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MATHEMATICAL CONSTANTS II

Famous mathematical constants include the ratio of circular circumference to
diameter, π= 3.14 . . . , and the natural logarithm base, e= 2.718 . . . . Students
and professionals can often name a few others, but there are many more buried
in the literature awaiting discovery.

How do such constants arise, and why are they important? Here the author
renews the search he began in his book Mathematical Constants, adding
another 133 essays that broaden the landscape. Topics include the minimality of
soap film surfaces, prime numbers, elliptic curves and modular forms,
Poisson–Voronoi tessellations, random triangles, Brownian motion, uncertainty
inequalities, Prandtl–Blasius flow (from fluid dynamics), Lyapunov exponents,
knots and tangles, continued fractions, Galton–Watson trees, electrical
capacitance (from potential theory), Zermelo’s navigation problem, and the
optimal control of a pendulum. Unsolved problems appear virtually
everywhere as well. This volume continues an outstanding scholarly attempt to
bring together all significant mathematical constants in one place.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application
in mathematics or mathematical science and for which a detailed development
of the abstract theory is less important than a thorough and concrete
exploration of the implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as
exercises at the ends of chapters. For technicalities, readers are referred to the
bibliography, which is expected to be comprehensive. As a result, volumes are
encyclopedic references or manageable guides to major subjects.
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Preface

One reviewer for the first volume ofMathematical Constants described the book
as “excellent bedtime reading” [1]. My aim here is similar to before: to gather
far-flung ideas in one place, focusing on highly concrete, eminently computable
results. These essays recount stories that are both successful (with depth of under-
standing) and tangible (in terms of numerical precision). Much mathematical
research these days is necessarily abstract and qualitative, due to the enormous
difficulty of the issues under consideration. Here I direct the spotlight to those
rare cases when quantitative exactness still appears to be pertinent. My words
from fifteen years ago (concerning purpose and scope) apply as well now as then.

A sample problem serves to illustrate my endeavor. While discussing the mass
Mn of all nonisomorphic Type I inner product modules of rank n, Milnor &
Husemoller [2] gave a plot of Mn on a logarithmic scale for 1≤ n≤ 30. They
remarked that Mn is asymptotic to C · F(n) as n→∞, describing the function
F(n) exactly, but reporting only that “the constant C is approximately 0.705”.
Unraveling this enigma – what is the precise nature of C? – is captivating to me.
Understandably this question was incidental to the purposes of [2]; it is, however,
central here to me [3]. The answer involves a quantity [4] discovered in 1860, as
well as something else.

This volume is dedicated to the memory of Philippe Flajolet, a fearless leader
and inspiring mentor. It is also a tribute to my parents, Charles Richard Finch
and Shirley Peery Finch, and tomy siblings, Valerie JeanBridge,GregoryCharles
Finch and William Robert Finch, with love and gratitude. I acknowledge a Book
Fellowship from the Clay Mathematics Institute in 2004–2005, long before the
magnitude of my present task became clear.

“Open the book at random”, the aforementioned reviewer wrote, evoking a
few constants from many across the canvas, seedlings drawn from a vast forest.
Read, learn, wander, reflect, ... “and so on into the night”.
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x Preface

[1] Philip J. Davis, Constants in the universe: their validation, their compilation, and their
mystique, SIAM News, v. 37 (April 2004) n. 3.

[2] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer-Verlag, 1973, p. 50;
MR0506372 (58 #22129).

[3] S. R. Finch, Minkowski-Siegel mass constants, this volume, §5.6.
[4] S. R. Finch, Glaisher-Kinkelin constant, first volume, pp. 135–145.
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Notation

⌊x⌋ floor function: largest integer ≤ x

⌈x⌉ ceiling function: smallest integer ≥ x

{x} fractional part: x− ⌊x⌋

ln x natural logarithm: loge x(
n
k

)
binomial coefficient:

n!
k!(n− k)!

b0 +
a1|
|b1

+
a2|
|b2

+
a3|
|b3

+ · · · continued fraction: b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·
f(x)=O(g(x)) big O: |f(x)/g(x)| is bounded from above as x→ x0

f(x)= o(g(x)) little o: f(x)/g(x)→ 0 as x→ x0

f(x)∼ g(x) asymptotic equivalence: f(x)/g(x)→ 1 as
x→ x0∑

p

summation over all prime numbers p= 2, 3, 5, 7,
11, ... (only when the letter p is used)∏

p

same as
∑

p, with addition replaced by
multiplication

f(x)n power: (f(x))n, where n is an integer

fn(x) iterate: f(f(· · · f︸ ︷︷ ︸
n times

(x) · · ·)), where n≥ 0 is an integer

erf(x)=
2√
π

x∫
0

exp(−t2) dt error function: same as 1 − erfc(x)
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xii Notation

Φ(x)=
1
2
erf

(
x√
2

)
+

1
2

standard normal distribution function

pFq(·; ·; z) generalized hypergeometric function:

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z)

=
Γ(b1)Γ(b2) · · ·Γ(bq)
Γ(a1)Γ(a2) · · ·Γ(ap)

∞∑
k=0

Γ(a1 + k)Γ(a2 + k) · · ·Γ(ap + k)
Γ(b1 + k)Γ(b2 + k) · · ·Γ(bq + k)

zk

k!
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1
Number Theory and Combinatorics

1.1 Bipartite, k-Colorable and k-Colored Graphs

A labeled graphG is bipartite if its vertex setV can be partitioned into two disjoint
subsetsA and B,V=A ∪ B, such that every edge ofG is of the form (a, b), where
a∈A and b∈B.

Let k be a positive integer and K= {1, 2, . . . , k}. A labeled graph G is
k-colorable if there exists a function V→K with the property that adjacent
vertices must be colored differently. Clearly G is bipartite if and only if G is
2-colorable.

Define cn,k to be the number of k-colorable graphs with n vertices. We have
cn,1 = 1 for n≥ 1 since a 1-colorable graph G cannot possess any edges. We
also have c1,k= 1 for k≥ 1, c2,k= 2 for k≥ 2, c3,2 = 7 by Figure 1.1, c3,3 = 8,
c4,2 = 41 by Figure 1.2, and c4,3 = 63. More generally, cn,n−1 = 2n(n−1)/2 − 1 since
the total number of labeled graphs with n vertices is 2n(n−1)/2 and, of these, only
the complete graph cannot be (n− 1)-colored.

Does there exist a formula for cn,k? The answer is yes if k= 2, but evidently
no for k≥ 3. We will examine this issue momentarily, but first define a related
notion.

A k-colored graph is a labeled k-colorable graph together with its coloring
function. Let γn,k be the number of k-colored graphs with n vertices. The point
is that a k-colorable graph counts several times as a k-colored graph. Clearly
γn,1 = 1, γ1,k= k, γ2,2 = 6 by Figure 1.3, γ2,3 = 15 by Figure 1.4, and γ3,2 = 26 by
Figure 1.5.

When k= 2, the following formulas can be proved [1–3]:

γn,2 =

n∑
j=0

(
n
j

)
2 j(n−j),

cn,2 = n! ·
(
the nth degree Maclaurin series coefficient of

√
Γ(x)

)
,
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2 Number Theory and Combinatorics

Figure 1.1 There are 7 labeled bipartite graphs with 3 vertices.

Figure 1.2 There are 41 labeled bipartite graphs with 4 vertices.

1 1 2 2 1 2 2 1 1----2 2----1

Figure 1.3 There are 6 labeled 2-colored graphs with 2 vertices.
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1.1 Bipartite, k-Colorable and k-Colored Graphs 3

3 3 1 3 3 1 1----3 3----1

2 3 3 2 2----3 3----2

Figure 1.4 There are 15 labeled 3-colored graphs with 2 vertices (these 9 plus the
preceding 6).

1 1 1

1 1 2

1 1 2

2 2

1 1-----2

2

1

22-----1

1 2-----1

2 1-----2

1-----2-----1

2-----1-----1

1-----2

2-----1

1

2

2-----1

1-----2

1

2 2 2

1 2 2

2 1 2

2 1 1

1 2 2

2 2 1

1 1-----2

2 2-----1

1 1 1

1 2 1

12-----1

21-----2

Figure 1.5 There are 26 labeled 2-colored graphs with 3 vertices.

where

Γ(x)=
∞∑
i=0

γi,2
xi

i!
.

For arbitrary k, we have the following recursion [4, 5]:

γn,k=

n∑
j=0

(
n
j

)
2 j(n−j)γj,k−1

with initial conditions γ0,k= 1 and γn,0 = 0 for n≥ 1. Alternatively, we have a
closed-form expression involving multinomial coefficients:

γn,k=
∑
N

(
n

n1, n2, . . . , nk

)
2

1
2 (n

2−n2
1−n2

2−···−n2
k)
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where the summation is over all nonnegative integer k-vectorsN=(n1, n2, . . . , nk)
satisfying n1 + n2 + · · ·+ nk= n. There is, however, no known analogous for-
mula for cn,k when k≥ 3.

Computations show that [4, 6]

{γn,2}∞n=1 = {2, 6, 26, 162, 1442, 18306, 330626, 8488962 . . .} ,

{cn,2}∞n=1 = {1, 2, 7, 41, 376, 5177, 103237, 2922446 . . .}

and suggest that γn,2/cn,2 → 2 as n→∞. We also have

{γn,3}∞n=1 = {3, 15, 123, 1635, 35043, 1206915, 66622083, 5884188675, . . .} ,

{cn,3}∞n=1 = {1, 2, 8, 63, 958, 27554, . . .}

but there is insufficient data on cn,3 to clearly suggest the asymptotic behavior of
γn,3/cn,3. Prömel & Steger [7], however, proved that

lim
n→∞

γn,k
cn,k

= k!

for each k≥ 2. In words, a random k-colorable graph is almost surely uniquely
k-colorable (up to a permutation of colors). This is an important result since it
allows us to utilize at least one term of the γn,k asymptotics to estimate the growth
of cn,k.

We turn now to a result due to Wright [8–12]: if n≡ amod k, where 0≤ a< k,
then

γn,k∼C(k, a) · 2 1
2 (1−

1
k )n

2
· kn ·

(
k

ln(2) · n

)k−1
2

as n→∞, where C(k, a) is a constant that depends on n only via its residue
modulo k. In fact,

C(k, a)= k
1
2 · (ln(2))

k−1
2 · (2π)−

k−1
2 · Lk(a)

and the infinite series Lk(a) will be defined for k= 2, 3 and 4 shortly.

1.1.1 2-Colored Graph Asymptotics

To characterize the growth of γn,k, by the above, it is sufficient to determine
C(k, a) for each 0≤ a< k. We have here

L2(a) =

∞∑
r=−∞

2−
1
2 r

2− 1
2 (a−r)2+ 1

4 a
2

=

∞∑
r=−∞

2−
1
4 (a−2r)2 =

{
2.1289368272 . . . if a= 0,
2.1289312505 . . . if a= 1.
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1.1 Bipartite, k-Colorable and k-Colored Graphs 5

These two constants also appear with regard to the asymptotic enumeration of
partially ordered sets [13] and of linear subspaces ofFn2 [14], whereF2 is the binary
field with arithmetic modulo 2. Therefore

C(2, a)=
{

1.0000013097 . . .= 1 + ε if a= 0,
0.9999986902 . . .= 1 − ε if a= 1

where ε= 1.3097396978 . . .× 10−6. In fact, all of the constants C(k, a) we
examine are close to 1; thus we shall focus on difference with 1 henceforth.

1.1.2 3-Colored Graph Asymptotics

We have here

L3(a) =
∞∑

r=−∞

∞∑
s=−∞

2−
1
2 r

2− 1
2 s

2− 1
2 (a−r−s)2+ 1

6 a
2

=
∞∑

r=−∞

∞∑
s=−∞

2−
1
3 (a

2−3ar+3r2−3as+3rs+3s2)

and therefore

C(3, a)=
{

1 + 2ε if a= 0,
1 − ε if a= 1 or 2

where ε= 1.7060611047...× 10−8.

1.1.3 4-Colored Graph Asymptotics

All planar graphs are 4-colorable by the famous Four Color Theorem. We have
here [4, 6]

{γn,4}∞n=1 = {4,28,340,7108,254404,15531268,1613235460,284556079108, . . .},

{cn,4}∞n=1 = {1, 2, 8, 64, 1023, 32596, . . .} ,

L4(a) =
∞∑

r=−∞

∞∑
s=−∞

∞∑
t=−∞

2−
1
2 r

2− 1
2 s

2− 1
2 t

2− 1
2 (a−r−s−t)2+ 1

8 a
2

=
∞∑

r=−∞

∞∑
s=−∞

∞∑
t=−∞

2−
1
8 (3a

2−8ar+8r2−8as+8rs+8s2−8at+8rt+8st+8t2)

and therefore

C(4, a)=


1 + δ if a= 0,
1 − ε if a= 1 or 3,
1 − δ + 2ε if a= 2,

where δ= 4.2421496651 . . .× 10−9 and ε= 2.5731271141...× 10−12. A simple
relationship between δ and ε is not apparent.
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6 Number Theory and Combinatorics

Higher-order asymptotics for γn,k are possible, due to Wright [8]; the corre-
sponding constants await study. Observe that terms beyond the first need not
necessarily apply for cn,k.

A random k-colorable graph is almost surely connected [10, 12, 15] and is
almost surely k-chromatic (meaning that k− 1 colors will not suffice to color all
n vertices). The asymptotics discussed above therefore apply to these important
subclasses as well.

Enumerating unlabeled k-colorable graphs (that is, non-isomorphic types of
labeled k-colorable graphs) is also a difficult computational problem [16]. A gen-
eral result due to Prömel [17] provides that cn,k/n! is the associated asymptotic
formula.
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MR1277813 (95a:05002).
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MR0133252 (24 #A3086).
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J. Math. 22 (1970) 594–596; MR0263695 (41 #8296).
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MR0289368 (44 #6559).
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1.2 Transitive Relations, Topologies and Partial Orders

Let S be a set with n elements. A subsetR of S× S is a binary relation (or relation)
on S. The number of relations on S is 2n

2
. Equivalently, there are 2n

2
labeled

bipartite graphs on 2n vertices, assuming the bipartition is fixed and equitable.
A relation R on S is reflexive if for all x∈S, we have (x, x)∈R. The number of

reflexive relations on S is 2n(n−1).
A relation R on S is antisymmetric if for all x, y∈S, the conditions (x, y)∈R

and (y, x)∈R imply that x= y. The number of antisymmetric relations on S is
2n · 3n(n−1)/2.

A relation R on S is transitive if for all x, y, z∈S, the conditions (x, y)∈R
and (y, z)∈R imply that (x, z)∈R. There is no known general formula for the
number Tn of transitive relations on S. It is surprising that such a simply-stated
counting problem remains unsolved [1–6].

A topology on S is a collection Σ of subsets of S that satisfy the following
axioms:

• ∅∈Σ and S∈Σ

• the union of any two sets in Σ is in Σ

• the intersection of any two sets in Σ is in Σ.

Note that since S is finite, our phrasing of the second axiom is correct. No one
knows a general formula for the numberUn of topologies on S. Also, a topology
on S is a T0 topology if it additionally satisfies a (weak) separation axiom:

• for any pair of distinct points in S, there is a set in Σ containing one point but
not the other.

Again, no one knows a general formula for the number Vn of T0 topologies [7].
A quasi-order on S is a relation that is both reflexive and transitive. Let Qn

denote the number of such relations. Other uses of the phrase “quasi-order” exist
and so care must be taken when reviewing the literature. There is a one-to-one
correspondence between the topologies on S and the quasi-orders on S; hence
Qn=Un.

A partial order on S is a quasi-order that is antisymmetric as well. Let Pn
denote the number of such relations. We usually write x≤ y if (x, y)∈R and,
moreover, x< y if x ̸= y. There is a one-to-one correspondence between the T0
topologies on S and the partial orders on S; hence Pn=Vn.

Further connections between Pn and Qn, and between Pn and Tn, can be
expressed in terms of Stirling numbers of the second kind [1, 8]:

Qn=
n∑

k=1

Sn,kPk, Tn=
n∑

k=1

 k∑
j=0

(n
j

)
Sn−j,k−j

Pk
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Figure 1.6 There are 19 labeled posets with 3 elements, that is, P3 = 19.

Figure 1.7 There are 16 unlabeled posets with 4 elements, that is, p4 = 16.

and hence [9, 10]
Qn∼Pn, Tn∼ 2nPn

as n→∞. It is therefore sufficient to focus on just one of these sequences; we
choose {Pn}, which enumerates labeled posets (see Figure 1.6) as opposed to
{pn}, which enumerates unlabeled posets (see Figure 1.7). The existence of an
edge (x, y) in any of the graphs pictured here indicates that x< y and y is drawn
above x.

Even though a closed-form expression for Pn is unknown, progress has been
made in understanding the asymptotics of

{Pn}∞n=1 = {1, 3, 19, 219, 4231, 130023, 6129859, 431723379, . . .}.

Kleitman & Rothschild [11] deduced that

ln(Pn)
ln(2)

=
n2

4
+O

(
n

3
2 ln(n)

)
and later sharpened this to [12]

ln(Pn)
ln(2)

=
n2

4
+

3n
2

+O (ln(n)) .



“C01” — 2018/10/27 — 11:56 — page 9 — #9

1.2 Transitive Relations, Topologies and Partial Orders 9

Building on their work, several authors [10, 13–16] gave the following improve-
ment:

Pn∼Ca ·
√

2
π
· 2 n2

4 + 3n
2 + 1

4 · n− 1
2

where n≡ a mod 2 and a∈{0, 1}, and where

C1 =
∞∑

k=−∞

2−k2
= 2.1289368272...=π · (0.8058800428...) · 2− 1

4 ,

C0 =
∞∑

k=−∞

2−(k− 1
2 )

2
= 2.1289312505...=π · (0.8058779318...) · 2− 1

4 .

It is interesting that the constant depends on the parity of n.
The asymptotics of the unlabeled case [17, 18]:

{pn}∞n=1 = {1, 2, 5, 16, 63, 318, 2045, 16999, . . .}

turn out to satisfy

pn∼
Pn
n!

∼Ca ·
1
π
· 2 n2

4 + 3n
2 + 1

4 · en · n−n−1

thanks to a general result due to Prömel [19].
See [20, 21] for more appearances of the constantsC0 andC1. It’s believed that,

for any asymptotic enumeration problem where a typical member is based on a
bipartite graph, these constants are likely to occur. Alternative representations
include [16, 22]:

C1 =

√
π

ln(2)

∞∑
k=−∞

exp
(

−π2

ln(2)
k2

)
, C0 =

√
π

ln(2)

∞∑
k=−∞

(−1)k exp
(

−π2

ln(2)
k2

)
from which the strict inequality C0<C1 becomes obvious.

1.2.1 Natural Partial Orders

Consider the set S= {1, 2, . . . n} equipped with the usual total ordering≤. A nat-
ural partial order≼ on S is a partial ordering that is compatible with≤ (meaning
that if x≼ y, then x≤ y). This is equivalent to saying that (S,≤) is a linear exten-
sion of (S,≼). Define σn to be the number of natural partial orders on S, then
[23–25]

{σn}∞n=1 = {1, 2, 7, 40, 357, 4824, 96428, 2800472, . . .}

(see Figure 1.8).
Brightwell, Prömel & Steger [16] proved that

σn∼

{
1
2η

2 · C1 · 2
n2
4 · n=(12.7636300229...) · 2 n2

4 · n if n is even,
1
2η

2 · C0 · 2
n2
4 · n=(12.7635965889...) · 2 n2

4 · n if n is odd,
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1 2 3 1—2 3 2—31

2—31 1—2—31—2 31 2 3

Figure 1.8 There are 7 natural partial orders on {1, 2, 3}, that is, σ3 = 7.

where

η=
∞∏
j=1

(
1 − 2−j)−1

= 3.4627466194...

is a digital search tree constant [26]. These constants also arise when determining
the average number λn of linear extensions of S, where S is a random poset on n
points [16, 27]:

λn∼



η2C1

25/4C0
· ( n2 )!

2 · n · 2−n/2 =(5.0414454338...) · ( n2 )!
2 · n · 2−n/2,

η2C0

25/4C1
· ( n−1

2 )! · ( n+1
2 )! · n · 2−n/2 =(5.0414190220...) · ( n−1

2 )!

· ( n+1
2 )! · n · 2−n/2

when n is even, respectively, n is odd.
Consider instead the set S of all 2n subsets of {1, 2, . . . , n} equipped with the

usual partial ordering⊆. Define τn in a manner analogous to σn. We observe that
λn · Pn∼ n! · σn and wonder what the corresponding asymptotics for τn might be.

1.2.2 Evolving Posets

An interesting variation is as follows. What is the number Nρ of partial orders
on S with the property that a specified fraction ρ of the n(n− 1)/2 pairs of dis-
tinct points are comparable? (If necessary, ρn(n− 1)/2 is rounded to the nearest
integer.) Dhar [28, 29] investigated this question in the limit as n→∞ and pro-
posed a lattice gas model (with infinitely many phase transitions) based on the
evolution of Nρ as ρ increases. A highly intricate analysis of Dhar’s model was
completed in [30–32].

[1] J. Klaska, Transitivity and partial order, Math. Bohemica 122 (1997) 75–82;
MR1446401 (98c:05006).

[2] J. Klaska, History of the number of finite posets, Acta Univ. Mathaei Belii Nat. Sci.
Ser. Ser. Math. 5 (1997) 73–84; MR1618881 (99k:06001).

[3] M. Erné and K. Stege, Counting finite posets and topologies, Order 8 (1991) 247–
265; MR1154928 (93b:06004).

[4] P. Renteln, Geometrical approaches to the enumeration of finite posets: An intro-
ductory survey, Nieuw Arch. Wisk. 14 (1996) 349–371; MR1430049 (98g:06010).
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1.3 Series-Parallel Networks

Series and parallel connections are usually first encountered in the study of
electrical circuits. Our approach is to first examine a relevant class of partially
ordered sets (posets) and then to define series-parallel networks by analogy [1].
Interesting asymptotic constants appear everywhere, similar to those associ-
ated with counting various species of trees [2]. We also talk briefly about the
enumeration of Boolean (or switching) functions under different notions of
equivalence.

1.3.1 Series-Parallel Posets

We introduce two procedures for combining two posets (S,≤) and (S′,≤) to
obtain a new poset, assuming that S ∩ S′ = ∅:

• the disjoint sum S⊕ S′ is the poset on S ∪ S′ such that x≤ y in S⊕ S′ if either
x, y∈S and x≤ y in S, or x, y∈S′ and x≤ y in S′

• the linear product S⊙ S′ is the poset on S ∪ S′ such that x≤ y in S⊙ S′ if
x, y∈S and x≤ y in S, or x, y∈S′ and x≤ y in S′, or x∈S and y∈ S′.

Clearly ⊕ is commutative but ⊙ is not. A series-parallel poset is one that can
be recursively constructed by applying the operations of disjoint sum and linear
product, starting with a single point [3].

Define a poset to beN-free if there is no subset {a, b, c, d}whose only nontrivial
relations are given by

a< c, a< d, b< d.

It can be proved that a finite poset is series-parallel if and only if it is N-free [4–6].
Hence there are 15 series-parallel posets with 4 points (see the 16 posets in Figure
1.7 of [7] and eliminate the poset that looks like an “N”).

There are two cases we shall consider. The number fn of unlabeled series-
parallel posets with n points has (ordinary) generating function [3, 8–10]

F(x) =

∞∑
n=0

fnxn= 1 + x+ 2x2 + 5x3 + 15x4 + 48x5 + 167x6

+ 602x7 + 2256x8 + · · ·
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which satisfies the functional equation

F(x)= exp

[ ∞∑
k=1

1
k

(
F(xk) +

1
F(xk)

+ xk − 2
)]

.

Alternatively, if the sequence { f̂ n} is defined by 1/F(x)=
∑∞

n=0 f̂ nx
n, then

F(x)=
∞∏
j=1

(
1 − x j)−( fj+f̂j+δj,1)

where δj,k= 1 when j= k and δj,k= 0 otherwise. Using such properties, it follows
that

fn∼β · n−3/2 · α−n,

where α= 0.2163804273... is the unique positive root of F(x)=φ and φ is the
Golden mean, and

β=

√√√√ 1

(3
√

5 − 5)π

[
α

1 − α
+

∞∑
i=2

αiF ′(αi)

(
1 − 1

F(αi)2

)]
= 0.2291846208....

The number gn of labeled series-parallel posets with n points has (exponential)
generating function [1, 3, 8, 10]

G(x) =
∞∑
n=1

gn
n!
xn= x+

3
2!
x2 +

19
3!
x3 +

195
4!

x4 +
2791
5!

x5

+
51303

6!
x6 +

1152019
7!

x7 + · · ·

=

(
ln(1 + x)− x2

1 + x

)⟨−1⟩

=

( ∞∑
k=1

(−1)k+1 k+ 1
k

xk
)⟨−1⟩

where the notation P(x)⟨−1⟩ denotes the reversion of the power series P(x). Well-
established theory [11, 12] gives

gn∼ η · n! · n−3/2 · ξ−n

where ξ= ln(φ)− 2φ+ 3= 0.2451438475... and

η=

√
ξ

2
√

5(2 − φ)π
= 0.2137301074....

Now let us define an equivalence relation on the set of series-parallel posets
with n points, induced simply by declaring S⊙ S′ and S′ ⊙ S to be equiva-
lent. (See Figure 1.9.) The equivalence classes correspond to what are called
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Figure 1.9 There are 10 non-equivalent (unlabeled) series-parallel posets with 4 points.
Note the analogy with Figure 1.10.

X1 + X2 + X3 + X4

(X1 + X2)(X3 + X4)

X1 + X2 + X3X4

X1(X2 + X3X4)

X1X2 + X3X4 X1 + X2(X3 + X4) X1 + X2X3X4

X1X2 (X3 + X4) X1(X2 + X3 + X4) X1X2X3X4

Figure 1.10 There are 10 unlabeled series-parallel networks with 4 edges, that is, u4 = 10.
The “essentially parallel” networks constitute the first row and the “essentially series”
networks constitute the second row.

two-terminal series-parallel networks with n edges [13–19], with the understand-
ing that

• points of a poset are mapped in a one-to-one manner to edges of the corre-
sponding network

• two points of the poset are comparable if and only if the analogous edges of
the network are connected in series

• two points of the poset are incomparable if and only if the analogous edges of
the network are connected in parallel.

(See Figures 1.10 and 1.11.) The leftmost and rightmost points are the terminals
(two distinguished points playing a role similar to that of the root of a rooted
tree). A network, however, is not necessarily a graph since it may possess multiple
parallel edges. Observe that an interchange of parts of the network, either in
series or in parallel, is immaterial. In other words, when we count series-parallel
networks, our tally is unaffected by a permutation of variables in the indicated
Boolean representations.



“C01” — 2018/10/27 — 11:56 — page 15 — #15

1.3 Series-Parallel Networks 15

1
2

3

3

2

1

2
1

3

1 2 33
1

2

1 2

3

1 3

2

2 3

1

Figure 1.11 There are 8 labeled series-parallel networks with 3 edges, that is, v3 = 8.
The “essentially parallel” networks constitute the first row and the “essentially series”
networks constitute the second row.

1.3.2 Series-Parallel Networks

The number un of unlabeled series-parallel networks with n edges has generating
function [20]

U(x)=
∞∑
n=0

unxn=1+x+2x2+4x3+10x4+24x5+66x6+180x7+522x8+ · · ·

which satisfies the functional equation

U(x)= exp

[ ∞∑
k=1

1
2k

(
U(xk) + xk − 1

)]
.

Alternatively, we have

U(x)=
∞∏
j=1

(
1 − x j)−(uj+δj,1)/2

.

Using these properties, it follows that [15, 21–23]

un∼λ · n−3/2 · κ−n

where κ= 0.2808326669...=(3.5608393095...)−1 is the unique positive root of
U(x)= 2 and

λ=

√√√√ 1
π

[
κ

1 − κ
+

∞∑
i=2

κiU′(κi)

]
= 0.4127628892...= 2 · (0.2063814446...).

This also gives the number of non-equivalent Boolean functions of n variables,
built only with + (disjunction) and · (conjunction).
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The number vn of labeled series-parallel networks with n edges has generating
function [1, 24]

V(x) =

∞∑
n=1

vn
n!
xn= x+

2
2!
x2 +

8
3!
x3 +

52
4!
x4 +

472
5!

x5

+
5504
6!

x6 +
78416

7!
x7 + · · ·

= (2 ln(1 + x)− x)⟨−1⟩
=

( ∞∑
k=1

(−1)k+1 2
k
xk
)⟨−1⟩

.

By techniques similar to those used to analyze {gn}, we have [21, 25]

vn∼ τ · n! · n−3/2 · σ−n

where σ= 2 ln(2)− 1= 0.3862943611...=(2.5886994495...)−1 and

τ =

√
σ

π
= 0.3506584008...= 2 · (0.1753292004...).

Related work involves bracketing of n-symbol products [26] and phylogenetic
trees [27].

1.3.3 Series-Parallel Networks Without Multiple Parallel Edges

If we prohibit multiple parallel edges, so that the networks under consideration
are all graphs, different constants arise. (See Figure 1.12.)

The number qn of such unlabeled series-parallel networks with n edges has
generating function [28]

Q(x) =

∞∑
n=0

qnxn= 1 + x+ x2 + 2x3 + 4x4 + 8x5 + 18x6 + 40x7

+ 94x8 + 224x9 + · · ·

Figure 1.12 There are 8 unlabeled series-parallel networks with 5 edges that obey the pro-
hibition against multiple parallel edges, that is, q5 = 8. The “essentially parallel” networks
constitute the first row and the “essentially series” networks constitute the second row.
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which satisfies the functional equation

Q(x)= exp

[ ∞∑
k=1

1
2k

(
Q(xk)− x2k + xk − 1

)]
.

Alternatively, we have

Q(x)=
∞∏
j=1

(
1 − x j)−(qj+δj,1−δj,2)/2

.

Using these properties, it follows that [21]

qn∼ ν · n−3/2 · µ−n,

where µ= 0.3462834070... is the unique positive root of Q(x)= 2 and

ν=

√√√√ 1
π

[
µ

1 + µ
+

∞∑
i=2

µiQ′(µi)

]
= 0.3945042461...= 2 · (0.1972521230...).

The number rn of such labeled series-parallel networks with n edges has
generating function [29]

R(x) =

∞∑
n=1

rn
n!
xn=x+

1
2!
x2+

4
3!
x3+

20
4!
x4+

156
5!

x5+
1472
6!

x6+
17396

7!
x7+ · · ·

=
(
(x+ 1)2 exp(−x)− 1

)⟨−1⟩
=

( ∞∑
k=1

(−1)k
k2 − 3k+ 1

k!
xk
)⟨−1⟩

.

Proceeding as before, we have [21]

rn∼ω · n! · n−3/2 · θ−n

where θ= 4/e− 1= 0.4715177646... and

ω=
1
2

√
eθ
π

= 0.3193679560...= 2 · (0.1596839780...).

It follows that the probability that a random n-edge series-parallel network has
no multiple parallel edges is asymptotically(ν

λ

)(κ
µ

)n

=(0.9557648142...)(0.8109908278...)n

if the network is unlabeled and(ω
τ

)(σ
θ

)n
=(0.9107665899...)(0.8192572794...)n

if the network is labeled. More relevant material is covered in [21].
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1.3.4 Boolean Functions

We have already enumerated the number un of distinct Boolean functions of n
variables, built only with + and ·, under the action of the symmetric group Sn.

Of course, the set of all Boolean functions also includes those involving com-
plementation of variables (¬X). Let us examine briefly this larger set [30, 31].
Define two Boolean functions to be equivalent if they are identical up to a bijec-
tive renaming of the variables. The number of equivalence classes in this case is
asymptotically [32–34]

22n/n!,

hence no new constants arise. Define two Boolean functions to be congruent if
they are identical up to a bijective renaming of the variables and an additional
complementation of some of the variables. The number of congruence classes is
asymptotically

22n−n/n!.

Other results of this kind are also known, but none contain new constants.
Let us return to our original set of Boolean functions of n variables and let

F2 denote the binary field. Sn is a subgroup of the group Tn of invertible linear
transformations Fn2 →Fn2, namely, the n× n matrices that have exactly one 1 in
each row and each column. What can be said about the number ũn of distinct
Boolean functions, built only with+ and ·, under the action of the (larger) group
Tn? Our experience with un leads us to conjecture that the asymptotics of ũn will
be quite interesting.

1.3.5 Irreducible Posets

Another unsolved problem involves the number an of unlabeled (⊕,⊙)-
irreducible posets with n points. Such a poset cannot be written as a disjoint
union or a linear product of two non-empty posets. It is known that

A(x) =
∞∑
n=0

anxn= x+ x4 + 12x5 + 104x6 + 956x7 + 10037x8

+ 126578x9 + 1971005x10 + · · ·

and, further,

P(x)= exp

[ ∞∑
k=1

1
k

(
P(xk) +

1
P(xk)

+ A(xk)− 2
)]

where

P(x) =

∞∑
n=0

pnxn= 1 + x+ 2x2 + 5x3 + 16x4 + 63x5 + 318x6

+ 2045x7 + 16999x8 + · · ·
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is the generating function of (arbitrary) unlabeled posets [3, 7, 10]. What can be
said about the asymptotics of an? Even a nice functional equation forA(x) in and
by itself is probably impossible.

Addendum Bodirsky, Giménez, Kang & Noy [35, 36] determined that the
number of labeled series-parallel graphs on n vertices is asymptotically

(0.0076388...)n−5/2(0.1102133...)−nn!

as n→∞, but formulas underlying the constants are too elaborate to reproduce
here. Special cases of such planar graphs [37] – connected and 2-connected – give
rise to

(0.0067912...)n−5/2(0.1102133...)−nn!,

(0.0010131...)n−5/2(0.1280038...)−nn!

respectively. The distribution of the number of edges in a random graph with
n vertices is asymptotically normal and the distribution of the number of con-
nected components (minus one) is asymptotically Poisson, both with explicit
computable parameters.
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1.4 Two Asymptotic Series

When enumerating trees [1, 2] or prime divisors [3, 4], the leading term of the cor-
responding asymptotic series is usually sufficient for practical purposes. Greater
accuracy is possible by using several more terms, but the coefficients are not as
widely known as one might expect. We briefly provide the formulas required to
compute the required constants, as well as some theoretical background.

1.4.1 Trees
If Tn is the number of non-isomorphic rooted trees with n vertices,
then [5]

Tn ∼ r−nn−3/2
(
0.4399240125...+

0.0441699018...
n

+
0.2216928059...

n2
+

0.8676554908...
n3

+ · · ·
)

where r= 0.3383218568... is the unique positive root of the equation F(x, 1)= 0,
where

F(x, y)= x exp

(
y+

∞∑
k=2

T(xk)
k

)
− y

andT(x)=
∑∞

n=1 Tnx
n is the generating function for {Tn}. Let us denote the four

numerical coefficients byC0/(2
√
π),C1/(2

√
π),C2/(2

√
π) andC3/(2

√
π). Exact

formulas for these constants can be written in terms of the partial derivatives

Fi, j=
∂i+j

∂xi∂y j
F(x, y)

∣∣∣∣x=r
y=1

via computer algebra. Note that F0,0 =F0,1 = 0,

1=F0,2 =F0,3 =F0,4 =F0,5 = · · · ,

0<F1,0 =F1,1 =F1,2 =F1,3 =F1,4 = · · · ,
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and likewise Fi,j=Fi,0 for all i≥ 2, j≥ 1. We have

C0 =
√

2 r F1,0,

C1 = {9 r F1,0 + r2 [−11F2
1,0 + 9F2,0 ]}/{12C0},

C2 = {225 r F 2
1,0 + r2 [−990F 3

1,0 + 810F1,0 F2,0]

+ r3 [769F 4
1,0 − 990F 2

1,0 F2,0 − 135F 2
2,0 + 360F1,0 F3,0]}/{576F1,0 C0},

C3 = {42525 r F 3
1,0 + r2 [−571725F 4

1,0 + 467775F 2
1,0 F2,0]

+ r3 [1211175F 5
1,0−1559250F 3

1,0 F2,0−212625F1,0 F 2
2,0+567000F 2

1,0 F3,0]

+ r4 [−680863F6
1,0 + 1211175F4

1,0 F2,0 − 155925F2
1,0 F

2
2,0 + 42525F 3

2,0

− 415800F 3
1,0 F3,0 − 113400F1,0 F2,0 F3,0

+ 113400F 2
1,0 F4,0]}/{207360F 2

1,0 C0}.

The associated formula for tn, the number of non-isomorphic free trees of order
n, is [5]

tn∼ r−nn−5/2
(
0.5349496061...+

0.4853877311...
n

+
2.379745574...

n2 + · · ·
)

where r is as before and the first numerical coefficient is simply C3
0/(4

√
π). Exact

formulas for the second and third coefficients are new:

C2
0(C

3
0 + 30C1)

24
√
π

,
C0(C6

0 + 35C3
0C1 + 210C2

1 + 126C0C2)

72
√
π

and we wonder what the next few coefficients might look like.
Other varieties of trees examined in [5] include binary trees, identity trees and

homeomorphically irreducible trees. Different functional equations apply in each
case; for example, we have

F(x, y)= x+
1
2

(
y2 + B(x2)

)
− y

for the first variety, where B(x)=
∑∞

n=1 Bnx
n is the generating function for the

number Bn of non-isomorphic rooted strongly binary trees with n leaves (B1 =
B2 =B3 = 1, B4 = 2, B5 = 3, ...). One obtains

Bn ∼ ρ−nn−3/2
(
0.3187766259...+

0.2038317427...
n

+
0.3682702316...

n2
+

1.4768193666...
n3

+ · · ·
)

with ρ= 0.4026975036... as the radius of convergence. The details are omitted.
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An intermediate step to studying {Tn} involves the analysis of the series [6, 7]

T(x) =
∞∑
k=0

ck(r− x)k/2

= 1 − (2.6811281472...)(r− x)1/2 + (2.3961493806...)(r− x)

− (1.4507456802...)(r− x)3/2 + (1.4447836810...)(r− x)2

− (5.1438071207...)(r− x)5/2 + · · ·

which is valid as x→ r−, where

c0 = 1, c1 =−
√

2F1,0, c2 = 2F1,0/3,

c3 =
{
11F 2

1,0 − 9F2,0

}
/ {18 c1} , c4 =

{
43F 2

1,0 − 45F2,0

}
/135,

c5 =
{
769F 4

1,0 − 990F 2
1,0 F2,0 − 135F 2

2,0 + 360F1,0 F3,0
}
/ {2160F1,0 c1} .

Note that c2 = c21/3 and c4 =(30c1c3 − c41)/45, while c3 and c5 cannot be alge-
braically represented in terms of preceding ck values. Most of these results
are new.

Likewise, in connection with {tn}, we have [6, 7]

t(x) =
∞∑
k=0

dk(r− x)k/2

= 0.5657439434...− (4.0484928944...)(r− x)− (6.4243835496...)(r− x)3/2

−(5.5810996983...)(r− x)2 + (7.3498535571...)(r− x)5/2 + · · ·

where

d0 =
1
2

(
1 + T(r2)

)
, d1 = 0,

d2 =− 1
2

(
c21 + 2rT ′(r2)

)
, d3 = c1c2,

d4 =
1
2

(
−c22 − 2c1c3 + 2r2T ′′(r2) + T ′(r2)

)
, d5 =−c2c3 − c1c4

and T ′(x), T ′′(x) denote the first and second derivatives of T(x), respectively.
The singular part of t(x) (that is, the part corresponding to dk for odd k) depends
just on the coefficients cj. No analogous simplification of the analytic part of t(x)
(dk for even k) is known.

1.4.2 Darboux–Pólya Method

Although the asymptotic series for Tn and tn are evidently new, the underlying
method appears (at least implicitly) in the works of Darboux [8, 9] and Pólya [10].
We give the steps of a straightforward algorithm for computing themth coefficient
Cm of the asymptotic series for Tn.



“C01” — 2018/10/27 — 11:56 — page 24 — #24

24 Number Theory and Combinatorics

Define first zi, j to be 0 if (i≥ 1 and j= 2) or ( j> 2), and 1 otherwise. Define
Pi, j and Ai, j via the recursions

Pi, j= zi, j

Fi, j −
i−1∑
p=1

j∑
q=0

( i
p

)( j
q

)
Ap,qPi−p, j−q −

j∑
q=1

( j
q

)
A0,qPi, j−q

A0,0
,

Ai, j=

Fi,j+2 −
i−1∑
p=0

j+2∑
q=0

( i
p

)(j+2
q

)
Ap,qPi−p,j−q+2

( j+ 1)( j+ 2)

with initial conditions P0,2 = 2 and P0,j= 0 for all j ̸= 2. Let

pk=
Pk,1(−r)k

k!
, qk=

Pk,0(−r)k

k!

and define bl via the recursion

bl=

−
l−1∑
k=1

bkbl−k +
1
4

l∑
k=1

pkpl−k+1 − ql+1

2b0

with initial condition b0 =−
√
−q1.

Define next

si= 2i−2(2i
i

)
− 1

2

i−1∑
j=1

(i−1
j−1

)
23(i−j)sj −

i−1∑
k=1

i−k∑
j=1

(i−k−1
j−1

)
23(i−j−k)sjsk

with initial condition s0 = 1, and the recursion

Su,v=



1 if u= v= 0

(−1)u21−4usu if u≥ 1 and v= 0

−
u∑

w=0

(
v− 1

2

)w+1
Su−w,v−1 if u≥ 0 and v≥ 1.

Finally, we have

Cm= 2
m∑
k=0

bkSm−k,k+1

which completes the algorithm.
Some explanation is clearly needed. We know that F(x,T(x))= 0. The Weier-

strass Preparation Theorem implies that, for (x, y) sufficiently close to (r, 1),

F(x, y)=A(x, y) · P(x, y)
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where A(x, y) is analytic, A(r, 1) ̸= 0, and

P(x, y)= (y− 1)2 + p(x)(y− 1) + q(x)

where p(x), q(x) are analytic and p(r)= q(r)= 0. The sequence {bl} arises from
setting the various coefficients of the polynomial-like approximation P(x,T(x))
equal to zero. By Darboux’s theorem,

Tn∼ (−1)nr−n
∞∑
k=0

bk
(k+1/2

n

)
;

hence it remains to compute asymptotic series for half-integer binomial coeffi-
cients. We know that [11](−1/2

n

)
=

(−1)n√
πn

(
1 − 1

8n
+

1
128n2 +

5
1024n3 − 21

32768n4 − 399
262144n5 + · · ·

)

=
(−1)n√
πn

∞∑
j=0

Sj,0
n j

from which we immediately deduce that(1/2
n

)
=

(−1)n+1

2
√
πn3/2

(
1 +

3
8n

+
25

128n2 +
105

1024n3 +
1659

32768n4 +
6237

262144n5 + · · ·
)

=
1

2
√
π

(−1)n

n3/2

∞∑
j=0

2Sj,1
n j

,

(3/2
n

)
=

3(−1)n

4
√
πn5/2

(
1 +

15
8n

+
385

128n2 +
4725

1024n3 +
228459
32768n4 +

2747745
262144n5 + · · ·

)
=

1
2
√
π

(−1)n

n3/2

∞∑
j=0

2Sj,2
n j+1 ,

(5/2
n

)
=

15(−1)n+1

8
√
πn7/2

(
1 +

35
8n

+
1785
128n2 +

40425
1024n3 +

3462459
32768n4 +

71996925
262144n5 + · · ·

)
=

1
2
√
π

(−1)n

n3/2

∞∑
j=0

2Sj,3
n j+2 ,

and so forth. The conclusion follows.

Addendum I Philippe Flajolet maintained that the preceding discussion tends
to “hide the facts” and provided thoughtful comments. Briefly, the equation
F(x,T(x))= 0 can be rearranged as T(x)= ξ exp(T(x)) with

ξ(x)= x exp

( ∞∑
k=2

T(xk)
k

)
.
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The inverse function of y exp(−y) is the well-known Cayley tree function τ , an
elementary variant of the Lambert W function:

τ(z)=
∞∑
n=1

nn−1 z
n

n!

on the complex plane. In a small disk around the origin, therefore, T(z)=
τ(ξ(z)). From here, singularities are easily accessed, making a full asymptotic
expansion possible. Writing such conceptual remarks were, in Flajolet’s words,
an “enjoyable intermezzo” for him despite limited time. These eventually found
their way into his treatise [12] with Sedgewick. For completeness, we mention
that C0 = 1.5594900203... for rooted trees (as presented in [12]) and that the
corresponding coefficient is 1.1300337163... for binary trees.

1.4.3 Prime Divisors

If ω(n) is the number of distinct prime divisors of n, andΩ(n) is the total number
(including multiplicity) of prime divisors of n, then

En(ω)∼ ln(ln(n)) + 0.2614972128...+
∞∑
k=1

−1 +

k−1∑
j=0

γj
j!

 (k− 1)!
ln(n)k

,

Varn(ω) ∼ ln(ln(n))− 1.8356842740...+
1.0879488865...

ln(n)

+
3.3231293098...

ln(n)2
+ · · · ,

En(Ω)∼ ln(ln(n)) + 1.0346538818...+
∞∑
k=1

−1 +
k−1∑
j=0

γj
j!

 (k− 1)!
ln(n)k

,

Varn(Ω) ∼ ln(ln(n)) + 0.7647848097...− 2.8767219464...
ln(n)

−4.9035933594...
ln(n)2

+ · · · ,

where

En(X)=
1
n

n∑
i=1

X(i), Varn(X)=En(X2)− En(X)2

and γj is the j th Stieltjes constant [13]. The leading numerical terms in each of the
four expansions are [4, 14]

λ= γ0 +
∑
p

[
ln
(
1 − 1

p

)
+

1
p

]
= γ0 +

∞∑
k=2

µ(k)
k

ln(ζ(k)),
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λ−
∑
p

1
p2 − π2

6
=λ−

∞∑
k=1

µ(k)
k

ln(ζ(2k))− π2

6
,

Λ= γ0 +
∑
p

[
ln
(
1 − 1

p

)
+

1
p− 1

]
= γ0 +

∞∑
k=2

φ(k)
k

ln(ζ(k)),

Λ +
∑
p

1
( p− 1)2

− π2

6
=Λ+

∞∑
k=2

φ2(k)− φ(k)
k

ln(ζ(k))− π2

6
,

respectively, where ζ(x) is the Riemann zeta function, µ(k) is the Möbius mu
function, φ(k) is the Euler totient function, and the function φl(k) is defined by

φl(k)
kl

=
∏
p|k

(
1 − 1

pl

)
,
ζ(s− l)
ζ(s)

=
∞∑
k=1

φl(k)
ks

(in particular, φ=φ1).
The second numerical coefficient in Varn(ω) is

γ0 − 1 + 2
∑
p

ln( p)
p( p− 1)

= γ0 − 1 + 2
∞∑
k=2

µ(k)
ζ ′(k)
ζ(k)

and the second numerical coefficient in Varn(Ω) is

γ0 − 1 − 2
∑
p

ln( p)
( p− 1)2

= γ0 − 1 + 2
∞∑
k=2

φ(k)
ζ ′(k)
ζ(k)

,

where ζ ′(x) is the derivative of the zeta function. This result, as well as the result
for means, appears in [14–16] but apparently with errors. Knuth [17] revisited
Diaconis’ original computations; this essay closely follows [17]. Finally, the third
numerical coefficient in Varn(ω) is

−γ1 − (γ0 − 1)

(
γ0 + 2

∑
p

ln( p)
p( p− 1)

)
+ 2

∑
p

(2p− 1) ln( p)2

2p( p− 1)2

and the third numerical coefficient in Varn(Ω) is

−γ1 − (γ0 − 1)

(
γ0 − 2

∑
p

ln( p)
( p− 1)2

)
− 2

∑
p

p ln( p)2

( p− 1)3
.

For completeness’ sake, we record the values of six relevant prime series
[4, 14, 18]:

t=
∑
p

1
p2 = 0.4522474200..., T=

∑
p

1
( p− 1)2

= 1.3750649947...,
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u=
∑
p

ln( p)
p( p− 1)

= 0.7553666108..., U=
∑
p

ln( p)
( p− 1)2

= 1.2269688056...,

v=
∑
p

(2p− 1) ln( p)2

2p( p− 1)2
= 1.1837806913..., V=

∑
p

p ln( p)2

( p− 1)3
= 2.0914802823....

1.4.4 Selberg–Delange Method

The theory here is deeper than what was discussed earlier. It starts with asymp-
totic formulas for the generating functions [19–21]

1
N

N∑
n=1

zω(n) = ln(N)z−1
(
a0(z)+

a1(z)
ln(N)

+
a2(z)
ln(N)2

+ · · · ar(z)
ln(N)r

+O
(

1
ln(N)r+1

))
,

1
N

N∑
n=1

zΩ(n) = ln(N)z−1
(
A0(z)+

A1(z)
ln(N)

+
A2(z)
ln(N)2

+ · · · Ar(z)
ln(N)r

+O
(

1
ln(N)r+1

))
,

where if

s− 1
s

∏
p

(
1 − 1

ps

)z−1(
1 +

z
ps − 1

)
=

∞∑
k=0

bk(z)(s− 1)k= b(z),

s− 1
s

∏
p

(
1 − 1

ps

)z−1(
1 − z

ps

)−1

=

∞∑
k=0

Bk(z)(s− 1)k=B(z),

then

aj(z)=
bj(z)

Γ(z− j)
, Aj(z)=

Bj(z)
Γ(z− j)

.

Let us focus onω(n) for the sake of definiteness.Delange’s formula expresses that,
asymptotically, if n is uniformly distributed on {1, 2, ...,N}, then the distribution
of ω(n) is the convolution of a Poisson random variable with mean ln(ln(N)) and
another random variable X whose generating function is

E(zX)∼ a0(z) +
a1(z)
ln(N)

+
a2(z)
ln(N)2

+ · · · .

Thus, the mean of ω(n) will be ln(ln(N)) plus the mean of X, and the variance
will be ln(ln(N)) plus the variance of X. We have

E(X)∼ a′0(1) +
a′1(1)
ln(N)

+
a′2(1)
ln(N)2

+ · · · ,

E(X(X− 1))∼ a′′0 (1) +
a′′1 (1)
ln(N)

+
a′′2 (1)
ln(N)2

+ · · · ,
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hence
Var(X)∼ c0 +

c1
ln(N)

+
c2

ln(N)2
+ · · ·

where

cj= a′′j (1) + a′j(1)−
j∑

i=0

a′i(1)a
′
j−i(1).

The corresponding coefficients for Ω(n) will be denoted by C0, C1, C2, ... and
satisfy similar relations.

To obtain the mean, note that setting z= 1 in the formula for b(z) gives

s− 1
s

ζ(s)=
∞∑
k=0

bk(1)(s− 1)k.

Replacing s by s+ 1, we have( ∞∑
i=0

(−1)isi
)(

1 +
∞∑
j=0

(−1) j

j!
γjs j+1

)
=

s
s+ 1

ζ(s+ 1)=
∞∑
k=0

bk(1)sk,

thus
b0(1)= 1, b1(1)= γ0 − 1, b2(1)=−(γ1 + γ0 − 1).

Since
a′0(1)= b′0(1) + γ0b0(1)=λ (to be proved shortly),

a′k(1)= (−1)k−1(k− 1)!bk(1), k≥ 1,

the result follows. This argument also applies verbatim to B(z), but with λ

replaced by Λ.
To obtain the variance, differentiate b(z) and set z= 1:

b′(1) = b(1)
∑
p

[
ln
(
1 − 1

ps

)
+

1
ps

]
=
{
1 + (γ0 − 1)(s− 1)− (γ1 + γ0 − 1)(s− 1)2 + · · ·

}
·
{
(λ− γ0) + u(s− 1)− v(s− 1)2 + · · ·

}
thus

b′0(1)=λ− γ0, b′1(1)= (γ0 − 1)(λ− γ0) + u,

b′2(1)=−v+ (γ0 − 1)u− (γ1 + γ0 − 1)(λ− γ0).

Also

b′′(1) = b′(1)
∑
p

[
ln
(
1 − 1

ps

)
+

1
ps

]
− b(1)

∑
p

1
p2s

= {(λ− γ0) + · · ·} {(λ− γ0) + · · ·} − {1 + · · ·} {t+ · · ·}
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therefore b′′0 (1)= (λ− γ0)
2 − t. Since

a′′0 (1)= b′′0 (1) + 2γ0b′0(1) +
(
γ2
0 − π2

6

)
b0(1)=λ2 − t− π2

6 ,

a′′k (1)= 2(−1)k−1(k− 1)!

(
b′k(1) +

(
γ0 −

k−1∑
j=1

1
j

)
bk(1)

)
, k≥ 1,

the formulas for c0, c1, c2 follow.
In the same way, to obtain the variance for Ω(n), differentiate B(z) and set

z= 1:

B′(1) = B(1)
∑
p

[
ln
(
1 − 1

ps

)
+

1
ps − 1

]
=
{
1 + (γ0 − 1)(s− 1)− (γ1 + γ0 − 1)(s− 1)2 + · · ·

}
·
{
(Λ− γ0)−U(s− 1) + V(s− 1)2 + · · ·

}
thus

B′
0(1)=Λ− γ0, B′

1(1)= (γ0 − 1)(Λ− γ0)−U,

B′
2(1)=V− (γ0 − 1)U− (γ1 + γ0 − 1)(Λ− γ0).

Also

B′′(1) = B′(1)
∑
p

[
ln
(
1 − 1

ps

)
+

1
ps − 1

]
+ B(1)

∑
p

1
( ps − 1)2

= {(Λ− γ0) + · · ·} {(Λ− γ0) + · · ·}+ {1 + · · ·} {T+ · · ·}

therefore B′′
0 (1)= (Λ− γ0)

2 + T. We have A′′
0 (1)=Λ2 + T− π2

6 and a formula
forA′′

k (1), k≥ 1, identical to that for a′′k (1) earlier; hence the formulas forC0,C1,
C2 follow. It is interesting that higher-order terms for En(ω) and En(Ω) coincide,
but differ for Varn(ω) and Varn(Ω).

We conclude with an unsolved problem. The expressions

N∑
n=1

2ω(n),
N∑
n=1

3ω(n),
N∑
n=1

2Ω(n)

were mentioned in [22]. Tenenbaum [23] computed that

N∑
n=1

3Ω(n) =Nθg
(

ln(N)
ln(2)

)
+O(N ln(N)3)

where θ= ln(3)/ ln(2)= 1.5849625007... [24] and g(x) is a fractal-like function
of period 1 that oscillates between two positive constants. In fact,

g(x)=
3
2

∑
m≥1

gcd(m,6)=1

(
3Ω(m)

mθ
·
∑
k≥0

3−(θ−1)k−{x− ln(m)
ln(2) −θk}

)
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where {y}= y− ⌊y⌋ for all real numbers y, and

3.74...= lim
x→1−

g(x)= inf
x
g(x)< sup

x
g(x)= lim

x→0+
g(x)= 4.74...

It would be good to someday know these bounds to higher precision.

Addendum II Let P(n) be the largest prime factor of n. The average of P(n)
satisfies [25]

1
N

∑
n≤N

P(n)∼
∞∑
k=0

k!
N

ln(N)k+1 ξk

as N→∞, where

ξk=
1

2k+1

k∑
j=0

2 j(−1)j

j!
ζ( j)(2)

and the median M(N) of {P(n) : n≤N} satisfies [26]

M(N)∼ exp
(
γ − 1√

e

)
N1/

√
e=(0.7738078734...)N 0.6065306597...

(actually, more terms in the asymptotic expansion ofM(N) are possible). Clearly
the median value grows substantially slower than the mean value. The mode
(most frequent value) grows even more slowly [27]. Another interesting asymp-
totic expansion [26] refines de la Vallée Poussin’s average for fractional parts of
a large integer N divided by each prime p≤N:

∑
p≤N

{
N
p

}
∼

∞∑
k=0

k!
N

ln(N)k+1 ηk

as N→∞, where

ηk= 1 −
k∑
j=0

γj
j!
.

Alternative proofs regarding En(ω) and En(Ω) also appear in [26], but not
Varn(ω) nor Varn(Ω).
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1.5 Multiples and Divisors

Before discussing multiplication, let us speak about addition. The number A(k)
of distinct sums i+ j≤ k such that 1≤ i≤ k/2, 1≤ j≤ k/2 is clearly 2 ⌊k/2⌋ − 1.
Hence the numberA(2n) of distinct elements in the n× n addition table involving
{1, 2, . . . , n} satisfies limn→∞ A(2n)/n= 2, as expected.



“C01” — 2018/10/27 — 11:56 — page 33 — #33

1.5 Multiples and Divisors 33

We turn to multiplication. Let M(k) be the number of distinct products
ij≤ k such that 1≤ i≤

√
k, 1≤ j≤

√
k. One might expect that the number

M(n2) of distinct elements in the n× n multiplication table to be approximately
n2/2; for example, M(102)= 42. In a surprising result, Erdős [1–3] proved that
limn→∞M(n2)/n2 = 0. More precisely, we have [4]

lim
k→∞

ln(M(k)/k)
ln(ln(k))

=−δ

where

δ= 1 − 1 + ln(ln(2))
ln(2)

= 0.0860713320...

In spite of good estimates for M(k), an asymptotic formula for M(k) as k→∞
remains unknown [5].

Given a positive integer n, define

ρ1(n)= max
d|n,
d≤

√
n

d, ρ2(n)= min
d|n,
d≥

√
n

d;

thus ρ1(n) and ρ2(n) are the two divisors of n closest to
√
n. Let

R1(N)=
N∑
n=1

ρ1(n), R2(N)=
N∑
n=1

ρ2(n).

It is not difficult to prove that

lim
N→∞

ln(N)

N2 R2(N)=
π2

12
.

An analogous asymptotic expression for R1(N) is still open, but Tenenbaum
[6–8] proved that

lim
N→∞

ln(R1(N)/N3/2)

ln(ln(N))
=−δ

where δ is exactly as before. It is curious that one limit is so much harder than
the other, and that the same constant δ appears as with the multiplication table
problem.

Erdős conjectured long ago that almost all integers n have two divisors d, d ′

such that d< d ′ ≤ 2d. By “almost all”, we mean all integers n in a sequence of
asymptotic density 1, abbreviated as “p.p.” Given n, select divisors an< bn for
which bn/an is minimal. To prove the conjecture, it is sufficient to show that
bn/an→ 1+ as n→∞ p.p.; that is, ln(ln(bn/an))→−∞ p.p. Maier & Tenenbaum
[9–11] succeeded in doing this and, further, demonstrated that

lim
n→∞

ln(ln(bn/an))
ln(ln(n))

=−(ln(3)− 1)=−0.0986122886... p.p.
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Another way of viewing this problem is by counting those integers n up to N
without such divisors d and d ′. If ε(N) is the number of these exceptional integers,
then [4]

lim
N→∞

ln(ε(N)/N)
ln(ln(ln(N)))

≤−β

where

β= 1 − 1 + ln(ln(3))
ln(3)

= 0.0041547514....

As the inequality suggests, we do not know if this constant is necessarily optimal.
Yet another way of viewing this problem is via the Hooley function

∆(n)=max
x≥0

∑
d|n,

ex<d≤ex+1

1,

that is, the greatest number of divisors of n contained in any interval of loga-
rithmic length 1. More interesting constants emerge here, but their optimality is
questionable. In fact, it is conjectured [4] that∆(n)/ ln(ln(n)) accumulates not at
a single point, but over an entire subinterval (u, v)⊆ (0,∞). Estimates of u and
v would be good to see someday.

Ramanujan [12] studied the asymptotics of
∑N

n=1 1/d(n) asN→∞, where [13]
d(n) is the number of distinct divisors of n. See [14] for more details. This is a
special case of a result in [4, 15], which is used to prove the following arcsine
distributional law for random divisors d of n:

lim
N→∞

1
N

N∑
n=1

P
(

ln(d)
ln(n)

< x
)
=

2
π

arcsin
(√

x
)
.

Consequently, an integer has (on average) many small divisors and many large
divisors.

Sita Ramaiah & Suryanarayana [16] found a corresponding formula for∑N
n=1 1/σ(n), where [17] σ(n) is the sum of all divisors of n. DeKoninck & Ivić

[18] had asserted that constants appearing in such a formula would be compli-
cated; they were right! [14] It turns out that the Riemann Hypothesis [19] is true
if and only if [20, 21]

σ(n)< eγn ln(ln(n)) for all sufficiently large n,

where γ is the Euler–Mascheroni constant [22].
An integer n is highly composite if d(m)< d(n) for all m< n. Let Q(N) denote

the number of highly composite integers n≤N. It is known that [11, 23–26]

1.136≤ liminf
N→∞

ln(Q(N))

ln(N)
≤ 1.44, limsup

N→∞

ln(Q(N))

ln(N)
≤ 1.71,
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based on Diophantine approximations of the quantity ln(3/2)/ ln(2)=
0.5849625007.... It is conjectured that the limit exists and

lim
N→∞

ln(Q(N))

ln(N)
=

ln(2) + ln(3) + ln(5)
4 ln(2)

= 1.2267226489...

but this appears to be difficult.
Let us return to the constant δ, which appears in several other places in the

literature [27–34]. We mention only three. With regard to Erdős’ conjecture,
Roesler [35] added a further constraint that anbn= n when minimizing bn/an; he
proved that

lim
N→∞

ln
(

1
N

N∑
n=1

an
bn

)
ln(ln(N))

=−δ.

Hence the integers are fairly quadratic, in the sense that bn − an is quite small on
average. We wonder what happens to the limiting ratio if an/bn is replaced in the
summation by bn/an.

An odd prime p is said to be symmetric [36, 37] if there exists an odd prime
q such that |p− q|= gcd( p− 1, q− 1). For example, any twin prime is symmet-
ric. It is known that the reciprocal sum of symmetric primes is finite (like Brun’s
constant [38]). If the twin prime conjecture is true, then there are infinitely many
symmetric primes. Let S(n) denote the number of symmetric primes ≤ n. It is
conjectured that

lim
n→∞

ln(S(n)/n)
ln(ln(n))

=−1 − δ

and a heuristic argument supporting this formula appears in [36].
Finally, let T(N) denote the number of integers n≤N satisfying the inequality

d(n)≥ ln(N). Norton [39], responding to a question raised by Steinig, proved
that there are positive constants ξ < η with

ξ≤ ρ(N)=
T(N)

N ln(N)−δ ln(ln(N))−1/2
≤ η

for all largeN. Balazard, Nicolas, Pomerance & Tenenbaum [40] proved that the
ratio ρ(N) does not tend to a limit as N→∞, and that

ρ(N)∼ f
(

ln(ln(N))
ln(2)

)
as N→∞

where f (x) is an explicit left-continuous function of period 1 with only countably
many jump discontinuities. Deléglise & Nicolas [41] further computed that

ξ= lim
x→0+

f (x)= 0.9382786811..., η= f (0)= 1.1481267734...

are the best possible asymptotic bounds on ρ(N). We have seen such oscillatory
functions on numerous occasions elsewhere in number theory and combinatorics
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[42, 43]. The quantities

χ=
1

Γ(1 + λ)

∏
p prime

(
1 − 1

p

)λ(
1 +

λ

p

)
= 0.3495143728...,

χ

1 − ln(2)

√
ln(2)
2π

= 0.3783186209...=
ξ

2.4801282017...
=

η

3.0348143331...

also play an intermediate role [41], where λ= ln(2)−1.

1.5.1 Practical Numbers

A positive integer n is practical if every integer m with 1≤m≤ n can be written
as a sum of distinct positive divisors of n [44–46]. No odd n> 1 can be practical;
considerm= 2. Also, n= 10 is not practical; considerm= 4. LettingP(N) denote
the count of practical numbers n≤N, we have [47–52]

lim
N→∞

ln(N)

N
P(N)=κ,

where

κ=
1

1 − e−γ

∑
n

practical

1
n

 ∑
p≤σ(n)+1

ln( p)
p− 1

− ln(n)

 ∏
p≤σ(n)+1

(
1 − 1

p

)

provably satisfies 1.311<κ< 1.693. This is consistent with an empirical estimate
κ≈ 1.341 given in [49].

A positive integer n is φ-practical if the polynomial tn − 1 has a divisor (with
integer coefficients) of every degree up to n. Equivalently, n is φ-practical if every
integer m with 1≤m≤ n is of the form φ(d1) + φ(d2) + · · ·+ φ(dℓ) for some
ℓ≥ 1, where φ is the Euler totient function [53] and d1, d2, . . . , dℓ are distinct
positive divisors of n. For example, n= 5 is not φ-practical because t5 − 1 has no
divisor of degree 2; alternatively, sums involving φ(1)= 1 and φ(5)= 4 omit the
value m= 2. By contrast, n= 6 is φ-practical because

t− 1, t2 + t+ 1, t3 − 1, t4 + t3 − t− 1, t5 + t4 + t3 + t2 + t+ 1

are divisors of t6 − 1; alternatively, sums involving φ(1)= 1, φ(2)= 1, φ(3)= 2
and φ(6)= 2 cover all values 1≤m≤ 6. Letting Pφ(N) denote the count of
φ-practical numbers n≤N, we have [52, 54, 55]

lim
N→∞

ln(N)

N
Pφ(N)=κφ,

where κφ possesses a more complicated formula than κ and provably satisfies
0.945<κφ< 0.967. This is consistent with an empirical estimate κ≈ 0.96 given
in [55].
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Related work appears in [56–58], as well as the Erdős–Ford–Tenenbaum
constant δ and an interesting equation

1=

∞∫
1

ω(y)(y+ 1)−1−xdy

with solution x= 0.433489..., where ω is Buchstab’s function [59].

Addendum Ford [60] proved that there exist positive constants c<C such that

c
N

ln(N)δ ln(ln(N))3/2
≤M(N)≤C

N
ln(N)δ ln(ln(N))3/2

for large N, and positive constants c′<C ′ such that

c′
N 3/2

ln(N)δ ln(ln(N)) 3/2
≤R1(N)≤C ′ N3/2

ln(N)δ ln(ln(N))3/2

for large N. Thus, for the first time, the true order of magnitude ofM(N) and of
R1(N) is known. See also [61] for an application to computer science.

A famous result is [62–66]

lim sup
n→∞

ln(d(n))
ln ln n
ln n

= ln 2,

but the analogous result for the iterated divisor

lim sup
n→∞

ln(d(d(n)))
ln ln n√

ln n
=

8
∞∑
j=1

ln
(
1 +

1
j

)2
1/2

= 2.7959802335...

was proved comparatively recently [67, 68].
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1.6 Discrepancy and Uniformity

Let X= {xn}∞n=1 be an infinite sequence of points in the interval [0, 1) and let XN

denote the finite subsequence {xn}Nn=1. Define, for each N, the discrepancy

DN(X)= sup
0≤a<b<1

∣∣∣∣ |XN ∩ [a, b)|
N

− (b− a)

∣∣∣∣
and the star discrepancy

D∗
N(X)= sup

0≤c<1

∣∣∣∣ |XN ∩ [0, c)|
N

− c

∣∣∣∣ .
It can be proved that 1/N≤DN≤ 1 and 1/(2N)≤D∗

N≤DN≤ 2D∗
N. The sequence

X is uniformly distributed in [0, 1) if and only if limN→∞DN(X)= 0. We are
interested in low-discrepancy sequences, that is, sequences X for which DN(X)
is small for allN. The efficient construction of suchX is essential in quasi-Monte
Carlo algorithms used, for example, to approximate a multivariate integral or to
simulate certain random processes [1–3].

On the one hand, Béjian [4, 5] showed that

S(X)= limsup
N→∞

N
ln(N)

DN(X)≥C,

S∗(X)= limsup
N→∞

N
ln(N)

D∗
N(X)≥C∗

for all sequences X, where

C=max
r≥2

r− 2
4(r− 1) ln(r)

= 0.120386..., C∗ =
C
2
= 0.060193....
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This is a consequence of work by van Aardenne-Ehrenfest [6, 7], Roth [8] and
Schmidt [9] regarding the unavoidable irregularities that occur in any point dis-
tribution. Improvement is likely. On the other hand, there are special sequences
X for which [10–12]

S(X)≤ 23
35 ln(6)

= 0.366758..., S∗(X)≤ 1919
3454 ln(12)

= 0.223584...

and we shall discuss such examples shortly. The gap between lower and upper
bounds is surprisingly wide: It would be good someday for these estimates to be
tightened.

Students of statistics will recognize D∗
N(X) as the Kolmogorov–Smirnov one-

sample statistic, under the hypothesis that the sequence XN is a random sample
drawn from a Uniform (0, 1) distribution. Call this hypothesis H0. We have the
following asymptotic result [13–15]:

lim
N→∞

P
(√

ND∗
N(X)≤ z |H0 is true

)
= 1 − 2

∞∑
n=1

(−1)n−1e−2n2z2 .

Call this expression θ(z). In an experimental data analysis setting, if
√
ND∗

N(X)
exceeds a sufficiently large threshold w (in the sense that the probability 1 − θ(w)
is suitably small), then one must doubt the truth of H0.

1.6.1 Scrambled van der Corput Sequences

Given an integer n≥ 1, write the base b representation for n− 1 as

n− 1=
∞∑
k=0

mk(n)bk, mk ∈B

where B= {0, 1, . . . b− 1}. Then, for any permutation σ :B→B, the scrambled
van der Corput sequence Xσ

b has nth term given by

xn=
∞∑
j=0

σ(mj(n))b−j−1.

For example, if b= 2 and σ is the identity permutation ε, then

Xε
2 = {0, 0.1, 0.01, 0.11, 0.001, 0.101, 0.011, ...},

that is, xn is simply the reflection of n− 1 across the decimal point. Haber
[16–18] computed that S∗(Xε

2)= 1/(3 ln(2))= 0.480898.... Faure [10] proved the
more general result

S(Xε
b)=S∗(Xε

b)=


b− 1
4 ln(b)

if b is odd,

b2

4(b+ 1) ln(b)
if b is even.
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Introducing a non-identity permutation σ provides the smallest discrepancy
currently known [12]:

S(Xσ
36)= 23/(35 ln(6))= 0.366758...

where σ has cycle structure

(0) (1 25 33 16 23 4 31 30 10 34 24 21 28 2 17) (3 7)

(5 11 22 14 29 19 32 6 20 8 27 26 12) (9 13 15) (18) (35).

It is useful to generalize Xσ
b to XΣ

b , where Σ is a sequence of permutations σ.
If Σ= {σj}∞j=0, then the nth term of XΣ

b is simply given by

xn=
∞∑
j=0

σj(mj(n))b−j−1.

For example, if j≥ 0 is an integer, let h be the smallest integer ≥max{1,
√
j}.

If h(h− 1) + 1≤ j≤ h2, define σj to be the permutation

(0) (1 5) (2 9) (3) (4 7) (6 10) (8) (11);

otherwise define σj to be the permutation

(0 11) (1 6) (2) (3 8) (4) (5 10) (7) (9).

The alternating character ofΣ plays a role in reducing the star discrepancy to [10]

S∗(XΣ
12)= 1919/(3454 ln(12))= 0.223584....

Again, this is the smallest such value currently known.

1.6.2 {nα}-Sequences

Let α> 0 be irrational. Define a sequence Yα to have nth term [19]

yn= {nα}= nα mod 1,

that is, the fractional part of nα. Let DN(α)=DN(Yα) for convenience. It is
known that DN(α)→ 0 as N→∞, just as for van der Corput sequences. The
corresponding values of S(α) and S∗(α) are not as small as earlier, but are
nevertheless interesting.

Dupain & Sós [20] proved that

inf
α
S∗(α)=S∗(

√
2)=

1

4 ln(1 +
√

2)
= 0.283648...

and Schoissengeier [21–24] expressed S∗(α) in terms of the continued fraction
expansion of α. Baxa [25, 26] demonstrated that the image of the set of all
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irrational α under the map α 7→ S∗(α) is the ray [S∗(
√

2),∞], which contrasts
sharply against the Lagrange and Markov spectra [27].

Ramshaw [28] proved that

S(φ)=
1

5 ln(φ)
= 0.415617...

where φ=(1 +
√

5)/2 is the Golden mean. A proof that

inf
α
S(α)=S(φ)

has never been published [29, 30]; a hole as such in the literature deserves to be
filled.

1.6.3 Self-Similar Sequences

Terms u(n)= {(n− 1)φ} of the preceding sequence can be written as [31, 32]

u(n)=


0 if n= 1,
f0 (u(m)) if n≥ 2 and u(n)<φ− 1,
f1 (u(n−m)) if n≥ 2 and u(n)≥φ− 1,

where
m=# {k : 1≤ k≤ n and 0< u(k)≤φ− 1}

and f0, f1 are simple linear functions

f0(x)= (φ− 1)(1 − x), f1(x)= (φ− 1) + (2 − φ)x

that map the interval [0, 1) onto subintervals I0 =(0, φ− 1], I1 = [φ− 1, 1)
respectively. For each j∈{0, 1}, the subsequence of terms u(n1), u(n2), u(n3), . . .
belonging to subinterval Ij with n1< n2 < n3< . . . is the same as the image of
the full sequence u(1), u(2), u(3), . . . under the function fj. Equivalently, u(nℓ)=
fj(u(ℓ)) for all ℓ≥ 1. Such self-similar sequences often possess low discrepancy; it
is known that S∗(U)= 3/(20 ln(φ))= 0.311721... in this case [33]. Alternatively,

u(n)=


0 if n= 1,
f0
(
u
(
n−

∑n
k=1 ek

))
if n≥ 2 and en= 0,

f1
(
u
(∑n

k=1 ek
))

if n≥ 2 and en= 1,

where [34]

e1e2e3 . . .= 0101001010010010100101001001010010010100101001001010010...

is the unique fixed point of the bit substitution 0 7→ 010 and 1 7→ 10 on infinite
binary words. No periodicity in the digits

en= 1 − ⌊(n− 1)(φ− 1)⌋+ ⌊(n− 2)(φ− 1)⌋
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can be ascertained. By contrast, the van der Corput sequence Xε
2 with cutoff 1/2

(rather than φ− 1) has corresponding infinite word 01 (periodic with period 2).
A more complicated sequence is defined by

v(n)=


0 if n= 1,
g0
(
v
(
n−

∑n
k=1 ek

))
if n≥ 2 and en= 0,

g1
(
v
(∑n

k=1 ek
))

if n≥ 2 and en= 1

where [31]

g0(x)=
(
2 −

√
2
)
(1 − x), g1(x)=

(
2 −

√
2
)
+
(
−1 +

√
2
)
x

and here [35]

e1e2e3 . . .= 0101001010010101001010010101001010010100101010010100101...

is the fixed point of the substitution 0 7→ 01 and 1 7→ 010. Again, no periodicity
in the digits

en=
⌊
(n+ 1)

(√
2 − 1

)⌋
−
⌊
n
(√

2 − 1
)⌋

can be ascertained. A more straightforward representation of v(n) does not seem
to exist, although we mention

v(n)=P(n)
(
2 −

√
2
)
−Q(n)=

{
P(n)

(
2 −

√
2
)}

where P(1), P(2), P(3), …, Q(1), Q(2), Q(3), … are integers satisfying [31]

(
P(n)
Q(n)

)
=



(
0
0

)
if n= 1,(

1 +Q
(
n−

∑n
k=1 ek

)
− 4P

(
n−

∑n
k=1 ek

)
−2P

(
n−

∑n
k=1 ek

) )
if n≥ 2 and en= 0,(

1 +Q
(∑n

k=1 ek
)
− 3P

(∑n
k=1 ek

)
Q
(∑n

k=1 ek
)
− 2P

(∑n
k=1 ek

) )
if n≥ 2 and en= 1;

{P(n)}∞n=2 = {1,−3,−2, 11, 7, 8,−37, 5,−23,−27,−26, 127,−16,−17,

−19, 79, 93, . . .},

{Q(n)}∞n=2 = {0,−2,−2, 6, 4, 4,−22, 2,−14,−16,−16, 74,−10,−10,

−12, 46, 54, . . .}.

Borel [30, 36, 37] proved that 0.17451<S∗(V)< 0.45696 and conjectured that

S∗(V)= 3/
(
14 ln

(
1 + 1/

√
2
))

= 0.400683.... Owing to the elaborate details,

resolving this issue may remain open for a long time. Other occurrences of
recursive bit substitutions include [38–40].
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1.6.4 Erdős–Turán Inequality

Erdős & Turán [41] proved that there exist constants c1, c2 such that

DN(X)≤
c1

K+ 1
+ c2

K∑
k=1

1
k

∣∣∣∣∣ 1N
N∑
n=1

e2πikxn
∣∣∣∣∣

for any positive integers N, K and any sequence X⊆ [0, 1). There is considerable
flexibility in the choice of the two constants, as indicated here:

• (c1, c2)= (6, 4
π ) (Kuipers & Niederreiter [1])

• (c1, c2)= (1, 3) (Baker [42] and Montgomery [43])
• (c1, c2)= (1, 1) (Mauduit, Rivat & Sárközy [44] ).

Rivat & Tenenbaum [45], building on the work of Vaaler [46], determined
constants that are believed to be close to best for the Erdős–Turán inequality:

• (c1, c2)=
(
1, 2

πγ
)
=(1, 0.6527196578...)

• (c1, c2)=
(
1 + ξ, 2

π

)
=(1.1434819845..., 0.6366197723...)

where

f (t)=
√
[πt(1 − t) cot(πt) + t]2 + [πt(1 − t)]2, 0≤ t≤ 1,

γ= max
0≤t≤1

f (t)= 1.0252896410...,

g(x, t)=
(
1 − 3x2 + 3x2

∣∣cos (πt3x

)∣∣) f (t), 0≤ x≤
√

3
3 ,

and ξ= 0.1434819845... is the smallest value of x for which max0≤t≤1 g(x, t)≤ 1.
In fact, Rivat & Tenenbaum found a one-parameter family of admissible con-
stants (c1, c2), but we have indicated only the endpoints of this family.

A similar set of formulas occur in the determination of close-to-best constants
for the Berry–Esseen inequality. (This is a somewhat different version of the
inequality from that discussed in [47].) Let F,G be two distribution functions
with corresponding characteristic functions φ,ψ. Assume thatG is differentiable
and that supx |G′(x)|=M<∞. Then there exist constants c1, c2 such that

sup
x

|F(x)− G(x)| ≤ c1
M
T

+ c2

T∫
−T

∣∣∣∣φ(t)− ψ(t)
t

∣∣∣∣ dt
for all T> 0. Admissible values for these constants include

• (c1, c2)= ( 24
π ,

1
π ) (Feller [48] and Loève [49])

• (c1, c2)= (π, 1
2πγ) (Vaaler [46] and Tenenbaum [50])

where γ/(2π)= 0.1631799144... and γ is exactly as before. The new approach in
[45] can perhaps be applied here too.
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Addendum Larcher & Puchhammer [51, 52] proved that S∗(X)≥ 0.065664679
always while Ostromoukhov [53] proved that certain sequences X exist for which

S(X)≤ 130
83 ln(84)

= 0.353493..., S∗(X)≤ 32209
35400 ln(60)

= 0.222223....

The gap between bounds remains large!
Let us reformulate matters while providing a sample two-dimensional result

[54–56]. Given p> 0 and W a finite set of N points in the unit square, define

∆∗
p,N(W)=

 1∫
0

1∫
0

∣∣∣∣ |W ∩ {[0, x)× [0, y)}|
N

− x y

∣∣∣∣p dx dy
1/p

.

The star discrepancy

δ∗p,N=
N√
ln(N)

· inf
W

∆∗
p,N(W)

here satisfies [57, 58]

liminf
N→∞

δ∗2,N≥ 7

216
√

ln(2)
= 0.038925...,

limsup
N→∞

δ∗1,N≥ 3

64
√

ln(2)
= 0.056302...,

liminf
N→∞

δ∗1,N≥ 1

1152
√
e ln(2)

= 0.000632...

and limsupN→∞ δ∗1,N is conjectured to be strictly greater than liminfN→∞ δ∗1,N.
See [59, 60] for central behavior of ∆∗

p,N(W) rather than extreme behavior, where
points in W are independent and uniformly distributed.
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1.7 Unitarism and Infinitarism

We will examine variations of four famous arithmetical functions. For a given
function χ, let χ∗ denote its unitary analog, χ̃ its square-free analog, and χ′ its
unitary square-free analog. The meanings of these phrases will be made clear in
each case. At the end, the infinitary analog χ∞ will appear as well.

1.7.1 Divisor Function

If d(n) is the number of distinct divisors of n, then

N∑
n=1

d(n)=N ln(N) + (2γ − 1)N+O(
√
N)

as N→∞, where γ is the Euler–Mascheroni constant. Let us introduce a more
refined notion of divisibility. A divisor k of n is unitary if k and n/k are coprime,
that is, if gcd(k, n/k)= 1. This condition is often written as k||n. The number
d∗(n) of unitary divisors of n is 2ω(n), where ω(n) is the number of distinct prime
factors of n. This fact is easily seen to be true: If pa1

1 p
a2
2 · · · parr is the prime factor-

ization of n, then the unitary divisors of n are of the form pε1a1
1 pε2a2

2 · · · pεrarr , where
each εs is either 0 or 1. There are 2r possible choices for the r-tuple (ε1, ε2, . . . , εr);
hence the result follows. We have [1–5]

N∑
n=1

d∗(n)=
6
π2N ln(N) +

6
π2

(
2γ − 1 − 12

π2 ζ
′(2)
)
N+O(

√
N),

where ζ(x) is the Riemann zeta function and ζ ′(x) is its derivative.
A divisor k of n is square-free if k is divisible by no square exceeding 1. The

number d̃(n) of square-free divisors of n is also 2ω(n); the divisors in this case are
of the form pε1

1 p
ε2
2 · · · pεrr . Therefore the same asymptotics apply for d̃(n), but the

underlying sets of numbers overlap only somewhat [6].
Define d ′(n) to be the number of unitary square-free divisors of n. A more

complicated asymptotic formula arises here [7, 8]:

N∑
n=1

d ′(n)=
6α
π2 N ln(N) +

6α
π2

(
2γ − 1 − 12

π2 ζ
′(2) + X

)
N+O(

√
N ln(N))
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where

α =
∏
p

(
1 − 1

p( p+ 1)

)
= 0.7044422009...,

X =
∑
p

(2p+ 1) ln( p)
( p+ 1)( p2 + p− 1)

= 0.7483723334...

and we agree that the product and sum extend over all primes p. The constant α
is the same as what is called π2P/6 in [9]. Calculation of X is found in [10].

We finally give corresponding reciprocal sums [11–15]:

lim
N→∞

√
ln(N)

N

N∑
n=1

1
d(n)

=
1√
π

∏
p

√
p( p− 1) ln

(
p

p− 1

)
=

0.9692769438...√
π

= 0.5468559552...,

lim
N→∞

√
ln(N)

N

N∑
n=1

1
d∗(n)

=
1√
π

∏
p

√
1 +

1
4p( p− 1)

=
1.0969831191...√

π

= 0.6189064491....

The former sum was mentioned in [16] with regard to the arcsine law for random
divisors. It is not known what constant emerges for 1/d ′(n); an analog of d ′(n),
corresponding to unitary cube-free divisors of n, can be studied [8, 10].

1.7.2 Sum-of-Divisors Function

If σ(n) is the sum of all distinct divisors of n, then

N∑
n=1

σ(n)=
π2

12
N2 +O(N ln(N))

as N→∞. Let σ∗(n) be the sum of unitary divisors of n and σ̃(n) be the sum
of square-free divisors of n. Although d∗(n)= d̃(n) always, it is usually false that
σ∗(n)= σ̃(n) [17]. We have [18–21]

lim
N→∞

1
N2

N∑
n=1

σ∗(n)=
π2

12ζ(3)
, lim

N→∞

1
N2

N∑
n=1

σ̃(n)=
1
2
.

Further, if σ′(n) is the sum of unitary square-free divisors of n, then [18]

lim
N→∞

1
N2

N∑
n=1

σ′(n)=
1
2

∏
p

(
1 − 1

p2( p+ 1)

)
=

0.8815138397...
2

,

a constant which appeared in [22] and turns out to be connected with class
number theory [23–25].



“C01” — 2018/10/27 — 11:56 — page 51 — #51

1.7 Unitarism and Infinitarism 51

Corresponding reciprocal sums are [26, 27]

N∑
n=1

1
σ(n)

∼Y1 ln(N) + Y1(γ + Y2),

N∑
n=1

1
σ∗(n)

∼Y3 ln(N) + Y3(γ + Y4 − Y5)

where

Y1 =
∏
p

f ( p), Y2 =
∑
p

( p− 1)2g( p) ln( p)
p f ( p)

,

Y3 =
∏
p

(
1 − 1

p

)(
1 +

∞∑
k=1

1
pk + 1

)
=
∏
p

h( p),

Y4 =
∑
p

 ( p− 1) ln( p)
p h( p)

∞∑
j=1

j
p j( p j + 1)


where

f ( p)= 1 − ( p− 1)2

p

∞∑
j=1

1
( p j − 1)( p j+1 − 1)

, g( p)=
∞∑
j=1

j
( p j − 1)( p j+1 − 1)

,

h( p)= 1 − p− 1
p

∞∑
j=1

1
p j( p j + 1)

andY5 is a similarly complicated expression. An estimate 0.6728... forY1 appears
in [28]; other values of Yi remain open. No one seems to have examined 1/σ̃(n)
or 1/σ′(n) yet.

1.7.3 Totient Function

If φ(n) is the number of positive integers k≤ n satisfying gcd(k, n)= 1,
then [29, 30]

N∑
n=1

φ(n)=
3
π2N

2 +O(N ln(N))

as N→∞. Define gcd∗(k, n) to be the greatest divisor of k that is also a uni-
tary divisor of n. Let φ∗(n) be the number of positive integers k≤ n satisfying
gcd∗(k, n)= 1. Since gcd∗ is never larger than gcd, it follows that φ∗ is at least
as large as φ. Also let φ̃(n) be the number of positive square-free integers k≤ n
satisfying gcd(k, n)= 1. We have [18, 31]

lim
N→∞

1
N2

N∑
n=1

φ∗(n)=
1
2
α, lim

N→∞

1
N2

N∑
n=1

φ̃(n)=
3
π2α

where α is as defined earlier. The case for φ′(n) remains open.
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Corresponding reciprocal sums are [26, 27, 32]

N∑
n=1

1
φ(n)

∼Z1 ln(N) + Z1(γ − Z2),

N∑
n=1

1
φ∗(n)

∼Z3 ln(N) + Z3(γ − Z4 + Z5 + Z6)

where

Z1 =
315ζ(3)

2π4 , Z2 =
∑
p

ln( p)
p2 − p+ 1

,

Z3 =
∏
p

(
1 − 1

p

)(
1 +

∞∑
k=1

1
pk − 1

)
=
∏
p

u( p),

Z4 =
∑
p

 ( p− 1) ln( p)
p u( p)

∞∑
j=1

j
p j( p j − 1)


where

u( p)= 1 +
p− 1
p

∞∑
j=1

1
p j( p j − 1)

, v( p)=
∞∑
j=1

1
p j( p j+1 − 1)

and Z5, Z6 are similarly complicated expressions.

1.7.4 Square-Free Core Function

If κ̃(n) is the maximal square-free divisor of n (also called [9] the square-free
kernel of n), then [18, 20, 21, 33–35]

N∑
n=1

κ̃(n)=
α

2
N2 +O

(
N3/2

)
as N→∞, where α is as before. Assuming the Riemann Hypothesis, the error
term can be improved toO(N7/5+ε) for any ε> 0. If κ′(n) is the maximal unitary
square-free divisor of n, then [34, 35]

N∑
n=1

κ′(n)=
β

2
N2 +O

(
N3/2

)
where

β=
∏
p

(
1 − p2 + p− 1

p3( p+ 1)

)
= 0.6496066993....
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1.7.5 Infinitary Arithmetic

We continue refining the notion of divisibility [36, 37]. A divisor k of n is biunitary
if the greatest common unitary divisor of k and n/k is 1, and triunitary if the
greatest common biunitary divisor of k and n/k is 1. More generally, for any
positive integer m, a divisor k of n is m-ary if the greatest common (m− 1)-ary
divisor of k and n/k is 1. We write k|mn. Clearly 1|mn and n|mn.

When introducing infinitary divisors, it is best to start with prime powers. Let p
be a prime, and let x≥ 0, y≥ 1 be integers. It can be proved that, for anym≥ y−
1, px|mpy if and only if px|y−1py. Thus we define px|∞py if px|y−1py. For fixed y, the
number of integers 0≤ x≤ y satisfying px|∞py is 2b(y), where b(y) is the number
of ones in the binary expansion of y. Define as well 1|∞1. The sum

∑z−1
y=0 2b(y) is

approximately zln(3)/ ln(2) but is not well behaved asymptotically [38].
We now allow n to be arbitrary. A divisor k of n is infinitary if, for any prime

p, the conditions px||k and py||n imply that px|∞py. We write k|∞n. Clearly 1|∞n
and n|∞n. Each n> 1 has a unique factorization as a product of distinct elements
from the set

I=
{
p2 j

: p is prime and j≥ 0
}
;

each element of I in this product is called an I-component of n. It follows that
k|∞n if and only if every I-component of k is also an I-component of n.

Assume that n=P1P2 · · ·Pt, whereP1<P2< · · ·<Pt are the I-components of
n. The infinitary analogs of the functions d and σ are defined by [39, 40]

d∞(n)= 2t, σ∞(n)=
t∏

i=1

(Pi + 1),

for n> 1; otherwise d∞(1)=σ∞(1)= 1. Two infinitary analogs of the function φ
are known:

φ∞(n)= the number of positive integers k≤ n satisfying gcd∞(k, n)= 1;

φ̂∞(n)=
t∏

i=1

(Pi − 1)= n
t∏

i=1

(
1 − 1

Pi

)
for n> 1, φ̂∞(1)= 1.

It is generally untrue that φ∞(n)= φ̂∞(n). No similar extension of the function
κ̃ is known. Cohen & Hagis [39, 41] proved that

lim
N→∞

1
N2

N∑
n=1

σ∞(n)=
A
2
= 0.7307182421...,

lim
N→∞

1
N2

N∑
n=1

φ̂∞(n)=
B
2
= 0.3289358388...,

1
N2

N∑
n=1

d∞(n)∼CN ln(N) +DN∼ 2(0.3666252769...)N ln(N)
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where

A=
∏
P∈I

(
1 +

1
P(P+ 1)

)
, B=

∏
P∈I

(
1 − 1

P(P+ 1)

)
, C=

∏
P∈I

(
1 − 1

(P+ 1)2

)

but no such expression for D yet exists. It is known that φ∞(n)= n2/σ∞(n) +
O(nε) for any ε> 0; reciprocal sums involving d∞, σ∞ and φ̂∞ also remain open.
Alternative generalizations of unitary divisor have been given [42, 43] but will not
be discussed here.

1.7.6 Coprimality

The probability that k randomly chosen integers are unitary coprime is [44]

∏
p

(
1 − ( p− 1)k

pk( pk − 1)

)
.

The probability that they are pairwise unitary coprime is more complicated: for
instance, it is

ζ(2)ζ(3)
∏
p

(
1 − 4

p2 +
7
p3 − 9

p4 +
8
p5 − 2

p6 − 3
p7 +

2
p8

)
when k= 3 and

ζ(2)2ζ(3)ζ(4)
∏
p

(
1 − 8

p2 +
3
p3 +

27
p4 − 24

p5 − 14
p6 − 3

p7 +
37
p8 − 30

p9

+
42
p10 − 33

p11 − 41
p12 +

78
p13 − 44

p14 +
9
p15

)
when k= 4. Expressions for arbitrary k appear in [44].
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1.8 Erdős’ Minimum Overlap Problem

Let A, B be disjoint, complementary subsets of the set {1, 2, 3, . . . , 2n} with car-
dinality |A|= |B|= n. Let Mk denote the number of solutions of the equation
ai − bj= k, where k is an integer between −2n and 2n. Define

M(n)=min
A,B

max
k

Mk.

We wish to estimateM(n) as n grows large [1–3]. The work of Erdős, Scherk and
others [4–6] implies that

µL= liminf
n→∞

M(n)
n

≥
√

4 −
√

15> 0.35639

and specific examples [7] provide that

µR= limsup
n→∞

M(n)
n

≤ 2
5
= 0.4.

Haugland [6, 8] demonstrated that µL=µR (meaning that the limit exists) and,
using a theorem of Swinnerton-Dyer, obtained the improvement

0.35639<µ= lim
n→∞

M(n)
n

< 0.38093.

No one has conjectured an exact value for this limiting ratio.
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Observe thatM−k is the cardinality of the setAk ∩ B, whereAk is the translated
set {a+ k : a∈A}. Mycielski and Świerczkowski [4] considered a continuous
analog of Erdős’ problem. Let X, Y be disjoint, complementary measurable
subsets of the interval [0, 1] with Lebesgue measure |X|= |Y|= 1/2. It is not
surprising that

inf
X,Y

sup
t

|Xt ∩ Y|= µ

2

where Xt is the translated set {x+ t : x∈X}. Hence the bounds 0.17819<µ/2<
0.19047 carry over from before.

Moser and Murdeshwar [9–11] studied the following generalization. Let f, g
be Lebesgue integrable functions on R satisfying

0≤ f (x)≤ 1 for 0≤ x≤ 1, f (x)= 0 otherwise;

0≤ g(x)≤ 1 for 0≤ x≤ 1, g(x)= 0 otherwise;

1∫
0

f (x) dx=
1
2
=

1∫
0

g(x) dx.

(This scenario reduces to the preceding case by taking f to be the characteristic
function ofX and g to be the characteristic function ofY; clearly f (x) + g(x)= 1
for all 0≤ x≤ 1.) Define

λ= inf
f,g

sup
t

1∫
0

f (x+ t) g(x) dx.

It is known [11] that 0.136≤λ≤ 0.166, but it is not presently known whether
Swinnerton-Dyer’s theorem [6] can be applied here (in some extended form) to
improve these bounds.

Here is a related problem due to Czipszer [3, 12]. Let ã1< ã2< ã3< · · ·< ãn be
arbitrary integers and define Ãk= {ãj + k : 1≤ j≤ n} for each integer k. Let M̃k

denote the cardinality |Ãk − Ã0|, that is, the number of elements of Ãk not in Ã0.
Define

M̃(n)=min
Ã

max
−n≤k≤n

M̃k

and µ̃L, µ̃R as earlier. It is known that 1/2≤ M̃(n)/n≤ 2/3 and, further, that
M̃(n)/n≥ 3/5 for all n≥ 26 [13]. It is conjectured that µ̃L= µ̃R= 2/3. We give
the corresponding functional version. Let f̃ be a Lebesgue integrable function on
R satisfying

0≤ f̃ (x)≤ 1,

∞∫
−∞

f̃ (x) dx= 1.
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Define

λ̃= inf
f̃

{
1 − inf

−1≤t≤1

∞∫
−∞

f̃ (x+ t) f̃ (x) dx

}
.

It is known that 0.5892≤ λ̃≤ 2/3 [12]. As a corollary, if X̃ is a measurable subset
of R with Lebesgue measure |X̃ |= 1, then

0.5892≤ inf
X̃

sup
−1≤t≤1

∣∣X̃t − X̃
∣∣≤ 2

3
.

The discrete and continuous analogs do not appear to be as closely linked as
before. Again, we wonder whether current techniques [6] can be invoked to
sharpen these bounds.
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1.9 Planar Graph Growth Constants

A graph of order n consists of a set of n vertices (points) together with a set of
edges (unordered pairs of distinct points). Note that loops and multiple parallel
edges are automatically disallowed. Two vertices joined by an edge are called
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Figure 1.13 There exist 4 non-isomorphic graphs of order 3, that is, g3 = 4.

Figure 1.14 There exist 6 non-isomorphic connected graphs of order 4, that is, c4 = 6.

adjacent. Two graphs X and Y are isomorphic if there is a one-to-one map from
the vertices of X to the vertices of Y that preserves adjacency (see Figure 1.13).
Diagrams for all non-isomorphic graphs of order ≤ 7 appear in [1].

A graph is connected if, for any two distinct vertices u andw, there is a sequence
of adjacent vertices v0, v1, ..., vm such that v0 = u and vm=w (see Figure 1.14).
The generating function for graphs [2]

g(x) =
∞∑
n=1

gnxn= x+ 2x2 + 4x3 + 11x4 + 34x5 + 156x6 + 1044x7

+ 12346x8 + 274668x9 + · · · ,

and the generating function for connected graphs

c(x) =
∞∑
n=1

cnxn= x+ x2 + 2x3 + 6x4 + 21x5 + 112x6 + 853x7

+ 11117x8 + 261080x9 + · · ·

are related via the Euler transform [3]

1 + g(x)= exp

( ∞∑
k=1

c(xk)
k

)
.

If we agree that g0 = 1, then the coefficients satisfy

gn=
1
n

n∑
k=1

(∑
d|k

d cd

)
gn−k, n≥ 1.

Asymptotically, gn∼ 2n(n−1)/2/n! as n→∞, or more precisely [4–6],

gn∼
2n(n−1)/2

n!

(
1 + 2

n(n− 1)
2n

+
8
3
n(n− 1)(n− 2)(3n− 7)

22n +O
(

n5

25n/2

))
.

A separating set or vertex cut of a graph X is a subset of the vertices of X,
the removal of which disconnects X. Let k be a nonnegative integer. A graph
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Figure 1.15 The left-hand pair of 1-connected graphs are isomorphic yet are distinct
planar embeddings. The right-hand pair of 1-connected graphs are isomorphic yet are
distinct spherical embeddings.

Figure 1.16 The left-hand pair of 2-connected graphs are isomorphic yet are distinct
planar embeddings. The right-hand pair of 2-connected graphs are isomorphic yet are
distinct spherical embeddings.

is k-connected if every vertex cut has at least k vertices. Clearly any graph is
0-connected and 1-connectedness is equivalent to connectedness. A 2-connected
graph is often called biconnected or nonseparable and a 3-connected graph is often
called triconnected. Observe that, when we count graphs, we do so abstractly;
we are not counting embeddings in the plane or on the sphere (Figures 1.15
and 1.16).

If we label the vertices of a graph distinctly with the integers 1, 2, ..., n, the cor-
responding enumeration problems often simplify; for example, there are exactly
2n(n−1)/2 labeled graphs. The generating function for labeled graphs

G(x)=
∞∑
n=1

Gn

n!
xn=

∞∑
n=1

2n(n−1)/2

n!
xn

and the generating function for connected labeled graphs [7]

C(x) =
∞∑
n=1

Cn

n!
xn

= x+
1
2!
x2 +

4
3!
x3 +

38
4!
x4 +

728
5!

x5 +
26704

6!
x6 +

1866256
7!

x7 + · · ·

satisfy [3, 8]

1 + G(x)= exp (C(x)) , Gn=
1
n

n∑
k=1

(
n
k

)
kGn−kCk,

where again we agree that G0 = 1. In fact, Cn∼Gn as n→∞; consequently,
almost all graphs are connected [6]. Likewise, almost all graphs are 2-connected.
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A graph is planar if it can be embedded in the plane (as opposed to a map,
which is a graph together with its embedding). In other words, a planar graph
can be drawn so that no two edges meet except at a vertex at which both are
incident. The first example of a nonplanar graph is the complete graph K5

with 5 vertices and all 10 edges; a second well-known example is the com-
plete bipartite graph K3,3 with 6 vertices (3 houses and 3 utilities) and 9 edges
(each house is adjacent to each utility). The generating function for planar
graphs [9]

ḡ(x) =
∞∑
n=1

ḡnxn

= x+2x2+4x3+11x4 + 33x5 + 142x6 + 822x7 + 6966x8 + 79853x9 + · · · ,

the generating function for connected planar graphs

c̄(x) =
∞∑
n=1

c̄nxn

= x+ x2 + 2x3 + 6x4 + 20x5 + 99x6 + 646x7 + 5974x8 + 71885x9 + · · · ,

the generating function for 2-connected planar graphs (see Figure 1.17)

b̄(x) =

∞∑
n=1

b̄nxn

= x3 + 3x4 + 9x5 + 44x6 + 294x7 + 2893x8 + 36496x9 + 545808x10 + · · · ,

and the generating function for 3-connected planar graphs (also called polyhedra)

ā(x) =
∞∑
n=1

ānxn

= x4 + 2x5 + 7x6 + 34x7 + 257x8 + 2606x9 + 32300x10 + · · · ,

do not appear to be easily related. The growth rate of {ḡn}∞n=1, defined as γu=
limn→∞ ḡ1/n

n , can be proved to exist and satisfies γu≤ 30.0606= 24.9098 [10–13].
We will discuss lower bounds on this constant shortly. Also, the asymptotics of
{ān}∞n=1 are precisely known [14–16]:

ān∼κ n−7/2αn

where

α=
16
27

(
17 + 7

√
7
)
= 21.0490424755...=(0.0475080992...)−1

and κ is a constant (omitted).
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The generating function for labeled planar graphs [17]

Ḡ(x) =
∞∑
n=1

Ḡn

n!
xn

= x+
2
2!
x2 +

8
3!
x3 +

64
4!
x4 +

1023
5!

x5 +
32071

6!
x6 +

1823707
7!

x7 + · · · ,

the generating function for labeled connected planar graphs

C̄(x) =

∞∑
n=1

C̄n

n!
xn

= x+
1
2!
x2 +

4
3!
x3 +

38
4!
x4 +

727
5!

x5 +
26013

6!
x6 +

1597690
7!

x7 + · · · ,

and the generating function for labeled 2-connected planar graphs

B̄(x) =
∞∑
n=1

B̄n
n!
xn

=
1
3!
x3 +

10
4!
x4 +

237
5!

x5 +
10707

6!
x6 +

774924
7!

x7 +
78702536

8!
x8 + · · · ,

satisfy
1 + Ḡ(x)= exp

(
C̄(x)

)
, C̄ ′(x)= exp

(
x+ B̄ ′(xC̄ ′(x))

)
where C̄ ′(x) and B̄ ′(x) denote the derivatives of C̄(x) and B̄(x). The growth rate
of {Ḡn}∞n=1, defined as γl= limn→∞(Ḡn/n!)1/n, can be proved to exist and satisfies
27.22685<γl< 27.22688 [18–20]. It is known that γl<γu, hence the lower bound
for γl serves as a lower bound for γu. Further, the asymptotics of {B̄n}∞n=1 are
exactly known [21]:

B̄n∼λ n−7/2βnn!

where

β=
16τ 3

(1 + 3τ)(1 − τ)3
= 26.1841125556...=(0.0381910976...)−1,

τ is the unique solution of

1 + 2t
(1 + 3t)(1 − t)

exp
[
− t2(1 − t)(18 + 36t+ 5t2)

2(3 + t)(1 + 2t)(1 + 3t)2

]
− 2= 0

and λ is a constant (again omitted). The growth constant for {C̄n}∞n=1 is clearly
the same as that for {Ḡn}∞n=1. In [20], it was asked: which of the following
formulas:

C̄n∼µ n−5/2γnl n! or C̄n∼µ n−7/2γnl n!

is true? This appeared to be a difficult question. The answer is that −7/2 is the
correct exponent (for Ḡn as well as C̄n): see the Addendum.
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Figure 1.17 There exist 9 non-isomorphic 2-connected planar graphs of order 5.

A graph is outerplanar if it can be embedded in the plane so that all its ver-
tices lie on the same face. This face, by convention, is usually chosen to be
the unbounded exterior of the graph. Any tree is an outerplanar graph. Non-
outerplanar graphs include the complete graph K4 with 4 vertices and all 6
edges, and the complete bipartite graph K2,3 with 5 vertices and 6 edges. The
unlabeled case has not received much attention, except in the 2-connected case
(the first three graphs in Figure 1.17, each pentagonal, constitute all possibilities
with 5 vertices). The generating function for unlabeled 2-connected outerplanar
graphs [22]

b̂(x) =

∞∑
n=1

b̂nxn

= x3 + 2x4 + 3x5 + 9x6 + 20x7 + 75x8 + 262x9 + 1117x10 + · · ·

was obtained by Read [23–25], building on Motzkin [26]:

b̂(x) =

(
3x2−2x f (x)+ f (x)2

)
−
(
2+2x+7x2−4x f (x)+2f (x)2

)
f (x2)+2f (x2)2

4(2f (x2)− 1)

+
1
2

∞∑
k=3

1
k

∑
d|k

φ(d)
(
f (xd)

)k/d
where

f (x)= x+
∞∑
r=1

1
r

∞∑
s=2

(
s− 2
r− 1

)(
r+ s− 1

s

)
xs

andφ is the Euler totient function. Counting such graphs is closely related to enu-
merating the number of dissections of the interior of a regular n-gon into smaller
polygons by use of nonintersecting diagonals. Asymptotics for b̂n are presently
open. It would be good to learn more about ĉn and ĝn too.
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By contrast, the generating function for labeled outerplanar graphs [22]

Ĝ(x) =

∞∑
n=1

Ĝn

n!
xn

= x+
2
2!
x2 +

8
3!
x3 +

63
4!
x4 +

893
5!

x5 +
19714

6!
x6 +

597510
7!

x7 + · · · ,

the generating function for labeled connected outerplanar graphs

Ĉ(x) =

∞∑
n=1

Ĉn

n!
xn

= x+
1
2!
x2 +

4
3!
x3 +

37
4!
x4 +

602
5!

x5 +
14436

6!
x6 +

458062
7!

x7 + · · · ,

and the generating function for labeled 2-connected outerplanar graphs

B̂(x) =

∞∑
n=1

B̂n
n!
xn

=
1
3!
x3 +

9
4!
x4 +

132
5!

x5 +
2700
6!

x6 +
70920

7!
x7 +

2275560
8!

x8 + · · · ,

satisfy

1 + Ĝ(x)= exp
(
Ĉ(x)

)
, Ĉ ′(x)= exp

(
xĈ ′(x) + B̂ ′(xĈ ′(x))

)
and, moreover,

B̂ ′(x)=
1
8

(
1 + 5x−

√
1 − 6x+ x2

)
− x.

In view of the algebraic nature of B̂′(x), it is not surprising that the growth
constants possess closed-form expressions [27–29]:

lim
n→∞

(
Ĝn

n!

)1/n

=
1
ξ

exp

(
1 + 5ξ −

√
1 − 6ξ + ξ2

8

)
= 7.3209800548...=(0.1365937336...)−1

where ξ= 0.1707649868... has minimal polynomial 8 − 58x+ 70x2 − 28x3 +

3x4, and

lim
n→∞

(
B̂n
n!

)1/n

= 3 + 2
√

2= 5.8284271247....

Like before, the growth constant for {Ĉn}∞n=1 is the same as that for {Ĝn}∞n=1.
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Addendum Giménez & Noy [30, 31] demonstrated that the growth constant for
labeled planar graphs is γl= 27.2268777685... and, further,

Ḡn∼
(
0.42609...× 10−5) n−7/2(27.22687...)n,

C̄n∼
(
0.41043...× 10−5) n−7/2(27.22687...)n,

B̄n∼
(
0.37044...× 10−5) n−7/2(26.18411...)n.

Bodirsky, Fusy, Kang & Vigerske [32] showed that

ĝn∼ (0.90994...× 10−2)n−5/2(7.50360...)n,

ĉn∼ (0.76047...× 10−2)n−5/2(7.50360...)n,

b̂n∼ (0.59602...× 10−2)n−5/2
(
3 + 2

√
2
)n

;

note that growth rates of unlabeled and labeled 2-connected outerplanar graphs
coincide, whereas growth rates for the connected and general cases differ.

Upon introduction of randomness, we are quickly overwhelmed with various
numerical results, far too many to summarize. Here are two examples [31]. Let
Pn denote the number of edges in a uniform planar graph with n vertices. Then
Pn is asymptotically normal with mean (2.21326...)n and variance (0.43034...)n
as n→∞. Let Qn denote the number of connected components in a uniform
planar graph with n vertices. ThenQn − 1 is asymptotically Poisson with param-
eter ν≈ 0.037439. Consequently, the probability that a random planar graph
is connected is exp(−ν)≈ 0.963253 and the expected number of components is
1 + ν= 1.037439 as n→∞. More such results appear in [33–42].
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1.10 Tauberian Constants

A series
∑∞

k=0 ak of complex numbers is Abel convergent if

lim
x→1−

∞∑
k=0

akxk
(

equivalently, lim
x→1−

(1 − x)
∞∑
n=0

snxn
)
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exists and Cesàro convergent if

lim
l→∞

1
l+ 1

l∑
n=0

sn

(
equivalently, lim

l→∞

l∑
k=0

(
1 − k

l+ 1

)
ak

)

exists, where sn=
∑n

k=0 ak for each n≥ 0. Ordinary convergence implies both
Abel convergence and Cesàro convergence. Various converses of this theo-
rem, in which ordinary convergence is deduced from a summability condition
(as above) plus an additional condition (for example, kak→ 0 as k→∞), are
called Tauberian theorems [1–3].

For notational convenience, when we use the symbol σ, we mean an arbitrary
limit point of the partial sums {sn}∞n=0. By λ, we mean a limit point of the power
series

∑∞
k=0 akx

k as x→ 1−. By µ, we mean a limit point of the partial averages
{ml}∞l=0, where ml=

∑l
n=0 sn/(l+ 1) for each l≥ 0.

We start with a Tauberian theorem due to Hadwiger [4, 5] and Agnew [6–8]; it
is quite general since no hypotheses are required! Constants C1 and C2 exist with
the following properties:

• for each σ, there is a λ such that |λ− σ| ≤C1 limsupk→∞ |kak|
• for each λ, there is a σ such that |λ− σ| ≤C2 limsupk→∞ |kak|.

The least constant C1 is known to be

γ + ln(ln(2))− 2Ei(− ln(2))= 0.9680448304...

where Ei is the exponential integral [9]. The least constantC2 satisfies the inequal-
ity 0.4858≤C2 ≤ 0.7494386, but its exact value is unknown. Likewise [8, 10, 11],
constants C3 and C4 exist with the following properties:

• for each σ, there is a µ such that |µ− σ| ≤C3 limsupk→∞ |kak|
• for each µ, there is a σ such that |µ− σ| ≤C4 limsupk→∞ |kak|.

The least constant C3 is known to be ln(2)= 0.6931471805... and the least
constant C4 is the unique real solution y of the equation

y= e−(π/2)y, that is, y=
2
π
W
(π

2

)
= 0.4745409995...,

where W is Lambert’s function [12]. See a generalization by Rajagopal [13, 14].
Different constants emerge if we are more restrictive in our choices of σ, λ and

µ. For example, the best constant C̃1 such that [15–18]

limsup
n→∞

∣∣∣∣∣
∞∑
k=0

ak

(
1 − 1

n

)k

−
n∑

k=0

ak

∣∣∣∣∣≤ C̃1 limsup
k→∞

|kak|

is
γ − 2Ei(−1)= 1.0159835336...= 1.7517424160...− 2/e.
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The constant −Ei(−1)= 0.2193839343... is familiar: when multiplied by e, it
gives the Euler–Gompertz constant [9]. In the definition of C4, observe that the
subsequence of {sn}∞n=0 with limit point σ may depend on the sequence {ak}∞k=0.
If we deny any knowledge of {ak}∞k=0, then the required constant C ′

4 becomes
larger. More precisely, there is a non-decreasing sequence {nl}∞l=0 independent
of {ak}∞k=0 such that [8, 10, 11]

limsup
l→∞

|ml − snl | ≤C ′
4 limsup

k→∞
|kak|

and C ′
4 = ln(2) is best possible; further, a simple such sequence is nl= ⌊l/2⌋.

Here is a variation in which we permit knowledge of {ak}∞k=0 only to make a
binary decision at each step. There exist two non-decreasing sequences {pl}∞l=0
and {ql}∞l=0 independent of {ak}∞k=0 such that

limsup
l→∞

|ml − snl | ≤C ′′
4 limsup

k→∞
|kak|

where nl is, for each l, one of the two integers pl and ql, and the optimal C ′′
4

satisfies C4 ≤C ′′
4 ≤ 0.56348. The exact value of C ′′

4 is unknown, but it is believed
to be close to its upper bound. This estimate comes from setting pl= ⌊3l/8⌋, ql=
⌊5l/8⌋ and choosing nl appropriately.

Comparisons between different weighted averages of a sequence {ak}∞k=1 are
important in prime number theory. Let µ(k) be the Möbius mu function and
define

M(n)=
∑
k≤n

µ(k), g(n)=
∑
k≤n

µ(k)
k

, Q(n)=
∑
k≤n

|µ(k)| .

From [19, 20], we have

limsup
n→∞

∣∣∣∣∣∣
n∑

k=1

ak
k
n

∑
j≤n/k

µ( j)2 − 6
π2

n∑
k=1

ak
k
n

⌊n
k

⌋∣∣∣∣∣∣≤C5 limsup
k→∞

|kak| ,

limsup
n→∞

∣∣∣∣∣∣
n∑

k=1

ak
k
n

∑
j≤n/k

µ( j)2 − 6
π2

n∑
k=1

ak

∣∣∣∣∣∣≤C6 limsup
k→∞

|kak|

where the best constants are [21, 22]

C5 =

∞∫
1

∣∣∣∣Q(u)u2 − 6
π2

⌊u⌋
u2

∣∣∣∣ du= 0.6945017...,

C6 =

∞∫
1

∣∣∣∣Q(u)u2 − 6
π2u

∣∣∣∣ du= 0.4616041....
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In the following, a non-classical expression appears on the right-hand side of the
inequality, which allows for comparisons with 0 in the first three cases [23, 24]:

limsup
n→∞

∣∣∣∣∣
n∑

k=1

ak

(
1 − 1

n

)k

− 0

∣∣∣∣∣≤C7 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣
n∑

k=1

ak

(
1 − k− 1

n

)
− 0

∣∣∣∣∣≤C8 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣∣
n∑

k=1

ak
k
n

∑
j≤n/k

µ( j)2 − 0

∣∣∣∣∣∣≤C9 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣∣
n∑

k=1

ak
k
n

∑
j≤n/k

µ( j)2 −
n∑

k=1

ak
k
n

⌊n
k

⌋∣∣∣∣∣∣≤C10 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣
n∑

k=1

ak

(
1 − 1

n

)k

−
n∑

k=1

ak
k
n

⌊n
k

⌋∣∣∣∣∣≤C11 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣
n∑

k=1

ak

(
1 − 1

n

)k

−
n∑

k=1

ak

(
1 − k− 1

n

)∣∣∣∣∣≤C12 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣
n∑

k=1

ak
k
n

⌊n
k

⌋
−

n∑
k=1

ak

(
1 − k− 1

n

)∣∣∣∣∣≤C13 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣∣
n∑

k=1

ak

(
1 − 1

n

)k

−
n∑

k=1

ak
k
n

∑
j≤n/k

µ( j)2

∣∣∣∣∣∣≤C14 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣ ,
limsup
n→∞

∣∣∣∣∣∣
n∑

k=1

ak

(
1 − k− 1

n

)
−

n∑
k=1

ak
k
n

∑
j≤n/k

µ( j)2

∣∣∣∣∣∣≤C15 limsup
n→∞

∣∣∣∣∣∣
∑
d|n

dad

∣∣∣∣∣∣
where the best constants are [21, 22]

C7 =

∞∫
1

|g(u)|
u

du= 1.09667..., C8 =

∞∫
1

|u g(u)−M(u)|
u2 du= 1.00004...,

C9 = 2

∞∫
1

|M(u)|
u3 du= 0.8921506905...,

C10 = 2

∞∫
1

|M(u)− 1|
u3 du= 0.3921032696...,
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C11 =

∞∫
1

|u g(u)− 1|
u2 du= 0.483439..., C12 =

∞∫
1

|M(u)|
u2 du= 1.01426...,

C13 =

∞∫
1

|u g(u)−M(u)− 1|
u2 du= 0.613...,

C14 =

∞∫
1

∣∣M (√
u
)
− u g(u)

∣∣
u2 du= 0.49619...,

C15 =

∞∫
1

∣∣M (√
u
)
− u g(u) +M(u)

∣∣
u2 du= 1.00582....

The values of C14 and C15 here correct the values 0.486 and 0.994 given in [24].

Acknowledgment Tadej Kotnik kindly computed the constants C5 to C15 at my
request [21], publishing his detailed results later [22].
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1.11 Integer Partitions

Let L denote the positive octant of the regular d-dimensional cubic lat-
tice. Each vertex (j1, j2, . . . , jd) of L is adjacent to all vertices of the form
(j1, j2, . . . , jk + 1, . . . , jd), 1≤ k≤ d. A d-partition of a positive integer n is an
assignment of nonnegative integers nj1,j2,...,jd to the vertices of L, subject to both
an ordering condition

nj1,j2,...,jd ≥ max
1≤k≤d

nj1,j2,...,jk+1,...,jd

and a summation condition
∑

nj1,j2,...,jd = n. The summands in the d-partition
are thus nonincreasing in each of the d lattice directions. We agree to suppress
all zero labels. A 1-partition is the same as an ordinary partition; a 2-partition
is often called a plane partition and a 3-partition is often called a solid partition.
Three sample plane partitions of n= 26 are

 8
9
9

 ,


1
1
2 2 1
4 2 1 1
5 3 2 1

 ,
(
7 6 4 4 3 1 1

)
.
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Let pd(n) denote the number of d-partitions of n. The generating functions [1]

1 +
∞∑
n=1

p1(n)xn = 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + 22x8 + · · ·

=
∞∏
m=1

(1 − xm)−1
,

1+
∞∑
n=1

p2(n)xn = 1+ x+ 3x2 + 6x3 + 13x4 + 24x5 + 48x6 + 86x7 + 160x8 + · · ·

=

∞∏
m=1

(1 − xm)−m

give rise to well-known asymptotics [2–5]:

p1(n) ∼ 1

4
√

3n
exp

(
π

√
2n
3

)
∼ (0.1443375672...)n−1 exp

(
(2.5650996603...)n1/2

)
,

p2(n) ∼ ζ(3)7/36eζ
′(−1)

211/36
√

3πn25/36
exp

(
3ζ(3)1/3

(n
2

)2/3
)

∼ (0.2315168134...)n−25/36 exp
(
(2.0094456608...)n2/3

)
as n→∞, where ζ(3)= 1.2020569031... is Apéry’s constant [6] and ζ ′(−1)=
−0.1654211437...= 2(−0.0827105718...)= ln(0.8475366941...) is closely related
to the Glaisher–Kinkelin constant [7]. Although an infinite product expression
for the generating function [1]

1+
∞∑
n=1

p3(n)xn=1+x+4x2+10x3+26x4+59x5+140x6+307x7+684x8+ · · ·

remains unknown, it is conjectured that [8, 9]

p3(n) ∼ C
n61/96

exp
(

27/4π

35/451/4
n3/4 +

√
15ζ(3)√
2π2

n1/2 − 155/4ζ(3)2

27/4π5
n1/4

)
∼ Cn−61/96 exp((1.7898156270...)n3/4 + (0.3335461354...)n1/2

− (0.0414392867...)n1/4)

for some constantC> 0. The evidence for this asymptotic formula includes exact
enumerations (for n≤ 68) and Monte Carlo simulation. See [10–13] for more
about planar partitions and [14–17] for more about solid partitions.
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1.11.1 Hardy–Ramanujan–Rademacher

The Hardy–Ramanujan–Rademacher formula for p1(n) is a spectacular exact
result [18–26]:

p1(n)=
π

25/433/4

(
n− 1

24

)−3/4 ∞∑
k=1

Ak(n)
k

I3/2

(√
2
3
π

k

√
n− 1

24

)
where

I3/2(x)=

√
2x
π

(
cosh(x)

x
− sinh(x)

x2

)
is the modified Bessel function of order 3/2,

Ak(n)=
∑

gcd(h,k)=1,
1≤h<k

ωh,k exp
(
−2πinh

k

)
,

and ωh,k= exp(πis(h, k)) is the unique 24kth root of unity with Dedekind sum

s(h, k)=
k−1∑
m=1

(
m
k
−
⌊m
k

⌋
− 1

2

)(
hm
k

−
⌊
hm
k

⌋
− 1

2

)
.

For example,

A1(n)= 1, A2(n)= (−1)n, A3(n)= 2 cos
(
π(12n− 1)

18

)
,

A4(n)= 2 cos
(
π(4n− 1)

8

)
, A5(n)= 2 cos

(
π(2n− 1)

5

)
+ 2 cos

(
4πn
5

)
.

Defining

c=

√
2
3
π, λ(n)=

√
n− 1

24
,

µ(n)= cλ(n), A∗
k(n)=Ak(n)/

√
k,

we have the following variations:

p1(n) =
1

21/2π

∞∑
k=1

Ak(n)k
1/2 d

dn

[
sinh (cλ(n)/k)

λ(n)

]

= 2
31/2

24n− 1

∞∑
k=1

A∗
k(n)

[(
1− k

µ(n)

)
exp
(
µ(n)
k

)
+

(
1+

k
µ(n)

)
exp
(
−µ(n)

k

)]
.

By contrast, the original Hardy–Ramanujan formula is only an asymptotic
expansion:

p1(n) ∼ 1
23/2π

∞∑
k=1

Ak(n)k1/2 d
dn

[
exp (cλ(n)/k)

λ(n)

]

∼ 2
31/2

24n− 1

∞∑
k=1

A∗
k(n)

(
1 − k

µ(n)

)
exp

(
µ(n)
k

)
,
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which was later proved to be divergent by Lehmer [27–29]. Therefore
Rademacher’s contribution was the identification of a small additional term that
forces the original Hardy–Ramanujan series to converge.

A third formula for p1(n):

p1(n)∼
π

25/433/4
λ(n)−3/2

∞∑
k=1

Ak(n)
k

I−3/2

(
cλ(n)
k

)
appears in Almkvist [30, 31] and is a consequence of a more general theory (to
be discussed shortly). The only difference between this formula and the Hardy–
Ramanujan–Rademacher formula is that I−3/2 appears rather than I3/2. It is
believed to be divergent, but this has not yet been proved. For practical purposes,
using the modified Bessel function of order −3/2:

I−3/2(x)=

√
2x
π

(
sinh(x)

x
− cosh(x)

x2

)
gives only slightly different numerical results (for large

√
n/k).

Analogous series exist for plane partitions. The terms involve neither expo-
nentials nor Bessel functions, but rather a new function

g(x, γ)=
∞∑
ν=0

x2ν+γ−1

ν!Γ(2ν + γ)

that satisfies the third-order differential equation

xg′′′(x, γ)− (γ − 3)g′′(x, γ)− 2g(x, γ)= 0

(the derivatives are taken with respect to x) as well as

g′(x, γ)= g(x, γ − 1), 2g(x, γ + 2) + (γ − 1)g(x, γ)= xg(x, γ − 1).

A heuristic argument in [30, 31] gives that

p2(n)∼φ1(n) + φ2(n) + φ3(n) + · · ·

as n→∞, where

φ1(n)= ζ(3)13/24eζ
′(−1)

∞∑
k=0

a2kζ(3)kg
(
n
√
ζ(3),− 1

12
− 2k

)
and a2k is the coefficient of x2k in the Maclaurin series of

h(x)= exp

(
−

∞∑
j=1

2(2j+ 1)!ζ(2j)ζ(2j+ 2)
j(2π)4j+2 x2j

)
,

φ2(n)= (−1)n2−5/3ζ(3)7/12e2ζ
′(−1)

∞∑
k=0

b2k

(
ζ(3)
8

)k

g

(
n

√
ζ(3)
8
,−1

6
− 2k

)
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and b2k is the coefficient of y2k in the Maclaurin series of

h(2y)5

h(y)h(4y)2
,

and so forth. The additional terms φ3(n), φ4(n) appear in [30] and φ5(n), φ6(n)
appear in [31]. Taken together, these terms provide remarkably accurate estimates
of p2(n). Govindarajan & Prabhakar [32] revisited Almkvist’s results, using a
modified function

g̃(x, γ)=
1
2

∞∑
ν=0

xν

ν!Γ((3 − γ + ν)/2)

that seems better behaved than g(x, γ) and evidently does for p2(n) akin to what
Rademacher’s modification of Hardy–Ramanujan did for p1(n).

Addendum Recent Monte Carlo work indicates that [33]

lim
n→∞

n−3/4 ln (p3(n))≈ 1.822> 1.789...=
27/4π

35/451/4
,

contradicting [8, 9]. The asymptotics of solid partitions appear to differ sharply
from those of line and plane partitions; in addition to sub-leading terms of
order n1/2, n1/4 and ln(n), there seems to be an oscillatory function at the n−1/4

level. Theory lags far behind numerical experimentation here. Let

1 +
∞∑
n=1

q(n)xn = 1 + x+ 4x2 + 10x3 + 26x4 + 59x5 + 141x6

+ 310x7 + 692x8 + · · ·

=
∞∏
m=1

(1 − xm)−m(m+1)/2
.

Although the MacMahon conjecture is incorrect (p3(n) ̸= q(n) for n> 5), there
is still a possibility that p3(n)∼ q(n) as n→∞. The conjectured asymptotics for
p3(n) given earlier are validated asymptotics for q(n). In a recent breakthrough,
Kotěšovec [34] deduced that the multiplicative constant C for q(n) is

2−157/9615−13/96 exp
(
−ζ(3)

8π2 +
75ζ(3)3

2π8 +
ζ ′(−1)

2

)
π1/24 = 0.2135951604...

and details are yet forthcoming.
Let us consider one of many possible variations on 1-partitions. Define p̂1(n)

to be the number of partitions of n into integers, each of which may occur only
an odd number of times. It can be shown that [35]

p̂1(n)∼
B

2π n
exp

(
2B

√
n
)
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where

B2 =
π2

12
+

1∫
0

ln(1 + x− x2)

x
dx=

π2

12
+ 2 ln(φ)2

=
π2

12
+ 0.4631296411...=(1.1338415562...)2

and φ=(1 +
√

5)/2 is the Golden mean.
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1.12 Class Number Theory

The problem of representing an integer as a sum of squares, or more generally as
the value of a quadratic form, is very old and challenging [1–7]. We will barely
scratch the surface of this enormous literature.

1.12.1 Form Class Group

A binary quadratic form f (x, y)= ax2 + bxy+ cy2 with a, b, c∈Z is primitive if
a, b, c are relatively prime and has discriminant δf= b2 − 4ac. The form f is positive
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Table 1.1 Interplay between m and D, −163≤D≤ 136

m −3 −1 −7 −2 −11 −15 −19 −5 −23 −6 −31 −35 . . . −163
D −3 −4 −7 −8 −11 −15 −19 −20 −23 −24 −31 −35 . . . −163

m 5 2 3 13 17 21 6 7 29 33 37 10 . . . 34
D 5 8 12 13 17 21 24 28 29 33 37 40 . . . 136

definite if the matrix (
a b/2
b/2 c

)
is positive definite (meaning a> 0 and δf< 0) and indefinite if δf> 0. An integer d
is a discriminant δf for some form f if and only if d≡ 0, 1 mod 4. A discriminant
D ̸= 0, 1 is a fundamental discriminant assuming that

D=

{
m if m≡ 1 mod 4,
4m if m≡ 2, 3 mod 4

for some square-free integer m. Every nonsquare discriminant d can be uniquely
expressed as De2 where D is a fundamental discriminant and e≥ 1. A partial
listing of fundamental discriminants appears in Table 1.1 and the correspondence
m↔D will be needed later [8].

Assume that D is a fundamental discriminant. Two quadratic forms f, g with
δf=D= δg are properly equivalent if there is a linear change of variables(

x′

y′

)
=

(
r s
t u

)(
x
y

)
, ru− st= 1, r, s, t, u∈Z

for which f (x, y)= g(x′, y′) always. We say that f, g are in the same form class and
define the form class number

h+(D)=


the number of classes of primitive positive
definite forms of discriminant D

if D< 0,

the number of classes of primitive
indefinite forms of discriminant D

if D> 0.

For example, h+(−4)= 1 and x2 + y2 is a representative element of the unique
form class of discriminant −4; h+(−20)= 2 and x2 + 5y2, 2x2 + 2xy+ 3y2 are
representative elements of the two corresponding classes of discriminant −20.

It is possible to endow the set of form classes, for fixed D, with the structure
of an abelian group. We simply illustrate in the case D=−4:

(x2
1 + y2

1)(x
2
2 + y2

2)= x2
3 + y2

3

where
x3 = x1x2 − y1y2, y3 = x1y2 + y1x2;
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and in the case D=−20:

(x2
1 + 5y2

1)(x
2
2 + 5y2

2)= x2
4 + 5y2

4,

(x2
1 + 5y2

1)(2x
2
2 + 2x2y2 + 3y2

2)= 2x2
5 + 2x5y5 + 3y2

5,

(2x2
1 + 2x1y1 + 3y2

1)(2x
2
2 + 2x2y2 + 3y2

2)= x2
6 + 5y2

6

where
x4 = x1x2 − 5y1y2, y4 = x1y2 + y1x2,

x5 = x1x2 − y1x2 − 3y1y2, y5 = x1y2 + 2y1x2 + y1y2,

x6 = 2x1x2 + x1y2 + y1x2 − 2y1y2, y6 = x1y2 + y1x2 + y1y2.

Thismultiplication is calledGaussian composition and is perhaps best understood
via the following section.

We discuss two variations of the preceding. If the determinant of the linear
transformation (x, y) 7→ (x′, y′) is allowed to be ru− st=±1, then the corre-
sponding number of equivalence classes is [9]

ĥ(D)=
1
2

(
h+(D) + 2ω(D)−1

)
where ω(n) denotes the number of distinct prime factors of |n|. Rephrasing,
h+(D) is the number of orbits under the action of the matrix group SL2(Z)
on the primitive binary quadratic forms of discriminant D, while ĥ(D) is the
same under the action of GL2(Z). For instance, h+(−23)= 3> 2= ĥ(−23) and
h+(136)= 4> 3= ĥ(136).

The second variation seems quite artificial but is actually important. Two
quadratic forms f, g with δf=D= δg are vulgarly equivalent if there is a linear
change of variables(

x′

y′

)
=

(
r s
t u

)(
x
y

)
, ru− st= θ=±1, r, s, t, u∈Z

for which f (x, y)= θ g(x′, y′) always. Note the factor θ in front of g. Define h(D)
to be the number of vulgar equivalence classes of primitive quadratic forms
of discriminant D. Note here that forms are not assumed to be positive defi-
nite for D< 0. As an example, h+(12)= 2> 1= h(12) since the forms −3x2 + y2

and −x2 + 3y2 are not properly equivalent, but are vulgarly equivalent via the
assignment (x′, y′)= (y, x).

1.12.2 Ideal Class Group

Let m ̸= 0, 1 be a square-free integer. The quadratic number field

Q(
√
m)=Q+Q

√
m=

{
u+ v

√
m : u, v∈Q

}
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is the smallest subfield ofC containing bothQ and
√
m. An elementα∈Q(

√
m) is

an algebraic integer if it is a zero of a monic polynomial z2 + bz+ cwith b, c∈Z.
The set of algebraic integers of Q(

√
m) is the subring

Om=

{
Z+ Z

√
m if m≡ 2, 3 mod 4,

Z+ Z 1+
√
m

2 if m≡ 1 mod 4

of Q(
√
m), often called the maximal order or simply the integers. Using the cor-

respondence between the radicand m and the fundamental discriminant D, we
have

Q(
√
m)=Q(

√
D), Om=Z+ ZD+

√
D

2 .

For example, O−1 is the ring of Gaussian integers. In O−5, we have a surprising
failure of unique factorization:

6= 2 · 3=(1 +
√
−5)(1 −

√
−5).

More will be said about this momentarily.
An ideal I of Om is an additive subgroup of Om with the property that, if α∈ I

and ρ∈Om, then ρα∈ I. The set

(α)= {ρα : ρ∈Om}

is the ideal of all multiples of a single element α∈Om and is called a principal
ideal. The ideal

(α1, α2)= {ρ1α1 + ρ2α2 : ρ1, ρ2 ∈Om}

is nonprincipal if (α1, α2) ̸=(α3) for any α3 ∈Om. The product IJ of two ideals is
the ideal of all finite sums of products of the form αβ with α∈ I and β ∈ J. In
O−5, the principal ideal (6) can be written as

(6) = (2)(3)= I21I2I3

=
(
1 +

√
−5
)(

1 −
√
−5
)
= I1I2I1I3

where
I1 =

(
2, 1 +

√
−5
)
=
(
2, 1 −

√
−5
)
,

I2 =
(
3, 1 +

√
−5
)
, I3 =

(
3, 1 −

√
−5
)
.

Thus the two distinct factorizations of the number 6 inO−5 come frompermuting
I1, I2, I3 in the factorization of the ideal (6).

Given α= u+ v
√
m∈Q(

√
m), define its conjugate ᾱ= u− v

√
m and its norm

N(α)=αᾱ= u2 −mv2. If α∈Om, then clearly ᾱ∈Om and N(α)∈Z. Given an
ideal I of Om, define its conjugate Ī= {ᾱ :α∈ I} and its norm N(I)= gcd{N(α) :
α∈ I}. For example, if I is the principal ideal (α), then Ī=(ᾱ) andN(I)= |N(α)|.
If I and J are two ideals, then N(IJ)=N(I)N(J); also ĪI=(N(I)) is principal.
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Two ideals I, J of Om are strictly equivalent if there exist α, β ∈Om such that

(α)I=(β)J, N(αβ)> 0.

We say that I, J are in the same narrow ideal class and define H+
m to be the finite

abelian group of ideals modulo this relation. If the requirement that N(αβ)> 0
is removed, we instead say that I, J are in the same wide ideal class and define
Hm analogously.H+

m is called the narrow class group and its cardinality h+m is the
narrow class number. The name forHm is often abbreviated simply to class group.
The class number hm can be found in terms of h+m via

hm=

{
h+m if m< 0 or (m> 0 and N(ε)=−1) ,

1
2h

+
m if m> 0 and N(ε)= 1,

where ε is the fundamental unit of Om (to be defined in the next section). Group-
theoretic properties of Hm and the efficient computation of hm have attracted
much attention in recent years.

It turns out that the abelian group of classes of primitive binary quadratic
forms of discriminant D is isomorphic to the narrow class group H+

m , where the
interplay m↔D was described earlier. In particular, Gaussian composition of
forms can be elegantlywritten using ideals and h+(D)= h+m ; see Tables 1.2 and 1.3
[10]. By the same reasoning, we have h(D)= hm but no interpretation of ĥ(D) in
ideal class theory seems to be useful. Our convention for treating the discriminant
D as an argument and the radicand m as a subscript is perhaps new.

A maximal order Om is a UFD (unique factorization domain) if and only if it
is a PID (principal ideal domain), which is true if and only if hm= 1. Also, hm≤ 2
if and only if any two decompositions of α∈Om into products of irreducible ele-
ments must possess the same number of factors [11–14]. Hence the class number
measures, in a vague sense, how far Om is from being a UFD.

Table 1.2 Class numbers as functions of m, −163≤m≤ 34

m −1 −2 −3 −5 −6 −7 −10 −11 −13 −14 −15 −17 . . . −163

hm 1 1 1 2 2 1 2 1 2 4 2 4 … 1

ĥm 1 1 1 2 2 1 2 1 2 3 2 3 … 1

m 2 3 5 6 7 10 11 13 14 15 17 19 … 34

h+m 1 2 1 2 2 2 2 1 2 4 1 2 … 4

hm 1 1 1 1 1 2 1 1 1 2 1 1 … 2

ĥm 1 2 1 2 2 2 2 1 2 4 1 2 … 3
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Table 1.3 Class numbers as functions of D, −163≤D≤ 136

D −3 −4 −7 −8 −11 −15 −19 −20 −23 −24 −31 −35 . . . −163

h(D) 1 1 1 1 1 2 1 2 3 2 3 2 . . . 1

ĥ(D) 1 1 1 1 1 2 1 2 2 2 2 2 . . . 1

D 5 8 12 13 17 21 24 28 29 33 37 40 . . . 136

h+(D) 1 1 2 1 1 2 2 2 1 2 1 2 . . . 4

h(D) 1 1 1 1 1 1 1 1 1 1 1 2 . . . 2

ĥ(D) 1 1 2 1 1 2 2 2 1 2 1 2 . . . 3

1.12.3 Fundamental Unit

Let m> 1 be square-free. A unit ε∈Om satisfies N(ε)=±1; it is the fundamental
unit if ε> 1 and every other unit is of the form ±εn, n∈Z. Here is a concep-
tually simple algorithm for computing ε. If m≡ 2, 3 mod 4, calculate mb2 for
b= 1, 2, 3, . . . and stop at the first integer mb2

0 that differs from a square a2
0 by

exactly ±1; then ε= a0 + b0
√
m. If m≡ 1 mod 4, stop instead at the first integer

mb2
0 that differs from a square a2

0 by exactly±4; then ε=(a0 + b0
√
m)/2. In both

cases, we assume that a0 ≥ 1.
Two alternative algorithms involve continued fractions [15, 16]. For the first,

define

µ=


1+

√
m

2 if m≡ 1 mod 4,
√
m if m≡ 2, 3 mod 4

=
P0 +

√
m

Q0

and let the (eventually periodic) continued fraction expansion of µ be

µ= c0 +
1|
|c1

+
1|
|c2

+
1|
|c3

+ · · · .

Define

Pj+1 = cjQj − Pj, Qj+1 =
m− P2

j+1

Qj

for j≥ 0, so that

Pj +
√
m

Qj
= cj +

1|
|cj+1

+
1|

|cj+2
+

1|
|cj+3

+ · · ·

and hence

ε=
λ∏
j=1

Pj +
√
m

Qj

where λ is the period length of the continued fraction expansion for µ.
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The second possesses a curiously ambiguous outcome. Let

√
m= d0 +

1|
|d1

+
1|
|d2

+
1|
|d3

+ · · ·

and define
A0 = d0, A1 = d0d1 + 1, B0 = 1, B1 = d1,

Ak= dkAk−1 + Ak−2, Bk= dkBk−1 + Bk−2,

for k≥ 2, so that

Ak

Bk
= d0 +

1|
|d1

+
1|
|d2

+ · · ·+ 1|
|dk

= the kth convergent of
√
m.

Let l denote the period length of the continued fraction expansion for
√
m. It

can be proved that, if m ̸≡ 5 mod 8, then ε=Al−1 + Bl−1
√
m. If m≡ 5 mod 8,

however, all we can conclude is that Al−1 + Bl−1
√
m is either ε or ε3. See Tables

1.4 and 1.5 [17].
A fast method to compute the set of square-free m> 1 for which N(ε)=−1

(equivalently, l is odd) is not known [18–23]. Likewise, the set of m≡ 5 mod 8
for which Al−1 + Bl−1

√
m= ε3 remains only partially understood [24–30]. Since

ε can be exponentially large in m, the regulator ln(ε) is often used instead [31].
Hallgren [32, 33] gave a polynomial-time algorithm for computing ln(ε) that is
based on a quantum Fourier transform period finding technique.

Another formula is ε=(x+ y
√
D)/2, where x, y are the smallest positive

integer solutions of the Pell equation x2 −Dy2 =±4. It follows immediately
that N(ε)=−1 if and only x2 −Dy2 =−4. Let us define ε+ =(z+ w

√
D)/2,

where z, w are the smallest positive integer solutions of z2 −Dw2 = 4. Clearly
h+(D) ln(ε+)= 2h(D) ln(ε) for all D> 0; we will need ε+ later.

Table 1.4 Fundamental unit ε and norm N(ε) as functions of m, 2≤m≤ 17

m 2 3 5 6 7 10 11 13 14 15 17

ε 1+
√

2
1

2+
√

3
1

1+
√

5
2

5+2
√

6
1

8+3
√

7
1

3+
√

10
1

10+3
√

11
1

3+
√

13
2

15+4
√

14
1

4+
√

15
1

4+
√

17
1

N(ε) −1 +1 −1 +1 +1 −1 +1 −1 +1 +1 −1

Table 1.5 Fundamental unit ε and norm N(ε) as functions of D, 5≤D≤ 37

D 5 8 12 13 17 21 24 28 29 33 37

ε 1+
√

5
2

1+
√

2
1

2+
√

3
1

3+
√

13
2

4+
√

17
1

5+
√

21
2

5+2
√

6
1

8+3
√

7
1

5+
√

29
2

23+4
√

33
1

6+
√

37
1

N(ε) −1 −1 +1 −1 −1 +1 +1 +1 −1 +1 −1



“C01” — 2018/10/27 — 11:56 — page 85 — #85

1.12 Class Number Theory 85

1.12.4 Ideal Statistics over D

The study of ideal class numbers as functions of fundamental discriminant D
(equivalently, radicand m) has occupied mathematicians for centuries. Heegner
[34], Stark [35–37], Baker [38], Deuring [39] and Siegel [40, 41] solved Gauss’
class number one problem: h(D)= 1 for D=−3, −4, −7, −8, −11, −19, −43,
−67,−163 and for no other D<−163. See [42–51] for related work in the imag-
inary case. With respect to the real case, Gauss conjectured that h(D)= 1 for
infinitely many D> 0, but a proof remains unknown.

Siegel [52–56] showed that

ln(h(D))∼ ln(
√
−D) as D→−∞,

ln(h(D) ln(ε))∼ ln(
√
D) as D→∞

and the following mean value results apply [57–60]:∑
0<−D<x

h(D)∼ c
3π

x3/2,
∑

0<D<x

h(D) ln(ε)∼ c
6
x3/2

as x→∞, where [61]

c=
∏
p

(
1 − 1

p2( p+ 1)

)
= 0.8815138397...

and the infinite product is over all primes p. We may alternatively write

lim
x→∞

E
(
h(D)√
−D

| 0<−D< x
)
=
πc
6

= 0.4615595671...

lim
x→∞

E
(
h(D) ln(ε)√

D
| 0<D< x

)
=
π2c
12

= 0.7250160726...

because
∑

0<−D<x 1∼ (3/π2)x∼
∑

0<D<x 1 and since partial summation con-
tributes an additional factor of 3/2.

Taniguchi [62] conjectured a second-order analog∑
0<−D<x

h(D)2 ∼ π2C ′

144
x2,

∑
0<D<x

h(D)2 ln(ε)2 ∼ π4C ′

576
x2

as x→∞, where [63]

C ′ =
∏
p

(
1 − 3

p3 +
2
p4 +

1
p5 − 1

p6

)
= 0.6782344919....

With regard to extreme values, Granville & Soundararajan [64] suggested that
perhaps

max
|D|<x

L(D)= eγ(ln ln x+ ln ln ln x+ c′′ + o(1))
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where γ is Euler’s constant,

L(D)=


πh(D)√
−D

if D<−4,

2h(D) ln(ε)√
D

if D> 4

and

c′′ =

1∫
0

tanh(y)
y

dy+

∞∫
1

tanh(y)− 1
y

dy= 0.8187801401...

Is it possible in any of these formulas, whenD> 0, to somehow separate the class
number and the regulator?

1.12.5 Cohen-Lenstra Heuristics

We merely state certain conjectures due to Cohen & Lenstra [65–70]. Define H̃m

to be the odd part of the class groupHm, that is, H̃m is the subgroup of all elements
in Hm of odd order. Let [71, 72]

C=

∞∏
j=2

ζ( j)= 2.2948565916...,

∆=
π2

6

∏
p

(
1 +

1
p2( p− 1)

)
= 2.2038565964...

and, when q is prime,

η(q)=
∞∏
k=1

(
1 − 1

qk

)
(which appeared in [73] for the special case q= 2). For randomm< 0, it is believed
that

• the probability that H̃m is cyclic is

π2

18
ζ(3)
ζ(6)

1
Cη(2)

= 0.9775748102...

• if p is an odd prime, the probability that p|hm is

1 − η( p)=


0.4398739220... if p= 3,
0.2396672041... if p= 5,
0.1632045929... if p= 7

and, likewise, for random m> 0,

• the probability that H̃m is cyclic is

3
10

∆

Cη(2)
= 0.9976305717...
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• if p is an odd prime, the probability that p|hm is

1 −
(
1 − 1

p

)−1

η( p)=


0.1598108831... if p= 3,

0.0495840051... if p= 5,

0.0237386917... if p= 7

• the probability that hm= 1, given that m itself is prime, is

1
2Cη(2)

= 0.7544581722....

A proof of any of these conjectures would be a welcome breakthrough! See [74]
for partial results concerning the prime p= 3.

1.12.6 Form Statistics over d

Given a nonsquare discriminant d, define h+(d) and ε+(d) exactly as before (with
D simply replaced by d). We had no need of such generalizations until now. See
Table 1.6 [75].

Lipschitz [76], Mertens [77] and Siegel [78] proved that

∑
0<−d<x

h+(d)∼ π

18ζ(3)
x3/2,

∑
0<d<x

h+(d) ln(ε+)∼ π2

18ζ(3)
x3/2

as x→∞, where the sums are taken over all d≡ 0, 1 mod 4 that are not squares.
Their efforts confirmed conjectures of Gauss [79–82]:

∑
0<−d<4x,

4|d

h+(d)∼ 4π
21ζ(3)

x3/2,
∑

0<d<4x,
4|d

h+(d) ln(ε+)∼ 4π2

21ζ(3)
x3/2.

When searching through the literature, it is helpful to be aware ofGauss’s conven-
tion (that d= 4k or, equivalently, f (x, y)= ax2 + 2bxy+ cy2) versus Eisenstein’s
convention (no parity requirement on the middle coefficient). We have adopted

Table 1.6 Class number h+(d) for −23≤ d≤ 32; also ε+(d) for 5≤ d≤ 32

d −3 −4 −7 −8 −11 −12 −15 −16 −19 −20 −23

h+(d) 1 1 1 1 1 1 2 1 1 2 3

d 5 8 12 13 17 20 21 24 28 29 32

h+(d) 1 1 2 1 1 1 2 2 2 1 2

ε+(d) 3+
√

5
2

3+2
√

2
1

2+
√

3
1

11+3
√

13
2

33+8
√

17
1

9+4
√

5
1

5+
√

21
2

5+2
√

6
1

8+3
√

7
1

27+5
√

29
2

3+2
√

2
1
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the latter, as do most contemporary authors. For example,

lim
x→∞

E
(
h+(d)√
−d

| 0<−d< 4x, d= 4k
)

=
π

7ζ(3)
= 0.3733591557...

=
1.1729423808...

π

in Gauss’ scheme and

lim
x→∞

E
(
h+(d) ln(ε+)√

d
| 0< d< x

)
=

π2

6ζ(3)
= 1.3684327776...

= 2(0.6842163888...)

in Eisenstein’s scheme. A second-moment analog of the latter is due to Barban
[83–89]:

lim
x→∞

E
(
h+(d)2 ln(ε+)2

d
| 0< d< x

)
=
∏
p

(
1 +

3p2 − 1
( p2 − 1)p( p+ 1)

)
= 2.5965362904....=

29
18

(1.6116432147...).

In fact, the probability distributions [90–95]

lim
x→∞

P
{
ln
(
h+(d) ln(ε+)√

d

)
≤ s | 0< d< x

}
,

lim
x→∞

P
{
ln
(
πh+(d)√

−d

)
≤ s | 0<−d< x

}
both coincide with the distribution of S=

∑
p Xp, an infinite sum of independent

random variables, where

Xp=


0 with probability 1

p ,

− ln
(
1 − 1

p

)
with probability 1

2

(
1 − 1

p

)
,

− ln
(
1 + 1

p

)
with probability 1

2

(
1 − 1

p

)
for each prime number p.

We mention finally Hooley’s conjecture [96]∑
0<d<4x,

4|d

h+(d)∼ 25
12π2 x ln(x)2

and wonder if this (and other attempts to separate the class number and the
regulator when d> 0) someday can be verified.
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Table 1.7 Period length as a function of m, 2≤m≤ 31

m 2 3 5 6 7 10 11 13 14 15 17 19 21 22 23 26 29 30 31

lm 1 2 1 2 4 1 2 5 4 2 1 6 6 6 4 1 5 2 8

1.12.7 Continued Fraction Period Length

Table 1.7 exhibits the period length lm of the continued fraction expansion for√
m, where m> 1 is square-free [97].
Very little can be said about the behavior of lm. Podsypanin [98, 99] proved

that
lm=O

(√
m ln(ln(m))

)
as m→∞, assuming the truth of the Extended Riemann Hypothesis. Williams
[100, 101] gave evidence that the big O, on the one hand, can be replaced by

eγ

ln(φ)
= 3.7012232975...

where φ is the Golden mean, or even

12eγ ln(2)
π2 = 1.5010271229....

It seems likely, on the other hand, that the values 1.05 or even 1.08 will not suffice.
Pen & Skubenko [102] and Golubeva [103, 104] proved the inequality [105]

ln(ε)
ln(4

√
m)

< lm<
4 ln(ε)
ln(φ)

= 4(2.0780869212...) ln(ε)

involving the fundamental unit ε of Q(
√
m). This subject turns out to be related

to what are called Lévy constants [106–109]:

β(ξ)= lim
k→∞

ln(Bk)
k

where Ak/Bk is the kth convergent of the quadratic irrational ξ. Let Σ denote the
set of all such β(ξ). It is known that Σ⊆ [ln(φ),∞) and that π2/(12 ln(2)) is a
limit point of Σ. It is also likely that Σ has a structure similar to the Markov
spectrum [110] in the sense that a left-hand portion of Σ probably consists only
of isolated points and a right-hand portion of Σ is much denser.

