one-parameter subgroup of G?

The following analysis will naturally lead to an affirmative answer of the
above problems in both the uniqueness and the existence.

Let ¢ : R —» G be a given one-parameter subgroup. Then one may combine
it with the right (resp. left) translation to obtain a left- (resp. right-) invariant
R-action on G, namely

P:RxG - G:8(t,z)=x-¢(t) (resp. ¢(t) - ).
The left- (resp. right-) invariance means that
b(t,a-z)=a- O(t,z) (resp. ®(t,z - a) = &(t,x) - a),
which, of course, follows from the associativity. Following the usual convention,

we shall always use the right translation so that the corresponding R-action is
left-invariant.
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The velocity vectors of the above R-action constitute a left-invariant vector
field X on G, i.e. for every left translation [, : G — G : lo(z) = a-z, dl,(X;) =
Xz Moreover, it is quite obvious that a left-invariant vector field X on G is
uniquely determined by its value at the identity, namely, the map

{left invariant vector fields X} — {X = X, € T.G}

is a bijection. For all z € G, X, =dl, (Xe)

Let X be a given left-invariant vector field on G. Then applying the
usual existence and uniqueness theorem on systems of first order ODE, pass-
ing through every point x € G there exists a unique integral curve whose
velocity vectors all belong to X. Let ¢ : R — G be the unique integral
curve of X with ¢(0) = e. It follows from the left-invariance of X that
loop:R - G :t— a-¢(t) is the unique integral curve of X with a as
its initial point. Hence in particular

¢(s) - $(t) = #(s +1),

namely, ¢ : R — G is, in fact, a one-parameter subgroup of G.
Summarizing the above discussions, one has the following natural bijections
between the following four types of related objects:

one-parameter subgroups <
{ p¢.R_+Gg p}‘ > {Xe TG}
: initial velocity
D@, x)=x-¢() evaluation transplantation

left-invariant R-actions
. RXG—G

} differentiation

A

» left-invariant
vector fields X

integration

The only unmarked arrow “«” is the composition of transplantation, integra-
tion and restriction to the integral curve with e as its initial point.

As one might notice, our old friend R skillfully uses four different “pass-
ports” in carrying out his mission successfully. Furthermore, in analyzing
the above beautiful final report of his mission, one finds that it inherits a
vector space structure from 7.G and a bracket operation from that of left in-
variant vector fields, because the bracket [X,Y] of two left-invariant vector
fields is clearly also left-invariant. Therefore the final result one obtains is a



Lie Groups and Lie Algebras 23

vector space T,G with an additional bilinear anticommutative bracket opera-
tion satisfying the usual Jacobi identity:

(1X,Y], 2]+ Y, 2], X] + (|2, X),Y] = 0.

This is exactly the linearized object of a given Lie group structure which S. Lie
called it the infinitesimal group of G, but nowadays, we call it the Lie algebra
of G, denoted by &.

As it turns out, the above type of “Lie algebra” structure is not only im-
portant for the study of Lie groups, but it is also a powerful tool in many
other branches of mathematics. Therefore it certainly deserves an indepen-
dent standing and an independent theory for its own sake. Actually, this was
exactly the reason why H. Weyl proposed to change the name “infinitesimal
group” to the more independent-looking name “Lie algebra”.

Definition A Lie algebra over a field F' is a vector space, which may be
infinite dimensional, together with a bilinear, anticommutative binary opera-
tion satisfying the Jacobi identity.

In fact, it is possible to organize the totality of all one-parameter subgroups
of a given Lie group G into a single map of & into G.

Definition For each X € &, set Exp X = ¢,(1), where ¢ is the unique
one-parameter subgroup of G with X as its initial velocity vector. The map
so defined

Exp: 8- G: X — ¢,(1)
is called the exponential map of G.

Observe that p. : R — R : p.(t) = ¢t is obviously a Lie homomorphism.
Hence, ¢ o . is again a one-parameter subgroup of G and it follows from the
chain rule of differentiation that ¢, o u. = ¢_,. Therefore for all ¢t € R,

ExptX = ¢,,(1) = ¢, (t).

To put the above organization into perspective, one has the following commu-
tative diagram. For each X € &, one has

R —% » &

Exp
P
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where Ix is the unique linear map R — & with ix(1) = X and ¢, is the
unique one-parameter subgroup with X as initial velocity. Thus Exp: & — G
is actually the “universal map” for all one-parameter subgroups of G.

Let f be an arbitrarily given smooth function on G. Then fX(t) =
f(a-ExptX) € C*(R) is the pull-back of f, namely

®
RXG —% G —L »p

U O(t,g)=g-ExptX
fX
Rx{a}=R
and moreover, DfX(t) = X f(a - ExptX). Therefore, the usual Taylor’s for-
mula with remainder, applied to fX(t), can be translated as follows:

f(a-ExptoX) = fX(to)

1
= f©) + Df(0)to + 5 D*FXO)E + -+
1 ok eX o,k 1 k+1 ¢ X\ sk+1
+ k'D fa, (O)tO + (k + 1)'D fa, (o)to
tht!
(k+1)!

1
= f(a) + Xf(a)to + -+ + X f(a)t + X**'f(a-Exp6X),
where 8 is a suitable number between 0 and ¢;.
Based upon the above Taylor’s formula for smooth functions on G, it is
straightforward to show that

ExpsX - ExptY = Exp(sX +tY) (mod second order terms)
Exp sX - ExptY - Exp(—sX) Exp(—tY) = Exp st[X,Y]

(mod third order terms).

(="

To be more precise, the above means the coordinates of both sides are
equal modulo second (resp. third) order infinitesimals. Hence, the vector space
structure of & approximates the group operation of G up to the first order of
infinitesimal, and the bracket operation of & records the leading term of the
non-commutativity of G which is a second-order infinitesimal.
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Summarizing the above discussions, we state the results obtained so far as
the following theorem.

Theorem 1. (i) To each tangent vector X € T, G at the identity e, there
ezists a unique one-parameter subgroup ¢, : R — G with X as its initial
velocity.

(i) There ezist canonical bijections between the following four sets of objects
associated with a given Lie group G : T.G = {tangent vectors at e}, {one-
parameter subgroups}, {left-invariant R-actions}, {left-invariant vector fields}.

(iti) The vector space ® = T.G has an additional bracket operation (obtained
from its canonical bijection with the space of left-invariant vector fields of G)
which is bilinear, anti-commutative and satisfying the Jacobi identity. It is
called the Lie algebra of G.

(iv) The totality of all one-parameter subgroups of G can be organized into
an ezponential map Exp : & — G, such that ¢, (t) = ExptX.

(v) For each f € C™(G), a € G, to € R, one has the following Taylor
expansion with remainder:

(1
f(a-ExptoX) = f(a)+toX f(a)+-- -+ Oka( )+(7€‘;‘1‘)“Xk+1f(a -Exp 6X).

(vi) To each Lie homomorphism h : G1 — Gy, its differential at e, dh,
B, — B2 is a Lie algebra homomorphism.

Examples 1. In the case of GL(n,R) (resp. GL(n,C)), the following
exponential power series of matrices

Epr=I+A+%A2+---+%A’°+

defines a map Exp : My, n(R) — GL(n,R) (resp. My, »(C) = GL(n,C)). It is
well-known that ¢4(f) = ExptA is a one-parameter subgroup with
4 (ExptA)|t=o = A. Hence My, .(R) (resp. Mn(C)) is exactly the Lie
algebra of GL(n,R) (resp. GL(n,C)) and the above map, explicitly defined
in terms of converging power series, is its exponential map. (This is the origin
of the name “exponential map”.) It is then not difficult to verify that

[A,B] = AB — BA,

for A, B € M, n(R) (resp. M, »(C)).
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2. Suppose A € My »(R) (resp. M, »(C)) and ExptA € O(n) (resp. U(n))
for all t € R, that is (ExptA -z, ExptA-y) = (z,y) for all t € R. Then

% (ExptA-z,ExptA-y)=(A-z,y)+ (z,A-y) =0.
t=0

Hence, A is skew symmetric (resp. hermitian). Actually ExptA C O(n)
(resp. U(n)) is equivalent to A being skew symmetric (resp. hermitian). There-
fore the Lie subalgebra corresponding to the Lie subgroup O(n) C GL(n,R)
(resp. U(n) € GL(n,C)) is the Lie subalgebra of skew symmetric (resp. her-
mitian) matrices.

2. Lie Subgroups and the Fundamental Theorem of Lie

The study of one-parameter subgroups of a Lie group G enables us to obtain a
linear object, namely its Lie algebra &. It is undoubtedly a structure of much
simpler type than that of the Lie group structure. However, the true value of
such an “invariant” shall depend more on how powerful it is rather than how
elementary its structure is. Therefore, our next topic of discussion is to apply
this “newly gained” invariant to some basic problems of Lie groups in order
to test its powerfulness. Our experiences both in abstract group theory and
in Galois theory clearly indicate the importance of studying the subgroups of
a given group. Therefore, it is natural to test its power on the problem of Lie
subgroups.

Definition (H,:) is called a Lie subgroup of a Lie group G if H is a Lie
group and ¢ : H — G is an injective differentiable homomorphism.

Caution! The image set ((H) C G may not be closed. For example (R, ¢)
with ¢(t) = (¢,v/2t)mod Z? is a Lie subgroup in T? = R2/Z2?. But (R) is a
dense subset in T2.

Formulation of a basic testing problemn Suppose:: H — G isa given
Lie subgroup. Then the left cosets of H in G form a left-invariant foliation of
G whose tangent subspace at x € G is exactly dl;(du($)). Locally, one may
choose a suitable coordinate neighborhood U of e such that the restriction of
the above foliation to U is simply the foliation of “coordinate slices”, namely,
its leaves are given by

z* = const. dimH <i<dimG.
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From here, it is easy to verify that dic(f)) C & is a Lie subalgebra, i.e. a subspace
of & closed under bracket operation. Therefore, the following problem on the
uniqueness and the existence of connected Lie subgroups with a given Lie
subalgebra as its Lie algebra is naturally a fundamental testing problem.

Problem Let & be the Lie algebra of G and §) be a Lie subalgebra of &.
Does there always exist a connected Lie subgroup H with $ as its Lie algebra?
Is such a connected Lie subgroup necessarily unique?

The following fundamental theorem of Lie provides the affirmative answer
to the above problem and thus convincingly demonstrates the power of Lie
algebras as an invariant for studying Lie groups.

Theorem 2. Let ® be the Lie algebra of a Lie group G and let $ be a
Lie subalgebra of . Then there exists a unique connected Lie subgroup (H, 1)
which makes the following diagram commutative:

b — = > ®
lExp lExp
H__' » G

As expected, the proof of the above fundamental theorem of Lie relies heav-
ily on the higher dimensional generalization of the existence and uniqueness
theorems of ODE, namely, the Frobenius theorem on the complete integra-
bility of involutive distributions. Therefore we shall first give a proof of the
Frobenius Theorem and then deduce Theorem 2 from it. Let us first begin
with a few needed definitions.

Definition Let X3,..., X be k smooth vector fields defined on an open
neighborhood U such that {X,(z), ..., Xx(z)} is linearly independent for every
z € U. Set A; equal to the span of {X;(z),...,Xk(z)} C T, M. Then the k-
plane field A on U which assigns the k-dimensional subspace A, to each z € U,
is called a smooth k-dimensional distribution spanned by {X1(z),..., Xk(z)}.

Definition A k-dimensional distribution A on M assigns a k-dimensional
subspace A of T, M to each x € M, namely, it is simply a k-plane field defined
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on M. It is called smooth if it can always be locally spanned be k smooth vector
fields.

Definition A k-dimensional smooth distribution A on M is called invo-
lutive if every set of local generating vector fields { Xy, ..., Xi} always satisfies
the following condition:

[Xi, X,/(z) €eAe VYzelU 1<ij<k,

or equivalently,
k
[Xi, X;] = Zfilel’ filj ec>().
1=1

It is easy to check that the above involutivity does not depend on the choice
of generating vector fields, and hence it is a property of the distribution A.

Definition A k-dimensional distribution A on M is called completely
integrable if, to every point o € M, there always exists a suitable local coor-

dinate neighborhood U such that A|U is spanned by %, ceey 5‘%,;.

Frobenius Theorem A k-dimensional distribution A on M is com-
pletely integrable if and only if it is involutive.

Proof: The “only if” part is obvious. We shall only prove the “if” part
by induction on the dimension k of the distribution. Notice that the starting
point of k = 1 is essentially the usual existence-uniqueness theorem of ODE,
namely, an everywhere non-vanishing smooth vector field X can always be
locally expressed as X = 3—% with respect to a suitably chosen local coordinate
system. Therefore we begin our inductive proof by assuming that k& > 1,
X; = 3—‘2—r and the above theorem already holds for smooth distribution of
dimension < k — 1.

Let {3—‘?—:1-, X, ..., X} be a given set of local generating vector fields of an
involutive distribution A|U, and z!,...,z" are the local coordinate functions
defined on U. Set

- )
1 ,
X,-:Xi—(Xi-x)~%, 2S2Sk

Then { 3—‘3—:1—,)22,...,)2,6} is also a set of generating vector fields of A|U and

Xz =0, 2 <i < k. Let Uy be the (n — 1)-dimensional submanifold of
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U defined by z! = 0. Then the restrictions of {X2,...,Xx} onto Uy span
an involutive distribution of dimension k — 1. Therefore, by the induction
assumption, there exists a local coordinate system, say (y2,...,y"), such that
for all y € Uy,

Falwro el = (g )

To each point p € U, let ¢ be the unique point of intersection of Uy with
the z!-curve passing through p, and (y2,...,y™) be the coordinates of q in Up.
Then (z',4?,...,9™) & p constitutes a new local coordinate system of U and
we shall show that for x € U

g 0 3]
Am_<ﬁ’5y_2-"”’a_yk>'

Or equivalently, what we need to show is that
Xt =o0, 2<i<k, k+1<i<n.

Of course, one needs only to show that the restrictions of the above functions to
every z!-curve are all identically zero. Let I be an arbitrary z!-curve and set

fiat) = Xl

Then it follows from the involutivity of A that there exist smooth functions
{hij : 2 <i,j < k} such that

8 g ,
[Q,Xi]=2;h,-jxj, 2<i<k.
Jj=

It is crucial to note that [% X, izt = X ' — X;1=0—-0=0. Applying
the above equations to y* and then restrlctmg to the z!-curve I, one gets
d

0
ifiE) = [61, ] thr fi(=

For fixed !, the above equations constitute a system of homogeneous first or-
der ODE and {f/(z') : 2 < i < k} is its unique set of solutions with zero
initial values, i.e. f/(0) = 0. It follows easily from the homogeneity that this
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unique set of solutions must be {f!(z!) = 0}! This completes the proof of the
1
Frobenius Theorem be induction. O

Definition A k-dimensional submanifold ¥ C M is said to be an integral
submanifold of a k-dimensional smooth distribution A on M if T,Y = A, for
allyeY.

Definition A connected integral submanifold Y is said to be a maxi-
mal integral submanifold of A if it cannot be properly contained in another
connected integral submanifold of A.

Corollary If A is an involutive distribution on M, then to each given
point x € M, there ezxists a unique mazimal integral submanifold of A passing
through x.

