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PREFACE

Our understanding of the fundamental processes of the natural world is based
to a large extent on partial differential equations. Examples are the vibrations
of solids, the flow of fluids, the diffusion of chemicals, the spread of heat,
the structure of molecules, the interactions of photons and electrons, and the
radiation of electromagnetic waves. Partial differential equations also play a
central role in modern mathematics, especially in geometry and analysis. The
availability of powerful computers is gradually shifting the emphasis in partial
differential equations away from the analytical computation of solutions and
toward both their numerical analysis and the qualitative theory.

This book provides an introduction to the basic properties of partial dif-
ferential equations (PDEs) and to the techniques that have proved useful in
analyzing them. My purpose is to provide for the student a broad perspective
on the subject, to illustrate the rich variety of phenomena encompassed by
it, and to impart a working knowledge of the most important techniques of
analysis of the solutions of the equations.

One of the most important techniques is the method of separation of
variables. Many textbooks heavily emphasize this technique to the point of
excluding other points of view. The problem with that approach is that only
certain kinds of partial differential equations can be solved by it, whereas
others cannot. In this book it plays a very important but not an overriding
role. Other texts, which bring in relatively advanced theoretical ideas, require
too much mathematical knowledge for the typical undergraduate student. I
have tried to minimize the advanced concepts and the mathematical jargon
in this book. However, because partial differential equations is a subject at
the forefront of research in modern science, I have not hesitated to mention
advanced ideas as further topics for the ambitious student to pursue.

This is an undergraduate textbook. It is designed for juniors and seniors
who are science, engineering, or mathematics majors. Graduate students, es-
pecially in the sciences, could surely learn from it, but it is in no way conceived
of as a graduate text.

The main prerequisite is a solid knowledge of calculus, especially mul-
tivariate. The other prerequisites are small amounts of ordinary differential

v



vi PREFACE

equations and of linear algebra, each much less than a semester’s worth. How-
ever, since the subject of partial differential equations is by its very nature not
an easy one, I have recommended to my own students that they should already
have taken full courses in these two subjects.

The presentation is based on the following principles. Motivate with
physics but then do mathematics. Focus on the three classical equations:
All the important ideas can be understood in terms of them. Do one spa-
tial dimension before going on to two and three dimensions with their more
complicated geometries. Do problems without boundaries before bringing in
boundary conditions. (By the end of Chapter 2, the student will already have
an intuitive and analytical understanding of simple wave and diffusion phe-
nomena.) Do not hesitate to present some facts without proofs, but provide the
most critical proofs. Provide introductions to a variety of important advanced
topics.

There is plenty of material in this book for a year-long course. A quarter
course, or a fairly relaxed semester course, would cover the starred sections
of Chapters 1 to 6. A more ambitious semester course could supplement the
basic starred sections in various ways. The unstarred sections in Chapters 1
to 6 could be covered as desired. A computational emphasis following the
starred sections would be provided by the numerical analysis of Chapter 8. To
resume separation of variables after Chapter 6, one would take up Chapter 10.
For physics majors one could do some combination of Chapters 9, 12, 13, and
14. A traditional course on boundary value problems would cover Chapters
1,4,5,6,and 10.

Each chapter is divided into sections, denoted A.B. An equation num-
bered (A.B.C) refers to equation (C) in section A.B. A reference to equation
(C) refers to the equation in the same section. A similar system is used for
numbering theorems and exercises. The references are indicated by brackets,
like [AS].

The help of my colleagues is gratefully acknowledged. I especially thank
Yue Liu and Brian Loe for their extensive help with the exercises, as well as
Costas Dafermos, Bob Glassey, Jerry Goldstein, Manos Grillakis, Yan Guo,
Chris Jones, Keith Lewis, Gustavo Perla Menzala, and Bob Seeley for their
suggestions and corrections.

Walter A. Strauss



PREFACE TO
SECOND EDITION

In the years since the first edition came out, partial differential equations has
become yet more prominent, both as a model for scientific theories and within
mathematics itself. In this second edition I have added 30 new exercises. Fur-
thermore, this edition is accompanied by a solutions manual that has answers
to about half of the exercises worked out in detail. I have added a new section
on water waves as well as new material and explanatory comments in many
places. Corrections have been made wherever necessary.

I would like to take this opportunity to thank all the people who have
pointed out errors in the first edition or made useful suggestions, includ-
ing Andrew Bernoff, Rustum Choksi, Adrian Constantin, Leonid Dickey,
Julio Dix, Craig Evans, A. M. Fink, Robert Glassey, Jerome Goldstein, Leon
Greenberg, Chris Hunter, Eva Kallin, Jim Kelliher, Jeng-Eng Lin, Howard
Liu, Jeff Nunemacher, Vassilis Papanicolaou, Mary Pugh, Stan Richardson,
Stuart Rogers, Paul Sacks, Naoki Saito, Stephen Simons, Catherine Sulem,
David Wagner, David Weinberg, and Nick Zakrasek. My warmest thanks go
to Julie and Steve Levandosky who, besides being my co-authors on the so-
lutions manual, provided many suggestions and much insight regarding the
text itself.
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WHERE PDEs
COME FROM

After thinking about the meaning of a partial differential equation, we will
flex our mathematical muscles by solving a few of them. Then we will see
how naturally they arise in the physical sciences. The physics will motivate
the formulation of boundary conditions and initial conditions.

1.1 WHAT IS A PARTIAL DIFFERENTIAL EQUATION?

The key defining property of a partial differential equation (PDE) is that there
is more than one independent variable x, y, . ... There is a dependent variable
that is an unknown function of these variables u(x, y, ...). We will often
denote its derivatives by subscripts; thus du/dx = u,, and so on. A PDE is an
identity that relates the independent variables, the dependent variable u, and
the partial derivatives of u. It can be written as

F(x,y,u(x, y), ux(x, y), uy(x,y)) = F(x, y, u, uy, uy) = 0. (D

This is the most general PDE in two independent variables of first order. The
order of an equation is the highest derivative that appears. The most general
second-order PDE in two independent variables is

F(x,y, u, Uy, Uy, Uyx, Uxy, uyy)z()- (2

A solution of a PDE is a function u(x, y, ...) that satisfies the equation
identically, at least in some region of the x, y, ... variables.

When solving an ordinary differential equation (ODE), one sometimes
reverses the roles of the independent and the dependent variables—for in-

u
stance, for the separable ODE — = u>. For PDE:s, the distinction between

X
the independent variables and the dependent variable (the unknown) is always
maintained.



2 CHAPTER 1 WHERE PDEs COME FROM
Some examples of PDEs (all of which occur in physical theory) are:

u,+u, =0 (transport)

uy +yuy, =0 (transport)

u, +uuy, =0 (shock wave)

Uy +uy, =0 (Laplace’s equation)

Uy —Uee +u° =0 (wave with interaction)
Uy +uuy + uye =0  (dispersive wave)

Uy + Uyrey = 0 (vibrating bar)

e RN O i e

u, — iy, =0 (@ =+/—1) (quantum mechanics)

Each of these has two independent variables, written either as x and y or
as x and ¢. Examples 1 to 3 have order one; 4, 5, and 8 have order two; 6 has
order three; and 7 has order four. Examples 3, 5, and 6 are distinguished from
the others in that they are not “linear.” We shall now explain this concept.

Linearity means the following. Write the equation in the form $u = 0,
where & is an operator. That is, if v is any function, £v is a new function. For
instance, £ = d/dx is the operator that takes v into its partial derivative v,.
In Example 2, the operator &£ is £ = 9/0x + yd/dy. (Yu = u, + yu,.) The
definition we want for linearity is

F(u+v)=%u+ Lv F(cu) = cSLu 3)

for any functions u, v and any constant c. Whenever (3) holds (for all choices
of u, v, and c), & is called linear operator. The equation

Pu=0 4

is called linear if & is a linear operator. Equation (4) is called a homogeneous
linear equation. The equation

fu =g, )

where g # 0 is a given function of the independent variables, is called an
inhomogeneous linear equation. For instance, the equation

(cos xy?)uy — y2uy = tan(x? + y?) (6)

is an inhomogeneous linear equation.

As you can easily verify, five of the eight equations above are linear
as well as homogeneous. Example 5, on the other hand, is not linear because
although (u + v),, = u,, + v and (u + v),, = u,, + vy, satisfy property (3),
the cubic term does not:

(u+v) =’ +3uv 4+ 3uv® + v £ 0 + 07,
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The advantage of linearity for the equation $u = 0 is that if ¥ and v are
both solutions, so is (¥ + v). If uy, ..., u, are all solutions, so is any linear
combination

n
ciur(x)+ -+ cpuy(x) = chuj(x) (¢; = constants).
j=1

(This is sometimes called the superposition principle.) Another consequence
of linearity is that if you add a homogeneous solution [a solution of (4)] to an
inhomogeneous solution [a solution of (5)], you get an inhomogeneous solu-
tion. (Why?) The mathematical structure that deals with linear combinations
and linear operators is the vector space. Exercises 5—10 are review problems
on vector spaces.

We’ll study, almost exclusively, linear systems with constant coefficients.
Recall that for ODEs you get linear combinations. The coefficients are the
arbitrary constants. For an ODE of order m, you get m arbitrary constants.

Let’s look at some PDE:s.

Example 1.

Find all u(x, y) satisfying the equation u,, = 0. Well, we can integrate
once to get u, = constant. But that’s not really right since there’s another
variable y. What we really get is u.(x, y) = f(y), where f(y) is arbitrary.
Do it again to get u(x, y) = f(y)x + g(y). This is the solution formula.
Note that there are two arbitrary functions in the solution. We see this
as well in the next two examples. O

Example 2.

Solve the PDE u,, 4+ u = 0. Again, it’s really an ODE with an extra
variable y. We know how to solve the ODE, so the solution is

u = f(y)cosx + g(y)sinux,
where again f(y) and g(y) are two arbitrary functions of y. You can easily
check this formula by differentiating twice to verify that u,, = —u. 0O
Example 3.

Solve the PDE u,, = 0. This isn’t too hard either. First let’s integrate in
x, regarding y as fixed. So we get

uy(x, y) = f(y).
Next let’s integrate in y regarding x as fixed. We get the solution
u(x,y) = F(y)+ G(x),
where F' = f. O



4 CHAPTER 1 WHERE PDEs COME FROM

Moral A PDE has arbitrary functions in its solution. In these examples the
arbitrary functions are functions of one variable that combine to produce a
function u(x, y) of two variables which is only partly arbitrary.

A function of two variables contains immensely more information than
a function of only one variable. Geometrically, it is obvious that a surface
{u = f(x, y)}, the graph of a function of two variables, is a much more com-
plicated objectthan acurve {u = f(x)}, the graph of a function of one variable.

To illustrate this, we can ask how a computer would record a function
u = f(x). Suppose that we choose 100 points to describe it using equally spaced
values of x: xq, x2, X3, ..., X100. We could write them down in a column, and
next to each x; we could write the corresponding value #; = f(x;). Now how
about a function u = f(x, y)? Suppose that we choose 100 equally spaced
values of x and also of y: x, x2, x3,...,x100 and y1, y2, ¥3, ..., Y100- Each
pair x;, y; provides a value u;; = f(x;, y;), so there will be 100? = 10,000
lines of the form

Xi Vi Ujj

required to describe the function! (If we had a prearranged system, we would
need to record only the values u;;.) A function of three variables described
discretely by 100 values in each variable would require a million numbers!

To understand this book what do you have to know from calculus? Cer-
tainly all the basic facts about partial derivatives and multiple integrals. For

a brief discussion of such topics, see the Appendix. Here are a few things to
keep in mind, some of which may be new to you.

1. Derivatives are local. For instance, to calculate the derivative
(du/0x)(xo, tp) at a particular point, you need to know just the values
of u(x, ty) for x near xy, since the derivative is the limit as x — xy.

2. Mixed derivatives are equal: u,, = u,,. (We assume throughout this book,
unless stated otherwise, that all derivatives exist and are continuous.)

3. The chain rule is used frequently in PDEs; for instance,

0 0
LG )] = f g 0) - %8 (x,1).
X 0x

4. For the integrals of derivatives, the reader should learn or review Green’s
theorem and the divergence theorem. (See the end of Section A.3 in the
Appendix.)

Derivatives of integrals like /(¢) = ff(y)) f(x,t)dx (see Section A.3).
Jacobians (change of variable in a double integral) (see Section A.1).
Infinite series of functions and their differentiation (see Section A.2).

Directional derivatives (see Section A.1).

A e A

We’ll often reduce PDEs to ODEs, so we must know how to solve simple
ODE:s. But we won’t need to know anything about tricky ODE:s.
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EXERCISES

1.

10.

11.

Verify the linearity and nonlinearity of the eight examples of PDEs given
in the text, by checking whether or not equations (3) are valid.

Which of the following operators are linear?

(@) Fu=u, +xu,

(b) Lu =u,+uu,

() u=u,+ u§

d Pu=u;+u,+1

(e) Pu =1+ x?(cos y)u, + uy,, — [arctan(x/y)]u

For each of the following equations, state the order and whether it
is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.

(@) u—uy+1=0

) Uy —uxy +xu=0

(© uy — Uy +uuy =0

(d) = +x>=0

() iuy—uy +u/x=0

O w+u2) P u,(a+ud) =0

(g) uy+ eyuy =0

(h) Up + Uyyxx + A I+u=0

Show that the difference of two solutions of an inhomogeneous linear
equation Yu = g with the same g is a solution of the homogeneous
equation Lu = 0.

Which of the following collections of 3-vectors [a, b, c] are vector
spaces? Provide reasons.

(a) The vectors with b = 0.

(b) The vectors with b = 1.

(¢) The vectors with ab = 0.

(d) All the linear combinations of the two vectors [1, 1, 0] and [2, O, 1].
(e) All the vectors such that ¢ — a = 2b.

Are the three vectors [1, 2, 3], [—2, 0, 1], and [1, 10, 17] linearly depen-
dent or independent? Do they span all vectors or not?

Are the functions 1 4+ x, 1 — x, and 1 4+ x + x? linearly dependent or
independent? Why?

Find a vector that, together with the vectors [1, 1, 1] and [1, 2, 1], forms
a basis of R.

Show that the functions (¢; + ¢, sin’x + c¢3 cos’x) form a vector space.
Find a basis of it. What is its dimension?

Show that the solutions of the differential equation u”” — 3u” + 4u = 0
form a vector space. Find a basis of it.

Verify that u(x, y) = f(x)g(y)is asolution of the PDE uu,, = uu, for
all pairs of (differentiable) functions f and g of one variable.
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12.  Verity by direct substitution that
u,(x, y) = sin nx sinh ny

is a solution of u, + u,, = 0 for every n > 0.

1.2 FIRST-ORDER LINEAR EQUATIONS

We begin our study of PDEs by solving some simple ones. The solution is
quite geometric in spirit.

The simplest possible PDE is du/dx = O [where u = u(x, y)]. Its general
solution is u = f(y), where f is any function of one variable. For instance,
u =y> —yand u = e’ cos y are two solutions. Because the solutions don’t
depend on x, they are constant on the lines y = constant in the xy plane.

THE CONSTANT COEFFICIENT EQUATION

Let us solve

au, +bu, =0, )

where a and b are constants not both zero.

Geometric Method The quantity au, + bu, is the directional derivative of
u in the direction of the vector V = (a, b) = ai + bj. It must always be zero.
This means that u(x, y) must be constant in the direction of V. The vector
(b, —a) is orthogonal to V. The lines parallel to V (see Figure 1) have the
equations bx — ay = constant. (They are called the characteristic lines.) The
solution is constant on each such line. Therefore, u(x, y) depends on bx — ay
only. Thus the solution is

M(X’J’)=f(bx_a)’)7 (2)

where f is any function of one variable. Let’s explain this conclusion more
explicitly. On the line bx — ay = c, the solution u has a constant value. Call

e

\

—

Figure 1




1.2 FIRST-ORDER LINEAR EQUATIONS 7

X

| B

N
Figure 2

this value f(c). Then u(x, y) = f(c) = f(bx — ay). Since c is arbitrary, we
have formula (2) for all values of x and y. In xyu space the solution defines
a surface that is made up of parallel horizontal straight lines like a sheet of
corrugated iron.

Coordinate Method Change variables (or “make a change of coordinates”;
Figure 2) to

x' =ax + by y =bx —ay. 3)
Replace all x and y derivatives by x” and y’ derivatives. By the chain rule,

ou  Ou ox’ n ou dy’ b
= —= —— —_— = dlU ., U
dx ox’ dx 9y ox g Y

Uy

and

du  Odu dy’  du ox’
Uy = ——=———+————=buy —auy.
dy ady dy  dx’ dy

Hence au, + bu, = a(au, + bu,) + b(buy — auy) = (a@®> + b»u,. So,
since a® + b*> # 0, the equation takes the form u,» = 0 in the new (primed)
variables. Thus the solution is u = f(y’) = f(bx — ay), with f an arbitrary
function of one variable. This is exactly the same answer as before!

Example 1.

Solve the PDE 4u, — 3u, = 0, together with the auxiliary condition
that u(0, y) = y*. By (2) we have u(x,y) = f(—3x —4y). This is
the general solution of the PDE. Setting x = 0 yields the equation
y3 = f(—4y). Letting w = —4y vyields f(w) = —w3/64. Therefore,
u(x,y) = QGx + 4y)3/64.

Solutions can usually be checked much easier than they
can be derived. We check this solution by simple differen-
tiation: u, = 9(3x +4y)?/64 and u, = 12(3x +4y)*/64 so that
4u, — 3uy = 0. Furthermore, u(0, y) = (3- 0+ 4y)* /64 = y>. o
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THE VARIABLE COEFFICIENT EQUATION

The equation

u, +yuy, =0 4)

is linear and homogeneous but has a variable coefficient (y). We shall illustrate
for equation (4) how to use the geometric method somewhat like Example 1.

The PDE (4) itself asserts that the directional derivative in the direction
of the vector (1, y) is zero. The curves in the xy plane with (1, y) as tangent
vectors have slopes y (see Figure 3). Their equations are

dy 'y

°£_ 7 5

dx 1 )
This ODE has the solutions

y=Ce". (6)

These curves are called the characteristic curves of the PDE (4). As C is
changed, the curves fill out the xy plane perfectly without intersecting. On
each of the curves u(x, y) is a constant because

ou

4 i(x, Ce") PSR L 0
—u(x,Ce") = — e'— =u, u, =0.
dx ax ay SR

Thus u(x,Ce*) = u(0, Ce®) = u(0, C) is independent of x. Putting y = Ce*
and C = e "y, we have

u(x, y) =u(0, e y).
It follows that

u(x,y) = fley) (7)

is the general solution of this PDE, where again f is an arbitrary function
of only a single variable. This is easily checked by differentiation using
the chain rule (see Exercise 4). Geometrically, the “picture” of the solution
u(x, y) is that it is constant on each characteristic curve in Figure 3.

Y=

Figure 3
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Example 2.

Find the solution of (4) that satisfies the auxiliary condition (0, y) = y>.
Indeed, putting x = 0 in (7), we get y*> = f(e"y), so that f(y) = y>.

Therefore, u(x, y) = (6_)‘)7)3 =e 7y =
Example 3.
Solve the PDE
uy + 2xy2uy = 0. (®)

The characteristic curves satisfy the ODE dy/dx = 2xy?/1 = 2xy?.
To solve the ODE, we separate variables: dy/y? = 2x dx; hence
—1/y =x? — C, so that
~1

y=(C—x . ©)
These curves are the characteristics. Again, u(x, y) is a constant on each
such curve. (Check it by writing it out.) So u(x, y) = f(C), where f is an
arbitrary function. Therefore, the general solution of (8) is obtained by
solving (9) for C. That is,

, 1
ulx,y) = f(x + y>' (10)

Again this is easily checked by differentiation, using the chain
rule:u, = 2x - f'(x? + 1/y)anduy, = —(1/y?) - f'(x> + 1/y), whence
u, + 2xy2uy =0. 0

In summary, the geometric method works nicely for any PDE of the form
a(x, y)u, + b(x, y)u, = 0. It reduces the solution of the PDE to the solution
of the ODE dy/dx = b(x, y)/a(x, y). If the ODE can be solved, so can the
PDE. Every solution of the PDE is constant on the solution curves of the ODE.

Moral Solutions of PDEs generally depend on arbitrary functions (instead
of arbitrary constants). You need an auxiliary condition if you want to deter-
mine a unique solution. Such conditions are usually called initial or boundary
conditions. We shall encounter these conditions throughout the book.

EXERCISES

1. Solve the first-order equation 2u, + 3u, = 0 with the auxiliary condition
u = sin x when ¢t = 0.

2. Solve the equation 3u, + u,, = 0. (Hint:Letv = u,.)
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Solve the equation (1 4+ x?)u, + u y = 0. Sketch some of the character-
istic curves.

Check that (7) indeed solves (4).
Solve the equation xu, + yu, = 0.
Solve the equation /1 — x2u, + u, = 0 with the condition u(0, y) = y.

(a) Solve the equation yu, + xu, = 0 with u(0, y) = e,
(b) Inwhichregion of the xy plane is the solution uniquely determined?

Solve au, + buy + cu = 0.
Solve the equation u, +u, = 1.
Solve u, +u, +u = e with u(x, 0) = 0.

Solve au, + buy, = f(x,y), where f(x, y)is a given function. If a # 0,
write the solution in the form

u(x,y) = (@ + bz)—l/Z/ fds+ glbx — ay),
L

where g is an arbitrary function of one variable, L is the characteristic
line segment from the y axis to the point (x, y), and the integral is a line
integral. (Hint: Use the coordinate method.)

Show that the new coordinate axes defined by (3) are orthogonal.
Use the coordinate method to solve the equation

uy +2uy, +Q2x — yu = 2x% + 3xy — 2y%.

1.3 FLOWS, VIBRATIONS, AND DIFFUSIONS

The subject of PDEs was practically a branch of physics until the twentieth
century. In this section we present a series of examples of PDEs as they occur
in physics. They provide the basic motivation for all the PDE problems we
study in the rest of the book. We shall see that most often in physical problems
the independent variables are those of space x, y, z, and time ¢.

Example 1. Simple Transport

Consider a fluid, water, say, flowing at a constant rate ¢ along a horizontal
pipe of fixed cross section in the positive x direction. A substance, say
a pollutant, is suspended in the water. Let u(x, ¢) be its concentration in
grams/centimeter at time 7. Then

u; + cu, = 0. (1)

(That is, the rate of change u, of concentration is proportional to the
gradient u,. Diffusion is assumed to be negligible.) Solving this equation
as in Section 1.2, we find that the concentration is a function of (x — cr)
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x

Figure 1

only. This means that the substance is transported to the right at a fixed
speed c. Each individual particle moves to the right at speed c; that
is, in the xt plane, it moves precisely along a characteristic line (see
Figure 1). O

Derivation of Equation (1). The amount of pollutant in the interval
[0, b] atthe time tis M = fob u(x, t)dx,in grams, say. At the later time ¢ + 4,
the same molecules of pollutant have moved to the right by ¢ - 4 centimeters.
Hence

b b+ch
M = / u(x, t)dx = f u(x,t+h)dx.
0 ch

Differentiating with respect to b, we get
ulb,t) =ulb+ch,t + h).
Differentiating with respect to . and putting 7 = 0, we get
0=cuy(b,t)+u,b,t),

which is equation (1). |

Example 2. Vibrating String

Consider a flexible, elastic homogenous string or thread of length /,
which undergoes relatively small transverse vibrations. For instance, it
could be a guitar string or a plucked violin string. At a given instant
t, the string might look as shown in Figure 2. Assume that it remains
in a plane. Let u(x, f) be its displacement from equilibrium position at
time ¢ and position x. Because the string is perfectly flexible, the tension
(force) is directed tangentially along the string (Figure 3). Let T'(x, ¢) be
the magnitude of this tension vector. Let p be the density (mass per unit
length) of the string. It is a constant because the string is homogeneous.
We shall write down Newton’s law for the part of the string between
any two points at x = xo and x = x;. The slope of the string at x; is

/_\/_\

Figure 2
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u(x1, t). Newton’s law F = ma in its longitudinal (x) and transverse (u)
components is

X1

T
V1+u2
Tu,

V1+u?

The right sides are the components of the mass times the acceleration
integrated over the piece of string. Since we have assumed that the
motion is purely transverse, there is no longitudinal motion.

Now we also assume that the motion is small—more specifically,
that |u,| is quite small. Then /1 4+ u2 may be replaced by 1. This is
justified by the Taylor expansion, actually the binomial expansion,

J1+ut=1+3u2+...

where the dots represent higher powers of u,. If u, is small, it makes
sense to drop the even smaller quantity u2 and its higher powers. With
the square roots replaced by 1, the first equation then says that T is
constant along the string. Let us assume that T is independent of ¢ as
well as x. The second equation, differentiated, says that

=0 (longitudinal)

X0

X1

X1
= f pu, dx (transverse)

X0 X0

(Tuy), = puy.

T
u, = ctu,, wherec=_|—. (2)
Vo

This is the wave equation. At this point it is not clear why c is defined
in this manner, but shortly we’ll see that c is the wave speed. O

That is,
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There are many variations of this equation:

(i) If significant air resistance r is present, we have an extra term pro-
portional to the speed u;, thus:

Uy — czuxx +ru; =0 wherer > 0. 3)

(i1) If there is a transverse elastic force, we have an extra term propor-
tional to the displacement u, as in a coiled spring, thus:

Uy — Cuyy +ku =0 wherek > 0. 4)

(iii) If there is an externally applied force, it appears as an extra term,
thus:

Uy — gy = f(x, 1), (5)

which makes the equation inhomogeneous.

Our derivation of the wave equation has been quick but not too precise. A
much more careful derivation can be made, which makes precise the physical
and mathematical assumptions [We, Chap. 1].

The same wave equation or a variation of it describes many other wavelike
phenomena, such as the vibrations of an elastic bar, the sound waves in a pipe,
and the long water waves in a straight canal. Another example is the equation
for the electrical current in a transmission line,

Uy = CLu, + (CR + GL)u, + GRu,

where C is the capacitance per unit length, G the leakage resistance per unit
length, R the resistance per unit length, and L the self-inductance per unit
length.

Example 3. Vibrating Drumhead

The two-dimensional version of a string is an elastic, flexible, homo-
geneous drumhead, that is, a membrane stretched over a frame. Say
the frame lies in the xy plane (see Figure 4), u(x, y, t) is the vertical

Ve

x

Figure 4
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displacement, and there is no horizontal motion. The horizontal com-
ponents of Newton’s law again give constant tension 7. Let D be any
domain in the xy plane, say a circle or a rectangle. Let bdy D be its
boundary curve. We use reasoning similar to the one-dimensional case.
The vertical component gives (approximately)

a
F:/ Tuds://,ou,,dxdy:ma,
bdy p 0N J

where the left side is the total force acting on the piece D of the mem-
brane, and where du/dn = n - Vu is the directional derivative in the
outward normal direction, n being the unit outward normal vector on
bdy D. By Green’s theorem (see Section A.3 in the Appendix), this can

be rewritten as
/:/V -(TVu)dx dy = f/pun dx dy.
D

D

Since D is arbitrary, we deduce from the second vanishing theorem in
Section A.1 that pu,; = V - (T'Vu). Since T is constant, we get

(6)

Uty = c*V - (Vu) = Cz(uxx + uyy)’

where ¢ = /T /p as before and V - (Vu) = divgrad u = u,, + u,, is
known as the two-dimensional laplacian. Equation (6) is the two-
dimensional wave equation. m

The pattern is now clear. Simple three-dimensional vibrations obey the
equation

Uy = Cz(”xx +uyy + Uzz). (7

The operator ¥ = 9%/3x? + 3%/dy* + 9/3z* is called the three-dimensional
laplacian operator, usually denoted by A or V2. Physical examples described
by the three-dimensional wave equation or a variation of it include the vi-
brations of an elastic solid, sound waves in air, electromagnetic waves (light,
radar, etc.), linearized supersonic airflow, free mesons in nuclear physics, and
seismic waves propagating through the earth.

Example 4. Diffusion

Let us imagine a motionless liquid filling a straight tube or pipe and
a chemical substance, say a dye, which is diffusing through the liquid.
Simple diffusion is characterized by the following law. [It is not to
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= e —

X X

Figure 5

be confused with convection (transport), which refers to currents in
the liquid.] The dye moves from regions of higher concentration to
regions of lower concentration. The rate of motion is proportional to the
concentration gradient. (This is known as Fick’s law of diffusion.) Let
u(x, t) be the concentration (mass per unit length) of the dye at position
x of the pipe at time 7.

In the section of pipe from xj to x; (see Figure 5), the mass of dye is

. M [
M(t)=f u(x,t)dx, so dt:/ u(x, t)dx.

The mass in this section of pipe cannot change except by flowing in or
out of its ends. By Fick’s law,

dM .
I = flow in — flow out = ku,(x1, t) — ku,(xg, 1),

where k is a proportionality constant. Therefore, those two expressions
are equal:

X1
f (6, 1) dx = Kty (31, 1) — it (xo, 1),

X0

Differentiating with respect to x;, we get

u; = ktyy. (8)

This is the diffusion equation.
In three dimensions we have

///u,dxdydz: //k(n-Vu)dS,

D bdy D

where D is any solid domain and bdy D is its bounding surface. By the
divergence theorem (using the arbitrariness of D as in Example 3), we
get the three-dimensional diffusion equation

u = k(Uyy +ttyy +uz;) =k Au. 9

If there is an external source (or a “sink™) of the dye, and if the rate
k of diffusion is a variable, we get the more general inhomogeneous
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equation
u, =V-(kVu)+ f(x, t).

The same equation describes the conduction of heat, brownian motion,
diffusion models of population dynamics, and many other phenomena.
m

Example 5. Heat Flow

We let u(x, y, z, t) be the temperature and let H(¢) be the amount of heat
(in calories, say) contained in a region D. Then

H(t) = ///c,ou dxdydz,
D

where c is the “specific heat” of the material and p is its density (mass
per unit volume). The change in heat is

dH
i ///cpu[ dxdydz.
D

Fourier’s law says that heat flows from hot to cold regions proportion-
ately to the temperature gradient. But heat cannot be lost from D except
by leaving it through the boundary. This is the law of conservation of
energy. Therefore, the change of heat energy in D also equals the heat
flux across the boundary,

CZI = //K(H-Vu)dS,

bdy D

where « is a proportionality factor (the “heat conductivity”). By the
divergence theorem,

9
///c,oabtldxdydz =///v-(/< Vu)dx dy dz
D D

and we get the heat equation

9
c,oa—l;l =V (k Vu). (10)

If ¢, p, and « are constants, itis exactly the same as the diffusion equation!
0

Example 6. Stationary Waves and Diffusions

Consider any of the four preceding examples in a situation where the
physical state does not change with time. Then u, = u;; = 0. So both
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the wave and the diffusion equations reduce to

Au =ty +uty, +u;; =0. (1D

This is called the Laplace equation. Its solutions are called harmonic
functions. For example, consider a hot object that is constantly heated
in an oven. The heat is not expected to be evenly distributed throughout
the oven. The temperature of the object eventually reaches a steady (or
equilibrium) state. This is a harmonic function u(x, y, z). (Of course, if
the heat were being supplied evenly in all directions, the steady state
would be u = constant.) In the one-dimensional case (e.g., a laterally
insulated thin rod that exchanges heat with its environment only through
its ends), we would have u a function of x only. So the Laplace equation
would reduce simply to u,, = 0. Hence u = c¢;x + ¢,. The two- and
three-dimensional cases are much more interesting (see Chapter 6 for
the solutions). O

Example 7. The Hydrogen Atom

This is an electron moving around a proton. Let m be the mass of the
electron, e its charge, and & Planck’s constant divided by 2z. Let the
origin of coordinates (x, y, z) be at the proton and let r = (x> 4 y*> + z%)!/?
be the spherical coordinate. Then the motion of the electron is given by
a “wave function” u(x, y, z, t) which satisfies Schrodinger’s equation

2 62

h
—ihu;, = —Au + —u (12)
2m r

in all of space —oco < x,y,z < +o00. Furthermore, we are supposed to
have ([ |u|*dx dy dz = 1 (integral over all space). Note thati = v/—1
and u is complex-valued. The coefficient function e?/r is called the po-
tential. For any other atom with a single electron, such as a helium ion,
e? is replaced by Ze?, where Z is the atomic number. O
What does this mean physically? In quantum mechanics quantities cannot
be measured exactly but only with a certain probability. The wave function
u(x, y, z, t) represents a possible state of the electron. If D is any region in xyz

space, then
///Iulzdx dydz
D

is the probability of finding the electron in the region D at the time ¢. The
expected z coordinate of the position of the electron at the time ¢ is the value
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///ZW(X, v, Z, t)lzdx dydz;

similarly for the x and y coordinates. The expected z coordinate of the mo-

mentum 1s
., ou _
ff/ —zha—(x, v,z,t)-u(x,y,z,t)dxdydz,
Z

where # is the complex conjugate of u. All other observable quantities are
given by operators A, which act on functions. The expected value of the
observable A equals

/// Au(x, y,z,t)-i(x,y,z,t)dxdydz.

Thus the position is given by the operator Au = xu, where x = xi + yj + zKk,
and the momentum is given by the operator Au = —ihVu.

Schrodinger’s equation is most easily regarded simply as an axiom that
leads to the correct physical conclusions, rather than as an equation that can
be derived from simpler principles. It explains why atoms are stable and don’t
collapse. It explains the energy levels of the electron in the hydrogen atom
observed by Bohr. In principle, elaborations of it explain the structure of all
atoms and molecules and so all of chemistry! With many particles, the wave
function u depends on time ¢ and all the coordinates of all the particles and so
is a function of a large number of variables. The Schrodinger equation then
becomes

of the integral

n 2

_ihul = ZT(”X,‘X,- + uyiy,' + uZiZi) + V(-xlv ceey Zn)u

i=1 i

for n particles, where the potential function V depends on all the 3n coor-
dinates. Except for the hydrogen and helium atoms (the latter having two
electrons), the mathematical analysis is impossible to carry out completely
and cannot be calculated even with the help of the modern computer. Nev-
ertheless, with the use of various approximations, many of the facts about
more complicated atoms and the chemical binding of molecules can be
understood. O

This has been a brief introduction to the sources of PDEs in physical
problems. Many realistic situations lead to much more complicated PDEs.
See Chapter 13 for some additional examples.
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EXERCISES

1.

Carefully derive the equation of a string in a medium in which the resis-
tance is proportional to the velocity.

A flexible chain of length / is hanging from one end x = 0 but oscillates
horizontally. Let the x axis point downward and the u axis point to the
right. Assume that the force of gravity at each point of the chain equals the
weight of the part of the chain below the point and is directed tangentially
along the chain. Assume that the oscillations are small. Find the PDE
satisfied by the chain.

On the sides of a thin rod, heat exchange takes place (obeying New-
ton’s law of cooling—flux proportional to temperature difference) with
a medium of constant temperature 7g. What is the equation satisfied by
the temperature u(x, ¢), neglecting its variation across the rod?

Suppose that some particles which are suspended in a liquid medium
would be pulled down at the constant velocity V > 0 by gravity in the
absence of diffusion. Taking account of the diffusion, find the equation
for the concentration of particles. Assume homogeneity in the horizontal
directions x and y. Let the z axis point upwards.

Derive the equation of one-dimensional diffusion in a medium that is
moving along the x axis to the right at constant speed V.

Consider heat flow in a long circular cylinder where the temperature
depends only on 7 and on the distance r to the axis of the cylinder. Here

r = /x% + y?is the cylindrical coordinate. From the three-dimensional
heat equation derive the equation u, = k(u,, + u,/r).

Solve Exercise 6 in a ball except that the temperature depends

only on the spherical coordinate /x% + y2 + z2. Derive the equation
u = k(u,r + 2Mr/r)-

For the hydrogen atom, if | lu|*>dx = 1att = 0, show that the same is
true at all later times. (Hint: Differentiate the integral with respect to z,
taking care about the solution being complex valued. Assume that # and
Vu — 0 fast enough as [x| — 00.)

This is an exercise on the divergence theorem

[J[v-vax= [[¥-nas.

D bdy D

valid for any bounded domain D in space with boundary surface
bdy D and unit outward normal vector n. If you never learned it,
see Section A.3. It is crucial that D be bounded As an exercise,
verify it in the following case by calculating both sides separately:
F=r2x, x=xi+ vj + zk, r?> = x>+ y> 4 7%, and D = the ball of ra-
dius a and center at the origin.
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10. If f(x) is continuous and |f(x)| < 1/(|x|> + 1) for all x, show that

[Jf v-tax=o

all space

(Hint: Take D to be a large ball, apply the divergence theorem, and let
its radius tend to infinity.)

11. If curl v =0 in all of three-dimensional space, show that there exists a
scalar function ¢(x, y, z) such that v = grad ¢.

1.4 INITIAL AND BOUNDARY CONDITIONS

Because PDEs typically have so many solutions, as we saw in Section 1.2,
we single out one solution by imposing auxiliary conditions. We attempt to
formulate the conditions so as to specify a unique solution. These conditions
are motivated by the physics and they come in two varieties, initial conditions
and boundary conditions.

An initial condition specifies the physical state at a particular time #y. For
the diffusion equation the initial condition is

u(x, fo) = ¢(x), ey

where ¢(x) = ¢(x, y, z) is a given function. For a diffusing substance, ¢(x)
is the initial concentration. For heat flow, ¢(x) is the initial temperature. For
the Schrodinger equation, too, (1) is the usual initial condition.

For the wave equation there is a pair of initial conditions

0
u(x, o) = $(x) md*%@Jw=¢@% )

where ¢(x) is the initial position and y(x) is the initial velocity. It is clear on
physical grounds that both of them must be specified in order to determine
the position u(x, f) at later times. (We shall also prove this mathematically.)

m

In each physical problem we have seen that there is a domain D in which
the PDE is valid. For the vibrating string, D is the interval 0 < x < [, so
the boundary of D consists only of the two points x = 0 and x = /. For the
drumhead, the domain is a plane region and its boundary is a closed curve.
For the diffusing chemical substance, D is the container holding the liquid, so
its boundary is a surface S = bdy D. For the hydrogen atom, the domain is all
of space, so it has no boundary.

It is clear, again from our physical intuition, that it is necessary to specify
some boundary condition if the solution is to be determined. The three most
important kinds of boundary conditions are:

(D) uis specified (“Dirichlet condition™)
(N) the normal derivative du/dn is specified (“Neumann condition”)
(R) 0u/don + au is specified (“Robin condition”™)
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D

n

Figure 1

where a is a given function of x, y, z, and ¢. Each is to hold for all ¢ and for x =
(x, v, z) belonging to bdy D. Usually, we write (D), (N), and (R) as equations.
For instance, (N) is written as the equation

ou
- =8, 1) 3)
on

where g is a given function that could be called the boundary datum. Any
of these boundary conditions is called homogeneous if the specified function
g(x, t) vanishes (equals zero). Otherwise, it is called inhomogenous. As usual,
n = (ny, ny, n3) denotes the unit normal vector on bdy D, which points out-
ward from D (see Figure 1). Also, du/dn = n - Vu denotes the directional
derivative of u in the outward normal direction.

In one-dimensional problems where D is just an interval 0 < x < [, the
boundary consists of just the two endpoints, and these boundary conditions
take the simple form

D) u(0,t)=g() and u(l,t)=h(t)
(N) 8—M(O, t) =g(t) and 8—u(l, t) = h(t)
0x 0x

and similarly for the Robin condition. |

Following are some illustrations of physical problems corresponding to
these boundary conditions.

THE VIBRATING STRING

If the string is held fixed at both ends, as for a violin string, we have the
homogeneous Dirichlet conditions u(0, t) = u(/,t) = 0.

Imagine, on the other hand, that one end of the string is free to move
transversally without any resistance (say, along a frictionless track); then
there is no tension 7 at that end, so u#, = 0. This is a Neumann condition.

Third, the Robin condition would be the correct one if one were to imagine
that an end of the string were free to move along a track but were attached to
a coiled spring or rubber band (obeying Hooke’s law) which tended to pull it
back to equilibrium position. In that case the string would exchange some of
its energy with the coiled spring.

Finally, if an end of the string were simply moved in a specified way, we
would have an inhomogeneous Dirichlet condition at that end.



22 CHAPTER 1 WHERE PDEs COME FROM

DIFFUSION

If the diffusing substance is enclosed in a container D so that none can escape
or enter, then the concentration gradient in the normal direction must vanish,
by Fick’s law (see Exercise 2). Thus du/dn = Oon S = bdy D, which is the
Neumann condition.

If, on the other hand, the container is permeable and is so constructed that
any substance that escapes to the boundary of the container is immediately
washed away, then we have u =0 on S.

HEAT

Heat conduction is described by the diffusion equation with u(x, ) = temper-
ature. If the object D through which the heat is flowing is perfectly insulated,
then no heat flows across the boundary and we have the Neumann condition
du/on = 0 (see Exercise 2).

On the other hand, if the object were immersed in a large reservoir of
specified temperature g(¢) and there were perfect thermal conduction, then
we’d have the Dirichlet condition # = g(¢) on bdy D.

Suppose that we had a uniform rod insulated along its length 0 < x </,
whose end at x = / were immersed in the reservoir of temperature g(¢). If heat
were exchanged between the end and the reservoir so as to obey Newton’s
law of cooling, then

ou
87(1’ t) = —alu(l, r) — g(t)],
X

where a > 0. Heat from the hot rod radiates into the cool reservoir. This is an
inhomogeneous Robin condition.

LIGHT

Light is an electromagnetic field and as such is described by Maxwell’s equa-
tions (see Chapter 13). Each component of the electric and magnetic field
satisfies the wave equation. It is through the boundary conditions that the
various components are related to each other. (They are “coupled.”) Imagine,
for example, light reflecting off a ball with a mirrored surface. This is a scat-
tering problem. The domain D where the light is propagating is the exterior
of the ball. Certain boundary conditions then are satisfied by the electromag-
netic field components. When polarization effects are not being studied, some
scientists use the wave equation with homogeneous Dirichlet or Neumann
conditions as a considerably simplified model of such a situation.

SOUND

Our ears detect small disturbances in the air. The disturbances are described
by the equations of gas dynamics, which form a system of nonlinear equations
with velocity v and density p as the unknowns. But small disturbances are
described quite well by the so-called linearized equations, which are a lot
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simpler; namely,

9 2
l+c—0gradp:0 “4)
ar  po

ap .

E‘F,OoleV:O (5)

(four scalar equations altogether). Here pg is the density and ¢y is the speed
of sound in still air.

Assume now that the curl of v is zero; this means that there are no sound
“eddies” and the velocity v is irrotational. It follows that p and all three
components of v satisfy the wave equation:

3%V 9
a2 =clAv and a—: =ci Ap. (6)
The interested reader will find a derivation of these equations in Section 13.2.

Now if we are describing sound propagation in a closed, sound-insulated
room D with rigid walls, say a concert hall, then the air molecules at the wall
can only move parallel to the boundary, so that no sound can travel in a normal
direction to the boundary. So v - n = 0 on bdy D. Since curl v = 0, there is
a standard fact in vector calculus (Exercise 1.3.11) which says that there is
a “potential” function i such that v = —grad . The potential also satisfies
the wave equation 9%y /9> = cg A, and the boundary condition for it is
—v-n =n - grad ¥ = 0 or Neumann’s condition for .

At an open window of the room D, the atmospheric pressure is a constant
and there is no difference of pressure across the window. The pressure p is
proportional to the density p, for small disturbances of the air. Thus p is a
constant at the window, which means that p satisfies the Dirichlet boundary
condition p = py.

At a soft wall, such as an elastic membrane covering an open window, the
pressure difference p — pg across the membrane is proportional to the normal
velocity v - n, namely

p—po=Z2ZV-n,

where Z is called the acoustic impedance of the wall. (A rigid wall has a very
large impedance and an open window has zero impedance.) Now p — pg is in
turn proportional to p — p¢ for small disturbances. Thus the system of four
equations (4),(5) satisfies the boundary condition

v-n=a(p — po),

where a is a constant proportional to 1/Z. (See [MI] for further discussion.)
|

A different kind of boundary condition in the case of the wave equation
is
0 a
u ou

=0. 7
on ot @
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Boundary conditions

Boundary conditions Jump conditions

Figure 2

This condition means that energy is radiated to (b > 0) or absorbed from
(b < 0) the exterior through the boundary. For instance, a vibrating string
whose ends are immersed in a viscous liquid would satisfy (7) with b > 0
since energy is radiated to the liquid.

CONDITIONS AT INFINITY

In case the domain D is unbounded, the physics usually provides conditions
at infinity. These can be tricky. An example is Schrodinger’s equation, where
the domain D is all of space, and we require that f|u|*> dx = 1. The finiteness
of this integral means, in effect, that u “vanishes at infinity.”

A second example is afforded by the scattering of acoustic or electro-
magnetic waves. If we want to study sound or light waves that are radiating
outward (to infinity), the appropriate condition at infinity is “Sommerfeld’s
outgoing radiation condition”

lim ,(3” - a”) —o, ®)

where r = |x| is the spherical coordinate. (In a given mathematical context
this limit would be made more precise.) (See Section 13.3.)

JUMP CONDITIONS

These occur when the domain D has two parts, D = D; U D, (see Figure 2),
with different physical properties. An example is heat conduction, where D,
and D, consist of two different materials (see Exercise 6).

EXERCISES

1. By trial and error, find a solution of the diffusion equation u#, = u,, with
2

the initial condition u(x, 0) = x~.
2. (a) Show that the temperature of a metal rod, insulated at the end x = 0,
satisfies the boundary condition du/dx = 0. (Use Fourier’s law.)
(b) Do the same for the diffusion of gas along a tube that is closed off at
the end x = 0. (Use Fick’s law.)
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(¢) Show that the three-dimensional version of (a) (insulated solid) or (b)
(impermeable container) leads to the boundary condition du /dn = 0.

3. A homogeneous body occupying the solid region D is completely insu-
lated. Its initial temperature is f(x). Find the steady-state temperature that
it reaches after a long time. (Hint: No heat is gained or lost.)

4. A rod occupying the interval 0 < x </ is subject to the heat source
fx)=0for0<x < é,andf(x):Hforé < x <[ where H > 0. The
rod has physical constants ¢ = p = x = 1, and its ends are kept at zero
temperature.

(a) Find the steady-state temperature of the rod.
(b) Which point is the hottest, and what is the temperature there?

5. In Exercise 1.3.4, find the boundary condition if the particles lie above an
impermeable horizontal plane z = a.

6. Two homogeneous rods have the same cross section, specific heat ¢, and
density p but different heat conductivities x| and «, and lengths L, and
L;.Letk; = «;/cp be their diffusion constants. They are welded together
so that the temperature u and the heat flux xu, at the weld are continuous.
The left-hand rod has its left end maintained at temperature zero. The
right-hand rod has its right end maintained at temperature 7" degrees.

(a) Find the equilibrium temperature distribution in the composite rod.

(b) Sketchitasafunctionofxincasek; =2, ko =1, L, =3, L, =2,
and T = 10. (This exercise requires a lot of elementary algebra, but
it’s worth it.)

7. In linearized gas dynamics (sound), verify the following.

(a) Ifcurl v=0ats =0, then curl v = 0 at all later times.
(b) Each component of v and p satifies the wave equation.

1.5 WELL-POSED PROBLEMS

Well-posed problems consist of a PDE in a domain together with a set of
initial and/or boundary conditions (or other auxiliary conditions) that enjoy
the following fundamental properties:

(i) Existence: There exists at least one solution u(x, ¢) satisfying all
these conditions.

(i) Uniqueness: There is at most one solution.

(iii) Stability: The unique solution u(x, ) depends in a stable manner on
the data of the problem. This means that if the data are changed a
little, the corresponding solution changes only a little.

For a physical problem modeled by a PDE, the scientist normally tries to
formulate physically realistic auxiliary conditions which all together make a
well-posed problem. The mathematician tries to prove that a given problem
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is or is not well-posed. If too few auxiliary conditions are imposed, then
there may be more than one solution (nonuniqueness) and the problem is
called underdetermined. If, on the other hand, there are too many auxiliary
conditions, there may be no solution at all (nonexistence) and the problem is
called overdetermined.

The stability property (iii) is normally required in models of physical
problems. This is because you could never measure the data with mathemat-
ical precision but only up to some number of decimal places. You cannot
distinguish a set of data from a tiny perturbation of it. The solution ought not
be significantly affected by such tiny perturbations, so it should change very
little.

Let us take an example. We know that a vibrating string with an external
force, whose ends are moved in a specified way, satisfies the problem

Tuy — puce = f(x,1)
u(x,0) = ¢(x) u(x,0) = ¢¥(x) €]
u(0,1) = g(t) u(L,t) = h()

for 0 < x < L. The data for this problem consist of the five functions
f(x, 1), ¢p(x), ¥(x), g(t), and h(t). Existence and uniqueness would mean
that there is exactly one solution u(x, ¢) for arbitrary (differentiable) func-
tions f, ¢, ¥, g, h. Stability would mean that if any of these five functions are
slightly perturbed, then u is also changed only slightly. To make this precise
requires a definition of the “nearness” of functions. Mathematically, this re-
quires the concept of a “distance”, “metric”, “norm”, or “topology” in function
space and will be discussed in the context of specific examples (see Sections
2.3,3.4,0r5.5). Problem (1) is indeed well-posed if we make the appropriate
choice of “nearness.”

As a second example, consider the diffusion equation. Given an initial
condition u(x, 0) = f(x), we expect a unique solution, in fact, well-posedness,
for ¢ > 0. But consider the backwards problem! Given f (x), find u(x, ¢) for t < 0.
What past behavior could have led up to the concentration f(x) at time 0? Any
chemist knows that diffusion is a smoothing process since the concentration
of a substance tends to flatten out. Going backward (“antidiffusion”), the
situation becomes more and more chaotic. Therefore, you would not expect
well-posedness of the backward-in-time problem for the diffusion equation.

As a third example, consider solving a matrix equation instead of a PDE:
namely, Au = b, where A is an m x n matrix and b is a given m-vector. The
“data” of this problem comprise the vector b. If m > n, there are more rows
than columns and the system is overdetermined. This means that no solution
can exist for certain vectors b; that is, you don’t necessarily have existence. If,
on the other hand, n > m, there are more columns than rows and the system
is underdetermined. This means that there are lots of solutions for certain
vectors b; that is, you can’t have uniqueness.

Now suppose that m = n but A is a singular matrix; that is, det A = 0
or A has no inverse. Then the problem is still ill-posed (neither existence nor
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uniqueness). It is also unstable. To illustrate the instability further, consider a
nonsingular matrix A with one very small eigenvalue. The solution is unique
but if b is slightly perturbed, then the error will be greatly magnified in the
solution #. Such a matrix, in the context of scientific computation, is called
ill-conditioned. The ill-conditioning comes from the instability of the matrix
equation with a singular matrix.

As a fourth example, consider Laplace’s equation u,, + u,, = 0 in the
region D = {—00 < x < 00,0 < y < oo}. It is not a well-posed problem to
specify both u and u, on the boundary of D, for the following reason. It has
the solutions

1
u,(x,y)= Ze_ﬁsin nx sinh ny. )

Notice that they have boundary data u,(x,0)=0 and Ju,/dy(x,0) =
e~V" sin nx, which tends to zero as n — oo. But for y # 0 the solutions
u,(x, y) do not tend to zero as n — oo. Thus the stability condition (iii) is
violated.

EXERCISES
1. Consider the problem

d’u
W‘FI/{:O

u(0)=0 and u(L)=0,

consisting of an ODE and a pair of boundary conditions. Clearly, the
function u(x) = 0 is a solution. Is this solution unique, or not? Does the
answer depend on L?

2. Consider the problem

u"(x) +u'(x) = f(x)
u'(0) = u(0) = 3[u'(1) + u()],

with f(x) a given function.

(a) Is the solution unique? Explain.

(b) Does a solution necessarily exist, or is there a condition that f(x)
must satisfy for existence? Explain.

3. Solve the boundary problem u#” = 0 for 0 < x < 1 with u/(0) + ku(0) = 0
and u/(1) & ku(1) = 0. Do the + and — cases separately. What is special
about the case k = 27?

4. Consider the Neumann problem

Au = f(x,y,z) inD

9
™ _0 onbdyD.
on
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(a) What can we surely add to any solution to get another solution? So
we don’t have uniqueness.
(b) Use the divergence theorem and the PDE to show that

///f(x,y,z)dxdydzzo
D

is a necessary condition for the Neumann problem to have a solution.
(c) Canyou give a physical interpretation of part (a) and/or (b) for either
heat flow or diffusion?

5. Consider the equation
uy +yuy, =0

with the boundary condition u(x, 0) = ¢(x).
(a) For ¢p(x) = x, show that no solution exists.
(b) For ¢(x) = 1, show that there are many solutions.

6. Solve the equation u, + 2xy*u, = 0.

1.6 TYPES OF SECOND-ORDER EQUATIONS

In this section we show how the Laplace, wave, and diffusion equations
are in some sense typical among all second-order PDEs. However, these
three equations are quite different from each other. It is natural that the
Laplace equation u,, + u,, = 0 and the wave equation u,, — u,, = 0 should
have very different properties. After all, the algebraic equation x> + y> =1
represents a circle, whereas the equation x> — y? = 1 represents a hyperbola.
The parabola is somehow in between.

In general, let’s consider the PDE

apUyx + 2a12uxy + anUyy +aju, + axly + apu = 0. (1)

This is a linear equation of order two in two variables with six real constant
coefficients. (The factor 2 is introduced for convenience.)

Theorem 1. By a linear transformation of the independent variables, the
equation can be reduced to one of three forms, as follows.
(1) Elliptic case: If afz < ay1dy, it is reducible to
uxx—i_u)ry_{—"':()

(where - - - denotes terms of order 1 or 0).
(i) Hyperbolic case: If a%z > a11a, it 1s reducible to

Uyy — Uyy + - =0.
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(iii) Parabolic case: If 61122 = ay1dx, it is reducible to
Uy + R 0
(unless a;; = ajp = ayp = 0).

The proof is easy and is just like the analysis of conic sections in analytic
geometry as either ellipses, hyperbolas, or parabolas. For simplicity, let’s
suppose that a;; = 1 and a; = a, = ap = 0. By completing the square, we
can then write (1) as

(0 + al2ay)2u + (6122 — a%2)8y2u =0 2)
(where we use the operator notation d, = d/d.x, 8y2 = 92/9y?, etc.). In the el-

liptic case, a%z < axn.Lethb = (ax» — a%z)l/ 7S 0. Introduce the new variables
& and n by

x=§&, y=ané+bn. (3)

Then 9; = 1- 0, + ay29,, 9, = 0- 9, + bd,, so that the equation becomes
Ou+dpu =0, 4)
which is Laplace’s. The procedure is similar in the other cases. O

Example 1.

Classify each of the equations
(@) Uy — Suy, =0.
(b) 4uyy — 12uyy +9uyy +u, =0.
(©) 4uyy + 6uyy, +9u,, =0.

Indeed, we check the sign of the “discriminant” & = alz2 — ayiax. For
(a) we have & = (—5/2)2 — (1)(0) =25/4 > 0, so it is hyperbolic.
For (b), we have @ = (—6)*> — (4)(9) = 36 — 36 = 0, so it is parabolic.
For (c), we have & = 3% — (4)(9) = 9 — 36 < 0, so it is elliptic. 0
The same analysis can be done in any number of variables, using a bit of

linear algebra. Suppose that there are n variables, denoted x1, x; ..., x,, and
the equation is

> ajtt, + Y aiuy, + aou =0, )
i=1

i,j=1
with real constants a;;, a;, and ao. Since the mixed derivatives are equal, we

may as well assume that a; = a;;. Letx = (xy, ..., x,). Consider any linear
change of independent variables:

(519"'751’1):5:3){;

where B is an n x n matrix. That is,

Sk = Z brmXm - (6)
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Convert to the new variables using the chain rule:
B &, 0
Oxi A 0x; 0&

and

) a
MXin = (;bk,agk> (Xl:bljagl>u

Therefore the PDE is converted to

Zaijux;xj = Z (Zbkiazjblj) Ugg (7
iJ

k1 \ i)

(Watch out that on the left side u is considered as a function of X, whereas on
the right side it is considered as a function of £.) So you get a second-order
equation in the new variables &, but with the new coefficient matrix given
within the parentheses. That is, the new matrix is

BA'B,

where A = (a;;) is the original coefficient matrix, the matrix B = (b;;) defines
the transformation, and ‘B = (b;;) is its transpose.

Now a theorem of linear algebra says that for any symmetric real matrix
A, there is a rotation B (an orthogonal matrix with determinant 1) such that
BA'B is the diagonal matrix

d
d>

BA'B=D = '. . (8)

dy

The real numbers dj, ..., d, are the eigenvalues of A. Finally, a change of
scale would convert D into a diagonal matrix with each of the d’s equal to
+1, —1, or 0. (This is what we did, in effect, early in this section for the case
n=2.)

Thus any PDE of the form (5) can be converted by means of a linear
change of variables into a PDE with a diagonal coefficient matrix.

Definition. The PDE (5) is called elliptic if all the eigenvalues
di, ..., d, are positive or all are negative. [This is equivalent to saying that the
original coefficient matrix A (or —A) is positive definite.] The PDE is called
hyperbolic if none of the dy, . . ., d, vanish and one of them has the opposite
sign from the (n — 1) others. If none vanish, but at least two of them are
positive and at least two are negative, it is called ultrahyperbolic. If exactly
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one of the eigenvalues is zero and all the others have the same sign, the PDE
is called parabolic.

Ultrahyperbolic equations occur quite rarely in physics and mathematics,
so we shall not discuss them further. Just as each of the three conic sections
has quite distinct properties (boundedness, shape, asymptotes), so do each of
the three main types of PDEs. O

More generally, if the coefficients are variable, that is, the a;; are functions
of x, the equation may be elliptic in one region and hyperbolic in another.

Example 2.

Find the regions in the xy plane where the equation
YUy — 2Uyy + X1ty =0

is elliptic, hyperbolic, or parabolic. Indeed, % = (—=1)? — (Nx) =
1 — xy. So the equation is parabolic on the hyperbola (xy = 1), elliptic
in the two convex regions (xy > 1), and hyperbolic in the connected
region (xy < 1). 0

If the equation is nonlinear, the regions of ellipticity (and so on) may
depend on which solution we are considering. Sometimes nonlinear transfor-
mations, instead of linear transformations such as B above, are important. But
this is a complicated subject that is poorly understood.

EXERCISES

1. What is the type of each of the following equations?
(@) Uyy —Uyy +2uy + 1y, — 3uy +4u =0.
(b) OQuyy + 6uyy +uyy +u, =0.

2. Find the regions in the xy plane where the equation
(14 Xty + 2xyugy, — Y2y, =0

is elliptic, hyperbolic, or parabolic. Sketch them.

3. Among all the equations of the form (1), show that the only ones that
are unchanged under all rotations (rotationally invariant) have the form
a(uyy +uyy) +bu =0.

4. What is the fype of the equation

Uyy — dtyy +duy, =0?

Show by direct substitution that u(x, y) = f(y +2x) +xg(y +2x)isa
solution for arbitrary functions f and g.

5. Reduce the elliptic equation
Uyy + 3uyy — 2uy + 24u, + Su =0
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to the form v,, + vy, +cv =0 by a change of dependent variable

u = ve®* P and then a change of scale y' = yy.

Consider the equation 3uy, + u,, = 0.

(a) Whatis its type?

(b) Find the general solution. (Hint: Substitute v = u,.)

(c) With the auxiliary conditions u(x, 0) = e~** and u y(x,0) =0, does
a solution exist? Is it unique?



2

WAVES AND
DIFFUSIONS

In this chapter we study the wave and diffusion equations on the whole real line
—00 < x < 4o00. Real physical situations are usually on finite intervals. We
are justified in taking x on the whole real line for two reasons. Physically
speaking, if you are sitting far away from the boundary, it will take a certain
time for the boundary to have a substantial effect on you, and until that time
the solutions we obtain in this chapter are valid. Mathematically speaking,
the absence of a boundary is a big simplification. The most fundamental
properties of the PDEs can be found most easily without the complications of
boundary conditions. That is the purpose of this chapter. We begin with the
wave equation.

2.1 THE WAVE EQUATION

We write the wave equation as

Uy = czuxx for —00 < x < 400. (1)

(Physically, you can imagine a very long string.) This is the simplest second-
order equation. The reason is that the operator factors nicely:

0 0 0 0
2
ST _c— — 4+ c— =0. 2
o = L (8[ 68x>(81 Cax)” @)

This means that, starting from a function u(x, t), you compute u, + cu,, call
the result v, then you compute v, — cv,, and you ought to get the zero function.
The general solution is

‘ u(x, 1) = f(x +ct) + g(x — ct) 3)

33
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where f and g are two arbitrary (twice differentiable) functions of a single
variable.

Proof. Because of (2),if weletv = u, + cu,, we musthave v, — cv, = 0.
Thus we have two first-order equations

v, —cv, =0 (4a)
and
Uu; +cu, = v. (4b)

These two first-order equations are equivalent to (1) itself. Let’s solve them
one at a time. As we know from Section 1.2, equation (4a) has the solution
v(x,t) = h(x + ct), where h is any function.

So we must solve the other equation, which now takes the form

U, + cuy = h(x + ct) (4c)

for the unknown function u(x, f). It is easy to check directly by differentiation
that one solution is u(x, t) = f(x + ct), where f'(s) = h(s)/2c. [A prime (')
denotes the derivative of a function of one variable.] To the solution f(x + ct)
we can add g(x — ct) to get another solution (since the equation is linear).
The most general solution of (4b) in fact turns out to be a particular solution
plus any solution of the homogeneous equation; that is,

ulx,t) = f(x +ct)+ glx —ct),

as asserted by the theorem. The complete justification is left to be worked out
in Exercise 4.