Let 3< p≡ 3 mod 4 be prime and assume that hp= 1. An astonishing formula
due to Hirzebruch [111–114] states that

h−p=
1
3

l∑
j=1

(−1)l−jdj
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where d1, d2, . . ., dl is the sequence of denominators in one period of the continued
fraction expansion for

√
p−

⌊√
p
⌋
. For example, h23 = 1 and h−23 =(−1 + 3 −

1 + 8)/3= 3. Is an elementary proof of this theorem possible? What can be said
if instead p≡ 1 mod 4?

As an aside, there exist precisely 21 square-free integers m for which the
pair (Om, |N|) is a Euclidean domain, that is, for which |N| is compatible with
the division algorithm [16, 115–118]. Both (O14, |N|) and (O69, |N|) fail to be
Euclidean, although h14 = 1= h69. An alternative function N′ :O69 →Z can be
constructed so that (O69, |N′|) is Euclidean [119–123]; the proof turns out to
be computer-assisted. Does such a construction exist for O14 [124, 125]?

As another aside, h( j 2 + 4)> 1 for odd j> 17 and h(4k2 + 1)> 1 for k> 13.
The arguments j 2 + 4 and 4k2 + 1 are assumed to be square-free. These two
inequalities, known respectively as Yokoi’s conjecture and Chowla’s conjecture,
were proved by Biró [126–130].

We have not discussed prime-producing polynomials [131], asymptotic h(d)-
averages over subsets [132, 133], the theory of genera [1] or Dirichlet L-series,
although our definition of L(D) earlier provides some foreshadowing of the next
essay.
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Let D= 1 or D be a fundamental discriminant [1]. The Kronecker–Jacobi–
Legendre symbol (D/n) is a completely multiplicative function on the positive
integers: (

D
n

)
=


k∏
j=1

(
D
pj

)ej

if n≥ 2,

1 if n= 1

where n= pe11 p
e2
2 · · · pekk is the prime factorization of n,

(
D
p

)
=


1 if p -D and x2 ≡D mod p is solvable,
−1 if p -D and x2 ≡D mod p is not solvable,
0 if p |D

assuming p is an odd prime, and

(
D
2

)
=


1 if D≡ 1, 7 mod 8,
−1 if D≡ 3, 5 mod 8,
0 if 2 |D.

The function n 7→ (D/n) is a real primitive Dirichlet character with modulus |D|.
In particular, (1/n)= 1 always,

(−3/n)|n=1,2,3 = {1,−1, 0},

(−4/n)|n=1,2,3,4 = {1, 0,−1, 0},

(−7/n)|n=1,...,7 = {1, 1,−1, 1,−1,−1, 0},

(−8/n)|n=1,...,8 = {1, 0, 1, 0,−1, 0,−1, 0},

(5/n)|n=1,...,5 = {1,−1,−1, 1, 0},

(8/n)|n=1,...,8 = {1, 0,−1, 0,−1, 0, 1, 0},

(12/n)|n=1,...,12 = {1, 0, 0, 0,−1, 0,−1, 0, 0, 0, 1, 0}.

Now define the Dirichlet L-series associated to (D/n):

LD(z)=
∞∑
n=1

(
D
n

)
n−z, Re(z)> 1

which can also be written as an infinite product over primes:

LD(z)=
∏
p

(
1 −

(
D
p

)
p−z

)−1

, Re(z)> 1.
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If D= 1, then L1(z)= ζ(z), which can be analytically continued over the whole
complex plane except for a simple pole at z= 1. For all other D, LD(z) can be
made into an entire function with special values

LD(1)=



π

3
√

3
if D=−3

π

4
if D=−4

πh(D)√
−D

if D<−4

2h(D) ln(ε)√
D

if D> 1,

(Dirichlet class
number formula)

where h(D) is the ideal class number in the wide sense of the quadratic
field Q(

√
D), and ε is the fundamental unit of the integer subring Z+ ((D+√

D)/2)Z. It follows that

L−7(1)=
π√
7
, L−8(1)=

π

2
√

2
,

L5(1)=
2√
5

ln

(
1 +

√
5

2

)
, L8(1)=

ln
(
1 +

√
2
)

√
2

, L12(1)=
ln
(
2 +

√
3
)

√
3

.

The fact that LD(1) ̸= 0 leads to a proof of Dirichlet’s theorem on arithmetic
progressions r, q+ r, 2q+ r, . . . : There are infinitely many primes congruent to
r modulo q if q, r are coprime [2].

A modification of an L-series LD(z), defined by [3]

L∗
D(z)=


(−D)z/2π−z/2Γ

(
z+ 1

2

)
LD(z) if D< 0,

Dz/2π−z/2Γ
( z
2

)
LD(z) if D> 0,

leads to the elegant functional equation L∗
D(z)=L∗

D(1 − z).
We turn attention to the points z= 2, z= 3 and z= 1/2. If D> 0, closed-form

expressions for LD(2) are known:

L1(2)=
π2

6
, L5(2)=

4π2

25
√

5
,

L8(2)=
π2

8
√

2
, L12(2)=

π2

6
√

3
,

but if D< 0, only numerical approximations apply:

L−3(2)= 0.7813024128... ([4]),

L−4(2)=G= 0.9159655941... (Catalan’s constant [5]),

L−7(2)= 1.1519254705..., L−8(2)= 1.0647341710....
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There is an unproven conjecture that [6, 7]

L−7(2)=
24

7
√

7

π/2∫
π/3

ln

∣∣∣∣∣ tan(t) +
√

7

tan(t)−
√

7

∣∣∣∣∣ dt
which has its origins in hyperbolic geometry and the Claussen function [8]. If
D< 0, closed-form expressions for LD(3) are known:

L−3(3)=
4π3

81
√

3
, L−4(3)=

π3

32
,

L−7(3)=
32π3

343
√

7
, L−8(3)=

3π3

64
√

2
,

but if D> 0, only numerical approximations apply:

L1(3)= ζ(3)= 1.2020569031... (Apéry’s constant [9]),

L5(3)= 0.8548247666..., L8(3)= 0.9583804545...,

L12(3)= 0.9900400194....

By way of contrast, virtually nothing is known about LD(1/2) (regardless of the
sign of D):

L1(1/2)=−1.4603545088... ([9, 10]),

L−3(1/2)= 0.4808675576..., L−4(1/2)= 0.6676914571... ([10])

L−7(1/2)= 1.1465856669..., L−8(1/2)= 1.1004214095...,

L5(1/2)= 0.2317509475......, L8(1/2)= 0.3736917129...,

L12(1/2)= 0.4985570024....

It is expected that LD(1/2) ̸= 0 always [11]; the Generalized Riemann Hypothe-
sis (GRH) states that all zeroes of LD(z) in the strip 0≤Re(z)≤ 1 must lie on
the central line Re(z)= 1/2. A deeper conjecture, known as the Grand Sim-
plicity Hypothesis [12], asserts that the nonnegative imaginary parts of all such
zeroes, taken asD varies across 1 ∪ {fundamental discriminants}, form a linearly
independent set over Q.

1.13.1 Various Moments

A discussion of the first and second moments of LD(1), over all fundamen-
tal discriminants −x<D< 0 and 0<D< x, appears in [1]. We will focus on
LD(1/2) here. Many of the numerical results are due to Conrey, Farmer, Keating,
Rubinstein & Snaith [13, 14].
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Jutila [15, 16] proved that∑
0<−D<x

LD(1/2) ∼ 3
π2

(
a1,1 ln(x) + a−1,0

)
x

∼ (0.1070623764...)x ln(x) + (0.0806503246...)x,

∑
0<D<x

LD(1/2) ∼ 3
π2

(
a1,1 ln(x) + a+1,0

)
x

∼ (0.1070623764...)x ln(x)− (0.2556960505...)x

as x→∞, where

P1(s)=
∏
p

(
1 − 1

( p+ 1)ps

)
,

a1,1 =P1(1)/2=(0.7044422009...)/2= 0.3522211004...,

a−1,0 =
P1(1)

2

(
−1 − ln(π) + 4γ +

Γ′(3/4)
Γ(3/4)

+ 4
P′

1(1)
P1(1)

)
= 0.2653289331...

= 0.6175500336...− a1,1 = 1.2648891165...− (1 + ln(2π))a1,1,

a+1,0 =
P1(1)

2

(
−1 − ln(π) + 4γ +

Γ′(1/4)
Γ(1/4)

+ 4
P′

1(1)
P1(1)

)
=−0.8412062886...

= −0.4889851881...− a1,1 = 0.1583538947...− (1 + ln(2π))a1,1.

The fact that a1,1> 0 confirms that LD(1/2)> 0 for infinitely manyD< 0 and for
infinitely many D> 0. Interestingly, the expression

P′
1(1)

P1(1)
=
∑
p

ln( p)
p2 + p− 1

= 0.4187575787...

appears in [17] (concerning the Dedekind totient function).
Jutila [15] also proved that [13, 14]∑
0<−D<x

LD(1/2)2 ∼ 3
π2

(
a2,3 ln(x)3 + a−2,2 ln(x)2 + a−2,1 ln(x) + a−2,0

)
x

∼ (0.0037642089...)x ln(x)3 + (0.0436478230...)x ln(x)2

+(0.0239243562...)x ln(x)− (0.0664474558...)x,

∑
0<D<x

LD(1/2)2 ∼ 3
π2

(
a2,3 ln(x)3 + a+2,2 ln(x)2 + a+2,1 ln(x) + a+2,0

)
x

∼ (0.0037642089...)x ln(x)3 + (0.0081709895...)x ln(x)2

− (0.1388692446...)x ln(x) + (0.4058928120...)x
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as x→∞, where

P2 =
∏
p

(
1 − 4p2 − 3p+ 1

( p+ 1)p3

)
= 0.2972100247,

a2,3 =P2/24= 0.0123837510...

(a−2,2, a
+
2,2, a

−
2,1, a

+
2,1 formulas appear in the Addendum). The work of Soundarara-

jan [11], Diaconu, Goldfeld & Hoffstein [18] and Zhang [19] gives rise to the
conjecture [13, 14]:

∑
0<−D<x

LD(1/2)3 ∼ 3
π2

(
a3,6 ln(x)6 +

5∑
k=0

a−3,k ln(x)k
)
x+ b−x3/4

∼ (0.0000046457...)x ln(x)6 + (0.0002447286...)x ln(x)5

+(0.0039480538...)x ln(x)4 + (0.0174395675...)x ln(x)3

− (0.0110235234...)x ln(x)2 − (0.0487615392...)x ln(x)

+ (0.1926975162...)x− (0.07...)x3/4,

∑
0<D<x

LD(1/2)3 ∼ 3
π2

(
a3,6 ln(x)6 +

5∑
k=0

a+3,k ln(x)k
)
x+ b+x3/4

∼ (0.0000046457...)x ln(x)6 + (0.0001571591...)x ln(x)5

+(0.0007916339...)x ln(x)4 − (0.0094598480...)x ln(x)3

+(0.0136781642...)x ln(x)2 + (0.1643132466...)x ln(x)

− (0.5385378337...)x− (0.14...)x3/4

as x→∞, where

P3 =
∏
p

(
1 − 12p5 − 23p4 + 23p3 − 15p2 + 6p− 1

( p+ 1)p6

)
= 0.0440172316...,

a3,6 =P3/2880= 0.0000152837...

(a−3,5, a
+
3,5, a

−
3,4, a

+
3,4 formulas appear in the Addendum). The exceptional term

x3/4 has no analog in the first and second moment cases. It is believed that [19]

b− + b+ =
223

√
2 − 253
192

(
Γ(1/8)4

Γ(3/8)4
+

Γ(1/8)Γ(5/8)3

Γ(3/8)Γ(7/8)3

)
πQ

=
4
3
(−0.1615725999...)=−0.2154301332...
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where [20]

Q =
(√

2−1√
2

)3
ζ
(

1
2

)7
×
∏
p>2

(
1− 14

p3/2 − 1
p2 +

78
p5/2 − 84

p3 − 58
p7/2 +

154
p4 − 70

p9/2 − 49
p5 +

64
p11/2 − 22

p6 +
1
p7

)
= −0.0019314869...

(might separate expressions for b+ and b− be possible?). For arbitrary n≥ 1,
Conrey & Farmer [21] conjectured that∑

|D|<x

LD(1/2)n∼
6
π2 an,N x ln(x)N

as x→∞, where N= n(n+ 1)/2 and

an,N=

n∏
j=1

j !
(2j)!

·
∏
p

(
1 − 1

p

)N
1 + 1

p

{
1
2

((
1 − 1√

p

)−n
+
(
1 + 1√

p

)−n
)
+

1
p

}
.

This is based, in part, on research in random matrix theory by Keating & Snaith
[22, 23].

1.13.2 Dedekind Zeta Function

Given a fundamental discriminant D, define the Dedekind zeta function of
Q(

√
D) to be

ζD(z) = ζ(z) · LD(z)
=

∏
(Dp)=1

(1 − p−z)−2 ·
∏

(Dp)=−1

(1 − p−2z)−1 ·
∏
(Dp)=0

(1 − p−z)−1

(the latter formula is valid for Re(z)> 1). For example, if D=−4 (which corre-
sponds to the ring O−1 of Gaussian integers), we have

ζ−4(z)=
∏
p≡1

mod 4

(1 − p−z)−2 ·
∏
p≡3

mod 4

(1 − p−2z)−1 · (1 − 2−z)−1

and ifD=−3 (which corresponds to the ringO−3 of Eisenstein–Jacobi integers),
we have

ζ−3(z)=
∏
p≡1

mod 3

(1 − p−z)−2 ·
∏
p≡2

mod 3

(1 − p−2z)−1 · (1 − 3−z)−1.

Since ζD(z) has a simple pole at z= 1, its Laurent expansion at z= 1 is

ζD(z)= c−1(z− 1)−1 + c0 + c1(z− 1) + c2(z− 1)2 + · · · , c−1 ̸= 0.



“C01” — 2018/10/27 — 11:56 — page 103 — #103

1.13 Quadratic Dirichlet L-Series 103

Define the Euler–Kronecker constant of Q(
√
D) to be

γD=
c0
c−1

= γ +
L′
D(1)

LD(1)
,

which generalizes Euler’s constant γ= 0.5772156649... [24]. (In the case D=

1, we merely have ζ1(z)= ζ(z) and thus c−1 = 1, c0 = γ.) It follows that
[25–28]

γ−4 = ln

(
2πe2γ

Γ( 3
4 )

2

Γ( 1
4 )

2

)
= 0.8228252496... (Sierpinski’s constant [29]),

γ−3 = ln

(
2πe2γ

Γ( 2
3 )

3

Γ( 1
3 )

3

)
= 0.9454972808... ([30]);

alternatively, by the Kronecker limit formula [31],

γ−4 =
π

3
− ln(4) + 2γ − 4

∞∑
k=1

ln
(
1 − e−2πk)= 1

2 (1.1870859072...) ln(4),

γ−3 =
π

2
√

3
− ln(3) + 2γ − 4

∞∑
k=1

ln
∣∣1 − e−2πiωk

∣∣= 1
2 (1.7212574274...) ln(3)

where ω=−(1 + i
√

3)/2 and i is the imaginary unit. Further, we have

γ−7 = ln

(
2πe2γ

Γ( 3
7 )Γ(

5
7 )Γ(

6
7 )

Γ( 1
7 )Γ(

2
7 )Γ(

4
7 )

)
= 0.5928513548...= 1

2 (0.6093306571...) ln(7),

γ−8 = ln

(
2πe2γ

Γ( 5
8 )Γ(

7
8 )

Γ( 1
8 )Γ(

3
8 )

)
= 0.5565042591...= 1

2 (0.5352439565...) ln(8).

In the event that D> 0, the only known formulas are [28, 32, 33]

γ5 = ln(2πe2γ) +
R( 1

5 )− R( 2
5 )− R( 3

5 ) + R( 4
5 )

2 ln
(

1+
√

5
2

) = 1.4048951416...

= 1
2 (1.7458208617...) ln(5),

γ8 = ln(2πe2γ) +
R( 1

8 )− R( 3
8 )− R( 5

8 ) + R( 7
8 )

2 ln(1 +
√

2)
= 1.2093306309...

= 1
2 (1.1631302027...) ln(8),

γ12 = ln(2πe2γ) +
R( 1

12 )− R( 5
12 )− R( 7

12 ) + R( 11
12 )

2 ln(2 +
√

3)
= 1.0539656082...

= 1
2 (0.8482939255...) ln(12),
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where

R(x)= − ∂2

∂z2
ζ(z, x)

∣∣∣∣
z=0

and ζ(z, x) is the second derivative of the Hurwitz zeta function, defined when
0< x≤ 1 by ζ(z, x)=

∑∞
n=0(n+ x)−z for Re(z)> 1 and by analytic continuation

elsewhere. Of course, ζ(z, 1)= ζ(z), ζ(z, 1/2)= (2z − 1)ζ(z), ζ ′(0)=− ln(2π)/2
and

R(1)=−ζ ′′(0)=−γ̃ − 1
2
γ2 +

1
24
π2 +

1
2

ln(2π)2 = 2.0063564559...,

lim
x→0+

R(x)=−∞, R
(

1
2

)
= ln(2) ln(2π) +

1
2

ln(2)2 = 1.5141458137...,

where γ̃=−0.0728158454... is the first Stieltjes constant [34], but little else is
known about special values of R(x).

For small |D|, γD is positive. The firstD< 0 for which γD is negative isD=−47,
and the first D> 0 for which γD is negative is D= 337. It can be shown that
lim|D|→∞ γD/ ln

√
|D|= 0. For arbitrary number fields (finite algebraic exten-

sions ofQ), a corresponding limit superior is also 0, assuming the truth of GRH.
The corresponding limit inferior, however, appears to lie between −0.26049 and
−0.17849, and its exact value is open [31, 35]. We wonder if similar optimiza-
tion problems can be studied involving higher-order coefficients cj in the Laurent
expansion of ζD(z).

1.13.3 Prime Products

Formulas such as [36, 37]

∏
p

p2 + 1
p2 − 1

=
5
2
,
∏
p

p3 + 1
p3 − 1

=
945ζ(3)2

π6 ,

∏
p≡1 mod 4

p2 + 1
p2 − 1

=
12G
π2 ,

∏
p≡1 mod 4

p3 + 1
p3 − 1

=
105ζ(3)

4π3 ,

∏
p≡3 mod 4

p2 + 1
p2 − 1

=
π2

8G
,

∏
p≡3 mod 4

p3 + 1
p3 − 1

=
28ζ(3)
π3

offer hope that prime products
∏

p≡kmod l( p
m + 1)/( pm − 1) might always be

expressed via L-series values, where m≥ 2. Indeed, we have

∏
p≡1 mod 3

p2 + 1
p2 − 1

=
27L−3(2)

2π2 ,
∏

p≡1 mod 3

p3 + 1
p3 − 1

=
15
√

3ζ(3)
π3 ,

∏
p≡2 mod 3

p2 + 1
p2 − 1

=
4π2

27L−3(2)
,

∏
p≡2 mod 3

p3 + 1
p3 − 1

=
39
√

3ζ(3)
2π3 .
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More complicated examples include∏
p≡2 or 3 mod 5

p2 + 1
p2 − 1

=
√

5,
∏

p≡2 or 3 mod 5

p3 + 1
p3 − 1

=
124ζ(3)
125L5(3)

,

∏
p≡7 mod 8

p2 + 1
p2 − 1

=
π2√

64
√

2GL−8(2)
,

∏
p≡7 mod 8

p3 + 1
p3 − 1

=

√
1792

√
2ζ(3)L8(3)

√
3π3

and we wonder whether products over p≡ 2 mod 5, or products over p≡ 3 mod
5, dash the hope. Finally, series such as

∞∑
n=0

1
(3n+ 1)2

=
1
2

(
4π2

27
+ L−3(2)

)
,

∞∑
n=0

1
(3n+ 1)3

=
2

81
√

3
π3 +

13
27
ζ(3),

∞∑
n=0

1
(3n+ 2)2

=
1
2

(
4π2

27
− L−3(2)

)
,

∞∑
n=0

1
(3n+ 2)3

=− 2

81
√

3
π3 +

13
27
ζ(3),

∞∑
n=0

1
(5n+ 2)2

+

∞∑
n=0

1
(5n+ 3)2

=
10 − 2

√
5

125
π2,

∞∑
n=0

1
(5n+ 2)3

+

∞∑
n=0

1
(5n+ 3)3

=
62
125

ζ(3)− 1
2
L5(3),

∞∑
n=0

1
(8n+ 7)2

=
1
4

(
1 +

√
2

8
√

2
π2 − G− L−8(2)

)
,

∞∑
n=0

1
(8n+ 7)3

=−1
4

(
3 + 2

√
2

64
√

2
π3 − 7

8
ζ(3)− L8(3)

)
raise similar issues.

1.13.4 Primitive Characters

Let Z∗
n denote the group (under multiplication modulo n) of integers rela-

tively prime to n, and let C∗ denote the group (under ordinary multiplication)
of nonzero complex numbers. A Dirichlet character modulo n is a homomor-
phism χ :Z∗

n →C∗. It can be shown that χ(k) is a φ(n)th root of unity for any
k∈Z∗

n , where φ is the Euler totient function [38]. In particular, if χ is real-valued,
then χ(k)=±1 for any k. We have [39–42]

# complex Dirichlet characters
of modulus ≤N

=
∑
n≤N

φ(n)∼ 3
π2N

2,

# real Dirichlet characters
of modulus ≤N

=
∑
n≤N,

n≡2,6 mod 8

2ω(n)−1 +
∑
n≤N,

n≡1,3,4,5,7 mod 8

2ω(n) +
∑
n≤N,

n≡0 mod 8

2ω(n)+1

∼
6
π2

N · ln(N)
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asN→∞, whereω(n) denotes the number of distinct prime factors of n. The con-
stant 6/π2 appears in [43] as the probability that two randomly chosen integers
are coprime; the above three-fold summation also counts the average number of
solutions of x2 = 1 in Z∗

n . Why should a coprimality probability and square roots
of unity mod n be at all related to real characters mod n?

Let m be a multiple of n. Extend the domain of χ to Z via the formula

χ(k)=

{
χ( j) if gcd(n, k)= 1 and j≡ kmod n, 1≤ j≤ n

0 otherwise

and then define a new induced character mod m:

χ̂(k)=
{
χ(k) if gcd(m, k)= 1,
0 otherwise.

For example, if χ is the character mod 3 with χ(1)= 1, χ(2)=−1 and χ(3)= 0,
note that

χ(k)|k=1,...,6 = {1,−1, 0, 1,−1, 0} 7−→{1, 0, 0, 0,−1, 0}= χ̂(k)|k=1,...,6 .

As another example, if χ is the character mod 3 with χ(1)= 1, χ(2)= 1 and
χ(3)= 0, note that

χ(k)|k=1,...,6 = {1, 1, 0, 1, 1, 0} 7−→{1, 0, 0, 0, 1, 0}= χ̂(k)|k=1,...,6 .

As a third and fourth example, if χ is the character mod 1 with χ(1)= 1, note
that

χ(k)|k=1,2 = {1, 1} 7−→{1, 0}= χ̂(k)|k=1,2 ,

χ(k)|k=1,2,3,4 = {1, 1, 1, 1} 7−→{1, 0, 1, 0}= χ̂(k)|k=1,2,3,4 .

These are meant to prepare us for the following definition. A primitive character
mod m is a character that is not induced by a character mod n for any divisor n
of m other than m itself. The first two examples demonstrate that no primitive
character mod 6 exists. Likewise, no primitive character mod 2 exists, but the
mod 4 character χ with χ(1)= 1, χ(2)= 0, χ(3)=−1 and χ(4)= 0 is primitive.

Define a new multiplicative function

ψ(n)=
∑
d|n

φ(d)µ(n/d)

where µ is the Möbius mu function. Also,ψ( p)= p− 2 andψ( pl)= pl−2( p− 1)2

for l≥ 2, for any prime p. We have [44, 45]

# complex primitive Dirichlet
characters of modulus ≤N

=
∑
n≤N

ψ(n)∼ 18
π4N

2,
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# real primitive Dirichlet
characters of modulus ≤N

=
∑

|D|≤N

1∼ 6
π2N

as N→∞, where D varies across the set 1 ∪ {fundamental discriminants}. For
future convenience, the latter sum can be written more explicitly as

∑
n≤N δ(n),

where

δ(n)=


1 if n= 1,
1 if either n or − n is a fundamental discriminant (not both),
2 if n and − n are fundamental discriminants,
0 otherwise.

In fact, δ(n) is multiplicative with δ(2)= 0, δ(4)= 1, δ(8)= 2, δ(2l)= 0 for l> 3,
δ( p)= 1 for prime p> 2 and δ( pl)= 0 for l> 1; thus asymptotic techniques in
[42] are applicable.

A less stringent version of primitiveness is also available. A weakly primitive
character modm is a character that does not coincide (as a functionZ→C∗) with
a character mod n for any divisor n of m other than m itself. For example, {1, 0}
is weakly primitive as a character mod 2, but not as a character mod 4, since
{1, 0, 1, 0} is the same as {1, 0} concatenated with itself. Both earlier-mentioned
characters mod 6 are weakly primitive as well, but not mod 12.

Define another multiplicative function ξ(n) with ξ( pl)=ψ( pl) for l≥ 2, but
ξ( p)= p− 1 instead. A Dirichlet convolution-type formula for ξ(n) is also
available:

ξ(n)=
∑

d|κ′(n)

ψ(n/d)

where κ′(n) is the product of primes that occur withmultiplicity 1 when factoring
n (using notation from [46]). We have [47, 48]

# complex, weakly primitive Dirichlet
characters of modulus ≤N

=
∑
n≤N

ξ(n)∼ 1
2
ρN2

where

ρ =
∏
p

(
1 − p2 + p− 1

p4

)
=

6
π2

∏
p

(
1 +

1
p3 + p2 − 1

)−1

=
6
π2 (1.1344121384...)

−1 = 0.5358961538...

as N→∞.
Define one last multiplicative function η(n) with η(2)= 1, η(4)= 1, η(8)= 2,

η(2l)= 0 for l> 3, η( p)= 2 for prime p> 2 and η( pl)= 0 for l> 1. A Dirichlet
convolution-type formula for η(n) is also available:

η(n)=
∑

d|κ′(n)

δ(n/d).
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We have [42]

# real, weakly primitive Dirichlet
characters of modulus ≤N

=
∑
n≤N

η(n)∼σN ln(N)

where

σ=
6
π2

∏
p

(
1 − 2

p( p+ 1)

)
=

36
π4

∏
p

(
1 − 1

( p+ 1)2

)
= 0.2867474284...

asN→∞. The constant σ appears in [43] as the probability that three randomly
chosen integers are pairwise coprime; it is also unexpectedly connected to the
asymptotics of the average number of solutions of x3 = 0 in Zn. Why should a
coprimality probability and cubic roots of nullitymod n be at all related toweakly
primitive characters mod n?

Addendum Writing exact expressions forLD(1/2)moments is difficult.We have,
for example [49],

a±2,2 = c± − 3a2,3, a±2,1 = d± − 2c± + 6a2,3

where

c− =
P2

4

(
1
2
Γ′(3/4)
Γ(3/4)

+U
)
= 0.1807468351...,

c+ =
P2

4

(
1
2
Γ′(1/4)
Γ(1/4)

+U
)
= 0.0640327313...,

d− =
P2

2

[(
4
P2
c−
)2

− V

]
= 0.3658991414...,

d+ =
P2

2

[(
4
P2
c+
)2

− V

]
=−0.4030985462...

and

U=−1
2

ln(π) + 3γ +
∑
p

5p2 − 6p+ 3
(p− 1) (p3 + 2p2 − 2p+ 1)

ln( p),

V= γ2 + 2γ̃ +
∑
p

p
(
5p5 − 5p4 + 4p3 + 4p2 − 5p+ 1

)
(p− 1)2 (p3 + 2p2 − 2p+ 1)2

ln( p)2.

To obtain a−2,0 or a+2,0 involves even more complicated formulas. As another
example [49],

a±3,5 = c± − 6a3,6, a±3,4 = d± − 5c± + 30a3,6
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where

c− =
P3

240

(
1
2
Γ′(3/4)
Γ(3/4)

+U
)
= 0.0008968276...,

c+ =
P3

240

(
1
2
Γ′(1/4)
Γ(1/4)

+U
)
= 0.0006087355...,

d− =
P3

48

[(
240
P3

c−
)2

− V

]
= 0.0170142017...,

d+ =
P3

48

[(
240
P3

c+
)2

− V

]
= 0.0051895362...

and

U=−1
2

ln(π) + 4 γ +
∑
p

4
(
3p3 − 3p2 + 3p− 1

)
(p− 1) (p4 + 4p3 − 3p2 + 3p− 1)

ln( p),

V= γ2 + 2γ̃ +
∑
p

p
(
10p7 + 5p5 + 17p4 − 31p3 + 20p2 − 6p+ 1

)
(p− 1)2 (p4 + 4p3 − 3p2 + 3p− 1)2

ln( p)2.

Again, a−3,k or a+3,k are increasingly complicated for decreasing k≤ 3.
For arbitrary n≥ 1, the rational function in p for the infinite series within U,

needed to compute c± and a±n,N−1, is [49]

gn( p)=
n+ 1
p− 1

+
−
(√

p− 1
)−n−1

+
(√

p+ 1
)−n−1(√

p− 1
)−n

+
(√

p+ 1
)−n

+ 2p−n/2−1
.

For arbitrary n≥ 2, the rational function in p for the infinite series within V,
needed to compute d± and a±n,N−2, is

p
( p− 1)2

+ gn( p)2 −
(√

p− 1
)−n−2

+
(√

p+ 1
)−n−2(√

p− 1
)−n

+
(√

p+ 1
)−n

+ 2p−n/2−1
.

See also [50, 51].
The conjectured expression for L−7(2) is, in fact, a theorem due to Zagier [52];

other representations appear in [53, 54]. More on Euler–Kronecker constants is
found in [55, 56]. We recommend Mathar’s calculations [57, 58] for further study.
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1.14 Elliptic Curves over Q

All polynomials and rational functions in this essay are assumed to have coeffi-
cients in Q. Fix an integer n≥ 1. An affine variety is a simultaneous irreducible
system of polynomial equations in n variables. The Q-points, R-points and
C-points of the affine variety are all solutions of the polynomial system in Qn,
Rn and Cn, respectively.
Rational projective n-space Q̃n is the set of lines through the origin inQn+1. For

example, the projective plane Q̃2 is a quotient of the unit sphere inQ3 modulo the
relation (X,Y,Z)∼ (−X,−Y,−Z). We define R̃n and C̃n similarly. A projective
variety is a simultaneous irreducible system of homogeneous polynomial equa-
tions in n+ 1 variables. The Q-points, R-points and C-points of the projective
variety are all solutions of the polynomial system in Q̃n, R̃n and C̃n, respectively;
these are (n+ 1)-tuples, not n-tuples as before.

A curve is a projective variety corresponding to one homogeneous polynomial
equation p(X,Y,Z)= 0. In particular, n+ 1= 3; that is, n= 2. Such a curve is
smooth or non-singular if there is no C-point at which the partial derivatives pX,
pY, pZ all vanish. For example, the conic

ax2 + bxy+ cy2 + dx+ ey+ f= 0

is expressed in homogeneous coordinates as

aX2 + bXY+ cY2 + dXZ+ eYZ+ fZ2 = 0;

irreducibility implies smoothness in this case. Triples (X,Y,Z) satisfying this
equation with Z= 0 are called points at infinity.

Let F denote a smooth projective curve and F(C) denote theC-points of F. The
genus g of F is defined topologically as the number of handles in the Riemann
surface F(C), and algebraically as (m− 1)(m− 2)/2, wherem is the degree of the
polynomial p. Lines and conics have genus 0 while smooth cubics have genus 1.
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Any two smooth projective curves of genus 0 with a rational point must be
isomorphic or birationally equivalent [1]. This means that the bijection between
the curves, as well as its inverse, can be given locally by rational functions. For
example, the circle x2 + y2 = 1 is isomorphic to the hyperbola x2 − y2 = 1 via the
change of coordinates (x, y) 7→ (1/x, y/x). It is isomorphic to the line y= 0 via
the function (x, y) 7→ y/(x+ 1). The circle, moreover, is a commutative group
under addition-of-angles, with identity element (x, y)= (1, 0). Its group of ratio-
nal points is the direct sum ofZ4, the cyclic group of order 4, and countablymany
copies of Z [2–6].

By contrast, there are (up to isomorphism) infinitely many smooth projec-
tive curves of genus 1 with a rational point. These are called elliptic curves (not
to be confused with ellipses). Each such isomorphism class possesses a unique
Weierstrass minimal model [7]

y2 + a1xy+ a3y= x3 + a2x2 + a4x+ a6, aj ∈Z, a1, a3 ∈{0, 1}, a2 ∈{0,±1},

for which |∆| is minimized, where

∆ = −
(
a2
1 + 4a2

)2 (
a2
1a6 − a1a3a4 + 4a2a6 + a2a2

3 − a2
4

)
− 8 (a1a3 + 2a4)

3 − 27
(
a2
3 + 4a6

)2
+ 9

(
a2
1 + 4a2

)
(a1a3 + 2a4)

(
a2
3 + 4a6

)
is the discriminant of the cubic. For example, the Fermat cubic x3 + y3 = 1 is
isomorphic to the elliptic curve y2 = x3 − 432 via the change of coordinates
(x, y) 7→ ((36 − y)/(6x), (36 + y)/(6x)). Its minimal model is y2 + y= x3 − 7,
however, obtained via the additional transformation (x, y) 7→ (4x, 8y+ 4). We
will soon present a table of isomorphism classes, ordered according to increasing
conductor N, along with several other associated constants.

An elliptic curve E is also a commutative group, with addition given by the
familiar chord-and-tangent law, and with identity element the unique point at
infinity (X,Y,Z)= (0, 1, 0). It is a prototypal example of what is known as an
abelian variety. Let E(Q) denote the group of rational points of E. By Mordell’s
theorem,

E(Q)≈Zr ⊕ Etors(Q)

where the rank r is a nonnegative integer and the torsion subgroup Etors(Q) is
finite. Define t to be the order of Etors(Q), for convenience’s sake. The overlap of
geometry (E is a smooth curve) and algebra (E is an abelian variety) makes this
subject rich and interesting.

1.14.1 Naive Height

If x∈Q, write x= a/b, where a and b are coprime integers. Define
H(x)=max{|a|, |b|}. The set of x∈Q for which H(x)≤ k is clearly finite
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and [1, 8–11]

lim
k→∞

1
k2

∑
H(x)≤k

1=
12
π2 =

2
ζ(2)

.

Alternatively, if x∈ Q̃, then x is represented by (a, b) in homogeneous coordinates
and the same asymptotic result applies. The projective line is identical to the affine
line in this regard.

Given a rational point (x, y) on the circle x2 + y2 = 1, defineH(x, y) to be sim-
ply H(x). The set of such rational points for which H(x, y)≤ k is again finite
and [12]

lim
k→∞

1
k

∑
H(x)≤k,
x2+y2=1

1=
4
π
.

Observe that it makes no sense to sum over all points (x, y)∈Q2 of bounded

height. However, on the projective plane Q̃2, choose an integer triple (a, b, c) rep-
resenting a given rational point (x, y), where gcd(a, b, c)= 1. DefiningH(x, y)=
max{|a|, |b|, |c|}, we obtain [1, 9–11]

lim
k→∞

1
k3

∑
H(x,y)≤k

1=
4
ζ(3)

where ζ(3) is Apéry’s constant [13]. For example, c> 0 may be taken to be the
least common denominator of x and y, and thus a= cx and b= cy.

Given a rational point (x, y, z) on the sphere x2 + y2 + z2 = 1, defineH(x, y, z)
to be the least common denominator of x, y and z. In this case, it is known
that [14]

lim
k→∞

1
k2

∑
H(x,y,z)≤k,
x2+y2+z2=1

1=
3
2G

where G is Catalan’s constant [15]. An open frontier of asymptotic results like
these, for higher-dimensional varieties and assorted height functions, awaits
discovery.

Let us return to the affine plane. Consider an elliptic curve E and define the
naive heightH(x, y)=H(x) for any rational point (x, y) on E (ignoring the verti-
cal component, just as we did for the circle). The set of rational points for which
H(x, y)≤ k can be proved to be finite and [1, 16–20]

Θ= lim
k→∞

1
ln(k)r/2

∑
H(x)≤k,
(x,y)∈E

1=
πr/2

Γ
(
1 + r

2

) t√
R
,

where the integers r≥ 0 and t≥ 1 were defined previously and the real num-
ber R> 0 is the regulator of E. We will demonstrate how to compute R shortly
(§1.14.2).
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1.14.2 Canonical Height

Let h(x, y)= ln(H(x, y)), the logarithm of the naive height on E. We also need
the duplication formula, that is, the algorithm by which to calculate 2 · (x, y)=
(x, y) + (x, y):

2 · (x, y)= (ν,−(λ+ a1)ν − µ− a3)

where

λ=
3x2 + 2a2x+ a4 − a1y

2y+ a1x+ a3
, µ=

−x3 + a4x+ 2a6 − a3y
2y+ a1x+ a3

and ν=λ2 + a1λ− a2 − 2x. In fact, y=λx+ µ is the lineL tangent toE at (x, y)
and ν is the horizontal component of the other point of L ∩ E. Clearly 2n · P=

2 · [2n−1 · P] for all positive integers n, for any rational point P on E. Define the
canonical height or Néron–Tate height of P to be [7, 21–24]

ĥ(P)=
1
2

lim
n→∞

h(2n · P)
22n .

For example, given the elliptic curve y2 + y= x3 − x and the point P=(0, 0), we
have

2 · P=(1, 0) , 4 · P=(2,−3) , 8 · P=
(

21
25 ,−

69
125

)
, 16 · P=

(
480106
4225 ,

332513754
274625

)
and ĥ(P)= 0.0255557041.... It can be shown that ĥ is a nonnegative definite
quadratic form onE(Q) that differs from h/2 by atmost a constant. In particular,
the height pairing

⟨ , ⟩ :E(Q)× E(Q)→R

⟨Pi,Pj⟩= ĥ(Pi + Pj)− ĥ(Pi)− ĥ(Pj)

is a symmetric bilinear form. The r× r determinant

R= det (⟨Pi,Pj⟩)1≤i≤r,
1≤j≤r

is independent of the choice of basis {P1,P2, . . . ,Pr} for E(Q)/Etors(Q), and this
defines the regulator. Continuing our example, we have r= 1 and R= 2ĥ(P)=
0.0511114082.... Since t= 1, it follows that the asymptotic growth constant Θ=

8.8464916552....
Different variations on ĥ and ⟨ , ⟩ abound, all involving factors of 2. Our

conventions are consistent with the number-theoretic freeware PARI/GP [25–27].
Numerical algorithms exist for computing ĥ to arbitrary precision [28–33].

Here is a curious approach, based on what is called an elliptic divisibility sequence
[34–36]:

s2n+1 = sn+2s3n − sn−1s3n+1, s2n= sn
(
sn+2s2n−1 − sn−2s2n+1

)
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Table 1.8 Regulator R, for four selected isomorphism classes of elliptic curves
(r> 0)

N elliptic curve r t Pi R Θ

37 y2 + y= x3 − x 1 1 (0, 0) 0.0511114082... 8.8464916552...

43 y2 + y= x3 + x2 1 1 (0, 0) 0.0628165070... 7.9798201588...

389 y2 + y= x3 + x2 − 2x 2 1 (0, 0), (1, 0) 0.1524601779... 8.0458449949...

5077 y2 + y= x3 − 7x+ 6 3 1 (0, 2), (1, 0), (2, 0) 0.4171435587... 6.4855354622...

with initial terms s0 = 0, s1 = 1, s2 = 1, s3 =−1, s4 = 1. It can be proved that sn | sm
whenever n |m, that

sm−nsm+n= sm+1sm−1s2n − sn+1sn−1s2m

for all m≥ n≥ 0, and that limn→∞ n−2 ln |sn|= 0.0255557041.... This is the same
value ĥ(P) obtained in our example.

Another example is the elliptic curve y2 + y= x3 + x2; we compute ĥ(P)=
0.0314082535... for the point P=(0, 0). These two cases constitute the two
“simplest” rank-one elliptic curves. Table 1.8 summarizes these, as well as the
“simplest” rank-two and rank-three elliptic curves [37, 38]. “Simplicity” means
smallest possible conductor N; we will define this quantity later (§1.14.5).

1.14.3 Real Period

The complex torusE(C) is isomorphic (as a Riemann surface) toC/Λ, whereΛ is
a certain lattice ω1Z⊕ ω2Z such that ω1> 0 and Im(ω2)> 0. Clearly the minimal
model for E can be rewritten as

(2y+ a1x+ a3)
2
= 4x3 +

(
a2
1 + 4a2

)
x2 + 2 (a1a3 + 2a4) x+

(
a2
3 + 4a6

)
;

let us denote the right-hand side of this equation by f (x). Define the zeroes of
f (x) to be e1, e2, e3 with the understanding that e1< e2< e3 if ∆> 0 and e1 ∈R
uniquely if ∆< 0. These two cases correspond to E(R) being disconnected or
connected, respectively (∆ ̸= 0 since otherwise E would be singular). Also define
the arithmetic-geometric mean M(u, v) of two numbers u, v to be the common
limit as n→∞ of the sequences {un}, {vn}, where

un=
un−1 + vn−1

2
, vn=

√
un−1vn−1, u0 = u, v0 = v.

It follows that, if ∆> 0,

ω1 =

e2∫
e1

2 dx√
f (x)

=

∞∫
e3

2 dx√
f (x)

=
π

M (
√
e3 − e1,

√
e3 − e2)

,
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Table 1.9 Real period Ω, for seven selected isomorphism classes of elliptic curves

N elliptic curve ∆ Ω V

11 y2 + y= x3 − x2 − 10x− 20 −161051 1.2692093042... 1.8515436234...

14 y2 + xy+ y= x3 + 4x− 6 −21952 1.9813419560... 2.6262514055...

15 y2 + xy+ y= x3 + x2 − 10x− 10 50625 2.8012060846... 2.2357017126...

37 y2 + y= x3 − x 37 5.9869172924... 7.3381327407...

43 y2 + y= x3 + x2 −43 5.4686895299... 7.4548214176...

389 y2 + y= x3 + x2 − 2x 389 4.9804251217... 4.9100459911...

5077 y2 + y= x3 − 7x+ 6 5077 4.1516879830... 3.0733872268...

ω2 =

e1∫
−∞

2 dx√
f (x)

=

e3∫
e2

2 dx√
f (x)

=
πi

M (
√
e3 − e1,

√
e2 − e1)

and, if ∆< 0,

ω1 =

∞∫
e1

2 dx√
f (x)

=
2π

M
(
2
√
η,
√

2η + ξ
) , ω2 =−1

2
ω1 +

πi
M
(
2
√
η,
√

2η − ξ
)

where [18, 39]

ξ= 3e3 + 1
4

(
a2
1 + 4a2

)
, η=

√
3e23 +

1
2

(
a2
1 + 4a2

)
e3 + 1

2 (a1a3 + 2a4).

Apath integral expression forω2 in the latter case also exists; theAGMsequences
converge quadratically and are vastly preferred over numerical integration.

The real period Ω is 2ω1 when ∆> 0 and ω1 when ∆< 0, and the real volume
V is ω1 Im(ω2). Observe that ω1 is the smallest positive real number contained
in Λ and V is the area of the associated fundamental parallelogram. A related
quantity is the Faltings height of E, defined to be the reciprocal of V.

Table 1.9 contains Ω and V for the elliptic curves given in Table 1.8, preceded
by several rank-zero elliptic curves not mentioned earlier. In fact, there are three
isomorphism classes of elliptic curves with conductor N= 11, six classes with
N= 14 and eight classes with N= 15. No examples with N< 11 exist [40]. We
use the notation of Cremona [37] to refer to certain elliptic curves. For instance,
11A1 refers to the first curve in Table 1.9, while 11A2 refers to

y2 + y= x3 − x2 − 7820x− 263580

with ∆=−11, Ω11A2 =(1/5)Ω11A1 and V11A2 =(1/5)V11A1, and 11A3 refers to

y2 + y= x3 − x2
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with∆=−11,Ω11A3 = 5Ω11A1 andV11A3 = 5V11A1.More generally, elliptic curves
possessing the same conductor < 26 have the same real period and real volume,
up to rational multiples.

Familiar numbers among the real periods include the lemniscate constants [41–
44]

Ω32A1 =
1

2
√

2π
Γ

(
1
4

)2

= 2.6220575542...=
1
2
(5.2441151085...),

Ω432A1 =
1
4π

Γ

(
1
3

)3

= 1.5299540370...=
1
2
(3.0599080741...)

corresponding to the elliptic curves y2 = x3 + 4x and y2 = x3 − 16, respectively.
Note that y2 = x3 − x and y2 = x3 + x are related to the former:

Ω32A2 = 2Ω32A1, Ω64A4 =
√

2Ω32A1

while y2 = x3 − 1 and y2 = x3 + 1 are related to the latter:

Ω144A1 =
4

3√16
Ω432A1, Ω36A1 =

4
√

3
3√16

Ω432A1.

Such exact expressions in terms of gamma function values seem to be rare.
General formulas for ω1 and ω2 in terms of hypergeometric function values are
found in [45]. It would be good to better understand ω1 = 2.9934586462... and
ω2 =(2.4513893819...)i for the special curve 37A1, in particular [18, 46].

1.14.4 Isogenies

Let E and E′ be two elliptic curves and denote the point at infinity byO. Any iso-
morphism E→E′ that maps O to itself induces an isomorphism E(Q)→E′(Q)

of groups. It is natural to attempt to classify all elliptic curves up to isomorphism;
recall, for example, the three isomorphism classes 11A1, 11A2, 11A3 with con-
ductor 11. A weaker notion is as follows. Any homomorphism E(Q)→E′(Q)

that is not identically O is called an isogeny. It can be proved, in fact, that any
isogeny is necessarily surjective. For example, an isogeny from 11A3 to 11A1 is
given by [18, 47]

(x, y) 7→
(
x+

1
x2

+
2

x− 1
+

1
(x− 1)2

, y− (2y+ 1)
(

1
x3

+
1

(x− 1)3
+

1
(x− 1)2

))
,

which clearly fails to be injective. We remarked earlier that every isomorphism
class is represented uniquely by a minimal model; an algorithm for computing
such representative curves is due to Tate [48, 49]. Isogeny classes encompass one
ormore isomorphism classes. The curves 11A1, 11A2, 11A3 all fall in one isogeny
class, which is written simply as 11A. It can be proved that isogenic curves E and
E′ possess the same conductor N and the same L-series (see §1.14.5). The first
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N for which two isogeny classes exist is 26; these are denoted 26A and 26B. The
firstN for which three isogeny classes exist is 57; these are denoted 57A, 57B and
57C [37, 50–52].

1.14.5 L-Series

For any prime p, let Zp denote the field of integers modulo p. Starting with the
minimal model for an elliptic curveE overQ, defineEp to be its reduction overZp:

y2 + a1xy+ a3y≡ x3 + a2x2 + a4x+ a6 mod p.

Let Np denote the number of points (x, y)∈Z2
p on Ep, plus one, and let [53]

bp=



p+ 1 −Np
if p -∆,
that is, E has good reduction at p;

±1 if p |∆ and p -
(
a2
1 + 4a2

)2 − 24 (a1a3 + 2a4) ,
that is, E has multiplicative reduction at p;

0 if p |∆ and p |
(
a2
1 + 4a2

)2 − 24 (a1a3 + 2a4) ,
that is, E has additive reduction at p.

The three cases correspond to when Ep is non-singular, has a node, or has a cusp,
respectively. The last two cases, of course, correspond towhenE has bad reduction
at p. It remains for us to specify the sign of bp in the nodal case. Does there exist
a quadruple (x0, y0, α, β)∈Z4

p for which (x0, y0) is a singular point on Ep,

y2 + a1xy+ a3y− x3 − a2x2 − a4x− a6

≡ [(y− y0)− α(x− x0)] [(y− y0)− β(x− x0)]− (x− x0)
3 mod p

and α ̸=β? If yes, the reduction is said to be split at p and bp= 1. If no, the reduc-
tion is non-split and bp=−1. Finally, the Hasse–Weil L-series of E is defined
to be

LE(z)=
∞∑
n=1

bnn−z, Re(z)> 3
2

where b1 = 1, bpk = bpk−1bp − p bpk−2 for k≥ 2 and bm n= bmbn for coprime integers
m, n. This can also be written as an infinite product:

LE(z)=
∏
p |∆

1
1 − bpp−z ·

∏
p -∆

1
1 − bpp−z + p1−2z , Re(z)> 3

2 .

The combined efforts of Wiles [54], Taylor & Wiles [55] and others [56–59] yield
that LE(z) can be analytically continued over the whole complex plane.

For example, the elliptic curve 11A3 has bad reduction only at p= 11. It has
split multiplicative reduction since 11 - 16 and since (x0, y0, α, β)= (−3, 5, 1,−1)
satisfies the required equation; hence b11 = 1. As another example, E= 37A1
has bad reduction only at p= 37. It has non-split multiplicative reduction since
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37 - 48 and since (x0, y0)= (5, 18) is the only singular point of E37 but no
slopes (α, β)∈Z2

37 work with this; hence b37 =−1. All other coefficients bp are
obtained easily. For the isogeny class 11A, there is a miraculous q-expansion
result [53, 59, 60]:

∞∑
n=1

bnqn= q
∞∏
k=1

(
1 − qk

)2 (
1 − q11k)2

(a weight 2 cusp form of level 11) and similarly for 14A and 15A. Corresponding
generating functions for 37A are much more complicated [46, 61].

Let us return to the entire function LE(z) and define the modification

L̂E(z)=

(√
N

2π

)z

Γ(z)LE(z),

where N is the conductor of E. Then the following functional equation

L̂E(z)= ε · L̂E(2 − z)

is satisfied everywhere, where ε=±1 is the root number ofE. This equation serves
to characterize N uniquely (the actual computation of N turns out to be diffi-
cult). The conductor N divides ∆ and is divisible only by primes where E has
bad reduction. It is conjectured that ε=(−1)r, where r is the rank of E.

Consider the value of LE and its derivatives at z= 1. Let m denote the small-
est integer for which L(m)

E (1) ̸= 0. The famous Birch–Swinnerton-Dyer conjecture
predicts that m= r and that

L(r)
E (1)
r!

t2

ΩR
∈Z+,

where t is the torsion order of E, Ω is the real period and R is the regulator
(we take R= 1 in the event r= 0). More can be said if we introduce one addi-
tional quantity into the denominator – the Tamagawa number c – which cannot
be defined here for reasons of space. The new ratio is then conjectured to be
an integer square always (see Table 1.10). It is known exactly when r= 0 and
approximately when r> 0 [37]. The first case for which the ratio equals 4 is the
elliptic curve 66B3; the first case for which it equals 9 is 182B3. Associated with
each elliptic curve E is the Tate–Shafarevich group III(E) whose order is at issue.
No effective procedure for computing | III(E)| is known, short of assuming the
truth of the BSD conjecture and numerically calculating m, L(m)

E (1), t, Ω, R
and c. Gross & Zagier [62] and Kolyvagin [63, 64] proved that if m= 0, then
r= 0; if m= 1, then r= 1; and that there exists an E with m= r= 3. (The curves
389A1 and 5077A1 provably satisfy m= r= 2 and m≥ r= 3, respectively.) We
do not yet know an E with m= r= 4, or even an E with r≥ 4 and L′′

E(1)= 0
[19, 29, 37, 38, 65–68].
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Table 1.10 BSD ratio, for nine selected isomorphism classes of elliptic curves

elliptic curve r t L(r)
E (1)/r! c

(
L(r)
E (1)/r!

) (
t2/(cΩR)

)
11A1 0 5 0.2538418608... 5 1

14A1 0 6 0.3302236593... 6 1

15A1 0 8 0.3501507605... 8 1

37A1 1 1 0.3059997738... 1 1.0

43A1 1 1 0.3435239746... 1 1.0

66B3 0 2 1.1021925301... (=Ω) 1 4

182B3 0 1 1.9204065875... (= 9Ω) 1 9

389A1 2 1 0.7593165002... 1 1.0

5077A1 3 1 1.7318499001... 1 1.0

1.14.6 Areas of Rational Right Triangles

A square-free positive integer d is a congruent number if the set{
(u, v)∈Q2 : 1

2u v= d and u2 + v2 =w2 for some w∈Q
}

is nonempty [69, 70]. We wish to effectively distinguish congruent d from non-
congruent d. Let Ed denote the elliptic curve y2 = x3 − d2x; recall the special case
E1 = 32A2 from §1.14.3. It is known that d is congruent if and only if Ed has
nonzero rank. By the (weak) BSD conjecture, the latter condition is equivalent
to LEd(1)= 0. Another miraculous q-expansion result holds for E1:

∞∑
n=1

bnqn= q
∞∏
k=1

(
1 − q4k)2 (1 − q8k)2

and this carries over to Ed via the quadratic twist

LEd(z)=
∞∑
n=1

(
d
n

)
bnn−z

of LE1(z) by the Dirichlet character (d/n). For instance, (1/n)= 1 always,

(2/n)|n=1,2 = {1, 0},

(3/n)|n=1,2,3 = {1,−1, 0}

and other examples appear in [71].
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Define (i, j)= (1, d) if d is odd and (i, j)= (2, d/2) if d is even. In both
cases, j is an odd square-free integer and i j= d. Define coefficients ci,j via the
q-expansions

∞∑
n=1

c1,nqn = q
∞∏
k=1

(
1 − q8k) (1 − q16k) · ∞∑

m=−∞
q2m2

=
∑

(u,v,w)∈Z3,
v≡1 mod 2

(
q2u2+v2+32w2

− 1
2q

2u2+v2+8w2
)
,

∞∑
n=1

c2,nqn = q
∞∏
k=1

(
1 − q8k) (1 − q16k) · ∞∑

m=−∞
q4m2

=
∑

(u,v,w)∈Z3,
v≡1 mod 2

(
q4u2+v2+32w2

− 1
2q

4u2+v2+8w2
)
.

Tunnell [72–74] proved the following remarkable formula:

LEd(1)=
1

8
√

2π
Γ

(
1
4

)2

· c2i, j

√
i
j
=

1
4
(2.6220575542...) · c2i, j

√
i
j

which provides the required identification algorithm (flawed only in that it rests
on the validity of an unproved conjecture). On the one hand, since c1,1 = 1, c2,1 =
1 and c1,3 = 2, we have LE1(1)= 0.6555143885...,

LE2(1)=
√

2LE1(1)= 0.9270373386..., LE3(1)=
4√
3
LE1(1)= 1.5138456348....

On the other hand, since c1,5 = c2,3 = c1,7 = 0, we deduce that LE5(1)=LE6(1)=
LE7(1)= 0. By the BSD conjecture, it can be concluded that 5, 6, 7 are congruent
numbers and 1, 2, 3 are not. (These particular facts, however, are obtained via
elementary means as well. We are merely illustrating the method.)

Observe that the change of variables (x, y) 7→ (x/d, (1/
√
d)(y/d)) maps E1 to

Ed. It is not an isomorphism over Q because of the presence of the irrationality√
d; it is, rather, an isomorphism over Q(

√
d). Other relevant papers on con-

gruent numbers include [75–81]. A consequence of the BSD conjecture is that
any square-free positive integer ≡ 5, 6, 7mod 8 is a congruent number. Further,
random matrix theory predicts that [82]

#{n≤N : n≡ 1, 2, 3mod 8 is a conguent number}∼CN3/4 ln(N)11/8

as N→∞, for some positive constant C.
Let us turn attention away from the curve 32A2 and instead briefly to E1 =

11A3. The L-series for E1 was specified in §1.14.5; the L-series for the quadratic
twist E−3 corresponds to the curve 99D1 given by y2 + y= x3 − 3x− 5.
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It is known that, for fundamental discriminants δ satisfying 0>δ≡ 2, 6, 7, 8,
10 mod 11, we have [83–85]

LEδ
(1)= γ · c2−δ

1√
−δ

where

∞∑
n=1

cnqn= 1
2

∑
(u,v,w)∈Z3,
u≡v mod 2

q u
2+11v2+11w2

− 1
2

∑
(u,v,w)∈Z3,
u≡v mod 3,
v≡w mod 2

q(u
2+11v2+33w2)/3

and γ=
√

3Ω99D1 = 2.9176332338.... An expression for the real period of 99D1
in terms of gamma function values seems not to be available. This formula for
LEδ

(1) is only the tip of a more general theory due to Shimura [86], Waldspurger
[87] and Kohnen & Zagier [88]. See also [89–94].

The curve E1 = 144A1 (mentioned in §1.14.3) has quadratic twist Ed given by
y2 = x3 − d3. We have, for example [95],

LEd(1)=
1

2 3
√

16π
Γ

(
1
3

)3

·
c2d√
d
=

2
3
√

16
(1.5299540370...) ·

c2d√
d

where 0< d≡ 1 mod 24 is square-free and

∞∑
n=1

cnqn= q
∞∏
k=1

(
1 − q12k)2 ∞∑

m=−∞
qm

2
.

The Fermat cubic F1 = 27A1 (mentioned near the beginning) has quadratic
twist Fd given by y2 = x3 − 432d3. Similar complicated formulas for LFd(1) hold,
depending again on the sign and modulus of d [96]. We will revisit F1 shortly.

Here is an exercise that is vaguely similar to the congruent number problem
[97]. Define

g(n)=#
{
(u, v)∈Z2 : u v= n and u+ v=w2 for some w∈Z

}
.

It turns out, for square-free d> 0, that g(d) is a lower bound for 2r+2,
where r is the rank of the elliptic curve y2 = x3 + dx. No one knows whether
limsupd→∞ g(d)=∞, which would imply that there exist elliptic curves of arbi-
trarily large rank. We do know, however, that limsupn→∞ g(n)=∞ and more
precisely that [98]

lim
N→∞

N−3/4
N∑
n=1

g(n) = 2

1∫
0

√
x+

1
x
dx− 4

3

=
4
3

(√
2 − 1

)
+

1
3
√
π
Γ

(
1
4

)2

= 3.0243843195....
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1.14.7 Sums of Two Rational Cubes

Let d be a cube-free positive integer and Fd denote the elliptic curve y2 = x3 −
432d2; recall the special case F1 = 27A1 from earlier. Note that the factor here
is d2 rather than d3 as before. It is known that 2< d= u3 + v3 for (u, v)∈Q2

if and only if Fd has nonzero rank. (Reason: the group Fd(Q) is torsion-free,
hence Fd(Q) contains infinitely many points if and only if Fd(Q) contains at
least one point [99–101].) By the (weak) BSD conjecture, the latter condition
is equivalent to LFd(1)= 0. Yet another miraculous q-expansion result holds
for F1:

∞∑
n=1

bnqn= q
∞∏
k=1

(
1 − q3k)2 (1 − q9k)2 ,

but formulas for LFd(z) via the cubic twist Fd of F1 are considerably more com-
plicated. We defer these until later [102]. No theorem analogous to Tunnell’s is
yet known. On the one hand, we have

LF1(1)=

√
3

18π
Γ

(
1
3

)3

= 0.5888795834...,

LF2(1)=
3

24/3LF1(1)= 0.7010910526..., LF3(1)= 32/3LF1(1)= 1.2249188952...,

LF4(1)=
3

22/3LF1(1)= 1.1129126745..., LF5(1)=
3

51/3LF1(1)= 1.0331366085....

On the other hand, LF6(1)=LF7(1)=LF9(1)= 0. By the BSD conjecture, it can
be concluded that 6, 7, 9 are sums of two rational cubes and 3, 4, 5 are not.
(Again, these facts are elementary – just for illustration – as are 1= 03 + 13 and
2= 13 + 13.)

Observe that the change of variables (x, y) 7→ (
3
√
dx, 3

√
dy) maps F1 to Fd and

is an isomorphism over Q(
3
√
d). The L-series arising in this case differ from the

L-series of x3 + y3 = 1 twisted by cubic Dirichlet characters [103]; hence confu-
sion is possible when surveying the literature. More on x3 + y3 = d is found in
[104–108]. A consequence of the BSD conjecture is that any square-free positive
integer ≡ 4, 6, 7, 8mod 9 is a sum of two rational cubes. Further, random matrix
theory predicts that [109]

#{n ≤ N : n≡ 1, 2, 3, 5mod 9 is square-free and is a sum of two rational cubes}

∼ CN5/6 ln(N)
√

3/2−1/8

as N→∞, for some positive constant C. It would be more natural to express
these asymptotics for cube-free integers, but apparently the result becomes less
tractable.
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1.14.8 Lang’s Conjecture

Let E be an elliptic curve over Q. Recall that the canonical height ĥ :E(Q)→R
satisfies ĥ(P)= 0 if and only if P is a torsion point. We wonder whether [110–112]

inf
E

inf
nontorsion
P∈E(Q)

ĥ(P)> 0.

The infimum is certainly small: taking E to be the minimal model y2 + xy+ y=
x3 + x2 − 125615x+ 61201397 andP to be the point (7107,−602054), we obtain
ĥ(P)< 0.0045.

Let ∆ denote the discriminant of E and let ED denote the set of all mini-
mal models E satisfying |∆| ≥D. Lang [113] predicted that the aforementioned
infimum is positive and further conjectured that

inf
D>0

inf
E∈ED

inf
nontorsion
P∈E(Q)

ĥ(P)
ln |∆|

> 0.

Again, the infimum is small: for our earlier example,∆=−1494018600480000000
and thus ĥ(P)/ ln |∆|< 1.07 × 10−4. Elkies [114] found a different example
with ratio less than 0.85 × 10−4. Hindry & Silverman [115], however, demon-
strated that Lang’s conjecture would follow from a proof of the important
Masser–Oesterlé ABC conjecture [116–118]. Another interesting constant is the
value of

lim
D→∞

inf
E∈ED

inf
nontorsion
P∈E(Q)

ĥ(P)
ln |∆|

,

which may or may not exceed the preceding. Progress in resolving these issues is
reported in [30, 31, 35, 110, 115, 119–121].

We conclude with a final glimpse at the height ĥ(P)= 0.0255557041... of the
point P=(0, 0) on the elliptic curve E= 37A1. Consider the lattice ω1Z⊕ ω2Z
, where ω1, ω2 are given at the end of §1.14.3. Over all nonzero lattice points ω,
define the Weierstrass sigma function

σ(z)= z
∏
ω ̸=0

(
1 − z

ω

)
exp

(
z
ω

+
z2

2ω2

)
as well as constants

κ=

∞∫
1

dx√
4x3 − 4x+ 1

= 1.1342732156..., σ(κ)= 1.1055557990....

It would be good someday to prove that ĥ(P) is transcendental; one formula for
achieving this might be [36, 122–124]

ĥ(P)=
κ2

4ω1

σ′(ω1/2)
σ(ω1/2)

− 1
4

ln (σ(κ)) .
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Another helpful formula (a decomposition of ĥ(P) into a sum of local heights
over all primes p) appears in [31, 125]. No algebraic height ĥ(P), for any curve E
and nontorsion point P, has ever been found. But a transcendentality proof for
even a single case escapes all known efforts.

In closing, we merely mention certain averages [126] without details; p and
ℓ denote primes throughout. Concerning the value distribution of L-series
coefficients bp, we have a constant [127–129]∏

ℓ

(
1 − 1

(ℓ− 1)2(ℓ+ 1)

)
= 0.6151326573....

Concerning the growth of primes p such that Np is prime, we have [130–132]∏
ℓ

(
1 − ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)
= 0.5051661682....

Concerning the growth of primes p such that the group Ep (together with a point
at infinity) is cyclic, we have [133, 134]∏

ℓ

(
1 − 1

ℓ(ℓ− 1)2(ℓ+ 1)

)
= 0.8137519061....

The constant 2Ctwin/π
2 = 0.1337767531... appears in [135, 136]; recent progress

on Lang’s conjecture is reported in [137, 138].
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1.15 Modular Forms on SL 2(Z)

Let k∈Z and let SL2(Z) denote the special linear group

SL2(Z)=
{(

a b
c d

)
: a, b, c, d∈Z and ad− bc= 1

}
.

Amodular form of weight k is an analytic function f defined on the complex upper
half plane H= {z∈C : Im(z)> 0} that transforms under the action of SL2(Z)
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according to the relation [1]

f
(
az+ b
cz+ d

)
=(cz+ d)kf (z) for all

(
a b
c d

)
∈ SL2(Z)

and whose Fourier series f (z)=
∑∞

n=−∞ γne2πinz satisfies γn= 0 for all n< 0. In
particular, we have

f (z+ 1)= f (z), f (−1/z)= (−z)kf (z).

If, additionally, we have γ0 = 0, then f is a cusp form of weight k. Every noncon-
stant modular form has weight k≥ 4, where k is even, and every nonzero cusp
form has weight k≥ 12. The set Mk of modular forms and the set Sk of cusp
forms are finite-dimensional vector spaces over C with [2]

dim(Mk)=

{ ⌊
k
12

⌋
if k≡ 2 mod 12,⌊

k
12

⌋
+ 1 if k≡ 0, 4, 6, 8, 10 mod 12

and dim(Sk)= dim(Mk)− 1 if k≥ 12. We will focus primarily on a specific basis
element of S12, leaving other aspects of this huge research area for later.

The discriminant function ∆ :H→C, defined via

∆(z)= q
∞∏
n=1

(1 − qn)24 =
∞∑
m=1

τ(m)qm

where q= e2πiz and τ :Z+ →Z is theRamanujan tau function [3–7], can be proved
to be a cusp formofweight 12.Nobody knowswhether τ(m) ̸= 0 for allm≥ 1, but
Mordell [8] proved that τ is a multiplicative function and Deligne [9–11] proved
that |τ( p)| ≤ 2 p11/2 for any prime p. This implies that [12]

τ(m)=O
(
m11/2+ε

)
as m→∞, for any ε> 0; further [13–17],

liminf
m→∞

m−11/2τ(m)=−∞, limsup
m→∞

m−11/2τ(m)=∞.

Let the Hecke L-series be

L∆(z)=
∞∑
m=1

τ(m)m−z=
∏
p

1
1 − τ( p)p−z + p11−2z , Re(z)> 13

2 ,

and its modification be

L∗
∆(z)= (2π)−zΓ(z)L∆(z).

Then L∆(z) can be extended to an entire function and the functional equa-
tion L∗

∆(z)=L∗
∆(12 − z) is satisfied everywhere. One can compute L∆(6)=

0.7921228386..., for example, but it turns out that more can be said.
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Define two constants [18–20]

ξ = 30L∗
∆(6)= 0.0463463808...

= 960(0.0000482774...)= 5(0.0092692761...),

η = 28L∗
∆(5)= 28L∗

∆(7)= 0.0457516089...

= 32
15 (0.0214460667...)=

2
5 (0.1143790224...).

It can be shown that the values of L∗
∆(n) at even 2≤ n≤ 10 are rational multiples

of ξ:
L∗
∆(4)=L∗

∆(8)=
1
24ξ, L∗

∆(2)=L∗
∆(10)=

2
25ξ,

and that the values of L∗
∆(n) at odd 1≤ n≤ 11 are rational multiples of η:

L∗
∆(3)=L∗

∆(9)=
1
18η, L∗

∆(1)=L∗
∆(11)=

90
691η.

These can alternatively be written in terms of L∆(1) and L∆(2); see Table 1.11.
Similar collapsing occurs at integer arguments < k for the unique cusp forms of
weight k= 16 and k= 18 [7]. An integral expression for L∗

∆(n) is [21]

L∗
∆(n) =

1
in−1π11

1∫
0

 1∫
v

du√
u(u− 1)(u− v)

n−1∞∫
1

du√
u(u− 1)(u− v)

11−n

× v (1 − v) dv

where n= 1, 2, ..., 11 and i is the imaginary unit. The product ξη= 0.0021204214...
also appears in the following [18, 19, 22–24]:

lim
x→∞

1
x12

∑
m≤x

τ(m)2 =
23π11

34527 11
ξη= 0.0320070045...

=
28π11

34587 11
(1.0353620568...)=

1
12

(0.3840840544...),

which is an interesting asymptotic mean square result. By contrast, we know that
[25, 26] ∑

m≤x

τ(m)=O
(
x35/6+ε

)

Table 1.11 Values of Lf (1), Lf (2); f is the unique cusp form of weight k= 12, 16, 18

k 12 16 18

Lf (1) 0.0374412812... 0.5870144080... −3.5316483054...

Lf (2) 0.1463745420... 1.6654560382... −8.6783515629...
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as x→∞, for any ε> 0, and that [27, 28]

liminf
x→∞

x−23/4
∑
m≤x

τ(m)=−∞, limsup
x→∞

x−23/4
∑
m≤x

τ(m)=∞,

but a more precise estimate of the mean apparently remains open. Moreover
(§1.15.2), ∑

m≤x

|τ(m)|= o
(
x13/2

)
as x→∞. See also [29–31].

1.15.1 Congruence Subgroups

GivenN to be a positive integer, define the following subgroup of the full modular
group SL2(Z):

Γ0(N)=

{(
a b
c d

)
∈ SL2(Z) : c≡ 0 mod N

}
and define a weight k modular form of level N exactly as before, with SL2(Z)
replaced by Γ0(N). Clearly the preceding discussion applies to the case N= 1
and k free; we focus henceforth on the case k= 2 and N free. The first nonzero
weight 2 cusp form has level 11:

f (z)= q
∞∏
n=1

(1 − qn)2
(
1 − q11n)2

whose Fourier coefficients coincide [32] with those of the L-series for the elliptic
curve isogeny class 11A. The next two cusp forms have level 14 and 15, cor-
responding to 14A and 15A. On the one hand, not all cusp forms are linked
to elliptic curves: the first counterexamples have level 22 and 23. On the other
hand, the Taniyama–Shimura conjecture (proved by Wiles, Taylor, Diamond,
Conrad & Breuil [33]) asserts that every elliptic curve E is linked to a cusp form
with level N equal to the conductor of E.

Let S2(N) denote the vector space of weight 2 cusp forms of level N. The
dimension δ0(N) of S2(N) over C possesses a more complicated formula than
earlier [34–39]:

δ0(N)= 1 +
ψ(N)

12
− ν2(N)

4
− ν3(N)

3
− χ(N)

2

where

ψ(N)=N
∏
p|N

(
1 +

1
p

)
, χ(N)=

∑
d|N

φ

(
gcd

(
d,
N
d

))
,

ν2(N)=


0 if 4|N,∏
p|N

(
1 +

(−4
p

))
otherwise; ν3(N)=


0 if 9|N,∏
p|N

(
1 +

(−3
p

))
otherwise;
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φ(N)=N
∏

p|N (1 − 1/p) is the Euler totient function [40], and (−4/p), (−3/p)
are Kronecker–Jacobi–Legendre symbols [41]. We have asymptotic extreme
results [36, 42]

liminf
N→∞

δ0(N)

N
=

1
12
, limsup

N→∞

δ0(N)

N ln(ln(N))
=

eγ

2π2

and average behavior ∑
N≤y

δ0(N)=
5

8π2 y
2 + o

(
y2)

as y→∞. Similar dimension estimates can be found for the vector spaceM2(N)

of weight 2, level N modular forms [43].
Define also the subgroup

Γ1(N)=

{(
a b
c d

)
∈ SL2(Z) : a≡ d≡ 1 mod N and c≡ 0 mod N

}
and the corresponding weight 2 cuspidal vector space dimension δ1(N). An
analogous formula for δ1(N) is known [36, 37, 43], with extreme results

liminf
N→∞

δ1(N)

N2 =
1

4π2 <
1
24

= limsup
N→∞

δ1(N)

N2

and average behavior ∑
N≤y

δ1(N)=
1

72ζ(3)
y3 + o

(
y3)

as y→∞. Generalization to arbitrary integer weight k is also possible.
LetD= 1 orD be a fundamental discriminant [44]. A levelN, weight kmodular

form f :H→C with Nebentypus character (D/·) transforms according to

f
(
az+ b
cz+ d

)
=

(
D
d

)
(cz+ d)kf (z) for all

(
a b
c d

)
∈Γ0(N).

The trivial case D= 1 reduces to the earlier definition. For example, we have

(−15/d)|d=1,2,...,15 = {1, 1, 0, 1, 0, 0,−1, 1, 0, 0,−1, 0,−1,−1, 0}.

It turns out that the vector space of cusp forms corresponding to (N, k,D)=
(15, 3,−15) is two-dimensional, and that a certain basis element is given by [38,
45–47]

f (z)= q
∞∏
n=1

(
1 − q3n)3 (1 − q5n)3 + q2

∞∏
n=1

(1 − qn)3
(
1 − q15n)3 .
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This will be useful later (§1.15.3). Also, the vector space of cusp forms corre-
sponding to (N, k,D)= (6, 4, 1) is one-dimensional with basis element

g(z)= q
∞∏
n=1

(1 − qn)2
(
1 − q2n)2 (1 − q3n)2 (1 − q6n)2 ,

which we likewise will see again.

1.15.2 Ramanujan Tau Function

Let us continue where we stopped earlier. It is conjectured that [48–52]∑
m≤x

|τ(m)| ∼Ax13/2 (ln(x))−1+8/(3π)

as x→∞, for some constant 0<A<∞, whereas it is known that [50, 53]∑
m≤x

τ(m)4 ∼Bx23 ln(x)

for some constant 0<B<∞. Improved numerical estimates of A≈ 0.0996 and
B≈ 0.0026 [54] would be good to see someday. We cannot hope for similar
accuracy in estimating

∑
m≤x τ(m) until the correct order of magnitude – conjec-

tured to be O
(
x23/4+ε

)
– is established. Evidence that 23/4 is the best exponent

includes the formula [55–62]

1
x

x∫
1

∑
m≤y

τ(m)

2

dy∼Cτ x23/2

as x→∞, where [63, 64]

Cτ =
1

50π2

∞∑
k=1

τ(k)2

k25/2
=

1.5882400955...
50π2 .

There are analogous formulas [56, 65–70] for the error terms in the divisor and
circle problems [71]:

1
x

x∫
1

∑
m≤y

d(m)− y ln(y)− (2γ − 1)y

2

dy∼Cd x1/2,

1
x

x∫
1

∑
m≤y

r(m)− πy

2

dy∼Cr x1/2

where

Cd=
1

6π2

∞∑
k=1

d(k)2

k3/2
=
ζ(3/2)4

6π2ζ(3)
= 0.6542839775...,
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Cr=
1

3π2

∞∑
k=1

r(k)2

k3/2
=

16ζ(3/2)2β(3/2)2

3
(
1 + 2−3/2

)
π2ζ(3)

= 1.6939569917...

and ζ(z)=L1(z), β(z)=L−4(z) denote the Riemann zeta and Dirichlet beta
functions, respectively [72, 73].

Returning finally to the problem of estimating τ(m) itself, we ask about the
values of constants c+, c− for which [17]

0< limsup
m→∞

m−11/2 exp
(
−c+ ln(m)
ln(ln(m))

)
τ(m)<∞,

−∞< liminf
m→∞

m−11/2 exp
(
−c− ln(m)
ln(ln(m))

)
τ(m)< 0.

Is there a reason to doubt that c+ = c−?

1.15.3 Mahler’s Measure

Before beginning, we observe that the Laurent polynomial equation

1 + x+
1
x
+ y+

1
y
= 0

is isomorphic to the elliptic curve 15A8 via the change of coordinates [74, 75]

(x, y) 7→
(
y
x
,
x3 − y2 − xy

xy

)
.

Similarly, the equation

1 + x+
1
x
+ y+

1
y
+ xy+

1
xy

= 0

is isomorphic to the curve 14A4, and the equation

−1 + x+
1
x
+ y+

1
y
+ xy+

1
xy

= 0

is isomorphic to the curve 30A1. Such representations of elliptic curves (as poly-
nomials in x, x−1, y, y−1) are especially attractive when symmetric in x, y as
shown.

The (logarithmic)Mahler measure of a Laurent polynomial P(x1, x2, . . . , xn)∈
Z[x±1

1 , x±1
2 , . . . , x±1

n ] is defined to be

m(P)=

1∫
0

1∫
0

· · ·
1∫
0

ln
∣∣P(e2πiθ1 , e2πiθ2 , ..., e2πiθn)

∣∣ dθ1dθ2 · · · dθn.
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We studied exp(m(P)) for univariate P in [76]; our focus here will be on the case
n≥ 2. Smyth [77, 78] proved that

m(1 + x1 + x2) = L′
−3(−1)=

3
√

3
4π

L−3(2)= 0.3230659472...

= ln(1.3813564445...),

m(1 + x1 + x2 + x3) = 14ζ ′(−2)=
7

2π2 ζ(3)= 0.4262783988...

= ln(1.5315470966...)

and Rodriguez-Villegas [79–81] conjectured that

m(1 + x1 + x2 + x3 + x4)=−L′
f(−1)=

675
√

15
16π5 Lf (4)= 0.5444125617...,

m(1 + x1 + x2 + x3 + x4 + x5)=−8L′
g(−1)=

648
π6 Lg(5)= 0.6273170748...

where f, g are the cusp forms defined at the end of §1.15.1. Deninger [82]
conjectured that

m
(
1 + x+

1
x
+ y+

1
y

)
= L′

15A(0)=
15
4π2L15A(2)= 0.2513304337...

= ln(1.2857348642...)

and Boyd [75] conjectured that

m
(
1 + x+

1
x
+ y+

1
y
+ xy+

1
xy

)
= L′

14A(0)=
7

2π2L14A(2)= 0.2274812230...

= ln(1.2554338662...).

The latter is the smallest known measure of bivariate polynomials; the former
is the second-smallest known. Both conjectures can be rephrased in completely
explicit terms [75]: If

∞∑
n=1

anqn= q
∞∏
k=1

(
1 − qk

) (
1 − q3k) (1 − q5k) (1 − q15k) ,

∞∑
n=1

bnqn= q
∞∏
k=1

(
1 − qk

) (
1 − q2k) (1 − q7k) (1 − q14k)

then
2π∫
0

2π∫
0

ln |1 + 2 cos(s) + 2 cos(t)| ds dt= 15
∞∑
j=1

aj
j 2
,

2π∫
0

2π∫
0

ln |1 + 2 cos(s) + 2 cos(t) + 2 cos(s+ t)| ds dt= 14
∞∑
j=1

bj
j 2
.
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These integrals bear some resemblance to certain constants in [83]. Rogers &
Zudilin [84, 85] succeeded in proving Deninger’s conjecture; Brunault [86] &
Mellit [87] likewise proved Boyd’s conjecture. Trivariate analogs of these two
examples are [88–90]

m
(
1 + x+

1
x
+ y+

1
y
+ z+

1
z

)
= 0.3703929298...= ln(1.4483035845...),

m
(
1 + x+

1
x
+ y+

1
y
+ z+

1
z
+ xy+

1
xy

+ yz+
1
yz

+ xyz+
1
xyz

)
= 0.4798982839...

but no relation to special L-series values has yet been proposed. Other variations
include [75, 90]

m
(
−1+ x+

1
x
+ y+

1
y
+ xy+

1
xy

)
=L′

30A(0)=
15
2π2L30A(2)= 0.6168709387...,

m
(
−1 + x+

1
x
+ y+

1
y
+ z+

1
z
+ xy+

1
xy

+ yz+
1
yz

+ xyz+
1
xyz

)
= 0.8157244463....

The third-smallest known measure of bivariate polynomials is [75, 89, 91]

m
(
−1+ x+

1
x
− y− 1

y
+ x2y2 +

1
x2y2

)
= 0.2693386412...= ln(1.3090983806...)

and the fourth-smallest known is [75, 89, 92]

m
(
1 + x2 +

1
x2 + y2 +

1
y2 + xy+

1
xy

+ x2y2 +
1

x2y2 +
y
x
+
x
y

)
= 0.2743632972...

= ln(1.3156927029...).

We emphasize that Rodriguez-Villegas’ conjectures and several other m(P)
formulas exhibited here still await rigorous proof.

1.15.4 Klein’s Modular Invariant

The only modular form f :H→C of weight 0 is a constant. (Assume, as at the
beginning, that f is of level 1 and has trivial character.) What happens if we
weaken our hypotheses on f? A modular function f is an SL2(Z)-invariant mero-
morphic function on H whose Fourier series f (z)=

∑∞
n=−∞ γnqn has at most
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finitely many γn ̸= 0 for n< 0. The set of modular functions can be proved to
be a field, C( j), generated by Klein’s j-invariant or Hauptmodul [1, 93–97]

j(z)=
1
Q
(1 + 256Q)3 =

1
R

(
1 + 250R+ 3125R2)3 = ∞∑

m=−1

c(m)qm

where

Q= q
∞∏
n=1

(
1 − q2n

1 − qn

)24

=
∆(2z)
∆(z)

,

R= q
∞∏
n=1

(
1 − q5n

1 − qn

)6

=

(
∆(5z)
∆(z)

)1/4

and c(−1)= 1, c(0)= 744, c(1)= 196884, c(2)= 21493760, .... Moreover, j is the
unique modular function having a simple pole with residue 1 at q= 0. Closed-
form expressions and asymptotics for c(m) are known [98–100], akin to those for
the number p(m) of partitions of m [101]. Special values include

j(i)= 123, j
(
(1 + i

√
3)/2

)
= 0, j

(
(1 + i

√
163)/2

)
=(−640320)3;

the latter, plus the fact that j(z)≈ q−1 + 744, is responsible for the surprising
consequence that eπ

√
163 misses being an integer by less than 10−12. More special

values include

j
(
(1 + i

√
15)/2

)
= x, j

(
(1 + i

√
23)/2

)
= y

where x, y have minimal polynomials x2 + 191025x− 121287375 and y3 +

3491750y2 − 5151296875y+ 12771880859375, respectively. (The class numbers
h−1 = h−3 = h−163 = 1, h−15 = 2 and h−23 = 3 play a role here [44].) Schneider
[102] proved that, if j(z) is algebraic, then z is algebraic if and only if z is imag-
inary quadratic. It is also known that, if q∈Q is algebraic and 0< |q|< 1, then
j(z) is transcendental [103–105]. A connection between sporadic simple group
theory and modular functions (on Γ0(N) and extensions) is beyond the scope of
our study [106–108].

1.15.5 Limits

Here is a seemingly unrelated calculus problem. Let f (x)= (π/4 − x) ln(g(x)) be
integrable on [0, π/4], then

lim
n→∞

1
n

⌊n/2⌋∑
k=1

(
1 − 2k

n

)
ln
[
g
(
πk
2n

)]
=

8
π2 lim

n→∞

⌊n/2⌋∑
k=1

f
(
πk
2n

)(
π(k+ 1)

2n
− πk

2n

)

=
8
π2

π/4∫
0

f (x)dx
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(a limit of Riemann sums). As a simple example,

lim
n→∞

⌊n/2⌋∏
k=1

( n
2k

) 1
n (1−

2k
n )

= e
3
8

after setting g(x)=π/(4x) and exponentiating. As a more complicated example,

lim
n→∞

⌊n/2⌋∏
k=1

cot
(
πk
2n

) 1
n (1−

2k
n )

= e
7ζ(3)

2π2 = exp(0.4262783988...)

=
√

2 exp(0.0797048085...)

after setting g(x)= cot(x). The latter appears in the asymptotics of what is called
the Atiyah determinant from quantum physics [109].
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1.16 Chebyshev’s Bias

How do we quantify irregularities in the distribution of prime numbers? Define

πq,a(n)=# {p≤ n : p≡ amod q}

where gcd(a, q)= 1. A well-known result:

lim
n→∞

ln(n)
n

πq,a(n)=
1

φ(q)

informs us that primes are asymptotically equidistributed modulo q, where
φ(q) is the Euler totient. There is, however, unrest beneath the surface of such
symmetry. For fixed a1, a1, . . ., ar and q, define

SN=# {n≤N :πq,a1(n)>πq,a2(n)> . . .>πq,ar(n)}

and

P(a1> a2> . . .> ar mod q)= lim
N→∞

1
ln(N)

∑
n∈SN

1
n
.

As the notation suggests, P is to be interpreted as a probability (via logarith-
mic measure). Rubinstein & Sarnak [1], assuming both theGeneralized Riemann
Hypothesis and the Grand Simplicity Hypothesis [2], succeeded in proving that

P(3> 1mod 4)= 0.9959280...,

P(2> 1mod 3)= 0.9990633....

Feuerverger & Martin [3] further proved that

P(3> 5> 7mod 8)=P(7> 5> 3mod 8)= 0.1928013...,

P(3> 7> 5mod 8)=P(5> 7> 3mod 8)= 0.1664263...,

P(5> 3> 7mod 8)=P(7> 3> 5mod 8)= 0.1407724...

and
P(5> 7> 11mod 12)=P(11> 7> 5mod 12)= 0.1984521...,

P(7> 5> 11mod 12)=P(11> 5> 7mod 12)= 0.1799849...,

P(5> 11> 7mod 12)=P(7> 11> 5mod 12)= 0.1215630...;

thus it is more probable that 5 will occupy the middle position for mod 8, and 7
will occupy the middle position for mod 12!

New constants do not always emerge: we have, for example,

P(1> 4mod 5)=P(2> 3mod 5)=
1
2
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which is due to 1, 4 being squares mod 5 and 2, 3 being nonsquares mod 5. Also

P(1> 2> 4mod 7)=P(3> 5> 6mod 7)=
1
6

which is due to 1, 2, 4 being squares mod 7 and 3, 5, 6 being nonsquares mod 7.
Examples with exact probabilities 1/r!, where r> 3, have not been found.

Define the logarithmic integral

li(x)=

x∫
2

1
ln(t)

dt

for x≥ 2 and

TN=# {n≤N :π1,0(n)> li(n)} .

In another demonstration of their methods, Rubinstein & Sarnak [1] showed that

lim
N→∞

1
ln(N)

∑
n∈TN

1
n
= 0.00000026...= 1 − 0.99999973....

Further results have been obtained by Ng [4], as reported in [5]. Consider,
for instance, the q-series coefficients {an}∞n=1 of the modular form η(z)η(23z)
[6]. Letting

χb(n)=# {p≤ n : ap= b}

for b= 2, 0,−1, we have

lim
n→∞

ln(n)
n

χb(n)=


1/6 if b= 2,
1/2 if b= 0,
1/3 if b=−1

and

lim
N→∞

1
ln(N)

∑
n∈UN

1
n
= 0.98309... where UN=# {n≤N : 2χ0(n)> 6χ2(n)} ,

lim
N→∞

1
ln(N)

∑
n∈VN

1
n
= 0.72469... where VN=# {n≤N : 2χ0(n)> 3χ−1(n)} ,

lim
N→∞

1
ln(N)

∑
n∈WN

1
n
= 0.97504... where WN=# {n≤N : 3χ−1(n)> 6χ2(n)} .

Let us return to the usual sense of probability (via uniform measure). Brent [7]
conjectured that, for random 0<N< n, we have

lim
n→∞

P
(

li(N)− π1,0(N)√
N/ ln(N)

< x
)
=F(x)
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where the probability distribution F has mean µ= 1 and variance σ2 ≈ (0.21)2.
If the Riemann Hypothesis is true, then it can be shown that [8]

σ2 = 2 − ln(4π) + γ=(0.2149218879...)2

= 0.0461914179...= 2(0.0230957089...)

which we have seen elsewhere [9, 10]. An open question is whether F is the nor-
mal distribution; a density plot [1] and a time series graph [5] suggest that the
answer might be yes. We also wonder about extensions of this probabilistic result
to πq,a(n) for arbitrary a and q.

If, in the definition of πq,a(n), the symbol p is understood to encompass
semiprimes (products of two primes) rather than primes, then with formulas for
SN and P exactly as before [11, 12],

P(3> 1mod 4)= 0.10572....

Hence the bias for semiprimes is reversed from that of primes, although it is less
pronounced. The terms 2-almost prime or biprime are often encountered; a less
common term quasi-prime appears in [11].
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1.17 Pattern-Avoiding Permutations

Let σ=σ1σ2 · · ·σm be a permutation on {1, 2, . . . ,m}. Define a pattern σ̃ to be
the string σ1ε1σ2ε2 · · · εm−1σm, where each εj is either the dash symbol - or the
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empty string. For example,

1-3-2, 1-32, 132

are three distinct patterns. The first is known as a classical pattern (dashes in all
m− 1 slots); the third is also known as a consecutive pattern (no dashes in any
slots). Some authors call σ̃ a “generalized pattern” and use the word “pattern”
exclusively for what we call “classical patterns”.

Let τ = τ1τ2 · · · τn be a permutation on {1, 2, . . . , n}, where n≥m. We say that
τ contains σ̃ if there exist 1≤ i1< i2< . . .< im≤ n such that

• for each 1≤ j≤m− 1, if εj is empty, then ij+1 = ij + 1;
• for all 1≤ k≤m, 1≤ l≤m, we have τik <τil if and only if σk<σl.

The string τi1τi2 · · · τim is called an occurrence of σ̃ in τ . If τ does not contain σ̃,
then we say τ avoids σ̃ or that τ is σ̃-avoiding. For example,

24531 contains 1-3-2

because 253 has the same relative order as 132, but

42351 avoids 1-3-2.

As another example,
6725341 contains 4132

because 7253 has the same relative order as 4132 and consists of four consectutive
elements, but

41352 avoids 4132.

As a final example,
3542716 contains 12-4-3

because 3576 has the same relative order as 1243 and its first two elements are
consecutive, but

3542716 avoids 12-43.

Define αn(σ̃) to be the number of n-symbol, σ̃-avoiding permutations. We natu-
rally wish to understand the rate of growth of αn(σ̃) with increasing n.

1.17.1 Classical Patterns

The Stanley–Wilf conjecture, proved by Marcus & Tardos [1], was rephrased by
Arratia [2] as follows:

L(σ̃)= lim
n→∞

(αn(σ1-σ2- · · · -σm))1/n

exists and is finite. We have [3–7]

L(σ̃)= 4 when m= 3,
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L(1-2- · · · -m)= (m− 1)2 for all m≥ 2,

L(1-3-4-2)= 8,

L(1-2-4-5-3)=
(
1 +

√
8
)2

= 9 + 4
√

2.

A conjecture that L(σ̃)≤ (m− 1)2 was disproved [8]:

9.47≤L(1-3-2-4)≤ 288

and hence the maximum limiting value (as a function of m) remains open. We
wonder if L(σ̃) is always necessarily an algebraic number. Also, the preceding
bounds were improved [9–13]:

10.24≤L(1-3-2-4)≤ 13.5

and a nonrigorous estimate L(1-3-2-4)≈ 11.6 now exists [14, 15].

1.17.2 Consecutive Patterns

Elizalde & Noy [16, 17] examined the cases m= 3 and m= 4. The quantities
αn(123) and αn(132) satisfy

αn(123)∼ γ1 · ρn1 · n!, αn(132)∼ γ2 · ρn2 · n!

where

ρ1 = 3
√

3/(2π)= 0.8269933431..., γ1 = exp
(
π/(3

√
3)
)
= 1.8305194665...,

ρ2 = 1/ξ= 0.7839769312..., γ2 = exp(ξ2/2)= 2.2558142944...

and ξ= 1.2755477364... is the unique positive solution of [18]

x∫
0

exp(−t2/2) dt= 1, that is,
√
π

2
erf
(

x√
2

)
= 1.

The quantities αn(1342), αn(1234) and αn(1243) satisfy

αn(1342)∼ γ1 · ρn1 · n!, αn(1234)∼ γ2 · ρn2 · n!, αn(1243)∼ γ3 · ρn3 · n!

where
ρ1 = 1/ξ= 0.9546118344..., γ1 = 1.8305194...,

ρ2 = 1/η= 0.9630055289..., γ2 = 2.2558142...,

ρ3 = 1/ζ = 0.9528914198..., γ3 = 1.6043282...;

ξ, η and ζ are the smallest positive solutions of

x∫
0

exp(−t3/6) dt= 1, cos(y)− sin(y) + exp(−y)= 0,
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31/2

z∫
0

Ai(−s) ds+
z∫
0

Bi(−s) ds= 31/3Γ(1/3)
π

,

respectively, where Ai(t) and Bi(t) are the Airy functions [19].
A permutation τ is nonoverlapping if it contains no permutation σ such that

two copies of σ overlap in more than one entry [20]. For example, τ = 214365
contains both 2143 and 4365, both which follow the same pattern and overlap in
two entries, hence τ is overlapping. Bóna [21] examined the probability pn that
a randomly selected n-permutation is nonoverlapping, showed that {pn}∞n=2 is
strictly decreasing, and computed limn→∞ pn= 0.36409....

From the fact thatαn(123)>αn(132) and αn(1234)>αn(1342)>αn(1243) for
suitably large n, it is natural to speculate that αn(123 . . .m) is asymptotically
larger than αn(σ) for any other m-permutation σ (except m(m− 1) . . . 21, which
is equivalent by symmetry). This conjecture is now a theorem [22].

1.17.3 Other Results

Elizalde [23, 24] proved that

lim
n→∞

(
αn(1-23-4)

n!

)1/n

= 0

and believed that the same applies to αn(12-34), although a proof is not yet
known. Ehrenborg, Kitaev & Perry [25] gave more detailed asymptotic expan-
sions for αn(123) and αn(132); a similar “translation” of combinatorics into
operator eigenvalue analysis was explored in [26]. The field is wide open for
research.

Define σ≤ τ if τ contains the classical pattern σ̃. A permutation class C is a
set of permutations such that, if τ ∈C and σ≤ τ , then σ ∈C. Let Cn denote the
permutations in C of length n. If C= {all permutations}, then |Cn|= n!; such
behavior is regarded as degenerate and this case is excluded from now on. The
Marcus–Tardos theorem implies that, for nondegenerate C,

L(C)= limsup
n→∞

|Cn|1/n<∞.

Consider the set R of all growth rates L(C) and the derived set R′ of all
accumulation points of R. Vatter [27] proved that

inf {r∈R : r> 2}= 2.0659948920...

which is the unique positive zero of 1 + 2x+ x2 + x3 − x4, and

inf {s : s is an accumulation point of R′}= 2.2055694304...

which is the unique positive zero of 1 + 2x2 − x3. Albert & Linton [28] proved
that R is uncountable and thus contains transcendental numbers. Vatter [29]
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subsequently proved that

inf {t :R contains the interval (t,∞)}≤ 2.4818728574...

which is the unique positive zero of −1 − 2x− 2x2 − 2x4 + x5 and conjectured
that ≤ can be replaced by =. The question of whether limsup in the definition of
L(C) can be replaced by lim is also unanswered.
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1.18 Cyclic Group Orders

Let Zn denote the cyclic group (under addition) of integers modulo n. Given
m∈Z+ and x∈Zn, definemx to be

∑m
k=1 x. The order of x∈Zn is the leastm> 0

such that mx= 0. Clearly ord(x) divides n and, for each divisor d of n, there are
precisely φ(d) elements in Zn of order d. Define the average order in Zn to be [1]

α(n)=
1
n

∑
x∈Zn

ord(x)=
1
n

∑
d|n

dφ(d).

Asymptotically, we have

∑
n≤N

α(n)∼ ζ(3)
2ζ(2)

N2 =
3ζ(3)
π2 N2 =(0.3653814847...)N2

as N→∞. Variations of this result include [1, 2]

∑
n≤N

α(n)
n

∼ ζ(3)
ζ(2)

N=
6ζ(3)
π2 N=(0.7307629694...)N,

∑
n≤N

α(n)
φ(n)

∼ ζ(3)ζ(4)
ζ(8)

N=
105ζ(3)
π4 N=(1.2957309578...)N,

∑
n≤N

n
α(n)

∼C1N,
∑
n≤N

φ(n)
α(n)

∼C2N
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where

C1 =
∏
p

(
1 − 1

p

)(
1 +

(
1 +

1
p

) ∞∑
k=1

1
pk + p−k−1

)
= 1.4438675...,

C2 =
∏
p

(
1 − 1

p

)(
1 +

(
1 − 1

p2

) ∞∑
k=1

1
pk + p−k−1

)
= 0.8014696934....

Let F∗
q denote the cyclic group (under multiplication) of nonzero elements of

Fq, the field of size q. It is well-known that q must be a prime power. The order
of x∈F∗

q is the least m> 0 such that xm= 1 and the average order in F∗
q is

α(q− 1)=
1

q− 1

∑
x∈F∗

q

ord(x)=
1

q− 1

∑
d|q−1

dφ(d).

We examine two cases: the first when q is actually a prime [2, 3]:∑
q≤Q

α(q− 1)
q− 1

∼C3
Q

ln(Q)
,
∑
q≤Q

α(q− 1)
φ(q− 1)

∼C4
Q

ln(Q)

where

C3 =
∏
p

(
1 − p

p3 − 1

)
= 0.5759599688...

is Stephens’ constant [4, 5],

C4 =
∏
p

(
1 +

p+ 1
( p− 1)2( p2 + p+ 1)

)
= 1.5664205124...;

and the second when q= 2k for some k≥ 1 [2, 3]:

∑
k≤K

α(2k − 1)
2k − 1

∼C5K,
∑
k≤K

α(2k − 1)
φ(2k − 1)

∼C6K

where

C5 =
∑
n≥1,
n odd

f(n)
t(n)

= 0.786125..., C6 =
∑
n≥1,
n odd

g(n)
t(n)

= 1.102488....

In the preceding formulas, f and g are multiplicative functions with

f( pr)=−p− 1
p2r , g( pr)=


1

p( p− 1)
if r= 1,

− 1
p2r−1 if r≥ 2



“C01” — 2018/10/27 — 11:56 — page 156 — #156

156 Number Theory and Combinatorics

and t(n) is the order of the element 2 in Z∗
n , the group (under multiplication) of

integers relatively prime to n [6]. If we replace α by φ, the following emerge [1, 4]:∑
q≤Q

φ(q− 1)
q− 1

∼C7
Q

ln(Q)
,
∑
k≤K

φ(2k − 1)
2k − 1

∼C8K

where

C7 =
∏
p

(
1 − 1

p( p− 1)

)
= 0.3739558136...

is Artin’s constant [5],

C8 =
∑
n≥1,
n odd

µ(n)
n t(n)

= 0.73192...,

and µ is the Möbius mu function. Also, we have extreme results [1, 7]:

1= liminf
n→∞

α(n)
φ(n)

< limsup
n→∞

α(n)
φ(n)

=
ζ(2)ζ(3)
ζ(6)

=
315
2π4 ζ(3)= 1.9435964368....

The study of the average order ξ(n) in Z∗
n was initiated in [8]. We have extreme

results

liminf
n→∞

ξ(n) ln(ln(n))
λ(n)

=
e−γπ2

6
, limsup

n→∞

ξ(n)
λ(n)

= 1

where λ(n) is the reduced totient or Carmichael function [9]:

λ(n)=


φ(n) if n= 1, 2, 4 or q j, where q is an odd prime and j≥ 1,

φ(n)/2 if n= 2k, where k≥ 3,
lcm

{
λ( p

ej
j ) : 1≤ j≤ l

}
if n= pe11 p

e2
2 · · · pell , where 2≤ p1< p2< . . . and l≥ 2.

Observe that λ(n) is the size of the largest cyclic subgroup of Z∗
n . A mean result

[8, 9]:
1
N

∑
n≤N

ξ(n)=
N

ln(N)
exp

[
C9 ln(ln(N))

ln(ln(ln(N)))
(1 + o(1))

]
holds as N→∞, where

C9 = e−γ
∏
p

(
1 − 1

( p− 1)2( p+ 1)

)
= 0.3453720641....

There is a set S of positive integers of asymptotic density 1 such that, for n∈S,

ξ(n)=
n

(ln(n))ln(ln(ln(n)))+C10+o(1)

and

C10 =−1 +
∑
p

ln( p)
( p− 1)2

= 0.2269688056...;

it is not known whether S=Z+ is possible.
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A different study of periodicity properties of {xk}∞k=0 for each x∈Zn (includ-
ing Z∗

n and more) has also been undertaken [10, 11]. The constants C3 and C9

moreover appear in theorems proved [12–14] assuming theGeneralizedRiemann
Hypothesis.
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1.19 Dedekind Eta Products

For Im(z)> 0, define the Dedekind eta function

η(z)= q1/24
∞∏
n=1

(1 − qn)=∆(z)1/24

where q= e2πiz and ∆(z) is the discriminant function studied earlier [1]. Euler’s
pentagonal-number theorem states that

η(24z)= q
∞∏
n=1

(
1 − q24n)= ∞∑

k=−∞

(−1)kq(6k+1)2 ;
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we also have

η(8z)3 = q
∞∏
n=1

(
1 − q8n)3 = ∞∑

k=0

(−1)k(2k+ 1)q(2k+1)2

via Jacobi’s triple-product identity. The absence of a corresponding formula for

η(12z)2 = q
∞∏
n=1

(
1 − q12n)2

or for η(8z)η(16z), η(6z)η(18z), η(4z)η(20z), η(3z)η(21z), η(2z)η(22z),
η(z)η(23z) is remarkable! At a minimum, we should be able to say something
about the density of nonzero coefficients in the q-series expansion (on the
right-hand side).

Given any eta product

η(b1z)η(b2z) · · · η(bmz)=
∞∑
k=0

akqk, 1≤ b1 ≤ b2 ≤ . . .≤ bm,

define the counting function

Mb1,b2,...,bm(x)=# {k≤ x : ak ̸= 0} .

The eta product is said to be lacunary if

lim
x→∞

Mb1,b2,...,bm(x)
x

= 0.

For example, it is clear that

M24(x)∼
1
3
√
x, M8,8,8(x)∼

1
2
√
x

as x→∞. Serre [2–4] proved that

M12,12(x)∼
c x

(ln x)3/4

where

c =

(
π6 ln(2 +

√
3)

2 · 37

)1/4
1

Γ(1/4)

∏
p≡1 mod 12

(
1 − 1

p2

)1/2

= 0.2015440949...

= (2.4185291388...)/12

and Ng [5] proved that

M1,23(x)∼
d x

(ln x)1/2
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where

d=

3
√

23
22

∏
p∈S

(
1 − 1

p2

)−1

·
∏
p∈T

(
1 − 1/p2

1 − 1/p3

)2


1/2

.

The set S is defined as the set of all primes p with the property that the cubic
polynomial y3 − y− 1 has a single zero modulo p. This turns out to be the same
as requiring that the Legendre symbol (−23/p) be equal to−1. The setT is the set
of all primes p with the property that y3 − y− 1 has no zeroes modulo p (that is,
it is irreducible over Zp). No equivalent condition involving the Legendre symbol
is known [6].

It is also proved that M6,6,6,6(x), M4,4,4,4,4,4(x) and M3,3,3,3,3,3,3,3(x) corre-
spond to lacunary eta products; further, each is asymptotically Cx/ ln(x)1/2 for
some constant C. In particular, η(6z)4 is related to the L-series for the elliptic
curve 36A1:

v2 = u3 + 1

and thus it would be good to better understand the corresponding C.
By contrast, η(2z)12, η(z)24 and η(z)2η(11z)2 are not lacunary. It is conjectured

that
M2, 2, . . . , 2︸ ︷︷ ︸

12 times

(x)∼ x, M1, 1, . . . , 1︸ ︷︷ ︸
24 times

(x)∼ x,

and that

M1,1,11,11(x)∼

14
15

∏
ap=0

(
1 − 1

p+ 1

) x=(0.84652...)x.

In particular, η(z)2η(11z)2 is related to the L-series for the elliptic curve 11A3:

v2 + v= u3 − u2

and thus it would be good to compute the associated constant to higher precision.
We mention that the primes p satisfying ap= 0 (as above) are called supersin-

gular primes. This sequence of primes begins as 19, 29, 199, 569, 809, . . .. No
explicit formula for ap as a function of p, or for the nth supersingular prime, is
known [7–11].

Another related constant for 11A3 is

γj= lim
x→∞

# {p≤ x : ap= j}√
x/ ln(x)

for any integer j. If the Lang–Trotter conjecture were proved [7], then it would
follow that γ0 = 23π/55≈ 1.31375,

γ−1 =
1
π

112

23 · 32A≈ 0.49919, γ−2 =
1
π

7 · 11 · 31
24 · 32 · 5

A≈ 0.98478



“C01” — 2018/10/27 — 11:56 — page 160 — #160

160 Number Theory and Combinatorics

where

A =
∏

p ̸=2,5,11

p( p2 − p− 1)
( p− 1)( p2 − 1)

=
∏

p̸=2,5,11

(
1 − 1

( p− 1)( p2 − 1)

)
= 0.9331892646...

Some doubt exists, however, whether assumptions underlying Lang–Trotter are
justified. We refer the interested reader to [12], which is a work-in-progress
addressed to both mathematicians and statisticians. See also [13] for a constant,
similar to A, which arises in the study of the reduced totient or Carmichael
function.

A recent preprint [14] is concerned not with the density of nonzero coefficients
ak, but instead with the asymptotic mean square of ak (which perhaps is less
difficult).
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1.20 Series involving Arithmetric Functions

We intend here to collect infinite series, each involving unusual combinations or
variations of well-known arithmetic functions. For simplicity’s sake, results are
often quoted not with full generality but only to illustrate a special case.
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Let σ(n) denote the sum of all distinct divisors of n, κ(n) denote the quotient of
nwith its greatest square divisor, and φ(n) denote the number of positive integers
k≤ n satisfying gcd(k, n)= 1. These multiplicative functions are called sum-of-
divisors, square-free part, and Euler totient, respectively. It can be shown that
the following series are convergent:

∞∑
n=1

1
σ(n)φ(n)

=
∏
p

(
1 +

∞∑
r=1

1
pr−1( pr+1 − 1)

)
= 1.7865764593...,

∞∑
n=1

1
κ(n)φ(n)

=
∏
p

(
1 +

2p
( p− 1)( p2 − 1)

)

=
π2

6

∏
p

(
1 +

p+ 1
p2( p− 1)

)
= 3.9655568689...=A

where the product is over all primes p. The former was considered by Silverman
[1] while studying the number of generators possessing large order in the group
Z∗
j . With regard to the latter, more precise asymptotics can be given [2]:

∑
n≤N

1
κ(n)φ(n)

∼ A−
∏
p

(
1 +

√
p+ 1

p( p− 1)

)
· 1√

N

∼ A−
∏
p

(
1 +

1
p(
√
p− 1)

)
· 1√

N

∼ A− 4.9478356259...√
N

.

Let d(n) denote the number of distinct divisors of n, and ω(n) denote the num-
ber of distinct prime factors of n. The divisor function d(n) is multiplicative; by
contrast, ω(n) is additive. It can be shown that [3, 4]∑

n≤N

d(n)ω(n)∼ 2N ln(N) ln(ln(N)) + 2BN ln(N)

where

B = −Γ′(2) +
∑
p

(
ln
(
1 − 1

p

)
+

1
2

(
1 − 1

p

)2 ∞∑
k=1

k+ 1
pk

)

= −(1 − γ) +
∑
p

(
ln
(
1 − 1

p

)
+

1
p
− 1

2p2

)
= M− 1 − 1

2

∑
p

1
p2 =−0.9646264971...
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where M is the Meissel–Mertens constant [5] and γ is the Euler–Mascheroni
constant [6].

The mean of distinct divisors of n is clearly σ(n)/d(n). It can be shown that
[7, 8] ∑

n≤N

σ(n)
d(n)

∼ C
2
√
π

N2√
ln(N)

, #

{
n :
σ(n)
d(n)

≤ x
}
∼Dx ln(x)

where

C =
∏
p

1 +
∞∑
k=1

1
k+ 1

 k∑
j=0

1
p j

 1
pk

(1 − 1
p

)1/2

=
∏
p

(
1 +

1
p− 1

∞∑
k=1

1
k+ 1

pk+1 − 1
p2k

)(
1 − 1

p

)1/2

=
∏
p

(
1 − 1

p

)−1/2

p ln
(
1 +

1
p

)
= 1.2651951601...

= (0.7138099304...)
√
π= 2(0.3569049652...)

√
π,

D =
∏
p

1 +
∞∑
k=1

(k+ 1)

 k∑
j=0

p j

−1
(1 − 1

p

)2

=
∏
p

(
1 + ( p− 1)

∞∑
k=1

(k+ 1)
1

pk+1 − 1

)(
1 − 1

p

)2

= 0.4950461958....

A related series ∑
n≤N

σ(n)
φ(n)

∼ (3.6174...)N

appears without comment in [9].
The lag-one autocorrelation of d(n) is evident via [10]

∑
n≤N

d(n)d(n+ 1)∼ 6
π2N ln(N)2;

a variation of this includes [11]

∑
n≤N

d(n)2d(n+ 1)∼ 1
π2

∏
p

(
1 − 1

p
+

1
p

(
1 − 1

p

)2(
1 +

1
p

)−1
)
N ln(N)4.
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Let r(n) denote the number of representations of n as a sum of two squares,
counting order and sign (note that r(n)/4 is multiplicative). We have [12]

∑
n≤N

r(n)2d(n+ 1)∼ 6
∏
p

(
1 − 1

p
+

1
p

(
1 − χ( p)

p

)2(
1 +

1
p

)−1
)
N ln(N)2

where χ(k)= (−4/k) is 0 when k is even and (−1)(k−1)/2 when k is odd. Also, if
τ(n) denotes the Ramanujan tau function [13], then [14–16]

∑
n≤N

τ(n)2d(n+ 1)∼
∏
p

(
1 − 1

p
+
p2 − 2p cos(2θp) + 1

p2( p+ 1)

)
N12 ln(N)2

where 2 cos(θp)= τ( p)p−11/2. Other autocorrelation results include [10]∑
n≤N

σ(n)σ(n+ 1)∼ 5
6
N3,

∑
n≤N

φ(n)φ(n+ 1)∼ 1
3

∏
p

(
1 − 2

p2

)
N3 =

0.3226340989...
3

N3

and the latter product is known as the Feller–Tornier constant [17]. The following
series [18]

∑
n≤N

d(n)
d(n+ 1)

∼ 1√
π

∏
p

(
1√

p( p− 1)
+

√
1 − 1

p
( p− 1) ln

(
p

p− 1

))
·N
√

ln(N)

= (0.7578277106...)N
√

ln(N)

has a constant similar to that appearing in [19] for
∑

n≤N 1/d(n).
Logarithms of arithmetic functions provide some interesting constants

[20–24]:
1

ln(2)

∑
n≤N

ln(d(n))∼N ln(ln(N)) + E1N,

∑
n≤N

ln(φ(n))∼N ln(N) + E2N,
∑
n≤N

ln(σ(n))∼N ln(N) + E3N,

′∑
n≤N

ln(φ(n))
ln(σ(n))

∼N+ E4
N

ln(N)
,

ln(2)
′∑

n≤N

1
ln(d(n))

∼ N
ln(ln(N))

+ E5
N

ln(ln(N))2
,

′∑
n≤N

1
ln(φ(n))

∼ N
ln(N)

+ E6
N

ln(N)2
,

′∑
n≤N

1
ln(σ(n))

∼ N
ln(N)

+ E7
N

ln(N)2
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where [25–29]

E1 = γ +
∞∑
k=2

(
1

ln(2)
ln
(
1 +

1
k

)
− 1
k

)∑
p

1
pk

= M+
1

ln(2)

∞∑
k=2

ln
(
1 +

1
k

)∑
p

1
pk

= 0.6394076513...,

E2 = −1 +
∑
p

1
p

ln
(
1 − 1

p

)
=−1 + ln(0.5598656169......)

= −1.5800584938...,

E3 = −1 +
∑
p

(
1 − 1

p

) ∞∑
k=1

1
p k

ln
(
pk+1 − 1
pk( p− 1)

)
= −1 + 0.4457089175...= 0.5542910824...,

E4 =
∑
p

(
1 − 1

p

) ∞∑
k=1

(
2 ln

(
1 − 1

p

)
− ln

(
1 − 1

pk+1

))
1
p k
,

E5 = 1 − E1, E6 =−E2, E7 =−E3 (a sign error in [25] has been corrected to give
E5) and

∑′
is interpreted as summation over all n avoiding division by zero. The

constant exp(1 + E2) appeared in [30] as well.
Let a(n) denote the number of non-isomorphic abelian groups of order n and

P(k) denote the number of unrestricted partitions of k. It can be shown that
[31, 32]

′∑
n≤N

1
ln(a(n))

=N

0∫
−∞

(∏
p

(
1 +

∞∑
k=2

P(k)t − P(k− 1)t

pk

)
− 6
π2

)
dt.

Let s(n) denote the number of non-isomorphic semisimple rings of order n and
Q(k) denote the number of unordered sets of integer pairs (rj,mj) for which k=∑

j rjm
2
j and rjm2

j > 0 for all j. Likewise, we have

′∑
n≤N

1
ln(s(n))

=N

0∫
−∞

(∏
p

(
1 +

∞∑
k=2

Q(k)t −Q(k− 1)t

pk

)
− 6
π2

)
dt.

If n= pα1
1 pα2

2 pα3
3 · · · pαr

r is the prime factorization of n, define three additive
functions

β(n)=
r∑

j=1

pj, B(n)=
r∑

j=1

αjpj, B̂(n)=
r∑

j=1

pαj

j ,
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the first two of which contrast nicely with the better-known functions

ω(n)=
r∑

j=1

1, Ω(n)=
r∑

j=1

αj.

While [5]

1
N

∑
n≤N

ω(n)∼ ln(ln(N)) +M,
1
N

∑
n≤N

Ω(n)∼ ln(ln(N)) +M+
∑
p

1
p( p− 1)

we have [33–35] ∑
n≤N

β(n)∼
∑
n≤N

B(n)∼
∑
n≤N

B̂(n)∼ π2

12
N2

ln(N)
.

While [36, 37]

′∑
n≤N

1
Ω(n)− ω(n)

∼ N

1∫
0

(∏
p

(
1 +

∞∑
k=2

tk−1 − tk−2

pk

)
− 6
π2

)
1
t
dt

∼ N

1∫
0

(∏
p

(
1 − 1

p

)(
1 − 1

t− p

)
− 6
π2

)
1
t
dt,

we have [38, 39]

′∑
n≤N

1
B(n)− β(n)

∼ N

1∫
0

(∏
p

(
1 +

∞∑
k=2

t(k−1)p − t(k−2)p

pk

)
− 6
π2

)
1
t
dt

∼ N

1∫
0

(∏
p

(
1 − 1

p

)(
1 − 1

tp − p

)
− 6
π2

)
1
t
dt.

We also have [38, 40, 41],

′∑
n≤N

Ω(n)
ω(n)

∼
′∑

n≤N

B(n)
β(n)

∼N,

′∑
n≤N

B̂(n)
β(n)

∼ eγN ln(ln(N)),
′∑

n≤N

B̂(n)
B(n)

∼FN

where

F=

∞∫
1

1
x

⌊x⌋−1∑
j=0

ρ(x− ⌊x⌋+ j)
⌊x⌋ − j

dx=
∞∑
k=1

1
k

∞∫
0

ρ(y)
y+ k

dy

and ρ(z) is Dickman’s function [42].
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Other constants emerge when arithmetic functions are evaluated not at n, but
at quadratic functions of n. For example [23, 43–48],∑

n≤N

d(n2 + 1)∼ 3
π
N ln(N),

∑
n≤N

σ(n2 + 1)∼ 5G
π2 N

3,

∑
n≤N

r(n2 + 1)∼ 8
π
N ln(N),

∑
n≤N

φ(n2 + 1)∼ H
4
N3

where G is Catalan’s constant [49] and

H=
∏
p≡1
mod 4

(
1 − 2

p2

)
= 0.8948412245...

is a modified Feller–Tornier constant that appeared in [50]. As another example
[51–54], ∑

m,n≤N

d(m2 + n2)∼ π

2G
N2 ln(N),

∑
m,n≤N

σ(m2 + n2)∼ IN4

where

I =
2
3

∞∑
j=1

ν( j)
j3

=
8
9

∏
p≡1
mod 4

(
1 +

2p+ 1
( p+ 1)( p2 − 1)

) ∏
p≡3
mod 4

(
1 +

1
( p− 1)( p2 + 1)

)

= 1.03666099...

and ν( j) denotes the number of solutions of x2 + y2 = 0 in Zj, counting order
[55, 56].

The average prime factor of n may reasonably be defined in two ways: as
an mean of distinct prime factors β(n)/ω(n) or as a mean of all prime factors
B(n)/Ω(n) (with multiplicity). It can be shown that [57]

∑
n≤N

β(n)
ω(n)

∼ J
N2

ln(N)
,
∑
n≤N

B(n)
Ω(n)

∼K
N2

ln(N)

for constants 0<K< J. Infinite product expressions for J, K are possible but
remain undiscovered (as far as is known).

The distance between consecutive distinct prime factors of n= pα1
1 pα2

2 pα3
3 · · · pαr

r

can be quantified in many ways: for example [58],

1
r− 1

r∑
j=2

( pj − pj−1)=
P+(n)− P−(n)

ω(n)− 1
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(whose sum over n≤N is ∼λN2/ ln(N), where 2λ=
∑∞

k=2 k
−2ω(k)−1 =

0.59737...) and

g(n)=
r∑

j=2

1
pj − pj−1

(which is comparatively artificial). Of course, g(1)= 0= g( p) for any prime p by
the empty sum convention. It can be shown that [59]∑

n≤N

g(n) ∼ N
∑
pL<pR

1
( pR − pL)pLpR

∏
pL<p<pR

(
1 − 1

p

)
∼ (0.299...)N

where the sum is taken over all pairs of primes pL< pR and the product is taken
over all primes p strictly between the left prime pL and the right prime pR. If no
such p exists, then the product is 1 by the empty product convention.

If 1= δ1<δ2< . . .< δs= n are the consecutive distinct divisors of n, we might
examine

1
s− 1

s∑
j=2

(δj − δj−1)=
n− 1

d(n)− 1

(whose sumover n≤N is∼µN2/ ln(N)1/2; the formula for 2µ=(0.96927...)π−1/2

appears in [19, 20]) and

h(n)=
s∑

j=2

1
δj − δj−1

.

If two positive integers a< b are consecutive divisors of ca,b= lcm(a, b), let

∆a,b=

{
d

gcd(d, ca,b)
: a< d< b

}
and letDa,b be the largest subset of∆a,b such that no element ofDa,b is a multiple
of another element in Da,b. (Clearly 1 /∈∆a,b.) Assuming Da,b= {d1, d2, . . . , dt},
we denote by T(a, b) the following expression:

1 −
∑

1≤i≤t

1
di
+

∑
1≤i<j≤t

1
lcm(di,dj)

−
∑

1≤i<j<k≤t

1
lcm(di,dj,dk)

+ · · ·+ (−1)t 1
lcm(d1,d2,...,dt)

.

It can be shown that [59]∑
n≤N

h(n) ∼ N
∑
a<b

1
ca,b(b− a)

T(a, b)

∼ (1.77...)N

where the sum is taken over all pairs of positive integers a< b such that the
consecutive divisor requirement is met by a, b.
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1.20.1 Subgroups of Zm × Zn
Let Zm be the additive group of residue classes modulo m. The number of
subgroups of Zm is d(m) and each subgroup is cyclic. The number s(m, n) of
subgroups of Zm × Zn satisfies [60–63]

s(m, n)=
∑

a|m,b|n

gcd(a, b),

∑
m,n≤x

s(m, n)∼ x2 (A3 ln(x)3 + A2 ln(x)2 + A1 ln(x) + A0
)

where

A3 =
1

3ζ(2)
=

2
π2 , A2 =

1
ζ(2)

(
3γ − 1 − ζ ′(2)

ζ(2)

)
,

A1 =
1
ζ(2)

(
8γ2 − 6γ − 2γ1 + 1 − 2(3γ − 1)

ζ ′(2)
ζ(2)

+ 2
(
ζ ′(2)
ζ(2)

)2

− ζ ′′(2)
ζ(2)

)
and the number c(m, n) of cyclic subgroups of Zm × Zn satisfies

c(m, n)=
∑

a|m,b|n,
gcd( m

a ,
n
b )=1

gcd(a, b),

∑
m,n≤x

c(m, n)∼ x2 (B3 ln(x)3 + B2 ln(x)2 + B1 ln(x) + B0
)

where

B3 =
1

3ζ(2)2
=

12
π4 , B2 =

1
ζ(2)2

(
3γ − 1 − 2

ζ ′(2)
ζ(2)

)
,

B1 =
1

ζ(2)2

(
8γ2 − 6γ − 2γ1 + 1 − 4(3γ − 1)

ζ ′(2)
ζ(2)

+ 6
(
ζ ′(2)
ζ(2)

)2

− 2
ζ ′′(2)
ζ(2)

)
.

The expressions for A0, B0 are complicated and not helpful for numerical
evaluation; γ1 is the first Stieltjes constant [64]. In particular,∑

n≤x

s(n, n)∼ 5π2

24
x2,

∑
n≤x

c(n, n)∼ 5
4
x2;

analogously, ∑
n≤x

s(n, n, n)∼ 1
3
x3 [H(3) (ln(x) + 2γ − 1) +H′(3)]

where

H(z)= ζ2(z)
∏
p

(
1 +

2
pz−1 +

2
pz

+
1

p2z−1

)
, Re(z)> 2.
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Of related interest are series
∑

n≤x t(n) and
∑

m,n≤x t(mn), where t(n) is the num-
ber of squares dividing n [65, 66]. More examples appear in [67, 68]; cases when
the underlying Dirichlet series is a product of zeta function expressions give rise
to asymptotic expansions with exact coefficients (found via residues).

1.20.2 Dedekind Totient Constants

The Dedekind totient ψ enjoys close parallels [69, 70] with the Euler totient φ:

ψ(n)= n
∏
p|n

(
1 +

1
p

)
, φ(n)= n

∏
p|n

(
1 − 1

p

)
;

∑
n≤N

ψ(n)∼ 1
2

∏
p

(
1 +

1
p2

)
︸ ︷︷ ︸

15/(2π2)

·N2,
∑
n≤N

φ(n)∼ 1
2

∏
p

(
1 − 1

p2

)
︸ ︷︷ ︸

3/π2

·N2;

∑
n≤N

1
ψ(n)

∼
∏
p

(
1 − 1

p( p+ 1)

)
︸ ︷︷ ︸

Ccarefree

·

(
ln(N) + γ +

∑
p

ln( p)
p2 + p− 1

)
,

∑
n≤N

1
φ(n)

∼
∏
p

(
1 +

1
p( p− 1)

)
︸ ︷︷ ︸

315ζ(3)/(2π4)

·

(
ln(N) + γ −

∑
p

ln( p)
p2 − p+ 1

)
.

Further results include [71]∑
n≤N

φ(n)
ψ(n)

∼
∏
p

(
1 − 2

p( p+ 1)

)
·N,

∑
n≤N

ψ(n)2 ∼ 1
3

∏
p

(
1 + 2

p2 +
1
p3

)
·N3,

∑
n≤N

φ(n)2 ∼ 1
3

∏
p

(
1 − 2

p2 +
1
p3

)
·N3.

The first of the three products appears in [72] with regard to cube roots of nul-
lity mod n, and in [73] with regard to strongly carefree couples. Asymptotics
for
∑

n≤N φ(n)
ℓ were found by Chowla [74], where ℓ is any positive integer. His

formula naturally carries over to
∑

n≤N ψ(n)
ℓ. It is known that the Riemann

Hypothesis is true if and only if [75, 76]

φ

(
n∏

k=1

pk

)
< e−γ

(
n∏

k=1

pk

)
/ ln

(
ln

(
n∏

k=1

pk

))
,

ψ

(
n∏

k=1

pk

)
>

6 eγ

π2

(
n∏

k=1

pk

)
· ln

(
ln

(
n∏

k=1

pk

))
for all n≥ 3, where p1 = 2, p2 = 3, p3 = 5, … is the sequence of all primes.
A related inequality, due to Robin, appears in [77]. Alternating series analogs,
too numerous to include here, are found in [70].
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1.20.3 Extreme Prime Factors

Let P+(n) denote the largest prime factor of n and P−(n) denote the smallest
prime factor of n. Also let P+(1)=P−(1)= 1. It follows that [78–84]

∑
n≤N

P+(n)∼ π2

12
N2

ln(N)
,
∑
n≤N

P−(n)∼ 1
2

N2

ln(N)
,

∑
n≤N

P+(n)
P−(n)

∼ π2

12

∑
p

(
1
p3

∏
q<p

(
1 − 1

q2

))
· N2

ln(N)
,

∑
n≤N

1
P+(n)

∼N

N∫
2

ρ

(
ln(N)

ln(t)

)
1
t2
dt,

∑
n≤N

P−(n)
P+(n)

∼ N
ln(N)

,
∑
n≤N

1
P−(n)

∼UN,

∑
n≤N

d(n)
P−(n)

∼VN ln(N),
∑
n≤N

Ω(n)− ω(n)
P−(n)

∼WN,

∑
n≤N

φ(n)
P−(n)

∼XN2,
∑
n≤N

1
n ln(P−(n))

∼Y ln(N)

where

U=
∑
p

f( p)
p2 , V=

∑
p

(2p− 1)f( p)2

p3 ,

W=
∑
p

f( p)
p

∑
α≥2

1
pα

+
∑
p

f( p)
p2

∑
q>p

∑
α≥2

1
qα
,

X=
3
π2

∑
p

1

p ( p+ 1)̃f ( p)
, Y=

∑
p

f( p)
p ln( p)

,

p and q are primes (of course), and

f(k)=


1 if k= 2,∏

p<k

(
1 − 1

p

)
if k> 2,

f̃ (k)=


1 if k= 2,∏

p<k

(
1 +

1
p

)
if k> 2.

Mertens’ formula implies that limk→∞ ln(k)f(k)= e−γ and limk→∞ f̃ (k)/ ln(k)=
6π−2eγ .

Variations of [85]

lim
N→∞

1
N

∑
n≤N

ln(n)
ln(P+(n))

= eγ
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include [79]

lim
N→∞

1
N

∑
n≤N

ln(P+(n))
ln(n)

=Λ= lim
N→∞

1
N ln(N)

∑
n≤N

ln(P+(n))

where Λ= 0.6243299885... is the Golomb–Dickman constant [42]. A simple,
precise estimate of ∑

n≤N

1
ln(P+(n))

evidently has not yet been found.
Let k(n) denote the smallest prime not dividing n and ℓ(n) denote the smallest

integer > 1 not dividing n. Their respective average values are [86–88]

lim
N→∞

1
N

∑
3≤n≤N

k(n)=
∑
p

( p− 1)/
∏
q<p

q= 2.9200509773...,

lim
N→∞

1
N

∑
3≤n≤N

ℓ(n)=
∑
j≥2

(
1

lcm{1, 2, . . . , j− 1}
−

1
lcm{1, 2, . . . , j}

)
j= 2.7877804561....

Compare these to the quadratic nonresidue constants at the end of [5].
Let P+

2 (n) denote the second largest prime factor of n if it exists, otherwise set
P+

2 (n)=∞. The asymptotic behavior of P+
2 (n) is completely different from that

of P+(n) [89, 90]:

∑
n≤N

1
P+

2 (n)
∼

 ∞∑
m=1

1
m

∑
p≥P+(m)

1
p2

 N
ln(N)

∼

∑
p

1
p2

∏
q≤p

(
1 − 1

q

)−1
 N

ln(N)
∼ (1.254...)

N
ln(N)

.

Let P+
3 (n) denote the third largest prime factor of n if it exists, otherwise set

P+
3 (n)=∞. Interestingly, the same constant occurs [89, 90]:∑

n≤N

1
P+

3 (n)
∼ (1.254...)

N ln(ln(N))

ln(N)

but the growth rate is faster. A well-known constant
∑

1/p2 = 0.4522474200...
from [5] appears in [91], stemming (almost surely) from the reciprocal sum of a
uniformly drawn prime factor of n, for each n. The growth rate N/ ln(ln(N)) is
faster still.

Here is a comparatively neglected topic: for a random integer n between 1 and
N, since

lim
N→∞

P
(
P+(n)≤ nx

)
= ρ

(
1
x

)
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2.00

0

0 1

Figure 1.18 Plot of d/dx ρ1(1/x) when 0< x< 1; given random n, the density for x such
that nx is the largest prime factor of n. Image courtesy of David Broadhurst.

0

0 0.5

3.25

Figure 1.19 Plot of d/dx ρ2(1/x) when 0< x< 1/2; given random n, the density for x
such that nx is the second-largest prime factor of n. Image courtesy of David Broadhurst.

for 0< x≤ 1, the median value of x satisfies ρ(1/x)= 1/2, that is, x= 1/
√
e=

0.6065306597.... The mode (peak of density) is 1/2; see Figure 1.18. Define the
second-order Dickman function ρ2(x) by [89]

xρ′2(x) + ρ2(x− 1)= ρ(x− 1) for x> 1, ρ2(x)= 1 for 0≤ x≤ 1

then the corresponding median value satisfies ρ2(1/x)= 1/2, that is, x=
0.2117211464... [92]. An early approximation (0.24) appeared long ago [93];
medians are more robust estimators of centrality than means (being less sensitive
to data outliers). The mode here is 0.2350396459...; see Figure 1.19. Likewise, the



“C01” — 2018/10/27 — 11:56 — page 173 — #173

1.20 Series involving Arithmetric Functions 173

third-order Dickman function ρ3(x) is [89]

xρ′3(x) + ρ3(x− 1)= ρ2(x− 1) for x> 1, ρ3(x)= 1 for 0≤ x≤ 1

and the corresponding median value satisfies ρ3(1/x)= 1/2, that is, x=
0.0758437231... [92]. A certain family of multiple integrals related to ρ(x) is
investigated in [94–96].
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[7] P. T. Bateman, P. Erdős, C. Pomerance and E. G. Straus, The arithmetic mean of

the divisors of an integer, Analytic Number Theory, Proc. 1980 Philadelphia conf.,
ed. M. I. Knopp, Lect. Notes in Math. 899, Springer-Verlag, 1981, pp. 197–220;
MR0654528 (84b:10066).

[8] M. Mazur and B. V. Petrenko, Representations of analytic functions as infinite
products and their application to numerical computations, Ramanujan J. 34 (2014)
129–141; arXiv:1202.1335; MR3210260.

[9] L. G. Fel, Summatory multiplicative arithmetic functions: scaling and renormaliza-
tion, arXiv:1108.0957.

[10] A. E. Ingham, Some asymptotic formulae in the theory of numbers, J. LondonMath.
Soc. 2 (1927) 202–208.

[11] Y. Motohashi, An asymptotic formula in the theory of numbers, Acta Arith. 16
(1969/70) 255–264; MR0266884 (42 #1786).

[12] K.-H. Indlekofer, Eine asymptotische Formel in der Zahlentheorie, Arch. Math.
(Basel) 23 (1972) 619–624; MR0318080 (47 #6629).

[13] S. R. Finch, Modular forms on SL2(Z), this volume, §1.15.
[14] D. Redmond, An asymptotic formula in the theory of numbers,Math. Annalen 224

(1976) 247–268; MR0419386 (54 #7407).
[15] D. Redmond, An asymptotic formula in the theory of numbers. II, Math. Annalen

234 (1978) 221–238; MR0480387 (58 #553).
[16] D. Redmond, An asymptotic formula in the theory of numbers. III, Math. Annalen

243 (1979) 143–151; MR0543724 (80h:10052).
[17] S. R. Finch, Artin’s constant, first volume, pp. 104–109.
[18] M. A. Korolev, On Karatsuba’s problem concerning the divisor function, Monatsh.

Math. 168 (2012) 403–441; arXiv:1011.1391; MR2993957.
[19] S. R. Finch, Unitarism and infinitarism, this volume, §1.6.
[20] B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proc. London

Math. Soc. 21 (1923) 235–255.
[21] D. R. Ward, Some series involving Euler’s function, J. London Math. Soc. 2 (1927)

210-214.



“C01” — 2018/10/27 — 11:56 — page 174 — #174

174 Number Theory and Combinatorics

[22] A. Mercier, Sommes de fonctions additives restreintes à une class de congruence,
Canad. Math. Bull. 22 (1979) 59–73; MR0532271 (81a:10009).

[23] A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., 1988,
pp. 192–195; MR0932727 (89a:11001).
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1.21 Riemann Zeta Moments

The behavior of the Riemann zeta function ζ(z) on the critical line Re(z)= 1/2
has been studied intensively for nearly 150 years. We start with a well-known
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asymptotic formula [1–6]:

T∫
0

|ζ(1/2 + i t)|2 dt∼ (ln(T) + c)T

as T→∞, where c= 2γ − 1 − ln(2π) and γ is the Euler–Mascheroni constant
[7]. This is often rewritten as

1
T

T∫
0

|ζ(1/2 + i t)|2 dt∼
T∫
0

P1
(
ln( t

2π )
)
dt

where P1(x)= x+ 2γ is a polynomial of degree 1. More generally,

1
T

T∫
0

|ζ(1/2 + i t)|2k dt∼
T∫
0

Pk
(
ln( t

2π )
)
dt

where Pk(x) is a polynomial of degree k2. We are interested in the coefficients of
P2(x),P3(x) andP4(x), but shall first assess the error term associated withP1(x).
Observe that all moments examined here are of even order; the asymptotics of
odd moments remain undiscovered [8].

1.21.1 Error for k= 1

Define

E(T )=

T∫
0

|ζ(1/2 + i t)|2 dt− (ln(T ) + c)T.

Analogous to [9], we have a conjecture:

E(T )=O(T 1/4+ε)

which is supported by the mean-square result [10, 11]:

T∫
2

E(t)2dt∼C2T 3/2

where

C2 =
2

3
√

2π

∞∑
n=1

d(n)2

n3/2
=

2ζ(3/2)4

3
√

2πζ(3)

and d(n) is the number of divisors of n. Further supporting evidence includes
[12–17]

T∫
2

E(t)mdt∼CmT1+m/4
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where

C3 =
6

7(2π)3/4
∑

√
n1+

√
n2=

√
n3

d(n1)d(n2)d(n3)

(n1n2n3)3/4
,

C4 =
3
8π

∑
√
n1+

√
n2=

√
n3+

√
n4

d(n1)d(n2)d(n3)d(n4)

(n1n2n3n4)3/4
,

C5 =
10

9(2π)5/4
∑

√
n1+

√
n2+

√
n3=

√
n4+

√
n5

d(n1)d(n2)d(n3)d(n4)d(n5)

(n1n2n3n4n5)3/4

− 5
9(2π)5/4

∑
√
n1+

√
n2+

√
n3+

√
n4=

√
n5

d(n1)d(n2)d(n3)d(n4)d(n5)

(n1n2n3n4n5)3/4
.

Numerical evaluation of such constants would be very challenging!

1.21.2 Coefficients for k≥ 2

Let F denote the Gauss hypergeometric function 2F1 [18]. The leading coefficient
ck,0 of

Pk(x)= ck,0xk
2
+ ck,1xk

2−1 + · · ·+ ck,k2−1x+ ck,k2

is conjectured to be [19]

ck,0 =
∏
p

((
1 − 1

p

)k2

F(k, k, 1, 1/p)

)
·
k−1∏
j=0

j!
( j+ k)!

.

This is provably true for the cases

c1,0 = 1, c2,0 =
1
12

∏
p

(
1 − 1

p2

)
=

1
2π2 = 0.0506605918....

Beyond these, the cases

c3,0 =
1

8640

∏
p

(
1 − 1

p

)4(
1 +

4
p
+

1
p2

)
=(5.708527...)× 10−6,

c4,0 =
1

870912000

∏
p

(
1 − 1

p

)9(
1 +

9
p
+

9
p2 +

1
p3

)
=(2.465018...)× 10−13

are conjectural only. For convenience, let

A(k)= γ +
∑
p

[
1

p− 1
− F(k+ 1, k+ 1, 2, 1/p)

p F(k, k, 1, 1/p)

]
ln( p),
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B(k) =
∑
p

[
p

( p− 1)2
+ 2k2F(k+ 1, k+ 1, 2, 1/p)2

p2F(k, k, 1, 1/p)2

− k(k+ 1)
2

F(k+ 2, k+ 2, 3, 1/p)
p2F(k, k, 1, 1/p)

− F(k+ 1, k+ 1, 1, 1/p)
pF(k, k, 1, 1/p)

]
ln( p)2.

The next coefficient ck,1 is conjectured to be

ck,1 = 2ck,0k3A(k)

which is provably true for c1,1 = 2γ= 1.1544313298.... Beyond this,

c2,1 =
8
π2

(
γ +

1
2

∑
p

ln( p)
p2 − 1

)

=
8
π4

(
γπ2 − 3ζ ′(2)

)
= 0.6988698848...,

c3,1 = 54c3,0

(
γ +

2
3

∑
p

(3p+ 1) ln( p)
( p− 1)( p2 + 4p+ 1)

)
= 0.0004050213...

are conjectural only. The next coefficient

ck,2 = ck,0k2(k2 − 1)
(
2k2A(k)2 − B(k)− γ2 − 2γ1

)
gives rise to [19, 20]

c2,2 =
6
π2

(
8
π4 (γπ

2 − 3ζ ′(2))2 − 2
∑
p

p2 ln( p)2

( p2 − 1)2
− γ2 − 2γ1

)

=
6
π6

(
−48γζ ′(2)π2 − 12ζ ′′(2)π2 + 7γ2π4 + 144ζ ′(2)2 − 2 γ1π

4)
= 2.4259621988...,

c3,2 = 72c3,0

(
18A(3)2 −

∑
p

p2(7p2 + 12p+ 7) ln( p)2

( p− 1)2( p2 + 4p+ 1)2
− γ2 − 2γ1

)

= 0.0110724552...

where γm is the mth Stieltjes constant [21] (for example, γ1 =−0.0728158454...).
Such values are conjectural, as well as [20]

c2,3 =
12
π8

(
6γ3π6 − 84γ2ζ ′(2)π4 + 24γ1ζ

′(2)π4 − 1728ζ ′(2)3 + 576γζ ′(2)2π2

+288ζ ′(2)ζ ′′(2)π2 − 8ζ ′′′(2)π4 − 10γ1γπ
6 − γ2π

6 − 48γζ ′′(2)π4)
= 3.2279079649...,



“C01” — 2018/10/27 — 11:56 — page 180 — #180

180 Number Theory and Combinatorics

c2,4 =
4
π10

(
−12ζ ′′′′(2)π6 + 36γ2ζ

′(2)π6 + 9γ4π8 + 21γ2
1π

8 + 432ζ ′′(2)2π4

+3456γζ ′(2)ζ ′′(2)π4 + 3024γ2ζ ′(2)2π4 − 36γ2γ1π
8 − 252γ2ζ ′′(2)π6

+3γγ2π
8 + 72γ1ζ

′′(2)π6 + 360γ1γζ
′(2)π6 − 216γ3ζ ′(2)π6

−864γ1ζ
′(2)2π4 + 5γ3π

8 + 576ζ ′(2)ζ ′′′(2)π4 − 20736γζ ′(2)3π2

−15552ζ ′′(2)ζ ′(2)2π2 − 96γζ ′′′(2)π6 + 62208ζ ′(2)4
)

= 1.3124243859...,

c3,3 = 0.1484007308..., c3,4 = 1.0459251779...,

c3,5 = 3.9843850948..., c3,6 = 8.6073191457...,

c3,7 = 10.2743308307..., c3,8 = 6.5939130206...,

c3,9 = 0.9165155076....

Why are such calculations important? Since the conjectures originate in ran-
dom matrix theory and appear to agree with empirical evaluations of the
zeta moments, it would follow that RMT acts as a ”model” for arithmetical
L-function value distributions.

1.21.3 Additive Divisor Problems

Estermann [22–25] solved the following binary additive divisor problem:∑
n≤N

d2(n)d2(n+ 1)∼ 6
π2N ln(N)2 + αN ln(N) + βN,

where dℓ(n) is the number of sequences x1, x2, ..., xℓ of positive integers such that
n= x1x2 · · · xℓ, and

α=
12
π4

(
π2(2γ − 1)− 12ζ ′(2)

)
= 1.5737449203...,

β =
6
π6

(
π4 [(2γ − 1)2 + 1

]
− 24π2(2γ − 1)ζ ′(2) + 288ζ ′(2)2 − 24π2ζ ′′(2)

)
= −0.5243838319....

For ℓ≥ 3, it is conjectured that [26–28]∑
n≤N

dℓ(n)dℓ(n+ 1)∼NQℓ(ln(N))

whereQℓ(x) is a polynomial of degree 2(ℓ− 1), but even the leading coefficient of
Q3(x) is not known. Describing the connection between ternary additive divisors
as such and the sixth moment of ζ(1/2 + i t) would take us too far afield.
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Another conjecture is [29]∑
n≤N

d2(n− 1)d2(n)d2(n+ 1)∼ 11
8
κN ln(N)3

where

κ=
∏
p

(
1 − 1

p

)2(
1 +

2
p

)
= 0.2867474284...

is the strongly carefree constant [30]. Discussion of generalizations and support-
ing evidence again would take us too far afield.
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1.22 Central Binomial Coefficients

The largest coefficient of the polynomial (1 + x)n is [1]

A(n)=
(

n
⌊n/2⌋

)
=

(
n

⌈n/2⌉

)
.

It possesses recursion⌈
n+ 1

2

⌉
A(n+ 1)= (n+ 1)A(n), A(0)= 1

and asymptotics

A(n)∼
√

2
π
n−1/22n

as n→∞. Another interpretation of A(n) is as the number of sign choices+ and
− such that ±1 ± 1 ± 1 ± · · · ± 1= 0 if n is even,

±1 ± 1 ± 1 ± · · · ± 1︸ ︷︷ ︸
n

= 1 if n is odd.

The latter is an especially attractive characterization of the nth central binomial
coefficient.
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Contrast this with the nth central trinomial coefficient, B(n), defined to be the
largest coefficient of the polynomial (1 + x+ x2)n. There is no simple closed-
form expression for B(n) [2]. It possesses recursion

(n+ 1)B(n+ 1)= (2n+ 1)B(n) + 3nB(n− 1), B(0)=B(1)= 1

and asymptotics

B(n)∼
√

3
4π

n−1/23n.

Here, B(n) can be interpreted as the number of solutions of

ε1 + ε2 + ε3 + · · ·+ εn= 0

where each εj ∈{−1, 0, 1}. Easy proofs of the asymptotics of A(n) and B(n)
can be based on such additive representations, coupled with the Central Limit
Theorem [3].

1.22.1 Divisibility

Let ω(n, k) denote the number of distinct prime factors of
(n
k

)
. Erdős [4, 5] proved

that

ω(2n, n)∼ 2 ln(2)
n

ln(n)

as n→∞ and wondered what else could be said about the prime factors. Let

f(n)=
∑
p≤n,

p-
(2n
n

)
1
p
,

then [6, 7]

c= lim
N→∞

1
N

N∑
n=1

f(n)=
∞∑
k=2

ln(k)
2k

= 0.5078339228...,

lim
N→∞

1
N

N∑
n=1

(f(n)− c)2 = 0.

These two facts together express that f(n)→ c for almost all integers n, hence(2n
n

)
is almost always divisible by high powers of small primes. Let g(n) be the

smallest odd prime factor of
(2n
n

)
. Whether f(n) or g(n) are bounded remains an

open question.
Sárközy [8] and others [9–11] proved that

(2n
n

)
is not square-free for any n> 4.

The largest n for which
(2n
n

)
is not divisible by p2 for any odd prime p is n= 786.
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We turn attention to
(n
k

)
, the (k+ 1)st element in the nth row of Pascal’s tri-

angle. For each k≥ 1, the sequence of integers n such that
(n
k

)
is square-free has

asymptotic density ck, where

c1 =
6
π2 = 0.6079271018..., c2 =

3
4

∏
p≥3

(
1 − 2

p2

)
= 0.4839511484...

(the latter is related to the Feller–Tornier constant [12]). More generally, write k
in base p:

k= a0 + a1p+ a2p2 + · · ·+ aℓpℓ, 0≤ aj< p for all 0≤ j≤ ℓ, aℓ+1 = 0,

and define

ck,p=


ℓ∏
i=0

(
1 − ai

p

)
·

1 +

ℓ∑
j=0

aj( p− 1 − aj+1)

( p− aj)( p− aj+1)

 if p≤ k,

1 − k
p2 if p> k.

Then ck is equal to
∏

p ck,p, where the product is taken over all primes p. We have
c3 = 0.251..., c4 = 0.360..., c5 = 0.191..., c6 = 0.189..., c7 = 0.062... and

0< ck= exp
[
−(α+ o(1))

√
k/ ln(k)

]
as k→∞, where

α =
∞∑
j=1

1
j (j+ 1)

∞∫
0

{x}jx−3/2dx

=

∞∑
j=1

(
2j
j

)
ζ(j+ 1/2)

1
22j−1

(
1 − j

∑
i>j

1
i2

)
= 1.825108....

Integrals involving {x}= x− ⌊x⌋ as such also appear in [13, 14]. It follows that
there are ∼ τ N square-free binomial coefficients

(n
k

)
with 0≤ k< n≤N, where

τ = 2
∞∑
k=0

ck= 2(5.3275...)= 10.655....

In words, each row of Pascal’s triangle possesses approximately 10 2
3 square-free

entries (on average).
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1.22.2 Relevant Sums

Let φ denote the Golden mean (1 +
√

5)/2. We have [15–19]

∞∑
n=1

1(2n
n

) = 1
3
+

2
√

3π
27

,
∞∑
n=1

(−1)n+1(2n
n

) =
1
5
+

4
√

5 ln(φ)
25

,

∞∑
n=1

n(2n
n

) = 2
3
+

2
√

3π
27

,
∞∑
n=1

(−1)n+1n(2n
n

) =
6
25

+
4
√

5 ln(φ)
125

,

∞∑
n=1

n2(2n
n

) = 4
3
+

10
√

3π
81

,
∞∑
n=1

(−1)n+1n2(2n
n

) =
4
25

− 4
√

5 ln(φ)
125

,

∞∑
n=1

n3(2n
n

) = 10
3

+
74

√
3π

243
,

∞∑
n=1

(−1)n+1n3(2n
n

) =− 2
125

− 28
√

5 ln(φ)
625

and, more generally [20],

∞∑
n=1

nk(2n
n

) = pk + qk
√

3π,
∞∑
n=1

(−1)n+1nk(2n
n

) = rk + sk
√

5 ln(φ)

for appropriate rationals pk, qk, rk, sk. Let LD denote the Dirichlet L-series with
character (D/·) andLik denote the kth polylogarithm function [14]. The following
are more difficult [15–19]:

∞∑
n=1

1(2n
n

)
n
=

√
3π
9

,

∞∑
n=1

(−1)n+1(2n
n

)
n

=
2
√

5 ln(φ)
5

,

∞∑
n=1

1(2n
n

)
n2

=
π2

18
,

∞∑
n=1

(−1)n+1(2n
n

)
n2

= 2 ln(φ)2,

∞∑
n=1

1(2n
n

)
n3

=

√
3π
2

L−3(2)−
4ζ(3)

3
,

∞∑
n=1

(−1)n+1(2n
n

)
n3

=
2ζ (3)

5
,

∞∑
n=1

1(2n
n

)
n4

=
17π4

3240
,

∞∑
n=1

(−1)n+1(2n
n

)
n4

= 8Li4

(
1
φ

)
+ 8 ln(φ)Li3

(
1
φ

)
− 1

2
Li4

(
1
φ2

)
+

7π2 ln(φ)2

15
− 13 ln(φ)4

6
− 4ζ (3) ln(φ)

5
− 7π4

90
,

∞∑
n=1

1(2n
n

)
n5

=
9
√

3π
8

L−3(4) +
π2ζ(3)

9
− 19ζ(5)

3
,
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∞∑
n=1

(−1)n+1(2n
n

)
n5

=
5
2

Li5

(
1
φ2

)
+ 5 ln(φ)Li4

(
1
φ2

)
+4ζ(3) ln(φ)2 − 4π2 ln(φ)3

9
+

4 ln(φ)5

3
− 2ζ(5).

Let G=L−4(2) denote Catalan’s constant. Other series include

∞∑
n=0

1(2n
n

)
(2n+ 1)

=
2
√

3π
9

,

∞∑
n=0

(−1)n(2n
n

)
(2n+ 1)

=
4
√

5 ln(φ)
5

,

∞∑
n=0

1(2n
n

)
(2n+ 1)2

=
8G
3

− π ln(2 +
√

3)
3

,
∞∑
n=0

(−1)n(2n
n

)
(2n+ 1)2

=
π2

6
− 3 ln(φ)2

and
∞∑
n=0

2n(2n
n

)
(2n+ 1)

=
π

2
,

∞∑
n=0

(−1)n2n(2n
n

)
(2n+ 1)

=
2√
3

ln

(
1 +

√
3√

2

)
,

∞∑
n=0

2n(2n
n

)
(2n+ 1)2

= 2L−8(2)−
√

2π
4

ln(1 +
√

2),

∞∑
n=0

22n(2n
n

)
(2n+ 1)2

= 2G,
∞∑
n=0

(−1)n22n(2n
n

)
(2n+ 1)2

=
π2

8
− 1

2
ln(1 +

√
2)2,

∞∑
n=0

22n(2n
n

)
(2n+ 1)3

= 2i
[
Li3

(
1 − i
2

)
− Li3

(
1 + i
2

)]
− π ln(2)2

8
− π3

32

= 2i [Li3 (1 + i)− Li3 (1 − i)] +
π ln(2)2

4
+

3π3

16
.