Proof: Locally, the above theorem proves that integral submanifolds
of an involutive A are simply the coordinate slices. Therefore one has the
strongest possible local existence-uniqueness that two connected integral sub-
manifolds with a single point in common can be pieced together to become
a bigger one. Hence the unique maximal integral submanifold of A passing
through a given point x € M is exactly the one obtained by pushing the above
piecing together analytic continuation of the local coordinate slice of z to its
utmost limit. a

Proof of Theorem 2: Let $§ C & be a given Lie subalgebra and
{X1,...,Xi} be an arbitrary basis of §3. Interpret them as left-invariant vec-
tor fields. Then they, in fact, globally generate a left-invariant distribution
A($) of dimension k on G. Since §) is assumed to be closed under bracket
operation, A($}) is involutive. Hence, it is completely integrable. Let H be the
unique maximal integral submanifold of A($)) passing through the identity.
It follows from the left-invariance of A($)) that l,(H) = a - H is exactly the
unique maximal integral submanifold of A($)) passing through a. Let h € H
be an arbitrary element of H. Then

ecHNh ' H=>H=h''H= H= U h~'H=H'H.
heH

Hence H is a connected Lie subgroup of G whose tangent space at e is ex-
actly $. This proves the unique existences of a connected Lie subgroup of G
corresponding to the given Lie subalgebra 3 of &. O
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Exercises 1. Show that a connected topological group G can always be
generated be an arbitrary neighborhood of the identity. (To a given neighbor-
hood U of e, choose another smaller one V with V = V=1, Then |JI2, V" is
an open subgroup of G.)

2. Show that there exists a sufficiently small neighborhood W of the origin
in & such that Exp W is a neighborhood of the identity in G, and moreover,
the only subgroups of G contained in Exp W is the trivial one, H = {e}.

3. Lie Homomorphisms and Simply Connected Lie Groups

Next let us extend our general investigation of the relationship between Lie
algebras and Lie groups to the case of Lie homomorphisms. Let G;, G5 be two
connected Lie groups with &,, &, as their Lie algebras. Suppose ¢ : ; — &,
is a given Lie algebra homomorphism. Does there always exist a Lie group
homomorphism ®, such that ¢ = d®|., namely

—> &

) 0
lExp
G 3@

2
Exp
’» G

1 —» Y
Does there exist ® which makes the above diagram commutative?

As it turns out, the answer for the above problem is not universally affir-
mative. For example, if we take the simple case of G; = S! and G5 = R, both
of their Lie algebras are R and

e :R—>R:trct, ceR

are all the Lie algebra homomorphisms. However, the only Lie group homo-
morphism @ : ! — R is the trivial one. (R contains no compact subgroups
except the trivial one.) But if we interchange the positions, namely, G; = R,
Go = S!, then it is not difficult to see that corresponding to each . there is

&, :Ro St et

with d®.|. = p..
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What is the crucial point that makes the difference? Let us make use of
Theorem 2 to help us to analyze the situation. Observe that the Lie algebra
of G, x Gq is just B; ® &2, and moreover, corresponding to each given Lie
algebra homomorphism ¢ : &; — &, its graph

[(¢) = {(X, (X)) : X € &1}

is a Lie subalgebra of &; © 2. Hence, by Theorem 2, there exists a unique
connected Lie subgroup H C G; x G with I'(¢) as its Li algebra. We need
the following commutative diagram to put the whole situation in clear view.

6 - p, 6 D8,

| -

\V‘z
¢ >

g < il Gl‘§< G,
1 \ P
D, \/ " ¢
H ) G,

where the four vertical maps are Exp and
¢1:T(¢) S 8108, B &,

is, by definition, invertible and ¢ = ¢2 0 ¢1“1. Now here is the crucial point.
Suppose that ®; also happens to be invertible. Then & = ®50 o7 will clearly
be the desired Lie group homomorphism. The fact that ¢, is an isomorphism,
however, only implies that ®; is a covering homomorphism. One needs the
topological condition that G; is simply connected, i.e. m(G;) = 0, to ensure
that ®, is also an isomorphism. Therefore one has the general existence of
the corresponding Lie homomorphism for the special case that G is a simply
connected Lie group.
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Theorem 3. If G; is a simply connected Lie group, then to any given
Lie algebra homomorphism ¢ : ) — ®,, there exists a unique Lie group
homomorphism ® : G1 — G2 such that d®, = ¢, namely

®,
lExp
G,

A theorem of Ado asserts that any finite dimensional (abstract) Lie algebra
over R can be realized as (or rather, is isomorphic to) a Lie subalgebra of
the Lie algebra of GL{n,R) for sufficiently large n. Therefore it follows from
Theorem 2 that any finite dimensional (abstract) Lie algebra over R can be
realized as the Lie algebra of a Lie group.

It is a well-known fact that every connected smooth manifold M has a
unique universal covering manifold M, f: M5 Misa covering map and
7r1(]\7.f ) = 0. A generic way of constructing M directly from M is as follows:

Choose a fixed base point x¢ € M. Let P(M,xo) be the set of all paths
in M with zo as their initial point. Introduce the equivalence relation that
~1 ~ 72 if they also have the same terminating point and they are homotopic
with the end points stationary. Then M is naturally bijective to P(M, zq)/ ~.

In view of Theorem 3, it is quite natural to ask whether every finite di-
mensional Lie algebra over R can be realized as the Lie algebra of a simply

connected Lie group? The following lemma provides the missing link for a
proof of the affirmative answer to the above question.

—

)
lExp
G

—2 5

Lemma Let G be a given connected Lie group and h : G — G is the
universal covering manifold of G. Then there is a unique group structure on
G which makes G into a Lie group and h into a Lie homomorphism.

Proof: Consider G as the space of equivalence classes of P(G,e). One
may define a natural, induced multiplication among elements of P(G,e),
namely, for the two paths

vi:[0,1] > G, i=1,2,

one defines the product «; - y2 by the following formula:



34 Lectures on Lie Groups

(1 - 12) (&) = m(t) - r2(t) -
It is easy to check that v, ~ 4} and vz ~ +4 implies 1 -y2 ~ ] - v5. Hence, the
above multiplication induces a multiplication on G. From here, it is straight-
forward to check that the above multiplication makes & into a Lie group and
k into a Lie homomorphism, namely, it makes h : G - G into a covering Lie
group. O

Summarizing the discussion of this section, one may restate the results in
terms of categorical language as follows. Let

1. LG be the category of Lie groups and Lie homomorphism,

2. LGy be the category of simply connected Lie groups and Lie homomor-
phisms,

3. LA be the category of Lie algebras and Lie algebra homomorphisms.

Then, the above results show that the linearization functor
L:LG— LA

becomes an isomorphism if restricted to the subcategory of LGy, namely

16 —L > 14

U

in

LG

o]

Exercises 1. Show that 7;(G), G a Lie group, is necessarily commuta-
tive.

2. Show that a discrete normal subgroup of a connected Lie group G must
be contained in the center of G.

3. Classify all connected Lie groups whose Lie algebras have trivial bracket
operations, i.e. [X,Y]=0forall X,Y € &.

4. Adjoint Actions and Adjoint Representations

In the study of the structure of a given Lie group G, the major task lies in
analyzing its “non-commutativity”. It is intuitively advantageous to organize
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the non-commutativity of a Lie group G into the geometric object of its adjoint
action, namely
Ad :GxG -G, (g,z) — gzg~'.

As one shall see in later discussions, the study of the orbit structure of the
adjoint transformation of G on itself is exactly the focal point of the whole
structure theory of Lie groups.

Formally, the above action map Ad(g,z) = gxg™" is a map of two “vari-
ables”, namely g and z. Therefore, in the spirit of Lie algebra, one should look
into its two stages of linearization as follows.

1

The first stage Foreachg € G, Ad(g,-) : G — G is a Lie automorphism.
Hence, there corresponds a Lie algebra automorphism, Ady : & — & which
makes the following diagram commutative

Ad,
& —» &8
lExp lExp
Ad(g, -
¢ 2de ) -

namely, Expt Ad,(X) = g(ExptX)g~!. Therefore, one has a linear transfor-
mation group, Ad: G x & — &, which maps G into the automorphism group
of &, i.e.

Ad : G — Aut(6) C GL(8).

The second stage Let &L£(®) be the Lie algebra of GL(&). Then the
above Lie homomorphism, again, induces a Lie algebra homomorphism ad:
® — BL(6), which makes the following diagram commutative;

d
& —> 6L(6)
Exp Exp
Ad

G —» GL(®)
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Theorem 4. ad(X) Y = [X,Y], forall X, Y € &.
Proof: By the above definitions, one has
ExpsX - ExptY - Exp(—sX) = Expt[Ad(ExpsX) - Y]
= Expt/[Exps-ad(X) - Y]
= Expt[Y +s-ad(X) Y] (mod terms of order > 3)
=ExptY -Expst-ad(X) -V (mod terms of order > 3).
Hence
Expst- [X,Y] = ExpsX - ExptY - Exp(—sX) - Exp(—tY)
= Expst-ad(X)-Y. (mod terms of order > 3)

Therefore,

ad(X) Y = [X,Y].

Examples 1. G =GL(n,R), & = M, ,(R).
In the special case, for each g € G and X € &, one has

Expt Ad(g)X = gExptXg™?

=g{I+t§X+%(tX)2+---+-%tX’H--u}g‘1

t2 Tk
=T +tgXg™ + S (9Xg™") + o+ T (0Xg™)r + -
= Expt(9Xg™').

Therefore Ad(g)-X = gXg~!. If we denote the birth certificate representation
of GL(n,R) on M, ;(R) ~ R" by fn, then the above adjoint representation is
equivalent to g, ®r fr,.

2. G =GL(n,C), = M, »(C).

Exactly the same reasoning will show that

Ad(g)X =gXg7?,
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for g € GL(n,C) and X € M, ,(C). And moreover, if we denote the birth
certificate representation of GL(n, C) on M, ;(C) by fi,, then Ad = ji, ®c i,
3. G = O(n), ® = the space of skew-symmetric n x n matrices.
Again, one has for g € O(n) and X € &

Ad(g)X =gXg™*.

If one denotes the birth certificate representation of O(n) on R™ by py,, i.e. p, =
pn|O(n), then
Ado(n) = Azpn

the restriction of the O(n)-conjugation to skew-symmetric matrices.
4. G = U(n), ® = the space of skew-hermitian n X n matrices.
Again, one has

Ad(g)X =gXg™!.

Observe that every element A € M, ,(C) can be uniquely expressed as the sum
of its hermitian part and its skew hermitian part, namely A = %(A + A*) +
3(A — A*); and moreover, B is hermitian if and only if iB is skew hermitian.
Hence 8 ® C ~ M,, ,(C).

Let prn = fin|U(n). Then for X € &

Ad(g)X = gXg ! = Ad(g)(X +iY) = g(X +4Y)g™ .

Hence the complexification of the adjoint representation of U(n) is exactly the
above conjugation transformation of U(n) on M, »(C), namely

Ady(n) ® C = pn ®c p, -



Lecture 3

Orbital Geometry of the
Adjoint Action

Roughly speaking, the linear representation theory that we discussed in the
first lecture is a kind of extrinsic linearization; and the basic Lie group theory
that we discussed in the second lecture is a kind of intrinsic linearization. The
former is based on the compactness of the group and the technique of averaging
provided by the Haar integral; and the latter is based upon the differentiability
of the group structure and technically relies on the existence-uniqueness theory
of ordinary differential equations, in the form of Frobenius theorem on complete
integrability of distributions. Therefore, in the case of compact connected Lie
groups, one naturally expects that they can be combined to provide a rather
satisfactory understanding of both the structural theory and the representation
theory of this important family of groups. This shall be exactly the topic of
our discussion for the next few lectures.

As it had already been pointed out in the previous lecture, the central issue
in the study of group structure is the non-commutativity and-it is advantageous
to organize it in the form of adjoint action. Therefore, we shall begin our
study of compact connected Lie groups by focusing our attention on the orbital

38
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geometry of the adjoint action, namely, the geometry of conjugacy classes.
For example, S® = SU(2) is one of the simplest, non-commutative, compact
connected Lie group, the orbital geometry of the conjugacy classes of S had
already been worked out in Lecture 1, which is exactly the crucial geometric
input that enable us to apply the character theory of Frobenius-Schur to obtain
a neat classification of the complex irreducible representations of $%. In fact,
this simple special case will serve as a good prototype for the general theory
of compact connected Lie groups.

1. Bi-invariant Riemannian Structure on a Compact
Connected Lie Group and the Maximal Tori Theorem
of E. Cartan

In this lecture, we shall always assume that G is a compact connected Lie
group and & is its Lie algebra. The compactness of G ensures the existence of
adjoint-invariant inner products on ®. Fix such an invariant inner product on
® and then choose an orthonormal basis of &, say {X;;1 < i < dim®&}. Let
X, be the left invariant vector field on G with X; as its value at the identity
e. This frame field {X;;1 < i < dim®} uniquely determines a Riemannian
structure on G such that {X;(z);1 < i < dim®} is an orthonormal basis of
T.G for all z in G.

Lemma 1. The above Riemannian metric on G is bi-invariant, namely,
both left and right translations are isometries.

Proof: Observe that the inner product of a vector space is uniquely de-
termined by one of its orthonormal basis. Therefore, a linear map A: V - W
is an isometry if and only if A maps an orthonormal basis of V' to an orthonor-
mal basis of W. Let [, (resp. ry) be the left (resp. right) translation of G by
a,ie. lo(z) = a-z (resp. 74(z) = z - a). Then, the left invariance of X; simply
means that dl, : T,G — TG maps X,(a:) to Xl-(ax). Hence, all left transla-
tions, I, a € G, are obviously isometric. Next, let us consider the following
diagram of linear maps.

Ad(a!
TG e, TG
dl, dl
dr

TG ———» TG
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It is commutative because
za(a~'ga) = zga = lzo 0 Ad(a™!) =7, 01, .

Therefore, the fact that dl., dl., and Ad(a_l) are all isometries implies that
dr, is also an isometry. O

From now on, a compact connected Lie group G is always assumed to be
equipped with such a bi-invariant Riemannian metric. Hence, in particular, the
adjoint action of G on the Riemannian manifold G is an isometric transforma-
tion group whose orbits are exactly the conjugacy classes of the group G. The
key result in the geometric structure of conjugacy classes of a compact con-
nected Lie group G is the maximal tori theorem of E. Cartan. Recall that the
group of unit complexes, i.e., the circle group S, is the only one-dimensional
compact connected Lie group, and moreover, the products of several copies of
the circle group S! are the only commutative, compact connected Lie groups.
The product of k copies of S! is called a torus group of rank k and shall be
denoted by T* or simply by T if its rank does not need to be specified.

Definition A torus subgroup T C G is called a maximal torus of G if it
can not be properly contained in any other torus subgroup of G.

Lemma 2. Let T be a torus subgroup of G and F(T,®) (resp. F(T,G))
be the fized point set of adjoint action of T on & (resp. G). Then T is a
mazimal torus of G if and only if either dimF(T,®) = dimT or F(T,G)
contains T as one of its connected components.

Proof: Let 9 be the Lie algebra of T'. Then it follows from the definition
of the adjoint action of T on & that

F(T,®) > M.

If T is not maximal, say T is properly contained in another torus subgroup T
with 901; as its Lie algebra, then

F(T,8) DMy = dim F(T,8) > dim9M; > dim 7.
Conversely, suppose dim F(T,®) > dimT. Then, there exists
X e F(T,6)\Mm

and hence My = (X, M) is a Lie subalgebra of & with identically zero bracket
operation. By Theorem (2.2) and (2.3), there exists a unique commutative
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connected Lie group H with 9, as its Lie algebra. The closure of H is certainly
a torus subgroup of G, i.e. a commutative compact connected subgroup of G,
which properly contains 7. Hence T is not a maximal torus. This completes
the proof that

T is a maximal torus < dim F(T,®) = dimT.