A different method to derive the solution formula (3) is to introduce the
characteristic coordinates

E=x+ct n=x-—ct.
By the chain rule, we have 0, = 9 + 9, and 9, = c0d¢ + ¢d,. Therefore,
0, — cdy = —2¢0d, and 9; + ¢, = 2c¢0d. So equation (1) takes the form
(0 — €0 )(0; + o )u = (=20 )(2cd)u = 0,
which means that ug,, = 0 since ¢ # 0. The solution of this transformed equa-
tion is
u=f(&) + g

(see Section 1.1), which agrees exactly with the previous answer (3). O

The wave equation has a nice simple geometry. There are rwo families
of characteristic lines, x &= ¢t = constant, as indicated in Figure 1. The most
general solution is the sum of two functions. One, g(x — ct), is a wave of
arbitrary shape traveling to the right at speed c. The other, f(x + cf), is another
shape traveling to the left at speed c. A “movie” of g(x — ct) is sketched in
Figure 1 of Section 1.3.
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Figure 1

INITIAL VALUE PROBLEM

The initial-value problem is to solve the wave equation

Uy = gy for —oc0 < x < +00 (D)

with the initial conditions

ux,0)=¢0)  wux,0) =y, &)

where ¢ and i are arbitrary functions of x. There is one, and only one, solution
of this problem. For instance, if ¢(x) = sin x and ¥/ (x) = 0, then u(x, ) = sin x
Ccos ct.

The solution of (1),(5) is easily found from the general formula (3). First,
setting = 0 in (3), we get

Po(x) = f(x) + g(x). (6)

Then, using the chain rule, we differentiate (3) with respect to ¢ and put r = 0
to get

Y () = cf'(x) — cg'(x). (7

Let’s regard (6) and (7) as two equations for the two unknown functions
f and g. To solve them, it is convenient temporarily to change the name of
the variable to some neutral name; we change the name of x to s. Now we
differentiate (6) and divide (7) by c to get

1
¢'=f+g¢ and -y =jf—¢g"
¢
Adding and subtracting the last pair of equations gives us
1 1
fr=i(e+L)  ad g=1(¢-Y)
2 c 2 c
Integrating, we get

1 1 §
f(S)=2¢(S)+2C/O v+ A
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and
© =300 -5 [ v+B
s)==¢p(s) — — ,
89 =3 2 J,
where A and B are constants. Because of (6), we have A + B = 0. This tells

us what f and g are in the general formula (3). Substituting s = x + ct into
the formula for f and s = x — ct into that of g, we get

, _1 ’ 1 X+ct 1 ’ 1 x—ct
u(x,)—2¢(x+6)+26/0 1ﬂ+2¢(x—6)—2€/0 V.

This simplifies to

x—+ct

1 1
u(x,t) = E[qb(x +ct)+ Pp(x —ct)] + 7 / Y(s)ds. ®)

xX—ct

This is the solution formula for the initial-value problem, due to
d’Alembert in 1746. Assuming ¢ to have a continuous second derivative
(written ¢ € C?) and ¥ to have a continuous first derivative (¢ € C'), we
see from (8) that u itself has continuous second partial derivatives in x and ¢
(u € C?). Then (8) is a bona fide solution of (1) and (5). You may check this
directly by differentiation and by setting ¢ = 0.

Example 1.

For ¢(x) =0 and ¥(x)=cosx, the solution is u(x,t) = (1/2c)
[sin(x + ct) — sin(x — ct)] = (1/c) cos x sinct. Checking this result
directly, we have u,, = —c cos x sin ct, u,, = —(1/c) cos x sin ct, so that
Uy = c’uy,. The initial condition is easily checked. |

Example 2. The Plucked String

For a vibrating string the speed is ¢ = /T /p. Consider an infinitely
long string with initial position
b|x
b— |—| for |x| < a
a

¢(x) = )

0 for |x| > a

and initial velocity ¥ (x) = O for all x. This is a “three-finger” pluck, with
all three fingers removed at once. A “movie” of this solution u(x, t) =
%[d)(x + ct) + ¢(x — ct)] is shown in Figure 2. (Even though this solu-
tion is not twice differentiable, it can be shown to be a “weak” solution,
as discussed later in Section 12.1.)

Each of these pictures is the sum of two triangle functions, one
moving to the right and one to the left, as is clear graphically. To write
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down the formulas that correspond to the pictures requires a lot more
work. The formulas depend on the relationships among the five numbers
0, £a, x & ct. For instance, lett = a/2c. Then x &+ ¢t = x £ a/2. First, if
x < —3a/2,then x £a/2 < —a and u(x, t) = 0. Second, if —3a/2 <
X < —a/2, then

1 1 1 blx + Lal 3b  bx
1) = — — = — b_iz —_ -
u(x 1) 2¢(X + 2“) 2( a 4 T2

Third, if |x| < a/2, then

1 1 1
u(x,t) = 3 [qb (x—l—zcz) +¢<x— 5(1)]

Figure 2

37
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EXERCISES

1.
2.
3.

10.
11.

Solve u;; = ’uyy, u(x,0)=e*, u,(x,0) =sinx.

Solve u;; = c?u,, u(x,0) =log(l + x?), u,(x,0) = 4 + x.

The midpoint of a piano string of tension 7', density p, and length / is hit
by a hammer whose head diameter is 2a. A flea is sitting at a distance

/4 from one end. (Assume that a < [/4; otherwise, poor flea!) How long
does it take for the disturbance to reach the flea?

Justify the conclusion at the beginning of Section 2.1 that every solution
of the wave equation has the form f(x + ct) + g(x — ct).

(The hammer blow) Let ¢(x) = 0 and ¥(x) =1 for |x| <a and
¥ (x) = 0 for |x| > a. Sketch the string profile (u versus x) at each of
the successive instants ¢t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c. [Hint:
Calculate

x—+ct 1

1
ulx,t) = % v(s)ds = 2—C{length of(w—ct,x + ct) N (—a, a)}.
x—ct

Then u(x, a/2c) = (1/2¢) {length of (x —a/2, x +a/2) N (—a, a)}.
This takes on different values for |x| < a/2, for a/2 < x < 3a/2, and
for x > 3a/2. Continue in this manner for each case.]

In Exercise 5, find the greatest displacement, max, u(x, ), as a function
of t.

If both ¢ and ¥ are odd functions of x, show that the solution u(x, ) of
the wave equation is also odd in x for all 7.

A spherical wave is a solution of the three-dimensional wave equation
of the form u(r, f), where r is the distance to the origin (the spherical
coordinate). The wave equation takes the form

2 . .
Uy = c? <u,‘,‘ + —u,‘> (“spherical wave equation”).
r

(a) Change variables v = ru to get the equation for v: v, = v,

(b) Solve for v using (3) and thereby solve the spherical wave equat-
ion.

(c) Use (8) to solve it with initial conditions u(r,0) = ¢(),
u,(r,0) = ¢ (r), taking both ¢(r) and () to be even functions
of r.

Solve u,, — 3uy — 4u,; =0, u(x,0) = x2, u,(x,0) = e*. (Hint: Fac-

tor the operator as we did for the wave equation.)

Solve uyy + uyr —20u;, =0,  u(x,0) = p(x), u(x,0) = P(x).

Find the general solution of 3u;, + 10wy, + 3u,, = sin(x + 1).
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VY=

(xo, 0)

Figure 1

2.2 CAUSALITY AND ENERGY
CAUSALITY

We have just learned that the effect of an initial position ¢ (x) is a pair of waves
traveling in either direction at speed ¢ and at half the original amplitude. The
effect of an initial velocity i is a wave spreading out at speed <c in both
directions (see Exercise 2.1.5 for an example). So part of the wave may lag
behind (if there is an initial velocity), but no part goes faster than speed c.
The last assertion is called the principle of causality. It can be visualized in
the xt plane in Figure 1.

An initial condition (position or velocity or both) at the point (xg, 0)
can affect the solution for # > 0 only in the shaded sector, which is called
the domain of influence of the point (xp, 0). As a consequence, if ¢ and
vanish for [x| > R, then u(x, t) = 0 for [x| > R + ct. In words, the domain
of influence of an interval (Jx| < R) is a sector (|x| < R + ct).

An “inverse” way to express causality is the following. Fix a point (x, ?)
for ¢ > 0O (see Figure 2). How is the number u(x, f) synthesized from the initial
data ¢, ¥? It depends only on the values of ¢ at the two points x =+ ct, and
it depends only on the values of i within the interval [x — ct, x + ct]. We
therefore say that the interval (x — ct, x + ct) is the interval of dependence
of the point (x, ¢) on t = 0. Sometimes we call the entire shaded triangle A
the domain of dependence or the past history of the point (x, ). The domain
of dependence is bounded by the pair of characteristic lines that pass through

(x, 1).

(x, t)

\ B

(x—-ct, 0) (x +ct, 0)

Figure 2
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ENERGY

Imagine an infinite string with constants p and 7. Then pu,, = Tu,, for

—00 < x < 400. From physics we know that the kinetic energy is %mvz,

which in our case takes the form KE = % p [ u?dx. This integral, and the
following ones, are evaluated from —oo to +o0. To be sure that the integral
converges, we assume that ¢(x) and v (x) vanish outside an interval {|x| < R}.
As mentioned above, u(x, t) [and therefore u,(x, 7)] vanish for |x| > R + ct.
Differentiating the kinetic energy, we can pass the derivative under the integral
sign (see Section A.3) to get

dKE / J
—_— = U, dx.
dr P Ut

Then we substitute the PDE pu,, = Tu,, and integrate by parts to get

dKE
— =T | uudx =Tuu, — T | upu,dx.

dt
The term Tu,u, is evaluated at x = £00 and so it vanishes. But the final term
is a pure derivative since u;u, = (%ui) e Therefore,

dKE d (1

— =—— | ~Tu*dx.

dt dt ) 2
Let PE = %Tf u? dx and let E = KE + PE. Then dKE/dt = —dPE/dt, or
dE/dt = 0. Thus

400
E= %/ (puf + Tu?) dx (1

]

is a constant independent of ¢. This is the law of conservation of energy.

In physics courses we learn that PE has the interpretation of the potential
energy. The only thing we need mathematically is the total energy E. The
conservation of energy is one of the most basic facts about the wave equation.
Sometimes the definition of £ is modified by a constant factor, but that does
not affect its conservation. Notice that the energy is necessarily positive. The
energy can also be used to derive causality (as will be done in Section 9.1).

Example 1.
The plucked string, Example 2 of Section 2.1, has the energy
1 1_ (b’ Tb?
E=-T | ¢?dx==-T (=) 2a =—.
2 / o dx 2 (a) “ a -

In electromagnetic theory the equations are Maxwell’s. Each component
of the electric and magnetic fields satisfies the (three-dimensional) wave equa-
tion, where c is the speed of light. The principle of causality, discussed above,



2.2 CAUSALITY AND ENERGY 41

is the cornerstone of the theory of relativity. It means that a signal located at
the position x at the instant #y cannot move faster than the speed of light. The
domain of influence of (x, #y) consists of all the points that can be reached by
a signal of speed c starting from the point xy at the time #y. It turns out that the
solutions of the three-dimensional wave equation always travel at speeds ex-
actly equal to ¢ and never slower. Therefore, the causality principle is sharper
in three dimensions than in one. This sharp form is called Huygens’s principle
(see Chapter 9).

Flatland is an imaginary two-dimensional world. You can think of yourself
as a waterbug confined to the surface of a pond. You wouldn’t want to live there
because Huygens’s principle is not valid in two dimensions (see Section 9.2).
Each sound you make would automatically mix with the “echoes” of your
previous sounds. And each view would be mixed fuzzily with the previous
views. Three is the best of all possible dimensions.

EXERCISES

1. Use the energy conservation of the wave equation to prove that the only
solution with ¢ = 0 and ¥ = 0 is u = 0. (Hint: Use the first vanishing
theorem in Section A.1.)

2. For a solution u(x, t) of the wave equation with p =T = ¢ = 1, the energy
density is defined as ¢ = 3(u? 4 u?) and the momentum density as p =
Uy
(a) Show that de/dt = dp/dx and dp/dt = de/dx.

(b) Show that both e(x, ¢) and p(x, f) also satisfy the wave equation.

3. Show that the wave equation has the following invariance properties.

(a) Any translate u(x — y, t), where y is fixed, is also a solution.
(b) Any derivative, say u,, of a solution is also a solution.
(c) The dilated function u(ax, at) is also a solution, for any constant a.

4. If u(x, r) satisfies the wave equation u,, = u,,, prove the identity
ux+h, t+k)+ux—h, t—ky=ulx—+k, t+h)+ulx—%k, t —h)
for all x, ¢, h, and k. Sketch the quadrilateral Q whose vertices are the
arguments in the identity.

5. For the damped string, equation (1.3.3), show that the energy decreases.

6. Prove that, among all possible dimensions, only in three dimensions can
one have distortionless spherical wave propagation with attenuation. This
means the following. A spherical wave in n-dimensional space satisfies

the PDE
’ ( n—1 )
Uy =¢C U + uy ],
r

where r is the spherical coordinate. Consider such a wave that has
the special form u(r, t) = a(r) f(t — B(r)), where «(r) is called the
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attenuation and S(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.

(a) Plug the special form into the PDE to get an ODE for f.

(b) Set the coefficients of f”, f’, and f equal to zero.

(c) Solve the ODEs to see that » = 1 or n = 3 (unless u = 0).

(d) Ifn=1,show thata(r)is aconstant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69-71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation
U = K. (D

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, ) satisfies the diffusion equation in a rectangle
(say,0 < x <1, 0 <t < T)in space-time, then the maximum value of u(x, t)
is assumed either initially (+ = 0) or on the lateral sides (x = 0 or x = /) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [—u(x, #)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

At

Y=

t=0

Figure 1
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coldest spot can occur only initially or at one of the two ends of the rod. Thus
a hot spot at time zero will cool off (unless heat is fed into the rod at an end).
You can burn one of its ends but the maximum temperature will always be
at the hot end, so that it will be cooler away from that end. Similarly, if you
have a substance diffusing along a tube, its highest concentration can occur
only initially or at one of the ends of the tube.

If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as u,, < 0. If we knew that u,, # 0 at the maximum
(which we do not), then we’d have u,, < 0 as well as u; =0, so that u, # ku,.
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because u,, could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x =0, and x = /. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x,t) < M throughout the rectangle R.

Let € be a positive constant and let v(x, t) = u(x, t) + ex>. Our goal
is to show that v(x, ) < M + €/? throughout R. Once this is accomplished,
we’ll have u(x, t) < M + €(I*> — x?). This conclusion is true for any € > 0.
Therefore, u(x,t) < M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, ) < M + €/> ont =0,
on x = 0, and on x = /. This function v satisfies

v, — kv = u, — k(u + exz)xx =u; — ku,, —2eck = —2¢k <0, )

which is the “diffusion inequality.” Now suppose that v(x, f) attains its maxi-
mum at an interior point (xo, tp). That is, 0 < xo < [, 0 < ¢ty < T. By ordinary
calculus, we know that v, = 0 and v,, < 0 at (xg, #p). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, ) has a maximum (in the closed rectangle) at a point on the fop edge
{to =T and 0 < x < [}. Then v,(xg, fy) = 0 and v, (xg, 7y) < 0, as before.
Furthermore, because v(xy, o) is bigger than v(xg, fo — 8), we have

v(X0, fo) — v(xo, fo — 8) -
3 >

v, (xg, o) = lim 0

as § — 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable ¢.) We again reach a contradiction to
the diffusion inequality.
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But v(x, 1) does have a maximum somewhere in the closed rectangle
0 <x <, 0 <t < T.This maximum must be on the bottom or sides. There-
fore v(x, t) < M + €l? throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

u, —kuy = f(x,t) forO<x <landr >0
u(x, 0) = ¢(x) 3)
u(0,1) = g() u(l, t) = h(t)

for four given functions f, ¢, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
ui(x, t) and uy(x, t) be two solutions of (3). Let w = u; — u, be their differ-
ence. Then w, — kw,, =0, w(x,0) =0, w(0,7) =0, w(,t) =0. Let T >
0. By the maximum principle, w(x, ) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) < 0. The same type
of argument for the minimum shows that w(x, #) > 0. Therefore, w(x, t) = 0,
so that u (x, t) = uy(x, t) forall t > 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u; — u; by
w itself, we can write

0=0-w=w —kwe)w) = (3w2), + (—kw,w) + kw?.

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < [, we get
x=l

l i
0= / (%WQ)ZdX —kw,w +k/ widx.
0 x=0 0

Because of the boundary conditions (w = 0 at x =0, /),

l

d H<rmd—k/%<zwd<o
dtozwx, X = wax, x <0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore, f w2dx is decreasing, so

! !
/NﬂJWMS/MMﬁWW )
0 0

for + > 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that f [w(x, ))?dx =0 forall t > 0. Sow = 0 and
uy = u, forall t > 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
=f=0.Letu;(x,0) = ¢;(x) and uy(x, 0) = ¢»(x). Then w = u; — u, is the
solution with the initial datum ¢; — ¢,. So from (4) we have

! [
/ [ty (x, 1) — ua(x, )] dx < / [1(x) — pa(x)]* dx. ©))
0 0

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w = u; — u; = 0 on the lateral sides of the rectangle and w = ¢p; — ¢»
on the bottom. The maximum principle asserts that throughout the rectangle

I/l](x, t) - MZ(X7 t) = max|¢1 - ¢2|
The “minimum” principle says that
ur(x, 1) — uz(x, 1) = —max|é; — ¢o|.

Therefore,
max lug(x, 1) — ux(x, 1) < max, lp1(x) — Pa(x)], (6)

valid for all # > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 — x> — 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0<x<1,0<t<T}.

2. Consider a solution of the diffusion equation u, = u,, in {0 <x </,
0<t<oo}.

(a) Let M(T) = the maximum of u(x, ¢) in the closed rectangle {0 < x
<1,0 <t <T}. Does M(T) increase or decrease as a function of 7'?

(b) Letm(T)=the minimum of u(x, ¢) in the closed rectangle {0 < x <,
0 <t < T}. Does m(T) increase or decrease as a function of 7?7

3. Consider the diffusion equation u#, = u,, in the interval (0, 1) with (0, ) =
u(l, t) = 0 and u(x, 0) = 1 — x%. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all # > 0.
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(a) Show that u(x, t) > 0 at all interior points 0 < x < 1, 0 < ¢ < o0.

(b) For each t > 0, let ;(¢) = the maximum of u(x, ) over 0 < x < 1.
Show that u(¢) is a decreasing (i.e., nonincreasing) function of 7.
(Hint: Let the maximum occur at the point X(#), so that u(f) =
u(X(t), t). Differentiate 1.(¢), assuming that X(¢) is differentiable.)

(c) Draw a rough sketch of what you think the solution looks like (u
versus x) at a few times. (If you have appropriate software available,
compute it.)

4. Consider the diffusion equation #;, = u,, in {0 < x < 1, 0 < t < oo} with
u(0, t) =u(l,t) = 0and u(x, 0) = 4x(1 — x).
(a) ShowthatO < u(x,?) < 1forallt >0and 0 < x < 1.
(b) Show that u(x, t) = u(l —x,t)forallt>0and 0 <x < 1.
(c) Use the energy method to show that foluz dx is a strictly decreasing
function of t.

5. The purpose of this exercise is to show that the maximum principle is not
true for the equation u, = xu,,, which has a variable coefficient.
(a) Verify that u = —2xt — x* is a solution. Find the location of its
maximum in the closed rectangle {—2 <x <2, 0 <t < 1}.
(b) Where precisely does our proof of the maximum principle break
down for this equation?

6. Prove the comparison principle for the diffusion equation: If # and v are
two solutions, and if u < v fort =0, forx =0, and forx =/, thenu < v
forO0<t<oo, 0<x<I.

7. (a) More generally,ifu;, —ku,, = f, v, —kv =g, f <g,andu <v

atx=0,x=/and =0, provethatu <vfor0 <x</0 <t < o0.

(b) If vy —vy >sinx for0<x <mw, 0 <t < o0, and if v(0,t) > 0,
v(m, t) > 0 and v(x, 0) > sin x, use part (a) to show that v(x, t) >
(1 —e")sinx.

8. Consider the diffusion equation on (0, /) with the Robin boundary condi-
tions u,(0, 1) — aou(0,t) = 0 and u,(l, t) + aqyu(l,t) = 0. If ay > 0 and
a; > 0, use the energy method to show that the endpoints contribute to
the decrease of fol u’(x, t)dx. (This is interpreted to mean that part of
the “energy” is lost at the boundary, so we call the boundary conditions
“radiating” or “dissipative.”)

2.4 DIFFUSION ON THE WHOLE LINE

Our purpose in this section is to solve the problem

U =ku,, (o0 <x<o00,0<t<00) (1)

u(x, 0) = ¢(x). (@)
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As with the wave equation, the problem on the infinite line has a certain
“purity”, which makes it easier to solve than the finite-interval problem. (The
effects of boundaries will be discussed in the next several chapters.) Also as
with the wave equation, we will end up with an explicit formula. But it will
be derived by a method very different from the methods used before. (The
characteristics for the diffusion equation are just the lines = constant and
play no major role in the analysis.) Because the solution of (1) is not easy to
derive, we first set the stage by making some general comments.

Our method is to solve it for a particular ¢(x) and then build the general
solution from this particular one. We’ll use five basic invariance properties
of the diffusion equation (1).

(a) The translate u(x — y, t) of any solution u(x, ) is another solution,
for any fixed y.

(b) Any derivative (u, or u, or u,,, etc.) of a solution is again a solution.

(¢c) A linear combination of solutions of (1) is again a solution of (1).
(This is just linearity.)

(d) Anintegral of solutions is again a solution. Thus if S(x, 7) is a solution
of (1), then so is S(x — y, ¢) and so is

v(x, 1) =/ Sx —y,0)g(y)dy

o0

for any function g(y), as long as this improper integral converges
appropriately. (We’ll worry about convergence later.) In fact, (d) is
just a limiting form of (c).

(e) If u(x,t) is a solution of (1), so is the dilated function
u(y/ax,at), for any a > 0. Prove this by the chain rule:
Let v(x, ) = u(y/ax, at). Then v, = [d(at)/dtlu, = au, and v, =
[0(/ax)/oxu, = Jau, and vy = /a - Jauy, = au,,.

Our goal is to find a particular solution of (1) and then to construct all the
other solutions using property (d). The particular solution we will look for is
the one, denoted Q(x, t), which satisfies the special initial condition

0x,00=1 forx >0 Qx,00=0 forx <O. 3)

The reason for this choice is that this initial condition does not change under
dilation. We’ll find Q in three steps.
Step1 We’ll look for Q(x, ) of the special form

X

4
Akt ®

O(x,t) = g(p) where p =
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and g is a function of only one variable (to be determined). (The 4k factor
is included only to simplify a later formula.)

Why do we expect Q to have this special form? Because property (e) says
that equation (1) doesn’t “see” the dilation x — /ax,t — at. Clearly, (3)
doesn’t change at all under the dilation. So Q(x, ), which is defined by condi-
tions (1) and (3), ought not see the dilation either. How could that happen? In
only one way: if Q depends on x and # solely through the combination x //7.
For the dilation takes x/+/7 into \/ax/v/at = x/+/t. Thus let p = x//4kt
and look for Q which satisfies (1) and (3) and has the form (4).

Step 2 Using (4), we convert (1) into an ODE for g by use of the chain rule:

_dgdp 1 «x

dg dp 1,
= =—=g(p)
¢ dp dx \/4ktg P
dQ. dp r,
Qu = dp ox _4ktg (p)

171 1
0=0;—kQy = A [—Epg’(p) — Zg”(p)] .

Thus

¢ +2pg' =0.

This ODE is easily solved using the integrating factor exp [2p dp = exp(p?).
We get ¢'(p) = 1 exp(—p?) and

Qx,t) =g(p) =i /epzdp +c.

Step 3 We find a completely explicit formula for Q. We’ve just shown that

x/N/akt 5
O(x,t)=c / e Pdp+ .
0

This formula is valid only for r > 0. Now use (3), expressed as a limit as
follows.

+o0
T
If x >0, 1=1imQ=c1/ efpzdp—i—cz:cl—\/_-kcz,
tN\O 0 2

—00
If.X<0, O:llmQ:c1/ €7p2dp+62:—clﬁ+c2,
t\O 0 2
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See Exercise 6. Here li\r‘r& means limit from the right. This determines the
t

coefficients ¢; = 1/4/7 and ¢; = % Therefore, Q is the function

Jaki
Ox, 1) = —+—/ e Pdp &)

for t > 0. Notice that it does indeed satisfy (1), (3), and (4).

Step 4 Having found Q, we now define S = dQ/dx. (The explicit formula
for S will be written below.) By property (b), S is also a solution of (1). Given
any function ¢, we also define

ulx,t) = /00 S(x —y,Hep(y)dy fort > 0. (6)

oo

By property (d), u is another solution of (1). We claim that u is the unique
solution of (1), (2). To verify the validity of (2), we write

u(x, 1) = / E =y 060 dy

9
_ _f 100 = y. 0160 dy
— y

00
y=+o00

=+/ Q(x —y, 09’y dy — Q(x — y, ()

y=-—00

upon integrating by parts. We assume these limits vanish. In particular, let’s
temporarily assume that ¢(y) itself equals zero for |y| large. Therefore,

u(x, 0) = f 00 — v, 00/ () dy

X

= ¢(x)

—00

=f ' (y)dy =¢

because of the initial condition for Q and the assumption that ¢(—o0) = 0.
This is the initial condition (2). We conclude that (6) is our solution formula,
where

d 1 !
S = 90 = —— % fort > 0. (7

ax 2 wkt

That is,

u(x, 1) = T e g ) dy. (8)

1
Akt J-
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As

-

Moderate ¢
Large ¢

Figure 1

\ &

S(x, t) isknown as the source function, Green’s function, fundamental solution,
gaussian, or propagator of the diffusion equation, or simply the diffusion
kernel. 1t gives the solution of (1),(2) with any initial datum ¢. The formula
only gives the solution for ¢ > 0. When ¢ = 0 it makes no sense. i

The source function S(x, t) is defined for all real x and for all # > 0. S(x, 1)
is positive and is even in x [S(—x, ) = S(x, ¢)]. It looks like Figure 1 for
various values of ¢. For large ¢, it is very spread out. For small ¢, it is a very
tall thin spike (a “delta function”) of height (4mwkt)~'/?. The area under its
graph is

o0 1 o0 2
/_OOS(x,t)dx=ﬁ/_ooe_q dg =1

by substituting g = x/+/4kt, dg = (dx)/~/4kt (see Exercise 7). Now look
more carefully at the sketch of S(x, ¢) for a very small ¢. If we cut out the tall
spike, the rest of S(x, #) is very small. Thus
|rlrlla)gS(x, t)y—0 as t— 0 )
X|>
Notice that the value of the solution u(x, #) given by (6) is a kind of

weighted average of the initial values around the point x. Indeed, we can
write

ety = [ 86— 3 g0 dy = 3 S0 3 09008,
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approximately. This is the average of the solutions S(x — y;, f) with the weights
¢(y;). For very small ¢, the source function is a spike so that the formula
exaggerates the values of ¢ near x. For any ¢ > 0 the solution is a spread-out
version of the initial values at t = 0.

Here’s the physical interpretation. Consider diffusion. S(x — y, ) repre-
sents the result of a unit mass (say, 1 gram) of substance located at time zero
exactly at the position y which is diffusing (spreading out) as time advances.
For any initial distribution of concentration, the amount of substance initially
in the interval Ay spreads out in time and contributes approximately the term
S(x — yi, t)¢(y;)Ay;. All these contributions are added up to get the whole
distribution of matter. Now consider heat flow. S(x — y, #) represents the result
of a “hot spot” at y at time 0. The hot spot is cooling off and spreading its heat
along the rod.

Another physical interpretation is brownian motion, where particles
move randomly in space. For simplicity, we assume that the motion is one-
dimensional; that is, the particles move along a tube. Then the probability that
a particle Wthh begins at position x ends up in the interval (a, b) at time 7 is
precisely f S(x — y, t)dy for some constant k, where S is defined in (7). In
other words, if we let u(x, ¢) be the probability density (probability per unit
length) and if the initial probability density is ¢(x), then the probability at
all later times is given by formula (6). That is, u(x, ¢) satisfies the diffusion
equation.

It is usually impossible to evaluate integral (8) completely in terms of
elementary functions. Answers to particular problems, that is, to particular
initial data ¢(x), are sometimes expressible in terms of the error function of
statistics,

2 * 2
Grf(x) = —/ e Pdp. (10)
v Jo
Notice that érf(0) = 0. By Exercise 6, hT Crf(x) = 1.

Example 1.

From (5) we can write Q(x, ) in terms of ‘érf as

6 1) = 2 4 s
Qx, —5 51'(\/m 0

Example 2.
Solve the diffusion equation with the initial condition u(x, 0) = e¢~*. To
do so, we simply plug this into the general formula (8):

o
u(x,t) = e_<x_y)2/4k’e_ydy.

1
Akt
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This is one of the few fortunate examples that can be integrated. The
exponent is

x? —2xy + y? + dkty
4kt '
Completing the square in the y variable, it is

(y + 2kt — x)*
Akt

We let p = (y + 2kt — x)/~/4kt so that dp = dy/~/4kt. Then

o
u(x,t) = ek’_"/ e_”zd—p =M,
SR
By the maximum principle, a solution in a bounded interval can-
not grow in time. However, this particular solution grows, rather than
decays, in time. The reason is that the left side of the rod is initially
very hot [u(x, 0) — 400 as x — —o0o] and the heat gradually diffuses
throughout the rod. O

+ kt — x.

EXERCISES

1.

Solve the diffusion equation with the initial condition
¢(x)=1 for|x| <! and ¢(x)=0 for|x| > I[.
Write your answer in terms of ‘€rf(x).

Do the same for ¢(x) = 1 for x > 0 and ¢(x) = 3 for x < 0.

Use (8) to solve the diffusion equation if ¢(x) = e3*. (You may also use
Exercises 6 and 7 below.)

x < 0.
Prove properties (a) to (e) of the diffusion equation (1).
Compute fooo e dx. (Hint: This is a function that cannot be integrated

by formula So use the following trick. Transform the double integral

I e —dx - [ e =’ dy into polar coordinates and you’ll end up with a
function that can be integrated easily.)

Use Exercise 6 to show that ffooo e"’zdp = /7. Then substitute
p = x/+/4kt to show that

o0
/ S(x,t)dx = 1.
—0oQ

Show that for any fixed § > 0 (no matter how small),

max S(x,t) —> 0 ast — 0.
§<|x|<o0

Solve the diffusion equation if ¢(x) = e~ for x > 0 and ¢(x) = O for
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11.
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13.

14.

15.
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[This means that the tail of S(x, ¢) is “uniformly small”.]

Solve the diffusion equation u, = ku,, with the initial condition

u(x, 0) = x? by the following special method. First show that u,.,

satisfies the diffusion equation with zero initial condition. There-

fore, by uniqueness, u,. = 0. Integrating this result thrice, obtain

u(x,t) = A(t)x> + B(t)x + C(¢). Finally, it’s easy to solve for A, B,

and C by plugging into the original problem.

(a) Solve Exercise 9 using the general formula discussed in the
text. This expresses u(x, f) as a certain integral. Substitute p =
(x — y)/~/4kt in this integral.

(b) Since the solution is unique, the resulting formula must agree with
the answer to Exercise 9. Deduce the value of

° 2
/ pre P dp.
—00

(a) Consider the diffusion equation on the whole line with the usual
initial condition u(x, 0) = ¢(x). If ¢(x) is an odd function, show
that the solution u(x, t) is also an odd function of x. (Hint: Consider
u(—x,t)+ u(x, t) and use the uniqueness.)

(b) Show that the same is true if “odd” is replaced by “even.”

(c) Show that the analogous statements are true for the wave equation.

The purpose of this exercise is to calculate Q(x,t) approximately for

large . Recall that Q(x, t) is the temperature of an infinite rod that is

initially at temperature 1 for x > 0, and O for x < 0.

(a) Express Q(x, 1) in terms of érf.

(b) Find the Taylor series of érf(x) around x = 0. (Hint: Expand ¢,
substitute z = —y?, and integrate term by term.)

(c) Use the first two nonzero terms in this Taylor expansion to find an
approximate formula for Q(x, t).

(d) Why is this formula a good approximation for x fixed and ¢ large?

Prove from first principles that Q(x, r) must have the form (4), as follows.

(a) Assuming uniqueness show that Q(x,t) = Q(y/a x, at). This
identity is valid for all @ > 0, all # > 0, and all x.

(b) Choose a = 1/(4kt).

Let ¢p(x) be a continuous function such that [¢(x)| < C ¢, Show that
formula (8) for the solution of the diffusion equation makes sense for 0
< t < 1/(4ak), but not necessarily for larger .

Prove the uniqueness of the diffusion problem with Neumann boundary
conditions:

U, —kuy = f(x,t) forO<x <I,t >0 u(x,0)=a¢x)
ur(0,1) = g(t) u(l,1) = h()

by the energy method.
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16.

17.

18.

19.
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Solve the diffusion equation with constant dissipation:
u, — kuy +bu =0 for —o0 < x < 0 withu(x, 0) = ¢(x),

where b > 0 is a constant. (Hint: Make the change of variables u(x, t) =
e Pu(x, 1).)

Solve the diffusion equation with variable dissipation:
u, — kit + bt*u = 0 for—oo < x < 0 with u(x, 0) = ¢(x),

where b > 0 is a constant. (Hint: The solutions of the ODE
w,+bt>w =0 are Ce /3. So make the change of variables
u(x,t) = e‘b’3/3v(x, t) and derive an equation for v.)

Solve the heat equation with convection:

u; — ke +Vu, =0 for—oco < x < with u(x, 0) = ¢(x),

where V is a constant. (Hint: Go to a moving frame of reference by

substituting y = x — Vt.)

(a) Show that Sy(x, y, t) = S(x, t)S(y, t) satisfies the diffusion equa-
tion §; = k(Sq + Syy).

(b) Deduce that S,(x, y, t) is the source function for two-dimensional
diffusions.

2.5 COMPARISON OF WAVES AND DIFFUSIONS

We have seen that the basic property of waves is that information gets trans-
ported in both directions at a finite speed. The basic property of diffusions
is that the initial disturbance gets spread out in a smooth fashion and grad-
ually disappears. The fundamental properties of these two equations can be
summarized in the following table.

Property Waves Diffusions
(i) Speed of propagation? Finite (<c) Infinite
(i) Singularities for r > 0?7 Transported Lost immediately
along
characteristics
(speed = c¢)
(iii)) Well-posed for t > 0?7 Yes Yes (at least for bounded solutions)
(iv) Well-posed fort < 0?7 Yes No
(v) Maximum principle No Yes
(vi) Behavior as ¢t — +00? Energy is Decays to zero (if ¢ integrable)
constant so does
not decay
(vii) Information Transported Lost gradually
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For the wave equation we have seen most of these properties already. That
there is no maximum principle is easy to see. Generally speaking, the wave
equation just moves information along the characteristic lines. In more than
one dimension we’ll see that it spreads information in expanding circles or
spheres.

For the diffusion equation we discuss property (ii), that singularities are
immediately lost, in Section 3.5. The solution is differentiable to all orders
even if the initial data are not. Properties (iii), (v), and (vi) have been shown
already. The fact that information is gradually lost [property (vii)] is clear
from the graph of a typical solution, for instance, from S(x, 7).

As for property (i) for the diffusion equation, notice from formula (2.4.8)
that the value of u(x, ) depends on the values of the initial datum ¢(y) for
all y, where —oo < y < o0o. Conversely, the value of ¢ at a point x, has an
immediate effect everywhere (for t > 0), even though most of its effect is
only for a short time near xy. Therefore, the speed of propagation is infinite.
Exercise 2(b) shows that solutions of the diffusion equation can travel at
any speed. This is in stark contrast to the wave equation (and all hyperbolic
equations).

As for (iv), there are several ways to see that the diffusion equation is not
well-posed for t < 0 (“backward in time”). One way is the following. Let

1 : —n2kt
Uy(x,t) = —sin nx e . (D)
n

You can check that this satisfies the diffusion equation for all x, ¢. Also,
u,(x,0) = n~'sinnx — 0 uniformly as n — oo. But consider any ¢ < 0, say
t = —1. Then u,(x, —1) = n~'sinnx etk s 400 uniformly as n — oo
except for a few x. Thus u,, is close to the zero solution at time ¢ = O but not
at time t = —1. This violates the stability, in the uniform sense at least.

Another way is to let u(x,t)= S(x,t+1). This is a solu-
tion of the diffusion equation u, = ku,, fort > —1, —00 < x < co. But
u(0,t) - ocoast N\ —1, as we saw above. So we cannot solve backwards
in time with the perfectly nice-looking initial data (47rk)'e /4.

Besides, any physicist knows that heat flow, brownian motion, and so on,
are irreversible processes. Going backward leads to chaos.

EXERCISES

1. Show that there is no maximum principle for the wave equation.

2. Consider atraveling wave u(x, t) = f(x — at) wheref is a given function
of one variable.
(a) Ifitis a solution of the wave equation, show that the speed must be
a = %c (unless f is a linear function).
(b) Ifitis a solution of the diffusion equation, find f and show that the
speed a is arbitrary.
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Let u satisfy the diffusion equation u, = %um. Let

1 2 x 1
X /2t
X, t - — .
vl 1) \/;e v(t t>

Show that v satisfies the “backward” diffusion equation v, = —%vm
forz > 0.

Here is a direct relationship between the wave and diffusion equations.
Let u(x, f) solve the wave equation on the whole line with bounded second
derivatives. Let

0
U(x’t):\/:W/ e_sz"z/“ktu(x,s)ds.
T —00

(a) Show that v(x, f) solves the diffusion equation!
(b) Show that lim;_.q v(x, ) = u(x, 0).

(Hint: (a) Write the formula as v(x, t) = f_oooo H(s, t)u(x, s)ds, where

H(x, t) solves the diffusion equation with constant k/c? for t > 0. Then
differentiate v(x, ) using Section A.3. (b) Use the fact that H(s, ?) is
essentially the source function of the diffusion equation with the spatial
variable s.)
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REFLECTIONS AND
SOURCES

In this chapter we solve the simplest reflection problems, when there is only a
single point of reflection at one end of a semi-infinite line. In Chapter 4 we shall
begin a systematic study of more complicated reflection problems. In Sections
3.3 and 3.4 we solve problems with sources: that is, the inhomogeneous wave
and diffusion equations. Finally, in Section 3.5 we analyze the solution of the
diffusion equation more carefully.

3.1 DIFFUSION ON THE HALF-LINE

Let’s take the domain to be D = the half-line (0, co) and take the Dirichlet
boundary condition at the single endpoint x = 0. So the problem is

v, — kv, =0 m{0<x <oo, 0<t< o0},
v(x, 0) = ¢(x) fort =0 (D
v(0,t) =0 forx =0

The PDE is supposed to be satisfied in the open region {0 < x < oo,
0 <t < oo}. If it exists, we know that the solution v(x, ¢) of this problem
is unique because of our discussion in Section 2.3. It can be interpreted, for
instance, as the temperature in a very long rod with one end immersed in a
reservoir of temperature zero and with insulated sides.

We are looking for a solution formula analogous to (2.4.8). In fact, we
shall reduce our new problem to our old one. Our method uses the idea of an
odd function. Any function ¥ (x) that satisfies ¥ (—x) = —y¥(+x) is called
an odd function. Its graph y = 1/(x) is symmetric with respect to the origin

57
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\
®

Figure 1

(see Figure 1). Automatically (by putting x = 0 in the definition), {(0) = 0.
For a detailed discussion of odd and even functions, see Section 5.2.

Now the initial datum ¢(x) of our problem is defined only for x > 0. Let
@Podq be the unique odd extension of ¢ to the whole line. That is,

d(x) forx >0
Podd(xX) = { —p(—x) forx <0 )
0 for x = 0.

The extension concept too is discussed in Section 5.2.
Let u(x, t) be the solution of

u;, —ku,, =0
u(x, 0) = ¢oga(x)

for the whole line —oo < x < 00,0 < t < 00. According to Section 2.3, it is
given by the formula

3)

oo
u )= [ 86 =3 gy, )
Its “restriction,”
v(x,t) =u(x,t) forx >0, (5)

will be the unique solution of our new problem (1). There is no difference at
all between v and u except that the negative values of x are not considered
when discussing v.

Why is v(x, ¢) the solution of (1)? Notice first that u(x, r) must also be an
odd function of x (see Exercise 2.4.11). That is, u(—x, t) = —u(x, t). Putting
x = 0, it is clear that u(0, r) = 0. So the boundary condition v(0, #) = 0 is
automatically satisfied! Furthermore, v solves the PDE as well as the initial
condition for x > 0, simply because it is equal to u for x > 0 and u satisfies
the same PDE for all x and the same initial condition for x > 0.

The explicit formula for v(x, t) is easily deduced from (4) and (5). From
(4) and (2) we have

0

u(x, t) =/0 Sx —y, t)¢(y)dy—/ Sx —y, )p(—y)dy.

—00
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Changing the variable —y to +y in the second integral, we get
o
u(x,t) = / [Sx —y, )= S&x+y, Dl ¢(y)dy.
0

(Notice the change in the limits of integration.) Hence for 0 < x < oo,
0 <t < oo, we have

1
Akt

vix, t) =

/°° [~ P4kt _ =4k 0y gy (6)
0

This is the complete solution formula for (1).

We have just carried out the method of odd extensions or reflection method,
so called because the graph of ¢q4q(x) is the reflection of the graph of ¢(x)
across the origin.

Example 1.

Solve (1) with ¢(x) = 1. The solution is given by formula (6). This case
can be simplified as follows. Let p = (x — y)/+/4kt in the first integral
and ¢ = (x 4+ y)/+/4kt in the second integral. Then

x/«/m 5 +0o0 5
u(x,t) =/ e Pdp/JT —/ e dq/JT
—00 x//4kt

-5 ()] -1 2o ()]

:%rf(\/z_kl). .

Now let’s play the same game with the Neumann problem

w,—kw, =0 forO<x<oo, 0<t <o
w(x, 0) = ¢(x) (7)
w,(0, 1) =0.

In this case the reflection method is to use even, rather than odd, extensions.
An even function is a function 1 such that ¥ (—x) = +¢(x). If ¥ is an even
function, then differentiation shows that its derivative is an odd function. So
automatically its slope at the origin is zero: ¥'(0) = 0. If ¢(x) is defined only
on the half-line, its even extension is defined to be

Peven(x) = { bx) for.x =0 ®)
+¢(—x) forx <0
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By the same reasoning as we used above, we end up with an explicit formula
for w(x, 7). It is

1
Akt

wix, 1) = / [ A L ot gy dy | (9)
0

This is carried out in Exercise 3. Notice that the only difference between (6)
and (9) is a single minus sign!

Example 2.

Solve (7) with ¢(x) = 1. This is the same as Example 1 except for the
single sign. So we can copy from that example:

wn =4 qan () |45 -y (o) =1

(That was stupid: We could have guessed it!) i

EXERCISES

1. Solve u, = ku; u(x,0) =e¢=; u(0, t) = 0 on the half-line 0 < x < o0.
2. Solve u, = kuy,; u(x,0)=0; u(0,¢) = 1 on the half-line 0 < x < oco.

3. Derive the solution formula for the half-line Neumann prob-
lemw, —kw, =0for0 < x < 00,0 <t <o0;w,(0,1) =0;w(x,0) =
P(x).

4. Consider the following problem with a Robin boundary condition:

DE: u, = ku,, on the half-line 0 < x < o0
(and 0 < t < 00) *)
IC: u(x,0)=x fort =0and0 < x < *

BC: u,(0,¢) —2u(0,t) =0 forx =0.

The purpose of this exercise is to verify the solution formula for (*). Let
f(x)=xforx >0, let f(x)=x+1—e* forx <0, and let

1 ©
«/471kt/ T dy.
—00

(a) What PDE and initial condition does v(x,f) satisfy for
—00 < X < 00?

(b) Letw = v, — 2v. What PDE and initial condition does w(x, ) satisfy
for —oo < x < 00?

(¢) Show that f'(x) — 2 f(x) is an odd function (for x # 0).

(d) Use Exercise 2.4.11 to show that w is an odd function of x.

vix, t) =
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(e) Deduce that v(x, ) satisfies (*) for x > 0. Assuming uniqueness,
deduce that the solution of (*) is given by

/ e f () dy.

—00

ulx, t)=

1
Akt

5. (a) Use the method of Exercise 4 to solve the Robin problem:

DE: u, = ku,, on the half-line 0 < x < o0
(and 0 < 1 < ©0)
IC: u(x,0)=x fort =0and 0 < x < 00

BC: u,(0,¢t) — hu(0,t) =0 forx =0,

where & is a constant.
(b) Generalize the method to the case of general initial data ¢(x).

3.2 REFLECTIONS OF WAVES

Now we try the same kind of problem for the wave equation as we did in
Section 3.1 for the diffusion equation. We again begin with the Dirichlet
problem on the half-line (0, co). Thus the problem is

DE: v, —c*v, =0 for 0 < x < 00
and —00 <t < 00

IC: v(x,0) =¢x), vx,0)=vx) forz=0 (1)
and 0 < x < o0

BC: v(0,1))=0 for x =0
and —00 <t < 00.

The reflection method is carried out in the same way as in Section 3.1. Con-
sider the odd extensions of both of the initial functions to the whole line,
Poad(x) and ¥ oqq(x). Let u(x, ¢) be the solution of the initial-value problem on
(—00, 00) with the initial data ¢oqq and ¥ oqq. Then u(x, ) is once again an odd
function of x (see Exercise 2.1.7). Therefore, u(0, r) = 0, so that the boundary
condition is satisfied automatically. Define v(x, t) = u(x,t) for 0 < x < 00
[the restriction of u to the half-line]. Then v(x, ¢) is precisely the solution we
are looking for. From the formula in Section 2.1, we have for x > 0,

1 1 xX—+ct
v(x, 1) =ux, 1) = §[¢odd(x + ct) + Poaa(x — ct)] + 26/ . Vodd(y)dy.

Let’s “unwind” this formula, recalling the meaning of the odd extensions.
First we notice that for x > c|¢| only positive arguments occur in the formula,
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///
”
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Figure 1

so that u(x, ) is given by the usual formula:

1 1 x+ct
— . _ .t I
o) = St e+ o —enl+ o [ woidy |,
for x > clt|.
Butinthe otherregion0 < x < c|t]|,wehave ¢oqq(x — ct) = —¢(ct — x),

and so on, so that
x+tet

1 I

v(x, 1) =Sl +ct) —@lct =)+~ | ¥ (ydy + / [—v&yldy.
2 2¢ Jo 2¢ J—wt

Notice the switch in signs! In the last term we change variables y — —y to

get 1/2¢ | C’jxx V¥ (y)dy. Therefore,

ct

ct+x

1 1
v, 1) = Zlglcr +x) — plet — )] + 2/ ~v(dy 3

ct—x

for 0 < x < c|t|. The complete solution is given by the pair of formulas (2)
and (3). The two regions are sketched in Figure 1 for ¢ > 0.

Graphically, the result can be interpreted as follows. Draw the backward
characteristics from the point (x, ¢). In case (x, #) is in the region x < ct, one of
the characteristics hits the ¢ axis (x = 0) before it hits the x axis, as indicated
in Figure 2. The formula (3) shows that the reflection induces a change of

(x, 1)

x
(O,t—z) D

-~
re
-

(x —;t, 0) (ct - x, 0) (x +ct, 0)

Figure 2
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sign. The value of v(x, r) now depends on the values of ¢ at the pair of points
ct = x and on the values of i in the short interval between these points. Note
that the other values of i have canceled out. The shaded area D in Figure 2
is called the domain of dependence of the point (x, t).

The case of the Neumann problem is left as an exercise.

THE FINITE INTERVAL

Now let’s consider the guitar string with fixed ends:

vy = oy v(x, 0) = ¢(x) v(x,0)=vYx) for0<x <,

v(0,1) =v(l,1)=0. “4)

This problem is much more difficult because a typical wave will bounce back
and forth an infinite number of times. Nevertheless, let’s use the method of
reflection. This is a bit tricky, so you are invited to skip the rest of this section
if you wish.

The initial data ¢(x) and ¥ (x) are now given only for 0 < x < /. We extend
them to the whole line to be “odd” with respect to both x = 0 and x = I

¢ext(_x) = _¢ext(x) and ¢ext(2l —Xx)= _¢ext(x)-
The simplest way to do this is to define

¢(x) for 0<x <l
Gext(X) = —p(—x) for - <x<0
extended to be of period 2/.

See Figure 3 for an example. And see Section 5.2 for further discussion.
“Period 2/” means that ¢ex(x + 2/) = ¢exe(x) for all x. We do exactly the
same for ¥ (x) (defined for 0 < x < /) to get Yex(x) defined for —oo < x <
Q.

Now let u(x, ) be the solution of the infinite line problem with the extended
initial data. Let v be the restriction of u to the interval (0, /). Thus v(x, 7) is

¢ext

~ ~ ~

’\/’\/\4‘\/’\/

Figure 3
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A

(x, t) x 1
(l, t+?—?)

x 1
0 e-x-1

x 3l
({, t+?—?)

Figure 4

given by the formula

1 1 X+ct
00, 1) = S+ D)+ Sl — D)+ 5 / Ve®ds

for 0 < x < [. This simple formula contains all the information we need. But
to see it explicitly we must unwind the definitions of ¢¢y and ey This will
give a resulting formula which appears quite complicated because it includes
a precise description of a// the reflections of the wave at both of the boundary
points x = 0 and x = .

The way to understand the explicit result we are about to get is by draw-
ing a space-time diagram (Figure 4). From the point (x, ), we draw the two
characteristic lines and reflect them each time they hit the boundary. We keep
track of the change of sign at each reflection. We illustrate the result in Figure
4 for the case of a typical point (x, ). We also illustrate in Figure 5 the def-
inition of the extended function ¢y (x). (The same picture is valid for ¥ q.)
For instance, for the point (x, ¢) as drawn in Figures 4 and 5, we have

Gext(x +ct) = —p(4l —x —ct) and  Pex(x — ct) = +d(x — ct + 21).

The minus coefficient on —¢(—x — ct + 4/) comes from the odd number of
reflections (= 3). The plus coefficient on ¢(x — ct + 2/) comes from the even

—¢(—x) —-o(—x+21) ~¢(—x+41)
o (x+21) / ¢ {(x) ¢ (x-21)
! 1 I

! | | | -

-2l -1 0 l 21 3l 41

x-ct x+ct

Figure 5
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number of reflections (= 2). Therefore, the general formula (5) reduces to

v(x,t) = %qb(x —ct+2l) — %¢(4l —x —ct)
1 —1 0
5 U w(y+21)dy+/ =Y (=y)dy
¢ x—ct -1

1 21
+/0 l/f(y)dy+/l —y(=y+2D)dy

3l

+ w(y—2l)dy+/

21 3/

x+ct

—y(—y +4l) dy]

But notice that there is an exact cancellation of the four middle integrals, as
we see by changing y — —y and y — 2/ — —y + 2. So, changing variables
in the two remaining integrals, the formula simplifies to

v(x,t) = %d)(x —ct+2])— %d)(4l —Xx —ct)

1 1 4l—x—ct
+ w(s)ds + — / Y(s)ds.
2c i

2c x—ct+2l
Therefore, we end up with the formula

4]—x—ct

v(x, 1) = %¢(x—ct+2l)—%¢(4l—x—ct)+/ )
x—ct+

ds
W(S)Z—C (6)

at the point (x, t) illustrated, which has three reflections on one end and two
on the other. Formula (6) is valid only for such points.

At
44
4,3 3,4
3,3
3,2 2,3
2,2
2,1 1,2
1,1
1,0 0,1
0,0 X
0 ! o

Figure 6
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The solution formula at any other point (x, ¢) is characterized by the num-
ber of reflections at each end (x = 0, /). This divides the space-time picture
into diamond-shaped regions as illustrated in Figure 6. Within each diamond
the solution v(x, t) is given by a different formula. Further examples may be
found in the exercises.

The formulas explain in detail how the solution looks. However, the
method is impossible to generalize to two- or three-dimensional problems,
nor does it work for the diffusion equation at all. Also, it is very complicated!
Therefore, in Chapter 4 we shall introduce a completely different method
(Fourier’s) for solving problems on a finite interval.

EXERCISES
1. Solve the Neumann problem for the wave equation on the half-line 0 <
X < 0o.

2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the
wave equation U, = c?u,, for x > 0. Assume that the end x = 0 is free
(4, = 0); it is initially at rest but has a constant initial velocity V for
a < x < 2a and has zero initial velocity elsewhere. Plot u versus x at the
times t =0, a/c, 3a/2c, 2a/c, and 3a/c.

3. A wave f(x + ct) travels along a semi-infinite string (0 < x < oo) for
t < 0. Find the vibrations u(x, t) of the string for r > 0 if the end x = 0
is fixed.

4. Repeat Exercise 3 if the end is free.

5. Solveu,, = 4u for0 < x < oo, u(0,t) =0, ux,0)=1,u,(x,0)=0
using the reflection method. This solution has a singularity; find its lo-
cation.

6. Solveu, =c?u,, in0 < x < 00,0 <t < 0o, u(x,0)=0, u,(x,0)=V,
u[(Ov t)+aux(07 I)ZO,

where V, a, and ¢ are positive constants and a > c.

7. (a) Show that ¢oqq(x) = (sign x)@(|x]).
(b) Show that ¢ex(X) = poaa(x — 2I[x/21]), where [-] denotes the greatest
integer function.
(¢) Show that

L) e

¢ext(x) =

—é (—x _ [ﬂ /- 1) if[)l—c] odd.

8. For the wave equation in a finite interval (0, /) with Dirichlet conditions,
explain the solution formula within each diamond-shaped region.
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9. (a) Find u(%,Z) if uy=u, in 0<x<1,u(x,0)=x%1—x),
u(x,0) =1 —x)% u,t) =u(l,t) =0.
(b) Find u(y, 2).
10. Solve u;; = %u,,in0 < x < /2, u(x,0) = cosx, u,(x,0) =0,
uy(0,1) =0, u(x/2,t) = 0.
11. Solve u,;=c*uyin0 < x <1, u(x,0)=0, u,(x,0)=x, u(0, 1) =
u(l,t) =0.

3.3 DIFFUSION WITH A SOURCE

In this section we solve the inhomogeneous diffusion equation on the whole
line,

Uy — kuy = f(x,t) (—oo<x <00, O0<t<o0)

1
u(x, 0) = ¢(x) W

with f(x, f) and ¢(x) arbitrary given functions. For instance, if u(x, f) represents
the temperature of a rod, then ¢(x) is the initial temperature distribution and
f(x, t) is a source (or sink) of heat provided to the rod at later times.

We will show that the solution of (1) is

u(x, 1) = f Sx — v, DP() dy

o]

+/f Sx —y,t—s)f(y,s)dyds. 2)
0 J—o0

Notice that there is the usual term involving the initial data ¢ and another term
involving the source f. Both terms involve the source function S.

Let’s begin by explaining where (2) comes from. Later we will actually
prove the validity of the formula. (If a strictly mathematical proof is satisfac-
tory to you, this paragraph and the next two can be skipped.) Our explanation
is an analogy. The simplest analogy is the ODE

du
7 Au(t) = f(1), u(0) = ¢, 3)
where A is a constant. Using the integrating factor e, the solution is
t
u(t) =e "¢ + / eSTA F(s5)ds. (4)
0

A more elaborate analogy is the following. Let’s suppose that ¢ is an
n-vector, u(t) is an n-vector function of time, and A is a fixed n x n matrix.
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Then (3) is a coupled system of n linear ODEs. In case f(¢) = 0, the solution
of (3) is given as u(t) = S(t)¢, where S(¢) is the matrix S(r) = e~"*. So in case
f(t) # 0, an integrating factor for (3) is S(—f) = ¢"*. Now we multiply (3) on
the left by this integrating factor to get

4 is 0= S0 4 S nAul) = S
E[ (=DHu()] = S(— )E—i_ (=) Au(t) = S(=1) f(1).

Integrating from O to ¢, we get

S(—l)u(t)—¢=/0 S(=s)f(s)ds.

Multiplying this by S(#), we end up with the solution formula

u(t) = S + / S(t — 5)£(s) ds. 5)
0

The first term in (5) represents the solution of the homogeneous equation,
the second the effect of the source f{¢). For a single equation, of course, (5)
reduces to (4). O

Now let’s return to the original diffusion problem (1). There is an analogy
between (2) and (5) which we now explain. The solution of (1) will have two
terms. The first one will be the solution of the homogeneous problem, already
solved in Section 2.4, namely

oo
| se=ypmdy = Foprw. ®)

—00
S(x — y, t) is the source function given by the formula (2.4.7). Here we are
using & (¢) to denote the source operator, which transforms any function ¢ to
the new function given by the integral in (6). (Remember: Operators transform

functions into functions.) We can now guess what the whole solution to (1)
must be. In analogy to formula (5), we guess that the solution of (1) is

u(t) =St)p + / St —s)f(s)ds. @)
0

Formula (7) is exactly the same as (2):

u(x, 1) = / SG— v, () dy

+// S(x—y,t—s)f(y,s)dyds. ()
0 J—

The method we have just used to find formula (2) is the operator method.

Proof of (2). All we have to do is verify that the function u(x, ), which
is defined by (2), in fact satisfies the PDE and IC (1). Since the solution of
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(1) is unique, we would then know that u(x, ¢) is that unique solution. For
simplicity, we may as well let ¢ = 0, since we understand the ¢ term already.

We first verify the PDE. Differentiating (2), assuming ¢ = 0 and using
the rule for differentiating integrals in Section A.3, we have

8t / f Sx—y,t —s5)f(y,s)dy ds

as
=f / a—(x—y,t—S)f(y,s)dyds
0 J-oo OF

—|—1in}/ Sx—y,t —s)f(y,s)dy,

—0o0

taking special care due to the singularity of S(x —y, ¢ — s) att — s = 0. Using
the fact that S(x — y,  — s) satisfies the diffusion equation, we get

00 82
f/ k—(x v, t —s8)f(y, s)dyds

+ lm% S(x —y,6)f(y,t)dy.

—00

Pulling the spatial derivative outside the integral and using the initial condition
satisfied by S, we get

0

82 t o0
u_ k—2/ / SGe =y, t —5)f(y, s)ydyds + F(x, 1)
at ox 0 00

9%u
=k—s + f(x,0).
)

This identity is exactly the PDE (1). Second, we verify the initial condition.
Letting r — 0, the first term in (2) tends to ¢(x) because of the initial condition
of S. The second term is an integral from O to 0. Therefore,

0
lir%u(x, ) =o¢x)+ / s = P(x).
t— 0

This proves that (2) is the unique solution. i

Remembering that S(x, ¢) is the gaussian distribution (2.4.7), the formula
(2) takes the explicit form

u(x,t):/ /"0 SGc— v, 1 —$)f(y,s)dyds
0 J—o0
1 2
= e C e DA )]
_./(; /—oo 47Tk(t—s)e f(y’ S)dyds (8)

in the case that ¢ = 0.
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SOURCE ON A HALF-LINE

For inhomogeneous diffusion on the half-line we can use the method of re-
flection just as in Section 3.1 (see Exercise 1).

Now consider the more complicated problem of a boundary source h(t)
on the half-line; that is,

v — kv = f(x,t) forO<x <oo, 0<t<o0
v(0, ¢) = h(1) )
v(x, 0) = ¢(x).

We may use the following subtraction device to reduce (9) to a simpler prob-
lem. Let V(x, t) = v(x, t) — h(t). Then V(x, t) will satisfy

Vi —kVu = f(x,1) = h'(t) for0 < x < oo, 0<t<oo
V(0,t) =0 (10)
V(x,0) = ¢(x) — h(0).

To verify (10), just subtract! This new problem has a homogeneous boundary
condition to which we can apply the method of reflection. Once we find V,
we recover v by v(x, t) = V(x, t) + h(t). This simple subtraction device is
often used to reduce one linear problem to another.

The domain of independent variables (x, ) in this case is a quarter-plane
with specified conditions on both of its half-lines. If they do not agree at
the corner [i.e., if ¢(0) % /(0)], then the solution is discontinuous there (but
continuous everywhere else). This is physically sensible. Think for instance,
of suddenly at # = O sticking a hot iron bar into a cold bath.

For the inhomogeneous Neumann problem on the half-line,

wr —kwy = f(x,t) for0 < x < oo, 0<t <o
wy(0,2) = h(t) (1)
w(x, 0) = ¢(x),

we would subtract off the function xA(¢). That is, W(x, t) = w(x, 1) — xh(t).
Differentiation implies that W,(0, t) = 0. Some of these problems are worked
out in the exercises.

EXERCISES

1. Solve the inhomogeneous diffusion equation on the half-line with Dirich-
let boundary condition:

u, — kuy = f(x,t) OD<x<oo, 0<t<o0)
u(,t)=0 u(x,0) = p(x)

using the method of reflection.
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2. Solve the completely inhomogeneous diffusion problem on the half-line
v, — kv = f(x, 1) forO0<x<oo, O0<t<o0
v(0,7) =h(t)  v(x,0) =),
by carrying out the subtraction method begun in the text.
3. Solve the inhomogeneous Neumann diffusion problem on the half-line

w; —kwy, =0 forO<x <00, O0<t<o0
w(0, 1) = h(t) w(x, 0) = ¢(x),

by the subtraction method indicated in the text.

3.4 WAVES WITH A SOURCE

The purpose of this section is to solve

Uy — gy = f(x, 1) (1)

on the whole line, together with the usual initial conditions

u(x, 0) = ¢(x)

2
ui(x,0) = ¥(x) @

where f(x, f) is a given function. For instance, f(x, ) could be interpreted as
an external force acting on an infinitely long vibrating string.