The latter sum is due to Gosper [21]. Batir [22, 23] proved that

∞∑
n=1

24n(2n
n

)2
n3

= 8πG− 14ζ(3),
∞∑
n=0

24n+2(2n
n

)2
(2n+ 1)3

= 14ζ(3)− 4πG

and also derived a complicated formula for
∑∞

n=1 1/
(3n
n

)
. We will barely mention

cases for which
(2n
n

)
is in the numerator, for example [15, 17, 24],

∞∑
n=0

(2n
n

) 1
22n(2n+ 1)

=
π

2
,

∞∑
n=0

(2n
n

) 1
22n(2n+ 1)2

=
π ln(2)

2
,

∞∑
n=0

(2n
n

) 1
23n(2n+ 1)2

=

√
2

8
(π ln(2) + 4G) ,

∞∑
n=0

(2n
n

) 1
24n(2n+ 1)2

=
3
√

3
4

L−3(2),
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∞∑
n=0

(2n
n

) 1
24n(2n+ 1)3

=
7π3

216
,

∞∑
n=0

(2n
n

) 1
24n(2n+ 1)4

=
πζ(3)
12

+
27
√

3
64

L−3(4),

∞∑
n=0

(2n
n

)2 1
24n(2n+ 1)

=
4G
π
.

Deninger’s conjecture [25]

∞∑
n=0

(2n
n

)2 1
28n(2n+ 1)

=
15
π2L15A(2)

was proved by Rogers & Zudilin [26], where L15A is the L-series for the elliptic
curve isogeny class 15A. See [27] for a sampling of other conjectures and [28] for
other techniques.

1.22.3 Middle Stirling Numbers

Asymptotic results for middle Stirling numbers are more complicated than those
for central binomial coefficients. Let s2n,n denote the number of permutations on
2n symbols possessing exactly n cycles; let S2n,n denote the number of partitions
of a (2n)-element set possessing exactly n blocks. We have [29–32]

n!
(2n)!

s2n,n∼κ1
λn1√
n
,

n!
(2n)!

S2n,n∼κ2
λn2√
n
,

where

λ1 =
ξ

[1 − exp(−ξ)]2
= 2.4554074822..., λ2 =

exp(η)− 1
η2 = 1.5441386523...

and ξ, η are unique positive solutions of the equations

exp(ξ)− 1
ξ

= 2,
η

1 − exp(−η)
= 2.

The latter is a Lambert W function value: η= 2 +W(−2e−2)= 1.5936242600...
[33] while the former satisfies 2ξ/(2ξ + 1)= 0.7153318629.... Generalizations of
such results appear in [34–37].
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1.23 Fractional Parts of Bernoulli Numbers

The Bernoulli numbers B0, B1, B2, ... are defined via [1–3]

t
et − 1

=
∞∑
n=0

Bn
tn

n!

and satisfy B0 = 1, B1 =−1/2, (−1)k+1B2k> 0 and B2k+1 = 0 for k≥ 1. It can be
shown that |B2k| is strictly increasing after its minimum at B6 = 1/42, and

|B2k| ∼
2(2k)!
(2π)2k

∼ 4
√
πk
(
k
eπ

)2k

as k→∞. Let {x}= x− ⌊x⌋ denote the fractional part of a real number x; for
example,

{B2}= { 1
6}=

1
6 , {B4}= {− 1

30}=
29
30 ,

{B14}= { 7
6}=

1
6 , {B16}= {− 3617

510 }=
463
510 .

The sequence {B2}, {B4}, {B6}, ... is dense in the unit interval [0, 1], but it
is not uniformly distributed [4]. Certain rational numbers appear with positive
probability: 1/6 is most likely with probability 0.151..., 29/30 is next with prob-
ability 0.064... [5]. In fact, the limiting distribution F is piecewise linear with
countably many jump discontinuities: F increases only when jumping (see Fig-
ure 1.20). We wonder, in particular, about the moments of F. By the von
Staudt–Clausen theorem, the mean fractional part is [6]

lim
N→∞

1
N

N∑
n=1

−
∑

( p−1)|2n

1
p

= 0.5486...
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Figure 1.20 Bernoulli numbers fractional parts distribution

and the mean fractional part squared is

lim
N→∞

1
N

N∑
n=1

−
∑

( p−1)|2n

1
p


2

= 0.4396....

The inner sum is over all primes p such that p− 1 divides 2n. No analytic
simplification of such formulas is known.

A proof of the equality [7]

lim
N→∞

1
N

N∑
n=1

∑
p|n

1
p
=
∑
p

1
p2 = 0.4522474200...

will be given shortly. If the sum
∑

1/p is replaced by the reciprocal of the least
prime factor P−(n) of n, then interestingly [8, 9]

lim
N→∞

1
N

N∑
n=1

1
P−(n)

=
∑
p

1
p2

∏
q<p

(
1 − 1

q

)
where the inner product is over all primes q less than p. In principle, this
latter expression can be evaluated to high precision. A similar replacement for the
average of {B2n} is not clear. Observe that p= 2 and p= 3 both satisfy ( p− 1)|2n
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automatically for any n≥ 1. The issue is thus determining the smallest such prime
exceeding 3 for each n (if one exists) and this may be awkward.

The promised proof starts by letting SN=
∑

n≤N

∑
p|n 1/p. It is clear that

SN=
∑
p≤N

1
p

∑
n≤N,
p|n

1=
∑
p≤N

1
p

∑
m≤N/p

1=
∑
p≤N

⌊N/p⌋
p

and, since N/p− 1< ⌊N/p⌋≤N/p,∑
p≤N

1
p2 − 1

N

∑
p≤N

1
p
<

1
N
SN≤

∑
p≤N

1
p2 .

The result follows because
∑

p≤N 1/p=O(ln lnN).
A famous conjecture, due to Siegel [10–13], is as follows. An odd prime p is

regular if it does not divide the numerator of any of the Bernoulli numbers B2,
B4, B6, ..., Bp−3; otherwise p is irregular. It seems to be true that

lim
N→∞

∑
p≤N,

p irregular

1

∑
p≤N,

p regular

1
= e1/2 − 1= 0.6487212707...

but a proof is not known. Equivalently, we have

lim
N→∞

ln(N)

N

∑
p≤N,

p irregular

1= 1 − e−1/2 = 0.3934693402...,

lim
N→∞

ln(N)

N

∑
p≤N,

p regular

1= e−1/2 = 0.6065306597....

In 1851, Kummer proved that Fermat’s Last Theorem holds when the exponent
is a regular prime. Although FLT was proved by Wiles in 1995, we still do not
know whether there exist infinitely many regular primes.

See also [14, 15] for the asymptotics for
∏

k≤K |B2k| .
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1.24 Products of Consecutive-Integer Ratios

Consider the random product

P(N)=
N∏
n=1

(
n

n+ 1

)εn

=
N∏
n=1

(
1 +

1
n

)−εn

where ε1, ε2, . . ., εN are independent variables satisfying P(εn= 1)=P(εn=−1)=
1/2 for each n. The maximum value of P(N) isN+ 1, which occurs if and only if
all εn are−1. The minimum value of P(N) is 1/(N+ 1), which occurs if and only
if all εn are 1.We are interested in the average behavior ofP(N) and it makes sense
to examine ln(P(N)) henceforth (with extreme values− ln(N+ 1) and ln(N+ 1)
symmetric about the origin).

Before continuing, let us mention the random sum

S(N)=

N∑
n=1

εn
n

which converges almost surely [1, 2]. The maximum value of S(N) diverges to ∞
asN→∞ and the minimum value of S(N) diverges to−∞. Clearly E(S(N))= 0
and

Var(S(N))=

N∑
n=1

1
n2 →

π2

6
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as N→∞. It is perhaps surprising that Var(S(N)) is finite. Define θn=−1 if
n≡ 0mod 3 and θn= 1 otherwise; define ωn=−1 if n≡ 2, 3mod 4 and ωn= 1
otherwise. On the one hand [3],

∞∑
n=1

(−1)n+1

n
= ln(2),

∞∑
n=1

ωn
n

=
π

4
− 1

2
ln(2);

on the other hand [4],

N∑
n=1

1
n
∼ ln(N) + γ,

N∑
n=1

θn
n
∼ 1

3
ln(N) +

2
3

ln(3) +
1
3
γ

where γ is the Euler–Mascheroni constant [5].
Returning to the product P(N), we have E(ln(P(N)))= 0 and

Var(ln(P(N)))=

N∑
n=1

ln
(

n
n+ 1

)2

→ 0.977189...

as N→∞. No closed-form expression for this expression is known. Again, it is
perhaps surprising that Var(ln(P(N))) is finite. By Wallis’ formula [6, 7], we have

∞∏
n=1

(
n

n+ 1

)(−1)n+1

=
1
2
3
2
3
4
5
4
5
6
7
6
7
8
· · ·= 2

π

but as before an unbalanced distribution of +1 and −1 exponents leads to
divergence (to either ∞ or 0).

Here is a far more difficult problem. Let a(N) and b(N) denote the numerator
and denominator of P(N), expressed in lowest terms. Rather than maximizing
P(N) for fixed N as previously, consider instead maximizing a(N). Note that,
by changing each εk to −εk, the maximum value of b(N) is equal to the maxi-
mum value of a(N). Hence we lose nothing by studying only numerators in the
following.

LetA(N) denote the maximum value of a(N). See Table 1.12 for sample values
[8]. For example, when N= 6,

the numerator of
(

1
2

)−1 2
3

(
3
4

)−1 4
5

(
5
6

)−1 6
7 is 28

whereas

the numerator of
(

1
2

)−1 ( 2
3

)−1 ( 3
4

)−1 4
5

(
5
6

)−1 6
7 is 2632;

hence A(6)= 576. Nicolas [9] and de la Bretèche, Pomerance & Tenenbaum [10]
proved that

0.107< liminf
N→∞

1
N ln(N)

ln(A(N))≤ limsup
N→∞

1
N ln(N)

ln(A(N))≤ 2
3
< 0.667.

At the end of [10], the lower bound was improved to 0.112 (due to Fouvry). We
wonder whether the limit supremum is equal to the limit infimum and, if so, what
the limiting value might be.
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Table 1.12 Sample values of maximum numerator A(N) and ln(A(N))/(N ln(N))

N 1 2 3 4 5 6

A(N) 2 4 16 64 128 576

ln(A(N))

N ln(N)
1.0000 0.8407 0.7500 0.6031 0.5909

N 7 8 9 10 11 12

A(N) 4608 16384 64000 640000 2560000 10240000

ln(A(N))

N ln(N)
0.6195 0.5833 0.5596 0.5806 0.5592 0.5414

1.24.1 Highly Composite Numbers

A positive integer n is highly composite if, for all m< n, we have d(m)< d(n),
where d(k) denotes the number of distinct divisors of k. The integer n is also
called a d-champion. It is known that

|{n≤N : n is highly composite}|=O
(
ln(N)1.71

)
as N→∞, and conjectured that 1.71 can be replaced by any constant c>
ln(30)/ ln(16)= 1.2267... [11].

A positive integer n is superior highly composite if there exists δ > 0 such that,
for all positive integers m, we have d(m)/mδ ≤ d(n)/nδ. It is known that

|{n≤N : n is superior highly composite}|∼ ln(N)

as N→∞. While these asymptotics are well-understood, those for the quotient
of two consecutive highly composite numbers are not.

Define

λ= limsup
N→∞

1
N ln(N)

ln(A(N))

where A(N) is as before. If M is a sufficiently large superior highly composite
number and M′ is the highly composite number following M, then [11]

M′

M
≥ 1 +

1
ln(M)κ

for any constant κ>λ/ ln(2). Since we know λ≤ 2/3, it follows that the exponent
2/(3 ln(2))= 0.961796... works. A sharper upper bound on λ (for example, λ≤
3/5 or even λ≤ 1/2) would be very helpful.
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1.25 Prime Number Theorem

Let π(x)=
∑

p≤x 1, the number of primes p not exceeding x. Gauss and Legendre
conjectured an asymptotic expression for π(x). Define the Möbius mu function

µ(n)=


1 if n= 1,

(−1)r if n is a product of r distinct primes,

0 if n is divisible by a square > 1;

the von Mangoldt function

Λ(n)=

{
ln( p) if n= pm for some prime p and integer m≥ 1,

0 otherwise;

and the Chebyshev functions

θ(x)=
∑
p≤x

ln( p),

ψ(x)=
∑
pm≤x,
m≥1

ln( p)=
∑
n≤x

Λ(n)= ln(lcm{1, 2, . . . , ⌊x⌋}).

Hadamard and de la Vallée Poussin proved the Gauss–Legendre conjecture,
namely,

π(x)∼ x
ln(x)

, θ(x)∼ x, ψ(x)∼ x

as x→∞. These three formulas are equivalent to each other and also to

∞∑
n=1

µ(n)
n

= 0.
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The Riemann zeta function clearly plays a role here since, for Re(s)> 1,

∞∑
n=1

1
ns

= ζ(s),
∞∑
n=1

µ(n)
ns

=
1
ζ(s)

.

Of many aspects of the Prime Number Theorem, we focus on the following error
estimates [1–4]:

1 +

∞∫
1

θ(x)− x
x2 dx = lim

N→∞

∑
p≤N

ln( p)
p

− ln(N)


= −γ −

∑
p

ln( p)
p( p− 1)

=−1.3325822757...,

1 +

∞∫
1

ψ(x)− x
x2 dx= lim

N→∞

∑
n≤N

Λ(n)
n

− ln(N)

=−γ=−0.5772156649...

where γ is the Euler–Mascheroni constant [5, 6]. The latter implies that

∞∑
n=1

Λ(n)− 1
n

=−2γ.

What can be said about analogous expressions connectedwith the PrimeNumber
Theorem for arithmetic progressions 3k+ 1 and 4k+ 1?

Nevanlinna [7, 8] gave a straightforward generalization:∑
n≡1 mod 3

µ(n)
n

=
1
2

1
L−3(1)

=
3
√

3
2π

,

∑
n≡1 mod 4

µ(n)
n

=
1
2

1
L−4(1)

=
2
π
;

lim
N→∞

 ∑
n≡1 mod 3,

n≤N

2Λ(n)
n

− ln(N)

 = −γ − ln(3)
2

−
L′
−3(1)

L−3(1)

= −γ − ln(3)
2

− ln

(
2πeγ

Γ( 2
3 )

3

Γ( 1
3 )

3

)
,

lim
N→∞

 ∑
n≡1 mod 4,

n≤N

2Λ(n)
n

− ln(N)

 = −γ − ln(2)−
L′
−4(1)

L−4(1)

= −γ − ln(2)− ln

(
2πeγ

Γ( 3
4 )

2

Γ( 1
4 )

2

)
,
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which imply that [5]∑
n≡1 mod 3

2Λ(n)− 3
n

=−3γ +
ln(3)

2
−

√
3π
6

− 4 ln(2π) + 6 ln(Γ(1/3)),

∑
n≡1 mod 4

2Λ(n)− 4
n

=−3γ − ln(2)− π

2
− 3 ln(2π) + 4 ln(Γ(1/4)).

Here is a more complicated generalization. Define

Λ1,3(n)=

{
ln( p) if n= pm for some prime p≡ 1mod 3 and integer m≥ 1,

0 otherwise,

Λ1,4(n)=

{
ln( p) if n= pm for some prime p≡ 1mod 4 and integer m≥ 1,

0 otherwise;

θ1,3(x)=
∑
p≤x,

p≡1 mod 3

ln( p), θ1,4(x)=
∑
p≤x,

p≡1 mod 4

ln( p);

ψ1,3(x)=
∑
n≤x

Λ1,3(n), ψ1,4(x)=
∑
n≤x

Λ1,4(n).

Just as [1]
∞∑
n=1

Λ(n)
ns

=−ζ
′(s)
ζ(s)

∼ 1
s− 1

− γ∼ ζ(s)− 2γ,

we have [9]

2
∞∑
n=1

Λ1,3(n)
ns

= −ζ
′(s)
ζ(s)

−
L′
−3(s)

L−3(s)
− ln(3)

3s − 1
− 2

∑
p≡2 mod 3

ln( p)
p2s − 1

∼ ζ(s)− 2γ −
L′
−3(s)

L−3(s)
− ln(3)

3s − 1
− 2

∑
p≡2 mod 3

ln( p)
p2s − 1

as s→ 1. On the one hand,
∞∑
n=1

2Λ1,3(n)− 1
n

=−2γ −
L′
−3(1)

L−3(1)
− ln(3)

2
− 2

∑
p≡2 mod 3

ln( p)
p2 − 1

but on the other hand,∑
n≤N

2Λ1,3(n)− 1
n

∼ 2
∑
p≤N,

p≡1 mod 3

ln( p)
p

+ 2
∑
p≤N,
m≥2,

p≡1 mod 3

ln( p)
pm

−
∑
n≤N

1
n

∼ ln(N) + c1,3 + 2
∑

p≡1 mod 3

ln( p)
p( p− 1)

− ln(N)− γ

∼ −γ + c1,3 + 2
∑

p≡1 mod 3

ln( p)
p( p− 1)
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as N→∞. It follows that

1 +

∞∫
1

2θ1,3(x)− x
x2 dx = lim

N→∞

2
∑
p≤N,

p≡1 mod 3

ln( p)
p

− ln(N)

= c1,3

= −γ −
L′
−3(1)

L−3(1)
− ln(3)

2
− 2

∑
p≡2 mod 3

ln( p)
p2 − 1

− 2
∑

p≡1 mod 3

ln( p)
p( p− 1)

= −2.3754945198....

Similarly,

1 +

∞∫
1

2θ1,4(x)− x
x2 dx = lim

N→∞

2
∑
p≤N,

p≡1 mod 4

ln( p)
p

− ln(N)

= c1,4

= −γ −
L′
−4(1)

L−4(1)
− ln(2)− 2

∑
p≡3 mod 4

ln( p)
p2 − 1

− 2
∑

p≡1 mod 4

ln( p)
p( p− 1)

= −2.2248371388....

A simple series acceleration technique [10] arises from the identity

1
p( p− 1)

− 1
p2 − 1

=
1

p( p2 − 1)
;

hence∑
p≡1 mod 3

ln( p)
p( p− 1)

=
∑

p≡1 mod 3

ln( p)
p( p2 − 1)

+
∑

p≡1 mod 3

ln( p)
p2 − 1

=
∑

p≡1 mod 3

ln( p)
p( p2 − 1)

+

∑
p

ln( p)
p2 − 1

−
∑

p≡2 mod 3

ln( p)
p2 − 1

− ln(3)
8

;

hence∑
p≡2 mod 3

ln( p)
p2 − 1

+
∑

p≡1 mod 3

ln( p)
p( p− 1)

=
∑

p≡1 mod 3

ln( p)
p( p2 − 1)

− ζ ′(2)
ζ(2)

− ln(3)
8

;

hence

c1,3= − 2γ − 4 log (2π) +
9 log(3)

8
+6 log(Γ(1/3))+

ζ ′(2)
ζ(2)

−2
∑

p≡1 mod 3

ln( p)
p( p2 − 1)

.
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Similarly,

c1,4 =−2γ− 3 log (2π) +
log(2)

3
+ 4 log(Γ(1/4))+

ζ ′(2)
ζ(2)

− 2
∑

p≡1 mod 4

ln( p)
p( p2 − 1)

.

More complex acceleration techniques yield [9]∑
p≡2 mod 3

ln( p)
p2 − 1

= 0.3516478132...,
∑

p≡3 mod 4

ln( p)
p2 − 1

= 0.2287363531...,

which permit numerical evaluations such as

1 +

∞∫
1

2ψ1,3(x)− x
x2 dx = lim

N→∞

∑
n≤N

2Λ1,3(n)
n

− ln(N)


= −γ −

L′
−3(1)

L−3(1)
− ln(3)

2
− 2

∑
p≡2 mod 3

ln( p)
p2 − 1

= −2(1.0990495258...),

1 +

∞∫
1

2ψ1,4(x)− x
x2 dx = lim

N→∞

∑
n≤N

2Λ1,4(n)
n

− ln(N)


= −γ −

L′
−4(1)

L−4(1)
− ln(2)− 2

∑
p≡3 mod 4

ln( p)
p2 − 1

= −2(0.9867225683...)

and ∑
p≡1 mod 3

ln( p)
p( p− 1)

= 0.0886977340...,
∑

p≡1 mod 4

ln( p)
p( p− 1)

= 0.1256960010....

The estimates −2.375... and −2.224... for the theta function integrals are also
found in [11, 12]. A parallel analysis of integrals involving

θ2,3(x)=
∑
p≤x,

p≡2 mod 3

ln( p), θ3,4(x)=
∑
p≤x,

p≡3 mod 4

ln( p)

could be done as well.
Another type of error estimate was provided by McCurley [13]. The maximum

value of θ2,3(x)/x occurs at x= 1619 and, further, θ2,3(x)< 0.50933118 x for all
x. This result is essentially best possible. By contrast, the maximum value of
θ1,3(x)/x is not known! (For x≤ 108, it occurs at x= 52553329.) It can be shown
that θ1,3(x)< 0.5040354 x for all x, but improvement is likely. Sharp analyses of
θ3,4(x) and θ1,4(x) as such seem still to be open.
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The maximum value of ψ(x)/x occurs at x= 113 and ψ(x)< 1.03882058 x
always [2]. Montgomery [14] conjectured that

liminf
x→∞

ψ(x)− x√
x ln(ln(ln(x)))2

=− 1
2π
, limsup

x→∞

ψ(x)− x√
x ln(ln(ln(x)))2

=
1
2π
.

Let M(x)=
∑

n≤x µ(x); Odlyzko & te Riele [15] proved that

liminf
x→∞

M(x)√
x

<−1.009, limsup
x→∞

M(x)√
x

> 1.06.

The precise growth rate of M(x) has been the subject of speculation [16–18].
Gonek and Ng [19, 20] independently conjectured that

liminf
x→∞

M(x)√
x ln(ln(ln(x)))5/4

=−C, limsup
x→∞

M(x)√
x ln(ln(ln(x)))5/4

=C

for some positive constant C. A proof of this or of Montgomery’s conjecture
would be sensational!

The second-order Landau–Ramanujan constant for counting integers of the
form a2 + 3b2 is [21]

1
2

1 − γ

2
− 1

2
L′
−3(1)

L−3(1)
+

ln(3)
4

+
∑

p≡2 mod 3

ln( p)
p2 − 1

= 0.5767761224...

and the (classical) second-order Landau–Ramanujan constant for counting
integers of the form a2 + b2 is

1
2

1 − γ

2
− 1

2
L′
−4(1)

L−4(1)
+

ln(2)
2

+
∑

p≡3 mod 4

ln( p)
p2 − 1

= 0.5819486593....

The fact that 0.576... < 0.581... resolves a question raised by Shanks & Schmid
[22, 23]. Further, the second-order LR constant corresponding to a2 + 2b2 is [24]

1
2

1 − γ

2
− 1

2

L′
−8(1)

L−8(1)
+

ln(2)
2

+
∑

p≡5,7 mod 8

ln( p)
p2 − 1

= 0.6093010224...

and the second-order LR constant corresponding to a2 − 2b2 is

1
2

1 − γ

2
− 1

2
L′

8(1)
L8(1)

+
ln(2)

2
+

∑
p≡3,5 mod 8

ln( p)
p2 − 1

= 0.5045371359....

The fact that 0.609... > 0.581... > 0.504... verifies an assertion in [22]; we used
the Selberg–Delange method and formulas in [25] to deduce the preceding
expressions for a2 ± 2b2. See also [26].
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1.26 Mertens’ Formula

An elegant generalization of Mertens’ famous formula appears in [1]:

lim
x→∞

ln(x)1/φ(k)
∏
p≤x,

p≡ℓmod k

(
1 − 1

p

)
=

[
e−γ

∏
p

(
1 − 1

p

)α( p;k,ℓ)
]1/φ(k)

where φ is the Euler totient function, γ is the Euler–Mascheroni constant [2],
and α( p; k, ℓ) is equal toφ(k)− 1 if p≡ ℓmod k and is−1 otherwise. This consti-
tutes a vast simplification of earlier such formulas [3, 4]. Computing the constant
e−γΛk,ℓ =(0.5614594835...)Λk,ℓ inside the square brackets, as well as the related
limit [5]:

Mk,ℓ = lim
x→∞

 ∑
p≤x

p≡ℓmod k

1
p
− 1
φ(k)

ln(ln(x))


will occupy us for the remainder of this essay.

Let ζ(s) denote the Riemann zeta function and

Pk,ℓ(s)=
∑

p≡ℓmod k

1
ps

denote the (k, ℓ)th prime zeta function for Re(s)> 1. ClearlyΛ1,0 = 1; to efficiently
compute M1,0, we utilize the series [6–8]

P1,0(s)=
∞∑
n=1

µ(n)
n

ln (ζ(ns)) .

The numerical evaluation of other Pk,ℓ(s) will be discussed momentarily. For
now, note that

−γ + ln(Λk,ℓ)

φ(k)
= lim

x→∞

 ∑
p≤x

p≡ℓmod k

ln
(
1 − 1

p

)
+

1
φ(k)

ln(ln(x))

 ;

hence

Mk,ℓ +
ln(Λk,ℓ)− γ

φ(k)
=

∑
p≡ℓmod k

(
ln
(
1 − 1

p

)
+

1
p

)

= −
∑

p≡ℓmod k

(
1

2p2 +
1

3p3 +
1

4p4 + · · ·
)

= −
∞∑
n=2

Pk,ℓ(n)
n

;
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hence

M1,0 = γ −
∞∑
n=2

P1,0(n)
n

= 0.2614972128....

In the following two sections, we will discuss the cases k= 3 and k= 4. In both
cases, φ(k)= 2, which implies that

Λk,1 =
k
2

∏
p≡1 mod k

(
1 − 1

p

)
·

∏
p≡−1 mod k

(
1 − 1

p

)−1

=
k
2

1
L−k(1)

∏
p≡−1 mod k

(
1 +

1
p

)−1

·
∏

p≡−1 mod k

(
1 − 1

p

)−1

=
k
2

1
L−k(1)

∏
p≡−1 mod k

(
1 − 1

p2

)−1

where L−k is Dirichlet’s L-series associated to (−k/·). The infinite product can
be evaluated via the (k,−1)th prime zeta function since

ln

 ∏
p≡ℓmod k

(
1 − 1

p2

) =
∑

p≡ℓmod k

(
ln
(
1 +

1
p

)
+ ln

(
1 − 1

p

))

= −
∑

p≡ℓmod k

(
1
p2 +

1
2p4 +

1
3p6 + · · ·

)

= −
∞∑
n=1

Pk,ℓ(2n)
n

.

Thus we first compute Λ3,1 and Λ4,1, and then M3,1 and M4,1.
Let χ0 denote the principal character mod k and χ1 denote the nonprincipal

character mod k (χ1 is unique since k= 3 or k= 4). In order to evaluate Pk,1(s)
and Pk,−1(s), the associated Dirichlet L-series:

Lχj(s)=
∞∑
n=1

χj(n)
ns

=
1
ks
(
χj(1)ζ

(
s, 1

k

)
+ χj(−1)ζ

(
s, 1 − 1

k

))
, j= 0, 1

are required, where ζ (s, a) is the Hurwitz zeta-function. It can be shown that [9]

Pk,−1(s)=
1
2

∞∑
n=0

µ(2n+ 1)
2n+ 1

ln
(
Lχ0((2n+ 1)s)
Lχ1((2n+ 1)s)

)
,

Pk,1(s)=
1
2

∞∑
n=0

µ(2n+ 1)
2n+ 1

ln
(
Lχ0((2n+ 1)s)Lχ1((2n+ 1)s)

Lχ0((4n+ 2)s)

)
.

We will additionally exhibit
∏

p≡1 mod k

(
1 − p−2

)
and

∏
p≡−1 mod k

(
1 − p−2

)
,

since these are also easily available.
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1.26.1 Residue Classes Mod 3

The two characters modulo 3 are

χ0(n)|n=1,2,3 = {1, 1, 0}, χ1(n)|n=1,2,3 = {1,−1, 0};

thus Lχ0(s)= ζ(s)(1 − 1/3s) and Lχ1(s)=L−3(s). We have [10]

∏
p≡1 mod 3

(
1 − 1

p2

)
= 0.9671040753...=

9
√

3
8

(0.7044984335...)2 =
27
√

3
2π2 K2

3,

∏
p≡2 mod 3

(
1 − 1

p2

)
= 0.7071813747...=

9
√

3
2

(0.3012165544...)2 =

√
3

6
1
K2

3

where K3 = 0.6389094054... is the Landau–Ramanujan constant for counting
integers of the form a2 + 3b2 [11]. Also Λ3,1 = 27K2

3/π and therefore

lim
x→∞

√
ln(x)

∏
p≤x

p≡1 mod 3

(
1 − 1

p

)
= 3

√
3
π
e−γ/2K3 = 1.4034774468...,

lim
x→∞

√
ln(x)

∏
p≤x

p≡2 mod 3

(
1 − 1

p

)
=

1
2

√
π

3
e−γ/2 1

K3
= 0.6000732161...,

M3,1 =
γ

2
− ln

(
3

√
3
π
K3

)
+

∑
p≡1 mod 3

[
ln
(
1 − 1

p

)
+

1
p

]
=−0.3568904795...,

M3,2 =
γ

2
− ln

(
1
2

√
π

3
1
K3

)
+

∑
p≡2 mod 3

[
ln
(
1 − 1

p

)
+

1
p

]
= 0.2850543590....

1.26.2 Residue Classes Mod 4

An alternative approach is given in [12]. The two characters modulo 4 are

χ0(n)|n=1,2,3,4 = {1, 0, 1, 0}, χ1(n)|n=1,2,3,4 = {1, 0,−1, 0};

thus Lχ0(s)= ζ(s)(1 − 1/2s) and Lχ1(s)=L−4(s). We have [10]

∏
p≡1 mod 4

(
1 − 1

p2

)
= 0.9468064071...= 4(0.4865198883...)2 =

16
π2K

2
1,

∏
p≡3 mod 4

(
1 − 1

p2

)
= 0.8561089817...= 8 (0.3271293669...)2 =

1
2

1
K2

1
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where K1 = 0.7642236535... is the (classical) Landau–Ramanujan constant for
counting integers of the form a2 + b2 [11]. Also Λ4,1 = 16K2

1/π and therefore

lim
x→∞

√
ln(x)

∏
p≤x

p≡1 mod 4

(
1 − 1

p

)
=

4√
π
e−γ/2K1 = 1.2923041571...,

lim
x→∞

√
ln(x)

∏
p≤x

p≡3 mod 4

(
1 − 1

p

)
=

√
π

2
e−γ/2 1

K1
= 0.8689277682...,

M4,1 =
γ

2
− ln

(
4√
π
K1

)
+

∑
p≡1 mod 4

[
ln
(
1 − 1

p

)
+

1
p

]
=−0.2867420562...,

M4,3 =
γ

2
− ln

(√
π

2
1
K1

)
+

∑
p≡3 mod 4

[
ln
(
1 − 1

p

)
+

1
p

]
= 0.0482392690....

Some low-precision results are known [13] for the residue classes mod 6 and 8;
it would be good to repeat these calculations (using the prime zeta function, as
above) to high accuracy.

Addendum Languasco & Zaccagnini [14–16] proved new formulas and greatly
extended the preceding calculations, confirming our values for Mk,ℓ and for

(e−γΛk,ℓ)
1/φ(k) (what they call Ck,ℓ) when k= 3 and k= 4.

[1] A. Languasco and A. Zaccagnini, A note on Mertens’ formula for arithmetic
progressions, J. Number Theory 127 (2007) 37–46; MR2351662 (2009g:11136).

[2] S. R. Finch, Euler-Mascheroni constant, first volume, pp. 28–40.
[3] K. S. Williams, Mertens’ theorem for arithmetic progressions, J. Number Theory 6

(1974) 353–359; MR0364137 (51 #392).
[4] E. A. Vasil’kovskaja, Mertens’ formula for an arithmetic progression (in Russian),

Voprosy Mat. Sbornik Naucn. Trudy Taskent. Gos. Univ. (1977) n. 548, 14–17, 139-
140; MR0565984 (58 #27848).

[5] S. R. Finch, Meissel-Mertens constants, first volume, pp. 94–98.
[6] C. -E. Fröberg, On the prime zeta function, Nordisk Tidskr. Informationsbehandling

(BIT) 8 (1968) 187–202; MR0236123 (38 #4421).
[7] H. Cohen,High precision computation ofHardy-Littlewood constants, unpublished

note (1999).
[8] X. Gourdon and P. Sebah, Some constants from number theory, Numbers, Con-

stants and Computation.
[9] S. Finch and P. Sebah, Squares and cubes modulo n, math.NT/0604465.

[10] P. Moree, Chebyshev’s bias for composite numbers with restricted prime divisors,
Math. Comp. 73 (2004) 425–449; MR2034131 (2005b:11154).

[11] S. R. Finch, Landau-Ramanujan constant, first volume, pp. 98–104.
[12] S. Uchiyama, On some products involving primes, Proc. Amer. Math. Soc. 28 (1971)

629–630; MR0277494 (43 #3227).
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[13] E. Grosswald, Some number theoretical products, Rev. Colombiana Mat. 21 (1987)
231–242; MR0988131 (90e:11129).

[14] A. Languasco and A. Zaccagnini, On the constant in the Mertens product for arith-
metic progressions. I, Identities, Funct. Approx. Comment. Math. 42 (2010) 17–27;
arXiv:0706.2807; MR2640766 (2011b:11127)

[15] A. Languasco and A. Zaccagnini, On the constant in the Mertens product for
arithmetic progressions. II, Numerical values, Math. Comp. 78 (2009) 315–326;
arXiv:0712.1665; MR2448709 (2010g:11164)

[16] A. Languasco and A. Zaccagnini, Computing the Mertens and Meissel-Mertens
constants for sums over arithmetic progressions, Experim.Math. 19 (2010) 279–284;
arXiv:0906.2132; MR2743571 (2011j:11247).

1.27 Cyclotomic Polynomials

Let ∏
gcd( j,n)=1

(
x− e2πj i/n

)
=

φ(n)∑
k=0

an(k)xk

denote the nth cyclotomic polynomial, where φ(n) is Euler’s totient function [1],
i denotes the imaginary unit, and the product is taken over all integers 1≤ j≤ n
coprime with n. The coefficients an(k) are always integers. Define

A(n)=max
k

|an(k)| ,

the largest coefficient of the nth polynomial in absolute value; and

B(k)=max
n

|an(k)| ,

the largest kth coefficient in absolute value (taken over all polynomials). A simple
argument gives B(k)≤ p(k), where p(k) is the number of integer partitions of k,
hence B(k) is finite.

Vaughan [2–4] proved that

limsup
n→∞

ln(ln(A(n)))
ln(n)/ ln(ln(n))

= ln(2)

(a maximal order) and Bachman [5] proved that

lim
k→∞

ln(k)1/4√
k

ln(B(k))=C= 1.5394450081...

(an asymptotic result). The constant C is related to the solution of an interesting
optimization problem involvingL-series [6].Define ι(D)= 2 ifD> 0 and ι(D)= 1
if D< 0. Over all fundamental discriminants D, it can be proved that D= 12
maximizes the quantity√

ι(D)
π φ(D)

LD(2)√
LD(1)

∏
(D/p)=−1

(
1 − 1

p2

)1/2

,
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where the product is taken over all primes p satisfying a negativity condition on
the Legendre symbol. When D= 12, this quantity simplifies to√

1
2π

π2/(6
√

3)√
ln(2 +

√
3)/

√
3

∏
p≡5 or 7
mod 12

(
1 − 1

p2

)1/2

= 0.4189414873...

= 2−5/2C2.

It is hoped that other statistics (for example, means and variances) summariz-
ing the coefficient array an(k) might be feasible. See [7, 8] for work in this area.
The precise estimate of C is due to Sebah [9].
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171–202; MR0781138 (86e:11089).

[4] C. Pomerance and N. C. Ryan, Maximal height of divisors of xn − 1, Illinois J. Math.
51 (2007) 597–604; MR2342677 (2008j:12012).
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[8] Y.Gallot, P.Moree andH.Hommersom,Value distribution of cyclotomic polynomial

coefficients, Unif. Distrib. Theory 6 (2011) 177–206; arXiv:0803.2483; MR2904047.
[9] P. Sebah, An infinite product, unpublished note (2008).

1.28 Minkowski–Alkauskas Constant

In addition to examining [1]

?

(
0 +

1|
|a1

+
1|
|a2

+
1|
|a3

+ · · ·
)
=

∞∑
k=1

(−1)k−12−(a1+a2+···+ak−1),

we study [2]

F
(
a0 +

1|
|a1

+
1|
|a2

+
1|
|a3

+ · · ·
)
=

∞∑
k=1

(−1)k−12−(a0+a1+a2+···+ak).

The former is the original Minkowski question mark function, a self-map of
[0, 1]; the latter is defined on the nonnegative real line with 2F(x)=?(x) for all
x∈ [0, 1]. In particular,

F(0)= 0, F( 1
2 )=

1
4 , F(1)= 1

2 , F(
√

2)= 3
5 ,



“C01” — 2018/10/27 — 11:56 — page 208 — #208

208 Number Theory and Combinatorics

F( 1+
√

5
2 )= 2

3 , F(2)= 3
4 , F(3)= 7

8 , lim
x→∞

F(x)= 1−.

The distribution F is continuous, strictly increasing, singular, and uniquely
determined by the functional equation

2F(x)=


F(x− 1) + 1 if x≥ 1,

F
(

x
1 − x

)
if 0≤ x< 1.

Define moments

Mℓ =

∞∫
0

xℓdF(x), mℓ =

1∫
0

xℓd?(x)

then m1 =M1 − 1= 1/2 follows easily. Similar closed-form expressions for

m2 =M2 − 4= 0.2909264764...,

m4 =M4 − 24m2 − 100= 0.1269922584...

presently do not exist, although progress has recently been made [3]. It is known
that

2m3 = 3m2 − 1/2= 2(0.1863897146...),

2M3 = 9m2 + 69/2, 2m5 = 5m4 − 5m2 + 1

and analogous relations hold for higher-order moments. Hence calculating m2,
m4, . . . to high precision is important for understanding m3, m5, . . ..

Alkauskas [4, 5] proved the following asymptotic formula:

mℓ ∼ 4

√
4π2 ln(2) · c ·

(
e−2

√
ln(2)

)√ℓ

ℓ1/4

∼ (2.3562298899...)(0.1891699952...)
√
ℓℓ1/4

as ℓ→∞, where

c=

1∫
0

2x(1 − F(x))dx= 1.0301995633...=
1.4281598455...

2 ln(2)
.

This is a fascinating result, especially because m2, m4, . . . remain so mysterious!
Onewould not have expected an asymptotic formula formℓ as such to be possible.

An infinite series for mℓ that does not explicitly involve continued fractions
was unveiled in [6]:

1
(ℓ− 1)!

∞∑
n=0

∫
· · ·
∫

[0,∞)n+1

xℓ0 ·
(x0xn)−1/2 ·

n−1∏
j=0

I1
(
2
√
xjxj+1

)
n∏
j=0

exj (2exj − 1)
dx0 · · · dxn
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where I1(z) is the modified Bessel function of the first kind. Unfortunately this
does not improve upon numerical accuracy found in [3]. Does a simpler formula
exist (even if only for ℓ= 2 or ℓ= 4)?

Integrals of the form
1∫
0

cos(2πkx) d?(x)

are evaluated to high precision in [7]; another sample calculation is

π

1∫
0

(?(x)− x) cot(πx) dx=−0.4559592037...,

which corresponds to the value of an associated zeta function at unity.

[1] S. R. Finch, Minkowski-Bower constant, first volume, pp. 441–443.
[2] G. Alkauskas, The moments of Minkowski question mark function: the dyadic

period function, Glasgow Math. J. 52 (2010) 41–64; arXiv:0801.0051; MR2587817
(2011d:11007).

[3] G. Alkauskas, The Minkowski question mark function: explicit series for the dyadic
period function and moments, Math. Comp. 79 (2010) 383–418; addenda/corrigenda
80 (2011) 2445–2454; arXiv:0805.1717; MR2552232 (2010k:11006) and MR2813370
(2012d:11009).

[4] G. Alkauskas, An asymptotic formula for the moments of the Minkowski ques-
tion mark function in the interval [0, 1], Lithuanian Math. J. 48 (2008) 357–367;
arXiv:0802.2721; MR2470798 (2009i:11115).

[5] R. Bacher, The Stern sequence and moments of Minkowski’s question mark function,
arXiv:1703.07268.

[6] G. Alkauskas, Semi-regular continued fractions and an exact formula for the
moments of theMinkowski questionmark function,Ramanujan J. 25 (2011) 359–367;
arXiv:0912.1039; MR2819722 (2012f:11008).

[7] G. Alkauskas, Fourier-Stieltjes coefficients of the Minkowski question mark func-
tion,Analytic and Probabilistic Methods in Number Theory, Proc. 2011 Palanga conf.,
ed. A. Laurinčikas, E. Manstavičius and G. Stepanauskas, TEV, 2012, pp. 19–33;
arXiv:1008.4014; MR3025455.

1.29 Two-Colorings of Positive Integers

Let f : {1, 2, 3, . . .}→{−1, 1} be an arbitrary function. Given a thresholdM> 0,
we ask two questions:

• Do there exist integers a> 0, b≥ 0, ℓ> 0 such that

|f(a+ b) + f(2a+ b) + f(3a+ b) + · · ·+ f(ℓ a+ b)|>M?

• Do there exist integers a> 0, ℓ> 0 such that

|f(a) + f(2a) + f(3a) + · · ·+ f(ℓ a)|>M?
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The answer to the first question is yes. In words, every two-coloring of the pos-
itive integers has unbounded discrepancy, taken over the family of arithmetic
progressions. Restricting attention to the subset {1, 2, 3, . . . , n}, we have [1–5]

c n1/4 ≤P(n)=min
f

max
a,b,ℓ

ℓ a+b≤n

∣∣∣∣∣
ℓ∑

k=1

f(k a+ b)

∣∣∣∣∣≤Cn1/4

for all n, with constants c≥ 1/20 andC<∞. The lower bound on cwas improved
to 1/14 in [6]; no finite upper bound onC is known. It is natural to wonder about
the numerical values of

liminf
n→∞

n−1/4P(n), limsup
n→∞

n−1/4P(n).

The second question, due to Erdős [7–9] and Chudakov [10, 11], was answered
affirmatively only recently by Tao [12, 13]. It is remarkable that, upon mere con-
straint to homogeneity (b= 0), the problem becomes unimaginably difficult. The
existence of near-counterexamples (four are given in [12]) serve to isolate the key
difficulty of the problem. More on the buildup to a solution appears shortly.

If we expand the family under consideration, the problem simplifies. For
almost all real numbers α≥ 1, there exists ℓ> 0 such that [14–16]

| f (⌊α⌋) + f (⌊2α⌋) + f (⌊3α⌋) + · · ·+ f (⌊ℓ α⌋)|>M.

Such quasi-arithmetic progressions collapse to homogeneous arithmetic progres-
sions when α is an integer. Even though the set S of counterexamples α has
measure zero, we definitely know (thanks to Tao) that S avoids all integers.
Further, for any ε> 0,

d n1/6 ≤Q(n)=min
f

max
α,ℓ

⌊ℓ α⌋≤n

∣∣∣∣∣
ℓ∑

k=1

f (⌊kα⌋)

∣∣∣∣∣≤Dn1/3+ε

where d≥ 1/50 and we speculate whether bounds on Q(n) might someday be
significantly improved.

The expression [17, 18]

R(n)=min
f

max
a,b,ℓ
a<b

ℓ+b≤n

∣∣∣∣∣
ℓ∑

k=1

f(k+ a)f(k+ b)

∣∣∣∣∣
is also interesting and we wonder about the numerical values of

liminf
n→∞

n−1/2R(n), limsup
n→∞

n−1/2R(n).
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1.29.1 Erdős–Chudakov–Tao

If f is random (independently taking values ±1 with probability 1/2 at each
integer 1≤ k≤ n), then asymptotically [19]:

E (| f(1) + f(2) + f(3) + · · ·+ f(n)|)∼
√

2 n
π

as n→∞. The use of an average is somewhat deceiving because, for almost all
such f,

| f(1) + f(2) + f(3) + · · ·+ f(n)| ∼
√

2 n ln(ln(n))

by the law of the iterated logarithm. In words, for typical f, sums are larger than
expected. Hence solving the Erdős–Chudakov problem requires an understand-
ing of atypical f, for which sums remain small.

Here are two relevant results obtained prior to Tao’s groundbreaking work.
Nikolov & Talwar [20], building on Alon & Kalai [21], showed that the fol-

lowing statement is true for infinitely many positive integers n. There is a set
W⊆{1, . . . , n} of square-free integers such that, for any f :W→{−1, 1}, there
exists a positive integer a so that∣∣∣∣∣∣

∑
w∈W, a|w

f(w)

∣∣∣∣∣∣= n1/O(ln(ln(n)))

as n→∞. (If we were permitted to define f= 0 outside of W, then the Erdős–
Chudakov problem would be solved. The values of f, however, are restricted to
±1, disallowing such a construction.)

Konev & Lisitsa [22, 23], assisted by computer, exhibited a length 1160
sequence whose discrepancy is bounded by M= 2, but proved that such cannot
be true for any sequence of length ≥ 1161. Hence the Erdős–Chudakov conjec-
ture (for infinite sequences) is true for M= 2. Twenty years earlier, Mathias [11]
showed likewise forM= 1 via elementarymeans. A length 13000 sequence whose
discrepancy is bounded byM= 3 is known; what is the shortest lengthL> 13000
beyond which this cannot be true?

Discussion of completely multiplicative functions and k-regular sequences
would take us too far afield [24–27]. We mention the important role
played here by the Polymath wiki – which documents massively collabora-
tive online mathematical projects – and highlight the summaries provided
in [28, 29].
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[12] T. Tao, The Erdős discrepancy problem, Discrete Analysis (2016) N1;
arXiv:1509.05363; MR3533300.

[13] K. Soundararajan, Tao’s resolution of the Erdős discrepancy problem, Bull. Amer.
Math. Soc. 55 (2018) 81–92; MR3737211.

[14] J. Beck, On irregularities of ±1-sequences, Österreichische Akademie der Wis-
senschaften Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte.
Abteilung II 195 (1986) 13–23; MR0881327 (88e:11065).

[15] R. Hochberg, Large discrepancy in homogeneous quasi-arithmetic progressions,
Combinatorica 26 (2006) 47–64; MR2201283 (2006i:11012).

[16] S. Vijay, On the discrepancy of quasi-progressions, Elec. J. Combin. 15 (2008) R104;
math.CO/0604511; MR2438576 (2009i:05170).

[17] J. Cassaigne, C. Mauduit and A. Sárközy, On finite pseudorandom binary
sequences. VII, The measures of pseudorandomness, Acta Arith. 103 (2002) 97–118;
MR1904866 (2004c:11139).

[18] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira and V. Rödl, Measures of
pseudorandomness for finite sequences: minimal values, Combin. Probab. Comput.
15 (2006) 1–29; MR2195573 (2006j:60007).

[19] S. R. Finch, Moments of sums, this volume, §4.2.
[20] A. Nikolov and K. Talwar, On the hereditary discrepancy of homogeneous arith-

metic progressions, Proc. Amer. Math. Soc. 143 (2015) 2857–2863; arXiv:1309.6034;
MR3336610.
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1.30 Signum Equations and Extremal Coefficients

Let a(n) denote the number of sign choices + and − such that

±1 ± 2 ± 3 ± · · · ± n= 0

and b(n) denote the number of solutions of

ε1 · 1 + ε2 · 2 + ε3 · 3 + · · ·+ εn · n= 0

where each εj ∈{−1, 0, 1}. It can be proved that [1, 2]

a(n) is the coefficient of xn(n+1)/2 in the polynomial
n∏

k=1

(
1 + x2k

)
,

b(n) is the coefficient of xn(n+1)/2 in the polynomial
n∏

k=1

(
1 + xk + x2k

)
.

Clearly a(n)= 0 when n≡ 1, 2mod 4. If we think of sign choices as independent
random variables with equal weight on {−1, 1}, then

E

(
n∑

k=1

±k

)
= 0, Var

(
n∑

k=1

±k

)
=
n(n+ 1)(2n+ 1)

6
∼ n3

3

as n→∞. By the Central Limit Theorem,

P

(
√

3n−3/2
n∑

k=1

±k≤ x

)
∼ 1√

2π

x∫
−∞

exp
(
− t2

2

)
dt

which implies that [3, 4]

P

(
n∑

k=1

±k= 0

)
∼ s

√
3
2π

n−3/2 exp
(
−x2

2

)∣∣∣∣∣
x=0
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where s= 1 − (−1)= 2 is the span of the distribution of ±; hence [5, 6]

a(n)∼
√

6
π
n−3/22n.

In the same way,

b(n)∼ 1
2
√
π
n−3/23n+1.

Let c(n) denote the number of sign choices such that

±1 ± 2 ± 3 ± · · · ± n=±1 ± 2 ± 3 ± · · · ± n.

Here [7]

c(n) is the coefficient of xn(n+1)/2 in the polynomial
n∏

k=1

(
1 + xk

)2
and [8–11]

c(n)∼
√

3
π
n−3/222n.

Define [12]

α(n) to be the maximal coefficient in the polynomial
n∏

k=1

(
1 + x2k

)
,

β(n) to be the maximal coefficient in the polynomial
n∏

k=1

(
1 + xk + x2k

)
,

γ(n) to be the maximal coefficient in the polynomial
n∏

k=1

(
1 + xk

)2
.

The first of these has an immediate combinatorial interpretation: α(n) is the
number of sign choices such that

±1 ± 2 ± 3 ± · · · ± n is 0 or 1.

While β(n) seems not to have such a representation, the last sequence satisfies
trivially γ(n)= c(n) always.

We look at several more examples. Define [13]

λmax(n) to be the maximal coefficient in
n∏

k=1

(
1 − x2k

)
and − λmin(n) to be the corresponding minimal coefficient;

µmax(n) to be the maximal coefficient in (−1)n
n∏

k=1

(
1 − xk

)2
and − µmin(n) to be the corresponding minimal coefficient.
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Only the third one possesses a clear simplification:

µmax(n) is the coefficient of xn(n+1)/2 in (−1)n
n∏

k=1

(
1 − xk

)2
and the asymptotics

µmax(n)1/n∼ 1.48...∼ 2 e−0.29...

are of interest [14, 15]. Greater understanding of the other sequences is desired.

1.30.1 Number Partitioning

What is the number of ways to partition the set {1, 2, . . . , n} into two subsets
whose sums are as nearly equal as possible? If n≡ 0, 3mod 4, the answer is α(n);
if n≡ 1, 2mod 4, the answer is α(n)/2. In the former case, the subsets have the
same sum; in the latter, the subsets have sums that differ by 1 [16, 17]. Partition-
ing arbitrary sets of n integers, each typically of order 2m, is an NP-complete
problem. The ratiom/n characterises the difficulty in searching for a perfect par-
tition (one in which subset sums differ by at most 1). A phase transition exists
for this problem (at m/n= 1, in fact) and perhaps similarly for all NP problems
[17–19].

As an aside, we observe that

λmax(n) is the coefficient of xn(n+1)/2 in the polynomial
n∏

k=1

(
1 − x2k)

for n≡ 0mod 4, but this fails elsewhere (a conjectural relation involving x(n+1)2/2

coefficients for n≡ 3mod 4 falls apart when n= 27). It seems to be true that

λmax(n)1/n∼ 1.21...∼ 2 e−0.50...

as n→∞ via multiples of 4.
As another aside, if d(n) is the number of solutions of

ε1 · 1 + ε2 · 2 + ε3 · 3 + · · ·+ εn · n= ε−1 · 1 + ε−2 · 2 + ε−3 · 3 + · · ·+ ε−n · n,

then [20]

d(n) is the coefficient of xn(n+1) in the polynomial
n∏

k=1

(
1 + xk + x2k

)2
(in fact, it is the maximal such coefficient)

and

d(n)∼ 1

2
√

2π
n−3/232n+1.
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This grows more quickly than b(n), of course. We wonder what else can be said
in both cases. For example, what is the mean percentage of 0s in {εj} taken over
all solutions, as n→∞? It may well be 1/3 for both, but it may be > 1/3 for one
or the other.

Addendum Define a function G : (0, 1)→R by

G(x)=

1∫
0

ln (sin(πxt)) dt.

There is a unique point x0 = 0.7912265710... at which G attains its maximum
value G(x0)=−0.4945295653.... Let

r= exp(2G(x0))= 0.3719264606...=
1
4
(1.4877058426...),

C=
4 sin(πx0)

x0

√
π

−G′′(x0)
= 2.4057458393...

then [21]

µmax(n)∼C
(4r)n√
n

as n→∞, making impressively precise our earlier conjecture. An analogous
formula for λmax(n) for n≡ 0mod 4 remains open.
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1.31 Monoids of Natural Numbers

Let N denote the set of nonnegative integers. If A= {a1, a2, . . . , am} is a set of
positive integers satisfying gcd(a1, a2, . . . , am)= 1, then

⟨a1, a2, . . . , am⟩=


m∑
j=1

xjaj : xj ∈N for each 1≤ j≤m


is the subset of N generated by A. For example,

⟨a, a+ 1, a+ 2, a+ 3, . . . , 2a− 1⟩= {0} ∪ {a, a+ 1, a+ 2, a+ 3, . . .}

and

⟨2, b⟩= {0, 2, 4, . . . , b− 3} ∪ {b− 1, b, b+ 1, b+ 2, b+ 3, . . .}

when b≥ 3 is odd.
A numerical monoid S is a subset of N that is closed under addition, contains

0, and has finite complement in N. (Most authors use the phrase “numerical
semigroup”, but semigroups by definition need not contain 0, hence the usage is
puzzling.) The Frobenius number f of S is the maximum element in the set N− S,
and the genus g of S is the cardinality of N− S. Therefore

f (⟨a, a+ 1, a+ 2, a+ 3, . . . , 2a− 1⟩)= a− 1, f (⟨2, b⟩)= b− 2,
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Table 1.13 Numerical monoids with small Frobenius number or genus

f= 1 f= 2 f= 3 f= 4 g= 1 g= 2 g= 3 g= 4

⟨2, 3⟩ ⟨3, 4, 5⟩ ⟨4, 5, 6, 7⟩ ⟨5, 6, 7, 8, 9⟩ ⟨2, 3⟩ ⟨3, 4, 5⟩ ⟨4, 5, 6, 7⟩ ⟨5, 6, 7, 8, 9⟩
⟨2, 5⟩ ⟨3, 5, 7⟩ ⟨2, 5⟩ ⟨3, 5, 7⟩ ⟨4, 6, 7, 9⟩

⟨3, 4⟩ ⟨3, 7, 8⟩
⟨2, 7⟩ ⟨4, 5, 7⟩

⟨4, 5, 6⟩
⟨3, 5⟩
⟨2, 9⟩

g (⟨a, a+ 1, a+ 2, a+ 3, . . . , 2a− 1⟩)= a− 1, g (⟨2, b⟩)= (b− 1)/2

and, more generally [1],

f (⟨a, b⟩)= (a− 1)(b− 1)− 1, g (⟨a, b⟩)= (a− 1)(b− 1)/2

when gcd(a, b)= 1. It is known that f+ 1≤ 2g always [2, 3]. Table 1.13 gives all
monoids Swith 1≤ f≤ 4 or 1≤ g≤ 4.

Define sequences [4–7]

{Fn}∞n=1 = {1, 1, 2, 2, 5, 4, 11, 10, . . .},

{Gn}∞n=1 = {1, 2, 4, 7, 12, 23, 39, 67, . . .}

by
Fn=(the number of monoids S with f(S)= n) ,

Gn=(the number of monoids S with g(S)= n) .

Backelin [8] showed that

0< liminf
n→∞

2−n/2Fn< limsup
n→∞

2−n/2Fn<∞,

1
2 (2.47)< lim

n→∞
n≡0 mod 2

2−n/2Fn< 1
2 (3.3),

1√
2
(2.5)< lim

n→∞
n≡1 mod 2

2−n/2Fn< 1√
2
(3.32)

and the work of others [5, 9–11] culminated with a theorem by Zhao [12] and
Zhai [13]:

lim
n→∞

G(n)
φn

exists, is finite, and is at least 3.78

where φ=(1 +
√

5)/2= 1.6180339887... is the Golden mean. See also [14, 15].
Tighter bounds are needed for Fn asymptotics; it has not even been proved that
Gn is increasing.
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What can be said about rates of growth of Fn,k andGn,k, the counts of monoids
when the number of generators is fixed to be k?

A monoid is irreducible if it cannot be written as the intersection of two
monoids properly containing it [16]. A monoid S is irreducible if and only if S
is maximal (with respect to set inclusion) in the collection of all monoids with
Frobenius number f(S). Irreducible monoids with odd f are the same as symmet-
ric monoids (for which f= 2g− 1 always); irreducible monoids with even f are
the same as pseudo-symmetric monoids (for which f= 2(g− 1) always). As an
example, ⟨3, 4⟩ and ⟨2, 7⟩ are the two symmetric monoids with Frobenius num-
ber 5; ⟨4, 5, 7⟩ is the unique pseudo-symmetric monoid with Frobenius number
6. Another characterization of symmetry and pseudo-symmetry will be given
shortly. Define [4, 17]

{Hn}∞n=1 = {1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 6, 2, 8, . . .}

by
Hn=(the number of irreducible monoids S with f(S)= n) ;

it follows that [8]

0< liminf
n→∞

2−n/6Hn< limsup
n→∞

2−n/6Hn<∞,

1
2 (9.36)< lim

n→∞
n≡0 mod 6

2−n/6Hn=
1√
2

lim
n→∞

n≡3 mod 6

2−n/6Hn< c.

No finite value c (as an upper bound for Hn asymptotics) has been rigorously
proved.

1.31.1 Sets without Closure

A numerical set S is a subset ofN that contains 0 and has finite complement inN.
The Frobenius number of S is, as before, the maximum element in the set N− S.
Nothing has been assumed about additivity so far. Every numerical set S has an
associated atom monoid A(S) defined by

A(S)= {n∈Z : n+ S⊆S} .

Clearly A(S)⊆S; also A(S)=S if and only if S is itself a numerical monoid. The
Frobenius number of A(S) is the same as the Frobenius number of S; thus there
is no possible ambiguity when speaking about f(S). Let

Nn= ⟨n+ 1, n+ 2, n+ 3, . . . , 2n+ 1⟩= {0} ∪ {n+ 1, n+ 2, n+ 3, . . .},

which we already know has Frobenius number n. Given n, which sets S have
A(S)=Nn? Table 1.14 answers the question for 1≤ n≤ 5. For brevity, we give
only T, where S=T ∪ Nn is a disjoint union.

Define [18]
{Pn}∞n=1 = {1, 2, 3, 6, 10, 20, 37, 74, . . .}
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Table 1.14 Numerical sets T ∪ Nn with atom monoid Nn

n= 1 n= 2 n= 3 n= 4 n= 5

∅∗ ∅ ∅ ∅ ∅
{1} {1}∗ {1} {1}

{1, 2} {2} {2}
{1, 2} {1, 2}∗

{1, 3} {1, 3}∗

{1, 2, 3} {1, 4}
{2, 3}
{1, 2, 3}
{1, 2, 4}
{1, 2, 3, 4}

by
Pn=(the number of sets S with A(S)=Nn) ;

Marzuola & Miller [19] showed that

lim
n→∞

Pn
2n−1 ≈ 0.484451 ± 0.005.

Also, a numerical set S with Frobenius number n satisfying

x∈S if and only if n− x /∈S

is symmetric if n is odd and pseudo-symmetric if n is even and n/2 /∈S (we agree
to exclude x= n/2 from consideration). The symmetric cases in Table 1.14 are
marked by ∗. Define [18]

{Qk}∞k=1 = {1, 1, 2, 3, 6, 10, 20, 37, 73, . . .}

by
Qk=(the number of symmetric sets S with A(S)=N2k−1)

then [19]

lim
k→∞

Qk

2k−1 ≈ 0.230653 ± 0.006.

It is interesting that Qk+2 is the number of additive 2-bases for {0, 1, 2, . . . , k},
meaning sets Σ that satisfy

Σ⊆{0, 1, 2, . . . , k}⊆Σ+ Σ.

The asymptotics for the corresponding “anti-atom” problem for pseudo-
symmetric sets are identical to the preceding.
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1.31.2 Frobenius Numbers with Three Arguments

Given gcd(a, b, c)= 1, let f̃ (a, b, c)= f(⟨a, b, c⟩) + a+ b+ c denote the modi-
fied Frobenius number. Ustinov [20–22] proved that, on average, f̃(a, b, c) is
asymptotic to (8/π)

√
abc. The following probability density function

p(t)=


12
π

(
t√
3
−

√
4 − t2

)
for

√
3≤ t≤ 2

12
π2

[√
3 t arccos

(
t+ 3

√
t2 − 4

4
√
t2 − 3

)
+

3
2

√
t2 − 4 ln

(
t2 − 4
t2 − 3

) ]
for t> 2

describes more fully the behavior of f̃ (a, b, c)/
√
abc as max{a, b, c}→∞; in

particular, the distribution has a sharp peak at mode 2 and has mean

∞∫
√

3

t p(t)dt=
8
π
.

In words, f̃ (a, b, c) is the largest positive integer not representable as xa+ yb+
zc, x> 0, y> 0, z> 0. This is more convenient for the analysis because it is
multiplicative in two arguments: if d≥ 1 is a divisor of both b and c, then

f̃ (a, b, c)= d f̃
(
a,
b
d
,
c
d

)
.

The proof is based on continued fraction theory; for example, Porter’s constant
[23] appears in [20]. Properties of the original f(⟨a, b, c⟩) appear in [24], along
with discussion of the coin exchange or money changing problem [25, 26].

The modified genus

g̃(a, b, c)= g(⟨a, b, c⟩) + a+ b+ c− 1
2

does not possess as simple an interpretation as f̃ (a, b, c) (recall that g(⟨a, b, c⟩)
denotes the cardinality of all positive integers not representable as xa+ yb+
zc, x≥ 0, y≥ 0, z≥ 0). Again, multiplicativity and continued fractions play a
role. Vorobev [27] proved that, on average, g̃(a, b, c)/

√
abc approaches 64/(5π2)

as max{a, b, c}→∞. A corresponding density function q(t) remains open,
although its support is known to be the interval [5

√
3/9,∞) and its mode is 1

on empirical grounds [28].

1.31.3 Missing Sums and Differences

A more sums than differences (MSTD) set is a finite subset S of N satis-
fying |S+ S|> |S− S| . The probability that a uniform random subset of
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{0, 1, ..., n− 1} is an MSTD set is provably > 0.000428 and conjecturally ≈
0.00045, as n→∞. Underlying solution techniques [29, 30] resemble those in
[12]; the problem itself reminds us of [31].

The probability mass function of Mn= 2n− 1 − |S+ S| for arbitrary S⊆
{0, 1, ..., n− 1} appears in [32] as well as moments

lim
n→∞

E(Mn)= 10, lim
n→∞

Var(Mn)= 35.9658....

A closed-form expression for the variance is not known. What is the analog of
this result when sums are replaced by differences?
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1.32 Primitive Cusp Form

Let Sk(N) denote the vector space of weight k cusp forms on Γ0(N) with trivial
character; see [1] for background. There are two circumstances under which f∈
Sk(N) might fail to be primitive [2]:

• f∈Sk(N/d ) for some divisor d> 1 of N
• f(z)= g(d z) and g∈Sk(N/d) for some divisor d> 1 of N.

For example, let f11A denote the (unique) level 11 weight 2 cusp form, then both
f11A(z) and f11A(2z) are level 22 cusp forms. Similarly, both f14A(z) and f14A(2z)
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are level 28 cusp forms, and both f15A(z) and f15A(2z) are level 30 cusp forms.
None of these are “new” at N= 22, 28 or 30 since they arise from lower levels.

DefineS#
k (N) to be the vector space ofweight k primitive cusp forms (orHecke

newforms) on Γ0(N) with trivial character. We restrict attention to the case k=
2 henceforth. The dimension δ#0 (N) of S#

2 (N) over C possesses the following
formula [3–5]:

δ#0 (N)=µ(N) +
λ(N)

12
− ω2(N)

4
− ω3(N)

3
− κ(N)

2

where λ, κ, ω2, ω3 are multiplicative functions with

λ ( pe)=


p− 1 if e= 1,

p2 − p− 1 if e= 2,

pe−3( p+ 1)( p− 1)2 if e≥ 3,

κ (pe)=


0 if e≡ 1mod 2,

p− 2 if e= 2,

pe/2−2( p− 1)2 if 4≤ e≡ 0mod 2,

ω2 (pe)=



−1 if p= 2 and e≤ 2,

1 if p= 2 and e= 3,

0 if p= 2 and e≥ 4,(−4
p

)
− 1 if p ̸= 2 and e= 1,

−
(−4
p

)
if p ̸= 2 and e= 2,

0 if p ̸= 2 and e≥ 3,

ω3 (pe)=



−1 if p= 3 and e≤ 2,

1 if p= 3 and e= 3,

0 if p= 3 and e≥ 4,(−3
p

)
− 1 if p ̸= 3 and e= 1,

−
(−3
p

)
if p ̸= 3 and e= 2,

0 if p ̸= 3 and e≥ 3,

µ(N) is the Möbius mu function [6], and (−4/p), (−3/p) are Kronecker–Jacobi–
Legendre symbols [7]. We have asymptotic extreme results [4]

1
12 (0.3739558136...)=

1
12

∏
p

(
1 − 1

p( p−1)

)
= liminf

N→∞

δ#0 (N)

φ(N)
< limsup

N→∞

δ#0 (N)

φ(N)
= 1

12

and average behavior ∑
N≤x

δ#0 (N)=
45
2π6 x

2 + o
(
x2)
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as x→∞, where φ(N) is the Euler totient function [8] and the infinite product is
Artin’s constant [9].

For concreteness’ sake, here is a list of basis elements of S#
2 (N) for 1≤N≤ 32

[10–13]:
f11A(z)= η(z)2η(11z)2,

f14A(z)= η(z)η(2z)η(7z)η(14z),

f15A(z)= η(z)η(3z)η(5z)η(15z),

f17A(z)=
η(z)η(4z)2η(34z)5

η(2z)η(17z)η(68z)2
− η(2z)5η(17z)η(68z)2

η(z)η(4z)2η(34z)
,

f19A(z)=
(

η(8z)2η(76z)5

η(4z)η(38z)2η(152z)2
− η(2z)2η(38z)2

η(z)η(19z)
+

η(4z)5η(152z)2

η(2z)2η(8z)2η(76z)

)2

,

f20A(z)= η(2z)2η(10z)2,

f21A(z) =
η(7z)

[
3η(z)2η(7z)2η(9z)3 − η(3z)5η(7z)η(21z) + 7η(z)η(3z)2η(21z)4

]
2η(z)2η(3z)η(21z)

+
3η(7z)η(63z)

[
η(z)2η(7z)η(9z)3 − η(3z)5η(21z)

]
2η(z)η(3z)η(9z)η(21z)

+
3η(z)2η(7z)η(9z)η(63z)2

2η(3z)η(21z)
,

f23A(z)= q− 1−
√

5
2 q2 −

√
5q3 − 1+

√
5

2 q4 − (1 −
√

5)q5 − 5−
√

5
2 q6 + · · · ,

f23B(z)= q− 1+
√

5
2 q2 +

√
5q3 − 1−

√
5

2 q4 − (1 +
√

5)q5 − 5+
√

5
2 q6 + · · · ,

f24A(z)= η(2z)η(4z)η(6z)η(12z),

f26A(z)= q− q2 + q3 + q4 − 3q5 − q6 − q7 − q8 − 2q9 + 3q10 + 6q11 + q12 + · · · ,

f26B(z)= q+ q2 − 3q3 + q4 − q5 − 3q6 + q7 + q8 + 6q9 − q10 − 2q11 − 3q12 + · · · ,

f27A(z)= η(3z)2η(9z)2,

f29A(z)= q− (1−
√

2)q2 +(1−
√

2)q3 +(1− 2
√

2)q4 − q5 − (3− 2
√

2)q6 + · · · ,

f29B(z)= q− (1+
√

2)q2 +(1+
√

2)q3 +(1+ 2
√

2)q4 − q5 − (3+ 2
√

2)q6 + · · · ,

f30A(z)= η(3z)η(5z)η(6z)η(10z)− η(z)η(2z)η(15z)η(30z),

f31A(z)= q+ 1−
√

5
2 q2 − (1 −

√
5)q3 − 1+

√
5

2 q4 + q5 − (3 −
√

5)q6 + · · · ,

f31B(z)= q+ 1+
√

5
2 q2 − (1 +

√
5)q3 − 1−

√
5

2 q4 + q5 − (3 +
√

5)q6 + · · · ,

f32A(z)= η(4z)2η(8z)2
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where η(z)= q1/24∏∞
n=1 (1 − qn) is the Dedekind eta function and q= e2πiz [14].

It is natural to ask whether basis elements possessing integer coefficients neces-
sarily have an eta expression. Counterexamples might include f26A(z) and f26B(z).
Another counterexamplemight be f49A(z), which evidently can be represented via
Ramanujan’s two-variable theta function [15]. We know that [16]

1√
5
f23A(z)− 1√

5
f23B(z)= η(z)2η(23z)2

but no analogous simple expressions exist for N= 29 or N= 31 (N= 26 remains
open).

What can be said about the relative number of newforms to cusp forms in
Γ0(N)? Martin [4] proved that

lim
n→∞

1
n

∑
N≤n

δ#0 (N)

δ0(N)
=
∏
p

(
1 +

1
p

)−1(
1 − 1

p

)(
1 +

2
p
− 1
p4 − 1

p5

)
= 0.444301....

A parallel theory can be developed for weight 2 primitive cusp forms on Γ1(N)

with trivial character [5]. The answer to the same question over Γ1(N) is [4]

lim
n→∞

1
n

∑
N≤n

δ#1 (N)

δ1(N)
=
∏
p

(
1 +

1
p

)−1(
1 +

1
p
− 2
p3 − 2

p4 − 2
p5 +

1
p6 +

1
p7 +

1
p8

)
= 0.652036....

Given a weight k primitive cusp form f(z)=
∑∞

m=1 amq
m on Γ0(N), define

Lf (z)=
∞∑
m=1

amm−z, Re(z)> (k+ 1)/2.

This admits analytic continuation to all of C. What can be said about L-series
moments over all such f at z= 1/2? Conrey [17] proved that, for k= 2,

1
δ#0 (N)

∑
f∈S#

2 (N)

Lf (1/2)∼ ζ(2),

1
δ#0 (N)

∑
f∈S#

2 (N)

L2
f (1/2)∼ 2ζ(2)2

∏
p

(
1 + 1

p2

)
· ln(

√
N)

1! ,

1
δ#0 (N)

∑
f∈S#

2 (N)

L3
f (1/2)∼ 8ζ(2)3

∏
p

(
1 − 1

p

)(
1 + 1

p +
4
p2 +

1
p3 +

1
p4

)
· ln(

√
N)

3

3! ,

1
δ#0 (N)

∑
f∈S#

2 (N)

L4
f (1/2) ∼ 128ζ(2)4

∏
p

(
1 − 1

p

)3(
1+ 3

p +
11
p2 +

10
p3 +

11
p4 +

3
p5 +

1
p6

)

· ln(
√
N)

6

6!
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asN→∞ passes through the prime numbers. The expression in p can be verified
for each exponent 1≤ ℓ≤ 4 by use of a double summation [18](

1−
1
p

)ℓ(ℓ+1)/2 ∞∑
r=0

1
p2r

∞∑
j=r

(ℓ + 2j− 1
2j

) 1
p j−r(1 + 1/p)2j

(( 2j
j− r

)
−

( 2j
j− r− 1

))
.

We wonder about the Γ1(N)-analog of the four moments, as well as any
connection between such results and others given in [19].

1.32.1 Half-Integer Weights

Let k≥ 1 be an odd integer andN≥ 4 be amultiple of 4. Amodular form of weight
k/2 and levelN is an analytic function f defined on the complex upper half plane
that transforms under the action of Γ0(N) according to [2, 20, 21]

f
(
az+ b
cz+ d

)
=

(
c
d

)k

ε−k
d (cz+ d)k/2f(z) for all

(
a b
c d

)
∈Γ0(N)

and whose Fourier series f(z)=
∑∞

n=−∞ γne2πinz satisfies γn= 0 for all n< 0. For
the preceding relation, define

εd=

{
1 if d≡ 1mod 4,

i if d≡ 3mod 4.

Note that d must be odd since otherwise ad− bc would be divisible by 2,
contradicting ad− bc= 1. For negative odd d or zero c, let

(
c
d

)
=



(
c
|d|

)
if d< 0 and c> 0,

−
(
c
|d|

)
if d< 0 and c< 0,

1 if d=±1 and c= 0.

If, additionally, we have γ0 = 0, then f is a cusp form of weight k/2 and level N.
The spaceMk/2(N) ofmodular forms and the spaceSk/2(N) of cusp forms satisfy

dim(Mk/2(4))=
⌊
k
4

⌋
+ 1

and dim(Sk/2(4))= dim(Mk/2(4))− 2 if k≥ 9. Straightforward formulas for
dim(S1/2(N)) and dim(S3/2(N)) have not yet been found, but we know that
[22–25]

dim(S5/2(N))=
1
8
ψ(N)− 1

2α(N)
β(N)χ(N)

where

ψ(N)=N
∏
p|N

(
1 +

1
p

)
, χ(N)=

∑
d|N

φ

(
gcd

(
d,
N
d

))
,
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α(N)=

{
3 · 2r2(N)/2−1 if r2(N) is even,

2(r2(N)+1)/2 if r2(N) is odd,

rp(N) is the largest exponent e such that pe divides N for prime p, and

β(N)=



α(N) if r2(N)≥ 4,

3 if r2(N)= 3,

2
if r2(N)= 2 and there exists p≡ 3mod 4

such that p|N and rp(N) is odd,
3/2 otherwise.

There are slightly different formulas for dim(Sk/2(N)) for larger k as well. The
proof, due to Cohen & Oesterlé [22], has never been published.

In the following, we will need one of the two basis elements of M2(4):

F(z)=
∞∑
n=0

σ(2n+ 1)q2n+1

where σ(m) is the sum of all divisors of m. It can be shown that [2, 23]

F(z)=
η(4z)8

η(2z)4
.

The simplest half-integer weight modular form has weight 1/2 and level 4:

θ(z)=
∞∑

n=−∞
qn

2
=

η(2z)5

η(z)2η(4z)2
.

(It turns out that θ(z)4 is the other basis element ofM2(4).) Let us focus on cusp
forms henceforth [26]. The first nonzero cusp form of weight 1/2 occurs at level
1728:

1
2

∞∑
n=−∞

(
12
n

)
q3n2

= η(72z)

and the first nonzero cusp form of weight 3/2 occurs at level 28:

η(z)η(4z)η(14z)4

η(2z)η(7z)η(28z)
.

The first nonzero cusp form of level 4 has weight 9/2:

θ(z)F(z)
(
θ(z)4 − 16F(z)

)
=
η(2z)12

θ(z)3
;

the first nonzero cusp form of level 8 has weight 7/2:

η(z)2η(4z)6

η(2z)
;
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the first nonzero cusp form of level 12 has weight 5/2:

η(2z)3η(6z)3

θ(3z)
.

A prominent example is one of the two basis elements of S13/2(4):

θ(z)F(z)
(
θ(z)4 − 16F(z)

) (
θ(z)4 − 2F(z)

)
,

which is the image of ∆(z)∈S12(1) under what is called the Shimura corre-
spondence [2, 27]. Further discussion of this topic, with application to Tunnell’s
solution of the congruent number problem, is beyond our scope. We have not
mentioned newforms of half-integer weight – in fact, two distinct definitions are
commonly used, one due to Serre & Stark [28] and the other due toKohnen [29] –
but we must cease here.

1.32.2 Complex Multiplication

A cusp form f(z)=
∑∞

n=1 γnq
n ∈Sk(N) has complex multiplication (CM) by a

nontrivial Dirichlet character ξ if [30]

f(z)=
∞∑
n=1

ξ(n)γnqn;

equivalently, ξ( p)= 1 or γp= 0 for each prime p. It can be shown that ξ is
necessarily a quadratic character, thus we often refer to CM by the correspond-
ing quadratic field. There is a one-to-one correspondence between imaginary
quadratic fields of class number one [31]:

Q(
√
−1), Q(

√
−2), Q(

√
−3), Q(

√
−7), Q(

√
−11),

Q(
√
−19), Q(

√
−43), Q(

√
−67), Q(

√
−163)

and CM-newforms of weight 2 (elliptic curves with CM) up to twisting [32]:

64A4, 256A1, 27A3, 49A1, 121B1, 361A1, 1849A1, 4489A1, 26569A1

with rational coefficients. Schütt [33] classified similarly CM-newforms of weight
3 and 4.

1.32.3 Singular K3 Surfaces

We merely mention a class of projective varieties, called K3 surfaces, that are
two-dimensional analogs of elliptic curves [34]. The name K3 is given in honor
ofKummer,Kahler &Kodaira and also refers to themountainK2 [35]. Existence
of rational points is one theme; canonical heights of such points can be computed
[36, 37] as with elliptic curves.

A K3 surface over Q is not modular, in general [38]. If we restrict attention
to what are called singular (or extremal) K3 surfaces, however, then modularity
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holds with associated newform of weight 3 and possibly nontrivial Nebentypus
character [39–41]. Further, the newform is CM.

For example, the Fermat quartic surface in C̃3 :

Z4
0 + Z4

1 + Z4
2 + Z4

3 = 0

has corresponding unique CM-newform of weight 3 and level 16 [34]:

η(4z)6

which has character (−4/·). There are unique CM-newforms of weight 3 and
levels 7, 8, 11 and 15 [33, 42, 43]:

η(z)3η(7z)3,

η(z)2η(2z)η(4z)η(8z)2,(
G(z)2 + 4G(2z)2 + 8G(4z)2

)
G(z)2/G(2z),

η(3z)3η(5z)3 − η(z)3η(15z)3

where
G(z)= η(z)η(11z)

and we wonder if algebraic expressions for geometric realizations of these (for
example, as intersections of varieties) can be found.
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1.33 Cubic and Quartic Characters

In this essay, we revisit Dirichlet characters [1], but focus here on non-real cases
(that is, of order exceeding 2).

Let Z∗
n denote the group (under multiplication modulo n) of integers rela-

tively prime to n, and let C∗ denote the group (under ordinary multiplication)
of nonzero complex numbers. We wish to examine homomorphisms χ :Z∗

n →C∗

satisfying certain requirements. A Dirichlet character χ is quadratic if χ(k)2 = 1
for every k in Z∗

n . It is well-known that, if χ ̸= 1 is a primitive quadratic character
modulo n, then D=χ(−1)n is a fundamental discriminant and

χ(k)=
(
D
k

)
for all k∈Z∗

n

where (D/k) is the Kronecker–Jacobi–Legendre symbol. A character χ is real
if and only if it is quadratic. By the correspondence with (D/.), quadratic
characters can be said to be completely understood.

A Dirichlet character χ is cubic if χ(k)3 = 1 for every k in Z∗
n . Let ω=(−1 +

i
√

3)/2 where i is the imaginary unit. Let a+ bω be a prime in the ring Z[ω] of
Eisenstein–Jacobi integers with norm a2 − ab+ b2 ̸= 3. For any positive integer
n in Z, define the cubic residue symbol [2, 3](

n
a+ bω

)
3
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to be 0 if n is divisible by a+ bω; otherwise it is the unique power ωj for 0≤ j≤ 2
such that

n(a
2−ab+b2−1)/3 ≡ω j mod(a+ bω).

The only prime divisor of 9 is 1 − ω, which has norm 3. Hence we will need an
alternative way of representing characters:

fq(n, k)=
{
ωe if n≡ ke mod q,
0 otherwise,

especially in the case q= 9. The first several cubic characters are

f7(n, 5)=
(

n
2+3ω

)
3

∣∣∣
n=1,...,7

= {1, ω, ω2, ω2, ω, 1, 0},

f7(n, 3)=
(

n
−1−3ω

)
3

∣∣∣
n=1,...,7

= {1, ω2, ω, ω, ω2, 1, 0},

f9(n, 2)|n=1,...,9 = {1, ω, 0, ω2, ω2, 0, ω, 1, 0},

f9(n, 5)|n=1,...,9 = {1, ω2, 0, ω, ω, 0, ω2, 1, 0},

f13(n, 2)=
(

n
−4−3ω

)
3

∣∣∣
n=1,...,13

= {1, ω, ω, ω2, 1, ω2, ω2, 1, ω2, ω, ω, 1, 0},

f13(n, 6)=
(

n
−1+3ω

)
3

∣∣∣
n=1,...,13

= {1, ω2, ω2, ω, 1, ω, ω, 1, ω, ω2, ω2, 1, 0},

f19(n, 2) =
(

n
2−3ω

)
3

∣∣∣
n=1,...,19

= {1, ω, ω, ω2, ω, ω2, 1, 1, ω2, ω2, 1, 1, ω2, ω,

ω2, ω, ω, 1, 0},

f19(n, 10) =
(

n
5+3ω

)
3

∣∣∣
n=1,...,19

= {1, ω2, ω2, ω, ω2, ω, 1, 1, ω, ω, 1, 1, ω, ω2, ω,

ω2, ω2, 1, 0},

f31(n, 3) =
(

n
5+6ω

)
3

∣∣∣
n=1,...,31

= {1, 1, ω, 1, ω2, ω, ω, 1, ω2, ω2, ω2, ω, ω2, ω, 1, 1, ω, ω2, ω, ω2,

ω2, ω2, 1, ω, ω, ω2, 1, ω, 1, 1, 0},

f31(n, 11) =
(

n
−1−6ω

)
3

∣∣∣
n=1,...,31

= {1, 1, ω2, 1, ω, ω2, ω2, 1, ω, ω, ω, ω2, ω, ω2, 1, 1, ω2, ω, ω2, ω,

ω, ω, 1, ω2, ω2, ω, 1, ω2, 1, 1, 0},
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f37(n, 2) =
(

n
−4+3ω

)
3

∣∣∣
n=1,...,37

= {1, ω, ω2, ω2, ω2, 1, ω2, 1, ω, 1, 1, ω, ω2, 1, ω, ω, ω, ω2, ω2, ω,

ω, ω, 1, ω2, ω, 1, 1, ω, 1, ω2, 1, ω2, ω2, ω2, ω, 1, 0},

f37(n, 5) =
(

n
−7−3ω

)
3

∣∣∣
n=1,...,37

= {1, ω2, ω, ω, ω, 1, ω, 1, ω2, 1, 1, ω2, ω, 1, ω2, ω2, ω2, ω, ω, ω2,

ω2, ω2, 1, ω, ω2, 1, 1, ω2, 1, ω, 1, ω, ω, ω, ω2, 1, 0}.

A Dirichlet character χ is quartic (biquadratic) if χ(k)4 = 1 for every k in Z∗
n .

Let a+ bi be a prime in the ring Z[i] of Gaussian integers with norm a2 + b2 ̸= 2.
For any positive integer n in Z, define the quartic (biquadratic) residue symbol
[2, 3] (

n
a+ bi

)
4

to be 0 if n is divisible by a+ bi; otherwise it is the unique power ij for 0≤ j≤ 3
such that

n(a
2+b2−1)/4 ≡ i j mod(a+ bi).

The only prime divisor of 16 is 1 + i, which has norm 2. We will again need
alternative ways of representing characters:

fq(n, k)=

{
i e if n≡ ke mod q,

0 otherwise,

gq(n, k)=

{
i e if n≡ ke mod q or q− n≡ ke mod q,

0 otherwise,

hq(n, k, ℓ,m)=


i e if n≡ ke mod q or n≡ ℓe mod q,

(−1)e+1 if q− n≡me mod q,

0 otherwise,

especially in the cases q= 15, 16, 20 and 35. The first several non-real quartic
characters are

f5(n, 2)=
(

n
−1−2i

)
4

∣∣∣
n=1,...,5

= {1, i,−i,−1, 0},

f5(n, 3)=
(

n
−1+2i

)
4

∣∣∣
n=1,...,5

= {1,−i, i,−1, 0},

f13(n, 2)=
(

n
3−2i

)
4

∣∣∣
n=1,...,13

= {1, i, 1,−1, i, i,−i,−i, 1,−1,−i,−1, 0},

f13(n, 7)=
(

n
3+2i

)
4

∣∣∣
n=1,...,13

= {1,−i, 1,−1,−i,−i, i, i, 1,−1, i,−1, 0},
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g15(n, 2)|n=1,...,15 = {1, i, 0,−1, 0, 0,−i,−i, 0, 0,−1, 0, i, 1, 0},

g15(n, 8)|n=1,...,15 = {1,−i, 0,−1, 0, 0, i, i, 0, 0,−1, 0,−i, 1, 0},

g16(n, 3)|n=1,...,16 = {1, 0, i, 0,−i, 0,−1, 0,−1, 0,−i, 0, i, 0, 1, 0},

g16(n, 5)|n=1,...,16 = {1, 0,−i, 0, i, 0,−1, 0,−1, 0, i, 0,−i, 0, 1, 0},

h16(n, 3, 5, 9)|n=1,...,16 = {1, 0, i, 0, i, 0, 1, 0,−1, 0,−i, 0,−i, 0,−1, 0},

h16(n, 11, 13, 9)|n=1,...,16 = {1, 0,−i, 0,−i, 0, 1, 0,−1, 0, i, 0, i, 0,−1, 0},

f17(n, 3)=
(

n
1−4i

)
4

∣∣∣
n=1,...,17

= {1,−1, i, 1, i,−i,−i,−1,−1,−i,−i, i, 1, i,−1, 1, 0},

f17(n, 6)=
(

n
1+4i

)
4

∣∣∣
n=1,...,17

= {1,−1,−i, 1,−i, i, i,−1,−1, i, i,−i, 1,−i,−1, 1, 0},

g20(n, 3)|n=1,...,20 = {1, 0, i, 0, 0, 0,−i, 0,−1, 0,−1, 0,−i, 0, 0, 0, i, 0, 1, 0},

g20(n, 7)|n=1,...,20 = {1, 0,−i, 0, 0, 0, i, 0,−1, 0,−1, 0, i, 0, 0, 0,−i, 0, 1, 0},

f29(n, 2) =
(

n
−5−2i

)
4

∣∣∣
n=1,...,29

= {1, i, i,−1,−1,−1, 1,−i,−1,−i, i,−i,−1, i,−i, 1, i,−i, i, 1,
i,−1, 1, 1, 1,−i,−i,−1, 0},

f29(n, 8) =
(

n
−5+2i

)
4

∣∣∣
n=1,...,29

= {1,−i,−i,−1,−1,−1, 1, i,−1, i,−i, i,−1,−i, i, 1,−i, i,−i, 1,
−i,−1, 1, 1, 1, i, i,−1, 0},

g35(n, 2)|n=1,...,35 = {1, i, i,−1, 0,−1, 0,−i,−1, 0, 1,−i, i, 0, 0, 1,−i,−i, 1, 0,
0, i,−i, 1, 0,−1,−i, 0,−1, 0,−1, i, i, 1, 0},

g35(n, 18)|n=1,...,35 = {1,−i,−i,−1, 0,−1, 0, i,−1, 0, 1, i,−i, 0, 0, 1, i, i, 1, 0,
0,−i, i, 1, 0,−1, i, 0,−1, 0,−1,−i,−i, 1, 0},

f37(n, 2) =
(

n
−1+6i

)
4

∣∣∣
n=1,...,37

= {1, i,−1,−1,−i,−i, 1,−i, 1, 1,−1, 1,−i, i, i, 1,−i, i,−i, i,
−1,−i,−i, i,−1, 1,−1,−1, i,−1, i, i, 1, 1,−i,−1, 0},

f37(n, 5) =
(

n
−1−6i

)
4

∣∣∣
n=1,...,37

= {1,−i,−1,−1, i, i, 1, i, 1, 1,−1, 1, i,−i,−i, 1, i,−i, i,−i,
−1, i, i,−i,−1, 1,−1,−1,−i,−1,−i,−i, 1, 1, i,−1, 0}.
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We mention that [4]

# Dirichlet characters of
order ℓ and modulus n

=
# solutions x in Z∗

n of
the equation xℓ = 1

and thus, by Möbius inversion,

# primitive quadratic Dirichlet
characters of modulus ≤N

∼ 6
π2N,

# primitive cubic Dirichlet
characters of modulus ≤N

∼AN,

# primitive quartic Dirichlet
characters of modulus ≤N

∼BN ln(N),

as N→∞, where [5–7]

A=
11
√

3
18π

∏
p≡1 mod 3

(
1 − 2

p( p+ 1)

)
= 0.3170565167...,

B=
7
π

1
16K2

∏
p≡1 mod 4

(
1 − 5p− 3

p2( p+ 1)

)
= 0.1908767211...

andK is the Landau–Ramanujan constant [8]. No one appears to have examined
B before.

Now define the Dirichlet L-series associated to χ ̸= 1:

Lχ(z)=
∞∑
n=1

χ(n)n−z=
∏
p

(1 − χ( p)p−z)
−1
, Re(z)> 1,

which can be made into an entire function. Special values are more complicated
for cubic/quartic characters than for quadratic characters [1]. For example, if
χ=(·/(2 + 3ω))3, then

Lχ(1)= 7−2/3(−2 − 3ω)1/3
(
ω2 ln(y1) + ω ln(y2) + ln(y3)

)
where y1< y2< y3 are the (real) zeroes of y3 − 7y2 + 14y− 7; if χ= f9(·, 2), then

Lχ(1)=− 2
3ω

1/3 (ω2 ln
(
sin
(

2π
9

))
+ ω ln

(
cos
(
π
18

))
+ ln

(
sin
(
π
9

)))
.

As more examples, if χ=(·/(−1 − 2i))4, then

Lχ(1)= 21/25−5/4(3 + 4i)1/4π;

if χ= g16(·, 3), then

Lχ(1)=− 1
2 i

1/4 (i ln (cot ( 3π
16

))
+ ln

(
tan
(
π
16

)))
;



“C01” — 2018/10/27 — 11:56 — page 237 — #237

1.33 Cubic and Quartic Characters 237

if χ= h16(·, 3, 5, 9), then
Lχ(1)= 8−1/2i1/4π.

See a general treatment of quartic cases in [9].
The elaborate formulas for moments of Lχ(1/2) over primitive quadratic

characters χ do not yet appear to have precise analogs for primitive cubic
characters. Baier & Young [10] proved that∑

q≤Q

∑
χ

|Lχ(1/2)|2 =O
(
Q6/5+ε

)
as Q→∞, for any ε> 0, where the big-O constant depends on ε. The inner
summation is over all primitive cubic characters modulo q. As a consequence,
Lχ(1/2) ̸= 0 for infinitely many such χ.

1.33.1 Cubic Twists

Given an elliptic curve E over Q with L-series

LE(z)=
∞∑
n=1

cnn−z,

the L-series obtained via twisting LE(z) by a cubic character χ is

LE,χ(z)=
∞∑
n=1

χ(n)cnn−z.

Of course, while each cn ∈Z, the coefficients χ(n)cn ∈Z[ω] need not be real.
This generalizes the sense of quadratic twists discussed in [11]; we refer to
a paper of David, Fearnley & Kisilevsky [6] for more information on such
L-series.

There is a different sense of cubic twists that interests us – it is important for
the study of the family of elliptic curves Fd given by x3 + y3 = d – and features the
cubic residue symbol (d/·)3 in an intriguing way. We mentioned the problem of
evaluating LFd(1) for cube-free d> 2 in [11] but did not give details. By definition
[12],

LFd(z) =
∑
a,b∈Z

a≡1 mod 3
b≡0 mod 3

(a+ bω2)

(
d

a+ bω

)
3
(a2 − ab+ b2)−z

=
∑
a,b∈Z

a≡1 mod 3
b≡0 mod 3

(a+ bω)
(

d
a+ bω2

)
3
(a2 − ab+ b2)−z

=
∏

p≡2 mod 3

(1 + p1−2z)−1 ·
∏

p≡1 mod 3

(1 − cpp−z + p1−2z)−1
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where

cp=(h+ kω2)

(
d

h+ kω

)
3
+ (h+ kω)

(
d

h+ kω2

)
3

and p=(h+ kω)(h+ kω2), h≡ 1mod 3, k≡ 0mod 3. To extend to composite
indices, use the usual recurrence cp j = cp j−1cp − p cp j−2 for j≥ 2, c1 = 1 and cm n=

cmcn for coprime integers m, n.
For d= 1 and p≡ 1mod 3, it is known that cp= γp, where γp is the unique

integer α≡ 2mod 3 such that α2 + 3β2 = 4p for some integer β≡ 0mod 3. Now,
for d> 1 and p≡ 1mod 3, p - d, it can be shown that cp is the unique integer
α≡ 2mod 3 such that three conditions:

• α2 + 3β2 = 4p for some integer β
• α≡ d( p−1)/3γp mod p
• |α|< 2

√
p

are simultaneously satisfied [13].
Sextic twists are required to study Bachet’s equation y2 = x3 + n for arbitrary

n (the Fermat cubic problem is a special case with n=−432d2 and d cube-free).
Such residue symbols are beyond us. Here is a formula for L-series coefficients
cp in this more general setting: when p= 3, p|n or p≡ 2mod 3, we have cp= 0;
otherwise [14]

cp=
(
n
p

)
·


2a− b if (4n)( p−1)/3 ≡ 1mod p,

−a− b if (4n)( p−1)/3b≡−amod p,

2b− a if (4n)( p−1)/3a≡−bmod p,

where p= a2 − ab+ b2 with a≡ 1mod 3, b≡ 0mod 3 and (·/·) is the Kronecker–
Jacobi–Legendre symbol. The sequence of integers for which y2 = x3 + n has zero
rank [15]:

...,−12,−10,−9,−8,−6,−5,−3,−1, 1, 4, 6, 7, 13, 14, 16, 20, ...

deserves close attention!

1.33.2 Quartic Twists

Quartic twists are required to study y2 = x3 − n x for arbitrary n (the congruent
number problem is a special case with n= d2 and d square-free [11]). Analogous
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to the expression for LFd(z),

LEn(z) =
∑
a,b∈Z

a≡1 mod 4
b≡0 mod 2

(a− bi)
(

−n
a+ bi

)
4
(a2 + b2)−z

=
∑
a,b∈Z

a≡1 mod 4
b≡0 mod 2

(a+ bi)
(

−n
a− bi

)
4
(a2 + b2)−z.

Here also is the corresponding formula for L-series coefficients cp: when p= 2,
p|n or p≡ 3mod 4, we have cp= 0; otherwise [14]

cp= 2
(
2
p

)
·


−a if n( p−1)/4 ≡ 1mod p,

a if n( p−1)/4 ≡−1mod p,

−b if n( p−1)/4b≡−amod p,

b if n( p−1)/4b≡ amod p,

where p= a2 + b2 with a≡ 3mod 4, b≡ 0mod 2. Again, the sequence of integers
for which y2 = x3 − n x has zero rank [15]:

...,−12,−11,−10,−7,−6,−4,−2,−1, 1, 3, 4, 8, 9, 11, 13, 18, ...

is worthy of deeper study.
As a quintic follow-on to [5, 7], we merely mention [16].
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1.34 Distribution of Error Terms

Let νN be a random integer chosen uniformly in [1,N]. Let φ(n) denote the
number of positive integers m≤ n satisfying gcd(m, n)= 1 and σ(n) denote the
sum of all divisors of n. The limiting probability distributions of φ(νN)/νN and
σ(νN)/νN, as N→∞, are continuous but singular in the sense that

Fφ(x)= lim
N→∞

# {n≤N :φ(n)/n≤ x}
N

, Fσ(x)= lim
N→∞

# {n≤N :σ(n)/n≤ x}
N

satisfy F ′
φ = 0=F ′

σ almost everywhere [1–3]. Considerable effort is needed, for
example, to compute that 1 − Fσ(2)= 0.247..., the density of abundant numbers
relative to the set of positive integers [4]. See [5–9] for recent work concerning Fφ

and Fσ.
Starting from

lim
N→∞

E
(
φ(νN)

νN

)
= lim

N→∞

1
N

∑
n≤N

φ(n)
n

=
6
π2 ,

lim
N→∞

E
(
σ(νN)

νN

)
= lim

N→∞

1
N

∑
n≤N

σ(n)
n

=
π2

6
,

we examine distributions that perhaps are more open to analysis. Define error
terms

H(n)=
∑
m≤n

φ(m)
m

− 6
π2 n,

K(n)=
∑
m≤n

σ(m)
m

− π2

6
n+

1
2

ln(n) +
γ + ln(2π)

2
,

then it can be shown that [10–19]

lim
N→∞

E (H(νN))=
3
π2 , lim

N→∞
Var (H(νN))=

1
2π2 − 3

π4 ,

lim
N→∞

E (K(νN))=
π2

12
, lim

N→∞
Var (K(νN))=

5π2

144
− π4

432
.

Further, it is known that the limiting distributions corresponding to H(νN)−
3/π2 and K(νN)− π2/12 are symmetric and all corresponding odd moments
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vanish. In particular, the skewness coefficients of both quantities are zero. What
is not precisely known are the kurtosis excesses:

E
[
(H(νN)− E (H(νN)))

4
]

Var (H(νN))
2 − 3=−0.93...,

E
[
(K(νN)− E (K(νN)))

4
]

Var (K(νN))
2 − 3= 0.10...,

which would imply that tails are thin for H(νN) and tails are fat for K(νN). This
may be a consequence of the simple fact that the support of the distribution for
φ(νN)/νN is [0, 1] whereas the support of the distribution for σ(νN)/νN is [0,∞).

Exact formulas for all even moments would allow us to accurately construct
the distributions corresponding to H(νN) and K(νN). Evaluating the fourth
moments, however, seems to be hard. Related material includes [20–23].
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1.35 Cilleruelo’s LCM Constants

Let a, b be coprime integers such that a≥ 1, a+ b≥ 1. The Prime Number
Theorem for Arithmetic Progressions implies that

ln
(

lcm
1≤k≤n

{a k+ b}
)
∼An

as n→∞, where the constant A is

A=
a

φ(a)

∑
1≤ j≤a,

gcd( j,a)=1

1
j

(independent of b) and φ is the Euler totient function [1, 2]. What happens if we
replace the linear polynomial ax+ b by a quadratic polynomial ax2 + bx+ c?On
the one hand, if the quadratic is reducible over the integers, then there is not
much change (the growth rate is still An for some new rational number A). On
the other hand, if the quadratic is irreducible over the integers, then there is a
more interesting outcome [3]:

ln
(

lcm
1≤k≤n

{
a k2 + b k+ c

})
= n ln(n) + Bn+ o(n)

as n→∞, where the constant B will occupy our attention for the remainder of
this essay.
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Henceforth we set a= 1, b= 0, c∈{1, 2,−2}. It follows that the fundamental
discriminant d∈{−4,−8, 8}. The constant B for our three special cases is

B = γ − 1 − 1
2

ln(2)−
∞∑
k=1

(
ζ ′(2k)
ζ(2k)

−
L′
d(2

k)

Ld(2k)
+

ln(2)
22k − 1

)
+
L′
d(1)

Ld(1)

=


−0.0662756342... if c= 1,

−0.4895081630... if c= 2,

0.3970903472... if c=−2.

As an example, if c= 1, we have [4]

L′
−4(1)

L−4(1)
= ln

(
2πeγ

Γ( 3
4 )

2

Γ( 1
4 )

2

)
= ln

(
π2eγ

2Λ2

)
where Λ is Gauss’ lemniscate constant [5]; it can be shown here that

B=−3 − 3
2

ln(2) + 2γ + 4C̃

where C̃= 0.7047534517... is the second-order constant corresponding to non-
hypotenuse numbers [6, 7]. Similar relationships with second-order constants
listed in [8] can be found.

Cilleruelo [3] further noted that, in the general case,

B=C0 + Cd + C(f)

where

C0 = γ − 1 − 2 ln(2)−
∞∑
k=1

ζ ′(2k)
ζ(2k)

=−1.1725471674...

is universal,

Cd=
∞∑
k=0

L′
d(2

k)

Ld(2k)
−
∑
p|d

∞∑
k=1

ln( p)
p2k − 1

depends only on d, and C(f) is too complicated to reproduce (but is equal to
(3/2) ln(2) for our three special cases). Although other irreducible quadratics are
examined in [3], we note the absence of x2 ± 3 and wonder what can be deduced
here. See also [9–12].
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1.36 Amicable Pairs and Aliquot Sequences

If n is a positive integer, let s(n) denote the sum of all positive divisors of n that
are strictly less than n. Then n is said to be perfect or 1-sociable if s(n)= n. We
mentioned perfect numbers in [1], asking whether infinitely many exist, but did
not report their reciprocal sum [2]

1
6
+

1
28

+
1

496
+

1
8128

+
1

33550336
+

1
8589869056

+ · · ·= 0.2045201428....

This constant can, in fact, be rigorously calculated to 149 digits (and probably
much higher accuracy if needed).

Define sk(n) to be the kth iterate of s with starting value n. The integer n is
amicable or 2-sociable if s2(n)= n but s(n) ̸= n. Such phrasing is based on older
terminology [3]: two distinct integers m, n are said to form an “amicable pair”
if s(m)= n and s(n)=m. The (infinite?) sequence of amicable numbers possesses
zero asymptotic density [4] and, further, has reciprocal sum [5–8]

1
220

+
1

284
+

1
1184

+
1

1210
+

1
2620

+
1

2924
+

1
5020

+
1

5564

+
1

6232
+

1
6368

+ · · ·= 0.0119841556....

In contrast with the preceding, none of the digits are provably correct. The
best rigorous upper bound for this constant is 222; deeper understanding of
the behavior of amicable numbers will be required to improve upon this poor
estimate.

Fix k≥ 3. An integer n is k-sociable if sk(n)= n but sℓ(n) ̸= n for all 1≤ ℓ<

k. No examples of 3-sociable numbers are known [9, 10]; the first example for 4≤
k< 28 is the 5-cycle {12496, 14288, 15472, 14536, 14264} and the next example is
the 4-cycle {1264460, 1547860, 1727636, 1305184}. LetSk denote the sequence of
all k-sociable numbers and S be the union of Sk over all k. It is conjectured that
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the (infinite?) sequence S possesses zero asymptotic density and progress toward
confirming this appears in [11]. No one is ready to compute the reciprocal sum
of S; a proof of convergence would seem to be faraway.

As an aside, we mention the sequence of prime-indexed primes, which is clearly
infinite and has reciprocal sum [12]

1
3
+

1
5
+

1
11

+
1
17

+
1
31

+
1
41

+
1
59

+
1
67

+
1
83

+
1

109
+

1
127

+
1

157
+

1
179

+
1

191
+ · · · = 1.0432015....

Again, this is conjectural only. The best rigorous lower/upper bounds for this
constant are 1.04299 and 1.04365 [2]. Such bounds are tighter than those
(1.83408 and 2.34676) for the reciprocal sum of twin primes [13].

A positive integer n is deficient if s(n)< n. A primitive nondeficient number is
nondeficient yet all its proper divisors are deficient. As another aside, wemention
the reciprocal sum of such numbers [8]:

1
6
+

1
20

+
1
28

+
1
70

+
1
88

+
1

104
+

1
272

+
1

304

+
1

368
+

1
464

+
1

496
+

1
550

+ · · ·= 0.3481648657...

and note that the best rigorous upper bound for this constant is 13.7.
Our main interest is in the “aliquot sequence” {sk(n))∞k=1, where we assume

without loss of generality that n is even. For example, if n= 12, the sequence
{16, 15, 9, 4, 3, 1} is finite (terminates at 1). From earlier, we know that infinite
cyclic behavior is possible. Does an infinite unbounded aliquot sequence exist? On
the one hand, starting with n= 276, extensive computation has yielded 1769
terms with no end in sight [14–18]; probabilistic arguments in [19, 20], based
on the arithmetic mean of s(2n)/(2n), also support a belief that most sequences
grow without bound.

On the other hand, the geometric mean of s(2n)/(2n):

N

√√√√ N∏
n=1

s(2n)
2n

= exp

(
1
N

N∑
n=1

ln
(
s(2n)
2n

))

(which seems a more appropriate tool than a simple average) predicts the
opposite. Bosma & Kane [21] proved that

λ = lim
N→∞

1
N

N∑
n=1

ln
(
s(2n)
2n

)
=2α(2)+

∑
p≥3

α( p)−
∑
j≥1

(2βj(2)−1)
∏
p≥3

βj( p)

 1
j

= −0.0332594808... < 0,

which implies that the geometric mean µ= exp(λ)= 0.9672875344... < 1. The
indicated numerical estimates are due to Sebah [22]. Sums and products over
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p are restricted to primes; further,

α( p)=
(
1 − 1

p

) ∞∑
m=1

1
pm

ln
(
pm+1 − 1
pm( p− 1)

)
,

βj( p)=
(
1 − 1

p

) ∞∑
m=0

1
pm

(
pm+1 − 1
pm( p− 1)

)−j

.

The fact that µ< 1 suggests that aliquot sequences tend to decrease ultimately,
evidence in favor of the Catalan–Dickson conjecture. It would be good to
compute other related constants, appearing in [23], to similar levels of precision.

From [1, 24], the probability that s(n) exceeds n, for arbitrary n, is

lim
n→∞

1
n
.

∣∣∣∣{i≤ n :
s(i)
i
> 1

}∣∣∣∣= 0.2476...

(what was called A(2)). The fact that these odds are significantly less than 1/2
again suggests that unboundedness is a rare event, if it occurs at all.
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1.37 Fermat Numbers and Elite Primes

The Fermat numbers Fn= 22n + 1 satisfy a quadratic recurrence [1]

Fn+1 =(Fn − 1)2 + 1, n≥ 0

and are pairwise coprime. It is conjectured that Fn are always square-free and
that, beyond F4, they are never prime. The latter would imply that there are
exactly 31 regular polygons with an odd number Gm of sides that can be con-
structed by straightedge and compass [2]. The values G1, G2, . . ., G31 encompass
all divisors of 232 − 1 except unity [3]. Let G0 = 1. If we scan each row of Pascal’s
triangle modulo 2 as a binary integer, then the numbers Gm (listed in ascending
order) are naturally extended without bound. The reciprocal sum [4]

∞∑
m=0

1
Gm

=

∞∏
n=0

(
1 +

1
Fn

)
= 1.7007354952...

is irrational [2]; by contrast,
∞∑
m=0

(−1)tm

Gm
=

1
2

is rational, where {tm} is the Thue–Morse sequence {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, ...}
[5]. Golomb [6] proved that

∞∑
n=0

1
Fn

= 0.5960631721...

is irrational and Duverney [7] proved that it is transcendental; there is evidence
that Mahler possessed these results far earlier [8].

Let P denote the set of all primes p for which there exists n such that p divides
Fn. Křížek, Luca & Somer [9] proved that∑

p∈P

1
p
= 0.5976404758...
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is convergent, answering a question raised in [10]. The series
∑

d∈D 1/d likewise
converges, where D is the set of all divisors d> 1 (prime or composite) for which
there exists n such that d divides Fn. The smallest element ofD not in P is F5 itself
[11, 12].

A prime p is called elite [13] if there exists m for which all Fn with n>m are
quadratic non-residues of p, that is, the equation

x2 ≡Fn mod p

has no solutions x for n>m. LetE denote the (infinite?) set of all elite primes. The
series [14–17] ∑

p∈E

1
p
= 0.7007640115...

is convergent [9]. This numerical evaluation, as well as that for the series over
p∈P, is non-rigorous. For our calculation over p∈E to be valid, we would need

# { p∈E : p≤ q}=O(ln(q))

as q→∞; the best current bound is O
(
q/ ln(q)2

)
, hence improvement in our

knowledge of E will be required. Generalization to the numbers Fb,n= b2n + 1,
for fixed integer b≥ 2, is found in [18].

We conclude with the fact that
∞∑
n=0

1
22n = 0.8164215090...

is transcendental, proved by Kempner [19] and revisited in [20].
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1.38 Average Least Nonresidues

Fifty years separate two computations: the mean value of a certain function f( p)
over primes p, mentioned in [1], and the mean value of f(m) over all positive
integersm.We anticipate that the overlap between number theory and probability
will only deepen with time.

1.38.1 Quadratic

Let f(m) be the smallest positive quadratic nonresidue modulo m> 2. Erdős [2]
proved that

lim
x→∞

 ∑
2<p≤x

1

−1 ∑
2<p≤x

f( p)=
∞∑
k=1

pk
2k

= 3.6746439660...

where p1 = 2, p2 = 3, p3 = 5, … is the sequence of prime numbers. Pollack [3, 4]
extended this result to

lim
x→∞

 ∑
2<m≤x

1

−1 ∑
2<m≤x

f(m)=
∞∑
k=1

pk − 1
p1p2 · · · pk−1

= 2.9200509773....

In words, the right-hand side is the average value of the least prime not divid-
ing m.
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1.38.2 Character

Given a fundamental discriminant D, let F(D) be the least positive integer n
for which (D/n) /∈{0, 1}. The set of all real primitive Dirichlet characters χ,
except the principal character χ0, is encompassed by (D/.) as D runs over all
fundamental discriminants [5]. It can be shown that [3, 6]

lim
x→∞

∑
|D|≤x

1

−1 ∑
|D|≤x

F(D)=
∑
q

q2

2(q+ 1)

∏
p<q

p+ 2
2( p+ 1)

= 4.9809473396...

where p, q are primes.
What is the corresponding result for the set of all complex nonprincipal

Dirichlet characters χ? Given an integer m> 2, let

F ′(m)=
∑

χ (modm),
χ ̸=χ0

(the least positive integer n for which χ(n) /∈{0, 1}) ,

noting that F ′(8)=F(8) + F(4) + F(−8)= 3 + 3 + 5= 11, for example [7], and∑
χ 1=φ(m) where φ is the Euler totient function. Martin & Pollack [8] proved

that

lim
x→∞

 ∑
2<m≤x

(φ(m)− 1)

−1 ∑
2<m≤x

F ′(m) =
∞∑
k=1

p2
k

( p1 + 1)( p2 + 1) · · · ( pk + 1)

= 2.5350541804....

What is the corresponding result for the set of all complex primitive Dirichlet
characters χ? Given an integer m> 2, let

F ′′(m)=
∑

χ (modm),
χ primitive

(the least positive integer n for which χ(n) /∈{0, 1}) ,

noting that F ′′(8)=F(8) + F(−8)= 8 and
∑

χ 1=ψ(m) where ψ is given by [5]

ψ(m)=
∑
d|m

φ(d)µ(m/d)

and µ is the Möbius mu function. We may use the fact that χ is primitive if and
only if the Gauss sum [9]

m∑
k=1

χ(k) exp
(

2πikn
m

)
= 0 whenever gcd(n,m)> 1.
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It can be shown that [8]

lim
x→∞

 ∑
2<m≤x

ψ(m)

−1 ∑
2<m≤x

F ′′(m) =
∑
q

q4

(q+ 1)2(q− 1)

∏
p<q

p2 − p− 1
( p+ 1)2( p− 1)

= 2.1514351057....

1.38.3 Variations

Let G(m) denote the least q such that the primes ≤ q generate Z∗
m, the multi-

plicative group modulo m. Also let G′(m) denote the unique index k satisfying
pk= q. The latter function was first examined experimentally in [11]. For prime
arguments, assuming that the Generalized RiemannHypothesis is true, it follows
that [3, 10]

lim
x→∞

 ∑
2<p≤x

1

−1 ∑
2<p≤x

G( p)= 3.9748384704...,

lim
x→∞

 ∑
2<p≤x

1

−1 ∑
2<p≤x

G′( p)= 2.2060828940...

but the infinite series expressions for these constants are too elaborate to present
here. For arbitrary integer arguments, Bach [12, 13] proved that ∑

2<m≤x

1

−1 ∑
2<m≤x

G(m)≥ (1 + o(1)) ln ln x ln ln ln x

as x→∞ and conjectured that the reverse inequality is valid too. The connection
between G(m) and least character nonresidues is [14]

G(m)= max
χ (modm),

χ ̸=χ0

(the least positive integer n for which χ(n) /∈{0, 1}) .

Previously we examined a sum F ′(m); here we examine a maximum.
Another interesting connection is that f( p) is the least positive integer n for

which (n/p) /∈{0, 1}.
Let h(m) be the least prime p for which (m/p) /∈{0, 1}. Let h′(m) be the least

prime q for which (m/q) ̸= 1. Since p≥ q, it is not surprising that [15]

C= lim
x→∞

1
x

∑
m≤x

h(m)=
∞∑
j=1

pj − 1
2 j

j−1∏
i=1

(
1 +

1
pi

)
= 5.6043245854...
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is greater than

lim
x→∞

1
x

∑
m≤x

h′(m)=
∞∑
j=1

pj + 1
2 j

j−1∏
i=1

(
1 − 1

pi

)
= 2.5738775742....

The first (larger) average was examined by Elliott [16], but the second expression
in pi, pj mistakenly appeared as the outcome.

Let k(m) be the least prime p such that m is a quadratic nonresidue modulo
p. It is easy to see that k(m)= h(m) except when h(m)= 2, in which case k(m)>
h(m). We have finally

lim
x→∞

1
x

∑
m≤x

k(m)=
∞∑
j=2

pj − 1
2 j−1

j−1∏
i=2

(
1 +

1
pi

)
=

4
3

(
C− 1

2

)
= 6.8057661139...

and wonder whether mean square analogs of these results are within reach.

Acknowledgments I thank Eric Bach for his extensive computations involving
G( p) and Greg Martin for theoretical help regarding h(m), h′(m) and k(m).
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1.39 Apollonian Circles with Integer Curvatures

Given four mutually tangent circles (one of them internally tangent to the other
three), we can inscribe into each of the remaining curvilinear triangles a unique
circle. Continuing iteratively in this manner, we obtain what is known as an
Apollonian circle packing. If the initial four circles possess integer curvatures
(reciprocal radii), then all of the circles in the packing possess integer curva-
tures. Some introductory accounts of this subject include [1–4]. We examine just
two examples, the first starting with curvatures {−1, 2, 2, 3} (Figure 1.21) and the
second starting with curvatures {−11, 21, 24, 28} (Figure 1.22). The outer circle
is given negative curvature – indicating that the other circles are in its interior –
and it is the unique circle with this property.

How are the integer curvatures obtained for each example? Define four 4× 4
matrices

S1 =


−1 2 2 2

0 1 0 0

0 0 1 0

0 0 0 1

 , S2 =


1 0 0 0

2 −1 2 2

0 0 1 0

0 0 0 1



S3 =


1 0 0 0

0 1 0 0

2 2 −1 2

0 0 0 1

 , S4 =


1 0 0 0

0 1 0 0

0 0 1 0

2 2 2 −1



36 6

6 6

14 14

14

18 18

15

15

1111 23

18 18

1111

14

3

2

–1

2

Figure 1.21 Bugeye circle packing.



“C01” — 2018/10/27 — 11:56 — page 254 — #254

254 Number Theory and Combinatorics

28

157

181

132

189

204

96
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132
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85

61
52

21

–11

24

Figure 1.22 Nickel-dime-quarter packing.

and consider products Sj1Sj2 · · · Sjn with each jk ∈{1, 2, 3, 4} and jk ̸= jk+1 for any
k. The second generation of circles has curvatures

(S4w)4 = 3,
(S3w)3 = 6,
(S2w)2 = 6,
(S1w)1 = 15

when w=(−1, 2, 2, 3) (the bugeye circle packing) and

(S4w)4 = 40,
(S3w)3 = 52,
(S2w)2 = 61,
(S1w)1 = 157

when w=(−11, 21, 24, 28) (the nickel-dime-quarter packing). The third genera-
tion of circles has curvatures

(S1S4w)1 = 15, (S2S4w)2 = 6, (S3S4w)3 = 6,
(S1S3w)1 = 23, (S2S3w)2 = 14, (S4S3w)4 = 11,
(S1S2w)1 = 23, (S3S2w)3 = 14, (S4S2w)4 = 11,
(S2S1w)2 = 38, (S3S1w)3 = 38, (S4S1w)4 = 35

when w=(−1, 2, 2, 3) and

(S1S4w)1 = 181, (S2S4w)2 = 85, (S3S4w)3 = 76,
(S1S3w)1 = 213, (S2S3w)2 = 117, (S4S3w)4 = 96,
(S1S2w)1 = 237, (S3S2w)3 = 132, (S4S2w)4 = 120,
(S2S1w)2 = 397, (S3S1w)3 = 388, (S4S1w)4 = 376
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when w=(−11, 21, 24, 28). The fourth generation of circles for the latter starts
with (S4S3S4w)4 = 132, which is the first duplicate; the next two terms are
(S4S2S4w)4 = 156 and (S3S4S3w)3 = 160. Arranging all the curvatures in order
(with multiplicities), we have [5]

2, 2, 3, 3, 6, 6, 6, 6, 11, 11, 11, 11, 14, 14, 14, 14, 15, 15, 18, 18, 18, 18, 23,

23, 23, 23, 26, 26, 26, 26, 27, 27, 27, 27, 30, 30, 30, 30, 35, 35, 35, 35, 35,

35, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 42, 42, 42, 42, 47, 47, 47,

47, 50, 50, 50, 50, 51, 51, 51, 51, 54, 54, 54, 54, 59, 59, 59, 59, 59, 59, 59, 59, . . .

when w=(−1, 2, 2, 3) and

21, 24, 28, 40, 52, 61, 76, 85, 96, 117, 120, 132, 132, 156, 157, 160, 181, 189,

204, 205, 208, 213, 216, 237, 237, 244, 253, 253, 285, 288, 304, 309, 316, 316, . . .

when w=(−11, 21, 24, 28). A theorem due to Kontorovich & Oh [6] provides the
growth rate for these sequences:

ν(x)∼ c · xδ

as x→∞, where ν(x) is the number of circles in the packing with curvature
less than x, the exponent δ= 1.3056867280... has been discussed [7, 8], and the
coefficients

c=

{
0.402... if w=(−1, 2, 2, 3),

0.0176... if w=(−11, 21, 24, 28)

were estimated by Fuchs & Sanden [9]. (The values 0.201... in [2] and 0.0458... in
[3] are apparently mistaken.) Expressions for c exist [10–12], but are not suitably
practical to allow numerical calculations.

Rather than counting all circles with curvature < x, we might instead restrict
attention to the nth generation (which has 4 · 3n−2 members) and determine the
average curvature as a function of n. Most circles born at a large generation n
possess curvature∼ exp(γ n), where γ= 0.9149... is the Lyapunov exponent asso-
ciated with randomproductsSj1Sj2 · · ·Sjn . The logarithm of curvature, divided by
n, is asymptotically normal with mean γ and variance∼α/n, where α= 0.065....
This alternative approach would be worth further study [3, 13], but we must stop
here.

1.39.1 Kissing Primes

The primes appearing in the preceding sequences (curvatures with multiplicities)
are [5]

2, 2, 3, 3, 11, 11, 11, 11, 23, 23, 23, 23, 47, 47, 47, 47, 59, 59, 59, 59, 59, 59, 59, 59,

71, 71, 71, 71, 83, 83, 83, 83, 83, 83, 83, 83, 107, 107, 107, 107, 107, 107, 107, 107,

131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131,

167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, ...
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when w=(−1, 2, 2, 3) and

61, 157, 181, 349, 373, 397, 421, 541, 661, 709, 733, 829, 853, 877, ...

when w=(−11, 21, 24, 28). Each term corresponds to a circle C of prime curva-
ture a(C). Define a weighted prime count

ψ(x)=
∑

a(C)<x,
a(C) prime

ln(a(C))

then it is conjectured that
ψ(x)∼G · ν(x)

as x→∞, where the coefficient G= 0.9159655941... is Catalan’s constant [14]. It
is remarkable that the coefficient is independent of the packing.

Assume that an unordered pair of tangent circles C, C ′ are both of prime cur-
vature p, p′. The two primes are said to be kissing primes (for the packing under
consideration). We have pairs (with multiplicities)

(2, 2), (2, 3), (2, 3), (2, 3), (2, 3), (2, 11), (2, 11), (2, 11), (2, 11), (2, 23),

(2, 23), (2, 23), (2, 23), (3, 23), (3, 23), (3, 23), (3, 23), (3, 47), (3, 47),

(3, 47), (3, 47), (2, 59), (2, 59), (2, 59), (2, 59), ...

when w=(−1, 2, 2, 3) and

(157, 397), (61, 421), (61, 1069), (157, 1093), (181, 1213), ...

when w=(−11, 21, 24, 28). Define a weighted prime count

ψ(2)(x)=
∑

a(C),a(C ′)<x,
C,C ′ tangent,

a(C),a(C ′) prime

ln(a(C)) · ln(a(C ′))

then it is conjectured that
ψ(2)(x)∼H · ν(x)

as x→∞, where the coefficient

H=G2 · 2
∏

p≡3 mod 4

(
1 − 2

p( p− 1)2

)
=G2(1.6493376890...)= 3(0.4612609086...)

is again independent of the packing. These estimates improve upon the values
1.646... in [9] and 0.460... in [3].

The number of circles of prime curvature < x is asymptotically ψ(x)/ ln(x),
hence ∼G · ν(x)/ ln(x) by the first-order conjecture. For the number of kissing
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prime circles bothwith curvatures< x, the relationshipwithψ(2)(x)/ ln(x)2 is less
clear. This would be good to clarify someday. Interestingly, Catalan’s constant
also appears in [1], although in an unrelated manner.

Recent progress on this subject is described in [15–20].
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1.40 Molteni’s Composition Constant

This essay continues where we left off in [1]: the number of (unordered) partitions
of 2k−1 as a sum of k powers of 2 is well-understood [2–6]. What can be said
about the number w(k) of (ordered) compositions of 2k−1 as a sum of k powers
of 2? Clearly w(1)=w(2)= 1; w(3)= 3 since there are three ways to sort {1, 1, 2}
and w(4)= 13 since there are twelve ways to sort {1, 1, 2, 4} plus 8= 2 + 2 + 2 +

2. A few more terms of {w(k)} appear in [7, 8] but a pattern is far from clear.
The following doubly-indexed recursive formula [9]

mk,ℓ =


0 if ℓ≥ k,

1 if k> 1 and ℓ= k− 1,
2 ℓ∑
j=1

(
k+ ℓ− 1
2 ℓ− j

)
mk−ℓ, j if 1≤ ℓ< k− 1,

coupled with wk=mk,1, k> 1, makes efficient calculation of many more terms
possible. It further allowed Molteni [10] to deduce the asymptotic behavior of
{w(k)}:

lim
k→∞

(
w(k)
k!

)1/k

= 1.1926743412...

– a remarkable achievement! – but an exact formula for this constant seems to
be unavailable. The same constant appears in a more general setting when 2k−1

is replaced by, for instance, a sum of two distinct powers of 2. As an example,
w′(3)= 6 since 10= 2 + 8, there are three ways to sort {1, 1, 8} plus three ways
to sort {2, 4, 4}, and such a portfolio ismaximal. Replacingw byw′ in the limiting
expression does not change the constant.

1.40.1 Euler Binary Partitions

Given d≥ 2 and n≥ 0, let bd(n) denote the number of integer sequences x1, x2,
x3, … satisfying 0≤ xi≤ d− 1 for all i for which n=

∑∞
i=0 xi2

i. Clearly b2(n)= 1
for all n, {b3(n)} is related to Stern’s sequence [11], and b4(n)= ⌊n/2⌋+ 1 for all
n. Define

κd= liminf
n→∞

ln(bd(n))
ln(n)

, λd= limsup
n→∞

ln(bd(n))
ln(n)

.

The most interesting asymptotics occur for odd d and we list several results here
[12–16]:

2κ3 = 1, 2λ3 =φ=
(
1 +

√
5
)
/2= 1.6180339887...;

2κ5 = 1 +
√

2= 2.4142135623..., 2λ5 = 2.5386157635...
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has minimal polynomial z4 − 2z3 − 2z2 + 2z− 1;

2κ7 = 3.4918910516..., 2λ7 = 3.5115471416...

have minimal polynomials z5 − z4 − 7z3 − 5z2 − 3z− 1 and z3 − 4z2 + 2z− 1,
respectively; and

2κ9 = 4.4944928370..., 2λ9 = 4.5030994219...

have minimal polynomials z3 − 4z2 − 2z− 1 and z8 − 3z7 − 9z6 + 9z5 + 5z4 −
z3 − z2 − z+ 1, respectively.

1.40.2 Joint Spectral Radius

The joint spectral radius [17] of two real 2 × 2 matrices A, B is the maximum
possible exponential rate of growth of long products ofAs andBs. The set {A,B}
is said to have the finiteness property if there exists a periodic product that attains
this maximal rate of growth. At one point, it was believed that every set {A,B}
satisfies the finiteness property. This was eventually disproved; the first explicit
counterexample was given in [18]. It takes the form

A=

(
1 1
0 1

)
, B= c

(
1 0
1 1

)
where the constant c requires elaboration. Define

en+1 = enen−1 − en−2, e0 = 1, e1 = 2, e2 = 2

and
fn+1 = fn + fn−1, f0 = 0, f1 = 1

(the latter is the Fibonacci sequence). It follows that

c = lim
n→∞

(
e fn+1
n

e fnn+1

)(−1)n

=
∞∏
n=1

(
1 − en−1

en+1en

)(−1)nfn+1

= 0.7493265463...

converges unconditionally. No uniqueness claims have been made about c; we
are simply attracted by its intricate construction. The authors of [18] wondered
whether c is irrational, tying it to the Fibonacci substitution 0→ 01, 1→ 0 [19]
and to the quantity 1/φ2 =(3 −

√
5)/2. They conjectured that c̃ is irrational,

where c̃ (unspecified but distinct from c) is tied to the substitution 0→ 001,
1→ 0 and to the quantity 1 − 1/

√
2. It would be good to understand more about

c̃ someday.
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1.41 Boolean Decision Functions

Let f : {0, 1}n→{0, 1} be the Boolean function that decides whether a given (n+
1)-bit odd integer is square-free. More precisely,

f (x1, x2, . . . , xn)=

{
1 if 2ξ + 1 is square-free,

0 otherwise
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where the string x1x2, . . . xn is the integer ξ written in binary (with leading zeroes
added as necessary). Let x denote the vector (x1, x2, . . . , xn). There are many
ways of characterizing the computational complexity of f; we focus on a single
combinatorial method related to what is called the average sensitivity of f. The
influence of xi on f, denoted by Ii( f ), is the probability that flipping the ith

component of the input vector, selected at random from {0, 1}n, will flip the
output. That is,

Ii(f)= 2−n
∑

x∈{0,1}n

∣∣∣ f (x)− f
(
x(i)
)∣∣∣

where x(i) =(x1, x2, . . . , xi + 1, . . . , xn) modulo 2. Bernasconi, Damm & Shpar-
linski [1, 2] proved that

Ii(f)= 2γint + o(n)

as n→∞, where

γint =
8
π2 − 2

∏
p

(
1 − 2

p2

)
= 0.1653012713...=

0.3306025426...
2

.

In words, an odd integer changes from square-free to square-full or vice versa
with probability ≈ 33% if one of its bits is flipped. The infinite product is famil-
iar – called the Feller–Tornier constant in [3] – and its appearance here is quite
interesting.

We turn attention from integers to polynomials with coefficients in the finite
field Z2. Let g : {0, 1}n→{0, 1} decide whether a given binary polynomial with
constant coefficient unity

η(x)= ynxn + yn−1xn−1 + · · ·+ y1x+ 1

is square-free. More precisely,

g(y1, y2, . . . , yn)=

{
1 if η(x) is square-free,

0 otherwise

and we again abbreviate the vector as y. The influence Ii(g) of yi on g is defined
similarly. Clearly the polynomial corresponding to the vector y(i) is η(x) + xi

modulo 2. Allender, Bernasconi, Damm, von zur Gathen, Saks & Shparlinski [4]
proved that

Ii(g)= 2γpoly +O
(
2−n/4

)
as n→∞, where

γpoly =
2
3
− 2

∞∏
k=1

(
1 − 1

22k−1

)ak

= 0.2735795624...=
0.5471591248...

2
.
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The sequence {ak}∞k=1 = {2, 1, 2, 3, 6, 9, 18, 30, . . .} counts all irreducible polyno-
mials over Z2 of degree k and satisfies [5]

2k=
∑
d | k

d ak;

equivalently,

ak=
1
k

∑
d | k

µ

(
k
d

)
2d

where µ is the Möbius mu function [6]. Note that the error term is tighter for
Ii(g) than that for Ii(f).

A fascinating unanswered question arises if we replace square-freeness by pri-
mality (for odd integers) and irreducibility (for binary polynomials). What are
the influence Ii asymptotics in this new scenario? Formulas analogous to the
preceding would be good to see someday.

With regard to integers, a positive proportion of primes become composite
when any one of their bits is changed [7–9]. As a consequence, it is not possible
to establish whether an arbitrary integer is prime without examining all of its
bits. With regard to polynomials, it is curious that [10]

∞∏
k=1

(
1 − 1

22k

)ak

=
1
2

is trivial while a slight modification yields the unrecognizable constant γpoly.
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1.42 Map Asymptotics Constant

A map on a compact surface S without boundary is an embedding of a graph G
into S such that all components of S− G are simply connected [1]. These com-
ponents are thus homeomorphic to open disks and are called faces. The graph G
is allowed to have both loops and multiple parallel edges (unlike those in [2]). A
map is rootedwhen an edge, a direction along that edge, and a side of the edge, are
distinguished. The edge is called the root edge, and the face on the distinguished
side is the root face. Two rooted maps are equivalent if there is a homeomor-
phism between the underlying surfaces that preserves all graph incidences and
rootedness.

In the case when S is orientable, two rooted maps are equivalent if and only
they are related by an orientation-preserving homeomorphism that (merely) pre-
serves all graph incidences. Such thinking does not apply, of course, when S is
non-orientable. For orientable surfaces, the genus g is 0 for the sphere, 1 for the
torus, 2 for the connected sum of two tori, and so forth. For non-orientable sur-
faces, the type h is 1/2 for the projective plane, 1 for the Klein bottle, 3/2 for the
connected sum of three projective planes, and so forth.

The requirement that faces be simply connected implies that the graph G itself
must be connected [3]. Proof: if G were to possess two components, then a curve
drawn around one of the components could not be contracted to a point (because
the other component would present an obstacle), which is a contradiction. The
converse is true if the surface S is a sphere, but is false if S is a torus. Reason: con-
sider the figure-eight graphG consisting of one vertex and two edges (orthogonal
loops that together generate the torus). While S− G is simply connected, this is
not true for any proper subgraph of G.

Let Tg(n) denote the number of rooted maps with n edges on an orientable
surface of genus g. Let Ph(n) denote the number of rooted maps with n edges
on a non-orientable surface of type h. (T stands for “torus” and P stands for
“projective plane”.) It is known thatT0(n) is the coefficient of xn in theMaclaurin
series expansion [1, 4, 5]

4(1 + 2r)
3(1 + r)2

= 1 + 2x+ 9x2 + 54x3 + 378x4 + 2916x5 + 24057x6

+ 208494x7 + 1876446x8 + 17399772x9 + 165297834x10 + · · · ,

T1(n) is the coefficient of xn in the expansion [6, 7]

(−1 + r)2

12r2(2 + r)
= x2 + 20x3 + 307x4 + 4280x5 + 56914x6

+ 736568x7+9370183x8+117822512x9+1469283166x10+ · · · ,
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P1/2(n) is the coefficient of xn in the expansion [1, 6]

−q
(−1 + r)(1 + r)

= x+ 10x2 + 98x3 + 982x4 + 10062x5 + 105024x6

+ 1112757x7 + 11934910x8 + 129307100x9

+ 1412855500x10 + · · ·

and P1(n) is the coefficient of xn in the expansion [8–10]

(1 + r)q
2r2(2 + r)

= 4x2 + 84x3 + 1340x4 + 19280x5 + 263284x6

+ 3486224x7 + 45247084x8 + 579150012x9

+ 7338291224x10 + · · ·

where r=
√

1 − 12x and q= 2 + 4r− 2
√

3
√
r(2 + r) throughout. Moreover [11],

Tg(n)∼ tgn5(g−1)/212n, Ph(n)∼ phn5(h−1)/212n

as n→∞, where tg is the orientable map asymptotics constant:

t0 =
2√
π
, t1 =

1
24
, t2 =

7
4320

√
π
, t3 =

245
15925248

, t4 =
37079

96074035200
√
π

and ph is the non-orientable map asymptotics constant:

p1/2 =

√
3

2π
Γ (1/4)=− 2

√
6

Γ(−1/4)
, p1 =

1
2
, p3/2 =

√
6

3Γ(1/4)
=

5

8
√

6Γ(9/4)
.

Since the status of tg is quite different from the status of ph, we shall treat them
separately.

Formany years, the values of tg for g> 2were unknown, owing to difficulties in
their formulation. Impressive progress has been made recently. Define a sequence

u0 = 1, un=
25(n− 1)2 − 1

48
un−1 −

1
2

n−1∑
k=1

ukun−k for n≥ 1,

then provably

tg=− 1
2g−2Γ ((5g− 1)/2)

ug

for all integers g≥ 0. The formal power series u(z)=
∑∞

n=0 unz
−(5n−1)/2 satisfies

the Painlevé I differential equation

u′′(z)= 6u(z)2 − 6z

which makes possible the following asymptotics:

tg∼
40 sin(π/5)K√

2π

(
1440g
e

)−g/2
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as g→∞ and

K=

√
3
5
Γ(1/5)Γ(4/5)

4π2 = 0.1048689877....

We explain further: Bender, Gao & Richmond [12] discovered the preceding
approximation for tg but with only a rough numerical estimate 0.1034 for K. The
connection with Painlevé I, streamlined un recursion and exact K expression are
due to Garoufalidis, Lê & Mariño [13]. A (somewhat different) full asymptotic
series is also possible. We give the first term only:

un∼− 1
2π

31/4
√
π

(
8
√

3
5

)−2n+ 1
2

Γ

(
2n− 1

2

)
as n→∞, quoting [14]. This is reminiscent of other quadratic recurrence studies
[15, 16].

Likewise, the path to understanding ph for h> 2 is fraught with peril. Define a
sequence

v0 =−
√

3, vn=
1

2
√

3

(
−3un/2 +

5n− 6
2

vn−1 +
n−1∑
k=1

vkvn−k

)
for n≥ 1

(the dependence of vn on un/2 from before is striking: if n is odd, let un/2 =
0). Conjecturally, we have [14]

ph=
1

2h−2Γ ((5h− 3)/2)
v2h−1

for all integers/half-integers h≥ 1/2. Evidence for this equality comes from
quantum physics. As consequences,

p2 =
5

36
√
π
, p5/2 =

1033

1024
√

6Γ(19/4)
, p3 =

3149
442368

, p7/2 =
1599895

294912
√

6Γ(29/4)
.

The formal power series v(z)=
∑∞

n=0 vnz
−(5n−1)/4 satisfies the differential

equation
2v′(z)= v(z)2 − 3u(z)

and a full asymptotic series is again possible. We give the first term only:

vn∼
C
2π

(
4
√

3
5

)−n

Γ (n)

as n→∞, where the Stokes constant C is conjectured to be
√

6. See [17, 18] for
a bivariate analog of the preceding theory.
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1.43 Injections, Surjections and More

Let Im,n denote the set of all injections {1, . . . ,m}→{1, . . . , n} where m≤ n. An
element of Im,n can be thought of as a permutation on n symbols taken m
at a time. We define I0,n to possess one element (the empty permutation) for
convenience; therefore [1–3]

# Im,n=
n!

(n−m)!
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and

#
∪

0≤m≤n

Im,n=
n∑

k=0

n!
k!

=

{
⌊n!e⌋ if n> 0,
1 if n= 0

where e is the natural logarithmic base [4]. In counting all injections, we treat
extensions as distinct; for example, the function f : {1, 2}→ {1, 2} with f (x)= x
is not the same as the function g : {1, 2}→ {1, 2, 3} with g(x)= x, nor is it the
same as the function h : {1, 2, 3}→ {1, 2, 3} with h(x)= x.

Let Jn,m denote the set of all surjections {1, . . . , n}→{1, . . . ,m} where n≥
m. An element of Jn,m can be thought of as an ordered m-tuple consisting of
preimage blocks (m disjoint nonempty sets that cover n symbols). We define J0,0

to possess one element (the empty tuple) for convenience; therefore [5–7]

# Jn,m=

m∑
j=0

(−1) j
(
m
j

)
(m− j)n=m!Sn,m

and

#
∪

0≤m≤n

Jn,m=
1
2

∞∑
k=0

kn

2k
∼ n!

2

(
1

ln(2)

)n+1

∼ n!
2 ln(2)

(1.4426950408...)n

as n→∞, where Sn,m is a Stirling number of the second kind [8]. In counting all
surjections, we treat extensions as distinct; for example, the preceding function f
is not the same as the function g : {1, 2, 3}→ {1, 2} with g(x)= x mod 2, nor is
it the same as the preceding function h.

Various refinements of surjections are available. An ℓ-surjection has the prop-
erty that every value in the range {1, . . . ,m} is taken with multiplicity at
least ℓ. (The phrase “double surjection” was used in [6], while “2-surjection”
meant something different.) Asymptotic counting results for 2-surjections, 3-
surjections and 4-surjections are

n!
(1 + r)r

(0.8724532496...)n where r= 1.1461932206... solves

er= 2 + r,

n!(
1 + 1

2 r
2
)
r
(0.6377063010...)n where r= 1.5681199923... solves

2er= 4 + 2r+ r2,

n!(
1 + 1

6 r
3
)
r
(0.5060319662...)n where r= 1.9761597421... solves

6er= 12 + 6r+ 3r2 + r3,

respectively (the numerical value within parentheses is 1/r). The formulas for
ℓ= 3 and 4 are due to Kotěšovec [5].
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Another way of imagining a surjection is as a labeled clique, that is, a hierarchy
on {1, . . . , n} in which vertical ordering is important but horizontal ordering is
not. We illustrate # J3,1 = 1, # J3,2 = 6, # J3,3 = 6 here:

|1, 2, 3|,∣∣∣∣ 1
2, 3

∣∣∣∣, ∣∣∣∣ 2
1, 3

∣∣∣∣, ∣∣∣∣ 3
1, 2

∣∣∣∣, ∣∣∣∣ 1, 23
∣∣∣∣, ∣∣∣∣ 1, 32

∣∣∣∣, ∣∣∣∣ 2, 31
∣∣∣∣,

∣∣∣∣∣∣
1
2
3

∣∣∣∣∣∣,
∣∣∣∣∣∣
1
3
2

∣∣∣∣∣∣,
∣∣∣∣∣∣
2
3
1

∣∣∣∣∣∣,
∣∣∣∣∣∣
2
1
3

∣∣∣∣∣∣,
∣∣∣∣∣∣
3
1
2

∣∣∣∣∣∣,
∣∣∣∣∣∣
3
2
1

∣∣∣∣∣∣.
If we remove labels, then just 4 hierarchies emerge:

|∗, ∗, ∗|,
∣∣∣∣ ∗
∗, ∗

∣∣∣∣, ∣∣∣∣ ∗, ∗∗
∣∣∣∣,
∣∣∣∣∣∣
∗
∗
∗

∣∣∣∣∣∣.
More generally [9], the number of unlabeled cliques on n integers is 2n.

A labeled society on {1, . . . , n} is created by distributing the elements into
cliques. The ordering of the cliques is not important. Let Sn denote the num-
ber of such societies and sn denote the unlabeled analog. The cliques are visually
separated by bars and (as before) hierarchy within a clique is indicated by the
vertical arrangement. We illustrate S3 = 23 and s3 = 7, omitting the 13 one-clique
cases for the former and the 4 one-clique cases for the latter (which were already
given): ∣∣ 1, 2 | 3

∣∣, ∣∣ 1, 3 | 2
∣∣, ∣∣ 2, 3 | 1

∣∣,∣∣∣∣ 1
2

∣∣∣∣ 3

∣∣∣∣, ∣∣∣∣ 1
3

∣∣∣∣ 2

∣∣∣∣, ∣∣∣∣ 2
3

∣∣∣∣ 1

∣∣∣∣,
∣∣∣∣ 2

1

∣∣∣∣ 3

∣∣∣∣, ∣∣∣∣ 3
1

∣∣∣∣ 2

∣∣∣∣, ∣∣∣∣ 3
2

∣∣∣∣ 1

∣∣∣∣,
∣∣ 1 | 2 | 3

∣∣;
∣∣ ∗, ∗ | ∗

∣∣, ∣∣∣∣ ∗
∗

∣∣∣∣ ∗

∣∣∣∣, ∣∣ ∗ | ∗ ∗
∣∣.

More generally [10–12],

Sn=
d n

dxn
exp

(
1

2 − ex
− 1
)∣∣∣∣

x=0
, sn=

1
n!

d n

dxn

∞∏
k=1

1
(1 − xk)2k−1

∣∣∣∣∣
x=0
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and

Sn∼C
e
√

2n/ ln(2)

n3/4 ln(2)n
n!, sn∼

c√
2π

e
√

2n−1/4

n3/4
2n−3/4

as n→∞, where

C=
1

4
√
π

(
2
e

)3/4(e1/ ln(2)

ln(2)

)1/4

=(1038.9726974426...)−1/4,

c= exp

 ∞∑
j=2

1
j (2 j − 1)

= 1.3976490050....

The constant c, overlooked in [10], was subsequently determined in [13].
Let us focus entirely on the labeled scenario henceforth. A clique is elitist if,

given any two adjacent levels, the number of elements in the higher level never
exceeds the number of elements in the lower level. DefineRn to be the number of
elitist cliques on {1, . . . , n}. Clearly R2 = 3 and R3 = 10. More generally [9, 12,
14],

Rn=
dn

dxn

∞∏
k=1

(
1 − xk

k!

)−1
∣∣∣∣∣
x=0

and Rn∼Bn! as n→∞, where

B=

∞∏
k=2

(
1 − 1

k!

)−1

= 2.5294774720....

Another interpretation involves multinomial coefficients [15]: for suitably
large m,

(x1 + x2 + · · ·+ xm)2 =
∑
i
x2
i + 2

∑
i<j
xixj,

(x1 + x2 + · · ·+ xm)3 =
∑
i
x3
i + 3

∑
i ̸=j
xix2

j + 6
∑

i<j<k
xixjxk,

(x1 + x2 + · · ·+ xm)4 =
∑
i
x4
i + 4

∑
i ̸=j
xix3

j + 6
∑
i<j
x2
i x

2
j

+ 12
∑
i<j,

i ̸=k, j ̸=k

xixjx2
k + 24

∑
i<j<k<ℓ

xixjxkxℓ,

hence R2 = 1 + 2, R3 = 1 + 3 + 6 and R4 = 1 + 4 + 6 + 12 + 24.
Finally, a society is elitist if all of its cliques are elitist. Define Qn to be

the number of elitist societies on {1, . . . , n}. Clearly Q2 = 4 and Q3 = 20. More
generally,

Qn=
d n

dxn
exp

( ∞∏
k=1

(
1 − xk

k!

)−1

− 1

)∣∣∣∣∣
x=0

,

but an asymptotic expression for Qn appears to be open.
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In closing, we give a sequence [9, 16]

pn=
1
n!

dn

dxn

(
2 −

∞∏
k=1

(
1 − xk

)−1

)−1
∣∣∣∣∣∣
x=0

=
1
n!

dn

dxn
1

f (x)

∣∣∣∣
x=0

,

which arises from unlabeled cliques on set partitions rather than integers. It is
quite similar to the sequence 2n mentioned earlier. We illustrate p3 = 8 here:

|{∗, ∗, ∗}|, |{∗, ∗}, {∗}|, |{∗}, {∗}, {∗}|,
∣∣∣∣ {∗, ∗}{∗}

∣∣∣∣,
∣∣∣∣ {∗}
{∗, ∗}

∣∣∣∣, ∣∣∣∣ {∗}
{∗}, {∗}

∣∣∣∣, ∣∣∣∣ {∗}, {∗}{∗}

∣∣∣∣,
∣∣∣∣∣∣
{∗}
{∗}
{∗}

∣∣∣∣∣∣.
It is easily shown that pn∼ a bn where b= 2.6983291064... is the unique positive
solution of the equation f(1/y)= 0 and

a=
−b

f ′ (1/b)
= 0.4141137931....

The fit is excellent. Moreover, the occurrence of the Dedekind eta function [17]
is unexpected. Replacing f (x) by f (x)− 1 spawns another (alternating in sign)
integer sequence [16]; we wonder whether this perturbation possesses a combina-
torial interpretation. Societies (labeled or not, elitist or not) can also be imposed
in the new partitional framework and more asymptotic results await discovery.
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2
Inequalities and Approximation

2.1 Hardy–Littlewood Maximal Inequalities

The operatorsM andN defined herewere first introduced byHardy&Littlewood
[1]. These tools are useful in several areas, e.g., harmonic analysis [2], but we
disregard the applications entirely and focus rather on properties ofM and N in
themselves.

2.1.1 One Dimension, Uncentered

For a locally integrable function f :R→R, define

(Mf )(x)= sup
a<x
b>x

1
b− a

b∫
a

| f(t)| dt.

In the Banach space Lp(R), 1≤ p<∞, with norm

|| f ||p=

 ∞∫
−∞

| f(t)|p dt

 1
p

,

we examine the inequality

||Mf ||p≤ cp · || f ||p

and ask for the best constant cp. (By “best”, we mean that cp is the smallest posi-
tive constant for which the inequality holds for all f.) It is known, for 1< p<∞,
that cp is the unique positive solution of [3]

(p− 1)xp − pxp−1 − 1= 0;

hence, for example, we have c2 = 1 +
√

2 and limp→∞ cp= 1.
For p= 1, we examine instead the weak type (1, 1) inequality

|{x : (Mf )(x)>λ}|≤C · 1
λ
· || f ||1
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where |S| denotes the Lebesgue measure of a measurable set S⊆R and λ> 0. In
this case, it is comparatively simple to prove that C= 2 is the best constant [4],
valid for all f and all λ.

2.1.2 One Dimension, Centered

For a locally integrable function f :R→R, define

(Nf )(x)= sup
h>0

1
2h

x+h∫
x−h

| f(t)| dt.

Soria & Carbery [5–7] conjectured that C= 3/2 is the best constant for the weak
type (1, 1) inequality

|{x : (Nf )(x)>λ}|≤C · 1
λ
· || f ||1.

Aldaz [8] refuted this conjecture and showed that 37/24≤C≤ (9 +
√

41)/8.
Further progress was made in [9, 10] before Melas [4] established that

C=
11 +

√
61

12
= 1.5675208063....

The impressive proof underlying this formula is far more complicated than the
corresponding uncentered result (§2.1.1).

For the strong type (p, p) inequality with p> 1, Dror, Ganguli & Strichartz [7]
conjectured that the best constant cp is given by

cp=
(y+ 1)

p−1
p + (y− 1)

p−1
p

2y p−1
p

where y> 1 uniquely satisfies(
1 − y

p

)p

(y+ 1)−
(
1 +

y
p

)p

(y− 1)= 0;

hence, for example, c2 =
4
√

27/
√

2 and limp→∞ cp= 1. Grafakos, Montgomery-
Smith & Motrunich [11] confirmed the truth of this formula for a special class of
“bell-shaped” functions, but expressed doubt that it holds for all f∈Lp(R). The
problem remains unsolved.

2.1.3 n Dimensions, Uncentered

Let n≥ 2. For a locally integrable function f :Rn→R, define

(Mnf )(x)= sup
Q

1
|Q|

∫
Q

| f(t)| dt,
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where the supremum is taken over all compact cubes Q with sides parallel to the
coordinate axes, subject only to x∈Q. For fixed 1< p<∞, the best constant cp,n
must grow at least exponentially as n→∞ [3]. This result is also true if we replace
cubes by balls.

2.1.4 n Dimensions, Centered

Let n≥ 2. Define similarly

(Nn f )(x)= sup
Q

1
|Q|

∫
Q

| f(t)| dt,

where we insist not only that x∈Q, but additionally that each cube Q is cen-
tered at x. For the weak type (1, 1) inequality, we have lower bounds on the best
constants Cn, for example [12]

C2 ≥
3 +

√
2(2

√
3 − 1)

4
,

liminf
n→∞

Cn≥
47

√
2

36
.

It would be good someday to know the exact values of these constants.Moreover,
we have C1<C2 and Cn≤Cn+1 for all n [13]. Stein & Strömberg [14] demon-
strated that Cn grows at most likeO(n ln(n)) and likeO(n) if we replace cubes by
balls.