The second condition is closely related to the above one because the identity
component of F(T,G) is clearly a Lie subgroup of G whose Lie algebra is
exactly F(T, ®). O

Examples 1. The subgroup of unit complexes, S1, is a maximal torus in
the group of unit quaternions S3.

cos@ —sinf O

S0(2) = sinf cosf 0];0<0<27
0 0 1
is a maximal torus of SO(3).
3.
( eif1 )
102 \
T" = ¢ 8 ;0<0; <27 )
ifn

(A e ) )

is a maximal torus of U(n).

4. Let T C U(n) be an arbitrary torus subgroup of U(n). Then it follows
from a corollary of the Schur Lemma that the above unitary representation,
(T, C™), splits into the direct sum of one-dimensional ones. Therefore, there
exists a suitable orthonormal basis {b;;1 < j < n} which consists of common
eigenvectors of all elements of T. Let {e;;1 < j < n} be the canonical basis
of C*, i.e, e; = (0,...,0,1,0,...,0) and set B be the element of U(n) with
B(ej) =b;, 1 <j<n. Then, foreach AecT,1<j<n,

B7'AB(e;) = B~'A(b;) = B '(\;b;) = Aje;, Ml=1,

namely, one has
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B'TBcT"

Exercises 1. Show that the subgroups in the above Examples 1-3 are
indeed maximal torus in the respective groups.

2. Let A € U(n) be an arbitrary element in U(n). Show that there always
exists a suitable B € U(n) such that B~'AB € T", i.e. B"1AB is a diagonal
unitary matrix.

3. Exhibits a maximal torus of SO(4).

Theorem 1 (E. Cartan). Let T be a mazimal torus of G. Then T
intersects every conjugacy class of G, i.e. every element g € G is conjugate to
a suitable element in T'.

Proof: Let ¢ = Ad|T be the restriction of the adjoint representation of
G to T and b C & be the Lie algebra of T. Since T is a maximal torus, it
follows from Lemma 2 that F(T, ) = . Recall that every complex irreducible
representation of a torus group must be one-dimensional, it follows readily
that every nontrivial real irreducible representation of a torus group is always
two-dimensional. Hence

p=dimh- 1001 - D¢y,

where 1 denotes the one-dimensional trivial representation and ¢;, 1 < j <1,
are nontrivial homomorphisms of T onto SO(2). Therefore, ker(¢;), 1 < j <1,
are all codimension one closed Lie subgroup of T; the complement of their
union, |Jker(y;), is an open dense submanifold of T', say denoted by W.

Let to € W be an arbitrary element in W. Then each ¢; (%) is a nontrivial
rotation and hence F(¢(to), 8) = §. Let Gy, = {g € G;gtog™! = to} be the
centralizer of {3 and Exp sX be an arbitrary one-parameter subgroup of Gy,.
Then

ExpsX = toExpsXty! = ExpsAd(to) X, VseR
= X € F(p(t),8) =Y.

Hence, the connected component of the identity of G, is equal to T and, of
course, dim G(tp) = dim G — dim G, = dim G — dim T', namely, the conjugacy
class of tg, i.e. G(tp), and the maximal torus T are submanifolds of comple-
mentary dimensions. The key geometric fact that the entire proof is based
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upon is that T and G(to) intersect perpendicularly and transversallyl We shall
prove the above fact by analyzing the action of T on T3,G.

Observe that [;, commutes with the conjugation of ¢, ¢ € T, namely, [, o
oy(z) = totzt™! = ttoxt™! = oy o I (z) for all z € G. Therefore, dl;, is an
equivariant linear map of & = TG onto T3, G with respect to the induced
T-actions. Recall that

&=hoht

with ¢|h = dimh-1 and @|ht = 1 @ - D ¢y It is clear that dly, () is exactly
the tangent space of T at ¢o. Hence, in order to show that the tangent space
of G(to) at to is exactly the orthogonal complement to that of T', it suffices to
prove that the induced T-action on that of G(t¢) contains no fixed directions.
This is an easy corollary of the following simple but useful lemma.

Lemma 3. Let H be a compact Lie subgroup of G. Then the induced H -
action on the tangent space of G/H at the based point, To(G/H), is equivalent
to the restriction of the adjoint H-action on & to the (orthogonal) complement

of b.

Proof: Let & be the Lie algebra of G equipped with an Adg-invariant
inner product and h be the orthogonal complement of the Lie subalgebra §.
Let p : G — G/H be the canonical projection, i.e., p(z) = z- H € G/H.
Observe that,

poop(z) = p(hah™') = hzh™' - H = ha - H = lp(z - H),

for all h € H, namely, p is, in fact, an H-equivariant differentiable map with
respect to the adjoint action of H on G and the left translation of H on G/H.
Therefore,

dpe : ® =h &bt — To(G/H)
maps h isomorphically onto To(G/H) as H-linear spaces. a

Summarizing the above discussions, we have already obtained the following
key geometric facts, namely

(i) T is a connected component of F(T, G) and hence it is a totally geodesic
submanifolds of G. [Recall that the fixed point set of an isometric transforma-
tion group is always a totally geodesic submanifold. It is a direct consequence
of the uniqueness of geodesic with given initial point and direction.]
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(ii) The tangent spaces of T and G(tp) at to are orthogonal complements
of each other.

Based upon the above two facts, it is then an easy matter to complete the
proof of Theorem 1 as follows.

Let G(y) be any other G-orbit, i.e. conjugacy class. Then G(t;) and
G(y) are two compact submanifolds in the complete Riemannian manifolds
G. Hence, by Hopf-Rinow Theorem, there always exists a geodesic interval,
say T191, which realizes the shortest distance between them, and therefore, it
must be perpendicular to both. Let g be a suitable element of G such that
g(z1) = gz19™! = to. Then ¢g(ZT1yi) = tog(y1) is again a geodesic interval
which is also perpendicular to both. Therefore, by (i) and (ii), the whole

geodesic interval tog(y;) lies in T and hence g(y1) = gy19~* € TN G(y). This
completes the proof of Theorem 1. O

Remark In fact, the above proof actually provides much more infor-
mations on the orbital geometry of the adjoint action other than just the
intersection property stated in Theorem 1. For examples, the following useful
geometric fact are already included in the above proof.

(1) For every element to € W, G(t5) and T are of complementary dimen-
sions and they intersect perpendicularly and transversally at to.

(2) For each element ¢; € Jker(p;), dim G, = dim F(p(t1), 8) > dim h+2.
Hence

dim G(¢;) £ dim G —~ dimT — 2,
dim{Uker(cpj)} =dimT -1,
dim U {G(t1); t1 € | Jker(¢;)} < dimG — 3.

(3) In fact, to an arbitary, fixed top dimensional orbit such as G(to), the
totality of maximal tori of G can be characterized as the set of complete, to-
tally geodesic normal submanifolds. Therefore, any two maximal tori of G are
mutually conjugate. [Suppose T, T» are respectively such normal submani-
folds of G(tp) at x;, x2 and x5 = gz19~ L. Then ¢gT1g~! and T are both such
normal submanifolds of G(to) at =2 and hence gT1g~! = T.|

Corollary 1. All mazimal tori of a compact connected Lie group G are
mutually conjugate. [The common rank of mazimal tori of G is defined to be
the rank of G.]
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Corollary 2. Let S be a torus subgroup of G and Zg(S) be the centralizer
of S inG. Then Zg(S) is equal to the union of all maximal tori of G containing
S (and hence it is connected), namely,

Za(S) = | J{T;T > S}

= U{T; T D S and maximal}.

Proof: Clearly, | J{T;T D S} C Zg(S) and
U{T; ToS8}= U{T; T > S and maximal} .

Hence, one need only to show that every x € Zg(S) is contained in a maximal
torus T D S.

Let H be the subgroup generated by {z,S} and H be its closure; H is
clearly Abelian and compact. If it is also connected, then H is a torus and we
have nothing to prove. Next let us consider the case that H is disconnected.
Let Hy be its identity component and H/H, be the quotient group which is
generated by z - Hy, namely, H = Z; x Hy where Hp is a torus group and
Z, is a cyclic group of order [. Choose a suitable element a in Hy such that
the cyclic group generated by a is dense in Hp (such a “topological generator”
always exists for torus group, a theorem of Kronecker). Let b be a generator
of Z; and ¢ € Hy with ¢! = a. Then (b-c)! = b - ¢! = a and hence the cyclic
group generated by b - ¢, (b c), is dense in the whole H, namely,

b-)o@y=Hy=bchb-c)=>(b-c)=H.

Now, by Theorem 1, b - ¢ is contained in a maximal torus T and hence x €
H = (b-¢) C T. This proves that

|{T;T > S and maximal} > Zg(S),

and thus
Zg(S) = U{T; T D S and maximal},

which is clearly connected. O
Corollary 3. Zg(T) =T for a mazimal torus T.

Proof: By Lemma 2, T is equal to the identity component of F(T, G) =
Ze(T). Hence the connectedness of Zg(T) implies Zg(T) =T.
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Definition W(G) = Ng(T)/T is called the Weyl gorup of G, where
Ng(T) is the normalizer of T in G.

Remarks (i) The restriction of the adjoint action map to Ng(T) x T
naturally induces an action map of W(G) x T' — T, namely,

N(DXT < GxG —-—L» G

1] U

WG)X T s » T

(ii) A torus group of rank k, T = (R/Z)* = R*/Z*. Therefore, the auto-
morphism group of T is given by the group of invertible integral matrices of
rank k, i.e. Aut(T) = GL(k,Z).

(i) The action map ® : Ng(T) x T — T induces a homomorphism ¢ :
N (T) — Aut(T) with ker(p) = Zg(T) = T. Therefore, its effective quotient
gives an injective map ¢ : W(G) — Aut(T) = Gi(k,Z). Hence, W(G) is a
compact subgroup in a discrete group, namely, a finite group.

Weyl reduction: We shall use G/Ad to denote the orbit space of the
adjoint action on G, namely, the quotient space of conjugacy classes of G. The
maximal tori theorem proves that a maximal torus T intersects every conjugacy
class and hence the composition of T C G — G/Ad is surjective. Moreover, it
clearly factors through T'/W, the orbit space of the Weyl group action on T,
namely, one has the following commutative diagram.

C
T ——» G

=?
TIW —» G/Ad

Naturally, one would like to know whether the above surjection is also
injective?
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Theorem 2. Both T/W — G/Ad and h/W — &/Ad in the following

commulative diagrams are bijective, namely,
C c
T ————» G f —mm» &
W —» G/Ad yw ——» &/Ad

Proof:  Since F(T,G) = Zg(T) = T [Corollary 3],
T N G(xo) = F(T,G(x0)), zo €T

for any given conjugacy class G(zo). Let z; = gzog~! be another point of
F(T,G(z0)). Then

TCGy = gGmog‘1 =T and ¢ 'TgC G,

namely, both T and g~!T'g are maximal tori of G,,. Hence, by Corollary 1,
there exists y € G, such that

yTy =g 'Tg= (gy) ' Tgy=T.

Therefore, gy € Ng(T) and z1 = gzog~! = gyzoy 9~ (y € G, implies

yroy~! = xp), namely z¢ and z; are on the same W-orbit. This proves the
injectivity and hence the bijectivity of T/W — G/Ad.

Since both (W,h) and (G, ®) are respectively the local linearization of
(W,T) and (G,G) at the identity, the injectivity of /W — &/Ad follows
directly from that of the former. 0

2. Root System and Weight System

The combination of the above Theorem 1 and the character theory of Frobe-
nius—Schur enable us to reduce the study of representations of a compact con-
nected Lie group G to that of their restrictions to a maximal torus T'.

Basic Fact 1. Two representations of G, ¢ and 1, are equivalent if and
only if their restrictions to a mazimal torus T, i.e. |T and Y|T, are equivalent,
namely

e~y e pT ~y|T.



48 Lectures on Lie Groups

Proof: Recall that the character functions of representations always take
constant values on each conjugacy class and T intersects every conjugacy class.
Therefore,

Xe = Xy € XolT = xIT,

and hence,
pr~Y Thed Xo = Xy
{ Thm(3.1)
AT~ T TEE? 3 y|T = xyIT. O

Observe that the complex representations of a torus group T' always splits
into the direct sum of one-dimensional ones, the above reduction is, indeed, a
rather advantageous one. Let ¢ be a given complex representation of G, T be
a maximal torus of G and § be the Lie algebra of T'. Let

WT=p1®p2® - D®pn, n=dimgp

be the splitting of ¢|T into one-dimensional representations, namely, each ¢; is
a one-dimensional unitary representation. Recall that § is simply a real vector
space of dimension k = dim7T = rk(G) and @; : T' — U(1) ~ S! is uniquely
determined by @; = dgj|., namely,

z8 —m8m8m88» z

o

h=R* ——» R!
Exp Exp

\4 v
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where @; is an integral linear functional of h (“integral” means @;(Z*) C Z)
which is an integral element of the dual space h* with respect to a specified
basis.

Definition of Weight System The weight system of a complex rep-
resentation ¢ of G is defined to be the collection of the above integral linear
functionals {@;;1 < j < n}. It is a set of integral elements in h* with multi-
plicities.

The weight system of a real representation of GG is defined to be the weight
system of its complexification.

Remark The weight system of ¢ is a complete set of invariants of ¢ and
it is simply a convenient book-keeping device of ¢. We shall use the notation
Q(p) to denote the weight system of ¢ and m(w, ¢) or simply m(w) to denote
the multiplicity of w in Q(¢).

Definition of Root Systemm In the special case that ¢ is the adjoint
representation of G, its system of nonzero weights is called the root system
of G.

Remark The multiplicity of zero weight in Q(Ad ® C) is equal to the
rank of G, and the multiplicity of every nonzero weight in Q(Ad ® C) will be
proved to be 1 in the next section. Therefore, it is convenient to exclude the
zero weight in the definition of the root system of G, for it then becomes a set
of uniform multiplicities equal to 1. Hence the root system of G is, in fact,
just a set! We shall use the notation A(G) to denote the root system of G.

Basic Fact 2. The weight system Q(p) and the character function
XolT = X7 are both complete invariants of ¢|T, and hence also of ¢ itself.
They are clearly related as follows.

Let H be a generic element in fy. Then it follows from the following diagram

;
Heh ————>» R > ¢
Exp Exp
9 .
ExpHe T —» U(l) > ™

that x,,(Exp H) = e2"%s(H)_ Hence
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ch(ExP H)= Z Xe; (EXP H)

= Z > ) (sum with mults.) .
)

Basic Fact 3. One has the following convenient formulas for the char-
acter functions, namely,

(1) Xeav = Xo + Xy,
(i) Xeo@y = Xe¢ - Xv
(ili) X = X -
Correspondingly, one has the following useful relationships among the
weight systems, namely,

(i) Qe ®Y) = Q) UQ(Y), (with multi.)
(ii)

Qe ®Y) = Qp) + Q)

= {w; + wa;w1 € Qp),wsz € QY)}, (with multi.)

—

(ili) Q¢*) =) = {~w;w € Q()} (with multi.).
Examples 1. Let G = S%. Then S! = {€?"*} is a maximal torus of S3.
Let @) be the irreducible representation of dimension k + 1. Then

X (eZm'G) _ e2m’k0 + e21ri(k—2)0 4o e—2m‘k0
Pk - .