Because L = 97 — ¢?9? is a linear operator, the solution will be the sum
of three terms, one for ¢, one for ¥, and one for f. The first two terms are
given already in Section 2.1 and we must find the third term. We’ll derive the
following formula.

Theorem 1. The unique solution of (1),(2) is

x+ct
u(x,t)z%[¢(x+ct)+¢(x—ct)]+2i/ 1//+i//f 3)
C Jx—ct 2c A

where A is the characteristic triangle (see Figure 1).
The double integral in (3) is equal to the iterated integral

t x+c(t—s)
[ ] o
0 x—c(t—s)

We will give three different derivations of this formula! But first, let’s note
what the formula says. It says that the effect of a force f on u(x, ) is obtained
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A
(x, t)

y

(x-ct,0) (x+ct,0)

Figure 1

by simply integrating f over the past history of the point (x, #) back to the
initial time r = 0. This is yet another example of the causality principle.

WELL-POSEDNESS

We first show that the problem (1),(2) is well-posed in the sense of Sec-
tion 1.5. The well-posedness has three ingredients, as follows. Existence
is clear, given that the formula (3) itself is an explicit solution. If ¢ has a
continuous second derivative, 1 has a continuous first derivative, and f is
continuous, then the formula (3) yields a function u with continuous second
partials that satisfies the equation. Uniqueness means that there are no other
solutions of (1),(2). This will follow from any one of the derivations given
below.

Third, we claim that the problem (1),(2) is stable in the sense of Section
1.5. This means that if the data (¢, ¥, f) change a little, then u also changes
only a little. To make this precise, we need a way to measure the “nearness”
of functions, that is, a metric or norm on function spaces. We will illustrate
this concept using the uniform norms:

[wll=max jw(x)|
—o0<X <O

and

bwllr = max __w(x ol
Here T is fixed. Suppose that u;(x,7) is the solution with data
(D1(x), ¥1(x), filx,t)) and wup(x,) 1is the solution with data
(2(x), Yra(x), falx, 1)) (six given functions). We have the same formula (3)
satisfied by u; and by u, except for the different data. We subtract the two
formulas. We let u = u; — u,. Since the area of A equals ct?, we have from
(3) the inequality

1 1
lu(x, t)| < max|¢| + — - max|y| - 2ct + — - max|f]| - ct?
2c 2¢

)
= max|¢| + ¢ - max|y| + 3 -max| f].
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Therefore,

T2
luy = wallr < Ny = doll + TV = Yoll + —-l/s = fallr- | (4)

Soif ¢ — ol <8, Y1 — Ynll < §,and || f1 — fallr < &, where § is small,
then

luy —usllr <81 +T +T? < €

provided that § < €/(1 + T + T?). Since € is arbitrarily small, this argument
proves the well-posedness of the problem (1),(2) with respect to the uniform
norm.

PROOF OF THEOREM 1

Method of Characteristic Coordinates We introduce the usual character-
istic coordinates £ = x + ct, n = x — ct, (see Figure 2). As in Section 2.1,
we have

Lu =y — ity = —4cug, = f<$+n > '7>'

2 7 2

We integrate this equation with respect to 7, leaving £ as a constant. Thus
ug = —(1/4¢*) [" fdn. Then we integrate with respect to & to get

1 3 n
u=—462/ / fdnde 5)

The lower limits of integration here are arbitrary: They correspond to constants
of integration. The calculation is much easier to understand if we fix a point
Py with coordinates x, ty and

& = xo + ¢ty No = Xo — Clp.

V=

Figure 2
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At

V=

Figure 3

We evaluate (5) at Py and make a particular choice of the lower limits. Thus

u(Py) = — f (“” 526 )d ds
_ g §4n &
-’r— / ( e )dndé

is a particular solution. As Figure 3 indicates, 7 now represents a variable
going along a line segment to the base n = & of the triangle A from the left-
hand edge n = ng, while & runs from the left-hand corner to the right-hand
edge. Thus we have integrated over the whole triangle A.

The iterated integral, however, is not exactly the double integral over A
because the coordinate axes are not orthogonal. The original axes (x and ¢) are
orthogonal, so we make a change of variables back to x and ¢. This amounts
to substituting back

(6)

)

A little square in Figure 4 goes into a parallelogram in Figure 5. The change
in its area is measured by the jacobian determinant ./ (see Section A.1). Since

A

N

A f=fo

A I

Figure 4
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At
(x0, to)
/‘) ‘Z‘\\*
_ &0 0
50 U,
* Pyl
x
\\ t=0 //
~ -~
~ -~
~ 7
~ -~
~ -~
~ -~
~ -~
~ P
\\/
Figure 5

our change of variable is a linear transformation, the jacobian is just the
determinant of its coefficient matrix:

& 0§
i dx Ot .
J = |det o o || =
dx ot

Thus dn d& = J dx dt = 2c dx dt. Therefore, the rule for changing vari-
ables in a multiple integral (the jacobian theorem) then gives

1
u(Py) = E// Fx,0)J dx dt. (8)
A

This is precisely Theorem 1. The formula can also be written as the iterated
integral in x and #:

1 ty pxotc(to—t)
u(xo, fo) = %/ / f(x,t)dxdt, 9)
0 X

o—c(to—1)

integrating first over the horizontal line segments in Figure 5 and then verti-
cally.

A variant of the method of characteristic coordinates is to write (1) as the
system of two equations

U, +cuy =v v —cvy = f,

the first equation being the definition of v, as in Section 2.1. If we first solve
the second equation, then v is a line integral of f over a characteristic line
segment x + ct = constant. The first equation then gives u(x, f) by sweeping
out these line segments over the characteristic triangle A. To carry out this
variant is a little tricky, however, and we leave it as an exercise.
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(x(), to)

|

(xg—ctg, O EO (xq + ctp, 0)

Figure 6

Method Using Green's Theorem In this method we integrate f over the
past history triangle A. Thus

// fdxdt:// (Uy — Cuy)dx dt. (10)
A A

But Green’s theorem says that

// (Px—Q,)dxdtzf Pdt+ Qdx
A bdy

for any functions P and Q, where the line integral on the boundary is taken
counterclockwise (see Section A.3). Thus we get

// fdxdt:/ (—cuydt — u, dx). (11)
A Lo+Li+L>

This is the sum of three line integrals over straight line segments (see Figure
6). We evaluate each piece separately. On Ly, dt = 0 and u,(x, 0) = ¥ (x),

so that
Xo+cty
/ = — / Y(x)dx.
Lo Xo—Clp

On Ly, x +ct =xp+ cty, so that dx +cdt =0, whence —c?u, dt—
u; dx = cu, dx + cu, dt = ¢ du. (We’re in luck!) Thus

/ = c/ du = cu(xy, ty) — c@p(xg + ctp).
L L
In the same way,
/ = —cf du = —cop(xg — cty) + cu(xg, to).
L, L,

Adding these three results, we get

Xo+cty

// fdxdt =2cu(xg, to) — cld(xo+ cty) + ¢(xg — cty)] —/ Y(x)dx.
A

Xp—Cly
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Thus

1 1
u(xo, fo) = — / / Fdxdt + Lo+ cto) + ¢lxo — cto)]
2C A 2
1 xo+cty (12)
+— Y(x)dx,

2C Xo—cty

which is the same as before.

Operator Method This is how we solved the diffusion equation with a
source. Let’s try it out on the wave equation. The ODE analog is the equation,

d’u ) du
Jp AU =10, w0 =4¢. —0)=1. (13)

We could think of A? as a positive constant (or even a positive square matrix.)
The solution of (13) is

u(t) = St + Sy + / St =) f(s)ds, (14)
0

where
S(t)=A"'sintA and S'(t) = costA. (15)

The key to understanding formula (14) is that S(¢)1 is the solution of problem
(13) in the case that ¢ =0 and f = 0.
Let’s return to the PDE

Uy — Clie = f(x, 1) u(x,0)=¢(x) u(x,0)=vyx). (16
The basic operator ought to be given by the ¥ term. That is,

1 x+ct
Sy = —f v(y)dy = v(x, 1), a7

2¢ Ji—er

where v(x, 1) solves v, — c2vy = 0, v(x,0) =0, v,(x,0) = Y(x). L) is
the source operator. By (14) we would expect the ¢ term to be (39/31)F ().
In fact,

a a 1 x—+ct
gﬂ)(mp =) d(y)dy
1
=5 [cp(x + ct) — (—c)p(x — ct)],
c

in agreement with our old formula (2.1.8)! So we must be on the right track.
Let’s now take the f term; that is, ¢ = ¥ = 0. By analogy with the last
term in (14), the solution ought to be

u(t):/ St —s)f(s)ds.
0
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That is, using (17),

t 1 x+c(t—s) 1
u(x,t):f [—f f(y,s)dyi|ds=—/f fdxdt.
o L2c x—c(t—s) 2¢ JJa

This is once again the same result!

The moral of the operator method is that if you can solve the homogeneous
equation, you can also solve the inhomogeneous equation. This is sometimes
known as Duhamel’s principle.

SOURCE ON A HALF-LINE

The solution of the general inhomogeneous problem on a half-line

DE: v, —c®vy = f(x,1) in 0<x < o0
IC: v(x,0)=0¢x) v(x,0) =v(x) (18)
BC: v(0,1) = h(?)

is the sum of four terms, one for each data function ¢, ¥, f, and h. For x >
ct > 0, the solution has precisely the same form as in (3), with the backward
triangle A as the domain of dependence. For 0 < x < ct, however, it is given
by

v(x,z)=¢term+wterm+h(t—’f>+i// f (19)
C 2C D

where t — x/c is the reflection point and D is the shaded region in Figure
3.2.2. The only caveat is that the given conditions had better coincide at the
origin. That is, we require that ¢(0) = h(0) and ¥ (0) = h’(0). If this were
not assumed, there would be a singularity on the characteristic line emanating
from the corner.

Let’s derive the boundary term h(t — x/c) for x < ct. To accomplish
this, it is convenient to assume that ¢ = ¢ = f = 0. We shall derive
the solution from scratch using the fact that v(x,7) must take the form
v(x,t) = j(x + ct) + g(x — ct). From the initial conditions (¢ = ¢ = 0),
we find that j(s) = g(s) = 0 for s > 0. From the boundary condition we have
h(t) = v(0, t) = g(—ct) for t > 0. Thus g(s) = h(—s/c) for s < 0. Therefore, if
x<ct,t>0,wehave v(x, t) =04+ h(—[x — ct]/c) = h(t — x/c).

FINITE INTERVAL

For a finite interval (0, /) with inhomogeneous boundary conditions v(0, 1) =
h(t), v(l, t) = k(t), we get the whole series of terms

X x — 21 x + 2
v(x,t):h(t——)—h ‘ + Y . +
c c c
x—1 x+1 x — 3l
+klt+ —k(t— +klr+ —+ .-
c c c

(see Exercise 15 and Figure 3.2.4).
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EXERCISES
1. Solve u, = cuy +xt, u(x,0)=0, u,(x,0)=0.
2. Solve u,; = uy + e, u(x,00=0, u/(x,0)= 0.
3. Solve u;; = c?uy +cosx, u(x,0)=sinx, u,(x,0)=1+x.
4. Show that the solution of the inhomogeneous wave equation

wy =G+ fo ux,0) =), u,x,0) = P(x),
is the sum of three terms, one each for f, ¢, and .
Let f(x, 1) be any function and let u(x, 1) = (1/2¢) [, f, where A is the
triangle of dependence. Verify directly by differentiation that
uy = uy+ f and  u(x,0) = u,(x,0) = 0.

(Hint: Begin by writing the formula as the iferated integral

1 t X+ct—cs
M(X,l‘)Z%/ / f(y,s)dyds
0 Jx

—ct+cs
and differentiate with care using the rule in the Appendix. This exercise
is not easy.)

Derive the formula for the inhomogeneous wave equation in yet another
way.
(a) Write it as the system

u, +cuy =v, v, —cv, = f.

(b) Solve the first equation for u in terms of v as

t
u(x,t) = / v(x —ct +cs,s)ds.
0

(c) Similarly, solve the second equation for v in terms of f.
(d) Substitute part (c) into part (b) and write as an iterated integral.

Let A be a positive-definite n x n matrix. Let
x (_l)m A2mt2m+l

S0=2 Qm + 1)!

m=0

(a) Show that this series of matrices converges uniformly for bounded
t and its sum S(¢) solves the problem S”(t) + A2S(t) = 0, S(0) =
0, S'(0) = I, where I is the identity matrix. Therefore, it makes
sense to denote S(7) as A~! sin rA and to denote its derivative S'(¢)
as cos(tA).

(b) Show that the solution of (13) is (14).

Show that the source operator for the wave equation solves the problem
g, —c*F . =0, FO)=0, F0) =1,

where [ is the identity operator.
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9. Letu(t) = fof S(t — 5) f(s)ds. Using only Exercise 8, show that u solves
the inhomogeneous wave equation with zero initial data.

10. Use any method to show that u = 1/(2¢) [/, pJ solves the inhomoge-
neous wave equation on the half-line with zero initial and boundary
data, where D is the domain of dependence for the half-line.

11. Show by direct substitution that u(x, t) = h(t — x/c) for x < ct and
u(x, t) = 0 for x > ct solves the wave equation on the half-line (0, co)
with zero initial data and boundary condition u(0, 1) = h(t).

12. Derive the solution of the fully inhomogeneous wave equation on the
half-line

Uy — CPu = f(x,t) m0<x <o

v(x, 0) = o(x),  vi(x,0) = ¥(x)
v(0, 1) = h(n),

by means of the method using Green’s theorem. (Hint: Integrate over
the domain of dependence.)

13. Solve u,; = c?u,, for0 < x < o0,
u©,t) =1>, u(x,00=x, u(x,0)=0.

14. Solve the homogeneous wave equation on the half-line (0, oo) with zero
initial data and with the Neumann boundary condition u, (0, t) = k().
Use any method you wish.

15. Derive the solution of the wave equation in a finite interval with inho-
mogeneous boundary conditions v(0, t) = h(t), v(/, t) = k(t), and with

¢p=v=f=0.
3.5 DIFFUSION REVISITED

In this section we make a careful mathematical analysis of the solution of
the diffusion equation that we found in Section 2.4. (On the other hand, the
formula for the solution of the wave equation is so much simpler that it doesn’t
require a special justification.)
The solution formula for the diffusion equation is an example of a con-
volution, the convolution of ¢ with S (at a fixed ). It is
oo o
uxny= [ s -ynemdy = [ scnee-nds )
—0o0 —00
where S(z,t) = 1//4nkt e~= /41 _1f we introduce the variable p =z/Vkt,
it takes the equivalent form

u(x, 1) = \/%_n /oo e P’ p(x — pkt)dp. 2)

Now we are prepared to state a precise theorem.
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Theorem 1. Let ¢(x) be a bounded continuous function for —co < x <
oo. Then the formula (2) defines an infinitely differentiable function u(x, f)
for —oco < x < 00, 0 <t < oo, which satisfies the equation u, = ku,, and
lim;\ o u(x, t) = ¢(x) for each x.

Proof. The integral converges easily because

U, 0l = —— maxig) [ e dp = max|g).
Jar o

(This inequality is related to the maximum principle.) Thus the integral con-
verges uniformly and absolutely. Let us show that du/dx exists. It equals
f (0S/9x)(x — y,)¢(y) dy provided that this new integral also converges
absolutely. Now

a8 1 Cx—-y .2
o — 9yt dy = — T —x=y) /4kt d
/_Oo (=3 Do) dy — f_oo TR P(y)dy

N % / " pe P g — pVRD)dp

< %(maxwl)/z \ple~ " /*ap,

where c is a constant. The last integral is finite. So this integral also converges
uniformly and absolutely. Therefore, u, = du/dx exists and is given by this
formula. All derivatives of all orders (u,, u,;, Uy, Uy, . . .) Work the same way
because each differentiation brings down a power of p so that we end up
with convergent integrals like | p"e"’z/ * dp. So u(x, t) is differentiable to all
orders. Since S(x, ¢) satisfies the diffusion equation for ¢ > 0, so does u(x, ?).

It remains to prove the initial condition. It has to be understood in a
limiting sense because the formula itself has meaning only for ¢ > 0. Because
the integral of S is 1, we have

u(x, 1) — px) = / SGx = v, D [$(y) — $(0)] dy

1 / o° 2
=—— [ " *p(x — pVki) — p()1dp.
A/ 47 —00
For fixed x we must show that this tends to zero as ¢t — 0. The idea is that for
p+/t small, the continuity of ¢ makes the integral small; while for p+/f not
small, p is large and the exponential factor is small.
To carry out this idea, let € > 0. Let § > 0 be so small that

max 160~ ()] < 7.
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This can be done because ¢ is continuous at x. We break up the integral into
the part where |p| < §/ Vkt and the part where |p| > §/ Vkt. The first part is

1 2
_ —-p /4d > . B
lel«ﬁ/m = («/477 /e P s [p(y) — (x)]

€ €
The second part is
1 —p?/4
< —— -2(max |¢|) - e P"dp < =
Ipl=8/vkt

€

<l -=—=-.
‘/lwa/m Var 2

272
by choosing ¢ sufficiently small, since the integral [ e~?"/* dp converges

and § is fixed. (That is, the “tails” flpIZN

N = 8//kt is large enough.) Therefore,

e~P'/* dp are as small as we wish if

lu(x, ) —p(x)| < de +ie =

provided that ¢ is small enough. This means exactly that u(x, t) — ¢(x) as
t— 0. ]

Corollary. The solution has all derivatives of all orders for ¢ > 0, even if ¢
is not differentiable. We can say therefore that all solutions become smooth
as soon as diffusion takes effect. There are no singularities, in sharp contrast
to the wave equation.

Proof. We use formula (1)

o
ut) = [ 6=y g0 dy

—00
together with the rule for differentiation under an integral sign, Theorem 2 in
Section A.3.

Piecewise Continuous Initial Data. Notice that the continuity of ¢(x) was
used in only one part of the proof. With an appropriate change we can allow
¢(x) to have a jump discontinuity. [Consider, for instance, the initial data for
O, 1).]

A function ¢(x) is said to have a jump at x if both the limit of ¢(x)
as x — xo from the right exists [denoted ¢(xo+)] and the limit from the left
[denoted ¢(xp —)] exists but these two limits are not equal. A function is called
piecewise continuous if in each finite interval it has only a finite number of
jumps and it is continuous at all other points. This concept is discussed in
more detail in Section 5.2.
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Theorem 2. Let ¢(x) be a bounded function that is piecewise continuous.
Then (1) is an infinitely differentiable solution for ¢ > 0 and

limu(x, 1) = S[P0c+) + P(r=)]

for all x. At every point of continuity this limit equals ¢(x).

Proof. The idea is the same as before. The only difference is to split the
integrals into p > 0 and p < 0. We need to show that

1 fioo 2 1
— e P re(x + Vktp)dp — = (x ).
Var Jo prer 2
The details are left as an exercise. ]

EXERCISES

1. Prove that if ¢ is any piecewise continuous function, then

+o0
\/% /0 e P Mp(x + Vkip)dp — i%«ﬁ (x£) ast\0.

2. Use Exercise 1 to prove Theorem 2.



4

BOUNDARY
PROBLEMS

In this chapter we finally come to the physically realistic case of a finite
interval 0 < x < /. The methods we introduce will frequently be used in the
rest of this book.

4.1 SEPARATION OF VARIABLES, THE
DIRICHLET CONDITION

We first consider the homogeneous Dirichlet conditions for the wave equation:

Uy = cuy, for0<x <1 (1)

u,t)=0=u(,1t) (2)

with some initial conditions

u(x,0) =) ux,0)=y(x). 3)

The method we shall use consists of building up the general solution as a linear
combination of special ones that are easy to find. (Once before, in Section
2.4, we followed this program, but with different building blocks.)

A separated solution is a solution of (1) and (2) of the form

ulx,t) = Xx)T (). 4)

(It is important to distinguish between the independent variable written as a
lowercase letter and the function written as a capital letter.) Our first goal is
to look for as many separated solutions as possible.

84
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Plugging the form (4) into the wave equation (1), we get
X)T" (@) = X" ()T (1)

or, dividing by —c>X T, , )
A SRy
2T X

This defines a quantity A, which must be a constant. (Proof: 01 /dx = 0 and
oAr/dt =0, so X is a constant. Alternatively, we can argue that A doesn’t
depend on x because of the first expression and doesn’t depend on ¢ because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that A > 0. (This is the reason for introducing
the minus signs the way we did.)

So let A = B2, where 8 > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X (x) and 7'(¢):

X"+B*X =0 and T"+*B*T =0. (5)

These ODE:s are easy to solve. The solutions have the form
X(x)=CcosBx + D sin Sx (6)
T(t) = Acos Bct + B sin ct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated
solution. They simply require that X(0) = 0 = X (/). Thus

0=X@0)=C and 0= X()=Dsinpgl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have Bl = nm, aroot of the sine function. That is,

TN\2 b4
h = (”T) LX) = sin¥ (n=1,23..) ®)
are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

nmct . nmct\ . nmx
Uup(x,t) = (A,, cos ] + B, sin ] )smT

(n=1,2,3,...),where A, and B,, are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

't 't
u(x,t) = Z (An cos m;c + B, sin #) sin mTTx 9

n

is also a solution of (1) and (2).
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Formula (9) solves (3) as well as (1) and (2), provided that

d) =3 A, sing (10)
and
niwc . nmXx
ESESY = Busin == (11)

n

Thus for any initial data of this form, the problem (1), (2), and (3) has a simple
explicit solution.

But such data (10) and (11) clearly are very special. So let’s try (following
Fourier in 1827) to take infinite sums. Then we ask what kind of data pairs
¢(x), ¥ (x) can be expanded as in (10), (11) for some choice of coefficients A,,
B,? This question was the source of great disputes for half a century around
1800, but the final result of the disputes was very simple: Practically any (!)
function ¢(x) on the interval (0, I) can be expanded in an infinite series (10).
We will show this in Chapter 5. It will have to involve technical questions
of convergence and differentiability of infinite series like (9). The series in
(10) is called a Fourier sine series on (0, [). But for the time being let’s not
worry about these mathematical points. Let’s just forge ahead to see what
their implications are.

First of all, (11) is the same kind of series for {(x) as (10) is for ¢(x).
What we’ve shown is simply that if (10), (11) are true, then the infinite series
(9) ought to be the solution of the whole problem (1), (2), (3).

A sketch of the first few functions sin(zwx//), sin2wx /1), ... is shown
in Figure 1. The functions cos(nmct/[) and sin(nmct /1) which describe the

Ay
1+ % s -
e s D
AN \
! /
\ \
/i A
\ \
I /
\ N \
\ 4 ! -
0 AN / 1
\ X /l
\ \‘(
\ A
X , .
1 N

Figure 1
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behavior in time have a similar form. The coefficients of ¢ inside the sines
and cosines, namely nmwc/[, are called the frequencies. (In some texts, the
frequency is defined as nc/21.)

If we return to the violin string that originally led us to the problem (1),
(2), (3), we find that the frequencies are

nr T
NG

The “fundamental” note of the string is the smallest of these, & JT /(l\/p). The
“overtones” are exactly the double, the triple, and so on, of the fundamental!
The discovery by Euler in 1749 that the musical notes have such a simple
mathematical description created a sensation. It took over half a century to
resolve the ensuing controversy over the relationship between the infinite
series (9) and d’Alembert’s solution in Section 2.1. o

forn=1,2,3,... (12)

The analogous problem for diffusion is

DE: u;=ku,, (O<x<I[,0<t < o0) (13)
BC: u(0,t)=u(l,t)=0 (14)
IC: u(x, 0) = ¢(x). (15)

To solve it, we separate the variables u = T'(£)X(x) as before. This time we get

T/ X//
— = — = —) = constant.
kT X
Therefore, T(¢) satisfies the equation T’ = —AkT, whose solution is T (z) =
Ae *t_ Furthermore,
—X"=2X in0<x</ with X(0)=X()=0. (16)

This is precisely the same problem for X(x) as before and so has the same
solutions. Because of the form of T'(¢),

o0
u(x,t) = Z Ape /DK gin g (17)

n=1

is the solution of (13)—(15) provided that

> o onmx
¢(x) = A, sin - (18)
n=1
Once again, our solution is expressible for each ¢ as a Fourier sine series in x
provided that the initial data are.
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For example, consider the diffusion of a substance in a tube of length /.
Each end of the tube opens up into a very large empty vessel. So the concen-
tration u(x, t) at each end is essentially zero. Given an initial concentration
¢(x) in the tube, the concentration at all later times is given by formula (17).
Notice that as + — 00, each term in (17) goes to zero. Thus the substance
gradually empties out into the two vessels and less and less remains in the
tube. i

The numbers A, = (n7 /l)2 are called eigenvalues and the functions
X,(x) = sin(nmx /1) are called eigenfunctions. The reason for this termi-
nology is as follows. They satisfy the conditions

2
—d—X:AX, X0 =X{0=0. (19)

dx?
This is an ODE with conditions at two points. Let A denote the operator
—d?/dx?, which acts on the functions that satisfy the Dirichlet boundary con-
ditions. The differential equation has the form AX = A X. An eigenfunction
is a solution X = O of this equation and an eigenvalue is a number A for which

there exists a solution X = 0.

This situation is analogous to the more familiar case of an N x N matrix
A. A vector X that satisfies AX = AX with X s 0is called an eigenvector and
A is called an eigenvalue. For an N x N matrix there are at most N eigenvalues.
But for the differential operator that we are interested in, there are an infinite
number of eigenvalues w? /1%, 4w?/1%, 972 /1?, . ... Thus you might say that
we are dealing with infinite-dimensional linear algebra!

In physics and engineering the eigenfunctions are called normal modes
because they are the natural shapes of solutions that persist for all time.

Why are all the eigenvalues of this problem positive? We assumed this in
the discussion above, but now let’s prove it. First, could A = O be an eigenvalue?
This would mean that X” = 0, sothat X(x) = C + Dx.But X(0) = X(/) =0
implies that C = D = 0, so that X (x) = 0. Therefore, zero is not an eigen-
value.

Next, could there be negative eigenvalues? If A < 0, let’s write it as
L = —y2 Then X" = y?X, so that X(x) = C cosh yx + D sinh yx. Then
0= X(0)=Cand 0 = X(!) = D sinh yl. Hence D = 0 since sinh y[ # 0.

Finally, let A be any complex number. Let y be either one of the two square
roots of —A; the other one is —y. Then

X(x)=Ce" + De ",

where we are using the complex exponential function (see Section 5.2).
The boundary conditions yield 0 = X(0) =C + D and 0 = C e’ + De 7!,

Therefore ¢’’’ = 1. By a well-known property of the complex exponential
function, this implies that Re(y) = 0 and 2/ Im(y ) = 27 n for some integer n.
Hence y = nmi/l and A = —y? = n?n?/[?, which is real and positive. Thus

the only eigenvalues A of our problem (16) are positive numbers; in fact, they
are (r/1)?, Qn/1)?, .. ..
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EXERCISES

1.

(a) Use the Fourier expansion to explain why the note produced by a
violin string rises sharply by one octave when the string is clamped
exactly at its midpoint.

(b) Explain why the note rises when the string is tightened.

Consider a metal rod (0 < x < /), insulated along its sides but not at its
ends, which is initially at temperature = 1. Suddenly both ends are plunged
into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

. 4 (. er+1 ) 37rx+1 . 571x+
= —(|sin— 4+ —sin—— + —sin —— 4+ .-
T / 3 l 5 /

A quantum-mechanical particle on the line with an infinite potential out-
side the interval (0, /) (“particle in a box”) is given by Schrodinger’s
equation u, = iu,, on (0, /) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

Consider waves in a resistant medium that satisfy the problem
Uy = uy —ru, for0<x <1
u =0 atboth ends
ux,0) =¢(x) wu(x,0) = Y(x),
where r is a constant, 0 < r < 2mw¢/l. Write down the series expansion
of the solution.
Do the same for 2nrc/l < r < 4me/l.

Separate the variables for the equation ru;, = u,, + 2u with the boundary
conditions u(0, 1) = u(sww, t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition u(x, 0) = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

The same method works for both the Neumann and Robin boundary conditions
(BCs). In the former case, (4.1.2) is replaced by u,(0, t) = u,(/, t) = 0. Then
the eigenfunctions are the solutions X(x) of

—X"=21X, X'(0)=X'(I)=0, (1)

other than the trivial solution X (x) = 0.

As before, let’s first search for the positive eigenvalues A = 2 > 0. As

in (4.1.6), X (x) = C cos Bx + D sin Bx, so that

X'(x) = —CBsin Bx + DB cos Bx.
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The boundary conditions (1) mean first that 0 = X’(0) = DS, so that D = 0,
and second that

0=X'(l) = —CBsinpl.

Since we don’t want C = 0, we must have sin 8/ = 0. Thus g = = /[, 27 /I,
3r/l, ... . Therefore, we have the

. T\2 [27m\>

Eigenvalues: <7> A7) 2)
. . nwx

Eigenfunctions: X,(x) = cos - n=12,...) 3)

Next let’s check whether zero is an eigenvalue. Set A = 0 in the ODE (1).
Then X” = 0, so that X (x) = C 4+ Dx and X’(x) = D. The Neumann bound-
ary conditions are both satisfied if D = 0. C can be any number. Therefore,
A = 0 is an eigenvalue, and any constant function is its eigenfunction.

If A < O or if A is complex (nonreal), it can be shown directly, as in the
Dirichlet case, that there is no eigenfunction. (Another proof will be given in
Section 5.3.) Therefore, the list of all the eigenvalues is

xn=<$>2 forn=0,1,2,3,.... “

Note that n = 0 is included among them!
So, for instance, the diffusion equation with the Neumann BCs has the
solution

1 oo
w0 =S Ao+ Ao~/ cog @ (5)

n=1

This solution requires the initial data to have the “Fourier cosine expansion”

1 > nIx
B(x) = §A0+2An cos ——. (6)
n=1

All the coefficients Ay, A, A,, ... are just constants. The first term in (5) and
(6), which comes from the eigenvalue A = 0, is written separately in the form
%Ao just for later convenience. (The reader is asked to bear with this ridiculous
factor % until Section 5.1 when its convenience will become apparent.)
What is the behavior of u(x, t) ast — +00? Since all but the first term in
(5) contains an exponentially decaying factor, the solution decays quite fast to
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the first term %Ao, which is just a constant. Since these boundary conditions
correspond to insulation at both ends, this agrees perfectly with our intuition
of Section 2.5 that the solution “spreads out.” This is the eventual behavior
if we wait long enough. (To actually prove that the limit as t — oo is given
term by term in (5) requires the use of one of the convergence theorems in
Section A.2. We omit this verification here.)

Consider now the wave equation with the Neumann BCs. The eigenvalue
A = 0 then leads to X(x) = constant and to the differential equation 7" (¢) =
AT (t) = 0, which has the solution 7'(t) = A + Bt. Therefore, the wave
equation with Neumann BCs has the solutions

1 1
ux,t) = —Ao + EBOI

+ Z (A cos -

nmct nwx
+ B, sin —— ; ) cos - (7)

(Again, the factor % will be justified later.) Then the initial data must satisfy

$x) = —Ao + Z A, cos ®)
and
Y(x) = —BO Z HTMB,, cos MTX )

n=1

Equation (9) comes from first differentiating (7) with respect to ¢ and then
setting t = 0. i

A “mixed” boundary condition would be Dirichlet at one end and Neu-
mann at the other. For instance, in case the BCs are u(0, ) = u,(/, t) = 0, the
eigenvalue problem is

—X" =X X(0)=X'(l)=0. (10)

The eigenvalues then turn out to be (n + %)2712 /1% and the eigenfunctions
sin[(n + %)th/l] forn =0,1,2,...(see Exercises 1 and 2). For a discussion
of boundary conditions in the context of musical instruments, see [HJ].

For another example, consider the Schrédinger equation u, = iu,, in
(0, 7) with the Neumann BCs u,(0,t) = u,(/,t) = 0 and initial condition
u(x,0) = ¢(x). Separation of variables leads to the equation

T/ X//

= —A = constant,
i iT X



92

CHAPTER 4 BOUNDARY PROBLEMS

so that T'(t) = e~'* and X(x) satisfies exactly the same problem (1) as before.
Therefore, the solution is

1 > . nmwx
u(x,t) = EAO + Z Ane™ 0TI gog -

n=1

The initial condition requires the cosine expansion (6).

EXERCISES

1.

Solve the diffusion problem u, = ku,,in0 < x </, with the mixed
boundary conditions u(0, t) = u,(/,t) = 0.

Consider the equation u, = ?uy for0 < x < [, with the boundary con-
ditions u,(0, t) =0, u(/,t) = 0 (Neumann at the left, Dirichlet at the
right).

(a) Show that the eigenfunctions are cos[(n + %)nx /1.

(b) Write the series expansion for a solution u(x, t).

Solve the Schrodinger equation u, = iku,, for real k in the interval
0 < x < [ with the boundary conditions u,(0, t) = 0, u(l, t) = 0.
Consider diffusion inside an enclosed circular tube. Let its length (circum-
ference) be 2/. Let x denote the arc length parameter where —/ < x < /.
Then the concentration of the diffusing substance satisfies

u; =ku,, for -1 <x </
u(—l,t)y=ul,t) and wu,(=I,t)=u,l,1).

These are called periodic boundary conditions.
(a) Show that the eigenvalues are A = (m'r/l)2 forn=0,1,2,3,....
(b) Show that the concentration is

1 > T T
u(x’ t) = EAO + Z <An cos ¥ + B, sin —nlx) e_,,ZT[Zk[/]Z.

n=1

4.3 THE ROBIN CONDITION

We continue the method of separation of variables for the case of the Robin
condition. The Robin condition means that we are solving —X” = AX with
the boundary conditions

X —apX =0 atx=0 (D
X 4+4yX=0 atx=I. )

The two constants ag and @; should be considered as given.
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The physical reason they are written with opposite signs is that they
correspond to radiation of energy if ay and a; are positive, absorption of
energy if ap and q; are negative, and insulation if ap = a; = 0. This is the
interpretation for a heat problem: See the discussion in Section 1.4 or Exercise
2.3.8. For the case of the vibrating string, the interpretation is that the string
shares its energy with the endpoints if @y and @; are positive, whereas the
string gains some energy from the endpoints if ap and a; are negative: See
Exercise 11.

The mathematical reason for writing the constants in this way is that
the unit outward normal n for the interval 0 < x </ points to the left at
x =0(n = —1) and to the right at x = [ (n = +1). Therefore, we expect that
the nature of the eigenfunctions might depend on the signs of the two constants
in opposite ways.

POSITIVE EIGENVALUES

Our task now is to solve the ODE —X” = AX with the boundary conditions
(1), (2). First let’s look for the positive eigenvalues

r=p%>0.
As usual, the solution of the ODE is
X(x) =C cosfBx + D sin Bx 3)

so that
X'(x)+£aX(x) = (BD £ aC) cos Bx + (—BC £ aD) sin Bx.
At the left end x = 0 we require that

0= X'(0)—apX(0) = BD — ayC. 4)
So we can solve for D in terms of C. At the right end x = / we require that
0=(BD + aC) cos Bl + (—BC + a;D) sin l. 5)

Messy as they may look, equations (4) and (5) are easily solved since they are
equivalent to the matrix equation

—ag p c\_ (0
(a;cosﬁl—ﬁsinﬁl ,Bcos,Bl—i—a;sin,Bl)(D)_(O)' ©)

Therefore, substituting for D, we have

0 = (apC + a,C) cos Bl + (—,BC + a,c;)C) sin B1. (7

We don’t want the trivial solution C = 0. We divide by C cos B/ and multiply
by B to get

(B* — aoay) tan Bl = (ag + ar)B- (8)
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Any root 8 > 0 of this “algebraic” equation would give us an eigenvalue
r = B>

What would be the corresponding eigenfunction? It would be the above
X(x) with the required relation between C and D, namely,

X(x)=C (cos Bx + %0 sin ,Bx) )

for any C # 0. By the way, because we divided by cos S/, there is the excep-
tional case when cos B/ = 0; it would mean by (7) that 8 = ,/aoq;.

Our next task is to solve (8) for 8. This is not so easy, as there is no
simple formula. One way is to calculate the roots numerically, say by New-
ton’s method. Another way is by graphical analysis, which, instead of precise
numerical values, will provide a lot of qualitative information. This is what
we’ll do. It’s here where the nature of ay and a; come into play. Let us rewrite
the eigenvalue equation (8) as

_ (ao+anp

B* — aoa;
Our method is to sketch the graphs of the tangent function y = tan 8/ and the
rational function y = (ag + a;)8/(B> — aoa;) as functions of 8 > 0 and to

find their points of intersection. What the rational function looks like depends
on the constants ag and a;.

tan Bl (10)

Case 1 InFigure 1 is pictured the case of radiation at both ends: ap > 0 and
a; > 0. Each of the points of intersection (for § > 0) provides an eigenvalue
An = BZ2. The results depend very much on the @ and a;. The exceptional situ-
ation mentioned above, when cos B/ = 0 and 8 = ,/apa;, will occur when the
graphs of the tangent function and the rational function “intersect at infinity.”

No matter what they are, as long as they are both positive, the graph clearly
shows that

2 2

b4 b8
n21—2<kn<(n+1)21—2 n=0,1,23,..). (11)
Furthermore,
. T
lim g, —n— =0, (12)
n—00 l

which means that the larger eigenvalues get relatively closer and closer to
n’m? /1 2 (see Exercise 19). You may compare this to the case ap = a; = 0, the
Neumann problem, where they are all exactly equal to n’m? /2.

Case 2 The case of absorption at x = 0 and radiation at x = /, but more
radiation than absorption, is given by the conditions

apg <0, a >0, ap+a > 0. (13)
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Then the graph looks like Figure 2 or 3, depending on the relative sizes of
ap and ;. Once again we see that (11) and (12) hold, except that in Figure 2
there is no eigenvalue A in the interval (0, 72/?).

There is an eigenvalue in the interval (0, 72//?) only if the rational curve
crosses the first branch of the tangent curve. Since the rational curve has
only a single maximum, this crossing can happen only if the slope of the
rational curve is greater than the slope of the tangent curve at the origin. Let’s
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calculate these two slopes. A direct calculation shows that the slope dy/df
of the rational curve at the origin is

ao+ar  a;—laol
= >0
—aoa ap la
because of (13). On the other hand, the slope of the tangent curve y = tan /g
at the origin is / sec’(/0) = I. Thus we reach the following conclusion. In case

ap + a; > —apayl (14)

(which means “much more radiation than absorption”), the rational curve
will start out at the origin with a greater slope than the tangent curve and the
two graphs must intersect at a point in the interval (0, 7 /2/). Therefore, we
conclude that in Case 2 there is an eigenvalue 0 < Lo < (/21)* if and only

if (14) holds.
Other cases, for instance absorption at both ends, may be found in the

exercises, especially Exercise 8.
ZERO EIGENVALUE
In Exercise 2 it is shown that there is a zero eigenvalue if and only if
ap + a = —apal. (15)
Notice that (15) can happen only if @y or ; is negative and the interval has

exactly a certain length or else ap = q; = 0.

NEGATIVE EIGENVALUE

Now let’s investigate the possibility of a negative eigenvalue. This is a very
important question; see the discussion at the end of this section. To avoid
dealing with imaginary numbers, we set

r=—y2<0
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and write the solution of the differential equation as
X(x) = Ccoshyx + Dsinhyx.

(An alternative form, which we used at the end of Section 4.1, is Ae?’* +
Be~7*.) The boundary conditions, much as before, lead to the eigenvalue

equation

(@ +a)y (16)

tanh y/ = .
Y y? + aoa

(Verify it!) So we look for intersections of these two graphs [on the two sides
of (16)] for y > 0. Any such point of intersection would provide a negative
eigenvalue A = —y? and a corresponding eigenfunction

X (x) = cosh yx + 2 sinh yx. (17)
y

Several different cases are illustrated in Figure 4. Thus in Case 1, of radiation
at both ends, when a and qg; are both positive, there is no intersection and so
no negative eigenvalue.

Case 2, the situation with more radiation than absorption (ap < 0, a; > 0,
ap + a; > 0), is illustrated by the two solid (14) and dashed (18) curves.
There is either one intersection or none, depending on the slopes at the origin.
The slope of the tanh curve is /, while the slope of the rational curve is

Ay

(14

,' y = tanh ~l

Ve

——
-

LR PPPT SL L

Figure 4
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—(ap + a;)/(apay) > 0. If the last expression is smaller than /, there is an
intersection; otherwise, there isn’t. So our conclusion in Case 2 is as follows.
Let ay < 0and a; > —ay. If

ap+ a; < —apayl, (18)

then there exists exactly one negative eigenvalue, which we’ll call Lo < 0. If
(14) holds, then there is no negative eigenvalue. Notice how the “missing”
positive eigenvalue Ag in case (18) now makes its appearance as a nega-
tive eigenvalue! Furthermore, the zero eigenvalue is the borderline case (15);
therefore, we use the notation Ay = 0 in the case of (15).

SUMMARY

We summarize the various cases as follows:

Case 1: Only positive eigenvalues.

Case 2 with (14): Only positive eigenvalues.

Case 2 with (15): Zero is an eigenvalue, all the rest are positive.
Case 2 with (18): One negative eigenvalue, all the rest are positive.

Exercise 8 provides a complete summary of all the other cases.

In any case, that is, for any values for @y and @, there are no complex,
nonreal, eigenvalues. This fact can be shown directly as before but will also be
shown by a general, more satisfying, argument in Section 5.3. Furthermore,
there are always an infinite number of positive eigenvalues, as is clear from
(10). In fact, the tangent function has an infinite number of branches. The
rational function on the right side of (10) always goes from the origin to the 3
axis as f — oo and so must cross each branch of the tangent except possibly
the first one.

For all these problems it is critically important to find all the eigenvalues.
If even one of them were missing, there would be initial data for which we
could not solve the diffusion or wave equations. This will become clearer in
Chapter 5. Exactly how we enumerate the eigenvalues, that is, whether we call
the first one Ag or A or A5 or A_p, is not important. It is convenient, however,
to number them in a consistent way. In the examples presented above we have
numbered them in a way that neatly exhibits their dependence on a( and a;.

What Is the Grand Conclusion for the Robin BCs? As before, we
have an expansion

u(x, 1) =y T,(0)X,(x), (19)
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where X, (x) are the eigenfunctions and where

Ape =kt for diffusions

T,(t) =
+(0) A, cos(sx/A, ct) + B, sin(/A, ct) for waves.

(20)

Example 1.

Let ap < 0 < ag + a; < —apayl, which is Case 2 with (18). Then the
grand conclusion takes the following explicit form. As we showed above,
in this case there is exactly one negative eigenvalue Ay = —y02 < 0as
well as a sequence of positive ones A, = —1—53 >0forn=1,2,3,....
The complete solution of the diffusion problem

u; = ku,, forO<x </, 0<t<o0
u, —aou =0 forx =0, u,4+aqu=0 forx =1
u=q¢ fort =0

therefore is

a
u(x,t) = Agetvokt (cosh Yox + 20 §inh y0x>
Yo

0
+ Z A,e Pk cos Bnx + D gin Bnx ). (21)
n=1 '8

n

This conclusion (21) has the following physical interpretation if,
say, u(x, t) is the temperature in a rod of length /. We have taken the
case when energy is supplied at x = 0 (absorption of energy by the rod,
heat flux goes intfo the rod at its left end) and when energy is radiated
from the right end (the heat flux goes out). For a given length / and a
given radiation @¢; > 0, there is a negative eigenvalue (Ao = —yoz) if and
only if the absorption is great enough [|ag| > a;/(1 + a;/)]. Such a large
absorption coefficient allows the temperature to build up to large values,
as we see from the expansion (21). In fact, all the terms get smaller as
time goes on, except the first one, which grows exponentially due to the

factor e*7% . So the rod gets hotter and hotter (unless Ag = 0, which
could only happen for very special initial data).

If, on the other hand, the absorption is relatively small [that is,
lagl < a;/(1 + a;l)], then all the eigenvalues are positive and the tem-
perature will remain bounded and will eventually decay to zero. Other
interpretations of this sort are left for the exercises. O

For the wave equation, a negative eigenvalue Ay = —y02 would also
lead to exponential growth because the expansion for u(x,f) would
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contain the term
(A()EVOC[ + Boe_yom)X() (x).

This term comes from the usual equation —7” = Ac2T = —(yoc)*T for the
temporal part of a separated solution (see Exercise 10).

EXERCISES

1. Find the eigenvalues graphically for the boundary conditions
X(0) =0, X'(D)+aX()=0.

Assume that a # 0.
2. Consider the eigenvalue problem with Robin BCs at both ends:

—X"=xrX
X'(0) —apX(0)=0, X'O+aX(l) =0.

(a) Show that . = 0 is an eigenvalue if and only if ay + a; = —apal.
(b) Find the eigenfunctions corresponding to the zero eigenvalue. (Hint:
First solve the ODE for X(x). The solutions are not sines or cosines.)

3. Derive the eigenvalue equation (16) for the negative eigenvalues
L = —y? and the formula (17) for the eigenfunctions.

4. Consider the Robin eigenvalue problem. If
ap <0, aq <0 and —ay—a < apal,

show that there are fwo negative eigenvalues. This case may be called
“substantial absorption at both ends.” (Hint: Show that the rational curve
y = —(ap + a;)y /(y? + apa;) has a single maximum and crosses the
line y = 1 in two places. Deduce that it crosses the tanh curve in two
places.)

5. In Exercise 4 (substantial absorption at both ends) show graphically that
there are an infinite number of positive eigenvalues. Show graphically
that they satisfy (11) and (12).

6. If ap = a; = a in the Robin problem, show that:

(a) There are no negative eigenvalues if a > 0, there is one if
-2/l < a < 0, and there are two if a < —2/1.
(b) Zero is an eigenvalue if and only if a = Oora = —2/1.

7. Ifap = a; = a,show thatasa — +00, the eigenvalues tend to the eigen-

values of the Dirichlet problem. That is,

a— o0

lim {ﬁn(a) -

where A,(a) = [,8n(c1)]2 is the (n + D)st eigenvalue.
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Consider again Robin BCs at both ends for arbitrary a, and a;.

(a) In the apa; plane sketch the hyperbola ay + a; = —apa;l. Indicate
the asymptotes. For (ag, a;) on this hyperbola, zero is an eigenvalue,
according to Exercise 2(a).

(b) Show that the hyperbola separates the whole plane into three re-
gions, depending on whether there are two, one, or no negative
eigenvalues.

(c) Label the directions of increasing absorption and radiation on each
axis. Label the point corresponding to Neumann BCs.

(d) Where in the plane do the Dirichlet BCs belong?

Ontheinterval 0 < x < 1 of length one, consider the eigenvalue problem
X" =X
X'(0)+X0)=0 and X(1)=0
(absorption at one end and zero at the other).
(a) Find an eigenfunction with eigenvalue zero. Call it Xo(x).
(b) Find an equation for the positive eigenvalues A = 2.
(c) Show graphically from part (b) that there are an infinite number of

positive eigenvalues.
(d) Is there a negative eigenvalue?

Solve the wave equation with Robin boundary conditions under the as-
sumption that (18) holds.

(a) Prove that the (total) energy is conserved for the wave equation with
Dirichlet BCs, where the energy is defined to be

I
E= %/0 (c™%u; +u3)dx.

(Compare this definition with Section 2.2.)
(b) Do the same for the Neumann BCs.
(c¢) For the Robin BCs, show that

1
Ep= %/ (c72u? + u?) dx + Yailudl, O + Laolu(0, n1
0

is conserved. Thus, while the total energy Ey is still a constant,
some of the internal energy is “lost” to the boundary if ay and a; are
positive and “gained” from the boundary if @y and a; are negative.

Consider the unusual eigenvalue problem
— Uy = AV for0 <x <1

v(l) — v(0)

v (0) = v () = ]

(a) Show that A = 0 is a double eigenvalue.
(b) Get an equation for the positive eigenvalues A > 0.
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(c) Lettingy = %l VA, reduce the equation in part (b) to the equation
y siny cosy = sin®y.

(d) Use part (c) to find half of the eigenvalues explicitly and half of
them graphically.

(e) Assuming that all the eigenvalues are nonnegative, make a list of
all the eigenfunctions.

(f) Solve the problem u, = ku,, forO < x < [, with the BCs given
above, and with u(x, 0) = ¢(x).

(g) Show that, as t — oo, limu(x, t) = A 4+ Bx for some constants
A, B, assuming that you can take limits term by term.

Consider a string that is fixed at the end x = 0 and is free at the end x =/
except that a load (weight) of given mass is attached to the right end.
(a) Show that it satisfies the problem

Uy = CCllyy forO <x </

u,t1)=0 u(l,t) = —ku,(l,t)

for some constant k.

(b) What is the eigenvalue problem in this case?

(c) Find the equation for the positive eigenvalues and find the eigen-
functions.

Solve the eigenvalue problem x%u” + 3xu’ +Au =0forl < x < e,
with u(1) = u(e) = 0. Assume that A > 1. (Hint: Look for solutions
of the form u = x™.)

Find the equation for the eigenvalues A of the problem

k)XY + 1p(x)X =0 for 0 <x </ withX(0) = X() =0,

where k (x) = K12 forx <a,xk(x)= K22 forx > a, p(x) = 1012 forx < a,

and p(x) = ,022 for x > a. All these constants are positive and 0 < a < [.

Find the positive eigenvalues and the corresponding eigenfunctions of

the fourth-order operator +d*/dx* with the four boundary conditions
X0 =X0N=X"0)=Xx"()=0.

Solve the fourth-order eigenvalue problem X’ = A X in0 < x < [, with
the four boundary conditions

X0 =X0O)=XH=X'()=0,
where A > 0. (Hint: First solve the fourth-order ODE.)

A tuning fork may be regarded as a pair of vibrating flexible bars with
a certain degree of stiffness. Each such bar is clamped at one end and
is approximately modeled by the fourth-order PDE u;, + c*u .. = 0.
It has initial conditions as for the wave equation. Let’s say that
on the end x = 0 it is clamped (fixed), meaning that it satisfies
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u(0,t) = u,(0, t) = 0. On the other end x = [ it is free, meaning that it
satisfies u ([, t) = u,x(l, t) = 0. Thus there are a total of four boundary
conditions, two at each end.

(a)

(b)
(©)

(d)
(e)

Separate the time and space variables to get the eigenvalue problem
X//// — )\,X .

Show that zero is not an eigenvalue.

Assuming that all the eigenvalues are positive, write them as A = g*
and find the equation for §.

Find the frequencies of vibration.

Compare your answer in part (d) with the overtones of the vibrating
string by looking at the ratio 3 /87. Explain why you hear an almost
pure tone when you listen to a tuning fork.

19. Show that in Case 1 (radiation at both ends)

. nim? 2
Iim A, — — | = 7(00-’-(11).

n—00 12
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FOURIER SERIES

Our first goal in this key chapter is to find the coefficients in a Fourier series. In
Section 5.3 we introduce the idea of orthogonality of functions and we show
how the different varieties of Fourier series can be treated in a unified fashion.
In Section 5.4 we state the basic completeness (convergence) theorems. Proofs
are given in Section 5.5. The final section is devoted to the treatment of
inhomogeneous boundary conditions. Joseph Fourier developed his ideas on
the convergence of trigonometric series while studying heat flow. His 1807
paper was rejected by other scientists as too imprecise and was not published
until 1822.

5.1 THE COEFFICIENTS

In Chapter 4 we have found Fourier series of several types. How do we find the
coefficients? Luckily, there is a very beautiful, conceptual formula for them.
Let us begin with the Fourier sine series

p(x) = A, sin (1)

n=1

in the interval (0, ). [It turns out that this infinite series converges to ¢(x)
for 0 < x < [, but let’s postpone further discussion of the delicate question of
convergence for the time being.] The first problem we tackle is to try to find
the coefficients A, if ¢(x) is a given function. The key observation is that the
sine functions have the wonderful property that

nix mit. )
/smsmldx—O if m # n, )

104
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m and n being positive integers. This can be verified directly by integration.
[Historically, (1) was first discovered by a horrible expansion in Taylor series!]

Proof of (2). We use the trig identity
sina sinb = % cos(a — b) — % cos(a + b).
Therefore, the integral equals

/ . (m—n)mx ! .
sin — [same with (m + n)]
2(m — n)m l 0

if m #£ n. This is a linear combination of sin(m £ n)7 and sin 0, and so it
vanishes. o

The far-reaching implications of this observation are astounding. Let’s fix
m, multiply (1) by sin(mmx /1), and integrate the series (1) term by term to
get

mimx

I
/0 ¢(x)sin@dx= ZA s1n$sm7dx

> ' nme . mmx
=ZA,1/ sin — sin —— dx.
0 [ [

All but one term in this sum vanishes, namely the one with n = m (n just being
a “dummy” index that takes on all integer values >1). Therefore, we are left
with the single term

A /l sin? me dx, 3)
" l
0

which equals %lAm by explicit integration. Therefore,

!
= %/ ¢(x) sin m dx. 4)
I Jo l

This is the famous formula for the Fourier coefficients in the series (1). That
is, if ¢(x) has an expansion (1), then the coefficients must be given by (4).

These are the only possible coefficients in (1). However, the basic question
still remains whether (1) is in fact valid with these values of the coefficients.
This is a question of convergence, and we postpone it until Section 5.4.

APPLICATION TO DIFFUSIONS AND WAVES

Going back to the diffusion equation with Dirichlet boundary conditions, the
formula (4) provides the final ingredient in the solution formula for arbitrary
initial data ¢(x).
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As for the wave equation with Dirichlet conditions, the initial data consist
of a pair of functions ¢(x) and (x) with expansions (4.1.10) and (4.1.11).
The coefficients A,, in (4.1.9) are given by (4), while for the same reason the
coefficients B,, are given by the similar formula

mimc 2 ! . mux
—B,, = - / Y(x)sin — dx. 5)
l [ Jo [

FOURIER COSINE SERIES

Next let’s take the case of the cosine series, which corresponds to the Neumann
boundary conditions on (0, /). We write it as

1 > nmx
() = S Ao+ ; Ay cos == (6)
Again we can verify the magical fact that
1
fcos?cosmedxzo if m+#n
0

where m and n are nonnegative integers. (Verify it!) By exactly the same
method as above, but with sines replaced by cosines, we get

I 1

1

/ ¢(x)cos mrx dx = Am/ cos? @dx =—IA,
0 l 0 [ 2

if m £ 0. For the case m = 0, we have

! 1 ! 1
/ d(x)-1dx = —AO/ 12dx = —IA,.
0 2 0 2

Therefore, for all nonnegative integers m, we have the formula for the coeffi-
cients of the cosine series

2 ! mix
A, = —f ¢(x)cos — dx. (7
[ Jo l

[This is the reason for putting the % in front of the constant term in (6).]
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FULL FOURIER SERIES

The full Fourier series, or simply the Fourier series, of ¢(x) on the interval
—Il < x < [, is defined as

N —

- bs s
d(x) = Ao+ E (A,, cos ? + B, sin ?) . (8)
n=1

Watch out: The interval is twice as long! The eigenfunctions now are all the
functions {1, cos(nmx /1), sin(nmx /1)}, wheren = 1,2, 3, .... Again we have
the same wonderful coincidence: Multiply any two different eigenfunctions
and integrate over the interval and you get zero! That is,

!
f cos@sin@dx:O forall n, m
—1

! nmx mix
fcosTcosde=0 forn #m
]

U nmx | ommx
/sm—sm—dx: forn #m
_ [ l
I I
/l-cosgdx: =f l-singdx.
—l ]

Therefore, the same procedure will work to find the coefficients. We also
calculate the integrals of the squares

l [ [
/coszgdx:l:/ sin2$dx and /12dx=21.
-1 -1 —1

(Verify these integrals too!) Then we end up with the formulas

1 /!
Anzi/ d)(x)cos?dx n=0,1,2,...) 9)
-1
1 [! . nmx
Bn — 7/ ¢(x) Slanx (n = 1, 2, 3, .. ) (10)
-1

for the coefficients of the full Fourier series. Note that these formulas are not
exactly the same as (4) and (7).
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Ay

y=

Figure 1

Example 1.

Let ¢(x) = 1 in the interval [0, [/]. It has a Fourier sine series with
coefficients
1

2 (Y mmax 2 mix
A, = - sin — dx = ———cos ——
[ Jo [ miw l

0
2 2

=—( —cosmm) = —I[1 — (=D"].
mim mi

Thus A,, = 4/mm if mis odd, and A,, = 0 if m is even. Thus
1_4 ,nx+1,3nx+1,5nx+ (11
= sin 7 3 sin 7 5 sin 7

in (0, /). (The factor 4/ is pulled out just for notational convenience.)

See Figure 1 for a sketch of the first few partial sums. O
Example 2.
The same function ¢(x) = 1 has a Fourier cosine series with coefficients
2 ! mmx 2 mux|
A,=—-] cos——dx = —sin——
[ Jo [ mim L

= —(sinmm —sin0) =0 form # 0.
miw

So there is only one nonzero coefficient, namely, the one for m = 0. The
Fourier cosine series is therefore trivial:

X 27x
1=1+OcosT+OcosT+~-.
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This is perfectly natural since the sum 1 =1+04+0+4+0+ --- is ob-
vious and the Fourier cosine expansion is unique. O

Example 3.

Let ¢(x) =xintheinterval (0, /). Its Fourier sine series has the coefficients

2 1 mmx
A, =—- ] xsin—dx
[ Jo I

2x mix 21 mmx |!

= ———CO0S + sin
mm l m?m? I

21 20 . ma1 2l
= ———cosmn + —— sinmmr = (—1)"" —.
mi m2m? mi

Thus in (0, /) we have

2l [ 7mx 1 . 2mx 1 . 3mx
xX=—|sin— ——-sin— + -sin—— — --- | . (12)
b4 [ 2 l 3 [

Example 4.

Let ¢(x) = x in the interval [0, []. Its Fourier cosine series has the
coefficients

2 l
Ag = —/ xdx =
L' Jo
2 (! mimx
A, =- X cos —dx
[ Jo l
2x . mnx n 21 mmx |!
= —sin cos
mm / m?2m? L
20 . 21 21
= —sinmn + ——=(cosmm — 1) = ——[(—=1)" — 1]
mi m2m? m2m?

= formodd, and O form even.
m2m?

Thus in (0, /) we have

(13)

O

X=—-——|CcCoOS— +—-CcoOS— + ——Ccos— +---

[ 4] X 1 3mx 1 Smx
2 x? l 9 l 25 l '
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Example 5.

Let ¢(x) = x in the interval [—/, []. Its full Fourier series has the coeffi-

cients
1 1
Ag = —/ xdx =
LJ

1 (! mix
A, = - xcos —dx

mr / m2m? /

l
= (cosmm — cos(—mm)) =0

m2m?
1! b
B, = - / X sin ey dx
[ ] l
—X mmx n [ max |
= — CoS8 sin
mim [ m2m? |
—1 -1 ma1 2l
= —cosmm + — cos(—mm) = (—1)""" —.
mir mir

This gives us exactly the same series as (12), except that it is supposed
to be valid in (—/, [), which is not a surprising result because both sides
of (12) are odd. o

Example 6.
Solve the problem

Uy = il
u@,t) =u(l,t) =0
u(x,0)=x, u,(x,0)=0.

From Section 4.1 we know that u(x, ¢) has an expansion

> nrwct _nmet\ . nmx
u(x,t):Z A, cos ; +anmT smT.

n=1

Differentiating with respect to time yields

. nmc  nrmct nmet\ | nax
u,(x,t):ZT —A, sin ; + B, cos sin —.

n=1
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Setting t = 0, we have

> nmc . nmx
OZZTBnSIIlT

n=1
so that all the B,, = 0. Setting ¢ = 0 in the expansion of u(x, r), we have

> . nmx
X = A, sin -

n=1

This is exactly the series of Example 3. Therefore, the complete solution
is

20 &K (=D onmx nmct
)= — .
u(x, ) ; " sin ; cos ; ]
EXERCISES
1. In the expansion 1 =) ., (4/nm)sinnmw, valid for 0 < x < 7, put

x = 1 /4 to calculate the sum

O R R R A BT

(Hint: Since each of the series converges, they can be combined as
indicated. However, they cannot be arbitrarily rearranged because they
are only conditionally, not absolutely, convergent.)

Letp(x) =x>for0<x <1=1.

(a) Calculate its Fourier sine series.

(b) Calculate its Fourier cosine series.

Consider the function ¢(x) = x on (0, /). On the same graph, sketch the

following functions.

(a) The sum of the first three (nonzero) terms of its Fourier sine series.

(b) The sum of the first three (nonzero) terms of its Fourier cosine
series.

Find the Fourier cosine series of the function |sin x| in the interval
(—m, ). Use it to find the sums

— 1 (="
2 gay Z4n2 '

n=1

Given the Fourier sine series of ¢(x) = x on (0, [). Assume that the series

can be integrated term by term, a fact that will be shown later.

(a) Find the Fourier cosine series of the function x? /2. Find the constant
of integration that will be the first term in the cosine series.
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(b) Then by setting x = 0 in your result, find the sum of the series

= (— 1!

2

n=1

(a) By the same method, find the sine series of x°.
(b) Find the cosine series of x*.

Put x = 0 in Exercise 6(b) to deduce the sum of the series

o (=)
s

A rod has length [ = 1 and constant £k = 1. Its temperature satisfies
the heat equation. Its left end is held at temperature 0, its right end at
temperature 1. Initially (at # = 0) the temperature is given by

5
a for0 <x < 2

px)=1 2 3

3 —2x for%<x<1.

Find the solution, including the coefficients. (Hint: First find the equilib-
rium solution U(x), and then solve the heat equation with initial condition
ux,0) = ¢(x) — U(x).)

Solve u,; = cZu,, for0 < x < 7, with the boundary conditions u, (0, t) =
u,(m,t) = 0 and the initial conditions u(x, 0) = 0, u,(x, 0) = cos?x.
(Hint: See (4.2.7).)