Let us return finally to the strong type (p, p) setting. There exists a constant K
for which [14]

cp,n≤K · p
p− 1

· n

for all p and n. If we replace cubes by balls, then n can be further replaced by
√
n.

Also, it is possible to write
cp,n≤F(p)

for all n, in the case of balls (but the expression F(p) may have to grow more
rapidly than p/(p− 1) as p→ 1+). Thus, for fixed 1< p<∞, cp,n is bounded as
n→∞. This result contrasts strikingly with the uncentered case (§2.1.3).
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2.2 Bessel Function Zeroes

The Bessel function Jν(x) of the first kind

Jν(x)=
∞∑
k=0

(−1)k

k!Γ(ν + k+ 1)

(x
2

)ν+2k
, ν >−1

has infinitely many positive zeros

0< jν,1< jν,2< jν,3< · · · ,

as does its derivative J′ν(x):

0< j′ν,1< j′ν,2< j′ν,3< · · · , ν > 0,

0= j′0,1< j′0,2< j′0,3< j′0,4< · · · , ν= 0.

See Tables 2.1 & 2.2 for the cases ν= 0, 1, 2 and Tables 2.3 & 2.4 for the cases ν=
1/2, 3/2, 5/2. These appear in many physical applications that we cannot hope
to survey in entirety. We will state only a few properties and several important
inequalities. A starting point for research is Watson’s monumental treatise [1].
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Table 2.1 Zeroes of Jν for s= 1, 2, 3 and integer ν

j0,s j1,s j2,s

2.4048255576... 3.8317059702... 5.1356223018...

5.5200781102... 7.0155866698... 8.4172441403...

8.6537279129... 10.1734681350... 11.6198411721...

Table 2.2 Zeroes of J′ν for s= 1, 2, 3 and integer ν

j′0,s j′1,s j′2,s

0 1.8411837813... 3.0542369282...

3.8317059702... 5.3314427735... 6.7061331941...

7.0155866698... 8.5363163663... 9.9694678230...

Table 2.3 Zeroes of Jν for s= 1, 2, 3 and half-integer ν

j1/2,s j3/2,s j5/2,s

π 4.4934094579... 5.7634591968...

2π 7.7252518369... 9.0950113304...

3π 10.9041216594... 12.3229409705...

Table 2.4 Zeroes of J′ν for s= 1, 2, 3 and half-integer ν

j′1/2,s j′3/2,s j′5/2,s

1.1655611852... 2.4605355721... 3.6327973198...

4.6042167772... 6.0292923816... 7.3670089715...

7.7898837511... 9.2614019262... 10.6635613904...

Clearly jν,s→∞ as s→∞with ν fixed; in fact, jν,s+1 − jν,s→π. For ν≥ 0, here
is a straightforward lower bound [2, 3]:

jν,s>
√(

s− 1
4

)2
π2 + ν2

and, for ν > 0, here are more complicated bounds [4–6]:

ν + αsν
1/3< jν,s<ν + αsν

1/3 +
3α2

s

10
ν−1/3,
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where αs= 2−1/3as and as is the sth positive root of the equation

J 1
3

(
2
3x

3/2
)
+ J− 1

3

(
2
3x

3/2
)
= 0.

For example, a1 = 2.3381074104... and thus the coefficients of ν1/3 and ν−1/3 for
s= 1 are 1.8557570814... and 1.0331503036..., respectively. (The left-hand side of
the equation is the same as 3Ai(−x)/

√
x, where Ai is the Airy function.) These

bounds are asymptotically precise; more terms in the asymptotic expansion of jν,s
as ν→∞, for any fixed s, can be obtained [7–10]. Related work includes [11–15].

Similarly we have

ν + α′
sν

1/3< j′ν,s<ν + α′
sν

1/3 +
3α′3

s − 1
10α′

s
ν−1/3,

where α′
s= 2−1/3a′s and a

′
s is the sth positive root of the equation

J 2
3

(
2
3x

3/2
)
− J− 2

3

(
2
3x

3/2
)
= 0.

For example, a′1 = 1.0187929716... and thus the coefficients of ν1/3 and ν−1/3 for
s= 1 are 0.8086165174... and 0.0724901862..., respectively. (The left-hand side of
the equation is the same as 3Ai′(−x)/x.) The zeroes of Jν and J′ν are interlaced:

... < j′ν,s< jν,s< j′ν,s+1< jν,s+1< ...

and further satisfy [16]

j′ν,s+1>
√
jν,sjν,s+1.

Let n≥ 0 be an integer. Every Bessel function Jn+1/2(x) is elementary; for
example,

√
xJ1/2(x) can be simplified to

√
2/π sin(x). Consequently j3/2,s is the

sth positive root of the equation

sin(x)− x cos(x)= 0, that is, tan(x)= x,

and j′1/2,s is the sth positive root of the equation

sin(x)− 2x cos(x)= 0, that is, tan(x)= 2x.

Siegel [1, 17, 18] proved that Jν(ξ) is transcendental whenever ν is rational and ξ
is algebraic. It follows immediately that every zero jν,s is transcendental. Further,
if µ is rational and ν − µ ̸= 0 is an integer, then Jν(x) and Jµ(x) can never have
common zeroes (other than x= 0) [19–22].

Series of the form [1, 23]

∞∑
s=1

1
j2ν,s

=
1

4(ν + 1)
,

∞∑
s=1

1
j4ν,s

=
1

16(ν + 1)2(v+ 2)
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possess well-known special cases. If ν= 1/2, then jν,s=πs and

∞∑
s=1

1
s2

=
π2

6
,

∞∑
s=1

1
s4

=
π4

90

as given in [24]. We also have

∞∑
s=1

1
j20,s

=
1
4
,

∞∑
s=1

1
j23/2,s

=
1
10

and the latter series appears in [25]. Other identities can be found in [26, 27].
We need three more tables before continuing. Define

Pν(x) =
d
dx

(
x1−νJν(x)

)
= x−ν ((1 − ν)Jν(x) + xJ′ν(x)),

Qν(x) = Jν(x)Iν+1(x) + Iν(x)Jν+1(x)

where Iν(x) is the modified Bessel function of the first kind:

Iν(x)=
∞∑
k=0

1
k!Γ(ν + k+ 1)

(x
2

)ν+2k
= i−νJν(ix).

Let pν,s and qν,1 denote the sth smallest positive zeroes of Pν(x) and Qν(x). It is
clear that p1,s= j′1,s for all s. (See Tables 2.5 & 2.6.)

Finally, we offer an application. Table 2.7 gives the vibration modes of an ide-
alized timpani (or kettledrum). By contrast, the frequency ratios for overtones of
an idealized guitar string are all integers [28].

Table 2.5 Zeroes of Pν for s= 1, 2, 3

p1,s p3/2,s p2,s

1.8411837813... 2.0815759778... 2.2999103302...

5.3314427735... 5.9403699905... 6.5414028262...

8.5363163663... 9.2058401429... 9.8647278383...

Table 2.6 Zeroes of Qν for s= 1, 2, 3

q0,s q1/2,s q1,s

3.1962206165... 3.9266023120... 4.6108998790...

6.3064370476... 7.0685827456... 7.7992738008...

9.4394991378... 10.2101761228... 10.958067191...
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Table 2.7 Frequency ratios for the first five overtones of
a fixed circular membrane

ν s jν,s/π jν,s/j0,1

0 1 0.7654797495... 1

1 1 1.2196698912... 1.5933405056...

2 1 1.6347193503... 2.1355487866...

0 2 1.7570954350... 2.2954172674...

3 1 2.0308686069... 2.6530664045...

1 2 2.2331305943... 2.9172954551...

2.2.1 Membrane and Plate Inequalities

Let n≥ 2. Let Ω⊆Rn be a connected bounded open set of volume |Ω|, and
assume that its boundary ∂Ω is smooth. Define the Laplacian and bi-Laplacian
(biharmonic) operators

△f=
n∑

k=1

∂2f
∂2xk

, △2f=△(△f )

for smooth functions f : Ω→R. We will briefly consider four famous eigenvalue
problems (i.e., isoperimetric inequalities) that occur in structural dynamics for
which Bessel function zeroes play a role [29, 30].

The fixed (fastened) membrane problem involves the Laplacian with Dirichlet
boundary conditions:

−△u=λu in Ω,

u= 0 on ∂Ω.

We seek the smallest eigenvalue λ1(Ω), that is, the fundamental frequency
of vibration. When is λ1(Ω) minimal? The Rayleigh–Faber–Krahn inequality
provides that [31]

λ1(Ω)≥
(
ωn
|Ω|

)2/n

j2n
2−1,1

with equality if and only if Ω is a ball. Here ωn=πn/2/Γ(n/2 + 1) is the volume
of the unit ball in Rn. Only the case n= 2 was mentioned in [32]. For example,
j20,1 = 5.7831859629...

The free membrane problem involves the Laplacian with Neumann boundary
conditions:

−△v=µv in Ω,

∂v
∂n

= 0 on ∂Ω,
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where ∂v/∂n denotes the outward normal derivative of v. Since µ1(Ω)= 0, we
seek the next-to-smallest eigenvalue µ2(Ω). When is µ2(Ω)maximal? The Szegö–
Weinberger inequality provides that [33–36]

µ2(Ω)≤
(
ωn
|Ω|

)2/n

p2
n
2 ,1

with equality if and only if Ω is a ball.
The clamped plate problem involves the bi-Laplacian with the following

boundary conditions:
△2w=Λw in Ω,

w=
∂w
∂n

= 0 on ∂Ω.

We seek the smallest eigenvalue Λ1(Ω). When is Λ1(Ω) minimal? The
Nadirashvili–Ashbaugh-Benguria inequality provides that [37–39]

Λ1(Ω)≥
(
ωn
|Ω|

)4/n

q4
n
2−1,1

with equality if and only if Ω is a ball. This has been rigorously proved only for
2≤ n≤ 3, but it is known to be true for n≥ 4 up to a constant factor → 1 as
n→∞. Only the case n= 2 was mentioned in [32].

The buckling load problem involves both the Laplacian and bi-Laplacian with
the following boundary conditions:

△2z=−M△z in Ω,

z=
∂z
∂n

= 0 on ∂Ω.

We seek the smallest eigenvalueM1(Ω). When isM1(Ω)minimal? Pólya & Szegö
[39, 40] conjectured that

M1(Ω)≥
(
ωn
|Ω|

)2/n

j2n
2 ,1

with equality if and only if Ω is a ball, but this is only known to be true up to a
constant factor → 1 as n→∞.

We return to the original Dirichlet problem to state onemore idea. ThePayne–
Pólya–Weinberger conjecture, proved byAshbaugh&Benguria [41–43], involves
the maximal ratio of the two smallest eigenvalues λ1(Ω) and λ2(Ω):

λ2(Ω)

λ1(Ω)
≤

j2n
2 ,1

j2n
2−1,1

with equality if and only if Ω is a ball. For example, when n= 2, the right-
hand side is 2.5387339670... What can be said about the maximal ratios of two
arbitrary eigenvalues [44]?
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2.2.2 Other Best Constants

Bessel function zeroes occur in best constants associated with Nash’s inequal-
ity [45], uncertainty inequalities [46], and with an improved version of Hardy’s
inequality [47–51].

We close with remarks about themultiplicities of the zeroes. It appears that, for
fixed ν > 0, the positive zeroes j′′ν,s of the second derivative J′′ν(x) are all simple,
like those of Jν(x) and J′ν(x). This is no longer true when considering positive
zeroes j′′′ν,s of the third derivative J′′′ν (x): there exists a value ν0 = 0.755378... for
which J′′′ν0

has a double zero x0 = 0.959621... [52, 53]. Related papers include [54–
64] the latter of which are more concerned with the strictly increasing behavior
of j′′ν,s as a function of ν for fixed s (rather than of s for fixed ν).
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2.3 Nash’s Inequality

Consider all smooth, compactly supported, s-integrable functions f :Rn→Rwith
the property that the Euclidean norm of the gradient∇f :Rn→Rn is q-integrable:

|| f ||s=

∫
Rn

| f(x)|s dx

 1
s

<∞, s≥ 1;

||∇f ||q=

∫
Rn

|∇f(x)|q dx

 1
q

<∞, q≥ 1.

For example, let q= 2 and s= 1. Nash’s inequality [1]

|| f ||2+
4
n

2 ≤An · ||∇f ||22 · || f ||
4
n
1 ,

that is, ∫
Rn

| f(x)|2 dx

1+ 2
n

≤An

∫
Rn

|∇f(x)|2 dx

∫
Rn

| f(x)| dx

 4
n

,

is useful in the study of nonlinear partial differential equations (PDEs). Best
constants An were proved by Carlen & Loss [2] to be

An=

(
1 +

2
n

)
Γ
(n
2
+ 1
) 2

n 1
πj2n/2,1
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where jn/2,1 is the smallest positive zero [3] of the Bessel function Jn/2(x). Hence

A1 =
27

16π2 = 0.1709794973..., A2 = 0.0867212975..., A3 = 0.0585146159...

and An∼ 2/(πen) as n→∞. This asymptotic result is due to Beckner [4–7].
As another example, let q= 2 and s= 2. Best constants for Moser’s inequality

[8, 9]

|| f ||2+
4
n

2+ 4
n
≤Bn · ||∇f ||22 · || f ||

4
n
2 ,

that is,

∫
Rn

| f(x)|2+ 4
n dx≤Bn

∫
Rn

|∇f(x)|2 dx

∫
Rn

| f(x)|2 dx

 2
n

,

are known exactly only for n= 1 [10]:

B1 =
4
π2 = 0.4052847345...

When n= 2, we have a numerical estimate B2 = 0.170927...=(5.85043...)−1;
more will be said about this constant shortly. Here too it is known that Bn∼
2/(πen) as n→∞ [5].

2.3.1 Gagliardo–Nirenberg

A generalization of Nash’s inequality is [11–13]

|| f ||r≤κn(q, r, s) · ||∇f ||θq · || f ||1−θ
s ,

where 1< q< n, s≥ 1, 0≤ θ≤ 1 and

1
r
=

(
1
q
− 1
n

)
θ +

1
s
(1 − θ).

These conditions force r≥ 1. Note that the Gagliardo–Nirenberg inequality triv-
ially encompasses the p-Sobolev inequality when q= p and θ= 1 (details appear
in §2.3.3). We have already examined best constants for one case:

κn(2, 2, 1)=Aθ/2
n , θ=

n
n+ 2

and wonder about any other nontrivial cases possessing explicit formulas for all
n. Del Pino & Dolbeault discovered two one-parameter families that assist in
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answering the question [14–17]:

κn

(
q, q

s− 1
q− 1

, s
)

=

(
s− q
q
√
π

)θ ( qs
n(s− q)

)θ/q(
δ

qs

)1/r

×

 Γ
(
s q−1
s−q

)
Γ
(
n
2 + 1

)
Γ
(
q−1
q

δ
s−q

)
Γ
(
n q−1

q + 1
)
θ/n

for all 1< q< s, where q(s− 1)= r(q− 1) and δ= nq− s(n− q)≥ q, and

κn

(
q, r, q

r− 1
q− 1

)
=

(
q− r
q
√
π

)θ ( qr
n(q− r)

)θ/q (qr
δ

)(1−θ)/s

×

 Γ
(
q−1
q

δ
q−r + 1

)
Γ
(
n
2 + 1

)
Γ
(
r q−1
q−r + 1

)
Γ
(
n q−1

q + 1
)
θ/n

for all 1< r< q, where q(r− 1)= s(q− 1) and δ= nq− r(n− q)> 0.Gunson [18]
stated the first result (in which q, s are free and r= q(s− 1)/(q− 1)), but without
proof.

Most cases, however, are like

κn
(
2, 2 + 4

n , 2
)
=Bθ/2

n , θ=
n

n+ 2

in the sense that explicit expressions are presently unavailable for all n. For
example [19–23],

κ2(2, 3, 2)=
1

1.379427...
, θ=

1
3
;

κ2(2, 4, 2)=B1/4
2 = 4

√
1

π · 1.86225...
=

1
1.555239...

, θ=
1
2
;

κ2(2, 6, 2)=
3

√
1

4.5981...
=

1
1.663066...

, θ=
2
3
;

κ3(2, 4, 2)=
1

2.2258...
, θ=

3
4
.

As a prelude to the next section, define

Cn(σ)=κn(2, 2σ + 2, 2)

for σ> 0; this two-parameter family includes the four constants just listed.

2.3.2 Schrödinger

Let △ denote the Laplacian operator. A space function f(x) is radial if f is a
function of |x| alone. Also, a time function g(t) is global if it is finite for all t, that
is, no blow ups occur in finite time.
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Here is an alternative characterization [20] of Cn(σ) for 0<σ< 2/(n− 2):

Cn(σ)=

(
σ + 1
||ψ||2σ2

) 1
2σ+2

where ψ :Rn→R is a smooth, positive, radial solution of the nonlinear PDE

nσ
2
△ψ − 2σ + 2 − nσ

2
ψ + ψ2σ+1 = 0

of minimal norm ||ψ||2 (the ground state). If n= 2, such a function ψ(x) can be
proved to be unique; further,

||ψ||22 =(2π)(1.86225...)

when σ= 1. This gives rise to our numerical estimate ofC2(1)=B1/4
2 . It is known

(among many things) that the cubic Schrödinger PDE in R2:

2i
∂φ

∂t
+△φ+ |φ|2φ= 0

with initial conditions

φ(x, 0)=φ0(x)

possesses a global solution φ :R2 × R+ →C if ||φ0||2< ||ψ||2. The latter inequal-
ity is sharp in a certain technical sense involving instability. Solutions φ(x, t) of
the Schrödinger equation find application in optics and plasma physics [24].

The constant B2 also appears in the study of intersection local times for planar
random walks and planar Brownian motion [25–27].

2.3.3 Sobolev

Let ωn=πn/2/Γ(n/2 + 1) denote the volume enclosed by the unit sphere in Rn;
consequently ω̃n−1 = nωn is its surface area. For any 1≤ p< n, let p∗ = np/(n− p).
The classical p-Sobolev inequality is as follows:

∫
Rn

| f(x)|p
∗
dx

 1
p∗

≤K

∫
Rn

|∇f(x)|p dx

 1
p

and the best constant

K(n, p)=κn(p, p∗, s) (s is immaterial since θ= 1)
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was independently determined by Aubin [28, 29] and Talenti [30]:

K(n, p) =



1
n

(
n

ω̃n−1

) 1
n

if p= 1

n−
1
p

(
p− 1
n− p

)1− 1
p

 Γ(n+ 1)

Γ
(
n
p

)
Γ
(
n+ 1 − n

p

)
ω̃n−1

 1
n

if 1< p< n,

=



1
n

(
1
ωn

) 1
n

if p= 1

n−
1
p

(
p− 1
n− p

)1− 1
p

 Γ(n)

Γ
(
n
p

)
Γ
(
n+ 1 − n

p

)
ωn

 1
n

if 1< p< n.

Note the special case

K(n, 2)=

√
4

n(n− 2)ω̃2/n
n

=(πn(n− 2))−
1
2

(
Γ(n)
Γ
(
n
2

)) 1
n

,

which arises frequently in applications [31, 32]. Only the case p= 1 was discussed
in [33].

As an aside, let p# = pn/(n− 2p). The best constant in the second-order
Sobolev inequality∫

Rn

| f(x)|2
#

dx

 1
2#

≤M

∫
Rn

|△f(x)|2 dx

 1
2

is known to be [34, 35]

M(n)=

√
16

n(n− 4)(n2 − 4)ω̃4/n
n+1

=
(
π2n(n− 4)(n2 − 4)

)− 1
2

(
Γ(n)
Γ
(
n
2

)) 2
n

.

The similarity between K(n, 2, ) andM(n) is interesting: The former involves ∇f
while the latter involves △f. We wonder about the p-generalization of the latter.

2.3.4 Trudinger–Moser

A limiting scenario (as p→ n−) of the Sobolev inequality is as follows. Let D
denote a bounded open domain with smooth boundary in Rn; for example, letD
be an open ball. Let |D| denote the Lebesgue measure ofD. Consider all smooth,
compactly supported functions f :D→Rwith the property that∇f is n-integrable
and ∫

D

|∇f(x)|n dx≤ 1.
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Then there exists a constant cn depending only on n (and not on D) such that
[36, 37]

1
|D|

∫
D

exp
(
α · | f(x)|n/(n−1)

)
dx≤ cn

for any value α≤ nω̃1/(n−1)
n−1 . Further, if α exceeds the indicated threshold, then

the left-hand side can be made arbitrarily large by appropriate choice of f(x).
Carleson & Chang [38] obtained that c2 = 4.3556... (with computational

help by Gamelin). In principle, accurate estimates of cn are possible, but no
one appears to have done this. Variations and elaborations of the fascinating
Trudinger–Moser inequality are found in [39–44].
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2.4 Uncertainty Inequalities

If an integrable function f :Rn→R is thought of as the amplitude of a time signal
or space image, then the Fourier transform f̂ of f:

f̂(ξ)=
∫
Rn

e−2πiξ·xf(x) dx

conveys information on how f(x) is built from sine waves of different frequen-
cies. Assume that f∈Lr(Rn) for some r≥ 1; equivalently, | f(x)|r is integrable and
decays rapidly enough as |x|→∞ so that

|| f ||r=

∫
Rn

| f(x)|r dx

 1
r

<∞.

Define Ppf and Qqf to be the functions

(Ppf )(x)= |x|pf(x), (Qqf )(ξ)= |ξ|q f̂(ξ).

Heisenberg’s famous inequality arises from the case when p= q= 1 and r= 2 [1]:

||P1f ||2 · ||Q1f ||2 ≥
n
4π

|| f ||22.

In words, if f(x) is concentrated close to 0 (having a small variance), then f̂(ξ)
must be relatively spread out (having a large variance) unless f(x) is zero almost



“C02” — 2018/10/27 — 11:57 — page 292 — #21

292 Inequalities and Approximation

everywhere. The constant n/(4π) is best possible if n= 1: consider functions of
the form a exp(−bx2) for some b> 0 [2].

When f is smooth, it follows that ||∇f ||2 = 2π||Q1f ||2 where ∇f is the gradi-
ent of f and |∇f | is its Euclidean norm. Therefore Heisenberg’s inequality is an
uncertainty principle in the same sense as expressed in [3].

Here are two sample variations [4, 5]. Let f∈L1(Rn) ∩ L2(Rn) and recall that
Jν is the Bessel function of the first kind [6]. For r> 0, define

J(r)= r1−
n
2 J n

2−1(r)

and, for y> 0,

gy(x)=

 J(|x|)− J(y) +
J′(y)
2y

(
y2 − |x|2

)
if |x|< y,

0 if |x| ≥ y.

The best constant µn in the inequality

||P2f ||1 · ||Q1f ||22 ≥
µn
4π2 || f ||1|| f ||

2
2

is achieved when f= gc, where c is the smallest positive root of the equation

||gy||2 = ||∇gy||2.

In particular, if n= 1, the equation simplifies to

y(5 − 2y2) tan(y)2 + 5(3 − 2y2) tan(y)− 15y= 0

and hence c= 1.7502456171... and µn= 0.4283683675...= 1
2 (0.8567367350...)=

M
2 . The constant M will be useful to us later.
Also, the best constant µn in the inequality

||P2f ||
2

n+6

1 · ||Q1f ||
n+4
n+6

2 ≥µn|| f ||2

is achieved when f= gc, where c is the smallest positive root of the equation

√
n+ 4||gy||2 =

√
n+ 6||∇gy||2, that is, (y2 − 2n)J′(y)= 2yJ(y).

In particular, if n= 1 (and thus the two exponents are 2/7 and 5/7), the equation
simplifies to

(2 − y2) tan(y)= 2y

and hence c= 2.0815759778 and µ−1
n = 4.1731026567.... Closed-form expres-

sions do not seem to be possible here! This formulation is, in fact, only a special
case of a considerably broader theorem [5].
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2.4.1 Positive Definite Probability Densities

A probability density function f :Rn→R is positive definite if [7, 8]

m∑
j=1

m∑
k=1

f(xk − xj)zjz̄k≥ 0

for all xj ∈Rn, for all zj ∈C (j= 1, . . . , n) and for each m≥ 1, where z̄ denotes the
complex conjugate of z. Clearly f(−x)= f(x)< f(0) for all x ̸= 0. Let Fn denote
the class of all continuous, positive definite probability density functions on Rn.
If f∈Fn, then f̂ is nonnegative and integrable over Rn; in fact, f̂/f(0) is itself a
probability density.

Fix, for now, n= 1. Among the well-known members of F1 are the normal, t,
and logistic densities. Define a product of variances

λ( f )= 4π2 ||P2f ||1 · ||Q2f ||1
f̂(0) · f(0)

and a greatest lower bound, called Laue’s constant [8]:

Λ= inf
f∈F1

λ( f ).

An immediate consequence of Laeng & Morpurgo’s work [4], for example, is
thatΛ≤M< 0.85674. EstimatingΛ has occupied several researchers over several
years [9–12]:

0.543<Λ< 0.85024

yet a determination of its exact value still seems far away.
For n≥ 1, choose an arbitrary unit vector u∈Rn. IfX is a random n-vectorwith

density f∈Fn, let fu ∈F1 denote the density for the one-dimensional projection
u · X of X onto u. Then define [11]

Λn= inf
f∈Fn

sup
||u||=1

λ( fu).

Clearly Λ1 =Λ and Λn+1 ≥Λn for all n.We have the following estimates [12]:

Λn≤
1
2

9 + 4
√

5

(1 +
√

5)2
< 0.856763... if n≤ 7,

1 − 3
n
≤Λn≤ 1 − n− 5

2(n− 4)
3
n

if n≥ 8,

which demonstrate that limn→∞ Λn= 1.

2.4.2 Fourier Optimization

We mention the optimization problem [13–15]:

C= sup
0̸=f∈E1

|f(0)|
|| f ||1
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where Er is the set of all continuous f :R→R with f∈Lr(R) and support (̂f)⊆
[−1, 1]. Solving such problems with band-limited functions is difficult; we know
that there exists an even g∈E1 with g(0)= 1 that maximizes the ratio and that
1.08185≤C≤ 1.09769. If f was further assumed to be nonnegative, then the
problem would simplify and the Fejér kernel

g(x)=
(

sin(πx)
πx

)2

would emerge, giving Cnonneg = 1. Analogous issues for 1-periodic trigonometric
polynomials are studied in [14, 16, 17]. For example, if f : [−1/2, 1/2]→R is the
first-order expression

f(x)= a−1 e−2πix + a0 + a1 e2πix,

then C1 =π/(2ω)= 2.1253252923..., where ω= 0.7390851332... is the unique
root of cos(ω)=ω. An exact C2 formula is not known for the second-order
expression

f(x)= a−2 e−4πix + a−1 e−2πix + a0 + a1 e2πix + a2 e4πix,

nor for higher ℓth orders; however, limℓ→∞ Cℓ/ℓ=C. We also note [18, 19]

D= sup
0 ̸=f∈E2

|| f ||4
|| f ||2

=

(
0.6869812930...

π

)1/4

and again the absence of familiar functions. These constants deserve to be better
known!
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2.5 Airy Function Zeroes

On the negative real axis (x< 0), the Airy function

Ai(x)=
1
3
(−x)1/2

[
J− 1

3

(
2
3 (−x)

3/2
)
+ J 1

3

(
2
3 (−x)

3/2
)]

has an oscillatory behavior similar to that of the Bessel function Jv(x) [1]. Note
the special values [2]

Ai(0)=
1

3
2
3Γ
(

2
3

) = 0.3550280538..., Ai′(0)=− 1

3
1
3Γ
(

1
3

) =−0.2588194037...

and the integral representations

Ai(x)=
1
π

∞∫
0

cos
(

1
3
t3 + x t

)
dt, Ai′(x)=− 1

π

∞∫
0

t sin
(

1
3
t3 + x t

)
dt.

Let 0< a1< a2< . . . be the zeroes of Ai(−x) and 0< a′1< a′2< . . . be the zeroes
of Ai′(−x). See Table 2.8 for the first several terms of both sequences. We saw
these values when bounding the zeroes of Jv(x) [1] and we will see them again
when estimating the L1-norm of Brownian motion [3]. In the present essay, our
focus is on two applications to physics.
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Table 2.8 Negatives of zeroes ofAi andAi′ for
n= 1, 2, 3, 4, 5

an a′n

2.3381074104... 1.0187929716...

4.0879494441... 3.2481975821...

5.5205598280... 4.8200992111...

6.7867080900... 6.1633073556...

7.9441335871... 7.3721772550...

2.5.1 Quantum Mechanics of Falling

Consider a quantum mechanical (QM) particle in free fall, that is, on the posi-
tive x-axis with linear potential x. The time-independent Schrödinger equation
becomes

d2f
dx2 + (λ− x)f= 0, lim

x→∞
f(x)= 0.

If a Dirichlet condition f(0)= 0 is imposed (elastic reflection), then the eigenval-
ues λ are the Airy function zeroes {an}∞n=1 [4–9]. If instead a Neumann condition
f′(0)= 0 is imposed, then the eigenvalues λ are the derivative zeroes {a′n}∞n=1
[10, 11].

What is the physical significance of these results? The eigenfunctions f contain
information about the behavior of the particle, for example, the probability den-
sities of position and momentum. Admissible solutions to the time-independent
Schrödinger equation exist only if the total energy of the particle is quantized,
that is, restricted to a discrete set of eigenvalues λ. (This counterintuitive fact is
akin to Bohr’s model of the hydrogen atom possessing discrete shells for the elec-
tron to occupy, as indicated by spectroscopy.) Different boundary conditions or
different potentials, of course, lead to different allowed energy levels.

Consider rather a QM particle on the whole x-axis with the potential |x|. Then
the eigenvalues corresponding to even eigenfunctions come from {a′n} and the
eigenvalues corresponding to odd eigenfunctions come from {an} [10, 11]. A
listing of the eigenvalues λ consists of the interlaced zeroes of Ai′ and Ai. It
is remarkable that the Airy function zeroes occur here, in the QM analog of the
simplest of all classical physics problems.

2.5.2 Van der Pol’s Equation

For constant µ> 0, all solutions of van der Pol’s equation

d2g
dt2

+ µ(g2 − 1)
dg
dt

+ g= 0,
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other than the trivial solution g= 0, tend to a unique periodic limit cycle as
t→∞. The proof of this theorem is due to Liénard [12]. We are interested in how
the magnitudeA(µ) and the periodT(µ) of the limit cycle vary with increasing µ.

Let α= a1 = 2.3381074104... for convenience. The work of Haag [13], Dorod-
nicyn [14] and others [15–20] gives

A(µ) = 2 +
1
3
αµ−4/3 − 16

27
µ−2 ln(µ)

+
1
9
(3β + 2 ln(2)− 8 ln(3)− 1)µ−2 +O

(
µ−8/3

)
,

T(µ) = (3 − 2 ln(2))µ+ 3αµ−1/3 − 2
3
µ−1 ln(µ)

+
(
3β + ln(2)− ln(3π)− 2 ln

(
Ai′(−α)

)
− 1
)
µ−1 +O

(
µ−4/3 ln(µ)

)
asµ→∞, whereβ= 0.17234... is defined as follows. The function−Ai′(x)/Ai(x)
maps the interval (−α,∞) onto (−∞,∞) in a one-to-one fashion; let z(x) denote
its inverse. Define Q(x)= x2 − z(x) and

P(x)= exp

−
x∫
0

1
Q(u)2

du

.
Then the expression

1
P(x)

∞∫
x

P(v)
{

v
Q(v)

− v3

3Q(v)2
− 2v

3(v2 + α/2)
+

ln(v2 + α/2)
3Q(v)2

}
dv

approaches β as x→−∞. Hence, for example, we have the asymptotic expression

T(µ) ∼ (1.613705...)µ+ (7.014322...)µ−1/3 − (0.666666...)µ−1 ln(µ)

−(1.3232...)µ−1.

The final coefficient for T(µ) is sometimes written as 3β + 3 ln(2)− ln(3)− 1 −
2ι or as β + 3 ln(2)− ln(3)− 3/2 − 2δ, where

ι= ln(2) + 1
2 ln(π) + ln

(
Ai′(−α)

)
= 0.9105654320...,

δ=−β + ι− 1
4 = 0.4882....

Two additional terms in the series for A(µ) were determined by Bavinck & Gras-
man [20, 21]; we omit these for reasons of space. Early textbooks [22, 23] often
repeat errors originating in [14]; the final two coefficients for T(µ) are mistakenly
given as −22/9 and +0.0087.

A relevant theory of special functions arose in [24–26]. For example, the
Haag function Hg(x) is defined to be what we call −z(−x); thus Hg(0)= a′1,
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limx→∞ Hg(x)= a1 and

d
dx

Hg(x)=
1

x2 + Hg(x)
, lim

x→−∞

Hg(x)
x2 =−1.

The Dorodnicyn function Dn(x) satisfies

d
dx

Dn(x)=− Dn(x)

(x2 + Hg(x))2
+

x
x2 + Hg(x)

, lim
x→−∞

Dn(x)=−1
2

as well as

lim
x→∞

(Dn(x)− ln(x))=−3
2
β − 1

4
=−0.50851....

Clearly Hg has a unique zero at −31/3Γ(2/3)/Γ(1/3)=−0.7290111329...; a
similar exact expression for the unique zero 0.8452... of Dn is not known.

[1] S. R. Finch, Bessel function zeroes, this volume, §2.2.
[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover,

1972, pp. 446–450; 475–478; MR1225604 (94b:00012).
[3] S. R. Finch, Variants of Brownian motion, this volume, §4.5.
[4] S. Flügge, Practical Quantum Mechanics, Springer-Verlag, 1974, pp. 101–105;

MR0366248 (51 #2496).
[5] R. G. Winter, Quantum Physics, 2nd ed., Faculty Publishing, 1986, pp. 92–97;

MR0620164 (82i:81003).
[6] P. W. Langhoff, Schrödinger particle in a gravitational well, Amer. J. Phys. 39 (1971)

954–957.
[7] R. L. Gibbs, The quantum bouncer, Amer. J. Phys. 43 (1975) 25–28; comment 51

(1983) 82–84.
[8] V. C. Aguilera-Navarro, H. Iwamoto, E. Ley-Koo and A. H. Zimerman, Quantum

bouncer in a closed court, Amer. J. Phys. 49 (1981) 648–651; comment 51 (1983)
84–85.

[9] J. Gea-Banacloche, A quantum bouncing ball, Amer. J. Phys. 67 (1999) 776–782;
comments 68 (2000) 672–673 and 68 (2000) 866–868.

[10] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers, McGraw-Hill, 1978, pp. 28, 521–522; MR0538168 (80d:00030).

[11] M. S. Ashbaugh and J. D. Morgan, Remarks on Turschner’s eigenvalue formula, J.
Phys. A 14 (1981) 809–819; MR0609826 (82d:81036).

[12] G. F. Simmons, Differential Equations with Applications and Historical Notes,
McGraw-Hill, 1972, pp. 338–244, 349–352; MR0499365 (58 #17258).

[13] J. Haag, Exemples concrets d’étude asymptotique d’oscillations de relaxation,
Annales Sci. École Norm. Sup. 61 (1944) 73–117; MR0014539 (7,299d).

[14] A.A.Dorodnicyn,Asymptotic solution of van der Pol’s equation (inRussian),Akad.
Nauk SSSR. Prikl. Mat. Mech. 11 (1947) 313–328; Engl. transl. inAmer. Math. Soc.
Transl. 88 (1953) 1–24; MR0022011 (9,144g).

[15] M. L. Cartwright, Van der Pol’s equation for relaxation oscillations, Contributions
to the Theory of Nonlinear Oscillations, v. II, Princeton Univ. Press, 1952, pp. 3–18;
MR0052617 (14,647a).



“C02” — 2018/10/27 — 11:57 — page 299 — #28

2.6 Projections of Minimal Norm 299

[16] W. S. Krogdahl, Numerical solutions of the Van der Pol equation, Z. Angew. Math.
Phys. 11 (1960) 59–63; MR0111149 (22 #2013).

[17] M. Urabe, Periodic solutions of van der Pol’s equation with damping coefficient λ=
0∼ 10, IEEE Trans. Circuit Theory CT-7 (1960) 382–386; MR0120095 (22 #10852).

[18] P. J. Ponzo and N. Wax, On the periodic solution of the van der Pol equation, IEEE
Trans. Circuit Theory CT-12 (1965) 135–136.

[19] J. A. Zonneveld, Periodic solutions of the Van der Pol equation, Nederl. Akad.
Wetensch. Proc. Ser. A 69 (1966) 620–622; Indag. Math. 28 (1966) 620–622;
MR0226864 (37 #2450).

[20] H. Bavinck and J. Grasman, The method of matched asymptotic expansions for the
periodic solution of the van der Pol equation, Internat. J. Nonlinear Mechanics 9
(1974) 421–434; Toegepaste Wiskunde TN 73/73.

[21] J. Grasman, Asymptotic Methods for Relaxation Oscillations and Applications,
Springer-Verlag, 1987, pp. 55–72; MR0884527 (88i:34001).

[22] J. J. Stokes, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience,
1950, pp. 140–141.

[23] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover,
1962, pp. 358–368; MR0181773 (31 #6000).

[24] M. I. Zharov, E. F. Mishchenko and N. K. Rozov, Some special functions and con-
stants that arise in the theory of relaxation oscillations (in Russian), Dokl. Akad.
Nauk SSSR 261 (1981) 1292–1296; Engl. transl. in Soviet Math. Dokl. 24 (1981)
672–675; MR0640839 (83e:34080).

[25] M. K. Kerimov, In memory of Anatoliı̆ Alekseevich Dorodnitsyn (in Russian), Zh.
Vychisl. Mat. i Mat. Fiz. 35 (1995) 819–842; Engl. transl. in Comput. Math. Math.
Phys. 35 (1995) 649–666; MR1342522 (96g:01039).

[26] M. K. Kerimov, Special functions that arise in the theory of nonlinear oscillations
(in Russian), Zh. Vychisl. Mat. i Mat. Fiz. 36 (1996) 57–72; Engl. transl. in Comput.
Math. Math. Phys. 36 (1996) 1027–1039 (1997); MR1407727 (98g:34048).

2.6 Projections of Minimal Norm

Let X be a real Banach space and Y be a closed subspace of X. A continuous
linear operator P :X→Y is a projection if P(y)= y for all y∈Y. The norm of P
is defined by

∥P∥= sup
∥x∥≤1

∥P(x)∥= sup
x ̸=0

∥P(x)∥
∥x∥

.

Out of all such projections (for fixed X and Y), which ones have the smallest
possible norm? [1–4] We will answer this question for the special scenario when

X= {admissible functions x : [−1, 1]→R} ,

Y= {real polynomials of degree≤ n} ,

∥x∥=

 1∫
−1

|x(t)|qdt

1/q

,

and n∈{0, 1, 2, 3, 4, 5}, q∈{1,∞}. We understand the word “admissible” to
mean “continuous” if q=∞ and “Lebesgue integrable” if q= 1. The minimal
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norm ∥P∥, considered over all P :X→Y, will be denoted by π(n, q) and is called
the relative projection constant of Y⊆X.

It is known that π(0,∞)=π(1,∞)=π(0, 1)= 1, which is demonstrated by
taking (Px)(t) to be [5]

x(0), 1
2 ((1 − t) x(−1) + (1 + t) x(1)),

1∫
−1

x(s) ds,

respectively. The other cases are far more difficult. Franchetti & Cheney [6]
proved that π(1, 1)= 1.2204049171...= 1 − φ2 + φ, where φ= 0.3279677853...
satisfies the equation

2φ
(
1 − φ2 + φ

)
ln(φ) + 1 − φ2 = 0.

The corresponding projection is unique:

(Px)(t)=

1∫
−1

x(s) u1(s) ds+ t

1∫
−1

x(s) u2(s) ds,

where

u2(t)=
1 − φ2 + φ

2
(
1 + λ2t2 − λ t

√
λ2t2 + 1

), u1(t)= u2(t)
(
−λ t+

√
λ2t2 + 1

)
for 0≤ t≤ 1 and u2(t)=−u2(−t), u1(t)= u1(−t) for −1≤ t< 0. The constant
λ= 1.3605560846... is defined to be (1 − φ2)/(2φ) or, equivalently, −(1 − φ2 +

φ) ln(φ).
Chalmers & Metcalf [7] proved that π(2,∞)= 1.2201730642... and a corre-

sponding projection is

(Px)(t) =
(
A− C t+D t2

)
x(−1) + B

(
1 − t2

)
x(0) +

(
A+ C t+D t2

)
x(1)

+
2∑

k=1

−sk,1∫
−sk,2

+

sk,2∫
sk,1

 (bk + ak|s|) + (cks) t+ (−bk + dk|s|) t2

(1 + wk|s|)3
x(s) ds.

Whether this is the unique such projection remains open. It turns out that
π(2,∞)= 1 − 4A; hence it remains to define all the parameters in the formula
for P. Given 0≤ t0 ≤

√
2 − 1≤ t1 ≤ 1 and θ < 0, let

tc=
2t1t20 + (2t0 − 1)(1 + t21) + (1 − t21)(1 − t0)

√
1 − 2t0 − t20

t20(1 + t21) + 2t1(2t0 − 1)
,

β=
2 (t1t0(t0 + t1) + t0 − t1)

(1 − t1)2
, δ=−β − t20,
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κ=
t0(2 − t0θ−1)− 1

2t20 − δ
+ 1, w1 =

κ− θ−1

2
, w2 =−w1,

s1,1 =
t1 − 1

κ+ t1θ−1 , s1,2 =
tc − 1

κ+ tcθ−1 , s2,1 =
tc + 1

κ− tcθ−1 , s2,2 =
t0 + 1

κ− t0θ−1 ,

I1(σ, τ)=
8θ2(σ − τ)(τ σ − 1)

(κ θ + 1)2(τ + 1)2(σ + 1)2
, I1,1 = I1(tc, t1), I1,2 = I1(−t0,−tc),

D=
1

2(1 + δ − 2t20)
, d1 =

−D t20
(1 + κ θ)I1,1

, d2 =
D δ

(1 + κ θ)I1,2
,

A=−D t20, B=
2D(1 − 2t0 − t20)

(1 − t1)2
, C= 2D t0,

b1 = θ d1, b2 =−θ d2, a1 =κ b1, a2 =−κ b2,

c1 =−(a1 + d1), c2 = a2 + d2,

α1 =
−1

(a1 − d1)3
, β1 =

a1

2(a1 − d1)
, γ1 =

d1

(a1 − d1)2
, ν(ξ)=

1
a1 + d1ξ

,

L(σ, τ)= ln
(

1 + σ

1 + τ

ν(σ)

ν(τ)

)
, L1 =L(tc, t1), L2 =L(−t0,−tc),

V(σ, τ)= b2
1(a1 + d1)

2
{
α1L(σ, τ) +

ν(τ)− ν(σ)

d1
[β1 (ν(τ) + ν(σ)) + γ1]

}
,

µc=
−(a1 + d1)(s22,1 − s21,2)

2(1 − t2c)
, µ1 =

−(a1 + d1)s21,1
2(1 − t21)

,

Ṽ=V(tc, t1)− V(−t0,−tc), ε= 2(b1s2,2 − tcµc − t1µ1 − Ṽ),

I0(σ, τ)=
(
(1 + κ θ)(2 + τ + σ)

2 (τ σ − 1)
+ 1
)
θ−1I1(σ, τ),

I0,1 = I0(tc, t1), I2,1 =
(
L1

w1
− I0,1 − 2w1I1,1

)
w−2

1 ,

I0,2 =−I0(−t0,−tc), I2,2 =
(
L2

w2
− I0,2 − 2w2I1,2

)
w−2

2 .

The following three equations in (t0, t1, θ):

1
2

(
1 − 3

w1

)
= A+D− 3C

w1
+ (1 + κ θ)

d1(s1,2 − s1,1)− d2(s2,2 − s2,1)
w3

1

+
(1 + κ θ)B+ 2(A− κ θD)− 1

2θw3
1

+
3(t20 − δ)D

w2
1

,

1
2
=C+D

(
t20
I2,1
I1,1

+ δ
I2,2
I1,2

)
,

a1(1 − s22,2) + ε (1 − t0)= 2b1t0(1 − s2,2)
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give t0 = 0.3762232453..., t1 = 0.6849260549... and θ=−0.2884707066..., from
which all other parameters are computed.

It is also known that π(2, 1)= 1.35948..., π(3, 1)= 1.46184..., π(4, 1)=
1.54874... and π(5, 1)= 1.61031... [9–11]. The values of π(3,∞), π(4,∞) and
π(5,∞), however, are unknown. Helzel & Petras [8] determined that 1.3539<
π(3,∞)< 1.3577, 1.4524<π(4,∞)< 1.4611, 1.5254<π(5,∞)< 1.5427 and
remarked that the upper bounds might be more accurate than the lower bounds.

A simpler scenario is when Y=Rn, equipped with the Euclidean norm. The
(absolute) projection constant of Y is known to be [12, 13]

ρ(n)= sup
X

inf
P

∥P∥= 2√
π

Γ((n+ 2)/2)
Γ((n+ 1)/2)

=


n+ 1
2n

(
n

(n− 1)/2

)
if n is odd,

2n+1

π

(
n
n/2

)−1

if n is even.

More generally, we may examine the q-norm

∥x∥=

(
n∑

k=1

|xk|q
)1/q

for 1≤ q≤∞. The case q= 1 appears, however obliquely, in [14].
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2.7 Bohr’s Inequality

This essay complements an earlier one [1] on uncertainty inequalities. Let Bn,r
denote the open n-dimensional ball of radius r centered at the origin. Assume
that f :Rn→R is integrable and that its Fourier transform:

f̂(ξ)=
∫
Rn

e−iξ·xf(x) dx

satisfies f̂(ξ)= 0 for all ξ ∈Bn,r. Note that, to be consistent with the partial
differential equations literature, we omit the factor 2π from the exponent (com-
pare with [1]). Assume also that both f and its gradient ∇f are continuous and
bounded on Rn. In the case n= 1, Bohr [2–4] proved that

r sup
x∈R

| f(x)| ≤ π

2
sup
x∈R

| f′(x)|.

The constant π/2 is clearly best possible, for examine the periodic function f(x)=
−r|x|+ π/2 with |x| ≤π/r (of period 2π/r). See §2.7.1 for more discussion of this
example. In the case n= 2, Rüssmann [5] and Hörmander & Bernhardsson [6]
calculated that the best constant in the inequality

r sup
x∈R2

| f(x)| ≤C sup
x∈R2

∥∇f(x)∥

is C= 2.9038872827... (the indicated vector norm is Euclidean). They succeeded
in reducing the computation ofC to the following one-dimensional optimization
problem:

C=min

∞∫
0

|g(y)| dy

where the minimum is taken over all integrable functions g :R→R satisfying
g(0)= 1, g(y)= g(−y) for all y, and ĝ(η)= 0 for all |η| ≥ 1. In fact, g can be
extended to an entire analytic function of exponential type 1 on the complex
plane; the zeroes of g are all real and simple.
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The constants π/2 and C also appear in connection with solving the linear
operator equation PX− XQ=Y, where P :H→H,Q :K→K andY :H→K are
bounded operators on Hilbert spaces H and K . If the spectra σ(P), σ(Q) of P,
Q are disjoint subsets of C, then the equation PX− XQ=Y possesses a unique
solution X. Let δ= inf

λ∈σ(P),µ∈σ(Q) |λ− µ|, the separation between closed sets
containing the spectra. The norm of the transformation Y 7→X can be bounded
by (π/2)/δ if P, Q are self-adjoint and C/δ if instead P, Q are normal. Bhatia,
Davis & Koosis [7–9] wrote that there is “no substantial evidence” for expecting
these two constants to be best possible here, but added that they cannot be far
off. A related problem involves perturbation bounds for spectral subspaces.

What can be said if higher-order derivatives of f are continuous and bounded
on Rn? In the case n= 1, Favard [10] proved that

rm sup
x∈R

| f(x)| ≤Km sup
x∈R

| f(m)(x)|

for each positive integer m, where the constants [11]

1=K0<K2 =
π2

8
<K4< . . .<

4
π
< . . . <K5<K3 =

π3

24
<K1 =

π

2

are all best possible. This is called the Bohr-Favard inequality. The case n≥ 2
remains open.

What can be said if we assume instead that f̂(ξ)= 0 for all ξ /∈ B̄n,r? (That is,
we assume the support of f is completely contained within the closed r-ball, the
opposite of before.) In the case n= 1, Bernstein [12, 13] proved that

sup
x∈R

| f(m)(x)| ≤ rm sup
x∈R

| f(x)|

for each positive integer m, where the constant 1 is best possible. Such functions
f are said to be band-limited and, like g, can be extended to an entire function of
exponential type r. The generalization

sup
x∈Rn

∥∇f(x)∥≤ r sup
x∈Rn

| f(x)|

for n≥ 2 (when m= 1) and higher-order analogs (when m> 1) were apparently
first found by Nikolskii [14, 15].

2.7.1 Tempered Distributions

Let f denote the periodic triangular wave function mentioned earlier. It is not
true that f is integrable onR: strictly speaking, its Fourier transform is undefined
(although signal processing engineers would describe f̂ as a weighted sequence
of equidistant Dirac impulses at ξ=±r, ±2r, ±3r, . . .). We can circumvent this
difficulty by defining a family of rapidly decreasing test functions

φk(x)= e−x2/k2
, k= 1, 2, 3, . . .
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and then taking

f̂(ξ)= lim
k→∞

∞∫
−∞

e−iξxφk(x) f(x) dx.

What allows us, however, to conclude that f̂ is independent of the choice of test
functions {φk}∞k=1, φk→ 1 as k→∞?

Here is a little background. The space of all infinitely differentiable functions
φ such that φ(j)(x)=O(|x|−n) as x→±∞, for any j≥ 0 and n≥ 1, is called the
Schwarz space S. A tempered distribution is a continuous linear functional T on
S and its (generalized) Fourier transform is defined by

T̂(φ)=T(φ̂);

this induces an automorphism S ′ →S ′ of the dual space S ′ of S. Consider now
the example

F(φ)=

∞∫
−∞

φ(x) f(x) dx,

where f is the periodic triangular wave, and let fk=φk f. Clearly

F̂(φ)=

∞∫
−∞

φ̂(x) f(x) dx=

∞∫
−∞

φ̂(x)
(

lim
k→∞

fk(x)
)
dx,

while

lim
k→∞

∞∫
−∞

φ(ξ) f̂k(ξ) dξ= lim
k→∞

∞∫
−∞

φ̂(x) fk(x) dx

follows by interchanging the order of integration. Since |φ̂ fk| ≤ |φ̂ f | and φ̂ f is
integrable on R, the limit may be brought inside the integral by Lebesgue’s dom-
inated convergence theorem. Hence, just as f and F are regarded as the same, we
may identify f̂ and F̂.
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2.8 Moduli of Continuity

2.8.1 Bernstein Polynomials

Bernstein’s proof of the Weierstrass approximation theorem makes use of the
operator

Bnf(x)=
n∑
j=0

(
n
j

)
xj(1 − x)n−jf

(
j
n

)
,

given any continuous function f : [0, 1]→R. To demonstrate that

lim
n→∞

Bnf(x)= f(x)

uniformly on [0, 1] requires a bound of the form

sup
0≤x≤1

|Bnf(x)− f(x)| ≤ c · ω( f, n−1/2),

where ω( f, δ) is the first modulus of continuity

ω( f, δ)= sup
|u−v|<δ

|f(u)− f(v)|
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Table 2.9 Best constants cn: exact expressions and decimal approximations

n Exact Decimal n Exact Decimal

1 1 1 5
21 − 7

√
5

5
1.0695048315...

2
5 − 2

√
2

2
1.0857864376... 6

4306 + 837
√

6
5832

1.0898873310...

3
27 − 10

√
3

9
1.0754991027... 7

35442 + 33754
√

7
117649

1.0603293674...

4
17
16

1.0625 8
3865512

√
8 − 1937991

8388608
1.0723266591...

and 0≤ δ≤ 1. What is the best possible constant c that works for all n≥ 1?
Starting from [1, 2], Sikkema [3–5] proved that

sup
n≥1

sup
f

sup
0≤x≤1

|Bnf (x)− f (x)|
ω( f, n−1/2)

=
4306 + 837

√
6

5832
= 1.0898873310...

and this value is attained only for n= 6. Table 2.9 lists the best possible constants
cn that work for specified n= 1, 2, . . . , 8.

Esseen [6–9] examined the limiting behavior of cn as n grows without bound:

limsup
n→∞

sup
f

sup
0≤x≤1

|Bnf (x)− f (x)|
ω( f, n−1/2)

= 2
∞∑
m=0

(m+ 1) (Φ(2m+ 2)− Φ(2m))

= 1.0455636083...

where Φ(x) is the standard normal distribution function [10]. Of course, we
understand to omit constant functions f from the supremum (for which ω= 0).

Define the second modulus of continuity

ω̃( f, δ)= sup
|u−v|<δ

∣∣∣∣ f (u)− 2f
(
u+ v

2

)
+ f (v)

∣∣∣∣ .
In contrast with the preceding results, the best constant and best asymptotic
constant here coincide:

sup
f

sup
0≤x≤1

|Bn f (x)− f (x)|
ω̃( f, n−1/2)

= 1

for each n≥ 1. This was proved by Paltanea [11], building on earlier results [12–
17]. Here, of course, we understand to omit linear functions f from the supremum
(for which ω̃= 0).

Let us return to the first modulus ω for the remainder of this essay. Define
Ω to be the set of all continuous functions g : [0, 1]→R that vanish at zero, are
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nondecreasing and subadditive (meaning g(x+ y)≤ g(x) + g(y) always). Each
member g of Ω satisfies g(x)=ω(g, x) and thus is itself a modulus of continuity.
Define Ω∗ to be the subset of Ω whose elements g are such that x 7→ x−1g(x) is
nonincreasing on (0, 1]. Then [18, 19]

sup
n≥1

sup
0<x≤1

sup
g∈Ω

Bng(x)
g(x)

= 2> 1.1855905950...=α= sup
0<x≤1

sup
n≥1

sup
g∈Ω∗

Bng(x)
g(x)

,

where

α= sup
k≥0

sup
k≤x≤k+1

1 + e−x
(
xk

k!
− 1
)
= 1 +

ξ2

2
e−ξ

and ξ= 3.4920333011... is the unique real zero of the cubic equation x3 − 3x2 −
6= 0.

A seemingly related problem involves the ratio of moduli [20, 21]

ρ1(n)= sup
0<δ≤1

sup
f

ω(Bnf, δ)
ω( f, δ)

= 2

for each n≥ 1. There are interesting multivariate versions of this result. Consider
the operator

Bn f (x, y)=
n∑
i=0

n∑
j=0

(
n
i

)
xi(1 − x)n−i

(
n
j

)
yj(1 − y)n−jf

(
i
n
,
j
n

)
,

given any continuous function f : [0, 1]× [0, 1]→R. This is also called the
bivariate tensor product Bernstein polynomial on the unit square. De La Cal,
Cárcamo & Valle [22, 23] proved that, in this two-dimensional case, the ratio

ρ2(n)= sup
0<δ≤1

sup
f

ω(Bn f, δ)
ω( f, δ)

depends on n and

sup
n≥1

ρ2(n) = 1 − 1
e2

+

∞∑
t=0

1 − 1
e2

(
t∑

s=0

1
s!

)2


= 2.3884423285...= 1 − e−2 + β,

where β= 1.5237776118... is the mean of the maximum of two independent Pois-
son(1) random variables. One would expect the k-dimensional case, k≥ 3, to be
even more complicated. In fact, ρk(n)= k for all n≥ 1. Hence only the bivari-
ate case gives n-dependent behavior as well as a new constant, which is quite
surprising.
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2.8.2 Müntz–Jackson theorem

Müntz’s theorem gives that the power functions{
xλj : 0=λ0<λ1<λ2< . . .

}
generate a dense subspace of the space of all continuous functions on [0, 1] if and
only if

∑∞
j=0 1/λj=∞. Jackson’s theorem is in the spirit of other results in this

essay: It provides bounds on the error in approximating a continuous function f
by polynomials in terms of ω. Newman [24, 25] combined the two theorems in
the following way. Define

Λ= {λj : 0=λ0<λ1<λ2< . . .<λn}

and generalized polynomials

QΛ =


n∑
j=0

ajxλj : aj ∈R for all 0≤ j≤ n

 .

Then

inf
q∈QΛ

sup
0≤x≤1

|q(x)− f(x)| ≤C · ω( f, εΛ),

where C is a constant independent of f and Λ, and

εΛ = sup
Re(z)=1

∣∣∣∣1z z− λ1

z+ λ1

z− λ2

z+ λ2
· · · z− λn

z+ λn

∣∣∣∣ .
Newman [24, 25] demonstrated that 1/50<C< 368 and Odogwu [26] improved
the upper bound to 66. Over and beyond the value of C, the Blaschke product
formula for εΛ is intriguing. Special cases (when consecutive λs are at least 2
apart, or when consecutive λs are at most 2 apart) with simpler formulas also
exist.

An Lp-generalization of ω can be defined; the constants in this essay corre-
spond only to the case p=∞. It would be good to see theirLp-analogs for p<∞.
Clearly limδ→0 ω( f, δ) · δ−1 = 0 implies that f is constant. Consequences of the
weaker condition limδ→0 ω( f, δ) · ln(δ)= 0 are mentioned in [27].
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2.9 Quinn–Rand–Strogatz Constant

We present two problems: one is easy (for the sake of comparison) and the other
is difficult. The unique solution s> 0 of the algebraic equation

0=
n∑
j=1

[
1 − 3s2

(
1 − 2 j−1

n−1

)2
]

is
s=
√

n−1
n+1 ∼ 1 − 1

n +
1
2

1
n2 − 1

2
1
n3 +

3
8

1
n4 − 3

8
1
n5 +− · · ·

as n→∞. Define sn= 1 − 1/n, the first-order approximation, and a certain
partial sum

fn(x)=
n∑
j=1

[
1 − s2n

(
1 − 2 j−1

n−1

)2
]−x

for x> 0. It follows that

lim
n→∞

fn(1)
n ln(n)

=
1
2
, lim

n→∞

fn(2)
n2 =

π2

16

and such formulas for other values of x are possible.
The unique solution s> 0 of the algebraic equation

0=
n∑
j=1

2
√

1 − s2
(
1 − 2 j−1

n−1

)2
− 1√

1 − s2
(
1 − 2 j−1

n−1

)2


satisfies [1–3]

s∼ 1 − c1
n − c2

n2 − c3
n3 − c4

n4 − · · ·

as n→∞, where

c1 = 0.6054436571..., c2 =−0.1046854594...,

c3 = 0.1263143361..., c4 =−0.0159376251....

Bailey, Borwein & Crandall [2] proved that c1 is the unique solution y∈ (0, 2) of
the transcendental equation

ζ(1/2, y/2)= 0
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where

ζ(z, a)=
∞∑
k=0

k+a ̸=0

1
(k+ a)z

is the Hurwitz zeta function (with analytic continuation). Further,

c2 = c1 − c21 − 30
ζ(−1/2, c1/2)
ζ(3/2, c1/2)

but exact expressions for c3, c4 remain open [3]. Define sn= 1 − c1/n, the first-
order approximation, and a partial sum fn(x) exactly as before. It follows that

lim
n→∞

fn(3/2)
n3/2

=
1
4
ζ

(
3
2
,
c1
2

)
= 2.0381693797....

It is believed that analogous formulas involving Hurwitz zeta function values
should exist for other choices of x.

2.9.1 Self-Synchronization

We briefly discuss a model underlying coherent phenomena in biology such as
flashing fireflies and cardiac pacemaker cells [4]. Let 0≤λ< 1. Consider a pop-
ulation of n oscillators with natural frequencies ωi chosen at random from a
symmetric unimodal density g(ω) on the interval [1 − λ, 1 + λ]. Assume that
the mean of g(ω) is equal to 1. The Winfree model [5] is a system of differential
equations

dθi
dt

=ωi −
κ

n
sin(θi)

n∑
j=1

[1 + cos(θj)] , 1≤ i≤ n,

where θi(t) is the phase of the ith oscillator at time t and κ≥ 0 is the (constant)
coupling strength. To study system dynamics for large n, identify oscillators by
their frequency ωi instead of their index i. Defining Θ(t, ν) to be θ1+λν(t) for
−1≤ ν≤ 1, we obtain the following integro-differential equation [6, 7]:

∂Θ

∂t
(t, ν)= 1 + λν − κ sin(Θ(t, ν))

1∫
−1

[1 + cos(Θ(t, µ))] h(µ)dµ

in the limit as n→∞, where the density h is simply g translated to [−1, 1] and nor-
malized. Such a result permits a linear stability analysis necessary to determine
system behavior and bifurcation curves as a function of (λ, κ). When κ is small
relative to the spread λ of natural frequencies, each oscillator behaves indepen-
dently of the others; when κ is larger than a critical value, some of the oscillators
spontaneously synchronize to a common frequency while others remain adrift;
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when κ exceeds another (greater) threshold, all of the oscillators are in line. For
example, the prescription of a certain saddle-node condition is determined via [1]

0=

1∫
−1

cos(2φ(ν))
cos(φ(ν))

h(ν)dν=

1∫
−1

[
2 cos(φ(ν))− 1

cos(φ(ν))

]
h(ν)dν

by a double-angle formula, where ν= sin(φ)/s. In the special case of a discrete
uniform density

h(ν)=
1
n

n∑
j=1

δ
[
ν −

(
1 − 2 j−1

n−1

)]
where δ is theDirac delta function, we have nonzero contributions precisely when

sin(φ)= s
(
1 − 2 j−1

n−1

)
, cos(φ)=

√
1 − s2

(
1 − 2 j−1

n−1

)2

and thus the second (difficult) algebraic equation emerges. The asymptotic
expansion for s gives insight concerning possible singularities in the bifurcation
curve separating partially and fully phase-locked states. Recent associated work
includes [8–11].
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2.10 Tsirelson’s Constant

All infinite-dimensional, separable, complex Hilbert spaces are isometrically iso-
morphic [1]. Fix such a space X for consideration. Let P,Q be self-adjoint linear
operators on X that satisfy the canonical commutation relations

PQ−QP=−i I,

where i is the imaginary unit and I is the identity operator. Such unbounded
operators P, Q are each defined only on a dense linear subspace of X, and
the intersection of two dense linear subspaces generally need not be dense. The
commutation relations ensure, however, that

R=−(P+Q)

is well-defined and is a self-adjoint linear operator.Hencewe have three operators
P, Q, R such that P+Q+ R= 0 and

PQ−QP=QR− RQ=RP− PR=−i I.

Let us define a sign function for operators [2]. First, the scalar sign function is
given by

sgn(z)=
{

1 if Re(z)> 0,
−1 if Re(z)< 0

for z∈C lying off the imaginary axis. Next, the matrix sign function is given by

sgn(M)=U sgn(Λ)U−1,

where M∈Cn×n is a Hermitian matrix with no eigenvalues on the imaginary
axis. The unitary n× n matrix U has column vectors equal to the orthonormal
eigenvector basis of Cn determined by M, and the diagonal n× n matrix Λ has
components equal to the (real) eigenvalues of M:

M=UΛU−1.

By sgn(Λ) is meant the diagonal n× n matrix with sgn applied component-wise
to Λ. Finally, the operator sign function can be defined similarly by use of the
spectral theorem for unbounded operators (upon which we do not elaborate).

It is remarkable that the operator norm [3]

c= ∥sgn(P) + sgn(Q) + sgn(R)∥≈ 1.2

is independent of the choice of P, Q, R.1 It is a nontrivial constant and a more
precise estimate would be good to see. We will provide a limiting expression for
c shortly.

1 The addendum clarifies the meaning of PQ− QP=−i I and the well-definition of c.
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2.10.1 Schrödinger Representation

Let X=L2(R) and, for wave functions ψ ∈L2(R),

(Pψ)(x)=−i d
dx
ψ(x), (Qψ)(x)= xψ(x).

These are the momentum and position (or coordinate) operators that arise in
quantum mechanics. Further, the time-independent Schrödinger ODE for the
quantum harmonic oscillator [4–7]:

d2ψ

dx2 +
(
λ− x2)ψ= 0

(in natural units) can be written as

(P2 +Q2)ψ=λψ

with eigenvalues λn= 2n+ 1 for n= 0, 1, 2, . . . and orthonormal eigenfunctions

ψn(x)=
(√
πn!2n

)−1/2
e−x2/2Hn(x).

The Hermite polynomials Hn(x) satisfy Rodrigues’ formula

Hn(x)= (−1)nex
2 dn

dxn

(
e−x2

)
as well as the recurrence

Hn+1(x)= 2xHn(x)− 2nHn−1(x), H0(x)= 1, H1(x)= 2x.

It is well-known that
∞∫
−∞

ψn(x)2dx= 1

and ψn(x)2 is the probability density for location of a particle in the nth energy
state of a harmonic oscillator. Corresponding to any observable physical quan-
tity, there is a self-adjoint linear operator T, and its expected value for the same
particle is

En(T)=

∞∫
−∞

ψn(x)(Tψn)(x)dx.

For example, √
Varn(P)

√
Varn(Q)= n+

1
2
≥ 1

2
,

which constitutes the Heisenberg uncertainty principle for a quantum harmonic
oscillator (in dimensionless variables). The fact that the product of uncer-
tainties is bounded away from zero can be proved under much more general
circumstances.
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In the following section, the Laguerre polynomials

Ln(x)=
1
n!
ex

dn

dxn
(
xne−x)

are essential. These obey the recurrence

(n+ 1)Ln+1(x)= (2n+ 1 − x)Ln(x)− nLn−1(x), L0(x)= 1, L1(x)= 1 − x

and are orthogonal with respect to the exponential distribution Exp(1), just as
the Hermite polynomials are orthogonal with respect to the normal distribution
N(0, 1/2).

2.10.2 Wigner Function

One might believe that, to estimate c, all we must do is to find n× n matrices P,
Q satisfying the commutation relations for arbitrarily large n. Unfortunately no
such matrices exist since otherwise we would have

0= tr(PQ)− tr(QP)= tr(PQ−QP)= tr(−i I)=−i n,

a contradiction. A different approach must be found.
The Wigner function (or quasi-distribution) offers a way to compute c. All we

require are its values on the Hermite eigenfunction basis of L2(R)× L2(R):

wm,n(x, y) =
1
2π

∞∫
−∞

ψm

(
x+

ξ

2

)
ei ξ yψn

(
x− ξ

2

)
dξ

=

 (−1)m

π

√
m!
n!

(2z̄)n−me−2|z|2L(n−m)
m

(
4|z|2

)
if m≤ n,

wn,m(x, y) if m> n,

where z=(x+ i y)/
√

2 and z̄=(x− i y)/
√

2. See [8–11] for details. The gener-
alized Laguerre polynomials are related to the (ordinary) Laguerre polynomials
via

L(k)
m (x)= (−1)k

dk

dxk
Lm+k(x).

The nth expected value of any physical quantity f(Q,P) can alternatively be
calculated via

En( f(Q,P))=

∞∫
−∞

∞∫
−∞

f(x, y)wn,n(x, y) dy dx.

For example,

Varn(P)=
(−1)n

π

∞∫
−∞

∞∫
−∞

y2e−(x2+y2)Ln(2(x2 + y2))dy dx= n+
1
2
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and Varn(Q) likewise, confirming Heisenberg’s principle. Note that w1,1(0, 0)=
−1/π, for instance, and thus the Wigner function is not a probability density in
the usual sense (because it may take negative values).

2.10.3 Operator Norm

The (m, n)th element in the matrix representation of the operator T= sgn(P)
relative to the Hermite eigenfunction basis of L2(R) is

∞∫
−∞

ψm(x)(Tψn)(x)dx =

∞∫
−∞

∞∫
−∞

sgn(y)wm,n(x, y) dy dx

=

∞∫
−∞

∞∫
0

wm,n(x, y) dy dx−
∞∫
−∞

0∫
−∞

wm,n(x, y) dy dx

for integers m≥ 0, n≥ 0. Changing to polar coordinates

x= r cos(θ), y= r sin(θ)

in the upper half plane, we obtain

∞∫
−∞

∞∫
0

wm,n(x, y) dy dx =

π∫
0

∞∫
0

wm,n(r cos(θ), r sin(θ)) r dr dθ

=

π∫
0

ei(m−n)θdθ

∞∫
0

wm,n(r, 0) r dr,

∞∫
−∞

0∫
−∞

wm,n(x, y) dy dx =

2π∫
π

∞∫
0

wm,n(r cos(θ), r sin(θ)) r dr dθ

=

2π∫
π

ei(m−n)θdθ

∞∫
0

wm,n(r, 0) r dr.

When m≤ n,

∞∫
0

wm,n(r, 0) r dr=
(−1)m

π

√
m!
n!

∞∫
0

(√
2r
)n−m

e−r2L(n−m)
m

(
2r2
)
r dr

and thus the (m, n)th matrix element simplifies to [12]

γm−n
(−1)m+n

π

√
m! n!

m+n∑
k=max{m,n}

(−1)k2k−(m+n)/2−1 Γ(k− (m+ n)/2 + 1)
(m+ n− k)! (k−m)! (k− n)!
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where

γj=

π∫
0

ei j θdθ −
2π∫
π

ei j θdθ=
{

0 if j≡ 0mod 2,
4i/j if j≡ 1mod 2.

The norm ∥sgn(P)∥ of the infinite matrix is found by numerically evaluating
the largest eigenvalue of the upper left N×N submatrix of sgn(P) and letting
N→∞.

The matrices sgn(Q) and sgn(R) are obtained similarly, with γm−n replaced by
δm−n and εm−n respectively, where

δj=

π/2∫
−π/2

ei j θdθ −
3π/2∫
π/2

ei j θdθ=


0 if j≡ 0mod 2,
4/j if j≡ 1mod 4,
−4/j if j≡ 3mod 4

and

εj=

−π/4∫
−5π/4

ei j θdθ −
3π/4∫
−π/4

ei j θdθ=



0 if j≡ 0mod 2,
2
√

2(−1 − i)/j if j≡ 1mod 8,
2
√

2(−1 + i)/j if j≡ 3mod 8,
2
√

2(1 + i)/j if j≡ 5mod 8,
2
√

2(1 − i)/j if j≡ 7mod 8.

Adding the three matrices and taking the largest eigenvalue, we obtain a limiting
value ≈ 1.2 for the operator norm.

2.10.4 Quantum Probability

For convenience, define the indicator function

ind(ξ)=
{

1 if ξ > 0,
0 if ξ < 0

=
1
2
+

1
2

sgn(ξ).

Let q cos(t) + p sin(t) denote the coordinate of a classical harmonic oscillator at
time t, where q, p are the initial coordinate and momentum, and the period is 2π.
Choose τ ∈{0, 2π/3, 4π/3} at random. What is the probability that q cos(τ) +
p sin(τ)> 0? Clearly this depends on the initial state and is given by

2∑
k=0

P
(
q cos(τ) + p sin(τ)> 0 | τ = 2π k

3

)
P
(
τ = 2π k

3

)
= 1

3

(
ind (q) + ind

(
− 1

2q+
√

3
2 p
)
+ ind

(
− 1

2q−
√

3
2 p
))

=

 2
3 if π

6 <θ<
π
2 or 5π

6 <θ< 7π
6 or − π

2 <θ<−π
6 ,

1
3 if − π

6 <θ<
π
6 or π

2 <θ<
5π
6 or − 5π

6 <θ<−π
2

where θ is the polar angle of (q, p) in the plane. Thus the solution is 1
2 ±

1
6 .
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Consider now the quantum harmonic oscillator Q cos(t) + P sin(t) [13].
Answering the same question reduces to evaluating the spectral bounds of the
operator

1
2 I+

1
6

(
sgn (Q) + sgn

(
− 1

2Q+
√

3
2 P
)
+ sgn

(
− 1

2Q−
√

3
2 P
))

,

which turn out to be

1
2 ±

1
6c≈

1
2 ± 0.21.

The maximum probability≈ 0.71 is calculated in [12] and is rigorously proved to
be< 1. We wonder if there are other such fascinating numbers in the intersection
between functional analysis and quantum mechanics.

2.10.5 Generalized Oscillator

The Schrödinger ODE for the anharmonic oscillator:

d2ψ

dx2 +
(
λ− x4)ψ= 0

with quartic potential cannot be solved in closed-form (unlike the harmonic
oscillator). It is worth mentioning that the smallest eigenvalue is

λ0 = 1.0603620904...

and this constant is now known to more than 1000 digits [14–17]. The corre-
sponding eigenvalues for the sextic and octic potentials are 1.1448024537... and
1.2258201138... [18, 19]. See [20] for mention of the linear potential case.
Addendum Tsirelson [3] warned readers that he uses PQ−QP=−i I merely

as shorthand for the Weyl relations

exp(iαP) exp(iβQ)= exp(iαβ) exp(iβQ) exp(iαP) for all α, β ∈R.

The consequential independence of ∥sgn(P) + sgn(Q) + sgn(R)∥ of the choice
of P, Q, R follows from von Neumann’s theorem [1].

He also offered the following explanation for §2.10.2: “The operator norm is
the supremum of the corresponding quadratic form over the unit sphere. We may
choose an increasing sequence of finite-dimensional subspaces whose union is
dense, and consider the corresponding finite-dimensional suprema; they increase
to the infinite-dimensional supremum. Thus the operator norm is the limit of an
increasing sequence of matrix norms. A good choice of a basis (in the Hilbert
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space) simplifies the calculation of the matrices. We use the basis of eigenvectors
of the Hamiltonian (of the oscillator). The calculation of the matrices may be
made via the Wigner function.”
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[18] F. Vinette and J. Čížek, Upper and lower bounds of the ground state energy of anhar-
monic oscillators using renormalized inner projection, J. Math. Phys. 32 (1991)
3392–3404; MR1137393 (93m:81024).
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2.11 Mathieu Eigenvalues

Consider the differential equation [1–3]

y′′(x) + (λ− 2µ cos(2x)) y(x)= 0,

which admits periodic solutions of (least) period π and 2π for four countably
infinite sets of eigenvalues, for each value of µ.

2.11.1 Even Solutions of Period π

Given boundary conditions y′(0)= y′(π/2)= 0, the eigenvalues λ=α2k for k≥ 0
satisfy the infinite tridiagonal determinant equation [4]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

02 − λ
√

2µ 0 0 0√
2µ 22 − λ µ 0 0
0 µ 42 − λ µ 0
0 0 µ 62 − λ µ

0 0 0 µ 82 − λ
. . .

. . .
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

as well as the continued fraction equation [5]

−λ
2
=

µ2
∣∣

|22 − λ
−

µ2
∣∣

|42 − λ
−

µ2
∣∣

|62 − λ
−

µ2
∣∣

|82 − λ
−

µ2
∣∣

|102 − λ
− · · · .

For example, if µ= 1, then [6] α0 =−0.4551386041... and α2 = 4.3713009827....
The corresponding eigenfunctions are written as ce2k(x). Only for complex µ
can the equality α0 =α2 occur; the first such example [7–11] happens when µ=
(1.4687686137...)i, at which α0 =α2 = 2.0886989027....

2.11.2 Odd Solutions of Period π

Given boundary conditions y(0)= y(π/2)= 0, the eigenvalues λ=β2k+2 for
k≥ 0 satisfy the infinite tridiagonal determinant equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

22 − λ µ 0 0 0
µ 42 − λ µ 0 0
0 µ 62 − λ µ 0
0 0 µ 82 − λ µ

0 0 0 µ 102 − λ
. . .

0 0 0 0
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

as well as the continued fraction equation

4 − λ=
µ2

∣∣
|42 − λ

−
µ2

∣∣
|62 − λ

−
µ2

∣∣
|82 − λ

−
µ2

∣∣
|102 − λ

−
µ2

∣∣
|122 − λ

− · · · .



“C02” — 2018/10/27 — 11:57 — page 322 — #51

322 Inequalities and Approximation

For example, if µ= 1, then β2 = 3.9170247729... and β4 = 16.0329700814.... The
corresponding eigenfunctions are written as se2k+2(x). Only for complex µ can
the equality β2 =β4 occur; the first such example [9–12] happens when µ=

(6.9289547587...)i, at which β2 =β4 = 11.1904735991....

2.11.3 Even Solutions of Period 2π

Given boundary conditions y′(0)= y(π/2)= 0, the eigenvalues λ=α2k+1 for
k≥ 0 satisfy the infinite tridiagonal determinant equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + µ− λ µ 0 0 0
µ 32 − λ µ 0 0
0 µ 52 − λ µ 0
0 0 µ 72 − λ µ

0 0 0 µ 92 − λ
. . .

0 0 0 0
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

as well as the continued fraction equation

1 + µ− λ=
µ2

∣∣
|32 − λ

−
µ2

∣∣
|52 − λ

−
µ2

∣∣
|72 − λ

−
µ2

∣∣
|92 − λ

−
µ2

∣∣
|112 − λ

− · · · .

For example, if µ= 1, then α1 = 1.8591080725... and α3 = 9.0783688472.... The
corresponding eigenfunctions are written as ce2k+1(x). Only for complex µ can
the equality α1 =α3 occur; the first such example [9–11, 13] happens when

µ= 1.93139250...+ (3.23763841...)i=(3.7699574940...)ei θ,

θ= arccos(0.51231148...)≈ 59.182◦

at which

α1 =α3 = 6.17649...+ (1.23174...)i.

2.11.4 Odd Solutions of Period 2π

Given boundary conditions y(0)= y′(π/2)= 0, the eigenvalues λ=β2k+1 for
k≥ 0 satisfy the infinite tridiagonal determinant equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − µ− λ µ 0 0 0
µ 32 − λ µ 0 0
0 µ 52 − λ µ 0
0 0 µ 72 − λ µ

0 0 0 µ 92 − λ
. . .

0 0 0 0
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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as well as the continued fraction equation

1 − µ− λ=
µ2

∣∣
|32 − λ

−
µ2

∣∣
|52 − λ

−
µ2

∣∣
|72 − λ

−
µ2

∣∣
|92 − λ

−
µ2

∣∣
|112 − λ

− · · · .

For example, if µ= 1, then β1 =−0.1102488169... and β3 = 9.0477392598.... The
corresponding eigenfunctions are written as se2k+1(x). No new constants emerge
in connection with β1 =β3 because β1(µ)=α1(−µ) and β3(µ)=α3(−µ); hence
this case reduces to the preceding.

2.11.5 Double Points

The values |µ|= 1.468..., 6.928..., 3.769... are first terms of the three sequences
[10, 11]

• {ak}, where ak= |µ| and µ is the complex point closest to 0 satisfying α2k(µ)=

α2k+2(µ)

• {bk}, where bk= |µ| and µ is the complex point closest to 0 satisfying
β2k+2(µ)=β2k+4(µ)

• {ck}, where ck= |µ| and µ is the complex point closest to 0 satisfying
α2k+1(µ)=α2k+3(µ) if k is even and β2k+1(µ)=β2k+3(µ) if k is odd.

It is conjectured (among other things) that

ak∼ bk∼ ck

asymptotically as k→∞ and ak≈ (2.042)k2 for large k. Conceivably π−1/4e=
2.04177... could be an exact expression for the leading coefficient [11]: no one
knows.

2.11.6 Hill and Ince

Let n be a positive integer. Hill’s equation is the following generalization [14]

y′′(x) +

λ− 2
n∑
j=1

µj cos(2j x)

 y(x)= 0

of Mathieu’s equation (for which n= 1 was assumed). A special case of Hill’s
equation is Ince’s equation [4, 15]

y′′(x) + c sin(2x)y′(x) + (λ− µ c cos(2x)) y(x)= 0

after a suitable transformation (assuming here that n= 2). Let λ denote the left-
most eigenvalue of the above. We merely mention that the derivatives λ′(0) and
λ′′(0) of the functionµ 7→λ(µ), for fixed c, play an interesting role in [16]. By con-
trast, α′

0(0)= 0 and α′′
0 (0)=−1 for Mathieu’s equation, which are comparatively

straightforward.
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2.12 Thomas–Fermi Model

The boundary value problem

y′′(x)= x−1/2y(x)3/2, y(0)= 1, lim
x→∞

y(x)= 0

is an important model in atomic physics [1–4]. Two well-known series expansions
for y(x) are

y(x)=
∞∑
k=0

pkxk/2, x≈ 0

p0 = 1, p1 = 0, p2 =−ξ, p3 = 4/3, p4 = 0, . . .
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due to Baker [5] and

y(x)=
144
x3

∞∑
k=0

qkηkx−λ k, x≈∞

q0 = 1, q1 =−1, . . .

due to Coulson & March [6], where λ=(−7 +
√

73)/2. The coefficient pk is a
polynomial in ξ; the coefficient qkηk is (even more clearly) a polynomial in η.
Hence it is important to compute

ξ= lim
x→0+

1 − y(x)
x

=−y′(0), η= lim
x→∞

xλ
(
1 − x3

144
y(x)

)
as accurately as feasible.

More precisely, we have recursive formulas [7–9]

pk =
1

(k− 3) [(k− 1)2 − 1]

3
2

k−4∑
j=1

(j+ 1)
[
(k− j− 2)2 − 1

]
pj+1pk−j−1

−
k−6∑
j=0

(j+ 1)
[
(j+ 3)2 − 1

]
pj+4pk−j−4


for k≥ 5 and

qk =
1

(k− 1)k(λ2k+ 6)

k−2∑
j=0

(j+ 1)
{

3
2

[
λ2(k− j− 1)(k− j− 2)

+ 6(k− j− 1) + 12]− λ2j(j+ 1)− 6(j+ 1)− 12
}
qj+1qk−j−1

for k≥ 2. Special values include

p5 =−2
5
ξ, p6 =

1
3
, p7 =

3
70
ξ2,

p8 =− 2
15
ξ, p9 =

4
63

(
7
6
+

1
16
ξ3
)
, p10 =

1
175

ξ2

and

q2 =
201 + 21

√
73

608
, q3 =−15377 + 1813

√
73

98496
.

Such information, however, does not lead easily to numerical estimates of ξ or η.
Various attempts to do this include [10–29]. We mention that the solution y(x)
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minimizes the integral

I(φ)=

∞∫
0

(
1
2
φ′(x)2 +

2
5
φ(x)5/2

x1/2

)
dx

subject to the constraints φ(0)= 1 and limx→∞ φ(x)= 0, and maximizes the
integral

J(ψ)=−
∞∫
0

(
1
2
ψ′(x)2 +

3
5
(x1/2ψ′′(x))5/3

x1/2

)
dx− ψ′(0)

with no essential constraints [30–32]. The extreme values of I and J agree:

J(ψ)≤ J(y)= I(y)≤ I(φ)

and thus the difference I(z)− J(z) serves to measure how close a candidate
function z(x) is to y(x).

2.12.1 Majorana Transformation

The following derivation of ξ, η was discovered in 1928 but remained unknown
until 2008 [33, 34]. Write

t= 144−1/6x1/2y(x)1/6,

u=−
(

16
3

)1/3

y(x)−4/3y′(x),

then

u̇(t)= 8
t u(t)2 − 1
1 − t2u(t)

, u(0)=
(

16
3

)1/3

ξ, u(1)= 1

and hence

u(t)=
∞∑
m=0

am(1 − t)m,

where a0 = 1, a1 = 9 −
√

73 and

am =
1

2(m+ 8)− (m+ 1)a1

{
m−2∑
n=1

[(n+ 1)an+1 − 2(n+ 4)an + (n+ 7)an−1] am−n

+ [(m+ 7)− 2(m+ 3)a1] am−1 + (m+ 6)a1am−2

}
.

It follows that

ξ=

(
3
16

)1/3 ∞∑
m=0

am= 1.5880710226....
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We have

y(x)=
144
x3 t

6,

x(t)= 1441/3t2 exp

2 t∫
0

s u(s)
1 − s2u(s)

ds


and, further,

t∫
0

s u(s)
1 − s2u(s)

ds=

1∫
1−t

∑∞
m=0 bmτ

m∑∞
m=0 cmτ

m
dτ

where b0 = 1, c0 = 0,

bm= am − am−1, cm= bm−1 − bm for m≥ 1.

It follows that

η= lim
t→1−

x(t)λ
(
1 − t6

)
= 13.2709738480....

These numerical computations appear to bemore straightforward than any other
technique invented over the past eighty years!

A starting point for theory underlying the Thomas–Fermi equation can be
found in [35–38]; see also [39] for a connection with counting lattice points within
a planar closed curve.
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2.13 Prandtl–Blasius Flow

The boundary value problem

y′′′(x) + y′′(x)y(x)= 0, y(0)= 0, y′(0)= 0, lim
x→∞

y′(x)= 1

arises in the study of two-dimensional incompressible viscous flow past a thin
semi-infinite flat plate [1–4]. Such an equation is similar to the Thomas–Fermi
equation [5], but is even more difficult to solve (because it is of higher order).

A well-known series for y(x) is

y(x)=
∞∑
k=0

(−1)k
pkξk+1

(3k+ 2)!
x3k+2, x≈ 0,

where p0 = 1 and [6]

pk=
k−1∑
j=0

(
3k− 1

3j

)
pjpk−j−1, k≥ 1.

Hence it is important to compute

ξ= lim
x→0+

y(x)− 0
x2/2

= y′′(0)

as accurately as feasible. Blasius’ series has only a finite radius of convergence
[7–11]:

ρ= lim
k→∞

(
(3k)(3k+ 1)(3k+ 2)pk−1

pkξ

)1/3

= 4.0234644935...

(in fact, the associated singularities are at x=−ρ and ρ exp(±iπ/3)). Unlike the
Thomas–Fermi equation, an efficient transformation for the Blasius equation
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is not yet known that permits high-precision estimates of ξ. A Runge–Kutta
numerical ODE solver gives ξ= 0.4695999883..., as well as [2, 3, 10, 11]

η= lim
x→∞

(x− y(x))= 1.2167806216....

The fluid dynamics literature is somewhat bewildering because of (small) vari-
ations in the presentation of Blasius’ equation. Let us generalize our discussion
to clear up any confusion. Consider

z′′′(x) + a z′′(x)z(x)= 0, z(0)= 0, z′(0)= 0, lim
x→∞

z′(x)= b

where a> 0, b> 0. Let c= z′′(0); it can be easily shown that c= a1/2b3/2ξ and
thus

c(a= 1/2, b= 1)= ξ/
√

2= 0.3320573362...,

c(a= 1, b= 2)= 2
√

2ξ= 1.3282293448...= 2(0.6641146724...),

b(a= 1, c= 1)= ξ−2/3 = 1.6551903602...,

b(a= 1/2, c= 1)= 21/3ξ−2/3 = 2.0854091764....

From formulas for the radius of convergence

R=
ρ

(a b)1/2
=

(
ξ

a c

)1/3

ρ

and for the limit

L= lim
x→∞

(b x− z(x))=
(
b
a

)1/2

η,

we obtain
R(a= 1/2, b= 1)=

√
2ρ= 5.6900380545...,

R(a= 1, c= 1)= ξ1/3ρ= 3.1273479155...,

R(a= 2, c= 1)= (ξ/2)1/3ρ= 2.4821776854...

(long ago Weyl [12, 13] gave bounds 2.08 and 3.11 for the latter) and

L(a= 1, b= 2)=L(a= 1/2, b= 1)=
√

2η= 1.7207876575...,

L(a= 2, b= 1)=L(a= 1, b= 1/2)= η/
√

2= 0.8603938287....

Whenmoving fluid encounters a solid, a layer is formed adjacent to the bound-
ary of the solid. Strong frictional effects exist inside this layer; on the outside, by
contrast, the flow essentially displays no viscosity [2, 14]. For the case of a thin
plate, the fluid velocity changes rapidly from zero (along the plate) to its origi-
nal value (beyond the boundary layer). Three relevant quantities in this physical
model are the displacement thickness

δ1 =

∞∫
0

(1 − y′(x)) dx= η= 1.2167806216...,
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the momentum thickness

δ2 =

∞∫
0

y′(x) (1 − y′(x)) dx= ξ= 0.4695999883...

and the energy thickness

δ3 =

∞∫
0

y′(x)
(
1 − y′(x)2

)
dx= 2

∞∫
0

y′′(x)y′(x)y(x)dx= 0.73848498....

It is also known that [2, 10]

y′′(x)∼κ exp
[
−(x− η)2/2

]
as x→∞, whereκ= 0.3305407719...=(0.2337276212...)

√
2.Wewonderwhether

δ3 and κ are closely related. The literature associated with y(x) is massive [15–54].

2.13.1 Falkner–Skan Equation

Consider

y′′′(x) + y′′(x)y(x) + λ
(
1 − y′(x)2

)
= 0, y(0)= 0, y′(0)= 0, lim

x→∞
y′(x)= 1,

which arises in the study of viscous flow past a wedge of angle λπ, 0≤λ≤ 1.
The special case λ= 0 is Blasius’ equation, in which the wedge reduces to a flat
plate. The special case λ= 1/2 is called Homann’s equation; we here have [2, 3,
55–57]

y′′(0)= 0.92768003...=(1.31193769...)/
√

2, lim
x→∞

(x− y(x))= 0.804548....

The special case λ= 1 is called Hiemenz’s equation (corresponding to stagnation
flow, for example, past a large disk); we here have [2, 3, 58, 59]

y′′(0)= 1.23258765..., lim
x→∞

(x− y(x))= 0.647900....

It is known that a smooth solution y(x) exists and is unique [12, 13, 60–65] for
each λ, 0≤λ≤ 1. An especially simple proof for λ= 0, due to Serrin, appears in
[66, 67].

Physically relevant solutions also exist for negative λ, more precisely, in the
range −0.19883768...=µ≤λ< 0. (Positive λ corresponds to flow toward the
wedge; negative λ corresponds to flow away from the wedge.) By “physically
relevant”, we mean that a solution y(x) further satisfies

0< y′(x)< 1 for all x> 0,

1 − y′(x)=O (e−γ x) as x→∞
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λπ/2
t

s

Figure 2.1 Falkner–Skan flow past a wedge.

for some γ > 0. It follows that y′′(0)> 0 when λ>µ and y′′(0)= 0 when λ=µ.
A deeper understanding of the constant µ is desired [17, 58, 68–79]. Again, the
associated literature is massive [18–21, 80–102].

2.13.2 Streamlines

At each point in the first quadrant of (s, t)-space, define a velocity vector (u, v) by

u(s, t)= smy′(θ),

v(s, t)=−

√
sm−1

2(2 − λ)
((λ− 1)θ y′(θ) + y(θ))

where

m=
λ

2 − λ
, θ= t

√
(m+ 1)sm−1.

The vector field (s, t) 7→ (u, v) determines the streamlines for laminar boundary-
layer fluid flow past a wedge, as suggested in Figure 2.1, for a specified viscosity
coefficient [3, 83].

Recent papers devoted to the Blasius ODE include [103–106]; related examples
(with numerical estimates) are discussed in [107, 108].
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2.14 Lane–Ritter–Emden Constants

The Lane–Emden equation of index p:

y′′(x) +
2
x
y′(x) + y(x)p= 0, y(0)= 1, y′(0)= 0

is useful in astrophysics for computing the structure of interiors of polytropic
stars [1–3]. A well-known series for y(x) is [4]

y(x)=
∞∑
k=0

akx2k, x≈ 0,

where a0 = 1, a1 =−1/6 and

ak=
1

(k− 1)k(2k+ 1)

k−1∑
j=1

(j p+ j− k+ 1)(k− j)(2k− 2j+ 1)ajak−j, k≥ 2.

This series has radius of convergence [5–10]

γ= lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣1/2 =


∞ if p= 0 or p= 1,
3.6537537362...=

√
13.3499163649... if p= 3/2,

3.9645856345...=
√

15.7179392534... if p= 2,
2.5748367419...=

√
6.6297842476... if p= 3,

2.0348941557...=
√

4.1407942251... if p= 4,
1.7320508075...=

√
3 if p= 5

and details on relevant calculations will appear momentarily. The dimensionless
radius of a polytropic star is the smallest positive x0 for which y(x0)= 0: [1, 11–15]

x0 =



2.4494897427...=
√

6 if p= 0,
3.1415926535...=π if p= 1,
3.6537537362...=

√
13.3499163649... if p= 3/2,

4.3528745959...=
√

18.9475172480... if p= 2,
6.8968486193...=

√
47.5665208786... if p= 3,

14.9715463488...=
√

224.1472000754... if p= 4,
∞ if p= 5

and the dimensionless mass of a polytropic star is x2
0 multiplied by −y′(x0):

µ=−x2
0y

′(x0)=



4.8989794855...= 2
√

6 if p= 0,
3.1415926535...=π if p= 1,
2.7140551201... if p= 3/2,
2.4110460120... if p= 2,
2.0182359509... if p= 3,
1.7972299144... if p= 4,
1.7320508075...=

√
3 if p= 5.
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No closed-form expressions for constants associated with the range 1< p< 5 are
known. The functions γ(p) and x0(p) are initially equal for p> 1, but they sep-
arate at p≈ 1.9121 [7]. The function µ(p) initially decreases, but encounters a
minimum at p≈ 4.823 and increases henceforth [16, 17].

A simpler formula for the coefficients {ak} is valid for p= 2: [18]

ak=
−1

(2k)(2k+ 1)

k−1∑
j=0

ajak−j, k≥ 1,

whichmakes the alternating character of the series obvious. Is there an analogous
formula for p= 3 or p= 4?

Let us explain how γ(p) is computed for 2≤ p≤ 5.Write t=−x2 and u= y−1/p,
then

−6p u
du
dt

+ 4p(p+ 1)t
(
du
dt

)2

− 4p t u
d2u
dt2

= u−p2+p+2

u(0)= 1,
du
dt

(0)=− 1
6p
.

For example, supposing p= 2, we find u(10)= 0.312... and du
dt (10)=−0.058....

By the Inverse Function Theorem,

−6p u
(
dt
du

)2

+ 4p(p+ 1)t
dt
du

+ 4p t u
d2t
du2 = u−p2+p+2

(
dt
du

)3

.

In the case p= 2, initial conditions t(0.312...)= 10 and dt
du (0.312...)=

1
−0.058...

clearly hold. We find t(0)= 15.717..., thus x=(±3.964...)i correspond to where
y= u−p explodes [19]. This technique works because 10 is large enough that u(10)
is small, making the computation of t(0) feasible.

See also [26–62]; the challenge ofmore fully understanding x0 = 4.3528745959...
for p= 2 was featured in [63, 64]. Other works include [65–70].

2.14.1 Polytropic and Isothermal Spheres

A generalization of the Lane–Emden equation is [17, 20–24]

y′′(x) +
N
x
y′(x) + y(x)p= 0, y(0)= 1, y′(0)= 0
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corresponding toN-dimensional polytropic spheres inRN+1. The caseN= 2 was
discussed earlier. For N= 1 (polytropic cylinders), we have

x0 =


2 if p= 0,
2.4048255576...= z if p= 1,
2.6477767662... if p= 3/2,
2.9213207237... if p= 2,
3.5739009819... if p= 3,

where z is the smallest positive zero of the Bessel function J0 and [25]

µ=−x0y′(x0)=


2 if p= 0,
1.2484591696...= z J1(z) if p= 1,
1.0611147888... if p= 3/2,
0.9253532703... if p= 2,
0.7401221205... if p= 3.

No closed-form expressions for constants associated with p> 1 are known. By
contrast, for N= 0 (polytropic slabs),

x0 =

(
π

2(p+ 1)

)1/2 Γ
(

1
p+1

)
Γ
(

p+3
2(p+1)

) =



1.4142135623...=
√

2 if p= 0,
1.5707963267...=π/2 if p= 1,
1.6453408471... if p= 3/2,
1.7173153422... if p= 2,
1.8540746773... if p= 3

and

µ=−y′(x0)=

(
2

p+ 1

)1/2

=



1.4142135623...=
√

2 if p= 0,
1 if p= 1,
0.8944271909... if p= 3/2,
0.8164965809... if p= 2,
0.7071067811...= 1/

√
2 if p= 3.

A different generalization involves the limit as p→∞:

y′′(x) +
2
x
y′(x)= e−y(x), y(0)= y′(0)= 0.

This corresponds to 2-dimensional isothermal spheres in R3 and has the follow-
ing series expansion:

y(x)=
∞∑
k=1

bkx2k, x≈ 0,

where b1 = 1/6 and

bk=
−1

(k− 1)k(2k+ 1)

k−1∑
j=1

j(k− j)(2k− 2j+ 1)bjbk−j, k≥ 2.
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The radius of convergence, squared, is [7, 8, 71]

lim
k→∞

∣∣∣∣ bkbk+1

∣∣∣∣= 10.7170288238...= 2(5.3585144119...).

This is computed by writing t=−x2 and u= ey/2, then applying the Inverse
Function Theorem to

−12u
du
dt

+ 8t
(
du
dt

)2

− 8t u
d2u
dt2

= 1,

u(0)= 1,
du
dt

(0)=− 1
12
.

It is also known that

−y(x)∼ ln
(

2
x2

)
+

C√
x

cos

(√
7

2
ln(x)− c

)

as x→∞ for certain unspecified constants C and c. A more precise statement
of this asymptotic formula, with expressions for C and c, would be good to see.
Related materials include [72–77].
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2.15 Radiative Transfer Equations

Modeling the passage of light through an absorbing and scattering medium (for
example, a planetary atmosphere) is a difficult challenge. Its solution is applicable
to neutron diffusion in nuclear reactor theory. We can hope only to present a few
important integral equations and associated constants [1–12].
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2.15.1 Schwarzschild–Milne

Let s≥ 0. For a homogeneous semi-infinite plane-parallel atmosphere with
isotropic scattering, the Milne equation [13, 14]

f(s)=
ω

2

∞∫
0

f(t)E1 (|s− t|) dt, f(0)= 1

arises, where 0<ω≤ 1 is a constant (albedo) and

En(x)=

∞∫
1

e−x y

yn
dy

for n≥ 1, which is −Ei(−x) if n= 1. Define

Z(µ)= (1 − ω µ arctanh(µ))2 +
1
4
π2ω2µ2

and H(µ) exactly as later; we suppress the dependence on ω. In the special case
when ω= 1 (conservative case), the solution is given by [2]

f(s)=
√

3 (s+ q(s)) ,

where

q(s)=
1√
3
+

1

2
√

3

1∫
0

1 − e−s/µ

H(µ)Z(µ)
dµ= q∞ − 1

2
√

3

1∫
0

e−s/µ

H(µ)Z(µ)
dµ

and q∞ is Hopf’s constant [1, 6, 10, 15–24]:

q∞ =
1
π

π/2∫
0

(
3

sin(θ)2
− 1

1 − θ cot(θ)

)
dθ

=
6
π2 +

1
π

π/2∫
0

(
3
θ2

− 1
1 − θ cot(θ)

)
dθ

=
6
π2 − 1

π

∞∑
n=1

bn+1

2n− 1

(π
2

)2n−1
= 0.7104460895....

The series coefficients b2, b3, b4, . . . are defined recursively via

n∑
k=1

akbn−k+1 = 0, b1 = 3,

where

ak=
(−1)k−122kB2k

(2k)!

and B2 =
1
6 , B4 =− 1

30 , B6 =
1
42 , . . . are the Bernoulli numbers.
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Mark [25] was the first to solve Milne’s equation, building on work by
Wiener & Hopf [26] and Placzek & Seidel [15]. An integral equation for q(s)
directly is [27, 28]

q(s)=
1
2
E3(s) +

1
2

∞∫
0

q(t)E1 (|s− t|) dt

and a related formula for Hopf’s constant is

q∞ =
3
8
+

3
2

∞∫
0

q(t)E3 (t) dt.

2.15.2 Ambarzumian–Chandrasekhar

Let 0≤µ≤ 1 and 0<ω≤ 1. The equation [4, 5, 29–33]

H(µ)= 1 +
1
2
ω µ

1∫
0

H(µ)H(λ)

µ+ λ
dλ

possesses a continuous solution; further, it is unique if ω= 1. A better definition
of H(µ) for arbitrary ω avoids ambiguity [2, 34]:

H(µ)= f(0, µ)

where

f(s, µ)= e−s/µ +
ω

2

∞∫
0

f(t, µ)E1 (|s− t|) dt.

Halpern, Lueneburg & Clark [35] and Fock [36] proved that [10, 37]

H(µ) = exp

−µ
π

∞∫
0

ln
(
1 − ω

arctan(λ)
λ

)
dλ

1 + µ2λ2


= exp

− µ

π

π/2∫
0

ln (1 − ω θ cot(θ))
cos(θ)2 + µ2 sin(θ)2

dθ


and it is clear that H(0)= 1 and H increases with µ. Define moments

αn=

1∫
0

H(µ)µndµ,
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then for ω= 1 we have [11, 38]

α0 = 2, α1 = 2/
√

3= 1.1547005383...,

α2 =
2√
3
q∞ =

2√
3
(1 − η0)= 0.8203524821...,

α3 =

(
1
5
+

1
3
q2
∞

)√
3= 0.6378182680...,

α4 =
2√
3

(
1
3
− η2 +

3
10
q∞ +

1
6
q3
∞

)
= 0.5222273037...,

where

ηj=

1∫
0

ξj
[
1
2
− 1
π

arctan
(

2 (1 − ξ arctanh(ξ))
π ξ

)]
dξ

for j≥ 0. See also [39–55].
Let us examine a generalization to finite atmospheres. Let τ > 0. The coupled

equations

X(µ)= 1 +
1
2
ω µ

1∫
0

X(µ)X(λ)− Y(µ)Y(λ)
µ+ λ

dλ,

Y(µ)= e−τ/µ +
1
2
ω µ

1∫
0

Y(µ)X(λ)− X(µ)Y(λ)
µ− λ

dλ

give solutions related by

Y(µ)= e−τ/µX(−µ), X(µ)= e−τ/µY(−µ)

(appropriately extended for µ< 0), but the solutions are non-unique if ω= 1. A
better definition is

X(µ)= f(0, µ), Y(µ)= f(τ, µ)

where

f(s, µ)= e−s/µ +
ω

2

τ∫
0

f(t, µ)E1 (|s− t|) dt.

The only difference from before is that the upper limit of integration here is τ <
∞; in fact,

lim
τ→∞

X(µ)=H(µ), lim
τ→∞

Y(µ)= 0.

Integral expressions for X, Y analogous to H are not known. Clearly X(0)= 1,
Y(0)= 0 and both X, Y increase with µ. Define moments

αn=

1∫
0

X(µ)µndµ, βn=

1∫
0

Y(µ)µndµ,
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then for ω= 1 the following hold [11]:

α0 + β0 = 2, α1 − β1 = τ β0, α2 + β2 =
2

3β0
− τ

2
(α1 + β1)

for any τ . When τ = 1/10, we have [24]

α0 = 1.1420220619..., α1 = 0.5765390018..., α2 = 0.3851978742...,

β0 = 0.8579779380..., β1 = 0.4907412080..., β2 = 0.3384588719...

and when τ = 5, we have

α0 = 1.8201574310..., α1 = 1.0269371382..., α2 = 0.7210212649...,

β0 = 0.1798425689..., β1 = 0.1277242933..., β2 = 0.0992710166....

No exact formulas for αn or βn are known for τ <∞. The solutions X(µ), Y(µ)
for the conservative case are not the same as the “standard solutions”

X̃(µ)=X(µ) +
β0µ

α1 + β1
(X(µ) + Y(µ)), Ỹ(µ)=Y(µ)− β0µ

α1 + β1
(X(µ) + Y(µ))

described byChandrasekhar [56, 57], which satisfy α̃0 = 2 and β̃0 = 0 (rather than
the non-homogenous Milne equation for f ). It is known that

α̃2
1 − β̃2

1 =
4
3

and, further, that pairwise moment sums are invariant [24]:

α1 + β1 = 1.0672802099...= α̃1 + β̃1,

α2 + β2 = 0.7236567462...= α̃2 + β̃2

when τ = 1/10, and

α1 + β1 = 1.1546614315...= α̃1 + β̃1,

α2 + β2 = 0.8202922816...= α̃2 + β̃2

when τ = 5. Conceivably an integral expression might exist for αn + βn but not
for either αn or βn. Note that, in general [2],

lim
µ→∞

H(µ)= (1 − ω)−1/2,

whereas

lim
µ→∞

X(µ)=
[
1 − ω

2
(α0 − β0)

]−1
= lim

µ→∞
Y(µ)

assuming τ <∞. See also [58–72]. Much territory remains for exploration.
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2.16 Carleman’s Inequality

The inequality
∞∑
k=1

(a1a2 · · · ak)1/k< e
∞∑
k=1

ak

relates the geometric and arithmetic means of an infinite sequence a1, a2, …,
where ak≥ 0 for all k and aℓ> 0 for at least one ℓ. The constant e is best possible
[1–5].

A number of refined versions of Carleman’s original inequality have appeared
including [6, 7]

∞∑
k=1

(a1a2 · · · ak)1/k< e
∞∑
k=1

[
1 − 1

2(k+ 1)

]
ak

and a generalization exists [8–13]:

∞∑
k=1

(a1a2 · · · ak)1/k< e
∞∑
k=1

1 −
m∑
j=1

bj
(k+ 1)j

 ak,
wherem is any positive integer and b1 = 1/2, b2 = 1/24, b3 = 1/48, b4 = 73/5760,
b5 = 11/128, b6 = 3625/580608, … are generated via

bj=−1
j

j∑
i=1

bj−i

i+ 1
, b0 =−1.
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In different directions, we have

∞∑
k=1

(a1a2 · · · ak)1/k≤ e
∞∑
k=1

[
1 − 1 − 2/e

k

]
ak,

∞∑
k=1

(a1a2 · · · ak)1/k≤ e
∞∑
k=1

[
1 +

1
k

]1−1/ ln(2)

ak

and a common extension of these also exists [14, 15].
Our interest is in the nth finite section of Carleman’s inequality:

n∑
k=1

(a1a2 · · · ak)1/k<Cn

n∑
k=1

ak.

It is known that the best constant Cn satisfies [16, 17]

Cn= e− 2π2e
1

ln(n)2
+O

(
1

ln(n)3

)
asymptotically as n→∞. The rate at which Cn approaches e is quite slow. What
can be said for small values of n?

It is not difficult to show that

C2 =
1
2

(
1 +

√
2
)
, C3 =

4
3

via direct minimization of
∑n

k=1 (a1a2 · · · ak)1/k subject to the constraint∑n
k=1 ak= 1. A symbolic technique in [18] gives that C4 = 1.4208443854... is

algebraic of degree 24 with minimal polynomial

109049173118505959030784x24 − 654295038711035754184704x23

+ 1472163837099830446915584x22 − 1387347813563214701002752x21

+ 220843507713085418766336x20 + 361130725214496730644480x19

+ 18738444188050884919296x18 − 149735761790067869220864x17

− 20033038006659651207168x16 + 14417509185682352898048x15

+ 16905530303693690241024x14 − 2098418839125516877824x13

− 198705178996352483328x12 + 427447433656163893248x11

+ 41447678188009291776x10 − 2629784260986273792x9

+ 660475521813381120x8 + 342213608420278272x7

+ 42624005978423296x6 − 201976270848000x5

+ 274965186525696x4 + 12841816536576x3

+ 373658292864x2 + 22039921152x

+ 387420489;

also we have C5 = 1.4863532289... and C6 = 1.5379375565... by numeric means.
The minimal polynomials of C5 and C6 are presently unknown.
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2.17 Golay–Littlewood Problem

Two independent streams of investigation, one from digital communications
engineering and the other from complex analysis on the unit circle, come together
in this essay [1–5].
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2.17.1 Merit Factor of Binary Sequences

Given a sequence a0, a1, a2, . . ., an where each aj=±1, define the kth acyclic
autocorrelation to be

ck=
n−k∑
j=0

ajaj+k for 0≤ k≤ n; ck= c−k for − n≤ k< 0

and the merit factor to be the ratio

F=
c20∑
k̸=0 c

2
k

=
(n+ 1)2

2
∑n

k=1 c
2
k

.

Identifying binary sequences {aj} whose autocorrelations {ck} are jointly as
small as possible, for fixed n, is important for engineering design purposes. The
“best” sequences are those with the largest merit factor F. As an example, the
sequence 1,−1, 1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1 has the largest F value 169/12=
14.0833... among all such with n= 12. As another example, the sequence
1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1 has the largest F value 121/10= 12.1 among all
such with n= 10. No other merit factor exceeding 10 is known for any n; a proof
that 169/12 and 121/10 are the maximum possible values for F is still open.

2.17.2 L4 Norm of Polynomials on Unit Circle

Given a polynomial of complex variable z:

f(z)=
n∑
j=0

ajzj,

the Lp norm of f over the unit circle for p≥ 1 is

∥ f ∥p=

 1
2π

2π∫
0

∣∣ f (ei θ)∣∣p dθ
1/p

.

Since the complex conjugate z̄ is equal to 1/z and all polynomial coefficients aj
are real, we have f(z)= f(z̄)= f(1/z). Hence

| f(z)|2 = f (z) f
(

1
z

)
= c0 +

∑
k̸=0

ckzk

and, after integrating, ∥ f ∥2
2 = c0 = n+ 1 because each aj=±1. Also, we have

| f(z)|4 = f (z)2 f
(

1
z

)2

=
∑
k

c2k +
∑
k+ℓ ̸=0

ckcℓzk+ℓ
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and, after integrating, ∥ f ∥4
4 =
∑

c2k=(n+ 1)2(1 + 1/F). Thus Littlewood’s ques-
tion [6, 7] about how closely the ratio ∥ f ∥4 / ∥ f ∥2 can approach 1 as n→∞
translates into Golay’s question [8–13] about the limit supremum of F.

2.17.3 Bounds on Asymptotic Behavior

On the one hand, let ξ= 1.157677... denote the smallest zero of 27x3 − 498x2 +

1164x− 722. Jedwab, Katz & Schmidt [14] proved that there is a Littlewood
polynomial sequence {fn} such that deg( fn)→∞ and

∥ fn∥4

∥ fn∥2
→ 4
√
ξ= 1.037282...

as n→∞. As a consequence,

limsup
n→∞

Fn≥ η=
1

ξ − 1
= 6.342061....

The preceding best result, namely ξ= 7/6= 1.16... (η= 6), had remained in place
for more than twenty years [15, 16]. Recent numerical computations indicate that
ξ= 1.1553... (η= 6.4382...) is feasible. We might have to wait a long time for rig-
orous verification of this result because, in the words of [17], “inclusion of the
steep descent algorithm ... would seem to make a proof much more difficult”.
Theory lags considerably behind experiment here: there is good evidence that
η > 8 or even η > 8.5. Merit factors exceeding 9 are not uncommon for sequence
lengths ≈ 100, but it is difficult to project whether such extremities will continue
to grow slowly or level off [18, 19].

On the other hand, no one has proved that the limit supremumof F is necessar-
ily finite. (An argument in [11, 20] that it is approximately 12.32 is only heuristic.)
This would be good to see someday.

Imagine the set of all sequences of length n+ 1, endowed with the uniform
distribution. Draw one such sequence and compute F. The mean value of 1/F is
exactly [21, 22]

E

(
1
F

)
=

n
n+ 1

→ 1

as n→∞. An exact expression for Var(1/F) is not available, but it is O(1/n)
according to [4]. Thus most sequences should have merit factor close to 1 [23].
What else can be said about the distribution of 1/F or, indeed, of F itself ?

Relevant material is covered in [24, 25]. The survey [4] mentions Mahler’s mea-
sure and Lehmer’s conjecture surrounding a certain polynomial of degree 10
(with largest zero 1.1762808182...) [26]. Related problems involving±1 sequences
appear in [27–29].
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Addendum Choi [30] supplemented the result E(∥ f ∥4
4)= (n+ 1)(2n+ 1) with

a new one:

Var
(
∥ f ∥4

4

)
=

8
3
(n+ 1)

(
2n2 − 2n+ 3

)
− 8

⌊
n2 + 2n+ 2

2

⌋
giving a formula for Var(1/F) as a corollary. Golay’s constant is, to higher
precision,

12.3247958363...=
2y2

2y− ln(2y+ 1)
,

where y is the unique positive solution of the equation (y+ 1) ln(2y+ 1)= 2(1 +

ln(2))y [20].

[1] J. Jedwab, A survey of the merit factor problem for binary sequences, Sequences and
Their Applications - SETA 2004, ed. T. Helleseth, D. Sarwate, H.-Y. Song and K.
Yang, Lect. Notes in Comp. Sci. 3486, Springer-Verlag, 2005, pp. 30–55.

[2] P. Borwein, Computational Excursions in Analysis and Number Theory, Springer-
Verlag, 2002, pp. 109–132, 181–202; MR1912495 (2003m:11045).

[3] T. Hoholdt, The merit factor problem for binary sequences, Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes - AAECC-16, ed. M. P. C. Fossorier,
H. Imai, S. Lin and A. Poli, Lect. Notes in Comp. Sci. 3857, Springer-Verlag, 2006,
pp. 51–59.

[4] K.-K. S. Choi, Extremal problems about norms of Littlewood polynomials, unpub-
lished manuscript (2006).

[5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A091386 andA102780.
[6] J. E. Littlewood, On polynomials

∑n ±zm,
∑n eαm izm, z= eθi, J. London Math. Soc.

41 (1966) 367–376; MR0196043 (33 #4237).
[7] J. E. Littlewood, Some Problems in Real and Complex Analysis, D. C. Heath and Co.,

1968, pp. 25–32; MR0244463 (39 #5777).
[8] M. J. E. Golay, A class of finite binary sequences with alternate autocorrelation

values equal to zero, IEEE Trans. Inform. Theory IT-18 (1972) 449–450.
[9] M. J. E. Golay, Hybrid low autocorrelation sequences, IEEE Trans. Inform. Theory

IT-21 (1975) 460–462.
[10] M. J. E. Golay, Sieves for low autocorrelation binary sequences, IEEETrans. Inform.

Theory IT-23 (1977) 43–51.
[11] M. J. E. Golay, The merit factor of long low autocorrelation binary sequences, IEEE

Trans. Inform. Theory IT-28 (1982) 543–549.
[12] M. J. E. Golay, The merit factor of Legendre sequences, IEEE Trans. Inform. Theory

IT-29 (1983) 934–936.
[13] M. J. E. Golay and D. B. Harris, A new search for skewsymmetric binary sequences

with optimal merit factors, IEEE Trans. Inform. Theory 36 (1990) 1163–1166.
[14] J. Jedwab, D. J. Katz and K.-U. Schmidt, Littlewood polynomials with small L4

norm, Adv. Math. 241 (2013) 127–136; arXiv:1205.0260; MR3053707.
[15] T. Hoholdt and H. E. Jensen, Determination of the merit factor of Legendre

sequences, IEEE Trans. Inform. Theory 34 (1988) 161–164; Zbl 0652.40006.
[16] P. Borwein, K.-K. S. Choi and J. Jedwab, Binary sequences with merit factor greater

than 6.34, IEEE Trans. Inform. Theory 50 (2004) 3234–3249; MR2103494.
[17] J. M. Baden, Efficient optimization of the merit factor of long binary sequences,

IEEE Trans. Inform. Theory 57 (2011) 8084–8094; MR2895382 (2012m:94243).



“C02” — 2018/10/27 — 11:57 — page 358 — #87

358 Inequalities and Approximation

[18] S. Mertens, Exhaustive search for low-autocorrelation binary sequences, J. Phys. A
29 (1996) L473–L481; MR1419192 (97i:82050).

[19] P. Borwein, R. Ferguson and J. Knauer, The merit factor problem, Number Theory
and Polynomials, ed. J. McKee and C. Smyth, Cambridge Univ. Press, 2008, pp. 52–
70; MR2428515 (2010b:11030).

[20] J. Bernasconi, Low autocorrelation binary sequences: statistical mechanics and
configuration state analysis, J. Physique 48 (1987) 559–567.

[21] D. V. Sarwate,Mean-square correlation of shift-register sequences,Communications,
Radar and Signal Processing. IEE Proceedings F, v. 131 (1984) n. 2, 101–106.

[22] D. J. Newman and J. S. Byrnes, The L4 norm of a polynomial with coefficients ±1,
Amer. Math. Monthly 97 (1990) 42–45; MR1034349 (91d:30006).

[23] K.-U. Schmidt, On random binary sequences, Sequences and Their Applications -
SETA 2012, ed. T.Helleseth and J. Jedwab, Lect. Notes in Comp. Sci. 7280, Springer-
Verlag, 2012, pp. 303–314; MR3015481.

[24] D. J. Katz, Asymptotic L4 norm of polynomials derived from characters, Pacific J.
Math. 263 (2013) 373–398; arXiv:1205.1069; MR3068549.

[25] J. Jedwab, D. J. Katz and K.-U. Schmidt, Advances in the merit factor problem for
binary sequences, J. Combin. Theory Ser. A 120 (2013) 882–906; arXiv:1205.0626;
MR3022619.

[26] S. R. Finch, Pisot-Vijayaraghavan-Salem constants, first volume, pp. 192–199.
[27] S. R. Finch, Power series with restricted coefficients, this volume, §3.9.
[28] S. R. Finch, Two-colorings of positive integers, this volume, §1.29.
[29] S. R. Finch, Moments of sums, this volume, §4.2.
[30] K.-K. S. Choi, Variance of L4-norm of the polynomials with ±1 coefficients,

unpublished note (1997).

2.18 Online Matching Coins

The first game we discuss originated in [1, 2], although we mostly follow [3] in
our exposition. The second and third games appear in [4].

Nature tosses a fair coin repeatedly and independently, yielding an infinite
sequence N0, N1, N2, … of 1s and 2s. Just prior to each toss, Alice and Bob
simultaneously declare their guess A and B for the resulting N. They win the
toss if both guessed correctly. Their goal is to maximize the probability of win-
ning. They are permitted to strategize no later than one hour beforehand; after
the game starts, any communication between them is only via the As, Bs and Ns.
With no further information, if they agree beforehand to always both guess 1 (for
example) then the probability of winning is 1/2. No improvement is possible.

Suppose now that, during their strategizing, Alice and Bob are told that Alice
will be given the full sequence N0, N1, N2, … one minute before the game! To
improve their odds, Alice must pass relevant information she knows to Bob in an
agreed-upon manner. Setting A=N always does not help their cause! At toss 0,
Alice might declare

A0 =N2

(sacrificing her knowledge of N0) so that Bob understands to declare B1 =

B2 =A0. They will win toss 2 since Alice will declare A2 =N2. At toss 1, Alice
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might declare
A1 =N4

(sacrificing her knowledge of N1) so that Bob understands to declare B3 =B4 =

A1. They will win toss 4 since Alice will declare A4 =N4. At toss 3, Alice might
declare

A3 =N6

(sacrificing her knowledge of N3) so that Bob understands to declare B5 =B6 =

A3. They will win toss 6 since Alice will declare A6 =N6, and so forth. In sum-
mary, Alice and Bob will score one win out of two whenever {N2t+1,N2t+2}=
{1, 2} or {2, 1}. When {N2t+1,N2t+2}= {1, 1} or {2, 2}, they will score one win
out of two half the time and two out of two the remaining half, giving odds of

1
2
· 1
2
+

1
2
·

1
2 + 1

2
=

5
8
= 0.625.

Instead of partitioning time into blocks modulo 2, let us do so modulo 3.
Define the mode Mt of {N3t+1,N3t+2,N3t+3} to be the most common element
in the set. At toss 0, Alice might declare

A0 =M0

(sacrificing her knowledge of N0) so that Bob understands to declare B1 =

B2 =B3 =M0. Assume that indices 1≤ i, j, k≤ 3 are distinct. Alice’s next three
declarations might be

Ai=Aj=M0 and Ak=M1 if Nk ̸=M0

and
A1 =A2 =M0 and A3 =M1 if N1 =N2 =N3 =M0

(sacrificing her knowledge ofN3 for the latter) so that Bob understands to declare
B4 =B5 =B6 =M1. In summary, Alice and Bob will score two wins out of three
whenever {N1,N2,N3} contains two 1s and one 2, or two 2s and one 1. When
{N1,N2,N3} contains all 1s or all 2s, they will score two wins out of three half
the time and three out of three the remaining half, giving odds of

3
4
· 2
3
+

1
4
·

2
3 + 1

2
=

17
24

= 0.7083....

A more sophisticated strategy allows the win probability to approach x=
0.8107103750... as closely as desired, where x is the unique solution of the
equation [1]

−x ln(x)− (1 − x) ln(1 − x) + (1 − x) ln(3)= ln(2).

No further improvement is possible beyond this point.
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2.18.1 Symmetric Online Matching Coins

The preceding game is asymmetric – Alice knows everything and Bob knows
nothing – for the following game, information is distributed equally among the
players and they will both need to send signals to each other. Imagine here that a
fair coin has four equally-likely sides, not two. (A regular tetrahedral die would
be a better metaphor.) Also define

f(N)=
{

1 if N= 1 or 3,
0 if N= 2 or 4,

g(N)=
{

1 if N= 1 or 2,
0 if N= 3 or 4

for convenience, that is, f(N) anwers the question “Is N odd?” and g(N) answers
the question “Is N≤ 2?”

Nature tosses a fair coin repeatedly and independently, yielding an infinite
sequence N1, N2, N3, … of 1s, 2s, 3s and 4s. Just prior to each toss, Alice and
Bob simultaneously declare their guessA and B for the resultingN. They win the
toss if both guessed correctly. Their goal is to maximize the probability of win-
ning. They are permitted to strategize no later than one hour beforehand; after
the game starts, any communication between them is only via the As, Bs and Ns.
With no further information, if they agree beforehand to always both guess 1 (for
example) then the probability of winning is 1/4. No improvement is possible.

Suppose now that, during their strategizing, Alice and Bob are told that Alice
will be given the sequence f(N1), f(N2), f(N3), … and Bob will be given the
sequence g(N1), g(N2), g(N3), … one minute before the game! At toss 1, Alice
might declare

A1 =


1 if f(N1)= 1 and f(N2)= 0,
2 if f(N1)= 0 and f(N2)= 1,
3 if f(N1)= 1 and f(N2)= 1,
4 if f(N1)= 0 and f(N2)= 0

and Bob might declare

B1 =


1 if g(N1)= 1 and g(N2)= 0,
2 if g(N1)= 0 and g(N2)= 1,
3 if g(N1)= 1 and g(N2)= 1,
4 if g(N1)= 0 and g(N2)= 0

so that they will win toss 2. The odds here are

1
2

(
1
2
· 1
2
+ 1
)
=

5
8
= 0.625.
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Instead of devoting resources to guessing N1, let us shift emphasis entirely to
signaling ahead for N2 and N3. At toss 1, Alice might declare

A1 =


1 if f(N2)= 1 and f(N3)= 0,
2 if f(N2)= 0 and f(N3)= 1,
3 if f(N2)= 1 and f(N3)= 1,
4 if f(N2)= 0 and f(N3)= 0

and Bob might declare

B1 =


1 if g(N2)= 1 and g(N3)= 0,
2 if g(N2)= 0 and g(N3)= 1,
3 if g(N2)= 1 and g(N3)= 1,
4 if g(N2)= 0 and g(N3)= 0

(both sacrificing their partial knowledge ofN1) so that they will win tosses 2 and
3. The odds here are

1
3

(
1
4
· 1
4
+ 1 + 1

)
=

33
48

= 0.6875.

A more sophisticated strategy allows the win probability to approach κ=

0.7337221510... as closely as desired [4]. The formulas underlying this constant
are more elaborate than before. Define a hyperplanar region in R8:

∆(8)=

{
(x1, x2, . . . , x8) :

8∑
ℓ=1

xℓ = 1 and xℓ ≥ 0 for all ℓ

}

and a real-valued function on ∆(8):

h(x)=− 1
ln(2)

8∑
ℓ=1

xℓ ln(xℓ)

with the convention that 0 · ln(0)= 0. Let φ : [0, 3]→R be given by

φ(r)=max

{
4∑

ℓ=1

x2
ℓ : x∈∆(8) and h(x)≥ r

}

and let ψ : [0, 3]→R be the minimal concave function ≥φ. The desired prob-
ability κ is ψ(1), which numerically appears to be equal to φ(1). No further
improvement is possible beyond this point. It also appears that the minimiz-
ing vector x can be taken such that x1 = x2 = x3 and x5 = x6 = x7, which would
simplify our presentation.
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2.18.2 Cross Over Matching Coins

Here the game is symmetric, as for the preceding, but Nature instead tosses a pair
of distinguishable coins (two sides apiece). Thus we have two infinite sequences
Nα

0 , Nα
1 , Nα

2 , … and Nβ
0 , N

β
1 , N

β
2 , … of 1s and 2s. Just prior to each toss, Alice

and Bob simultaneously declare their guesses A and B for the resulting Nα and
Nβ , respectively. During their one-hour prior strategizing, they learn that Alice
will be given the sequence Nβ

0 , N
β
1 , N

β
2 , … and Bob will be given the sequence

Nα
0 , Nα

1 , Nα
2 , … at one-minute prior! Their goal is to maximize the average of

(the probability of Alice winning) and (the probability of Bob winning). Com-
munication between them, via the As, Bs, Nαs and Nβs, is again critical to their
success.

The optimal win probability here is λ= 0.8041565330... [4]. Define a line
segment in R2:

∆(2)=

{
(x1, x2) :

2∑
ℓ=1

xℓ = 1 and xℓ ≥ 0 for all ℓ

}

and a real-valued function on ∆(2):

h(x)=− 1
ln(2)

2∑
ℓ=1

xℓ ln(xℓ).

Let φ : [0, 1]→R be given by

φ(r)=max

{
2∑

ℓ=1

x2
ℓ : x∈∆(2) and h(x)≥ r

}

and let ψ : [0, 1]→R be the minimal concave function ≥φ. The desired proba-
bility λ is ψ(1/2), which is (in this case) provably equal to φ(1/2).

A simpler presentation is hence clear: λ= y2 + (1 − y)2 where y is either of the
two reals satisfying

−2y ln(y)− 2(1 − y) ln(1 − y)= ln(2).

No closed-form expression for this constant (or for other constants in this essay)
seems to be available.

It is possible to generalize the symmetric online game to an arbitrary number
m of players and a single nm-sided coin. The real-valued function h on ∆(nm+1)

gives rise to a φ (maximum sum of mth powers, indices from 1 to nm) and a mini-
mal concave ψ≥φ. Form> 2 or n> 2, however, ψ(ln(n)/ ln(2)) is strictly greater
thanφ(ln(n)/ ln(2)). This complicates the numerical calculation of a optimal win
probability in the general setting.

It is also possible to generalize the cross overmatching game to a pair of n-sided
coins. The real-valued function h on ∆(n) gives rise to a φ (maximum sum of n
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squares) and a minimal concave ψ≥φ. For n> 2, however, ψ(ln(n)/(2 ln(2)))
is strictly greater than φ(ln(n)/(2 ln(2))). This again complicates calculations in
general.

Related ideas appear in [5] (best strategies) and [6] (maximal convex func-
tion ≤ φ).

[1] O. Gossner, P. Hernández and A. Neyman, Online matching pennies, Center for the
Study of Rationality, Hebrew Univ., discussion paper, 2003.

[2] O. Gossner, P. Hernández and A. Neyman, Optimal use of communication resources,
Econometrica 74 (2006) 1603–1636; MR2268411 (2007e:91112).

[3] P. Winkler, Mathematical Mind-Benders, A. K. Peters, 2007, pp. 11, 17–18;
MR2334790 (2008f:00002).

[4] A. Shapira, Communication Games with Asymmetric Information, Ph.D. thesis,
Hebrew Univ., 2008.

[5] S. R. Finch, Optimal stopping constants, first volume, pp. 361–363.
[6] S. R. Finch, Shapiro-Drinfeld constant, first volume, pp. 208–211.

2.19 Toothpicks and Live Cells

We understand a toothpick to be a compact unit subinterval of the real line. At
time 1, place a toothpick in the xy-plane with endpoints at (0,±1/2). Both end-
points are exposed and must be covered at time 2. This is done by simultaneously
placing a new toothpick with endpoints at (±1/2, 1/2) and a new toothpick with
endpoints at (±1/2,−1/2). New toothpicks at odd times are always vertical; new
toothpicks at even times are always horizontal. Any old endpoint is exposed if
it is neither the endpoint nor the midpoint of any other existing toothpick. If
exposed, it must be covered by the midpoint of a new toothpick without delay.
At time 3, four new toothpicks are needed; likewise for times 4 and 5. At time 6,
eight new toothpicks are required (see Figure 2.2); at time 7, twelve are required.
No toothpicks are ever removed [1].

Let T(n) denote the total number of toothpicks at time n. For k≥ 0, we have
the following recursion:

T
(
2k + j

)
=


1
3

(
22k+1 + 1

)
if j= 0,

T
(
2k
)
+ 2T (j) + T (j+ 1)− 1 if 1≤ j≤ 2k − 1.

No simple formula for T(n) is known; it is not well behaved asymptotically in the
sense that [2]

0.4513058284...= c= liminf
n→∞

T(n)
n2 < limsup

n→∞

T(n)
n2 =

2
3
.

Weunderstand cells to be the basis elements of an infinite planar square lattice.
Neighbors of each cell are defined to be the four squares that share an edge with
it (see Figure 2.3). At time 1, a single cell is alive. At time n> 1, a cell newly comes
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Figure 2.2 Toothpicks {T(n)}10
n=1 = {1, 3, 7, 11, 15, 23, 35, 43, 47, 55}, from [1].

Figure 2.3 Live cells {U(n)}8
n=1 = {1, 5, 9, 21, 25, 37, 49, 85}, from [9].

to life if and only if exactly one of its neighbors is alive and older (that is, alive at
time n− 1). Once a cell is alive, it remains alive forever [3–9].

Let U(n) denote the total number of live cells at time n. For n≥ 1, a simple
formula applies:

U(n)=
1
3

(
4
n−1∑
m=0

3b(m) − 1

)
,
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where b(m) is the number of ones in the binary expansion of m. We have seen
such exponential sums of digital sums before [10] and find [11]

0.9026116569...= liminf
n→∞

U(n)
n2 < limsup

n→∞

U(n)
n2 =

4
3
.

The fact that 4/3 is the limit superior has been known for years [4]; by contrast,
no one seems to have studied the limit inferior until now. Is this quantity equal
to 2c? Why should the toothpick and Ulam–Warburton automata be so closely
related? Sloane [12] provided an overview of associated ideas.
Acknowledgment I am thankful to Robert Price for numerically confirming

that the lower limit of U(n)/n2 is twice that of T(n)/n2 to high precision.

[1] D. Applegate, O. E. Pol and N. J. A. Sloane, The toothpick sequence and
other sequences from cellular automata, Congr. Numer. 206 (2010) 157–191;
arXiv:1004.3036; MR2762248 (2011k:37017).

[2] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A139250, A170927,
and A195853.

[3] S. M. Ulam, On some mathematical problems connected with patterns of growth
of figures, Mathematical Problems in the Biological Sciences, ed. R. Bellman, Proc.
Symp. Applied Math., v. 14, Amer. Math. Soc., 1962, pp. 215–224; MR0157851 (28
#1080).

[4] R. P. Stanley and R. J. Chapman, A tree in the integer lattice, Amer. Math. Monthly
105 (1998) 769–771.

[5] S.Wolfram,ANewKind of Science,WolframMedia, 2002, pp. 928–929;MR1920418
(2003i:37002).

[6] M. Warburton, One-edge connections, M500 188 (Oct 2002) 11.
[7] D. Singmaster, On the cellular automaton of Ulam and Warburton,M500 195 (Dec

2003) 2–7.
[8] T. Khovanova, E. Nie and A. Puranik, The Sierpinski triangle and the Ulam-

Warburton automaton, arXiv:1408.5937.
[9] A. Fink, A. S. Fraenkel and C. Santos, LIM is not slim, Internat. J. Game Theory 43

(2014) 269–281; MR3197293.
[10] S. R. Finch, Stolarsky-Harborth constant, first volume, pp. 145–151.
[11] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A147562, A260239,

and A261313.
[12] N. J. A. Sloane, On the number of ON cells in cellular automata, arXiv:1503.01168.

2.20 Virial Coefficients

A fluid is a large collection of small particles. The simplest model for fluids in
D-dimensional space gives rise to the ideal gas law

P
κT

= ρ,

where P is pressure, T is temperature, ρ is density and κ is Boltzmann’s con-
stant. A more general model takes interparticle interactions of all orders into
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consideration. It features the virial series expansion

P
κT

= ρ+
∞∑
n=2

Bn,D ρn

where coefficients Bn,D depend on the choice of potential function. We will focus
on the hard core potential {

∞ if r≤ 1,
0 if r> 1,

which implies that two particles have no interaction if their distance > 1 and
they are prohibited from approaching a distance ≤ 1. The particles are called
hard rods ifD= 1, hard disks ifD= 2 and hard spheres ifD= 3. A more realistic
potential 

∞ if r≤ 1,
−ε if 1< r≤ 1 + δ,

0 if r> 1 + δ

includes a region of attraction as well as a repulsive hard core; this is called the
square-well potential. Other choices exist.

If D= 1, then [1–3]
P
κT

=
ρ

1 − ρ
,

that is, Bn,1 = 1 for all n≥ 1, corresponding to a fluid of hard rods. ForD≥ 2, we
need to discuss nonseparable graphs on n vertices, building on material covered
in [4, 5]. The number of such graphs is 1, 1, 3, 10 for 2≤ n≤ 5. Figure 2.4 exhibits
the 15 graphs so far mentioned and symbols representing each [6, 7]. English let-
ters correspond to the number of vertices; integers correspond to the number of

B1 C3 D3 D5 D6

E5 E6a E6b E7a E7b

E7g E8a E8b E7 E10

Figure 2.4 15 unlabeled nonseparable graphs on ≤ 5 vertices.
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edges; Greek letters will be explained shortly. The number of labeled nonsepa-
rable graphs is 1, 1, 10, 238 for 2≤ n≤ 5. Our interest is in the labeled case. For
n= 4, there are 3 graphs of type D4, 6 graphs of type D5 and 1 graph of type
D6. For n= 5, there are 12 graphs of type E5, 70 graphs of type E6, 100 graphs
of type E7, 45 graphs of type E8, 10 graphs of type E9 and 1 graph of type E10.
Further refinement is needed for three cases:

70 E6 graphs = 60 E6α graphs + 10 E6β graphs,

100 E7 graphs = 60 E7α graphs + 30 E7β graphs + 10 E7γ graphs,

45 E8 graphs = 15 E8α graphs + 30 E8β graphs.

Let us now illustrate what is called the Mayer formalism for representing virial
coefficients Bn,D for 2≤ n≤ 5 and D≥ 2. Given n points r⃗1, r⃗2, r⃗3, . . ., r⃗n in RD

with r⃗1 = 0⃗ by convention, define rij= |⃗ri − r⃗j| and

f(r)=
{
−1 if r≤ 1,
0 if r> 1.

We abuse notation and allow graph symbols to serve as shorthand for certain
integrals:

B2,D=−1
2

∫
RD

f(r12)d⃗r2 =−1
2

1
1!
B1,

B3,D=−1
3

∫
RD

∫
RD

f(r12)f(r23)f(r31)d⃗r2 d⃗r3 =−2
3

1
2!
C3,

B4,D=−3
4

1
3!

(3D4 + 6D5 +D6) ,

where

D4=
∫
RD

∫
RD

∫
RD

f(r12)f(r23)f(r34)f(r41)d⃗r2 d⃗r3 d⃗r4,

D5=
∫
RD

∫
RD

∫
RD

f(r12)f(r23)f(r34)f(r41)f(r13)d⃗r2 d⃗r3 d⃗r4,

D6=
∫
RD

∫
RD

∫
RD

f(r12)f(r23)f(r34)f(r41)f(r13)f(r24)d⃗r2 d⃗r3 d⃗r4.

Continuing,

B5,D = −4
5

1
4!

(12E5 + 60E6α+ 10E6β + 60E7α+ 30E7β + 10E7γ

+15E8α+ 30E8β + 10E9 + E10) ,
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5

2

3

E6a E6b

1

4

5

2

3

1

4

Figure 2.5 Selected labeled nonseparable graphs on 5 vertices.

where, for example,

E6α=

∫
RD

∫
RD

∫
RD

∫
RD

f(r12)f(r14)f(r15)f(r23)f(r25)f(r34)d⃗r2 d⃗r3 d⃗r4 d⃗r5,

E6β=
∫
RD

∫
RD

∫
RD

∫
RD

f(r13)f(r14)f(r15)f(r23)f(r24)f(r25)d⃗r2 d⃗r3 d⃗r4 d⃗r5

and we have used the helpful labels in Figure 2.5.
From these formulas, we deduce that [8–17]

B2,D=
πD/2

2Γ (1 +D/2)
=

{
π/2 if D= 2,
2π/3 if D= 3;

B3,D

B2
2,D

=
4Γ (1 +D/2)√
πΓ ((1 +D)/2)

π/3∫
0

sin(θ)Ddθ=
{

4/3 −
√

3/π if D= 2,
5/8 if D= 3;

B4,D

B3
2,D

=

{
2 − (9/2)

(√
3/π
)
+ 10/π2 if D= 2,

2707/4480 + (219/2240)
(√

2/π
)
− (4131/4480) (arcsec(3)/π) if D= 3;

B5,D

B4
2,D

=

{
0.33355604... if D= 2,
0.110252... if D= 3.

Elaborating on B5,D for D= 3:

E5
B4

2

=−40949
10752

,
E6α
B4

2

=
68419
26880

,
E6β
B4

2

=
82
35
,

E7α
B4

2

=−34133
17920

,
E7β
B4

2

=−18583
5376

+
33291
9800

√
3
π
,
E7γ
B4

2

=−73491
35840

,

E8β
B4

2

=−35731
6720

+
1458339
627200

√
2
π

− 33291
9800

√
3
π

+
683559
35840

arcsec(3)
π

,

but exact expressions for

E8α
B4

2

≈ 2(0.56965),
E9
B4

2

≈ 3(−0.30490)
E10
B4

2

≈ 30(0.02369)
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remain open. Even less is known about B5,D for D= 2:

E6β
B4

2

= 16 − 116
π2 ,

E7γ
B4

2

=−16 +
16
√

3
π

+
196
3π2 − 117

√
3

2π3 .

Numerical integration is evidently required for the remaining subcases. For
example [14, 16],

E6α = 4π2

1∫
0

1−r∫
0

A(r)A(s)r s ds dr

+4π

1∫
0

1+r∫
1−r

A(r)A(s) arccos
(
r2 + s2 − 1

2r s

)
r s ds dr

≈ (4.46966949)B4
2 ≈

1
2
(8.93933899)B4

2,

E7α = −4π2

1∫
0

1−r∫
0

A(r)A(s)r s ds dr

−4π

1∫
0

1∫
1−r

A(r)A(s) arccos
(
r2 + s2 − 1

2r s

)
r s ds dr

≈ (−3.61831477)B4
2 ≈

1
2
(−7.23662954)B4

2,

E5 = −E6α− 4π

2∫
1

2∫
−1+r

A(r)A(s) arccos
(
r2 + s2 − 1

2r s

)
r s ds dr

≈ (−5.97307832)B4
2 ≈

5
2
(−2.38923133)B4

2,

where
A(r)= 2 arccos

( r
2

)
− r

2

√
4 − r2

is the area of the intersection of two overlapping disks, each of unit radius, with
distance r between their centers. Other symbols require evaluation of trivariate
integrals or worse; computational difficulty seems to increase with the number
of edges in the graph. A remarkable breakthrough was achieved recently [18,
19], giving E10 for D= 2 solely in terms of bivariate integrals and hence to high
accuracy:

E10
B4

2

= 1.8090652427...= 5(0.3618130485...)= 30(0.0603021747...).
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Details of this computation are still forthcoming. Analogous estimates for the
other unsolved contributions to B5,2 are unavailable; the corresponding difficul-
ties for B5,3 are insurmountable.

A different normalization for virial coefficients often appears:

B̃n,D=
Bn,D

(ωD/2D)
n−1

where ωD=πD/2/Γ(1 +D/2), the volume enclosed by the unit sphere in RD.
Thus B̃2,2 = 2, B̃2,3 = 4, B̃3,2 = 16/3 − 4

√
3/π and B̃3,3 = 10. We merely mention

challenging research for n> 5 and D> 3, which is beyond the scope of his essay
[20–29].
AddendumAn expression for the area of the intersection I of three overlapping

disks, each of unit radius, is found in [30]. Let the centers be (−r/2, 0), (r/2, 0)
and (x, y), where 0< r< 2 and the third point is assumed to be inside the inter-
section J of the first two disks. Assume further that a nonempty arc of ∂J lies
outside of the third circle, that is, I is nondegenerate. Let

d12 = r, d13 =
√

(x+ r/2)2 + y2, d23 =
√
(x− r/2)2 + y2,

x12 = d12/2, x′13 = d13/2, x
′′

23 = d23/2,

y12 =
√

1 − d2
12/4, y′13 =−

√
1 − d2

13/4, y
′′

23 =
√

1 − d2
23/4,

λ′ =
d2
12 + d2

13 − d2
23

2d12d13
, µ′ =

√
1 − λ′2, λ′′ =−

d2
12 + d2

23 − d2
13

2d12d23
, µ′′ =

√
1 − λ′′2,

x13 = x′13λ
′ − y′13µ

′, y13 = x′13µ
′ + y′13λ

′,

x23 = x′′23λ
′′ − y′′23µ

′′ + d12, y23 = x′′23µ
′′ + y′′23λ

′′,

c1 =
√
(x12 − x13)2 + (y12 − y13)2, c2 =

√
(x12 − x23)2 + (y12 − y23)2,

c3 =
√

(x13 − x23)2 + (y13 − y23)2.

Then the desired area is

ℵ(x, y, r) =
1
4

√
(c1 + c2 + c3)(−c1 + c2 + c3)(c1 − c2 + c3)(c1 + c2 − c3)

+

3∑
k=1

[
arcsin

(ck
2

)
− ck

4

√
4 − c2k

]
.

Define also

u(x, r)=
√

1 − x2 −
√

1 − r2/4, v(x, r)=
√

1 − (x+ r/2)2,

w(r)=
1
4

(
−r+

√
3
√

4 − r2
)
;
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exact formulas for

θ(r)=A(r)

r/2∫
0

u(x,r)∫
0

dy dx,

φ(r)=A(r)

w(r)∫
0

u(x,r)∫
0

dy dx, ψ(r)=A(r)

1−r/2∫
w(r)

v(x,r)∫
0

dy dx

exist but are omitted for brevity’s sake. Two additional symbols for D= 2 are
therefore [14]

E8β = 8π

 1∫
0

θ(r)A(r) r dr

+

1∫
0

w(r)∫
r/2

−u(x,r)∫
0

A (d13)A(r) r dy dx dr+

1∫
0

1−r/2∫
w(r)

v(x,r)∫
0

A (d13)A(r) r dy dx dr

+

1∫
0

r/2∫
0

v(x,r)∫
u(x,r)

ℵ(x, y, r)A(r) r dy dx dr+
1∫
0

w(r)∫
r/2

v(x,r)∫
−u(x,r)

ℵ(x, y, r)A(r) r dy dx dr


≈ (2.810839)B4

2,

E7β = −E8β − 2π

2∫
√

3

A(r)3r dr

−8π


√

3∫
1

φ(r)A(r) r dr+

√
3∫

1

ψ(r)A(r) r dr+

√
3∫

1

w(r)∫
0

v(x,r)∫
u(x,r)

ℵ(x, y, r)A(r) r dy dx dr


≈ (−3.202747)B4

2.

We have not attempted to independently evaluate [16]

E8α
B4

2

≈ 2.529628≈ 2(1.264814),
E9
B4

2

≈−2.160499≈ 3(−0.720166)

except to verify that a certain identity

E6β + E7γ + 3(E7β + E8α+ E8β) + 4E9 + E10= 0

is satisfied.
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2.21 Strong Triangle Inequality

Let a, b, c denote the sides of a triangle, h denote the altitude to side c, and γ
denote the angle opposite c. It is known that the inequality [1, 2]

a+ b> c+ h

is true for all triangles with γ <π − 4 arctan(1/2)= 1.2870022175...≈ 73.74◦ but
is false for all triangles with γ≥π/2. For the intermediate range of angles, there
are several ways to express the percentage of triangles satisfying the inequality.
Certain authors [3] assumed that the angles α, β opposite sides a, b are uniformly
distributed on the region

0<α<π, 0<β <π, α+ β <π.

Let

K=

π/2∫
0

[
2 arctan

(
1 − tan

(x
2

))
−
(π
2
− x
)]

dx= 0.2922839193...

for convenience. Supposing 0<γ <π, the probability that a random triangle
satisfies the inequality is

1 − 2
π2

(
π2

8
+ K

)
= 1 − 1

4
− 2K
π2 = 0.690770....

Supposing instead 0<γ <π/2, the probability is

1 − 8K
3π2 = 0.921027....
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(This is why a+ b> c+ h is said to hold for “most” triangles with acute γ.)
Supposing instead π − 4 arctan(1/2)<γ <π/2, the probability is

1 − 8K
64 arctan(1/2)2 − π2 = 0.398657....

We wonder about the odds corresponding to a fixed angle γ in the intermediate
range. This is found by integrating the joint (α, β)-density

2
π2 if 0< x<π, 0< y<π and x+ y<π,

0 otherwise

to obtain a marginal density

f(x)=

π−x∫
0

2
π2 dy=

2
π2 (π − x);

the desired probability is hence

1 − 1
f(γ)

w∫
z

2
π2 dx =

2z
π − γ

=


1 if γ=π − 4 arctan(1/2),
0.770368... if γ= 5π/12= 75◦,
0.335397... if γ= 11π/24= 82.5◦,
0.166040... if γ= 23π/48= 86.25◦,
0 if γ=π/2,

where z is the smallest positive solution of the equation

tan
( z
2

)
+ cot

(
γ + z

2

)
= 1

and w=π − γ − z.
We additionally wonder about the odds corresponding to a different choice of

distribution for α, β. If the triangle vertices are independent random Gaussian
points in two dimensions, all of which have mean vector zero and covariance
matrix identity, then we have joint (α, β)-density [4, 5]

6
π

sin(x) sin(y) sin(x+ y)

(sin(x)2 + sin(y)2 + sin(x+ y)2)2
if 0< x<π, 0< y<π and x+ y<π,

0 otherwise.

Integrating with respect to y over [0, π − x], a marginal density [4, 6]

g(x)=
3
π

cos(x)

(4 − cos(x)2)3/2

(
π

2
+ arcsin

(
cos(x)

2

))
+

3
π

1
4 − cos(x)2
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emerges. The desired probability becomes

1 − 1
g(γ)

w∫
z

6
π

sin(γ) sin(x) sin(γ + x)

(sin(γ)2 + sin(x)2 + sin(γ + x)2)2
dx

=


1 if γ=π − 4 arctan(1/2),
0.662855... if γ= 5π/12= 75◦,
0.141612... if γ= 11π/24= 82.5◦,
0.034758... if γ= 23π/48= 86.25◦,
0 if γ=π/2

where z, w are exactly as before.
A benefit of working with 2D Gaussian triangles is that the joint density for

sides a, b, c is available [4, 7]:
2
3π

a b c√
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

exp
(
−1

6

(
a2 + b2 + c2

))
if |a− b|< c< a+ b,

0 otherwise.

The (ordinary) triangle inequality gives rise to an expected difference

E(a+ b− c)=
√
π= 1.7724538509...

and an expected ratio

E
(
a+ b
c

)
≈ 2.94.

For the strong triangle inequality, we utilize a variation of the density function

1
3π

a b exp
[
−1

3

(
a2 − a b cos(γ) + b2)]

over a> 0, b> 0, 0<γ <π to compute the expected difference

E(a+ b− c− h) = E
(
a+ b−

√
a2 − 2a b cos(γ) + b2 − a b sin(γ)√

a2−2a b cos(γ)+b2

)
≈ 0.79

and the expected ratio

E
(
a+ b
c+ h

)
= E

 a+ b√
a2 − 2a b cos(γ) + b2 + a b sin(γ)√

a2−2a b cos(γ)+b2


≈ 1.44.

Other possible models to consider are 3D Gaussian triangles [4] and broken
L triangles of unit perimeter [8].
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Let us turn attention away from a Euclidean setting and toward the hyper-
bolic plane. The strong triangle inequality holds for any hyperbolic triangle if
γ < ξ where ξ= 1.1496525950...≈ 65.87◦ is the smallest positive solution of the
equation [9]

−1 − cos(ξ) + sin(ξ) + sin
(
ξ

2

)
sin(ξ)= 0.

Analogous probabilistic results for uniform angles are uncovered in [10]. An
unusual feature of the latter paper is its careful analysis – numerical results
here can be computed to arbitrary precision and the error can be bounded –
we wonder if such rigour can be feasibly carried over to the Gaussian case.
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Real and Complex Analysis

3.1 Radii in Geometric Function Theory

First, we talk about geometry. A region R⊆C is convex if, for any two points
p, q∈R, the line segment pq⊆R. A region R⊆C is starlike with respect to the
origin if 0∈R and if, for any point p∈R, the line segment 0p⊆R.