Hence,

Qer) = {k6, (k —2)0,...,—k6}.
Moreover, since Ad ® C = 9,
A(S?) = {26, —26} .
2. Let G =U(n). Then

e27\"i01
e21ru92

e21ri0n
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is a maximal torus of U(n). Let u, be the birth certificate representation of
the U(n) action on M, ;(C). Then
T =01 @ 2@ O ¢n,
where ¢; = 6;. Hence
Qun) = {0;;1<j <n withm(6;) =1},

and correspondingly
X}tan — Ze2wi«9,- .
i=1

By the basic fact 3,
Qun) ={-0;31<j<n withm(-6;) =1},

n

—2718;

X | T = E e i,
Jj=1

3. The complexification of Ady(,) is equal to p, ® py,. Therefore

n n
XAd ®C|T — Z 6271'10]‘ . <Z e—27ru9k>
k=1

=1

— n_+_ Ze2ﬂ‘i(01—0k) ,
J#k

and hence

AUMm)) ={(; —6k),1<j#k <n}.
4. G =80(3). Then

cos2moe  —sin2ra 0
SO(2) = sin2ra  cos2ma 0 is a maximal torus.
0 0 1

The adjoint representation of S2 is a covering homomorphism:
S® 29 S0(3), ker = {1},

whose restriction to S! is a twofold winding, namely,
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cos4mf —sin4nwd O
S - S0(2), e?™® s | sindn cos4md 0
0 0 1

Every complex irreducible representation of SO(3) pulls back to that of S3
with ker D {%1}; and conversely, every complex irreducible representation of
S3 with ker D {1} can also be pushed to that of SO(3). It is easy to see
that ker(px) D {£1} if and only if k is even. Therefore to each odd dimension
2l + 1 there exists a unique complex irreducible representation of SO(3), ¥,
such that

@,
> i+ 1)
Ad
']
SO(3)

whose weight system is given as follows:
Q) ={j-o,-l1<j< I},

Notice that A(S3) = {£26}, A(SO(3)) = {£a} and 26 < « in the covering
map.
5. G =8S0(2[). Then

(

cos2nf, —sin2w6, \ )
sin27#; cos2ml,

cos2wl; —sin2n,;
\ \ sin27f; cos2n6;

= [sO(2)]'

is a maximal torus of SO(2!). Let po be the birth certificate representation of
SO(2l) on My 1(R). Then
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paalT =1 © 2 © Yy,
where ¢; : T — SO(2) by the projection to its jth factor. Therefore

i
Qpu ®C) = | J Qv; ®C) = {£6;,1 <j <1},

=1
l .
Xpnoc(Exp H) = 2(62"1'91'(11) + e 2mi0s(H)y
=1

6. G = SO(2!l). Then Ad = A2py;. Therefore
Ad ® C|T = A%py @ C|T = A%(pa @ C|T)

I I
= A? (Z Y; ® C) =A? (Z(w ® s0})> ,

i=1
where Q(p;) = 6;, Q(¢}) = —0;. From here, it is straightforward to show that
A(SO(2]) = {£0; £ 0k,j < k}.

Exercise To compute A(SO(2! + 1)).

3. Classification of Rank 1 Compact Connected
Lie Groups

So far, we have already encountered three compact connected Lie groups of
rank 1, namely, S, S and SO(3). Are there any others? Let us try to find
out.

Suppose G is such a Lie group, namely, compact connected and of rank 1.
Let ® be its Lie algebra and T = S! be a maximal torus of G. Restricting the
adjoint action of G on & to T, one gets the decomposition

AdIT=1+91+--,
6=R'oR*(¥) + -,

where the nontrivial irreducible real representations {i¢;,...} are all of
the form

¥; : T — SO(2); et — (

Of course, one may assume that

cosn;t  —sinn;t
sinn;jt  cosm;t
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0<n <nyg<--<n; <---

— ]
if there are more than one such ’s.

Examples 1.In the case G = 52, the above decomposition has only one
two-dimensional one with ny = 2.

2. In the case G = SO(3), the above decomposition has only one two-
dimensional one with n; = 1.

Lemma &;=R!®R2(y,) is a Lie subalgebra of & and it is isomorphic
to the Lie algebra of S3.

Proof: Let H € R! such that ExptH = e € T = S! and Xy, Y; be an
orthonormal basis of R?(¢y), namely
Ad(ExptH)X; = cosnit - X +sinngt- Y,
Ad(ExptH)Y; = —sinnit - X; +cosmyt - Y7

Let us compute the bracket operations of H, X;, Y; as follows. Differentiate
the above equation with respect to t at £ = 0, one gets

H X)) = 2| Ad@ExptH) - X, = 13,
dt|,_,

HYi] =2 AdExptH) Y= —miX,.
dt],_o

Hence, by Jacobi identity, we have
[H, [ X1, 11]] = [[H, Xa], 1] + [X1, [H, Y1]] = 0.

Therefore, [X;,Y1] must be a nonzero multiples of H, for otherwise, & will
contain a two-dimensional Abelian Lie subalgebra which clearly contradicts
the assumption that G is of rank one! Set [X1,Y1] = ¢- H. We shall show that
¢ > 0. Recall that Ad(ExptX,) are orthogonal transformation for all ¢t € R.
Hence

(Ad(ExptX,) - Y1, Ad(ExptX,) - H) = (Y1,H).

Differentiate the above equation at ¢ = 0, one obtains
([Xl’Yl]’H> + (Yl’ [Xl’HD =0,

which implies that
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¢ (H,H) = (X3, Y1, H) = (i, -m¥1) = m(¥1, Y3)

_mtf?

>0

From here, it is easy to show that {H, X, Y;} spans a Lie subalgebra isomor-
phic to the Lie algebra of S (cf. Ex., Lecture 2). a

Theorem 3. Let G be a compact connected Lie group of rank 1. Then G
is isomorphic to one of the following ezamples, namely, S1, S2 or SO(3).

Proof: If G is commutative, then it is obvious that G =2 S!. Let us
assume that G is non-commutative. Then, by the lemma, its Lie algebra &
contains a Lie subalgebra ®; isomorphic to that of S3. Therefore, by The-
orem 2.3 and the fact that S® is simply connected, there exists a compact
connected Lie subgroup Gy, with ®; as its Lie algebra, which is either isomor-
phic to S2 or isomorphic to SO(3). [In fact, Gy = S3 if n; = 2; G; 2 SO(3) if
ny = 1.] We shall show that G = Gy, namely, dim® = 3.

Suppose the contrary that dim® > 3, i.e. there are more than one two-
dimensional irreducible components in the above decomposition of Adr@®. Set

V=ZR2(¢J)=®-1Lv ¢=(Gl,V)
j22

Then

Qe C) = UpTRC)

=Y yec|=J{ew e0)}.

j22 j22

Recall that any complex irreducible representation of SO(3) always contains
one zero weight. Hence, the case G 2 G = SO(3) is impossible because the
above weight system contains no zero weight. Finally, the case G 2 G| = §3
is again impossible, because in this case, n; = 2 and

Q('(/)] ®C) = {:tan), n; 2ng =2

= (¢ ® C) contains no weight of the form +6 or 0 which is again a contra-
diction to Theorem 1.6 (cf. Example 1 in the above section). Hence G must
be equal to G, namely, G = S3 or SO(3). a
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Theorem 4. The multiplicity of every nonzero weight in Q(Adg @ C) is
always equal to 1, and moreover, for each root o € A(G), ka € A(G) if and
only if k = £1.

Proof: Let & be the Lie algebra of G, T be a maximal torus of G and )
be the Lie algebra of 7. Then one has the following orthogonal decomposition
of ® as Adr-invariant spaces

©=h0) Risy,

where {+a} runs through pairs of nonzero weights in Q(Ad ® C) with multi-
plicities. For H € b, the action of Ad(Exp H) on ]R% +) IS given by

cos2ma(H) —sin2ma(H)
sin2ra(H)  cos2ma(H) .

Let b, be the kernel of o : h — R!, T,, be the subtorus of T with~ba as its Lie

algebra, G, = Z%(Ta) be the connected centralizer of T and G4 = Go/Th.

[In fact, Corollary 2 of Theorem 1 already proves that Zg (T, ) is automatically

connected; it is, however, not needed in this proof.]. Let &, be the Lie algebra

of G,. Then

where {£3} runs through those pairs of nonzero weights in Q(Ad ® C) with
bs = ha, namely, proportionate to «. Hence

B0 2By /ha =h/ha ® ZR%ﬂ:ﬂ)’

and T/T, = S! is a maximal torus of G, namely, G, is a rank 1 compact
connected Lie group. Thus, it follows from Theorem 3 that ]R% +o) is, in fact,
the only components in the above direct sum. O

Remarks (i) From now on, the root system A(G) is proved to be a set
with uniform multiplicity of 1.

(ii) The usual Cartan decomposition is exactly the complexification of the
above decomposition of &, namely,

BRC=hHRCo Z Co, Ad(Exp H) X, = e2™ie(d) . X, |
aEA(G)
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for H € h and X, € C,. If one substitutes H by tH and then differentiates
the above equation at £ = 0, one gets

[H, Xa] = 27mia(H) - Xa.
(iii) In the original decomposition of & over the real, one has
— 2
G =03 Riwa),
and
[H,Y.] =21a(H) - Za,
[H,Z4] = —27a(H) - Y,,

where {Y4, Zo} is an orthonormal basis of RY, ;.



Lecture 4

Coxeter Groups, Weyl Reduction
and Weyl Formulas

In this lecture, we shall continue the study of the orbital geometry of the
adjoint transformation of G on both the manifold G and its Lie algebra &.
Based upon the maximal tori theorem of E. Cartan and the Weyl reduction,
ie. G/Ad 2T/W and &/Ad = /W, it is rather natural to consider the Weyl
transformation groups (W, T) and (W, ) as the “vital core” of the geometry
of non-commutativity of G. On the one hand, they are far-reaching simplifi-
cations of the adjoint actions of G on both G and &, and yet on the other
hand, they retain the vital point of the orbit structures of the original adjoint
transformations which is actually the geometric version of the totality of the
non-commutativity of G. It is an added blessing that (W,}) are generated by
reflections, namely, Coxeter groups. This naturally makes the basic geometry
of Coxeter groups to become an important component of the structural theory
of Lie groups.

58
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1. Geometry of Coxeter Groups

Definition A reflection is a differentiable involution r : M — M on a
connected manifold M such that its fixed point set F'(r) is a codimension one
submanifold which separates M into two connected regions interchanged by r.

Definition A finite differentiable transformation group W x M — M is
called a group generated by reflections, or simply a Coxeter group, if W is
generated by a collection of reflections.

Examples 1. Let S, be the symmetric group of n letters and it acts
on R™ = {(z1,22,...,2%n); z; € R} by permuting the coordinates. Then it
is a Coxeter group (generated by those reflections which are exactly those
transpositions).

2. Let R™™! be the subspace in the above R™ which is defined by > z; = 0.
Then it is an invariant subspace of the above S,-action and (S,, R"!) is again
a Coxeter group.

3. If the angle between two intersecting lines l1, I3 is w/n, then the subgroup
of isometries generated by the two reflections with respect to {1, I, is a group
of order 2n. It is one of the simplest example of Coxeter group.

4. Let G = U(n), T .be the subgroup of diagonal matrices and h be the Lie
algebra of 7. Then T is a maximal torus of G and } is the vector space of
diagonal skew hermitian matrices, namely,

i6,
i6;
h= , [, €R ) =R".
i6,,

Let g € Ng(T) be an arbitrary element of Ng(T'), i.e. g"'T'g = T. Then g(e;),
1 < j < n, are again eigenvectors of all elements of T' and hence are multiples
of a suitable e;, namely,

gle;) =Xje;, 1<j<n
where |A;| =1 and (I1,15,...,l,) is a permutation of (1,2,...,n). From here,

it is not difficult to see that the Weyl transformation group (W, ) is, in fact,
isomorphic to the above example (S, R").
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5. Let G = SU(n), T be the subgroup of diagonal matrices and § be the
Lie algebra of T. The T is a maximal torus of G and
16,
16
h= . ;0; €R,D 0; =05 =R},

16,
In this case, the Weyl transformation group (W, ) is isomorphic to the (S,
R™1) of example (2).
6. Let (W, M) be a Coxeter group, » € W be a reflection and 0 € W be

an arbitrary element of W. Then oro~! is also a reflection and F(oro~!) =
oF(r).

Lemma 1. Let A be the set of all reflections in a Cozeter group (W, M),
Then W acts transitively on the set of connected components of M\ U {F(r);
r e A}.

Proof: Since 0Ao~! = A and F(oro~1) = aF(r), it is clear that

U{F(r);r €A} and M\ U{F(r);r € A}

are both invariant subsets of W. Therefore, the connected components of
M\U{F(r);r € A} are permuted among themselves under the action of W.
We shall call the above components chambers and prove the transitivity of the
above W-action on the set of all chambers.

Observe that if C, C' are two chambers separated by a wall supported by
F(r), namely,

dimC N F(r)n ' = dim F(r),
then 7(C) = C'. Therefore, if {Co, C1,...,C;} is a sequence of chambers such
that each consecutive pair {C;,Ci;1} are separated by a wall, say on F(r;),
then
Ci+1 = ‘I"i(Ci) and C[ =Ty ' T{—2""" ‘I"o(Co) .

Hence, what one needs to show is that any two chambers can be linked by
a sequence of chambers with common walls between consecutive ones, such
sequences are called chains.

For a pair of distinct reflections 7, ' € A, it is clear that

dmF(r)NnF(r') <dimM -2,

and hence, the union of all such subsets
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Z U{F YNF(E');r £ € A}

is of codimension = 2. Therefore, M\ is still connected because a sub-
set of codimension > 1 cannot separate a connected manifold even locally.
This means that one can always go from one chamber to any other chamber
by a pathway which only crosses the common walls between two consecutive
chambers. This shows that any two chambers can be connected by a chain of
chambers and hence the W-action on chambers is transitive. O

Remarks (i) The transitivity of the W-action on the set of chambers
shows that all chambers are of equal standing. Hence it is convenient to fix
one of them as the base chamber. We shall denote it by Cp and call it the
(chosen) Weyl chamber of (W, M).

(ii) To each r € A, M\F(r) consists of two connected components. We
shall denote the “half-space” containing the above Cy by MY and the other
one by M. MZ are respectively called the positive and negative half space
of the reflection r. It is not difficult to see that

Cozﬂ{Mj;rEA}.

Definition Let 7 be the subset of reflections in A whose fixed point set
contains a wall of Cy, namely,

dimF(r)NCo =dimM — 1.

Lemma 2. 7 also forms a generator system of W.

Proof: Let W' be the subgroup of W generated by n. We shall show
that W’ > A and hence W’/ = W.

Let Cy,Ci,...,Ci be a chain and F(r) contains a wall of C;. We shall
prove by induction on [/ that » € W’'. Let r' be the reflection such that F(r')
contains the wall between C;_; and C;. Then, by the induction assumption,
r' € W'. Since r'(Ci) = Ci-1, F(r'rr') = r'(F(r)) contains a wall of '(C}) =
Ci—i. Again, by the induction assumption, »'rr' also belongs to W’. Hence
re W', 0

Definition 7 is called a simple system of generators of W, its elements
will be henceforth denoted by {r;;1 < i < k} and called the simple generators



62 Lectures on Lie Groups

of W. To each o € W, [(0) is defined to be the minimal length of expressing
o as a product of the simple generators.

Lemma 3. Leto=ry -riy- 73, L =1(0), be a given expression of o of
minimal length. Set

03 =Ti *Tig - "‘I"ij y F} = Uj—lF(rij) = F(O’j_l‘l"ijO'j__ll),
and
C; = 0;(Co), 0<j<I.
Then

(i) Co,C1,...,Cj,...,Cr=0(Ch) is a shortest chain linking Cy to o(Cyp),
(il) the set of hyperplanes {F;,1 < j < I} is exactly the set of those hyper-
planes separating Co and o(Cp) and hence it only depends on o.