A string (of tension 7 and density p) with fixed ends at x = 0 and
x = [ is hit by a hammer so that u(x,0) = 0, and du/dt(x,0) =V
in [-68 + %l, S+ %l] and du/dt(x, 0) = O elsewhere. Find the solution
explicitly in series form. Find the energy

1! ah\> an\>

of the nth harmonic & = h,,. Conclude that if § is small (a concentrated
blow), each of the first few overtones has almost as much energy as the
fundamental. We could say that the tone is saturated with overtones.

On a string with fixed ends, show that if the center of a hammer blow is
exactly at anode of the nth harmonic (a place where the nth eigenfunction
vanishes), the nth overtone is absent from the solution.
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5.2 EVEN, ODD, PERIODIC, AND COMPLEX
FUNCTIONS

Each of the three kinds of Fourier series (sine, cosine, and full) of any given
function ¢(x) is now determined by the formula for its coefficients given in
Section 5.1. We shall see shortly that almost any function ¢(x) defined on the
interval (0, /) is the sum of its Fourier sine series and is also the sum of its
Fourier cosine series. Almost any function defined on the interval (—/, /) is
the sum of its full Fourier series. Each of these series converges inside the
interval, but not necessarily at the endpoints.

The concepts of oddness, evenness, and periodicity are closely related to
the three kinds of Fourier series.

A function ¢(x) that is defined for —oco < x < oo is called periodic if
there is a number p > 0 such that

d(x + p) = ¢d(x) for all x. (D

A number p for which this is true is called a period of ¢(x). The graph of
the function repeats forever horizontally. For instance, cos x has period 2,
cos Ax has period 27 /A, and tan x has period . Note that if ¢(x) has period
p, then ¢p(x + np) = ¢(x) for all x and for all integers n. (Why?) The sum of
two functions of period p has period p. Notice that if ¢(x) has period p, then
faa+p ¢(x) dx does not depend on a. (Why?)

For instance, the function cos(mx) + sin 2mx is the sum of functions of
periods 2w /m and w/m and therefore itself has period 27 /m, the larger of
the two.

If a function is defined only on an interval of length p, it can be extended
in only one way to a function of period p. The situation we care about for
Fourier series is that of a function defined on the interval —/ < x < [. Its
periodic extension is

Dper(X) = P(x — 2Im) for —I1+2lm<x<+l+2lm 2)

for all integers m. This definition does not specify what the periodic extension
is atthe endpoints x = [ + 2/m. In fact, the extension has jumps at these points
unless the one-sided limits are equal: ¢(I—) = ¢(—I[+) (see Figure 1). (See
Section A.1 for the definition of one-sided limits.)

Since each term in the full Fourier series (5.1.8) has period 2/, its sum
(if it converges) also has to have period 2/. Therefore, the full Fourier series
can be regarded either as an expansion of an arbitrary function on the interval

ANV ANANANYATN:

/N NN N

Figure 1
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(=1, I) or as an expansion of a periodic function of period 2/ defined on the
whole line —0co0 < x < 400. m

An even function is a function that satisfies the equation

P(—x) = ¢(x). 3)

That just means that its graph y = ¢(x) is symmetric with respect to the y axis.
Thus the left and right halves of the graph are mirror images of each other.
To make sense out of (3), we require that ¢(x) be defined on some interval
(=1, +1) which is symmetric around x = 0.

An odd function is a function that satisfies the equation

B(—x) = —$(x). )

That just means that its graph y = ¢(x) is symmetric with respect to the
origin. To make sense out of (4), we again require that ¢(x) be defined on
some interval (—/, +/) which is symmetric around x = 0.

A monomial x" is an even function if n is even and is an odd function if n
is odd. The functions cos x, cosh x, and any function of x% are even functions.
The functions sin x, tan x, and sinh x are odd functions. In fact, the products
of functions follow the usual rules: even x even = even, odd x odd = even,
odd x even = odd. The sum of two odd functions is again odd, and the sum
of two evens is even.

But the sum of an even and an odd function can be anything. Proof: Let
f(x)beany function atall defined on (—/, /). Let ¢(x) = % [f(x)+ f(—x)]and
Y(x) = %[f(x) — f(—x)]. Then we easily check that f(x) = ¢(x) + ¥ (x),
that ¢(x) is even and that ¥ (x) is odd. The functions ¢ and i are called the
even and odd parts of f, respectively. For instance, cosh and sinh are the even
and odd parts of exp since: ¢* = cosh x + sinh x. If p(x) is any polynomial,
its even part is the sum of its even terms, and its odd part is the sum of its odd
terms.

Integration and differentiation change the parity (evenness or oddness) of
a function. That is, if ¢(x) is even, then both d¢/dx and f(f ¢(s) ds are odd.
If ¢(x) is odd, then the derivative and integral are even. (Note that the lower
limit of integration is at the origin.)

The graph of an odd function ¢(x) must pass through the origin since ¢(0)
= 0 follows directly from (4) by putting x = 0. The graph of an even function
¢(x) must cross the y axis horizontally, ¢’(x) = 0, since the derivative is odd
(provided the derivative exists).

Example 1.

tan x is the product of an odd function (sin x) and an even function (1/cos
x), both of period 2. Therefore tan x is an odd and periodic function.
But notice that its smallest period is 7, not 27. Its derivative sec’x is
necessarily even and periodic; it has period 7. The dilated function tan
ax is also odd and periodic and has period 7 /a for any a > 0. m
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Definite integrals around symmetric intervals have the useful properties:

I I 1
/ (odd)dx =0 and / (even)dx =2 f (even)dx. (5)
-1 —1 0

Given any function defined on the interval (0, /), it can be extended in
only one way to be even or odd. The even extension of ¢(x) is defined as

o(x) for 0<x <!

(6)
¢(—x) for —l <x <O.

¢even(x ) = {

This is just the mirror image. The even extension is not necessarily defined at
the origin.
Its odd extension is

¢(x) for 0<x <!
GPoaa(x) =y —¢p(—x) for —l <x <0 (7
0 for x =0.

This is its image through the origin.

FOURIER SERIES AND BOUNDARY CONDITIONS

Now let’s return to the Fourier sine series. Each of its terms, sin(nmx /1),
is an odd function. Therefore, its sum (if it converges) also has to be odd.
Furthermore, each of its terms has period 2/, so that the same has to be true of
its sum. Therefore, the Fourier sine series can be regarded as an expansion
of an arbitrary function that is odd and has period 21 defined on the whole
line —00 < x < 4o00.

Similarly, since all the cosine functions are even, the Fourier cosine series
can be regarded as an expansion of an arbitrary function which is even and
has period 21 defined on the whole line —oco < x < o0.

From what we saw in Section 5.1, these concepts therefore have the
following relationship to boundary conditions:

u(0,t) = u(l, t) = 0: Dirichlet BCs correspond to the odd extension.  (8)
u(0, 1) = u,(l, t) = 0: Neumann BCs correspond to the even extension. (9)

u(l,ty =u(—1,t),u.(l,t) = u,(—I,t): Periodic BCs correspond
to the periodic extension. (10)

THE COMPLEX FORM OF THE FULL FOURIER SERIES

The eigenfunctions of —d?/dx? on (—I, [) with the periodic boundary con-
ditions are sin(nmx/[) and cos(nmwx/l). But recall the DeMoivre formulas,
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which express the sine and cosine in terms of the complex exponentials:

ol0 _ o—if if 4 =it
sinf = —— and cosf = ——. (11)
2i 2
Therefore, instead of sine and cosine, we could use e™"™/! and e~ "™/! a5 an
alternative pair. But watch out: They’re complex! If we do that, the collection
of trigonometric functions {sin né, cos nf} is replaced by the collection of
complex exponentials

{1, e—i—inx/l’ e+i27rx/l’ o —inx/l’ e—i2nx/l’ B }

e
In other words, we get {¢/"™/!}, where n is any positive or negative integer.

We should therefore be able to write the full Fourier series in the complex
form

o0

Py =Y c,e"™ (12)

n=—0oo

This is the sum of two infinite series, one going from n = 0 to +00 and one
going from n = —1 to —oo. The magical fact in this case is

1 1
/ einn’x/lefimnx/ldx — f ei(nfm)nx/ldx
—l -l

[

— —[ei(n—m)n _ ei(m—n)n]
it (n—m)
[
= (1) = (=) =0
im(n—m)
provided that n # m. Notice the extra minus sign in the second exponent of
the first integral. When n = m, we have

[ 1
/ e /g =/ ldx = 2.
—1 —1

It follows by the method of Section 5.1 that the coefficients are given by the
formula

I .
Cyh = 5 /_1 d(x) e ™ g (13)

The complex form is sometimes more convenient in calculations than the real
form with sines and cosines. But it really is just the same series written in a
different form.
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EXERCISES

1.

10.

For each of the following functions, state whether it is even or odd or
periodic. If periodic, what is its smallest period?

(@) sinax (a>0)

b)) e (a>0)

(¢) x™ (m = integer)

(d) tanx?

(e) |[sin(x/b)| (b > 0)

(f) xcosax (a>0)

Show that cos x 4 cos ax is periodic if « is a rational number. What is
its period?

Prove property (5) concerning the integrals of even and odd functions.

(a) Use(5)toprove thatif ¢(x) is an odd function, its full Fourier series
on (—/, [) has only sine terms.

(b) Also, if ¢(x) is an even function, its full Fourier series on (—/, )
has only cosine terms. (Hint: Don’t use the series directly. Use the
formulas for the coefficients to show that every second coefficient
vanishes.)

Show that the Fourier sine series on (0, /) can be derived from the full
Fourier series on (—/, /) as follows. Let ¢(x) be any (continuous) function
on (0, ). Let ¢(x) be its odd extension. Write the full series for ¢(x) on
(=1, 1). [Assume that its sum is ¢(x).] By Exercise 4, this series has only
sine terms. Simply restrict your attention to 0 < x < [/ to get the sine
series for ¢(x).

Show that the cosine series on (0, /) can be derived from the full series
on (—/, [) by using the even extension of a function.

Show how the full Fourier series on (—/, [) can be derived from the full
series on (—m, ) by changing variables w = (;r/[)x. (This is called a
change of scale; it means that one unit along the x axis becomes 7/
units along the w axis.)

(a) Prove that differentiation switches even functions to odd ones, and
odd functions to even ones.

(b) Prove the same for integration provided that we ignore the constant
of integration.

Let ¢(x) be a function of period . If ¢(x) = X2 a, sin nx for all x,
find the odd coefficients.

(a) Let ¢(x) be a continuous function on (0, /). Under what conditions
is its odd extension also a continuous function?

(b) Let¢(x)be adifferentiable function on (0, /). Under what conditions
is its odd extension also a differentiable function?

(c) Same as part (a) for the even extension.

(d) Same as part (b) for the even extension.
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11. Find the full Fourier series of e* on (—/, /) in its real and complex forms.
(Hint: It is convenient to find the complex form first.)

12. Repeat Exercise 11 for cosh x. (Hint: Use the preceding result.)

13. Repeat Exercise 11 for sin x. Assume that / is not an integer multiple of
7. (Hint: First find the series for ¢*).

14. Repeat Exercise 11 for |x|.

15. Without any computation, predict which of the Fourier coefficients of
|sin x| on the interval (—sm, 7) must vanish.

16. Use the De Moivre formulas (11) to derive the standard formulas for
cos(f + ¢) and sin(6 + ¢).

17. Show that a complex-valued function f(x) is real-valued if and only if
its complex Fourier coefficients satisfy ¢, = c_,, where — denotes the
complex conjugate.

5.3 ORTHOGONALITY AND GENERAL FOURIER SERIES

Let us try to understand what makes the beautiful method of Fourier series
work. For the present let’s stick with real functions. If f(x) and g(x) are two
real-valued continuous functions defined on an interval a < x < b, we define
their inner product to be the integral of their product:

b
(f. §) = / F)g(x) do. 0

It is a real number. We’ll call f(x) and g(x) orthogonal if (f, g) = 0. (This
terminology is supposed to be analogous to the case of ordinary vectors and
their inner or dot product.) Notice that no function is orthogonal to itself
except f(x) = 0. The key observation in each case discussed in Section 5.1 is
that every eigenfunction is orthogonal to every other eigenfunction. Now
we will explain why this fortuitous coincidence is in fact no accident.

We are studying the operator A = —d?/dx? with some boundary con-
ditions (either Dirichlet or Neumann or ... ). Let X (x) and X,(x) be two
different eigenfunctions. Thus

L, —d*X,
¢ ) =1 X
(2)
L, —d*X,
X, = 7 = X,

where both functions satisfy the boundary conditions. Let’s assume that
A1 # Xo. We now verify the identity

— XXy + X1 X = (=X X2 4+ X, X}) .
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(Work out the right side using the product rule and two of the terms will
cancel.) We integrate to get

b b
/ (—X7Xo+ X1 X5)dx = (- X1 Xo + X1 X5)| . 3)

a

This is sometimes called Green’s second identity. If you wished, you could
also think of it as the result of two integrations by parts.

On the left side of (3) we now use the differential equations (2). On the
right side we use the boundary conditions to reach the following conclusions:

Case 1: Dirichlet. This means that both functions vanish at both ends:
X1(a) = X1(b) = Xy(a) = X»(b) = 0. So the right side of (3) is zero.

Case 2: Neumann. The first derivatives vanish at both ends. It is once again
zero.

Case 3: Periodic. X;(a) = X;(b), X]’.(a) = X]’.(b) for both j = 1, 2. Again
you get zero!
Case 4: Robin. Again you get zero! See Exercise 8.

Thus in all four cases, (3) reduces to

b
()\.1 — )\.2)/ X]Xde =0. (361)

Therefore, X| and X, are orthogonal! This completely explains why Fourier’s
method works (at least if A; # A,)!

The right side of (3) isn’t always zero. For example, consider the different
boundary conditions: X(a) = X(b), X'(a) = 2X'(b). Then the right side of
(3) is X (b)X2(b) — X1(b)X)(b), which is not zero. So the method doesn’t
always work; the boundary conditions have to be right.

SYMMETRIC BOUNDARY CONDITIONS

So now let us envision any pair of boundary conditions
OKIX(CZ) + ,31X(b) + ]/1X/(LZ) + 81X/(b) =0
aX(a) + B X (D) + v X'(a) + 8, X'(b) =0

involving eight real constants. (Each of the examples above corresponds to
a choice of these constants.) Such a set of boundary conditions is called
symmetric if

“4)

x=b
f'(x)g(x) — f(x)g'(x) = 0 &)

a

for any pair of functions f(x) and g(x) both of which satisfy the pair of boundary
conditions (4). As we indicated above, each of the four standard boundary
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conditions (Dirichlet, etc.) is symmetric, but our fifth example is not. The most
important thing to keep in mind is that all the standard boundary conditions
are symmetric.

Green’s second identity (3) then implies the following theorem. By an
eigenfunction we now mean a solution of —X” = A X that satisfies (4).

Theorem 1. If you have symmetric boundary conditions, then any two
eigenfunctions that correspond to distinct eigenvalues are orthogonal. There-
fore, if any function is expanded in a series of these eigenfunctions, the coef-
ficients are determined.

Proof. Take two different eigenfunctions X (x) and X,(x) with A; #£ A,.
We write Green’s second identity (3). Because the boundary conditions are
symmetric, the right side of (3) vanishes. Because of the different equations,
the identity takes the form (3a), and the orthogonality is proven.

If X,,(x) now denotes the eigenfunction with eigenvalue A, and if

P(x) =Y ApXn(x) (6)

is a convergent series, where the A, are constants, then

(¢v Xm) = (Z A, Xy, Xm) = ZAn(Xna Xn) = An(Xp, X))

by the orthogonality. So if we denote ¢,, = (X,,, X,,), we have

_ (@ X

Cm

Ap

)

as the formula for the coefficients. ]

Two words of caution. First, we have so far avoided all questions of con-
vergence. Second, if there are two eigenfunctions, say X;(x) and X»(x), but
their eigenvalues are the same, A; = A,, then they don’t have to be orthogo-
nal. But if they aren’t orthogonal, they can be made so by the Gram—Schmidt
orthogonalization procedure (see Exercise 10). For instance, in the case of pe-
riodic boundary conditions the two eigenfunctions sin(nmx//) and cos(nwx/[)
are orthogonal on (—/, /), even though they have the same eigenvalue (n7 /1)°.
But the two eigenfunctions sin(nmx/[) and [cos(nmx/[) + sin(nmx/[)] are not
orthogonal.
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COMPLEX EIGENVALUES

What about complex eigenvalues A and complex-valued eigenfunctions X(x)?
If f(x) and g(x) are two complex-valued functions, we define the inner product
on (a, b) as

b
(f.9) = / fx)g(x)dx. (8)

The bar denotes the complex conjugate. The two functions are called orthog-
onal if (f, g) = 0. (This is exactly what is customary for ordinary complex
vectors.)

Now suppose that you have the boundary conditions (4) with eight real
constants. They are called symmetric (or hermitian) if

JE— _____b
') g(x) — f(x)g'(x) =0 ©))

for all f, g satisfying the BCs. Then Theorem 1 is true for complex functions
without any change at all. But we also have the following important fact.

Theorem 2. Under the same conditions as Theorem 1, all the eigenvalues
are real numbers. Furthermore, all the eigenfunctions can be chosen to be real
valued.

(This could be compared with the discussion at the end of Section 4.1,
where complex eigenvalues were discussed explicitly.)

Proof. Let X be an eigenvalue, possibly complex. Let X(x) be its eigen-
function, also possibly complex. Then —X” = AX plus BCs. Take the com-
plex conjugate of this equation; thus —X” = A X plus BCs. So A is also an
eigenvalue. Now use Green’s second identity with the functions X and X.
Thus

b b
/ (—X"X+XX")dx = (-X'X+XX)| =0

since the BCs are symmetric. So

b
(A—D/ XXdx =0

But XX = |X|*> > 0 and X(x) is not allowed to be the zero function. So the
integral cannot vanish. Therefore, A — A = 0, which means exactly that A is
real.

Next, let’s reconsider the same problem —X” = A X together with (4),
knowing that A is real. If X(x) is complex, we writeitas X (x) = Y (x) + i Z(x),
where Y(x) and Z(x) are real. Then —Y” — iZ” = AY + i1 Z. Equating the real
and imaginary parts, we see that —Y” = AY and — Z” = AZ. The boundary
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conditions still hold for both Y and Z because the eight constants in (4) are real
numbers. So the real eigenvalue A has the real eigenfunctions Y and Z. We
could therefore say that X and X are replaceable by the ¥ and Z. The linear
combinations aX + bX are the same as the linear combinations cY + dZ,
where a and b are somehow related to ¢ and d. This completes the proof of
Theorem 2. 0

NEGATIVE EIGENVALUES

We have seen that most of the eigenvalues turn out to be positive. An important
question is whether all of them are positive. Here is a sufficient condition.

Theorem 3. Assume the same conditions as in Theorem 1. If
x=b
fOf' ) <0 (10)
for all (real-valued) functions f(x) satisfying the BCs, then there is no negative
eigenvalue.

This theorem is proved in Exercise 13. It is easy to verify that (10) is
valid for Dirichlet, Neumann, and periodic boundary conditions, so that in
these cases there are no negative eigenvalues (see Exercise 11). However, as
we have already seen in Section 4.3, it could not be valid for certain Robin
boundary conditions.

We have already noticed the close analogy of our analysis with linear
algebra. Not only are functions acting as if they were vectors, but the operator
—d? / dx?is acting like a matrix; in fact, it is a linear transformation. Theorems
1 and 2 are like the corresponding theorems about real symmetric matrices.
For instance, if A is a real symmetric matrix and f and g are vectors, then
(Af,g)=(f,Ag). Inour present case, A is adifferential operator with symmetric
BCs and f and g are functions. The same identity (Af, g) = (f, Ag) holds in our
case [see (3)]. The two main differences from matrix theory are, first, that our
vector space is infinite dimensional, and second, that the boundary conditions
must comprise part of the definition of our linear transformation.

EXERCISES
1. (a) Find the real vectors that are orthogonal to the given vectors [1, 1, 1]
and [1, —1, 0].

(b) Choosing an answer to (a), expand the vector [2, —3, 5] as a linear
combination of these three mutually orthogonal vectors.

2. (a) On the interval [—1, 1], show that the function x is orthogonal to
the constant functions.
(b) Find a quadratic polynomial that is orthogonal to both 1 and x.
(c) Find a cubic polynomial that is orthogonal to all quadratics. (These
are the first few Legendre polynomials.)
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Consider u;, = c’u,, for 0 < x < [, with the boundary conditions (0, )

=0, u(l,t) = 0 and the initial conditions u(x, 0) = x, u,(x,0) =0.

Find the solution explicitly in series form.

Consider the problem u, = ku,, for 0 < x < [, with the boundary con-

ditions u(0, t) = U, u,(l,t) = 0, and the initial condition u(x, 0) = 0,

where U is a constant.

(a) Find the solution in series form. (Hint: Consider u(x,t) — U.)

(b) Using a direct argument, show that the series converges for ¢ > 0.

(c) If e is a given margin of error, estimate how long a time is required
for the value u(/, t) at the endpoint to be approximated by the con-
stant U within the error €. (Hint: It is an alternating series with first
term U, so that the error is less than the next term.)

(a) Show that the boundary conditions u(0, ) = 0, u,(/, t) = 0 lead to
the eigenfunctions (sin(wrx /2/), sin(37x/2l), sin(Swx/2[),...).
(b) If ¢(x) is any function on (0, /), derive the expansion

¢(x)=n2:(;Cnsin{(n+%>j§—x} O<x<)

by the following method. Extend ¢(x) to the function ¢ defined by
d(x) = ¢p(x)for0 < x <land ¢p(x) = ¢p(2l —x) forl < x <2I.
(This means that you are extending it evenly across x = l.) Write
the Fourier sine series for ¢(x) on the interval (0, 21) and write the
formula for the coefficients.

(c) Show that every second coefficient vanishes.

(d) Rewrite the formula for C, as an integral of the original function
¢(x) on the interval (0, [).

Find the complex eigenvalues of the first-derivative operator d /dx subject
to the single boundary condition X(0) = X(1). Are the eigenfunctions
orthogonal on the interval (0, 1)?

Show by direct integration that the eigenfunctions associated with the
Robin BCs, namely,

¢n(x) = cos B,x + % sin 8,x where A, = ,82

n?’
n

are mutually orthogonal on 0 < x </, where 8, are the positive roots of
(4.3.8).

Show directly that (—X| X, + X1X§)|2 = 0if both X and X, satisty the
same Robin boundary condition at x = a and the same Robin boundary
condition at x = b.

Show that the boundary conditions
X(b) =aX(@)+ BX'(a) and X'(b)=yX(a)+5X'(a)
on an interval @ < x < b are symmetric if and only if «§ — By = 1.

(The Gram—Schmidt orthogonalization procedure) If X, X5, ... is any
sequence (finite or infinite) of linearly independent vectors in any vector
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space with an inner product, it can be replaced by a sequence of linear
combinations that are mutually orthogonal. The idea is that at each step
one subtracts off the components parallel to the previous vectors. The
procedure is as follows. First, we let Z; = X /|| X1||. Second, we define

Delln

Yo =X, —(X2,Z1)Z, and Z,

Third, we define
Y3

V= Xy = (X, 2020 = (X5, 2071 and Zs = oh
3

and so on.

(a) Show that all the vectors Z, Z,, Zs, . .. are orthogonal to each other.

(b) Apply the procedure to the pair of functions cos x + cos 2x and
3 cos x — 4 cos 2x in the interval (0, 7r) to get an orthogonal pair.

(a) Show that the condition f(x)f'(x) |Z < 0 is valid for any function
f(x) that satisfies Dirichlet, Neumann, or periodic boundary condi-
tions.

(b) Show that it is also valid for Robin BCs provided that the constants
ag and @, are positive.

Prove Green’s first identity: For every pair of functions f(x), g(x) on

(a, D),

b b b
/ f'(0gx)dx = — f J'(x)g'x)dx + f'g|
a a a
Use Green’s first identity to prove Theorem 3. (Hint: Substitute f(x) =
X(x) = g(x), areal eigenfunction.)

What do the terms in the series

T inl + L 34 L 5+
— =sin — sin — sin
4 3 5

look like? Make a graph of sinnforn=1,2, 3,4, ..., 20 without drawing
the intervening curve; that is, just plot the 20 points. Use a calculator;
remember that we are using radians. In some sense the numbers sin n
are randomly located in the interval (—1, 1). There is a great deal of
“random cancellation” in the series.

Use the same idea as in Exercises 12 and 13 to show that none of the
eigenvalues of the fourth-order operator +d*/dx* with the boundary
conditions X(0) = X(I) = X"(0) = X”(I) = 0 are negative. i

5.4 COMPLETENESS

In this section we state the basic theorems about the convergence of Fourier se-
ries. We discuss three senses of convergence of functions. The basic theorems
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(Theorems 2, 3, and 4) state sufficient conditions on a function f(x) that its
Fourier series converge to it in these three senses. Most of the proofs are diffi-
cult, however, and we omit them for now. At the end of the section we discuss
the mean-square convergence in greater detail and use it to define the notion
of completeness.

Consider the eigenvalue problem

X" + AX = 0in (a, b) with any symmetric BC. (D

By Theorem 5.3.2, we know that all the eigenvalues X are real.

Theorem 1. There are an infinite number of eigenvalues. They form a
sequence A, — 400.

For a proof of Theorem 1, see Chapter 11 or [CL]. We may assume that
the eigenfunctions X,,(x) are pairwise orthogonal and real valued (see Section
5.3). For instance, if k linearly independent eigenfunctions correspond to the
same eigenvalue A, then they can be rechosen to be orthogonal and real, and
the sequence may be numbered so that A, is repeated k times. Thus we may
list the eigenvalues as

MZASA3<-—> 400 (2)
with the corresponding eigenfunctions
X1, X2, X3, ..., (3)

which are pairwise orthogonal. Some interesting examples were found in
Section 4.3.
For any function f(x) on (a, b), its Fourier coefficients are defined as

(XD [ X, (0 dx

= = 4
X X0) 71X, 01 dx @

n

Its Fourier series is the series X, A, X, (x).

In this section we present three convergence theorems. Just to convince
the skeptic that convergence theorems are more than a pedantic exercise, we
mention the curious fact that there exists an integrable function f(x) whose
Fourier series diverges at every point x! There even exists a continuous func-
tion whose Fourier series diverges at many points! See [Zy] for proofs.

To set the stage we need to introduce various notions of convergence. This
is a good point for the reader to review the basic facts about infinite series
(outlined in Section A.2).

THREE NOTIONS OF CONVERGENCE

Definition. We say that an infinite series X°°, f,(x) converges to f(x)
pointwise in (a, b) if it converges to f(x) for each a < x < b. That is, for each
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a < x < b we have

— 0 as N — oo. 5)

N
fE) =Y fulx)

n=1

Definition. We say that the series converges uniformly to f(x) in [a, b] if

— 0 as N — oo. (6)

N
fE) =Y falx)

n=1

max
a<x<b

(Note that the endpoints are included in this definition.) That is, you take the
biggest difference over all the x’s and then take the limit.

The two preceding concepts of convergence are also discussed in Section
A.2. A third important concept is the following one.

Definition. We say the series converges in the mean-square (or L*) sense
to f(x) in (a, b) if

/b
Thus we take the integral instead of the maximum. (The terminology L? refers
to the square inside the integral.)

2
dx -0 as N — oo. (7)

N
@)= fulx)

n=1

Notice that uniform convergence is stronger than both pointwise and L?
convergence (see Exercise 2.) Figure 1 illustrates a typical uniformly conver-
gent series by graphing both f(x) and a partial sum for large N.

Example 1.

Let f,(x) = (1 — x)x"~! on the interval 0 < x < 1. Then the series is
“telescoping.” The partial sums are

N N
Yo s =) " —x=1-x¥ 51 as N> oo
n=1 1

Y

Figure 1
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Y=

Figure 2

because x < 1. This convergence is valid for each x. Thus
> %2, fa(x) =1 pointwise. In words, the series converges pointwise
to the function f(x) = 1.

But the convergence is not uniform because max [1 — (1 — x")] =
max xV = 1 for every N. However, it does converge in mean-square

since
[
TN+ 1
Figure 2 is a sketch of a few partial sums of Example 1. O
Example 2.
Let

n n—1
14+n2x2 14+ m—1)%x2

in the interval 0 < x < [. This series also telescopes so that

Sa(x) =

1 )
an( ) = 1+N2 2=N[(1/N2)+x2] —0as N - oo if x > 0.

So the series converges pointwise to the sum f(x) =
On the other hand,

1 N 2 [ N2
/0 [Z; fn(x):| dx:/o Ty &

NI
=N ———dy —»> 400 (where y = Nx
fo (+y2 (where v = No)
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because

NI 1 o0 1
——dy — ——dy.
/o (1422 /0 1+ ®

So the series does not converge in the mean-square sense. Also, it does
not converge uniformly because

’

max ————— =
0, 1+ N2x2

which obviously does not tend to zero as N — oo. O

CONVERGENCE THEOREMS

Now let f(x) be any function defined on a < x < b. Consider the Fourier series
for the problem (1) with any given boundary conditions that are symmetric. We
now state a convergence theorem for each of the three modes of convergence.
They are partly proved in the next section.

Theorem 2. Uniform Convergence The Fourierseries £ A, X,(x)con-
verges to f(x) uniformly on [a, b] provided that

(1) f(x),f'(x), and f"(x) exist and are continuous for a < x < b and

(i1) f(x) satisfies the given boundary conditions.

Theorem 2 assures us of a very good kind of convergence provided that
the conditions on f(x) and its derivatives are met. For the classical Fourier
series (full, sine, and cosine), it is not required that f”(x) exist.

Theorem 3. L? Convergence The Fourier series converges to f(x) in
the mean-square sense in (a, b) provided only that f(x) is any function for
which

b
/ | £(x)|? dx is finite. (8)

Theorem 3 assures us of a certain kind of convergence under a very weak
assumption on f(x). [We could even use the very general Lebesgue inte-
gral here instead of the standard (Riemann) integral encountered in calculus
courses. In fact, the Lebesgue integral was invented in order that Theorem 3
be true for the most general possible functions.]

Third, we present a theorem that is intermediate as regards the hypotheses
on f(x).Itrequires two more definitions. A function f(x) has a jump discon-
tinuity at a point x = c if the one-sided limits f(c+) and f(c—) exist but are not
equal. [It doesn’t matter what f(c) happens to be or even whether f(c) is defined
or not.] The value of the jump discontinuity is the number f(c+) — f(c—).
See Figure 3 for a function with two jumps.

A function f(x) is called piecewise continuous on an interval [a, b] if it
is continuous at all but a finite number of points and has jump discontinuities
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/\v/

Figure 3

Y-

at those points. Another way to say this is that at every point in the inter-
val (including the endpoints) the one-sided limits f(c+) and f(c—) exist;
and except at a finite number of points they are equal. For these definitions,
see also Section A.1. A typical piecewise continuous function is sketched in
Figure 3. The function Q(x, 0) in Section 2.4 is an example of a piecewise
continuous function.

Theorem 4. Pointwise Convergence of Classical Fourier Series
(i) The classical Fourier series (full or sine or cosine) converges to f(x)
pointwise on (a, b) provided that f(x) is a continuous function on
a <x < band f/(x) is piecewise continuous on a < x < b.
(i1)) More generally, if f(x) itself is only piecewise continuous on a <
x < band f’(x)is also piecewise continuous on a < x < b, then the
classical Fourier series converges at every point x(—oo0 < x < 00).
The sum is

D AKX (x) =3 fxH) + f(x—)]  foralla <x <b. (9)

The sum is %[fext(x—i-) 4+ fext(x—)] for all —oco < x < 0o, where
Jfext(x) is the extended function (periodic, odd periodic, or even pe-
riodic).

Thus at a jump discontinuity the series converges to the average of the
limits from the right and from the left. In the case of the Fourier sine (or
cosine) series on (0, /), the extended function fe(x) is the odd (or even)
function of period 2/. For the full series on (—1, [), it is the periodic extension.
The extension is piecewise continuous with a piecewise continuous derivative
on (—00, 00).

It is convenient to restate Theorem 4 directly for functions that are al-
ready defined on the whole line. By considering the periodic, even, and odd
extensions of functions, Theorem 4 is equivalent to the following statement.

Theorem 4o00. If f(x) is a function of period 2/ on the line for which
f(x) and f’(x) are piecewise continuous, then the classical full Fourier series
converges to %[f(x—k) 4+ f(x—)] for —oco < x < o0.
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The Fourier series of a continuous but nondifferentiable function f(x) is
not guaranteed to converge pointwise. By Theorem 3 it must converge to f(x)
in the L? sense. If we wanted to be sure of its pointwise convergence, we
would have to know something about its derivative f'(x).

Example 3.
The Fourier sine series of the function f(x) = 1 on the interval (0, i) is
4
Z —sinnx. (10)
nmw

nodd

Although it converges at each point, this series does not converge uni-
formly on [0, r]. One reason is that the series equals zero at both end-
points (0 and 77) but the function is 1 there. Condition (ii) of Theorem 2 is
not satisfied: the boundary conditions are Dirichlet and the function f(x)
does not vanish at the endpoints. However, Theorem 4(i) is applicable,
so that the series does converge pointwise to f(x). Thus (10) must sum
to 1 forevery O < x < . For instance, we get a true equation if we put
x=m/2:

n 4 . 4. & (—1)ym
=) - S-S

nodd m=0

Therefore, we get the convergent series

T _, 1+1 1+1 1+
4 35 7 9 11 '

Noting that 0 < 1 < 7, we may put x = 1 to get the convergent series

T sinl 4+ 2 sin3 + —sin5 +
— =sin — sin — sin
4 S 35 SS

Other amusing series are obtainable in this way. O

Another important question, especially for our purposes, is whether a
Fourier series can be differentiated term by term. Take the case of (10). On
the left side the derivative is zero. On the right side we ought to get the series.

4
— E COSNX. (11)
T

But this is clearly divergent because the terms don’t even tend to zero as
n — oo (the nth term test for divergence)! So in this example you cannot dif-
ferentiate term by term. For a more general viewpoint, however, see Example
8 in Section 12.1.

Differentiation of a Fourier series is a delicate matter. But integration term
by term is not delicate and is usually valid (see Exercise 11).

The proofs of Theorems 1 to 4 are lengthy and will be postponed to the
next section and to Chapter 11. For complete proofs of Theorems 2 and 3, see
Section 7.4 of [CL]. For complete proofs of the classical cases of Theorems 2,



5.4 COMPLETENESS 131

3, and 4, see [DM] or [CH]. Of the three convergence theorems, Theorem 3
is the easiest one to apply because f’(x) does not have to exist and f(x) itself
does not even have to be continuous. We now pursue a set of ideas that is
related to Theorem 3 and is important in quantum mechanics.

THE [? THEORY

The main idea is to regard orthogonality as if it were a geometric property.
We have already defined the inner product on (a, ) as

b
(fig) = / F)g0) dx.

[In case the functions are real valued, we just ignore the complex conjugate
(7).] We now define the L? norm of f as

b 1/2
£l = (f, H'? = [/ If(x)lzdx] _

The quantity

b 1/2
If—gll= [/ [f(x) — g(x)lzdx} (12)

is a measurement of the “distance” between two functions f and g. It is some-
times called the L? metric. The concept of a metric was first mentioned in
Section 1.5; the L? metric is the nicest one.

Theorem 3 can be restated as follows. If {X,} are the eigenfunctions
associated with a set of symmetric BCs and if || f|| < oo, then

f_ ZAan

n<N

-0 as N — oo. (13)

That is, the partial sums get nearer and nearer to f.

Theorem 5. Least-Square Approximation Let{X,} be any orthogo-
nal set of functions. Let || f|| < oco. Let N be a fixed positive integer. Among
all possible choices of N constants c;, ¢y, ..., cy, the choice that minimizes

N
“ /= Z CnXn
n=1

iSCl :Al,...,Cn :An.
(These are the Fourier coefficients! It means that the linear combination of
X1, ..., X, which approximates f most closely is the Fourier combination!)
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Proof. For the sake of simplicity we assume in this proof that f(x) and all
the X,,(x) are real valued. Denote the error (remainder) by

2 b
f—ZCan =/a

n<N

Expanding the square, we have (assuming the functions are real valued)

b b
Ev=[ P ar-2Y e [ fox.mds

n<N a

+ Z chcm /b Xn(x)Xp(x)dx.

Because of orthogonality, the last integral vanishes except for n = m. So the
double sum reduces to Ecﬁ f |X,,|? dx. Let us write this in the norm notation:

En=1f1>=2) (£ X)+ D cr I Xl
n=<N n<N

We may “complete the square’:
X)) 7’ (f. Xn)’
Ey=Y_[X.l? [cn— SAEA DY = (5
n=N [ Xl wen Xl

Now the coefficients ¢, appear in only one place, inside the squared term. The
expression is clearly smallest if the squared term vanishes. That is,

(A X _
ek
which proves Theorem 5. m

2
Ey = fO) =Y aXa)| dx. (14)

n<N

n n»

The completion of the square has further consequences. Let’s choose the
¢, to be the Fourier coefficients: ¢, = A,. The last expression (15) for the
error Ey becomes

, X)?
05EN=||f||2—Z<f )=||f||2—ZA,%||Xn||2. (16)

nsN ||Xn||2 n§N
Because this is positive, we have
b b
ZAﬁ/ | X, () dx 5/ |f ()P dx. (17)
a a

n<N

On the left side we have the partial sums of a series of positive terms with
bounded partial sums. Therefore, the corresponding infinite series converges
and its sum satisfies

o0 b b
>4 [ xeordr < [ IfwPdx, (18)
n=I1 a a
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This is known as Bessel’s inequality. It is valid as long as the integral of | f|*
is finite.

Theorem 6. The Fourier series of f(x) converges to f(x) in the mean-square
sense if and only if

00 b b
Z|An|2/ |Xn(x>|2dx=/ | f(0)I* dx (19)
n=1 a a

(i.e., if and only if you have equality).

Proof. Mean-square convergence means that the remainder £y — 0. But
from (16) this means that 23,151\,|A,,|2||X,,||2 — || £1I?, which in turn means
(19), known as Parseval’s equality.

Definition. The infinite orthogonal set of functions { X|(x), X»(x), ...} is

called complete if Parseval’s equality (19) is true for all f with fab | f1?dx < oo.
Theorem 3 asserts that the set of eigenfunctions coming from (1) is always
complete. Thus we have the following conclusion.

Corollary 7. If f: | £ (x)|?dx is finite, then the Parseval equality (19) is true.

Example 4.

Consider once again the Fourier series (10). Parseval’s equality asserts

that
4 2 om T
Z(—) / sinznxdx=f 17 dx.
nodd N 0 0

This means that

In other words,

Zl_l+1+1+l+ o’
n2 9 25 49 -8’
nodd
another interesting numerical series. o

For a full discussion of completeness using the concept of the Lebesgue
integral, see [LL] for instance.
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EXERCISES

1. 2% (—1)"x?" is a geometric series.
(a) Does it converge pointwise in the interval —1 < x < 1?
(b) Does it converge uniformly in the interval —1 < x < 1?
(c) Does it converge in the L? sense in the interval —1 < x < 1?
(Hint: You can compute its partial sums explicitly.)

2. Consider any series of functions on any finite interval. Show that if it
converges uniformly, then it also converges in the L? sense and in the
pointwise sense.

3. Lety, beasequence of constants tending to co. Let f,(x) be the sequence
of functions defined as follows: fn(%) =0, f,(x) = y, in the interval
[% — % %), let f,(x) = —y, in the interval (%, % + %] and let f,(x) =0
elsewhere. Show that:

(a) fu(x) — 0O pointwise.

(b) The convergence is not uniform.

(¢) f.(x) = Ointhe L? sense if y, = n
(d) f,(x) does not converge in the L? sense if y, = n.

4. Let

13

) . 1 1 1 1
1 intheinterval | — — — for odd n
4 4 p2
= 3 1 3 1
&n(x) lintheinterval | - — —, — + — for even n
4 n% 4
0 for all other x.

Show that g,(x) — Oin the L? sense but that g,(x) does not tend to zero
in the pointwise sense.
5. Let¢(x) =0forO <x <land¢p(x)=1forl <x < 3.
(a) Find the first four nonzero terms of its Fourier cosine series explic-
itly.
(b) For each x (0 < x < 3), what is the sum of this series?
(c) Does it converge to ¢(x) in the L? sense? Why?
(d) Putx =0 to find the sum

6. Find the sine series of the function cos x on the interval (0, 7). For each
x satisfying —m < x <, what is the sum of the series?

7. Let

—1—x for—1<x<0

p(x) =
+1—x for0 <x < 1.



10.

11.

12.

13.

14.
15.

5.4 COMPLETENESS 135

(a) Find the full Fourier series of ¢(x) in the interval (—1, 1).
(b) Find the first three nonzero terms explicitly.

(c) Does it converge in the mean square sense?

(d) Does it converge pointwise?

(e) Does it converge uniformly to ¢(x) in the interval (—1, 1)?

Consider the Fourier sine series of each of the following functions. In this
exercise do not compute the coefficients but use the general convergence
theorems (Theorems 2, 3, and 4) to discuss the convergence of each of
the series in the pointwise, uniform, and L? senses.

(@ f(x)=x>on(0,1).

(b) f(x)=Ix —x*>on(0,]).

() f(x)=x"2on(0,I).

Let f(x) be a function on (—/, /) that has a continuous derivative and
satisfies the periodic BCs. Let a,, and b,, be the Fourier coefficients of
f(x), and let @, and b), be the Fourier coefficients of its derivative f'(x).
Show that

o = nmb, and b;l _ nmwa,

[ [
(Hint: Write the formulas for @, and b/, and integrate by parts.) This
means that the Fourier series of f’(x) is what you’d obtain as if you
differentiated term by term. It does not mean that the differentiated series
converges.

for n # 0.

Deduce from Exercise 9 that there is a constant k so that

k
la,| + |b,| < — for all .
n

(Term by term integration)

(a) If f(x) is a piecewise continuous function in [—/, [], show that its
indefinite integral F(x) = ffl f(s)ds has a full Fourier series that
converges pointwise.

(b) Write this convergent series for f(x) explicitly in terms of the Fourier
coefficients ay, a,, b, of f(x).

(Hint: Apply a convergence theorem. Write the formulas for the
coefficients and integrate by parts.)

Start with the Fourier sine series of f(x) = x on the interval (0, /). Apply
Parseval’s equality. Find the sum X°° 1/ n’.

Start with the Fourier cosine series of f(x) = x? on the interval (0, ]).
Apply Parseval’s equality. Find the sum £°°,1/n*.

Find the sum X7, 1/nS.
Letp(x) =1for 0 < x < 7. Expand

1=2::)Bncos[(n+%)x].
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16.

17.

18.

19.

20.
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(a) Find B,,.

(b) Let —2m < x < 2m. For which such x does this series converge?
For each such x, what is the sum of the series? [Hint: Think of
extending ¢(x) beyond the interval (0, 7).]

(c) Apply Parseval’s equality to this series. Use it to calculate the sum

1 1
1+§+§+-'-.

Let ¢(x) = |x| in(—m, 7). If we approximate it by the function
fx)= %ao 4 a; cos x + by sinx + ap cos 2x + by sin 2x,

what choice of coefficients will minimize the L2 error?

Modity the proofs of Theorems 5 and 6 for the case of complex-valued

functions.

Consider a solution of the wave equation with ¢ = 1 on [0, /] with

homogeneous Dirichlet or Neumann boundary conditions.

(a) Show that its energy E = 5 f(f (u? + u?)dx is a constant.

(b) Let E,(t) be the energy of its nth harmonic (the nth term in the
expansion). Show that E = X E,,. (Hint: Use the orthogonality. As-
sume that you can integrate term by term.)

Here is a general method to calculate the normalizing constants. Let

X(x, A) be a family of real solutions of the ODE —X” = A X which

depends in a smooth manner on A as well as on x.

(a) Find the ODE satisfied by d X /o .

(b) Apply Green’s second identity to the pair of functions X and 0 X /oA

in order to obtain a formula for fabX 2dx in terms of the boundary
values.
(c) Asanexample, use the result of part (b) and the Dirichlet boundary

conditions to compute fé sin?(mmx /1) dx.
Use the method of Exercise 19 to compute the normalizing constants
fol X2 dx in the case of the Robin boundary conditions.

5.5 COMPLETENESS AND THE GIBBS PHENOMENON

Our purpose here is to prove the pointwise convergence of the classical full
Fourier series. This will lead to the celebrated Gibbs phenomenon for jump
discontinuities.

We may as well take the whole-line case, Theorem 400 of Section 5.4.

To avoid technicalities, let us begin with a C! function f(x) on the whole line
of period 21. (A C! function is a function that has a continuous derivative in
(—o00, 00); see Section A.1.) We also assume that / = 7, which can easily be
arranged through a change of scale (see Exercise 5.2.7).
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Thus the Fourier series is

f(x)=131Ag+ > (A, cosnx + B, sinnx) (1)

n=1

with the coefficients

T dy
Ap=[ fOcosny—  (n=0,12,...)
T

-7

T

. dy
B, = f(y)sinny— n=1,2,...).
T

-7

The Nth partial sum of the series is

N
Sy(x) = %Ao + Y (A, cosnx + B, sinnx). (2)

n=1

We want to prove that Sy(x) converges to f(x) as N — oco. Pointwise con-
vergence means that x is kept fixed as we take the limit.

The first step of the proof is to stick the formulas for the coefficients into
the partial sum and rearrange the terms. Doing this, we get

i a . . dy
Sy(x) = / 142 Z (cosnycosnx + sinnysinnx) | f(y)=—.
2w

- n=1

Inside the parentheses is the cosine of a difference of angles, so we can
summarize the formula as

g

d
Sy = | Ky(x— y)f(y)%, 3)

-7

where
N
Ky@©)=1+2 Zcosn@. 4)
n=1

The second step is to study the properties of this function, called the
Dirichlet kernel. Notice that K y(6) has period 2 and that

d do
f KN(9)2—=1+0+0+---+0=1.
_ T

e

It is a remarkable fact that the series for Ky can be summed! In fact,

sin (N + 1) 0

Kn(6) = sin %9

&)
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\I\I\I\I\I\I\,\AA /\I\/\l\l\l\l\l\l\’i

e

Figure 1

Proof of (5). The easiest proof is by complexification. By De Moivre’s
formula for complex exponentials,

N N
K@) =1+ (" +e )= Y einf

n=1 n=—N
=e ™0 1L ]+ 4N,

—iN6O

This is a finite geometric series with the first term e~V the ratio ¢'?, and the

last term ¢™?. So it adds up to
~iNO _ Li(N+1)f

1 —et?

e
Ky(0) =

e~ i(N+3)0 _ o+i(N+3)0

1. 1.
—6710 + 6_719

_sin[(N+3)6]
B sin %9 ' .

Figure 1 is a sketch of Ky(6). (It looks somewhat like the diffusion kernel,
the source function of Section 2.4, except for its oscillatory tail.)

The third step is to combine (3) with (5). Letting 6 = y — x and using the
evenness of Ky, formula (3) takes the form

T do
SN(X)=/ KN(G)f(er@)Z-

T

The interval of integration really ought to be [x — 7, x + 7], but since both
Ky and f have period 27, any interval of length 27 will do. Next we subtract
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the constant f(x) = f(x) - 1 and use formula (5) to get

r do
Sn(x) = f(x) = / Ky@)[f(x +6) — f(X)]E

—TT

or
i do
Sn(x) — f(x) = / g®)sin[(N + 1) Q]Z’ (6)
where
0) —
2(0) = fx+6)— fx) 7

sin %9
Remember that x remains fixed. All we have to show is that the integral (6)

tends to zero as N — oo.
That is the fourth step. We notice that the functions

pnv@) =sin[(N+1)0] (N=1,2,3,..) (8)

form an orthogonal set on the interval (0, ) because they correspond to mixed
boundary conditions (see Exercise 5.3.5). Hence they are also orthogonal on
the interval (—m, ). Therefore, Bessel’s inequality (5.4.18) is valid:

o0 2

= llowl?

By direct calculation, ||¢y||> = 7. If ||g|| < oo, the series (9) is convergent
and its terms tend to zero. So (g, ¢n) — 0, which says exactly that the integral
in (6) tends to zero.

The final step is to check that ||g|| < co. We have

T 2

- 21
. sin 59

Since the numerator is continuous, the only possible difficulty could occur
where the sine vanishes, namely at & = 0. At that point,

fa+0) - fx) 0

0 sin %0

li =1 =2f 11

lim (6) = lim fean
by L’Hopital’s rule [since f(x) is differentiable]. Therefore, g(6) is everywhere
continuous, so that the integral | g| is finite. This completes the proof of
pointwise convergence of the Fourier series of any C' function. m

PROOF FOR DISCONTINUOUS FUNCTIONS

If the periodic function f(x) itself is only piecewise continuous and f’(x)
is also piecewise continuous on —oo0 < x < 00, we want to prove that
the Fourier series converges and that its sum is %[ fx+)+ f(x—)] (see



140 CHAPTER 5 FOURIER SERIES

Theorem 5.4.400). This means that we assume that f(x) and f’(x) are contin-
uous except at a finite number of points, and at those points they have jump
discontinuities.

The proof begins as before. However, we modify the third step, replacing
(6) by

1 T do
Sn(x) — 5[f(X+) + fx-)] = /0 Ky@O)f(x +0) - f(x-i-)]g

0 do
+ / Kn@Lf (+6) ~ fle))5
~ b

e

= /ﬂ g+(O)sin[(N + 3) 0] do
0

0
+/ g (O)sin[(N+3)0]d6  (12)

e

by (5), where
S(x+0)— flxx)

0) =
8+(6) sin %9

(13)

The  fourth step  is to  observe that the  functions
sin[(N + %)9] (N =1,2,3,...) form an orthogonal set on the interval
(—m,0), as well as on the interval (-0, 7). Using Bessel’s inequality as
before, we deduce (see Exercise 8) that both of the integrals in (12) tend to
zero as N — oo provided that [;"|g,(6)|*d6 and ffﬂ| g_(0)>d6 are finite.

That is the fifth step. The only possible reason for the divergence of these
integrals would come from the vanishing of sin %9 atf® = 0. Now the one-
sided limit of g, (0) is

=2f'(x4) (14

: . fe+0)— fx+) 6

lim g, (f) = lim S

o0 N0 0 sin (36)
if x is a point where the one-sided derivative f'(x+) exists. If f'(x+)
does not exist (e.g., f itself might have a jump at the point x), then
f still is differentiable at nearby points. By the mean value theorem,
[f(x +0)— f(x+)]/6 = f'(6*) for some point 6* between x and x + 6.
Since the derivative is bounded, it follows that [f(x +6) — f(x)]/6 is
bounded as well for 8 small and positive. So g (6) is bounded and the integral
fon |g+(0)|? dO is finite. It works the same way for g_(6). 0

PROOF OF UNIFORM CONVERGENCE

This is Theorem 5.4.2, for the case of classical Fourier series. We assume
again that f(x) and f’(x) are continuous functions of period 2. The idea
of this proof is quite different from the preceding one. The main point is to
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show that the coefficients go to zero pretty fast. Let A,, and B,, be the Fourier
coefficients of f(x) and let A/, and B, denote the Fourier coefficients of f’(x).
We integrate by parts to get
4 X
A, = f(x)cosnx—
x T
s b4
— f'(x)sin nx—x,

- _r nw

1
= — f(x)sinnx
nw
so that
1
A, =—-B, for # 0. (15)
n
We have just used the periodicity of f(x). Similarly,
B,=—-Al. (16)
n

On the other hand, we know from Bessel’s inequality [for the derivative f”(x)]
that the infinite series

o0
S (1AL +IB) < co.
n=1

Therefore,

o o0
Y (A cosnx| + |Bysinnx]) < Y (|Au| + | Bal)
n=1

n=1

o
1 / /
=2~ (1B +14}))
n=1 n
o 12 - o 172
< (Z ﬁ> |:22(|A;|2+|B,’l|2)i| <00.
n=1 n=1
Here we have used Schwarz’s inequality (see Exercise 5). The result means
that the Fourier series converges absolutely.

We already know (from Theorem 5.4.400) that the sum of the Fourier
series is indeed f(x). So, again denoting by Sy(x) the partial sum (2), we can
write

0
max| f(x) — Sy(x)| < max Z |A, cosnx + B, sinnx
n=N+1

< D (AN +1By) < oo (17)

n=N+1
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The last sum is the tail of a convergent series of numbers so that it tends to zero
as N — oo. Therefore, the Fourier series converges to f(x) both absolutely
and uniformly. O

This proof is also valid if f(x) is continuous but f’(x) is merely piecewise
continuous. An example is f(x) = |x|.

THE GIBBS PHENOMENON

The Gibbs phenomenon is what happens to Fourier series at jump discontinu-
ities. For a function with a jump, the partial sum Sy(x) approximates the jump
as in Figure 2 for a large value of N. Gibbs showed that Sy(x) always differs
from f(x) near the jump by an “overshoot” of about 9 percent. The width of
the overshoot goes to zero as N — oo while the extra height remains at 9
percent (top and bottom). Thus

Jim max|Sy(x) — £l #0, (18)

although Sy(x) — f(x) does tend to zero for each x where f(x) does not jump.
We now verify the Gibbs phenomenon for an example. Let’s take the
simplest odd function with a jump of unity; that is,

forO<x <m
fx) =

for —m < x <0,

(ST NSTE

ASy

ys

Figure 2
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which has the Fourier series
o0 2 )
Z —sinnrw.
nodd=1 77

Figure 2 is a sketch of the partial sum S;6(x). By (3) and (5), the partial sums

are
T 0 d
Sw(x) = (/ -/ )KN<x—y>4—y
0 - T
(e
o s1n (x — y)] 4m”

LetM =N + % In the first integral let & = M(x — y). In the second integral
let & = M(y — x). These changes of variables yield

/Mx /—Mx ) sin 6 do
M(x—m) —M(x+m) 2M sin (9/2M) 27
B /M /—M”“‘“ sin @ de
Ul vnmx ) 2Msin(0/2M) 27

Mx Mm+Mx sin® d9
= / / (19)
_Mx Mr—Mx 2Msm(9/2M)2

where we changed 6 to —6 in the last step, the integrand being an even
function.

We are interested in what happens near the jump, that is, where x is small.
Remember that M is large. We will see thatin (19) the first integral is the larger
one because of the small denominator sin(6/2M). Where is the first integral
in (19) maximized? Setting its derivative equal to zero, it is maximized where
sin Mx = 0. So we set x = /M. Then (19) becomes

(/ /MJT—HT ) sin® do
(20)
Ma—n /) 2Msin(60/2M) 2

Inside the second integral in (20) the argument 6 /2M is bounded both
above and below, as follows:

Sn(x) = (
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for M > 2. Hence sin(6/2M) > 1/ V2, so that the second integral in (20) is

less than
Mrtx - FaM ™ do 1
1-|— —_— = —,
/Mn_n [ﬁ ] 2t 2M
which tends to zero as M — oo.
On the other hand, inside the first integral in (20) we have |6| < 7 and

0
2M sinw — 0 uniformly in —7 <6 <m as M — oo.

Hence, taking the limit in (20) as M — oo, we get

T T sin@ dO
SN<M) - f_n o5 =059, Q1)

This is Gibbs’s 9 percent overshoot (of the unit jump value).

FOURIER SERIES SOLUTIONS

You could object, and you would be right, that we never showed that the
Fourier series solutions actually solve the PDEs. Let’s take a basic example
to justify this final step. Consider the wave equation with Dirichlet boundary
conditions and with initial conditions u(x, 0) = ¢(x), u,(x, 0) = ¥(x) as in
Section 4.1. The solution is supposed to be given by (4.1.9):

nrwct . nmet\ . nmx
u(x,t):Z A, cos ; + B, smT smT. (22)

n

However, we know that term-by-term differentiation of a Fourier series is not
always valid (see Example 3, Section 5.4), so we cannot simply verify by
direct differentiation that (22) is a solution.
Instead, let ¢ex¢ and Yy denote the odd 2/-periodic extensions of ¢ and
Y. Let us assume that ¢ and i are continuous with piecewise continuous
derivatives. We know that the function
1 1 x+ct
M(.X,l): _[¢ext(x+Ct)+¢ext(-x_Ct)]"i__/ l/fext(s)ds (23)
2 2¢ Sy
solves the wave equation with u(x, 0) = @ex(x), u;(x, 0) = Yex(x) for all
—00 < x < 00. (Actually, it is a weak solution—see Section 12.1—but if
we assume that ¢ex and Ve are twice differentiable, it is an ordinary twice-
differentiable solution.) Since ¢ex: and Ve agree with ¢ and v on the interval
(0, 1), u satisfies the correct initial conditions on (0, ). Since ey and ey are
odd, it follows that u(x, t) is also odd, so that u(0, r) = u(l, t) = 0, which is
the correct boundary condition.
By Theorem 5.4.4(i), the Fourier sine series of ¢ex and ¥y, given by
(4.1.10) and (4.1.11), converge pointwise. Substituting these series into (23),
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we get

e, ) = ZA ( nn(x+ct) Sinm‘[(xl— ct))

1
+— Z B,—— sin ——ds. (24)

s /”“ nmc . NS
2¢ —ct l [

This series converges pointwise because term-by-term integration of a Fourier
series is always valid, by Exercise 5.4.11. Now we use standard trigonometric
identities and carry out the integrals explicitly. We get

. nmXx nrwct . nmx . nmuct
ulx,t) = Z A, sin e cos ; + B, sin e sin ] . (25)

n

This is precisely (22).

EXERCISES

1. Sketch the graph of the Dirichlet kernel
sin(N + 1)@
Ku(oy = S 2)0 i )
sin 56
in case N = 10. Use a computer graphics program if you wish.
2. Prove the Schwarz inequality (for any pair of functions):

(Aol = 1A gl

(Hint: Consider the expression || f + tg||?, where ¢ is a scalar. This ex-
pression is a quadratic polynomial of z. Find the value of r where it is a
minimum. Play around and the Schwarz inequality will pop out.)

3. Prove the inequality / fé (f' (x))2dx >[f)y—f (0)]? for any real func-
tion f(x) whose derivative f'(x) is continuous. [Hint: Use Schwarz’s
inequality with the pair f’(x) and 1.]

4. (a) Solve the problem u, = ku,, for0 < x </, u(x, 0) = ¢(x), with

the unusual boundary conditions

u(l,t) —u0,1)

7 .

Assume that there are no negative eigenvalues. (Hint: See Exercise
4.3.12.)
(b) Show that as t — o0,

limu(x,t) = A + Bx,

uy(0,1) =u,(l,t) =

assuming that you can take limits term by term.
(c) Use Green'’s first identity and Exercise 3 to show that there are no
negative eigenvalues.
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(d) Find A and B. (Hint: A + Bx is the beginning of the series. Take
the inner product of the series for ¢(x) with each of the functions 1
and x. Make use of the orthogonality.)

Prove the Schwarz inequality for infinite series:

Zanbn 3 (Za'%)uz (Zbﬁy/z-

(Hint: See the hint in Exercise 2. Prove it first for finite series (ordinary
sums) and then pass to the limit.)

Consider the diffusion equation on [0, /] with Dirichlet boundary con-
ditions and any continuous function as initial condition. Show from the
series expansion that the solution is infinitely differentiable for ¢ > 0.
(Hint: Use the general theorem at the end of Section A.2 on the differ-
entiability of series, together with the fact that the exponentials are very
small for large n. See Section 3.5 for an analogous situation.)

Let ffn [|f(x)> + |g(x)|*] dx be finite, where g(x) = f(x)/(e* — 1).
Let ¢, be the coefficients of the full complex Fourier series of f(x). Show
that V¢, > 0as N — oo.

Prove that both integrals in (12) tend to zero.
Fill in the missing steps in the proof of uniform convergence.

Prove the theorem on uniform convergence for the case of the Fourier
sine series and for the Fourier cosine series.

Prove that the classical full Fourier series of f(x) converges uniformly
to f(x) if merely f(x) is continuous of period 27 and its derivative
f'(x) is piecewise continuous. (Hint: Modify the discussion of uniform
convergence in this section.)

Show that if f(x) is a C! function in [—7, ] that satisfies the periodic
BCandif [ f(x)dx = 0,then ["_|f|*dx < [7_|f'|*dx.(Hint: Use
Parseval’s equality.)

A very slick proof of the pointwise convergence of Fourier series, due

to P. Chernoff (American Mathematical Monthly, May 1980), goes as

follows.

(a) Letf(x) be a C' function of period 27. First show that we may as
well assume that f(0) = 0 and we need only show that the Fourier
series converges to zero at x = 0.

(b) Letg(x) = f(x)/(e' — 1). Show that g(x) is a continuous function.

(c) Let C, be the (complex) Fourier coefficients of f(x) and D, the
coefficients of g(x). Show that D,, — O.

(d) Show that C,, = D, — D, so that the series X C, is telescoping.

(e) Deduce that the Fourier series of f(x) at x = 0 converges to zero.

Prove the validity of the Fourier series solution of the diffusion equation
on (0,/) with u,(x,0) = u,(x,l) =0, u(x, 0) = ¢(x), where ¢(x) is
continuous with a piecewise continuous derivative. That is, prove that
the series truly converges to the solution.

Carry out the step going from (24) to (25).
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5.6 INHOMOGENEOUS BOUNDARY CONDITIONS

In this section we consider problems with sources given at the boundary. We
shall see that naive use of the separation of variables technique will not work.
Let’s begin with the diffusion equation with sources at both endpoints.

u; = kit O<x<lI, t>0
u0,t) =h@) ul,t)=j@) (1)
u(x,0)=0.

A separated solution u = X (x)7'(¢) just will not fit the boundary conditions.
So we try a slightly different approach.