Next, we talk about functions. A complex analytic function f defined on an
open region is univalent (or schlicht) if f is one-to-one; that is, f(z)= f(w) if and
only if z=w. Let

D= {z : |z|< 1} (the open disk of radius 1),

E= {z : 0< |z|< 1} (the open punctured disk),

S=

{
univalent f on D with f(z)= z+

∞∑
n=2

anzn
}
,

Σ=

{
univalent f on E with f(z)=

1
z
+

∞∑
n=0

bnzn
}
.

Geometry and functions now come together. The various subclasses of S
include

CV = { f∈S : f(D) is convex}

=

{
f∈S :Re

(
1 + z

f ′′(z)
f ′(z)

)
> 0 for all z∈D

}
,

the class of convex functions on D, and

ST = { f∈S : f(D) is starlike with respect to 0}

=

{
f∈S :Re

(
z
f ′(z)
f(z)

)
> 0 for all z∈D

}
,

the class of starlike functions on D. We will mostly discuss S (the analytic case),
but will mention Σ (the meromorphic case) occasionally in the following [1–5].
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3.1.1 Radius of Convexity

Define Dr= {z : |z|< r}, the open disk of radius r, for each r> 0. For each f∈S,
let r( f ) be the supremum of all numbers r such that f(Dr) is convex. The radius
of convexity for S is [1]

ρcv(S)= inf
f∈S

r( f )= 2 −
√

3= 0.2679491924...

and is achieved by theKoebe function f(z)= z(1 − z)−2. This fact was first proved
by Nevanlinna [6]. Generalization of ρcv to any subclass of S gives rise to some
interesting optimization problems. Trivially we have

ρcv(CV)= 1, ρcv(ST)= 2 −
√

3

(the latter follows since the Koebe function is starlike). Define, however, the
special class of starlike functions of order α:

S∗
α =

{
f∈S :Re

(
z
f ′(z)
f(z)

)
>α for all z∈D

}
.

Zmorovic [7], extending work in [8–10], proved that

ρcv(S∗
α)=


1

2 − 3α+
√
(1 − α)(3 − 5α)

if 0≤α<α0,(
5α− 1

4α2 − α+ 1 + 4α
√
α2 − 3α+ 2

) 1
2

if α0 ≤α< 1,

whereα0 = 0.3349596751... is the smallest positive zero of 20α4 − 52α3 + 15α2 +

12α− 4. Note that ρcv(S∗
0)= 2 −

√
3, as expected.

We turn attention to the class Σ. Define Er= {z : 0< |z|< r} and, for f∈Σ, let
r( f ) be the supremum of all numbers r such that the complement of f(Er) in C is
convex. Goluzin [5, 11] proved that

ρcv(Σ)= inf
f∈Σ

r( f )= x= 0.5600798519...,

where x is the unique positive solution of the equation

E(x)
K(x)

+
x2

8
− 7

8
= 0

and K(x), E(x) are complete elliptic integrals of the first and second kind [12].
Letting

Σ∗
β =

{
f∈Σ :Re

(
z
f ′(z)
f(z)

)
<−β for all z∈E

}
,
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we also have [7, 9, 11, 13, 14]

ρcv(Σ
∗
β)=


(

4β − 5 + 4
√
β2 − β + 1

8β − 3

) 1
2

if 0≤β <β0,

1

β +
√
(1 − β)(3β − 1)

if β0 ≤β < 1,

where β0 = 0.8673407553... is the largest positive zero of 12β4 − 28β3 + 33β2 −
20β + 4. Note here that ρcv(Σ∗

0)= 1/
√

3= 0.577... > 0.560...= x. In this case, the
extremal function is not starlike, which accounts for the strict inequality.

3.1.2 Radius of Starlikeness

For each f∈S, let r( f ) be the supremumof all numbers r such that f(Dr) is starlike
with respect to the origin. The radius of starlikeness for S is [1]

ρst(S)= inf
f∈S

r( f )=
1 − e−π/2

1 + e−π/2
= tanh

(π
4

)
= 0.6557942026...

and this fact was first discovered by Grunsky [15].
Goluzin [5, 16] found several interesting generalizations. Define a regionR⊆C

to be n-starlike with respect to the origin if 0∈R and if every point of R can
be connected with 0 by a piecewise linear curve that lies entirely in R and that
consists of no more than n line segments. Let δn be the supremum of all r such
that an arbitrary f∈Smaps Dr onto an n-starlike region with respect to 0. Then

tanh
(π
4

)
= δ1 ≤ δ2 ≤ δ3 ≤ · · · , δn≥ tanh

(nπ
4

)
,

but values for δn, n≥ 2, are unknown. See also [17, 18].
Likewise, let ϵn be the supremum of all r such that an arbitrary f∈Σ maps Er

onto a region, the complement of which is n-starlike with respect to 0. Then

0.85<ϵ1, 1 − 1.11 exp
(
−nπ
2

)
<ϵn for all n> 1.

An exact expression for ϵ1 would be good to see someday.

3.1.3 Radius of Close-to-Convexity

A region R⊆C is close-to-convex (or linearly accessible) if its complement is
a union of closed half-lines such that the corresponding open half-lines are
pairwise disjoint. Any starlike region is close-to-convex. A half-annulus is also
close-to-convex, but this property fails for any larger subsection of an annulus.

An analytic function f :D→C is close-to-convex if f(D) is close-to-convex.
Equivalently, f is close-to-convex if there is a convex function g :D→C such
that Re( f ′(z)/g′(z))> 0 for all z∈D [1, 19–25]. It can be shown that every
close-to-convex function is univalent.
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Define

CC = { f∈S : f(D) is close-to-convex}

=

f∈S :
θ2∫
θ1

Re
(
1 + z

f ′′(z)
f ′(z)

)
dθ >−π, where z= reiθ,

for each 0< r< 1 and each pair 0<θ1<θ2< 2π

 .

Let ρcc(S) be the supremum of all r such that an arbitrary f∈S maps Dr onto a
close-to-convex region. Krzyz [26] determined that

ρcc(S)= y= 0.8098139153...,

where y is the unique real solution of the equation

2 arctan
(
κ(y)
λ(y)

)
+ ln

(
1 + λ(y)2

)
− 2 ln

(
2y

1 − y2

)
= 0

in the interval 0< y< 1, κ(y)= (1 + y2)/(1 − y2), and λ=λ(y) is the unique real
solution of the equation

λ3 − κ(y)λ2 + κ(y)2λ− κ(y)= 0.

Sizuk [27] extended this result to the class of close-to-convex functions of order γ.

3.1.4 Radius of Convexity in One Direction

A regionR⊆C is convex in the direction of the imaginary axis if, for every vertical
lineL, the setL ∩ R is either empty or connected. Any region that is convex in one
direction can be rotated so that it is convex in the imaginary direction [3, 28, 29].

Define

CD= {f∈S : f(D) is convex in the imaginary direction}

and let ρcd(S) be the supremum of all numbers r such that an arbitrary f∈S
maps Dr onto a region that is convex in the imaginary direction. Umezawa [30]
and Goodman & Saff [31] proved that

0.394...= 4 −
√

13≤ ρcd(S)≤
√

2 − 1= 0.414....

The exact value of this constant is unknown.
A subclass of CD was considered by Hengartner & Schober [32]:{

f∈S :Re
(
(1 − z2)f ′(z)

)
≥ 0 for all z∈D

}
but we omit details. See also [33, 34].
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3.1.5 Radius of Majorization

Let f :D→C be analytic with f(0)= 0 and f ′(0)≥ 0. Let F∈S. The function f is
subordinate to F, written f≼F, if f(Dr)⊆F(Dr) for all 0< r< 1 [1, 35].

Shah [36, 37], verifying conjectures of Goluzin [5, 38], proved that if f≼F, then

| f(z)| ≤ |F(z)| for all |z| ≤ 1
2 (3 −

√
5)= 0.3819660112...,

| f ′(z)| ≤ |F′(z)| for all |z| ≤ 3 − 2
√

2= 0.1715728752....

Both of these radii are best possible. If we further assume that f is univalent and
f ′(0)> 0, then [5, 39]

| f(z)| ≤ |F(z)| for all |z| ≤ u= 0.3908507887...,

where u is the unique real solution of

ln
(

1 + u
1 − u

)
+ 2 arctan(u)=

π

2
.

Again, this radius of majorization is best possible. Problems as such (subordina-
tion implies majorization) were first examined by Biernacki [40].

Converse problems (majorization implies subordination) were studied by
Lewandowski [41]. Under the same conditions as earlier, if | f(z)| ≤ |F(z)| for
all z∈D and f is not necessarily univalent, then f≼F in the disk Dv, where
0.21< v< 0.29. The exact value of v is unknown. If f is assumed to be univalent,
then the constant u= 0.390... arises again [42, 43].

3.1.6 Radius of Zeroness

Let ρN(Σ) be the supremum of all numbers r such that an arbitrary f∈Σ never
vanishes on the punctured disk Er. Goluzin [16] proved that 0.86<ρN(Σ)≤√

3/2< 0.867, but a subsequent theorem of his [5, 44] implies that ρN(Σ)= ξ=

0.8649789576..., where ξ is the unique positive solution of the equation

E(ξ)
K(ξ)

+
ξ2

4
− 3

4
= 0.

This is quite similar to the equation prescribed earlier for the radius of convexity
ρcv(Σ).

Given an analytic function f, wemay likewise define ρN( f ) to be the supremum
of all numbers r such that f, when restricted to Er, is never zero. For example,

ρN( f )= 2|z0| for f(z)= z− 1
2z0

z2 (a quadratic function)

and
ρN( f )= 2π for f(z)= exp(z)− 1 (the exponential function).
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3.1.7 Radius of Univalence

Given an analytic function f, define the radius of univalence of f to be the supre-
mum of all numbers r such that f, when restricted to the diskDr, is univalent. Let
us first consider the case of polynomials. We clearly have

ρs( f )= |z0| for f(z)= z− 1
2z0

z2

in the quadratic case. Kakeya’s theorem [45–47] provides that

sin
(π
n

)
≤ ρs( f )

|z0|
≤ 1 for f(z)= z+

n∑
k=2

akzk

in the general case, where n≥ 2 and z0 ̸= 0 is the zero of f ′(z) of smallest modulus.
These bounds are sharp.

Now, let us consider the case of transcendental functions. We have

ρs( f )=π for f(z)= exp(z)− 1,

as is well-known (although f ′(z) never vanishes); [48]

ρs( f )= 1.5748375891... for f(z)= erf(z),

corresponding to the smallest modulus, of points z not on the x-axis, for which
erf(z) is real; [49, 50]

ρs( f )= 0.9241388730... for f(z)= exp(z2) erf(z),

corresponding to the unique positive solution of
√
πy Im( f(iy))= 1; [51–53]

ρs( f )= pν,1 for f(z)= z1−νJν(z), ν >−1,

corresponding to the smallest positive zero of f ′(z); [54]

ρs( f )= 0.5040830082... for f(z)= 1/Γ(z),

corresponding to the smallest positive zero of Γ′(−z); and [55]

ρs( f )= 0.4616321449... for f(z)=Γ(z+ 1),

corresponding to the smallest positive zero of Γ′(z+ 1). See also [56].
We digress briefly to other radii. For f(z)= exp(z)− 1, it is known that [57, 58]

ρcv( f )= 1, ρst( f )= 2.8329700604...

and the latter corresponds to
√

1 + η2, where η is the smallest positive solution
of the equation

η sin(η) + cos(η)=
1
e
.

See also [59, 60].
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3.1.8 Sums and Products

Here are two procedures for combining univalent functions:

S+ S= {h : h(z)= tf(z) + (1 − t)g(z) for some f, g∈S and 0≤ t≤ 1} ,

S · S=
{
h : h(z)= f(z)tg(z)1−t for some f, g∈S and 0≤ t≤ 1

}
.

On the one hand, MacGregor [61] demonstrated that

ρs(S+ S)= sin
(π
8

)
=

1
2

√
2 −

√
2= 0.3826834323...

ρs(CV+ CV)=

√
2

2
= 0.7071067811...

and Robertson [62] showed that

ρs(ST+ ST)=χ= 0.4035150049...

where χ is the unique positive zero of χ6 + 5χ4 + 79χ2 − 13. Further results
appear in [63–65]. On the other hand, we have [3]

CV · CV⊆ST · ST⊆ST, CV · CV ̸⊆CV

but virtually nothing is known about the class S · S.

3.1.9 Derivatives and Integrals

Define the following classes of functions:

T=

{
f : f(z)=

1
2
d
dz

(zg(z)) for some g∈S
}
,

Uα =

f : f(z)=
z∫
0

(
g(w)
w

)α

dw for some g∈S

 ,

Vβ =

f : f(z)=
z∫
0

g′(w)βdw for some g∈S

 ,

where α, β are complex numbers and hence the logarithmic branch is selected
so that f ′(0)= 1. Barnard [66, 67] and Pearce [68], building on Robinson [69],
proved that

0.49<ρs(T)≤ 1
2 , 0.435<ρst(T)< 0.445.

In particular, these two constants must be distinct.
Biernacki [70] claimed that ρs(U1)= 1, but this was disproved by Krzyz &

Lewandowski [71]. It was later shown [72] that 0.91<ρs(U1)≤ tanh(π)< 0.9963.
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Let A denote the set of all complex numbers α for whichUα ⊆S. Kim & Merkes
[73] proved that D1/4 ⊆A⊆D1/2; we wonder whether Dr⊆A for some r> 1/4.

Trivially ρs(V1)= 1. Let B denote the set of all complex numbers β for which
Vβ ⊆S. Royster [74] and Pfaltzgraff [75] proved that D1/4 ⊆B⊆D1/3 ∪ {1}; we
again wonder whether Dr⊆B for some r> 1/4. See also [76, 77].
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3.2 Numerical Radii of Linear Operators

LetA :Cn→Cn be a linear operator. The numerical radiusw(A) ofA is defined by

w(A)= sup
||x||=1

|x∗Ax|

where x∗ denotes the conjugate transpose of x∈Cn. For example, if A is self-
adjoint or Hermitian (meaning A=A∗), then the eigenvalues {λj}nj=1 of A are all
real and w(A) coincides with both the operator norm ||A|| of A:

||A||= sup
||x||=1

||Ax||

and the spectral radius r(A) of A:

r(A)= lim
k→∞

||Ak||1/k= max
1≤j≤n

|λj|.

In general, however, these three quantities are not equal [1].
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Let A and B be linear operators satisfying AB=BA. What is the smallest
constant γ such that

w(AB)≤ γ · w(A) · ||B||

always? On the one hand, Crabb [2] proved that

γ≤ 1
2

√
2 + 2

√
3= 1.1687....

On the other hand, Müller [3], Davidson & Holbrook [4] and Chkliar [5] con-
structed explicit examples to show that γ > 1.066. There is interest not only
in tightening the bounds on γ, but also in tailoring the sizes of the matrices
involved.

We have restricted attention to operators on Cn for the sake of simplicity only.
Given a bounded linear operator A on an arbitrary complex Banach space X,
its numerical radius and operator norm are defined by formulation exactly as
before. Here, however, x∗ is to be interpreted as the bounded linear functional
X→C that maps x to 1 and that maps y+ β x to β, where β is a scalar and
y ̸=α x for any scalar α. This definition extends what we discussed earlier [6]. It
is natural to consider as well the numerical index i(X) of the space X:

i(X)= inf
||A||=1

w(A).

For example, i(Cn)= 1/2 for n> 1 and 0.3678...= 1/e≤ i(X)≤ 1 always. The
constants 1/e and 1 are best possible [7–10]. Of course, the Euclidean l2 norm
is in effect for Cn. Computing the numerical index for Cn equipped with the lp
norm, where 1< p<∞, p ̸= 2, is more complicated and remains an open issue
[11].

In closing, here is an unrelated problem. Given subsets Λ= {λ1, λ2, . . . , λn},
M= {µ1, µ1, . . . , µn} of C, define the optimal matching distance

d(Λ,M)=min
π

max
1≤j≤n

|λj − µπ(j)|,

where the minimum is taken over all permutations π on n symbols. Also, let σ(A)
denote the set (with multiplicities) of all eigenvalues of the n× n complex matrix
A. What can be said about the distance between the eigenvalues of two matrices
A and B in terms of the operator norm of their difference? The smallest constant
c such that

d(σ(A), σ(B))≤ c · (||A||+ ||B||)1−1/n · ||A− B||1/n

always is known to satisfy 2≤ c< 16
√

3/9= 3.0792... [12–15]. Variations on the
problems raised here suggest themselves.
AddendumWe have discussed only the case of complex spaces; somewhat more

is known for real spaces. For example, i(Rn)= 0 for n> 1 and 0≤ i(X)≤ 1 always.
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Further, the numerical index for R2 equipped with the lp norm with 1< p<∞
satisfies [16–18]

max
{
2−1/p, 2−1/q

}
Mp≤ i(R2

p)≤Mp,

where 1/p+ 1/q= 1 and

Mp= sup
0≤t≤1

∣∣tp−1 − t
∣∣

tp + 1
.

The lower bound is not sharp if p ̸= 2.
Here is another unrelated problem. A Minkowski plane is a real two-

dimensional normed linear spaceX; an example isR2
p for 1≤ p≤∞. Let S denote

the unit circle of X. If x, y∈S, then clearly −y∈S and the average of distances
from x to ±y is an interesting quantity for study. Letting

A1(X)= inf
x∈S

sup
y∈S

(
||x− y||+ ||x+ y||

2

)
, A2(X)= sup

x∈S
sup
y∈S

(
||x− y||+ ||x+ y||

2

)
we have [19, 20]

2.5275...
2

= 1.2637...=
3 +

√
21

6
≤A1(X)≤

−3 + 7
√

3
6

= 1.5207...=
3.0414...

2

but we do not knowwhether such bounds are sharp. AMinkowski planeX′ exists
for which A1(X′)< 1.28405=(2.56811)/2; hence the lower bound is close. By
contrast,

√
2≤A2(X)≤ 2 with equality on the left for R2

2 and equality on the
right for both R2

1 and R2
∞.
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3.3 Coefficient Estimates for Univalent Functions

A complex analytic function f defined on the open unit disk D is univalent (or
schlicht) if f is one-to-one; that is, f(z)= f(w) if and only if z=w. We are inter-
ested in estimating the coefficients {an}∞n=0 of the Maclaurin series expansion∑∞

n=0 anz
n of f(z). Define a set

S= {f :D→C : f is univalent, f(0)= 0 and f ′(0)= 1}

and subsets
SR = { f∈S : an ∈R for all n≥ 2} ,

Sodd = { f∈S : f(z)=−f(−z) for all z∈D} ,

SM= { f∈S : | f(z)|<M for all z∈D} ,

where M> 1. On the one hand, the Koebe function

κ(z)=
z

(1 − z)2
=

∞∑
n=1

n zn

is a member of SR but not of Sodd ∪ SM. On the other hand, the Pick function

PM(z)=Mκ−1

(
κ(z)
M

)
, where κ−1(w)=

2w+ 1 −
√

4w+ 1
2w

,
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is a member of SR ∩ SM but not of Sodd. De Branges [1, 2] proved Bieberbach’s
famous conjecture [3]:

max
f∈S

|an|= n,

which occurs if and only if f is a rotation of κ; equivalently, f(z)= e−iθκ(eiθ) for
some θ∈R. Actually, he proved something even more subtle: Milin’s conjecture,
which involves not the coefficients {an} but rather the logarithmic coefficients
{bn}, where

ln
(
f(z)
z

)
= 2

∞∑
n=1

bnzn.

It is surprising how much material here remains unresolved, even twenty years
after de Branges’ achievement!

3.3.1 Bombieri’s Conjecture

While proving a local version of Bieberbach’s conjecture, Bombieri [4] speculated
about a formula for

σm,n= liminf
f→κ
f∈S

n− Re(an)
m− Re(am)

,

where m≥ 2, n≥ 2 and where f→κ means locally uniform convergence on D
(uniform on every compact subset of D). He determined, for example, that

liminf
f→κ
f∈S

3 − Re(a3)

(2 − Re(a2))
3/2

=
8
3

and hence σ2,3 = 0. Likewise, σ4,3 = 0. Bshouty & Hengartner [5] proved
Bombieri’s conjecture for f with real coefficients:

liminf
f→κ
f∈SR

n− an
m− am

= min
0≤θ<2π

n sin(θ)− sin(nθ)
m sin(θ)− sin(mθ)

=βm,n,

but the case of fwith complex coefficients was left open. The first counterexample
to Bombieri’s conjecture was found by Greiner & Roth [6]:

σ3,2 =
e− 1
4e

= 0.1580301397... < 0.25=β3,2 =
1
4
.

Prokhorov & Vasil’ev [7] gave additional counterexamples:

σ4,2 = 0.050057... < 0.1= 1/10=β4,2,

σ2,4 = 0.969556... < 1=β2,4,

σ3,4 = 0.791557... < 0.828427... < 2
(√

2 − 1
)
=β3,4.
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Their interesting work involves Löwner’s differential equation, Pontryagin’s
maximum principle and the numerical solution of an optimal control system.

3.3.2 Fekete–Szegö Theorem

Littlewood & Paley [8] proved that the coefficients in Sodd are bounded; that is,
there existsA> 0 for which |a2n+1| ≤A for all f∈ Sodd and all n≥ 1. In a footnote
to their paper, they wrote “No doubt the true bound is given by A= 1.” It is
clearly true that maxf∈Sodd |a3|= 1. Fekete & Szegö [9, 10], however, disproved
the Littlewood–Paley conjecture for the next coefficient:

α= max
f∈Sodd

|a5|=
1
2
+ e−2/3 = 1.0134171190....

Schaeffer & Spencer [11] exhibited explicitly the unique extremal function f and
noted that f∈SR as well. They demonstrated that

max
f∈Sodd∩SR

|a2n+1|> 1

for each n≥ 2. Leeman [12] studied the case n= 3:

max
f∈Sodd∩SR

|a7|=
1090
1083

= 1.0064635272...

and such extremal functions f must additionally satisfy a3 =±18/19 and a5 =

351/261. The occurrence of rational numbers here is quite surprising. The best
general estimate is due to Hu Ke [13], improving upon [8, 14–18]:

max
f∈Sodd

|a2n+1| ≤ 1.1305....

Ke’s proof is based on Milin’s conjecture (now de Branges’ theorem), which we
will discuss shortly.

3.3.3 Tammi’s Conjecture

The following estimates hold for the bounded univalent function scenario:

max
f∈SM

|a2|= 2
(
1 −M−1) ,

max
f∈SM

|a3|=

{
1 −M−2 if 1<M< e,

1 −M−2 + 2
(
λ−M−1

)2
if M≥ e,

max
f∈SM

|a4|=

{
2
3

(
1 −M−3

)
if 1<M≤ 34

19 ,

2
(
2 − 10M−1 + 15M−2 − 7M−3

)
if M≥µ,
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where the parameterλ is the largest of the two real solutions ofλ ln(λ) +M−1 = 0
and the constant µ is the smallest for which the formula holds (to be ascertained).
The first estimate dates back to Pick [19]; the second is due to Löwner [20],
Schaeffer & Spencer [21] and Janowski [22]; and the third comes from Schif-
fer & Tammi [23], who computed that µ≤ 100/3. It turns out, for large M, that
maxf∈SM |a2n| is the (2n)th coefficient in the Maclaurin series expansion of the
Pick function PM(z), for any n≥ 1 [24, 25].

Note the sizable gap in the formula for maxf∈SM |a4|. Tammi [26] determined,
when f has real coefficients and M≥ 11, that

max
f∈SR∩SM

|a4|= 2
(
2 − 10M−1 + 15M−2 − 7M−3) .

The formula fails forM< 11. Hence it was natural for him to conjecture [27] that
µ= 11 for f with complex coefficients as well. Prokhorov & Vasil’ev [7] disproved
this conjecture, showing that µ= 22.9569..., again using a numerical optimal
control-based approach.

3.3.4 Greiner–Roth Theorem

Elaborate expressions built from series coefficients can also be optimized.
Greiner & Roth [28], starting from [29, 30], proved that the function f∈S
maximizing

Re
(
a3 +

p− 3
3

a2
2

)
+
p+ 1

3
|a2|2, p∈R fixed,

is

f(z)=


±i K(∓i z) if p≤ 3

4 ln(2)
− 1

2
= 0.5820212806...,

±K(±z) if p≥ 1
2
2e3 + 1
e3 − 1

= 1.0785935447....

In the gap, f cannot be a rotation of the Koebe function. Starting from [31], they
also proved that the function f∈S maximizing

Re
(
a3 − q a2

2

)
+ q|a2|2, q∈R fixed,

is

f(z)=


±K(±z) if q≤ 1

2
= 0.5,

±i K(∓i z) if q≥ 1
2

e
e− 1

= 0.7909883534....

Again, in the gap, f can be proved not to be a rotation of theKoebe function. Such
expressions serve to generalize those used to obtain the Fekete–Szegö constant α
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mentioned earlier. Explicit formulas for the gap extremals are not available, but
these functions can be found numerically via optimal control.

3.3.5 Milin’s Constant

Define

δ= sup
n≥1

sup
f∈S

n∑
k=1

(
k|bk|2 −

1
k

)
,

then it can be shown [10, 16, 17] that 0.0266< 2 ln(α)<δ< 0.3119<
Ei(ln(2))/2 − γ − ln(ln(2)), where Ei is the exponential integral and γ is Euler’s
constant. A more precise estimate of Milin’s constant δ would be good to see,
as well as the corresponding extremal functions. Note that, if f=κ, then the
logarithmic coefficients bn= 1/n for all n; hence the Koebe function is far from
optimal in this setting. It is known that maxf∈Sodd |a2n+1|< eδ/2 (which gave, at
one time, the best general estimate 1.17 of the odd coefficents); if it were true
that δ= 0, then the Littlewood–Paley conjecture would follow.

By contrast, we have

δ̂= sup
n≥1

sup
f∈S

n∑
m=1

m∑
k=1

(
k|bk|2 −

1
k

)
= 0,

which is Milin’s conjecture (now proved, as stated earlier). Here, of course, the
Koebe function is optimal. For f ̸=κ, the lower order contributions to the sum
evidently tend to be negative, forcing δ̂ < δ. See also [32, 33].

3.3.6 Bieberbach-Eilbenberg Functions

Define a new set

S̃= { f :D→C : f is univalent, f(0)= 0 and f(z)f(w) ̸= 1 for any z,w∈D} .

Note that nothing is assumed about a1. In fact,

max
f∈S̃

|a1|= 1,

which occurs if and only if f(z)= eiθz for some θ∈R. Nehari [34] and Aharonov
[35] proved that

e−1/2
√
n

≤max
f∈S̃

|an|<
e−γ/2
√
n− 1

for all n≥ 2; in particular, |a2| is less than e−γ/2< 0.74931. Hummel & Schiffer
[36, 37] obtained the estimate

max
f∈S̃

|a2|=
1
2
η= 0.5811002808...,
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where η= 1.1622005617... is the unique real solution of the equation

1∫
0

(
1 − t
η2 + t2

)1/2

dt=
1√
2

π/2∫
0

[(
1 + η2 sin(θ)2

)1/2 − 1
]1/2

dθ.

Another interesting result is the estimate

max
f∈S̃

|a1a2| ≤
8
27
η2 = 0.4002104135...

and we wonder about higher order coefficients of such functions.

3.3.7 Krzyz’s Conjecture

Define two new sets

U= {f :D→C : f is analytic, 0< | f(z)|< 1} , V= {f∈U : f is univalent} .

Obviously U ∩ S= ∅ and 0< |a0|< 1 for every f∈U. For n≥ 1, Krzyz [38]
conjectured that

max
f∈U

|an|=
2
e
= 0.7357588823...,

which occurs if and only if f(z)= e(z
n+1)/(zn−1) or a rotation of this. Note that

f is not univalent. Krzyz’s conjecture has been proved only for n≤ 5 [39–50]. A
general estimate also applies [51–53]:

max
f∈U

|an|< 0.99918...

For univalent functions, Prokhorov & Szynal [37] demonstrated that

max
f∈V

|a1|= 12 − 8
√

2= 0.6862915010...,

max
f∈V

|a2|=
8ξ(1 − ξ)(1 − 2ξ − ξ2)

(1 + ξ)3
= 0.4553841384...,

where ξ= 0.1414780159... has minimal polynomial ξ4 + 4ξ3 + 6ξ2 − 8ξ + 1.
We close with one more problem. Grinshpan [54, 55], improving upon [56–58],

showed that −2.97< |an+1| − |an|< 3.61 for all f∈S and all n≥ 1. It is further
known that the constants on the left and right cannot be replaced by −1 and
1, respectively, even if we restrict discussion to f∈Sodd [59]. See other related
problems in [60, 61].
Addendum Michel [62] claimed that maxf∈Sodd |a7| is at least 1.006763... and

that Milin’s constant δ is at least 0.034856.... He further conjectured that δ is
equal to this lower bound. A precise expression for the latter is

2y4e−4y +
(
3y2 + 2y+ 1

)
e−2y − 1= 0.0348561121...,
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where y= 0.3900456802... is the unique real solution of the equation

4x2(1 − x)e−2x + (1 − 3x)= 0.

Noprecise expression for the former, analogous to that formaxf∈Sodd |a5|, appears
to be known.
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3.4 Planar Harmonic Mappings

Let D denote the open unit disk. A function f :D→C is planar harmonic if it
can be written as f(z)= u(x, y) + i v(x, y) where z= x+ i y and where u :D→R,
v :D→R are harmonic, that is, are twice continuously differentiable and obey

∂2u
∂x2 +

∂2u
∂y2 = 0,

∂2v
∂x2 +

∂2v
∂y2 = 0.

It can be shown that f is planar harmonic if and only if f= g+ h̄, where g, h are
analytic on D and the overbar indicates complex conjugation (z̄= x− i y).

Of course, a planar harmonic function f is analytic if and only if u and v are
harmonic conjugates, that is, the Cauchy–Riemann equations

∂u
∂x

=
∂v
∂y
,
∂u
∂y

=− ∂v
∂x

are satisfied. We are interested, in this essay, in functions f whose real and
imaginary parts are not necessarily conjugate [1].

It turns out that f may be written as a twice continuously differentiable func-
tion of z and z̄; we abuse notation and use the same letter f to represent the new
function. The Cauchy–Riemann equations become a single concise equation:

∂f
∂z̄

= 0

and the condition that Laplacians vanish becomes

4
∂2f
∂z ∂z̄

= 0.

Thus the expression f is independent of z̄ for analytic functions f, and the
expression ∂f/∂z is independent of z̄ for planar harmonic functions f.

A planar harmonic function f :D→C is amapping if it is one-to-one.Hence the
class of planar harmonic mappings includes the subclass of univalent functions
we have studied elsewhere [2–5]. Define also the dilatation of f

ω=
∂f
∂z̄
/
∂f
∂z
,

which will be needed later.
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3.4.1 Heinz’s Inequality

We consider here planar harmonic mappings f that map D onto D, with the
property that f(0)= 0. Heinz [6] proved that∣∣∣∣ ∂f∂z (0, 0)

∣∣∣∣2 + ∣∣∣∣ ∂f∂z̄ (0, 0)
∣∣∣∣2 ≥ c

for some constant c≥ 0.1788= 0.3576/2. The lower bound was improved to
0.32= 0.64/2 by Nitsche [7, 8], 0.4345= 0.8691/2 by de Vries [9], 0.4476=
0.8952/2 by Nitsche [10], 0.6411= 1.2822/2 by de Vries [11], and 0.6584=
1.3168/2 by Wegmann [12]. The conjecture that

c=
27
4π2 = 0.6839179895...=

1
2
(1.3678359791...),

mentioned by Wegmann [12], seems to have been anticipated by Hopf [13]. A
proof of this conjecture was first given by Hall [1, 14]; the extremal function is
achieved via approximationsD→D of amappingD→T, whereT is an inscribed
equilateral triangle, with dilatation ω(z)= z.

Hall’s proof involves the Fourier coeffients of homeomorphisms C→C of the
unit circleC. Some related problems are given in [14]; one of these has been solved
[15]. Heinz [16] also proved the inequality∣∣∣∣ ∂f∂z (z, z̄)

∣∣∣∣2 + ∣∣∣∣ ∂f∂z̄ (z, z̄)
∣∣∣∣2 ≥ 1

π2 ,

which is valid for all z∈D; improvements in special cases appear in [17, 18].

3.4.2 Minimal Surfaces

Consider a minimal surface over the unit disk D of the form{
(x, y, z)∈R3 : z=F(x, y), (x, y)∈D

}
and let κ denote its Gaussian curvature at the origin. In words, the surface is
locally area-minimizing: Each suitable small piece of it has the least possible area
for any surface spanning the boundary of that piece. By the calculus of variations,
we have the nonlinear PDE[

1 +

(
∂F
∂y

)2
]
∂2F
∂x2 − 2

∂F
∂x

∂F
∂y

∂2F
∂x ∂y

+

[
1 +

(
∂F
∂x

)2
]
∂2F
∂y2 = 0;

hence the mean curvature of the surface is everywhere zero. A precise determi-
nation of F is difficult – this is called Plateau’s problem – but nature solves it
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effortlessly, as can be demonstrated by dipping a bent wire loop in a soap solution
[19, 20]. We will revisit this topic in greater detail [21]; see especially the “Matlab
help” example near the end.

A consequence of Heinz’s inequality [6] is that

|κ| ≤ 4
c
=

16π2

27
= 5.8486544599...

by Hall’s theorem [14], but this is not sharp. In fact, it is conjectured that [1]

|κ| ≤ π2

2
= 4.9348022005;

this has however been proved only in the special case that theminimal surface has
a horizontal tangent plane at the origin [22]. A general proof could be obtained
utilizing the following.

Consider planar harmonic mappings f that mapD ontoD, with the two prop-
erties that f(0)= 0 and ω is the square of an analytic function. (Note that this
final requirement is not met by ω(z)= z.) Hall [23] computed that∣∣∣∣ ∂f∂z (0, 0)

∣∣∣∣2 + ∣∣∣∣ ∂f∂z̄ (0, 0)
∣∣∣∣2 ≥ c̃

for some constant c̃> c+ 10−5/2. It is conjectured that c̃= 8/π2 (from which
4/c̃=π2/2 would proceed immediately). The expected extremal function is a
mapping D→S, where S is an inscribed square, with dilatation ω(z)= z2. A
proof that c̃= 8/π2 would be a major step forward in understanding minimal
surfaces. See [24] for more open questions.

3.4.3 Soap Films

As an aside, we give an elementary problem [25, 26]. Consider the catenoid-
shaped soap film formed between two parallel rings centered at (−ξ, 0, 0) and
(ξ, 0, 0) and of unit radius, where ξ > 0 is suitably small. If the rings are slowly
pulled apart (that is, if ξ increases), there is a certain threshold at which the min-
imal surface becomes unstable and is likely to collapse to a disjoint union of two
disks. More precisely, if ξ < ξ0 = 0.5276973969..., then the catenoid corresponds
to the global minimum for surface area while the two-disk configuration corre-
sponds to only a local minimum. Here ξ0 and a= 0.8255174536... are solutions
of the simultaneous equations

a cosh
(
ξ0
a

)
= 1,

2πa2 sinh
(
ξ0
a

)
cosh

(
ξ0
a

)
+ 2πa ξ0 = 2π.
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If ξ > ξ0, then the two-disk configuration corresponds to the global min-
imum while the catenoid corresponds to only a local minimum for ξ <

ξ1 = 0.6627434193...; no such catenoid exists for ξ > ξ1. Here ξ1 and b=
0.5524341245... are solutions of the simultaneous equations

b cosh
(
ξ1
b

)
= 1,

cosh
(
ξ1
b

)
− ξ1

b
sinh

(
ξ1
b

)
= 0.

Interestingly, we have seen the value for ξ1 before: In [27], it arose in a different
context altogether and was called the Laplace limit constant.
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3.5 Constant of Interpolation

A bounded entire function is necessarily constant (by Liouville’s theorem). For
our purposes, let us therefore restrict attention to function f analytic on the upper
half plane Im(z)> 0. Define the H∞-norm of f to be

|| f||∞ = sup
y>0

| f(x+ i y)|.

Also, given a finite or infinite sequencesW= {wj} of complex numbers, define its
l∞-norm by

||W||∞ = sup
j≥1

|wj|.

We say that a sequence Z= {zj} of distinct complex numbers in the upper half
plane is an interpolating sequence if there exists an analytic function f for which
|| f||∞<∞ and

f(zj)=wj, j= 1, 2, 3, ...

for each sequenceWwith ||W||∞<∞. In words,Z has the property that, for any
bounded W, there must be a bounded analytic interpolant f taking zj to wj for
all j. There may be many such f. We wish to be as efficient as possible and define
M(Z) to be the smallest constant C such that

|| f||∞ ≤C · ||W||∞

always; ifZ is not an interpolating sequence, define insteadM(Z)=∞. Carleson
[1–4] proved that M(Z)<∞ if and only if a uniform separation criterion

δ= inf
k≥1

∏
j ̸=k

∣∣∣∣zj − zk
zj − z̄k

∣∣∣∣> 0

is met.
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Define the Blaschke product corresponding to Z by [4]

B(z)=
∏
n≥1

∣∣z2n + 1
∣∣

z2n + 1
z− zn
z− z̄n

with the understanding that, if z= i (the imaginary unit), then the left-hand factor
is to be interpreted as 1. If Z is an interpolating sequence, then B is uniformly
convergent on compact subsets of the upper half plane and hence represents an
analytic function. Further, ||B||∞ = 1 and B vanishes only at the points zn. Let

Bk(z)=
z− z̄k
z− zk

B(z)

so that we may write δ= infk≥1 |Bk(zk)|. Also let zj= xj + i yj.
Beurling [5], Jones [6] and Havin [7] examined the problem of exhibiting an

explicit formula for f. Nicolau, Ortega-Cerdà & Seip [8] used this work as a basis
for estimating M(Z). Define

Φ(Z)= sup
k≥1

∑
yj≤yk

4yj(yj + yk)
|zj − z̄k|2

1
|Bj(zj)|

,

Ψ(Z)= sup
k≥1

∑
n≥1

4ykyn
|zk − z̄n|2

1
|Bn(zn)|

.

Then, for every interpolating sequence Z in the upper half plane, we have

1
2
≤ M(Z)

Φ(Z)
≤κ, 1≤ M(Z)

Ψ(Z)
≤λ

for constants κ and λ satisfying

2.2661...=
π

2 ln(2)
≤κ≤ e= 2.7182...,

1.5707...=
π

2
≤λ≤ 2e= 5.4365....

Can these bounds be improved? Also, can simpler expressions than Φ or Ψ for
the denominators be found?

An alternative definition of M(Z) is related to Nevanlinna–Pick theory [4, 9,
10]. Let Mn(Z) be the smallest constant Cn such that the matrix A=(aj,k) with

aj,k=
1 − w̄jwk
zj − z̄k

, j= 1, 2, ..., n, k= 1, 2, ..., n,

is nonnegative definite whenever ||W||∞< 1/Cn. The constant of interpolation
M(Z) is thus Mn(Z) if Z consists of exactly n points and limn→∞Mn(Z) if Z is
infinite [8].
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We could alternatively restrict attention to functions f analytic on the unit disk
|z|< 1. Some relevant formulas in this new setting are

δ= inf
k≥1

∏
j ̸=k

∣∣∣∣ zj − zk
z̄jzk − 1

∣∣∣∣ ,

B(z)=
∏
n≥1

|zn|
zn

z− zn
z̄nz− 1

,

aj,k=
1 − w̄jwk
1 − z̄jzk

, j= 1, 2, ..., n, k= 1, 2, ..., n.

Similar interpolation questions can be asked for theHp-norm on the unit disk
(for example):

|| f ||p= sup
0<r<1

 1
2π

2π∫
0

∣∣f(r ei θ)∣∣p dθ
1/p

where 1< p<∞ [4, 11]. It would be good to see results paralleling those in [8]
for p= 2 and p= 1.
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3.6 Dirichlet Integral

Consider the class of complex analytic functions f on the open unit disk ∆ with
f(0)= 0 and finite Dirichlet integral:

D( f )=
1
π

∫
∆

| f ′(z)|2dx dy<∞.

Clearly πD( f ) is the area of the region f(∆) in C, counting multiplicities [1].
Chang & Marshall [2–4] proved that there exists a constant C> 0 such that

D( f )≤ 1 implies

1
2π

2π∫
0

exp
(
| f(ei θ)|2

)
dθ≤C.

Andreev & Matheson [5–7] conjectured that the best constant C is e=
2.7182818284..., corresponding to the identity function f(z)= z. The mere exis-
tence of an extremal function, however, remains open [8]. Interestingly, extremal
functions provably exist for the closely-related Trudinger–Moser inequality [9].

In the following, we distinguish the unit disk ∆ in z-space from the unit disk
in w-space (where w= f(z)) by writing ∆̃ for the latter. Define, for s> 0,

Ω(s)= {z∈∆: | f(z)|< s}

and let

A(s)=
∫
Ω(s)

| f ′(z)|2dx dy.

Obviously Ω(∞)=∆ and A(∞)=πD( f ). Marshall [3] asked whether there
exists a constant r> 0 such that, for any s> 0, A(s)≤π s2 implies f(r∆)⊆ s ∆̃.
In words, the constant r is so small that, for any radius s, if(

the area of the portion
of f(∆) lying within s ∆̃

)
is strictly less than

(
the area of s ∆̃

)
,

then f must map r∆ into s ∆̃ itself.
Poggi-Corradini [10] demonstrated that r exists. Solynin [11] further proved

that the best constant r is at least r0 = 0.03949.... In fact, r0 is best possible for
the larger class of analytic functions f that omit two values of a doubly-sheeted
Riemann surface corresponding to z 7→

√
z. It is given exactly by

r0 =
L
(√√

2 − 1
)
− K

(√√
2 − 1

)
L
(√√

2 − 1
)
+ K

(√√
2 − 1

) = 0.0394929227...,
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whereK(x) denotes the complete elliptic integral of the first kind [12] and L(x)=

K
(√

1 − x2
)
. Unfortunately r0 is not sharp for Marshall’s original class of ana-

lytic functions: identifying r here remains open, as is the problem of describing
extremal functions.

Marshall [3] pointed out that, if f is univalent, then the associated best value of
r is at least 1/16= 0.0625. Solynin [11] indicated that the sharp r here is exactly
3 − 2

√
2= 0.1715728752..., corresponding to rotations of the Koebe function

f(z)= z/(1 − z)2.
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3.7 Brachistochrone Problem

Think of a continuously differentiable curve as a frictionless wire in a vertical
plane, with positive x-axis extending to the right and positive y-axis extending
downward. Of all curves y(x) joining the origin and a fixed point (p, q) in the
first quadrant, which possesses the minimum descent time

T=
1√
2g

p∫
0

√
1 + y′(x)2

y(x)
dx



“c03” — 2018/10/27 — 11:58 — page 408 — #32

408 Real and Complex Analysis

from (0, 0) to (p, q)? In words, y(x) is the wire configuration along which a bead
will slide, starting from rest, in the shortest possible time T. For simplicity, we
take the gravitational acceleration constant g to be 1/2, so that the coefficient of
the integral defining T is 1.

It is well-known that this calculus-of-variations problem reduces to solving the
boundary value problem [1–7]

y(x)
(
1 + y′(x)2

)
= c, y(0)= 0, y(p)= q,

where c is an arbitrary constant, and that y(x) is represented parametrically by

x=
c
2
(t− sin(t)), y=

c
2
(1 − cos(t)).

Let 0<θ< 2π be the unique value satisfying

θ − sin(θ)
1 − cos(θ)

=
p
q
,

then

T= 2
√
q

θ/2
sin(θ/2)

.

For example, if p/q= 1, then T/
√
q= 2.5819045128... and if p/q=π/2, then

T/
√
q=π. While the latter result is simple, no closed-form expression is known

for the former [8, 9].
Interestingly, we have y′(p)> 0 when p/q= 1, whereas y′(p)= 0 when p/q=

π/2. The sliding bead reaches the endpoint with zero slope in the latter case.
With this in mind, we introduce a revision of the brachistochrone problem.

Let the starting point be (0, b) where b≥ 0 is fixed and let the initial speed of
the bead along the wire be

√
2gb. Let the endpoint be (p, q), where p> 0 is fixed

but q> b is free to vary, subject to the constraint that the trajectory slope is zero
at (p, q). Of all curves y(x) joining (0, b) and (p, q) satisfying these conditions,
which possesses the minimum descent time? [10, 11]

In this revised setting, the boundary value problem is

y(x)
(
1 + y′(x)2

)
= c, y(0)= b, y′(p)= 0

and the solution y(x) is represented parametrically by

x=− c
2
(t+ sin(t)) + p, y=

c
2
(1 + cos(t)).

Clearly q= c upon setting t= 0. When setting x= 0 instead, we obtain

p=
c
2
(t+ sin(t)), b=

c
2
(1 + cos(t)),

hence

t= arccos
(

2
c
b− 1

)
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hence √
(c− b)b+

c
2

arccos
(

2
c
b− 1

)
= p

hence √(
q
p
− b
p

)
b
p
+

1
2
q
p

arccos
(
2
b/p
q/p

− 1
)
= 1.

Our interest is in the value of q/p, given b/p= 0, 1, 2 or 3. If b/p= 0, it follows
that q/p= 2/π= 0.6366197723..., consistent with before. If b/p= 1, 2 or 3, then

q/p= 1.2184055294..., 2.1201938103..., 3.0818460494...,

respectively. The latter value appears in [12, 13], obtained via completely different
means. Other revisions of the brachistochrone problem can be found in [14, 15].
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3.8 Unconditional Basis Constants

Define the Haar functions hn : [0, 1)→R by

h1(t)= 1; h2(t)=

{
1 0≤ t< 1/2,

−1 1/2≤ t< 1;

h3(t)=


1 0≤ t< 1/4,

−1 1/4≤ t< 1/2,

0 1/2≤ t< 1;

h4(t)=


0 0≤ t< 1/2,

1 1/2≤ t< 3/4,

−1 3/4≤ t< 1;

h5(t)=


1 0≤ t< 1/8,

−1 1/8≤ t< 1/4,

0 1/4≤ t< 1;

h6(t)=


0 0≤ t< 1/4,

1 1/4≤ t< 3/8,

−1 3/8≤ t< 1/2,

0 1/2≤ t< 1;

h7(t)=


0 0≤ t< 1/2,

1 1/2≤ t< 5/8,

−1 5/8≤ t< 3/4,

0 3/4≤ t< 1;

h8(t)=


0 0≤ t< 3/4,

1 3/4≤ t< 7/8,

−1 7/8≤ t< 1

and so on. Schauder [1–3] proved that {hn}n≥1 form a basis of the classical
Banach space Lp[0, 1], 1≤ p<∞, that is, for every function f∈Lp[0, 1], there
exists a unique sequence {an}n≥1 of real numbers satisfying

lim
n→∞

∥∥∥∥∥ f−
n∑

k=1

akhk

∥∥∥∥∥
p

= 0.

Let 1< p<∞ and 1/p+ 1/q= 1. Define a sign sequence to consist entirely of
elements in {+1,−1} and a bit sequence to consist entirely of elements in {0, 1}.
Work by Paley [4], Marinkiewicz [5] and Burkholder [6, 7] leads to∥∥∥∥∥

∞∑
k=1

εkakhk

∥∥∥∥∥
p

≤ (p∗ − 1)

∥∥∥∥∥
∞∑
k=1

akhk

∥∥∥∥∥
p

for any real sequence {ak} and any sign sequence {εk}, where p∗ =max{p, q} and
the constant

p∗ − 1=
{

1/(p− 1) if 1< p≤ 2,
p− 1 if 2< p<∞

is best possible. Work by Choi [8, 9] leads to a similar inequality corresponding
to bit sequences {εk}, but the best constant cp here is more complicated. The
unconditional basis constant cp captures extreme behavior of the Lp-norm of a
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series
∑

akhk when we discard some of the terms. It is known that c2 = 1. By
duality, cp= cq and hence it suffices to determine cp for 2< p<∞.

Let p0 = 2.5455457214... be the unique solution of the equation

p− 2=
[
(p− 1)(p− 2)
−p2 + 5p− 5

]p−1

, 2< p< 3.

For −1≤ t≤ 1, define functions

E(t)=
{
tp−1 − (p− 1)t+ p− 2 if t≥ 0,
−(−t)p−1 − (p− 1)t+ p− 2 if t< 0;

A(t)= (p− 1)(1 − t)2 − [(p− 2)− p t]E(t);

D(t)= (p− 1)(1 − t)2 + t E(t);

B(t)= (p− 1)(1 − t)2E(t)− t A(t)= [(p− 1)− p t]E(t)− t D(t)

and subintervals of the real line

Ip=


(
p− 3
2p

, 0
]

if 2< p≤ p0,(
max

{
0,
p− 3
p− 1

}
,
p− 2
p

)
if p0< p<∞.

For 2< p<∞, there exists a unique solution tp ∈ Ip of the equation

[(p− 2)− (p− 1)t]A(t)p−1 =B(t)p−1

and it follows that

cp=
[

A(tp)
(p− 1)(1 − tp)2

]1/p D(tp)
A(tp)

.

As an example, tp0 = 0 and cp0 =(p0 − 2)(2−p0)/p0 = 1.1386774769..., which is
greater than 1= c2. More examples include c3 = 1.3291719357... and c4 =
1.7919250903.... As p→∞, we have

cp=
p
2
+

1
2

ln
(

1 + e−2

2

)
+
α

p
+ · · ·

where

α=
1
4

ln
(

1 + e−2

2

)2

+
1
2

ln
(

1 + e−2

2

)
− 2

(
e−2

1 + e−2

)
.

The numbers t3 and t4 are algebraic of degrees 4 and 5, respectively, but this fact
does not help us determine closed-form expressions for c3 or c4.
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3.8.1 Dyadic Martingales

A sequence of random variables {fn}n≥1 is a martingale if, for all n, E (|fn|)<∞
and [10]

E (fn+1 | fn, fn−1, . . . , f1 )= fn.

Thinking of fn as the fortune of a gambler at trial n of a game, the conditional
equality states that the game is “fair” in the sense that the expected fortune at
trial n+ 1, given knowledge of all past trials, is the same as the fortune at trial n.

To go further, we re-index and normalize what we called hn earlier (in amanner
often consistent with the wavelets literature). For integers k≥ 1 and 1≤ j≤ 2k−1,
define the Haar functions χjk : [0, 1)→R by

χjk(t)=


2(k−1)/2 if

j− 1
2k−1 ≤ t<

j− 1/2
2k−1 ,

−2(k−1)/2 j− 1/2
2k−1 ≤ t<

j
2k−1 ,

0 otherwise.

In words, for each dyadic subinterval I of [0, 1) of length 2−(k−1), we have a
function equal to 2(k−1)/2 on the left half of I and −2(k−1)/2 on the right half
of I.

Let X and Y be real Banach spaces. A dyadic martingale is a set {fn}∞n=1 where
each fn : [0, 1)→X is a linear combination of Haar functions:

fn(t)=
n∑

k=1

2k−1∑
j=1

χjk(t)x
j
k

and each xjk ∈X is independent of n. Let f0 = 0 and denote by dk= fk − fk−1

the martingale differences. Given an operator T :X→Y, the nth dyadic UMD
constant µn(T) is the least quantity c≥ 0 such that∥∥∥∥∥

n∑
k=1

εkTdk

∥∥∥∥∥
2

≤ c

∥∥∥∥∥
n∑

k=1

dk

∥∥∥∥∥
2

for all martingale differences d1, . . . , dn and all sequences ε1, . . . , εn of signs. The
norm on the right-hand side is the L2-norm on measurable X-valued functions,
the norm on the left-hand side is theL2-norm on measurableY-valued functions,
and the acronym UMD stands for “unconditional martingale differences”.

We are interested in the case when X= ℓm1 and Y= ℓm∞, sequence spaces of m
dimensions, and T is the finite summation operator

Tm(ξ1, . . . , ξm)=

(
ξ1, ξ1 + ξ2, ξ1 + ξ2 + ξ3, . . . ,

m∑
i=1

ξi

)
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where m= 2n for notational convenience. It is known that there exist constants
a> 0, b> 0 such that

√
n≤ aµn(Tm), bµn(Tm)≤ n

independent of n. What, however, is the true asymptotic behavior of µn(Tm)?
Wenzel [11, 12] proved that the growth rate of µn(Tm) is the same as the growth

rate of

θn= sup
π

1
2n

2n−1∑
i=0

sup
0≤k<2n

∣∣∣∣∣∣
∑

j:π(j)≤k

(−2)−κ(i⊕j)

∣∣∣∣∣∣ ,
where the outer summation is taken over all permutations π of the set
{0, . . . , 2n − 1}, i⊕ j denotes the bitwise XOR sum of i and j (addition mod-
ulo two without carries [13]), and κ(n)= 1 + ⌊ln(n)/ ln(2)⌋ if n> 0, κ(0)= 2. He
computed that

θ3 ≈ 0.5937, θ4 ≈ 0.6718, θ5 ≈ 0.7509, θ6 ≈ 0.8203

and therefore conjectured that
√
n is the correct growth rate. In fact, his calcula-

tions suggest that θn∼ (0.3...)
√
n as n→∞, and we wonder if the corresponding

constant for µn(Tm)/
√
n will ever be known [14].
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[13] S. R. Finch, Plouffe’s constant, first volume, pp. 430–433.
[14] S. Geiss, S. Montgomery-Smith and E. Saksman, On singular integral and martin-

gale transforms, Trans. Amer. Math. Soc. 362 (2010) 553–575; arXiv:math/0701516;
MR2551497 (2011a:60168).

3.9 Power Series with Restricted Coefficients

Define a family of functions

F =

{
1 +

∞∑
n=1

anxn : an ∈{−1, 0, 1}

}
and three closed subsets of the open interval (0, 1):

Ω2 = {x : ∃f∈F for which f(x)= f ′(x)= 0} ,

Ω3 = {x : ∃f∈F for which f(x)= f ′(x)= f ′′(x)= 0} ,
Ω4 = {x :∃f∈F for which f(x)= f ′(x)= f ′′(x)= f ′′′(x)= 0} .

Elements of Ω2 are called double zeroes, those of Ω3 triple zeroes and those of Ω4

quadruple zeroes. For each k= 2, 3, 4, define [1]

αk=minΩk, α̃k= supΩc
k,

where Ωc
k is the complement of Ωk in (0, 1). The structure of Ωk is very

complicated – it appears to possess infinitely many connected components – but
provably α2 = 0.6684756... and conjecturally

α̃2 = 0.669..., α3 = 0.743..., α̃3 ≈ 0.75....

No one has yet examined α4 or α̃4 numerically, as far as is known. Elements of
Ωc

2 are said to satisfy a certain tranversality condition, in the sense that y∈Ωc
2 and

f(y)= 0 imply that f ′(y) ̸= 0 for all f∈F . Such a property is useful in [2] for a
seemingly unrelated analysis of fractals.

Define instead

F̂ =

{
1 +

∞∑
n=1

anxn : an ∈{−2,−1, 0, 1, 2}

}

and Ω̂2 to be the corresponding set of double zeroes in (0, 1). In this case, min Ω̂2

is precisely 1/2 and is an isolated point of Ω̂2. Removing 1/2 from Ω̂2 appears to
give a connected set (that is, an interval) and the minimum of this set is conjec-
tured to be≈ 0.5437. The fact that Ω2 and Ω̂2 are so distinct topologically is very
striking [1].

A different family of functions, studied earlier in [3, 4], is

G=

{
1 +

∞∑
n=1

bnxn : bn ∈ [−1, 1]

}
.
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Let βk denote the associatedminimum zero of order k (at least) of g, taken over all
g∈G. It turns out that βk is always algebraic: β2 = 0.6491378608... has minimal
polynomial

2z5 − 8z2 + 11z− 4,

β3 = 0.7278832326... has minimal polynomial

10z12 − 14z11 + 14z6 − 10z5 − 80z3 + 185z2 − 147z+ 40,

and β4 = 0.7773295434... has minimal polynomial

126z22 − 296z21 + 176z20 + 44z12 − 104z11 + 54z10 + 96z7

−146z6 + 56z5 − 684z4 + 2236z3 − 2797z2 + 1584z− 342.

Of course, β1 = 1/2, which corresponds to g(x)= 1 −
∑∞

n=1 x
n. The following

least squares approximation

βk≈ 1 − 1
(1.23909318...) + (0.81255949...)k

was obtained in [4] and is based on data up to k= 27. We wonder if more precise
asymptotics are feasible. Additional relevant references include [5–7].
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3.10 Hankel and Toeplitz Determinants

The most famous Hankel matrix is the Hilbert matrix

Hn=

(
1

i+ j− 1

)
1≤i,j≤n

,
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which has determinant equal to a ratio of Barnes G-function values:

det(Hn)=

∏n−1
k=1(k!)

4∏2n−1
ℓ=1 ℓ!

=
G(n+ 1)4

G(2n+ 1)
→ 0

as n→∞. More precisely [1],

det(Hn)

4−n2(2π)nn−1/4
→ 21/12e1/4A−3 = 0.6450024485...

where A denotes the Glaisher–Kinkelin constant [2]. Such Hankel determinants
are important in random matrix theory and applications [3], but we shall forsake
all this, giving instead only a few examples [4–6]. Another interesting fact is that
det(Hn) is always the reciprocal of a positive integer [7].

The Hankel determinant of Euler numbers [8] is, in absolute value,

|Ei+j|0≤i,j≤n−1 =

n−1∏
k=1

(k!)2 =G(n+ 1)2

∼ e
1
6

A2 e
− 3

2 n
2
(2π)nnn

2− 1
6

as n→∞. The simplicity of this result contrasts with the following. The Hankel
determinant of Bernoulli numbers [9] is, in absolute value,

|Bi+j|0≤i,j≤n−1 =

n−1∏
k=1

(k!)6

(2k)!(2k+ 1)!

=
2

1
12 e

1
4

A3 4−n2
(2π)n

G(n+ 1)4

G(n+ 1/2)G(n+ 3/2)

∼ 2
1
12 e

5
12

A5 4−n2
e−

3
2 n

2
(2π)2nnn

2− 5
12

as n→∞. We mention three formulas of Krattenthaler [10]:∣∣∣∣ B2i+2j+2

(2i+ 2j+ 2)!

∣∣∣∣
0≤i,j≤n−1

= 4−n2
2n−1∏
k=1

(2k+ 1)−2n+k,

∣∣∣∣ B2i+2j+4

(2i+ 2j+ 4)!

∣∣∣∣
0≤i,j≤n−1

= 4−n2−n9−n
2n−1∏
k=1

(2k+ 3)−2n+k,

∣∣∣∣ B2i+2j+6

(2i+ 2j+ 6)!

∣∣∣∣
0≤i,j≤n−1

=(n+ 1)(2n+ 3)4−n2−2n
2n+1∏
k=1

(2k+ 1)−2n−2+k,

which are always reciprocals of integers (unlike |Ei+j| and |Bi+j|). The asymp-
totics of these three sequences remain open.
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More difficult are determinants of Riemann zeta function values:

a(0)n = |ζ(i+ j)|1≤i,j≤n , a(1)n = |ζ(i+ j+ 1)|1≤i,j≤n ,

which evidently satisfy

a(0)n ∼C ·
(

2n+ 1
e3/2

)−(n+1/2)2

, a(1)n ∼ e9/8√
6
C ·
(

2n
e3/2

)−n2+3/4

thanks to numerical experiments by Zagier [11]. No closed-form expression for
the constant C= 0.351466738331... is known.

A famous Toeplitz matrix, called the alternating Hilbert matrix in [12], is

H̃n=

(
1

i− j

)
1≤i,j≤n

,

where we understand the diagonal elements to be 0. Schur [13] proved long ago
that the maximum eigenvalue (in modulus) of both Hn and H̃n is less than π

and approaches π as n→∞. The determinant is, of course, the product of all
eigenvalues. When n is odd, det(H̃n)= 0. When n is even, a closed-form expres-
sion for det(H̃n) seems to be unavailable, despite the existence of a combinatorial
approach [14]. Note that the “symbol” associated with H̃n is

∞∑
r=1

eirθ

−r
+

∞∑
r=1

e−irθ

r
= i(θ − π)

for 0<θ< 2π, hence a theorem due to Grenander & Szegő [15] gives

lim
n→∞
n even

1
n

ln
(
det(H̃n)

)
=

1
2π

2π∫
0

ln [i(θ − π)] dθ=−1 + ln(π)= 0.1447298858....

A refined estimate shown subsequently in [15], potentially governing the value of

lim
n→∞

det(H̃n) ·
(π
e

)n
,

has conditions that must be verified.
Consider finally another Toeplitz matrix

Kn=

(
1

1 + |i− j|

)
1≤i,j≤n

for which little is known. The “symbol” here is

∞∑
r=0

eirθ

1 + r
+

∞∑
r=1

e−irθ

1 + r
=−1 − eiθ ln

(
1 − e−iθ)− e−iθ ln

(
1 − eiθ

)
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for 0<θ< 2π, hence

lim
n→∞

1
n

ln (det(Kn)) =
1
2π

2π∫
0

ln
[
−1 − eiθ ln

(
1 − e−iθ)− e−iθ ln

(
1 − eiθ

)]
dθ

= −0.3100863233....

An exact formula for this constant is desired; might, at least, the integral be
simplified in some way?

3.10.1 Combinatorial Approach

Assume that n is even. Let S denote the set of all (n/2)-tuples of ordered pairs:

(pk, qk)
n/2
k=1

of positive integers pk< qk satisfying

n/2∪
k=1

{pk, qk}= {1, 2, . . . , n}

and p1< p2< . . .< pn/2. Note that the qs need not be in ascending order. Let us
verify a formula in [14]:

det(H̃n)=
∑

(pk,qk)
n/2
k=1∈S

n/2∏
k=1

1

(qk − pk)
2

for n= 4. Three such 2-tuples exist:

p1 = 1< p2 = 2< q1 = 3< q2 = 4,

p1 = 1< p2 = 2< q2 = 3< q1 = 4,

p1 = 1< q1 = 2< p2 = 3< q2 = 4

yielding

1
(3 − 1)2(4 − 2)2

+
1

(4 − 1)2(3 − 2)2
+

1
(2 − 1)2(4 − 3)2

=
169
144

= det(H̃4).

The case det(H̃2)= 1 is trivial; the case det(H̃6)= 6723649/4665600 will require
some effort. We wonder if a simple method for computing the size of S, as a
function of n, can be found. An analogous approach for det(Kn) would also be
good to see.
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3.11 Goľdberg’s Zero-One Constants

Let F be the set of all functions f that are analytic on some ring {z : ρ( f )< |z|< 1}
and omit the values of both 0 and 1 there. Each function is defined in its own
distinct ring. By omit, it is meant that f(z) /∈{0, 1} for all z. We assume ρ( f ) to
be as small as possible. Let G⊆F consist of all functions that are analytic on the
open unit disk D. Thus, for f∈G, we have

ρ( f )=
{

0 if f is never 0 or 1,
sup {|z| : f(z)∈{0, 1}} otherwise.

Given a real number a, the a-points of f are the points z for which f(z)= a. Of
course, 0-points are more commonly referred to as zeroes.

Consider the circle σ defined by{
z : |z|=

√
ρ( f )

}
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with counterclockwise orientation, and let γf be the image of σ under f. The index
or winding number of γf with respect to the point a is

n(γf, a)=
1

2πi

∫
γf

dz
z− a

.

Our interest is in the scenario when n(γf, 0), n(γf, 1) are nonzero and distinct;
without loss of generality, we assume that n(γf, 0)> n(γf, 1). Let F(N0,N1)⊆F
consist of all functions fwith n(γf, 0)=N0 and n(γf, 1)=N1. LetG(M0,M1)⊆G
consist of all functions gwith exactly one 0-point [of multiplicityM0] and exactly
one 1-point [of multiplicity M1]. Again, we focus on M0 ̸= 0, M1 ̸= 0 and M0 ̸=
M1; without loss of generality, assume that M0>M1.

Goľdberg [1] studied constants similar to

A(N0,N1)= inf {ρ( f ) : f∈F(N0,N1)} ,

B(M0,M1)= inf {ρ(g) : g∈G(M0,M1)} .

Bergweiler & Eremenko [2] discovered closed-form expressions:

A(2, 1)= ν= exp

− π2

ln
(
3 + 2

√
2
)
= 0.0037015991...,

A(3, 1)=A(3, 2)= exp

− π2

ln
(
5 + 2

√
6
)
= 0.0134968456...,

A(4, 1)=A(4, 3)= exp

− π2

ln
(
7 + 4

√
3
)
= 0.0235855221...

and moreover proved that

A= inf {ρ( f ) : f∈F and N0>N1 ≥ 1}= ν.

(Goľdberg’s original bounds forAwere strengthened by Jenkins [3].) The numer-
ical computation of

B(2, 1)=µ= 0.0252896...,

B(3, 1)= 0.084924..., B(3, 2)= 0.227417...,

B(4, 1)= 0.140571..., B(4, 3)= 0.290697...

is more difficult – no precise formulas are known – and it is merely conjectured
that

B= inf {ρ(g) : g∈G and M0>M1 ≥ 1}=µ.
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(The best lower bound 0.00587 for B in [2], improving on [4–6], is still far off.)
An elaborate construction of a certain transcendental analytic function on D
possessing exactly one 0-point at −µ [with M0 = 2] and exactly one 1-point at µ
[withM1 = 1] occupies much of the discussion in [2]. It shows thatB≤µ. A proof
that B≥µ remains open.

3.11.1 Belgian Chocolate Problem

Here the difficulties of construction are overwhelming. What is the smallest τ > 0
for which there exists an analytic function onD possessing exactly one 0-point at
0 [of multiplicity 1] and exactly two 1-points at ±τ [each of multiplicity 1]? The
current best bounds are [2, 7]

0.01450779<τ < 0.10913022.

Blondel’s question [8, 9] is often phrased as follows. Let a(z)= z2 − 2δz+ 1 and
b(z)= z2 − 1. What is the largest δ > 0 for which there exist stable real polyno-
mials p and q with deg(p)≥ deg(q) such that ap+ bq is stable? (A polynomial is
called stable if all its zeroes are in the left half plane.) The numbers τ and δ are
related by

τ =

√
1 − δ

1 + δ
, δ=

1 − τ 2

1 + τ 2

and the current best bounds are

0.97646152<δ< 0.99957913.

Incremental progress in specifying such constraints is found in [4, 10–14].

3.11.2 Landau’s Theorem with Explicit Bound

If an analytic function g on D omits the values of both 0 and 1, then [15–17]

|g(0)| ≤ 2 |g′(0)| (|ln |g(0)||+ K) ,

where the constant

K=
1

4π2Γ

(
1
4

)4

= 4.3768792304...

is best possible. Other occurrences of K are similar to results appearing in [18].
If analytic g satisfies g(0)= 0 and g′(0)= 1, then g(D) covers a segment of each
line passing through the origin; further, each segment has length at least 2/K=

0.4569465810... and this is sharp [19–21]. If analytic g satisfies g(−z)=−g(z)
for all z∈D and g′(0)= 1, then g(D) covers a disk with center at the origin and
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radius 1/K= 0.2284732905...; again, this is sharp [8, 22]. The presence of the
elliptic modular function

J(z)= 16 exp(πiz)
∞∏
n=1

(
1 + exp(2nπiz)

1 + exp((2n− 1)πiz)

)8

, Im(z)> 0,

1
J′(i)

=
4
K
i

is keenly felt here.
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3.12 Electrical Capacitance

Wementioned logarithmic capacity or transfinite diameter in [1]. Given a compact
set A in R2, the measure

γ0(A)= lim
n→∞

max
ξ1,...,ξn∈A

∏
j<k

|ξj − ξk|

 2
n(n−1)

is invariant under rigid motions and continuous, but fails to be additive since
γ0(A)= γ0(∂A) [2–4]. The unit interval has logarithmic capacity 1/4; the unit
disk, square and equilateral triangle have logarithmic capacities

1,
1

4π3/2
Γ

(
1
4

)2

= 0.5901702995...,

√
3

8π2Γ

(
1
3

)3

= 0.4217539346...,

respectively. Discussion of the geometric mean (of all pairs of points) often
seems to be restricted to planar sets; we now turn to the harmonic mean and
subsequently to the arithmetic mean.

Given a compact set A in R3, define [5, 6]

γ−1(A)= lim
n→∞

max
ξ1,...,ξn∈A

 2
n(n− 1)

∑
j<k

1
|ξj − ξk|

−1

to be the Newtonian capacity or electrical capacitance or generalized transfinite
diameter of order −1. This is also the reciprocal of what is known as the opti-
mal Riesz 1-energy [7]. The unit interval and unit circle both have electrical
capacitance 0; one way to see the latter is to notice the inequality [8]

∑
j<k

1
|ξj − ξk|

≥ n
4

n−1∑
ℓ=1

csc
(
ℓπ

n

)
(for which equality holds when ξ1, . . . , ξn are nth roots of unity). The unit disk
has capacitance 2/π [9] If A is the closure of a bounded, open, connected set in
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R3, then γ−1(A)= γ−1(∂A) [10]. The unit ball (and hence the unit sphere) has
capacitance 1. Another way to see this is to invoke a formula for s-energy of the
d-sphere [11] with s= 1, d= 2.

Interesting constants arise here. For example, let A be the solid formed by
revolving a disk of radius 1 about a tangent line (a “torus without hole”). It
follows that [12]

γ−1(A)=
4
π

∞∫
0

1
I0(t)2

dt= 4 (0.4353450662...)

where I0(t) is the zeroth modified Bessel function. More generally, consider the
surface formed by revolving an arc of a circle about its chord (a “spindle”). A
definite integral involving Legendre functions of complex degree, parametrized
by the included angle, is found [13]. As another example, consider the (discon-
nected) set consisting of two congruent parallel line segments. Its capacitance
is obtained via a transcendental equation that involves elliptic integrals [14–16].
See [10, 17–20] for more examples.

Seemingly simple sets present formidably difficult challenges [21]. The unit
cubeC has attracted enormous attention [22–41] and the best numerical estimate
is [2, 9, 42]

γ−1(C)= 0.6606781540...=
1
2
(1.3213563081...).

A conjectured exact expression for γ−1(C) in [43, 44] is evidently incorrect. For
the unit square S and the unit equilateral triangle T, we have less precision:

γ−1(S)= 0.3667880...=
1
2
(0.7335760...)=

2
π
(0.5761492...),

γ−1(T)= 0.2508...=
2
π
(0.3940...).

It would be good someday to see improvements of these estimates, as well
as 0.3565...=(1.7465...)/

√
24 for the unit regular tetrahedron. We wonder if

formulation in [45, 46] might assist in accomplishing this.
The preceding results are dimensionless, of course. Certain authors chose to

express their estimates in the following manner:

γ−1(C)≈
1

4πε0
(73.51036),

γ−1(S)≈
1

4πε0
(40.811)≈ 1√

2

1
4πε0

(57.715),

γ−1(T)≈
1

4πε0
(27.91)≈ 1√

3

1
4πε0

(48.33),
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where 4πε0 ≈ 111.265006 picofarads/meter and ε0 is the permittivity constant of
free space. Such decisions are a little unfortunate for us, since the value of ε0
is based on physical experimentation and thus the normalization has changed
somewhat with the passage of time.

Moving back to geometry, define the generalized transfinite diameter of order
1 or optimal Riesz (−1)-energy

γ1(A)= lim
n→∞

max
ξ1,...,ξn∈A

(
2

n(n− 1)

∑
j<k

|ξj − ξk|

)

where A is a compact set in R3 [5, 7]. For lack of a convenient phrase (“sums of
distances” is vague), we call γ1(A) the Euclidean capacity of A. The unit inter-
val has Euclidean capacity 1/2. The unit disk (and hence the unit circle) has
Euclidean capacity 4/π; notice the inequality [8]∑

j<k

|ξj − ξk| ≤ n cot
( π
2n

)

(for which equality holds when ξ1, . . . , ξn are nth roots of unity). The unit ball
(and hence the unit sphere) has Euclidean capacity 4/3; set s=−1, d= 2 in the
formula for s-energy of the d-sphere [11]. We wrote 2/3 in [47] since sums were
divided by n2 rather than 2/(n(n− 1)). Higher order asymptotics for the latter
are conjectured in [48].

It is remarkable that no numerical results for Euclidean capacity (akin to those
for Newtonian capacity) of the unit cube, square, equilateral triangle or regular
tetrahedron appear yet to exist. A starting point for a literature search might be
[49–54].
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3.13 Aissen’s Convex Set Function

Let D be a bounded open convex set in the plane and let C denote the boundary
of D. For each p∈D and q∈C, let hpq be the Euclidean distance from p to the
support line (tangent line) to D at q. Let dsq denote the line element at q. It is
known that [1, 2]

arclength of C=

∫
C

dsq,

area of D=
1
2

∫
C

hpq dsq (independent of p),

r(D)= inradius of D=max
p∈D

min
q∈C

hpq

where r is the radius of the largest disk contained byD [3]. The boundary of such
a disk is called an incircle; its center is called an incenter. Aissen [1, 2] studied the
function

B(D)=min
p∈D

∫
C

h−1
pq dsq

and deduced that the optimizing point p corresponds to an incenter of D if D
is a triangle, parallelogram, regular polygon or ellipse. (We are careful to say
“an incenter” rather than “the incenter”: a suitably elongated parallelogram has
infinitely incircles, all of the same radius. By contrast, the incenter for an arbitrary
triangle is unique.) This is a remarkable feature of B. It is natural to wonder
whether the same is true for an arbitrary convex set.

The simplest counterexample is a trapezoid with vertices (±1, 1), (±3,−1), for
which the optimizing point p has x-coordinate 0 (by symmetry) but y-coordinate

> 0. More generally, examine the trapezoid with vertices (±
(√

2 − 1 + t
)
, 1),

(±
(√

2 + 1 + t
)
,−1) where t≥ 0 is fixed. The integral within B becomes a sum

of four ratios:

2

(√
2 − 1 + t
1 − y

+

√
2 + 1 + t
1 + y

+
2√

2 + t+ x− y
+

2√
2 + t− x− y

)
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each of the form sidelength/distance. As an instance, the rightmost side has
equation

v− 1√
2
=−u+

(
1√
2
+ t
)

in the uv-plane, that is, u+ v−
√

2 − t= 0. The distance from the point (x, y) to
the line is ∣∣∣x+ y−

√
2 − t

∣∣∣
√

12 + 12
=

√
2 + t− x− y√

2

and the sidelength is
√

22 + 22 = 2
√

2. Forming a ratio gives the final term in the
sum. Differentiating the sum with respect to x, we see that x= 0 is necessary for
minimization. The derivative with respect to y is more complicated. In the special
case t= 0, each of the trapezoidal sides is tangent to the unit circle, thus y= 0. If
instead t= 2 −

√
2, then the inradius is still 1 but y≈ 0.116257 is the unique posi-

tive zero of the quartic y4 + 8y3 − 25y2 + 20y− 2. If instead t= 3 −
√

2, we have
y≈ 0.130385 (increasing). If instead t= 4 −

√
2, we have y≈ 0.110399 (decreas-

ing). As t→∞, we have y→ 0+. Aissen’s optimizing point appears not to be
associated with the trapezoidal incenter except at the extremes t= 0, t=∞.

Another counterexample – the half-disk 0≤ v≤
√

1 − u2 – comes from [1, 2].
Again x= 0 follows by symmetry. The integral within B here becomes

2
y
+

2 arcsin(y) + π√
1 − y2

and is minimized when y= 0.5432763603... > 1/2. The value of B itself is
8.7915361561.... Such values play a role in estimating hard physical quantities
like torsional rigidity P in terms of area A [4]. For the half-disk, P turns out to
be known exactly and the lower bound [5]

0.2975567820...=
π

2
− 4
π
=P≥A2B−1 =

(π/2)2

8.7915361561...
≈ 0.280

is excellent.
Returning to geometry, let dpq simply be the Euclidean distance from p to q.

Clearly

R(D)= circumradius of D=min
p∈D

max
q∈C

dpq

whereR is the radius of the smallest disk containingD [3]. The boundary of such
a disk is called a circumcircle; its center is called a circumcenter. The circum-
center for an arbitrary convex set is unique. We wonder if a “dual” to Aissen’s
function can be defined and what its interplay with the circumcenter for various
D might be.
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3.14 Condition Numbers of Matrices

Let A be a real n× n matrix and let

∥A∥= sup
∥x∥=1

∥Ax∥

denote its Euclidean operator norm (often called the 2-norm). IfA is nonsingular,
then its condition number κ(A) is defined by

κ(A)= ∥A∥
∥∥A−1

∥∥= σ1(A)
σn(A)

where σ1 ≥σ1 ≥ . . .≥σn≥ 0 are the singular values of A. The σs consti-
tute lengths of the semi-axes of the hyperellipsoid E= {Ax : ∥x∥= 1} in n-
dimensional space; thus κ measures elongation of E at its extreme [1]. The
role that κ plays in numerical analysis cannot be overstated: real matrices with
large κ are called ill-conditioned whereas matrices with small κ are called well-
conditioned. In a nutshell, κ quantifies the sensitivity of x to pertubations in A
and b when solving the linear system Ax= b.

It remains to understand themeaning of “large” versus “small” in this context.
Let the entries of A be independent normally distributed random variables with
mean 0 and variance 1. Edelman [2] proved that the condition number κn satisfies

E (ln(κn))= ln(n) + c+ o(1)

as n→∞, where

c=−1
2
c̃+ ln(2)= 1.5370894353...= ln(4.6510334182...),

c̃ =

∞∫
0

ln(x)
1 +

√
x

2
√
x

exp
(
−x

2
−
√
x
)
dx

= −2γ − 2e1/2
∞∫
1

1
y+ 1

exp
(
−1

2
y2
)
dy

= −1.6878845096...
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and γ is the Euler–Mascheroni constant [3]. Therefore random dense matrices
are well-conditioned, in the sense that κn grows only linearly with n.

Let A be the same as before except all superdiagonal entries are zero and all
diagonal elements are one. That is, A is a unit lower triangular matrix, all of
whose subdiagonal entries are independent N(0, 1). Viswanath & Trefethen [4]
proved that

n
√
κn → exp

 1

2
√

2π

∞∫
−∞

ln
(
1 + x2) exp(−1

2
x2
)
dx


= 1.3056834105...

almost surely as n→∞. Therefore random unit lower triangular matrices are ill-
conditioned, in the sense that κn grows exponentially with n. Such behavior is in
striking contrast to the linear growth for random dense matrices.

Similar conclusions follow if we replace the normal distribution by, say, the
Cauchy distribution with density function

1
π

1
1 + x2

for−∞< x<∞. An exact limiting expression for E (ln(κn/n)) analogous to that
in [2] is unknown, although Monte Carlo simulation suggests that a constant c
indeed exists and is close to 7.0. For random unit lower triangular matrices, we
have [4]

n
√
κn → exp

 1
π

∞∫
−∞

ln (1 + |x|)
1 + x2 dx


= exp

(
ln(2)

2
+

2G
π

)
= 2.5337372794...

almost surely as n→∞, where G is Catalan’s constant [5]. An interesting varia-
tion arises if we allow the diagonal entries of the latter to be independent Cauchy
as well (rather than fixed at unity):

n
√
κn → exp

 2
π2

∞∫
−∞

ln (1 + |x|) ln (|x|)
x2 − 1

dx


= exp

(
ln(2) +

7ζ(3)
2π2

)
= 3.0630941933...

almost surely as n→∞, where ζ(3) is Apéry’s constant [6].
We can extend our discussion to complex matrices. Let the real and imaginary

parts of entries of A be independent normally distributed random variables with
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mean 0 and variance 1. From [2], we have

E (ln(κn))= ln(n) + d+ o(1)

as n→∞, where

d=−1
2
d̃+

3
2

ln(2)= 0.9817550130...= ln(2.6691365030...),

d̃=

∞∫
0

ln(x)
1
2

exp
(
−x

2

)
dx= ln(2)− γ= 0.1159315156....

If we replace the normal distribution by the Cauchy distribution, then simulation
suggests that d indeed exists and is close to 6.4.

Finally, let real/imaginary parts of entries of unit lower triangular A be inde-
pendent normal withmean 0 and variance 1/2 (different scaling than previously).
From [4], we have

n
√
κn → exp

1
4

∞∫
0

ln
(
1 +

x
2

)
exp

(
−x

2

)
dx


= exp

(
− e

2
Ei(−1)

)
= 1.3473957848...

almost surely as n→∞, where Ei is the exponential integral [7]. Numerical values
when replacing the normal distribution here by theCauchy distribution (for some
choice of scaling) remain open. Other choices of densities are possible (symmetric
strictly stable distributions, for example) and corresponding constants would be
good to see someday.
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3.15 Goddard’s Rocket Problem

A rocket lifts off vertically at time t= 0. Let m(t) be the mass of the rocket (pay-
load and fuel) and s(t) be the altitude. We wish to choose the thrust u(t) and
a final time t∞ such that the altitude s(t∞) is maximized [1]. It is assumed that
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m(t∞)/m(0)= 3/5, that is, 60% of the rocket is payload and 40% is fuel. For con-
venience, let m0 =m(0), m∞ =m(t∞) and s∞ = s(t∞). It is further assumed that
the Earth is flat and the atmosphere is negligible, thus

d2s
d t2

=
1

m(t)
u(t)− g, s(0)= 0,

ds
dt

∣∣∣∣
t=0

= 0,

dm
dt

=−1
c
u(t),

where g is the (constant) acceleration due to gravity. Normalize g to be 1. Fuel
consumption is proportional to thrust; set c= 1/2. Integrating

d2s
d t2

=− c
m(t)

dm
dt

− g,

we obtain
ds
dt

= c ln
(
m0

m(t)

)
− g t,

hence

0= c ln
(
m0

m∞

)
− g t∞

and

t∞ =
c
g

ln
(
m0

m∞

)
= 0.255412....

Integrating again, we have [2, 3]

s∞ =

t∞∫
0

[
c ln

(
m0

m(t)

)
− g t

]
dt

= c ln
(
m0

m∞

)
t∞ − 1

2
g t2∞ =

c2

2g
ln
(
m0

m∞

)2

= 0.032617...

since, by the calculus of variations, it is optimal to select

m(t)=
{
m0 if t= 0,
m∞ if 0< t≤ t∞.

In words, the rocket will reach maximum altitude if the thrust u(t) is an impulse
at t= 0 (a special case of a bang-bang control). All fuel is used instantaneously;
the rocket achieves maximum velocity immediately. For consistency with [4, 5],
define

v(t)=
1
c
ds
dt

=

 0 if t= 0,

ln
(
m0

m∞

)
− g
c
t if 0< t≤ t∞
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and

v0 = lim
t→0+

v(t)= ln
(
m0

m∞

)
= 0.510825....

If there is non-negligible aerodynamic drag, then an interesting tradeoff
occurs. High velocity achieved at low altitudes (by an impulsive start) will con-
front great resistance. It appears that a better strategy would be to save some
fuel for intermediate altitudes, but determination of exactly how to execute this
is nontrivial.

Replace the first ODE by

d2s
d t2

=
1

m(t)

[
u(t)−W exp (−α s(t))

(
ds
dt

)2
]
− g,

where W= 310=(1/2)(620) and α= 500. In words, air density decreases expo-
nentially with altitude but drag increases quadratically with velocity. Although
we cannot solve this nonlinear equation in the same manner as previously, it is
remarkable that closed-form expressions for certain quantities even exist. Note
that W/m∞ = 310/(3m0/5)= (1550/3)/m0. The following discussion is due to
Tsien & Evans [4], with follow-on work by Leitmann [5–7].

Let t1 be the burnout time, that is, the end of powered flight. The optimal t1 is
0 for travel in a vacuum; t1> 0 if there is significant drag. The rocket continues to
coast upward, without fuel, until time t∞. Of course m(t1)=m∞. Let s1 = s(t1)
and v1 = v(t1). Let

β=
g
α c2

, γ=
√
(1 − β)2 + 8β, f(x)=Ei

(
−2β

Wc2

m∞g
exp(−α x)

)
,

p(x)=
2x+ (1 − β)− γ

2x+ (1 − β) + γ
, q(x, y)=

x2 + (1 − β)x− 2β
y2 + (1 − β)y− 2β

,

r(x)=
x+ 2

x2 + (1 − β)x− 2β
,

where Ei is the exponential integral [8]. Here is a system of five simultaneous
equations, arising from the calculus of variations, that enable us to solve for t1,
s1, s∞, v0, v1:

v21 =−2β exp
(
2β

Wc2

m∞g
exp(−α s1)

)
[ f(s∞)− f(s1)] ,

Wc2

m∞g
v21 (1 + v1)= exp(α s1),

α s1 = v1 − v0 +
γ

2
ln
(
p(v1)
p(v0)

)
+

3 + β

2
ln (q(v1, v0) ,

g t1
c

= ln
(
v0
v1

)
+
γ

2
ln
(
p(v1)
p(v0)

)
+

1 + β

2
ln (q(v1, v0)),
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m0

m∞
=β

Wc2

m∞g
v0
[
v20 + (1 − β)v0 − 2β

]
[r(v0)− r(v1)] exp (v0) + exp

(
v1 +

g t1
c

)
.

Given the prescribed parameter values, we obtain t1 = 0.062642..., s1 =
0.005085..., s∞ = 0.013579..., v0 = 0.102753... and v1 = 0.277580.... In particular,
s∞ is smaller than the final altitude 0.032617... computed for a vacuum and v1 is
considerably larger than v0. Finding the thrust at t= 0 is equivalent to computing

1
m∞

lim
t→0+

m(t)=
m0

m∞
exp(−v0)= 1.503915...,

that is, approximately 9.8% of the rocket mass is expended at the start. Mass
at any time 0< t< t1 can be found via replacing r(v0) in the right-hand side of
the fifth equation by r(v(t)), and then multiplying the whole by m∞ exp(−v(t)−
g t/c). Finding velocity, given 0< t< t1, is done by substituting t1, v1 everywhere
in the fourth equation by t, v and then solving for v. The trickiest part is calcu-
lating t∞, for which no analogous equation seems to be available. By call to a
numerical ODE solver:

d2s
d t2

+
W
m∞

exp (−α s(t))
(
ds
dt

)2

+ g= 0, s(t1)= s1,
ds
dt

∣∣∣∣
t=t1

= c v1,

we obtain t∞ = 0.192021... at which ds/dt vanishes. This, again, is smaller than
the final time 0.255412... computed for a vacuum. We also confirm numerically
that s(t∞)= s∞.

The Earth is, in fact, round – let its radius be 1 – therefore a distance h(t)=
s(t) + 1 separates the rocket and Earth’s center. Replace the first ODE by

d2s
d t2

=
1

m(t)

[
u(t)−W exp (−α s(t))

(
ds
dt

)2
]
− g

(s+ 1)2

where W and α are as before. Suppose that m0 = 1. Additional realistic con-
straints on thrust and dynamic pressure

0≤ u(t)≤ 7
2
, q(t)=

1
2
ρ0 exp (−α s(t))

(
ds
dt

)2

≤ 10

make the optimization more difficult, where the parameter ρ0 = 12400 is air den-
sity at sea level. A substantial literature exists on the numerical solution of this
problem [9–17]; the optimal final time is t∞ = 0.204055... and the optimal final
distance is h∞ = s∞ + 1= 1.012717.... Figure 3.1 constitutes relevant Matlab
graphical output [18, 19], where ε is a penalty parameter. The phase between ini-
tial thrust= 3.5 and final thrust= 0 is known as the singular arc [20]. See also [21]
for informal history and [22–24] for more examples and techniques. We mention
finally control problems involving a missile moving obliquely in a vertical plane,
maximizing the horizontal range covered [25] or a spacecraft attempting to make
a soft landing on the moon, minimizing fuel consumption [26].
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Figure 3.1 Histories of optimal flight characteristics for decreasing values of ε.
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3.16 Swing-Up Control of a Pendulum

A pendulum is a bob of massm, attached to a frictionless pivot point via a mass-
less rod of length ℓ. The bob is free to swing from side to side in a vertical plane.
Let g denote the acceleration due to gravity. Let θ denote the angle between the
rod and a vertical axis. The pendulum has two equilibrium positions, a stable
one at θ= 0 (bottom) and an unstable one at θ=π (top). Assume further that we
apply a torque τ to the pendulum, increasing θ (counterclockwise motion) when
τ > 0. Let τ be constrained by |τ | ≤ τ0. The angular equation of motion is [1, 2]

I
d2θ

ds2
+mg ℓ sin(θ)= τ,
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where I=m ℓ2 is the moment of inertia and s is time. Define non-dimensional
parameters

t=

√
mg ℓ
I

s, u=
τ

τ0
, κ=

τ0
mg ℓ

,

so that

dθ
dt

=
dθ
ds
ds
dt

=

√
I

m g ℓ
dθ
ds
,
d2θ

dt2
=

√
I

m g ℓ
d2θ

ds2
ds
dt

=
I

m g ℓ
d2θ

ds2
,

τ

mg ℓ
=κ u

and hence
d2θ

dt2
+ sin(θ)=κ u

subject to |u| ≤ 1. We shall first solve a simple problem with u= 0 before allowing
more complicated controls in our study. For simplicity, let ω= dθ/dt.

Let κ= 1 for now. Let θ=π/2 andω= 0 at t= 0. Under these initial conditions
and the assumption that u= 0 for all t, the pendulum swings down due to gravity
alone. What is the angular velocity when θ= 0? Here an exact formula exists:

θ(t)=−2 arcsin
(

1√
2

sn
(
t− K

(
1√
2

)
,

1√
2

))
,

where K(x) is the complete elliptic integral of the first kind and sn(x, y) is one of
the Jacobi elliptic functions [3]. Solving θ(t)= 0 gives [4]

t=K
(

1√
2

)
=

1
4
√
π
Γ

(
1
4

)2

= 1.8540746773...

and substituting this value into ω(t) gives−
√

2=−1.4142135623... [5]. A simple
outcome as such is possible only because u= 0.

Assume either that u= 1 for all t or that u=−1 for all t. Given initial conditions
θ(t0)= θ0 and ω(t0)=ω0, we have

ω
dω
dθ

=
d2θ

dt2
=− sin(θ)± κ,

hence
1
2
ω2 = cos(θ)± κ θ + c, c=

1
2
ω2

0 − cos(θ0)∓ κ θ0

hence (
dθ
dt

)2

=ω2 =ω2
0 + 2 [cos(θ)− cos(θ0)± κ θ ∓ κ θ0]

hence

|dθ|√
ω2

0 + 2 [cos(θ)− cos(θ0)± κ θ ∓ κ θ0]
= dt.
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Define

T+(θ0, ω0, t0, κ; θ)= t0 +

∣∣∣∣∣∣
θ∫
θ0

dφ√
ω2

0 + 2 [cos(φ)− cos(θ0) + κφ− κ θ0]

∣∣∣∣∣∣
to be the time to reach θ, corresponding to u= 1 and

T−(θ0, ω0, t0, κ; θ)= t0 +

∣∣∣∣∣∣
θ∫
θ0

dψ√
ω2

0 + 2 [cos(ψ)− cos(θ0)− κψ + κ θ0]

∣∣∣∣∣∣
to be the time to reach θ, corresponding to u=−1. For example, T−(π/2, 0,
0, 1; 0)= 1.2794771227... is the time required for the pendulum to swing down
due to both gravity and a clockwise unit torque. This is unsurprisingly
less than the time 1.854... calculated for gravity alone. As another example,
T+(0, 0, 0, 1;π/2)= 2.1000505566... is the time required for the pendulum to
swing halfway up due to a counterclockwise unit torque. This is greater than
the preceding since here we are working against gravity. These constants are
unrecognizable, as are the associated velocities ω− =−2.2675080272... and ω+ =

1.0684533932... obtained using a nonlinear ODE solver.
A more challenging problem is as follows [6–8]. Given (θ0, ω0)= (0, 0), what

is the unique strategy to drive the pendulum to (θ, ω)= (π, 0) via a bang-bang
control u=±1 with one switching? The solution is to initially apply u= 1 until
the precise time t1 when

(θ, ω)=

(
π

2
+

1
κ
,

√
κπ − 2 sin

(
1
κ

))

and subsequently apply u=−1 until the precise time t∞ when (θ, ω)= (π, 0). See
Figure 3.2. For example, if κ= 1, then

t1 =T+

(
0, 0, 0, κ;

π

2
+

1
κ

)
= 3.0063538276...,

t∞ =T−

(
π

2
+

1
κ
,

√
κπ − 2 sin

(
1
κ

)
, t1, κ;π

)
= 4.0300186879...,

but this is valid only since cos(φ)− 1 + κφ> 0 for all 0<φ<π. The minimiz-
ing value φmin on the left-hand side of the inequality is π − arcsin(κ). After
substituting φmin into the expression, we solve

1 − π κ+
√

1 − κ2 + κ arcsin(κ)= 0

and obtain κ= 0.7246113537... as the smallest number for which t1 is
well-defined. Both this number and a related quantity π − arcsin(κ)=
2.3311223704... appear in [9] in connection not with swing-up control, but
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Figure 3.2 Phase portrait (θ on horizontal axis, ω on vertical axis) for κ= 1 from [6]; start
at (0, 0), switching at (2.570..., 1.207...), end at (π, 0).

rather with damping (from unstable equilibrium position to stable). By con-
trast, the inequality cos(ψ) + 1 − κψ + κπ> 0 does not impose any additional
restrictions on κ.

If κ= 1/2, then we need to consider bang-bang controls u=±1 with two
switchings. Infinitely many strategies exist by which u=−1 is applied for 0< t<
t1, u= 1 is applied for t1< t< t2, u=−1 is applied for t2< t< t∞ and required ini-
tial/terminal conditions for (θ, ω) are satisfied. Of these, there is a unique strategy
with minimal t∞; see Figure 3.3. It is remarkable that optimality is achieved by
first allowing ω< 0 (clockwise motion), seemingly out of the way, before simul-
taneously reversing torque and exploiting gravity to push ω> 1.3. Omitting the
first stage would lead to the pendulum falling far short of (θ, ω)= (π, 0).

If κ= 3/4, then both a one-switching strategy and a minimal two-switching
strategy exist. For the former, the required time is t∞,1 = 6.5690173615...; for the
latter, it is t∞,2 = 5.8397.... The motion with two switchings is faster:

t∞,1 − t∞,2

t∞,2
≈ 12.5%,

but a motion with three (or more) switchings cannot improve upon t∞,2. We
write N3/4(0, 0)= 2, where (0, 0) is the initial point and it is understood that the
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Figure 3.3 Phase portrait (θ on horizontal axis, ω on vertical axis) for κ= 1/2 from [6];
start at (0, 0), switchings at (−0.877...,−0.394...) & (2.693..., 0.803...), end at (π, 0).

terminal point is (π, 0). In the same way, N1(0, 0)= 1 and N1/2(0, 0)= 2. Define
Nκ to be the supremum of Nκ(θ0, ω0) over all θ0 and ω0 in the phase space.

Pontryagin’s principle guarantees that the optimal control, for any choice of κ,
must be of bang-bang type. The complexity of such a control can be characterized
by the optimal switching numberNκ . Greater knowledge of the function κ 7→Nκ
is therefore desirable. Numerical computations suggest that [10]

inf
Nκ=1

κ≈ 0.80, inf
Nκ=2

κ≈ 0.44,

which are bifurcation values of the parameter κ (analogous to bifurcation val-
ues of the parameter a discussed in [11] with regard to quadratic iterates and
period doubling). More precise estimates of these values would be good to see
someday.

3.16.1 Damping Control

This scenario is dual to that for swing-up [8, 9]. Given (θ0, ω0)= (π, 0), what
is the unique strategy to drive the pendulum to (θ, ω)= (0, 0) via a bang-bang
control u=±1 with one switching? The solution is to initially apply u=−1 until
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the precise time t̃1 when

(θ, ω)=

(
π

2
+

1
κ
,−

√
κπ − 2 sin

(
1
κ

))

and subsequently apply u= 1 until the precise time t̃∞ when (θ, ω)= (0, 0). For
example, if κ= 1, then

t̃1 =T−

(
π, 0, 0, κ;

π

2
+

1
κ

)
= 1.0236648603...= t∞ − t1,

t̃∞ =T+

(
π

2
+

1
κ
,−

√
κπ − 2 sin

(
1
κ

)
, t̃1, κ; 0

)
= 4.0300186879...= t∞,

but again this is valid only since cos(φ)− 1 + κφ> 0 for all 0<φ<π.
We write Ñ1(π, 0)= 1, where (π, 0) is the initial point and it is understood

that the terminal point is (0, 0). One might expect that Ñ1(θ0, ω0) to be 1 always,
but this is false. By an example given in [12], Ñ1(−100, 14.16)= 2 and the time
improvement is 0.27% (less dramatic than before). The principal bifurcation
value here is [13]

inf
Ñκ=1

κ≈ 1.04

and we have asymptotics [14]

inf
Ñκ=n

κ∼ 1
n
G
2
=

0.9259685259...
n

as n→∞, where the constant

G=

π∫
0

sin(z)
z

dz=
∞∑
j=0

(−1)jπ2j+1

(2j+ 1)(2j+ 1)!
= 1.8519370519...

is well-known from approximation theory [15]. Although the theory in [14] is
devoted to damping, which differs substantially from swing-up, the asymptotic
constant G/2 evidently remains the same.

More references appear in [16], including mention of a double pendulum and
chaos. Time optimal control of such appears to be difficult [17].
Addendum The formula θ1 =π/2 + 1/κ corresponding to one switching has a

complicated analog for two switchings [18]. Define

ξ(ρ)=
ρ

2
+

cos(ρ)− 1
2κ

, η(ρ)= ξ(ρ) +
π

2
+

1
κ
,

F(u, ρ)=
√
−2κ(u− ρ)− 2 [cos(u)− cos(ρ)]
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and solve for ρ via the following equation:

1
F(ξ(ρ), ρ)

+
1

F(η(ρ), ρ)
+

ρ∫
ξ(ρ)

− sin(u) + sin(ρ)
F(u, ρ)3

du+

ρ∫
η(ρ)

− sin(v) + sin(ρ)
F(v, ρ)3

dv= 0.

In the event κ= 1/2, we obtain ρ=−0.937739... and hence θ1 = ξ=−0.877...,
θ2 = η= 2.693.... In the event κ= 3/4, we obtain ρ=−0.521237... and hence
θ1 =−0.349..., θ2 = 2.554.... To compute ω1 and ω2 involves F(ξ, ρ) and F(η, ρ),
respectively.

Acknowledgment I am thankful to Sergey Reshmin for employing his soft-
ware to accurately calculate the cases κ= 1/2 and κ= 3/4, and for his helpful
correspondence.
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3.17 Zermelo’s Navigation Problem

A river is assumed to be of unit width and infinite length. Place the origin on
one bank. Let the positive x-axis point upstream (rightward) and the positive
y-axis point across the river (upward). The current is characterized by a velocity
−v(y)ex, where ex=(1, 0) and v(y)≥ 0 for all 0≤ y≤ 1. Hence the water moves
from right to left, with possible speed variation depending on the distance from
the original bank. By contrast, an ocean is planar and infinite in all directions.
While the current in the ocean has velocity depending only on y, there is no sign
restriction on v(y).

Our interest is primarily in minimizing travel time, subject to constraints. We
will be more specific soon. The shortest path from origin to target is usually not
the optimal solution! Our examples are special cases of the work of Zermelo
[1–4]; we closely follow [5] for the initial section and [6] for the final.

3.17.1 Canoe on a River

Assume that a canoe moves at a constant speed 1 relative to the water. The goal
is to reach the point (0, 1) directly across the river from (0, 0). Suppose first the
existence of a uniform current, that is, v(y)= cwhere 0< c< 1. A naive strategy is
for the canoe’s orientation to always be directed at the target. Under this strategy,
the canoe is swept downstream somewhat before it overcomes the current and
heads upstream. The resulting path (as viewed by a stationary observer from
above) is [5, 7, 8]

x(y)=
1
2

[
(1 − y)1+c − (1 − y)1−c]

and the travel time is 1/
(
1 − c2

)
. It is better, however, to point the canoe at a

constant angle arccos(c) relative to the x-axis. Such a strategy is optimal: the
resulting path is simply xc(y)= y and the travel time is 1/

√
1 − c2.

Suppose instead the existence of a linear current, that is, v(y)= b ywhere b> 0.
The naive strategy gives rise to a path [5, 7]

x(y)=
1
2

[
(1 − y)1+b exp(b y)− (1 − y)1−b exp(−b y)

]
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and a travel time

−1
2

[
b−b−1 exp(b)Γ(1 + b, b) + (−b)b−1 exp(−b)Γ(1 − b,−b)+

−(−b)b exp(−b)Γ(−b, 0)− b−b exp(b)Γ(b, 0)
]
,

where

Γ(z,w)=

∞∫
w

sz−1 exp(−s)ds

is the incomplete gamma function. For example, if b= 1/2, then the travel time
is ≈ 1.13546; if b= 9/10, then the travel time is ≈ 2.61567; as b→ 1−, the travel
time →∞. Again, it is better to point the canoe at some other angle θ(y) relative
to the x-axis (here the angle is time-varying). The optimal strategy gives rise to a
path [5]

xℓ(y) = − 1
2b

{
λ
√
λ2 − 1 + (b y− λ)

√
(b y+ λ)2 − 1

+ ln

[
λ+

√
λ2 − 1

b y+ λ+
√
(b y+ λ)2 − 1

]}
and a travel time

τ =
1
b

(√
(b+ λ)2 − 1 −

√
λ2 − 1

)
,

where the parameter λ=λ(b) is chosen so that xℓ(1)= 0. For example, if b=
1/2, then the parameter value is ≈ 3.76109 and the travel time is ≈ 1.03275;
if b= 1, then λ≈ 1.60647 and τ ≈ 1.14973; if b= 3/2, then λ≈ 1.02830 and τ ≈
1.38836. Figure 3.4 resembles a graph in [9], reflected across the vertical axis.
Define β= 1.6626273716... to be the largest quantity b for which λ(b)≥ 1, that
is, the solution of the equation

(1 − b)
√
b(2 + b) + ln

(
1 + b+

√
b(2 + b)

)
= 0.

The corresponding travel time is
√

1 + 2/β= 1.4842221390.... If b>β, then the
canoe cannot overcome the current to reach the target (directly opposite the
origin); it necessarily will be swept downstream a finite nonzero distance. For
0< b≤β, the optimizing angle is given by

θ(y)= arccos
(

1
b y+ λ

)
and thus, for example, θ(0)≈ 51.5◦ and θ(1)≈ 67.4◦ if b= 1.

Suppose instead the existence of a “reverse” linear current, that is, v(y)= b(1 −
y) where b> 0. The naive strategy gives rise to a path [7]

x(y)=−(1 − y) sinh(b y)
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Figure 3.4 Path of a canoe traveling from (0, 0) to (0, 1) assuming a right-to-left linear
current with coefficient b. Curves in x< 0 show paths for which the canoe’s head-
ing is always at the target. Curves in x> 0 show solutions to Zermelo’s navigation
problem.

and a travel time sinh(b)/b, which is well-defined for all finite b. The optimal path
is−xℓ(1 − y), where xℓ was prescribed earlier for a “forward” linear current. The
same travel time τ and threshold β apply here as before. Evidently the Euler–
Lagrange approach does not work for large b. We do not know an optimal path
to the target when b>β, yet the naive strategy provides a perfectly admissible
path whatever the current. Resolving this issue seems to be open.

Suppose finally the existence of a parabolic current, that is, v(y)= 4a y(1 − y)
where a> 0. The naive strategy gives rise to a path [5]

x(y)=−(1 − y) sinh
(
2a y2)

and a travel time

1
4

√
π

2a

(
erf
(√

2a
)
+ erfi

(√
2a
))

,

where erfi(s)=−i erf(i s) is the imaginary error function [10]. Again, this expres-
sion is well-defined for all finite a. Let α= 1.148590538... be the solution of the
equation

1∫
0

1 − 4a y(1 − y) [4a y(1 − y) + 1]√
[4a y(1 − y) + 1]2 − 1

= 0.
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It is possible to compute the optimal path xp(y) and travel time for small a. As
before, however, we do not know an optimal path to the target when a>α, even
though the naive path is admissible for all large a.

3.17.2 Ship on an Ocean

For the sake of consistency with [6], let the current be −y ex for all −∞< y<∞.
Hence the water moves from left to right in the lower half plane, is motionless on
the horizontal axis, and moves from right to left in the upper half plane. Assume
that a ship moves at a constant speed 1 relative to the water. The goal is to reach
the point (0, 0), given that the ship starts at (x0, y0). Suppose that x0 = 0 and
y0 =−1. This scenario is essentially the same as the reverse linear current dis-
cussed earlier, except the direction of flow is opposite to before and now there is
no restriction against the ship venturing beyond the target. There is no shoreline
to block passage. Figure 3.5 depicts the optimal path (as viewed by a station-
ary observer from above), along with initial angle 180◦ − 67.4◦ and final angle
180◦ − 51.5◦ relative to the x-axis. The optimal time is the same as before.

Suppose instead that x0 = 0 and y0 =−1.86. The powerful current at the onset
sweeps the ship considerably farther to the right than in the preceding example;
see Figure 3.6. It is optimal for the ship to venture slightly into the region y> 0,

0.5

optimal travel
time = 1.14973

from (0,–1) to (0,0)

initial angle = 112.6º
!nal angle = 128.5º

0.5

–0.5

–1.0

–0.5 1.0

Figure 3.5 Optimal path of a ship traveling from (0,−1) to (0, 0) assuming a left-to-
right current with coefficient 1. The trajectory is the curve (in bold) whereas the heading
vectors point to the northwest (roughly). The current vector at (0,−1) points to the east;
the tangent vector at (0,−1) is the sum of the two arrows.
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optimal travel
time = 2.9723

from (0,–1.86) to (0,0)

0.5

–0.5

–1.0

–1.5

–0.5–1.0 1.0 1.5 2.00.5

initial angle = 110.2º
!nal angle = 194.5º

Figure 3.6 Optimal path of a ship traveling from (0,−1.86) to (0, 0) assuming a left-to-
right current with coefficient 1.

optimal travel time = 5.45787
from (3.66,–1.86) to (0,0)

initial angle = 105º

!nal angle = 240º

1 2 3 4 5

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

Figure 3.7 Optimal path of a ship traveling from (3.66,−1.86) to (0, 0) assuming a left-
to-right current with coefficient 1.

taking advantage of the leftward current to bring it back to x= 0. The optimal
time is ≈ 2.9723.

Suppose finally that x0 = 3.66 and y0 =−1.86. A rough approximation of the
travel time is found by summing the preceding τ ≈ 2.9723 and the time 3.66
for unimpeded travel along the horizontal axis, yielding ≈ 6.6323. Substan-
tial improvement is possible. Figure 3.7 illustrates that the optimal strategy is
to penetrate deeply into the region y> 0, circling back with an optimal time
≈ 5.45787.
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Let us give equations underlying the preceding oceanic results. It is convenient
to use θ as the independent variable here. Define θ0 to be the initial angle and θ1
to be the final angle. Define

f(θ, θ1) = −1
2

{
sec(θ1) (tan(θ1)− tan(θ))− tan(θ) (sec(θ1)− sec(θ))

+ ln
[
sec(θ1) + tan(θ1)
sec(θ) + tan(θ)

]}
,

g(θ, θ1)=− (sec(θ1)− sec(θ)) .

Then the equations x0 = f(θ0, θ1), y0 = g(θ0, θ1) jointly determine values for
θ0, θ1 and, more generally, x= f(θ, θ1), y= g(θ, θ1) parametrically represent
the optimal path in the plane. Further, the travel time is computed via τ =

tan(θ1)− tan(θ0). Such examples also appear in [11–13]. In the case of a non-
smooth wind/water field, a purely numerical approach in [13] suffices to obtain
curvilinear plots and optimal travel times.

3.17.3 Details

We return to the canoe on a river. Let the velocity u of the canoe relative to the
water be u=

√
1 − q2 ex + q ey (which is possible since |u|= 1). The canoe’s abso-

lute velocity is hence u− v ex (where v is the water speed, a function of distance
y alone). We wish to minimize travel time [3, 5]

1∫
0

1
q(y)

dy

subject to the constraint

1∫
0

√
1 − q(y)2 − v(y)

q(y)
dy= 0

(because there is no net lateral displacement). To do this, we seek a stationary
point of

1∫
0

(
1

q(y)
− 1
λ

√
1 − q(y)2 − v(y)

q(y)

)
dy=

1∫
0

h(q, y)dy,

where λ is an undetermined multiplier. The Euler–Lagrange equation in this case
is simply dh/dq= 0, that is,

− 1
q2 +

1
λ

(√
1 − q2 − v
q2 +

1√
1 − q2

)
= 0,
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that is,

q(y)=

√
1 − 1

(v(y) + λ)
2 .

Substituting back into the constraint yields

1∫
0

1 − v(y) (v(y) + λ)√
(v(y) + λ)

2 − 1
dy= 0.

Once λ is known, the optimal path is computed via

x(y)=

y∫
0

√
1 − q(r)2 − v(r)

q(r)
dr=

y∫
0

1 − v(r) (v(r) + λ)√
(v(r) + λ)

2 − 1
dr

with associated angle function

θ(y)= arccos
(√

1 − q(y)2
)
= arccos

(
1

v(y) + λ

)
.

For the uniform current (v= c) we have λ=−c+ 1/c, thus θ= arccos(c) identi-
cally [5]. For the linear and parabolic currents, no closed-form expression for
λ is available. Figure 3.8 depicts the analog of Figure 3.4 corresponding to
v(y)= 4a y(1 − y). In order to obtain this, we had no choice but to numerically
evaluate the definite integral underlying x(y).

It is easier to compute the naive path [5]. The vertical component of the vector
difference (0, 1)− (x, y), normalized to have unit length, is

q(y)=
1 − y√

x2 + (1 − y)2
,

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.50.4–0.2 –0.1

optim
1
2

y, ))

optim(y, 1)

optim(y, a)

Figure 3.8 Path of a canoe traveling from (0, 0) to (0, 1) assuming a right-to-left parabolic
current with coefficient 4a.
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which leads to a differential equation

dx
dy

=

√
1 − q(y)2 − v(y)

q(y)
=

−x−
√
x2 + (1 − y)2 v(y)

1 − y

assuming that x< 0 and 0< y< 1.
We return to the ship on an ocean. A special case dθ/dt=− cos(θ)2dv/dy of

Zermelo’s general equation for optimality [3, 6] implies that

dt
dθ

= sec(θ)2,

since v(y)=−y, so t1 − t= tan(θ1)− tan(θ). From dy/dt= sin(θ), it follows that

dy
dθ

cos(θ)2 =
dy
dθ

dθ
dt

= sin(θ)

giving dy/dθ= sec(θ) tan(θ) and so y=− sec(θ1) + sec(θ). From dx/dt=
cos(θ)− y, it follows that

dx
dθ

cos(θ)2 =
dx
dθ

dθ
dt

= cos(θ)− y= cos(θ) + sec(θ1)− sec(θ)

giving
dx
dθ

= sec(θ) + sec(θ1) sec(θ)2 − sec(θ)3.

We have∫ (
sec(θ) + C sec(θ)2 − sec(θ)3

)
dθ = C tan(θ)− 1

2
sec(θ) tan(θ)

+
1
2

ln (sec(θ) + tan(θ))

and so the desired expression for x is true.
Fraser [3] remarked that “the canonical problems of the calculus of variations –

the isoperimetric problem, the hanging chain, the brachistochrone – go back
centuries and appear at an early stage in the history of the subject.” Zermelo’s
navigation problem (like Goddard’s rocket problem [14]) is “somewhat unusual
in providing a simple and signature example of very recent vintage, arising from
technological developments of the twentieth century.”
Addendum Define ω=−9/10. Let the ship be in an ocean with purely rota-

tional current (x, y) 7→ (−ω y, ω x), starting at location (x0, y0)= (
√

3/2, 1/2)
and ending at location (x1, y1)= (0, 1). The ship could simply travel (at constant
speed 1) with the flow, requiring a travel time 10π/3, but this is unnecessarily
lengthy. The optimal path is provably of the form [15]

x(t, ψ0)= x0 cos(ω t)− y0 sin(ω t) + t cos(ψ0 + ω t),

y(t, ψ0)= x0 sin(ω t) + y0 cos(ω t) + t sin(ψ0 + ω t)
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1.0

1.2

End

Start

Figure 3.9 Optimal path of a ship traveling from (
√

3/2, 1/2) to (0, 1) assuming a purely
rotational current with coefficient −9/10.

and requires a travel time t1 ≈ 1.974938, where t1 and the initial heading
ψ0 ≈ 3.506716≈ 200.9◦ jointly satisfy the equations x(t1, ψ0)= x1, y(t1, ψ0)= y1.
Figure 3.9 (like Figure 3.7) indicates that an optimal path may contain a subarc
where the distance between ship and target temporarily increases.

The examples discussed here have all been in the plane. Zermelo’s solution can
be extended to the surface of a sphere [4, 16, 17] and arises in the study of Rie-
mannian manifolds [18–20]. Some generalized problems appear in [21–24]. An
especially far-flung application is the implementation of information processing
tasks in controlled quantum systems [25–28].
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4.1 Hammersley’s Path Process

The following is a generalization of a process introduced by Hammersley [1, 2].
Fix three parameters λ> 0, α+≥ 0 and α−≥ 0. Let P(µ) denote a Poisson ran-
dom variable with mean µ. Baik & Rains [3] constructed a set of points S in the
unit square [0, 1]× [0, 1] according to three rules:

• P(λ2) points are selected uniformly inside (0, 1)× (0, 1)
• P(α+λ) points are selected uniformly on the open bottom edge (0, 1)× {0}
• P(α−λ) points are selected uniformly on the open left edge {0} × (0, 1).

These rules are independently executed. No points are selected from the closed
top and right edges, nor is the origin (0, 0) allowed.

Consider any sequence of distinct points of the form

(0, 0), (s1, t1), (s2, t2), ... , (sn, tn), (1, 1)

where each (sk, tk)∈S, 1≤ k≤ n, and n is arbitrary. For convenience, define
(s0, t0)= (0, 0) and (sn+1, tn+1)= (1, 1). Define such a point sequence to be an
up/right path if, for any k≥ 1, we have sk−1≤ sk and tk−1≤ tk. Hence an up/right
path joins points of S in a continuous, piecewise linear manner with line
segments of slope mk, 0≤mk≤∞, attaching (sk−1, tk−1) and (sk, tk) for all k.

Of all up/right paths determined by S, there is (at least) one with a maximum
number n of points. Call this number Nλ. (This is usually referred to as a length
in the literature. Of course, it also depends implicitly on α+ and α−.) What can
be said about the probability distribution of Nλ as λ→∞?

A special case of the above is the longest increasing subsequence problem [4],
achieved when α+ =α− = 0. Its solution will be folded into the formulas we give
shortly for the general problem. This turns out to be related to the polynuclear
growth (PNG) model in physics due to Prähofer & Spohn [5–7], but we cannot
discuss such topics now.
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When 0≤α+≤ 1 and 0≤α−≤ 1 are fixed, the following formulas hold [3]:

lim
λ→∞

P
(
Nλ − 2λ
λ1/2

≤ x
)
=


FGUE(x) if α+< 1 and α−< 1,

FGOE(x)2 if α+ = 1, α−< 1 or α+< 1, α− = 1,

F0(x) if α+ = 1 and α− = 1,

where the distribution functions FGUE(x), FGOE(x) and F0(x) will be defined
shortly. Also, when α+> 1 or α−> 1, we have

lim
λ→∞

P
(
Nλ − (α+ α−1)λ√

α− α−1λ1/2
≤ x
)
=

{
Φ(x) if α+ ̸=α−,

Φ(x)2 if α+ =α−,

where α=max{α+, α−} and Φ(x) is the standard normal distribution function
[8]. We provide moments corresponding to these distributions (and more) in
Tables 4.1 and 4.2; computations were performed by Prähofer [9]. The functions
FGUE(x), FGOE(x) and FGSE(x) were first discovered by Tracy & Widom [10–12],

Table 4.1 Moments of GUE, GOE, GUE2 and GOE2

FGUE

mean −1.7710868074...

variance 0.8131947928...=(0.9017731382...)2

skewness 0.2240842036...

kurtosis 0.0934480876...

FGOE

mean −1.2065335745...= 22/3(−0.7600685240...)

variance 1.6077810345...=(1.2679830576...)2 = 24/3(0.6380483264...)

skewness 0.2934645240...

kurtosis 0.1652429384...

F2
GUE

mean −1.2633181526...

variance 0.6066887541...=(0.7789022750...)2

skewness 0.3290093382...

kurtosis 0.2254319482...

F2
GOE

mean −0.4936399332...

variance 1.2320144032...=(1.1099614422...)2

skewness 0.3917246784...

kurtosis 0.3086329720...
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Table 4.2 Moments of GSE and other distributions

FGSE

mean −2.3068848932...= 1√
2
(−3.2624279028...)

variance 0.5177237207...=(0.7195302083...)2 = 1
2 (1.0354474415...)=

1
2 (1.0175693792...)

2

skewness 0.1655094943

kurtosis 0.0491951565

F0

mean 0

variance 1.1503944782...= 22/3(0.7247031094...)= (0.8104567006...)−2/3

skewness 0.3594116897...

kurtosis 0.2891570248...

Φ Φ2

mean 0 1√
π
= 0.5641895835...

variance 1 1 − 1
π
= 0.6816901138...=(0.8256452711...)2

skewness 0 4−π

2(π−1)3/2 = 0.1369487673...

kurtosis 0 2(π−3)
(π−1)2

= 0.0617443154...

0
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Figure 4.1 The Tracy–Widom density functions, as well as F ′
0(x).

whereas F0(x) arose more recently [3]. See Figure 4.1 for the associated density
plots.

Let u(x) be the solution of the Painlevé II differential equation:

u′′(x)= 2u(x)3 + xu(x), u(x)∼− 1
2
√
π
x−1/4 exp

(
−2

3
x3/2

)
as x→∞,
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and define

U(x)=−
∞∫
x

u(r) dr, V(x)=−
∞∫
x

v(r) dr

where

v(x)=−
∞∫
x

u(r)2 dr.

The largest eigenvalue of a random complex Hermitian matrix, when gener-
ated according to the Gaussian Unitary Ensemble (GUE) probability law and
properly normalized, has distribution function

FGUE(x)= exp(−V(x)) (often denoted as the case β= 2).

More details appear in §4.1.1. Replacing Hermitian matrices by real symmetric
matrices, we obtain the Gaussian Orthogonal Ensemble (GOE) and correspond-
ing distribution function

FGOE(x)= exp
(
−U(x) + V(x)

2

)
(often denoted as the case β= 1).

Likewise, for the Gaussian Symplectic Ensemble (GSE), we have

FGSE(x)= cosh
(
U(x)

2

)
exp
(
−V(x)

2

)
(the case β= 4).

Define also

F0(x)=
[
1−

(
x+ 2u′(x) + 2u(x)2

)
v(x)

]
exp (−2U(x)− V(x)),

which does not yet seem to possess a random matrix interpretation. These for-
mulas serve as the computational basis for Tables 4.1 and 4.2, where skewness
and kurtotis of a random variable Y are given as

Skew(Y)=
E
[
(Y− E(Y))3

]
Var(Y)3/2

, Kurt(Y)=
E
[
(Y− E(Y))4

]
Var(Y)2

− 3.

For example, if α+< 1 and α−< 1, it follows that

lim
λ→∞

λ−1/3(E(Nλ)− 2λ)=−1.7710868074...,

lim
λ→∞

λ−2/3 Var(Nλ)= 0.8131947928...,

which generalize results given earlier by Tracy & Widom and Baik, Deift &
Johansson [4]. If instead α+ = 1 and α− = 1, we have

lim
λ→∞

λ−1/3 Var(Nλ)= 1.1503944782...

which is called the Baik–Rains constant in [7].
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4.1.1 GUE/GOE/GSE

A random complex HermitianN×NmatrixX belongs to GUE if its (real) diag-
onal elements xjj and (complex) upper triangular elements xjk= ξjk + iηjk are
independently chosen from zero-mean Gaussian distributions with Var(xjj)=
2 for 1≤ j≤N and Var(ξjk)=Var(ηjk)= 1 for 1≤ j< k≤N. Let λ denote the
largest (real) eigenvalue of X and define the normalization [12]

λ̃=
N1/6(λ− 2σ

√
N)

σ

where σ=
√

Var(xjk)=
√

2. Then the distribution of λ̃ has the moments indi-
cated for GUE in Table 4.1. A related discussion, involving spacings between
adjacent eigenvalues ofX and featuring connections to the Riemann Hypothesis,
appears in [13].

A random real symmetric N×N matrix X belongs to GOE if its diago-
nal elements xjj and upper triangular elements xjk are independently chosen
from zero-mean Gaussian distributions with Var(xjj)= 2 and Var(xjk)= 1. Let λ̃
denote the largest (real) eigenvalue of X, normalized as before with σ= 1 in this
case. Then the distribution of λ̃ has the moments indicated for GOE in Table 4.1.

A complex Hermitian 2N× 2N matrix is said to be real quaternionic [14] if,
when viewed as anN×NmatrixX consisting of 2× 2 blocks, the diagonal blocks
Xjj look like

Xjj=

(
xjj 0
0 xjj

)
, xjj ∈R

and the upper triangular blocks Xjk look like

Xjk=

(
ξjk + iηjk ξ′jk + iη′jk
−ξ′jk + iη′jk ξjk − iηjk

)
.

A random real quaternionic matrix X belongs to GSE if the nonzero distinct ele-
ments of its diagonal and upper triangular blocks are independently chosen from
zero-mean Gaussian distributions with Var(xjj)= 2 and Var(ξjk)=Var(ηjk)=
Var(ξ′jk)=Var(η′jk)= 1. Let λ̃ denote the largest (real) eigenvalue of X, normal-

ized as before with σ= 2 in this case. Then the distribution of λ̃ has the moments
indicated for GSE in Table 4.2.

Here is an occurrence of FGUE(x)2: Define a signed permutation π to be a bijec-
tion from {−n,−n+ 1, . . . ,−2,−1, 1, 2, . . . , n− 1, n} onto itself which satisfies
π(−k)=−π(k) for all k. Tracy & Widom [15, 16] proved that the length L2n of
the longest increasing subsequence of a random signed permutation π satisfies

lim
n→∞

P

(
L2n − 2

√
2n

22/3(2n)1/6
≤ x

)
=FGUE(x)2.
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A nice combinatorial application involving FGSE(x) or FGSE(x)2, especially one
as simple as this, would be good to find.

Other applications appear in [12, 17, 18]. A d-dimensional analog of
Hammersley’s original process (with α+ =α− = 0) appears in [19]: Let S denote
a set of P(λd) points selected uniformly inside the d-dimensional unit cube and
Nλ denote the number of points in a maximal chain (totally ordered subset) of S.
Define cd to be limsupλ→∞ E(Nλ)/λ. Then it is known that c2 = 2 and c∞ = e, but
2.363≤ c3≤ 2.366, 2.514≤ c4≤ 2.521, 2.583≤ c5≤ 2.589 and 2.607≤ c6≤ 2.617.
We draw attention finally to the obvious identity [2]:

FGSE(x)=
1
2

(
FGOE(x) +

FGUE(x)
FGOE(x)

)
and wonder whether a similar identity relating F0 to other distributions can ever
be found.

4.1.2 Positive Definite/Indefinite

Amongmany possible questions, we ask for the probability that a randomN×N
matrix, distributed according to GOE, is positive definite. Since

P (indefinite) = 1− P (positive definite)− P (negative definite)

= 1− 2P (positive definite),

the answer for indefinite matrices is clear once it is found for positive definite
matrices. The joint density for the N unordered (real) eigenvalues of a GOE
matrix is [20]

1
CN

∏
1≤i<j≤N

|λi − λj| · exp

(
−1

4

N∑
k=1

λ2
k

)
where

CN=N!(2π)N/22N(N+1)/4
N∏

ℓ=1

Γ(ℓ/2)
Γ(1/2)

.

A complicated formula associated with the density for the smallest eigenvalue
follows, as do the results in Table 4.3 for small N.

Table 4.3 Probabilities that an N×N GOE matrix is positive definite/indefinite

N positive definite indefinite

1 1/2= 0.5 0

2 1/2 −
√

2/4≈ 0.1464
√

2/2≈ 0.7071

3 1/4 −
(√

2/2
)
π−1 ≈ 0.0249 1/2 +

√
2π−1 ≈ 0.9502

4 1/4 −
√

2/16 − (1/2)π−1 ≈ 0.0025 1/2 +
√

2/8 + π−1 ≈ 0.9951

5 1/8 −
(
1/3 +

√
2/24

)
π−1 ≈ 0.0001 3/4 +

(
2/3 +

√
2/12

)
π−1 ≈ 0.9997
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Consider now the quadratic form

Q(x1, x2, . . . , xN)=
∑

1≤i≤j≤N

mijxixj,

where the coefficientsmij form the upper triangular portion of a GOE matrixM.
Another way of sayingM is indefinite is that Q= 0 possesses a nonzero solution
in RN. If we constrain the mij to be integers, what is the probability that Q= 0
possesses a nonzero solution in ZN? The answer is 0 for 1≤N≤ 3, is the same as
the real indefinite case for N≥ 5, but is miraculously [21, 22](

1
2
+

√
2

8
+

1
π

)∏
p

(
1− p3

4(p+ 1)2 (p4 + p3 + p2 + p+ 1)

)
= 0.9825845607...

for N= 4. If we replace the GOE distribution by, say, a uniform distribution
on [−1/2, 1/2] for each mij, then the probability becomes 0.97... instead. The
structure of the formula – leading coefficientmultiplied by prime product – is sim-
ilar. While the prime product 0.9874362482... remains identical, no closed-form
expression is known for the leading coefficient.
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4.2 Moments of Sums

Let X1,X2, . . . ,Xn be a sequence of independent random variables. A huge
amount of work has been done on estimating the Lp-norm of the sum of the Xs:

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
p

=

{
E

(∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
p)}1/p

, p> 0.

We first discuss Khintchine’s inequality [1], which deals with the Rademacher
sequence ε1, ε2, . . . , εn, where

P (εk= 1)=P (εk=−1)= 1/2 (symmetric Bernoulli distribution)

for each k. It is known that there exist constants Ap, Bp such that the bounds

Ap

(
n∑

k=1

c2k

)1/2

≤

∥∥∥∥∥
n∑

k=1

ckεk

∥∥∥∥∥
p

≤Bp

(
n∑

k=1

c2k

)1/2
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hold for arbitrary c1, c2, . . . , cn ∈R and n≥ 1. Szarek [2] and Haagerup [3],
building on [4–9], proved that the best such constants are

Ap=


∥W∥p if 0< p≤ p0

∥Z∥p if p0< p< 2

1 if 2≤ p<∞

=


21/2−1/p if 0< p≤ p0

21/2

(
Γ((p+ 1)/2)√

π

)1/p

if p0< p< 2

1 if 2≤ p<∞,

Bp=
{
1 if 0< p≤ 2
∥Z∥p if 2< p<∞ =


1 if 0< p≤ 2

21/2

(
Γ((p+ 1)/2)√

π

)1/p

if 2< p<∞,

where W= 2−1/2(ε1 + ε2), Z is Normal(0, 1), and p0 = 1.8474163360... is the
unique solution of the equation

Γ

(
p+ 1

2

)
=

√
π

2

in the interval 0< p< 2. In words, if
∑n

k=1 c
2
k= 1, then A1 = 2−1/2 and B1 = 1

encompass the average of | ± c1 ± c2 ± · · · ± cn| taken over all 2n possible choices
of signs. See also [10–15].

A complex analog of Khintchine’s inequality deals with the Steinhaus
sequence ε1, ε2, . . . , εn, where εk is uniformly distributed on the unit circle {z :
|z|= 1} for each k. We keep notation identical to before, except that we allow
c1, c2, . . . , cn ∈C. The best constants Ap, Bp in the inequality

Ap

(
n∑

k=1

|ck|2
)1/2

≤

∥∥∥∥∥
n∑

k=1

ckεk

∥∥∥∥∥
p

≤Bp

(
n∑

k=1

|ck|2
)1/2

were conjectured by Haagerup [16] to be

Ap=


∥W∥p if 0< p≤ p0

∥Z∥p if p0< p< 2

1 if 2≤ p<∞

=


21/2

(
Γ((p+ 1)/2)√
π Γ((p+ 2)/2)

)1/p

if 0< p≤ p0

(Γ((p+ 2)/2))1/p if p0< p< 2
1 if 2≤ p<∞,

Bp=
{
1 if 0< p≤ 2
∥Z∥p if 2< p<∞ =

{
1 if 0< p≤ 2
(Γ((p+ 2)/2))1/p if 2< p<∞,

where W= 2−1/2(ε1 + ε2), Z= 2−1/2(U+ iV) with U, V independent and
Normal(0, 1), and p0 = 0.4756170089... is the unique solution of the equation

2p/2Γ
(
p+ 1

2

)
=
√
π

(
Γ

(
p+ 2

2

))2

in the interval 0< p< 2. Here, if
∑n

k=1 |ck|2 = 1, then A1 =
√
π/2 and B1 = 1

encompass an average taken over all “complex signs” rather than only “real
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signs” as earlier. Sawa [17] announced that he could verify significant por-
tions of Haagerup’s conjecture, but only the case p≈ 1 was published. See also
[14, 15, 18, 19]. We mention as well the following result [20, 21] for which p= 1
and n is the parameter of interest:

E

(∣∣∣∣∣
n∑

k=1

εk

∣∣∣∣∣
)
=



2
π

∞∫
0

1− cos(t)n

t2
dt for the real case

∞∫
0

1− J0(t)n

t2
dt for the complex case

where J0(t) is the zeroth Bessel function of the first kind. On the one hand, we
have

2
π

∞∫
0

1− cos(t)n

t2
dt=

n!
2n−1m!(n−m− 1)!

∼
√

2n
π

for the real case, where m= ⌊(n− 1)/2⌋. On the other hand, the Bessel integral
takes on the values 1, 4/π, 1.57459723... and 1.79909248... for n= 1, 2, 3 and 4.
Keane [22] determined that the third value in this list has the following closed-
form expression:

1
8π3Γ

(
1
6

)2

Γ

(
1
3

)2

+ 48πΓ
(

1
6

)−2

Γ

(
1
3

)−2

= 1.5745972375...

but the fourth value still remains open.
We next discuss Rosenthal’s inequalities [23]:∥∥∥∥∥

n∑
k=1

Xk

∥∥∥∥∥
p

≤Cp ·max


(

n∑
k=1

∥Xk∥pp

)1/p

,

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
1

 , p≥ 1

for nonnegative random variables and∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
p

≤Dp ·max


(

n∑
k=1

∥Xk∥pp

)1/p

,

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
2

 , p≥ 2

for symmetric random variables (meaning that the distribution of−X is the same
as the distribution ofX). A variation of the latter inequality arises if we loosen the
restrictive hypothesis “symmetric” to “zero mean”; the constant is then denoted
Ep rather thanDp. Johnson, Schechtman&Zinn [24] showed that the growth rate
of the best constantsCp,Dp, Ep is p/ ln(p) as p→∞; by contrast, the growth rate
for Bp is only

√
p. Subsequent work [25–28] yielded that

Cp=


1 if p= 1
21/p if 1< p< 2
∥Q∥p if 2≤ p<∞

, Dp=


1 if p= 2(
1 + ∥Z∥pp

)1/p
if 2< p< 4

∥R− S∥p if 4≤ p<∞



“C04” — 2018/10/27 — 12:00 — page 465 — #11

4.2 Moments of Sums 465

whereQ is Poisson(1), Z is Normal(0, 1), and R, S are independent Poisson(1/2)
variables. It is known that ∥Q∥mm=αm and ∥R− S∥2m2m=βm for integer m, where
{αm}∞m=1 = {1, 2, 5, 15, 52, 203, . . .} is the sequence of Bell numbers [29, 30]

αm=
1
e

∞∑
j=0

jm

j!
=

dm

dxm
exp(exp(x)− 1)

∣∣∣∣
x=0

and {βm}∞m=1 = {1, 4, 31, 379, . . .} is the sequence

βm=
2
e

∞∑
k=1

∞∑
j=0

k2m

j!(j+ k)!22j+k =
d2m

dx2m exp(cosh(x)− 1)

∣∣∣∣
x=0

.

Ibragimov & Sharakhmetov [31] conjectured that

Ep=


(
1 + ∥Z∥pp

)1/p
if 2< p< 4

∥Q− 1∥p if 4≤ p<∞

and proved that this is true when p= 2m; further, ∥Q− 1∥2m2m= γm and {γm}∞m=1 =

{1, 4, 41, 715, . . .} is the sequence

γm=
1
e

∞∑
j=0

(j− 1)2m

j!
=

d2m

dx2m exp(exp(x)− x− 1)

∣∣∣∣
x=0

.

Combinatorial interpretations apply for each of the three sequences: αn is the
number of partitions of an n-element set into blocks; βn is the number of par-
titions of a 2n-element set into blocks, each containing an even number of
elements; and γn is the number of partitions of a 2n-element set into blocks, each
containing more than one element [30].

Define the following Orlicz-type norm:

[Ξ]p= inf

{
λ> 0 :

∞∏
k=1

E
(∣∣∣∣1 +

Xk

λ

∣∣∣∣p)≤ ep
}

for an arbitrary sequence Ξ= {Xk}∞k=1 of independent random variables, for any
p> 0. We mention Latała’s inequality [32]:

e− 1
2e2

· [Ξ]p≤

∥∥∥∥∥
∞∑
k=1

Xk

∥∥∥∥∥
p

≤ e · [Ξ]p

which holds either if all the Xs are nonnegative and p≥ 1, or if all the Xs are
symmetric and p≥ 2. Observe here that the bounds do not depend on p, unlike
the earlier inequalities. For the nonnegative case, Hitczenko & Montgomery-
Smith [33] improved the left-hand constant (e− 1)/(2e2)= 0.116272... to
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ξ= 0.154906..., where ξ is the unique positive solution of the equation

∞∑
k=0

(2k+ 1)k

k!
xk= e.

It is not known if this improvement carries over to the symmetric case, nor
whether a calculation of best constants is feasible at present.

Assuming
∑n

k=1 c
2
k= 1, it is conjectured that the Rademacher sequence satis-

fies [34–38]

Pn=P

(∣∣∣∣∣
n∑

k=1

ckεk≤ 1

∣∣∣∣∣
)
≥ 1

2

always. This inequality is provably true if 1/2 is replaced by 3/8 [35] or if all cs
are equal [37]. For the latter scenario, we deduce that

lim
n→∞

Pn= erf
(
1/
√

2
)
= 0.6826894921...

by the normal approximation [39] to the binomial distribution. This constant
also appears in [40] with regard to a continued fraction expansion. Related work
includes [41, 42].
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4.3 Ornstein–Uhlenbeck Process

We first define several words. A stochastic process {Yt : t≥ 0} is

• stationary if, for all t1< t2< . . .< tn and h> 0, the random n-vectors
(Yt1 ,Yt2 , . . . ,Ytn) and (Yt1+h,Yt2+h, . . . ,Ytn+h) are identically distributed; that
is, time shifts leave joint probabilities unchanged
• Gaussian if, for all t1< t2< . . .< tn, the n-vector (Yt1 ,Yt2 , . . . ,Ytn) is multivari-

ate normally distributed
• Markovian if, for all t1< t2< . . .< tn, P(Ytn ≤ y |Yt1 ,Yt2 , . . . ,Ytn−1)=P(Ytn ≤
y |Ytn−1); that is, the future is determined only by the present and not the past.

Also, a process {Yt : t≥ 0} is said to have independent increments if, for all
t0< t1< . . .< tn, the n random variables Yt1 − Yt0 , Yt2 − Yt1 , ..., Ytn − Ytn−1 are
independent. This condition implies that {Yt : t≥ 0} is Markovian, but not con-
versely. The increments are further said to be stationary if, for any t> s and h> 0,
the distribution of Yt+h − Ys+h is the same as the distribution of Yt − Ys. This
additional provision is needed for the following definition.

A stochastic process {Wt : t≥ 0} is a Wiener–Lévy process or Brownian motion
if it has stationary independent increments, if Wt is normally distributed and
E(Wt)= 0 for each t> 0, and if W0 = 0. It follows immediately that {Wt : t> 0}
is Gaussian and that Cov(Ws,Wt)= θ2 min{s, t}, where the variance parame-
ter θ2 is a positive constant. For concreteness’ sake, we henceforth assume that
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θ= 1. Almost all sample paths of Brownian motion are everywhere continuous
but nowhere differentiable.

One technical stipulation is required for the following. A stochastic pro-
cess {Yt : t≥ 0} is continuous in probability if, for all u∈R+ and ε> 0,
P (|Yv − Yu| ≥ ε)→ 0 as v→ u. This holds if Cov(Ys,Yt) is continuous over
R+ × R+. Note that this is a statement about distributions, not sample paths.

Having dispensed with preliminaries, we turn to the central topic. A stochastic
process {Xt : t≥ 0} is anOrnstein–Uhlenbeck process or aGauss–Markov process
if it is stationary, Gaussian, Markovian, and continuous in probability [1, 2]. A
fundamental theorem, due to Doob [3–5], ensures that {Xt : t≥ 0} necessarily
satisfies the following linear stochastic differential equation:

dXt=−ρ(Xt − µ)dt+ σ dWt,

where {Wt : t≥ 0} is Brownian motion with unit variance parameter and µ, ρ, σ
are constants. We have moments

E(Xt)=µ, Cov(Xs,Xt)=
σ2

2ρ
e−ρ|s−t|

in the unconditional (strictly stationary) case and

E(Xt |X0 = c)=µ+ (c− µ)e−ρt,

Cov(Xs,Xt |X0 = c)=
σ2

2ρ

(
e−ρ|s−t| − e−ρ(s+t)

)
in the conditional (asymptotically stationary) case, whereX0 is initially constant.
The latter case encompasses Brownianmotion when µ= c= 0, σ= 1 and ρ→ 0+.
The former case encompasses idealized white noise {dWt/dt : t≥ 0} when µ= 0,
σ= ρ and ρ→∞.

Before proceeding, we note the following simple algorithm for generating a
sample path of the Ornstein–Uhlenbeck process (also known as colored noise)
over the time interval [0,T]. Let N be a large integer and let z0, z1, ..., zN be
independent random numbers generated from a normal distribution with mean
0 and variance σ2/(2ρ). Define x0 =µ+ z0 for the unconditional case and x0 = c
for the conditional case. Then define recursively

xn=µ+ κN(xn−1 − µ) +
√

1− κ2
Nzn

for 1≤ n≤N, where κN= exp(−ρT/N). The sequence x0, x1, ..., xN is called a
first-order autoregressive sequence (a discrete analog of theOUprocess) with lag-
one correlation coefficient κN. Finally, interpolate linearly the valuesX(nT/N)=
xn for 0≤ n≤N to obtain the desired path [6–8]. More sophisticated simulation
methods are found in [9–11].
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For concreteness’ sake, we henceforth assume that µ= 0, ρ= 1 and σ2 = 2.
(Some authors take σ2 = 1 instead; the decision becomes apparent in any paper
by seeingwhether Cov(Xs,Xt) is e−|s−t| or e−|s−t|/2.) The conditional probability

P(Xt≤ x |X0 = c)=
1√

2π(1− e−2t)

x∫
−∞

exp
(
− (ξ − ce−t)2

2(1− e−2t)

)
dξ

tends to the standard normal distribution, of course, as t→∞ (meaning that
transients die out with time and do not affect long-term behavior). Likewise,
P(Xs≤ x and Xt≤ y |X0 = c) can be evaluated. One might believe that the solu-
tion of any problem involving theOUprocess would be similarly straightforward;
the following sections serve, however, to eliminate such ideas [12, 13].

4.3.1 First-Passage Times

For a∈R, we wish to find the length of time required for an OU process to cross
the level x= a, given that it started at x= c. Define the first-passage time or hitting
timeTa,c byTa,c= inf {t≥ 0 :Xt= a |X0 = c}. The random variableTa,c is 0 if and
only if a= c. Let fa,c(t) denote the density function of Ta,c. In the special case
when a= 0, it is known that [2, 12, 14, 15]

f0,c(t)=

√
2
π

|c|e−t

(1− e−2t)3/2
exp

(
− c2e−2t

2(1− e−2t)

)
but for a ̸= 0, the formulas for fa,c(t) are more complicated (as we shall soon see).
For a> 0 and c> 0, Thomas [16] and Ricciardi & Sato [17, 18] demonstrated
that [19]

E(Ta,0)=

√
π

2

a∫
0

(
1 + erf

(
t√
2

))
exp
(
t2

2

)
dt=

1
2

∞∑
k=1

(√
2a
)k

k!
Γ

(
k
2

)
,

E(T0,c)=

√
π

2

0∫
−c

(
1 + erf

(
t√
2

))
exp
(
t2

2

)
dt=

1
2

∞∑
k=1

(−1)k+1

(√
2c
)k

k!
Γ

(
k
2

)

and, for example,

E(T1,0)= 2.0934066496..., E(T0,1)= 0.9019080126...,
E(T2,0)= 10.4284093979..., E(T0,2)= 1.4252045655....

The asymmetry in going from 0 to x, versus going from x to 0, is unsurprising:
The process has mean 0, hence it tends to arrive at 0 more often than it departs
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from 0. For a> 0 and c> 0, we have [17, 18]

Var(Ta,0) =
√

2π

a∫
0

t∫
−∞

a∫
s

(
1+ erf

(
r√
2

))
exp
(
r2 + t2− s2

2

)
dr ds dt−E(Ta,0)2

= −1
2

∞∑
k=1

(√
2a
)k

k!
Γ

(
k
2

)
Ψ

(
k
2

)
+ E(Ta,0)2,

Var(T0,c) =
√

2π

0∫
−c

t∫
−∞

0∫
s

(
1+ erf

(
r√
2

))
exp
(
r2 + t2− s2

2

)
dr ds dt−E(T0,c)

2

= −1
2

∞∑
k=1

(−1)k

(√
2c
)k

k!
Γ

(
k
2

)
Ψ

(
k
2

)
− E(T0,c)

2

where Ψ(x)=ψ(x)− ψ(1) and ψ(x) is the digamma function [20]. In particular,
Ψ(1)= 0 and

Ψ(x)=



x−1∑
j=1

1
j

if x is an integer> 1

−2 ln(2) + 2
x−1/2∑
j=1

1
2j− 1

if x is a half-integer> 0.

For example,

Var(T1,0)= 5.8420278024..., Var(T0,1)= 0.8510837032...,
Var(T2,0)= 105.2752035488..., Var(T0,2)= 1.0669454393....

To compute fa,c(t) exactly for arbitrary a and c, we would need to invert the
following (Laplace transform) identity due to Darling & Siegert [21–24]:

E(e−λTa,c)=

∞∫
0

fa,c(t)e−λtdt=


D−λ(−c)
D−λ(−a)

exp
(
c2 − a2

4

)
if c< a

D−λ(c)
D−λ(a)

exp
(
c2 − a2

4

)
if c> a,

where Dν(x) is the parabolic cylinder function or Weber function [25]:

Dν(x)=



√
2
π

exp
(
x2

4

) ∞∫
0

tν exp
(
− t

2

2

)
cos
(
xt− νπ

2

)
dt if ν >−1

1
Γ(−ν)

exp
(
−x

2

4

) ∞∫
0

t−ν−1 exp
(
− t

2

2
− xt

)
dt if ν < 0.
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The two branches of this formula agree for −1<ν < 0. A differential equation

d2y
dx2 −

(
x2

4
− ν − 1

2

)
y(x)= 0

is satisfied byDν(x) and, if ν is not an integer, independently byD−ν(x). A series
representation in terms of confluent hypergeometric functions (§4.3.4) is also use-
ful. Unfortunately a closed-form expression for the inverse Laplace transform
seems not to be possible; only a numerical approach is feasible at present. Keil-
son & Ross [26] tabulated the distribution of Ta,c for a number of values a and
c. For example, the median time for an OU process Xt to reach a= 1, given that
X0 = c= 0, is 1.1892.... This corresponds to the 50th percentile of the distribution
of T1,0. The median of T2,0, by contrast, is 7.2521....

We turn to a more complicated problem involving two (absorbing) boundaries
rather than just one. Given a< c< b, what is the length of time required for the
process to escape the interval (a, b), given that it started at x= c? Define Ta,b,c=
inf {t≥ 0 :Xt= a or Xt= b |X0 = c} and let fa,b,c(t) denote the density function
of Ta,b,c. Efforts have focused on the scenario in which −a= b> 0. The Laplace
transform of f−b,b,c(t) satisfies [23]

E(e−λT−b,b,c)=
D−λ(c) +D−λ(−c)
D−λ(b) +D−λ(−b)

exp
(
c2 − b2

4

)
assuming −b< c< b. From another table in [26], the median of T−1,1,0 is found
to be 0.4449.... The reason that this is less than 1.1892... is clear: Each direction
of travel leads to a potential crossing. The median of T−2,2,0 is 3.2439....

Keilson & Ross’ approach to evaluating such probabilities was based on find-
ing zeroes and residues in the complex plane of the parabolic cylinder functions.
Alternative approaches for numerically computing fa,c(t) and f−b,b,c(t) include
[27–30]. We report on some related asymptotics in §4.3.4.

There is an obvious connection between first-passage times and extreme values
of a process (in the conditional case). We simply summarize:

P
(

max
0≤t≤T

Xt≤ a
∣∣∣∣X0 = c

)
if c< a

P
(

min
0≤t≤T

Xt≥ a
∣∣∣∣X0 = c

)
if c> a

=P(Ta,c>T)= 1− Fa,c(T)

and, if a< c< b,

P
(
a≤ min

0≤t≤T
Xt≤ max

0≤t≤T
Xt≤ b

∣∣∣∣X0 = c
)
=P(Ta,b,c>T)= 1− Fa,b,c(T)

where Fa,c(t), Fa,b,c(t) are the cumulative distribution functions of Ta,c, Ta,b,c. In
the special case when −a= b> 0, the latter formula becomes a statement about
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max0≤t≤T |Xt|, given X0 = c. Also, the range of the process satisfies [23]

P
(

max
0≤t≤T

Xt − min
0≤t≤T

Xt≤ r
∣∣∣∣X0 = c

)
=

r∫
0

c∫
c−q

∂2

∂a ∂b
Fa,b,c(T)

∣∣∣∣
b=a+q

da dq

but no one apparently has calculated this probability.

4.3.2 Historical Maximums

If the condition X0 = c is discarded, what then can be said about max0≤t≤T Xt

or max0≤t≤T |Xt|? We focus solely on the former expression and write MT=

max0≤t≤T Xt. It can be shown that [31–33]

P(MT≤ 0)=
1
π

arcsin
(
e−T)

which is a beautiful (but isolated) result. More generally [33],

∞∫
0

P(Mt≤ y)e−λtdt=
1√
2π

y∫
−∞

1
λ

(
1− D−λ(−x)

D−λ(−y)
exp
(
x2 − y2

4

))
exp
(
−x

2

2

)
dx

for arbitrary y, or

∞∫
0

gt(y)e−λtdt=
1√
2π

D−λ−1(−y)2

D−λ(−y)2
exp
(
−y2

2

)

where gt(y) is the density function ofMt. For example, the median value ofM1 is
1.0393... and the median value ofM10 is 2.2202.... It can be inferred from §4.3.3
that the median of MT is asymptotically

√
2 ln(T) as T→∞.

An alternative approach for numerically computing P(Mt≤ y) via the Mellin
transform is due to DeLong [34–36]. An interesting application to computer sci-
ence, involving the maximum size reached by a dynamic data structure over a
long span of time, is described in [37].

4.3.3 Pickands’ Constants

Assume that {Yt : t≥ 0} is a stationary Gaussian process with zero mean, unit
variance and covariance function of the form

r (|s− t|)=Cov(Ys,Yt)= 1− C |s− t|α + o (|s− t|α)

as |s− t|→ 0, where 0<α≤ 2 and C> 0 are constants. Assume further that
r(τ) ln(τ)→ 0 as τ→∞. Pickands [38–42] demonstrated thatMT=max0≤t≤T Yt

has the Gumbel limiting distribution [43]

lim
T→∞

P
(√

2 ln(T) (MT − kT)≤ x
)
= exp(−e−x),
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where

kT=
√

2 ln(T) +
1√

2 ln(T)

{
2− α
2α

ln(ln(T)) + ln
(
(2π)−

1
2 2

2−α
2α C

1
αHα

)}
and Hα is a positive constant independent of C. It is known that H1 = 1 (corre-
sponding to the OU process) and H2 = 1/

√
π. No other exact values for Hα are

known. An alternative characterization of Hα is

Hα = lim
T→∞

∞∫
0

P(M̃T> y)eydy,

where {Ỹt : t≥ 0} is a nonstationary Gaussian process with

E(Ỹt)=− |t|α , Cov(Ỹs, Ỹt)= |s|α + |t|α − |s− t|α

but this does not seem to help. Shao [44] and Debicki, Michna & Rolski [45] gave
bounds on Hα; for example,

0.009≤H1/2≤ 715.94, 0.208≤H3/2≤ 3.04.