Proof: By definition, Co N F(r;) is a wall of Cy. Hence
0;1(CoNF(ry,)) =Ci-anFy,  Fy = F(o07)

is a common wall between C;_, and C; = 0;(Cp) = ajaj__ll (Cj-1) and thus
{Co,C,...,Cj,...,Cr = 0(Ch)} is a chain. In fact, it is not difficult to see
that above construction establishes a bijective correspondence between the
expressions of ¢ in terms of the simple generators and the set of chains linking
Co to o(Cop). Therefore, a given expression is one of the shortest if and only if
the corresponding chain is a shortest one linking Cy to o(Cs).

Let F(r) be a “hyperplane” that separates Cy and 0(Cp). Then any chain
linking Cy and o(Cp) must cross it at least once, namely, at least one of the
common walls between consecutive chambers of the chain is contained in F(r).

symmetric subchain
1 <

C, C, C F=F@

4

subchain \» .

Fig. 1.
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On the other hand, we claim that a shortest chain from Cjy to ¢(Cp) can
only cross each separating hyperplane between Cp, 0(Co) exactly once! For
otherwise, the chain can be shortened as indicated in Fig. 1, namely, simply by
replacing the subchain indicated above by its symmetric subchain, one obtains
a chain with two less chambers. This proves the second assertion. O

Theorem 1. Let (W, M) be a group generated by reflections on M. Then
W acts simply, transitively on the set of chambers and the closure of a cham-
ber, say Co, forms a fundamental domain, i.e. Cy intersects every W -orbit
ezactly once.

Proof: By Lemma 1, W acts transitively on the set of chambers. There-
fore, what remains to be shown is that ¢(Co) = Cp implies that o = Id. This
follows easily from Lemma 3 and the fact that Cj is, of course, a chain of zero
length linking Cj to 0(Cg) = Cy. Thus, by Lemma 3, i(0) = 0 and o = Id.

Next suppose o and o(zo) both belong to Co. Then o(xo) € Cona(Co) =
CoU{o(x0)} Uo(Cyp) is connected. Hence, every hyperplane separating Cy and
o(Co) must cut through o(z¢). Therefore, by Lemma 3, o(xo) is, in fact, fixed
under o, i.e. 02(z¢) = o(x0), and hence zo = 0~ 102%(xo) = o (o). This proves
that every W-orbit can intersect Cp at most in one point. On the other hand,

W-Co=M\| {F(r)ire A} =W -Co=M,

namely, Cy intersects every W-orbit at least once. This shows that Cp in-
tersects every W-orbit exactly once, namely, Cp is a fundamental domain of
(W, M). a

Corollary 1. The isotropy subgroup of a point xo, Wy,, is exactly the
subgroup generated by those reflections whose fixed point set contains xg.

2. Geometry of (W,}h) and the Root System

It is natural and convenient to equip the Lie algebra & of a compact Lie group
G with an Ad-invariant inner product. Thus, the restriction to (W,h) is a
finite group of isometric transformations.

Theorem 2. The Weyl transformation group (W h) is a Cozeter group
generated by those reflections {ra; ta € A(G)} where ro is the reflection with
respect to the hyperplane by, = ker a.

Proof: To each pair of roots {+a}, one has the Lie subgroup G, whose
Lie algebra
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a=h@RY,) =ba ®{R'®R}10)} = ba ® &,

where R! is the perpendicular line of h, in h and B, is isomorphic to the Lie
algebra of S3. Let G, (resp. T,) be the Lie subgroup with B4 (resp. ho) as
its Lie algebra and f : $® — G, be the covering homomorphism. Then the
following composition

T.x S} q. x G, B G

is a covering homomorphism. Therefore, the Weyl group of G, and that of
Ta x S2 are identical transformation groups on b, namely, W(G,) =~ Z; and
acts on f as the reflection with respect to the hyperplane §,.

Let W’ be the subgroup in W generated by the collection of reflections
{ra € W(G,); £a € A(G)}. Since the root system A(G) C h* is clearly an
invariant subset under the induced W-action on h*, W’ is a normal subgroup
of W.

Let {C;} be the set of chambers of (W', ), namely, the connected com-
ponents of h\ U{ha; £a € A(G)} and Cp be a chosen Weyl chamber. Both
W' and W act on the above set of chambers as permutation groups and, by
Lemma 3, W’ acts simply transitively. Let Wy be the subgroup of W which
leaves Cy invariant. Then W = W’ if and only if W} is the trivial subgroup
of identity. Suppose the contrary that Wy is nontrivial. Recall that Cp is an
open convex subset of b, the center of mass of a Wy-orbit in Cp is again in Cy,
thus producing a fixed point, say Xo, in Cp. Therefore,

G% =T but Gx,/T>W,

namely, G x, is disconnected. Let S be the closure of {ExptXy;t € R}. Then
S is a torus subgroup of G and Gx, = Zg(S). Hence, by Corollary 2 of
Theorem 3.1, Gx, = Zg(S) is connected. The above contradiction proves
that Wy must be trivial and hence W/ = W, d

Next let us apply the results of Section 1 to the above special case of Weyl
transformation group (W,h). Since h has already been equipped with a W-
invariant inner product, it is convenient to consider the root system A(G) as
a subset of § via the following identification, namely,

ciht 2y, oH) = (), H),Heb.
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In this setting, W is an orthogonal transformation group generated by the

reflections with respect to roots, namely,

_ 2(e, H)
(@, @)
F(ra,h) = (a)* = {H €1, (o H) = 0}.

a,:l:ae[l,

ro(H)=H

By choosing a Weyl chamber Cy, then a root a € A is said to be positive
(resp. negative) if & and Cj is at the same (resp. opposite) side of (o), namely,

a € AT (resp. A7) & (a,Cp) > 0 (resp. < 0).
Conversely, C, and Cy can also be characterized as follows:
Co={H ebh;(a,H)>0,a€ AT},
Co={H € b;(e, H) >0, € A*}.

Moreover, the system of simple roots, w, corresponding to the choice of Cy is
exactly the minimal subset of AT such that

Co={H € b;(c;, H) > 0,; € 7}.

Geometrically, they are exactly those positive roots a; such that {a;)* contains
a wall of Cp. Algebraically, they are exactly the “indecomposable elements” of
A*, namely, those positive roots which cannot be decomposed into the sum of
positive roots. For example, if @ = a; + a2, a, a1, an € AT, then the condition
(a, H) > 0 is already implied by (a1, H) > 0 and (a2, H) > 0 and hence can
be omitted from the defining condition of Cy. We shall prove later that the
set of indecomposable elements of At is linearly independent, (cf. the remark
following Lemma 6).

Lemma 4. Let (@) be the weight system of a complex representation,
o, of G. Then

(i) %‘:—:% € Z for w € Q(y) and a € A(G),
(it) m(w, ) < m(w — jo, ) for all0 < j < %‘:—’:52 or %‘!"—’:52 <j<0.

Proof: The restriction of ¢ to G, can be considered as a representation
of Ty x S3. Every complex irreducible representation of T, x S3 is an outer
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tensor product of a one-dimensional representation of 7, and an irreducible
representation of S3. Therefore, by Theorem (1.6), the weight system of any
irreducible representation of G, forms an a-string invariant under r,. There-
fore, the weight system () is a union of such r,-symmetric a-string which
clearly satisfies both (i) and (ii). O

Lemma 5. In the special case of ¢ = Adg ® C, one has
(i) 228 = —(p+4q) for 0,8 € A(G),

where {8+ ja;p > j > q} is the unique a-string containing 3,
(i) (o, ;) <0 for a; # o € 7 (i.e., distinct simple roots).

Proof: (i) Since the multiplicities of roots are always 1, there is a unique
a-string passing through a given 8. It follows from the r,-invariance that

B+ qa =ra(B+ pa) = B+ pa — ——-—2(0‘(’(52)”0‘) ‘o
a2, B)
=p8- (@) a— pa.
Hence 2o B
((:’a)) =—(p+4q).

(ii) Since simple roots are indecomposable, a; — a; € A. For otherwise,
either a; — a; or a; — a; is a positive root and hence, either o; or o; is
decomposable. Therefore, ¢ = 0 and

2(&1', aj)

(05, 1) =—(p+q) =-p<0.

Lemma 6. The system of simple roots, 7, is a linearly independent set
and the angle between a pair of simple roots is either 7 /2,2w /3,37 /4 or 57 /6.

Proof: (i) Suppose the contrary that there exists a nontrivial linear re-
lation among the simple roots. Then the coeflicients cannot be all of the same
sign because (a;, H) > 0 for all o; € 7 and H € Cy. Let the nontrivial linear

relation be
ZAiai— Z ujaj=0, Ai,/.tj>0.

a; €n’ a; En’’
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Then
2

= (Z A, Z/Jjaj)

=) i, 05) <0, [all (s, 05) < 0.

This is clearly a contradiction because }_ A;c; is a linear combination of uni-
form positive coefficients and hence must be nonzero.
(ii) Since 2(a, a;)/(ai, a;) are non-positive integers and

Z Aiai

a; En’

0< 2(&,‘,&]') . 2(a,~,aj)
- (ai’ai) (aj’aj)

<3

?

it is easy to see that there are only the following four cases:

p
T
2 )
0,0) o
{2(&1,&_7') 2(&1',&_7')} _ {_1’_1} . angle=< _3_’
(aiyou) * (o, ) {-1,-2} ’ 37
{_17_3} 4 ’
_f_)ﬁ
( 6

a

Remark Then above lemma still holds if one replace = by the subset of
indecomposable elements in A*.

Lemma 7. (i) r;(A%) = (AT\{a}) U {—a:},
(ii) Set 6 = 3 3 ca+ @ Then 2(ai,8)/(0i, ;) =1 for all o; € 7.

Proof: Let 3 be an arbitrary element in A*\{a;}. Then Cy and r;(Co)
are both at the positive side of (8)* because (a;)l is the only hyperplane
which separates Cp and r,(Cp). Hence

(B,71i(Co)) > 0 = (r(B),Co) > 0= r;(B) € AT,

namely, r; permutes elements of At\{a;} and sends o; to —a;. Therefore,

ri(At) = (At\{a;}) U {-ai}.
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2(&1,5) 1
— ——toy =1i(d) = = ri(o
(ai,ai) ( ) 2 QGXA:*' )
1 1 1
= - Z a——ai——a¢=6——a,~,
2 aEA+ 2 2
and hence 0 P
(0,9) =1 foralla;em. 0
(0, a4)

Remark The above inner products implies that § € Cp and hence
W(d) = {o(d); 0 € W} consists of |W| distinct points.

Examples: Root systems of rank 2 The cardinal number of the sys-
tem of simple roots # C A+ C A is defined to be the rank of a root system A.
There are the following four possibilities for root system of rank 2, according
to the angle between oy, oy is 7/2, 27/3, 37 /4 or 57 /6:

(i) §-case:

(ii) 2F-case:
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(iii) 2F-case:

(iv) 3F-case:

v

b=+, fr=oaz+2a1, Pz=az+301, Pi=202+3.

Exercises: 1. Compute the Weyl groups for each of the above cases.
2. Use Lemma 5 to show the above four cases are the only possible cases.

3. The Volume Function and Weyl Integral Formula

In applying the character theory to study the representations of a given com-
pact group G, one need to compute the hermitian products of character func-
tions in Lo(G) which are, by definition, integrals of the following form

/ Xo(9) - X4 (9)dg
G
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with respect to the Haar measure of total measure 1. In the nice situation
of a compact connected Lie group G, one may equip G with a bi-invariant
Riemannian metric with total volume 1 and effectively reduce the above inte-
gration of an Adg-invariant function over G to a much simpler integration of
a W-invariant function over a maximal torus T'.

Theorem 2. Let f(g) be an Adg-invariant function defined on G and
f(t) be its restriction to a given mazimal torus T which is, of course, W-

invariant. Then .
1
/Gf(g)dg = IT}V—lfo(t) -v(t)dt,

where |W| is the order of W and v(t) is the m-dimensional volume of the orbit
G(t), m =dimG — dimT.

Proof: As has already been pointed out in Remark (ii) following the
proof of Theorem 1, the union of all orbits of dimensions lower than m is a
subset of measure zero and hence can be omitted without affecting the values
of the above integral.

Every m-dimensional G-orbit intersects T perpendicularly and transver-
sally at exactly |W|-points and T is a totally geodesic submanifold of G. Since
f(g) is assumed to be Adg-invariant, i.e., constant along each orbit, it is con-
venient to integrate firstly along the orbital directions and then along the
T-directions. Hence

1
/G f(g)dg = / o)t = /T Bty O

/W

In order to fully exploit the above reduction formula of H. Weyl, one needs
to compute a nice, explicit form of the above volume function. Every m-
dimensional G-orbit is a homogeneous Riemannian manifolds of the same type
of G/T. Let us take a fixed homogeneous metric on G/T with total volume 1.
Then, to each given m-dimensional orbit G(t), one has the following equivariant
bijection:

G/T —2 5 G(t)

9T —— g(t) = gtg".
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Notice that all the tangent spaces at points in both G/T and G(t) are already
equipped with inner products, (i.e. the Riemannian structures on both G/T
and G(t)), and the Jacobian, i.e. det(dB;|:), x € G/T, records the magnifica-
tion factor of the volume element at z. Since B, is an equivariant map between
homogeneous Riemannian manifolds, the Jacobian function of B;:

J(t) = det(dBi|s), zeG/T
is a constant function, namely, B; is a map of uniform magnification. Hence,
v(t) = volm(G(t)) : voly(G/T) = det(dBi|s,) ,

where zo ( = the coset e - T') is the base point of G/T. This enables us to
reduce the computation of v(t) to that of det(dBs,).

To each pair of roots {+a}, one has the subgroup G,. Notice that G, /T is
a round two-sphere imbedded in G/T, say denoted by S2, and its tangent space
at the base point x¢ is exactly the T-irreducible subspace R% tay 1N Txo(G/T).
Therefore, one has the following commutative diagrams of maps, namely,

G/T —2 5 G(t)

U U
82 = GofT —21—s Ga(t) = S2(1),

and its linearization at xg

Teo(G/T) = & 3 Tuo(52) — 22— @ Y TLS2(t) = T,G(t)

U U

To.(S2) —25 _, T,82(1) .

Hence
v(t) = det(dB;) = [] det(dBy).
aEAt

Notice that the geometric meaning of each factor is that
det(dB{) = Area(S2(t)) : Area(S2),

where Area(S2) is a constant and S2(t) are conjugacy classes in G,. Set
t=ExpH, Heh,and T, x S® — G, be the covering homomorphism. Then



i
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and it follows from Lemma 7, ie. r;(AT) = (A*\{q;}) U {-e;}, that the
actual difference between the above product and the original product is that
(i) e™H(es.H) _ g=miles,H)) i5 replaced by its negative,
(ii) other factors are permuted in their ordering.

Therefore
Q(r;H) = -Q(H),
and hence

Q(oH) =sign(0)Q(H),

namely, @Q(H) is an alternating function with respect to the W-action on b.
In expanding the product form of Q(H), the leading term is

H e H) _ omi(26,H) _ 2mi(8,H)

aEAT

Hence, by the alternating property of Q(H),

QH) = Z sign(a)ez"i(”‘s’H) + possible other terms.
cEW

However, the fact
2(6—’&&:1 forallo; €n
(@i, ;)

show that 4 is the only vector of the forms

1
3 Z +a (with all possible choices of signs)
acAt

which belongs to Cy. Thérefore, there is, in fact, no other terms.

Finally, let us show that ¢ = 1. Substitute ¢ Q(H) - Q(H) for v(Exp H)
into the formula of Theorem 2 with f = 1, one gets

1 _
1=/Gl-dg=l—ﬁ/—|/Tc«Q(H)~Q(H)dt

2
C

IWI Z Sign(o_)e21ri(m§,H)

ceEW

Lo(T)
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Notice that {e2"*(°%H) g € W} is a set of |W| orthonormal vectors in Ly(T).