EXPANSION METHOD

We already know that for the corresponding homogeneous problem the correct
expansion is the Fourier sine series. For each ¢, we certainly can expand

uCe, 1) =Y un(t)sin @ )
n=1

for some coefficients u,(t), because the completeness theorems guarantee
that any function in (0, /) can be so expanded. The coefficients are necessarily
given by

2 ! . nmx
un(t):7/ u(x,t)sdex. 3)
0

You may object that each term in the series vanishes at both endpoints and
thereby violates the boundary conditions. The answer is that we simply do not
insist that the series converge at the endpoints but only inside the interval. In
fact, we are exactly in the situation of Theorems 3 and 4 but not of Theorem
2 of Section 5.4.

Now differentiating the series (2) term by term, we get

0=u; —ku, = Z |:ddutn + ku, (1) (?)2] sin g

So the PDE seems to require that du,/dt + ki u, =0, so that u,(t) =
A, e There is no way for this to fit the boundary conditions. Our method
fails! What’s the moral? It is that you can’t differentiate term by term. See
Example 3 in Section 5.4 for the dangers of differentiation.

Let’s start over again but avoid direct differentiation of the Fourier series.
The expansion (2) with the coefficients (3) must be valid, by the completeness
theorem 5.4.3, say, provided that u(x, ¢) is a continuous function. Clearly, the
initial condition requires that u,(0) = 0. If the derivatives of u(x, ) are also
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continuous, let’s expand them, too. Thus
o0
Z vn(1) sin —~ (4)
=1

with

nmx dun
W (1) = — i —a’ 5
v(t) = / sin T )

The last equality is valid since we can differentiate under an integral sign if
the new integrand is continuous (see Section A.3). We also expand

8x2 Z wi(t) sm —_— (6)

with the coefficients
wa(t) = / =2 sin @ dx. %

By Green’s second identity (5.3.3) the last expression equals

I
. nmX  nm nx
Uy SIn — — — U COS ——

-2 ! (nn)2 . 1) nix dx + 2
— — , 1) sin — -
A o r T l

) [ l

0

Here come the boundary conditions. The sine factor vanishes at both ends.
The last term will involve the boundary conditions. Thus

Wi(t) = =y (t) — 207wl ~2(—=1)" j (1) 4 2n7wl~h(1), (8)
where A, = (nw/l )2. Now by (5) and (7) the PDE requires

2 (! . nmx !
v, (1) — kw,(t) = 7 f (u; — kuyy) sin e dx =/ 0=0.
0 0

So from (5) and (8) we deduce that u,(7) satisfies

du,
dt

This is just an ordinary differential equation, to be solved together with the
initial condition u,(0) = 0 from (1). The solution of (9) is

= k{—hpttn(t) — 207l 2[(—=1)"j (1) — (D]} ©)

13
up(t) = Ce ™ — 2nml~2k f e M= 1) j(s) — h(s)]ds. | (10)
0
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As a second case, let’s solve the inhomogeneous wave problem

Uy — Czuxx = f(x, 1)
u0,t) =h(t) ul,t) =k@) (11)
ulx,0)=¢x)  ux,0)=vyx).
Again we expand everything in the eigenfunctions of the corresponding ho-
mogeneous problem:
> . onmx
) = t —
u(x, ) ;un( )sin =

uy (x, t) with coefficients v, (¢), u,(x, t) with coefficients w,(t), f(x,t) with
coefficients f,(t), ¢(x) with coefficients ¢,, and 1 (x) with coefficients .
Then

2 (19%u  nmx d’u,

R A T B %

and, just as before,
2 (13%u | nmx
wp(t) = = —— sin — dx
[ Jy 0x2 l
= — Aty (t) + 272 [h(t) — (= 1)"k(2)].

From the PDE we also have
2 )
0,(1) = () = 7 / () — ity sin @ dx = £,(1).
0

Therefore,

d*u,

dt?
with the initial conditions
un(o) = ¢n M;(O) = ww

The solution can be written explicitly (see Exercise 11).

+ P hatty (1) = =207l 2 [(=1)'k(t) — k(D] + fut)  (12)

METHOD OF SHIFTING THE DATA

By subtraction, the data can be shifted from the boundary to another spot in the
problem. The boundary conditions can be made homogeneous by subtracting
any known function that satisfies them. Thus for the problem (11) treated
above, the function

AU(x, 1) = (1 _ ;) h(t) + %Ck(t)
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obviously satisfies the BCs. If we let
v(x, 1) = u(x, 1) — Ulx, 1),

then v(x, t) satisfies the same problem but with zero boundary data, with
initial data ¢(x) — AU(x, 0) and ¥ (x) — U,(x, 0), and with right-hand side f
replaced by f — U,,.

The boundary condition and the differential equation can simultaneously
be made homogeneous by subtracting any known function that satisfies them.
One case when this can surely be accomplished is the case of “stationary
data” when £, k, and f(x) all are independent of time. Then it is easy to find
a solution of

—cu, = f(x) wWO)=h  w{l)=k.

Then v(x, t) = u(x, t) — U(x) solves the problem with zero boundary data,
zero right-hand side, and initial data ¢(x) — AU(x) and ¥ (x).
For another example, take problem (11) for a simple periodic case:

f(x,t) = F(x)cos wt h(t) = H coswt k(t) = K coswt,

that is, with the same time behavior in all the data. We wish to subtract a
solution of

a, — c?U,, = F(x)coswt
w0, t) = Hcoswt U, t) = K coswt.

A good guess is that U should have the form U(x, ) = Uy(x) cos wt. This
will happen if Uy(x) satisfies

—0®Uy — AU = F(x)  UO0)=H  Uy(l) = K. 0

There is also the method of Laplace transforms, which can be found in
Section 12.5.

EXERCISES

1. (a) Solve as a series the equation u, = u,, in (0, 1) with u,(0,¢) =0,
u(1,t) =1, and u(x, 0) = x>. Compute the first two coefficients
explicitly.

(b) What is the equilibrium state (the term that does not tend to zero)?

2. For problem (1), complete the calculation of the series in case j(#) = 0

and h(t) = ¢'.

3. Repeat problem (1) for the case of Neumann BCs.

4. Solve u; = c?uy + k for0 < x <1, with the boundary conditions
u(0,t) =0, u,(l,t) =0 and the initial conditions u(x,0) =0,
u;(x,0) = V. Here k and V are constants.

5. Solve u; = clu,, + e'sin5x for 0 < x < 7, with u(0, 1) = u(w, 1) = 0
and the initial conditions u(x, 0) = 0, u,(x,0) = sin3x.
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Solve u;; = c?uy + g(x)sinwt for 0 < x < I, with u = 0 at both ends
andu = u, = 0 when ¢ = 0. For which values of w can resonance occur?
(Resonance means growth in time.)

Repeat Exercise 6 for the damped wave equation u,, = c’u,, — ru,+
g(x)sinwt, where r is a positive constant.

Solve u; = ku,, in (0, 1), with u(0,1) =0, u(l,t) = At, u(x,0) =0,
where A is a constant.

Use the method of subtraction to solve u;; = 9u,, for0 <x <1 =1,
with u(0,¢) = h, u(l,t) = k, where h and k are given constants, and
u(x,0) =0, u,(x,0) =0.

Find the temperature of a metal rod that is in the shape of a solid circular
cone with cross-sectional area A(x) = b(1 — x/ 1)? for 0 < x < I, where
b is a constant. Assume that the rod is made of a uniform material, is
insulated on its sides, is maintained at zero temperature on its flatend (x =
0), and has an unspecified initial temperature distribution ¢(x). Assume
that the temperature is indegendent of y and z. [Hint: Derive the PDE
(1— x/l)zut = k{(1 — x/1)“u,},. Separate variables u = T'(t)X(x) and
then substitute v(x) = (1 — x/1)X(x).]

Write out the solution of problem (11) explicitly, starting from the dis-
cussion in Section 5.6.

Carry out the solution of (11) in the case that
f(x,t) = F(x)coswt h(t) = Hcoswt k(t) = Kcoswt.
If friction is present, the wave equation takes the form
Uy — CPllgy = —TU;,

where the resistance r > 0 is a constant. Consider a periodic source at

oneend: u(0,1) =0, u(l,r) = Ae'™.

(a) Show that the PDE and the BC are satisfied by

sin Bx

sin B’

(b) No matter what the IC, u(x, 0) and u,(x, 0), are, show that AU(x, t)
is the asymptotic form of the solution u(x, t) as t — oo.

(c) Show that you can get resonance as r — 0 if @ = mmc/[ for some

integer m.
(d) Show that friction can prevent resonance from occurring.

2 .

WU(x,t) = Ae' where 82¢? = w* — irw.




6

HARMONIC
FUNCTIONS

This chapter is devoted to the Laplace equation. We introduce two of its
important properties, the maximum principle and the rotational invariance.
Then we solve the equation in series form in rectangles, circles, and related
shapes. The case of a circle leads to the beautiful Poisson formula.

6.1 LAPLACE'S EQUATION

If a diffusion or wave process is stationary (independent of time), then u, = 0
and u,, = 0. Therefore, both the diffusion and the wave equations reduce to
the Laplace equation:

Uy =0 in one dimension
V-Vu=Au=uy+u,=0 in two dimensions
V-Vu=Au=uy+uy+u;=0 in three dimensions

A solution of the Laplace equation is called a harmonic function.

In one dimension, we have simply u,, = 0, so the only harmonic functions
in one dimension are u(x) = A + Bx. But this is so simple that it hardly gives
us a clue to what happens in higher dimensions.

The inhomogeneous version of Laplace’s equation

Au= f (1

with f a given function, is called Poisson’s equation.
Besides stationary diffusions and waves, some other instances of
Laplace’s and Poisson’s equations include the following.

152
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Electrostatics. From Maxwell’s equations, one has curl E=0and divE =
47 p, where p is the charge density. The first equation implies E = —grad
¢ for a scalar function ¢ (called the electric potential). Therefore,

A¢ = div(grad ¢) = —div E = —4mp,
which is Poisson’s equation (with f = —4mp).

Steady fluid flow. Assume that the flow is irrotational (no eddies) so that
curl v = 0, where v = v(x, y, z) is the velocity at the position (x, y, z),
assumed independent of time. Assume that the fluid is incompressible
(e.g., water) and that there are no sources or sinks. Then div v = 0.
Hence v = —grad ¢ for some ¢ (called the velocity potential) and A¢ =
—divv = 0, which is Laplace’s equation.

Analytic functions of a complex variable. Write z = x + iy and
() = u(z) +iv(z) = ulx + iy) + iv(x + iy),

where u and v are real-valued functions. An analytic function is one that
is expressible as a power series in z. This means that the powers are not
X"y but z" = (x + iy)". Thus

fl@) = Zanz”
n=0

(a, complex constants). That is,
[e )
u(x +iy) + iv(x +iy) = Y an(x +iy)".
n=0

Formal differentiation of this series shows that
ou ov ou ov

—=— and —=-——
ax  dy dy ax

(see Exercise 1). These are the Cauchy—Riemann equations. If we differ-
entiate them, we find that

Uyy = Vyy = Uxy = —Uyy,

so that Au = 0. Similarly Av = 0, where A is the two-dimensional
laplacian. Thus the real and imaginary parts of an analytic function are
harmonic.

Brownian motion. Imagine brownian motion in a container D. This means
that particles inside D move completely randomly until they hit the bound-
ary, when they stop. Divide the boundary arbitrarily into two pieces, C;
and C; (see Figure 1). Let u(x, y, z) be the probability that a particle that
begins at the point (x, y, z) stops at some point of C;. Then it can be
deduced that
Au=0in D
u=1onC u =0on C;.

Thus u is the solution of a Dirichlet problem.
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Figure 1

As we discussed in Section 1.4, the basic mathematical problem is to
solve Laplace’s or Poisson’s equation in a given domain D with a condition
on bdy D:

Au = fin D
ou

=h or — +au=h onbdyD.
on

an

In one dimension the only connected domain is an interval {a < x < b}. We
will see that what is interesting about the two- and three-dimensional cases is
the geometry.

MAXIMUM PRINCIPLE

We begin our analysis with the maximum principle, which is easier for
Laplace’s equation than for the diffusion equation. By an open set we mean a
set that includes none of its boundary points (see Section A.1).

Maximum Principle. Let D be a connected bounded open set (in ei-
ther two- or three-dimensional space). Let either u(x, y)or u(x,y, z) be a
harmonic function in D that is continuous on D = D U (bdy D). Then the
maximum and the minimum values of u are attained on bdy D and nowhere
inside (unless u = constant).

In other words, a harmonic function is its biggest somewhere on the
boundary and its smallest somewhere else on the boundary.

To understand the maximum principle, let us use the vector shorthand
x = (x, y) in two dimensions or X = (x, y, z) in three dimensions. Also, the
radial coordinate is written as |x| = (x> + yz)l/zor x| = (x2 4+ y* + 12)1/2.
The maximum principle asserts that there exist points Xy and X, on bdy D
such that

UXp) < u(X) < u(Xpy) (@)
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X

Figure 2

for all x € D (see Figure 2). Also, there are no points inside D with this
property (unless u = constant). There could be several such points on the
boundary.

The idea of the maximum principle is as follows, in two dimen-
sions, say. At a maximum point inside D, if there were one, we’d have
uy < 0andu,, <0. (This is the second derivative test of calculus.) So
Uy + Uy, < 0. At most maximum points, u,, < 0 and u,, < 0. So we’d get
a contradiction to Laplace’s equation. However, since it is possible that
Uy =0 =u,, at a maximum point, we have to work a little harder to get
a proof.

Here we go. Let € > 0. Let v(x) = u(x) + €|x|%. Then, still in two dimen-
sions, say,

Av=Au+eA(x>*+y>)=0+4¢ >0 inD.

But Av = vy, + vy, < 0 at an interior maximum point, by the second deriva-
tive test in calculus! Therefore, v(x) has no interior maximum in D.

Now v(x), being a continuous function, has to have a maximum some-
where in the closure D = D U bdy D. Say that the maximum of v(x) is
attained at Xy € bdy D. Then, for all x € D,

u(x) < v(x) < v(x) = u(xo) + €[xo|* < max u + el?,
y

where / is the greatest distance from bdy D to the origin. Since this is true for
any € > 0, we have

u(x) < maxu forallx € D. 3)
bdy D

Now this maximum is attained at some point xp; € bdy D. So u(x) < u(xy)
for all x € D, which is the desired conclusion.

The existence of a minimum point x,, is similarly demonstrated. (The
absence of such points inside D will be proved by a different method in
Section 6.3.) O

UNIQUENESS OF THE DIRICHLET PROBLEM
To prove the uniqueness, suppose that

Au=f inD Av=f inD
u=h onbdyD v=~h onbdy D.
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We want to show that u = v in D. So we simply subtract equations and let
w=u—v.Then Aw=01in D and w = 0 on bdy D. By the maximum principle

0=w(x,) <wXx) <wxy) =0 forallx e D.

Therefore, both the maximum and minimum of w(x) are zero. This means that
w=0andu=v.

INVARIANCE IN TWO DIMENSIONS

The Laplace equation is invariant under all rigid motions. A rigid motion in
the plane consists of translations and rotations. A translation in the plane is a
transformation

xX'=x+a y =y-+b.

Invariance under translations means simply that ., + uyy =ty + Uy
A rotation in the plane through the angle « is given by

x'=xcosa + ysina

AR @)
y = —xsina + ycosa.

By the chain rule we calculate

Uy = Uy COSQA — Uy SIN QL
Uy = Uy SINC + Uy COSQ
Uyy = (Uy COSQ — Uy SINO) COSA — (U COSO — Uy SINQ)y SIN QX
Uyy = (uy sina + uy cosa)y sina + (i, Sina + uy COs ), COS .
Adding, we have
)
Uy + Uyy = Uy + uy/y/)(cosza + sin“a) + uyry - (0)
= ux/x/ + My/y/,
This proves the invariance of the Laplace operator. In engineering the laplacian
A is a model for isotropic physical situations, in which there is no preferred

direction.
The rotational invariance suggests that the two-dimensional laplacian

% 9
A= —+—
27 ax2 + dy?
should take a particularly simple form in polar coordinates. The transforma-
tion

x=rcosf y=rsiné
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has the jacobian matrix

ox 0dy
g = or or | _ cosf sind
al cly —rsin® rcos6
26 00
with the inverse matrix
or 00 0 —sin @
gfl | ox ox | o8 r
“|or 90 | - cos 0
3y 9y sin .
(Beware, however, that dr/dx # (dx/ ar)_l.) So by the chain rule we have
0 0 sinf o
— =cosf)— — ———,
ox ar r 20
0 . 0 cosf d
— =sinf— + —.
dy or r 060

These operators are squared to give

92 9 sing 9 7°
— = |cosf— — —
9x2 or r 00
29 92 ) sin cos 6 92
=cos 0 — —
or? r orob

sin 6 92 2sinf cosf o sin @ 9
+ ——+ —
r2 062 r2 a0 r or

92 ( 9 00508)2
= |sinf— + —

8_y2 or r 060
_ Sin298_2+2<sin9c059> 92
or? r orof
cos?6 92 2sinf cosf o cos’6 9
7 e 2 e 1 ar

(The last two terms come from differentiation of the coefficients.) Adding
these operators, we get (lo and behold!)

32+32_32+1a+1a2
ax2  ayr  ar2  rar  r:ae?’

Ay = &)

It is also natural to look for special harmonic functions that themselves
are rotationally invariant. In two dimensions this means that we use polar
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coordinates (r, #) and look for solutions depending only on r. Thus by (5)
O0=up+uyy =u,+ ;u,

if u does not depend on 6. This ordinary differential equation is easy to solve:
(ruy), =0, ru,=c;, u=cilogr+ c;-

The function log r will play a central role later.

INVARIANCE IN THREE DIMENSIONS

The three-dimensional laplacian is invariant under all rigid motions in space.
To demonstrate its rotational invariance we repeat the preceding proof using
vector-matrix notation. Any rotation in three dimensions is given by

x = BXx,
where B is an orthogonal matrix (BB = B'B = I). The laplacian is Au =
)i =%} j—1 8y where the subscripts on u denote partial derivatives.
Therefore,

Au = Z (Z bki5zjby) Upr = ; Skt Up'r
i ]

k1
= E Mk’k’
k
because the new coefficient matrix is

Zbkiai}blj :Zbkibli = (BtB)kl = ;.
iJ i

So in the primed coordinates Au takes the usual form
A = Uy + Uyry + Uy,
For the three-dimensional laplacian
R R
a2 "oy T o2

it is natural to use spherical coordinates (r, 0, ¢) (see Figure 3). We’ll use the
notation

As =

r=yVx2+ 2+ 22 =52+ 72
N

X = §5cos¢ z=rcosf

y =ssin¢ s =rsinf.

(Watch out: In some calculus books the letters ¢ and 6 are switched.) The
calculation, which is a little tricky, is organized as follows. The chain of
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Figure 3
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variablesis (x, y, z) — (s, ¢, z) — (1, 0, ¢). By the two-dimensional Laplace

calculation, we have both

1 1
Uz, + Uss = Upp + —Uy + 7”00
r r
and
1 1

Uyy + Uyy = Ugg + ;ux + s—2u¢¢.
We add these two equations, and cancel ug, to get

A3 =ty +tyy + Uy,
1
=u, + ;Mr + 721499 + ;Ms + Sj“«p«p-
In the last term we substitute s2 = r2sin?6 and in the next-to-last term
ou  or 090 99

This leaves us with

2 1 1
Asu=u, +—u, + — cotf ,
3U = Uy + ¥ + ) [uea +( Jug + Sin?0 M¢¢]

which may also be written as

2 290 1 8.98 1 92
n

A= 4200 % el 4 O
3= 0 i T sine 00" Y90 T 2o 992

(6)

(7

Finally, let’s look for the special harmonic functions in three dimensions
which don’t change under rotations, that is, which depend only on r. By (7)
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they satisfy the ODE
0=Asu=u,+ —u,.
r

2

So (rzur), = 0. It has the solutions r2u, = ¢;. Thatis,u = —c;r~ + ¢,. This

important harmonic function
1 -1/2
Sy

is the analog of the special two-dimensional function log(x? + yz)l/ ? found
before. Strictly speaking, neither function is finite at the origin. In electrostat-
ics the function u(x) = r~! turns out to be the electrostatic potential when a
unit charge is placed at the origin. For further discussion, see Section 12.2.

EXERCISES

1. Show that a function which is a power series in the complex variable
x + iy must satisfy the Cauchy-Riemann equations and therefore
Laplace’s equation.

2. Find the solutions that depend only on r of the equation u,, + u,, +
u.. = k*u, where k is a positive constant. (Hint: Substitute u = v/r.)

3. Find the solutions that depend only on r of the equation u,, + u,, =
k*u, where k is a positive constant. (Hint: Look up Bessel’s differential
equation in [MF] or in Section 10.5.)

4. Solve uy, + uyy, + u,; = 0inthe spherical shell0 < a < r < b with the
boundary conditions ¥ = A on r = a and u = B on r = b, where A and
B are constants. (Hint: Look for a solution depending only on r.)

5. Solve uy +uyy, = 1inr < a with u(x, y) vanishing on r = a.

6. Solveu, + uy, = linthe annulusa < r < b with u(x, y) vanishing on
both parts of the boundary r = a and r = b.

7. Solve uy +uy, +u;; =1 in the spherical shell a <r < b with
u(x,y, z) vanishing on both the inner and outer boundaries.

8. Solve uy + uy, +u,, = 1 in the spherical shella < r < b withu =0
onr=aand du/dr =0 onr = b. Then let a — 0 in your answer and
interpret the result.

9. A spherical shell with inner radius 1 and outer radius 2 has a steady-state
temperature distribution. Its inner boundary is held at 100°C. Its outer

boundary satisfies du/dr = —y < 0, where y is a constant.
(a) Find the temperature. (Hint: The temperature depends only on the
radius.)

(b) What are the hottest and coldest temperatures?
(c) Can you choose y so that the temperature on its outer boundary is
20°C?
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10. Prove the uniqueness of the Dirichlet problem Au = finD, u=g
on bdy D by the energy method. That is, after subtracting two solutions
w = u — v, multiply the Laplace equation for w by w itself and use the
divergence theorem.

11. Show that there is no solution of
. du
Au=f inD, 8—=g on bdy D
n

in three dimensions, unless

/[ fdxdydz = //gdS.

bdy(D)

(Hint: Integrate the equation.) Also show the analogue in one and two
dimensions.

12. Check the validity of the maximum principle for the harmonic func-
tion (1 — x2 — y2)/(1 — 2x + x> + y?) in the disk D = {x> + y? < 1}.
Explain.

13. A function u(x) is subharmonic in D if Au > 0 in D. Prove that its
maximum value is attained on bdy D. [Note that this is not true for the
minimum value. ]

6.2 RECTANGLES AND CUBES

Special geometries can be solved by separating the variables. The general
procedure is the same as in Chapter 4.

(i) Look for separated solutions of the PDE.

(i) Putinthe homogeneous boundary conditions to get the eigenvalues.
This is the step that requires the special geometry.

(ii1)) Sum the series.
(iv) Put in the inhomogeneous initial or boundary conditions.

It is important to do it in this order: homogeneous BC first, inhomogeneous
BC last.
We begin with

Mgt =ty + 1y, =0 inD, (1)

where D is the rectangle {0 < x < a, 0 < y < b} on each of whose sides one
of the standard boundary conditions is prescribed (inhomogeneous Dirichlet,
Neumann, or Robin).
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u=g(x)

u=jly) u, = kiy)

u, +u = hix)

Figure 1

Example 1.

Solve (1) with the boundary conditions indicated in Figure 1. If we call
the solution u with data (g, A, j, k), then u = u; + up + us + uy where
u; has data (g, 0, 0, 0), u, has data (0, 4, 0, 0), and so on. For simplicity,
let’s assume that 2 = 0, j = 0, and k = 0, so that we have Figure 2. Now
we separate variables u(x, y) = X(x) - Y(y). We get

X// Y//

X + 7 = 0.
Hence there is a constant A such that X" +AX =0 for 0 <x <a
and " — 1Y =0 for 0 < y < b. Thus X(x) satisfies a homogeneous
one-dimensional problem which we well know how to solve: X(0) =
X'(a) = 0. The solutions are

) 1 2712
Bi=in=(n+3) 5 0=0.1.23.. )
1
X, () = sin 27X 3)

Next we look at the y variable. We have
Y'—AY =0 with Y'(0)+ Y(0) = 0.

(We shall save the inhomogeneous BCs for the last step.) From the
previous part, we know that A = A,, > 0O for some n. The Y equation has
exponential solutions. As usual it is convenient to write them as

Y(y) = Acosh 8,y + B sinh g, y.

u=g(x)

uy+u=0

Figure 2
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So 0 =Y'(0) + Y(0) = BB, + A. Without losing any information we
may pick B = —1, so that A = §,. Then

Y(y) = B, cosh B,y — sinh 8, y. 4)

Because we’re in the rectangle, this function is bounded. Therefore, the
sum

u(x, y) =y Ay,sin B,x (B, cosh B,y — sinhg, ) )
n=0

is a harmonic function in D that satisfies all three homogeneous BCs.
The remaining BC is u(x, b) = g(x). It requires that

gx) = ZAH(,Bn cosh B,b — sinh B,,b) - sin B, x
n=0

for 0 < x < a. This is simply a Fourier series in the eigenfunctions
sin fB,x.
By Chapter 5, the coefficients are given by the formula

A, = j(ﬂn cosh B,b — sinh ﬁnb)l/a g(x)sin B,x dx. (6)
0

Example 2.

The same method works for a three-dimensional box {0 < x < a,
0 <y < b,0 < z < ¢} with boundary conditions on the six sides. Take
Dirichlet conditions on a cube:

Asu=uy+uy +u,.,=0 inD
D={0<x<nmn0<y<mn,0<z<m}

u(mw,y,z) =gy, z)
u@ ,y,z) =ulx,0,z) =ulx,m,z) =ulx,y,0) =ulx,y,r)=0.

To solve this problem we separate variables and use the five homoge-
neous boundary conditions:

X// Y// Z//

=X)YZ(z), —+—+—

u ()Y (¥)Z(2) ~T7t3Z

X0)=Y0)=Z0)=Y(7r)=Z(@)=0.

=0
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v4 /n /n
Apn = (
" m2sinh(vm2 +n2m) Jo Jo 8

Each quotient X”/X, Y"/Y, and Z"/Z must be a constant. In the familiar
way, we find

Y(y)=sinmy (m=1,2,...)

and

Z(z)=sinnz (n=1,2,...),
so that

X" =m*+nHX, X(0)=0.
Therefore,

X(x) = A sinh(vm? + n? x).

Summing up, our complete solution is

o0 o0
u(x,y, z) = Z ZAmn sinh(v/m? + n? x) sin my sin nz. @)

n=1 m=1

Finally, we plug in our inhomogeneous condition at x = 7:

gy, z) = Z Z Apn sinh(v/m?2 + n2 77) sin my sinnz.

This is a double Fourier sine series in the variables y and z! Its theory is
similar to that of the single series. In fact, the eigenfunctions {sin my -
sin nz} are mutually orthogonal on the square {0 <y < 7,0 <z <7}
(see Exercise 2). Their normalizing constants are

2

T T T
/ / (sinmysinnz)®dy dz = —.
o Jo 4

Therefore,

v, z)sinmysinnzdydz. (8)

Hence the solutions can be expressed as the doubly infinite series (7)
with the coefficients A,,,. The complete solution to Example 2 is (7) and
(8). With such a series, as with a double integral, one has to be careful
about the order of summation, although in most cases any order will
give the correct answer. O

EXERCISES

1.

Solve u,, + uy,, = 0 in the rectangle 0 < x < a, 0 <y < b with the
following boundary conditions:

Uy, =—a onx=20 u,=0 onx=a
uy=>b ony=0 uy,=0 ony=>o.
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(Hint: Note that the necessary condition of Exercise 6.1.11 is satisfied. A
shortcut is to guess that the solution might be a quadratic polynomial in
x and y.)

Prove that the eigenfunctions {sin my sin nz} are orthogonal on the square
{0<y<m,O0<z<m}.

Find the harmonic function u(x, y) in the square D = {0 <x < 7,0 <y
< 7 } with the boundary conditions:

uy=0 fory=0andfory=m, u=0 forx=0 and
u=cos’y=4(1+cos2y) forx=n.

Find the harmonic function in the square {0 < x < 1,0 <y < 1} with the
boundary conditions u(x, 0) = x, u(x, 1) = 0, u(0, y) = 0, u,(1, y) = y°.
Solve Example 1 in the case b = 1, g(x) = h(x) = k(x) = 0 but j(x) an
arbitrary function.

Solve the following Neumann problem in the cube {0 <x < 1,0 <y < 1,
0 <z < 1}: Au=0with u,(x, y, 1) = g(x, y) and homogeneous Neumann
conditions on the other five faces, where g(x, y) is an arbitrary function
with zero average.

(a) Find the harmonic function in the semi-infinite strip {0 < x < m,

0 <y < oo} that satisfies the “boundary conditions”:

u(0,y)=u(m,y) =0, u(x,0)=h(x), }lirgou(x, y)=0.

(b) What would go awry if we omitted the condition at infinity?

6.3 POISSON’S FORMULA

A much more interesting case is the Dirichlet problem for a circle. The ro-
tational invariance of A provides a hint that the circle is a natural shape for
harmonic functions.

Let’s consider the problem

Uxx + Uy, =0 for x> + y2 <a’ (1)
u=h®) forx>+y>=a? 2)

with radius @ and any boundary data A(9).

Our method, naturally, is to separate variables in polar coordinates: u =

R(r) ®(0) (see Figure 1). From (6.1.5) we can write

1 1
0=uun+ Uyy = Upr + ;ur + ﬁuﬁﬂ

Y 1 ’ 1 7
=R'©O+-RO+ SRO".
r r
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Figure 1

Dividing by R® and multiplying by 72, we find that
O +10=0 3)
r’R" +rR — AR = 0. 4)

These are ordinary differential equations, easily solved. What boundary con-
ditions do we associate with them?
For ®(0) we naturally require periodic BCs:

OO +27) = BO) for —oo < 6 < 00. (5)
Thus
A =n? and ©(0) = A cos nf + B sin nd n=1,2,..). (6

There is also the solution A = 0 with ®(6) = A.
The equation for R is also easy to solve because it is of the Euler type
with solutions of the form R(r) = r*. Since A = n? it reduces to

ale — Dr* +ar® —n*r* =0 (7)
whence o = = n. Thus R(r) = Cr" + Dr~" and we have the separated solutions
D .
U= (Cr” + )(A cos nf + B sinnb) (8)
rn
forn=1,2,3,....Incase n = 0, we need a second linearly independent

solution of (4) (besides R = constant). It is R = log r, as one learns in ODE
courses. So we also have the solutions

u=C+ Dlogr. )

(They are the same ones we observed back at the beginning of the chapter.)
All of the solutions (8) and (9) we have found are harmonic functions in
the disk D, except that half of them are infinite at the origin (r = 0). But we
haven’t yet used any boundary condition at all in the r variable. The interval
is 0 < r < a. At r = 0 some of the solutions (" and log r) are infinite: We
reject them. The requirement that they are finite is the “boundary condition”
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at r = 0. Summing the remaining solutions, we have

o0
u=3A0+ Zr”(An cos nt) + B, sin no). (10)

n=1

Finally, we use the inhomogeneous BCs at r = a. Setting r = a in the
series above, we require that

o0
h(O) = LAg+ Za”(An cos nf + B, sin nd).

n=1

This is precisely the full Fourier series for 4(9), so we know that

1 2
A, = f h(¢) cosne do (11
a” 0
2w
B, = / h(¢p)sinng do. (12)
ma Jo
Equations (10) to (12) constitute the full solution of our problem. o

Now comes an amazing fact. The series (10) can be summed explicitly!
In fact, let’s plug (11) and (12) directly into (10) to get

21 d
u(r,0) = / h(¢)2—¢
0 T

o n 2
+ Z r / h(¢p){cosn¢ cosnb + sinng sinnb} deo
o Tam 0

2 AN d¢
:/0 h(¢){1+2;<;> cosn(9—¢)} -

The term in braces is exactly the series we summed before in Section 5.5 by
writing it as a geometric series of complex numbers; namely,

> r\n . 0 0 r\”n in(o
D) e R e
n=1 n=1

i @—9) re—i0-4)
=1 a — rel@=9) + a — re"i0=¢)
a2 — 2

a? — 2arcos(@ — ¢) +r?
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-9

Figure 2

Therefore,

m h(g) do
22 ag
u(r,0)=(a”—r )/0 a? —2arcos(@ — @) +r22m’ (13)

This single formula (13), known as Poisson’s formula, replaces the triple of
formulas (10)—(12). It expresses any harmonic function inside a circle in
terms of its boundary values.

The Poisson formula can be written in a more geometric way as follows.
Write x = (x, y) as a point with polar coordinates (r, ) (see Figure 2). We
could also think of x as the vector from the origin 0 to the point (x, y). Let X'
be a point on the boundary.

x: polar coordinates (r, 6)

x’:  polar coordinates (a, ¢).

The origin and the points x and x’ form a triangle with sides r = |x|, a = |X/|,
and |x — X/|. By the law of cosines

Ix — X'|*> = a® + r* — 2arcos(d — ).

The arc length element on the circumference is ds’ = a d¢. Therefore, Pois-
son’s formula takes the alternative form

2 2 /
u(x) = a|x|/ ﬂ ds’ (14)
\

2ma x|=a X — X2

for x € D, where we write u(x") = h(¢). This is a line integral with respect to
arc length ds’ = a d¢, since s’ = a¢ for a circle. For instance, in electrostatics
this formula (14) expresses the value of the electric potential due to a given
distribution of charges on a cylinder that are uniform along the length of the
cylinder.



6.3 POISSON'S FORMULA 169

A careful mathematical statement of Poisson’s formula is as follows. Its
proof is given below, just prior to the exercises.

Theorem 1. Let i(¢) = u(x') be any continuous function on the circle
C =bdy D. Then the Poisson formula (13), or (14), provides the only harmonic
function in D for which

lim u(x) = h(xg) for all xy € C. (15)
X—X(

This means that u(x) is a continuous function on D = D U C. It is also dif-
ferentiable to all orders inside D.

The Poisson formula has several important consequences. The key one is
the following.

MEAN VALUE PROPERTY

Let u be a harmonic function in a disk D, continuous in its closure D. Then
the value of u at the center of D equals the average of u on its circumference.

Proof. Choose coordinates with the origin 0 at the center of the circle.
Put x = 0 in Poisson’s formula (14), or else put » = 0 in (13). Then

2 /
u(0) = a” u(x’)

2ma IX'|=a a2

ds’.

This is the average of u on the circumference |x'| = a.

MAXIMUM PRINCIPLE

This was stated and partly proved in Section 6.1. Here is a complete proof of its
strong form. Let u(x) be harmonic in D. The maximum is attained somewhere
(by the continuity of u on D), say at X3 € D. We have to show that x,; ¢ D
unless u = constant. By definition of M, we know that

ulx) <uxXy)=M forallx € D.

We draw a circle around x,, entirely contained in D (see Figure 3). By the
mean value property, u(xys) is equal to its average around the circumference.
Since the average is no greater than the maximum, we have the string of
inequalities

M = u(xy) = average on circle < M.

Therefore, u(x) = M for all x on the circumference. This is true for any such
circle. So u(x) = M for all x in the diagonally shaded region (see Figure 3).
Now we repeat the argument with a different center. We can fill the whole
domain up with circles. In this way, using the assumption that D is connected,
we deduce that u(x) = M throughout D. So u = constant.
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Figure 3

DIFFERENTIABILITY

Let u be a harmonic function in any open set D of the plane. Then u(x) = u(x, y)
possesses all partial derivatives of all orders in D.

This means that du /dx, du/dy, 02u/dx?, 3%u/dxdy, 3'%u/dx'%, andso
on, exist automatically. Let’s show this first for the case where D is a disk with
its center at the origin. Look at Poisson’s formula in its second form (14). The
integrand is differentiable to all orders for x € D. Note that X' € bdy D so that
x # x'. By the theorem about differentiating integrals (Section A.3), we can
differentiate under the integral sign. So u(x) is differentiable to any order in
D.

Second, let D be any domain at all, and let xy € D. Let B be a disk contained
in D with center at xo. We just showed that u(x) is differentiable inside B, and
hence at xy. But X is an arbitrary point in D. So u is differentiable (to all
orders) at all points of D.

This differentiability property is similar to the one we saw in Section 3.5
for the one-dimensional diffusion equation, but of course it is not at all true
for the wave equation.

PROOF OF THE LIMIT (15)
We begin the proof by writing (13) in the form

2w d¢
u(r,0) = P(r,0 — ¢)h(¢)7 (16)
0 T
for r < a, where
P(r, 6) a-r 1+2§:<r)" 6 (7
r,0) = = —) cos
a? —2arcosf +r? —~\a "

is the Poisson kernel. Note that P has the following three properties.

(i) P(r,0) > 0forr < a. This property follows from the observation
that a®> — 2arcos 0 +r> > a*> —2ar +r? = (a — r)* > 0.
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21 4o
/ P(r0) = 1.
0 27

This property follows from the second part of (17) because
[Fcosn0dd =0forn=1,2,....
(iii) P(r, ) is a harmonic function inside the circle. This property follows

from the fact that each term (r/a)" cos nf in the series is harmonic
and therefore so is the sum.

(ii)

Now we can differentiate under the integral sign (as in Appendix A.3) to
get

1 1 2 1 1 d¢
Mrr+_ur+_2u90= Prr+_Pr+_2P99 (r,0—¢)h(¢)
r r 0 r r 2

2T
=/ 0-h(@)dg =0
0

for r < a. So u is harmonic in D.
So it remains to prove (15). To do that, fix an angle 6y and consider a
radius r near a. Then we will estimate the difference

2 d
umm—mw=A PGty — DIAG) — hEl 50 (1)

by Property (ii) of P. But P(r, 0) is concentrated near & = 0. This is true in
the precise sense that, for § < 6 < 2w — 4,

a? — r2 a? — 12
P(r.0)] = — s = ; R
a’ —2arcos6 +r (a —r)  +4darsin“(0/2)

e (19

for r sufficiently close to a. Precisely, for each (small) § > 0 and each (small)
€ > 0, (19) is true for r sufficiently close to a. Now from Property (i), (18),
and (19), we have

wmaﬁ—M%»s/

0o—4

0o+ d(,b d¢
mn%—¢x+g/ () — h00)| 22
27'[ |p—6o|>8 27T

(20)

for r sufficiently close to a. The € in the first integral came from the continuity
of h. Infact, there is some § > Osuchthat |h(¢p) — h(6y)| < e for |¢p — Gy| < 6.
Since the function |#| < H for some constant H, and in view of Property (ii),
we deduce from (20) that

|lu(r, 6) — h(@o)| = (1 +2H)e

provided r is sufficiently close to a. This is relation (15).
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EXERCISES

1. Suppose that uis aharmonic functioninthe disk D = {r < 2} andthatu =
3 sin 20 + 1 for r = 2. Without finding the solution, answer the following
questions.

(a) Find the maximum value of « in D.
(b) Calculate the value of u at the origin.

2. Solve uy, + uyy = 0in the disk {r < a} with the boundary condition

u=14+3sinf onr =a.

3. Same for the boundary condition u = sin®6. (Hint: Use the identity
sin 30 = 3sin @ — 4 sin®6.)

4. Show that P(r, 0) is a harmonic function in D by using polar coordinates.
That is, use (6.1.5) on the first expression in (17).

6.4 CIRCLES, WEDGES, AND ANNULI

The technique of separating variables in polar coordinates works for domains
whose boundaries are made up of concentric circles and rays. The purpose of
this section is to present several examples of this type. In each case we get the
expansion as an infinite series. (But summing the series to get a Poisson-type
formula is more difficult and works only in special cases.) The geometries we
treat here are

A wedge: {0 <0 <6),0 <r <a}
An annulus: {0 < a < r < b}
The exterior of a circle: {a < r < oo}

We could do Dirichlet, Neumann, or Robin boundary conditions. This leaves
us with a lot of possible examples!

Example 1. The Wedge

Let us take the wedge with three sides 8 = 0, 6 = B, and r = a and solve
the Laplace equation with the homogeneous Dirichlet condition on the
straight sides and the inhomogeneous Neumann condition on the curved
side (see Figure 1). That is, using the notation u = u(r, 6), the BCs are

3
u(r, 0) = 0 = u(r, B), %(a, 0) = h(o). (1)

The separation-of-variables technique works just as for the circle,
namely,

O +10 =0, r’R" +rR — AR = 0.
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u, = h@)

Figure 1

So the homogeneous conditions lead to
"+ 10 =0, 00) =6(p) =0. 2)

This is our standard eigenvalue problem, which has the solutions

N (nn)2 00) _ nmh 3)
={—), = sin——
B B
As in Section 6.3, the radial equation
PR +rR —AR =0 4)

is an ODE with the solutions R(r) = r%, where o> — 1 =0 or o =
++/A = +nw /B. The negative exponent is rejected again because we
are looking for a solution u(r, ) that is continuous in the wedge as well
as its boundary: the function »~"7/# is infinite at the origin (which is a
boundary point of the wedge). Thus we end up with the series

o0
0
u(r,0) =Y A, P sin%. (5)
n=1

Finally, the inhomogeneous boundary condition requires that

o0
0
he) =Y A, a b sin™ T
= B B

This is just a Fourier sine series in the interval [0, B8], so its coefficients
are given by the formula

R . nmf
A, =a — h(0) sin—— df. (6)
nw Jo B

The complete solution is given by (5) and (6). o
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u=h

Figure 2

Example 2. The Annulus

The Dirichlet problem for an annulus (see Figure 2) is

Uge + Uy =0 in0 <a®><x>+y2<b?
u=g® forx>+y>=a’
u=nh®) forx>+y>=0>b’

The separated solutions are just the same as for a circle except that
we don’t throw out the functions =" and log r, as these functions are
perfectly finite within the annulus. So the solution is

o0
u(r, 0) = %(CO + Dglogr) + Z(C,,r" + D,r~ ") cosnb -
n=1

+ (Ar" 4 B,r ") sinné.

The coefficients are determined by setting » = a and r = b (see Exercise
3). o

Example 3. The Exterior of a Circle
The Dirichlet problem for the exterior of a circle (see Figure 3) is

Uy + Uy =0 for x? + y? > a?

u=nh®) forx>+y?>=ad?
u bounded as x> 4+ y* — oo.

We follow the same reasoning as in the interior case. But now, instead
of finiteness at the origin, we have imposed boundedness at infinity.
Therefore, r ™ is excluded and " is retained. So we have

o0
u(r,0) = 3A0+ Y _ r"(A, cosnf + B, sinnf). (8)

n=1
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Figure 3

The boundary condition means

h(9) = %Ao + Zaf”(A,, cos nf + B, sin no),

so that
al’l g
A, = — h(@) cosnb do
T Jn
and
al’l s

B, = — h(0) sinnb do.
b1

—IT
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This is the complete solution but it is one of the rare cases when the
series can actually be summed. Comparing it with the interior case, we
see that the only difference between the two sets of formulas is that r
and a are replaced by r~! and a~'. Therefore, we get Poisson’s formula

with only this alteration. The result can be written as

h(#) d¢

2 —2arcos(d — ) +r? 2m

2w
u(r,0) = (r* — a2)/
0 a

forr > a.

€))

O

These three examples illustrate the technique of separating variables in
polar coordinates. A number of other examples are given in the exercises.
What is the most general domain that can be treated by this method?

EXERCISES

1.

Solve uy, + uy, = 0in the exterior {r > a} of a disk, with the boundary

condition u = 1 4+ 3 sin 6 on r = a, and the condition at infinity that u

be bounded as r — o0.
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10.

11.
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Solve uy, + u,, = 0 in the disk » < a with the boundary condition

0

L hu= f@).

ar
where f(0) is an arbitrary function. Write the answer in terms of the
Fourier coefficients of f(0).

Determine the coefficients in the annulus problem of the text.
Derive Poisson’s formula (9) for the exterior of a circle.

(a) Find the steady-state temperature distribution inside an annular
plate {1 < r < 2}, whose outer edge (r = 2) is insulated, and on
whose inner edge (r = 1) the temperature is maintained as sin” 6.
(Find explicitly all the coefficients, etc.)

(b) Same, except u = 0 on the outer edge.

Find the harmonic function u in the semidisk {r < 1,0 < 6 < 7} with
u vanishing on the diameter (¢ = 0, =) and

u=msinf —sin20 onr = 1.

Solve the problem uy, + u,, = 0 in D, with u = 0 on the two straight
sides, and u = h(0) on the arc, where D is the wedge of Figure 1, that
is, a sector of angle B cut out of a disk of radius a. Write the solution as
a series, but don’t attempt to sum it.

An annular plate with inner radius a and outer radius b is held at tem-
perature B at its outer boundary and satisfies the boundary condition
odu/dor = A atits inner boundary, where A and B are constants. Find the
temperature if itis at a steady state. (Hint: It satisfies the two-dimensional
Laplace equation and depends only on r.)

Solve uy, + uy, = 0in the wedge r < a,0 < 6 < B with the BCs
u=60 onr=a, u=0 onf=0, and u=p8 onf =4

(Hint: Look for a function independent of r.)

Solve uy, + uyy, = 0 in the quarter-disk (x2+y*<a’,x>0,y>0)
with the following BCs:
d
u=0 onx=0andony=0 and a—uzl onr =a.
r

Write the answer as an infinite series and write the first two nonzero
terms explicitly.

Prove the uniqueness of the Robin problem
. du
Au= f in D, 8—+au =h onbdy D,
n

where D is any domain in three dimensions and where a is a positive
constant.
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13.

14.
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(a) Prove the following still stronger form of the maximum principle,
called the Hopf form of the maximum principle. If u(x) is a non-
constant harmonic function in a connected plane domain D with
a smooth boundary that has a maximum at Xy (necessarily on the
boundary by the strong maximum principle), then du /dn > 0 at X
where n is the unit outward normal vector. (This is difficult: see
[PW] or [Ev].)

(b) Use part (a) to deduce the uniqueness of the Neumann problem in
a connected domain, up to constants.

Solve uy +u,, =0 in the region {« <6 < B,a <r < b} with the
boundary conditions # = 0 on the two sides ¢ = o and 6 = B, u = g(0)
on the arc r = a, and u = h(0) on the arc r = b.

Answer the last question in the text.
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GREEN'S IDENTITIES
AND GREEN'S
FUNCTIONS

The Green’s identities for the laplacian lead directly to the maximum principle
and to Dirichlet’s principle about minimizing the energy. The Green’s function
is a kind of universal solution for harmonic functions in a domain. All other
harmonic functions can be expressed in terms of it. Combined with the method
of reflection, the Green’s function leads in a very direct way to the solution
of boundary problems in special geometries. George Green was interested in
the new phenomena of electricity and magnetism in the early 19th century.

7.1 GREEN'’S FIRST IDENTITY
NOTATION

In this chapter the divergence theorem and vector notation will be used ex-
tensively. Recall the notation (in three dimensions)

grad f = V f = the vector (fs, fy, f2)

oF oF 0F
divF =V .F= L4 2423
ox ay 0z

where F = (F, F>, F3) is a vector field. Also,
Au=divgradu =V - Vu =uy, +uy, +u,
2 _ 2 _ 2 2 2
|Vul® = |grad u|” = u; + uy +uz.

Watch out which way you draw the triangle: in physics texts one often finds
the laplacian V - V written as V2, but we write it as A.

178
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We will write almost everything in this chapter for the three-dimensional
case. (However, using two dimensions is okay, too, even n dimensions.) Thus

we write ///...dx=///"'dxdydz

D D

if D is a three-dimensional region (a solid), and
// ...dS://...dS,
bdy D S

where S = bdy D is the bounding surface for the solid region D. Here dS
indicates the usual surface integral, as in the calculus.
Our basic tool in this chapter will be the divergence theorem:

///didex://F-ndS, )

D bdy D

where F is any vector function, D is a bounded solid region, and n is the unit
outer normal on bdy D (see Figure 1) (see Section A.3).

GREEN'’S FIRST IDENTITY
We start from the product rule
(vux)x = UxlUy + Vlyx
and the same with y and z derivatives. Summing, this leads to the identity

V.- (wVu)=Vv - -Vu+ vAu.

Figure 1
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Then we integrate and use the divergence theorem on the left side to get

//ngdS:///Vv-Vudx—i—/f/vAudx, (Gl)
D D

bdy D

where du/dn = n - Vu is the directional derivative in the outward normal
direction. This is Green’s first identity. It is valid for any solid region D and
any pair of functions u and v. For example, we could take v = 1 to get

/ 7814 ds = ///Au dx. 2)
on
D

bdy D

As an immediate application of (2), consider the Neumann problem in
any domain D. That is,

Au = f(x) inD
du 3)

— = h(x) onbdy D.
on

/fhdS:/{ £ dx. )

bdy D

By (2) we have

It follows that the data (f and &) are not arbitrary but are required to satisfy
condition (4). Otherwise, there is no solution. In that sense the Neumann
problem (3) is not completely well-posed. On the other hand, one can show
that if (4) is satisfied, then (3) does have a solution—so the situation is not
too bad.

What about uniqueness in problem (3)? Well, you could add any constant
to any solution of (3) and still get a solution. So problem (3) lacks uniqueness
as well as existence.

MEAN VALUE PROPERTY

In three dimensions the mean value property states that the average value of
any harmonic function over any sphere equals its value at the center. To prove
this statement, let D be a ball, {|x| < a}, say; that is, {x*> + y> + z* < a?}.
Then bdy D is the sphere (surface) {|x| = a}. Let Au = 0 in any region that
contains D and bdy D. For a sphere, n points directly away from the origin,
so that

ou X X y Z ou

—=n-Vu=—--Vu=—u,+~uy+ -u, = —
on r r +r)+rz or

’
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where r = (x> + y> + zz)l/ ‘= |x| is the spherical coordinate, the distance of
the point (x, y, z) from the center 0 of the sphere. Therefore, (2) becomes

ou
—dS =0. &)
ar

bdy D

Let’s write this integral in spherical coordinates, (r, 6, ¢). Explicitly, (5) takes
the form

2 pm
/ f u(a,0,¢)a’*sin0dddp =0
0 0

since r = a on bdy D. We divide this by the constant 47a® (the area of bdy
D). This result is valid for all a > 0, so that we can think of a as a variable and
call it . Then we pull 9/0r outside the integral (see Section A.3), obtaining

9 1 2
— / / u(r,0,¢)sinddod dep | = 0.
or| 4w 0 0

1 2r pm
— / u(r, 0, ¢)sin0 do d¢
4 0 0

Thus

is independent of r. This expression is precisely the average value of u on the
sphere {|x| = r}. In particular, if we let r — 0, we get

1 2n pm
— / u(0)sin6 d6 d¢p = u(0).
4 0 0

That is,

1
area of S//u a5 = u(®). (6)

N

This proves the mean value property in three dimensions.
Actually, the same idea works in n dimensions. For n = 2 recall that we
found another proof in Section 6.3 by a completely different method.

MAXIMUM PRINCIPLE

Exactly as in two dimensions in Section 6.3, we deduce from the mean value
property the maximum principle.

If D is any solid region, a nonconstant harmonic function in D cannot
take its maximum value inside D, but only on bdy D.

It can also be shown that the outward normal derivative du/dn is strictly
positive at a maximum point: du/dn > 0O there. The last assertion is called the
Hopf maximum principle. For a proof, see [PW].
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UNIQUENESS OF DIRICHLET'S PROBLEM

We gave one proof in Section 6.1 using the maximum principle. Now we
give another proof by the energy method. If we have two harmonic functions
u; and up with the same boundary data, then their difference u = u; — u,
is harmonic and has zero boundary data. We go back to (G1) and substitute
v = u. Since u is harmonic, we have Au = 0 and

/fua“ ds = ///|Vu|2dx. @)
an
D

bdy D

Since u =0onbdy D, the left side of (7) vanishes. Therefore, ﬂD |Vu|?dx = 0.

By the first vanishing theorem in Section A.1, it follows that |Vu|* = Oin D.
Now a function with vanishing gradient must be a constant (provided that D
is connected). So u(x) = C throughout D. But u vanishes somewhere (on bdy
D), so C must be 0. Thus u(x) = 0 in D. This proves the uniqueness of the
Dirichlet problem.

Uniqueness of Neumann’s problem: If Au = 0 in D and du/dn = 0 on
bdy D, then u is a constant in D (see Exercise 2).

DIRICHLET'S PRINCIPLE

This is an important mathematical theorem based on the physical idea of
energy. It states that among al// the functions w(x) in D that satisfy the Dirichlet
boundary condition

w = h(x) onbdy D, (8)

the lowest energy occurs for the harmonic function satisfying (8).
In the present context the energy is defined as

D

This is the pure potential energy, there being no kinetic energy because there
is no motion. Now it is a general principle in physics that any system prefers
to go to the state of lowest energy, called the ground state. Thus the harmonic
function is the preferred physical stationary state. Mathematically, Dirichlet’s
principle can be stated precisely as follows:

Let u(x) be the unique harmonic function in D that satisfies (8). Let w(X)
be any function in D that satisfies (8). Then

E[w] > E[ul. (10)
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To prove Dirichlet’s principle, we let v = u — w and expand the square

in the integral
E[w] = ;// IV(u — v)|> dx
D

= Elu] —/f/Vu~VvdX+E[v].
D

Next we apply Green’s first identity (G1) to the pair of functions # and v. In
(G1) two of the three terms are zero because v = 0 on bdy D and Au = 0 in
D. Therefore, the middle term in (11) is also zero. Thus

E[w] = E[u] + E[v].

(1D

Since it is obvious that E[v] > 0, we deduce that E[w] > E[u]. This means
that the energy is smallest when w = u. This proves Dirichlet’s principle.

An alternative proof goes as follows. Let u(x) be a function that satisfies
(8) and minimizes the energy (9). Let v(x) be any function that vanishes on
bdy D. Then u + ev satisfies the boundary condition (8). So if the energy is
smallest for the function u, we have

E[u]5E[u+ev]=E[u]—ef//AuvdX+62E[v] (12)
D

for any constant €. The minimum occurs for € = 0. By calculus,

///Auvdx:O. (13)

D

This is valid for practically all functions v in D. Let D’ be any strict subdomain
of D; thatis, D’ C D.Letv(x)=1forxe D’ andv(x) = 0forxe D — D'.In
(13) we choose this function v. (Because this v is not smooth, an approximation
argument is required that is omitted here.) Then (13) takes the form

///Audx:O for all D'.

D/

By the second vanishing theorem in Section A.1, it follows that Au = 0 in
D. Thus u(x) is a harmonic function. By uniqueness, it is the only function
satisfying (8) that can minimize the energy.

EXERCISES

1. Derive the three-dimensional maximum principle from the mean value
property.
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Prove the uniqueness up to constants of the Neumann problem using the
energy method.

Prove the uniqueness of the Robin problem du/dn + a(xX)u(x) = h(x)
provided that a(x) > 0 on the boundary.

Generalize the energy method to prove uniqueness for the diffusion
equation with Dirichlet boundary conditions in three dimensions.

Prove Dirichlet’s principle for the Neumann boundary condition. It as-
serts that among all real-valued functions w(x) on D the quantity

E[w] = ;//fwwﬁdx— ffhwdS
D

bdy D
is the smallest for w = u, where u is the solution of the Neumann problem

0
—Au=0 1inD, 8—u=h(x) on bdy D.
n

Itis required to assume that the average of the given function A(X) is zero
(by Exercise 6.1.11).
Notice three features of this principle:
(1) There is no constraint at all on the trial functions w(x).
(i) The function A(x) appears in the energy.
(iii)) The functional E[w] does not change if a constant is added to w(x).
(Hint: Follow the method in Section 7.1.)

Let A and B be two disjoint bounded spatial domains, and let D be their
exterior. So bdy D = bdy A U bdy B. Consider a harmonic function u(x)
in D that tends to zero at infinity, which is constant on bdy A and constant
on bdy B, and which satisfies

9 9
//udS:Q>O and /“dszo.
on on

bdy A bdy B

[Interpretation: The harmonic function u(x) is the electrostatic potential

of two conductors, A and B; Q is the charge on A, while B is uncharged.]

(a) Show that the solution is unique. (Hint: Use the Hopf maximum
principle.)

(b) Show that u > 0 in D. [Hint: If not, then u(x) has a negative mini-
mum. Use the Hopf principle again.]

(c) Show thatu > 0in D.

(Rayleigh-Ritz approximation to the harmonic function u in D withu = h

on bdy D.) Let wy, wy, ..., w, be arbitrary functions such that wy = h

on bdy D and w; = --- = w, = 0 on bdy D. The problem is to find
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constants ¢y, ..., ¢, so that
wo+ciwy + - -+ c,w, has the least possible energy.

Show that the constants must solve the linear system

n
D (Vwj, Vwider = —(Vwo, Vwy) for j=1,2,....n

8. Consider the problem u,, + uy, = 0 in the triangle {x > 0, y > 0,
3x + y < 3} with the boundary conditions

ux,00=0 u,y)=y3B3—-y) ux,3—3x)=0

Choose wyp = y(3 — 3x — y) and w; = xy(3 — 3x — y). Find the Rayleigh—
Ritz approximation wy + c;w; to u. That is, use Exercise 7 to find the
constant cy.

9. Repeat Exercise 8 with the same choice of wy and w; and with w, =
x*y(3 — 3x — y). That is, find the Rayleigh-Ritz approximation wy +
ciwi + cows to u.

10. Let u(x, y) be the harmonic function in the unit disk with the boundary
values u(x, y) = x> on {x*> + y? = 1}. Find its Rayleigh-Ritz approxi-
mation of the form x*> 4 ¢;(1 — x> — y?).

7.2 GREEN'S SECOND IDENTITY

Green’s second identity is the higher-dimensional version of the identity
(5.3.3). It leads to a basic representation formula for harmonic functions that
we require in the next section.

The middle term in (G1) does not change if u and v are switched. So if
we write (G1) for the pair u and v, and again for the pair v and u, and then
subtract, we get

f/ (u Av—vAu)dx_// (uav—v)dS (G2)
bdy D

This is Green’s second identity. Just like (G1), it is valid for any pair of
functions u and v.

It leads to the following natural definition. A boundary condition is called
symmetric for the operator A if the right side of (G2) vanishes for all pairs of
functions u, v that satisfy the boundary condition. Each of the three classical
boundary conditions (Dirichlet, Neumann, and Robin) is symmetric.
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REPRESENTATION FORMULA

This formula represents any harmonic function as an integral over the bound-
ary. It states the following: If Au =0 in D, then

BN [ —
uXp) = |:_M X)an |x — x| |X—X0|8I’l:|47T (D

bdy D

What is involved here is the same fundamental radial solution ~! that we
found in Section 6.1, but translated by the vector Xo.

Proof of (1). The representation formula (1) is the special case of (G2)
with the choice v(x) = (—47 |x — Xo|) . Clearly, the right side of (G2) agrees
with (1). Also, Au=0and Av = 0, which kills the left side of (G2). So where
does the left side of (1) come from? From the fact that the function v(x) is
infinite at the point xy. Therefore, it is forbidden to apply (G2) in the whole
domain D. So let’s take a pair of scissors and cut out a small ball around x.
Let D, be the region D with this ball (of radius € and center Xx() excised (see
Figure 1).

For simplicity let Xy be the origin. Then v(x) = —1/(4mr), where r =
2+ 2+ 2" = x. Writing down (G2) with this choice of v, we have,
since Au = 0 = Avin D,

a (1 ou 1
—f/ w-—(-) == las=o.
on\r on r
bdy D,
But bdy D, consists of two parts: the original boundary bdy D and the sphere

{r = €}. On the sphere, 0/0n = —0d/0dr. Thus the surface integral breaks into
two pieces,

e 20) - 25 oo

bdy D

Figure 1
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This identity (2) is valid for any small € > 0. Our representation formula (1)
would follow provided that we could show that the right side of (2) tended to
4mru(0) as e — 0.

Now, on the little spherical surface {r = €}, we have

o1y 11
ar\r)  r2 &

so that the right side of (2) equals

1 1 [ 0u _ ou
//udS+//dS=4nu+4ne, (3)
€? € or or

r=e r=e

where u denotes the average value of u(x) on the sphere |x| =r = €, and
ou/dr denotes the average value of du/dn on this sphere. As € — 0, the
expression (3) approaches

0
47ru(0) + 47 -0 - ai’(()) = 477u(0) )
r
because u is continuous and du/dr is bounded. Thus (2) turns into (1), and

this completes the proof.
The corresponding formula in two dimensions is

1 ad 1 Bul J
utxo) = 5= [ |0 dogix —xo) — S togix —xal | ds | 5

bdy D

whenever Au = 0 in a plane domain D and X is a point within D. The right
side is a line integral over the boundary curve with respect to arc length. Log
denotes the natural logarithm and ds the arc length on the bounding curve.

EXERCISES
1. Derive the representation formula for harmonic functions (7.2.5) in two
dimensions.

2. Let ¢(x) be any C? function defined on all of three-dimensional space that
vanishes outside some sphere. Show that

1 dx
#(0) = —/// —Ap(xX)—.
|X]| 4

The integration is taken over the region where ¢(x) is not zero.

3. Give yet another derivation of the mean value property in three dimen-
sions by choosing D to be a ball and x its center in the representation
formula (1).
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7.3 GREEN'’'S FUNCTIONS

We now use Green’s identities to study the Dirichlet problem. The repre-
sentation formula (7.2.1) used exactly two properties of the function v(x) =
(—4m|x — xol)_lz that it is harmonic except at Xy and that it has a certain
singularity there. Our goal is to modify this function so that one of the terms
in (7.2.1) disappears. The modified function is called the Green’s function
for D.

Definition. The Green’s function G(x) for the operator —A and the do-
main D at the point X € D is a function defined for x € D such that:

(1) G(x) possesses continuous second derivatives and AG = 0 in D,
except at the point X = X.

(i) G(x) =0forx ebdy D
(iii)) The function G(x) + 1/(4m|x — Xg|) is finite at Xy and has contin-
uous second derivatives everywhere and is harmonic at x.