A conjecture that Hα = 1/Γ(1/α) remains unproved. There is also a connec-
tion with the Gaussian correlation conjecture and with estimating small ball
probabilities [46].

4.3.4 Upper Tail Asymptotics

We revisit the single-boundary first-passage time distribution and ask about the
limiting value

λ(a)= lim
t→∞

1
t
ln {P (Ta,0> t)}

as a function of a> 0. In words, what can be said about the upper tail of the
distribution of the first hitting time Ta,0 for an OU process Xt across the level
x= a, given that X0 = 0? Mandl [47, 48] and Beekman [49] demonstrated that
−1<λ(a)< 0 and that λ(a) is the zero of D−λ(−a) closest to 0. Sample values
include [17, 50, 51]

lim
a→0+

λ(a)=−1, lim
a→∞

λ(a) · exp(a
2/2)
a

=
−1√
2π
,

λ(0.7649508673...)=− 1
2 ,

λ(1)=−0.3882382947...= 2(−0.1941191473...),

λ(2)=−0.0972745958...= 2(−0.0486372979...).

For the symmetric double-boundary first-passage time distribution, we exam-
ine

λ(−b, b)= lim
t→∞

1
t
ln {P (T−b,b,0> t)}
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as a function of b> 0. Breiman [52] proved that −∞<λ(−b, b)< 0 and that
λ(−b, b) is the zero of Φ(λ/2, 1/2, b2/2) closest to 0, where

Φ(u, v,w)= 1 +
∞∑
k=1

u(u+ 1)(u+ 2) · · · (u+ k− 1)
v(v+ 1)(v+ 2) · · · (v+ k− 1)

wk

k!

is the confluent hypergeometric function of the first kind. For simplicity, define
µ(b)=λ(−b, b). Sample values include [51–53]

lim
b→0+

µ(b)=−∞, lim
b→∞

µ(b) · exp(b
2/2)
b

=
−1√
2π
,

µ(1)=−2, µ(1.3069297277...)=−1, µ(1.6438001904...)=− 1
2 ,

µ

(√
3−
√

6
)
=µ(0.7419637843...)=−4,

µ(2)=−0.2429928807..., µ(3)=−0.0239463006...,

µ
(√

2
)
=−0.7984598320..., µ

(
2
√

2
)
=−0.0374612092....

The latter two values come from [53], where a different time scaling was chosen.
Also, the constant (3− 61/2)1/2 appears in [54–56] with regard to stopping rules
in statistical sequential analysis.

For completeness’ sake, here is the expression forD−λ(x) in terms of confluent
hypergeometric functions:

D−λ(x) =

√
π2−λ/2

Γ((1 + λ)/2)
e−x2/4Φ

(
λ

2
,
1
2
,
x2

2

)

− 2
√
π2−(1+λ)/2

Γ(λ/2)
xe−x2/4Φ

(
1 + λ

2
,
3
2
,
x2

2

)
which gives rise to the values λ(1), λ(2) and λ−1(−1/2) listed earlier. The con-
stant µ−1(−1) is important in the study of sample path behavior of Brownian
motion [51, 57, 58] and first appeared in [55], as far as is known. Some higher-
dimensional results are given in [51, 59]. Csáki [60, 61] outlined the distributional
asymptotics of the maximum MT, but we cannot discuss this topic further.
Addendum New numerical transform inversion algorithms [62–64] make

enhancement of the tables in [26, 33] possible. Also, the distribution of the L2-
norm of Xt on [0,T] can be inferred from closed-form expressions in [65, 66].
We wonder about corresponding results for L1 and L∞-norms. The conjec-
tured formula for Hα in terms of the gamma function is probably false [67–70];
simulation-based point estimates H3/2≈ 0.77 and confidence bounds 0.768≤
H3/2≤ 0.786 do not carry over well to H1/2 since the underlying algorithm
becomes unreliable for 0<α< 1.
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4.4 Zero Crossings

In this essay, we presuppose basic knowledge of stochastic processes [1]. Let
{Xt : t≥ 0} be a zero mean, unit variance, stationary Gaussian process with twice
differentiable correlation function r(|s− t|)=Cov(Xs,Xt). We wish to study the
distribution of lengths of intervals between zeroes of Xt. There are two cases:
the first in which r(τ) is analytic (implying differentiability up to all orders) and
the second in which the third derivative of r(τ) possesses a jump discontinuity at
τ = 0.

Define fm(τ) to be the probability density associated with the interval length τ
between an arbitrary zero t0 and the (m+ 1)st later zero tm+1. In particular, f0(τ)
is the probability density for differences between successive zeroes t0 and t1. We
will focus on the limiting behavior of fm(τ) as τ→ 0+.

When r(τ) is analytic, it is clear that

r(τ)= 1 +
r′′(0)
2!

τ 2 +
r(4)(0)

4!
τ 4 +O(τ 6)

since r(τ) must be an even function. It is known, in this case, that [2]

fm(τ)=O
(
τ

1
2 (m+2)(m+3)−2

)
as τ→ 0+. Further, the big O coefficient is known. We merely give an example:
If r(τ)= exp(−ατ 2) for α> 0, then

lim
τ→0+

f0(τ)
τ

=
1
2
α, lim

τ→0+

f1(τ)
τ 4 =

√
6

27π
α5/2.

The more interesting case is when r(τ) has a singularity at the origin. If

r(τ)= 1− 1
2
τ 2 + α|τ |3 + o(|τ |3),
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then fm(τ)→Cmα as τ→ 0+, where Cm> 0 is a constant (independent of α).
Longuet-Higgins [3] determined the following bounds

1.1556<C0< 1.158, 0.1971<C1< 0.198, 0.0491<C2< 0.0556,

but it remained for someone else to find a specific process {Xt}, and its corre-
sponding α, for which fm(τ) could be computed.

Wong [4–7], building upon McKean [8], examined the process

Xt=
√

3 exp
(
−
√

3t
) exp(2t/

√
3)∫

0

Ws ds

where Ws is standard Brownian motion (“standard” meaning that its variance
parameter is 1). The correlation function for Wong’s process is

r(τ)=
3
2

exp
(
− |τ |√

3

)(
1− 1

3
exp
(
−2|τ |√

3

))
and hence α= 2

√
3/9. It turns out that f0(τ) can be written in terms of complete

elliptic integrals, and a more complicated integral expression applies for fm(τ),
m≥ 1. This is sufficient to deduce that

C0 =
37
32

= 1.15625, C1 =
47
64
− 108

64π
= 0.1972270670...,

C2 =
121
128
− 81

32π
− 27

32π2 = 0.0541008518....

In fact,

Cm=
27
4π2

∞∫
0

x3 − 1
x3 + 1

xm ln(x)
(x2 + 1)m+1 dx,

which can be evaluated exactly via residue calculus. The limiting behavior of
fm(τ) as τ→ 0+ is thus solved for all m. No one has found another stationary
Gaussian process that permits exact analysis as this. Wong [4] also proved that
f0(τ)→ 0 as τ→∞ and, moreover,

lim
τ→∞

exp
(

τ

2
√

3

)
f0(τ)=

L√
2
=K

(
1√
2

)
=

1
4
√
π
Γ

(
1
4

)2

= 1.8540746773...,

where L is Gauss’ lemniscate constant [9] and K(x) denotes the complete elliptic
integral of the first kind [10]. For m≥ 1, such precise asymptotics for fm(τ) as
τ→∞ remain open. See [11–15] as well.

We shift attention to counting zeroes in an interval of prescribed length 1.
Again, {Xt} is assumed to be a zero mean, unit variance, stationary Gaussian
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process with twice differentiable correlation function r(τ). Let N denote the
number of zeroes of Xt per unit time. The expected value of N is [16–19]

E(N)=
1
π

√
−r′′(0)

and the variance of N is [20–26]

Var(N)=E(N)− E(N)2 +
2
π2

1∫
0

(1− τ)F(τ) dτ,

where

F(τ)=
(
1− r(τ)2

)−1
G(τ) (1 +H(τ) arctan(H(τ))),

G(τ)=
√
k1(τ)k2(τ), H(τ)=

k3(τ)√
(1− r(τ)2) k1(τ)k2(τ)

,

k1(τ)= (1 + r(τ)) (r′′(0)− r′′(τ)) + r′(τ)2,

k2(τ)= (1− r(τ)) (r′′(0) + r′′(τ)) + r′(τ)2,

k3(τ)=
(
1− r(τ)2

)
r′′(τ) + r(τ)r′(τ)2.

Needless to say, an exact evaluation of Var(N) is generally impossible. In the case
when r(τ) is analytic, we have [27]

lim
τ→0+

2
π

(
1

H(τ)
+ arctan (H(τ))

)
= 1.

By contrast, in the case when r(τ) has a singularity at the origin (as before),

lim
τ→0+

2
π

(
1

H(τ)
+ arctan (H(τ))

)
=

2
√

3
π

+
1
3
= 1.4359911241...,

which is an interesting occurrence of the first Lebesgue constant [28]. For Wong’s
process, E(N)= 1/π and [26]

Var(N)=
4
3π
− 1

12
+

3
π2

{
arcsin

(
1
2

exp
(
− 1√

3

))}2

.

Only a few other stationary Gaussian processes are known to possess a closed-
form expression for this variance; for example, those with correlation functions
[29–31]

r(τ)=
1
2
+

1
2

cos
(√

2τ
)

or r(τ)= 1− 1
2
τ 2 +

1

6
√

3
|τ |3.

See also [32–38].
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4.4.1 Integrated Brownian Motion

Wong’s process involves an integral of standard Brownian motion. We briefly
examine a simpler integral [39]:

Zt=

t∫
0

Ws ds,

which is zero mean Gaussian with covariance function

Cov(Zu,Zv)=

u∫
0

v∫
0

min{x, y} dx dy=
{ 1

6u
2(3v− u) if v≥ u≥ 0

1
6v

2(3u− v) if u≥ v≥ 0.

One unsolved problem is concerned with the asymptotics of the maximum of |Zt|
over the unit interval [40–43]:

lim
ε→0+

ε2/3 ln
{
P
(

max
0≤t≤1

|Zt|<ε
)}

=κ,

where the constant κ is known to satisfy

3
8
≤κ≤ (2π)2/3

3
8
.

These are the sharpest known bounds. Another unsolved problem is con-
cerned with the probability that the integrated Wiener process is currently at its
maximum value [44, 45]:

λ=P
(
Zt= max

0≤s≤t
Zs

)
,

which is known to be independent of t. Since integration has the effect of smooth-
ing Ws, it is reasonable to conjecture for Zt that λ is positive. Two terms of a
complicated infinite series were used in [44] to give an approximation λ= 0.372...,
but a more accurate estimation procedure apparently has not been attempted.

4.4.2 Random Polynomials

Let q(x) be a random polynomial of degree n, with real coefficients indepen-
dently chosen from a standard Gaussian distribution. Asymptotic properties of
the expected number of real zeroes of q(x) were summarized in [46]; associated
probabilities are more difficult to study. The probability that q(x) does not have
any zeroes in R is n−b+o(1) as n→∞ through even integers, where [47]

b=−4 lim
T→∞

1
T

ln

(
P

(
sup

0≤t≤T
Y(t)≤ 0

))
and Y(t) is a zero mean, unit variance, stationary Gaussian process with corre-
lation function r(τ)= sech(τ/2). It is known [48–50] that 0.5< b< 1.0 and, via
simulation, b≈ 0.76. An exact value for b would be sensational! The statistics of
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real zeroes of q(x) turn out to be identical in the four subintervals (−∞,−1),
[−1, 0], [0, 1], (1,∞) of R; hence the probability that q(x) does not have zeroes
in [0, 1] is n−b/4+o(1)≈ n−0.19 [51, 52]. A related topic is the capture time in the
random pursuit problem for fractional Brownian particles [48–50].
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4.5 Variants of Brownian Motion

We defined standard Brownian motion {Wt : t≥ 0} in [1]. An alternative char-
acterization of the Wiener process involves the limit of random walks. Let ε1,
ε2, . . ., εn be a sequence of independent identically distributed random variables,
each possessing mean 0 and variance 1. Let

S0 = 0, S1 = ε1, S2 = ε1 + ε2, ..., Sn=
n∑

k=1

εk.

Then the randomwalk {Sk}nk=1 approaches Brownianmotion on the unit interval
in the sense that

S⌊nt⌋√
n
→Wt, 0≤ t≤ 1
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as n→∞, via the functional central limit theorem of Donsker [2, 3]. We are
interested in the Lp-norm of Brownian motion

∥W∥p=



 1∫
0

|Wt|p dt

1/p

if 0< p<∞,

max
0≤t≤1

|Wt| if p=∞

for a number of reasons [4, 5]. Note that ∥W∥p is itself a random variable.
A distributional statement about ∥W∥p hence translates into an asymptotic
distributional statement about the lp-norm of the random walk:

P
(
∥W∥p≤ x

)
=


lim
n→∞

P

( n∑
k=1

|Sk|p
)1/p

≤ n
1
2+

1
p x

 if 0< p<∞,

lim
n→∞

P
(
max {|S1| , |S2| , . . . , |Sn|}≤ n1/2x

)
if p=∞.

In the following sections, we will discuss the cases p=∞, 1 and 2 for several
variants of Brownian motion. Corresponding problems for all other values of
p> 0 remain unsolved.

Some preliminary definitions include

δm=
Γ(m+ 1

2 )√
πm!

=


1 · 3 · 5 · · · (2m− 1)

2 · 4 · 6 · · · (2m)
if m≥ 1,

1 if m= 0,

Ai(x)=


1
3 (−x)

1/2
[
J− 1

3

(
2
3 (−x)

3/2
)
+ J 1

3

(
2
3 (−x)

3/2
)]

if x< 0,

1
3x

1/2
[
I− 1

3

(
2
3x

3/2
)
− I 1

3

(
2
3x

3/2
)]

if x≥ 0,

K 1
4
(x)=

π√
2

[
I− 1

4
(x)− I 1

4
(x)
]

where Jν(x) and Iν(x) are the well-known Bessel functions. Also, for x> 0 and
0< a< b, let

U(a, b, x)=
1

Γ(a)

∞∫
0

e−txta−1(1 + t)b−a−1dt.

This is called the confluent hypergeometric function of the second kind (in contrast
to [1]). Finally, define the Riemann xi function

ξ(z)= 1
2z(z− 1)π−z/2Γ( 1

2z)ζ(z), Re(z)> 1,

which serves as a tantalizing link between Brownian motion and number the-
ory [6]. This can be analytically continued to an entire function via functional
equation ξ(z)= ξ(1− z).
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4.5.1 Bridge

A Brownian bridge {Xt : 0≤ t≤ 1} has the same distribution as {Wt : 0≤ t≤ 1},
conditioned on W1 = 0. The maximum of |Xt| turns out to be closely allied with
the Kolmogorov–Smirnov goodness-of-fit test [7–16]:

P (∥X∥∞≤ x)=
∞∑

k=−∞

(−1)ke−2k2x2
=

√
2π
x

∞∑
k=0

e−π2(2k+1)2/(8x2)

(and the right-hand equality follows via Poisson summation). This distribution
has moments

E (∥X∥∞)=

√
π

2
ln(2), E

(
∥X∥2∞

)
=
π2

12

and median 0.8275735551.... It also satisfies [17, 18]

E
(
∥X∥z∞

)
= 2

1− 21−z

z− 1

(π
2

)z/2
ξ(z)

for all complex z.
Takács [19, 20], building on Cifarelli [21], Shepp [22], Rice [23] and Johnson &

Killeen [24], computed that

P (∥X∥1≤ x)=
√
π

181/6x

∞∑
j=1

e−uju−1/3
j Ai

(
(3uj/2)

2/3
)

for x> 0, where uj=(a′j)
3/(27x2) and 0< a′1< a′2< . . . are the zeroes [25] of

Ai′(−x). This distribution has moments

E (∥X∥1)=
1
4

√
π

2
, E

(
∥X∥21

)
=

7
60

and median 0.2817802658....
Anderson & Darling [26–29], building on Smirnov [30], obtained that

P
(
∥X∥22≤ x

)
=

1
π
√
x

∞∑
j=0

√
4j+ 1e−(4j+1)2/(16x)δjK1/4

(
(4j+ 1)2/(16x)

)
,

which has moments

E
(
∥X∥22

)
=

1
6
, E

(
∥X∥42

)
=

1
20

and median 0.1188795509.... The L2-norm, squared, ofXt turns out to be closely
allied with the Cramér–von Mises goodness-of-fit test [31–33].

4.5.2 Excursion

A Brownian excursion {Yt : 0≤ t≤ 1} has the same distribution as {Wt : 0≤ t≤
1}, conditioned on Wt> 0 for all 0< t< 1 and W1 = 0.
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Chung [34, 35], Kennedy [36] and Durrett & Iglehart [37, 38] showed that

P (∥Y∥∞≤ x)=
∞∑

k=−∞

(1− 4k2x2)e−2k2x2
=

√
2π5/2

x3

∞∑
k=1

k2e−π2k2/(2x2),

which has moments

E (∥Y∥∞)=

√
π

2
, E

(
∥Y∥2∞

)
=
π2

6
,

median 1.2234880197..., and also satisfies [17, 18]

E
(
∥Y∥z∞

)
= 2

(π
2

)z/2
ξ(z)

for all complex z.
Takács [19, 39], building on Getoor & Sharpe [40], Darling [41], Louchard

[42, 43] and Groenboom [44], obtained that

P (∥Y∥1≤ x)=
√

6
x

∞∑
j=1

e−vjv2/3j U
(

1
6 ,

4
3 , vj

)
for x> 0, where vj= 2a3

j /(27x
2) and 0< a1< a2< . . . are the zeroes [25] of

Ai(−x). This distribution has moments

E (∥Y∥1)=
√
π

8
, E

(
∥Y∥21

)
=

5
12

and median 0.6070363869....
The L2 case seems to be open for Brownian excursion.

4.5.3 Meander

A Brownian meander {Zt : 0≤ t≤ 1} has the same distribution as {Wt : 0≤ t≤
1}, conditioned on Wt> 0 for all 0< t< 1. Note that Z1 need not be zero.

Durrett & Iglehart [37, 38] computed that

P (∥Z∥∞≤ x)=
∞∑

k=−∞

(−1)ke−k2x2/2 =
23/2√π

x

∞∑
k=0

e−π2(2k+1)2/(2x2).

Observe that the distribution of ∥Z∥∞ is the same as the distribution of 2 ∥X∥∞.
Hence it has moments

E (∥Z∥∞)=
√

2π ln(2), E
(
∥Z∥2∞

)
=
π2

3

and median 1.6551471103...
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Takács [45] proved that

P (∥Z∥1≤ x)=
√
π

181/6x

∞∑
j=1

bje−ṽj ṽ−1/3
j Ai

(
(3ṽj/2)

2/3
)

for x> 0, where ṽj= vj/2 and vj, aj are as before, and where

bj=
aj

3Ai′(−aj)

1 + 3

aj∫
0

Ai(−s) ds

.
This distribution has moments

E (∥Z∥1)=
3
4

√
π

2
, E

(
∥Z∥21

)
=

59
60

and median 0.8900420723....
The L2 case seems to be open for Brownian meander.

4.5.4 Motion

We return to Brownian motion. Erdős & Kac [46–49] computed that [50]

P (∥W∥∞≤ x) =
4
π

∞∑
k=0

(−1)k

2k+ 1
e−π2(2k+1)2/(8x2)

=
1
2

∞∑
k=−∞

(−1)k
[
erf
(

(2k+1)x√
2

)
− erf

(
(2k−1)x√

2

)]
= −1 +

∞∑
k=−∞

[
erf
(

(4k+1)x√
2

)
− erf

(
(4k−1)x√

2

)]
,

which has moments

E (∥W∥∞)=

√
π

2
, E

(
∥W∥2∞

)
= 2G

and median 1.1489732581.... This is a remarkable appearance of Catalan’s
constant G!

Takács [51, 52], building on Kac [53] and Schwinger [54], found that

P (∥W∥1≤ y)=
√

3
π

y∫
0

1
x

∞∑
j=1

cje−ũj ũ2/3
j U

(
1
6 ,

4
3 , ũj

)
dx

for y> 0, where ũj= 2uj and uj, a′j are as before, and where

cj=
1

3a′j Ai(−a′j)

1 + 3

a′j∫
0

Ai(−s) ds

.
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This distribution has moments

E (∥W∥1)=
4
3

1√
2π
, E

(
∥W∥21

)
=

3
8

and median 0.4510953819.... We wonder whether the integral for P(∥W∥1≤ y)
can be termwise integrated.

Cameron & Martin [46, 55–58] proved that

P
(
∥W∥22≤ x

)
=
√

2
∞∑
j=0

(−1)jδj erfc
(

4j+1
2
√

2x

)
,

which has moments

E
(
∥W∥22

)
=

1
2
, E

(
∥W∥42

)
=

7
12
,

median 0.2904760595... and Laplace transform

E
(
exp(−λ ∥W∥22)

)
=

√
sec
(√
−2λ

)
.

We close with several unanswered questions. Define the positive part ofWt to
beW+

t =max{Wt, 0}. Perman & Wellner [59, 60] studied the 1-norm ofW+
t and

found the following double Laplace transform:

∞∫
0

e−µλE
{
exp
(
−
√

2λ3/2
∥∥W+

∥∥
1

)}
dλ=

µ−1/2 Ai(µ) + 1
3 −

∫ µ

0 Ai(s) ds
√
µAi(µ)−Ai′(µ)

as well as moments:

E (∥W+∥1)=
2
3

1√
2π
, E

(
∥W+∥21

)
=

17
96
.

Does an explicit formula for P (∥W+∥1≤ x) exist? What can be said for other
values of p> 0?

Brownian motion with drift (of linear type Wt + αt or parabolic type Wt −
βt2) would be interesting to report on [61–74]. Of all possible issues, we examine
just two. When analysing Wt + αt for α> 0, is the formula [64]

π/2∫
0

exp(−x cot(x)) sin(x)
1 + exp(−π cot(x))

dx=

∞∫
0

[
1
2
− exp(−y coth(y)) sinh(y)

]
dy

valid? Numerics suggest yes – both sides are approximately equal to 0.457524 –
a rigorous proof would be good to see someday. The expected maximum value
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of Wt − (1/2)t2 is [73]

2−1/3

2πi

∞∫
−∞

z
Ai(iz)2

dz= 0.9961930199...

(among several integral expressions) and we wonder if similar formulas exist for
higher moments.
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4.6 Shapes of Binary Trees

This is a sequel to our treatment of various attributes of trees [1], expressed in
the language of probability. Let {Yt : 0≤ t≤ 1} be standard Brownian excursion.
Define the Lp-norm

∥Y∥p=



 1∫
0

|Yt|p dt

1/p

if 0< p<∞,

max
0≤t≤1

|Yt| if p=∞
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and a (new) seminorm

⟨Y⟩p=



 1∫
0

v∫
0

∣∣∣∣Yu + Yv − 2 min
u≤t≤v

Yt

∣∣∣∣p du dv
1/p

if 0< p<∞,

max
0≤u<v≤1

∣∣∣∣Yu + Yv − 2 min
u≤t≤v

Yt

∣∣∣∣ if p=∞.

We examined ∥Y∥p earlier [2]; ⟨Y⟩p is a less familiar random variable but never-
theless important in the study of trees. Note that ⟨Y⟩p is not a norm since, for
any constant c, ⟨c⟩p= 0 even if c ̸= 0.

Let T be an ordered (strongly) binary tree with N= 2n+ 1 vertices. The dis-
tance between two vertices of T is the number of edges in the shortest path
connecting them. The height of a vertex is the number of edges in the shortest
path connecting the vertex and the root.

TheWiener index d1(T) is the sum of all
(N

2

)
distances between pairs of distinct

vertices of T, and the diameter d∞(T) is the maximum such distance. If δ(v,w)
denotes the distance between vertices v and w, then

dλ(T)=

(
1
2

∑
v,w

δ(v,w)λ
)1/λ

, λ> 0,

includes both the Wiener index and diameter as special cases.
The internal path length h1(T) of a tree is the sum of all N heights of vertices

of T, and the height h∞(T) is the maximum such height. Let o denote the root of
T. The generalization

hλ(T)=

(∑
v

δ(v, o)λ
)1/λ

, λ> 0,

includes both the internal path length and height as special cases. If we restrict
attention to only those n+ 1 vertices v̂k that are leaves (terminal nodes) of T,
listed from left to right, then a sequence δ(v̂1, o), δ(v̂2, o), . . . , δ(v̂n+1, o) emerges.
This is called the contour of T.

The width w∞(T) of a tree is the maximum of ζl(T) over all l≥ 0, where ζl(T)
is the number of vertices of height l in T. Note that

wλ(T)=

h∞(T)∑
l=0

ζl(T)λ

1/λ

, λ> 0,

includes the trivial case w1(T)=N. The sequence ζ0(T), ζ1(T), . . . , ζh∞(T) is
known as the profile of T.
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4.6.1 Uniform Combinatorial Model

In this model, the
(2n
n

)
/(n+ 1) ordered binary trees are weighted with equal

probability, where N= 2n+ 1 is fixed.
Janson [3] determined the joint distribution of internal path length andWiener

index: (
h1(T)
2N3/2

,
d1(T)
2N5/2

)
→ (∥Y∥1 , ⟨Y⟩1)

as N→∞. The marginal distribution of h1(T) was obtained earlier by Takács
[4–6]; the result for d1(T) is apparently new. No explicit formula for P (⟨Y⟩1≤ x)
is known; see [2] for the corresponding result for ∥Y∥1. We have expected values

E (∥Y∥1)=
1
2

√
π

2
, E (⟨Y⟩1)=

1
4

√
π

2

and correlation coefficient

Cov(∥Y∥1 , ⟨Y⟩1)√
Var(∥Y∥1)

√
Var(⟨Y⟩1)

=

√
48− 15π
50− 15π

= 0.5519206030...

As an aside, we mention that ∥Y∥1 − ⟨Y⟩1≥ 0 always. Underlying the joint
moment [3]

E
(
∥Y∥k1 (∥Y∥1 − ⟨Y⟩1)

l
)
=

k!l!
√
π

2(7k+9l−4)/2Γ((3k+ 5l− 1)/2)
ak,l

is the following interesting quadratic recurrence [7–12]:

ak,l = 2(3k+ 5l− 4)ak−1,l+ 2(3k+ 5l− 6)(3k+ 5l− 4)ak,l−1

+
∑

0<i+j<k+l

ai,jak−i,l−j

with a0,0 =−1/2, a1,0 = 1= a0,1 and ak,l= 0 when k< 0 or l< 0. All ak,l but a0,0

are positive integers when k≥ 0 and l≥ 0. Applications include the enumeration
of connected graphs with n vertices and n+m edges. We have asymptotics [3, 13]

ak,0∼
1
2π

6k(k− 1)!, a0,l∼C · 50l ((l− 1)!)2 ,

where the precise identity of the constant

C=

√
15

20π2 = 0.0196207628...=
1
50

(0.9810381421...)=
1

50.9664179720...

remained masked until its recent unveiling by Kotěšovec [12].
Chassaing, Marckert & Yor [14] determined the joint distribution of height

and width: (
h∞(T)
N1/2

,
w∞(T)
N1/2

)
→

 1∫
0

dt
Yt
, ∥Y∥∞





“C04” — 2018/10/27 — 12:00 — page 497 — #43

4.6 Shapes of Binary Trees 497

as N→∞. The marginal distribution of height was obtained earlier by Rényi &
Szekeres and Stepanov [15–24]; earlier works on width include [25–30]. It turns
out that the marginal distributions are identical (up to a factor of 2) and that this
is the first of several theta distributions [31] we will see here:

P

1
2

1∫
0

dt
Yt
≤ x

=P (∥Y∥∞≤ x)=
√

2π5/2

x3

∞∑
k=1

k2e−π2k2/(2x2).

The expected values are thus equal:

E

1
2

1∫
0

dt
Yt

=E (∥Y∥∞)=

√
π

2
.

Rényi & Szekeres also computed the location of the maximum of the probability
density [15]:

mode (∥Y∥∞)=
1
2
(2.3151543618...)=

1
2

√
2

0.3731385248...
.

Returning to the joint distribution formula, it is clear that h∞(T) and w∞(T) are
negatively correlated. A numerical estimate for the correlation coefficient was
open until recently [14, 32] ; Janson [33] computed that

E
(∫ 1

0(1/Yt) dt · ∥Y∥∞
)
= 1 +

∞∑
m=1

ln [m(m+ 1)]
m(m+ 1)

= 1 + 2.0462774528...

= π − 0.0953152007...,

Cov
(∫ 1

0(1/Yt) dt, ∥Y∥∞
)

√
Var

(∫ 1
0(1/Yt) dt

)√
Var (∥Y∥∞)

=
3(3.0462774528...− π)

π(π − 3)

= −0.6428251027...

and the infinite series [34, 35] is a Lüroth analog of Lévy’s constant π2/(6 ln(2)).
Why is the joint distribution of height and width of trees related to the ergodic
theory of numbers? Such a coincidence does not happen without a reason.

For the generalized height and diameter parameters, we have marginal distri-
butions [3, 14, 36–38]:

hλ(T)
2N(λ+2)/(2λ)

→∥Y∥λ ,
dλ(T)

2N(λ+4)/(2λ)
→⟨Y⟩λ
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as N→∞. The latter includes the special cases of Wiener index (λ= 1, as
mentioned before) and diameter (λ=∞):

P(⟨Y⟩∞≤ x) =
1024

√
2π5/2

3x9

∞∑
k=1

k2[ (3+π2k2)x4−36π2k2x2+64π4k4]
× e−8π2k2/x2

,

which possesses expected value

E (⟨Y⟩∞)=
4
3

√
2π

and maximum location [36]

mode (⟨Y⟩∞)= 3.2015131492...=

√
8

0.7805116813...
.

Nothing is known for other values of λ (even λ= 2 seems to have been neglected).
It would also be good to learn the value of the correlation coefficient of d∞(T)
and h∞(T), or of d∞(T) and w∞(T).

Consider finally the minimum height η(T) of a leaf, that is,

η(T)= min
1≤k≤n+1

δ(v̂k, o),

and the height δ(v̂⌈n/2⌉, o) of the central leaf. It is known that

E(η)→
∞∑
k=1

2k+1−2k = 1.5629882961...

as N→∞ [39, 40]. It is also known that [41–44]

√
nP
(
δ(v̂⌈n/2⌉, o)√

n
≤ x
)
→ 1

2
√
π

x∫
0

t2e−t2/4dt=P
(√

X2
1 + X2

2 + X2
3≤

x√
2

)
,

the Maxwell distribution from thermodynamics, where X1, X2, X3 are indepen-
dent standard normal variables. (This can also be written in terms of the chi
square distribution with 3 degrees of freedom.) Can these results be related to
Brownian excursion in some way? More on the properties of leaves of T would
be good to see.

4.6.2 Critical Galton–Watson Model

In this model, the size N= 2n+ 1 is free to vary: All ordered binary trees are
included but with weighting 2−N. (We omit subcritical and supercritical cases for
reasons of space.)

Let T be a random tree. The probability that T has precisely N vertices is
clearly [45]

1
n+ 1

(
2n
n

)
2−N∼

√
2
π
N−3/2;
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hence the expected number of vertices of T is infinite. We examine this result in
another way. If

νl=

l∑
k=0

ζk

where ζk is the number of vertices of height k in T, then E(νl)= l+ 1 and
Var(νl)= (2l+ 1)(l+ 1)l/6, both which→∞ as l→∞. More complicated con-
ditional distributions are due to Pakes [46, 47]:

lim
l→∞

P
(νl
l2
≤ x |ζl> 0

)
=

x∫
0

f(t) dt,

lim
l→∞

P
(νl
l2
≤ x |ζm> 0 for all positive integers m

)
=

x∫
0

g(t) dt,

where the first density function is given by

f(t)=
2√

2πt3/2

∞∑
k=0

(
(2k+ 1)2

t
− 1
)

exp
(
− (2k+ 1)2

2t

)
with mean 1/3, variance 2/45, and Laplace transform

∞∫
0

e−stf(t) dt=
√

2s csch
(√

2s
)
.

The second density function is not explicitly known, but has mean 1/2, variance
1/12 and satisfies

∞∫
0

e−stg(t) dt= sech2
(√

s
2

)
.

Consequently g(t) is the convolution of g̃(t) with itself, where

g̃(t)=
1√

2πt3/2

∞∑
k=0

(−1)k (2k+ 1) exp
(
− (2k+ 1)2

8t

)
,

but this appears to be as far as we can go.
Define Tl to be the subtree of T consisting of all νl vertices up to and including

height l. We have the parameters dλ(Tl), hλ(Tl) and wλ(Tl) available for study,
but little seems to be known. Of course, w1(Tl)= νl. Athreya [48], building on
[49–51], proved that E (w∞(Tl))∼ ln(l) as l→∞, which contrasts nicely with the
fact that P (ζk= 0)→ 1 as k→∞. See also [52–58]. Kesten, Ney & Spitzer [59–
61] demonstrated that P (h∞(Tl)= j) ∼ 2/j2 as j→∞; further references include
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[62–64]. Can exact distributional results be found? What about other values of
λ? Is anything known about diameter for Galton–Watson trees?

Just as the limit behavior for the uniform model is related to Brownian excur-
sion, the limit behavior for the critical GW model is related to what is known
as the two-sided three-dimensional Bessel process {Bt :−∞< t<∞}. That is,
{Bt : t≥ 0} and {B−t : t≥ 0} are independent copies of standard 3D radial Brow-

nian motion
√
W2

1,t +W2
2,t +W2

3,t, each starting from zero [38, 65]. It would be

good to learn more about the concrete distributional results arising from this
correspondence.

4.6.3 Leaves of Maximum Height

Our closing remarks are concerned not with binary trees, but instead with labeled
rooted trees. Choose such a treeTwithN vertices uniformly out of theNN−2 pos-
sibilities (we agree that the root is labeled 1). Out of all possible parameters (suit-
ably generalized), we mention only the minimum height η(T) of a leaf. Meir &
Moon [40] computed that

E(η)→ 9
∞∑
k=1

1
4k(1 + 2 · 4−k)2

= 1.6229713847...

asN→∞. A more difficult problem involves counting the leaves v̂k at prescribed
distance from the root.Kesten&Pittel [66] proved, for leaves ofmaximumheight,
that there exists a probability distribution ql such that

lim
N→∞

P (ζh∞(T)= l)= ql, l≥ 1.

Further, ql is the unique nonnegative solution of the system of equations

l!elql=
∞∑
k=1

klqk,
∞∑
k=1

qk= 1

and thus q1 = 0.602..., q2 = 0.248..., q3 = 0.094..., q4 = 0.035...withmean 1.636...
and standard deviation 0.995.... No exact expressions for these quantities are
known. What is the corresponding distribution for the uniform ordered binary
tree case?
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4.7 Expected Lifetimes and Inradii

In earlier essays [1, 2], we examined 1-dimensional Brownianmotion starting at 0;
here, we generalize. A d-dimensional stochastic process {Wt : t≥ 0} is aBrownian
motion with arbitrary starting point W0 if the component processes

Wt,1 −W0,1, Wt,2 −W0,2, . . . , Wt,d −W0,d

are independent 1-dimensional Brownian motions starting at 0 and, further, are
independent of W0,1, W0,2, . . ., W0,d.

It is remarkable that d-dimensional Brownian motion can be used to represent
the solution of the heat PDE [3, 4]:

∂u
∂t

=
1
2
△u, t≥ 0, ξ ∈Rd,

u(0, ξ)= f(ξ), f :Rd→R piecewise continuous

in the following sense:

u(t, ξ) = E (f(Wt) |W0 = ξ)

=
1

(2πt)d/2

∫
Rd

f(ω) exp
(
−|ξ − ω|

2

2t

)
dω.

As a corollary, if f is the Dirac impulse at 0, then u simplifies to

u(t, ξ)=
1

(2πt)d/2
exp
(
−|ξ|

2

2t

)
;

that is, the heat kernel coincides with theBrownian transition density starting at 0.
Also, let D denote an open, simply connected domain in Rd with piece-

wise smooth, closed, orientable boundary C. The solution of the Laplace PDE
(Dirichlet boundary value problem):{

△v= 0, ξ ∈D,
v(ξ)= g(ξ), ξ ∈C, g :C→R piecewise continuous

can be written as
v(ξ)=E (g(Wτ ) |W0 = ξ) ,

where τ is the lifetime or first exit time of Brownian motion in D:

τ = inf {t> 0 :Wt /∈D} .

Consequently, if C=C0 ∪ C1, C0 ∩ C1 = ∅ and g(ξ)= k for ξ ∈Ck, then v(ξ) is
the probability that a Brownian particle which starts at ξ ∈D stops at some point
η ∈C1.

These two examples are special cases of a more general principle that solutions
of any parabolic or elliptic PDE can be represented as expectations of certain
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stochastic functionals. (A hyperbolic PDE such as the wave equation ∂2u/dt2 =
(1/2)△u apparently cannot be solved in this manner.)

So far we have seen how probability is a servant of analysis. An example of
how analysis serves probability is that the expected lifetime v(ξ)=E (τ |W0 = ξ)

satisfies the Poisson PDE {
△v=−2, ξ ∈D,
v(ξ)= 0, ξ ∈C.

For instance, if D is the ball of radius r in Rd centered at 0, then vD(ξ)= (r2 −
|ξ|2)/d. In the remainder of this essay, let d= 2. If T is the equilateral triangular
region in R2 with vertices (0, 2a/3), (±a/

√
3,−a/3), then

vT(x, y)=
1
2a

(
y−
√

3x− 2
3
a
)(

y+
√

3x− 2
3
a
)(

y+
1
3
a
)
.

If S is the square region in R2 with vertices (±b,±b), then [5]

vS(x, y) =
32b2

π3

∞∑
k=0

(−1)k

(2k+ 1)3

[
1− sech

(
(2k+ 1)π

2

)
cosh

(
(2k+ 1)πy

2b

)]
× cos

(
(2k+ 1)πx

2b

)
.

The lifetime functions vD(x, y), vT(x, y) and vS(x, y) are each maximized when
x= y= 0. Define, for b= 1/2,

γ= vS(0, 0)=
8
π3

∞∑
k=0

(−1)k

(2k+ 1)3

[
1− sech

(
(2k+ 1)π

2

)]
= 0.1473427065....

This constant will be useful in the following; we wonder whether it has a closed-
form expression.

When r= 1/
√
π, a= 4

√
3 and b= 1/2, each of D, T and S have area 1 and

vD(0, 0)= 1
2π = 0.159... > vS(0, 0)= γ= 0.147... > vT(0, 0)= 2

√
3

27 = 0.128....

In fact, among all planar regions of fixed area, the disk possesses the longest
lifetime [6]. No such regionwith shortest lifetime exists, for consider the c× (1/c)
finite strip as c→∞.

When r= 1, a= 3 and b= 1, each of D, T and S have inradius 1 (meaning the
radius of the largest inscribed disk is unity) and

vD(0, 0)= 1
2 = 0.5< vS(0, 0)= 4γ= 0.589... < vT(0, 0)= 2

3 = 0.666....

Clearly, among all planar regions of fixed inradius, the disk possesses the shortest
lifetime. By way of contrast with the preceding, finding such a region with longest
lifetime is an unsolved problem. Let

K= sup
D

sup
(x,y)∈D

E (τ |W0 =(x, y)),
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where the outer supremum is over all simply connected domains D in R2 of unit
inradius; thusK≥ 2/3. The 2×∞ infinite strip improves this inequality toK≥ 1
and is the best such convex domain [7, 8]. Bañuelos & Carroll [9, 10] demon-
strated that 1.584<K< 3.228; they speculated that the associated nonconvex
domain D is extremal for certain other optimization problems as well.

4.7.1 Fundamental Drum Frequency

The bass tone of a kettledrum, whose head shape is a simply connected domain
D in R2, is the square root of the smallest eigenvalue λ of [11, 12]{

△u=−λ u, ξ ∈D,
u(ξ)= 0, ξ ∈C.

For instance, if D is the disk of radius r centered at (0, 0), then the first
eigenfunction/eigenvalue pair is

uD(x, y)= J0

(
j0
√
x2 + y2

r

)
, λD=

(
j0
r

)2

where J0(z) is the zeroth Bessel function of the first kind and j0 = 2.4048255576...
is its smallest positive zero. If T is the equilateral triangular region of height a
centered at (0, a/6), then [13, 14]

uT(x, y) = sin
(
π

a

(
y−
√

3x− 2
3
a
))

+ sin
(
π

a

(
y+
√

3x− 2
3
a
))

− sin
(

2π
a

(
y+

1
3
a
))

,

λT=
4π2

a2 .

If S is the square region of side 2b centered at (0, 0), then

uS(x, y)= cos
(πx

2b

)
cos
(πy
2b

)
, λS=

π2

2b2 .

When D, T and S each have area 1,

λD=πj20 = 18.168... < λS= 2π2 = 19.739... < λT= 4π2
√

3
= 22.792....

The Faber–Krahn inequality states that, among all planar regions of fixed area,
the disk possesses the lowest bass tone. No such region with highest bass tone
exists, for consider the c× (1/c) finite strip as c→∞.

When D, T and S each have inradius 1,

λD= j20 = 5.783... > λS= π2

2 = 4.934... >λT= 4π2

9 = 4.386....
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Clearly, among all planar regions of fixed inradius, the disk possesses the highest
bass tone. Finding such a region with lowest bass tone is an unsolved problem.
Let

Λ= inf
D
λD

where the infimum is over all simply connected domains D in R2 of unit
inradius; thus Λ≤ 4π2/9. The 2×∞ infinite strip improves this inequality to
Λ≤π2/4= 2.467... and is the best such convex domain [15–17]. In the other
direction, Makai [18–22] proved that Λ≥ 1/4. The best bounds currently known
[9] are 0.6197<Λ< 2.1292 and the associated nonconvex domain D is conjec-
tured to be the same as before.

What does this have to do with Brownian motion? We give just one (of several)
formulas [10, 23]:

ΛD= 2 sup

{
c≥ 0 : sup

(x,y)∈D
E (ecτ |W0 =(x, y))<∞

}

for bounded, simply connected D. In words, the fact that λD≥Λ/ρ2> 0 for D
of inradius ρ means that if a drum produces an arbitrarily low bass tone, then it
must contain an arbitrarily large circular subdrum.

4.7.2 Torsional Rigidity

Let us return to the expected lifetime function v(x, y) and evaluate not its
maximum value in the domain D, but rather twice its average value

µ=
2

area(D)

∫
D

E (τ |W0 =(x, y)) dx dy.

For instance, if D is the disk of radius r centered at (0, 0), then µD= r2/2. If T is
the equilateral triangular region of height a centered at (0, a/6), then µT= a2/15.
If S is the square region of side 2b centered at (0, 0), then [5]

µS =
4b2

3

[
1− 192

π5

∞∑
k=0

1
(2k+ 1)5

tanh
(
(2k+ 1)π

2

)]

=
1
4
b2(2.2492322392...)= b2(0.5623080598...)= 4b2(0.1405770149...).

Again, we wonder about the possibility of closed-form evaluation.
When r= 1/

√
π, a= 4

√
3 and b= 1/2,

µD= 1
2π = 0.159... >µS= 0.140... >µT=

√
3

15 = 0.115....

This can be expressed in the language of elasticity theory. Pólya [24–27] proved
Saint Venant’s conjecture that, among all cylindrical beams of prescribed cross-
sectional area, the circular beam has the highest torsional rigidity. No such
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beam with lowest torsional rigidity exists, for consider the c× (1/c) rectangle
as c→∞.

When r= 1, a= 3 and b= 1,

µD= 1
2 = 0.5<µS= 0.562... <µT= 3

5 = 0.6.

Among all cylindrical beams of prescribed cross-sectional inradius, the circular
beamhas the lowest normalized torsional rigidity (normalized by area, as defined
earlier). Finding such a beam with highest normalized torsional rigidity is an
unsolved problem. Let

M= sup
D

µD

where the supremum is over all simply connected domains D in R2 of unit inra-
dius; thus M≥ 3/5. The 2× c rectangle improves this inequality, as c→∞, to
M≥ 4/3 and is the best such convex domain [28]. For nonconvex domains, we
have the upper bound 6.456 [9], but little else is known about this problem.

4.7.3 Conformal Mapping

If E is an open, simply connected region in C, define ρ(E) to be the inradius of
E. The univalent Bloch–Landau constant Θ is given by [29]

Θ= inf
f
ρ( f(D))

where the infimum is over all one-to-one analytic functions f defined on the open
unit disk D satisfying f(0)= 1, f′(0)= 1. Let g denote the conformal mapping of
D onto the infinite strip −π/4< Im(z)<π/4:

g(z)=
1
2

ln
(

1 + z
1− z

)
=

∞∑
k=0

z2k+1

2k+ 1
,

hence Θ≥π/4. Szegö [30, 31] further proved that, if f(D) is convex, then
ρ( f(D))≤ ρ(g(D)). For the nonconvex scenario, the best bounds currently
known [9, 32, 33] are 0.57088<Θ< 0.65642 and the associated nonconvex region
f(D) is conjectured to be the same as the nonconvex domain for the constants K
and Λ.
Addendum The constant γ indeed has a closed-form expression [34, 35]:

γ= 4
4F3

(
1
4
,
1
4
,
1
2
,
1
2
;
5
4
,
5
4
, 1; 1

)
B
(

1
4
,
1
2

)2 = 0.1473427065...=
1
2
(0.2946854131...),
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where pFq is the generalized hypergeometric function [36] and B is the Euler beta
function (B(x, y)= I(1, x, y) in [37]). An interesting double series representation:

γ=
32
π4

∞∑
m=1

∞∑
n=1

(−1)m+n

(2m− 1)(2n− 1) [(2m− 1)2 + (2n− 1)2]

follows from a formula in [38] which, in turn, was corrected in [39]. See also [40].
Both λ and µ can be defined via the calculus of variations [26]. It is more

customary to take area(D)µ as torsional rigidity and this is equal to [41, 42]

1
12
− 16
π5

∞∑
k=0

1
(2k+ 1)5

coth
(
(2k+ 1)π

2

)
= 0.0260896517...

for an isosceles right triangle with sides 1, 1,
√

2 and [43, 44]

9

[
17
√

3
192

− 1
π5

∞∑
k=0

1
(2k+ 1)5

{
2 tanh

(
(2k+ 1)π

√
3

2

)
− 9 tanh

(
(2k+ 1)π

2
√

3

)

+(−1)k9
√

3 sech
(
(2k+ 1)π

2
√

3

)
+ 27

√
3 sin

(
(2k+ 1)π

3

)}]

= 0.0044516625...=
9
16

(0.0079140667...)

for a 30◦-60◦-90◦ triangle with sides 1/2,
√

3/2 and 1. The corresponding value
for a regular hexagon of unit side has attracted considerable attention [45–48] –
see history in [42] – a complicated formula in [49] gives ≈ 1.035459, as reported
in [50], and verifies an unpublished calculation in [51].
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4.8 Subcritical Galton–Watson Trees

Fix a probability 0< p< 1. For any 2-vector u=(v,w), write uL= v and uR=w.
AGalton–Watson tree is an ordered, strongly binary treeT= τ(p)L that is defined
recursively in terms of left and right subtrees of the root as follows:

τ(p)=
({

τ(p) if X≤ p,
∅ otherwise

,

{
τ(p) if X≤ p,
∅ otherwise

)
.
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Figure 4.2 Three sample binary trees, grown via the Galton–Watson process.

Each variable X is a new, independent Uniform [0, 1] random number. For
example, T= ∅ with probability 1− p, T=(∅, ∅) with probability p(1− p)2, and
T=((∅, ∅), ∅) with probability p2(1− p)3 (Figure 4.2).

The number of verticesN is equal to twice the number of left parentheses (par-
ents) in the expression for T, plus one. Equivalently, N is twice the number of
∅s (leaves), minus one. It can be shown that N is finite with probability 1 if
p≤ 1/2 and 1/p− 1 if p> 1/2. We will focus on the subcritical case p< 1/2 for
the remainder of this essay.

Let Nk denote the number of vertices at distance k from the root, that is, the
size of the kth generation. Clearly N0 = 1 and N<∞ if and only if Nk= 0 for all
sufficiently large k. Define

the height H of T to be max
Nk>0

k,

the widthW of T to be max
k≥0

Nk.
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We wish to evaluate the joint distribution of (N,H,W) as a function of p. Some
partial results (mostly of a numerical nature) are all we can report now.

The sequence N0, N1, ..., NH is called the profile of T. Dual to this is the
sequence of (N+ 1)/2 leaf distances from the root, ordered from left to right,
called the contour of T. It would be good someday to better understand joint
profile and contour distributions as well.

4.8.1 Number of Vertices
The probability that T has at least 3 vertices is p. Letm≥ 1. From the conditional
relation:

P(T has 2m+ 1 vertices)

=

2m−1∑
j=1

P(TL has 2m− j vertices ∧ TR has j vertices | T has at least 3 vertices) · p,

we deduce that

P(N= 2m+ 1)= p
2m−1∑
j=1

P(N= 2m− j)P(N= j)

and hence

P(N= n)=

0 if n= 2m,
1

m+ 1

(
2m
m

)
pm(1− p)m+1 if n= 2m+ 1.

Well-known asymptotics for the Catalan numbers

1
m+ 1

(
2m
m

)
∼ 1√

π

22m

m3/2

give a sense of the rate at which P(N= n)→ 0 as n→∞, n odd. More precisely
[1, 2],

P(N= n)∼

(√
2
π
n−3/2 + c n−5/2 + d n−7/2 + · · ·

)
(2p)m(2(1− p))m+1.

We also have moments [3–5]

E(N)=
1

1− 2p
, Var(N)=

4p(1− p)
(1− 2p)3

.

4.8.2 Height

Let ak denote the probability that Nk= 0, equivalently, the probability that
H< k. The conditional distribution ofNk, givenN1 = j, is the same as the sum of
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j independent random copies of Nk−1 [6]. Of course, j= 0 and j= 2 are the only
possible values for N1; thus we have

P(Nk= 0)=P(Nk= 0 |N1 = 0)︸ ︷︷ ︸
1

1−p︷ ︸︸ ︷
P(N1 = 0) + P(Nk= 0 |N1 = 2)︸ ︷︷ ︸

P(Nk−1=0)2

p︷ ︸︸ ︷
P(N1 = 2)

and hence [7]

a0 = 0, ak=(1− p) + p a2
k−1 for k≥ 1, lim

k→∞
ak= 1.

Let us prove that the convergence rate of {ak} is exponential, that is,

0< lim
k→∞

1− ak
(2p)k

< 1.

First, note that 0≤ ak< 1 for all k by induction (ak≥ 1− p> 0 is obvious; sup-
posing 0≤ ak−1< 1, we obtain ak< (1− p) + p= 1). Now, writing bk= 1− ak ,
we have b0 = 1, 0< bk≤ 1 and

bk = p
(
1− a2

k−1

)
= p(1− ak−1)(1 + ak−1)

= p bk−1(2− bk−1)

< 2p bk−1< (2p)2bk−2< (2p)3bk−3

thus bk< (2p)k for all k. Observe that

bk = 2p bk−1

(
1− bk−1

2

)
= (2p)2bk−2

(
1− bk−2

2

)(
1− bk−1

2

)
= (2p)3bk−3

(
1− bk−3

2

)(
1− bk−2

2

)(
1− bk−1

2

)
= (2p)k

k−1∏
j=0

(
1−

bj
2

)
hence

C = lim
k→∞

1− ak
(2p)k

= lim
k→∞

bk
(2p)k

=

∞∏
j=0

(
1−

bj
2

)

=
∞∏
j=0

(
1−

1− aj
2

)
=

∞∏
j=0

1 + aj
2

exists and is nonzero since
∞∑
j=0

bj
2
<

1
2

∞∑
j=0

(2p)j
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Table 4.4 Height-related parameters

p C E(H) Var(H)

0.2 0.4238945378... 0.3179675669... 0.6053027749...

0.25 0.3929068527... 0.4610125877... 1.0724312517...

0.3 0.3539671772... 0.6568327963... 1.9336638291...

0.35 0.3039572818... 0.9422336526... 3.7158517879...

0.4 0.2376466589... 1.4045313857... 8.2383270278...

converges. This completes the proof. The expression for C as an infinite product
turns out to be useful for high precision estimates of C, given p (see Table 4.4).

The algorithm for {bk}:

b0 = 1, bk= p bk−1(2− bk−1) for k≥ 1, lim
k→∞

bk= 0

is helpful from a numerical perspective. While formulas in aℓ are easily converted
into formulas in bℓ and vice versa:

P(H= k)= ak+1 − ak= bk − bk+1,

E(etH)=
∞∑
k=0

etk(ak+1 − ak)=
∞∑
k=0

etk(bk − bk+1)

the difference ak+1 − ak is harder to calculate than bk − bk+1. (Reason: the sub-
traction of nearly equal quantities, each approaching 1, leads to a loss of floating
point precision.)

Since the series for the moment generating function is telescoping:

E(etH)= b0 +

∞∑
k=1

(etk − et(k−1))bk

we obtain

E(H)=
∞∑
k=1

bk, E(H2)=
∞∑
k=1

(2k− 1)bk

upon differentiation. No closed-form expressions for the quantities in Table 4.4
are known.

We mention an interesting result for the critical case p= 1/2. The recurrence

a0 = 0, ak= 1
2

(
1 + a2

k−1

)
for k≥ 1, lim

k→∞
ak= 1

satisfies [8–10]

1− ak∼
2

k+ ln(k) + 1.76799378...
.
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It is clear, therefore, that E(H)=∞. The relevance of [8, 9] to Galton–Watson
trees seems not to have been noticed before.

4.8.3 Height via Markov

The sequenceN0,N1,N2,... is a time-homogeneousMarkov chain with transition
probability matrix Q, where

qi,j=P(N1 = j |N0 = i)=


(

i
j/2

)
pj/2(1− p)i−j/2 if 2≤ j≤ 2i is even,

0 otherwise

is the (i, j)th element of Q and i≥ 1, j≥ 1. Observe that

P(H= 0 |N0 = i)= (1− p)i

and

P(H= k |N0 = i)=
∑
j≥1

P(H= k |N1 = j)︸ ︷︷ ︸
P(H=k−1 |N0=j)

qi,j︷ ︸︸ ︷
P(N1 = j |N0 = i)

for k≥ 1. We will use these formulas to derive an alternative matrix expression
for E(H), as outlined in [11]. Let µi=E(H |N0 = i) and νi= 1− (1− p)i. From

µi =
∑
k≥0

kP(H= k |N0 = i)

=
∑
k≥1

k
∑
j≥1

qi,jP(H= k− 1 |N0 = j)

=
∑
j≥1

qi,j
∑
k≥1

kP(H= k− 1 |N0 = j)

=
∑
j≥1

qi,j

(
1 +

∑
k≥0

kP(H= k |N0 = j)

)
= νi +

∑
j≥1

qi,jµj,

it follows that (I−Q)µ= ν and thus µ=(I−Q)−1ν. Only the first component
of µ is desired since E(H)=E(H |N0 = 1). Of course, we must restrict i≤ ℓ, j≤ ℓ
when evaluating µ1, where ℓ is large. As ℓ→∞, indeed µ1→E(H) numerically
as found in the previous section.
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4.8.4 Width

Clearly P(W= 0)= 0 since N0 = 1 and P(W= 1)=P(N1 = 0)= 1− p. An ele-
mentary expression f(p) for P(W= 2) arises from

f(p) = p(1− p)2 + 2p2(1− p)3 + 4p3(1− p)4 + 8p4(1− p)5 + · · ·
= p(1− p)2 (1 + 2p(1− p) (1 + 2p(1− p) (1 + 2p(1− p) · · ·)))
= p(1− p)2 (1 + 2f(p)/(1− p)) ;

hence
(1− 2p(1− p)) f(p)= p(1− p)2;

hence

P(W= 2)=
p(1− p)2

1− 2p(1− p)
=

p(1− p)2

2p2 − 2p+ 1
.

An analogous argument leading to P(W= 4) does not seem to work. We turn
therefore to the alternative approach.

4.8.5 Width via Markov

Define the matrix Q exactly as before with i≥ 1, j≥ 1. Observe that [12, 13]

P(W≤ 0 |N0 = i)= 0

and

P(W≤m |N0 = i)= (1− p)i +
m∑
j=1

P(W≤m |N1 = j)︸ ︷︷ ︸
P(W≤m |N0=j)

qi,j︷ ︸︸ ︷
P(N1 = j |N0 = i)

for m≥ 1. Let αi(m)=P(W>m |N0 = i), β0 = 1, βm=α1(m) and

γi(m)=


2i∑

j=m+1

qi,j if m+ 1≤ 2i,

0 otherwise.

It follows that

αi(m) = 1− (1− p)i −
m∑
j=1

qi,j(1− αj(m))

=
2i∑
j=1

qi,j −
m∑
j=1

qi,j +
m∑
j=1

qi,jαj(m)

= γi(m) +
m∑
j=1

qi,jαj(m)
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Table 4.5 Width-related parameters

p D(p) E(W) Var(W)

0.2 0.8... 1.2243696655... 0.2507547512...

0.25 1.2... 1.3038399841... 0.3903119417...

0.3 1.7... 1.4072057242... 0.6311389283...

0.35 2.6... 1.5526227137... 1.1020414724...

0.4 4.3... 1.7823528114... 2.2389987484...

and thus α(m)= (I−Q)−1γ(m). Only the first component of α(m) is desired
since P(W>m)=P(W>m |N0 = 1). A theorem in [14, 15] leads to a conjecture
that

D= lim
m→∞
m even

m
(

1
p
− 1
)m

βm= lim
m→∞
m odd

m
(

1
p
− 1
)m−1

βm

exists and is nonzero. We have

P(W=m)=βm−1 − βm,

E(etW)=
∞∑
m=1

etm(βm−1 − βm)= etβ0 +
∞∑
m=1

(et(m+1) − etm)βm

and hence

P(W= 4)=
p3(1− p)4(2p2 − 2p− 1)

(2p2 − 2p+ 1)(8p6 − 24p5 + 30p4 − 20p3 + 4p2 + 2p− 1)
,

E(W)=

∞∑
m=0

βm, E(W2)=

∞∑
m=0

(2m+ 1)βm.

No closed-form expressions for the quantities in Table 4.5 are known.
For the critical case, it can be proved [16, 17] that E(W)=∞ and, in fact,

E(max0≤k≤ℓNk)∼ ln(ℓ) as ℓ→∞.

4.8.6 Cross-Correlation

Lacking any better methods to study association, we generated 106 Galton–
Watson trees for each probability p= 0.2, . . ., 0.4. The cross-correlation coef-
ficients between N, H and W are each large, but we observe that roughly

0.95≈ ρ(N,H)>ρ(N,W)>ρ(H,W)≈ 0.85.

No clear pattern in these, as functions of p, are yet evident. Clearly this is an area
for further research [18].
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4.9 Continued Fraction Transformation

We are interested in iterates of the continued fraction transformation T : [0, 1]→
[0, 1] defined by [1]

T(x)=


{

1
x

}
if 0< x≤ 1,

0 if x= 0
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where {ξ}= ξ − ⌊ξ⌋ denotes the fractional part of ξ. For example,

π − 3= 0.141592...,
⌊

1
π−3

⌋
= 7,

T(π − 3)= 0.062513...,
⌊

1
T(π−3)

⌋
= 15,

T2(π − 3)= 0.996594...,
⌊

1
T2(π−3)

⌋
= 1,

T3(π − 3)= 0.003417...,
⌊

1
T3(π−3)

⌋
= 292,

T4(π − 3)= 0.634591...,
⌊

1
T4(π−3)

⌋
= 1

and

π= 3 +
1|
|7

+
1|
|15

+
1|
|1

+
1|
|292

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|2

+
1|
|1

+
1|
|3

+ · · ·

is the regular continued fraction expansion for π. In words, T discards the first
“digit” in any expansion, that is,

T
(

1|
|a1

+
1|
|a2

+
1|
|a3

+ · · ·
)
=

1|
|a2

+
1|
|a3

+
1|
|a4

+ · · · .

What can be said about the moments of TjX and of ln(TjX), where X is a ran-
dom variable in [0, 1]? There are two cases: the first when X follows the uniform
distribution, and the second when X follows the Gauss–Kuzmin distribution:

P(X≤ x)= ln(x+ 1)
ln(2)

.

We will later study the partial convergents to x, for example,

p1

q1
=

3
1
,
p2

q2
=

22
7
,
p3

q3
=

333
106

,
p4

q4
=

355
113

,
p5

q5
=

103993
33102

, ...

when x=π. The asymptotic distribution of denominators Qn, corresponding to
uniformly distributed X as n→∞, turns out to be related to our earlier work on
ln(TjX) statistics.

4.9.1 Uniform Distribution

Let γ denote the Euler–Mascheroni constant [2], ζ denote theRiemann zeta func-
tion and Lik denote the kth polylogarithm function [3]. If X is a random variable
following the uniform distribution on [0, 1], then

E(X)=

1∫
0

x dx=
1
2
, E(X2)=

1∫
0

x2dx=
1
3
,
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Var(X)=E(X2)− E(X)2 =
1
12

and, via the substitution y= 1/x,

E(TX) =

1∫
0

{
1
x

}
dx=

∞∫
1

{y}
y2 dy=

∞∑
n=1

n+1∫
n

y− n
y2 dy

=

∞∑
n=1

(
ln
(
n+ 1
n

)
− 1
n+ 1

)
= 1− γ= 0.4227843351...

(which is related to de la Vallée Poussin’s theorem [2, 4]),

E((TX)2)= ln(2π)− γ − 1,

Var(TX)= ln(2π)− γ2 + γ − 2= 0.0819148075...=(0.2862076300...)2,

E(X · TX)= 1− π2

12
,

Cov(X,TX)=E(X · TX)− E(X)E(TX)=
1
12

(
6− π2 + 6γ

)
,

ρ(X,TX) =
Cov(X,TX)√

Var(X)
√

Var(TX)
=

6− π2 + 6γ√
12
√

ln(2π)− γ2 + γ − 2
= −0.4098133678...

where ρ denotes cross-correlation. Likewise,

E(ln(X))=−1, E(ln(X)2)= 2, Var(ln(X))= 1,

and, via the substitutions y= 1/x and z= y− n,

E(ln(TX)) =

1∫
0

ln
{

1
x

}
dx=

∞∫
1

ln {y}
y2 dy=

∞∑
n=1

n+1∫
n

ln(y− n)
y2 dy

=

∞∑
n=1

1∫
0

ln(z)
(z+ n)2

dz=−
∞∑
n=1

1
n

ln
(
n+ 1
n

)

= −

(
ln(2) +

∞∑
k=2

(−1)k
ζ(k)− 1
k− 1

)
=−1.2577468869...

(this constant appears elsewhere [5, 6]),

E(ln(TX)2)=−2
∞∑
n=1

1
n

Li2

(
−1
n

)
= ζ(2)− 2

∞∑
k=1

(−1)k
ζ(k+ 1)− 1

k2 ,

Var(ln(TX))= 1.2665694005...=(1.1254196552...)2,
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E(ln(X) · ln(TX))=
∞∑
n=1

1
n

[
ln
(
n+ 1
n

)
(1 + ln(n))− Li2

(
1

n+ 1

)]

=−ζ(2) +
∞∑
k=2

[(
ζ(2)−

k−1∑
ℓ=1

1
ℓ2

)
(ζ(k)− 1)−

(
1 +

(−1)k

k− 1

)
ζ ′(k)

]
,

ρ(ln(X), ln(TX))=−0.2275522084....

The cumulative distribution for TX can be expressed in terms of the digamma
function:

F(x)=P(TX≤ x)=
∞∑
n=1

(
1
n
− 1
n+ x

)
= γ + ψ(x+ 1),

and its density in terms of the trigamma function:

f(x)=
∞∑
n=1

1
(n+ x)2

=ψ′(x+ 1).

For example, the median of TX is F−1(1/2)= 0.3846747346.... The cumulative
distribution for T2X is

G(x) = P(T2X≤ x)=
∞∑
n=1

(
F
(

1
n

)
− F

(
1

n+ x

))

=

∞∑
n=1

(
ψ

(
1
n
+ 1
)
− ψ

(
1

n+ x
+ 1
))

,

its density is

g(x)=
∞∑
n=1

ψ′
(

1
n+ x

+ 1
)

1
(n+ x)2

,

and its median is G−1(1/2)= 0.42278.... It is certainly inconvenient that F ̸=G !

4.9.2 Gauss–Kuzmin Distribution

IfX is a random variable following theGauss–Kuzmin distribution on [0, 1], then

E(X)=
1

ln(2)
− 1= 0.4426950408...=E(TX),

E(X2)= 1− 1
2 ln(2)

=E((TX)2),

Var(X)=
(3/2) ln(2)− 1

ln(2)2
= 0.0826735803...=(0.2875301381...)2 =Var(TX)

by invariance under T, and

E(X · TX)= 1− γ

ln(2)
, Cov(X,TX)=

(2− γ) ln(2)− 1
ln(2)2

,
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ρ(X,TX)=
(2− γ) ln(2)− 1
(3/2) ln(2)− 1

=−0.3474517057....

Likewise,

E(ln(X))=− π2

12 ln(2)
=−1.1865691104...=E(ln(TX)),

E(ln(X)2)=
3ζ(3)
2 ln(2)

=E(ln(TX)2),

Var(ln(X)) =
216 ln(2)ζ(3)− π4

144 ln(2)2
= 1.1933560457...

= (1.0924083695...)2 =Var(ln(TX)),

E(ln(X) · ln(TX)) =
1

ln(2)

∞∑
n=1

[
1
2

ln
(
n+ 1
n

)2

ln((n+ 1)n) + ln(n)Li2

(
−1
n

)
− ln(n+ 1)Li2

(
− 1
n+ 1

)
+ ln(n+ 1)Li2

(
1

(n+ 1)2

)
+ 2Li3

(
−1
n

)
− 2Li3

(
− 1
n+ 1

)
+ Li3

(
1

(n+ 1)2

)]
=

1
ln(2)

[
−3ζ(3)

2
+

∞∑
k=1

(
ζ(2k)− 1

k3 − ζ ′(2k)
k2 +

ζ ′′(2k)
2k

)]
,

ρ(ln(X), ln(TX))=−0.1858801270...= r1.

The median of TjX is
√

2− 1= 0.4142135623... for every j. We wish to under-
stand the decay rate of ρ(X,TjX) and ρ(ln(X), ln(TjX)) as j increases, but this
appears to be a difficult problem.

4.9.3 Variance of Sample Mean

Let us consider the sample mean

µ̂n(X)=−
1
n

∑
0≤j<n

ln(TjX),

that is, the average of the time series ln(X), ln(TX), . . ., ln(Tn−1X) built from iter-
ates ofT evaluated atX. (The negative signwill simplify subsequent formulation.)
It can be proved that

lim
n→∞

E (µ̂n(X))=
π2

12 ln(2)
= 1.1865691104...=µ,
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lim
n→∞

nVar (µ̂n(X)) = lim
n→∞

1
n

∑
0≤j<n,
0≤k<n

Cov(ln(TjX), ln(TkX))=σ2

≈ 216 ln(2)ζ(3)− π4

144 ln(2)2

(
1 +

2r1
1− r1

)
≈ 0.8

for awide variety of initial distributions forX on [0, 1]. The latter is a poor numer-
ical estimate (since it presumes that the lag-ℓ correlation rℓ is approximately rℓ1,
which is not true). It is inspired, in part, by Salamin [7]. A more precise estimate
will be given shortly.

4.9.4 Partial Convergents

The denominator Qn(X) of the nth partial convergent to X is connected to our
exposition via the formula

ln(Qn(X))︸ ︷︷ ︸
An

=−
∑

0≤j<n

ln(TjX)

︸ ︷︷ ︸
Bn

+ εn

where |εn|< c for all n, for some constant c. It is clear that

lim
n→∞

E(An)

n
= lim

n→∞

E(Bn)
n

=µ

and further known [8] that

0< lim
n→∞

Var(An)

n
<∞.

We wish to prove that

lim
n→∞

Var(An)

n
= lim

n→∞

Var(Bn)
n

.

From Bn=An − εn, deduce that

Var(Bn)=Var(An)− 2Cov(An, εn) + Var(εn);

hence

|Var(An)− Var(Bn)| ≤ 2 |Cov(An, εn)|+ Var(εn)

≤ 2
√

Var(An)Var(εn) + Var(εn)

≤ 2
√

Var(An)E(ε2n) + E(ε2n)

≤ 2c
√

Var(An) + c2;
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hence ∣∣∣∣Var(An)

n
− Var(Bn)

n

∣∣∣∣≤ 2c

√
Var(An)

n2 +
c2

n
→ 0

as n→∞. In particular,
Var(ln(Qn(X)))∼σ2n

and the importance of computing σ2 (as attempted using iterates of T) becomes
evident.

In fact, the existence of σ2 (in connection with the denominatorsQn) has been
known for a long time. Ibragimov [9], Philipp [10–12] and others [13–19] proved
the following Central Limit Theorem:

lim
n→∞

P

 1
n

ln(Qn(X))− µ
σ√
n

≤ t

=
1√
2π

t∫
−∞

exp
(
−u

2

2

)
du.

Nonumerical estimate of σ2 appeared until Flajolet &Vallée [8, 20, 21] computed
that

σ2 = λ′′1 (2)− λ′1(2)2 = 0.8621470373...=(0.9285187329...)2

=
1
4
(9.0803731646...)− µ2 =(0.5160624088...) · µ3,

where λ1(s) is the dominant eigenvalue of a family of linear operators (indexed
by s) on a certain infinite-dimensional function space. Lhote [22, 23] proved that
σ2 is polynomial-time computable and obtained higher accuracy. An elementary
expression for σ2 seems to be impossible. The quantities 4λ′′1 (2) or σ2/µ3 are
often called Hensley’s constant.

We close with Loch’s theorem [1, 24, 25]:

lim
n→∞

m(n, x)
n

=
6 ln(2) ln(10)

π2 = 0.9702701143...=(1.0306408341...)−1 =α

for almost all real x, where m(n, x) is the number of partial denominators of x
correctly predicted by the first n decimal digits of x. A corresponding Central
Limit Theorem was proved by Faivre [26, 27]:

lim
n→∞

P


m(n,X)

n
− α

θ√
n

≤ t

=
1√
2π

t∫
−∞

exp
(
−u

2

2

)
du

where

θ2 =
ασ2

µ2 =
864 ln(2)3 ln(10)

π6 σ2

= 0.5941388048...=(0.7708039990...)2.
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For example, the first 10000 decimal digits of π give 9757 partial denominators,
consistent with the value of α. A similar empirical confirmation of the value of
θ would be good to see.

Acknowledgments I thank Eugene Salamin, William Gosper, Philippe Flajolet
and Brigitte Vallée for helpful discussions in 1999. Regrettably, in early printings
of [28], the formula for σ2/µ3 is wrong by a factor of π6.
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4.10 Continued Fraction Transformation. II

As in our earlier essay [1], define T : [0, 1]→ [0, 1] by

T(x)=


{

1
x

}
if 0< x≤ 1,

0 if x= 0

where {ξ}= ξ − ⌊ξ⌋ denotes the fractional part of ξ. Previously, we examined
the moments of TjX and of ln(TjX), where X is a random variable in [0, 1]. The
distribution of X was assumed to be either uniform or Gauss–Kuzmin.

What can be said about themoments of
⌊
1/TjX

⌋
and of ln

⌊
1/TjX

⌋
?An answer

to this question helps in determining the asymptotic distribution of the first n
continued fraction “digits”, corresponding to uniformly distributedX as n→∞.

4.10.1 Uniform Distribution

Let γ denote the Euler–Mascheroni constant, ψ denote the, and ζ denote
the Riemann zeta function. If X is a random variable following the uniform
distribution on [0, 1], then

E
⌊

1
X

⌋
=

∞∫
1

⌊y⌋
y2 dy∼

∑
n≤N

n+1∫
n

n
y2 dy∼

∑
n≤N

n
(

1
n
− 1
n+ 1

)
∼
∑
n≤N

1
n+ 1

∼ ln(N),
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E
⌊

1
TX

⌋
=

∞∫
1

⌊
1
{y}

⌋
dy
y2 ∼

∑
n≤N

n+1∫
n

⌊
1

y− n

⌋
dy
y2

∼
∑
n≤N

1∫
0

⌊
1
z

⌋
dy

(z+ n)2
∼
∑
n≤N

∞∫
1

⌊w⌋
(1 + nw)2

dw

∼
∑
n≤N

∑
m≤N

m+1∫
m

m
(1 + nw)2

dw∼
∑
n≤N

∑
m≤N

m
n

(
1

1 + nm
− 1

1 + n(m+ 1)

)

∼
∑
n≤N

∑
m≤N

1
n(1 + nm)

∼
∑
m≤N

(
ψ

(
1 +

1
m

)
+ γ

)
∼ π2

6
ln(N)

as N→∞, via the substitutions y= 1/x, z= y− n and w= 1/z. Hence both
expected values are infinite. By contrast,

E
(
ln
⌊

1
X

⌋)
=

∞∫
1

ln ⌊y⌋
y2 dy=

∞∑
n=1

n+1∫
n

ln(n)
y2 dy=

∞∑
n=1

ln(n)
n(n+ 1)

= −
∞∑
k=2

(−1)kζ ′(k)= 0.7885305659...

( Lüroth analog of Khintchine’s constant [2]),

E

(
ln
⌊

1
X

⌋2
)
=

∞∑
n=1

ln(n)2

n(n+ 1)
=

∞∑
k=2

(−1)kζ ′′(k),

Var
(
ln
⌊

1
X

⌋)
= 1.1759638742...=(1.0844186803...)2,

E
(
ln
⌊

1
TX

⌋)
=

∞∑
n=1

∞∑
m=1

ln(m)
n

(
1

1 + nm
− 1

1 + n(m+ 1)

)

=
∞∑
n=1

∞∑
m=2

ln(m)− ln(m− 1)
n(1 + nm)

=
∞∑
m=2

(ln(m)− ln(m− 1))
(
ψ

(
1 +

1
m

)
+ γ

)

=

∞∑
k=2

(−1)kζ(k)
∞∑
j=1

(
1− k
j

)
ζ ′(j+ k− 1)

= 1.06479...,
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E

(
ln
⌊

1
TX

⌋2
)

=
∞∑
n=1

∞∑
m=1

ln(m)2

n

(
1

1 + nm
− 1

1 + n(m+ 1)

)

=
∞∑
m=2

(
ln(m)2 − ln(m− 1)2

)(
ψ

(
1 +

1
m

)
+ γ

)

= −
∞∑
k=2

(−1)kζ(k)
∞∑
j=1

(
1− k
j

)
ζ ′′(j+ k− 1),

Var
(
ln
⌊

1
TX

⌋)
= 1.49522...=(1.22279...)2.

We shall not attempt to compute the cross-moments

E
(
ln
⌊

1
X

⌋
· ln
⌊

1
TX

⌋)
or ρ

(
ln
⌊

1
X

⌋
, ln
⌊

1
TX

⌋)

and leave these as open problems.

4.10.2 Gauss–Kuzmin Distribution

IfX is a random variable following theGauss–Kuzmin distribution on [0, 1], then

E
⌊

1
X

⌋
=

1
ln(2)

∞∫
1

⌊y⌋
y(y+ 1)

dy∼ 1
ln(2)

∑
n≤N

n+1∫
n

n
y(y+ 1)

dy

∼ 1
ln(2)

∑
n≤N

n ln
(
1 +

1
n(n+ 2)

)
∼ 1

ln(2)
ln(N)∼E

⌊
1
TX

⌋

as N→∞. Hence both expected values are infinite. By contrast,

E
(
ln
⌊

1
X

⌋)
=

1
ln(2)

∞∑
n=1

ln(n) ln
(
1 +

1
n(n+ 2)

)

=
1

ln(2)

∞∑
j=2

(−1)j
2ζ ′(j)− 2j

(
ζ ′(j) + ln(2)

2j + ln(3)
3j

)
j

+(1− ln(2)) +
ln(3)
ln(2)

(
2
3
− ln

(
5
3

))
= 0.9878490568...= ln(K)=E

(
ln
⌊

1
TX

⌋)
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(Khintchine’s constant [2]),

E

(
ln
⌊

1
X

⌋2
)

=
1

ln(2)

∞∑
n=1

ln(n)2 ln
(
1 +

1
n(n+ 2)

)

= − 1
ln(2)

∞∑
j=2

(−1)j
2ζ

′′
(j)− 2j

(
ζ

′′
(j)− ln(2)2

2j −
ln(3)2

3j

)
j

+ ln(2) (1− ln(2)) +
ln(3)2

ln(2)

(
2
3
− ln

(
5
3

))
= E

(
ln
⌊

1
TX

⌋2
)
,

Var
(
ln
⌊

1
X

⌋)
= 1.4094310970...=(1.1871946331...)2 =Var

(
ln
⌊

1
TX

⌋)
.

The joint expectation

E
(
ln
⌊

1
X

⌋
· ln
⌊

1
TX

⌋)
simplifies to

1
ln(2)

∞∑
n=1

∞∑
m=1

ln(n) ln(m) ln
(
1 +

1
(1 + (n+ 1)m)(1 + n(m+ 1))

)
and can be numerically evaluated via suitable generalization of Kummer’s
method [3]. It follows that the cross-correlation is

ρ

(
ln
⌊

1
X

⌋
, ln
⌊

1
TX

⌋)
=−0.0876526887...= r1.

4.10.3 Variance of Sample Mean

The sample mean

µ̂n(X)=
1
n

∑
0≤j<n

ln
⌊

1
TjX

⌋
satisfies

lim
n→∞

E (µ̂n(X))= ln(K)= 0.9878490568...=µ,

lim
n→∞

nVar (µ̂n(X)) = lim
n→∞

1
n

∑
0≤j<n,
0≤k<n

Cov(ln(TjX), ln(TkX))=σ2

≈ Var
(
ln
⌊

1
X

⌋)(
1 +

2r1
1− r1

)
≈ 1.2

for a wide variety of initial distributions for X on [0, 1]. (No negative sign is
introduced this time in the definition of µ̂n(X), unlike before.)
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4.10.4 Continued Fraction Digits

If a1, a2, a3, . . . denote the partial denominators (digits) of X, then it is clear that

ln
(
(a1a2a3 · · · an)

1
n

)
=

1
n

∑
0≤j<n

ln
⌊

1
TjX

⌋
(no nonzero error εn is present here). Baladi &Vallée [4] proved that the following
Central Limit Theorem is true:

lim
n→∞

P

(
1
n (ln a1 + ln a2 + · · ·+ ln an)− µ

σ√
n

≤ t

)
=

1√
2π

t∫
−∞

exp
(
−u

2

2

)
du

and Lhote [5] computed that

σ2 = 1.2297301427...=(1.1089319829...)2.

What happens if we omit the logarithms on the left-hand side? Since ak has
infinite expectation, it is not surprising that asymptotic normality fails. Lévy [6],
Philipp [7], Heinrich [8] and Hensley [9] proved that

lim
n→∞

P

(
ln(2)
n

n∑
k=1

ak − (ln(n)− γ − ln(ln(2)))≤ t

)
=

t∫
−∞

f(u) du,

where the density f of the limiting stable distribution S(1, 1, π/2, 0; 1) is given by

f(u)=
1
π

∞∫
0

sin(π v) exp(−v ln(v)− u v) dv.

See Figure 4.3. The median of f is 1.35578... and the mode of f is −0.22278....
Extreme asymmetry and a heavy right-tail are the most noticeable features here!

0

0.02

0.06

0.10

0.14

0.18

2 4 6
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8 10 12–2

Figure 4.3 Two non-normal limiting stable distributions.
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As a footnote, let us return to some very simple ideas. If X1, X2, . . ., Xn is
an independent sample from the uniform distribution and Y1, Y2, . . ., Yn is an
independent sample from the Gauss–Kuzmin distribution, then

P


1
n

n∑
k=1

Xk − 1
2

1
6

√
3
n

≤ t

→ 1√
2π

t∫
−∞

exp
(
−u

2

2

)
du

←P


1
n

n∑
k=1

Yk −
(

1
ln(2) − 1

)
1

ln(2)

√
(3/2) ln(2)−1

n

≤ t


as n→∞. Also, the distributions of reciprocals have densities

d
dt

P
(

1
X
≤ t
)
=


1
t2

if t≥ 1,

0 otherwise;

d
dt

P
(

1
Y
≤ t
)
=


1

ln(2)
1

t (t+ 1)
if t≥ 1,

0 otherwise.

The expectations of 1/X and of 1/Y are infinite. Our ideas hence become vastly
more complicated at this point [9]:

P

(
1
n

n∑
k=1

1
Xk
− (ln(n) + 1− γ)≤ t

)
→

t∫
−∞

f(u) du

where f is exactly as before, and

P

(
1
n

n∑
k=1

1
Yk
− ln(n) + 1− ln(2)− γ

ln(2)
≤ t

)
→

t∫
−∞

g(u) du,

where

g(u)=
1
π

∞∫
0

sin
(
π v

ln(2)

)
exp
(
− v

ln(2)
ln(v)− u v

)
dv

is the density of the limiting stable distribution S(1, 1, π/(2 ln(2)), 0; 1). The
median of g is 2.48474... and the mode of g is 0.20735...; asymmetry and a
heavy right-tail again dominate. A wealth of materials on calculating stable
distributions is available [10–12].
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4.11 Continued Fraction Transformation. III

We continue the discussion from our earlier essays [1, 2], turning attention
first to two variations on regular continued fractions (RCFs). For reasons of
space, only first-order results (means) will be presented. After this, we exhibit
formulas connected with Lüroth representations and with ordinary decimal
representations.

4.11.1 Nearest Integer Continued Fractions

Define T : [−1/2, 1/2]→ [−1/2, 1/2] by

T(x)=


1
x
−
⌊
1
x
+

1
2

⌋
if − 1/2≤ x≤ 1/2 and x ̸= 0,

0 if x= 0.
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For example,

π − 3= 0.141592...,
⌊

1
π−3 + 1

2

⌋
= 7,

T(π − 3)= 0.062513...,
⌊

1
T(π−3) +

1
2

⌋
= 16,

T2(π − 3)=−0.003405...,
⌊

1
T2(π−3) +

1
2

⌋
=−294,

T3(π − 3)= 0.365409...,
⌊

1
T3(π−3) +

1
2

⌋
= 3,

T4(π − 3)=−0.263340...,
⌊

1
T4(π−3) +

1
2

⌋
=−4

and

π = 3 +
1|
|7

+
1|
|16

+
1|

|−294
+

1|
|3

+
1|
|−4

+
1|
|5

+
1|
|−15

+
1|
|−3

+
1|
|2

+ · · ·

= 3 +
1|
|7

+
1|
|16
− 1|
|294

− 1|
|3
− 1|
|4
− 1|
|5
− 1|
|15

+
1|
|3
− 1|
|2

+ · · ·

is the nearest integer continued fraction (NICF) expansion forπ. This is also called
a centered continued fraction. Let X be a random variable in [−1/2, 1/2] with
density

d
dx

P(X≤ x)=


1

ln(φ)
1

φ+ 1 + x
if − 1/2≤ x< 0,

1
ln(φ)

1
φ+ x

if 0≤ x≤ 1/2

where φ=(1 +
√

5)/2 denotes the Golden mean [3]. What is the mean of
ln(|X|)? This is equal to the asymptotic mean of (1/n) ln qn, corresponding to
denominators qn in the partial convergents to x:

p1

q1
=

3
1
,
p2

q2
=

22
7
,
p3

q3
=

355
113

,
p4

q4
=

104348
33215

,
p5

q5
=

312689
99532

, ...,

as n→∞. It follows that [4, 5]

E(ln(|X|)) =
1

ln(φ)

0∫
−1/2

ln(−x)
φ+ 1 + x

dx+
1

ln(φ)

1/2∫
0

ln(x)
φ+ x

dx

= − π2

12 ln(φ)
=−1.7091579853...=E(ln(|TX|)).
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Also, what is the mean of ln(|a1|), where a1, a2, a3, . . . denote the partial
denominators (digits) ofX ? Using the substitution y=±1/x, it follows that [6, 7]

E
(
ln

∣∣∣∣⌊ 1
X

+
1
2

⌋∣∣∣∣) =
1

ln(φ)

0∫
−1/2

ln
⌊
− 1

x +
1
2

⌋
φ+ 1 + x

dx+
1

ln(φ)

1/2∫
0

ln
⌊

1
x +

1
2

⌋
φ+ x

dx

=
1

ln(φ)

∞∫
2

(
ln
⌊
y+ 1

2

⌋
y((φ+ 1)y− 1)

+
ln
⌊
y+ 1

2

⌋
y(φ y+ 1)

)
dy

=
1

ln(φ)

5/2∫
2

(
ln(2)

y((φ+ 1)y− 1)
+

ln(2)
y(φ y+ 1)

)
dy

+
1

ln(φ)

∞∑
n=3

n+1/2∫
n−1/2

(
ln(n)

y((φ+ 1)y− 1)
+

ln(n)
y(φ y+ 1)

)
dy

=
ln(2)
ln(φ)

ln
(

5φ+ 3
5φ+ 2

)

+
1

ln(φ)

∞∑
n=3

ln(n) ln

(
(φ+ 1)(n+ 1

2 )− 1

(φ+ 1)(n− 1
2 )− 1

φ(n− 1
2 ) + 1

φ(n+ 1
2 ) + 1

)

= 1.6964441175...=E
(
ln

∣∣∣∣⌊ 1
TX

+
1
2

⌋∣∣∣∣).
These two constants are the NICF analogs of Lévy’s constant and Khintchine’s
constant, respectively. A Central Limit Theorem exists in both cases [8], but the
associated variances have not yet been numerically evaluated.

4.11.2 Odd Digit Continued Fractions

Define T : [0, 1]→ [0, 1] by

T(x)=



1
x
−
⌊
1
x

⌋
if
⌊
1
x

⌋
≡ 1mod 2 and x ̸= 0,⌈

1
x

⌉
− 1
x

if
⌈
1
x

⌉
≡ 1mod 2 and x ̸= 0,

0 if x= 0.
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For example,

π − 3= 0.141592...,
⌊

1
π−3

⌋
= 7,

T(π − 3)= 0.062513...,
⌊

1
T(π−3)

⌋
= 15,

T2(π − 3)= 0.996594...,
⌊

1
T2(π−3)

⌋
= 1,

T3(π − 3)= 0.003417...,
⌈

1
T3(π−3)

⌉
= 293,

T4(π − 3)= 0.365409...,
⌈

1
T4(π−3)

⌉
= 3,

T5(π − 3)= 0.263340...,
⌊

1
T5(π−3)

⌋
= 3,

T6(π − 3)= 0.797366...,
⌊

1
T6(π−3)

⌋
= 1

and

π = 3 +
1|
|7

+
1|
|15

+
1|
|1

+
1|
|293

− 1|
|3
− 1|
|3

+
1|
|1

+
1|
|3

+
1|
|1

+
1|
|15

+ · · ·

= 3 +
1|
|7

+
1|
|15

+
1|
|1

+
1|
|293

+
1|
|−3

+
1|
|3

+
1|
|1

+
1|
|3

+
1|
|1

+
1|
|15

+ · · ·

is the odd digit continued fraction (ODCF) expansion for π. The phrase “partial
denominator” or “partial quotient” often replaces the word “digit”. Let X be a
random variable in [0, 1] with density

d
dx

P(X≤ x)= 1
3 ln(φ)

(
1

φ− 1 + x
+

1
φ+ 1− x

)
where φ is as before. What is the mean of ln(X)? This is equal to the asymptotic
mean of (1/n) ln qn, corresponding to denominators qn in the partial convergents
to x :

p1

q1
=

3
1
,
p2

q2
=

22
7
,
p3

q3
=

333
106

,
p4

q4
=

355
113

,
p5

q5
=

104348
33215

, ...,

as n→∞. It follows that [9, 10]

E(ln(X)) =
1

3 ln(φ)

1∫
0

(
ln(x)

φ− 1 + x
+

ln(x)
φ+ 1− x

)
dx

= − π2

18 ln(φ)
=−1.1394386568...=E(ln(TX)).

Also, what is the mean of ln(|a1|), where a1, a2, a3, . . . denote the digits ofX ? Let
⌊z⌉= ⌊z⌋ if ⌊z⌋ is odd and ⌊z⌉= ⌈z⌉ otherwise. Using the substitution y= 1/x, it
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follows that [11]

E
(
ln
⌊

1
X

⌉)
=

1
3 ln(φ)

1∫
0

ln
⌊
1
x

⌉(
1

φ− 1 + x
+

1
φ+ 1− x

)
dx

=
1

3 ln(φ)

∞∫
1

ln ⌊y⌉
(

1
y((φ− 1)y+ 1)

+
1

y((φ+ 1)y− 1)

)
dy

=
1

3 ln(φ)

∞∑
n=1

2n+2∫
2n

ln(2n+ 1)
(

1
y((φ− 1)y+ 1)

+
1

y((φ+ 1)y− 1)

)
dy

=
1

3 ln(φ)

∞∑
n=1

ln(2n+ 1) ln
(

2(φ+ 1)(n+ 1)− 1
2(φ+ 1)n− 1

2(φ− 1)n+ 1
2(φ− 1)(n+ 1) + 1

)
= 1.0283554474...=E

(
ln
⌊

1
TX

⌉)
.

These two constants are the ODCF analogs of Lévy’s constant and Khintchine’s
constant, respectively. ACentral Limit Theorem exists in both cases [8], but again
the associated variances have not yet been numerically evaluated.

4.11.3 Lüroth Representations

Define A : [0, 1]→ [0, 1] by

A(x)=


⌊
1
x

⌋(
x
⌈
1
x

⌉
− 1
)

if x ̸= 0,

0 if x= 0

and B : [0, 1]→ [0, 1] by

B(x)=


⌈
1
x

⌉(
1− x

⌊
1
x

⌋)
if x ̸= 0,

0 if x= 0.

For example,

a1 =
⌊

1
π−3

⌋
= 7, b1 =

⌊
1

π−3

⌋
= 7,

a2 =
⌊

1
A(π−3)

⌋
= 1, b2 =

⌊
1

B(π−3)

⌋
= 14,

a3 =
⌊

1
A2(π−3)

⌋
= 1, b3 =

⌊
1

B2(π−3)

⌋
= 7,

a4 =
⌊

1
A3(π−3)

⌋
= 1, b4 =

⌊
1

B3(π−3)

⌋
= 1,
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a5 =
⌊

1
A4(π−3)

⌋
= 2, b5 =

⌊
1

B4(π−3)

⌋
= 1,

a6 =
⌊

1
A5(π−3)

⌋
= 1, b6 =

⌊
1

B5(π−3)

⌋
= 1,

a7 =
⌊

1
A6(π−3)

⌋
= 4, b7 =

⌊
1

B6(π−3)

⌋
= 15,

a8 =
⌊

1
A7(π−3)

⌋
= 23, b8 =

⌊
1

B7(π−3)

⌋
= 1

and

π = 3 +
1

a1 + 1
+

∞∑
n=2

(
n−1∏
k=1

1
ak(ak + 1)

)
1

an + 1

= 3 +
1
b1

+
∞∑
n=2

(
n−1∏
k=1

1
bk(bk + 1)

)
(−1)n−1

bn

are the positive Lüroth and alternating Lüroth representations for π, respectively.
The limiting constants are the same whether we use as or bs. For uniformly
distributed X, it follows that

E
(
ln
⌊

1
X

⌋)
=

∞∑
n=1

ln(n)
n(n+ 1)

=−
∞∑
k=2

(−1)kζ ′(k)= 0.7885305659...

(Lüroth analog of Khintchine’s constant [4, 12, 13]),

E
(
ln
⌈

1
X

⌉)
=

∞∑
n=1

ln(n+ 1)
n(n+ 1)

=−
∞∑
k=2

ζ ′(k)= 1.2577468869...

(which appeared earlier [1]),

E
(
ln
⌊

1
X

⌋
+ ln

⌈
1
X

⌉)
=

∞∑
n=1

ln(n(n+ 1))
n(n+ 1)

= −2
∞∑
k=1

ζ ′(2k)= 2.0462774528...

(Lüroth analog of Lévy’s constant [14]),

E

(
ln
⌊

1
X

⌋2
)
=

∞∑
n=1

ln(n)2

n(n+ 1)
=

∞∑
k=2

(−1)kζ ′′(k),

E

(
ln
⌈

1
X

⌉2
)
=

∞∑
n=1

ln(n+ 1)2

n(n+ 1)
=

∞∑
k=2

ζ ′′(k),

Var
(
ln
⌊

1
X

⌋)
= 1.1759638742...=(1.0844186803...)2,
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Var
(
ln
⌈

1
X

⌉)
= 0.7543859444...=(0.8685539387...)2,

E
(
ln
⌊

1
X

⌋
· ln
⌈

1
X

⌉)
=

∞∑
n=1

ln(n) ln(n+ 1)
n(n+ 1)

=

∞∑
k=2

(−1)kζ ′′(k) +
∞∑
j=1

1
j

∞∑
k=2

(−1)j+kζ ′(j+ k),

Var
(
ln
⌊

1
X

⌋
+ ln

⌈
1
X

⌉)
= 3.8012096188...=(1.9496691049...)2.

It can be proved whenever i ̸= j that digits ai and aj are independent random
variables (unlike any of the continued fraction expansions we have examined),
hence ρ(ln ai, ln aj)= 0. As a consequence, two relevant Central Limit Theorems
are easy to state: as n→∞, both of the distributions

P


(

1
n

n∑
i=1

ln(ai)

)
−0.7885305659...

1.0844186803...√
n

≤ t

, P


(

1
n

n∑
i=1

ln(ai(ai+1))

)
−2.0462774528...

1.9496691049...√
n

≤ t


tend to the standard normal. (For earlier expansions, the computation of σ was
complicated by the existence of nonzero correlations.)

Here is an unexplained coincidence. Consider a random ordered (strongly)
binary tree with N vertices, where N is odd. Janson [15, 16] proved that

E
(

H√
N
· W√

N

)
→ 1 +

∞∑
n=1

ln [n(n+ 1)]
n(n+ 1)

= 3.0462774528...

as N→∞ (which implies that the cross-correlation between heightH and width
W is asymptotically −0.6428251027...). The appearance of the same infinite
series in two seemingly distant settings is fascinating! Why should the joint dis-
tribution of height and width of trees be at all related to the ergodic theory of
numbers?

Since

P(aj= k)=
1

k(k+ 1)
=

1/k∫
1/(k+1)

dx=P
(
k<

1
X
< k+ 1

)

where X is uniformly distributed, it follows that [2, 17, 18]

P

1
n

n∑
j=1

aj − (ln(n) + 1− γ)≤ t

→ t∫
−∞

f(u) du
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and f is the density function

f(u)=
1
π

∞∫
0

sin(π v) exp(−v ln(v)− u v) dv

of the limiting stable distribution S(1, 1, π/2, 0; 1). Similarly precise characteri-
zations of digit sums for NICF and ODCF remain open.

4.11.4 Ordinary Decimal Representations

At the risk of being anticlimatic, we define T : [0, 1]→ [0, 1] by

T(x)= {10 x}= 10 x− ⌊10 x⌋

and digits a1 = ⌊10 x⌋, a2 = ⌊10Tx⌋, a3 =
⌊
10T2x

⌋
, .... For uniformly distributed

X, it follows that

E(⌊10X⌋)= 9
2
, Var(⌊10X⌋)= 33

4
and, because ai and aj are independent random variables whenever i ̸= j,

P


1
n

n∑
j=1

aj − 9
2

1
2

√
33
n

≤ t

→ 1√
2π

t∫
−∞

exp
(
−u

2

2

)
du.

We merely mention the Newcomb–Benford law [19–21], which is a different topic
altogether (leading nonzero digit phenomenology) and yet seemingly related.
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4.12 Continued Fraction Transformation. IV

Let ⌊x+ iy⌋= ⌊x⌋+ i ⌊y⌋, where i is the imaginary unit. Extending the regular
continued fraction algorithm [1] from the real interval [0, 1] to the complex square
[0, 1] + i[0, 1] is problematic: the transformation

T(z)=


1
z
−
⌊
1
z

⌋
if z ̸= 0,

0 if z= 0

gives divergent continued fractions of the form

1|
|−i

+
1|
|−i

+
1|
|−i

+ · · ·

whenever

z=
√
p

p− 1
+ i

1
2

for any odd prime number p. This observation appears to be new. Nakada [2]
noted divergence given any z satisfying both |z|> 1 and |z− i|> 1, for which p= 3
is a limiting case.

Extending the nearest integer continued fraction algorithm [3] to the com-
plex square [−1/2, 1/2] + i[−1/2, 1/2] at least makes sense! The transformation
here is

T(z)=


1
z
−
⌊
1
z
+

1
2

⌋
if z ̸= 0,

0 if z= 0
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and is calledHurwitz’s algorithm [4, 5]. Consider the eight regions into which the
four circular arcs |z± 1|= 1, |z± i|= 1 partition the square. The additional four
circular arcs |z± 1± i|= 1 subdivide four of the regions,making a total of twelve.
Hensley [6–8] proved that the invariant density function for T is smooth on the
interiors of the twelve regions and continuous everywhere except perhaps along
the eight circular arcs. No closed-form expression for the density is known. For a
complex random variable Z following this distribution, Monte Carlo simulation
suggests that

E(ln(|Z|))= 1.092766....

We shall not pursue this topic further, opting instead to discuss the most natural
extension from R to C yet found of continued fraction theory.

4.12.1 Schmidt’s Complex Continued Fractions

Define matrices

A=

(
1 1
0 1

)
, B=

(
0 1
1 0

)
.

Regular continued fractions can be thought of as infinite products of matrices;
for example,

π= 3 +
1|
|7

+
1|
|15

+
1|
|1

+
1|
|292

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|2

+
1|
|1

+
1|
|3

+ · · ·

is identified with

A3BA7BA15BA1BA292BA1BA1BA1BA2BA1BA3B · · · .

If the above product is multiplied on the right by(
1 0 1
0 1 1

)
,

yielding (
p(1) p(2) p(1) + p(2)

q(1) q(2) q(1) + q(2)

)
,

then the ratios p(1)/q(1), p(2)/q(2) and
(
p(1) + p(2)

)
/
(
q(1) + q(2)

)
each approach

π as more terms are included in the product. For later convenience, let p(3) =
p(1) + p(2) and q(3) = q(1) + q(2).

Define instead matrices [9–12]

V1 =

(
1 i
0 1

)
, V2 =

(
1 0
−i 1

)
, V3 =

(
1− i i
−i 1 + i

)
,

C=

(
1 −1 + i

1− i i

)
,
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E1 =

(
1 0

1− i i

)
, E2 =

(
1 −1 + i
0 i

)
, E3 =

(
i 0
0 1

)
.

With this enhanced “alphabet”, the real number π can be represented by

E2V2
1V

7
3V

15
1 V

1
3V

292
1 V1

3V
1
1V

1
3V

2
1V

1
3V

3
1 · · ·

and the interpretation of convergence (ratios of first-row elements to second-row
elements) is identical to before.

For the complex number ei, the matrix representation can be proved to
be [9, 11]

CCV1
3CCV

3
3CCV

5
3CCV

7
3CCV

9
3CCV

11
3 CCV

13
3 CCV

15
3 CCV

17
3 CCV

19
3 . . .

and for the number πei/4, it can be calculated to be

V1
2E2V1

3CV
2
1E3V1

2CE3CE1CE2CE1V6
3CV

1
2V

4
3E2CE2V2

1CV
1
2V

1
3V

1
1E3C

E1V2
2CV

1
3V

1
1V

4
3E2V2

3CE1V3
2CV

1
3E2V1

3CV
1
2E1V2

2CV
1
1E2V1

1CV
6
2E3V12

2 C

V1
3V

1
1V

1
2V

1
1E3CV80

1 E3V32
1 CV

1
2V

1
1E3CE2V1

1CE1V3
2CV

1
1V

2
2E3V3

2V
1
1CV

1
1V

1
2

E3V1
2V

2
1V

2
2CV

8
3E1V19

3 V
5
2V

1
3CE2V1

1CV
6
3E1V6

3CV
1
1E2V1

2CV
2
3E2V3

3CV
5
2E1V4

2

CV1
2E1V2

2CV
2
1E3V4

1CV
1
2V

3
1E3CV1

3E1V2
3CE2V1

2V
1
1V

1
2V

1
3CV

1
1V

2
2E3V2

2CV
1
3

E2CE3V2
1CV

2
2E3CE1V1

3V
1
1V

1
3CV

8
2E3CV1

3E1V2
3CV

3
2V

3
1E3V3

1V
1
3CE1V1

3C

V1
1E2CE3V1

3CE1V2
3V

3
2V

1
3CV

1
2V

1
1V

1
3V

5
1V

1
3V

2
1E2CE1V2

2CE2V1
1CV

2
3V

1
1E3V1

1

CV1
2V

1
1V

1
3E1V3

3CE3CV1
2E1CE3CV3

3V
2
1V

1
3V

1
2V

1
1E3CV1

2E1V1
1V

1
2V

1
3CE2CE1

V1
3CE3V2

1CE2CE3CE1CV1
1V

1
2E3CE1V1

2CV
4
2E3V3

1CV
2
3E2V4

1CE1CV2
1V

2
3

V1
1V

1
3E2V5

3CV
1
1V

1
2V

1
3V

2
2E2CV1

3E1V1
3CV

1
3V

1
2V

1
1V

1
2V

8
1E2V4

1CV
2
2E3CE2CV1

1

E2V2
1CV

1
3E3V1

2CV
1
1V

1
3V

2
1V

4
3E2V3

3CV
3
1E2V3

1CV
1
1E2V1

3V
1
2V

1
1CV

1
1E3V1

1V
1
2

CV2
1V

1
2V

1
1E3V3

1CV
1
1E2CV1

3E2V2
1CV

6
1E2V4

1CCCV
2
1E3V2

1CE1V1
3V

1
2V

1
3V

1
2 . . . .

Note that powers of Vj are collected together, but not powers of C or Ej. The
terms of the matrix representation are hence

T1 =C, T2 =C, T3 =V1
3, T4 =C, T5 =C, T6 =V3

3, . . .

for ei and

T1 =V1
2, T2 =E2, T3 =V1

3, T4 =C, T5 =V2
1, T6 =E3, . . .

for πei/4. This convention will be crucial later: the phrase “full terms” will some-
times be used for emphasis. We now give Schmidt’s algorithm for generating such
chains of matrices.

Let C and C∗ denote two distinct complex planes. Define sets

F(I)= {z∈C : Im(z)≥ 0} ,
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F∗(I)=
{
z∈C∗ : 0≤Re(z)≤ 1, Im(z)≥ 0,

∣∣∣∣z− 1
2

∣∣∣∣≥ 1
2

}
and subsets

F(V1)= {z∈F(I) : Im(z)≥ 1} ,

F(V2)=

{
z∈F(I) :

∣∣∣∣z− i
2

∣∣∣∣≤ 1
2

}
,

F(V3)=

{
z∈F(I) :

∣∣∣∣z− (1 +
i
2

)∣∣∣∣≤ 1
2

}
,

F(C)=


z∈F(I) : 0<Re(z)< 1,

1
2
< Im(z)< 1,∣∣∣∣z− i

2

∣∣∣∣> 1
2
,

∣∣∣∣z− (1 +
i
2

)∣∣∣∣> 1
2

 ,

F(E1)=


z∈F(I) : 0≤Re(z)< 1, 0≤ Im(z)<

1
2
,∣∣∣∣z− i

2

∣∣∣∣> 1
2
,

∣∣∣∣z− (1 +
i
2

)∣∣∣∣> 1
2

 ,

F(E2)=

{
z∈F(I) :Re(z)> 1, 0≤ Im(z)< 1,

∣∣∣∣z− (1 +
i
2

)∣∣∣∣> 1
2

}
,

F(E3)=

{
z∈F(I) :Re(z)< 0, 0≤ Im(z)< 1,

∣∣∣∣z− i
2

∣∣∣∣> 1
2

}
,

F∗(V1)=

{
z∈F∗(I) : 0≤Re(z)≤ 1, Im(z)> 1,

∣∣∣∣z− (1
2
+ i
)∣∣∣∣> 1

2

}
,

F∗(V2)=


z∈F∗(I) : 0≤Re(z)<

1
2
, 0≤ Im(z)≤ 1,∣∣∣∣z− 1

2

∣∣∣∣≥ 1
2
,

∣∣∣∣z− (1
2
+ i
)∣∣∣∣> 1

2

 ,

F∗(V3)=


z∈F∗(I) :

1
2
<Re(z)≤ 1, 0≤ Im(z)≤ 1,∣∣∣∣z− 1

2

∣∣∣∣≥ 1
2
,

∣∣∣∣z− (1
2
+ i
)∣∣∣∣> 1

2

 ,

F∗(C)=
{
z∈F∗(I) :

∣∣∣∣z− (1
2
+ i
)∣∣∣∣≤ 1

2

}
.

The letter F suggests “Farey set” and F(C), for instance, is the image of the inte-
rior of F∗(I) under the action of C, where Cz is the value of the linear fractional
function

Cz=
(

1 −1 + i
1− i i

)
z=

z+ (−1 + i)
(1− i)z+ i

, z∈F∗(I).

Note that each of the seven matrices is invertible and, for instance,

C−1z=
(
−1 1 + i
−1− i i

)
z=
−z+ (1 + i)
(−1− i)z+ i

.
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Schmidt’s transformation T maps the disjoint union F(I) ∪ F∗(I) into F(I) ∪
F∗(I) via the following formula:

T(z, ε) =


(
V−1
j z, ε

)
if (z∈F(Vj) ∧ ε= 1) ∨ (z∈F∗(Vj) ∧ ε= 0),(

E−1
j z, 1 − ε

)
if z∈F(Ej) ∧ ε= 1,(

C−1z, 1 − ε
)

if (z∈F(C) ∧ ε= 1) ∨ (z∈F∗(C) ∧ ε= 0) ,

=



(z− i, ε) if (z∈F(V1) ∧ ε= 1) ∨ (z∈F∗(V1) ∧ ε= 0),( z
iz+ 1

, ε
)

if (z∈F(V2) ∧ ε= 1) ∨ (z∈F∗(V2) ∧ ε= 0),(
(1 + i)z− i
iz+ (1 − i)

, ε

)
if (z∈F(V3) ∧ ε= 1) ∨ (z∈F∗(V3) ∧ ε= 0),(

z
(1 + i)z− i

, 1 − ε

)
if z∈F(E1) ∧ ε= 1,(

z− (1 + i)
−i , 1 − ε

)
if z∈F(E2) ∧ ε= 1,

(−iz, 1 − ε) if z∈F(E3) ∧ ε= 1,(
−z+ (1 + i)
(−1 − i)z+ i

, 1 − ε

)
if (z∈F(C) ∧ ε= 1) ∨ (z∈F∗(C) ∧ ε= 0)

where j= 1, 2, 3 and ε= 0, 1. The chains for π, ei and πei/4 were obtained by
iterating T with starting value ε= 1, meaning that π, ei and πei/4 are thought of
as residing in F(I). Clearly π /∈F∗(I) and ei /∈F∗(I), but πei/4 can thought of as
residing in F∗(I) as well. Starting with ε= 0 instead, the dual chain for πei/4 is

CV2
1E2V1

3V
1
1CE1CV1

3E1CV1
3E2V1

3CV
5
2E1V1

1CE2V4
1CV

2
3E2V2

2CV
1
2E3

V1
2CV

2
3E1V1

2V
1
3CV

1
1E2V3

1CV
4
3E1V1

3CE2CV3
3E1V1

3CE3V1
1CV

12
2 E1V7

2

V1
1CE1V1

3V
1
2V

1
3CV

32
3 E1V80

3 CE1V1
2CE3CV1

3V
3
1E2CE1V1

3CV
2
1E3V1

1CE1 . . . .

Dual chains will not be mentioned again, since the ergodic results for chains we
seek are the same as ergodic results for dual chains. The associated geometry of
Schmidt’s algorithm is well-illustrated in [6, 13].

4.12.2 Invariant Density

Let h :R2→R be given by

h(x, y)=
1
x y
− 1
x2 arctan

(
x
y

)
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and f̃ :F(I) ∪ F∗(I)→F(I) ∪ F∗(I) be given by

f̃(z)=


1

2π2

(
h(x, y) + h(1− x, y) + h(x2 − x+ y2, y)

)
if z= x+ iy∈F(I),

1
2π

1
y2 if z= x+ iy∈F∗(I).

The probability density function f̃ is continuous everywhere except at the points
0, 1∈F(I) and 0, 1∈F∗(I).

Define a constant

κ=
24√
15

arccos
(

1
4

)
− 2π

and the Jacobian determinant

∥Vjz∥=
∣∣∣∣ ddz (Vjz)

∣∣∣∣2
for each j= 1, 2, 3. For example,

V2z=
z

−i z+ 1
=

x
x2 + (y+ 1)2

+ i
x2 + y(y+ 1)
x2 + (y+ 1)2

,

V3z=
(1− i)z+ i
−i z+ (1 + i)

=
x(x− 1) + (y+ 1)2

(x− 1)2 + (y+ 1)2
+ i

(x− 1)2 + y(y+ 1)
(x− 1)2 + (y+ 1)2

and

∥V2z∥=
1

|−i z+ 1|4
=

1

(x2 + (y+ 1)2)2
,

∥V3z∥=
1

|−i z+ (1 + i)|4
=

1

((x− 1)2 + (y+ 1)2)2
.

The invariant probability density function f is given by

f(z)=


π

κ
f̃(z) if z∈F(E1) ∪ F(E2) ∪ F(E3) ∪ F(C) ∪ F∗(C),

π

κ

(
f̃(z)− f̃(Vjz) ∥Vjz∥

)
if z∈F(Vj) ∪ F∗(Vj), 1≤ j≤ 3

where, as always, a union involving F and F∗ is a disjoint one. Consequences
of this remarkable explicit formula follow in the next two sections. Note, for
example,

f(z)=
π

κ

(
1
y2 −

1

(x2 + y(y+ 1))2

)
for z∈F∗(V2) and

f(z)=
π

κ

(
1
y2 −

1

((x− 1)2 + y(y+ 1))2

)
for z∈F∗(V3). Over and beyond the singularities at points 0, 1∈F(I) and 0, 1∈
F∗(I), there are jump discontinuities at the boundaries of F(Vj) and F∗(C).
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4.12.3 Analog of Khintchine’s Constant

For each term Tn in the matrix representation of z, define the corresponding
continued fraction “digit”

αn(z)=
{
m if Tn=Vm

j for some 1≤ j≤ 3,
1 otherwise.

In the case z=πei/4, we have α1 =α2 =α3 =α4 = 1, α5 = 2, α6 = 1 and α16 = 6,
α19 = 4. Define also

Ψ(x)=π − 2√
1− x2

arccos(x).

It can be shown that

F(Vm
1 )= {z∈F(I) : Im(z)≥m} ,

F(Vm
2 )=

{
z∈F(I) :

∣∣∣∣z− i
2m

∣∣∣∣≤ 1
2m

}
,

F(Vm
3 )=

{
z∈F(I) :

∣∣∣∣z− (1 +
i

2m

)∣∣∣∣≤ 1
2m

}
,

F∗(Vm
1 )=

{
z∈F∗(I) : 0≤Re(z)≤ 1, Im(z)>m,

∣∣∣∣z− (1
2
+m i

)∣∣∣∣> 1
2

}
,

F∗(Vm
2 )=


z∈F∗(I) : 0≤Re(z)<

1
m2 + 1

, 0≤ Im(z)≤ 1
m
,∣∣∣∣z− 1

2

∣∣∣∣≥ 1
2
,

∣∣∣∣z− ( 1
2m2 +

i
m

)∣∣∣∣> 1
2m2

 ,

F∗(Vm
3 )=


z∈F∗(I) :

m2

m2 + 1
<Re(z)≤ 1, 0≤ Im(z)≤ 1

m
,∣∣∣∣z− 1

2

∣∣∣∣≥ 1
2
,

∣∣∣∣z− (2m2 − 1
2m2 +

i
m

)∣∣∣∣> 1
2m2


and hence∫

F(Vm
j )

f(z) dz=
1
2κ

(
Ψ

(
1

2m

)
−Ψ

(
1

2(m+ 1)

))
=

∫
F∗(Vm

j )

f(z) dz
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for each 1≤ j≤ 3 and all m≥ 1. By ergodicity, the sum (1/N)
∑

n≤N ln(αn(z))
tends almost certainly as N→∞ to

∫
F(I)∪F∗(I)

ln(α1(z))f(z) dz= 2
3∑
j=1

∞∑
m=1

∫
F(Vm

j )−F(Vm+1
j )

ln(m)f(z) dz

=
3
κ

∞∑
m=2

ln(m)
(
Ψ

(
1

2m

)
− 2Ψ

(
1

2(m+ 1)

)
+Ψ

(
1

2(m+ 2)

))

=
3
κ

(
ln(2)Ψ

(
1
4

)
+

∞∑
m=3

ln
(
1− 1

(m− 1)2

)
Ψ

(
1

2m

))
= ln(1.2617651749...)= 0.2325116730....

which is the Schmidt analog of Khintchine’s constant [10].
In the real case, the almost-certain divergence of (1/N)

∑
n≤N αn(z) is well-

known. It is interesting that in the complex case, the mean converges to

2
3∑
j=1

 ∞∑
m=1

∫
F(Vm

j )−F(Vm+1
j )

m f(z) dz

+

3∑
j=1

∫
F(Ej)

f(z) dz+
∫
F(C)

f(z) dz+
∫

F∗(C)

f(z) dz

=
3
κ
Ψ

(
1
2

)
+

 3∑
j=1

∫
F(Ej)

f(z) dz+
∫
F(C)

f(z) dz

+
π

κ

(
2√
3
− 1
)

=
3π
κ

(
1− 4

3
√

3

)
+
π

κ

(
2√
3
− 1
)
+
π

κ

(
2√
3
− 1
)
=
π

κ
= 1.6667324083....

The variance, however, is divergent.

4.12.4 Analog of Lévy’s Constant

We wish to compute the almost-certain limit of (1/n) ln
∣∣∣q(ℓ)n

∣∣∣ as n→∞, corre-

sponding to denominators q(ℓ)n in the partial convergents to z. The limit turns
out to be independent of 1≤ ℓ≤ 3. There are two variations:

• the powerless scenario, in which q(ℓ)n is evaluated at each iteration of Schmidt’s
algorithm (powers of Vj are irrelevant)
• the powerful scenario, in which q(ℓ)n is evaluated only at iterations that “close”

a term Tk (only those powers of Vj constituting full terms are relevant, as well
as any terms Ej and C).



“C04” — 2018/10/27 — 12:00 — page 549 — #95

4.12 Continued Fraction Transformation. IV 549

The first gives a simpler result, but the second is more consistent with the real
case. As an example, look at

V1
2E2V1

3CV1 =

(
1 + 3i −6 + i
4 + i −3 + 7i

)
, V1

2E2V1
3CV

2
1 =

(
1 + 3i −9 + 2i
4 + i −4 + 11i

)

from the matrix representation of πei/4. In the powerless way of counting, the
ratio p(2)5 /q(2)5 is (−6 + i)/(−3 + 7i) and p(2)6 /q(2)6 is (−9 + 2i)/(−4 + 11i). In

the powerful way of counting, the ratio p(2)5 /q(2)5 is (−9 + 2i)/(−4 + 11i). Both
variations are interesting to us.

For the powerless scenario, let

T̃1(z)=

(
ã1(z) b̃1(z)

c̃1(z) d̃1(z)

)

be the initial output of Schmidt’s algorithm, starting with input z, and let

φ̃(z)=− ln |c̃1(z)z− ã1(z)|

=



0 if z∈F(V1) ∪ F(E2) ∪ F(E3) ∪ F∗(V1),

− 1
2 ln

(
2
(
(x− 1

2 )
2 + (y− 1

2 )
2
))

if z∈F(E1) ∪ F(C) ∪ F∗(C),

− 1
2 ln

(
x2 + (y− 1)2

)
if z∈F(V2) ∪ F∗(V2),

− 1
2 ln

(
(x− 1)2 + (y− 1)2

)
if z∈F(V3) ∪ F∗(V3).

Then (1/n) ln
∣∣∣q(ℓ)n

∣∣∣ converges to [10]

∫
F(I)∪F∗(I)

φ̃(z)̃f(z) dz= 0.29156...

via numerical calculation of each component of the integral. Closed-form expres-
sions for the components appear to be impossible. Nakada [14–16], however,
proved by a different approach that the powerless Schmidt analog of Lévy’s
constant is

G
π
= 0.2915609040...= ln(1.3385151519...)

where G is Catalan’s constant [17, 18].
For the powerful scenario, let

T1(z)=
(
a1(z) b1(z)
c1(z) d1(z)

)
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be the initial full term in the complex continued fraction expansion of z, and let

φ(z) = − ln |c1(z)z− a1(z)|

=



0 if z∈F(V1)∪F(E2)∪F(E3)∪F∗(V1),

− 1
2 ln

(
2
(
(x− 1

2 )
2 + (y− 1

2 )
2
))

if z∈F(E1)∪F(C)∪F∗(C),

− 1
2 ln

(
m2x2 + (my− 1)2

)
if z∈

(
F(Vm

2 )− F(V
m+1
2 )

)
∪(

F∗(Vm
2 )− F∗(Vm+1

2 )
)
,

− 1
2 ln

(
m2(x− 1)2 + (my− 1)2

)
if z∈

(
F(Vm

3 )− F(V
m+1
3 )

)
∪(

F∗(Vm
3 )− F∗(Vm+1

3 )
)
.

Then (1/n) ln
∣∣∣q(ℓ)n

∣∣∣ converges to [10]∫
F(I)∪F∗(I)

φ(z)f(z) dz= 0.4859...

via numerical calculation of each component of the integral and summation over
m≥ 1. Closed-form expressions for the components again appear to be impos-
sible. Nakada [15] proved, as a corollary of his aforementioned result, that the
powerful Schmidt analog of Lévy’s constant is

G
κ
= 0.4859540077...= ln(1.6257252237...).

These are magnificent formulas, needless to say!
Complex continued fractions built upon the Eisenstein–Jacobi integers (rather

than the Gaussian integers) were introduced in [19], but no comparable ergodic
theory has been published, as far as is known.

We merely mention the Jacobi-Perron algorithm [20–24]

TJPA(x, y)=
(
y
x
−
⌊y
x

⌋
,
1
x
−
⌊
1
x

⌋)
and the Podsypanin algorithm [25–28]

TMJPA(x, y)=



(
y
x
,
1
x
−
⌊
1
x

⌋)
if x≥ y ∧ x ̸= 0,(

1
y
−
⌊
1
y

⌋
,
x
y

)
if x< y ∧ y ̸= 0,

0 if x= y= 0

for (x, y)∈ [0, 1]× [0, 1]. Both possess unique invariant densities but only the
latter has a closed-form expression:

fMJPA(x, y)=
1
2c

2 + x+ y
(1 + x)(1 + y)(1 + x+ y)
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where

c=
π2

12
+ Li2

(
−1

2

)
= 0.3740528265....

If qn denotes the common denominator in the nth partial convergent to (x, y),
then

lim
n→∞

1
n

ln(qn)=−
1∫
0

1∫
0

ln (max{x, y}) fMJPA(x, y) dx dy= 0.6695004121...

almost certainly (we omit the complicated exact formula involving dilogarithms
and ζ(3)). A precise estimate of the entropy associated with TJPA would be good
to see someday.
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4.13 Lyapunov Exponents

We are interested in iterates of the logistic map T : [0, 1]→ [0, 1] defined by

T(x)= a x (1− x)

where 0≤ a≤ 4 is constant. Actually, only the values a= 4 and

a=
2
3

((
19 + 3

√
33
)1/3

+ 4
(
19 + 3

√
33
)−1/3

+ 1
)
= 3.6785735104...

will be examined (the latter has minimal polynomial a3 − 2a2 − 4a− 8). Both
correspond to chaotic maps for which invariant probability densities f(x) prov-
ably exist. An important feature of chaos is sensitivity to initial conditions. The
Lyapunov exponent for each map quantifies the exponential rate at which two
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initially close points x, y separate [1]:

|T(x)− T(y)| ≈ |T′(x)| · |x− y|

after the first iteration,

|Tn(x)− Tn(y)| ≈
∏

0≤j<n

∣∣T′(Tjx)
∣∣ · |x− y|

after the nth iteration, and hence

1
n

ln |Tn(x)− Tn(y)| ≈ 1
n

∑
0≤j<n

ln
∣∣T′(Tjx)

∣∣ .
For X distributed according to f, let us write

µ̂n(X)=
1
n

∑
0≤j<n

TjX, λ̂n(X)=
1
n

∑
0≤j<n

ln
∣∣T′(TjX)

∣∣
which converge as n→∞ almost surely, by ergodicity, to

E(X)=

1∫
0

x f(x) dx, E |ln(T′X)|=
1∫
0

ln |T′(x)| f(x) dx.

Our study will encompass not only means, but also variances and autocovari-
ances of arbitrary time lag. A complete solution is possible for a= 4; only partial
results exist for a= 3.678.... The approach we take is similar to [2].

4.13.1 Ulam–von Neumann Map

When a= 4, the invariant density has a closed-form expression [3]:

f(x)=
1

π
√
x(1− x)

and thus

E(TjX)=
1
2
, Var(TjX)=

1
8
, Cov(TjX,TkX)= 0

for all j< k. Also [4],

E
∣∣ln(T′(TjX))

∣∣= ln(2), Var
∣∣ln(T′(TjX))

∣∣= π2

12
,

Cov
(∣∣ln(T′(TjX))

∣∣ , ∣∣ln(T′(TkX))
∣∣)=−π2

24
1

2k−j

for all j< k. Clearly

lim
n→∞

E (µ̂n(X))=
1
2
,
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lim
n→∞

nVar (µ̂n(X))= lim
n→∞

1
n

∑
0≤j<n,
0≤k<n

Cov(TjX,TkX)=
1
8

and the Central Limit Theorem holds:

lim
n→∞

P
(
2
√

2n
(
µ̂n(X)−

1
2

)
≤ t
)
=

1√
2π

t∫
−∞

exp
(
−u

2

2

)
du.

By contrast,

lim
n→∞

E
(
λ̂n(X)

)
= ln(2),

lim
n→∞

n2 Var
(
λ̂n(X)

)
= lim

n→∞

∑
0≤j<n,
0≤k<n

Cov
(∣∣ln(T′(TjX))

∣∣ , ∣∣ln(T′(TkX))
∣∣)

= lim
n→∞

π2

6

(
1− 1

2n

)
=
π2

6
.

Estimates λ̂n(X) of the Lyapunov exponent are anomalously precise [5]: they
possess a standard deviation that scales as 1/n rather than 1/

√
n. In this case,

evidence points to a revised Central Limit Theorem of the form [4, 6]:

lim
n→∞

P
(
n
(
λ̂n(X)− ln(2)

)
≤ t
)
=

2
π2

t∫
−∞

ln
(
coth

(u
2

))
du

but a rigorous proof seems to be open.

4.13.2 Ruelle-Misiurewicz Map

When a= 3.678..., no closed-form expression for the invariant density is known,
even though its existence is certain [7–9]. A numerical approach is necessary. Let
y= 1

2a− a x, then under the change of variables, T becomes

S(y)= y2 − c

where

c=
1
4
a2 − 1

2
a= 1.5436890126...

(with minimal polynomial c3 − 2c2 + 2c− 2). Now let [10]

θ=
1
π

arccos
(

y
c− c2

)
;

under this second change of variables, S2 becomes

τ(θ)=
1
π

arccos
(
cos(2πθ) + κ sin(2πθ)2

)
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where

κ=
c(c2 − c)− 1

2
= 0.1477988712....

The invariant density φ associated with τ : [0, 1]→ [0, 1] satisfies the functional
equation [10]

φ(τ−1(θ))

|τ ′(τ−1(θ))|
+

φ(1− τ−1(θ))

|τ ′(1− τ−1(θ))|
=φ(θ)

where

τ−1(θ)=
1
2π

arccos

(
1−

√
1 + 4κ2 − 4κ cos(πθ)

2κ

)
,

τ ′(θ)=
2 sin(2πθ) (1− 2κ cos(2πθ))√

sin(2πθ)2 (1− 2κ cos(2πθ)− κ2 sin(2πθ)2)
.

The left-hand side of this equation is a special case of the Frobenius–Perron
operator Pτφ(θ). Starting with an initial guess φ0≡ 1, the uniform density, iter-
ates φn+1 =Pτφn converge to a limiting density φ. Backtracking through the two
coordinate transformations, we obtain the desired invariant density f. It turns out
to be supported on the intervals [ 1a , 1−

1
a ] and [1− 1

a ,
a
4 ], which are exchanged

by T, with three vertical asymptotes.
Recall that x= 1

2 −
1
ay and y=(c− c2) cos(πθ). For X distributed according

to f, we compute

E(X)=
1
2

1∫
0

(x+ T(x))φ(θ)dθ= 0.6717404535...,

E |ln(T′X)|= 1
2

1∫
0

(ln |2y|+ ln |2S(y)|)φ(θ)dθ= 0.3421726886....

No one evidently has computed higher-order moments of X and ln(T′X), let
alone µ̂n(X) and λ̂n(X). Does the Central Limit Theorem need revision here too?

The value 3.678... is the simplest Misiurewicz point. For any a≤ 3.678..., the
logistic map T admits no periodic point x of odd order > 1, i.e., it has no odd
cycles. For any a> 3.678..., T has odd cycles [11, 12].

A graph of E(X), as a function of a, appears in [13]; the more familiar graph
of E |ln(T′X)| appears in [14]. In a sense, such plotting is meaningless, because
there always exists finer detail than captured in whatever scale we choose [15].

Jakobson [16, 17] proved that the set A= {a∈ [0, 4] :T has an absolutely con-
tinuous invariant density} has positive measure. Both 4∈A and 3.678...∈A, but
the status of values like 3.6, 3.7, 3.8 or 3.9 is unknown. Note: the condition that
a density be absolutely continuous is important, yet outside our scope of study.
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What can be said about T for a /∈A? This question was satisfactorily answered
only recently [18, 19].

The metric entropy of T can be proved to be equal to the Lyapunov expo-
nent, but the topological entropy is altogether a different characterization [20–23].
For the regular continued fraction transformation TRCF(x)= {1/x}, the metric
entropy is π2/(6 ln(2)) while the topological entropy is infinite [24]. The limit of

E
(
λ̂n(X)

)
as n→∞ is π2/(6 ln(2)); the limit of nVar

(
λ̂n(X)

)
as n→∞ is equal

to 4(0.8621470373...) and, in fact, the Central Limit Theorem holds [2].
One-dimensional maps of the interval have inspired much computation [25–

35]. We mention, for example, the maps Tℓ : [0, 1]→ [0, 1] defined by

Tℓ(x)= 1− |2x− 1|ℓ

for real ℓ> 1. Clearly the case ℓ= 2 gives the Ulam–von Neumann map. Each Tℓ

has an absolutely continuous invariant density with metric entropies (Lyapunov
exponents) equal to [32, 34]

ln(2)= 0.6931471805... if ℓ= 2,

0.6908569334... if ℓ= 3,

0.6844935750... if ℓ= 4,

0.6756910613... if ℓ= 5.

As another example, consider the map S0 : [0, 1]→ [0, 1] defined by

S0(x)=
{
2x+

1
4π

sin(2πx)
}
.

The absolutely continuous invariant density of S0 has entropy equal to
0.6837719602.... It would be good someday to see such high-precision results
for the logistic map, given values of a other than 3.678... and 4.
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4.14 Lyapunov Exponents. II

Before discussing continuous-time systems, let us emphasize the definition of
Lyapunov exponent λ for discrete-time systems in one-dimension [1]. If f :R→R
is differentiable and

xn= f(xn−1), x0 = u,

then λ quantifies the exponential rate at which two initially close points u, u0

separate under the iteration:

λ= lim
n→∞

1
n

ln | f n(u)− f n(u0)|= lim
n→∞

1
n

ln |Du f n(u0) (u− u0)|

almost always. For example, λ= ln(2) is experimentally verified for the logis-
tic case f(x)= 4x (1− x) and u0 = 1/3. This definition is meaningful as well for
multi-dimensional maps f :Rm→Rm. It is not true, however, that the norm of
a product of Jacobian matrices is equal to the product of their norms; thus the
calculational technique (based on the chain rule) used in [2] fails for m> 1.

Consider the classical Lorenz system [3–7]
dx/dt=−10(x− y), x(0)= 0,
dy/dt= 28x− y− x z, y(0)= 1,
dz/dt= x y− 8

3z, z(0)= 0

and define, for convenience,

X=

xy
z

, F(X)=

 −10(x− y)
28x− y− x z
x y− 8

3z

.
LetU=(u, v,w) denote a point that is close to the initial stateU0 =(0, 1, 0). The
solution of the perturbed system

dX/dt=F(X), X(0)=U
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is written as X(t; u, v,w). Differentiating both sides with respect to U, we obtain
the variational equation [8–11]

dΦ/dt=DXF(X)Φ(t), Φ(0)= I

where Φ(t; u, v,w)=DUX(t;U) is a 3× 3 matrix. The Lyapunov exponent λ for
the Lorenz system satisfies [1]

λ= lim
t→∞

1
t
ln |X(t;U)− X(t;U0)|= lim

t→∞

1
t
ln |DUX(t;U0) (U−U0)|

almost always. It follows that [12]

λ= lim
t→∞

1
t
ln |Φ(t;U0)|

where |M| denotes the 2-norm (largest singular value) of a matrix M. Equiva-
lently, |M| is the square root of the largest eigenvalue of MTM. To compute λ,
therefore, we must possess not only (x(t), y(t), z(t)) but also

Φ(t)= (φi,j(t))1≤i≤3, 1≤j≤3

where
dφ1,j/dt=−10(φ1,j − φ2,j), φ1,1(0)= 1, φ1,2(0)=φ1,3(0)= 0,

dφ2,j/dt=(28− z)φ1,j − φ2,j − xφ3,j, φ2,2(0)= 1, φ2,1(0)=φ2,3(0)= 0,

dφ3,j/dt= yφ1,j + xφ2,j − 8
3φ3,j, φ3,3(0)= 1, φ3,1(0)=φ3,2(0)= 0

for j= 1, 2, 3. Difficulties arising from integrating this 12× 12 ODE system
include numerical overflow and numerical rank deficiency [12]. We obtain exper-
imentally that λ≈ 0.9 via this approach; approximating Φ(t) as t→∞ to higher
precision seems hopeless.

Using alternative approaches, Viswanath [12–14] and Sprott [15–17] indepen-
dently computed that λ= 0.90563.... It is known via rigorous numerics that the
classical Lorenz system is chaotic [18–24] and that, indeed, almost all points in
state space tend to a strange attractor (the famous Lorenz butterfly) [25–27]. No
such behavior can possibly occur for continuous flows in one or two dimensions.
The literature on calculating Lypanouv exponents is huge; we merely mention a
few helpful surveys [28–34].

Although the Lorenz system was originally derived from a meteorological
model of fluid convection, it can be more easily formulated in connection with
the Malkus water wheel [4–6]. The wheel is free to rotate about a horizontal axis
and its circumference is composed of small leaky cells. Water pours into the cells
near the top of the wheel at a constant rate. Water leaks out of each cell at a
rate proportional to the density of water inside. The mass of the wheel consists
entirely of water confined to the circumference. As the wheel starts to rotate, new
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cells will move into position to receive the water. With the right balance between
rates of water in-flow and out-flow, as well as frictional damping and gravita-
tional acceleration, the Lorenz system emerges (governing, for example, angular
velocity of the wheel). This is a fascinatingly simple illustration of chaos!

What is the algebraically simplest example of a dissipative chaotic flow? Sprott
[35] conjectured that

d3ξ

d t3
+

2017
1000

d2ξ

d t2
−
(
d ξ
d t

)2

+ ξ= 0,

with Lyapunov exponent 0.0551..., is one such case. For conservative flows,

d3ξ

d t3
+
d ξ
d t
− ξ2 + 1

100
= 0

may be algebraically simplest [36]. Upon setting η= 5ξ + 1/2, an equation
resembling the logistic equation:

d3η

d t3
+
d η
d t

+
1
5
η(1− η)= 0

is the interesting outcome, with Lyapunov exponent 0.0964.... A survey of this
line of thought is found in [15, 37, 38]. These examples deserve further analysis.

A single pendulum [39] {
dθ/dt=ω,

dω/dt=−(g/ℓ) sin(θ)

cannot exhibit chaos. Only with the introduction of a nonautonomous driving
term (and possibly a viscous damping term) can chaos arise: see [40–45]. By
contrast, a double pendulum [39, 46–48]



dθ1

dt
=ω1,

dθ2

dt
=ω2,

dω1

dt
=

−m2 sin(θ1 − θ2)
(
ℓ1 cos(θ1 − θ2)ω

2
1 + ℓ2ω

2
2

)
− g

2 ((2m1 + m2) sin(θ1) + m2 sin(θ1 − 2θ2))

ℓ1
(
m1 + m2 − m2 cos(θ1 − θ2)2

) ,

dω2

dt
= sin(θ1 − θ2)

(m1 + m2)
(
g cos(θ1) + ℓ1ω

2
1

)
+ ℓ2m2 cos(θ1 − θ2)ω

2
2

ℓ2
(
m1 + m2 − m2 cos(θ1 − θ2)2

)
exhibits chaos if, for example, θ1 is initially large (π/2<θ1<π) and θ2 =ω1 =

ω2 = 0. (Point-mass m1 determines angle θ1 relative to a downward vertical axis
at ceiling suspension; point-mass m2 determines angle θ2 relative to a downward
vertical axis at m1; the connecting rods of length ℓ1, ℓ2 are massless and no fric-
tion or forcing occurs; g is acceleration due to gravity.) The value of a Lyapunov
exponent computed in [49] awaits confirmation.
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We merely mention the interesting feedback control-theoretic problem of sta-
bilizing an inverted pendulum on a moving cart [50–58]. Under the most ideal
conditions, chaos cannot occur. If, however, we include realistic effects like time
delay [59, 60], discrete sampling [61] or system friction [62], then chaos becomes
possible again.More on a torque-driven pendulum (not cart-driven) and optimal
control is found in [63].
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4.15 Lyapunov Exponents. III

Our ongoing study encompasses both discrete iteration [1] and continuous flow
[2]; the system dynamics can be either deterministic or stochastic. Let A denote
a real m×m matrix and B, X denote real m-vectors. Consider the difference
equation

Xn=AXn−1 + B εn, X0 arbitrary

where εn is scalar N(0, 1) white noise. Order the complex eigenvalues λ1, λ2, . . .,
λm of A so that λ1 has maximum modulus. When |λ1|> 1, it follows that

1
n ln |Xn|→ ln |λ1|> 0 almost surely as n→∞

which indicates that no convergence to stationarity can occur. The quantity
ln |λ1| is the Lyapunov exponent of the system, since the derivative of the linear
transformation x 7→Ax is itself.

Consider instead the differential equation

dXt=AXt dt+ BdWt, X0 arbitrary

where Wt is scalar Brownian motion with unit variance. The corresponding
flow is

Xt= eA t

X0 +

t∫
0

e−A sBdWs


and the complex eigenvalues of eA are eλ1 , eλ2 , . . ., eλm . Here, however, we order
λ1, λ2, . . ., λm so that λ1 has maximum real part (which implies that eλ1 has
maximum modulus). When Re(λ1)> 0, the interpretation of

1
t ln |Xt|→Re(λ1) almost surely as t→∞,

is exactly as before. An informal proof is to choose X0 to be the dominant
eigenvector of A or of eA, respectively, and to choose B= 0; then

|Xn|= |AnX0|= |λ1|n|X0| or |Xt|= |eA tX0|= |eλ1 |t|X0|,

respectively. See [3] for special treatment of the case m= 1. The probability
density for

ln |Xn| − n ln |λ1|, ln |Xt| − t Re(λ1)

is also of interest, and turns out to be doubly-exponential [3, 4].
Additive noise does not enter the formula for Lyapunov exponents;multiplica-

tive noise contrasts in this regard. Let A, B denote real m×m matrices. The
equations

Xn=AXn−1 + BXn−1 εn, X0 arbitrary;

dXt=AXt dt+ BXt dWt, X0 arbitrary
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require more intricate analysis. Let us focus only on the continuous-time case for
now, leaving the discrete-time case for later.

In the event A and B commute, that is, AB=BA, it can be proved that [5]

Xt= exp
((
A− 1

2B
2) t+ BWt

)
X0.

There is, however, no consequential formula for the Lyapunov exponent that is
valid for all m≥ 1 and all A, B.

Setm= 1 orm= 2. Let us adhere to the convention of replacingA byA+ 1
2B

2:

dXt=
(
A+ 1

2B
2
)
Xt dt+ BXt dWt, X0 arbitrary.

If m= 1, A= a and B=σ> 0, then the random variable ln |Xt/X0| is nor-
mally distributed with mean a t and variance σ2t (the process Xt is often called
geometric Brownian motion). Clearly

1
t ln |Xt|→ a almost surely as t→∞.

Stability is unchanged by noise in this example. The same can be said if m= 2,

A=

(
a 0
0 b

)
and B=

(
σ 0
0 σ

)
where a> b and σ> 0. If instead

B=

(
0 −σ
σ 0

)
then it can be proved that [6, 7]

1
t ln |Xt|→ 1

2 (a+ b) + 1
2 (a− b)

I1
(
a−b
2σ2

)
I0
(
a−b
2σ2

) almost surely

where I0, I1 are modified Bessel functions [8]. For example, when a= 1, b=−2
and σ= 10, the Lyapunov exponent has value −0.4887503163... [9]. For the
same a and b, the Lyapunov exponent has value 0.3941998582... when σ= 1,
and is zero precisely when σ= 1.4560286969... [6]. More noise implies enhanced
stability in this example.

If instead [10, 11]

A=

(
0 1
0 0

)
and B=

(
0 0
σ 0

)
then

1
t ln |Xt|→κσ2/3 =(0.2893082598...)σ2/3 almost surely

and

κ=
π

121/6Γ(1/3)2
=

31/3√π
22/3Γ(1/6)

.
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What happens when the bottom row of A is nonzero? If

A=

(
0 1
−α 2β

)
and B=

(
0 0
σ 0

)
where β2>α, then more complicated formulation emerges. We avoid the hyper-
geometric functions in [12, 13], preferring modified Bessel functions (of both
integer and fractional types). Let

γ=
σ2

2
, δ=

4
(
β2 − α

)
9γ2

for convenience. Define

f(α, β, γ) =
3

2π
3
2

∞∫
0

√
z exp

(
− 1

12
γ2z3 +

(
β2 − α

)
z
)
dz

=
δ

1
2 I− 2

3

(√
δ
)
I− 1

3

(√
δ
)

γ
+

2
(

2
3

) 1
3 δ

1
3 I 1

3

(√
δ
)2

(β2 − α) γ 1
3

+
δ

1
2 I 1

3

(√
δ
)
I 2

3

(√
δ
)

γ

+
6
(

2
3

) 2
3 γ

1
3 δ

2
3 I 2

3

(√
δ
)2

(β2 − α)2
+

2
(

2
3

) 2
3
(
β2 − α

)
δ

1
6 I 1

3

(√
δ
)
I 4

3

(√
δ
)

γ
5
3

+
2
(

2
3

) 1
3
(
β2 − α

) 1
2 δ

1
3 I 2

3

(√
δ
)
I 5

3

(√
δ
)

γ
4
3

,

g(α, β, γ) =
3

2π
3
2

∞∫
0

1√
z
exp
(
− 1

12
γ2z3 +

(
β2 − α

)
z
)
dz

=

(
2
3

) 1
3 δ

1
3

(
I− 1

3

(√
δ
)2

+ I− 1
3

(√
δ
)
I 1

3

(√
δ
)
+ I 1

3

(√
δ
)2
)

γ
1
3

=

3

(
Ai
((

3
2

) 2
3 δ

1
3

)2

+ Bi
((

3
2

) 2
3 δ

1
3

)2
)

2γ
1
3

then

1
t ln |Xt|→β +

γ

2
f(α, β, γ)
g(α, β, γ)

almost surely.

For example, when α= 1 and |β|> 1 is fixed, the Lyapunov exponent
is decreasing as a function of γ ∈ (0, (β2 − 1)3/2γ0) and increasing for
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γ ∈ ((β2 − 1)3/2γ0,∞), where γ0 = 1.6946141069.... At criticality, we have

f(1, β, (β2 − 1)3/2γ0)

g(1, β, (β2 − 1)3/2γ0)
=

1
(β2 − 1)γ0

(1.4567743021...)

=
2

(β2 − 1)γ0
(1 + 0.8848441574...)−1/2;

further stabilization by noise beyond this point is impossible. As another exam-
ple, when α= 1 and γ > 0 is fixed, we have

lim
|β|→1+

f(1, β, γ)
g(1, β, γ)

=

(
4
γ

)2/3

κ=
2
γ
κσ2/3,

consistent with preceding zero-row results. The constantκ= 0.2893082598... also
appears in [14], but reasons for this connection are unclear.

Explicit expressions like the above are quite rare in this area. A promising
approach is presented in [15] but unfortunately no examples are given.
Addendum As an illustration, Baxendale [6] determined the Lyapunov expo-

nent −0.48875... for

dXt=

(
a− 1

2σ
2 0

0 b− 1
2σ

2

)
Xt dt+

(
0 −σ
σ 0

)
Xt dWt

when a= 1, b=−2 and σ= 10. He suggested an approach for computing the
corresponding central limit variance. No one has evaluated this variance until
recently [16]; it turns out to be 0.011248... but has a more complicated expression
than a simple ratio of modified Bessel functions.
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4.16 Lyapunov Exponents. IV

We are interested in the effects of multiplicative noise (continuing our study [1]).
Let En denote matrix N(0, 1) white noise, that is, E1, E2, E3, . . . is a sequence of
independentm×mmatrices and allm2 entries of En, for each n, are independent
standard normal variables. Cohen & Newman [2] proved that the recurrence

Xn=En Xn−1, X0 ̸= 0 arbitrary

gives rise to Lyapunov exponent

1
n ln |Xn|→ 1

2

(
ln(2) + ψ(m2 )

)
almost surely as n→∞,

where ψ(x) is the digamma function and γ=−ψ(1) is the Euler–Mascheroni
constant [3]. In particular, for m= 1,

xn= εnxn−1

has Lyapunov exponent λ=−(ln(2) + γ)/2 and the following Central Limit
Theorem holds:

ln |xn| − nλ
π
√
n/8

→N(0, 1) as n→∞;

for m= 2, (
xn
yn

)
=

(
εn ε′n
ε′′n ε

′′′
n

)(
xn−1

yn−1

)
has Lyapunov exponent λ=(ln(2)− γ)/2 and

ln
√
x2
n + y2

n − nλ
π
√
n/24

→N(0, 1) as n→∞.
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Upon constraining certain entries of En, relevant Lyapunov exponent cal-
culations become more complicated. Wright & Trefethen [4] found that λ=
ln(1.0574735537...) when(

xn
xn+1

)
=

(
0 1

εn+1 1

)(
xn−1

xn

)
,

λ= ln(1.1149200917...) when(
xn
xn+1

)
=

(
0 1
1 εn+1

)(
xn−1

xn

)
,

and λ= ln(0.9949018837...) when(
xn
xn+1

)
=

(
0 1

ε′n+1 εn+1

)(
xn−1

xn

)
.

Upon replacing standard normal variables εn by symmetric Bernoulli variables

P (εn= 1)=P (εn=−1)= 1/2,

the three preceding examples no longer possess distinct Lyapunov exponents.
Viswanath [5, 6] proved that the three random Fibonacci sequences each have λ=
v, where

v= ln(1.1319882487...)= 0.1239755988...

was computed via a fractal invariance measure on the Stern-Brocot division of
the real line. A high-precision estimate of v, due to Bai [7], was based on the cycle
expansion method applied to a corresponding Ruelle dynamical zeta function
[8–10]. It is interesting to compare the “almost-sure growth rate”

1
nE (ln |xn|)→ v= ln(1.1319882487...)

against the “average growth rate” [11, 12]

1
n ln (E |xn|)→ ln(ξ)= ln(1.2055694304...)

where ξ has minimal polynomial ξ3 + ξ2 − ξ − 2. The latter value is larger due to
outlying sequences that occur with very small probability. It is difficult to detect
the difference experimentally since [13]

1
n ln (Var |xn|)→ ln(1 +

√
5)

and hence ∼ (1 +
√

5)n datapoints are needed to estimate E |xn| adequately.
Embree & Trefethen [14] examined the more general linear recurrence

xn+1 = xn + β εn+1xn−1

and determined that the critical threshold β∗ (below which solutions decay expo-
nentially almost surely; above which solutions grow exponentially almost surely)
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is β∗ = 0.70258.... It also appears that the value β̃ corresponding to maximal
decay is β̃= 0.36747... with Lyapunov exponent ln(0.8951...).

Chassaing, Letac & Mora [15] examined a different kind of random Fibonacci
sequence: (

xn
yn

)
=


(
xn−1 + yn−1

yn−1

)
with probability 1/2,(

xn−1

xn−1 + yn−1

)
with probability 1/2,

which reduces to the study of random products of the two nonnegative matrices:(
1 1
0 1

)
and

(
1 0
1 1

)
.

Bai [16] computed that λ= ln(1.4861851938...)= 0.3962125642.... Let φ=(1 +√
5)/2 denote the Golden mean [17]. Another variation is the random sequence:

(
xn
yn

)
=


(
xn−1 + yn−1

xn−1

)
with probability φ− 1≈ 0.62,(

yn−1

xn−1 + yn−1

)
with probability 2− φ≈ 0.38

with associated nonnegative matrices:(
1 1
1 0

)
and

(
0 1
1 1

)
.

In this case, λ turns out to be 2v/(φ− 1), which constitutes another occurrence
of Viswanath’s constant [7].

Fix α> 0. Chassaing, Letac & Mora [15, 18] proved that(
xn
yn

)
=

(
0 1
1 εn

)(
xn−1

yn−1

)
has Lyapunov exponent

λ=
K0(α)

αK1(α)
,

where εn is distributed according to Exp(α/2) and K0, K1 are modified Bessel
functions [19]. If α= 2, then 2λ=K0(2)/K1(2)= 0.8143077587.... A related ratio
I1(2)/I0(2) appears in [20]; see also [1].

Lyons [21, 22] studied (
xn
yn

)
=

(
1 εn
1 1 + εn

)(
xn−1

yn−1

)
,

where εn= 0 with probability 1/2 and εn= τ otherwise. It turns out that τ 7→
λ(τ) is a strictly increasing function of τ > 0. An important threshold value



“C04” — 2018/10/27 — 12:00 — page 571 — #117

4.16 Lyapunov Exponents. IV 571

τ = 0.2688513727... is the solution of the equation [16]

2λ(τ)= ln(2)

and is connected with the distribution of certain random continued fractions.
Ishii [23, 24] proved that(

xn
xn+1

)
=

(
0 1
−1 c− εn

)(
xn−1

xn

)
has Lyapunov exponent

λ(c)= arccosh

(√
(2 + c)2 + δ2 +

√
(2− c)2 + δ2

4

)

where εn is distributed according to Cauchy(δ). If instead εn follows a
Unif(−

√
3σ,
√

3σ) distribution or a N(0, σ2) distribution, then asymptotic
results of Derrida & Gardner [25, 26] apply:

lim
σ→0+

λ(c, σ)
σ2/3

=
61/3√π
2Γ(1/6)

= 0.2893082598... if c= 2,

lim
σ→0+

λ(c, σ)
σ2 =


1/6 if c= 1,
Γ(3/4)2

Γ(1/4)2
= 0.1142366452...=

12
105.0451015308...

if c= 0.

The constants 0.2893082598... and 0.1142366452... also appear in [27, 28],
respectively, but reasons for these connections are unclear.