Hence \

> sign(0)e?™ M| = W] =c=1. O
cEW

4. Weyl Character Formula and Classification of Complex
Irreducible Representations

Let ¢ be a complex irreducible representation of G, T be a maximal torus
with b as its Lie algebra. Let Q(yp) be the weight system of ¢ and x,, be its
character function. Then

Xo(ExpH) = Y m(w,@)e @D, Hep,
wEN(p)

and it is a W-invariant function. We shall apply the integration formula of (3)
to compute the following integral criterion of irreducibility, namely,

1= /G xw-xwdgzl—vlv—| /T o (Exp H) - %0 (Exp H) - Q(H) - G(H) dt

- |—V1"_I|Xw(Epo) QU1 -

Since x,(Exp H) is W-invariant and Q(H) is W-alternating, it is clear that
X (Exp H) - Q(H) is a W-alternating function.

Set
o-fty=f(e7't), oeW, teT, felLyT).
Then 1
P= 7 > sign(o)o : La(T) — Lo(T)

occW

is an orthogonal projection of Lo(T) onto the subspace of W-alternating Lo-
functions. [It is easy to verify that P2 = P and for any f € Lo(T), Pf is
W-alternating.|

Let I’ be the set of all w € h with
2(w, ai)
(0, 0)

ez

and I'g = I'N Co. Then
{ezwi(w,H);w e F}
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forms an orthonormal basis of L,(T') and it is not difficult to see that

VIW| - Pe2mi@.H) , e T
{ }

forms an orthonormal basis of the subspace of alternating Lo-functions. [Notice
that |P - e2™«H)|2 = 1/|W| for w € Ty.]

For the following discussion, it is convenient to introduce an ordering on §
as follows.

Definition Fix an ordering of the simple roots and then extend them to
a basis of h by adding vectors if necessary. An element of § is defined to be
positive if its first nonzero coordinate with respect to the above ordered basis
is positive.

Remark The above ordering is clearly rather arbitrarily fixed. It de-
pends on the choice of Cjy and the ordering of simple roots. Anyhow, it will
only serve the limited purpose of providing some convenience in book-keeping,.

Definition The highest element in Q(y) is called the highest weight of
¢, and shall be denoted by A,.

Theorem (i) The multiplicity of the highest weight of a complex irre-
ducible representation ¢ is always 1.

(ii) Two complez irreducible representations, ¢ and v, of G are equivalent
if and only if A, = Ay.

(iii)
ZUEW sign 0.827ri(a(A“,+6),H)

xy(Exp H) = Y, ey Sign ae2mi(eH)

Proof: Let mg be the multiplicity of the highest weight, A, in Q(p).
Then

27i(Ay,

xo(Exp H) = mge H) 4 terms of lower order,

Q(H) = &2 4 terms of lower order.
Hence

Xo(ExpH) - Q(H) =myg - 2 (Ao t8H) 4 terms of lower order.
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Therefore, by its alternating property,

Xe(Exp H) - Q(H) =mo - Z sign ge?™i(@(Ap+9),H)
oeWw

+ possible other alternating sums.
However, it follows from the integral criterion of the irreducibility of ¢ that
|W| = |x,(Exp H) 'Q(H)&Z(T) = m?, - |W| + |possible terms|2.
Hence, the only possibility is that mg =1 and

Xo(ExpH) - Q(H) =mo - 3 signoe?mielde+d.t)
cEW

namely,

ZUGW sign ge2mi(o(A,+6),H)

ZUGW sign ge2ni(ad, H)

xv(Exp H) =

Since the character function x,(Exp H) is a complete invariant of ¢, the sec-
ond assertion follows readily from the above character formula of expressing
Xo(Exp H) purely in terms of its highest weight A.,. O

Corollary

. (Ap +4,a)
dimp = H ———‘?W- .
acA+ ’

Proof: The value of x,, at the identity e is, of course, just dim . There-
fore, one expects to obtain dim ¢ simply by substituting H = 0 into the above
formula. However, such a substitution makes the above formula into an inde-
terminant form of %! Of course, that does not mean that the above formula
can not be suitably exploited to give us dim¢. A typical way to get around
such indeterminant forms is to find the limit of the quotient as H — 0. As
it turns out, the best way is to set H = ¢ - § and then compute the limit of
quotient as ¢ — 0, because one can again make use of the identity of (iii) as



i




Lecture 5

Structural Theory of Compact
Lie Algebras

A Lie algebra & over R is called a compact Lie algebra if it can be realized as
the Lie algebra of a compact Lie group G. Let us analyze the algebraic im-
plications of the above rather geometric definition in order to obtain algebraic
characterization of compact Lie algebras.

1. Characterization of Compact Lie Algebras

Lemma 1. If & is a compact Lie algebra, then there exists an inner
product (,) on & such that

(X, Y], Z)+ (Y, [X,Z]) =0, 1)
forall X,Y,Z in@&.

Proof: Suppose & is the Lie algebra of a compact Lie group G. Then
there exists an Adg-invariant inner product (,) on . Let X, Y, Z be arbitrary
elements of &. Then

(Ad(ExptX)Y,Ad(ExptX)Z) = (Y,Z), teR. (2)

78
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Differentiate the above equation at t = 0, one gets
(X,Y],2) + (%, [X, Z]) = 0. 0
Definition An inner product (,) on & is called invariant if it satisfies the
above identity.

Theorem 1. A compact Lie algebra & splits, uniquely, into the direct
sum of its center and its simple ideals, namely

6=C08,0 -0,

when &; are distinct simple ideals of &. Moreover, each components is itself
a compact Lie algebra.

Proof: Let G be a compact Lie group with & as its Lie algebra and
assume that & is already equipped with an invariant inner product. Set

c={X e X, 6 =0} (the center of &)

and &' = ¢+, ®)
Then, it follows easily from (1) and (3) that
(6,8 Cc &
(4)
[8,8]+ ce,
and hence & = € @ &' as Lie algebra and moreover,
(6,6 =[¢,6]=06. (5)

Suppose ®; is a simple ideal of &’. Then it is also a simple ideal of & and
it follow from (1) that
&' = (Q: @ el)i_

is also an ideal of &, namely,
B=Ch &, ®6"  (asLie algebra).

Let G, G” be the connected Lie subgroups of G with &1, &" as their Lie
algebras. Let Z&(G)), Z&(G") and Z° be the connected centralizer of Gy,
G" and G respectively. Then it is easy to see that their Lie algebras are
respectively

Copd’, Ce®, and €,
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and hence, ®; and ®' are respective the Lie algebras of
Z&(G") ] z° and Z&(Gr)/Z°,

which are clearly compact Lie groups. This proves that both ®; and " are
themselves compact Lie algebras and it is then easy to complete the proof by
induction on the dimension of &. 0

Definition The Cartan—Killing form of a Lie algebra & is defined to be

B(X,Y) = tradx o ady, X,Yes. (6)

Lemma 2. B(X,Y) is a symmetric bilinear form and
B(AX,AY) = B(X,Y),

for any automorphism A of ®.

Proof: It is straightforward to check that B is both symmetric and bi-
linear. Let A be an automorphism of &. Then A[X,Y] = [AX, AY] simply
means

A-ady =adyx-A or adgax = A-adx-A71.

Therefore
B(AX,AY) =tradax - aday
=trAdadxyA~! - AdadyA~!
=trady -ady = B(X,Y). g

Corollary B([X,Y],Z)+ B(Y,[X,Z])=0.

Proof: Exp(tadx) is a one-dimensional subgroup of automorphism of &.
Hence

B(Exp(tadx)-Y, Exp(tadx)-Z)=B(Y,Z), teR.
Differentiate the above equation at ¢t = 0, one gets

B([X,Y],Z)+ B(Y,[X,2)) =0. o
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Lemma 3. If & is a simple compact Lie algebra, then B is negative
definite.

Proof: Equipped & with an invariant inner product. Then adx is an
anti-symmetric linear transformation of & and hence all its eigenvalues are
purely imaginary. Therefore

B(X,X) = tr(adx)? <0,
and equals to zero only when adx = 0, i.e. X = 0, namely, B is negative
definite. O

Lemma 4. If & is a Lie algebra with negative definite Cartan—Killing
form and D is a derivation of &, then there exists Z € & with D = adg.

Proof: Recall that Exp(tD) is a one-parameter subgroup of automor-
phisms of & if and only if D is a derivation of &, namely,

D[X,Y]=[DX,Y]+[X,DY], XYe®. (7)

Therefore, the set of all derivations of &, says D, is a Lie subalgebra of gl(®)
and it contains ad® as one of its Lie subalgebras. Moreover, for D € D and
Xes,

[D,adx]Y = D -adx(Y) — adx (DY)

= D[X,Y] - [X,DY] = [DX,Y] = adpx(Y), ®)

namely,
[D,adx] = adpx, [D,ad8] C ad® .

Let B and B be the Cartan—Killing form of © and ad® respectively. Then it
follows from [D, ad®] C ad® that

B(X,Y)=B(X,Y) for X,Y c ad®.

Set
I ={D e D;B(D,ad®) = 0}.

Then it is easy to see that I is also an ideal of D and it follows from the
negative definiteness of the Cartan—Killing form of & that ad : & — ad® is an
isomorphism and I N ad® = {0}, [I,ad®| = {0}.
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Let D be an arbitrary element of I. Then
[D,adx]| =adpx =0 forall X € &
= DX =0 forall X € & = I={0}
=D =ad6. a

Theorem 2. A simple Lie algebra ® is compact if and only if either
(i) its Cartan-Killing form is negative definite, or (ii) it has an invariant inner
product.

Proof: It is quite obvious that (i) < (ii). The “only if” part is already
proved in Lemma 3. Therefore, what remains to be proved is that (i) implies
that & is compact.

Let ad® be the image of ad : & — gl(®). The simplicity of & implies that
ad® = & and condition (i) or (ii) implies that ad® is a Lie subalgebra of the Lie
algebra of anti-symmetric matrices, namely, the Lie algebra of the orthogonal
group of &, O(®). On the other hand, ad® is also the Lie algebra of all
derivations of ® and hence, it is exactly the Lie algebra of the automorphisms
groups of &, Aut(®), which is clearly a closed subgroup of O(®). Therefore,
® = ad® is the Lie algebra of the compact Lie group Aut(®). 0

Theorem 3 (H. Weyl). Let G be a compact connected Lie group and G
be its universal covering group. If its Lie algebra & has no center, then G is
also compact.

Remarks (i) In the special case of rank one, it follows from the classifi-
cation theorem that G = S3. Hence the above theorem is a generalization of
the above known special case.

(i) In case & has nontrivial center, namely, & = € ® &', dim€ = d > 0,

then G contains a factor of R¢ and hence non-compact. Therefore, the above
theorem, in fact, asserts that G is compact if and only if & has no center.

Proof of Theorem 3: Let 7 : G — G be the universal covering of
G. We shall first equip G with a bi-invariant Riemannian metric and G with
the induced covering metric which is, of course, also bi-invariant. Let T be
a maximal torus of G and G(tp), t¢ € U NT, be an orbit of the generic
type which is contained in an evenly covered neighborhood of the identity in
G (cf. §3-1). Let b be the Lie algebra of T, T = Exph in G and &, be the
unique lifting of ¢ in the neighborhood of identity in G. Then, it is easy to



Structural Theory of Compact Lie Algebras 83

see that G(fy) is the unique lifting of G(to) in the neighborhood of identity
in G. The following commutative diagram summarizes the above situation:

c ~

T > Gaé(to)
hc & T =
T/C \:GDG(tO)

where both {T,G(to)} and {T', G(fo)} intersect transversally and perpendicu-
larly at to and o respectively.

Since T is again totally geodesic in G and G is complete, it follows from the
same simple geometric reason that T intersects every conjugacy class of G. In
particular,

T > Z(G) D ker,

namely, T = 7~!(T) and hence G is a finite sheet covering if and only if T is
still a torus, i.e., still compact. Suppose the contrary that T ~ T) x R, d > 0.
Then, for each pair of root '+a € 4,

Co = 17HGa) ~ 8% x Ty
= R? c T, = Expha,
where B is the kernel of o : T — R. Therefore, the Lie algebra of R¢ lies in
m{ba; «a € A} = the center of &,

which is clearly a contradiction to the assumption that & has no center. [J

Summarizing the above discussion on compact Lie algebras, we state the
result of this section as follows:

(1) A Lie algebra (over R) is compact if and only if it possesses an invariant
inner product.

(2) Every compact Lie algebra & can be uniquely decomposed into the
direct sum of its center and a semi-simple compact Lie algebra, namely, & =
¢ @ &', where ®' is a direct sum of simple compact Lie algebras.
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(3) A center-less Lie algebra & is compact if and only if its Cartan—Killing
form is negative definite.

(4) For every center-less compact Lie algebra &, its connected automor-
phism group is a compact linear group with ad® as its Lie algebra; the simply
connected Lie group with & as its Lie algebra is also a compact Lie group.

2. Cartan Decomposition and Structural Constants of
Compact Lie Algebras

By Theorem 1, the structure of a compact Lie algebra & can easily be reduced
to that of its simple components. Hence, for simplicity and without loss of
generality, we shall always assume that a compact Lie algebra & is simple to
begin with in the following discussion.

Let & be a given compact simple (or semi-simple) Lie algebra and G be
either the connected automorphism group of & (with ad® ~ & as its Lie
algebra) or the simply connected Lie group with & as its Lie algebra (by
Theorem 3, it is compact). Recall that the Cartan—Killing form of & is neg-
ative definite and hence it provides an intrinsic inner product on &, namely,
(X,Y) = -B(X,Y) = —tradx - ady. Let T be a maximal torus of G, § be
its Lie algebra (i.e. a Cartan subalgebra of &) and A C §h* be the root system
of &. In fact, it is slightly more convenient to use the above intrinsic inner
product to identify h* with h and to consider A as a subset of § itself.

Cartan decomposition of 8@ C and & Recall that the adjoint trans-

formation
Ad:GxG-G

is actually the geometric representation of the totality of the non-commutativity
of G. The adjoint representation of G

Ad:Gx& -8
and the adjoint representation of &

ad: B x® > &

are exactly the two stages of linearization of the above adjoint transformation.
The restriction of Ad ® C to T gives the following decomposition of & ® C,
namely,
6@C=hHoCo Y Ca (9)
aEA
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such that

Ad(ExptH) - Zy = e2milai)t . 7
(10°)

(H, Za) = ady - Zo = 27i(a, H) - Z,,

for all H € h and Z, € C,. Correspondingly, the restriction of Adg to T gives
the following Cartan decomposition of &, namely,

+a€A

such that
Ad(ExptH) - X = cos2m{a, H)t - Xo +sin2m(a, H)t - Y, ,
Ad(ExptH)-Y, = —sin2n(a, H)t - X5 + cos2m(a, H)t - Yy,
[H, X, =ady - Xo =27(e, H) - Y,
(H,Y,] =ady - Yo = —27(o, H) - X,

av)

for H € h and orthonormal basis {X,,Ya} in R%,,.

Lemma 5. Let G, be the connected Lie subgroup of G with &, = h®RZ
as its Lie algebra (cf. Theorem 4.2). Then the restriction of Adg ®C to G, has
the following decomposition into its complex inreducible components, namely

BRC= (o)t ® {{a) DCa ®C-4}
® Y {Corpa® - ®Cpygal}, (12)

a—string
where {8 + jo; ¢(a, B) < j < p(e, B)} is the a-string in A passing through (.