It can be shown that a Green’s function exists. Also, it is unique by Exer-
cise 1. The usual notation for the Green’s function is G(X, Xg).

Theorem 1. If G(x, xq) is the Green’s function, then the solution of the
Dirichlet problem is given by the formula

G (x, Xo)
utxo) = [[ oo™ 0
bdy D
Proof. Let us go back to the representation formula (7.2.1):

_ v Ju Js )
u(xo) = // (Man_anv) , ()

where v(x) = —(47|x — Xo|) !, as before. Now let’s write G(X, Xo) = v(X) +
H(x). [This is the definition of H(x).] Then H(x) is a harmonic function
throughout the domain D [by (iii) and (i)]. We apply Green’s second identity
(G2) to the pair of harmonic functions u(x) and H(x):

oH
0= u— — —H das. 3)
on on
bdy D
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Adding (2) and (3), we get

u(xo) = // ( W27 G> ds.
bdy D

But by (ii), G vanishes on bdy D, so the last term vanishes and we end up with
formula (1). O

The only thing wrong with this beautiful formula is that it is not usually
easy to find G explicitly. Nevertheless, in the next section we’ll see how to
use the reflection method to find G in some situations and thereby solve the
Dirichlet problem for some special geometries.

SYMMETRY OF THE GREEN'S FUNCTION

For any region D we have a Green’s function G(X, X). It is always symmetric:
G(x,x9) = G(xp, X) for X # X. 4)

In order to prove (4), we apply Green’s second identity (G2) to the pair
of functions u(x) = G(x, a) and v(x) = G(x, b) and to the domain D.. By D,
we denote the domain D with two little spheres of radii € cut out around the
points a and b (see Figure 1). So the boundary of D, consists of three parts:
the original boundary bdy D and the two spheres |[x — a| = e and |[x — b| = €.

Thus
v
f//(uAv—vAu)dx_/f (u—v)dS—i—A + Be, 5)
bdy D
where
ov ou
A, = // u— —v— |dS
on on
|x—al=€

and B, is given by the same formula at b. Because both u and v are harmonic
in D, the left side of (5) vanishes. Since both u and v vanish on bdy D, the
integral over bdy D also vanishes. Therefore,

Ac+ B =0 foreach e

Figure 1
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Let’s calculate the limits as € — 0. We shall then have lim A, +
lim B, = 0. For A, denote r = |x — a|. Then

av 0 1 5 .
hmAE_hm — —v— |——— 4+ H | r sinfdbdo
471r on on dmr

where 6 and ¢ are the spherical angles for x — a, and H is a continuous
function. Now d/dn = —d/dr for the sphere. Among the four terms in the last
integrand, only the third one contributes a nonzero expression to the limit [for
the same reason as in the derivation of (7.2.1)]. Thus

2m pw
limA, = lim / v
0

e—0 e—>0Jg

€2sin 6 db d¢ = v(a)

e

by cancellation of the €2 A quite similar calculation shows that lim B, =
—u(b). Therefore,

0 =lim(A¢ + B.) = v(a) — u(b) = G(a, b) — G(b, a).
This proves the symmetry (4). O

In electrostatics, G(x, X¢) is interpreted as the electric potential inside
a conducting surface § = bdy D due to a charge at a single point xy. The
symmetry (4) is known as the principle of reciprocity. It asserts that a source
located at the point a produces at the point b the same effect as a source at b
would produce at a.

The Green’s function also allows us to solve Poisson’s equation.

Theorem 2. The solution of the problem

Au=f inD u=h onbdy D (6)
is given by
U(xp) = // h(x )8G(X %o) dS+// FX)G(x, Xo) dx. %
bdy D

The proof is left as an exercise.

EXERCISES
1. Show that the Green’s function is unique. (Hint: Take the difference of
two of them.)

2. Prove Theorem 2, which gives the solution of Poisson’s equation in terms
of the Green’s function.

3. Verify the limit of A, as claimed in the proof of the symmetry of the
Green’s function.
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7.4 HALF-SPACE AND SPHERE

We solve for the harmonic functions in a half-space and a sphere by combining
the Green’s function with the method of reflection.

THE HALF-SPACE

We first determine the Green’s function for a half-space. A half-space is the
region lying on one side of a plane. Although it is an infinite domain, all the
ideas involving Green’s functions are still valid if we impose the ’boundary
condition at infinity” that the functions and their derivatives tend to 0 as
|x| = o0.

We write the coordinates as X = (x, y, z). Say that the half-space is
D = {z > 0}, the domain that lies above the xy plane (see Figure 1). Each
point X = (x, y, z) in D has a reflected point x* = (x, y, —z) that is not in D.

Now we already know that the function 1/(4r|x — X¢|) satisfies two of
the three conditions—(i) and (iii)—required of the Green’s function: We want
to modify it to get (ii) as well.

We assert that the Green’s function for D is

1 1
4 |x — Xo| + dr|x — xj|

G(x,x9) = — (1)

In coordinates,
1
Gx, %0) = = —[(x = x0)* + (v — o)’ + (z — 20172

1
+ —[(x —x0)* + (v — yo)* + (z + 20)’1 "/~
47

Notice that the two terms differ only in the (z £ z¢) factors. Let’s verify the
assertion (1) by checking each of the three properties of G.

(1) Clearly, G is finite and differentiable except at xg. Also, AG = 0.

z

xy plane
X*

Figure 1
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Az
X
\
\1""(3 |
} xy plane
1
T |
X<
x5
x3
Figure 2

(i) This is the main property to check. Let x € bdy D, so that z = 0.
From Figure 2 we see that [x — Xo| = |[x — x|. Thus G(x, x9) =0
(iii) Because x; is outside our domain D, the function —1/(4m [x — Xj|)

has no singularity inside the domain, so that G has the proper sin-
gularity at xg.

These three properties prove that G(X, Xo) is the Green’s function for this
domain. Let’s now use it to solve the Dirichlet problem

Au=0 forz >0, u(x,y,0) = h(x, y). (2)

We use formula (7.3.1). Notice that G /dn = —9G/dz|,_, because n points
downward (outward from the domain). Furthermore,

G 1(z—|—zo z—zo)

9z 4r \|x—x3*  |x—xo/°
_ 1 20
27 |x — Xo|?

on z = 0. Therefore, the solution of (2) is

o, 30, 20) = 22 / / [Gr = %02 + (3 — y0)? + (2021 2hx, y) dx d,
3)

where both integrals run over (—oo, 00), noting that z = 0 in the integrand.
In vector notation, (3) takes the form

) = 2 // h(x)
v x—xop “)
bdy D

This is the complete formula that solves the Dirichlet problem for the half-
space.
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Figure 3

THE SPHERE

The Green’s function for the ball D = {|x| < a} of radius a can also be found
by the reflection method. In this case, however, the reflection is across the
sphere {|x| = a}, which is the boundary of D (see Figure 3).

Fix any nonzero point X, in the ball (that is, 0 < |xo| < @). The reflected
point x;; is defined by two properties. It is collinear with the origin 0 and the
point Xg. Its distance from the origin is determined by the formula |xo| [x5| =
a’. Thus

2
X; = a—xo. 5
* T Ixol? )

If x is any point at all, let’s denote |x — Xo| = p and |x — x| = p*. Then

the Green’s function of the ball is

1 a 1

Gx,x9)=—— + —
%) = = s T ol 4

(6)

if xg # 0. To verify this formula, we need only check the three conditions (i),
(ii), and (iii). We’ll consider the case xo = 0 separately.

First of all, G has no singularity except at X = X, because xj lies outside
the ball. The functions 1/p and 1/p* are harmonic in D except at Xy because
they are just translates of 1/r. Therefore, (i) and (iii) are true.

To prove (ii), we show that p* is proportional to p for all points x on the
spherical surface |x| = a. To do this, we notice from the congruent triangles
in Figure 4 that
ro a
—X — —X)
a ro

= Ix— xol, @)

where ry = |Xg|. The left side of (7) equals

a2
2
o

ro

a

ro %
X— 55X =—p
a
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Figure 4
Thus
or—p  forallx| = a. (8)
a
Therefore, the function
1 a 1

. , 9
dmp * Xo| 477 p* ©)

defined above, is zero on the sphere |x| = a. This is condition (ii). This proves
formula (6).
We can also write (6) in the form

1 1
G(x, = — . 10
(x, Xo) 4 |x — X + 4w |roX/a — axy/rol (10)
In case xg = 0, the formula for the Green’s function is
Gox 0= —— 4! an
x,0)=— —
4r|x| 4ma

(see Exercise 10).
Let’s now use (6) to write the formula for the solution of the Dirichlet
problem in a ball:

Au=0 1nlx| < a, u=~h onl|xl=a. (12)

We already know from Chapter 6 that «(0) is the average of 4(x) on the sphere,
so let’s consider xy # 0. To apply (7.3.1), we need to calculate 0G/dn on
|x| = a. (Let’s not forget that X is considered to be fixed, and the derivatives
are with respect to x.)
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We note that p? = |x — X¢|2. Differentiating, we have 2pV p = 2(x — Xo).
SoVp = (x —X¢)/p and V(p*) = (x — X))/ p*. Hence differentiating (6), we
have
X—X) aXxX-—X;

3

VG =
47 p°

(13)

ro 4mp*3

Remember that x; = (a/ro)*xo. If |X| = a, we showed above that p* = (a/r¢)p.
Substituting these expressions into the last term of VG, we get

VG = (r0>2 n (14)
= X—Xo— (—) x+x
47 p3 0 a 0

on the surface, so that

G X a’> —r?
2 _2.vG = 0 15
on a dmap? (15
Thus (7.3.1) takes the form
a? — |Xo|2 h(x)
u(xXp) = |x—x0|3 (16)
[x|=a

This is the solution to (12). It is the three-dimensional version of the Poisson
formula. In more classical notation, it would be written in the usual spherical
coordinates as

ala*=r2) (7™ h(@, ¢) .
u(ro, 6o, ¢o) = (4n 0)// " ¢ 37800 do dg,
0

rg —2argcosy)

a7

where 1 denotes the angle between x, and x.
In almost the same way, we can use the method of reflection in two
dimensions to recover the Poisson formula for

2

Uyy + Uy, =0 inx2+y2<a, 2

u=h onx>+y*=d>

Beginning with the function (1/27) log r, we find (see Exercise 11) that

1 1
G(x,Xg) = —10g,0 — 2—10g( 0 *) (18)

and hence that
— |xo|? h(x)

5 ds,
2ra [X|=a X — Xo

u(xp) =
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which is exactly the same as the Poisson formula (6.3.14), which we found
earlier in a completely different way!

EXERCISES

1. Find the one-dimensional Green’s function for the interval (0, [). The
three properties defining it can be restated as follows.
(1) It solves G"(x) = 0 for x # xo (“harmonic”).
i) GO)=G6G(1)=0
(iii)) G(x) is continuous at xy and G(x) + %lx — Xo| is harmonic at x.
2. Verify directly from (3) or (4) that the solution of the half-space problem
satisfies the condition at infinity:

u(x) — 0 as |x| — oo.

Assume that i(x, y) is a continuous function that vanishes outside some
circle.

3. Show directly from (3) that the boundary condition is satisfied:
u(xo, Yo, 20) — h(xo, yo) as zo — 0 Assume h(x, y) is contlnuous and
bounded. [Hint: Change Varlables s =[(x —x0)> + (v — v0)*1] /Z0 and
use the fact that fo sG>+ 1) Pds = 1.]

4. Verity directly from (3) that the solution has derivatives of all orders
in {z > 0}. Assume that h(x, y) is a continuous function that vanishes
outside some circle. (Hint: See Section A.3 for differentiation under an
integral sign.)

5. Notice that the function xy is harmonic in the half-plane {y > 0} and
vanishes on the boundary line {y = 0}. The function 0 has the same
properties. Does this mean that the solution is not unique? Explain.

6. (a) Find the Green’s function for the half-plane {(x, y): y > 0}.
(b) Useitto solve the Dirichlet problem in the half-plane with boundary
values h(x).
(c) Calculate the solution with u(x, 0) = 1.

7. (@) Hfu(x,y)= f(x/y)isaharmonic function, solve the ODE satisfied

by f.

(b) Show that du/dr = 0, where r = \/x2 + y? as usual.

(c) Suppose that v(x, y)is any functionin {y > 0} such that dv/dr = 0.
Show that v(x, y) is a function of the quotient x/y.

(d) Find the boundary values lim,_,o u(x, y) = h(x).

(e) Show that your answer to parts (c) and (d) agrees with the general
formula from Exercise 6.

8. (a) Use Exercise 7 to find the harmonic function in the half-plane
{y > 0} with the boundary data h(x)=1forx >0, h(x) =0
forx < 0.
(b) Do the same as part (a) for the boundary data 4(x) = 1 for x > a,
h(x) = 0 for x < a. (Hint: Translate the preceding answer.)
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(c) Use part (b) to solve the same problem with the boundary data A(x),
where A(x) is any step function. That is,

h(x)=c¢; fora;_y <x <a; forl <j<n,

where —00 =ap < a; < --- < a,—| < a, = oo and the ¢; are con-
stants.
Find the Green’s function for the tilted half-space {(x,y,z):
ax + by + cz > 0}. (Hint: Either do it from scratch by reflecting across
the tilted plane, or change variables in the double integral (3) using a
linear transformation.)
Verify the formula (11) for G(x, 0), the Green’s function with its second
argument at the center of the sphere.
(a) Verify that (18) is the Green’s function for the disk.
(b) Use it to recover the Poisson formula.
Find the potential of the electrostatic field due to a point charge located
outside a grounded sphere. (Hint: This is just the Green’s function for
the exterior of the sphere. Find it by the method of reflection.)
Find the Green’s function for the half-ball D = {x> 4+ y? + 7% < a?,
z > 0}. (Hint: The easiest method is to use the solution for the whole
ball and reflect it across the plane.)

Do the same for the eighth of a ball

D={x>+ Y+ z22<da®*> x>0, y>0, z>0}.

(a) Show that if v(x, y) is harmonic, so is u(x, y) = v(x> — y2, 2xy).

(b) Show that the transformation (x, y) — (x> — y?, 2xy) maps the
first quadrant onto the half-plane {y > 0}. (Hint: Use either polar
coordinates or complex variables.)

Use Exercises 15 and 7 to find the harmonic function u(x, y) in the first
quadrant that has the boundary values u(x, 0) = A, u(0, y) = B, where A
and B are constants. (Hint: u(x, 0) = v(x?, 0), etc.)

(a) Find the Green’s function for the quadrant
Q0 ={(x,y):x>0,y>0}

(Hint: Either use the method of reflection or reduce to the half-plane
problem by the transformation in Exercise 15.)
(b) Use your answer in part (a) to solve the Dirichlet problem

Uy +1yy, =0in Q, u(0,y) = g(y)fory >0,
u(x,0) = h(x) for x > 0.

(a) Find the Green’s function for the octant O = {(x, v, z):
x>0,y>0, z>0}. (Hint: Use the method of reflection.)
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(b) Use your answer in part (a) to solve the Dirichlet problem

Upy +Uyy +u;; =0 in0O
u0,y,z2) =0,u(x,0,z2) =0, u(x,y,0)=h(x,y)
forx >0,y >0,z>0.

Consider the four-dimensional laplacian Au = u,, + uyy + Uz + Uy,
Show that its fundamental solution is »~2, where r> = x> 4+ y> + z> +

w2.

Use Exercise 19 to find the Green’s function for the half-hyperspace
{(x, y, 2z, w)rw >0}
The Neumann function N(x, y) for a domain D is defined exactly like
the Green’s function in Section 7.3 except that (ii) is replaced by the
Neumann boundary condition

oN
(i)* — =c¢ forx € bdy D.

on
for a suitable constant c.
(a) Show that ¢ = 1/A, where A is the area of bdy D. (c = 0if A = o0)
(b) State and prove the analog of Theorem 7.3.1, expressing the solution

of the Neumann problem in terms of the Neumann function.

Solve the Neumann problem in the half-plane: Au = 0in {y > 0},
du/dy = h(x) on {y = 0} with u(x, y) bounded at infinity. (Hint: Con-
sider the problem satisfied by v = du/dy.)

Solve the Neumann problem in the quarter-plane {x > 0, y > 0}.
Solve the Neumann problem in the half-space {z > 0}.

Let the nonconstant function u(x) satisfy the inequality Au > 0 in a
domain D in three dimensions. Prove that it cannot assume its maximum
inside D. This is the maximum principle for subharmonic functions.
(Hint: Let f = Au, and let & denote u restricted to the boundary bdy D.
Let B C D be any ball and let x be its center. Use (11) and (16) together
with (7.3.7) in the ball B. Show that u(xy) is at most the average of 4 on
bdy B. Continue the proof as in Section 6.3.)
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COMPUTATION OF
SOLUTIONS

We have found formulas for many solutions to PDEs, but other problems
encountered in practice are not as simple and cannot be solved by formula.
Even when there is a formula, it might be so complicated that we would
prefer to visualize a typical solution by looking at its graph. The opportunity
presented in this chapter is to reduce the process of solving a PDE with its
auxiliary conditions to a finite number of arithmetical calculations that can be
carried out by computer. All the problems we have studied can be so reduced.
However, there are dangers in doing so. If the method is not carefully chosen,
the numerically computed solution may not be anywhere close to the true
solution. The other danger is that the computation (for a difficult problem)
could easily take so long that it would take more computer time than is practical
to carry out (years, millenia, ... ). The purpose of this chapter is to illustrate
the most important techniques of computation using quite simple equations
as examples.

8.1 OPPORTUNITIES AND DANGERS

The best known method, finite differences, consists of replacing each deriva-
tive by a difference quotient. Consider, for instance, a function u(x) of one
variable. Choose a mesh size Ax. Let’s approximate the value u(jAx) for
x = jAx by a number u; indexed by an integer j:

uj ~ u(jAx).

ou
Then the three standard approximations for the first derivative 8—( JAXx) are:
X

199
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The backward difference: 4 i )
X
The forward difference: MJHAJ 2)
X
The centered difference: % 3)
X

Each of them is a correct approximation because of the Taylor expansion:
u(x + Ax) = u(x) + u'(x)Ax + 1u"(x)(Ax)* + Lu” (x)(Ax)’ + O(Ax)*.
[It is valid if u(x) is a C* function.] Replacing Ax by —Ax, we get
u(x — Ax) = u(x) — u'(x)Ax + 1u"(x)(Ax)* — Lu"(x)(Ax) + O(Ax)".
From these two expansions we deduce that

u(x) —u(x — Ax)

u'(x) = Ar + O(Ax)
_ u(x + Ax) — u(x) + 0(AY)
Ax
_ u(x + Ax) —u(x — Ax) ’
= Ax + O(Ax)~.

We have written O (Ax) to mean any expression that is bounded by a constant

times Ax, and so on. Replacing x by j Ax, we see that (1) and (2) are correct

approximations to the order O(Ax) and (3) is correct to the order O(Ax)>.
For the second derivative, the simplest approximation is the

2 .
centered second difference: u”(jAx) ~ il (Auj);_ “i-l
X

)

This is justified by the same two Taylor expansions given above which, when
added, give

u(x + Ax) —2u(x) + u(x — Ax)

wi) = (Ax)

+ O(Ax)>.

That is, (4) is valid with an error of O(Ax)>.
For functions of two variables u(x, t), we choose a mesh size for both
variables. We write

u(jAx,n At) ~ u’]’




8.1 OPPORTUNITIES AND DANGERS 201

where the n is a superscript, not a power. Then we can approximate, for
instance,

G ar man~ (5)
E— x . n ~ 7’

or At

the forward difference for du/d¢. Similarly, the forward difference for du/ox

18

du ui g —ul

—(jAx, n Ar) ~ L L, 6

o (J ) Ax (6)
and we can write similar expressions for the differences (1)—(4) in either the
t or x variables. i

Two kinds of errors can be introduced in a computation using such ap-
proximations. Truncation error refers to the error introduced in the solutions
by the approximations themselves, that is, the O(Ax) terms. Although the
error in the equation may be O(Ax), the error in the solutions (the truncation
error) may or may not be small. This error is a complicated combination of
many small errors. We want the truncation error to tend to zero as the mesh
size tends to zero. Thinking of Ax as a very small number, it is clear that
O(Ax)? is a much smaller error than O(Ax). The errors written in (1)—(4)
are, strictly speaking, called local truncation errors. They occur in the approx-
imation of the individual terms in a differential equation. Global truncation
error is the error introduced in the actual solutions of the equation by the
cumulative effects of the local truncation errors. The passage from local to
global errors is usually too complicated to follow in any detail.

Roundofferror occurs in areal computation because only a certain number
of digits, typically 8 or 16, are retained by the computer at each step of the
computation. For instance, if all numbers are rounded to eight digits, the
dropping of the ninth digit could introduce big cumulative errors in a large
computation. We have to prevent these little errors from accumulating.

Example 1.
Let’s solve the very simple problem
Uy = Uyxx, u(x, 0) = ¢(-x)

using finite differences. We use a forward difference for u#, and a centered
difference for u,,. Then the difference equation is

n+1 n n n n
A L s ke )
At (Ax)?

u

It has a local truncation error of O(Ar) (from the left side) and O(Ax)?
(from the right side).
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| Y

Figure 1

Suppose that we choose a very small value for Ax and choose At =
(Ax)?. Then (7) simplifies to
Wit = -y (8)
Let’s take ¢(x) to be the very simple step function (see Figure 1), which
is to be approximated by the values ¢;:

00001 O0O0O0TO0UPO0 — X.

A sample calculation with these simple initial data can be done by
hand by simply “marching in time.” That is, ¢(x) provides u(}, then the

“scheme” (8) gives u!, then (8) gives u?, and so on. We can summarize

(8) schematically usirjlg the diagram ’

%k
o+1 eoe—1 eo+1
(called a template), which means that in order to get u;f“ you just add or
subtract its three lower neighbors as indicated. Thus simple arithmetic
gives us the result shown in Figure 2. (Verify it!) The values of u’; are
written in the (j, n) location. This is supposed to be an approximate
solution.

The result is horrendous! It is nowhere near the true solution of
the PDE. We know that by the maximum principle, the true solution
of the diffusion equation will always be between zero and one, but the
difference equation has given us an “approximation” with the value 19
and growing! m

In the next section we analyze what went wrong.

n=4 1 —4 10 =16 19 —16 10 —4 1
n=3 0 1 -3 6 —7 6 —3 10
n=2 o 0 T =2 3 =2 1 00
n=1 0 0 o0 1 =1 1 0 00O
n=0 o 0 O 0 1 0O 0 00 —x

Figure 2
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EXERCISES

1. The Taylor expansion written in Section 8.1 is valid if u is a C* function.
If u(x) is merely a C3 function, the best we can say is that the Taylor
expansion is valid only with a o(Ax)? error. [This notation means that the
error is (Ax)® times a factor that tends to zero as Ax — 0.] If merely a
C? function, it is only valid with a o(Ax)? error, and so on.

(a) Ifu(x)is merely a C? function, what is the error in the first derivative
due to its approximation by the centered difference?
(b) What if u(x) is merely a C? function?
2. (a) If u(x) is merely a C* function, what is the error in the second
derivative due to its approximation by a centered second difference?
(b) What if u(x) is merely a C? function?

3. Suppose that we wish to approximate the first derivative u’(x) of a very
smooth function with an error of only O(Ax)*. Which difference approx-
imation could we use?

8.2 APPROXIMATIONS OF DIFFUSIONS

We take up our discussion of the diffusion equation u, = u,, again. There
is nothing obviously wrong with the scheme we used, as each derivative is
appropriately approximated with a small local truncation error. Somehow the
little errors have accumulated! What turns out to be wrong, but this is not
obvious at this point, is the choice of the mesh Af relative to the mesh Ax.
Let’s make no assumption now about these meshes; in fact, let

At
As before, we can solve the scheme (8.1.7) for u;f“:
W = sy ) + (=25 2)

The scheme is said to be explicit because the values at the (n + 1)st time step
are given explicitly in terms of the values at the earlier times.

Example 1.
To be specific, let’s consider the standard problem:
Uy = Uy forO<x <mt>0
u=20 atx =0, 7

w0 —pw—|* O3
r—x in(%, 7).
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Au
[
l =X
0 /2 n o
Figure 1
Its exact solution from Section 5.1 is
> 2
u(x.t) =Y bsinkxe™", (3)
k=1

where by = 4(—1)*+D/2 /mk? for odd k, and b, = 0 for even k. It looks
like Figure 1 for some ¢t > 0 (t = 372/80).

We approximate this problem by the scheme (2) for j =0, 1,...,
J —landn =0,1,2,...together with the discrete boundary and initial
conditions

up=uy =0 and  u)=¢(jAx).

ForJ =20, Ax = /20, and s = 15—1, the result of the calculation (from

page 6 of [RM]) is shown in Figure 2 (exactly on target!). However, if
we repeat the calculation for J = 20, Ax = /20, and s = g, the result

is as shown in Figure 3 (wild oscillations as in Section 8.1!). Thus the
5
9

3

n is stable, whereas s =

choice s = is clearly unstable. i

3 X X X e
x/xf ~X

X,

N

-

&

Y=

Figure 2
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Y=

|

1

|

|
i
+
|
|
{
X

Figure 3

STABILITY CRITERION

The primary distinction between these two calculations turns out to be whether

s is bigger or smaller than % We might have gotten a suspicion of this from

the scheme (2) itself, because when s < %, the coefficients in (2) are positive.
But to actually demonstrate that this is the stability condition, we separate the

variables in the difference equation. Thus we look for solutions of equation
(2) of the form

i = X;T,. “4)
Thus
T X+ X
"T“ SR PO e B (5)

J
Both sides of (4) must be a constant & independent of j and n. Therefore,

T, =§"Ty (6)

and

(Kir 4 X

X, +1—2s=&. (7)

To solve the spatial equation (7), we argue that it is a discrete version of a

second-order ODE which has sine and cosine solutions. Therefore, we guess
solutions of (7) of the form

Xj = Acosj0 + Bsinjo
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for some 6, where A and B are arbitrary. The boundary condition Xy = 0 at
J = 0 implies that A = 0. So we can freely set B = 1. Then X ; = sin 6.

Furthermore, the boundary condition X; =0 at j = J implies that
sin JO = 0. Thus J6 = km for some integer k. But the discretization into
J equal intervals of length Ax means that / = 7/Ax. Therefore, 6 = k Ax
and

X; = sin(jkAx). 3)

Now (7) takes the form
sin((j + 1)kAx) + sin((j — 1)kAx) T
s
sin(jkAx)

—2s =&

or

£ =¢&(k)=1—2s[1 — cos(kAx)]. ©)

According to (6), the growth in time t = n At at the wave number k is
governed by the powers &(k)". So

unless |E(k)| < 1 for all k, the scheme is unstable

and could not possibly approximate the true (exact) solution. (Recall that the
true solution tends to zero as t — 00.) Now we analyze (9) to determine
whether |£(k)| < 1 or not. Since the factor 1 — cos(kAx) ranges between 0
and 2, we have 1 —4s < &(k) < 1. So stability requires that 1 — 4s > —1,
which means that

At
(Ax)?

=5 <

(10)

| —

Thus (10) is the condition required for stability.

This condition explains the instability that we observed in Section 8.1. It
means that in practice the time steps must be taken quite short. For instance, if
Ax = 0.01, an apparently reasonable choice, then At can be at most 0.00005.
Then solving up to time ¢ = 1 would require 20,000 time steps!

The analysis above shows that it is precisely the wave number k for which
&(k) = —1, which is the most dangerous for stability. That critical situation
happens when cos(kAx) = —1, that is, when k = 7r/Ax. In practice, this is a
fairly high wave number.

By the way, the complete solution of the difference scheme (2), together
with the discrete boundary conditions, is the “Fourier series”

W)=Y bsin(jkAx) [E(K)]". (11)

k=—00
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Let’s see how it could be that this “discrete” series converges to the “true”
series (3). In fact, the Taylor series of (9) is

E(k) =1 —2sk*>(Ax)* /21 + -+ ~ 1 —k*At

if kAx is small. Taking the nth power and letting jAx = x and nAr = ¢, we
have

E()" = (1 — K2An)™ ~ ok

in the limit as At — 0, using the well-known limit for the exponential. So
the series (11) looks like it tends to the series (3), as it should. Of course, this
could not possibly be a proof of convergence (since we know it does not even
converge at all if s > %). An actual proof for s < %, which we omit, would
require a careful analysis of the approximations.

The example discussed above indicates that the general procedure to de-
termine stability in a diffusion or wave problem is to separate the variables in
the difference equation. For the time factor we obtain a simple equation like
(6) which has an amplification factor & (k). In the analysis above we used the
stability condition |&(k)| < 1. More precisely, it can be shown that the correct
condition necessary for stability is

|E(k)] <14+ O(Ar)  forall k (12)

and for small Ar. (We omit the proof.) This is the von Neumann stability
condition [RM]. The extra term in (12) is irrelevant for the example above
but important for problems where the exact solution may grow in time (as in
Exercise 11).

In practice we could go more quickly from (7) to (9) simply by assuming
that

X

= (eikAx)j (13)

is an exponential. (This is the procedure to be followed in doing the exercises.)
Plugging (13) into (7), we immediately have

£ =1— 25+ s(e* 4 7Yy,
Thus we again recover equation (9) for the amplification factor &.

NEUMANN BOUNDARY CONDITIONS

Suppose that the interval is 0 < x <[ and the boundary conditions are

u(0,8) =gty and  u.(, 1) = h).
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Although the simplest approximations would be

u —ul u — uni

1 0 _ gn and J J—1

Ax Ax

they would introduce local truncation errors of order O(Ax), bigger than the

O(Ax)? errors in the equation. To introduce O(Ax)? errors only, we prefer
to use centered differences for the derivatives on the boundary.

To accomplish this, we introduce “ghost points” «” ; and u'; | in addition

=h",

to ug, ..., u’;. The discrete boundary conditions then are
un _ un Z/tl’l _ un
| —1 — gn and J+1 J—1 — ]’ln. (14)
2 Ax 2 Ax
At the nth time step, we can calculate ug, ..., u’; using the scheme for the

PDE, and then calculate the values at the ghost points using (14).

CRANK-NICOLSON SCHEME

We could try to avoid the restrictive stability condition (10) by using another
scheme. There is a class of schemes that is stable no matter what the value of
s. In fact, let’s denote the centered second difference by

— Zu? + u;’._l
(Ax)?

Pick a number 0 between 0 and 1. Consider the scheme

n
Wity

= (azu)’}.

I/t'H_l —u"

T = (1= )W) + 0w (15)

We'll call it the 6 scheme. If & = 0, it reduces to the previous scheme. If
6 > 0, the scheme is implicit, since u" ! appears on both sides of the equation.
Therefore, (15) means that we solve a set (n = 1) of algebraic linear equations
to get u}, another set (n = 2) to get u?, and so on.

Let us analyze the stability of this scheme by plugging in a separated
solution

'y = (") E )"
as before. Then
—2(1 — 0)s(1 — cos kAx)
1 +20s(1 —coskAx)

where s = At/ (Ax)? (see Exercise 9).
Again we look for the stability condition: |§(k)| < 1 for all k. It is always
true that £(k) < 1, but the condition £(k) > —1 requires that

s(1 —26)(1 —coskAx) < 1.

1
§(k) =




8.2 APPROXIMATIONS OF DIFFUSIONS 209

(Why?) If 1 — 20 < 0, it is always true! This means that

if % < @ < 1, there is no restriction on the size of s (16)

for stability to hold. Such a scheme is called unconditionally stable.
The special case 6 = % is called the Crank—Nicolson scheme. It has the
template

1 s 1 s
— [} >k o —
21+ 2145
1 s 1—s 1 s
— [} [} o —
21+s 1+s 2145

On the other hand, in case 0 < %, a necessary condition for stability is

s < (2 —460)7". Thus (15) is expected to be a stable scheme if

At 1
—s =5 < .
(Ax)? 2 —46

amn

EXERCISES

1. (a) Solve the problem u, = u,, in the interval [0, 4] with u = 0 at both

ends and u(x, 0) = x(4 — x), using the forward difference scheme

with Ax =1 and Ar = 0.25. Calculate four time steps (upto = 1).

(b) Do the same with Ax = 0.50 and At = 0.0625 = 1—16. Calculate
four time steps (up to ¢t = 0.25).

(¢) Compare your answers with each other. How close are they at x =

2.0,t=0.25?
2. Dothe same with Ax = 1 and Ar = 1. Calculate by hand or by computer
uptotr=717.

3. Solve u, = u,, in the interval [0, 5] with #(0, t) = 0 and u(5, t) = 1 for
t >0, and with u(x,0) =0for0 < x < 5.
(a) Compute u(3, 3) using the mesh sizes Ax = 1 and Ar = 0.5.
(b) Write the exact solution as an infinite series. Calculate u(3, 3) to
three decimal places exactly. Compare with your answer in (a).

4. Solve by hand the problem u, = u,, in the interval [0, 1] with u, =0
at both ends. Use the forward scheme (2) for the PDE, and the scheme
(14) for the boundary conditions. Assume Ax = %, At = W%o’ and start
with the initialdata:0 0 64 0 0O 0. Compute for four time steps.

5. Using the forward scheme (2), solve u; = u,, in [0, 5] with the mixed
boundary conditions u#(0, t) = 0 and u, (5, t) = 0 for t > 0, and the ini-
tial condition u(x, 0) =25 — x> for0 < x < 5. Use Ax = | and At =
%. Compute u(3, 3) approximately.
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6.
7.

10.

11.

12.

13.

14.
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Do the same with the conditions u,(0, 1) = u(5, t) = 0 and u(x, 0) = x.
Show that the local truncation error in the Crank-Nicolson scheme is
O((Ax)* + (At)Y).

(a) Write down the Crank—Nicolson scheme (6 = %) for u, = uy,.

(b) Consider the solution in the interval 0 < x < 1 with u = 0 at both
ends. Assume u(x, 0) = ¢(x) and ¢p(1 — x) = ¢(x). Show, using
uniqueness, that the exact solution must be even around the midpoint
x = 1. [Thatis, u(x,1) = u(l — x,1).]

(c) Let Ax = At = ;. Let the initial databe 0 0 0 1 0 0 0.
Compute the solution by the Crank—Nicolson scheme for one time
step (t = é). (Hint: Use part (b) to halve the computation.)

For the 6 scheme (15) for the diffusion equation, provide the details of
the derivation of the stability conditions (16) and (17).

For the diffusion equation u#, = u,,, use centered differences for both u,
and u,,.

(a) Write down the scheme. Is it explicit or implicit?

(b) Show that it is unstable, no matter what Ax and Ar are.

Consider the equation u;, = au,, + bu, where a and b are constants and
a > 0. Use forward differences for u,, use centered differences for u,,
and use bu]' for the last term.

(a) Write the scheme. Let s = At/ (Ax)?.

(b) Find the condition on s for numerical stability. (Hint: check condi-
tion (12).)

(a) Solve by hand the nonlinear PDE u, = u,, + (u)3 for all x usi 3g
the standard forward difference scheme with («)® treated as (u”)
Uses_z At =1, andmltlaldatau =1 for]_Oandu _0
for j # 0. Solve for “0

(b) Compare your answer to the same problem without the nonlinear
term.

(c) Exactly solve the ODE dv/dt = (v)? with the condition v(0) = 1.
Use it to explain why u(3) is so large in part (a).

(d) Repeat part (a) with the same initial data but for the PDE u, =
Uer — (). Compare with the answer in part (a) and explain.

Consider the following scheme for the diffusion equation:

n+1 n—1 n n n+1 n—1
e R T e e ek |

2A (Ax)?

It uses a centered difference for u; and a modified form of the centered
difference for u,,.

(a) Solve it for u? in terms of s and the previous time steps.

(b) Show that it is stable for all s.

(a) Formulate an explicit scheme for u; = uy, + uyy.

+1
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(b) What is the stability condition for your scheme in terms of s; =
At/(Ax)* and s, = Atr/(Ay)*?

15. Formulate the Crank-Nicolson scheme for u;, = u,, + u,,.

8.3 APPROXIMATIONS OF WAVES

In this section we continue our discussion of finite difference approximations
for some very simple PDEs. Although the PDEs are simple, the methods we
develop can be used for more difficult, even nonlinear, equations. For the
one-dimensional wave equation u,, = c2u,, the simplest scheme is the one
using centered differences for both terms:

ut— 2u’ + u;f_l

n n n
j _ 2% 2uf +uf

(Ar)? B (Ax)?

(1

It is explicit since the (n + 1)st time step appears only on the left side. Thus

W = sl ) 200 — sl — ()

where we now denote s = ¢2(Ar)? / (Ax)?. Its template diagram is

n—+1 *
n [ ] [} [ ]
s 2—2s s

n—1 °

-1

Notice that the value at the (n + 1)st time step depends on the two previ-
ous steps, because the wave equation has time derivatives of second order.
Therefore, the first fwo rows u(; and u} must be given as initial conditions.

Example 1.

If we pick s = 2, the scheme simplifies to

u?“ = 2(14?+1 +ully — u;’) — u'j’._l (3)
and it is easy to compute by hand the solution shown in Figure 1, given
its first two rows. This horrendous solution bears no relationship to the
true solution of the wave equation, which is a pair of waves traveling to
the left and right, u(x, t) = %[qﬁ(x + ct) + ¢(x — ct)]. The scheme for
s = 2 is highly unstable. O
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n 8 -12 4 -13 22 13 4 -12 8 n=4
4 2 -3 6 -3 -2 4 n=3
2 1 -2 1 2 n=2
J 1 2 1 n=1
1 2 1 n=0
Figure 1
Example 2.
For s = 1 we have Ax = ¢ At and the scheme
n+l __ . n n _ . n—1
Wit = o “4)

The same initial data as above lead to the solution shown in Figure 2.
This is an excellent approximation to the true solution! O

INITIAL CONDITIONS
How do we handle the initial conditions? We approximate the conditions
u(x,0) = ¢(x) and du/9dt(x, 0) = ¥(x) by

1 —1

WO = gGAD, S y(jax) 5)
J ’ 2 At '

This approximation is chosen to have a O(Ax)? local truncation error in order
to match the O(Ax)> + O(At)? truncation error of the scheme (2). (If we
only used a simpler approximation with a O(Ax) error, the initial conditions
would contaminate the solution with too big an error.) Let’s abbreviate ¢; =
¢(jAx) and ¥; = ¥(jAx). Now (2) in the case n = 0 is

u}- + u;l =S (u(j).+1 + ’4(,)'71) +2(1 - s)u(}.
Together with (5), this gives us the starting values

I/t? = ¢j’

L . — b+ U ©
u; = 2(¢,/+1 + ¢]—1) + (1 S)¢j + W}At’

the first two rows of the computation. Then we march ahead in time to get u%,
u?, and so on, using (2).

._.._.

——

—_-—o

—_—
N

+1 0 +1
-1

—_— -0 O
NNOOO
——_-—_0 O

Figure 2
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%ﬁ%?ooooo?ﬁi% n=5
21200000513 n=4
513000513 n=3

11303513 n=2
F1ri11 3 n=1
121 n=0

Figure 3

Example 3.

For instance, let the initial data be
¢(x)=0 0 0 0 0O O1 2 1 0 0 0 O 0 O

and Y(x) = 0. Let s = 1. Then from (6) we get the starting values (the
first two rows)

0000O0SFT1 11300000
00 00O0OO0OT12T1T0O0O0O0O0O.
If we use (4), we get the solution shown in Figure 3. This is an

even better approximation to the true solution than that shown in Fig-
ure 2. m

STABILITY CRITERION

Now let’s analyze the stability by the method of Section 8.2. Again, a clue may
be found in the values of the coefficients. None are negative if s < 1. Once
again this simple observation turns out to be the correct stability condition.
However, proceeding more logically, we separate the variables

Wt =) E)"  wheren = e
From (1) we get

g_;_;_2:s(n+717—2)=25[cos(kAx)—1]. (7)

Letting p = s[cos(kAx) — 1] for the sake of brevity, (7) can be written as

£2—2(1 + p)e+1=0, whichhas theroots € = 1 + p £/ p2+2p. (8)

Notethat p < 0.If p < —2,then p> + 2p > 0and there are two real roots,
one of which is less than — 1. Thus for one of the roots we have [£| > 1, so that
the scheme is unstable. On the other hand, if p > —2, then p> +2p < 0 and

there are two complex conjugate roots 1 + p &+ i,/—p? — 2p. These complex
roots satisfy

EP =0 +pP—-p*—2p=1.



214 CHAPTER 8 COMPUTATION OF SOLUTIONS

At

Y=

Numerical domain of dependence

Figure 4

So & =cosfH +isinf for some real number 6. In this case the solutions
oscillate in time (just as they ought to for the wave equation). Finally, if
p=—2,then& = —1.

Thus a necessary condition for stability is that p > —2 for all k. This
means that

2

< @0
— 1 —cos(k Ax)

for all k. Thus stability requires that

N

_ 2 (Aan® _
S (Ax) T

1. €))

There is a nice way to understand this condition (9). At each time step A¢
the values of the numerical solution spread out by one unit Ax. So the ratio
Ax/At is the propagation speed of the numerical scheme. The propagation
speed for the exact wave equation is c. So the stability condition requires
the numerical propagation speed to be at least as large as the continuous
propagation speed. In Figure 4 we have sketched the domains of dependence
of the true and the computed solutions for the case ¢ = 1 and At/Ax =2 (so
that s = 4). The computed solution at the point P does not make use of the
initial data in the regions B and C as it ought to. Therefore, the scheme leads
to entirely erroneous values of the solution.

On the other hand, even the stable schemes do not do a very good job
at resolving singularities in the true solution. For instance, one solution of
the nice scheme (4) with s = 1 is shown in Figure 5. This initial condition is

1 -1 1-1 1- 1
1 -1 1-1 1
1 -1 1
1
1

I3
Wwonononon
o= WP

Figure 5
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“singular” because it has a sudden up and down jump. The solution in Figure 5
isn’t as unstable as the one in Figure 1, but it surely is a poor approximation
to the true solution. (It’s a good approximation only for someone who wears
fuzzy glasses.) The difficulty here is that the initial function ¢(x) has a signif-
icant “jump” at one point; the earlier cases illustrated in Figures 2 and 3 were
at least slightly gradual. More sophisticated schemes must be used to solve
problems with singularities, as in shock wave problems.

There are also implicit schemes for the wave equation (like the Crank—
Nicolson scheme) but they are less urgently needed here since the stability
condition (9) for the explicit scheme does not require At to be so much smaller
than Ax.

Example 4.
For a more interesting PDE, let’s consider the nonlinear wave equation
Uy — Au+u+[ul’ =0 (10)

in three dimensions (x, y, z), where [u]” denotes the seventh power. Let
(r, 8, @) be the usual spherical coordinates. We shall make the calculation
manageable by computing only those solutions that are independent of
6 and ¢. Then the equation takes the form

2 7
Uy — Uy — —Up +u+[u]” =0
r

by (6.1.7), which is a modification of the one-dimensional wave equa-
tion. To get rid of the middle term, it is convenient to change variables
v(r,t) =ru(r, t) to get

Vi — U 0 +r %]’ =0 0O<r<o0)
v(0,7) = 0.

The last condition comes from the definition of v.
Now we use the scheme (1) with s = 1 and with suitable additional
terms to get

(11

v;”rl — 2v;’ + v;.’*l _ v;.’H — 2v;’ + U?—1
(Ar)? (Ar)?
8 —1\8
1 1 () = ()
+1 -1 Cn =6\ J
_E(v;? + v’} ) — g(]Ar) S —— (12)

J J

One reason for this treatment of the additional terms is that this scheme
has a constant energy (independent of n), an analog of the continuous
energy of Section 2.2 (see Exercise 9).

Using the mesh sizes Ar = At = 0.002 and certain initial data, the
computed solution is graphically presented in Figure 6 (see [SV]). The
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t=0.04

-10 | r
0.00 0.20 0.40

t=012

)

-10 | r
0.00 0.20 0.40
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-10 L r
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Figure 6
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effect of the nonlinear term is visible in the oscillations of fairly large

amplitude which reflect at the origin. O
EXERCISES
1. (a) Write the scheme (2) for the wave equation in the case s = % and

draw the template.

(b) Compute the solution by hand for five time levels with the same
starting values as in Figure 2.

(c) Convince yourself that the computed solution is not too accurate but
is “in the right ballpark.” When interpreting the solution remember
that Ax /At = 2.

Solve by hand for a few time steps the numerical scheme (2) for u,;, =
Uyy, With u(x, 0) = 0, with

Y= 00 00121U0O0O0O0

and with the starting scheme (6).

(a) Firstuse At = 1 and Ax = 0.5.

(b) Thenuse Ar = 1and Ax = 1.

(c) Compare your answers to parts (a) and (b).

(a) Use the scheme (2) with Ax = At = 0.2 to approximately solve
U = Uy, withu(x, 0) = x? and u,(x, 0) = 1. Solve it in the region
0<tr<1,|x]|<2—1t}

(b) Solve the problem exactly and compare the exact and approximate
solutions.

(a) Use the scheme (2) with Ax = Ar = 0.25 to solve u;, = u,, ap-
proximately in the interval 0 < x < 1 with u = 0 at both ends and
u(x,0) = sinzx and u,(x, 0) = 0. Show that the solution is peri-
odic.

(b) Compare your answer to the exact solution. What is its period?

Solve by hand for a few time steps the equation u,; = u,, in the finite
interval 0 < x < 1, with u, = 0 at both ends, using At = Ax = é and
the initial conditions

ux,00= 0 0 0 1 2 1 0 0 O and u,(x,0)=0.

Use central differences for the boundary derivatives as in (8.2.14) and
use second-order-accurate initial conditions as in (6). Do you see the
reflections at the boundary?

Consider the wave equation on the half-line 0 < x < oo, with the bound-
ary condition u = 0 at x = 0. With the starting values u = ug =u) =
ul =1and u‘} = u} = 0 for all other j (j = 1,2, ...), compute the so-
lution by hand up to 10 time steps. Observe the reflection at the boundary
and compare with Section 3.2.
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Solve by hand the nonlinear equation u;;, = u,, + u> up to t = 4, using
the same initial conditions as in Figure 3, replacing the cubic term by
(u§)3, and using Ax = At = 1. What is the effect of the nonlinear term?
Compare with the linear problem in Figure 3.

Repeat Exercise 7 by computer for the equation u;, = u,, — u> using an
implicit scheme like (12) with Ar = Ax = 1.

Consider the scheme (12) for the nonlinear wave equation (10). Let the
discrete energy be defined as

n+1 n n+1 n+1 n
En _ lz Vi TV 4 Z J+1 ”1 Vit~ Y
Ar 2% At Ar

n+1 n\2 1 U?H 8+ U;l 8
ty Z[( ) )]+162j:< (2’m>6< )

By multiplying (12) by 2(v”+1 — v;.’_l), show that E,, = E,_;.Conclude
that £, does not depend on n.

Consider the equation u, = u,. Use forward differences for both partial
derivatives.

(a) Write down the scheme.

(b) Draw the template.

(c) Find the separated solutions.

(d) Show that the scheme is stable if 0 < At/Ax < 1.

Consider the first-order equation u, + au, = 0.

(a) Solve it exactly with the initial condition u(x, 0) = ¢(x).

(b) Write down the finite difference scheme which uses the forward
difference for u, and the centered difference for u,.

(c¢) For which values of Ax and At is the scheme stable?

8.4 APPROXIMATIONS OF LAPLACE’'S EQUATION

For Dirichlet’s problem in a domain of irregular shape, it may be more con-
venient to compute numerically than to try to find the Green’s function. As
with the other equations, the same ideas of numerical computation can easily
be carried over to more complicated equations. For Laplace’s equation

Uyy + Uy, =0

the natural approximation is that of centered differences,

Witk — 2k HUj1p | Ujket — 2Ujx +Ujk—1
2 2
(Ax) (Ay)

=0. (1)
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Here u;; is an approximation to u(j Ax, kAy). The relative choice of mesh
sizes turns out not to be critical so we just choose Ax = Ay. Then (1) can be
written as

1
wjp = Wik +ujrx+ujrrr +ujr—1) ()

Thus u; s is the average of the values at the four neighboring sites. The tem-
plate is

°

1

1
° * °
1 1
4 4

°

1

4

The scheme (2) has some nice properties. The most obvious one is the
mean value property, the exact analog of the same property for the Laplace
equation. In its discrete version (2), the difference equation and the mean
value property become identical! It follows that a solution u;y cannot take
its maximum or minimum value at an interior point, unless it is a constant;
for otherwise it couldn’t be the average of its neighbors. Thus, if (2) is valid
in a region, the maximum and minimum values can be taken only at the
boundary.

To solve the Dirichlet problem for u,, + u,, = 0 in D with given bound-
ary values, we draw a grid covering D and approximate D by a union of
squares (see Figure 1). Then the discrete solution is specified on the bound-
ary of the “discrete region.” Our task is to fill in the interior values so as to
satisfy (2). In contrast to time-dependent problems, no marching method is
available. If N is the number of interior grid points, the equations (2) form a
system of N linear equations in N unknowns. For instance, if we divide x and
y each into 100 parts, we get about 10,000 little squares. Thus N can be very
large.

Figure 1
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0 0 0 O 0 0 0 0

0 24 0 2 7 24

0 0 01 2 0

0 0 0 O 0 0 0 O
(a) b)

Figure 2

The system we get in this way has exactly one solution. To prove this,
suppose that there were two solutions, {u;:} and {vj}, of (2) in D with
identical boundary values. Their difference {u; — vj} also satisfies (2) in
D but with zero boundary values. By the maximum principle stated above,
ujr — vjx < 0, and by the minimum principle, u; y — v; > 0. Hence u; ; =
vj k. So there is at most one solution. But this means that the determinant of
the linear system of N equations is not zero, which means that there exists
exactly one solution.

Example 1.

As a baby example, consider solving (2) in the square with the boundary
values indicated in Figure 2(a). This is a set of four linear equations, one
for each interior point. The solution is given in Figure 2(b). Notice that
each interior entry is indeed the average of its four neighbors. O

JACOBI ITERATION

In the absence of a marching method to solve (2), several techniques are

available. One is called Jacobi iteration. We start from any reasonable first
(e))

approximation u; ;. Then we successively solve

(n+1) _ 1], () (n) (n) (n)
a0 =1 | 3)

Witppe tu et Uy
It can be shown that u; ; = lim ui”,)( converges as n — 00 to a limit which is
a solution of (2). It converges, however, very slowly and so Jacobi iteration is
never used in practice. Since N is usually quite large, a more efficient method
is needed.

It might be noticed that (3) is exactly the same calculation as if one were
solving the two-dimensional heat equation v; = v, + vy, using centered dif-
ferences for v, and vy, and using the forward difference for v;, with Ax = Ay
and At = (Ax)? /4 (see Exercise 11). In effect, we are solving the Dirichlet
problem by taking the limit of the discretized v(x, t) as t — oo.

GAUSS-SEIDEL METHOD

This method improves the rate of convergence. Here it is important to specify
the order of operations. Let’s compute u(j",j ) one row at a time starting at
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the bottom row and let’s go from left to right. But every time a calculation is
completed, we’ll throw out the old value and update it by its newly calculated
one. This procedure means that

(n+1) __ (n) (n+1) (n) (n+1)
Uiy = [/+1k+”/ 1k+u/k+l+u1kl:| “4)

The new values (with superscript n + 1) are used to the left and below the (j, k)
location. It turns out that Gauss—Seidel works about twice as fast as Jacobi.

SUCCESSIVE OVERRELAXATION

This method is still faster. It is the scheme
(n+1) (n) (n) (n+1) (n) (n+1) (n)
Ujk —“Jk+w[“'+1k+“/ Lk T Wy Uy — ] o)

Ifow= 4, it is the same as Gauss—Seidel. It is quite surprising that a different
choice of w could make a significant improvement, but it does. But how to
choose the relaxation factor w in practice is an art whose discussion we leave

. . . ) BT (n)
to more specialized texts. Note again that once we know that u; x = limu;
exists, the limit must satisfy

Uik = Uj g+ OWjp1x +Uj—1 g + Uj g1 + Ujg—1 — 4uj i)

and hence it satisfies (2).

EXERCISES

1. Setup the linear equations to find the four unknown values in Figure 2(a),
write them in vector-matrix form, and solve them. You should deduce
the answer in Figure 2(b).

2. Apply Jacobi iteration to the example of Figure 2(a) with zero initial
values in the interior. Compute six iterations.

3. Apply four Gauss—Seidel iterations to the example of Figure 2(a).

4. Solve the example of Figure 2(a) but with the boundary conditions (by
rows, top to bottom) 0, 48,0,0; 0,*,*,24; 0,%%0; 0,0,0,0.

5. Consider the PDE u,, +u,, =0 in the unit square {0 <x <1,
0 < y < 1} with the boundary conditions:

u=20 onx =0,onx = 1,andony =1
u=2324x*(1—-x) ony=0.
Calculate the approximation to the solution using finite differences (2)
with the very coarse grid Ax = Ay = %
(Hint: You may use Figure 2 if you wish.)
6. (a) Write down the scheme using centered differences for the equation
Uxy + Uyy = fx,y).
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(b) Use it with Ax = Ay = 0.5 to solve the problem u,, + u,, = 1in
the square 0 < x < 1,0 <y < 1 with u = 0 on the boundary.

(c) Repeat with Ax = Ay = %

(d) Compute the exact value at the center of the square and compare
with your answer to part (b).

Solve uy, + u,, = 0 in the unit square {0 < x < 1,0 < y < 1} with the

boundary conditions: u(x, 0) = u(0, y) =0, u(x,1) =x, u(l,y)=y.

Use Ax = Ay = %, so that there are nine interior points for the

scheme (2).

(a) Usetwo steps of Jacobi iteration, with the initial guess that the value
at each of the nine points equals 1.

(b) Use two steps of Gauss—Seidel iteration, with the same initial guess.

(c) Compare parts (a) and (b) and the exact solution.

Formulate a finite difference scheme for u,, +u,, = f(x,y) in the
unit square {0 < x < 1,0 < y < 1} with Neumann conditions du/dn =
g(x, y) on the boundary. Use u;; for -1 < j < N+1land -1 <k <
N + 1 and use centered differences for the normal derivative, such as
(uj N1 —ujn—1)/2 Ay. [Thatis, use ghost points as in (8.2.14).]
Apply Exercise 8 to approximately find the harmonic function in the
unit square with the boundary conditions u,(0, y) = 0, u,(1,y) = —1,
uy(x,0) =0, u,(x, 1) = 1. Formulate a Gauss—Seidel method of solving
the difference scheme and compute two iterations with Ax = Ay =
1. Compare with the exact solution u = 1y* — 1x2. You may use a
computer program.

Try to do the same with the boundary conditions u,(0,y) =0,
u(l,y)=1,u,(x,0) =0, uy(x, 1) = 1. What’s wrong?

Show that performing Jacobi iteration (3) is the same as solving
the two-dimensional diffusion equation v; = vy, + v,, using centered
differences for vy, and vy, and using the forward difference for v, with
Ax = Ay and At = (Ax)?*/4.

Do the same (solving the diffusion equation) with At = w(Ax)?> and
compare with successive overrelaxation.

8.5 FINITE ELEMENT METHOD

All computational methods reduce PDEs to discrete form. But there are other
methods besides finite differences. Here we briefly discuss the finite element
method. The idea is to divide the domain into simple pieces (polygons) and
to approximate the solution by extremely simple functions on these pieces.
In one of its incarnations, the one we shall discuss, the simple pieces are
triangles and the simple functions are linear. The finite element method was
developed by engineers to handle curved or irregularly shaped domains. If D
is a circle, say, they were having trouble using finite differences, which are not
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Figure 1

particularly efficient simply because a circle is not very accurately partitioned
into rectangles.
Let’s consider the Dirichlet problem for Poisson’s equation in the plane

—Au=f inD, u=0 onbdyD. (1)

First, D is triangulated; that is, D is approximated by a region Dy which is the
union of a finite number of triangles (see Figure 1). Let the interior vertices
be denoted by V', ..., V.

Next, we pick N trial functions, vi(x, y), ..., vy(x, y), one for each in-
terior vertex. Each trial function v;(x, y) is chosen to equal 1 at “its” vertex V;
and to equal O at all the other vertices (see Figure 2). Inside each triangle, each
trial function is a linear function: v;(x, y) = a + bx + cy. (The coefficients
a, b, c are different for each trial function and for each triangle.) This pre-
scription determines v;(x, y) uniquely. In fact, its graph is simply a pyramid of
unit height with its summit at V; and it is identically zero on all the triangles
that do not touch V;.

We shall approximate the solution u(x, y) by a linear combination of the

vi(x, y):

un(x,y) = Uvi(x, y)+ -+ Uyon(x, y). 2)

How do we choose the coefficients Uy, ..., Un?
To motivate our choice we need a digression. Let’s rewrite the problem
(1) using Green’s first identity [formula (G1) from Section 7.1]. We multiply

Figure 2
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Poisson’s equation by any function v(x, y) that vanishes on the boundary. Then

/fVu-Vvdxdy://fvdxdy. 3)
D

D

Rather than requiring (3) to be valid for uy(x, y) for all functions v(x, y), we ask
only thatit be valid for the first N special trial functionsv = v; (j = 1, ..., N).
Thus, with u(x, y) = uy(x, y) and v(x, y) = v;(x, y), (3) becomes

N
ZU,- //Vv,--ijdxdy 2//fvjdXd)’-
i=1 n D

This is a system of N linear equations (j = 1, ..., N) in the N unknowns
Uy, ..., Uy. If we denote
m; =//Vvl~-ijdxdy and f; =/ffvjdxdy, 4)
D D

then the system takes the form

N
Y omiUi=f  (j=1....N). )
i=1

The finite element method consists of calculating m;; and f; from (4) and
solving (5). The approximate value of the solution u(x, y) then is given by (2).

The trial functions v; are completely explicit and depend only on the ge-
ometry. The approximate solution u#y automatically vanishes on the boundary
of Dy. Notice also that, at a vertex V; = (x¢, yx),

un e, yr) = Urvi (e, yi) + -+ - + Uyvy(xi, yo) = U,

since v; (xx, yx) equals O for i # k and equals 1 for i = k. Thus the coefficients
are precisely the values of the approximate solution at the vertices.

Another way to understand ux(x, y) is that it is a continuous and
piecewise-linear function (linear on each triangle), simply because it is a
sum of such functions. In fact, it is the unique piecewise-linear continuous
function on the triangulation such that uy(x;, yv) = Uy (k =1, ..., N).

Notice also that the matrix m;; is “sparse”: m;; = 0 whenever V; and V;
are not neighboring vertices. Furthermore, for a pair of neighboring vertices,
my; is easy to compute since each v;(x, y) is linear on each triangle.

Triangulations with linear functions are not the only versions of the finite
element method used in practice. Two other versions in two variables are as
follows.

(i) Bilinear elements on rectangles: D is divided into rectangles on
each of which the solution is approximated using trial functions
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vi(x,y) = a+ bx + cy + dxy. Each trial function is associated with
a corner of a rectangle.

(i1) Quadratic elements on triangles: D is triangulated and the trial func-
tions have the form v;(x, y) = a + bx +cy + dx?> 4+ exy + fy>.
Each trial function is associated with one of the six “nodes” of a
triangle, namely, the three vertices and the midpoints of the three
sides.

For a reference, see [TR].
As a further example, consider solving the diffusion equation

Uy = Ky + f(x,1); u=0atx=0,l; u=¢x)atr=0.

Suppose, for simplicity, that / is an integer. Partition the interval [0, [] into [
equal subintervals. We assign the trial function v;(x) toeachofthe N =1 — 1
interior vertices, where v;(x) is the linear element of Exercise 3. Now we
multiply the diffusion equatlon by any function v(x) that vanishes on the
boundary. Integrating by parts, we get

d I 18 d 1
dt/o uvdx:—;c/o azdzdx+/0 f(x,)v(x)dx. (6)

In order to use the finite-element method, we look for a solution of the form
N
u(x, 0)y="y_Ui(t) vi(x)
i=1

and we merely require (6) to hold for v = vy, ..., vy. Then

S : v:d _ < dvldv/d>U~[ l . J
121:('/0 vl X) o Z fO dx d t()+/0f(x, )UJ(X) X.

This is a system of ODEs for Uy, ..., Uy that can be written as a vector
equation as follows.
Let U be the column vector [Uy, ..., Uy] and let F be the column vector

[Fi(t), ..., Fn(t)] with F;(t) = fol f(x, t)vj(x)dx. Let M be the matrix with
entries m; and K be the matrix with entries k; where

I I
dv; dv;

kij:/ viv; dx, mij:/ dv idx.
0 0 X dx

Then the system of N ODEs in N unknowns takes the simple vector form

Kfi,lt] = —«kMU()+ F(1). @)
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M is called the stiffness matrix, K the mass matrix, and F the forcing vector.
In Exercise 3(a), the stiffness and mass matrices are computed to be

2 -1 0 0 L 0 - 0
1 2 1
v |1 2 SRR I R S 0
1 2
o -~ 0 -1 2 o -~ 0 4 2

The matrices M and K have two important features. They are sparse and they
depend only on the trial functions. So they remain the same as we change the
data. We also have the initial condition

l
U/0) = &, = / $(r)vi(x) dx. ®)
0

This ODE system (7)-(8) can be solved numerically by any of a number
of methods. One simple method is Euler’s. One chooses ¢, = pAt for p =
0,1,2, ... and then solves

ywrth — gy + AIW(‘"),
KWP = —c MUY + F(t,).
Another method is the backwards Euler method, in which we solve
ywr+th _ y
K[At } = —kMUPTY + F(t,.1).

This is the same as
[K +kAtM]UPTY = KUP + AtF(t,41),

which is solved recursively for U Oy, .