Fix an odd integer k≥ 3. Pincus [29, 30] and Lima & Rahibe [31] examined

(
xn
yn

)
=


(

cos(πk )xn−1 + sin(πk )yn−1

− sin(πk )xn−1 + cos(πk )yn−1

)
with probability 1− η,(

xn−1

0

)
with probability η

and proved that

λ(k)=
η2

1− (1− η)2k
2k−1∑
j=1

(1− η)j ln
∣∣∣∣cos( jπk

)∣∣∣∣ .
The identical expression emerges if we replace the definition of the latter portion
by (

xn
yn

)
=

(
ℓ xn−1

(1/ℓ)yn−1

)
with probability η

for a fixed integer ℓ≥ 2, and compute the asymptotic difference between λ(k, ℓ)
and η ln(ℓ) in the limit as ℓ→∞. A precise numerical estimate of λ(3, 2)=
0.1794..., however, is evidently open [16].
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Ben-Naim & Krapivsky [32] studied two variations of random Fibonacci
sequences:

xn=
{
xn−1 + xn−2 with probability 1− η
xn−1 + xn−3 with probability η

, x0 = 0, x1 = x2 = 1;

xn=
{
xn−1 + xn−2 with probability 1− η
2xn−1 with probability η

, x1 = x2 = 1

and determined that
lim

η→0+
λ(η)= ln(φ)

for both cases. Second-order asymptotic terms differ, however:

lim
η→0+

λ(η)− ln(φ)
η

=


ln
(

2φ
φ+ 2

)
for case 1,

ln
(

2φ+ 1
φ+ 2

)
for case 2

and a third-order term is possible for the latter.
Consider the random geometric sequence [33]

xn= 2xp, x0 = 1, p∈{0, 1, . . . , n− 1}

where each of the n possible indices is given equal weight. The sequence is not
necessarily increasing, but enjoys average growth n+ 1 and almost-sure growth

2γnln(2) =(1.4919670404...) exp(ln(2) ln(n)).

Consider instead two additional random Fibonacci models [34, 35]:

xn= xn−1 + xq, x0 = 1, q∈{0, 1, . . . , n− 1};

xn= xp + xq, x0 = 1, p, q∈{0, 1, . . . , n− 1}.

Model 1 enjoys average growth

1
2
√
eπ

n−1/4 exp(2
√
n)

and almost-sure growth
C exp

(
(1.889...)

√
n
)

where C> 0 is unknown. Model 2 is not necessarily increasing but enjoys aver-
age growth n+ 1; unlike the random geometric sequence, it seems not to display
almost-sure behavior of any kind.

Kenyon & Peres [36] studied random products associated with two sets of
matrices: (

2 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 2

)
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and (
3 0
2 0

)
,

(
2 0
1 1

)
,

(
1 1
0 2

)
,

(
0 2
0 3

)
.

The three matrices in the first set are equiprobable, with Lyapunov expo-
nent ln(2)/3= 0.2310490601.... The four matrices in the second set are likewise
equiprobable, with Lyapunov exponent [37]

1
6

ln
(

2
3

)
+

∞∑
i=0

4−i−1 ln
(
(3 · 2i)!
(2i+1)!

)
= 0.7974350484....

We wonder whether exp(0.7974350484...) is transcendental. Moshe [38] studied
random products associated with two equiprobable 3× 3 matrices: 1 3 1

1 2 0
−3 −6 0

,
 4 2 8
−2 −1 −4
3 1 4


and computed Lyapunov exponent

1
16

∞∑
j=0

∞∑
k=0

1
2j+k

ln
∣∣3 · 23j − 2(−1)j − 22

9 23j+k + 22
9 (−1)j2k

∣∣= 0.5897925607....

Many more similar examples are found in [39–42].
Up to now, the random mechanisms underlying sequences have been very

simple. Here is a more complicated but well-known example [43, 44]:

xn+1 = anxn + xn−1, x0 = 0, x1 = 1

where the cofficients an are obtained by selecting a random θ∈ [0, 1] and com-
puting its continued fraction digits:

θ=
1|
|a1

+
1|
|a2

+
1|
|a3

+ · · · .

For instance, if θ=π − 3, then

{a1, a2, a3, a4}= {7, 15, 1, 292}, {x2, x3, x4, x5}= {7, 106, 113, 33102};

note that xn is simply the denominator of the nth partial convergent to θ. Lévy
[45] proved that this recurrence gives rise to Lyapunov exponent

π2

12 ln(2)
= 1.1865691104....

Another example involves the recurrence [46]

xn+1 = 2bnxn + 2bn−1xn−1, x0 = 0, x1 = 1
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where the cofficients bn are obtained via

θ=
2−b1

∣∣
|1

+
2−b2

∣∣
|1

+
2−b3

∣∣
|1

+ · · · .

The corresponding Lyapunov exponent is

1
ln(4/3)

(
π2

12
+ Li2

(
−1

2

))
= 1.3002298798...

where Li2(y) is the dilogarithm function [47]. (This constant also appears in
[48] without explanation.) Generalization to base k≥ 2 is possible, as well as
formulation for Khintchine-type and Lochs-type constants in this broad setting.
Addendum The subject continues to expand [49–55]. Two earlier works deserve

mention. Hope [56] examined

xn+1 = anxn + xn−1, x0 = 0, x1 = 1

like Lévy, but with a simple rule

P (an= 1)=P (an= 2)= 1/2

and independence assumed. The Lyapunov exponent is

lim
n→∞

1
2n

∑
a=1 or 2

ln
(
a1 +

1|
|a2

+
1|
|a3

+ · · ·+ 1|
|an−1

+
1|
|an

)
≈ 0.673≈ ln(1.96).

Davison [57] studied the same except with the rule

an= 1 + (⌊θ n⌋mod2)

for a random θ∈ [0, 2], showing that

1.931<
√

2 +
√

3≤ liminf
n→∞

x1/n
n ≤ limsup

n→∞
x1/n
n ≤

√√√√(1 +
√

5
2

)(
1 +
√

2
)
< 1.977.

We wonder how closely these examples might be connected.
The sequence of polynomials giving Pascal’s rhombus [39] arises from a

second-order recurrence

pn(x)= (1 + x+ x2)pn−1(x) + x2pn−2(x), p1(x)= 1 + x+ x2, p0(x)= 1.

Let un to be the number of odd coefficients in pn(x). A numerical method
gives “typical growth” λ= 0.57331379313.... While limsupn→∞ ln(un)/ ln(n)= 1
is trivial, the following was proved only recently [58]:

liminf
n→∞

ln(un)
ln(n)

= ρ
(
A3B3)1/6

=
ln(1.6376300574...)

ln(2)
= 0.7116094872...
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where A, B are known 5× 5 integer matrices and ρ denotes spectral radius (the
maximal modulus of eigenvalues). Consider instead the Fibonacci polynomials
[39]

qn(x)= x qn−1(x) + qn−2(x), q1(x)= x, q0(x)= 1.

The number vn of odd coefficients in qn(x) is the nth term of Stern’s sequence [59]:

v2n+1 = vn, v2n= vn + vn−1.

Again,λ= 0.3962125642... via numerics; “typical dispersion”σ2 = 0.0221729451...
can be found similarly [40]. The limit superior and limit inferior do not present
any difficulties for {vn}. An evaluation of σ2 corresponding to {un}, however,
remains open.
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4.17 Stars and Watermelons

The p-vicious walker model of length 2n consists of p lattice paths W1, W2, . . .,
Wp in Z2 where

• Wk starts at the point (0, ak) and ends at the point (2n, bk) for k= 1, . . . , p
• all steps are directed northeast or southeast (that is, from (i, j) to (i+ 1, j+ 1)

or to (i+ 1, j− 1))
• if k ̸= ℓ, then Wk and Wℓ never intersect (hence ak ̸= aℓ and bk ̸= bℓ, for

instance).
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In p-star configurations, ak= 2k− 2 for each k (with no constraint on bk); in
p-watermelon configurations, bk= 2k− 2 as well [1, 2]. We often think of the
horizontal axis as time and the vertical axis as space, writing Wk(0)= ak and
Wk(2n)= bk. A p-watermelon with a wall has the additional property that

• Wk(i)≥ 0 for all 0≤ i≤ 2n, for all k.

Gillet [3] demonstrated that limn→∞Wk(⌊2n t⌋)/
√

2n tends to a family of p non-
intersecting Brownian excursions, 0≤ t≤ 1, as an extension of a principle given
in [4].

The height of a pathWk in a p-watermelon with wall is the maximum value of
Wk(i) over all i. The area under a path Wk is the area of the polygonal region
determined by the curve j=Wk(i), the horizontal line j= 0, and the vertical
lines i= 0, i= 2n. In the case p= 2, we will refer to the upper height and upper
area (corresponding toW2) and the lower height and lower area (corresponding
to W1).

Counting all 1-watermelons with wall (orDyck paths) and 2-watermelons with
wall give

(2n)!
n!(n+ 1)!

,
6(2n)!(2n+ 2)!

n!(n+ 1)!(n+ 2)!(n+ 3)!

possible configurations of length 2n, respectively. (The former is the nth Catalan
number.) The average height H1(n) for 1-watermelons with wall satisfies [5, 6]

H1(n)∼
√
πn

as n→∞ and the average area A1(n) satisfies [7, 8]

A1(n)∼
√
πn3/2.

To go to the average L∞-norm of Brownian excursion, divide the H1 result by√
2n (space dimension only), yielding

√
π/2. To go to the average L1-norm,

divide the A1 result by (2n)3/2 (both time and space considered), yielding
√
π/8.

Exact formulas for H1(n) and A1(n) are also available [9].
The average upper height H2(n) for 2-watermelons with wall satisfies

H2(n)∼ (2.57758...)
√
n∼ (1.822625...)

√
2n,

a new result due to Fulmek [6]. The coefficient can be expressed as a linear com-
bination of several complicated integrals of theta functions; a certain double
Dirichlet series also plays a role in the proof. Numerical results for 3≤ p≤ 5
and for higher moments were obtained by Feierl [10]. A different method was
proposed in [11]. To go to the average upper L∞-norm of Brownian excursion,
divide the H2 result by

√
2n. An exact formula for H2(n) is also available [12].

Similar information about the lower height is not known.
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An exact formula for A2(n) seems to be an open problem. Interestingly, we
have both average upper/lower L1-norm results for Brownian excursion:

5
8

(√
2− 1

)√
π, 5

8

√
π

due to Tracy & Widom [13]. Multiplying each constant by (2n)3/2 therefore
provides the main asymptotic terms for average upper/lower areas under 2-
watermelons with wall. Numerical results in [13] also apply for 3≤ p≤ 9. In a
study of average upper L1-norms as p→∞, the constant 1.7710868074... arises
[14, 15] and thus random matrix theory lurks nearby.

Counting all 1-watermelons without wall (or bilateral Dyck paths) and 2-
watermelons without wall give [16]

(2n)!
(n!)2

,
(2n)!(2n+ 1)!
(n!)2((n+ 1)!)2

possible configurations of length 2n, respectively. (The former is the nth central
binomial coefficient.) These tend to Brownian bridges as n→∞ [3, 17]. In the
same way, p-stars with wall tend to Brownian meanders and p-stars without wall
tend to Brownian motions. Corresponding questions about average heights and
average areas (suitably generalized) for p≥ 2 seem to be unanswered.

[1] N. Bonichon and M. Mosbah, Watermelon uniform random generation with appli-
cations, Theoret. Comput. Sci. 307 (2003) 241–256; MR2022577 (2004m:05032).

[2] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A078920 andA103905.
[3] F. Gillet, Asymptotic behaviour of watermelons, math.PR/0307204.
[4] S. R. Finch, Variants of Brownian motion, this volume, §4.5.
[5] N. G. de Bruijn, D. E. Knuth and S. O. Rice, The average height of planted plane

trees, Graph Theory and Computing, ed. R. C. Read, Academic Press, 1972, pp. 15–
22; also in Selected Papers on Analysis of Algorithms, CSLI, 2000, pp. 215–223;
MR0505710 (58 #21737).

[6] M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, Elec.
J. Combin. 14 (2007) R64; math.CO/0607163; MR2350454 (2008j:05031).

[7] D. Merlini, R. Sprugnoli and M. C. Verri, The area determined by underdiagonal
lattice paths, Proc. 1996 Colloq. on Trees in Algebra and Programming (CAAP),
Linköping, ed. H. Kirchner, Lect. Notes in Comp. Sci. 1059, Springer-Verlag, 1996,
pp. 59–71; MR1415900 (97f:68140).

[8] R. Chapman, Moments of Dyck paths, Discrete Math. 204 (1999) 113–117;
MR1691864 (2000g:05011).

[9] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000108, A008549 and
A136439.

[10] T. Feierl, The height of watermelons with wall, J. Phys. A 45 (2012) 095003;
arXiv:0802.2691; MR2897031.

[11] M. Katori, M. Izumi and N. Kobayashi, Two Bessel bridges conditioned never to
collide, double Dirichlet series, and Jacobi theta function, J. Stat. Phys. 131 (2008)
1067–1083; arXiv:0711.1710; MR2407380 (2009e:60184).

[12] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A005700 andA136440.
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[13] C. A. Tracy and H. Widom, Nonintersecting Brownian excursions, Annals Appl.
Probab. 17 (2007) 953–979; math.PR/0607321; MR2326237 (2008j:60238).

[14] S. R. Finch, Longest subsequence constants, first volume, pp. 382–387.
[15] S. R. Finch, Hammersley’s path process, this volume, §4.1.
[16] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000984 andA000891.
[17] T. Feierl, The height and range of watermelons without wall, European J. Combin.

34 (2013) 138–154; arXiv:0806.0037; MR2974277.

4.18 Prophet Inequalities

Suppose that you view a sequence X1, X2, ..., Xn of independent identically dis-
tributed nonnegative random variables and that you wish to stop at a value of
X as large as possible. As in [1], revisiting earlier values is not permitted. If
you are a prophet (meaning that you have complete foresight), then you know
max{X1, . . . ,Xn} beforehand; let Mn denote the average such “insider informa-
tion” value. If you are a mortal (meaning that you have no choice but to select an
X via stopping rules) and if you proceed optimally, then the value Vn obtained
satisfies

Mn

Vn
≤ 1 + αn

for best constants αn with 0.1<αn< 0.6. Let us now be more precise [2–7].
Define

fn(w, x)=
n

n− 1
w(n−1)/n +

1
n− 1

x,

gk,n(x)=
{
fn(gk−1,n(x), x) if 1≤ k≤ n,
fn(0, x) if k= 0

then αn is the unique solution of gn−1,n(x)= 1, 0< x< 1. For example [5, 7],

g1,2(x)=
2
1

(x
1

)1/2
+
x
1
,

g2,3(x)=
3
2

(
3
2

(x
2

)2/3
+
x
2

)2/3

+
x
2
,

g3,4(x)=
4
3

(
4
3

(
4
3

(x
3

)3/4
+
x
3

)3/4

+
x
3

)3/4

+
x
3
,

g4,5(x)=
5
4

5
4

(
5
4

(
5
4

(x
4

)4/5
+
x
4

)4/5

+
x
4

)4/5

+
x
4

4/5

+
x
4

give rise to α2 = 0.17157..., α3 = 0.22138..., α4 = 0.24810..., α5 = 0.26495....
Kertz [6] proved that αn is strictly increasing and that

α∞ = lim
n→∞

αn= 0.3414889923...
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is the unique solution of

1∫
0

1
u− u ln(u) + x

du= 1.

Hence a prophet may never win more, on average, than 1.34... times the winnings
of a mortal.

Suppose instead that you view a sequenceX1,X2, ...,Xn of independent identi-
cally distributed random variables taking values only in the interval [0, 1]. Every-
thing else is the same. With this additional information, the optimal stopping
value Vn now satisfies

Mn≤Vn + βn

for best constants βn with 0<βn< 1/4. Again, let us be more precise [5, 7, 8].
Define βn to be the unique solution of

(n− 1) (gn,n(x)− gn−1,n(x))= 1, 0< x< 1.

Sample gn−1,n(x) expressions were given earlier; sample gn,n(x) expressions are
[5, 7]

g2,2(x)=
2
1

(
2
1

(x
1

)1/2
+
x
1

)1/2

+
x
1
,

g3,3(x)=
3
2

(
3
2

(
3
2

(x
2

)2/3
+
x
2

)2/3

+
x
2

)2/3

+
x
2
,

g4,4(x)=
4
3

4
3

(
4
3

(
4
3

(x
3

)3/4
+
x
3

)3/4

+
x
3

)3/4

+
x
3

3/4

+
x
3

and give rise to β2 = 1/16, β3 = 0.07761..., β4 = 0.08538.... It seems likely that βn
is strictly increasing, but a proof that

β∞ = lim
n→∞

βn≈ 0.1113

exists is open. A high-precision estimate of β∞ is also desired.
The nested radical expressions for gk,n(x) deserve more study. A helpful survey

on general prophet inequalities [9] is recommended.
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(80g:60053).
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[6] R. P. Kertz, Stop rule and supremum expectations of i.i.d. random variables: a
complete comparison by conjugate duality, J. Multivariate Anal. 19 (1986) 88–112;
MR0847575 (87m:60102).

[7] P. C. Allaart, Prophet inequalities for I.I.D. random variables with random
arrival times, Sequential Anal. 26 (2007) 403–413; math.PR/0611664; MR2359862
(2008h:60150).

[8] T. P. Hill and R. P. Kertz, Additive comparisons of stop rule and supremum expecta-
tions of uniformly bounded independent random variables, Proc. Amer. Math. Soc.
83 (1981) 582–585; MR0627697 (82j:60071).

[9] T. P. Hill and R. P. Kertz, A survey of prophet inequalities in optimal stopping theory,
Strategies for Sequential Search and Selection in Real Time, Proc. 1990 Amherst conf.,
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4.19 Excursion Durations

This essay bears some resemblance to [1], but comes from a different viewpoint.
Let {Xt : 0≤ t≤ 1} denote standard Brownian motion and fix a time 0<τ < 1.
The excursion straddling τ is {Xt :ατ ≤ t≤βτ}, where

ατ = sup{t<τ :Xt= 0}, βτ = inf{t>τ :Xt= 0}.

Weare interested in the durationβt − ατ of this excursion, aswell as all excursions
straddling earlier times. More precisely, let

Mτ − 1=#{excursions completed by time τ whose durations exceed τ − ατ},

Nτ − 1=#{excursions completed by time τ whose durations exceed βτ − ατ};

wewish to compute the probability thatMτ = 1 (the current excursion, measured
up to time τ , has a record duration) and the probability that Nτ = 1 (the current
excursion, measured to its completion, has a record duration). Since βτ ≥ τ , it is
clear that Mτ ≥Nτ . Simple scaling arguments show that the distribution of Mτ

and the distribution of Nτ are independent of τ .
Define functions

φ(x)=
1
2

∞∫
1

e−x uu−3/2du= e−x −
√
π x erfc(

√
x),

ψ(x)= 1 +
1
2

1∫
0

(1− e−x u)u−3/2du= e−x +
√
π x erf(

√
x)
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involving the error and complementary error functions [2]; then [3, 4]

P(Mτ = k)=

∞∫
0

e−xφ(x)k−1ψ(x)−kdx,

P(Nτ = k)=
1
2

∞∫
0

x−1(1− e−x)φ(x)k−1ψ(x)−kdx.

Numerical integration gives

P(Mτ = k)=


0.6265075987... if k= 1,
0.1430092516... if k= 2,
0.0630157050... if k= 3,
0.0356483608... if k= 4,

P(Nτ = k)=


0.8003100322... if k= 1,
0.0812481569... if k= 2,
0.0334196946... if k= 3,
0.0184590943... if k= 4

and asymptotic analysis gives, as k→∞,

P(Mτ = k)∼ 2
π k2 , P(Nτ = k)∼ 1

π k2 .

It is striking that the current excursion is, with fairly high probability, of duration
greater than all preceding excursions!

Let L1>L2>L3> . . .> 0 denote the ranked durations of excursions of Xt.
Note that

∑
Lj= 1 almost surely. The joint probability law of (L1,L2,L3, . . .)

follows what is called the Poisson–Dirichlet (1/2, 0) distribution. If instead Xt is
a Brownian bridge (meaning that X1 = 0), then the Poisson–Dirichlet (1/2, 1/2)
distribution emerges. Can numerical results for P(Mτ ) and P(Nτ ) be found in
this case? We also wonder what happens when Xt is an Ornstein–Uhlenbeck
process [5].

The constant 0.6265... appears in [6], as well as the Golomb–Dickman con-
stant 0.6243... [7].

[1] S. R. Finch, Zero crossings, this volume, §4.4.
[2] S. R. Finch, Notation: Error function, this volume, p. xi.
[3] C. L. Scheffer, The rank of the present excursion, Stochastic Process. Appl. 55 (1995)

101–118; MR1312151 (96m:60189).
[4] J. Pitman andM.Yor, The two-parameter Poisson-Dirichlet distribution derived from

a stable subordinator, Annals of Probab. 25 (1997) 855–900; MR1434129 (98f:60147).
[5] J. Pitman and M. Yor, On the lengths of excursions of some Markov processes, Sémi-

naire de Probabilités, XXXI, ed. J. Azéma, M. Emery and M. Yor, Lect. Notes in
Math. 1655, Springer, 1997, pp. 272–286; MR1478737 (98j:60108).
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4.20 Gambler’s Ruin

Consider two gamblers A, B with initial integer fortunes a, b. Let m= a+ b
denote the initial sum of fortunes. In each round of a fair game, one player wins
and is paid 1 by the other player:

(a, b) 7→
{
(a+ 1, b− 1) with probability 1/2,
(a− 1, b+ 1) ′′

Assume that rounds are independent for the remainder of this essay. The ruin
probability pE for a gambler E is the probability that E’s fortune reaches 0 before
it reaches m. For the symmetric 2-player problem,

pA=
b

a+ b
, pB=

a
a+ b

and this can be proved using either discrete-time (1D random walk) methods or
by continuous-time (1D Brownian motion) methods [1].

Before discussing the symmetric 3-player problem (which constitutes the most
natural generalization of the preceding), let us examine the following 3-player
C-centric game [2, 3]:

(a, b, c) 7→


(a+ 1, b, c− 1) with probability 1/4,
(a− 1, b, c+ 1) ′′

(a, b+ 1, c− 1) ′′

(a, b− 1, c+ 1) ′′

In each round, C plays against either A or B (with equal probability) and wins
1 or loses 1 (again with equal probability). Let m= a+ b+ c denote the initial
sum of fortunes. By discrete-time methods, it is known that [3]

pA= f(b, a,m)− f(a, a+ c,m)

where

f(a, b,m)=
2
m

∑
1≤j<m
j odd

sin
(
a jπ
m

)
cot
(
jπ
2m

)
sinh ((m− b)φj,m)

sinh (mφj,m)
,

φj,m= arccosh (2− cos(jπ/m)).
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For example,

pA=


295476041655
716708481082 = 0.4122... if a= 3, b= 3, c= 9;

2964404261421089
8592617979692098 = 0.3449... if a= 4, b= 4, c= 7;

93962873
360352742 = 0.2607... if a= 5, b= 5, c= 5

and these numerical results are consistent with [2] (obtained by recurrences).
From

pA=



1
4 = 0.25 if a= b= c= 1;

17
66 = 0.2575... if a= b= c= 2;

365
1406 = 0.2596... if a= b= c= 3;

223655
858958 = 0.2603... if a= b= c= 4

it is clear that 3-player problems differ from 2-player problems (because scaling
is not invariant) and hence 2D Brownian motion methods will only approximate
(but not exactly solve) 2D random walk probabilities. If we allowm→∞ in such
a way that a/m→α> 0 and b/m→β > 0, then [3]

pA= g(β, α)− g(α, 1− β)

where

g(α, β)= 4
∑

1≤j<∞
j odd

sin(α jπ)
jπ

sinh ((1− β)jπ)
sinh (jπ)

.

For example,

pA=
{
0.2614366507... if α= 1/3, β= 1/3;
0.4126822642... if α= 1/5, β= 1/5

in this limiting case. If instead we allow c→∞ for fixed a, b, then [2]

pA=
1
π

π∫
0

sin(x) sin(b x)
1− cos(y)

e−a ydx

where
cos(x) + cosh(y)= 2.

For example,

pA=


1/2 if a= b;
0.6976527263... if a= 1, b= 2;
0.6232861831... if a= 2, b= 3;
0.7906109052... if a= 1, b= 3.

Let us turn attention to the symmetric 3-player game:

(a, b, c) 7→


(a+ 2, b− 1, c− 1) with probability 1/3,
(a− 1, b+ 2, c− 1) ′′

(a− 1, b− 1, c+ 2) ′′
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One player wins and is paid 1 by each of the other players. A discrete-time solu-
tion was outlined in [4], but it is conceptually very different from C-centric game
results. For small values of m, some results are known [5, 6]:

pC=



2
3 = 0.6666... if a= b= c= 1;
4
9 = 0.4444... if a= b= c= 2;
8
21 = 0.3809... if a= b= c= 3;
16
45 = 0.3555... if a= b= c= 4;
848
2457 = 0.3451... if a= b= c= 5;
49
144 = 0.3402... if a= b= c= 6.

Asymptotic numerical evaluation is feasible when modeling the game as Brown-
ian motion in the plane of the equilateral triangle given by{

x
(
1
0

)
+ y

(
−1
0

)
+ z

(
0√
3

)
: x+ y+ z=m, x≥ 0, y≥ 0, z≥ 0

}
.

Computing pC corresponds to finding the probability that Brownian motion first
exits the triangle along the edge z= 0, starting from (x, y, z)= (a, b, c). In the
event a= b, we determine η > 0 so that

c
m

=

I
(

η2

1 + η2 ,
1
2
,
1
6

)
I
(
1,

1
2
,
1
6

)
where

I(ξ, α, β)=

ξ∫
0

tα−1(1− t)β−1dt

is the incomplete beta function; it follows that [7–9]

pC=
1
π

(
π

2
− arctan

(
η2 − 1

2η

))
.

For example,

pC=


1/3 if a= b= c, that is, c/m= 1/3;
0.1421549761... if 2a= 2b= c, that is, c/m= 1/2;
0.5617334934... if a= b= 2c, that is, c/m= 1/5.

In the event a ̸= b, no such explicit formulas apply. A purely numerical approach
[8–12] gives, for example,

pA= 0.6542207068..., pB= 0.2923400189..., pC= 0.0534392741...

when 10a= 5b= 2c.
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The final game we mention, usually referred to as the 3-tower problem (or
Hanoi tower problem), is [8]:

(a, b, c) 7→



(a− 1, b+ 1, c) with probability 1/6,
(a− 1, b, c+ 1) ′′

(a+ 1, b− 1, c) ′′

(a, b− 1, c+ 1) ′′

(a+ 1, b, c− 1) ′′

(a, b+ 1, c− 1) ′′

In each round, one player is randomly chosen as the loser and one player (distinct
from the first) is randomly chosen as the winner. A study of corresponding ruin
probabilities has evidently not been done.

Another quantity of interest is the game duration d, which is the expected num-
ber of rounds until one of the gamblers is ruined. For the symmetric 2-player and
3-player problems, we have [13–15]

d= a b, d=
a b c

a+ b+ c− 2

respectively. For the 3-tower problem, we have [14–18]

d=
3a b c

a+ b+ c
;

in fact, corresponding variance and probability distribution are also known. For
the 3-player C-centric game, d= ab+ bc+ ca [19]. No simple formulas for d can
be anticipated when the number of players exceeds three [16, 20, 21].

Here is an interesting variation on the symmetric 2-player problem:

(a1, a2, b1, b2) 7→


(a1 + 1, a2, b1 − 1, b2) with probability 1/4,
(a1 − 1, a2, b1 + 1, b2)

′′

(a1, a2 + 1, b1, b2 − 1) ′′

(a1, a2 − 1, b1, b2 + 1) ′′

The gamblers use two different currencies, say dollars and euros. In each round,
a currency and a winner are randomly chosen. When one of the players runs
out of either currency, the game is over. Ruin probabilities p are not known; if
a1 = a2 = b1 = b2 = n, then game durations d are O(n2) and, more precisely, [22]

δ= lim
n→∞

d
n2 =

256
π4

∞∑
k=0

∞∑
ℓ=0

(−1)k+ℓ

(2k+ 1)(2ℓ+ 1) [(2k+ 1)2 + (2ℓ+ 1)2]
.

Another representation

δ= 2

1− 32
π3

∞∑
k=0

(−1)k

(2k+ 1)3 cosh
[π
2
(2k+ 1)

]
= 1.1787416525...
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is rapidly convergent and possesses a straightforward generalization to an arbi-
trary number of different currencies.

The following question is similar to our asymptotic analysis of the symmetric
3-player game. Let a≤ b. A particle at the center of an a× b rectangle undergoes
Brownian motion until it hits the rectangular boundary. What is the probability
that it hits an edge of length a (rather than an edge of length b)? The answer
[23, 24]

P(b/a)=
4
π

∞∑
j=0

(−1)j

2j+ 1
sech

(
(2j+ 1)π

2
b
a

)
is found via solution of a steady-state heat PDE problem. This has a closed-form
expression in certain cases: [25–27]

P(r)=



1
2 if r= 1,

2
π arcsin

[
(
√

2− 1)2
]

if r= 2,

2
π arcsin

[
(
√

2− 31/4)(
√

3− 1)/2
]

if r= 3,

2
π arcsin

[
(
√

2 + 1)2(21/4 − 1)4
]

if r= 4,

2
π arcsin

[
(
√

5− 2)(3− 2 · 51/4)/
√

2
]

if r= 5,

2
π arcsin

[
(3− 2

√
2)2(2 +

√
5)2(
√

10− 3)2(51/4 −
√

2)4
]

if r= 10,

which are based on singular moduli k1, k4, k9, k16, k25, k100 appearing in the
theory of elliptic functions. We wonder whether heat PDE-type analysis might
assist in the asymptotic study of some 4-player games.
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4.21 Self-Convolutions

Let f be a square-integrable probability density function supported on a subin-
terval of R of length 1/2. Define the self-convolution of f to be

( f ∗ f)(x)=
∞∫
−∞

f(t)f(x− t)dt.

Thus f ∗ f is the probability density for a sum of two independent random vari-
ables, each distributed according to f, and is supported on an interval of length 1.
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We are interested in the “size” of f ∗ f, measured via both L2 and L∞ norms.
Before doing this, however, let us examine f alone as a preliminary exercise.

For each integer n≥ 1, define

gn(x)=
n+ 1
n

(
1√
2x

) n−1
n

, 0< x< 1/2

then clearly gn is a probability density for all n,

∥gn∥22 =
1/2∫
0

gn(x)2dx=
(n+ 1)2

2n
→∞

as n→∞, and ∥gn∥∞ =∞ always. Consequently

sup
f
∥ f ∥22 =∞= sup

f
∥ f ∥∞ .

Also, suppose that there exists a probability density h on [0, 1/2] with ∥h∥22< 2.
By the Cauchy–Schwarz inequality,

2=

1/2∫
0

h(x) · 2 dx≤∥h∥2 · ∥2∥2<
√

2 ·
√

2= 2,

which is a contradiction. Consequently

inf
f
∥ f ∥22 = 2= inf

f
∥ f ∥∞ .

The problem of assessing f ∗ f together is more difficult. Let us first discuss
relevant infimums. Martin & O’Bryant [1, 2] conjectured that

inf
f
∥ f ∗ f ∥∞ =π/2= 1.5707963267...

on the basis of their proof that the left-hand side must exceed 1.262=(2)(0.638),
plus their observation that ∥g ∗ g∥∞ =π/2, where

g(x)= lim
n→∞

gn(x)= 1/
√

2x.

Technically, g is not admissible (since it is not square-integrable). See [3–5] for
discussion of a similar case.

Martin & O’Bryant [1] also proved that

inf
f
∥ f ∗ f ∥22≥ 1.14915=(2)(0.574575)

after elaborate computations. This may be nearly correct, since the probability
density

k(x)=
4
π

1√
8x(1− 2x)

, 0< x< 1/2
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satisfies
∥k ∗ k∥22< 1.14939.

Again, k is not admissible for technical reasons. No exact formula is even
conjectured in this case, which renders it especially interesting!

Here is a problem involving ratios of Lp norms. Hölder’s inequality gives

∥ f ∥22≤∥ f ∥∞ · ∥f∥1

which is an equality if f= 2 on [0, 1/2]. Consequently

inf
f

∥ f ∥∞
∥ f ∥22

= 1.

Martin & O’Bryant [1, 2] conjectured that

inf
f

∥ f ∗ f ∥∞
∥f ∗ f∥22

=
π

4 ln(2)

on the basis, in part, of their observation that ∥g ∗ g∥22 = 2 ln(2). This result gives
a sense of how large ∥ f ∗ f ∥22 can be, in terms of ∥ f ∗ f ∥∞. No other mention of
relevant supremums in the literature has yet been found!
Addendum The first conjecture is false: in fact,

1.2748≤ inf
f
∥ f ∗ f ∥∞≤ 1.5098.

The second conjecture is also false: in fact,

inf
f

∥ f ∗ f ∥∞
∥ f ∗ f ∥22

≤ 1
0.88922...

<
1

0.88254...
=

π

4 ln(2)
.

Such adjustments open up this subject considerably since no one knows what the
extremal functions f now might be [6, 7]. A sequence of lower bounds defined in
[8] and numerical optimization (on a simplex in R2n) suggest an improvement
1.28 over 1.2748; the upper bound 1.5098 is believed to be close to the true value.
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4.22 Newcomb–Benford Law

The literature for Benford’s law is quite large and growing [1]; we avoid interesting
foundational issues [2, 3] and turn attention instead to a specific scenario [4–7].

Let {an}∞n=0 be anmth order linear homogeneous recurrence. Consequently the
sequence can be written as

an= p1qn1 + P2(n)qn2 + P3(n)qn3 + · · ·+ Pm(n)qnm,

where q1, q2, …, qm are associated eigenvalues; q1 is the largest eigenvalue (in
absolute value); p1 is constant and P2, P3, …, Pm are polynomials. The sequence
{an} is called random-enough if q1 is real, positive, not a rational power of 10,
of multiplicity 1 (as an eigenvalue) and p1 is positive. Famous integer examples
include

an= 2n (powers of 2),

an=
φn − (1− φ)n√

5
(Fibonacci sequence),

an=φn + (1− φ)n (Lucas sequence)

where φ is the Golden mean [8].
Consider the jth leftmost decimal digit Dj of an integer a. If j= 1, then 1≤

Dj(a)≤ 9; if j≥ 2, then 0≤Dj(a)≤ 9. Let {an}∞n=0 be a random-enough sequence
of positive integers. Benford’s law states that [4]

lim
N→∞

1
N
# {n≤N :D1(an)= d} = log10

(
1 +

1
d

)
=

0∑
k=0

log10

(
1 +

1
10k+ d

)
for 1≤ d≤ 9. In words, the first digit of an arbitrary term an is not uniformly
distributed over {1, 2, . . . , 9}, but instead favors small values:

P {D1 = 1}= 0.30103..., P {D1 = 2}= 0.17609..., P {D1 = 3}= 0.12493...

and, of course, P {D1 = 0}= 0.
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Fix j≥ 2. A generalization of Benford’s law states that [4]

lim
N→∞

1
N
# {n≤N :Dj(an)= d}=

10j−1−1∑
k=10j−2

log10

(
1 +

1
10k+ d

)
for 0≤ d≤ 9. The second digit of an arbitrary term an is not uniformly distributed
over {0, 1, . . . , 9}:

P {D2 = 1}= 0.11389..., P {D2 = 2}= 0.10882..., P {D2 = 3}= 0.10432...

and P {D2 = 0}= 0.11967...; each of the probabilities are, however, closer to 1/10
than before. The same is true for the third digit of an arbitrary term an:

P {D3 = 1}= 0.10137..., P {D3 = 2}= 0.10097..., P {D3 = 3}= 0.10057...

and P {D3 = 0}= 0.10178.... Such numerical results were first tabulated in [9, 10].
For simplicity, we henceforth refer to Benford’s law and its generalization
together (j≥ 1) as NBL.

Another way to illustrate the approach to uniformity (as j→∞) makes use of
moments. It is straightforward to show that [11]

E(D1)= 2 log10(2)− 4 log10(3) + 8 log10(5)− log10(7)= 3.4402369671...,

E(D2
1)= 8 log10(2)− 50 log10(3) + 72 log10(5)− 13 log10(7),

Var(D1)=E(D2
1)− E(D1)

2 = 6.0565126313...,

E(D2)= 4.1873897069..., Var(D2)= 8.2537786232...,

E(D3)= 4.4677656509..., Var(D3)= 8.2500943647....

The means approach 9/2 and the variances approach 33/4, as anticipated. We
also have

Cov(D1,D2)=E(D1D2)− E(D1)E(D2)= 14.8019478993...,

for example. Correlation coefficients are small but positive; the largest is

ρ(D1,D2)=
Cov(D1,D2)√

Var(D1)
√

Var(D2)
= 0.0560563403....

It is further known that the sequence {n!}∞n=0 and triangular array {
(k
ℓ

)
: 0≤ ℓ≤

k, k≥ 1} satisfy NBL [12]. The sequences {n2}∞n=0 and {n3}∞n=0 appear to offer
special challenges, since the limiting digital probabilities evidently do not exist [3].

First-digit phenomena were mentioned in [13] without elaboration. In the lan-
guage of [14], {an}∞n=0 satisfies NBL if and only if the fractional parts of log10(an)
are uniformly distributed in [0, 1], proved byDiaconis [12]. Our discussion can be
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extended to non-integer variablesX, where we agree thatD1(1/2)= 5=D1(1/20)
(the first significant decimal digit). For example,

P {D1(X)= 1}= 1
9
< log10(2)

if X is Uniform(0, 1) and

P {D1(X)= 1}=
∞∑

k=−∞

(
exp(−10k)− exp(−2 · 10k)

)
= 0.32965... > log10(2)

if X is Exponential(1). Thus NBL does not apply in either case [2].
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4.23 Electing a Leader

The following scenario was examined in [1]: we toss n ideal coins, then toss those
which show tails after the first toss, then toss those which show tails after the sec-
ond toss, etc. Observe that if, at a given toss, only heads appear, then the process
immediately terminates. Suppose instead that we require the coins (all of which
showed heads) to be tossed again? Under such a change of rules, it is clear that
the final toss will always involve exactly one coin. This solitary coin is called the
leader and the process of selecting such is called an election.
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Figure 4.4 A typical election, starting with n= 7 candidates.

Certain parameters governing the election (a random incomplete trie) are of
interest. In Figure 4.4, the size v7 = 10 is the number of vertices in the tree. The
height h7 = 6 is the length of the longest root-to-leaf path, that is, the time dura-
tion to choose a leader. Finally, c7 = 21 is the total number of coin tosses. Let
Cn denote likewise, given arbitrary n and a random election. It is surprising that
E(Cn)= 2n for n≥ 2; the random variables Vn and Hn are more complicated [2].

The following sums involving Bernoulli numbers [3] and binomial coefficients
are relevant and interesting [2, 4]:

1
n

n−1∑
k=2

(
n
k

)
Bk

2k−1 − 1
∼ ln(n)

2 ln(2)
−
(

ln(π)
2 ln(2)

− γ

2 ln(2)
+

3
4

)
+ δ1

(
ln(n)
ln(2)

)
,

n−1∑
k=1

(
n
k

)
Bk

2k − 1
∼− ln(n)

ln(2)
+

1
2
+ δ2

(
ln(n)
ln(2)

)
,

n
n−1∑
k=0

(
n
k

)
Bk

2k+1 − 1
∼ π2

6 ln(2)
+ δ3

(
ln(n)
ln(2)

)
where, for m= 1, 2, 3,

δm(x)=
1

ln(2)

∞∑
k=−∞
k̸=0

ζ

(
m− 1− 2πik

ln(2)

)
Γ

(
m− 1− 2πik

ln(2)

)
exp(2πikx)

are periodic functions of period 1 and very small amplitude. For example,
|δ2(x)|< 1.927× 10−5 for all x. Each fluctuates symmetrically about 0. Define
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also [5]

ε(x)=
2

ln(2)2

∞∑
k=−∞
k ̸=0

ν

(
2πik
ln(2)

)
exp(2πikx)− δ22(x)

where

ν(s)= ζ(1− s)Γ(−s)− s ζ ′(1− s)Γ(−s)− s ζ(1− s)Γ′(−s).

This again has period 1 and small amplitude – we have |ε(x)|< 1.398× 10−4

always – fluctuations are symmetrical not about 0, but instead about

1∫
0

ε(x)dx=− 1
ln(2)2

∞∑
k=−∞
k ̸=0

∣∣∣∣ζ (1− 2πik
ln(2)

)
Γ

(
1− 2πik

ln(2)

)∣∣∣∣2≈−1.856× 10−10.

Let us return to coin tossing. Prodinger [2] showed that

E(Vn)∼
2 ln(n)
ln(2)

+

(
2− ln(π)− γ

ln(2)

)
+ 2δ1

(
ln(n)
ln(2)

)
− δ2

(
ln(n)
ln(2)

)
,

E(Hn)=−
n−1∑
k=1

(
n
k

)
Bk

1− 2−k ∼
ln(n)
ln(2)

+
1
2
− δ2

(
ln(n)
ln(2)

)
asymptotically as n→∞, assuming that the election is conducted exactly as
described earlier. If we alter the rules so that a draw between two coins is allowed
(if precisely two coins are left, they both are declared leaders), then

E(Ṽn) ∼
2 ln(n)
ln(2)

+

(
2−

ln(π)− γ + π2

16

ln(2)

)
+ 2δ1

(
ln(n)
ln(2)

)
− δ2

(
ln(n)
ln(2)

)
− 3

8
δ3

(
ln(n)
ln(2)

)
,

E(H̃n)∼
ln(n)
ln(2)

+
1
2
− π2

12 ln(2)
− δ2

(
ln(n)
ln(2)

)
− 1

2
δ3

(
ln(n)
ln(2)

)
,

E(C̃n)∼ 2n− π2

6 ln(2)
− δ3

(
ln(n)
ln(2)

)
.

For example, the constant for E(Vn) is 1.1812500478...; the difference
π2/(16 ln(2))= 0.8899268328... quantifies how much is saved by stopping ear-
lier to give E(Ṽn). For E(Hn) versus E(H̃n), the difference π2/(12 ln(2))=
1.1865691104... is slightly greater.

Fill, Mahmoud & Szpankowski [5] proved that

Var(Hn)∼
1
12

+
π2

6 ln(2)2
− γ2 + 2γ1

ln(2)2
+ ε

(
ln(n)
ln(2)

)
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asymptotically as n→∞, where γ1 is the first Stieltjes constant [6]. As predicted
in [2], this is a nontrivial result. The constant 3.1166951643... also appears in [7];
another treatment is given by [8]. As far as is known, evaluating Var(H̃n) remains
open. The parameters Vn, Cn, Ṽn, C̃n deserve more attention. Random elections
yielding a predetermined number > 1 of leaders are examined in [9].

4.23.1 Non-Ideal Coins

Instead of assuming that coins are ideal (independent probability of tails= 1/2),
let us suppose that coins “know” their count just before each toss.More precisely,
if n1 = n is the count before the first toss and nj is the count before the jth toss,
j≥ 1, then at time j, each coin enjoys independent probability of tails = 1/nj.
Since nj+1≤ nj, the odds that any active candidate becomes the leader improve
with time. If nj+1 = 1, the election is over. If nj+1 = 0, then nj+1 is overwritten with
nj and the coins are tossed again.

Clearly E(H1)= 0. From the recursion[
1−

(
1− 1

n

)n

−
(

1
n

)n]
E(Hn)= 1 +

n−1∑
k=2

(
n
k

)(
1
n

)k(
1− 1

n

)n−k

E(Hk)

for n≥ 2, we obtain E(H2)= 2, E(H3)= 13/6, E(H4)= 65/29 and [10, 11]

lim
n→∞

E(Hn)= 2.4417158788....

A more complicated recursion gives limn→∞ Var(Hn)= 2.832554383....
Is 1/n the optimal probability? Replacing 1/n everywhere by t/n for 0< t< 2

in the preceding, we obtain

E(H2)=
2

(2− t)t
, E(H3)=

18− 3t− 2t2

3(3− t)(2− t)t
.

Differentiating the recursion with respect to t allows us to find a minimum point
t∗ = 1.0654388051... and thus [11]

lim
n→∞

E(H∗
n)= 2.4348109638....

No one has evaluated limn→∞ Var(H∗
n), as far as is known. Related topics in

random elections are found in [12].

4.23.2 Number Games

The following game, proposed by Gilbert [13], was revisited by Fokkink [14].
A player A chooses a secret integer from 1 to n. Another player B attempts to
guessA’s integer. After each guess,A tellsBwhether the guess is too high, too low
or correct. If B has guessed A’s integer, the game ends. If not, then Amay change
the secret integer, but the new integer must be consistent with all the information
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so far provided. Assuming both players adopt optimal, equilibrium, randomized
strategies, the expected number ξn of guesses is conjectured to satisfy [14]

ξn∼
ln(n)
ln(2)

− (0.487...)

asymptotically as n→∞. It is further acknowledged in [14] that this formulamay
require a small amplitude oscillation and [9] is cited. A verification of either claim
would be good to see.

Here is a comparatively simple game, proposed by Häggström [15] as a model
for the Swedish National Lottery. Every contestant chooses a positive integer.
The person who submits the smallest integer not chosen by anybody else is the
winner. (If no integer is chosen by exactly one person, then there is no winner.)
Let us focus on the case where there are exactly three contestants. Assum-
ing all three adopt optimal, equilibrium, randomized strategies, each of them
independently draws an integer according to a shifted geometric distribution:

P (ℓ is selected)= (1− r)rℓ−1,

where ℓ= 1, 2, 3, . . . and r= 0.5436890126... satisfies the cubic equation

1
r3
− 1
r2
− 1
r
− 1= 0.

This constant is the reciprocal growth rate for the so-called Tribonacci sequence
[16].What can be said if instead there are exactly four contestants? The only other
reference found on this subject, [17], contains more elaborate analyses (assuming
a Poisson random count of players or an upper bound on playable numbers, if
not both).

[1] S. R. Finch, Feller’s constant, first volume, pp. 339–342.
[2] H. Prodinger, How to select a loser,DiscreteMath. 120 (1993) 149–159; MR1235902

(94g:05010).
[3] S. R. Finch, Fractional parts of Bernoulli numbers, this volume, §1.23.
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Addison-Wesley, 1973, pp. 500–507, 510, 727; MR0445948 (56 #4281).
[5] J. A. Fill, H.M.Mahmoud andW. Szpankowski, On the distribution for the duration
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MR1422986 (97k:05053).

[6] S. R. Finch, Stieltjes constants, first volume, pp. 166–171.
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[8] C. Knessl, Asymptotic and numerical studies of the leader election algorithm,

European J. Appl. Math. 12 (2001) 645–664; MR1877345 (2002k:60033).
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4.24 Substitution Dynamics

Starting with 0, the bit substitutions{
0→ 01
1→ 10

,

{
0→ 01
1→ 0

generate recursively the infinite Prouhet–Thue–Morseword 0110100110010110...
and Fibonacci word 01001010010010100101..., respectively [1]. What can be
said about the entropy (loosely, the amount of disorder) if we introduce some
randomness into such definitions?

If [2, 3] 0→
{
01 with probability 1/2,
10 with probability 1/2

1→ 0

with independence assumed throughout, then the set of possible words at step
n− 2 is {001, 010, 100} at n= 4 and

{00101, 00110, 01001, 01010, 01100, 10001, 10010, 10100}

at n= 5. Define

fn= fn−1 + fn−2 for n≥ 2, f0 = 0, f1 = 1

(Fibonacci’s sequence) and [4]

an=(2an−1 − an−2an−3) an−2 for n≥ 3, a0 = 0, a1 = 1, a2 = 1.

At step 2, there are a4 = 3 words, each of length f4 = 3; at step 3, there are a5 = 8
words, each of length f5 = 5. The corresponding entropy is

lim
n→∞

ln(an)
fn

= lim
n→∞

1
fn+1

[
ln(n) +

n−1∑
k=2

fk−2 ln(n− k+ 1)

]
= 0.4443987251...= ln(1.5595521944...).
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Here is a somewhat artificial example on three symbols (with motivation to
come later). If [5] 

0→ 01

1→
{
10 with probability 1/2,
20 with probability 1/2,

2→ 22

with independence assumed throughout, then the set of possible words at step n
is {0110, 0120} at n= 2 and

{01101001, 01102001, 01102201, 01201001, 01202001, 01202201}

at n= 3. Define [4, 6]

αn=(αn−1 + αn−2)αn−1 for n≥ 3, α1 = 1, α2 = 2.

At step 2, there are α2 = 2 words, each of length 22 = 4; at step 3, there are α3 = 6
words, each of length 23 = 8. The corresponding entropy is

lim
n→∞

ln(αn)
2n

=

∞∑
k=1

1
2k+1 ln

(
1 +

αk−1

αk

)
= (0.3547882102...) ln(2).

Imagine now replacing the symbol 2 in the preceding by the empty symbol.
We obtain 

0→ 01

1→
{
10 with probability 1/2,
0 with probability 1/2,

which is recognized as an “intertwining” of the Prouhet–Thue–Morse and
Fibonacci substitutions [5]. The set of possible words at step n is {0110, 010}
at n= 2 and

{01101001, 0110001, 011001, 0101001, 010001, 01001}

at n= 3. The sequence {αn} remains relevant, but unfortunately the word lengths
are no longer consistent. Because the word lengths are 2n at most, we deduce that
the entropy is ≥ (0.3547882102...) ln(2). More precise bounds would be good to
see someday.

More examples are found in [5, 7–9]. Let φ=(1 +
√

5)/2 be the Golden mean
[10]. Starting with 0, the substitution [11]

0→ 02324
1→ 32324
2→ 323
3→ 12324
4→ 12323
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gives rise to 023243231232432312323.... Rewriting every positive digit via

1→++, 2→+−, 3→−+, 4→−−

we obtain 0 +−+−−+−++−+−−+−++−+−+ ...which turns out
to be identical to the sequence

εn= sgn
(
sin
(

2πn
φ2

))
=


+ if {n/φ2}< 1/2
− if {n/φ2}> 1/2
0 if n= 0

where {x} denotes the fractional part of x> 0. Letting

S(N)=
N∑
n=1

εn, Σ(N)=
1
N

N∑
n=1

S(n)2

it appears that

max
1≤n≤N

S(n)∼− min
1≤n≤N

S(n)∼ 1
6 ln(φ)

ln(N)

as N→∞, but the existence and identity of limN→∞ Σ(N)/ ln(N) remain open.
This circle of ideas reminds us of the following question: is the series

∞∑
n=1

(−1)n
|sin(n)|

n

convergent? The answer is yes; its delicate proof is connected with Diophantine
approximation [12]. Another self-similar sequence appears in [13] (in a different
context). See [14, 15] for related material.

4.24.1 Penrose–Robinson Tilings

Penrose [16–18] discovered a famous tiling of the plane that is nonperiodic and
generated by two types of rhombi with equal edge length (one with acute angle
π/5 and the other with acute angle 2π/5). Bisecting the rhombi across the obtuse
angles gives the Robinson triangles P and Q in Figure 4.5. More on this decom-
position (P is also known as a Golden triangle) appears in [19–22]. Again, what
can be said about the entropy if some randomness is introduced?

We proceed in close analogy with random Fibonacci words, omitting all
details. Define [2, 4](

an
bn

)
=

(
(2bn−1 − an−1bn−2) an−1(
2an − an−1an−2b2

n−2

)
bn−1

)
for n≥ 2,

(
a0

b0

)
=

(
1
1

)
,

(
a1

b1

)
=

(
2
4

)
.
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2π/5

π/5

1 + φ

Q
P

1

φ
φ

Figure 4.5 P and Q triangles.

Figure 4.6 a1 = 2.

Figure 4.7 b1 = 4.

Figure 4.8 a2 = 12 (four duplicates occurred among the original sixteen).

When n= 1, there are a1 = 2 triangles of type Q, each partitioned into f3 = 2 tri-
angular subregions (Figure 4.6); next there are b1 = 4 triangles of type P, each
partitioned into f4 = 3 subregions (Figure 4.7). When n= 2, there are a2 = 12
triangles of type Q, each partitioned into f5 = 5 subregions (Figure 4.8); next
there are b2 = 88 triangles of type P, each partitioned into f6 = 8 subregions (not
pictured). The corresponding entropy is

lim
n→∞

ln(an)
f2n+1

= lim
n→∞

ln(bn)
f2n+2

= 0.606094....
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A rapidly convergent expression for this constant would be welcome, as would a
rigorous definition of quasiperiodicity in two dimensions.

Acknowledgments I thank Claude Godrèche and Johan Nilsson for their picto-
rial explanations of a2 = 12 and David Wing for his helpful comments.
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Figure 4.9 The phase transition from freely-flowing to fully-jammed is not sharp, even
for large n. We desire more precise estimates of both upper and lower critical densities, as
functions of p and n. Another plot in [2] gives not the mean of v over realizations, but the
standard deviation (with well-defined peak).

4.25 Biham–Middleton–Levine Traffic

Consider two types of cars, red (east-bound) and blue (north-bound) which pop-
ulate a two-dimensional n× n square lattice with periodic boundary conditions.
Each lattice site is in one of three states: empty, occupied by a red car, or occu-
pied by a blue car. The cars are initially distributed independently and uniformly
at random over the lattice sites with spatial density p, implying that at each site,

P (red car)= p/2, P (blue car)= p/2, P (empty)= 1− p.

This is the only indeterminate step within the traffic model [1].
Time is integer-valued. At each time point, two steps occur, one immediately

following the other. First, all red cars simultaneously attempt to move one lattice
site to the east. If the site east of a red car is currently empty, it advances; other-
wise it is blocked (even if the east site is becoming empty). Second, all blue cars
simultaneously attempt to move one lattice site to the north. If the site north of a
blue car is currently empty, it advances; otherwise it is blocked (even if the north
site is becoming empty).

The velocity v of the system at each time t is the ratio between the number of
cars that successfully moved and the total number of cars. If v= 0, then no car
has moved at t; if v= 1, then all the cars have moved. The dependence of v for
large t on both p and n is exceedingly interesting – see Figure 4.9 – depicted is an
average of v over many realizations and over a large time interval [2].

Early in the study of this particular traffic model, it was thought that the
phase transition exhibited by v would be comparable to other famous systems
in statistical mechanics (for example, percolation). Such a belief seems, however,
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not to be supported by computer simulation. Intermediate stable phases, where
regions of gridlock coexist with bands of unrestricted movement, seem to form
effortlessly for 32≤ n≤ 512 [3, 4]. No one knows what truly happens as n→∞.
Do such critical intervals slowly cascade to p= 0 in the limit? Or do they remain
intact and disjoint from p= 0?

Additional references [5–12] cover both theoretical and experimental aspects
of the subject.
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4.26 Contact Processes

A one-dimensional contact process is a continuous-time Markov process on the
lattice Z of integers. The state at time t is given by a set ηt⊆Z of the lattice sites
which we visualize as being occupied by particles. The system evolves as follows:

• if x∈ ηt, then x becomes vacant at rate 1
• if x /∈ ηt, then x becomes occupied at rate f(Nx)
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where Nx= |ηt ∩ {x− 1, x+ 1}| is the number of nearest-neighbor sites that are
occupied,

f(N)=


0 if N= 0,
λ if N= 1,
2λ if N= 2

and λ> 0 is a fixed parameter. This process is a simple model of the spread of an
infectious disease [1–5]. An individual at x∈Z is infected if x∈ ηt and healthy if
x /∈ ηt. Healthy individuals become infected at a rate which is proportional to the
number of infected neighbors. Infected individuals recover at rate 1.

As λ increases from zero, the contact process undergoes an extinction–survival
phase transition. There is a unique critical threshold λc such that λ<λc implies
ηt= ∅ for large t almost surely, whereas λ>λc implies ηt ̸= ∅ for all t almost surely.
The best rigorous bounds for λc are 1.5517<λc< 1.9412 [6–11]; the best non-
rigorous numerical estimate is

λc= 1.64892...=
1
2
(3.29784...)=

1
2

1
0.30322...

=
1

0.60645...

obtained via numerical means/simulation [12–17] and via lengthy series expan-
sions [18–20].

One variation on the preceding is to replace f(Nx) by g(Nx), where

g(N)=


0 if N= 0,
λ if N= 1,
λ if N= 2

and λc here is 1.74173...= 1/0.57414.... Another variation is to replace f(Nx) by
h(Nx), where

h(N)=


0 if N= 0,
λ/4 if N= 1,
λ if N= 2

and λc here is 6.17066= 1/0.16205.... No closed-form expressions are known for
any of these critical thresholds [21–25].

Such models are often referred to as interacting particle systems or
asynchronously-updated probabilistic cellular automata. Our opening example
(f) is often called the basic contact process and is clearly connected to epidemi-
ology and ecology [26–28]. In statistical physics, it is closely related to Schlögl’s
first model of an autocatalytic chemical reaction, to directed percolation in two
dimensions, and to Reggeon field theory. The other examples are associated with
the poisoning of a catalytic surface (g) and the testing of an order-parameter
exponent universality conjecture (h). To describe the latter idea – that a certain
exponent β= 0.277... is valid for a wide class of nonequilibrium systems with
phase transition – would take us too far afield [19, 25, 29–31].
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Annihilation time is 315.11231

Extreme locations are 144 and 30

Figure 4.10 Subcritical example (M= 180, N= 540, λ<λc).

4.26.1 Implementation

The following discussion is based on what is called the graphical representation
of the basic contact process [32–34]. Let M be a large positive integer. For
every integer 1≤ x≤M, let {txn : n≥ 1} be the arrival times of a Poisson pro-
cess with rate 1. For every integer 1≤ x≤M− 1, let {uxn : n≥ 1} be the arrival
times of a Poisson process with rate λ. Likewise, for every integer 2≤ x≤M, let
{vxn : n≥ 1} be the arrival times of a Poisson process with rate λ. To generate times
vxn up to a large value N, for example, simply generate a single random integer
K via Poisson(λN), then generate K Uniform[0,N] random values and sorted in
increasing order [35]. Of course, K will usually be different for each x.

Let

W=
∪

1≤x≤M

{txn : n≥ 1} ∪
∪

1≤x≤M−1

{uxn : n≥ 1} ∪
∪

2≤x≤M

{vxn : n≥ 1}

be sorted in increasing order, keeping track for each value the corresponding site
x and whether it arose as a t, u or v. The event that two values coincide exactly
has probability zero. The listW captures all changes occurring on the finite lattice
[1,M] over the finite time interval [0,N].

Without loss of generality, assume M is divisible by 3. Figures 4.10 and 4.11
are constructed with initial state taken to be the binary M-vector

ξ0 =

0, 0, . . . , 0︸ ︷︷ ︸
M/3

,

M/3︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸

M/3


which serves as an indicator for the set η0. Now select the first element w in the
listW. If w arose as a t, then place a 0 at x (there is a death at x if x is occupied).
If w arose as a u and if there is a 1 at x, then place a 1 at x+ 1 (there is a birth
at x+ 1 if x is occupied and x+ 1 is vacant). If w arose as a v and if there is a 1
at x, then place a 1 at x− 1 (there is a birth at x− 1 if x is occupied and x− 1
is vacant). This gives ξw and hence ηw. Now select the second element in W and
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Annihilation time is ∞

Extreme locations are ∞ and –∞

Figure 4.11 Supercritical example (M= 180, N= 540, λ>λc).

continue similarly until either the list is exhausted or all ξw are 0s (the vacuum
state is absorbing) Figures 4.10 and 4.11 exhibit only a subsample of states, one
per unit time. The vertical axis is space (1≤ x≤M) and the horizontal axis is
time (0≤ t≤N).

In closing, wemention rigorous bounds 0.3597<λc< 0.79 for the contact pro-
cess in two spatial dimensions [4, 36, 37], as well as a non-rigorous estimate
λc≈ 0.412 [10, 12]. Every lattice site here has four nearest neighbors, complicat-
ing the analysis. Revisited calculations [37] of the upper bound 0.79 here would
be good to see someday, as well as series expansions [38] giving precise results
earlier in one dimension.

4.26.2 Discrete Time Analog

An exceedingly simple model, described in [26], deserves further study. The time
interval [0,N] from earlier is replaced by {0, 1, . . . ,N}; we need “collision rules”
to decide the outcome when several events occur simultaneously in space and
time.

For every integer 1≤ x≤M, let {txn : n≥ 1} be the arrival times of a Bernoulli
process with rate γ. Hence each txn corresponds to a biased coin toss yielding
heads. For every integer 1≤ x≤M− 1, let {uxn : n≥ 1} correspond to the coin
tosses yielding tails. Likewise, for every integer 2≤ x≤M, let {vxn : n≥ 1} corre-
spond to the coin tosses yielding tails. Note that only one Bernoulli process is
involved here for each x, not three independent Poisson processes as before.

Form the multilist W as before – many coincident values appear here unlike
before – keeping track for each value the corresponding site x and whether it
arose as a t, u or v. Take the initial state ξ0 as before. Select all the elements w
in the multilist W equal to 1. First, for each w= 1 arising as a t, assign a 0 at
x (there is a death at x if x is occupied). This gives a provisional state, called ξ1,
and we make a copy, called ξ′1, on which further changes are written. Second, for
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each w= 1 arising as a u, if there is a 1 at x, then assign a 1 at x′ + 1 (there is a
birth at x′ + 1 if x is occupied and x′ + 1 is vacant). Third, for each w= 1 arising
as a v, if there is a 1 at x, then assign a 1 at x′ − 1 (there is a birth at x′ − 1 if x
is occupied and x′ − 1 is vacant). Finally, overwrite ξ1 by ξ′1. Now continue with
all elements w in W equal to 2, assign deaths followed by births, and so forth.

Durrett & Levin [26] estimated the critical threshold γc to be approximately
0.47 for large M and N. A more accurate estimate is highly desirable!

4.26.3 Oriented or Directed Percolation

The graphs of one-dimensional discrete-time contact processes bear resemblance
to two-dimensional percolation [39]. More precisely, they are similar to the ori-
ented or directed case of percolation in which fluid must flow either north or east
[2, 40–43]. For both bonds and sites, there exist critical probabilities pcb and pcs
below which all clusters are finite and above which an infinite cluster must exist.
No closed-form expressions are known in this case (unlike ordinary percolation).
Without giving any details, we have rigorous bounds on bond critical probability
[37, 44–53]

0.6383≤ pcb≤ 2/3;

rigorous bounds on site critical probability [37, 46, 47, 49, 50, 52, 54]

0.6977≤ pcs≤ 0.7491;

and numerical estimates [29, 55–65]

pcb= 0.64470018...= 1− 0.35529982..., pcs= 0.7054852...= 1− 0.2945148...

for the square lattice. Different probabilities apply for the triangular and hexag-
onal (honeycomb) lattices in R2 as well as for the cubic lattice in R3. A
percolation-theoretic analog of the connective constant for self-avoiding walks
[66] is investigated in [67].
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4.27 Interpolating between Max and Sum

Consider the stochastic process [1]

Xn+1 =max {αβ Xn + Yn, β Xn} , n= 1, 2, 3, . . .

where 0≤α≤ 1, 0<β < 1, X1≥ 0 are constants and Y1, Y2, Y3, … are nonneg-
ative, independent, identically distributed random variables. What can be said
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about the long-range mean
µ= lim

n→∞
E(Xn)

if Yn is Uniform[0, 1] or if Yn is Exponential(1)?
Let β= 1/2 for concreteness. In the special case when α= 0, we have [2]

µ=
∞∑
n=0

βn(n+3)/2

(n+ 1)(n+ 2)
= 0.5443705469...=

1.0887410938...
2

for the uniform scenario and

µ = 1 +

∞∑
n=1

βn
∞∫
0

e−x (1− e−β x) (1− e−β2x
)(

1− e−β3x
)
· · ·
(
1− e−βnx

)
dx

= 1.1962832643...

for the exponential scenario. For the latter, when α> 0, set γ= 1/β, δ= 1− α
and define recursively

mk=

{
γmk/2 if k is even,
γm(k−1)/2 + δ if k is odd,

m1 = 1,

dk=


dk/2 if k is even,
m(k−1)/2 d(k−1)/2

αβ −m(k−1)/2
if k is odd,

d1 = 1.

Set also p= ⌊ln(2)/ ln(γ)⌋+ 1. We have [3]

µ= lim
n→∞

n 2p−1∑
k=1

dk/mk

n 2p−1∑
k=1

dk

=

{
1.3749080780... if α= 2/5,
1.6972298042... if α= 4/5

but wonder whether the two upper summation limits can be simplified. (Anal-
ogous formulas for the uniform scenario are not known; numerical bounds are
available [2]: {

1.297<µ< 1.345 if α= 2/5,
1.678<µ< 1.690 if α= 4/5

although fairly loose.) As β→ 1−, convergence becomes slower [3]; it would be
good to understand the corresponding rate at which µ→∞.

Consider now the stochastic process [4]

Xn+1 =max {αnXn + Yn,Xn} , n= 1, 2, 3, . . .

where αn= 1− 1/n and X1, Y1, Y2, Y3, … are as before. Hence αn→ 1 while
what we called β before is fixed at 1. This process interpolates between finding a
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maximum (αn≡ 0) and calculating a sum (αn≡ 1). It is not surprising that µ→∞
under the circumstances. More precisely, if E |Y1|<∞, then

Xn

n
→ θ

almost surely, where θ is the unique solution of the remarkable equation

θ=E (max (0,Y1 − θ)).

No examples are provided in [4], thus the following results are new. If Y1 is
Uniform[0, 1], Z=Y1 − θ and 0<θ< 1, we obtain

P (max (0,Z)> 0)= 1− θ, P (max (0,Z)= 0)= θ

(a mixed distribution: partly discrete, partly continuous). It follows that

θ=E (max (0,Z))= 0 · θ +
1−θ∫
0

z dz=
1
2
(1− θ)2

and thus θ= 2−
√

3= 0.2679491924.... If insteadY1 is Exponential(1) and θ > 0,
we obtain

P (max (0,Z)> 0)= e−θ, P (max (0,Z)= 0)= 1− e−θ.

It follows that

θ=E (max (0,Z))= 0 · (1− e−θ) +

∞∫
0

z e−(z+θ)dz= e−θ

and thus θ=W(1)= 0.5671432904..., where W is the Lambert or “product log”
function [5].

Under additional conditions on Y1, a Central Limit Theorem:

lim
n→∞

P

(
Xn − n θ

σ
√
n/(2c+ 1)

≤ t

)
=

1√
2π

t∫
−∞

exp
(
−u

2

2

)
du

is valid as n→∞, where [4]

c=P (Y1>θ), σ2 =Var (max (0,Y1 − θ)).

Therefore more is known for this case αn= 1− 1/n, β= 1 than for the orig-
inal constant 0≤α≤ 1, 0<β < 1 case [1]. Also, the requirement that Y1 is
nonnegative can be lifted somewhat.

Different formulation applies if instead αn= 1− 1/nℓ, β= 1 for some ℓ> 1.
Let

ψ(θ)=E (max (0,Y1 − θ))
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and define recursively

ak+1 = ak + ψ
(ak
kℓ

)
, a1 = 0.

If E |Y1|<∞, then

Xn

n
→ψ(0)=

{
1/2 if Yn is Uniform[0, 1],
1 if Yn is Exponential(1)

almost surely. Under additional conditions on Y1, a Central Limit Theorem

1
σ
√
n

(
Xn −

n∑
k=1

ψ
(ak
kℓ

))
→Normal(0, 1)

is valid as n→∞, where σ2 =Var (max (0,Y1)); further,

n∑
k=1

ψ
(ak
kℓ

)
=

ψ(0)n+
ψ′(0)ψ(0)

2− ℓ
n2−ℓ + o

(
n2−ℓ

)
if 1<ℓ≤ 3/2,

ψ(0)n+ o
(√

n
)

if ℓ> 3/2.

We mention finally MAR(1) or ARMAX processes, for which addition in the
classical AR(1) model

Xn+1 = ρXn + Yn,

0<ρ< 1, is replaced by maximization [6–15]:

Xn+1 =max {ρXn,Yn} .

Statistical time series procedures (for parameter estimation, prediction, and so
forth) for MAR(1) still await careful development.
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4.28 Mixing Time of Markov Chains

We will concentrate on two specific examples, leaving general theory aside. Con-
sider the cycle Zn (integers modulo n) as our state space. A lazy random walk is
a particle that moves left or right, each with probability 1/4, or remains motion-
less with probability 1/2. Let us assume that the starting point is at 0. After how
many time steps is the distribution of the particle close to uniform?

The transition matrix Q, whose ijth element conveys the odds that the particle
is at site j given it was at site i one step earlier, is

Q=



1
2

1
4 0 0 0 1

4
1
4

1
2

1
4 0 0 0

0 1
4

1
2

1
4 0 0

0 0 1
4

1
2

1
4 0

0 0 0 1
4

1
2

1
4

1
4 0 0 0 1

4
1
2


when n= 6. If we wish information on the odds over a separation of t (positive
integer) steps, then the matrix product Qt is required.

Let µt denote the first row of Qt and ν denote the vector (1/n, 1/n, . . . , 1/n).
Define

d(t)=
1
2
∥µt − ν∥1 ,
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one-half the L1 norm of the vector difference (a sum of absolute values). This is
called the total variation distance. Now define

tmix(ε)=min {t≥ 1 : d(t)≤ ε} ,

tmix = tmix(1/4)

the mixing time. For the case n= 6, we compute

µ3 =
(

5
16

15
64

3
32

1
32

3
32

15
64

)
,

µ4 =
(

35
128

7
32

29
256

1
16

29
256

7
32

)
and d(3)= 9/32> 0.28, d(4)= 27/128< 0.22, therefore tmix = 4. Our interest is
in the growth of tmix as n→∞. It is known that [1]

c n2< tmix≤ n2

for some c> 0; simulation suggests that tmix/n2 approaches a constant ≈ 0.0949.
A (non-lazy) random walk is a particle that moves left or right, each with

probability 1/2. The transition matrix P is

P=



0 1
2 0 0 0 0 0 1

2
1
2 0 1

2 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0

0 0 1
2 0 1

2 0 0 0

0 0 0 1
2 0 1

2 0 0

0 0 0 0 1
2 0 1

2 0

0 0 0 0 0 1
2 0 1

2
1
2 0 0 0 0 0 1

2 0


when n= 7. For technical reasons, we must restrict the cycle length n to be odd
(to ensure aperiodicity). Let µt denote the first row of Pt and everything else be
as before. For the case n= 7, we compute

µ8 =
(

35
128

9
256

7
32

7
64

7
64

7
32

9
256

)
,

µ9 =
(

9
256

63
256

37
512

21
128

21
128

37
512

63
256

)
and d(8)= 253/896> 0.28, d(9)= 223/896< 0.24, therefore tmix = 9. Again, the
growth rate of tmix is quadratic in n; simulation suggests that tmix/n2 approaches
a constant ≈ 0.1898. We also mention rigorous bounds [2–4](

2n2

π2 − 1
)

ln(2)≤ tmix≤
4n2

π2 ln(2)
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which imply that the ratio falls between 0.14 and 0.28. Similar bounds could be
determined for the lazy case. The non-lazy mixing time is at most twice the lazy
mixing time, but may be less.

A remarkable equation for the lazy constant C≈ 0.0949 was announced
in [5]:

1
2

1∫
0

∣∣∣∣∣−1 +
∞∑

k=−∞

1√
Cπ

exp
(
− (x− k)2

C

)∣∣∣∣∣ dx= 1
4

which gives a more accurate estimate C= 0.0948705678.... The justification
involved passage from discrete (n-cycle) to continuous (circle), Fourier analysis,
and reinterpretation of random walks as heat flow. Unfortunately the authors
of [5] never completed their proof – their draft preprint is no longer available
online – and we are left wondering if/how the challenging details can be brought
together. It appears likely that 2C is the corresponding non-lazy constant, but
verification remains open as well.

Setting ε= 1/4 is, of course, arbitrary. For many Markov chains (not our two
examples), there is a more natural choice of threshold. In such scenarios, the
variation distance d(t) is fairly large and essentially flat for small t, then abruptly
changes character and decays exponentially to zero as t increases beyond a cer-
tain point. It is believed that such cut-off phenomena are widespread, although
they have been rigorously ascertained only sporadically (for example, riffle shuf-
fles of 52 cards [6–9]). How are the group theoretic properties of the state space
related to the existence or non-existence of a cut-off ? This is a difficult question;
we must often settle for the order of magnitude (as a function of n) of a possible
threshold. Only rarely are these results so accurate as to yield tight bounds on
the level of a constant.

On the one hand, given any ε> 0, the equation for tmix(ε)/n2 in the limit as
n→∞ is the same as that for C except 1/4 on the right-hand side is replaced by
ε. For example, if ε= 1/10, then the limit is 0.1875465011....

On the other hand, consider a random walk in which a particle moves left
or right, each with probability 1/3, or remains motionless with probability 1/3.
What does the heuristic in [5] predict for the value of tmix(ε)/n2? Intuition sug-
gests that the variance of the walk generator is key. The walk with probabilities
{1/4, 1/2, 1/4} has variance 1/2; the walk with probabilities {1/3, 1/3, 1/3} has
variance 2/3; dividing 1/2 by 2/3 yields 3/4. For example, if ε= 1/4, then the
limit is ≈ 0.0712 via simulation; if ε= 1/10, then the limit is ≈ 0.1406. These
compare well with multiplying 0.0948705678... and 0.1875465011... respectively
by 3/4.

Acknowledgments I am grateful to Peter Winkler, Aaron Smith, Stefan Steiner-
berger, Natesh Pillai and Ravi Montenegro for helpful discussions.
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4.29 Correlated Products

Fix |ρ|< 1 and εt to beN(0, 1)white noise. The stationary first-order autoregres-
sive process

Xt= ρXt−1 +
√

1− ρ2 εt

exhibits a surprising phase transition with respect to the correlation coefficient
ρ. Define

An(ρ)=E (X1X2 · · ·Xn)

then

An(ρ)=


0 if n= 2k+ 1,
1
k!

dk

dzk
f(z, ρ)

∣∣∣∣
z=0

if n= 2k

where f(z, ρ) is the infinite continued fraction [1, 2]

f(z, ρ)=
1|
|1
− ρ z|
|1
−

2ρ3 z
∣∣

|1
−

3ρ5 z
∣∣

|1
−

4ρ7 z
∣∣

|1
− · · · .

For example,

A2 = ρ, A4 = ρ2 + 2ρ4, A6 = ρ3 + 4ρ5 + 4ρ7 + 6ρ9,

A8 = ρ4 + 6ρ6 + 12ρ8 + 20ρ10 + 24ρ12 + 18ρ14 + 24ρ16,

A10 = ρ5 + 8ρ7 + 24ρ9 + 50ρ11 + 88ρ13 + 108ρ15 + 156ρ17 + 150ρ19 + 144ρ21

+96ρ23 + 120ρ25.
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There exists a unique 0<ρA< 1 such that A2k(ρ)→∞ if ρ>ρA and A2k(ρ)→ 0
if ρ<ρA as k→∞. The critical threshold ρA= 0.5630071693... is the smallest
positive r for which f(1, r)=∞. Also [1],

A2k(ρA)→ lim
z→1

(1− z)f(z, ρA)= 0.5090085224....

Finally, if [2]

α(ρ)= lim
k→∞

A2k(ρ)
1/k

then α(0+)= 0, α(1−)=∞ and

ρ

1− ρ2 ≤α(ρ)≤
ρ+ ρ3

1− ρ2

for 0<ρ< 1. More accurate bounds on α(ρ) would be good to see someday.
Not as much is known about

Ãn(ρ)=E |X1X2 · · ·Xn| .

It is possible to rewrite Ãn(ρ) as convolutions via a Hilbert–Schmidt ker-
nel. Using the eigenanalysis method in [1], we deduce that the corresponding
threshold ρ̃A< 0.5392. In particular, it is strictly smaller than ρA.

It is important not to confuse ln (E |X1X2 · · ·Xn|) with

E (ln |X1X2 · · ·Xn|)= nE(ln |Xt|)=
n
2
(− ln(2)− γ)

where γ is Euler’s constant [3]. The latter is independent of ρ; a Central Limit
Theorem for ln |Xt| appears in [4].

Let εt nowbe anm×m symmetricmatrixwith independentN(0, 1)white noise
entries. The m×m symmetric matrix Xt satisfies the same recurrence as before –
correlation |ρ|< 1 remains a scalar – our interest is in the (noncommutative)
matrix product

Qn=m−n/2X1X2 · · ·Xn

for large integer m. Define

Bmn (ρ)=m−1E (tr (Qn))

where tr (Qn) is the trace of Qn (sum of diagonal elements), then

Bn(ρ)= lim
m→∞

Bmn (ρ)

satisfies

Bn(ρ)=


0 if n= 2k+ 1,
ρk

k!
dk

dzk
g(z, ρ2)

∣∣∣∣
z=0

if n= 2k
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where g(z, q) is the (generalized Rogers–Ramanujan) continued fraction [2]

g(z, q)=
1|
|1
− z|
|1
− q z|
|1
−

q2 z
∣∣

|1
−

q3 z
∣∣

|1
− · · · .

For example,

B2 = ρ, B4 = ρ2 + ρ4, B6 = ρ3 + 2ρ5 + ρ7 + ρ9,

B8 = ρ4 + 3ρ6 + 3ρ8 + 3ρ10 + 2ρ12 + ρ14 + ρ16,

B10 = ρ5 + 4ρ7 + 6ρ9 + 7ρ11 + 7ρ13 + 5ρ15 + 5ρ17 + 3ρ19 + 2ρ21 + ρ23 + ρ25.

There exists a unique 0<ρB< 1 such that B2k(ρ)→∞ if ρ>ρB and B2k(ρ)→ 0
if ρ<ρB as k→∞. The critical threshold ρB= 0.6629014851... is the smallest
positive r for which g

(
r, r2

)
=∞. If [2]

β(ρ)= lim
k→∞

B2k(ρ)
1/k

then β(0+)= 0, β(1−)= 4 and

ρ
(
1 + ρ2)≤β(ρ)≤min

1
2
ρ

1 +

√
1 + 3ρ2

1− ρ2

, 2ρ (1 + ρ2)
for 0<ρ< 1. Again, more accurate bounds on β(ρ) would be good to see.

We note that g(z, q) can be expressed as a ratio of two q-hypergeometric
functions:[
1 +

∞∑
k=1

(−1)kqk
2
zk

(1− q) (1− q2) · · · (1− qk)

]
/

[
1 +

∞∑
ℓ=1

(−1)ℓqℓ
2−ℓzℓ

(1− q) (1− q2) · · · (1− qℓ)

]

which makes possible a high-precision calculation of the radius of convergence
for B2k(ρ) generating series. There is no known analogous treatment for A2k(ρ).
Logan, Mazo, Odlyzko & Shepp [1] studied the one-dimensional scenario as a
toy model for correlated matrix products which arise in the analysis of learn-
ing curves for adaptive systems. It is ironic, as Mazza & Piau [2] wrote, that the
infinite-dimensional scenario turns out to be easier to manage in this regard.

A formula for the expected product of components of a multivariate normally
distributed vector (with arbitrary covariancematrix) appears in [5]. See addition-
ally [6], which served as a starting point for [2], and [7] for possibly relevant study
of free random variables.
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5.1 Knots, Links and Tangles

We start with some terminology from differential topology [1]. Let C be a circle
and n≥ 2 be an integer. An immersion f :C→Rn is a smooth function whose
derivative never vanishes. An embedding g :C→Rn is an immersion that is one-
to-one. It follows that g(C) is a manifold but f(C) need not be ( f is only locally
one-to-one, so consider the map that twists C into a figure of eight).

A knot is a smoothly embedded circle in R3; hence a knot is a closed spatial
curve with no self-intersections. Two knots J and K are equivalent if there is a
homeomorphism R3 →R3 taking J onto K. This implies that the complements
R3 − J and R3 − K are homeomorphic as well.

A link is a compact smooth 1-dimensional submanifold of R3. The connected
components of a link are disjoint knots, often with intricate intertwinings. Two
links L and M are equivalent if, likewise, there is a homeomorphism R3 →R3

taking L onto M.
We can project a knot or a link into the plane in such a way that its only self-

intersections are transversal double points. Ambiguity is removed by specifying
at each double point which arc passes over and which arc passes under. Over all
possible such projections of K or L, determine one with the minimum number of
double points; this defines the crossing number of K or L.

There is precisely 1 knot with 0 crossings (the circle), 1 knot with 3 cross-
ings (the trefoil), and 1 knot with 4 crossings. Note that, although the left-hand
trefoil TL is not ambiently isotopic (i.e., deformable) to the right-hand trefoil
TR, a simple reflection about a plane gives TR as a homeomorphic image of
TL. Under our definition of equivalence, chiral pairs as such are counted only
once.

There are precisely 2 knots with 5 crossings, and 5 knots with 6 crossings. In
particular, there is no homeomorphism R3 →R3 taking the granny knot TL#TL

onto the square knot TL#TR, where # denotes the connected sum of manifolds
[2, 3]. (See Figure 5.1.) Also, there are precisely 8 knots with 7 crossings, and 25
knots with 8 crossings.
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Left-hand
trefoil

Right-hand
trefoil

Square knot Granny knot

Figure 5.1 Four famous knots (TL and TR are prime and equivalent; TL#TR and TL#TL

are composite and distinct).

Hopf link Whitehead link

Figure 5.2 All two-component prime links with crossing number ≤ 5.

A link L is splittable if we can embed a plane in R3, disjoint from L, that sep-
arates one or more components of L from other components of L. There are
precisely 1, 0, 1, 1, 3, 4, 15 nonsplittable links with 0, 1, 2, 3, 4, 5, 6 crossings,
respectively.

A knot K or nonsplittable link L is prime if it is not a circle and if, for any plane
P that intersects K or L transversely in exactly two points, P slices off merely an
unknotted arc away from the rest. (See Figure 5.2.) Otherwise it is composite.
For example, TL#TL and TL#TR are composite knots, each being nontrivial
connected sums of knots. Every knot decomposes as a unique connected sum of
prime knots [4].

People have known for a long time that there exist non-equivalent links with
homeomorphic complements [5, 6]. This cannot happen for knots, as proved by
Gordon & Luecke [7, 8].

Let B denote the compact unit ball inR3 and ∂B denote its boundary. A tangle
U is a smooth 1-dimensional submanifold of B meeting ∂B transversely at the
four points

NE=
(

1√
2
, 1√

2
, 0
)
, NW=

(
−1√

2
, 1√

2
, 0
)
, SW=

(
−1√

2
, −1√

2
, 0
)
, SE=

(
1√
2
, −1√

2
, 0
)

and meeting ∂B nowhere else. Thus U is a union of two smoothly embedded
line segments in B with distinct endpoints on ∂B, together with an arbitrary
number of smoothly embedded circles in the interior of B, all disjoint but often
intertwined. Two tangles U and V are (strongly) equivalent if there is a homeo-
morphism B→B that takes U onto V, is orientation-preserving on B, and leaves
∂B fixed pointwise. The crossing number of a tangle is defined via projections as
before. Tangles form the building blocks of knots and links [9–11]; the first precise
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Figure 5.3 All prime alternating tangles with crossing number ≤ 3.

Figure 5.4 Five of the 4-crossing prime alternating tangles; the other five are obtained by
rotating through 90◦ (and switching crossings to maintain the convention that the NW
strand is an underpass).

asymptotic enumeration results discovered in this subject concerned tangles (as
we shall soon see).

A tangle is trivial if it is only the union of the two line segments NW-NE and
SW-SE, or the union of the two line segments SW-NW and SE-NE. A tangleU is
prime if it is not trivial; if, for any sphere S in B that is disjoint from U, no portion
of U is enclosed by S; and if, for any sphere S in B that intersects U transversely
in exactly two points, S encloses merely an unknotted arc of U. (See Figures 5.3
and 5.4.)

Finally, a knot, link or tangle is alternating if, for some projection, as we pro-
ceed along any connected component in the projection plane from beginning to
end, the sequence of underpasses and overpasses is strictly alternating. The first
non-alternating knots appear with crossing number ≥ 8. General references on
knot theory include [12–17].

5.1.1 Prime Alternating Tangles

Let an denote the number of prime alternating tangles with n crossings (up to
strong equivalence) and let A(x)=

∑∞
n=1 anxn be the corresponding generating

function. Then [18]

A(x) = x + 2x2 + 4x3 + 10x4 + 29x5 + 98x6 + 372x7

+ 1538x8 + 6755x9 + 30996x10 + · · ·
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satisfies the equation

A(x)(1 + x)− A(x)2 − (A(x) + 1)r(A(x))− x − 2
x2

1 − x
= 0

where the algebraic function r(x) is defined by

r(x)=
(1 − 4x)

3
2 + (2x2 − 10x − 1)
2(x + 2)3

− 2
1 + x

− x + 2.

Further, A(x) satisfies the irreducible quintic equation

0 = (x4 − 2x3 + x2)A(x)5 + (8x4 − 14x3 + 8x2 − 2x)A(x)4

+(25x4 −16x3 −14x2 +8x+1)A(x)3 + (38x4 +15x3 −30x2 −x+2)A(x)2

+(28x4 + 36x3 − 5x2 − 12x + 1)A(x) + (8x4 + 17x3 + 8x2 − x).

Sundberg & Thistlethwaite [19] proved the above remarkable formulas, as well as
the following asymptotics:

an ∼
3α

4
√
π
n−

5
2λn− 3

2 ∼ 3
4

√
β

π
n−

5
2λn,

where

α=
5

7
2

35
√

2

√
(21001 + 371

√
21001)3

(17 + 3
√

21001)5
= 3.8333138762...

β=α2λ−3 = 0.0632356411...

and

λ=
101 +

√
21001

40
= 6.1479304437...

A completely different approach to the solution of this problem appears in [20].
Let ân denote the number of n-crossing prime alternating tangles with exactly

two components. That is, no circles are allowed. A two-component tangle is also
known as a knot with four external legs. The sequence [18, 21, 22]

{ân}∞n=1 = {1, 2, 4, 8, 24, 72, 264, 1074, 4490, 20296, 92768, . . .},

is believed to possess a leading term of the form λ̂n with λ̂ <λ, but more intensive
analysis is needed to compute λ̂.

5.1.2 Prime Alternating Links

Let bn denote the number of prime alternating links with n crossings (up to
equivalence), then the sequence [23, 24]

{bn}∞n=1 = {0, 1, 1, 2, 3, 8, 14, 39, 96, 297, 915, 3308, 12417, . . .}
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satisfies the following asymptotics [25]:

bn ∼
3

16γ

√
β

π
n−

7
2λn

where

γ=
1
2

(
371√
21001

− 1
)
= 0.7800411357...

and λ, β are as before. This is a somewhat more precise result than that proved
in [19].

Let cn denote the number of prime links with n crossings (including both
alternating and non-alternating links), then we have [23, 26, 27]

{cn}∞n=1 = {0, 1, 1, 2, 3, 9, 16, 50, 132, 452, 1559, . . .}.

The value c12 is not known. Stoimenow [28], building on Ernst & Sumners [29]
and Welsh [30], proved that

4≤ liminf
n→∞

c1/n
n ≤ limsup

n→∞
c1/n
n ≤

√
13681 + 91

20
= 10.3982903484...

but further improvements in the upper bound are likely. The two-component
analogs [23]

{b̂n}∞n=1 = {0, 1, 0, 1, 1, 3, 6, 14, 42, 121, 384, 1408, 5100, 21854, . . .},

{ĉn}∞n=1 = {0, 1, 0, 1, 1, 3, 8, 16, 61, 185, 638 . . .}

also await study.

5.1.3 Prime Alternating Knots

Let dn denote the number of prime alternating knots with n crossings (up to
equivalence), then the sequence [31]

{dn}∞n=1 = {0, 0, 1, 1, 2, 3, 7, 18, 41, 123, 367, 1288, 4878, 19536, . . .}

is more difficult and only conjectured to satisfy the following asymptotics [32]:

dn ∼ η · nξ · κn

where

ξ=−
√

13 + 1
6

− 3=−3.7675918792....

Thistlethwaite [33] proved that

limsup
n→∞

d1/n
n <λ
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Figure 5.5 All closed planar curves with crossing number ≤ 2.

and further claimed that limn→∞ d1/n
n exists. If the conjectured asymptotic form

for dn is true, it would follow that κ<λ. Again, more intensive analysis is needed
to compute κ. Might it be true that κ= λ̂ [22]?

Let en denote the number of prime knots with n crossings (including both
alternating and non-alternating knots), then we have [31]

{en}∞n=1 = {0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, 46972, . . .}.

The value e17 is not known. Welsh [30] proved that

2.68≤ liminf
n→∞

e1/n
n

and clearly Stoimenow’s upper bound 10.40 applies to the limit superior. Sharper
bounds for both {cn} and {en} would be good to see.

5.1.4 Planar Curves

Here are enumeration problems that seem to be even more complicated than
those in knot theory [34–38]. A closed planar curve is a smoothly immersed
circle in R2 whose only self-intersections are transversal double points. Define
an equivalence relation between closed planar curves in the same manner as
between knots, with the additional condition that the homeomorphism R2 →R2

is orientation-preserving. (See Figure 5.5.)
An open planar curve is a smoothly immersed line in R2, given by h :R→R2,

whose only self-intersections are transversal double points and which satisfies
h(x)= (x, 0) for all sufficiently large |x|. Such a curve is also known as a knot
with two external legs. Define an equivalence relation between open planar curves
in the same manner as between closed planar curves. Note that, unlike closed
curves, open curves are oriented from the initial point (−∞, 0) to the final point
(∞, 0). (See Figure 5.6.)

Let pn and qn denote the number of n-crossing closed curves and open curves,
respectively. The sequences [39, 40]

{pn}∞n=0 = {1, 2, 5, 20, 82, 435, 2645, 18489, 141326, 1153052, 9819315, . . .},
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Figure 5.6 All open planar curves with crossing number ≤ 2.

1

2

Figure 5.7 Positions of legs 1 and 2 can be reversed on the sphere (following the arrows),
thus removing the crossing indicated by the dotted circle. Image courtesy of Vadim
Meshkov.

{qn}∞n=0 = {1, 2, 8, 42, 260, 1796, 13396, 105706, 870772,

7420836, 65004584, . . .}

are conjectured to satisfy the following asymptotics [32]:

pn ∼
1
4
qn ∼ω · nθ · µn

where θ= ξ + 1=−2.7675918792.... Numerically, we have µ= 11.4... [22]. There
is a great amount of work to be done in this area.

Addendum At the risk of potential confusion, let us generalize the word tangle
to include smooth 1-dimensional submanifolds U of B meeting ∂B transversely
at any four distinct points and meeting ∂B nowhere else. Two such tangles U and
V are weakly equivalent if there is a homeomorphism B→B that takes U onto
V, but need not be orientation-preserving on B nor need it leave endpoints fixed.
Kanenobu, Saito & Satoh [41] gave the number of non-weakly equivalent prime
tangles with 4, 5, 6, 7 crossings to be 0, 1, 4, 18 respectively. The four legs (small
circles on the spherical surface depicted in Figure 5.7) of classical tangles are fixed



“C05” — 2018/10/27 — 12:01 — page 630 — #8

630 Geometry and Topology

on the equator, whereas the legs of weakly equivalent tangles can slide anywhere
on the unit sphere, hence there are many more possible untangling strategies.

A different generalization of tangle was provided by Bogdanov, Meshkov,
Omelchenko & Petrov [42], in which 2-tangles correspond to classical tangles
and k-tangles, k> 2, similarly possess 2k legs equally spaced on the equator. The
number of non-equivalent prime alternating 2-tangles with 2, 3, 4, 5 crossings is
given in [42] to be 1, 2, 5, 13 respectively, which at first glance appears to contra-
dict the numbers 2, 4, 10, 29 from [19], until it is understood that 1, 2, 5, 13 do
not distinguish projections that differ by only a sequence of flypes. The asymp-
totics of counts of prime alternating k-tangles, as the number n of crossings→∞,
would be a challenging exercise.
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5.2 Convex Lattice Polygons

Let n≥ 3 be an integer. A convex lattice n-gon is a polygon whose n vertices are
points on the integer lattice Z2 and whose interior angles are strictly less than
π. Let an denote the least possible area enclosed by a convex lattice n-gon, then
[1–3]

{an}∞n=3 =
{

1
2 , 1,

5
2 , 3,

13
2 , 7,

21
2 , 14, x, 24,

65
2 , 40, y, 59, z, 87,w, 121, ...

}
,

where the unknown values x, y, z, and w are known to satisfy

x∈
{

39
2 ,

41
2 ,

43
2

}
, y∈

{
99
2 ,

101
2 ,

103
2

}
,

z∈
{

147
2 ,

149
2 ,

151
2

}
, w∈

{
209
2 ,

211
2 ,

213
2

}
.

On the one hand, Rabinowitz [4] and Colburn & Simpson [5] demonstrated that
an ≤Cn3 for some constant C> 0; Zunic [6] later proved that C≤ 1/54. On the
other hand, Andrews [7] and Arnold [8] were the first to show that an ≥ cn3 for
some c> 0; other proofs appear in [9–12]. Bárány & Tokushige [13] succeeded in
proving that limn→∞ an/n3 actually exists and computed that

lim
n→∞

an

n3 = 0.0185067... <
1
54

via a heuristic solution of ≈ 1010 constrained minimization problems. Further,
the shape of the minimizing n-gon is approximated by that of the ellipse

x2

A2 +
y2

B2 = 1

where A=(0.003573...)n2 and B=(1.656...)n.
Much less can be said about the higher dimensional analog. A d-dimensional

convex lattice polytope with n vertices has volume vn satisfying [7, 9, 14, 15]

vn ≥ cdn
d+1
d−1

but little else is known.

5.2.1 Integer Convex Hulls

Before discussing integer convex hulls, let us mention ordinary convex hulls.
Given n points chosen at random in the unit disk D, the convex hull Cn is the
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intersection of all convex sets containing all n points. The boundary of Cn is a
polygon; let Nn denote the number of vertices of the polygon. It can be proved
that [16–18]

lim
n→∞

E(Nn)

n1/3
= 2πξ, lim

n→∞

Var(Nn)

n1/3
= 2πη,

where
ξ=

(
3π
2

)− 1
3 Γ
(

5
3

)
= 0.5384576135...,

η=
16π2Γ

(
2
3

)−3 − 57
27

ξ= 0.1316029298...= 2(0.3350302716...)− ξ.

We point out that this is more complicated than the corresponding result when
the unit disk is replaced by the unit square [16, 17, 19]:

lim
n→∞

E(Ñn)

ln(n)
=

8
3
, lim

n→∞

Var(Ñn)

ln(n)
=

40
27
.

In the integer case, we consider not n random points in D, but rather all lat-
tice points in rD, the disk of radius r, where r is large. The convex hull Cr of all
these lattice points is clearly a convex lattice polygon, together with its interior.
Motivation for studying this polygon comes from integer programming: When
maximizing a linear function φ on the lattice points in rD (or any given convex
set inR2), one looks for the maximum point of φ on Cr. The size of the program-
ming problem is hence proportional to Nr, the number of vertices of Cr, and thus
we wish to have bounds on Nr.

Balog & Bárány [20, 21] proved that, for sufficiently large r,

0.33r2/3 ≤Nr ≤ 5.54r2/3

but confessed that it is not clear whether limr→∞ Nrr−2/3 exists. It is possible,
however, to obtain asymptotics for the average value of Nr, defined in a special
way:

Eθ(Nr)=
1
rθ

r+rθ∫
r

Nρ dρ

where the parameter θ satisfies 0<θ< 1. (Actually, the only feature required of
rθ is that it increases with r, but less rapidly than r itself.) Balog & Deshouillers
[22] proved that

lim
r→∞

Eθ(Nr)

r2/3
=

6 · 22/3

π
χ= 3.4536898915...

independently of θ, whereχ is defined later. The growth rate 2/3 is what wewould
expect on the basis of the probabilistic model (ordinary convex hull case), but the
preceding constant 3.453... is slightly different from 2πξ= 3.383.... In this sense,
lattice points do not behave in the same way as random points.
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Another occurrence of the constant χ is as follows. For real x, let ||x|| denote
the distance from x to the nearest integer. Then, for 0≤ a< b≤ 1, we have [22]

lim
λ→0+

1
(b − a)λ1/3

b∫
a

min
t̸=0

(
||αt||+ λt2

)
dα=

6
π2χ.

If λ= 0, the integral clearly is zero since, for any α, the point t= 1/α gives the
minimum. If λ> 0, this strategy no longer works because the penalty term λt2 =
λ/α2 would be large.

Let ∆ denote the triangular region bounded by the lines y= x, y= 1 − x and
x= 1. Partition ∆ into four domains:

∆1 = {(x, y)∈∆: 1≤ xy(x + y)},

∆2 = {(x, y)∈∆: xy(x + y)≤ 1≤ x(x + y)(x + 2y)},
∆3 = {(x, y)∈∆: x(x + y)(x + 2y)≤ 1≤ x(x + y)(2x + y)},

∆4 = {(x, y)∈∆: x(x + y)(2x + y)≤ 1}.
Define F :∆→R by

F(x, y)=



4 − x3 − y3 in ∆1,
1

xy(x + y)
+ 2 − (x + y)(x − y)2 in ∆2,

1
y(x + y)(x + 2y)

+ 6 − (x + y)(3x2 + 2xy + y2) in ∆3,

1
x(x + y)(2x + y)

+
1

y(x + y)(x + 2y)
+ 4 − (x + y)(x2 + xy + y2) in ∆4,

then χ is given by

χ=

1∫
1/2

x∫
1−x

F(x, y) dy dx.

Again, much less can be said about the higher dimensional analog. Let Bd

denote the d-dimensional unit ball. The number of vertices, Nr, of the integer
convex hull of rBd satisfies [23]

cdr
d(d−1)

d+1 ≤Nr ≤Cdr
d(d−1)

d+1

but an asymptotic average value for Nr is not known for any d≥ 3.

5.2.2 Cubes and Thresholds

The d-dimensional unit cube has 2d vertices. Randomly select n= n(d) vertices
with replacement and form the ordinary convex hull of these points. IfVd denotes
its expected volume, then for any ε> 0, [24, 25]

lim
d→∞

Vd =

{
0 if n(d)≤

(
2/
√

e − ε
)d
,

1 if n(d)≥
(
2/
√

e + ε
)d
.
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This is an interesting occurrence of the constant 2/
√

e= 1.2130613194..., which
is surprisingly small (relative to 2)! If instead the n points are selected uniformly
in the interior of the d-cube, then the same threshold phenomenon occurs, with
constant 2/

√
e replaced by

exp

∞∫
0

(
1
x
− 1

ex − 1

)2

dx

= 2.1396909474....

In fact, a closed-form expression is possible since

∞∫
0

(
1
x
− 1

ex − 1

)2

dx= ln(2π)− γ − 1
2
= 0.7606614015...

and the details underlying this formula appear in [26]. See [25] for relevant
discussion of the d-dimensional unit ball.
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5.3 Volumes of Hyperbolic 3-Manifolds

Hyperbolic n-space is the n-dimensional real upper half-space

Hn = {ξ ∈Rn : xn> 0}, ξ=(x1, x2, x3, . . . , xn),

endowedwith the completeRiemannianmetric ds= |dξ|/xn of constant sectional
curvature equal to −1. That is, the geodesics of Hn consist entirely of semicir-
cles and vertical lines that are orthogonal to the (n − 1)-dimensional boundary
Rn−1 × {0}.
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Figure 5.8 There exist two orientable surfaces with hyperbolic volume 2π: a sphere with
3 punctures and a torus with 1 puncture.

Figure 5.9 There exist three orientable surfaces with hyperbolic volume 4π: a sphere with
4 punctures, a torus with 2 punctures, and a (closed) connected sum of two tori.

A hyperbolic n-manifold M is an n-dimensional connected manifold with a
complete Riemannian metric such that every point of M has a neighborhood iso-
metric with an open subset of Hn [1]. Such a manifold may be either orientable
or nonorientable. It is open if it has at least one cusp, for example, a puncture in
n= 2 (see Figures 5.8 and 5.9); otherwise it is closed.

From the notion of length along a geodesic proceeds the definition of volume
vol(M) of a hyperbolic manifold. Unlike the Euclidean case, this is an important
characteristic of M. If two finite-volume hyperbolic n-manifolds are homeomor-
phic, where n≥ 3, then they must be isometric. This surprising fact (false for
n= 2) is known as the Mostow–Prasad rigidity theorem [2, 3] and is believed
to be crucial for the classification of 3-manifolds. We henceforth restrict atten-
tion only to manifolds with finite volume; the topological invariance of vol(M)

follows from the Gauss–Bonnet theorem when n= 2 and via Mostow–Prasad
rigidity when n≥ 3.

Define the volume spectrum spc(n) to be the set of all volumes of finite-volume
hyperbolic n-manifolds. It is known that [4, 5]

spc(2)= {2πk : k≥ 1}, spc(4)=
{

4π2

3
k : k≥ 1

}

but spc(3) is far more complicated. Let us restrict attention only to orientable
3-manifolds and call the consequential subset spco(3). Let ω denote the first
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infinite ordinal. Gromov, Jørgensen and Thurston [6–8] proved that spco(3) is
a closed, non-discrete, well-ordered set of positive real numbers which looks like

v1 < v2< v3< . . .< vω < vω+1< vω+2< . . .< v2ω < v2ω+1< . . .

< v3ω < v3ω+1< . . .< vω2 < vω2+1< . . .< vω3 < vω3+1< . . .

where

• v1 is the least volume of a closed orientable 3-manifold,
• v2 is the next smallest volume of a closed orientable 3-manifold,
• vω = limk→∞ vk is the least volume of an (open) orientable 3-manifold with one

cusp and is the first limit point in spco(3),
• v2ω = limk→∞ vω+k is the next smallest volume of an (open) orientable

3-manifold with one cusp and is the second limit point in spco(3),
• vω2 = limk→∞ vkω is the least volume of an (open) orientable 3-manifold with

two cusps and is the first limit point of limit points in spco(3).

The set spco(3) is said to have ordinal type ωω. For convenience, we will hence-
forth use the phrase “minimal manifold” to refer to a “least-volume manifold”.

Weeks [9] and Matveev & Fomenko [10] independently discovered what is con-
jectured to be the unique minimal closed orientable 3-manifold. It has volume
given by [11–13]

v1 = Im [Li2(z0) + ln(|z0|) ln(1 − z0)]= 0.9427073627...

where

Li2(z)=
∞∑
k=1

zk

k2 =−
z∫
0

ln(1 − u)
u

du, |z| ≤ 1

is the dilogarithm function [14] and z0 is the zero of the cubic z3 − z2 + 1 with
Im(z)> 0. Evidence supporting this conjecture includes [15–30]; the previously
best rigorous lower bound v1 ≥ 0.324 was strengthened to v1 ≥ 0.547 [31] upon
confirmation of Perelman’s proof of the Poincaré conjecture. The next small-
est volume is conjectured to be v2 = 0.9813688288... [32]. Cao & Meyerhoff [33]
proved that there exist two minimal 1-cusped orientable 3-manifolds; one of the
manifolds is the complement of the figure-eight knot [34, 35] in H3 and has
volume given by

vω = 2 Im
[
Li2(eiπ/3)

]
= 2Cl2(π/3)= 3Cl2(2π/3)

=
9
√

3
2

∞∑
n=0

2n + 1
(3n + 1)2(3n + 2)2

= 2(1.0149416064...)= 2.0298832128...,
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where Clausen’s integral is defined by

Cl2(θ)=
∞∑
k=1

sin(kθ)
k2 =−

θ∫
0

ln
(
2 sin

( t
2

))
dt= Im

[
Li2(eiθ)

]
.

Broadhurst [36–38] found a series that can be used as a base-3 digit-extraction
algorithm for vω:

vω = 2
√

3
9

∞∑
n=0

(−1)n

27n

(
9

(6n+1)2 −
9

(6n+2)2 −
12

(6n+3)2 −
3

(6n+4)2 +
1

(6n+5)2

)
.

Define L= vω/2= 1.0149416064... [39] to be Lobachevsky’s constant, which we
will need later. The next smallest volume of a 1-cusped orientable 3-manifold is
conjectured to be v2ω = 2.5689706009... [40, 41]. Finally, it is conjectured that the
Whitehead link complement is a minimal 2-cusped orientable 3-manifold, which
has volume given by [42]

vω2 = 4Cl2(π/2)= 4G= 3.6638623767...

where G is Catalan’s constant [43, 44]. Much more about spco(3) still awaits
discovery.

The full set spc(n) is well-ordered but surprisingly different from spco(3). The
minimal closed nonorientable 3-manifold appears to have volume 2L (the same
as the figure-eight complement) [32], but the minimal 1-cusped nonorientable
3-manifold was proved by Adams [45, 46] to be what is called the Gieseking
manifold, which has volume L (only half as large). The next smallest volume
of a 1-cusped nonorientable 3-manifold is conjectured to be 1.8319311884....
It is known that 2L is also the volume of the minimal 2-cusped nonorientable
3-manifold [47].

The complement of a knot in H3 admits a hyperbolic structure unless it is a
torus or satellite knot. Automated techniques [48] exist for computing volume
and other hyperbolic invariants of 3-manifolds, which serve to distinguish knots
up to homeomorphism [49–53]. The so-called “volume conjecture” relates, for
any knot, the asymptotic behavior of its colored Jones polynomial evaluated at
a root of unity to its volume [11, 54].

We now generalize. A Kleinian group is a discrete nonelementary subgroup of
the group of all orientation-preserving isometries of H3. A hyperbolic 3-orbifold
is a quotient of H3 by a Kleinian group, possibly with torsion. (An orientable
3-manifold is a special case of a 3-orbifold for which the Kleinian group is
torsion-free.) The volume spectrum spc′o(3) of orientable 3-orbifolds is of ordinal
type ωω [55] and is quite similar to before, where

• v′1 is the least volume of a closed orientable 3-orbifold,
• v′lω = limk→∞ v′(l−1)ω+k is the lth limit point in spc′o(3), where l= 1, 2, 3, ....
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The unique minimal closed orientable 3-orbifold is conjectured to have volume
[56–58]

v′1 =
1
60

3∑
j=1

Im [Li2(zj) + ln(|zj|) ln(1 − zj)]= 0.0390502856...

where z1 is the zero of the quartic z4 − 2z3 + z − 1 with Im(z)> 0, and z2, z3 are
the two distinct zeroes of the octic z8 − 3z7 + 5z6 − 5z5 + 3z4 − z + 1 satisfying
bothRe(z)< 1 and 0< Im(z)< 1. See [16, 59–62] for supporting evidence.Unlike
what occurs for orientable manifolds, however, the volume u′ of the minimal 1-
cusped orientable 3-orbifold is not equal to the limit point v′ω. Adams [63] and
Meyerhoff [16, 64] proved that

u′ =L/12= 0.0845784672... < v′ω =G/3= 0.3053218647....

In fact [65–67], the six open orientable orbifolds of volume less than L/4 have
volumes L/12, G/6, L/6, L/6, 5L/24, and G/4, whereas

v′2ω =
7
24

[
Cl2

(
2π
7

)
+ Cl2

(
4π
7

)
− Cl2

(
6π
7

)]
= 0.4444574639...,

v′3ω =
G
2
= 0.4579827970....

See [13, 57] for an interesting unsolved problem about linear relations involv-
ing Clausen function values. Finally [65], with regard to the full set spc′(3), the
six open nonorientable orbifolds of volume less than L/8 have volumes L/24,
G/12,L/12,L/12, 5L/48, andG/8. Theminimal closed nonorientable 3-orbifold
appears not to be known. A remarkable connection between shortest geodesic
lengths in closed arithmetic 3-orbifolds and Lehmer’s conjecture from number
theory [68] is described in [1, 69, 70].
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5.4 Poisson–Voronoi Tessellations

The d-dimensional Poisson process of intensity λ is a random scattering of points
(called particles) in Rd that meets the following two requirements. Let S⊆Rd

denote a measurable set of finite volume µ and N(S) denote the number of
particles falling in S. We have [1, 2]

• P {N(S)= n}= e−λµ(λµ)n/n! for any S, for any n= 0, 1, 2, ...
• if S1, . . . ,Sk are disjoint measurable sets, then N(S1), . . . ,N(Sk) are indepen-

dent random variables.

In particular, the location of S in Rd is immaterial (stationarity) and
E(N(S))=λµ=Var(N(S)) (equality of mean and variance). An alternative
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characterization of the Poisson process involves the limit of the uniform dis-
tribution on expanding cubes C⊆Rd. Let ν denote the volume of C. Given m
independent uniformly distributed particles in C and a measurable set S⊆C of
volume µ, the probability that exactly n particles fall in S is

m!

n!(m − n)!

(µ
ν

)n (
1 − µ

ν

)m−n
→ e−λµ

(λµ)
n

n!
,

which occurs in the limit as ν→∞ in such a way that m/ν→λ. The interpreta-
tion of λ as a rate or intensity is thus clear, as is the phrase binomial process to
denote a Uniform (C) distribution.

Here is a sample problem involving the Poisson process; assume for simplicity
henceforth that λ= 1. Let ξ be an arbitrary point inRd and R denote the distance
from ξ to its nearest neighboring particle. What can be said about R? If ωd =

πd/2Γ(d/2 + 1)−1 is the volume of the unit d-ball, then [3–5]

P {R> r}=P {d-ball of radius r contains no particles}= e−ωdr
d
,

which implies that

E(R) = ω
−1/d
d Γ

(
1
d
+ 1
)
=


1
2

if d= 1 or 2,(
3
4π

)1/3

Γ

(
4
3

)
if d= 3

=

{
0.5 if d= 1 or 2,

0.5539602783... if d= 3.

Likewise,

E(R2)=ω
−2/d
d Γ

(
2
d
+ 1
)
=



1
2

if d= 1,

1
π

if d= 2,(
3
4π

)2/3

Γ

(
5
3

)
if d= 3

and thus

Var(R)=E(R2)− E(R)2 =


0.25 if d= 1,
0.0683098861... if d= 2,
0.0405357524... if d= 3.

Wewill consider a vastlymore difficult version of this problem shortly. Of all unit-
intensity scatteringmethods, the Poisson process is the “most random”; hence the
forthcoming constants deserve to be better understood!
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5.4.1 Cellular Parameters

Given any set of distinct particles {pi}∞i=1 in Rd, the corresponding Voronoi tes-
sellation is the subdivision of Rd into convex polyhedral cells {Πi}∞i=1 with the
property thatΠi contains all points inRd closer to pi than to any other pj, j ̸= i. If
d= 1, the cells are subintervals of the line characterized simply by length. If d≥ 2,
the geometry is more elaborate. Our interest is in the scenario when the particles
are realizations of a Poisson process of intensity 1; hence the cellular parameters
are random variables. Applications of this material include any field involving
pattern analysis: astronomy, geography, metallurgy, biology and socio-economic
planning, to mention only a few [6, 7].

If d= 1 and M denotes the length of a typical cell, then E(M)= 1 and
Var(M)= 1/2 [8]. If d= 2 or 3, the associated mean values are known exactly
[8], but the derivation of second moment integrals is notoriously difficult. A
closed-form expression has not been found for any of these integrals.

For the following, define expressions [9, 10]

fV(x, y) = 4
[
(π/2 + x)(1 + 2 sin(x)2) + 3 sin(x) cos(x)

]
sec(x)5 ·[

(π/2 + y)(1 + 2 sin(y)2) + 3 sin(y) cos(y)
]
sec(y)5,

fL(x, y)= ((π/2 + x) tan(x) + 1) sec(x)2((π/2 + y) tan(y) + 1) sec(y)2,

fP(x, y)= (1 + sin(x)) sec(x)4(1 + sin(y)) sec(y)4,

fM(x, y)= sec(x)3 sec(y)3,

g(x, y)= (π/2 + x + sin(x) cos(x)) sec(x)2 + (π/2 + y + sin(y) cos(y)) sec(y)2,

h(ρ, θ) = ρ2 (π − θ + sin(2θ)/2) + (1 + ρ2 − 2ρ cos(θ))(π − κ(ρ, θ)

+ sin(2κ(ρ, θ)/2)

where

κ(ρ, θ)= arccos

(
1 − ρ cos(θ)√

1 + ρ2 − 2ρ cos(θ)

)
.

Ageometric interpretation of h(ρ, θ) is as the area of the union of two overlapping
planar disks with unit distance between their centers, one with radius ρ and the
other with radius

√
1 + ρ2 − 2ρ cos(θ). When d= 2, we have [10–13]

E(V)= 6,

E(V 2)= 12π

π/2∫
−π/2

π/2∫
−x

fV(x, y)g(x, y)−4 sin(x + y) dy dx + 18,

Var(V)= 1.7808116990...= 37.7808116990...− E(V)2,
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where V is the number of vertices of the cell; [10, 11]

E(L)= 5π3/2

π/2∫
−π/2

π/2∫
−x

fL(x, y)g(x, y)−7/2 (tan(x) + tan(y)) dy dx=
2
3
,

E(L2)= 16π

π/2∫
−π/2

π/2∫
−x

fL(x, y)g(x, y)−4 (tan(x) + tan(y))2 dy dx,

Var(L)= 0.1856273347...= 0.6300717791...− E(L)2

where L is the length of an arbitrary edge;

E(P)= 4,

E(P2)= 64π

π/2∫
−π/2

π/2∫
−x

fP(x, y)g(x, y)−3 sin(x + y) dy dx + 6E(L2),

Var(P)= 0.9454930107...= 16.9454930107...− E(P)2

where P=
∑

L is the total perimeter; and [9–11, 14–16]

E(M)= 1,

E(M2) = 2π

π/2∫
−π/2

π/2∫
−x

fM(x, y)g(x, y)−2 sin(x + y) dy dx

= 2π

∞∫
0

π∫
0

ρ h(ρ, θ)−2 dθ dρ,

Var(M)= 0.2801760409...= 1.2801760409...− E(M)2

where M is the area of the cell. It is also known that E(M3)= 1.999... [15].
For the following, define expressions [9, 17]

fL(x, y)= sec(x)2(sec(x) + tan(x))2 sec(y)2(sec(y) + tan(y))2,

g(x, y)= sec(x)3(2/3 + sin(x)− sin(x)3/3) + sec(y)3(2/3 + sin(y)− sin(y)3/3),

h(ρ, θ) = πρ3 [2/3 + 3 cos(θ)/4 − cos(3θ)/12] + π(1 + ρ2 − 2ρ cos(θ))3/2 ·
[2/3 + 3 cos(κ(ρ, θ))/4 − cos(3κ(ρ, θ))/12]
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and κ(ρ, θ) is as before. A geometric interpretation of h(ρ, θ) as the volume of
the union of two spatial balls again holds. When d= 3, we have [17]

E(W)=
144π2

24π2 + 35
= 5.2275734378...,

Var(W)= 2.4846406759...= 29.8121647244 − E(W)2

where W is the number of vertices of an arbitrary face of the cell; [12, 13, 17]

E(V)=
96π2

35
= 27.0709149287...,

Var(V)= 44.4983886849...= 777.3328237620 − E(V)2

where V=
∑

W is the total number of vertices; [17]

E(E)=
144π2

35
= 40.6063723930...,

Var(E)= 100.1213745412...= 1748.9988534645...− E(E)2

where E= 3V/2 is the number of edges;

E(F)=
48π2

35
+ 2= 15.5354574643...,

Var(F)= 11.1245971712...= 252.4750357979...− E(F)2

where F=V/2 + 2 is the number of faces;

E(L) =
35

36π1/3
Γ

(
13
3

) π/2∫
−π/2

π/2∫
−x

fL(x, y) g(x, y)−13/3 (tan(x) + tan(y)) dy dx

=
7
9

(
3
4π

)1/3

Γ

(
4
3

)
= 0.4308579942...,

E(L2)=
35

36π2/3
Γ

(
14
3

) π/2∫
−π/2

π/2∫
−x

fL(x, y) g(x, y)−14/3 (tan(x) + tan(y))2 dy dx,

Var(L)= 0.1052391356...= 0.2908777468...− E(L)2

where L is the length of an arbitrary edge;

E(Q)=
21

24π2 + 35

(
4π
3

)5/3

Γ

(
1
3

)
= 2.2523418064...,

Var(Q)= 1.4699757822...= 6.5430193952...− E(Q)2
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where Q is the perimeter of an arbitrary face;

E(P)=
3
5

(
4π
3

)5/3

Γ

(
1
3

)
= 17.4955801644...,

Var(P)= 13.6179400522...= 319.7132653418...− E(P)2

where P=
∑

L=
∑

Q/2 is the total perimeter;

E(B)=
35

24π2 + 35

(
256π
81

)1/3

Γ

(
2
3

)
= 0.3746830505...,

Var(B)= 0.1423896695...= 0.2827770579 − E(B)2

where B is the surface area of an arbitrary face;

E(A)=
(

256π
3

)1/3

Γ

(
5
3

)
= 5.8208725950...,

Var(A)= 2.1914834552...= 36.0740412231 − E(A)2

where A=
∑

B is the total surface area; and [9, 14, 16, 17]

E(M)= 1,

E(M2)=
8π2

3

∞∫
0

π∫
0

ρ2 sin(θ) h(ρ, θ)−2 dθ dρ,

Var(M)= 0.1790324378...= 1.1790324378...− E(M)2

where M is the volume of the cell.

5.4.2 Vertex Counts

Thus far we have discussed only moments of distributions associated with
Poisson–Voronoi cells. The computation of actual probabilities seems to be hard.
If d= 2, for example, what is the probability that an arbitrary cell is a triangle?
The solution can be expressed as a complicated quadruple integral and turns out
numerically to be [18–20]

P(V= 3)= 0.01124001....

Simulation can be used to verify this result and the preceding moment esti-
mates as well [21–29]; for example, it appears that P(V= 4)= 0.1608... and
P(V= 5)= 0.2594... [30]. Integral formulas for these latter probabilities [30, 31]
evidently require further simplification to be numerically feasible. The function
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P(V= n) is apparently maximized when n= 6 and falls off for n≥ 7; it is known
that asymptotically [32, 33]

P(V= n)=
C

4π2

(8π2)n

(2n)!

(
1 + O(n−1)

)
as n→∞, where

C =

∞∏
j=1

(
1 − 1

j2
+

4
j4

)−1

= 0.3443473089...

= 4 ·
∣∣∣Γ(√5

2 + i
√

3
2

)∣∣∣2 · ∣∣∣Γ(−√
5

2 − i
√

3
2

)∣∣∣2 = 4π2
(
cosh(π

√
3)− cos(π

√
5)
)−1

.

Other questions can be conditional in nature. If a cell is known to be a trian-
gle, what is its expected area and its expected perimeter? Brakke [10] computed
that these quantities are 0.343089... and 2.740297..., respectively, and subsequent
study [15] confirmed these estimates to four decimal places. (The work in [10,
11, 17] has unfortunately remained quite obscure.) See also [34] for more about
the distribution of edge lengths L in Rd and [35] for inradius/circumradius-type
analysis of cells in the plane.

The Goudsmit–Miles tessellation of the plane, which is based on the Poisson
line process (as opposed to a point process), is discussed in [36].

5.4.3 Stienen Spheres

Around each particle pi ∈Rd, construct a sphere with diameter equal to the dis-
tance to the nearest neighbor pj of pi, i ̸= j. The union of all such spheres and
their interiors is called the Stienen model. Each sphere is a subset of a Voronoi
cell; each cell is a superset of a Stienen sphere. For arbitrary d, if M′ denotes the
volume of a typical sphere, then E(M′)= 2−d and Var(M′)= 2−2d. If d= 1, the
cross-correlation ρ betweenM andM′ is simply 1/

√
2. For d= 2 and 3, Olsbo [37]

computed ρ= 0.705143... and ρ= 0.677790... via complicated numerical integra-
tion. It is not obvious that these correlations are necessarily positive because two
neighboring particles lying close together often yield small spheres and large cells.

Addendum Simplification of various double integrals in [38, 39] gives rise to
closed-form expressions involving a new constant [40]:

c = 2

√
3∫

1

(1 + z2) arctan(z)

1 − 14
9 z2 + z4

dz +

1∫
0

(3z − 1) arctanh(z)

1 − 2
3z + z2

dz

= 3.4954848920...,
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which can be rewritten as a sum of dilogarithms with complex algebraic argu-
ments. For example, the second volume moment (for d= 3) becomes

E(M2)=− 4
243

(
16c − 3π2)+ 8

√
3

27
π= 1.1790324378...

in agreement with before. The third edge-length moment, as another example, is
0.2451902663.... We will only mention the existence of other geometric charac-
teristics: edges lengths in an s-dimensional section, s< d, and the linear contact
distribution.

The recovery of Brakke’s original integrals for E(W2), E(V 2), E(Q2), E(P2),
E(B2), E(A2) and E(M2) when d= 3 is a longstanding challenge!
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5.5 Optimal Escape Paths

A summary of Bellman’s “Lost in a Forest” problem appears in [1]. Certain allied
constants are described in [2, 3] and research is ongoing [4–6]. We will focus on
just one facet of the problem for now, namely the following:

A hiker is lost in a forest whose shape is known to be a half-plane.
What is the best path for him to follow to escape from the forest?

This is equivalent to:

A swimmer is lost in a dense fog at sea, and she knows that the shore is a line.
What is the best path for her to follow to search for the shore?

Since no information is available concerning the initial distance or orientation of
the boundary, a candidate path must be unbounded. Baeza-Yates, Culberson &
Rawlins [7–9] claimed that the best path (which minimizes the maximum escape
time) is a logarithmic spiral. Their argument was based on symmetry; a proof via
the calculus of variations is still sought after [5, 6].

Speed is constant, thus escape time is proportional to arclength. If we assume
that a logarithmic spiral r= eκθ is indeed optimal, then straightforward analysis
leads to the best value of the parameter κ. Let the initial (unknown) distance
from the boundary be R. Then the min-max logarithmic spiral can be shown to
have parameter

κ= tanα= 0.2124695594...= ln(1.2367284662...)

with arclength
R cscα secβ=(13.8111351795...)R,

where α, β satisfy the simultaneous equations

1
tanα

+
1

tanβ
=

2π − α− β

cos2 α
,

cosα
cosβ

= e(2π−α−β) tanα.
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It is surprising that such interesting constants emerge here, yet frustrating that a
gap in the proof (for such a simple forest/sea) should persist.

5.5.1 Growth of Squares

While on the subject of logarithmic spirals, it seems natural to continue a discus-
sion begun in [10]. Let f1 = 1, f2 = 1, f3 = 2, . . . denote the Fibonacci sequence and
φ=(1 +

√
5)/2 denote the Golden mean. In the xy plane, draw the 1 × 1 square

with center (1/2, 1/2), then the adjacent 1 × 1 square with center (−1/2, 1/2),
then the adjacent 2 × 2 square with center (0,−1), then the adjacent 3 × 3 square
with center (5/2,−1/2), then the adjacent 5 × 5 square with center (3/2, 7/2),
and so forth (in a counterclockwise manner). The nth square is fn × fn and
shares an edge between the two squares preceding it. Supposing we now trans-
late the origin to the point (2/5, 1/5), the logarithmic spiral r= eκθ+λ then
asymptotically approaches the fn × fn square centers as n→∞, where [11]

κ=
2
π

ln(φ)= 0.3063489625...,

λcenter =
1
2

ln
(
φ+ 1
10

)
− arctan(3)κ=−1.0527245979....

In the squares just constructed, consider instead the leading vertices

(0, 1), (−1, 0), (1,−2), (4, 1), (−1, 6), . . .

and the trailing vertices

(1, 1), (−1, 1), (−1,−2), (4,−2), (4, 6), . . .

in the original coordinate system [11]. After translation (as before), the two
associated asymptotic spirals possess the same κ but different λs:

λlead =
1
2

ln
(

2(φ+ 2)
25

)
− arctan(2φ− 3)κ=−0.6909179135...,

λtrail =
1
2

ln
(

11φ+ 7
25

)
− arctan(φ)κ=−0.3156737662....

There exists a nice duality between this material (starting with a square and
concatenating) and earlier material (starting with a Golden rectangle and par-
titioning). In Figure 1.2 of [10], supposing we translate the origin to the point
((1 + 3φ)/5, (3 − φ)/5), the spiral pictured there possesses the same κ but yet
another λ:

λ′lead =
1
2

ln
(

2(φ+ 2)
5

)
− (π + arctan(2φ− 3))κ=−0.8486226074....

Other variations suggest themselves.
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5.6 Minkowski–Siegel Mass Constants

Let X denote either a vector space over the real numbers R or a module over the
integers Z. A symmetric positive definite bilinear form f on X is an inner product
if, for any linear form g on X, there exists a unique x∈X such that g(y)= f(x, y)
for all y∈X. This nondegeneracy condition is superfluous when X is a finite-
dimensional vector space [1, 2]. The pair (X, f ) is called an inner product space or
an inner product module, respectively. Two pairs (X, f ) and (X′, f ′) are isomorphic
if there is a bijective linear transformation h :X→X′ satisfying

f ′(h(x), h(y))= f(x, y)

for all x, y∈X. In the special case (X, f )= (X′, f ′), the map h is called an auto-
morphism. The set of all such maps forms a group Aut(X, f ) under composition,
known as the automorphism group. We will need the cardinality |Aut(X, f )| later
when defining the Minkowski–Siegel mass constants.

If X is an n-dimensional R-vector space, then (X, f ) is isomorphic to (Rn, ·),
that is, Euclidean n-space equipped with the standard dot product [1, 2]. If X is a
free Z-module of rank n, then for n≤ 7, (X, f ) is isomorphic to (Zn, ·). What hap-
pens for n≥ 8? A partial answer to this question will occupy us for the remainder
of this essay [3–5].

An inner product module (X, f ) over Z is said to be even if f(x, x)≡ 0 mod 2
for all x∈X. Otherwise it is said to be odd. The phrases Type II and Type I (for
even and odd, respectively) are also often used.
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There is a more geometric approach to this subject. A lattice in Rn is a subset
Λ⊆Rn such that, for some basis {e1, e2, . . . , en} of Rn, we have

Λ=


n∑

j=1

ijej : ij ∈Z, 1≤ j≤ n

.
The volume of Λ is the Lebesgue measure of the fundamental parallelepiped

n∑
j=1

rjej : rj ∈R, 0≤ rj ≤ 1, 1≤ j≤ n


or, equivalently, the absolute value of the determinant of the matrix whose rows
are the vectors e1, e2, . . . , en. The lattice Λ is unimodular or self-dual if the dot
product ek · el ∈Z for all 1≤ k, l≤ n and if the volume of Λ is 1. It can be proved
that the unimodular lattices inRn are “representations” of the free inner product
Z-modules of rank n. All properties of one language carry over to the other. For
example, a unimodular lattice Λ is even if v · v≡ 0 mod 2 for all v∈Λ; otherwise
it is odd [3–5].

We merely mention that this subject is closely connected with the construction
of dense sphere packings in Rn [6].

5.6.1 Classification of Inner Product Modules

Classifying pairs (X, f ) up to isomorphism, where X is a free Z-module of rank n
and f is an inner product, becomes interesting starting at n= 8. There is a unique
odd module when n= 8, namely (Z8, ·). There is also a unique even module E8

when n= 8; it is easiest to describe E8 as a certain unimodular lattice in R8.
Let {e1, e2, . . . , en} denote the standard orthonormal basis of R8 and define the
following to be the basis for E8:

2e1, e2 − e1, e3 − e2, e4 − e3,

e5 − e4, e6 − e5, e7 − e6,
1
2 (e1 + e2 + · · ·+ e8).

In words, E8 consists of all points in R8 whose coordinates are either all integers
or all halves of odd integers, and sum to an even integer. We emphasize that
E8 ≈Z8 as modules, but E8 ̸≈Z8 as inner product modules [5, 7, 8].

Table 5.1 gives the number an of odd unimodular lattices and the number
bn of even unimodular lattices, where 8≤ n≤ 25 [7, 9]. For 9≤ n≤ 11, the only
odd unimodular lattices are Zn and E8 ⊕ Zn−8. When n= 12, a third odd lat-
tice D+

12 appears. Even unimodular lattices exist if and only if n≡ 0 mod 8.
When n= 16, the only even lattices are E8 ⊕ E8 and another new case D+

16. The
famous Leech lattice L corresponds to n= 24 and is the unique even case with
the property that v · v≥ 4 for every nonzero v∈L. It is known [10] that a26 ≥
2307, a27 ≥ 14179, a28 ≥ 327972 and b32 ≥ 1162109024> 109; no one expects a
complete classification of even lattices for n= 32 to be achieved in the near future.



“C05” — 2018/10/27 — 12:01 — page 656 — #34

656 Geometry and Topology

Table 5.1 Number of free inner product Z-modules of rank n (Type I and Type II)

n an bn n an bn n an bn

8 1 1 14 4 20 28

9 2 15 5 21 40

10 2 16 6 2 22 68

11 2 17 9 23 117

12 3 18 13 24 273 24

13 3 19 16 25 665

Against such difficult enumerations, it is surprising that exact formulas,
valid for all n, involving the reciprocal sum of automorphism group orders
should exist. Let B0 = 1, B1 =−1/2, B2 = 1/6, B3 = 0, B4 =−1/30, . . . denote
the Bernoulli numbers and E0 = 1, E1 = 0, E2 =−1, E3 = 0, E4 = 5, . . . denote
the Euler numbers. The following sum is taken over all nonisomorphic odd
unimodular lattices in Rn [11, 12]:

Mn =
∑
Λ

1
|Aut(Λ)|

=



1
2

if n= 1,

(1 − 2−k)(1 + 21−k)

k! · 2
|Bk · B2B4 · · ·B2k−2| if n= 2k≡ 0 mod 8,

2k + 1
k! · 22k+1 |B2B4 · · ·B2k| if 1< n= 2k + 1≡±1 mod 8,

1
(k − 1)! · 22k+1 |Ek−1 · B2B4 · · ·B2k−2| if n= 2k≡±2 mod 8,

2k − 1
k! · 22k+1 |B2B4 · · ·B2k| if n= 2k + 1≡±3 mod 8,

(1 − 2−k)(1 − 21−k)

k! · 2
|Bk · B2B4 · · ·B2k−2| if n= 2k≡ 4 mod 8.

In particular, Mn = 1/(n! 2n) for 1≤ n≤ 8. Milnor & Husemoller [3] provided a
corresponding asymptotic formula:

Mn ∼C ·
(

n
2πe

√
e

)n2/4(8πe
n

)n/4(1
n

)1/24

=C · F(n)

as n→∞, where C≈ 0.705, but no precise expression for C was given. We will
return to this issue momentarily. For nonisomorphic even unimodular lattices in
Rn, the analogous sum is [4, 11, 12]

Nn =
∑
Λ

1
|Aut(Λ)|

=
|Bk|
2k

k−1∏
l=1

|B2l|
4l
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Table 5.2 Type I Minkowski–Siegel mass constants Mn

n Exact Decimal

8
1

10321920
9.688...× 10−8

9
17

2786918400
6.099...× 10−9

10
1

2229534720
4.485...× 10−10

...

16
505121

12340763622899712000
4.093...× 10−14

17
642332179

18881368343036559360000
3.401...× 10−14

18
692319119

15105094674429247488000
4.583...× 10−14

...

24
701876707956280018815862361

21079028626784998219069784064000000
3.329...× 10−8

25
84715059480304651623612272842147

30465396080006318014267329085440000000
2.780...× 10−6

26
14616335635894388876188472684851927

31871491283698917307233513504768000000
4.586...× 10−4

27
1894352751772146867430486995462923265007
12429881600642577749821070266859520000000

1.524...× 10−1

28
10345060377427694043037889482223023950203227
99439052805140621998568562134876160000000

1.040...× 102

29
4285009823959590682115628739356169586687220752159

28837325313490780379584883019114086400000000
1.485...× 105

if n= 2k≡ 0 mod 8, with asymptotics

Nn ∼D ·
(

n
2πe

√
e

)n2/4 (πe
2n

)n/4
(

1
n

)1/24

.

Suchmass formulas are useful in verifying that a candidate listing of isomorphism
classes of unimodular lattices, for a prescribed genus, is correct. See Tables 5.2
and 5.3.

Although Mn and Nn are initially very small and are decreasing, they even-
tually reverse direction and increase dramatically. The asymptotics for Mn

are similar to the asymptotics for the product of even-subscripted Bernoulli
numbers:

n∏
j=1

|B2j| ∼C · n! · 2n+1 · F(2n + 1).
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Table 5.3 Type II Minkowski–Siegel mass constants Nn

n Exact Decimal

8
1

696729600
1.435...× 10−9

16
691

277667181515243520000
2.488...× 10−18

24
1027637932586061520960267

129477933340026851560636148613120000000
7.936...× 10−15

32
4890529010450384254108570593011950899382291953107314413193123

121325280941552041649762780685623131486814208000000000
4.030...× 107

It turns out that the constants C and D can be written as [13]

C= 2−5/4e1/24A−1/2Z= 0.7048648734...,

D= 4C= 2.8194594938...= 21/24 · 2.7391949550...

where A= exp( 1
12 − ζ ′(−1))= 1.2824271291... is the Glaisher–Kinkelin con-

stant [14] and

Z=
∞∏
i=1

ζ(2i)= 1.8210174514...

bears resemblance to certain constants arising when enumerating abelian
groups [15].

5.6.2 Products and Sums of Factorials

While determining C and D, Kellner [13] examined the product of factorials

n∏
ν=1

(k ν)!∼Wk

(
k n
e
√

e

)k n2
2
(

k n
e

)k n
2
(

2πk n
e

)n
2

n
1
4+

k
12+

1
12k

and computed the constants Fk =(2π)−1/4A−kWk to be

Fk = k
5

12k (2π)
k
4−

1
2+

1
2k e

1
12k A−k− 1

k

k−1∏
m=2

Γ(m
k )

− m−1
k

for each positive integer k. In particular, we have

F1 =(2π)1/4e1/12A−2 = 1.0463350667...,

F2 = 25/24(2π)1/4e1/24A−5/2 = 1.0239374116...,

F3 = 35/36(2π)5/12e1/36A−10/3Γ(2/3)−1/3 = 1.0160405370...,

F4 = 21/3(2π)1/2e1/48A−17/4Γ(3/4)−1/2 = 1.0120458980....
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The case k= 1 corresponds to the asymptotics of the well-known Barnes
G-function [14]. As k grows without bound, we also have

lim
k→∞

Fk = 1, lim
k→∞

F k
k = eγ/12,

where γ is the Euler–Mascheroni constant, and

lim
l→∞

l−γ/12
l∏

k=1

Fk = 1.0246068826....

An exact evaluation of the final limit remains open. By way of contrast, the sum
of factorials

n∑
ν=1

(k ν)!∼ (k n)!∼ (2πk n)1/2
(

k n
e

)k n

does not involve any new constants.
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5.7 Slicing Problem

Before stating the slicing problem, let us examine a related problem with known
solution. Let K be a compact convex set in Rn with nonempty interior. Assume
that the n-dimensional volume of K is unity, that is, voln(K)= 1. The centroid of
K is µ=E(X), where X is a uniformly distributed random point in K. Let H be
any (n − 1)-dimensional plane passing throughµwith corresponding half-spaces
H+ and H−. Grünbaum [1], Hammer [2] and Mityagin [3] independently proved
that

min
{
voln(K ∩ H+), voln(K ∩ H−)

}
≥
(

n
n + 1

)n

→ 1
e
= 0.3678794411...

and, further, the bound (n/(n + 1))n is best possible. In words, at least a pro-
portion 1/e of the convex set volume lies on each side of any planar cut through
the centroid. Applications of this result appear in [4–9]. Grünbaum wrote that it
would be interesting to find the analog of this result when substituting (n − 1)-
dimensional surface area for n-dimensional volume, and added that this problem
is unsolved even for n= 2.

We now give the slicing problem (which is perhaps related to Grünbaum’s
foreshadowing but likewise unsolved). Let K be as before, with the additional
condition that K is isotropic:

Σ=Cov(X)=E
(
(X − µ)(X − µ)T

)
=σ2I,

where X is a uniformly distributed random point in K and I is the n × n identity
matrix. This latter condition is equivalent to saying that, for every vector v∈Rn,

E
(
[vT(X − µ)]2

)
=σ2|v|2.

The vector µ is often called the barycenter of K, the matrix Σ the inertia matrix
and the scalar σ the isotropic constant. Let H be as before. It is conjectured that
such an H exists so that

voln−1(K ∩ H)> c

for some constant c> 0 independent of n andK. (Note that Grünbaum’s theorem
was true for all H and involved voln, not voln−1.) Bourgain [10, 11] and Paouris
[12] proved that

voln−1(K ∩ H)>
b

n1/4 ln(n)

for some constant b> 0. The slicing problem is also known as the hyperplane con-
jecture; an equivalent formulation is that the isotropic constant σ< a for some
constant a<∞ independent of n and K.

We mention an obvious converse of Grünbaum’s theorem: There exists H for
which

voln(K ∩ H+)= voln(K ∩ H−)=
1
2
.
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A converse of the slicing problem can be expressed as [13, 14]

σ≥ 1√
n + 2

ω−1/n
n → 1√

2πe
= 0.2419707245...=(4.1327313541...)−1

where ωn =πn/2Γ(n/2 + 1)−1 is the volume of the unit n-ball. The requirement
that K be isotropic is not too restrictive, since every convex set has a linear
image which is isotropic. See [15, 16] for applications and [17–20] for recent
progress.
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5.8 Constant of Theodorus

In the complex plane, consider the recursive sequence

zn =

(
1 +

i√
n

)
zn−1, n≥ 1,

with starting point z0 = 1. The points zn−1 and zn determine a right triangle rel-
ative to the origin 0, with legs 1 and

√
n. Clearly the polar coordinates (rn, θn) of

zn are given by

rn =
√

n + 1, θn =


n−1∑
j=0

arctan

(
1√
j + 1

)
if n≥ 1,

0 if n= 0.

A closed-form expression for zn is

zn =
n∏

k=1

(
1 +

i√
k

)
n≥ 1,

and determines what is called the discrete spiral of Theodorus.
Davis [1, 2] and Heuvers, Moak & Boursaw [3] independently constructed the

continuous analog of this spiral. A parametric representation is [1, 2]

f(t) =
∞∏
k=1

1 + i√
k

1 + i√
k+t

, −1< t<∞,

=
√

1 + t exp

(
i

∞∑
k=1

(
arctan

(√
k + t

)
− arctan

(√
k
)))
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and a polar representation is [3]

θ(r)=
∞∑
j=0

(
arctan

(
1√
j + 1

)
− arctan

(
1√

j + r2

))
, r> 0.

Gronau [2] proved that f(t) is the unique solution of the functional equation

f(t)=
(
1 +

i√
t

)
f (t − 1), f (0)= 1, 0< t<∞

such that |f(t)| is increasing and arg(f(t)) is both increasing and continuous.
Amongmany possible questions,Davis [1] asked:What is the slope of the spiral

at the point 1? Clearly

dy
dx

∣∣∣∣
(x,y)=(1,0)

=
dθ
dr

∣∣∣∣
(r,θ)=(1,0)

=
∞∑
k=1

1
k3/2 + k1/2

,

which Gautschi [4] evaluated to be 1.8600250792.... This is called the constant of
Theodorus.

Also, what can be said about the growth of θn as n→∞? For convenience,
given a real number ξ, let {ξ}= ξ mod 1 denote the fractional part of ξ. Hlawka
[5] proved that

θn = 2
√

n + 1 + K +
1

6
√

n + 1
+ O

(
n−3/2

)
,

where the square root spiral constantK=K0 − 1 − 3π/8=−2.1577829966... and

K0 =
1
8

∞∫
2

{x} (1 − {x}) (3x − 2)
1

x2(x − 1)3/2
dx= 0.0203142484....

The numerical estimate of K was obtained by Grünberg [6], correcting an
apparent error in [5].

In more detail, the series

K=
π

4
+

∞∑
m=0

(−1)m
ζ
(
m + 1

2

)
− 1

2m + 1

converges quickly [7], as does

K′ =

∞∑
m=0

ζ
(
m + 1

2

)
− 1

2m + 1
=−1.8265078108...

(associated with the growth of θ′n, obtained by replacing arctan by arctanh in the
definition of θn). Similarly, the series

∞∑
k=1

1

(k + 1)
√

k
=

1
2
+

∞∑
m=1

(−1)m+1
{
ζ

(
m +

1
2

)
− 1
}
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converges quickly (to Theodorus’ constant), as does
∞∑
k=2

1

(k − 1)
√

k
=

∞∑
m=1

{
ζ

(
m +

1
2

)
− 1
}
= 2.1840094702...

(obtained by simply replacing + by − and removing the term for k= 1).
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5.9 Nearest-Neighbor Graphs

Consider a set P of n points that are independently and uniformly distributed
in the d-dimensional unit cube. Let p∈P. There exists almost-surely q∈P such
that q ̸= p and |p − q|< |p − r| for all r∈P, r ̸= p, r ̸= q. The point q is called the
nearest neighbor of p and we write p≺ q. Note that p≺ q does not imply q≺ p.
Draw an edge connecting p and q if and only if p≺ q; the resulting graph of n
vertices and ≤ n edges is called the nearest-neighbor graph G on P.

What is the probability, α(d), given p∈P, that p≺ q implies q≺ p? Such a pair
is isolated from the rest of G, in the sense that the only edge touching p or q is the
edge that connects p and q. We have [1–15]

α(1)=
2
3
, α(2)=

6π

8π + 3
√

3
= 0.6215048968..., α(3)=

16
27

and, more generally [9],

α(d)=



[
3
2
+

1
2

ℓ∑
k=1

1 · 3 · · · (2k − 1)
2 · 4 · · · (2k)

(
3
4

)k
]−1

if d= 2ℓ+ 1,[
4
3
+

√
3

2π

(
1 +

ℓ−1∑
k=1

2 · 4 · · · (2k)
3 · 5 · · · (2k + 1)

(
3
4

)k
)]−1

if d= 2ℓ.

Here is a variation of the preceding. Draw an edge connecting p and q if and
only if q≺ p; the resulting graph of n vertices and ≤ n edges is called the nearest-
neighbor anti-graph H on P. What is the probability, β(d), that p∈P is isolated
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from the rest of H? That is, what proportion of points in P are not nearest
neighbors of any other points? We have [16–21]

β(1)=
1
4
, β(2)≈ 0.28, β(3)≈ 0.30

but the latter two estimates are only simulation-based. To further understand
β(2) will occupy us for the remainder of this essay.

Define constants C(0, d)= 1 and

C(k, d)=
∫

Ω(k,d)

exp

−Vol

 k∪
j=1

S(xj)

 dx1dx2 . . . dxk

for k≥ 1, where S(xj) is the ball in Rd of radius |xj|, centered at xj, and

Ω(k, d)=
{
(x1, x2, . . . , xk)∈Rd k : |xi| ≤ |xi − xj| for all 1≤ i ̸= j≤ k

}
.

It is known that [19, 22–25]

β(2)=
6∑

k=0

(−1)k

k!
C(k, 2), β(3)=

12∑
k=0

(−1)k

k!
C(k, 3)

and clearlyC(1, d)= 1,C(2, 1)= 1/2. The upper limits of summation are the kiss-
ing numbers in R2 and R3, respectively. A proof that 24 is the kissing number in
R4 was given only recently [26, 27]. Also, C(6, 2)= 0 since Ω(6, 2) is of measure
zero.

Henze [24, 25] showed that

C(2, d)=
2d+1πd−1

Γ(d − 1)

∞∫
0

ξ∫
0

π∫
θ0

ξd−1ηd−1 sin(θ)d−2Fd(ξ, η) dθ dη dξ

where

θ0 = arccos
(
η

2ξ

)
,

Fd(ξ, η)= exp [−fd(ξ, γ)− fd(η, δ)] ,

γ=
ξ(ξ − η cos(θ))√

ξ2 + η2 − 2ξ η cos(θ)
, δ=

η(η − ξ cos(θ))√
ξ2 + η2 − 2ξ η cos(θ)

,

fd(x, y)=
πd/2xd

2Γ(d/2 + 1)

[
1 + I

(
y2

x2 ,
1
2
,
d + 1

2

)]
and I is the regularized beta function

I(z, a, b)=
Γ(a + b)
Γ(a)Γ(b)

z∫
0

wa−1(1 − w)b−1dw.
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Table 5.4 Old and new calculations of constants

k Tao & Wu estimate of C(k, 2)/k! Current estimate of C(k, 2)/k!

2 0.3163335... 0.316585...

3 0.0329390... 0.033056...

4 0.0006575... still open

5 0.0000010... still open

(In [24], the definitions of γ and δ were mistakenly reversed; also, the expression
within square brackets for fd(x, y) was unclear.) We obtain

C(2, 2)= 0.63317...= 2(0.316585...), C(2, 3)= 0.70888....

Tao & Wu [19] independently showed that

C(2, 2) = π

π∫
π/2

∞∫
0

τ

(g(τ, θ) + τ 2h(τ, θ))2
dτ dθ

+π

π/2∫
π/3

1/(2 cos(θ))∫
2 cos(θ)

τ

(g(τ, θ) + τ 2h(τ, θ))2
dτ dθ

where

g(τ, θ)=π − φ+ 1
2 sin(2φ), h(τ, θ)=π − ψ + 1

2 sin(2ψ),

φ= arcsin

(
τ sin(θ)√

1 + τ 2 − 2τ cos(θ)

)
, ψ= arcsin

(
sin(θ)√

1 + τ 2 − 2τ cos(θ)

)
.

(Several underlying details in [19] are clarified in [28].) Even more elaborate inte-
gral formulas apply for C(3, 2), C(4, 2), C(5, 2). Given the discrepancy between
our estimate of C(2, 2) and their estimate (see Table 5.4), it seems doubtful that
their approximation β(2)= 0.284051... is entirely correct.

A discrete version of the latter problem appears in [29–32]. Let all the vertices
of the lattice Zd be initially occupied by particles which can annihilate one-by-
one their 2d nearest neighbors. More precisely, for each unit-length edge {u, v}
of the lattice, there is a Uniform [0, 1] random variable T{u,v} representing the
time of an attack along the edge. If vertices u, v are both occupied immediately
prior to time T{u,v}, then at time T{u,v} either vertex u or vertex v (each with
probability 1/2) becomes vacant (that is, one particle annihilates the other). If
u, v are not both occupied at time T{u,v}, then there is no change. Once a vertex
becomes vacant, it remains vacant permanently. The variables T{u,v}, considered
over all unit-length edges {u, v}, are independent. By time 1, no two surviving
particles can be adjacent. When d= 1, the probability that a given vertex remains
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occupied is 1/e= 0.3678794411.... When d= 2, this probability is known to be
in the interval (0.227, 0.306) and is approximately 0.25 via simulation. Greater
accuracy is desired.

[1] P. J. Clark and F. C. Evans, On some aspects of spatial pattern in biological
populations, Science 121 (1955) 397–398.

[2] P. J. Clark, Grouping in spatial distributions, Science 123 (1956) 373–374.
[3] M. F. Dacey, Proportion of reflexive nth order neighbors in spatial distribution,

Geographical Analysis 1 (1969) 385–388.
[4] G. F. Schwarz and A. Tversky, On the reciprocity of proximity relations, J. Math.

Psych. 22 (1980) 157–175; MR0609119 (82f:92050).
[5] T. F. Cox, Reflexive nearest neighbours, Biometrics 37 (1981) 367–369; MR0673043

(83k:62122).
[6] D. P. Shine and J. Herbert, Birds on a wire, J. Recreational Math. 11 (1978-79) 227–

228; 15 (1982-83) 232.
[7] S. Morris, Competition winners, Omni v. 2 (1980) n. 9, p. 108.
[8] C.Kluepfel, Birds on awire, cows in the field, and stars in the heavens, J. Recreational

Math. 13 (1980-81) 241–245.
[9] D. K. Pickard, Isolated nearest neighbors, J. Appl. Probab. 19 (1982) 444–449;

MR0649985 (83g:60063).
[10] M. F. Schilling, Mutual and shared neighbor probabilities: finite- and infinite-

dimensional results, Adv. Appl. Probab. 18 (1986) 388–405; MR0840100
(87k:60041).

[11] N. Henze, On the probability that a random point is the jth nearest neighbour to
its own kth nearest neighbour, J. Appl. Probab. 23 (1986) 221–226; MR0826925
(87k:60133).

[12] D. Eppstein, M. S. Paterson and F. F. Yao, On nearest-neighbor graphs, Discrete
Comput. Geom. 17 (1997) 263–282; MR1432064 (98d:05121).

[13] D. P. Shine and M. P. Cohen, Spread the news, J. Recreational Math. 36 (2007)
277–278.

[14] C. A. S. Tercariol, F. de Moura Kiipper and A. Souto Martinez, An analytical cal-
culation of neighbourhood order probabilities for high dimensional Poissonian pro-
cesses and mean field models, J. Phys. A 40 (2007) 1981–1989; cond-mat/0609210;
MR2316309 (2008a:82035).

[15] P. J. Campbell and B. Atwood, The farmer problem, UMAP Journal 33 (2012)
313–331.

[16] F. D. K. Roberts, Nearest neighbours in a Poisson ensemble, Biometrika 56 (1969)
401–406.

[17] R. Abilock and M. Goldberg, N riflemen, Amer. Math. Monthly 75 (1968) 1009; 89
(1982) 274–275.

[18] S. Morris, Rifle puzzle, Omni v. 8 (1986) n. 4, p. 113; v. 9 (1987) n. 7, p. 141.
[19] R. Tao and F. Y. Wu, The vicious neighbour problem, J. Phys. A 20 (1987) L299–

L306; MR0888078 (88d:82021).
[20] E. G. Enns, P. F. Ehlers and T. Misi, A cluster problem as defined by nearest

neighbours, Canad. J. Statist. 27 (1999) 843–851; MR1767151 (2001b:60017).
[21] S. Portnoy, A squirtgun battle, J. Recreational Math. 37 (2008) 39–45.
[22] C. M. Newman, Y. Rinott and A. Tversky, Nearest neighbors and Voronoi regions

in certain point processes, Adv. Appl. Probab. 15 (1983) 726–751; MR0721703
(85m:60023).