Proof: T C G, C G, A(G,) = {£a} and there is a covering homomor-
phism of $2 x T, onto G. Therefore, an irreducible complex representation of
Ga can also be considered as an irreducible complex representation of S3 x T,
via the pull-back, and hence, its weight system forms an a-string reflectionally
symmetric with respect to the Lie algebra of Th, i.e. ho = (@), (cf. Theo-
rem 4.2). Since the multiplicity of each root 3 € A is 1, each root 8 belongs
to a unique a-string of roots passing through it, namely,

{B+jeoi9(e, B) <5< pla, B)}- O

Remark In fact, the lengths of the above a-strings of roots are at most
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3 and a-strings of length 3 only occur in the case A(G) is of Ga-type (cf. Lec-
ture 6).

Lemma 6. For a pair of roots a, B € A, a+ 3 #0,

(CayCsl=0 ifat+BdA,
[Ca,Cﬁ] =Caqp fa+pBeA,

ABi2) _ _(1(a, B) + g, B)).

(a, @)

(13)

Proof: Let Z,, Z3 be nonzero elements of C,, Cg respectively and H be
an arbitrary element of fj. Then

(H, Za] = 2mi(c, H) - Za,
(H, Zg] = 2mi(B,H) - Z3,
and hence
(H,[Za Zp)] = [[H, Za], Z] + [Za [H, Zgl]
=2mi(a+ B, H) - [Za, Zg] .

Therefore, (Zo,Zs] = 0if o+ 8 € A and [Z,, Zg] € Coyp if o+ B € A, and
moreover [Zq, Zg] # 0 in the later case. For otherwise,

Cp1ga®---®Cp

already forms a G,-invariant subspace of ® ® C, which contradicts Lemma 5.
Finally, since {8 + jo;¢(e, 8) < j < p(a, §)} is an a-string of roots reflec-
tionally symmetric with respect to (o)1, one has

_ 28+p(a, B, 0)

(o, @)

B+ q(e, fla = B+ p(a, Blox

bl

namely,

This proves that




Structural Constants

—B(X,Y) = —trady - ady,
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Recall that ® is a given compact simple (or
semi-simple) Lie algebra equipped with the intrinsic inner product (X,Y) =

and

88C=hHoCo® Y Ca,

aEA

s=ho » R,

+a€A

are the Cartan decomposition of ® ® C and & respectively. Let Z, be a
unit vector of C, and {X,,Y,} be an orthonormal basis of ]R% +a) such that

Z_o = Z4 and

4

\

Xo= 5=(Za+7-0),

1
Zo = —=(Xa —iYa),
75 Ka—i¥a)

1
Z-o=—F7(Xa+1iYa).
75 (Xa+ %)

Then, one has [X,,Y,] € h and

(Xa,Ya), H) = (Yo, [H, Xa]) = 27(e, H),

for all H € . Hence

Lemma 7.

Xa, Y] = 27a,
(Za) Z-o] =2mic.

such that (Za,Zp] = Na,gZasp. Then

(i) Nag=—Np,a,
(ii) N-a,-g = Na,s,

(i) Ifa+ B+~ =0, then Nog = Npy = Ny a.

(14)

(14)

(15)

(15)

For a,B,a+ B € A, set N,y g to be the structural constant



88 Lectures on Lie Groups

(iv) If a + B+ + 6 = 0 and there are no opposite roots in the above four
roots, then
No,sNy,s + Ng,yNays + Ny,aNp,s = 0.

(v) INag)® = Nag - Nea,~p = 21%p(a, B)(1 — (@, B)) - (@, @).
Proof:

(i) [Zp, Za] = —[Za) Zp] = Np,a = ~Nap.

(i) [Z-a,Z-p) = [Zas Zp] = Na,g * Za+p = Na,g * Z—(atp)

= N_a,_ﬁ = Na,ﬁ *
(iii) Suppose that o, 8, v € A and a + 8+ =0. Then

Nog = (Na,g * Z-vy, Zy) = ((Za, Zp), Zo)
= (Zas 28, Zv]) = (Za;NpyZ-a) = N,y -
Hence Na’ﬁ = Nﬁ,,y =N. ,ar

(iv) Let a, B, v, 0 € A, a+ 8+ v+ 6 = 0 and there are no opposite pairs
among them. Suppose that 5+~ € A. Then a + (8 + ) + d = 0 and hence

(Za,(Zs; Z4y)l = NgyNa,ptvZ-5 = ~NpgyNa,sZ—s -

[The above still holds if we set Ng ., =0 for the case §+ v g A.]
Therefore, it follows from the Jacobi identity that

—{NpyNews + Ny,aNp,s + Na,gNy s} - Z-5
= [Zes |23, Z4)] + (2, [Zs Zall + [Zy, [Zay Z]] = 0,
which clearly implies that
NogNys+NgyNas+NyoNgs=0.
v)
[2-a:[Zas Zp1qa]] = ([(Z~a) Zal, Zp+ge] +0
= [~2mia, Zgtqa] = —(270) - (@, B+ 9@) - Zpga

1
— 4 (g = 1) (0,0) - Zpraa-
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[Notice that [Z_4, Zg+¢a) = 0 and (a, 8) = —(p+¢)(a, a)/2.] Set Zy = Zg1qa
and inductively Z;4, = [Za, Z;]. Then

(Z-a:[Za, Zj1]) = [[Z-as Zals Zit1] + [Za; [Z - Zj+1]]
= [-2mic, Zj11] + (2o, [ Z-ay [Zay Z5]]] -

Therefore, it is quite straightforward to prove by induction that

(Z-a,1Za, Z5]) = 27°(j - p)(1 — g + j) (&, @) - Z;.
In particular, one has

(Z-0Za, Zp]) = 27°p(q ~ 1)(, ) Zg,
and hence
2n%p(g ~ 1)(, @) = Na,gN_a,a+p
= Na,sN_p,—a = ~|Nagl*,

namely

|Na,ﬁ|2 = 27r2p(1 —g)(e,@). ]

Theorem 4 (Chevalley). Let & be a simple compact Lie algebra, A be
its root system and m = {ay, ..., ok} be a chosen system of simple roots. Then,
there ezists a basis of the Cartan decomposition of & @ C

{H; €9,1<j <k Z, €Ca,a €A},
with the following structural constants:
() (H;, 2] = 714z,
(i) [Z4, 2", =iHa = fo—"‘a, H, is an integral linear combination of Hj,
1<j<k,

(iii) [ZL, Zgl=0ifa+ B E A,

(iv) (24, Zg) = £(1 — @) Zatp if &, By + B € A and {B + jo; 9 < j < p} is
the a-string in A containing .

Proof: (i) Set
a

and H; =H,;,1<j<k,

Hy=———
(e, @)

7., Xi=———X., V= —— V..

Za = 7/ 2(a, @) 7/2(a, @) T/ 2(a, a)
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Then
X2 ¥2) = Goifaray = ) = B
%2 220] = 2737(2?04) - w(z,ia) = i,
(Ha, X5) = 21(8, Ha)V} = 2((:‘ (f;) Y},
[Ha, Y]] = —2n(8, Ha)X} = — 2((: f)) Xy,
(Ha, 2] = 2mi(B, Ha) Z) = %iz@

(ii) Set N, s =0if o+ 8 ¢ A, and
(Ze Z5]l = NogZas
ifa, B, a+ B8 €A. Then

“f " Vanlallf]
and hence
;2 la+ B2 2
|Na,ﬂl = 27r2|a|2|,6|2|‘ a,ﬁl
a+ (2
=p(l-— q)‘ |ﬁ|2ﬁ| [by (v) Lemma 7].
On the other hand, it is easy to check the list of root systems of rank 2 that
o+ B2
EE

holds in general. Therefore
IN, 5> = (1-9q)°.

(iii) For 1 <4, j < k, one has

) N . 2(ai’Hj) .
T’»(HJ) - HJ (ai,ai) 2
_ Hj . 2(ai,a,~) = Hj _ 2(ai,a,~)Hi )
m(ou, ai)(a, o) (aj, &)
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Since every H,, o € A can be transformed into an H; by a suitable sequence
of such reflections, it is easy to see that H, is always an integral linear combi-
nation of {Hj;;1 < j < k}.

(iv) Observe that one may still adjust each pair {Z},Z’ .} by a factor of
unit complex numbers without disturbing all the above result, namely

{20, 2L} » {° 2,772}

Therefore, the final part of the proof is to show that it is always possible to
adjust all the pair consistently so that all N ('!, p are real! This can be accom-
plished by a simple procedure of inductive tune-up and (iv) of Lemma 7 as
follows.

Let us again adopt an ordering in ) and set

Ay, ={aeA—y<a<n}.

Inductively, we shall assume that {Z},Z’ .}, o € A,, have already been
chosen such that

N,s€R forall a,f,0+8€A,.

If v is an indecomposable positive root, then any choice of {Z7, Z_.} will also
satisfy
N,z €R forall a,f,a+08€ A, U{£}.

Otherwise, let v = a + 3 be the decomposition of 4 with the smallest possible
a. We shall re-adjust {Z], Z ,} so that

N,z €R*.

Therefore, what remains to verify is that such an adjustment will make all

other
1

ay,p ar+fi =19
also real. Suppose v = a; + 0 is another decomposition of 4. Then a + 3 +
(—ay) + (—=61) = 0 and Lemma 7 (iv) applies. Hence

Na»ﬁN_alx_ﬂl + Nﬂ,—alNa,—ﬁl + N—a,aNﬂ,—ﬁl =0.

The other five structural constants are real, this certainly implies that

N_q,-p, = No,p is also real. O
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Remark If one set H; = i . Hj, then the structural constants of & ® C
with respect to the basis {H},1 < j < k;Z,,,Z’ ,,a € A%} are all integers.
This basis enable us to obtain a Lie algebra over a field of characteristic p.
The above theorem is usually called the Chevalley’s basis theorem.



Lecture 6

Classification Theory of
Compact Lie Algebras and
Compact Connected Lie Groups

Let G be a given compact connected Lie group and & be its Lié algebra. Then,
by Theorem 5.1, & splits into the direct sum of its center and its simple ideals,
namely

®=€@®1@@®l:

where each ®; is also a compact Lie algebra. The connected Lie subgroup, G;
with &; as its Lie algebra is a compact subgroup of G. Let Z° be the connected
center of G. Then it follows from the above direct sum decomposition of
& that

Z°x G xxG =G, (90,915, G1) 2 Go- g1 g1

is a covering homomorphism with a finite kernel. This enable us to reduce the
classification of compact connected Lie group to that of simple compact Lie al-
gebras and that of simply connected, simple compact Lie groups
(cf. Theorem 5.3) together with the determination of their centers.

93
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1. Classification of Simple Compact Lie Algebras

Let us first summarize the results on the structures of simple compact Lie
algebras that have already been established in the previous lectures.

(1) The Cartan—Killing form, B(X,Y) = tradx - ady, of a simple compact
Lie algebra & is negative definite. Hence ® has an intrinsic inner product,
(X,Y) = —B(X,Y), which is invariant, i.e. ((X,Y],Z) + (Y,[X, Z]) =0.

(2) It follows from the maximal tori theorem that any two maximal Abelian
subalgebras of a given compact Lie algebra & are conjugate under the action
of Adg. Therefore, the geometric properties of the root system, A, are inde-
pendent of the choice of the Cartan subalgebra h (or the maximal torus T)
and hence are, in fact, structure invariants of &.

(3) The Weyl group W acts on the Cartan subalgebra b as a group generated
by the reflections {r,; ta € A} where ro(H) = H — %Z%za, Heh. It acts
simply transitively on the set of chambers. Therefore, any two simple root
systems (based on the choices of different Weyl chambers) of a given root
system are W-conjugate.

(4) Theorem 5.4 has already gone a long way in determining the structure
of a simple compact Lie algebra, &, solely in terms of the homothetic property
of A. The following classification theorem is actually a slight up-grading of
Theorem 5.4.

Theorem 1. Two simple compact Lie algebras & and &' are isomorphic
if and only if their simple root systems w and 7' are homothetic, namely,

s or~n.

Proof: Let:: ® = &' be a given isomorphism of & onto &', h and ' be
given Cartan subalgebras of ® and &' respectively. Then () and ' are two
maximal Abelian subalgebras of " and hence there exists, by Corollary 3.1,
an adjoint automorphism o : & — &’ such that oc(h) = §’. Therefore o« maps
the root system, A, of & with respect to h) isometrically onto the root system,
A’ of &' with respect to §’. Let 7 be a chosen simple root system in A. Then
ou(r) is also a simple root system in A’ which is W’-conjugate to any other
simple root system ' in A’. Hence, 7 and 7’ must be isometric.

Next let us proceed to prove that m ~ 7’ implies & = &’. We shall denote
the corresponding element of a; € 7 by ag, namely
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2((1,‘,(11') _ 2(&;, a;)
(,00) ~ (of, )
It is straightforward to check that the above homothety, a; < o}, extends
linearly to an equivariant isomorphism between (W, h) and (W', ') whose re-
striction to A is, of course, also a homothety between A and A’. We shall
choose the orderings on §’ to be compatible with that of § and shall denote
the corresponding root of & € A simply by o € A’.
Let {H;,1 < j < k;Z4,0 € A} and {H},1 < j < k,Z,,0/ € A’} be
respectively the Chevalley basis of & ® C and &’ ® C such that

Na1ﬂ = (1 - q) = N:!’,ﬂ' ’

) 1<4,j<k.

whenever v = a + 3 (resp. v’ = o' + ') is the decomposition of v (resp. v')
with the smallest possible a (resp. o). Then it follows from (iv) of Lemma 7
that
Na,ﬂ = Nc,!',ﬂ’ y

for all @, B, @+ B € A. Therefore, the homothety

tih—b, JH;)=H;, 1<j<k
extends to an isomorphism of complex Lie algebras

Fi8QC B QC, MZa) =2,

and moreover, (*(Z) = ¢*(Z) forall Z € 8 ® C.
Hence, the restriction of ¢* to & is an isomorphism of & onto &’'. In fact,
it maps the vectors

1 7
Xo= 2 (Z 4 2.0) and Yy=—(Z.—Z_.
/5 ZatZ-a) an 7 )

to
13

1
I=_ZI

respectively. O

12 + Zl_a/) a-nd Yt;/ - \—;_E(Z;, - Zl_a,)

In the special case of & = &/, it is not difficult to refine the above isomor-
phism theroem into an automorphism theorem.

Theorem 2. Let & be a given simple compact Lie algebra, ) be a Cartan
subalgebra of ® and ® be a simple root system of &. Let Aut(®) be the group
of all automorphisms of &, Ad(®) be the connected Lie subgroup of GI(®) with
ad(®) as its Lie algebra. Then
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(i) Ad(®) is ezactly the connected component of the identity in Aut(®),
i.e. Ad(®) = Aut®(®).
(il) Aut(®)/Ad(®) = Isom(n), the group of isometries of .

Proof: (i) Let D be the Lie algebra of Aut(®) and D be an arbitrary
element of D. Then

ExptD - [X,Y] = [ExptD- X,ExptD-Y]; X, Yeo.
Therefore, by differentiation at ¢t =0,
D.[X,Y]|=DX,Y]+ [X,DY], X, Yes,

namely, D is a derivation of &. Hence, by Lemma 4, © = ad(®) and hence
Aut®(8) = Ad(8).