EXERCISES

1. Consider the problemu,, + u,, = —4inthe unitsquare withu(0, y) = 0,
u(l,y) =0, u(x,0) =0, u(x, 1) = 0. Partition the square into four trian-
gles by drawing its diagonals. Use the finite element method to find the
approximate value u(%, %) at the center.

2. (a) Find the area A of the triangle with three given vertices (x1, y1),
(-XZ’ y2)7 and (.X3, )’3)

(b) Let (x1, y1) be a vertex in the finite element method and let v(x, y)
be its trial function. Let 7 be one of the triangles with that vertex and
let (x, ¥2) and (x3, y3) be its other two vertices. Find the formula for
v(x,y)onT.

3. (Linear elements on intervals) In one dimension the geometric building
blocks of the finite element method are the intervals. Let the trial function
v;(x) be the “tent” function defined by v;j(x) =1—j+xforj—1<
x<jvix)=1+4+j—xforj<x=<j+1, and v;(x) = 0 elsewhere.
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That is, v;(x) is continuous and piecewise-linear with v;(j) =1

and v;(k) = O for all integers k # j.

(a) Show that [ [v;(x)]*dx =2and [v;(x)v;11(x)dx = —1.

(b) Deduce that the one-dimensional analog of the matrix m;; is the
tridiagonal matrix with 2 along the diagonal and —1 next to the
diagonal.

(Finite elements for the wave equation) Consider the problem u;; = u,,
in [0, /], with u = 0 at both ends, and some initial conditions. For sim-
plicity, suppose that / is an integer and partition the interval into / equal
sub-intervals. Each of the / — 1 = N interior vertices has the trial func-
tion defined in Exercise 3. The approximate solution is defined by the
formula uy(x) = U;(t)vi(x) + - - - + Un(t)vy(x), where the coefficients
are unknown functions of z.

(a) Show that a reasonable requirement is that

XN:U”@)/Z () (x) dx + XN:U o 22%% 0 _g

! vi(x)vi(x)dx ; ——dx =

= =)o ax ox
forj=1,...,N.

(b) Show that the finite element method reduces in this case to a system of
ODEs: Kd?U/dt* + MU = 0 with an initial condition U(0) = ®.
Here K and M are N x N matrices, U(t) is an N-vector function, and
@ is an N-vector.

(Bilinear elements on rectangles) On the rectangle with vertices
0, 0),(A,0), (0, B), and (A, B), find the bilinear function v(x, y) =
a + bx + cy + dxy with the values U;, U,, Uz, and Uy, respectively.
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WAVES IN SPACE

In two and three dimensions we derive the energy and causality principles and
then solve the wave equation in the absence of boundaries. In Section 9.3 we
study the geometry of the characteristics. We also solve the wave equation with
asource term. In Section 9.4 we solve the diffusion and Schrédinger equations
and the harmonic oscillator. In the final section we derive the energy levels of
the hydrogen atom.

9.1 ENERGY AND CAUSALITY

Our goal now is to study the wave equation
Uy —c* Au=0 (D

in two and three dimensions in the absence of boundaries. As before, we
concentrate on the three-dimensional case

2
Uy = (Uxx +ttyy +uz).

This equation is invariant under (i) translations in space and time, (ii) rotations
in space, and (iii) Lorentz transformations (see Exercise 4).

THE CHARACTERISTIC CONE

The notion of characteristics is as fundamental as it was in one dimension,
but now the characteristics are surfaces. Take, for example, a characteristic
line in one dimension x — xo = c¢(t — 1p) and rotate it around the ¢t = #, axis.
You get the “hypercone”

X—Xo| = [(x = %02 + (V= y0)* + Gz — 2021 “ = clt — 1o, (2)

which is a cone in four-dimensional space-time. The set in space-time defined
by equation (2) is called the characteristic cone or light cone at (Xg, ty). The
reason for the latter term is that if ¢ is the speed of light in electromagnetics,
the cone is the union of all the light rays that emanate from the point (xq, ).

228
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Future

Past

Figure 1

The solid light cone is the “inside” of the cone, namely, {|x — Xy| < c|t — #y]}.
It is the union of the future and the past half-cones (see Figure 1). At any fixed
time ¢, the light cone is just an ordinary sphere, and the future is just the ball
consisting of the points that can be reached in time ¢ by a particle traveling
from (X, #p) at less than the speed of light. As t — +oo the sphere grows
concentrically at the speed c. The light cone is the quintessential characteristic
surface; general characteristic surfaces are discussed in Section 9.3.

As an exercise in geometry, let’s calculate the unit normal vector to the
light cone (2). It is the 3-surface in 4-space given by the equation

Bt x,y,2) = —c*(t — 10)* + (x — x0)* + (y — y0)* + (z — 20)* = 0.

This is a level surface of ¢, so a normal vector is the gradient vector of
¢(x,y, z,t). (We're talking here about vectors with four components.) Now

grad ¢ = (bx, by, b2, ¢1) = 2(x = X0, ¥ — o, 2 — 20, —€*(t — 1))
The unit normal vectors are
N grad ¢
lgrad ¢|
(x —x0, ¥y — Yo, 2 — 20,—C*(t — 1))
(c*(t — 10)* + (x — x0)> + (y — y0)* + (z — 20)°

Let 2 = (x — x0)” + (y — yo)2 + (z — 20)*. With this notation the equation
of the cone is r = £c(tr — #p). We can use it to simplify the formula for n to

==+

12"
)

n—+ X — X0 —cz(t —1p)
V@02 O — 1)

or

3)

c (x—xo Y — Y Z—Zo_l—to>

9 b 9
c2+1 cr cr cr [t — 1|
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These are the two unit normal vectors to the light cone in 4-space, one pointing
in and one pointing out.

CONSERVATION OF ENERGY

This is a fundamental concept. We mimic Section 2.2 as follows. Multiplying
the wave equation (1) by u; and doing some algebra, we obtain

0= (uy — Awyu, = (3u? + 3c*|Vul?), — ¢V - (u,Vu) 4

(also see Section 7.1). We integrate this identity over 3-space. The integral
of the last term will vanish if the derivatives of u(x, t) tend to zero (in an
appropriate sense) as |X| — oo. Assuming this, we get

[ 2 (L2 lovar
0—/// 8t<2u,—|—2c [Vu| )dx 5)

(integration over all 3-space R?). But the time derivative can be pulled out of
the integral (by Section A.3). Therefore, the (total) energy

E:;/// (uf + c*|Vul?) dx (6)

is a constant (independent of ¢). The first term is the kinetic energy, the second
the potential energy.

PRINCIPLE OF CAUSALITY

Consider a solution of the wave equation with any initial conditions

u(x, 0) = ¢(x) u(x, 0) = Y (x).

Let x( be any point and 7y > 0 any time. The principle of causality asserts that
the value of u(xy, #p) depends only on the values of ¢(x) and ¥/ (x) in the ball
{Ix — xo| < ctp}. This ball is the intersection of the solid light cone with the
initial hyperplane {r = 0} (see Figure 2).

A?

(X0, to)

Figure 2
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Figure 3

Proof. We start from the energy identity (4) written in the explicit form

3 (3u? + 32 Vul?) + du(—cPupuy) + dy(—c*uuy) + ,(—c*uu;) = 0,
(7
abbreviating 0, = d/d¢, and so on. This time, however, we integrate (7) over
a solid cone frustum F in four-dimensional space-time, with top 7', bottom B,
and side K. F is just a piece of a solid light cone (see Figure 3).

We regard the identity (7) as stating that the divergence of a certain
four-dimensional vector field vanishes. This is perfectly set up for the four-
dimensional divergence theorem (see Section A.3)! The frustum F is four-
dimensional and its boundary bdy F is three-dimensional. Let (n., ny, n;, n;)
denote the unit outward normal 4-vector on bdy F and let dV denote the
three-dimensional volume integral over bdy F. Then we get

///[n,(;utz + %c2|Vu|2)— nx(czu,ux)— ny(c2u,uy)— nz(czu,uz)] dv=0.
bdy F

®)

Now bdy F = T U B U K, which means that the integral in (8) has three
parts. So (8) takes the form

001 -

On the top T, the normal vector points straight up, so that n = (n,, n,,
ng,n) =(0,0,0, 1) and we get simply

f/f(éuf + %6‘2|VM|2) dx
T

On the bottom B, it points straight down, so that n = (0, 0, 0, —1) and we get
simply

///( D(b? + L Vap?) //f (192 + LIVoIR) dx
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n,

Figure 4

The integral over the mantle K is more complicated, but we claim that
it is positive (or zero). To prove this, we plug the formula (3) for n into the
K integral. We use the plus sign in (3) because the outward normal vector
has a positive t component on K (see Figure 4). Note that t < fy. As before,

r = |X — Xp|. So the integral is

c 1, lZv , X —Xp )
ﬁ 5”;+§C| ul +c—r(_c Uily)
K

- Z—Z
Yy —=Yo (—czu,uy) 4 ( 0)
Ccr Ccr

+

The last integrand can be written more concisely as
1 1 2
I = 5u3+5c2|vl4| —cuu,,

where Vu = (u,, uy, u;),

F=

i ’ ’
[x — x| r r r

X—Xp (x—xo Yy — Yo Z—Zo)
and the radial derivative is

ax ay 0z

— 4 uy,— +u,— =r-Vu.
ar or

tr =t “or
Completing the square in (10), we get

(—czu,uz)i| dv.

©)

(10)

1 2 1 2 1 2 1 ~12
I =3 —cu,)” + 52 (IVul> —ul) = 3 — cup)” + 52| Vu — u, 7,

(1)

which is clearly positive. Since the integrand is positive, the integral (9) is

also positive, as we wished to show.
Hence from (8) we end up with the inequality

/{/(éu? + 12| Vul?) dx 5/{/(”2 +12VgP?) dx.

(12)
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Figure 5

Suppose now that ¢ and ¢ vanish in B. By (12) and the first vanish-
ing theorem in Section A.l, the integrand %u,z + %62|Vu|2 vanishes in 7.
Therefore, u; and Vu also vanish in 7. But we can vary the height of the
frustum F at will. Therefore, u, and Vu vanish in the whole piece of solid
cone C that lies above B (see Figure 5). So u is a constant in the solid cone
C. Since u = 0 on the bottom B, the constant is zero. So u = 0 in all of C. In
particular, u(xo, yo, zo, to) = 0.

By taking the difference of two solutions as in Section 2.2, we easily
deduce that if u and v are any two solutions of (1) and if u = v in B, then
u(xg, Yo, 2o, to) = v(xg, Yo, 2o, fo). This completes the proof of the principle
of causality. O

The solid cone C is called the domain of dependence or the past history
of the vertex (X, fp). As in Section 2.2, we can restate the result as follows.
We let tp = 0.

Corollary. The initial data ¢, v at a spatial point X, can influence the
solution only in the solid light cone with vertex at (xg, 0).

That is, the domain of influence of a point is at most the solid light cone
emanating from that point. Thus we have proved, from the PDE alone, that
no signal can travel faster than the speed of light!

The same causality principle is true in two dimensions.

EXERCISES

1. Find all the three-dimensional plane waves; that is, all the solutions of
the wave equation of the form u(x, t) = f(k - x — ct), where k is a fixed
vector and f is a function of one variable.

. -1 . .
2. Verify that (¢*t? — x?> — y> — z?)" satisfies the wave equation except on
the light cone.

. 12 . . .

3. Verify that (¢’t> — x* — y?) /2 satisfies the two-dimensional wave equa-
tion except on the cone {x* + y? = c*t?}.

4. (Lorentz invariance of the wave equation) Thinking of the coordinates

of space-time as 4-vectors (x, y, z, t), let I' be the diagonal matrix with
the diagonal entries 1, 1, 1, —1. Another matrix L is called a Lorentz
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transformation if L has an inverse and L~! = I''LT", where 'L is the

transpose.

(a) If L and M are Lorentz, show that LM and L~" also are.

(b) Show that L is Lorentz if and only if m(Lv) = m(v) for all 4-
vectors v = (x, y, z, 1), where m(v) = x> + y> 4+ z> — ¢ is called
the Lorentz metric.

(¢) If u(x,y,z, t)is any function and L is Lorentz, let U(x, y, z,t) =
u(L(x, vy, z,t)). Show that

Uix + Uyy + U, = Uy =y + Uyy + Uzz — Uy,
(d) Explainthe meaning of a Lorentz transformation in more geometrical
terms. (Hint: Consider the level sets of m(v).)
5. Prove the principle of causality in two dimensions.

6. (a) Derive the conservation of energy for the wave equation in a domain
D with homogeneous Dirichlet or Neumann boundary conditions.
(b) What about the Robin condition?

7. For the boundary condition du/dn + b du/dt = 0 with b > 0, show that
the energy defined by (6) decreases.

8. Consider the equation u,, — c>Au + m?u = 0, where m > 0, known as
the Klein—Gordon equation.
(a) What is the energy? Show that it is a constant.
(b) Prove the causality principle for it.

9.2 THE WAVE EQUATION IN SPACE-TIME

We are looking for an explicit formula for the solution of

U = Uy + Uy + ) (1)

u(x, 0) = ¢(x) ur(x,0) = ¥ (x). )
[like d’ Alembert’s formula (2.1.8)]. The answer is

u(x, ty) =

/ px)dS |, 3)

8t0 47T02l0

where S is the sphere of center Xy and radius cfy. This famous formula is due
to Poisson but is known as Kirchhoff’s formula.

We will derive (3) shortly, but first let’s compare the result with the causal-
ity principle. The value of u(xo, #y) depends, according to (3), just on the values
of ¥(x) and ¢(x) for x on the spherical surface S = {|x — Xo| = cty} but not
on the values of ¥ (x) and ¢(x) inside this sphere. This statement can be
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(X(), to)

S Domain of dependence
(sphere)

Figure 1

inverted to say that the values of ¥ and ¢ at a spatial point x; influence the
solution only on the surface {|x — x| = ct} of the light cone that emanates
from (x;, 0). This fact, illustrated in Figures 1 and 2, is called Huygens’s prin-
ciple. It means that any solution of the three-dimensional wave equation (e.g.,
any electromagnetic signal in a vacuum) propagates at exactly the speed c of
light, no faster and no slower.

This is the principle that allows us to see sharp images. It also means that
any sound is carried through the air at exactly a fixed speed ¢ without “echoes,”
assuming the absence of walls or inhomogeneities in the air. Thus at any time
t a listener hears exactly what has been played at the time ¢ — d/c, where d
is the distance to the musical instrument, rather than hearing a mixture of the
notes played at various earlier times.

Proof of Kirchhoff’s Formula (3). We shall use the method of spherical
means. Let the average (the mean) of u(x, ¢) on the sphere {|x| = r}, of center

Domain of influence
(surface in space-time)

(le 0y

Figure 2
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0 and any radius r, be denoted by u(r, ). That is,

u(r,t) = 4711r2 /f u(x,t)dS

[x|=r

1 2w pm
= — / u(x,t) sinf do do, 4)
4 0 0

where x, y, and z are expressed in terms of the spherical coordinates r, 8, and
¢. We’ll now show that u itself satisfies the PDE

@y = @, + 2 @, )

Proof of (5). For simplicity, assume ¢ = 1. Equation (5) follows fr_om
the rotational invariance of A. Indeed, by Exercise 1, we have A(u) = (Au).
That is, the laplacian of the mean is the mean of the laplacian. Therefore,

A@@) = (Au) = (i) = (@),

So u satisfies exactly the same PDE that # does. Now in spherical coordinates
we know that

2
Au = u,, + —u, + angular derivative terms
r
from (6.1.7). For u, which depends only on r, the angular derivatives must
vanish, so (5) is proved.

To give an alternative proof of (5), we apply the divergence theorem to
the equation u,, = Au over the domain D = {|x| < r}. Thus

([t [ o= [ o

In spherical coordinates, (6) can be written explicitly as

rop2m e 2 rmoay
// / Uy p*sin® do de dp :/ / —r?sinf do d¢
0oJo Jo o Jo Or

L 0u(r, t)
ar

or

/0 P (p, t)dp = r @

Differentiating (7) with respect to r, we get the integrand on the left side and
two terms on the right side, as follows:

2— 2— 2— —
rug = (r u,), = ru,, + 2ru,.

Dividing by 2, we again get equation (5).
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Continuing with the proof of (3), we now substitute
v(r,t) =ru(r,t)

into the PDE (5). Then v, = ru, + u and v,, =ru,, + 2u,. So in terms of
v(r, 1), (5) simplifies to

Vyy = szrr' (8)

Of course, equation (8) is valid only for 0 < r < oco. The function v = ru
clearly vanishes at r = 0:

v(0,1) =0 (atr = 0) )
and satisfies the initial conditions
v(r, 0) = ré(r) v(r, 0) = ry(r) (atr = 0). (10)

Thus we are reduced to a half-line problem in one dimension: the PDE (8),
the BC (9), and the IC (10). This problem for v was solved back in Section
3.2. Its solution is given by the formula [from (3.2.3)]

N i ct+r _ d 3 i ct+r _ d 11
v(r, 1) = ZC/c,_r sy (s) s+8t[2cfc,_r s¢(s) S] (11)

for 0 < r < ct and by a different formula for r > ct.
The next step is to recover u at the origin » = 0:

v(r, t)

r

u(0,t) =u0,t) = ]in(l)

vl t)—v(0,1) dv
=lim———— =

lim r = 5,010, (12)

Differentiating (11), we have

v 1 — _
22— et + et + 1) + (et = PPet — )]+
ar 2c
where - - - denotes a similar term depending on ¢. When we put r = 0, it

simplifiesto [dv/3r](0, 1) = (1/2¢)[2cty (ct)] = tr(ct). Thisis the right side
of (12). Therefore,

1
4t

u(0,1) = ty(ct) =

/ Yx)dS +---. (13)
|x|=ct
This is precisely the first term in formula (3) (in the case that the spatial point

is the origin and the time is denoted by 7). It is just the time ¢ multiplied by
the average of v on the sphere of center 0 and radius ct.
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Next we translate the result (13). If x is any spatial point at all, let
w(x, t) = u(x + Xo, t).

This is the solution of the wave equation whose initial data are ¢(x + X() and
(X + Xg). So we can apply the result (13) to w(Xx, ), in order to obtain the
formula

1

u(xo. 1) = w00 =

/ Y(X+X0)dS +---

|x|=ct

1

|x—xq|=ct
This is precisely the first term of (3).

A little thought shows that the second term in (3) works in the same
way. In fact, if we replace ¥ by ¢ in the first term of (11) and take the time
derivative, we get the second term. The two terms in (3) must have the same
relationship. 0

SOLUTION IN TWO DIMENSIONS
We shall see that Huygens’s principle is not valid in two dimensions! What
we want to solve is

i = P ttgr + ttyy) (15)

u(x,y,0)=¢x,y), wx,y,0)=1v(x,y). (16)

The key idea is to regard u(x, y, t) as a solution of the three-dimensional
problem which just happens not to depend on z. So it must be given by the
Kirchhoff formula. Let’s again assume for the sake of simplicity that ¢ = 0
and that (xg, yo) = (0, 0). By the three-dimensional formula (13) we have

1
0,0,1) = ——— ,y)dsS.
w0.0.0= o [[ ey
x24y2tz2=c?
This is a correct formula for the solution of (15), (16), but we can simplify it as

follows. It is twice the integral over the top hemisphere z = /c2t2 — x2 — y2.
On the hemisphere (see Figure 3) we can use the usual formula for the surface
element dS in terms of the coordinates (x, y), getting the double integral

2 2 1/2
1 0z 0z

X2y <c?

The term in brackets inside (17) equals
242 212

=1 () () ==
B z 2/ 2 A —x2—y?
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Figure 3

Hence (17) becomes

1 Y(x,y)
u(©. 0.0)= 5 — // R dx dy. (18)

x24yi<c2?

This is the solution formula at the point (0, 0, 7). Ata general point, the formula
is

u(xo, yo, fo) = // px.y) dxdy
) [P1g — (0 = x0)? = (v - w)’]? 2me
d

+ g(same expression with ¢). (19)
0

where D is the disk {(x — x0)* + (y — yo)* < c*#2}. (Why?)
Our formula (19) shows that the value of u(xg, yo, tp) does depend on the
values of ¢(x, y) and 1 (x, y) inside the cone:

(x — x0)* + (y — yo)* < 1.

This means that Huygens’s principle is false in two dimensions. For instance,
when you drop a pebble onto a calm pond, surface waves are created that
(approximately) satisfy the two-dimensional wave equation with a certain
speed ¢, where x and y are horizontal coordinates. A water bug whose distance
from the point of impact is § experiences a wave first at time ¢t = d/c but
thereafter continues to feel ripples. These ripples die down, like #~! according
to Exercise 18, but theoretically continue forever. (Physically, when the ripples
become small enough, the wave equation is not really valid anymore as other
physical effects begin to dominate.)

One can speculate what it would be like to live in Flatland, a two-
dimensional world. Communication would be difficult because light and
sound waves would not propagate sharply. It would be a noisy world! It



240 CHAPTER 9 WAVES IN SPACE

turns out that if you solve the wave equation in N dimensions, signals prop-
agate sharply (i.e., Huygens’s principle is valid) only for dimensions N =
3,5,7,.... Thus three is the “best of all possible” dimensions, the smallest
dimension in which signals propagate sharply!

In fact, the method of spherical means can be generalized to any odd
dimension >5. For each odd dimension n = 2m + 1 we can “descend” to
the even dimension 2m below it to get a formula that shows that Huygens’s
principle is false in 2m dimensions [CH].

EXERCISES

1. Prove that A(&r) = (Au) for any function; that is, the laplacian of the
average is the average of the laplacian. (Hint: Write Au in spherical
coordinates and show that the angular terms have zero average on spheres
centered at the origin.)

2. Verify that (3) is correct in the case of the example u(x, y, z,t) = ¢.

3. Solve the wave equation in three dimensions with the initial data ¢ = 0,
¥(x,y,z) =y, byuse of (3).

4. Solve the wave equation in three dimensions with the initial data ¢ = 0,
V(x,y,2) = x>+ y? + z2. (Hint: Use (5).)

5. Where does a three-dimensional wave have to vanish if its initial data ¢
and v vanish outside a sphere?

6. (a) Let S be the sphere of center x and radius R. What is the surface
area of S N {|x| < p}, the portion of S that lies within the sphere of
center 0 and radius p?

(b) Solve the wave equation in three dimensions for ¢+ > 0 with the
initial conditions ¢(x) = 0, ¥ (x) = A for |x| < p, and ¥(x) =0
for |x| > p, where A is a constant. Sketch the regions in space-
time that illustrate your answer. (This is like the hammer blow of
Section 2.1.)

(c) Sketch the graph of the solution (u versus |x|) for t = %, 1, and 2,
assuming that p = ¢ = A = 1. (This is a “movie” of the solution.)

(d) Sketch the graph of u versus ¢ for |x| = % and 2, assuming that p =

¢ = A = 1. (This is what a stationary observer sees.)
(e) Let |x9| < p. Ride the wave along a light ray emanating from
(Xp, 0). That is, look at u(xg + tv, t) where |v| = c¢. Prove that

t-u(Xg +tv, t)converges as t — 0O.

(Hint: (a) Divide into cases depending on whether one sphere con-
tains the other or not. Use the law of cosines. (b) Use Kirchhoff’s
formula.)

7. (a) Solve the wave equation in three dimensions for r > 0 with the
initial conditions ¢(x) = A for |x| < p, ¢(x) = O for |x| > p, and
¥|x| = 0, where A is a constant. (This is somewhat like the plucked
string.) (Hint: Differentiate the solution in Exercise 6(b).)
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(b) Sketch the regions in space-time that illustrate your answer. Where
does the solution have jump discontinuities?

(c) Let |x9| < p. Ride the wave along a light ray emanating from
(Xp, 0). That is, look at u(xg + tv, t) where |v| = c. Prove that

t - u(xg + tv, t) converges as t — 00.

Carry out the derivation of the second term in (3).

(a) For any solution of the three-dimensional wave equation with initial
data vanishing outside some sphere, show that u(x, y, z,¢t) = 0 for
fixed (x, y, z) and large enough t.

(b) Provethatu(x, y, z,t) = O(t~ ") uniformlyast — oo;thatis, prove
that ¢ - u(x, y, z, t) is a bounded function of x, y, z, and ¢. (Hint: Use
Kirchhoff’s formula.)

Derive the mean value property of harmonic functions u(x, y, z) by the
following method. A harmonic function is a wave that happens not to
depend ontime, so thatits mean value u(r, t) = u(r)satisfies (5). Deduce
that u(r) = u(0).

Find all the spherical solutions of the three-dimensional wave equation;
that is, find the solutions that depend only on r and ¢. (Hint: See (5).)

Solve the three-dimensional wave equation in {r # 0, t > 0} with zero
initial conditions and with the limiting condition

lim Arriu(r, 1) = g(t).

Assume that g(0) = g'(0) = ¢”(0) = 0.

Solve the wave equation in the half-space {(x, y,z,?): z > 0} with
the Neumann condition du/dz = 0onz =0, and with initial data
¢(x, v, z) = 0 and general V¥ (x, y, 7). (Hint: See (3) and use the method
of reflection.)

Why doesn’t the method of spherical means work for two-dimensional
waves?

Obtain the general solution formula (19) in two dimensions from the
special case (18).

(a) Solve the wave equation in two dimensions for r > 0 with the
initial conditions ¢(x) = 0, Y(x) = A for |x| < p, and Y (x) =0
for |x| > p, where A is a constant. Do not carry out the integral.

(b) Under the same conditions find a simple formula for the solution
u(0, 7) at the origin by carrying out the integral.

Use the result of Exercise 16 to compute the limitof 7 - u(0, t) as t — oo.

For any solution of the two-dimensional wave equation with initial data
vanishing outside some circle, prove that u(x, y, t) = O(t ') for fixed
(x,y)ast — oo;thatis, t - u(x, y, t) is a bounded function of ¢ for fixed
x and y. Note the contrast to three dimensions. (Hint: Use formula (19).)
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19. (difficult) Show, however, that if we are interested in uniform conver-
gence, that u(x, y, t) = O(t~"/?) uniformly as t — oo.

20. “Descend” from two dimensions to one as follows. Let u;, = c?u,, with
initial data ¢(x) =0 and general 1/ (x). Imagine that we don’t know
d’Alembert’s solution formula. Think of u(x, 7) as a solution of the two-
dimensional equation that happens not to depend on y. Plug it into (19)
and carry out the integration.

9.3 RAYS, SINGULARITIES, AND SOURCES

In this section we discuss the geometry of the characteristics, the geometric
concepts occurring in relativity theory, and the fact that wave singularities
travel along the characteristics. We also solve the inhomogeneous wave equa-
tion.

CHARACTERISTICS

A light ray is the path of a point in three dimensions moving in a straight line
at speed c. That is, |dx/dt| = c, or

X = X( + Vot where |vo| = c. (D

Such a ray is orthogonal to the sphere |x — x| = c|t].

We saw earlier in this chapter that the basic geometry of the wave equation
is the light cone |x| = c|t|. It is made up of all the light rays (1) with xy = 0.

Now consider any surface S in space-time. Its time slices are denoted by
S; = § N {t = constant}. Thus S is a three-dimensional surface sitting in four-
dimensional space-time and each S; is an ordinary two-dimensional surface.
S is called a characteristic surface if it is a union of light rays each of which
is orthogonal in three-dimensional space to the time slices S;.

For a more analytical description of a characteristic surface, let’s suppose
that S is the level surface of a function of the form ¢ — y(x). That is, § =
{(x,1): t — y(x) = k} for some constant k. Then the time slices are S; =
{x:t — y(x) = k}. Here is the analytical description.

Theorem 1. All the level surfaces of t — y(x) are characteristic if and only
if |[Vyx)| =1/c.

Proof. First suppose that all the level surfaces of  — y(x) are character-
istic. Let xo be any spatial point. Let S be the level surface of r — y(x) that
contains the point (Xg, 0). Thus § = {(x,1): t — y(X) = —y(Xp)}. Since § is
characteristic and (xg, 0) € S, there is a ray of the form (1) that is contained
in S for which vy is orthogonal to S, for all 7. Since the ray lies on S, it satisfies
the equation

t — y(Xp + vot) = —y(Xp) (2)
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for all ¢. Differentiating this equation with respect to ¢, we find that
1 — vy - Vy(xo+ vot) = 0. Setting t = 0, we get vo - Vy(xo) = 1.

On the other hand, the time slice Sy = {x: y(x) = y(X¢)} has Vy(xq) as
a normal vector. Another normal vector is vy, so that Vy(xg) and v( are
parallel. Therefore, 1 = |vy - Vy(Xo)| = |vo||Vy (X0)| = ¢|Vy(Xp)|. Hence
[Vy(x0)| = 1/c. This is what we wanted to prove. For the converse, see Ex-
ercise 2. o

Example 1.

Starting from any surface Sy at all in 3-space at ¢t = 0, we could draw
straight lines (1) of slope ¢ with Xy € Sy to construct a characteristic
surface S. For instance, the plane Sy = {x: ajx + a;y + asz = b} with
al + a3 + a3 = 1 gives rise in this manner to the plane characteristic
surface § = {(x, #): aix + a»y + asz — ct = b}. It also gives rise to the
plane characteristic surface S = {(x,1): aix + axy + azz + ct = b}.
Similarly, the sphere Sy = {X: |x — Xg| = R} gives rise to the pair of
characteristic surfaces S = {(x, #): |x —Xo| = R % ct}. 0

RELATIVISTIC GEOMETRY

In relativity theory the following terminology is commonly used. The past (or
past history) of the point (0, 0) is the set {ct < —|x|}, its future is {ct > —|x|},
andits present is {—|x| < ct < |x|}. A four-dimensional vector (v, v°) s called
(see Figure 1)

Timelike if [v°] > c|v|
Spacelike if [v°| < c|v]
Null (or characteristic) if |0°| = ¢|v].

Thus a timelike vector points into either the future or the past. A straight line
in space-time is called a ray (or bicharacteristic) if its tangent vector is null;
it projects onto a light ray [as defined by (1)].

Still another description of a surface in space-time being characteristic is
that its (four-dimensional) normal vector is a null vector. Indeed, if the surface
is represented as S = {t = y(x)}, then a normal 4-vector is (Vy(x), —1). S
is characteristic if this vector is null. That is, 1 = [v°| = ¢|v| = ¢|Vy(X)], in
agreement with Theorem 1.

Spacelike

Figure 1
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A surface is spacelike if all its normal vectors are timelike, that is, if
[Vy(x)| < 1/c.Forinstance, the initial surface {r =0}, considered as a surface
in space-time, is spacelike since y = 0. The spacelike surfaces are just the
ones that naturally carry initial conditions, as stated in the following theorem.

Theorem 2. If S is any spacelike surface, then one can uniquely solve the
initial-value problem

u; = c*Au in all of space-time
p d ou " S
u= an — =Y ons,
on (3)

where d/dn indicates the derivative in the direction normal to S.
If S is represented as {t = y(x)}, the second initial condition in (3) means
explicitly that

1/2

u—Vy -Vu=[1+|Vy*1" vy fort = y(x). 4)

(Why?) We omit the proof of Theorem 2.

SINGULARITIES

Here is another basic property of characteristic surfaces that is also proved in
advanced texts [CH].

Theorem 3. Characteristic surfaces are the only surfaces that can carry the
singularities of solutions of the wave equation.

The idea is that information gets transported along light rays (cf. Section
2.5) and a singularity is a very specific bit of information. A singularity
of a solution is any point where the solution, or a derivative of it of some
order, is not continuous. For instance, in the plucked string of Section 2.1, the
singularity is the jump discontinuity in the first derivative; it clearly occurs
along a characteristic.

Example 2.

A more elaborate example of a singularity is the following. Let

u(x, 1) = sv(x, D[t — y®)J fory(x) <1t
&)
ux,t)=0 for y(x) > ¢,
where v(x, ) is a C? function, nonzero on the surface S = {t = y(x)}.
This function u(x, ) is only a C' function because its second derivatives
have jump discontinuities on the surface. We shall show that if u(x, 1)
solves the wave equation, then the surface must be characteristic.
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Indeed, on one side {y(x) < ¢} of the surface, we calculate

u =v(t —y)+ 2v,(t — )%,
Uy = v+ 20,(t — y) + tv,(t — )7,
Vu=—-uvVy(it —y)+ %Vv(t — )/)2,
Au=V-Vu=v|Vy|?—vAy(t—y)=2Vv-Vyt—y)+ %Av(t — )%
Hence, on the side {y(x) < ¢}, we have
0=u, —c*Au= )1 —*Vy]?)

+ Qv + vAY + 27V - V)t — y) + 3 — AV — ¥). (6)
Of course, everything is zero on the other side {y(x) > t}. So for
u(x, ) to be a solution across the surface, the expression (6) must be zero
on the surface {t — y(x) = 0}. Set r = y(x) in (6). Then on S we have
)1 = c?|Vy|?) =0, or [Vy| = 1/c, which means that the surface S
is characteristic. This proves the assertion made above. In diffraction
theory the equation |Vy| = 1/c is called the eikonal equation. 1t is a
nonlinear first-order PDE satisfied by y.

Because the first term on the right side of (6) is zero, (6) may be
divided by (¢ — y). So it also implies that

0= Qv + v Ay +2¢*Vv - Vy) + (v, — 2 Av)(t — y) (7)

on one side of S. Matching across § again, it follows that (7) must be
valid when ¢t = y(x), which means that

v+ Vy - Vo = =13 (Ay). (8)

Thisis called the transport equation; itis a linear first-order PDE satisfied
by vonS.

To understand it, notice that % = 9, + c¢>Vy - V is a derivative in
a direction tangent to S. In fact, 9 is the derivative in the direction
of the ray dx/dt = ¢>Vy with |dx/dt| = ¢*|Vy| = c. Thus v(x, 1) is
“transported” along the ray by the differential equation (8). Equation (8)
can be solved by the methods of Section 1.2. Equation (8) also implies
that v # 0 everywhere along the ray because v 7 0 where the ray meets
S, by assumption. m

WAVE EQUATION WITH A SOURCE

Now we shall solve the three-dimensional problem
Uy —c? Au= f(x,t)
ux,0=0, u(x0=0 )

using the operator method of Section 3.4.
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The solution we found in Section 9.2 for the homogeneous problem with
initial data ¢ and v was

(3, F(10)p)(X0) + (F(t0)¥)(X0),

where

1
e | RAGL (10)
TTC L
s

and S = {&: |£ — xo| = ctp} is a sphere. Now let’s drop the subscripts “0.”
The operator S(¢) is the source operator.

Just as in Section 3.4, the unique solution of (9) is expressible in terms of
the source operator as

u(x,t):f St —s)f(x,s)ds. (11)
0

This is sometimes called the Duhamel formula. Inside the integral (11), the
operator F(t — s) acts on f(x, s) as a function of x, with s merely playing the
role of a parameter. Formula (11) means that in (10) we must replace ¢y by

(t—s), Xo by x, and ¥ (&) by f(&, s). Thus

! 1
M(X, t):A m / f(E,S)ngds
{€—x|=c(t—5)}
o f&t 1€~ xI/0)
“weh TR w
{I€—xI=c(t—s)}

where we have substituted the value of s = r — |€ — X|/c on the sphere S.
Now the last expression is exactly an iterated integral in spherical coor-
dinates. The region of integration in space-time is the backward cone surface
sketched in Figure 2. The coordinates £ run over the base of the conical sur-
face, which is the ball {|§ — x| = ¢(t — s)}. The volume element d§ is the
ordinary one d§ = cdS¢ ds. Thus the iterated integral combines into a triple

Sphere | £ -x 1 =c(t-5)

Figure 2
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integral to produce the solution formula

fE.1— 1~ xI/)
o ] TS e

ulx,t) =

{1§—x|=cr}

This result says that, in order to solve (9), you just multiply f(&, s) by
the “potential” 1/(4mc|& — x|) and integrate it over the backward cone. The
backward cone consists exactly of the domain of dependence of the given
point (X, 1); that is, those points that can reach (x, ¢) via a light ray from some
time s in the past (0 < s <1).

It is interesting to compare this formula with the solution of Poisson’s
equation in the whole of three-dimensional space. See (7.3.7) without the
boundary term and with G = —1/(4r). Changing X, to X, and x to £, formula
(7.3.7) says that the bounded solution of Poisson’s equation —Aw = f in all

of 3-space is
~ f(S)
= 4m C/// 1€ (1

The only difference between (13) and (14) is that time is “retarded” by the
amount | — x|/c. So in the formula (13) the potential is called retarded.

EXERCISES

1. Let S be a characteristic surface for which S N {(x, y, z): t = 0} is the
sphere {x? + y? + z> = a®}. Describe S geometrically.

2. Prove the converse of Theorem 1. That is, prove that a level surface of
t — y(x) is characteristic if y (x) satisfies the nonlinear PDE

1
VYol = —. ()

(Hint: Differentiate the equation () to get Xy;;(x)y;(x) = 0, where sub-
scripts denote partial derivatives. Show that a curve, which satisfies the
ODE dx/dt = c*Vy(x), also satisfies d°x/dt> = 0 and hence is a ray.
Show that t — y(x) is constant along a ray. Deduce that any level surface
of t — y(x) is characteristic.)

3. Prove Theorem 2 in the one-dimensional case. That is, if 6 is a spacelike
curve in the xt plane, there is a unique solution of u;, = uy, withu = ¢
and du/0n = ¥ on 6.

4. Verify that the solution given by (5) has second derivatives which have
jump discontinuities on the surface S = {(x,1): t = y(x)}.

5. Verify the correctness of (13) for the example u(x, y, z, 1) = t* and
fy,z, =2
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6. Show that the unique solution of (9) is expressible in terms of the source
operator by the simple formula (11).

7. (difficult) Solve u;, — c?Au = f(x), where f(x) = A for |x| < p, f(x) =0
for |x| > p, Aisaconstant, and the initial data are identically zero. Sketch
the regions in space-time that illustrate your answer. (Hint: Use (13) and
find the volume of intersection of two balls, or use (11) and Exercise
9.2.6(b).)

8. Carry out the passage from (11) to (13) more explicitly using spherical
coordinates.

9. Simplify formula (13) for the solution of u; — ¢’Au = f(x,t) in the
special case that f is spherically symmetric [ f = f(r, t)].

9.4 THE DIFFUSION AND SCHRODINGER EQUATIONS
THREE-DIMENSIONAL DIFFUSION EQUATION

Consider the diffusion equation in all of 3-space,

ou EA ' 9%u n 9%u . 9%u )
—_ = u = _ _ JEE—
ot ox2  9yr 9z

u(x, 0) = ¢(x). (2)

It is very easy to solve, using our knowledge from Chapter 2.

Theorem 1. For any bounded continuous function ¢(x), the solution of

(1), 2) is
B 1 Ix — x| " dx! 3
M(X, t)_ (4ﬂkl)3/2///exp(_ Akt )¢(X) X ( )

for all ¢ > 0. The dummy variables of integration, X' = (x’, y', ), run over all
of 3-space.

Proof. To derive (3), let’s denote by

1 —22 )4k
S(Z,f):We /4Kt

the one-dimensional source function. Let

S3(x,y,z,8) =S, 6)S(y, 1)S(z, 1) 4)
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be the product of three such functions in the different variables. Then

083 98 -
P E(x’ t)-S(y,t)- S(z, t) + (two similar terms)

9%S 9%S
by ay
0%S
+Sx,t)- Sy, 1) - k—(z 1)

L LRk
. <_ 2y _> (SCx, )S(y, DS (2, 1)

So S3(x, 1) satisfies the three-dimensional diffusion equation.
We claim that S5 is the source function. To prove it, note that

[t (s fs00) f 04

=13=1. )

Now in the special case that ¢(x, y, z) depends only on z, we have

thrr(l)/// S3(x — X', 1) p(z) dx’
— [fS(x —x/, t)dx/:| . [/S(y -y, t)dy’i| . |;1i_r)%/S(z -7, 09 dz/i|

—1-1-lim / Sz — 2, () dZ = $(2)

by Theorem 3.5.1. In a similar way, we can show that

hm/// S3(x —x', Hp(x") dx' = p(x) (6)

if ¢(x) is a product ¢(x)(y)¢(z). Therefore, (6) is also true of any linear
combination of such products. It can be deduced (Exercise 2) that the same is
true for any bounded continuous function ¢(x). Equations (5) and (6) imply
that S5(x, 1) is the source function.

Consequently, the unique bounded solution of (1), (2) is

u(x,r) = /// S3(x — X', )p(x') dx'.
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But the explicit formula for Sj is

1 2 1 5 1 )
S3(x, 1) = ( e ¥ /4/“) . <e—y /4k1) . (e—z /4kt>
3 vkt VAamkt Akt
1 2 2 2
— YY) Ak
= k¢ ' )

and therefore we have derived (3). The complete proof, including the conver-
gence of the triple integral and so on, can also be carried out directly just as
in Section 3.5. O

SCHRODINGER'S EQUATION
We saw in Chapter 1 how the simplest atom is described by the PDE

2 62

h
—ihu; = —Au + —u. (8)
2m r
The potential ¢*/r is a variable coefficient.

So, as a simple warm-up problem, let’s take the free Schrodinger equation

ou 1
—i— = —A 9
lat 2 " ©)

in three dimensions, where we’ve set h = m = 1 and dropped the potential term.
It looks suspiciously like the diffusion equation. In fact, the only difference is
that k = i/2 is imaginary instead of real. The presence of the i = /—1 implies
that the solutions are “waves” because the temporal factor (see below) has the
form

T(t) = ™ = cos At + i sin Az,

which is oscillatory.
We are looking for solutions of (9) that tend to zero as |x| — oo. It is not
difficult to show that the solution of (9) with the initial condition u(x, 0) =

$(x) is
- EXTN Sy ax 10
u(x, 1) = Gnin f//exp (— i >¢>(X) X, (10)

the same as for the diffusion equation except for the i.

Because complex numbers have two square roots, which one do we take
in the first factor here? To answer this question, as well as to justify (10), we
use the following reasoning. With either one of the choices of the square root,
(10) appears to be correct. Let’s assume that ¢(x’) vanishes for large |x'|. But
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let’s first solve the nearby equation

oU, _+e—|—i
a2

Aue, ue(x, 0) = ¢(x), (1D

whose solution depends on the real number € > 0. Equation (11) can be solved
exactly like the diffusion equation with k = (¢ + i)/2. The formula is

P
nex 1= (27rt)3/2(e+z)3/2/// [ 2e +i )t]¢(x)dx' 12

Here (¢ + i)'/? denotes the unique square root with the positive real part.
Because € > 0, it contributes to a negative exponent and the integral converges.
For that reason there is no difficulty in justifying the formula (12). (We need
to take the positive real part because otherwise the exponent would be too
large as |x — x’| — oo and we wouldn’t get a bounded solution.)

As € N\ 0, we get the solution of (9), given by formula (10), where the
i'/? factor is the unique square root with the positive real part. That is,

1+i
V2

This is the correct factor in front of the formula (10). [It is not exactly a
rigorous proof of (10) but it does provide the correct answer.]

A different method we could envision to solve (9) would be to separate
variables: u(x, t) = T(t)X(x). Then, in the one-dimensional case, say, we’d
have

lim(e +i)/? =
e\0

2i ==, (13)

There are no solutions of X” + AX = 0 that satisfy the required condition at
infinity, that X(x) — 0 as x — 4o00. (It can be satisfied at +o0, but then not
—o0, and vice versa.) So the condition at infinity prevents the existence of
any eigenvalues, and the method of Chapter 5 fails. (The method of separation
of variables is salvaged, however, by the use of the Fourier transform; see Sec-
tion 12.3.)

HARMONIC OSCILLATOR

The addition of a potential term to Schrédinger’s equation, as in equation (8),
sometimes leads to the occurrence of eigenvalues. As an example, we now
study the quantum-mechanical harmonic oscillator equation in one dimension,
which in appropriate units is

—iU; = Uy — XU (—00 < X < 00). (14)
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For our eigenfunctions we will require the condition that

u—0 as x — +o0.

We separate variables u = T (t)v(x) to get

T v —=x%
i =T =
T v

The constant A is interpreted as the “energy” of the harmonic oscillator. Thus
v(x) satisfies the ODE

V' + (0 —xHv=0. (15)

Because of its variable coefficient, (15) is not easily solvable. The simplest

case turns out to be A = 1, in which case the solutions are e /2, (Check it!)
So for any A it is natural to attempt the substitution

v(x) = w(x)e_xz/z.
This leads to an equation for w,
(x? — A)e_xz/zw =2 =Mv=0v"=[w—2xw +x*— l)w]e_xz/z,

or

w” —2xw + (- Dw =0, (16)

which is known as Hermite’s differential equation.
We shall solve (16) by the method of power series. Substituting

o
wx)=ay+ax +ax’+--- = Zakxk (17)
k=0
into (16), we get
[e ¢} o
> k(k — Dagx* = =3 "2k — & + Dagx* = 0.
k=0 k=0
Matching the like powers of x, we get
2a, = (1 — Aao, 6a; = (3 — Aay, etc.
In general,
(k +2)(k + Dagr = 2k + 1 — Aag (k=0,1,2,3,...). (18)

This “recursion formula” yields all the coefficients provided that we know the
first two, ap and a,. The first two are arbitrary. If ag = 0, the solution is an
odd function; if a; = 0, the solution is even.
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There is one particularly simple case. In case . = 2k + 1 for some integer
k, then (18) shows that a;», = 0, ax+4 = 0, and so on. Then we get an even
or an odd polynomial (depending on whether k is even or odd) of degree k. It
is called the Hermite polynomial Hy(x) (with an appropriate normalization).
The first five Hermite polynomials are:

Hy(x) =1 A=1,a1 =a,=0)
Hi(x) =2x (A=3,a90=a3=0)
Hy(x) = 4x> =2 (A=5,a1=a4=0)
Hi(x) = 8x3 — 12x A="7,a90=a5=0)

Hy(x) = 16x* —48x* +12 (A =9,a; = as = 0).
Thus we have found some separated solutions of equation (15) of the form
n) = Hi(x)e™ 72 ifn=2k+1.
The corresponding solutions of (14) are
up(x, 1) = e—i(2k+1)tHk(x)e—x2/2

fork =0,1,2,.... Note that u;(x, ) - 0 asx — 00, as required.

If we go back to the full power series (17), it can be shown that if
A # 2k + 1, no power series solution can satisfy the condition at infinity, and
therefore the only eigenvalues (energy levels) are the positive odd integers
(see Exercise 7).

EXERCISES

1. Find a simple formula for the solution of the three-dimensional diffusion
equation with ¢(x, y, z) = xy°z. (Hint: See Exercise 2.4.9 or 2.4.10.)

2. (a) Prove that (6) is valid for products of the form ¢(x)y¥(y)¢(z) and

hence for any finite sum of such products.

(b) Deduce (6) for any bounded continuous function ¢(x). You may use
the fact that there is a sequence of finite sums of products as in part
(a) which converges uniformly to ¢(x).

3. Find the solution of the diffusion equation in the half-space {(x, y, z, 7):
z > 0} with the Neumann condition du/3z = 0 on z = 0. (Hint: Use the
method of reflection.)

4. Derive the first four Hermite polynomials from scratch.

5. Show that all the Hermite polynomials are given by the formula

dk
H(x) = (—1)kex2ﬁe*)‘2

up to a constant factor.
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6. Show directly from the ODE (15) that the functions Hy(x)e ™ /2 are mu-
tually orthogonal on the interval (—oo, o). That is

X
/ H(x)Hy(x)e ¥dx=0  fork #1.

(Hint: See Section 5.3.)

7. (a) Show thatif A # 2k + 1, any solution of Hermite’s ODE is a power
series but not a polynomial.

(b) Deduce that in this case no solution of Hermite’s ODE can satisfy the

condition at infinity. (Hint: Use the recursion relation (18) to find the

behavior of a; as k — co. Compare with the power series expansion

of ¢*’. Deduce that u(x, t) behaves like e as x| = 00.)

9.5 THE HYDROGEN ATOM

Now let’s return to the hydrogen atom, which we are modeling by the PDE

1 1
iu, = ——Au — —u (1)
2 r

with the units chosen so that e = m = h = 1. Equation (1) is supposed to be
satisfied in all of space x = (x, y, 7). We have written r = |x| = (22 + )2,

We also require that
// lu(x, 1)[*dx < oo Q)

which may be interpreted as a condition of vanishing at infinity (see Section
1.3, Example 7).

Although this is a whole-space problem, let’s separate variables anyway.
It turns out, as with the harmonic oscillator, that the potential term does lead
to some eigenvalues. Writing u(x, 1) = T(¢#)v(x) as usual, we have

2
T —Av—;v
22— = —F— = A,
T v

—iAt/2

a constant. Thus u = v(x)e , Where

2
—Av— —v = Av. 3)
r

In quantum mechanics, A is the energy of the bound state u(X, t). Bohr ob-
served in 1913 that the energy levels of the electron in a hydrogen atom occur



9.5 THE HYDROGEN ATOM 255

only at special values (related to squares of integers). We shall verify Bohr’s
observation mathematically!

We look for solutions of (3) that are spherically symmetric: v(x) = R(7).
Later (in Section 10.7) we shall look for the others. By (6.1.7), equation (3)
reduces to the ODE

2 2
—~R,—-R. —~“R=AR “4)
r r

in 0 < r < oo with the condition at infinity that

/oo |R(r)|*ridr < oo. (5)
0

It is also understood that
R(0) is finite. (6)

As with the harmonic oscillator, this ODE is not easily solved. After some
changes of variable, (4) is known as Laguerre’s differential equation. It turns
out that all of the eigenvalues A are negative. For the time being, let’s just
assume that A < 0.

Itis quite convenient to first make a couple of changes of variables. Notice
that if the second and third terms in (4) were absent (which is true “at infinity”),
the equation would simply be — R” = AR, which has the solutions e=#" with
B = ~/—A. We are interested only in solutions that vanish at infinity, so we
choose the negative exponent. We could consider e #" as an approximation to
a solution of equation (4). At any rate, we are thus motivated to try the change
of variables

w(r)=e™ R(r)  where g = vV—A. (7)

Then R=we ?, R, =(w,—Bw)e P, and R, =W, —2Bw,+
B*w)e P’ so that (4) is converted to the equation

or the equation

%rwrr —Brw, +w, +(1 = pw =0. &)

To understand the ODE (8), we observe that r = 0 is a regular singular
point. For this terminology, see Section A.4. We shall solve it by the power
series method. (This will provide some, but not all, of the solutions.) We look
for a solution of (8) of the form

o0
w(r) = E art =ap+ayr +ar? +---
k=0
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whose coefficients are to be determined. Substituting into (8), we get

o0 oo o0 o0
2> ke — Dar ™ = B> kar + Y kar* T+ (1= B)Y awrt = 0.
k=0 k=0 k=0 k=0

In the second and fourth terms, we change the dummy variable & to (k — 1),
so that

> ikl — 1) + Klag* ™ + > (=Bl = 1) + (1 = B)lag_1 7 = 0.
k=0 k=1
Each coefficient must vanish:
k(k + 1
( B )ak = (ﬂk — 1)ak_1 (k = 1, 2, . ) (9)
This means
a; = (B — Dao 3a; = (28 — Day

6a; = 38 — Day 10as = (48 — 1)as
15as = (58 — Day 2lag = (68 — Das  etc.

If B happens to be the reciprocal of a positive integer, the sequence of coeffi-
cients terminates and we have a polynomial solution of (8)!

Since v(x) = R(r) = w(r)e #", we have a polynomial times a decaying
exponential. This tends to zero as r — o0, so the condition at infinity (2) is
also satisfied.

The first few solutions of (8) and (3) are

n A A w(r) v(x)
1 1 -1 1 e’
2 i —1 1—1ir 21— 1r)
3 % —é 1— %r + %rz ePI1 — %r + %rz]
4 1 _ L
1 16

The lowest energy state (the ground state) v(x) = e~ drops off exponen-
tially with the distance from the proton and vanishes nowhere. The second
state corresponds to n = 2 and vanishes for a single value of r (has one node).
The nth state has (n — 1) nodes. Its energy is A = —B% = —1/n>. Thus the
lowest possible energy levels are

1
-1, =7 =5
which agrees with the experiments of Bohr. These energy levels lead to spectral
lines whose frequencies are proportional to the differences between the energy
levels.
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Other Solutions. For 8 = 1/n, there is, of course, another, linearly in-
dependent solution of the second-order ODE (8). However, that solution is
singular at r = 0 and it does not interest us.

Whathappens when  # 1/n? Then the factor (8k — 1) never vanishes, so
that the recursion relation (9) looks approximately like (k?/2)ax ~ (Bk)a_
for large k, or like a;, ~ (28/k)aj—;. These are the coefficients in the Taylor
expansion of e*#". So R(r) looks approximately like

efﬂre+2,3r — €+/3r.

Such a solution would not satisfy the condition at infinity (2). So we see that
the only eigenvalues are A = 1/n forn = 1,2, 3, .... (This argument is not
rigorous but could be made so.)

Are the eigenfunctions complete? By no means, for two reasons. First,
there are plenty of eigenfunctions that possess angular dependence (spin)
(see Section 10.7). Second, there is plenty of continuous spectrum as a con-
sequence of our domain D being all of space, rather than a bounded part of
it (see Section 13.4). Physically, the continuous spectrum corresponds to the
“unbound states” which are scattered by the potential. See a good book on
quantum mechanics, such as [St], [MF], or [AJS].

EXERCISES

1. Verity the formulas for the first three solutions of the hydrogen atom.

2. For the hydrogen atom if A > 0, why would you expect equation (4) not
to have a solution that satisfies the condition at infinity?
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BOUNDARIES IN THE
PLANE AND IN SPACE

In Chapters 4 and 5 we used separation of variables and Fourier series to
solve one-dimensional wave and diffusion problems. This chapter is devoted
to extending the same methods to higher dimensions. We begin with a general
review of these methods. Then Section 2 is devoted to the circular disk and
Section 3 to the spherical ball. The problems with circular symmetry lead in-
exorably to Bessel functions and (in three dimensions) to Legendre functions,
which are the topics of Sections 5 and 6. In Section 4 we discuss the nodal
sets of the eigenfunctions. Finally, in Section 7 we complete our analysis of
the hydrogen atom by discussing the states that have angular momentum.

10.1 FOURIER'S METHOD, REVISITED

We would like to solve the wave and diffusion equations
uy=c*Au and u, =k Au

in any bounded domain D with one of the classical homogeneous conditions
on bdy D and with the standard initial condition. We denote
92 92 02 32 92
A=—+— o —+-—+—
axZ  9y? oxz  0y?  0z2
in two or three dimensions, respectively. For brevity, we continue to use the
vector notation x = (x, y) or (x, y, z). The general discussion that follows
works in either dimension, but for definiteness, let’s say that we’re in three
dimensions. Then D is a solid domain and bdy D is a surface.
The first step is to separate the time variable only,

ulx,y,z, t)=T()w(x,y, z). (D)
258
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Then

T” Av T  Av

A= =— o —A= — (2)
2T v kT~ v

depending on whether we are doing waves or diffusions. In either case we get

the eigenvalue problem

—Av=Av inD

3
v satisfies (D), (N), (R) on bdy D )

Therefore, if this problem has eigenvalues A, (all positive, say) and eigen-
functions v,(x, y, z) = v,(x), then the solutions of the wave equation are

u(x, 1) = Y [Ay cos (&, ct) + By sin (v, ct)] v,(x) )

and the solutions of the diffusion equation are

u(x, 1) =Y Ane v, (x). (5)

As usual, the coefficients will be determined by the initial conditions. How-
ever, to carry this out, we’ll need to know that the eigenfunctions are orthog-
onal. This is our next goal. One point of notation in (4) and (5): In three
dimensions the index 7 in the sums (4) and (5) will be a triple index [(I, m, n),
say] and the various series will be triple series, one sum for each coordinate.

ORTHOGONALITY
Our discussion of orthogonality and completeness is practically a repetition

of Section 5.3. We define the inner product

(f.g) = // f(x) g(x)dx (where dx = dx dy dz)
D

as a triple integral. (In two dimensions it would be a double integral.) If V-
denotes the divergence, the identity

u(Av) — (Au)v =V - [u(Vv) — (Vu)v] (6)

(check it!) is integrated over D. Using the divergence theorem (Section A.3),
we obtain Green’s second identity:

// [u(Av) — (Au)v] dx = // (uav — auv)dS. (G2)
bdy D
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The right side of (G2) is a surface integral and du/dn = n - Vu is the direc-
tional derivative in the normal direction.

If u and v both satisfy homogeneous Dirichlet conditions (¢ = v = 0 on
bdy D), the surface integral must vanish. The same is true for Neumann or
Robin boundary conditions. For instance, if

0 0
l-i—au:O:—U—i-av on bdy D,
on on

then u(dv/dn) — (du/dn)v = —uav + auv = 0. We therefore say that each
of the three classical BCs is symmetric since in each case

(u, Av) = (Au, v) for all functions that satisfy the BCs.

Now suppose that both u# and v are real eigenfunctions:
—Au=iu and —Av=»Xxv inD, (7
where u and v both satisty (D) [or (N) or (R)] on bdy D. By (G2),
(A — X)(u, v) = (u, Av) — (Au,v) = 0. 8)

Therefore, u and v are orthogonal provided that A; % X,. As in Section 5.3,
a similar argument shows that all the eigenvalues are necessarily real. We
summarize these observations in the following theorem.

Theorem 1. Consider any one of the problems (3). Then all the eigenvalues
are real. The eigenfunctions can be chosen to be real valued. The eigenfunc-
tions that correspond to distinct eigenvalues are necessarily orthogonal. All
the eigenfunctions may be chosen to be orthogonal.

MULTIPLICITY

An eigenvalue A is double (triple,...) if there are two (three,...) linearly
independent eigenfunctions for it. It has multiplicity m if it has m linearly
independent eigenfunctions. In other words, the “eigenspace” for A has di-
mension .

If a given eigenvalue A has multiplicity m, let wy, ... ,w, be linearly
independent eigenfunctions. They are not necessarily orthogonal. But we can
always choose a new set of eigenfunctions that is orthogonal. The step-by-step
procedure to accomplish this is the Gram—Schmidt orthogonalization method,
which works as follows.

Letwy,...,w, be any (finite or infinite) set of linearly independent vectors
in any vector space V that has an inner product. First we normalize:

wi

uy = .
w1l
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Second, we subtract from w, the component parallel to #; and then normalize.
That is, we define

U2

vy =wy — (Wo,upuy and up, = ——.
o2l

(©))

That u; and u; are orthogonal is easy to see either by a calculation or from a
sketch. Third, we subtract off from w3 the component in the u u, plane and
then normalize. That is, we define

U3

llosll”

and so on. At each stage we subtract off the components in all the previous
directions. Then {u1, u;, us, ...} is an orthogonal set of vectors. In fact,

v3 =w3 — (W3, up)upr — (w3, upu;  and  uz = (10)

(v2, u1) = (W — (Wa, upuy, uy) = (wa, uy) — (wo, ug)(uy, u;) =0
(v3, u1) = (w3 — (W3, up)us — (w3, upuy, uy)

= (w3, u1) — (W3, uz)(ua, ur) — Wz, uy)(uy, uy)

= (w3, u1) — (w3, uz) -0 —(ws,ur)-1=0,

and so on. See the exercises for some examples with large multiplicity.

GENERAL FOURIER SERIES

Because of Theorem 1, we can talk about general Fourier series which are
made up of the eigenfunctions in D. If

PX) =Y A,(x), (11)

where v,(x) denote orthogonal eigenfunctions of (3), then
_ @v) I p #®vax) dx
s o) [l p loa®O2dx

The question of the positivity of the eigenvalues is addressed in the next
theorem.

A, (12)

Theorem 2. All the eigenvalues are positive in the Dirichlet case. All the
eigenvalues are positive or zero in the Neumann case, as well as in the Robin
case du/on + au = 0 provided that a > 0.

Proof. We use Green’s first identity (G1) with ¥ = v, namely,

/f (—Av)idx:// |Vv|2dx—//va” ds.
on
D D

bdy D
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In the Dirichlet case, with v an eigenfunction of (3), we get

x// |v|2dx=/f V| dx > 0.
D D

In fact, the last integral cannot be zero, because if it were, Vv(x) would be
identically zero and v(x) = C would be a constant function and C = 0 by the
boundary condition. Therefore, A > 0 in the Dirichlet case. See Exercise 7 for
the other cases. O

Besides orthogonality, the other property the eigenfunctions had better
have is completeness. The discussion of completeness is left for Chapter 11.
Suffice it to say that completeness is always true as long as the boundary bdy
D of the domain is not too wild (i.e., for any domain one normally encounters
in scientific problems). Completeness in the mean-square sense for (1) means

that
2
= //f‘qxx) — Y Awva(x)
D n<N
as N — oo.

What we have just shown is how a wave or diffusion problem with bound-
ary and initial conditions is reducible to the eigenvalue problem (3). But we
are still left with finding the solutions of (3). If we expect to carry out a spe-
cific computation, we will need to assume that D has a very special geometry
in which we can separate the space variables (in cartesian, polar, or some
other coordinate system). We already did this for harmonic functions. What
we are dealing with at present is similar to the harmonic case except for the
parameter A.

2
dx — 0 (13)

H¢ - ZAnvn

n<N

Example 1.

Take the cube Q = {0 < x < 7,0 <y <m0 <z <} and solve the
problem

DE: u,=kAu in Q
BC: u=0 on bdy Q (14)
IC: u=¢(x) whent=0.