“C05” — 2018/10/27 — 12:01 — page 668 — #46

668 Geometry and Topology

[23] C. M. Newman and Y. Rinott, Nearest neighbors and Voronoi volumes in high-
dimensional point processes with various distance functions, Adv. Appl. Probab. 17
(1985) 794–809; MR0809431 (87d:60048).

[24] N. Henze, Über die Anzahl von Zufallspunkten mit typ-gleichem nächsten Nach-
barn und einen multivariaten Zwei-Stichproben-Test, Metrika 31 (1984) 259–273;
MR0773815 (86i:62075).

[25] N. Henze, On the fraction of random points with specified nearest-neighbour
interrelations and degree of attraction, Adv. Appl. Probab. 19 (1987) 873–895;
MR0914597 (89c:60063).

[26] O. R. Musin, The kissing number in four dimensions, Annals of Math. 168 (2008)
1–32; math.MG/0309430; MR2415397.

[27] F. Pfender and G. M. Ziegler, Kissing numbers, sphere packings, and some
unexpected proofs, Notices Amer. Math. Soc. 51 (2004) 873–883; MR2145821
(2006a:52015).

[28] S. R. Finch, Union of n disks: remote centers, common origin, arXiv:1511.04968.
[29] M. O’Hely and A. Sudbury, The annihilating process, J. Appl. Probab. 38 (2001)

223–231; MR1816125 (2001m:60226).
[30] A. Sudbury, Inclusion-exclusion methods for treating annihilating and deposition

processes, J. Appl. Probab. 39 (2002) 466–478; MR1928883 (2003k:60266).
[31] A. Sudbury, The annihilating process on random trees and the square lattice, J. Appl.

Probab. 41 (2004) 816–831; MR2074826 (2005g:82090).
[32] M. D. Penrose and A. Sudbury, Exact and approximate results for deposition

and annihilation processes on graphs, Annals Appl. Probab. 15 (2005) 853–889;
MR2114992 (2005k:60307).

5.10 Random Triangles

Let X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3 be independent normally distributed
random variables with mean 0 and variance 1. The points (X1,Y1), (X2,Y2),
(X3,Y3) constitute the vertices of a triangle in Euclidean 2-space (the plane);
the points (X1,Y1,Z1), (X2,Y2,Z2), (X3,Y3,Z3) constitute the vertices of a tri-
angle in Euclidean 3-space. A number of parameters (for example, sides, angles,
perimeter and area) describe the triangle, but the corresponding probability den-
sity functions are not well-known. We attempt to remedy this situation in this
essay. Perhaps the most famous results for random Gaussian triangles are the
following [1, 2]:

P(a Gaussian triangle in 2-space is obtuse)= 3/4= 0.75,

P(a Gaussian triangle in 3-space is obtuse)= 1 − 3
√

3/(4π)= 0.5865033284...

which translate into statements about the maximum angle exceeding π/2. Con-
sider, however, an arbitrary angle α in a triangle. What is its first moment E(α)?
This turns out to be trivial. What is its second moment E(α2)? This is more diffi-
cult, even in 2 dimensions, and the answer is apparently new. Our essay, the first
in a series, arises in an effort to expand upon [3].
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5.10.1 Sides

Let a, b, c denote the sides of a random Gaussian triangle. The trivariate density
f(x, y, z) for a, b, c in 2 dimensions is [4]

2
3π

x y z√
(x + y + z)(−x + y + z)(x − y + z)(x + y − z)

exp
(
−1

6

(
x2 + y2 + z2

))
if |x − y|< z< x + y,

0 otherwise

and we shall give an elementary proof of this later. The condition |x − y|< z<
x + y is equivalent to |x − z|< y< x + z and to |y − z|< x< y + z via the Law of
Cosines. As a consequence, the univariate density for a corresponds to Rayleigh’s
distribution:

x
2

exp
(
−x2

4

)
, x> 0

and [5, 6]
E(a)=

√
π= 1.7724538509..., E(a2)= 4,

E(a b)= 4E
(

1
2

)
− 3

2
K
(

1
2

)
= 3.3412233051...

where

K(ξ)=

π/2∫
0

1√
1 − ξ2 sin(θ)2

dθ=

1∫
0

1√
(1 − t2)(1 − ξ2t2)

dt,

E(ξ)=

π/2∫
0

√
1 − ξ2 sin(θ)2 dθ=

1∫
0

√
1 − ξ2t2

1 − t2
dt

are complete elliptic integrals of the first and second kind [7]. The cross-
correlation coefficient

ρ(a, b)=
Cov(a, b)√

Var(a)Var(b)
=

E(a b)− π

4 − π
= 0.2325593465...

is quite small, indicating weak positive dependency. Interestingly, ρ(a2, b2)=

1/4= 0.25 since a2, b2 are quadratic forms in normal variables and classical
theory applies [8, 9].

The trivariate density for a, b, c in 3 dimensions is [4]
√

3
9π

x y z exp
(
−1

6

(
x2 + y2 + z2

))
if |x − y|< z< x + y,

0 otherwise

which is surprisingly simpler than the corresponding result in 2 dimensions.
As a consequence, the univariate density for a corresponds to the
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Maxwell–Boltzmann distribution:

x2

2
√
π

exp
(
−x2

4

)
, x> 0

and

E(a)=
4√
π
= 2.2567583341..., E(a2)= 6,

E(a b)= 2 +
6
√

3
π

= 5.3079733725...,

ρ(a, b)=
−8 + 3

√
3 + π

−8 + 3π
= 0.2370510252..., ρ(a2, b2)=

1
4
= 0.25.

5.10.2 Perimeter and Area

For perimeter a + b + c, the density is a double integral:

x∫
0

x−v∫
0

f(x − u − v, u, v) du dv, x> 0

which we have not attempted to evaluate. Thus only moments are given. In 2
dimensions,

E(perimeter)= 3
√
π= 5.3173615527...,

E(perimeter2) = E((a + b + c)2)

= 3E(a2) + 6E(a b)

= 12 + 24E
(

1
2

)
− 9K

(
1
2

)
= 32.0473398308...

and in 3 dimensions,

E(perimeter)=
12√
π
= 6.7702750025...,

E(perimeter2)= 30 +
36
√

3
π

= 49.8478402351....

More can be said about area (1/4)
√

(a+b+c)(−a+b+c)(a−b+c)(a+b−c).
In 2 dimensions, area can be proved to be exponentially distributed, with density
[10]

2√
3

exp
(
− 2√

3
x
)
, x> 0.

The formula given in [11] is unfortunately incorrect. In particular,

E(area)=

√
3

2
= 0.8660254037..., E(area2)=

3
2
= 1.5.
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A proposed density in [12] for 3 dimensional area also seems to be wrong. We
find instead

E(area)=
√

3= 1.7320508075..., E(area2)=
9
2
= 4.5.

5.10.3 Angles

Let α, β, γ denote the angles of a random Gaussian triangle. Of course, α+ β +

γ=π, thus γ can be eliminated from consideration. The bivariate density φ(x, y)
for α, β in 2 dimensions is [13]

6
π

sin(x) sin(y) sin(x + y)

(sin(x)2 + sin(y)2 + sin(x + y)2)2
if 0< x<π, 0< y<π and x + y<π,

0 otherwise

and we shall confirm this later. The univariate density for α was first discovered
by W. S. Kendall [14], via a fairly geometric argument, but has never appeared
explicitly in the open literature (the closest was [15]; see also [16]). Starting from
the bivariate density, we obtain the univariate density via

6
π

π−x∫
0

sin(x) sin(y) sin(x + y)

(sin(x)2 + sin(y)2 + sin(x + y)2)2
dy

= 6
π

π−x∫
0

cos(x) sin(x)
2(4−cos(x)2)(sin(x)2+sin(y)2+sin(x+y)2)dy

+ 6
π

π−x∫
0

(
sin(x) sin(y) sin(x+y)

(sin(x)2+sin(y)2+sin(x+y)2)2
− cos(x) sin(x)

2(4−cos(x)2)(sin(x)2+sin(y)2+sin(x+y)2)

)
dy

=
3
π

cos(x)

(4 − cos(x)2)3/2

(
π

2
+ arcsin

(
cos(x)

2

))
+

3
π

1
4 − cos(x)2

.

Call this latter expression g(x). Now, since 3E(α)=E(α+ β + γ)=π, we have
E(α)=π/3. It is harder to show that

E(α2)=
7
36
π2 − 1

2
Li2

(
1
4

)
= 1.7852634251...

where

Li2(ξ)=
∞∑
k=1

ξk

k2 =−
ξ∫
0

ln(1 − t)
t

dt

is the dilogarithm function [18]. Also, since 3Var(α) + 6Cov(α, β)=Var(α+

β + γ)= 0, we have ρ(α, β)=−1/2; therefore

E(αβ)=
5
72
π2 +

1
4

Li2

(
1
4

)
= 0.7523023542....
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Finally,

G(x)=

x∫
0

g(ξ) dξ=
1
π

sin(x)

(4 − cos(x)2)1/2

(
π

2
+ arcsin

(
cos(x)

2

))
+

1
π
x,

which implies that P(α>π/2)= 1 − G(π/2)= 1/4= 0.25, where α is arbitrary.
This is equal to (1/3)P(max(α, β, γ)>π/2) because a triangle can have at most
one obtuse angle.

The bivariate density for α, β in 3 dimensions is new, as far as we know:
24

√
3

π

sin(x)2 sin(y)2 sin(x + y)2

(sin(x)2 + sin(y)2 + sin(x + y)2)3
if 0< x<π, 0< y<π
and 0< x + y<π,

0 otherwise.

The univariate density for α is obtained similarly:

24
√

3
π

π−x∫
0

sin(x)2 sin(y)2 sin(x + y)2

(sin(x)2 + sin(y)2 + sin(x + y)2)3
dy

=
24
√

3
π

π−x∫
0

(
2 + cos(x)2

)
sin(x)2

4 (4 − cos(x)2)2 (sin(x)2 + sin(y)2 + sin(x + y)2)
dy

+
24

√
3

π

π−x∫
0


sin(x)2 sin(y)2 sin(x + y)2

(sin(x)2 + sin(y)2 + sin(x + y)2)3

−
(
2 + cos(x)2

)
sin(x)2

4 (4 − cos(x)2)2 (sin(x)2 + sin(y)2 + sin(x + y)2)

dy

=
6
√

3
π

(
2 + cos(x)2

)
sin(x)

(4 − cos(x)2)5/2

(
π

2
+ arcsin

(
cos(x)

2

))
+

9
√

3
π

cos(x) sin(x)

(4 − cos(x)2)2
.

Call this latter expression h(x). We observe that h(x)=−
√

3g′(x) and wonder
about the meaning of such a connection. As before, E(α)=π/3. It follows that

E(α2)=
π

3

(
π −

√
3
)
= 1.4760687694...,

E(αβ)=
π

6

√
3= 0.9068996821....

Finally,

P(α>π/2)= 1 +
√

3 (g(π/2)− g(0))=
1
3
−

√
3

4π
= 0.1955011094...

where α is arbitrary. This again is equal to (1/3)P(max(α, β, γ)>π/2).
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5.10.4 Order Statistics

We will, for brevity’s sake, study only maximum/minimum angles in two dimen-
sions and only maximum/minimum sides in three dimensions. Define g̃(x) to
be

3
π

cos(x)

(4 − cos(x)2)3/2

(
π

2
− arcsin

(
cos(x)

2

)
− 2 arctan

(
3 cos(x)√
4 − cos(x)2

))

+
3
π

1 − 4 cos(x)2

(4 − cos(x)2)(1 + 2 cos(x)2)

which is positive for π/3< x<π/2. Given α> 0, β > 0, α+ β <π, the angle α is
maximum if α>β and α>π − α− β. Hence the density for the maximum angle
is 

3

x∫
π−2x

φ(x, y)dy if π/3< x<π/2,

3

π−x∫
0

φ(x, y)dy if π/2< x<π

=

{
3g̃(x) if π/3< x<π/2,

3g(x) if π/2< x<π

after breaking up the integral of φ(x, y) precisely as outlined earlier. This
density again was first discovered by Kendall [14] using a different approach.
Incidentally, the identity

arcsin
(

cos(x)
2

)
= arctan

(
cos(x)√

4 − cos(x)2

)

might lead to a more natural expression for g̃(x). The value 3g(π)= 3/π −
1/
√

3= 0.3775793893... is called the shape constant (or first collinearity con-
stant) for planar Gaussian triangles [15, 16].

The function g̃(x) is negative for 0< x<π/3 and the angle α is minimum if
α<β and α<π − α− β. By a similar breakup, the density for the minimum
angle is

3

π−2x∫
x

φ(x, y)dy=−3g̃(x).

Moments for these distributions remain open.
Advancing up to three dimensions, the density for the maximum side is [4]

3x
2
√
π

[
2

√
3
π

(
e−x2/2 − e−x2/3

)
+ x e−x2/4 erf

(√
3x
6

)]
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for x> 0, and the density for the minimum side is

3x
2
√
π

[
2

√
3
π

(
e−x2/2 − e−x2

)
+ x e−x2/4 erfc

(√
3x
2

)]
where erf, erfc are the error and complementary error functions [17].

5.10.5 Trivariate Details

Our proof closely follows [19]. Consider sides a, b of a random Gaussian triangle
in the plane. Using

a2 =(X2 − X1)
2 + (Y2 − Y1)

2, b2 =(X3 − X1)
2 + (Y3 − Y1)

2

wepicture vectors a⃗, b⃗ emanating from (X1,Y1) to (X2,Y2), (X3,Y3), respectively.
Define 0<θa< 2π to be the angle between vector a⃗ and the x-axis; define 0<θb<
2π likewise. Observe that

(ua, ub)=

(
X2 − X1√

2
,
X3 − X1√

2

)
, (va, vb)=

(
Y2 − Y1√

2
,
Y3 − Y1√

2

)
are independent random vectors satisfying

(ua, ub), (va, vb)∼N

((
0
0

)
,

(
1 1

2
1
2 1

))
.

Define sa = a2/4 and sb = b2/4. Then

ua =
√

2sa cos(θa), va =
√

2sa sin(θa), ub =
√

2sb cos(θb), vb =
√

2sb sin(θb)

and conversely

sa =
u2
a + v2

a

2
, sb =

u2
b + v2

b

2
, tan(θa)=

va

ua
, tan(θb)=

vb

ub
.

The Jacobian matrix of the transformation (ua, va, ub, vb) 7→ (sa, sb, θa, θb) is

J=


ua va 0 0

0 0 ub vb

− va

u2
a + v2

a

ua

u2
a + v2

a
0 0

0 0 − vb

u2
b + v2

b

ub

u2
b + v2

b

 .

For example,

sec(θa)2
∂θa
∂ua

=
∂

∂ua
tan(θa)=

∂

∂ua

va

ua
=− va

u2
a

implies that
∂θa
∂ua

=− cos(θa)2
va

u2
a
=− u2

a

2sa

va

u2
a
=− va

u2
a + v2

a
.



“C05” — 2018/10/27 — 12:01 — page 675 — #53

5.10 Random Triangles 675

As another example,

sec(θa)2
∂θa
∂va

=
∂

∂va
tan(θa)=

∂

∂va

va

ua
=

1
ua

implies that
∂θa
∂va

= cos(θa)2
1
ua

=
u2
a

2sa

1
ua

=
ua

u2
a + v2

a
.

Since the absolute determinant |J|= 1, changing variables from (ua, va, ub, vb) to
(sa, sb, θa, θb) is easily performed. The density for (ua, ub) gives rise to

1

2π
√

1 − ( 1
2 )

2
exp

[
− 1

2
(
1 − ( 1

2 )
2
) (u2

a − 2( 1
2 )uaub + u2

b

)]

=
1√
3π

exp
[
−2

3

(
u2
a − uaub + u2

b

)]
=

1√
3π

exp
[
−2

3

(
2sa cos(θa)2 −

√
2sa
√

2sb cos(θa) cos(θb) + 2sb cos(θb)2
)]

=
1√
3π

exp
[
−4

3

(
sa cos(θa)2 −

√
sasb cos(θa) cos(θb) + sb cos(θb)2

)]
and the density for (va, vb) likewise gives rise to

1√
3π

exp
[
−2

3

(
v2
a − vavb + v2

b

)]
=

1√
3π

exp
[
−4

3

(
sa sin(θa)2 −

√
sasb sin(θa) sin(θb) + sb sin(θb)2

)]
.

By independence, the density for (ua, ub, va, vb) is

1
3π2 exp

[
−4

3
(sa −

√
sasb cos(θa − θb) + sb)

]
where 0<θa< 2π, 0<θb< 2π.

We move toward integrating out θa. Let ω= θa − θb. The Jacobian matrix of
the transformation (sa, sb, θa, θb) 7→ (sa, sb, ω, θa) is

K=


1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0


and |K|= 1, hence the density for (sa, sb, ω, θa) is

1
3π2 exp

[
−4

3
(sa −

√
sasb cos(ω) + sb)

]
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where −2π<ω< 2π plus an additional condition. If ω< 0, then θb< 2π forces
θa< 2π + θa − θb = 2π + ω, thus

1
3π2

2π+ω∫
0

exp
[
−4

3
(sa −

√
sasb cos(ω) + sb)

]
dθa

=
2π + ω

3π2 exp
[
−4

3
(sa −

√
sasb cos(ω) + sb)

]
;

if ω> 0, then θb> 0 forces θa>θa − θb =ω, thus

1
3π2

2π∫
ω

exp
[
−4

3
(sa −

√
sasb cos(ω) + sb)

]
dθa

=
2π − ω

3π2 exp
[
−4

3
(sa −

√
sasb cos(ω) + sb)

]
.

In either case, the coefficient numerator is 2π − |ω| and the density is symmetric
inω about 0. Let γ= |ω|, thenwemultiply by 2 to obtain the density for (sa, sb, γ):

2(2π − γ)

3π2 exp
[
−4

3
(sa −

√
sasb cos(γ) + sb)

]
where 0<γ < 2π. Adding contributions at γ and 2π − γ yields

4
3π

exp
[
−4

3
(sa −

√
sasb cos(γ) + sb)

]
for 0<γ <π, which works since 2(2π − γ) + 2γ= 4π and cos(γ)= cos(2π − γ).
Replacing sa, sb by a2/4, b2/4 yields

4
3π

exp
[
−4

3

(
a2

4
− a b

4
cos(γ) +

b2

4

)]
a
2
b
2

=
1
3π

a b exp
[
−1

3

(
a2 − a b cos(γ) + b2)].

This is already useful for computing moments of area:

E
((

1
2
a b sin(γ)

)m)
=m!

(√
3

2

)m

for all positive integers m. Also, an initial step in calculating E(a b) is to evaluate

1
3π

π∫
0

a2b2 exp
[
−1

3

(
a2 − a b cos(γ) + b2)] dγ

=
a2b2

3
exp

[
−1

3

(
a2 + b2)] I0

(
a b
3

)
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where I0(z) is the modified Bessel function of the first kind [20]. Note that the
angle γ is adjacent to sides a, b and opposite to side c, as is traditional. The
analogous density for (α, β, c) appears in the next section.

We now bring c into the trivariate density, removing γ. Differentiating the Law
of Cosines

c2 = a2 − 2 a b cos(γ) + b2

with respect to γ, it is clear that

2 c dc = 2 a b sin(γ) dγ

=
√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c) dγ

by a formula for area, and hence the density becomes

1
3π

a b exp
[
−1

3

(
a2 − a b cos(γ) + b2)] da db dγ

=
1
3π

a b exp
[
−1

6

(
a2 + b2 + (a2 − 2 a b cos(γ) + b2)

)]
da db dγ

=
2
3π

a b c√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

× exp
[
−1

6

(
a2 + b2 + c2)]da db dc

assuming 0<γ <π, that is, a2 − 2 a b + b2< c2< a2 + 2 a b + b2. The required
condition |a − b|< c< a + b does not change upon permutation of sides a, b, c.

Note that the variables sa, sb are each exponentially distributed with mean 1,
with cross-correlation 1/4. A closed-form expression for the density for (sa, sb)
is not possible [19], but an infinite series representation [21]

∞∑
n=0

1
4 nΦ(−n, 1, sa)Φ(−n, 1, sb) exp(−(sa + sb))

is valid, whereΦ(u, v,w) is the confluent hypergeometric function of the first kind
[22]. In this special case,

Φ(−n, 1, t)=
n∑

k=0

(
n
k

)
(−1)k

k!
tk.

Proving the series representation makes use of

sa =
(

ua√
2

)2

+

(
va√
2

)2

, sb =
(

ub√
2

)2

+

(
vb√
2

)2

and the fact that ua/
√

2, ub/
√

2 are jointly normal with mean 0, variance 1/2
and cross-correlation 1/2. Other multivariate generalizations of the exponential
distribution are found in [23].
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For the (a, b, c)-density associated with random Gaussian triangles in 3-space,
we refer to [4].

5.10.6 Bivariate Details

Let ∆=(a + b + c)(−a + b + c)(a − b + c)(a + b − c) for convenience. The
transformation (a, b, c) 7→ (α, β, c) is prescribed via

cos(α)=
−a2 + b2 + c2

2 b c
, cos(β)=

−b2 + a2 + c2

2 a c
.

We have, for example,

− sin(α)
∂α

∂a
=− a

b c
, − sin(α)

∂α

∂b
=

a2 + b2 − c2

2 b2c
, − sin(α)

∂α

∂c
=

a2 − b2 + c2

2 b c2

hence
∂α

∂a
=

a
b c

1
sin(α)

=
a
b c

1√
1 − cos(α)2

=
a
b c

2b c√
∆

=
2a√
∆
,

∂α

∂b
=−a2 + b2 − c2

2b2c
1

sin(α)
=−a2 + b2 − c2

2b2c
2 b c√
∆

=−a2 + b2 − c2

b
√
∆

,

∂α

∂c
=−a2 − b2 + c2

2b c2

1
sin(α)

=−a2 − b2 + c2

2b c2

2 b c√
∆

=−a2 − b2 + c2

c
√
∆

.

The corresponding Jacobian matrix is

L=



2a√
∆

−a2 − b2 + c2

b
√
∆

−a2 + b2 − c2

c
√
∆

−a2 − b2 + c2

a
√
∆

2b√
∆

a2 − b2 − c2

c
√
∆

0 0 1


and |L|= 1/(a b). By the Law of Sines,

a= c
sin(α)
sin(γ)

= c
sin(α)

sin(α+ β)
, b= c

sin(β)
sin(γ)

= c
sin(β)

sin(α+ β)

and, under the change of variables,

√
∆= 2c2 sin(α) sin(β)

sin(α+ β)
.

The density for (α, β, c) in two dimensions is

2
3π

a2b2c√
∆

exp
[
−1

6

(
a2 + b2 + c2)]

=
2c5

3π
sin(α)2 sin(β)2

sin(α+ β)4
√
∆

exp
[
− c2

6 sin(α+ β)2
(
sin(α)2 + sin(β)2 + sin(α+ β)2

)]

=
c3

3π
sin(α) sin(β)
sin(α+ β)3

exp
[
−c2

6
sin(α)2 + sin(β)2 + sin(α+ β)2

sin(α+ β)2

]
.
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Integrating out c is facilitated by observing that

∞∫
0

c3 exp
(
−c2

6
r
)

dc=
18
r2

for r> 0, therefore the density for (α, β) in two dimensions is

18
3π

sin(α) sin(β)
sin(α+ β)3

(
sin(α+ β)2

sin(α)2 + sin(β)2 + sin(α+ β)2

)2

=
6
π

sin(α) sin(β) sin(α+ β)

(sin(α)2 + sin(β)2 + sin(α+ β)2)2
.

Similarly, the density for (α, β, c) in three dimensions is

√
3

9π
a2b2c exp

(
−1

6

(
a2 + b2 + c2))

=

√
3c5

9π
sin(α)2 sin(β)2

sin(α+ β)4
exp

[
−c2

6
sin(α)2 + sin(β)2 + sin(α+ β)2

sin(α+ β)2

]
.

Here we observe that
∞∫
0

c5 exp
(
−c2

6
r
)

dc=
216
r3

for r> 0, therefore the density for (α, β) in three dimensions is

216
√

3
9π

sin(α)2 sin(β)2

sin(α+ β)4

(
sin(α+ β)2

sin(α)2 + sin(β)2 + sin(α+ β)2

)3

=
24

√
3

π

sin(α)2 sin(β)2 sin(α+ β)2

(sin(α)2 + sin(β)2 + sin(α+ β)2)3
.

We turn attention to the most interesting of our moment evaluations, that
concerning E(α2). First,

π∫
0

arcsin
(

cos(x)
2

)
dx= 0

because arcsin(cos(π− x)/2)= arcsin(−cos(x)/2)=− arcsin(cos(x)/2). Con-
sequently

π∫
0

x sin(x)√
4 − cos(x)2

dx = −x arcsin
(

cos(x)
2

)∣∣∣∣π
0
+

π∫
0

arcsin
(

cos(x)
2

)
dx

=
π2

6
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using integration by parts. Second,

π∫
0

(
arcsin

(
cos(x)

2

))2

dx

=
1
4

∞∑
m=0

∞∑
n=0

1
16m+n

(
2m
m

)(
2n
n

)
1

2m + 1
1

2n + 1

π∫
0

cos(x)2m+2n+2dx

=
π

16

∞∑
m=0

∞∑
n=0

1
64m+n

(
2m
m

)(
2n
n

)(
2m + 2n + 2
m + n + 1

)
1

2m + 1
1

2n + 1

=
π

2
Li2

(
1
4

)

which is a curious generalization of sums found in [24]. Consequently

π∫
0

x sin(x)√
4 − cos(x)2

arcsin
(

cos(x)
2

)
dx

= −x
2

(
arcsin

(
cos(x)

2

))2
∣∣∣∣∣
π

0

+
1
2

π∫
0

(
arcsin

(
cos(x)

2

))2

dx

=−π
3

72
+
π

4
Li2

(
1
4

)

using integration by parts again. Third, G(π)= 1 and G(0)= 0, where G′(x)=
g(x). Finally,

π∫
0

x2G′(x)dx = x2G(x)
∣∣π
0 − 2

π∫
0

xG(x) dx

= π2− 2
π

π∫
0

x
sin(x)√

4− cos(x)2

(
π

2
+ arcsin

(
cos(x)

2

))
dx− 2

π

π∫
0

x2dx

= π2 − π2

6
− 2

(
−π

2

72
+

1
4

Li2

(
1
4

))
− 2

3
π2

=
7
36
π2 − 1

2
Li2

(
1
4

)

as was to be shown.
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A random Gaussian triangle captures a location (ξ, η) with probability

3
(2π)5/2

[φ(δ) + ψ(δ)] =


0.250000... if δ= 0,
0.197171... if δ= 1/2,
0.098289... if δ= 1,
0.032455... if δ= 3/2,
0.007626... if δ= 2,

where δ=
√
ξ2 + η2 and

φ=

∞∫
0

∞∫
0

0∫
−∞

exp
(
− (a1+δ)2+(b1+δ)2+(c1+δ)2

2

)[
π + 2 arctan

(
a1b1

c1
√

a2
1+b2

1+c21

)]
dc1db1da1,

ψ=

0∫
−∞

0∫
−∞

∞∫
0

exp
(
− (a1+δ)2+(b1+δ)2+(c1+δ)2

2

)[
π − 2 arctan

(
a1b1

c1
√

a2
1+b2

1+c21

)]
dc1db1da1.

The specific result 1/4 for capturing (0, 0) is well-known [25]; the general result
is less so [26]. See also [27–29].

We conclude with an unsolved problem: what is an exact expression for

E(a γ)=
1
3π

∫ ∞

0

∫ ∞

0

∫ π

0
x2 y θ exp

[
−1

3

(
x2−x y cos(θ)+y2)] dθ dy dx= 1.6377...

(in two dimensions)? An answer for E(aα) is believed to be even more difficult.
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5.11 Random Triangles. II

Let S denote the unit sphere in Euclidean 3-space. A spherical triangle T is a
region enclosed by three great circles on S; a great circle is a circle whose center
is at the origin. The sides of T are arcs of great circles and have length a, b, c.
Each of these is ≤π. The angle α opposite side a is the dihedral angle between
the two planes passing through the origin and determined by arcs b, c. The angles
β, γ opposite sides b, c are similarly defined. Each of these is ≤π too [1].

The sum of the angles is ≤ 3π yet ≥π. In particular, the sum need not be the
constant π. Define the spherical excessE=α+ β + γ − π. The sumof the sides is
≥ 0 yet ≤ 2π. Define the spherical defect D= 2π − (a + b + c). It can be shown
that the area of T is E and a calculus-based proof appears in [2]; see also [3].
Clearly the perimeter of T is 2π − D.
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The probability density functions for sides, angles, excess and defect on S will
occupy us in this essay. Random triangles are defined here by selecting three
independent uniformly distributed points on the sphere to be vertices. One way
to do this is to let X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3 be independent normally
distributed random variables with mean 0 and variance 1; then the points

(X1,Y1,Z1)√
X2

1 + Y2
1 + Z2

1

,
(X2,Y2,Z2)√
X2

2 + Y2
2 + Z2

2

,
(X3,Y3,Z3)√
X2

3 + Y2
3 + Z2

3

satisfy our requirements. Any spherically-symmetric underlying distribution will
do, in fact, but we shall refer to the normal variables Xi, Yj, Zk again at a later
time.

5.11.1 Sides

The trivariate density f(x, y, z) for sides a, b, c is [4]


1
4π

sin(x) sin(y) sin(z)√
1 − cos(x)2 − cos(y)2 − cos(z)2 + 2 cos(x) cos(y) cos(z)
if x + y + z< 2π, x + y> z, y + z> x and z + x> y,

0 otherwise.

As a consequence, the univariate density for a is

1
2

sin(x), 0< x<π

and

E(a)=
π

2
= 1.5707963267..., E(a2)=

π2

2
− 2= 2.9348022005....

Sides a, b, c are uncorrelated and, moreover, pairwise independent. They are,
however, mutually dependent, since [5–7]

P
(
a<

π

2
, b<

π

2
, c<

π

2

)
=

1
4

(
1 − 1

π

)
>

1
8
,

P
(
a>

π

2
, b>

π

2
, c>

π

2

)
=

1
4π

<
1
8

and since E(a b c)= 3.694... < π3/8.
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5.11.2 Angles

The trivariate density g(x, y, z) for angles α, β, γ is [4]
1
4π

1 − cos(x)2 − cos(y)2 − cos(z)2 − 2 cos(x) cos(y) cos(z)
sin(x)2 sin(y)2 sin(z)2

if x + y + z>π, x + y<π + z, y + z<π + x and z + x<π + y,

0 otherwise.

As a consequence, α is uniformly distributed on [0, π] and

E(α)=
π

2
= 1.5707963267..., E(α2)=

π2

3
= 3.8757845850....

Angles α, β, γ are uncorrelated but, unlike before, pairwise dependent. Integrat-
ing out z, the bivariate density for α, β is

1
2π

1
sin(x)2 sin(y)2

·


− cos(y) sin(y) + y if x − y> 0 and x + y<π,
π + cos(y) sin(y)− y if x − y< 0 and x + y>π,
− cos(x) sin(x) + x if x − y< 0 and x + y<π,
π + cos(x) sin(x)− x if x − y> 0 and x + y>π

which is not uniform on [0, π]× [0, π]. The mutual dependence can also be seen
from [5–7]

P
(
α<

π

2
, β <

π

2
, γ <

π

2

)
=

1
2

(
1
π
− 1

4

)
<

1
8
,

P
(
α>

π

2
, β >

π

2
, γ >

π

2

)
=

1
2

(
3
4
− 1
π

)
>

1
8

and from E(αβ γ)= 4.688... > π3/8.

5.11.3 Excess and Defect

In this section, we gather several results which seem to defy easy analysis. A proof
that angle α is uncorrelated with either adjacent side b or c is known, hence
E(α b)=π2/4=E(α c) immediately. The joint moment of α with its opposite
side a is obviously a triple integral:

E(α a) =
1
4π

π∫
0

π∫
0

π∫
0

sin(x) sin(y)z

× arccos [cos(x) cos(y) + sin(x) sin(y) cos(z)] dx dy dz

whose exact evaluation seems difficult. Miles [4] proved, via stochastic geom-
etry, that E(α a)=π2/2 − 2 as a special case of a more general theorem. As a
consequence, the correlation coefficient between α and a is

ρ(α, a)=

√
3(π2 − 8)
π

= 0.7538511740....
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Recall from [8] that analogous results for Gaussian triangles in the plane remain
open.

Clearly

E(α+ β + γ − π)=
π

2
, E((α+ β + γ − π)2)=

π2

2
,

E(2π − a − b − c)=
π

2
, E((2π − a − b − c)2)=π2 − 6

however the verification of

E((α+ β + γ − π)(2π − a − b − c))= 6 − π2

2
,

ρ(E,D)=−
√

3(π2 − 8)
π

=−0.7538511740...

rests on the aforementioned nontrivial result.
A proposed density h(x) for excess E was published in 1867 [9]:

− (x2 − 4πx + 3π2 − 6) cos(x)− 6(x − 2π) sin(x)− 2(x2 − 4πx + 3π2 + 3)
16π cos(x/2)4

for 0< x< 2π and remained obscure until it was cited in a recent paper [10]. The
supporting proof is geometric. No analytic proof using our trivariate density for
α, β, γ has yet been found. In some relevant 1928 calculations, Burnside [11]
remarked that, “in a similar way”, the probability that the area of T should lie
between x and x + dx “may be determined”. Miles [4] confessed in 1971 that the
functional form of h(x) has “so far eluded the author”, but then mentioned (in
a footnote) pertinent work of J. N. Boots.

With regard to defect D, Jones & Benyon-Tinker [12] expressed the perimeter
density in terms of elliptic integrals [8]:

k(x)=
1
4π

x/2∫
0

E
(
sin
(

t
2

))
− cos

(
x−t
2

)2
K
(
sin
(

t
2

))√
cos
(

t
2

)2 − cos
(

x−t
2

)2 sin(t) dt.

No closed-form evaluation of this integral is known. Finch & Jones [13] recog-
nized the value k(π)= 3

√
2/32 and revisited the proof of the area density h(x).

See also [14].
Miles’ [4] proof that E(α a)=π2/2 − 2 is clarified in [15]. Let Li3 denote the

trilogarithm function [16] and G denote Catalan’s constant [17]. It is interesting
that the conditional moment

E(α a | b=π/2)= 3.0538319164...=
π2

8
− ln(2)2

2
− 4G

π
+

8
π

Im (Li3(1 + i))

remains complicated whereas

E(α a |β=π/2)= 2.8708787614...=
π

4
[2 + (1 + ln(2))π − 4G]

is simple.
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5.11.4 Proof for (a,b,γ)

We will demonstrate that a, b, γ are independent random variables; the sides a,
b each have the sine density on [0, π] and the angle γ is uniformly distributed
on [0, π]. Our starting point is the fact that a is an angle between two vectors
(X1,Y1,Z1) and (X3,Y3,Z3), whereXi,Yj,Zk were defined earlier, and b likewise
for the vectors (X2,Y2,Z2) and (X3,Y3,Z3). The formulas [18–20]

cos(a) =
X1X3 + Y1Y3 + Z1Z3√

X2
1 + Y2

1 + Z2
1

√
X2

3 + Y2
3 + Z2

3

,

cos(b) =
X2X3 + Y2Y3 + Z2Z3√

X2
2 + Y2

2 + Z2
2

√
X2

3 + Y2
3 + Z2

3

are familiar: cos(a) is the sample correlation coefficient r13 between two sam-
ples of size three (each sample coming from a population of known mean = 0)
and cos(b) is likewise the sample correlation coefficient r23. Also, by the Law of
Cosines for Sides:

cos(c)= cos(a) cos(b) + sin(a) sin(b) cos(γ)

we obtain

cos(γ)=
cos(c)− cos(a) cos(b)

sin(a) sin(b)
=

r12 − r13r23√
1 − r213

√
1 − r223

and recognize this as the sample partial correlation coefficient r12·3 between sam-
ples 1 and 2, holding variable 3 fixed. An exercise in [21] states that r13, r23, r12·3
are independent because Xi, Yj, Zk are independent and normally distributed.
Hence a, b, γ are independent as well.

The sample correlation coefficient r13 is uniformly distributed on [−1, 1], as a
special case of results given in [22–25], hence

P (a<ξ) = P (cos(a)> cos(ξ))=P (r13> cos(ξ))=
1
2

1∫
cos(ξ)

dη

=
1 − cos(ξ)

2
and dP (a<ξ) /dξ= sin(ξ)/2. The sample partial correlation coefficient r12·3 has
the arcsine distribution on [−1, 1], hence

P (γ < ξ) = P (cos(γ)> cos(ξ))=P (r12·3> cos(ξ))=
1
π

1∫
cos(ξ)

dη√
1 − η2

=
1
2
− 1
π

arcsin(cos(ξ))=
1
π
ξ

and dP (γ < ξ) /dξ= 1/π, as was to be shown.



“C05” — 2018/10/27 — 12:01 — page 687 — #65

5.11 Random Triangles. II 687

Geisser & Mantel [26] were the first to notice that the correlations r13, r23, r12
are pairwise but not mutually independent (for samples of arbitrary size). This
“natural” example has been justly celebrated and is of “valuable pedagogical use”
[27]. Recasting the example in terms of spherical triangle sides a, b, c makes it
even more remarkable, in our opinion. No one seems to have linked Miles’ paper
[4] in geometric probability to ongoing research in theoretical statistics.

5.11.5 Proof for (a,β,γ)

We bring β into the trivariate density sin(a) sin(b)/(4π), removing b. From the
Law of Cosines for Angles:

− cos(α)= cos(β) cos(γ)− sin(β) sin(γ) cos(a)

we have

sin(α)3 =
(
1 − cos(α)2

)3/2
=
(
1 − (cos(β) cos(γ)− sin(β) sin(γ) cos(a))2

)3/2
since 0<α<π. Differentiating the identity [1, 4]

sin(a) cot(b)= cot(β) sin(γ) + cos(γ) cos(a)

with respect to b, we obtain

− sin(a) csc(b)2db=− csc(β)2 sin(γ)dβ

hence

db=
sin(b)2 sin(γ)
sin(a) sin(β)2

dβ.

Via the Law of Sines:

sin(a)
sin(α)

=
sin(b)
sin(β)

=
sin(c)
sin(γ)

the density sin(a) sin(b)/(4π) becomes

1
4π

sin(a)
sin(b)3 sin(γ)
sin(a) sin(β)2

=
1
4π

sin(b)3

sin(β)3
sin(β) sin(γ)

=
1
4π

sin(a)3

sin(α)3
sin(β) sin(γ)

=
1
4π

sin(β) sin(γ) sin(a)3

(1 − (cos(β) cos(γ)− sin(β) sin(γ) cos(a))2)3/2
.

More elaborate arguments lead to the trivariate densities of (a, b, c) and (α, β, γ).



“C05” — 2018/10/27 — 12:01 — page 688 — #66

688 Geometry and Topology

This preceding expression is helpful in computing the bivariate density for
(β, γ). Integrating out a gives

|sin(β − γ)| cos(β + γ)− |sin(β + γ)| cos(β − γ) + arcsin(cos(β − γ))− arcsin(cos(β + γ))

4π sin(β)2 sin(γ)2

which seems complicated at first glance. Everything simplifies if we partition the
square [0, π]× [0, π] into four isosceles right triangles according to the diago-
nal lines β − γ= 0, β + γ=π. For example, if β − γ > 0 and β + γ <π, then
the numerator becomes −2 cos(γ) sin(γ) + 2γ. As another example, if β − γ < 0
and β + γ >π, then the numerator becomes 2π + 2 cos(γ) sin(γ)− 2γ. For the
remaining two triangles, γ is merely replaced by β, by symmetry. Such formulas
can be used to confirm directly that β, γ are each uniformly distributed on [0, π]
and E(β γ)= π2/4.

A joint density for (a, α) might assist in evaluating the triple integral men-
tioned earlier, but finding this (and the joint density for (r13, r13.2)) seems to be
hard.

Any spherical triangle T determines a unique chordal triangle T ′ (with sides
as straight lines through the interior of S) and vice versa. Let r′ denote the radius
of the unique circle passing through the three vertices of T ′. The density for two
T ′ angles is given in [28], as well as the trivariate density for two T ′ sides coupled
with r′. Such results lead to progress in answering an open question: What is the
exact probability that four random circular caps of angular radius 88◦ completely
cover S? The progress is, however, insignificant if 88◦ is replaced by, say, 71◦. We
hope to see resolution of this issue someday.
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5.12 Random Triangles. III

Let Ω be a compact convex set in Euclidean n-space with nonempty interior.
Random triangles are defined here by selecting three independent uniformly dis-
tributed points in Ω to be vertices. Generating such points for (n,Ω)= (2,unit
square) or (n,Ω)= (3,unit cube) is straightforward. For (n,Ω)= (2,unit disk) or
(n,Ω)= (3,unit ball), we use the following result [1]. Let X1, X2, X3, Y1, Y2, Y3,
Z1, Z2, Z3 be independent normally distributed random variables with mean 0
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and variance 1/2. LetW1,W2,W3 be exponential random variables, independent
of the others, with mean 1. Then the points

(X1,Y1)√
X2

1 + Y2
1 + W1

,
(X2,Y2)√

X2
2 + Y2

2 + W2

,
(X3,Y3)√

X2
3 + Y2

3 + W3

are uniform in the disk, and the points

(X1,Y1,Z1)√
X2

1 + Y2
1 + Z2

1 + W1

,
(X2,Y2,Z2)√

X2
2 + Y2

2 + Z2
2 + W2

,
(X3,Y3,Z3)√

X2
3 + Y2

3 + Z2
3 + W3

are uniform in the ball. Compared with the intricate joint distributions of sides
and angles forGaussian triangles [2] and for spherical triangles [3], little is known
for uniform triangles in Ω.

5.12.1 Disk

The density f(x) for an arbitrary side a of a random uniform triangle in the unit
disk is [4–11]

4x
π

arccos
(x
2

)
− x2

π

√
4 − x2, 0< x< 2

and

E(a)=
128
45π

= 0.9054147873..., E(a2)= 1.

No one has attempted to extend this univariate result to a bivariate or trivariate
density, as far as is known.

The density g(x) for an arbitrary angle α is [12, 13]

cos(5x)− (1 − 12πx + 12x2) cos(x)
12π2 sin(x)3

− (π − x) cos(4x) + 10(π − x) cos(2x) + (π − 13x)
12π2 sin(x)2

when 0< x<π and

E(α)=
π

3
= 1.0471975511..., E(α2)=

π2

6
+

1
12

= 1.7282674001....

We can also give partial results for the maximum angle (analogous to the Gaus-
sian case [2]). Corresponding to the density for max{α, β, γ}, the expression
3g(x) holds when π/2< x<π; an expression when π/3< x<π/2 remains open,
although a numerical approach is employed in [14]. It can also be shown that
[15–17]

P(a uniform triangle in the disk is acute)=
4
π2 − 1

8
= 0.2802847345....
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Moments of area are known [18–25]:

E(area)=
35
48π

= 0.2321009586...=(0.0738800297...)π,

E(area2)=
3
32

= 0.09375.

Via the generalised hypergeometric function pFq [26], define

Φn(y)=
9

16π
2n/2

(n − 2)!
Γ
(
1 +

n
2

)3
y(n−3)/2

{
−4π3/2

√
3

1
Γ( 1

2 + n
4 )Γ(1 + n

4 )

(
4y
27

)1/2

−
3Γ(− 5

6 )Γ(
1
6 )

22/3
√
π

1
Γ( 1

6 + n
4 )Γ(

2
3 + n

4 )

(
4y
27

)5/6

4F3

(
1
3
,
1
3
,
5
6
− n

4
,
1
3
− n

4
;
2
3
,
11
6
,
4
3
;
4y
27

)
+

9
√
πΓ(− 7

6 )

21/3Γ( 1
6 )

1
Γ(− 1

6 + n
4 )Γ(

1
3 + n

4 )

(
4y
27

)7/6

4F3

(
2
3
,
2
3
,
7
6
− n

4
,
2
3
− n

4
;
4
3
,
13
6
,
5
3
;
4y
27

)

+
4
√
π

3
1

Γ(1 + n
4 )Γ(

3
2 + n

4 )
4F3

(
−1

2
,−1

2
,−n

4
,−1

2
− n

4
;
1
6
,−1

6
,
1
2
;
4y
27

)}

for n≥ 2 and 0< y< 27/4. Then the density for area is given by 8xΦ2
(
4x2
)
, a

result due to Mathai [27]. We shall see Φ3 shortly.
The bivariate density for (a, b) in the unit disk can be found, imitating Parry’s

[28] analysis. Finch [29] concluded that

E(a b)= 0.8378520652..., ρ(a, b)= 0.1002980835...,

E(perimeter2)= 8.0271123917...

but exact evaluation of these constants remains open.

5.12.2 Ball

The density f(x) for an arbitrary side a of a random uniform triangle in the unit
ball is [6, 10, 11]

3
16

x5 − 9
4
x3 + 3x2, 0< x< 2

and

E(a)=
36
35

= 1.0285714285..., E(a2)=
6
5
= 1.2.

A recent extraordinary calculation [28, 30] gives a trivariate density for the sides
(a, b, c). For reasons of space, we report only the bivariate density f(x, y) for
(a, b):

f(x, y)=
{
φ(x, y) if x + y≤ 2,
ψ(x, y) if x + y> 2 and x≤ 2
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when 0≤ y≤ x (use symmetry otherwise) where

φ(x, y) =
9
16

x5y2 − 27
4

x3y2 +
27
16

x3y3 +
9
16

x3y4 + 9x2y2

−27
8

x2y3 +
9
32

x2y5 − 9
8
xy4 +

9
160

xy6,

ψ(x, y) = − 9
160

x6y +
9
32

x5y2 +
9
8
x4y − 9

16
x4y3 − 9

4
x3y − 27

8
x3y2

+
27
16

x3y3 +
9
2
x2y2 +

9
5
xy − 9

4
xy3.

It follows that

E(a b)=
884
825

= 1.0715..., ρ(a, b)=
884/825 − (36/35)2

6/5 − (36/35)2
=

274
2871

= 0.0954...

and the cross-correlation coefficient is somewhat smaller than that found in the
Gaussian case [2].

With regard to angles, apart from E(α)=π/3, all we know is that [16, 17]

P(a uniform triangle in the ball is acute)=
33
70

= 0.4714285714....

Mathai [27] showed that the density for area is given by 8xΦ3
(
4x2
)
, hence [31]

E(area)=
9π
77

= 0.3671991413..., E(area2)=
9
50

= 0.18,

E(perimeter)=
108
35

, E(perimeter2)=
2758
275

.

It is surprising that E(perimeter2) is known in exactly in three dimensions but
not in two dimensions.

5.12.3 Square

The density f(x) for an arbitrary side a of a random uniform triangle in the unit
square is [10, 32] 2x3 − 8x2 + 2πx if 0≤ x≤ 1,

8x
√

x2 − 1 − 2x3 + 2(π − 2)x − 8x arctan
(√

x2 − 1
)

if 1< x≤
√

2

and

E(a)=
1
15

(
2 +

√
2 + 5 ln(1 +

√
2)
)
= 0.5214054331..., E(a2)=

1
3
.
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Nothing comparable is known for an arbitrary angle α; we have only [33, 34]

P(a uniform triangle in the square is acute) = 1 −
(

97
150

+
π

40

)
= 1 − 0.7252064830...

= 0.2747935169....

A remarkable formula holds for the density h(x) for area [22, 35–38]:

(−16π2x2 − 16π2x − 24x + 12) + (240x2 − 96x − 12) ln(1 − 2x)

− 240x2 ln(2x) + 48x2 ln(2x)2 + (96x2 + 96x)Li2(2x),

where Li2(ξ) is the dilogarithm function [2]. As a consequence,

E(area)=
11
144

, E(area2)=
1
96
.

Evaluating E(perimeter2) remains open.

5.12.4 Cube

The density f(x) for an arbitrary side a of a random uniform triangle in the unit
cube is [39–41]

−x5 + 8x4 − 6πx3 + 4πx2 if 0≤ x≤ 1,

−8x(2x2 + 1)
√

x2 − 1 + 2x5 + 6x3 − 8πx2

+(6π − 1)x + 24x3 arctan
(√

x2 − 1
) if 1< x≤

√
2,

8x(x2 + 1)
√

x2 − 2 − x5 + 6(π − 1)x3 − 8πx2 + (6π − 5)x

−24x(x2 + 1) arctan
(√

x2 − 2
)
+ 24x2 arctan

(
x
√

x2 − 2
) if

√
2< x≤

√
3

and

E(a) =
1

105

(
4 + 17

√
2 − 6

√
3 + 21 ln(1 +

√
2) + 42 ln(2 +

√
3)− 7π

)
= 0.6617071822...,

E(a2)=
1
2
.

Essentially nothing else is known: it would be good someday to learn more about
the associated acuteness probability and E(area). See [42] for related discussion.
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5.13 Random Triangles. IV

We step back momentarily to gain perspective. By parabolic geometry is meant
the study of distances, angles, etc., in a Riemannian manifold having zero scalar
curvature; for example, geometry in two-dimensional Euclidean space R2 (the
planar model).

By elliptic geometry is meant the study of such properties in a Riemannian
manifold having positive scalar curvature. Given a line (geodesic) L and a point
P not on L, there is no line parallel to L passing through P. The sum of the
three angles of a triangle is greater than π; the quantity (α+ β + γ)− π is called
angular excess. The simplest example of this geometry is the spherical model S
embedded in three-dimensional Euclidean space R3. Geodesics are great circles,
that is, intersections of S with two-dimensional subspaces of R3.

By hyperbolic geometry is meant the study of such properties in a Rieman-
nian manifold having negative scalar curvature. Given a line (geodesic) L and
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a point P not on L, there are at least two distinct lines parallel to L passing
through P. The sum of the three angles of a triangle is less than π; the quantity
π − (α+ β + γ) is called angular defect. The simplest example of this geometry
is the hyperboloidal model H embedded in three-dimensional Minkowski space
M3. Geodesics are great hyperbolas, that is, nonempty intersections of H with
two-dimensional subspaces of M3.

With regard to the latter,M3 is the vector space of ordered real triples (just like
R3) equipped with the symmetric bilinear form [1–3]

q [(x, y, z), (u, v,w)]=−zw + xu + yv

instead of the usual (positive definite) inner product

p [(x, y, z), (u, v,w)]= xu + yv + zw.

Define the unit hyperboloid H to be the positive sheet (z> 0) of points satisfying
q[(x, y, z), (x, y, z)]=−1; equivalently,

H=
{
(x, y, z)∈M3 : z=

√
1 + x2 + y2

}
.

This is analogous to the unit sphere S of points satisfying p[(x, y, z), (x, y, z)] = 1;
equivalently,

S=
{
(x, y, z)∈R3 : z=±

√
1 − x2 − y2

}
.

Distance between two points in H:

arccosh (−q [(x, y, z), (u, v,w)])

is analogous to distance between two points in S:

arccos (p [(x, y, z), (u, v,w)])

(the latter is the angle at the origin determined by the two vectors).
A hyperbolic triangle T is a region enclosed by three geodesics on H. The sides

of T are arcs of great hyperbolas and have length a, b, c. Since H is non-compact,
there is no upper bound on these. To define a uniform distribution, we will need
to introduce some restrictions. The angle α opposite side a is the dihedral angle
between the two planes passing through the origin and determined by arcs b, c.
The angles β, γ opposite sides b, c are similarly defined. Each of these is ≤π. By
the Law of Cosines for Sides:

cosh(c)= cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ)

we obtain

cos(γ)=−cosh(c)− cosh(a) cosh(b)
sinh(a) sinh(b)

analogous to an expression for cos(γ) in spherical trigonometry [4].
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The disk of radius R> 0 on H is

∆R = {(x, y, z)∈H : arccosh (−q [(x, y, z), (0, 0, 1)])≤R}
= {(x, y, z)∈H : z≤ cosh(R)}.

This is analogous to the disk of radius 0<R<π on S:

{(x, y, z)∈S : arccos (p [(x, y, z), (0, 0, 1)])≤R}= {(x, y, z)∈S : z≥ cos(R)};

the special case when R=π/2 is a hemisphere on S.
The orthogonal projection of∆R (⊂H) into the xy-plane gives simply the disk

x2 + y2 ≤ sinh(R)2 because√
1 + x2 + y2 = z≤ cosh(R) implies x2 + y2 ≤ cosh(R)2 − 1= sinh(R)2.

It is hence apparent [5] that circular circumference is proportional to sinh(R).
An alternative mapping from ∆R into the xy-plane is nonlinear:

√
z2 − 1 cos(θ)√
z2 − 1 sin(θ)

z

 7→
(

arccosh(z) cos(θ)
arccosh(z) sin(θ)

)

but has the advantage that ∆R is mapped onto the (even simpler) disk x2 + y2 ≤
R2. The inverse mapping(

r cos(θ)
r sin(θ)

)
7→

 sinh(r) cos(θ)
sinh(r) sin(θ)

cosh(r)


will be helpful soon; call this Φ for convenience.

We now discuss the random generation of uniform points in ∆R. Here it is
useful to first review the generation of points in the Euclidean planar disk of
radius R. We want distance ξ between a random point and the center (0, 0) to
possess density function

f(ξ)=
2
R2 ξ, 0<ξ <R

(proportional to circular circumference, radius ξ). The cumulative distribution is

η=F(ξ)=

ξ∫
0

2
R2 t dt=

1
R2 ξ

2, 0<η< 1

hence ξ=R
√
η. By the inverse CDF method, the point(
R
√
η cos(θ)

R
√
η sin(θ)

)
where η∼Unif[0, 1], θ∼Unif[0, 2π]

satisfies the desired uniformity condition.
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Returning now to ∆R, we want distance ξ between a random point and the
center (0, 0, 1) to possess density function [6, 7]

f(ξ)=
sinh(ξ)

cosh(R)− 1
, 0<ξ <R

(again by proportionality). The cumulative distribution is

η=F(ξ)=

ξ∫
0

sinh(t)
cosh(R)− 1

dt=
cosh(ξ)− 1
cosh(R)− 1

, 0<η< 1

hence ξ= arccosh (1 + (cosh(R)− 1)η). In the planar disk of radius R, the point(
arccosh (1 + (cosh(R)− 1)η) cos(θ)
arccosh (1 + (cosh(R)− 1)η) sin(θ)

)
where η∼Unif[0, 1], θ∼Unif[0, 2π]

is more likely to appear near the circular boundary than near the center. Applying
the transformation Φ, we obtain that
√
(1 + (cosh(R)− 1)η)2 − 1 cos(θ)√
(1 + (cosh(R)− 1)η)2 − 1 sin(θ)

1 + (cosh(R)− 1)η

 where η∼Unif[0, 1], θ∼Unif[0, 2π]

satisfies the desired uniformity condition in ∆R.

5.13.1 Sides

We do not know the trivariate density f(x, y, z) for sides a, b, c of a uniform
random triangle in ∆R. Let

X=
cosh(a)

L2 , Y=
cosh(b)

L2 , Z=
cosh(c)

L2

denote normalized sides, where L= cosh(R)− 1. The trivariate characteristic
function

E (exp (irX + isY + itZ))

has a complicated quintuple integral expression [6, 7] that we choose not to
reproduce here. Setting r= s= 0, the following expression for the univariate
characteristic function for Z emerges:

1
2π

2π∫
0

1+1/L∫
1/L

1+1/L∫
1/L

exp

[
it

(
uv − cos(φ)

√
u2 − 1

L2

√
v2 − 1

L2

)]
du dv dφ

=

1+1/L∫
1/L

1+1/L∫
1/L

J0

(
t

√
u2 − 1

L2

√
v2 − 1

L2

)
exp (ituv) du dv,



“C05” — 2018/10/27 — 12:01 — page 699 — #77

5.13 Random Triangles. IV 699

where J0(θ) is the zeroth Bessel function of the first kind. It follows that

E(Z)=
(

L + 2
2L

)2

, E(Z2)=
L4 + 6L3 + 13L2 + 12L + 6

6L4

and, in the limit as R→∞, the univariate density for Z tends to

−1 +
2
π

√
2
ζ
− 1 +

1
π

arccos(1 − ζ), 0<ζ < 2.

It also follows that

E(YZ)=
(L + 2)2(L2 + 3L + 3)

12L4

from the biivariate characteristic function for Y, Z:

1+1/L∫
1/L

1+1/L∫
1/L

1+1/L∫
1/L

J0

(
s

√
u2 − 1

L2

√
w2 − 1

L2

)

× J0

(
t

√
u2 − 1

L2

√
v2 − 1

L2

)
exp (isuw + ituv) du dv dw.

A complicated expression for the limiting trivariate density for X, Y, Z exists [6]
in terms of a certain elliptic integral, but again we omit this.

5.13.2 Angles

We know even less about the density for angles α, β, γ of a uniform random
triangle in ∆R. This is unfortunate since the angular defect π − (α+ β + γ) is
equal to the area of the triangle and this is an important quantity to understand.

By the Law of Cosines for Sides, a triangle is acute if and only if the three
inequalities

cosh(a) cosh(b)> cosh(c),

cosh(a) cosh(c)> cosh(b),

cosh(b) cosh(c)> cosh(a)

hold, which permits a proof of [7]

lim
R→∞

P(a uniform triangle in ∆R is acute)= 1.

We close with an interesting variation. The circumscribed circle of a triangle
is a circle that goes through the three vertices of the triangle. If such a circle
exists, its center is called the circumcenter (which coincides with the intersection
of the three perpendicular bisectors of the sides). We say, under such a condition,
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that the triangle possesses a circumcenter. This is true if and only if the three
inequalities

sinh
(a
2

)
< sinh

(
b
2

)
+ sinh

( c
2

)
,

sinh
(

b
2

)
< sinh

(a
2

)
+ sinh

( c
2

)
,

sinh
( c
2

)
< sinh

(a
2

)
+ sinh

(
b
2

)
hold, which inspires a numerical computation [7]

lim
R→∞

P(a uniform triangle in ∆R possesses a circumcenter)= 0.4596203....

No exact expression for this constant is known.
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5.14 Random Triangles. V

We defined the d-dimensional Poisson(λ) point process in an earlier essay [1] and
exhibited moment formulas for various cellular parameters of the corresponding
Voronoi tessellation. Many of these formulas are analytically intractible; numer-
ical integration is sometimes necessary. For example, when d= 2, the probability
that a typical cell (a convex polygon) is a triangle is 0.01124001.... Monte Carlo
simulation often provides the only window for study. For example, when d= 2
or d= 3, the value of the density function fV for the cellular volume V tends to 0
for small arguments [2–4], although no workable expression for either density is
known.

Any d + 1 particles from the point process define almost surely an open ball
which contains the d + 1 particles on its boundary. If no other particles from
the process are contained in the ball, then let C denote the convex polyhedron
with vertices at the d + 1 particles. The collection of all such cells C constitute
almost surely a subdivision of Rd, called the Poisson–Delaunay tessellation. This
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can be regarded as dual to what we discussed earlier. Formulas here are more
accessible than in [1]. When d= 2 and d= 3, the cells are almost surely triangles
and tetrahedra, respectively [5, 6]. The value of the density fV tends to 0 for small
arguments in both cases [7, 9]. Since our interest is in random triangles, we will
focus on the scenario d= 2.

The shortest distance between a lineL and the origin is the length |r| of the per-
pendicular segment from (0, 0) toL. If the intersection point is (r cos(θ), r sin(θ)),
then clearly the equation for L is

x cos(θ) + y sin(θ)= r.

There is a one-to-one correspondence between the set of points

Q= {(r, θ) :−∞< r<∞ and 0≤ θ <π}

and the set of all lines L. For arbitrary λ> 0, the Poisson point process of
intensity λ in Q induces the Poisson line process of intensity λ. The resulting sub-
division ofR2 is called theGoudsmit–Miles tessellation of the plane (Figure 5.10).
Formulas here are again more accessible than before. The probability that a
typical cell (again a convex polygon) is a triangle is 2 − π2/6= 0.3550659331...
[10–12]. The value of the density fV tends to∞ (not 0) for small arguments; more
precisely [13–15],

lim
x→0+

√
xfV(x) = λ

2
√

2
12 − π2

π∫
0

π−φ∫
0

√
sin(φ) sin(ψ) sin(φ+ ψ)dψ dφ

=
6π

12 − π2 (0.3231100260...)λ.

One of our goals is to explainwhy this interesting constant arises! It turns out that
“small” polygons of the tessellation are almost all triangles, therefore knowledge
about triangular areas carries over to limiting polygonal areas. We shall discuss
both.

There are effectively no stationary line processes except the one with Poisson
structure. This is somewhat exaggerated – mixtures of the λ parameter in Poisson
line processes lead to Cox line processes and there are pathological examples with
many parallel lines – but essentially it is not worthwhile to consider any other
tessellation based on a line process [16, 17].

Characteristics of Delaunay triangles and Miles triangles will dominate this
essay. There is a third type of random triangle – calledMiles intriangles – that we
shall touch upon as well. Let us review: The largest circle inscribed in a given con-
vex polygon is called the incircle. This circle will almost surely be tangent to three
sides of the polygon. Let T denote the triangle determined by these three sides,
extended as far as required. Given a typical cell C in a planar Goudsmit–Miles
tessellation, the intriangle T might be considerably larger than C (the prefix “in”
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Figure 5.10 A Poisson line process of intensity 17 in the unit square.

refers to the fact that C and T share an incircle, not that T is inscribed in any-
thing). Clearly no other line is allowed to intersect the incircle. However, it is
possible that one or more lines might hit the intriangle elsewhere. It can be shown
that both the area V of T and the perimeter S of T have infinite expectation [18].

Buried in an appendix to [18], we find these three types of random triangles
listed in a table. Clarifying Miles’ table is the second goal of this essay. For
simplicity, we shall assume λ= 1 henceforth.

5.14.1 Delaunay Triangles

Unlike the examples in [19], it is easier to start with angles than with sides.
The bivariate density for arbitrary angles α, β in a typical (triangular) cell of
a Poisson–Delaunay tessellation is [5, 18, 20]

8
3π

sin(x) sin(y) sin(x + y),

where x> 0, y> 0, x + y<π. Integrating out y, we obtain the density g(x) for α:

4
3π

[(π − x) cos(x) + sin(x)] sin(x)

and

E(α)=
π

3
= 1.0471975511..., E(α2)=

2π2

9
− 5

6
= 1.3599120891....
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Corresponding to the density for max{α, β, γ}, the expression 3g(x) holds when
π/2< x<π; the expression when π/3< x<π/2 is [21, 22]

4
π
[(3x − π) cos(x)− sin(3x)] sin(x).

It thus follows that

P(a typical Delaunay triangle is acute)=
1
2
= 0.5.

As in [23], the cross-correlation coefficient ρ(α, β)=−1/2, hence

E(αβ)=
π2

18
+

5
12

= 0.9649780222....

The density for an arbitrary side a is [6, 24, 25]

π x
3

[
x exp

(
−π x2

4

)
+ erfc

(√
πx
2

)]
,

where x> 0 and erfc is the complementary error function [8]; also

E(a)=
32
9π

= 1.1317684842 ..., E(a2)=
5
π
= 1.5915494309....

No such simple density formula exists for perimeter S= a + b + c. Muche [7]
gave

π x3

12

2π∫
0

2π−φ∫
0

sin
(
φ
2

)
sin
(
ψ
2

)
sin
(
φ+ψ

2

)
[
sin
(
φ
2

)
+ sin

(
ψ
2

)
+ sin

(
φ+ψ

2

)]4
× exp

 −π x2

4
[
sin
(
φ
2

)
+ sin

(
ψ
2

)
+ sin

(
φ+ψ

2

)]2
 dψ dφ,

where x> 0 and

E(S)=
32
3π

= 3.3953054526 ..., E(S2)=
125
3π

= 13.2629119243....

By contrast, for area V=(1/4)
√

(a + b + c)(−a + b + c)(a − b + c)(a + b − c),
we have a formula due to Rathie [9]:

8π x
9

K1/6

(
2π x

3
√

3

)2

,

where x> 0 and

K1/6(w)=
∞∑
i=0

π

i!Γ
(

5
6 + i

) (w
2

)− 1
6+2i

−
∞∑
j=0

π

j!Γ( 7
6 + j)

(w
2

)1
6+2j
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is the modified Bessel function of the second kind; also

E(V)=
1
2
= 0.5, E(V 2)=

35
8π2 = 0.4432801784....

5.14.2 Miles Triangles

Cells of a Goudsmit–Miles tessellation are sampled until we obtain a triangular
one. The bivariate density for arbitrary angles α, β in such a typical triangle is
[18, 26]

4
12 − π2

sin(x) sin(y) sin(x + y)
sin(x) + sin(y) + sin(x + y)

=
8

12 − π2 sin
(x
2

)
sin
(y
2

)
cos
(

x + y
2

)
where x> 0, y> 0, x + y<π. Integrating out y, we obtain the density h(x) for α:

2
12 − π2 [2 sin(x)− (π − x) (1 − cos(x))]

and

E(α)=
π

3
= 1.0471975511..., E(α2)=

8
12 − π2 +

π2

6
− 4= 1.4001051740....

Corresponding to the density for max{α, β, γ}, the expression 3h(x) holds when
π/2< x<π; the expression when π/3< x<π/2 is

6
12 − π2 [2 (1 − 2 cos(x)) sin(x)− (3x − π) (1 − cos(x))].

It thus follows that

P(a typical Miles triangle is acute)=
1
4
+

3(π − 3)
12 − π2 = 0.4493892406....

As in [23], ρ(α, β)=−1/2, hence

E(αβ)=− 4
12 − π2 +

π2

12
+ 2= 0.9448814798....

Miles [18] gave the trivariate density for sides a, b, c:

1
12 − π2

(x + y + z)(−x + y + z)(x − y + z)(x + y − z)
x2y2z2 exp (−(x + y + z))

if |x − y|< z< x + y, and we shall verify this later. The condition |x − y|< z<
x + y is equivalent to |x − z|< y< x + z and to |y − z|< x< y + z via the Law
of Cosines. As a consequence,

E(a)=
1
3
=0.3333333333..., E(a2)=− 96

π2(12 − π2)
+ 4+

8
π2 =0.2448288927...,

E(a b)=
48

π2 (12 − π2)
− 5

3
− 4
π2 = 0.2109188869....
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The cross-correlation coefficient

ρ(a, b)=
48/(12 − π2)− 16π2/9 − 4
−96/(12 − π2) + 35π2/9 + 8

= 0.7464061592...

is quite large, indicating strong positive dependency. Integrating out z gives the
bivariate density for a, b:

exp (−2(x + y))
(12 − π2)x2y2

×

{(
x2 − y2)2 exp (x + y) [Ei (−(x + y))− Ei (−(y − x))] + π

3∑
k=0

xkhk(x, y)

}

for 0< x< y, where

h0(x, y)= (−1 + exp(2x))(−y3 + y2 − 2y − 2), h2(x, y)= (−1 + exp(2x))(y + 1),

h1(x, y)= (1 + exp(2x))(−y2 + 2y + 2), h3(x, y)= 1 + exp(2x)

and Ei is the exponential integral

Ei(w)=

w∫
−∞

exp(t)
t

dt, w< 0.

For 0< y< x, simply use symmetry. Unlike Delaunay triangles, a closed-form
expression for the univariate density for a seems out of reach.

Perimeter S is exponentially distributed, with density

exp (−s), s> 0

and moments E(S)= 1, E(S2)= 2. A starting point for area V was provided by
Miles [26]: if U=

√
V and

χ= 2

√
cot
(α

2

)
cot
(
β

2

)
tan
(
α+ β

2

)
=
√

2
sin(α) + sin(β) + sin(α+ β)√

sin(α) sin(β) sin(α+ β)

then the conditional density for U, given α and β, is

χ exp (−χ u), u> 0.

Therefore the unconditional density for U is

π∫
0

π−α∫
0

χ exp (−χ u)
4

12 − π2

sin(α) sin(β) sin(α+ β)

sin(α) + sin(β) + sin(α+ β)
dβ dα

=
4
√

2
12 − π2

π∫
0

π−α∫
0

√
sin(α) sin(β) sin(α+ β) exp (−χ u) dβ dα
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and, transforming to V, we obtain

2
√

2
12 − π2

1√
v

π∫
0

π−α∫
0

√
sin(α) sin(β) sin(α+ β) exp

(
−χ

√
v
)
dβ dα

as the area density. Integrating first with respect to v over (0,∞), it follows that

E(V) =

√
2

12 − π2

π∫
0

π−α∫
0

(
2
χ

)3√
sin(α) sin(β) sin(α+ β)dβ dα

=
π (25 − 36 ln(2))

12 − π2 = 0.0688684716...,

E(V 2) =
3
√

2
12 − π2

π∫
0

π−α∫
0

(
2
χ

)5√
sin(α) sin(β) sin(α+ β)dβ dα

=
3
(
15π2 − 148

)
2(12 − π2)

= 0.0310266433....

The density formula for V also serves to motivate the constant 0.3231100260...
at the beginning of this essay (asymptotics for polygonal cells as v→ 0+).

5.14.3 A Verification

Well-known formulas give angles α, β in terms of sides a, b, c:

sin
(α

2

)2
=

(
S
2 − b

) (
S
2 − c

)
b c

=
(S − 2b)(2a + 2b − S)

4b(S − a − b)
,

sin
(
β

2

)2

=

(
S
2 − a

) (
S
2 − c

)
a c

=
(S − 2a)(2a + 2b − S)

4a(S − a − b)

where S= a + b + c. To compute the Jacobian determinant J of (a, b,S)→
(α, β,S), we differentiate sin(α/2)2:

sin
(α

2

)
cos
(α

2

) ∂α
∂a

=
∂

∂a
(S − 2b)(2a + 2b − S)

4b(S − a − b)
,

sin
(α

2

)
cos
(α

2

) ∂α
∂b

=
∂

∂b
(S − 2b)(2a + 2b − S)

4b(S − a − b)
,

sin
(α

2

)
cos
(α

2

) ∂α
∂S

=
∂

∂S
(S − 2b)(2a + 2b − S)

4b(S − a − b)

and likewise differentiate sin(β/2)2. Additional formulas

sin
(α

2

)
cos
(α

2

)
= sin

(α
2

)√ S
2

(
S
2 − a

)
b c

=

√
S(S − 2a)(S − 2b)(2a + 2b − S)

4b(S − a − b)
,
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sin
(
β

2

)
cos
(
β

2

)
= sin

(
β

2

)√ S
2

(
S
2 − b

)
a c

=

√
S(S − 2a)(S − 2b)(2a + 2b − S)

4a(S − a − b)

permit the expression of ∂α/∂a, ∂β/∂a, . . . entirely in terms of a, b, S. We find
that

J=
S

a b(S − a − b)
=

S
a b c

.

Let γ=π − α− β, then sin(γ/2)= cos((α+ β)/2). The conditional density for
a and b, given S, is thus

8
12 − π2 sin

(α
2

)
sin
(
β

2

)
sin
(γ
2

)
J =

8
12 − π2

(
S
2 − a

) (
S
2 − b

) (
S
2 − c

)
a b c

S
a b c

=
S

12 − π2

S − 2a
a2

S − 2b
b2

S − 2c
c2

where max {2a, 2b, 2c}<S. Our formula corrects an error in [18], which inexpli-
cably gives 4/S2 as the first factor. The inequality 2c<S implies S< 2a + 2b. It
follows that the unconditional density for a, b, S is

S
12 − π2

S − 2a
a2

S − 2b
b2

S − 2c
c2 exp (−S)

as was to be shown.

5.14.4 Miles Intriangles

Three sides (tangential to the incircle) of a typical cell in a Goudsmit–Miles tes-
sellation are extended until they intersect. Not much is known about the triangle
so formed; we shall be brief. The bivariate density for arbitrary angles α, β in
such a typical triangle is [13, 18]

1
3π

[sin(x) + sin(y) + sin(x + y)]=
4
3π

cos
(x
2

)
cos
(y
2

)
sin
(

x + y
2

)
where x> 0, y> 0, x + y<π. Integrating out y, we obtain the density for α:

1
3π

[(π − x) sin(x) + 2 (1 + cos(x))]

and E(α)=π/3. A density for side a is not known, but E(a)=∞ as implied
earlier. We mention two results:

P(a typical intriangle is hit by just one line) = 2 − π2 ( 17
2 − 12 ln(2)

)
= 0.2014241570...,

P(a typical intriangle is hit by at least two lines) = −3 + π2 ( 26
3 − 12 ln(2)

)
= 0.4435099098....
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5.14.5 Goudsmit–Miles Cells

We move away from triangles and talk about convex polygons with N vertices.
Goudsmit [27] proved that a typical such cell, determined via a Poisson line
process of intensity λ= 1, has the following mean values:

E(N)= 4, E(S)= 2, E(V)=
1
π
= 0.3183098861....

Miles [13, 14] proved that

P(a typical cell has N= 3)= 2 − π2

6
= 0.3550659331...,

E(N2)=
π2

2
+ 12= 16.9348022005...,

E(S2)=
π2

2
+ 2=

68.4437543191...
π2 = 6.9348022005...,

E(V 2)=
1
2
=

48.7045455170...
π4 = 0.5

and announced that D. G. Kendall (unpublished) had obtained

E(V3)=
4π
7

=
1725.8818444438...

π6 = 1.7951958020....

Cross-moments between N, S, V were also given.
Let us focus on N-results first. Tanner [28, 29] computed that

P(a typical cell has N= 4)=−1
3
− 7π2

36
+ π2 ln(2)− 7

2
ζ(3)= 0.3814662248...,

where ζ(3) is Apéry’s constant [30],

E(N3) =
232
7

+
39π2

14
+
π4

21
+

12π2

7
ln(2)− 6ζ(3)

− 192
7

π/2∫
0

x2 tan(x) ln(sin(x))dx

= 76.0364049460...,

and E(N4)= 362.08446.... The fourth moment can be expressed as an elabo-
rate quadruple integral and deserves more attention. Simulation [12, 15, 31, 32]
suggests that P(N= 5)≈ 0.196 and P(N= 6)≈ 0.062. The function P(N= k)
is apparently maximized when k= 4 and falls off for k≥ 5; it is known that
asymptotically [33]

P(N= k)∼ 8
3k

2
(
4π2
)k−1

(2k)!

as k→∞.
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Results for perimeter S include [29]

E(S 3)=E(N 3)− 3π2

2
− 28=

1030.4005353057...
π3 = 33.2319983444...,

E(S 4)=E(N 4)− 2E(N3)− π2

2
− 4=

19586.7132...
π4 = 201.07685...

but nothing comparable is known for the fourth moment of area V. Simulation
[12, 15, 32] suggests that E(V4)≈ 11.4. No formulas for the density for either S
or V are known.

Our study has been devoted to “typical” cells C; an alternative is the Crofton
cell C0, which is the unique polygon containing the origin. The Crofton cell is not
typical for Goudsmit–Miles (unlike Poisson–Voronoi, for which typicality does
hold [34, 35]). Even less is known here. Matheron [36, 37] proved that

E(N0)=E(S0)=
π2

2
= 4.9348022005...

and Miles [18] proved that

P(the Crofton cell has N0 = 3)=
π2 (25 − 36 ln(2))

6
= 0.0768208880....

The following moments

E(V0)=
π

2
= 1.5707963267..., E(V2

0)=
4π2

7
= 5.6397739434...

are listed in [32], but a reference cannot be found. Simulation [31, 32] suggests
that P(N0 = 4)≈ 0.297, P(N0 = 5)≈ 0.341 and P(N0 = 6)≈ 0.196. The function
P(N0 = k) is apparently maximized when k= 5 and falls off for k≥ 6; it is known
that asymptotically [33]

P(N0 = k)∼ 2k
3

2
(
4π2
)k−1

(2k)!

as k→∞. The distribution of N0 has a thicker tail (greater weight for large k)
than N does. Simulation [32] further suggests that E(N2

0)≈ 25.72, E(S2
0)≈ 30.51,

E(V3
0)≈ 36.03 and E(V4

0)≈ 357.8. Again, no density formulas are known.
Hilhorst &Calka [33] wrote about cloud chamber experiments in physicsmoti-

vating the work of Goudsmit [27]: The problem was “to calculate the probability
for three independent lines to nearly pass through the same point, or, put differ-
ently, for a typical triangular cell to have an area less than ε in the limit of very
small ε”. It would seem that the solution came almost twenty years later [13, 14],
with asymptotics

ε∫
0

fV(x)dx∼
12π

12 − π2 (0.3231100260...)λ
√
ε

valid as ε→ 0+.
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Let Ω be a planar convex region with area V and perimeter S. A Poisson
point process yields K points inΩ satisfying E(K)=Var(K)=λVwhereas a Pois-
son line process yields L lines hitting Ω satisfying E(L)=Var(L)=λS. The total
length M of the line segments crossing Ω is a sum of L independent identically
distributed chord lengths and hence is approximately normally distributed with
E(M)=πλV and

Var(M)=



2
3
πλ if Ω is a disk of unit diameter,

4
3

(
1 −

√
2 + 3 arcsinh(1)

)
λ if Ω is a square of unit side,

3
4

ln(3)λ if Ω is an equilateral triangle of

unit side

for suitably large λ. Studies on such chord lengths for regular polygons and
ellipses include [38–49].

The number I of intersection points (between the
(L
2

)
pairs of lines) in Ω

satisfies E(I)=π λ2V in general and

E(I)=
1
4
π2λ2, Var(I)=

1
4
π2λ2 +

8
3
π λ3

in the special case when Ω is a disk of unit diameter. How is the general formula
proved? Under the condition that L= ℓ is fixed, we have [10, 50]

E(I |L= ℓ)= ℓ(ℓ− 1)π
V
S2 ,

thus, allowing L to vary,

E(I) =
[
E(L2)− E(L)

]
π

V
S2

=
[
Var(L) + E(L)2 − E(L)

]
π

V
S2

= πE(L)2
V
S2 =π λ2S2 V

S2 =π λ2V.

Finding the variance expression for the disk is more complicated; it is possible to
do likewise for the square and equilateral triangle.

An unrelated new method for generating random triangles, taking one vertex
pinned at the originO and the other two vertices as Poisson particles closest toO,
is discussed in [51, 52]. Different results emerge if we focus instead on sides [53,
54], drawn from a linear family of varying slopes and intercepts. Superposition
of particles and lines is the subject of [55, 56].

Acknowledgments I am grateful to Richard Cowan for a helpful discussion
about the Poisson line process and Miles’ fundamental work on the resulting



“C05” — 2018/10/27 — 12:01 — page 711 — #89

5.14 Random Triangles. V 711
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Turner for writing an R package spatstat [57], which enables testing of numerical
predictions in this essay via simulation.
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5.15 Random Triangles. VI

As a conclusion of our survey, we gather various results for random triangles in
the plane subject to constraints. If we break a line segment L in two places at
random, the three pieces can be configured as a triangle with probability 1/4 [1–
4]. If we instead select three points on a circle Γ at random, a triangle can almost
surely be formed by connecting each pair of points with a line. Assuming L has
length 1 and Γ has radius 1, what can be said about sides and angles of such
triangles?

5.15.1 Unit Perimeter

Consider the broken L model, with the condition that triangle inequalities are
satisfied. The bivariate density for two arbitrary sides a, b is [5, 6]{

8 if 0< x< 1/2, 0< y< 1/2 and x + y> 1/2,
0 otherwise.

Integrating on y from 1/2 − x to 1/2, the univariate density for a is{
8 x if 0< x< 1/2,
0 otherwise
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and corresponding moments are

E(a)= 1/3= 0.3333333333 ..., E(a2)= 1/8= 0.125.

As in [7], the cross-correlation coefficient ρ(a, b)=−1/2, hence

E(a b)= 5/48= 0.1041666666....

The Law of Cosines (with third side c= 1 − a − b) and a Jacobian determinant
calculation imply that the bivariate density for two angles α, β is 8

sin(x) sin(y) sin(x + y)

(sin(x) + sin(y) + sin(x + y))3
if 0< x<π, 0< y<π and x + y<π,

0 otherwise.

This is a new result, as far as is known, although it bears resemblance to formulas
in [7]. Integrating on y from 0 to π − x, the univariate density for α is−8

(3 − cos(x)) sin(x)
(1 + cos(x))3

ln
(
sin
(x
2

))
− 8

sin(x)
(1 + cos(x))2

if 0< x<π,

0 otherwise

and corresponding moments are

E(α)=π/3= 1.0471975511 ..., E(α2)= 8/3 − π2/9= 1.5700439554....

Because ρ(α, β)=−1/2, we have

E(αβ)=−4/3 + 2π2/9= 0.8599120891....

It is feasible to calculate the density for the maximum angle (omitted). The
probability that a broken L triangle is obtuse can be shown to be [8–10]

9 − 12 ln(2)= 0.6822338332...= 1 − 0.3177661667....

Let h(z)< 0< f(z)<w< g(z)< 1 be the three zeroes of the cubic polyno-
mial (1 − w)w2 − 64z2. For area z=

√
(1/2)(1/2 − a)(1/2 − b)(a + b − 1/2),

the density is [11]

256z√
(1 − f)(g − h)

K

(√
(g − f)(1 − h)
(1 − f)(g − h)

)
, 0< z<

1

12
√

3

where K is the complete elliptic integral of the first kind [7]. This again is a new
result, but the moments [6]

E(area)=
π

105
= 0.0299199300..., E(area2)=

1
960

= 0.0010416666....

are well-known. A similar set of side/angle computations for unit area triangles
(à la “throwing paint”) is attempted in [12].
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5.15.2 Unit Circumradius

Consider the selection Γ model, equivalently, all triangles inscribing the unit
circle. The bivariate density for two arbitrary angles α, β is [13–15]{

2/π2 if 0< x<π, 0< y<π and x + y<π,

0 otherwise.

To prove this, use the fact that an inscribed angle is one-half the length of its
intercepted circular arc [16, 17]. Integrating on y from 0 to π − x, the univariate
density for α is {

2(π − x)/π2 if 0< x<π,

0 otherwise

and corresponding moments are

E(α)=π/3= 1.0471975511 ..., E(α2)=π2/6= 1.6449340668....

As before, the cross-correlation coefficient ρ(α, β)=−1/2, hence

E(αβ)=π2/12= 0.8224670334....

The angle α is maximum if α>β and α>π − α− β [7]. Hence the density for
the maximum angle is

3

x∫
π−2x

2/π2 dy if π/3< x<π/2,

3

π−x∫
0

2/π2 dy if π/2< x<π

=

{
6(3 x − π)/π2 if π/3< x<π/2,

6(π − x)/π2 if π/2< x<π

and the probability that a selection Γ triangle is obtuse [8, 9, 15] is 3/4= 0.75.
The univariate density for a is [18, 19]

2
π

1√
4 − x2

if 0< x< 2,

0 otherwise

and corresponding moments are

E(a)= 4/π= 1.2732395447..., E(a2)= 2.

It can be shown that sides a, b are independent, which is delightfully paradoxical
since angles α, β are dependent and

a= 2 sin(α), b= 2 sin(β).
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The remaining side c satisfies

c=


1
2

(
a
√

4 − b2 + b
√

4 − a2
)

with probability 1/2,
1
2

∣∣∣a√4 − b2 − b
√

4 − a2
∣∣∣ with probability 1/2

but a simple expression for the trivariate density for all three sides a, b, c seems
unlikely.

For area z=(1/4)
√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c), the den-

sity is 8zΨ
(
4z2
)
, where

Ψ(y) =
1

4π3

1
√

y

{
Γ

(
1
3

)3(4y
27

)−1/6

2F1

(
1
3
,
1
3
,
2
3
,
4y
27

)

− 3Γ
(

2
3

)3(4y
27

)1/6

2F1

(
2
3
,
2
3
,
4
3
,
4y
27

)}
,

2F1 is the Gauss hypergeometric function [20] and 0< y< 27/4. This formula
corrects that which appears in Case III of [21]. The moments [22–24]:

E(area)=
3
2π

= 0.4774648292..., E(area2)=
3
8
= 0.375

are well-known. We mention that analogous results for random tetrahedra
inscribing the unit sphere [23, 25, 26] are E(volume)= 4π/105≈ 0.11968 and
E(volume2)= 2/81≈ 0.02469. See [27] for a related coverage probability issue.

A study of triangles circumscribing the unit circle Γ was undertaken in [28].
On the one hand, the bivariate density for angles in the unit inradius scenario is
the same as that in the unit circumradius scenario. On the other hand, a side has
infinite mean and a more complicated density.

5.15.3 Side-Angle-Side Example

Thus far we have examined cases when three sides are given or three angles are
given. Portnoy [29] studied an example in which two sides a= cos(θ), b= sin(θ)
are given, where θ is Uniform [0, π/2], as well as the included angle γ, which is
independent andUniform [0, π]. Let us focus solely on the obtuseness probability.
By the Law of Cosines,

b2 = a2 + c2 − 2a c cos(β),

c2 = a2 + b2 − 2a b cos(γ).

If β≥π/2, then cos(β)≤ 0 and b2 ≥ a2 + c2, hence

b2 − a2 ≥ c2 = a2 + b2 − 2a b cos(γ)

hence
2a b cos(γ)≥ 2 a2



“C05” — 2018/10/27 — 12:01 — page 717 — #95

5.15 Random Triangles. VI 717

hence
cos(γ)≥ a/b= cot(θ)

and conversely. The probability that β≥π/2 is thus

P {cos(γ)− cot(θ)≥ 0}= 1 − P {cos(γ) + cot(θ)≥ 0}

by symmetry, and the latter probability (of a sum) is a convolution integral:

2
π2

∞∫
0

x+1∫
ξ(x)

1√
1 − (x − y)2

1
1 + y2 dy dx

where ξ(x)=max{x − 1, 0}. Reversing the order of integration, we obtain

3
4
+

1
π2 ln

(
1 +

√
2
)2

= 1 − 0.1712917389...

as the value of the integral. Finally, the obtuseness probability for the triangle is

P {θ≥π/2}+ P {α≥π/2}+ P {β≥π/2}

which becomes

1 − 2
π2 ln

(
1 +

√
2
)2

= 0.8425834778....

This exact evaluation is new, as far as is known, improving on [29]. See also [30].
Random convex quadrilaterals inscribing the unit circle Γ behave differently

than random triangles. Any two sides are negatively correlated (rather than inde-
pendent). Any two adjacent angles are uncorrelated yet dependent (rather than
negatively correlated). Formulas like E(area)= 3/π and E(area2)= 1/2 + 105/
(16π2) are merely conjectured, not yet proved [31]. By contrast, when breaking a
unit line segment L in three places at random, a quadrilateral is formed with
probability 1/2; formulas like E(area)= 17π/525 − π2/160 and E(area2)= 1/
560 are demonstrably true if, further, the four vertices lie on a common circle [11].
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5.16 Colliding Dice Probabilities

Let K, L be congruent regular polyhedra in R3. Let g denote a rigid motion of
R3, that is, g(x)=Φx + τ where Φ is a 3 × 3 rotation matrix and τ is a trans-
lation 3-vector. The polyhedra K, g(L) are said to touch if K ∩ g(L) ̸=∅ but
int(K) ∩ int(g(L))=∅. Alternatively, we may think of ΦL moving toward K in
the direction τ , stopping precisely when the two polyhedra collide.

Let us sample the space SO3 of matrices Φ according to the uniform distribu-
tion (Haar measure, normalized to 1). The space of vectors τ is slightly harder
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to describe. Let
K − ΦL= {y − Φx : y∈K and x∈L}

be the Minkowski sum of K and the reflected image −ΦL of ΦL. Another way
to characterize K − ΦL is as the convex hull of all pairwise sums of vertices of K
and −ΦL. Clearly

τ ∈ bd(K − ΦL) if and only if the polyhedra K, g(L) touch.

Thus we sample the space bd(K − ΦL) uniformly (area measure), which is
complicated only by the intricate variety of possible faces of K − ΦL.

With independent Φ and τ as described, it is clear that

P {collision is edge-to-edge}> 0,

P {collision is vertex-to-face or face-to-vertex}> 0

and that no other types of collisions occur with positive likelihood. What is
unclear is the relative magnitude of these two probabilities.

Answering a question asked by Firey, McMullen [1, 2] proved that the edge-to-
edge collisions are strictly more likely than vertex-to-face collisions. In the case
of two cubes (cubical dice), the exact values of the probabilities are

3π
3π + 8

= 0.5408836762... > 0.4591163237...=
8

3π + 8
.

More generally, we have [3]

πV2
1

8V0V2 + πV2
1

>
8V0V2

8V0V2 + πV2
1

where V0 = 1 is the Euler characteristic of K, 1
2V1 is the mean width b (to be

defined shortly), 2V2 is the surface area a and V3 is the volume. For the unit
cube, it follows that b= 3/2 and a= 6.

In the case of two regular tetrahedra (tetrahedral dice), we have

b= 3
2π arccos

(
− 1

3

)
, a=

√
3

and hence

9 arccos
(
− 1

3

)2
4
√

3π + 9 arccos
(
− 1

3

)2 = 0.6015106899... > 0.3984893100...

=
4
√

3π

4
√

3π + 9 arccos
(
− 1

3

)2 .
In the case of two regular octahedra (octahedral dice), we have

b= 3
π arccos

(
1
3

)
, a= 2

√
3
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and hence

9 arccos
(

1
3

)2
2
√

3π + 9 arccos
(

1
3

)2 = 0.5561691925... > 0.4438308074...

=
2
√

3π

2
√

3π + 9 arccos
(

1
3

)2 .
These specific numerical results are apparently new. For tetrahedra, verification
by simulation is done using [4, 5]. The touching is vertex-to-face or face-to-vertex
if and only if τ lies in a triangular face of K − ΦL. (All other faces of K − ΦL are
parallelograms.) Hence it suffices to assess the ratio of surface area of triangles
only to surface area of the whole. The cases of two cubes or of two octahedra are
more difficult.

5.16.1 Mean Width

Let C be a convex body in R3. In earlier essays [6–8], the words “width” or
“breadth” were used to denote the minimum distance between all pairs of par-
allel C-supporting planes. Here, we instead take the mean of all such distances,
calling this b. The phrase mean width [9, 10] is used, as well as mean breadth [11]
and mean caliper diameter [12, 13].

Closed-form expressions for b exist when C is a convex polyhedron. Numerical
confirmation of such formulas is possible via quadratic programming (since the
optimization constraints are linear).

5.16.2 Intrinsic Volumes

Let P be a rectangular parallelepiped in R3 of dimensions z1, z2, z3. It is well-
known that

V3(P)= z1z2z3,

V2(P)= z1z2 + z1z3 + z2z3 =
1
2a,

V1(P)= z1 + z2 + z3 = 2b

are the elementary symmetric polynomials in three variables. In Rn, there are
n such intrinsic volumes, corresponding to the n elementary symmetric poly-
nomials [10]. Little is known about higher-dimensional intrinsic volumes and
the isoperimetric inequalities among them. Limiting approximation arguments
enable us to compute Vj(C) for arbitrary convex C. Additionally, let V0(C)= 1.
Hadwiger’s famous theorem [3] gives that V0, V1, …, Vn are a basis of the space
of all additive continuous measures that are invariant under rigid motions.

Acknowledgment Rolf Schneider generously proposed the method underlying
the tetrahedral simulation. More about mean width computations for convex
polyhedra is found in [14–19], for certain other convex bodies in [20–23], and a
specific non-convex body in [24].
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5.17 Gergonne–Schwarz Surface

We mentioned Plateau’s problem in [1] but did not give a nontrivial example. Let

F[ϕ,m] =

sin(ϕ)∫
0

dτ√
1 − τ 2

√
1 − m τ 2
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denote the incomplete elliptic integral of the first kind and K[m] =F[π/2,m]; the
latter is admittedly incompatible with [2] but we purposefully choose formulas
here to be consistent with the computer algebra package Mathematica. The three
basic Jacobi elliptic functions are defined via

u =

sn(u,m)∫
0

dτ√
1 − τ 2

√
1 − m τ 2

=

1∫
cn(u,m)

dτ√
1 − τ 2

√
m τ 2 + (1 − m)

=

1∫
dn(u,m)

dτ√
1 − τ 2

√
τ 2 − (1 − m)

and two (of nine) others we require are

sc(u,m)=
sn(u,m)

cn(u,m)
, sd(u,m)=

sn(u,m)

dn(u,m)
.

Our work supplements [3] very closely, even down to the level of notation. The
setting is three-dimensional xyz-space.

5.17.1 Six Edges of a Cube

Consider a polygonal wire loop with six line segments:

(0, 0, 0)→ (1, 0, 0)→ (1, 0, 1)→ (1, 1, 1)→ (0, 1, 1)→ (0, 1, 0)→ (0, 0, 0).

What is the minimal area for any surface spanning this fixed boundary? Equiva-
lently, what is the outcome of dipping the wire loop in a soap solution?

Define
ρ0 =K[1/4] = 1.6857503548...

and let t= E(ξ) denote the functional inverse of the elliptic integral

ξ=

t∫
0

dτ√
1 + τ 2 + τ 4

.

The desired minimal surface is given implicitly by the equation [3]

E(x)E(y)= E(z)

where 0≤ x, y, z≤ ρ0.
This is as far as Nitsche [3] went in describing his calculations. Solving for z

and rescaling (so that the surface spans the 1 × 1 × 1 cube), we find that

z=
1

2ρ0
F

[
arccos

(
cn
(
2ρ0x, 1

4

)
+ cn

(
2ρ0y, 1

4

)
1 + cn

(
2ρ0x, 1

4

)
cn
(
2ρ0y, 1

4

)) , 1
4

]
, 0≤ x, y≤ 1
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Figure 5.11 “Six edges” minimal surface

and the surface area is

2

1∫
0

1−x∫
0

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dy dx=
3
2
K[3/4]
K[1/4]

= 1.9188923567...,

as predicted in [4]. See Figure 5.11.

5.17.2 Four Edges of a Regular Tetrahedron

Consider a polygonal wire loop with four line segments:

(0, 0, 0)→ (1, 0, 1)→ (1, 1, 0)→ (0, 1, 1)→ (0, 0, 0).

Again, what is the minimal area for any surface spanning this fixed boundary?
With ρ0 as before, let s=F(η) denote the functional inverse of the elliptic

integral

η=

s∫
0

dσ√
3
4 +

5
2σ

2 + 3
4σ

4
.

The desired minimal surface is given implicitly by the equation [3]

F(y)F(z) + F(z)F(x) + F(x)F(y) + 1= 0



“C05” — 2018/10/27 — 12:01 — page 724 — #102

724 Geometry and Topology

1.0

0.5

0.0

1.0

0.5

0.0
0.0

0.5

1.0

x

y

Figure 5.12 Tetrahedral “four edges” minimal surface

where 0≤ x, y≤ ρ0 and −ρ0 ≤ z≤ 0. Dalpe [5] introduced one correction in the
preceding: the cube has side ρ0, not 2ρ0.

This is as far as described in [3]. Solving for z and rescaling (so that the surface
spans the 1 × 1 × 1 cube), we find that

z=
1√
3ρ0

F

arccos
 cn

(√
3ρ0x,− 1

3

)
cn
(√

3ρ0y,− 1
3

)
1 + sn

(√
3ρ0x,− 1

3

)
sn
(√

3ρ0y,− 1
3

)
,−1

3

, 0≤ x, y≤ 1

(note multiplication in the numerator and sn in the denominator, unlike before)
and the surface area is

2

1∫
0

1−x∫
0

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dy dx=
K[3/4]
K[1/4]

= 1.2792615711...,

as predicted in [4]. See Figure 5.12. This example and the first one feature
portions of what is known as the Schwarz D surface (D stands for “Diamond”).

5.17.3 Two Diagonals and Free Boundaries

Consider the soap film (resembling a twisted curtain) formed between two skew
line segments:

(2, 0, 0)→ (0, 2, 0) and (0, 0, 2)→ (2, 2, 2).
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Understanding that two remaining boundaries are unspecified, what is the min-
imal area for any surface spanning the diagonals? [6] This is a famous question
due to Gergonne (1816) and answered by Schwarz (1872).

For fixed κ> 0, let t=Q(φ, κ) and t=R(ψ, κ) denote functional inverses of
the elliptic integrals

φ=

t∫
0

dτ√
κ− τ 2 − τ 4

, ψ=

t∫
0

dτ√
κ+ (1 + 2κ)τ 2 + κ τ 4

.

Define also

λ(κ)=

√
1 + 4κ− 1

2
√

1 + 4κ
, µ(κ)=

√√
1 + 4κ− 1

2
.

We have, in particular,

µ(κ)∫
0

dτ√
κ− τ 2 − τ 4

=
K[λ(κ)]

(1 + 4κ)1/4
,

1∫
0

dτ√
κ+ (1 + 2κ)τ 2 + κ τ 4

=
K
[
− 1

4κ

]
2
√
κ

and these two expressions, when set equal, force κ=κ0 = 0.2092861374....
Denote the former integral by φ0 and latter by ψ0; consequently φ0 =

ψ0 = 1.3970394887.... The desired minimal surface is given implicitly by the
equation [3]

Q(x − φ0)R(z − ψ0) + Q(y − φ0)= 0

where 0≤ x, y≤ 2φ0 and 0≤ z≤ 2ψ0. We have introduced two corrections in the
preceding: the upper integration limit of ψ0 is 1 (not µ(κ), which was a typo-
graphical error in [3]) and the denominator underlying K

[
− 1

4κ

]
is 2

√
κ (not

merely 2, which was a computational error in [3]). More on the second correction
will be mentioned shortly.

This, again, is as far as described in [3]. Let

θ0 =(1 + 4κ0)
1/4

φ0, λ0 =λ(κ0), ε(x, y)=
{

1 if (x − 1)(y − 1)> 0,
−1 otherwise.

Solving for z and rescaling (so that the surface spans the 2 × 2 × 2 cube), we find
that

z= 1 +
ε(x, y)
2
√
κψ0

F

[
arccos

(
sd (θ0(x − 1), λ0)

2 − sd (θ0(y − 1), λ0)
2

sd (θ0(x − 1), λ0)
2
+ sd (θ0(y − 1), λ0)

2

)
,− 1

4κ0

]
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Figure 5.13 “Two diagonals” minimal surface

assuming (y> x and x< 2 − y) or (y< x and x> 2 − y); elsewhere on 0≤ x, y≤
2, no definition for z is given. The surface area is

4

1∫
0

1−x∫
0

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dy dx= 4.9348196582...= 4 (1.2337049145...)

and a closed-form expression remains open. See Figure 5.13. We have not
attempted to establish consistency with [7].

5.17.4 Details of Elliptic Functions

We can compute E(ξ) and F(η) using results in [8]:

ξ=

t∫
0

dτ√
1 + τ 2 + τ 4

=
1
2
F
[
arccos

(
1 − t2

1 + t2

)
,
1
4

]
,

η=

s∫
0

dσ√
3
4 +

5
2σ

2 + 3
4σ

4
=

1√
3
F
[
arccos

(
1 − s2

1 + s2

)
,−1

3

]
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since each quartic has four imaginary zeroes; hence

t=

√
1 − cn (2ξ, 1/4)
1 + cn (2ξ, 1/4)

,

s=

√√√√√1 − cn
(√

3η,−1/3
)

1 + cn
(√

3η,−1/3
)

and thus

z=
1
2
F
[
arccos

(
1 − E(x)2E(y)2

1 + E(x)2E(y)2

)
,
1
4

]
gives the “six edges” result. From

F(z)=−1 + F(x)F(y)
F(x) + F(y)

we obtain

z=
1√
3
F

arccos
1 −

(
1+F(x)F(y)
F(x)+F(y)

)2

1 +
(

1+F(x)F(y)
F(x)+F(y)

)2

,−1
3


and, because sn(u,m)2 + cn(u,m)2 = 1, the “four edges” result follows.

Computing Q(φ, κ) is somewhat different [9]:

φ =

t∫
0

dτ√
κ− τ 2 − τ 4

=
1

(1 + 4κ)1/4

K[λ(κ)]− F

arcsin
√√

1 + 4κ− 2t2 − 1√
1 + 4κ− 1

, λ(κ)


since the quartic has two real zeroes and two imaginary zeroes. Observe that,
when t=µ(κ), the second term vanishes. Inverting, we obtain

t=
κ

(1 + 4κ)1/4
sd
(
(1 + 4κ)1/4 φ, λ(κ)

)
and therefore

−Q(y − φ0, κ)

Q(x − φ0, κ)
=−

sd
(
(1 + 4κ)1/4 (y − φ0), λ(κ)

)
sd
(
(1 + 4κ)1/4 (x − φ0), λ(κ)

) .
Only the inverse of R(ψ, κ) is required:

ψ=

t∫
0

dτ√
κ+ (1 + 2κ)τ 2 + κ τ 4

=
sign(t)
2
√
κ

F
[
arccos

(
1 − t2

1 + t2

)
,− 1

4κ

]
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which generalizes the earlier cases κ=−1 and κ= 3/4. Note the specialization
t= 1, as well as the need here to track whether t=−Q(y − φ0, κ)/Q(x − φ0, κ)

is positive or negative.

5.17.5 Approximations of Minimal Surfaces

A surprisingly good fit to the “four edges” surface is provided by the hyperbolic
paraboloid

z= x + y − 2xy

and the corresponding surface area is

2

1∫
0

1−x∫
0

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dy dx= 1.2807... > 1.2792....

See [10] for more on approximating the Schwarz D surface, which (upon suitable
transformation) should enable a reasonable fit to the “six edges” surface.

Fairly coarse fits to the “two diagonals” surface are provided by

z= 1 +
y − 1
x − 1

, z= 1 +
4
π

arctan
(

y − 1
x − 1

)
if (y> x and x< 2 − y) or (y< x and x> 2 − y), and the corresponding surface
areas are 5.1231... and 5.0307..., respectively. We mentioned earlier that Nitsche
[3] mistakenly solved the equation

K[λ(κ)]

(1 + 4κ)1/4
=

K
[
− 1

4κ

]
2

;

the denominator underlying K
[
− 1

4κ

]
is missing a factor

√
κ. It is nevertheless

instructive to follow through to the end. We find κ= κ̃0 = 6.6061877190... and
consequently φ̃0 = ψ̃0 = 0.7781217795.... The surface obtained is a minimal sur-
face (with mean curvature everywhere equal to zero) and correctly spans the
diagonals. The two free contours, however, are not best possible: the surface area
for κ̃0 is 4.9480..., which is larger than the surface area 4.9348... for κ0.

The constant 1.9188... appears in [11, 12], 1.2792... in [13, 14] and a rough
estimate for 1

4 (4.9348...) in [15]. See [16, 17] for introductory materials, as well as
Schwarz’s complete works [18]. Other polygonal wire loops, with more solutions
of Plateau’s problem, are surveyed in [19].

Addendum Another portion of the Schwarz D surface arises as a soap film
spanning two parallel equilateral triangles with vertices

{(1,−1,−1), (−1, 1,−1), (−1,−1, 1)} and {(−1, 1, 1), (1,−1, 1), (1, 1,−1)}.
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Figure 5.14 “Two twisted triangles” minimal surface

One triangle is a copy of the other, rotated 60◦ about its center. Each of the six
edges has length 2

√
2 and the perpendicular distance between triangular centers

is 2/
√

3; the ratio of these is
√

6. Define ζ0 =K[8/9]. The desiredminimal annulus
is given implicitly by [18, 20]

sc(ζ0y, 8
9 ) sc(ζ0z,

8
9 ) + sc(ζ0z, 8

9 ) sc(ζ0x,
8
9 ) + sc(ζ0x, 8

9 ) sc(ζ0y,
8
9 ) + 3= 0

where −1≤ x, y, z≤ 1 and its surface area is 6K[3/4]/K[1/4]. See Figure
5.14. (This result contradicts a statement in [21] that, for Schwarz D to appear,
the ratio of edge length to distance should be 2

√
3.)

Amore difficult task is to represent theminimal annulus corresponding to par-
allel triangles that are aligned [22–26], that is, with no rotation. This is a member
of the family of Schwarz H surfaces (H stands for “Hexagonal”). Determination
of such representations, for a range of perpendicular distances between trian-
gular centers, and associated numerical calculation of surface areas, is a worthy
challenge.
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5.18 Partitioning Problem

Let us begin with a two-dimensional problem. Consider an equilateral triangular
region T with edges of unit length. What is the minimum length of a smooth
curve that partitions T into two subregions of equal area? Assuming the vertices
of T are (−1/2, 0), (0,

√
3/2), (1/2, 0), a solution is given by one-sixth of the

circumference of the circle

x2 +

(
y −

√
3

2

)2

= r2 =
3
√

3
4π

and hence the desired length is [1–4]

1
6
(2πr)=

π

3

√
3
√

3
4π

= 0.6733868435....

See Figure 5.15. The solution is a curve of constant curvature and meets the
boundary ∂T of T orthogonally.

0.0 0.2

0.2

0.4

0.6

0.8

–0.2–0.4 0.4

Figure 5.15 Optimally partitioning an equilateral triangle in half
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Figure 5.16 Optimally partitioning a regular tetrahedron in half (Smyth [5])

Let us now move up one dimension. Consider a regular tetrahedral region
T with edges of unit length. What is the minimum area of a smooth surface
that partitions T into two subregions of equal volume? An easy upper bound
for the surface area is 1/4= 0.25, given by a planar square with vertices coin-
ciding with edge midpoints. A graph of the minimal surface appears in [5]
without elaboration – see Figure 5.16 – and a purely numerical approach [6]
yields that its area is 0.2172341554.... It is a surface of constant mean curva-
ture (in fact, zero) and meets the boundary ∂T of T orthogonally everywhere,
but its Weierstrass–Enneper representation is unknown. We will not discuss this
particular tetrahedron further; additional words are found in [7–9].

Consider instead the irregular tetrahedral region T with vertices (0, 0, 0),
(1, 0, 0), (0, 0, 1), (0, 1, 1). We pose the same problem as before. This is a clas-
sical example [10], solved in 1872, and features a portion of what is known as the
Schwarz P surface (P stands for “Primitive”). The surface has zero mean curva-
ture and thus is a minimal surface in the same sense as the Schwarz D surface. In
the following, the functions F[ϕ,m] and K[m] are defined exactly as in [11].

5.18.1 Tetrahedral Dissection

Unlike our treatment of the Schwarz D surface [11], an expression for the
Schwarz P surface in x, y, z solely does not seem possible. We thus turn to a
parametric approach using the Weierstrass–Enneper representation [12]:

x(u, v)=κRe

u+iv∫
0

1 − ω2
√

1 + 14ω4 + ω8
dω,

y(u, v)=κRe

u+iv∫
0

i(1 + ω2)√
1 + 14ω4 + ω8

dω,
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z(u, v)=
1
2
+ κRe

u+iv∫
0

2ω√
1 + 14ω4 + ω8

dω,

where the complex line integrals have endpoint u + iv satisfying

u≥ 0, v≤ 0, (u + 1)2 + v2 ≤ 2, u2 + (v − 1)2 ≤ 2

– call this planar domain Ω – and the normalization constant is

κ=
3

2K[1/9]
= 0.9274219745....

This is as far as Nitsche [7, 12] went in characterizing the surface; calculations
based on [13] further yield that

x=
κ

4
Re
(
−i F

[
θ(u, v),

1
4

]
+ F

[
θ(u, v),

3
4

])
,

y=
κ

4
Re
(
i F
[
θ(u, v),

1
4

]
+ F

[
θ(u, v),

3
4

])
,

z=
1
2
+
(
2 −

√
3
)
κ Im

(
F
[
arcsin

(
i
(
2 +

√
3
)
(u + i v)2

)
,
(
2 −

√
3
)4
])

where

θ(u, v)= arcsin

(
2(1 + i)(u + i v)√

1 + 4i(u + i v)2 − (u + i v)4

)
.

See Figures 5.17, 5.18, 5.19. The four corners of Ω are mapped to the surface as
follows:

(u, v)= (0, 0) 7→ (x, y, z)=
(
0, 0, 1

2

)
[front left]

(u, v)=
(√

3−1
2 ,−

√
3−1
2

)
7→ (x, y, z)=

(
1
2 ,

1
2 ,

1
2

)
[back right]

(u, v)= (
√

2 − 1, 0) 7→ (x, y, z)= (ξ, 0, 1 − ξ) [front right]
(u, v)= (0,−(

√
2 − 1)) 7→ (x, y, z)= (0, ξ, ξ) [back left]

where ξ≈ 0.350. Letting xu, yu, zu, xv, yv, zv denote partial derivatives and

e=(xu, yu, zu) · (xu, yu, zu), g=(xv, yv, zv) · (xv, yv, zv),

f=(xu, yu, zu) · (xv, yv, zv)

we have surface area∫∫
Ω

√
eg − f2 dv du=

1
4
K[1/4]
K[3/4]

=
1
12

(2.3451028840...)= 0.1954...

as predicted in [13].
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Figure 5.17 Optimally partitioning an irregular tetrahedron in half
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Figure 5.18 First closeup of tetrahedral partition

5.18.2 Four Edges of a Regular Octahedron

We return to a variation of Plateau’s problem in [11]. Consider a polygonal wire
loop with four line segments:

(0, 0, 1/2)→ (1/2,−1/2, 1/2)→ (1/2, 0, 1)→ (1/2, 1/2, 1/2)→ (0, 0, 1/2).
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Figure 5.19 Second closeup of tetrahedral partition
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Figure 5.20 Octahedral “four edges” surface

What is the minimal area for any surface spanning this fixed boundary? Equiv-
alently, what is the outcome of dipping the wire loop in a soap solution?
[14, 15]

The same formulas for x, y, z apply here, but a new domain Ω̃ is needed:

u≥ |v|, u2 + (v + 1)2 ≤ 2, u2 + (v − 1)2 ≤ 2.

See Figure 5.20. The two corners of Ω̃ not in Ω are mapped to the surface as
follows:

(u, v)=
(√

3−1
2 ,

√
3−1
2

)
7→ (x, y, z)=

(
1
2 ,−

1
2 ,

1
2

)
,

(u, v)= (1, 0) 7→ (x, y, z)=
(

1
2 , 0, 1

)
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and the corresponding area is∫∫
Ω̃

√
eg − f 2 dv du=

1
2
K[1/4]
K[3/4]

=
1
6
(2.3451028840...)= 0.3908...

again as predicted in [13].

5.18.3 Integration Details

To prove our formulas for x, y, z, we must evaluate the hyperelliptic integral

Ip(η)=

η∫
0

ωp

√
1 − 14ω4 + ω8

dω

for p= 0, 1, 2. Note that the coefficient of ω4 in Ip(η) is −14 whereas it is +14 in
the definitions of x, y, z. This is chosen so that we may follow [13] closely and
then, at the end, perform a transformation to align with [12].

Let t=ω2, then dt= 2ω dω and

Ip(η)=
1
2

η2∫
0

tp/2√
1 − 14t2 + t4

dt√
t
.

Let s= t + 1/t, then assuming 0<Re(t)< 1, we have

t=
1
2

(
s −

√
s2 − 4

)
,

t4 − 14t2 + 1=
(
s2 − 16

)
t2,

dt=
1
2

√
s2 − 4 − s√

s2 − 4
ds=− 1√

s2 − 4
t ds

hence

dt
t3/2

= − 1√
s2 − 4

√
2

s −
√

s2 − 4
ds

= − 1√
s − 2

√
s + 2

√
s − 2 +

√
s + 2

2
ds

= −1
2

(
1√

s − 2
+

1√
s+ 2

)
ds

hence

1√
t4 − 14t2 + 1

dt√
t
=

1√
s − 4

√
s + 4

dt
t3/2

= −1
2

1√
s − 4

√
s + 4

(
1√

s − 2
+

1√
s + 2

)
ds
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hence

Ip(η) = −1
4

η2+1/η2∫
s=∞

1√
s − 4

√
s + 4

(
1√

s − 2
+

1√
s + 2

)
tp/2ds

=
1

22+p/2

∞∫
η2+1/η2

((
s −

√
s − 2

√
s + 2

)p/2
√

s − 4
√

s − 2
√

s + 4
+

(
s −

√
s − 2

√
s + 2

)p/2
√

s − 4
√

s + 2
√

s + 4

)
ds.

Define ζ = η2 + 1/η2. For the case p= 0, we need [16]

∞∫
ζ

1√
s − 4

√
s − 2

√
s + 4

ds=
1√
2
F

[
arcsin

(
2
√

2√
ζ + 4

)
,
3
4

]
,

∞∫
ζ

1√
s − 4

√
s + 2

√
s+ 4

ds=
1√
2
F

[
arcsin

(
2
√

2√
ζ + 4

)
,
1
4

]
which together imply that I0(η) is equal to

1

4
√

2

(
F

[
arcsin

(
2
√

2η√
η4 + 4η2 + 1

)
,
1
4

]
+ F

[
arcsin

(
2
√

2η√
η4 + 4η2 + 1

)
,
3
4

])
.

Similar work implies that I2(η) is equal to

1

4
√

2

(
−F

[
arcsin

(
2
√

2η√
η4 + 4η2 + 1

)
,
1
4

]
+ F

[
arcsin

(
2
√

2η√
η4 + 4η2 + 1

)
,
3
4

])
.

For the case p= 1, it is best to factor an earlier representation of 2I1(η):

η2∫
0

dt√
t −
(
2 +

√
3
)√

t −
(
2 −

√
3
)√

t +
(
2 −

√
3
)√

t +
(
2 +

√
3
)

and employ [16] to simplify this integral to(
2 −

√
3
)
F
[
arcsin

((
2 +

√
3
)
η2
)
,
(
2 −

√
3
)4
]
.

Our expression for 2I1(η) corrects an error that appears in [13].
From

η∫
0

ωp

√
1 + 14ω4 + ω8

dω=

(
1 − i√

2

)p+1

Ip

(
1 + i√

2
η

)
(that is, a rotation of the domain by 45◦) and

arcsin

(
2
√

2ω√
ω4 + 4ω2 + 1

)∣∣∣∣∣
ω= 1+i√

2
(u+iv)

= θ(u, v),
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we deduce that

x
κ

= Re

{(
1 − i√

2

)
I0

(
1 + i√

2
(u + iv)

)
−
(

1 − i√
2

)3

I2

(
1 + i√

2
(u + iv)

)}

= Re

{(
1 − i√

2

)
F
[
θ(u, v), 1

4

]
+ F

[
θ(u, v), 3

4

]
4
√

2

+

(
1 + i√

2

) −F
[
θ(u, v), 1

4

]
+ F

[
θ(u, v), 3

4

]
4
√

2

}

= Re

{
−i F

[
θ(u, v), 1

4

]
+ F

[
θ(u, v), 3

4

]
4

}
,

y
κ

= Re

{
i
(

1 − i√
2

)
I0

(
1 + i√

2
(u + iv)

)
+ i
(

1 − i√
2

)3

I2

(
1 + i√

2
(u + iv)

)}

= Re

{(
1 + i√

2

)
F
[
θ(u, v), 1

4

]
+ F

[
θ(u, v), 3

4

]
4
√

2

+

(
1 − i√

2

) −F
[
θ(u, v), 1

4

]
+ F

[
θ(u, v), 3

4

]
4
√

2

}

= Re

{
i F
[
θ(u, v), 1

4

]
+ F

[
θ(u, v), 3

4

]
4

}
,

z − 1
2

κ
=Re

{(
1 − i√

2

)2

2I1

(
1 + i√

2
(u + iv)

)}

=Re

{
−i
(
2 −

√
3
)
F

[
arcsin

((
2 +

√
3
)(1 + i√

2
(u + iv)

)2
)
,
(
2 −

√
3
)4]}

= Im
{(

2 −
√

3
)
F
[
arcsin

(
i
(
2 +

√
3
)
(u + i v)2

)
,
(
2 −

√
3
)4
]}

as was to be shown.

5.18.4 Approximations

With regard to tetrahedral dissection, a reasonable approximation is provided by
the plane containing V1 =

(
0, 0, 1

2

)
, V2 =(ξ, 0, 1 − ξ), V3 =(0, ξ, ξ), which also

contains

V4 =

(
1
2
,
1
2
,
1
2

)
=

(
1 − 1

ξ

)
V1 +

1
2ξ

V2 +
1
2ξ

V3.
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The plane cuts the tetrahedron into two polyhedra of equal area, and the area of
the quadrilateral slice is written in terms of the cross-product of its diagonals:

1
2
|(V3 − V1)× (V4 − V2)|=

1

2
√

2

√
(1 − 2ξ)2 + 2ξ2 = 0.2046... > 0.1954....

With regard to the octahedral “four edges” surface, an excellent approximation
is given in [17]:

z=
1
π

arccos (cos(πx)− cos(πy)), x≥ |y|, −1
2
≤ y≤ 1

2

and the corresponding surface area is

1/2∫
0

x∫
−x

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dy dx= 0.3920... > 0.3908....

The constant 2.3451... appears in [18–23].
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5.19 Soap Film Experiments

We conclude our brief survey of minimal surfaces, started in [1, 2], with more
solutions of Plateau’s problem. The functions F[ϕ,m] and K[m] are defined
exactly as before.

5.19.1 Ramp Inside a Cube

Consider a polygonal wire loop with six line segments:

(0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1)→ (0, 1, 1)→ (0, 1, 0)→ (0, 0, 0).

What is the minimal area for any surface spanning this fixed boundary? Equiva-
lently, what is the outcome of dipping the wire loop in a soap solution? Following
[3–5], we numerically solve the equation

1√
2
=

1√
2 +

√
2 − λ

K
[

8
√

2−λ
(2+

√
2−λ)

2

]
K
[

2−
√

2−λ
2+

√
2−λ

]
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and obtain λ= 1.5733414653.... Define

x(u, v) = κRe

u+iv∫
0

1 − τ 2
√

1 + λ τ 4 + τ 8
dτ

= κRe


F
[
arcsin

(√
2 +

√
2 − λ

ω

1 + ω2

)
,
2 −

√
2 − λ

2 +
√

2 − λ

]
√

2 +
√

2 − λ

,

y(u, v) = κRe

u+iv∫
0

i(1 + τ 2)√
1 + λ τ 4 + τ 8

dτ

= κRe


F
[
arcsin

(√
2 +

√
2 − λ

iω
1 − ω2

)
,
2 −

√
2 − λ

2 +
√

2 − λ

]
√

2 +
√

2 − λ

,

z(u, v) = κRe

u+iv∫
0

2τ√
1 + λ τ 4 + τ 8

dτ

=
√

2κRe



F

arcsin(√−λ+
√
−4 + λ2

2
ω2

)
,

(
λ+

√
−4 + λ2

)2

4


√

−λ+
√
−4 + λ2


where the complex line integrals have endpoint ω= u + iv satisfying

u2 + v2 ≤ 1, |v| ≥ u

– call this planar domain Ω – and the normalization constant κ satisfies

1
κ
= 2

√
2Re

 1√
−λ+

√
−4 + λ2

K


(
λ+

√
−4 + λ2

)2

4


 .

These expressions give the top portion (z> 0) of the surface in Figures 5.21 and
5.22. A reflection provides the bottom portion; a rotation would further align the
surface with our six prescribed vertices. This is a representative of the Schwarz
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Figure 5.21 First view of CLP surface
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Figure 5.22 Second view of CLP surface

CLP family ofminimal surfaces; a nice contrast exists with the SchwarzD surface
[6]. We also have surface area

2
∫∫
Ω

√
eg − f2 dv du= 1.7816507345...
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where e, f, g are as in [2]. Brakke and Weber duplicated this calculation,
using Surface Evolver software [7] and conformal mapping techniques [8]
respectively.

5.19.2 Saddle Inside a Cube
Consider a polygonal wire loop with eight line segments:

(0, 0, 1)→ (1, 0, 1)→ (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1)→ (0, 1, 1)→ (0, 1, 0)→ (0, 0, 0)→ (0, 0, 1).

Again, what is the minimal area for any surface spanning this fixed boundary?
Following [9], we numerically solve the equation

1
2
=

√ √
2 − λ

−λ+
√
−4 + λ2

K


(
λ+

√
−4 + λ2

)2

4


K
[
1
2
− 1√

2 − λ

]

and obtain λ=−5.3485781991.... Define

x(u, v) = κRe

u+iv∫
0

1 − τ 2
√

1 + λ τ 4 + τ 8
dτ

= κRe


F

[
arcsin

(√
2
√

2 − λ

1 +
√

2 − λω2 + ω4
ω

)
,
1
2
− 1√

2 − λ

]
√

2
√

2 − λ


,

y(u, v) = κRe

u+iv∫
0

i(1 + τ 2)√
1 + λ τ 4 + τ 8

dτ

= κRe


i F

[
arcsin

(√
2
√

2 − λ

1 +
√

2 − λω2 + ω4
ω

)
,
1
2
+

1√
2 − λ

]
√

2
√

2 − λ


,
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Figure 5.23 First view of T surface

z(u, v) = κRe

u+iv∫
0

2τ√
1 + λ τ 4 + τ 8

dτ

=
√

2κRe



F

arcsin(√−λ+
√
−4 + λ2

2
ω2

)
,

(
λ+

√
−4 + λ2

)2

4


√

−λ+
√
−4 + λ2


where the complex line integrals have endpoint ω= u + iv satisfying

u2 + v2 ≤ 1, |v| ≥ u

– call this planar domain Ω – and the normalization constant κ satisfies

1
κ
=

2
√

2√
−λ+

√
−4 + λ2

K


(
λ+

√
−4 + λ2

)2

4

 .
(No call to the Re function is needed here, unlike before.) These expressions give
a quarter-wedge of the surface in Figures 5.23 and 5.24. Reflections provide the
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Figure 5.24 Second view of T surface

other three quarter-wedges; a rotation would further align the surface with our
eight prescribed vertices. This is a representative of the Schwarz T family of min-
imal surfaces, also known as tD surfaces (generalizing the D surface). We finally
have surface area

4
∫∫
Ω

√
eg − f 2 dv du= 2.4674098291...= 2(1.2337049145...),

duplicating a calculation by Brakke [7]. The CLP expression for z is identical
to the T expression for z; this is true for x and y too (although less apparently
so). The latter expressions for {x, y} give elliptic parameters {1/4, 3/4}when λ=
−14, consistent with our earlier work [2]. The former expressions, which come
from [3], give {−1/3,−1/3} instead. Yet another set of expressions appear in [9],
which we have not attempted to use.

The presence of the constant 1.2337049145..., which also appeared in [1],
indicates that the T surface is related to Gergonne’s surface [9, 10]. This is sur-
prising because the T surface is the solution of a fixed boundary problemwhereas
Gergonne’s surface solves a problem involving a partially free boundary.

5.19.3 Other Problems

Consider a smooth wire loop C given parametrically by

x= cos(θ), y= sin(θ), z= cos(θ)2, 0≤ θ < 2π.
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Figure 5.25 Surface from Matlab help pages with boundary C
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Figure 5.26 Surface spanning folded circular loop

The projection of C into the xy-plane is the unit circle; its projection into the
xz-plane is the parabola z= x2; its projection into the yz-plane is the parabola
z= 1 − y2. The arclength of C is

4
√

2E
[
1
2

]
= 7.6403955780...= 4 (1.9100988945...)> 2π,

which incidentally is the arclength of the planar sine curve (one period). A
closed-form expression for the area 3.8269736664... > π of the minimal surface
spanning C is unknown [11, 12]. See Figure 5.25.

Consider instead the folded circular loop, that is, the outcome of orthogonally
mounting two unit semicircles along common diameters. For the boundary con-
figuration shown in Figure 5.26, we deduce that its projection in the xy-plane is
the ellipse x2 + 2y2 = 1 and its height z is simply |y|. The arclength is obviously
2π; the surface area 2.4822844847... < (2 + π)/2 is again unknown [13, 14].

We wonder finally what can be said about minimal surfaces that span three
disjoint perpendicular cubic edges. This topic is believed to be more difficult than
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the ”two diagonals” analog (Gergonne’s surface) and progress would be good to
see someday..
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5.20 Inflating an Inelastic Membrane

Starting with two circular unit disks (made of Mylar, a thin material that does
not stretch nor shrink), we sew these together along their boundaries and then
fill the interior with a fluid (air or helium) to capacity. What is the shape of the
resulting three-dimensional solid of revolution (Mylar balloon)? [1–3]
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Without loss of generality, assume that the solid is centered at the origin and
its axis of revolution is the z axis. In the plane y= 0, the boundary curve z= z(x)
solves the following calculus of variations problem: Maximize volume

4π

ρ∫
0

x z(x)dx

subject to the constraint

ρ∫
0

√
1 + z′(x)2 dx= 1

where 0<ρ< 1 is fixed. It turns out that the optimal value of ρ is

ρ=
4
√

2π
Γ(1/4)2

=

√
2

K[1/2]
= 0.7627597635...=(1.3110287771...)−1

and the parametric representation for the associated boundary surface is

x= ρ cn
(
u, 1

2

)
cos(v), y= ρ cn

(
u, 1

2

)
sin(v),

z=
√

2ρ
(
E
[
arcsin

(
sn
(
u, 1

2

))
, 1

2

]
− 1

2u
)

for −K[1/2]< u<K[1/2], 0< v< 2π. In the preceding, K[m], sn(u,m), cn(u,m)

are defined exactly as in [4] and

E[ϕ,m] =

sin(ϕ)∫
0

√
1 − m t2

1 − t2
dt

denotes the incomplete elliptic integral of the second kind. These are admittedly
incompatible with [5] but we purposefully choose formulas here to be consistent
with the computer algebra package Mathematica. See Figure 5.27. Let E[m] =

E[π/2,m]. Clearly ρ is the equatorial radius and

τ =
(2π)3/2

Γ(1/4)2
ρ= 2

√
2
(
E
[
1
2

]
− 1

2K
[
1
2

])
ρ=(1.1981402347...)ρ

=
16π2

Γ(1/4)4
=

π

K [1/2]2
= 0.9138931620...

is the polar diameter (thickness). Note that τ/(2ρ)= 0.5990701173..., the ratio
of extreme distances through the origin.

The volume

V =

√
π

2
Γ(1/4)2

6
ρ3 =

√
2π
3

K
[
1
2

]
ρ3 =(2.7458122499...)ρ3

=
64π2

3Γ(1/4)4
=

4π
3K[1/2]2

= 1.2185242161...
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Figure 5.27 Mylar balloon, starting from two unit disks

is considerably less than (
√

2/3)π= 1.48..., the volume of the sphere with sur-
face area equal to that of the two original disks. (4πr2 = 2π, hence r= 1/

√
2,

hence (4/3)πr3 =(
√

2/3)π.) It seems reasonable to call V theMylar balloon con-
stant. The surface area A possesses an elementary expression: π2ρ2. Comparing
the original area 2π with A:

2π
A

=
2
πρ2 =

1
τ
= 1.0942198076...

reveals a remarkable fact. We seem to have lost some of the 2D area, despite
the 1D restriction on Mylar stretching/shrinking. There must be crimping or
wrinkling of the inflated balloon in order to accommodate ≈ 9.42% area of
the deflated balloon. Most of the crimping occurs at the equator; none occurs
at the poles. More precisely, the crimping is governed by a local distribution
function [6]

δ(x)=
ρ2

x

x∫
0

dt√
ρ4 − t4

=
ρ√
2x

(
K
[
1
2

]
− F

[
arccos

(
x
ρ

)
,
1
2

])

over 0< x<ρ , where F [ϕ,m] is defined exactly as in [4]. See Figure 5.28.We have
δ(ρ)= 1/r= 1.311... whereas δ(0)= 1. Implicit in all our analysis is an assump-
tion that the wrinkles do not affect the volume of the balloon. We wonder about
the realism of such, given that the wrinkles do affect the surface area significantly.

The unit square analog of the Mylar balloon gives rise to a teabag or paper
bag [7, 8], whose optimal volume appears to be approximately 0.208 [9, 10].More
work will be needed to confirm that the actual teabag constant is no larger than
this value.
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Figure 5.28 Local distribution of the 9.42% excess area
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5.21 Enumerative Geometry

Given a complex projective variety V (as defined in [1]), we wish to count the
curves in V that satisfy certain prescribed conditions. Let C̃n denote complex
projective n-dimensional space. In our first example, V= C̃2, the complex pro-
jective plane; in the second and third, V is a general hypersurface in C̃n of degree
2n − 3. Call suchV a cubic twofoldwhen n= 3 and a quintic threefoldwhen n= 4.

Our interest is in rational curves, which include all lines (degree 1), conics
(degree 2) and singular cubics (degree 3). No elliptic curves are rational. The
word “rational” here refers to the affine parametrization of the curve – a ratio
of polynomials – and the curve is of degree d if the polynomials are of degree at
most d. For instance, the circle x2 + y2 = 1 is represented as

x=
1 − t2

1 + t2
, y=

2t
1 + t2

, −∞< t<∞.
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The lemniscate of Bernoulli has degree 4 and is represented as

x=
1 − t4

1 + 6t2 + t4
, y=

2t
(
1 − t2

)
1 + 6t2 + t4

, −∞< t<∞.

It is also defined implicitly: (
x2 + y2)2 = x2 − y2

and clearly possesses a singularity (vanishing gradient) at the origin.
The semi-cubical parabola y2 = x3 and four-petal rose(

x2 + y2)3 = 4x2y2

possess likewise. All rational curves, smooth or not, have genus 0.

5.21.1 Rational Plane Curves Passing Through Points

In the following, we use homogeneous coordinates. Given two distinct points
(X1,Y1,Z1), (X2,Y2,Z2) in C̃2, there is exactly one line passing through both
because the simultaneous system of equations

aXj + bYj + cZj = 0, j∈{1, 2}

has a unique solution (a, b, c) in C̃2 (up to a common scalar). It is a little harder to
prove the corresponding result for conics. Given five points (Xj,Yj,Zj) in general
position, there is exactly one conic passing through all five via study of

aX 2
j + bXjYj + cY 2

j + dXjZj + eYjZj + fZ 2
j = 0, j∈{1, 2, 3, 4, 5}

in C̃5. Hence we have K1 =K2 = 1, where Kd is defined as the number of rational
curves in C̃2 of degree d passing through 3d − 1 general points. The quantity
3d − 1 turns out to be the critical threshold for our question: less would give an
answer of infinity, more would give an answer of zero [2].

Proving that K3 = 12 involves a heavy dose of algebraic geometry [3, 4]. Credit
for this accomplishment (in the mid-1800s) is assigned variously to Chasles [5]
and Steiner [6].

Kontsevich’s famous recursion [7–9]:

Kd =
∑

d1+d2=d,
d1≥1,d2≥1

Kd1Kd2

[
d 2
1 d

2
2

(
3d − 4
3d1 − 2

)
− d 3

1 d2

(
3d − 4
3d1 − 1

)]
, d> 1

was not found until recently (in 1994). Its astonishing proof drew upon ideas
not from geometry but from mathematical physics, specifically, quantum field
theory and string theory. Other relevant recursions for curve counting are known
[7, 10–12] but these are too complicated for us to discuss here.
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The asymptotics for Kd are [11, 13]

Kd

(3d − 1)!
∼ (0.1380093466...)d

d7/2

×
(

6.0358078488...
1

− 2.2352424409...
d

+
0.0543137879...

d2 + · · ·
)

as d→∞, obtained using a device due to Zagier called the “asympk trick”. No
closed-form expression for these constants is known.

5.21.2 Lines On a Hypersurface

The fact that exactly 27 lines lie on a cubic twofold in C̃3 is a well-known theo-
rem [14, 15] due to Cayley & Salmon (in 1849). Somewhat later, Schubert proved
(in 1886) that exactly 2875 lines lie on a quintic threefold in C̃4. Thus we have
M3 = 27 and M4 = 2875, where Mn is defined as the number of lines on a gen-
eral hypersurface in C̃n of degree 2n − 3. Expanding on these results, van der
Waerden proved (in 1933) that

Mn =
1

(n − 1)!
dn−1

dxn−1

(
(1 − x)

2n−3∏
k=0

(2n − 3 − k + kx)

)∣∣∣∣∣
x=0

and Zagier [9, 13] obtained asymptotics

Mn ∼
√

27
π
(2n − 3)2n−7/2

(
1 − 9

8n
− 111

640n2 − 9999
25600n3 + · · ·

)
as n→∞. In this case, closed-form expressions are available.

5.21.3 Rational Curves On a Quintic Threefold

The number of conics on a cubic twofold is infinity. By contrast, the number
of conics on a quintic threefold is 609250. Our discussion at this point becomes
highly speculative – it is merely conjectured (by Clemens [8]) that the number
nd of degree d rational curves on a quintic threefold is finite – but the following
calculations are known to be valid at least for d≤ 9. Define f0(q), f1(q), f2(q) via
power series expansion of a certain hypergeometric function [4]:

∞∑
d=0

qd

∏5d
j=1(5w + j)∏d

k=1(5w + k)5
= f0(q) + f1(q)w + f2(q)w2 + · · · .

It follows that

f0(q)=
∞∑
d=0

qd (5d)!
(d!)5

, f1(q)=
∞∑
d=0

qd

(
(5d)!
(d!)5

5d∑
i=d+1

1
i

)
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(a similar expression for f2(q) would be good to see). We then define rational
numbers Nd recursively from

f2(q)=
1
2
f1(q)2

f0(q)
+

1
5

∞∑
d=0

dNdqdf0(q) exp
(
d

f1(q)
f0(q)

)
,

yielding

{Nd}∞d=1=

{
2875,

4876875
8

,
8564575000

27
,
15517926796875

64
,229305888887648,...

}
.

Such numbers are examples of Gromov–Witten invariants, which count not only
the rational curves we desire, but also capture (unwanted) additional structure
[8]. The final step is another recursion [4, 16]:

Nd =
∑
h | d

nd/h

h3

yielding

{nd}∞d=1 = {2875, 609250, 317206375, 242467530000, 229305888887625, ...} .

It is, again, merely conjectured (by Gopakumar & Vafa [8, 9]) that all numbers nd

obtained in this manner are indeed integers. Much work lies ahead to rigorously
confirm everything written here. The asymptotics for nd remain open.

Let S be a cubic twofold and let Hd be the number of rational curves on S of
degree d passing through d − 1 general points on S. Traves [9, 17] gave the values

{Hd}∞d=1 = {27, 27, 72, 216, 459, 936, ...}

and conjectured that Hd is always finite. A recursive formula for Hd (à la
Kontsevich for Kd?) also remains open.
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5.22 Distance-Avoiding Sets in the Plane

Fix a real number d> 0. Let D= {1, d } if d ̸= 1; otherwise D= {1} may simply
be written as 1. A subset S⊆Rn is said to avoid D if ∥x − y∥ /∈D for all x, y∈
S. For example, the union of open balls of radius 1/2 with centers in (2Z)n avoids
the distance 1. If instead the balls have centers in (3Z)n, then their union avoids
{1, 2}.

It is natural to ask about the “largest possible” S that avoids D. Let BR denote
the ball of radius R with center 0. Assuming S is Lebesgue measurable, its density

δ(S)= limsup
R→∞

µ(BR ∩ S)
µ(BR)

quantifies the asymptotic proportion of Rn occupied by S. We wish to know

mD(Rn)= sup {δ(S) :S is measurable and avoids D} .

The shortage of information regarding mD(Rn) is surprising. Until further
notice, let n= 2 and d= 1 for simplicity [1–3].

On the one hand, the number of Z2 points within BR is ∼πR2 [4], hence the
number of (2Z)2 points within BR is ∼ (π/4)R2. Each open disk in our example
has area π/4 and BR has area πR2, thus m1(R2)≥π/16≈ 0.196. It turns out
we can do better by arranging the disks with centers according to an equilateral
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triangle lattice, giving m1(R2)≥π/
(
8
√

3
)
≈ 0.227. An additional improvement

(replacing six portions of each circular circumference by linear segments) gives
m1(R2)≥ 0.229365. This is the best lower bound currently known [5, 6].

On the other hand, a configuration called the Moser spindle implies that
m1(R2)≤ 2/7≈ 0.286 [7, 8]. Székely [9, 10] improved the upper bound to 12/43≈
0.279. The best result currently known is m1(R2)≤ 0.258795 via linear pro-
gramming techniques [11, 12]. Erdős’ conjecture that m1(R2)< 1/4 seems out
of reach.

Sets avoiding 1 have been studied by combinatorialists because of their associ-
ation with the measurable chromatic number of the plane. What is the minimum
number of colors χm(R2) required to color all points ofR2 so that any two points
at distance 1 receive distinct colors and so that points receiving the same color
form Lebesgue measurable sets? It is known only that 5≤χm(R2)≤ 7 [13].

Let us now consider the case n= 2 and d= 2. The number of (3Z)2 points
within BR is ∼ (π/9)R2. Each open disk in our example has area π/4 and BR

has area πR2, thus m1,2(R2)≥π/36≈ 0.087. Better lower bounds can surely be
found, akin to before. We also know that m1,2(R2)≤ 2/9≈ 0.222 [9]. No one
appears to have pursued this case further.

A more interesting problem is to allow d to vary, in an effort to determine

inf
d>0

m1,d(R2).

One line of research gave m1,
√

3(R
2)≤ 2/11≈ 0.182 [9], now improved to

m1,
√

3(R
2)≤ 0.170213 [11]. Another direction gives m1,c(R2)≤ 0.141577, where

c=
j1,2
j1,1

= 1.8309303282...

is a ratio of the first two positive zeroes of the Bessel function J1 [14, 15]. There
is no indication [11] that c is necessarily an optimal choice for d.

For n= 3 and d= 1, a configuration called the Moser–Raiskii spindle implies
thatm1(R3)≤ 3/14≈ 0.214 [8]. Székely [16] improved the upper bound to 7/37≈
0.189; this was further diminished to 3/16= 0.1875 in [13]. The best result
currently known is m1(R3)≤ 0.165609 [11].

For n= 4 and d= 1, an early result m1(R4)≤ 16/125= 0.128 [13] was super-
seded later by 0.112937 [11] and more recently improved to 0.100062 [17]. Upper
bounds on m1(Rn) are now known up to n= 24; lower bounds seem to be
relatively neglected.

Let us return finally to a lower bound, mentioned in [13]:

inf
d>0

m1,d(R2)≥
(

1
χm(R2)

)2

≥
(

1
7

)2

=
1
49

and proved in [9]. The gap between 1/49≈ 0.02 and≈ 0.14 deserves to be bridged!
We are hopeful that someone will accept this challenge.
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An unrelated problem is as follows. Let I be a Lebesgue surface measurable
subset of the unit sphere in R3 with the property that no two vectors in I are
orthogonal. Let α denote the largest possible area of such sets I, normalized by
4π. It is known [18] that 0.2928<α< 0.313 and the upper bound is (again) the
outcome of linear programming techniques.
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5.23 Fraenkel Asymmetry

For simplicity, we restrict attention to subregions of the plane. Let Ω⊆R2 be the
closure of a bounded, open, connected set of area |Ω|with piecewise continuously
differentiable boundary and perimeter p. The classical isoperimetric inequality:

p(Ω)≥ (4π |Ω|)1/2 with equality iff Ω is a disk

can be expressed as

δ(Ω)≥ 0 with equality iff Ω is a disk

where the isoperimetric deficit is

δ(Ω)=
p(Ω)

(4π |Ω|)1/2
− 1.

We wish to refine δ(Ω)≥ 0 so that the right-hand side vanishes only on disks and
measures to what degree Ω deviates from a disk. Out of many possible choices,
we examine Fraenkel asymmetry [1–3]

α(Ω)= inf
{
|(Ωr D) ∪ (D r Ω)|

|Ω|
:D a disk with |D|= |Ω|

}
.

Note the symmetric difference of sets in the numerator (some authors employ
|Ωr D| instead, hence their results are off by a factor of 2). Before understanding
best constants for the inequality δ(Ω)≥ cα(Ω)2, that is, extreme values of the
ratio δ(Ω)/α(Ω)2, let us first examine α(Ω) for several polygonal regions.

The Fraenkel asymmetry of a regular hexagon (side length 1) is

1

3
√

3/2
· 12

√
3
√

3/(2π)∫
√

3/2

√
3
√

3
2π

− x2 dx

=

−9

√(
2
√

3 − π
)
π + 18

√
3 arccos

(√
π/
(
2
√

3
))

(
3
√

3/2
)
π

= 0.0744657545...

which is quite close to zero (Figure 5.29). The square has greater asymmetry

16

1/
√
π∫

1/2

√
1
π
− x2 dx

= 4 −
2
√

(4 − π)π + 8 arcsin (
√
π/2)

π
= 0.1810919376...



“C05” — 2018/10/27 — 12:01 — page 758 — #136

758 Geometry and Topology

1.0

1.0

0.5

0.5

0.0

0.0

–0.5

–0.5

–1.0

–1.0

Figure 5.29 Symmetric difference between regular hexagon and Fraenkel disk.

and the equilateral triangle has still greater asymmetry

1√
3/4

· 12
1/4−

√
3π(3

√
3−π)/(12π)∫

0

( 1√
3
−
√

3x
)
−

√√
3

4π
− x2

 dx

= 0.3649426110...

(omitting the exact expression, which is complicated).
Let ℓ≥ 2/

√
π. If Ω is the rectangle with vertices (±ℓ/2,±1/(2ℓ)), clearly |Ω|=

1 and

α(Ω)=− 1
ℓ2

√
4ℓ2 − π

π
+

4
π

arcsin

(√
4ℓ2 − π

4ℓ2

)
→ 2

as ℓ→∞. Fraenkel asymmetry can never exceed 2; from

p(Ω)= 2
(
ℓ+

1
ℓ

)
∼ 2ℓ

we deduce

α(Ω)∼ 2 − 8√
π

1
p
+

4
√
π

3
1
p3 .

This example is inefficient (in terms of perimeter) by comparison with the
following.

Let 0<θ≤ arctan(π/4) and

f(θ)=
√
π

4
cos(θ)2

sin(θ)
, g(θ)=

1√
π

sin(θ).
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y

x
θ

Figure 5.30 For a biscuit (or stadium or racetrack) of unit area, θ is the angle determined
by the intersection between its boundary and the circle with common center, radius 1/

√
π.

Consider the rectangle with vertices (± f(θ),± g(θ)), capped on the right and left
by semicircles. The equation of the boundary in the first quadrant only is

y=

{
g(θ) if 0≤ x≤ f(θ),√

g(θ)2 − (x − f(θ))2 if f(θ)< x≤ f(θ) + g(θ).

The region Ω′ in Figure 5.30, called a biscuit, satisfies |Ω′|= 1 and [4, 5]

α(Ω′)=
2
π
(π − 2θ − 2 sin(θ) cos(θ))→ 2

as θ→ 0+. From

p(Ω′)=
√
π

1 + sin(θ)2

sin(θ)
∼

√
π

θ

we deduce

α(Ω′)∼ 2 − 8√
π

1
p
+

8
√
π

3
1
p3 .

The third termwhen expandingα(Ω′) is greater than that forα(Ω). These asymp-
totics are consistent with a theorem that, among all convex setsΩ of unit area and
fixed perimeter

p≥ p0 =
2√
π

π2 + 8√
π2 + 16

= 3.9643784229...,

the biscuit maximizes α. Write Ep =Ω′ for convenience. Since δ(Ω)=

p(4π)−1/2 − 1 is fixed, Ep coincides with the solution of a restricted version of
the earlier optimization problem.

If 2
√
π< p< p0, then the maximizing convex set Ep is called an oval whose

boundary consists of four symmetrically placed circular arcs. We omit all details
except to remark that arctan(π/4)<θ<π/4 for these. Also of interest is [5–7]

min
p>2

√
π

δ(Ep)

α(Ep)2
= 0.4055851970...=

1
4
(1.6223407880...)
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which is achieved for a specific biscuit. Allowing non-convex sets to enter the
discussion,

δ(Enc)

α(Enc)2
≈ 0.39314

is achieved by a certain set, called amask, whose boundary involves eight circular
arcs. Proof of this latter new assertion has not yet appeared.

Finally, we turn to an older topic: the calculation of maximal coefficients ck in
the asymptotic estimate

δ(Ω)≥
m∑

k=1

ckα(Ω)
k + o (α(Ω)m)

for arbitrary Ω. The fact that ck = 0 for odd k and [8–10]

c2 =
π

8(4 − π)
= 0.4574740457...=

1
4
(1.8298961831...)

has been known since the 1990s; the fact that [6]

c4 =−π
3(3π − 14)(5π − 16)
96(4 − π)4(π − 2)

=−0.6962146734...,

c6 =
π5(−759808 + 1619648π − 1386576π2 + 612992π3 − 148024π4 + 18552π5 − 945π5)

2880(4 − π)7(π − 2)4

= −1.7607874382...

was found only in 2013. Verification makes use of a sequence of ovals converging
to the disk (θ→ (π/4)−).

We witnessed two measures of asymmetry (in a different context) in [11];
Reuleaux polygons are mentioned in [12]. Yet another measure – Hausdorff
asymmetry – is found in [13].

5.23.1 Geometric Uncertainty Principle

For the following, an assumption of finite perimeter is not needed, thus hypothe-
ses may be weakened. Let Ω⊆R2 be an open bounded region with a given
decomposition

Ω=

N∪
j=1

Ωj

into disjoint Lebesgue measurable sets Ωj. Define the j th area deviation

σ(Ωj)=
|Ωj| − min1≤i≤N |Ωi|

|Ωj|
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Figure 5.31 Tiling of the plane using disks and hourglasses in equal proportion.

which satisfies 0≤σ(Ωj)≤ 1 and, like α(Ωj), is scale-invariant. Steinerberger [14]
proved the remarkable existence of a universal constant κ> 0 such that, for
sufficiently large N depending only on Ω, the sum N∑

j=1

|Ωj|
|Ω|

α(Ωj)

+

 N∑
j=1

|Ωj|
|Ω|

σ(Ωj)

≥κ.

It is known that κ is at least 1/60000 and conjectured that κ= 0.0744657545...,
which corresponds to the regular hexagonal tiling of the plane. Another can-
didate tiling of the plane – Kepler’s circle packing with exactly one adjacent
hourglass per disk (Figure 5.31) – gives a considerably larger sum.

5.23.2 Bisecting Chords

As an aside, given a planar measurable convex set Ω, a bisecting chord is a
line segment whose endpoints lie on the boundary of Ω and which partitions
Ω into two subsets of equal area. For example, a disk D of radius 1/2 pos-
sesses infinitely many bisecting chords, all of length 1. The area of such a disk
is π/4= 0.7853981633.... For most sets Ω, we expect bisecting chord lengths to
vary. Suppose Ω has the property that its maximum bisecting chord length is
1. How small can the area of such a set Ω be? Is D the area-minimizing set Ω?

The answer to the second question is no. Define the Auerbach triangle ∆ (or
rounded triangle) to consist of six parts, three linear and three nonlinear, with the
topmost part (the dashed curve in Figure 5.32) given parametrically by [15–17]

x(t)=
e4t − 1
e4t + 1

− t, y(t)= 2
e2t

e4t + 1
, − ln(3)

4
≤ t≤ ln(3)

4
.
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(0,1)

(–1/√3,0)

p

3

(1/√3,0)

Figure 5.32 Auerbach triangle with unit bisecting (halving) chords.

Then ∆ satisfies the required property, but its area is
√

3
8

(
8 ln(3)− ln(3)2 − 4

)
= 0.7755147827...=

1
4
(3.1020591308...)<

π

4
.

This numerical value is the answer to the first question. A third question is: How
large can the perimeter of such a set Ω be? Note that the perimeter of ∆ is
3 ln(3)= 3.2958368660... > π and ∆ evidently is the perimeter-maximizing set Ω
as well. Related materials include [18–23].

Addendum Let Ω be the ellipse x2/ℓ2 + ℓ2y2 ≤ 1/π and Ω′ be the rhombus with
vertices (±ℓ, 0), (0,±1/(2ℓ)). Clearly |Ω|= |Ω′|= 1 and

α(Ω)=
4
π

[
arcsin

(
ℓ√

1 + ℓ2

)
− arcsin

(
1√

1 + ℓ2

)]
,

α(Ω′)= 8

ξ∫
0

[√
1
π
− x2 − 1

2ℓ2
(ℓ− x)

]
dx

where

ξ=
ℓ

1 + 4ℓ4
+

2ℓ2
√

1 + (4ℓ2 − π)ℓ2

(1 + 4ℓ4)
√
π

(the exact expression for α(Ω′) is complicated). From

p(Ω)=
4ℓ√
π

π/2∫
0

√
1 −

(
1 − 1

ℓ4

)
cos(θ)2 dθ∼ 4ℓ√

π
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(an elliptic integral of the second kind) and

p(Ω′)= 4

√
ℓ2 +

1
4ℓ2

∼ 4ℓ

we deduce that, as ℓ→∞,

α(Ω)∼ 2 − 32
π3/2

1
p
, α(Ω′)∼ 2 − 16√

π

1
p

which again are inefficient by comparison with a biscuit. More computations of
Fraenkel asymmetry are found in [24], related to the study of various triangle
centers [25, 26].
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