(if) For the proof of the second assertion, it is convenient to identify &
with ad(®) and denote Ad(®) simply by G. Let T be the maximal torus of G
with the given §j as its Lie algebra and a be an arbitrary element of Aut(®).
Then a(h) is again a maximal Abelian subalgebra of & and, by Corollary 3.1,
there exists g € G such that ga(h) = b, ga(A) = A. Hence, ga permutes the
set of chambers. Let Cy be the Weyl chamber corresponding to the chosen
simple root system 7. Then, by Lemma 4.1, there exists an element n € N(T')
such that nga(Co) = Co. Moreover, if a € G, then ga(h) = b implies that
ga € N(T) and it follows from the simple transitivity of the W-action on the
set of chambers that nga(Cp) = Co implies that nga € T. Therefore, in the
case a € G, the restriction of the above nga to Cy (resp. 7) is the identity map.

The above discussion shows that Aut(®)/Ad(®) has a natural induced
isometric action on Cp as well as on 7, namely, it defines a homomorphism

p: Aut(®)/Ad(®) — Isom(r).

The above homomorphism is surjective because any isometry of m can be ex-
tended to an automorphism of &, by Theorem 1.

Suppose that a € Aut(®) and its restriction to Cy is the identity map.
Then, in the Cartan decomposition of & ® C, C,,, 1 < j < k, are all invariant
subspaces of a. Hence, there exists suitable {6;,1 < j < k} such that

a(Zaj) = 2™ Zaj ) 1<j<k.
Set H € b be the element such that

(H,aj)z——ﬂj, 1Sj§k
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Then ExpH € T and
Exp H - a|Cp = 1dc,,
ExpH -a(Za;) = Za, , ExpH: a(Z-0;)=Z_,, .

Since {8, Za;, Z-a;,1 < j < k} already generates 8®C, Exp H-a =1d,ie.a =
Exp(—H) € T. This proves the injectivity of p and hence the isomorphism

Aut(®)/Ad(&) = Isom(n). a

2. Classification of Geometric Root Patterns

Theorem 1 effectively reduces the classification of simple compact Lie algebra
to that of the homothety-types of their simple root systems.

Lemma 1. A compact Lie algebra & is simple if and only if its simple
root system m spans b and has no nontrivial splitting into mutually orthogonal
subsets.

Proof: It is easy to see that & is semi-simple if and only if # spans §. If
® is semi-simple but non-simple, then

®=®l®"'®®l, W(®)=W(®1)EB---EB7F(®[),

where 7(8;), 1 < 7 <[ are mutually orthogonal. Conversely, suppose 7 splits
into two mutually orthogonal nontrivial subsets, namely

r=xUn", I
Let a € 7', B € 7 and hap = (@, B)L, Tap to be the subtorus with hag as
its Lie algebra. Let Gop be the centrallzer of Thp and Gag = Gog/Tap. Then

Gop is a compact connected Lie group of rank 2 and A(Gap) = {xa,+0}.
Therefore, Gop is covered by S% x S% and hence

2 2 —
Rz Rizs] =0,
for o € 7' and B € 7. Set &' and B" to be the subalgebra generated by
{R?ﬂ,),a €n'} and {R?iﬂ),ﬂ e}

respectively. Then it is not difficult to see that & = &' & &” and hence non-
simple. ]

Schematically, it is convenient to record the angles between the simple roots
o4 € w by a diagram defined as follows.
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(i) Each simple root is simply represented by a dot.
(ii) Two dots are joined by 0, 1, 2, or 3 lines according the angle between
the two corresponding roots is 7/2, 2w /3, 37 /4 or 57/6 (cf. Lemma 4.5).

Remarks (i) 7 is non-splitable if and only if its associated diagram is
connected.

(ii) One may also consider the above diagram as the book-keeping device
of the geometry of the Weyl chamber Cy, namely, each dot denotes a wall and
the number of lines joining two dots records the angle between the two walls,
ie, {0,1,2,3} & {7/2,7/3,7/4,7/6}.

The following is a simple classification result in the realm of elementary
Euclidean geometry.

Theorem 3. The following is a complete list of all geometrically feasible
connected diagrams:

(i) Ae O——O0——0¢s s 0——0 (k dots)
(ii) Byor Cy: O——00 0 e O———Ommmam( (k dots, k 2 2)
(ili) Dy O——0seses (k dots, k 2 4)
(iv) Eg o0——o0 1 o2 o]

(v) Fg o]

Q
Q
(o]

0
0
o

(vi) Gz Oy
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Remark Two simple roots joined by a single bond are always of the same
length. Two simple roots joined by a multiple bond are of different lengths,
one usually adds a direction to the multiple bond to indicate that the later
one is shorter. In fact, only the second case will make an essential difference
in this refined diagram, namely,

Bk: O——0 0006 O——Omm=mdO

Ck: O——0¢ 000 O——O=—=O

they are different for k > 3

Proof: The above theorem is a purely geometric fact in Euclidean space,
namely, the possibilities of having k linearly independent unit vectors {e;,1 <
j < k} with specifically prescribed angles. We shall call a geometrically realiz-
able diagram an admissible diagram. It is not difficult to see that such a set of
unit vectors {e;,1 < j < k} exists if and only if

k
2 :xjej
j=1

and is equal to zero only when all ; = 0. By taking special values of z;, it is
easy to obtain the following necessary conditions on the admissible diagrams.

2

k
= Z xi:cj(ei,ej) >0,
i,j=1

(1) Subdiagrams of an admissible diagram are still admissible.
(2) An admissible diagram contains at most (k — 1) bonds.

Proof:
2

=k+2) (ei,e;) >0

i<j

k
doe
i=1

implies that the number of nonzero terms in (e;, e;) is at most (k — 1).
(3) (1) and (2) implies that there is no cycles in the diagram.
(4) No more than three lines can be joined to a single dot.

Proof: Suppose ey,...,e; are joined to e;y;. Then by (3), e;,...,e; are
orthonormal. Extend them to an orthonormal basis of {e1,...,e;,er41) by
adding €;,. Then

l

er+1 = Z(ei;el+l) -€; + (8141, €141)&41 -
i=1
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Hence

Z(ei,el+1)2 =1—(&41,e141)° <1,

namely, 3" 4(e;, e141)% < 4. O

(5) The diagram obtained by contracting a subdiagram of the type
o—o -+ 0—0 in an admissible diagram to a single dot is still admissible.

Proof: Suppose ey, ..., e; are the unit vectors with a subdiagram of the
above type. Then e; + - - - + e; is again a unit vector and the diagram of
{(er+ - +er),ery1,-. ek}
is exactly the contracted diagram. [It is easy to see the case [ = 2.]
It follows easily from (1)—(5) that

(i) Oww=0 s the only admissible diagram with a triple bond.

(i) An admissible diagram contains no subdiagram of the following type,
namely,

O O Oeeee O O O \ ( O ()

O 0 00 ®
> they contract to <

and hence contradicts (4).
Finally, let us determine which diagrams of the following type are admissi-
ble, namely,

O——=0 ¢ ¢ ¢ ¢ Ommmmm)———Q 00000 quZl,
e € e £, £ f



i




102 Lectures on Lie Groups

Summarizing the above rather elementary detail discussions, one shows that
the diagrams listed in Theorem 3 are, indeed, the only admissible connected
diagrams. It is not difficult to construct explicitly given set of unit vectors to
demonstrate that all of them are geometrically realizable. O

Remark Of course, it is a problem of different order of magnitude to
determine whether they can all be realized as the diagram for the simple root
system of compact Lie algebras. However, the remarkable final results of the
classification theory of compact Lie algebras is exactly that each one of the
above diagram can be realized as the diagram of 7 for a unique simple, compact
Lie algebra (up to isomorphism)!

Exercises (i) Construct explicit sets of unit vectors whose diagram are
exactly Ay, By, Di, Eg¢, E7, Eg, Fy, G5 respectively.

2. Show that an isometry of two simple root systems uniquely extends to
an isometry of the root system.

3. Classical Compact Lie Groups and Their Root Systems

(I) U(n) and SU(n)

Let U(n) be the group of n x n unitary matrices and SU(n) be the subgroup
of n X n unitary matrices with determinant 1. Let y, be the representation of
U(n) on C* ~ M, ;(C) via matrix multiplication and !, = u,|SU(n). Then

T™ = {diag(e?™,...,e?™%"),0 < 9; < 1}

is a maximal torus of U(n) and the subtorus 7"~ C T™ defined by the condi-
tion 6] + 05 + - - + 6/, = 0 is a maximal torus of SU(n). Hence

Qpn) = {6531 <j <n},
up) = {05;1<j<n}, D 6;=0.

The Lie algebra of U(n) consists of all skew hermitian matrices and hence
its complexification of gl(n,C) = M, ,(C). Therefore,

Ady(n) ® C = pn Oc py,,

Adsy(n) ® C = pip, ®c iy — 1.
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and hence
AU(n)) ={(6; —bk), 1 <j#k <n},
A(SUM)) = {0, - 8),1<j £k <n}, 38, =0.
It is quite natural to choose the ordering such that

6,>6,>--->80. (for the case SU(n)).

n—1
Then
A*(SU(n)) = {(6; ~ 84),1 < j < k <n},
and

m={0; —0;,,,1<j<n-1}.

The Weyl group acts on

b= {(9’1,0’2,...,94,)’293’ =0}

as the permutations of the n coordinates. It is convenient to regard 6; =
0; — % 3°8; where {6;;1 < i <n} is an orthonormal basis. Therefore, one has
the following diagram.

(¢]
4 4 Y4 4 4 4 Y4 Y4
91_02 02_ 03 ej_ 9j+1 en—l_en
(IT) SO(n)
Let O(n) be the group of n x n orthogonal matrices. It consists of two
connected components with determinants of +1 respectively; SO(n) is the

subgroup of n x n orthogonal matrices of determinant 1. Let p, be the repre-
sentation of SO(n) on R™ = M, 1(R) via matrix multiplication. Then

Adso(ny = A%pn,

namely, the conjugation of anti-symmetric matrices by orthogonal matrices. It
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is convenient to choose the maximal torus of SO(n) as follows.

.

cos2nwf, —sin2nw6,
sin27#; cos2mf,

n=2k:TF={

Then

Therefore

cos 2wl —sin 276y
sin 278, cos2ml; )

cos 276,

sin 276,

—sin 2764
cos 26,

cos 270
sin 270y

—sin 270y
cos 270

Q(paw) = {£8;,1 < j <k},

Qp2k+1) = {£0;,1 < j < k;0}.

A(SO(2k)) = {6; £6;,1 <i < j <k},

ASO(2k+1)) ={+0: £0;,1 <i<j<k;18;,,1 <i<k},

and hence the Weyl group action on § = {(6y,...,0k)} is as follows.
W (SO(2k)): permutations with even number of sign-changings.
W(SO(2k + 1)): permutations with arbitrary sign-changings.
It is convenient to fix the ordering such that

0, >02>--->0;

and regard {#;;1 < i < k} as an orthonormal basis.

/)
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Therefore,
AY(SO(2k)) = {6: + 6;,1<i<j<k},
A*(SO(2k+1)) = {6:; +6;,1<i<j<k;6;,1<i<k},
m(SO(2k)) = {0; — 8;41,1 <j < k—1;6k_1 + 61},
m(SO(2k + 1)) = {6; — 0;41,1 <j < k—1;6;}.

Hence one has the following diagrams.
SO(2k), k > 4:

k-1 k
O senne 9 —6 (D)
k-2 k-1 k
Bl'_ 6, 92_ 93
Bk-l-ek

SO(2k + 1), k > 2:

O—O'.""H (B*)
6,- 6, 92-93 9»—:—9& 9&

Remark The diagram of SO(6) is the same as SU(4). In fact, this implies
that the above two groups are locally isomorphic. Actually, A%, : SU@4) —
S0(6) c SU(6).

(III) Sp(n) (The symplectic group of rank n)
Let H be the skew field of quaternions and

H" = {(Qth‘---“In) 1g; € M}

be the right free H-module of rank n. We shall equip it with the following
hermitian product:

((QIqu--'!qﬂ)!(‘ﬂ’qa!"' 'q:l)) = Zqu; .

Then, the group of all isometries of H™ is called the sympletic group of rank
n and shall be denoted by Sp(n).
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Examples 1. Sp(l) is exactly the multiplicative group of unit quater-
nions, acting on H? via left multiplications, namely,

Sp(1) =8 ={ge H;qg =1},

and S3 x H — H is given by (¢,q1) = ¢ - q1.

2. Let ¢, =(1,0,...,0),...,e; =(0,...,1,...,0),...,e, = (0,...,1) and
g be an arbitrary element of Sp(n). Then {b; = g(e;), 1 < j < n} is clearly
an orthonormal basis of H™, namely

(bi,bj) = (gei, ge;) = (ei,e;) = b5

Conversely, let {b;,1 < j < n} be an arbitrary orthonormal basis in H*. Then
there exists a unique element g € Sp(n) with g(e;) = bj;, 1 < j < n. Further-
more, it follows from the usual Gram—Schmidt orthogonalization that any unit
vector by € H™ can be extended to an orthonormal basis {by,b,,...,b,} in
H". Therefore, Sp(n) acts transitively on the unit sphere, namely

gin—1 {u = (ql’, .. ,Qn); ]u|2 = Zqiqj = ]_} .
=1

3. Let G, be the subgroup of Sp(n) which fixes e,,. Then it is clear that
Ge,, ~ Sp(n — 1). Therefore
§=1 = G(en) = Sp(n)/Sp(n ~ 1),
and hence
dimSp(n) = dimSp(n — 1) + (4n — 1)

= dimSp(n — 2) + (4n — 5) + (4n — 1)

n
1
=Y 4ji-1)= F4n +2) = 2n% 4+ n.
j=1

4. One may also consider H" as a right C-module of rank 2n, namely,
identifying (q1,42,...,¢n) with

(V1,2 ..., Unj VL, V2. .., Vn), @=uw+ju, 1<1<n.
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Then Sp(n) is a subgroup of U(2n) leaving a non-degenerate skew symmetric
form invariant. We shall denote the above representation of Sp(n) on C2" by
vp, (cf. Ch 1. Chavalley’s Lie group Theory).

Lemma 2 v, = v}, and Adgp(n) ® C = S%u,.

Proof: Since Sp(n) acts transitively over the unit sphere of C2*, v, is
clearly an irreducible representation.

Un ® Un = N2, & S?v,,

and A2y, contains a trivial copy because Sp(n) keeps a skew symmetric form
invariant. Hence, it follows from the Schur lemma that v, = v}.

Sp(n) is a subgroup of U(2n) and vy, = p2,|Sp(n). Hence Adgpny) ® C is a
component of (Ady(2,)/Sp(n)) ® C, and

(Ady(2n) ® C)Sp(n) =, @ V) =vn Q vy
= Azl/n @ SZVn’

where dimS?y,, = 2n? + n, dimA2v, = 2n? — n. Therefore, the irreducibility of
Adgp(ny ® C will certainly imply that Adgym) ® C = S%(v,,). We shall prove
the irreducibility of Adgp(ny ® C by induction on n as follows. The case n =1
is simple and well-known. Let us begin with the case n = 2. Recall that Sp(2)
is a subgroup of SU(4) and

(i) A2uq4:SU(4) — SO(6) C U(6),
(i) A%u4|Sp(2) = A2, contains a trivial copy,
(iii) dimSp(2) = 10 = dimSO(5).

Therefore, (A2v9 — 1) : Sp(2) — SO(5) is a covering homomorphism and
hence Adgp(2) ® C is irreducible because Adso(sy ® C is already known to be
irreducible.

The general case n > 3: Let Sp(n — 1)1 be the subgroup of Sp(n) which
fixes e; = (0,...,1,...,0) and &) be the Lie subalgebra of Sp(n — 1)(j). By
the induction assumption that Adsyn—1)®C is irreducible, each 6 ®C must
be contained in an irreducible subspace of 8 ® C say Vj, 1 < j < n. Therefore

V;nVio (89D ne®ecC {0},
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