Separating the time variable as in the general discussion above, we are
led to the eigenvalue problem

—Av=2X\v inQ, v=0 onbdyQ. (15)
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Because the sides of Q are parallel to the axes, we can successfully
separate the x, y, and z variables: v = X (x)Y (y)Z(2),

X// Y// Z//
S ——
x Ty Tz

The separated BCs are
X0O)=Xm)=Y0)=Y(x)=Z20)=Z(x)=0.
Clearly, the solutions are
v(x,y,z) =sinlx sinmy sin nz = vy, (X), (16)
where
A=P+m*+n>=rpy (1 <miln<o0). (17)

Note the triple index! Therefore,

ux,t) = ZZZA””” e~ CHm K gin I sin my sin nz. (18)
n m |

Orthogonality in Example 1 implies that

Almn :(2/71)3/ / / ¢(x,y,z)sinlx sinmy sinnz dx dy dz. (19)
0o Jo Jo

Notice that the orthogonality of the functions v;,,,,(x, y, z)is, in this case,
a direct consequence of the separate orthogonalities of the separated
eigenfunctions sin /x, sin my, and sin nz. Namely,

ff/ Vinn (X) Uy (X) dX = (f sin/x sin I’x dx)
5 0
(/ sinmy sinm'y dy) (/ sinnzsinn’z dz) =0
0 0

unless all three indices exactly match. O

We shall observe the same phenomenon in the polar, cylindrical, and
spherical coordinate systems. To study the cases of circular symmetry is the
subject of our next investigation.

EXERCISES

Solve the wave equation inthe square S = {0 < x < 7,0 < y < 7}, with
homogeneous Neumann conditions on the boundary, and the initial con-
ditions u(x, y,0) =0, u,(x, y, 0) = sin? x.



264 CHAPTER 10 BOUNDARIES IN THE PLANE AND IN SPACE

2. Solve the wave equation in the rectangle R = {0 < x < a,0 < y < b},
with homogeneous Dirichlet conditions on the boundary, and the initial
conditions u(x, y,0) = xy(b — y)(a@ — x), u;(x, y,0) = 0.

3. In the cube (0O, a)3, a substance is diffusing whose molecules multiply
at a rate proportional to the concentration. It therefore satisfies the PDE
u, = k Au + yu, where y is a constant. Assume that # = 0 on all six
sides. What is the condition on y so that the concentration does not grow
without bound?

4. Consider the eigenvalue problem —Av = Av in the unit square D =
{0 <x < 1,0 < y < 1} with the Dirichlet BC v = 0 on the bottom and
both vertical sides, and the Robin BC dv/dy = —v on the top {y = 1}.
(a) Show that all the eigenvalues are positive.

(b) Find an equation for the eigenvalues A. Show that they can be ex-
pressed in terms of the roots of the equation s 4 tans = 0.

(c) Find the solutions of the last equation graphically. Find an approxi-
mate formula for the (m, n)th eigenvalue for large (m, n).

5. Find the dimension of each of the following vector spaces.

(a) The space of all the solutions of u” 4 x%u = 0.

(b) The eigenspace with eigenvalue (277/1)* of the operator —d?/dt? on
the interval (—/, /) with the periodic boundary conditions.

(c) The space of harmonic functions in the unit disk with the homoge-
neous Neumann BCs.

(d) The eigenspace with eigenvalue A = 2572 of —A in the unit square
(0,1)> with the homogeneous Neumann BCs on all four sides.

(e) The space of all the solutions of u, = c’u, in —00 < x < 00,
—00 < t < 00.

6. Illustrate the Gram—Schmidt orthogonality method by sketching two lin-
early independent vectors w; and w; in the plane that are not orthogonal.
Then do it with three vectors in space.

7. Prove Theorem 2 in the Neumann and Robin cases.

10.2 VIBRATIONS OF A DRUMHEAD

Consider a membrane stretched across the top of a circular drum D =
{x2 + y? < a?} of radius a. Its small transverse vibrations satisfy the two-
dimensional wave equation in D with Dirichlet boundary conditions. There-
fore, we want to solve the problem

Uy = (U + Uyy) in D
u=0 onbdyD (D
u, u, are given functions when ¢ = 0.
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To solve this problem, of course we’ll use polar coordinates just as we
did in Section 6.3. We write

1 1
Py =ty + —uy + gy, (2)
r r

Separating the variables u(r, 68, 1) = T (t)R(r)®(0) gives
T// R// R/ @//

S 3
2T R +rR +r2® 3)

It follows by the usual argument that T /2T is a constant (call it —A) and
®"/0O is a constant (call it —y). Thus we have the three ODEs

T" + AT =0 4)
O +y0=0 (5)
PR Y\p
R'+ R +(,\—72)R_0. (6)

We’ll save (4) for last, because it involves the inhomogeneous (initial) condi-
tions.

Asfor (5), we have the periodic boundary conditions, ®(6 + 27) = ©(0),
exactly as in Section 6.3. Therefore,

y=n> and ©O() = A, cosnb + B, sinnb n=12..) (1

orelse y =0and ©(0) = %Ao.
As for the radial part (6), we have the ODE

1 n?
Ry+—-R +|2——=|R=0 (8)
r r

for 0 < r < a together with the boundary conditions

{ R(0) finite ©)

R(a) =0.

From (7) we know that n must be an integer. If A = 0, equation (8) is of
the Euler type and we already solved it in Section 6.3, but since R(a) = 0 we
would get only the trivial solution R(r) = 0. [In fact, by Theorem 2 of Section
10.1, we already knew that all the eigenvalues of —A are positive.] So let
A > 0. We can transform (8) into a standard form by changing scale p = v/Ar,
so that
dp
Rr R = \/XRIO, Rrr = )‘«Rpp

= p;
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and

R 4R +(1 ”Z)R—o (10)
oo TR Py .

This is Bessel’s differential equation of order n. It is the third time we have
encountered an ODE that is not directly solvable, the first times being in
Sections 9.4 and 9.5.

SOLUTION OF BESSEL'S EQUATION (10)

It is a second-order linear ODE and, as such, has a two-dimensional space of
solutions. At p = 0 its coefficients become infinite; this is a singular point.
However, it is the least troublesome kind of singular point, a so-called regular
singular point (see Section A.4). Recall that an ODE of Euler type also has a
regular singular point and generally has solutions of the form R(p) = Cp* +
Dp?. To solve Bessel’s equation, we guess a solution of the form

R(p) = p*Y_arp* . a0 #0, (11)
k=0

with coefficients gy to be determined. Plugging (11) into (10), we get

o0
P I+ k) + k= Dagp' + (@ + bagp' 7 + agp* — nagp' = = 0.
k=0
(12)
The third sum can be rewritten as

o0 o0

k k=2
E agp = E ai-2p
k=0 k=2

by changing the name of the dummy variable. Therefore, equating the like
powers of p, we get
Fork =0, [a(a — 1)+ —n*lag =0
Fork=1,[(c+Da+a+1—n*la; =0
Fork > 2, [(@ + k) +k — 1)+ a +k —n*lay +ar—> = 0.

The first equation gives us o = =£n (since ag # 0). We thus have two

choices, o« = +nand o = —n. Let us begin with the case « = +n. The second
equation gives [(o + 1)> — n%]a; = 0, whence a; = 0. The infinite set of
equations for k = 2, 3, 4, ... (called the recursion relations) determine ay
from a;_»:

ar = 2 k=2,3,...) (13)

_((x+k)2—n2
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Figure 1

and therefore determine all the succeeding coefficients. Therefore, a; = 0
for k odd. Making the conventional choice ap = 27"/n!, we end up with the
particular solution

o P’ a
In(p) = 53 [1 T2+ 1) + 225+ D(n +2) ]
o n+2j
_ Z(_l)jM' (14)
fr Jlin+ j)!

This particular solution is called the Bessel function of order n (see
Figure 1). It crosses the axis an infinite number of times. In fact, one can
prove that J,(p) has the asymptotic form

T,(p) ~ icos( —E—E)Jro 1) (15)

as p — oo. The Bessel function J,,(p) is the only solution (except for a con-
stant factor) of Bessel’s ODE that is finite at the singular point p = 0. All the
other solutions of (6) look like a constant times p " near p = O incase n > 0
(and also have a term p" log p in their expansions). In the case n = 0, the other
solutions look like C log p near p = 0. For a discussion of these properties
and for more information about Bessel’s ODE, see Section 10.5.

THE EIGENFUNCTION EXPANSION

Now let’s return to the drumhead that led to (8) and (9). Since R(0) is to
be finite, R = c¢J,(p) for any constant c. Therefore, we have the separated
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solutions
J,(v2r) (A, cos n® + B, sin nd). (16)

Next we put in the homogeneous boundary condition u = 0 where r = a.
Thus A must be chosen as a root of

J.(v/ra) = 0. (17)

From Figure 1, each Bessel function has an infinite number of positive roots.
Call the roots of (17)

O<)\nl<)¥n2<)\n3<"'

Finally, we can sum everything up. The full solution of (1) is

o0
u(r, 6, t) = Z Jo(v/ om?)(Aom €08 v/ Aomct 4+ Com Sin v/ AomCt)
m=1

o0
+ Z (N Al [(Anm cos nb + By, sinnf) cos /Ay, ct

m,n=1
4 (Cpyy cOS 16 + D,y sin n6) sin,/x,,mcz] . (18)

This is quite formidable! We shall give some manageable examples shortly.
Before we do that, let’s put in the initial conditions u(r, 6,0) = ¢(r, 0)
and u,(r, 8, 0) = ¥ (r, 8). Abbreviating B,,,, = ~/An.m, we must have

¢, 0) =D AumJo(Bowr) + Y Ju(Bum?)(Aum €08 10 + By, sin n6)

m=1 m,n=1
(19)
and
V(r,0) =Y _cBonConJo(Bonr)
m=1

o0
+ Y Bunu(Bum?NCom €08 10 + D,y sin ).

m,n=1

(Why?) These expansions are an example of the general Fourier series dis-
cussed in Section 10.1. So the coefficients are given by the formulas

1 a s
AOm = ; / ¢(i‘, Q)Jo(ﬂomr) r do dr
27[.]0771 0 J-m
1 a pm (20)
Apm = — ¢, 0)J,(Bumr) cos nb r do dr
TCnm Jo -7

B,.,» = (same formula with sin n6),
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and similarly for the other coefficients in terms of v/ (r, ), where for relative
brevity we have denoted

o = fo B P dr = 21T (Buma) . @1

The evaluation of the last integral comes from (10.5.9). The formulas (21)
come from the orthogonality of the eigenfunctions

LB (50 ) n6) 22)

with respect to the inner product on the disk D,

(f,g)z//f?dxdyz/ /0 ferdrdo. (23)
D

The formulas (21) are just special cases of the formulas in Section 10.1.

Not only do we have the orthogonality in the disk D, but we also have
the separate orthogonalities of sin 76 and cos n6 on the interval —m < 0 <7
and of the Bessel functions on the interval 0 < r < a. The last orthogonality
statement is

/ BBy dr =0 form # p. (24)
0

Note that the 7 is the same in both factors and that the extra factor r is retained
from (24).

Example 1. The Radial Vibrations of a Drumhead

You beat the center of the drum with the baton at time # = 0 and listen
for the ensuing vibrations. This means the initial conditions are

ulx,y,00=0 and u,(x,y,0)=v{) (25)

[where V() is concentrated near » = 0]. Because ¢(r, 8) = 0, all the
A, and B, equal zero (see Exercise 1). Furthermore, because v (r)
does not depend on 6, we have C,,,, = D,,, = 0 for n # 0. So all that
remains from (18) is the series

u(r, 1) =Y _ConJo(Bonr) sin (Bomct), (26)
m=1
where
(¥, Jo)
mCom =
“PomCo (Jo, Jo)
. f()a V() Jo(Bomr) T dr

o Uo(Bowr)Prdr
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By (10.5.9) the coefficients are given by

_Jo v @) Jo(Bryr dr
COm — [P D)
sacBlJ1(Ba)]

where we have written 8 = By,,.

The lowest note you’ll hear is the fundamental frequency Poic =
zi1c/a, where z; denotes the smallest positive root of Jo(z;) = 0. Nu-
merically, z; = 2.405. [This is also the fundamental frequency of the
general (nonradial) vibrations of the drumhead.] It is interesting to com-
pare this with the one-dimensional string, whose lowest frequency was
mc/l, where of course m = 3.142. O

(27)

EXERCISES

1.

Show that with the initial conditions (26), all the cosv/Act terms in the
series (18) are missing. Also show that D,,, = C,,, = 0 for n # 0.

Determine the vibrations of a circular drumhead (held fixed on the bound-
ary) with the initial conditions u = 1 — r%/a® and u;, = 0 when t = 0.
Suppose that you had a circular drum with wave speed c; and radius a
and a violin string with wave speed ¢, and length /. In order to make the
fundamental frequencies of the drum and the violin the same, how would
you choose the length /?

Find all the solutions of the wave equation of the form u = ¢~*“'f(r) that
are finite at the origin, where r = {/x2 + y2.

Solve the diffusion equation in the disk of radius a, with u = B on the
boundary and # = 0 when ¢ = 0, where B is a constant. (Hint: The answer
is radial.)

Do the same for the annulus {a?< x* 4+ y*>< b?} with u = B on the whole
boundary.

Let D be the semidisk {x*> + y* < b%, y > 0}. Consider the diffusion
equation in D with the conditions: # = 0 on bdy D and u = ¢(r, 6) when
t = 0. Write the complete expansion for the solution u(r, 8, ), including
the formulas for the coefficients.

10.3 SOLID VIBRATIONS IN A BALL

We take D to be the ball with its center at the origin and radius a. We consider
the wave equation with Dirichlet BCs. Upon separating out the time by writing
u(x, t) = T(H)v(x), we get the eigenvalue problem

{—Av:kv in D )

v=~0 ondD,
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Figure 1

as described in Section 10.1. Naturally, we shall separate variables in spherical
coordinates (see Figure 1)

0<r<a X =rsinf cos ¢
0<¢p<2m y=rsinfsing
0<O0<m z =rcosf.

(Watch out: In some math books 6 and ¢ are switched!) In these coordinates
the equation looks like

0=Av+ v

2 1 1 1
=V, + -V + —| —— - in 0 AV.
v+ ; v + 2 |:sin29v¢¢ + st(Sln Ug)g] + Av

Now we separate the r coordinate only:
v=R()-Y(0, ),
so that
r’R,, + 2IR, n (l/sin2 0)Y g + (1/sin0)(sin 6 Yg),

R Y

We get two equations, because the first two terms depend only on r and the
last expression only on the angles. So the R equation is

=0.

A2 +

2 14
Ry + “R, + (,\ . —2)R =0 )
r r
and the Y equation is
1 1
Y inf Y Y =0, 3
2 0 oo Sino (sin 0)o + 7V 3)

where y is the separation constant.
Equation (2) is similar to the Bessel equation, but it misses because of the
coefficient 2/r instead of 1/r. To handle that coefficient, we change dependent
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variables by

w(r) =/r R(r), R@)=r""w(), )
which converts (2) to the equation
1 +3
wn-+w,~+</\—y 24)W=0. 5
r r

We are looking for a solution of (5) with the boundary conditions
w(0) finite and w(a) =0. (6)

Asin Section 10.2, the solution is any constant multiple of the Bessel function

wWﬁ=ﬁﬁg®aﬂ- (7

Here the “order” of the Bessel functionisn = ,/y + 411. (See the discussion in

Section 10.5 for Bessel’s equation with any real order.) Thus the whole radial
factor is

R(r) = Ji\w (8)
Jr

Let’s go on to the angular functions Y (6, ¢). We wish to solve equation
(3) with the “boundary conditions”
{Y(G, ¢) of period 27 in ¢ )
Y(@©,¢) finiteatd =0, .

Such a function is called an eigenfunction of the spherical surface, or a spher-
ical harmonic. (The reason for the name is this: A harmonic function v in D,
which corresponds to the case A = 0, will have an expansion in the r, 6, ¢
variables which is an infinite series in the spherical harmonics.)

To solve (3) with the boundary conditions (9), we separate a final time:

Y6, ¢) = p®) q(¢).
Thus

"

sin O(sin 6
q + ( P0)9+

q p

The first term in (10) must be a constant, which we call (—«). This means that
the ¢ equation is

y sin’ 0 = 0. (10

Gpp + g =0, q(¢) of period 27. (11)
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This is a familiar problem. We know that the eigenvalues are o =m?

(m=0,1,2,...)and the eigenfunctions are

q(¢) = Acosme + B sinme.

Finally, the 6 equation is, from (10) with the first term (—m?),

(d/d0)[sin 6(dp/d0)] m?
/d9)lsin 64dp/ +(y—.2 p=0 (12)
sin 0 sin” 6
with the conditions
p finite at 6 = 0, 7. (13)

Let’s introduce the variable s = cos 6 so that sin?0 = 1 — cos? 9 = 1 — s2.
Then equation (12) is converted to the form

d[(l— 2)‘”’}+< o ) —0 (14)
ds S s Yo )PT

p(s) finite at s = £1. (15)

with

Note the singular behavior of the coefficients of (14) at s = £1. This is a
consequence of the degeneration of the coordinate system at the north and
south poles and is the reason for the unusual boundary conditions (15).

The ODE (14) is called the associated Legendre equation. It too can be
solved most readily by the method of power series. The details are given in
Section 10.6. The main fact that we need to know about it is the following.
The eigenvalues of problem (14)-(15) are

~ =1I(I4+1), wherel is an integer > m (16)
and the eigenfunctions are (any constant times)
(_l)m 5um)2 4+ 5 /
meey — _ _ 17
P (s) 571 (1—s% T [(s*—1)] 17

The function (17) is called the associated Legendre function. Notice that it is

merely a polynomial multiplied by a power of /1 — s2. Also notice that it is
finite at s = +£1.
Finally, let’s put the whole problem together. The separated solutions of

(1) are
v=R()p©)q($)
iy VA

NG P/"(cos 0) (A cos m¢ + B sinme)
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because \/y + % = \/l(l + 1)+ % =1+ % As usual, we could replace the

last factors of cosine and sine by ¢”? and e~""?. When we finally insert the
boundary condition v = 0 at r = a, we get the eigenvalue equation

Jio1(Vha) =0, (18)

Let’s call its roots A = Ajq, A2, A3, . ... Then the eigenfunctions that corre-
spond to the eigenvalue A;; can be rewritten as

Jl+l(\/ )\Ij") .
. _ VT plml L img 19)
Uimj(r, 0, @) = 2f P/ (cos ) - e'™?, (
-
where we allow m = —I[,...,0, ..., 4/ since we’ve replaced the sines and

cosines by complex exponentials. Thus we see that the eigenvalue A;; has
multiplicity (2/ 4 1), since there are that many different m’s. The whole set
of eigenfunctions for

m=—I,....,1; 1=0,...,00; j=1,...,00 (20)

is orthogonal and complete! What does orthogonality mean for this case? It
means that

2 T a
/ / / Vimj(r, 0, @) - Vppy jr(r, 0, P) - r2sin@ dr do dp =0 21D
o Jo Jo
for all the different triplets (/, m, j) # (I, m’, j').

Example 1.

Solve the heat equation in the ball of radius a with u = 0 on bdy D and
with a given initial condition u(x, 0) = g(x). The exact solution is

00 00 [ Al
ux, =3y y. Z imje Rt ”Z(ﬁ )lel(cosé)e’”"7’ (22)

=0 j=1 m=—
where the coefficients are

fffu Vlmj (x) g(x) dx
fffD |Ulmj(x)| dx

What does the solution look like for very large #? It looks approximately
like its first term, the one with the smallest 2,;. O

Almj
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Returning to the general properties of the eigenfunctions, we can also
verify the separate orthogonality conditions in each variable. In ¢,

2
/ MM dp =0 form # m'.
0
In@,
T
/ P/"(cosO)P/"(cos0)sin® d6 =0 forl #1'
0
with the same index m; or in terms of s = cos 9,
1
/ P/"(s)P/(s)ds =0 forl #1["
—1
Inr,
/ St W ir) e ) r dr=0 forj#j
0
with the same /. The normalizing constants
2 +m)

/ [P/"(cos 6)]’sin6 db = ———
0 20+ 1(—m)

(23)
for the Legendre functions may also be found in Section 10.6.

SPHERICAL HARMONICS

The functions

Y6, ¢) = P"(cos 6) e

are the spherical harmonics. Their indices range over
—l<m<l, 0<!<o0.

They are the eigenfunctions of the problem (3), (9). Equation (3) is the equation
for the eigenfunctions of the Laplacian on the spherical surface. They are
complete:

Theorem 1. Every function on the surface of a sphere {r = a} (specifically,
every function whose square is integrable) can be expanded in a series of the
spherical harmonics Y;"(0, ¢).
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Ignoring the constant coefficients, which are arbitrary anyway, the first
few spherical harmonics are as follows:

) m
0 1
z
1 0 cosf = —
’
. X . . y
1 +1 sinf cos ¢ = — and sinf sing = —
r r
372 — 2
2 0 3cos?f — 1= 3
-
. Xz vz
2 +1 sinf cos 6 cos ¢ = - and =
r r
) 2=y Xy
2 +2 sin” 0 cos 2¢p = 5 and =
r r

See Section 10.6 for the first few associated Legendre functions, from which
this table is derived.

Example 2.
Solve the Dirichlet problem

Au =0 1inthe ball D
u=yg onbdyD

by the method of separation of variables. (This is the three-dimensional
analog of the two-dimensional problem in a disk that we did in Section
6.3.) When we separate variables, we get precisely (2) and (3) except
that . = 0. Because the A term is missing, the R equation (2) is exactly
of Euler type and so has the solution

Rory=r"  where af@ —1)+20—y =0, or o’+a—y=0.

Equation (3) together with the boundary conditions (9) has already been
solved: Y = Y,"(0, ¢) with y = [(I + 1). Therefore,

O=c?+a—I(l+1)=(@—D@+]+1).

We reject the negative root « = —/ — 1, which would lead to a singular-
ity at the origin. So « = /. Therefore, we have the separated solutions

r' P (cosB) - ™. (24)
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The complete solution is

i

oo
U= ,Z(; ZA,m r[P,'"(cos 0) ™. (25)

m=—I[

The coefficients are determined by the expansion of g(6, ¢) in spherical
harmonics. O

It is a remarkable fact that the solid spherical harmonics (24) are poly-
nomials(!) in the cartesian coordinates x, y, z. To prove this, we use the
fact, mentioned above, that the associated Legendre functions have the form

1= sz)m p(s) where p(s) is a polynomial and m is an integer. Therefore,
the solid harmonics (24) have the form
rl - sin” 0 - p(cos 6) - ¢

for some polynomial p of degree [ — m. It is an even polynomial if [ — m is
even, and an odd polynomial if / — m is odd. So we can write (24) as

(r sin )" . rl_mp(i) (26)

r

In either case only even powers of  appear in the last factor /=" p(z/r), so
that it is a polynomial in the variables z and r>. Therefore, the solid spherical
harmonic (26) is the polynomial (x + iy)” multiplied by a polynomial in z
and x> + y* + z°. Therefore, (24) is a polynomial in x, y, and z.

EXERCISES
1. Calculate the normalizing constants for the spherical harmonics using
the appropriate facts about the Legendre functions.
2. Verify the first six entries in the table of spherical harmonics.
Show that the spherical harmonics satisfy ¥," = (—1)" Y, ™.

4. Solve the wave equation in the ball {r < a} of radius a, with the condi-
tions du/dr = 0 on {r = a},

»

u=z=rcos whent=0, and u, =0 whent=0.

5. Solve the diffusion equation in the ball of radius a, with u = B on the
boundary and # = C when t = 0, where B and C are constants. (Hint:
The answer is radial.)

6. (“A Recipe for Eggs Fourier,” by J. Goldstein) Consider an egg to be a
homogeneous ball of radius 7 centimeters. Initially, at 20°C, it is placed
in a pot of boiling water (at 100°C). How long does it take for the center
to reach 50°C? Assume that the diffusion constant is k = 6 x 1073
cm?/sec. (Hint: The temperature is a function of 7 and ¢. Approximate
u(0, t) by the first term of the expansion.)
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7. (a) Consider the diffusion equation in the ball of radius a, with
ou/dr = B on the boundary and # = C when ¢t = 0, where B and C
are constants. Find the nondecaying terms in the expansion of the
solution. (Hint: The answer is radial.)

(b) Find the decaying terms, including a simple equation satisfied by
the eigenvalues.

8. (a) Let B be the ball {x? 4+ y? + z?> < @?}. Find all the radial eigen-
functions of —A in B with the Neumann BCs. By “radial” we mean
“depending only on the distance r to the origin.” [Hint: A simple
method is to let v(r) = ru(r).]

(b) Find a simple explicit formula for the eigenvalues.
(c) Write the solution of u, = k Au in B, u, = 0 on bdy B, u(x,0) =
¢(r) as an infinite series, including the formulas for the coefficients.
(d) In part (c), why does u(x, r) depend only on r and #?
9. Solve the diffusion equation in the ball {x?> 4+ y? + 22 < a?} withu =0
on the boundary and a radial initial condition u(x, 0) = ¢(r), where
r? = x> 4+ y? 4 z2. (Hint: See the hint for Exercise 8(a).)

10. Find the harmonic function in the exterior {r > a} of a sphere that sat-
isfies the boundary condition du/dr = —cos 6 on r = a and which is
bounded at infinity.

11. Find the harmonic function in the half-ball {x 4+ y? 4+ 2% < a?, z > 0}
with the BC u = £(z) on the hemisphere {z = (a® — x% — y2)'*} and
the BCu = Oonthedisk {z = 0, x> + y?> < a?}. Include the formulas for
the coefficients. (Hint: Use spherical coordinates and extend the solution
to be odd across the xy plane.)

12. A substance diffuses in infinite space with initial concentration ¢(r) = 1
forr < a,and ¢(r) = 0 forr > a. Find a formula for the concentration
at later times. (Hint: It is radial. You can substitute v = ru to get a
problem on a half-line.)

13. Repeat Exercise 12 by computer using the methods of Section 8.2.

10.4 NODES

Let v(x) be an eigenfunction of the laplacian,
—Av=Av inD, (1)

together with one of the standard boundary conditions. Its nodal set N is de-
fined simply as the set of points x € D where v(x) = 0. By definition boundary
points are not in the nodal set.

For example, in one dimension with Dirichlet’s condition, we have
v, (x) = sin(nmx /1) on the interval 0 < x < [. This eigenfunction has a node
each of the n — 1 times it crosses the axis in the open interval (0, /). A/ consists
of these n — 1 points.
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The nodal set is important because it allows us to visualize the sets where
v(x) is positive or negative. These sets are divided by the nodal set. In one, two,
and three dimensions the nodal set consists of points, curves, and surfaces,
respectively.

Here is an interpretation of the nodes in terms of waves. As we know, the
function

u(x, t) = (A cos v/Act + B sin vact) v(x), )

for any A and B, solves the wave equation u, = c>Au in D with the same
boundary conditions as v(x). The nodal set is stationary. That is, the points
x in N do not move at all because, at such a point, u(x, t) = 0 for all ¢. So,
for instance, when a guitar player puts his finger on a string, he eliminates
certain notes. If he puts his finger exactly in the middle, he eliminates all
the frequencies nzwct /I with odd n, because only for even n does the eigen-
function vanish in the middle, v, ({/2) = 0. The nodal sets of ancient Chinese
bells form interesting patterns which precisely explain their acoustic tones
(see [Sh]).

Example 1. The Square

In two dimensions the nodal set can be a lot more interesting than
in one. Consider the Dirichlet problem in a square D = {0 < x < m,
0 < y < m}. Just as in Section 10.1,

Upm(X, ¥) = sin nx sin my and — n? 4+ m2. (3)

The four smallest eigenvalues are as follows:

A v(x,y)

2 Asinxsiny

5 Asin2xsiny 4 B sin x sin 2y
8 Asin2xsin 2y

10 Asin3xsiny + B sin x sin 3y

The eigenvalues . = 5 and A = 10 are double. Because the eigenvalues
are m*> + n?, the multiplicity problem reduces to the question: In how
many ways can a given integer A be written as the sum of two squares?

The nodal lines for the eigenfunctions sin nx sin my are simply
line segments parallel to the coordinate axes. However, in the case of
multiple eigenvalues many other nodal curves can occur. The zeros of
the eigenfunction A sin mx sin ny + B sin nx sin my for a square are an
example.

In Figure 1 are drawn some pictures of nodal curves in cases of
multiplicity where the eigenfunctions (3) are denoted by u,,,. O
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Example 2. The Ball

Consider the ball D = {r < a}, with the eigenfunctions

Vi (r,0,¢) = r_% Jl+% (r\/A1j)P/"(cos 0)(A cos me + B sinmep). (4)
Its nodal set is a union of the following kinds of surfaces.

(i) Spheres inside D, which correspond to zeros of the Bessel func-
tion.

(i) Vertical planes ¢ = constant.
(iii)) Horizontal planes # = constant.

There are j — 1 spheres, m vertical planes, and / — m horizontal planes.
The vertical and horizontal planes intersect any sphere (with its center
at the origin) in great circles through the poles (of constant longitude)
and horizontal circles (of constant latitude). They divide the sphere into
regions called tessera on each of which the eigenfunction is of one sign.
For detalils, see [St] or [TS]. i

How many regions can the nodal set divide a general domain D into?
The following result delineates the possibilities. (We assume that D is a “con-
nected” set.)
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Theorem 1.
(1) The first eigenfunction v,(x) (the one corresponding to the smallest
eigenvalue A;) cannot have any nodes.

(i) For n > 2, the nth eigenfunction v,(x) (corresponding to the nth
eigenvalue, counting multiplicity) divides the domain D into at least
two and at most n pieces.

For instance, in one dimension, there are n — 1 nodal points that divide the
interval (0, /) into exactly n pieces. In the case of the square illustrated above,
the eigenvalues are 2, 5, 5, 8, 10, 10, .... The fifth and sixth eigenvalues on
this list are / = 10, whose eigenfunctions divide the square into two or three
or four pieces.

It is easy to see why the nodes of v, (x) divide D into at least two pieces if
n > 2. Indeed, by (i) we have v(x) # O for all x € D. Since it is continuous
and D is connected, we may assume that v;(x) > O for all x € D. But we
know that v,(x) is orthogonal to v;(x):

///vn(x) v1(x)dx = 0. %)
D

Therefore, v,(x) cannot be everywhere of one sign. So v,(x) must be some-
where positive and somewhere negative. By continuity these points must be
separated by the nodal set where v, (x) is zero. The other statements of the
theorem will be proven in Exercises 11.6.7 and 11.6.8.

EXERCISES

1. For the Dirichlet problem in a square whose eigenfunctions are given by
(3), list the nine smallest distinct eigenvalues. What are their multiplici-
ties?

2. Sketch the nodal set of the eigenfunction

v(x, y) = sin 3x sin y + sin x sin 3y in the square (0, ).

(Hint: Use formulas for sin 3x and sin 3y together with factorization to
rewrite it as v(x, y) = 2 sin x sin y (3 — 2 sin® x — 2 sin” y).)

3. Small changes can alter the nature of the nodal set drastically. Use a
computer program to show that the eigenfunction sin 12x sin y + sin x
sin 12y has a nodal set that divides the square (0, ) into 12 subregions,
but that the eigenfunction sin 12x sin y 4 v sin x sin 12y, for v near 1, has
a nodal set that divides it into only two subregions. Show that the nodal
sets are as sketched in Figure 2.

4. Read about the nodal patterns of ancient Chinese bells in [Sh].
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Figure 2

10.5 BESSEL FUNCTIONS

We have seen that in problems with circular and spherical symmetry the radial
parts of the eigenfunctions satisfy Bessel’s differential equation

d%u n 1du 4 (1 52 0 0
—_— —-— —— |u=0.
dz2  z dz z2

The purpose of this section is to summarize the most important properties of
the solutions of Bessel’s equation. Some of the proofs are omitted. There are
whole volumes on Bessel functions, such as [Bo].

In Section 10.2 we solved Bessel’s ODE in the case that the order s is
an integer. Now we allow s to be any real number. We write a prospective
solution as

u(z) =Y az*  (ap #0). 2)
k=0

We get, exactly as in Section 10.2, the value (two values, actually) of the
exponent « and the values of all the coefficients:

o ==s, a; =0 forkodd,
ai—2
ady = ———F——= k:2,4,6,....
¢ (o +k)? — 52 ( ) 3)

BESSEL FUNCTION

The Bessel function is defined as that particular solution of (1) with the ex-
ponent o = +s and with the leading coefficient ap = [2°T"(s + 1)]_1. Here
I' denotes the gamma function (see Section A.5). Actually, the choice of ag
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is quite arbitrary; we have simply made the standard choice. The gamma
function has the property that I'(s + 1) = s! if 5 is an integer. For any real s,

's+1)=sI's)=---=s(s—1)---(s —n)['(s — n).
Therefore, if we write k = 2j, it follows from (3) that
ar; = (=122 TG+ DI +5 + D]

So from (2) the Bessel function is

B o0 (—1)/ Z\2j+s
“”-/Z_; r(j+1)r(j+s+1)<§) ' @)

This series sums up to a bona fide solution of (1) for any real s, except if s is
a negative integer. [In the latter case, the series is not defined because I'(s) is
infinite for negative integers s.]

For a given value of s, not an integer, the functions J;(z) and J_(z) provide
a pair of linearly independent solutions of (1). Hence a/l the solutions of (1)
are AJs(z) + BJ_4(z) for arbitrary constants A and B. Note, however, that
J_4(2) is infinite at z = 0.

ZEROS
The zeros of Jy(z) are the roots of the equation Ji(z) = 0. It can be shown
that there are an infinite number of them: 0 < z; <z, < ---. Each one is a

simple zero, meaning that J/(z;) # 0. Between any two zeros of J; is a zero
of Js41, and vice versa. We therefore say that the zeros of J; and J;; separate
each other. In fact, the zeros of any two linearly independent solutions of
(1) separate each other. The first zeros of Jo(z) are z = 2.405, 5.520, 8.654,
11.79, .... (see Figure 10.2.1).

ASYMPTOTIC BEHAVIOR

It can be shown that as z — oo the Bessel function has the form

Js(z) =/ 7_[22 cos(z — % - %) + 0@, 5)

(Precisely, this means that [J(z) — «/2/7z cos(z — sm/2 — m/4)]z3/? is
bounded as z — o0.) Thus it looks just like a damped cosine.
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RECURSION RELATIONS

These are identities that relate the Bessel functions for different values of s.
Three of them are

Joi(z) = guz) FJ2) ©6)
and
2s
Tt + Jei(2) = U (2). (7)

The first pair (6) follows easily from the series expansion (4), while (7) follows
from (6) (see Exercise 3).

NORMALIZING CONSTANTS

In Sections 10.2 and 10.3 we used the values of the definite integrals

/ ' () zdz = LaP[T (@) + L(@® = sD) (@)1 ®)
0

To prove (8), we observe that Jy(z) satisfies Bessel’s equation (zu') +
z71(z% — s%)u = 0. Multiplying the equation by 2zu’, we get the identity

[(zu)* + (2% — sz)u2]/ = 2zu’.

Integrating from O to a, we deduce that
2/ zuldz = (zu') + (22 — sDu?| = a*u' (@) + (@* — sDu(a)?
0 0
since u(0) = 0 for s # 0. This proves (8).
In particular, if Ba is a zero of Jy(z), then (8) simplifies to

| gt ar = Yl gar = fata ol ©)
0
where the last expression comes from (6).

BESSEL FUNCTIONS OF HALF-INTEGER ORDER

By this we mean Ji(z) with s = n + %, where n is an integer. (This is the
case we encountered in Section 10.3.) In this case the change of variables

u = z~ 2y is highly effective. In fact, Bessel’s equation (1) then is converted

to the equation
st -1
V[ 1-—* =0 (10)
z

(see Exercise 4).
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The simplest case is s = %, in which case the equation is just v’ +
v = 0, with the solutions v = Acosz + Bsinz. So u(z) = Acosz/y/z+

B sin z/4/z. The Bessel function J; /2(2) is the solution that is finite at z = 0
(with an appropriate choice of constant B). Thus

[ 2
Jip(2) = ;sinz. (11)

Similarly, J_1/2(z) = 4/2/mz cos z. The recursion relations (6) now provide
explicit formulas for all the half-integers; namely,

2 | d\"sinz
J 1 = (=)= a7 =) /=, 12
nri(2) = (=17 i <Z dz) . (12)

OTHER SOLUTIONS OF BESSEL'S EQUATION

For s not an integer, the Neumann function is defined as

COS T8

N =S - o (13)
SN ts SN s

(This is unrelated to the Neumann function of Exercise 7.4.21.) Of course,
this is just another particular solution of (1). One can show that as z — o0
this solution satisfies

Ny(z) = ,/7122 sin(z _ % _ %) +O0@E, (14)

Still another pair of solutions is the pair of Hankel functions:
HE(z) = J5(2) £ iN(2)

3 (15)
= ‘/E expli(z — s /2 — /4)] + O(z7?).

The property that distinguishes the Neumann and Hankel functions from the
other solutions is their special behavior for large z.

BESSEL FUNCTIONS OF INTEGER ORDER s = n

As we saw above, this is the case when we have found only one (/,,(z)) of the
solutions of Bessel’s equation (1). A second linearly independent solution for
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s = n is the Neumann function, which is defined as

Nu(z) = lim Ny(z) =z~ lim 3 [Js(z2) = (=1)"J5(2)]

—J(z)log( ) Zakz

for some coefficients a,. We omit the derivations of these formulas.

(16)

TWO IDENTITIES

An interesting pair of identities involving integer-order Bessel functions is

zz sinf _ Z ezn0J (Z) (17)
and
1 [" .
Ju(z) = — / cos (zsin6 — nb)do. (18)
T Jo

To prove (17) and (18), let’s begin by changing notation, replacing z by
r. Let’s think of r and 6 as polar coordinates in the xy plane. The function
e'"sin? — ¢V is periodic in 6, so that we can expand it in a complex Fourier
series

zrsm@ Z gn(i)e’”0

n=—0oo

Its coefficients are

| Y L 1 [~
gn(r) = / eirsin0=ind gg — _ / cos(r sin & — n0) do.
T

— -
So it is enough to prove that g,(r) = J,(r).
Integrating by parts twice, we get

M

271n2gn(l‘) — 1’12/ eirsin@ . e—inéde

—Ir

T
= nr/ e "0cos 0 - e do

e

b
= / e sn0=in% (:2c082 0 + ir sin6) dé. (19)

T
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Upon differentiating this integral, using Section A.3, we find that

rign 4 rg, + @ —ng,

1 T

=5 ersine=ind (_126in2 0 + irsinf +r> — n?)do. (19a)
T Jn

Due to —r2sin? @ + r2 = r2 cos? 6 and identity (19), the last integral equals

1 T

3 eirsin O—ine(n2 _ n2) 4o = 0.
T

-

So by (19a), g,(r) satisfies Bessel’s equation of order n. Which solution is
it? Since g,(0) is finite, g,(r) = A, J,(r) for some constant A,. Now the kth
derivative is

k b4
g®(0) = — / ¢"sint 0 do.
2w

-7

Hence 0 = g,(0) = g/(0) = - -- = g”"~1(0) and g\(0) = 27" as we can see
by writing the sine as exponentials. Since also J(0) = 27", we deduce that
g,(r) = J,(r). This completes the proof of (17) and (18).

EXERCISES
1. Show that

= 1= () i)'~ )+

and

Ji(z) = =Jy(z) = % — 21'(;)3 + (;)2(;)5 +

2. Write simple formulas for J3,, and J_3,.
Derive the recursion relations (6) and (7).

w

4. Show that the substitution u = z~!/?v converts Bessel’s equation into
(10).

5. Show that if u satisfies Bessel’s equation, then v = z%u(Az#) satisfies
the differential equation

1—=2 2p2 2
v+ 2 + |:()»,32’3_1)2 — S'Bza]v =0.
Z Z
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10.

11.
12.
13.

14.

15.

16.

17.

18.

19.
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Use (11) and the recursion relations to compute J3,, and Js,,. Verify
(12) in these cases.

Find all the solutions u(x) of the ODE xu” — u’ + xu = 0. (Hint: Sub-
stitute u = xv.)

Show that Hli/z(z) = /2/mz et /D exactly!

(a) Show that u(r, t) = ¢! H Si (wr/c) solves the three-dimensional
wave equation.

(b) Show that it has the asymptotic form (1 4 i)/c/mer ¢/“'*/°) The
plus sign gives us an incoming wave (an approximate function of
t 4 r/c), the minus sign an outgoing wave (an approximate function
oft —r/c).

Prove that the three definitions of the Neumann function of integer order

given by (16) are equivalent.

Fill in the details in the derivation of (17) and (18).
Show that cos(x sin ) = Jo(x) + 2 Y 2, Jax(x) cos 2k6.
Substitute ¢ = ¢/’ in (17) to get the famous identity

o
o1/2zt=1/1) _ Z J ()",

n=—oo

The function on the left is called the generating function for the Bessel
functions of integer order. It is the function whose power series expansion
in ¢ has the integer Bessel functions as coefficients.

Solve the equation —uy, — uyy, + k*u = 0 in the disk {x* + y* < a*}
with u = 1 on the boundary circle. Write your answer in terms of the
Bessel functions J,(iz) of imaginary argument.

Solve the equation —u,, — uyy, + k*u = Oin the exterior {x* + y* > a*}
of the disk with u = 1 on the boundary circle and u(x, y) bounded at
infinity. Write your answer in terms of the Hankel functions H,(iz) of
imaginary argument.

Solve the equation —uy, — uyy — u.. + k*u = 0 in the ball {x* + y2 4
z2 < a?}, withu = 1 on the boundary sphere. Write your answer in terms
of elementary functions.

Solve the equation —u, — Uy — u.. + kK*u =0 in the exterior
{x? 4+ y? + 22 > a?} of the ball with u = 1 on the boundary sphere and
u(x, y, z) bounded at infinity. Write your answer in terms of elementary
functions.

Find an equation for the eigenvalues and find the eigenfunctions of —A
in the disk {x? + y? < a?} with the Robin BC 9v/dr 4+ hv = 0 on the
circle, where % is a constant.

Find an equation for the eigenvalues and find the eigenfunctions of —A
in the annulus {a”> < x? + y?> < b?} with Dirichlet BCs on both circles.
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10.6 LEGENDRE FUNCTIONS

In problems with spherical symmetry, as in Section 10.3, we encountered
Legendre’s differential equation

[(1 —22u'] + yu =0, (1)

where y = I(/ 4 1) for some integer / > (. The purpose of this section is to
summarize the most important properties of its polynomial solutions. Some
of the proofs are omitted. For more details, see [Sa] or [MF].

LEGENDRE POLYNOMIAL

The ODE (1) has “singular points” where 1 — z> = 0. Thus z = %1. (See
Section A.4 for a brief discussion of singular points.) The equation (1) is
easily solved by a power series:

o0
u(z) = Z akzk.
k=0

Upon substituting the power series into (1), we get

o0 oo
D k= Dzt =Y (K + k = y)aZt = 0.
k=0

k=0

We replace k£ — 2 by k in the first sum. The coefficients of like powers of z
must match, so that

_ kk+D -y _
=gy ®=012... )

Both gy and a; are arbitrary constants. Since y = I(/ 4+ 1) for some integer /,

we see from (2) that ;. = a4 = --- = 0.
Thus we always get at least one solutlon that has only a finite number
of nonzero coefficients a;, a@;_,, . . ., that is, a polynomial. It is the Legendre

polynomial P;(z). If / is even, P,(z) has only even powers. If / is odd, P;(z)
has only odd powers. The integer / is the degree of P;(z). Making a certain
choice of the first coefficient ag or ay, it follows from (2) that the Legendre
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polynomials are

3)

(= @ =2,
Pi(z) = 21; I (l—2j)!(l—j)!z /

wherem = [/2ifliseven,andm = (I — 1)/2if/is odd. The first six Legendre
polynomials are as follows:

) Pl(z)

0 1

1 z

2 l(3z2 -1
2

3 1(53 3z)
—(5z° -3z
2

1
4 g(3524 —30z%2 +3)

1 5 3
5 (632 =702 +152)

The P,(z) satisty the recursion relation
I+ DPi(z) = QL+ DzP(z) +1P1(2) =0 4)

(see Exercise 1). As mentioned in Section 10.3, they satisfy the orthogonality
relation

1
/ Pi(2)Py(z)dz =0 forl #1. 5)
-1

In case y is not the product /(! + 1) of two successive integers, it turns out
that there is no polynomial solution # = 0 of (1). Both linearly independent
solutions can be expressed as power series as in Section A.4 in powers of
(z — 1). Only one of these solutions is singular at z = 1. The nonsingular
solution is called a Legendre function.

NORMALIZING CONSTANTS

The normalizing constants are

1
2, _
/1 [P(2)]"dz = TR

Let’s prove (6). Taking the inner product of (4) with P;_;(z) and using the
orthogonality (5), we get

QL+ 1)z Py, P—y) = 1(Pi—1, Pi—y).

2
(6)
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Replacing [ by [ — 1 in (4) and taking the inner product with P;, we get
QL= 1D)(zP—1, P) = (P, Pp).
Combining these two identities, we get

QL+ 1)(P, P) = 2l — 1)(Pi—1, P—1)

valid for / = 2, 3, ... and also for / = 1. Hence
2 —1)+1
P,P)=———"(P_y, P_
(P, Pp) 21+1(1111)
20—-2)+1
= Y P, P =
T (Pi—2, P1—)
— 3 (ppy= (Po, Py) = —=
T+ Y T Y Ty

RODRIGUES’ FORMULA

The formula of Rodrigues expresses the Legendre polynomials explicitly.
Itis

[
Ld 2y ™)

Pz) = —
12 = 3 g

It follows that P;(1) = 1. The proof is left for Exercise 2.

ZEROS

Inside the interval —1 < z < 1, P;(z) has exactly [ zeros. Furthermore, its
kth derivative d*P, /dz* has exactly [ — k zeros for 1 < k < I. None of these
derivatives vanishes at either endpoint.

To prove these statements, we’ll use Rodrigues’ formula. The polynomial

0(z) = (22 — l)l has no zeros in the interval (—1, 1) except at the endpoints
+1. By Rolle’s theorem from elementary calculus, its first derivative Q' has
at least one interior zero as well as zeros at the two endpoints. Similarly, its
second derivative Q" has at least two interior zeros separated by the zero of
Q’, its third derivative Q" has at least three separated by the two of Q”, and
so on. Thus P;, which is essentially the /th derivative Q) of Q, has at least
[ interior zeros. Because it is a polynomial of degree /, it must have exactly
[ zeros. But now the game changes because O no longer vanishes at the
endpoints +1. Because there are only / — 1 subintervals between the zeros
of 0, its derivative QY+ is only guaranteed to have / — 1 zeros. Because
0"*V_ which by (7) is almost the same as P/, is a polynomial of degree [ —
1, it must have exactly / — 1 zeros. Similarly, Q(’ 2 which is essentially P/,
has exactly / — 2 zeros, and so on.
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GENERATING FUNCTION
The identity

(1—2z 4" =Y P! (8)
=0

is valid for |z] < 1 and |¢| < 1. The function on the left side of (8) is called the
generating function for the Legendre polynomials because all of them appear
as the coefficients in the power series expansion.

To prove (8), we note that the left side g(z, z) of (8) is an analytic function
of ¢ for |t| < 1, which precisely means that it has a power series expansion

g, )=y Qi)' ©)
=0

with some coefficients Q;(z). (The reader who has not yet studied analytic
functions can simply expand the function g(z, z) using the binomial expansion
in powers of 2¢z — > and then expand the powers and rearrange the terms to

get (9).)
On the other hand, explicit differentiation of g(z, z) shows that it satisfies
the PDE

[(1 = 2%)g:1. + t[tgl, = 0.
(Check it.) Plugging the expansion (9) into this PDE, we find that

Y11= 21 + ) 1d + D) = 0.
=0 =0

Because the coefficients must match, we must have

[(1 =20/ + 11+ 1)0:(2) =

So Q; satisfies Legendre’s differential equation!
On the other hand, putting z = 1 in the definition of g(¢, z), we have

et D=(1—2+) P =(—n'= Zt

so that Q;(1) = 1. This determines which solution of Legendre’s equation Q,
is, namely Q; = P;. This proves (8).

ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre equation is

2
[(1— 2] + (y i )u =0, (10)

1—2z2

where y = I(l 4+ 1) and m <[/, m and / being integers.
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We define the associated Legendre functions as

my2 d™
EW@=U—%%”@;H@, (11)

where the integer m is a superscript. Let’s show that (11) is indeed a solution
of (10). In fact, v = (d"/dz")P;(z) has to satisfy the m-times-differentiated
Legendre equation

(1 — 220" = 2(m + Dzv' + [y —m(m + D]v = 0.

Substituting v(z) = (1 — 22)_m/ w (z), we get the equation

2
Kl—ﬁw7+(y—lﬁﬂ)W=a

which is precisely (10).

The orthogonality property of the associated Legendre functions has al-
ready been stated in Section 10.3; namely, P/ and P;" are orthogonal on the
interval (—1, 1). The normalizing constants are

! 2(1 +m)!
m 2 .
/_1 [P (2)]° dz = TER T (12)

Rodrigues’ formula for the associated functions follows immediately from
the m = 0 case (7); its statement is left to the reader.

EXERCISES

1. Show that the Legendre polynomials satisfy the recursion relation (4).

2. (a) Prove Rodrigues’ formula (7).
(b) Deduce that P;(1) = 1.

3. Show that P,,(0) = (—1)"(2n)!/2%"(n!)*.

4. Show that [, x>Py(x)dx = Ofor/ > 3.

5. Let f(x)=xfor0 <x < 1,andf(x) = Ofor —1 < x < 0. Find the co-
efficients @; in the expansion f(x) = Zfio a; Pi(x) of f(x) in terms of
Legendre polynomials in the interval (—1, 1).

6. Find the harmonic function in the ball {x? 4 y? + z? < a?} with u =
cos? 6 on the boundary.

7. Find the harmonic function in the ball {x?+ y?>+ 2% < a?}
with the boundary condition u =A on the top hemisphere
x>+ y*+22=4z>0} and with u =B on the bottom hemi-
sphere {x?> + y? + z> = a?, z < 0}, where A and B are constants.

8. Solve the diffusion equation in the solid cone {x? + y? + z? < a?,6 < «}
with # = 0 on the whole boundary and with general initial conditions.
[Hint: Separate variables and write the solution as a series with terms of
the separated form 7' (¢) R(r)q(¢)p(cos 8). Show that p(s) satisfies the
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associated Legendre equation. Expand p(s) in powers of (s — 1). In terms
of such a function, write the equations that determine the eigenvalues. ]

10.7 ANGULAR MOMENTUM
IN QUANTUM MECHANICS

This section is a follow-up to Section 9.5. We consider Schrodinger’s equation
with a radial potential V(r), where r = |x| = (x> + y? + 22)1/2. Thus

iu, = —%Au-ﬁ-\/(r)u (1)

in all of space with the “boundary condition”

f// lu(x, 1)|*> dx < oo. )

—iM/2 where

We separate out the time variable to get u(x, ) = v(X)e
—Av+2V(r)v = Av.

Recall that A is interpreted as the energy.
Next we separate out the radial variable v = R(r)Y (6, ¢) to get

=2V () + 7F2RW + 2R, ! { !

1
— Y, in 0)Y, =0.
R Y | sin% 6 0o T sinG[(sm ) 0]9}

Because the variable r occurs only in the first three terms, the radial equation
is

2 Y
Ry, + =R, + [A —2V(r) - 7]1? =0, S)
r r

whereas the Y equation is precisely (10.3.3). Therefore, Y (6, ¢) is a spherical
harmonic:

Y(©,9)=Y/"(0,¢) = P"(cos0) e'me 4)

for |m| < [ (see Section 10.3). Furthermore, y = [(l 4+ 1). The index /is called
the orbital quantum number, and m is the magnetic quantum number.

In quantum mechanics the angular momentum operator is defined as the
cross product

Yo, —zd, L,
L=—-ixxV=-i|lz3,—x0, | =|L, | (%)
X0y — yoy L,
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This operator L has the spherical harmonics as its eigenfunctions, as we now
explain. In spherical coordinates L takes the form (Exercise 1)

L, =i(cotf cos ¢ dg + sin ¢ dp)
Ly =i(cotdsin¢ d, — cos ¢ dp) (6)
L. = —i0y.
Therefore,
ILP? =L+ L+ L}
12 1 9 . 0 7
=T a2 T aan SIHG—,
sin” 6 0¢ sin @ 06 a6
which is exactly the angular part of the negative laplacian operator! So from
(10.3.3) we have the equation

IL*(Y") =10+ DY (8)
Because of the explicit form of L,, we also have the equation
L.(Y") =mY". 9)

The effect of the operators L, and L, on the spherical harmonics is not as
simple. If we denote

Ly=L,=%iL,,
known as the raising and lowering operators, then
Lo(Y") =10 —m{+m+ D]y
L_(Y") =0 +m)—m+ DI'"?y "

In quantum mechanics there cannot be a pure rotation about a single
axis. Indeed, let’s choose coordinates so that the axis of rotation is the z
axis. A pure rotation about the z axis would mean ¢ dependence but no 6
dependence. But such a spherical harmonic would mean that m # 0 and / =
0. This cannot happen because |m| < [. The physicist’s explanation is that
in quantum mechanics you cannot define an axis of rotation except in an
averaged way. There will always remain some probability of a rotation off the
axis.

(10)

HYDROGEN ATOM

The radial equation (3) can be solved analytically only for certain potentials
V(r). We take up the case again of the hydrogen atom where V(r) = —1/r.
Thus, after separating the time variable, we have

2 l(l+1)i|R=0 (11)

2
RIV+RI+[)“+_ P
r r r
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The case when / = 0 has already been discussed in Section 9.5. As in Section
9.5, the boundary conditions are R(0) finite and R(oco) = 0. We shall follow
exactly the same method as in that section.

Consider only the case A < 0 and let 8 = V—x. Let w(r) = e R(r).

Then
w,-,-+2<l—ﬂ)err[z(lr_ﬂ)—l(l+1)}w:0. (12)

72

We look for solutions in the form of a power series w(r) = Z;tio agr*.
Thus

S k(k — Dagr* =2 + 23 kagr* 2 = 28 Y kagr*~!
+2(1 =B Y " =10+ DY a2 = 0.

Switching the dummy index & to £k — 1 in the third and fourth sums, we get

3 [k(k — 1) 4+ 2k — I(I + D] ar* >
=
+ i [-2Btk — 1)+ 2 = 2B)] a7 > = 0.
That is, o
i k(k + 1) = 10 + D] apr* = + i 21 — k)ar_r 2 =0.  (13)
k=0 k=1

Thus we are led to the recursion relations

k=0: I+ 1Dag=0

k=1: [2—10+ Dla; = —2(1 — B)ay
k=2: [6—10+ Dlas = —2(1 —2B)a
k=3: [10—1(+ Dlas = —2(1 — 3)as,

and in general
[k(k + 1) = + Dlax = =2(1 — kB)ax—:. (14)

We know that / has to be a nonnegative integer. Thus ay = 0 if / # 0. In fact,
it is clear from (14) that every coefficient has to vanish until the /th one:

a0=a1=--'a1_1:O.

But then g, is completely arbitrary. Once a; is chosen, the succeeding coef-
ficients are determined by it. There will be a polynomial solution only if the
coefficients terminate. This will happen whenever 8 = 1/n with n an integer

greater than /. Thus the eigenvalues are
1
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(as in Section 9.5). The index 7 is called the principal quantum number.
Thus for each integer /, 0 < [ < n, we have eigenfunctions of the form

Vnim (1, 0, ¢) = e"/"LL(r) - YO, ¢). (16)

These are the wave functions of the hydrogen atom. We have used the (non-
standard) notation w(r) = Li,(r) for the polynomial. The ODE (11) is a rel-
ative of the associated Laguerre equation. The polynomials L' (r) have the
form

n—1
L) = Zakrk =ar' + - +a,_yr" . (17)
k=l

[The associated Laguerre polynomials are r~'L(r).] The eigenfunctions
satisfy the PDE

2 1
_Avnlm - ;vnlm = _;Unlm (18)

for n, [, m integers with 0 < |m| </ <n — 1.
We conclude that the separated solutions of the full Schrédinger equation
for the hydrogen atom are

eit/2n2 . e_r/ﬂ . Li(l‘) . Ylm(ev ¢) (19)

We should beware however that, as in Section 9.5, the eigenfunctions v, (X)
are not complete among the functions of three variables.

We have seen that the eigenvalue A, = —1/n” has many eigenfunc-
tions, one corresponding to each m and / such that 0 </ < n and |m| < /.
Thus there are 2/ + 1 eigenfunctions for each / and altogether there are
Z?:_ol (21 + 1) = n? eigenfunctions for A,. (In physics, the values of / are
traditionally denoted by the letters s(/ = 0), p(I = 1), d(I = 2), and f(/ = 3), a
legacy from the early observations of spectral lines. For a reference, see [Ed].)

EXERCISES

1. Show that in spherical coordinates the angular momentum operator L is
given by (6).

2. Prove the identity L,L, — L,L, = iL. and the two similar identities formed
by cyclically permuting the subscripts.

3. (a) Write down explicitly the eigenfunction of the PDE (18) in the case
n=1.
(b) What are the four eigenfunctions with n = 2?
(c) What are the nine eigenfunctions with n = 3?
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Show that if 8 is not the reciprocal of an integer, the ODE (11) has no

solution that vanishes as r — oo.

(a) Write Schrodinger’s equation in two dimensions in polar coordi-
nates iu, = —%(u,ﬁr +u, /1 4 ugg/1r?) + V(r)u, with a radial poten-
tial V(r). Find the separated eigenfunctions u = T (¢)R(r)®(0), leav-
ing R in the form of a solution of an ODE.

(b) Assume that V(r)=1r2. Substiute p=r> and R(r)=
e~ P2 p~"/2L(p) to show that L satisfies the Laguerre ODE

v+ 1 2
L +[—1+}L +oL=0
pp P AR

for some constants v and j.
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GENERAL
EIGENVALUE
PROBLEMS

The eigenvalues are the most important quantities in PDE problems. Only for
special domains, as in Sections 10.2 and 10.3, is it possible to get explicit
formulas for the eigenvalues of the laplacian. Can anything be said about the
eigenvalues of the laplacian for a domain of arbitrary shape? The answer is
yes and provides the subject of this chapter.

We first show that the eigenvalues always minimize the energy subject to
certain constraints. We use this idea in Section 2 to derive a practical method
for computing the eigenvalues. In Section 3 we prove the completeness of the
eigenfunctions. In Section 4 we consider more general eigenvalue problems,
including the Sturm-Liouville problems. Then we deduce some consequences
of completeness. Finally, in Section 6 we study the size of the nth eigenvalue
for n large.

11.1 THE EIGENVALUES ARE MINIMA OF THE
POTENTIAL ENERGY

The basic eigenvalue problem with Dirichlet boundary conditions is

—Au=Aiuin D, u =0onbdyD, (1

where D is an arbitrary domain (open set) in 3-space that has a piecewise-
smooth boundary. In this chapter we denote the eigenvalues by

O<A A <A< <A, <., ()

299
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repeating each one according to its multiplicity. (We know they are all pos-
itive by Section 10.1.) Each domain D has its own particular sequence of
eigenvalues.

As usual, we let

(f,g)=/f/f(X)@dX and I|f||=(f,f)1/2=(// If(X)Ide>1/2-
D D

Although we’ll work in three dimensions, everything we’ll say is also valid
in two dimensions (or any number of dimensions for that matter). We have
already seen in Section 7.1 (Dirichlet principle) that the function that mini-
mizes the energy and satisfies an inhomogeneous boundary condition is the
harmonic function. The eigenvalue problem as well is equivalent to a mini-
mum problem for the energy, as we shall now show.

It may be helpful to pause for a moment to think about minima in ordinary
calculus. If E(u) is a function of one variable and u is a point where it has
a minimum, then the derivative is zero at that point: E’(u) = 0. The method
of Lagrange multipliers states the following. If E(u) is a scalar function of
a vector variable that has a minimum among all u which satisfy a constraint
F(u) = 0, then u satisfies the equation VE(u) = AV F(u) for some constant
scalar L. The constant A is called the Lagrange multiplier.

Now consider the minimum problem:

2
m:min{“ W :w:OonbdyD,wgéO} (MP)

(where w(x) is a C? function). This notation means that we should find the
smallest possible value of the quotient.

3)

among all functions w(x) that vanish on the boundary but are not identically
zero in D. This Q is called the Rayleigh quotient.

What do we mean by a “solution” of (MP)? We mean a C 2 function u(x),
not the zero function, such that # = 0 on bdy D and such that

IVaul? _ IVw]

2 = 2
[l [l

)

for all w with w = 0 on bdy D and w £ 0. Notice that if u(x) is a solution of
(MP), so is Cu(x) for any constant C # 0.
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Theorem 1. Minimum Principle for the First Eigenvalue Assume
that u(x) is a solution of (MP). Then the value of the minimum equals the first
(smallest) eigenvalue A of (1) and u(x) is its eigenfunction.

That is,

} and —Au=MAu inD. 5)

The moral is that “the first eigenvalue is the minimum of the energy.” This
is a true fact in most physical systems. The first eigenfunction u(x) is called
the ground state. It is the state of lowest energy.

Proof. By a trial function, we shall mean any C? function w(x) such that
w = 0 on bdy D and w #£0. Let m be the minimum value of the Rayleigh
quotient among all trial functions. Clearly, the constant m is nonnegative. Let
u(x) be a solution of (MP). By assumption, we have

2 2
. M 1Vul* dx - [ IVw]? dx
JIJ u)? dx JIf w? dx

for all trial functions w(x). Let’s abbreviate, writing | instead of [f[* dx. Let

v(Xx) be any other trial function and let w(x) = u(x) + ev(x) where € is any
constant. Then

[V +ev)?
fle) = Tutel

has a minimum at € = 0. By ordinary calculus, f’(0) = 0. Expanding both
squares in (6), we have

(6)

[ (Vul® +2¢Vu - Vv + €*[Vv|?)
[ (u? + 2euv + €2v?) '
So the derivative is easy to compute:
([ u)2 [ Vu-Vv)— ([ |Vul2 [ uv)
(f w2y’

2
/Vu.sz f}vuil /uvzm/uv. (7

By Green’s first identity (G1 in Chapter 7) and 